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INTRODUCTION

l. HISTORICAL SURVEY

(a) Origin

The study of topological semigroups as an
independent subject was possibly started in the
fifties, This area was highlighted by A.D.Wallace
in 1953 in his address to the American Mathematical
Society as " What topological spaces admit a contin-
uous associative multiplication with unit? " . As
noted by Wallace, the answers to these questions
involved more algebra and topology than was the case
for compact groups, where there is a representation
theory due to the presence of Haar measure. During
these thirty seven years, the subject has developed
in many directions and the literature is so vast
that number of papers in the subject runs to several
hundreds. Some of the main early contributors are
K.H. Hofmann and P.S. Mostert (1966) [HO-M2],

A.B. Paalman-De-Miranda (1970) [P], A.C.Shershin (1979)
[SH], K. Numakura [NUl], E. Hewitt [HE], W.M.Faucett
[F], R.P. Hunter [HUN2] and R.J. Koch [KOl].
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(b) Main directions of development

(1) Structure theory

By definition, a topological semigroup S is a
Hausdorff space with continuous associative multi-

plication (x,y) > xy : S x S

semigroups which are compact will be called compact

> S. Topological

semigroups [HO—M2]. The theory of compact semigroups
is a major area and a good account of the standard
results in this area are available in the book "The
Theory of Toupological Semigroups" by J.H. Carruth,
J.A. Hildebrant and R.J. Koch (1983) [C-H-Kl]. One

of the historically primary observations about compact
semigroups concerns with the existence of an idempotent
and it leads to the structure theorem for the minimal
ideal. This observation appears independently in
papers by K. Iwasawa (1948) [I], K. Numakura (1952)
[NUl], A.D.Wallace (1953) [WA]] and R. Ellis (1957b)
[52]. The developments in internal structure theory’
of compact semigroups started with the work of
A.D.Wallace (1955) [WA3]. A first systematic treatment
of monothetic compact semigroups (the compact subsemi-

groups generated by one element) was perhaps given by

K. Numakura (1952) [NUl] in which he derived most of
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the results from the fact that minimal ideal

*
N {x", xn+l, eee } =M [ [(x) ] is a group.

A thorough description of the structure of monothetic
compact semigroup is available in E. Hewitt (1956)[HE].
Some other contributions on compact monothetic semi-
groups are due to J. Los and S. Schawarz (1958)[L0O-S],
E. Hewitt and K.A. Ross (1963) [HE-R] and to R.J.Koch
(1957a) [KOl].

In the theory of compact semigroups, the concept
of schiltzenberger group was developed by Schlitzenberger
in 1957 [S], its topologization was given by Wallace[WA3]
and further developments were made by Anderson and
Hunter (1962a) [A-H], J.H. Carruth, J.A. Hildebrant

and R.J. Koch (1983) [C-H-Kl].

A.M. Gleason (19%0a) [GL], P.S.Mostert and
A.L. Shields (1957) [MO-S], J.H. Carruth and J.D.Lawson
(1970b) [C-L] have improved the theory of compact semi-
groups by introducing the existence of one parameter

semigroups in compact semigroups.

K.H. Hofmann and P.S. Mostert (1966) [HO-M2]
introduced 'atoms' of compact connected monoids called

solenoidal semigroups to develop compact semigroup theory.
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A more systematic treatment of a class of compact
semigroups, including both monothetic and solenoidal

compact semigroup may be found in Hofmann (1976) [HO].

Contributions of P.S. Mostert and A.L. Shields
(1957) [MO-S] and W.M. Faucett (1955) [F] are mainly
on interval semigroups, i.e., I-semigroups. For the
theory of compact semigroups the structure of
I-semigroups was determined by P.S. Mostert and
A.L. Shields (1957) [MO--S]° In particular, Hobochen
and I.S. Krule (1959) [CO-K] discussed closed congruences
on I-Semigroups. The existence of idempotent I-semigroups
in compact connected semigroups under suitable conditions
was proved by R.J. Koch around 1957 and its existence in
certain special cases has been demonstrated by R.J.
Koch (1959) [KOQ], R.P. Hunter (1960, 1961b) [HUNl, HUN2]
and A.L. Hudson (1961la) [HU].

W.M. Faucett (1955a) [F], introduced the concept
of irreducibility in the study of semigroups, where he dis-
cusses Semigroups irreducibly connected between two
idempotents. R.P. Hunter formulated the concept of
irreducibility. K.H. Hofmann and P.S. Mostert (1964a)
[HO-Ml] developed various characterizations of I-semigroups

in terms of the concept of irreducibility.



K. Numakura (1957) [NU2], R.P. Hunter (1961b)
[HUN2] , K.H. Hofmann and P.5. Mostert (1966)[HO—M2], and
J.H. Carruth, J.A, Hildebrant and R.J. Koch (1983)
[C-H-Kl] used projective 1limits for the investigation

of compact semigroups.

A.D. Wallace (1953c) [WA2] introduced the
geometric structure of compact semigroups and A.L.Hudson
and P.S. Mostert (1963) [HU-M] studied its very important

applications in compact semigroups.

D.R.Brown and M. Friedberg (1968) [BR-F;land J.A.
Hildebrant (1968) [HI] have improved the theory of
compact semigroups by introducing compact divisible

semigroups.

(ii) Applications to functional analysis

Unlike the topological theory, the semitopological
theory, seems to lean strongly towards functional analysis.
Applications of the theory of topological semigroupskin
certain branches of functional analysis called for a
distinguished subclass of topological semigroups, namely,
semigroups which are compact Hausdorff spaces with the
multiplication being continuous in each variable separately.

Such semigroups are called semitopological semigroups.
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Application to functional analysis start from
K. Deleeuw's and I. Glicksberg's work on compact
semitopological semigroups. His foundations of the
theory of almost periodic and weakly almost periodic
functions [D-Gl] based on a general theory of semigroups
of operators on topological vector spaces, where the
semigroups are compact in the strong operator topology
or in the weak operator topology. In this study he
used general methods concerning topological vector
spaces and compactness criteria for function spaces.
Developments in this direction constitute a rich

theory.

J.F. Berglund and K.H. Hofmann (1967) [BE-H],
J.E. Berglund (1970) [BE] and J.F. Berglund and
P. Milnes (1976) [BE-M] applied semigroup theory to
operator semigroups and thus developed the theory
of almost periodic functlions in the spirit of

K. Deleeuw and I. Glicksberg [D-Gl].

Other main contributions in this direction
are due to L.M.Anderson and R.P.Hunter (1969) [A—Hl],
M.Friedberg (1981) [FR,], W.G.Rosen (1956) [RO] and
to J.S. Pym (1965) [PY,].



vii

Also, K. Deleeuw and I. Glicksberg [D—Gl],
J.F. Berglund and K.H. Hofmann (1967) [BE-H],
J.F. Berglund, H.D. Junghenn and P. Milnes (1978)
[BE-J-M] and A.L.T. Paterson (1978) [PA] studied
means for bounded functions and developed amenable

semigroups.

(iii) Applications to Algebra

H. Cochen and H.S. Collins (1959) [CO-C]
developed affine semigroups. R. Ellis (1957) [El]
established results on locally compact transformation
groups. J.F. Berglund and K.H.Hofmann (1967) [BE-H]~

formulated Ellis's results and discussed some fixed

point theorems for semigroups of continuous affine

transformations of compact convex sets.

(iv) Semigroup compactifications

In the theory of topological semigroups,
another branch is the study of semigroup compacti-
fications. This area of research started from the
information about compact semigroups from which the
Bohr compactifications were constructed [D-~G]. The
theory of semigroup compactification of topological

semigroups is still in the stage of infancy. However,
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there are developments in particular cases. For example,

(a) Bohr (almost periodic) compactification of
topological semigroups has been studied by K.Deleeuw
and I. Glicksberg (1961) [D-G], J.F. Berglund and
K.H. Hofmann (1967) [BE-H] and L.W. Anderson and
R.P. Hunter (1969) [A-H,].

(b) J.F. Berglund, H.D. Junghenn and P. Milnes (1978)
[BE~J~M] developed the theory of almost periodic and
weakly almost periodic compactifications of semitopological

semigroups.

By semigroup compactification, they mean a compact
right topological semigroup which contains a dense
continuous homomorphic image of a given semitopological
semigroup. .Possible techniques developed for semigroup
compactification are (i) by the use of operator theory
a technique employed by K. Deleeuw and I. Glicksberg,
(ii) based on the adjoint functor of category theory, and
(iii) based on the Gelfand-Naimark theory of commutative

C*-algebras.

Other main contributions in this direction are

due to M. Friedberg and J.W. Steep (1973) [FR-S],
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P. Holm (1964) [HOL], H.D. Junghenn and R.D. Pandian
(1984) [Ju-P], P. Milnes (1973) [MIl] and to J.S.Pym
(1963) [PYl].

(¢) J.H. Carruth, J.A. Hildebrant and R.J.Koch(1983)
[C-H-Kl] indicated other types of compactifications for
a given topclogical semigroup S such as the group

compactification, one-point compactification, etc.

In topological spaces, the theory of compactifica-
tion is well-developed starting with the work of
A. Tychonoff (1930) [TY]. E. Ceh (1937) [CE] and M.H.
Stone (1948) [ST] who independently defined the maximal
Hausdorff compactification gX, now known as Stone-éech
compactification of X, and stated its fundamental
properties. In the theory of topological semigroups
J.W. Baker and R.J. Butcher (1976) [B-B]and H.M.Umoh
(1985) [U] studied the Stone-Cech compactification of

a topological semigroup.

In tcrology, contributions of R.E. Chandler(1976)
[CH], M.C. Rayburmn(1973) [R2], H. Tamano (1960) [T] and
R.C. Walker (1974) [W] are mainly on the theory of
Hausdorff compactifications. Also if X is a locally
compact space, all Hausdorff compactifications of X

are obtained by considering Hausdorff quotients of

X=X [CH].



In this thesis, we have attempted to present
our studies in this direction based on the Bohr

compactification of a topological semigroup.

2, SUMMARY OF MAIN RESULTS ESTABLISHED IN THIS THESIS

The main part of Chapter-l is devoted to
(i) define semigroup compactifications of a topological
semigroup, and (ii) prove that semigroup compactifications
of a topological semigroup S are precisely thé quotients

of the Bohr compactification of S under closed congruences.

We define semigroup compactification of a
topological semigroup S as a compact semigroup which
contains a dense continuous homomorphic image of S. The
contrast with the usual notion of compactification of a
topological space may be noted that- it contains a
continuous not necessarily a homeomorphic image. Section-l
of this chapter contains some background material from
(1) The algebraic theory of semigroups [HOW] and (2) The
Theory of topological semigroups [C-H-Kl] needed in

later chapters also.

In 1941, Lubben [LU] observed some properties of

K(X), the family of compactifications of a completely
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regular space X and proved that K(X) is a complete
lattice if and only if X is locally compact. Also,
K.D. Magill Jr. (1968) [Mz]. M.C. Rayburn (1969) [Rl] :
and T.Thrivikraman (1972) [TH] have improved the
theory of Lattice of Hausdorff compactifications.
K.D.Magill Jr. (1968) [Mz] proved that if X and Y

are locally compact Hausdorff spaces, then their
lattices of compactifications K(X) and K(Y) are
isomorphic if and only if gX-X and BY-Y are homeo-
morphic. In the second chapter, we conduct a study

in this direction.

It is known that the family of congruences
on a semigroup is a complete lattice [HOW]. 1In
Section 2.1 of this thesis, we study the properties
of Kl(S)— family of all semigroup compactifications
~of §, each obtained by a closed congruence on (8,B)
and show that (Kl(S), > ) is a complete lattice,

under the ordering (a,A) » (y,C) if there exists a

continuous surmorphism f: A > C such that
fx = v. In Section 2,2, we prove that for
topological semigroups S, and S, if (B,,B,) and

1 2 17817
(62,82) are topologically isomorphic then the lattices

K;(S;) and Kl(S2) are isomorphic and observe that
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converse need not be true. This may be compared with

the theorem of K.D. Magill Jr. [Mz] on compactifications.
In Section 2.3, we give certain possible generalizations.
Also using the category language, as a special case,

we establish that the association of (B,I) with Kl(S)
where S is a topological semigroup, B its Bohr compacti-
fication. and I a closed ideal of B, is a contravariant
functor into the category of all complete lattices with

suitable morphisms.

In the third chapter, we describe some more
results on the lattice Kl(S) of semigroup compactifica-

tions of a topological semigroup S.

In 1961, A.H. Clifford and G.B.Preston [CL-Pl]
considered the concept of ideals on semigroups. It is
known that if S is a semigroup and 'w' is an ideal of S,
then (wxw) UAis a congruence on S [HOW]. In Section 3.1,
we introduce weak ideals, joint weak ideals and comple-
mentary joint ideals of a semigroup and discuss congruences

determined by them. Also we prove that

(i) A topological semigroup S with Bohr compactifica-

tion (B,B) has a semigroup compactification (a, A)
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determined by 'n' disjoint closed proper weak ideals
(ideals) of B, at least one of which is non-singleton
only if S has a semigroup compactification

strictly bigger than (a,A).

(ii) A topological semigroup S with Bohr compacti-
fication (g,B) has an n-point compactification (a,A)
determined by 'n' non-empty subsets of B does not
imply that it has an (n=l)=point compactification,
nor does it imply that there is a semigroup compacti-

fication strictly bigger than (a,A) different from (B,B).

(iii) A topological semigroup S with (B,B) has an
n-point compactification (a,A) determined by 'n'
non-empty weak ideals (ideals) of B implies that S
has a semigroup compactification strictly bigger than
(a,A), but it does not imply that S has an (n-1)-point

compactification.

In Section 3.2, we describe the dual atoms and

atoms of Kl(S), when B is finite.

In 1961, K. Deleeuw and I. Glicksberg [D-G]
observed that the product of Bohr compactification of

{S47 o’ collection of abelian topological monoids
a
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is the Bohr compactification of P {Sa} . In
acA

Section 4.1 of this thesis, we discuss semigroup

compactification of the product P {Aa} , where
acA

Aa is a semigroup compactification of Sa’ for each «a cA.
Also, we consider the family of topological semigroups

{s,} with Bohr compactifications{B  j and tne
aeA xeA

latticesof semigroup compactifications{Kl(Sa)}
aec A

and show that P {K,(S )} C K,(P{S_} ) is
1agen t % aecA

a complete lattice. 1In Section 4.2, we discuss semi-
group compactifications, Bohr compactification and
lattice of semigroup compactificationsof the limit

of a projective system of topological semigroups.

In the category of Tychnoff spaces, the sub-
category of compact space is epireflective. Also,
in the category of all Hausdorff spaces, epimorphisms
are dense continuous maps and extremal monomorphisms
are closed embeddings. In the category of topological
semigroups, the compact semigroups form an epireflective
subcategory. However, the other results mentioned
above do not hold in the category of topological semi-
groups. We investigate this problem in Chapter-5

and give the possible results in these directions.
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For example, we prove that

(1) If the images are ideals, the epimorphisms
in the category TS of all topological semigroups are

morphisms with dense range.

(2) If the images are ideals, the weak extremal
monomorphisms in the category TS are the closed
embeddings and epireflective subcategories are closed

under weak extremal subobjects.

We do not claim that the study made in this
thesis is complete in all respects-~ rather, there
are various problems connected with the work here,
worth investigating, as has been pointed at relevant

places in the thesis.



Chapter 1

SEMIGROUP COMPACTIFICATIONS

Introduction

A considerable body of information about the
structure of topological semigroups is now available,
and is given in books and monographs by K.H. Hofmann
and P.S. Mostert (1966) [HO-M,]. A.B. Paalman-de
Miranda (1970) [ p ] and J.H. Carruth, J.A. Hildebrant
and R.J. Koch (1983) [C-H-Kl].

In topological spaces, the notion of a compacti-
fication was considered for the first fime by
A. Tychnoff (1930) [TY]. 1In 1937, E. fech [CE] and
M.H. Stone [ ST] independently defined the maximal
compactification BX and stated its fundamental properties.
But in topological semigroups, the theory of semigroup
compactification is still in the stage of infancy. How=-
ever, there are results in special types of compactifications.
Also the theory of semitopological semigroups develops in
this direction. For example, in [BE~J-M] J.F. Berglund,
H.D. Junghenn and P. Milnes develops the theory of compact
right topological semigroups and in particular of semigroup

compactifications of semitopological semigroups. In 1961,



K. Deleeuw and I. Glicksberg [D-G] constructed almost
periodic and weakly almost periodic compactifications

of any semitopological semigroup. Bohr [almost periodic]
compactification of topological semigroups has been

studied by K. Deleeuw and I. Glicksberg in 1961 [D-G],

J.F. Berglund and K.H. Hofmann in 1967 [BE-H] and

Anderson and Hunter in 1969 [A-H]. 1In [C-H-K;] J.H.Carruth,
J.A. Hildebrant and R.J. Koch have discussed the problems
that arise when we work with the Bohr compactification

in contrast with Stone-fech compactification of topological
spaces. They have also discussed the concepts of group
compactification, one-point compactification, etc. for a

given topological semigroup.

In this chapter in Section 1.2, we introduce another
type of compactification for a given topological semigroup
named as "Semigroup Compactification'' and discuss some
results relating them to the Bohr compactification.

Section 1.1 contains some background material needed.in

later chapters also.

lel Preliminaries

Semigroups l.l.1 A semigroup is a non-empty set S
together with an associative multiplication (x,y) ——> xy

from S x S into S. If S has a Hausdorff topology such that



(x,y) —> xy is continuous with the product topology

on S x S, then S is called a topological semigroup.

If S i1s a cowpact topological semigroup then S 1is called
a compact semigroup [C-H-K,].

Examples 1l.1l.2

(a) Let S be a topological space. Define multiplication
in S by xy = x (xy =y ) for every x,y in S. Then S is a
topological semigroup, called the left zero (right zero)

semigroup.

(b) Let S be a topological space. Let z € S be fixed.
Define multiplication in S by xy = z for every x,y in S.
Then S is called a zero semigroup which is a topological

semigroup with zero 'z'.

(¢) Let I, = [0,1] with usual topology and usual multi-

plication. Then Iu is a compact abelian semigroup.

(d) Let I = [ %,l ] with the usual topology and multi-
plication (x,y) b—> min {X,¥} o Then Im is a compact

semigroup.
Definition 1.1.3.

A non-empty subset T of a topological semigroup S
is called a subsemigroup of S if TTc T, a left ideal of S
if STCT, a right ideal if TSCT and an ideal if TS USTCT.



If T 45 a subsemigroup of S, T itself is a
topological semigroup under the restriction of multi-
plication on S to T x T and the closure T of T is also

a subsemigroup of S [C-H-Kl].

In 1976, J.M. Howie [HOW] and in 1961 A.H. Clifford
and G.B. Preston [CL—Pl] considered the concept of

congruence on semigroups.

Definition 10104

Let S be a semigroup. A relation R on S is said
to be left (right) compatible (with the operation on S)

if (x,y) € R —>(ax,ay) € R [ (xa,ya)eR] Vx,y,a €8
and compatible if R is both left and right compatible.

Definition 1l.1.5

A compatible equivalence on a semigroup S is

called a congruence [HOW].
‘

Proposition 1.1.6

(a) An equivalence R on a semigroup S is a congruence

if and only if (a,b)cR and (c,d) € R —> (ac,bd) & R.

(b) the intersection of any collection of congruences

on a semigroup S is a congruence on S.



(¢) S x S is a congruence on S. [HOW]

Definition 1.1.7

If S is a semigroup and I is an ideal of S then
the semigroup S/( I x I )UA 4is called the Rees quotient
semigroup of S mod I and is denoted as S/I [C-H-Kl].

Definition 1.1.8

If R is an equivalence (congruence) on a topological
space (semigroup) S, then R is called a closed equivalence

(congruence) if R is a closed subset of S x S [C-H-Ki].

Definition 1l.1.9

Let X,Y be spaces and f:X —> Y a function which
is surjective, then f is said to be a quotient map if W
being open (closed) in Y is equivalent to f_l(w) being

open (closed) in X.

Definition 1.1.10

A semigroup S is said to be left (right) cancellative
provided x,y,z2 &€ S and xy = xz =—> y = z [ yx=zx —> y=z].
If S is both left and right cancellative, then S is said

to be cancellative.



Next theorem is an algebraic hypothesis on a compact

semigroup which implies that it must be a group [C-H-Kl].

Theorem 1.1.11

Let S be a compact cancellative semigroup. Then

S is a group [C-H-Kl].

Definition 1.1.12

If S and T are semigroups, a function #: S ——> T
is called a homomorphism if @(xy) = @(x). @(y) for each
X,y € S. If @ is surjective, then @ is called a surmorphism.
If § is also injective then @ is called an algebraic iso-
morphism and S and T are said to be algebraically isomorphic
[C-H-K,].

If S and T are topological semigroups and @:S —> T
is both an algebraic isomorphism and a homeomorphism, then
@ is called a topological isomorphism and S and T are said

to be topologically isomorphic [C—H—Kl].

If §: S —> T is a homomorphism, then @ preserves
subsemigroups and subgroups. In the case that ¢ is a
surmorphism then @ preserves ideals and minimal ideals of
all three types (left, right, two-sided) and ¢-l preserves
subsemigroups, (left, right) ideals.



If S and T are semigroups and @:S —=> T is a

homomorphism, then K(@) is a relation defined as

{(x,y) € s x5 : @#(x) = 8(y)}

Theorem 1.1.13 Induced Homomorphism theorem

Let A,B and C be (topological) semigroups,

a: A > B a (quotient) surmorphism, and p: A ——> C
a (continuous) homomorphism such that K(a) € K(B). Then
there exists a unique (continuous) homomorphiém y:B —> C

such that the diagram commutes [C-H-Kl]

>C
=

> w

Theorem 1l.1.14 First Isomorphism theorem

Let S and T be semigroups and let @:S ——> T be

a surmorphism. Then K(@#) is a congruence on S and there

> T

exists a unique algebraic isomorphism @ :S/K(¢@)

such that the diagram commutes.



Moreover, if S and T are

topological semigroups and S/K(%) »
@:S —> T is a continuous A\
surmorphism, then K(@) is a
closed congruence on S and T &

the folliowing are equivalent.

(a) qfl is continuous
(b) G is a topological isomorphism, and

(e) @ is quotient

Finally, if these equivalent statements hold, then

S/K(@) is a topological semigroup [C-H-Kl].

If S 1s a topological semigroup and R is a closed
congruence on S, then S/R'with the induced operation and
the quotient topology need not be a topological semigroup.
This situation has been studied by J.H. Carruth, J.A.
Hildebrant and R.J. Koch (1983) [C-H-Kl] and some condi-
tions under which S/R is a topological semigroup have been
established. This result was established for compact
semigroups by Wallace (1955) [WAz ] and extended to
locally compact o-compact semigroups by Lawson and

Madison (1971) [LA-M].



Lemma 1l.1.15

Let S be a topological semigroup and let R be a
closed congruence on S such that P x P : S x S —> S/R x S/R
is a quotient map. Then S/R is a topological semigroup
[C-H-K,].

Theorem 1.1.16.
Let S be a compact semigroup and let R be a closed
congruence on S. Then S/R is a compact semigroup.

Let {S,] feT ‘be a collection of (topological)

semigroups. Then co-ordinatewise multiplication on
P {Si} is given by (fg)(j) = f(3) g(j), the latter

icIl
product being taken in SJ for each jel [C-H-Kl].

Theorem 1.1.17

Let {Si} be a collection of (topological)
. iel
semigroups and S = P {Si} . Then S with coordinate=-
iel

wise multiplication is a (topological) semigroup and each

projection Pj:S — SJ is a (continuous open) surmorphism.

The concepts of projective (inverse) limits of
topological semigroups are developed in [C-H-Kl] and some
results on compact semigroups are studied by Hofmann and

Mostert (1966) [HO-M,], Numakura (1957) [NU,],
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J.H. Carruth, J.A. Hildebrant and R.J. Koch (1983) [C-H-Kl].

Definition 1,1.18

A projective system of (topological) semigroups

is a triple D, £ S P where
Irlp ( ( ] )v {a} aeD,{¢a} a(B)
(a) (D, £ ) is a directed set )
(b) {54} is a family of (topological) semigroups
ach
indexed by D, and
(c) {¢f} is a family of functions indexed by <
al B
such that

(1) ¢§ : SB —>» S, is a (continuous) homomorphism
for each (a,B) ¢ ¢

(11) ¢§ = lg_ identity map on S, for each « ¢ D, and

(ii1) ¢g o ¢g = ¢Z for all a £ B £ v in D. This projective

system is denoted by {Sa’¢5} . Each ¢g is called .a

acD

bonding map and {S_, ¢5} is said to be strict if each
)

bonding map is surjective [C-H-Kl].
Definition 1.1.19
[ B —
165 = [xe P syt #x() = x(@

for all a £ B in D}

€



is non-empty, then S is called the projective limit

of £5,, ab . _p 3nd is denoted by

= B
S = lim {S_, ¢a}aeD or S =<lim S,

If [Sa, ¢2} 5 is a strict projective system,then
ac

S is called tne strict projective limit of {S_, ¢ﬁ}
ach

[c-HK,].

Theorem 1.1.20

Let (S, ¢g} be a projective system of

acD
(topological) semigroups such that S =‘%im S, exists,

Then S is a (closed) subsemigroup of P {Sa}[HO-Ml].
acD

Some results on compact semigroups that we would

require are

Theorem 1.1.21

Let {S,, ¢§} 5 be a projective system of
« €

compact semigroups. Them<}im Sa is a compact semigroup

[C-H-Kl].

11
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Theorem 1.1.22,

Let {Sa, ¢2} be a projective system of
aeD
compact semigroups and let S =<}im Sa' Then Pals;s —> Sa

is surjective for each aeD, where Pa is the projection

map [C-H-Kl].

Note.
Assocliated with each topological semigroup S,

there is a compact semigroup called the Bohr compacti-
fication of S which 1is universal over the compact

semigroups containing dense continuous homomorphic images

of S. The existence and uniqueness of Bohr compactification

can be proved [C-H-Kl].-

Definition 1.1.23 Bohr Compactification

If S is a topological semigroup, then Bohr
compactification of S is a pair (B,B) such that B is a
compact semigroup, P:S —> B is a continuous homomorphism
with B = B(S) and if g:S —> T is a continuous homomorphism
of S into a compact semigroup T, then there exists a unique
continuous homomorphism f.B —3 T such that the diagram

commutes B
N
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For each topological semigroup S, there exists
a Bohr compactification which is unique upto topological
isomorphism [C-H-Kl].

In 1961, K. Deleuuw and I. Glicksberg [D-G]

developed product theorem on Bohr compactifications.

The Product Theorem 1.1.24

Let {S :a € Af be a collection of abelian
topological monoids, (Ba, Ba) the Bohr compactificationg

{ By}

of S for each a €« A and fB: P S} —> P
a acA {‘J acA

the function defined by B(x)(6) = %5 is(x), where

Pg: P {(§ } —> Sg is projection for each & ¢ A.
acAhA «

Then (B, P {B_} ) is the Bohr compactification
“ acA

of P {Sa} .
acA

Remark.

This result is true even in noneabelian case.

1,2, Semigroup Compactification

Here we introduce our definition of semigroup

compactification.



Definition 1.,2.1l.

A semigroup compactification of a topological
semigroup S is an ordered pair (g,T) where T is a
compact semigroup and g:S —> T is a dense continuous
homomorphism of S into T. (Here g is dense means

g(S) is dense in T).

Examples 1.2.2,

(1) Let N be the multiplicative semigroup of +ve
integers with the discrete topology,

T = {% : neN}) U {0} is a closed subsemigroup

of Iu = [0,1] with usual topology and usual multiplication.
If §: N—> T is defined by @(n) =-r1; for all n ¢ N.

Then (@,T) is a semigroup compactification of N.

(2). Let (R, +) be the additive (semi) group of real
numbers with the usual topology. Let T be the circle
group with usual multiplication and usual topology. If
@ : R—> T is defined by @#(x) = exp (2nrix). Then
(#,T) is a semigroup compactification of R.

(3). Bohr compactification (g,B) of a topological

semigroup S is a semigroup compactification.

14



Waliace, A.D. has shown that if B is a compact
semigroup and R i1s a closed congruence on B, then the
quotient space B/R is a compact semigroup [1l.1.16].
We prove below that semigroup compactifications of a
topological semigroup S are precisely the quotients
of the Bohr compactification of S under closed

congruences.

Result 1.2,3.

Let S be a topological semigroup with Bohr
compactification (B,B). If (a,A) is any semigroup

compactification of S, then

(a) there exists a continuous surmorphism
(ie. surjective homomorphism) €:B —> A
such that 68 = «

(b) and the equivalence defined by © on B is a

closed congruence.

(¢) (x,A) is the quotient of (B,B) with respect
to the congruence in (b).

Proof

(a) from the definition of (B,B) there exists a

continuous homomorphism 8: B —> A such that €8 = «a.



Again © is surjective,; for,

A = a(S) ( *.° a is dense in A)

= Bp(S) =0 B(S) ( *.® © is a closed map being
from a compact space to a
T, space )

= ©(B)

We have ®: B —> A is a continuous surmorphism such that

e = a.

(b) Let R be relation defined on B by ©
R = {(x,y)€B x B : 6(x) = 8(y)} is clearly

an equivalence.

R = (0 x 0)"l (‘QA) is closed since A, diagonal in

A x A of Hausdorff space A 1is closed.

R is a congruence; for,

(a,b) ¢ R ==>06(a) = 6(b)
(c,d) eR =—>06(c) = 6(d)

' ©(ac) = 6(a). @(c) = 6(b). 6(d) = 6(bd)

A (ac, bd) & R.

Hence R is a closed congruence.

16



(c) We have ©: B —=> A is a quotient map, since it

is a closed continuous surmorphism.

Result 1.2.4.

Let S e a topological semigroup with Bohr
compactification (B,B). If R is a closed congruence
on B, then there exists a semigroup compactification
(eyA) of S so that the congruence defined by this

compactification is R.

Proof.

Let R be a closed congruence on B. Define

@:B ——> B/R the natural map. Then A = B/R, with the
quotient topology and multiplication induced by © is a

compact semigroup [1.1.16].

Define a:S ——> A such that a = 68, Clearly «

is a well-defined continuous homomorphism.

Also a is dense; for,

afS)

= ©o(B) = A ( °.° © is surjective)

Thus we have a:S —> A is a dense continuous homomorphism.

6p(S) = © B(S) ( *.° © is closed)

17
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.« (a,A) is a semigroup compactification of S
and the congruence defined by (a,A) is that defined by ©
which is R.

‘Remaxk 102050

Thus we have proved that if (B,B) is a Bohr
compactification of S and R is any closed congruence on B,
then the quotient space B/R is a semigroup compactification
of S and conversely any semigroup compactification (a,A)
of S is topologically isomorphic to B/R for some closed

congruence R on B.



Chapter-2

LATTICES OF SEMIGROUP COMPACTIFICATIONS

Introduction

In 1941, Lubben [LU] observed two general
results concerned with properties of K(X), the family
of compactifications of a completely regular space X.

The results are:

(i) K(X) is a complete upper semilattice.

(ii) K(X) is a complete lattice if and only if X

is Iccally compact.

It is known that the family of congruences
on a semigroup is a complete lattice [HOW]. Here we
consider Kl(S)— the family of semigroup compactifications
of S We define a pre-order in Kl(S) and show that the
equivalence classes form a complete lattice. This is

the content of Section 2.1.

Kenneth D. Magill Jr. [M2] has shown that if -
X and Y are locally compact Hausdorff spaces, then their
lattices of compactifications K(X) and K(Y) are isomorphic if and

only if BX-X and BY-Y are homeomorphic. But this theorem

19



does nothold in general for completely regular Hausdorff

spaces [TH].

In Section 2.2 we prove that for topological semi-
groups Sl and S, if (Bl, Bl) and (32, 82) are topologically
isomorphic then the lattices Kl(sl) and Kl(SZ) are iso-
morphic. We construct examples to show that the converse

of this theorem is false.

In Section 2.3 we study certain possible generaliza-

tions of this result.

2.1 Some Properties of Kl(S)

Definition 2,1.1
Two semigroup compactifications («,A) and (y,C)

of a topological semigroup S are regarded as being
equivalent if there exists a topological isomorphism
® : A ——> C such that the following diagram commutes
i.e., 8a = vy.

A
N

Kemark . 2.1.2,

We have a pre-order 3 in the class of all semigroup

compactifications of S if we define (a,A) > (y,C) whenever

20
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there is a continuous surmorphism f: A ——> C such that

fa = vy.

Lemma 2.1.3

Two semigroup compactifications («,A), (y,C) are

equivalent if and only if (a«,A) » (y,C) and (v,C) » (a,A)

Proof
Assume that (a,A) and (y,C) are equivalent. Then

by definition (2.1.1) there exists a topological isomorphism

@ : A——> C such that 8a = y. Now © : A > C is a
continuous surmorphism such that 6a = Y.
-.o (a’A) >/ (Y’C)
. -1
Again a = © Ty
e G-l : C —> A is a continuous surmorphism

such that 8 Yy = a.

e (e) Y (@A)

Conversely, if (a,A) > (y,C) and (y,C) » (a,A) then there

exists a continuous surmorphism fl: A > C such that

f,a = y and a continuous surmorphism f,: C —> A

such that fzy = Qa.
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A A
A N
1
A and f20f1
a
a
N
> A > A
S a S a
Then f2 o fl: A ——> A is a continuous surmorphism

such that f2 o fl oa = f2 oYy = a. f2 o fl is unique,
since a is dense in A and A is a Hausdorff space.

In view of the commuting diagrams, amd the unique-
ness of f2 o} fl’ we see that f2 o fl = lA’ and similarly
fl 0 f2 = lCa We conclude that fl is a topological iso-

morphism.

.« (a,A) and (y,C) are equivalent.

Notation

Kl(S) denotes the set of equivalence classes of

semigroup compactificatioﬁs of S.

Lemma 2.1.4.

Kl(S), under the ordering ')' described in (2.1.2)

is partially ordered set.
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Theorem 2.1.5.

Let S be a topological semigroup with family
of semigroup compactifications Kl(S). Then (Kl(S),))

is an upper complete semilattice.

Proof.

By lemma 2.l1.4, we have (Kl(S),z) is a partially
ordered set. For the required proof, let {ais} be
iel
a subset of Kl(S). We must show that this set has a
least upper bound with respect to ' ) '.
Define a : S ——> P {a.S}by (a(x)): = a.(x)
. i i i
iel
Since each @, is a continuous homomorphism it follows

@ is also one such. P [ais}is a compact semigroup
iel

under co-ordinatewise multiplication and product topology

[C-H—Kl].

Let aS = a{S)3 then itsaclosed subsemigroup of the

compact semigroup P {aisbnd s0 ‘is a compact semigroup.
‘iel

.'e @t S ——> aS is a dense continuous homomorphism.

Thus (a,aS) is a semigroup compactification of S.

For each 1 € I let Pi:aS = aiS be the restriction

to aS of the projection map.



For each i €1,

(P; o a)(x) = (a(x)); = a;(x)

so that

P.a = a; and thus (a,aS) > (ai,ais) for all i eI

Suppose (ao,aos) > (arpis) for all i € 1
where

g; ¢ aOS —_— aiS such that gi%, = Q4.

Define

f: a § —> iPeI{cziS}by.(f(v))i = g;(y)

P a.s
jer t

—

a.S
Then q; © f = g; so that f is a continuous homomorphism

and also,

fla (x)); = g;(a (%)) = a,(x) = (a(x));
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We conclude that fao = a

ie. (fa )(S) = a(S)

Now f is dense for,

f(aOS):D‘f(ao(S)) = (fao)(S) = a(S)
f(aoS) Da(s)

and so

f(_aos) Da(S) = aS

« f QOS) = (ls

and f is a surmorphism,

For,

asS f(a S)

(o)

= f(aoS) = f(aos) ( °+* f is a closed map)

.« f is a continuous surmorphism from

aoS

> aS such that fao = .
Thus (ao,aos) > (a,aS)

.*+ (a,aS) is the least upper bound of

{(ai’ ais)}i c1



Corollary 2.1.6 Kl(S) has the largest element (B,B)

If X is a locally compact space, it is known
that all compactifications of X are obtained by ‘'adjoining'
Hausdorff quotients of BX-X to X [CH]. Here we
consider Kl(S), the family of semigroup compactifications

of S each obtained by a closed congruence on Bohr compacti-

fication (B,B).

Note 2.1.7

We say a congruence Rl refines a congruence R2 and

write R, » Ry if R; CR,.

Lemma 2.1.8

Let ((Z,A), (Y’C) EKl(S)' Then (a’A) > (Y’c) if
and only if Rl refines R,, where Rl and R, are the closed

congruences corresponding to (a,A) and (y,C) respectively.

Proof.
Let S be a topological semigroup with Bohr compacti-
fication (f,B). Let R, and R, be closed congruences on B

such that Ry, ) R,. ConsiderT,:B —> B/R, and

Tp: B —> B/R2 the natural maps where B/R1.=:= (a,A)
and B/R2::: (y,C). Then by induced homomorphism theorem
[1.1.13] there exists a continuous surmorphism ©:A —=> C

such that ©a = y. Hence (a,A) » (y,C). On the other hand,

26
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now suppose that (a,A)' > (Y,C). Then by definition
there exists a continuous surmorphism €:A —> C such

that 6a = y. Again let (B,B) be the Bohr compactification
of S, then (a,A) and (y,C) are the quotient spacesof B,

it follows that fl:B —> A is a continuous dense homo-

morphism such that flﬁ = a and f2: B

> C is a

continuous dense homomorphism such that f2ﬁ = Y.

Now let Rl and R, be closed congruences on B
defined by f, and f, respectively. Then (x,A) topologically
isomorphic to B/Rl and (y,C) topologically isomorphic to

B/R,, and given ©: A —> C such that 8a = v
ie. © flﬁ =Y
=) flﬁ = fzﬁ
ie, © fl = f2

ie. Rl > R,

Theorem 2.1.9

Let S be a topological semigroup with Bohr compacti-
fication (B,B). 'Then Kl(S) is a complete lattice. More=-

over if B is cancellative, then Kl(S) is a modular lattice.

Proof
Kl(S) is an upper complete semilattice follows from
theorem (2.1.5). For the required proof only to show that

Kl(S) has a smallest element.
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Since B is a compact semigroup Ro =B x B is the
largest closed congruence on B. Then B/Ro = {0} deter-

mines a semigroup compactification (qﬁ; {0} ) € Kl(S).

Again (qB, {0} ) is the smallest compactification denoted

by (a,, {0)).

If (a), A}) € K (S), then (a),A)) » (ay, {0} ),

since the conscant map @ from Al to {0} is a continuous
surmorphism such that ¢al = aj. Thus KI(S) has a smallest

element.

Again if B is cancellative, using [theorem 1.10
(C—H-Kl)], B is a group. Also it 1is known
that the lattice of congruences on a group is modular [HOW].

Kl(S) is a modular lattice, for,

if (al,Al) > (a3,A3), i.e. R;SR4

Then RlCRlUR2 = Rl o R2 and R, CR

1 3

given R; C (Rl UR2) M R,
ie. the corresponding compactification satisfies

(a),8)) % ((a),A) A (ay,Ay)) Viag,Az) (1)
Also  R,yNMR4 C R, C Rl U R, and R20R3 C R3

ie. Ry MRy C (Ry UR,) M R,
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ie. the corresponding compactification
(ap,8)V (ag,A5) > [(a),A ) A(ay,A5) IV (ag,A5)  (2)
from (1) and (2) we have
(a,A )AL (ay,4,) V(ag,A5) ]
> [(ap,A A (0,4,) IV (ag,A3)

hence the result.

2.2 Functorial relation between B and Kl(S)

By a lattice isomorphism from a lattice Ll to
a lattice L2, we mean a bijection f from Ll to L2 which

preserves meet and join.

Theorem 2.2.1,

Let Sl and 52 be two topological semigroups with
Bohr compactification (Bl!Bl) and (ﬁQ,Bz) respectively.
If (ﬁl,Bl) topologically isomorphic to (52,82), then their
lattices of semigroup compactifications Kl(Sl) and Kl(Sz)

are isomorphic.
Proof

Assume that (Bl,Bl) and (ﬁ2,82) are topologically
isomorphic. ie. there exists a topological isomorphism

f: By —> B, such that fg, = B,.



Let (al,Al) & Kl(Sl), then «,:5 —> A, is a dense

continuous homomorphism, where Al is a compact semigroup.
By the definition of Bohr compactification there exists a
continuous homomorphism ©,:B, —= A, such that Glﬁl = o)

and Ol induces a congruences on Bl say Rl.

Define (x,y) ¢ Ry (f-l(XL f-l‘Y))G R,

Then R, = {(x,y) €By x Byt (£71(x), £7H(y)) ery}

1

AA which is a dosed subset of A
1

-1 -1y

Clearly R, is an equivalence.
Again R2 is a congruence; for,
if (a,b) € Ry, (c,d) € R,
=(r"Ha), b)) ery, (£7H(e), £71(d)) eR,

=> (£(a).£7He), (o).t Ha)) eRry

( ".° Ry is a congruence)

=> (£ Hac), £71(bd)) eRr,
-1

( *.° f is a homomorphism)

==> (ac, bd) €Ry-

Define ©,:B, > B2/R2 = A,

Then A2 is a compact semigroup.

30
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Define a,:S, —> A, such that a, =6, B,.
Then a, is a dense continuous homomorphism.
<% ((12,A2) S Kl(s2)
.'. corresponding to each (al,Al) € K;(S;) there
exists (a2,A2) € Kl(Sz).
Conversely, if (az,Az) e‘Kl(Sz) there exists (al,Al) e.Kl(S

Define @ (al,Al)I———f> (a2,A2)

Clearly @ is one-one and onto.

Again Kl(Sl) isomorphic to Kl(s2)
ie. @ preserves order in both directions
for, (al,Al) > (al', Al') in Kl(Sl)

&= R, C R’

<:> ((12,A2) > (ai' ’ A2' )

<:>
Blay,h) 3 Blay', ALY
and also @ preserves the meet and join.

Hence the result,

l)'
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Note

But in contrast with Magill's theorem on
compactification [My ], the converse of this theorem
is false. We construct examples to show that (ﬁl,Bl)
and (62,82) are not topologically isomorphic while

Kl(Sl) and K,(S,) are lattice isomorphic.

Example 2.2.2

1. Let Sl be a topological semigroup with Bohr
compactification (Bl, C U{l} ), where C U{l} is a

compact semigroup by adjoining an identity 1 to C

11
discretely, where C = {2z : |z| ¢ %} is a compact
subsemigroup of complex plane € with complex multi-

R
plication and usual topology. (Note that Sl can be 12

C Ufl) itself). Set of all closed congruences on

c U1} areRll=A, R12=CXCUA,R13=leB « R

1° ™13

Let 52 be a topological semigroup with Bohr compacti-

fication

(Ba» {[éxﬂ [8 y;/_é @Z ﬂ}> = (B, B,), where

B2 is a compact semigroup with discrete topology and
multiplication defined by usual matrix multiplication

(Note that S, can be B, itself).
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ie,

Set of all closed congruences

R !
on 82 are 21
X Yy z
Ryy =4 x| x y z g
22 [ ]
Ryp = {y,2} x {y,z}ua Yy
z!| z z z
R = B, x B
23 2 2
) R23 s

Then Kl(sl)’ family of all semigroup compactifications
determined by Rll’ Rl2 and Rl3 are lattice isomorphic
to Kl(SQ) family of all semigroup compactifications
determined by R2l' R22 and R23. But Bl and 82 are not

topologically isomorphic.

2., Let Sl be a topological semigroup with Bohr
compactification (ﬂl,Bl)

By» {0y e £, gy %, ¥}

i
where
0 0 O 1 0 0 0 0 O
o =|0 0 0| e =1lo 0o f=10 1 0
0 0 O 0 0 O 0 0 1
o 0 O 0 1 0 0 0 o
g =10 1 00 x =10 00 y=]1L 0 O
0 0 O 0 0 0 0 0 0

with discrete topology and usual matrix multiplication.

33



ie.
Set of all closed congruences oe fgxy
on Bl are o) 0000 0O
e 0Oe oo0Xo
Rl1 =4 f|l oofgoy
Rio =1{f,g} x {£f,9} UD 91 °°9909y
X 00X X o0 e
Rl3 = {0,€,g,X,Y} X Yy Oy oo0Qgo
{o,e,g,x,y} U A
Rl4 = B x B
Ri1

R12 \/ R13

R14

Let 52 be a topological semigroup with

(ﬁ2,B2) = (ﬁ2, {% , % , 13 ) with discrete topology

and multiplication defined as

xy = max ( %, xy:)

Set of all closed congruence on B2 are
Ry =4
Ry = 130 31 x {5 31UL

{3, 1} x {3, 1} UAD

pre
[\
w

]

22

21

24

23
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Then Kl(Sl) and Kl(S2) are lattice isomorphic

but Bl and 82 are not topologically isomorphic.

2,3 Generalizations

We give certain possible generalizations of
theorem (2.2.1) and some particular cases are given as

corollaries.

Theorem 2.3.1.

Let S and S' be topological semigroups with Bohr
compactification (8,B) and (B', B') respectively. If h
is a continuous homomorphism from a closed ideal I
contained in B into B', then there is a lattice isomorphism

@ from an interval in Kl(S') onto an interval in Kl(S).

Proof

Let h : I ——> B' be a continuous homomorphism.
We have h(I), a compact subsemigroup of B'. Let (ao,Ao)
and (ao', Ao') be the semigroup compactifications
corresponding to Ro and Ro' respectively, where Ro the
largest closed congruence in B' containing h(I) x h(;)
and Ro’ the smallest closed congruence in B' which

restricted to h(I) is On(I).
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Consider the interval [(ao,Ao), (ao',Ao')] in Kl(S').
Then h™!(R)) = {(x,y) €I x I : (h(x), h(y)) eR_} is a

closed congruence in I, since Ro is a closed congruence

containing h(I) x h(I). Similarly
n"H(R,') = {(x,y) €IxI : (h(x),h(y) €R_}
is a closed congruence in I.

Define R

-1
1 h (Ro) LJAﬁB and

-1
1 1
Rl h (Ro ) LJZBB y both
are closed equivalence relations in B.

Again both are congruences.

for,
Consider the case if (a,b) e,h-l(Ro) and c=d in B,
then (ac,bd) €IxI and (h(ac), h(bc)) € R, follows from
the fact that R is a closed congruence containing h(I) x h(I)
and I is an ideal. Thus Rl is a closed congruence in B.

Similarly, we can prove that Rl' is a closed congruence in B.

Let (al,Al)_and (al', Al') be the compactifications
of S corresponding to Rl and Rl' respectively and if
1
(a,A) 6[(aoon)y (ao"Ao')] in Kl(s )9

where A = B'/R,R is a closed congruence on B'.



Then
(aO’AO) £ (avA) £ (ao'v AO')

0 ) '
o e Ro§2 R =2 Ro

o TR 2 hTHR) 2 TR )

h"l(Ro) Ub, 2 h™L(R) SYANS-} h'l(Ro') SRAN

A (al’Al) £ (a' ,A') £ (al" Al')

Thus we have
(a', A') € Ki(S;) and
(a JAY) € [(al’Al)’ (al'v Al')]

.*+ each (a,A) € [(ao,Ao), (ao', Ao')] in Kl(S')

determines a (a',A') € [(al,Al), (al', Al')] in Kl(S).
Then the mapping
B: [(ag,Al), (a by AJ)IF—> [(ay,4A)), (a)',A)")]

Io) ’

is onto, one-one and order:preserving.
¢ is onto. for, if (y',C') € [(a},A}), («;',A;")]

ie. (oA € (v',0') < (a', A)")
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+“« (y',C') is the quotient space of (a;', A;')
B'< h 5
N
9
B Al
L /] l
a
1
d,
A
s v - C
Define a closed congruence Rl on B such that for all x, x' € B
X Rlx' —) qqu(x) = qqu(xv)

where q, B —> A

1
dy ¢ Al' —> C!
Define a closed congruence
Ro on B' as
xRoy <> there exist t ¢ h-l(

such that t Rl t'.

This is well defined., for,

are quotient maps.

x), t' € h-l(y)

if there exists t_ € h™1(x), to'e_h'l(y) such that

1
to Rl to



Then

t R, t' for all t eh~i(x), t'en~i(y).

for, it is given that

to Ry t)'. ie. q, ql(to) = q2ql(to')
0 (t) = aylay(ty)) ( * tyen™i(x)
t e h™i(x)
h(t) = h(t)

.teoqy(t) = ql(to))
= q2(ql(to'))

= aylay(t)) ("ot ttehTHy)

t' e hi(y)

h(t,') = h(t')

g (t)) = ay (1)
= g, q(t*)
1

.. t Ryt for all t ehTi(x), t* € h7i(y).

Thus Ro is a closed congruence in B'. Then Ro
corresponds to semigroup compactification say (y,C) in

Kl(S‘) such that

¢(Y’C) = (Y"C')
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@ is one-one, for if
( Y29C2) = (Y2', C2') € [(aO’AO)’ (ao' on')]

ie. R, = R, where Cl = B'/R2 ,

C, == B'/R,'
ie.  hMR,) = hTHR,')
ie.  hTHR,) U 8B =nTHR,) U D
ie. (Y3,C3) = (Y3” C3') 6[(al’Al)’ (al| ’Al|)]

ie. ¢(Y2,02)

B(v5"s Cy')
@ preserves order in both ways .
For, (75,C5) » (¥5',Cy") € llag A ), (a ',A "))
<> Ry & R2'
«— 1"tR,) € n7i(R,")
<= n"lR,) UL, ChTIR,) UL
=(v3,C3) > (v3', C3")
S B(1,,C,) 3 Blyvy'4C,")
Corollary-l. 2.,3.2

Suppose h is a continuous surmorphism from B
onto B'. Then Kl(S') is lattice isomorphic to the ideal
'y
generated by (al', A ) in Kl(S).



Proof

Here we denote (al', Al') as the semigroup
compactification corresponding to.h"l(éﬁ), where & is
a diagonal in B'. Then the image of each element in

Kl(S') is contained in ideal generated by (al', Al').

Corollary-2. 2.3.3.

Suppose h is a continuous surmorphism from a
closed ideal I in B onto B'. Then Kl(S') is lattice

isomorphic to the ideal generated by (al', Al') in Kl(S).

Proof

Here (al', Al')is the semigroup compactification

corresponding to the closed congruence

Rl' = {(x,y) €I x I:h(x) = h(y)} U{(x,x)/x € B} on B.

From the above theorem (2.3.1) and corollaries, we

have the following theorem in categorical language.

Theorem 2.3.4

Let CS be fhe category whose objects are ordered
pairs (B,I) where I is a closed ideal of a compact semigroup

B. If (Bl,ll) and (82,12) are two such pairs, by
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morphism f : (Bl,Il) —_— (52,12), we mean continuous
homomorphism f:I, into B, such that f(Il) = I, LetlL

be the category of all complete lattices, a morphism from
L to L' being a lattice isomorphism from an interval in L
onto an interval in L'. Let F associate to each (B,I)

in CS, the corresponding Kl(S) in L, where B is the Bohr

compactification of topological semigroup S.

Then F is a contravariant functor from CS to L.



Chapter-3

SOME MORE RESULTS ON THE LATTICE Kl(S)

Introduction

In this chapter, we discuss some special types
of congruences aota topological semigroup S and related
results about the lattice Kl(s) of semigroup compacti-
fications of a topological semigroup S, also some
results about atoms and dual atoms of Kl(S) are obtaianed.
These arose as a result of our attempt (though not
successful) to obtain at least some partial converse of
the theorem-for topological semigroups Sl and 52 if
(Bl,Bl) and (B,,B,) are topologically isomorphic then
the lattices K,(S,) and Kl(sz) are isomorphic.

In Section 3.1, we prove that

(i) A topological semigroup S with Bohr compactification
(B,B) has a semigroup compactification (a,A) determined by
'n' disjoint closed proper weak ideals (ideals) of B, at
least one of which is non-singleton only if S has a

semigroup compactification strictly bigger than (a,A).
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(ii) A topological semigroup S with Bohr compactification
(B,B) has an n-point compactification determined by 'n' non-
empty subsets of B does not imply that it has an (n-l)-point
compactification, nor does it imply that there is a semigroup
compactification strictly bigger than (a,A) different from

(8,B).

(iii) If a topological semigroup S with (B,B) has an
n-point compactificaticn (a,A) determined by 'n' non-empty
weak ideals (ideals) of B, then there exists semigroup
compactification strictly bigger than (a,A), but it does

not imply that S has an (n-1)-point compactification.

In Section 3.2 we describe the dual atoms and atoms

of Kl(S), when B is finite.

3.1 Special types of congruences

In this section we introduce weak ideals, joint
weak ideals and complementary joint ideals of a semigroup S

and describe special types of congruences on S.

Let S be a semigroup and w an ideal of S, then
(wxw) U Ais a congruence on S [HOW]. But converse need
not be true. 1i.e., if R is a congruence of the form

(wxw) U, then w need not be an ideal of S.
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Example 3.1l.1.

1) Z, = {0,1,2,3} with multiplication modulo 4

is a semigroup.

Here (1,3} x {1,3} U O 1is a congruence on Z,,
but {1,3} 1is not an ideal of Z,.

2) Let T = {o,e,f,g,%x,Yy} with usual matrix

multiplication where

0 0 0 p 0 0

o = 0 O O e = 0 0 O

o 0 O © 0 O

0 o 0 o 0 O

f =0 1 O g = 0 1 O

o 0 1 O 0 O

0 1 0O 0 0 O

x =10 0 O Yy = ll 0O O

0 0 O © 0 O
o e f g x Yy
Here {f,g} x s$f,gjuA o 0 0O 0O 0 0O O
is a congruence, but e O e 0O 0O x O
{f,g} is not an f O 0O f g O vy
ideal. g O 0 g g 0 vy
X O 0 x x 0O e
Yy O v 0 0 g O




In this situation we introduce the following

definitions.
Definition 3.1l.2.

A non-empty subset w of a semigroup S is said to

be a

(i) weak right ideal of S

if either ax,bx e w or ax = bx for all a,b e w

and for all x € S.

(ii) weak left ideal of S

if either xa,xb e w or xa=xb for all a,b cw

and for all x € S.

(iii) weak ideal of S, if it is both weak right and
weak left ideal of S

i.eqy if either ax,bx € w or ax=bx and either
xa, xb € w or xa=xb

for all a,b € w and for all x € S

Result 3.1.3

A topological semigroup S has a non-trivial closed
congruence of the form w x w UA if and only if w is a

closed non-singleton proper weak ideal of S,
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Proof

Assume that S has a non-trivial closed congruence

of the form w x w UA= R (say)

i.e., 43ig; R g;s x S

and for all (a,b) € R both a,b ¢ w or a = b.

Since R is non-trivial, there exist at least one (a,b)

such that a £ b « w.

i.e., w is a non-singleton proper subset of S.

w is a weak ideal. For,
since R is a congruence,
both (ax,bx), (xa,xb) ¢ R for all a,b € w and
for all x € S.
i.e., either ax, bx € w or ax=bx
and either xa, xb € w or xa = xb
for all a,b ¢ w and for all x € S.

i.e, w is a weak ideal.

Again w is closed; for,
let (xa) be a net in w, (xa) —> x ¢ S.

Since w is non-singleton, let y (#x) € w.



. (xa,y) is a net in R, which is closed.
e the limit (x,y) of (xa,y) belongs to R.

iced, (x,¥) € w x w (*.° x #vy)

o X &€ W,

On the other hand, consider w as a closed non=-
singlecton proper weak ideal of S, then clearly
R=wxw ud is closed, since A is closed in S x S

and w is closed in S,
Clearly R is an equivalence.

Again R is compatible. For,

since w is a weak ideal both (ax,bx), (xa,xb) ¢ R

for all a,b € w and for all x ¢ S.

Clearly R is non-trivial, since w is a non-

singleton proper subset of S.

Hence the result.

Remark 3.l.4.

If B is the Bohr compactification of a topological
semigroup S, then B/(wxw) UA is called the semigroup
compactification of S determined by w. Thus S has a
semigroup compactification defined by w if and only if

w is a closed non-singleton proper weak ideal of B.
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Definition 3.1.5.

Two non-empty disjoint subsets Wy and Wy of a

semigroup S are said to be

(1)

(ii)

(iii)

Result

joint weak right ideals if
either ax, bx € wy or ax,bx € w, OT ax = bx

for all a,b ¢ w, or a,b cuw, and for all x € S.

joint weak left ideals if
either xa,xb € wy or xa, xb € Wy Or xa = xb

for all a,b ¢ wy or a,b € Wy and for all x &€8S.

joint weak ideals if they are both joint weak

right and joint weak left ideals of S.

i.e., either ax, bx w, or ax,bx € W, Or ax = bx
and either xa, xb ¢ w, or xa, xb Ew, or xa = xb

for all a,b € w, or a,b € w,, and for all x €8S.

3.1‘6

A topological semigroup S has a non-=trivial closed

congruence of the form w) x w; Y wy, x W, U & ( /indicates

the sets whose union is taken, are disjoint) if and only

if wy and w, are disjoint closed proper joint weak ideals,

at least one of which is non-singleton.



Proof

Suppose that S has a non-trivial closed congruence

of the form
w) X 0 W, X wQLJél= R (say)

A ?C;R & S x S, since R is non-trivial
and for all (a,b) ¢ R, both a,b ¢ w; or both a,b ¢ w, or a=b.

Clearly Wy Wy are disjoint proper subsets of S

and at least one of them is non-singleton.
wy, w, are joint weak ideals., For,
guppose first that a,b e wqe
Then both (ax,bx), (xa,xb) ¢ R for all x €85
(*.° R is compatible)

i.e., either ax, bx € w; Or ax, bx €w, Or ax = bx
and either xa, xb € w; or’ xa, xb Ew, Or Xa = xb for all

xes:;

l.e., w;, wy, are joint weak ideals.

Similarly if for all a,b € w, and for a=b.
Also they are closed. If Wy is a singleton, then clearly

it is closed. If not, we proceed as follows.
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Let (xa) be a net in w,, (x ) —>x € S.

Since w, is non-singleton, let v( # x) e,wl,(xa,y)

be a net in wy X Wy

e (xa,y) be a net in w; x w; Vuw, X wszél = R,

which is closed.

e the limit (x,y) of (xa,y) belongs to R

Ce (x,y) € W) X wy.

t.e., both x,y € W)« .*. x € w;. Thus w; is closed.

Similarly Wo is closed.

Hence the result.

On the other hand, if wy, W, are disjoint closed
proper joint weak ideals of S, at least one of which is

non-singleton, then w; X w; U w, X w,J & =R is closed,

since wy, Wy are closed in S and A is closed in S x S.

R is clearly reflexive and symmetric.

R is transitive. For,

(a,b) € R and (b,c) €R

imply either both a,b €w, or both a,b ¢ Wy

or a=b and either both b,c € w, or both

b,c € w, or b=c.
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Since wy s, are disjoint, the following cases

are not possible.

(1) a,b € w, and b,c € w,

(2) a,b €wy, and b,c cuw;

all other cases imply(a,c) € R
R is compatible. For,

since wysw, are joint weak ideals

either both ax,bx € w; or both ax,bxe5w2 or ax=bx

and either both xa,xb € w; or both xa,xb & w, or xa=xb
for all (a,b) € R and for all x €8

i.e., both (ax,bx) and (xa,xb) €R

Also R is non-trivial since at least one of Wy sy

is non-singleton.
Hence the result,

Remark 3.1l.7,

A topologiéal semigroup S with Bohr compactification
(B,B) has a semigroup compactification'Hetermined”by {wl,w2)
if and only if w g, are disjoint closed proper joint

weak ideals of B, at least one of which is non-singleton.
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Definition 3.1.8.

A finite disjoint family {:wl,wz,..,wnj-of S is

said to be joint weak ideals if either both ax,bx € w)
or both ax,bx € Wy OT ... OT both ax,bx éiwn or ax = bx
and either both xa,xb ¢ w, or both xa,xb € Wy OT .un
both xa,xb Ew, Or xa = xb, for all a,b ¢ w, or in Wo

or in Wy OT «.. in W, and for all x € S.

By a similar argument as to that in result (3.1.6)

we obtain the following.

Result 3.1.9.

A topological semigroup S has a non-trivial closed
n
congruence of the form (J w; x w;U A &=>w;'s are
i=1
disjoint closed proper joint weak ideals of S, at least

one of which is non-singleton.

Definition 3.1.10.

Two non-empty subsets Wy and Wo of a semigroup S

are said to be
(i) joint right ideals, if either ax,bx ¢ W)
or ax,bx ¢ Wy for all a,b ¢ w, or a,b C Wy

and for all x €8S,



(ii) joint left ideals, if either xa,xb € w, or
xa, xb € wy for all a,b € w, or a,b € W, and

for all x € S.

(iii) joint ideals, if both joint right and joint
left ideals.

i.,e., either ax,bx € w, or ax,bx € Wy
and either xa,xb €w, or Xa, xb € Wy for all a,b € w,

or a,b e w, and for all x €S.

Definition 3.1.11 Complementary joint ideals.

Two joint ideals wy and w, of a semigroup S are
said to be complementary if they are disjoint and

Result 3.1.12,

A topological semigroup S has a non-~trivial closed
congruence of the form W) X Wy \Yuy X wy if and only if
w, and w, are disjoint closed proper complementary joint

ideals of Sy;at least one of which is non-singleton.

Suppose S has a non trivial closed congruence of

the form w; x w) Ywy, x wy =R (say).

Then,

1) w;sw, are proper subsets of S, at least one of

which is non-singleton.
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2) w),w, are complementary joint ideals

for,

for all a €S (a,a) Ew; X w) YW, X wy= R
( *«* R is a congruence)
i.e., either a € w, or in Wo for all a € S

ite.’ S = wluwzc
Clearly w,,w, are disjoint ( R being an equivalence)

Again Wy W, are joint ideals for,

for all a,b € w; or a,b € W, and for all x € S

both (ax,bx), (xa,xb) € Wy X W Wy X wy
(*+«* R is compatible)

i.e., either both ax,bx € wy or ax,bx € Wy

and either both xa,xb & w, or Xxa,xb & W,

=>W;,w, are joint ideals.

W)y, are closed. for, consider Wy

If wy is a singleton, then clear. If wy is not

a singleton, we proceed as follows.,

Let (xa) be a net in w,), (xa) > x €8,

Since W, is non-singleton, there exists y € Wy Y ¢,w2.



. (xa,y) be a net in w; x w; Yuw, x wy,

which is closed.

. the limit (x,y) of (xa,y) belongs to w; X W) Yuw, x w,.
i.e., both (x,y) € wx wl&.'.y ewl).

‘e X € W) - Thus Wy is closed.

Similarly wo is closed.

Hence the result.

On the other hand, if wysw, are disjoint closed
proper complementary joint ideals of Syat least one of
which is non-singleton, then R = W) X Wy YWy X Wy is a

closed non-trivial subset of S x S.
R is an equivalence for,

for all a € S, either a € w) or in W,
( e W) YVuw, =B, wnw, = @)
.. (a,a) € W, X w Yu, X w,
i.e., AC%xwﬁy%x%
i.e., R 1is reflexive,

Clearly R is symmetric. Also R is transitive for,

let (a,b), (b,c) ©R.

56



i.e., either both a,b Ew, or both a,b € Wy
and either both b,c € w, or both b,c € Wy

Since wy,w, are disjoint, the possible cases are

a,b C—:wl, b,C ewl

and a,b €Wy b,c € wy
.. (a,c) € Wy X W) Ywy, X Wy

Again,
R is compatable.

For,
since Wy W, are joint ideals, by the definition,
we have either
ax,bx € w, or ax,bx € w,
and either
Xa,xb € w, or Xa, xb € Wy
for all a,bze,wl or a,b & Wy
and for all x & S.

i.e., (ax,bx), (xa,xb) CW) X W) Yy, X Wy

Hence the result.
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—5 4324 __

Remark 3.1.13.

A topological semigroup S with Bohr compactification
(B,B) has a semigroup compactification determined bya non-trivial
closed cangruence € the form w,x¥; Y Wy X wy 1f and only if
Wy and w, are disjoint closed proper complementary joint

ideals of B, at least one of which is non-singleton.

Theorem 3.1.14,

A topological semigroup S has a non-trivial closed

n
congruence of the form Yy w; X Wy if and only if wi's
i=1 ‘

are disjoint closed proper complementary joint ideals of S
n

(icee, vy Mw; =@ for i # jand U w

. =S ), at least
J i=1

1

one of which is non-singleton.

As a result we get

Theorem 3.1.15.

A topological semigroup S has an n-point compacti-
fication if and only if its Bohr compactification has n
disjoint closed proper complementary joint ideals, at

least one of which is non-singleton.



Remark 3.1.16.

n
A semigroup S has a set {wi} of finite number
i=1

of joint weak ideals doesnot imply that any of the wi's

is a weak ideal, nor does it imply that a proper subset

of {wi} " forms joint weak ideals.
i=1

Example.
Zg = {0,1,2,3,4,5,6,7} with multiplication

modulo 8 is a semigroup

(1) {wl,wzj = {{1,5], {3,7}} is a set of joint weak

ideals, but neither {1,5} nor {3,7} 1is a weak ideal of Zg-

(2)  {wy,wp,ws) ={{1,7} , 2,6}, §3,57} is a set of
joint weak ideals, but {{1,7}, {3,5}} is not a set of
joint weak ideals. Also {1,7} ’ {3,5} are not weak

ideals.

Result 3.,1.17

A semigroup S has a congruence of the form

<o

(

w; X wi)u D doesnot imply
{ .

1

(1) (wi X wiL)ékis a congruence on S for any i=1,2,..

(2) (W w, x w}L}élis a congruence on S for some
jea J

proper subset A of {1,2,...,n}.

.
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Theorem 3.1,.18.

A semigroup S has a congruence of the form

n

(ii w; X W)U B, with w,'s weak ideals (ideals), then

S has a congruence of the form (Lg w, X wyL)él, where
jEA I

A 1is any proper subset of {1,2,... n}, contained in
n

(W wy xwpo O,

i=1l

Proof.
n
Given ( \Y w; X wi)JZlis a congruence, with
i=1

w;'s weak ideals (ideals).

i.e., wi's are disjoint closed proper weak ideals (ideals)

R | w; X w)o O is a congruence for any i=1,2,...4n

Consider iwj} y» where A is any proper subset

jeA
Of {l,2,.oo,n} o

Then (wj X wﬁLhQis a congruence for each j e A.

i.e., (.QJ wj ij)UASis a congruence contained in
jEeA

n

: n
( w.xw,)UA, since {w.} C S,
i) e S 7 jen gLl}i=1

Hence the result.
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Theorem 3.1.19

Let S be a topological semigroup with closed

congruence (\y wi X wQ\JZS, where wi's are either
i=1

ideals or weak ideals. Then S has a closed congruence

n
of the form ( w.xw.) U D contained in ( W, X W)U
j%A 3 S Bl

where A is any proper subset of {1,2,..., n}.
Proof.
n
Given () w; x w;)U O is a closed congruence
s 1 i

with wi's are weak ideals (ideals).

i.ec, wi's are closed disjoint proper weak ideals, at

least one of which is non-singleton [3.1.9]

i.e., each(w; X wik)ésis a closed congruence

i.e., R = (.\+) Wy X wj)JC% where A is any proper
j eA

subset of {l,2,...,n} is @ congruence contained in

~—~
=
L C

w, X wi)ué) [3.1.18].

Also R = (Y w.;xwJuAis closed, since w,'s are
closed in S and A\ is closed in S x S.
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We obtained the following theorem about the

lattice Kl(S) of a given topological semigroup S with

Bohr compactification (B,B).

Theorem 3.1.20.

Let S be a topological semigroup with Bohr
compactification (B,B). If S has a semigroup
compactification (a,A) determined by 'n' disjeint

closed proper weak ideals (ideals) {ws} N of B,
i=1

at least one of which is non-singleton, then there
is a semigroup compactification in Kl(S) strictly

bigger than (a,A).

Proof.

n

Since {wi} are disjoint closed proper

i=1
weak ideals (ideals) of B, at least one of which is

non-singletony,B has a non-trivial closed congruence

of the form

n
R = w, x Wy A. Let (a,A) denote the
(11)1 L l)\)
semigroup compactification determined by R.
i.e., (B,B) > (a,A) € Kl(S)

Again since w;'s are weak ideals (ideals) for

each i€{1,2,...,n} , by theorem (3.1.19), B has a



closed congruence of the form

. .
R' = (j%gl wy X wj)plél, where .1 is any proper

subset of {1,2,...,n} and R' is contained in R.

Let (a;,A;) denotes semigroup compactification

determined by R' and (8,B) > (al,Al) > (a,A).

Hence the result.

Remark 3.1.21.

Theorem (3.1.20)need not be true, if (a,A) is
determined by {wiji:l closed disjoint proper weak
ideals, at least one of which is non-singleton.

For example,

Let S be a topological semigroup with (B,B), where

B =25 = {0,1,2,3,4,5,6,7} with discrete topology

and multiplication modulo 8.

(1) Here fw,w,,ws} = 41,7}, {2,6) ,3,5}) set of
joint weak ideals and Zg has a congruence

(1,7} x {1,7}u{2,6} x £2,6}U{3,5} x {3,5} U A

but £f1,7} x {1,7)U and{3,5} x {3,5}U Dare not congruences.
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(2) {{1,5},1{3,7}} set of joint weak ideals and
{1,5} x {1,5y U {3,7} x {3,77 U & 1is a congruence

but {1,5} x {1,5}uAand{3,7} x {3,7UAare not congruences.

Remark 3.1.22.

A semigroup S has a set {uw,} " of finite
i=1

number of complementary joint ideals doesnot imply that
any of the w.'s is a weak id2al, noT does it imply that

& proper subset of {wi}n forms joint weak ideals, or
i=l

complementary joint ideals.
Example.

(1) Let S = {e,a,f,b} with multiplication defined

below is a semigroup

eafb
¢ e eafhb

a aeb f

f fbfb

b b fbif

Here f{w),w,} = {fe,f}, fa,b} } is a set of complementary

joint ideals, but neither {e,f} nor fa,b} is a weak ideal.

(2) Zg = {0,1,2,3,4,5) with multiplication modulo 6

is a semigroup.
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Here {w),w,,ws} = {{2,5} , {1,4}, {0,3}} is a
set of complementary joint ideals but {{2,5}, f{l1,4}}
are not sets of joint weak ideals, nor complementary

joint ideals,

From the above remark we have the following result,

Result 3.1.23.

A semigroup S has a congruence of the form

o

ws X widoes not imply

i=1

(1) ( w, x w.)ulis a congruence on S, where A
jéa 3
is any proper subset of {1,2,...,n}.

X w is a congruence on S, where A is

(2) Y

JGA“’J 3

any proper subset of {1,2,...,n].

Theorem 3.1.24.

A semigroup S has a non-trivial congruence of the

n
]
form iiﬁ Wy X Wy with w,'s weak ideals (ideals) then
S has a congruence of the form ( (J wy X wj)gjﬁg where
jEA
A is any proper subset of (1,2,...,n} . But V w, x

jea 3
is not a congruence.

93
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Proof

n
Given ( WA ) is a non-trivial congruence
i=1

with wi's weak ideals (ideals).

i.e., wi's are disjoint proper weak ideals for each

i=1,...,n, at least one of which is non-singleton.

e lwy X wgb/éhis a congruence for each i =1,...,n.

i.e., (wj X Qﬂk)zsis a congruence for each j €A, where

A is any proper subset of 1,...,n

% ( Y w; x w o A is a congruence contained in
j eA J
n
A Wy X Wy .

But Y ow, x Wy is not a congruence, since it is
jea J

not reflexive,

Theorem 3.1.25

Let S be a topological semigroup with non-~trivial
n
closed congruence { w, x w; , where w,'s are weak 1ideals
iy 1 i i

(ideals), then S has a closed congruence of the form
n

( ; : .
jéﬁA ws X waJ£§conta1ned in iﬁ w; X w, , where A is

1

any proper subset of {1,...,n}
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Proof

This is immediate from (3.1.12) and (3.1.24).

Result 3.1.26,

A topological semigroup S with (B,B) has an n-point
compactification does not imply that it has an (n-=1)-—
point compactification, nor does it imply that there is a

semigroup compactification strictly bigger than (a,A) and

different from (g,B).
For example,

Let S be a topological semigroup with (f,B) where
B = {e,a,f,b} with discrete topology and multiplication

defined below

e a f b
e e a f b
a a e b f
f f b f b
b b f b f

Closed congruences on B are

R, =4

Ry = {f,b} x ff,plu A

Ry = [e,f} x {e,f}U {a,b} x fa,b}
Ry = {e,a} x {e,a} Ji{f,b) x {f,b}
R = B xB
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R3 determines a 2-point
compactification say (a,A),
where ffe,f} , fa,b}} is a
set of closed proper disjoint

non-singleton complementary joint R
4

ideals but {e,f} x {e,f} and
{a,b}x {a,b} are not closed

congruences on B. 5

i.e., two point compactification doesnot imply the

existence of one-point compactification.

Also,

{fe,f} x {e,fluNandfa,b} x {a,b}ulare not
closed congruences contained in R3. So 2-point compacti-
fication does ot imply there exist a semigroup compactifica-

tion strictly bigger than (a,A) and different trom (B,B).

Next theorem shows that if a topological semigroup
S with (B,B) has an n-point compactification (a,A) determined
by 'n' weak ideals (ideals) of B, then there exists semigroup
compactification strictly bigger than («,A). And in this
case also it doesnot imply that S has an (n-1)-point

compactification.
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Theorem 3.1.27.

A topological semigroup S with (B,B) has an
n-point compactification (a,A) determined by 'n' weak
ideals (ideals) of B, then there exists semigroup
compactification strictly bigger than (a,A). And in
this case also it doesnot imply that‘S has an (n-1)=-

point compactification.

Proof.
Since (a,A) is an n-point compactification

of S, (a,A) is determined by a non-trivial closed

n
congruence of the form l*) w, X w,, where w.'s closed
it 1 i i

proper complementary joint ideals of B, at least one of
which is non-singleton. Also given that wi's are weak

ideals (ideals).

i.e., wi's are closed disjoint proper weak ideals (ideals)

of B, at least one of which is non-singleton.

By theorem (3.1.19) B has a closed congruence of
the form Y (wj X wj)u)éh, where A is any proper subset
j €A
of {1,2’ LA ] n}o

Also it determines a semigroup compactification

(al,Al) such that (g,B) > (al,Al) > (a,A).

i.e., there is a semigroup compactification strictly

bigger than (a,A).



But it does not imply that S has an (n-l)-point
compactification.
For example,

Let S be a topological semigroup with (g,B),

]
where B = {ﬁ , % , % y 1} with discrete topology and

multiplication defined by xy = max {:%,xy}

Here S has a 2-point compactification determined by
1 1 1 1 1 1
R={5,1lyx{5, 1} Uiz, 3} x{5, 3/
where,

{ {%,lj , {%, %};}is a set of disjoint proper closed

non-singleton complementary joint ideals.
1 l 1 .
Also {5,1l)and %, 3} are weak ideals.
2 3’ 4
1 1 1
But {%,l} X {E,l} and i"%‘, %} X {3, Z}
are not congruences.

o e 2-point compactifications determined by weak ideals

doesnot imply existence of one~point compactification.
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3.2 Some results about atoms and dual atoms of Kl(S)

In this section, we describe the dual atoms and
atoms of Kl(S), family of all semigroup compactifications

of a topological semigroup S with (B,B), where B is finite.

An element (a,A) E.Kl(S) is a dual atom of Kl(S)
provided (a,A) < (B,B) and there does notexist (al,Al) €.Kl(S)
for which (a,A) < (al,Al) < (B,B).

An element (ao,Ao) e;Kl(S) is an atom of Kl(S)
provided (ao,Ao) > ( «, {0} ), where (a, {0} ) is the
smallest semigroup compactification of S and there does not

exist (al,Al) € Kl(s) for which (aO,Ao) > (al,Al) > (a, {0})

Theorem 3.2.1.

Let S be a tbpological semigroup with Bohr compacti-
fication (B,B), where B is finite, and w* be the collection
of all weak ideals, joint weak ildeals, complementary joint
ideals of B. If there exists a closed non—singleton.broper
weak ideal w minimal (maximal) in w*, then (a,A) the semi-
group compactification determined by w is a dual atom (atom)

of Kl(S).

Proof.
Let |B| = n, where n is finite and w* be the collection
of all weak ideals, joint weak ideals, complementary joint

ideals of B.
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(a) Let 'w' be a closed non-singleton proper weak

ideal of B minimal in w*.

i.e., there exists no weak ideal, no joint weak ideals,
no complementary joint ideals properly contained in w

and (wxw) U O is a non-trivial closed congruence on B.

ice., & S (wxw) W A, and there exists no non-trivial
closed congruence properly contained in (wxw) U A .

If not, let R' be a non-trivial closed congruence

properly contained in (wxw) ud.

i.e., R! ; (wxw) W L CBxB

Since R' is a non-trivial closed congruence, R' is
determined .by at least one non-singleton subset A (say)
of B; if not, let |A| = 1, R' determined by A is O ,
this is not possible since R' # A . Then the possible

cases of R' are the following:

Case=1

R' is determined by a subset A of B with

1< |A] ¢ n
If |A] =2, i.e., A = {a,b} (say)

Then R' = {a,b} x {a,b}UD C (wxw)V D



73

Since a # b, {a,b} C w

and since R' is a congruence, for all a,b ¢ A
ax, bx ¢ A or ax = bx

and xa, xXb €A or xa = xb for all x ¢B.

i.e«, A =1{a,b} 1is a weak ideal, also we have

fa,b}y ¢ w, which is a contradiction.

Similarly we have a contradiction if R' is
determined by any non-empty subset A of B, with

1< |A] < n.

Case=2

If R' is determined by two non-singleton subsets

i.e., {a,b}xja,b}ufc,d} x {c,d}juDis a closed
congruence contained in w x wu A
Since a #b, ¢ #d, {a,b,c,d}C w
and since R' is a congruence, for all x € B
and for all a,be¢ gfa,b} or in {c,d}
ax,bx € {a,b} or ax,bx e {c,d} or ax = bx

and xa,xbe {a,b} or xa,xbe {c,d} or xa = xb
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i.e. {ta,b}, fc,d} ] is a set of joint weak ideals

contained in w, which is a contradiction.

Similarly, we have a contraidction if R' is
determined by any collection of subsets of B, at least

one of which is non-singleton.

Case=3

If R' is determined by any two non-singleton
subsets Al,A2 of B such that AlkJA2 = B.

Let A = {a,b} , A, =1{c,d;

R' ={a,b} x {a,b} U{c,d} x {c,d} 1is a closed

congruence and
fa,by x {a,b}uU {c,d} x {c,d} C w x wud
Since a #b, ¢ #d, {a,b,c,d} C w

Since R' is a congruence for all xe€ B
and for all a,b € Al or in A2

ax, bx eAl or ax, bx e A:2
and xa, xb e,Al or xa, xb & A2

i.e.,{'Al,AZ}-is a set of complementary joint ideals

contained in w, which is a contradiction.
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Similarly we have a contradiction, if R' 1is
determined by any disjoint collection of subsets B,
whose union is B, at least one of which is non-

singleton.

Thus in all these possible cases, there exists no non-

trivial closed congruerce properly contained in (wxw)u A.

AN (x,A) the semigroup compactification determined

by (w x w) U A 1is a dual atom of Kl(S).

(b) Let w be a closed non-singleton proper weak

ideal of B maximal in w*.

Ce Aw x w)JUACB x B is a closed congruence on B

and there exists no proper closed congruence properly

contains(w x WU A .

If not, let R' be a closed congruence properly contains (wxw)udD

i.e., Ag__\wxw)uA%R'ngB

Since R' is non-trivial, the possible cases of R!

are same as that in (a) and we have a contradiction

(1) if R' is determined by any non-singleton subset

A of B with 1 < |A]| < n.

(2) if R' is determined by any disjoint collection

of subsets of B atleast one of which is non-singleton.
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.« there exists no proper closed congruence properly

contains(w x wjy A

.« (a,A) the semigroup compactification corresponding

to(w x WU A& is an atom of Kl(S).

By similar argument we have the following.

Remark-1

If w is a set of closed joint weak ideals of B
at least one of which is non~singleton minimal (maximal)
in w*, then (a,A) the semigroup compactification
corresponding to(w x wu A is a dual atom (atom) of

Kl(S).

Remark-2

If w is a set of closed complementary joint
ideals of B at least one of which is non-singleton
minimal (maximal) in w*, then (a,A) the semigroup
compactification corresponding to(w x wko Ais a dual

atom (atom) ot Kl(S).



Chapter-4

SEMIGROUP COMPACTIFICATION OF PRODUCTS
AND PROJECTIVE LIMITS

Introduction
Let {S_} be a family of topological semi-
a
acA
groups with semigroup compactifications{_Aa} .

aeh
We discuss in this chapter about the corresponding

semigroup compactification of P{ S } . In 1961,
“aeA

K. Deleeuw and I. Glicksberg [D-G] observed that the
product of Bohr compactifications of a collection of
abelian topological monoids is the Bohr compactification
of their product. They showed by an example that the 2
identity is not necessary. This work was further |
extended and supplemented in [BE]. Here the distinction
between the Bohr compactification and its topological
analogue the Stone-éech compactification BX is more
pronounced, since PX does not generally have the product
property even for a finite number of factors. A necessary
and sufficient condition for the equality
p P X, =P PX was given by I.Glicksberg in 1959 (GL1].
ae€A acA
In this chapter, in Section 4.1, we prove that if

{ St is any family of topological semigroups with

7



semigroup compactifications {Aa} , then P {Aa}

acA xcA

is a semigroup compactification of P -{Sa}. Also
acA

we consider the family of topological semigroups

{sa} with Bohr compactificatiors {B_} and the

achA axcA

latticesof semigroup compactifications{K;(S_) } > Then
ac A

we show that P [K,(S)}CK,( P {S_ 3}) is a
aeg 1%7a 1 xecA a

complete lattice.

In Section 4.2, we discuss semigroup compacti-
fications, Bohr compactification and lattice of semigroup
compactifications of the limit of a projective system of

topological semigroups.

4.1 Semigroup Compactification of Products

Theorem 4,.,1.1.

Let {S_} be a collection of topological
" acA

semigroups with semigroup compactification (Ya’Aa) for

each @ € A, Define y : P {S_} —> P{A,} by
ach aehA

Y(X)k = Yy Pk(x)' where P, : P {Sa} d:;za Sy 1s projection

for each k ¢ A. Then ( v, P{A_} ) is a semigroup
T acA

compactification of P {Sa} .
a €A
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Proof
Let S = P {Sa} y A* = P {Aa}
a eA ac A

Define y : S —> A* by y(x)k = Yy Pk(x). It is known

that A*, being the cartesian product of a family of
compact semigroups with co-ordinatewise multiplication
and Tychnoff topology, is a compact semigroup [C-H-Kl].
A straight forward argument shows that y is a continuous

homemorphism. Again y is dense for,

Let y = (yk)k N be any element of A*,where
e

Y € A k € A. To show that A* has a net in y(S)

k’

converging to y.

Since ykZSk) = A, and y, e A for each k €A,

A, has a net in Yk(Sk) converging to y,, k € A.

i.e., for i €I,, there exist (xki) e S, such that

k

Yk(xkl)‘ ——> y,, for each k €A, where (I,, < )’
J.le

is a directed set for each k € A. Then (P {Ik:kezA}, <)

is a product directed set by defining i € J ¢=:>ik < jk

(ive., i(k) € j(k)) for each k € A. Also we have

A x P{I ke A} is a directed set by defining

(k,i) € (k',j) <=k £ k' and iy € 3§ for every veA.
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and (Yk (xt)i )keaA is a net in v(S)

such that ( Yk(x;)i)k —_— (yk)k =y

e v(S) contains a net converging to 'y'.

ioeo’ Y(s) = A*

. (y,A*) = (y, P {A S ) is a semigroup
ach

actificati f PiS .
compactification o aeA{ aJ

Next we consider the quotients of Bohr compacti-

fications and prove the following theorem.

Theorem 4,1.2.

Let {S_} be a collection of topological
@ aca

monoids with Bohr compactification (Ba, B ) . Then

T acA

(v, P{A_} Yis a semigroup compactification of
* ach

P{Sy,) » where A =B /R for each a ¢ A.

ac A

And P {Ba} /R is topologically isomorphic to
aeh

PiA where
aJaeA,

R = {((a“)aeA' (ba)aeA)e(p{Ba} e " P {B, }aeA) :

(2, ba) € R, for each a € A}.
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Moreover, any semigroup compactification of P {Sa}

ac A
is a quotient space of P{B }
axcA
Proof.
Let $= P{S ,
a}aeA
B= P{Bg)} and
achA
A*= P {A
a}aeA
Define vy ¢+ S —=> A* by y(x)k = Yy Pk(x), where P,
is projection and v, = ¢k B,» where ¢k : By o Ay

and ﬁk : S, —> B, for each k € A.

k k

Then by theorem (4.1.1), we have (y,A*) is a
semigroup compactification of S. Using product theorem
on Bohr compactification [D-G] (B,B) is the Bohr
compactification of S, where B: S —> B defined by
ﬁ(x)k = By Pk(x), where P, is projection. By the

definition of Bohr compactification there exists a

continuous homomorphism h : B > A* such that

hp = y. Moreover, h is a quotient map and h determines
a closed congruence
R={((aa) , (ba) )eB x B :
achA ac A

h((ay) ) =h((b) )}
a

A axe A



i.e., {((aa)aeA. (ba)aeA)eB x B:(h(a )), =(h(by)),

for each a ¢ A )
1.e.,{((aa)a€A, (b“)aeA) €B x B : h(ay) =h (b,)

for each a« € A }

i.e., R = {((aa)a K (bg) )eB xB : (a,b ) € R,

€ ac A

for each a €A :}

Define P : B —> B/R, the natural map, then (P, B/R)
determines a semigroup compactification of S [1.2.4].
Then by induced homomorphism theorem [1.1.13] and first
isomorphism theorem [l.1.14], there exists a topological
isomorphism n : B/R ——> A* such that the diagram

commutes

B P B/R
N

g h n
S Y >A*

i.e., P {B_} /R ~ P {_Ba/Aa}
ac A a €A
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Moreover, if («,C) is any semigroup compacti-
fication of S, then it is the quotient space of B

follows from [1.2.3].

Theorem 4.1.3.

Let { S,} be a family of topological
xcA

semigroups with latticesof semigroup compactifications

{Kl(Sa)} , for each @ ¢A. Then

P {K.,(S,)}cK,( P §S,1) is a lattice of
P {Ki(Sa)jeKy( P 1S

semigroup compactifications of P { Sy }.
a cA

Proof

Define P 1K (Sy )} £( agi e B ((aX )) = ak3

th

where az , projection to the « factor and

alé €K, (5 ) =£al‘§}a,keA for each acA.

Since {Sy} is the family of topological semigroups
acA

with families o semigroup compactification

{{aé }a,k cat = 1K (5¢ )}

where,

k . . . .
{aa L,k(EA is the family of semigroup compactifica-

tionsof Sy , for each a ¢A. Then (az ) is a semigroup
a, k€A

compactification of P { S }for each a, k €A, by theorem
a cA
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i.e., f_(a‘]: ) } is the family of semigroup
akeA’ o

compactificationsof P {§}
a cA

P {K.,(S_,) K.( P §5_3%)
aeA{*(“}Cl aeA{a}

Moreover P {Kl(sa )} is a partially ordered set by

a €A

defining an order (a:) < (aé) = ai R a;‘ ,

aGA a GA

for each a € A, s,t € A.

Also ( P {Kl(sa) }, € ) is a complete lattice with join
a €A

and meet defined by

(a3 A (ag) = (agAag)
a,s €A a,teA achA, s,teA

and  (a)) V() = (agvag)
a ,SECA a 1T EA a €A, s,tecA

for each aeA.

Note.

If {Sy be a collection of topological monoids
a

with Bohr comp:gtifications{ﬁa, Ba} and lattices of
a€A

semigroup compactifications {Kl(Sa) ¥ , determined
a CA

by quotients of B/ for each@ ¢ A and

~ P B
( PABa)/R aéA( o B )

a €



Then P {K (S )} = K;( P {S }) is a complete
cea 1C ! acA ¢

lattice.

4,2 Semigroup compactification of Projective Limits

In this section, we consider the projective
system of semigroup compactifications of a topological
semigroup S and show that projective limit itself is a

semigroup compactification of S.

Theorem 4.2.1.

Let §(y_,A ) : ¢ﬁ be a projective
HngrAq “}agaeo

system of semigroup compactifications of a topological
semigroup S, where Ny = ¢g nB for every pair a £ P
in a directed set D. Then ‘éim (na, Aa) , itself is a

semigroup compactification of S.

Proof.

By the definition of semigroup compactification.
Mgt S —> Aa is a dense continuous homomorphism for
each @ € D and Aa is a compact semigroup. Moreover, each

bonding map ¢5 is surjective,
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for, when a £ B

= sy - ¢P
A(l = ﬂa(S) = ¢(Z ﬂﬁ(s)

= ¢§ (nﬂ(SS) ( °.° ¢ﬁ is continuous and
closed, being a continuous map
from compact semigroup to
Hausdorff space)

= ¢P

A

Hence the system { Aa’ ¢§ } is a strict projective

ag P
= 1i g
system of compact semigroups. Then A* = lim{A_ , @ }

exists and is a compact semigroup [C-H—Kl].

So it is enough to show that there

exists a dense continuous homomorphism from S into A¥*.

Define,

n:S —> P {A_ } a by n(x)(a) = n_(x)
e

for each a € D, x € S.

then n actually maps S into A*.

for,

if x €S and a { B €D

n(x)(@) = ng(x) = @5 ng(x)

@B (n(x)(8))

Then n{x) € A*.
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Since each Ny is a continuous homomorphism, so is n.
Claim. n(S) = A*

For this,we show that each non-empty basic open set
in A* centains points of n(S). Since the system is
strict projective, the restricted map = P_[:A—> A

a @ e a

is surjective for each a ¢ D.

Given naZS) = A_ for every a € D

a

Let U be an open set in Aacontainlngpoints of ﬁ&(s).

. -1 . -1

i.e., )ch (U) contains points of . na(s)

i.e., fﬁl(u) contains points of n(S) for every a € D.

*

. each non-empty basic open set in A* contains points
of n(S), since {f;l(U) / all a, all openU C A, } forms
a basis for A* [EN]

iceo, nzs) = A*

o e (n,A*) is a semigroup compactification of S.

Theorem 4.2.2.

Let {s,, #° }

be a projective system of
a £ pED .

topological semigroups with projective system of semigroup
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compactification {(na,Aa), eg } , where
alp €D

B - B :
ex g = Mg ¢a for every pair a £ B € D such that

S#

=< > S(l is

surjective for each a € D, where Pa is projection.

lim S exists and )\a : Pats;S*

Then im (na, Aa) = A* is a semigroup compactification

of S*,

Proof.
Since {(n_, A.), eﬁ} is a projective
{ a o4 a olB €D
system of compact semigroups,

A* = 1im A exists and is a compact semigroup [C-H-Kl].

'S

o AY eg AB eg Aa
r ] AT
nY ﬂﬁ Mg

- — . - - -
s, 9 s %S,

Define n

P{s, }aGA —> P{A} by (n(x)(a)=n_(x(a)).

acCA

Then n actually maps S* into A*.

i.e., if x P{S_} is in S*, then n(x) € A*,
achA



For,
since x € S*, when a € B, x(a) = ¢§(X(l3))
((x)) (@) = n (x(a)) = n_ #P(x(p))
= eﬁ ng(x(B))
= ePnx)(p))
n(x) € A* S, u A,
N > /A
Again n:S* --—> A¥ is a continuous
homomorphism such that the diagram >\a ﬁx
is commutative. .
N
S* A*
0 N
for, P {Sa} P{Aa}
P n(x) = (n(x))(a) aeD aeD
= ny(x(a))
= 1 Ag(x))

= n, 7\a(x) ( °. 7\a is surjective)
This is true for all x & S*,

o= g Age

and ﬂx

. * — > K] »
p“'/iﬁ > A, is surjective
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for,
A, = nazsa) ( . A, is the semigroup
compactification of Sa)
= n, AG(S*)( Lt %u is surjective)
= F(S*) (. fn o= A,)
= f&ﬁr§?) ( *." P, is a closed map)
cf(a*) (.0 § 3 A* —> A, and
n(s*) C A*
i.e. N(S*) C A*
B, n(8F) C L (a%)
also
L(A*) C A,
< f;(A*) = A, for each ¢ € D
Claim.

n(S*) = A*
Since 7 )uls*) = na(sa) = A for each a € D,

each non-empty basic open set in Aa contains points of

Ny Ag(S*)
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Let U be an open set in Ag
U contains points of na'Aa(S*)
i.e., fa-l(U) contains points of(?;l na‘)u(s*)
i.e., each non-empty basic open set in A* contains
points of n(S*)

(since f;l(U)/ for all a, all open

U cB, forms a basis for A*)
... n(s*) = A*
e e (n,A*) is a semigroup compactification of S*.

Speci~lise to Bohr compactification, we have

the following theorem.

Theorem 4,.2.3.

Let {Sa, ¢g } be a projective system of
agP €D
topological semigroups with Bohr compactifications
* _ 11 .
{(Boqr By )L(SD such that S* = }im S_ exists and

Au = Pals*:s*——> Sa is surjective for each a € D, where

Pa is projection. Then %im {Ba} is a Bohr compactification
of %im {Sqt = S*

Proof.
Since (ﬁpa’ ﬁa) is a Bohr compactification of S,

and B__ ¢g :Sg

> Ba is a continuous homomorphism for
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each a £ f € D, there exists a unique continuous homo-

morphism eﬁ : B > Ba such that the diagram commutes

[1.1.23].
BB eg Ba
\ 7 A
Boﬂ Boa
|
S > s
B B a
Py
i.e &P B = B ¢B for all a { B € D and satisfies
Ty a "ofp oa "a A
(i) eg = lBa’ identity function on Bq
(11) P o ef = el forallag< By

Thus we have {Ba, eaa} as a projective system of compact

semigroups. Then B* = lim Ba exist is a compact semigroup.

Defi g: P S} —> P B b
e aeD{a} aeD{a} Y
f(x)(a) = Poalx(a))

Then B actually maps S* into B* is a dense continuous

homomorphism.

.. B : S*

> B* is a dense continuous homomorphism.

(Proof is same as that in theorem 4.2.2).
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To complete the proof if g: S* > T is a continuous

homomorphism of S* into a compact semigroup ¥. We need to

exhibit a corntinuous homomorphism f : B* > T such that

the diagram commutes.

Define

7 : S ——> S* so that

A o n* (x(a)) = x(a) By . fa B*
a a A <
N o n (x(a)) = @, x(a) Iy
f
X
for all k{a € D. B, B
> G T
S -
« % 9
Then n; :Sa —> S* C P{S_}is a continuous homomorphism,
aep®

since it is composite with Pa is a continuous homomorphism.

»*
Then g o Nyt Sa —> T is a continuous homomorphism and

since (B Ba) is a Bohr compactification, there exists

oa’
a unique continuous homomorphism 9" Ba —— T such that

the diagram commutes for each a € D.

*

i.e., = gn, for each a€ D.

g(l BOG,

Then define f: B*

> T by f =9, fy» for each a« €D

and 1s a continuous homomorphism such that fp = g



for,

£8(x) 9y SoP(x)
= 9q Boa Aa(x)

= gaﬁoaX(a)

il

g n*ax(a) = g(x) for all x e S*.

Also f is unique, since $(S*) is dense in B* and fp = g.
e (B,B*) is a Bohr compactification of S*.
Theorem 4.2.4,

k . .
Let{(K,(S,), 2 ), ¢A}/\$keD be a projective system
of latticesof semigroup compactifications of {SA%\eD with

k . . L
q\'s as lattice isomorphism. Then K,(S*) —<%1m {K (5]

is a complete sub-lattice of P {Kl(SA)}
A€D
k
K (s*) = {(a0) €P Ki(S) By (AY) = g(r (AY )
for allA§ k €D}

and Kl(S*) # ¢. Since {Qf} is an isomorphism -
A€k €D

there exist (AY) € P {K,(Sy)} such that
A A €D 1P7A

Y _ aKeaY
A/\ = ¢)\(Ak),)\\< keD.

e K,(S*) is a subset of P {K,(S,)}
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Again Kl(S*) is a partially ordered set by defining an

order

(a%) < (AY) A7 <AL,

A,s €D Ayt €D
Y _ Y

where A, = 3\((AA))

for each AeD, v £ teD.
If (A%), (A§) €K (S*), then both (AD)A(AR), (A7) V(AX) €K (S%),
for, since (A;), (A:) € Kl(S*)

s . _ k s

When AL k €D, Ay = ¢/\ (Ak)seD

t

K .t
Ax 2 Adiep

Since P {Kl(S,\)} is a complete lattice
AeD

(A2 A (AY) and (A5) v (A)) € P (K (50)
and when A k

we have
B (P (%) v (AD))

= 25 P (A V &Y P(AY )

B (AY) V' R(AY)

1l

P, ((Aj)v(A/'\‘)) for each Ae€D and s,t € D.



Then (Ai) \V (Ai) € Kl(S*) for every A ¢ D.

Similarly,
N ANESN, € K, (%)
AyS €D A,teD

c o K,(S*) is a sublattice of P {K,(S )}
1 \eD 145,

Similarly we can prove that VV and \ exist in Kl(S*)

for every non-empty subset of Kl(S*).

.*. K,(S*) is a complete sublattice of P {K.(%K)}
1 AED 1 '
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Chapter-5

ON THE CATEGORY TS OF ALL TOPOLOGICAL SEMIGROUPS

Introduction

J.H. Carruth, J.A. Hildebrant and R.J. Koch
[C—H-K2] interpret several categorical concepts in
various categories of topological semigroups like
category of compact semilattices and category of
compact Lawson semilattices. In 1973, Crawley [CR]

made an extensive study in this direction.

In topology, in the category of Hausdorff
spaces, the epimorphisms are the mappings with dense
range [W]. But in the category of topoloaical semi-
groups, every epimorphism need not be of this form
[C-H—Kz]. In 1973, Herrlich and Strecker [H-S] showed
that group epimorphisms are surjective. In 19795,
Hofmann and Mislove. [HO-M] established that discrete-
semilattice epimorphisms are surjective. In 1966, ]
Husain [HUS] proved that in the category of Topological
abelian groups (locally compact abelian groups) each
epimorphism is dense. The compact abelian group
epimorphisms are surjective follows from the result of

Section 5 of chapter 1 [C—H-Kl] and showed that
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Abelian group, Topological abelian grecup, Locally
compact abelian group epimorphisms are dense. In

1966, Hofmann and Mostert [HO-Ml] gave an example

to show that compact semigroup epimorphisms are not
necessarily surjective. In 1975, Lamatrin [L]

showed that epimorphisms in the category of Hausdorff
[abelian] K-groupsneed not be dense. However,

question remains unanswered in various other categories

of topological semigroups.

In this chapter, in Section 5.2, we discuss
epimorphisms in the category of all topological semi-.
groups. In Section 5.3, we define weak extremal
monomorphism and prove that if the images are ideals
the weak extremal monomorphisms in the category of

all topological semigroups are the closed embeddings.

5.1 Preliminaries

In the theory of (topological) semiaroups
morphisms are simply (continuous) homomorphisms except
that in the monoid categories‘morphisms are required
to be identity-preserving. The rule of composition
in each category is ordinary composition of functions.

Isomorphisme are precisely the topoloaical isomorphisms

[C -H-K,].
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Definition 5.1.1.

A morphism e: A /> B 1is an epimorphism if
for every pair of morphisms the equality foe = goe

implies that f = g.

£
A—2— B > ¢ (w]
—

Definition 5.1.2.

A morphism f is a monomorphism if for every pair

of morphisms the equality

—

!
S |2.552'7
fog = foh implies that f =g KR '

Al—— B C (W]
Note:
Monomorphisms in the category of all topological

semigroups are precisely injective homomorphisms

[C-H-K,).

9
1

Ao =]

Definition 5.1.3. R

—

A functor r from a category C* to a subcategory R*

of C* is a reflective functor if there is a unique morphism

n.: c

c > rc and if every morphism from ¢ to any object

Y of R* factors uniquely through rc via N, SO that



the followiny diagram commutes [W]:

If r: C*——>R* is a reflective functor, the subcategory
R* 1is called a reflective subcategory. The object rc

is called the reflection of ¢ in R*, [w]

Definition 5.1.4

A reflective functor r is said to be epi-reflective

if the morphism
ny # X —> X is an epimorphism, [w]

5.2 Epimorphisms in the category TS

The epimorphisms in the category of Hausdorff

spaces are the mappings with dense range, [w)

In the case of topological semigroups also,
continuous homomorphisms with dense range are epimorphisms.
But the converse neednot be true. For example, let S be

a semigroup of non-negative integers under addition
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with discrete topology and let @: S ——> Z be the
inclusion homomorphism. Then @ is not dense in Z but

@ is an epimorphism. LC-H-KZ].

In this situation we study when will the converse

hold. As a result, we have the followina propositions.

Proposition 5.2.1.

Let f:X ——> Y be a continuous homomorphism such
that ¢ f(X) > is dense in Y. If g,h agree on < f(X) > »
then g=h (where < f(X) > = f(X)UYF(X)UF(X) Y U YE(X)Y,
the ideal generated by f(X)).

Proof.

Let f:X

> Y be a continuous homomorphism such

that <f(X)> =Y and g,h agree on <f(X)>.

Claim.
f is an epimorphism.

For this show that g(x)=h(x) for all x ¢ Y

X —+t» v -9 2z

-

If not, assume that g(x) # h(x) for at least one
x € Y\ ¢ f(X) > . Since Z is a Hausdorff space, there

exists disjoint open sets say U and U' containing g(x)
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and h(x) respectively, U NU' =@ . Choose a neighbour-
hood V of x such that g(V) € U, h(V) € U'. This is possible,
since g,h are continuous. Since xeg Y = < f(X) >, V
intersects< f(X) > in some point say 'y' other than x.

Then g(y) € U, h(y) € U
but gly) = h(y) ( " ye< £f(X)>)

1€y UNU' £
This contradicts the fact that U and U' are disjoint.

et g(x) = h(x) for all xe Y

.. f is an epimorphism.

Proposition 5.2.2 (converse of 5.2.1)

Suppose f:X ——>Y be an epimorphism then <f(X)>

is dense in Y.

Proof
For this assume that <f(X)> # Y, then we will
show that f cannot.be an epimorphism by constructing a

topological semigroup Z and two continuous homomorphisms

L

are not equal.

and l..2 from Y into Z which agree on t(X), but which

for,

let Y, =Y x g1} , Y, =Y x {2}



Yl and Y2 are topological semigroups with product topology

and multiplication defined by (x,i) (y,i) = (xy,1), for

each i=1,2. Let h;: Y > Y

i
for each i = 1,2. Then hi’ i=1,2,are topological

isomorphisms.

YUY, = {(x,1) : (x,1i) € Y, orY,

for each i = 1,2}

The disjoint topological sum Yl\J Y2 is a topological

semigroup with multiplication defined by

(x,1) (v,3) = (xy, min (1,31 )

Multiplication is well-defined.

For,
if (x,i) = (x',j) then x = x', 1 = j
and if
(vs3) = (y',i) theny =y', i = j
e xy = x'y', i=7]
ice., (x,1)(y,3) = (xy, min {i,3})

(x'y', min {i,j} )

(x*,3) (y',1)

be defined by hi(Y) = (y,1),
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Clearly multiplication is associative and continuous.

Y

> Y

Let 1 1

1

i, : Y2 —_— Yl

be the inclusion maps.

ioh; < f(X) > LJ120h2 < F(X) > is the set of copies of

< f(X) > contained in Y, VY,
the quotient map 'q' obtained byidentifying
ilohl(y) = il(y,l) and izohz(y) = i2(y,2) if y e ¢ T(X) >

Define q(x,i) q(y,J) = q(xy, min {i,j} ).

L)Y2

UY,

Let Z be the image of

This multiplication is well defined.

if q(x,i) = q(x',j) then either x = x'

or i # jand x = x' € ¢ f(X) >

then either y = y' and i =

Then there are four cases.

le i=3j and x = x!

i

j and y = y'

i.e.y, xy =x'y', 1 =3

q(x'y',j)

i.e., q(xy,i)

= q(x'y',1)

and if q(y,J)
jori#jandy =y'e< T(X) >.

a(xy,j)

Q(Y',i)
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q(xy, min {i,3j}) = q(x'y', min {i,J} )

i.eo, ql(x,1i) a(y,j) = a(x',j) a(y',i)

2, i#3j and x = x'g< f(X) >
i£3 and y = y'e< T(X) >

Then xy = x'y' & < f(X) > ( *.® <f(X)> is a subsemigroup)

i.esy, qlxy,i) =qg(x'y',3) ( °." xy = x'y' € <f(X)> )

alxy,3) = aq(x'y',i)

< a(xy, min {i,3§}) = a(x'y', min § 1,3} )
3, i=3j and x = x'
i#£3 and y = y'e<fX)>
Then xy = x'y' € < f(X) > ( *.°<f(X)> is an ideal)
i.eo, q(xy,i) = q(x'y',i) = Q(X'Y'oj) = Q(XY,j)

i.e., q(xy,min {i,j})= q(x'y', min {i,j} )

“o q(x,1i) qly,3) a(x',3) a(y’,1i)

4, i#£3 and x =x' € < £f(X) >
i=3J and y = y!'

Then xy = x'y' € < f(X) >



and similarly we have
alx,1i) aly,3) = a(x',3) a(y',i)

Clearly multiplication is associative. Thus Z is a
semigroup with multiplication continuous and q is a

homomorphism.
o e L'l = qoilohl and l_2 = qoi2oh2

are continuous homomorphisms from Y into Z.

Now 1i{ x is a point of X, then the maps ilohl
and iyoh, split the point f(x) into two and is joined

again by

q : Yl(J Yo > Z

Thus we see that

((q0i,0h;)0f) (x) = ((qoigohy)of)(x)

Hence

(qoilohl)of = (q0i20h7) of

However, any point lying outside of < f(X) > in Y is

split by ilohl and 120h2, but is not joined again by q.

Hence

qoi,oh; # qoi,oh,
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This would show that fcannot be an epimorphism if we
show that Z is a topological semigroup. So it remains

to show that the quotient space Z is Hausdorff,

Let p and r be two distinct points of Z. We
have to find two disjoint open sets containing p and r

respectively. Then we have six cases.

Case-1.

PyT € goiyoh, (Y \<T(X)> ) .

Since < f(X) > is closed, YN\ <f(X)> 1is open
(qoijon)) 1 (p), (aoijon))™H(r)eY\ <FX)>,

there exists open sets Up and U_ in YN\ < T(X) > such that
(qoi,oh )7 1(p) € U, C Y\ <FTXD>

(goijoh)) H(z) € U, C Y\ CETXD>

Again since Y is Hausdorff we get disjoint neighbourhoods

Vp and V_ of (qoilohl)-l(p) and (qoilohl)-l(r) respectively.

Thus the required neighbourhoods are

qoilohl(Up) N qoilohl(vp) and

qoilohl(Ur) N quthl(vr)
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Case=2

PyT & qoijoh,(Y\ < f(X) > ). This is the same

as Case~-1l with suffix changed.

Case=-3

p € qoi,oh; (YN< f(X) > ) and
r ¢ goiyoh, (YN K X)) > )

Here the two given sets goi,oh, (YN < T(X) >),
qoisoh, (Y \\ <f(X) > ) containing the points are

already disjoint.

Case-4

p g;qoilohl(Y‘\ < T(X) > ) and
T = qoilohl(y) for some y & <f(X»

Since Y\ < f(X) > 1is open, there exists open set

such that (qoilohl)'l(p) cU CcyY\ <f(X)>.

Since Y is Hausdorff there exists disjoint open sets

U and V with y e V,
p e_qoilohl(U) and

r eq(ilohl(vi) U iy0h, (V)]

are disjoint and open.

U
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Case=H

If p ¢ qoijoh, (YN <F(X)> ) and
T = qoilohl(y) for some y ¢ <f(X)>

same as that of case-~4 with suffix changed.

Case=6
p = qoilohl(x) and r = qoithl(Y)

where, x # r< ¢ T(X) > . Since Y is Hausdorff there
exists disjoint neighbourhoods U and V such that x ¢ U,

y € V. Then disjoint neighbourhoods of p and r in Z

is given by

q [1j0n)(U) U iyohy(U) ]

and
q [ilohl(V) U i,0h,(V) ]
Hence Z is Hausdorff
e Z is a topological semigroup.
Notation.
TS~ denotes the category of all topological
semigroups.

From propositions (5.2.1) and (5.2.2) we obtain

the following proposition as a particular case.



Proposition 5.2.3

If the images are ideals, the epimorphisms in

the category TS are morphisms with dense range.

Proof.

Let f:X ———> Y be a continuous homomorphism
with f(X) an ideal and f(X) =Y, then f is an epimorphism
(proof is same as that of (5.2.1), since f(X) = <f(X)>

an ideal).

Conversely, let f : X —> Y be an epimorphism
with f(X) an ideal, then f(X) =Y (proof is same as
that of (9.2,2), since f(X) = < f(X) > an ideal).

Note.

Proofs of proposition (5.2.1) and (5.2.2) are
on the same lines as those of the corresponding
results in the category of all Hausdorff spaces given

by R.C. Walker [W].

5,3 Weak extremal monomorphisms in the Categoxry TS

When a mapping is factored through the closure
of its image, the second factor is a closed embedding.
These maps also have a categorical characterization

in the category of all Hausdorff spaces [W].
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Definition 5.3.1

A monomorphism m is an extremal monomorphism

if whenever m can be factored as illustrated

X >Y

so that e iz an epimorphism, then e is an isomorphism.
In the diagram, the object X is said to be an extremal

subobject of Y. [w]

It is known that the extremal monomorphisms in the
category of Hausdorff spaces are the closed embeddings
and thus, the extremal subobjects are the closed

subspaces. [w]

Next we define weak extremal monomorphism in the

category TS of all topological semigroups.
Definition 5.3.2.

A monomorphism m* is a weak extremal monomorphism

if whenever m* can be factored as illustrated so that e(X)is
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an ideal and e is an epimorphism, then e is a topological

isomorphism.

Z
A
e h
X >Y
m-l

The object X is said to be a weak extremal subobject of Y.
We will show that if the images are ideals, the weak
extremal monomorphisms in the category TS are the closed

embeddings.

Proposition 5.3.3.

If the images are ideals, the weak extremal
monomorphisms in the category TS are the closed embeddings.
Proof

We first show that a weak extremal monomorphism
m* ¢ X —> Y with m*[X] is an ideal is a closed embedding.

We can factor mRX —>Y

through the closure of its

m* (X)
image. Since e(X) is an
e=m* h=i
ideal, and the range of e is
dense, e is an epimorphism
X >Y
m*

(5.2.1).




Then e must be a topological isomorphism, since m*

is a weak extremal monomorphism.

i.e., X. > m*(X) is a topological isomorphism,
m*
where m*(X) is a closed ideal of Y.
el m* is a closed embedding.

On the other hand, let m¥ : X —> Y be a closed

embedding. Assume that m* = hoe is a factorization of m¥*,

where e is an epimorphism and e(X) an ideal .

C >Y
A A

X

Claim: 1) m*¥ : X —> Y is a monomorphism

2) e is a topological isomorphism

Clearly m* is a monomorphism, because it is one-
one homomorphism. Thus it remains to show that 'e' is a

topological isomorphism.

113



114

We can also factor m* through its image thus

obtaining the diagram.

X sm*[X]

We wiil show that the epimorphism e is a
topological isomorphism by obtaining a left inverse
for e. Since e(X) an ideal, and e is an epimorphism
e has dense range. i.e., e(X) =C [5.2.,2] and

m*[X] is closed in Y (given).

hic] = h[ 30 ] < ATe)] = wR]=n*[x]

. h(c) is contained in m*[X].

> m*[X] by h'(x) = h(x),

Thus if we define h' =C

we have that

h = ioh'

But then we also have
ioh'oe = hoe = ioa,

where i is a monomorphism (since i is a one-one homomorphism)

e e htoe = a



Since a is a topological isomorphism we have

-1
1 = a ~oh')oe
X ( )

Thus e is an epimorphism with a left inverse and is

therefore a topological isomorphism.

Proposition 5.3.4

If the images are ideals epireflective sub-

categories are closed under weak extremal subobjects.

Proof,

Let R* be an epi-reflective subcategory of C=*,
Let Y belong to R* and let m* : X —> Y be a weak

extremal monomorphism.

Since Ny is an epi-reflective functor, there
exists f:rX -——> Y such that

fn, = m*, where Ny is an

X
epimorphism [5.1.4] and

m*

>
\|V

nX(X) is an ideal, then
Ny is a topological iso- X
morphism (since m* is a

weak extremal monomorphism). X

i.e. weak extremal subobject X €& R*

115



116

Proofs of propositions (5.3.3) and (5.3.4) are on
the same lines as those of the corresponding results in

the category of all Hausdorff spaces given by R.C.Walker[w].
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