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1.1. Introduction 

CHAPTER I 

INTRODUCTION 

In the real world, all products and systems are unreliable in 

the sense that they degrade with age and ultimately fail. Since the 

process of deterioration leading to failure occurs in a random 

manner, the concept of reliability requires a probabilistic frame­

work. 

The term reliability of a product (system) is the probability 

that the product (system) will perform its intended function for a 

specified time period when operating under normal environmental 

conditions. Even though the above definition of reliability is 

explained with reference to the behaviour or length of life of a 

system, it is equally applicable in the analysis of any duration 

variable that describes a well defined population subject to 

decrementation due to the operation of forces of attrition overtime. 

Accordingly the concepts and tools used in reliability analysis have 

found applications in other areas such as economics, demography, 

survival analysis, biology, medicine and engineering. 

Prior to World War 11, the notion of reliability was largely 

intuitive, subjective and qualitative. The use of actuarial methods 

to estimate survivorship of rail-road equipments began in the early 
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part of the twentieth century (Nelson, 1982). In the late 1930's 

extreme value theory was used to model fatigue life of materials 

and was the forerunner of later probabilistic developments. 

A more mathematical and formal approach to reliability grew 

out of the demands of modern technology and particularly out of the 

experiences in World War II with complex military systems (Barlow 

and Proschan, 1975). Barlow (1984) deals with a historical 

perspective of mathematical reliability theory up to that time. 

Similar perspectives on reliability engtneenng m electronic 

equipment can be found in Coppola (1984), on nuclear power 

system reliability in Fussel (1984) and on software reliability in 

Shooman (1984). 

1.2 Reliability modeling 

Reliability theory deals with the interdisciplinary use of 

probability, statistics and stochastic modeling combined with 

engmeenng insight into the design and the scientific understanding 

of the failure mechanism. As such it encompasses issues such as 

(i) reliability modeling 

(ii) reliability analysis and optimization 

(iii) reliability engineering 

(iv) reliability science 

(v) reliability technology 

(vi) reliability management 

The major endeavor here is to develop new statistical 

techniques that can be used for modeling the lifetime data. One of 

the basic problems in reliability modeling when the data on failure 
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times IS the only input, is to identify the underlying model that is 

supposed to generate the observations. Generally it is not easy to 

isolate all the physical causes that contribute individually or 

collectively to the failure mechanism and to mathematically account 

for each and as such the task of identifying the correct model 

representing the data becomes very difficult. A standard practice 

adopted in most modeling situation is to ascertain the physical 

properties of the process generating the observations, express them 

by means of equations or inequalities and then solve them to obtain 

the model. 

In reliability, analysts have developed certain basic concepts 

such as failure rate, mean residual life, vitality etc. through which 

the physical characteristics of the failure mechanism can be 

adequately described and therefore these concepts form the basis of 

specifying a probabiiity distribution of failure times. Thus if one 

can translate the characteristics of the failure mechanism in terms 

of failure rate, mean residual life or an ageing criteria and if there 

exists a probability distribution characterized by such a property, 

the problem of model identification is satisfactorily resolved. As 

already mentioned, apart from the point of view of reliability 

theory, the results obtained here are of interest in their own right in 

distribution theory and also in various applied studies, whose 

concepts and tools III reliability are used with differing 

interpretations. 

1.3 Basic Relia bility concepts 

The discussions In the prevIOUS section reveals that the 

difficulties in reiiabiiity modeling can be reduced by appealing to 
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certain concepts associated with the failure process, that permit 

different distributions to be distinguished. In the present section, 

we discuss these concepts and review the results that will be used 

on the sequel. 

1.3.1 Reliability Function 

Let X be a non-negative random variable on a probability 

space (n,9",p) with distribution function F(x) = P(X ~x). In the 

reliability context, X generally represents the length of life of a 

device, measured in units of time and the function, 

R(x) = 1- F(x) 

= P(X>x) 

is called the survival or reliability function. It gives the probability 

that the device will operate without failure for a mission time x. 

The probability density function(p.d.t) of X, f(x), is obtained from 

R(x) by the relationship 

d 
f(x) = --R(x). 

dx 
(1. 1) 

1.3.2 Failure Rate 

Defining the right extremity L of F(x) by 

L = inf{x: F(x)=l}, 

the failure rate hex) of X, when F(x)is absolutely continuous with 

respect te Lebesgue measure with probability density f(x), is 

defined for x<L by 
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h(x) = lim P(x<X<x+dx"IX>x) 
~40+ Ar 

f(x) 
---

R(x) 

d 
= dx[-logR(x)]. ( l.2) 

The distribution of X is uniquely determined by the relationship 

(l.3 ) 

Accordingly, 

(1.4) 

In the general case, when X is a random variable on the entire rea! 

line, Kotz and Shanbhag (1980) defined the failure rate as the 

Radon-Nikodym derivative with respect to Lebesgue measure on 

{x: F(x)<l}, of the hazard measure, 

H(B) = f dF 
BI-F(x) 

for every Borel set B of ( -oo,L). 

Further the distribution of X IS uniquely determined by the 

relationship 

R(x) = TI[I-H(u)]exp[ -Hc( -00, c)], 
u<x 

(1. 5) 

where He is the continuous part of H. 



1.3.3 Mean Residual Life Function 

The mean residual life (MRL), known in early literature in 

actuarial studies as expectation of life, was reintroduced in the 

reliability context by Knight in 1959 (Kupka and Loo, 1989). Later 

this function was used by Watson and Wells (1961) to study the 

effect of burn-in on the useful life of articles. MRL represents the 

average life time remaining to a component which has survived up 

to time x. When X is defined on the real line with E(Y) < 00, the 

B-measurable function 

r(x)= E(X -xiX> x) ( 1.6) 

for all x such that P(X>x»O is called the MRL function of X. In the 

case when X is non-negative with E(X)< 00 and F(x) is absolutely 

continuous with respect to Lesbesgue measure 

1 00 

r(x) = -f R(t)dt . 
R(x) x 

Further, the MRL function related to hazard function by 

hex) = 1 + r'(x) 
r(x) 

and 

R(x) = - exp -f-reO) {X dt} 
r(x) 0 r(t) 

(1. 7) 

(1. 8) 

(1.9) 

for every x in (O,L), where r'(x) denotes the derivative of r(x) with 

reO) = E(X). 

Guerrieri (1965) and Cundy (1966) established that for a non­

negative random variable X with finite mean, the MRL function 

r(x)=c, a constant is a characterizing property of the exponential 

distribution. MRL function had been extensivelv used in lifetime 



studies by Hollandar and Proschan (1975), Bryson and Siddique 

(1969) and Muth (1980). One set of necessary and sufficient 

condition for a function to be an MRL given by Swartz (1973) is 

that along with (1.9), 

(i) 

(ii) 

(iii) 

(iv) 

r(x) ~o 

r(O) = E(X) 

rl(x) ~-1 and 

OOdx J-- should be divergent. 
o r(x) 

For more properties and applications, we refer to Muth (1977), 

Galambos and Kotz (1978) and Kotz and Shanbhag (1980). 

1.3.4 Vitality function 

The concept of vitality function is closely related to MRL and 

it is defined as 

or 

m(x) = E(XIX>x) 

m(x) = -1-1 tdF(t) 
R(x) x 

[See, Kupka and Loo (1989)]. 

Obviously, 

m(x) = x + r(x) 

and 

mlCx) = r(x)h(x) 

where ml(x) denotes the derivative of m(x). 

The vitality function satisfies the following properties 

(i) m(x) is non-decreasing and right continuous on (-00, L) 

(ii) m(x)~ x for all x<L 

(1.10) 

(1.11) 

(1.12) 



(iii) lim m(x) = L 
x-->L 

(iv) lim m(x) = E(x). 
X4--«> 

Kupka and Loo (1989) proved that if F satisfies increasing 

vitality function property together with decreasing MRL, then F has 

increasing failure rate property. Shanbhag (1970) showed that the 

vitality function m(x) = x + r(x), is a constant characterizes the 

exponential distribution. Characterizations of pro babi I i ty 

distributions using vitality function were also given by Osaki and 

Li (1988), Ahmed (1991), Nair and Sankaran (1991), Ruiz and 

Navarro (1994) and Navarro et.al. (1998). 

1.3.5 Variance Residual Life 

The variance residual life (VRL) of a random variable Xis 

defined as 

V(x) = V(X-XIX2X) 

= E[(X-X)2IX2X] - r2(x). 

(1.13) 

(1.14) 

This concept was introduced by Launer (1984) in order to define 

certain new classes of life distributions and to provide bounds on 

the reliability function for certain specified class of distributions. 

Gupta et. al. (1987) proved that, 

and 

2 w 

V(x) = - J r(t)R(t)dt - r2(x) 
R(x) x 

dV(x) = h(x) [V(x) - r 2(x)]. 
dx 



Further they showed that the 
. . 
IncreasIng ( decreasing) VRL 

distribution have close relationship with increasing (decreasing) 

MRL models, but the former provides a more general class of 

distributions. 

1.3.6 Partial Moments 

The rlh partial moment of a continuous random variable X 

about a point t is defined as 

Pr(t) = E[(X-/)+r, r= 1, 2, ... , 1>0 (1.15) 

where 

(X-tf = X-I, X?I 

= 0, X<t. 

The random variable (X-I) ~ is quite meaningful In the insurance 

studies. When X represents the income of an individual and t is the 

tax exemption level, (X-t)+ represents the taxable income. Then 

PI(t) gives the average income that exceeds the exemption level. 

(1.15) can be written as 
if... 

Pr(t) = f (x -t)' f(x)dx. (1.16) 

In reliability, PI (t) gives the average lifetime that exceeds the 

current age t. 

Also if E(Y)<oo, (1.16) is equivalent to 

". 
pr{t) = r f(x-t)r-1R(x)dx. 

t 

It follows that, 

PJ(t) = r(t)R(t). (1. 17) 

From (1.17), we get 



and 

lO 

h(/) = r'(I) _ pl'(I) = _ 1'1"(1) 
r(t) Pl(t) 1'1'(/) 

r(t) = _ PI(I) _ 
PI '(t) 

Chong (1977) has characterized the exponential distribution 

by the property 

E(X-t-s)+ E(X) = E(X-t)+ E(X-st. 

Later Gupta and Gupta (1983) have made an extensive study of 

partial moments and established that one partial moment IS 

sufficient to determine the parent distribution uniquely_ For 

properties and applications, we refer to Hitha (1991) and Sunoj 

(2002). 

1.4 Families of Distributions 

As mentioned earlier, a standard technique adapted in 

modeling situation is to ascertain the physical properties of the 

process generating the observations express them by means of 

equations or inequalities and then solve them to obtain the model. 

There are however, situations when the system is so complex that 

the response derived from it may not be amenable to simple 

mathematical manipulations nor possess such mathematical 

structures. Also, only very little will be known about the physical 

characteristics of the system. One method that can be used in such 

situations is to use a general family of distributions, one member of 

which could be a possible model. The main reason to prefer this 

procedure is the desire to find the best possible approximation in a 

complex situation that generated the data rather than any reasonable 
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evidence to the effect that the model explains the data generating 

mechanism. Once the model is found it may perhaps be possible to 

explain the nature of the observations through the model. When the 

families of distributions are chosen for mode ling, it is desirable that 

Ca) it contains enough members with different shapes so that 

there is a member that can correspond to a given data 

situation 

Cb) the members of the family should have a sufficient number 

of parameters to impart flexibility 

Cc) there should be some simple criterion that distinguishes the 

various members of the family, so that the choice of a 

member that fits the data become easy and 

(d) efficient methods exists for the estimation of the parameters. 

The above discussions clearly reveal that the family of 

distributions play a pivotal role in reliability' modeling. Statistical 

literature is abundant with families of probability distributions 

arising from different contexts. Various families of distributions 

used in reliability modeling are Pearson family, Exponential family, 

Burr family etc. Pearson family is the oldest among them and it is 

extensively used in reliability modeling as it contains most of the 

lifetime distributions such as gamma, beta, normal, Pareto, 

exponential etc. 

1.5 Pearson Family 

Pearson Family of probability distribution was introduced by 

Karl Pearson in 1895. A brief description of the Pearson family is 

as follows. 
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Let X be a continuous random variable in the support of 

H= {G, b} where a can be -OC) and b can be +00 and f(x) represent the 

probabil ity density function (p. d. f) of X. Assume that f(x) is 

differentiable with respect to x. Then the distribution of X belong 

to the Pearson family if f(x) satisfies the differential equation 

_1_ df(x) = -(x+d) 
f(x) dx bo + b1x + b2 x2 

(1.18) 

where bo, bl, b2 and d are real constants. The shape of the 

distributions depends on the values of the parameters bo, bl, b2 and 

d. The form of solution of (1.18) evidently depends on nature of the 

roots of the equation bo+b l x+b 2x 2=0 and the various types 

correspond to the roots of the quadratic equation in the denominator 

of (1.18). Pearson introduced three main types of the curves, 

1. Type I corresponds to both the roots are real and of opposite 

sIgns, 

2. Type IV occurs when both the roots are imaginary and 

3. Type VI occurs when both the roots are real and of same 

sIgn. 

In the limiting cases when one type changes into another we get 

simple forms of transition type curves. For various properties and 

applications of the Pearson family of distributions, we refer to 

Elderton and 10hnson (1969), Ord (1972), Johnson, Kotz and 

Balakrishnan (1994), Nair and Sankaran (1991), Glanzel (1991), 

Ruiz and Navarro (1994), Navarro, Franco and Ruiz (1998) and 

Sankaran and Nair (2000). 
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1.6 Length Biased Models 

The length biased model is a particular case of the well 

known weighted models. Let (n,F, P) be a probability space and 

X: n ~Q be a random variable where Q= (a,b) is the subset of the 

real line with a~O and b>a can be finite or infinite. The 

distribution function F(x) is assumed to be absolutely continuous 

with respect to Lebesgue measure with probability density function 

f(x) and w(X) IS a non-negative function of X such that 

,u=E[w(X)]<oo. The random variable Y with probability density 

function 

g(x) = w(x)f(x) , x>O 
,u 

is said to have a weighted distribution associated with X. 

(1. 19) 

The concept of weighted distributions was introduced by 

Rao( 1965) in connection with model ing statistical data in situations 

where the usual practice of employing standard distribution for the 

purpose was not found appropriate. The basic problem when one 

uses a weighted distribution as a tool for modeling is the 

identification of the appropri-ate weight function that fits the data. 

When w(x)=x, the corresponding observed distribution in (1.19) is 

termed as length (size) biased distribution. That is, when the 

weight function depends on the length of the unit of interest, the 

resulting distribution is called length biased. More generally, when 

the sampling mechanism selects units with probability proportional 

to some measure of the unit size, the resulting distribution is called 

length (size) biased. The statistical interpretation of the length 

biased distri bution was origi na 11 yid ent i fi ed by Cox (1962) in the 



context of renewal theory. But the same idea has originally been 

conceived much before as evidenced from Daniels (1942) who 

discusses length biased sampling in the analysis of the distribution 

of fiber lengths in wool. An exhaustive account of the research in 

this area is available in Patil and Rao (1977) and Gupta and 

Kirmani (1990). 

1. 7 Reliability Modeling in Discrete Time 

In most of the studies relating to life testing and reliability, 

lifetime is usually represented by a non-negative continuous random 

variable and accordingly continuous probability distributions are 

proposed as models. Xekalaki (1983) pointed out that the discrete 

models are more appropriate in a variety of applied problems due to 

the limitations in measuring equipments and to the fact that many 

continuous life length distributions can be very well approximated 

by the corresponding discrete counterparts. Gupta (1985) has given 

an example of discrete random variable that occur naturally, such as 

the case with the time to failure in the fatigue studies measured in 

terms of the number of cycles to failure. Cox (1972), Kalbfleisch 

and Prentice (1980) and Lawless (1982) have provided the basic 

formulation to the study of discrete life distributions. In the type I 

censoring, the number of failed units up to a certain time period can 

be represented by a discrete distribution and this may be used to 

study the failure process of the system. Therefore, a development 

of concepts and methods when length of life is treated as discrete 

random variable appears to be in right place. For more applications 

of discrete models in reliability and survival analysis, we can refer 
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to Padgett and Spurrier (1985), Ebrahimi (1986), Guess and Park 

(1988), Nair and Hitha (1989) and Shaked et.al (1994, 1995). 

1.8 Reliability Concepts in Discrete Time 

Let X denote a discrete random variable in the support of 

1+ = {O, 1, 2, ... } denoting time to failure of a component or system. 

Then the survival function defined as 

R(x) = P(X~x), 

so that 

p(x) = R(x) - R(x+ 1) 

where p(x) is the probability mass function (p. m.f) of X. 

The failure rate of X is defined as 

hex) = p(x) 
R(x) 

(l.20) 

and it is shown that the failure rate determines the life distribution 

uniquely through the relationship 

x-I 

R (x) = IT [1 - h(y)] . (l.21) 
y=o 

Xekalaki (1983) proved that if X is a random variable taking values 

in the set {O, 1,2, ... , k}, kE{O, 1,2, ... }U {+oo}, then 

1 
hex) = -_. 

a+bx 

holds iff X has geometric distribution for b=O, Waring distribution 

for b>O and negative hyper geometric distribution for b<O. Later 

Hitha (1990) has shown that the continuous approximation of 

geometric, Waring and negative hyper geometric distributions are 

respectively exponential, Pareto II and beta distributions which 

have the same form for failure rate in continuous time. 
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The Mean Residual Function (MRL) in the discrete setup IS 

given by 

r(x)= E(X-xIX>x) 

which provides 
co 

L R(/) 
r ( x) = .:.....;I=X::..;...+ I=----_ 

R(x+ 1) 
(1.22) 

Like the failure rate, MRL determines the distribution of X as given 

by 

R(x) = ftr(u-l)-l [1-p(O)] 
u=1 r(u) 

(1.23) 

where pea) IS determined such that LP(x)=l. (Nair and Hitha, 

1989). 

The relationship between failure rate and MRL is given by, 

r(x) -1 
I-h(x+l)= ,x=O,I,2, ... 

r(x+ 1) 
(1.24 ) 

Nair (1983) has used the function r(x) to define the notion of 

memory of life distributions and Salvia (1996) established some 

simple bounds for residual life when the device has a monotonic 

hazard rate sequence. 

As in the continuous case, the vitality function is defined as 

m(x)= E(XIX>x). 

Further, hex), r(x) and m(x) are related to one another by the 

following identities (Hitha and Naif, 1989) 

m(x) = x + r(x) 

and 

h(x-:-l) r(x+l) = m(x+l) - m(x). (1.25) 

The rth factorial partial moment can be defined as 
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= L(x-tY'lp(x), r = 1,2, ... , t= 0,1,2 ... ( l.26) 
I+r 

where x(r) = x(x-1) ... (x-r+1). 

Nair et. al. (2000) explored the properties of partial moments 

of discrete random variables and pointed out their applications in 

distribution theory and reliability analysis. For other properties 

and applications of partial moments to reliability analysis, we can 

refer to Hitha (1991), Priya et. al. (2000) and Priya (2001). 

In the discrete setup also, the family of distributions posseses 

a vital role in reliability modeling. The families of discrete 

distributions used in this connection are power series family by 

Kosambi (1949) and Noack (1950), Katz family (Katz, 1945), Ord 

family (Ord, 1972) and Kemp family (Kemp, 1968). Among them 

Ord family of distributions is important because it includes most of 

the discrete distributions like binomial, Poisson, negative binomial, 

hyper geometric, Waring etc. Ord family of distributions is defined 

by the difference equation 

p( x + 1) - p( x) 

p(x) 

where ko, k l , k2 and 11 are real constants. 

-(x+u) 
( l.27) 

The nature of the roots of the equation ko+ k\x+k2x 2=0 

determines different types of distributions. For k2 :;t:0, the 

denominator of (1.27) has two roots with the posibilities 

Type I: one root zero, the other non zero and range finite 

Type IV: both the roots are imaginary 

Type VI: one root zero, the other negative and infinite range. 
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For different properties and applications of the Ord family of 

distributions, we can refer to Ord (1972), Nair and Sankaran (1991), 

Glanzel (1991)etc. 

1.9 Present Study 

The present thesis is organized into five chapters. In the 

introductory chapter we discuss the relevance and the scope of the 

study along with review of literature on reliability modeling. 

We present in Chapter 11, an extended version of the Pearson 

family of distributions. Various properties of the family are 

discussed. An identity connecting conditional moments and failure 

rate is developed that enables the determination of the particular 

model in a practical situation. A characterization result that relates 

the conditional means is also established which generalizes the 

result given by Glanzel (1991) to the Pearson family. 

In reliability, ageing behaviour of the system IS usually 

studied by the failure rate (hazard rate) function. The increasing 

(decreasing) failure rates (IFR/DFR) property is the characteristic 

of the system that consistently deteriorate (improved) with age. 

This brings the relevance and the need of classification of 

distributions based on failure rate function which provides 

information about the system reliability. In Chapter Ill, we discuss 

a procedure to identify an IFR/DFR model from the generalized 

Pearson family. We also derive necessary and sufficient conditions 

under which the members of the generalized Pearson family are 

form-invariant (that is having the same form for the density) with 

respect to the formation of their length biased distributions. 
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In reliability, there are situations where discrete distribution 

naturally arises like the number of cycles to failure or the number 

of failures in a given time interval. Motivated by the relev~nce and 

the usefulness of discrete models, we propose to develop some 

results that have applications in the modeling and analysis of 

lifetime data in the discrete time domain. Chapter IV, deals with 

an extended class of Ord family (generalized Ord family) and 

provides some characterizations using conditional means. 

The present thesis concludes with Chapter V by providing a 

method to identify an IFR/DFR model in the generalized Ord 

family. Further we derive the conditions under which the members 

of the generalized Ord family are form-invariant with respect to the 

formation of their length biased distributions. 



CHAPTER 11 

A GENERALISED PEARSON FAMILY 

2.1. Introduction 

The normal distribution played a vital role in the statistical 

analysis till the end of the nineteenth century and the developments 

in the statistical theory took place on the assumption that the 

population is normal or at least approximately so. However, there 

are practical situations where the samples from many population3 

show characteristics that are different from normal. By the end of 

the nineteenth century non-normal curves became popular and 

efforts were underway to generate systems of curves which include 

the normal only as a particular case. Accordingly, Pearson (1895) 

introduced a system of d i stri bu t ions represented by the di fferential 

equation (1.18) that includes normal as a special case. The family 

(1.18) is used widely in reliability modeling as it contains many 

other important probability models such as exponential, gamma, 

beta, Pareto etc. For various properties and applications of the 

family (l.lR) we refer to Nair and Sankaran (1991), Glanzel (1991), 

Johnson, Kotz and Balakrishnan (1994) and Navarro, Franco and 

Ruiz (1998). 

Some parts of the work in this chapter is due to appear in Sankaran 

and Sindu (2003). 



There are distributions that does not belong to the family 

(1.18), but are widely employed in reliability modeling. For 

example, the inverse Gaussian distribution with probability density 

function 

f(x} = ) A exp{-A(X - p}2}, x, A, p>O 
27l" X3 2x p2 

IS not a member of the family (1.18). Motivated by this, we study 

an extended class of distributions that we termed as generalized 

Pearson family. The proposed class of distributions include the 

Pearson family as a particular case. 

Earlier several extensions to the Pearson family have been 

proposed (Ord, 1972) including the use of polynomials of general 

order fitted directly to histogram estimates of dlogf (see Dunning 
dx 

and Hanson, 1977). A multimodal generalization of the Pearson 

family is available in Stuart and Ord (1994). 

In the following section we discuss an extended verSlOn of 

the Pearson family in the context of reliability. 

2.2. A Generalized Pearson Family 

Let X be a random variable having absolutely continuous 

distribution function F(x} in the support of (a,b) where a<b, a can 

be -00 and b can be +00. Let f(x} denote the probability density 

function of X. The distribution of X belongs to the generalized 

Pearson family if f(x) is differentiable and satisfies the differential 

equation 



dlogf(x) = ao +a1x+a2x 2 

dx bo + b1x + b2x2 
(2.1) 

where aO,al,a2,bo,b l and b2 are real constants. When a2=O, the 

family (2.1) reduces to the Pearson family (1.18). The family (2.1) 

is a special case of the multimodel generalization of the Pearson 

family given in Stuart and Ord (1994). Like the Pearson family of 

distributions, the generalized verSIon can be classified into a 

number of types and different types are based on the nature of the 

roots of the quadratic expression in the denominator of (2.1). 

Therefore the procedure for finding different types of curves for the 

generalized Pearson family is same as that of Pearson type 

distributions. 

2.3 Members of the Generalized Pearson Family 

All members of the Pearson family are also the members of 

the family (2.1). In the following we discuss the different types of 

the curves of the generalized Pearson family and important 

distributions belonging to these types. 

Type I 

The family (2.1) can be written as 

f'ex) = c + x+d 
f(x) Po + p\x+ P2 X2 

(2.2) 

where 

and 



Type I distribution occurs when the roots of the equation 

PO+PIX+P2X2=0, are real and of opposite signs. 

Let the roots be a and -13, with a,f3 >0, then 

P'+;':~P'X' ~ [x~a + x:p] ;, 
A(x + 13) + B(x - a) 

P2 (x + P)(x - a) 

Now by partial fractions, we get 

A = a + d and B = 13 - d 
a+f3 a+f3 

Hence (2.3) becomes, 

Integrating (2.2), using (2.4), we obtain 

(2.3) 

(2.4) 

1 (a+dJ 1 (f3- d J logf(x) = ex +- -- log(x-a) +- -- log(x+P) + constant. 
~ a+f3 ~ a+f3 

Therefore, 

where 

and 

f(x) = Yo eCx (x-a)"'t (x+ 13)"'2, 

1 (f3-d\ 
m2 = P2 a+f3 J 

Assume now that the density vanishes at both ends of the 

distribution. Therefore 
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f(x) = 0, when x = a, x=-f3 and x =x, provided c<o. 

Hence 

f(x) = Yo e- vx (x-a)"'I (x + f3)m1 , where c =-v, a, 13, v, m), m2~0, a<x<oo 

and Yo is the normalizing constant. 

When m2 = ° and a = ° in (2.5), we get 

f(x) = Yo e- ~·x xn~, O<x<oo 

which is gamma distribution. 

When v = 0, (2.5) reduces to 

f(x) = Yo (x-a)~ (X+f3)nll, -f3<x<a 

where 

(2.5) 

Yo=e vp (-a - 13)"'1 (a + f3)m,+IB(m) + 1 ,m2+ 1) IF) (1 +m2,2+m) +m2,-v( a+f3)) 

[if a+p>O, Re v>O, Re m) >-1, Re m2 >-1] 

with 
I 

B(m,n) = f xnl-I(1-X)"·1 dx 
o 

and 

Then, 

f(x)= (x - aY" (x + f3r'2 
B(m\ + 1, m2 + l)eYP (-l)~ (a + f3)~' nl2,] IF; (l-l-In2' 2 + ml + nl2' -y(a + 13» , 

-p<x<a 

and hence 

(x - a)"'I (x -+ 13)"" , _ <x< a. 
f(x) = B(ml +1,m2 +l)(-lr~(a+f3)m,+m,>1 f3 (2.6) 

Putting, a=1 and 13= ° in (2.6), we get 



(x-I)"~ xm, 
f( x) = -----'-------'----

B(m, + I,m] + 1)( -lr~ 

(I - X)"'t+ I- 1 X m2 +1- 1 

= , O<x< 1. 
B("'t + 1, m2 + 1) 

which is beta distribution of first kind. 

Type IV 

Type IV curve occurs when both roots of PO+PIX+P2X2 =0 are 

ImagInary. 

Consider the equation (2.2). This can be written as 

(2.7) 

z 
where y = x + J!L, k = d - J!L and A 2 = Po - J!L 

2P2 2P2 P2 4Pi . 

Integrating (2.7), we obtain 

logf(x) = ex + f ;' 2 dy + k f 21 2 dy + constant 
P2(Y +A ) PzCv +A ) 

and hence 

-k 
where e = -V,p = m 

AP2 ' 
a = A and Y () is a normalizing 

o 

constant obtained from f f(x)dx = I. 
-a 

Type VI 

This type occurs when the roots are real and of same sign. 

Let the roots be a and f3 then, 



f'ex) = c + [-A-+~l 
f(x) x-a x+fJ P2 

or 

I '( x) _ c + [ d - a + fJ - d 1 1 (2 . 8) 
I(x) - (fJ-a)(x+a) (fJ-a)(x+[J) pz 

Integrating (2.8) , we get 

I (d-a) I (fJ-d) log/(x)=cx+-. -- log (x+a) +- -- log (x+[J) + constant. 
pz fJ -a pz fJ-a 

Therefore, 

where 

I(x) = fo e- vx (x+a)"'I (x + fJ)"'" , min (-a,-fJ)<x<oo. 

ml = _I (d-a) 
pz [J-a 

m2 =_1 (fJ- d ) 
pz fJ-a 

c = -v 

and Yo is the normalizing constant. 

Similarly we can derive the other transition type curves and 

they are as follows. 

Type 11 

_ vx X _} X 
( 2)m { ( )} f(x) = Yo e 1- a Z exp -ptanh a ,- a~x~a. 

Type III 

I(x) = Yo e-(V+p)x (l+:r, -a~x<oo. (2.9) 



Type V 

f(x) = Yo e- vx x-P e- q1x , O<x<oo. (2.10) 

Type VII 

Type VIII 

f(x) = Yo e- vx (1+ :Jm 
x-P, -a~x<oo. 

This is a special case of (2.9) with p =0. 

Type X 
f(x) = Yo e- vx x-P , O<x<oo. 

This is a particular case of (2.10) with q =0. 

Type XI 
f(x) = Yo e-qx-vlx x-P , O<x<oo. 

Next we consider some important probability distributions 

belonging to the generalized Pearson family, which are not members 

of the Pearson family. 

1. Inverse Gaussian Distribution 

The probability density function of Inverse Gaussian 

distribution is given by 

which gives, 

f(x) = ~ A exp{-A(X -Ill}, x, A>O 
27!x3 2xl-i 

f'(x) 

f(x) 

= - AX2 - 3x Jl.2 + AJl.2 
2X2 Jl.2 

(2.11) 



so that ao = AJ.}, al = -3J.?, a2 = -A, bo = b l =0 and b2 = 2j.J.2. This 

distribution belongs to type V curve. 

When early occurrences such as product failures or repalfs 

are dominant in a lifetime distribution, failure rate is expected to be 

non-monotonic, first increasing and later decreasing. In such 

situations the inverse Gaussian distribution provides a suitable 

choice as a lifetime model. For details, we refer to Chhikara and 

Folks (1977) and Seshadri (1999). 

2. Random Walk Distribution 

The probability density function of random walk distribution 

is given by 

fry) ~ ~ 2~Y exp{ -A~;~ I)'}, y, A,,u>O (2.12) 

Random walk distribution is known as the inverse distribution of 

the inverse Gaussian distribution. That is, if X follows inverse 

Gaussian distribution with p.d.f (2.11), then the transformation 

Y=~ follows random walk distribution with p.d.f (2.12). This 
X 

distribution also belongs to type V curve of the (2.1). 

3. Rayleigh Distribution 

The probability density function of Rayleigh distribution IS 

given by 

f(x) = 2AX e-J.x1
, O<x<oo, A>O (2.13 ) 

and hence 



f'(x) 1- 2AX2 

I(x) X 

which is of the form (2.1) with ao = 1, al =0, a2 = -2A, bo = b2 =0 

and b I = 1. Rayleigh distribution is a special case of the Weibull 

distribution (see, Johnson, Kotz and Balakrishnan, 1994). 

4. Maxwell Distribution 

For the Maxwell distribution with p.d.f 

{)! 
I(x) = 4 v--;- x 2 e-,t~, o<x<oo, A>O, (2.14) 

and hence 

I '(x) 2 - 2Ax2 

I(x) x 

which is of the form (2.1) with ao = 2, al =0, G2 = -2A, bo b2 =0 

and b I = 1. 

This distribution arIses as the distribution of the magni!ude 

of a gas in a closed container under the assumption that the gas IS 

not flowing and that the pressure in the gas is the same in all 

directions (see, Johnson, Kotz and Balakrishnan, 1994). 

2.4 Properties of the Generalized Pearson Family 

In this section we discuss some important properties of the 

generalized Pearson family. 

2.4.1 Recurrence Relationship among Moments 

Recurrence relationship between moments IS useful to find 

higher order moments from the mean and the variance. For the 



generalized Pearson family, we obtain the following recurrence 

relationship among the raw moments. 

Consider the differential equation (2.1), then 

f(x) [ao+ alx +a2 x2] = [bo+ b1x +b2 x2] f(x) (2.15) 

Multiplying both sides of (2.15) by xn and applying integration with 

the assumption that x' f(x) ~o as x~±oo, we obtain 

nboJ.J:_J+ [(n+l)b) +ao]J.J: + [(n+2)b 2 +ao]J.J:+J + a2J.J:+J =0 (2.16) 

where J.J: = Ixn f(x)dx. If we put n = 0, 1, ... 5 respectively, we get 6 

equations those enable us to find the constants ao, a). a2, bo, b) and 

b2 in terms of the moments. Thus 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

As in the Pearson set up, we obtain the parameters of the family In 

terms of moments by solving the above six equations. 

2.4.2 Relationship using Characteristic Function 

A simple solution of an extremely wide range of problems of 

probability theory, especially those associated with the summation 

of independent random variables is obtainable by means of 

characteristic function. The characteristic function also plays an 



important role in the determination of probability distribution. In 

the following we prove a result in this direction. 

Theorem 2.1 

drp d 2rp 
Let rp(B)= E(e oX ), where B=it. If rp'(B) =- and rp"(B)=-2 

dB dB 

exi st for some B in an interval BI. < B< Bu and assuming high order 

contact at the ends of the range, the characteristic function of a 

distribution in the generalized Pearson family satisfies the equation 

(2.23) 

Proof 

Consider the family (2.1). Then 

f(x) [ao+ a\x +a2 x2] = [b o+ b\x +b2 x2] f(x). (2.24) 

Multiplying both sides of (2.24) by e(Jx (B = it) and integrating with 

respect to x, we obtain 
00 ~ 

f eOx [ao+ a\x +a2 x2] f(x)dx = f eOx [b o+ b\x +b2 x2] I (x) dx 

or 

"" 
[eoX(bo +b)x+b1 x2 )f(x)Ioo - f [Be(JX(b o+b\x+b2x2)+e(Jx (b\+2b 2x)]f(x)dx 

-00 

00 00 co 

= ao f ellx f(x)dx + a\ f x eOx f(x)dx + a2 f x2eOX f(x)dx 
-00 -0() 

which gives (2.23). 

Remark 2.1 

When a2 0, the above result reduces to the Pearson family 

of distributions. 



2.4.3 Relationship using Partial Moments 

The properties of partial moments can be used to characterize 

probability distributions and it is shown that the partial moments 

determine the distribution completely. In the following, we provide 

a recurrence relationship for the generalized Pearson family using 

partial moments. 

Theorem 2.2 

Let X be a random variable in the support of real line with 

E(X'')<oo. Suppose that the distribution of X belongs to the 

generalized Pearson family. Then 

Pr-l(t) [r(b o+ bll +b2 12)] + pr(/) [(r+l) (b l +2b2 I) + (ao+ all +a2 12)] 

+ Pr+l(t) [(r+2)b 2+ al +2a2 1)]+ a2 Pr+2(t) = O. (2.25) 

Proof 

When the distribution of X belongs to the generalized Pearson 

family, we have 

f(x) [ao+ alX +a2 x2] = [b o+ blx +b2 x2] f(x) (2.26) 

Multiplying both sides of (2.26) by (X-I)' and integrating from I to 

b, we obtain 

b b f (x-ty [ao+ GIX +a2 x2] f(x) dx = f (x-IY [b o+ blx +b2 x2] f(x) dx. 

(2.27) 
Putting, x2 = (X_t)2 + 2/(x-/) + 12 in (2.27), we get 

-b l Pr(t) - 2b2 pr+1 (I) - 2b2 I Pr(/) - rbo pr-l (t) - rb l Pr(t) 

- rtb l Pr-I(t) - rb2 pr+I(t) -2rlb2 pr(t) - rb2 12 Pr-l(t) 

= Go Pr(/) + al Pr+l(t) + all Pr(/) + a2 Pr+2(t) + 21a2 pr+I(/) 

+ a2 12 Pr(t) (2.28) 



Rearranging (2.28), we have (2.25). 

Corollary 2.1 

When a2 = 0, the relationship (2.25) reduces to the result of 

Sunoj (2002) for the Pearson family of distributions. 

2.5 Characterizations 

Characterizations of distributions in statistics are of great 

interest and are widely used for the modeling of data (See, Kagan, 

Linnik and Rao (1973) and Galamboz and Kotz (1978)). In 

particular, several characterizations of distributions using the basic 

concepts such as failure rate, mean residual life and vitality 

function have been extensively discussed in reliability. Shanbhag 

(1970) who first provided characterization for the exponential 

distribution using the vitality function. Characterizations of Pearson 

family of distributions using reliability concepts were given by, 

Nair and Sankaran (1991), GlCi.nzel (1991), Sankaran and Nair 

(1993), Ruiz and Navarro (1994), Navarro, Franco and Ruiz (1998), 

and Sankaran and Nair (2000). 

In the following, we prove a characterization theorem for the 

generalized Pearson family, using a relationship between the failure 

rate and the vitality function. 

Theorem 2.3 

A necessary and sufficient condition for the distribution of X 

belongs to the family (2.1) under the regularity condition 

limxr J(x)=O for r=O, 1,2 is that 
x~b 



J't 

a2 E(X2 IX>x) + (at +2b2 )E(XIX>x) + ao+b t + (b o+b tx+b 2x 2 )h(x)=0 

(2.29) 

where h(x) is the failure rate of X. 

Proof 

When the distribution of X belongs to the family (2.1), we 

have 

which gives 

b b 

f f'(/) (b o+b 1t+b2 / 2 ) dt = f f(t) (aO+a\t+a 2/2 ) dl. (2.30) 
x x 

Using integration by parts and applying the regularity condition, 

(2.30) provides that 

b b 

-(bo+b tx+b 2 x 2 ) f(x)- f f(t) (b\+2b 2t)dl = f f(t) (ao+a\t+a 2t2 )dt. (2.31) 
x x 

Dividing (2.31) by R(x) and rearranging the terms, we obtain (2.29). 

Conversely, when (2.29) holds, we have 

b b 

a2 f t 2f(/) dt + (a)+2b 2) f tf(/)dl+ (ao+bJ)R(x) +(bo+b 1x+b2 x 2) f(x) =0. 
x x 

(2.32) 

Differentiating (2.32) with respect to x and applying the regularity 

condition, we get 

-a2 x 2 f(x)- (al+2b 2 ) x f(x)- (ao+b1)f(x) + (b o+b 1x+b2x 2) f(x) 

+ f(x) (b 1+2b2x) =0 

and finally we obtain (2. I). This completes the proof. 

Corollary 2.2 

When a2 = 0, Theorem 2.3 reduces to the result of Nair and 

Sankaran (1991). 



Corollary 2.3 

The distribution of X is inverse Gaussian with p.d.f (2.11) if 

and only if 

1 E(X2IX>x) = ,.i E(XIX>x) + A.)i + 2)i x2 h(x). 

Corollary 2.4 

The distribution of X IS Rayleigh distribution with p.d.f 

(2.13) if and only if 

1 x -
E(X2IX>x) = - + -h(x). 

1 2A. 

Corollary 2.5 

The relationship 

2 3 x 
E(X IX>x) = 21 + 21 h(x) 

holds if and only if X has Maxwell distribution with p.d.f (2.14). 

Corollary 2.6 

The relationship 

1 E(X2IX>x) = 4 E(XlX>x) + 1/p2 + 2 x2 h(x). 

holds if and only if X has random walk distribution with p.d.f 

(2.12). 

2.6 Characterization using Conditional Moments 

Glanzel (1991) proved that the distribution of the continuous 

random variable X belongs to the Pearson family if and only if 

E(X2IX>x) =P(x) E(XlX>x) + Q(x) 



where P(x) and Q(x) are polynomials of degree one atmost, with 

real coefficients. In the following we prove a theorem that 

generalizes the result of Glanzel (1991). 

Theorem 2.4 

Let X be a continuous random variable as defined in section 

2.2. Assume that E(X3 ) <00 and E(X3 IX>x), E(X2IX>x) and E(XIX>x) 

are differentiable. Then the distribution of X belongs to the 

generalized Pearson family (2.1) if 

a2E(X3 IX>x) = A (x)E(X2IX>x) + B(x)E(XIX>x) + C(x) (2.33) 

holds, where A(x) = a2x+q, with q as a real constant and B(x) and 

C(x) are polynomials of degree one atmost with real coefficients. 

The reverse statement holds if (bo+blX+b2X2)xf(x)~O as x~b if 

b=+"XJ and if (b o+b 1x+b2x2)f(x) ~O as x ~b if b <+00. 

Proof 

When A(x) = a2x+q, B(x) = rx+s and C(x) = tx+u, (2.33) 

becomes, 

a2E(X3IX>x)=(a2x+q)E(X2IX>x)+(rx+s)E(XIX>x)+ tx+u. (2.34) 

Differentiating (2.34) twice and rearranging the terms, we obtain, 

f(x) [(q+r)x2+(s+t)x+1I] = f(x) [a2x2 + (2q+3r)x+s+2t] 

or 

f'(x) = a2x2 +(2q+3r)+s+2t 
f(x) (q+r)x 2 +(s+t)x+u· 

Thus the distribution of X is a member of the generalized Pearson 

family (2.1). 

Assume now that the distribution of X belongs to the 

generalized Pearson family. Then we have, 



(2.35) 

Integrating (2.35) from x to b, applying the regularity condition and 

dividing both sides by R(x), we get 

(2.36) 

Multiplying (2.36) by x and carrying out the previous steps, we 

obtain 

+(2b l +ao)E(XIX>x) +bo. (2.37) 

Substituting (2.36) in (2.37), we obtain 

x[b 1+2b2 E(XIX>x) + a2 E(X2IX>x)+a\E(XIX>x) +ao] 

=a2 E(X3 IX>x)+(3b 2+adE(X2IX>x) +(2b\+ao)E(XIX>x) +bo 

which gives, 

a2 E(X3 IX>x) = [a2x-(a\+3b2)]E(X2IX>x) 

+[(a\ +2b2)x-(ao+2b\ )]E(XjX>x) + (ao+b1)x -boo 

This is of the form (2.33) with A(x) = a2x-(a\+3b2), 

B(x) =(a\+2b2)x-(ao+2b\) and C(x) = (ao+bdx -boo 

Corollary 2.7 

When a2=0 In (2.33), we obtain the result given by Glanzel 

(1991). 

Corollary 2.8 

The relationship 

A E(X3 IX>x) = (-Ax+3,li)E(X2IX>x) +(,ix -A,u2)E(XjX>x) + ,u2 AX 

holds if and only if X has the p.d.f (2.11). 
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Corollary 2.9 

The distribution of X is Rayleigh with p.d.f (2.13) if and only 

if 

2A. E(X3 IX>x) = 2A.xE(X2 IX>x) +3E(XlX>x) -2x 

In this case, A(x) = 2A.x, B(x) = 3, C(x) = -2x, and p=2A.. 

Corollary 2.10 

The distribution of X is Maxwell with p.d.f (2.14) if and only 

if 

2A. E(X3 IX>x) = 2A.xE(X2 IX>x) +4E(XlX>x) -3x. 



CHAPTER III 

AGEING PROPERTIES OF THE 
GENERALIZED PEARSON FAMILY 

3.1 Introduction 

In reliability theory the concept of ageing plays a central role 

as it helps to classify the lifetime models. Earlier works in 

reliability theory was centered around the problem of estimating the 

reliability function based on observed data. Recently a lot of 

interest have been evolved to modeling the lifetime data and to 

classify the life distributions based on certain ageing properties. 

Accordingly, large number of research papers have been published 

which examine the behavior of the life distributions based on 

certain criteria for ageing [See, Bryson and Siddique (1969), Rolski 

(1975), Klefsjo (1980), Basu and Ebrahami (1986), Singh and 

Deshpande (1985), Abouammoh (1988) and Jinhua, Cao and Wang 

(1991)]. 

One of the methods of describing the failure mechanism is to 

expose the manner in which its life length is affected by the 

advancement of age. Usually by ageing we mean that an older 

component has a shorter remaining lifetime than a newer or younger 

one. No ageing is equivalent to saying that, the age of a system has 

no effect on the distribution of the residual lifetime. Positive 

ageing implies that the age has an adverse effect on the residual 

lifetime. That is the residual lifetime tends to be smaller in some 
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probabilistic sense with increasing age. Negative agelOg describes 

that the age has a beneficial effect on the residual lifetime. If the 

same type of ageing persists throughout the entire lifetime of a unit, 

the system is said to have monotonic ageing. 

The phenomena of ageing had been first extensively studied 

by Bryson and Siddique (1969) and they had postulated a set of 

seven criteria for describing the ageing behaviour. Later, Basu and 

Ebrahami (1986) described, how ageing or wear out have been used 

to study lifetimes of systems and components. Abouammoh (1988) 

introduced a new criteria of ageing in terms of the conditional mean 

remaining life. The phenomenon of ageing can be described by 

using different reliability concepts such as failure rate, reliability 

function, MRL and VRL. In the present work, we discuss the ageing 

behaviour of the lifetime models belonging to the generalized 

Pearson system using failure rate and mean residual life function. 

In reliability the ageing behaviour of the system is usually 

studied either by the failure rate function or by the mean residual 

life function. The increasing (decreasing) failure rate (IFR/DFR) 

property IS a characteristic of the system that consistently 

deteriorate (improved) with age. This brings the relevance and 

need for classification of distributions based on failure rate 

function which provides information about the system reliability. 

Definition 3.1 

The distribution of X possess the increasing (decreasing) 

failure rate property if h(x) is an increasing (decreasing) function of 

X. 



'il 

In the following we discuss a method to identify an IFR(DFR) 

model in the generalized Pearson system (2.1)using 

j3(x) - -j'(x) 
f(x) 

The function P(x) was used earlier by Glaser (1980) for the 

analysis of bathtub models. Later Mukherjee and Roy (1989) used 

j3(x) to characterize certain lifetime models. An important feature 

of the procedure is that the method can be applicable to the most of 

the models used in the lifetime data analysis. 

Lemma 3.1 

Suppose that the distribution of X belongs to the generalized 

Pearson system (2.1). Let P'(x) denote the derivative of j3(x) with 

respect to x. Then for b2 :t=0 in (2.1) 

(A) P'(x) >0 if (i) P2 >0 and either 

(a) ~=O and x 'j:. -d or 

(b) ~<O or 

(c) ~>o and x~(a,p) or 

(ii) P2 <0, ~>o and x E(a,p) and 

(B) P'(x)<O if (i) P2 <0 and either 

(a) ~=O and x 'j:. -d or 

(b) ~<O or 

(c) ~>Oandx~(a,p)or 

(ii) P2 >0, ~>O and x E (a,p) 

where a and p are the roots of the equation 

P2 X2 + 2P2dx + Pld - Po = 0 

with 

(3.1 ) 



and 

Proof 

d = aobz - azbo 
a\bl -aIb\ 

(3.2) 

(3.3) 

The generalized Pearson system (2.1) can be written as 

where 

dlogf 

dx 

x+d 
c+ ----~I 

Po + p\x+ PIx 

a 
c = _1 and p;'s and d are given in (3.2) and (3.3). 

b1 

From (3.4), we have 

and hence 

P(x) = -j'(x) 
f(x) 

P'() = P2X2+2P1dx+Pld-po 
x z 1 . 

(Po + PIX+ P1X ) 

(3.4) 

(3.5) 

Thus from (3.5), it is obvious that the sign of p' (x) is determined 

by the sign of equation (3.1). Then from the elementary algebra we 

have the following results. 

If 8= b1 -4ac IS the discriminant of the expressIon 

ax l +bx+c =0, we have 



4J 

(a) if ~=O, ax2 + bx+ c has the same sign as that of 'a' for all 

x:;t:. -b and ax2 +bx+c=O when x = -b 
2a 2a 

(b) if ~ <0, ax2 + bx+ c has the same sign as 'a' for all real x. 

(c) if ~>O and the roots of ax2 +bx+c=0 are a and p with 

a> p, then 

(i) ax2 + bx+ c has the same sign as that of' a' whenever x> a or 

x<P and 

(ii) ax2 +bx+c has the sign opposite that of 'a' whenever 

p<x<a. 

I I 

Thus p (x»O, when (A) holds and p (x)<O, when (B) holds. 

This completes the proof. 

Theorem 3.1 

A distribution belonging to the generalized Pearson family 

(2.1) has IFR property in a region if condition (A) of Lemma 3.1 

holds in that region and has DFR property in a region if condition 

(B) of Lemma (3.1) holds in that region. 

Proof 

The proof directly follows from Lemma (3.1) and theorem 

given in Glaser (1980 p,667). 

Remark 3.1 

When b2 =0 in (2.1), (3.5) becomes 

P' (x)= aOb] - a]bO - 2a2box - a2b]x2 
(bo +b]X)2 

(3.6) 



In this case, we have 

p)d - Po = aOb) -a)bO' 2P2d = -2a2bo and P2 = -a2b). 

Corollary 3.1 

When a2 = 0, the above result reduces to the Pearson family 

given by Sankaran and Sindu (2001). 

For the verification of the theorem, consider inverse Gaussian 

distribution with p.d.f (2.11). Then we have 

and hence 

-AJi + AX2 +3xJi P (x) = ---'------'----
2X2 Ji 

A 3 
P'(x)= ---

x 3 2x 2 · 

Thus the distribution is IFR if 

or 

and DFR if 

2A 
O<x<-

3 

2A 
x>-. 

3 

Table 3.1 gives the region where the distribution possesses 

the IFR (DFR) property based on P(x) for some popular models 

belonging to the family (2.1). 



Table 3.1 
The region where the distribution possesses 

the IFR (DFR) property 
SI. 
No Distributions with pdf P(x) Region 

1 Gamma IFR if p>l 
p mx- (P-l) m -mx p-l 

x>O, p,m>O -- e x DFR if O<p<l r(p) , x 

2 Pareto a+ 1 
aka x-(a+l) a>O x > k >0 -- DFR , ,- x 

3 Normal 

1 {-(X-Pl'} x-p IFR 
..j2;; exp 2 ' 0'2 21rO' 20' 

-oo<x<oo , 0'>0, -oo<)J<oo 
4 Finite Range d-l 

--
d ( ) d-J IFR 
- 1-~ O<x<R d> 1 . 

R-x 
R R' , 

5 Exponential Both IFR and 
1 -AX e , x> 0, 1>0 1 DFR 

6 Inverse Gaussian _lp2 + 1x2 + 3p2x IFR if g; { -;t(x -Pl'} 2p2X2 0< X < 
7.1 

-- exp -
2nx3 2)J2X 3 

x> 0, 1.)J >0 DFRifx> 

7 Maxwell 21x2 - 2 IFR 

4 J?; x 2 e-,h' x>O 1>0 x 
, , 

8 Rayleigh 21x2 -1 IFR 

2,.1.x -AX' , x> 0, ,.1.>0 e x 

3.2 Characterization using Mean Residual Life 

As mentioned in Chapter I, mean residual life (MRL) function 

IS extensively used in the analysis of lifetime data. It is shown that 

an increasing (decreasing) failure rate class of distributions is a 

21 
-

3 
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subclass of decreasing (increasing) MRL class of distributions. In 

the following we prove a characterization result for IFR (DFR) 

class of distributions in the generalized Pearson family using MRL 

function. 

Definition 3.2 

Let X be a non-negative continuous random variable with 

survival function R(x). Then the distribution of X is said to have 

increasing mean residual life (IMRL) property if 

1 00 

r(x) = -f R(t)dt 
R(x) x 

is increasing in x>O and have decreasing mean residual life (DMRL) 

property if 

is decreasing in x > o. 

Theorem 3.2 

1 CoO 

r(x) = -f R(t)dt 
R(x) x 

Let the distribution of X belong to the generalized Pearson 

family (2.1) with(bo+b 1x+b 2x2)20. Then X has IFR (DFR) property 

if and only if 

a2 V(x) + r(x) [a2x+ad + ml (x)[a2 r(x)+2b 2] +b 1 S (2) 0 (3.7) 

where 

and 

V(X)=E[(X_X)21 X>x], 

r(x)=E[(X-x) I X>x] 

ml(x)=E[X I X>x]. 
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Proof 

When the distribution of X belongs to the family (Z. 1), we 

have (Z.Z9), 

a2 m2(x) + (al+Zb 2) ml(x)+ ao+b 1 + (b o+b 1x+b2x2)h(x)=0 (3.8) 

where 

Using (1.1Z) and 

m2(x) = Vex) + Zx ml (x)- x2 + r2(x) 

(3.8) becomes 

a2 [Vex) + Zx(x+r(x» - x2 + r2(x)] + (al+Zb 2)(x+r(x»+ ao+b 1 

+ (b o+b 1x+b 2x2)h(x)=0. (3.9) 

Differentiating (3.9), we obtain 

a2 [V'(x) + Z(xr'(x)+ r(x» +Zx +Zr(x) r'(x)] + (al+Zb 2)[1+ r'(x)] 

+(bo+b 1x+b2x2) h'(x) +(b l +Zb2x) h(x)=O. (3.10) 

• 2 1 +r'(x) 
Slllce V'(x) = h(x)[ Vex) - r (x)] and hex) = , (3.10) becomes 

r(x) 

a2 [h(x)[ Vex) - r2(x)]+h(x) r(x)[Zx+Zr(x)]]+ (al+Zb 2) hex) r(x) 

+(bo+b 1x+b2x2) h'(x) +(b l+Zb2x) h(x)=O 

which provides, 

h(x)[a2 Vex) - a2 r2(x)+ r(x)[Za2x+ Za2 r(x)+ al+Zb 2]+(b l+Zb2x)] 

+(bo+b 1x+b2x2) h'(x)=O· (3.11) 

If (bo+blX+b2X2)~0. then h'(x) ~ 0, if and only if 

a2 Vex) + r(x) [a2x+ad + ml (x)[a2 r(x)+Zb 2 ] +b 1 ~ (~) O. 

This completes the proof. 

For the Pearson family, Theorem 3. Z reduces to a much 

simpler form, as shown below. 



Theorem 3.3 

Let the distribution of X belongs to the Pearson family (l.18). 

Then X has IFR/DFR property if and only if for every x in (a, b) 

r(x) ~ (:5:) Cl + 2C2X 

where 

b. 
Cj= ' ,i=I,2. 

1-2b2 

Proof 

Since X belongs to the Pearson family (1.18), we have 

(N air and Sankaran, 1991) 

(3.12) 

where 

b -d b. 
p = I and c· = ' , i =0, 1, 2. 

1-2b '1-2b 2 2 

Differentiating (3.12) with respect to x and substituting the 

relationship between h(x) and r(x), 

h(x) r(x) = 1 + r'(x) 

we get, 

h(x)[ r(x)-cl-2c2X] = (co+C\X+C2X2) h'(x). 

Now, to prove (CO+CIX+C2X2) ~O, for all x, we consider 

ml(x) - ml(a) = (co+C\X+C2X2) h(x) 

Since ml (x) is non decreasing and h(x)~O, (3.14) gives 

(co+C\X+C2X2)~0, for all x. 

Thus from (3.13) h'(x)~(:5:)O if and only if r(x) ~ (:5:) Cl + 2C2X. 

This completes the proof. 

For example, consider 

(i) the Lomax distribution with p.d.f 

(3.13 ) 

(3.14 ) 



41} 

f(x) = caC (x+ar(C+I), x>o, a>O, c>l 

a 1 x+a 
then, Cl = --, C2 = -- and r(x) = --. 

c-l c-l c-l 

Since r(x) < Cl + 2C2X, the Lomax distribution has DFR property. 

(ii) Consider the finite range distribution with p.d.f 

f(x) ~ ~ (1-;f, O<x<R, d>0 

R -1 R-x 
then Cl = --. , C2 = --and r(x) = --. 

d+l d+l d+l 

Since r(x) > Cl + 2C2X, the finite range distribution has IFR 

property. 

3.3 Form Invariant Length Biased Models from the Generalized 
Pearson Family 

We have discussed basic properties and vanous applications 

of length biased models in chapter I. Gupta and Keating (1986) 

observed that it is worthwhile to investigate the structural 

relationships between the distributions of X and Y in the context of 

reliability. Later Jain, Singh and Bagai (1989) extended the Gupta­

Keating results for an arbitrary weight function w(x) >0. The major 

relationship established by Gupta and Keating (1986) are 

(i) 

(ii) 

(iii) 

G(x) = m(x) R(x) 
JJ 

x 
k(x) = -h(x) 

m(x) 

( ) - r(x) J'" l+r(/) {Jt dU}d s x - -- exp - -- I. 
m(x) x r(/) x r(u) 

where G(x), k(x) and s(x) are respectively the survival function, 

failure rate and MRL of Y. 
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The above identities along with some characterization 

theorems cited in Gupta and Kirmani (1990) show how length 

biased sampling affects the original distribution and how the 

corresponding reliability characteristics change under such a 

scheme of sampling. While comparing the distribution under length 

biased sampling with the parent model, it will be of some definite 

advantage if the original distribution keeps the same form under 

length biased sampling, except possibly for a change in the 

parameters. This will lead to the form invariance property of length 

biased models and is described as follows. 

According to Patil and Ord (1976), the distribution of X with 

p.d.f f(x; (}) is said to be form-invariant under length biased 

sampling of order a if the observed variable Y has the same 

distribution as X, with a change in parameter. In other words, 

f(x; (}) =/(x; 77). Also they proved that a necessary and sufficient 

condition for X to b~ form invariant under size-bias of order a is 

that its p.d.f belongs to the log-exponential family. Some important 

members of this family are the log normal, Pareto, gamma, beta 

first and second kinds and Pearson type V. Motivated by the 

relevance of form-invariance In characterizing families of 

distributions ,Sankaran and Nair (1993) derived the condition under 

which the Pearson family is form-invariant with respect to the 

length biased sampling. They proved that, the members of the 

Pearson family satisfying the differential equation (1.18) with 

b2 :t: 1, have the same type of distribution for Y if and only if bo=O 

and the p.d.f of Y satisfies 

dlogg(x) 

dx 



where 

and 

c.= , j= 1,2 

d)= d-b1 • 

I-b2 

Now we prove a general theorem lD this direction by 

identifying those distributions of X belonging to the generalized 

Pearson family (2.1) that retain the same form of the distribution of 

Y. Note that we restrict our study to distribution of non-negative 

random variables belonging to the family (2.1). 

Theorem 3.4 

Among the members of (2.1), X and Y have the same type of 

distributions if and only if bo=O and the probability density function 

of Y satisfies 

dlogg(x) 

dx 

where po, PI, P2, qI and q2 are real constants. 

Proof 

(3.15 ) 

Suppose that (2.1) holds and that X and Y have the same 

distributional form. Then from (1.19), we have 

or 

dlogg(x) _ lex) 1 
---=.;::....:......:... - -- + -

dx f(x) x 

2 ao +a1x+a2x 

bo +b1x+b2x2 

1 
+-

X 

(3.16) 



dlogg(x) 

dx 

JL.. 

aox + a\x2 + a2x3 + ho + h\x + h2X2 

x(ho +h\x+h2X2) 
(3.17) 

Since Y also must belong to the same family, the equation (3.17) 

must be of the form, 

aOx+a1x2 +a2x3 +ho +hIX+h2X2 

x(bo +b1x+b2x2) 
(3.18) 

Equating the coefficients of like powers of x in (3.18), we have six 

equations 

qob o = ° 
qo(ao +hl)+q1bo= pobo 

ql(ao +bl)+q2bo +qo(a. +b2)= Plbo + poht 

%a2 +ql(al +b2)+q2(aO +bl)= P1b 1+ p 2bo+ p Ob2 

(al+b 2) q2 + a2ql = P 1b2 + P2 b l 

a2q2 = P2 b2 

Now consider the equation (3.19), we have three cases, 

(i) when bo :;t:O, qo=O in (3.19), we get 

dlogf(x) = az + (a1b2 -aA)x+aobz -a2bo 
dx b2 b2(bo +b1x+bzx2) 

and 

dbgg(x) = P2 + (p,qz - Pzq,)x+ Poqz 
dx q2 q2(qIX+ qzx2) 

in which f(x) and g(x) have different forms. 

(3.19) 

(3.20) 

(3.21 ) 

(3.22 ) 

(3.23) 

(3.24) 

Similarly for case (ii) bo=O, qo:;t:O, f(x) and g(x) have different 

forms. 

On the other hand, for case (iii) when bo =0, qo=O, we get 

dlogf(x) = az + (a.bz -aA)x+aob2 
dx b2 b2(b1x+b2x2) 

(3.25) 

and 
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dlogg(x) _ a z (a1hz -aA +h;)x+(ao +hl)hz 
_---=.c:.:....c.......:... - - + z' 

dx hz bz(b1x+bzx) 
(3.26) 

Since the roots of the quadratic equation in the denominators of 

equations (3.25) and (3.26) are the same, f(x) and g(x) have same 

distributional form though with possibly different parameters. 

Conversely suppose that bo =0 in (2.1), then from (3.16), we have 

f'(x) = g'(x) __ 
f(x) g(x) x 

Po + P1 X+ P2 X2 1 
(q1X+q2X2) x 

= (Po -q,)+(P1 -Q2)X+ P2 X2 

(Q1 X+Q2 X2 ) 

which is of the form (2.1) with ao=po-Q" a,=p,-Q2, a2=p2, b,=ql and 

b2=q2. This completes the proof. 

Corollary 3.2 

When a2 = 0, Theorem 3.4 reduces to the result of Sankaran 

and Nair (1993) concerning the original Pearson family. 

To verify Theorem 3.4, consider the generalized lDverse 

Gaussian distribution with p.d.f (John son, Kotz and Balakrishnan, 

1994) 

(3.27) 

where K is a normalizing constant. 

The length biased distribution (LBD) for (3.27) is obtained as 

g(x) ~ K' xv" exp{ .t~x;')'}, x>O, r, .t. 1'>0 

which has the same form as (3.27), but different parameters. 



Sankaran and Nair (1993) derived the conditions under which 

models belonging to the Pearson family retain the same form for 

their length biased distribution. But there are situations where both 

the original and LBD do not have the same form when they belong 

to Pearson family. 

For example 

1. Consider the exponential distribution with p.d.f 

f(x) = A e-).X x>O, A>O 

then LBD is obtained as 

g(x) = A? x e-).x x>O, A>O 

which has not the same form as X. In fact Y is gamma. 

2. When X is Pareto type II with p.d.f 

f(x) = caC (x+ar(c+l), x>O, a>O, 

then LBD of X is 

g(x) = c(c-l)aC x (x+ar(c+l), x>O,c>l. 

Here also g(x) has different form but both X and Y belong to the 

Pearson family. 

3. When X is half normal with p. d. f 

/2 1 {X2} f(x) = V; a exp - 2a2 ' x~o, cr>O 

Then LBD of X is obtained as, 

x {X2 } g(x) = - exp -- , x~o 
a 2 2a2 

and hence 

g'(x) = a 2 _x2 

g(x) a 2x 
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which is of the form (2.1). Therefore from example 3, we can infer 

that, it is not necessary that X is in the Pearson family Y also 

belongs to that family. In this direction, next we investigate the 

condition under which the length biased distribution of X belong to 

the generalized Pearson family when the original belongs to the 

Pearson family. 

Suppose that the distribution of X belongs to the family 

(l.18) and that of Y belongs to the family (2.1), we have 

dlogg(x) dlogf(x) + I 

dx dx x 

Thus 

-(x +d) I 
---'--~- + -
bo +b)x+b2x2 x 

which leads to 

(Po+ PIX+ P2 X2 ) (b o+ b1x+ b2x2)X =(qo+ qlX+ q2X2) 

(bo+(b 1 -d)x+(b2-1) x2). (3.28) 

Equating the coefficients of like powers of x in (3.28), we have the 

following six equations 

qobo = ° 
qo(b) -d)+q)bo= pobo 

q2bO +q)(b) -d)+qo(b2 -1)= p)bO + POb) 

q)(b2 -1)+q2(b) -d)= P 1b 1+ P2 bO+ POb2 

(b 2-I)q2 =P1 b2+P2 b 1 

P2b2 =0. 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33 ) 

(3.34) 

Now we have the following cases arising from (3.29) and (3.34). 

Case I 

When bo =0, b2 =0, qo :;t:O and P2:;t:O, we obtain 



-q -(J -0 
bl=d=-O =_11 =_12. 

Po PI P2 

This leads to exponential distribution with parameter =!. for Y. 
d 

Case 11 

When bo =0, P2 =0, qo :;t:O and b2:;t:O, we get 

b I = d and b2 = 1 + dpo . 
qo 

This provides 

dlogg(x) _ dpo 

dx qo + (dpo +%)x 

or 

leading to Lomax law, where Yo is the normalizing constant. 

Case III 

When b2 =0, qo =0, we obtain 

po = ql, b l = -q2 and bo= dql (PI:;t: q2). 
pz qz - PI 

This provides 

Therefore the distribution of Y belongs to generalized Pearson 

family (2.1). 

Case IV 

When P2 =0, qo =0, we have, 



)"1 

and hence 

dlogg(x) _ ql + p)X 

dx q)X+q2X2 

or 

~ 

g(X) = Yo x (q) +%X) q2 ,O<X<OO 

that leads to beta distribution with Yo as normalizing constant. 

Case V 

When P2 =0, qo =0, bo =0, b2 =0, we have, 

q2 =0, b 1=_dql . 
ql-Po 

This provides 

dlogg(x) _ (Po -q))x+d(q) + Po) 

dx dq)x 

or 

g(x) ~ Yo exp{ p~;,q, x} x':" , O<X<OO 

which is Pearson type III (Gamma) distribution, where Yo as 

normalizing constant. 

The cases other than the above turns out to be special cases 

of the case V, will not be discussed further. The above discussion 

leads to the following characterization theorems whose proofs are 

direct. 



Tbeorem 3.5 

Suppose that the distribution of X belongs to the Pearson 

family (1.18). Then the length biased distribution (LBD) of X is 

exponential with parameter -1 , if and only if ho = 0 and h2 = o. 
d 

Theorem 3.6 

Suppose that the distribution of X belongs to the Pearson 

family (1.18) and that of Y belongs to the family (2.1). Then the 

distribution of Y is 

(a) Lomax (Pareto 11) if and only if ho = 0 and P2 = 0 

(b) a member of generalized Pearson family if and only if qo = 0 

and h2 = 0 

(c) beta if and only if qo = 0 and P2 = 0 

(d) Pearson Type III (Gamma) if and only if qo =0, P2 =0, ho =0 

and h2 =0. 

3.4 Characterization by Conditional Expectations 

When ho = 0 in (2.1), we obtain a subclass of the generalized 

Pearson family. This subclass to be denoted by C, contains many 

distribution of interest in reliability analysis such as gamma, beta, 

inverted gamma and inverse Gaussian. In the following, we prove a 

characterization of the class C based on conditional moments. 

Theorem 3.7 

Let lim ( h1x +b2x2) f(x) 
x~b 

o. Then f(x) belongs to C if and 

only if 

a2m3(x) + [(al+3b2)-a2x ]m2(x) = mI(x) [(aI+2b 2)x - (ao+2hJ)J 

+ x(ao+hJ) (3.35) 
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where 

Proof 

Let h(x) be the failure rate of X. From theorem 2.3, for the 

class C, we obtain, 

(3.36) 

and 

-ml (x)(b1x+b2x2)k(x)=a2m3(x)+(al +3b2)m2(x)+(ao+2b l )ml (x) (3.37) 

where k(x) is the failure rate of Y (LBD). 

Using the identity given by Gupta and Kirmani (1990), we have, 

k(x) = _x_ 

h(x) ml(x) 

which gives, 

a2m3(x)+(al +3b2)m2(x)+(ao+2b l )m I (x) 

= x[a2m2(x)+(al+2b2)ml(x)+ao+bd. (3.38) 

Rearranging the terms in (3.38), we obtain (3.35). 

Conversely suppose that (3.35) holds for all x, then we have, 
b b 

a2 ft 3f(t) dt + (a\+3b2-a2x) ft 2 f(t) dt 
x x 

b 

= xR(x)(ao+bt}+[(a\+2b2)x-(ao+2b l )] f If(t) dl. (3.39) 

Differentiating (3.39) with respect to x, we get 

dlogf(x) ao +a1x+a2x 2 

dx b1x + b2x2 

x 

which has the same form as (2.1) with bo = O. This completes the 

proof. 
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Corollary 3.3 

When a2 = 0, Theorem 3.7 reduces to the result of Sankaran 

and Nair (1993). 

Corollary 3.4 

The distribution of X IS lDverse Gaussian with p.d.f (2.11) 

holds if and only if 

2p2 m3(x) + (Ax+ 3p2)m2(x) = ml(x) (p2x - Ap2)+ Ap2x. 

Corollary 3.5 

The relationship 

-2A m3(x) +2Am2(x) = 3ml(x)+2x. 

holds if and only if X has Rayleigh distribution with p.d.f (2.13). 

Corollary 3.6 

The relationship 

-m m2(x) = ml(x) [l-m-p]+px. 

holds if and only if X has gamma distribution with p.d.f 

mP 
I:(x) = -- e- mx xp - 1 x>O m p>O . 

.I' r(p) ", 



CHAPTER IV 

A GENERALIZED ORD FAMILY OF DISTRIBUTIONS 

4.1 Introduction 

The Ord family of distributions is the discrete analogue of the 

Pearson family of continuous distributions. Many distributional 

properties of the members of this family can be obtained in the 

same manner as in the Pearson family. The similarity between 

exponential and geometric distributions, beta and hyper geometric 

distributions, gamma and negative binomial distributions etc, in the 

continuous and discrete set ups, makes the investigation of 

analogous results in the Ord family corresponding to these 

distributions in the Pearson family worthwhile. In view of the 

results concerning the generalized Pearson system obtained in the 

Chapters 11 and III and their usefulness in reliability modeling, in 

the present chapter we define an extended Ord family and explore 

the possibility of obtaining results that have applications when the 

observation are in the form of integer values. 

Let X be a non-negative integer valued random variable with 

probability mass function (p.m.t) p(x). Then the distribution of X 

belongs to the Ord family (Ord, 1972) if p(x) satisfies the 

difference equation 
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p( x + 1) - p( x) -( x + 11 ) 

p(x) ko + k1x + k2X2 
( 4 1 ) 

where ko, k J, k 2 and 11 are real constants. 

Ord's classification of distributions is mainly depends on the 

nature of the roots of quadratic expression in the denominator of 

(4.1) or rather on the val ue of 

k= e __ 1_ 

4kok2 

When ko = kJ and k2=0, yields Katz' family of distribution with 

p(x+l) = a+px, a>O P<I, x = 0, I, ... 
p(x) l+x 

Ord (1972)labeled these III B, III P, III N for the binomial, Poisson 

and negative binomial respectively. Also for k 2=0 and ko :t:- kJ leads 

to a system of hyper distributions, in particular to the hyper­

Poisson distribution. Discrete distributions like Po is son, binomial, 

negative binomial, hypergeometric, Waring etc that have 

applications in reliability analysis belonging to the family (4.1). 

For various properties and applications of (4.1) we refer to Ord 

(1972) and Johnson, Kotz and Kemp (1992). However there are 

other distributions that are not members of the family (4.1). For 

example, the distributions like confluent hypergeometric and Haight 

are not members of (4.1) [See, Ord (1972)].Motivated by this we 

consider an extension of (4.1) and study its properties in the context 

of reliability. Earlier Davies (1934) considered an extension to the 

Ord family in terms of hyper functions. Later Bowman, Shenton and 

Kastenbaum (1991) [See, Johnson, Kotz and Kemp (1992)] have 

studied an extension of Ord's family with 

p(x) = (1+ a-x 2J p(x-l) 
Co +C1Y+C2Y 

(4.2) 



bJ 

where Y=X-Jl and Jl = E(X), the ratio of successive probabilities IS 

here the ratio of two quadratic expressions in x. 

In the following section we study an extended version of Ord 

family, which is a generalization of (4.2), in the context of 

reliability analysis. 

4.2 A Generalized Ord Family of Distributions 

Let X be a discrete random variable as stated in Section 4.1. 

The distribution of X belongs to the generalized Ord family if the 

p. m. f of X satisfies 

p(X + 1) ~ p(x) 

p(x) 

2 
Co +c)x+c2 x 

do + d)x + d 2x Z 
(4.3) 

where Co, Cl, C2, do, d l and d 2 are real constants. 

Obviously when C2=O, (4.3) reduces to the form (4.1). The roots of 

the equation d o+ dlx+ d 2x 2=O, appeared in the denominator of (4.3) 

determines various members of the family (4.3). 

where 

and 

The family (4.3) can be written as 

p( x + 1) - p( x) x + 11 
.::........:...--'----.::........:.....,;",. = C + ( 4 . 4 ) 

p(x) ko +k)x+kzx 2 

C= ~ 
d' 

2 
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When c=O, (4.4) reduces to (4.2). The different types of curves are 

based on the nature of the roots of the quadratic expression in the 

denominator of (4.4). 

4.3 Members of the Generalized Ord Family 

As mentioned in the previous section, all members of the Ord 

family are the members of (4.3). Some important distributions other 

than the members of the Ord family belonging to the family (4.3) 

are given below. 

1. Kemp family of distributions [John son, Kotz and Kemp(1992)] 

can be written as 

p(x + 1) - p(x) 

p(x) 

(4.5) reduces to (4.3). 

(et + x)(e2 + x)A. 

(gl + X)(g2 + x) 
(4.5) 

2. Consider confluent hyper geometric distribution defined by 

Bhattacharya (1966) with 

p(x) = f(y + x)f(l +b) Ox 
f(1 +b +x)r(y)~(y;l +b;O) x! 

,x=O,I,2, (4.6) 

where 

,I,(y.l+b·O)=I+ Y 0+ y(y+1) 0 2 + ... 
r" (1+b)l! (1+b)(b+2)2! 

00 (y)OJ 
= L J ., 

j=O (1 + b) j } . 

with (Y)j as Pochhammer's symbol. (4.6) can also be written in the 

form, 

p(x+ 1)- p(x) _ _ x 2 +x(0-b-2)+yO-b-l 

p(x) (x + l)(x+ b + 1) 



0,) 

where 

co= yB-b-l, c]=B-b-2, c2=-I, do=b+l, d]=b+2 and 

d 2=1. 

Thus (4.6) is a member of the generalized Ord family (4.3). 

The confluent hypergeometric distribution has found 

application in the theory of accident proneness. 

When y = I, equation (4.6) reduces to the hyper Poisson 

distribution with 

B'T(1+b) 
p(x) = Yo , x=O, 1. .. 

r(l+b+x) 
(4.7) 

where 
I 

Yo= ----
~(1; 1+ b;B) 

This distribution arises in birth-and-death processes (Hall 1956). 

3. Consider the Borel-Tanner distribution (Tanner, 1953) with p.m.f 

e-nq(nqY-X.x 
p(x) = , 

(n-x)!n 
x= 1,2, ... (4.8) 

which can be written as 

p( x + 1) - p( x) - x 2 + x[n(1- q) -I] + n 

p(x) nqx 

Thus (4.8) has the same form as (4.3) with co=n, c\=n(l-q)-I, c2=-I, 

d o=d2=O and d]=nq. 

4. Consider the Haight distribution (Haight, 1961) with p.m.f 

( 211- X-IJx an-x 

n-l 
p(x) = 2' x= 1,2, ... (I ) n-x n +a 

(4.9) can be written in the form, 

(4.9) 
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p(x + 1) - p(x) = _Xl + x[2n- 1 +a(n-l)] + 2n(a + 1) 

p(x) ax(n-x) 

which has the same form as (4.3) with co=2n(a+l), cJ=2n-1+a(n-1), 

c2=-1, do=O, d 1=na and d 2=-a. The applications of the distributions 

(4.8) and (4.9) in the queuing theory have already been studied 

(Ord,1972). 

4.4 Properties of the Generalized Ord Family of Distributions 

In this section we discuss some important properties of the 

generalized Ord family. 

Property 1 

For the generalized Ord family (4.3), the recurrence 

relationship among the raw moments is obtained as 

= I-J: (co + do) + I-J:.1(C1 +d1)+ I-J:.2 (c2 +d2)+( -1 r (do - d1 )+d 2) p(O) (4.10) 

where I-J: = E(xr). 

Proof 

From (4.3), we have 

Multiplying both sides of (4.11) by xr and taking summation from 

o to x;, we get, 
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", 
LX' (do +dJx+d 2X2)p(X+ I) 
x=o 

<Xl 

= LXT [(co +do)+(c) +d)x+(c2 +d,n)x2] p(x) 
x=o 

which gives, 

if) 

L(x-IY (do+dJ(x-1)+d 2(x-1i)p(x) 
x=) 

00 

= L xT [(co +do) + (c) +d)x+ (c2 +d2)X2] p(x). (4.12) 
x=o 

Thus (4.12) provides, 
0(, 

L(x-1Y (do+d)(x-I)+d 2(x-I)2)p(x) 
x=o 

'" 
=LxT [(co+do)+(cJ+d)x+(C2+d2)X2]p(X) + (-lr (do-d)+d 2) p(O) 

.<=0 

which reduces to the form (4.10). 

Property 2 

Let g(s) = E(sX). Assume that the derivatives g'(s) and g"(s) with 

respect to s exists. Then the probability generating function g(s) of 

the generalized Ord family (4.3) satisfies the relationship 

g(S)[ do -~J +d2 -(co +dO)]+gf(S)[d)-d2 -(c) +d])s-(c2 +d2)s] 

(4.13) 

Proof 

From (4.3), we have 

00 00 

LSx (do +dJx+d 2X2)p(X+ 1) = LSx [(co +do)+(c) +d)x+(c2 +d2)X2] p(x). 
X=o 

(4.14) 

Put x+I=/I in the left side of(4.14), we get 



~f.: rJ' rJ. 

doLS'" 1 p(X)+ d1L(X-I)sXlp(X)+ dzL (x-I)Z .~.X]p(X) 
x~] X=] 

co co co 

= (CO +do)LSXp(X) + (Cl +dl)LXSXp{X) + (CZ +dz)LXZS-" p{X) 

which provides, 

[ d -d +d] d d d p(O) 0 ] Z +_0 g(s)+dlg'{s) __ l g{s)+dzsg"{s)-d2g'(s)+_z g{s) 
S s s s 

= (co + do)g(s) + (Cl + d])sg'(s) + (Cz +dz)sZg"{s)+ (Cz +d2 )sg'{s). (4. 15) 

Thus we obtain (4.13). 

Property 3 

If a turning point exists, a maximum of p{x) occurs at a value 

of x for which, 

p(x) ~ 1 
p(x+ 1) 

and p(x) ~ 1 
p{x-I) 

which can be written as, 

p(x+ 1) ~ 1 
p(x) 

and p{x) ~ 1. 
p{x-I) 

Thus from (4.3) and (4.16), we have 

Co +do +(c] +d])x+(cz +d2 )xZ 
~--~~--~---z~~--~ 

do +d]x+d2x 

and 

which provides 

and 
2 

Co + Cl x+ C2 x ~o. 

(4.16) 



69 

,2 

Thus the maximum of p(x) occurs when x= _L_I_, which is the mode 
4cOc2 

of p(x). 

Property 4 

An inflexion of p(x) occurs at that value of x for which /),,2p(X) 

changes sign, where /)" p(x)= p(x+ 1 )-p(x). This provides 

/),,2 p(x)= /)"[/),, p(x)] 

= /)" p(x+1)- /)" p(x) 

= Co +C1 (x + 1)+ c2 (x + 1)22 p(x+ 1)- [ Co +C)X +C2X2
2

] p(x). 
do +d)(x+ 1)+d2 (x+ 1) do +d)x+d2x 

When /),, 2 p(x)=O, 

[Co + C) (x + 1) + C2 (x + 1)2 J [do + d)x + d2xl J p(x+ 1 )-

[co +c)X+C2X1J [do +d)(x+ 1)+d2(x+ 1)2J p(x) =0 . (4.17) 

From (4.3), we have 

(4.18) 

Substituting (4.18) in (4.17), we obtain 

c; X4 + x3 (2c; + 2c)c1 - 4d2c2) + Xl[ c; + C)2 + 2cOc2 + 3c)c2 - 3c2d) - 3c1d2 - 2c1d1 ] 

The points of inflexion is obtained by solving the equation (4.19). 

Property 5 

If the distribution of X belongs to the generalized Ord family 

(4.3) with E(Xr+ 2 )<oo, then 
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CPn2(t) + a,.l1(t)[ Cl +C2 (at + ar + I) + d 2(r + 2)]+ 

ar(t) { Co + (I + r)[c) +cz (31 + 3r + 2)] + dz(r + 1) +d2 [r(2t+2r+ 3 )+21+ I]} + 

rar_)(t) {do +(t+r)[d) +dz(3t+3r+2)]}=0 (4.20) 

where ar(t) is defined in (1.26). 

Proof 

When the distribution of X belongs to generalized Ord family 

(4.3), we have 

(4.21) 

Multiplying (4.21) by (x_t)(r) and taking summation from 1+r to 00, 

we get 

00 

L(x-tyr) (do+d)x+dzx2)p(x+l) 
t+r 

00 

= L (X- tt) [co +dO + (c) +d)x+ (C2 +dz)xZ ] p(X). (4.22) 
t+r 

Putting 

x= (x-t-r) + (1+r) 

and 

x 2=(x-t-r) (x-t-r-l) +(x-t-r)(2/+2r+ 1 )+(t+r)(3 1+3r+2) 

in (4.22), we obtain 

00 00 

dOL(x-t)(r) p(x+l)+ d 1 L(x-I-r)(x-tyr) p(x+l) 
I+r I+r 

00 00 

+ d1(t+r) L (x-t)(r) p(x+ 1) +d2 L (x-t - r)(x-t - r -l)(X-/)(f) p(x+ 1) 
t+r t+r 

00 

+d2 (21+2r +1) L(x-1t) (x-t- r)p(x+l) 
t+r 

00 

+d2(t+ r)(31+3r +2) L(x-t)(r) p(x+l) 
t+r 



I 1 

00 ~ 

= (co+do) L(x-t)(r) p(x)+ (cl+dJ) L(x-tY') (x-t-r) p(x) 
l+r (+,. 

ex> 

+(cl+dJ)(t+r) L(x-t)(r) p(x) 
t+r 

00 

+ (cz+dz) L(X-t-r)(x-t-r-1)(x-t)(r) p(X) 
t+r 

00 

+(Cz+dz) (2t+2r+l) L(x-t-r)(x-t)(r) p(X) 
I+r 

00 

+(Cz+dz) (t+r)(3t+3r+2) L(X-t)(r) p(X) (4.23 ) 
t+r 

Putting x+l= u, in the left side of (4.23) and using the relationship 

a r(t+l) = ar(t)-rar-l(t), r~l, t~O, 

we obtain, 

dzar+z(t+l)+dzar+z(t)+ar+l(t) [d l +dz(2t+r-l)]+ ar(t) [do+d1(t-l) 

+dz(3 tZ+4tr+rz -r-l)] -rar-l (t) [do+d1 (t+r)+dz(t+r)(3 t+3r+2)] 

=ar(t) [co + do + (c) +d)(1 + r) +(cz +dz)(t +r)(3t +3r + 2)] 

+ar+l(t)[Ct +d) +(cz +d2 )(2t+2r+l)]+ar+Z(t)[cz +dz] (4.24) 

Rearranging (4.24), provides 

CPr+z(t) + a r+) (I) [c) + d) + (cz +dz )(2t + 2r + 1)- {d1 +dz(2t+r-l)} ] 

+ar(t){ Co +do + (c) +d)(t + r) + (cz +dz)(t + r)(3t + 3r + 2) -do-d1 (t-l) 

-dz [3t Z + 4tr +rz -r -1]} + rar) (I) [do+d1 (t+r)+dz(t+r)(3 t+3r+2) ]=0 

which leads to (4.20). 

Remark 4.1 

When cz=O, the relationship (4.20) reduces to the result of 

Nair et. al (2000) for the Ord family. 
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4.5 Characterizations 

Several characterizations of discrete distributions USlDg the 

concepts such as failure rate, mean residual life, and vitality 

function have been extensively discussed by different researchers 

like Shanbhag (1970), Xekalaki (1983), Osaki and Li (1988), 

Ahmed (1991), Nair and Hitha (1989) etc. The characterizations of 

the Ord family of distributions using different reliability concepts 

were studied in Nair and Sankaran (1991), Glanzel (1991), Sankaran 

and Nair (1993), Ruiz and Navarro (1994), Navarro, Franco and 

Ruiz (1998). 

Nair and Sankaran (1991) established the relationship 

m(x) == J.1 + (YO+YIX+Y2X2) h(x+ 1) 

where J.1 == E(X) == 
k) -11 

1-2k2 
and Yi == 

characterizes the Ord family (4.1). 

k j j== 0, 1, 2, that 
1-2k ' 2 

Now we prove a characterization theorem USlDg the 

relationship between failure rate and conditional moments, which 

generalizes the result given by N air and Sankaran (1991). 

Theorem 4.1 

A necessary and sufficient condition for the distribution of X 

belongs to the family (4.3) is that 

where 

m, (x) == E [X I I X· x] i==1,2. 
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Proof 

When the distribution of X belongs to the family (4.3), we 

have 

DO DO 

~)p(t+I)- p(t)] [do +d\t+di2 ]= ~::<co +c\t+C2t2)p(t) 
.>:+\ .>:+\ 

which gives 

-dop(x+I)-d\(x+1)p(x+I) -d\R(x+2) -d2(x+1)2 p(x+I) 

DO 

-2d2 Ltp(l) +2d2 (x+ I)p(x + 1) +d2R(x + 2) 
.>:+\ 

DO ao 

= coR(x+l) +c\Ltp(t) +c2L,2p (X). (4.26) 
.>:+\ .>:+\ 

Dividing (4.26) by R(x+I) and using the relationship 

h(x+l) = 1- R(x+2) 
R(x + 1) 

we obtain, 

-doh(x+ 1) -d\ (x + l)h(x + 1) -d\[1-h(x + 1)] -d2 (x + 1)2 hex + 1) 

-2d2m\(x) + 2d2 (x+ I)h(x+ 1) +d2[I-h(x + 1)] = Co + c\m\ (x) + c2m! (x) 

which leads to (4.25). 

Conversely when (4.25) holds, we have 

DO DO DO 

c2 L,2p (t) +(c\ +2d2) Lt p(t) +(Co +d\ -d2 ) LP(t) 
.>:+\ .>:+\ 

+(do +d\x+d2x2)p(x+I)=O. (427) 

Changing x to (x-I) in (4.27) and subtracting the resulting 

expression from (4.27), we get (4.3). This completes the proof. 

Corollary 4.1 

When a2=O, Theorem 4.1 reduces to the result of Nair and 

Sankaran (1991). 



Corollary 4.2 

The relationship 

A, m2(X) + [A,(el+e2) +2] ml(x) + A,ele2 + gl+ g2-1 

+(glg2+(gl + g2)X +x2)h(x+ 1 )=0 

holds if and only if X belongs to the Kemp family (4.5). 

Corollary 4.3 

The distribution of X is confluent hyper geometric with p.m.f (4.6) 

if and only if 

-m2(x) + (B-b)ml(x) + vB +(b+l+(b+ 2)x +x2)h(x+l)=0. 

Corollary 4.4 

The distribution of X is Borel-Tanner with p.m.f. (4.8) if and 

only if 

-m2(x)+[n( l-q)-l ]mlx+n( 1 +q)+(nqx)h(x+ i )=0. 

Corolla .. y 4.5 

The relationship 

-m2{x)+ m I (x)[2n-l +a(n-3 )]+(3n+ 1) a+2n+( anx- ax2)h(x+ 1 )=0 

holds if and only if X has Haight distribution with p.m.f (4.9). 

4.6 Characterization through some Conditional Moments of 
Generalized Ord Family 

Glanzel (1991) proved that the distribution of the discrete 

random variable X belongs to the Ord family if and only if 

E(X21 X ~ x)=P(x) E(X I X ~ x)+Q(x)~ 

where P(x) and Q(x) are polynomials of degree one almost with real 

coefficients. The following theorem generalizes the result of 

Glanzel (1991). 
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Theorem 4.2 

Let (0, F, P) be a probability space and let X be an integer 

valued random variable. Assume that E(X3 )<oo and X3p(X)~0 as 

x~±oo. Then the distribution of the random variable X belongs to 

the generalized Ord family (4.3) if and only if 

C2 E(X3 1 X~x) = A(x) E(X2 1 X~x) + B(x) E(X I X~x) + C(x) (4.28) 

where A(x) = C2X+q with q as a real constant and B(x) and C(x) are 

polynomials of degree one at most with real coefficients. 

Proof 

Let B(x) = rx+t and C(x) = lIX+W. Now assume that (4.28) 

holds, then 

C2 E(X3 1 X~x) = (C2X+q) E(X2 1 X~x) +(rx+t) E(XI X~x) + (ux+w). 

( 4.29) 
From (4.29), we obtain for all x EH, 

00 00 00 

C2 ~)3 p(t) = (C2X+q) L:t2 p(t) +(rx+t) L:tp(t) + (ux+w)R(x). (4.30) 
)( x x 

Changing x to (x+l) in (4.30), we obtain 

00 00 00 

C2 L:t3 P(t)=(C2(X+ 1 )+q) L:t2 p(t)+(r(x+ 1 )+t) L:ip(t) 
)(+1 x+l )(+1 

+(u(x+l)+w)R(x+l). (4.31) 

Subtracting (4.31) from (4.30), we have 

00 00 

C2 x 3 p(x) = (C2X+q) x 2 p(x) -p L:t2 p(t) +(rx+t)xp(x)-r L:tp(t) 
)(+1 )(+1 

+ (ux+w)[R(x)- R(x+ 1 )]- u R(x+ 1). 

Repeating the same procedure as above after changing x to x+ 1, we 

obtain 
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p(x) [(q+r)x2+(t+1I)X+W] = p(x+ 1) [(c2+q+r)x2+(2 C2+2q+3r+t+u)x 

+( c2+t+w+2u)] 

p(x + 1) - p(x) 

p(x) (C2 +q+r)x2 + (2q+ 2c2 +3r+t+u)x+(c2 +t+w+ 2u) 

which is of the form (4.3). 

Conversely assume that (4.3) holds, then 

or 

p(x+ I) 

p(x) 

Co +do +(c1 +d1)x+(C2 +d2 )X2 

do +d1x+d2x 2 

(do+d1x+d2x 2) p(x+l) = p(x) [(co+dO)+(Cl+d1)x+(C2+d2)X2]. 

Taking summation on both sides of (4.33), we get 

<Xl <Xl <Xl 

do LP(t) - do p(x) + d l Lt p(t) - d 1 xp(x)- d l LP(t) + d l p(x) 
x x x 

<Xl <Xl <Xl 

(4.32) 

(4.33) 

+d2 Lt2 p(t) - d 2 x 2 p(x)-2d2 Lt pet) +2d2 xp(x) + d 2 LP(t) - d 2 p(x) 
x x x 

<Xl <Xl <Xl 

= (C2+d2) Lt2 pet) +(cI+dl ) Ltp(t) + (co+do) LP(t) 
x x x 

which provides, 

p(x) [do-d1 +d2] + x p(x) [d t -2d2] +d2 x 2 p(x) 

<Xl <Xl <Xl 

= [d2-dl-Co] LP(t) + [-2d2-cd Lt pet) - C2 Lt2 pet). (4.34) 
x x x 

Now consider, 

(dox+dIX2+d2X3) p(x+ I) = p(x) [(co+dO)X+(CI +ddx2+(C2+d2)X3]. 

(4.35) 

Taking summation on both sides of (4.35), we obtain 
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~ ~ ~ 

do LI p(/) - do xp(x)+ do Lp(t) + do p(x) +d\ LI2 p(t) - d\ x 2 p(x) 
x X x 

00 IX) ex> 

-2d\ Lt p(t) +2d\ xp(x) + d l LP(t) - d l p(x) + d 2 Lt3 p(t) -d2 x 3 p(x) 
x x x 
ex> IX) IX) 

-3d2 L12 p(t) +3d2 x 2 p(x)+3d2 Lt p(t) -3d2 xp(x) - d 2 LP(t) 
x x x 

ex> ex> ex> 

+ d 2 p(x)= (c2+d2) Lt3 p(t) +(CI +d) Lt2 p(t) + (co+do) Lt p(t). 
x x x 

which gives, 

p(x) [do-d\ +d2] + x p(x) [dl-2d2] +d2 x 2 p(x) -x[P(x) (do-dl +d2) 

+ x p(x) (dl -2d2) +d2 x 2 p(x)] 

ex> ex> 

= [do+d2-cIJ Lp(t) + [co+2d l -3d2] Lt p(t) 
x x 

ex> 00 

+[CI +3d2] Lt2 p(t) + C2 Lt3 p(t). (4.36) 
x x 

Substituting (4.34) in (4.36), we get 

00 00 ex> 

[do+co] LP(t)+ [co+2d\ +cl-d2] Lt p(t)+[CI+C2+3d2] Lt2 p(t) 
x x x 

00 OCI co 00 

+ C2 Lt3 p(t)+x{ [d2-d\-co] L p(t)+ [-2d2-cJ] Lt p(t) -C2 Lt2 p(t)} =0. 
x x x x 

(4.37) 

Dividing (4.37) by R(x), we obtain 

C2 E(X3
1 Xzx) = [(co+d\-d2) x -( co+do)] 

+ [(c\+2d2) x + d2 - c\-2dl- co]E(XI Xzx) 

+ [C2 x -(c\+c2+3d2)] E(X2
1 Xzx). 

which has the same form as (4.28) with 

A(x) = C2 x -(c\+c2+3d2) 

B(x) = (c\+2d2 ) x + d 2 - c\-2dl- Co 

and 

C(x) =(co+d l -d2) X -( co+do). 

This completes the proof. 



78 

Corollary 4.6 

When C2=O, Theorem 4.2 reduces to the result of Glanzel 

(1991) for Ord family of distributions. 

Corollary 4.7: 

The relationship 

).. E(X3IX~x) = {)..x - [3+)..(eJ+e2 +l)]} E(X2IX~x) 

+{[)..(eJ+ e2)+2]x+l-)..[(eJ+ e2)+el e2] 

-2(gJ+ g2)} E(XIX~x) +[)..eJe2 +(gJ+ g2)(x-I)-x] 

holds if and only if X belongs to the Kemp family (4.5). 

Corollary 4.8 

The relationship 

E(X3 1 X~x)+ vO(x-l )+E(X2 1 Xzx)(b- O-x)+E(X I Xzx)[( O-b)x- O( 1 + v)]=O 

holds if and only if the distribution of X is confluent hyper geometric with 

p.m.f(4.6). 

Corollary 4.9 

The distribution of X is Borel-Tanner with p.m.f. (4.8) if and 

only if 

E(X3 1 X~X)-[I1( l-q)+x+2]E(X2 1 Xzx) 

+{[ n(l-q)-l]x- n(2+q)+1} E(XIXzx)+[l1(1+q)x-n]. 



CHAPTER V 

CLASSIFICATION OF MODELS IN DISCRETE TIME 

5.1 Introduction 

The majority of literature on the vanous criteria for agemg 

center around continuous life time models. Recently there is some 

spurt. of activity towards reliability analysis in the discrete time 

domain. As mentioned earlier there are several instances in which 

the failure time distribution can be modeled by a discrete random 

variable. The pioneer work in this area is due to Xekalaki (1983), 

who pointed out that, limitations of measuring devices and the fact 

that discrete models provide good approximations to their 

continuous counter parts, necessitate assessment of reliability in 

discrete time. Accordingly, elaboration of various concepts 

analogous to those in the continuous case become necessary to 

distinguish classes of life distributions based on the notions of 

agemg. 

As in the continuous set up, the agemg behaviour of the 

system or component usually studied by failure rate function or by 

MRL function. Various authors have studied classes of life 

distributions based on different concept of ageing. Langberg 

et. al(1980) discussed properties of discrete models with decreasing 
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failure rates. Ebrahami (1986) provided two parametric families of 

discrete distributions which are suitable for fitting decreasing and 

increasing mean residual life models to life test data in discrete 

time. Guess and Park (1988) developed a general approach to 

modeling discrete bathtub shaped MRL function. Salvia and 

Bollinger (1982) have established simple bounds for residual life 

when the device has a monotonic hazard rate sequence. 

As is well known, the monotonicity of failure rate of a life 

distribution plays a very important role in modeling failure time 

data. Therefore, the identification of the increasing failure rate 

(lFR) or decreasing failure rate (DFR) distributions and their 

properties have been extensively discussed in the literature for the 

continuous case. However, for the discrete case, the determination 

of the IFR and DFR models is not straightforward because of the 

complexity of the failure rate. In this direction, Gupta et. al (1997) 

developed techniques for the determination of IFR and DFR models 

for a wide class of discrete distributions. 

In the following section, we provide a new method to identify 

an IFR/DFR model in the generalized Ord family. 

Definition 5.1 

The distribution of X is said to have discrete IFR (DFR) 

property if h(x) ~ (~) h(x+ 1) for every x=O,1 ,2, ... 

For the classification of discrete lifetime models through 

failure rate function, we refer to Abouammoh (1990) and Roy and 

Gupta (1992). However for many distributions h(x) is not in a 



8] 

simple form. Now we suggest a method, using p (x) to identify an 

IFR(DFR) model in the generalized Ord family, where p (x) is 

defined as 

Theorem 5.1: 

If the inequality 

p (x) = p(x)- p(x+ 1) . 
p(x) 

P(x) ~ (~)P(x + 1) 

holds for every non-negative integer x, then X has IFR (DFR) 

property. 

Proof 

From the definition of hex), we have 

_1_ = 1 + p(x+l) +p(x+2) + ... 
hex) p(x) p(x) 

(5.1) 

If the inequality P(x)~ P(x+l) holds, (5.1) becomes hex) ~ h(x+l). 

Thus X has IFR property. The proof when P(x)~ P(x+ I) is similar. 

Now we use P(x) for the classification of distributions 

belonging to the generalized Ord family. For the generalized Ord 

family (4.3), 

where 

k = c 1d2 - c2d 1 

m = c 1d2 - c2d 1 + 2(cod2 - c2do) 

and 



jJ(x+l) - jJ(x) >«) 0 

according as kx2 + mx + n> «)0. Thus, the roots of the equation 

kx2 + mx + n =0 determines the sign of jJ(x+1) - jJ(x). 

If /),. = m2 - 4kn is the discriminant of the expression kx2 + mx+n=O, 

then from the elementary algebra we have the following theorems. 

Theorem 5.2 

Suppose that the p.m.f of X belongs to the family of (4.3) 

with do+d1x+d2x2>0, then 

(A) jJ(x+ 1) - P(x) >0 if (i) k >0 and either 

-m 
(a) /),. = 0 and x =1=- or 

2k 

(b) /),. < 0 or 

(c) /),. >0 and x ~(a, jJ) or 

(ii) k <0, /),. >0 and x E(a, P). 

(B)P(x+ 1) - P(x) < 0 if (i) k < 0 and either 

(a) /),. = 0 and 

(b) /),.<0 or 

-m 
x =1= -

2k 

(c) /),.>0 and x ~(a, jJ) or 

or 

(ii) k >0, /),. >0 and x E(a, jJ). 

Theorem 5.3 

A distribution belonging to the generalized Ord family (4.3) 

has IFR property in a region if condition (A) of Theorem 5.2 holds 



In that region and has DFR property in a region if condition (8) of 

Theorem 5.2 holds in that region. 

Remark 5.1 

When k=O, p(x+ 1 )-P(x»( <)0 according as mx+n>( <)0. 

Corollary 5.1 

When C2=0 in (4.3), Theorem 5.2 reduces to the result of Ord 

family of distributions given by Sankaran and Sindu (2001). 

Corollary 5.2 

For the verification of the theorem, we consider the Borel­

Tanner distribution with p.m.f. (4.8), then we have 

x2 + x(nq -n+ l)-n P( x)= _----O...~ _ ____'___ 

nqx 

Since 

x2 +x+n 
P(x+ 1)- P(x)= >0 

nqx+nqx2 

the distribution (4.8) is IFR. 

Remark 5.2 

Table 5.1 glves the regIOn where the distribution possesses 

the IFR (DFR) property based on P(x) for some popular models 

belonging to the family (4.3). 



Table 5.1 

The region where the distribution possesses 
the IFR (DFR) property 

SI. 
No. Distributions with P(x) Region 

p.m.f 
1 Binomial x-[np-(l-p)] 

(Jpx (1- pr'x, x=O, 1, ... (l-p)(x+l) IFR 

2 Poisson x+l-A 
e-J. AX x+ 1 IFR 
--, x=O,I, ... 

x! 
3 Negative Binomial x- py 

C+Y-I)px (1- p)Y , 1- P IFR 

x-I x/(l-p) 
x=O,I"., 

4 Hypergeometric 

(D)CD) x+n(D+l)-[N +1+D] IFR 

(x+ l)(N - D-11+X+ I) x n.T 

CJ 
, 

Max(O, D-N +n)$x$Min(D. n) 

5 Waring 
(a - b)(b). 

,x=O,I, .. , 
x(1 +a-b) 

(at x(1+a+x) DFR 

(b)x = r(b+x) 
r(b) 

, 

6 Beta Pascal 

~A_ C~X-I)C+B-I) x(A + 1) - [KB - (K + A + B)] 

A+K x ,·1 Xl + (K + A + B + l)x + K + A + B DFR 

C· I
.

H
." J , 

K •. ,I 

x=I,2, ... 
7 Borel-Tanner 

e'nC}(nqrXx ~ '"') x2 + x(nq - 11 + 1) - 11 IFR 
,x ,1,_ .... 

n(n - x)! nqx 



5.2 Characterization using Mean Residual Life 

Mean Residual Life (MRL) function is widely used in the 

analysis of lifetime data. Muth (1977) pointed out that the MRL 

function is superior to the failure rate function in many practical 

situations. It is well known that an increasing (decreasing) failure 

rate class of distributions is a subclass of a decreasing (increasing) 

MRL class of distributions. In the following, we establish a 

characterization result for IFR(DFR) class of distributions in the 

generalized Ord family, using MRL function. 

Definition 5.2 

A non-negative random variable X has 

residual life (IMRL) if 

1 00 

r(x) = LR(t) 
R(x+l) .HI 

mcreasmg mean 

IS non-decreasing In x=O,I,2... and decreasing mean residual life 

(DMRL) if 

1 "fC 

r(x) = LR(t) 
R(x + 1) .HI 

is non-increasing in x=O, 1,2 ... 

Theorem 5.4 

Let the distribution of X belongs to the generalized Ord 

family (4.3). If do+d)x+d2x 2>O and c2[V(x)-V(x-l)]>O, then X is 

said to have discrete IFR(DFR) property if and only if 
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Proof 

When the distribution of X belongs to the generalized Ord 

family (4.3), we have the identity (4.25). 

From(1. 14), 

m2(x) = Vex) + 2xml (x) - x2 + r2(x) 

where Vex) is the variance residual life,( 4.25) can be written as 

C2[ V(x)+x2+2xr(x)+r2(x)] + Cl +2d2(x+r(x» +(co+dl -d2) 

+ (do+dlx+d2x2) h(x+l) =0· (5.4) 

Changing x to x-I in (5.4) and subtracting the resulting expression 

from (5.4), we get 

C2 [( V(x)- V(x-I »+2x(r(x)-r(x-l» + (r2(x)_ r 2(x-l »+2x-1 +2r(x-l)] 

+ (cl+2d2)(r(x)- r(x-l)+I) +(dl +2d2x-d2)h(x) 

+ (do+dl x+d2x2) [h(x+I)- hex)] =0. (5.5) 

Substituting the relationship between the failure rate and the MRL 

in the discrete case given by 

(5.5) provides, 

I-h(x)= r(x-I)-l 
r(x) 

h(x)[ d l +2d2x-d2+(cI +2d2)r(x) +C2 r(x)[ r(x)+ r(x-I )+2x-I] 

(5.6) 

+C2[V(X)- Vex-I)] +(do+d1x+d2x2) [h(x+l)- hex)] =0. (5.7) 

h(x+ 1 )-h(x)2:(~)O 

if and only if, 

d) + 2d2x- d 2 + r(x)[ Cl + 2d2 +C1 (r(x) +r(x -1» +c2 (2x -1) ]~(2:)0 

which completes the proof. 



Corollary 5.3 

When C2=0, Theorem 5.4 reduces to the simple form for Ord 

family of distributions as shown below. 

Theorem 5.5 

Let the distribution of X belong to the Ord family (4.1). Then 

X is said to have discrete IFR(DFR) property if and only if 

r(x)~(~) PI-P2+2p2X (5.8) 

for all x=0,1,2 ... 
k 

where p. = I 

I 1-2k 
2 

j= 1, 2. 

Proof 

When the distribution of X belong to the Ord family (4.1), we 

have (N air and Sankaran (1991» 

(5.9) 

where f.1 = E(x). 

Changing x to (x-I) in (5.9) and subtracting the resulting expression 

from (5.9), we get 

r(x)- r(x-l)+ 1 = (Po+PIX+P2X2)[h(x+ 1 )-h(x) ]+h(x) (p I-P2+P2X). (5.10) 

Substituting the relationship (5.6), (5.10) becomes, 

It is easy to verify that (PO-jPIX+P2X2)~0. Thus from (5.11), 

[h(x+ 1 )-h(x)] 2: (~) 0 

if and only if 

This completes the proof. 
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Remark 5.3 

The Pi'S in (5.8) are directly related to the moments of the 

distributions. To apply the result in a practical situation one need 

to take the sample moments and sample MRL function as 

estimators. 

For the verification of Theorem 5.5, consider the Waring 

distribution with 

p(x)= (a-b)(b)x,x=O,1,2 ... a>b>O 
(at 

where (b)x= b(b+l) .... (b+x-l). 

By direct computation we get, 

() a+x a+l 1 
r x = PI = andp2 =---

a-b-l' a-b-l a-b-l 

Since r(x) < PI-P2+2P2X for any x=O, 1 ,2,... . Waring distribution has 

DFR property. 

5.3. Length Biased Models 

In this section we discuss the form-invariant length biased 

models from generalized Ord family. 

Analogous to the continuous case, the length biased 

distribution of a discrete random variable X with the set of non­

negative integers as the support is defined as (Gupta 1979), 

g(x) = xp(x) x= 1,2 ... 
f.J 

(5.12) 

where f.J= E(X)<oo. Clearly the above random variable Y will have 

no zero in its support. Applying a displacement of Y to the left, by 



taking Z= Y-l, Z would be realized by length biased sampling on X 

with the above displacement and the support becomes the set of non 

negative integers (See Patil and Ord 1976). The resulting probability 

mass function of Z is 

p(x)=g(x+ 1) for x=O, 1,2 ... 

For the application of (5.12) to reliability we can refer to Patil and 

Rao (1977), and Gupta and Kirmani (1990). 

5.3.1 Form Invariance 

The distribution of X with p.m.f. p(x) is said to be form­

invariant under length biased sampling if observed variable Z has the 

same distribution as X, with a change in parameter. The major 

relationships between the survival function, failure rate and MRL of 

the original distribution and its corresponding length biased version is 

given as 

G(x)= m(x)R(x+l) 
p 

k(x+ 1)= (x + l)h(x + 1) 
m(x) 

"" 
LR(t+ l)m(t) 

e(x-l)= -,X,--' ---­

R(x+ l)m(x) 

(5.13) 

(5.14) 

(5.15) 

wh~re G(x), k(x) and e(x) are respectively the survival function, 

failure rate and MRL of Y. The above identities connecting 

reliability characteristics of X and Y can be employed in the 

characterization of the distribution of X. Sankaran and Nair (1993) 

derived conditions under which models belonging to the Ord family 

retain the same form for their length biased distributions. 



In reliability the agetng patterns of system can be studied by 

comparing the structural properties of their life lengths with those 

from the corresponding length biased distributions. In the following 

we derive the conditions under which the members of the 

generalized Ord family (4.2) are form invariant with respect to the 

formation of their length biased distributions. 

Theorem 5.6 

Among the members of family (4.3), X and Y have the same 

type of distribution if and only if Go + ho =0, and the p.m.f of Y 

satisfies 

g(x + 1) - g(x) 

g(x) 
(5.16) 

where po, PI, P2, qo, qI and q2 are real constants. 

Proof 

Suppose that (4.3) holds and X and Y have the same 

distributional form. Then from (5.12), we have 

g(x + 1) - g(x) = x + 1 f(x + 1) -1 
g(x) x f(x) 

(5.17) 

which gives, 

(5.18) 

Since Y also must belong to the family (4.3), (5.18) must be of the 

form, 

or 

= C2 X3 + (c) +c2 +d2 )X2 + (co +c) +d))x+co +do 

(do x + d)x2 +d2x 3 ) 



I.)J 

+ (Co+ do)](qO+qIX+%X2) (5.19) 

Equating the coefficients of like powers of x in (5.18), we have six 

equations, 

qo (co + do) = 0 (5.20) 

podo = qo (co +cl+dt)+ ql (co + do) (5.21) 

POdl+ Pldo= qo (Cl +C2+d2)+ ql (co +cl+dl )+ q2(CO + do) (5.22) 

P2dO+ Pldl+ POd2= ql (Cl +C2+d2)+ q2 (Co +cl+dt}+qOC2 (5.23) 

P2d l+ P ld2= q2 (Cl +C2+d2)+qIC2 (5.24) 

P2d2 = q2C2. (5.25) 

From (5.20), we have the following cases, 

(1) qo:f:. 0 and Co + do=O, which leads to 

g(x + 1) - g(x) 

g(x) 

Czx2 +(c) +cz +dz)x+co +C} +d} 

-co +d}x+d2x2 
(5.26) 

It is easy to see that, p(x) and g(x) have same distributional form 

though with possibly different parameters. 

(ii) When qo=O and Co + do:f:.O, 

g(x + 1) - g(x) = P2 + POq2 + (P}q2 - P2ql )x 

g(x) q2 q2 +(qIX+q2 X2 ) 

which has not the same form as p(x). 

(iii) When qo=O and Co + do=O, we obtain an equation 

po do=O 

which leads to three different cases, 

(a) Po=O, do:f:.O 

(b) po:f:.O, do=O 

(c) Po=O, do=O. 

The discussions based on above three cases lead to the 

situations parallel to those we have already mentioned with 

co+do=O. 



Conversely when Co + do = 0, (4.3) and (5.18) provide that X 

and Y have the same type of distributions. This completes the proof. 

Corollary 5.4 

When C2=0, Theorem 5.6 reduces to the result of Sankaran 

and N air (1993) for the Ord family of distributions. 

To verify Theorem 5.6, consider the confluent hyper 

geometric distribution with p.m.f (4.6), then the LBD can be 

obtained as 

( ) - K fv + X (}x-1 - 1 2 gx- ,X-, , ..... . 
rI+b+x (x-I)! 

where K is the normalizing constant. This has t.he same form as 

parent distribution with different parameters. 

Next we prove the condition under which the length biased 

distribution of X belongs to the generalized Ord family when the 

original belongs to Ord family. 

Suppose that the distribution of X belongs to the Ord family 

(4.1) and that of Y belong to (4.3). Then we have, 

or 

g(x+1)-g(x) _ x+1 p(x+1)_1 

g(x) x p(x) 

Co + c)x + C 1 X 2 

do +d)x+d2x2 

ko -1/ + (k) - d) -l)x + (k2 -1)x2 

kox+k1X2 +k2X 3 

which provides, 

(kox+kIX2+k 2X3)( co+c IX+C2X2)= (do+d1x+d2x 2) 

(5.27) 

[ko -u +(k1 -dJ -l)x+ (k2 -1)x2]. (5.28) 



Equating the coefficients of like powers of x In (5.28), we obtain 

the following equations 

do[ko-u]=O 

coko = do(k1-u-I )+d1 (ko-u) 

c1ko+ cOk1= do(k2-1)+ d 1(k l -1I-1)+ d 2(ko-dK ) 

C2kO+ COk2+ c1k1= d 1(k2-1)+ d2(k 1-u-l) 

c 1k2+ C2kl= d2(k2-1) 

c2k2=0. 

Now from (5.29) and (5.34), we have the following cases. 

(i) do=O, k2=0, ko-l#O, C2:;t:O, then 

g(x+I)-g(x)= ko -u+(kt -dt -l)x+x2 
g(x) kox+ktx 2 

and 

p( x + I) - p( x) = - (x + u) 

p(x) ko +ktx 

clearly p(x) and g(x) have different forms. 

(ii) do=O, C2=0, k2:;t:0, ko-w:t:-O, then 

p(x+1)- p(x) = -(x+u) 

p(x) ko +ktx+k2X2 

and 

g(x+ 1)- g(x) = ko -11 +(kt -dt -1)x+k2X2 

g(x) (ko +k)x+k2X2)X 

here also, p(x) and g(x) have different forms. 

(iii) do:t:-O, C2=O, k 2:t:-O, ko-lI=O, then 

g(x+l)-g(x)= (k)-d)-I)+(k2-1)x 

g(x) ko +k)x+k2X2 

and 

p( x + I) - p( x) = _----'(_x _+ u---,)----,-
2 . 

p(x) ko +k)x+k2X 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 
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Thus p(x) and g(x) have same distributional forms but with different 

parameters. 

(iv) do~O, k2=0, C2~0, ko-u=O, then 

p(x+ 1)- p(x) -(x+u) 

p(x) k)x+u 

and 

g(x+l)-g(x)= k)-d)-l-x 

g(x) k)x+u 

Thus p(x) and g(x) have same distributional forms. 

(v) ko-u = 0, do = 0, k2 = ° and C2 = 0, we obtain d 2=0, then 

p(x+l)- p(x) _ -(x+u) 

p(x) k)x+u 

and 

g(x+l)-g(x) = k)-d)-l-x 

g(x) k)x+lI 

thus p(x) and g(x) have same distributional forms. 

When do = -Co in (4.3), we obtain a sub class of the 

generalized Ord family. This sub-class, to be denoted by D, 

contains many distributions of interest in reliability analysis. 

Now we prove a characterization of the class D based on 

conditional moments. 

Theorem 5.7 

The distribution of X belongs to the class D if and only if 

C2 m3(x) + [(cl+3d2) - C2X] m2(x) = [(cl+2d2) x+3d2 - Co - 2ddml(x) 

+ (dl + Co - d2 )(x+l) (5.35) 

where mi(x) = E[XiIX>x], i=I,2,3. 



Proof 

Since do = -co,(4.25) leads to 

(co - d l x- d 2 x 2) h(x+ 1) = C2 m2(x) + (cl+2d2)ml (x) + Co +dl - d 2. 

(5.36) 

On similar lines, for the random variable Y, (5.26) gives, 

(co-dl x-d2 x 2)k(x+l) = C2 V2(x) +(Cl+C2+3d2)V1(X) + Co +cI+2d l - d 2 

(5.37) 

where Vi(x) = E[yiIY>x], i =1,2. and k(x) is the failure rate of Y. 

From (5.14), we have 

and 

k(x+l) = (x+l)h(x+l) 
m\(x) 

Vex) = mi+\(x) i=1 2. 
I ( )' , m\ x 

(5.38) 

(5.39) 

Dividing (5.37) by (5.36) and substituting the relationships (5.38) 

and (5.39) in the resulting equations, we obtain (5.35). 

Conversely suppose that (5.35) holds. Then we have 
00 00 W 

C2 ~)3 P(t)+[CI +3d2-C2X] Lt 2 p(t)=[(CI+2c2)X+3d2-Co-2dd Lt pet) 
x+1 x+1 x+1 

+( co+dl-d2)(x+ 1 )R(x+ 1). (5.40) 

Changing x to (x-I) in (5.40) and subtracting (5.40) from the 

resulting equation, we get 
00 00 

d 2 x 2 p(x) + C2 Lt2 p(t)= (2d2-dl ) xp(x) - (Cl +2d2) Lt p(t) 
x x+1 

Now changing the variable x to (x+ 1) in (5.41) and subtracting 

(5.41) from the resulting expression, we obtain 



p(x+ 1) [do + d) x + d2 x2] = p(x) [(c) + dJ) X +(C2+ d2)X2] 

which is of the form (4.3) with do = -co. 

This completes the proof. 

Corollary 5.5 

When C2=O, Theorem 5.7 reduces to the result of Sankaran 

and Nair (1993). 

Corollary 5.6 

The distribution of X is confluent hyper geometric with p.m.f 

(4.6) holds if and only if 

-mJ(x) + (x+B-b+l) m2(x) = [(B-b)x-(v B+3b+2)]ml(x) + vB (x+l). 

Corollary 5.7 

The relationship 

-mJ(x) +[x+(n-3)a+n-l)m2(x) = {[n(l-a)-2a-l]x+4-5na -3a-n}ml(x) 
+(3na+n) (x+ 1) 

holds if and only if X has Haight distribution with p.m.f (4.9). 
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