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PREFACE

The work presented in this thesis has been carried out by the au­

thor at the Department of Physics, Cochin University of Science and Technology

during the period 1995 to 2002.

Fluxon dynamics in coupled Josephson junctions have recently become the

subject of intensive theoretical and experimental investigations. Coupled junc­

tions attract much attention because they are promising objects for application

in cryoelectronics and they exhibit a variety of interesting physical phenomena.

Systems of many closely coupled long Josephson junctions (LJJ) are being consid­

ered for many applications of superconducting electronics. They are widely used

in the voltage standard applications, in microwave generators and in Josephson

computing elements. The discovery of intrinsic Josephson effects in some high­

temperature superconductors such as Bi2Sr2CaCu20x convincingly showed that

these materials are essentially natural superlattice of Josephson junction formed

on the atomic scale. The layered high-T, superconductors can be described as

intrinsic stacks of Josephson junctions. Therefore study of fluxon dynamics in

artificial stacks can help to understand the phenomena that take place in high-T,

superconductors. Another importance of the study of coupled junctions is in the

fact that, it is often possible to multiply a physical effect achieved in one junction

by the number of junctions in a stack. This can be exploited for fabrication of

many solid-state devices. In addition, multilayered solid-state systems show some

peculiar phenomena which result from the interaction bet,veen individual layers.

Long Josephson junctions possess an extremely rich spectrum of linear and

nonlinear electromagnetic excitations. Josephson junctions are unique nonlinear

systems which offer the possibility of studying quantized magnetic flux (fluxon)

moving along the dielectric barrier. The stable and undistorted propagation of

fluxons in the junction manifests the interplay between dissipation and nonlin­

earity in the superconducting tunnel junction.



The thesis deals with a detailed theoretical analysis of fluxon dynamics in

single and in coupled Josephson junctions of different geometries under various

internal and external conditions. Two new geometries viz. semiannular and quar­

ter annular geometries are proposed and fluxon dynamics in these junctions are

also studied and they find important applications in making some new supercon­

ducting devices.

Fluxon dynamics in Josephson junctions has been an active subject ever since

the epoch-making discovery of Josephson effects in superconductor-insulator­

superconductor junctions by Josephson in 1962. Intensive research in this field

contributed various types of superconducting quantum devices and paved way

to a new branch of science known as superconducting quantum electronics. The

surprising discoveries of superconductivity at temperatures above lOOK in some

layered cuprate based ceramics and the parallel advancements in low temperature

engineering and lithography have instigated extensive research to make Joseph­

son devices a practical reality. Rapid developments in this field are viewed with

greater curiosity as these small sized, ultrafast, high performance devices have

the potential to replace the existing semiconductor devices.

Josephson junctions are endowed with remarkable properties such as Cooper­

pair tunneling, de and ae Josephson effects, flux quantization, superconducting

quantum interferences etc., which are the basic principles behind the widely used

high sensitive devices like the SQUID magnetometers, superconductor-insulator­

superconductor mixers, constant voltage standards and the hot-electron bolome­

ter etc. The realization that the unattainable goals of the semiconductor dig­

ital devices can be met with the superconducting components make Josephson

junction devices a competitive contender in fabricating high performance digi­

tal devices. The recent innovative developments in Rapid Single Flux Quantum

(RSFQ) circuits are expected to give a ne\v dimension to the current digital de­

vice technology, Low capacitance Josephson junctions offer a promising way to
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realize quantum bits (both voltage based and flux based qubits have been pro­

posed) for quantum information processing, which is expected to give solutions

to the present day computational crisis.

Fluxon dynamics in the junction is described by the well-known one-dimensional

sG nonlinear partial differential equation. ..~ sG equation possesses a series of re­

markable features including solitary wave solutions with particle-like properties.

l\ soliton is a localized wave which has the fantastic ability to propagate undis­

torted over long distances and to remain unaffected after collision with each other.

Quantized flux propagation in long Josephson junction is associated with a volt­

age pulse, which can be detected across the junction. In this solid state system,

a de bias current applied to the junction exerts a Lorentz force on the fluxons

and drives them through the junction. The velocity of a fluxon is proportional

to the voltage and average velocity determines the current-voltage characteristics

of the junction. Fluxon dynamics in LJJs is employed as a mechanism in the

construction of flux-flow oscillators, logic gates, voltage rectifiers etc.

To overcome the limitations of single junctions, vertically stacked junctions

are used. Apart from the basic knowledge of the physical phenomena-taking place

in different layers of the junctions, coupled junctions offer various configurations

of the fluxons suitable for specific applications. Intensive research is done in

stacked Josephson junctions to find applications of these junctions in supercon­

ducting electronic devices. All these developments demand further investigations

to explore all possible mechanisms and to exploit them for implementing com­

mercially viable high performance devices. Innovative mathematical models are

required to take into account all physical properties and geometrical configura­

tions of the junctions.

The thesis deals with a detailed theoretical analysis of fluxon dynamics in

single and in coupled Josephson junctions of different geometries under various

internal and external conditions. The main objectives of the present work are to
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investigate the properties of narrow LJJs and to discuss the intriguing physics.

The main results are subdivided into the following chapters.

In Chapter I, a general introduction underlying the basic properties of Joseph­

son junction are presented giving emphasis to nonlinear properties of the junc­

tion. Derivations of the basic equations of fluxon dynamics in single and coupled

junctions are also presented. Basic theoretical and technical aspects of studying

fluxon dynamics in various geometries are reviewed.

Fluxon dynamics in the presence of various types of perturbing agents have

been an interesting topic and are studied to make some practical applications out

of it. When fluxons are accelerated through a spatially periodic potential various

internal fluxon configurations arises resulting in fluxon creation or annihilation

process. In Chapter 11, a detailed study is undertaken to understand the fluxon

creation and annihilation phenomena. Under some special conditions, fluxons of

the same polarity can bunch together in spite of the repulsive interaction between

them. Fluxon bunching can greatly increase the stability of fluxon propagation

in the junction and is highly useful in high voltage applications. Extensive nu­

merical analysis is done to determine the parameter regimes of the bunching

process. Basic ideas of numerical simulation procedure is presented. These stud­

ies have important practical applications in the construction of logic gates and

in implementing certain digital devices.

Fluxon dynamics becomes complicated when junctions of different physical

properties are vertically stacked. Motion of fluxons in one junction influences

the motion of fluxons in the other junctions. In Chapter Ill, vertically stacked,

inductively coupled junctions are studied to construct fluxon based logic gates.

Josephson junctions of different geometries with various internal conditions are

studied in the past to make small sized, less dissipative ultrafast logic gates. Ex­

tensive numerical simulations are carried out on two and three inductively cou­

pled, vertically stacked Josephson junctions for realizing ultrafast digital switches
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and logic gates. Using fluxons as information bits, the interactive dynamics is

pursued and identified the possible configurations of structural and dissipative

parameters in implementing the elementary logic gates AND, OR and XOR.

Long Josephson junctions of various geometries with different boundary con­

ditions are investigated in the past to realize specialized applications from them.

In particular long linear overlap junctions and annular junctions are studied in

detail. In linear junctions fluxons make successive reflections at the edges and

give periodic pulse forms at the edges of the junction. Annular junctions make

reflectionless motion of fluxons in the junction. In Chapter IV, a new geometry

- a semiannular geometry - is proposed for making fluxon based diodes. Analyt­

ical and numerical studies on serniannular junction show that an external static

magnetic field applied parallel to the dielectric barrier interacts through the in­

terior of the junction and produces a tilted potential which pushes out trapped

fluxons from the interior of the junction and flux-free state exists in the junction

in the absence of an external bias current. Due to the semiannular shape, the

effective field at the ends of the junction has opposite polarities which supports

penetration of opposite polarity fluxons into the junction in the presence of a

forward biased de current. When the direction of the de current is reversed,

flux penetration is not possible and flux-free state exists in the junction. Thus,

this geometry can be used in implementing a fluxon based diode. The rectifica­

tion properties of the junction are demonstrated using square waves, triangular

waves, and sinusoidal ae signals. In the forward biased state, fluxons and anti­

fluxons enter the junction and move in opposite directions. Using this property,

a novel bidirectional flux-flow oscillator with a distinct operational mechanism is

demonstrated. When an rf magnetic field is applied, flux linked with the ends of

the junction reverse polarity in alternate half cycles. Under a constant de bias,

flux penetration is possible only in alternate half cycles. Using this property,

rectification of rf magnetic fields is demonstrated.
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A new geometry with a better performance is proposed for Josephson junc­

tions to construct fluxon based diodes in Chapter V. It is found that a quarter

annular Josephson junction terminated with a load resistor at one end behaves

as a diode under a homogeneous static magnetic field applied parallel to the di­

electric barrier. The external field creates asymmetric boundary conditions and

because of that fluxon penetration is possible only from one end of the junction

under a properly biased de current. If the direction of the current is reversed,

fluxon penetration and propagation is not possible and flux-free state exists in the

junction. This unique phenomenon is specific to this geometry and is extremely

useful in making quantum diodes for rectification of ae signals. An rf magnetic

field applied to the junction has opposite polarities at one end in alternate half

cycles. Under a constant de bias, flux penetration is possible only in alternate half

cycles. Using this property rectification of rf magnetic fields are demonstrated in

junctions of different geometrical and dissipative parameters.

In Chapter VI, quarter annular geometry for making a Josephson flux-flow os­

cillator is studied and theoretically demonstrated that quarter annular geometry

provides several advantages for making Josephson flux-flow oscillator over rectan­

gular geometry. An external static magnetic field applied parallel to the dielectric

barrier of a quarter annular junction has asymmetric boundary conditions that

make a preferential direction for flux-flow even in the absence of a de bias. When

the applied field is increased above a threshold level, static field distribution be­

comes unstable and gives rise to a train of fluxons moving unidirectionally from

one end to the other end of the junction. The speed and density of the flux-flow

can be controlled by controlling the field or using a small de bias transverse to the

junction. The output power of the oscillator is found to be directly proportional

to the applied field. Low power consumption, increased output power, higher

tunability and decreased line-width are some of the advantages of the proposed

oscillator. This proposed device would be useful in millimeter and sub-millimeter
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wave experiments. To get increased output power, two vertically stacked induc­

tively coupled junctions are studied. Analysis shows that in-phase flux-flow mode

in coupled junctions increases the output power and stability of the oscillator.

Flux quantization and superconducting quantum interference have been em­

ployed to make ultra-sensitive magnetic field sensors. SQUID magnetometers

are capable of detecting even the feeble magnetic fields of the biological cells.

Various superconducting materials with different geometrical configurations are

proposed to detect magnetic fields of different intensity levels. In Chapter \tII,

using the quarter annular geometry, a new fluxon based sensor is proposed for an

extremely sensitive measurement of the magnetic field, which is higher than the

first critical field of the Josephson junction. An exponentially tapered dielectric

barrier is introduced in the junction to facilitate unidirectional flow of fluxons.

The tapering provides a geometrical force for the fluxons, It is found that above

a threshold value of the applied field, static flux distribution in the junction be­

comes unstable and gives rise to a train of fluxons moving in the junction. The

asymmetric boundary conditions associated with an external field make penetra­

tion of fluxons from one end of the junction even in the absence of a de bias. The

proposed sensor is found to be effective in detecting static magnetic fields and

time varying rf fields.

Conclusions and results presented in the thesis are summarized in Chapter

VIII.
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Chapter 1

Fundamentals of Josephson
junctions

Josephson junction based devices making use of many closely coupled junctions

are being considered for making reliable high-Tc superconducting electronic de­

vices. Coupled Josephson junctions are used in the fabrication of Josephson

voltage standards, in the microwave generators based on the coherent action of

many junctions, and in Josephson computer elements. Large networks of Joseph­

son junctions also received much attention as model systems for phase transition

studies. The layered high-Tc superconducting materials show properties of many

layered closely coupled vertically stacked junctions. Therefore studies of the dy­

namical properties of coupled Josephson junctions can help to ·understand the

properties of the layered superconducting materials.

In this chapter the Josephson effect is introduced and the dynamics of the

charges and the electromagnetic fields in short and long Josephson junctions are

related to the phase difference between the order parameter describing the Cooper

pairs in each superconducting electrodes. The fundamental nonlinear properties

of Josephson junctions are briefly reviewed giving emphasis to the basic equations

governing fluxon dynamics in single long junctions and in coupled junctions. The

basic equations governing fluxon dynamics in two-coupled junctions are derived.

Various types of electromagnetic excitations in Josephson junctions are reviewed
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and various regimes of fluxon dynamics is presented.

1.1 The Josephson junction

Josephson junctions are systems in which two superconductors are weakly coupled

to one another as shown in Fig.I.I [1, 2]. In each of the two superconductors the

conduction electrons are interacting with phonons of the crystal lattice. At Iow

temperatures this effect gives rise to an effective interaction between the electrons

which then forms pairs of opposite spin and angular momentum. Such pairs are

called Cooper pairs and are the carriers of the charge in the superconductor. Due

to the anti-parallel spin and the angular momenta of the electrons in each pair, the

total angular momentum vanishes and the Cooper pairs have Boson character...At

zero temperature, all Cooper pairs are Bose-condensed into the electronic ground

state of the superconductor. All excited quasiparticles states are separated by

an energy gap ~, which is proportional to the effective binding energy of the

Cooper pair, from the superconducting ground state. The superconducting state

can be described by an effective macroscopic wave function with an amplitude

proportional to the density of Cooper pairs Pi and a phase (}i

(1.1)

where \l1 is the superconducting order parameter.

The two superconductors are weakly coupled with one another due to small

overlap of the macroscopic wave functions. The overlapping of the wave functions

is shown in Fig.l.lb. Different types of weak links are discussed in literature[3,

4, 5, 6, 7]. Coupling of two superconductors via a thin insulating barrier is a

common type junction and such a system is called a superconductor-insulator­

superconductor (SIS) tunnel junction.

The typical tunneling current-voltage characteristics of an SIS Josephson tun­

nel junction is depicted in Fig.l.2a. Four different tunneling regimes as shown in
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Fig.1.2a-e can be observed in this characteristics. At zero voltage, Cooper pairs

tunnel through the barrier (S ~ S), giving rise to a non-dissipative current. At

voltages 0 < V < 2~/e, quasiparticles tunnel through the barrier giving rise to

the quasiparticle subgap current (Q~ Q). The voltage ~ = 2~/e is called the

gap voltage. At voltages V ~ 2b,./e, Cooper pairs are broken up and quasiparti­

cles tunnel (8 ~ Q) through the barrier. All the three processes follow the linear

branch of normal electron tunneling (n ~ n) at voltages V > ~.

1.2 ~. The Josephson effect

The tunneling of Cooper pairs through the insulating barrier of an SIS type

junction was predicted by Josephson in 1962[1] and experimentally observed

for the first time by Anderson and Rowell in 1963[7]. Solving the quantum

mechanical problem of the tunneling of Cooper pairs across a potential barrier

in a point like junction, Josephson found that the local superconducting tunnel

current density at zero voltage is given by

j = ja sin l/J (1.2)

where l/J = (Jl - (J2 is the difference in phase between the order parameters of the

two superconducting junctions. This equation describes the de Josephson effect,

i.e., a nonlinear current flow across the junction in the absence of an applied

voltage across the junction. The maximum supercurrent current density ja of the

junction, calculated from macroscopic theory by Ambegaoker and Baratoff [8] is

given by

. _ 1r 2b,.(T) h( Ll(T) ) ( 3)
Jo - 4 p e tan 2k

bT
l.

where Ll(T) is the temperature dependent energy gap of the superconductor and

p is the normal tunnel resistance of the junction per unit area. The electron

charge is denoted by e and kb is the Boltzmann constant. Applying a constant

de voltage across the junction, the phase difference l/J evolves in time according
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to the ae Josephson equation

v = ~o de/> (1.4)
21r dt

where q,o = h/2e = 2.07 x 10-15Wb is the flux quantum. At the constant

voltage V, the supercurrent through the junction oscillates with the characteristic

frequency
d</J 1 1
-d-V =~ = 483.6 MHz/JlV (1.5)

t 21r ':1.'0

Thus Josephson junctions acts as a frequency to voltage standard.

1.3 Shapiro steps

Shapiro steps are constant voltage steps on the current-voltage characteristics of

the junction when the junction is irradiated with an electromagnetic radiation.

It was first observed by Shapiro in 1963[9]. In a voltage biased junction, due to

the influence of the external field of frequency /1, the effective voltage becomes

V = Vo+ VI cos(21r fIt)

Therefore the phase changes as ip = J ~:Vdt. Substituting in Eq. (1.2), we get

the expression for the supercurrent as

Is = Icsin[epo + ~: vot+ ~:~l sin(271"J1t )]

simplifying the above expression, we see that, a time-independent (de) cur­

rent distribution occurs at ~:Vo = 271"niI at the de voltage VD = nJl ~o, n =

0, ±1, ±2, .... Typical applications of this effect need large number of junctions in

series to get 1V.

1.4 Magnetic field effects

When a magnetic field is applied to a short Josephson junction, the corresponding

phase difference across the junction can be shown to be[3]

(1.6)
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where A is the electromagnetic vector potential. Considering a junction as shown

in Fig.l.3a, the difference in phase 4J between the two coordinates P and Q chosen

at different points along the junction is given by

(1.7)

If an external magnetic field fI is applied in the plane of the junction, the flux

enclosed in the contour is given by

<I> =1J1.ofI dB =f Adl (1.8)

= {Q2 A dl+ {PI A dl+ {P2 A dl+ (Q2 A dl (1.9)
lQl lQl lA l~

The second and fourth terms in above equation vanish if the closed path is chosen

considerably deeper in the superconductor than the London penetration depth

AJ' which is the characteristic screening length of the magnetic field in a super­

conductor. Thus, equating Eqs. (1.9) and (1.7) and considering the flux enclosed

in the differential small section dx of the junction, we get

</J(Q) - </J(P) _ 211" i\ H
dx - <1>0' J1.0 (1.10)

where J..Lo is the permeability of free space, A = t j +2AL is the magnetic thickness

of the junction and t j is the thickness of the tunnel barrier. J.\. /-lo H is the magnetic

flux per unit length penetrating into a junction taking into account the screening

of the magnetic field due to the superconductors (Fig.1.3b ). Thus the gradient

of 4J can be expressed as
21l" -

V4J = -A J..Lo H x 2
~o

where z is the unit vector normal to the plane.

(1.11)

1.5 Static phase distribution in a small junc­
tion

The total supercurrent carried by a Josephson junction depends on the applied

external magnetic field H. According to Eq. (1.11), the field induces a constant
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gradient of the phase difference across the junction. Thus, the local Josephson

current oscillates sinusoidally with the coordinate perpendicular to the field. The

total supercurrent is given by[3, 6]

(1.12)

(1.13)

over the junction area .4, where we assume a spatially homogeneous critical­

current density i: If a rectangular junction is considered the integral can be

solved explicitly as

I (H) = I (0)sin(7l"<P /<po)
C C 7l"<P/ <Po

where <P = fLo A H w is the total flux threading the junction length. This ex-

pression is called the critical-current diffraction pattern of a rectangular junction

and is shown in Fig.1.3c.

1.6 Dynamics of a small junction

If the length of the junction is smaller than AJ, the electrodynamics of the

junction can be described by neglecting the variation of the phase difference across

the junction area. In this case, the junction looks like as in Fig.l.4a and can be

described by the equivalent electrical circuit shown in Fig.l.4b. This model is

called the resistively and capacitively shunted junction (RCSJ) model[3, 6]. Using

Kirchoff's laws, the total current through the junction is given by

(1.14)

Introducing the superconducting phase difference across the barrier, the above

equation forms

I - I · 4> ~ d4> <PoC cP4>
- c SIll + 27rR dt + 27r dt2

(1.15)

This equation is equivalent to a driven and damped pendulum or equivalently

the viscous motion of a particle in a tilted potential (washboard potential).
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1.7 The long Josephson junction(LJJ)

LJJs possess an extremely rich spectrum of linear and nonlinear electromagnetic

excitations[10]. In large area Josephson junction, the phase difference 4> between

the top and bottom electrodes may vary in space. The spatial extension of the

junction gives rise to the existence of solitons (fluxons) [4,11], breathers and other

nonlinear and linear excitations. In such junctions, the characteristic length scale

of the spatial variation of 4> is called the Josephson length AJ. If the length of the

junction is much larger then the Josephson length (l » AJ), then the junction

is called a long Josephson junction. Flux dynamics in LJJ can be described

by the well-known sine-Gordon equation and Josephson junction forms one of

the outstanding physical systems in which nonlinear properties can be studied

experimentally.

1.8 The sine-Gordon equation

The sine-Gordon equation describing flux dynamics in a LJJ can be derived from

the equivalent electrical circuit describing the junction. A LJJ and its equivalent

discrete model in an external homogeneous magnetic field H applied parallel to

the dielectric barrier is given in Fig.1.5. In this model the junction is described

by a parallel connection of small RCSJ like Josephson junctions interconnected

by a parallel connection of an inductance and a resistance[12, 13]. An external

bias current Ik is injected in each node k and the external flux <Pext threading each

cell is taken into account. In this model, the wave equation is derived considering

the flux quantization
21T L

if>k+1 - if>k = cI>o (cI>ext - Llk ) (1.16)

where the flux threading the loop k due to an externally applied field can be

expressed as d<pext = J..lo A H ~x. The Kirchoff law at the node k + 1 is given by

I Rs IL I - I L IRa I RCSJ
k + k + k+l - k+l + k+l + k+l

7
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(1.18)

Thus considering a small section ~x of the long junction \ve can write down the

continuous limit of the above equations as

<PHI - <Pk = 8<p = 211" ( t\.H _ L. IL)
Ax Bx <Po J-Lo-

8IL aI~
. ·RGSJ ( 9)-=J-J -- 1.1

8x 8x

with L* = L/D.x, j = I/.6.x and jRGSJ = I RGS J / ~x. Differentiating Eq. (1.18)

with respect to space we find

(1.20)

substituting Eq. (1.19) with IRs = -1/Ps aV/8x and the RCSJ current density

(1.15) into Eq. (1.20) and considering a homogeneous external magnetic field

(aH/ox = 0), we get the above equation as

<Po {)2c/J ... A. V C* 8~/ 1 82V---- = - J + JeSIn \p + - + - - ---
21rL* Ox2 P at p, 8x2 (1.21)

where C~ = C/ ~x, p = R~x and Ps = R, ~x. Expressing the voltages us­

ing the equation V = (tPo/21r) 8c/J/at and using the ac Josephson relation, we

get the perturbed one-dimensional wave equation for the superconducting phase

difference c/J(x, t) called the perturbed sine-Gordon equation

(1.22)

where L* is the specific inductance of the junction, C* is the specific capacitance

of the junction, p is the quasiparticle resistance per unit length and Ps is the

surface resistance of the superconducting electrodes per unit length. The electric

and magnetic fields are related to the phase difference 4J in the following way:

E = V =.!. <Po 8<p
t: t· 21r at3 3

H = ~ <Po 8<p
L* 21r 8x

8 ·

(1.23)

(1.24)



The specific inductance and capacitance of the junction are given by L * = /-la et
and C* = e~~j , where Cj is the relative dielectric constant of the junction barrier,

]

tj is the thickness and et is the magnetic thickness. In the limit of the thick

electrodes (d > AL), et is given by et = 2AL + t j . Dividing Eq. (1.22) by je and

introducing the Josephson length AJ and the plasma frequency wp

~
AJ = V2ii71c (1.25)

(1.26)

(1.27)

(1.28)

Eq. (1.22) can be expressed as

2 1 . j 1 A}L*
AJ<pxx - 2<Ptt - SIn 4> = --:- + 2 * <Pt - --4>xxt

~ k ~Cp ~

From the above equation, the phase velocity of linear waves in the system is given

by

{!5.Co = WpAJ = C -L,
cod

J

where Co is termed as the Swihart velocity[14] and c is the velocity of light in

vacuum. In long junctions, the Swihart velocity is typically only a few percent of c

because the magnetic field penetrates into the superconductor on a length scale et ,

while the electric field is localized only in the junction barrier of thickness tj <<

et. Normalizing the time with plasma frequency and space with the Josephson

penetration depth, i = wpt and x= x / AJ' the perturbed equation becomes

4>rr - 4>xx + sin 4> = -Q<Pi + (3<Pxxi + I (1.29)

The perturbation terms in the right hand side of the above equation are defined

as

1
Q=

J
1 = -:­

Je

(3=pC*wp ,

9

21rieL*2 _ wpL*

<PoC* tls Ps

(1.30)

(1.31)



where the first term is the normalized bias current, the second term is the damp­

ing term due to quasiparticle resistance and the third term corresponds to the

damping due to the surface impedance of the superconducting electrodes. The

terms a:4>l and {3cPxxt represent normal electron current flow across and along the

junction respectively (shunt and longitudinal losses).

1.8.1 Boundary conditions

The boundary conditions of a long overlap junction of normalized length I in

the absence of an external magnetic field is given by <Px(O, t) = 0 = 4>x(l, f).

In this case, any trapped fluxons in the junction executes oscillatory motion in

the junction and they cannot escape from the junction due to the impedance

mismatch. When an external magnetic field is applied parallel to the dielec­

tric barrier of the junction, then the corresponding boundary conditions become

<Px(O, l) = fI = <Px(l, l). Where fI = ~JLO A H }..J is the normalized magnetic

field. In this case, fluxons are nucleated at one end of the junction and they

are driven to the opposite end by the bias current. When the fluxons reach the

opposite end of the junction they are pushed out from the junction.

1.9 Lagrangian and Hamiltonian functions

To calculate the energy of the system it is useful to introduce the Lagrangian

and Hamiltonian of the system. To determine the Lagrangian, the energies of the

electromagnetic fields and the Josephson coupling are to be considered. Combin­

ing the kinetic energy Tkin associated with the energy density of the electric field

and the potential energy Upot associated with the energy density of the magnetic

field and the Josephson coupling, we obtain the Lagrangian L = Tk in - Upot by

integrating over the junction volume V

(1.32)
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Expressing the electromagnetic field by the phase difference 4> according to Eq.

(1.23) and (1.24) and rewriting their coefficients in terms of AJ and wp we find

-~jc (1 - cos 4»

dydx

(1.33)

upon rearranging the coefficients and performing the integration over the width

of the junction wand perpendicular to the junction plane and considering the

different penetration depths of the electric and magnetic fields into the junction

barrier, we find the Lagrangian

~o. 1i [1 1 2 12 2 ( ]L = -JeW --4> - -AJf/J - 1 - cos 4» dx21r 0 2 w2 t 2 x
p

The normalized Lagrangian is

L 1i [1 2 12 ( ] -L = - = -4>- - -4J- - 1 - cos 4» dx=0 0 2 t 2 x

(1.34)

(1.35)

with the characteristic energy scale of the junction =0 = ~jeWAJ. Here l = L/AJ

is the normalized junction length. Making use of the Lagrangian formalism, the

sine-Gordon equation is obtained by calculating the equation of motion

d 8L d 8L 8L
--+-----
dt 84>i dx 84Jx 8ljJ

(1.36)

The Hamiltonian, determining the total energy of a LJJ is given by H = HsG +
HP. Where HsG is Hamiltonian of the unperturbed sG equation given by[15]

(1.37)

It contain the magnetic energy (ex c/>i) , the electric energy (ex c/>n and the Joseph­

son coupling energy (ex 1 - cos 4J) . HP is the contribution to the total energy due

to the perturbation terms.

11



1.10 Excitations of the sine-Gordon system

(1.38)

In a sG system, a large variety of linear and in particular nonlinear excitations like

solitons, anti-solitons, breathers and plasmons etc. do exist. The unperturbed

sG equation is known to posses the Painleve property[16] and is completely in­

tegrable. However perturbation terms make it nonintegrable. There are several

different approach to the analytical description of soliton dynamics in noninte­

grable systems, The most powerful perturbative technique is based on the inverse

scattering transform (1ST). 1ST was introduced by Gardner et al.[17]. Lax[18],

Zakharov and Shabat[19] and Ablowvitz et al.. [20~ 21~ 22] developed it further.

The method is well explained and details of the method can be found in a num­

ber of books[23, 24, 25]. Equations exactly integrable by the 1ST posses many

remarkable properties such as Backlund transforms[26], the Painleve property,

the possibility of representation in the Hirota bilinear form[27] and so on.

1.10.1 Soliton solutions

Neglecting all terms in the right hand side of the perturbed equation, Eq. (1.29),

the unperturbed sG equation is given by

This equation represents a dispersive nonlinear wave equation which can be solved

exactly giving the soliton sOlution[28, 29]

( -) [( x- ut - XO)]</> ii, t = 4 arctan exp a ~!l _ u2

Depending on the polarity a, c/J describes a kink (for a = +1) or an antikink (for

a = -1) in the phase difference 4J moving at a normalized velocity 0 ~ u ~ 1.

The kink corresponds to a jump of 4J from 0 to 27r (or 27r to 0 for an antikink).

The supercurrent distribution (j QC sin 4J) associated with this excitation changes

sign around the center of the kink. Solitary waves exist in systems in which

12



dispersion, which leads to the spreading of the energy of the wave form in space,

and the nonlinear effects compensate each other. As a result, a stable solitary

wave may' propagate in a nonlinear medium while its energy remains localized in

space. The kink in a sine-Gordon system is a topological soliton and there is no

dynamical restriction on its existence.

1.10.2 Fluxons and Antiftuxons

In the superconducting state only quantized flux can enter the junction. J,~ quan­

tum of flux with the magnetic field value <Po = h/2e = 2.07 x IO- 15Wb has the

properties of a particle and behaves as a soliton in the junction. The solution of

the unperturbed sG equation (with (1 = +1 in Eq. 1.38) represents a fluxon if the

total phase difference (<p) along the junction varies from 0 to 21r as x varies from

-00 to +00. Fig.l.6a shows this phase variation and represents a kink soliton or
,

a fluxon. Thus a quantum of flux which produces a phase variation from 0 to

27r along the junction is called a fluxon.

If the flux quantum makes a phase variation from 21r to 0 along the junction

as x varies from -00 to +00, then it is called an antifluxon (antikink). The

phase variation (Eq. 1.38 with (1 = -1) corresponding to an antikink is shown in

Fig.I.6b. Thus fluxons and antifluxons have the same magnetic field value and

differs in polarity[30].

The supercurrent associated with the fluxon ( j ex sin <p) flows in closed form

across the junction. The supercurrent flows horizontally within a penetration

depth A inside the superconductor[4]. These current loops encircle the flux and

the resulting configuration is called a Josephson vortex. Since the supercurrent

density is zero at the center, there is no core for the Josephson vortex[31]. The

supercurrent direction associated with the antifluxon is in opposite direction to

that of a fluxon as shown in Fig.I.6c. Fluxons of the same polarity repels each

other while fluxons of opposite polarity attracts each other.
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1.10.3 Breather solution

Under certain conditions, a kink and an antikink may form a bound pair called

breather[32]. Thus a breather corresponds to a bound state of a soliton and

an antisoliton which oscillates around the center of mass. The solution can be

written in the form

_ [sin(lcos fJ) ]
4>br(X, t) = 4 arctan tan 0 h( - . 0)cos x SIn

Breathers are unstable with respect to perturbations and decay after some tran­

sient time.

1.10.4 Plasmons

In a LJJ, linear small amplitude excitations of 'P do exist. These can be modelled

by the linearized sG equation

CPu - 'Pxx + 'P = 0

which has linear wave solution of the form

'P(x, l) = 'Po exp(ikx - iwl)

with a spectrum w(k) = VI + k2[32], where k is the wave number of the mode

and w is the frequency. There is a gap of ~w = 1 in the excitation spectrum.

These linear excitations of the LJJ are called plasmons.

1.11 Perturbative analysis

In LJJ, fluxons can be driven by external forces, i.e., using a current bias applied

to the junction. The bias current gives rise to a Lorentz-Magnus force acting on

the charge carriers of the vortex, resulting in the propagation of the fluxon along

the junction. Due to the presence of dissipation, driving forces and damping

forces are balanced for a certain fluxon velocity, leading to a steady motion of

14



(1.39)

the fluxon. Mcl.aughlin and Scott [15] showed that the dynamics of the fluxon

can be described by the lowest order perturbation theory. In this approxima­

tion, the effect of the perturbations is assumed to influence only the dynamics of

the center of mass coordinate of the fluxon but not its shape. Substituting the

soliton solution, Eq. (1.38), into the unperturbed sine-Gordon Hamiltonian, the

normalized energy of the fluxon moving with the velocity u can be obtained as

H sG = 8
Vl- u2

thus we can see that the rest energy of the soliton is 8, which is equal to the

normalized rest mass of the fluxon. The change of the fluxon energy with time

is given by

.!!..HSG = 8u du ( )
dt (1 _ U2)3/2 dt 1.40

The perturbational parameters modulate the velocity of the solitons and may

dissipate energy. The rate of dissipation is calculated from the expression

d p 100 (2 2 )dt H = - -00 a<Pt + f3<Pxt + "(<Pt dx (1.41)

where HP is the Hamiltonian of the perturbation terms. The first and second

terms represents the dissipation due to quasiparticle tunneling and due to the

surface impedance while the third term represents the power supplied to the

junction from the bias current. Substituting the soliton solution, Eq. (1.38), to

the above equation and integrating, we get

d u2 8{3 u2

-HP = -8a - - 3 + 21r,u (1.42)
dt VI - u2 3 (1 - u2 )2

At equilibrium condition at which the energy supplied to the system is equal to

the energy dissipated, we get

du 8{3u 3

8- + 8au(1 - u2
) + - + 21r1'(1 - u2

) 2" = 0
dt 3

(1.43)

neglecting the surface damping term the equilibrium velocity can be obtained as

[
2] -1/2

u=± 1+(~~)
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In Fig.l.7a typical normalized current-voltage characteristics is plotted. On in­

creasing the bias current, fiuxon velocity approaches the maximum velocity. At

the maximum velocity relativistic effects are observed. The unperturbed sG equa­

tion is invariant with respect to Lorentz transformations. Thus solitons undergo

Lorentz contraction. Therefore the field profile changes with the velocity. Fig.l.Th

shows the variation of the field profile of a fluxon.

1.12 Coupled Josephson junctions

There has recently been considerable interests in coupled LJJ due to a variety

of applications[33, 34]. Using low-T, superconductors stacks can be formed by

layers of (Nb/AlOx/)xNb. For anisotropic layered high-T, superconductors, such

as Bi2Sr2CaCu20x and Tl2Ba2Ca2Cu30x, it has been demonstrated that the

crystal itself shows the features of stacked LJJs. An important case occurs when

the thickness of the superconducting layer is comparable to or less than the

magnetic penetration depth of the superconducting layer. In such cases strong

inductive coupling can be expected among the LJJs making the stack. In the case

of high-T, intrinsic Josephson junction stacks, inductive coupling is extremely

strong. In multilayers, due to the close spacing of the superconductor-insulator

lattice, the superconducting screening currents range across many layers and

induce a coupling between individual junctions. The coupling of the junction can

be adjusted by varying the thickness of the superconducting films. An external

field parallel to the layers penetrates stacked junction in the form of fluxons.

In multilayers, the magnetic field associated with the fluxons spread over many

layers. Josephson junction multilayers are good candidates for high power flux­

flow oscillators at THz frequencies.

A coupled junction consists of multiple thin films of the superconductor (eg.

Nb) which are weakly linked in the vertical direction through insulating (eg.

Al/.4l0x ) layers. Fig.1.B shows a stack of overlap Josephson junctions. To
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bias the junction stack a vertical current is applied across the junction. The

width of the system is made much smaller than the length of the junction. A

schematic representation of the various layers and dimensions of the stack is

shown in Fig.1.Ba. The film thickness plays an essential role, as it determines the

strength of the coupling between the stacked junctions[35, 36, 37, 38, 39~ 40].

The mathematical model used to describe the system was first proposed by

Sakai, Bodin and Pedersen[41]. The importance of the model is that all pa­

rameters such as characteristic lengths, frequencies and coupling parameters can

be calculated from the system's physical properties such as the critical current

density, junction conductance and capacitance.

When an external magnetic field is applied to stacked Josephson junctions in

the direction of the y-axis or when currents flow in the system, magnetic flux

penetrates into the Josephson layers and gives rise to the field distribution shown

in Fig.1.9. The straight forward approach to model the coupling between the

superconducting layers is thus based on the vector potential and the currents

associated with it. Consider the flux <P enclosed in the path PIP2Q2QI

~ =! E, ·dB = fA. dl

Using the quantum mechanical definition of the current density

(1.45)

J=

and integrating along the paths parallel to the layers

{PI
le 3,u--l· dl=

Q1

(1.46)

(1.47)

The superindicies U and L indicate the currents flowing in the top and bottom of

a superconducting film. Assuming the density of the surface currents Jf and JF'-I
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and the magnetic field B constant over the short distance dx and then adding

the above equations and using the phase difference expression

2e rQ 2 - -
4J = (JQ2 - (JQl + r; lQl A· dl

along with Eq. (1.45), we get

(1.48)

(1.49)

To calculate the surface currents we rewrite the second London equation, 8xxB =
-frB, and solve it for the superconducting layer l with the appropriate magnetic

J

fields as boundary conditions

B(z) = BI+1sinh(z/.AI) - BI sinh((z - tl)/ .AI)

sinh(tl/AI)

Using Ampere's law \7 x B = J..Lo), for the geometry we get

.L Bl cosh(tl/Al) - Bl+1

JI = JlO.AI sinh(tzj.AI)

-o B l - 1 - B l COSh(tl-1/ Al-l)
JI-l = JlO.AI-l sinh(tl-d.AI-I)

Inserting the result into Eq. (1.49), it becomes

(1.50)

(1.51)

where the effective magnetic thickness dz and the coupling parameter Si are de­

fined by
dz = dl + Alcoth( {L ) + A[-l coth( ~1-1 )

Al AI-l

__ '\,
Sl - . h(!L)

SIn Al

(1.52)

Inserting Ampere's law for the z-component of the current J..LojZ = oxB(x) and

taking the current densities that are described by the resistively and capacitively

shunted Josephson junction

(1.53)
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we can write the Eq. (1.51) in the matrix form

4J1 d1 81 0 if
n 4>2 81 d2 82 i2

-2-8xx - 0 82 et3 81 0 (1.54)
eJ..Lo

4JN 0 8N-1 dN iN
The effective Josephson penetration depth becomes

A(2) = ( n ) 1/2

J 2eJ..Lo (d' + s)

and the velocity of light in the barrier becomes

1 ( d ) 1/2
C<2) = -- --

VfiiO d' + s

compared to a single-junction soliton case we note that

>S) _ C<2) _ ( et ) 1/2

A(1) - C(l) - d' + 8
J

since s < 0, cC2) is larger than cC 1) . Thus in stacked junctions, velocity of light

exceed the velocity of light in single junction case. In normalized units the above

equation becomes

1 a .. .. 0
eT 1 eT

•• •• eT 1 eT

.. .. 0 a 1

0u4J1 + afk4J1 + sin <PI - ,
0u4J2 + afk4J2 + sin 1J2 - ,

0u4JN-1 + afk4JN-1 + sin <PN-1 - l
Ou4JN + afk4JN + sin 4JN - l

(1.55)

where a = }. The external magnetic field does not influence the dynamics of

the stack if the top and bottom electrodes are thicker than A. The boundary

conditions when an external magnetic field is applied to the junction are

l/J1 df + 81+ 80

~ax l/Jl =Bext dt + 8l+81-1 (1.56)
2eJ..Lo

4JN div + 8N+8N-1

The derivative of the phase difference at the edges of the stack is called the open

boundary conditions. In this case, flux can enter end exit the junctions.
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(1.57)

1.12.1 Two coupled junctions

.A... two coupled stack is an important configuration for both theoretical and exper­

imental studies. In this case, fluxon dynamics can be described using the system

of equations[41]

<Ptt - 1':S2 <Pxx + sin <P = -o:</Jt - 'Y - 1!S2 'l/Jxx

'l/Jtt - 1.!S2 'l/Jxx + sin'l/J = -o:'l/Jt - 'Y - 1!S2 CPxx

where </J is the phase difference of the eigen functions of the first junction and 'l/J

is the phase difference of the eigen functions of the second junction. S (S < 0)

is the normalized coupling constant. A two coupled stack supports two types

of fluxon motion in it. Both in-phase and out-of-phase locked modes of fluxon

motion can be observed. It has been predicted that the in-phase flux-flow mode

multiplies the power of flux-flow oscillator whereas the out-of-phase mode doubles

the main radiation frequency of the oscillator. The out-of-phase flow of fluxons

in a two-fold stack is shown in Fig.I.10a and in-phase flow of fluxons is shown in

Fig.1.10b.

1.13 Regimes of fluxon dynamics

Josephson junction with open boundary condition will interact with the environ­

ment not only through the bias current but also through the external magnetic

field at the boundaries. Therefore the dynamics in LJJ with open boundary con­

ditions is complex. Three major regimes of fluxon motion can be observed in

single long junctions as well as in stacks.

1.13.1 Zero Field Steps (ZFS)

In the absence of magnetic field the current voltage characteristics (IVe) of a

long junction shows a family of so-called zero field steps. In this state one or

more fluxons or antifluxons propagate in the junction, driven by' the bias current.
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At the junction boundaries they are reflected with the opposite polarity[42, 43].

The reflection at the boundaries gives rise to microwave emission. The maximum

voltage of these steps is then calculated as Vmax = <Po nz.

1.13.2 Fiske Steps (FS)

When a magnetic field is applied to the junction, the field penetrates partially

into the junction and will decrease the fluxon energy at one side and increase

it at the other side of the junction. At magnetic fields larger than a certain

threshold value, fluxons are nucleated at one end of a current biased junction

and is annihilated at the other end. In the process of annihilation, plasmons are

emitted, which resonate with the junction cavity. In this case the IVe shows

steps called the Fiske steps. The maximum voltage of the Fiske steps can be

calculated as Vmax = <Po ;1. This is valid only in a limited range of magnetic field

values. Fiske steps are cavity resonances in LJJ[44].

1.13.3 Flux-Flow Steps (FFS)

In the high field limit of the Fiske modes, dynamics is dominated by the flow of

fluxons. These are nucleated at one junction edge and viscously flow in a dense

chain through the junction to exit at the other end. This effect is effectively

utilized in the flux-flow oscillator. The maximum voltage of the flux-flow step is

Vmax = HAc, where H is the applied field, A is the magnetic thickness and c is

the Swihart velocity. This relation is valid for superconducting electrodes thicker

than the London penetration depth[45].

1.14 Annular junctions

Different geometries are proposed for LJJ to study the fluxon dynamics and

among them, annular geometries offer the advantage of reflectionless motion of

fluxons and is studied extensively theoretically and experimentallyjl l , 46, 47,
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48]. The annular geometry' is of particular importance for the experimental and

theoretical investigation of non-linear properties of LJJ..An annular LJJ tunnel

junction is formed by two ring shaped superconducting electrodes separated by

a thin tunnel barrier as shown in Fig.l.ll. The electrodynamics of a junction of

length 1 is described by the perturbed sG equation with the periodic boundary

conditions
cp(x = 0) = cp(x = l) - 27rn

~(x = 0) = ~(x = l)

The number of kinks initially present in the annular junction is conserved due

to the closed topology. Experimentally, annular junctions are prepared in states

with n topologically trapped Josephson vortices by cooling the junction from the

normal to the superconducting state in a small applied field. Alternately, vor­

tices may be trapped in the junction by locally heating up one of the electrodes

in an external field using an electron or laser beam in a low temperature scan­

ning microscope. The number of the flux-quanta trapped in the junction can be

determined from the Ive of the junction.

1.15 Conclusions

In short, LJJs offer the possibility of studying solitons that account for the mag­

netic flux-quanta (fluxon) moving along the tunnel barrier. A fluxon is basically

a quantum of magnetic field which can be used for transmission of information

or can be an object based on which certain novel Josephson devices such as

flux-flow oscillators, voltage rectifiers, logic gates, magnetic field rectifiers, field

sensors, etc. can be implemented. Fluxons can be trapped in the junction either

during the normal-superconducting transition or by applying an external mag­

netic field parallel to the junction. In the superconducting state only fluxons or

antifluxons can exist in the junction and they are driven by the Lorentz force as­

sociated with a de current. In the absence of an external magnetic field, trapped
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fluxons cannot escape from a linear junction and they make successive reflections

at the edges of the junction. Progressive fluxon motion in LJJ is associated with

a de voltage which can be detected across the junction.
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Chapter 1. Figures
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Fig.l.l(a) Two superconductors weakly coupled to one another. (b) Amplitude of the
macroscopic wave function of the two superconductors.
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Fig.l.2 (a) Current voltage characteristics of a Josephson tunnel junction. (b) Bose representation
of the electron density of states of the superconductor. (c) Josephson tunneling process. (d) quasiparticle
tunneling process. (e) Cooper pair dissociation and tunneling into quasiparticle
states.
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Fig.I.3 (a) Closed path across the barrier of a Josephson junction. (b) Magnetic field penetration into the
superconductor. (c) Critical current diffraction pattern ofa small rectangular junction.

(a) (b)

R le c
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Fig.l.6a The kink solutionof the sG equation. Fig.I.6b The antikink solution of the sG equation.
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Fig.l.6c The supercurrent encirclinga fluxon
and an antifluxon in a rectangularjunction. The
applied field H parallel to the dielectricbarrier
inducesa screening currentand the field penetrates
thejunction over a distance A.J.
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Fig.I.8 A stack of inductively coupled
overlap Josephson junctions in an applied
magnetic field H. A bias current is applied
from the top electrode to the bottom
electrode.
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Chapter 1. Figures

out-of-phase

Fig.I.IOa Out-of-phase flow of
fluxons in a two coupled junction

in-phase

Fig.I.10b In-phase flow of fluxons
in a two coupled junction

Fig.l.ll An annular long LJJ. The current distribution associated
with a fIuxon is indicated with the closed arrow mark.
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Chapter 2

Fluxon creation and annihilation
in J osephson junctions

The fluxon creation and annihilation processes are demonstrated numerically, in

the LJJ in the first, second and third zero-field step cases, using the perturbed

sine-Gordon equation in the presence of periodic point-like weak inhomogeneities.

In all the zero-field cases, the created fluxon is found to be in a bunched (con­

gealed) mode with the other fluxons. The current-voltage characteristics, de­

picting stable dynamics of fluxons in the junction in the absence of the periodic

perturbation is compared with the current-voltage characteristics in the presence
,.

of the periodic perturbation.

2.1 Introduction

The dynamical properties of magnetic flux quanta are critical in the fabrication

of high-speed, high-density and low power memory and logic devices. The fluxon

(soliton) motion in a nonlinear medium is drastically modified by the presence of

periodic spatial inhomogeneities[49, 50]. The collision of solitons with localized

obstacles can produce different outcomes like emission of linear waves, creation or

annihilation of solitons etc.[51, 52]. The threshold for the soliton creation in sG

system is calculated analytically in Ref.[53]. The soliton creation or annihilation

in the presence of periodic perturbation under the action of a pulse-like biasing
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current is studied in Ref.[54].

Fulton and D)"nes[42, 55] conceived the idea that the LJJ could support the

resonant propagation of fiuxons trapped in the junction, the fluxon being a 21r

jump in the phase difference (4)) across the insulating barrier which separates

the two superconductors. The oscillatory motion of a fiuxon in the junction is

manifested in the lYe by the steps at multiples of the voltage Vn = n~oc/L, where

<1>0 = h/2e = 2.064 x 10-15 Wb is the flux quantum, C is the Swihart velocity, L

is the length of the junction and n is the number of fiuxons in the junction[56].

Analog and numerical studies have shown that fluxon can execute two types

of oscillatory motions (i) a bunched (congealed) mode with the fundamental

frequency 1 and (ii) a symmetric mode which on the Nth ZFS have the frequency

N/[12].

2.2 Model equations

Perturbed sine-Gordon (sG) equation takes into account the dissipation and in­

homogeneities of the physical systems (cf. Sec.l.B). The fluxon dynamics in LJJ

with periodically installed microresistors can be modelled with the perturbed sG
I'

equation

N

<Ptt -l/Jxx + sin 4> = -a<Pt + f3<Pxxt +L j.L8(x - ai) sin <P - 'Y (2.1)
i=1

with the boundary condition (in the absence of an external magnetic field)

4>x(O, t) = <Px(l, t) = 0 (2.2)

where <p(x, t) is the superconducting phase difference between the electrodes

of the junction. x and t are the normalized distance and time. The term

Ef:l j.L8(x - ai) sin 4> represents periodic local regions of low Josephson current

(microresistors). The parameter J.l is the strength of the localized inhomogeneity.

A fluxon when passing through the microresistors loses energy. Thus due to the
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periodic microresistors, the dispersion of the system increases so that the effective

nonlinearity of the system decreases. The boundary condition indicates that the

fluxon will be reflected at the end of the junction as an antifluxon.

In the absence of perturbations, (a = f3 = 'Y = Jj = 0), Eq. (2.1) becomes

the sG equation which is a conservative, nonlinear dispersive wave equation that

supports special solutions called solitons. A sG soliton is a localized wave that is

analytically described by the formula Eq. (1.38). The perturbational parameter

terms Q and f3 cause both the fluxons and the antifluxons to slow down, while "I

term drives the fluxons to the left and the antifluxons to the right. At small values

of "I, the fluxon will lose all its kinetic energy (KE) before passing the microshort

and will be reflected back. At sufficiently higher values of "I, the fluxon will slow

down near the inhomogeneity and loses some of its KE.

At Q # 0 and v # 0, the fluxon moves under the action of a friction force Fa =
-8Q~ and a driving force F..., = 21r'. A fluxon is pinned by the microresistor if

'Y < 'Ythr = 7:;0.3/ 4 (2J.l)1/4 . At higher bias, fluxons are depinned and the depinning

current can be calculated as 'Y > 'Ye = A1l"3 I J.l I [15]. In the presence of

the periodic perturbation Ef::l j.l8(x - ai) sin 4> the fluxon moves in an effective

potential
N

U(~) = -2Jj L sech2(~ - ai) - 21r,~
i=l

(2.3)

where ~ is the center-of-mass coordinate of the fluxons. The modified Hamiltonian

is
N

H = H sG
- L J..Lt5(x - ai) (1 - cos cp)

i=l

2.2.1 Bunching effects

(2.4)

At higher velocities the surface-loss term f3 produces a spatially oscillating trailing

tail behind a moving fluxon which may create a bunched (bound) mode oscilla­

tions in the junction. Bunching effects may occur between moving fluxons of

the same polarity. At sufficiently high velocity they can overcome the repulsive
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force and can form a bound state. Bunching effects break the symmetry and

helps the chain to overcome dissipative losses. A fast moving fluxon on hitting a

microresistor dissipates energy. A small amplitude wave is created and the small

amplitude waves add up in energy to form a soliton[51, 52, 57, 58].

A solution of the perturbed sG equation can be obtained in the following

form. Let ~ = x + vt , then the sG equation become

(2.5)

now, we will search for a solution which consists of a fluxon with an oscillating

tail of the form

(2.6)

where 14>1 1« 1. since sin 4>0 ~ ')' and COS(4)1 exp(p~)) ~ 1, we get, sin(<pO+4>I) =
, + 4>1 Jl - ,2. Substituting in Eq. (2.5), we get

(2.7)

In the case v < 1 and ')'2 < 1, we get

(2.8)

Eq. (2.8) always has a positive real root and either two negative real roots or two

complex conjugate roots with negative real part (trailing fluxon tail). Setting

Q = 0, Eq. (2.8) has a pair of complex roots at (1 - v2 ) < (1 - V5) = 3( ~ )2/3.

At the onset of the oscillating tail, at v = vo, bunching is not possible since

P <I P2,3 I, the repulsive tail is stronger. Bunching becomes possible at v =
'VI given by

(1 - v2 ) < (1 - vn = (/32 )1/3 (2.9)
2

In this case roots can be calculated as PI = (213)-1/3 and P2 = P3 = (-l±i)Pl, i.e.,

the repulsive and oscillating tail have the same decay length[12, 59, 60, 61, 62, 63].
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2.3 Numerical methods

To solve Eq. (2.1) and (2.2), we use an explicit method treating CPxx with a six

point, CPtt with a three point and CPt with a two point symmetric finite-difference

method[64]. An implicit finite-difference method is used to solve the equation.

Representing the phase 4J(x, t) to a square mesh by <Pi = l/J(ih, nk), the following

approximate forms of the derivatives are obtained[12]:

rh = 1 (A.7!+1 _ 2A.~+1 + rh7!+l + rh7!-l _ 2A.~-1 + rh~-l)
o/xx W 0/1+1 \Pt 0/1-1 0/1+ 1 \P1 \Pl-1

rh = _1_(A.~+1 _ 2rh~+1 + rh7!+l _ rh,,!,-l + 2rh~-1 _ A.~-1)
o/xxt 2kh2 \Pl+1 \P1, \Pl-1 0/1+1 \P1 0/1,-1

Substituting these equations in Eq. (1.29), we get the following system of equa-

tions:

rhn +1 rhn+ 1 rhn +1 (A.n-1 rhn- 1) rhn-1 rhn (sin cn )
C1o/i+l + C2\Pi + Cl \Pi-1 = C3 \Pi+1 + o/i-l - C4o/i + CS\Pi + C6 sin (/)i - 'Y

i = 1, 2, ...N, n = 0, 1, ~... ,

These system of equations are solved by means of iteration by using a tridiagonal

matrix algorithm. Where the constants are given by Cl = f3 + k, C2 =
-(ah2+2h2jk+2f3+2k),

C3 = f3-k, C4 = (ah2-2h2jk+2j3-2k),
C5 = -4h2jk,

and C6 = 2h2k.

The boundary conditions are treated by the introduction of imaginary points

(i.e., cp( -x, t) = cp(x, t)) . The nonlinear term is evaluated using a predictor­

corrector loop. A time step of 0.0125 and a space step of 0.025 is used for

the discretization. Calculations are re-checked by systematically halving and

doubling the time and space steps. Details of the simulation procedure are given

in Appendix. After the simulation of the phase dynamics for a transient time,
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\ve calculate the average voltage '\t'" for a time interval T as

V = ~ [T 'Pt dt = 'P (T) - 'P (0)
T 10 T

(2.10)

(2.11)

for faster convergence of our averaging procedure, we additionally averaged the

phases <p(x) in Eq. (2.10) over the length of the junction. Once the voltage

averaging for a current , is complete, the current , is increased by' a small

amount fJ, = 0.01 to calculate the voltage at the next point of the IVC. \\Te use a

distribution of the phases and their derivatives achieved in the previous point of

the IVC as the initial distribution for the following point. The average velocity

of the fiuxons can be calculated from the average voltage using the relation u =
11 2~. Thus the mean voltage in the junction is proportional to the average

velocity of the fluxons. The instantaneous voltage pulse form across the junction

is calculated using

1 r'V(t) = l lo 'Pt dx

where we have averaged the voltage pulses over the length of the junction.

Numerical simulations are carried out on a LJJ of normalized length I = 6.

We have installed five inhomogeneities (one each in each Josephson length AJ)

of strength J..L = 0.5. The fJ function in Eq. (2.1) 1S approximated by a smooth

hyperbolic function as represented in Fig.2.1[65]

g(x) =p,o(x - ai) ~ [1 - tanh2 2(x ; ai)] (2.12)

The junction parameters used in the simulations are Q = 0.05, (3 = O.02~ J1 = 0.5

and N = 5. The numerical integration was continued till the first three Fourier

components of 4Jt(l, t) remained constant to within 2%. The zero order Fourier

component (average value) of 4Jt corresponds to the de junction voltage through

the equation

(2.13)

Thus, a plot of VN (4Jt) versus the applied bias current, corresponds to the IVe

of the junction. In Fig.2.2 the IVe, depicting stable dynamics of fiuxons in the
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2.4.2 Second ZFS

In the second ZFS case, two fluxons are launched from locations Xl = 1 and

X2 = 3. At the bias value I = 0.26, an additional fluxon is created and the

created fluxon is found to be in a bunched mode with the other two fluxons and

found to be stable upto a bias value 'Y = 0.40. Fig.2.4 shows a three fluxon

bunched mode in the junction. In the annihilation process, a fluxon is destroyed

at 'Y = 0.20 and a single fluxon is found to be in a stable oscillatory state. Fig.2.5

shows this annihilation process.

2.4.3 Third ZFS

In this case, three fluxons are launched from locations Xl = 1, X2 = 1.5 and

X3 = 2. One additional fluxon is created at 'Y = 0.3 and the created fluxon

is observed in a bunched mode with other three fluxons. Fig.2.6 shows this

phenomenon. In the annihilation process a fluxon is destroyed and the remaining

two fluxons are seen in a bunched mode at the bias value 'Y = 0.2. This is

displayed in Fig.2.7. The voltage pulse form corresponding to this mode is shown

in Fig.2.8.

2.5 Conclusions

The fluxon creation and annihilation process are crucial for the understanding of

the internal dynamics of the junctions. These phenomena will have important

applications in the design and fabrication of superconducting digital devices like

logic gates. It will be interesting to check the creation and annihilation process

in annular junctions. Coupled junctions are another important area where these

phenomena can be demonstrated.
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Fig.2.2 The numerically calculated I-V characteristics
in the lZFS, 2ZFS and 3ZFS cases. The solid
symbols corresponds to stable oscillatory motion
of the fluxons in the absence of the periodic perturbations
and open symbols represents Ive in the presence
of perturbations.
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Fig.2.1. The profile of the spatial modulation
produced by the periodic inhomogeneities in the
junction

Fig.2.3. The Voltage pulse on the lZFS at one end
of the junction for 50 time units with the bias value
y = 0.41 with a = 0.05, ~ = 0.02. Fig.2.4. Three fluxon bunched mode on the 2ZFS in

terms of ~x(x,t) for 25 time units with xI=1, X2= 3,
v = 0.8, a = 0.05, ~ = 0.02 and y = 0.26.
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Chapter 2. Figures

Fig.2.5. Single fluxon oscillatory motion created on
the 2ZFS in terms of ~x(x,t) for 25 time units with y
= 0.20, x, = 1, X2 = 3, v = 0.80, a = 0.05 and ~ =

0.02.

Fig.2.7. Two soliton bunched mode on the 3ZFS in
terms of ~x(x,t) for 25 time units with Xl = 1, X2 =
1.5, X3 = 2, v = 0.90, a = 0.05, ~ = 0.02 and y =

0.2.
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Chapter 3

Logic gates using coupled
J osephson junctions

The possibility of making ultrafast superconducting logic gates, using multi­

stacked Josephson junctions are investigated. Employing flux quanta as informa­

tion bits, the functions of the logic gates AND, OR and XOR are implemented.

Other logic functions and memory elements can be made by properly configuring

these elementary logic gates. Design of these devices exhibits wide tolerance and

flexibility in selecting the geometrical and electrical parameters.

3.1 Introduction

Investigations of fluxon dynamics in multilayered superconducting junctions have

great importance both in theoretical and practical aspects. The Lawrence-Doniach

model[66] of high temperature layered superconductors shows strong resemblance

with stacked Josephson junctions and therefore is best understood in terms of

Josephson tunneling. Intrinsic Josephson effects inherent in these superconduc­

tors are key factors in realizing tunneling-junction devices. High-speed switching

devices making use of intrinsic Josephson junctions are indispensable in oscilla­

tors, digital signal processing circuits and in high-speed communication systems.

Vertical stacking of the junctions provide an effective means of inductive coupling

between them and create a high degree of integration between the junctions. UI-
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trafast logic operations require small sized, high-speed switching components.

High packing density of these components are essential to reduce delay when

information is transmitted between individual elements in the circuit. The low

power dissipation and faster switching capability of LJJ devices makes them ideal

for making logic gates. With the rapid growing superconducting technology, it

is possible to make micron or submicron devices with high critical current densi­

ties bringing down the switching times to subpico second values and the energy

dissipation to much lower than 10-18 J/operation.

Recent reports of the existence of bistable states and soliton switching in non­

linear directional couplers[67, 68] and in multicored optic fiber waveguidesjfis, 70]

have invited attention to soliton switching in multilayered Josephson stacks[71].

Stable and sharper switching exhibited by the high-sensitive superconducting

quantum devices[72] with extremely low dissipation in the subpico-second time

regime have the capability of revolutionizing the computing industries and hence

are getting crucial roles in high-tech data processing and information storage

devices. Various geometrical structures with different coupling mechanisms are

tested experimentally[73] , analytically[41] and numerically[74] towards this ob-
,.

jective.

Fluxon dynamics in LJJs have been investigated for information processing

and computing applications by many in the past[42]. The basic Josephson junc­

tion property that is useful for computing applications is the quantification of the

magnetic flux which appears in units of the flux quantum <Po. In the quantum flux

shuttle discussed by Fulton et al.[55], each fluxon carries one bit of information

through a shift register. The Josephson memory element proposed by Gueret[75]

uses a small segment of Josephson transmission line to store a single bit in the

form of a fluxon and the computing network designed by Nakajima et al. [76, 77]

employs interaction between fluxons to realize the logic functions: OR, AND and

NOT.
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3.2 Logic gates using three coupled J osephson
junctions

In a perfect sG system solitons will not interact even upon direct collision and such

systems are ideal for information transmission applications. But in real systems

dissipative effects and structural irregularities are always present so solitons do

interact when they collide. Strong perturbations, both internal and external,

will alter the speeds and locations of the solitons and may create or destroy

solitons[78]. It is necessary to establish design control over such interactions if

the above mentioned applications of the junctions are to be realized.

In this section, we investigate the possibility of making logic gates using three

inductively coupled vertically stacked Josephson junctions. Truth tables of all

these gates are verified using different combinations of input excitations. The

high and low states of the logic functions at the output is shown in terms of the

amplitude of the soliton profile. Energy and momentum values in both states

are compared to confirm the observations. Maximum tolerance in the device

parameters are analysed and we present parametric plots showing acceptable

regions of coupling coefficients for different values-of the bias current.

3.2.1 Theoretical model

Our analysis is based on three inductively coupled vertically stacked Joseph­

son junctions. Fluxon dynamics in these quasi-one dimensional junctions are

described with the following set of coupled, perturbed sG partial differential

equations[41, 79, 80, 81]
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In the absence of external fields, boundary conditions of these overlap junctions

are

4>i,x(O, t) = 4>i,x(l, t) = 0 i = 1,2,3 (3.2)

where 4>i(X, t) are the quantum phase shifts of the superconducting order param­

eters across the junctions. Strength of the inductive coupling between the first

and second junction is taken as €1 and between second and third junction is taken

In the absence of perturbations ( Qi = (3i = 'Y = €i = 0), the system of equa­

tions become uncoupled exactly integrable sG equations having soliton solutions

given by Eq. (1.38). The momentum of the system is defined as

1+00
I{ = - cPi,x cPi,t dx

-00

Inserting the unperturbed solution Eq. (1.38), in Eq. (3.3), we get

Total energy of the system is

3

H = LJH;G +Hf + HI)
i=l

Energy of the unperturbed sG system is

(3.3)

(3.4)

(3.5)

HsG
= i: [~(<Ptt+<P~,t+<P~,t+<p~.x+<pL +<P~,x)+3-cos <PI-COS <P2- COS <P3]dx

(3.6)

Perturbational parameters modulate the velocity of the solitons and may cause

fluxons to dissipate energy. The rate of dissipation is calculated by computing

:t (HP) = - J~:[(Ql4>~,t + f314Ji,xt + ,cPl,t) + (Q2cP~,t + f32cP~,xt + ,cP2,t)
+(Q3<P~,t + f33<P~,xt + ,<P3,t)]dx

(3.7)

In the present model the output is taken from the central junction and we consider

a situation where the fluxons in the central junction interact with those in the
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outer junctions. Hence the interaction energy is responsible for the formation of

fluxon states in the central junction and can be calculated using the equation:

(3.8)

In the steady-state condition, i. e., po\ver input to the soliton is balanced due to

dissipation, we compute the energy associated with the unperturbed sG fluxon

moving with equilibrium velocity in the middle junction as

(3.9)

Inserting Eq. (1.38) in above, we get the energy possessed by a single fluxon

moving with the velocity vasE = ";1~v2. From these analysis it is observed

that the rest energy of the fluxon is E = 8.0 with zero momentum. For E < 8.0,

fluxon propagation is not favorable in the junctions and hence fluxons will be

dissipated. For E > 8.0, fluxon motion can exist in the middle junction. We use

this criterion to establish the two different states in the junction.

3.2.2 Design aspects

Elementary logic gates are designed with two input ports and one output port.,.
Different distributions of input fluxons are inserted from the left end in top and

bottom dielectric layers. After a transient time output is measured from the

right end of the central junction. The high and low states at the output can be

demonstrated either in terms of voltage across the junctions or in terms of energy

associated with the propagating solitons or in terms of the amplitude evolution of

the soliton profile in the junctions. In the simulations, the amplitude evolution

of the solitons is considered to distinguish the high and low states. In all the

figures, distance 0 - 30 represent top junction, 30 - 60 represent middle junction

and 60 - 90 represent bottom junction. A soliton profile (27T" kink of Eq. (1.38))

inserted in the left end corresponds to an input excitation of high-state and a zero

soliton profile corresponds to a low-state. Similarly a soliton profile at the output
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indicates a high-state and a phase-diffused profile indicates a low-state. Functions

of AND and XOR are highly sensitive to the time lag between the inputs and

is based on the coincidence of the input excitations. Sakai and Samuelsen[54]

reported that a bias pulse of triangular form can be used to produce fluxons in

Josephson junctions and it is possible to inject these fluxons through the edges.

By applying bias pulses of same amplitude and phase in homogeneous coupled

junctions, two fluxons of the same velocity and phase can be injected and these

fluxons can be used as input excitations.

3.2.3 OR gate

Bistable states exhibited by coupled junctions and switching between the states

are trivial factors in the making of digital devices. An OR gate is constructed

by taking a stack of length 1= 5. Other considered parameters of the stack are

al = a2 = a3 = 0.03, (31 = (32 = (33 = 0.01, I = 0.18 and fl = f2 = 0.1. High and

low states at the output are established in terms of the amplitude profile of the

solitons along the junctions. We verify the truth tables by plotting the spatio­

temporal evolutions of the soliton profile in the dielectric layers in the initial and

final states. To verify OR truth table we insert one fluxon each in top and bottom

dielectric layers ( al = 1 and a2 = 1). After a transient time fluxon evolution is

observed in the central junction (a3 = 1) which indicates that output is high when

both inputs are high. Fig.3.1(a) represents the dynamics corresponding to this

Boolean operation. Using Eqs.(3.3) and (3.9) the average momentum and energy

of the soliton are calculated. The calculated average energy value E = 39.5 and

momentum P = 38.25 confirms solitonic propagation in the central junction. If

anyone input port is excited ( al = 1 and a2 = 0 or al = 0 and a2 = 1 ) then

also we get a high output state a3 = 1. Figs.3.1(b) and 3.1(c) represent these

states. Mean energy corresponding to these two cases are found to be equal to

24.0 with momentum value 22.0. If both inputs are low then we get the trivial
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low-state output.

The above mentioned logic gate exhibits wide tolerance in selecting geomet­

rical, electrical and dissipative parameters. So fabrication of this device is char­

acterized by several degrees of freedom that the designer must optimize. Thus it

is essential to find the limits of variability for such parameters compatible with

the achievement of the desired logic function. By fixing the device length and

dissipative parameters, \ve compute the tolerance limits of the coupling factor E

and show the regions of acceptability in a bidimensional representation. Fig.3.2

shows the parametric plot (f versus ,) of the OR logic gate. To draw this graph,

we fix the parameters l = 5, Q1 = Q2 = Q3 = 0.03, /31 = /32 = /33 = 0.01 and

compute the coupling factor for different values of the bias current satisfying the

desired OR function. From the plot it is observed that for a particular bias value

, = 0.18, coupling factor can range from E = 0.1 to f = 0.4. On the other hand,

for a fixed coupling factor f = 0.2 the bias value can range from, = 0.1 to

1=0.24.

3.2.4 XOR gate
,.

We use a stack with l = 4, Q1 = Q2 = Q3 = 0.03, /31 = /32 = /33 = 0.02" = 0.14

and El = f2 = 0.2 to implement the XOR gate. When both input ports are excited

(al = 1 and a2 = 1) the amplitude offluxon profile in the central junction is below

the threshold to be detected (a3 = 0, E < 1 and P = 0). The inserted fluxons

are annihilated due to dissipative interaction. Fig.3.3 shows this logic operation.

If anyone input is excited (a1 = 1 and a2 = 0 or a1 = 0 and a2 = 1) we get a high

state (a3 = 1)(cf. Figs. 3.1(b) and 3.1 (c)). Energy in this case is found to be

equal to 24.5 with an average of 22.3 momentum value. Finally we observe the

trivial low-state when inputs are not excited. So we conclude that the designed

structure can act as a XOR gate. Several other configurations can be identified

to produce the same results. Here, we like to emphasis that the graphs presented
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do not refer to limit cases. \\le report only those combinations which are highly

stable and show wide margins of tolerance in the design. Fig.3.4 shows the e

versus 'Y plot of this XOR gate. The two shaded regions indicate the possible

regimes of the coupling factor. From these regions it is clear that for a particular

bias value 'Y = 0.15, the coupling factor can vary from e = 0.15 to f = 0.21 and

from f = 0.38 to e = 0.52.

3.2.5 AND gate

For constructing an AND gate, we consider a stack of normalized length l = 4.

Other parameters are taken as 01 = Q3 = 0.04, Q2 = 0.03, f31 = f33 = 0.02, (:32 =
0.01, 'Y = 0.15 and fl = f2 = 0.3. AND's truth table predicts a high-state at

the output if both inputs are high. To verify AND's truth table we insert one

fluxon each in the input ports (al = 1 and a2 = 1). A well defined soliton profile

is evolved in the central junction indicating the high state. With the excitation

(al = 1 and a2 = 0 or al = 0 and a2 = 1), the amplitude profile at the output port

is found to be in a phase-diffused state to conclude that output is low (a3 = 0).

Figs.3.5{a) and 3.5{b) show these dynamics leading to diffused states. Energy

value in this state is found to be less than one with zero momentum. Which

confirms that fluxon motion cannot exist in this case. For completeness we must

check the AND's truth table with no excitation in both input ports (al = 0 and

a2 = 0) which, however, produces the trivial low-state: no fluxon propagation

exists in the junction in the absence of input fluxons. Simulations show that

functions of i\.ND gate is satisfied only in a narrow range of bias values.

Detailed analysis of the stacked junctions revealed that coupling factor alone

can change the logic function. So \ve extend our computations on a stack with

the parameters I = 6,01 = 02 = 03 = 0.05, (31 = (32 = (33 = 0.02 to determine the

limits of f which changes one logic function to another. The f versus I plot of

this structure is shown in Fig.3.6. It is found that in the region between e = 0.05
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and f = 0.2 the stack behaves as an OR gate. Between f = 0.22 and e = 0.28 it

changes into XOR gate. Above f = 0.3, at some isolated critical points it acts as

an AND gate.

3.3 Logic gates using two coupled Josephson
junctions

In this section, construction of logic gates using two vertically coupled Josephson

junctions are discussed. Vortex dynamics in two inductively coupled vertically

stacked LJJs is described with the system of coupled, perturbed sine-Gordon (sG)

partial differential equations[82, 32]

4Jtt - 4Jxx + sin <P = -al cPt + (314Jxxt - / + f'l/Jxx (3.10)

(3.11)

In the absence of external fields, boundary conditions of the overlap junctions are

(3.12)

where 4J(x, t) and 'l/J(x, t) are the phase differences, between the eigen functions of

the superconductors of the junctions. Strength of the inductive coupling between

the junctions is taken as f. In the absence of perturbations (ai = (3i = , = € = 0),

the system of equations become uncoupled exactly integrable sG equations having

soliton solutions (Eq. (1.38)).

The theory of devices that we propose is based on two inductively coupled

vertically stacked overlap Josephson junctions. Elementary logic gates are de­

signed with two input ports and one output port[83, 84]. Input ports are placed

at x = 0 (left end) in each dielectric layers. Output port is placed at x = l (right

end) across the two dielectric layers. Different distributions of input fluxons are

inserted from the left end and after a transient time wave form is checked at

the right end. Simulations are carried out by solving the full partial differential
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Eqs. (3.10) and (3.11) with the boundary conditions (3.12) using an implicit

finite-difference method mentioned in Chapter 2.

3.3.1 AND gate

For constructing an ..A..ND gate, we consider a two coupled Josephson stack of

normalized length I = 4. Other parameters are taken as 01 = 02 = 0.04, (31 =
(32 = 0.01, l = 0.10 and e = 0.5. A fluxon profile in the junction corresponds to

the binary bit 1 and a phase-diffused profile corresponds to the bit O. The high

and low states at the output can be established either in terms of amplitudes of

the fluxons, or in terms of voltage across the junctions. For clarity, we verify the

truth tables by plotting the spatio-temporal evolutions of the fluxon profile in

the dielectric in the initial and final states (cf. Sec.3.2.5).

3.3.2 OR gate

An OR gate is constructed by taking a stack of length I = 4. Other parameters,.
of the stack are 01 = Q2 = 0.04, /31 = 0.02, {32 = 0.03, 1 = 0.11 and e = 0.4. Truth

table is verified by inserting different combinations of fluxons in the input ports

(cf. Sec.3.2.3).

3.3.3 XOR gate

We use a stack with I = 4, Ql = 02 = 0.05, (31 = 0.03, (32 = 0.03, l = 0.10 and

f = 0.4 to implement the XOR gate. Fluxons are used for input excitations.

Various other combinations of device parameters can be used to make the above

mentioned XOR gate. For example, the set of values I = 4, 01 = Q2 = 0.012, (31 =
(32 = 0.03, l = 0.20 and e = 0.5 will give the same result as above( cf. Sec.3.2.4).
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3.4 Conclusions

Design aspects of superconducting LJJ logic gates by exploiting spatial solitons

interactions in nonlinear dielectric structures are studied and truth table of some

elementary logic gates are verified. Both three coupled and two coupled verti­

cally stacked junctions are studied. By proper design of the stacked junctions it is

possible to fabricate other logic gates such as NAND, NOR, NOT etc. Design of

these devices exhibits wide tolerance in the assumption of device lengths, dissipa­

tive properties, coupling coefficients and input power levels. Highly complicated

devices and memory elements can be created if these analysis are extended to an

array of stacked junctions with multiple fluxons. The remarkable reproducibility

observed in the simulations indicate wide tolerance in the assumption of device

lengths, dissipative parameters, coupling coefficients and input power levels.
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Chapter 3. Figures
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Fig.3.5. (a) AND's truth table corresponding to inputs at=l and a2=O and output a3=O
(b) AND's truth table corresponding to inputs at=O and a2=1 and output a3=O

0.4 ,.-------------,.

0.3

0.2

0.1

. ~..
• •

o~-~~-.......--+---+--_....
0.08 0.11 0.14 0.17 0.2 0.23 0.26

Fig.3.6. Parametric plot of the stacked junctions showing different logic
gate functions at different regimes of coupling factor.

52



Chapter 4

Semiannular J osephson
junctions

A semiannular geometry is proposed for Josephson junction and analytical and

numerical studies show that an external static magnetic field applied parallel to

the dielectric barrier interacts through the interior of the junction and produce a

tilted potential which pushes out trapped fluxons from the interior of the junc­

tion and flux-free state exists in the junction in the absence of an external bias.

Due to the semiannular shape, the effective field at the ends of the junction has

opposite polarities which supports penetration of opposite polarity fluxons into

the junction in the presence of a forward biased de current. When the direction

of the de current is reversed, flux penetration is not possible and flux-free state

exists in the junction. Thus this geometry can be used in implementing fluxon

based diodes. The rectification property of the junction is demonstrated using

square wave signals and sinusoidal ac signals. It is found that the junction is ex­

tremely useful in rectifying rfmagnetic fields. In the forward biased state, fluxons

and antifluxons enter the junction and move in opposite directions. Using this

property, we propose and demonstrate a novel bidirectional flux-fiow oscillator.
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4.1 Introduction

Fluxon dynamics in nonrectangular LJJ attracted much attention in recent years.

The nonrectangular shape creates nonuniformity in the junction which can be

advantageously employed in certain Josephson devices. In flux-flow oscillators

(FFO), nonuniformity is used to reduce self-field effects and to facilitate uni­

directional fluxon motion[85]. In Josephson trigger circuits, nonuniformity is

employed to make a special dependance of the critical current upon the magnetic

field[86]. Nonuniformity may mean unequal conditions for Josephson vortices in

different parts of the junction. It may be due to nonuniforrn spatial distribution

of critical and bias currents[3], temperature gradient effects[87], or due to many

other reasons.

Recently fluxon dynamics in some unconventional structures like the mul­

tistacked junctions (both linear[36] and annular[88]), non-symmetric and non­

uniform junctions[89] etc. are being carried out by a number of authors. l\

static magnetic field applied parallel to the barrier in a linear LJJ has no ef­

fect in the interior part of the junction and the small perturbation produced is

through the open boundary[12, 49]. The effect of ,. spatially homogeneous static

magnetic field on annular LJJ has undergone various theoretical and experimen­

tal studies[90, 91]. The external field produces periodic potential in the annular

junction which can be used to trap the fluxons[92].

In the present work, we investigate the effects of an external homogeneous

static magnetic field on the propagation of fluxons in a dissipative LJJ having a

semiannular shape. Analytical and numerical studies show that the field interacts

through the interior of the junction as well as through the boundary conditions

and can exert a driving force supporting transitory motion (from one end to the

other end) for any trapped static flux-quanta inside the junction. Thus under

static conditions, flux-free state exists in the junction. The main advantage of

this geometry is in the fact that it allows opposite polarity fluxons to enter the
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junction from opposite ends only if the junction is biased in one direction (for­

ward bias). If the direction of the bias is reversed (reverse bias), fluxons cannot

enter the junction due to the repulsive Lorentz force and flux-free state exists

in the junction. Thus the junction exhibits the basic properties of a diode. By

controlling the strength of the magnetic field, it is possible to get a single fluxon

and a single antifluxon configuration in the junction. Detailed analysis show that

this single fluxon-antifluxon state ((tt)) is highly stable against fluctuations. The

stable dynamics exhibited by this fluxon-antifluxon pair is utilized in construct­

ing a fluxon based diode. It is found that even in the forward biased state, there

is a threshold value of the current below which fluxons cannot enter the junc­

tion. The damping effects of an external magnetic field on the motion of a single

trapped fluxon in the junction is also studied. Using the semiannular junction,

rectification of alternating magnetic fields is demonstrated. A novel bidirectional

flux-flow oscillator is also constructed using the device.

4.2 Derivation of the model equations

An overlap LJJ with a semiannular shape is considezed as shown in Fig.4.1(a)

with the discrete model shown in Fig.4.1 (b). An external static magnetic field

applied parallel to the dielectric barrier interacts nonuniformly and produces a

spatially varying perturbation. The Kirchoff equations for the Josephson phases

in the cell and for the currents in one of the nodes are

27r
<p(X + dX) - <p(X) = <Po ( d<Pe (X) - LPh(X) )

IL(X - dX) - IL(X) = I(X) - Ie(X)

(4.1)

(4.2)

where cp(X) is the Josephson phase at the point .JY of the junction, dCPe (JY)

is the component of the external magnetic flux linked with the cell of length

dX, V is the inductance of the piece of the junction electrodes between JY and
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x + d.X, IL(X) is the current through the inductance, le(..Y) is the externally

applied current, l(X) is the current through the Josephson junction.

The external magnetic field B interacts with the interior of the junction and

the component of the external flux in the plane of the junction over an infinites­

imal interval dX is calculated as [91, 90, 92, 93]

(4.3)

where ~ is the coupling of the external magnetic field with the junction, it is

the unit vector normal to the propagation direction and in the plane of the

junction. Thus a homogeneous static field makes an effective nonhornogeneous

field inside the junction. From Eq. (4.3), it is clear that for a linear junction (

i. e., if it is independent of X ) in a homogeneous magnetic field there will be no

perturbation from the magnetic field to the interior of the junction. In this case

there would only be interaction through the open boundary conditions. However,

if the junction is in semiannular shape or in any other curved shape, ii depends

on J1( and there is perturbation to the interior of the junction.

Using the relations

LP = L' dJY:; I(X) = j(X) dX; Ie(J1() = -je(X) dX (4.4)

and substituting Eqs. (4.3) into Eqs. (4.1) and (4.2), we write the later in the

following form.

8h(X) = _ . (X) - "(X)ax Je J

(4.5)

(4.6)

where L' is the inductance per unit length of the junction, K = I is the spatial

periodicity of the field inside the junction and L is the length of the junction.
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We assume that the dielectric is spatially uniform so that ~ and L' are indepen­

dent of X. In the case of simple resistively shunted junction (RSJ) model, the

supercurrent density i (X) is the sum of the supercurrent, normal (quasi particle)

current and displacement current densities,

"(X) ". <Po C <Po
) = )0 sin 'P + 271" R 'PT + --z;;:- 'PIT (4.7)

here io, R, C are the critical current density, specific resistance and specific ca~

pacitance of the junction, respectively. Using Eqs.(4.5), (4.6) and (4.7) we get

the sG equation

The component of the external flux over an infinitesimal distance dJY of the unit

cell in terms of the quantized unit is

2~ 2~ r

d'P(X) = <Po d<pe(X) = <Po ~ B cos(KX) dX (4.9)

The effect of an applied magnetic field on the junction is to induce currents in,.
closed form across the junction. So the net current ,vhen integrated over the

junction should be zero. Due to the semiannular shape, the external field induces

a varying surface current along the junction. Since the spatial derivative of the

superconducting phase is equivalent to the induced surface current, we get

(4.10)

This equation can be used to obtain the boundary conditions of the junction.

Using the normalized quantities, T = ...L , X = x AJ' AJ = (2 ~LQ . )ot, Wo =
Wo 1r Jo

(~1l'i~)t in Eq. (4.8) we get the general perturbed sG partial differential equation

'Ptt - <Pxx + sin e = -Q 'Pt + bsin(kx) -I
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where cp(x, t) is the superconducting phase difference between the electrodes of

the junction, k = Tand b = 211" >'j i'o B k = 2 k tl . Where Bel = 11" ~\ is the

first critical field of the superconductor.

Compared with the standard sine-Gordon model for Josephson junction, this

equation has an extra term, bsin(kx), which corresponds to a force driving fluxons

towards left and antifluxons towards right. Therefore any static trapped fluxon

present in the junction will be removed and flux-free state exists in the junction

in the absence of an external bias. Thus the effect of the external field is to

act like a bias current lb(x) = b sin(kx), which has non-zero average in space.

This bias current stops penetration of fluxon from the left end and penetration

of antifluxons from the right end. So the junction does not support any fluxons

in the static conditions. This non-zero average current induces a non-periodic

field (potential) inside the junction.

From Eq. (4.10), we get the corresponding boundary conditions of the junc-

tion as

'Px(O, t) = ~
'Px(l,t) = - ~

(4.12)

This boundary condition is consistent with the fact that effective field linked

with the junction has opposite polarities at the ends of the junction. So only

fluxons can enter from the left end (x = 0) and antifluxons from the right end

(x = I) in a properly biased junction. From Eq. (4.12), "re see that fluxons

can enter from the left end and antifluxons can enter from the right end of the

junction for positive values of I (forward biased state). Negative values of I

drives fluxons towards left and antifluxons towards right and fluxon penetration

becomes impossible (reverse biased state). Eq. (4.11) with boundary conditions

Eq. (4.12) represent a semiannular LJJ in a homogeneous static magnetic field.
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(4.15)

4.2.1 Lagrangian and Hamiltonian functions

Lagrangian density of Eq. (4.11) with Q = I = 0 is

L = {~~ - ~ (<Px - ~COS(kX)) 2 - (1- COS<P)} (4.13)

Therefore the corresponding potential energy density is (second term of the above

equation)

U(x) = ~ {<p; - 2: cos(kx) <Px + (~ COS(kX)) 2} (4.14)

The first term is independent of the applied field and the third term is a constant

which is independent of the flux motion in the junction. Therefore the change in

the potential due to the applied field can be determined from the second term as:

b +00
U(x) = - k f <Px cos(kx) dx

-00

Substituting Eq. (1.38) in (4.15) and integrating, we get

U(xo) = - 2 b l seck (;; VI - u2 ) cos(k xo)

For long junctions and at relativistic velocities, U rv 1, Eq. (4.16) becomes

to
U(xo) = - C cos(k xo)

(4.16)

(4.17)

where C = 2 b l is a constant. Eq. (4.17) shows that the potential is tilted by

the applied field. The potential is plotted in Fig.4.2. Tilting is either to the left

side or to the right side of the junction depending on the direction of the field.

This tilt in the potential causes trapped static fluxons and antifluxons to move

in the opposite directions and thus the junction remain flux-free under static

conditions. Thus any trapped flux can be removed from the junction by applying

a static magnetic field.

Energy of the unperturbed sG system is given by Eq. (1.37). Perturbational

parameters modulate the velocity of the solitons and may cause to dissipate

energy. The rate of dissipation is calculated by computing
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dil'-(HP) = [CPx CPt]o + [-0 cP; + ( b sin(kx) -,) <Pt] dx
dt 0

(4.18)

(4.20)

where the first term on the right side account for the boundary conditions. From

Eq. (1.38), we get CPt = - u CPx and from Eq. (4.12), we get cp;(O, t) =
cp;(l, t) (symmetric boundary conditions). Substituting these expressions, we

find that the first term in the right hand side of the above equation vanishes - a

symmetric boundary condition does not change average energy value of a fluxon.

Inserting Eq. (1.38) in Eqs. (4.18) and following perturbative analysis[15], we

get

This expression describes the effect of perturbations on the ftuxon velocity, In

the absence of de bias (i.e., , = 0) , from Eq. (4.19), we get the threshold value

of the magnetic field for producing equilibrium velocity ( i.e., at et;: = 0) on a

trapped fluxon as

b=_4a Uo 1

1r JI - ufi sec h [71"2{3"] sin(kxo)

For a long junction, ;; « 1, we obtain the approximate equilibrium velocity of

the fluxon when Uo rv 1 with x~ = ~ as

[
4 2] -1/2

Uo ~ ± 1 + (1r:) (4.21)

This equilibrium velocity is equivalent to that obtained in Ref.[15] with a de bias.

Thus it can be concluded that in semiannular LJJ, the magnetic field exerts a

driving force on trapped fluxons and produces a transitory motion in the junction.

The effects of a de current on the fluxon dynamics in the presence of the

external field is studied using Eq. (4.11). Even in the forward biased state, ZVS
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exists in the junction (flux-free state) when the driving force due to the field (

lb(x)) and that of the de current ("y) are nearly equal and is in opposite direction.

By variation of the soliton position x~, from Eq. 4.21, we find the largest possible

bias current of ZVS (u = 0) to be[90]

11'"2
')'1= bsech(2T) (4.22)

This is the threshold value of the applied bias, below which flux propagation is

not possible in the junction. This threshold value depends on the magnetic field

and is directly proportional to the field.

4.3 General properties of the junction

4.3.1 Properties of the junction under a de bias

Fig.4.3 shows the average velocity (equivalently average voltage) attained by the

fluxon-antifluxon pair (tt) as a function of the de bias in the junction in the

forward biased (positive values of ,) state and in the reverse biased state (negative

values of ,). We have considered a junction of length l = 34 and dissipation

parameter a = 0.1. The field strength is fixed at b = O.J. The system is started

with ip = 0 and %r = o. For positive values of the sweeping de current, flux

penetration is possible in the junction. ZVS corresponding to flux-free state

exists in the junction upto a bias value of ,= 0.32. At this threshold value, a

fluxon enter the junction from the left end and an antifluxon enter from the right

end simultaneously and they move in opposite directions in the junction under

the influence of the de bias. This fluxon-antifluxon pair is found to be stable for

sufficiently larger bias values. Dynamics of the pair (t.J,.) in the junction gives an

average normalized maximum velocity of u ~ 2. This pair executes highly stable

motion upto a bias value of , = 0.58. On increasing the bias values further,

large number of fluxons and antifiuxons enter into the junction and they make

successive reflections at the boundaries which result in a switching of the Iv"C to
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high voltage states. We have not pursued the high voltage states of the junction

as the number of fluxons taking part in the dynamics is not fixed. In the reverse

s\\'eep of the bias, i.e., on decreasing the bias uniformly in very small steps, we

observed hysteresis in the dynamics and finite voltage is observed upto 1 = 0.22.

In the inset of the figure the spatial derivative of the phase (<Px) in the state

(t~) along the junction is plotted. A fluxon on entering from the left end moves

towards the right end and an antifluxon on entering from the right end moves

towards the left end. For negative values of the de bias, flux penetration is not

possible and ZVS (flux-free state) exists for all values of the negative de bias. In

this region the junction behaves as a reverse biased diode.

4.3.2 Properties of the junction under a static field

It is important in practical applications to know the behavior of the junction

under a static magnetic field especially the dependance of critical current (le) on

the applied field (H)[3]. In weak static magnetic fields, LJJs behave like weak

superconductors and show the Meissner effect. In this regime the critical current

decreases linearly with the external field. This b,.ehavior exists up to a critical

field Hi: At this critical field, magnetic flux in the form of fluxons can overcome

the edge barrier effects and can penetrate the junction[94]. For LJJs the first

critical field is H; = 'If 10AJ ' where A is the effective magnetic thickness of the

junction. The dependance of I, (normalized to maximum Josephson current 10 )

on a static magnetic field (H / Hc ) applied to a semiannular LJJ of l = 10 is

shown in Fig.4.4 (solid circles). For comparison, critical current versus magnetic

field pattern of a standard rectangular LJ J is presented (open circles). In positive

magnetic fields, lc(H) pattern in semiannular LJJ shows that static fluxons can

exists in the junction and a minimum critical current is required to induce flux

motion in the junction. In negative fields, the junction behaves differently and

the critical current pattern is displaced and indicates that higher critical currents
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are required to induce flux motion in the junction.

The threshold values of the de bias (1'1) allowing propagation of a single

fluxon in the junction at various values of the field is shown in Fig.4.5. The

threshold value increases on increasing the magnetic field. To determine the

threshold values, we have considered the dynamics of a single trapped fluxon

in the junction. Below the threshold value propagation is not possible in the

junction and the trapped fluxon is annihilated. A small magnetic field applied

to the junction can damp the motion of a trapped fluxon. On increasing the

field, the fluxon slows down and finally annihilated in the junction. In Fig.4.6,

the damping effects of a small field is shown for a trapped fluxon moving under

different values of the de bias.

4.4 Demonstration as a fluxon diode

Recently, fluxon based voltage rectifiers [95 , 96, 89] have attracted much atten­

tion due to the fact that they can find important applications in Josephson digital

devices[97]. Various geometries and external conditions are investigated towards

this end. The influence of an artificially created ratchet potential on fluxon dy-,.
namics in nonuniform LJJ have been studied and voltage rectification properties

of these LJJs are demonstrated in recent papers[95, 96]. The net unidirectional

motion exhibited by a particle in a ratchet potential is the key factor which is

also employed in magnetic flux cleaning applications[98] and in Abrikosov vor­

tex diodes[99]. Ratchet voltage rectifiers based on three junction device[lOO],

asymmetric SQUIDs[lOl] and on specially engineered arrays[102] have also been

investigated in the past. However, working of all these voltage rectifiers critically

depend on the ratchet potential and we cannot expect stable performance from

these devices as ratchet potentials are highly sensitive to external perturbations.

In addition, amplitude ranges of rectification is also limited in these devices and

the rectified output does not have a linear relationship with the input.
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Detailed analysis shows that the semiannular LJJ embedded with the static

magnetic field has the characteristics of a diode. Thus fluxon based diodes can

be implemented using this geometry. To demonstrate the rectification effects,

we use the pair (t~) dynamics in the junction. The IVe of the junction shows

that fluxons and antifluxons can enter the junction only if the junction is forward

biased and fluxon dynamics is not possible in the reverse biased state. Fig.4.3

demonstrate the forward biased state and reverse biased state of the junction.

In the forward biased state (positive values of I in Eq. (4.11), the pair (tt) is

highly stable against perturbations. This pair exists for sufficiently higher values

of the de bias. In the reverse biased state (negative values of 1 ), fluxons cannot

exist in the junction and ZVS exists for all values of the negative bias. We have

considered different parameters of the junction and found that the pair executes

symmetric motion in the junction under the influence of the de bias.

4.4.1 Rectification of a square wave

To demonstrate rectification effects of an ac current we used a square wave ,(t) =

- {_~' ~ ~ ~ : ~ } in Eq. (4.11). The pe~od of the square wave is taken
, 2-

much larger than the typical response time of the system ( '" 1 ns) so that it is in

the adiabatic regime. The amplitude of the ac signal should be sufficiently large

to induce flux motion in the junction. In the first half cycle of the square wave,

fluxon penetration is not possible and zero voltage exists in the junction. In the

second half cycle, one fluxon enter from the left end and one antifluxon enter from

the right end and the pair (tt) moves in opposite directions. The strength of the

external field is adjusted in such a "ray that no more fluxons can enter into the

junction. Rectification process is demonstrated in the time domain snapshots of

Fig.4.7, where we plot the instantaneous voltage (V(t)) across the junction as a

function of time. If the amplitude of the ac signal is below a threshold value, ZVS

exists in the junction as it can be seen in the left panel of Fig.4. 7. In Fig.4.8, we
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plot the average voltage (averaged over a period of the input signal) as a function

of the amplitude of the square wave. Average voltage increases on increasing the

amplitude of the input signal. ZVS exists if the amplitude is below 0.56 (peak to

peak, A = 0.26) and the output voltage increases linearly in the range 0.6 to 0.7

of the square wave amplitude. At higher values, additional fluxons enter into the

junction so that the output is no longer proportional to the input current. We

have considered different frequencies of the input signal and found that the pair

(t~) gives stable and reliable results.

4.4.2 Rectification of a sine wave

To study the rectification properties of sinusoidal ae currents, we used a sine

wave ,(t) = -Asin(wt) in Eq. (4.11). The period of the signal is taken much

higher than the typical response time of the system. The frequency of the signal

used is w = 0.02. The dynamics of the pair (t~) is studied under a magnetic field

of strength b = 0.21 on a junction of length l = 25 and dissipation parameter

a = 0.1. Fig.4.9 shows the time domain voltage pulses in the junction. In Fig.4.10,

we plot the average voltage as a function of the amplitude of the sine wave.

Average voltage increases on increasing the amplitude of the input signal. We

have considered different amplitudes and frequencies of the input signal and could

get best results using the pair (t~) .

4.5 Flux-flow state - demonstration as a bidi­
rectional flux-flow oscillator

A FFO[103] is a LJJ in which an applied de magnetic field and a uniformly

distributed de bias current drive a unidirectional motion of fluxons. The external

static magnetic field required for the FFO operation is generated using a de

current in an external coil and is applied perpendicular to the FFO. The magnetic

field penetrates the junction in the form of fluxons and their motion through
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the junction leads to an electromagnetic radiation. According to the Josephson

relation, a FFO biased at voltage V oscillates with frequency f = (27r/<po) l,T (at

about 483.6 GHz/mV)[l]. Due to the losses in the superconducting electrodes,

the maximum operational frequency is about f = ~/(e <Po) corresponding to

the superconducting energy gap ~. Typically, for Niobium, the gap frequency f

is in the range of 650 - 700 GHz. The radiation frequency, which is also related

to the fiuxon velocity u, by f = u/df l , is determined by the spacing between

the moving fluxons df l . The velocity and density of the fluxons, and thus the

power and frequency of the emitted radiation can be controlled by controlling

the bias current and the strength of the applied field. The wide-band tunability

and narrow line-width of a Josephson FFO make them a perfect on-chip local

oscillator for integrated submm-wave receivers [45]. Various geometries [37, 85,

104, 105, 106, 107] and superconducting materials are employed to make high

performance oscillators. Using conventional superconducting junctions like Nb­

AlOx - Nb, FFOs have been successfully tested and these devices are found to be

capable of delivering sufficient power ( ~ 1J..LW) in the frequency range 120 - 700

GHz.

To study the feasibility of making this device as a FFO[108, 109, 110], we

have done a preliminary study and investigated the flux dynamics of a group of

fiuxons under a large magnetic field. In the proposed oscillator, fluxons enter the

junction from the left end and move towards the right end due to the applied bias

(in the forward biased state) and on reaching the right end, they are selectively

terminated (a passive load of impedance z in series with a diode is connected

at the ends of the junction). In a similar way, antifiuxons enter the junction

from the right end and move towards the left end where they are terminated.

In implementing the device, we used a special technique by which fluxons are

absorbed selectively at the right end of the junction and antifluxons are absorbed

at the left end of the junction. In experiment, this can be realized by using
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a load resistor in series with a diode. At the right end, the diode should be

placed in such a way that it allows the screening currents associated with the

fluxons to go through the load (termination offluxons) and disallows the screening

currents associated with the antifluxons. Similarly at the left end, the diode

should allow the screening currents of the antifluxons to go through the load

(termination of antifluxons). Thus selective absorption of the fluxons can be

achieved at the ends. Fig.4.11(a) sho,vs the snapshots of the spatial profile (<Px)

of a group of fluxons entering from left end and antifluxons from the right end

in the junction. Fig.4.11(b) shows the snapshots (CPx) of the resonant motion

of fluxons and antifluxons in the opposite directions in a coherent state. This

resonant motion is highly stable and can be a mechanism for constructing the

bidirectional oscillators. This resonant, coherent motion also helps to avoid any

stray fluxons in the junction thus making the junction a highly tunable device.

Fig.4.12(a) shows the corresponding time dependence of the voltage pulse form

in the middle of the junction. All the voltage pulses are equally spaced showing

spatial coherence in the junction. The calculated frequency spectrum using fast

Fourier transform (FFT) of the voltage pulses is shown in Fig.4.12(b). The figure

shows the dominant first harmonic of the oscillations at frequency f = 0.181

(in normalized units) and the second harmonic at frequency at f = 0.362.

It is important for practical applications to know the influence of the load (z)

on the average output power of the device, in particular to see how it behaves

at larger loads. Fig.4.13 shows the dependency of the average output power
2

(P = V I = Y:;-) obtained from both ends as a function of the load for the values

of the junction l = 20, a = 0.1, 1 = 0.4 and b = 0.4. The output power

increases and becomes maximum at the impedance matching condition and then

decreases slightly on increasing the load. At larger values of the load the output

becomes practically independent of the load, which is a desirable feature for using

these devices as oscillators.
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The main characteristics of this flux-flow oscillator is that both fluxons and

antifluxons take part in the dynamics and because of that output can be obtained

from both ends. Only in the resonant state we get output from the junction and

the resonant state avoids any stray fluxons inside the junction. The oscillator can

be tuned by tuning the dissipative junction parameters, applied de bias currents

and the external magnetic field values.

4.6 1'f field rectification

In this section, a novel method for rectifying alternating magnetic fields is demon­

strated using fluxons in semiannular LJJs. An external magnetic field applied

parallel to the dielectric barrier of the semiannular junction has opposite polar­

ities at the ends of the junction and supports penetration of opposite polarity

fluxons into the junction in the presence of a constant de bias. When the direc­

tion of the field is reversed, flux penetration is not possible and flux-free state

exists in the junction. Thus effective rectification of an alternating magnetic field

can be achieved in semiannular LJJs. This unique phenomenon is specific to this

geometry and can be employed in rf SQUID magnetometers.,.

4.6.1 Introduction

When a LJJ is irradiated with a microwave of frequency j', quantized voltages,

Vn = nhf / 2e, are observed in the junction [1], where n is an integer and h is the

Planck's constant. In IVe, this effects manifests itself as constant voltage steps

crossing the zero current axis. The occurrence of these voltage steps is a direct

consequence of the ae Josephson effect and the phase coherent pair tunneling

in response to an external electromagnetic excitation. Since no voltage other

than the quantized values lln are present, for zero current bias, Josephson tunnel

junctions are ideal as voltage standards which require constant voltage output

independent of any external perturbations.
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In all the previous works on Josephson diodes, rectification properties are

studied using alternating bias currents and effective means of rectification of al­

ternating magnetic fields are not discussed. In this section, we demonstrate a

novel method to construct fluxon based diodes for rectifying harmonically oscil­

lating magnetic fields. Investigations on a de biased semiannular LJJ placed in

an alternating magnetic field applied parallel to the plane of the dielectric barrier

shows that the junction supports flux-flow only in alternate half cycles of the field.

The flux linked with the edges of the junction has opposite polarities and support

penetration of fluxons and antifluxons simultaneously from opposite ends of the

junction under a constant de bias. When thedirection of the field is reversed, flux

penetration is not possible and flux-free state exists in the junction. Thus, with

this geometry, effective rectification of oscillating fields can be achieved. This is

a unique phenomenon associated with the semiannular junctions.

4.6.2 Theoretical model

A LJJ with a semiannular geometry is considered with an external harmoni­

cally varying magnetic field applied parallel to the dielectric barrier of uniform

thickness[111]. The corresponding dynamical equation is

<Ptt - <{Jxx + sin <P = -a<pt + bsin(wt) sin(kx) - 'Y (4.23)

The boundary conditions of the junction can be obtained from the induced current

term d":fxX) = eH sin (wt) cos(kx) as

cpX(O, t) = ~ sin(wt); CPx(l, t) = - ~ sin(wt) (4.24)

These boundary conditions are consistent with the fact that the effective field

linked with the junction has opposite polarities at the ends. For sufficiently

higher positive values of 'Y in Eq. (4.23), fiuxons can enter the junction from

x = 0 and antifiuxons can enter the junction from x = l (right-end) and they can

move in opposite directions. As the boundary conditions are not reflective, after
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a transitory motion, fluxons and antifluxons are exited from the junction. When

the direction of the field is reversed, fiuxon (or antifluxon) penetration becomes

impossible and flux-free state exists in the junction. To get some information

on the fluxon dynamics, we first determine the potential induced by the external

field inside the junction and then find energy change associated with a moving

fluxon in the junction. Lagrangian density of Eq. (4.23) with Q = 'Y = 0 is

L = { ~F - ~ (CPx - ~ sin(wt) COS(kX)) 2 - (1 - cosCP)} (4.25)

Therefore the corresponding potential energy density is (second term of the above

equation)

U(X, t) = ~ {cP; - 2: sin(wt) cos(kx) CPx + (~ sin(wt) COS(kx) ) 2} (4.26)

The first term is independent of the applied field and the third term is independent

of the flux motion in the junction. Therefore the change in the potential due to

the combined effect of the applied field and the flux motion in the junction can

be determined from the second term as :

b +00 ,.
U(x, t) = - k ! CPx sin(wt) cos(kx) dx

-00

Substituting Eq. (1.38) in (4.28) and integrating, we get

(

1r2 ) .U(xQ, t) = - 2 b 1 sec h 2TJ1 - u2 sin(wt) cos(k xQ)

For long junctions and at relativistic velocities, U rv 1, Eq. (4.28) becomes

U(xo, t) = - C sin(wt) cos(k xo)

(4.27)

(4.28)

(4.29)

where C = 2 b 1 is a constant. Eq. (4.29) shows that the potential is oscillating

at the frequency of the applied field. This oscillating potential controls the flux

flow inside the junction and helps in the rectification of the field.
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Energy of the unperturbed sG system is given by Eq. (1.37). Perturbational

parameters modulate the velocity of the solitons and may' cause to dissipate

energy. The rate of dissipation is calculated by computing

~ (HP) = [ <Px <Pt]~ + 10' [-a <P; + ( b sin(wt) sin(kx) - 'Y ) <Pt] dx (4.30)

where the first term on the right side account for the boundary conditions. From

Eq. (1.38), we get 'Pt = - u CPx and from Eq. (4.25), we get cp;(O, t) =

cp;(l, t) (symmetric boundary conditions). Substituting these expressions, we

find that the first term in the right hand side of the above equation vanishes - a

symmetric boundary condition does not change average energy value of a fluxon.

Inserting Eq. (1.38) in Eq. (4.30) and following perturbative analysis[15], we get

( )
- 3/ 2 du U 7r Jr

2v'1- u2

1 - u2 dt = -a v'l _ u2 - 4"{ b sec h [ 21 ]sin(wt) sin(kxo) - 'Y }

(4.31)

This expression describes the effect of perturbations on the fluxon velocity, In

the above equation, the first term in the right-hand side represents the energy,.
dissipation due to internal damping, second term account for the energy change

associated with the external field and the third term represents the input power

from the bias current.

The effects of a de current on the fluxon dynamics in the presence of the

external field is studied using Eq. (4.31). Z\!S exists in the junction (flux-free

state) when the de bias is below a threshold value. By variation of the soliton

position Xo, from Eq. (4.31), we find the largest possible bias current of zero­

voltage state (u = 0) to be[90]

(4.32)

This is the threshold value of the applied bias, below which flux propagation is
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not possible in the junction. This threshold value depends on the magnetic field

and is directly proportional to the field.

4.6.3 Ive in rf fields

An oscillating magnetic field is applied parallel to the dielectric barrier of the

junction with a constant de bias. In the positive half cycles of the applied field,

flux penetration and propagation is possible and finite voltages are observed

across the junction. In the negative half cycles of the field, fluxons (or antifluxons)

cannot enter the junction due to the repulsive Lorentz force, and zero voltage

exists in the junction. Simulations are started with cp = 0 on a junction of l = 10.

Time period of the ae signals are taken much larger than the typical response

time of the system. In the following simulations we assumed the dissipation

parameter Q = 0.1. Fig.4.14 shows the IVe of the junction for different values

ofthe oscillating field amplitudes and at a constant frequency (w = 0.1). In the

figure, applied magnetic field is increasing from the top to the bottom curve in

the range 0.50 to 1.50 in steps of 0.1. At lower magnetic fields, critical currents

for fluxon penetration is large and the critical currpnt gradually decreases on

increasing the field strength.

4.6.4 Rectification of alternating fields

To demonstrate the rectification properties of the junction, we show a series

of plots showing the time domain snapshots of voltage pulse forms v(t) as a

function of time t. The magnitude of the field should be sufficiently large to

introduce fluxons into the junction. At small magnetic fields, fluxons cannot

enter the junction and zero voltage exists. For sufficiently higher amplitudes

(e.g. b = 1.0 ), fluxon penetration is possible in the positive half cycles and we

get finite voltage in the junction. This is shown in Fig.4.15. Rectification takes

place in the following way. In the first half (positive part) of the alternating

72



field, fluxons enter from the left-end and antifluxons enter from the right-end and

they move in opposite directions under the influence of the de bias. The motion

of fluxons in opposite directions produces a finite voltage across the junction.

During the second half (negative part) of the magnetic field, antifluxon (or fluxon)

penetration is not possible due to the repulsive Lorentz force and zero voltage

(flux-free state) exists in the junction. Thus effective rectification of the field can

be achieved in semiannular Josephson junctions. The number of fluxons taking

part in the dynamics (and therefore the output voltage) can be controlled by

controlling the strength of the magnetic field.

In Fig.4.16 we plot the average velocity (averaged over a period of the field)

as a function of the magnitude of the field for different length of the junctions.

A constant de bias is applied to the junction in order to maintain flux motion in

alternate half cycles. In the figure average voltage increases from zero and then

increases linearly at higher values of the external field. Thus this device gives

output which is linearly proportional to the input.

By reversing the de bias ( i.e., , to -, ), positive part of the alternating

field can be suppressed. Fig.4.17 represents this rectification and shows negative

pulses. In this case, fluxons cannot enter the junction'during positive halfcycles of

the field due to the repulsive Lorentz force while flux penetration and propagation

is possible in the negative half cycles.

4.7 Conclusions

In conclusion, we have studied flux-quantum dynamics in a semiannular geometry

and the results suggest that this geometry can be used for fabrication of fluxon

based diodes for rectification of ae signals, rectification of alternating magnetic

fields and for implementing bidirectional flux-flow oscillators. The magnetic field

driven transit of a trapped flux quantum under static conditions can find ap­

plications in digital transmission lines and in flux cleaning in stacked junctions.
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Using vertically stacked junctions, the power associated with the bidirectional

flux-flow oscillator can be increased considerably. The rf field rectification prop­

erties of this device may find important applications in sub-millimeter radio wave

astronomy, SQUID magnetometers, SIS mixers, etc. The main advantages of the

proposed diodes are (i) very simple to fabricate, (ii) output of the device is linearly

proportional to the applied field, (iii) flux motion takes place only in alternate

half cycles so that heating and energy losses associated with flux motion can be

reduced and (iv) independent of external perturbations. In the proposed LJJ

diode, velocity of a fluxon is proportional to the voltage and a nonzero average

velocity over a period of the rf field means rectification of the field. By properly

selecting junction parameters and the de bias, it is possible to rectify fields in

different amplitude and frequency ranges.
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Fig.4.1a Geometry of the semiannular LJJ with the applied field b.
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Fig.4.1 b Schematic representation of the junction using discrete elements.
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Fig.4.3 Applied debias r versus the average velocity u= V(//27r} in the junction in the forward-biased
state and in the reverse-biased state. Arrows indicate the direction of current sweep. The parameters
are /=34, a = 0.1 and b=O.l. Inset in the figure shows the spatial profile (rpJ of the fluxon­
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Fig.4.5 Ive of a single trapped fluxon showing
threshold value of the bias current at different
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Fig.4.6 Damping effects of the magnetic field on a
single fluxon trapped in the junction. Parameters
are /=20, a = 0.05, y= 0.1, b=0.2 (circles), b=O.1
(squares), b=0.3 (up triangles) and b=0.4
(down triangles).
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Fig.4.11 (a) Spatial profile (rpJ showing a train of
fluxons entering the junction from the left end and
a train of antifluxons entering from the right end.
(b) Spatial profile showing resonant propagation of
fluxons towards the right end and antifluxons towards
the left end.
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Fig. 4.13 Average output power vs. load z on
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Fig.4.12 (a) Voltage pulses in the middle ofthe junction.
Parameters are /=20, a = 0.1,b=0.4,y= 0.4 and z=0.02.
(b) The corresponding Fourier power spectrum ofthe
voltage pulses. Spectrum has been computed from 4250

data points.
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Fig.4.14 Applied de bias vs. average velocity for
different values of the applied iffield.
The parameters are /=10 and OJ= 0.1. The field
strength increases from the top to the bottom curve
from 0.5 to 1.50 in steps of 0.1.

Fig.4.15 Rectification ofa rjfield with r: 0..5 on
a junction of 1=10. (a) Applied field ofamphtude
b=1.0 (Pp) and frequency os> 0.05. (b) Output
pulse form v(t) as a function of time t.
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Fig.4.17 Rectification on a junction of 1=10 with
y= -0.5. (a) Applied field of amplitude b=1.0
(Pp) and frequency OJ= 0.05. (b) Outp~t pulse .
form v(t) as a function of time t showing negative
pulses.
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Fig.4.16 Magnetic field amplitude b vs. average
velocity for different junctions. The parameters
are OJ = 0.1, y= 0.5, /=10 (squares), /=15 (circles)
and /=20 (triangles)
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Chapter 5

Quarter annular J osephson
junctions

A new geometry is proposed for Josephson junctions to construct fluxon based

diodes. A Josephson junction with a quarter annular geometry terminated with

a load resistor at one end exhibits the characteristics of a diode under a homoge­

neous static magnetic field applied parallel to the plane of the dielectric barrier.

The external field interacts with the edges of the junction and make asymmet­

ric boundary conditions that support penetration of fluxons from one end of the

junction in the forward biased state and stops fluxon penetration in the reverse

biased state. This unique phenomenon is specific to this geometry and can be

exploited for making Josephson diodes.

5.1 Theoretical model

A LJJ with a quarter annular geometry is considered with an external static

magnetic field applied parallel to the dielectric barrier of uniform thickness. A

sketch of the geometry is shown in Fig.5.l. The external field is applied in such

a way that it is directed radially at one end of the junction. The external field

interacts with the interior as well as through the boundaries of the junction

and the flux linked with the junction can be expressed as dcp(x) = e (13 . n) =

c B cos(kx) dx [90,91,112,113], where 13 is the strength of the applied magnetic
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field, n is a unit vector normal to the direction of propagation and in the plane

of the junction, E is the coupling factor which links the external field with the

junction, k = 21r
, is the spatial periodicity of the magnetic field inside the quarter

annular junction. Therefore the induced current in the junction due to the applied

field is d~) = E B cos(kx). This current term gives a net positive value over

the length of the junction and indicates that the induced current does not flow

in closed form across the junction. This means that the external field cannot

have any influence on the interior part of the junction. Thus a quarter annular

LJJ under a static magnetic field with a de bias is modelled with the general

perturbed sine-Gordon (sG) partial differential equation[15, 12, 90)

eptt - 'Pxx + sin <p = -aept - 'Y (5.1)

where ep(x, t) is the superconducting phase difference between the electrodes of

the junction. The boundary conditions of the junction in an external field with

a passive load of impedance z, connected at x = I (right end) of the junction are

epx(O, t) = £ B = b; (5.2)

These boundary conditions are consistent with the fact that the effective field

linked with the junction makes asymmetric boundary conditions with maximum

field value at x = 0 (left end) and zero value at the right end of the junction.

Due to these boundary conditions, fluxon penetration is possible only from the

left end of the junction. For positive values of 'Y in Eq. (5.1), fluxon penetration

is possible (forward biased state) and for negative values, fluxon penetration is

not possible and flux-free (Meissner state) exists in the junction (reverse biased

state). The passive load (z) connected at the right end can be used to absorb

the fluxon chain entering the junction in the forward biased state.

Eq. (5.1) with boundary conditions given by Eq. (5.2) represents the quarter

annular LJJ in a magnetic field. To solve these equations, \ve use an implicit
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method. In the following simulations we assumed the dissipation parameter a =

0.1 and the load impedance z = 0.5.

5.2 General Properties of the junction

5.2.1 de current voltage characteristics

In the absence of the external field (b = 0), fluxon dynamics in quarter annular

LJJ is same as that in any ordinary rectangular junction. When the field is

applied, fluxons enter the junction from the left end in the forward biased state

and they move unidirectionally to the right end where they are absorbed by the

load. The fluxon-fluxon repulsive force makes the fluxon chain to be uniformly

distributed over the length of the junction. The transit of the fluxon chain in

the junction produces a nonzero voltage at the load. In the reverse biased state

fluxon penetration is not possible and the junction exists in the zero voltage state.

Simulations are started with rp = 0 on a junction of l = 20. Fig.5.2 demonstrates

the forward biased state and reverse biased state on the Iyrc of the junction.

The applied magnetic field is increasing from the top to the bottom curve in the

range 1.0 to 5.0 in steps of 0.4. At low magnetic fields, critical currents for fluxon

penetration is large and the critical current gradually decreases on increasing the

field strength. Almost all the IV curves are linear which implies that the device

gives output that is linearly proportional to the input. Absence of any constant

voltage steps in the IVC increases the tunability of the device. At higher fields,

unusual zero crossing flux flow steps (ZCFFS) are observed in the IVC[87]. This

phenomenon consists in the fact that the rve of a nonuniform LJ J can cross the

'Y = 0 axis at a nonzero voltage. This is due to a preferential direction for fluxon

motion contributed by the external field in the junction. In all IVes, voltage

increases linearly with the bias which is an essential characteristics required for

making ideal diodes. The spatial derivative of the phase ('Px) of the fluxons

entering the junction from the left end in the forwardbiased state is shown in
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the inset. For negative values of the dc bias, flux penetration is not possible

and flux-free state exists for all values of I. In this region the junction behaves

as a reverse biased diode.

5.2.2 Critical current versus magnetic field

It is important in practical applications to know the behavior of the junction in

a static magnetic field especially the dependance of critical current (le) on the

applied field (H) (cf. Sec.4.3.2). The dependance of le (normalized to maximum

Josephson current 10 ) on a static magnetic field (H / He) applied to a quarter

annular LJJ of l = 10 is shown in Fig.5.3 (solid circles). For comparison, critical

current versus magnetic field pattern of a standard rectangular LJJ is presented

(open circles). For positive values of the magnetic fields, le(H) pattern in quarter

annular LJJ follows exactly with that of the rectangular junction up to the first

critical field. At higher fields, critical current csosses the zero current axis and

becomes negative indicating the existence of ZCFFS in the junction[87]. ZCFFS

is a manifestation of flux-flow in the absence of a bias current. Thus in quarter

annular junctions, there is a preferential direction for flux motion under a. static

parallel magnetic field. For negative values of the magnetic field, the critical

current does not decrease on increasing the field and is an indication that flux

penetration is not possible in the junction and the junction remains in flux-free

state. This typical characteristics - allowing flux penetration in positive fields

and preventing flux penetration in negative fields - exhibited by the junction is

specific to quarter annular geometry. Thus the quarter annular LJJ supports

flux-flow only in one direction and strictly prohibits flux-flow in other direction

which is an essential characteristics required for making diodes.
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5.3 ac bias - demonstration as a diode

In this section, a novel method to construct fluxon based diodes is demonstrated

using the quarter annular LJJ geometry. Investigations on a quarter annular LJ J

terminated with a load resistor at one end placed in a magnetic field applied

parallel to the dielectric barrier shows that the junction supports flux flow in the

forward biased state and prevents flux flow in the reverse biased state. The exter­

nal field make a preferential direction for fluxon motion in the junction and the

junction exhibits the characteristics of a diode. This unique phenomenon is spe­

cific to this geometry. In the following sections, the rectification properties of the

junction using semi-adiabatic sine waves and ac square waves are demonstrated.

5.3.1 Rectification of a sine wave

To study the rectification properties of sinusoidal currents, a sine wave I =,(t) =

A sin(wt) is used in Eq. (5.1). A signal of frequency w = 0.05 and amplitude

A = 0.4 is considered. The amplitude of the ac signal should be sufficiently

large to induce flux motion in the junction. Fig.5.4 shows the input sine wave

and the time domain output voltage pulses v(t), ill the junction as a function of

time t. Rectification takes place in the following way. During the positive pulse

(first half) of the input sine wave, fluxons enter from the left end and they move

towards right end where they get terminated by the load resistor. The number

of fluxons taking part in the dynamics (and therefore the output voltage) can be

controlled by controlling the external magnetic field. In the second half (negative

pulse) of the input cycle, fluxon penetration is not possible and zero voltage

(flux-free state) exists in the junction. In Fig.5.5, we plot the average velocity

(averaged over a period of the input signal) as a function of the amplitude of the

sine wave for different length junctions. Average velocity increases linearly on

increasing the amplitude of the input signal which is an essential feature required

for rectification of the signals..Amplitude ranges of rectification can be improved

85



by tuning the system and selecting appropriate impedance matching load z.

5.3.2 Rectification of a square wave

To demonstrate rectification of a square wave, we assumed, =,(t) =-{_~ ~~tt:~ }in Eq. (5.1) (el Sec. 4.4). Fig.5.6 shows the average
, 2 -

voltage as a function of the amplitude of the square wave for different length

junctions. Average voltage increases linearly with the input signal amplitude.

5.4 Rectification of rf fields

A novel method for rectifying harmonically varying magnetic fields is demon­

strated using fluxons in quarter annular Josephson junctions. A Josephson junc­

tion with a quarter annular geometry terminated with a load resistor at one end

is found to be capable of rectifying alternating fields when biased with a constant

de current. The asymmetric boundary conditions facilitate fluxon penetration

under a de bias from one end of the junction in alternate half cycles of the ap­

plied field. Thus effective rectification of the field can be achieved using quarter

annular Josephson junctions. This proposed device is expected to have important

applications in millimeter and sub-millimeter radio wave astronomy.

In Chapter 4, a semiannular LJJ geometry is proposed and demonstrated

a novel mechanism for fluxon based rf field rectifiers[113]. In this section, we

demonstrate another method to construct fluxon based diodes for rectifying har­

monically oscillating magnetic fields.

5.4.1 Theoretical model

A LJJ with a quarter annular geometry is considered with an external harmon­

ically varying magnetic field applied parallel to the dielectric barrier of uniform

thickness. The external field is applied in such a way that it is directed radially

at the left end (x = 0) of the junction. The field interacts with the interior as well
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as through the boundaries of the junction and the flux linked with the junction

can be expressed as d<p(x) = e (H ·n) = E H sin(wt) cos(kx) dx [90,91,111,112].

Where w is normalized frequency of the oscillating field. Therefore the induced

current in the junction due to the applied field is d~~) = eH sin(wt) cos(kx). This

current term gives a net positive value over the length of the junction and there­

fore cannot circulate in closed form across the junction. It means that the external

field does not have any influence on the interior part of the junction. Thus a quar­

ter annular LJJ under a time varying magnetic field with a de bias is modelled

with the general perturbed sG partial differential equation

<{Jtt - CPxx + sin <{J = -Q<{Jt - 'Y (5.3)

The boundary conditions of the junction in an external field with a passive load

of impedance z, connected at x = l (right end) of the junction are

<{Jx(O, t) = E H sin(wt) = b sin(wt); 'Px(l, t) = _ 'Pt
Z

(5.4)

These boundary conditions shows that the effective field linked with the junction

make asymmetric boundary conditions with alternating field values at x = 0

and zero value at x = I of the junction. Due to this boundary conditions, flux

penetration is possible only from the left end of the junction. For positive values

of 'Y in Eq. (5.3), fluxon penetration is possible as long as the magnetic field

linked with the left end of the junction is positive. The transit of the fluxon

chain from one end to the other end in the junction produce a nonzero voltage at

the load. The passive load (z) connected at the right end can be used to absorb

the fluxon chain entering the junction in the positive half cycles of the field. For

negative values of the field, fluxon (or antifluxon) penetration is not possible and

flux-free state exists in the junction. Eqs. (5.3) and (5.4) represent a quarter

annular LJJ in an alternating magnetic field.

To get some information on the fluxon dynamics, we consider the energy
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change associated with a moving fiuxon in the junction. The energy of the un­

perturbed sG system is given by Eq. (1.37). Perturbational parameters modulate

the velocity of the solitons and may cause to dissipate energy. The rate of dissi­

pation is calculated by computing

(5.5)

where the first term on the right side account for the boundary conditions. From

Eq. (1.38), we get 'Pt = - U C{Jz. Inserting Eq. (1.38) in Eqs. (1.37) and in (5.5)

and following perturbative analysis [15], we get

( )
- 3/ 2 du 1 1 U n '1

1 - u2 dt = 8 <px(O, t) bsin(wt) - ~ u cp;{l, t) - a vI _ u2 +4 (5.6)

In the above equation, the first term in the right-hand side represents the energy

input from the field, the second term represents the power transferred to the load,

the third term accounts for the energy dissipation due to internal damping and

the fourth term represents the input power from the bias current. Substituting

a single fluxon solution (Eq. (1.38)) into Eq. (5.6) we obtain the modulation,.
of the velocity by the perturbation as

du 1 ( 2)i 2)- = - 1r I 1 - u - a u (1 - u
dt 4

(5.7)

The first term accelerates fiuxons and the second term decelerates fiuxons in

the junction. For sufficiently higher values of the de bias, this equation shows

that fluxons will always be accelerated towards the limiting velocity u = 1. Thus

maximum velocity that can be attained by fluxons in a LJJ is equal to the Swihart

velocity ( c ).

In the numerical simulation, the time period of the ae signals are taken much

larger than the typical response time of the system. In the following, we assumed

the dissipation parameter a = 0.1 and the load impedance z = 0.5.
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5.4.2 Current voltage characteristics

When external magnetic field is applied, the asymmetric boundary conditions

created by the field causes fluxons to enter the junction from the left end under

a positive de bias in the positive half cycles of the oscillating field. These fluxons

move unidirectionally to the right end where they are absorbed by the load.

In the negative half cycles of the field, fluxons (or antifluxons) cannot enter the

junction and zero voltage exists. Simulations are started with cp = 0 on a junction

of I = 10. Fig.5.7 shows the IVe of the junction for different values of the field

magnitudes and at a constant frequency. In the figure, applied magnetic field is

increasing from the top to the bottom curve in the range 1.50 to 3.30 in steps of

0.2. At lower magnetic fields, critical currents for fluxon penetration is large and

the critical current gradually decreases on increasing the field strength. Constant

voltage steps v~ at integer values of n are observed in all the IV curves. This

constant voltage steps corresponds to integer number of fluxons taking part in

the dynamics. Fig.5.8 shows I\TC of the junction at a constant magnitude of the

field and at different frequencies. Constant voltage steps are observed in all the

curves.

5.5 Rectification of alternating fields

To demonstrate the rectification properties of the device, we show a series of plots

showing the time domain snapshots of voltage pulse forms v(t) as a function of

time. The magnitude of the field should be sufficiently large to introduce fluxons

into the junction. At small magnetic fields, fluxons cannot enter the junction and

zero voltage exists. To show this, we have considered a field of frequency w = 0.05

and amplitude b = 0.4. For sufficiently higher amplitudes (e.g. b = 1.5 ), fluxon

penetration is possible in the positive half cycles and we get finite voltage in the

junction. Fig.5.9 represents this process. The number of fluxons taking part in

the dynamics (and therefore the output voltage) can be controlled by controlling
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the strength of the magnetic field. At higher ,ralues of the field (higher than He

and at smaller values of the de bias), flux penetration takes place in both half

cycles of the field and therefore we get a mean nonzero voltage in the junction.

In Fig.5.10 we plot the average velocity (averaged over a period of the field)

as a function of the magnitude of the field for different length junctions. Discrete

steps are observed in all the plots which corresponds to integer number of fluxons

taking part in the dynamics, Three typical regions are clearly seen in all the plots.

Zero voltage exists in the first region (I) where flux penetration and propagation

is not possible in the junction (flux-free state). In the second region (11), fiuxons

penetrate the junction and move unidirectionally to the other end constituting a

finite voltage (active region). The switch to a different voltage state (jumps) is

due to additional fluxons taking part in the dynamics. In the third region (Ill),

the magnitude of the external field is very large and fluxons enter the junction

in the positive half of the field and antifluxons enter in the negative half of the

field. So both fluxons and antifluxons take part in the dynamics over a period

of the field so that positive and negative voltages are observed in a cycle making

average zero voltage (overdriven region). Amplitude ranges of rectification can

be improved by tuning the system and selecting appropriate impedance matching

load z.

By reversing the de bias ( i.e., 'Y to -, ), positive part of the alternating field

can be suppressed. In this case, fluxons cannot enter the junction due to the

repulsive Lorentz force while antifluxons will be accelerated to the interior of the

junction. Therefore antifluxons take part in the dynamics and we get negative

voltage pulses.

5.6 Conclusions

In conclusion, this chapter contains theoretical predictions of rectification of ae

signals using fluxons in quarter annular LJJs by applying an external homoge-
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neous magnetic field and rectification of rJ fields by applying a constant de bias

across the junction. This diode may find important roles in telecommunications,

signal processing circuits, SQUID magnetometers, SIS mixers, RSFQ logic cir­

cuits, in the detection of rJfields, in sub-millimeter radio wave astronomy and in

many other digital applications of LJJ devices. The mechanism of rectification

discussed is entirely different from that of the ratchet potential based diodes. By

properly selecting junction parameters and the applied field strength, it is possi­

ble to rectify signals in different amplitude ranges. The junction is expected to

give very good results for adiabatic ae signals.
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Chapter 5. Figures
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Fig. 5.1 Geometry of the quarter annular LJJ in a parallel magnetic field
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Fig.5.2 Ive of the quarter annular junction showing forward-biased
region and reverse-biased region. The applied field, b, is increasing
from the top to bottom curve in the range 1.0 to 5.0 in steps of 0.4.
The parameters are /=20, a = 0.05 and z=0.5. Inset in the figure shows
.spatial profile of the fluxons moving in the junction.
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Fig. 5.3 The dependence of the normalized current le on the static magnetic field H applied
to a quarter annular LJJ (solid symbols) and critical current pattern ofa rectangular junction (open
symbols).
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Chapter 6

Quarter annular J osephson
flux-flow oscillator

Using quarter annular geometry a Josephson flux-flow oscillator is constructed

and found that the quarter annular geometry provides several advantages for

making Josephson flux-flow oscillators over a rectangular geometry. An external

static magnetic field applied parallel to the dielectric barrier of a quarter annular

junction has asymmetric boundary conditions that makes a preferential direction

for flux-flow even in the absence of a de bias. When the applied field is increased

above a threshold level, static field distribution become unstable and gives rise

to a train of fluxons moving unidirectionally from one end to the other end of the

junction. The speed and density of the flux-flow can be controlled by controlling

the field or using a small de bias transverse to the junction. The output power

of the oscillator is found to be directly proportional to the applied field. Low

power consumption, increased output power, higher tunability and decreased

line-width are some of the advantages of the proposed oscillator compared to a

standard rectangular flux-flow oscillator. This proposed device will be useful in

millimeter and sub-millimeter wave experiments.
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6.1' Introduction

The spectral line-width of a FFO can be due to junction inhomogeneities, per­

turbations caused by trapped flux-quanta and chaos in the dynamical behavior

of the fluxon chain. The internal degrees of freedom in the moving fluxon chain

may give a significant contribution to the line-width. Thus any local variations

of the fluxon spacing in the flux-flow mode will change the radiation frequency of

the FFO. In general, the line-width .6.f of the Josephson radiation is determined

by thermal fluctuations of the current passing through the junction. Assuming a

Nyquist noise spectrum for a current-biased short Josephson tunnel junction, the

full line-width at half power is given by ~f = (47T kB T R'b) / (<p5 Rs ) , where

k» is the Boltzmann's constant and T is the temperature[114]. The line-width

depends on the differential resistance R D = dV/ dI at the junction bias point and

the static resistance R, = V/I, where I is the bias current through the junction.

A free running FFO with line-width considerably below 1 MHz has been con­

structed and measured near 450GHz [115]. Currently available possibilities for

reducing the line-width are to mix two such devices or to drive on by an external

oscillator. Recently, the feasibility of phased locking of the FFO to an external

oscillator was demonstrated experimentally [116].

Investigations on a quarter annular LJ J under a static magnetic field show

that the flux linked with the junction has asymmetric boundary conditions and

make a preferential direction for flux motion in the junction. The preferential

direction in the flux-flow due to the external field decreases the internal degrees

of freedom of the fluxons and make a highly coherent and steady flux-flow in the

junction. It is observed that above a threshold value of the applied field, static

solution becomes unstable and gives rise to a train of fluxons moving unidirection­

ally from one end to the other end of the junction. The repulsive fluxon-fluxon

interactive force pushes the fluxons in the chain to flow from one end to the other

end of the junction. The flux motion is accelerated when a small de bias is applied
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transverse to the junction. Extensive numerical results with analytical predic­

tions are presented to demonstrate that quarter annular geometry reduces the

small current instability region present in the rectangular junction and leads to a

laminar flow regime where the voltage wave form is periodic giving the oscillator

minimal spectral width. The low electrical power requirements of the proposed

device make them suitable in on-chip applications.

6.2 Theoretical aspects

A LJJ with a quarter annular geometry proposed in Chapter 5 is considered

with an external static magnetic field applied parallel to the dielectric barrier of

uniform thickness. The external field is applied in such a way that it is directed

radially at the left-end (x = 0) of the junction. A quarter annular LJJ under a

static magnetic field with a de bias is modelled with the Eqs. (5.1) and (5.2) (

cf. Sec.5.1).

At higher values of the applied field, continuous flow of fluxons takes place and

a moving dense fluxon chain corresponds to the so-called flux-flow regime. If the

distance between fluxons is order f'J 1, then the soliton solution is not relevant and,.
the corresponding solution of the unperturbed sG equation is a cnoidal wave[117]

CPen ='1r - 2 am ( x - ~(t) ) (6.1)
kV1- u2

where am() is the elliptic amplitude function, u is the velocity of the fluxon chain

and k is the elliptic modulus 0 < k < 1.

6.2.1 Static and dynamic solutions

For small values of b, no voltage is observed in the junction (at 'Y = 0) and the

corresponding solution of Eq. (5.1) is a time independent value of cp. In this

case, time derivatives of the sG equation disappear so we obtain the modified

pendulum equation
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~~ = sin o (6.2)

together with the boundary conditions, ~ Ix=o= b and ~ IX=I= O. This equation

can be integrated to obtain the solution[105]

cp(x) = -2 arctan ( . h ( 1 )) (6.3)
SIn x - Xl

where Xl = In a-J~ - 1). This static solution has a half fluxon content and

exists up to the critical value be = 2. Above this value, static solution changes to

a full fluxon, The fluxon penetration into the junction is shown in Fig.6.l. For

values b > be' fluxons penetrate the junction and the generated fluxons can move

towards the load if their velocity exceeds the critical value U cr = (){ In 1 b1- 1 [53].

6.2.2 Fluxon-ftuxon repulsive force

As it is well known, fluxons with like polarities repel each other and if they are

nonrelativistic, they stay at a distance much larger than their proper size ( which

is -1 in the notation adopted ). In this case the effective fluxon-fluxon repulsive

interaction potential is Uff(X) ex: e-x, where X is distance between the fluxons

[118]. Due this repulsive interaction, fluxons will be separated by a distance which

can be calculated by considering fluxons as a particle and using the equation of

motion

cf2x dX -x
--+a- - 2e = 0
dt2 dt

(6.4)

if the fluxons move at a steady velocity, the above equation can be approximated

as
dX

a- - 2 e-x = 0
dt

(6.5)

which can be solved to get X = In(~). Thus the distance between fluxons in­

creases with time. So in a fluxon chain, individual fluxons will be separated by a
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constant distance.

6.2.3 Laminar flux-flow - Energetic analysis

In this section simple analytical models describing a smooth phase flow of the

fluxon chain is introduced which is referred to as laminar flow [106] for which tem­

poral behavior is periodic. We approximate the laminar flow by taking the vari­

ational approach and consider the high voltage limit in which the small changes

in the instantaneous voltage due to the changes in the parameters x and tare

neglected to a first approximation. The variational analysis is made on the basis

of conservation of energy by the sG Hamiltonian. The energy of the unperturbed

sG system is Eq. (1.37). Perturbational parameters modulate the velocity of the

solitons and may cause to dissipate energy. The rate of dissipation is calculated

by computing

(6.6)

where the first term on the right side account for the boundary conditions. From

Eq. (1.38), we get 'Pt = - u 'Px. Inserting Eq. (1.38) in Eqs. (6.6) and following

perturbative analysis [15], we get

d 1 1n
l

1n
l

-d (H) = -b 'Pt(O, t) - -'P;(l, t) - Q: <p~dx - , 'Ptdx
t ZOO

(6.7)

In the above equation, the first term in the right-hand side represents the energy

input from the field at the left-end of the junction, the second term represents the

power transferred to the load, the third term accounts for the energy dissipation

due to internal damping and the fourth term represents the input power from the

bias current. In the steady state, the average rate of change of the Hamiltonian

is zero, (dd~) = 0, so the above equation becomes
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The average voltage is given by the formula

1 {T
V = ({h) = T 1

0
<Pt(x, t) (6.9)

For sufficiently large values of b, we assume (cp~) = (cpt)2 =V, thus the Eq. (6.9)

can be written as

giving the mean voltage

v2

bV + - + aV2Z + "YlV = 0
z

(6.10)

V = z(b + 'Yl) (6.11)
(1 + alz)

the negative sign indicates that fluxons are accelerated towards the right-end.

Thus the ZCFFS voltage (')' = 0) can be obtained from the above equation as

VZCFFS = - ( l+z:l Z ). The power is calculated as

P = VI = V
2

= z(b + 'Yl
) 22 (6.12)

z (1 + a l z),.
Thus in a quarter annular junction output power depends on the external field.

6.3 General properties of the junction

The dependance of critical current (le) on the applied field (H) of the quarter

annular junction is shown in Fig.5.3. The quarter annular LJJ supports flux-flow

only in one direction and strictly prohibits flux-flow in other direction which is

an essential characteristics required for making FFOs.

6.3.1 de Ive of the oscillator

When the applied external magnetic field is increased above the threshold value

be, fluxons penetrate the junction from the left-end and these fluxons move uni-
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directionally to the right-end due to the fluxon-fluxon repulsive interaction. The

continuous unidirectional fluxon transit produce voltage pulses at the load which

can be averaged over a time. To get a detailed account of the internal fluxon dy­

namics, we numerically simulated the FFO using the sG equation. Simulations

are started with c.p = 0 on a junction of l = 10. IVe can reveal the details of

the flux dynamics in the junction and to plot the IVC, we calculate the required

data from the simulation. Fig.6.2 shows the IVC of the quarter annular junction

at different values of the magnetic field. In the figure, applied magnetic field is

increasing from the top to the bottom curve in the range 1.0 to 5.0 in steps of

0.5. At lower magnetic fields, critical current for fiuxon penetration is found to be

large and the critical current gradually decreases on increasing the field strength.

In all curves, average voltage increases linearly with the bias and absence of any

constant voltage steps in the IVC indicate the high tunability of the device. At

higher magnetic fields, finite voltage is observed at zero bias current indicating

the existence of ZCFFS. This is a manifestation that even in the absence of a bias

current fluxons can move unidirectionally form one end to the other end of the

junction. The voltage values calculated from Eq. (6.11) along with numerically

simulated values are shown in Fig.6.1a. Both values agree exactly in the high

voltage limit.

6.3.2 Magnetic field - voltage characteristics

The influences of an external field on the dynamical properties of the junction

are studied in the absence. of a de bias (/ = 0). At low magnetic fields, the

static solution in the junction has only a half-fluxon content. This static solution

exists up to a critical value of the magnetic field be = 2.0, Above this value,

static solution become unstable and gives rise to a train of fiuxons moving in

the junction. In Fig.6.1, static distribution of the flux profile in the junction at

b = 1.9 (circles) and dynamic distribution of the fluxons at b = 2.1(solid line)
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are presented. This figure illustrates the process of fluxon penetration into the

junction at a high magnetic field. The data were obtained by numerical solution of

Eqs. (6.1) and (6.2) which automatically takes into account the fluxon interaction

with the edges and with each other. The unidirectional flow of fluxons produce an

average voltage across the junction. The magnetic field (b) versus average 'voltage

« u » in a quarter annular junction is presented in Fig.6.3a. For generality,

different lengths of the junctions are considered. Average voltage is zero below

the critical value be and linearly increases with the applied field above the critical

value.

In Fig.6.3b, the magnetic field versus average velocity on a junction of length

= 10 at different values of the dissipation parameter a, are plotted. These

graphs demonstrates that in quarter annular junctions, due to the asymmetrically

linked magnetic field, unidirectional flux-flow takes place even in the absence of

a de bias. This peculiar property of the quarter annular junctions make them

superior in performance as a FFO. A quarter annular LJJ when fabricated as

FFO require less power and will be suitable for on-chip integration with other

devices. Rectangular junctions require much higher power for operation and the

heating effects associated will have a negative influence on the performance in

integrated devices.

6.4 Flux-flow characteristics

6.4.1 Spatial and temporal behavior

Spatial coherence of the fluxon chain in flux-flow oscillators can reduce the line­

width of the radiation considerably. To demonstrate spatial coherence of the

flux-flow in quarter annular junctions, we present a series of plots. In Fig.6.4,

we present the spatial coherence in terms of the fluxon profiles <Px and in terms

of the voltage pulses <Pt along the length of the junction (solid lines). For com­

parison, the spatial profiles with the corresponding parameters in a rectangular
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oscillator is presented (dotted lines). The uniformly increasing amplitude of the

pulses shows that fluxons are uniformly accelerated in quarter annular junctions.

The spatial behavior in a quarter annular junction is found to be regular and

highly periodic. In rectangular junction, there is a gradual decrease in the ampli­

tude of the fluxons as they reach the load. This means that fluxons are slightly

decelerated in a rectangular junction as they reach the load. This is due to the re­

pulsive interaction of the fluxons with the external field linked with the right-end

of the junction. In quarter annular junctions, there is no flux linked at the right­

end and therefore there is no deceleration of the fluxons as they reach the load.

The well defined profiles in the quarter annular junction represent highly ordered

and regular flux-flow. Irregular behavior is observed in the rectangular junctions

which is a manifestation that some form of chaos is present in the rectangular

junctions. Thus a quarter annular junction is expected to give minimum spectral

width compared to a rectangular junction. The time dependance of voltage pulse

forms in the load is shown in Fig.6.5. The voltage pulses are periodic with well

defined pulse peaks. These pulse forms indicate the ordered smooth flow of flux­

ons in the junction with constant spacing between the individual fluxons. The

periodic nature indicates that flux-flow takes plate in a highly coherent form. A

highly rigid fluxon chain is transported through the junction and is stable against

perturbations. The calculated frequency spectrum using fast Fourier transform

(FFT) of the voltage pulses is shown in Fig.6.5a. The dominant first harmonic

is seen along with the small second and third harmonic contents. Absence of

any noise signals in the spectrum proves the assumption that in quarter annular

junctions flux-flow takes place in a highly coherent and ordered form.

6.4.2 Output power

It is found that the output power, P(t) = Z (or;;/ox)2(1, t), on the load z as

function of time t is periodic. The periodic nature of pulse forms and the periodic
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distribution of the power intensity in the load is also a manifestation of the

coherence and tunability of the oscillator. The periodic nature of the power

content on the load have important contribution in increasing the average output

power of the device. It is important in practical applications to know the influence

of load z on the average output power of the oscillator. Impedance matching load

can increase the output power of the oscillator. Fig.6.6 shows the dependency of

the average output power as a function of the load at the bias point 'Y = 0.3 and

at the magnetic field b = 2.0. Output power is calculated as P = (8cp(l)/8t)2/Z •

Quarter annular and rectangular junctions of different lengths are studied. It

is observed that fine impedance matching can be achieved in quarter annular

junctions. Higher output power is obtained at the impedance matching load.

In rectangular junctions, exact impedance matching cannot be achieved. At

larger loads, output power becomes practically independent of the load which is

a desirable feature of these devices as oscillators. In all cases, average output

power in a quarter annular junction is clearly larger than that of a rectangular

junction.

6.5 Two coupled flux-flow oscillator

In recent years, a great deal of attention has been attracted to different kinds

of solid-state multilayered systems. Multilayers are attractive because it is of­

ten possible to multiply a physical effect achieved in one layer by N times (N

is the number of layers). This can be exploited in the fabrication of solid-state

devices. Also, multilayered solid-state systems show a variety of physical phenom­

ena which result from the interaction between individual layers. In this section,

two vertically' stacked inductively coupled quarter annular junctions are studied.

Analysis shows that in-phase flux-flow mode in coupled junctions increases the

output power and stability of the oscillator.
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6.5.1 Theoretical model

LJJ operated in the flux-flow mode were found to be attractive in the sub­

mm wave-band tunable local oscillators. The performance of such an oscillator

is limited by the rf power available for pumping a nonlinear detector. It is well

known that higher radiation power can be achieved by using an array of coherently

operating devices. It has been shown that in a stack of magnetically coupled LJJ,

chains of fluxons moving in different layers can be mutually phase locked. In a

two-fold stack, both in-phase and out-of-phase locked modes can be obtained[36,

119]. It has been predicted that the in-phase flux-flow mode multiplies the power

of flux-flow oscillator whereas the out-of-phase mode doubles the main radiation

frequency of the oscillator. Fluxon dynamics in a two coupled stack is described

by the equations[41, 107, 120]

CPtt - 1_182CPxx + sin cp = -acpt - 'Y - 1:82 'l/Jxx
(6.13)

1/;tt - 1_182'l/Jxx + sin1/;= -a'l/Jt - 'Y - 1:82 CPxx

where S (-1 < S < 0) is a dimensionless coupling constant. The boundary con­

ditions of the stack in an external field with a passive load of impedance z,

connected at x = l (right end) of the junction are ,.

CPx(O, t) = c H = b:

'l/Jx(O, t) = c H = b ;

tr: (l t) = - ~yx , 2z

11/' (l t) = - ss.o/x , 2 z

(6.14)

These boundary conditions are consistent with the fact that the effective field

linked with the junction make asymmetric boundary conditions with maximum

field value at x = 0 (left end) and zero value at the right end of the junction.

Due to these boundary conditions, fluxon penetration is possible only from the

left end of the junction. For positive values of'Y in Eq. (6.13), fiuxon penetration

is possible (forward biased state) and for negative values, fluxon penetration is

not possible and flux-free (Meissner state) exists in the junction (reverse biased

state). The passive load (z) connected at the right end across the two junction
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can be used to absorb the fluxon chain entering the junction in the forward biased

state.

6.5.2 Numerical results

Eq. (6.13) with boundary conditions given by Eq. (6.14) represents the two

coupled quarter annular LJJ in a magnetic field. To solve these equations, we

use an implicit method. In the following simulations we assumed the dissipa­

tion parameter Q = 0.1 and the load impedance z = 0.5. The output power of

the LJJ stack operating in the in-phase mode is investigated. Detailed analy­

sis shows that in-phase flow of fluxons decreases the noise in the junction and

make highly ordered coherent flow of fluxons. The in-phase flow of fluxons can

be achieved using highly homogeneous junctions under uniform boundary condi­

tions. The characteristic propagation velocity in the in-phase mode is given by

the expression c+ = v'e.s > eo and the characteristic propagation velocity in the

out-of-phase mode is given by the expression c: = v'f~s < eo. The power of a

flux-flow oscillator is expected to be proportional to the square of the amplitude

of the voltage at the edge of the junction facing the load. In the numerical ex­

periment the coupling parameter was chosen as S =~-0.5. The output power of

the oscillator is calculated across the two stacks of the junction. The increased

output voltage obtained from the oscillator is presented in Fig.B.7. This shows

how the coupling of different junction increases the average output power of the

oscillator.

6.6 Conclusions

A simple and reliable geometry is proposed for constructing a Josephson FFO.

This geometry is found to be advantageous over standard rectangular geometry

in power consumption, spectral purity and in output power. In quarter annular

FFOs, as opposed to rectangular FFOs, output power depends directly on the
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applied field. In rectangular junctions, output power depends on the field only

at small values and is independent of the applied field at larger values. The

asymmetric boundary conditions created by the external field make a highly co­

herent and regular flux-flow even at zero current bias. This new results indicate

that quarter annular geometry will substantially improve the performance of a

FFO. Using an exponentially tapered dielectric barrier, as suggested and demon­

strated in[105, 106], the performance and tunability of the device can be increased

considerably. Using vertically stacked junctions, power of the oscillator can be

increased further. Flux-flow in the absence of an applied bias can be utilized

in the construction of a field to voltage transducer which can be used to detect

magnetic fields higher than the first critical field of the junction.
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Chapter 7

Magnetic field sensors using
exponentially tapered quarter
annular J osephson junctions

A novel fluxon based magnetic field sensor is proposed using an exponentially

tapered quarter annular Josephson junction geometry. Theoretical studies shows

that quarter annular geometry provides asymmetric boundary conditions in a

parallel magnetic field and exponentially tapered width of the dielectric barrier

provides a geometrical driving force for the fluxons facilitating unidirectional flow

of fluxons from one end to the other end in the junction when a magnetic field,.
parallel to the dielectric barrier is applied to the junction. The proposed device

acts as a field to voltage transducer and does not require electric power for its

operation.

7.1 Introduction

Josephson junctions are best transducers which can convert magnetic energy

into electrical energy. They are widely used in SQUID magnetometers[121], SIS

mixers[122] and in voltage standard applications[123]. SQUIDs are used for an

extremely sensitive measurement of the magnetic fields. They can detect even the

magnetic fields of the biological cells. In many applications, the extraordinary
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sensitivity of the SQUID based sensors are not required. For such applications,

we can make use of some simple LJJ devices to fabricate sensors with less sen­

sitiveness than SQUID sensors but exhibiting better performance compared to

other commercially available magnetic field sensors.

Detection of both static and rf magnetic field signals for nondestructive test­

ing and evaluation needs a wide range of different sensor types depending on

spatial resolution and field sensitivity. In this chapter, an exponentially tapered

quarter annular LJJ terminated with a load resistor at one end is studied and

demonstrates that the device can be effectively used as a magnetic field to volt­

age transducer. Quarter annular geometry provides non-uniform boundary con­

ditions to a parallel magnetic field. Exponential tapering in LJJ was introduced

in Ref.[l05, 106] as a means to produce coherent unidirectional flow of fluxons in

a flux-flow oscillator. Exponential tapering provides a geometrical force for the

fluxons and avoids the presence of trapped fluxons and gives perfect impedance

matching to an external load. The load resistor connected at one end of the junc­

tion can be used to terminate the fluxon chain moving in the junction. This is a

unique device in which fluxons enter the junction from one end and move unidi­

rectionally to the other end of the junction under the iafluence of the geometrical

driving force and also due to the fluxon-fluxon repulsive interaction.

7.2 Theoretical model

A LJJ with a quarter annular geometry is considered with an external magnetic

field applied parallel to the dielectric barrier of uniform thickness. A sketch of

the quarter annular geometry is shown in Fig.7.1a. The width of the junction

is exponentially tapered (i.e., w(x) = woe-'\X) , decreasing towards the load as

represented schematically in Fig.7.1(b). The external field is applied in such a

way that it is directed radially at the left end (x = 0) of the junction. The

magnetic flux linked with the junction can be expressed as dcp(x) = c itt ·n) =
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e H cos(kx) dx [90, 91, 112] The effects of an applied magnetic field is to induce

currents in closed form across the junction. The induced current in the junction

due to the applied field is d1xx ) = eH cos(kx). This current term gives a net'

positive value over the length of the junction and therefore cannot circulate in

closed form across the junction. This means that the external field cannot have

any influence in the interior part of the junction. Thus an exponentially tapered

quarter annular LJJ under a static magnetic field is modelled with the general

perturbed sG partial differential equation[105, 12]

CPtt - CPxx + sin cp = -acpt - Acpx (7.1)

Where A is the tapering factor. The boundary conditions of the junction in an

external field with a passive load of impedance z (representing a connection to a

microwave circuit) connected at x = l (right-end of the junction) are

CPx(O, t) = E H = b ; CPx(l, t) = - CPt
z

(7.2)

These boundary conditions are consistent with the fact that the effective field

linked with the junction has asymmetric boundary conditions. Due to this bound-,.
ary conditions, flux penetration is possible only from the left-end of the junction.

The penetrated fluxons are pushed towards right-end due to the geometrical

driving force. The fluxon-fluxon repulsive interaction maintain constant distance

between the fluxons. The transit of the fluxons from the left-end to the right-end

in the junction produce periodic voltage pulses in the load which can be averaged

over a time. The passive load (z) connected at the right-end absorbs the fluxon

chain in the junction.

In nonuniforrn junctions, a static field can produce a preferential direction for

the flux-flow even in the absence of an external de bias. This effect gives rise to

ZCFFS in the current voltage characteristics of the junction [87, 49]. ZCFFS is

a manifestation of flux-flow in the absence of a de current. Thus, in nonuniform
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junctions or junctions with asymmetric boundary conditions, it is possible to

extract work from a constant magnetic field.

Eq. (7.1) with boundary conditions, Eq. (7.2), represents an exponentially

tapered quarter annular LJJ in a static magnetic field. Eqs. (7.1) and (7.2) are

mathematically equivalent to Eqs. (11), (12) and (13) in Ref.[105] and therefore

all the results obtained in that work is applicable to the present model. In

Ref.[105], a coherent unidirectional flow of fluxons was achieved by feeding a

de bias from one end of a rectangular junction. In the present work, the same

phenomenon is achieved by considering an exponentially tapered quarter annular

junction and applying a magnetic field parallel to the dielectric barrier.

In the case of exponentially tapered junctions, impedance can be exactly

matched. From Eq. (7.1), we can see that any travelling wave (i.e., 4>(x, t) =
!(x-ut),) has a solution with the velocity u = Ala. The condition for impedance

matching can be obtained by equating this limiting 'velocity to -cptlcpx. Therefore

the impedance matching load can be calculated as z = AIo,

In the case, 0 < A ~ 1, the maximum value of b, for a static solution to exist

is be = 2 - 2A (cf. Sec. 6.2.1). This expression shows that exponential tapering,.
decreases critical magnetic field value.

To determine the dynamical properties of the device, we introduce simple

analytical models describing a smooth phase flow of the fluxons through the

junction which is referred as laminar flow[106]. We approximate the laminar flow

by taking the variational approach and consider the high voltage limit in which

small changes in the instantaneous voltage due to the changes in the parameters

x and t are neglected to a first approximation. The variational analysis is made

on the basis of conservation of energy by the sG Hamiltonian. The energy of

the unperturbed sG system is given by Eq. (1.37). Perturbational parameters

modulate the velocity of the solitons and may cause to dissipate energy. The rate

of dissipation is calculated by computing
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(7.3)

where the first term on the right side account for the boundary conditions. From

Eq. (1.38), we get 'Pt = - u 'Px. Inserting Eq. (1.38) in Eq. (7.4) and following

perturbative analysis[10S, 106], we get

du 2)- = (1 - U (A - au)
dt

(7.4)

This equation shows that for A > a, fluxon will always be accelerated towards

the limiting value u = 1. When A < o.the fixed point u = A/a is linearly stable.

Assuming a linear flow of the fluxons, we get the average voltage across the load

as[10S]
v = _ (2 + ,xZ)zb

2 + 2alz - Al

and the travelling wave speed of the fluxon as

(1+ Al/2)z
u = ----------

(A - az) + 1 + olz - Al/2

7.3 Static field detection properties

(7.5)

(7.6)

The influences of an external static magnetic field on the dynamical properties

of an exponentially tapered junction is studied and seen that at low magnetic

fields, the static solution in the junction has only a half-fluxon content. This

static solution exists up to a critical value of the magnetic field bc, above this

value, static solution becomes unstable and gives rise to a train of fluxons moving

in the junction. In Fig.7.2, static distribution of the flux profile ('Px) in the

junction at b = 1.9 (solid line) and dynamic distribution of the fluxons at b =
2.0(circles) are presented. This figure illustrates the process of fluxon penetration

into the junction at higher magnetic fields. The data were obtained by numerical

solution of Eqs. (7.1) and (7.2) which automatically takes into account the fiuxon

interaction with the edges and with each other. The unidirectional flow of fluxons
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produces an average voltage across the junction. The magnetic field (b) versus

average voltage « u » is presented in Fig.7.3. For generality, different tapering

factors are considered. It is found that as the tapering factor increases, the critical

field required for flux penetration decreases. Average voltage is zero below the

critical value be and linearly increases with the applied field above the critical

value. These graphs demonstrates that in exponentially tapered quarter annular

junctions, due to the geometrical driving force and due to the asymmetrically

linked magnetic field, unidirectional flux-flow takes place even in the absence of

a de bias. This peculiar property of the exponentially tapered quarter annular

junctions make them superior in the design of the magnetic field sensors.

7.4 rf field detection

To determine the rf field detection capabilities of the device, we have considered

a harmonically varying rf field parallel to the dielectric barrier of the junction.

Theoretical model suggests that the corresponding boundary conditions of the

junction become:

CPx(O, t) = E H sin(wt) = bsin(wt) ; rpx(l, t) = _ ipf
z

(7.7)

These boundary conditions show that the flux linked with the junction at every

alternate half cycles of the field changes in sign. Thus in the first half cycle of the

field, fluxons enter the junction while in the second half cycle antifluxons enter the

junction. Thus this device support ftuxon and antiftuxon propagation in the same

direction one after another. In Fig. 7.4, we plot the spatial profiles (CPx) of the

fluxons and antifluxons moving in the same direction along the junction. Fluxons

on reaching the load produce positive voltage pulses while antiftuxons produce

negative voltage pulses. Thus the rf field produces an alternating voltage across

the load. The amplitude of the induced ae voltage will be proportional to the rf

field intensity.
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7.5 Conclusions

The proposed device is very simple to fabricate and can be operated as a static

device as this device does not require electric power for its operation. Absence of

an electric bias current minimizes the heating effect and decreases the degradation

of the device and therefore make them suitable in space applications. The device

gives output voltage which is linearly proportional to the applied field. Both

static and time varying magnetic fields can be detected using this device. One

limitation of the device is that it can detect only fields of strength higher than the

first critical field of the LJJ and that is parallel to the dielectric barrier. Junctions

of large AJ will give lower critical field and therefore can be preferred in making

the device. As it can be seen from Eq. (7.6), low dissipative junctions give higher

voltages and are suitable for making the sensor. The transit time of the fiuxons

can be reduced using shorter junctions and therefore the delay in the detection can

be minimized. A static magnetic field produces a proportional de voltage across

the load and a rJfield produces a proportional alternating voltage across the load.

Using vertically stacked junctions output voltage can be increased. Instead of the

exponential tapering, a properly chosen de bias caa be used to drive the fluxons.

This device is extremely useful in detecting comparatively higher fields with less

precision. Experimental realization of the device will create potential market in

the superconducting electronic industry.
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Chapter 8

Results and conclusions

The static and dynamic properties of various one-dimensional single and coupled

superconducting junctions are studied by making use of the fundamental prop­

erties of flux-quantization and the associated nonlinear supercurrent in these

junctions. It is found that the stable dynamics exhibited by the ftuxons in these

junctions are extremely useful in the fabrication of various devices like logic gates,

diodes, magnetic field rectifiers, flux-flow oscillators, magnetic field sensors, etc.

Coupled Josephson junctions with many layers exhibit very complex dynam­

ics. Therefore it is important at first to understand in detail the dynamics in single

and in two or three coupled junctions. In this (hesis, fluxon dynamics in various

LJJ geometries are modelled theoretically and studied using the perturbed sine­

Gordon partial differential equation. The fluxon dynamics is artificially simulated

by solving the perturbed sine-Gordon equation using finite-difference method.

Some new geometries like the semiannular and quarter annular geometries are

proposed to implement some novel devices. Both single and vertically stacked

junctions under various internal and external conditions are studied to predict the

complicated fluxon dynamical properties. It is found that coupled junctions offer

an extremely rich spectrum of dynamical properties which can be advantageously

employed in implementing various fluxon based devices.

In short, the thesis contains theoretical analysis of fluxon dynamics in vari-
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ous LJJ geometries under various internal and external conditions. In particular

studies include (1) fluxon dynamics in long linear LJJ with spatially periodic

perturbation to understand the soliton creation and annihilation properties and

to know the bunching properties of the fluxons (2) interaction of fluxons in two

and three vertically coupled junctions to implement logic gates (3) fluxon dy­

namics in semiannular geometry under an external magnetic field to make fluxon

based diodes for rectification of ac signals and harmonically oscillating magnetic

fields and also to implement a novel bidirectional flux-flow oscillator with a dis­

tinct operational characteristics (4) dynamics in quarter annular junctions for

construction of fluxon based diodes for rectification of ac signals and rf magnetic

fields (5) fluxon dynamics in quarter annular junctions for constructing magnetic

field based flux-flow oscillator with superior performance compared to the con­

ventional standard rectangular flux-flow oscillator and in two vertically coupled

junctions to get increased output power (6) theoretical analysis of an exponen­

tially tapered quarter annular LJJ to determine the feasibility of making fluxon

based magnetic field sensors for detecting high intensity fields with extreme pre­

cession.

In this thesis, Josephson junctions of three types of geometries, viz, rectangu­

lar, semiannular and quarter annular geometries in single and in coupled format

are studied to implement various fluxon based devices. Rectangular geometries

are considered for studying fluxon creation and annihilation phenomena and to

construct logic gates of two different geometrical structures. Semiannular and

quarter annular geometries are considered with an embedded parallel magnetic

field applied to the system. The major difference between fluxon dynamics in

semiannular junctions and in quarter annular junctions is in the fact that in

semiannular junctions, the external magnetic field has influence both in the in­

terior as well as on both boundaries of the junction while in quarter annular

junctions, the external field has influence only at one boundary of the junction.
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Thus in quarter annular junctions, external field produces asymmetric boundary

conditions which helps fluxon penetration from one end of the junction even in

the absence of a bias current. There is a preferential direction for fluxon mo­

tion in quarter annular junction that makes the performance of quarter annular

junction better than that of the semiannular junction.

Studies presented in this thesis reveal that multistacked junctions are ex­

tremely useful in the fabrication of various superconducting electronic devices.

The stability of the dynamical mode and therefore the operational stability of

the proposed devices depends on parameters such as coupling strength, external

magnetic fields, damping parameters etc. Stacked junctions offer a promising

way to construct high-T, superconducting electronic components. Exploring the

complex dynamics of fiuxons in coupled junctions is a challenging and important

task for the future experimental and theoretical investigations.

,.
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