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We consider the stability properties of spatial and temporal periodic orbits of one-dimensional
coupled-map lattices. The stability matrices for them are of the block-circulant form. This helps us to
reduce the problem of stability of spatially periodic orbits to the smaller orbits corresponding to the
building blocks of spatial periodicity, enabling us to obtain the conditions for stability in terms of those

for smaller orbits.

Spatially extended nonlinear dynamical systems have
recently attracted considerable attention [1-3]. This is
because of their wide range of applications such as tur-
bulence, pattern formation in natural systems, solitons,
etc. They also exhibit a very rich phenomenology includ-
ing a wide variety of both spatial as well as temporal
periodic structures, intermittency, chaos, domain walls,
kink dynamics, etc.

In this Rapid Communication we address the problem
of stability of spatial and temporal periodic structures.
We specifically consider coupled-map lattices with
nearest-neighbor couplings. Detailed numerical studies
show that the coupled-map lattices give rise to a variety of
rich spatial and temporal structures [1]. Consider follow-
ing the general model:

Xi+1@) = hofox, D)) +h f1(x, (i+1))
+h_|f_|(x,(i—1)), (l)

where x, (i) is the variable associated with the ith lattice
point at time ¢ taking values in a suitably bounded phase
space. The maps fo, f1, f—1 are maps, such as a logistic
map, that describe the evolution of an otherwise isolated
system. The parameters ho, 4, and A —, represent the
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S (N,k)={R\Ry,...,R)i, ...
represents a solution of Eq. (1) for the closed chain Gy xy
with temporal periodicity z. Here the ordered pair
(R, -+ R/ represents a state made up of k replicas of
the state R,. We call S;(V,k) the k replica solution of
S:(N,1). The problem we address concerns the stability
properties of such spatially and temporally periodic solu-
tions S;(V,k), from the analysis of the stability matrices
for S:(V,1) of the building blocks. In other words, we
question what the effect is of enlargement of phase space
and the couplings on the stability of the replica solutions.
We note that Waller and Kapral (Ref. [4]) have con-
sidered a similar problem for some very specific maps and
couplings and for simple homogeneous and small period
solutions. Here we analyze the problem in a very general
way and obtain conditions for the stability of the spatially

44

AR . RSR, ...

coupling strengths and are chosen so that x,+(i) lies in
the same phase space (e.g., [0,1] for the logistic map
f(x)=ux(1—x), 0=<u=<4). Henceforth, we assume
that ho, h1, h - are positive. However, almost all our re-
sults are valid even otherwise.

Let @y denote a closed chain of N lattice points in
which the right-hand neighbor of the Nth point is the first
lattice point. We note that for N =1 the chain @, consists
of a single point which is to be understood as a neighbor of
itself. Let R, =(x,(1),...,x,(V)) denote the state of the
system for the chain @y at time ¢. Let S;(V,1) denote a
solution of Eq. (1) with temporal periodicity t for the
chain @y, ie., S (N,1)={R,R;,...,R,R,R,...}.
Now consider a closed chain of twice the length, i.e.,
@,n=C>xn. Obviously the spatially periodic sequence
S.(N,2) ={R|R%n(R1RD:, ... AR R)1(R\R1)2, ...}
built from the states {R,} as the building blocks is a solu-
tion of Eq. (1) for the closed chain @;xy with temporal
periodicity 7. Here the ordered pair (R,R/), repre-
sents the state (x,(1),...,x,(N),...,X,(2N)), with
x (N+i)=x,0),i=1,2,...,N, which is made up of two
replicas of the state R,. In general, the sequence

LRk, ...}

Iextended solution.

We begin with the simplest case of N =1 so that R,
consists of a single lattice point x,(1)=x, and conse-
quently we suppress the lattice index. The replica solution
S.(1,k) for the chain @y =Cx, is a homogeneous solu-
tion with {x,} as building blocks. Now the solution
S.(1,1)={x1,x2,...,%:,X1,X2,...} for the building
block is a stable solution provided

O f(x),. ... )l <1, )
where f(x)=hofo(x)+h f1(x)+h_f-1(x) and f'(x)
=df(x)/dx. For the homogeneous solution S.(1,k), the
stability condition is that all eigenvalues of the k Xk sta-
bility matrix J=J,J3--J. have magnitude less than
one. Here J, is a k Xk Jacobian matrix given by
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hofo  hifi 0 - 0 0  h_f
h-if“1 hofo hifi -+ 0O 0
;= 0 h—if"1 hofo -+~ 0 0 0
! : 3)
0 0 h-if-1 hofo  hifi
hifi 0 0o .- 0  h_f"y  hofd

The matrix J; is a circulant matrix whose eigenvalues are
given by [5]

M =(hofot o hifi+of " h-if20)f ' (x),

r=1,2,....,k, @

T
Now we turn to the case of higher values of V. Consid-

er the solution S, (N,1) for the closed chain @. Stability
of the solution is determined by the eigenvalue with larg-
est magnitude of N X N matrix

J=Ji2 e, )

where o, is the kth root of unity given by o, h i is the Jacobi o o
=/l =D/k] Thys the eigenvalues of the stability ma- v ere.j, 's the Jacobian matrix given by
trix J are Ji=A+B,+C, . (10)
’ T Here A, is a tridigonal matrix given b
A, =TT A, =TT Uhofo e+ w,h o f (x) ' & given >
=1 =1

+of TTho fli ()] (5)

Now |A,| <1, for all r, ensures the stability of the homo-
geneous solution S, (1,k).

Consider the special case when all the maps are the
same, i.e., fo(x)=f1(x)=f_,(x). For a single point,
i.e., the chain @, this implies that ho+h,;+h - =1. As-
suming that condition (2) is satisfied, the homogeneous
solution S, (1,k) for the chain @y is stable if

|h0+w,h|+w,"*'h_1fsl. (6)

Condition (6) is satisfied provided |ho+h,+h- | <1,
which is obviously true since Ao+hA+h - =1. Thus the
stability of the homogeneous solution S.(1,k) is
guaranteed by the stability of the single-point solution
S.(1,1) for the same parameters of the map exhibiting no
effect of enlargement of phase space and the couplings.

As a specific example, for this special case, we take the

hofo(x, (1)) hyfi(x,(2)) 0
A,= h—-|f’—l(x’(l)) hof(')(x,(2)) h[f‘(xl(3))

(11a)
and the matrices B, and C, have only a single nonzero ele-
ment and are given by

(B,),-j=h|fi(x,(l))6,~,v5j|, (11b)

(C,),»,-=h_lf'_|(x,(N))J,-lrS,-N. (11¢)

Let us now consider the solution S;(NV,k) of the closed

chain @, xy which is obtained by k replicas of the solution

S.(N,1) for Cn. The stability of S;(V,k) is determined

by the eigenvalues of kNXkN stability matrix

J=J\J2---J. where J, is a kN XkN Jacobian matrix
given by

logistic map. This map has several stable periodic orbits A B 0 0 G
depending on the value of u (Ref. [6]). In particular, it ¢ A4 B --- 00
shows a period-doubling structure leading to a period- 0 CA - 00
doubling attractor [6]. The above analysis shows that for Jo=1": : (12)
the coupled logistic map the entire period-doubling struc- : ) :
ture and the structure of other periodic windows will be 0 00 - A B
lifted to the chain @, for the same values of u together B, 0 O C, A,
with the same stability properties for all k. =
Our second examp{epis E[)hat considered by Waller and for k > 2. For k=2,
Kapral [4]. They consider the maps A, B+C
Ji = (13)
hofo(x) =ux(1—x)—2yx, (7a) B+C A
hfilx)=h_f-1(x)=yx. (7b)  and for k=1, J,=A,+B,+C,=j,. We note that Jacobi-

Using Eq. (5) for the fixed point and the condition
A= X1, i.e., the condition for marginal stability, we ob-
tain the boundaries of the stability region of -the fixed
point and the periodic solution in the u-y plane. Our re-
sults coincide with those of Ref. [4]. For example, for the

an matrices J, [Egs. (12) and (13)] are block circulant
where each block is an VX N matrix. This observation is
crucial for our analysis of stability properties. A block-
circulant matrix can be put into a block diagonal form by
a unitary transformation [5]. The block diagonal form is

fixed point homogeneous solution for x =0, the stability M) 0 -+ 0
criterion using Eq. (5) is given by 2
. o 0 M7 --- O
u=x1+y2—e®—e "), (®) D= s (14)
where 0=2ri/k, i=0,1,2,...,k. This coincides with : "
Egs. (2) and (6) of Ref. [4]. 0 M,
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where the matrices, M,(’), r=1,...,k, are N XN matrices
given by

M =4,40,B+of'C,. (15)

Note that this form is a generalization of Eq. (4). The
matrix M " is the same as the matrix j, of Eq. (9) since
@ =1. The unitary matrix which affects the above block
diagonalization is a direct product of Fourier matrices of
sizes k Xk and NXN. The elements of Fourier matrices
are only roots of unity and thus are independent of the
matrix being diagonalized. Consequently, the same uni-
tary matrix block diagonalizes the product of J,’s. Thus
the block diagonal form of the product matrix J
=J,J2 - J, is given by

ﬁM’m
=1

ﬁM,(Z)
t=1 .

D, (16)

ﬁM[(k)
=1

The first block H,’=|M,(') is the same as the matrix
J=jij2-" " j. of Eq. (9). The stability properties of the
solution S,(/V,k) are determined by the eigenvalues of
matrix (16) of which j is only one constituent block. In
addition to the eigenvalues of j, we now must look at the
eigenvalues of the remaining k —1 blocks of Eq. (16).
Thus the effects on the stability due to the enlargement of
the phase space and couplings manifest themselves
through the eigenvalues of the additional blocks. A gen-
eral block M (size N X N) has the following structure:

M=T14,+e°B,+e °C,), an
=1

where o, =e'® and 0} ' =e 7.

We note that the elements of M are just combinations
of entries of j [Egs. (9)-(11)]. Thus the problem of sta-
bility analysis of larger orbits is reduced to that of the en-
tries of j. This corresponds to the reduction of the
analysis of k/V X kN matrices to that of N X N matrices.

Coming back to Eq. (17), it is clear that if we check the
eigenvalues of M for 0 between 0 and 2r, it ensures the
stability for all values of k. Actually, it is sufficient to
check for 0 =< 6 < n. Of course, for a given value of k it is
sufficient to check for a maximum of [(k/2)+ 110 values
[71.

A further simplification occurs for z =1, i.e., for a
fixed-point solution. In this case it can be shown that the
eigenvalues of Eq. (17) need to be checked only for §=0
and 6 =r for the following two cases. (a) Nis 2 or 3. (b)
The largest (absolute) eigenvalue is real as a function of
6.

We now illustrate our procedure with coupled logistic
maps with u =4, ie., f(x) =pux(1 —x) and

X+1)=U0=a)f, @+ fef(x,G+1))
+3ef(x,(—1)), (18)

where 0 < e < 1. We discuss the stability of two different
solutions. First, consider a fixed-point solution S;(2,1)
=(x(1),x,(2)) of Eq. (18) for the chain @, with
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x1(1)#x,(2). This solution is stable for the values of
€ in the range (4+6)/8=0.806... to (4++/73)/32
=0.860.... As noted above, to check the stability of the
solution S| (2,k) for the chain @, x, obtained by k replicas
of the solution S1(2,1), it is sufficient to consider only two
values of 0, namely, #=0 and z in Eq. (14). The condi-
tion for stability for 6 =0 is the same as that for the solu-
tion S1(2,1) and one needs to check only for 8 =r addi-
tionally. Explicit calculation shows that the solution
S1(2,k) remains stable for the same range of € values for
all k.

Second, we consider a period-two solution of Eq. (18)
for the closed chain @, namely, S,(2,1) ={R,,R,} where
Ri=(x,(1),x,2)) and Rr=(x(1)=x,(2),x,(2)
=x,(1)) with x;(1)#x,(2). This solution is stable for ¢
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FIG. 1. This figure shows kink-type solutions for various NV

and their replica solutions for k=10. (a) A kink solution

S2(5,1) on the left-hand side and its replica solution for k =10

on the right-hand side for ¢=0.08. (b),(c) Similar figures for
N =17 and 8, respectively.
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in the range from (13—+/73)/32=0.1392... to
(4—+/6)/8=0.1938.... The stability of the k replica
solution S,(2,k) has been verified numerically using Eq.
(17). For even k, the lower bound shifts to 0.14037. . ..
For odd k, the lower bound approaches this value accord-
ing to the sequence 0.14009 . . . for k£ =3, 0.14026. . ., for
k=5,0.14031. .. for k =7, etc.

Our next example is the kink-type solutions [3] to Eq.
(18). We have considered several kink-type solutions.
Here we discuss the following solutions for u=3.41: (i)
N =5, Consider the basic unit S,(5,1) shown in Fig.
1(a). Figure 1(a) also shows the replica solution with
k=10. The basic unit S,(5,1) is stable in the € range
from 0 to 0.0967.... We use Eq. (17) to determine the
stability of the replica solutions. The higher-order solu-
tions are stable in the same range within computational
accuracy. This has been confirmed by actual numerical
simulations for replica solutions with many k values. (ii)
N=7. Consider the basic unit S,(7,1) shown in Fig.
1(b). Figure 1(b) also shows the replica solution with
k =10. The basic unit S,(7,1) is stable in the range from
0to0 0.33772.... We analyze the stability of replica solu-
tions using Eq. (16). We find that for even k, the stability
range reduces from €=0 to ¢=0.33762.... For odd &,
the lower limit remains the same, i.e., ¢ =0 and the upper
limit approaches 0.33762 ... by the sequence 0.33766. ..
for k=3, 0.33764 . .. for k =S5, etc. Again this result has
been confirmed by actual numerical simulations. (iii)
N =6 and 8. We consider the kink solutions, each with an
equal number of consecutive points in the upper and lower
branches, i.e., 3 and 4 points for N =6 and 8, respectively.
The basic unit S$,(8,1) for N =8 and its replica solution
with k =10 are shown in Fig. 1(c). In this case, using Eq.
(17) and actual numerical simulations we find that the
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stability of the replica solutions remains unchanged by en-
largement of the phase space.

We have discussed above the conditions that ensure the
stability of spatially and temporally periodic orbits. In
addition, our analysis also leads to the following important
conclusion about unstable periodic orbits. As noted in a
comment after Eq. (16) the matrix j appears as a block of
the matrix D of Eq. (16). Hence, a solution built out of
replicas of unstable periodic orbits will also be unstable.
Enlargement of phase space and the effect of couplings
cannot stabilize an unstable replica solution.

To conclude, we have shown that the stability of spa-
tially and temporally periodic orbits can be analyzed in
terms of smaller orbits made up of building blocks of spa-
tial periodicity. We find that for the homogeneous solu-
tion no further conditions are imposed if fo=f, =f -, and
the stable solution for a single point remains stable on the
enlargement of phase space and the introduction of cou-
plings. However, solutions with larger spatial periodicities
require additional conditions for stability. These condi-
tions depend on the stability matrices for the building
block of spatial periodicity and the roots of unity. We also
find that replica solution of unstable periodic orbits
remain unstable. It is clear that these replica solutions
can be used to construct a hierarchy of unstable periodic
orbits based on the orbits for building blocks. This may
help in organization of spatiotemporal chaos on the lines
of arguments in Ref. [8].
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