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PREFACE 

Crystalline structure is the result of an orderly process of packing of atoms/ molecules 

and generally speaking, is the ideal form of aggregation for a solid from a 

thermodynamic point of view. Consequently, the study of properties of single crystals 

is an essential ingredient in the effort to gain a better understanding of solid materials. 

Single crystals are in general continuous media that are homogeneous and anisotropic. 

Mechanical properties of crystals depend on their response to the applied load. In the 

initial stage of deformation, called elastic deformation, the strain experienced by the 

medium is small and reversible. If deformation is irreversible, we call it plastic 

deformation. In the final stage of deformation we have the strength or resistance of the 

material to failure as the relevant material characteristic. Elastic properties of a solid 

depend on the behavior of the constituent particles, atoms or molecules where as the 

behavior of a chain of such particles decides the plastic behavior. Properties of surfaces 

built by these particles alone decide the strength or resistance to failure. The balance of 

the inter-particle forces can be disturbed by the application of mechanical stress 

resulting in changes in lattice spacing. 

Ultrasonics is one of the most widely used techniques to determine the elastic 

properties of solids. Both static and dynamic properties can be measured 

simultaneously usmg this technique. Ultrasonic velocity measurements provide 

information about the equilibrium adiabatic properties of the system and the influence 

of external parameters such as temperature, pressure, different external fields etc. on it. 

Measurement of the elastic constants as a function of temperature enables one to locate 

phase transition points, determine phase diagrams and to make statements about the 

order of the transition involved. 



Measurement of ultrasonic velocities along different symmetry directions in 

crystals with waves of different polarizations enables one to detennine the second 

order elastic constants. Different techniques have been developed for the accurate 

measurement of ultrasonic wave velocities. Pulse interferometric techniques such as 

pulse echo overlap technique and pulse superposition technique are the most accurate 

and precise ones for these measurements. Pulse comparison technique is generally used 

for ultrasonic attenuation measurements. 

In this thesis we present the results of our investigations of the elastic properties 

of three selected nonlinear optical crystals, sodium p-nitrophenolate dihydrate (NPNa), 

benzoyl. glycine (BG) and Zinc tris(thiourea) sulphate (ZTS) and two semiorganic 

compounds, potassium hydrogen phthalate (KAP) and di-ammonium hydrogen citrate 

(DAHC). All these crystals have orthorhombic structure at room temperature. 

Chapter 1 is an introductory chapter, which includes a brief introduction to the 

theory of elastic wave propagation through anisotropic media. Expressions for the 

velocity of propagation of ultrasonic waves along different symmetry directions are 

derived for crystals of orthorhombic symmetry. Techniques to demonstrate anisotropy 

in elastic wave propagation characteristics of a medium are also reviewed with 

theoretical support. Various other elastic properties such as Poisson's ratios, bulk 

modulus, volume compressibility, Young's modulus and linear compressibility are also 

discussed briefly. A brief introduction to the properties and applications of nonlinear 

optical crystals is also included for completeness. 

Various techniques to measure ultrasonic wave velocity, dependence of 

velocity on temperature, crystal growth from solution and preparation of oriented 

samples for measurements, are discussed briefly in chapter 2. The McSkimin ~t 

correction procedure is also included with necessary theoretical support. The design 
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and development of a programmable temperature controller suitable for solution 

growth by the slow cooling technique is included and more details are given as 

Appendix I. 

Details of the measurement of the elastic stiffness constants of NPNa crystals 

and dependence of the diagonal elastic constants on temperature in a limited range are 

discussed in chapter 3. The anisotropy in elastic wave propagation characteristics of 

this crystal is illustrated by plotting sections of the phase velocity, slowness and group 

velocity surfaces along the a-b, b-c and a-c symmetry planes. Young's modulus and 

linear compressibility surfaces are also plotted to demonstrate the anisotropy in elastic 

properties of this crystal. Various results and a brief discussion on the results presented 

are also included in this chapter. 

Details of our investigations on the elastic properties of KAP single crystals are 

briefly described in chapter 4. All the nine second-order elastic constants, Poisson's 

ratios, bulk modulus and volume compressibility values are reported for this crystal 

and the anisotropy in elastic wave propagation characteristics illustrated with the help 

of surface plots of phase velocity, slowness and group velocity. Anisotropy in other 

elastic properties such as Young's modulus and linear compressibility are also 

demonstrated by plotting projections of the respective surfaces on a-b, b-c and a-c 

symmetry planes. 

A potential nonlinear optical (NLO) material of current interest VIZ., Zinc 

tris(thiourea) sulphate (ZTS), is the subject of discussion in chapter 5. Crystal growth, 

morphology, measurement of ultrasonic wave velocity, determination of respective 

elastic constants and various other elastic properties such as Poisson's ratios, bulk 

modulus and volume compressibility are briefly discussed with experimental details. 

Sections of phase velocity, slowness and group velocity surfaces along the symmetry 
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planes demonstrating the anisotropy in elastic wave propagation characteristics of this 

crystal are also included in this chapter. Young's modulus and linear compressibility 

values are plotted for various directions in the symmetry planes a-b, b-c and a-c to 

illustrate the anisotropy in elastic properties of this crystal. A short discussion on the 

various results is given to conclude this chapter. 

Chapter 6 discusses in detail, the crystal growt~ preparation of oriented 

specImen, experimental method, and results of our measurements of the elastic 

properties of benzoyl glycine single crystals, which exhibit NLO activity. Elastic 

constants, Poisson's ratios, bulk modulus and volume compressibility of this crystal are 

evaluated following ultrasonic wave velocity measurements. Anisotropy in elastic 

properties demonstrated by projecting the surfaces of phase velocity, slowness and 

group velocity on the symmetry planes (a-b, b-c and a-c) is also included in this 

chapter with a brief discussion of the results obtained. 

Results of our investigations of the elastic properties of di-ammonium 

hydrogen citrate single crystal are reported in chapter 7. All the nine elastic constants, 

Poisson's ratios and related elastic parameters are determined and anisotropy in elastic 

properties demonstrated using surface plots of phase velocity, slowness and group 

velocity in two dimensions. Young's modulus and linear compressibility values plotted 

for various directions in the three symmetry planes demonstrate the extent of 

anisotropy in its elastic properties. This chapter concludes with a brief discussion on 

the results outlined. 

Chapter 8 is a concluding chapter, which discusses the general aspects of the 

above five single crystals. It also reviews the scope for future studies in the field of 

NLO crystals. Semi-organic or organo-metallic NLO crystals have several advantages 
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over crystals of the organic and inorganic constituents. Scope for future work on the 

elastic properties of similar materials is outlined in this chapter. 
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Chapter 1 

Ultrasonic measurement of the 

elastic constants of single crystals: A Review 

1.1 Introduction 

The study of elastic properties of a material is very important since they are directly 

related to various fundamental solid state parameters such as specific heat, Debye 

temperature, phonon dispersion, thermal expansion, Griineisen parameters etc. Elastic 

waves in solids are generated by mechanical vibrations of material media, which result 

from collective vibrations of the atoms and molecules of the medium. Crystals are a 

special class of solid media, which are continuous, homogeneous and anisotropic. 

Mechanical properties of solids depend on their response to the load applied. The 

initial stage of deformation, where strain is small and reversible, is called elastic 

deformation. If the deformation produced is irreversible, we call it plastic deformation. 

In the final stage of deformation, we have the strength (or resistance to failure) as the 

characteristic of the material. 

In solids, the linear elastic properties depend on the magnitude of the inter­

atomic forces between constituent particles. The wave propagation characteristics are 

different for crystalline and amorphous solids. In crystalline solids, the response of a 

chain of particles in the direction of the applied load determines the plastic 

deformation and the overall response in three dimensions determine the strength or 

resistance to failure. If a crystal is subjected to a very small mechanical stress, the 

balance of the inter-particle forces gets disturbed and as a result, lattice spacing 

changes. Macroscopic changes in lattice spacing manifest themselves as elastic strain. 

In linear elasticity theory, Hooke's law relates stress to strain as 

a=Cc or c=Sa (1.1) 



where (j is the applied stress, G is the strain, C is the elastic stiffness constant and 

S is the elastic compliance constant. Here, 

C=! 
S 

(1.2) 

Homogeneous stress and strain are tensors of rank two having mne 

components. If a homogeneous stress (j ij is applied to a crystal, components of the 

resulting homogeneous strain G ij are linearly related to the stress components as 

Gll = Sllll (jll + SI 112 (jl2 + Sll\3(j\3 + S1121(j21 + SI122(j22 + 

SI123(j 23 + SI131 (j31 + Sll32(j32 + SI133 (j33 

The generalized form of Hooke's law can be written as 

Similarly, the components ofthe stress can be expressed in terms of the strain as 

(1.3) 

(1.4) 

(1.5) 

CIj/d and SiJ/d are two fourth rank tensors having 81 components each. Stress 

components (jll' (j22 and (j33 are called normal stresses. All other components act 

along the areas and are called tangential stresses or shear stresses. These tangential 

stresses form a coupled force, which is counteracted by another to attain equilibrium. 

For example, (j12 is counter balanced by (j21 to maintain equilibrium. Thus the 

number of independent stress and strain components reduces to six. Correspondingly, 

the number of independent components of stiffness and compliance get reduced to 36. 

The coefficients of elasticity Cij/d and SijkJ (Tensor form) can be written more 

conveniently in the matrix form using the contracted Voigt notation [1.1,1.2]. The, 

four-suffix notation can be replaced by a much simpler two-suffix notation, according 

to the following convention 

Tensor notation 

Matrix notation 

11 

1 

It can be obtained from the relations 

i j ~ m = i if i = j 

22 

2 

33 

3 

23/32 

4 

13/31 

5 

This two-suffix notation is used only for the convenience of representation. 

2 

12/21 

6 



pSijk/ (in the tensor notation) is equal to Smn (in the matrix notation) where m and n 

correspond to ij and kl respectively and 

p = I when both m and n are 1, 2 or 3. 

p = 2 when either m or n are 1,2 or 3. 

p = 4 when both m and n are 4, 5 or 6. 

Elastic stiffness constants C ij can be defined, thermodynamically as 

(1.6) 

where If! is the lattice free energy. Here the order of differentiation is immaterial and 

hence we can show that C ij = C ji' The elastic constant matrix shows another 15 

equalities among the elements due to this and hence, the total number of independent 

elastic constants reduces to 21. 

The strain energy function [1.1] or the energy of deformation may be written in 

the form 

(1.7) 

where g is a constant. If the strain energy is zero before deformation, Ec = O. The 

second term is a potential energy corresponding to a static load or biasing stress which 

can be set equal to zero, when the strain is zero for zero stress. Hence 

(1.8) 

Cijk/ are the second-order elastic constants. C Ijk/mn represent the third-order elastic 

constants. They form a sixth order tensor with a total of 729 components. It may be 

noted that, the elastic stiffness constant tensor C ijk/ is defined as the second order 

differential of the crystal potential energy function and for this reason they are called 

second order elastic stiffness constants. The third order elastic constants give a 

measure of the anharmonic (or nonlinear) form of the inter-atomic forces, or their 

deviation from the harmonic form of the ideal Hooke's law for solids. 

Symmetry of crystals can further reduce the number of independent elastic 

constants significantly. This number is different for different crystal systems and is 

maximum, equal to 21, for the most unsymmetric (tric1inic) system. For example, a 

cubic crystal has only three independent elastic constants, whereas an orthorhombic 



crystal has nine. Table 1.1 gives the nonzero elastic constants for various crystal 

systems and point groups. 

Table 1.1: Non-zero elastic constants for the various crystal systems and point groups. 

System 

Triclinic 

Monoclinic 

Ortho-

rhombic 

Tetragonal 

Trigonal 

Hexagonal 

Cubic 

Number Point group (Hennan-Mauguin) notation 

of point 

groups 

2 

3 

3 

3 

4 

2 

3 

7 

5 

-
1, 1 

2 
2, rn, -

rn 

222 
mm2, 222, ---

- 4 
4, 4, -

rn 

rnrnm 

4 2 2 -
---, 42m, 4 rn rn, 422 
mmm 

-
3,3 

- 2 
3 -, 3 rn, 32 

m 

-6 - 622 
6, 6, -, 6rnm, 622, 6m2, ---

m rnmm 

4-2 - 2-
- 3-, 43m,432, -3, 23 
m m m 

Number of 

Cij values 

21 

13 

9 

7 

6 

7 

6 

5 

3 

An isotropic solid has only two independent elastic constants, which are usually called 

the Lame constants [1.3,1.4] A. and p, defined as 

A. = CI2 and p = C44 

where A. is the same as the shear modulus G and the bulk modulus 

2 
B=A.+-p. 

3 

Cl I and C 44 are directly related to velocities of propagation of longitudinal and shear 

waves r~spectively through an isotropic solid. The elastic constant matrix C,} for the 

most unsymmetric crystal system (triclinic) is 

4 



CII C I2 C I3 C I4 C IS C I6 

C I2 C 22 C23 C24 C2S C26 

Ci ) = 
CJ3 C23 C33 C34 C3S C36 (1.9) 
C I4 C24 C34 C44 C4S C46 

C IS C2S C3S C4S Css CS6 

C I6 C26 C36 C46 CS6 C66 

where, we have used the relation Cij = C j ;. 

1.2. The Christoffel's matrix 

A number of authors [1.5-1.10] have discussed in detail the theory of elastic wave 

propagation in crystals. In general, three different linear elastic waves may propagate 

with different velocities along any given direction in an an-isotropic crystal. These 

three waves are not usually pure modes. The particle displacement vector may have 

components both parallel and perpendicular to the wave normal. One of these 

components may be much larger. The wave with large parallel component is called 

quasi-longitudinal, while the wave with large perpendicular component is called quasi-

shear or quasi-transverse wave. If the material is elastically isotropic or if the direction 

of wave propagation is elastically isotropic, all the modes become pure modes, i.e., 

particle displacements are either parallel or perpendicular to the wave normal, and the 

two transverse modes degenerate into one. 

Consider a volume element of a homogeneous, continuous unbounded medium 

with its sides parallel to a set of Cartesian coordinate system of axes (Fig. 1.1). During 

the propagation of an elastic disturbance through this medium, the net unbalanced 

force acting in the XI direction is 

(1.10) 



X3 
033 

023 
Of3 

OX3 
032 

031 
O~----~----+-~--~X2 

022 

Fig. 1.1: Schematic representation of the components of stress acting on a volume 

element of an unbounded homogeneous continuous medium. 

But from Newton's second law, this can be set equal to (p 8xI 8x2 8X3 )iiwhere p is 

the mass density and u is the displacement in the XI direction. Hence 

Similarly for the X2 and X3 directions, one can write 

(
8CT'1 80"22 80"23 J .. ---+--+-- =pv 
8xI 8x2 8X3 

(
80"31 80"32 80"33 J .. --+--+-- =pw 
8xI 8x2 8X3 

(1.11 ) 

( 1.12) 

(1.13) 

Here, v and w are the particle displacements in the y and z directions. These equations 

can be written more compactly as 

8CTIj .. 
---=pu 
8x, I 

(1.14) 



where, u j stands for u, v and w. For a linear elastic anisotropic solid, the stress-strain 

relation can be written as 

(LIS) 

C ijkl are the second order elastic constants and & kl are the strain tensor defined as 

(1.16) 

Substituting Eq.(1.16) in Eq.(1.15) 

(1.17) 

The elastic constant matrix is symmetric and hence 

Cijkl = Cijlk· (1.18) 

Substituting Eq. (1.18) in Eq. (1.17), we have 

(1.19) 

k and I are dummy indices and hence we have 

(1.20) 

Differentiating with respect to x j we have 

(1.21 ) 

Thus Eq.(1.14) can be modified as 

(1.22) 

The plane wave solution for the above equation can be assumed as 

(1.23) 
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Ao is the amplitude of the wave, at (= a, p,y) are the direction cosmes of the 

displacement vector, OJ is the angular frequency and km the wave vector. The wave 

vector km can be written in tenns of the direction cosines of the nonnal to the plane 

wave, Im (= I, rn, n) as 

Eq.(1.22) can now be rewritten incorporating all these changes, as 

w = v is the wave velocity. 5ik has the usual meaning. 
k 

0ik = 0 if i"* k and 

0ik = 1 if i = k 

r ll = ClIlI/I/I + C lI12 / 1/ 2 + C II13 /I/) + CI211/il + CI212/2/2 + 

C I21 )/2/) + CI)II/)/I + C1312/)/2 + C I)I)/)3 

Thus Eq. (1.24) can be written as 

(1.24) 

(1.25 

(1.26) 

a k is arbitrary and not necessarily zero. Hence the detenninant of the coefficients of 

a k must be zero. i.e., 

(1.27) 

Now we can adopt a much simpler notation for the direction cosines as II = I, 12 = m 

and I) = n. 
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Eq. (1.27) can now be written in a more useful form as 

Irll - pv2 r l2 r ll 

Ir21 r 22 - pv2 r 23 =0 

Ir 31 r 32 r33 - pv2 

(1.28) 

Eq. (1.26) is the Christoffel's equation. r;k are the elements of the Christoffel matrix 

and are functions of the second order elastic constants and direction cosines I, rn, n of 

the normal to the plane wave (specimen axis). Solution ofEq.(1.28) gives wave speeds 

(eigen values). This characteristic equation is cubic in v2 and indicates that three plane 

waves may be propagated in a linear elastic homogeneous anisotropic medium. 

The direction cosines a, /3, Y of the particle displacements (eigen vectors) may 

be obtained from Eq. (1.26), which can be modified as 

or 

rlla + r12 /3 + rJ3Y = p v2a 

r 21 a + r 22 /3 + r 23y = P v2 p 
r 31 a + r32/3 + r 33y = P v

2
y 

(1.29) 

(1.30) 

First, r;k values for a given crystallographic direction (known I, rn, n) are 

determined and substituted in Eq. (1.28) and solved to get the three velocities of 

propagation. These wave speeds are in turn substituted along with r;k and p in Eq. 

(1.30) to solve for the particle displacement direction cosines keeping in mind that 

(1.31) 

Eq. (1.26) represents a set of three equations and are called the Christoffel's equations. 
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1.3 Relations between elastic constants and sound velocities 

The detenninantal equation for the propagation of elastic waves through the most 

un symmetric crystals is given in Eq.(1.28). The Christoffel's coefficients [ik can be 

written in the expanded fonn as 

rI, =C,/ +C66 m2 +Css n2 +2·CS6 m·n+2·C,s l·n+2·C'6/·m 

r 22 =C66 /2 +C22 m2 +C44 n2 +2·C24 m·n+2·C46 /·n+2·C26 /·m 

r33 =CSS I2 +C44 m2 +C33n2 +2·C34 m·n+2·C3S l·n+2·C4S I·m (1.32) 

r2, =['2 =C'6/2 +C26 m
2 

+C4S n
2 + (C2S + C46 )m.n+ (C'4 + Cs6 )/.n + (C'2 +C66 )/.m 

[23 =[32 =Cs6 /2 +C24 m2 +C34 n2 +(C23 + C44 )m.n+ (C36 + C4S )/.n + (C2S +C46 )/.m 

[3' =['3 =c,sf +C46m2 +C3S n
2 + (C36 + C4S )m.n + (C'3 + Css)/.n + (C'4 +Cs6 )/.m 

The general expressions, which govern ultrasonic wave propagation in crystals, get 

simplified when crystals of higher symmetry are considered. Some of the elastic 

constants become zero for higher symmetry systems. Substituting the values of [ik 

tenns and solving the characteristic detenninantal equation, one can get the three 

different expressions for mode velocities. The number of tenns in the general 

expression can be further reduced when wave propagation in any coordinate plane is 

considered, which allows anyone of the direction cosines I, m or n to become zero. 

If specific symmetry directions are considered, one more direction cosine 

becomes zero and a much simplified expression connecting elastic constant and 

velocity of propagation of elastic waves is obtained. 

1.4 Elastic constants of orthorhombic crystals 

The general expressions which govern ultrasonic wave propagation in crystals get 

more simplified when crystals of higher symmetry are considered. Some of the elastic 

constants and hence some of the Christoffel' s coefficients can be zero when wave 
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propagation in a symmetry plane is considered which allows anyone of the direction 

cosines I, m or n to become zero. Necessary equations for the orthorhombic system 

are derived in the following sections, since the work presented in this thesis is on 

crystals possessing orthorhombic symmetry. 

The nonzero elastic constants of a crystals of all point groups under the 

elements of the general matrix are zero. The r;k terms in the Christoffel's matrix 

reduce to the following form when the nonzero terms are retained in Eq.(l.32). 

r ll = CII /
2 + C66 m2 + Css n

2 

r 22 = C66 /2 + C22 m
2 + C44 n

2 

r33 = Css /2 + C44 m
2 + C33 n2 

r l2 = r 21 = (C12 + C66 )1 m 

r 23 = r32 = (Cn +C44 )mn 

r l3 = r 31 = (CI3 + Css)1 n 

(1.33) 

A single term expression for the velocity of propagation will not be obtained since all 

the off-diagonal terms in the Christoffel's matrix are nonzero. 

For simplicity, let us consider wave propagation in the x-y plane. For any 

direction in the x-y plane, n = 0 and hence the r;k coefficients reduce to the following 

form. 

rll = CII /
2 + C66 m2 

r22 = C66 /2 + C22 m
2 

r33 = Css /2 + C44 m2 

rl2 = r 21 = (C12 + C66 )1 m 

r23 = r 32 = 0 

rl3 = r 31 = 0 

The determinental equation now becomes, 

(1.34) 
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ri, - pv
2 r'2 0 

r'2 r22 - pv
2 

0 

o o 

Solving this we get 

=0 (1.36) 

( 1.37) 

This is a cubic equation in p v 2 and hence has three solutions for p v 2 
• They are 

2 
P Vo = r33 

1 

2pV l
2 =(rl1 +r22 )+[(rl1 +r22Y-4(rl1r22 -rl/)]2 (1.37) 

1 

2pv/ =(rl1 +r22 )-[(rl1 +r22Y-4(rl1r22 -rl/)]2 

Elastic wave with velocity Vo is a pure shear wave with polarization in the z-direction, 

v, and V 2 represents velocities of propagation of the quasi-longitudinal and quasi-

shear (or quasi-transverse) waves respectively. Expressions for the velocity of 

propagation of these waves in terms of the elastic constants and direction cosines can 

be obtained by replacing the rik terms using Eq. (1.34). The final set of expressions for 

the three velocities of propagation in any direction in the x-y plane is 

2 2 2 
P Vo = Cssl + C44 m 

2pVl
2 = (C66 +C1/ +C22 m2 )+[(C66 +C1/ +C22 m

2Y -4cF 
2pv/ = (C66 +C1/ +C22 m2 )-[(C66 +C1/ +C22 m

2Y -4cF 
(1.38) 

The normalized direction cosines I, m and n satisfy the relation (n = 0 in this case) 

(1.39) 

Now let us consider the wave propagation in the y-z direction for which 1= o. 

The Christoffel's coefficients can be written as 
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fll = C66 m2 + CSS n2 

f22 = C22 m
2 + C44 n

2 

f33 = C44 m 2 + C33 n2 

fl2 = r 21 = 0 

f23 = r 32 = (C23 + C44 )mn 
f l3 = r 31 = 0 

The detenninental equation can be simplified as 

The three solutions of this equation are 

2 
P Vo = r ll 

1 

2PVl2 = (r22 +r33 )+[(r22 +r33 Y -4(r22r 33 -r2/)]2 
1 

2p v/ = (r22 + r33)- [(r22 + r33 Y - 4 (r22r33 - r 2/)] 2 

(1.40) 

(1.41) 

(1.42) 

These expressions for velocities can now be rewritten in tenns of the elastic constants 

and direction cosines as 

2 C 2 C 2 P Vo = 66 m + ssn 

2PVl2 = (C44 +C22 m2 +C33n2)+[(C44 +C22 m
2 +C33n2) -4c'F 

2pv/ = (C44 +C22 m
2 +C33n2)-[(C44 +C22 m

2 
+C33n2) -4c'F 

The pure shear wave with velocityvo has polarization nonnal to the y-z plane. 

(1.43) 

A similar procedure can be adopted to the x-z symmetry plane for which 

m = o. Corresponding coefficients of the Christoffel's matrix are 

fll = CII /2 + Css n
2 

f22 = C66 /2 + C44 n
2 

f33 = Css /2 + C33 n
2 

f12 = r 21 = 0 

f23 = r 32 = 0 

f l3 = r 31 = (CI3 + CSS ) I· n 
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The detenninental equation can now be expressed as 

Replacing the [ik tenns and simplifying, we get 

2 C 2 C 2 P Vo = 66 m + 44 n 
1 

2PVl2 = (C55 +Cll /
2 +C33 n2)+[(C55 +C1/ +C33n2)2-4C"P 

1 

2pv/ = (C55 + CII /
2 + C33n2)- [(C55 + C1/ + C33 n2 )2_ 4C"P 

The pure shear wave having velocity Vo has polarization along the y direction. 

(1.45) 

(1.46) 

When we consider wave propagation in any specific symmetry direction in the 

above symmetry planes, one more direction cosine becomes zero and the expressions 

for wave velocities further get simplified. Direct relationship of elastic constants with 

velocities of propagation of elastic waves can be derived for experimental purpose. 

Now let us consider wave propagation along the symmetry directions x, y, and 

z, which correspond to a, b and c directions or the [100], [010] and [001] directions 

respectively in a crystal belonging to the orthorhombic system. 

When wave propagation is in the x direction or [100] direction, the direction 

cosines are / = 1, m = 0 and n = O. The Christoffel' s coefficients are 

[11 =C11 

[22 = C66 

[33 = C55 

[12 = [21 = 0 

[23 = [32 = 0 

[13 = [31 = 0 

(1.47) 

All the off-diagonal elements are zero and hence the deterrninental equation simplifies 

to 

(1.48) 

or 
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(1.49) 

The three velocities of propagation can be expressed as 

PV0
2 

= C1l or 
v, = J~' 

2 v,=t: (1.50) PVI = C66 or 

pv/ = C55 or v2 =t; 
These are pure modes. It can be easily demonstrated that Vo is the longitudinal wave, 

VI is a transverse wave with y polarization and v2 is a transverse wave with z 

polarization. 

Now, let us consider wave propagation in the y [010] direction. The 

corresponding direction cosmes are I = 0, m = 1 and n = o. The Christoffel' s 

coefficients are 

f11 = C66 

f22 = C22 

f33 = C44 

r l2 = r 21 = 0 

r 23 = r 32 = 0 

r l3 = r 31 = 0 

The determinental equation simplifies to 

The corresponding solutions are 

(1.51) 

(1.52) 

(1.53) 

These are pure mode waves. Vo is the longitudinal wave velocity whereas VI and v2 

are the velocities of transverse waves with polarisations along the x and z directions 

respectively. 
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Similarly, the velocities of propagation of elastic waves in the z [001] direction 

(I = 0, m = 0 and n = 1) can be derived. The Christoffel's coefficients can be written 

as 

fll.= Css 

f22 = C44 

f33 = C33 

fl2 = f21 = 0 

f 23 = f32 = 0 

f l3 = f31 = 0 

The determinental equation simplifies to 

(1.54) 

(1.55) 

(1.56) 

The yelocity of propagation of the longitudinal wave (vo) is given by the relation 

p Vo 2 = C33 ' whereas the transverse wave with x polarization has a velocity VI given 

by P VI 2 = C ss and the one with y polarization has a velocity v2 given by P V2 2 = C 44 • 

1.5 Measurement of elastic constants by ultrasonic methods 

Acoustic waves of high frequencies (about lOll Hz) can be considered as artificial 

phonons. These waves have comparatively low frequency compared to thermal 

vibrations at moderate temperatures. Ultrasonics is a very powerful tool in this regard 

and are suitable for the investigation of phonons and their interactions with other 

degrees of freedom in crystals; in particular, with order parameter variations or phase 

transitions [1.11]. Generally, acoustic waves of very short duration are excited and 

detected using piezoelectric transducers bonded to the end faces of the crystal sample 

under study. The pulse duration must be longer than the RF period but shorter than the 

transit time of the acoustic wave in the sample. 

Ultrasonic wave velocity measurements for waves of both longitudinal and 

transverse polarizations along the symmetry directions allow one to evaluate all the 
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diagonal elements of the elastic constant matrix. In order to determine the off-diagonal 

elastic constants, one has to measure velocities of propagation of ultrasonic waves 

along anyone arbitrary direction in the symmetry planes (x-y, y-z and x-z.). 

Fortunately in ultrasonic experiments, the three different modes in any given direction 

can be separately excited choosing the type of the transducer. The orientation of the 

polarization can also be adjusted by rotating the transverse transducer. 

In the previous section, expressions for the velocities of propagation of the 

ultrasonic waves in various symmetry planes and symmetry directions have been 

derived for orthorhombic crystals. For orthorhombic crystals a, b and c directions are 

pure mode directions and hence all the three velocities measured along each of these 

directions are related to only single elastic constant. The off-diagonal constants 

C12 , C23 and C13 appear in combinations with other constants. Expressions relating 

elastic constants with velocity measurement data are summarized in Table 1.2. The 

direction cosines are obtained as the sine and cosine functions of the relevant angle of 

rotation. The convention adopted in this work is illustrated in Fig. 1.2. 

m 
y 

1= cos(B1) 

m = sin(B 1) 

Jl 

o 

z 

m = cos(B2 ) 

n = sin(B2 ) 

1 

y 

m 

x 

n = COS(B3) 

I = sin (B3 ) 

z 
Jl 

Fig. 1.2: Convention adopted in defining the direction cosines in this work 
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Table 1.2: Sound velocity - elastic constant relation for the orthorhombic system. 

No. Mode Direction of Direction of Velocity-elastic constant relation 

propagation polarization 

2 3 4 5 

L a [lOO] a [100] CII = P v2 

2 T a [lOO] b[010] C66 = P v2 

3 T a [100] c [001] Css = P v2 

4 L b [010] b [010] C22 = P v2 

5 T b [010] a [lOO] C66 = P v2 

6 T b [010] c [001 C44 = P ~ 

7 L c [001] c [001] C33 = P v2 

8 T c [001] a [100] Css = P ~ 

9 T c [001] b [010] C44 = P v2 

10 QL a-b plane -Lc C\2 = fab 

11 QT a-b plane -Lc C \2 = similar to fab 

12 T a-b plane c P v2 
= c2 Css + S2 C44 

13 QL b-c plane -La C23 = fbe 

14 QT b-c plane -La C23 = similar to fbe 

15 T b-c plane a P ~ = c2 C66 + S2 Css 

16 QL a-c plane -Lb C13= fac 

17 QT a-c plane -Lb C13= similar to fae 

18 T a-c plane b P v2
.= S2 C66 + c2 C44 
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Abbreviations used in the table have the following meaning. 

L - Longitudinal, T - transverse, QL - Quasi-longitudinal, QT - Quasi-transverse, c -

cosine of the angle from the respective axis, s - sine of the angle from the respective 

axis, p - density of the crystal, v - velocity of propagation of the respective modes and 

Jab' fbe and fae are defined as 

Eighteen such mode velocity measurements are possible in a crystal belonging 

to the orthorhombic system along the a-b, b-c and a-c symmetry planes. Out of these, 

twelve mode velocity measurements are sufficient to evaluate all the nine second order 

elastic constants with cross checks possible on some of the values. 

1.6 Other related 

elastic properties of an orthorhombic crystal 

Various other elastic parameters that can be determined from the elastic constant data 

are the Poisson's ratios, elastic compliance constants, volume compressibility, and 

bulk modulus. One can pictorially demonstrate anisotropy in elastic wave propagation 

and elastic properties by plotting two dimensional surfaces of phase velocity, slowness 

or inverse velocity, group velocity, Young's modulus and linear compressibility along 

the a-b, b-c and a-c planes. 
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1.6.1 Poisson's ratios 

Poisson's ratio [1.3,1.7] is defined as the ratio of lateral contraction to the longitudinal 

extension when stress is applied uniaxially. Crystals, being elastically anisotropic 

produce lateral contractions different in magnitude in different directions. Consider 

longitudinal stress in the a-direction in an orthorhombic crystal. Longitudinal strain in 

the a-direction is given by 

GII = SIIIICTII + SIII2 CTI2 + SIII3 CTI3 + SII21 CT21 + SII22 CT22 + 

SI123 CT 23 +SII3I CT31 + SII 32 CT32 +S1I33 CT33 

all ;t:. 0 whereas all other CT IJ = o. 

Lateral strain in the b [010] and c [001] directions are given as 

G22 = S2211 CTII 

G33 = S3311 CTII 

(1.57) 

(1.58) 

(1.59) 

Usually G22 andG33 are contractions and hence the Poisson's ratios can be defined as 

G22 _ S2211 _ S21 
V 21 =-- = = 

GII SIIII SII 
(1.60) 

G33 S3311 S31 
V31 =-- = --- = 

GII SIIII SII 

Exactly in the same way, expressions for the other Poisson's ratios can be derived 

when uniaxial stress is applied along b [010] and c [001] directions. 

GII SI2 
V I2 =-- = 

G21 S22 
(1.61) 

G33 S23 
V 32 =-- = 

G22 S22 
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GII SI3 
VI3 =--=--

G33 S33 
(1.62) 

G22 S23 
V 23 =-- = 

G33 S33 

1.6.2 Young's modulus 

Ifa material is under uniaxial stress, the Young's modulus [1.3,1.9] E of the material 

in the direction of stress can be defined as the ratio of longitudinal stress to 

longitudinal strain. Let the uniaxial stress be applied along the OX I ' (arbitrary) 

direction. Then the strain is 

I S' I 
&11 = 1111 0"11 (1.63) 

(1.64) 

S'IIII can be expressed in terms of the compliances S ij referred to the basic symmetry 

axes using the transformation law as 

(1.65) 

Here ali relates the arbitrary direction OXI ' to the symmetry axiS OX j • Inserting 

appropriate components of the compliance tensor and making use of the relations 

between the aij 's, one can derive the expression for the Young's modulus of a crystal 

belonging to the orthorhombic system for any arbitrary direction defined by the 

direction cosines I, m and n as 

(1.66) 

In an anisotropic crystal, Young's modulus will be different in different 

directions and hence, the anisotropy in the Young's modulus can be illustrated by 
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plotting the Young's modulus values for various directions in the symmetry planes a-b, 

b-c and a-c so as to form sections of the Young's modulus surface lying in these 

planes. 

1.6.3 Volume compressibiIity and bulk modulus 

The proportionate decrease in the volume of a crystal when subjected to unit 

hydrostatic pressure defines volume compressibility [1.3,1.9]. Here stress is given by 

where p is the pressure applied. The corresponding strain 

During compression, material experiences volume strain given by 

The volume compressibility can now be written as 

Volume compressibility = - !:!. = S,;kJc. 
p 

(1.67) 

(1.68) 

(1.69) 

(1.70) 

Inserting the relevant compliance constants of a crystal belonging to the orthorhombic 

system and simplifying, we have 

(1.71) 

It is thus the sum of the nine elements in the upper left-hand corner of the compliance 

matrix and is an example of an invariant fonned from a tensor. Bulk modulus is 

defined as the reciprocal of volume compressibility. 
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1.6.4 Linear compressibility 

The relative decrease in the length of any imaginary line in a crystal when subjected to 

unit hydrostatic pressure defines the linear compressibility [1.3,1.9] in that direction. 

The stretch of a line in the direction of a unit vector I, is 

The linear compressibility can thus be defined as 

f3 = S ijkk I i I j • 

(1.72) 

(1.73) 

Retaining only the components of the compliance matrix for an orthorhombic system 

in the general expression and simplifying, we have 

(1.74) 

Linear compressibility is also a direction dependent parameter and hence the plot of 

the surface of this parameter is the best way to demonstrate its anisotropy. Sections of 

this surface along the a-b, b-c and a-c planes can give an idea about the projection of 

the actual surface in three dimensions. 

1.6.5 Phase velocity surface and inverse velocity (slowness) surface 

Elastic wave propagation is highly anisotropic in many crystals in the sense that waves 

with different polarizations propagate with different velocities in different directions. 

Velocity of these modes calculated from elastic constant data as a function of 8 

(defined in Fig.1.2) can be plotted for different propagation directions lying in the 

symmetry planes a-b, b-c and a-c to obtain sections of the phase velocity surfaces. 

In order to plot the phase velocity surfaces in the a-b plane, velocities of 

propagation of the pure shear, quasi-shear and quasi-longitudinal modes can be 
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computed for each value of 9( (Fig. 1.2) lying between 0 and 21t in steps of a small 

value (say 2°). From this, the corresponding x and y co-ordinates can be calculated 

using the relation x = vcos(B\), y = vsin(B\) . The surface can be built by plotting y 

versus x. The same procedure can be adopted for plotting the sections of phase velocity 

surfaces along the b-c and a-c planes. The plot of phase velocity as a function of the 

direction of propagation is referred to as the 'phase velocity surface or simply velocity 

surface. 

Even though the phase velocity surfaces can provide infonnation about the 

anisotropy of elastic wave propagation, it is a common practice to plot the inverse of 

phase velocity as a function of direction of propagation. Such surfaces are usually 

referred to as slowness or inverse velocity surface. It denotes the locus of the end 

points of the radius vectors whose lengths are proportional to the refractive index. It is 

also known as refraction or index surface. One can trace all the features of the group 

velocity surface from the slowness surface. It is also a surface of three sheets and has 

the same degeneracies as the phase velocity surface. 

1.6.6 Group velocity surface 

One of the main features of elastic wave propagation in anisotropic solids is that the 

direction of energy flow given by the group velocity vector is not collinear with the 

phase velocity vector, which is parallel to the wave vector. The surface generated by 

plotting group velocity as a function of direction is called the group velocity surface or 

ray surface. The ray surface is physically the most meaningful among the three 

surfaces since it represents the wave front or surface of equal phase for an oscillating 

disturbance a unit time interval after its creation at the origin. The group velocity 

vector is always nonnal to the slowness surface. Hence the ray surface can also be 

24 



defined as the envelope of plane wave fronts with respect to the slowness surface. The 

analytical techniques for generating these surfaces are well established and are 

discussed at length by several workers [1. 7,1.12-1.14]. Several papers [1.15-1.18] 

discussing the conditions under which cuspidal edges fonn in symmetry planes are 

available in literature. The occurrence of a cuspidal edge in the ray surface indicates 

that there exist two or three wave vectors corresponding to a single wave velocity 

vector. McCurdy [1.19] has pointed out that the directions along which cuspidal edges 

occur might give rise to high phonon amplification. 

Ray velocity is the velocity with which energy in the wave is transported and 

hence ray velocity surface plots help a lot to interpret different phenomena associated 

with ultrasonic wave propagation, thennal conductivity, phonon transport etc. Usually 

the ray velocity does not coincide either in magnitude or direction with phase velocity 

except under special circumstances. Ray velocity can also be defined as the velocity 

with which the modulation envelope of a wave packet, composed of waves of slightly 

different k and (j) propagate. It is given by 

s = am 
ak 

(1.75) 

The ray surface cannot be obtained simply by inverting the slowness surface, 

because k and S are noncollinear. It has been shown that the group velocity must 

always be perpendicular to the slowness surface, i.e., k must be nonnal to the ray 

surface. Hence if \jI is the angle between the group velocity S and wave vector k, we 

can write v p = S cos(lf') where v p is the phase velocity. This leads to a useful relation 

between phase velocity and ray surface. The ray surface is hence the envelope of 

planes normal to v p. Each portion of the ray surface corresponds to the phase front for 

a plane wave with energy travelling in that direction. 

25 



The dispersion relation for plane waves is not gIven explicitly as 

(() = f(kx,ky,kJ so that it is very convenient for us to calculate group velocity using 

the relation S = aCtJ . It is given in the implicit form as 
ak 

(1.76) 

In this case, the components of group velocity can be obtained by implicit 

differentiation ofEq. (1.76) as shown below. 

(1.77) 

The x component of S is obtained as 

(1.78) 

Similarly the y and z components of group velocity can be written as 

an an s =--+-
Y 8k

y 
aCtJ 

s =_8n+an 
: ak

z 
a(j) 

(1.79) 

The group velocity can thus be expressed as 

(1.80) 

The group velocity and ray (energy) velocity are identical for acoustic waves in a 

lossless medium. The group velocity has a directly measurable physical meaning that 

is not apparent in the definition of energy velocity (vc). If a pulse of acoustic energy is 

radiated by a plane wave transducer, the wave packet is limited in two dimensions by 

the size of the transducer and in the third dimension by the pulse length. The wave 

fronts travel along the direction of k which is normal to the transducer surface; but the 
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wave packet modulation envelope travel in a direction inclined to k. This means that 

the receiving transducer must be offset in order to accept the transmitted wave. 

Experimental evidence for this effect is reported in quartz single crystal, [1.20,1.21] 

where the path of the acoustic beam has been made visible by means of optical 

scattering. 

1.6.7 Computation of group velocity 

(x - y) or (a - b) plane 

Direction cosine n = 0 for the x-y plane. The dispersion relation can be written 

(1.81) 

The Christoffel's coefficients are given by Eq. (1.34) 

Substituting the value of rij and expressing the equation in tenns of kJ}y,kz and 0) 

k k k 
where _.t = I -2::.. = m ---E... = n and 0) = kv , the dispersion relation for the pure shear 

k '. k 'k 

mode can be given as 

I.e., an =0 
ok ' 

an 
-=-2pO) 
00) 

(1.82) 

(1.83) 

Thus the x, y and z components of the group velocity can be obtained. From this one 

can evaluate the group velocity S 

For the quasi-shear and quasi-longitudinal waves, dispersion relation is given by 

The derivatives are 
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-2(CI2 +C66 )k/kJ 

an =0 
ak: 

an 2 2 2 - = -2.PW(C66 + Cllk ... + C22 ky - 2pw ) aw 

(1.85) 

Substituting the appropriate values of the phase velocity, one can obtain components 

of the group velocity, which can be used to evaluate the group velocity in the relevant 

direction. The deviation of the ray from the wave normal can be determined for the a-b 

plane using the relation 

(1.86) 

(y - z) or (b-c) plane 

Direction cosine I = 0 for the b-c plane and hence the dispersion relation can be 

written as 

(1.87) 

The Christoffel's coefficients rij for this case are given in Eq. (l.40). Substituting rij 

values and expressing n in terms of k ... ,ky,kZ and OJ, the dispersion relation for the 

pure shear mode can be obtained as 

(1.88) 

The derivatives are evaluated as 
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an =0 
ak ' 

" 

an 
- = 2Cssk. 
ak;: • 

an 
- =-2pm 
aw 

(1.89) 

The x, y and z components of S can be evaluated and hence the group velocity can be 

calculated. For the quasi-shear and quasi-longitudinal modes, n is given by 

The derivatives are 

an =0 
ak" 

an 2 2 2 kC 2 2 2 ak =2.C22 ky(C44 ky +C33 k: -pw )+2C44 / 22ky +C44 k;: -pw) 
y 

- 2(C23 + C44 )kyk/) 

an 2 2 2 k 2 2 2 ak =2.C44 k;:(C44 ky +C33 k;: -pw )+2C33 ;:(C22 ky +C44 kz -pw) 
;: 

(1.91) 

The relevant value of phase velocity can be substitUted to get the components of the 

group velocity. The angle of deviation of the group velocity vector from wave normal 

can be determined for this plane using the relation 

S 
tan", =-L 

Sz 

(x - z) or (a - c) plane 

The dispersion relation for the x-z plane (m = 0) can be written as 

(1.92) 

(1.93) 

The Christoffel's coefficients r i} are defined in Eq. (1.44). Substituting rij values and 

rewriting n in terms of k",ky,k;: and w, we have the dispersion relation for the pure 

shear mode as 
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The derivatives are 

an =0 
ak ' y 

an 
-=-2pOJ 
aOJ 

(1.94) 

(1.95) 

From this, one can obtain the value of group velocity by substituting the value of phase 

velocity. For the quasi-shear and quasi-longitudinal modes, n is given by 

The derivatives are 

:~ = 2.Cll kx (Cssk/ + C33 k: 
2 

- pOJ2) + 2Css k" (Cllkx 
2 + Cssk/ - pOJ2) 

" 
- 2(C13 + Css )k"k: 

2
) 

an =0 
aky 

(1.97) 
an 2 2 2 2 2 2 
ak: = 2.Css k:(Css kx +C33 k: - pOJ )+2C33kz(Cllkx +Csskz - pOJ ) 

- 2(C13 + Css )k/ kJ 
an k 2 k 2 2) am =-2.pOJ(Css +CII x +C33 z -2pOJ 

The components of the group velocity can be evaluated by substituting the 

relevant phase velocity values. The angle of deviation of the group velocity vector 

from wave normal can be determined for this plane using the relation 

S 
tanlfl =_x 

S: 
(1.98) 

These expressions can be used to calculate and plot the various surfaces listed above. 
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1.7 Nonlinear optical crystals: 

Their properties and applications 

The interaction of the electromagnetic field of an intense light beam with a nonlinear 

optical (NLO) material can result in the generation of new electromagnetic fields. The 

inherent charges in the medium can alter the phase, frequency and amplitude or 

polarization of the incident light when it passes through it. The study of such 

interactions is the field of nonlinear optics. NLO crystals find wide applications 

[1.22,1.23] in the field of optical harmonic generation, optical modulation, 

telecommunications, computer and optical signal processmg etc. Optical signal 

processing is through optical phase conjugation and image processing, optical 

switching (transmission of light depending on refractive index), optical data processing 

through very rapid data movements and new frequency generation. 

The heart of these very important NLO devices developed are crystals suitable 

to generate the second and higher (up to sixth) optical harmonics of laser radiation, 

sum frequency generation and difference frequency generation, parametric light 

oscillation as a tool for generating tunable radiation, stimulated Raman scattering and 

picosecond continuum generation. 

The electric field of the incident beam induces polarization in a medium. With 

small fields, the strength of the applied field is proportional to the displacement of the 

electron density from the nucleus resulting in a dipole moment f.1 such that 

11 =a E (1.99) 

where a is the linear polarisability of the atom or molecule. If the field oscillates with 

a frequency, the induced dipole moment also oscillates with the same frequency and 
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phase. For a bulk or macroscopic crystal, the polarization 

P=x E (1.100) 

where, X is the linear susceptibility of the medium. If such molecules are subjected to 

very intense electric fields of intense laser sources, the molecular polarisability goes 

beyond the linear regime. The molecular polarization can then be written as 

(1.101) 

f3 is the first molecular hyper polarizability which detennines the second order effect 

and r is the second molecular hyper polarisability which determines the third order 

effect. As the field strength increases, nonlinear effect becomes more and more 

important because of the higher power of E. Usually a is much greater than p and r. 

The polarisation of the material can also be expressed in a similar way as 

(1.102) 

where X(n) is the nth order NLO susceptibility. Local field effects, which are 

consequences of the surrounding medium, are also taken into account here. The 

molecules of the crystalline medium must be noncentrosymmetric for p (or X (2) ) to be 

non-zero. The induced polarization in a medium with noncentrosymmetric molecule is 

+ f3 £2 irrespective of the direction in which E is applied. A medium with centro-

symmetric molecules should have a polarization - p E2 on the reversal of field. This 

demands p to be zero in a centrosymmetric crystalline medium. Thus r is the first 

nonzero non linear tenn in centrosymmetric case to produce r E3 for E and - r E3 for 

-E. 

The principle of second harmonic generation (SHG) is that, if an intense light 

beam passes through a second order NLO specimen, light at twice the input frequency 
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will be generated. This can be mathematically be shown by the following simple steps. 

Let, the electric field of the incident beam be 

E = Eo cos(m t). 

The polarisation of the material can be written as 

P D (I)E ( ) (2)E 2 2 ( ) (3)E 3 3 ( ) = '0 + X 0 cos m t + X 0 cos m t + X 0 cos m t + ...... . 

cos\w t) can be replaced by 
1 
- [1 + cos(2m t)] so that 
2 

_ 1 (2) 2 (I)E ( ) 1 (2)E 2 ( P - Po + - X Eo + X 0 cos m t + - X 0 cos 2m t) + ..... . 
2 2 

(1.103) 

(1.104) 

(1.105) 

The polarization now consists of a new frequency doubled component. This is called 

three wave mixing, since two photons of frequency m generate a new photon of 

frequency 2m. This analysis can be extended to third and higher order tenns. A third 

order process involves four-wave mixing. If two beams of different frequencies 

interact with NLO medium, the second order tenn of the material polarization becomes 

x(2) El cos(mlt) E2 cos(m2t) =.!.. X(2) El E2 cos[ (m l + m2) t]+ 
2 

.!.. X(2) El E2 cos[ (m l -m2) t] 
2 

(1.106) 

This indicates that polarization occurs at sum (m l + m2 ) and difference (m l - m2 ) 

frequencies. When these frequencies are equal, second harmonic generation (SHG) 

occurs. 

Third order nonlinearity results from the introduction of a quartic tenn. The 

even order tenn in the expression for polarization will be zero for centrosymmetric 

molecules so that, 

J.l=l1o+a Eocos(mt)+Y E03cos2(mt)+ .... 
6 

But, - cos\m t) = - - cos (m t) + - cos (3m t) 1 1 [3 1 ] 
6 6 4 4 
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Substituting Eq.(1.1 08) in Eq.(1.1 07) and simplifying, we get 

r 3 r 3 
J.1=J.1o +a Eo cos (mt)+-Eo cos (co t)+-Eo cos(3m t)+···· 

8 24 
(1.109) 

Thus the interaction of an intense beam of light with a third order NLO material creates 

polarization component at the third hannonic. In the bulk material, the third hannonic 

is decided by X(3) , the third order material susceptibility. 

Several experimental techniques have already been developed to investigate the 

NLO activity of a material. The Kurtz's powder technique is the simplest one to detect 

NLO activity and to determine the efficiency of second hannonic generation of 

powdered samples. The efficiency thus measured depends upon both the molecular 

(f3) and bulk (X(2») polarisabilities, but this is not a reliable probe of structure-

property relationships. 

Applications of NLO crystals in nonlinear optical device fabrication include 

generation of second and higher (up to sixth) optical hannonics of laser radiation from 

different types of sources, sum-frequency generation (SFG), difference-frequency 

generation (DFG), optical parametric oscillation (OPO) or parametric luminescence 

(PL), stimulated Raman scattering and pico-second continuum generation. 

The wavelength of lasers are either fixed or tunable over a small range. 

Nonlinear optical media allow us to widen the range of wavelengths generated by laser 

sources by several techniques such as generation of hannonics, generation of sum and 

difference frequencies etc. In normal cases, the efficiency of generation of second 

harmonic is very low because of the phase mismatch of the waves at the fundamental 

and doubled frequencies, while propagating through the NLO crystal. The refractive 

indices of these waves of different polarizations in an optically anisotropic (uniaxial or 

biaxial) nonlinear crystal will be different and this property can be made use of in 
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matching the phase velocities. This phase matching technique can be used to enhance 

the efficiency of harmonic generation. 

The generation of combination frequencies V1Z. sum and difference of 

frequencies of radiation from two laser sources, sum and difference of frequencies of a 

laser and a non-coherent source have been some other achievements in this field. 

Optical parametric oscillation (OPO) allows us to generate radiation with a tunable 

frequency. Very high intense (107_10 10 W-cm-2
) short duration (nano and picosecond) 

sources are required for optical parametric oscillation. Stimulated Raman scattering 

(SRS) is the main mechanism of nonlinear losses which significantly reduces the 

conversion efficiency. The generation of a wide band radiation called picosecond 

continuum is observed along with SRS. This picosecond continuum generated has been 

successfully used in kinetic spectroscopy as probe radiation. Properties of such 

non linear optical crystals are discussed in detail in the Handbook of nonlinear optical 

crystals and several reviews have appeared in literature [1.22,1.24,1.25]. 

1.8 Summary and conclusion 

Ultrasonics is a good tool to investigate the elastic properties of crystals. It enables one 

to determine all the elastic constants, Poisson's ratios, volume compressibility and bulk 

modulus of crystals from velocity measurements. It also enables one to demonstrate the 

anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, 

slowness, group velocity, Young's modulus and linear compressibility along the a-b, b­

e and a-c planes. They also help one to understand more about phonon amplification 

and helps to interpret various phenomena associated with ultrasonic wave propagation, 

thermal conductivity, phonon transport etc. 
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Study of nonlinear optical crystals is very important from an application point of view. 

Hundreds of new NLO materials are synthesized to meet the requirements for various 

applications. Inorganic, organic and organometallic or semi organic class of compounds 

have been studied for several reasons. Semi organic compounds have some advantages 

over their inorganic and inorganic counterparts with regard to their mechanical 

properties. High damage resistance, high melting point, good transparency and non­

hygroscopy are some of the basic requirements for a material to be suitable for device 

fabrication. New NLO materials are being synthesized and investigation of the 

mechanical and elastic properties of these crystals is very important to test the 

suitabili.ty of these materials for technological applications. 
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Chapter 2 

Instrumentation 

2.1 Introduction 

The science and technology of producing and transmitting sound waves through 

materials has become an important area of research with many practical applications. 

Ultrasound waves have been used in many physical investigations. A detailed 

description of the early history and applications of ultrasonics is available in literature 

[2.1]. A partial list of the large number of physical applications of ultrasound is given 

in the above review article. Ultrasonics is very useful in the investigation of the elastic 

properties of materials in the solid state. 

Ultrasonic techniques used to investigate the elastic properties of materials can, 

in general, be classified into the following. 

(1) continuous wave methods 

(2) low frequency methods 

(3) pulse methods 

The pulse methods are more popular because of the high measurement accuracy that 

can be attained owing to the fact that these techniques are essentially interferometric. 

2.1.1 Continuous wave methods 

Standing wave resonances can be excited in crystals using quartz transducers similar to 

that in a Fabry-perot interferometer and this technique has been successfully applied to 
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varIOUS problems in physical acoustics. The number of resonances excited for a 

frequency f in a sample of length L can be written as n = 2Lf where, v is the 
v 

velocity of propagation of sound through the sample. Frequency modulation 

techniques can be applied to attain more sensitivity in velocity and attenuation 

measurements. More detailed description of the various methods in this category is 

available in few review articles [2.2,2.3]. 

2.1.2 Low frequency methods 

Techniques using low frequency are discussed in detail by Read et al. [2.4]. These 

methods are particularly suitable for piezoelectric materials, which can be excited into 

mechanical resonances by an electric field directly without transducers [2.5]. The 

lower limit is determined by the sample dimensions. Mostly, these samples are excited 

into resonance in the fundamental mode. In this case, elastic compliances (Young's 

modulus E and shear modulus G) are determined by continuous wave resonance 

method or by measuring flexural and torsional oscillations. In a similar way 

piezoelectric crystals can be studied by applying an additional DC bias field employing 

electro-strictive effects [2.6]. Low frequency dynamic resonance methods are 

described in detailed by Schreiber et al. [2.7]. 

Transparent single crystals can be studied by the Schaefer-Bergmann [2.8] 

method. The interaction of a monochromatic beam of light with a system of elastic 

standing waves setup in a vibrating crystal is employed here. Vibrations in a crystal 

can be excited either directly by an electric field (for piezoelectric crystals) or by 

means of a piezoelectric transducer. The light, while passing through the vibrating 

crystal gets diffracted and a peculiar optical pattern is revealed which consists of 

closed curved lines. These curves are generally sections of the surface of inverted 
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sound velocities and hence this is a good method to study the anisotropy of elastic 

wave propagation in crystals. 

2.1.3 Pulse methods 

Pulse methods are essentially phase sensitive techniques. A brief description of 

ultrasonic pulse techniques is given below. 

Ultrasonic wave pulses of very short duration, generated by a piezoelectric 

transducer, are admitted into the sample to be investigated through one of the parallel 

faces. Crystal samples in the form of rectangular parallelepipeds with a pair of parallel 

faces perpendicular to the required direction are prepared. The piezoelectric transducer 

is bonded to the crystal surface using a suitable bonding medium. These ultrasonic 

wave pulses get multiply reflected from the opposite face of the sample and the same 

transducer detects these echo pulses. Electric signals thus generated are amplified and 

displayed on an oscilloscope or processed otherwise. The transit time of the pulse in 

the sample and the decay rate of the pulse amplitude can be used to evaluate the 

ultrasonic wave velocity and attenuation respectively. There are various kinds of phase 

sensitive methods such as pulse superposition [2.9,2.1 0], phase comparison [2.11], 

sing-around [2.12,2.13] method and pulse echo overlap method [2.14]. More details of 

these techniques are discussed at length in some review articles [2.15-2.19]. In 

ultrasonic experiment the frequency is usually in the range 10MHz to 100MHz. The 

plainness and parallelism of the reflecting end faces determine the higher limit of the 

ultrasonic frequency. Also the duration of the ultrasonic wave pulse must be longer 

than the RF period, but shorter than the transit time of the acoustic wave in the sample. 

This restricts the lower limit of the RF frequency. 

In the whole of the work presented in this thesis, the ultrasonic pulse echo 

overlap technique has been employed to measure ultrasonic velocities in solids. So a 
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detailed description of the technical details of this method is given in the following 

section. 

2.2 The pulse echo overlap method 

The pulse echo overlap (PEO) method is a very versatile and highly accurate technique 

for measuring the round trip travel time of ultrasonic waves in materials. This method 

was first invented by John E. May [2.20] in 1958 and was modified to the present form 

by Emmanuel P. Papadakis [2.14] in 1964. This modification was based on the 

principle of pulse superposition developed by McSkimin [2.9,2.10]. Now the PEO 

method is the most widely used technique to measure the velocity of propagation of 

ultrasonic waves through solids. The presence of a bonding medium between the 

transducer and sample alters the phase of the propagating wave and can introduce 

errors. Also the identification of the correct cycle-to-cycle matching of the overlapped 

echoes can be erroneous and hence the travel time measured need not be correct. 

McSkimin developed a technique by which these errors can be rectified and high 

absolute accuracy can be obtained in these measurements. The block diagram of the 

PEO setup is shown in Fig. 2.1. A highly precise continuous wave oscillator generating 

square pulses determines the accuracy that can be attained using this setup. 

The output of the CW oscillator is fed into a frequency divider, which divides 

the input frequency by 10, 100 or even 1000. This divided output from the divider unit 

triggers an RF pulsed oscillator to produce RF wave pulses, which are synchronous 

with the divided trigger generated. It is not of the gated type so that it generates wave 

pulses of the same initial phase angle. These RF wave pulses are applied to the quartz 

transducer bonded to the sample surface using a suitable bonding medium. The 

piezoelectric transducer converts these electrical signals into mechanical vibrations and 

42 



they are admitted into the sample through the bonding medium. These mechanical 

wave pulses get reflected from the rear end of the sample successively so that a series 

of echoes are generated. The same transducer detects these echoes and are fed to the 

echo amplifier. The period of the divider output must be sufficiently large compared to 

the round trip travel time in the sample. The echo pattern is displayed using a CRO. 

Continuous 
Frequency 

wave 
oscillator 

counter 

I 
I 

Delay IIDelay I Frequency #1 #2 
divider 

E).-J I 
I 

RFPulse 
modulator f 
Receiver CRO o Transducer 

Sample 

Fig. 2.1: Block diagram of the pulse echo overlap setup 

The SYNC input signal ofthe CRO nonnally triggers the x-axis sweep, when it 

is operated in the linear sweep mode. If the output of the divider unit is given as the 

SYNC input signal to the CRO, one RF pulse and all the successive echoes with 

exponentially decreasing amplitudes are visible on the CRO screen. Two time delay 

units are provided to generate two pulses of proper separation and width to be given as 

the z-input to the CRO to intensify the two echoes of interest. When the CRO is 

triggere~ by the output of the CW oscillator, the x-axis sweep is triggered every time a 

pulse is received as the input. If the CW frequency is suitably adjusted so that the 
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period of the trigger signal is exactly equal to the round trip travel time of the 

ultrasonic waves in the sample, echoes appear on the screen one after the other on 

successive sweeps. The echoes will appear overlapped one over the other due to 

persistence of vision. If the amplitudes of the intensifying pulses are properly adjusted, 

the echoes of interest alone can be made visible in the overlapped condition. If the 

overlap is exact, the period of the CW output is exactly equal to the round trip travel 

time of the ultrasonic wave pulse in the sample. 

The echoes appear on the screen in an expanded form with RF cycles in the 

echo visibly resolved and a perfect cycle-to-cycle matching of the overlapped echoes 

as shown in Fig. 2.2 can be achieved by fine tuning of the CW oscillator. 

Fig. 2.2: Echo pair in the overlapped condition 

2.3 The experimental setup 

The basic experimental setup consists of the PED system, the temperature 

measurement and control-setup, an oven for high temperature studies and a cryostat for 

low temperature measurements. 
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The PEO system includes a MA TEC Model 7700 pulse modulator with Model 

760V RP plug-in, Model 110 high resolution frequency source, Model 122B decade 

divider and dual delay generator, Model 2470B attenuation recorder, Model 70 

impedance matching network etc. A 100MHz oscilloscope (HIL Model 5022) with z­

axis intensification input is used. to display the echo pattern. An HIL (India) Model-

2722 frequency counter displays the CW frequency output. The block diagram of the 

experimental setup is shown in Fig. 2.3. The tunable CW source (Model-11O) employs 

a highly stable high frequency oscillator tunable from 12 to 50MHz. The built-in 

frequency divider network generates low frequency CW signals for the PEO setup 

when required. The high frequency undivided signal is fed to the frequency counter 

and the divided signal is applied to the dual delay and divider unit (Model 122B). This 

divider network divides the input frequency by 10, 100 or 1000, which can be set 

suitably. Model 122B also provides the trigger signal to the CRO. It can be the signal 

frequency before division or frequency after division and a front panel switch allows 

one to select it suitably. Always the CRO is operated in the external sweep trigger 

mode. This unit also generates two pulses to intensify the two echoes of interest by 

feeding it as the z-input to the CRO. The position, duration and amplitude of these 

pulses can be adjusted accordingly using front panel controls. The divided output 

signal is directly fed to the Model-7700 pulse modulator with the RP plug-in Model 

760V. 

Model 760V is a RP oscillator, which can be tuned continuously from 10 to 

90MHz, can be modulated by applying a modulation pulse. An RP wave pulse of peak 

power 1 kW can be generated at the output. The amplitude of the RP output can be 

adjusted properly using the Model 50HT42 Alan attenuator for proper pulse shape. RF 
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wave pulses thus generated are fed to the piezoelectric transducer through the 

impedance matching network (Model 70). 

ModelllO 
HIL Model 2722 
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~ 

Frequency Counter 
Frequency Source 

Trigger Puls e (Dire ctlDivide d) 
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Attenuation !{ 
1r 
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..L --"'" I ~ ~J 

Model 70 
Model50HT42 lrJ~ Impedance Sample in 
Attenuator Matcher Cryostat or 
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Fig. 2.3: Block diagram of the experimental setup 

The same transducer detects the successive echo pulses and the detected echoes are 

amplified by the echo-amplifier. These signals corresponding to the echo pulses are 

given as the Channel 1 input for the CRO. 

Model 2470 B attenuation recorder is a very useful unit to study small variation 

in ultrasonic attenuation. Two gates with variable delay are setup to sample the echoes 

of interest. The amplitude of the first echo is held constant by A VC circuitry and the 

amplitude of the second echo is sampled at its peak. A calibrated logarithmic amplifier 

converts the sampled echo amplitude to decibels relative to the constant amplitude of 
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the first echo. It can be recorded using a strip chart recorder when dependence of 

attenuation on temperature is studied. 

The timing diagram of various signals in the measurement system is shown in 

Fig. 2.4. The first and second echoes are shown as the selected ones in the figure. 

----''--...J....- Direct SHe 

---.1 __ Divided SYNC 

-111-___ RF Echoes 

________ JlJL .i .. o ~'p., 
Jl Intensifying 

L--_______ .......... pulses 

Fig. 2.4: Timing diagram of the various signals 

2.4 Sample cell and accessories 

Gold coated coaxial quartz transducers (Valpey-fisher) suitable for overtone operation 

are used for the present studies. The shear axis of y-cut transducer is perpendicular to 

the slight flat cut edge of the round crystals. A temperature controller (Lakeshore 

Model DR 82C) with platinum RTD sensor is used to control the temperature of the 

chamber where the crystal-transducer assembly is kept. A bath type cryostat [2.21] has 

been used for low temperature studies. A slow and unifonn cooling with precise 

control of temperature is possible with this setup. The regions surrounding the liquid 

nitrogen' and the sample cell are evacuated to attain very slow cooling rates. The 

schematic details of the cryostat are sho\\TI in Fig. 2.5. 
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Fig. 2.5: Sectional view of the cryostat 

[A-Double walled outer vessel, B-Single walled inner vessel, CI-Chamberl, C2-

Chamber2, C3-Sample chamber, El & E2-Electrical liD, FI and F2-Flanges, H­

Heater coiL PI, P2 and P3-Evacuation ports, Q-Transducer, R-Temperature sensor, S­

Sample, TI -Liquid nitrogen guide tube, T2 -Connection tube, W -Wood's metal seal] 
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The main parts of the cryostat are two coaxial stainless steel vessels A and B. Chamber 

A is a double-walled vessel and the space between the walls can be evacuated using a 

rotary pump through the port P 1. Vessel B is single-walled and the space between 

vessels A and B (Cl) can be filled with liquid nitrogen through the tubes T1 fixed on 

the flange F 1. The sample holder is fixed at the end of a long tube fixed on the flange 

F2. The sample chamber (C3) can be evacuated through the port P3. H is a cylindrical 

heater covering the sample holder. The sample chamber can be sealed using Wood's 

metal (W) and can be evacuated through the port P3. Electrical leads are taken out 

through the side tube T2. El (BNC Jack) and E2 (D type connector) are two 

connectors provided to establish the electrical connection. The inner vessel B can be 

sealed at the top by the flange F2 using neoprene O-rings. P2 indicates the 

corresponding evacuation ports. 

Transducer Q is properly bonded to the sample and it is kept in the sample 

holder. Heater and electrical connections are made. Sample chamber C3 is properly 

placed and it is sealed using Wood's metal. The top flange F2 and attached sample 

chamber are suitably placed to make proper sealing so that the vessel B and the region 

between the double-walled vessel A can be evacuated. After attaining the required 

vacuum, liquid nitrogen is gradually poured down into the region Cl through the tube 

Tl. 

Inner and outer regions surrounding the liquid nitrogen are kept at vacuum, 

which prevents heat absorption from outside. Similarly, the vacuum space inside the 

sample chamber C3 and vessel B prevents absorption of heat from the sample chamber 

so that it is suddenly cooled which results in cracking of the crystal. 

The advantage of the cryostat is that it is a bath-type one, which can be used to 

cool the specimen kept in the sample chamber very slowly and steadily. After attaining 

the lowest temperature, power can be applied to the heater to increase the temperature 

of the sample. Two RTD sensors (R) are provided to sense and control the temperature 

of the sample S using a PID temperature controller. In this setup a cooling rate of 

1 Klmin. or less can be attained and measurements can be made in the temperature 

range 80-300K. A photograph of the whole experimental setup including the cryostat 

is shown in Plate 2.1 
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Plate 2.1 
The photograph of lhe experimental setup 



2.5 Low and high temperature measurements 

The condition of perfect cycle-to-cycle overlap of the selected echoes will change with 

change in temperature of the sample. The CW oscillator is to be properly tuned to 

reestablish the initial condition. This new frequency value displayed by the frequency 

counter can be used to determine the velocity of propagation at the new temperature. 

Silicon grease is found to be a good bonding material for longitudinal measurements at 

room temperature as well as at relatively high temperatures up to 1000 Celsius. 

2.6 Bond correction in ultrasonic measurements 

Usually a piezoelectric transducer of resonant frequency f and thickness A is bonded 
2 

to one end of the sample with its opposite end free, where A is the wavelength of 

ultrasonic waves generated by the transducer when operated at the resonant frequency. 

The thickness of the bonding medium is finite. The transducer is also unbacked. The 

presence of the bonding medium can alter the phase of the reflected wave when it gets 

reflected from the bonded end of the sample. 

Consider a transducer of specific acoustic impedance Z2 bonded to a sample of 

specific acoustic impedance Z., using a bonding medium of specific acoustic 

impedance Z\ as shown in Fig. 2.6. Let Zd be the impedance offered at the 

termination (bond and transducer). Since the transducer is unbacked, the impedance 

seen by it at its back is that of air (Z a) which is approximately zero. Based on the 

theory of lossless transmission lines, Z d can be written as 
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Fig 2.6(a): Sketch of specimen bond and transducer 
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Fig. 2.6(b): Transmission line equivalent circuit 

Ei 

Fig. 2.6(c): Phase angle generated at each reflection of the echoes 
from the specimen! bond I transducer interface 

(2.1) 

Here I1 and 12 are the thickness of the bonding medium and transducer respectively. 

The propagation constant in the bonding medium PI is defined as 

(2.2) 
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where VI is the velocity of the acoustic wave in the bonding medium. Similarly /32' 

the propagation constant in the transducer can also be related to v2 ' the velocity of the 

wave in the transducer. The ratio of the reflected pressure (Eb) to the incident pressure 

(E,) is defined as 

E; Zd +Z, 
(2.3) 

This is a complex quantity, since Z d is imaginary (Z d = jZ e). Separating the real and 

imaginary parts, we have 

(2.4) 

The phase angle r upon reflection is given by 

- 2Zc Zs 
tanr = 2 2 • 

Z" -Ze 
(2.5) 

Ultrasonic frequency f is a variable and hence one can change /31 and /32 by 

changing f. The bond thickness 11 is unknown. The phase angle' r is the relevant 

measure of the effect of the transducer and bond upon the reflected wave. 

McSkimin assumed that the measured travel time t M is slightly higher than the 

true travel time t and is given by 

(2.6) 

Here p is the number of round trips in the measurement. The phase angle change r 

per reflection yields a fraction L of the period of the RP as the increment in the time 
2" 

of travel. Also, during echo overlap, if a mismatch of n cycles occurs, the 
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corresponding error is !!... The objective of the mathematical analysis is to find the 
I 

overlap case with n = 0 and to estimate the error due to the bonding medium. 

It is clear from the above expressions that both r and t M are functions of the 

frequency I. If round trip travel time (t M) is measured at two different frequencies, 

say IH (equal to the resonant frequency IT) and IL (equal to say 0.9· IT)' they can be 

expressed as 

PrL n 
tL = pt---+-

2 "IL IL 

(2.7) 

(2.8) 

If the same overlap condition is maintained (same n) by shifting the CW 

frequency slightly as the RF frequency is changed, we can write t L - t H as 

M = t -t = _1 [n- PrL ] __ 1 [n- prH] 
M L H IL 2" IH 2" 

(2.9) 

This expression represents the McSkimin's M criterion for finding the n = 0 case. If 

IL' IH' t L and t H are measured and r L and rH are computed using the values of 

11' 12 , VI' V 2 ' ZI' Z2 and Zs one can determine the possible value of MM for the 

n = 0 case. Conversely, if n = 0 is set in the measurement, the measured value of M M 

agrees with the theoretically calculated value. 

The procedure to be followed to apply correction by the McSkimin's technique is 

listed below. 

1. The full echo pattern generated by the RF pulse is made visible on the CRO screen. 

Estimate the time interval between successive echoes and adjust the CW frequency 

to have that time as its period. 
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2. Trigger the CRO usmg the CW output and adjust its frequency such that a 

plausible overlap is obtained. Every cycle of the latter echo must be smaller than 

the corresponding cycle of the earlier echo because of attenuation. 

3. Measure TL and TH corresponding to RF frequency IL and I H, usually 0.91r and 

Ir respectively. 

4. Repeat step 3 for several possible adjacent overlaps, say three towards lower and 

three towards higher CW frequencies. 

5. Compute IlIM for each set of these measurements. 

6. Compare III M found experimentally with theory and choose the correct cycle to 

cycle matching case. The yalue of I H , measured at IH = Ir will be the value of I M 

with n = O. This is the measured round trip travel time without correcting the 

phase lag due to the bonding medium. 

A theoretical value for Ilt •. f cannot be obtained directly since the bond thickness is 

not known. Usually a graphical technique is adopted to estimate !It M' We can safely 

assume that the bond is thin and corresponding phase angle PI II lies between 0 and 

90° Values of III M can be computed for different bond angles ranging from 0 and 90° 

and a plot of Ilt vers~s bond angle can be made for the n = 0 overlap condition. This 

gives a range of values for Ilt for the given transducer, bond and sample combination. 

Now compare the values of III M measured experimentally with the values of !It 

plotted and determine the value of overlap case n corresponding to it. This can be 

taken as n = O. Thus the correct case of overlap can be identified. Value of TH and 

corresponding rH can be used to evaluate the round trip travel time eliminating the 

effect of'the bonding medium. 
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A computer program developed in BASIC [2.22] to make these corrections 

numerically has been used to make the McSkimin £1t correction in our measurements. 

2.7 Sample preparation techniques 

In this section, growth of large crystals from supersaturated solution, preparation of 

oriented specimen for measurements and the associated instrumentation are described. 

Indexing of crystallographic planes and directions is easy if crystals are grown from 

solution. Five different crystals have been grown from solution by the slow 

evaporation or slow cooling techniques. Specimen with parallel planes perpendicular 

to selected crystallographic directions are required for the determination of all nine 

second order elastic stiffness constants of a crystal belonging to the orthorhombic 

system. Details of the technique adopted for the growth of each crystal studied in this 

thesis are given in the respective chapters. 

2.7.1 Crystal growth from solution 

Crystal growth from liquid [2.23] is the most widely used technique to grow large 

single crystals. Crystal growth from solution comes under this branch and requires less 

sophisticated instrumentation. Large single crystals can be grown by the slow 

evaporation or slow cooling technique. Very good books describing the various 

techniques to grow single crystals are available in literature [2.24-2.27]. If very large 

single crystals are required, a modified form of the slow evaporation technique [2.28] 

that allows convection of the steady state concentration is employed. The selection of 

the growth technique to be adopted depends on the solubility of the material and its 

temperature dependence. Slow cooling technique is the most suitable one when 

solubility of the material is very large and has high positive temperature coefficient of 

solubility. If the temperature coefficient of solubility is far less crystal growth by slow 
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evaporation technique can be employed. Schematic diagram of the crystal growth 

setup showing various parts of the unit is shown in Fig. 2.7. The accuracy with which 

temperature of the solution can be maintained decides the quality of the crystals 

grown. 

1 

8 ....... ~ .. .. -.... .......... " ............ ., .•..... 

5 
9 

10 

Fig. 2.7: Schematic of the solution growth setup 

1 Seed crystal rotation mechanism 
4 Temperature sensor 
7 Growing crystal 
1 0 Outer puf lining 

2 Bath stirrers 3 Bath heaters 
5 Bath liquid 6 Solution 
8 Therrnocol granules 9 Glass tank 

Spurious nucleation is a major problem in crystal growth from solution. High 

purity materials and solvents are essential to overcome this problem. Several 

techniques to purify the material to be crystallized, popular crystal growth techniques 

and preparation of oriented samples are discussed at length by Norbert Karl [2.29]. 

Usually, the materials to be crystallized are purified by repeated crystallization prior to 
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crystal growth. Triply distilled and de-ionized water is used as the solvent if salt is 

water-soluble. 

Mixing of the solution can provide homogeneity of the solution and its 

concentration, which influences the growth of crystals. Several designs to achieve 

unidirectional mixing [2.30-2.33] and alternate mixing [2.34] are available in 

literature. Controller using accelerated rotation of seed crystal has also been used 

recently and design details are available in literature [2.35]. We have used alternate 

mixing technique with stop periods [2.36] between two reversal of the direction of 

rotation in growing our crystals. 

Several designs of temperature controllers suitable for crystal growth 

applications have been reported in literature [2.37-2.39]. We have developed a 

temperature controller, which can be programmed to lower the temperature of the 

growth solution progressively so that crystals can be grown by the slow cooling 

technique under microprocessor (Intel 8085A) control. The rotation of the seed holder, 

with stop periods between two successive rotation reversals also, can be programmed. 

We have implemented the PID algorithm fully by software for this application. The 

design details of the temperature controller is described in detail in Appendix I. A 

diode sensor is used to monitor the temperature of the growth chamber periodically. 

An ADC (AD0809) converts the analog signal voltage into equivalent digital value. 

The gain of the amplifier is so adjusted that the digital output of the ADC is the 

equivalent of temperature in degree Celsius. The temperature of the bath is sampled 

once in every 30 seconds. The rate of cooling is computed from the values of initial 

and final temperatures and the time interval. The set temperature is progressively 

lowered and the error signal is manipulated suitably to implement the PID control 

algorithm. The count to be loaded into the register of the timer is evaluated to generate 
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the pulse width modulated output, which is used to control the power delivered to the 

heater. Periodically the bits are set or reset accordingly, to reverse the direction of 

rotation of the seed holder. The circuit design details and program developed to 

implement this temperature controller are discussed in detail in Appendix I. 
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Chapter 3 

Elastic properties of 

sodium p-nitrophenolate dihydrate (NPNa) 

si~gle crystals 

3.1 Introduction 

The interest in understanding nonlinear optical phenomena started with the detection of 

second harmonic emission [3.1] from quartz about a year after the development of the 

first laser source. Since the middle of 1980's there has been an explosion of interest in 

the search for and development of nonlinear optical materials that are suitable for 

commercial device applications. To date, such materials find application in 

information processing, optical switching, optical frequency conversion and 

telecommunications [3.2-3.4]. Of the many systems studied, for example inorganic 

crystals and semiconductors, organic crystalline monomers and long chain polymers 

with delocalised 7t-electrons, no one species has proved to be all-encompassing, with 

advantages for one being negated by disadvantage for another. In recent years, 

organometallic compounds, through their unique characteristics such as diversity of 

metals, oxidation states, ligands and geometries have found success and brought a new 

dimension to this area. Extensive research done during the past decade indicate that 
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organic compounds often possess higher degree of optical nonlinearity than their 

inorganic counter parts. Some of the other advantages of organic materials are their 

inherent high nonlinearity, ease of synthesis, scope for altering the properties by 

functional substitutions, high damage resistance etc. 

Sodium p-nitrophenolate dihydrate (abbreviated as NPNa) is a relatively new 

semi organic nonlinear optical material. Minemoto et al. [3.5,3.6] have recently 

reported the linear optical properties and powder efficiency for second harmonic 

generation (SHG) of this material. Material synthesis, crystal growth and preliminary 

characterization of this crystal have also been done by them. They have reported that 

NPNa crystal has a deff value which is about 1.2 times that of potassium titanyl 

phosphate (KTP), or in other words the deff value of NPNa is 11.5 times the d36 value 

of potassium di-hydrogen phosphate (KDP) [3.7]. Davydov et al. [3.8] determined the 

powder efficiency for second harmonic generation in 1977. It is reported to be Im-NA 

where m-NA stands for the powder efficiency of meta-Nitro Aniline. An intra-cavity 

frequency doubling of a diode laser pumped Nd:YV04 laser have also been 

demonstrated by Minemoto et al. [3.9]. The d value of NPNa is reported to be the 

highest compared to a group of more than ten common NLO materials [3.10]. Effect of 

temperature on disorder and nature of hydrogen bonds have also been investigated 

using polarized Raman scattering experiments and reports are available in literature 

[3.11]. 

A more exact crystal structure determination of NPNa has been done recently 

by Sharma et al. [3.12]. NPNa is a metal complex of donor-acceptor substituted 

aromatic compound. Molecular structure and packing of NPNa molecules in planes 

parallel to the (100) plane are shown in Fig. 3.1(a) and Fig. 3.1(b) respectively. NPNa 

crystal has a layered structure with molecules packed in layers perpendicular to the 
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(b) 

0° ec 

Fig. 3.1(0): Structure ofNPNa molecule 

Fig. 3.1(b): Packing ofNPNa molecules in planes parallel to the (100) plane 

crystallographic a-axis. The bonding betv."een sodium ion and nitrophenoxy ion is ionic 

in nature. It also interacts with the two oxygen atoms of the water of crystallization. 

The charge-transfer (eT) axis, defined as that along the donor-acceptor bonds, makes 

an angle of approximately 80° with the polar axis of the crystal. This alignment is not 

favorable to obtain the best nonlinear coefficients [3.13]. However, because of the 

presence of the extensive chains of these molecular dipoles, all aligned in the same 

direction, the functional units contribute additively to the macroscopic nonlinearity. 

This sort of molecular arrangement is highly favorable for optimum electrooptic effect 

[3 .13]. 
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A detailed account of the synthesis of the material, single crystal growth, 

crystal morphology, microhardness, defect characterization by chemical etching, 

synchrotron topography, and optical transmission studies is available in literature 

[3.14]. NPNa crystallizes into the orthorhombic structure with space group Ima2. The 

lattice parameters are reported to be a = 6.892A, b =19.692 A and c = 6.439 A and has 

four molecules per unit cell. Good optical quality single crystals of reasonable size 

have been grown from methanol solution. The crystal does not exhibit any cleavage 

and has reasonably good hardness. The dielectric, thermal and optical properties of 

NPN a crystals have also been investigated earlier [3.15]. It is well documented in 

literature that the· presence of dislocations, solvent inclusions and hetrogeneous 

molecular inclusions which arise particularly from degraded solution during growth 

reduces the frequency conversion efficiency drastically and lowers the threshold for 

laser induced damage [3.16,3.17]. 

In this chapter we present the results of our measurement of the elastic 

properties of NPNa single crystal. All the nine second-order elastic constants have 

been determined by measuring the velocities of ultrasonic waves along various 

symmetry directions. Variation of selected elastic constants with temperature over a 

limited range have been measured and the results are presented. Phase velocity 

surfaces, slowness surfaces and group velocity surfaces have been plotted in different 

crystallographic planes to bring out the anisotropy in elastic properties for this crystal. 

The Young's modulus and linear compressibility surfaces also have been plotted. 

Details of the experiment, results obtained and a discussion of the results are presented 

in the following sections. 
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3.2 Sample preparation 

NPNa material has been synthesized by mixing supersaturated solutions of nitrophenol 

and sodium hydroxide in the molar ratio 1: 1. The yellow precipitate so obtained is 

washed and dried. It is further purified by several recrystallisations from water. The 

solubility of NPNa in methanol, already reported in literature [3.14], is shown in Fig. 

3.2. Single crystals of NPNa have been grown from methanol solution by the slow 

evaporation or slow cooling method. NPNa is highly soluble in water but still it cannot 

be used as a good solvent to grow single crystals. Large rod shaped single crystals 

grown from aqueous solution looses its transparency within 30 minutes after its 

removal from the mother solution and are brittle in nature. It gets powdered on 

handling. 

24 

23 
----E 
0 22 0 -....... 
E 21 eo -.Q 

20 
..D 
:::J 

0 19 en 

18 

30 35 40 45 50 55 60 

Temperature (Celsius) 

Fig. 3.2: Solubility curve ofNPNa in methanol 

Methanol is found to be a good solvent to grow bipyramidal crystals of NPNa 

which are optically clear and transparent. Supersaturated solution ofNPNa in methanol 

is kept in jacketed vessel maintained at a temperature of 45°C. Temperature of the 

water bath is controlled to an accuracy of ± 0.01 0C. Details of the setup to grow single 
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crystals from solution is already discussed in detail in chapter 2. Evaporation of the 

solvent has been controlled by providing suitable openings in the jacketed vessel. 

Attempts have also been made to grow single crystals of NPNa from N,N-dimethyl 

fonnamide (DMF) solution. Transparent, stable needle shaped single crystals can be 

easily grown from DMF solution since it is not so volatile compared to methanol. 

The inter-planar angles have been evaluated from crystallographic data and are 

compared with those measured using an accurate contact goniometer. This helps one to 

fix the crystallographic directions and identify growth planes in the crystal grown from 

solution. The morphology of crystals grown from methanol solution, kept at a 

temperature 45°C is shown in Fig. 3.3. The crystal grows as a platelet in the a-c plane 

and is elongated in the a-direction. 
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Fig. 3.3: Morphology exhibited by NPNa crystals grown 

from methanol solution at 45°C 

If the crystals are grown at room temperature the shape of the crystal will be 

bipyramidal elongated in the b-direction. The prominent growth planes can be listed in 

their order of preference as {OIl} > {11O} > {O 1O}. Samples in the fonn of 

rectangular parallelepipeds for ultrasonic velocity measurements have been prepared 
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by cutting the bulk crystal using a slow speed diamond wheel saw. Our requirement of 

samples is shown in Fig. 3.4. These oriented samples have a pair of parallel planes 

perpendicular to the a [100]. b [010]. c [001]. [110]. [OIl] and [101] directions. 

z 

8, 

x 

[Olm 

y 

The hatched 
faces have 
transducers 
attached to it 

Fig . . 3.4: Samples with different orientations required for ultrasonic measurements 

Mostly the crystallographic directions need not be the same as the frame of reference 

for elastic properties. As per the IRE standards [3.18,3. 19] for an orthorhombic 

crystal, x is taken parallel to a, y parallel to band z parallel to c with c < a < b. Lattice 

parameters of NPNa obey this condition and hence the x, y, z frame of reference 
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coincides with the crystallographic axes. Samples prepared thus have been lightly 

polished without spoiling the parallelism between the opposite faces. Maximum care 

has been taken during polishing since even moisture present in the fingers is more than 

sufficient to dissolve a few layers of this crystal. 

3.3 Ultrasonic velocity measurements 

Cl I, C22, C33, C44, Css, C66, C12, C23 and CI3 are the nine elastic constants of a crystal 

belonging to the orthorhombic system. Twelve different mode velocity measurements 

are required to evaluate all these elastic constants from ultrasonic velocity data, which 

allows crosschecks on some of the critical values. X or Y -cut quartz transducers of 

resonant frequency 10MHz have been bonded . to the crystal surface to admit 

mechanical vibrations generated by the transducer into the sample. Silicon grease is 

found to be a good bonding medium to transmit ultrasonic waves from the transducer 

to the sample. The same transducer detects the echo pulses reflected from the rear end 

of the sample. The travel time of the wave pulse through the sample has been 

determined accurately by the PEO technique. A more detailed description of the 

experimental setup and measurement details are given in chapter 2. The diagonal 

elastic constants (i = j) are related to the respective mode velocity in the crystal 

obeying a relation of the form Cij = P v 2
• These modes are pure modes. Velocities 

measured along [110], [011] and [101] directions are related to more than one elastic 

constant and are called mixed mode directions. Details of the modes measured, 

velocity of ultrasonic waves, corresponding elastic constants and the relation between 

these two are listed in Table 3.1. Corresponding elastic constants are also listed in the 

same table. 
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Table 3.1 Velocity of ultrasonic modes in NPNa crystals. L, T and QL represent 

longitudinal, transverse and quasi-longitudinal modes respectively. The 

relations between mode velocities and elastic constants are also given. 

SI 
No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Mode Direction Direction Measured Mode Elastic 
of propa- of polari- mode velocity - constant 
gation sation velocity elastic (GP a) 

(m/s) constant 
relation 

L [100] [100] VI= 4402 ±4 CII = PVl2 26.38 ± 0.05 

L [010] [010] V2= 4032 ± 4 C22 = pvl 22.11 ± 0.04 

L [001] [001] V3= 5937 ± 6 C33 = pvl 47.95 ± 0.10 

T [010] [001] V4= 2259 ± 2 C44 = pvl 6.94 ± 0.01 

T [001] [010] Vs= 2248 ± 2 C44 = pvl 

T [100] [001] V6= 1518 ± 2 Css = pvl 3.14 ± 0.01 

T [001] [100] V7= 1531 ± 2 Css = pvl 

T [100] [010] Vg= 1470 ± 2 C - 2 66 - pVg 2.94 ± 0.01 

T [010] [100] V9= 1468 ± 2 C - 2 66 - PV9 

QL [110] [QL] VIO= 5945 ± 6 C - [, (a) 12 - ab 107.7 ± 1.08 

QL [011 ] [QL] VII= 5518 ± 6 C - £ (b) 23 - bc 78.35 ± 0.78 

QL [101] [QL] V12= 3381 ± 3 C - [, (c) 
13 - ac -2.53 ± 0.03 

(a) fab = {[ c2 CII + S2 C66 - P Vlo2} {c2 C66 + S2 C22 - p vlo2]1 C
2S2} 1/2 - C66 

(b) fbe = {[c2 C22 + S2 C44 - P V1I2}{ C2 C44 + S2 C33 - P V1I2]1 C
2S2} 112 - C44 

(c) fae = {[S2 CII + c2 Css - p Vll} {S2 Css + c2 C33 - p vll]1 C2S2} 1/2 - Css 

(Here c and s are the cosine and sine ofthe angle of rotation from the respective axes.) 
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3.4 Temperature variation of elastic constants 

Temperature dependence of elastic constants and ultrasonic attenuation can give very 

useful infonnation about the properties of the material such as the existence of phase 

transitions resulting in elastic anomalies. The crystal-transducer assembly is kept in a 

temperature-controlled oven. As the temperature changes, one echo pulse drifts 

relative to the other laterally which is ultimately a change in the ultrasonic velocity in 

the sample. Dependence of the diagonal elastic constants on temperature are shown in 

Fig. 3.5(a) and 3.5(b). 

3.5 Elastic anisotropy of NPNa crystal 

Values of the second order stiffness constants of a crystal can be used to demonstrate 

the anisotropy in the elastic properties of a crystal by plotting the phase velocity, 

slowness, group velocity, Young's modulus and linear compressibility surfaces. 

Section of the phase velocity surfaces along the a-b, b-c and a-c planes are plotted in 

figures 3.6(a), 3.6(b) and 3.6(c) respectively. The pure shear (PS), quasi-shear (QS) 

and quasi-longitudinal (QL) modes have been shown separately by different symbols. 

Figures 3.7(a), 3.7(b) and 3.7(c) show the sections of the slowness (inverse phase 

velocity) surfaces along the a-b, b-c and a-c planes respectively. The quasi shear mode 

exhibits certain amount of anisotropy, which can be assessed from its shape. The group 

velocity or ray velocity surfaces can provide more infonnation about the elastic 

properties of a crystal. The group velocity surfaces of NPNa are shown as sections 

along the a-b, b-c and a-c planes in Fig. 3.8(a), 3.8(b) and 3.8(c) respectively. The 

quasi shear mode 
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Fig. 3.5(a) : Dependence of elastic constants CII , C22 and C33 on temperature. 
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Fig. 3.5t(b): Dependence of elastic constants C44 , C?5 and C66 0n temperature. 
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Fig.3.6(a) : Section of the phase velocity surfaces ofNPNa along the a-b plane. 
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Fig.3.6(b) : Section of the phase velocity surfaces ofNPNa along the b-c plane. 
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Fig.3.6(c) : Section of the phase velocity surfaces ofNPNa along the a-c plane. 
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Fig.3.7(a) : Section of the slowness surfaces ofNPNa along the a-b plane. 
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Fig. 3.8(c): Section of the group velocity surfaces ofNPNa along the a-c plane 

exhibits cuspidal edges along the [110], [011] and [101] directions. It indicates that 

there can be more than one group velocity vector corresponding to a given phase 

velocity vector. 

Behavior of a material under longitudinal stress is well understood when 

Young's modulus values are evaluated. Young's modulus is a direction dependent 

parameter and hence the shape of the surface generated by plotting Young's modulus 

values for various directions in the crystal can give more infonnation about the 

anisotropy in the elastic properties. Fig. 3.9 shows sections of the Young's modulus 

surface along the a-b, b-c and a-c planes. Fig. 3.10 shows sections of the linear 

compressibility surface along the a-b, b-c and a-c planes. 

3.6 Discussion and conclusion 

All the nine second-order elastic constants of NPNa single crystals are reported in this 

chapter. The magnitude and sign of the elastic constants reflect the strength and nature 
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of the inter-atomic forces in the crystal. All the elastic constants on which temperature 

variation measurements have been carried out, are found to decrease with temperature. 

This is the behavior exhibited by most solids. The temperature coefficients of elastic 

constants are rather small. It may be noted that none of the elastic constants exhibit any 

anomalous variation with temperature, indicating that this crystal does not undergo any 

phase transition in the temperature range over which measurements have been carried 

out. This observation is in agreement with other results reported on the sample. 

It is rather interesting to note that this crystal exhibits significant anisotropy in 

its elastic properties. It may be noted that sections of the group velocity surfaces 

exhibit cuspidal edges along symmetry directions. These correspond to directions 

which a one-to-one correspondence between phase velocity vector and group velocity 

vector is lost, or more than one group velocity correspond to a single phase velocity. 

Such directions are expected to exhibit interesting phenomena such as conical 

refraction, phonon focussing etc. [3.20,3.21]. It would be interesting to study phonon 

focussing and enhancement in this sample by heat pulse techniques by keeping the 

sample at ultra low temperatures. 

The Young's modulus and linear compressibility also show significant 

anisotropy in their values. This information would be of interest while using this 

crystal for various practical applications. 
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Chapter 4 

Elastic properties of 

Potassium acid phthalate (KAP) single crystals 

4.1 Introduction 

Many organic molecular crystals belonging to the orthorhombic system exhibit electro­

optic [4.1], ferroelectric [4.2], photoconducting [4.3] and triboluminescence [4.4] 

properties. Some of these properties are structure sensitive and a correlation between 

piezoelectric and triboluminescence properties have been reported earlier [4.5]. The 

potassium salt of phthalic acid, potassium acid phthalate (KAP) or potassium hydrogen 

phthalate (KHP) or potassium biphthalate, with the chemical formula CgHS04K finds 

application in soft x-ray spectroscopy due to its large 2d (2d = 26.6A) spacing 

[4.6.4.71· It is also reported tbat it exbibits marked pieLoe\ectnc \l\.~A91 and 

electrooptic [4.10] effects. The pyroelectric and electrical properties of pure and X-ray 

irradiated KAP crystals have been reported earlier [4.11,4.12]. These authors have 

reported that the crystal decomposes at about 520K. Optical properties of KAP crystals 

~ave been investigated by Comoretto et al. and the results are available in literature 

[4.13]. Even though the elastic properties of an isomorphous family member, thallium 

81 



acid phthalate have been reported earlier [4.14], there are no reports on the 

measurement of the elastic properties of this crystal. 

N\\\\.\!.'N\.c:Z. et uL ~\)':,\!.~\!.~ ~~\cID..\~\\ ~\.':,~"t':,\.~\\ \\\ ~ \)'1 \l':,\\\~ \\\!'"il1-\~Nl"il1~ 

Raman scattering technique [4.15]. The specular reflection spectra have been measured 

and associated optical functions have been evaluated in the 3 - 22 e V range by 

Romanyuk et al. [4.16J. The temperature dependence of cracking resistance and 

capture of water in KAP crystals [4.17] have been investigated earlier as part of the 

characterization of KAP crystals and optimization of growth conditions. KAP 

crystallizes into orthorhombic structure with lattice parameters a = 6.46 A, b = 9.60 A 

and c = 13.85 A and has four molecules per unit cell, as reported by Okaya [4.18]. The 

space group IS Pea2, and is noncentrosymmetric. KAP crystals have excellent 

cleavage, which is comparable to or even better than that of mic;]. Okaya [4.181 

identified the cleavage plane as (001); but later van Enckevort et a1. [4.19J assigned the 

value 13.85 A to b and accordingly the cleavage plane is indexed as (010). However, 

the assignment of these values to the lattice parameters a, band c is not as per the IRE 

standards [4.20] for the determination of all the nine second-order elastic constants of 

an orthorhombic crystal. 

Reports on studies of crystal growth [4.21,4.22], defect characterization by 

chemical etching [4.23], mechanism of layer growth and its micro morphology [4.24-

4.26], effect of additives on crystal growth rate and morphology [4.22,4.27-4.29] and 

correlation between crystal structure and morphology [4.30,4.31] have been reported in 

literature. Large transparent inclusion-free crystals of KAP can be easily grown from 

aqueous solution either by the slow evaporation or slow cooling techniques. 

In this chapter, we present the results of our measurement of the elastic 

properties of KAP single crystal. All the nine second-order elastic constants have been 
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detennined by measuring the velocities of ultrasonic waves along various symmetry 

directions. Variation of selected elastic constants with temperature over a limited range 

have been measured and the results are presented. Phase velocity surfaces, slowness 

surfaces and group velocity surfaces have been plotted in different crystallographic 

planes to bring out the anisotropy in the elastic properties for this crystal. The Young's 

modulus and linear compressibility surfaces also have been plotted. Details of the 

experimental results obtained and a discussion of the results are presented in the 

following sections. 

4.2 Sample preparation 

Potassium hydrogen phthalate (KAP) is highly soluble in water and has high positive 

temperature coefficient of solubility [4.21]. Large single crystals of KAP have been 

grown by the slow cooling technique. Details of the crystal growth setup have been 

discussed at length in Chapter 2. Crystal of approximate size 40x30x15 mm3 has been 

grown by this technique in a period of about 3 - 4 weeks. Large, transparent, inclusion­

free crystals grown have {I I O}, {Ill} family of planes and (010) plane developed 

fully well. The inter-planar angles measured using an accurate contact goniometer have 

been compared with the theoretically evaluated values, to fix the crystallographic 

directions and growth planes. The morphology of this crystal along with the laboratory 

axes for measurements are shown in Fig. 4.1. The laboratory axes x, y and z have been 

fixed according to the IRE standards as x parallel to a, y parallel to band z parallel to c 

with c < a < b [4.20]. Samples in the shape of rectangular parallelepipeds with parallel 

planes perpendicular to the a [100], b [010], c [001], [110], [011] and [101] directions 

(Fig. 3.4 in chapter 3) have been cut using a slow speed diamond wheel saw. 

83 



The sample faces of interest have been lightly polished without spoiling the parallelism 

between the opposite faces. 

1-
1° -1'--

-(010) o 

-

Fig. 4.1: Morphology exhibited by KAP single crystals 

4.3 Ultrasonic velocity measurements 

Evaluation of all the nine second-order elastic stiffness constants of an orthorhombic 

crystal require minimum 12 sound velocity measurements along selected crystallo-

graphic directions. This allows cross checking of some of the critical values. Ultrasonic 

pulse echo overlap (PEO) technique has been used to measure the round trip travel 

time through the sample. McSkimin L'lt correction has been applied to eliminate the 

errors introduced in the measured travel times due to the presence of the bonding 

medium between the crystal and transducer. X and Y -cut quartz transducers of 

84 



resonant frequency 10MHz have been used to generate ultrasonic wave pulses. Silicon 

grease is found to be a suitable bonding medium to admit ultrasonic wave pulses 

generated by the transducer into the sample. The successive echo pulses generated by 

reflections from the rear end of the sample have been detected using the same 

transducer. A more detailed description of the measurement technique and setup are 

already given in Chapter 2. The density of KAP crystal has been measured to be equal 

to 1636 kg_m-3
. 

4.4 Elastic constants of KAP crystal 

Diagonal elastic constants (i = j) Cl I, C22 , C33 , C44 , CS5 and C66 have direct relation to 

the velocity of propagation of the respective mode as Cij = pv 2 where p is the density 

of the crystal. These directions are usually pure mode directions. Velocities measured 

along any arbitrary direction in the a-b, b-c and a-c planes other than these pure mode 

directions can be used to evaluate the other three off-diagonal elastic constants C l2 , C23 

and C 13. These directions are called mixed mode directions because vibrations of 

particles constituting the medium will not be strictly longitudinal or transverse in 

nature. Velocities measured along these directions are related to more than one elastic 

constant. Description of the modes measured, values of velocity measured and relation 

between mode velocity and elastic constants are tabulated in Table 4.1. All the nine 

second order elastic stiffness constants and compliance constants and the respective 

Poisson's ratios evaluated are listed in Table 4.2. The accuracy of the measured 

diagonal elastic constants is better than 0.2% and that for the off-diagonal elastic 

constants is better than 1 %, considering all possible sources of error in the 

measurements. 
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Table 4.1 Velocity of ultrasonic modes in KAP crystals. L, T and QL represent 

longitudinal, transverse and quasi-longitudinal modes respectively. The 

relations between mode velocities and elastic constants are also given. 

SI. Mode Direction of Direction of Measured Mode velocity -

No. propagation polarisation mode velocity elastic constant 

(m/s) relation 

1 L [100] [100] VI= 3505.4 ± 7 C - 2 II - PVI 

2 L [010] [010] V2= 3045.1 ± 6 C - 2 22 - PV2 

3 L [001 ] [001 ] V3= 3462.2 ± 7 C - 2 33 - pV3 

4 T [010] [001 ] V4= 2161.0 ± 4 C - 2 44 - PV4 

5 T [001 ] [010] V5= 2163.4 ± 4 C44 = PV5 2 

6 T [100] [001 ] V6= 1779.4 ± 4 C55 = PV62 

7 T [001 ] [100] V7= 1774.5 ± 4 CS5 = PV7 2 

8 T [100] [010] Vg= 2059.6 ± 4 C - 2 66 - pVg 

9 T [010] [100] V9= 2055.5 ± 4 C - 2 66 - pV9 

10 QL [110] [QL] VlO= 3261.2 ± 7 C - f (a) 12 - ab 

11 QL [011 ] [QL] VII= 3528.6 ± 7 C23 = fbc 
(b) 

12 QL [101 ] [QL] V12=3163.2±6 C - f (c) 13 - ac 

( ) f - {[ 2 C 2 C 2} { 2 C 2 C 2]/ 2 2 1/2 C ac - S II + C 55 - P V12 S 55 + C 33 - P VI2 CS} - CS5 

(Here c and s are the cosine and sine of the angle of rotation from the respective axes.) 
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Table 4.2 Elastic stiffness constants, compliance constants and Poisson's ratios of 

KAP crystal at room temperature (300K) 

Elastic stiUness constants "E,\astic cornp\iance constants Poisson's 

(GPa) (xlO-1O m 2_N- 1) ratios 

C11 = 20.10 ± 0.040 SII= 0.91 ± 0.009 

C22 = 15.17 ± 0.030 S22= 1.37 ± 0.013 V12 = 0.820 

C33 = 19.61 ± 0.040 S33 = 0.63 ± 0.006 V21 = 0.550 

C.J.J= 7.64 ± 0.020 S44= 1.31 ± 0.013 

C 55 = 5.18 ± 0.010 S5S= 1.93 ± 0.019 V23 = 0.300 

C 66 = 6.94 ± 0.020 S66= 1.44 ± 0.014 V32 = 0.650 

C 12 = 11.11 ± 0.100 S12 = -0.750 ± 0.008 

C 23 = 5.99 ± 0.060 S23= -OAI0 ± 0.004 VI3 = -0.240 

CI3= 0.23 ± 0.010 SI3= 0.22 ± 0.003 V31 = -0.350 

4.5 Temperature dependence of elastic constants 

Study of the dependence of elastic stiffness constants on temperature allows one to 

detect any anomaly in the elastic properties at any specific temperature, which can be 

due to phase transition or related phenomena. The crystal-transducer assembly is kept 

in a temperature-controlled oven. The condition of perfect cycle-to-cycle matching of 

the overlapped echoes change with change in temperature, which is ultimately due to 

change in the round trip travel time. The tunable continuous wave oscillator is properly 

adjusted to reestablish the initial condition of overlap. The new frequency value 

enables one to evaluate the elastic constant at the new temperature. The dependence of 

CII • en and C33 on temperature are shown in Fig. 4.2. C~. CS5 and C66 also show a 

similar behavior. and so is not included here. 
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Fig. 4.2: Dependence of elastic constants C)), C22 and C33 on temperature 

4.6 Anisotropy of elastic wave propagation in KAP crystal 

In order to demonstrate the anisotropy in the ultrasonic wave propagation 

characteristics of KAP, surface plots of the phase velocity, slowness or inverse phase 

velocity and ray velocity or group velocity have been drav,n. Sections of the phase 

velocity surfaces along the a-b, b-c and a-c symmetry planes are shown in figures 

4.3(a), 4.3(b) and 4.3(c) respectively. The pure shear (PS), quasi-shear (QS) and quasi-

longitudinal (QL) modes are shown separately by different symbols. The crystal does 

not show marked anisotropy in ultrasonic wave propagation characteristics, which is 

clear from the shape of the contours. Sections of the slov,ness or inverse velocity 

surface do not exhibit large-scale anisotropy. The quasi-shear (QS) mode exhibits 

some anisotropy in elastic wave propagation. Sections of these surfaces along the a-b, 

b-c and a-c planes are shown in Fig. 4.4(a), 4.4(b) and 4.4(c) respectively. Sections of 

the group velocity surfaces along the a-b, b-c and a-c planes are shown in figures 

4.5(a), 4.5(b) and 4.5(c) respectively. 
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Fig. -"S(c): Section of the group velocity surfaces ofKAP along the a-c plane 

The fonnation of cuspidal edges in these figures, provide very valuable information 

about anisotropy in the elastic properties of this crystal. Group velocity or ray velocity 

is the velocity with which energy is propagated in a crystal. This need not be collinear 

with the phase velocity vector. It may be noted that KA.P exhibits cuspidal edges in 

group velocity surface for the quasi-shear mode. 

Plotting of the Young's modulus and linear compressibility surfaces are t\VO 

other useful techniques to demonstrate anisotropy in the elastic properties of a crystal. 

Sections of the Young's modulus surface along the a-b, b-c and a-c planes are shown 

in Fig. 4.6. Cross-sections of this surface is not perfectly circular indicating the 

presence of some amount of anisotropy in the longitudinal stress-strain response. 

Linear compressibility, given by expression 0.74) in chapter 1 is a direction 

dependent parameter. Sections of the linear compressibility surface along the a-b, b-c 

and a-c planes are shown in Fig. 4.7. Here also the deviation from perfect circular 

shape indicates the extent of anisotropy in the linear compressibility of this crystal. 

Separate symbols have been used to indicate these sections along the a-b, b-c and a-c 

planes. 
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All the nine second order elastic stiffness and compliance constants of this crystal have 

been evaluated for the first time. The large number of clear echoes obtained in this 

crystal during ultrasonic measurements indicates that the crystals grown are free from 

structural imperfections and inclusions. Poisson's ratios have also been evaluated. The 

volume comllressibilit: of this crystal is eva\uated to be eC\....ua\ to l.()2.&xt()-H)ml"~r\ <llKl 

the corresponding bulk modulus is 9. 73GPa. Elastic constants, Cl', Cn and C33 

gradually decrease with rise of temperature. Stretching of the lattice under longitudinal 

stress will be more in the presence of thennal energy and hence the longitudinal elastic 

constants Cl I, Cn and C33 decrease steadily with rise of temperature. The shear elastic 

constants do not usually depend much on temperature. Shearing caused by tangential 

stress is not much affected by thennal energy. Dependence of C\\, C22 and C33 on 

temperature have been studied in the range 300-410K. Perfect cleavage along the (010) 

plane actually caused some difficulties in cutting oriented samples from the grown 

crystal. Very small stress exerted during handling is more than sufficient to cleave a 

portion of the crystal. The crystal is found not to exhibit any sort of large-scale 

anisotropy in the elastic properties. 
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Chapter 5 

Elastic properties of 

Zinc tris (thiourea) sulphate (ZTS) 

single crystals. 

5.1 Introduction 

New nonlinear optical (NLO) frequency conversion materials with better physical 

properties can have significant impact on laser technology [5.1], optical 

communication [5.2], optical data storage technology [5.3] optical modulation etc. 

Recent efforts at producing new frequency conversion materials have been focussed 

primarily on increasing the NLO tensor de!! coefficients to produce structures that can 

frequency double low peak power sources, such as diode lasers [5.4,5.5]. Also, 

empha.sis has been given to develop highly transparent crystals suitable for frequency 

conversion of high-power lasers such as those used for intemal confinement fusion 

[5.6]. These applications have unique and often competing materials requirements and 

illustrate that no single nonlinear optical material will be suitable for all these wide-

rangIng uses. 
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The search for new frequency conversion ~:r the past has been 

concentrated primarily on organic compounds [5.4-5.8] and many NLO materials with 

high nonlinear susceptibilities have been synthesized. However, the realization of 

organic materials in the single c.rystal form in practical device applications has been 

hindered by their inadequate transparency, poor optical quality, lack of robustness, low 

laser damage threshold and above all, inability to grow large-size single crystals. The 

molecules in pure organic crystals are often coupled by only relatively weak Van der 

Waal's forces or hydrogen bonds, which result in poor mechanical properties. 

Recently, a new class of materials known as metal organics or semi organics 

have been developed which are metal complexes of highly polarisable organic 

molecules having favorable physical properties such as high laser induced damage 

resistance, good transparency, large nonlinearity in optical properties and ease of 

single crystal growth. These are combinations of the properties of both organic and 

inorganic crystal constituents. Recently, the NLO properties of some products of 

thiourea [5.9-5.12] have attracted great interest. The thiourea molecule is an interesting 

inorganic matrix modifier due to its large dipole moment [5.13] and has ability to form 

an extensive network of hydrogen bonds. Unfortunately most thiourea complexes 

known so far are centrosymmetric. Only a few crystallize into an acentric space group, 

which is the most essential requirement of a material to be nonlinear optical. 

A class of crystals incorporating urea and urea analogs in inorganic salts have 

been grown already. Zinc tris(thiourea) sulphate (ZTS) with chemical formula 

Zn[CS(NH2)2hS04, a prototype NLO coordination complex, has previously been 

identified as a potentially useful material for frequency doubling of near-IR laser 

radiation [5.9]. 
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Structurally, ZTS crystal belongs to the orthorhombic system with space group 

Pea2, (point group-mm2) and has four molecules per unit cell [5.14]. The lattice 

parameters are reported to be a = 11.126 A, b = 7.773 A and c = 15.491 A. It has a less 

prominent cleavage along the (100) plane. The Zinc ion is tetrahedrally cootdinated to 

three sulfur atoms present in the thiourea molecules and to one oxygen atom attached 

to a sulphate group. The thiourea molecules are planar and there is extensive 

intennolecular and intra-molecular hydrogen bonding between thiourea, amino 

hyd~ogen and sulphate oxygen [5.14,5.15]. The molecular structure and packing of the 

molecules in the unit cell as viewed approximately along the [010] direction are shown 

in Fig. 5.1 (a) and 5. l(b), respectively. 

Spectroscopic studies on the metal complexes of thiourea such as bis(thiourea) 

cadmium chloride and zinc tris(thiourea) sulphate single crystals have been reported in 

literature [5.16,5.17]. It has also been reported that there exists two low temperature 

phase transitions in ZTS, detected by Raman spectroscopic studies [5.15]. Raman 

measurements show drastic changes around 60K and 122K indicating the presence of 

two second-order phase transitions of order-disorder type. Ramabhadran et al. [5.18] 

have studied the electrooptic, piezoelectric and dielectric properties of this crystal. 

Reasons for its high polar nature [5.19] and high dielectric pennittivity at low 

frequencies [5.20] are also reported in literature. Various thermal properties [5.21] 

such as thermal diffusivity, heat capacity etc. and laser damage studies [5.21-5.23] 

reveal that this crystal can be used in fabricating NLO devices. 
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Fig. 5.I(a): Molecular structure ofZTS 

OS 
®N 
eC 
o 0 
~ Zn 
o H 

Fig. 5.I(b): Projection ofZTS crystal structure approximately along the [OIOJ direction 

showing the alignment of the molecular dipoles (2n·0 bonds). 

(Arrows point along the c-axis and indicate the net dipole moment. The upper right and 

lower left molecules are below the plane of the upper left and lower right molecules. 

For clarity hydrogen atoms have been omitted in this projection) 
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A preliminary report of optical transmission and measurement of second and 

third order nonlinear optical (NLO) coefficients have been made by Newmann et al. 

[5.24]. Subsequently the values of defT, Po and the threshold for SHG have been 

reported [5.25]. The SHG efficiel,1cy, optical absorption, refractive index measurement, 

calculation of phase matching loci, non-critical wavelengths and their experimental 

verification have been done by Marcy et al. [5.9]. They have identified the principal 

dielectric axes (a, p, y) and the ANSI / IEEE piezoelectric crystal coordinate system 

(x, y, z) and the crystallographic axes (a, b, c). These axes are shown in Fig. 5.2. 

b 
ex 
X 

_aB Y 

Fig. 5.2: Different systems of axes for ZTS crystals 

It is also reported that the intensity of 0.532 ~m second ha111lonic generated on a per 

particle basis by ZTS is about 1.2 times the intensity of that generated by potassium di-

hydrogen phosphate (KDP) having the same average diameter. This indicates that the 

nonlinear coefflcients of Z1'S are similar to those of KDP. Much better prospects for 

the practical application of Z1'S are found after achieving non-critical 1'ype-ll phase 
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matching (along the a-axis) by temperature tuning. It is expected that maXImum 

conversion efficiency could be achieved with crystals of length 3-5 cm. 

Single crystal growth, defect characterization and other related studies of this 

crystal have been done by several researchers and reports are available in literature 

[5.10,5.26-5.31]. Studies of the slip system, surface anisotropy in micro hardness and 

its relation to inter atomic bonding are also investigated and reported [5.32,5.33]. 

It is reported that ZTS is thermodynamically stable up to 200°C following 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). 

Temperature dependence of dielectric constant over the frequency range I-100kHz 

show no anomaly, which further confirms its stability. Measurement of the thermal 

expansion coefficient also does not indicate the presence of any structural phase 

transition before its decomposition at about 200°C. 

Single crystals of ZTS can be grown from aqueous solution either by the slow 

evaporation or by the slow cooling techniques where thiourea and ZnS04.7H20 are 

dissolved in the molar ratio ranging from 1: 1 to 6: 1. Since thiourea has the 

coordinating capacity to form a variety of complexes, it would be safe to synthesize 

ZTS first and then grow single crystals from solution after purification by several re­

crystallizations. A more detailed study of the crystal growth and scaling of ZTS has 

been carried out by Cleveland Crystals Inc. in which crystals of size 13x 13x62 mm3 

have been grown. 

In this chapter we present the results of our measurement of the elastic 

properties of this crystal. All the nine second-order elastic constants of ZTS have been 

determined by measuring ultrasonic wave velocities along different symmetry 

directions. Other related parameters such as Poisson's ratios, volume compressibility 

etc. have also been determined. The phase velocity, group velocity and slowness 
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surfaces have been plotted in two dimensions to bring out the anisotropy in elastic 

wave propagation in this crystal. Variation of a few elastic constants with temperature, 

over a limited range are also presented. Details of the experimental technique, results 

obtained and a discussion of the results are outlined in the following sections. 

5.2 Sample preparation 

ZTS material for crystal growth has been synthesized from zinc sulphate and thiourea 

following the reaction 

ZnS04 + 3 CS(NH2h 0 Zn[CS(NH2)2hS04. 

ZnS04 and thiourea taken in the molar ratio 1:3 are dissolved separately in triply 

distilled water, just sufficient to dissolve it. These solutions are mixed with vigorous 

stirring to avoid the formation of other complexes. The resultant precipitate of ZTS is 

washed and dried. This product obtained is purified by several re-crystallizations 

before attempting to grow single crystals. Fig. 5.3 indicates the solubility of ZTS in 

water at different temperatures, and one can see that the temperature coefficient of 

solubility is positive, but rather small. This implies that the best method to grow big­

size single crystals is the slow evaporation technique, which is described already in 

Chapter 2. Single crystals of size nearly 20x 18x 0.8mm3 have been grown over a 

period of about 5 weeks. The prominent growth planes have been identified and the 

morphology of the grown crystal is exhibited in Fig. 5.4. ZTS has a less prominent 

cleavage along the (100) plane. The inter-planar angles have been measured using an 

accurate contact goniometer and are compared with the values evaluated from 

crystallographic data to identify the crystal directions and growth planes. 
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Fig. 5.3: Solubility curve of ZTS in water 
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Fig. 5.4: Morphology of ZTS crystal grown from aqueous solution 
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The relative sizes of the growth planes can be expressed in the order {lOO} > {OO I} > 

{ala} > {012} > {201} > {012} > {l10}. After identifying the crystallographic 

directions, samples for measurements have been cut in the form of rectangular 

parallelepipeds with a pair of parallel planes perpendicular to the a [100], b [010], c 

[001], [110], [all] and [101] directions, as shown in Fig. 3.4 (in chapter 3) using a 

slow speed diamond wheel saw. The planes of interest have been lightly polished 

without spoiling the parallelism between the pair of planes. 

5.3. Ultrasonic velocity measurements 

Ultrasonic wave velocity measurements have been made along selected 

crystallographic directions for waves of longitudinal and transverse polarizations. The 

round-trip travel times through the sample cut along desired directions have been 

measured accurately using the pulse echo overlap (PEO) technique, already described 

in Chapter 2. To eliminate the errors introduced by the presence of the bonding 

medium between the transducer and sample and the incorrect identification of the 

condition of perfect match, McSkimin ~t correction has been applied. X and Y -cut 

quartz transducers of resonant frequency 10MHz are used to generate ultrasonic wave 

pulses and to detect the successive echoes after reflections from the rear end of the 

sample. Eighteen different mode velocity measurements can be measured along these 

specified directions. Out of this, twelve mode velocity measurements are sufficient to 

evaluate all the nine second-order elastic constants with cross checks possible on some 

of the critical values. Silicon grease is found to be a good bonding medium to fix the 

transducer onto the crystal surface and to admit ultrasonic wave pulses generated by it 

into the crystal medium. More technical details of these measurements are already 

described in Chapter 2. 
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.5.4 Elastic constants of ZTS crystal 

Velocities of propagation of ultrasonic waves through a medium are related to the 

second order elastic constants and the relations are given in Table 5.1. 

Table 5.1 Velocity of ultrasonic modes in ZTS crystals. L, T and QL represent 

longitudinal, transverse and quasi-longitudinal modes respectively. The 

relations between mode velocities and elastic constants are also given. 

SI. Mode Direction of Direction of Measured Mode velocity -

No. propagation polarisation 
mode velocity elastic constant 

relation 
(m/s) 

1 L [100] [100] VI= 3259 ± 6 C - 2 II-PVI 

2 L [010] [010] V2= 4151 ± 8 C - 2 22 - PV2 

3 L [001] [001] V3= 3042 ± 6 C33 = pv/ 

4 T [010] [001] V4= 2066 ± 4 C - 2 44 - PV4 

5 T [001] [010] V5= 2065 ± 4 C - 2 44 - PV5 

6 T [100] [001] V6= 2064 ± 4 C55 = PV62 

7 T [001] [100] V7= 2077 ± 4 C - 2 55 - PV7 

8 T [100] [010] Vg= 2153 ± 4 C - 2 66 - pVg 

9 T [010] [100] V9= 2135 ± 4 C - 2 66 - PV9 

10 QL [110] [QL] VIO= 3863 ±8 C - [. (a) 12 - ab 

11 QL [011] [QL] VII= 3985 ± 8 C - t; (b) 23 - be 

12 QL [101 ] [QL] V12= 3241 ± 6 C - [. (c) 13 - ac • 
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(a) fab = {[c2 Cl I + S2 C66 - P Vlo2} {c2 C66 + S2 C22 - P Vlo2]/ C
2S2} 112 - CM 

(b) fbe = {[c2 C22 + S2 C44 - P V112} {c2 C44 + S2 C33 - P VI12]/ C
2S2} 1/2 - C44 

(c) fac = {[S2 CII + c2 Css - P VI/} {S2 Css + c2 C33 - P VI22]/ C
2S2} 1/2 - Css 

(Here c and s are the cosine and sine of the angle of rotation from the respective axes.) 

[100], [010], and [001] directions are pure mode directions and hence each of the 

velocities measured along these directions are related to only one elastic constant. 

[110], [010], and [011] directions are mixed mode directions and hence the velocity of 

propagation of ultrasonic waves along these directions are related to several elastic 

constants. Ultrasonic wave velocities measured along different crystallographic 

directions are listed in Table 5.1 with polarization of the mode of propagation. The 

corresponding elastic stiffness constants, compliance constants and Poisson's ratios are 

tabulated in Table 5.2. 

Table 5.2 Elastic stiffuess constants, compliance constants and Poisson's ratios of ZTS 

crystal at room temperature (300K) 

Elastic stiffness constants Elastic compliance constants Poisson's 

(GPa) (xl 0.10 m2 -N-1
) ratios 

CII = 19.65 ± 0.039 SII= 0.563 ± 0.001 

C22 = 31.88 ± 0.064 S22= 0.388 ± 0.001 V12= 0.272 

C33= 17.12 ±0.034 S33= 0.696 ± 0.001 V21 = 0.188 

C44 = 7.89 ± 0.016 S44= 1.266 ± 0.003 

Css= 7.88 ± 0.016 Sss= 1.269 ± 0.003 V23 = 0.257 

C66= 8.58 ± 0.017 S66= 1.166 ± 0.002 V32 = 0.462 

CI2= 7.19 ± 0.070 SI2= -0.106 ± 0.001 

C23= 8.99 ± 0.090 S23= -0.179 ± 0.002 VI3 = 0.109 

I 
CI3= 3.99 ± 0.040 SI3 = -0.076 ± 0.001 v31=0.135 
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The density of the crystal is measured to be 1850 Kg_m-3 _ The accuracy of the reported 

elastic constant values is estimated to be better than 0_2% in the diagonal elastic 

constants and 1 % in the case of off-diagonal elastic constants. 

5.5 Temperature dependence of elastic constants 

In order to study the dependence of ultrasonic wave velocities on temperature, the 

crystal-transducer assembly is kept in an oven whose temperature is controlled 

accurately. As the temperature changes, the condition of perfect matching of the 

overlapped echoes changes. The tunable continuous wave oscillator is properly 

adjusted to establish the previous condition of perfect matching and the frequency 

output displayed on the frequency counter is noted. Temperature dependence of the 

elastic constants CIl, C22 and C33 are shown in Fig. 5.5(a) and that ofC44, C55 and C66 

are shown in Fig. 5.5(b). 

5.6 Anisotropy in elastic wave propagation in ZTS 
In order to study the anisotropy of elastic properties of ZTS, various surface 

plots such as the phase velocity, slowness, group velocity, Young's modulus and linear 

compressibility have been drawn. The values of these parameters along the symmetry 

planes a-b, b-c and a-c have been plotted to demonstrate the anisotropy in elastic 

properties of this crystal. Sections of the phase velocity surfaces along the a-b, b-c and 

a-c planes are plotted in Fig. 5.6(a), (b) and (c) respectively. The pure shear (PS), 

quasi-shear (QS) and quasi-longitudinal (QL) modes are shown separately in each 

diagram. These contours are almost circular in shape, which indicates that this crystal 

does not show large-scale anisotropy in its ultrasonic (elastic) wave propagation 

characteristics. 
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Fig.S.5(a) : Dependence of elastic constants Cl j, C22 and C33 on temperature. 
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Fig.5.S(b) : Dependence of elastic constants C44 , C55 and C66 on temperature. 
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Fig. 5.6(a): Section of the phase velocity surfaces ofZTS along the a-b plane. 
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Fig. 5.6(b): Section of the phase velocity surfaces of ZTS along the b-c plane. 
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Fig. S.6(c): Section of the phase velocity surfaces ofZTS along the a-c plane 

Fig. 5.7(a), (b) and (c) show sections of the slowness surfaces along the a-b, b-c 

and a-c planes respectively, which are similar in nature. Ray velocity or group velocity 

is the velocity of propagation of the energy, which need not be collinear with the 

corresponding phase velocity. Sections of the ray velocity (group velocity) surface 

along the a-b, b-c and a-c planes are shown in Fig. 5.8(a), (b) and (c) respectively. 
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Fig. S.7(a): Section of the slowness surfaces ofZTS along the a-b plane 
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Fig. 5.8(a): Section of the group velocity surfaces of ZTS along the a-b plane. 
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Fig. 5.8( c): Section of the group velocity surfaces of ZTS along the a-c plane 

These figures indicate that ZTS single crystals show somewhat isotropic behavior as 

far as ultrasonic wave propagation is concerned. 

Eq. 1.66 (in chapter 1) indicates that Young's modulus is a direction dependent 

parameter and hence the shape of the surface generated by plotting Young's modulus 

values for various directions will be very useful to demonstrate the anisotropy in 

elastic properties. Sections of the Young's modulus surface. along the a-b, b-c and a-c 

planes are shown in Fig. 5.9. The oval shape of these curves indicates the anisotropy in 

Young's modulus. 

The presence of the direction cosines I, m and 11 in Eq.1.74 also indicate that 

the linear compressibility is also a direction dependent parameter. Sections of linear 

compressibility surface along the a-b, b-c and a-c symmetry planes are shown in Fig. 

5.10. These are not circular in shape and hence the compressibility of this crystal along 

different directions in the crystal show clear anisotropy, when unit hydrostatic pressure 

is applied. 
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5.7 Discussion and conclusion 

All the nine second order elastic stiffness constants of Zinc tris(thiourea) sulphate 

single crystals are reported for the first time. Velocities of propagation of ultrasonic 

waves of both longitudinal and transverse nature along selected directions have been 

measured with the maximum possible accuracy and necessary computations have been 

done to evaluate all the nine second-order elastic stiffness and compliance constants of 

this crystal. These constants along with Poisson's ratios are tabulated in Table 5.2. The 

volume compressibility of this crystal has been evaluated using Eq. (1.71) as 0.926 x 

1 0-IOm2~-1 and the corresponding bulk modulus is 10.8GPa. 

Elastic constants CII, C22 and C33 are found to depend heavily on temperature. 

Longitudinal tensions along a, band c directions cause the lattice to stretch along the 

respective directions. This enhances thermal expansion of the lattice. As temperature 

increases, the longitudinal strain corresponding to a fixed longitudinal stress increases, 

resulting in a decrease in the elastic constant values. C44, Css and C66 depend much less 

on temperature. Shearing caused by tangential forces and hence the corresponding 

shear elastic constants are practically not much affected by increase in temperature. CS5 

and C66 show a small decrease in their values with rise of temperature, whereas C44 

remains practically unaffected. 

Single crystals of ZTS grown from the aqueous solution are optically clear and 

transparent. Our results indicate that ZTS does not show any large-scale anisotropy in 

its elastic properties. Crystals are hard with no pronounced cleavage and hence are 

suitable for device fabrication, if other properties meet the desired requirements. 
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Chapter 6 

Elastic properties of 

Benzoyl glycine (BG) single crystals 

6.1 Introduction 

The nonlinear optical (NLO) properties of large organic molecules and polymers have 

been the subject of extensive theoretical and experimental investigations during the 

past two decades [6.1-6.3]. Organic NLO materials play an important role in second 

harmonic generation (SHG), frequency mixing, electro-optic modulation, optical 

parametric oscillation, optical bistability etc. [6.4]. Recently, a number of organic 

compounds with non-localized 1t-electron systems having large dipole moments have 

been synthesized to realize nonlinear susceptibilities far larger than well known 

inorganic nonlinear optical materials [6.5,6.6]. The basic features of nonlinear 

molecules are: (i) presence of highly conjugated and polarizable electronic systems, 

either linear, cyclic or a combination of both and (ii) occurrence of inter-molecular 

charge transfer, which could be modulated by a suitable choice of acceptor and donor 

substituents. 
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Moreover, one can in a similar way, adjust the transparency of the system 

(usually between 0.3 and 2 /lm). The crystal must also be noncentro-symmetric to 

ensure molecular nonlinear response. From the fabrication and exploitation point of 

view, the other important aspects to be considered are (i) easy and inexpensive 

synthesis, (ii) desirable physio-chemical properties such as good radiation - thermal 

and chemical - resistance, (iii) ease of crystal growth etc. Moreover, the as grown 

crystal should exhibit satisfactory mechanical properties such as good strength and 

hardness for cutting and polishing of the crystal, which are essential for device 

fabrication. 

A more detailed discussion of some of the important issues connected with 

crystal growth and characterization of some of the most important organic nonlinear 

optical crystals are available in literature [6.7]. A long list of organic molecular 

crystals exhibiting NLO property is available in literature [6.2,6.3,6.8). Extensively 

studied molecular crystals belonging to this category are hexamethylenetetramine 

(HMT) [6.9], hippuric acid or benzoyl glycine [6.10] and benzil [6.11], for all of which 

a variety of optical properties are already known. However, applications of these 

crystals in device fabrication are rather limited due to poor chemical stability and red 

shift of the cut-off wavelength caused by the large organic n-conjugated group. 

Moreover, the large birefringence resulting from the stacking of the structure radical 

and several other factors lead to poor phase matching of optical waves in these 

materials. 

Benzoyl glycine (BG) or hippuric acid with the chemical formula C6H5CO­

NH-CH2-COOH is reported to be an excellent piezoelectric crystal [6.12] and NLO 

material [6.10,6.13]. The efficiency of second harmonic generation (SHG) is about 

37% for this in single crystal form and it is much higher than that of potassium 
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dihydrogen phosphate (22%). A second hannonic output of wavelength A = 532 nm of 

output power 7.7mW is reported to be obtained for an input power of21 mW using Q­

switched, mode locked Nd: Y AG laser (A = 1064 nm) using BG single crystals. The 

SHG efficiency has been measured using the Kurtz's powder technique [6.14]. Also, 

the range of optical transparency of this crystal is reported to be much larger than that 

of other well-characterized organic NLO crystals such as 3-methyl-4-nitropyridine-l­

oxide (PO M), N-(4-nitrophenyl)-L-prolinol (NPP), vanillin etc. This indicates its 

stability for the generation and mixing of frequencies over a wide wavelength range of 

the electromagnetic spectrum. Thus this crystal can be efficiently used for the up 

conversion of IR radiation into visible green light. Scanning force microscopy of ion­

·irradiated benzoyl glycine single crystals has been done recently by Nagaraja et al. 

[6.13]. They ha've done surface characterization of BG crystals irradiated with Bi ions. 

N-Benzoyl glycine has a fonnula weight 179.18 and melting point 18ic. It 

crystallizes into the orthorhombic structure with space group P2J2J2 J. The lattice 

parameters are reported to be a = 9.112A, b = 10. 566 A and c = 8.855 A and has four 

molecules per unit cell [6.13]. It can be synthesized from GR grade benzoyl chloride 

and glycine according to the chemical reaction. 

The product can be purified by recrystallisations from boiling water. Now, benzoyl 

glycine (GR grade) is readily available and hence the synthesis and purification 

processes can be avoided. 

In this work we have measured the elastic properties of benzoyl glycine single 

crystals. All the nine second order elastic constants have been detennined by 

measuring the velocities of ultrasonic waves of longitudinal and transverse 
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polarisations propagating along various symmetry directions. Temperature variation of 

selected elastic constants have been measured. Anisotropy in the propagation of elastic 

waves in this crystal has been brought out by plotting the phase velocity, slowness, 

group velocity, Young's modulus and linear compressibility surfaces. Details of the 

work are described in the following sections. 

6.2 Sample preparation 

The determination of all the nine second-order elastic stiffuess constant reqUIre 

ultrasonic wave velocity data along preferred symmetry directions in the crystal. 

Single crystals of benzoyl glycine have been grown by the slow evaporation technique. 

N,N-dimethylformamide, HCON(CH3h, is found to be a very good solvent for benzoyl 

glycine. Either the slow evaporation technique or slow cooling technique can be 

adopted to grow large single crystals from supersaturated solution. The variation of 

solubility (gm. /100ml) of benzoyl glycine with temperature is shown in Fig. 6.1. It can 

be seen that the solubility increases steadily with rise of temperature and hence, 

because of the large positive temperature coefficient of solubility, one can grow big­

size crystals adopting the slow cooling technique. The elastic properties of this crystal 

have not been reported so far, where as optical and other characterization studies have 

been reported already. 

The prominent growth planes have been identified by measuring the inter­

planar angles with an accurate contact goniometer and comparing it with the values 

evaluated from crystallographic data. The (100) and (010) planes are totally absent 

indicating that the growth rates along these directions are much larger. The 

morphology of the grown crystal is shown in Fig. 6.2. 
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Fig. 6.1: Solubility curve ofBG in N,N-dimethylformamide (DMF) 
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Fig. 6.2: Morphology exhibited by BG crystals grown from solution 
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The molecular stmcture and packing of molecules as viewed down along the c-axis are 

shown in Fig. 6.3(a) and Fig. 6.3(b) respectively. 

Fig. 6.3(a): The molecular structure of BG 

• C 

~ N 

o H 

o 0 

Fig. 6.3(b) : Packing of benzoyl glyc ine molecules in the unit cell as viewed down 

along the c-axis 
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The thermo-gravimetric analysis of the grown crystal indicates that the crystal is stable 

up to its melting point (187 DC) and has no water of crystallization. 

6.3 Ultrasonic velocity measurements 

Ringhertz [6.15] reported the lattice parameters as a = 8.874A, b =10.577 A and c = 

9.177 A which is not according to the IRE standards [6.16]. The more exact 

crystallographic data was reported later by Nagaraja et al. [6.13] and according to them 

a = 9.112 A, b = 10.566 A and c = 8.855 A which conforms to the IRE standards. 

Samples in the form of rectangular parallelepipeds have been cut from the grown 

crystal using a slow speed diamond wheel saw. Samples with parallel planes 

perpendicular to the a [100], b [010] and c [001] directions and anyone direction in the 

a-b, b-c and a-c planes (Fig.3.4 in chapter 3) are essential for the determination of all 

the nine second-order elastic constants. In this work, ultrasonic wave velocity along 

the [110] direction ·and directions perpendicular to the (10 1) and (011) planes have 

been measured, since the grown crystal has insufficient thickness in the required 

direction. 

Ultrasonic pulse echo overlap (PEO) technique is adopted to determine the 

round-trip travel time through the sample accurately. X and V-cut quartz transducers of 

resonant frequency 10MHz have been used to generate ultrasonic wave pulses. Silicon 

grease is found to be a good bonding medium to fix the transducer on the crystal 

sample surface and to admit these wave pulses into the sample. The presence of the 

bonding medium can introduce some additional phase change and because of the 

progressive decrease in the amplitude of the successive echoes, the judgement of the 

condition of perfect overlap by visual evaluation also can introduce some error in the 

measured travel time. The analytical technique developed by McSkimin to eliminate 

127 



these errors was applied for better accuracy. More details of the measurement 

technique and McSkimin Llt correction are already described in Chapter 2. 

6.4 Elastic constants of benzoyl glycine single crystals 

The relationship of elastic constants to the measured mode velocities are listed in Table 

6.1. Velocities of propagation of transverse and longitudinal ultrasonic waves along 

different symmetry directions are also listed in the same table. 

Table 6.1 Velocity of ultrasonic modes in BG crystals. L, T and QL represent 

longitudinal, transverse and quasi-longitudinal modes respectively. The. 

relations between mode velocities and elastic constants are also given. 

SI. . Mode Direction of Direction of Measured Mode velocity -

No. propagation polarization mode velocity elastic constant 

(m/s) relationship 

1 L [100] [100] VI= 2696 ± 5 CII =PVI 2 

2 L [010] [010] V2= 4235 ± 8 C - 2 22 - pV2 

3 L [001] [001] V3= 3189 ± 6 C - 2 33 - pV3 

4 T [010] [001] V4= 1041 ± 2 C - 2 44 - PV4 

5 T [001] [010] V5= 1033 ± 2 C - 2 44 - PV5 

6 T [100] [001] V6= 1794 ± 4 C - 2 55 - pV6 

7 T [001] [100] V7= 1784 ± 4 C - 2 55 - PV7 

8 T [100] [010] Vg= 2291 ± 5 C - 2 66 - pVg 

9 T [010] [100] V9= 2274 ± 5 C66 = pV9 2 

10 QL [110] [QL] V)Q= 3852 ± 8 C t: (a) 12 = ab 

11 QL 1.(011) [QL] VII= 2988 ± 6 £; (b) C23 = be 

12 QL 1.(101) [QL] V12= 3146 ± 6 C - t: (C) 13 - ae 
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(a) fab = {[c2 C II+ S2 C66-P V102} {c2 C66+ S2 C22-P VI02]/ C
2S2} 112_ C66 

(b) fbe = {[ c2 C22+ S2 C44-P V112} {c2 C44+ S2 C33-P VI12]/ C
2S2} 1/2_ C44 

(c) fae = {[S2 C II+ C2 CSS-P V122} {S2 CSS+ C2 CWP VI/]/ C2S2} 1/2_ Css 

(Here c and s are the cosine and sine of the angle of rotation from the respective axes.) 

The calculated values of second-order elastic stiffness constants, compliance constants 

and Poisson's ratios of BG are listed in Table 6.2. Data listed in this table is sufficient 

to evaluate the volume compressibility and bulk modulus of this crystal [6.17]. They 

are evaluated and found to have values equal to 1.371xlO· l om2-N·1 and 7.29 GPa 

respectively. 

Table 6.2 Elastic stiffness constants, compliance constants and Poisson's ratios ofBG 

single crystal at room temperature (300K) 

Elastic stiffness constants Elastic compliance constants Poisson's 

(GPa) (xlO·IO m2_N·I) ratios 

CI"I= 9.33 ± 0.019 SII= 1.414±0.003 

C22 = 23.03 ± 0.046 S22= 0.498 ± 0.001 VI2 = 0.443 

C33 = 13.06 ± 0.026 S33= 0.955 ± 0.002 V21 = 0.156 

C44 = 1.39 ± 0.003 S44= 7.189 ± 0.004 

Css = 4.13 ± 0.008 Sss= 2.421 ± 0.005 V23= 0.090 

C66 = 6.74 ± 0.014 S66= 1.484 ± 0.003 v32=O.I72 

C 12 = 4.95 ± 0.050 SI2= -0.220 ± 0.002 

C23 = 4.36 ± 0.044 S23= -0.086 ± 0.001 VI3 = 0.463 

C 13 = 4.76 ± 0.047 SI3= -0.442 ± 0.004 V31 = 0.312 

Also for demonstrating the anisotropy in elastic properties of this crystal, one can 

generate phase velocity, slowness and group velocity surfaces from this data. Young's 
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modulus and linear compressibility are two other parameters of interest, which are also 

direction dependent. The above data is sufficient to generate the Young's modulus and 

linear compressibility surfaces. 

6.5 Temperature variation of elastic constants 

The dependence of ultrasonic mode velocities on temperature have been measured by 

keeping the crystal-transducer assembly in a temperature-controlled oven. Slight 

variation in the surrounding temperature can produce shift in the position of one echo 

relative to the other when viewed in the overlapped condition. The CW frequency 

source has to be properly tuned to maintain the condition of perfect cyc1e-to- cycle 

matching of the overlapped echoes. This is ultimately a small change in the round-trip 

travel time. Usually for materials which do not exhibit any anomaly or undergo any 

phase transition, velocity and hence elastic constants gradually decrease as the 

temperature is increased. The temperature dependence of the three diagonal elastic 

constants Cl), C22 and C33 are shown in Fig. 6.4 (a). C44, Css and C66 also show a 

similar dependence, which are shown in Fig. 6.4 (b). 

6.6 Elastic anisotropy in BG crystals 

In order to demonstrate the anisotropy in elastic properties, the phase velocity, 

slowness and group velocity surfaces have been generated using a program written in 

MATHCAD. Sections of these surfaces along the a-b, b-c and a-c planes are enough to 

visualize the entire surface. Sections of the phase velocity surfaces along the a-b, b-c 

and a-c'planes are shown in Fig. 6.5 (a), (b) and (c) respectively. The pure shear (PS), 
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quasi-shear (QS) and quasi-longitudinal (QL) modes are shown separately in these 

figures. The shapes of these sections indicate the extent of anisotropy in the elastic 

properties of this crystal. 

The inverse velocity surface or slowness surface can give more information 

regarding the elastic anisotropy. Figures 6.6 (a), (b) and (c) show the sections of the 

slowness surfaces along the a-b, b-c and a-c planes respectively. 

b 

Fig. 6.6(a): Section of the slowness surfaces of BG along the a-b plane 
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Group velocity surfaces can also be plotted to understand more about the 

anisotropy in elastic properties of single crystals. It may be noted that wave 

propagation, particularly the quasi-shear mode is highly anisotropic in this crystal. 

Sections of these surfaces along the a-b, b-c and a-c planes are shown in Fig. 6.7 (a), 

(b) and (c) respectively. The quasi-shear mode exhibits cuspidal edges along the 

symmetry directions in the group velocity surfaces. Along these directions the phase 

velocity and group velocity do not have a one-to-one correspondence and they are not 

collinear. More than one group velocity vector correspond to a phase velocity vector 

and the wave propagation is highly anisotropic in these directions. These features are 

. reflected in the slowness surfaces also. 
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. Fig. 6.7(a): Section of the group velocity surfaces ofBG along the a-b plane 
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Eq.1.66 indicates that Young's modulus is also a direction dependent 

parameter. One can generate a surface by plotting values of the Young's modulus for 

all orientations. Sections of this surface along the a-b, b-c and a-c planes are shown in 

Fig. 6.8. Young's modulus along the b-direction is much larger than that along other 

directions. This indicates that the strain that can be produced along the b-direction 

applying stress is very small compared to other directions, indicating the presence of 

very strong intermolecular forces of attraction in this direction. 

Linear compressibility is also a similar direction dependent parameter for 

which a surface can be generated. Sections of this surface along the a-b, b-c and a-c 

planes have been shown in Fig. 6.9. Here also the compressibility of this crystal by the 

.application of unit hydrostatic pressure along the b-direction is much lower compared 

to the a and c directions. 

6.7 Discussion and conclusion 

N,N-dimethylformamide is found to be an ideal solvent for growing benzoyl glycine 

single crystals from solution. The rate of evaporation is very small compared to other 

organic solvents and hence one can control the spurious nucleation and other related 

difficulties. Crystals of size nearly 70x25x8 mm3 have been grown over a period of 

around 4-5 weeks. Since, a (100) and b (010) planes are totally absent in the grown 

crystal, one must be extremely careful during the cutting of the crystals. The {1l O} set 

of planes is well developed. The density of the crystal is measured to be 1284 kg-m -3. 

All the nine second order elastic constants of benzoyl glycine are reported for the first 

time. Here C22 is much larger than C ll and CD indicating that the intermolecular forces 

along the b-direction is much stronger than that along the a and c directions. 
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The dependence of the diagonal elastic constants on temperature, do not show 

any anomaly in the range 300-375 K indicating the absence of any phase transition in 

this temperature range. This crystal is not known to exhibit any phase transition in this 

temperature range as already reported. Elastic constants Cl I, Cn and C33, normally 

called longitudinal elastic constants, depend more heavily on temperature compared to 

the shear elastic constants, C44, Css and C66 [6.18]. Thermal energy aids the lattice to 

expand more in the direction of the applied linear stress which ultimately results in a 

decrement in values of the elastic constants when applied stress is constant. The shear 

strain is not significantly affected by the rise of temperature and hence dependence of 

C44, Css and C66 on temperature is less. 

Benzoyl glycine crystals are stable up to its melting point and are non­

hygroscopic. It is very interesting to see the anisotropy exhibited in the elastic 

properties indicating the presence of strong intermolecular forces of attraction along 

the b-direction. 
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Chapter 7 

Elastic properties of 

di-Ammonium hydrogen citrate (DAHC) 

single crystals 

7.1 Introduction 

Many organic crystals having orthorhombic structure exhibit ferroelectric [7.1,7.2], 

electrooptic [7.3], photoconducting [7.4] and triboluminescence [7.5] properties. The 

ammonium salt of citric acid, di-Ammonium hydrogen citrate (DAHC) with chemical 

formula C6HI4N207 and formula weight 226.19 has been reported to be piezoelectric 

and triboluminescent [7.6,7.7]. This is a noncentrosymmetric crystal with 

orthorhombic structure and space group Pn2b having lattice parameters a = 10.767 A, 

b = 14.736 A and c = 6.165 A and has four molecules per unit cell [7.8]. Good quality 

single crystals of reasonable size can be grown quite easily by layering supersaturated 

aqueous solution with ethyl alcohol. Alcohol absorbs water from the solution and 

thereby supersaturation increases leading to the development of nuclei. It further grows 

and thus small single crystals can be grown easily. Not much work has been reported 

141 



earlier on characterization of this crystal. Crystal growth, defect characterization by 

etching studies and dielectric properties of this crystal have been studied earlier by 1. 

George et al. [7.9]. The defonnation and fracture characteristics of this crystal has also 

been investigated by them employing microhardness indentation technique [7.10]. The 

hardness, fracture toughness and brittleness of this crystal in the (001) and (110) planes 

have been estimated for various ranges of load. It has a less prominent cleavage along 

the (110) plane. The density of this crystal is measured to be 1383 kg-m-3
. Compared 

to other organic crystals, this crystal is reported to be much harder (Hardness = 

0.68GPa.) and the serious disadvantage of this crystal is its hygroscopic nature. The 

elastic properties of this crystal has not yet been reported earlier in literature. A more 

.detailed report on the growth and characterization of this crystal is available in 

literature [7.9].' 

In this chapter we present the results of our work on the elastic properties of 

DAHC measured using ultrasonic technique. Single crystals of DAHC have been 

grown in the laboratory. All the nine second-order elastic constants of this crystal have 

been detennined by measuring ultrasonic (longitudinal and transverse) wave velocities 

along symmetry directions. The phase velocity surfaces, Young's modulus surface and 

linear compressibility surface have been plotted to understand the anisotropy in wave 

propagation in this crystal. Temperature variation of selected elastic constants have 

been measured and reported. Details of the work are presented in the following 

sections 

7.2 Sample preparation 

Large single crystals of DAHC have been grown by the slow evaporation technique. 

The solubility of DAHC in water is very high and hence the slow evaporation 

technique is the best method to grow large single crystals. Crystals of size nearly 60 x 
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35 x 12mm3 have been grown by this technique over a period of 4-5 weeks. The 

growth speed in the b-direction is very low and maximum along the a-direction. The 

lattice parameters reported are according to the IRE standards [7.11] and hence can be 

used to evaluate the inter-planar angles to identify the symmetry planes and directions 

in the crystal. With the aid of an accurate contact goniometer, the inter-planar angles 

were measured and the morphology of the crystal has been identified. The order of 

preference of the growth planes can be represented observing their relative size as 

(010) > (100) > (101) > (011). The molecular fOI1TIula and morphology of the DAHC 

single crystal are shown in Fig.7.1 and Fig.7.2 respectively. 

o H OH H 0 
I I I I I 

NH4-0-C-cr-c\-cr-C-O-NH 4 

H H 
C=O 
I 
OH 

Fig. 7.1: Molecular fOI1TIula of di-ammonium hydrogen citrate 

Fig. 7.2: Morphology of di-ammonium hydrogen citrate single crystals 
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Samples for ultrasonic measurements have been prepared in the shape of 

rectangular parallelepipeds by cutting the grown crystal with a slow speed diamond 

wheel saw. The well-developed growth planes have been taken as reference planes to 

orient the crystal for proper cutting. Samples with parallel planes perpendicular to the 

[100], [010] and [001] directions have been cut to measure velocities of propagation of 

ultrasonic wave pulses of longitudinal and transverse polarisations, which can directly 

yield all the six diagonal elastic constants. Three other samples with parallel planes 

perpendicular to anyone direction along the a-b, b-c and a-c planes are necessary to 

determine Cl2, C23 and C13. Samples with parallel planes perpendicular to the [110], 

[011] and [101] directions (see Fig. 3.4 in chapter 3) have been prepared for this taking 

care to attain as best parallelism between the opposite planes as possible. These planes 

were lightly polished preserving the parallelism for accurate velocity measurements. 

7.3 Ultrasonic velocity measurements 

Twelve selected mode velocity measurements are sufficient to evaluate all the nine 

second-order elastic constants of an orthorhombic crystal. Pulse modulated ultrasonic 

waves are allowed to propagate through the crystal sample which leads to the 

generation of a series of echoes of exponentially decreasing amplitudes. X and Y cut 

quartz transducers of resonant frequency 10MHz bonded to the sample generates 
, 

ultrasound vibrations in the crystal and in turn functions as the detector to receive the 

successively reflected echo pulses. Silicon grease serves as a good bond to fix the 

transducer on the crystal surface and easily transfer the mechanical vibrations 

generated by the transducer into the crystal medium. Pulse echo overlap technique 

developed by May [7.12] and later modified to the present form by Papadakis [7.13] 

have been used to determine the round trip travel time through the sample. A detailed 
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account of the different techniques adopted to measure ultrasonic wave velocity is 

available in literature [7.14] and is outlined in Chapter 2. Velocities of propagation of 

the different modes are directly related to the second order elastic constants. A direct 

relation of the fonn Cij = P v 2 exists in the case of all diagonal elastic constants (i = j) 

and these modes are all pure modes. [110], [011] and [101] directions are mixed mode 

directions and the velocities measured along these directions are related to more than 

one elastic constant. The relationship between the elastic constants and relevant 

ultrasonic wave velocities for orthorhombic crystals are available in literature [7.15] 

and is summarized in Chapter 1. 

McSkimin developed an analytical technique to eliminate the errors introduced 

. in the measured travel times by the presence of the bonding medium between the 

transducer and crystal and the incorrect identification of the condition of perfect match 

by the visual examination of the overlapped echoes. This technique has been applied to 

measure the round trip travel times with the maximum possible accuracy (Chapter 2). 

7.4 Elastic constants of DAHC single crystals 

Velocities of propagation of the different ultrasonic modes along different symmetry 

directions and mode velocity-elastic constant relationship are tabulated in Table 7.1. 

The corresponding elastic stiffness constants, compliance constants and Poisson' s 

ratios are listed in Table 7.2. It can be seen that, the crystal does not exhibit any sort of 

large-scale anisotropy in the elastic properties. The accuracy in the measured elastic 

constants is estimated to be 0.2% in the case of diagonal elastic constants and around 

I % in the case of off-diagonal elastic constants. 
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Table 7.1 Velocity of ultrasonic modes in DAHC crystals. L, T and QL represent 

longitudinal, transverse and quasi-longitudinal modes respectively. The 

relations between mode velocities and elastic constants are also given. 

SI. Mode Direction of Direction of Measured Mode velocity -

No. propagation . polarization mode velocity elastic constant 

(m/s) relationship 

1 L [100] [100] VI= 4240 ± 8 CII = PVl l 

2 L [010] [010] V2= 4524 ± 9 C22 = PV2 
2 

3 L [001 ] [001 ] V3= 4284 ± 8 C - 2 33 - PV3 

4 T [010] [001 ] V4= 2267 ± 5 C - 2 44 - PV4 

5 T [001] [010] V5= 2243 ± 4 C - 2 44 - PV5 

6 T [100] [001] V6= 2133 ± 4 C - 2 55 - PV6 

7 T [001 ] [100] v7=2135±4 C55 = pvl 

8 T [100] [010] Vs= 2197 ± 4 C - 2 66 - pVs 

9 T [010] [100] V9= 2212 ± 4 C - 2 66 - PV9 

10 QL [110] [QL] VIO= 4129 ± 8 C - f (a) 12 - ab 

11 QL [011 ] [QL] VII= 4341 ± 8 C23 = fbe 
(b) 

12 QL [101 ] [QL] V12= 4250 ± 8 C - f (c) 
13 - ac 

2 2 2}{ 2C 2C 2]/ 2 2}112 C (a) fab = {[c C II + S C66-P VIO c 66+ S 22-P VIO CS - 66 

2 2 2 2 C 2 C 2]/ 2 2} 112 C (b) fbe = {[c C22+ S C44-P VII Hc 44+ S 33-P VII cs - 44 

2 2 2}{ 2C 2C 2]/ 2 2}1/2 C (C)fac={[SC11+CC55-PVI2 S 55+C 33-PV12 cs - 55 

(Here c and s are the cosine and sine of the angle of rotation from the respective axes.) 
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Table 7.2 Elastic stiffness constants, compliance constants and Poisson's ratios of 

DAHC crystal at room temperature (300K) 

Elastic stiffness constants Elastic compliance constants Poisson's 

(GPa) (x 10-10 m2_N-1) ratios 

C II = 24.86 ± 0.019 SII= 5.46 ± 0.011 

C22= 28.30 ± 0.046 S22= 3.66 ± 0.007 V12= 0.157 

C33= 25.38 ± 0.026 S33= 5.28 ± 0.011 V21 = 0.105 

C44 = 7.10 ± 0.003 S44= 14.08 ± 0.028 

Css= 6.29 ± 0.008 Sss= 15.90 ± 0.032 V23 = 0.048 

C66 = 6.67 ± 0.014 S66= 15.00 ± 0.030 V32 = 0.069 

C 12 = 4.78 ± 0.050 S12= -0.576 ± 0.005 

C23= 3.74 ± 0.044 S23= -0.254 ± 0.003 VI3 = 0.497 

C13= 12.59 ± 0.047 S13= -2.625 ± 0.026 v31=0.481 

7.5 Temperature dependence of elastic constants 

Dependence of ultrasonic wave velocities and hence elastic constants on 

temperature have been studied by keeping the crystal-transducer assembly in a 

temperature-controlled oven. Since no reports are available on the detection of a phase 

transition or elastic anomaly in the temperature range 300-380K, study of only the 

transverse wave modes is done for this crystal. Usually elastic constants Cl), C22 and 

C33 may depend heavily on temperature whereas C44, Css and C66 depend less heavily 

[7.16]. The temperature dependence ofC44, Css and C66 is shown in Fig. 7.3. 

147 



7.2 f-

•• •• •• C
44 ..--.. •• ~ 7.0 •• •• 0.. •• c.J •• •• '-' 6.8 •• ~ • 

c ...... ...... ...... ~ 6.6 ...... 
Ui ...... ...... C66 C ...... ...... 0 ...... 
Co) 6.4 ...... ... 
Co) •• Ui •• •• ~ 6.2 C ss •• •• ~ •• •• •• 6.0 •• •• • 

5.8 I I I 

300 310 320 330 340 350 

Temperature (K) 

Fig. 7.3: Dependence of elastic constants C44, C55 and C66 on temperature 

7.6 Elastic anisotropy in DAHC crystal 

DAHC single crystals show less anisotropy In the elastic properties. 

Longitudinal elastic constants C ll : C22 and C33 have values, more or less same in 

magnitude. C44 , C55 and C66 also show the same nature. In order to demonstrate the 

anisotropy in elastic properties, phase velocity, slowness and group velocity surfaces 

have been plotted using compliance constant data. Sections of these surfaces along the 

prominent symmetry planes are very useful to demonstrate anisotropy in elastic wave 

propagation. The sections of the phase velocity surfaces along the a-b, b-c and a-c 

planes are shown in Fig. 7.4(a), (b) and (c) respectively. The three modes - pure shear 

(PS), quasi-shear (QS) and quasi-longitudinal (QL) - are shown by separate plots. 

Elastic anisotropy in large-scale is not exhibited by this crystal. Slowness or inverse 

phase velocity surfaces are highly informative. Sections of these surfaces along the 

symmetry planes a-b, b-c and a-c are shown in Fig. 7.S(a), (b) and (c) respectively. 
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Fig. 7.4(a): Section of the phase velocity surfaces ofDAHC along the a-b plane. 
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Fig. 7.4(b): Section of the phase velocity surfaces ofDAHC along the b-c plane. 
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Fig.7.4(c): Section of the phase velocity surfaces ofDAHC along the a-c plane. 
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Fig. 7.5(a): Section of the slowness surfaces ofDAHC along the a-b plane. 
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Fig.7.S(b): Section of the slowness surfaces ofDAHC along the b-c plane. 
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Fig.7.S(c): Section of the slowness surfaces ofDAHC along the a-c plane. 
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The three modes - pure shear (PS), quasi-shear (QS) and quasi-longitudinal (QL) - are 

shown by separate plots. The quasi-shear mode shows some anisotropy, which is clear 

from the shape of the curve. 

Velocity of propagation of the modulation envelope called the ray velocity is 

the velocity with which energy prop~gates. The corresponding ray velocity vector need 

not be collinear with the phase velocity vector. The surface generated by plotting ray 

velocity for all directions can reveal more interesting aspects of the anisotropy in 

elastic properties of a crystal. Fig. 7.6(a), (b) and (c) show sections of these surfaces 

along the symmetry planes a-b, b-c and a-c respectively. It may be noted that the group 

velocity surfaces for the quasi-shear mode exhibit cuspidal edges along the [110], 

[011] and [101] symmetry directions indicating that in these directions a, one-to-one 

correspondence between phase velocity vector and group velocity vector does not 

exist. A phase velocity vector in these directions corresponds to more than one group 

velocity vector. One can expect very interesting phenomena such as conical refraction, 

phonon magnification etc., to occur in these directions [7.17,7.18]. 
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Fig. 7.6(a): Section of the group velocity surfaces ofDAHC along the a-b plane 
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Fig. 7.6(b): Section of the group velocity surfaces ofDAHC along the b-c plane 
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Fig.7.6(c): Section of the group velocity surfaces ofDAHC along the a-c plane 
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Young's modulus [7.19] E in any direction in a crystal can be given as 

Direction cosines, nI' n 2 and n) in the expression for Young's modulus E indicate that 

it is a direction dependent parameter. The strain produced in any direction in the crystal 

will be different in magnitude for the same longitudinal stress applied in one direction. 

Anisotropy in the elastic properties of a crystal can be demonstrated by plotting the 

Young's modulus surface. Sections of this surface along the symmetry planes a-b, b-c 

and a-c are plotted in Fig. 7.7. Young's modulus is minimum in the a-c plane. 

Linear compressibility [7.19] P is also found to be a direction dependent 

parameter, since direction cosines nl ,n2 and n) are present in the expression for P (Eq. 

1.74). The linear compressibility surface can be easily generated from the elastic 

compliance data. For a better understanding of the direction dependence of linear 

compressibility, sections of this surface along the a-b, b-c and a-c planes have been 

drawn and are shown in Fig. 7.8. It can be noted that these curves are almost circular in 

shape. The crystal exhibits more or less isotropic behavior in its elastic properties. 

Expressions for volume compressibility and bulk modulus are available In 

literature [7.19]. Volume compressibility of DARC single crystal is evaluated to be 

equal to 0.75 x 10-10 m2_N-1 and its bulk modulus works out to be 13.34 GPa. 

7.7 Discussion and conclusion 

Growth of single crystals of DARC from the aqueous solution is rather difficult 

because of its very high solubility. Even the filtering of the solution is not so easy. 
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Clear transparent single crystals of size nearly 60 x 35 x 12 mm3 have been grown over 

a period of about five weeks. 

Longitudinal elastic constants Cl), C22 and C33 relate longitudinal stress to 

longitudinal strain. Thennal energy can enhance lattice expansion and hence the 

magnitude of the strain produced fo~ a given stress can be more at higher temperatures. 

Correspondingly the elastic constants gradually decrease as the temperature is 

increased. The shear constants C44, C55 and C66 need not show such a pronounced 

dependence because the shear strain is practically not much affected by change in 

temperature. DAHC single crystal does not exhibit any elastic anomaly or sudden 

change in the temperature range 300-350K indicating that there exist no phase 

transitions in this range of temperature. Dependence of only the shear constants (C44, 

C55 and C66) on temperature are studied here. 

Very precise control of temperature is essential for the growth of single crystals 

of DAHC. Large good quality transparent single crystals have been grown from 

supersaturated solution by the slow evaporation technique. All the nine second-order 

elastic constants of this crystal have been detennined for the first time. Anisotropy in 

elastic wave propagation in this crystal have been studied and reported. 
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Chapter 8 

Summary and conclusion 

A variety of single crystals find application in several technological fields. Of late 

newer and newer materials are synthesized to test the suitability of these crystals for 

various technological applications. Nonlinear optical crystals are a new class of 

materials, which are suitable to generate second harmonic of optical radiation and 

many related applications. A long list of organic, inorganic and semi organic or 

organometallic class of materials synthesized is available in literature. Growth of 

single crystals of these materials with required dimensions and purity is a challenging 

task. The physio-chemical characterization of these crystals is essential to assess their 

suitability in device fabrication. Mechanical properties such as microhardness, elastic 

properties and resistance to laser induced damages have to be studied prior to device 

fabrication. 

Five different single crystals having orthorhombic structure have been grown in 

bulk form for the investigations presented in this thesis. These crystals are either 

nonlinear optical or semiorganic in nature. All the nine second-order elastic constants 

of all these crystals have been determined for the first time. Sodium p-nitrophenolate 

dihydrate (NPNa), hippuric acid or benzoyl glycine (BG) and zinc tris (thiourea) 

sulphate (ZTS) single crystals are potential nonlinear optical crystals. Growth 

conditions for growing bulk crystals have been optimized. Crystals of reasonably good 
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size have been grown by the solution growth technique. Crystallographic directions 

and growth planes have been properly identified by measuring inter-planar angles 

using an accurate contact goniometer and are compared with values evaluated from 

crystallographic data. Laboratory axes (x, y, and z) have been fixed according to the 

IRE standards before cutting the single crystal. As per this convention x is taken 

parallel to a, y is taken parallel to band z is taken parallel to c where the condition c < 

a < b is satisfied. Twelve selected ultrasonic mode velocity measurements have been 

carried out in all cases to evaluate all the nine second-order elastic constants. Poisson's 

ratios, volume compressibility and bulk modulus have been evaluated for all these 

crystal samples. 

Dependence of the diagonal elastic constants on temperature have been studied 

in all cases. It is found that the dependence of the longitudinal elastic constants CII, 

C22 and C33 on temperature is more compared to the shear elastic constants C44, C55 

and C66. Reasons for this behavior are out lined in the thesis. None of these crystals 

exhibit any anomaly in the elastic properties in the range of temperature over which 

measurements have been carried out. These samples have not been reported to exhibit 

any kind of phase transition in this range of temperature, and our measurements 

confirm this. 

Demonstration of the anisotropy in the ultrasonic (elastic) wave propagation 

characteristics of these crystals have been done by plotting surfaces of phase velocity, 

slowness or inverse velocity and group velocity or ray velocity. Sections of these 

three-dimensional surfaces along the a-b, b-c and a-c planes have been drawn for better 

clarity. Deviation from perfect circular shape indicates anisotropy in elastic wave 

propagation. It is found that elastic anisotropy is more pronounced for the quasi-shear 

mode, which is the general behavior exhibited by most crystals. 
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Inverse velocity (slowness) surfaces are also very infonnative. In some aspects, 

the group velocity surfaces are also more infonnative. The fonnation of cuspidal edges 

has been found in few crystal samples, which is· an interesting phenomenon. The ray 

velocity (or group velocity) need not be collinear with the phase velocity vector and 

there need not have a one-to-one correspondence between these two. The significance 

of the fonnation of cuspidal edges in these crystals has been explained in relevant 

chapters. 

Young's modulus and linear compressibility are two other important direction 

dependent parameters. Surfaces generated by plotting these values for all orientations 

in the crystal sample can demonstrate the anisotropy in the elastic properties of a 

crystal better. Sections of these surfaces along the a-b, b-c and a-c planes are shown for 

all these five single crystal samples. The extent of deviation from perfect circular 

shape detennines the anisotropy in the elastic properties of a crystal. Single crystals of 

benzoyl glycine and NPNa exhibit ~arked anisotropy in their elastic properties. 

Large number of new materials have been synthesized recently which are 

reported to be nonlinear optical crystals. Efficiency for second hannonic generation 

(SHG) in most of these cases is very high compared to, the well-characterized KDP 

crystals. Reports are available on the synthesis, growth of single crystals and 

crystallographic data on many crystals. It is very important to investigate their elastic 

properties before they are put into any use. Thiourea is one such sample, which has the 

ability to fonn a variety of complexes with other compounds and hence there is plenty 

of scope for work in this line. Single crystals of these materials are usually grown from 

supersaturated solution by the slow evaporation or slow cooling techniques. Well­

developed growth planes are very advantageous in orienting the crystal. 

160 



AMA, m-chloronitrobenzene, m-bromonitrobenzene, POM, NPP etc. are some 

of the very important NLO crystals grown from solution. L-histidine tetrafluoro borate, 

bis(thiourea) cadmium chloride, L-argenine flouride, zinc thiourea chloride, CsGeCl3 

etc. are some of the recently reported NLO crystals. The elastic properties of these and 

many other important crystals h~ve not been studied so far. There is lot of scope for 

doing very important and useful work in this direction. 

It would be interesting to extent ultrasonic measurements on nonlinear optical 

crystals to low temperatures. From a basic, research point of view it would be very 

valuable to measure variations in elastic properties with applied electric field in these 

crystals. These measurements will give interesting information about electro-acoustic 

(phonon) interactions. There is lot of scope for doing front line research in this area. 
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