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Abstract 

We report results obtained from a detailed analysis of the fluctuations of the rheo

logical parameters viz. shear and normal stresses, simulated by means of the Stokesian 

Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally 

buoyant non-Brownian suspension of identical spheres in the Couette gap between two 

parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non

linear dynamics and chaos theory for a range of particle concentration and Couette gaps. 

We make extensive use of the tools of nonlinear dynamics and chaos theory viz. average 

mutual information [secA.3.2] , space-time separation plots [secA.3.3], visual recurrence 

analysis [secA.5.2], principal component analysis [secAA.3], false nearest-neighbor tech

nique [secAA.2] , correlation integrals [sec.2.8.3], computation of Lyapunov exponents 

[secA.5.3] for a range of area fraction of particles and for different Couette gaps. 

We present numerical evidence for the existence of a low-dimensional chaotic attractor 

in the rheological properties for a range of particle concentrations. This indicates that 

the fluctuations of the rheological parameters arise from low dimensional deterministic 

dynamics. The chaotic nature of the underlying attractor governing the dynamics of the 

system in the stress fluctuations implies that, though the system is unpredictable in the 

long-term, accurate and meaningful short-term predictions can be performed depending 

on the accuracy of the initial conditions and the value of Lyapunov exponent, which char

acterizes the sensitive dependence of the dynamics on the initial conditions (the chaotic 

nature of the system). Using this information we performed predictions of successive 

fluctuations of the stresses from preceding fluctuations by using the one-step prediction 

method. 

We found that the correlation dimension, the number of significant eigen values and 

the embedding dimension at which the percentage of false nearest-neighbors reduced to 

nearly zero are the same for both the normal and shear stress components for a fixed 

area fraction of particles. We computed the mutual false nearest-neighbor parameter 



[secA.7] and observed the presence of a functional cross-correlation between shear and 

normal stress components. This is in agreement with the finding that the different stress 

components have the same correlation dimension and number of principal components 

etc. This characterization helped us to perform a cross-prediction of the time series of 

one stress component from the time series of another; thus indicating the potential of 

this approach. 

One important implication of our analysis is that only a finite (atmost eight) number 

of independent variables are sufficient to describe the complete dynamics of the rheological 

parameters over the range of particle concentrations <p = 0.05 to <p = 0.6. This observation 

has potential applications to some industrial problems. Many industrial suspensions can 

be approximated by the bounded system of suspension of spheres in simple shear flow. 

Hence if we are able to identify the principal factors, at most eight in number, that 

govern the dynamics and rheological properties of such suspensions, we will be able to 

improve processes for the manufacture of products involving suspensions by controlling 

these factors appropriately. 

Our analysis of the stress fluctuations for a range of particle concentrations revealed 

that the invariant measures such as the correlation dimension, number of principal com

ponents, the embedding dimension of the attractor (these are geometrical characteris

tics) and Lyapunov exponent (dynamical characteristic) that characterize the fluctua

tions change with rise in concentration, suggesting changes in the microstructure with 

increasing concentration. This in fact mimics the increasing complexity of the suspension 

due to the existence of particle-particle and many-body interactions. This may yield 

guidelines for the control of parameters governing the processing of such suspensions. 

From our results, we draw interesting conclusions on the relation between microstructure 

and rheology of the suspension. 

Using the insight gained from the analysis of the simulated stress components, we 

model the system dynamics by means of an evolutionary algorithm called 'Darwin' [Al

varez et al., 2001] [7]. We modeled the stress components and our models agree quali

tatively and to a great extent quantitatively with the characteristics of the stress com-



ponents simulated using the Stokesian Dynamic Simulation. The form of the different 

model equations for different area fractions of particles hints at the possible existence of 

a general model equation for the stress component with area fraction as a parameter. To 

make a conclusive assertion of this possibility further analysis is required, which we leave 

for future work. 



Contents 

List of figures iv 

List of tables xii 

1 Introduction 1 

1.1 Preface .. ...... 1 

1.2 Review of literature. 5 

1.3 Rheological parameters . 11 

1.4 Our work ........ 13 

1.5 Organization of the thesis 19 

2 Dynamical Systems and Chaos 21 

2.1 Dynamical System ....... 21 

2.2 Dynamical characteristics of maps 22 

2.3 Lyapunov numbers and exponents of a map 25 

2.4 Estimation of the largest Lyapunov exponent. 28 

2.5 Differential equations . . . . . . . . . . . . 30 

2.6 Lyapunov numbers and exponents of flows 35 

2.7 Dimensions .......... 38 

2.7.1 Topological dimension 39 

2.7.2 Phase space dimension 39 

2.7.3 Hausdorff dimension 39 

2.8 Fractal dimension . . . . . . 41 

2.8.1 Capacity dimension . 41 



2.8.2 Information dimension 

2.8.3 Correlation dimension 

2.8.4 Generalized fractal dimensions . 

3 Stokesian Dynamics 

3.1 Rheology of suspensions 

3.2 Simulation method . . . 

3.2.1 Formation of the grand mobility matrix. 

3.2.2 Adjustment for lubrication . 

3.3 Simulation of plane Couette flow 

3.4 Characterization of stresses .. 

4 Nonlinear Time Series Analysis 

4.1 Introduction ........ . 

4.2 Phase space reconstruction . 

4.3 Choosing the time delay T 

4.3.1 Autocorrelation function 

4.3.2 Average mutual information 

4.3.3 Space-time separation plot. 

4.4 Choosing the embedding dimension m 

4.4.1 Correlation integral method . . 

4.4.2 False nearest neighbor method. 

4.4.3 Principal component analysis 

4.5 Results and discussion . . . . . . . . 

4.5.1 Low dimensionality of the attractor . 

4.5.2 Deterministic nature of the system 

4.5.3 Chaotic nature of the system 

4.6 Prediction of successive fluctuations . 

4.7 Cross prediction of the time series . 

4.8 Discussion.............. 

ii 

42 

43 

44 

46 

46 

48 

56 

57 

59 

63 

66 

66 

70 

73 

73 

74 

74 

75 

76 

78 

79 

79 

96 

103 

107 

115 

116 

119 



5 Modeling System Dynamics 

5.1 Introduction....... 

5.2 Evolutionary algorithm . 

5.2.1 Generating the initial population 

5.2.2 Computing the strength of the individuals 

5.2.3 Reproduction and mutation . . . . 

5.3 Model equations of the stress components 

5.4 Comparison of model properties with that of the data . 

5.5 Discussion. 

5.6 Future work 

5.7 Publications. 

Bibliography 

iii 

126 

126 

130 

131 

131 

132 

133 

137 

155 

158 

159 

160 



List of Figures 

1.1 A typical figure showing the Lorenz attractor. . . . . . . . . . . . . . .. 4 

3.1 A schematic representation of the master cell for our simulations. The layer 

cif pure fluid (below the lower wall) allows us to periodically replicate the 

master cell and yet impose uniform shear in the suspension (refer [Singh 

and Nott, 2000] for details). The thickness of the suspension and fluid 

layers, H, are equal to the length of the unit cell. ............. 60 

4.1 Time se!ies (arbitrary units) of (a) shear stress u zy and (b) normal stress 

Uyy at area fraction 4>=0.05. . . . . . . . . . . . . . . . . . . . . . . . .. 67 

4.2 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67 

4.3 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.20 ................. ' . . . . . . . . . . . . . . . . . . .. 68 

4.4 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 

4.5 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 

4.6 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 

4.7 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 

4.8 Time series of (a) shear stress Uzy and (b) normal stress uY1J at area fraction 

4>=0.60 ............. . 70 

IV 



4.9 Power spectrum versus frequency for (a) shear stress uxy and (b) normal 

stress Uvv at area fraction «/>=0.05. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

v 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 

4.10 Power spectrum versus frequency for (a) shear stress uxy and (b) normal 

stress u!J1J at area fraction «/>=0.10. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 

4.11 Power spectrum versus frequency for (a) shear stress uxy and (b) normal 

stress u!J1J at area fraction «/>=0.20. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81 

4.12 Power spectrum versus frequency for (a) shear stress uxy and (b) normal 

stress u!J1J at area fraction «/>=0.30. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81 

4.13 Power spectrum versus frequency for (a) shear stress Uxy and (b) normal 

stress u!J1J at area fraction «/>=0.40. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81 

4.14 Power spectrum versus frequency for (a) shear stress Uxy and (b) normal 

stress u!J1J at area fraction «/>=0.45. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 

4.15 Power spectrum versus frequency for (a) shear stress uxy and (b) normal 

stress u!J1J at area fraction «/>=0.50. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 82 



4.16 Power spectrum versus frequency for (a) shear stress U XII and (b) normal 

stress u1I1J at area fraction q,=0.60. Exponential decay of the power with 

frequency is clearly seen, which is characteristic of both chaotic and linear 

vi 

stochastic signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 

4.17 Autocorrelation versus time delay for (a) shear stress Uzy and (b) normal 

stress u1I1J at area fraction q,=0.05 . . . . . . . . . . . . . . . . . . . . .. 84 

4.18 Autocorrelation versus time delay for (a) shear stress Uzy and (b) normal 

stress u1I1J at area fraction q,=0.10 . . . . . . . . . . . . . . . . . . . . .. 84 

4.19 Autocorrelation versus time delay for (a) shear stress UXII and (b) normal 

stress u1I1J at area fraction q,=0.20 . . . . . . . . . . . . . . . . . . . . .. 84 

4.20 Autocorrelation versus time delay for (a) shear stress UXII and (b) normal 

stress u1I1J at area fraction q,=0.30 . . . . . . . . . . . . . . . . . . . . .. 85 

4.21 Autocorrelation versus time delay for (a) shear stress U XII and (b) normal 

stress u1I1J at area fraction q,=0.40 . . . . . . . . . . . . . . . . . . . . .. 85 

4.22 Autocorrelation versus time delay for (a) shear stress Uzy and (b) normal 

stress u1I1J at area fraction q,=0.45 . . . . . . . . . . . . . . . . . . . . .. 85 

4.23 Autocorrelation versus time delay for (a) shear stress Uzy and (b) normal 

stress u1I1J at area fraction q,=0.50 . . . . . . . . . . . . . . . . . . . . .. 86 

4.24 Autocorrelation versus time delay for (a) shear stress U XII and (b) normal 

stress u1I1J at area fraction q,=0.60 . . . . . . . . . . . . . . . . . . . . .. 86 

4.25 Average mutual information versus time delay for (a) shear stress Uzy and 

(b) normal stress u1I1J at area fraction q,=0.05. ............... 87 

4.26 Average mutual information versus time delay for (a) shear stress Uzy and 

(b) normal stress u1I1J at area fraction q,=0.10 . . . . . . . . . . . . . . .. 87 

4.27 Average mutual information versus time delay for (a) shear stress Uzy and 

(b) normal stress u1I1J at area fraction q,=0.20. ............... 88 

4.28 Average mutual information versus time delay for (a) shear stress Uzy and 

(b) normal stress u1I1J at area fraction q,=0.30 . . . . . . . . . . . . . . .. 88 



vii 

4.29 Average mutual information versus time delay for (a) shear stress (Jrg and 

(b) normal stress (Jyy at area fraction tP=0.40. ............... 89 

4.30 Average mutual information versus time delay for (a) shear stress (Jzy and 

(b) normal stress (Jyy at area fraction tP=0.45 . . . . . . . . . . . . . . .. 89 

4.31 Average mutual information versus time delay for (a) shear stress (Jrg and 

(b) normal stress (Jyy at area fraction tP=0.50. ............... 90 

4.32 Average mutual information versus time delay for (a) shear stress (Jzy and 

(b) normal stress (Jyy at area fraction tP=0.60. . . . . . . . . . . . . . .. 90 

4.33 Space-time separation plot for (a)shear stress (Jrg and (b) normal stress (Jyy 

at area fraction tP=0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 

4.34 Space-time separation plot (a) shear stress (Jzy and (b) normal stress (Jyy at 

area fraction tP=0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 

4.35 Space-time separation plot for (a)shear stress (Jrg and (b) normal stress (Jyy 

at area fraction tP=0.20 . . . . ',' . . . . . . . . . . . . . . . . . . . . .. 93 

4.36 Space-time separation plot for (a) shear stress (Jrg and (b) normal stress (Jyy 

at area fraction tP=0.30 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93 

4.37 Space-time separation plot for (a) shear stress (Jrg and (b) normal stress (Jyy 

at area fraction tP=0.40 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 

4.38 Space-time separation plot for (a) shear stress (Jrg and (b) normal stress (Jyy 

at area fraction tP=0.45 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 

4.39 Space-time separation plot for (a) shear stress (Jrg and (b) normal stress (Jyy 

at area fraction tP=0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 94 

4.40 Space-time separation plot for (a) shear stress (Jzy and (b) normal stress (Jyy 

at area fraction tP=0.60 . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95 

4.41 The eigenvalues versus dimension of the covariance matrix [Broomhead 

and King, 1986] [23] of shear stress (Jrg at area fractions tP = 0.2, 0.4, 0.5 

for H = 18. .................................. 96 

4.42 Fraction of false nearest neighbors as a function of the embedding dimen-

sion m for the (Jzy time series for area fraction tP = 0.2, 0.3, 0.4 and H = 18. 98 



4.43 A typical plateau region showing approximate value of correlation dimen

sion of the (Jxy time series, for H = 18 particle width and 4J = 0.2. The 

plateau region converges for higher embedding dimension indicating evi-

viii 

dence for low-dimensionality of the attractor.. . . . . . . . . . . . . . .. 99 

4.44 The eigenvalues versus dimension of the covariance matrix for the shear 

stress (Jrg for Couette gaps H = 14,18,30 at 4J = 0.2. . . . . . . . . 101 

4.45 Recurrence plot for the shear stress (J:z:y for H = 18 and 4J = 0.2. The 

definite structure in the plot is apparent; data with white noise will give a 

uniform distribution of color.. . . . . . . . . . . . . . . . . . . . . . 104 

4.46 Phase space plot of the normal stress (Jug, for H = 18 and 4J = 0.2. . 106 

4.47 Divergence of close trajectories of the shear stress (J:z:y for Couette gap 

H=18 and 4J=0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 107 

4.48 Logarithm of the difference Xt - Yt of the time series in fig. 4.47 against 

t, showing clearly the exponential increase for small t in the difference 

between the stresses for the two trajectories, indicating chaotic nature of 

the system. Logarithm is taken after proper shifting of the values to make 

them positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 108 

4.49 The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 

dimensions for (a)shear stress (Jrg and (b) normal stress (Jug for H = 18 at 

4J=0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109 

4.50 The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 

dimensions for (a)shear stress (Jrg and (b) normal stress (Jyy for H = 18 at 

4J=0.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109 

4.51 The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 

dimensions for (a)shear stress (Jrg and (b)normal stress (Jyy for H = 18 at 

4J=0.20 .................................... , 110 

4.52 The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 

dimensions for (a)shear stress (Jrg and (b) normal stress (Jyy for H = 18 at 

4J=0.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 111 



4.53 The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 

dimensions for (a) shear stress <7zy and (b) normal stress <7yy for H = 18 at 

4>=0.40 

4.54 Multi-step predictions of the normal stress <7yy for H = 18 particle width 

ix 

112 

and 4> = 0.2. Exponential divergence of the predicted value from the actual 

value is clearly visible. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114 

4.55 One-step predictions of the normal stress <7yy for H = 18 particle width 

and 4> = 0.2. Note the close agreement of the predicted value with the 

actual value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 115 

4.56 Cross-prediction of normal stress <7yy from shear stress <7zy at area fraction 

4> = 0.20 and Couette gap H = 18 particle width. . . . . . . . . . . . .. 118 

4.57 Cross-prediction of normal stress <7yy from shear stress <7zy at area fraction 

4> = 0.40 and Couette gap H = 18 particle width. . . . . . . . . . . . .. 118 

5.1 Global prediction of (a) shear stress <7xy and (b) normal stress at 4>=0.05. 137 

5.2 Global prediction of (a) shear stress <7xy and (b) normal stress at 4>=0.10. 137 

5.3 Global prediction of (a) shear stress <7x'Y and (b) normal stress at 4>=0.20. 138 

5.4 Global prediction of (a) shear stress <7x'Y and (b) normal stress at 4>=0.30. 138 

5.5 Global prediction of (a) shear stress <7xy and (b) normal stress at 4>=0.40. 139 

5.6 Logarithm of power spectrum versus frequency for shear stress <7zy at 

t/l=0.05, (a) actual and (b) predicted .................... 139 

5.7 Logarithm of power spectrum versus frequency for normal stress <7yy at 

t/l=0.05, (a) actual and (b) predicted .................... 140 

5.8 Logarithm of power spectrum versus frequency for shear stress <7zy at 

t/l=0.10, (a) actual and (b) predicted ............... . . . .. 141 

5.9 Logarithm of power spectrum versus frequency for normal stress <7yy at 

t/l=0.10, (a) actual and (b) predicted .................... 141 

5.10 Logarithm of power spectrum versus frequency for shear stress <7xy at 

t/l=0.20, (a) actual and (b) predicted .................... 142 



x 

5.11 Logarithm of power spectrum versus frequency for shear stress (J:ry at 

tP=0.20, (a) actual and (b) predicted ............. . . . . . .. 142 

5.12 Logarithm of power spectrum versus frequency for shear stress (J:ry at 

tP=0.30, (a) actual and (b) predicted .................... 142 

5.13 Logarithm of power spectrum versus frequency for normal stress (Jyy at 

tP=0.30, (a) actual and (b) predicted .................... 143 

5.14 Logarithm of power spectrum versus frequency for shear stress (J:ry at 

tP=OAO, (a) actual and (b) predicted ............. . . . . . .. 143 

5.15 Logarithm of power spectrum versus frequency for normal stress (Jyy at 

tP=OAO, (a) actual and (b) predicted ............. . . . . . .. 143 

5.16 Autocorrelation function for (a) shear stress (Jzy and (b) normal stress (J'Y1I 

at tP=0.05. .................................. 144 

5.17 Autocorrelation function for (a) shear stress (Jzy and (b) normal stress (Jyy 

at tP=0.10. .................................. 145 

5.18 Autocorrelation function for (a) shear stress (Jzy and (b) normal stress (J'Y1I 

at tP=0.20. .................................. 145 

5.19 Autocorrelation function for (a) shear stress (Jzy and (b) normal stress (Jyy 

at tP=0.30. 145 

5.20 Autocorrelation function for (a) shear stress (Jzy and (b) normal stress (Jyy 

at tP=0.40. .................................. 146 

5.21 Average mutual information for (a) shear stress (J:ry and (b) normal stress 

(Jyy at tP=0.05. ................................ 146 

5.22 Average mutual information for (a) shear stress (J:ry and (b) normal stress 

(Jyy at tP=0.10. ................................ 147 

5.23 Average mutual information for (a) shear stress (J:ry and (b) normal stress 

(Jyy at tP=0.20. ................................ 147 

5.24 Average mutual information for (a) shear stress (J:ry and (b) normal stress 

(Jyy at tP=0.30. ................................ 148 



xi 

5.25 Average mutual information for (a) shear stress (Jrg and (b) normal stress 

(J1J1J at </>=0.40. ................................ 148 

5.26 Space-time separation plot of (a) actual and (b) predicted shear stress (Jrg 

at </>=0.05. .................................. 149 

5.27 Space-time separation plot of (a) actual and (b) predicted normal stress 

(Jyy at </>=0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 150 

5.28 Space-time separation plot of (a) actual and (b) predicted shear stress (J:cy 

at </>=0.10. .................................. 150 

5.29 Space-time separation plot of (a) actual and (b) predicted normal stress 

(J1J1J at </>=0.10. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 151 

5.30 Space-time separation plot of (a) actual and (b) predicted shear stress (J:cy 

at </>=0.20. 151 

5.31 Space-time separation plot of (a) actual and (b) predicted normal stress 

(Jyy at </>=0.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 151 

5.32 Space-time separation plot of (a) actual and (b) predicted shear stress (Jxy 

at </>=0.30. .................................. 152 

5.33 Space-time separation plot of (a) actual and (b) predicted normal stress 

(J1J1J at </>=0.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 152 

5.34 Space-time separation plot of (a) actual and (b) predicted shear stress (Jxy 

at </>=0.40. 152 

5.35 Space-time separation plot of (a) actual and (b) predicted normal stress 

(Jyy at </>=0.40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 153 

5.36 A typical figure showing an approximate correlation dimension of the pre

dicted normal stress (Jyy at </>=0.20. . . . . . . . . . . . . . . . . . . . .. 154 

5.37 Exponential divergence plot of (a) actual and (b) predicted shear stress 

(Jxy at </>=0.05. ................................ 154 

5.38 Exponential divergence plot of (a) actual and (b) predicted normal stress 

(Jyy at </>=0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 154 



xii 

5.39 Exponential divergence plot of (a) actual and (b) predicted shear stress 

a xy at 4>=0.10. ................................ 155 

5.40 Exponential divergence plot of (a) actual and (b) predicted normal stress 

ayy at 4>=0.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 155 

5.41 Exponential divergence plot of (a) actual and (b) predicted shear stress 

azy at 4>=0.20. ................................ 156 

5.42 Exponential divergence plot of (a) actual and (b) predicted normal stress 

ayy at 4>=0.20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156 

5.43 Exponential divergence plot of (a) actual and (b) predicted shear stress 

a xy at 4>=0.30. ................................ 156 

5.44 Exponential divergence plot of (a) actual and (b) predicted normal stress 

aY!l at 4>=0.30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 

5.45 Exponential divergence plot of (a) actual and (b) predicted shear stress 

azy at 4>=0.40. ................................ 157 

5.46 Exponential divergence plot of (a) actual and (b) predicted normal stress 

aYII at 4>=0.40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157 



List of Tables 

4.1 Table shows the delay time at which autocorrelation function of the stress 

components u xy and u yy attain local minima as observed from figures (4.17) 

to (4.24).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86 

4.2 Table shows the delay time at which average mutual information function 

of the stress components uxy and uyy attain local minima as observed from 

figures (4.25) to (4.32) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 90 

4.3 Table shows the approximate delay time at which the contour lines in the 

space-time separtion plots of the stress components Uxy and u yy attains 

saturation as observed from figures (4.33) to (4.40) ............ 95 

4.4 Correlation dimension D2 determined from the time series of uyy and Uxy, 

for H = 18 and a range of the area fraction 4J. Note that the estimates of 

D2 (with ±0.062 to ± 0.098 variation) from the two stress components are 

quite close. Also note the increase in D2 with particle concentration 4J. . 100 

4.5 Correlation dimension (with ±0.058 to ±0.087 variation) determined from 

time series of u yy and Uxy for different Couette gaps, H = 14, 18 and 30 

for 4J = 0.2. There is a slight decreasing trend in D2 with increasing H.. 102 

4.6 Correlation dimension determined from time series of uyy and uxy for dif

ferent ranges of the inter-particle repulsive force, JL = 10, 100 and 1000 

(with Fo JL = 0.01). The data are for H = 18 and 4J = 0.4. Note that D2 

(with ±0.052 to ±0.097 variation) is relatively insensitive to changes in JL. 109 

xiii 



4.7 The maximum Lyapunov exponent for the Uyy and Uxy time series, for 

H = 18 and various particle concentrations 4>. The Lyapunov exponent 

increases with 4>, implying that the system is more chaotic when the par-

xiv 

ticle concentration is increased. ....................... 113 

5.1 Comparison of the local minima attained by the autocorrelation function 

of (a) the actual stress components u xy and u yy simulated using Stoke-

sian Dynamics with that of the (b) model generated stress components as 

observed from figures (5.16) to (5.20) . . . . . . . . . . . . . . . . . . .. 147 

5.2 Comparison of the local minima attained by the average mutual informa

tion function of (a) the actual stress components Uxy and u yy simulated 

using Stokesian Dynamics with that of (b) the model generated stress 

components as observed from figures (5.21) to (5.25) ........... 148 

5.3 Comparison of the approximate delay time at which the contour lines in the 

space-time separtion plots attains saturation for (a) the simulated stress 

components Uxy and u yy using Stokesian Dynamics with that of (b) the 

model generated stress components for area fraction 0.05 :5 4> :5 0.40 as 

observed from figures (5.26) to (5.35) . . . . . . . . . . . . . . . . . . .. 153 



CHAPTER 1 

Introduction 

1.1 Preface 

God plays dice with the universe. But they are loaded dice. And the main 

objective of science now is to find out by what rules were they loaded and 

how can we use them for our own ends. 

is the answer of Joseph Ford to one of Einstein's famous questions "Does god play dice 

with the universe?" . 

Chaos brings to mind images of complete randomness, of disorder and anarchy. In 

1986, at a conference on mathematical chaos held by the Royal Society in London, math

ematicians were asked to define the "chaos" that had become the buzz word for their hot 

research area. After much deliberation, they offered the following: Stochastic behavior 

occuring in a deterministic system. As definitions go, this one is particularly consti

pated quite far from fostering any intution about the subject. In Stewart's Does God 

Play Dice'!, he claims knowledge of the etymology of stochastic in the statement, "The 

Greek word stochastikos means 'skillful in aiming' and thus conveys the idea of using the 

laws of chance for personal benefit." According to Stewart, Stochastic behavior is prob

abilistic behavior. By placing both stochastic and deterministic in the same definition, 

1 
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the mathematicians have formed a bridge between the two sciences - two sciences that 

were regarded as mutually exclusive until then. Chaos is the study of deterministic and 

bounded systems that give rise to aperiodic solutions that are so sensitive to measurement 

that their output appears random. The term chaos was first introduced in its present 

connotation by James Yorke and T. Y. Li in 1976. 

Edward Lorenz's first experience with chaos is dramatic. In 1961, Edward Lorenz 

had managed to create a skeleton of a weather system from a handful of differential 

equations. The statistical weather forecasting community at the time was developing 

sophisticated linear methods for prediction. Lorenz had come to the conclusion that there 

had to be a fundamental factor, as yet missing, limiting the success of linear models in 

weather prediction. He was trying to demonstrate this point by finding solutions to his 

miniature atmospheric model that were not periodic nor asymptotically periodic. He kept 

a continuous simulation running on an extremely primitive computer that would output a 

day's progress in the simulation every minute as a line of text on a roll of paper. Evidently, 

the whole system was very successful at producing "weather-like" output - nothing ever 

happend the same way twice, but there was an underlying order that delighted Lorenz 

and his associates. 

" ... Line by line, the winds and temperature in Lorenz's printouts seemed to behave 

in a recognizable earthly way. They matched his cherished intuition about the weather, he 

sensed that it repeated itself, displaying familiar patterns over time, pressure rising and 

jalling, the airstream swinging north and south ... n 

Even though a computer had control of the simulation, and certainly possessed the 

capability to generate random numbers at will, there was nothing random about any 

portion of the way the simulation was supposed to work. It merely followed the laws of 

calculus as set down by Sir Isaac Newton himself and outputted a day's worth of virtual 

weather at the end of each minute. Lorenz's initial brush with chaos is described best by 
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James Gleick's words, from Chaos: 

"One day in the winter of 1961, wanting to examine one sequence at greater length, 

Lorenz took a shortcut. Instead of starting the whole run over, he started midway 

through. To give the machine its initial conditions, he typed the numbers straight from 

the earlier printout. Then he walked down the hall to get away from the noise and drink a 

cup of coffee. When he returned an hour later, he saw something unexpected, something 

that planted a seed for a new science. This new run should have exactly duplicated the old. 

Lorenz had copied the numbers into the machine himself. The program had not changed. 

Yet as he stared at the new printout, Lorenz saw his weather diverging so rapidly from the 

pattern of the last run that, within just a few months, all resemblance had disappeared. 

He looked at one set of numbers, then back at the other. He might as well have chosen 

two random weathers out of a hat. His first thought was that another vacuum tube had 

gone bad. Suddenly he realized the truth. There had been no malfunction. The problem 

lay in the numbers he had typed. In the computer's memory, six decimal places were 

stored: 0.506127. On the printout, to save space, just three appeared: 0.506. Lorenz had 

entered the shorter, rounded-off numbers, assuming that the difference - one part in a 

thousand - was inconsequential. It was a reasonable assumption. If a weather satellite can 

read ocean-surface temperature to within one part in a thousand, its operators consider 

themselves lucky. Lorenz's Royal McBee was implementing the classical program. It used 

a purely deterministic system of equations. Given a particular starting point, the weather 

would unfold exactly the same way each time. Given a slightly different starting point, 

the weather should unfold in a slightly different way. A small numerical error was like a 

small puff of wind - surely the small puffs faded or cancelled each other out before they 

could change important, large-scale features of the weather. Yet in Lorenz's particular 

system of equations, small errors proved catastrophic." 

Lorenz entitled a 1979 paper, "Predictability: Does the Flap of a Butterfly's Wings 
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in Brazil Set Off a Tornado in Texas?" and the title stuck. Today, semitive dependence 

on initial conditiom is referred. to as "The Butterfly Effect." For the purposes of experi-

mentation, Lorenz created a new system with three noolinear differential equations (1.1). 

It is a reduced model of convection, similar to the swirls of cream in a hot cup of coffee, 

only much simpler. 
dx 
dt =-ux+qy 

dy 
- =rx-xz-y 
dt 
dz 
dt =xy-bz 

(1.1) 

In this highly idealized model of a fluid, the Prandtl number (J, the Rayleigh number T, 

and b are parameters of the system. The variable x is proportional to the circulatory 

fluid flow velocity, the width of the flow is proportional to the parameter b, the variable 

!J is proportional to the temperature difference between ascending and descending fluid 

elements and z is proportional to the distortion of the vertical temperature profile from 

its equilibrium. Lorenz's system, although simple in the eyes of a physicist or mathemati-
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Figure 1.1: A typical figure showing the Lorenz attractor 

cian, is actually an unsolvable problem except by numerical methods. For the choice of 

parameters q = 10, b = I, Lorenz numerically found that the system behaves erratically 
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whenever the Rayleigh number T exceeds a critical value T ~ 24.74. That is, all solutions 

appear to be sensitive to initial conditions, and almost all of them are apparently nei

ther periodic solutions nor convergent to periodic (asymptotically periodic) solutions or 

equilibria. At first glance, the figures produced by the numerical data of the equations 

appeared to be random fluctuations coming from what should be a completely deter

ministic set of equations. Figure (1.1) shows a typical attractor of Lorenz's system and 

this figure shows the sensitivity of the dynamical system. The type of behavior is often 

discarded as simply an error in calculation. Lorenz was the first to recognize this erratic 

behavior as something other than error, and that everyone had been trying to view the 

world through a microscope. When he put the microscope aside and looked with his eyes, 

what he saw was an undeniable order, born of the randomness. That's the beauty and 

underlying order in chaos. 

1.2 Review of literature 

The mathematics of dynamical systems theory, which encompasses the concepts of mul

tiplicity of a solution set and chaoticity of a dynamical trajectory, has an illustrious 

history of over one century. The theory of multiplicity of solutions of nonlinear evolution 

equations became a branch of mathematics called Bifurcation Theory, which include the 

three distinct components: critical solutions, stability, and structural stability. Progress 

in this field has enhanced clear understanding of how multiple solutions can exist in non

linear systems and how the number of solutions and stability of solutions change as an 

experimental control, or stress parameter is changed. The crucial question of stability of 

solutions, whether or not a solution persits under an infinitesimal perturbation and how 

it changes as the number of solutions change, has occupied the time of many great math

ematicians like Lagrange, Laplace and Dirichlet etc. of the eighteenth and nineteenth 

centuries. Their ultimate aim was to shed light on the age-old n-body problem and in 
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doing so to determine the stability of -the solar system. 

In the year 1776, Pierre Simmon de Laplace wrote, 

The present state of nature is evidently a consequence of what it was in the 

preceding moment, and if we conceive of an intelligence which at a given 

instant comprehends of all the relations of the entities of this universe, it 

could state the expected positions, motions, and general effects of all these 

entities at any time in the past or future. 

6 

Laplace claimed that he had indeed proved, using a series expansion technique, that 

the solar system is stable. The significance of Laplace's claim reinforced the opinion held 

by many scientists: that once an intial condition (or configuration) is specified the future 

is completely determined. But, Henri Poincare proved [105] that the series expansion 

of Laplace diverged and hence stability can not be assured. His contribution provided 

fresh insight into the problem of stability and in doing so it also ended the quantitative 

era. One of the Poincare's most important inceptions was the introduction of qualitative 

dynamics and it gave birth to a host of important papers [Poincare , 1880, 1890, 1899] 

[107], [106], [105]. In his seminal paper [107] he gave a mathematically precise criterion 

for a system to undergo fundamental qualitative change in nature as parameters of the 

system are changed. One of those conditions requires a change in the number of critical 

solutions. 

In 1903, Poincare stated that: 

A very small cause which escapes our notice determines a considerable effect 

that we can not fail to see . .. even in the case that the natural laws had no 

longer any secret for us, we could only know the initial situation approximately 

... It may happen that small differences in initial conditions produce very 

great ones in the final phenomena. 
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This is the sensitivity to initial conditions which is the distinguishing characteristic 

of deterministic chaotic systems. 

Deterministic chaos with its inherent sensitivity to initial conditions (instability), 

provides a fresh insight into problems encountered in dynamics. Towards the end of nine

teenth century, the theory of bifurcations, due to Poincare, was formulated. However, the 

conceptual basis of bifurcation theory was begun by Leonhard Euler, predating Poincare's 

effort with work published in 1774 on the buckling of loaded struts. The Russian aca

demician A. M. Lyapunov [Lyapunov, 1947] [83] continued the spirit of Poincare's work 

and made significant advances in the formulation of the notion of stability [83] and it is 

his definition of stability we often use today. Poincare is one of the earliest contributors 

to bifurcation theory and hence initiated the development of dynamical system theory. 

Birkhoff's work [Birkhoff, 1960] [17] has greatly influenced our understanding of reso

nances. Julia in 1917 contributed greatly to the inception and understanding of complex 

analytical maps and this was substantially enhanced by M~delbrot[Mandelbrot, 1975] 

[85]. Kolmogorov and Arnold opened up a new chapter in dynamical systems theory 

with the proving of the so-called KAM theory, which is important in the understanding 

of elliptic points in dynamical systems. 

A significant development in chaos occurred in 1963 with Lorenz's seminal paper [82] 

on deterministic nonperiodic flow, an article concerned with turbulence. He discovered 

aperiodic solutions of a set of three ordinary differential equations by numerical integra

tions. These equations are a crude caricature of the Navier-Stokes equations. Lorenz's 

contribution marked a perceptual change which altered the face of nonlinear dynamics. 

The discrete analogue of Lorenz's initiative, pursued altogether independently, focussed 

on difference equations. Difference equations or maps were advocated originally as models 

for ecological systems. A difference equation or map is an example of a dynamical system 

in which time is discrete. Extensive study of these maps by biologists gave much impetus 
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to the understanding of chaotic dynamics of maps and in particular 'period doubling' 

in which a fixed point of the map becomes unsta,ble to a new solution whose period is 

double that of the previous solution. One dimensional maps are better platforms to study 

this behavior than three-dimensional sets of differential equations, which is the lowest

dimension of dynamical system described by differential equations capable of exhibiting 

chaotic dynamics. 

The modern theory of dynamical system was conceived by S. Smale [Smale, 1967] [127] 

of USA and he invented a bizarre mathematical entity known as a 'Smale horseshoe'. Ru

elle in France, and Takens in Holland developed a new theory of turbulence [Ruelle and 

Taken, 1971] [115] based on the theory of 'strange attractors', which challenged the Lan

dau [Landau, 1959] [78] view of turbulence. Landau viewed turbulence as a confluence of 

quasiperiodic mayhem. He viewed a physical system becoming more and more turbulent 

as a result of the number of independent quasiperiodic motions progressively increasing. 

However, when there are non linear interactions between the excited oscillators, the net 

result is that there can be a complex finite-dimensional motion that need not be quasi

periodic. The important result suggested by [Ruelle and Takens, 1971] [115] is due to the 

nonlinear coupling between oscillators corresponding to different frequencies; this tends 

to destroy quasi-periodicity and replace it by motion which is chaotic. 

Lorenz's contribution and the work on mapping in the early 1970's by Yorke, May, 

Oster and others provided two strands in a narrative which has exploded into a growing 

realization that the simplest deterministic rules can generate dynamical trajectories which 

not only look like the result of some random process but further more have the important 

property of sensitivity to initial conditions. This means that even if the rule defining 

evolution of a chaotic dynamical system were known exactly, long-term prediction would 

still be impossible, not simply because the motion was 'random', but because two nearly 

equivalent starting conditions could give distinctly diffferent solutions, which diverge 
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at an exponential rate. The development of dynamical system theory in general, and 

Lorenz's contribution and May's [87] review in Nature in particular, triggered a change 

in perception: that a large number of complicated equations were not necessary for 

solutions to be chaotic or turbulent like. 

Before the advent of sophisticated analytical tools and fast computing, nonlinear sys

tems were studied under linear approximations. The famous Fermi-Pasta-Ulam numerical 

experiments in the year 1955 on energy sharing between modes in anharmonic lattices 

gave birth to the golden era of modern nonlinear dynamics. As described above, in the 

year 1963, E. N. Lorenz numerically integrated the simplified system of the three cou

pled first-order nonlinear equations of the fluid convection model describing atmospheric 

weather conditions. In 1965, Zabusky and Kruskal numerically analysed the initial value 

problem of the Korteweg-de Vries equation, which represents a nonlinear dispersive sys

tem. They observed a phenomenon completely opposite to that of chaos. In experiments 

they found that solitary waves interacted among themselves and re-emerged unchanged 

in form and speed. This phenomenon they named as a soliton and further Kruskal and 

coworkers developed a completely analytic procedure called the inverse scattering trans

form to solve the initial value problem of the Korteweg-de Vries equation. This marked 

the advent of the modern era of integrable nonlinear systems. Independent of these 

developments, various important studies on nonlinear diffusive and dissipative systems 

and the underlying patterns were pursued during the above period. Over the last few 

decades, chaotic behavior of nonlinear dynamical processes has been reported in many 

scientific fields such as hydrodynamics [66], [Radhkrishnan et al., 1999] [110], [Asokan 

etal., 2005] [10] astrophysics, chemistry [Kiss et al., 1997] [74], biology [Bianchi et al., 

1992] [16], electronics, optics [Sivaprakasam and Shore, 1999] [126]. Chaotic dynamics 

appears to provide a relatively simple and possibly more satisfactory explanation of com

plex phenomena. Chaos in a bounded dynamical system is essentially characterized. by 
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the exponential divergence of initially adjacent trajectories as the system evolves in time. 

Scientists and engineers have begun to appreciate the advantages of designing devices 

to exploit, rather than disregard, nonlinearity and chaos. When observations from a 

dynamical system shows rather irregular fluctuations, we try to check whether the flutu

ations are due to chaos. The existence of chaos shows that the underlying dynamics is 

deterministc and short term prediction of the future states is possible using the tools of 

nonlinear dynamics. 

In recent times increasing attention has been focussed on exploring real technological 

applications of non linear dynamics: Controlling chaos [121], [AniI Kumar et al., 2000] 

[8], [Meucci et al., 2004] [88],[Heitor et al., 2004] [61], [Mahmoud and Farhaly, 2004] [84], 

synchronization of chaos [Ricardo Femat and Jose Alvarez-Rami , 1997] [111], [Moukam 

Kakmeni et al., 2004] [91] and secure communication [Sivaprakasam and Shore, 1999] 

[126], magnetoelectronics, spatio-temporal patterns etc. There are systems in which the 

chaotic behavior can be controlled by simple map based algorithms [Kiss et al., 1997] [74]. 

Applications of nonlinear dynamics have been found throughout the fields of physics, engi

neering, chemistry and biology [Viktor Muller et al., 2001] [137]. Numerous mathematical 

ideas and techniques hve been used to study non linear systems and these, in turn, have 

enriched the field of mathematics itself. 

Prior to the development of methods of analysis for nonlinear systems, any irregularly 

varying data was assumed to either be not amenable to analysis in terms of deterministic 

models or to require a very complicated model. The demonstration that simple determin

istic models can lead to complicated and irregular, or chaotic, behavior opened up the 

possibility of analysing such data using deterministic models. Chaos is a phenomenon 

that has been found in many physical systems and has been confirmed both theoretically 

and experimentally [Gaspard et al., 1998] [50], [Kiss et al., 1997] [74]. Understanding 

chaos offers the possibility of control over some complex and elusive processes [Christini 
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et al., 1996] [29], [Ciofini et al., 1995] [30]. One important application where chaos theory 

has been shown to be beneficial is in the understanding and exploitation of fluid mixing 

[Zumbrunnen et al. 1996] [142]. In this case, a combination of chaos theory, fluid mechan

ics and transport phenomena has produced a general framework that now can be used in 

a variety of practical situations [Ottino, 1989] [97]. Thus, the presence of deterministic 

chaos shows that one need not discard the given data due to the apparent randomness, 

but one can analyse the data from another perspective using advanced mathematical 

tools and we can gain much information about the system behavior and predict the fu

ture behavior upto a finitely large number of iterations to the future depending on certain 

characteristics of the system. 

1.3 Rheological parameters 

Rbeological properties of suspensions are examples of spatial averages over a large num

ber of elements, which are individually chaotically varying (here the suspended particles 

exhibit chaotic motion), showing a variety of interesting behavior. The bulk stress in a 

suspension of small particles in a fluid depends on many factors, of which particle con

centration, the Stokes number (which characterizes the importance of particle inertia in 

comparison with viscous forces), colloidal and Brownian forces, and flow type are impor

tant. The dynamic interaction of these factors determines the suspension microstructure, 

from which the macroscopic rheological properties follow. Particulate suspensions are, 

of course, encountered frequently in a variety of industrial processes, and understand

ing their rheology can provide significant commercial benefit. Moreover, suspensions are 

useful models of spatially extended chaotic systems, which can be analyzed both theo

retically and experimentally, and their rheological properties represent easily measurable 

spatial averages over the positions of all the particles. 

There is a host of literature which studies the shear viscosity of suspensions either by 
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experimentation or numerical simulations, with the implicit assumption that their behav

ior is Newtonian. Recent experimental evidence strongly suggests that suspensions be

have macroscopically as non-Newtonian fluids whose rheological properties are influenced 

by a large number of factors. The presence of normal stresses in viscometric flows that 

vary linearly with the shear rate shows non-Newtonian characteristics [Brady and Morris, 

1997] [18] [Phung et al., 1996] [194]. The presence of rate dependent normal stresses is 

a non-Newtonian character, because the pressure in a Newtonian fluid in a viscometric 

flow is determined solely from the boundary conditions and the hydrodynamic balance 

of forces; there is no rate dependence of the pressure in Newtonian fluid. There are also 

normal stress differences in a supension which is evidently a non-Newtonian effect. The 

normal stresses and particle pressure in a non-colloidal suspension are worthy of inves

tigation from a fundamental standpoint as they are the only non-Newtonian characters 

it exhibits; shear thinning or thickening and viscoelastic effects are generally not ob

served unless there are significant non-hydrodynamic interactions between the suspended 

particles. From the practical view point, normal stress differences are an important con

sideration in the processing of concentrated suspensions. Such study is of even greater 

significance because normal stresses determine segregation of particles in suspension sub

jected to an inhomogeneous shear field [Jenkins and Mctigue, 1990] [67], [Morris and 

Boulay, 1999] [89], [Nott and Brady, 1994] [94]. The particle pressure which is related 

to the fluctuational motion of the particles can be an important parameter in designing 

the flow of suspensions in slurry pumps, pipes, fluidised beds etc. While the particle 

pressure shows no apparent effect in a homogeneous suspension undergoing uniform de

formation, Nott and Brady [1994] [94] argued that its role in inhomogeneous shear is 

important. Brady and Morris [1997][18] argued that the presence of a non-hydrodynamic 

interaction force, however small, results in non-Newtonian effects such as normal stress 

differences. Though it is not clear that non-hydrodynamic forces are necessary, normal 
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stress differences have been measured experimentally in non-Brownian suspensions by 

[Gadala-Maria, 1979] [48], [Zarraga et al., 2000] [140] and [Singh and Nott, 2003] [124], 

and in numerical simulations by [Singh and Nott, 2000] [122]. 

For Stokesian suspensions, the stress is simply a product of the fluid viscosity, the shear 

rate and a function of the microstructure - the distribution of particles in the suspension 

as the system evolves in time. Hence, fluctuations in the stress reflect directly on fluctu

ations on the microstructure. For dilute suspensions, hydrodynamic interactions may be 

assumed to be pairwise, and the stress is therefore determined by the pair distribution 

function. Batchelor and Green [1972] [15] determined analytically the steady state pair 

distribution function for pure straining flow assuming only hydrodynamic interactions be

tween particles, and thereby computed the O(q,2) correction to the suspension viscosity. 

Recently, Brady and Morris [1997] [18] determined the pair distribution function for shear 

flow for a weakly Brownian suspension with a repulsive inter-particle force in addition 

to the hydrodynamic force. They found that the repulsive interaction breaks the fore-aft 

symmetry of the pair distribution function, and therefore leads to finite normal stress 

differences in the suspension. Both these studies considered unbounded flows for which 

there is a time-independent steady state in the microstructure for dilute suspensions. 

1.4 Our work 

The studies cited above attempt to determine the time and space averaged bulk stress 

in the suspension for a prescribed flow field. From a microstructural viewpoint, fluctua

tions in the stress are caused by temporal changes in the microstructure, which in turn 

arise from two sources: (1) The chaotic motion of individual particles in the suspension, 

and (2) fluctuations in the spatially averaged microstructure due to a coupling between 

its evolution and the flow. The former exists even in molecular systems, but its char

acteristic time-scale is so small that it is unimportant in the hydrodynamic sense. In 
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suspension flows, the only time-scale is that imposed by the shear rate, and therefore 

the effects of the two mechanisms listed above are indistinguishable. These fluctuations 

in the averaged bulk stresses, to our knowledge, have not been studied using methods 

of nonlinear time series analysis and chaos theory, and it is our belief that examining 

them through the conceptual lens of nonlinear dynamics and chaos theory would lead to 

a better understanding of the system behaviour and it will be of significant industrial 

benefit. 

A large number of studies in the literature shows that the stress in a particulate sus

pension exhibits strong fluctuations about a well defined average [Singh and Nott, 2000] 

[122]. The fluctuations increase in magnitude with the particle concentration and are eas

ily measurable in experiments; but only the temporal average is usually reported. Stress 

fluctuations in suspension flows have been observed in the simulations of pressure driven 

flows and simple shear flow [Nott and Brady, 1994] [94]; [Singh and Nott, 2000] [122]. 

It is now widely recognized that the fluctuations in the properties of non-linear systems 

convey useful information on their dynamics. The utilization of the tools of nonlinear 

dynamics and chaos theory has led to the possibility of uncovering information about 

the underlying dynamics of a system whose output is in the form of a fluctuating time 

series [Pavlos et al. 1999a, 1999b,1999c] [98], [99], [100]. Our broad objectives in this 

work are to see whether these tools [Kantz and Schreiber, 1997] [69], [Hegger et al., 1999] 

[60], when applied to fluctuations in the bulk stress of Stokesian suspensions, can capture 

information about their underlying dynamics, and hence lead to a way of characterizing 

their behavior by proper estimates of the dynamical and topological (geometrical) in

variants of the fluctuating time series, such as dimension estimates, Lyapunov exponents 

and principal eigenvalues etc. Some of the possible advantages of studying fluctuations 

in rheological properties using the tools of nonlinear dynamics and chaos theory are: 
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• The identification of the existence of a low-dimensional attractor leading to the 

possibility of intelligent chaos control. 

• Accurate short range predictions of fluctuations. 

• Predicting fluctuations in properties that are difficult to measure from those that 

are easy to measure. 

• Developing phenomenological global models to describe the system behavior using 

possible simple equations. 

• Analysis of the system dynamics by controlling the temporal fluctuations of the 

stress components through appropriate variation of the parameters in the model 

equation. 

• Synchronization of one stress component with another stress component. 

• Analysis of the system by expanding the parameter space to search for new phe

nomena or already existing phenomena of similar ( or related) systems. 

• Using the invariant measures of the dynamics in design and scale-up of equipment 

and so on. 

From a fundamental viewpoint, we expect that an analysis of the stress fluctuations using 

the tools of nonlinear dynamics and chaos theory such as the estimation of geometrical 

(topological) characteristics viz. the number of principal components [4.4.3], correlation 

dimension [2.8.3], embedding dimension [4.4.2] of the underlying attractor and dynamical 

characteristics such as Lyapunov expoenents [4.5.3] will provide useful information on the 

microstructure, or arrangement of particles during shear. 

In this work, we report results obtained from a detailed analysis [Dasan et al., 2002] 

[32] of the fluctuations of the rheological parameters viz. shear and normal stresses, sim-
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ulated by means of the Stokesian Dynamics (see chap. 3 and the references therein), of 

a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian 

suspension of identical spheres in the Couette gap H between two parallel walls in the 

limit of vanishingly small Reynolds numbers using the tools of nonlinear dynamics and 

chaos theory [Kantz and Schreiber, 1997][69], [Hegger et al., 1999] [60] for a range of parti

cle concentration (area fraction of particles 4J , for we consider only two dimensional flows. 

See chap. 3 for more details) and Couette gaps H. This system is currently an active re

search field in the literature [Singh and Nott, 2000, 2003] [122], [124]; [Drazer et al., 2002, 

2004] [35], [36], [Acrivos et al., 2004] [4]; [Strybulevych et al., 2004] [128]. Singh and Nott 

[2000][122] modified the Stokesian Dynamics simulation technique originally developed by 

Bradyand Bossis [1988] [19] and used by many others for studying a large number of dif

ferent types of suspensions viz. non-colloidal sheared suspensions [Brady & Bossis, 1985] 

[21], [Durlofsky and Brady, 1989] [38], flow through porous media [Durlofsky and Brady, 

1987] [37] and pressure driven flows [Nott and Brady, 1994] [94] (see chap.3). To simulate 

plane walls more accurately Singh and Nott[2000] [122] modified the procedure of Nott 

and Brady [1994] [94] and simulated the velocity fluctuations, bulk stresses viz. normal 

and shear stresses both numerically and experimentally [Singh and Nott, 2003] [124] for 

different area fraction of particles. Singh and Nott performed a comparative study of 

both theoretical stress components and experimentally measured stresses. However, they 

[Singh and Nott, 2000, 2003] [122], [124] did not analyse these fluctuations using the meth

ods of nonlinear dynamics and chaos theory. Contemporary to our work [Dasan et al., 

2002] [32], Drazer et al., [2002, 2004][35], [36] and Acrivos et al. [2004][4] investigated the 

velocity fluctuations present in this system and their dependence on the microstructure 

developed by the suspensions using Stokesian Dynamics simulations. Drazer et al. [2002] 

[35] did not analyse the fluctuations of stress components. Strybulevych et al. [2004] 

[128] analyse the measurements of the steady-state shear viscosity and shear-induced mi-
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crostructure of a system of glass beads (diameter d = 127±22 J.Lm, density p = 2,220 

kg/m3) immersed in a density-matched liquid. We analyse the normal streBS and shear 

stress of the system simulated by means of the Stokesian Dynamics method modified 

by Singh and Nott [2000J [122J using topological and dynamical methods. We make 

extensive use of the tools of nonlinear dynamics and chaos theory viz. average mutual 

information [ 4.3.2], space-time separation plots [4.3.3], visual recurrence analysis [4.5.2J, 

principal component analysis [4.4.3]' false nearest-neighbor technique [4.4.2J, correlation 

integrals [2.8.3J, computation of the maximum Lyapunov exponents [4.5.3]' mutual false 

nearest-neighbor parameter [4.7J for a range of area fraction 0.05 ~ ifJ ~ 0.6 of particles 

and for different Couette gaps H. The only parameters in the problem are the Couette 

gap H (rendered non-dimensional by the particle radius), the area fraction of particles 

~, the parameters Fo that determine the magnitude of repulsive interaction (3.24) and J.L, 

the range of repulsive interaction. 

Most of our reBults were obtained with Couette gap H = 18 particles width, and 

Fo = 10-4, J.L = 100, and particle area fraction in the range 0.05 ~ ifJ ~ 0.6. We have 

studied the effect of H by performing simulations for H=14, 18, 30 particle width for ifJ 

=0.2 and Fo and J.L remaining as above. To study the sensitivity of our results to the 

repulsive interaction (3.24), we have performed simulations for J.L =10, 100, and 1000, 

keeping Fo J.L = 0.01 for ifJ =0.4 and H = 18 particles width. 

We present numerical evidence for the existence of a low-dimensional chaotic attractor 

in the rheological properties for a range of particle concentrations. This indicates that 

the fluctuations of the rheological parameters arise from low-dimensional deterministic 

dynamics. The chaotic nature of the underlying attractor governing the dynamics of the 

system in the stress fluctuations implies that, though the system is unpredictable in the 

long-term, accurate and meaningful short-term predictions can be performed depend

ing on the accuracy of the initial conditions and the value of the Lyapunov exponent, 
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which characterizes the sensitive dependence of the dynamics on the initial conditions 

(the chaotic nature of the system). Using this information we performed predictions of 

successive fluctuations of the stresses from preceding fluctuations by using the one-step 

prediction method [sec.4.6]. We found that the correlation dimension, the number of 

significant eigen values and the embedding dimension at which the percentage of false 

nearest-neighbors reduced to nearly zero are the same for both the normal and shear stress 

components for a fixed area fraction of particles. We computed the mutual false nearest

neighbor parameter [sec.4.7] and observed the presence of a functional cross-correlation 

between shear and normal stress components. This is in agreement with the finding that 

the different stress components have the same correlation dimension and number of prin

cipal components etc. This characterization helped us to perform a cross-prediction of 

the time series of one stress component from the time series of another; thus indicating 

the potential of this approach. One important implication of our analysis is that only a 

finite (atmost eight) number of independent variables are sufficient to describe the com

plete dynamics of the rheological parameters over the range of particle concentrations 

~ = 0.05 to <p = 0.6. This observation has potential applications to some industrial 

problems. Many industrial suspensions can be approximated by the bounded system of 

suspension of spheres in simple shear flow. So if we are able to identify the principal 

factors, at most eight in number, that govern the dynamics and rheological properties 

of such suspensions, we will be able to improve processes for the manufacture of prod

ucts involving suspensions by controlling these factors appropriately. Our analysis of the 

stress fluctuations for a range of particle concentrations revealed that the invariant mea

sures such as the correlation dimension, number of principal components, the embedding 

dimension of the attractor (these are geometrical characteristics) and Lyapunov expo

nent (dynamical characteristic) that characterize the fluctuations change with increase 

in concentration, suggesting changes in the microstructure with increasing concentration. 
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This in fact mimics the increasing complexity of the suspension due to the existence 

of particle-particle and many-body interactions. This may yield guidelines for the con

trol of parameters governing the processing of such suspensions. From our results, we 

draw interesting conclusions on the relation between microstructure and rheology of the 

suspension. 

Using the insight gained from the analysis of the simulated stress components, we 

model the system dynamics by means of an evolutionary algorithm called 'Darwin' [Alvarez 

etal., 2001] [7]. We modeled the stress components and our models agree qualitatively 

and to a great extent quantitatively with the characteristics of the stress components 

simulated using the Stokesian Dynamic simulation. 

1.5 Organization of the thesis 

This thesis consists of five chapters .. The first chapter has five sections. The first two 

sections review the major milestones of chaotic dynamics and nonlinear dynamics. The 

third section describes the importance of rheological parameters and the fourth section 

gives a brief description of our work and its connection with works in the leterature. The 

last section of this chapter describes the organization of the thesis. 

The second chapter introduces some basic terms of chaos theory and nonlinear dy

namics. This chapter has eight sections. The first three sections introduce the basic 

terms of dynamical system and chaos theory and the fourth section describes methods 

to estimate the Lyapunov exponent from a map. The fifth and sixth sections describe 

basic ideas of differential equations and the corresponding notions of maps. The last two 

sections of this chapter describe different types of dimension estimates. (Other required 

terms and methods of nonlinear time series analysis using chaos theory and nonlinear 

dynamics will be described at the appropriate places.) The third chapter deals with the 

Stokesian dynamics simulation method for an unbounded and bounded flow. 
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The fourth chapter has eight sections. Section one is an introduction to non linear time 

series analysis and section two describes the phase space reconstruction method. Section 

three deals with different methods viz. autocorrelation function, average mutual infor

mation etc., of computing the proper time delay for embedding. Section four describes 

the different geometrical (topological) methods such as principal component analysis, 

false nearest neighbor method and correlation integral method to estimate the embed

ding dimension of the attractor. The fifth section describes the results of analysis using 

the above tools and discusses the implications of low-dimensionality, deterministic nature 

and the chaotic nature of the attractor. Section six of this chapter deals with successive 

prediction using local one-step and multi-step prediction methods. Cross-prediction of 

one time series from another time series is described in section seven. In the final section 

of this chapter a discussion of the results and its implications to the microstructure of 

the suspension is described. 

The last chapter has seven sections. Section one gives an introduction to modeling and 

section two deals with the different stages of the evolutionary algorithm called 'Darwin', 

using which we develop global models of our system. In section three, we construct the 

model equations of the stress components for different particle concentrations. In section 

four, we compare and contrast qualitative and quantitative properties of model generated 

stress components with simulated stress components of the Stokesian suspensions. In 

section five, we discuss the implications of our analysis and model equations. In section 

six, we discuss possible future works. In the final section of this thesis, we give list of 

publications resulted during the research work. 



CHAPTER 2 

Dynamical Systems and Chaos 

2.1 Dynamical System 

A physical system which evolves with time is called a dynamical system. A dynamical 

system can be suitably modeled by differential equations, difference equations or integral 

equations. Dynamical systems are broadly classified into two: (1) Discrete dynamical 

systems and (2) Continuous dynamical systems. When the time is considered as a se-

quence of separate intervals each following the next one, the system is called a Discrete 

dynamical system and this type of system is represented by maps as follows 

(2.1) 

where Zn is a vector representing the state space which gives a numerical description of 

the current configuration of the system dynamics and f is the rule which governs the 

system dynamic. Frequently cited examples of discrete dynamical systems are the Henon 

map, the logistic map (quadratic map), the Baker's map etc. When time varies contin-

uously, the dynamical system is called continuous. Continuous dynamical systems 

are symbolically represented by differential equations as follows: 

d 
dt z(t) = f(z(t)) (2.2) 

21 
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where z(t) is the state space of the system at the instant t. The collection of all states of a 

system is called the phase space of the dynamical system. Note that a map describes the 

time evolution of a system by expressing its state as a function of its previous state and 

iterating the map corresponds to the system moving through time in discrete intervals. 

Instead of expressing the current state as a function of the previous state, a differential 

equation expresses the rate of change of the current state as a function of the current state. 

Frequently encountered examples of continuous dynamical systems in the literature are 

the Lorenz equations, Chua circuit etc. If the evolution of the system explicitly depends 

on time, it is called a non-autonomous dynamical system. In this case the right hand 

side of equation (2.2) contains time as a variable. If the evolution of the system does not 

depend on time, it is called an autonomous dynamical system. Every non-autonomous 

equation (dynamical system) can be converted into autonomous equations at the expense 

of one more state variable which is equivalent to the time variable. 

2.2 Dynamical characteristics of maps 

One of the most important uses of maps in scientific applications is to assist in the study 

of differential equation models. In any study of dynamical systems, we mainly focus our 

analysis on the eventual state of the system behavior in time for a proper understanding 

of the system itself. The trajectory (or orbit) of a dynamical system is defined as the 

sequence 

where Zo is a vector, called initial condition, describing the initial configuration of the 

system dynamics and the meaning of r(zo) is n successive application of f on the initial 

condition Zoo A trajectory of a dynamical system is said to be periodic with period k 

if it repeats after k iterates (k successive application of j), k being the smallest number 
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having this property, and in this situation we have 

(2.3) 

and the point Xo is called a periodic point of period k. A periodic point of period one 

is called a fixed point. That is, f(xo) = Xo. This shows that a periodic point of period 

k will be a fixed point of fk. 

A fixed point Xo E Rm of a map f on Rm is called an attractor (or sink) if there 

exists an E > 0 such that for all x in the E- neighborhood Nl(xo), limk-+oo J"(x) = Xo. 

The fixed point Xo is called a repeller (or source) of f if there is an E- neighborhood 

N((xo) such that for all x E Nl(xo) we can find a poistive integer k with the property that 

for all n > k, r(xo) rt Nl(XO). That is, any point that is very close to an attractor will 

move towards it as time progresses, but, for a repeller, the neighboring points eventually 

move away from it. In this sense, an attractor is a stable fixed point, but a repeller is 

an unstable fixed point. To describe the above characteristics of a map rigorously, we 

introduce the concept of Jacobian matrix for a map as follows: 

Let f = (Il, 12, fa, ... , fm) be a map on Rm and let pERm. Then Jacobian 

matrix of f at p, denoted by D f (P) is defined by the matrix 

8fl (P) 8fl (p) 8fl (p) 
8Xl 8x,.2 8x 
8f2 (p) ~(p) 8Y; (p) 

Df(p) = 8Xl 8X2 8xm (2.4) 
............................... 
8fm( ) 8fm( ) 8fm( ) 
8 p 8 P"'8 P Xl X2 Xm 

of partial derivatives evaluated at p. Given a vector p and a small vector h, the increment 

in f due to h is approximated by the Jacobian matrix times the vector h given by 

f(p + h) - f(p) ~ Df(p)h (2.5) 

This shows that as long as the deviation is small, the action of the map near a fixed point 

p is essentially the same as the linear map h -7 D f (p) h, with fixed point h = O. The 
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equation (2.5) shows that at each iteration two arbitrarily close points move away (or 

closer) at a multiplicative rate of approximately Df(P) until the orbits move significantly 

far away. The fixed point p of the map f will be an attractor (or sink) if the magnitude 

of each eigen value of D f (p) is less than one and the fixed point p will be a repeller 

(or source) if the magnitude of each eigenvalue is greater than one. If none of the eigen 

values of Df(p) has magnitude one, then the fixed point p is called hyperbolic. A 

hyperbolic fixed point p of f is said to be a saddle point if the Jacobian matrix D f(P) 

has atleast one eigen value of magnitude less than one and at least one eigen value of 

magnitude greater than one. This, in fact, implies that saddle points can not occur for 

one-dimensional maps. The main difference between a saddle point and an attractor (or 

repeller) is that in one direction (that corresponds to the eigen value with magnitude 

less than one) neighboring points will move towards it and in another direction (that 

corresponds to the eigen value with magnitude greater than one) the neighboring points 

will move away from it eventually and mayor may not be attracted to some stable fixed 

point. So a saddle point has both stable and unstable directions. A saddle fixed point 

is unstable as most initial values near it will move away under iteration of the map. 

However, not all nearby initial values move away from a saddle fixed point. The set of 

initial values that converge to the saddle point is called the stable manifold and the set 

of initial values that move away from the saddle point is called the unstable manifold. 

As we observed, in the above discussion, one type of behavior for an initial condition 

that begins near an unstable steady state is for it to move away and be attracted by a 

stable steady state or by a stable periodic state. In this case the unstable behavior is 

transient and gives way eventually to stable behavior in the long run. 

Lef f be a map on Rm and let p be an attracting fixed point or periodic point for 

f. Then the basin of attraction of p is defined as the set of points z E Rm such that 

limn-too Ir(:z:) - r(p)1 = o. 
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2.3 Lyapunov numbers and exponents of a map 

In general, there is no reason that an initial condition starting near a repeller (or source) 

is forced to be attracted to a sink (or a periodic sink). A chaotic trajectory is one 

that forever continues to experience the unstable behavior that an orbit exhibits near 

a repeller, but that is not itself fixed or periodic. It never finds a sink to be attracted 

to. At any point of such an orbit, there are points arbitrarily near that will move away 

from the point at an exponential rate during further iteration (refer 2.5). This sustained 

irregularity is quantified using dynamical characteristics called Lyapunov numbers 

and Lyapunov exponents. The Lyapunov number is defined as the average per-step 

divergence rate of nearby points along the orbit, and the Lyapunov exponent is the 

natural logarithm of the Lyapunov number. 

For an one-dimensional map f the orbit of the point x near the point Xl will diverge 

from Xl at a multiplicative rate of approximately J'(xd per iteration (2.5), until the orbit 

of x moves significantly far away from the orbit of Xl. For a periodic point Xl of period 

k, the orbit of each neighbor X separates from Xl at a rate approximately the product of 

derivatives A of f at the k points of the orbit after each k iterates. And so the average 

multiplicative rate of separation of two neighboring orbits is Ai per iteration. The 

Lyapunov number is introduced to quantify this average multiplicative rate of separation 

of neighboring points. The significance of the concept of Lyapunov number is that it can 

be applied to nonperiodic orbits. We, now, define Lyapunov number and exponent for a 

one-dimensional map. 

Let f be a smooth map of the real line R. The Lyapunov number L(xd of the orbit 

(Xll X2, ... ,) is defined as 

L(xd = lim (If'(xdllJ'(X2)1·· ·If'(xn)/)~ 
n--+oc 

(2.6) 
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if this limit exits. The Lyapunov exponent h(xd is defined as 

(2.7) 

if this limit exists. Now it follows that if Xl is a fixed point of f, its Lyapunov number is 

IF(xdl and so its Lyapunov exponent is In I!,(xd I. If Xl is a periodic point of period k, 

then the Lyapunov exponent is 

h(xd = In I!,(XI)I + In If'(X2)1 + ... + In If'(xn)1 
k 

(2.8) 

For the periodic orbit the Lyapunov number eh(xIl describes the average local stretching 

near a point on the orbit on a per-iterate basis. 

A trajectory (Xll X2, ... , Xn, ... ) of a smooth map f is called asymptotically pe-

riodic if it converges to a periodic orbit as n -t 00. That is, there exists a periodic orbit 

(Yll Y2, ... , Yk, Yll Y2, Ya, .•. ) of period k such that 

lim IXn - Yn 1 = 0 
n-too 

(2.9) 

We have the following result in the case of asymptotically periodic orbit. 

If the orbit (Xll X2, ... ) of f satisfies !'(Xi) f:. 0 for all i and is asymptotically periodic 

to the periodic orbit (Yb Y2, ... , Yk, YI, Y2, Y3, ... ), then the two orbits have identical 

Lyapunov exponents, if they exist[Kathleen [6]. 

We formally define a chaotic orbit as follows: 

A bounded orbit of a map of the real line is said to be chaotic if it is not asymtotically 

periodic and has positive Lyapunov exponent. 

The concept of Lyapunov numbers and Lyapunov exponents can be extended to higher 

dimensional maps defined on Rm, m > 1. In one dimensional maps, the idea is to 

measure separation rates of nearby points along the real line. In higher dimensions, 

nearby points may be moving apart along one direction, and moving together along 
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another direction. For a map on Rm, each orbit has m Lyapunov numbers, which measure 

the rates of separation from the current orbit point along m orthogonal directions. These 

directions are determined by the dynamics of the map. The first will be along which 

the separation between nearby points is the greatest (or which is least contracting, if 

the map is contracting in all direction). The second will be the direction of greatest 

separation, chosen from all directions perpendicular to the first and the third will have 

the greatest stretching of all directions perpendicular to the first two directions, and so 

on. The stretching factors in each of these chosen directions are the Lyapunov numbers 

of the orbit. 

Consider a unit m-dimensional sphere like object 8 about the first point Zo of the orbit 

under the map 1 defined on Rm, m > 1. If we examine the image 1(8) of the sphere 

like object under one iteration of the map, we observe an approximately "ellipsoidal" 

shape, with long axes along expanding directions for 1 and short axes along contracting 

directions. After n iterations of the map I, the sphere like object will evolve into a longer 

and thinner "ellipsoid" like object. The changes of the axes of the ellipsoid like object 

per iterate are the Lyapunov numbers and they quantify the amount of stretching and 

shrinking due to the dynamics near the orbit beginning at zoo So the Lyapunov numbers 

and exponents can be defined formally as follows: 

Let f be a smooth map on Rm , 8 be the unit m-dimensional sphere about the first 

point 2:0 of the orbit and In = D r(zo) be the Jacobian matrix of r at zoo Let TJ: be 

the kth longest orthogonal axis of the ellipsoid Jn8. Then the kth Lyapunov number of 

:1:0 is defined by 

(2.10) 

if the limit exists. The kth Lyapunov exponent of Zo is given by hk = In Lk . 

Using the concept of Lyapunov exponent, we can extend the definition of chaotic orbit 
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to orbits of higher dimensional maps analogously. 

A bounded orbit (zo, Zb Z2, ... ) of map f defined on Rm, m 2 1 is said to be chaotic 

if the orbit is not asymptotically periodic, no Lypunov exponent is exactly one and the 

largest Lyapunov exponent is greater than zero. 

2.4 Estimation of the largest Lyapunov exponent 

In general, there is no direct way to determine Lyapunov exponent from the knowledge 

of the map and its Jacobian matrices. In practice, it is very difficult to determine the 

Jacobian matrix I n = D r(zo) for large values n. We have to resort to the approximation 

of the image ellipsoid JnS of the unit sphere S by computational algorithms. If the 

ellipsoid JnS has semi-major axes of length Si in the direction Ui, the direct apporach 

to calculating the Lyapunov exponents would be to explicitly form I n .1J and find its 

eigenvalues s~. In case the ellipsoid has stretching and strinking directions, it will be very 

long and very thin for large values of n. So, the eigenvalues of I n .1J will include both 

very large and very small numbers. Beacause of the limited number of digits allowed 

for each stored number, computer calculations become difficult when numbers of vastly 

different sizes are involved in the same calculation. The problem of computing the Si 

gets worse as n increases. Because of this reason, direct calculation of the ellipsoid JnS 

is usually avoided. 

A better approach to numerical calculations involves following the ellipsoid as it grows. 

Since 

(2.11) 

we can compute one iterate at a time. We start with an orthonormal basis {y?, yg,

y~, ... , y~} for Rm, and compute the vectors z?, zg, ... , z~: 

(2.12) 
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These vectors lie on the new ellipse D f(xo)S, but they not necessarily orthogonal. Using 

the Gram-Schmidt orthogonalization procedure, we can construct an orthogonal basis 

{yL y~, y~, ... , y:n} from the vectors {z?, zg, zg, ... , z~J and they will span an ellip-

soid of the same volume as D f(xo)S. Next apply the Jacobian D f(xd at the next orbit 

point, and reorthogonalize the vectors 

z~ = Df(xdyL z~ = Df(xdy~, ... , z:n = Df(xdy:n (2.13) 

to produce a new orthogonal set {y~, y~, y~, ... , y~}. Repeat this process n times to 

produce a final set {yf, y~, y~, ... , y!;} of vectors which approximate the semi-major 

axes of the elliposid JnS. 

The total expansion rf in the ith direction after n iterations is approximated by the 

length of the vector yr. Thus IIYrll~ is the approximation to the ith largest Lyapunov 

number after n iterations. To eliminate the problem of extremely large and small numbers, 

this algorithm should be amended to normalize the orthogonal basis at each step. Since 

r~ ~ Ilyfllllyf-III" '1Iyll!' the expression 

In Ilyrll + ... + In Ilylll 
n 

can be considered as a convenient estimate of the ith largest Lyapunov exponent after n 

steps. 

In the previous discussion we introduced the notion of chaotic orbit of maps and 

described procedures used to calculate certain characteristics of chaotic orbits. Now we 

introduce the concept of a "chaotic attractor". For this we define the following: 

Let f be a map on Rm and let Xo be an initial condition. Then the forward limit(or 

w-limit) set of the orbit {r(xo) }nEN is the set 

W(Zo) = {x: for all p and f there exists n > p such that Ir(xo) - xl < f} 
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The definition of forward limit set of an orbit is the set of points to which the orbit returns 

arbitrarily close, infinitely often. Fixed ponts and periodic points are typical examples of 

forward limit sets. 

Let f be a map and Zo, Zl be initial conditons. Then orbit {r(Zd}nEN of Zl under 

a map f is said to be attracted to the w-limit set w(zo) if w(zd is contained in w(zo). 

The forward limit set w(zo) of a chaotic orbit {r(ZO)}nEN is said to be a chaotic set 

if Xo E w(zo). An attract or is a forward limit set which attracts a set of initial values 

that has nonzero measure. A chaotic attract or is defined as a chaotic set that is also 

an attractor. That is, if the forward limit set of an attracting chaotic orbit contains the 

orbit itself, then the attractor is a chaotic attractor. The two important aspects of a 

chaotic attractor are that it contains a chaotic orbit and it attracts a set of initial values 

that has nonzero measure. The requirement that the defining orbit be in its own forward 

limit set ensures that a chaotic set has a dense orbit. 

2.5 Differential equations 

A differential equation expresses the rate of change of the current state as a function 

of the current state itself. Most physical laws that have been successful in the study 

of dynamically changing quantities are expressed in the form of differential equations. 

Ordinary differential equations are differential equations whose solutions are functions 

of one independent variable. As already mentioned in the beginning [sec.(2.1)], there 

are two types of differential equations, viz. autonomous and non-autonomous differential 

equations. Autonomous differential equations directly capture the spirit of a deterministic 

dynamical system, in which the law for the future is written only in terms of the present 

state. However, the distinction is artificial as any non-autonomous differential equations 

can be transformed into an autonomous differential equation at the expense of one more 

variable, equivalent to time. We shall now define what we mean by the so-called flow of 
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a differential equation. 

The flow of an autonomous differential equation is the set of all functions in time 

with initial values which are solutions of the differential equation. We use the notation 

Fl(:z:o) or F(t, zo) to denote the value at time t of the solution with initial value Zo. 

When a map is well defined, it will reveal unequivocally what would happen for all 

future times. With differential equations there are a few technicalities to be considered. 

First, solutions to an initial value problem may blow up (diverge) in finite time and so 

it may not exist for all time. It is possible, both for differential equations and maps, for 

solutions to tend to infinity, but exist for all time in the process. However, blow up in finite 

time is different and there is no analogous behavior for continuous maps. Second, without 

any restrictions on the differential equation, an initial value problem may have more than 

one solution. This is against the concept of determinism. A good model should specify 

the future unambiquously, given the rule and the present state and this in fact require us 

to put some restriction on the differential equations. Third, the utility of a model to give 

information about the dynamical process depends on the fact that the solution of the 

initial value problem does not depend too sensitively on the initial condition, at least at 

short time scales. In particular, for a fixed differential equation and two different initial 

values, we would like to know that the closer the two initial values are, the closer the 

solutions are for small t. This is what we mean by continuous dependence on the initial 

conditions. For large t they may diverge toward opposite corners of the phase space. 

Sensitivity at large t is called sensitive dependence on initial conditions. 

Except for blow up in finite time, all other problems can be eliminated under mild 

restrictions on the differential equation. We now present theorems on the existence, 

uniqueness and continuous dependence on initial conditions and their proof can be found 

in standard texts on differential equations. The following theorem gives sufficient condi

tions for differential equations to possess unique solutions. 
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If in the m-dimensional system oJ first-order ordinary differential equations ~~ = 

f(z) both J and its first partial derivatives are continuous on an open set U, then Jor 

any real number to and real vector Zo, there is an open interval containing to on which 

there exists a unique solution safisJying the initial condition z(to) = zoo 

A function J on Rffl is said to be Lipschitz on an open set U in Rffl if there exists a 

constant L, called Lipschitz constant for J, such that 

lJ(z) - J(y)1 :5 L Iz - yl 

for all z, y in U. If J has bounded first order partial derivatives in U, then J is Lipschitz. 

If a function J is Lipschitz with Lipschitz constant L, then two neighboring solutions to 

the same differential equation ~~ = J(z) can separate from each other at a rate no 

greater than eLt• This is the basis for continuity of the flow as a function of the initial 

condition. 

If f is a Junction defined on the open set U in Rm with Lipschitz constant L in the 

variables z on U, and z(t) and y(t) are solutions oJthe differential equation ~~ = J(z) 

with [to, td, subset oJ domains oJ both solutions, then 

Iz(t) - y(t)1 :5lz(to) - y(to)leL(t-to) 

for t E [to, td· 

A constant solution of the autonomous differential equation ~~ = J(z) is called 

an equilibrium of the equation. An equilibrium solution is called attracting if the 

trajectories of nearby initial conditions coverge to it and it is said to be repelling if the 

solutions through nearby initial conditions diverge from it. For differential equations the 

solution can be an equilibrium or other more complex entities. A solution F(t, zo) of 

the differential equation ~~ = J(z) which is not an equilibrium is said to be a periodic 

orbit or cycle if there exits T > 0 such that F(t + T, zo) = F(t, zo) and the smallest 

such number is called period of the orbit. 
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An equilibrium point z is said to be stable or Lyapunov stable if every initial 

point Zo very close to z has the property that the solution F(t, zo) stays close to z 

for t ~ O. That is, for any neighborhood N of z there exists a neighborhood M of z, 

contained in N, such that for each initial point Zo in M, the solution F(t, zo) is in N 

for all t ~ O. An equilibrium is said to be unstable if it is not stable. Also, a stable and 

attracting equilibrium is said to be asymptotically stable. And it is said to be globally 

asymptotically stable if it is asymptotically stable and all initial values converge to the 

equilibrium. It is easy to describe the asymptotic behavior (w-limit set) of any bounded 

orbit of an autonomous differential equation on the real line. 

All solutions of the scalar differential equation ~~ = f(x) for linear f(x) are ei

ther monotonic increasing or monotonic decreasing as a function of time t. If the orbit 

F(t,xo),t ~ O,xo E R is bounded then w(xo) consists solely of an equilibrium. 

Unlike linear systems, most nonlinear systems of ordinary differential equations can 

not be solved explicitly, meaning that the solutions can not be found through an analytic 

calculation in closed form. But much of the stability analysis for linear systems carries 

over to the study of equilibria of nonlinear systems. While a linear system either has only 

one equilibrium or has an entire line (or higher-dimensional subspace) of equilibrium, a 

nonlinear system can have many isolated equilibria. In order to determine the stability 

of an equilibrium z of 

dz di = f(z), (2.14) 

we use the linear map that best approxi~ates f at z and it is given by f (z+"1) ::::: D f(z)"1 

for very small vector "1 where D f(z) is the Jacobian matrix of partial derivatives evaluated 

at z. If y(t) = F(t, z + "1) from an initial value z + "1 close to the equilibrium z, then 

z(t) = y(t) - z(t) satisfies 

dz(t) = dy(t) = f(z(t) + z) ::::: Df(z)z(t) 
dt dt 

(2.15) 
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at leaBt for short times. The solutions of (2.14) near Xo move toward or away from 

equilibrium like the solutions of (2.15) and the behavior of the latter depends on the 

eigen values of D l(xo). If the real parts of eigen values of D l(xo) are all different from 

zero, the linear part D l(xo) completely determines the stability of the equilibrium Xo. 

An equilibrium Xo of (2.14) is called hyperbolic if all the eigen values of D !(xo) 

have real part different from zero. 

When all eigen values of D!(xo) have non-positive real parts and there is at least one 

eigen value with zero real part, then higher-order terms must be taken into account to 

determine the stability; that is, just the D!(xo) value is not sufficient. If the real part of 

each eigen value is strictly negative, then the equilibrium is asymptotically stable and if 

at least one of the eigen values has strictly positive real part, then the equilibrium point 

will be unstable. 

For autonomous differential equations on the real line, solutions that are bounded will 

converge to an equilibrium and for autonomous differential equations in the plane, a new 

limiting behavior is possible: solutions that are bounded may instead converge to periodic 

orbits (or cycles). An w-limit set of a two-dimensional autonomous equation must be one 

of the following: (a) a set of equilibria; (b) a periodic point; (c) a set containing only 

equilibria and connecting arcs. However, nothing more radical can happen for solutions 

of autonomous differential equations in the plane. The topological rule about plane 

geometry that enforces this fact is the Jordan Curve Theorem. This matter is best 

described in the following Poincare-Bendixson Theorem. 

If f is a smooth vector function of the plane for which the equilibria of (2.14) are 

isolated and if the forward orbit F(t, xo), t ~ 0 is bounded, then either 

1. w(zo) is an equilibrium, or 

2. w(zo) is a periodic orbit, or 
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3. for each Z E w(zo), the limit sets a(z) and w(z) are equilibria, where a(z) is the 

backward limit set of the orbit. 

Steady states (equilibria) and periodic orbits are the two simplest forms of behavior for 

discrete and continuous dynamical systems. None of the above three types of w-limit sets 

can be a chaotic set. Thus, we can conclude that for autonomous differential equations, 

chaos can occur only in dimensions higher than two. However, there can be chaos in 

one-dimensional maps, and for invertible maps it can occur in dimensions two and larger. 

2.6 Lyapunov numbers and exponents of flows 

Now we extend the idea of Lyapunov exponents (and numbers) of maps to flows (dif

ferential equations). In the case of maps, given a point, we imagine a sphere of initial 

conditions of infinitesimal radius evolving into an ellipse as the map is iterated. The 

average rate per iteration of the longest orthogonal axis of the ellipse is taken as the 

first Lyapunov number of the orbit, and its natural logarithm is called as the Lyapunov 

exponent. A positive Lyapunov exponent signifies growth along that direction, and so ex

ponential divergence of nearby trajectories. The existence of a local expanding direction 

along an orbit is the hallmark of a chaotic orbit. In flows of differential equations, the 

concept is the same, once we replace the discrete iteration of the map with the continu

ous flow of a differenital equation. The flow FT(:co) is defined to be the point at which 

the orbit with initial condition :Co arrives after T time units. We define the Lyapunov 

numbers (and exponents) for flows of differential equation as the Lyapunov numbers (and 

exponents) of the associated time-T map FT(zo) when T = l. 

For computing the Lyapunov exponents, we begin with a tiny sphere Sr(ZO) of initial 

conditions around some point Zo, and imagine the evolution of the sphere as the initial 

conditions follow the flow of the differential equation. We then compute the Jacobian 
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matrix DFl(X) of derivatives of the T = 1 map of FT(X) with respect to the initial 

value x. Then using the procedure explained in sec.2.4, we can compute the largest 

Lyapunovexponent. For computing the Lyapunov exponent from a time series a number 

of important considerations have to be taken care of. We will explain these in detail at 

the appropriate places in the coming chapters. With a brief description about dissipative 

dynamical systems, we shall conclude this chapter. 

Since {Ft (x) : t E R} is the solution of ~~ = J(x) with initial value x, we have 

d 
dtFt(x) = J(Ft(x)) (2.16) 

This equation has two variables, time t and the initial value x E Rm. Differentiating with 

respect to x, we get 

(2.17) 

This equation is called the variational equation of the differential equation, for on 

solution it gives the derivative matrix of Ft and so it reveals how Ft acts under small 

variations in the initial value x. Let Jt = DFt(x) be the Jacobian of the time t map 

evaluated at initial value x and A(t) = D J(Ft(x)) be the matrix of partial derivatives of 

f evaluated along the solution. Then the variational equation (2.17) becomes 

dJt = A(t)J, 
dt t 

(2.18) 

To get the above equation we fixed the initial condition x and hence to obtain a unique 

solution we need to consider an initial condition Jo = I, where I is the identity matrix. 

The variational equation (2.17) is a linear equation, even when the original equation is 

nonlinear. An important fact about the Jacobian matrix JT = DFT(X) of the time T 

map evaluated at x is that it maps small variations tangent to the orbit at time 0 to 

small variations tangent to the orbit at time T. That is, 

DFT(X) J(x) = f(FT(x)) (2.19) 
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This defines the direction of the orbit at each instant as time progresses. This can be 

seen as follows: applying the variational equation (2.17) to the vector J{z), we get 

Taking y = DFt{z)J{z), we observe that y{t) satisfies the initial value problem, 

dy 
dt =DJ{Ft{z))y 

y{O) =J{z) 

Note that on differentiating (2.16) with respect to t, we get 

(2.20) 

(2.21) 

(2.22) 

and J(Ft{z) = J{z) at time O. Since y and J{Ft{z) satisfy the same initial value 

problem, they are equal. The important consequence of (2.19) is that a bounded orbit 

of an autonomous flow either has one Lyapunov exponent equal to zero, or else it has an 

equilibrium in its w-limit set. When the second possibility is excluded, we can conclude 

that the Lyapunov exponent in the direction tangent to the orbit is zero in the case of 

autonomous differential equations. 

The change in volume due to the flow can be found with the help of a formula due to 

Liouville. Let Ll{t) = det Jt where Jt is as in (2.18). Liouville's formula [Hartman, 1964] 

[59] says that Ll{t) satisfies the differential equation with the initial conditon 

Ll~ =Tr{A{t))Llt 
(2.23) 

Llo = det Jo = 1 

where Tr{A{t)) denotes the trace of the matrix A{t). From (2.23) it follows that 

det Jt = exp (it Tr{A{t))dt) (2.24) 

We now define the class of dissipative systems using the above relation. 
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A system of differential equations is said to be dissipative if its time-T map decreases 

volume for all T > O. If Tr(A(t)) < 0 for all t, then system will be dissipative. 

Using the definition of Lyapunov exponent for flows, we can define chaotic orbits of 

Hows of differential equation as follows: 

An aperiodic and bounded orbit Ft(zo) with initial point Zo E Rm whcih does not 

consists solely of equilibrium points of the differential equation :t z(t) = J(z(t)) is said to 

be a chaotic orbit of the flow if the orbit has at least one positive Lyapunov exponent. 

In the following section, we introduce another very important tool to characterize the 

attractor of a dynamical system. One of the important aspects in analysing a time series 

using the tools of nonlinear dynamic methods and chaos theory is the characterization of 

the attractor on which the system finally resides. We introduce the required notion from 

a historical perspective. 

2.7 Dimensions 

The minimum number of quantities required to specify a point in space is of great im-

portance in almost all fields of science. For a regular object (in Euclidean space) there 

is no ambiguity in specifying a point in space. However, when "fractal", objects like the 

Cantor dust or the Peano curves appeared, many mathematicians described these ob-

jects as "monsters" or "pathological objects". After the work of [Mandelbrot, 1977J [86J 

(who also introduced the word "fractal"), fractals became important in science mostly in 

studies of nonlinear dynamical systems. The notion of dimension specifies the number 

of quantities required to uniquely describe a point in space. We can have different types 

of dimensions and using the concept of dimension of an object we can determine the 

topological and dynamical properties of phase space orbits. 
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2.7.1 Topological dimension 

Of all the various dimensions the Topological dimension DT is the most obvious. Roughly 

speaking, DT is the "number of different perpendicular directions" in space. In a formal 

way, we define DT as the number of coordinates needed to specify a position uniquely in 

space. The modern definition of DT is based on a recursive method and is formulated by 

D. Urysohn and K. Menger [Gosztonyi, 1976J [51J. 

A set M is said to have a topological dimension DT = n at a point pE M if every 

neighborhood Up of p contains a neighborhood Vp of p, whose border B(Vp) is of maximal 

n -1 dimension. The topological dimension of the empty set is taken as -l. 

It is clear that the topological dimension is always an integer and in normal case its 

value lies in the range 0 ~ DT ~ 3 in the Euclidean space. 

2.7.2 Phase space dimension 

This dimension is mostly used in physics and is a basic property of a dynamical system. 

wosely speaking it is the number of degrees of freedom of a physical system (dynamical 

system). Formally we define it as 

The phase space dimension DpH is the number of free coordinates in a dynamical 

system. 

We can see that DpH is always an integer in the range 0 ~ DpH < 00. We now 

introduce a very abstract but important concept of dimension. 

2.7.3 Hausdorff dimension 

There are different ways of defining the Hausdorff dimension for a set. Here we follow 

[Zeitler, 1993J [141J for the definition of the Hausdorff dimension: 

Let M be a metric space with metric e and U c M, then diameter of U denoted by 
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IUI is defined as 

IVI = sup{ e(x, y)lx, yE V}. (2.25) 

A collection {Vj} is called a cover for a subset E of M if E c u Vj. Then the Hausdorff 

measure of the set E is denoted by 

(2.26) 

where 

w,,(E) ~ in! { ~ lu11 } (2.27) 

and 0 < IVd ~ 2r and d is a parameter. The Hausdorff-Besicomtch theorem says that Jor 

a given bounded set E c M iJ there exists a value d = D such that 0 < HD (E) < +00 

then Hd(E) = +00 Jor all d < D and Hd(E) = 0 Jor all d > D. The estimate of D so 

obtained from the Hausdorff- Besicovitch theorem is called the Hausdorff - Besicovitch 

Dimension of E or simply Haudorff Dimension DH of the set E. It is easy to observe 

that DH can take any non-negative real number including infinity. As an example of the 

calculation of Hausdorff dimension, we consider the computation of dimension of Cantor 

set (or Cantor's dust) in the following: 

The Cantor's dust is constructed from the unit interval I = [0,1]. Divide I into 

three equal sub-intervals and remove the middle sub-interval. Let Cl be the union of 

the remaining sub-intervals. Again divide each sub-interval into three equal sub-intervals 

and remove their respective middle sub-intervals. Let C2 be the union of the remaining 

4 su~intervals. In the rth step we get Cr = U?~l Ii where each Ii is a sub-interval of the 

unit interval I of length 3-r • Contiune this process indefinitely and then the Cantor's 

dust is defined as 

C = n~ICj = .lim Cj 
J-too 

(2.28) 
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Since the length of each interval Ii is 3-r we get the following relation: 

(2.29) 

Now as the radius f -t 0, r tends to 00 and so the above limit tends to a finite non-zero 

number only if 2 = 3d• This gives the value d = :~~ = 0.6309···. We observe that the 

dimension of Cantor's dust is a fraction; such objects are called Jractals. 

2.8 Fractal dimension 

The estimates of topological dimension and phase space dimension always give integer 

values, but the Hausdorff dimension can also be a fraction. In this respect, the Hausdorff 

dimension is more general in nature than the other dimensions. If the estimate of the 

very dimension of an object is a fraction, the estimate is called the fractal dimension and 

the object is called a fractal. One limitation of Hausdorff dimension is that it is not very 

useful in practical applications as computation of this quantity is very time consuming 

and this motivates us to find other easily measurable dimension estimates. 

2.8.1 Capacity dimension 

In the computation of Hausdorff dimension, the sets V j for covering of E are arbitrary. 

Assume that the sets V j are spheres with a fixed radius f, then the expression (2.26) takes 

the form 

(2.30) 

where N(f) is the number of spheres needed to cover the set. From the above equation 

we get 

(2.31) 

In the limit as f -t 0 we get the following relation 

(2.32) 



2.8 Fractal dimension 42 

where K = Hd. Using this relation we define the capacity dimension(or box counting 

dimension) as follows 

Let N(t) be the number of n-dimensional boxes with length t needed to cover the set 

E, then the capacity dimension Do or box counting dimension DB of E is defined as 

D (E) -1' InN(t) 
o -lm ll · 

l~O n-
l 

(2.33) 

In general, the box counting dimension is larger than the Hausdorff dimension, but 

in most cases both estimates are same. While calculating the box counting dimension, 

cover the structure with a grid of n-dimensional (n = Dp) boxes of sidelength t. Count 

the number of boxes that contain at least one point of the structure which gives the 

value of N( t). This has to be done for several values of t, then the slope of the function 

logN(t) vs. log(t) gives the value of Do. This estimate of a structure reveals only the 

geometrical feature of the structure and no dynamical characteristics and it does not take 

into account the number of points contained in each box, since only the number of visited 

is counted. That is, all boxes, whether they contains only one point or more points, are 

given equal importance. This is a limitation of capacity dimension. 

2.8.2 Information dimension 

Here cover the set E with n-dimensional boxes (with n = Dp) of side length t then 

compute the probability Pi that a point falls in the ith box given by Pi = W- where N 

is the total number of points in E and Ni is the number of points in the ith box. The 

information dimension can now be defined analogously as follows: 

Let N{f) be the number of n-dimensional boxes of sidelength t needed to cover a set E 

and Pi be the probability that a point of the set E falls in the ith box, then the information 

dimension denoted by Dl of E is defined as 

~N(l) 1 
Dl (E) = lim - L..,i=l Pi og Pi 

HO log ~ 
(2.34) 
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The information dimension can be interpreted as " information required to specify an 

initial condition or a point of the set" [Farmer, 1982][45]. Information dimension is very 

cllltly in computaion and is rarely used in practice mainly beacause there is another 

dimension estimate which can be estimated comparatively with less cost. 

2.8.3 Correlation dimension 

The correlation dimension was first introduced by [Grassberger and Procaccia, 1983] [56] 

and is based on the correlation between points of a given set. Let N be the number of 

points {X i}r=l, then the correlation integral is defined as 

1 N 

C(f) = J~oo N2 L O(f -IXi - Xj) 
i,j=l 

(2.35) 

where O(x) is the Heaviside function defined by O(x) = 0 t7 x ~ 0 and O(x) = 1 t7 x > O. 

The correlation integral counts all pairs of points which are at a separation smaller than 

Eo For small values of f, C(f) behaves as a powerlaw as 

(2.36) 

Using this relation we can define the correlation dimension as 

Let err) be the correlation integral of the points {Xi}r=l of a set E for a distance f, 

the correlation dimension D2 is given by 

D
2
(E) = lim lOgC(f) 

t-tO log f 
(2.37) 

By definition, C(f) is the probability that two points lie in the same box. In practice, 

C(E) is calculated for a range of values of f and plot of logC (f) vs. logf is drawn; the slope 

yields the value of correlation dimension of the set. In most cases, a direct application 

of this formula will not give an optimal value of correlation dimension. Depending on 

the given data, certain parameters have to be calculated to find an optimal value of 

correlation dimension. We will describe these parameters at the appropriate places when 
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we apply this formula. The different dimensions viz. capacity dimension, information 

dimension and correlation dimension can be obtained from a single formula. 

2.8.4 Generalized fractal dimensions 

The concept of fractal dimension can be generalized by means of the definition of prob

ability Pi that a point is in the ith box introduced in (2.8.2). We give the generalized 

dimension as it is given by [Hentschel and Procaccia, 1983] [62]. 

Let N(f) be the number of n-dimensional boxes of side length f needed to cover a set 

E and Pi be the probability that a point of the set E falls in the ith box, then the q-th 

generalized fractal dimension denoted by Dq of E is defined as 

1 1 "N(E).q 
D (E) = __ lim og L..i=l PI 

q 1 - q HO logf 
(2.38) 

It can be shown that if s < t then Dt < Os. When q=O, then the sum in (2.38) becomes 

N(f) and so we get the capacity dimension Do. If q=l, taking the limit as q -t 1 gives 

the information dimension D1• If q=2, the expression Lf~~) p~ gives the probability that 

two points of a randomly chosen pair lie in the same box of side length f. When f -t 0, it 

~ves the probability that these points are at most f apart and hence is the same as the 

correlation integral in (2.37). Thus, when q=2, we get the correlation dimension. The 

generalized dimension can be calculated for all integer values from -00 to +00. But for 

application purposes most of these dimensions are not useful. If the points are weighted 

such that, boxes that are visited more often than others contribute more, all dimensions 

for q<O have to be ignored. The same reason excludes high values of q, if sparsely filled 

boxes are not to be ignored completely. In general, values for q between 0 and 4 are taken. 

When q=O, we get the capacity dimension, which can not be applied to fractals having 

non-zero measure (called fat fractals) refer (Eykholt et al., 1986)[43]; counting boxes is 

very costly for computations which disqualifies q=l and q>2. Finally, we are left with 

the correlation dimension O2 for which suitable algorithms are available and which is the 
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most popular dimension. This does not mean that computation of correlation dimension 

is easy. The point is that, compared to the computation of other dimension estimates, its 

computation is easy. For a suitable and reliable estimation of correlation dimension, we 

have to consider a number of other factors like choosing a proper time delay and Theiler's 

window which we explain at the proper places. 



CHAPTER 3 

Stokesian Dynamics 

3.1 Rheology of suspensions 

Suspensions are generally classified into three categories: solid particles in a fluid medium, 

liquid droplets in a liquid medium (emulsion) and gas in a liquid medium (foam). In this 

analysis, we refer to solid particles dispersed in a liquid medium. Examples of such sus

pension are industrial slurries, paints, cements, ceramics, printing inks, different types of 

processed foods etc. The flow behavior of these suspensions is often complex and their rhe

ological properties are very different from those of the suspending fluid. The complexity 

arises from the subtle nature of interparticle interactions mediated by the fluid medium. 

The strong interaction between flow and the suspended phase has important effects on the 

macroscopic, optical, mechanical and electrical properties. In order to obtain the requi

site macroscopic properties of a product obtained from the processing of suspensions, the 

factors which control suspension rheology must be understood. Such studies provide an 

opportunity for innovative manipulation of material and flow properties through the un

derstanding and control of the relation between flow and micro-structure. Experimental 

studies of suspension rheology are prone to many artefacts and instrumental errors which 

are difficult to avoid. Numerical simulations have many advantages over experimental 

46 
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studies. In numerical simulation, defects in the experimental studies arising from errors 

in the measurement technique and unavoidable defects in the material or flow conditions 

can be eliminated. They also provide the flexibility to exclusively incorporate some ef

fects and study their influence. The availability of fast computers has enabled realistic 

numerical simulations which can be used for the interpretation of experimental observa

tions and to develop deeper insight into the suspension rheology. The objective of any 

numerical simulation is to calculate macroscopic rheological properties from microscopic 

structural mechanics. 

Determination of the macroscopic properties of suspensions from a detailed fluid 

mechanics around the particles originated from Einstein's celebrated work [Einstein, 

1906][40], in which he considered the dilute limit where particle interactions are absent 

at zero particle Reynolds number. Assuming that hydrodynamic interactions between 

particles are absent, Einstein derived an expression for the effective viscosity 'TJs, of dilute 

suspensions as 

'TJs = 'TJ(1 + 2.5 ifJ) (3.1) 

where 'TJ is the viscosity of pure fluid and ifJ is the volume fraction of solid particles. The 

main finding of Einstein was that the addition of rigid particles to a Newtonian fluid 

results in a suspension of enhanced viscosity. The above equation is valid in very dilute 

systems with ifJ < 0.02, where the relative (with respect to particle size) distance between 

particles is large. As the concentration increases the velocity disturbance of one particle 

will influence the velocities of neighboring particles. Accounting for binary interactions, 

Batchelor and Green [15] derived the O(ifJ2) contribution to the viscosity, ifJ being the 

particle volume fraction as 

(3.2) 

Even the above equation is valid only for ifJ < 0.1. But, in practical industrial problems, we 
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have to deal with suspensions having larger concentrations, where more than two particles 

can interact simultaneouly. Extending dilute suspension analysis to higher concentrations 

poses at least two difficulties: determination of many body hydrodynamic interactions 

and the determination of the spatial distributions of the particles called suspension micro

structure. Due to these difficulties, determining the bulk stress analytically at higher 

concentrations has not been possible. In addition to many-body interactions, lubrication 

forces play a predominant role in determining the structure and dynamics of suspensions 

at high concentrations. The determination of many-body interactions at all particle 

separations is a computationally challenging problem. 

3.2 Simulation method 

Stokesian Dynamic simulations[Brady & Bossis, 1988] [19] are presently considered to be 

an accurate method for computing the dynamics and rheological properties of suspen

sions. This technique has been used to solve a large number of problems on Brownian 

suspensions[Morris and Brady, 1996] [90], [Phung et al.,1996] [104], non-colloidal sheared 

suspensions [Brady and Bossis, 1985] [21], [Durlofsky and Brady, 1989] [38], flow through 

porous media [Durlofsky and Brady, 1987] [37] and pressure driven flows [Nott and Brady, 

1994J [94]. In most of the above studies, there was no direct effect of boundaries on the 

system, i.e. the properties were calculated for unbounded systems. In most practical 

situations, the flow is confined between boundary walls. Due to the great extent of the 

boundaries, the boundary effects become important in Stokes flow problems where the 

disturbances produced by the particles decay very slowly. The presence of a wall in

fluences the local arrangement of the particles and hence the rheology. To incorporate 

boundary effects, expression for the interaction of particles with the plane boundaries are 

required. 

For an accurate determination of the dynamics of suspended particles, and thereby 
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the bulk properties oi tbe suspension, tbe m.an~-\)on~ \\~n!on~na.m.k l.nte!a.ctl.ons between 

particles must be computed correctly. This is accomplished by the Stokesian Dynamics 

technique [Brady and Bossis, 1988J [19J, which computes particle interactions as a sum 

of the far- and near-field hydrodynamic interactions in a consistent and efficient way. 

Brady et al.[1988J [20J developed a method for simulating an infinite suspension of hydro-

dynamically interacting particles, by periodically replicating a finite number of particles 

throughout space. The lattice summation is carried out using the method of Ewald [44), 

to accelerate the convergence. 

Consider a system of N particles undergoing rigid body motion in a linear ambient 

field (U)C) + n JO x x + EOO • x), where Uoo, noo and Eoo denote the velocity, vorticity 

and rate of strain of the ambient field, respectively. In this analysis, we have used some 

simplifications in order to understand the rheological properties of the suspensions. It is 

assumed that the flow is laminar and the fluid motion is so slow that the inertial forces are 

negligible and do not influence the dynamics of the system. The dimensionless number 

which determines the relative importance of inertial and viscous effects is the Reynolds 

number based on particle size given by 

(3.3) 

where p is the fluid density, 'fJ is the fluid viscosity, U is the characteristic velocity of 

particles and a is the particle size. When the motion of particles is very slow (Re « 1), 

viscous forces dominate over the inertial forces and the flow is said to be in the creeping 

fiow regime. The relevant governing equations in this case are the Stokes equations, 

(3.4) 

(3.5) 

where u and p are the velocity and pressure fields respectively, and 'fJ is the fluid viscosity. 
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Our second restriction is that the particles are large enough (> lOJ.Lm), that Brownian 

motion is negligibly small. The relative importance of Brownian motion is characterized 

by the Peclet number defined by 

-ya2 

Pe =
Do 

(3.6) 

where 1 is the shear rate and Do = 6~~a is the Stokes-Einstein diffusivity of an isolated 

particle of size a in a fluid of viscosity "1. 

The no-slip condition on the surface Sp of a particle requires that, 

u=U+Oxx (3.7) 

where U and 0 denote the translational and rotational velocity of the particles, and x is 

the position vector of any point on the surface Sp relative to the center of the particle. 

Another condition is that at points far away from the particle, the fluid motion is 

unaffected by the presence of the particles, i.e., 

u = U oo + 0 00 x x + E oo 
• x as x --+ 00 (3.8) 

Given the above boundary conditions and the imposed flow field, one would like to solve 

for the disturbance in the velocity and pressure fields due to the presence of particles, 

and thereby calculate the hydrodynamic force F, torque T and stresslet S, exerted by 

the fluid on the particles. Since the governing equations (Stokes equations) are linear 

in the fields u and p, the solution can be treated as superposition of the following three 

independent motions: 

l.Translation of the particle with a steady velocity (U - UOO) through a quiescent fluid. 

2.Rotation of the particle with a steady angular velocity (0 - 0 00
) in a quiescent fluid. 

3.A fixed particle in a rate of strain field EOO • x. 

The general solution for F, T and S may be written by superposition in the matrix 
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form 

(3.9) 

where 

n; (~ ~ ~) (3.10) 

is called the grand resistance matrix [Brenner and Q'Neill, 1972][22]. A, Band Care 

second rank tensors, G and H are third rank tensors and M is a fourth rank tensor. The 

solution of the motion of the particle in response to prescribed forces and torques in a 

known ambient flow is the so called mobility problem. And it is given by 

(3.11) 

where 

M = (: ~ f) 
g h m 

(3.12) 

is called the grand mobility matrix. Both the grand resistance matrix and grand mobility 

matrix are symmetric and positive definite and they are related to each other [Kim and 

Karrila, 1991] [73]. Durlofsky et al. [1989] [38] claim that the mobility formulation is more 

accurate with widely spaced particles, but the resistance formulation is more accurate for 

closely spaced particles. If an N body mobility matrix is formed using pairwise additivity 

ofvelocities, it can not capture lubrication interactions besides lacking many body effects. 

[Durlofsky et al., 1989] [38] removed these two discrepancies by formulating the problem 

in the following way: Inverting the mobility matrix yields a far-field approximation to 

the resistance matrix. Even though the mobility matrix only includes two-body mobility 

interactions, its inverse includes many body resistance interactions. The near-field lubri-

cation interactions are then introduced in a pair wise additive manner, using the exact 

two-body resistance functions [Kim and Karrila, 1991] [73]. Thus the general method of 

Stokesian Dynamics [Brady & Bossis, 1988] [19] can be described in the following steps 
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* Formation of the grand mobility matrix by pairwise additivity. 

* Inversion of the grand mobility matrix to get the far-field part of the grand resistance 

matrix 

* Addition of lubrication resistances. 

* Determination of particle velocities. 

* Calculation of macroscopic properties. 

For a detailed description of the above procedure the reader is referred to [Durlofsky 

et al.,1989] [38], [Brady et al., 1988] [20] and [Brady and Bossis, 1988] [19]. 

As mentioned above, most studies that have employed Stokesian Dynamics have only 

investigated unbounded uniform shear, ignoring the effect of boundaries. In realistic situ

ations, flow is set either by the motion of the confining boundaries or driven by a pressure 

gradient, and the resulting dynamics can be quite different from that of unbounded sys

tems. The impermeable walls alter the microstructure (Le. the local arrangement of 

particles) near them, thereby altering the bulk properties. 

Durlofsky and Brady [1989] [38] were the first to incorporate the effect of plane bound

aries in Stokesian Dynamics simulations. To incorporate the interaction of particles with 

the plane boundaries in the Stokesian Dynamics method walls are divided into near and 

far regions. They discretized the near regions into a number of patches (P) and the far 

region uses a simplified description of the integrated effect of the walls outside the dis

cretized region. A uniform distribution of the force density was assumed on each patch 

and accounted for interactions between the suspended spheres and the patches. The 

interaction of spheres with wall patches were analogous to sphere-sphere interactions. 

They considered a periodically replicated system of N spheres between two parallel walls 

of infinite extent with shear applied translating the upper boundary with a constant ve-
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locity. The grand mobility matrix relating the translational and angular velocities U (of 

dimension 6N) of the N particles, the bulk rate of strain E (of dimension 5N) and the 

translational velocity V of the wall patches (of dimension 3P) is related to the forces and 

torques F of the paticles (of dimension 6N), the stresslets on the particles (of dimension 

5N) and the force T exerted by the wall patches (of dimension 3P) is given by 

( U ) (MUF Mus MUT) (F) (BU) -E = MEF MES MET S + BE 
V MVF Mvs MVT T Bv 

(3.13) 

The vectors Bu, BE, Bv contain the integrated effect of the wall outside the discretized 

region as well as a portion of the effect of the wall patches. The sub-matrices MUF, 

Mus, MEF, and MES are components of the grand mobility matrix M (3.11) for a 

finite system spheres in an unbounded fluid. The matrices MUT , MET, MVT , MVF 

and Mvs involve sphere-patch and patch-patch interactions. These interactions are 

derived from the integral representation of the Stokes flow equation, except that the force 

density over the surface of the patch is assumed constant and not expanded in moments. 

The different components of the vector B are determined by integrating the appropriate 

interaction functions from the boundary of the discretized region to infinity, multiplied by 

the appropriate force density. The force density on the wall outside the discretized region 

is assumed to be that which would exist in the absence of any particles. They argued that 

for homogeneous suspension this assumption is justified [Durlofsky & Brady, 1989][38J 

though it is not accurate for inhomogeneous suspensions due the long range nature of 

hydrodynamic interations. The mobility matrix in equation (3.13) is inverted which 

results in a resistance matrix which is then corrected for the lubrication forces arising 

from sphere-sphere and sphere-wall interactions. The wall effect arises because the actual 

force density on the boundaries, in the presence of a force-free sphere, differs from its 

value in the absence of the sphere and it will be correctly reproduced only when the 

discretized region becomes infinite. Increasing the size of the discretized region increases 
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the size of the matrix in equation (3.13) and in effect it will increase the computational 

labour. Due to these limitations, they studied model problems involving a few spheres 

with finite number of wall discretizations. Given the velocities of the walls, the final set 

of equations was solved to calculate the velocities of the spheres and the forces on the 

walls. From the knowledge of the shear forces on the walls, they were able to calculate the 

relative viscosity of the suspension. However, they computed the interactions between 

spheres (or patches) far apart using a simplistic, mean-field approximation approach. 

Brady et al.[1988] used a more accurate technique to compute the interactions be-

tween particles in different periodic cells. They used Ewald'sre-summation technique 

[44] for periodic lattices in order to simulate unbounded flow, which Nott & Brady[1994] 

subsequently used to study the pressure driven flow of a suspension. Nott and Brady [94] 

incorporated the boundaries in Stokesian Dynamics simulations on the pressure driven 

flow of suspensions of rigid particles[94] and some of the spheres were designated as wall 

particles which were placed in a plane and forced to move at the same velocity, thus 

providing a "bumpy wall". The grand mobility matrix for all particle (interior as well as 

wall particles) relates the velocities to the forces and stresslets by 

(u - < u » = M (F) 
-<e> S 

(3.14) 

where 

M = (MUF Mus), (U B

) MEF MEs U= uw and F = (;:) (3.15) 

Each sub-matrix in the grand mobility matrix M can be broken up into sphere-sphere, 

sphere-wall and wall-wall contributions as 

_ (MUE- Mutp) 
MUF - MrJJ;. MrJF (3.16) 

and so on. In the above equations, the superscripts sand w on the velocities and forces 

indicate sphere and wall quantities, and the superscripts ss and sw on the mobilities 
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indicate sphere-sphere and sphere-wall couplings. The moblility matrix is inverted and 

adjusted for lubrication in exactly the way one would do for an unbounded suspension, 

and the final resistance matrix after lubrication adjustment is given by 

(3.17) 

where 'R2b is the near-field two-body resistance tensor for all particle pairs and 'R~ is 

the far-field part of M-I, which is subtracted to avoid double counting. The near-field 

resistance contribution is added only when particle pairs are within a critical distance 

from each other, which was taken as a center-to-center distances of four radii in the 

studies cited above. While M is computed at the two body level, its inverse captures 

all the many body interactions [Durlofsky et al., 1987] [37]. So in their study, both the 

far-field and near-field interactions are computed correctly, the wall is approximated as a 

planar lattice of spheres, creating a "bumpy" wall. Though the use of this "bumpy wall" 

did not alter the large-scale dynamics of the suspension, it clearly resulted in particles 

near the walls recording a bumpy motion, which they subtracted off while computing the 

mean velocity fluctuation. To remove this and other complications arising from a bumpy 

wall and at the same time to simulate plane Couette flow that is infinite in the flow and 

vorticity directions Singh and Nott [122] extended the Stokesian Dynamics technique to 

allow plane boundaries. 

The only modification to the procedure developed by Singh & Nott [2000] [122] dif

ferent from that of Nott & Brady [1994] [94] is to use the exact sphere-wall resistances 

for interactions of the suspended particles with either of bounding walls. The far-field 

sphere-wall mobility is still computed as before, as a multipole expansion of the force 

density; in other words, the walls are discretized as a string of spheres to compute the 

far-field interactions. This enables us to use the efficient method of Brady et al. [1988] 

[20] for computing M as a lattice sum using Ewald's re-summation technique, in the 



3.2 Simulation method 56 

simulation of uniformly sized spheres employing periodic conditions. In the formalism of 

Durlofsky & Brady, this scheme is in effect equivalent to an infinite discretization of the 

boundaries. 

3.2.1 Formation of the grand mobility matrix 

Singh and Nott [122J consider a simulation cell with NI spherical particles each of size 

a, suspended in a Newtonian fluid of viscosity 17 and bounded by two plane walls which 

extend to infinity. Each wall is constructed by sticking spheres together in a plane. Let 

Nw be the total number of wall particles (~ in each wall). The grand moblility matrix 

relates the particle velocities of all NI + Nw particles to the forces and stresslets and is 

same as given in (3.14), i.e., 

(
U- < u » = M (F) 
-<e> S 

(3.18) 

where U is a vector (of dimension 6N) containing translational and rotational velocities 

of all the particles (N is the sum of wall particles and interior particles in the simulation 

cell), F is a vector (of dimension 6N) containing the force and torque on each particle, 

S and < e > each are vectors (of dimension 5N each) including particle stresslets and 

applied strain rate respectively and < u > is the average velocity of the whole suspension. 

In this simulation, flow is driven by the motion of the boundaries (wall particles), and so 

< e > is zero. However, while forming the grand mobility matrix, the moblility couplings 

related to < e > are retained. The grand moblility matrix thus formed is of dimension 

llNxllN. The vectors U, F and S are arranged in the following manner: 
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The components of the above vectors for each particle are: 

and the < e > components are ordered as: 

< e > = [( < e >xx - < e >zz) 2 < e >xy 2 < e >xz « e >yy - < e >zz) 2 < e >yz]t 

For monolayer simulations, where particles are restricted to remain in the x - y plane, 

the degree of freedom is reduced. The particles will have translational velocities only in 

x and y direction and rotation only about the z axis. The particles also experience forces 

in x and y directions and a torque about z axis. Then, the above vectors will have the 

following components, 

< e > = [( < e >xx - < e >zz) 2 < e >xy « e >yy - < e >zz)]t 

Therefore, the vectors V, F, S and < e > in equation (3.18) will be each of dimension 

3N and the grand mobility matrix M will be of dimension 6Nx6N. 

3.2.2 Adjustment for lubrication 

On inverting the grand mobility matrix, we get the following set of equations: 

(

F
8

) (VI- < U » FW -1 VW-<U> 
S8 = M. -< e > 
SW -< e > 

(3.19) 
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This equation is a far-field approximation of the sphere-sphere and sphere-wall interac-

tions, and lacks the near -field lubrication interactions which are added pairwise. However, 

those involving particle and wall require separate adjustments to account for sphere-wall 

lubrication. As there is no relative motion between wall discretizations, they do not need 

any adjustment for lubrication. The final sphere-wall resistance 'Rpwu for each wall is 

computed by summing the mobility inverse over the discretization (which is thought of 

as spheres for the purpose of calcuating M) in the wall, then adding the exact near-field 

sphere-wall resistance and lastly subtracting the far-field part of the resistnce. That is, 

'RSW _ """(M-1)Sk + R SW _ R SWOO 
FU - L...J FU FU FU (3.20) 

k 

where the summation above is over all the mobility discretization on the wall. 

The far-field part of the sphere-wall resistance, Rpwuoo , is determined by forming a 

mobility matrix for a sphere and all the wall "particles" and then inverted. The RFE and 

RSE interactions are same as in Nott and Brady [1994] [94]. 

To generate uniform shear, all the wall particles of a plane translate with the same 

velocity, making them indistinguishable from each other. Since the approach of including 

sphere-wall interactions is equivalent to an infinite discretizaion of each plane (by using 

Ewald's summation), the lubrication interactions can be associated to any wall particle. 

In this simulation the sphere-wall lubrication interactions are added to the nearest wall 

particle. Thus only the nearest wall particle will have the lubrication interaction added 

to it and the total sphere-wall mobility inverse (RpWuOO ) subtracted from it. While com-

puting the sphere-wall interactions, it is not possible to treat both the infinite planes 

simultaneously [Durlofsky and Brady, 1989] [38], [Happel and Brenner, 1973] [58] as an-

alytical solutions for the motion of a single particle between two plane walls are not 

available. However, Ganatos et al.[1980] [47] have found that when a particle is close to 

one plane and more than five radii away from another, the interaction with the near plane 
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dominates. In all our simulations, spacing between plane walls is more than ten radii, 

and so , for adding lubricaton interactions, the plane walls are treated individually. The 

sphere-wall interactions are adjusted only when the particles are less than 3 radii away 

from the wall. For distance more than 3 radii, the mobility inverse is left unchanged. 

To simulate plane walls more accurately, Anugrah Singh and Nott [122] modified 

the procedure of Nott and Brady [94] by using the exact sphere-wall resistances while 

computing the near field interactions, but used the bumpy wall model for computing the 

far field interactions. To simulate fully developed plane Couette flow, they introduced a 

layer of pure fluid adjacent to the layer of suspension in the master cell, which was then 

replicated periodically in the three directions. While forming the grand mobility matrix, 

the wall is still considered as a plane of connected spheres, as in Nott and Brady [94]. The 

adjustment of the resistance matrix for lubrication between two spheres is unchanged, 

but the interaction between sphere and wall is treated differently. The exact sphere-wall 

lubrication interactions are added to the nearest wall particle, as done by Durlofsky and 

Brady [38]. All the "particles" comprising each wall are assigned equal velocities. To 

generate homogeneous shear flow, the suspension is enclosed between two plane parallel 

walls, which are given equal and opposite velocities. Upon solution of the final set of 

equations, the sphere velocities and wall forces are determined. In this work, we follow 

exactly the procedure of Singh and Nott [122], [Singh, 2000] [123]. In the literature other 

methods for simulation of Couette flow of non-Brownian suspension for 2D and 3D are 

available [Janneke Kromkamp et al., 2006] [65]. 

3.3 Simulation of plane Couette flow 

To simulate bounded plane shear, the suspension is restrained between two plane parallel 

walls translating relative to each other at a constant speed Uo. This cell can not, however, 

be replicated periodically in the y (gradient) direction, and the Ewald summed mobility 
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matrix with periodic replication only in x and z direction, loses positive definiteness. To 

allow replication of the simulation cell in the y direction, Singh and Nott [2000] [122] 

introduced a layer of pure fluid below the lower wall, as shown in figure (3.1). When 

this cell comprising the layer of suspension restrained between the two walls and the 

layer of pure fluid, is replicated periodically in all directions (flow, verticity and gradient 

directions) , a negative shear rate is imposed on the suspension and a positive shear rate 

on the layer of pure fluid. The distance between the two walls containing the suspension 

is henceforth referred to as the Couette gaps. In all our simulations, the Couette gap H is 

equal to the thickness of the layer of pure fluid. The master cell (see fig.(3.1)), containing 

a finite number of particles, is replicated periodically to achieve a suspension layer of 

infinite extent in the flow, vorticity and gradient directions to generate fully developed 

flow between plane parallel walls. The velocities of the walls are fixed and the forces on 

H 
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Figure 3.1: A schematic representation of the master cell for our simulations. The layer 
of pure fluid (below the lower wall) allows us to periodically replicate the master cell and 
yet impose uniform shear in the suspension (refer [Singh and Nott, 2000] for details). The 
thickness of the suspension and fluid layers, H, are equal to the length of the unit cell. 

them are to be determined, while the forces on the particle are fixed and their velocities 
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are to be determined. For computational convenience, we have performed monolayer 

simulations in which the spheres are restricted from translating in the z-direction and 

the rotational movement of the spheres is allowed in the z-direction only. However, we 

expect that the essential physics of the problem is retained in a monolayer simulation 

[Nott and Brady, 1994] [94], [Brady and Bossis, 1985] [21]. 

The velocities of the suspended particles are given by 

(3.21 ) 

and the forces on the walls by 

(3.22) 

Here, Us is the vector of velocities of the suspended particles, and F S is the vector of 

(external) forces on them. Similarly, UW and F W are the velocities and forces, respectively, 

of the wall discretizations. In order to ensure that the flow in the Couette gap is uniform 

shear and there is no pressure driven flow, the mean velocity over the entire domain, 

< u > is set to zero. The resistance R FU depends only on the configuration, or the 

separation between particles, and the superscripts on it indicate the couplings between 

the spheres and walls (see [Singh and Nott, 2000] [122]). 

Equations (3.21) and (3.22) give the hydrodynamic forces on the spheres and walls. 

The dynamics of the spheres and walls is determined once the external force is specified. 

F hyd + Fext = 0 (3.23) 

While there is no external body force on the particles, we have imposed an inter-particle 

repulsive interaction between the spheres (there is no inter-particle force between the 

spheres and the wall) and its utility is to provide a qualitative model of non-hydrodynamic 

effects when the inter-particle separation is small; the repulsive interaction also prevents 
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frequent particle overlaps. Recenlty Dratler and Schowalter [1996] [34] have shown that 

Stokesian Dynamics simulations employing a short-range repulsive force result in more 

realistic micro-structures. In a suspension of non-Brownian spherical particles undergoing 

shear at zero Reynolds number, the separation between spheres can be very small (less 

than 10-4 of their radius). In this situation, the effects of surface roughness can not be 

neglected and a short-ranged, repulsive force is usually introduced between the spheres 

to qualitatively model the behavior of real systems. The introduction of such a force 

has the further numerical advantage of preventing the occurrence of overlaps during close 

encounters between spheres even though the time step for the simulation is not reduced. 

The form of the repulsive force we have used is the same as in the simulations of [Nott 

and Brady, 1994] [94], 

(3.24) 

where Fo;/J is the force exerted by sphere /3 on sphere o. The parameters J.L and Fo specify 

the range of the force and its magnitude, respectively, f is the separation between the 

surfaces of the spheres and eo;/J is the unit vector connecting the sphere centers. 

Upon determining U 6 for a given configuration, the particle positions are updated by 

integrating the equation 

dz
6 

= Us 
dt ' 

(3.25) 

in time using the fourth order Adams-Bashforth technique. This equation allows one to 

determine the particle configurations at any time. The shear stress <7yx and the normal 

stress <7yy are determined directly from the forces on the walls and the entire process of 

solving (3.21)-(3.25) is repeated to continue the simulation. Equation (3.22) gives the 

hydrodynamic force exerted by the fluid on each of the wall particles. To compute the 

force over the entire wall, we simply sum over all the particles of the wall. From the 

forces on the walls, the shear stress <7xy and normal stresse <7yy in the suspension are 
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easily determined, 

F W 
~ _ _ x_. 
vxy - , 

Aw 
F W 

~ - y vyy--
Aw 
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(3.26) 

where F: and Fy
W are averages of the magnitude of the x and y components of forces 

on the two walls and Aw is the total wall area for either plane. All the stresses are 

nondimensionalised by the shear stress that would exist in the absence of any particles, 

i.e. by 'TJ 1, where 'TJ is the fluid viscosity and 1 is the nominal shear rate, 

. 2Uo ,=-H 

where Uo is the speed of the wall and H is the channel width. 

3.4 Characterization of stresses 

(3.27) 

The characterization of total stress is important for the rheological studies of suspensions. 

In a suspension of solid particles in an incompressible fluid, Batchelor[1970][14] gives the 

expression for bulk stress averaged over the volume V containing N particles: 

< E >= - < P > f I + 2'TJ < E > + < EP > (3.28) 

where < p > f is the average pressure in the fluid phase that would exist when no particles 

are present, 2'TJ < E > is the contribution to the bulk stress from the fluid phase and 

< EP > is the particle contribution to the bulk stress. In the absence of Brownian motion, 

< EP > is given by 

N 
< EP >= V {< SR > + < sP > } (3.29) 

where < SR > and < sP > are the contributions to the stress arising from hydrodynamic 

and inter-particle forces, respectively. And they are given by 
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The bulk hydrodynamic stress is then determined from 

1 N 

<SH >= NLSO 

0=1 

The contribution to the bulk stress by the inter-particle force is computed using 

1 N 

< sP >= N L L ro/J FofJ+ < n~8u' (nFut 1
• FP> 

0=2fJ<0 
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(3.31) 

(3.32) 

The presence of suspended particles alter the boundary conditions locally, and thereby 

altering both velocity field and pressure field. The extra pressure generated by the pres-

ence of particles is called particle pressure and is given by the one-third of the trace of 

the particle contribution to the bulk stress < ~p >, i.e., 

1 
IT = aTr{< ~p » (3.33) 

In computing the far-field part of the hydrodynamic interaction between the particles, 

Stokesian Dynamics uses a moment expansion of the force density acting on each particle. 

The first moment of the surface stress is decomposed into an antisymmetric part (which 

equals the couple acting on the particle) and a symmetric traceless part or stresslet. It is 

the trace of the first moment which is needed for the pressure interactions and this has 

not been incorporated in the mobility matrix. This is because the mobility matrix M, 

which accounts for the far-field part of the hydrodynamic interactions, was constructed 

assuming that ~Sii = O. The near-field interactions are accounted for by the exact two-

body resistance, n2b , and therefore do capture the isotropic part of the stresslet. In the 

Singh and Nott simulations, the shear stress (fyx can be computed either by computing 

the net force on the walls in the x direction or from the mean stresslet on the suspended 

particles. The net normal stress (fyy on the wall can be written as 

H N{ HP} 
(fyy = -ITff + V < Syy > + < Syy > (3.34) 

where IIff comes from the far-field part of the stresslet, which was left out while com

puting the mobility matrix M. Since (fyy and S~ are computed independently in their 
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simulations, and S~ is readily determined for each particle configuration, the isotropic 

far-field stress rr7, can be determined from (3.34). The stress CTzz is computed from 

(3.35) 

Thus CTyz , CTzz and CTyy can be computed from the forces on the walls and the particle 

stresslets. 

All the results described in this work are for sheared suspension of spheres confined 

to a monolayer. The centers of all suspended spheres in the master cell lie in the x - y 

plane, and are restricted from translating in the z direction. Additionally, rotational 

movement of the spheres is allowed in the z direction only. In all simulations, the top 

of the plane translates with velocity u~ = -1 and the bottom plane with U! = 1. The 

only parameters in the problem are the Couette gap H (rendered non-dimensional by the 

particle radius), the area fraction of particles <p given by 

<p = Nl7ra
2 

HLz 
(3.36) 

where NI is the number of interior particles, Lz is the cell length in the x direction and, 

the parameters that determine the repulsive interaction Fa (3.24) and J1.. 

The system of equations (3.25) was integrated with a time step of 0.01. The mobility 

matrix was inverted infrequently (once every 100 time steps), however the lubrication 

forces were adjusted at each time step. The initial configuration of the suspended spheres 

was generated by first arranging the particles in a regular array and then applying small 

random displacements until a uniform distribution was achieved. In all the simulations 

the structure was allowed to evolve from start till t = 5000, and the properties such as 

the concentration, velocity and stress fields were then averaged over the subsequent 95000 

dimensionless time units. We computed the stresses for a range of these parameters, and 

analyzed their time series. The stresses we report are non-dimensionalized by 17U / H (see 

fig.{3.l)), 17 being the viscosity of the pure suspending fluid. 



CHAPTER 4 

N onlinear Time Series Analysis 

4.1 Introduction 

Deterministic chaos as a fundamental concept is by now well established and described in a 

rich literature. The fact that simple deterministic systems generate complicated temporal 

behavior in the presence of nonlinearity has influenced our thinking and has drastically 

changed our view about understanding of scientific phenomena in many fields. Nonlinear 

time series analysis (Nonlinear Dynamics Analysis) and chaos theory have posed two 

important questions: (a) whether chaos theory can be used to gain a better understanding 

and interpretation of observed complex dynamical behavior and (b) whether chaos theory 

can give an advantage in predicting or controlling such time evolution. Most dynamical 

system behavior can be expressed in terms of time series and time evolution as a system 

property can be measured by recording time series. And so nonlinear time series methods 

will likely be the key to answer the above questions. While analysing the fluctuations 

and temporal changes of stresses using nonlinear methods of analysis, we will see how far 

we are able to give a better interpretation of the results obtained. 

The rheology of macroscopically homogeneous sheared suspensions of neutrally buoy

ant, non-Brownian spheres is analysed in the limit of vanishingly small Reynolds numbers 

66 
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Figure 4.1: Time series (arbitrary units) of (a) shear stress Uxy and (b) normal stress ul/Y 
at area fraction 4>=0.05 
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Figure 4.2: Time series of (a) shear stress UZl/ and (b) normal stress UVII at area fraction 
~=O.10 

using nonlinear time series methods. Most nonlinear time series methods are described 

in monographs, ego [Abarbanel, 1996] [2]; [Kantz and Schreiber, 1997] [69]; [Small, 2005] 

[129]. 

Systematic analysis of a fluctuating time series can be performed by means of nonlinear 

methods and/or by linear methods. Some characteristics which can not be quantified 

using linear methods can be characterised using nonlinear methods and chaos theory. 

Linear methods interpret all regular structure in a data set, such as a dominant frequency, 

as linear correlations. That is, the intrinsic dynamics of the system is governed by the 

linear paradigm that small causes lead to small effects. Linear equations can only lead 
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Figure 4.3: Time series of (a) shear stress O'~ and (b) normal stress 0'", at area fraction 
~=O.20 
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Figure 4.4: Time series of (a) shear stress O'z, and (b) normal stress 0'", at area fraction 
~=O.30 

to exponentially growing or periodically oscillating solutions, all irregular behavior of 

the system has to be attributed to some random external input to the system. In some 

situations a combined application of both linear and nonlinear time series methods will 

be valuable. Chaos theory yields a new perspective that random input is not the only 

possible source of irregularity in a system's output, but nonlinear, chaotic systems can 

produce very irregular data with purely deterministic equations of motion. 

We computed the normal stress O'w and shear stress O'~ for various area fractions 

of particles. We performed a linear shift of the shear stresses changing its average ap-

proximately to zero in most of the shear stress t ime series so as to make a simultaneous 

comparison with the corresponding normal stress components at the respective area frac-
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Figure 4.5: Time series of (a) shear stress {1:&y and (b) normal stress {1'IIY at area fraction 
~=0.40 
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Figure 4.6: Time series of (a) shear stress {1zy and (b) normal stress {1'IIY at area fraction 
~=0.45 

tiOnB. Figures (4.1) to (4.8) show the fluctuations in the shear and normal stresses in a 

non-Brownian suspension of identical spheres in a regime of vanishingly small Reynolds 

number for various area fractions of particles ranging from 0.05 to 0.6 and Couette gap 

H = 18 particles width. The plot of these fluctuations of stresses for these area fractions 

show very persistent temporal fluctuations in time. We, also, observe that the rheological 

properties viz. shear and nonnal stress components fluctuate about well defined averages 

[Singb and Nott, 2000] [122]. 

A detailed analysis of these irregular fluctuations in the stress, using topological and 

dynamical methods, may reveal significant features about the dynamical system. The 

basic feature in the analysis using nonlinear dynamical methods is the characterization of 
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Figure 4.7: Time series of (a) shear stress (]3:11 and (b) normal stress (]yy at area fraction 
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Figure 4.8: Time series of (a) shear stress (]3:11 and (b) normal stress (]yy at area fraction 
~=O.60 

the attractor, a bounded subset of the phase space to which the system behavior eventu-

ally converges as it evolves in time. This characterization is based on the reconstruction 

of the attractor 'of the system using delay reconstruction or other similar methods. A 

critical review in implementing different methods for the characterization of attractor of 

dynamical systems and its implications are given in [Schreiber, 1999] [119] and references 

therein. 

4.2 Phase space reconstruction 

The works of Takens[132], Casdagli [26], and others have established the methodology 

for building a dynamical model from a chaotic time series. In their approach, the time 
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series {X(ti)f:l}' describing the system evolution is considered as the output of a deter-

ministic, nonlinear autonomous dynamical system. A continuous dynamical system may 

be expressed using the differential equation 

d 
dtx(t) = F(t, x(t)), where t ER (4.1) 

where x(t) represent the dynamics of a sy~tem, x being the properties that identify its 

state. In an experiment, we may be able to measure only a single scalar as a function of 

time y(t). For instance, in a fluid flow experiment we may be able to measure the pressure 

as a function of time. Since the pressure depends only on the state of the system, we have a 

functional relation y(t) = h(x(t)), where h is a scalar valued measurement function which 

relates the dynamical system (4.1) with the measured variable y. When working with 

measured data, we generally do not know the state equations describing the dynamical 

system; but we are restricted to the observed output of the dynamical system (4.1) in 

the form of a time series; in most cases just one column of data of finite length. So a 

fundamental issue is what can be inferred about the dynamics of the system from the 

observations of the output time series {X(ti)}f:l' As a starting point to find a solution 

to this issue, we now define, what we call, the delay coordinate vector: 

[y(t), (y(t + r), y(t + 2r), ... , y(t + (m - l)r)] 

with time delay r, and propose that it is related to x(t) by 

<ll[x(t)] - [y(t), y(t + r), ... , y(t + (m - l)r)] 

- [h(x(t)), h(x(t + r)), ... , h(x(t + (m - l)r)] (4.2) 

[Takens,1981][132] showed that for autonomous and purely deterministic systems, the de-

lay reconstruction map <ll, a bicontinuous differentiable function (diffeomorphism) which 

maps the state x into an m-dimensional delay vector, is an embedding when m ~ 2n + 1, 
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where n is the dimension of the phase space in which the attractor of the dynamical 

system evolves. (We say that <I> : X -+ Y is an embedding of one compact space X 

into another Y, if there is a one to one correspondence between X and <I>(X) with <I> 

and <I>-1 continuous, such that it preserves differentiable structure [Ott et al., 1994] [95] 

of the attractor including such quantities as Lyapunov exponents, dimension estimates 

etc.) This theorem, called Takens' Embedding theorem, asserts that if the attractor 

dimension is n, then for a complete understanding of the attractor 2n + 1 dimensions in 

the embedded space are sufficient. Further generalizations [Sauer and Yorke, 1997,1993] 

[117], [118] assert that any embedding dimension larger than the box counting attractor 

dimension (see §4.4) is sufficient, and in most cases the smallest integer greater than 

the correlation dimension (see §4.4) is sufficient for a complete characterization of the 

attractor [Ding et al., 1993] [33]. Hence most of the significant characteristics, dynamical 

and geometrical, of the original system are carried over to the reconstructed phase space. 

Mathematically speaking, the characteristics of the original phase space are topologically 

and metrically equivalent to its mirror dynamical flow in the reconstructed phase space 

i.e., the orbits of the original phase space are transformed into orbits in the reconstructed 

phase space in such a way that their sense of orientation is preserved. Further, topologi

cal properties such as the number of significant eigen values, and dynamical and metrical 

properties such as Lyapunov exponents and different types of dimension measures (corre

lation dimension, Lyapunov dimension, box counting dimension, information dimension 

etc.) are preserved [Ott et al., 1994] [95]. In view of embedding theory, we can estimate 

the various dimensions and Lyapunov exponents, and perform reasonable predictions of 

future events based on this mapping. There are different methods of phase space recon

struction. Another popular method of the phase space reconstruction is using derivative' 

coordinates. A comparative study of embedding methods is discussed in [Cellucci et al., 

2003J [28J. 



4.:1 Choosing the time delay r 73 

4.3 Choosing the time delay T 

A direct application of the embedding theorem in real situations is impractical as it is 

valid only for an infinitely long and noise free time series of a dynamical system. In 

principle, there is no restriction on the choice of the time delay. In practice, however, 

proper choice of both time delay and embedding dimension are of great significance and 

the information contained in a time delay representation of real data is greatly influenced 

by the choice of these embedding parameters. Noise is usually of frequencies higher than 

those of the inherent dynamics of the system, and therefore imposes a lower bound on the 

time delay; using a time delay smaller than the largest significant noise time period will 

result in artificially high dimension. Even in the absence of noise, choosing too small a 

time delay will illustrate only the temporal correlation in the data, rather than its chaotic 

dynamics. Using too large a time delay runs the risk of missing genuine variations at 

smaller time scales. Thus, the optimal time delay is one for which the characteristics 

of the dynamics observed in the embedded space are not due to noise and temporal 

correlations [Galka, 2003] [49] of points on the one hand, but the inherent dynamics of 

the system are not left out on the other. There are different methods to estimate proper 

time delay. In the following, we consider some popular methods to determine the suitable 

time delay from a time series. 

4.3.1 Autocorrelation function 

This can be quantified by using the auto correlation function, 

(4.3) 
n 

which is a normalized measure of the linear correlation among successive values of a time 

series {Xn}:=l' Above, x is the temporal mean of the time trace x = l/N E:=l X n . The 

decay of the auto correlation with r is a direct way to determine the decorrelation lag 
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time (the time needed for the system to 'forget' its initial conditions). The optimal time 

delay can be taken as the value of T at which the auto correlation function attains its first 

zero [Holzfuss and Mayer-Kress, 1986] [63], or its first local minimum [Graf and Elbert, 

1990] [54]. 

4.3.2 Average mutual information 

The time delayed average mutual information (AMI) is also a tool to determine a reason

able delay. A distinguishing feature of AMI over autocorrelation function is that it takes 

into account the nonlinear correlations in the data; it is given by 

~ P"(T) AMI = - L..., Pij(T) In _IJ_ 

ij Pi Pj 
(4.4) 

where Pi is the probability that one data point (observation) falls in the i-th interval for 

some partition on the real numbers and Pij(r) is the joint probability that an observation 

falls into the i-th interval and the observation time r later falls into the j-th interval. 

Here too the optimal delay is that corresponding to the first minimum or zero of the 

AMI. 

4.3.3 Space-time separation plot 

Another method to find a proper time lag is the space-time separation plot [Provenzale 

et al., 1992] [109]. This procedure estimates the time lag for the system to free itself 

from the temporal correlations of points in phase space [Kantz and Schreiber, 1997] [69]. 

That is, pairs of points which are measured within a short time span tend to be close 

in phase space and this will adversely affect the computation of the correlation integral. 

We use the correlation integral to compute the effective dimension of the underlying 

dynamics which is not related to the close neighborhood of points in phase space due to 

temporal correlation. The idea in a space time separation plot is that in the presence of 

temporal correlations the probability that a given pair of points has a distance smaller 
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than f does not only depend on f but also on the time that has elapsed between the two 

measurements. This inter-dependence can be detected by plotting th~ number of pairs of 

points as a function of two variables, the time separation 6.t and the spatial distance f. 

Using this method, we estimate a proper time delay as that after which the contour lines 

will attain saturation. This value can be regarded as a fair estimate of the decorrelation 

time which will exclude the influence of successive points due to temporal correlations. 

From experience we found that this value is an upper bound to the suitable delay required 

for the estimation of certain topological and dynamical characteristics of the dynamical 

system. Another important use of space-time separation plots is to identify stationarity 

and non-stationarity of the signal. Saturation of the space time separation plot excludes 

the possibility of non-stationarity in the signal [Kantz and Schreiber, 1997][69]. 

4.4 Choosing the embedding dimension m 

The next crucial problem in nonlinear time series analysis is to fix the number of inde-

pendent coordinates required to reconstruct the attractor governing the dynamics of the 

system. The usual procedure is the following: a value of m is assumed and the data 

embedded in m-dimensional space. The volume of the resulting set is then determined 

by counting the number of m-dimensional cubes of size f needed to enclose the set. The 

box counting dimension of the attractor is then given by 

. In N{f) 
Do =!~ In{l/f)' (4.5) 

In practice, N{f) is determined for various embedding dimensions starting from unity, 

over a range of f. If the plot of ~:0J:~ against f shows a plateau at approximately the 

same value for a sufficiently large range of f for all embedding dimensions greater than a 

critical value mc, a good approximation to the box counting dimension of the attract or 

is mc. In computing the box counting dimension of an attractor, equal importance is 
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given to all the cubes that enclose the data in phase space. However, for attractors 

having a fractional dimension, certain regions in phase space are visited more frequently 

by the trajectory and hence greater weight age should be given to cubes in that region. 

[Grassberger, 1983] [56], [Grassberger and Procaccia, 1983] [57] and others introduced 

the generalized (information) dimension Dq which depends continuously on q as 

where 

D = _1_ lim lnI(q, e) 
q 1 - q HO In(l/e) 

N(t) 

I(q, e) = 2: III 
i=1 

(4.6) 

(4.7) 

where Jli is the natural measure of cube i and the sum is taken for all the N(e) cubes of 

size e needed to enclose the attractor. Here the natural measure of cube i is given by 

r l1(i, Zo, T) 
Jli = T ~~ "":"":""'-T=-----'- (4.8) 

where l1(i, Zo, T) is the amount of time the orbit originating from a typical point Zo 

spends in the cube i in the time interval 0 ~ t ~ T [Ott, 1993] [96]. 

4.4.1 Correlation integral method 

Of all the Dq dimensions, the correlation dimension D2 is easiest to compute from a time 

series. Further simplification of D2 from the above expression gives 

D2 = lim InC(r) 
r-+O In r 

(4.9) 

where C(r) is the correlation integral for radius r which obeys a scaling relation C(r) I"V 

rD2 in the limit r -7 O. (In general, for a self-similar structure, the correlation integral 

Cq{e) of order q satisfies Cq(e) I"V e(q-1) Dq as e -7 0). The correlation integral depends on 

the embedding dimension m of the reconstructed phase space as 

2 N N 

C(r, m) = N(N -1) 2: 2: 8(r -1/ z(i) - z(j)11) 
;=1 j=i+1 

(4.10) 



-4.-4 Choosing the embedding dimension m 77 

where 8(a) = 1 if a> 0, and 8(a) = ° if a :$ 0, z(t) is the m-dimensional vector of time-

delay coordinates and N is the length of the time series. The scaling exponent d increases 

with m and saturates to a final value D2 for sufficiently large embedding dimension me 

[Ott et al., 1994][95]. In general, it is difficult to find a plateau region for a given value 

of m. Theoretically, D2 has to be determined as the radius of the hypersphere r tends 

to 0 and m large. However, in calculation, small values of r are blurred by noise and 

limitations on the accuracy of the data and large values of m are not considered due to 

practical limitations. Practically, one finds a range (rL' ru) of r over which In 1(r, m) 
nr 

gives an approximate plateau region with some tolerance ± ~m . 

For non-stochastic signals, the correlation dimension estimate is unaffected by small 

variations in the time delay. On the other hand, signals dominated by white noise will 

show statistically significant changes in the correlation dimension for different embedding 

dimensions, rarely converging to a fixed estimate of the correlation dimension as m in-

creases (never converging for pure white noise), and small changes in time delay will affect 

the correlation dimension estimate significantly. In most cases, me is the smallest integer 

larger than D2 [Ding et al., 1993] [33]. When the exponent d of the correlation integral 

for various embedding dimensions reveals a plateau at low values of r and the plateau 

converges for increasing m, there is strong evidence for a low-dimensionality of the un-

derlying dynamics of the system. Usually, the correlation dimension from a time series is 

compared with other dimension estimates to ensure its veracity. In most cases, it yields a 

good approximation to the number of equations required to model the system. Further, 

an accurate measurement of correlation dimension will reveal the possibility of a strange 

attractor if D is not an integer. Different methods are available for the calculation of 

the fractal dimension of a strange attractor (attractor with fractional dimension) [Ashke-

nazy, 1999] [9]. For example, the fractal dimension can be calculated using the Lyapunov 

spectrum (4.5.3) and the Kaplan-Yorke conjecture [Kaplan and Yorke, 1987] [71]. But 
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the computation of the Lyapunov exponent spectrum see {4.5.3)is very difficult and is 

not economical. So, in most of the literature, the method introduced by [Grassberger 

etal., 1991] [55], [Grassberger and Procaccia, 1983] [56], is utilized [Veronig etal., 2000] 

[136], [Freistetter, 2000] [46] and there is a host of literature pertaining to both theoret

ical and practical considerations of the correlation integral method. There are different 

modifications and generalized methods in the literature [Ashkenazy, 1999][9], [Pawelzik 

and Schuster, 1987a, 1987b] [101], [102] for the computation of the fractal dimension of 

an attrator. 

4.4.2 False nearest neighbor method 

Another technique for finding the minimum number of independent variables to describe 

the dynamics of the system is the false nearest neighbor (FNN) method [Abarbanel, 1996] 

[2]; [Kennel et al. 1992] [72]. The basic idea behind the method is that if an embedding 

dimension less than the actual dimension of the attractor is chosen, it will not unfold 

the true geometry of the attractor and there will be self-intersections leading to false 

neighbors. For example, if a sphere is embedded in two dimensions, the resulting structure 

will be a circular disc, and diametrically opposite points on the sphere (in the direction 

of projection) will become false neighbors. To determine the sufficient number of time 

delay coordinates, one looks for the nearest neighbor Zd{j) in d dimensional embedded 

space of each vector zd{i), with respect to any metric. The distance Td{i,j) between the 

vectors in d dimensional embedded space is then compared with the distance Td+l{i,j) 

if the data were embedded in (d + 1) dimensions. For instance, if the £2 metric is used, 

rdtl(i,j) can be written in terms of Td{i,j) as 

T~+l (i,j) = T~{i,j) + (x{i + dr) - x(j + dr))2. (4.11) 

Ifrdtl(i,j)/Td{i,j) » 1, Zd(j) is a false neighbor of zd{i); the cut-off value of the ratio 

in our calculations, above which the point is taken to be a false neighbor, is 10. If 
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only a small fraction of the neighbors are false, d can be considered to be an embedding 

dimension for the dynamics of the attractor. 

Another popular method to find the minimum embedding dimension from a time 

series is based on model construction[Ataei et al., 2003][l1J. Use of the above methods 

of finding the dimension of an attractor together leads to a good estimate of the actual 

dimension of the attractor, but neither of them can replace the other. 

4.4.3 Principal component analysis 

Along with these methods we used the principal component analysis to find the number 

of principal components (or significant eigenvalues) contributing to the dynamics of the 

system. We do not describe the procedure here, but refer the reader to [Broomhead 

and King 1986J [23J for details. This method gives an upper bound to the number of 

independent coordinates required to reconstruct the attractor of the dynamical system. 

We also used some standard tools for the estimation of invariants of the dynamical system 

which we explain at the appropriate places below. Most of the figures we consider 

in this analysis are in arbitrary units. 

4.5 Results and discussion 

We restrict our attention to neutrally-buoyant suspensions, where the densities of the 

suspended particles and the fluid are equal. The initial configuration of the suspended 

spheres was generated by first arranging the particles in a regular array and then applying 

small random displacements until a uniform distribution is reached. The system is allowed 

to evolve for about 5000 dimension less time units and, the velocity and stress fields are 

then recorded over the subsequent 95000 time units. 

We used the softwares "Chaos Data Analyzer Professional Version 2.1" of the Aca

demic Software Library of the American Physical Society, the TISEAN Package [Hegger 
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Figure 4.9: Power spectrum versus frequency for (a) shear stress (Jzy and (b) normal 
stress Uw at area fraction ~=O.05. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

Figure 4.10: Power spectrum versus frequency for (a) shear stress (Jzy and (b) normal 
stress Uw at area fraction ~=O. lO . Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

,tal. , 1999]160], and Visual Recurrence Analysis IKononov, 1999]175] for performing the 

tests on the time series. Of these softwares, we mainly used the TISEAN package as it 

takes into account most necessary precautions while applying a specific nonlinear time 

series analysis technique to calculate the required characteristic of the dynamics system 

from a time series. 

A frequency decomposition of the shear and normal stresses for area fractions of 

particles ~ = 0.05,0.1,0.2, 0.3, 0.4, 0.45, 0.5 and 0.6 show a broad band power spectrum. 

Figures (4.9) to (4.16) show the logarithm of the power spectrum versus frequency of 
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Figure 4.11: Power spectrum versus frequency for (a) shear stress u~ and (b) normal 
stress Uw at area fraction 1/>=0.20. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

Figure 4.12: Power spectrum versus frequency for (a) shear stress U¥lI and (b) normal 
stress Uw at area fraction 1/>=0.30. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

Figure 4.13: Power spectrum versus frequency for (a) shear stress U¥lI and (b) normal 
stress Uw at area fraction 1/>=0.40. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 
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Figure 4.14: Power spectrum versus frequency for (a) shear stress Cl"ZIJ and (b) normal 
stress ClW at area fraction rp=0.45. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

Figure 4.15: Power spectrum versus frequency for (a) shear stress Clz~ and (b) normal 
stress (111/1 at area fraction 1/1=0.50. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

the stress components for the above area fractions of particles. The broad band nature 

of power spectrum is a characteristic of both deterministic chaos and a linear stochastic 

process ISobuster, 1988) 1120); ITsonis, 1992) 1135). Also, the figures show expoDential 

decay of the power spectrum, which again is common to both deterministic chaos and 

linear .utocorrelated Doisel8chuster, 1988) 1120); ITsoDis, 1992) 1135). The above two 

properties: broad band power spectrum and exponential decay of power are clearly visible 

for both the shear and normal stresses at all area fractions of particles. 

Therefore, a complete characterization of this behavior must be investigated by meth-
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Figure 4.16: Power spectrum versus frequency for (a) shear stress u%y and (b) normal 
stress a" at area fraction ~=O.60. Exponential decay of the power with frequency is 
clearly seen, which is characteristic of both chaotic and linear stochastic signals. 

ads that can distinguish between deterministic chaos and linear autocorrelated. noise 

(or a stochastic process) . In this paper we use both surrogate data analysis method 

IKugiumtzis, 2004) 177) and visual recurrence analysis method IKononov, 1999) 175), which 

are described. below!see secA.5.2j , to differentiate linear autocorrelated noise (or a stochas-

tic process) from deterministic chaos. Another important observation we make is that 

the range of frequencies for which the exponential decay of powers occurs increases with 

increasing concentration. This implies that the rate at which 'loss of memory' of the 

system occurs increases with concentration. 

That is,within a small interval oC time, the system loses its information about the 

initial condition as concentration of particles increases. A comparison of the power spec-

turm of both shear and normal stresses at a fixed. area fraction of particles reveal that the 

range of frequency over which the fast expoenential decay of power spectrum occurs is al-

most the same. This important characteristic we observe for both the stress components 

at all area fraction of particles we considered.. 

We computed the autocorrelation function for both the stress components over the 

same range of particle concentrations. The figures (4.17) to (4.24) show plots of autocor-

relation functions versus delay time for both stress components for the range of particle 
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Figure 4.17: Autocorrelation versus time delay for (a) shear stress Uzy and (b) normal 
stress u1I1J at area fraction 4>=0.05 
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Figure 4.18: Autocorrelation versus time delay for (a) shear stress U Z1l and (b) normal 
stress (J1I1I at area fraction 4>=0.10 
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Figure 4.19: Autocorrelation versus time delay for (a) shear stress Uzy and (b) normal 
stress (J1I1I at area fraction 4>=0.20 
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Figure 4.20: Autocorrelation versus time delay for (a) shear stress (JZ7/ and (b) normal 
stress (J'II1I at area fraction ,p=0.30 
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Figure 4.21: Autocorrelation versus time delay for (a) shear stress (Jzy and (b) normal 
stress (Jyy at area fraction ,p=OAO 
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Figure 4.22: Autocorrelation versus time delay for (a) shear stress (JZ7/ and (b) normal 
stress (Jyy at area fraction ,p=OA5 
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Figure 4.23: Autocorrelation versus time delay for (a) shear stress (J:cy and (b) normal 
stress (Jyy at area fraction </>=0.50 
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Figure 4.24: Autocorrelation versus time delay for (a) shear stress (J:cy and (b) normal 
stress (J!IIJ at area fraction </>=0.60 

concentrations 4> = 0.05, 0.1, 0.2, 0.3, 004, 0.5 and 0.6 at the Couette gap H = 18 particle 

width. We observe different local minima of autocorrelation function for different area 

fractions of particles. The Table (4.1) illustrates the different local minima we observed 

from the figures (4.17) to (4.24) for both the stress components. 

Table 4.1: Table shows the delay time at which autocorrelation function of the stress 
components (J:cy and (Jyy attain local minima as observed from figures (4.17) to (4.24). 

The local minima attained by the autocorrelation function decreases with increase in 
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Figure 4.25: Average mutual information versus time delay for (a) shear stress Uzy and 
(b) normal stress u1lll at area fraction q,=O.05. 
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Figure 4.26: Average mutual information versus time delay for (a) shear stress Uzy and 
(b) normal stress u1lll at area fraction q,=O.lO 

area fraction of particles in the suspension. That is, the lag time at which the system 

dynamics forgets information about the initial condition decreases as the concentration 

of suspension increases. In other words, the rate at which the system loses information 

about the previous state increases with increase in concentration of the particles in the 

suspension. We, also, observe that the local minima of the autocorrelation function for 

both stress components are the same for a fixed area fraction of particles. We observe 

this characteristic for both stress components at all area fractions of particles. 

We have also computed the average mutual information for both the stress compo-

nents at these area fractions of particles. The figures (4.25) to (4.32) plot average mutual 
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Figure 4.27: Average mutual information versus time delay for (a) shear stress u:p and 
(b) nonnal stress Uw at area fraction q,=O.20 . 
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Figure 4.28: Average mutual information versus time delay for (a) shear stress u:p and 
(b) nomal stress 11"" at area fraction .p=O.30 

information vel'SUB delay for both the stress components at the above area fractions of par-

tides. Here, we observe different local minima or zero of the average mutual information 

for different area fraction of particles. 

The Table (4.2) illustrates the different local minima that we observe from the figures 

(4.25) to (4.32) . Here, also, we observe the same trend that we noticed in the case of the 

lI.utocorrelation function for the stress components in the Table (4.1). That is, the delay 

II.t which the average mutual information attains a local minima for the stress components 

decreases with increase in concentration of particles in the suspension. Again, we notice 

that the local minima of average mutual information for both the stress components 
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Figure 4.29: Average mutual information versus time delay for (a) shear stress uxy and 
(b) normal stress uYIJ at area fraction tP=0.40. 
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Figure 4.30: Average mutual information versus time delay for (a) shear stress Uxy and 
(b) normal stress uYIJ at area fraction tP=0.45 

are almost the same for a fixed area fraction of particles. The slight difference may be 

attributed to the computational artefacts. 

Along with these methods, we used the space-time separation plot [Provenzale et al., 

1992] [109] to analyse the suspension behavior. One differentiating characteristic of this 

method compared to the above two methods is the fact that it excludes temporal correla-

tions of points in phase space. That is, pairs of points which are measured within a short 

time span tend to be close in phase space and this will adversely affect the computation 

of the correlation integral[see sec. 2.8.3]. We use the correlation integral to compute the 

effective dimension of the underlying attractor governing the dynamics which is in no 
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Figure 4.31: Average mutual information versus time delay for (a) shear stress azy and 
(b) normal stress a1l1l at area fraction 4>=0.50. 

0.35 0.3 

0.3 0.25 

I 
0.25 

t 0.2 

0.2 
0.15 

I 
0.15 

I 0.1 
0.1 

0.05 0.05 

iJ'\ ~. 

0 --. 0 
10 20 30 40 50 50 70 50 90 100 10 20 30 40 50 50 70 50 90 100 

deIoy- deIoy-

(a) (b) 

Figure 4.32: Average mutual information versus time delay for (a) shear stress azy and 
(b) normal stress a1l1l at area fraction 4>=0.60 

4> 0.05 0.10 0.20 0.30 0040 0045 0.50 0.60 
aZ1l 10 6 7 6 6 6 5 3 
a,l,l 9 5 6 5 5 5 4 3 

Table 4.2: Table shows the delay time at which average mutual information function of 
the stress components azy and a1l1l attain local minima as observed from figures (4.25) to 
(4.32) 
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way related to the closeness of points in phase space due to temporal correlation. The 

idea in a space-time separation plot is that in the presence of temporal correlations the 

probability that a given pair of points has a temporal correlation between a given pair of 

points depends both on the distance in space f and on the time that has elapsed between 

the two measurements. This inter-dependence is determined by plotting the number of 

pairs of points as a function of the two variables, the time separation tl.t and the spatial 

distance f. 

We performed the space-time separation analysis for both stress components. The 

figures (4.33) to (4.40) are the space-time separation plots of both the stress components 

for the area fractions of particles t/J = 0.05, 0.10, 0.20, 0.30, 0.40, 0.45, 0.50 and 0.60 

at Couette gap H = 18 particles width. In figures (4.33) to (4.40), contour lines are 

shown at the spatial distance f where for a given temporal separation tl.t, a fraction of 

1/20, 2/20, ... of pairs are found. If we ignore two or three upper contour lines, we 

see saturation of these contour lines for all area fractions of particles. One of the uses 

of space-time separation plots is to check whether the system is stationary or not. A 

positive signature of stationarity is the saturation of the contour lines at some lag time 

[Kantz and Schreiber, 1997] [69]. We observe positive signatures of stationarity in the 

fluctuations of the stress components at all area fractions of particles we dealt with. The 

stress components attain saturation of the contour lines at different lag times for various 

area fractions of particles in the suspension. The Table (4.3) illustrates the approximate 

lag time at which contour lines of the space-time separation plots of the stress components 

attain saturation. 

Here, also, we find that the lag time at which the system free itself from the nearness of 

points both in space and time decreases with increase in concentration. The analysis of the 

stress fluctuations using the three methods viz. auto correlation function, average mutual 

information and space-time separation plots all reveal analogous conclusions about the 



4.5 Results and dMcussion 

.. , 
, ..-

10 ~ 311 

(a) 

, 

I'll III III lOll 

• . U 

0.01' 

0.011 

0.014 

0.012 

0.01 ....-• • 10 ~ 311 

92 

to Dot III 
I'll III III 1011 

(b) 

Figure 4.33: Space-time separation plot for (a)shear stress (1~ and (b)nonnal stress O'w 
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Figure 4.34: Space--time separation plot (a)shear stress (1~ and (b)normal stress (11/T1 at 
area fraction ~=O.10 

increasing complexity of the suspension behavior as the concentration increases. We, 

also, obtain concrete numerical evidence to the increasing rate of memory loss of the 

system dynamics with increase in concentration of the particles in the suspension. This 

directly indicates the microstructwal change that is taking place in suspension due to 

the many-body interactions as the concentration increases. 

One major use of the autocorrelatioD function, average mutual information and space--

time separation plots is to find a reliable value of time delay for an efficient and reliable 

estimate of certain topological (geometrical) and dynamical invariants such as correlation 

dimension, (geometrical invariant) and Lyapunov exponents (dynamical invariant) from 

time series. From the Tables (4.1) to (4.3) , we get reliable values that can be regarded as a 
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Figure 4.35: Space-time separation plot for (a)shear stress Uzy and (b)normal stress u'II1J 

at area fraction l/l=O.20 
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Figure 4.36: Space-time separation plot for (a)shear stress Uzy and (b) normal stress U yy 

at area fraction l/l=O.30 

fair estimate of the decorrelation time which will exclude the influence of successive points 

resulting temporal correlations due to nearness of points in space and time. Theoretically, 

any value as time delay is admissible, but in practice, due to limited accuracy and finite 

number of data points, a proper choice of time delay is needed for a reliable estimate of 

correlation dimension and Lyapunov exponent. The above methods should be taken as 

guidelines for proper choice of time delay. They are not hard and fast rules to estimate 

the correct value of time delay. From experience, we find that, space-time separation plot 

gives an upper bound for the choice of time delay. The average mutual information gives 

a value which is close to the optimum value of time delay. 

The estimation of certain invariants viz. correlation dimension, Lyapunov exponents 
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Figure 4.40: Space-time separation plot for (a)shear stress ary and (b) normal stress a1l1/ 

at area fraction 4>=0.60 

etc. require a proper choice of Theiler's window w [Theiler, 1995] [134], [Theiler, 1990] 

[133] which provides guidelines for proper sampling of points from a time series of data. 

[Theiler, 1995] [134] suggested that all pairs of points whose time indices differ by less 

than w may be ignored, where w ~ m7', m being the embedding dimension and 7', the 

4> 0.05 0.10 0.20 0.30 0.40 0.45 0.50 0.60 
ary 35 25 23 20 15 18 13 13 
a yy 30 17 17 17 15 15 12 9 

Table 4.3: Table shows the approximate delay time at which the contour lines in the 
space-time separtion plots of the stress components azy and a1l1/ attains saturation as 
observed from figures (4.33) to (4.40) 

time lag that can estimated using guidelines from the analysis of autocorrelation function 

or average mutual information or space-time separation plots. 

For the computation of the correlation dimension, for instance, this requires the lower 

limit of j in (13) to be changed to i + w, and the factor multiplying the summation to be 

replaced by 2/N(N - w). Using the above information as a basis, we take the Theiler's 

window appropriately depending on the embedding dimension and time delay mainly for 

the estimation of certain invariant characteristics, mainly, Lyapunov exponent from the 

time series. 
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4.5.1 Low dimensionality of the attractor 

In nonlinear time series analysis we are interested in characterizing the underlying attrac-

tor, a bounded limit set for typical initial conditions in some region of the phase space 

of the dynamical system. One of the parameters that characterizes an attractor is its 

dimension, which can be regarded as a measure of the amount of information necessary 

to specify the position of a point on the attract or within a given accuracy. For an ac-

curate estimation of the attractor' dimension, we use the Principal component analysis 

[Broomhead and King, 1986] [23], the False nearest neighbor method [Abarbanel, 1996] 

citeaba-96 and the Grassberger-Procaccia algorithm [Grassberger and Procaccia, 1983] 

[57]. 
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Figure 4.41: The eigenvalues versus dimension of the covariance matrix [Broomhead and 
King, 1986] [23] of shear stress uzy at area fractions l/J = 0.2, 0.4, 0.5 for H = 18. 

Using the above guidelines to find proper time delay for embedding, we performed a 

principal component analysis (see sec.4.4) on the normal and shear stress components for 

different area fractions of particles. We get three significant eigen values when l/J < 0.2 

and four or five significant eigenvalues for stress fluctuations measured from suspensions 
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with area fraction ifJ = 0.2, between five and seven values for stress components with area 

fractions ranging 0.2 < ifJ < 0.5 and seven and above significant eigenvalues for ifJ ~ 0.5. 

We observe a monotonic increase in the number of significant eigen values for both the 

stress components with rise in concentration of particles in the suspension. The figure 

(4.41) illustrates principal eigenvalues obtained from a principal component analysis for 

the shear stress time series for three values of area fractions of particles ifJ = 0.2, aA, 0.5. 

As the number of significant (Le. positive and greater than the noise floor) eigenvalues 

is an upper bound for the dimension of the attractor [Albano et al., 1988] [5]; [Kantz and 

Schreiber, 1997] [69], this is a clear indication to the fact that there is a drastic change 

in the system microstructure and it becomes more and more complex if we take the 

number of independent coordinates required to capture the sytem dynamics as a measure 

of complexity of the system behavior. A principal component analysis on both the stress 

components at fixed area fraction of particles results in the same number of principal 

components (significant eigen values). Another important observation we make is that 

only a finite number (at most eight in number) of independent variables are sufficient 

to capture the dynamics of the rheological parameters viz. shear and nonnal stress 

components for the range of particle concentration 0.05 ~ ifJ ~ 0.6. This finding is likely 

to have significant impact in the processing of industrial suspensions as it reveals that 

to produce a product of the required quality we need to control only a finite number of 

factors where as the actual suspension dynamics is a consequence of an infinite number 

of factors. 

The false nearest neighbor method, described in secAA, shows that the dynamical 

behavior of the attractor can be described by three independent coordinates when the 

concentration of particles in the suspension is less than 0.2 and four or five independent 

coordinates are required to describe the fluctuations in stress components when the area 

fractions of particles lie in the range 2 ~ ifJ < 004. For stress components computed from 
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suspensions with area fractions of particle cP = 0.4 five or six independent coordinates 

are sufficient. For a suspension with area fraction of particles 0.4 < cP ~ 0.6, six to eight 
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Figure 4.42: Fraction of false nearest neighbors as a function of the embedding dimension 
m for the Uzy time series for area fraction cP = 0.2, 0.3, 0.4 and H = 18. 

independent coordinates are sufficient to describe the stress fluctuations. The figure (4.42) 

shows the plot of embedding dimension versus percentage of false nearest neighbors for 

shear stress fluctuations of suspension for area fractions particles cP = 0.20, 0.30, 0.40 

at the Couette gap H = 18 particles width. The increasing trend of the embedding 

dimension at which the percentage offalse nearest neighbor reduces to zero is in agreement 

with what we observed in the principal component analysis. We, also, observed that, at 

a fixed area fraction of particles, the embedding dimensions at which the false nearest 

neighbors attains zero is the same. This is also in agreement with our findings using 

principal component analysis. 

An estimate of the correlation dimension strengthens this conclusion. For an accurate 

estimation of the correlation dimension, we used the Grassberger-Procaccia algorithm 

[Grassberger and Procaccia, 1983]. We took 95000 data points of the time series of 

the normal and shear stresses, after deleting the initial transients, and computed the 
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correlation integral for embedding dimensions ranging from 1 to 25 with a time delay 

7' = 17 . The figure (4.43) plots radius of the hypersphere versus correlation integral of 

the shear stress for area fractions of particles 0.2 at Couette gap H = 18 particles width. 

Each contour lines gives the correlation integral corresponding to embedding dimension 

varying from 1 to 25. We obtained a plateau region as r, radius of the hypersphere; varies 

from 0.27 to 0.37. This plot shows a plateau region for a range of values of r, the radius 

of the hypersphere, and the plateau region converges for higher embedding dimensions. 

Though the curves in this region converge to a constant value (approximately) for higher 

values of embedding dimension, we can observe local peaks in this region indicating 

absence of clear correlaton and so this method is only partially successful in yielding a 

positive result. We note, ~owever, that this figure is typical of many in the literature. 
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Figure 4.43: A typical plateau region showing approximate value of correlation dimension 
of the Uzy time series, for H = 18 particle width and if; = 0.2. The plateau region 
converges for higher embedding dimension indicating evidence for low-dimensionality of 
the attractor. 

However, principal component analysis, false nearest neighbors method, nonlinear pre-

diction method (discussed below) and the presence of structure in the three dimensional 

phase space plot point to a positive result. So the partial failure of correlation integral 

(correlation dimension) method should not be considered a major flaw in this analysis. 
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We can observe that the approximate plateau region converges to a constant value for 

high values of embedding dimensions for values of r ranging from 0.27 to 0.37 indicating 

the existence of low-dimensional attractor. 

This plateau region shows that the attractor dimension lies between 2 and 4. We 

computed the correlation dimension of the normal and shear stresses for area fractions f/J 

between 0.05 to 0.6 at the Couette gap H = 18 particles width. We obtained fractional 

correlation dimension for both the stress components for all area fractions of particles 

indicating the fractal nature of the attractor. In all cases we obtained a fractional cor-

relation dimension indicating the existence of a low-dimensional strange attractor. The 

correlation dimension estimate of both the stress components for a range of particles 

concentration is tabulated in the Table (4.4). It is clear that the correlation dimension 

estimate of the stress components increases with increase in concentration. We, also, ob-

serve that for any given particle concentration the correlation dimension estimates for the 

normal and shear stress time series are quite close. These observations are in good agree-

ment with our findings in the principal component analysis and false nearest neighbor 

method. 

<7:cy <7yy 

f/J 
0.2 3.2 3.4 
0.4 4.1 4.2 
0.5 4.8 4.3 
0.6 5.5 5.5 

Table 4.4: Correlation dimension D2 determined from the time series of <7yy and <7:cy, for 
H = 18 and a range of the area fraction f/J. Note that the estimates of D2 (with ±0.062 to 
± 0.098 variation) from the two stress components are quite close. Also note the increase 
in D2 with particle concentration <p. 

In high dimensional systems, the prediction of succeeding data points is a robust 

method for estimating the dimension of the underlying attractor. The embedding dimen-
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sion at which the prediction error is a minimum is a good estimate of the dimension of 

the attractor. We used the locally constant predictor method (see secA.6) for predicting 

one-step ahead the successive fluctuations of the stresses. We used 13000 data points in 

the time-trace of the shear or normal stress to determine the structure of the underlying 

attractor, and predicted the evolution for nearly 35 succeeding dimensionless time steps. 

The figure (4.55) in secA.6 shows the prediction of successive fluctuations, using one-step 

ahead prediction method, of shear stress of the suspension at area fraction ifJ = 0.2 and 

Couette gap H = 18 particle width. We then computed the normalized mean square 

error (NMSE) of prediction. We observed that for area fraction less than 004, the NMSE 

is minimum when the embedding dimension is 4 or atmost 5. Further evidence for low-

dimensionality of attract or is discussed in the chapter on modeling. All these tests put 

together indicate strong evidence for the low dimensionality of the underlying attractor. 

8 

Figure 4044: The eigenvalues versus dimension of the covariance matrix for the shear 
stress u:ry for Couette gaps H = 14,18,30 at ifJ = 0.2. 

To study the influence of the Couette gap H on the invariant properties, we analyzed 

the time series of the stress components for H = 14, 18 and 30 for a fixed area fractions 

of particles ifJ = 0.20. We computed the correlation dimension of the shear stress at 
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~ = 0.20 for three Couette gaps H = 14, 18 and 30 particles width. The correlation 

for these Couette ga-ps is tabulated in 'Table \4.5). 'These computations reveal a slight 

decreasing trend in the correlation dimension as the Couette gap increases. We have also 

performed a principal component analysis on the stress components at these Couette gaps 

and the results are given in the figure (4.44). The finding is in agreement with what we 

observed in Table (4.5). The number of significant eigen values of the stress components 

at Couette gap H = 14 particle width is five or six, with Couette gap H = 18 particle 

width the number of significant eigen values become four or five and, with Couette gap 

H = 30 particle width the number of significant eigen values reduced to three or atmost 

4. Thus, the principal component analysis is in agreement with what is observed in the 

correlation dimension analysis, which strengthens the conclusion that the complexity of 

the suspension behavior increases with the relative increase in the concentration of the 

particles in the suspension. 

O'xy O'yy 

H 
14 3.7 3.8 
18 3.2 3.4 
30 3.1 3.2 

Table 4.5: Correlation dimension ( with ±0.058 to ±0.087 variation) determined from 
time series of O'yy and O'zy for different Couette gaps, H = 14, 18 and 30 for ifJ = 0.2. 
There is a slight decreasing trend in D2 with increasing H. 

To study the effect of inter-particle interaction in the suspension behavior, we es-

timated the correlation dimension for different values of J1., the range of the repulsive 

inter-particle interaction keeping Fa J1. = 0.01 a constant and chanaging the values of J1. to 

10,100, and 1000 and correspondingly we change the value of Fa to 10-3, 10-4, and10-5 

for Couette gap of H = 18 at particle concentration ifJ = 0.4. These results are tabulated 

in table (4.6); it is apparent that there is no significant variation in the correlation di-



4.5 Results and discussion 103 

mension with J.L. That is, these variations in the repulsive inter-paricle interaction do not 

produce significant changes in the microstructure of the suspension. 

4.5.2 Deterministic nature of the system 

A finite length time series with broadband power spectrum may be a realization of 

& stochastic process governed by an autoregressive moving average model or ot a. low 

dimensional deterministic cnaotic process tEckman and RueUe, 19851l421. Further, some 

geometrical or dynamical characteristics (low correlation dimension or positive Lyapunov 

exponent etc) of the low dimensional chaotic dynamics can be observed from particular 

linear stochastic dynamics. Hence, the analysis of a time series has to distinguish between 

linear stochastic and deterministic dynamics. We used both surrogate data analysis 

and the Visual Recurrence Analysis (V RA) method [Kononov, 1999] [75] to make this 

distinction. According to surrogate data analysis theory the geometrical and dynamical 

characteristics of a time series must be compared with those of stochastic signals which 

have the same power spectrum and amplitude distribution as the original data [Pavlos 

et al., 1999a] [98], [Prick and Theiler, 1994] [108]. 

One surrogate of a time series which tests for linear stochastic processes is obtained 

by randomizing the phases of the Fourier coefficients of the time series. One takes an 

ensemble of surrogates of the time series for comparing with the original time series. In 

order to distinguish the nonlinear deterministic process from a linear stochastic process, 

we use a discriminating static Q defined by 

Q = J.Lobs - J.Lsur 

(Jsur 
(4.12) 

where J1.oba is a characteristic measured from the original time series, J.Lsur is the average 

value of the same characteristic measured from the ensemble of surrogates and (Jaur is the 

standard deviation of the characteristic for the ensemble of surrogates. We computed the 
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... 

Figure 4.45: Recurrence plot for the shear stress (J'Z:II for H = 18 and q, = 0.2. The definite 
structure in t he plot is apparent j data with white noise will give a uniform distribution 
of color. 
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correlation dimension of ten sets of such phase shuffled time series for the shear and normal 

stresses. We found that 10 < Q < 15, i.e. the correlation dimension of the ori@.naltime 

series differs by 10 to 15 standard deviations from the mean correlation dimension of the 

ensemble of surrogates, clearly indicating that the differences is statistically significant. 

We also used the VRA method to determine the presence of structure in the stress 

fluctuations. 

The importance of the recurrence plot, one of the tools available in VRA, is that the 

presence of structure can be visualized by means of color graphics. Once the dynamical 

system is reconstructed by means of delay coordinates, the distance between all pairs 

of vectors z(i) and z(j) are computed and various color codes are assigned to different 

distances. In a two dimensional recurrence plot, a color code at (i, j) position specifies the 

distance between the vectors z(i) and z(j). For random signals, a uniform distribution 

of colors over the entire plane is obtained and for deterministic signals we obtain coherent 

structures in the recurrence plot. This method demonstrated the existence of a coherent 

structure in the stress fluctuations in the suspension. The figure (4.45) is a (typical) 

recurrence plot for the shear (or normal) stress (j %1J of the suspension at area fraction of 

particles ljJ = 0.20 and Couette gap H = 18 particle. The figures indicates the presence 

of deterministic structure in our system. For data with white noise, the recurrence plot 

will result in a uniform distribution of colors. 

We also, computed the spatio-temporal entropy for the stress components. This 

quantity compares the distribution of colors over the entire recurrence plot with the 

distribution of colors over each diagonal line (j = i + const.) of the recurrence plot. The 

higher the combined differences [Peacock, 1983] [103] between the global distribution and 

the distributions over the individual diagonal lines, the more structured the image is. The 

small parallel off-diagonal lines, also, indicate the predictability of the system dynamics. 

However, the long term or short term predictability depends on other characteristic of 
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the system, which we win explain in the next section. 

z(t - 3T) 

0.03 

0.015 

o 
-().Q15 

z(t - 2T) 

Figure 4.46: Phase space plot of the normal stress u"" for H = 18 and tP = 0.2. 
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In pbysical terms, this compares the distribution of distances between all pairs of vec

tors in the reconstructed state space with the distribution of distances between different 

orbits evolving in time (for details see [Can and Scbwart, 1998J [25]). For random signal. 

the value of spati~temporal entropy will be close to 100% and for deterministic signals 

the value will be considerably less. The calculated values of the spati~temporal entropy 

for the shear and normal stresses were nearly zero showing almost perfect structure in the 

data. We observed definite structure in the phase space plot of the stress components. 

Figure (4.46) shows a typical phase space plot which is a three dimensional projection 

of the normal stress in four dimensions at area fraction tP = 0.4. The predictability of 

the signal is also strong evidence for the deterministic nature of the system. From the 

above tests, we conclude that the fluctuations in the normal and shear stresses are due 

to a low-dimensional deterministic process. 
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4.5.3 Chaotic nature of the system 

A striking behavior of many dynamical systems is their sensitive dependence on initial 

conditions, i.e. the divergence with time of trajectories from arbitrarily close initial con-

ditions. An aperiodic bounded system having sensitive dependence on initial conditions 

is termed a chaotic system. To determine the existence of such behavior in our sys-

tern, we computed the stress components viz. normal Uyy and shear u:r:y stresses from a 

suspension of spheres in simple shear flow for two slightly different initial distribution of 

particles( the position of two suspended particles differed slightly in the two initial con

figurations) at different area fraction of particles in the Couette flow. The figure (4.47) 

shows the rapid divergence of two aribitrarily close trajectories of the shear stress for the 

two initial configurations, which differ in just one particle position, with area fraction of 

particle t/J = 0.20 and Couette gap H = 18 particle width. We computed the difference 

between the trajectories of the shear stress from the figure (4.47) and we observe an 

exponential increase in the difference of the two trajectories from figure (4.47). In figure 

.o.06 

.o.07 

.o.08 

Ury 
.o.09 

.o.l 

.o.ll 

20 30 40 50 60 70 80 90 100 
t 

Figure 4.47: Divergence of close trajectories of the shear stress Ury for Couette gap H=18 
and t/J=0.2. 

(4.48), the logarithm of the difference IXt - Ytl (logarithm is taken after proper shifting to 

make the numbers positive) of the two shear stress time series in figure (4.47) against time 
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is plotted. Clear exponential increase is visible for small t > O. This is a strong indication 

of the chaotic nature of the system dynamics. Computing this exponential divergence 

of arbitrarily close trajectories over a time interval is of great significance in analysing a 

time series obtained from a dynamical system. For a comprehensive characterization of 

the underlying attractor, we computed the maximum Lyapunov exponent (computation 

of the complete spectrum of Lyapunov exponents is tedious and requires a large amount 

of data), which measures the average rate of divergence or convergence of nearby orbits 

per iterate basis. The existence of a positive Lyapunov exponent is clear evidence for the 

chaotic nature of the system dynamics [Kantz and Schreiber, 1997] [69]. 
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t 

Figure 4.48: Logarithm of the difference Xt - Yt of the time series in fig. 4.47 against t, 
showing clearly the exponential increase for small t in the difference between the stresses 
for the two trajectories, indicating chaotic nature of the system. Logarithm is taken after 
proper shifting of the values to make them positive. 

Several methods have been reported in the literature for efficient and accurate es-

timation of Lyapunov exponents from time series. The first algorithm reported in the 

literature for estimating Lyapunov exponent from time series is suggested by [Wolf et al., 

1985] [138]. Wolf's algorithm uses only a delay reconstruction of phase space and it is 

not very robust and some times it results in a finite Lyapunov exponents for stochastic 

data. Another class of algorithms which make use of approximation of the underlying 
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U:Z;!J U!J1J 

J.I. 
10 4.3 4.2 
100 4.1 4.2 
1000 4.2 4.1 

Table 4.6: Correlation dimension determined from time series of u yy and u:r:y for different 
ranges of the inter-particle repulsive force, J.I. = 10, 100 and 1000 (with Fo J.I. = 0.01). The 
data are for H = 18 and </J = 0.4. Note that D2 (with ±0.052 to ±0.097 variation) is 
relatively insensitive to changes in J.I.. 
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Figure 4.49: The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 
dimensions for (a)shear stress u:Z;!J and (b) normal stress u!J1J for H = 18 at </J=0.05 
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Figure 4.50: The function S(r, rn, ~t) (see eqn. 4.13) versus ~t for various embedding 
dimensions for (a)shear stress u:Z;!J and (b) normal stress u!J1J for H = 18 at </J=0.10 
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Figure 4.51: The function S(r, rn, 6.t) (see eqn. 4.13) versus 6.t for various embedding 
dimensions for (a)shear stress Uxy and (b) normal stress u1I!J for H = 18 at f/J=0.20 

deterministic dynamics are by [Sano and Sawada, 1985] [116] and [Eckmann et al., 1986] 

[41]. This class of algorithms is very efficient and robust if the data allow for good ap-

proximation of the governing dynamics. Here we make use of the algorithm introduced 

by [Rosenstein etal., 1993] [112] and independently by [Kantz, 1994] [70]. 

This algorithm tests directly for the exponential divergence of nearby trajectories 

and thus allows us to decide whether it really makes any sense to compute a Lyapunov 

exponent for a given data set. A time series, the image under a measurement function 

of the true state space, is a type of projection and so it may make distances apparently 

shrink apparently for short times, though they grow in the true state space. Also, in the 

true state space, distances do not grow everywhere on the attractor with the same rate, 

and locally they may even shrink. Thus, the Lyapunov exponent is an average of these 

local divergence rates over the whole data. Also, experimental data can be contaminated 

by noise and its influence can be minimized by using an appropriate averaging statistics 

when computing the exponent. 

With the above guidelines for computing Lyapunov exponent, we consider the repre-

sentation of the time series data as a trajectory in the embedding space with proper time 

delay. Then, we choose a point :l:no in the embedded space and construct a neighborhood 
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Figure 4.52: The function S{r, m, ~t) (see eqn. 4.13) versus ~t for various embedding 
dimensions for (a) shear stress (Jzy and (b) normal stress (J!I1J for H = 18 at </>=0.30. 

Un with radius r and centre zno in the embedded space. Then, we consider all neighbors 

or close returns Zn of the previously visited point Zno whose distances are less than r, 

then ~o = Zno - Zn is a small perturbation. If one finds that its future ~t = zno+t - Zn+t 

is given by I~tl ~ ~o e~t , then A is the maximal Lyapunov exponent. Compute the 

average over the distances of all neighbors to the reference part of the trajectory as a 

function of the relative time ~t. The logarithm of the average distances at time ~t is 

an effective expansion rate over the time span ~t (plus logarithm of initial distance) 

containing all the deterministic fluctuations due to projection and dynamics. Using the 

Kantz method [Kantz, 1994)[70]; [Kantz and Schreiber, 1997] [69], we compute 

1 N ( 1 ) S{r, m, ~ t) = N L In IU{zto)I L IZ to+6t - zt+6tl 
no=l Z,EU(Z,o) 

(4.13) 

for a point Zto of the time series in the embedded space, where U{Zto) is the neighborhood 

ofzt., with diameter r, IU{zto)1 is the cardinality of the set U{Zto). If S{r, m, ~n) 

increases linearly with ~t for small ~t, with identical slope for all dimensions m larger 

than some me and for a reasonable range of r, then the slope can be taken as an estimate 

of the maximal Lyapunov exponent A . Here the effective expansion rate over a time span 

is averaged for a range of values of to. 

We computed the quantity in Eq. (4.13) and plotted against ~ t in the range r = 



4.5 Results and discussion 112 

·1 

..-... -2 --'" 

e-3 
~ ............ 
~ 

~ 

~ 

-1 

.. 
10 0 10 

d_ 

(a) (b) 

Figure 4.53: The function S(r, rn, Llt) (see eqn. 4.13) versus Llt for various embedding 
dimensions for (a)shear stress U%11 and (b) normal stress uyy for H = 18 at <p=OAO. 

1.069255 x 10-04 , 1.901435 x 10-04 , 3.381282 x 10-04, 6.012865 x 10-04 , 1.069255 x 10-03 

for both the stress components U%11 and uyy for different area fractions of particles in the 

range <p = 0.05, 0.10, 0.20, 0.30, 0040,. The figures (4049) to (4.53) show plots of S(r, rn) 

versus Ll t. We observe separate identical slopes for stress fluctuations at each of the area 

fractions <p = 0.05, 0.10, 0.20 and these slopes are roughly independent of the embedding 

dimension for embedding dimension greater than three for <p < 0.20 and greater than 

four for <p = 0.2. For stress components of suspension with area fractions <p = 0.30 and 

DAD, we get separate identical slopes for embedding dimension above five for <p = 0.30 

and above five or six for <p = 0040. We estimated these slopes for different embedding 

dimension and for different to. 

The approximate average values of these slopes (Lyapunov exponent) of both shear 

and normal stresses are tabulated in the Table (4.7) for different area fractions of particles 

in the range <p = 0.05, 0.10, 0.20, 0.30, 0040 and 0.50. It is easy to observe from the Table 

(4.7) that the value of S(r, rn, Ll t) increases linearly with Llt. Thus, in all the area 

fractions of particles, the underlying attractor of the stress components show exponential 

divergence of nearby trajectories. Also, we observe an increasing trend in the Lyapunov 

exponent of the stress components with rise in concentration and for a fixed area fraction 
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of particles both the stress components give roughly the same estimate for the Lyapunov 

exponent. 

(Jzy (J1I1/ 

fjJ 
0.05 0.23 0.25 
0.1 0.31 0.35 
0.2 0.43 0.44 
0.3 0.50 0.45 
0.4 0.53 0.52 
0.5 0.60 0.57 

Table 4.7: The maximum Lyapunov exponent for the (Jyy and (J%!J time series, for H = 18 
and various particle concentrations fjJ. The Lyapunov exponent increases with fjJ, implying 
that the system is more chaotic when the particle concentration is increased. 

The general trend of a rise in the maximum Lyapunov exponent with fjJ is apparent. 

This increase in the Lyapunov exponent is strong indication of many particle interactions 

leading to chaotic behavior. We obtained numerical evidence for the presence of a chaotic 

attractor in the system even for the smallest area fraction of particles we considered. We 

also computed the entropy of the system, which indicates the chaotic nature of the system, 

defined in the following manner: If the system is embedded in m-dimensional space with 

delay 1', then the m dependence of the correlation integral Cq{r, m) of order q for large 

m can be expressed [Schreiber, 1999] [119]; [Grassberger and Procaccia,1983] [56]; [Ott 

et al., 1994] [95] as 

Cq{r, m) = a{m) e-(q-l)hq'Tm r(q-l)Dq (4.14) 

as r -+ 0 and m -+ 00, where hq is called the q -th order entropy. Computing the entropy 

for q = 2 is the easiest, and it can be performed along with the computation of the 

correlation dimension D2• Our calculations show that the entropy, which is always less 

than or equal to the sum of the positive Lyapunov exponents, is positive for all particle 

concentrations. 
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Figure 4.54: Multi-step predictions of the normal stress u'll1l for H = 18 particle width and 
~ = 0.2. Exponential divergence of the predicted value from the actual value is clearly 
visible 

Further evidence of chaos is provided by the one-step ahead and multi-step ahead 

predictions of successive fluctuations of the stresses (see secA.6). While the one-step 

ahead successive prediction is quite accurate up to nearly 35 time-steps in the future 

(4.55), the multi-step ahead prediction diverges from the actual time-trace after 3-5 time 

units (see fig.(4.54)). This apparent distinction between the two predictions is a clear 

indication of the sensitive dependence on initial conditions of nearby trajectories. With 

these strong and concrete evidences of the chaotic nature of the rheological parameters, 

the exponential decay of the power spectrum (see figs. (4.9) to (4.16)), which a common 

characteristic of both deterministic chaos and linear stochastic signals, of these parameters 

indicate the chaotic nature of the signal. 

Given all the above evidence, we conclude that the attractor underlying the fluc-

tuations in the stress has a fractional correlation dimension, and is a consequence of 

low-dimensional chaotic dynamics. 
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Figure 4.55: One-step predictions of the normal stress Uyy for H = 18 particle width and 
~ = 0.2. Note the close agreement of the predicted value with the actual value 

4.6 Prediction of successive fluctuations 

An important feature of chaotic systems is their exponential sensitivity to initial con-

ditions: the average error made when forecasting the outcome of a future measurement 

increases exponentially with time. The length of the period over which accurate short 

term predictions of the successive fluctuations of the signal is possible is determined by 

the accuracy of the initial conditions and estimate of the Lyapunov exponent and if 

we get a local model which is better that than the one obtained using probablistic or 

global model it is reasonable to assume that there is a deterministic mechanism which 

governs the process under study, providing in this a tentative crieterion to discriminate 

between chaos and noise [Sugihara and May, 1990] [130], [Rubin, 1992] [114], [Ikeguchi 

and Ahara, 1997] [64], [Barahona and Chi-Sang Poon, 1996] [13]. We use local models to 

predict [Xiaofeng and Lai, 1999] [139] the one-step and multi-step procedures. That is, 

instead of fitting one complex model with many coefficients to the entire data set, we fit 

many simple models (low order polynomials) to small portions of the data set depend

ing on the geometry of the local neighborhood of the dynamical system. The general 
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procedure is the following: the last known state of the system, represented by a vector 

z = [x{n), x{n + r), ... , x{n + (m - 1) r)), is determined, where m is the embedding 

dimension and r is the time delay. Then p close states (usually nearest neighbors of z) 

of the system that have occurred in the past are found, by computing their distances 

from z. The idea then is to fit a map which extrapolates z and its p nearest neighbors 

to determine the next values. Using this map an approximate value of x{n + 1) can be 

estimated. We use both one-step and multi-step head prediction methods. In the one-step 

prediction, after each step in the future is predicted, the actual value is utilized for the 

next one-step prediction; in contrast, the multi-step prediction is based only on the initial 

p states. The Normalized Mean Squared Error (NMSE), referred to in §4.5.1, is computed 

by comparing the mean square error (between data and prediction) of the above method 

with MSE of the unconditional mean predictor method (a trivial method which predicts 

the average of the observed values as the subsequent value). As stated in secA.5.1, we 

observed that the NMSE is minimum when m is between 3 and 4 for l/J less than 004, and 

roughly 5 for l/J between 004 and 0.5 and is above 5 for l/J greater than 0.5. 

From the time-series of the stresses up to a given time to, we predicted their subsequent 

evolution (Le. the multi-step prediction) using the locally constant predictor (in VRA see 

[75]). A good prediction is possible only up to t = to + 3, as shown in fig.(4.54). In 

contrast, the one-step prediction [Kononov, 1999] [75] of successive fluctuations of the 

stress is quite accurate up to 35 time units in the future {see fig. (4.55)). 

4.7 Cross prediction of the time series 

Cross-prediction of one time series from the time series of another related variable was 

introduced recently by [Abarbanel et al., 1998] [1]. This technique has potential applica

tion in situations where the measurement of one quantity is difficult or expensive, while 

the measurement of a related variable is easy or inexpensive. In such a case, simulta-
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neous measurements of both variables need to be made for a baseline period, and then 

the easily measured variable can be used to predict the other. The cross-prediction of a 

signal (response signal) y(t) from another signal (drive signal) z(t) implies the existence 

of a functional relation W such that Ylt) = wlzlt)). One significance of this technique 

is that the prediction of one variable from another can be made without knowing the 

properties of lIt. When the phase space points of the driving and response systems are 

connected by such a functional relation lIt, two nearby states in the phase space of the 

driving system correspond to two nearby states in the phase space of the response system. 

This property of a pair of such systems can be characterized by the mutual false nearest 

neighbors (MFNN) parameter [Abarbanel, 1996] [2]. 

For systems preserving this identity of neighbors in state space, the value of the pa

rameter will be close to unity [Abarbanel et al., 1998] [1]. We computed the MFNN for 

the shear and normal stresses and found that it was close to unity at almost all the points 

in the phase space. We used the nearest neighbor method [Hegger et al., 1999] [60] of the 

TISEAN package to cross-predict the fluctuations in the normal (shear) stresses from the 

fluctuations in the shear (normal) stresses of the suspension with the proper time delay 

and embedding dimension obtained from previous analysis. We performed the cross

prediction for different area fractions of particles and the figures (4.56) to (4.57)show the 

cross-prediction of the normal stresses axx , a1J1J , a1J1J at area fractions f/J = 0.20, 0.20, 0.40 

from the correposding shear stresses respectively. We observed that the cross-prediction 

deteriorates with rise in concentration (area fraction) of particles in the suspension in 

both shear and normal stresses. This can be attributed to increasing trend in the Lya

punov exponent. As we already observed, the increasing trend of Lyapunov exponent 

is a consequence of frequent many-body interactions taking place in the suspension as 

concentration increases. The above observation shows that many-body particle interac

tion is responsible for the deterioration in the cross-prediction of one stress component 
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Figure 4.56: Cross-prediction of normal stress (1'1J11 from shear stress (1z" at area fraction 
~ = 0.20 and Couette gap H = 18 particle width. 
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Figure 4.57: Cross-prediction of normal stress (1"" from shear stress (1zy at area fraction 
~ = 0.40 and Couette gap H = 18 particle width. 



4.8 Di8cussion 119 

from the other stress component. The ability to cross-predict one stress component from 

the other stress component, indicates the existence of a functional relationship between 

the stress component. Frequent many-body interactions appear to weaken the functional 

relationship between the different stress components. Hence, we anticipate that there will 

be a stage, as the area fraction increases, at which the different stress components will 

have no functional relationship with each other. If we look at these observations from a 

macroscopic level, there will reach a stage at which the whole system evolution will be 

governed by randomness. 

4.8 Discussion 

We have analyzed, using the tools of nonlinear dynamics and chaos theory, the fluctua

tions in the rheological parameters viz. the shear and normal stresses developed when 

a neutrally buoyant non-Brownian Stokesian suspension of identitical speheres is sub

jected to simple shear flow in the regime of vanishingly small Reynolds number. We have 

found numerical evidence for the existence of a low dimensional deterministic chaotic 

attractor governing dynamics of the fluctuations in the stress components for particle 

area fraction l/J in the range 0.05 to 0.6. We obtained this non-trivial conclusion using 

the tools of nonlinear dynamics and chaos theory. The main tools we used are (a) au

tocorrelation function, (b) average mutual information, (c) space-time separation plot, 

(d) power spectrum (Fourier series analysis), (e) Principal component analysis, (f) False 

nearest neighbor method, (g) correlation integral method, (h) Surrogate data analysis, 

(i) Visual recurrence analysis, (j)prediction methods (both one-step ahead prediction and 

multi-step ahead prediction methods) and (k) computation of the Lyapunov exponent. 

We used the autocorrelation function, average mutual information, and space-time sepa

ration methods to obtain a guideline for estimating optimal time delay to make a robust 

and reliable estimate of the embedding dimension (correlation dimension). With proper 
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optimal time delay, we used the principal component analysis, false nearest neighbor 

method, correlation integral method, prediction method and modeling method [see chap. 

5J to establish the Iow-dimensional nature of the underlying attractor. To disprove the 

fact that the attract or is not an artefact of linear autocorrelated noise or some stochastic 

process (and hence to prove the deterministic nature of the attractor), we used visual 

recurrence analysis, surrogate data analysis and the prediction method. Thus, with a 

combined application of these methods, we established the low-dimenional and determin

istic nature of the underlying attractor governing the stress fluctuations. 

Next, we provided evidence to the chaotic nature of the attractor. For this, we com

puted the Lyapunov exponent, a measure of the rate at which arbitrarily close trajectories 

diverge from each other, and found that for all the area fractions of particles in the range 

0.05 ~ <P ~ 0.6 the Lyapunov exponent is positive indicating the chaotic nature of the 

attractor. Thus, we numerically established that underlying attractor of the rheological 

parameters is low-dimensional, deterministic and chaotic. The fact that the attractor 

is low-dimensional and chaotic implies that though the system behavior is erratic and 

long term prediction is impossible, due to the exponential divergence of arbitrarily close 

trajectories, meaningful short term predictions can be performed with desired accuracy. 

We used this information about the underlying deterministic and chaotic structure in the 

fluctuations to make short-range predictions of the shear and normal stresses for different 

area fraction of particles. 

The analysis of the simulated stress fluctuations using autocorrelation function [4.3.1J, 

average mutual information [4.3.2] and space-time separation plot [4.3.3] reveals that the 

rate at which dynamics of the system loses its information (memory) about the previous 

(or initial) stress fluctuations increases with increasing concentration (area fraction) of 

the particles. The rapid loss of information is due to the increasing particle-particle and 

other many-body hydrodynamic interactions frequently occurring in the suspension. The 
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figuIes (4..17) to (4..24.) of the autocouelation function, (4..25) to (4..32) of the aveIage 

mutual information and (4..33) to (4..4.0) of the space-time separation plots for the stIess 

components for different area fraction of particles over the range 0 ~ 4J ~ 60 reveals a 

sustained and regular increase in the rate of loss of information of the system dynamics as 

the concentration (area fraction) of the particles increases. This sustained regular increase 

in loss of information in the stress fluctuations is due to the increasing chaotic nature of the 

system dynamics. Contemporary to our work [Dasan et al., 2002] [32], [Drazer et al., 2002] 

[35] investigated the velocity profiles of this system. They claim that the chaotic motion is 

resposible for the loss of correlation in phase space of the velocity field. The loss of memory 

at the microscopic level of individual particles is also shown in terms of the auto correlation 

function for the two tranverse velocity components. In Stokesian suspensions, stress is a 

product of the fluid viscosity, the shear rate and a function of microstructure. Since we 

apply a constant force to create shear in the suspension, the scaled stress fluctuation is 

directly connected to a function of the microstructure. The stress fluctuations is hence 

mostly determined by the microstructure of the suspension. This shows that the chaotic 

motion of the particles (a microscopic property of the system) is responsible for the 

chaotic nature ofthe stress fluctuations (a macroscopic property ofthe system). Analysis 

of coupled map lattices are a means to determine the qualitative behavior of spatial 

averages (viz. stresses) of individual chaotic oscillators [Roy and Amritkar, 1997] [113], 

[Bunimovich and Jiang, 1997] [24]. Failure of the law oJ large numbers for weakly coupled 

map lattices of chaotic oscillators is observed in the literature [Sinha, 1992] [125]. We 

observe that the chaotic nature of the stress fluctuations (which is a macroscopic property 

of the system) is due to the chaotic motion (a microscopic property of the system) of the 

individual particles (chaotic oscillators) where motion is coupled to each other's motion 

and position through hydrodynamic interaction. Comparing our simulations to a typical 

globally coupled map lattice, we note that the relative particle positions in our simulations 
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correspond to the values attained by individual chaotic oscillators in a coupled map 

lattice, and the coupling between any two particles is a chaotic function of the difference 

in positions between any two particles. As the stress measured from the system is a 

macroscopic property of the system, in this system we observe the failure of the law of 

large numbers. 

Recently [Drazer et al., 2004] [36] analysed the system for the connection between 

velocity fluctuations and microstructure of the suspension using Stokesian Dynamic sim

ulations. Drazer et al. [2004] [36] observed that the standard deviation of the velocity 

fluctuations is directly proportional to the volume fraction of the particles in the dilute 

limit upto 10% of concentration of particles in the suspension. 

Estimation of the embedding dimension (using principal component analysis, false

nearest neighbor method, correlation integral method) in our simulation revealed that 

for a fixed area fraction of particles both the stress components viz. shear stress and 

normal stress give almost the same value for the estimates in all the three cases. This 

observation is strengthened by the prediction method as both components yield good 

prediction of the future values at almost the same embedding dimension. This finding 

hints at the possibility of a functional relationship between the different stress compo

nents. We confirmed this abstract finding by computing the mutual false-nearest neighbor 

parameter for the stress components and we found that the computed value is close to 

unity at almost all the points in the embedded phase space indicating the existence of a 

functional relationship between the stress compoents at all the area fractions of particles. 

Taking advantage of this fact, we predicted one stress component from another stress 

component. We observed that the accuracy of cross-prediction deteriorates with increase 

in concentration. This is an expected consequence of the increasing Lyapunov exponent 

of the stress fl uctuations with increase in area fraction of particles in the suspension. The 

rise in the correlation dimension and Lyapunov exponent with rP gives a clear indication 
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of the influence of particle interactions on the chaotic response of the suspension. The 

existence of a low dimensional chaotic attractor underlying the fluctuations opens up the 

possibility of technological applications such as chaos control to temper the fluctuations. 

For non-Brownian Stokesian suspensions, the instantaneous value of the stress is re-

lated to the instantaneous separation between particles, Le. their configuration. The 

evolution of the n-particle configuration distribution function In(r), is governed by the 

Smoluchowski equation [Brady and Morris, 1997] [18], which reduces to a balance between 

accumulation and advection in the absence of Brownian motion, 

(4.15) 

If the velocities U Q are independent of In, it is clear that (4.15) yields a fixed point for In. 

This was the basic assumption of [Batchelor and Green, 1972] [15]and [Brady and Morris, 

1997] [18]. However, for bounded shear flows of the kind considered in this work that one 

usually encounters in practice, the velocities are determined by the local viscosity of the 

suspension, which in turn is a function of the configuration. There is hence a coupling 

between (4.15) and the equations of motion of the suspension. The non-linearity in the 

coupling in (4.15) allows the possibility of chaotic variation of the microstructure and 

therefore the stress, as is evident from our results. 

For large samples and over long time scales, one intuitively expects that the evolution 

of the stress will be captured by a hydrodynamic description, an expectation that is 

in agreement with our observation of low dimensionality of the attractor. However, we 

must emphasize that this conclusion is not a priori obvious or evident: a suspension 

of macroscopic non-Brownian particles differs in a significant way from molecular fluid 

in that there is no inherent time-scale (set by the temperature) in the system. The 

imposed shear rate, which is the time-scale of macroscopic motion, is the only time-scale 

in the problem and, therefore, there is no separation of time scales normally observed 
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in molecular systems. In other words, the frequency of fluctuations in the stress scale 

as the imposed shear rate. Thus, low dimensionality is an interesting observation we 

make, rather than a foregone conclusion: even at the pair-interaction level, the position 

distribution function 12 is a field which in the dynamical sense is an infinite dimensional 

quantity. Our observation of low dimensionality of the stress fluctuations implies that 

only a few (between 4 and 8) moments of the position distribution function contribute 

to the stress fluctuations over a range of area fractions 0.05 ~ <P ~ 0.6. This appears to 

be an important and far-reaching result, as the task of connecting the microstructure to 

rheology is then much easier if we knew which of the moments of the former were the 

important ones and how we can compute them. 

A clear physical picture of the stress fluctuations can be had if we recognize that large 

fluctuations in the stress arise from the formation and breakage of clusters of many par

ticles that sometimes span the distance between the bounding walls. In simple shear, for 

instance, clusters form in the compression quadrant where hydrodynamic forces squeeze 

particles together. The clusters are then rotated by the vorticity of the flow, and the 

particles in the cluster are pulled apart in the extension quadrant. The rate of formation 

and breakage of the clusters, which determines the frequency of the stress fluctuations, 

is determined by the local number density and mobility of clusters, and one therefore 

gets a range of frequencies, as shown in figures (4.9) to (4.16). We also note both the 

shear stress and the normal stress fluctuations have similar correlation dimensions and 

maximum Lyapunov exponent. Since both the shear stress and the normal stress are 

determined by an appropriate function of the microstructure, our results seem to indi

cate that the dynamics of the microstructure is governed by a low-dimensional attractor 

having approximately the same correlation dimension and maximum Lyapunov exponent. 

Comparing our simulations to a typical globally coupled map lattice, we note that 

the relative particle positions in our simulations correspond to the values attained by 
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individual chaotic oscillators in a coupled map lattice, and the coupling between any two 

particles is a chaotic function of the difference in positions between any two particles. 

In a coupled map lattice sense this would correspond to a globally coupled map lattice 

where the coupling is calculated by summing up a chaotic function of the difference in 

values at any instant between the oscillators (particles) taken pairwise. Our system thus 

represents a generalization of a typical globally and democratically coupled map lattice. 

This result may thus have significant implications for the theory of coupled map lattices. 



CHAPTER 5 

Modeling System Dynamics 

5.1 Introduction 

The concept of model implies a degree of simplicity, stripping away of all that is thought 

to be unnecessary in dynamical system modeling. By modeling, we can escape mathe

matical difficulty and can prove deeper results for the model equations than one could 

hope to achieve for the true equations, if they were known. By reformulating the under

lying equations, we create a model whose laws of interaction no longer precisely matches 

those of the true equations. Our objective is to have model equations whose solutions 

possess general behavior qualitatively similar to the behavior of the original equations. 

The mathematical reasoning for dealing with qualitative results goes back to the time of 

Poincare. The classical equations of motion are well known for a variety of problems. In 

fluid mechanics, the governing equations of motion, the Navier-Stokes equations, are an 

excellent description of the motion of weakly compressible fluids. Fluid flows are quite 

complicated and our intution is shaped by the knowledge of solutions of the Navier-Stokes 

equation. The problems encountered in seeking solutions of the Navier-Stokes equations 

reflect the profound difficulties in dealing with such a complicated equation of motion. For 

example, to determine accurate time-dependent solutions of the Navier-Stokes equations 

126 
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is a formidable numerical task. Most realistic models of physical or biological phenomena 

are complicated and there are mathematical methods to extract simplifications to high

light and elucidate certain aspects of the underlying process. Simpler representations 

extracted using mathematical analysis can be used to suggest new experiments and to 

corroborate the model equation. 

Modeling natural phenomena has been a standard practice among scientists, especially 

among physicists. Traditionally, modeling a dynamical system requires one to derive the 

equations of motion from first principles, to measure initial conditions and, finally, to 

integrate the equations of motion forward in time. Alternately, when a first principles 

model is unavailable or initial conditions are not accessible or even though the equations 

describing the system are available, long range simulations are not feasible, empirical laws 

governing the physical processes can be obtained by model-fitting approaches based on 

the observed variability of the system evolution. Until recently, the most applied method 

to approximate dynamics from time series, assumed that the time series is produced 

by a linear system excited by white Gaussian noise. The variability of the time series 

is assigned to the stochastic nature of the excitation, which can not be modeled. The 

underlying idea of this approach assumes complex phenomena to result from complicated 

physics among many degrees of freedom. Nowadays, it is known that not all random

looking behavior is the product of complicated physics, but it may result from the chaotic 

nature of nonlinear and deterministic dynamics involving few degrees of freedom. In such 

cases, it is possible to exploit this determinism to make short-term forecasts that are 

more accurate than those obtained employing a linear stochastic model [Casdagli et al., 

1992] [27]. These forecasts are carried out by deterministic models directly built from 

observations of the system evolution. 

Under the basic assumption that the system evolution is the output of a determinis

tic, nonlinear autonomous dynamical system, [Takens, 1981] (132]' [Casdagli, 1989] (26], 
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[Abarbanel et al., 1993] [3], [Abarbanel, 1996] [2] [Kantz and Schreiber, 1997] [69] have put 

a strong foundation for buliding a dynamical model from a chaotic time series. Taken's 

embedding theorem [Taken, 1981] [132] guarantees that the system's state information 

can be recorvered from a sufficiently long observation of the output time series. According 

to this theorem, there exists a smooth mapping 'I!:R"' -+ R having the property 

y(t) = 'I![y(t - 7"), y(t - 27"), ... , y(t - m7")] (5.1) 

Thus, building a dynamical model from a time series is a two-step process. First, 

using the immediate past behavior of the time series, we reconstruct the current state of 

the system (state space reconstruction). This is accomplished with a time delay embed

diing equation, where the dimension de of the attractor is estimated by the correlation 

dimension algorithm (and/or false-nearest-neighbor method, principal component anal

ysis, etc.). In the previous chapter, we analysed the stress fluctuations of Stokesian 

suspension under simple shear flow and we obtained an insight into the dynamics of the 

system behavior. For each of the different area fractions </> = 0.05, 0.10, 0.20, 0.30, DAD, 

0.50 and 0.60, we estimated the number of independent variables (or independent coordi

nates or eigen vectors) required to reconstruct the chaotic attractor governing the system 

dynamics. We, also, computed the optimal time delay required for both the estimation 

of embedding dimension and reconstruction of the attractor in its actual phase space. 

Along with this, we computed the dynamic exponent viz. the Lyapunov exponent which 

is a measure of the rate at which two arbitrarily close trajectories in the chaotic region 

diverges from each other exponentially. The Lyapunov exponent plays a major role in 

model building, for a slight difference in anyone of the building components (coefficients) 

will produce errors during iteration process and this error will be amplified within a short 

period of time due to the chaotic nature of the system. This amplification of error ad

versely affects the efficiency, reliability and robustness of the model equation. So, model 
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building, especially, from a chaotic time series is a very difficult process which has to be 

performed with great caution. Agreement at both the quantitative and qualitative levels 

of the model equation properties with that of the original system properties is a rare 

event in the case of model building from chaotic time series. In most situations, we get 

model equations of the time series giving results which qualitatively agree with that of 

the original system. With this understanding we shall proceed to the second part of the 

model building procedure. 

In the second part, we construct the predictive model W using some standard methods. 

In the following sections, we describe a systematic procedure to accomplish this part with 

the insight gained from the analysis of the original time series described in the previous 

chapter. We note that, the estimation of embedding dimension (correlation dimension or 

number of principal components) gives us an estimate of the upper bound to the number of 

independent variables required in the phenomenological model for the stress components 

at each of the different concentrations of the particles in the suspension. So model building 

is both instructive and informative in the sense that if we are able to construct a reliable 

and efficient model with as many number of independent variables as the estimated 

embedding dimension for the stress components at the respective concentrations of the 

particles in suspension, then the model equation will indirectly provide more justification 

of our analysis. In the formal sense, an efficient and reliable model equation opens up more 

directions (possibilities) to further our analysis of the original system such as controlling 

the temporal fluctuations of the stress components through the proper handling of the 

parameters in the model equation, synchronizing one stress component with another 

stress component, expanding the parameter space to search for new phenomena or already 

existing phenomena of similar ( or related) systems, etc. 
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5.2 Evolutionary algorithm 

Various techniques can be used to the task of approximating the predictive model W 

[Correa etal., 2000] [31], [Judd, 2003] [68]. The prominent methods in this direction 

are based on polynomial fitting, neural networks, radial basis functions [27]. Another 

important method is the global vector field reconstruction for the reconstruction of a 

set of differential equation that models both theoretical and experimental data. The 

papers [Gouesbet, 1991] [52], [Gouesbet, 1991] [53], [Letellier et al., 1995] [79], [Letellier 

etal.,1997] [80],[Letellier etal., 1998] [81] describe global vector field reconstructoin tech

nique for both theoretical and experimental data. Of these different methods of model 

selection for nonlinear time series, most methods need large numbers of parameters and 

they tend to overfit [Namamura et al., 2003] [92]. A host of papers deal with the compari

son of different methods of model selection for time series [Nakamura et al., 2004] [93] and 

some paper propose a heuristic method of approach [Nakamura et al., 2004]. Recently, a 

functional search procedure based on Darwinian theories of natural selection and survival 

has been described [Koza, 1992] [76]. The main advantage of the so-called evolutionary 

algorithms[Eiben et al., 2003] [39], is that sparse data are sufficient and as a by-product, 

these algorithms attempt to approximate the functional form underlying the data [Szpiro, 

1997] [131], providing more direct knowledge of functional relations between past, present 

and future values of the time series. Based on the algorithm developed by [Szpiro, 1997] 

[131], an evolutionary algorithm called DARWIN, programmed by [Alvarez etal., 2001] 

[7], provides capabilities of modeling chaotic time series. 

The evolutionary algorithm DARWIN is programmed to approximate the equation, in 

symbolic form, that describes the time series. The searching procedure followed by this 

algorithm is more sophisticated than enumerating all possible equations. The evolution

ary algorithm considers an initial population of potential solutions which are subjected to 
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an evolutionary process, by selecting from the initial population those equations (individ-

uals) that best fit the data. The strongest strings choose a mate for reproduction whereas 

the weaker strings become extinct. The newly generated population is subjected to muta-

tions that change fractions of information. The evolutionary steps are repeated with the 

new generation. The process ends after a number of generations a priori determined by 

the user. The symbolic form of the equation strings is encoded into a numerical structure 

to facilitate processing of the symbolic strings. The important stages in the evolutionary 

algorithm are the following. For a more comprehensive and exhaustive treatment of the 

algorithm the reader is referred to [Szpiro, 1997] [131], [Alvarez et al., 2001] [7]. 

5.2.1 Generating the initial population 

The first stage in the evolutionary process is the generation of an initial population of 

individuals as a basis for future generations. If initial estimates of potential solutions of 

the problem are not available, the usual procedure is to consider a randomly generated 

population of equations derived from random combinations of arguments and operators. 

This is accomplished by randomly determining the nature, argument or operator of each 

element in the string followed by the requirement that the final individuals must be 

consistent mathematical expressions. 

5.2.2 Computing the strength of the individuals 

The criterion of the strength of each individual (equation string) in the population is its 

fitness measure. Each individual Wj(···) is used to compute estimates of all y(t) in part 

of the time series, called the training set, as a function of the previous values of the time 

series. For j.t-step ahead predicton problem, the fitness for a candidate model Wj(··· ) is 

then computed as 

T 

~~ = L [y(t)-Wj(y(t-j.tr), y(t-(j.t+1)r), y(t-(j.t+2)r), ... , y(t-(j.t+m-1)rW (5.2) 
f_I . .J..l 
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for a scalar time series, where L = mT, m being the embedding dimension, T being the 

optimal time delay, and T is the total length of the training data set. The numerical 

evaluation of each expression \11 j is carried out using staclcs where the arguments of the 

expression are stacked until required by an operator [Bamford and Curran, 1991] [12]. A 

strength index for each individual can be expressed in the form 

(5.3) 

where y represents the mean value of the training data. The factor Rj , called explained 

variance, can be interpreted as the percentage of the training set's total variance explained 

by the j-equation string. The closer to the unit value Rj , the stronger will be the 

j-individual. A validation or out-of-sample testing set is constituted by the data not 

included in the training set, ie., {y(t)}f:T+l' where N is the total number of data points 

in time series. The validation set is not employed by the algorithm during the selection 

process. A strength of the final best individual allows differentiation between cases in 

which a good estimation of the dynamics is obtained from over-fitting situations. In the 

first case, the strength indexes in the training and validation sets are near one. Over-

fitting occurs when the final individual is weak in the validation set. 

5.2.3 Reproduction and mutation 

Once the mates are selected according to their strength, a crossover of self-contained 

parts between the two parent strings is carried out to generate two new offspring. The 

procedure starts determining randomly one of the arguments, real number or element 

of the time series, in the first string. If the next element to the right of this randomly 

selected argument is an operator, only this argument is considered for interchanging. If 

the next pair to the randomly selected argument represents another argument, the part 

of the string used for the crossover is that which is limited between the randomly selected 
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argument and that element of the string where the numbers of arguments, nal'l and 

the number of operators,nop between the randomly selected argument and the element 

(including both) verify the relation nar = nop + 1. If any of the above criteria are not 

realized, another argument in the string is randomly selected. The object of this procedure 

is to interchange self-consistent parts between the equation strings in order to avoid 

inconsistent mathematical expressions in the offspring. The same operation is carried out 

for the second equation string. The offspring strings can be longer than the parents but 

always bounded by a maximum length 1ltot. If a determined interchange of self-contained 

parts between the parent strings generate an offspring longer than ntot, then this specific 

interchange is not allowed and another self-contained part in one of the parent strings 

is randomly selected for interchanging. This is repeated till the condition is valid. Two 

replicas of the parent strings are also considered as offspring in the reproduction process. 

A mutation is applied to the individuals of the population, except to the top ranked 

equation strings in order to avoid inadvertently losing their information. Each element of 

a determined string has some probability to be changed by a mutation process. A more 

detailed and technical exposition of this evolutionary algorithm is given in [Alvarezet al., 

2001] [7]. 

We make good use of this evolutionary algorithm for modeling our system using 

the information gained from analysis of the attractor. The knowledge of the dynamic 

characteristic Lyapunov exponent also gives insight about the model and the consequent 

prediciton. We build models for data with area of fractions varying from 5% to 40%. 

5.3 Model equations of the stress components 

Using the evolutionary algorithm, we modeled the shear stress u%y component with area 

fraction of particle ifJ = 0.05 and with embedding dimension me = 6 and time delay T 

= 2. We used 38000 data points of which 7000 data points were used for training and 
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the remaining data points were used for validation of the model equation. Our analysis 

described in the previous chapter revealed that at most four dimensions are sufficient for 

complete characterization of the stress fluctuations at area fraction ~ = 0.05. We put 

a higher embedding dimension to see if it needs more dimensions than revealed by our 

analysis. The evolutionary algorithm produced a model equation of the following form 

x_O(t) = (x_O(t-6)+««-2.23)-«x_O(t-6)-«(9.50)*«x_O(t-10)/ 

(O.89))-(x_O(t-4)+ x_O(t-6))))-(x_O(t-6)+x_O(t-6))))* 

(-1.55)))-«O.54)+x_O(t-l0)))*(x_O(t-4)-x_O(t-2)))) 

Taking x = x_0{t-2), y = x_0{t-4), z = x_0(t-6), u = x_0(t-10) and w=x_O(t), we simplified 

this to the form 

w = (x - y){2.23 -14.725y -16.275z + 16.55u) (5.4) 

The equation is able to make global prediction of the future values with more than 

99% accuracy. We observe that the equation contains only four independent variables 

which is in good agreement with our analysis using the tools of nonlinear dynamics and 

chaos theory. Here, we took different sections of a single time series length 50000 and 

modeled each of the different sections. We found that the model equations are statistically 

equivalent to the above equation. Next we took the normal stress (Jyy component with 

area fractions ~ = 0.1. Using the evolutionary algorithm we modeled the normal stress 

(J'IIJ component with embedding dimension me = 7 and time delay T = 2. Our analysis 

using the tools of nonlinear dynamics and chaos theory revealed that four independent 

variables are sufficient to describe the behavior of the system dynamics. For this data we 

got the following model equation in the form 

I_O(t) =(x_O(t-2)+«x_O(t-4)-(x_O(t-2)-x_O(t-4)))/ 

«(-2.42)-(x_O(t-4)-«(9.43)+(-4.41))* 
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((-6.19)-x_O(t-2)))))))-x_O(t-6)))) 

Taking x == x_0(t-2), y = x_0(t-4), z = x_0(t-6), u = x_0(t-10) and w = x_O(t), we 

simplified the above equation to the fonn 

2y-x 
w = x + -------'-------

ax - abx - ax2 - y - z - az + au - 2.42 
(5.5) 

where a = 5.02, b = -6.19. This model equation is able to give a global prediction of stress 

component values with more than 95% accuracy. Note that the number of independent 

variables is four which is what we anticipated from the analysis described in the previous 

chapter. Here, also, we performed model construction for different sections of time series 

of normal stress component and found that the model equations for each of the parts 

are equivalent to the above equation. Next, we took normal stress fluctuations with area 

fraction of particles 4> = 0.2. Our analysis on this data revealed that for a complete 

description of the attractor five independent variables required. We modeled this normal 

stress component and got the following equation as the model equation for the data. 

LO~)= (x_O(t-2)-(x_O(t-4)+«(x_O(t-6)/«-4.21)+«-6.84)+ 

((I_O(t-12) - (x_O (t-4) * «4.58) +(x_O(t-14) /x_O (t-6))))) * 

((-3.61)*(9.24)))))) * (2 .15)) -(x_O(t-2)/ (2.17))))) 

Taking x = x_0(t-2), y = x_0(t-4), z = x_0(t-6), u = x_0(t-12), v = x_(t-14) and w = 

x.O(t), we simplified the above equation to the form 

3.15 2.15z2 

w = 2.15
x 

- Y - auz - abyz - avy -11.05z 
(5.6) 

where a = 33.3564, b = 4.58. 

This equation is able to make global prediction of the future values of the stress 

ftuctuations with an accuracy of more than 92% accuracy. The number of independent 
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variables is in good agreement with our analysis of this time series using methods of 

nonlinear dynamics methods and chaos theory. Also, we, constructed model equation 

for the stress component with area fractions q, = 0.3 with embedding dimension me = 8 

and time delay 7" = 2 using evolutionary algorithm. Our analysis revealed that five or 

six independent variables are required to reconstruct the system dynamics of the stress 

fluctuations at area fractions q, = 0.3. We got the following model equation, 

x_O(t)=(x_O(t-2)+««-5.22)*x_O(t-4»+«x_O(t-2)-(x_O(t-8)* 

(x_O(t-4)*(x_O(t-4)*«8.55)/«x_O(t-14)-(x_O(t-2)* 

for normal stress component with area fraction of particles q, = 0.3. We simplified the 

above equation to the following form by taking x = x_0{t-2), y = x_0{t-4), z = x_0{t-6), 

w = x + ~y + ~ (x ___ bu--,-y2 __ ) 
e e v - xz - cu 

(5.7) 

where a = -5.22, b = 8.55, c = 9.61, d = 2.08 and e = 7.17. This equation is able to give 

global prediction of the future values of the stress component with more than 85% accu

racy. We modeled the stress component of the suspension with area fraction of particles 

~ = 0.4 and we got equations having number of independent variables five. We oberved 

that accuracy of the model equations decreases drastically with rise in concentration of 

particles in the suspension. 

In all the above model construction, we used the time delay 7" = 2. We made this choice 

oftime delay after going through a lot of experimentation with different time delays. The 

methods auto correlation function, average mutual information and space time separation 

plot, give guide lines to choose the proper time delay by suggesting a range of possible 

time delays. We experimented with different time delays suggested by these methods and 
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Figure 5.1: Global prediction of (a) shear stress (jzy and (b) normal stress at 4>=0.05. 

0.015 
aau&\-

0.03 
aau&\-

0.01 
predicted prdicted 

0.Q2 

O.QQI 
0.01 

(jzy (j1l1l 

.(I.QQI 

.(1.01 
.(1.01 

.(1.01' .(1.02 

.(I.Q2 .(1.03 
0 100 200 300 400 500 800 0 100 200 300 400 800 800 - -(a) (b) 

Figure 5.2: Global prediction of (a) shear stress (j%1I and (b) normal stress at 4>=0.10. 

chose that value of time delay to construct reliable model equations whose qualitative 

and quantitative properties are in good agreement with those of the original system. We 

found that the properties of model equations are closer to the properties of the original 

time series for time delays close to 21 3, 4 and 5. For these time delays the properties 

of time series generated from the model equations agree well with the properties of the 

actual time series both qualitatively and quantitatively (see sec.5.4). 

5.4 Comparison of model properties with that of the 
data 

We would like to see to what extent our model equations are able to reproduce the 

qualitive and quantitative properties of the original attractor. We constructed model 
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Figure 5.3: Global prediction of (a) shear stress (Jzy and (b) normal stress at 4>=0.20. 
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Figure 5.4: Global prediction of (a) shear stress (Jzy and (b) normal stress at 4>=0.30. 

equations for both the shear and normal stresses for area fractions of particles 4> in 

the range 0.05 $ 4> $ 0.4 In the following, we shall compare the properties captured 

by the model equations with the corresponding properties of the respective time series. 

Figures (5.1) to (5.5) illustrate the predicted time series using model equations with the 

corresponding time series ofthe actual stress components at their respective area fraction. 

In figure (5.1), figure (a) compares the predicted shear stress at the area fraction 4> = 

0.05 with the original shear stress at that area fraction of particles and figure (b) compares 

the predicted normal stress at the same area fraction of particles with the original normal 

stress at that area fraction of particles. We observe good agreement in both the stress 

components. Similarly, each of the figures (5.2) to (5.5) compares the predicted shear 

and normal stresses with the corresponding shear and normal stresses at area fractions 
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~I"" 5.5: Global prediction of (a) shear stress 11., and (b) normal stress at .p=0.40. 
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Figure 5.6: Logarithm of power spectrum versus frequency for shear stress u%JI at 41=0.05, 
la) actual and (b) predicted 

0= 0.10, 0.20, 0.30 and 0.40 respectively. We observe good agreement of the predicted 

stress components with corresponding actual stress components. We, also, remark that 

!he model building becomes more time consuming as the concentration of the particles 

iDcreases and we observe that the accuracy of the predicted stress components decreases 

with increase in concentration and this is expected as there is monotonic increase in the 

Lyapunov exponent with increasing concentration as a consequence of frequent many-

body interactions in the suspension. 

We, next, performed a frequency decomposition of the predicted stress components for 

the above range of area fraction of particles. We observe a broad band power spectrum 

/or each of the stress components for area fractions 41 in the range 0.05 ~ 41 ~ 0.40. 
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frequency for normal stress "w at 

The power spectrum shows exponential decay. These two properties are common to 

both deterministic chaotic signals and linear autocorrelated noise (or stochastic process) . 

We, also, observe an increase in the range of frequencies over which the decay of power 

occurs with rise in concentration. The figures (5.6) to {5.15} compares these properties 

of the predicted stress components with those of the original stress components for the 

&rea fractions q, over the range 0.05 :::; cP :::; 0.40. In figure (5.6), we compare the power 

spedrum of shear stress predicted using the model equation with the power spectrum 

of the original shear stress with area fraction cP = 0.05. We observe a good degree of 

agreement both qualitatively and quantitatively. It is interesting to note that power 

spectrum plots of the predicted shear stress and actual shear stress are almost identical. 

ID figure (5.7) the power spectrum of the predicted normal stress at area fractions cP = 

0.05 is compared with that of the original normal stress at that area fraction of particles. 

Here, also, we see that both the figures are almost identical having broad band power 

spectrum and exponential decay. The range of frequency over which the exponential 

lkay occurs is same. That is, the properties of the original shear and normal stress 

components are carried over to the predicted shear and nonnal stress components as far 

as the power spectrum properties are concerned. This shows that predicted and actual 

strem! components agree both in qualitative and quantitative properties upto the power 
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Figure 5.8: Logarithm of power spectrum versus frequency for shear stress (1zl1 at 4>=0.10, 
(a) actual and (b) predicted 
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Figure 5.9: Logarithm of power spectrum versus frequency for normal stress uVJI at 
/=0.10, (a) actual and (b) predicted 

spectrum properties for the area fraction particle ~ = 0.05. Figures (5.8) to (5.15) make 

a comparison of shear and normal stresses alternately for area fractions of particles over 

the range 0.10 5 tP $; 0040. For each of the stress components viz. shear and normal 

stresses, the power spectrum plots shows broad band nature and exponential decay of 

powers for time series generated by the respective model equations and these properties 

of model generated stress components agree with those properties of the actual stress 

components at the respective area fraction of particles. 

We, next, computed the autocorrelation function for both stress components viz. 

shear and normal stress components of the model generated stress components over the 

above range of area fraction of particles. We observe good qualitative agreement of 
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Figure 5.10: Logarithm of power spectrum versus frequency for shear stress (1 %y at 1P=0.20, 
(a) actual and (b) predicted 
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Figure 5.11: Logarithm of power spectrum versus frequency for shear stress (1%11 at IP=O.20, 
(a) actual and (b) predicted 
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Figure 5.13: Logarithm of power spectrum versus frequency for normal stress O"w at 
~=O.30, (.) actual and (b) predicted 
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Figure 5.14: Logarithm of power spectrum versus frequency for shear stress 0"%1/ at ~=0.40, 
(a) actual and (b) predicted 
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Figure 5.15: Logarithm of power spectrum versus frequency for normal stress 0"1IlI at 
~={).40, (a) actual and (b) predicted 
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Figure 5.16: Autocorrelation function for (a) shear stress u zy and (b) normal stress Uyy 

at tP=0.05. 

the auto correlation function with that of the original stress components. We computed 

the time delays at which the auto correlation functions of the model generated stress 

components attains local minimum. We observe that for fixed area fraction of particles, 

the auto correlation function of both the stress components attains the local minimum at 

the same time delay. There is a high degree of agreement in the qualitative nature of the 

figures for both stress components at all the area fractions of particles. The figures (5.16) 

to (5.20) compare the auto correlation functions of original stress components (continuous 

line in the figures) and autocorrelation function of the model generated stress components 

(dots in the figures). Good qualitative agreement is clearly visible. We computed the 

local minima of auto correlation functions from these figures and the Table (5.1) compares 

the quantitative agreement of the local minima attained by the stress components for a 

range of area fractions of particles. Here, also, we get good agreement. 

Next, we computed the average mutual information function for the stress compo-

nents generated by the model equation for area fraction of particles over the range 

0.05 5 tP 5 0.40. The figures (5.21) to (5.25) compares the average mutual function 

of the model generated stress (dots in the figures) components with that of the simu-

lated stress components (continuous line in the figures) using Stokesian Dynamics. we 

get excellent qualitative equivalence of the average mutual information function for the 
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Figure 5.17: Autocorrelation function for (a) shear stress azy and (b) normal stress a yy 

at 4>=0.10. 

1duaI- IduaI 

0.' 
pr.t- 0.8 pr.t-

0.8 
0.8 

I I 0.4 
0.4 

i 0.2 
0.2 "'~\ v~ . 

.0.2 

.0.2 
........... -_ .•.. 

.0.4 

.0.4 .0.8 
0 20 40 BD BD 100 0 20 40 BD BD 100 

dlloy_ dUr-

(a) (b) 

Figure 5.18: Autocorrelation function for (a) shear stress aZ!I and (b) normal stress a!l!l 

at 4>=0.20. 
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Figure 5.19: Autocorrelation function for (a) shear stress azy and (b) normal stress a!l!l 

at ~=0.30. 
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Figure 5.20: Autocorrelation function for (a) shear stress u zy and (b) normal stress u yy 

at t/l=OAO. 
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Figure 5.21: Average mutual information for (a) shear stress uzy and (b) normal stress 
(Jyy at t/l=O.05. 

model generated stress components and that of the original stress components simulated 

using Stokesian Dynamics over the above range of particle concentration. The Table 

(5.2) compares the delay times at which average mutual information function of the ac-

tual stress components u zy and u yy (continuous line) simulated using Stokesian Dynamics 

method attains local minima with that of the model generated stress components (dots) 

as observed from figures (5.21) to (5.25). To a great extent, we obtain good quantitative 

equivalence of the properties of simulated stress components and model generated stress 

components. We, also, observe that the accuracy deteriorates with increasing concentra-

tion. 

We next perform the comparison of space-time separation plots of the model generated 



5.4 Comparison of model properties with that of the data 147 

11 :xy or uyy 11 ~50511 ~.10 11 ~.20 11 ~.30 11 ~.40 11 
(a) 

11 :xy or Uyy 11 ~50511 ~.10 11 ~.20 11 ~.30 11 ~.40 11 
(b) 

Table 5.1: Comparison of the local minima attained by the auto correlation function of 
(a) the actual stress components uxy and Uw simulated using Stokesian Dynamics with 
that of the (b) model generated stress components as observed from figures (5.16) to 
(5.20) 
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Figure 5.22: Average mutual information for (a) shear stress Uxy and (b) normal stress 
ulIIJ at 4J=0.10. 
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Figure 5.23: Average mutual information for (a) shear stress Uxy and (b) normal stress 
(1w at 4J=0.20. 
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Figure 5.24: Average mutual information for (a) shear stress u xy and (b) normal stress 
u1I!J at q,=0.30. 
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Figure 5.25: Average mutual information for (a) shear stress Uxy and (b) normal stress 
u1I!J at q,=OAO. 

q, 0.05 0.10 0.20 0.30 0040 
Uxy 10 6 7 6 6 
U1l1l 9 5 6 5 5 

(a) 
q, 0.05 0.10 0.20 0.30 0040 
u xy 10 5 6 5 5 
u 1l1l 9 4 8 4 4 

(b) 

Table 5.2: Comparison of the local minima attained by the average mutual information 
function of (a) the actual stress components uxy and uyy simulated using Stokesian Dy
namics with that of (b) the model generated stress components as observed from figures 
(5.21) to (5.25) 
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Figure 5.26: Space-time separation plot of (a) actual and (b) predicted shear stress (T:ty 

at 4>=0.05. 

stress components with that of the simulated stress components1 using the Stokesian 

Dynamics method for the different area fractions of particles over the range 0.05 ~ 4> ~ 

0.4. The figures (5.26) to (5.35) compares the space-time separation plots of the model 

generated stress components (figure (b) in all figures) with that of the simulated stress 

components (figure (a) in all figures) for the above range of area fraction of particles. We 

observe high degree of qualitative equivalence of the properties of space-time separation 

plots for both the stress components for all the particle concentration considered in this 

comparison. We estimated the approximate delay time above which the contour lines 

in the space-time separation plots for the model generated stress components attains 

saturation. Table (5.3) compares the delay time above the contour lines of space-time 

separation plots of model generated stress components with that of the simulated stress 

components. We can observe great deal of agreement between these delays for both shear 

and normal stress components. 

In the preceding discussion1 we compared the power spectruml autocorrelation func-

tion, average mutual information function and space-time separation plots of the simu-

lated stress components of Stokesian suspension with that of the model generated stress 

components for a range of particle concentrations. We observed a high degree of equiva-

lence between both simulated data and model generated data in respect of the qualitative 
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Figure 5.27: Space-time separation plot of (a) actual and (b) predicted normal stress (1w 
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Figure 5.28: Spa<e-time separation plot of (a) actual and (b) predicted shear stress u., 
at FO.I0. 

properties characterized by these methods. We, also, observe a great extent of agreement 

in quantitative properties. 

Next, we cheek how far our model equations are able to capture the qualitative and 

quantitative topological (geometrical) and dynamical characteristics of the simulated 

stress components of Stokesian suspension. We have already estimated the probable 

optimal delay time using autoconelation function, average mutual information and space-

time separation plots. These values are in close agreement with those of the simulated 

stress component values. Here also, we take delay time T = 2 to compute the correlation 
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Figure 5.29: Space-time separation plot of (a) actual and (b) predicted normal stress (11/11 

at q,=0.10. 
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Figure 5.30: Space-time separation plot of (a) actual and (b) predicted shear stress (1~ 
at q,=0.20. 
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Figure 5.31: Space-time separation plot of (a) actual and (b) predicted normal stress (11/11 

at q,=0.20. 
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Figure 5.32: Space-time separation plot of (a) actual and (b) predicted shear stress <1,> 
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Figure 5.34: Space-time separation plot of (a) actual and (b) predicted shear stress (]~ 
al ~=0.40. 
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Figure 5.35: Space-time separation plot of (a) actual and (b) predicted normal stress U1J1J 

at 4>=0.40. 

integral estimate from the model generated stress components. 

4> 0.05 0.10 0.20 0.30 0.40 
uzy 35 25 23 20 15 
u1I1I 30 17 17 17 15 

(a) 

4> 0.05 0.10 0.20 0.30 0.40 
UZ1J 33 24 30 19 17 
u1I1/ 34 18 20 19 18 

(b) 

Table 5.3: Comparison of the approximate delay time at which the contour lines in the 
space-time separtion plots attains saturation for (a) the simulated stress components u zy 

and u1I1I using Stokesian Dynamics with that of (b) the model generated stress components 
for area fraction 0.05 :5 4> :5 0.40 as observed from figures (5.26) to (5.35) 

A typical plot of the correlation integral versus radius of the hpersphere is shown in 

figure(figure). This is for model generated normal stress u1I1I at area fraction 4> = 0.20. 

There is good qualitative agreement of correlation integral figures of the model gener-

ated stress components with the corresponding figures of the simulated stress components 

from Stokesian Dynamics simulation method. So we use more or less the same respective 

dimensions for computing the Lyapunov exponent of the model generated stress compo-

nents. 

Next, we consider the estimation the Lyapunov exponent from the model generated 
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Figure 5.36: A typical figure showing an approximate correlation dimension of the pre
dicted normal stress UY1J at 4>=0.20. 
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Figure 5.37: Exponential divergence plot of (a) actual and (b) predicted shear stress Uzy 

at 4>=0.05. 
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Figure 5.38: Exponential divergence plot of (a) actual and (b) predicted normal stress 
CTVII at 4>=0.05. 
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Figure 5.39: Exponential divergence plot of (a) actual and (b) predicted shear stress (Jzy 

at 1/>=0.10. 
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Figure 5.40: Exponential divergence plot of (a) actual and (b) predicted normal stress 
(J1J1J at 1/>=0.10. 

stress components for area fraction of particles over the range 0.05 ~ I/> ~ 0.4. We found 

good qualitative agreement in figures{5.37) to (5.46) with their corresponding figures of 

the simulated stress components. We can also observe good quantitative agreement in 

these figures. 

5.5 Discussion 

In chapter 4, we analysed the time series of stress fluctuations using the tools of nonlinear 

time series analysis and chaos theory of the sheared Stokesian suspensions simulated us-

ing Stokesian Dynamics Simulation method formulated by [Brady Bossis, 1988] [19] and 

modified for Couette gaps by [Singh and Prabhu, 2000] [122] , for different area fraction 
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Figure 5.41: Exponential divergence plot of (a) actual and (b) predicted shear stress Uzy 

at </J=O.20. 
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Figure 5.42: Exponential divergence plot of (a) actual and (b) predicted normal stress 
(1111/ at </J=O.20. 
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Figure 5.43: Exponential divergence plot of (a) actual and (b) predicted shear stress UZ7J 

at </J=O.30. 
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Figure 5.44: Exponential divergence plot of (a) actual and (b) predicted normal stress 
{]Y1J at 4>=0.30. 
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Figure 5.45: Exponential divergence plot of (a) actual and (b) predicted shear stress Uxy 

at 4>=0.40. 
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Figure 5.46: Exponential divergence plot of (a) actual and (b) predicted normal stress 
Uyy at 4>=0.40. 
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of particles over the range 0.05 :5 cP :5 0.6. We provided concrete numerical evidence 

to establish the fact that the underlying attractor governing stress fluctuations of the 

sheared Stokesian suspension is low-dimensional, deterministic and chaotic. The chaotic 

nature of the attractor indicates that accurate short-term predictions can performed. 

Thus, we performed prediction of future values of times series with considerable success. 

We, also, performed a cross-prediction of one time series from another time series using 

the insight obtained from the analysis. In chapter 5, we developed model equations for 

the stress components over the range of area fractions 0.05 :5 cP :5 0.4 using an evolution

ary algorithm called Darwin. The model equations of the simulated stress components at 

each area fraction of particles generated time series of stress components whose proper

ties are in good agreement with the properties of the simulated stress components both 

qualitatively and qunatitatively. The close equivalence of both qualitative and to a great 

extent quantitative properties of simulated and model generated stress fluctuations show 

the reliability of our analysis. We observed that the number of independent variables in 

the model equations required to describe the stress fluctuations at each area fraction of 

particles were the same as the embedding dimension for the reconstruction of the chaotic 

attractor of simulated stress fluctuations at the respective area fraction of particles. 

5.6 Future work 

We observed that one stress component can be predicted using another stress component 

at the same area fraction. This implies a type of synchroniztion of one stress compo

nent with another stress component. This finding suggests us to further analysis of the 

synchronization of stress components with another stress component at the same or dif

ferent area fraction of particles. The different model equations of stress components for 

different area fraction of particles hints at the possible existence a general formula for 

stress fluctuations with area fraction of particle as a parameter. To make a conclusive 
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statement further analysis is required. Also, the existence of such a general formula for 

stress components will open up more directions for further analysis: for example, control 

of temporal stress fluctuations by proper manipulation of model parameters, expanding 

parameter space for bifurcations analysis and also to examine the possible existence of 

new phenomena or manifestation of existing phenomena. 

5.7 Publications 

The following publications resulted during the above work. 

* Dasan, J., Ramamohan, T. R., Singh, A. and Nott, P. R., "Stress fluctuations in 

sheared Stokesian suspensions," Phys. Rev. E, 66 pp.021409:1-14 (2002). 

* Anil Kumar, C. V., Dasan, J. and T. R. Ramamohan "Comparative analysis of a 

heuristic control of chaos algorithm in some model systems," Int. J. of Bifurcation 

and Chaos, 10, 1, pp.237-249 (2000). 

* Radhakrishnan, K, Asokan, K, Dasan, J., Chandrashekara Bhat, C. and T. R. 

Ramamohan "Numerical evidence for the existence of a low-dimensional attractor 

and its implications in the rheology of dilute suspensions of periodically forced 

slender bodies," Phys. Rev. E, 60(6), pp.6602-6609 (1999). 

* Asokan, K, Anil Kumar, C. V., Dasan, J., Radhakrishnan, K, Satheesh Kumar, 

K and T. R. Ram amohan , "Review of chaos in the dynamics and rheology of sus

pensions of orient able particles in simple shear flow subject to an external periodic 

force," J. Non-Newtonian Fluid Mech. 129, pp.128-142 (2005). 
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