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CHAPTERl

INTRODUCTION

1.1 Frame theory

The first mathematician to take the notion of open set as basic to the study of

continuity properties was Hausdorff in 1914. Using the lattice ofopen sets, Marshal stone

[ST]1 was able to give topological representation of Boolean algebras and distributive

lattices and H. Wallman(1938) [WA] used lattice theoretic constructs to obtain the

wallman compactification. In the 1940's McKinsey and Tarski [M; T] studied the

"algebra of topology" that is topology studied from a lattice theoretical viewpoint. But a

fundamental change in the outlook came in late fifties; Charles Ehresmann [EH] in 1959

first articulated the view that a complete lattice with an appropriate distributivity property

deserved to be studied in their own right rather than simply as a means to study

topological spaces. He called the lattice a local lattice. Dowker and Strauss([D; P] I,

[D; Ph, [D; P]3) introduced the term frame for a local lattice and extended many results

of topology to frame theory. It was with the publication of John Isbell's "Atomless parts

of spaces" [IS]I in 1972 that the real importance of the subject emerged. Since then

Frame theory is studied extensively by many authors.

1.2 Fuzzy set theory

Among the various paradigmatic changes in science and mathematics in this

century, one such change concerns the concept of uncertainty. According to the

traditional view, science should strive for certainty in all its manifestations hence,
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uncertainty (vagueness) is regarded as unscientific. According to modem view,

uncertainty is considered essential to science; it is not only an unavoidable plague, but it

has, in fact, a great utility. L.A. Zadeh in 1965 introduced the notion of fuzzy sets [ZAh

to describe vagueness mathematically in its very abstractness and tried to solve such

problems by giving a certain grade ofmembership to each member of a given set. This in

fact laid the foundations of fuzzy set theory. Zadeh has defined a fuzzy set as a

generalisation of the characteristic function of a subset. A fuzzy set can be defined

mathematically by assigning to each possible individual in the universe of discourse, a

value representing its grade of membership in the fuzzy set. The membership grades are

very often represented by real numbers in the closed interval between 0 and 1. The nearer

the value of an element to unity, the higher the grade of its membership. The fuzzy set

theory has a wider scope of applicability than classical set theory in solving various

problems. Fuzzy set theory in the last three decades has developed along two lines:

1. as a formal theory which got formalised by generalizing the original ideas

and concepts in classical mathematical areas.

2. as a very powerful modeling language, that can cope with a large fraction

ofuncertainties ofreal life situations.

1.3 Intuitionistic fuzzy set theory

In 1983, K. Atanassov proposed a generalization of the notion of fuzzy set, [ATh

known as Intuitionistic Fuzzy sets. He introduced a new component degree of non

membership in addition to the degree of membership in the case of fuzzy sets with the

requirement that their sum be less than or equal to one. The complement of the two
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degrees to one is regarded as a degree of uncertainty. Since then a great number of

theoretical and practical results appeared in the area of Intuitionistic Fuzzy sets.

1.4 Summary of the Thesis

The main objective of this thesis is to study frames in Fuzzy and Intuitionistic

Fuzzy contexts. The whole work is divided into six chapters. A brief chapter wise

description of the thesis is given below.

Chapter 1

This is devoted to the basic definitions and results concerning Frames, Fuzzy sets

and Intuitionistic Fuzzy sets which are required in the succeeding sections. All results

here are quoted from existing literature.

Chapter 2

In this chapter we introduce the notion of fuzzy frames and we prove some results,

which include

• If P is a fuzzy subset of a frame F, then p is a fuzzy frame of'F iff each

non-empty level subset u, of p is a subframe of F.

• The category FuzzFrm of fuzzy frames has products.

• The category FuzzFrm of fuzzy frames is complete.

Chapter 3

In this chapter we introduce the notion of fuzzy quotient frames. The operation of

binary meet and arbitrary join on a frame F induces, through Zadeh's extension principle

new operations on the partially ordered set IF. Here we define a fuzzy-quotient frame ofF

to be a fuzzy partition of F, that is, a subset of IF and having a frame structure with
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respect to new operations. We also define and study fuzzy ideals over F. The results

proved in this chapter include

• If P and r are fuzzy frames of a frame F having supremum property with

respectto /\ and v then pAr and pv r are fuzzy frames of F.

• IfR is an invariant fuzzy binary relation on a frame F then its fuzzy

partition PR is a fuzzy quotient frame ofF.

• The set If F of all fuzzy ideals of the frame F is a frame.

Chapter 4

In this chapter we define and study the notion of intuitionistic fuzzy frames and

obtain some results, which include

• If A is an intuitionistic fuzzy set in F then A is an intuitionistic fuzzy frame

of F iff DA and 0A ( 'necessity' and 'possibility' operators ) are

intuitionistic fuzzy frames ofF.

• IfA is an intuitionistic fuzzy set on F then A is an intuitionistic fuzzy frame

on F iff every non empty level set A b te [O,l]of A is a subframe of the

frameF.

• The category IFFrmof intuitionistic fuzzy frames has products.

• The category IFFrm ofintuitionistic fuzzy frames is complete.

Chapter 5

In this chapter we introduce the concept of Intuitionistic fuzzy Quotient frames

and has obtained the result:

4



• IfR is an invariant intuitionistic fuzzy similarity relation on a frame F then

its fuzzy partition PR is an intuitionistic fuzzy quotient frame ofF.

Chapter 6

Here we establish the categorical link between frames and intuitionistic fuzzy

topologies. The main results include the following:

• U is a contravariant functor from the category IFTOP of intuitionistic

fuzzy topological space to the category FRM of frames.

• ~ is a contravariant functor from the category FRM of frames to the

category IFTOP of intuitionistic fuzzy topological spaces.

• ~ and n are adjoint on the right.

1.5 Basic Defmitions and Results

1.5(a) Frames and Topological spaces

In the same way as the notion of Boolean algebra appears as an abstraction of the

power set P(X) of a set X, the notion of frame arises as an abstraction from the topology

T of the topological space (X, T ).

The following definitions are adapted from [BA]h [BAh, [BAh, [D; Ph , [D; P]4,

[JOh ,[PI], [VIe]

Deflnition 1.5.1. A frame is a complete lattice L satisfying the distributive law x 1\ (V S)

= V {XI\S IseS} for all xeL and S~L, where 1\ denotes binary meet and V denotes

arbitrary join.
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Defmition 1.5.2. A subset M ofa frame L is a subframe ofL if 0L, eL eM where 0L

and eL are respectively bottom and top element of L, and M is closed under finite meets

and arbitrary joins.

Note 1.5.3. Given a, b eL a frame, with as b then [a,b]= {xeL Ia S xS b} is a frame

but not a subframe ofL.

Defmition 1.5.4. For frames L, M a map h: L--.+M is a frame homomorphism if h

preserves finite meets (including top or unit element) and arbitrary joins (including

bottom or zero element). That is h(aAb) = h(a) Ah(b) and h(V X) =V h(x) for all a, beL

andXcL.

Defmition 1.5.5. For a family of frames {L,lie I}, its product L is the Cartesian product

of underlying sets with S defined as (aJ i eA S (bJ i eA iff ai S b, for all i e I.

Definition 1.5.6. For any frame F, a subset J c F is an ideal if, J is a downset that is if (a e J,

b S a) => be J and J is closed under finitejoins.

Proposition 1.5.7.The set JF of all ideals of a frame F is a frame, under inclusion order.

There is an important relation between frames and topological spaces which we

describe below. The category of frames and frame homomorphisms will be denoted by

Frm. The category oftopological spaces and continuous maps will be denoted by Top.

Defmition 1.5.8. The contravariant functor n : Top --.+ Frm which assigns to each

topological space (X, r ) its frame 't of open sets and to each continuous function
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I: (X, T) ~ (X', 1") the frame map 0.(/): 1" ~ T given by o.(/)(u) = rJ(u), where

UE 1" is called the open functor from Top to Frm.

Defmition 1.5.9. Let L be a frame. The spectrum of L is the set ptL of all frame

homomorphisms p: L ~ {O, I} with the spectral topology 'Z"ptL = { r, I x EL} where

~ = {pe ptL Ip(x) = I}. The contravariant functor 1: : Frm ~ Top which assigns to each

frame its spectrum 1:(L) = (ptL, 'Z"ptL) and to each frame map f: L ~ L' the continuous

map 1:(f) : 1:(L') ~ 1:( L ) given by 1:(f)(P) = po f , where p is a point of L' is called the

spectrum functor from Frm to Top.

Theorem 1.5.10. ~ and 0. are adjoint on the right with adjunctions lh.: L ~ 0. 1:L given

by a ~ 1:a and &x: X~ 1: o.X given by x ~ x where x(U)= card(U n{x}).

1.5(b) Fuzzy Sets

The following definitions are adapted from [DU; P], [K; Y] , [MO; M], [OV],

[ZA]J , [ZI].

Defmition 1.5.11. A fuzzy set p ofa set X is a function from X to I where I = [0, 1].

Defmition 1.5.12. The set all fuzzy sets of X, denoted by IX is the set of all functions

from X to [0, 1].

Defmition 1.5.13. Let p and r be fuzzy sets of a non empty set X. Then

p=r ~ p(x)=r(x) for all xeX
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p c y ~ p (x) s y (x) for all xe X

u v y= t5~ t5(x) = max {p(x),y(x)} forallxeX

P A y= t5 ~ t5(x) =min {p(x),y(x)} for all xeX

Defmition 1.5.14. Let {,ual a eA} c IX. Then define n ,u. (a) = inf{ ,ua(a) Ia eA}
ieA I

and U,u.(a) =sup{,ua(a) I a eA}.
ieA I

Defmition 1.5.15. If ,u is fuzzy set ofX, for any t e I the set J.L t = {ae X I,u(a) ~ t} and

>
,ut = {ae X I,u(a) > t} are respectively called level subset and strong level subset of ,u.

Defmition 1.5.16. If ,u is fuzzy set of X then the height of J.L IS defined by

hgt( J.L) = sup J.L(x).
xeX

Proposition 1.5.17. Let p and y be fuzzy sets of a non empty set X. Then (p u r s, =

Defmition 1.5.18. Let X and Y be two non empty sets and J.L any fuzzy set of X. Let I

a function from X into Y. Then J.L is said to bel-invariant if for all x, ye X ,/(x) =I(y)

=> ,u(x) =J.L(y).

Proposition 1.5.19. Let I be a mapping from a set S to a set M and let {J.La I a e A I}

and {A.a I a e A2} be families of fuzzy sets in S and M respectively. Then we have,
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i) f( U Pa) = U f(Pa) ii) f -I( U Aa) = U f -1(Aa) iii) f f -1(Aa) =Aa if f is
aeAI aeAI ueA2 aeA2

surjective iv) f -If(Pa) =Pa if f.la is f -invariant.

Defmition 1.5.20. Let ® be any arithmetic operation and A, B any two fuzzy numbers

then by Zadeh's extension principle A®B is a fuzzy set given by A®B(z) =

sup min[A(x), B(y)]
z=x0y

Defmition 1.5.21. A fuzzy binary relation R of a set X is a function from XxX to I

where I = [0, 1].

Defmition 1.5.22. A fuzzy binary relation R on a set X (Relxxx) is said to be a fuzzy

similarity relation if it satisfies for all x, y, z eX

1.

2.

3.

R (x, x) = 1

R (x, y) =R (y, x)

R (x, y) A R (y, z) s R (x, z)

( reflexive )

( symmetric)

( transitive )

I.5(c) Intuitionistic Fuzzy Sets

The following definitions are adapted from [AT].,[ATJ2, [B;Bh,[COh, [COh,[D; K]

Defmition 1.5.23. An intuitionistic fuzzy set A in a nonempty set X is an object having

the form A= {(x, f.lA(X), r A(X» I xeX} where the functions f.lA : X~ [0,1] and

r A : X~ [0,1] denote the degree of membership and degree of nonmembership

respectively and °~ f.lA(X) + rA(X) ~ 1 for all x e X.
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Defmition 1.5.24. Let X be a non empty set and let A = {(x, JlA(X), YA(X» IxeX} and

B= {(x, JlB(X), YB(X» IxeX} be intuitionistic fuzzy sets in X. Then,

i) A cB ifand only if JlA(X) s JlB(X) and YA(X) ~ YB(X) for all x eX

ii) A=Bifandonlyif A ~ BandB ~A

Hi) A = {(x, YA(X), JlA(X» IxeX}

vi) DA = {(x, JlA(X), 1-JlA(X» IxeX}

vii) OA= {(x, l-YA(X), YA(X» IxeX}

Remark 1.5.25. Operators 0 and 0 are called [AT]I respectively 'necessity' and

'possibility' which will transform every intuitionistic fuzzy set in to a fuzzy set.

Defmition 1.5.26. Let {A i lie A} be an arbitrary family of intuitionistic fuzzy sets in X

then,

i)

ii)

nA.= {(x, /\PAi(x), vr Ai (x) [xeX}
ieA 1 .

UA. = {(x, V JlAi (x), /\y Ai (x» Ix eX}
ieA 1

Definition 1.5.27. Let A= {(x,JlA(X), YA(X» IxeX} be an intuitionistic fuzzy set in X. For

any t E[0,1], A t = {xE X IYA(X) ~ t ~ JlA(X)} is called a level subset of the intuitionistic

fuzzy set A.
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Result 1.5.28. Let A and B be intuitionistic fuzzy sets of a non empty set X. Then

Defmition 1.5.29. Let X and Y be two non empty sets. An intuitionistic fuzzy relation

R is an intuitionistic fuzzy set ofX xY given by,

R = {«x, y),,uR (x, y), YR (x, y» I x e X, y e Y} where J.l : XxV ~ [0, I]
R

and r :XxV ~ [0, I] satisfy the condition, O~ ,u R(x, y) + YR (x, y) s I for every
R

(x, y) e XxY.

IFR( XxY) denote the set ofall intuitionistic fuzzy subsets of XxV.

1.5(d) Category Theory

The following definitions are adapted from [A; H; S], [BO], [JO]z , [MA]

Definition 1.5.30. A category C consists of three things:

(b) A class ofobject, ob C denoted by capital letters

(c) For each ordered pair of objects (A, B), a set hom(A, B) whose elements

are called morphisms with domain A and codomain B.

(d) For every ordered triple of objects (A, B, C) a map (f, g )~gof of the

product set hom(A, B) x hom(B, C) into hom(A, C).

Also the objects and morphisms satisfy the following conditions

1. If (A, B) ~ (C, D) then hom(A, B) and hom(C, D) are disjoint.

2. If f e hom(A, B), ge hom(B, C) and he hom(C, D) then (hg}f= h(gf).

11



3. For every object A we have an element lA E hom(A, A) such that/o lA =1

for every f e hom(A, B) and lA 0 g = g for every g E hom(B, A)

DefInition 1.5.31. Let C be a category then the dual category ofC is denoted by CoP and

is defined as,

(a)

(b)

(c)

ob COP=ob C

horn (A, B) = hornc (B, A)
cOP

If I E horn (A, B) and g E horn (B, D) then go I ( in CoP) =
cOP cOP

log (as given in C)

Deflnition 1.5.32. Let C and D be two categories, then a covariant functor F : C ~ D

consists of,

(a) AmapA HF AofobC intoobD

(b) For every pair of objects (A, B) ofC a map j" H F(/) of hom c (A, B)

into hom
D

(F A, F B).

Also these satisfy the following conditions:

(1) Ifgo lis defined in C then F(go I) = F(g) 0 F(f)

(2) F(IA ) = IF A

DefInition 1.5.33. A contravariant functor from C to D is defined to be a covariant

functor from CoP to D.

12



Defmition 1.5.34. Let / and g be C- morphisms from A to B. A pair (E, e) is called an

equalizer in C of / and g if (I) e: E ~A is a C- morphism (2)/ «e =go e and (3) for

any C- morphism e' : E' ~A such that /0 e' = go e', there exist a unique C- morphism

e: E' ~E such that e' =eo e

Defmition 1.5.35. Let {Aal a EA} be an indexed set of objects in a category C we

define a product TIAa of the Az to be a set {A, Pal a EA} where A E ob C,

Pa E home (A, Az) such that if B E ob C and / a E home (B, Az), a E A then there

exist a unique f E home (B, A) such that P a 0 / = / a .

Result 1.5.36. A category C is complete if and only if it has equalizers and products over

arbitrary sets ofobjects.

Defmition 1.5.37. Let C and D be two categories and F and G be two functors from C to

D. Then a natural transformation TJ from F to G is a map that assigns to each object A in

C amorphism TJA E hom 0 (F A, G A) such that for any object A, B of C and any /

Ehome (A, B) we have G(f)o TJA = TJB 0 F(f).

Deflnltion 1.5.38. Let A and X be categories. An adjunction from X to A is a triple

F
( F, G, q» : X ~ A , where F and G are functors X ( G ) A while q> is a function

which assigns to each pair of objects x E X, a E A a bijection q> = <Px a: A( Fx, a ) ==.
X( x,Ga).
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Here A( Fx, a) is a bifunctor XJP x A F x Id ) AOP x A hom) set which sends

each pair of objects (x, a) to the horn-set A( Fx, a) and X(x, Ga) is a similar bifunctor

XJP x A -e set, The naturality of the bijection <p means that for all k: a~ a' and h: x' ~x

both the diagrams:

A( F x, a) <p ) X(x, Ga) A( F x, a) <p ) X(x, G a)

k·l l(Gk). (Fh)'l 1h' (I)

A( Fx, a') <p ) X(x, Ga') A( Fx', a) <p ) X(x',Ga)

commute. Here k- = A(F x, k) and h· = X(h, G a)

Remark 1.5.39. Adjunction may also be described as bijections which assigns to each

arrow f: F x ~ a an arrow <p 1 : x ~ G a the right adjunct of f, such that the

condition of (I) <p (I of h) = <p 1 oh, <p (k 0 I) = G k» <p 1 hold for all 1 and all arrows

h: x' ~x and k: a~ a' . Given such an adjunction, the functor F is said to be a left adjoint

forG, while G is called a right adjoint for F.
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CHAPTER 2

FUZZY FRAMES0

2.1 Introduction

In this chapter we generalise the concept of Frame in to a Fuzzy Frame and

some results related to that are obtained.

2.2 Fuzzy Frame

We give the following definition for fuzzy frame.

Defmition 2.2.1. Let F be a frame; then a fuzzy set J.l : F~ [0, I] of F is said to be a

fuzzy frame if,

(FI) J.l(V S) ~ inf {J.l (a) IaeS} for every arbitrary ScF

(F2) J.l( aA b) ~ min {J.l (a), J.l (b)} for all a, b e F

(F3) J.l( eF) = J.l (OF) ~ J.l(a) for all ae F, where eF and OF are respectively

the unit and zero element of the frame F.

a
Example 2.2.2. Let J.l be a fuzzy set ofI=[O, I] defined by,

a, x=O,I

a I
J.l (x) = x, °<x;:s;-

2

I-x,
I
-<x<I
2

where a is some chosen element in (t ,I]

a
Then J.l is a fuzzy frame ofl.

o Some of the results in this chapter were accepted for publication in the Journal Tripura Mathematical Society
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Example 2.2.3. Consider the set R ofreal numbers with usual topology r , which is

a frame. Let J.l be a fuzzy set in r defined by,

J.l(u) = {l
2'

where u er

Then J.l is a fuzzy frame of t .

Example 2.2.4. Let F be a frame with n elements. Let (FJi = 1, 2, __ ., 2m be a strictly

increasing chain of subframes of F where F1 = {e F ,OF } and F2m = F. Define fuzzy

sets J.l and A on F as follows,

u, F~ [0,1] such that

1
~+1' ifxeF2k+1-F2k _ 1 fcck=I,2, ... .m-l

J.l (eF)= J.l (OF)= I, J.l(x)= 1.
2m+l' if x e F2m - F2m - 1

A: F~ [0,1] such that

Then J.l and A are fuzzy frames ofF.

Proposition 2.2.5. If J.l is a fuzzy frame of F then J.l t is a sub frame of F for any te I

Proof. For arbitrary {3ih e A c J.l t we have J.l(V 3i) ~ t, since J.l is a fuzzy frame and

16



/.l(a.) ~ t for all i , Hence V a, e f.l t- Similarly for all a, be f.lt we have a A b e f.l t- Also

clearly ep, 0 p e f.lt Therefore f.l t is a subframe ofF.

Remark 2.2.6. IfE is a subset of a frame F then E is a subframe of F if and only ifXE is

a fuzzy frame ofF, where XE is the characteristic function ofE.

Defmition 2.2.7. Let f.l be a fuzzy frame and ,u. be a level subset of the frame F for

some te I with t~ f.l( ep) . Then f.lt is called a level subframe ofF.

Denote ,u t > u', if ,u t :::> Jl: .Now since t < l' if and only if ,u. > ,u'. for any t, t'

in f.l(F) every fuzzy frame of a frame F gives a chain with level sub frames ofF,

{Op, ep }= f.l lo <f.l t) < ... <f.ltr=Fwheretjelmf.l and to>t1> ... >tr.

Since all subframes of a frame F usually do not form a chain we have not all subframes

are level sub frames ofthe same fuzzy frame.

We shall denote the chain of level subframes of a frame F by r p (F).

Defmition 2.2.8. Let X be the set of all fuzzy frames of F, the relation" - " in X defined

by u : fl if and only if for all x, ye F, J.l(x) > J.l(y) ~ fl (x) > fl (y). Then" - " is an

equivalence relation on X.

Proposition 2.2.9. Let J.l and fl be two fuzzy frames of a frame F then J.l - fl if and

only if I' p (F) = r p' (F).
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Proof. Let J..l tE r JI (F) and take t' = inf {p (a) I ae J..l t} then Jl I = Jl:. Similarly if

,u~ E r JlI (F) and t = inf {J..l (a) I aE Jl;} then Jl~ = Jl I • Hence r JI (F) = r JlI (F).

Converselyfor any x, y in F if J..l(x) > J..l(y) then y ~ J..l JI (x) =Jl; and p (y)< t ~ J..l(x) it

follows that p (x) >p (y). Similarly p (x) >P(y) implies that J..l(x) > J..l(y). Hence

/-l-p.

Note 2.2.10. Thus two fuzzy frames J..l and 17 of a frame F are said to be equivalent if

they have the same family oflevel subframes otherwise J..l and 17 are non-equivalent.

We shall denote the equivalence class of J..l by [J..ll.

Proposition 2.2.11. If two equivalent fuzzy frames J..l and 17 of a frame have the same

image sets then J..l = 17.

Proof. Obvious.

Proposition 2.2.12. If each non-empty level subset JlI, tE I of a fuzzy set Jl is a

subframe of F, then Jl is a fuzzy frame of F.

Proof. Given JlI = {XE F IJ..l(x) ~t}, t El is a subframe of F. III being a subframe

OF, eF E JlI , t El. In particular we have 0 F, eF E J.Lr where T the largest element of I

such that JlT "# r). Hence J..l( eF) = J..l (OF) = T ~ J..l(a) for all aE F. Now let S an

arbitrary subset of F and let t = inf {J..l ( a) Ia E S }. Clearly we have S c JlI hence

18



V Se u, and therefore f.l(V S) ~ inf {J.l (a)}1 aeS}. Similarly for all a, be F we have

f.l( a" b) ~ min {J.l (a), f.l (b) }. Hence J.l is a fuzzy frame ofF.

Theorem 2.2.13. Let J.l be a fuzzy subset of a frame F. Then J.l is a fuzzy frame of F if

and only if each non-empty level subset Il, of J.l is a subframe of F.

Proof. Follows from Proposition 2.2.5 and Proposition 2.2.12.

Theorem 2.2.14. Let F be a frame of finite order then there exists a fuzzy frame f.l of F

such that r Jl (F) is a maximal chain of all subframes ofF.

Proof. Since F is frame of finite order, the number of subframes of F is finite. So there

exists some maximal chain ofsubframes of F.

Take Fo= {OF, eF } < F) < F2 < ... <Fn=F. (1)

Now define J.l(Fo)={I} and J.l(Fi+1\F0 = e/i+1} for any i, O~ i < n. Clearly J.l is a fuzzy

frame ofF and is given by the chain (1).

Remark 2.2.15. If F is a frame of finite order and J.l a fuzzy frame of it then r Jl (F) is

completely determined by J.l and conversely for any finite frame F and the subframe

chain {OF, eF }< F) < F2< ... < Fn= F there exists an equivalence class of fuzzy frames

of F such that r Jl (F) is the above chain.

Remark 2.2.16. If [f.l]*[0] then there exists a fuzzy frame 1] of F in [f.l] such that

T/(e F) = 1](OF) = 1.
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Theorem 2.2.17. IfH is a subframe of F, J.l a fuzzy frame of F and 11 is restriction of J.l

toH then 11 is a fuzzy frame ofH.

Proof. Obvious

Theorem 2.2.18. Let {la Ia eA} be a collection ofsubframes of F such that

i)

ii)

F= U I
aeA a

s > t if and only if Is C It for all s, te A where Aa collection of

elements in [0,1].

Then a fuzzy set J.l defined on F by J.l (x) =sup { te A Ixe It } is a fuzzy frame ofF.

Proof. By Proposition 2.2.12 it is enough to show that non-empty level sets

Pt ={xe F I J.l(x) ~t}, t eI are subframes of F. We have the following two cases,

Case-I. t = sup { se A I s < t }

ae Pt <=> ae {xe F I J.l(x) zt} <=> ae I for all s < t <=> ae n I
s s <t s

Therefore Pt = n I is a subframe ofF.
s<t s

Case-II. t ;t:sup {se A I s < t}

In this case Pt = U I . For if ae U I then ae I for some s ~ t.
>t S >t S Ss_ s_

Hencewe have J.l (x) ~ s ~t. Therefore x e J.lt and hence U I ~ Pt.
>t Ss_

Nowsuppose x ~ U I . Then x e I for all szt.
>t s Ss_
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Since t *sup { seA Is < t } there exist 8' > 0 such that ( t- 8', t) nA=; .

Hence x ~ I for all s ~ t-s , Thus P (x) < t-8'< t and so x ~ PI.
S

Therefore U I ~ #t
>t S •s_

Thus #t = U I which is therefore a subframe ofF.
>t Ss_

Combiningthe two cases we have the required result.

Defmition 2.2.19. Let P be any fuzzy subset of the frame I' then the fuzzy frame

generatedby P in I' is the least fuzzy frame ofF containing P and is denoted by (jJ >.

Theorem 2.2.20. Let P be a fuzzy set of the frame I' then (jJ> (x) = V {t Ix e ( # I) }

for all xeF, where ( #1) is the subframe of'F generated by #t .

Proof. Let 1]be any fuzzy frame of the frame I' defined by 1](x)= V { t Ix e ( # I) } for

all xeF. Then for any arbitrary ScF we have for all xe S, 1](x) ~ inf{ 1](y) Iye S}.Now

Se ( # I) => V S e ( # t) , hence 1](V S) ~ inf{ 1](y) lye E}. Also for x, yeI' let

E ( #t) ,hence 1](XA y) ~ t1At2.

Again since eF, 0 F e (Jl I) for all t such that # I *; it follows that

TJ( eF)=1]( OF)~ 1](x) for all xeF. Thus 1] is a subframe of'F.

Let P(x) = t, then x e # t c (Jl I) and thus 1](x)~ P(x). Hence 1]~ ( 11 ) since
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( f.J) is the smallest fuzzy frame of F which containing u. Now let r be any fuzzy

frame ofF such that r ;;2 Jl then r, ;;2 Pt and so r, ;;2 ( Pt) for all t. Hence r ::>n.

Thus 1]= ( p). Therefore the result follows.

2.3 Homomorphisms

Theorem 2.3.1. Let L and Mbe two frames, ~ a frame homomorphism from L onto M

and Jl a fuzzy frame ofM, then 2= Jl 0 <I> is a fuzzy frame ofL.

Proof. Let S be an arbitrary subset ofL. Now ~(Y S)e M and equal to V {~(a) Iae S}.

Since Jl is a fuzzy frame by Definition 2.2.1,

Jl 0<1> (V S) = Jl{Y {~(a) IaeS}} ~ inf {Jl(~ (a» IaeS }.

Also for all a, beL, Jlo<l> (axb) = Jl{~(a)A~(b)} z min {Jl(~(a», Jl(~(b»}.

Again Jl(~ (OL» = Jl(~ (eJ). Therefore 2 is a fuzzy frame ofL.

Defmition 2.3.2. Let 2, Jl be fuzzy frames of frames L and M respectively. If there is a

frame homomorphismj'from L onto M such that 2= Jl o/then we say 2 is homomorphic

toJl and is denoted by / -I ( Jl).

If f is an isomorphism then we say that Jl and 2 are isomorphic.

Lemma 2.3.3. Let f be a homomorphism from a frame L on to a frame M and let Jl be

any fuzzy frame of Mthen (f-I(p}}t = f-I( Jl t ) for every te I.

Proof. Let xE L
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Remark 2.3.4. Theorem 2.3.1 follows also from above lemma since the homomorphic

preimage of subframe is a subframe and again by Theorem 2.2.13 if Jl is any fuzzy

frame of the frame F then every non-empty level subset of Jl is also a sub frame of F.

Theorem 2.3.5. Let f : L-. M be a homomorphism between frames L and M. Then for

every fuzzy frame Jl ofL, f (Jl) is a fuzzy frame of M.

Proof. Define for all yE M,

f(Jl)(y) = {sup {,u(x)Ix E f-1(y)} , if r'i» #:"
0, otherwise

Now for any arbitrary Se M we have,

f(Jl) (V S)= sup{Jl(x)1 XE f-1(VS)}

~ inf{sup{Jl(x)1 XE f-l(y)}} = inf {f(Jl(y»}.
yeS

Againfor all a,b EM we have,

f(Jl)(aA b) = sup {Jl(x)1 XE f-1(a Ab)}

~ min{sup(Jl(X)\XE f-1(a», sup(Jl(X)IXE f-1(b»}

= min{f(Jl(a», f(Jl(b»}.

Also f (Ji) preserves the unit and the zero elements ofM.

Hence f (Ji) is a fuzzy frame ofM.
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Theorem 2.3.6. Let F be a frame of finite order and f.. F --+ Ftbe an onto homomorphism.

Let J.l be a fuzzy frame ofF with ImJ.l={1{), t..... ,to} and 1{» t1> ... > t n- If the chain

oflevel subframes of f.J is {OF, eF}= Pto ~ f.J t l c ... ~ f.Jlu = F. Then the chain of

levelsubframe of f (f.J) will be {O p', ep'}= f (f.Jto )~ f( f.J t
l

) c . .. c f ( f.Jlu ) = Ft,

Proof. Given F is a frame of finite order. We have f (f.J) is a fuzzy frame of Ft by

Theorem2.3.5. Also clearly Imf ( f.J)cImf.J. Now f(f.J\ = tcu ~) for each ti Elm f(f.J).

For let yE f (f.J )t- then f (f.J)(y) ~ tj by definition of level subset. Hence sup {f.J(x)1
1

XE I-I(y)} ~tj follows from the proof of Theorem 2.3.5. Now choose XoEF such that

f(Xo) = yE f( f.J ~ in follows that f (f.J )t- ~ f (f.J ~ )
1

Letf'(x)« f(f.J~). Then X E f.J~ hence f.J(x) ~ ti which implies

(1)

sup{J.l(Z) IZE f-I(f(x»} ~ti which implies f(f.J)(f(x» ~ti by Theorem 2.3.5. Hence

f(X) E f( f.J )t. by definition of the level subset.
1

It follows that f (f.J ~ )c f (f.J )t-
1

From(1) and (2) we have f( f.J\ = f(f.J ~)

Also if f.J ~ c f.J tj then f(f.J ~)~ f(f.J tj) for ti, ~ E Imf.J.

Combining (3) and (4) we have the required result.
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2.4 Intersection and union of fuzzy frames

Let p and A be two fuzzy frames of F then p ~ A means P(x) s A(x) for all

xeF. Let lF denote the set of all fuzzy frames of the frame F. We shall denote the

supremum and infimum in lF by U(union) and n(intersection) respectively.

Thus n Pi (a) = inf{ J1 (a) I ie A} and U Pi (a) = sup{J1 (a)1 ie A} where
ieA ieA

f.L i elF. The greatest element of lF is F, which is the function ZF and lF has no least

element.

Proposition 2.4.1. The intersection of any set of fuzzy frames on the frame F is a fuzzy

frame.

Proof.Wehave n Pi(OF)= n ~(eF)~ n Pi (x) for all xeF clearly.
ieA ieA ieA

Also for all x,ye F

n ~ (xx y) = inf{~( x xy) I ie A} ~ inf{min(~(x), ~(y» I ie A}
ieA

=min(inf{ J1 (x) Iie A },inf{ J1 (y) Iie A}) = min( n ~ (x), n ~ (y) )
ieA ieA

Similarlyfor arbitrary ScF we have,

n Pi (V S) ~ inf{ inf (J1 (x) Iie A}= inf (inf{ J1 (x) Iie A})
ieA xeS xeS

= inf ( n f.1: (x)
xeS ieA 1
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Remark 2.4.2. The union of arbitrary family of fuzzy frames on a frame F need not be a

fuzzy frame.

For consider the frame F ={X, ~,{a},{b},{a, b}} where X={a, b, c} and the

order is set inclusion.

Consider the fuzzy sets J.L and A defined on F by,

1 1 1
fl(X)=J.L(~)=I, J.L({a}) =5' J.L({b}) =2' J.L({a,b})=3

Clearly J.L and A are fuzzy frames.

2 1
Here (flU A)(X) = (J.LU AX~) =1, (J.LU A)({a})=-, (J.LU A)({b})=-,

3 2

(fl UA)({a,b})= ! .Now J.L U A is not a fuzzy frame as,
3

(flU A)({a}v {b})= (J.L U A)({a, b})= ! < inf{( J.LU A)({a}), (J.LU A)({b})}
3

Remark 2.4.3. The union of any chain of fuzzy frames is clearly a fuzzy frame. We can

also have two non-comparable fuzzy frames such that their union is a fuzzy frame. For

consider Example 2.2.4 where we have J.L and A are fuzzy frames of F such that neither

fJ s A nor A s J.L. Also J.L U A is given by ( J.L U A )( eF) = ( J.L U A )(OF) = 1,

(flU A)(X)= ! ifxeF It \ F It-I for k = 2,3, ... ,2m Hence J.LU A is a fuzzy frame ofF.
k

Theorem 2.4.4. Let (fl j)j = I, 2 ... n be a finite collection of fuzzy frames of a frame F.
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Then U,u. is a fuzzy frame if and only if for te[O,l], ,ui(X)~t for all xeS an arbitrary
. 1
1

subset ofF and ,ui(X) ~ t, ,ui(y) ~ t for all x, yeFimplies ,udvS) ~ tand ,uk(XAY)

~ t for some k, 1~ k ~ n.

Proof. By Theorem 2.2.13 U,u. is a fuzzy frame if and only if each nonempty level
. 1
1

subset ( l),ui)t is a subframe ofF. Now ( l),u)t=l) (,u Jt for each te [0,1].
1 1 1

But l) (,u Jt is a subframe ofF if and only if for any arbitrary Se l) (j.J Jt and
1 1

That is ,ui (x) ~ t for all xe S an arbitrary subset ofF and ,ui (x) ~ t, ,ui (y) ~ t

for all x, yeF implies ,u dV S) ~ t and ,u k (XAY) ~ t for some k, 1s k s n.

Proposition 2.4.5. IF the set of all fuzzy frames ofF under usual ordering of fuzzy set

inclusion ~ is not a complete lattice.

Proof. Since IF has no infunum the result follows.

Theorem 2.4.6. Let S be the set of fuzzy frames ofa frame F such that ,ui (eF) =

Pi (OF) = 1 for all ,ui e S. Then S forms a complete lattice under the usual ordering of

fuzzy set inclusion ~

Proof. Let {,ui lie A} be a family of fuzzy frames of a frame F. Since n ,ui is the
ieA
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largest fuzzy frame of F contained in each Pi we set /\ u ,= n J.1,. Also since the
. Allle ieA

fuzzy frame generated by the union U Pi is the largest fuzzy frame containing each
ieA

Pi we set . V f.J i = ( U f.Ji), where ( U f.J i) is the fuzzy frame generated by
leA ieA ieA

U Pi· Also X{° e } and Z F are respectively the least and greatest element of S
ieA F' F

...

Thus S is a complete lattice.

Remark 2.4.7. S is not atomic for if P=X{ }vatbe an atom where c , (aeF) isa
oF' eF

fuzzysingleton, then we can find a i < t such that P'= X{ oF,' e
F

} vat' «u.

Theorem 2.4.8. Let fbe a homomorphism ofa frame F into a frame F ', Let {'i lie A}

bea family of fuzzy frames ofF.

i)

ii)

If U Pi is a fuzzy frame ofF, then U f(p.) is a fuzzy frame ofF '.
ieA ieA I

If . U f (p ) is a fuzzy frame of F', then U Pi is a fuzzy frame ofF,
i e A ieA

provided Pi's are f-invariant.

Proof. i) Suppose U Pi is a fuzzy frame of F. Then the homomorphic Image
ieA

f ( U fit) is a fuzzy frame of F' by Theorem 2.3.5.
ieA

Now since f ( U p.) = U f (p .) by Proposition 1.5.19 we have U f (p .) is a
A l . 1 i e A 1ie i s A
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fuzzy frame ofF '.

ii) Suppose U f (p .) is a fuzzy frame of F'. Then r': U f(p·» is a fuzzy frame
. A 1 A 1le ie

of F by theorem 4.2. Also since r': U f(p j »= U f -If(p )= U Pi by
ieA ieA ieA

Proposition 1.5.19 we have U Pi is a fuzzy frame of F.
ieA

Theorem 2.4.9. Let fbe a homomorphism of a frame F onto a frame F ' and {Ai lie A}

be a family of fuzzy frames ofF' then the following are equivalent,

i) U A. i is a fuzzy frame of F '.
ieA

ii) U I-l ( A. i ) is a fuzzy frame of F.
ieA

Proof. Suppose U A. i is a fuzzy frame of F'. Now by Theorem 2.3.1 I- l ( U A i) is a
ieA ieA

fuzzy frame ofF. Also by Proposition 1.5.19 we have 1-1( U Ai) = U 1-1( A. i ).
ieA ieA

Therefore U r'c A. i ) is a fuzzy frame of F.
ieA

Conversely suppose U i- l ( A . ) is a fuzzy frame ofF, Now by Theorem 2.3.5
1

ieA

I( U l-l(A..» is a fuzzy frame ofF '. Also by Proposition 1.5.19 we have
1

ieA

I( U 1-1 (A. i) ) = U A. i . Therefore U A. i is a fuzzy frame of F '.
ieA ieA ieA
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2.5 Product of Fuzzy frames

Defmition 2.5.1. Let (f..l, L) and ('I, M) be fuzzy frames where L and M underlying sets

which are frame. Amorphism j: (f..l, L) ~('I, M) is a frame homomorphism

f: L ~M such that f..l s '1 0 f . That is the degree of membership of x in L does not

exceedthat off(x) in M. The function f: L ~M is called the underlying function of J.

,
Defmition 2.5.2. Let l : (f..l, L) ~ ( 'I, M) and g: ('I, M) ~ cr. N) be morphisms

then go j : (f..l, L) ~ ir. N) is a frame homomorphism go f: L ~ M such that

Let FFrm denote a category whose objects are fuzzy frames and morphisms as

defined above. We have the following theorem

Theorem 2.5.3. The category FFrm of fuzzy frames has equalizers.

Proof. Let (f..l,L) and ('I,M) be fuzzy frames.

Let j: (f..l,L) ~ ('I,M) and g: (f..l,L) ~('I,M) be two morphisms.

-4
Consider L M

-~
g

Let K = { X ELl f (x) = g (x) } which is a subframe of L and let i: K~ L be the

inclusionmap. Then clearly f 0 i =go i .

Define a fuzzy set l on K as follows, for a EK let l(a) =,u(a).

Then i is morphism from (l, K) to (f..l, L).
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If for arbitrary fuzzy frame (~, N), h is a morphism from (~ , N) to (f.l, L) such that

f 0 h = go h then there exist 0: N~ K such that i 0 0 = h .

Also ~ ~ A 0 0 as for z eN, ~(z) ~ f.loh (z) = f.l( h (z) = f.l( ioO(z» =

f.L( i (0 (z») = f.l 0 i (0 (z) = A(O(z» = (A 0 O)(z)

Thus 8 is a morphism from ( ~ , N) to (A, K)

Nowforz eN

(po i 0 OXz)= (J-l 0 i)(O(z» = J-l(i(O(z») =J-l«i 0 O)(z» = J-l(h(z» =(J-l 0 h)(z) ~ ~(z)

Hence Il 0 i 0 0 ~ ~ . Therefore the result follows.

Defmition 2.5.4. Let f.la be fuzzy frame ofthe frame Fa for a eA. The product of f.la's

is the function f.l =Il J-la defined on the product F = Il Fa with usual order by
aeA aeA

Proposition 2.5.5. f.l = Illla is a fuzzy frame of F = Il Fa
aeA aeA

Proof. We have F = {(aa)aeA I aa e Fa for a eA}

eF=(eF.) A and 0F= (oF.) A are respectively the unit and zero element ofF.a ae a ae

i) For arbitrary S~F we have,

f.l(V S) = f.l(V {(xa)1 aeA})
x
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~ inf { inf {J.la( xa)} }
aeA x

= inf { inf {,l{,( xa )} }
x aeA

= inf J.l(x)
xeS

ii) For all x = (xa)aeA' Y= (Ya)aeA E F

= min{ inf {J.la( xa)} , inf {J.la(Ya)}}
aeA aeA

= min {J.l(x), J.l(y)}

iii) J.l(eF) = nPa (e F)

aeA

= inf {J.la( eF. )}
aeA a

= inf{J.la(0F.)}
aeA a

= nPa (OF) = J.l( OF)
aeA

also J.l( eF) = nPa (eF) = inf{ J.la( eFa )}aeA
aeA

32



= IT,ua (a) for all a = (aa )aeA eF
aeA

= J.L(a)

Hence we have the required result.

Theorem 2.5.6. The category FFnn of fuzzy frames has products.

Proof. Consider a family of fuzzy frames {(J.La,Fa) I a eA}. Corresponding to the

product F =IT Fa we have the fuzzy frame (J.L, F) where J.L =IT ,ua . Now consider the
aeA aeA

projection (homomorphism) Pa: F~ Fa' We have J.L( (xa)aeA) = inf {J.La (xa)}. Hence
aeA

Therefore Fa is morphism from ( J.L, F) to (J.La, Fa) for a eA.

Now for arbitrary fuzzy frame (~, M ) if ua is a morphism from (~, M ) to

ae Aand zeM. Now O(z) = (Ua(Z» is a frame map as ua for ae Aisaframemap.

Also for z e M we have ~ (z) ~ J.La 0 Ua (z) for all a e A and hence,

~ (z) s inf J.La( ua (z) = inf {,l{, (O(z»a } = J.L( o(z) = J.L 0 O(z).
aeA aeA

Hence ~ ~ J.L 0 O. Thus 0 a morphism from (~ , M ) to (J.L, F ).
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Clearly Pa 00 =ua for all a E A

Hence ~ ~ f.1a 0 Pa 0 0 .

Thus for each family (f.1a, Fa )aeA of fuzzy frames there is a fuzzy frame cu, F)

andmorphisms P : (f.1, F) ~(f.1a,F ) such that for any fuzzy frame (~, M) and familya a

of morphisms iia:(~,M) ~ (f.1a,Fa) there is auniquemorphism 8 :(~,M) ~(f.1,F)

Therefore the result follows.

Theorem 2.5.7. The category FFrm of fuzzy frames is complete.

Proof. Follows from Theorem 2.5.3 and Theorem 2.5.6. o

Theorem 2.5.8. Let f.11 and f.12 be fuzzy sets of frames F1 and F2 respectively such that

/11x f.l2 is a fuzzy frame of FIx F2• Then f.11 or #2 is a fuzzy frame of F1 or F2

respectively.
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,
respectively the unit and zero elements of the frame FIx F2•

Now f.Lt x f.L2(X, y) = inf {Jlt(x), f.L2(y)} for all (x, y) eFI x F2 by Definition 2.5.3.

Now for arbitrary Sc FI we have

= inf {f.Lt(x)}
XES

Forall x, y e FI we have,
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J.lI (XAY) = J.lI x J.l2( xAY, eF2)

= J.lIXJ.l2«X, eF2)A(y, eF2»

~ min {J.lt X J.l2 (X, eF), J.lt X J.l2 (y, eF2)}

= min {J.lI(X), J.lIO')}

Now f.J I(eFt)= J.lI XJ.l2 (eFt' eF2) ~ J.lI XJ.l2 (X, eF2) = J.lI(x) for all X e FI

Also f.JI(OFt)= J.lI XJ.l2 (OFt' eF)= inf{JlI(OF) , J.l2(eF)}

If f.J 2(eF)= J.lI(OF) then

,u)(OFt)= inf{J.l2(eF), J.l2(eF)}= J.l2(eF) ~ J.lI(x) for all X e FI

If f.J 2(eF) = J.l 2(OF) then

f.J)(OFt) = inf{J.lt(OFt), J.l2(OF)} = J.llxJ.l2(OFt, 0F2) = J.ltxJ.l2(eFt'eF2)

= inf{JlI(eFt), J.l 2(eF)}= J.lI(eFt)

Thus f.JI(eFt)=J.lt(OFt)~J.lI(X) foralIx e FI

Therefore f.J I is a fuzzy frameof'F]. (1)

Now let J.lI(x) 5: J.l 2(eF) is not true for all x e FI. That is if J.lI(x) > J.l 2(eF) for all

x eFI then J.l2O') 5: J.l2(eF) for all y e F2•

Thereforefora11ye F2 , J.llxJ.l2 (eFt'Y) =inf{J.l I(eF) , f.J 2(y)} = JI 2(y)
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Now for arbitrary S c FI we have

Similarly for all x, y E F2 we have 112 ( x 1\ y) ~ min {1l2(x), 1l2(y)}

Therefore 11 2 is a fuzzy frame ofF2_

Hence from (1) and (2) either III or 112 is a fuzzy frame ofF, or F2 respectively,
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Theorem 2.5.9. Let J.La be fuzzy set of the frame Fa for a E A such that nPa IS a
aeA

-
fuzzy frame ofF =nFa .Now for xa E Fa (a E A) if J.La(eFa)= J.La(OFa) ~ J.La(xa)

aeA

and zero elementof the frame Fa then J.La is a fuzzy frame of Fa for all a EA.

all (xa)aeA EF where (eF. )aeA and (oF. )aeA are respectively the unit and zero
a a

elements of the frame F.

Now for y E Fa consider (yp)peA EF where Yp = { yeFp

Then for all y E Fa' TIpp ( (yp)peA) = inf {J.Lp (Yp) } = J.La(y)
tEA peA

Consider a E A

Now forarbitrary Se Fa we have,

if p= a

otherwise

if P= a
otherwise

if P= a

otherwise
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= inf {,ua(X)}
xeS

Similarly it can be shown that for all x, y E Fa

{

XAy

,ua(X A y) = ITpp ( (yp )peA) where Yp =
fleA eFp

~ min{,ua(x), ,£{z(y)}

Hence the result follows.

if p= a

otherwise

o

Letf be a homomorphism on a frame F. If ,u and a are fuzzy frames of the

frame f(F) then ,u x a is a fuzzy frame off(F) x f(F). The pre image ,u ofand a ofare

fuzzy frames ofF and (,u x a)o(J,f) a fuzzy frame ofF x F. We study this relation.

Theorem 2.5.10. Let F be a frame and fa homomorphism on F. Let ,u and a be fuzzy

frames of the frame f(F) then ,u of x a of = (,u x a) o (J,f)

Proof. For all (XI, X2) E F x F we have,
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The relation between images of product of fuzzy frames of a frame F is given as

follows.

Theorem 2.5.11. Let J.l and a be fuzzy frames of the frame F. If f is a

homomorphism on F, the product f ( J.l ) x f ( a ) and (f , f)( J.l x a ) satisfies

(J, f)(J.l x q) c f( J.l )xf( a ).

Proof.f( J.l) andf( a ) are fuzzy frames of f( F ) andf( J.l) xf( a ) is a fuzzy frame

of ( J, f )(F x F) = f( F) x f( F ).

Now for each Y= (YI, Y2) e f(F) x f(F) we have,

[(J, f)(f.l x q)](y) = sup{(f.l x q)(x) Ix e F-1 (y)} where F = (f, f)

and x = (XI, X2)

= sup {inf( J.l(XI), a (X2» I(x., X2) e F 1 (y)}

s inf( sup {J.l(XI) Ix, e f-1(YI)}, sup {q( X2) IX2 e f- I (Y2)} )

= inf {f(J.l(YI» ,f(a (Y2» }

= (f(J.l) x f( q»(y)

That is [ef, f)( F x F )](y) ~ (f(J.l) x f( q»(y) for all ye f(F) x f(F)

Therefore the result follows.
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CHAPTER 3

FUZZY QUOTIENT FRAMES AND FUZZY IDEALS

3.1 Introduction

The operations of binary meet and arbitrary join on a frame F induce, through

Zadeh's extension principle new operations on the partial ordered set If. We define a

fuzzy quotient frame of F to be a fuzzy partition of F that is a subset of t and having a

frame structure with respect to new operations. We also study regarding fuzzy ideals on a

frameF.

3.2Extended Operations

The operation of binary meet /\ and arbitrary join V on a frame F can be

extended by means of Zadeh's extension principle to operation A and V on If as

follows,

(Jl i\ Y)(x)= sup{Jl(y) /\ Y (z) Iy, Z E F and y /\z =x}

( V Jla)(x)= sup{ /\ Jla (xa) I xa E F and V x = x}
aeA aeA aeA a

for all u, Y, Jla E If and XE F.

(1)

-The original operation /\ and V on a frame F can be retrieved from A and V by

embedding F into If as the set of all fuzzy singletons each of which is a fuzzy set I, E If

which takes the value 1 at x E F and 0 elsewhere. Also J.lo, Pe: F~ I given by J.lo (x) = 0
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for all xeF and ,ue(x) = 1 for all xeF are the largest and smallest elements ofIf
• It can be

observed that for every rE If, J.Io = J.Io A r = J.Io c r and ,ue A rs ,ue' ,ue c r s ,ue

for all r « If

Note 3.2.1. If is a bounded partial ordered set.

Note 3.2.2. For any family {Aa I a eA} of subsets of a frame F, V Aa ={V a I
aeA aeA a

We give the following definitions for supremum property with respect to binary

meet 1\ and arbitrary join V

DefInition 3.2.3. A pair {f.l, r }of fuzzy sets of a frame F has supremum property with

respect to 1\ if for any x e F there exist Yen Zoo e F with Yo 1\ Zoo = x such that sup { ,u(y) 1\

DefInition 3.2.4. A family {,uaI a eA} of fuzzy sets of a frame F has supremum

property with respect to V if for any x e F there exist {a I a eA} ~F with x = V a
a aeA a

such that sup { A ,ua (xa>I xa e F and V x = x}= 1\ ,ua (aa>'
aeA aeA a aeA

DefInition 3.2.5. A sub collection S ofIf is said to have supremum property with respect

1\ and V if every two elements of S has supremum property with respect to 1\ and

every arbitrary subset of S has supremum property with respect to V .
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Proposition 3.2.6. Let {f.L,Y} be a pair of fuzzy sets and {f.Lal a eA} be a family of

fuzzy sets of the frame F having supremum property with respect to /\ and V

respectively then for each te [0, 1], (f.LA Y)t = f.Lt A Y t and ( V f.La)t = V (f.La)t
aeA aeA

Proof. Let xe f.LtA Y t then for some y, zeF with x = y /\z we have f.L(y)~t and

Y(z) ~t. Therefore (f.LA Y)(x) = sup{ f.L(y) /\ Y(z) Iy, z E F and y r.z = x} ~ t.

Therefore xe (f.LA Y)t. Hence f.Lt A Yt~ (f.LA Y)t.

Now let xe (f.LA Y)u then we have,

(f..lA Y)(x) = sup{f.L (y)/\ Y(z) Iy, z e F and y /\z = x} ~ t.

(2)

Since f.L and Y has supremum property there exist Yo, ZoeF with Yo /\ Zo = x such that

sup{f.L(y)/\ Y(z) Iy, z e F and y /\z = x}= f.L(Yo)/\ Y(Zo) ~ t.

Therefore from (2) and (3) we have (f.LA Y)t = f.Lt A Y t >

Similarly if xe V (f.La)t then for {x I a eA} cF with x = V x we have
aeA a - aeA a

Therefore ( V f.La)(x)= sup{ /\ Jt (xa) I xa e F and V x = x} ~t.
aeA aeA aeA a

Therefore x e ( V Jt)t. Hence V (Jt)t c (V Jt)t
aeA aeA aeA

Nowlet x e (V Jt)t. Since {JtI a eA} has supremum property there exist
aeA
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{aa l ae A}cF with x = V a such that sup{ /\ ,l{,(xa)1 xa e F and V x = x}
aeA a aeA aeA a

= /\ ,ua (aa) .~ t. Therefore a e (,l{,)t for all a eA. Thus V a e V (,ua)t.
aeA a aeA a aeA

Hence ( V ,ua)t c V (,ua)l
aeA aeA

Therefore from (4) and (5) we have (V ,ua)t = V (,ua)l
aeA aeA

(5)

Theorem 3.2.7. Let {,u, r }be a pair of fuzzy frames and {,ual a eA} be a family of

fuzzy frames of the frame F having supremum property with respect to /\ and V

respectively then ,u A r and V ,l{, are fuzzy frames of F .
aeA

Proof. To show that ,u A r is a fuzzy frame of F by Theorem 2.2.13 it is enough to

show that each level subset (,u A r)tof ,u A r is a subframe for te [0, 1].

By assumption ,u and r are fuzzy frames of F hence again by Theorem 2.2.13 the level

subsets u,and r t are subframes ofF. Since u, and r t are subframe u,A Ytis a subframe

of F for te[O, 1]. Now by Proposition 3.2.6 we have (,uA r)t =,utA Yt. Therefore

(J.l J.. Y)t is a subframe of F for all te [0, 1]. Hence ,u A Y is a fuzzy frame of F.

Similarly we have V ,ua is a fuzzy frame of F .
aeA

Theorem 3.2.8. Let u, 1]and Ye IF . Then ,u A (1]c r):s; (,u A 1]) v (,u A r)

Proof. Let we F

NOW(,uA (1]v Y))(w) = sup {,u(u) /\(1]v Y)(v)lu,v eF,u/\ v=w}
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Forarbitrary u, v e F such that UAV= w consider,

f.J(U) A(TJV Y)(v) = P(u) A sup {TJ(y) v Y(z)ly,z eF,yv z=v}

= Sup{(P(u) A TJ(y» A (P(u) A Y(z» Iy, z eF, yv z = v}

5 sup{(P(U)A TJ(Y»A(P(U)A Y(z» Iy, z eF, (UAY)V(UA z) = UAV}

5 sup{(P i\ TJ)(UAY)A(P i\ Y)(UAZ) Iy, zeF,(uAy)V(UAZ) = UAv}

=«P i\ TJ)v (P i\ Y»(w)

From(6) and (7) we have,

{P i\ (TJv Y)}(w)5 {(P i\ TJ)v (P i\ Y)}(w)

HenceJ-li\(TJv Y)5 t u»: TJ)v(Pi\ Y)

Similarly we can have the following result

(7)

o

Theorem 3.2.9. For fuzzy set P and the family of fuzzy sets {Pal a eA} of the frame

Theorem 3.2.10. Let S be a sub collection of IF which is closed with respect to i\ and

v, and having supremum property with respect to A and V then P i\ (V Pa ) =
aeA

v (J-l i\ Pa ).
aeA

Proof.By Proposition 3.2.6 we have,
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v (IJ A IJa)t = ( V (Jl A Jla»t for allte [0, 1]. Hence the result follows.
aeA aeA

-Remark 3.2.11. In terms ofoperations A and V the conditions (FI) and (F2) for

arbitrary fuzzy frame Jl in Definition 2.2.1 can be rewritten as,

(FI)' Jl~ V Jla where Jla= Jl (F2)' Jl~ Jl A Jl
aeA

Proof. We have ( V Jla)(x) = sup{ /\ Jla( aa) I aa e F, V a =x}
aeA aeA aeA a

= sup{/\ Jl(aa) I aa eF, V a =x}
aeA a

:s; sup{Jl(Va )laaeF, Va =x}
aeA a aeA a

= Jl (x) , for some xe F

also (Jl A Jl)(x) =sup {Jl(y) /\ Jl(z) I y, ze F, y /\z =x}

s sup {Jl(y /\ z)1 y, ze F, y r.z = x}

= Jl(x)

Remark 3.2.12. In fact equality holds in the above result as,

(IJ A Jl)(x) = sup{Jl(y) /\ Jl(z) Iy, zeF, y r.z = x}

~ Jl(x) /\ Jl( ep) =Jl(x)

Also (V Jla)(x) ~ Jl(x) /\ Jl(Op)/\ Jl(Op)/\ ... = Jl(x)
aeA
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3.3 Fuzzy Quotient Frames

DefInition 3.3.1. [OV), [MU) A fuzzy partition of'F is a subcollection P ofI f whose

members satisfy the following three conditions

i) Every reP is normalized Le. r (x)=1 for at least one x e F.

ii) For each x e F there is exactly one reP with r (x) = 1.

Hi) If P, reP and x, ye F are such that P(x) = r (y) = 1 then J.l(y) = r (x) =

hgt (u»; r) where the height (hgt) ofa fuzzy set Ae I f is the real number,

hgt (A)= sup A(x)
xeF

Given a fuzzy partition P of F and an element x e F, the unique member of P with

value 1 at x is denoted by [x] and is called fuzzy similarity class ofx.

A 1-1 correspondence between fuzzy partition and fuzzy similarity relation is

defined by sending a fuzzy partition PcIf to its fuzzy similarity relation in I fXf , where

forall x,ye F we have,

Rp (x, y) = [x](y) = [y](x) = hgt ([x] /\ [y])

The inverse correspondence is defined by sending a fuzzy similarity relation R on F

to the fuzzy partition PRc I f given by PR={R(x) IxeF}, where R(x) is the fuzzy set of

Fdefined for all yeF by R(x)(y) = R(x, y).

DefInition 3.3.2. We call a fuzzy partition PR of a frame F a fuzzy quotient frame of F if

PR is a subset of I f and (PR, A, v) is a frame.
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Theorem 3.3.3. A fuzzy quotient frame P of a frame F satisfies the following properties

forall x, y eF and arbitrary {xa I a eA} cF

i) [x] i\ [y] = [XAy]

v [x ] = [ V x ]
aeA a aeA a

ii) i.x [y] = [XAy] = [x] i\ r,

r,V [y] =[x V y]= [x] V r,

iv) [eF] and [OF] are respectively the identity elements with respect to

i\ and V.

v)

Proof. i)

[x]C= [XC], where XC the complement ofx in F ifit exits.

We have for all x, yeF

([x] i\ [Y])(XAY) = sup{[x](z) A[y](w) IZAW = XAy}

~ [x](x) A [y](y) = I

Pbeing a frame we have [x] i\ [y] is in P. Hence from the definition of fuzzy partition,

wehave [x] i\ [y] = [XAy] as [XAy]( XAY)=l.

Similarly V [x ]( V x )=sup{ /\ [X ](a ) I V a = V x }
aeA a aeA a aeA a a aeA a aeA a

~ /\ [X ](xa) = I
aeA a

Pbeing a frame we have V [x ] is in P. Hence from the definition of fuzzy partition,
aeA a

we have V [x ] = [ V x ] as [ V x ]( V x ) = l.
aeA a aeA a aeA a aeA a
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~ lx(x) A[y](y) = 1

Therefore lxA [y] = [XAy].

Also ([y] A lJ(xAY) ~ 1, hence [XAy] = [x] A r,

Similarly we have r,v [y] =[xvy]= [x] v i,

Similarly Ixv [0 p]=[x]= [0 p] v r,

iv) we have by (i) [ep] A [x] = [epA x] = [x]= [x] A[ep]

also [ 0 p] v [x] = [ 0 p v x] = [x]= [x] V [e p]

we have by (i) [xr= [XC]

Remark3.3.4. For all x, y, Z e F we have,

[X](yAZ) = [ZAY](X) by definition 3.11 of fuzzy partition

= ([z] A [y])(x)

~ [z](x) A [y](x)

= [x](z) A [x](y)

Also for x e F and arbitrary S c F

[x](vS)= [vS](x)= [V Xa](x)
aeA

~ A [Xa](x)
aeA
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(1)

3.4 Invariant fuzzy binary relation

We give the following definition for an invariant fuzzy binary relation.

Defmition 3.4.1. A fuzzy binary relation R on a frame F is invariant if it satisfies for all

x.y.u.v eF

i) R (x 1\U, Y1\v) ~ R (x, y) ifx ;#;Y

R(x xu.y x v) ~ R(x,y) ifx=y

ii) R(xv u yvv) ~ R(x,y) ifx ;#;y

R(xvu,yvv) ~ R(x,y) ifx=y

Theorem 3.4.2. IfR is an invariant fuzzy similarity relation on a frame F then its fuzzy

partition PR is a fuzzy quotient frame ofF.

Proof. We have for all x, y, z e F

([x] i\ [y])(z) = sup{[x](u) 1\ [y](v) IUI\V= z}

= sup{ R (x, u) 1\ R (y, v) IUI\V= z}

Case- I : if x ;#; u, y ;#; v

ThenR(x, u) 1\ R(y, v) ~ R(xl\(x I\Y), UI\(Ul\v» 1\ R(YI\(X I\Y), VI\(UI\V»

= R (x I\Y, UI\v) 1\ R (x I\Y, UI\v)

= R (x I\Y, UI\v)

Therefore, sup{ R (x, u) 1\ R (y, v) IUI\V= z} ~ R (x I\Y, z) = [x 1\ y](z) (2)

Case- 11 : ifx = u, y = v

ThenR(x, u) 1\ R(y,v)= 11\ 1=I=R(xl\y,ul\v)
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Therefore, sup{ R (x, u) /\ R (y, v) Iu x V = z} = R (x /\y, z) = [x /\ y](z) (3)

Case- III : if x =U, y ~ v

ThenR (x, u) /\ R (y, v) ~ I /\ R (x /\y, uxv) =R (x /\y, u x v)

Therefore, sup{ R (x, u) /\ R (y, v) Iu/\ V = z} ~ R (x /\y, z) = [x /\ y](z) (4)

A similar case when x ~ u, y = v

Combining(1)(2)(3) and (4) we have [x] A[Y] s [x /\ y] (5)

Now for all x, y, Z E F consider [x /\ y](z) =R (x /\y, z) (6)

Case- I: ifx /\y = z

ThenR (x /\ y, z) = R (x /\ y, X /\ y) = R (x, x) /\ R (y, y)

= [x ](x) /\ [y](y)

~ sup{ [x ](u) /\ [y](v) Iu x V =z}

= ([x] A [y])(z) (7)

Case- 11 : ifx /\y ~ z

Then R (x /\y, z) = R (x /\y, z) /\ R (x /\y, z)

~ R«x /\y)vx,zvz) /\ R«x /\y)vY,zvz)o

= R (x, z) /\ R (y, z)

= [x ](z) /\ [y](z)

s sup{ [x ](u) /\ [y](v) Iux V =z}

= ([x] A[y])(z) (8)

Combining (6)(7) and (8) we have [x /\ y] s [x] A[Y]

Hence from (5) we have [x] A[y] = [x /\ y].

Now for arbitrary {xa I a EA} c F and z E F we have
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(V [x ])(z) = sup{ /\ [X ](a )1 Va =z}
aeA a aeA a a aeA a

= sup{ /\ R(x ,a )1 Va =z}
aeA a a aeA a

Case- I : if xa * aa for all a e A

Then /\ R(xa,a ) s /\ R(xa v( V x ), a v( V a »
aeA a aeA aeA a a aeA a

= /\R(Vx,Va)=R(Vx,Va)
aeA aeA a aeA a aeA a aeA a

(9)

Therefore,sup{ /\ R(xa,a )1 Va =z}= R( V x ,z)= [V x ](z) (10)
aeA a aeA a aeA a aeA a

Case- 11 : if xa = aa for all a e A

Then /\ R (xa , a ) = I = R ( V x , V a )
aeA a aeA a aeA a

Therefore, sup{ /\ R(xa,aa)1 Va =z}= R( V x ,z)= [V xa](z) (11)
aeA aeA a aeA a aeA

Case- Ill: if xa * aa for at least one a e A

Iffor peA, xp * "» then R (xp ' ap)~ R (xp v( V x ),ap v( V a »
aeA a aeA a

=R(Vx, Va)
aeA a aeA a

Therefore /\ R (xa ' a ) s R ( V x , V a ) 1\ I = R ( V x , V a )
aeA a aeA a aeA a aeA a aeA a

Combining (9) (10) (11) and (12) we have V [xa] s [ V x ] (13)
aeA aeA a
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Now consider [ V x ](z) = R ( V x ,z)
aeA a aeA a

Case- I : if V x = Z
aeA a

R( V x ,z) = R ( V x , V x ) = /\ R (xa, xa) = /\ ([ xa]( xa »S
aeA a aeA a aeA a aeA aeA

sup{ /\ [xa](aa)1 V a = V x =z} = ( V [xa])(z)
aeA aeA a aeA a aeA

Case- 11 : if V x "* Z
aeA a

R ( V x ,z) S R «V x ) A X ,Z A Z ) = R (X ,z) for all a E A
aeA a aeA a a a

Therefore R ( V x ,z) S /\ R ( xa ' Z )
aeA a aeA

s sup { /\ R ( xa ' aa) I V a = z }
aeA aeA a

= sup{ /\ [X ](a )1 Va =z}
aeA a a aeA a

= ( V [xa ])(z)
aeA

Combining (14) (15) and (16) we have [ V x ] S V [x ]
aeA a aeA a

Hence from (13) we have V [x ] = [ V x ]
aeA a aeA a

(14)

(15)

(16)

Clearly [eF] and [OF] are respectively the unit and zero element of element ofPRo

Now for any [x] E PR and arbitrary Se PR we have,

[x] i\ (v S) = [x] i\ [ V x ]
aeA a
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= [x/\( V X )]
aeA a

= [V (X /\ X )]
aeA a

= V [X/\ X ]
aeA a

= V ([X] i\ [x ])
aeA a

Hence PR satisfies infinite distributive law. Thus PRis a frame.

ThereforePRis a fuzzy quotient frame ofF.

Remark 3.4.3. Let I' be a frame, then the transformation n from the set of invariant

fuzzy similarity relations on I' to the set of fuzzy quotient frames P of I' sends an

invariant fuzzy similarity relation R on I' to its fuzzy partition PRcIF given by

Remark 3.4.4. Let I' be a frame such that every element of it has complement. Then for

some x e F, we have [x] A [XC] = [x/\XC] = [OF] and

= ([x] V [XC])(x)

~ [x](x) /\ [XC](x)

= [x]( X)

That is [eF](x) ~ [x]( XC). Similarly we have [OF](X) ~ [x]( X) for all xeF.
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Example 3.4.5. Consider the frame F = {{a, b, c}, {a, b}, {b, c}, {a}, {b}, {c}, 0 }

underset inclusion. Define a fuzzy similarity relation~ on F by,

{

I if x = y

Rrtx, y) = 1 .'2 otherwise
which is invariant.

Now PR = {[x] I xeF} where [x](y) = Rrtx, y) is a fuzzy partition of F, hence a fuzzy

quotient frame.

3.5Fuzzy Ideal of a Frame

We give the following definition for fuzzy ideal.

Defmition 3.5.1. Let F be a frame, then a fuzzy set u on F is said to be a fuzzy ideal of

F if

(Fl) J.l( a v b) ~ min {J.l (a), J.l (b) }, for all a, b eF

(F2) J.l( aJ\ b) ~ max {J.l (a), J.l (b) }, for all a, b eF

(F3) J.l (OF) = 1 where OF the zero element ofF

Example 3.5.2. Consider the frame F = {{a,b}, {a}, {b}, t)} where the order is set

theoretic inclusion. Let J.l and Ybe two fuzzy sets defined on F by ,

J.l( {a,b}) = 0.2, J.l( {a}) = 0.5, J.l( {b}) = 0.2, J.l( t)) = 1 and

Y({a,b}) =0.3, Y({a}) = 0.3, Y({b}) =0.4, Y(t)= 1.

Then J.l and Yare fuzzy ideals on F.
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Theorem 3.5.3. If J.l and Y are two fuzzy ideals of'F then J.l n Y is a fuzzy ideal of'F.

Proof. (Fl) (J.l n Y)(a v b) = min {J.l( av b), Y( av b) }

~ min {min(J.l (a), J.l (bj), min(Y(a), Y(b»}

~ min {min(J.l(a), Y(a», min(J.l(b), Y(b»}

= min {(J.ln Y)(a) , (J.ln Y)(b)} ,for all a, beF

(F2) (J.ln Y)(aAb) = min{J.l( a xb}, Y( axb)}

~ min{J.l (a) , Y(a)} by Definition 3.5.1 (F2)

~ (J.ln Y)(a) , for all a, beF

SimilarlY(J.ln Y)(aAb) ~ (J.ln Y)(b)

Therefore (J.ln Y)(aA b) ~ (J.ln Y)(a) v (J.ln Y)(b), for all a, beF

Therefore J.l n Y is a fuzzy ideal.

Result 3.5.4. If {J.li lie A} a family of fuzzy ideals of'F then n Pj is a fuzzy ideal
ieA

ofF.

Proof. As above.

Remark3.5.5. Union of fuzzy ideals on a frame F need not be a fuzzy ideal on F.

For consider fuzzy ideals ofExample 3.5.2

Now (J.lu Y)( {a,b})=O.3, (J.lu Y)( {a})=0.5, (J.lu Y)( {b})=O.4, (J.lu Y)(;) =1.

j1u Y is not a fuzzy ideal of'F since,

(j1u Y)( {a} v {b})= (J.lu Y)( {a, b}) = 0.3 < min{( J.lu Y)( {a}), (J.lu Y)( {b})}
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Deflnltion 3.5.6. Let /1 e IF. Let (p ) = n{Y I /1 c r. Y a fuzzy ideal of F }, where

)Lr; Y means /1(x)5. Y(x) for all xeF. Then (p) is called the fuzzy ideal of F

generated by /1.

Note. (p) is the smallest fuzzy ideal of F containing /1.

Westate without proof the following result.

Theorem 3.5.7. Let /1 and Y be any two fuzzy subset of F, then

i) (p) = /1, if /1 a fuzzy ideal

ii) /1 c Y~ (p) c (r)

iii) (p / s ) c (p)/ s where S a subframe ofF and)L / s and (p)/ s are the

restriction of /1 and (p) to S. 0

Theorem 3.5.8. Let /1, Y be two fuzzy ideals ofF, then /1v Y is a fuzzy ideal ofF and

)LvY= (p u r ) .

Proof. Letx,y eF,then(/1v Y)(x) = sup{/1(u) "Y(v)lu,veF,uvv=x}

~ /1(x) " Y(0 F) = /1(x)

Hence /1c Y :::> /1. Similarly we have /1 v Y~ r.

Thus /1v Y ~ /1u Y

(Fl) (/1vY)(avb) = sup{/1(u) "Y(v)lu,veF,uvv=avb}
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~ sup {,ll(UI VVI) 1\ r(U2VV2) IUh U2t Vh V2 e F, UI VU2 = at

VIVV2 =b}

~ sup{(,ll(UI) 1\ ,ll(VI» l\(r(U2) 1\ r(V2» IUh U2, Vh V2 eF,

UI VU2 = a, VI VV2 = b }

= SUp{(,ll(UI) 1\ r(U2» 1\( ,ll(VI) 1\ r(V2» Iu., U2, Vh V2 eF,

UI VU2 = a, VI VV2 = b }

= SUP{,ll(UI) 1\ r(U2) IUh U2 eF, ulvu2=a} 1\

SUp{,ll(VI)l\r(V2) I vhv2eF,vlvv2=b}

= (,llv r)(a) 1\ (,llv r)(b) for all a, b eF

(F2) (,llvr)(al\b) ~ sup{,ll(al\u)l\r(al\v)lu,veF,uvv=b}

~ sup{,ll(u) 1\ r(v) Iu, V eF, uvv = b}

= (,llv r)(b) for all a, b eF

Similarlywe have (,llv r)(al\b) ~ (,llv r)(a),foralla,b eF.

Therefore (,llv r)(al\b) ~ (,llV r)(a) v(,llV r)(b), for all a, b eF.

(F3) If,ll( OF) = r( OF) = 1 then clearly (,llV r)( OF) ~ ,ll( OF) = 1 and

(J.L c r)(°F) ~ r (°F)' Therefore (,ll v r)(°F) = 1.

Thusif u, r are any two fuzzy ideals ofF then ,llv r is a fuzzy ideal ofF.

Now let ~ be any fuzzy ideal ofF such that ,ll u r ~ ~ then,

(,llV r)(x) = sup{,ll(u) 1\ r(v) [u, veF, uvv=x}

~ sup{~(u) 1\~(v)lu,veF,uvv=x}

~ ~(x)

Therefore ,ll v r ~ ~ .
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Thus J.l vY is the smallest ideal of F such that J.l u Y c J.l vr,

Therefore J.l vY= (p u r) .

Proposition 3.5.9. Let u, Yet. If u, Y be any two fuzzy ideals of F, then J.l i\. Y c

f.l{\ Y

Proof. (J.li\. Y)(x) = sup{J.l(u) 1\ Y(v) [u, veF, ul\v=x}

s {J.l(x) 1\ Y(x)} [.: J.l(UI\ v) = J.l(x)~ J.l(u)v J.l(v) and

Y(UI\ v) = Y(x)~ Y(u)v Y(v)]

= (J.l (1 Y)(x)

Therefore J.l i\. Y c J.l (1 y.

Proposition 3.5.10. Let J.l be a fuzzy set of a frame F such that J.l( 0 p) = 1. Then J.l is a

fuzzy ideal ofF ifand only if each level subset J.lt of J.l is an ideal ofF for t e I.

Proof. Let J.l be a fuzzy ideal of a frame to show that J.lt is a fuzzy ideal for t e I.

For arbitrary a, be Ptwe have J.l(a) ~ t, J.l(b) ~ thence J.l( avb) ~ 1, as

f.l( avb) ~ min{J.l(a), J.l(b)}.Hence avbe J.lt.

Also 0 p e Pt as J.l( 0 p) = 1.

Again a xb e Pt for all a,be Pt since J.l(al\b) ~J.l(a) v J.l(b).

Conversely suppose every strong level subset Ptof the fuzzy set J.l an ideal of F

toshow that J.l is a: fuzzy ideal ofF.
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Given P( OF) = 1, therefore P( OF) ~ P(x) for all xe F.

Now consider arbitrary a, b e F. Let t = inf {p(a), P(b)}. Clearly we have

a,b e Pthenceavbe JLt • Therefore p(avb) ~ t=inf{p(a), P(b)}.

Now let P(a) = tl and P(b) = t2 then we have a 1\ be JLt1 and a 1\ b e JLt2. Hence

,u(al\b) ~ t l and JL(al\b) ~ t2. Therefore p(al\b) ~ t.v t2=p(a)v P(b).

Proposition 3.5.11. Let P and 'I be fuzzy ideal of a frame F then (P n 'I)t = u, n 'It

forall t e I.

Proof. We have xe u, n 'It => xe u, and xe 'It

=> P(x) ~ t and 'I(x) ~ t

=> inf{ JL(x), 'I(x)} ~ t

=> (P n 'I)(x) ~ t

=> xe (JL n 'I)t

Therefore u; n 'It c (P n m.
Also P n 'I s P and P n 'I ~ 'I. Hence (P n 'I)t c u,and (P n 'I)t C 'It.

Therefore (P n 'I)t c u, n 'It. Hence the result follows.

Proposition 3.5.12. Let P and 'I be fuzzy ideal of a frame F with supremum property

with respect to v, then (JL V 'I)t= JLt V 'It for all t e I.

Proof. We have xe Pt v 'It => there exist ye Pt and ze 'It such that x= yv z
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:::) sup{,ll(y) 1\ Y(z) I x=yvz}~ t

:::) (,ll v TJ)(X) ~ t

:::) X e (,ll V TJ)t for all x e F.

Therefore u, v TJt C (,llv TJ)t

Since ,ll and TJ has supremum property we have, (,ll V TJ)t ~ u, v TJt

Therefore the result follows.

Proposition 3.5.13. Let u, TJ and Ybe fuzzy ideals of a frame F then ,ll(l (TJ v Y) =

Proof. (,ll (l (TJ vY»(w) = ,ll(w) 1\ (TJ vY)(w)

= ,ll(w) 1\ sup{17(Y) 1\ Y(z) IY,z eF,Yv z=w}

= sup{(,ll(w) 1\ TJ(y»1\ (,ll(w) 1\ Y(z» Iy, z eF, yv z = w}

s sup{(,ll(y) 1\ TJ(y» I\(,ll(z) 1\ Y(z» Iy, z eF, yv z = w}

[v y =Y1\ W, Z =W 1\ Z ]

= sup{(,ll(l TJ)(y) I\(,ll(l Y)(z) Iy, z eF, yv z = w}

= «,ll(l TJ)v (,ll(l Y»(w) for all w eF

Therefore ,ll(l(TJv Y) ~ (,ll(l TJ)v(,ll(l Y) (1)

Now ,ll (l TJ s ,ll and ,ll (l Y s u, also ,ll (l TJ ~ TJ s TJ vY and ,ll(l Y s Y s TJ vr.

(,ll(l TJ)v(,ll(l Y) ~ ,ll(l(TJv Y)

From (1) and (2) we have, ,ll (l (TJ v Y) = (,ll (l TJ) v (,ll (l Y).
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Theorem3.5.14. Given an arbitrary collection (J.l i)ie 1\ and 1] of fuzzy ideals of a frame

Proof. For weF,

= 1](w) 1\ sup{ /\ Pi(aJ I ai eF, V a. =w}
i eA i eA I

= SUp{ /\ (1](W) I\Pi(aJ)1 ai eF, V a j =W}
ieA ieA

= SUp{ /\ (1]n P i)( aJ) I a i e F, V a j = w}
i eA i eA

(1)

V (11n p.) s 1].
leA 1

From (1) and (2) we have V (1]nPi)= 1]n (V Pi)
ieA ieA
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Theorem 3.5.15. The set IFF of all fuzzy ideals of the frame F is a frame.

Proof. IF F is a complete lattice, which is bounded above by ZF and below by Z{OF}

where the intersection of fuzzy ideals gives the meet and the join is given by the

operation v.Also here finite meet is distributed over arbitrary join. Hence IF F is a frame.
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CHAPTER 4

INTillTIONISTIC FUZZY FRAMES~

4.1 Introduction

In this chapter we generalise the concept of Frame into an Intuitionistic fuzzy

frame and some results related to that are obtained.

4.2 Intuitionistic Fuzzy Frame

We give the following definition for an intuitionistic fuzzy frame.

Deflnltion 4.2.1. Let F be a frame, then an intuitionistic fuzzy set A =

{(x, ,u A(X), r A(X» I x e F} in F is called an intuitionistic fuzzy frame of F if it satisfies

the following conditions,

i) ,u A(V S) ~ inf {,u A(a) Iae S }

r A(V S) s sup {rA(a) Iae S} for every arbitrary ScF

ii) ,u A(a/\b) ~ min {,u A(a), ,u ACo) }

r A(ax b) s max {rA(a), r ACo)} for all a, b eF

Hi) ,uA(ep) = ,uA(Op) ~,uA(a)

rA(ep) = rA(Op) ~rA(a)forallaeF,whereepand Opare

respectively the unit and zero element of the frame F.

e Some of the results in this chapter were accepted for publication in The Journal of Fuzzy Mathematics

64



Example 4.2.2. Consider the set R of real numbers with usual topology T which is a

frame. Let Abe an intuitionistic fuzzy set in T defined by, A={(x, J.l A(X), r A(X»Ix e F}

x=R, t/J

xvR; t/J

Then A is an intuitionistic fuzzy frame of T •

Example 4.2.3. Consider an intuitionistic fuzzy set Aof! = [0, I] defined by,

A= {(x, ,u~(x), r~(x» Ixe [O,I]} where a is some chosen element in (t,l] and

a,

J.l~(x) = ~,

I-x,

x=O,1

I
O<x~-

2
I
-<x<1
2

I-a,

, ~(x) = I-x,

x

3'

x=O,1

I
O<x~-

2
I
-<x<1
2

Then A is an intuitionistic fuzzy frame of I.

Theorem 4.2.4. Let F be a frame and At, A2 two intuitionistic fuzzy frame in F then

At (1 A2 is an intuitionistic fuzzy frame of F.

Proof. Let At= {(x, J.l At (x), rAt (x» Ix e F} and AF {(x, J.l A2 (x), r A2 (x» Ix e F}

Let J.l At (1 A2 (x) = J.l At (x) A J.l A2 (x) and rAt (1 A2 (x) = rAt (x) v r A2 (x) for x e F

~ min {J.l At (x), J.l At (y)} A min {J.l A2 (x), J.l A2 (y)}
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s max {r A1 (x), r A1 (y)} v max {r A2 (x), r A2 (y)}

= max {r A1 (x)v r A2 (x), r A1 (y) V r A2 (y)}

= max {rA1(lA2(X), rA1(lA2(Y)} forallx,yeF

~ A inf {JlAi (X) IXe S }
i =1,2

= inf { A JlAi (X) Ixe S }
i =1,2

= inf {Jl A1 (l A2 (x) Ix e S } for every arbitrary SeF

~ v sup {rAi(x)lxeS}
i =1,2

=sup { v r Ai (x) Ixe S }
i=I,2

= sup {r A1 (lA2 (x) Ixe S } for every arbitrary S cF

iii) For unit element eF and zero element OF of the frame F we have,

s r A1(lA2(X) for all xeF

~ JlA1 (x) A JlA2 (x) = JlA1(lA2(X) for all xeF
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Similarly J.l A1 n A2 (ep) ~ J.l A1 n A2 (x) for all xe F.

s r A1 (x) v r A2 (x) = r A1 n A2 (x) for all xe F.

Similarly rA1nA2(ep) s rA1nA2(X) for all xeF

Thus by definition A1 nA2 is an intuitionistic fuzzy frameof F.

In a similar way we can prove the following result.

Result 4.2.5. If {A. lie A} a family of intuitionistic fuzzy frames of F then n A. is
I ieA I

an intuitionistic fuzzy frame ofF.

Theorem 4.2.6. Let F be a frame. If A is an intuitionistic fuzzy frame of F then DA is

also an intuitionistic fuzzy frame of'F,

Proof. Let A= {(x,J.l A(X), r A(X» Ixe F}.Then DA= {(x, J.l A(X), 1-J.l A(X» Ixe F}

Let 8 A(X) = 1-J.l A(X) where xeF. Since Ais an intuitionistic fuzzy frame for all x, y eF

we have J.l A(X A y) ~ min{J.l A(x), J.l A(y)} also for every arbitrary Sc F we have

J.l A(V S)~ inf {J.l A(x) Ixe S }.

= max{I- J.l A(X), 1-J.l A(Y)}

= max {8 A(X), 8 A(Y)} for all x, yeF.

Also 8 A(V S) = 1-J.l A(V S)~ 1- inf {J.l A(x) IxeF}= sup {I- J.l A(X) IxeF}

= sup {8 A(X) IxeF} for arbitrary S~F.
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Also clearly,u A( 0F)= ,u A( eF) ~,uA(x)for all xe F.

Also 8 A( OF) = l-,u A( OF)~ l-,u A(x) = 8 A(X) for all xeF. Similarly 8 A( eF) ~ 8 A(X)

for all xeF. Therefore the result follows.

Theorem 4.2.7. Let F be a frame ifAis an intuitionistic fuzzy frame ofF then 0A is also

an intuitionistic fuzzy frame ofF.

Proof. Let A= {(x,,u A(X),rA(X» IxeF}. Then OA = {(x, 1-r A(X), r A(X» IxeF}

Let8 A(X) = l-rA(X) for xeF. Since A is an intuitionistic fuzzy frame for all x, yeF

we have r A(XI\Y) s.max {rA (x), r A (y)} and for every arbitrary S~F we have

rA(VS) s sup{rA(x)lxeS}.

Now 8 A(XI\Y) = 1-r A(XI\Y)~ 1-max {rA(x), r A(y)}

= min {1-rA(X), 1-rA(Y)}

= min {8 A(X), 8 A(Y)} for all x, yeF.

Also8 A(V S) = 1-r A(V S) ~ 1- sup {,u A(x) IxeF}

= inf{I-,uA(x)lxeF}

= inf {8 A(X) IxeF} for arbitrary S~F.

Again r A( 0F)= r A( eF) s r A(X) for all xe F as Ais an intuitionistic fuzzy frame, hence

clearly 8 A( 0F)= 8 A( eF) s 8 A(X) for all xeF. Therefore the result follows.

Theorem 4.2.8. Let A= {(x,,u A(X), r A(X» Ixe F} be an intuitionistic fuzzy set in F. Then

Ais an intuitionistic fuzzy frame ofF ifand only if DA and 0A are intuitionistic fuzzy

68



frames ofF.

Proof. IfA= {(x, J.lA(X), r A(X» Ixe F} is an intuitionistic fuzzy frame of'F, then DA and

OA are intuitionistic fuzzy frames ofF by Theorem 4.2.6 and Theorem 4.2.7.

Conversely if DA and 0A are intuitionistic fuzzy frames of'F then the fuzzy sets

J.lAand r A= 1- r Aare fuzzy frames of'F. Now for arbitrary S~F we have,

J.lA(V S) ~ inf {J.l A(x) Ixe S land

rA(VS) ~inf{rA(x)lxeS}

= inf{l-rA(x)lxeS}

= 1- sup{ r A(x) Ixe S }.

Also r A(V S) = 1-r A(V S).

Hence rA(VS) s sup{rA(x)lxeS}

Similarly we have for arbitrary x, yeF, J.lA(XAy) ~ min {J.l A(x), J.lA(y)} and

r A(XAy) s max {r A(x), r A(y)}.

Again r A( Op) = r A( e p) ~ r A(x) for all xeF.

That is l-r A(Op) = l-rA(e p) ~1-r A(X) for all xeF. Hence r A(Op)= r A(ep) s r A

(x) for all xeF.A1so J.lA(ep) = J.lA(Op) ~J.lA(x)forallxeF.

Hence A is an intuitionistic fuzzy frame of'F.

Remark 4.2.9. IfAis an intuitionistic fuzzy frame of'F then A cannot be an intuitionistic

fuzzy frame of'F, which follows from Definition 1.5.24 and Definition 4.2.1.
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Remark 4.2.10. If A and B are two intuitionistic fuzzy frames ofF then Au B need not be

an intuitionistic fuzzy frame ofF.

For example consider the frame F = {X,9,{a, b},{a, c},{a}} where X = {a, b, c}

and the intuitionistic fuzzy frames Aand Bdefined as below A={(x,J.l A(X), r A(X»Ix e F}

where,

J.l A(X) = J.l A( 9) = 1, J.l A({a,b}) = 0.5, J.l A({a,c})= 0.4, J.l A( {a})= 0.4

r A(X) = r A(9)=0, r A({a,b}) = 0.3, r A({a,C}) = 0.2, r A({a}) = 0.3

and B= {(X,J.lB (X),rB (x» IxeF} where,

J.l B(X) = J.l B(;) = 1, J.l B({a,b}) = 0.4, J.l B({a,c})= 0.5, J.l B({a})= 0.4

r B(X) = r B(9) = 0, r B({a,b})=0.4, r B({a,c})=0.3, r B({a})=0.3

ConsiderAU B= {(x,J.l A(X) V J.l B(X), rA(X) ArB(xj) Ix e F}

Let J.l AU B(X) = J.l A(X) v J.l B(X) and r AU B(X) = r A(X) v r B(X)

We shall show that J.lAUB(XAy)< min{J.lAUB(X), J.lAUB(y)}

For x = {a, b}, y = {a, c} we have J.lAUB(XAy) = J.l A(XAY)V J.lB(XAy) =

J.l A({a})v J.l B({a}) = 0.4. Now J.l AU B(X) = 0.5 , J.l AU B(y) = 0.5, min{J.l AU B(X),

J.lAUB(y)} = 0.5. Therefore J.lAUB(XAy) < mint J.lAUB(X), J.lAVB(Y)}.

Hence here Au B is not an intuitionistic fuzzy frame ofF.

Theorem 4.2.11. IfH is a sub frame ofF, A = {(x,J.l A(X), rA(X» IxeF} an intuitionistic

fuzzy frame ofF and B= {(x, J.l B(X), rB(X» IxeF} the restriction ofA to H then B is an

intuitionistic fuzzy frame ofH.

Proof. Let S be an arbitrary subset of H.
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Now f.J B(V S) = f.J A(V S)~ inf {f.J A(X) Ixe S }= inf {f.J B(X) Ixe S } and

rB(V S) = r A(V S) s sup {rA(x) IxeS}= sup {rB(X) IxeS }

Similarly for arbitrary x, yeH we have,

f.J B(X /\ y) ~ min {f.J B(X), f.J B(Y) }, r B(X /\ y) s max{r B(X), r B(Y) }

Again since OH = OF and eH = eF we have,

Hence B is an intuitionistic fuzzy frame ofH.

Proposition 4.2.12. IfA an intuitionistic fuzzy frame of a frame f then every non empty

level set At ofA for te[O,I] is a subframe off.

Proof. IfA is an intuitionistic fuzzy frame on f then for arbitrary x, yeA b we have

Now by Definition 4.2.1 we have for all x, yeA t

f.J A(x/\y)~ min{ f.J A(x), f.J A(y) }~t, r A(x x y) s max{ r A(x), r A(y) }:S; t

Again for arbitrary F t~At we have r A(X):S; t :s; f.J A(X) for all x eFt.

Hence f.J A(V F J~ inf {f.J A(X) Ixe F d ~t, r A(V F J s sup {r A(X) Ixe F d:s; t

Also clearly OF and eF eA t- Therefore At is a subframe off.

Lemma 4.2.13. Let A= {(x, f.J A(X), r A(X» Ix e F} be an intuitionistic fuzzy frame of the

frame f then (f.J ~t = { xe f If.J A (x) ~t } and (rAh = { xe fir A (x) :s; t } where

t e [0,1] are either empty or subframes off.
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Proposition 4.2.14. If every non empty level set A b te [0,1] of an intuitionistic fuzzy set

A = {(x, f..l A(X), rA(X» I xe F} is a subframe of the frame F then A is an intuitionistic

fuzzy frame on F.

Proof. Suppose A t = {xe X Ir A(X)S t S f..l A(X)} for te [0,1] is a subframe on F.

At being a subframe we have eF, OF eA t for all te [0,1].

have eF and °F belong to both (f..l~ T and (r~ T also eF and °F belongs to both
1 1

(f..l~ T
2

and (r~ T
2,

where T1 and T2 are respectively the largest and smallest element of

[0,1] such that (f..l ~Tl' (r ~Tl' (f..l ~T2' (r ~T2 are non empty.

Now let S be an arbitrary subset ofF then

Otherwise there exists some So c F such that

f..l A( V So)< inf { f..l A(x) Ix e So } or r A( V S) > sup {r A(x) Ix e So }

Taking to =! [f..lA( V So) + inf {f..l A (x) I x e So }] we have f..l A( V So)< to<
2

inf { f..l A (x) Ix e So }. Hence to< f..l A (x) for all x e So. Therefore x e (f..l~ 1
0

for all x e So

and hence So~(f..l~IO. Since (f..l ~IO is a subframe by Lemma 4.2.13 we have V So e

( f..l ~ 1
0•

Therefore f..l A( V So) > to a contradiction.

Similarly taking to = 1
- [rA(V So) + sup{rA (x) I xe So }] we have
2

r A(V So» to> sup {rA (x) I x s S, }. Hence to >rA (x) for all xeSo. Therefore
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Xe (r .J to for all x e So and hence So c (r .J to' Since (r .J to is a subframe by Lemma

4.2.13 we have V So e (r .Jto' Therefore r A(V So) < to a contradiction. Hence (1)

holds.

Also for arbitrary x, yeF we can show similarly that JlA(XAY)~ min{ JlA(x), JlA(y) }

and r A(XAy) s max {rA(x), r A(y) }.

Therefore A= {(x, JlA(X), r A(X» IxeF} is an intuitionistic fuzzy frame on F.

Theorem 4.2.15. Let F be a frame then an intuitionistic fuzzy set A on F is an

intuitionistic fuzzy frame on F if and only if every non empty level set Au te [0,1] ofAis

a subframe ofthe frame F.

Proof. Follows from Proposition 4.2.12 and Proposition 4.2.14.

Defmition 4.2.16. Let Abe an intuitionistic fuzzy set of the frame F then the intuitionistic

fuzzy frame generated by A in F is the least intuitionistic fuzzy frame B of F with A cB

and is denoted by (A) .

Theorem 4.2.17. Let F be a frame and A= {(x, P A(X), r A(X» IxeF} an intuitionistic

fuzzy set of F then (A) = {(x, (pA) (x), (rA) (x) IxeF} where,

(pA) (x) =V {t I xe (PA )t) }, trA) (x) = J\ {t I xe (rA)t)} for all xeF is an

intutionistic fuzzy frame generated by A.

Proof. Consider (A) = {(x, (pA) (x), (rA) (x) IxeF} where,

(pA) (x) = V {t Ixe (PA)t)}, (r A) (x) = J\ {t Ixe (rA)t) } for all xeF.
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Now for any arbitrary S~ F we have for all x e S, (/-l A) (x) ~ inf{ (/-l A) (y) lye S} and

(rA) (x) s sup {(rA)(y)lyeS}.

Now S c (/-lA )t) :::)V Se (/-lA )t) and S~ (rA)t) :::) V Se (rA)t) .

Hence (/-lA) (V S) ~ inf{ (/-lA) (y) IyeS} and

(rA) (V S) s sup {(rA) (y) IyeS}

d r,' ,Suppose that t1 > t2 an t l < t2 •

Similarly ye (rA)t) :::)xe (rA)t) and so XAy e (rA)t)

Hence (/-lA) (XAy) ~ t1At2 and trA) (XAy) s t/ v t2' .

(1)

(2)

Again since eF, 0 F belongs to both (/-lA)t) and (rA)t) for all t such that (pA)t * (J ,

(rA)t * (J it follows that,

all xeF.

From (1), (2) and (3) we have thus (A) is an intutionistic fuzzy frame ofF.

(3)

Now let Bbe any intutionistic fuzzy frame ofF such that B ;J.A then (Po)t ::> (PA)t and

Hence B ;J. (A) . Therefore the result follows.
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Theorem 4.2.18. Let (A Ji=I,2 ... n where A i = {(x, Jl~ (x), r~ (xj) I xeF} be a finite

collection of intuitionistic fuzzy frames of a frame F. Then U A l' is an intuitionistic
iEA

fuzzy frame if and only if for te [0,1] r A. (x) ~t s JlA. (x) for all xe S an arbitrary
1 1

subset of F and rA. (x) st ~ JlA. (x), rA. (y) st s JlA. (y) for all x, yeF implies
1 1 1 '1

Proof. By Theorem 4.2.15 i~AAi is an intuitionistic fuzzy frame if and only if each

nonempty level subset ( ~Ai)t is a subframe of F. Now ( ~Ai)t=l) (Ai)t for each
I I I

te [0,1]. But U(Ai )t is a subframe ofF if and only if for any arbitrary Se U(Ai )t we
I I

have V Se U (Ai)t and for all a, bel) (Ai )p axb s l) (Ai )t. That is rAj (x) ~t
I I I

s JlA. (x) for all xe S an arbitrary subset of F and rA. (x) ~t s JlA. (x), rA. (y) ~t
1 1 1 1

Jlk( x Ay) for some k, 1s k s n.

Theorem 4.2.19. Let A = {(x,Jl A(X), rA(X» I x e F} be a intuitionistic fuzzy set of a

frame F with Card Im JlA< ex> and Card Im r A< ex>. Define subframes Fi of F inductively

as follows Fo= (Ko) frame generated by Ko, where Ko ={ xeF IJlA(X) = sup {Jl A(y) I

yeF }, r A(X) = inf{r A(Y) I yeF } }, Fi = ( Ki) frame generated by x, where

Ki= Fj.1u {xeF l,ll(x) = sup{,ll(y) IyeF - Fi_ l }, r(x) = inf{r(y) IyeF - Fi-Il} for all
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i = 1,2, ... ,n such that Fn = F. Then the intuitionistic fuzzy set A* of F defined by

f.lA*(X) = sup{f.l A(Y) I yeF }, YA*(x) = inf{YA(Y) I yeF } for all xeFo and f.lA*(X) =

sup{f.l A(Y) I yeF-Fi_l } , YA*(X) = inf{Y A(Y) I yeF-Fi_ l } for all xeFi-F i_l where

i = 1,2, ... ,n is the intuitionistic fuzzy frame generatedby Ain F.

Proof. ClearlyA ~ A* as f.l A~ f.lA* and Y A~ YA*. Also Fi's form the chain, Fo c Fl C

F2 C . .. ~ Fn = F of all level subframesof the intuitionistic fuzzy set A*of F. Hence by

Theorem4.2.15, A* is an intuitionistic fuzzy frame of'F,

Also we have A* is generated by A. For let 8= {(x, f.lB(X), YB(X» I xeF} be any

intuitionistic fuzzy frame ofF such that As B.

If xe Ko then sup {f.l A(Y) lye F } = f.l A(X) s f.l B(X), inf{YA(Y) lye F } = YA(X) ~ YB(X)

hence sup {f.lA(Y) I yeF }~ inf {f.lB(X) I xeKo}, inf {Y A(Y) I yeF }~ SUp{YB(X) I

xs Ks}, Choosing inf {f.lB(X) I xeKo}= to and SUp{YB(X) I xeKo}= t~ we have

f.l B(X)~ to and YB(X) s t~ for all xe Ko. Therefore Ko c (f.l B) to the subframe of f.l Band

Koc (YB) to the subframe of YB by Lemma 4.2.13. Since (f.l B) to and (YB) to are

subframes we have FOC(f.lB)to and FOC(YB)tij. Therefore f.lB(X)~ to and YB(X) s t~

for all xeFo. Hence for all xeFo,

f.lA.(X) = sup{ f.l A(Y) Iye F }s inf {f.l B(X) Ixe Ko}= to s f.l B(X),

YA.(x) = inf{YA(Y) IyeF} ~ sup{YB(X) IxeKo}= t~ ~ YB(X)

Also ifxe Kr- Fothen sup{ f.l A(Y) lye F-Fo} = f.l A(X) s f.l B(X) and inf{YA(Y) lye F-Fo}

=YA(X) ~ YB(X). Hence sup {f.l A(Y) lye F-Fo} s inf { f.l B(X) Ixe K,-Fo},
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inf {Y A(Y) IyeF-Fo} ~ sup{Ya(x) Ixe K1-Fo}. Choosing inf {,u a(x) IxeK1- Fo}= t1and

sup{Ya(x) Ixe K1- Fo}= t; we have ,ua(x)~ t1and Ya(x)::5; t; for all xeK1- Fo.

ThereforeK1-Foc(,ua)t
1

the subframeof ,uaandK1-Foc(Ya)tj the subframe of Ya.

and so ,u a(x)~ t1and Ya(x)::5; t; for all xeF1. Therefore for all xeF1-Fo,

,uA*(X) = sup{,u A(Y) Iye F-Fo }::5; inf {,u a(x) Ixe K1-Fo}= t1::5; ,u a(x),

Proceeding as above we have ,uA*(X)::5; ,ua(x) and YA*(X) ~ Ya(x) for all xeFi - Fi-h

i = 2,3... n. Hence A*::5; Bfor all xeF. Therefore the result follows.

4.3 Homomorphisms

Theorem 4.3.1. Let L and Mbe two framesj": L-+ Mbe a frame homomorphismand

A = {(X,,uA(X),YA(X» I xeF} an intuitionistic fuzzy frame of L. Then the image of A

under/denoted by itA)= {(y, f.J,/(A) (y), Yf(A) (y» Iye M}

{
SUP{,uA(x) Ix e rl(y)}, ifrl(y) *;

where ,uf(A) (y) = .
0, otherwise

is an intuitionisticfuzzy frame ofM.

Proof. For arbitrary Sc M we have,
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Pf(A) (V S) = sup {J1.A (x) Ix e r: (VS)}

~ inf{sup{ P A(X) I xe r'i» }}

= inf{ Pf(A) (y)} for ye S.

Yf(A) (V S) = inf{YA (x) Ix e j-I(VS)}

S sup{inf{ YA(X) Ixe f-1(y)}}

= sUP{Yf(A)(y)} for yeS.

Again for x, y e M we have, Pf(A) ( X 1\ Y ) ~ min { Pf(A) (x), Pf(A) (y) } and

Yf(A) (x 1\ y) S max{ Yf(A) (x), Yf(A) (y)}.

Also Pf(A)(OM) = pf(A)(eM) ~ Pf(A) (x) and Yf(A)(OM) = Yf(A)(e M) ~ Yf(A) (x)

for all x e M.

Hencef(A) is an intuitionistic fuzzy frame ofM.

Theorem 4.3.2. Let L and M be two frames, f a frame homomorphism from L onto M

and B = {(x, P B (x), YB (xj) Ix e F} an intuitionistic fuzzy frame ofM. Then the preimage

ofB underf denoted by rl(B)= {(x,J1.rl(B) (x), Yrl(B) (x» IxeF} where J1.rl(B) (x) =

J1.B( f (x» and Yrl(B) (x) = YB(f(x» is an intuitionistic fuzzy frame of L.

Proof. Let S be an arbitrary subset ofL, thenf(V S) e M and is equal to

V {[(x) Ixe S}.
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Now Jlrl(B) (V S) = J.lB(f(V S» = J.l B(V {f(x) IXE S})~ inf{ J.lB(f(x» IXES }

= inf{ Jlrl(B) (x) IXES }

rrl(B) (V S) = r B(f(V S» =r B(V {f(x) IXE S}) s sup {r B(f(x» IXE S }

= sup {rrl(B) (x) IXE S }

Also for arbitrary x, y E L

Jlrl(B) (XAY) = J.l B(f(XAy» = J.lB(f(x) Af(y»~ min{ J.l B(f(x», J.l B(f(y»}

= min{ Jlrl(B) (x), Jlrl(B) (y)}

rrl(B) (x Ay) = r B(f(x Ay» =r B(f(x) A f(y» s max {r B(f(x», r B(f(y»}

= max {rrl(B) (x), rrl(B) (y)}

Now sincef( eL) =f( 0L) ~f(x) for all XE L we have,

Jlrl(B) (e L) = J.lB(f( eL» = J.lB(f( 0L» =Jlrl(B) (OL) also

Jlrl(B) (e0 = J.l B(f( e0) ~ J.l B(f(x» = Jlrl(B) (x) for all XE L

Therefore Jlrl(B) (e L) = Jlrl(B) (OL) ~ Jlrl(B) (x) for all XE L.

Similarly we have rrl(B) (e0 = rrl(B) (00 s rrl(B) (x) for all XE L.

Therefore f -I (B) is an intuitionistic fuzzy frame ofL.
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Theorem 4.3.3. Let L and Mbe two sets f: L-. M a bijection. If A= {(x,P A(X), YA(X» I

xe F} is an intuitionistic fuzzy set ofL then f-l(f(A» = A.

Proof. For arbitrary x e L let f(x) = y. Sincef is a bijection we have f-I(y) = x.

Now fJ'r'o (A» (x) = Pf(A) (f(x» =Pf(A) (y) = sup{P A(X) Ix e f-I(y)} = P A(X) and

rr'o (A» (x) = Yf(A) (f(x» =Yf(A) (y) = inf {Y A(X) Ix e f-I(y)} = Y A(X) since f is

bijective. Thereforer' (f(A» = A.

Corollary 4.3.4. Let L and M be two sets f : L-. M be an isomorphism. If B an

intuitionistic fuzzy set ofM then «r (B» = B.

Lemma 4.3.5. Let f be a homomorphism from a frame L to a frame M and let

A = {(x,P A(X),Y A(X» I xeF} be an intuitionistic fuzzy frame of M then (f-I(A»t=

f-I(At) for every te [0, 1].

Proof. Let xe L.

Now x e (f-I(A»t <:) rr1(A) (x)s t s fJr1(A) (x) <:) YA(f(X» s t s P A(f(X»

<:) f(x)e f-I(At)

Remark 4.3.6. Theorem 4.3.1 follows by above lemma also since by a theorem the
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(2)

homomorphic preimage of subframe is a subframe, again by Theorem 4.2.15 if A an

intuitionistic fuzzy frame of any frame F then every non-empty level subset At, t e [0,1]

of Ais also a sub frame of F.

Proposition 4.3.7. Let L and Mbe two frames,f: L-+ M a homomorphism. Let A be an

intuitionistic fuzzy frame ofL then f(A)t = f(At) for every te [0, 1].

Proof. We have by Theorem 4.3.1f(A) an intuitionistic fuzzy frame of M. Also clearly

Imf(A)cImA. Now f(A) t= f(A t) for each teImf(,ll).

For, let yef(A) t then rf(A)(y) s t s ,llf(A) (y) hence inf {r A(X)Ixe f-I(y)} s t and

sup{ ,ll A(X)Ixe f-I(y)} ~t .Choose Xoe L such thatf(Xo) = yef(A J.

Therefore f(A) t ~ f(A J. (1)

Let f (x)e f (A J then x eA t and hence r A(f{X» s t ~,ll A(f{X». Which implies

inf {r A(Z) Ize f-I(f(x»} s ts sup] ,llA(Z) Ize f-I(f(x»}.

Hence rf(A) (f(x» s t~ ,llf(A)(f(x».

Thereforef(x)ef(A)t and hencef(A J c f(A)t

From (1) and (2) we havej'(A),« f(A J.

4.4 Product of Intuitienistie Fuzzy frames

We use notation (A, L) to denote the intuitionistic fuzzy frame Aof the frame L.

Defmition 4.4.1. Let (A, L) and (B, M) be intuitionistic fuzzy frames where A =

{(x, ,ll A(X), r A(X» I xe L } and B = {(x, ,ll B(X), r B(X» I XE M }. Amorphism
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i: (A, L) ~(B, M) is a homomorphism j: L ~M such that f.lA s f.lB of and

rA ~ rBof, that is the degree of membership ofx in L does not exceed that ofj(x) in

M and the degree of non membership of x in L exceed that ofj (x) in M. We call the

function f :L ~M the underlying function of i.

DefInition 4.4.2. Let r. (A, L) ~(B, M) and g: (B, M) ~(C, N) be morphisms then

go i : ( A, L ) ~( C, N ) is a frame homomorphism go j: L ~M such that

Let IFFnn denote a category whose objects are intuitionistic fuzzy frames and morphism

as defined above. We have the following theorem

Theorem 4.4.3. The category IFFrm of intuitionistic fuzzy frame has equalizers.

Proof. Let (A, L) and (B, M) be intuitionistic fuzzy frames where A= {(x, f.lA(X), r A(X»

IXE L } and B= {(x, f.lB(X), rB(X» IXE M}.

Let i: (A, L) ~ (B, M) and g: (A, L) ~ (B, M) be two morphisms.

-4
Consider L M

-~
g

Let K = { XE L I j (x) = g (x) } which is a subframe of L and let i: K~ L be the

inclusion map. Then clearly j 0 i = go i .

Define an intuitionistic fuzzy set C = {(x, f.lc(x), r c(x» Ix E K } on K as follows, for

a EK. let f.lc(a) = f.lA(a) and rc(x) = rA(X). Then I is morphism from (C, K) to (A, L).
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If for arbitrary intuitionistic fuzzy frame (D, N), D ={(x, P, o(x), Yo(x» Ix eN}

ii is a morphism from (D, N) to (A, L) such that f °h = go h then there exist fJ: N~ K

such that i ° fJ =h.

Also P, 0 s p,c ° fJ and Y 0 ~ Y c ° fJ, as for zeN

P,o(z) ~(P,A oh)(Z)=(P,AoiofJ)(z)=(P,Aoi)(fJ(z»= p,c(fJ(z»=(P,c ° fJ)(z)

andYo(z) ~(YA oh )(z) = (Y AO iofJ)(z) = (Y AO i )(fJ(z» = Y c(fJ(z» = (Y CO fJ)(z)

Thus e is a morphism from (D, N) to (C, K)

Now for zeN,

(PA oh)(z) ~ Po{z} again we have (YA oioO)(z)= (YA oi)(O(z» = YA(i(O(z»)=

Hence P A 0 i 0 0 ~ Po and YA 0 i 0 0 ::;; Yn- Therefore the result follows.

Defmition 4.4.4. Let Aa = {(x, Jla(x), Ya(x» Ixe Fa } be an intuitionistic fuzzy frame

of the frame Fa for a e A. The product of Aa's is A = IT Aa defined on the product
aeA

F =IT Fa with usual order by A = {(x, P,(x), Y(x» IxeF} where,
aeA

Proposition 4.4.5. A = IT Aa is an intuitionistic fuzzy frame of F = IT Fa
aeA aeA
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Proof. We have F = {(aa)a e A I aa e Fa for a eA}

eF = (eF. )a E A and OF = (oF. )a E A are respectively the unit and zero element ofF.
a a

i) For arbitrary ScF we have,

J.l(V S) = J.l(V {(xa)1 aeA})
x

~ inf { inf {J.la ( xa )} }
aeA x

= inf {inf {M:r(Xa )} } = inf J.l(x)
x aeA xeS

Y(V S) = Y(V {(xa)1 aeA})
x

s sup {sup {Ya ( xa )} }
aeA x

= sup {sup {Ya(xa )} } = sup {Y(x)}
X aeA x eS

ii) For all x = (xa)aeA' y = (Ya)aeA e F we have

84



= min {J.L(x), J.L(y)}

= sup {Ya (Xa AYa) }
aeA

s sup {max{Ya(xa), Ya(Ya)}}
aeA

= max{sup {Ya(Xa)}, sup {Ya(Ya)}}
aeA aeA

= max{J.L(x), J.L(y)}

iii) J.L( eF) = IT}la (e F)

aeA

also J.L( eF) = IT}la (e F) = inf{,l{,(eFa )}aeA
aeA
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= TI,ua(a) foralla=(aa)aeA eF
aeA

= p(a)

Now y(eF) = TIya(eF) = SUp{Ya(eFa)}
aeA aeA

= sup {Ya(OFa)}aeA

also Y( e F) = TI r, (e F) = sup {Ya(eFa )}aeA
aeA

= TI r, (a) for all a= (aa )aeA eF
aeA

= Y(a)

Hence we have the required result.

Theorem 4.4.6. The category IFFrm of intuitionistic fuzzy frames has products.

Proof. Consider a family of intuitionistic fuzzy frame {(Aa,Fa) I a eA} where

Aa = {(x, Pa(x), Ya(x» Ixe Fa }. Corresponding to the product F = TI Fa we have an
aeA

intuitionistic fuzzy frame (A, F) where A = TI Aa ={(x, P(x), Y(x» Ixe F }.
aeA

Now consider the projection (homomorphism) Pa : F -+ Fa.
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Therefore P is morphism from (A, F) to (A ,F ) for a eA.a a a

Now for arbitrary intuitionistic fuzzy frame (B, M ) where B = {(x, /i M(X), rM(X» I

xeM } if "a is a morphism from (B, M ) to (Aa,Fa). Then define 8 : M~F as

Now 8 (z)= (ua(Z» is a frame map as ua for a e A is a frame map.

Also for zeM we have /iM(Z) ~ /ia 0 ua(z) and rM(Z) ~ ra 0 ua(z) for all a e Aand

hence,

/iM(Z) s inf /ia (Ua(Z» = inf {/ia (8(z»a }= /i (8(z» = /i o 8(z) and
aeA aeA

r M(Z) ~ sup ra (ua(z» = sup {ra (8(z»a }= r (8 (z» = r 0 8(z)
aeA aeA

Hence /iM s /i 0 8 and rM ~ r 0 8

Thus 0 is a morphism from (B, M ) to (A, F)

Clearly Pa 08 =ua for all a e A

Also (/ia 0 Pa o8)(z)

= /ia (Pa (8 (z)
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~ /.l M(Z)

again (Ya 0 Pa o8)(z) = (Ya 0 Pa )(8 (a)

= Ya(Pa (8 (z)

Hence /.l M ~ /.la 0 Pa 08 and YM ~ Ya 0 Pa 0 8.

Thus for each family {(Aa' Fa)1 a EA} of intuitionistic fuzzy frames there is an

intuitionistic fuzzy frame (A, F) and morphisms Pa : (A, F) ~(Aa,Fa) such that for

any intuitionistic fuzzy frame (B, M) and family ofmorphisms "a: (B, M)~ (Aa,Fa)

there is a unique morphism 8: (B, M )~ (A, F) such that Pa 08 =ua and /.lM s

/.la 0 Pa 0 8, YM ~ Ya 0 Pa 0 8 for all a EA.

Therefore the result follows.

Theorem 4.4.7. The category IFFrm of intuitionistic fuzzy frames is complete.

Proof. Follows from Theorem 4.4.3 and Theorem 4.4.6.
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Theorem 4.4.8. Let Aa = {(x, ,lb(x), Ya(x» Ixe Fa } be an intuitionistic fuzzy set of

the frame Fa for a e A such that IT Aa = {(x, P(x), Y(x» IxeF} is an intuitionistic
aeA

fuzzy frame ofF =IT Fa .Now for xa e Fa (a e A) if Pa(eFa)= Pa(OFa) ~ pa(xa) ,
aeA

ya(eFa )= Ya(eFp) for all a, pe A where eFa, 0Fa are respectively the unit and zero

element of the frame Fa then Aa is an intuitionistic fuzzy frame of Fa for all a eA.

respectively the unit and zero elements of the frame F.

Now for y e Fa consider (yp)peA eF where Yp = { yeFp

if p= a

otherwise

Then for all y e Fa' P ( (yp)peA) = inf {Pp (yp) } = P aCY) and
peA

Y «Yp)peA) = SUp {Yp (Yp)} = YaCY)
peA

Consider a eA.

Now for arbitrary Se Fa we have,
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{

V S
,ua(v S) = ,u ( (yp)peA) where Y p = e

Fp

if p= a

otherwise

= ,u ( V (xp)/3eA ) where xp= { x
xeS e~

= inf {,ua(x)}
;:ceS

if P= a

otherwise

Also ra(V S)
if P= a

otherwise

= r ( V (xp)/3eA ) where xp= { x
xeS e~

s sup { r «xp)/3eA )}
xeS

= sup {ra(x)}
xeS

Similarly it can be shown that for all x, y e Fa'

if P= a

otherwise

Hence the result follows. o

Letf be a homomorphism on a frame F. If A and B are intuitionistic fuzzy frames

of the frame f (F) then A x B is an intuitionistic fuzzy frame of f (F) x f (F). The

preimage f-1(A) and f-l(B) are intuitionistic fuzzy frames of F and if,fr1(AxB) an

intuitionistic fuzzy frame of F x F. We study this relation.
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Theorem 4.4.9. Let F be a frame and f a homomorphism on F. Let A and B be

intuitionistic fuzzy frames ofthe frame fOO then f-I(A) x f-lea) = U',frl(AxB).

Proof. Let A = {( Y, f.lA(Y), r A(Y) ) I ye f(F)} and B = {( Y, f.lB(Y), r B(Y» lye f(F)}

For all (x., X2) eF x F we have,

(f.l AX f.l B) °(f, f) (x., X2) = (f.l AX f.lB)(f(XJ), f(X2»

= inf{ f.lA(f(xJ», f.lB(f(X2»}

= inf{f.lAof(xJ), f.lBof(X2)}

= (f.l A °fx f.loof) (x., X2)

also(r Ax r B) ° (f, f) (XJ, X2) = (r Ax r B)(f(xJ),f(X2»

= sup{rA(f(XI», rB(f(X2»}

= sup{rAof(XJ), rB°f(X2)}

= (r A of X r 0 of)(xJ, X2)

Hence (f.l AX f.l B) 0 (f, f) = f.lAof x f.lBof and(r Ax r 0) 0 (f, f) = r Aof X r Bof

Thereforethe result follows. o

The relation between images ofproduct of intuitionistic fuzzy frames of a frame F

is given as follows.

Theorem 4.4.10. Let A and B be intuitionistic fuzzy frames of the frame F. If f is a

homomorphism on F, the product f (A) x f (B) and (f, f) (A x B) satisfies

(f, f) (A x B)~ f(A)xf(B).
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Proof. Let A = {(y, f.J A(Y)' rA(Y» Iye f(F)} and B = {(y, f.J B(Y)' rB(Y» Iyef(F)}

f(A) andf(B) are intuitionistic fuzzy frames of f(F) andf(A) xf(B) is an intuitionistic

fuzzy frame of (f, f) ( F x F) = f(F) x f(F).

Now for each Y=(y" Y2) e f(F) x f(F) we have,

[(f, f)( f.J AX f.J B)](Y) = sup{(f.JAx f.JB)(X) IX e F 1 (y)} where F = (f, f) and

x =(x., X2)

= sup{infl f.J A(Xt), f.J B(X2» I(x], X2) e F 1 (y)}

s inf( sup{ f.J A(Xt) IXt e j-l(Yt)}, sup{ f.JB( X2) IX2 e j-l(Y2)} )

= inf { f (f.J A(Yt» , f (f.J B(Y2» }

= (f(f.J~ Xf(f.JB»(Y)

Also

[(f, t)( r Ax r B)](Y) =sup{(rAx r B)(X) Ix e F-1 (y)} where F =(f, t) and

x =(x., X2)

= sup{sup(r A(Xt), r B(X2» I(x., X2) e p-l (y)}

= sup( sup{r A(Xt) IXt e j-l(Yt)}, sup{r B( X2) IX2 e j-l(Y2)} )

= sup{ f( r A(Yt» , f( r B(Y2» }

= (f(r~ Xf(rB»(Y)

That is (f, t)( f.J AX f.J B) s f ( f.J~ x f ( f.J B) and (f, t)( r Ax r B) = f (r~ x f ( r B)

Therefore the result follows.
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CHAPTERS

INTUITIONISTIC FUZZY QUOTIENT FRAMES

5.1 Introduction

The operations of binary meet and arbitrary join on a frame F can be extended to

obtain new operations on the collection of all intuitionistic fuzzy set IFS of F. We define

an intuitionistic fuzzy quotient frame ofF to be an intuitionistic fuzzy partition ofF that is

a subset ofIFS and having a frame structure with respect to new operations.

5.2 Extended Operations

We extend the operation of binary meet A and arbitrary join V on a frame F to

-operations A and V on the set ofall intuitionistic fuzzy set IFS of F as follows.

For {Aa I a EA} c IFS where Aa = {(x, ,ua(X), ra(x» IXEF } we have,

where (Jt Al ,up)(x) = sup{Jt (y)A,up (z) Iy, Z E F and y I\Z = x} and

(ra A2 rp)(x) = inf{ ra (y)v rp (z) Iy, Z E F and yAZ = x}.

-where (VI ,ua)(x) = sup{ 1\ Jt (xa) I xa E F and V x = x} and
aeA aeA aeA a

-
(V2 ra)(x) = inf{ V ra(xa)1 xa E Fand V x =x}

aeA aeA aeA a
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Proposition 5.2.1. Aa A Ap and V Aa are intuitionistic fuzzy set of F.
aeA

Proof. Consider Aa A AP

Clearly for all xeF, O~ (J.la Al J.lp)(x) s 1 and O~ (Ya A2 Yp)(x) s 1. Now for xeF,

(J.la AI J.lp)(x) + (Ya A2 Yp)(x) = sup( inf{J.la(y), J.lp(z)}1 y, z e F and y I\Z = x)

+ inf( sup {Ya(y), Yp(Z)} \ y, Z e F and y I\Z = x)

~ sup(inf{J.la(y), J.lp(z)}ly,z e Fand yxz e x )

+ sup( sup {Ya(y), Yp(z)}Iy, z eF and y I\Z = x)

= sup( inf{J.la(y),J.lp(z)} + sup {Ya(y), Yp(Z)} Iy, Z eF and y I\Z = x)

s 1, for all xeF

- -Again for all xe F, 0 s (VI J.la)(x) s 1 and 0 s (V2 Ya)(x) s 1.Now for xe F,
a~ a~

- -(VI J.la)(x) + (V2 Ya)(x) = sup(inf {J.la(xa)}1 xa e F and V xa = x)
~ ~ a ~A

+ inf(sup {Ya (Xa)} I xa e F and V X = x)
aeA aa

s sup(inf {J.la(xa)}1 xa e Fand V X =x)
a aeA a

+ sup(sup {Ya (xa)}1 xa e F and V X = x)
aeA aa

~ 1, for all xeF (since for O~ a s 1 if inf {J.la(xa)} ~ a
a

then we have sup {Ya (xa)}~ b s I-a as Ya (xa) s 1- J.la(xa»
a

Hence the result follows.
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-The original operation A and V on a frame F can be retrieved from A and V by

embedding F into IFS as the set of all intuitionistic fuzzy singletons each of which is an

{
I if y= x

intuitionistic fuzzy set I = {(y, ,u.x<y),~(y» Ix e F} where ,ux(y)= .
x 0 otherwise

and

{
0 if y = x

Y.x<y) = .' The largest and smallest elements of IFS are respectively
1 otherwise

Ae= { (x, ,ue(x), Ye(x» I xeF } where ,uJ..x) = 1, ~(x) = 0 for all xeF and Ao=

{(x, ,uo(x), ~(x» IxeF } where ,uo(x)= 0, ~(x) = 1 for all xeF. It can be observed that

Note 5.2.2. IFS is a partial ordered set with largest and smallest element.

Note 5.2.3. For any family {Aal ae A} of subsets ofa frame F, Aa A A p = {axb I

aE A ,bE A p } for all a, peA and V Aa ={ V a I aa eA}.
a aeA aeA a a

Deflnltlon 5.2.4. lATh Let A = {(x, ,u A(X), YA(X» Ixe F } be an intuitionistic fuzzy

set in F. For any te [0, 1] A t = {xe FlYA(X) ~ t~ ,u A(X)} is called the level subset of

the intuitionistic fuzzy set A.

Proposition 5.2.5. Let {A, B } be a pair of intuitionistic fuzzy sets and {Aa I a eA} be

a family of intuitionistic fuzzy set of the frame F then for each t e [0, 1], A tAB t c
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Proof. Let A = {(x, J..l A(X), r A(X» Ixe F} and B= {(x, J..l B(X), r B(X» Ixe F}

Let xe At A B, then for some Y, zeF with x = YI\Z we have r A(Y) s rs J..l A(Y) and

(r A A2 rB)(X) = inf{ r A(Y) v r B(Z) IY, Z E F and Y1\ Z= x} s t

Therefore x e (A A B)t. Hence A tAB t c (A A B )t.

Now for A = {(x, ,Lt(x), ra(x» I xeF}, if xe V (J..la)t then for {x I ae A}cF
a aeA a

with x = V x we have ra(x )~ t ~ J..la(xa) for all a e A.
aeA a a

-Hence (VI ,Lt)(x) = sup{ 1\ ,Lt (xa ) I xa e F and V x = x} ~t and
aeA aeA aeA a

-(V2 ra)(x)=inf{ V ra(x )1 x e Fand V X =x}~ t.
aeA aeA a a aeA a

Therefore xe( V A )t. Hence V (Aa) t c (V Aa)"
aeA a aeA aeA

o

We give the following definitions for supremum property with respect to binary

meet 1\ and arbitrary joinV .

Defmition 5.2.6. A pair {A,B} of intuitionistic fuzzy sets of a frame F where

A = {(x, J..l A(X), r A(X» Ixe F } and B = {(x, J..lB(X), r B(X» Ixe F } has supremum

property with respect to 1\ if for any xe F there exist Yo, zoeF with Yol\Zo = x such that
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Defmition 5.2.7. A family {Aa I a eA} of intuitionistic fuzzy sets of a frame F where

Aa = {(x, ,l{,(x), Ya(x» I xeF} has supremum property with respect to V if for any

-xe F there exist {aa I a eA} ~F with x = V aa such that (VI ,l{,)(x) = /\ ,l{,(aa)
aeA aeA aeA

-and (V2 Ya)(x) = V Ya (aa)'
aeA aeA

Defmition 5.2.8. A sub collection S of IFS is said to have supremum property with

respect 1\ and V if every two elements of S has supremum property with respect to 1\

and every arbitrary subset of S has supremum property with respect to V .

Proposition 5.2.9. Let {A, B } be a pair of intuitionistic fuzzy sets and {Aa I a eA} be

a family of intuitionistic fuzzy set of the frame F having supremum property with

respect to 1\ and V respectively then for each te [0, 1], (A A B), = A tAB t and

Proof. Let A = { (x, J.J A(X), YA(X» I x e F } and B = { (x, J.J B(X), YB(X» I x e F }.

Let xe (A A a), then (YA A2 YB)(X) s t s (J.J A A) J.J B)(X). Since the pair {A, B } has

supremum property with respect to 1\ there exist Yo, ZoeF with Yol\Zo = x such that

Therefore Yo eAt and Zo e Bt. Thus x = Yo 1\ Zo eAt A Bt.

Hence (A A n), cAt A Bt.
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Therefore by Proposition 5.2.5 we have (f.l A Y)t = u,A Y t .

Similarly for Aa = {(x, Jt(x), Ya(x» I xeF} ifxe( V Aa)tsince {Aal ae A} has
aeA

supremum property there exist {aa I a eA} c F with x = V a such that,
aeA a

It follows Ya (aa) 5 t 5 Jt (aa) for all a eA.

Therefore aa e (Aa)t for all a e A. Thus x = V a e V (Aa)t.
aeA a aeA

Then by Proposition 5.2.5 we have ( V f.la)t = V (Jt)t
aeA aeA

Theorem 5.2.10. Let {A, B } be a pair of intuitionistic fuzzy sets and {Aa I a eA} be a

family ofintuitionistic fuzzy set of the frame F having supremum property with respect to

/\ and V respectively then A A B and V A are intuitionistic fuzzy frame of F .
aeA a

Proof. To show that A A B is an intuitionistic fuzzy frame ofF by Proposition 4.2.12

it is enough to show that each level subset (A A B), of A A B is a subframe for te [0,1].

Since A and Bare intuitionistic fuzzy frames ofF we have by Proposition 4.2.12 the level

subsets At and B, are subframes of F. Since At and B, are subframe At A B, is a

subframe of F for t e [0, 1]. Now by Proposition 5.2.9 we have (A A B), = A tAB t-
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Therefore (A A B), is a subframe of F for all te [0, 1]. Hence A A B is an intuitionistic

fuzzy frame ofF, Similarly we have V Aa is an intuitionistic fuzzy frame of F .
aeA

Theorem 5.2.11. Let A, B and C be intuitionistic fuzzy sets of a frame F. Then

A A (B c C)~ (A A B)v (A A C)

Proof. Let A = { (x, P A(X), rA(X» Ixe F }, B = { (x, PB(X), rB(X» Ixe F } and

C= {(x, Pc(x), r c(x» Ixe F}.

For arbitrary Y, z e F such that Y/\ Z = X

P A(y)/\(PB VI Pc)(z) = P A(Y)/\ SUp{PB(U)/\ Pc(v) Iu, v eF, uvv =z}

= sup{(P A(Y)/\ PB(U»/\(P A(Y)/\ Pc(v» Iu, v eF, uvv = z}

s sup{(P A(Y) /\ P B(U»/\(P A(Y) /\ Pc(v» Iu, v eF, (y /\ u)v (y /\ v)

=Yxz}

~Sup{(PAAI P B)(Y /\ u)/\( P AAI P c)(y /\ v) Iu, veF,(y /\ u)v (y /\ v)

= Yxz}

From (1) and (3) we have,
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Also YA(Y) v (Y BV2 Yc)(Z) = YA(Y) V inf{YB(u) v Yc(v) [u, v eF, uvv=z}

= inf{(YA(Y) V YB(U» v (YA(Y) V Yc(v» Iu, v eF, uvv = z}

~ inf{(Y A(Y) V YB(U»V (YA(Y) V Yc(v» Iu, v eF, (y 1\ u)v(y 1\ v)

= YI\z}

~ inf{(Y AA2 YB)(Y 1\ U)I\( YAA2 Yc)(y 1\ v)l u, veF,(y 1\ u)v(y 1\ v)

=y I\z}

From (2) and (5) we have,

(5)

From (4) and (6) we have A A (B v C)~ (A A B)v (A A C) 0

Similarly we can have the following result

Theorem 5.2.12. For an intuitionistic fuzzy set A and the family of intuitionistic fuzzy

set {Aal ae A} ofa frameF A A( V Aa) s V (A A Aa)'
aeA aeA

Theorem 5.2.13. Let S be a sub collection of IFS which is closed with respect to A and

V, and having supremum property with respect to 1\ and V then A A(V Aa) =
aeA

V (A A A ).
aeA a

Proof. By Proposition 5.2.9 we have( A A B)t = A tAB t and ( V Aa)t = V (Aa)t
aeA aeA
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Now (A A(V A ». = A. A(V A ). = A. A( V (A ).) = V (A. A(A ).) =
aeA a aeA a aeA a aeA a

V (A A Aa). = ( V (A A Aa». for all te [0, 1]. Hence the result follows.
aeA aeA

-Remark 5.2.14. In terms of operations A and V the conditions (i) and (ii) for arbitrary

intuitionistic fuzzy frame A = {(x, P,A(X), YA(X» I xe F } in Definition 4.2.1 can be

rewritten as,

(i)' -A:::> V A where Aa = A
aeA a

(ii)' A:::> A A A

for ae A.

For arbitrary xe F we have,

-(V2 Ya)(x) = inf{ V ya(aa) I aa eF, V a = x}
aeA aeA aeA a

= inf{ V Y A(aa) I aa eF, V a =x}
aeA aeA a

~ inf{Y A( V a )laaeF, V a =x}
aeA a aeA a

- -Hence V 2 Ya ~ YA. Similarly it can be shown that p,A ~ VI Jla
aeA aeA

Also A A A = {(x, (p, A Al P,A)(x), (YA A2 YJ(X» IxeF}

For arbitrary x e F we have,
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(r A A2 r J(X) = inf{ r A (y) V r A (z)1 y, z e F and y AZ= x}

Hence r A A2 r A ~ r A· Similarly it can be shown that J.l A Al J.l A s J.l A •

Therefore the result follows.

Remark 5.2.15. Infact equality holds in the above result as,

...,

(V2 ra)(x) = inf{ V ra(aa) I aa eF, V a =x}
aeA aeA aeA a

Also (r A A2 r J(X) = inf{ r A (y) V r A (z)1 y, z e F and yAZ = x}

...,

Hence V 2 ras r A and r A A2 r A s r A·
aeA

...,

Similarly we have V I J.la ~ J.l A and J.l A Al J.l A ~ J.l A.
aeA

5.3 Intuitionistic Fuzzy Quotient Frame

Defmition 5.3.1. An intuitionistic fuzzy binary relation R on F Definition 1.5.29

(ReIFR(FxF» where R = {«x, y), J.lR (x, y), YR (x, y» I x, y e F} is said to be an

intuitionistic fuzzy similarity relation if it satisfies for all x, y, Ze F

i) Reflexive : J.l (x, x) = 1 ,r (x, x) = 0
R R
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ii)

iii)

Symmetric: p, (x, y) = p, (y, x) ,r (x, y) = r (y, x)
R R R R

Transitive : R ~ R 0 R where,

RoR = {«x, z), PRoR (x, z), YRoR (x, z) I x e F, z e F}

P RoR (x, z) = sup inf{ P, (x, y), p, (y, z) }
Y R R

Y RoR (x, z) = inf sup {r (x, y), r (y, z) }
Y R R

Analogous to that of Definition 3.3.1 we define an intuitionistic fuzzy partition of

F as follows

Defmition 5.3.2. An intuitionistic fuzzy partition of F is a subcollection P of the

collection of intuitionistic fuzzy sets (IFS) whose members satisfy the following three

conditions

i) Every A= {(x, p, A(X), rA(X» Ixe F }eP is normalized, that isp, A(x)=1

for at least one x e F.

ii) For each x e F there is exactly one A e P with P, A(X) = I and r A(X) = o.

iii) If A= {(x, P, A(X), rA(X» Ixe F }, B = {(x, P,B(X), rB(X» Ixe F } eP

and x, ye F are such that p, A(X) = P, B(y)= I , r A(Y) = r B(X) = 0 then

where hgt, (P, A /\ P, B) = sup ( P, A(X) /\ P, B(X» and
xeF
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Given an intuitionistic fuzzy partition P of F and an element x e F, we denote by

[x]= {(y, f.J [x)(y), r[x)(y» Iye F } the unique member of P with f.J [x)(x) = 1,r[x)(x) = 0

and is called intuitionistic fuzzy similarity class ofx.

A 1-1 correspondence between intuitionistic fuzzy partition and intuitionistic

fuzzy similarity relation is defined by sending a fuzzy partition P c IFS to its

intuitionistic fuzzy similarity relation R in IFR(F xF), where for all x,ye F we have,

f.J R (x, y) = f.J [x)(y) = f.J [y)(x) = hgt, (f.J [x) 1\ f.J [y)

r R (x, y) = r [x)(y) = r [y)(x) = hgt, ( r [x) v r [y)

The inverse correspondence is defined by sending an intuitionistic fuzzy similarity

relation R in IFR(FxF) to the intuitionistic fuzzy partition PR={ R(x) I xeF }~IFS

where R(x) is the intuitionistic fuzzy set ofF defined by ,

R(x) = {( y, ,u R (x)(y), rR (x)(y» lye F} with

,u R (x)(y) = f.J (x, y) and rR (x)(y) = r (x, y).
R R

Defmition 5.3.3. We call an intuitionistic fuzzy partition PR of a frame F an intuitionistic

fuzzy quotient frame ofF if PR is a subset of IFS and (PR. A, v) is a frame.

Theorem 5.3.4. An intuitionistic fuzzy quotient frame P of a frame F satisfies the

following properties for all x, y eF and arbitrary {xa I a eA} cF

i) [x] A [y] =[x1\ y]

v [x ] = [ V x ]
aeA a aeA a
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ii) I A [y] = [x 1\ y] = [x] A Ix y

Ix V [y] =[xvy]= [x] V Iy

iv) [e F] and [OF] are respectively the identity elements with respect to

A and V.

v) [X]c= [XC], where XC the complement ofx in F ifit exits.

Proof. i) We have for all x, ye F , [x 1\ y] = {(z, J.l [x/\ y)(z), r [x/\y)(z» Ize F }

Since P is a frame we have [x] A [y] is in P.

where (J.l [x) Al J.l [y)(XI\Y) = sup {J.l [x)(z) 1\ J.l [y)(w) Iz»:W = xI\Y}

~ J.l [x)(x) 1\ J.l [y)(Y) = 1

s r[x)(x) v r[y)(Y) =0

Hence from the definition ofintuitionistic fuzzy partition, we have [x] A [y] = [xI\Y].

Similarly we have V [x ] = [ V x ] as V [x ] is in P and
aeA a aeA a aeA a

ii) Ix A [y] = {(z, (J.l x x, J.l [y)(z), (rxA2 r [y) (z» Ize F } where
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(Jl x A. Jl[y)( XAy)= sup{Jlx(Z) A Jl [y)(W) IZA W= XA y}

~ Jlx (X) A Jl [y)(Y) = 1

er, A2 r[y)(xAy)=inf{rx(z) v r[y)(w) IZAW=XAy}

s r x(x) A r [y)(y) = 0

Hence from the definition of intuitionistic fuzzy partition, we have Ix A [y] = [XAy].

Also we have [X] A Iy= [XAy] as (Jl[x) A. Jl y) ( XAy) = 1 and (r[x)A2 r y)( XAy) = 0

Similarly we have Ix c [y] =[xv y]= [x] c Iy.

Hi) Clearly ( Jlx A. f.1r.ep) )(x) ~ I and (r x A2 ]'[eF) )(x) s 0

Hence Ix A [e F] = [x].

Similarly we have Ix c [0 F]= [x].

iv) we have by (i) [eF] A [x] = [eFAX] = [x]= [x] A [e F]

also [ 0 F] V [x] = [ 0 F V x] = [x]= [x] V [e F]

v) As [eF] = [x v XC] = [x] V [XC] and [OF] = [x A XC] = [x] A [XC]

we have by (i), [x]c= [XC]

Remark 5.3.5. For all x, y, Z eF we have,

Jl [x)(y Az) = Jl [y /\z)(x) by definition of intuitionistic fuzzy partition

= (Jl [y) A. Jl[z)(x) ~ Jl [y)(x) A Jl [z)(X) = Jl [x)(y) A Jl [x)(Z)

also r[x)(y Az) = r[y /\z)(x) by definition of intuitionistic fuzzy partition

= (r [y) A2 r [z)(x)s r [y)(x) A r [z)(X) = r [x)(y) A r [x)(Z)
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Now for xeF and arbitrary S = {xa I a eA} c F

5.4 Invariant fuzzy binary relation

We give the following definition for an invariant intuitionistic fuzzy binary

relation.

Defmition 5.4.1. An intuitionistic fuzzy binary relation,

R = {«x, y), ,u R(x, y), YR (x, y» I x, y e F} on a frame F is invariant if it satisfies for

all x, y, U, V e F

i)

ii)

J.l (XAU,yAV) ~ J.l (X,y)and r (XAU,yAV):S r (x,y) ifX *y
R R R R

J.l (XAU,yAV):S J.l (x. yj and r (XAU,yAV) ~ r (x,y) ifx=y
R R R R

J.l (xvu, yvv) ~ J.l (x, y) and r (xvu, yvv):s r (x, y) ifX *y
R R R R

J.l (xvu, yvv) :S J.l (x, y) and r (xvu, yvv) ~ r (x, y) ifX= y
R R R R

Theorem 5.4.2. IfR is an invariant intuitionistic fuzzy similarity relation on a frame F

then its intuitionistic fuzzy partition PRis a fuzzy quotient frame ofF.

107



Proof. We have for all x, y, Z E F

[x] A [y] = {(z, (J.l [x) Al J.l [y)(z),(r [x) A2 r [y) (Z» IZE F }

= SUp{J.l (x, U) A J.l (y, v) IUA V= Z}
R R

and (r [x) A2 r [y)(Z) = inf{r [x)(U) v r [y)(v) IUAV= Z}

= inf{r (x, u) v r (y, v) IUA V= Z}
R R

Proceeding as in the proofofTheorem 3.4.2 it can be shown that,

Now we shall show that r [x) A2 r [y) = r [x /\y) for x, y E F. Consider (b)

Case- I: ifx '* U, Y ,*v

(a)

(b)

Then r (x, u) v r (y, v) ~ r (XA(X AY), UA(UAV» v r (YA(X AY), VA(UAV»
R R R R

= r (x AY, UA v) v r (x AY, UA v)
R R

= r (x AY, UA v)
R

Therefore.fnf'{Z (x,u) v r (Y,v) IUAV=Z} ~ r (x Ay,Z)= r[x/\ydz) (1)
R R R

Case- 11 : ifx = U, Y=v

Then r (x, u) v r (y, v) = Ov 0 = 0 = r (x AY, UA v)
R R R

Therefore, inf {r (x, u) v r (y, v) IUA V= Z} = r (x AY, z) = r [x/\ y) (z) (2)
R R R

Case- III : ifX= u, y '* v

Then r (x, u) v r (y, v) ~ 0 v r (x AY, UA v) = r (x AY, UA v)
R R R R
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Therefore, inf {r (x, u) v r (y, v) IUA V = z} ~ r (x AY, z) = r [x/\ y] (z) (3)
R R R

A similar case when x '* U, Y= v

Combining (1) (2)(3) and (b) we have r [x] A 2 r [y] ~ r [x /\ y]

Nowforallx,y,z eFconsider r[x/\y] (z)= r (x Ay,Z)
R

Case- I : ifx Ay = z

= r [x](x) v r [y](Y)

= (r [x] A2 r [y])(z)

Case- II : if x Ay '* z

Then r (x AY, z) = r (x AY, z) v r (x AY, z)
R R R

~ r «x AY)VX, zvz) v r «x AY)VY, zvz)
R R

= r (x, z) v r (y, z)
R R

= r [x](z) v r [y](z)

Combining (5) (6) and (7) we have r [x] A2 r [y] s r [x/\ y]

Hence from (4) we have r [x] A2 r [y] = r [x/\ y] •

Therefore [x] i\ [y] = [x A y]

Similarly it can be shown that for arbitrary {Xa I a eA} c F ,
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Therefore V [x ] =[ V x ].
aeA a aeA a

Now clearly [e F] and [0 F] are respectively the unit and zero element of element of PR.

For any [x] E PR and arbitrary Se PR we have,

[x] A (vS) = [x] A [ V x ]
aeA a

= [XI\( V X )]
aeA a

= [V (x 1\ X )]
aeA a

= V [XI\ X ]
aeA a

= V ([x] A [xaD
aeA

Hence PRsatisfies infinite distributive law. Thus PRis a frame.

Therefore PRis an intuitionistic fuzzyquotient frame of'F.

Remark 5.4.3. Let F be a frame, then the transformation n from the set of invariant

intuitionistic fuzzy similarity relation on F to the set of intuitionistic fuzzy quotient

frames P of F sends an invariant intuitionistic fuzzy similarity relation R on F to its

intuitionistic fuzzy partition PRe IFS given by PR={ R(x) Ix E F}

Example 5.4.4. Consider the frame F = {{a, b, cl, {a, b}, {b, cl, {a}, {b}, {c},0} under

set inclusion. Define an intuitionistic fuzzy similarity relation Rf on F by,

Rf = {«x, y), ,u R (x, y), YR (x, y» I x, ye F}
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Which is invariant.

if x= y

otherwise
and

{

0 if x = y

YR(X, y) = 1 th .
- 0 erwlse
4

Now PR= {[x] IxeF} where [x](y) =~x, y) is an intuitionistic fuzzy partition ofF, hence

an intuitionistic fuzzy quotient frame.
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CHAPTER 6

INTUITIONISTIC FUZZY TOPOLOGICAL SPACES AND

FRAMES

6.1 Introduction

The notion of Intutionistic fuzzy topology ( Dogen Coker[COh ) generalises the

notion of topology but is still an example of a frame. In this chapter Intutionistic fuzzy

"open" and "spectrum" functors, adjoint on the right are constructed. This categorical

link between frames and Intutionistic fuzzy topologies are established.

6.2 Preliminaries

Defmition 6.2.1.[CO]:z An intutionistic fuzzy topology on a nonempty set X is a

family l' ofintutionistic fuzzy sets in X satisfying the following axioms,

i) 0_, 1_ e l' where 0_= {(x, 0, 1) IxeX} and 1_= {(x, 1,0) IxeX}

ii) 0 1nO2 e l' for any Oh O2 e l'

iii) U o,e t for any arbitrary family {Oi lie A }c l'

Any intutionistic fuzzy set in l' is known as an intutionistic fuzzy open set in X.

Remark 6.2.2.[CO]:z If l' is an intutionistic fuzzy topology on X, then (X, 1') is called

an intutionistic fuzzy topological space.

Defmition 6.2.3.[CO]:z Let X and Y be two nonempty sets andj": X-+ Y be a function.

If B = {(y, J.1 B(Y)' r B(Y» Iye Y} is an intutionistic fuzzy set in Y, then the preimage

of B under f, denoted by r: (B) is the intutionistic fuzzy set in X defined by
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rl(B) = { ( X,,url(B)(X), Yrl(B)(X) ) I xeX } where ,url(B/x) = ,uB(f(X» and

Yrl(B)(x) = YB(f(X»

Remark 6.2.4. We also have rl(B)= {(x, 1-1 (,uB)(X), 1-1 (YB)(X» I xeX} where

r l (,u B)(X) = ,u B(f(X» andj"" (YB)(X) = YB(f(X».

Defmition 6.2.5. [COh Let I: X-+ Y be a function and (X, 1'1) and (Y, l' 2) be two

intutionistic fuzzy topological spaces then f is said to be fuzzy continuous if and only if

the preimage of each intutionistic fuzzy set in l' 2 is an intutionistic fuzzy set in l' I.

Remark 6.2.6. An intutionistic fuzzy topology is infact a frame. The distributivity

property is easily verified.

6.3 Intutionistic fuzzy topological spaces and frames

Let n be a functor from the category IFTOP of intutionistic fuzzy topological

spaces and fuzzy continuous maps to the category FRM offrames.

Defmition 6.3.1. For each intutionistic fuzzy topological space (X, 1') define

n(X,1') = l' if I: (X, 1'1) -+ (Y, l' 2) is fuzzy continuous define n/=/~(A) = f -I(A)

Theorem 6.3.2. If I: (X, l' I) -+ (Y, l' 2) is a fuzzy continuous map then I ~: l' 2 -+ r 1

is a frame map.

Proof. Let A= {(y, ,u A(y), YA(Y» Iye V}, 8 = {(y, ,u B(Y), YB(Y» Iye V},
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Bi = {(Y, f..l Bi(Y), rBi(Y» lye Y} (i eA) be members of T 2.

= {( x, f..l An B(f(x», rAn B (f(x»} IxeX}

= {( x, f..l A (f(x» 1\ f..l B(f(x», r A (f(x» v r B (f(x» } Ixe X}

= r: A} nr: B}

Alsof+-( U Bj } = r 1
( U BJ

ieA ieA

= {( X, PUB. </(x» , Y U B. (f(x») IxeX}
ieA I ieA I

= {( X, V PB. (f(x», ." YB. (f(x») IxeX}
ieA I 'el\. I

= U {( x , PB. (f(x), YB. (j(x»} IxeX}
ieA I I

= .U {(x, Pt-1CB')(X), Yt-lcB.)(x}}lxeX}
I eA I I

= U f+-(B.}
ieA '

Hence f +-: T 2 --. T 1 is a frame map.
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Corollary 6.3.3. n is a contravariant functor from the category IFTOP of intutionistic

fuzzy topological space to the category FRM offrames.

Defmition 6.3.4. i) Let F be a frame define 1:F = horn (F, [0,1]) where [0,1] is a frame

in its usual ordering ( ~)

ii) For each aeF, define 1:a , 1:a' : 1:F -+[0,1] by 1:a (P) = p(a) and 1:a' (P) = I-p(a)

iii) Let EI F = {Ea IaeF } where Ea= {(P, 1:a (P), 1:a' (P» Ipe 1:F }

Theorem 6.3.5. (1:F, EI F ) is an intutionistic fuzzy topological space.

Proof. We have 1:1(P) = p(1) = 1 and 1:1' (P) = 0 for all pe 1:F. Also 1:0 (P) = p(O) = 0 and

1:0' (P)= 1 for all pe 1:F. So the top and bottom elements {(P,1:1(P), 1:1' (P» Ipe 1: F} and

{(P, 1:0(P)' 1:0' (P» I pe 1:F } of the set of all intutionistic fuzzy subsets of 1:F are

members of EI F .

Now for a, be F we have,

Ea nEb = {(P, 1:a (P), 1:a' (P» Ipe 1:F }n{(P, 1:b(P), 1:b'(P» Ipe 1:F }

= {(P, 1:a (P)A 1:b (P), 1:a' (P)v 1:b' (P» Ipe 1:F }

= {(P,p(a)Ap(b), (1- p(a»v (1- p(b» Ipe 1:F}

= {(P,p(aAb), I-p(aAb» Ipe 1:F}

= {(P, 1:ar-b (P), 1:~Ab (P» Ip e 1: F }

= EaAb
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Therefore Ea nEb e EI:p

Also for ai eF (ie A) we have,

U Ea. = U {(P, ~a.(P), ~~ .(P» [p s ~F}
ieA 1 ieA 1 1

= {(P, V ~ .(P), /\ t: .(P» Ipe ~F }
ieA a l ieA al

= {(P, Vp(aJ, /\(l-p(aJ)lpe~F}
ieA ieA

= {(P, V p(aJ, 1- V p(aJ) Ipe ~F}
ieA ieA

= {(P, p( V aJ, 1- p( V aJ) Ipe ~F}
ieA ieA

= U {(P, ~ (P), t: (P» Ipe ~F }
. A v a j v a,
le ~A ~A

= E
v a ,

ieA

Therefore U Ea. e EI:F
ieA 1

Hence EI:p is an intutionistic fuzzy topology.

Theorem 1.14. Let f: L -+ M be a frame homomorphism. Define ~f: ~ M -+ ~ L by

~f(P) = v-t'. then ~f: (~M,EI:M) -+ (~L,EI:L) is fuzzy continuous.

Proof. Let ae L then E = {(P, ~ (P), ~ ,(P» Ip e ~ L }e E"'La a a '"

Now (~frl(E ) = {(q, (~f) -I (~ )(q), (~f) -I (~ ')(q» Iq e ~M }a a a

= {(q, ~a(~f(q», ~a'(~f(q» Iq e ~M}
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= Hq, 'f.aqof, 'f.a'qof) Iq e'f.M}

= {(q, qof(a) , l-qof(a» Iq e 'f.M}

= {(q, q (f(a», 1- q (f(a» ) Iq e 'f. M }

= {(q, 'f./(a)(q), 'f./(a)(q) Iq e 'f.M}

Hence 'f.fis fuzzy continuous.

Corollary 1.15. 'f. is a contravariant functor from the category FRM of frames to the

category IFTOP of intutionistic fuzzy topological spaces.

Theorem 1.16. 'f. and Q are adjoint on the right

Proof. Let f ehom «X, E), ('f.F,E t F» andg ehom (F, Q(X, E» where,

g(a) = { (x, Jlg(a) (x), Yg(a) (x) ) IxeX}

Define 1: F ~ Q(X, E) by a 1-+ 1(a)

where 1(a) = {( x, Jll(a)(x), Yl(a) (x) ) IxeX}

= { (x, f(x)(a), 1 - f(x)(a) ) IxeX }

Claim: 1 is a frame map

For a, b eF,

l(aAb) = {( x, f(x)(aAb), 1- f(x)(aAb» IxeX}

= {( x, f(x)(a) A f(x)(b), (1- f(x)(a» A (1- f(x)(b») IxeX }

= {( x, f(x)(a), 1-f(x)(a» IxeX } (1

{( x, f(x)(b), 1- f(x)(b» IxeX }
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=l(a) n 1 (b)

Similarly it can be shown that for arbitrary { ai lie A} ~ F,

Therefore 1 is a frame map.

Define g: (X, E) ~ (~F, El:F ) by x H g (x), where g (x)(a) = Pg(a) (x)

Claim: g(x) e ~F

Sinceg is a homomorphism we have, g (a 1\ b) = g (a) n g (b)

Now it follows from the equality of intuitionistic fuzzy set,

Similarly g(x) (V ai) = V ( g(x) (ai»
ieA ieA

Claim: g is a fuzzy continuous.

For a eF we have Ea e El:F and

= {( x, ~ 0 g (x), z ' 0 g (x) ) Ix eX}a a

= {( x, g(x)(a), 1- g(x)(a» IxeX}

= {( x, Pg(a) (x), 1 - Pg(a) (x) ) IxeX }

Now g( a) eE. Hence g -l(Ea) e E

Also J(x)(a) = P l(a) (x) =f (x)(a)
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g(a) = {( x, g(x)(a), 1- g(x)(a» IXEX}

= {( X, Pg(a) (x), 1 - Pg(a) (x) ) IXE X }

= g(a)

So 7=f and g=g

Thus horn (F, Q(X, E» == horn «X, E), (EF,EIF»

Now to check naturality condition

Let h e horn (L, M) and g E horn «X, E), (Y,E'»

Consider

L horn (L, Q(X, E»

h 1 (-)oh 1
M horn (M, Q(X, E»

---~) horn ( (X, E), (E L, El:L »

ll:hO
( - )

---~) horn ( (X, E), (E M, El:M»
(-)

Then for k E horn (M, Q (X, E) ) we have,

koh(x)(a) = Pkoh(a) (x) and Eho k(x)(a) = Eho Pk(a) (x) = Pkoh(a}(X)

Hence koh = Eho k.
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Now consider

(-)

(X, E) horn «X, E), (1:L,Ea» ) horn (L, Q(X, E»

g j (-)og 1 1Qgo(-)

(Y,E') horn «Y, E'), (1:L,Ea» ) horn (L, Q(Y,E'»

(-)

Then forf e horn «Y, E'), (1:L,Ea» we have,

f 0 g(a) = {( x, fJ/og(a) (x), 1 - !J:Tog(a) (x) Ixe X}

= {(x, fog(x) (a), 1- fog(x)(a»lxeX}

= {( x, Plea) (g(x», 1- Plea) (gtx) ) IxeX }

= {(x, fog (x)(a), 1- fog(x)(a»lxeX}

Hence fog = Qgo 1

Therefore naturality condition holds.

Hence the result follows.
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