Some classes of Türker equivalent graphs

Gopalapillai Indulal* and Ambat Vijayakumar^{\dagger}

Department of Mathematics

Cochin University of Science and Technology

Cochin-682 022, India.

Abstract

Two graphs G and H are Türker equivalent if they have the same set of Türker angles. In this paper some Türker equivalent family of graphs are obtained.

1 Introduction

Let G be a graph with n vertices, m edges and adjacency matrix A. The eigenvalues of A are the eigenvalues of G and form the spectrum of G denoted by spec(G) [1]. The energy of G, denoted by $\mathcal{E}(G)$ is then defined as the sum of absolute value of its eigenvalues. The properties of $\mathcal{E}(G)$ are discussed in detail in [2, 3, 4, 5, 6, 7]. In chemistry, the energy of a graph is well studied since it can be used to approximate the total π - electron energy of a molecule.

In order to express the fine molecular-structure-dependent difference in behavior of the total π electron energy of isomeric alternate hydrocarbons Lemi Türker in [8] introduced the concept of angle of total π electron energy θ defined as

$$\cos\theta = \frac{\mathcal{E}}{2\sqrt{mn}}$$

^{*}E-mail: indulalgopal@cusat.ac.in

[†]E-mail:vijay@cusat.ac.in

and two other related angles α and β connected by $\alpha + \beta = \theta$. These quantities are referred to as the Türker angles. This notion was extended to all graphs by I.Gutman [9].

The Türker angle θ has proven to be a useful novel concept in the theory of total π - electron energy and it has found numerous applications. The fundamental properties of θ , α and β are discussed in [8, 9, 10, 11].

Recall from [9],

$$\cos \alpha = \frac{n + \mathcal{E}}{\sqrt{n}\sqrt{n + 2\mathcal{E} + 2m}} \tag{1}$$

$$\cos\beta = \frac{\mathcal{E} + 2m}{\sqrt{n + 2\mathcal{E} + 2m}\sqrt{2m}} \tag{2}$$

Set $Y = \sqrt{2mn - \mathcal{E}^2}$. Using the trigonometric identity $\tan x = \frac{\sqrt{1 - \cos^2 x}}{\cos x}$ we get

$$\tan \alpha = \frac{Y}{n+\mathcal{E}}; \tan \beta = \frac{Y}{2m+\mathcal{E}} \text{ and } \tan \theta = \frac{Y}{\mathcal{E}}$$
(3)

Now, we study the nature of these angles in some family of graphs.

We use the following lemmas and definitions in this paper.

Lemma 1. [1] Let G be graph with $spec(G) = \{\lambda_i\}$, i = 1 to n and H be a graph with $spec(H) = \{\mu_j\}$, j = 1 to n'. Then the spectrum of the cartesian product, $G \times H$ of G and H is given by $spec(G \times H) = \{\lambda_i + \mu_j\}$, i = 1 to n, j = 1 to n'.

Lemma 2. [1] Let A and B be two matrices with $spec(A) = \{\lambda_i\}, i = 1$ to m and $spec(B) = \{\mu_j\}, j = 1$ to n. Let $C = A \bigotimes B$, the tensor product of A and B. Then $spec(C) = \{\lambda_i \mu_j\}, i = 1$ to m and j = 1 to n.

Lemma 3. [6] Let G be an r regular graph on n vertices, $r \ge 3$. Then its second iterated line graph $L^2(G)$ has $\frac{nr(r-1)}{2}$ vertices, $\frac{nr(r-1)(2r-3)}{2}$ edges and energy 2nr(r-2).

Definition 1. [4] Let G be a graph on $V = \{v_1, v_2, \dots, v_n\}$. Take a copy of G on $U = \{u_1, u_2, \dots, u_n\}$ corresponding to $V = \{v_i\}$. Then make u_i adjacent to vertices in $N(v_i)$ for each i, i = 1 to n. The resultant graph is called the double graph of G denoted by $D_2(G)$.

Definition 2. [12] Let G be a graph on n vertices labelled as $V = \{v_1, v_2, v_3, \dots, v_n\}$. Then take another set $U = \{u_1, u_2, \dots, u_n\}$ of n vertices corresponding to $V = \{v_i\}$. Now define a graph *H* with $V(H) = V \bigcup U$ and edge set of *H* consisting only of those edges joining u_i to neighbors of v_i in *G* for each i i = 1 to *n*. The resultant graph *H* is called the identity duplication graph of *G* denoted by *DG*.

Definition 3. [13] Let G be a graph on $V = \{v_1, v_2, \dots, v_n\}$. Take a set $U = \{u_1, u_2, \dots, u_n\}$ of n vertices corresponding to $V = \{v_i\}$. Then make u_i adjacent to vertices in $N(v_i)$ for each i, i = 1 to n. The resultant graph is called the splitting graph of G denoted by splt(G).

Illustration:

Lemma 4. [4] Let G be a graph. Then $\mathcal{E}[D_2(G)] = \mathcal{E}[D(G)] = 2\mathcal{E}(G)$.

Lemma 5. Let G be a graph. Then $\mathcal{E}[splt(G)] = \sqrt{5}\mathcal{E}(G)$.

Proof. By definition of splitting graph of
$$G$$
, the adjacency matrix of $splt(G) = \begin{bmatrix} A & A \\ A & 0 \end{bmatrix} = A \bigotimes \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.
Then the theorem follows, since the eigenvalues of $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ are $\frac{1 \pm \sqrt{5}}{2}$.

2 Some classes of Türker equivalent graphs

Definition 4. Two graphs G and H are Türker equivalent if they have the same set of values for the Türker angles.

It is known [9] that isomorphic graphs are Türker equivalent. In this section we obtain non-isomorphic Türker equivalent graphs.

Theorem 1. Let $\mathcal{G} = \{G/G \text{ is an } r - \text{ regular graph}, r \geq 3\}$. Let $\mathcal{F}_k = \{L^k(G), k \geq 2/G \in \mathcal{G}\}$. Then the family \mathcal{F}_k is Türker equivalent for each k.

Proof. Let G be an r- regular graph on n vertices, $r \ge 3$. Then by Lemma 2 and Eq.3, for the family $L^2(G)$ we have the following,

$$Y = nr(r-1)\sqrt{\frac{2r-3}{2} - 4\left(\frac{r-2}{r-1}\right)^2}$$
$$\tan \theta = \frac{(r-1)\sqrt{\frac{2r-3}{2} - 4\left(\frac{r-2}{r-1}\right)^2}}{2(r-2)}$$
$$\tan \alpha = \frac{2(r-1)}{5r-9}\sqrt{\frac{2r-3}{2} - 4\left(\frac{r-2}{r-1}\right)^2}}$$
$$\tan \beta = \frac{2(r-1)}{2r^2 - r - 5}\sqrt{\frac{2r-3}{2} - 4\left(\frac{r-2}{r-1}\right)^2}$$

Here $\tan \theta$, $\tan \alpha$ and $\tan \beta$ are independent of n, the number of vertices of G and depend only on r, regularity of G. Since $L^k(G) = L^2(H)$ for some regular graph H, this can be extended to the family $L^k(G)$, for $k \ge 3$.

Theorem 2. Let G be any graph. Let $\mathcal{D} = \bigcup_k D^k G$ where $D^k G$ is defined iteratively by $D^0 G = G$ and $D^k G = D(D^{k-1}G), k \geq 2$. Then \mathcal{D} is a Türker equivalent family of graphs.

Proof. Let G be an (n, m) graph with energy \mathcal{E} and Türker angles α, β and θ . Then by [4], DG, the duplicate graph of G is a (2n, 2m) graph with energy $2\mathcal{E}$.

Let θ' , α' and β' be the Türker angles of DG. Then from Eq. 3 we have the following,

$$\tan \alpha' = \frac{\sqrt{2 \times 2m \times 2n - (2\mathcal{E})^2}}{2n + 2\mathcal{E}} = \frac{\sqrt{2mn - \mathcal{E}^2}}{n + \mathcal{E}} = \tan \alpha$$
$$\tan \beta' = \frac{\sqrt{2 \times 2m \times 2n - (2\mathcal{E})^2}}{2 \times 2m + 2\mathcal{E}} = \frac{\sqrt{2mn - \mathcal{E}^2}}{2m + \mathcal{E}} = \tan \beta$$
$$\tan \theta' = \frac{\sqrt{2 \times 2m \times 2n - (2\mathcal{E})^2}}{2\mathcal{E}} = \frac{\sqrt{2mn - \mathcal{E}^2}}{\mathcal{E}} = \tan \theta$$

Thus the theorem follows.

Theorem 3. Let $\mathcal{F}_k = \{L^k(G)/G \text{ is an } r - regular graph, r \ge 3, k \ge 2\}$ and $\mathcal{H}_k = \{splt(F_k) \text{ where } F_k \in \mathcal{F}_k\}.$ Then the family \mathcal{H}_k is Türker equivalent for each k.

Proof. Let G be an (n,m) graph and k = 2. Then by [13], splt(G) is a (2n, 3m) graph. Then

$$N = |V [splt \{L^{2}(G)\}]| = 2 \times |V [L^{2}(G)]|$$
$$= nr(r-1)$$
$$M = |Edge [splt \{L^{2}(G)\}]| = 3 \times |Edge \{L^{2}(G)\}|$$
$$= 3 \times \frac{nr(r-1)(2r-3)}{2}$$
$$\mathcal{E} = Energy [splt \{L^{2}(G)\}] = \sqrt{5} \times Energy \{L^{2}(G)\}$$
$$= 2\sqrt{5}nr(r-2) \text{ by Lemmas 3 and 5.}$$

Also $Y = \sqrt{2MN - \mathcal{E}^2} = \sqrt{3n^2r^2(r-1)^2(2r-3) - 20n^2r^2(r-2)^2}$. Thus the Türker angles are given as follows.

$$\tan \theta = \frac{Y}{\mathcal{E}} = \frac{\sqrt{3(r-1)^2(2r-3) - 20(r-2)^2}}{2\sqrt{5}(r-2)}.$$
$$\tan \alpha = \frac{Y}{N+\mathcal{E}} = \frac{\sqrt{3(r-1)^2(2r-3) - 20(r-2)^2}}{(r-1) + 2\sqrt{5}(r-2)}.$$
$$\tan \beta = \frac{Y}{2M+\mathcal{E}} = \frac{\sqrt{3(r-1)^2(2r-3) - 20(r-2)^2}}{3(r-1)(2r-3) + 2\sqrt{5}(r-2)}.$$

Since $L^k(G) = L^2[H]$ for some regular graph H, the theorem follows.

Theorem 4. Let $\mathcal{T}_k = \{ D_2 [L^k(G)] / G \text{ is an } r - regular graph, r \ge 3, k \ge 2 \}$. Then the family \mathcal{T}_k is Türker equivalent for each k.

Proof. Let G be an (n, m) graph and k = 2. Then by [4], $D_2(G)$ is a (2n, 4m) graph. Assume that G is $r \ge 3$ regular. Then

$$N = |V [D_2 \{L^2(G)\}]| = 2 \times |V [L^2(G)]| = nr(r-1)$$

$$M = |Edge [D_2 \{L^2(G)\}]| = 4 \times |Edge \{L^2(G)\}|$$

$$= 2nr(r-1)(2r-3)$$

$$\mathcal{E} = Energy [D_2 \{L^2(G)\}] = 2 \times Energy \{L^2(G)\}$$

$$= 4nr(r-2) \text{ by Lemmas 3 and 4.}$$

Also $Y = \sqrt{2MN - \mathcal{E}^2} = 2nr\sqrt{(r-1)^2(2r-3) - 4(r-2)^2}$. Thus the Türker angles are as follows.

$$\tan \theta = \frac{Y}{\mathcal{E}} = \frac{\sqrt{(r-1)^2(2r-3) - 4(r-2)^2}}{2(r-2)}.$$
$$\tan \alpha = \frac{Y}{N+\mathcal{E}} = \frac{2\sqrt{(r-1)^2(2r-3) - 4(r-2)^2}}{5r-9}.$$
$$\tan \beta = \frac{Y}{2M+\mathcal{E}} = \frac{\sqrt{(r-1)^2(2r-3) - 4(r-2)^2}}{2\left[(r-1)(2r-3) + (r-2)\right]}.$$

Since $L^k(G) = L^2[H]$ for some regular graph H, the theorem follows.

The following theorems provide some more Türker equivalent graphs, the proof of which are on similar lines.

Theorem 5. Let $\mathcal{G} = \{G/G \text{ is an } r - \text{ regular graph}\}$ and $\mathcal{H} = \{H/H \text{ is an } r' - \text{ regular graph}\}$ where $r, r' \ge 4$. Then the family $L^p(\mathcal{G}) \times L^q(\mathcal{H})$ is Türker equivalent for each $p \ge 2$ and $q \ge 2$. **Theorem 6.** Let $\mathcal{G} = \{G/G \text{ is an } r - \text{ regular graph}, r \ge 4\}, \mathcal{F}_k = \{L^k(G), k \ge 2/G \in \mathcal{G}\}$ and $\mathcal{R}_k = \{R = F_1 \bigotimes F_2 / F_1 \text{ and } F_2 \in \mathcal{F}_k\}$. Then \mathcal{R}_k is Türker equivalent for each k.

Theorem 7. Let G be an r- regular graph, $r \ge 3$. Then the family $\{L^k(G) \bigotimes K_p\}$ is Türker equivalent for each p and each $k \ge 2$.

Theorem 8. Let G be an r- regular graph, $r \ge 4$. Then the family $\{L^k(G) \times C_p\}$ is Türker equivalent for each $p \ge 3$ and $k \ge 2$.

3 Some operations on a graph

In this section we define some operations on a graph G with $V(G) = \{v_1, v_2, ..., v_n\}$.

Operation 1. Introduce two copies of G on $U = \{u_i\}$ and $W = \{w_i\}$ corresponding to $V = \{v_i\}$. Make u_i and w_i adjacent to the vertices in $N(v_i)$ for each i, i = 1 to n. Then remove the edges of G only.

Operation 2. Introduce two copies of G on $U = \{u_i\}$ and $W = \{w_i\}$ corresponding to $V = \{v_i\}$. Make u_i adjacent to the vertices in $N(v_i)$ and $N(w_i)$ and make w_i adjacent to the vertices in $N(v_i)$ and $N(w_i)$ and $make w_i$ adjacent to the vertices in $N(v_i)$ and $N(u_i)$ for each i, i = 1 to n. Then remove the edges of G only.

Operation 3. Introduce two copies of G on $U = \{u_i\}$ and $W = \{w_i\}$ corresponding to $V = \{v_i\}$. Make u_i adjacent to the vertices in $N(v_i)$ and $N(w_i)$ and make w_i adjacent to the vertices in $N(v_i)$ and $N(w_i)$ and $M(u_i)$ for each i, i = 1 to n. Then remove the edges of G on vertex sets V and W.

Operation 4. Introduce two copies of G on $U = \{u_i\}$ and $W = \{w_i\}$ corresponding to $V = \{v_i\}$. Make u_i and w_i adjacent to the vertices in $N(v_i)$ for each i, i = 1 to n.

The graph obtained from G using operation i is denoted by H_i , i = 1, 2, 3 and 4.

Theorem 9. Let G be a graph on n vertices with spectrum $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ and H_i , i = 1, 2, 3 and 4 be the graphs obtained as above. Then

1.
$$\mathcal{E}(H_1) = 4\mathcal{E}(G)$$

2. $\mathcal{E}(H_2) = 2\sqrt{3}\mathcal{E}(G)$
3. $\mathcal{E}(H_3) = [2\sqrt{2} + 1]\mathcal{E}(G)$
4. $\mathcal{E}(H_4) = [2\sqrt{2} + 1]\mathcal{E}(G)$

Proof. The table 1 gives the adjacency matrix, its tensor partition and the eigenvalues of H_i , i = 1, 2, 3 and 4.

Operation	Adjacency Ma	Eigenvalues	
1		0 1 1	
	$\begin{vmatrix} A & A & 0 \end{vmatrix} = A \bigotimes$	1 1 0	$\{2\lambda_i,\lambda_i,-\lambda_i\}$
2	$\left[\begin{array}{ccc} 0 & A & A \end{array}\right]$		
	$\begin{vmatrix} A & A & A \end{vmatrix} = A \bigotimes$	1 1 1	$\left\{ \left(1 \pm \sqrt{3}\right) \lambda_i, 0 \right\}$
3	0 A A	0 1 1	
	$\begin{vmatrix} A & A & A \end{vmatrix} = A \bigotimes$	1 1 1	$\left\{ \left(1 \pm \sqrt{2}\right) \lambda_i, -\lambda_i \right\}$
4			
	$\left \begin{array}{ccc} A & A & 0 \end{array}\right = A \bigotimes$	1 1 0	$\left\{ \left(1 \pm \sqrt{2}\right) \lambda_i, \lambda_i \right\}$

Table 1

Column 3 of Table 1 gives the eigenvalues of H_i , i = 1, 2, 3 and 4 and hence the theorem follows.

Note: $H_3 = H_4$ when G is bipartite.

Theorem 10. Let \mathcal{G} be the collection of all r-regular graphs, $r \geq 3$ and $\mathcal{F}_k = \{L^k(G), k \geq 2/G \in \mathcal{G}\}$. Let $\mathcal{F}_{ki} = \{F_{ki}/F_k \in \mathcal{F}_k\}$, i = 1, 2, 3 and 4 as defined by the above operations. Then each family \mathcal{F}_{ki} , i = 1, 2, 3, 4 and $k \geq 2$ is Türker equivalent.

Proof. Let G be an r- regular graph on n vertices, $r \ge 3$ and k = 2. Then by Lemma 3 and from the above operations we have the order, size and energy of F_{2i} for i = 1, 2, 3 and 4 are as given in table 2.

i	Order of F_{2i}	Size of F_{2i}	$\mathcal{E}(F_{2i})$
1	$\frac{3nr(r-1)(2r-3)}{2}$	3nr(r-1)	8nr(r-2)
2	$\frac{3nr(r-1)(2r-3)}{2}$	4nr(r-1)	$4\sqrt{3}nr(r-2)$
3	$\frac{3nr(r-1)(2r-3)}{2}$	$\frac{7nr(r-1)}{2}$	$2\left(2\sqrt{2}+1\right)nr(r-2)$
4	$\frac{3nr(r-1)(2r-3)}{2}$	$\frac{7nr(r-1)}{2}$	$2\left(2\sqrt{2}+1\right)nr(r-2)$

Table 2

Now for each i, the Table 3 gives the three Türker angles.

i	$\tan heta$	$\tan \alpha$	$\tan \beta$
1	$\frac{\sqrt{18r^3 - 127r^2 + 328r - 283}}{8(r-2)}$	$\frac{2\sqrt{18r^3 - 127r^2 + 328r - 283}}{6r^2 + r - 23}$	$\frac{\sqrt{18r^3 - 127r^2 + 328r - 283}}{2(7r - 11)}$
2	$\frac{\sqrt{18r^3 - 127r^2 + 328r - 283}}{4\sqrt{3}(r-2)}$	$\frac{2\sqrt{18r^3 - 127r^2 + 328r - 283}}{6r^2 + r(8\sqrt{3} - 15) - (16\sqrt{3} - 9)}$	$\frac{\sqrt{18r^3 - 127r^2 + 328r - 283}}{4\left[\left(2 + \sqrt{3}\right)r - 2\left(1 + \sqrt{3}\right)\right]}$
3	$\frac{\sqrt{6r^3 - 33r^2 + 72r - 57}}{\left[1 + 2\sqrt{2}\right](r - 2)}$	$\frac{4\sqrt{6r^3 - 33r^2 + 72r - 57}}{\left[6r^2 + r\left(8\sqrt{2} - 11\right) - \left(16\sqrt{2} - 1\right)\right]}$	$\frac{2\sqrt{6r^3 - 33r^2 + 72r - 57}}{\left[r\left(4\sqrt{2} + 9\right) - \left(8\sqrt{2} + 11\right)\right]}$
4	$\frac{\sqrt{6r^3 - 33r^2 + 72r - 57}}{\left[1 + 2\sqrt{2}\right](r - 2)}$	$\frac{4\sqrt{6r^3 - 33r^2 + 72r - 57}}{\left[6r^2 + r\left(8\sqrt{2} - 11\right) - \left(16\sqrt{2} - 1\right)\right]}$	$\frac{2\sqrt{6r^3 - 33r^2 + 72r - 57}}{\left[r(4\sqrt{2} + 9) - (8\sqrt{2} + 11)\right]}$

Table 3

Since $L^k(G) = L^2[H]$ for some regular graph H for $k \ge 3$, the theorem follows from table 3.

Acknowledgement: We thank the referee for some valuable suggestions. The first author thanks the University Grants Commission of Government of India for providing fellowship under the Faculty Improvement Programme.

References

- D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Applications, Academic Press, New York, 1979.
- [2] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287–295.
- [3] I.Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978) 1–22.
- [4] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55(2006) 83 - 90.
- [5] G.Indulal, A.Vijayakumar, Energies of some non-regular graphs, *J.Math.Chem*(to appear).
- [6] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I.Gutman, Equienergetic graphs, *Kragujevac. J. Math.* 26 (2004) 5–13.
- [7] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I.Gutman, Spectra and energies of iterated line graphs of regular graphs, *Appl.Math.Lett.* 18(2005) 679–682.
- [8] I.Gutman, On the Türker Angles in the theory of total π electron energy, Turk J Chem
 22 (1998) 399–402.
- [9] I.Gutman, L.Türker, Angle of graph energy A spectral measure of resemblance of isomeric molecules, *Indian J.Chem.* 42A (2003) 2698–2701.
- [10] I.Gutman, L.Türker, Estimating the angle of total π-electron energy, J.Mol. Struct (Theochem) 668 (2004) 119–121.
- [11] I.Gutman, L.Türker, Approximating the total π -electron energy of benzenoid hydrocarbons: Some new estimates of (n, m)-type, Indian J.Chem **32**A (1993) 833–836.
- [12] E. Sampathkumar, On duplicate graphs, J. Indian Math. Soc. 37 (1973) 285–293.

[13] E. Sampathkumar, H. B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci. 35/36 (1980–1981) 13–16.