Some classes of Türker equivalent graphs

Gopalapillai Indulal* ${ }^{*}$ and Ambat Vijayakumar ${ }^{\dagger}$
Department of Mathematics
Cochin University of Science and Technology
Cochin-682 022, India.

Abstract

Two graphs G and H are Türker equivalent if they have the same set of Türker angles. In this paper some Türker equivalent family of graphs are obtained.

1 Introduction

Let G be a graph with n vertices, m edges and adjacency matrix A. The eigenvalues of A are the eigenvalues of G and form the spectrum of G denoted by $\operatorname{spec}(G)$ [1]. The energy of G, denoted by $\mathcal{E}(G)$ is then defined as the sum of absolute value of its eigenvalues. The properties of $\mathcal{E}(G)$ are discussed in detail in $[2,3,4,5,6,7]$. In chemistry, the energy of a graph is well studied since it can be used to approximate the total π - electron energy of a molecule.

In order to express the fine molecular-structure-dependent difference in behavior of the total π electron energy of isomeric alternate hydrocarbons Lemi Türker in [8] introduced the concept of angle of total π electron energy θ defined as

$$
\cos \theta=\frac{\mathcal{E}}{2 \sqrt{m n}}
$$

[^0]and two other related angles α and β connected by $\alpha+\beta=\theta$. These quantities are referred to as the Türker angles. This notion was extended to all graphs by I.Gutman [9].

The Türker angle θ has proven to be a useful novel concept in the theory of total π - electron energy and it has found numerous applications. The fundamental properties of θ, α and β are discussed in $[8,9,10,11]$.

Recall from [9],

$$
\begin{align*}
\cos \alpha & =\frac{n+\mathcal{E}}{\sqrt{n} \sqrt{n+2 \mathcal{E}+2 m}} \tag{1}\\
\cos \beta & =\frac{\mathcal{E}+2 m}{\sqrt{n+2 \mathcal{E}+2 m} \sqrt{2 m}} \tag{2}
\end{align*}
$$

Set $Y=\sqrt{2 m n-\mathcal{E}^{2}}$. Using the trigonometric identity $\tan x=\frac{\sqrt{1-\cos ^{2} x}}{\cos x}$ we get

$$
\begin{equation*}
\tan \alpha=\frac{Y}{n+\mathcal{E}} ; \tan \beta=\frac{Y}{2 m+\mathcal{E}} \text { and } \tan \theta=\frac{Y}{\mathcal{E}} \tag{3}
\end{equation*}
$$

Now, we study the nature of these angles in some family of graphs.
We use the following lemmas and definitions in this paper.
Lemma 1. [1] Let G be graph with $\operatorname{spec}(G)=\left\{\lambda_{i}\right\}, i=1$ to n and H be a graph with $\operatorname{spec}(H)=\left\{\mu_{j}\right\}, j=1$ to n^{\prime}. Then the spectrum of the cartesian product, $G \times H$ of G and H is given by $\operatorname{spec}(G \times H)=\left\{\lambda_{i}+\mu_{j}\right\}, i=1$ to $n, j=1$ to n^{\prime}.

Lemma 2. [1] Let A and B be two matrices with $\operatorname{spec}(A)=\left\{\lambda_{i}\right\}, i=1$ to m and $\operatorname{spec}(B)=$ $\left\{\mu_{j}\right\}, j=1$ to n. Let $C=A \otimes B$, the tensor product of A and B. Then $\operatorname{spec}(C)=$ $\left\{\lambda_{i} \mu_{j}\right\}, i=1$ to m and $j=1$ to n.

Lemma 3. [6] Let G be an r regular graph on n vertices, $r \geq 3$. Then its second iterated line graph $L^{2}(G)$ has $\frac{n r(r-1)}{2}$ vertices, $\frac{n r(r-1)(2 r-3)}{2}$ edges and energy $2 n r(r-2)$.

Definition 1. [4] Let G be a graph on $V=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$. Take a copy of G on $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ corresponding to $V=\left\{v_{i}\right\}$. Then make u_{i} adjacent to vertices in $N\left(v_{i}\right)$ for each $i, i=1$ to n. The resultant graph is called the double graph of G denoted by $D_{2}(G)$.

Definition 2. [12] Let G be a graph on n vertices labelled as $V=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$. Then take another set $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of n vertices corresponding to $V=\left\{v_{i}\right\}$. Now define a graph
H with $V(H)=V \bigcup U$ and edge set of H consisting only of those edges joining u_{i} to neighbors of v_{i} in G for each $i \quad i=1$ to n. The resultant graph H is called the identity duplication graph of G denoted by $D G$.

Definition 3. [13] Let G be a graph on $V=\left\{v_{1}, v_{2}, \ldots \ldots \ldots ., v_{n}\right\}$. Take a set $U=\left\{u_{1}, u_{2}, \ldots ., u_{n}\right\}$ of n vertices corresponding to $V=\left\{v_{i}\right\}$. Then make u_{i} adjacent to vertices in $N\left(v_{i}\right)$ for each i, $i=1$ to n. The resultant graph is called the splitting graph of G denoted by splt (G).

Illustration:

Lemma 4. [4] Let G be a graph. Then $\mathcal{E}\left[D_{2}(G)\right]=\mathcal{E}[D(G)]=2 \mathcal{E}(G)$.

Lemma 5. Let G be a graph. Then $\mathcal{E}[\operatorname{splt}(G)]=\sqrt{5} \mathcal{E}(G)$.

Proof. By definition of splitting graph of G, the adjacency matrix of $\operatorname{splt}(G)=\left[\begin{array}{cc}A & A \\ A & 0\end{array}\right]=A \otimes\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$.
Then the theorem follows, since the eigenvalues of $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ are $\frac{1 \pm \sqrt{5}}{2}$.

2 Some classes of Türker equivalent graphs

Definition 4. Two graphs G and H are Türker equivalent if they have the same set of values for the Türker angles.

It is known [9] that isomorphic graphs are Türker equivalent. In this section we obtain non-isomorphic Türker equivalent graphs.

Theorem 1. Let $\mathcal{G}=\{G / G$ is an $r-$ regular graph, $r \geq 3\}$. Let $\mathcal{F}_{k}=\left\{L^{k}(G), k \geq 2 / G \in \mathcal{G}\right\}$. Then the family \mathcal{F}_{k} is Türker equivalent for each k.

Proof. Let G be an r - regular graph on n vertices, $r \geq 3$. Then by Lemma 2 and Eq.3, for the family $L^{2}(G)$ we have the following,

$$
\begin{aligned}
Y & =n r(r-1) \sqrt{\frac{2 r-3}{2}-4\left(\frac{r-2}{r-1}\right)^{2}} \\
\tan \theta & =\frac{(r-1) \sqrt{\frac{2 r-3}{2}-4\left(\frac{r-2}{r-1}\right)^{2}}}{2(r-2)} \\
\tan \alpha & =\frac{2(r-1)}{5 r-9} \sqrt{\frac{2 r-3}{2}-4\left(\frac{r-2}{r-1}\right)^{2}} \\
\tan \beta & =\frac{2(r-1)}{2 r^{2}-r-5} \sqrt{\frac{2 r-3}{2}-4\left(\frac{r-2}{r-1}\right)^{2}} .
\end{aligned}
$$

Here $\tan \theta, \tan \alpha$ and $\tan \beta$ are independent of n, the number of vertices of G and depend only on r, regularity of G. Since $L^{k}(G)=L^{2}(H)$ for some regular graph H, this can be extended to the family $L^{k}(G)$, for $k \geq 3$.

Theorem 2. Let G be any graph. Let $\mathcal{D}=\bigcup_{k} D^{k} G$ where $D^{k} G$ is defined iteratively by $D^{0} G=$ G and $D^{k} G=D\left(D^{k-1} G\right), k \geq 2$. Then \mathcal{D} is a Türker equivalent family of graphs.

Proof. Let G be an (n, m) graph with energy \mathcal{E} and Türker angles α, β and θ. Then by [4], $D G$, the duplicate graph of G is a $(2 n, 2 m)$ graph with energy $2 \mathcal{E}$.

Let $\theta^{\prime}, \alpha^{\prime}$ and β^{\prime} be the Türker angles of $D G$. Then from Eq. 3 we have the following,

$$
\begin{aligned}
& \tan \alpha^{\prime}=\frac{\sqrt{2 \times 2 m \times 2 n-(2 \mathcal{E})^{2}}}{2 n+2 \mathcal{E}}=\frac{\sqrt{2 m n-\mathcal{E}^{2}}}{n+\mathcal{E}}=\tan \alpha \\
& \tan \beta^{\prime}=\frac{\sqrt{2 \times 2 m \times 2 n-(2 \mathcal{E})^{2}}}{2 \times 2 m+2 \mathcal{E}}=\frac{\sqrt{2 m n-\mathcal{E}^{2}}}{2 m+\mathcal{E}}=\tan \beta \\
& \tan \theta^{\prime}=\frac{\sqrt{2 \times 2 m \times 2 n-(2 \mathcal{E})^{2}}}{2 \mathcal{E}}=\frac{\sqrt{2 m n-\mathcal{E}^{2}}}{\mathcal{E}}=\tan \theta
\end{aligned}
$$

Thus the theorem follows.

Theorem 3. Let $\mathcal{F}_{k}=\left\{L^{k}(G) / G\right.$ is an $r-$ regular graph, $\left.r \geq 3, k \geq 2\right\}$ and $\mathcal{H}_{k}=\left\{\operatorname{splt}\left(F_{k}\right)\right.$ where $\left.F_{k} \in \mathcal{F}_{k}\right\}$. Then the family \mathcal{H}_{k} is Türker equivalent for each k.

Proof. Let G be an (n, m) graph and $k=2$. Then by [13], $\operatorname{splt}(G)$ is a $(2 n, 3 m)$ graph. Then

$$
\begin{aligned}
N & =\left|V\left[\operatorname{splt}\left\{L^{2}(G)\right\}\right]\right|=2 \times\left|V\left[L^{2}(G)\right]\right| \\
& =\operatorname{nr}(r-1) \\
M & =\left|E d g e\left[\operatorname{splt}\left\{L^{2}(G)\right\}\right]\right|=3 \times\left|E d g e\left\{L^{2}(G)\right\}\right| \\
& =3 \times \frac{n r(r-1)(2 r-3)}{2} \\
\mathcal{E} & =\operatorname{Energy}\left[\operatorname{splt}\left\{L^{2}(G)\right\}\right]=\sqrt{5} \times \operatorname{Energy}\left\{L^{2}(G)\right\} \\
& =2 \sqrt{5} n r(r-2) \text { by Lemmas } 3 \text { and } 5 .
\end{aligned}
$$

Also $Y=\sqrt{2 M N-\mathcal{E}^{2}}=\sqrt{3 n^{2} r^{2}(r-1)^{2}(2 r-3)-20 n^{2} r^{2}(r-2)^{2}}$. Thus the Türker angles are given as follows.

$$
\begin{aligned}
& \tan \theta=\frac{Y}{\mathcal{E}}=\frac{\sqrt{3(r-1)^{2}(2 r-3)-20(r-2)^{2}}}{2 \sqrt{5}(r-2)} . \\
& \tan \alpha=\frac{Y}{N+\mathcal{E}}=\frac{\sqrt{3(r-1)^{2}(2 r-3)-20(r-2)^{2}}}{(r-1)+2 \sqrt{5}(r-2)} . \\
& \tan \beta=\frac{Y}{2 M+\mathcal{E}}=\frac{\sqrt{3(r-1)^{2}(2 r-3)-20(r-2)^{2}}}{3(r-1)(2 r-3)+2 \sqrt{5}(r-2)} .
\end{aligned}
$$

Since $L^{k}(G)=L^{2}[H]$ for some regular graph H, the theorem follows.

Theorem 4. Let $\mathcal{T}_{k}=\left\{D_{2}\left[L^{k}(G)\right] / G\right.$ is an $r-$ regular graph, $\left.r \geqslant 3, k \geq 2\right\}$. Then the family \mathcal{T}_{k} is Türker equivalent for each k.

Proof. Let G be an (n, m) graph and $k=2$. Then by [4], $D_{2}(G)$ is a $(2 n, 4 m)$ graph. Assume that G is $r \geq 3$ regular. Then

$$
\begin{aligned}
N & =\left|V\left[D_{2}\left\{L^{2}(G)\right\}\right]\right|=2 \times\left|V\left[L^{2}(G)\right]\right|=n r(r-1) \\
M & =\left|E d g e\left[D_{2}\left\{L^{2}(G)\right\}\right]\right|=4 \times\left|E d g e\left\{L^{2}(G)\right\}\right| \\
& =2 n r(r-1)(2 r-3) \\
\mathcal{E} & =\operatorname{Energy}\left[D_{2}\left\{L^{2}(G)\right\}\right]=2 \times \operatorname{Energy}\left\{L^{2}(G)\right\} \\
& =4 n r(r-2) \text { by Lemmas } 3 \text { and } 4 .
\end{aligned}
$$

Also $Y=\sqrt{2 M N-\mathcal{E}^{2}}=2 n r \sqrt{(r-1)^{2}(2 r-3)-4(r-2)^{2}}$. Thus the Türker angles are as follows.

$$
\begin{aligned}
& \tan \theta=\frac{Y}{\mathcal{E}}=\frac{\sqrt{(r-1)^{2}(2 r-3)-4(r-2)^{2}}}{2(r-2)} . \\
& \tan \alpha=\frac{Y}{N+\mathcal{E}}=\frac{2 \sqrt{(r-1)^{2}(2 r-3)-4(r-2)^{2}}}{5 r-9} . \\
& \tan \beta=\frac{Y}{2 M+\mathcal{E}}=\frac{\sqrt{(r-1)^{2}(2 r-3)-4(r-2)^{2}}}{2[(r-1)(2 r-3)+(r-2)]} .
\end{aligned}
$$

Since $L^{k}(G)=L^{2}[H]$ for some regular graph H, the theorem follows.
The following theorems provide some more Türker equivalent graphs, the proof of which are on similar lines.

Theorem 5. Let $\mathcal{G}=\{G / G$ is an $r-$ regular graph $\}$ and $\mathcal{H}=\left\{H / H\right.$ is an $r^{\prime}-$ regular graph $\}$ where $r, r^{\prime} \geq 4$. Then the family $L^{p}(\mathcal{G}) \times L^{q}(\mathcal{H})$ is Türker equivalent for each $p \geq 2$ and $q \geq 2$.

Theorem 6. Let $\mathcal{G}=\{G / G$ is an r - regular graph, $r \geq 4\}, \mathcal{F}_{k}=\left\{L^{k}(G), k \geq 2 / G \in \mathcal{G}\right\}$ and $\mathcal{R}_{k}=\left\{R=F_{1} \otimes F_{2} / F_{1}\right.$ and $\left.F_{2} \in \mathcal{F}_{k}\right\}$. Then \mathcal{R}_{k} is Türker equivalent for each k.

Theorem 7. Let G be an r - regular graph, $r \geq 3$. Then the family $\left\{L^{k}(G) \otimes K_{p}\right\}$ is Türker equivalent for each p and each $k \geq 2$.

Theorem 8. Let G be an r - regular graph, $r \geq$ 4. Then the family $\left\{L^{k}(G) \times C_{p}\right\}$ is Türker equivalent for each $p \geq 3$ and $k \geq 2$.

3 Some operations on a graph

In this section we define some operations on a graph G with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Operation 1. Introduce two copies of G on $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=$ $\left\{v_{i}\right\}$. Make u_{i} and w_{i} adjacent to the vertices in $N\left(v_{i}\right)$ for each $i, i=1$ to n. Then remove the edges of G only.

Operation 2. Introduce two copies of G on $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=$ $\left\{v_{i}\right\}$. Make u_{i} adjacent to the vertices in $N\left(v_{i}\right)$ and $N\left(w_{i}\right)$ and make w_{i} adjacent to the vertices in $N\left(v_{i}\right)$ and $N\left(u_{i}\right)$ for each $i, i=1$ to n. Then remove the edges of G only.

Operation 3. Introduce two copies of G on $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=$ $\left\{v_{i}\right\}$. Make u_{i} adjacent to the vertices in $N\left(v_{i}\right)$ and $N\left(w_{i}\right)$ and make w_{i} adjacent to the vertices in $N\left(v_{i}\right)$ and $N\left(u_{i}\right)$ for each $i, i=1$ to n. Then remove the edges of G on vertex sets V and W.

Operation 4. Introduce two copies of G on $U=\left\{u_{i}\right\}$ and $W=\left\{w_{i}\right\}$ corresponding to $V=$ $\left\{v_{i}\right\}$. Make u_{i} and w_{i} adjacent to the vertices in $N\left(v_{i}\right)$ for each $i, i=1$ to n.

The graph obtained from G using operation i is denoted by $H_{i}, i=1,2,3$ and 4 .

Theorem 9. Let G be a graph on n vertices with spectrum $\left\{\lambda_{1}, \lambda_{2}, \ldots \ldots ., \lambda_{n}\right\}$ and H_{i},
$i=1,2,3$ and 4 be the graphs obtained as above. Then

1. $\mathcal{E}\left(H_{1}\right)=4 \mathcal{E}(G)$
2. $\mathcal{E}\left(H_{2}\right)=2 \sqrt{3} \mathcal{E}(G)$
3. $\mathcal{E}\left(H_{3}\right)=[2 \sqrt{2}+1] \mathcal{E}(G)$
4. $\mathcal{E}\left(H_{4}\right)=[2 \sqrt{2}+1] \mathcal{E}(G)$

Proof. The table 1 gives the adjacency matrix, its tensor partition and the eigenvalues of H_{i}, $i=1,2,3$ and 4 .

Table 1

Operation	Adjacency Matrix			Eigenvalues
1	$\begin{array}{lll}0 & A & A \\ A & A & 0 \\ A & 0 & A\end{array}$	$=A \otimes$	$\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}$	$\left\{2 \lambda_{i}, \lambda_{i},-\lambda_{i}\right\}$
2	$\begin{array}{lll}0 & A & A \\ A & A & A \\ A & A & A\end{array}$	$=A \otimes$	$\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}$	$\left\{(1 \pm \sqrt{3}) \lambda_{i}, 0\right\}$
3	$\begin{array}{lll}0 & A & A \\ A & A & A \\ A & A & 0\end{array}$	$=A \otimes$	$\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}$	$\left\{(1 \pm \sqrt{2}) \lambda_{i},-\lambda_{i}\right\}$
4	$\begin{array}{lll}A & A & A \\ A & A & 0 \\ A & 0 & A\end{array}$	$=A \otimes$	$\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}$	$\left\{(1 \pm \sqrt{2}) \lambda_{i}, \lambda_{i}\right\}$

Column 3 of Table 1 gives the eigenvalues of $H_{i}, i=1,2,3$ and 4 and hence the theorem follows.

Note: $H_{3}=H_{4}$ when G is bipartite.

Theorem 10. Let \mathcal{G} be the collection of all r - regular graphs, $r \geq 3$ and $\mathcal{F}_{k}=\left\{L^{k}(G), k \geq\right.$ $2 / G \in \mathcal{G}\}$. Let $\mathcal{F}_{k i}=\left\{F_{k i} / F_{k} \in \mathcal{F}_{k}\right\}, i=1,2,3$ and 4 as defined by the above operations. Then each family $\mathcal{F}_{k i}, i=1,2,3,4$ and $k \geq 2$ is Türker equivalent.

Proof. Let G be an r - regular graph on n vertices, $r \geq 3$ and $k=2$. Then by Lemma 3 and from the above operations we have the order, size and energy of $F_{2 i}$ for $i=1,2,3$ and 4 are as given in table 2 .

Table 2

i	Order of $F_{2 i}$	Size of $F_{2 i}$	$\mathcal{E}\left(F_{2 i}\right)$
1	$\frac{3 n r(r-1)(2 r-3)}{2}$	$3 n r(r-1)$	$8 n r(r-2)$
2	$\frac{3 n r(r-1)(2 r-3)}{2}$	$4 n r(r-1)$	$4 \sqrt{3} n r(r-2)$
3	$\frac{3 n r(r-1)(2 r-3)}{2}$	$\frac{7 n r(r-1)}{2}$	$2(2 \sqrt{2}+1) n r(r-2)$
4	$\frac{3 n r(r-1)(2 r-3)}{2}$	$\frac{7 n r(r-1)}{2}$	$2(2 \sqrt{2}+1) n r(r-2)$

Now for each i, the Table 3 gives the three Türker angles.
Table 3

i	$\tan \theta$	$\tan \alpha$	$\tan \beta$
1	$\frac{\sqrt{18 r^{3}-127 r^{2}+328 r-283}}{8(r-2)}$	$\frac{2 \sqrt{18 r^{3}-127 r^{2}+328 r-283}}{6 r^{2}+r-23}$	$\frac{\sqrt{18 r^{3}-127 r^{2}+328 r-283}}{2(7 r-11)}$
2	$\frac{\sqrt{18 r^{3}-127 r^{2}+328 r-283}}{4 \sqrt{3}(r-2)}$	$\frac{2 \sqrt{18 r^{3}-127 r^{2}+328 r-283}}{6 r^{2}+r(8 \sqrt{3}-15)-(16 \sqrt{3}-9)}$	$\frac{\sqrt{18 r^{3}-127 r^{2}+328 r-283}}{4[(2+\sqrt{3}) r-2(1+\sqrt{3})]}$
3	$\frac{\sqrt{6 r^{3}-33 r^{2}+72 r-57}}{[1+2 \sqrt{2}](r-2)}$	$\frac{4 \sqrt{6 r^{3}-33 r^{2}+72 r-57}}{\left[6 r^{2}+r(8 \sqrt{2}-11)-(16 \sqrt{2}-1)\right]}$	$\frac{2 \sqrt{6 r^{3}-33 r^{2}+72 r-57}}{[r(4 \sqrt{2}+9)-(8 \sqrt{2}+11)]}$
4	$\frac{\sqrt{6 r^{3}-33 r^{2}+72 r-57}}{[1+2 \sqrt{2}](r-2)}$	$\frac{4 \sqrt{6 r^{3}-33 r^{2}+72 r-57}}{\left[6 r^{2}+r(8 \sqrt{2}-11)-(16 \sqrt{2}-1)\right]}$	$\frac{2 \sqrt{6 r^{3}-33 r^{2}+72 r-57}}{[r(4 \sqrt{2}+9)-(8 \sqrt{2}+11)]}$

Since $L^{k}(G)=L^{2}[H]$ for some regular graph H for $k \geq 3$, the theorem follows from table 3 .
Acknowledgement: We thank the referee for some valuable suggestions. The first author thanks the University Grants Commission of Government of India for providing fellowship under the Faculty Improvement Programme.

References

[1] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Applications, Academic Press, New York, 1979.
[2] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004) 287-295.
[3] I.Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978) 1-22.
[4] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55(2006) 83-90.
[5] G.Indulal, A.Vijayakumar, Energies of some non-regular graphs, J.Math.Chem(to appear).
[6] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I.Gutman, Equienergetic graphs, Kragujevac. J. Math. 26 (2004) 5-13.
[7] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, P. R. Hampiholi, S. R. Jog, I.Gutman, Spectra and energies of iterated line graphs of regular graphs, Appl.Math.Lett. 18(2005) 679-682.
[8] I.Gutman, On the Türker Angles in the theory of total π - electron energy, Turk J Chem 22 (1998) 399-402.
[9] I.Gutman, L.Türker, Angle of graph energy - A spectral measure of resemblance of isomeric molecules, Indian J.Chem. 42A (2003) 2698-2701.
[10] I.Gutman, L.Türker, Estimating the angle of total π-electron energy, J.Mol. Struct (Theochem) 668 (2004) 119-121.
[11] I.Gutman, L.Türker, Approximating the total π-electron energy of benzenoid hydrocarbons: Some new estimates of (n, m)-type, Indian J.Chem 32A (1993) 833-836.
[12] E. Sampathkumar, On duplicate graphs, J. Indian Math. Soc. 37 (1973) 285-293.
[13] E. Sampathkumar, H. B. Walikar, On the splitting graph of a graph, Karnatak Univ. J. Sci. 35/36 (1980-1981) 13-16.

[^0]: *E-mail: indulalgopal@cusat.ac.in
 ${ }^{\dagger}$ E-mail:vijay@cusat.ac.in

