Equienergetic self-complementary graphs

G. Indulal ${ }^{*}$ and A. Vijayakumar ${ }^{\dagger}$
Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India.

Abstract

In this paper equienergetic self-complementary graphs on p vertices for every $p=4 k, k \geq 2$ and $p=24 t+1, t \geq 3$ are constructed.

1 Introduction

Let G be a graph with $|V(G)|=p$ and let A be an adjacency matrix of G. The eigenvalues of A are called the eigenvalues of G and form the spectrum of G denoted by $\operatorname{spec}(G)$ [4]. The energy [3] of $G, E(G)$ is the sum of the absolute values of its eigenvalues. The properties of $E(G)$ are discussed in detail in $[7,8,9]$. Two non-isomorphic graphs with identical spectrum are called cospectral and two non-cospectral graphs with the same energy are called equienergetic. In [2] and [5], a pair of equienergetic graphs on p vertices where $p \equiv 0(\bmod 4)$ and $p \equiv 0(\bmod 5)$ are constructed respectively. In [10] we have extended the same for $p=6,14,18$ and for every $p \geq 20$. In [12] two classes of equienergetic regular graphs have been obtained and in [11], the energies of some non-regular graphs are studied .

In this paper, we provide a construction of equienergetic self-complementary graphs for every $p=4 k, k \geq 2$ and $p=24 t+1, t \geq 3$. The energies of some special classes of self-complementary graphs are also discussed.

[^0]All graph theoretic terminologies are from [1, 4].
We use the following lemmas in this paper.
Lemma 1. [4] Let G be a graph with an adjacency matrix A and $\operatorname{spec}(G)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then $\operatorname{det} A=\prod_{i=1}^{p} \lambda_{i}$. Also for any polynomial $P(x), P(\lambda)$ is an eigenvalue of $P(A)$ and hence $\operatorname{det} P(A)=\prod_{i=1}^{p} P\left(\lambda_{i}\right)$.
Lemma 2. [4] Let M, N, P and Q be matrices with M invertible. Let $S=\left[\begin{array}{cc}M & N \\ P & Q\end{array}\right]$. Then $|S|=|M|\left|Q-P M^{-1} N\right|$ and if M and P commutes then $|S|=|M Q-P N|$ where the symbol |.| denotes determinant.

Lemma 3. [12] Let G be an r - regular connected graph, $r \geq 3$ with $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then $\operatorname{spec}\left(L^{2}(G)\right)=\left(\begin{array}{cccccc}4 r-6 & \lambda_{2}+3 r-6 & . . & \lambda_{p}+3 r-6 & 2 r-6 & -2 \\ 1 & 1 & . . & 1 & \frac{p(r-2)}{2} & \frac{p r(r-2)}{2}\end{array}\right)$, $E\left(L^{2}(G)\right)=2 p r(r-2)$ and $E\left(\overline{L^{2}(G)}\right)=(p r-4)(2 r-3)-2$.

Lemma 4. [4] Let G be an r - regular connected graph on p vertices with A as an adjacency matrix and $r=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ as the distinct eigenvalues. Then there exists a polynomial $P(x)$ such that $P(A)=J$ where J is the all one square matrix of order p and $P(x)$ is given by $P(x)=p \times \frac{\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) \ldots\left(x-\lambda_{m}\right)}{\left(r-\lambda_{2}\right)\left(r-\lambda_{3}\right) \ldots\left(r-\lambda_{m}\right)}$, so that $P(r)=p$ and $P\left(\lambda_{i}\right)=0$, for all $\lambda_{i} \neq r$.

Let G be an r - regular connected graph. Then the following constructions [6]result in self-complementary graphs $H_{i}, i=1$ to 4 .

Construction 1. H_{1} : Replace each of the end vertices of P_{4}, the path on 4 vertices by a copy of G and each of the internal vertices by a copy of \bar{G}. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of P_{4} are adjacent.

Construction 2. H_{2} : Replace each of the end vertices of P_{4}, the path on 4 vertices by a copy of \bar{G} and each of the internal vertices by a copy of G. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of P_{4} are adjacent.

Construction 3. H_{3} : Replace each of the end vertices of the non-regular self-complementary graph F on 5 vertices by a copy of \bar{G}, each of the vertices of degree 3 by a copy of G and the vertex of degree 2 by K_{1}. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of F are adjacent.

Construction 4. H_{4} : Consider the regular self-complementary graph $C_{5}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$, the cycle on 5 vertices. Replace the vertices v_{1} and v_{5} by a copy of \bar{G}, v_{2} and v_{4} by a copy of G and v_{3} by K_{1}. Join the vertices of these graphs by all possible edges whenever the corresponding vertices of C_{5} are adjacent.

Note:-For all non self-complementary graphs G, Constructions 1 and 2 yield non- isomorphic graphs and for any graph $G, H_{1}(G)=H_{2}(\bar{G})$.

2 Equienergetic self-complementary graphs

In this section, we construct a pair of equienergetic self complementary graphs, first for $p=$ $4 k, k \geq 2$ and then for $p=24 t+1, t \geq 3$.

Theorem 1. Let G be an r - regular connected graph on p vertices with $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$ and H_{1} be the self-complementary graph obtained by Construction 1.Then $E\left(H_{1}\right)=2[E(G)+E(\bar{G})-(p-1)]+\sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}+\sqrt{1+4\left(p^{2}+r+r^{2}\right)}$. Proof. Let G be an r - regular connected graph on p vertices with an adjacency matrix A, $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$ and H_{1} be the self-complementary graph obtained by Construction

1. Then the adjacency matrix of H_{1} is

$$
\left[\begin{array}{cccc}
A & J & 0 & 0 \\
J & \bar{A} & J & 0 \\
0 & J & \bar{A} & J \\
0 & 0 & J & A
\end{array}\right] \text {, so that the characteristic equation }
$$ of H_{1} is

$$
\left|\begin{array}{cccc}
\lambda I-A & -J & 0 & 0 \\
-J & \lambda I-\bar{A} & -J & 0 \\
0 & -J & \lambda I-\bar{A} & -J \\
0 & 0 & -J & \lambda I-A
\end{array}\right|=0
$$

that is $\left|\begin{array}{cccc}-J & \lambda I-\bar{A} & 0 & -J \\ \lambda I-\bar{A} & -J & -J & 0 \\ -J & 0 & \lambda I-A & 0 \\ 0 & -J & 0 & \lambda I-A\end{array}\right|=0$, by a sequence of elementary transformations.

But, the last expression by virtue of Lemma 2 is

$$
\left|J^{2}(\lambda I-A)^{2}-\left[(\lambda I-A)(\lambda I-\bar{A})-J^{2}\right]^{2}\right|=0
$$

and so $\prod_{i=1}^{p}\left\{\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\left(\lambda-\lambda_{i}\right)^{2}-\left[\left(\lambda-\lambda_{i}\right)\left(\lambda-P\left(\lambda_{i}\right)+1+\lambda_{i}\right)-\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\right]^{2}\right\}=0$ by Lemmas 1 and 4 .
Now, corresponding to the eigenvalue r of G, the eigenvalues of H_{1} are given by

$$
\left\{p^{2}(\lambda-r)^{2}-\left[(\lambda-r)(\lambda-p+1+r)-p^{2}\right]^{2}\right\}=0 \text { by Lemmas } 1 \text { and } 4
$$

That is $\left[\lambda^{2}+\lambda-\left(r^{2}+r+p^{2}\right)\right]\left[\lambda^{2}-(2 p-1) \lambda-\left\{(p-r)^{2}+r\right\}\right]=0$
So $\lambda=\frac{-1 \pm \sqrt{1+4\left(p^{2}+r+r^{2}\right)}}{2} ; \frac{2 p-1 \pm \sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}}{2}$
The remaining eigenvalues of H_{1} satisfy $\prod_{i=2}^{p}\left[\left(\lambda-\lambda_{i}\right)\left(\lambda+1+\lambda_{i}\right)\right]^{2}=0$.
Hence, $\operatorname{spec}\left(H_{1}\right)=\left(\begin{array}{cccc}\frac{-1 \pm \sqrt{1+4\left(p^{2}+r+r^{2}\right)}}{2} & \frac{2 p-1 \pm \sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}}{2} & \begin{array}{c}\lambda_{i} \\ i=2 \text { to } p\end{array} & -1-\lambda_{i} \\ 1 & 1 & 2 & 2\end{array}\right)$.
Now, the expression for $E\left(H_{1}\right)$ follows.

Theorem 2. Let G be an r - regular connected graph on p vertices with $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$ and H_{2} be the self-complementary graph obtained by Construction 2. Then
$E\left(H_{2}\right)=2[E(G)+E(\bar{G})-(p-1)]+\sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}+\sqrt{1+4\left(p^{2}+r+r^{2}\right)}$.

Proof. Let A be an adjacency matrix of G. Then the adjacency matrix of H_{2} is
$\left[\begin{array}{cccc}\bar{A} & J & 0 & 0 \\ J & A & J & 0 \\ 0 & J & A & J \\ 0 & 0 & J & \bar{A}\end{array}\right]$.

By a similar computation as in Theorem 1 in which A is replaced by \bar{A}, we get the characteristic equation of H_{2} as
$\prod_{i=1}^{p}\left\{\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\left(\lambda-P\left(\lambda_{i}\right)+\lambda_{i}+1\right)^{2}-\left[\left(\lambda-\lambda_{i}\right)\left(\lambda-P\left(\lambda_{i}\right)+1+\lambda_{i}\right)-\left\langle P\left(\lambda_{i}\right)\right\rangle^{2}\right]^{2}\right\}=0$, by Lemmas 1,2 and 4.

$$
\text { Hence } \operatorname{spec}\left(H_{2}\right)=\left(\begin{array}{cccc}
\frac{2 p-1 \pm \sqrt{1+4\left(p^{2}+r+r^{2}\right)}}{2} & \frac{-1 \pm \sqrt{(2 p-1)^{2}+4\left\{(p-r)^{2}+r\right\}}}{2} & \underset{i=2}{\lambda_{i}} \text { to } p & -1-\lambda_{i} \\
1 & 1 & 2 & 2
\end{array}\right) .
$$

Now, the expression for $E\left(H_{2}\right)$ follows.

Corollory 1.

1. If $G=K_{p}$, then $E\left(H_{1}\right)=E\left(H_{2}\right)=2(p-1)+\sqrt{1+4 p^{2}}+\sqrt{8 p^{2}-4 p+1}$.
2. If $G=K_{n, n}$, then $p=2 n$ and $E\left(H_{1}\right)=E\left(H_{2}\right)=2(2 p-3)+\sqrt{5 p^{2}-2 p+1}+$ $\sqrt{5 p^{2}+2 p+1}$.

Theorem 3. For every $p=4 k, k \geq 2$, there exists a pair of equienergetic self-complementary graphs.

Proof. Let H_{1} and H_{2} be the self-complementary graphs obtained from K_{k} as in Constructions 1 and 2. Then by Theorems 1 and 2, they are equienergetic on $p=4 k$ vertices.

Theorem 4. Let H_{3} be the self-complementary graph obtained from K_{p} by Construction 3. Then $E\left(H_{3}\right)=2(p-1)+\sqrt{4 p^{2}+1}+\sqrt{8 p^{2}+4 p+1}$.

Proof. Let A be an adjacency matrix of K_{p}. Then by Construction 3, the adjacency matrix of
H_{3} is $\left[\begin{array}{ccccc}\bar{A} & J & 0_{p \times 1} & 0 & 0 \\ J & A & J_{p \times 1} & J & 0 \\ 0_{1 \times p} & J_{1 \times p} & 0 & J_{1 \times p} & 0 \\ 0 & J & J_{p \times 1} & A & J \\ 0 & 0 & 0 & J & \bar{A}\end{array}\right]$.
Now, after a sequence of elementary transformations applied to the rows and columns and by Lemma 2, the characteristic equation is

$$
\frac{1}{\lambda^{2 p-1}}\left|\left[\{\lambda(\lambda I-A)-J\}(\lambda I-\bar{A})-\lambda J^{2}\right]^{2}-[(\lambda+1)(\lambda I-\bar{A}) J]^{2}\right|=0
$$

Since $G=K_{p}$ is connected and regular, by Lemmas 1 and 4 the characteristic equation of H_{3} is

$$
\lambda^{2 p-1}(\lambda+1)^{2 p-2}\left(\lambda^{2}+\lambda-p^{2}\right)\left[\lambda^{2}-(2 p-1) \lambda-p(p+2)\right]=0
$$

Hence $\operatorname{spec}\left(H_{3}\right)=\left(\begin{array}{cccc}\frac{-1 \pm \sqrt{4 p^{2}+1}}{2} & \frac{2 p-1 \pm \sqrt{8 p^{2}+4 p+1}}{2} & -1 & 0 \\ 1 & 1 & 2 p-2 & 2 p-2\end{array}\right)$. Now, the expression for $E\left(H_{3}\right)$ follows.

Theorem 5. Let H_{4} be the self-complementary graph obtained from K_{p} by Construction 4. Then $E\left(H_{4}\right)=2(2 p-1)+\sqrt{4 p+1}+\sqrt{8 p^{2}-4 p+1}$.

Proof. Let A be an adjacency matrix of K_{p}. Then by Construction 4, the adjacency matrix of H_{4} is

$$
\left[\begin{array}{ccccc}
\bar{A} & J & 0_{p \times 1} & 0 & J \\
J & A & J_{p \times 1} & 0 & 0 \\
0_{1 \times p} & J_{1 \times p} & 0_{1 \times 1} & J_{1 \times p} & 0 \\
0 & 0 & J_{p \times 1} & A & J \\
J & 0 & 0 & J & \bar{A}
\end{array}\right]
$$

Now, after a sequence of elementary transformations applied to the rows and columns and by Lemma 2, the characteristic equation is

$$
\frac{1}{\lambda^{2 p-1}}\left|\left[\{\lambda(\lambda I-A)-J\}^{2}+(\lambda-1) J^{2}\right]\left[(\lambda-1) J^{2}+(\lambda I-\bar{A})^{2}\right]-\lambda J^{2}[\lambda(\lambda I-A)-J+\lambda I-\bar{A}]^{2}\right|=0
$$

Since $G=K_{p}$ is connected and regular, by Lemma 4 the characteristic equation of H_{4} is

$$
\lambda^{(2 p-2)}(\lambda+1)^{(2 p-2)}(\lambda-2 p)\left(\lambda^{2}+\lambda-p\right)\left(\lambda^{2}+\lambda-2 p^{2}+p\right)=0 .
$$

Hence $\operatorname{spec}\left(H_{4}\right)=\left(\begin{array}{ccccc}2 p & \frac{-1 \pm \sqrt{4 p+1}}{2} & \frac{2 p-1 \pm \sqrt{8 p^{2}-4 p+1}}{2} & -1 & 0 \\ 1 & 1 & 1 & 2 p-2 & 2 p-2\end{array}\right)$. Now, the expression for $E\left(H_{4}\right)$ follows.

Corollory 2. Let G be a connected r - regular graph on p vertices with $\operatorname{spec}(G)=\left\{r, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{p}\right\}$ and H be the self-complementary graph obtained as in Construction 4. Then $E(H)=2[E(G)+E(\bar{G})-(p-1)]+\sqrt{1+4\left(p^{2}+r+r^{2}\right)}+T$ where T is the sum of absolute values of roots of the cubic $x^{3}-(2 p-1) x^{2}-\left[p^{2}-2 p(r-1)+r(r+1)\right] x+2 p(2 p-r-1)=0$.

Lemma 5. There exists a pair of non-cospectral cubic graphs on $2 t$ vertices, for every $t \geq 3$.

Proof. Let G_{1} and G_{2} be the non-cospectral cubic graphs on six vertices labelled as $\left\{v_{j}\right\}$ and $\left\{u_{j}\right\}, j=1$ to 6 respectively.

Figure 1: The graphs G_{1} and G_{2}.

Now replacing v_{1} and u_{1} in G_{1} and G_{2} by a triangle each we get two cubic graphs \mathcal{H}_{1} and \mathcal{H}_{2} on eight vertices containing one and two triangles respectively as shown in Figure 2. Since the
number of triangles in a graph is the negative of half the coefficient of λ^{p-3} in its characteristic polynomial [4], \mathcal{H}_{1} and \mathcal{H}_{2} are non-cospectral.

Figure 2: The graphs \mathcal{H}_{1} and \mathcal{H}_{2}

Replacing any vertex in the newly formed triangle in \mathcal{H}_{1} and \mathcal{H}_{2} by a triangle we get two cubic graphs on ten vertices which are non co-spectral. Repeating this process $(t-3)$ times, we get two cubic graphs on $2 t$ vertices containing one and two triangles respectively. Hence they are non cospectral.

Theorem 6. For every $p=24 t+1, t \geq 3$, there exists a pair of equienergetic self-complementary graphs.

Proof. Let G_{1} and G_{2} be the two non co-spectral cubic graphs on $2 t$ vertices given by Lemma 5. Let F_{1} and F_{2} respectively denote their second iterated line graphs. Then F_{1} and F_{2} have $6 t$ vertices each and 6 -regular with $E\left(F_{1}\right)=E\left(F_{2}\right)=12 t$ and $E\left(\overline{F_{1}}\right)=E\left(\overline{F_{2}}\right)=3(6 t-4)-2$ by Lemma 3. Let \mathcal{F}_{1} and \mathcal{F}_{2} be the self-complementary graphs obtained from F_{1} and F_{2} by Construction 4. Then \mathcal{F}_{1} and \mathcal{F}_{2} are on $p=24 t+1$ vertices and by Corollary $2, E\left(\mathcal{F}_{1}\right)=$ $E\left(\mathcal{F}_{2}\right)=2(24 t-13)+\sqrt{169+144 t^{2}}+T$ where T is the sum of the absolute values of the roots of the cubic $x^{3}-(12 t-1) x^{2}-6\left(6 t^{2}-10 t+7\right) x+12 t(12 t-7)=0$.

Acknowledgement:The authors thank the referee for valuable suggestions. The first author thanks the University Grants Commission(India) for providing fellowship under the FIP.

References

[1] R. Balakrishnan, A Text Book of Graph Theory, Springer (2000), zbl 938.05001.
[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 387 (2004), 287-295, zbl 1041.05046.
[3] C.A. Coulson, Proc. Cambridge Phil. Soc., 36 (1940), 201-203.
[4] D.M.Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, (1980), zbl 458.05042.
[5] D. Stevanović, Energy and NEPS of graphs, Linear Multilinear Algebra, 53 (2005), 67-74, zbl 1061.05060.
[6] A. Farrugia, Self-complementary graphs and generalisations:A comprehensive reference manual, M.Sc Thesis, University of Malta(1999).
[7] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz, 103 (1978), 1-22, zbl. 402.05040.
[8] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer,(2000), 196-211, zbl.974.05054.
[9] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc., 70 (2005), 441-456.
[10] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55(2006), 83 - 90, zbl 1106.05061.
[11] G.Indulal, A. Vijayakumar, Energies of some non-regular graphs, J.Math.Chem.(to appear).
[12] H.S.Ramane, I.Gutman, H.B. Walikar, S.B. Halkarni,Another class of equienergetic Graphs, Kragujevac.J.Math., 26(2004), 15-18, zbl 1079.05057.

[^0]: *E-mail: indulalgopal@cusat.ac.in
 ${ }^{\dagger}$ E-mail:vijay@cusat.ac.in

