A note on energy of some graphs

G. Indulal*
Department of Mathematics, St.Aloysius College
Edathua, Alappuzha - 689693, India
and

A. Vijayakumar ${ }^{\dagger}$

Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India.

Abstract

Eigenvalue of a graph is the eigenvalue of its adjacency matrix. The energy of a graph is the sum of the absolute values of its eigenvalues. In this note we obtain analytic expressions for the energy of two classes of regular graphs.

1 Introduction

Let G be a graph with $|V(G)|=p$ and an adjacency matrix A. The eigenvalues of A are called the eigenvalues of G and form the spectrum of G denoted by $\operatorname{spec}(G)$ [3]. The energy [6] of $G, \mathcal{E}(G)$ is the sum of the absolute values of its eigenvalues.

From the pioneering work of Coulson [2] there exists a continuous interest towards the general mathematical properties of the total π-electron energy \mathcal{E} as calculated within the framework of the Hückel Molecular Orbital (HMO) model [7]. These efforts enabled one to get an insight into the dependence of \mathcal{E} on molecular structure. The properties of $\mathcal{E}(G)$ are discussed in detail in $[6,8,9]$.

In [5] the spectra and energy of several classes of graphs containing a linear polyene fragment are obtained. In [12], we obtain the energy of cross products of some graphs. In [15], the energy of iterated

[^0]line graphs of regular graphs and in [13], the energy of some self-complementary graphs are discussed. The energy of regular graphs are discussed in [10]. Some works pertaining to the computation of $\mathcal{E}(G)$ can be seen in $[1,6,4,11,14]$.

As there is no easy way to find the eigenvalues of a graph G, the computation of the actual value of $\mathcal{E}(G)$ is an interesting problem in graph theory. In this note we obtain analytic expressions for the energy of two classes of regular graphs.

All graph theoretic terminology is from [3]. We use the following lemmas and definitions in this paper.

Lemma 1. [3] Let M, N, P and Q be matrices with M invertible. Let
$S=\left[\begin{array}{cc}M & N \\ P & Q\end{array}\right]$. Then, $|S|=|M|\left|Q-P M^{-1} N\right|$ and if M and P commutes, then, $|S|=|M Q-P N|$ where the symbol $|$.$| denotes the determinant.$

Lemma 2. [3] Let G be an r - regular connected graph on p vertices with A as an adjacency matrix and $r=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ as the distinct eigenvalues. Then there exists a polynomial $P(x)$ such that $P(A)=J$ where J is the all one square matrix of order p and $P(x)$ is given by $P(x)=p \times \frac{\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) \ldots\left(x-\lambda_{m}\right)}{\left(r-\lambda_{2}\right)\left(r-\lambda_{3}\right) \ldots\left(r-\lambda_{m}\right)}$, so that $P(r)=p$ and $P\left(\lambda_{i}\right)=0$, for all $\lambda_{i} \neq r$.
Lemma 3. [3] $\operatorname{spec}\left(C_{p}\right)=\left(\begin{array}{cc}2 & 2 \cos \frac{2 \pi}{p} j \\ 1 & 1\end{array}\right)$ and $\operatorname{spec}\left(\overline{C_{p}}\right)=\left(\begin{array}{cc}p-3 & -1-2 \cos \frac{2 \pi}{p} j \\ 1 & 1\end{array}\right)$, $j=1$ to $p-1$.

Lemma 4. [3] Let G be an r - regular graph with an adjacency matrix A and incidence matrix R. Then, $R R^{T}=A+r I$.

Definition 1. Let G be $a(p, q)$ graph. The complement of the incidence matrix R, denoted by $\bar{R}=\left[\overline{r_{i j}}\right]$ is defined by

$$
\begin{aligned}
\overline{r_{i j}} & =1 \text { if } v_{i} \text { is not incident with } e_{j} \\
& =0, \text { otherwise } .
\end{aligned}
$$

Definition 2. Let G be a (p, q) graph. Corresponding to every edge e of G introduce a vertex and make it adjacent with all the vertices not incident with e in G. Delete the edges of G only. The resulting graph is called the partial complement of the subdivision graph of G, denoted by $\bar{S}(G)$.

Figure 1: $\bar{S}\left(C_{5}\right)$

2 Partial complement of the subdivision graph

In this section we obtain the spectrum of the partial complement of the subdivision graph $\bar{S}(G)$ of a regular graph G and the energy of $\bar{S}\left(C_{p}\right)$.

Lemma 5. Let G be an r - regular graph with an adjacency matrix A and incidence matrix R. Then, $\bar{R}=J_{p \times q}-R, \bar{R}^{T}=J_{q \times p}-R^{T}$ and $R \bar{R}^{T}=(q-2 r) J+(A+r)$ where J is the all one matrix of appropriate order.

Proof. By Definition 1, $\bar{R}=J_{p \times q}-R$. Therefore

$$
\begin{aligned}
\bar{R} \bar{R}^{T} & =\left(J_{p \times q}-R\right)\left(J_{q \times p}-R^{T}\right) \\
& =q J-r J-r J+A+r I \\
& =(q-2 r) J+(A+r) I, \text { by Lemma } 4
\end{aligned}
$$

Hence the lemma.

Lemma 6. Let G be a connected r-regular (p, q) graph. Then, $\bar{S}(G)$ is regular if and only if G is a cycle.

Proof. From Definition 2, we have the degree of vertices in $\bar{S}(G)$ corresponding to the edges of G is $p-2$ each and of those corresponding to the vertices of G is $q-r$ each. Since G is $r-$ regular, $q=\frac{p r}{2}$ and hence $q-r=p-2$ if and only if $r=2$. Thus, $\bar{S}(G)$ is regular if and only if G is a cycle.

Theorem 1. Let G be a connected r - regular (p, q) graph. Then,
$\operatorname{spec}(\bar{S}(G))=\left(\begin{array}{ccc} \pm \sqrt{p(q-2 r)+2 r} & \pm \sqrt{\lambda_{i}+r} & 0 \\ 1 & 1 & q-p\end{array}\right), i=2$ to p.
Proof. The adjacency matrix of $\bar{S}(G)$ can be written as $\left[\begin{array}{cc}0 & \bar{R} \\ \bar{R}^{T} & 0\end{array}\right]$. Then, the theorem follows from Lemmas 1 and 5.

Theorem 2.

$$
\mathcal{E}\left(\bar{S}\left(C_{p}\right)\right)=\left\{\begin{array}{l}
2\left(p-4+2 \cot \frac{\pi}{2 p}\right), p \equiv 0(\bmod 2) \\
2\left(p-4+2 \operatorname{cosec} \frac{\pi}{2 p}\right), p \equiv 1(\bmod 2)
\end{array}\right.
$$

Proof. By Lemma 3 and Theorem 1 we have

$$
\operatorname{spec}\left(\bar{S}\left(C_{p}\right)\right)=\left(\begin{array}{ccc}
p-2 & -(p-2) & \pm 2 \cos \frac{\pi j}{p} \\
1 & 1 & 1
\end{array}\right), j=1 \text { to } p-1
$$

We shall consider the following two cases.
Case 1. $p \equiv 0(\bmod 2)$.
The cosine numbers $2 \cos \frac{\pi j}{p}$ are positive only for $\frac{\pi}{p} j \leq \frac{\pi}{2}$. Then, the positive cosine numbers are $2 \cos \frac{\pi}{p}, 2 \cos \left(\frac{\pi}{p} \times 2\right), \ldots \ldots \ldots, 2 \cos \left(\frac{\pi}{p} \times \frac{p}{2}\right)$.

$$
\text { Let } \begin{aligned}
C & =2 \cos \frac{\pi}{p}+2 \cos \left(\frac{\pi}{p} \times 2\right)+\ldots \ldots \ldots+2 \cos \left(\frac{\pi}{p} \times \frac{p}{2}\right) \text { and } \\
S & =2 \sin \frac{\pi}{p}+2 \sin \left(\frac{\pi}{p} \times 2\right)+\ldots \ldots \ldots+2 \sin \left(\frac{\pi}{p} \times \frac{p}{2}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
C+i S & =2 \gamma+2 \gamma^{2}+\ldots \ldots . .+2 \gamma^{\frac{p}{2}} \\
& =2 \gamma \frac{\left(1-\gamma^{\frac{p}{2}}\right)}{1-\gamma} \text { where } \gamma=\cos \frac{\pi}{p}+i \sin \frac{\pi}{p} \text { and } i=\sqrt{-1}
\end{aligned}
$$

Now, equating real parts, we get $C=\cot \frac{\pi}{2 p}-1$. Since the spectrum of $\left(\bar{S}\left(C_{p}\right)\right)$ is symmetric with respect to zero, the energy contribution from the cosine numbers is $2 C$. Thus,

$$
\begin{aligned}
\mathcal{E}\left(\bar{S}\left(C_{p}\right)\right) & =2 \times(p-2+2 C) \\
& =2\left(p-4+2 \cot \frac{\pi}{2 p}\right)
\end{aligned}
$$

Case 2. $p \equiv 1(\bmod 2)$.
When p is odd, the cosine numbers $2 \cos \frac{\pi j}{p}$ are positive for $j \leq \frac{p-1}{2}$. Then, by a similar argument as in Case 1, we get $\mathcal{E}\left(\bar{S}\left(C_{p}\right)\right)=2\left(p-4+2 \cos e c \frac{\pi}{2 p}\right)$. Hence the theorem.

3 Energy of the complement of a cycle.

In [5], I.Gutman obtained an analytic expression for the energy of a cycle C_{p}. In this section we derive the energy of $\overline{C_{p}}$, the complement of the cycle C_{p}.

Theorem 3.

$$
\mathcal{E}\left(\overline{C_{p}}\right)=\left\{\begin{array}{l}
2\left(\frac{2 p-9}{3}+\sqrt{3} \cot \frac{\pi}{p}\right) ; p \equiv 0(\bmod 3) \\
2\left(\frac{2 p-8}{3}+\frac{2 \sin \frac{\pi}{3}\left(1-\frac{1}{p}\right)}{\sin \frac{\pi}{p}}\right) ; p \equiv 1(\bmod 3) \\
2\left(\frac{2 p-10}{3}+\frac{2 \sin \frac{\pi}{3}\left(1+\frac{1}{p}\right)}{\sin \frac{\pi}{p}}\right) ; p \equiv 2(\bmod 3)
\end{array}\right.
$$

Proof. We have $\operatorname{spec}\left(\overline{C_{p}}\right)=\left(\begin{array}{cc}p-3 & -\left(1+2 \cos \frac{2 \pi j}{p}\right) \\ 1 & 1\end{array}\right), j=1$ to $p-1$ by Lemma 3 .
We shall consider the following cases.

Case 1. $p \equiv 0(\bmod 3)$.
Then, $-\left(1+2 \cos \frac{2 \pi j}{p}\right) \geq 0$ if and only if $\frac{p}{3} \leq j \leq \frac{2 p}{3}$.
Let $\sum_{j=\frac{p}{3}}^{\frac{2 p}{3}}\left(1+2 \cos \frac{2 \pi j}{p}\right)=\frac{p+3}{3}+\sum_{j=\frac{p}{3}}^{\frac{2 p}{3}} 2 \cos \frac{2 \pi j}{p}=\frac{p+3}{3}+C$ and
$S=\sum_{j=\frac{p}{3}}^{\frac{2 p}{3}} 2 \sin \frac{2 \pi j}{p}$, so that $C+i S=\sum_{j=\frac{p}{3}}^{\frac{2 p}{3}} \gamma^{j}$ where $\gamma=\cos \frac{2 \pi}{p}+i \sin \frac{2 \pi}{p}$.
Equating real parts, we get $C=-\left(1+\sqrt{3} \cot \frac{\pi}{p}\right)$.
The total sum of positive eigenvalues

$$
\begin{aligned}
& =p-3+\sqrt{3} \cot \frac{\pi}{p}+1-\left(\frac{p+3}{3}\right) \\
& =\frac{2 p-9}{3}+\sqrt{3} \cot \frac{\pi}{p} .
\end{aligned}
$$

Thus, $\mathcal{E}\left(\overline{C_{p}}\right)=2 \times\left[\frac{2 p-9}{3}+\sqrt{3} \cot \frac{\pi}{p}\right]$.
The other two cases $p \equiv 1(\bmod 3)$ and $p \equiv 2(\bmod 3)$ can be proved similarly .

References

[1] R. Balakrishnan, The energy of a graph, Linear Algebra Appl., 387(2004), 287-295.
[2] C. A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambridge Phil. Soc., 36 (1940), 201-203.
[3] D.M.Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, (1980).
[4] I. Gutman, M. Milun, N. Trinajstić, Hückel Molecular Orbital Calculations of Aromatic Stabilization of Annulenes, Croat. Chem. Acta, 44 (1972), 207-213.
[5] I. Gutman, A graph theoretical study of conjugated systems containing a linear polyene fragment,Croat. Chem. Acta, 48(2)(1976), 97-108.
[6] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungszenturm Graz., 103 (1978), 1-22.
[7] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, 1986.
[8] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, Springer,(2000), 196-211.
[9] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc., 70 (2005), 441-456.
[10] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 435-442.
[11] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem., 55(2006), 83-90.
[12] G. Indulal, A. Vijayakumar, Energies of some non-regular graphs, J. Math. Chem., (to appear).
[13] G. Indulal, A. Vijayakumar, Equienergetic self-complementary graphs, Czechoslovak Math. J.,(to appear).
[14] O. E. Polansky, Über ungesättigte monocyclen mit durchlaufender konjugation, 2. Mitt.: Berechnung der elektronenstruktur mit hilfe der einfachen LCAO-MO-Methode und allgemeine gruppentheoretische betrchtungen, Monatsh. Chem. 91 (1960) 916-962
[15] H. S. Ramane, H. B. Walikar, S. B. Rao, B. D. Acharya, I. Gutman, P. R. Hampiholi, S. R. Jog, Equienergetic graphs, Kragujevac. J. Math., 26 (2004), 5-13.

[^0]: *Author for correspondence - indulalgopal@yahoo.com
 †vijay@cusat.ac.in

