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CHAPTER1
INTRODUCTION

1.1. Introduction.

In many disciplines of the social and natural sciences dynamic systems are
encountered that are made up of a large number of separate but interacting units. Due
to complexity, inherent random effects or incompleteness of information about the

dynamic structure, a stochastic model is appropriate for many of these systems.

This thesis is devoted to the study of some stochastic models in inventories. An
inventory system is a facility at which items of materials are stocked. In order to promote
smooth and efficient running of business, and to provide adequate service to the
customers, an inventory of materials is essential for any enterprise. When uncertainty is
present, inventories are used as a protection against risk of stock out. It is advantageous
to procure the item before it is needed at a lower marginal cost. Again, by bulk
purchasing, the advantage of price discounts can be availed. All these contribute to the

formation of inventory.

Maintaining inventories is a major expenditure for any organization. For each
inventory, the fundamental question is how much new stock should be ordered and when
should the orders be placed. If large quantities are ordered, the organization has to pay
excessive storage cost. On the other hand, very small order quantities result in very high
procurement cost. Hence, a trade off between the two is called for. Management of any
such inventory involves monitoring the input and withdrawals of inventoried items, as

well as making decisions as to the best means of replenishing the inventory.



In the present study, we have considered several models for single and two
commodity stochastic inventory problems. By model building, we mean providing a
model that will provide a good fit to a set of data and that will give good estimates of
parameters and good prediction of future values for given values of the independent

variables.
1.2. Historical Background.

The first quantitative analysis in inventory studies started with the work of Harris
in 1915. He formulated mathematically a simple inventory situation and obtained its
solution. Wilson rediscovered the same formula in 1918.  After the second world war,
several researchers like Pierre Masse (1946), Arrow, Harris and Marschack (1951)
Dvoretsky, Kiefer and Wolfowitz (1952) and Whitin (1953) have discussed the
stochastic nature of inventory problems.

A systematic analysis of (s, S) inventory model based on renewal theory is first
provided by Arrow Karlin and Scarf (1958). The book by Hadley and Whitin (1963),
provides an excellent account of applications. A computational approach for finding
optimal (s, S) inventory policies is given by Veinott and Wagner (1965). An excellent
review by Veinott (1966), summarizes the status of mathematical theory of inventory
until the early sixties. He focuses his attention on the determination of optimal policies
of multi - item and / or for multi echelon inventory systems with certain and uncertain
demands. The cost analysis of different inventory systems along with several other
characteristics is given in Naddor (1966). Gross and Harris (1971) develop continuous
review (s, S) inventory models with state dependent lead times. Sivazlian (1974)
considered a continuous review (S, s) inventory system with arbitrary inter arrival time
distribution between demands, where each arrival demands exactly one unit. He obtains
the transient and steady state distribution for the position inventory and shows that the

limiting distribution of the position inventory is uniform and is independent of the inter



arrival time distribution under many sharp assumptions. The same result for the case with
arbitrarily distributed demand quantity has been obtained by Richards (1975). An indepth
study of (s, S) inventory policy with arbitrarily distributed lead time is available in
Srinivasan (1979). Here he assumes the demand process as a renewal process where as
Sahin (1979) considers an inventory problem with the item being continuously measured,;
inter armval times form a renewal process. However, she assumes the lead time to be a
degenerate random variable. This was further extended by Manoharan, :Krishnamoorthy
and Madhusoodhanan (1987) to the case of non-identically distributed inter arrival
demand times and random lead times, which however is restricted to demand quantity

being exactly equal to one unit.

An (s, S) inventory system with demand for items dependent on an external
environment is studied by Feldmann (1975). Ramaswami (1981) obtains algorithms for
an (s, S) inventory model where the demand is according to a versatile Markovian point
process. The binomial moments of the time dependent and limiting distributions of
the deficit in the case of a continuous review (s, S) policy with random lead time
and demand process following a compound renewal process have been obtained by
Sahin (1983).

Thangaraj and Ramanarayanan (1983) discuss an inventory system with two
reordering levels and random lead time. Ramanarayanan and Jacob (1986) analyze the
same problem with relaxation that the lead time is random and several reordering levels.
Krishnamoorthy and Manoharan (1991) discuss the same problem in which they have
obtained the time dependent probability distribution of the inventory level and the
correlation between the number of demands during a lead time and the length of the next
inventory dry period. Krishnamoorthy and Manoharan (1990) consider an (s,S)
inventory problem with state dependent demand quantities. They obtain the system state
probabilities.

The review by Nahmias (1982) provides the state of art on perishable inventory
models until the beginning of the eighties. Kalpakom and Arivarignan introduce



perishability of exhibiting item(s) and provide several characterization of the underlying
inventory process. They (1985a) consider the case of an inventory system with arbitrary
inter arrival time between demands in which one item is put into operation as an
exhibiting item whose lifetime has the exponential distribution. Non exhibited items do
not deteriorate. The transient and steady state distributions for position inventory are
derived under assumption that quantity demanded at a demand epoch depends the time
elapsed since the previous arrival. Again the same system having one» exhibiting item
subject to random failures with failure times following exponential distribution and unit
demand is dealt with by the same authors (1985b) and the expression for the limiting
distribution of the position inventory is derived by applying the techniques of semi-
regenerative process. Manoharan and Krishnamoorthy (1989) consider an inventory
problem with all items subject to decay and derive the limiting probability distribution.
They assume that quantities demanded by arrivals are independently and identically
distributed random variables and inter arrival times follow an arbitrary distribution.
Kalpakom and Arivarignan (1989) analyze a perishable inventory model in which the
inventoried items have life times with negative exponential distribution with demands
forming a Poisson process which is extended by Krishnamoorthy and Varghese (1995)
toone, subject to disasters.

Ramanarayanan and Jacob (1987) analyze an inventory system with random lead
time and bulk demands. They use the matrix of transition time densities and its
convolutions to arrive at the expression for the probability distribution of the inventory
level. Inventory systems with random lead times and server vacations when the
inventory becomes dry is introduced by Daniel and Ramanarayanan (1987, 1988).

Sivazlian and Stanfel (1975) discuss a two commodity single period inventory
problem. Krishnamoorthy, Basha and Lakshmi (1994) consider a two commodity
inventory system with demand quantities exactly one unit of either or both type at each
demand epoch. They investigate the stationary distribution of the system state. Some

optimization problems associated with this model are also examined. Also



Krishnamoorthy, Lakshmi and Basha (1997) generalize the above set up by analyzing a
two commodity inventory problem with Markov shift in demand of either type of
commodity, and derive the stationary distribution of the system state. They provide a

characterization for the system state distribution to be uniform.

Berg, Posner and Zhao (1994) consider production inventory system with
unreliable machines. Dhandra and Prasad (1995) analyze a two commedity inventory

model for one-way substitutable item.

N Policy is introduced into inventory problem by Krishnamoorthy and Raju
(1998a, b) wherein local purchase is resorted to when the backlog reaches a threshold N.
Three types of local purchases are discussed by them-local purchase to bring the level to
S cancelling outstanding order, local purchase to bring the level to s and the local
purchase to meet the backlog alone without cancelling the outstanding orders.They
examine the N value that minimizes the total expected cost.

1.3. An Qutline of the Present Work :

The thesis is divided into six chapters, including this introductory chapter.
Chapters two and three are about single commodity inventory problems and the last
three derived on two commodity problems. We have analyzed the models to get the
inventory level probabilities at any instant of time and determined the cost functions.

Most of the models are illustrated with numerical examples.

Chapter two deals with single commodity, continuous review, (s, S) inventory
system with disasters. In most of the analysis of inventory systems the decay and
disaster factors are ignored. But in several practical situations, these factors play an
important role in decision making. Examples are electronic equipment stored and
exhibited on a sales counter where there is possibility of damage to the equipment due

to lightning, crops subject to natural calamity etc.



We have examined two models. In Model I, inventory level depletes due to both
disasters and demands. Shortages are not allowed and lead time is zero. The inter
arrival times of disasters have arbitrary distribution G(.) and the quantity destructed
depends on the time elapsed between disasters. Demands form a Compound Poisson
process. The assumptions of Model II are similar to Model I except that the time
elapsed between two consecutive demand points are independently and identically
distributed with common distribution function G(.) and demand maénitude depends
only on the time elapsed since the previous demand points. The probability distribution
of stock level at arbitrary time points and also the steady state inventory level
distribution are obtained for both the models. Cost functions associated with the

models are also studied.

In chapter III, we have introduced correlation in (s, S) inventory problems in two
different ways. Model I discusses analysis of correlated order quantity. Model II
studies correlation between order quantity and replenishment quantity. The inventory
level at arbitrary time point and its limiting distribution are computed. Some

optimization problems are also examined for both the models.

Chapter IV deals with linearly correlated bulk demand two commodity inventory
problem, where each arrival demands a random number of items of each commodity C,
and C;, the maximum quantity demanded being a(<s;) and b (<s;) respectively.
The particular case of linearly correlated demand is also discussed. Numerical

illustrations are also provided.

Chapter V deals with two models. First model describes a bulk demand two
commodity inventory problem. We follow (sx, Si) policy for the commodity Cy (
k=1,2). The probability that a demand occurs for commodity Cx alone is px and a
demand for both C; and C, together is assumed not to occur. Thus p; + p; = 1.

Lead time is assumed to be zero.



In Model II, all assumptions are similar to Model I except that the probability
for a demand of both commodities together is allowed. Lead time is exponentially
distributed for first commodity and sales of C; restricted to those customers, that
demand second commodity C; also until C; is replenished. The limiting probabilities
and optimization problems are examined for both models. Some numerical illustrations

are also provided.

In the last chapter, we analyze a two commodity inventory problem with lead
time under N policy. Local purchase by shopkeepers are very common. Situations of
this sort arise in practice in shops when certain goods run out of stock and on reaching a
threshold (negative level), the owner goes for local purchase. Though this results in

higher cost to the system, it ensures goodwill of customers.

In this model, all assumptions are similar to Model II described in Chapter V
except that we introduce the N policy for local purchase of the first commodity. Three
variants of the problem are investigated. The limiting probabilities of the system size are
derived. An optimization problem is examined. Numerical illustrations are also

provided.

The notations used in this thesis are explained in each chapter. The thesis ends

with a list of references.



CHAPTER II

SINGLE COMMODITY INVENTORY PROBLEMS
WITH DISASTERS

2.1. INTRODUCTION

In this chapter, we discuss a continuous review inventory system in which
inventory level depletes due to disasters and demands. Two models are discussed. First
we examine the case in which the time elapsed between two consecutive demand points
are independent and identically distributed with common distribution function F(.) with
mean p (assumed finite) and in which demand magnitude depends only on the time
elapsed since the previous demand epoch. The time between disasters has an exponential
distribution with parameter A. This is Model 1.

In Model II, the inter arrival time of disasters have general distribution (F.) with
mean A (< ) and the quantity destructed depends on the time elapsed between disasters.

Demands form a compound Poisson process with inter arrival times of demands having

mean 1/p .

The review by Nahmias (1982) discusses several perishable inventory models.
Kalpakom and Arivarignan (1985) introduced perishability of exhibiting item and
provide several characterisation of the underlying inventory process. Further the same
authors (1988) analyse a perishable inventory model in which the life time of
inventoried items is negative exponential with demands forming a Poisson process.

Krishnamoorthy and Varghese have extended the above to one, subject to disasters . In



this chapter the dependence structure is introduced to the (s, S) inventory models with
disasters in two different ways. In Model I, the successive quantities demanded are
dependent - dependence being on the time elapsed since the previous demand points. In
Model I, the quantity destructed depends on the time elapsed between disasters. Both
models deal with zero lead time. The assumption of zero lead time may restrict the
application of the model yet we find several applications of the models in our day to day
life. One such is the case of certain electrical and electronic equipmehts damaged due to
lightning. The replacement can be done within no time, due to the abundance of such

items in the market.

Section 2.2 provides the description of Model I. System size probability
distribution at arbitrary time point in finite time and steady state behaviour are obtained.

and a suitable cost function is also examined in the same section.
In Section 2.3, the description and analysis of Model II are given. System size
probabilities and the limiting distribution are obtained. An optimal decision rule is also

discussed.

The following notations are used in this chapter.

S - maximum inventory level

S - reordering level

M - S—s

E - {s+1,..,S}

X(@t) - Inventory level at time t (t 2 0)



Xa - X(Ta+),ne {1,23,...}
* - convolution. For example (F *G)t = J. F@)ydG(t -u)
f°C) - n fold convolution of f () with itself.
Hi x(u) - probability that starting with i units the inventory level reaches
k at time u, as a consequence of one disaster in (u, u+du ).
(;J p(i-o) F A E™, s+1<k<i
BRENE 1 5 ot ’
S ph-p) ae™ fork=S§
=0 \J
* 0
Hf’n;()(u) = HL:(u) and define Hf’IZ(u) =e™
g: (u)- Probability of r units demanded at a demand epoch when u
time units elapsed from the last demand occurrence point.
2.2. MODEL 1

An (s, S) inventory model with the maximum capacity of the ware house being
fixed at S is considered. The stock is brought to S whenever the inventory level falls to s

or below s, due to disasters and or demands for the first time after the previous



replenishment. Lead time is assumed to be zero. Shortages are not allowed. The basic
assumption of our model is that the time elapsed between two consecutive demand points
are independent and identically distributed with common distribution function F(.) having
mean p (assumed finite). The quantity demanded by each arrival depends only on the
time elapsed since the previous demand points.  The time between disasters is
exponentially distributed with parameter A. Due to a disaster a random number of units
are destroyed. Each unit in the inventory survives a disaster with probability p and

succumbs to it with probability 1-p.
2.2.1.  Analysis of the Model :

Suppose 0 = To<T; <...<T, <...are the times at which demand occurs and X,,
Xi,...,Xn...be the corresponding inventory levels, X(Ty+) = X;, ne{1,2,3,...}. Then we

have

Theorem:- (XT)={ (Xa, Ta), n=0,1,2...} forms a Markov renewal process
(MRP) with semi — Markov kernel,

QG, 5, 1) =P[Xp1 =], To-Tast/Xs=i1]1,j€ Et20.
Proof follows easily from the definition of MRP.

Q(, j, t ) represents the transition probability from i to j in time less than or equal
tot. We have
t )
0Gi0=[ Y Y HP@) g, ,@)dFu)

u=0 kcE m=0
k2j

06.50= [ T T HDW g4, @dF @)

u=Q keE m=0



The right hand side of (1) is arrived at as follows. From the level i, the
inventory position reaches k at time u, as a consequence of m disasters until time u, and
k-j units are demanded at the next demand epoch when u time units elapse from the last

demand occurrence point, which has probability H 7 (x) g,_,(«)

Second part of equation (1) is obtained as — from the level i reaches k at time u,
as a consequence of m disasters until time u, atleast k-s units are demanded at the next

demand epoch when u time units elapse from the last demand occurrence point so that

inventory level reaches S which has probability H 7 (u) g, _,,(#)

The next step is to obtain an expression for the Markov renewal function. To this

end we proceed as follows.

As soon as the stock level falls to s or below s, for the first time after the
previous replenishment an order for replenishment is placed, so as to bring the inventory
level back to S. Looking at the successive epochs 0 = To', T\',... at which the inventory
level is brought to S (these can be either disaster or demand epochs). Let F (S, S, t) be
the probability distribution of time between two consecutive S to S transition. S to S
transition can occur in two mutually exclusive ways with each one again having two

possibilities.

Initially due to a demand the inventory level drops to the ordering set.
Consequently an order is placed and replenishment occurs at instant of commencement of
inventory. Then next passage to S can be due to either

(i) k demands and . n; +...+m.; disasters take away atmost M-1
units and due to the next demand the inventory level drops to the

ordering set. Or



(i) k demands and n; +...+my; disasters take away atmost M-1
units and due to the next disaster the level drops to the ordering set.
The distribution function of this time duration is represented by

Fi(S, S, t).

Again, initially due to a disaster, the inventory level drops to the ordering set and
an order is placed and replenishment occurs at instant of commencement of inventory.

Here also for S to S transition two possibilities are there. Either

) k demands and m;+...+nk.; disasters take away atmost M-1 units
and due to the next demand the inventory level drops to the

ordering set and triggering in an order placement. Or

(i) k demands and (njt+...+my:;) disasters take away atmost (M-1)
units and due to the next disaster inventory level drops to the
ordering set. Replenishment occurs due to instant order placement.

Here we obtain F; [S, S, t].
Hence F[S,S,t]1=F. [S,S,t]1+F[S,S,t]

where

RISSt= 2 X 2%

ek )0 Jhr Jpa 20 Ay g 20 bl gt fpa (M
i tipt it fpag Hgg 2M

t ! ¢ ‘ (m)
j j j j HS,S_jl(ul)g.-,(ul)

=0 Uy =8 Up=uyp_; w=i)



()
S=G+ S+ T
)

: . . . o (W, —u, )
S~G+..tiy  + i+t jo WS =G+ iy +Jy+.+j,) &

(nk+l)

c(u, —u,_)H
8, Ot = e S +.tiy+ i+t j ), S =G+ iy + i+t )

(w-u,)

-2 71—
g W-uw) [-Fa-w] e W) dwdu,du, .. dudu

2

ipensig )0 Jroen Jhe220 M a1 20 Bt tip it S (M
Wttt it Sty 2M

t

"‘-‘[0 J j‘ j‘ j‘ HS’(;ljjl(ul)gi,(ul) ......

Hq=Hy Up=Hp VEE x=v

(n,)

u,—u, )g; (u,—u
S—G+..+i +Ji+. ot jo S =+ . i+, +...+j,,)( e 48, (U ~10)

(nk—rl)

) ) ; ) . ) ; 3 (V—uk)
S—-@G+.+i+ i+ +ip)S-(+. . i+ +. .+,

Jpm (S -( +...+z,., + i+ j,H,)ps_(,ilh_ﬂ.ﬁ bt
JE+2

A(

A-py [1-Fa-u)] ¢ 79 advdudu, . duds, .. (2)



and

BISSa= X X X

Hoondg 3100 J1oen Ja1 20 Aoy 1 20 Bt i+ i+ i (M
it it it A g eM

A S RN A e
N R R PO =y

. ) o wmw) 8; (uy—u)...
S-G+j).S-G+j+J) 2
(n,)
. . . . . . . , ("k"'"k_l)
S-G+..+i  +ji+. . + i )WS-(G+. +i_  +j+..+])
(nk+l)
- (u, —u, YH -
&, (4 ~ ) S =@ +otig+ i+t S =G+ i, + +...+j,+,)(w )

g, Ov-u) [I-F(t-w)] MW dwaudu, . dudud,

By ig Y0 Jloon Jua2 20 My, mp 20 B+ Hipt 4+ (M
B+ tig+ fi 4ot Jp2M

® t t t t (”1) g:,(“+")
f f j I I HSS J(‘)lF(u)

(n,)

S—(+..+i + i+ .+ ))S -0+ i+ i+ 4 )

(7.1)

S—@G+..+i, +j+. . +i)LS-G+.  +i +j+. 4]

w-u)g i, (u, —u, )

(v-u,)



Je+2

ﬂg_l(x—v) (S—(ll +... 4L+ +"'+Jk+l)ps'(il+"'+ik+jl+"'+jloz)(1__p)jkoz

A

B-F-u)] ¢ M%) dvduau, . dudud, -~ - o)

The right hand side of equation (2) is arrived at as follows. Initially the
inventory level is S. We take this as the time origin. Then n, disasters take place until
time u; (first demand epoch) which altogether destroy j; units, the demand that takes
place at time u, take away i; units and the inventory position at time u; just after meeting
the demands and disasters in between is S-(i1+];) (>s). Again n; disasters take place until
time u;, destroy j; units, the demand at u; takes i, units and inventory level at uz is S-
(i + 12 + j1 2 ) (>s). Proceeding in this way, a total of k demands and m+...+m
disasters take away atmost (M-1) units until demand epoch w (the demand at w takes
i+ units) at which the inventory level drops to the ordering set. Hence the first part of
equation (2).

For getting the second part of equation (2) proceed in the same way as mentioned
above. Total of k demands and n;+...+n .y disasters until time v take away atmost

(M-1) units and due to a disaster during (v, X) inventory level drops to the ordering set.

The only difference in arriving at equation (3) is that initially due to a disaster
inventory level drops to the ordering set. Identify this epoch as the initial time and an
order is placed. At this, u time units has elapsed since the last demand epoch. Total of n;
disasters takes place until time u; which together take away ji units. The first demand
after the replenishment takes place at u; due to which the inventory level is down by i,
units. Proceed assigning like this to arrive at (3).



Now we define
R[S, S.1]= iF"'[S,S,t] which is the expected number of visits to S in
=0

(0, t] starting initially at S.
2.2.2. Time Dependent System State Probabilities :

Defining P(1, j, t) =P [X (t) =} /X (0+) =1] with i, j € E. We see that
that P (i, j, t) satisfies the Markov renewal equations (Cinlar 1975). Thus

P[S,j,t] =Pr[X(@®) =j,Ti>t/X(ot)=S]+

Pr[ X(t)=j, Ti, <t/X (0+)=S]

= L(S, jit)+ [ F(S,S,du)P(S, j,1 —u)
0

where L(S, j,1) = jiH;mj)_(u)(l-F(u))du ,J=s+L...,8

o m=0

and the solution is given by

t
P(S, j,0) = j R(S,S,du) L(S, j,t —u) forj=s+1..8
0



2.2.3. Steady State Analysis

In order to obtain the limiting distribution of the stock level, consider the Markov
cham {X,, ne(1,2,3,...)} associated with Markov renewal process (X,T). The
transition probability matrix P =((p(i,j))) of order M, where p(i]) is given by

-]

=] T3 #0800 @ -

u=0 ke€E m=0 >

The following lemma gives a necessary and sufficient condition for the chain to
be irreducible.

Lemma:

The necessary and sufficient condition for the chain {X, ,ne (1,2,3,...)} to be

irreducible is that g ; (u) # 0 for some interval in [0, © ].

Proof :

If gi(u) = 0 almost everywhere, then column of transition probability matrix
corresponding to state S-1 becomes a null vector, as such the state S-1 is inaccessible
from any other state. Thus, the Markov chain becomes reducible which proves the
necessary part of the lemma.

To prove sufficiency, we assume g ; (u) # O for some interval in [0,0]. Then we
have p(i, j) >0. Thus every state is accessible from all states. Hence Markov chain is

imeducible and pocesses a unique stationary distribution 7 =(x,,,,....#s) which

satisfies TP=T and Te=1.



Let g, = Ilgg P, j,f) be the limiting distribution of the stock level.

Theorem:

. If g 1 (u) # O for some interval in [0,0] and F(t) is absolutely continuous with

E(X)< . Then

>, _‘.L(j, n,f)dt
JjeE ¢
q :jZn

2. mm,

JeE

where m  is the mean sojourn time in state j.

Proof:

We have g  (u) # 0, it follows that the Markov chain {X, ,ne (1,2,3,...)} is
ireducible and recurrent. Hence the Markov renewal process (X ,T) becomes

ireducible and recurrent. It is aperiodic also. Thus from Cinlar (1975)

> o7, [LG.n, bt
J€E @
q :jZn
2.7 m;

JjeE

, where m ; is the mean sojourn time in state j.

Special Case : No disaster occurs.

We have A—0, So

t
p,j)= Igi_ ,(w)dF(u). Then transition probability matrix is

u=0



0 o0 0 B
B 0 0 B :
P= . : 0 where §; = Jlg,. (w)dF(u)
ﬂM—Z ﬂM—3 O ﬂM—I u=0
_ﬂM—r ﬂM-z B lBM |

The stationary distribution 7t can be obtained by normalizing W=(Ws.1,..., W M)
where W is determined by solving WP=W ——(a). The last column of P can be
deleted as it is reduntant in computing W s. Taking W s+ =1 the system of equations (a)

can be rewritten as

1 -8 -B By [ Wen B
0 1 -5 ~ Pu-3 Wiz B2
0 0 1 - 4
;BM -4 s+3 — ﬁM -3 - (b)
0 } . .
0 0 0 1§ (e L B ]

Let v j be the discrete analogue of the sequence {8 ; , =1 }. Then we have (Feller)

7=, BY where B; ® s the k fold convolution of B ; with itself and also
k=1

j-1
v, =B+ 2. 7B, J=23,..
k=1

n=g8 === (©)

The set of equations (c) imply that



j-1
ﬂjz}’j_z}’kﬂj—k ,j=2,3,...
k=1

B=n

which can be written for j=1,2, ... ,Mas

1 =B -5 ~Bu-2| [7aa] —ﬂM—l_

0 1 -5 —Bu-s| | Tu—2 Br -2

0 0 1 —Pr-a| |Ym-s _ B -3 ()
0 0 :

0o 0 0 1 || n L A

Hence the system of equations (b) has the following solution :

Woy =Vaaey o J=120sM —1and Wiy =1.

Therefore, we get

g
3

R ;= (M ] ,j=1,2,...,M—1 and
+k



We have

M M-
Zpynk =1+27M4k
k=1
M-1
=1+ Z?’t
k=1

=1+R,,

j
where R, = Z 7, isthe discrete analogue of the renewal function of the sequence

k=1

{Ba,n21}. Hence we have

_ W,ﬂ/
Fes = U+ R,)

:7M%+RM-1) ,j=12..M-1 and

Ten= M1+ Ry )

The limiting distribution of the stock level is given by

> 7, [ &, (OdF (1)
JeE o

q, = >
Z”f”’f

JEE

n=s+1..8




2.2.4. Optimization Problem

For any inventory model, the decision variables are to be so chosen that the
objective function associated with the model attains the minimum value at these values of
the decision variables. Here the objective function is the total expected cost per unit time
in the steady state. The decision variables s and S should be so chosen that the objective

function is minimum for those values of s and S.

Let T be the time duration between two consecutive S to S transition. F [S, S, t]
denotes the distribution of the time duration T between two consecutive S to S transitions.
Using this we can calculate the expected length of a cycle E (T). Hence the expected

number of orders placed per unit time is 1/E (T).

Let Z be the fixed ordering cost for the commodity. The expected cost of ordering
for the commodity per unit time is Z/ E (T). The holding cost of the commodity per unit

s
time is qu)where h is the holding cost per unit per unit time. For calculating
j=3+1
procurement cost, we consider the probability of inventory level dropping to j from i
( € E) dueto a demand
[/

= f Y g, (u) dF (u)

= j.—_l +11’u 8i—;(u) dF (u)
0

and probability of inventory level dropping to j from i due to a disaster



== '}p"‘f (-p) Ae™ du
2 A+1/ulj

Total procurement cost per unit time is

3 (- ,-)+M);T;17;gi_j<u>dzf(u)+

rg((s—j)w)jﬁ;]p""(l—p)’h“"du

Where r is the unit procurement cost of the item. The total expected cost for the system is

E(ZT) )};q,} rZ((s 1)+M)I——-g, ;W)dF (u) +

A (0 i Ve gy
7 I/y(j}p (- p) Ac"du (6)

23. MODEL II

Following notations are used in this model.
G, (u) = Probability that starting with i units inventory level reaches k (with or
without replenishment in between ) at time u, as a consequence of one

demand in (u, u+du))
g, e Jor i>k>s
g .ue™ fork=§

m) Gt
G @=G @



© © —lu( )m

( )=> > gI,...gI,e_'%

m=0 r=0 L+ .+l sSrM+i-k

L,.1,20
with G( )(u) e M
p. = probability of a unit being destroyed due to a disaster when time elapsed since
the previous disaster is u
g; = probability that / units are demanded by an arrival

g <;> = probability that atleast / units are demanded by an arrival
h.(u) = runits destructed at a disaster epoch when u time units elapsed since the

occurrence of last disaster

In this model, we assume the inter arrival times of disasters to have general
distribution F (. ) with mean A (assumed finite) and the quantity destructed depends on
the time elapsed between disasters. We assume probability of a unit being destroyed due
to a disaster when u time units elapsed since the previous disaster as p ,. Demands form a

compound Poisson process with inter arrival times of demands having mean 1/u
2.3.1. Analysis of the Model

Let 0=T, < T <..... be the times at which disasters occur and Y,, Y;,
the corresponding inventory levels, immediately after the initial, first, ... disasters. i.e.
Y(T.+) =Y, n=0,1,23,...... Then
Theorem :

Y,T)= {{(Yn, T), n=0,1,2, ...} formsaMarkov renewal process (MRP)
with semi-Markov Kernal,

QG,3,0)=P[ Ya1 =], Twi-Ta<t / Ya=il, i,j € E, t>0,



Q4 j, t) represents the transition probability from i to j in time less than or equal to t.
We have

{

o K ., |
060= | 3 36w U P (- p,Y

and

' - s (k) L |
06s0= [ = 56Ww 3 (*)na-ny s

u=0 k€EE m=0 > j=0

The right hand side of equation. (7) is obtained as follows:

The inventory level immediately after a disaster is i.It moves to k at time u, as a
consequence of m demands in ( 0, u), k-j units are destroyed due to a disaster when time

elapsed since the previous disaster is u.

Next we obtain the expression for the probability distribution F(S, S, t) of the time
between two consecutive S to S transitions. The S to S transition can occur in two
mutually exclusive ways. Consider the epoch at which inventory level is brought to S due
to a disaster. Then the next passage to S can be due to either

) k disasters and intermediate m; + ... + my.; demands that take
away atmost (M-1) units and due to the next disaster the inventory

level drops to the ordering set.Or



(if)

k disasters and m; + ... + my,; demands take away atmost
{M-1) units and due to the next demand the inventory level drops to
the ordering set. We denote the distribution of the duration of this
time by F; (S, S, t).

Again, due to a demand the inventory level drops to the ordering set and an order

is placed and replenishment occurs at instant of commencement of inventory. Then next

passage to S can be due to either :

@ k disasters and intermediate m; + ... + my.; demands that take
away atmost M-1 units and due to the next disaster that take the
inventory level to the ordering set. Or

(i)  k disasters and intermediate m; + ... + my.; demands that take
away atmost M-1 units and due to the next demand the inventory
level drops to the ordering set. The distribution function in this
case is represented by F, (S, S, t).

Hence F( S, S, t) = F (5, S, t) + Fo (S, S t )Where
¢ t t
FESsn=| [.. | 3 3
(=0 ty=f w=ty Ly 2y 20 PPy 20
ml....,§,,20 a4t th+o <M

S-(n+..+r_ +L+. +L.)S-(n+. .. +r_+1L +..+1)

R+t Hh ot 2M

(m)
’S—_ll

(m)
GS (tl)hrl(tl) GS——(I}+ll),S—-(r,+[,+[2)(tz_t‘)h”(12)

(m,)

(’k _tk-l)



(mkﬂ)

h (1 G
"(l‘) IS_(’i totnth+ L), S -+ Antl o+ )

(W _btk)

h, (W) (- F(t—w)e " awdt,dt, ,...d1dh,

|| Sty ~
ety
1 ey =

t
x=v b, dp,q20 1o, 1y 20

o=
o
-~

»
]

i

V=

my,..,m,, 20 ntotn+th+ 4l <M
Rt A v g 2M
(m) (m,)
G tYh (t) G t,—t)h (1) - -+
5.5-4WMO Cs_ iy srg eyt REG)

(m,)

(tk - tk—l)
S-(n+..+r_ +L+. . +L. )S-(n+..+rn_+] +..+1)

mg,,

h ()G
h () S—(+. .+l +r+. +r) 8=+ ..+l +r+..+1)

v-t)

e-l(x-V) ( /l(x _ v))l‘*’

Ik+2!

g, (- F@—t))e " “dxdvdl, ... dt b,

——(8)



RS.5.0= 2, 2 2

ll,..,l.,,IZO Tises Ty 120 my,.., L 120

IIII

h+o g +r+o+n<M y=0 K=y =4 W=t

h+ . +ha+tn+ +na2M

('n]) r,(y l) (m2) \. .
Css-1TFG) Cs—trel)s—+h+1) BTG

(mlHl)
S-(n+..+n+L+. +1)S-(n+.. 4+l +..+1,)

(w-1t,)

h, (W)= F(t—w)e *™dwdty.. dtydndy

-+

DR,

L,y 020 o T 20 m,...mp 20
[ R N
h+. g +n+. .+ <M y=0 4=y ty=t, V=i, x=v
L+ 4+l atn+. 40 >M
G (ml) (t) hr,(y-l—tl)
1 T e
S,8-1 1-F(y)
(m,)

t ~4..)

S—@+.. 41 +L+. 4L ),S—(r+. . +r_ L+ +1) "

(mk+l)

h@) G
2 (&) S—(r+..+n+l+. +L),S—(+. . +r+L+. .+1)

v-1)



e (A(x - v))ie2

Ik+2!

g,., (1~ F(t - e Pdcdvdty ... dtrdydy

L)

The right hand side of Equation. (8) is arrived at as follows:

Initially, the inventory level is S. We take this as the time origin. Then m; demands
take place until time t, (first disaster epoch) which altogether take away 1, units and the
disaster that takes place at t; destroys r; units. The inventory position at t;, just after
meeting the demands and removing the destroyed items due to disaster is S-(r;+l)).
Proceeding in this way, total of k disasters and my+. . . +my.;demands take away atmost
M-1 units prior to the last (in that cycle) disaster epoch W. Due to the disaster at W
(which destroys ry+; units) inventory level drops to the ordering set. Hence the first part
of equation (8).

For the second part of equation (8) proceed in the same way as mentioned above.
Total of k disasters and m;+........ +my.; demands until time V take away atmost
M-1 units and due to the demand during (v, x) inventory level drops to the ordering set.

Similarly we get the other two parts of the equation. (4).

Now, we define R(S,S,1) = >.F " (S,S,1)

n=0

which is the expected number of visits to S in ( 0, t] starting initially at S.



23.2. Time Dependent System State Probabilities:

Defining P[i,j,t] = P[Y(®)=) / Y(0+)=1i Jwith i,j € E. The system state
probabilities at time t satisfy the Markov renewal equation. (Cinlar 1975). Thus,

P[S,i,t] =P (Y®)=j T>t/Y(OH=S) +P (Y(t)=j, T <t/ Y(0+)=S)
=m(S, j,t)+ j’F(s, S, du)P(S, j,t - u)
m)

where m(S, j,1) = j.i G(S j(u)(] ~F@u))du, j=s+1..,S

o m=0 H

And the solution is given by

PGS, j,H) = j’ R(S,S,du)m(S, j,t-u) forj=s+1,.S
0

2.3.3.Steady State Analysis

To get the limiting distribution of the inventory level probabilities, consider the
Markov chain [Y,, n e (1,2,3,.....)] associated with the MRP (Y,T). The transition
probability matrix of order M is given by

v=((v(i, j))) where v (i, j)isgivenby

vip= | T 56k i and

u=0 keE m=0

kY ., .
h,,-,<u)=f[ j]n ‘(- p,Y f ) ——~~(10)



Lemma:
The necessary and sufficient condition for the Markov chain
[Yo, n€(1,2,3,.....) ] to be irreducible is that h;(u) # O for some interval in [ 0, 0 ).

Proof:

If hy(u) =0, then column of transition probability matrix corresponding to the
state S-1 becomes a null vector so that Markov chain becomes reducible, which is the

necessity part. To prove sufficiency we assume h; (u) # 0, then v (i, j)> 0. Thus every

state is accessible from all other states. So Markov chain is irreducible and possesses a

unique distribution = (74415---®s)  which satisfies w=r& ;g =1

Lety; = lim v(j, j,?) is the limiting distribution of the stock level.
1w

Theorem.

If hy(u) # 0 for some interval in [0,o), and F(t) is absolutely continuous with

E(X) <o0, Then
[> o]
Z:rjjm(j,n,t)dt
JjeE ¢
V= Jj2n Z where m ; is the mean sojourn time in state j .Proof
Tm;
7

jeE
follows easily from Cinlar (1975)

2.3.4. Optimization probiem

Let T be the time duration between two consecutive S to S transition . F (§, S, t)
denotes the distribution of time duration T . Using expression (8) we can calculate the

expected length of the cycle. The expected number of orders placed per unit time is



1/E(T). Let Z be the ordering cost for the commodity. The expected cost of ordering

per unit time is Z / E(T). The holding cost per unit time is hz y;j, Where h is the
jeE

holding cost per unit per unit time. For calculating procurement cost , the probability of

[« ]

inventory level dropping from i to j due to a demand j ————g;_jue "V du and

+1/4

probability of inventory level dropping to j from i due to a disaster

[ o]

j )p:‘f(l—p,,)fdm)

O

]
O‘-—-—.B

] p. (- p,Y dF (u)
1+ /1,u

Total procurement cost per unit time is =

{Z((S N+ M)I 1ULg,.,-;te'""du}+

{Z((S N+ )I1+,1 Up.f’(l pu)’dF(u)}

The total expected cost for the system is =

an

Jj=s+1

E(T)

{Z((S J)+M)j. 1'Ig,-_j;te""‘afu}+

@ 21 iy .. .
- N+M)|—— “J1-p)dF
r{jgo«s D+Mf M[j)pu - p.) (u)}



CHAPTER IIT

SOME CORRELATED INVENTORY MODELS WITH LEAD TIME
3.1. INTRODUCTION :

In this chapter, we have introduced correlation in (s, S) inventory problems in two
different ways. In Model I, we analyze correlated order quantity. In Model II, the
effect of correlation between order quantity and replenishment quantity is studied.
Some details concerning correlated inventory problems can be found in Thangarag and
Ramanarayanan (1983). They discuss an inventory system with random lead time with
two reordering levels. Ramanarayanan and Jacob (1986) consider the same problem with
zero lead time and varying reordering levels. Inventory system with varying reordering
levels and random lead time is discussed XKrishnamoorthy and Manoharan (1991).
They obtained the time dependent probability distribution of the inventory level and the
correlation between the number of demands during the lead time and the length of the
next inventory dry period.

In the first model, we consider a continuous review, single commodity
inventory problem under (s, S) policy with the modification that any two consecutive
order quantities are correlated. The demand forms renewal process with distribution
function G(.) with mean p (assumed finite). Due to a demand at time zero, the inventory
level falls to s and an order is placed for M units. It is assumed that whatever is ordered,
gets replenished. Order quantities belong to the set {M-a, ..., M } for some positive
integer a with M-a >s. Lead time is exponentially distributed with parameter A.

The results of this Chapter have been presented in the International Conference on
Stochastic Processes held at Cochin (1996).



In the second model, replenishment quantity need not be equal to the quantity
ordered for, but they are correlated. Arrival of demands form a Poisson process with
parameter A. Whenever the inventory levels falls to s, for the first time, after the
previous replenishment, an order is placed. Lead time follows an arbitrary distribution

function F (.).

In Section 3.2, we obtain the system state probabilities, limiting distribution
and cost analysis of Model I. Analysis, system state probabilities, limiting distribution

and cost analysis of Model II are provided in Section 3.3. The following notations are

used in this chapter :
S = Maximum inventory level.
s = Reordering Point.
M = S-s
* = Convolution.
E = {M-a,.. M}, M>a>0 and M-a>s.
E, = {0,1,...,s,...,S}.

P {1 ifi=j

0 otherwise

mx =  Probability that the order quantity in the steady state is k.
Ty = Probability that the order quantity and replenishment quantity in the

steady state are i and j respectively. i, j €E
32. MODEL1I

3.2.1. Analysis of the Model :
Let 0= To, Ty, ... be the epochs at which the initial, first, ... orders are placed for

replenishment. Yo, Y3, ... be the quantity ordered at these epochs. Io, I, ... be the

inventory level at these epochs.



Let Pi =P(Yn=i, Yn+1=j) 1,_] €eE

We obtain the expression for the probability distribution of time between two

consecutive s to s transition. This event can occur in two mutually exclusive ways.

(1) during the transition from s to s, in time t, no dry period (inventory
level does not drop to zero) dueto demands during lead time.
(2) during the transition from s to s, in time t, inventory level drops to

zero due to demands during lead time and so there is a dry period.

Hence,

F((s;M),(s,j), t) = Fi((s; M), (5,)),t) + F2((s, M), (s, J),t) where
Fi((s,M),(s,§),t) and F2((s, M), (s,j),t) correspond respectively to a transition
from sto s in time t, when number of demands during lead time is less than s or

greater than or equal to s.

We have F(s,M), (s, j), )= j. j j > SZ-I g w)p; Ae”

u=0 v=u w=y i€E k=0

&P w-u)/(1-Gv—u))dwdvdy ——oH1)

FM. 0= | [ T g@pac™

u=0 v=u w=v 1EE k25

g w-u)/(1-G(v-u))dwdvdu S—' )

The right hand side of (1) is arrived at as follows. Due to a demand inventory
level dropstos. A replenishment order is placed for j units at or prior to the elapse of t
units of time, since the previous order placement with the order quantity i at the previous
epoch. Then, k demands takes until time u (the k th being at u; where k is less than or
equal to s-1). Then the replenishment of i units takes place in (v, v+dv) but no demand



during this time. Now, the inventory level is s +i-k  Exactly i - k demands takes
place in (v, w) which brings the inventory level tos. A similar argument yields the right

hand side of (2), except that in this case, there is dry period.

Now define  R((s,M),(s, j),t) = ZF *m ((s,M),(s,j),t) which is the Markov

m=0

renewal equation.
32.2. Time Dependent System State Probabilities :

Without loss of generality, we may assume that at time To=0, the state of the
system is (Ip, Yo) = (s, M) (assumed fixed).  Consider the two dimensional process
Z(ty={I(t), Y(t)}. Then the process {Z(t) ,t >0} is a semi- Markov process with the state
space E; x E.

Defining
P((M), @), 0=P {Z(t)=(n,j)/Z(0) = (s, M)}, we seethat P ((s, M),

(n, j),t) satisfies the Markov renewal equations (Cinlar 1975).

(1) For n=1,2,...,s
P(sM),(n)t) = P{Zt)=m)), T1>t/Z0)=(M)}
P {Z®)=(n,j), Ti< t/Z (0)=(s, M)}

t

=HO (M), N0+ [ R(s.M),(s, j),du)

0

(G‘(s—n)(t _ u) _ G'(s—nﬂ)(t _ u)}—l(t—u)du

where

HO((s,M),(n, j),1) = jg"""’ (w)e “du



(2) Forn=0
P(s M), ))) = HP(.M),n, )0+ [R(s.M),(s, j).du)

Z (Go(l)(’ _ u) _ Gt(l+l)(t _ u)) e-,{(g_,,)du

I2s

Where
HO((s,M),(n, j),0y = Y e *G" (1)

I2s

(3)Forn=S-q, q=0,1,...,a

P((s,M),(n, ), = 8,; HP(s;M),(n, j)1)+

j j Z R((s,M),(s, j),du)p, e

u=0 v=u ieE

(G°(j+q—M)(, —u) -G UMD u)) dvdu

where

t g

S HOG M) )= [ [ 38 W™ i -G(v—u))p, dvdu

u=0v=x 9=0
where we define g (u) as identically equal to one.
4) For n=s+1, ... ' M

P(s,M),(n, j).t)= 8,HO(s,M),(m, j).1) +

¢ ¢

1] ZR(s,M),(s,j),du)p,,:_ig"(v_u)

=0 v=u w=v I€E

,Qe“"[G'(“"""")(I —P) =G (g v)}iwdvdu



* j j j > R((s,M),(s, )),du)p,

#=0 v=u w=v icE

*G-n) gy _ e O B2 500 PR
> gt (v-u)ie ™ CTTU=M=G T U=W) | sty
I>s 1 - G(w - v)

4 * ﬂ.e A
where 5,,H™ (s, M), (n, j),1) = j [Te"w )[m}pm

u—Qv—u ISy

[G%s—z—n)(t V)= G v)}]vdu

(5) For =M+1,...,S-a-1

P{(s,M),(n, )1} = 8y HO{(s,M),(m, )1} +

j I I 2 R{(s,M),(s,j),du}p,

u=0 v=u w=v iek

L ] GEHTI (@ —w) =G (1 — w)
"(v—u)de™™ dwdvdu
; g -u) { 1-G(w-v)

tot s

where &, H®{(s,M),(n, j),t} = j J’ 3 g w)te™

u=0v=u 1=0

|: G‘(S._]_n) (I _ V) _ G‘(S~l—n+l)(t _ V)

1-G(v~-u) ]dvdu



Hence the solution is given by

P{(s,M),(n, )),1} = JR{(S,M ).(s, ).} HO{(s,M),(m, ).t —u}

Jorn=12 s

greagide

P{(s,M),(n, )1} = IR{(S,M ),(s, 7). du} HO{(s,M),(m, j),t - u}

Jorn=0.

P{(S’M)’(n,j)’t} = jR{(S,M),(S,j),du}(ijH(}){(S,M), (n,j),t —u}

forn=8-q,4q=01,. .. a

P{(S,M),(n:j)’t} = IR{(S’M),(S’j),du}JMjH“){(S,M),(n,j)’t _.u}

forn=s+1.. .M.

P{(s,M),(n, j),1} = j R{(s,M),(5, 1), du}8,,H O {(5, M), (m, j),1 — )

forn=M+1,..8-a-1

3.2.3. Limiting Distribution :

Stationary distribution 7t can be computed using TP=n and we=1 where 7 is a

row vector of (a+1)* elements. €=(1, ..., 1)" and P is the transition probability matrix

of the Markov chain under consideration. The mean time to return to s starting from s is



m, = pmk(l) +(1- p)mk(z) . Where my'" is the mean time to return to s starting from

s when order quantity is k with no dry period during lead time and m® is the mean time

to return to s starting from s when the order quantity is k and there is dry period during

lead time. Thus

mk(l) = T j[ j‘ tsz_]g‘l(u)ﬂe_b

t=0u=0y~u 1=0

*h-D gy N v B, :
GV t-v)-G t-v) duds
1-G(v-u)

m® = T j‘ j'tz & W)ie™

t=0u=Qv—u #28

N YIRS e TP
G" P t-v)-G t-v) dudt
1-G(v—-u)

and p= P {no dry period) = Probability that replenishment takes place at or prior to

S (- g™ (u)d

k=0

the (s- 1) th demand =

O gy, §

Lt g, =lim P{(s,M),(n, ).}

Then, following Cinlar (1975) the limiting probabilities are given by

(1) Forn=0

m, J'g"(t)e“‘dt

7
Z”kmk

k=M -a

9. =

() Forn=1,2,...,s

T, _fg'(”")(t)e“"dt

. M
Zﬂ,,m,‘

k=M ~a

9. =



(3)For n=S8S-q, q=0,1, ..., a

@ Forn=s+1, ...

z, T(G'(k—Mﬂ;) (0 - G Mra+) (t))le'” dt
0

9, = 7
Z”kmk
k=M-a
.M
ﬂ_k Ig‘(ﬂk—n)(t)je—kdt
g, =—"

M
Z”kmk

k=M -a

(S)For n=M+1, ..., S—a-1

0

7, ]’ g " () de M dt

—
Z”kmk

k=M-a

9. =

3.2.4. Cost Analysis :

Let T be the time duration between two consecutive ordering points of the

commodity.

points of the commodity is given by F( (s, M), (s, j), t). Then expected length of the

cycle is

E(T)

-3

Then probability distribution of time between two consecutive ordering

Js{g(f‘_ * %]}p it JZE{; & + -’;—s}p,,



Hence the expected number of orders placed per unit time is 1/ Ei(T). Let k; be
the fixed ordering cost for the commodity. The expected cost of ordering for the
commodity per unit time is ki/Ei(t). Let h; be the holding cost of the commodity per unit

N
tme. The holding cost of the commodity per unit time is h,(an,,). Expected
=]

M
procurement cost is given by an’,, , where r; is the unit procurement cost of the
k=M-a

item. The total expected cost for the system per unit time is

ki/ Ei(t) + h,(inq"] + ikﬂk ----------- (3)

n=1 k=M-a

33 MODELII :

In this model, we consider an (s, S) inventory policy in which ordering quantities
and replenishment quantities are not the same but correlated. We assume that at time O,
due to a demand the inventory level fall to s, so that an order for replenishment by a
quantity M is placed. Initial replenishment takes place for M units. Whenever the
inventory level fall to s for the first time after the previous replenishment, an order is
placed for j units, j € E. The replenishment quantity need not be equal to the quantity
ordered for, but they are correlated. Arrival of demands form a Poisson process with

parameter . Lead time follows an arbitrary distribution F().
33.1. Analysis of the Model :

Let =Ty, T),...,Ty,... be the ordering epochs. Xy, Xj,...,Xq,... be the ordering
quntities at these epochs. (Xi€E, i=l, 2, ..., n, ...) and Yo, Yi,...,Yn,... be the



replenishment quantities (y;j€ E,j=1, 2,..., n, ...) and o, I,....I,,... be the inventory
levels at these epochs (I; eE;, 7/=1,2,...,n,...)

Let pl] = P (Xﬂ =i” Yn=j) l,j € E

We obtain the expression for the probability distribution of time between two
consecutive 8 to s transition. This event can occur in two mutually exclusive ways as in
Model I. Hence

F(sMM), (s,1,)), )= Fil((s, M, M), (5,1, )), ) + Fo((s, M, M), (5,1, }),t) where

Fi(s, M, M), (5, 1, j), t) and F2( (s, M, M), (s, 1, j), t) correspond respectively to a
transition from s to s in time t, when number of demands during lead time is less than s,

or greater than or equal tos. where

F;((S,M,M),(s' i, j), 1) J' j‘ ’Zl pue ZV(AV)

v=0 w=y k=0

e I (A(w-v))*

(O] G-h) dwdv
and
A
F((s, M, M), (5,3, j),1) = j J p, ) (v)
fO) AN G C)) SY

(-9



The right hand side of Fi( (s, M, M), (s, 1, j), t)1is arrived at as follows. Due to
a demand inventory level drops to s. An order is placed for i units. Then k demands
takes place in (0, v) and replenishment of j units occurs in (v, v+ dv). Exactly (j-k)
demands take place in (v, w) which brings the inventory level to s. A similar argument
yields the right hand side of F»( (s, M, M), (s, i, j), t) except that in this case,there is dry

period during lead time. Now we define

R((s,M,M),(s,i, )),t) = f:F‘"’(s,M,M),(s,i,j),t)

m=0

which is the Markov renewal function.
33.2.Time Dependent System State Probabilities :
Initially at time To, we assume that state of the system (Io,Xo,Yo) = (s, M, M).
Consider the three dimensional process Z(t) = {I(t), X(t), Y(t) }. Then the process

{Z(t), t=0} is a semi-Markov process with the state space E; xE xE.

Defining

P(s, M, M), (n,i,j), ) =P {Z()=(n, 1))/ Z(0) = (s, M, M) }
We see that P(s, M, M),(n ,i ,j ),t) satisfies the Markov renewal equations.
() Forn=1,2,...,s

P(s,M ,M),(n,i, j),1) = P(Z(t) = (n,i, j),T, >t/ Z(0) = (s, M ,M)) +

P((Z@®)=(ni, )T, <t/ Z(0) = (s,M,M))



= HO((s,M ,M),(n,i, j),t) + j‘R((s,M M), (5,1, j),du)

u=0

(1 _ F(t _ u)) e-/l(t—u)(z(t _ u)):—n ‘bl

(s—n)!
where
HOs M MY, 0) =P 1oy
(s—n)!
(2) Forn=0

P((s,M ,M),(n,i, ),)= HP(s,M ,M),(n,i,j)1)+ j‘R((S,M M), (5,1, j),du)

Ze—*(t — u)(A(t ~u) (1 )i

123 l'

where

e
n

HO((s,M,M),(n,i, j),1) =Y

izs

(A-F@)
(3) For n=8-q,q=0,1,...,a

P((s. M. M), (i, j).0) = 8, HOUs, M M), (n,i, j),0)+ | [R((s,M,M), (5,0, j),du)p, £ (¥)

u=0v=u

e XA -y M 10
(J+q9-M)

“dvdu




where

8, H (5, M, M),(n,i, ), ,)_J' J' (,qu)e

u=0 v=u 40

p; (e Vdvdu

(4) For n=s+1, ... | M

P MM, 0 1) = 8,y HOUSMM), 000 )+ [ [ RS, M M) (5 ),

u=0 v=u

s-1 e—l(V—H)(Z(v _ u)l e—l(r-v) (l(’ _ v)x+j—l—n

£ T A B
+
t t ~A(v-u) _ 1
| | ReMMGipd) T = b 6w

u=0 v=u Izs

eI (At - v) "

dvdu
G-n)
where
SH MM 0= | T 7w

e_‘('_")(,i(t _ u)S—I—n
. du
Prs S—1-n)




(S)Forn=M+1, ... ,S-a-1

P(s,M ,M),(n,3, j),t) = d,,;, H O((s,M,M),(n,i, j),) + j‘ j‘ R((s,M,M),(s,i, j),du)

=0 v=u

—

s—

e“("")(/l(t _ vj)nj—l—n
(s+j—-1-n)

e W A(v-u))
n

dvdu

qu(v - ll)

-
1]
o

where

e‘ﬂ.(l—u)(l(t _ u)s—l—n
S—-1-n)

t gy -Au !
5 HOGCMM), (i = [ 32 B £ pue,

u=0 1=0 I!

Hence the solution is given by

P((s,M ,M),(n,i, j),t) = j‘R((s,M M), (5,1, j),du)H O((s, M M), (n,i, j),t —u)

forn=12,..s

P((s,M,M),(mi, j),1) = j‘R((s,M,M), (5., J),du) HO((s, M, M), (n,i, j),1 — )

forn=0

P((s, M, M),(n,i, j),t) = J‘R((S,M M), (s,1, j),du)s,, , H (s, M, M),(n,i, j),t —u)

Jorn=8-q,q=0,1,..a



P((s,M,M),(n,i, j),t) = jR((s,M M), (5,3, j),du)é,;, H (s, M, M),(n,i, j),t —u)

forn=s+1.. M

P((s,M,M),(n,i, j),t) = jR((s,M,M),(s,i,j),du)é’M i H®((s,M,M),(n,i, j),t —u)

forn=M+1,...S—a-1
3.3.3. Limiting Distribution :

Stationary distribution 7t j / (1,j) €E ) can be computed using *P = and 7 ¢ =1
where e=(1,...,1) Tand = is a row vector of (a+1)? elements. The mean time to return
to s starting from s is m, =gm® + 1—g)m® where m ;" is the mean time to return
to s starting from s when the order quantity and the replenishment quantity are i and j
respectively and there is no dry period during lead time. m;® is the mean time to

return to s starting from s and there is dry period during lead time and is given by

© ¢ £ os-1 —Av k ~A(w-v) Nk
m(‘) ={ I j‘ I le f___@.f(v) € ('q’(w V) dwavdt
=0 v=0 w=v k=0 k! (_] - k)'

e ? ()

o= § ] S S g0

e * M Aw-vy

-9

dwdvdt

and q = P(no dry period ) = Probability that replenishment takes place at or prior to
the (s-1)th demand.

5 - s



Let qn = !‘iﬂp{(s!M7M),(n’i,j)yt}

Then, following Cinlar (1975), the limiting probabilities are obtained as given below:

(DForn=0

(2)For n=1,2, ...

(3)Forn=s+1, ...

(4) For n=M+1, ...

,,j I LY

k2s
= Z”'u‘”’ij
i,jeE
, S
- A s—n
z, j e( ('”))' (- F ()t
9. =
2,
i,jeE
.M
o A s+j-n
m |
_ qo (s+j—n)!
+ 27y,
i,jeE
,S-a-1
o At s+ f-n
”jje—gét.)_‘—_‘f(t)dt
S AR
’ 2 7gmy

i,JeE



() Forn=S-q,q=0,1,...,a

me—k(h).ﬂj-n
ﬂi’-[ (s+ j—n)!
0 !

q =
" Z”x‘;’mu

i,JEE

Sf@a

3.3.4. Cost Analysis :
The objective function corresponding to this model is the total expected cost per
unit time under steady state.  Let T; be the time duration between two consecutive order

placement epochs. Distribution of time between two consecutive ordering points of the

commodity is given by F((s, M, M), (s ,i, j),t). Then expected length of the cycle is

s (5 - ()

Expected number of orders placed per unit time is 1 / E; j (T;). Then expected

given by

cost of ordering for the commodity per unit time is ky/ E;j (T;) where k; is the fixed

ordering cost for the commodity. Let h; be the holding cost per unit time. The holding

S
cost of the commodity per unit time is h,an,,. Total procurement cost is given by

n=1

M M
r( Z J er,.j). Thus, the total expected cost per unit time under steady state is

j=M-ai=M-a

i/ By (TO* B ng, +r( D) 2m,).

j=M-ai=M-a



CHAPTER-IV

ANALYSIS OF GENERAL CORRELATED BULK DEMAND
TWO COMMODITY INVENTORY PROBLEM

41 INTRODUCTION

Inventory systems of (s, S) type for single commodity have been studied quite
extensively in the past. The details of the initial developments in this field can be found
in Arrow, Karlin and Scarf (1958), Hadley and Whitin (1963), Veinott (1966),
Srinivasan (1979), Sahin (1983), and Ramanarayan and Jacob (1987) consider single
commodity inventory problem with random lead time under (s, S) policy and obtain
second measures of effectiveness. Sahin (1979) examines the (s, S) policy for a
continuous measurement item under constant lead time. Krishnamoorthy and Lakshmi
[1991] deal with a single commodity inventory problem with Markov modulated
demand quantities and obtain the long run system state distribution. They analyze a

Markov decision process.

Sivazlian [1971] considers the stationary characteristics of a multi-commodity
inventory problem. Krishnamoorthy, Lakshmi and Basha [1994] have dealt with a two
commodity inventory problem with unit demand with no dependence, whatever between
the commodities demanded, and provide a characterisation to the system state.  They
[1996] have also considered a two commodity inventory problem with Markov shift in
the type of commodity demanded and derive the stationary distribution of the system

state. They provide a characterization for the system state distribution to be uniform.

The results of this chapter are published in International Journal of Information and

Management Sciences, Volume 8, Number 2, June, 1997.



Krishnamoorthy, Merlymole and Ravindranathan [1998] generalize this result to a bulk

demand two commodity inventory problem.

In this chapter, we consider correlated bulk demand two commodity inventory
problem with the commodities represented by C; and C; respectively. The (s, Sk) policy
is followed for the commodity Ci (k = 1, 2). The probability that an arrival demands i
units of C; and j units of C; is PyyG=1,2,., 8 j=1,2,., b). The inter arrival times
of demands are independent and identically distributed random variables following the
distribution function G (.) with mean (u < ). No shortage is permitted. Two types of
ordering policies are considered-individual ordering and joint ordering. In the former as
soon as the inventory level of any commodity falls to or below its reordering level for the
first time after the previous replenishment, an order for replenishment is placed for that
commodity alone. In the joint ordering policy, whenever the inventory level of any
commodity falls to or below its reordering level for the first time after the previous
replenishment, an order for replenishment is placed for both so as to bring their levels S,

and S; respectively. In both cases lead time is assumed to be zero.

Section 4.2 deals with the analysis of the models. Limiting distribution of the
inventory level is computed in section 4.3. An optimisation problem is discussed in
section 4.4. Numerical illustrations are provided in section 4.5. Section 4. 6 deals with

the particular case of linear correlation.

Notations:

X(t) = Inventory level of C; at time t

Yt) = Inventory level of C; at time t

T» =  nthdemand epochn=0,1,2,... with To=0
Xa = X(Tat)

Yo = Y(T,%)

My = Sk-skx (k=1,2)



Im = {XOYO}

* = Convolution

E = {sxt+1,..,S8} k=12
E = E xE;

N = Set of non-negative integers.

P;; = Probability that an arrival demands i units of C; and j units of C;;
i=1,2,..,a j=12..,b

P, = )P
i=1
5. = 1 if x is not an integer
Ix1 X0 otherwise
(k] = Largest integer in k.

Fi(, ., .) = The distribution of the time between two consecutive replenishments of C,

in the individual ordering policy.
Fi(,.,.) = The distribution of the time between two consecutive replenishments of C,

in the individual ordering policy.
Fia(,,.,.) = The distribution of the time between two consecutive (S, S2) to (81, S2)
transition in the joint ordering policy.
42 ANALYSIS OF THE MODELS :
We analyze two types of policies separately.

42.1. Individual Ordering Policy:

Here the replenishment is such that whenever the inventory level of anyone of the



commodities fall to the level (sy) or below due to demands after the previous
replenishment, an order is placed and an instantaneous replenishment occurs for that
commodity alone so as to bring the level back to Sy (k= 1,2). Suppose exactly r demands
results in the replenishment of C;. Thus (r-1) demands take away atmost (S; — s;-1)
units of C;. Probability distribution of the time between two consecutive replenishments
of Cy is

M, ®
F;[(SI’SZ)(‘SX’”),I]: [ ; Z Z Z Ele...R’J’G.r(t)
r=[M,/a

Sagy1a) =0 Noeadp=hid ity =10
Nyt i, =My +8,-n Q4 <M

Similarly the probability distribution of the time between two consecutive

replenishments of C; is

M, 0
.
FIS.8.)0.8,)1]= > > > PB,.P,G"@®
r=[My 18} 8(ay sy m=0 iy =lon@  fryn Sy =lonb
Q4 i, =mM 8~y i+ 4], <M,y
1+ +j2My

For computing the time dependent system state probabilities, let It) =
{X(t),Y(t)} be the system state at time t. Suppose T,, n=0,1,..., is the nth demand
epoch with To = 0. After the demand at To, suppose the inventory levels of C; and C;
are brought back to S; and S; respectively. We have I(t) = {X(T,+),Y(Tat)}, for To<t
<Tu. Itis easily seen that {I(t), t >0 } is a semi-Markov process on E and
{Xo,Yo} n € N= { X(Tot), (Ta+)} neN is the embedded Markov renewal process on E.
The system state probabilities at time t satisfy the equation, (In what follows we
wite P{(51,82 ), (4,q), t}for P{X(1),Y(1)) = (£,q¥ (X(0),Y(0)) = (51,82)} with
appropriate suffix for F to indicate whether the replenishment policy is individual or
joint).



P(($,52).(£,9).1} = H{($,82), (£, )3+ [ 3 Fi{($1,52),(S, ), du}

0 neE1

P{(S1,m),(£,9).t-u},(£,9),(51,S2)e E - )

where H{(51,52),(¢,q),t} = P{(X(?),Y () = (£,q) /(X(0),Y(0)=(51,S2),
1#51, X(u)+#S for0 <u<t}

Hence the time dependent system state probabilities are given by

P((S1,82,L )ty = [ D F{(S),52),(Sh, ), dlu}

0 nek,

P{(S1,m). (¢, )t —u}; (S1,m),(¢,q)cE

Similarly

P{(§1,82),(a, B),1} = IZF:{(Sl,Sz),(}’,Sz),du}

0 7€E;

P{(}',Sz),(a, ﬂ)st_u}; (7:S2)3(a, ﬂ)EE

4.2.2. Joint Ordering Policy:

Suppose exactly r demands result in a replenishment. Thus (r-1) demands take
away at most (S;-s)-1) units of C; and (Sz-s-1) units of C;. Then the probability

distribution of the time between two consecutive transitions to (S, Sz) is

N min(M1,M 2}
F,{(81,82),(51,82),1} =

r = min((M1/ a}+ 6{M1/ a),[M2/b]+ 8[M2/b}}

*r
2 FonB0G7@
By snip =l @ Jy s Jp =100
i, <M et <My

gither iy +..+i,2M| or ji+..+j,2M,



The system state probabilities at time t satisfies the equation

P{($,52),(¢,9),1} = H{(S1,Sz),(f,q),t}+IE2{(S1,Sz),(Sl,Sz),du}

P{(81,52),(¢,q)1-u}; (£,9).(S1,S2)€ E ——-—~(2)
where H{(S51,52),(¢,9),1} = P{(X(®),Y (1)) = (£,9) /(X (0),Y (0)=(S1, S2),
28,9 % S,,X(u)=81. X(v)£S, for 0 <u<t, 0 <v<t}

Hence the time dependent system state probabilities are given by

PUSLSD(6,9) 8} = [F{(81,82),(81,82),du}

P{(Sl,SZ),(g, q)’t—u}; (e, q):(Sl’SZ) ek
43. LIMITING DISTRIBUTIONS

43.1. Individual Ordering Policy

Let }im P{(S,,S,),(4,q9),1} = A(4,9),(£,9) €E. Note that these probabilities are

independent of the initial state since in a finite state space, irreducible, aperiodic Markov
chain, this characteristics holds and the Markov chain under study satisfies these
conditions.  In order to compute the limiting probabilities, the transition probability
matrix P corresponding to the two dimensional Markov chain {X,Y,} neN is to be
obtained.  Since the Markov chain {X,Ys} neN is irreducible and aperiodic its
stationary distribution, 8={€(¢,q),({,q) € E} can be computed using P =0 and f¢ =1



where ¢ = (1,1,..,1)" and @ is a row vector of M;M; elements. The mean sojourn time

in any state (£,q) is
m(¢,q)= [{1-G(t)}dt = p(< )
Thus .

0L, 9) [ PL()=(6,q),T1 >1|1(0) = (£, q)}ar
b= > 6. g)m(t.q)

(4.9)EE

=6(4,q)
Hence from the above expression,

lim P{(S,,5,),(£,9).1} = A(£,9)=6(¢,9)

and are independent of the initial state as is expected from the theory of finite state

irreducible aperiodic Markov chains.

4.3.2 Joint Ordering Policy:

Let }im P{(S,,S,),(4, ).t} =0(4,9),(£,9) €E. From the transition probability matrix

P, of the Markov chain {X;, Ya}, its stationary distribution H ={H ¢, pi(¢,9)eE}can

be computed using [IP; =[] and [Ie = Iwhere e = (1,1,..,1)T and IT is a row vector of



MM; elements. We can easily see that the limiting probabilities of the system state are
given by

Q(t,q) = lim PLX0,Y )= .9} =[] (L.9).¢6.9)E

44. OPTIMIZATION PROBLEM

44.1, Individual Ordering Policy:

The decision variables should be chosen so that the objective function associated
with the model attains an optimal value at these chosen values of the decision variables.
The objective function corresponding to this model is the total expected cost per unit time
under steady state and the decision variables are Si,s1, Sz,s2. Let U; be the time duration

between two consecutive replenishments of Cy. Then

Euy= Y Y ¥ > PP,

.

r=[M, /a]+5[M] fa] £=0  jisjr=hoob iy =l,..a
S+t j, =My 48— i+ i <M,
i+, 2M

Similarly, if U, is the time duration between two consecutive replenishments of Cs,
then

E,)= Z Z Z 2 Ba.D.rH

r-[M2/b1+5[M /b] m=0 bty =l Jreeadr =l b
i+ +x, —mM1+S1 -r Q+. +j,_,<M2
Ji A 2My

The expected number of orders placed per unit time for C; is 1/E(U;) and that for

Cyis 1/E(Uz). Expected quantity demanded of C; is Zip.-. per demand and that of C; is

i=1



b a
Y.jp.. Hence the expected demand for C; per unit time is - > ipi and that of C; is

j=1 i=1
b

2> Jpi. Letk; and ks be the fixed ordering costs of C; and C; respectively for
J=

individual ordering and V,; and V; be the holding cost of one unit of C; and C; per unit

time. Then the total average holding cost of C, and C; per unit time is

V(S,,5,8,,5,)=V, Zf 20(5 Q)+, Zq ZH(Z,q)

=5+]  g=3,+1 g=53+1  f=5+1

Thus the total expected cost per unit time under steady state is

k k, [ ] Rl
Z(S,,s,,8,,8,) =V (S8,,5,,5,,5,)+ + +r ip, |+ni-) jp.;
181,52, 5,) 1>51,92,5;) EU,) EU,) h ,,§ 2 ,,; D ;

where 1y is the unit procurement cost of item Cy, k = 1,2.

44.2 Joint Ordering Policy :

Let Us be the time duration between two consecutive replenishments. Then

m.in(MLMz}
E(,)= 2 2 Py Bt
r=min([M1 /a]+6[M1 /a].[Mz /b]+6[M2 /b]} ) ndy =l @ Jroen Jp =10

il +...+i,_l (Ml . j] +---"’jr—l <M1
eitheriy+..+i, 2My or ji+.+f, 2M;,

a b
Expected quantity demanded of Cyis D _ip: per demand and that of Cis ) jp.s . Thus

i=1 j=1

in a cycle the expected demand for C; is —-3— le and per unit time —thx units of



61

Ci on the average are demanded. Also the expected demand for C; per unit time is

b
52, Let k be the fixed ordering cost. Suppose V) and V; are the holding costs of
Jj=1

one unit of Cy and C; respectively per unit time. Then the total average holding cost of

Ciand C; per unit time is

5 5 s, 5
V'(8,,5,8,5,)=V, D2 Y all.)+V, D.q D x(4,q)

L=5;+] q=53+1 g=3,+1 L=g+1

Thus the total expected cost per unit time under steady state is

k = 2,
Zl(SthSzasz) = V,(Shshsbsz)+'IT(]3)+"I[%ZIPL:| +r2[_]’;.sz'jj|

i=)

where 1y is the unit procurement cost of item C, k = 1,2.

4SNUMERICAL ILLUSTRATION :

Consider the inventory system with k=10, k=10, k2=12, n=6, rn=8,
w=2, =15 a=2 b=3and mean of the distribution of the inter-arrival
tme of demands u=4. For three sets of valuesof P;i js(i=1,2; =1,2,3),
expected value of the time duration between two consecutive replenishments and
the average costs for individual ordering policy and joint ordering policy

we computed and is given in Table —~1.  From the table we see that joint ordering
policy is preferable.



Table -1

Si 81 S2 ;2 | Piy P2 Pis Py P2z P | EQUD& E(U2) | E(Us)io | (Average | (Average
(for 1.Q) resp. Costhio Cost) 10
l
AS1 6 212 2 2 2 1 .1 3.04960 9.31200 | 28.14506 | 22.24794
2.59200
Bls516 2.1 2 1 1 2 3 2.62720 8.6040 34.17717 | 23.27071
1.27600
Cis16 213 1 1 1 3 .1 2.31490 9.7480 32.56906 | 21.86949
1.49600
T
CAI82 7 212 2 2 2 1.1 3.40720 11.70400 | 32.39254 | 27.75051
2.7280
TB 827 2.1 2 1 1 2 3 3.56624 10.2780 30.93859 | 19.86483
| 2.5360
gC 827 213 .1 .1 1 3 .1 2.67632 12.25960 31.69489‘ 27.31797
4.03620
m
AI92 9312 2 2 2 1.1 2.44704 13.77005 | 36.86572 | 31.14606
' 2.69600
).B 929 3411 2 1 1 2 3 242768 12.19883 | 37.84931 | 32.44686
2.75060
iCl92 9 3,3 .1 i 1 3 1 1.88784 14.39026 | 37.3777 30.56229

42576




4.6. LINEAR CORRELATION :

In this section we consider linearly correlated demand quantities of the two
commodities. U, and V,, be the demand quantities for C; and C; respectively at the nth
demand epoch. Let U, =i then due to the linear correlation between the demand
quantities of C; and C; we may write V,=m +id; -1<d<1, m>0,and mt+id isa
positive integer which is not larger than b. For individual ordering policy, probability

distribution of time between two consecutive replenishments of C is

M, ©

A CIATCNOY) SD S » Y B,.P,G®

LW/ r
r=(M, /a]+5[M1 fa] a=0 Jivodr=2.0b Bty =1,
Jp =m+id(€=12,.. .r),md>0 x,+ +1, ,<M,
(r—l)m+d[x,+ +x, 1<M,  h+.4i2M,
m+d (i +..+i, )= m\),+s,

Similarly probability distribution of the time between two consecutive
replenishments of C; is

M, ©

F.s).@s0)= Y ¥ ) > P, PG

Hodis" 3oy
r_[leb]+5[M2/b] y=0 iy =2, Jioadr=hind
m+j,d(l-12 r)md>0 Ity <My
("‘1)M+d[h+ +J,_11<Mn I+t 2M,
m+d[[f+.+), ]=pM+5,-B

For joint ordering policy probability distribution of the time between two

consecutive replenishments is

min{M 1,M 2}

FlZ{(Sl,SZ)a (Sl,SZ),t} =

r=min({M1/a}+5[M1/a},[M2/b)+S5[M2/b]}

*r
Z 1)'1 Wi r G (t)
iy Ty @ Jg s Jp =haesb
Je=m+i, d(€=12,...r)md>0
L+, <M (r-Dm+dliy +. 4, <M,
eitheriy +..+i, 2M, or m+¢}[il+...+i, 12M,



In individual ordering policy, as in the general case, we get the time dependent

system state probabilities foe commodity C, is

P{($),52),(¢,9),1} = IZFx{(S1,S2),(S1,k),du}

P{(51,k).(L,9).1—u}; (51,k),(4,9)eE

Similarly for commodity C,

P{(5),52),(¢,9),t} = IZF:{(Sl,Sz),(,B,Sz),du}

0 BeB

P{(ﬂ,Sz),(f,q),t—u}; (ﬂ,SZ),(f,q)EE

In joint ordering policy we get the time dependent system state probability as
P(($),82),(£,9).8 = [Fa{(51,52),(8,52),clu}
0

P{(5),82),{L,q),t-u}; (£,9),($),S2) e E

4.6.1 Optimzation Problem :

For individual ordering policy let B, be the time duration between two

consecutive replenishments of C;. Then

M‘ ©
EB)= 2. 3 Z 2 PP
reMy /a}+o1p. 1a) a=0 T dp =20 P

],—m+1,d(l 12 r)md>0 L+ 4,y <My
(r=Dm+dliy +. +i,_ ]<M, @ +..+i,2M,
rm+d[[iy+..+i, }=aM, + 5, ~k

Similarly B be the time duration between two consecutive replenishments of C2. Then

M,

)= > 3 3 Y PP,

r=lMy 1810, 1) r=0 iy =2,. Jiverdp=hosb
i, = m+j,d(l—12 r)md>0 Jitetip- ,<M2
(r=Dm+d{ji+..+j, 11 <M, Mty
m+d[[jy+..+j, )= M +5 - B



Expected quantity demand of C, per unit time is > ip: and that of C; is

i=]

b
=Y. Jp.i. ki and k; be fixed ordering costs of C; and C; respectpively. ~ Then the total

=t

expected cost of ordering per unit time is k ky

+ . V) and V; be the holding
E(B) E(B)

costs of one unit of C; and C; respectively per unit time. Then the total éveragc holding
cost of C; and C; per unit time is

5 53 Sy 5
V(S,,5,8,,8,)=V, 2L 2.00.q)+V, 2°q 2 6(4,9)

=5+] q=33+1 q=37+1  L=s+]
where 6(¢,q9) = ‘lin‘: P{(S,,5,),(£,9),t} . Thus the total expected cost per unit time under

steady state is

k, k, 13 | Qi
8,,5,)=V(S,5,8,,8,) +—t—+—2—+r| —Nip |+r| =Y jp.
(bsl 2,82) (151 2S2) E(B)+E(B) 1[;‘2?.]*”2{:”;]?,]

i=1

where 1y is the unit procurement cost of item Cy, k=1, 2. For joint ordering policy

min{M, M, }
E(B,)=

r=min{[M, / a]+4, sapiMo 0]+ IB1} sty Sl @ Jpaees iy 520y
! [y £ atM2 P10, 15) e imeid (=13, r)md>0
Iy +o i, <My (r—!)m+d[x‘+ +i,_ <M,
dither iy +..+1, 2M, or rm+d[i; +..+i, ]2M,

Rl.j,....E,,j, ru

The total expected cost per unit time under steady state is

Z(Sl:shS21S2) V](S],SI,SZ’SZ)+E( +7il:”2p::|+rz{ Z]p :| Where

PSusSusy =V 32 ST @p+% Sa ST and

=5 +]1 qg=s3+} q=94+1 f=5+1

H(Z,q) = ¥T:)P{(S}’S2)’ (e’ q):t}



{6.2 Numerical Ilustration :

Consider an inventory system withk = 10, k=10, r;=6, =8, V;=2, V=
15,572, b =3 and p = 4. For two sets of fixed values of Py ; s (i=1,2; j=1,2,3), expected
wlue of the time duration between two consecutive replenishments and average cost for
mdividual ordering policy and joint ordering policy are given in Table-II. Here also we
%e that joint ordering is preferable to individual ordering policy as is expeéted (from the
general case considered in section 4. 5).

Table-II

Si st S2 82 [ P11 P2 Pis Poy Pz P3| E(B)& E(B2) | E(Bs)io | (Average | (Average
(for 1.O) resp. Costho Cost) 10

|

A;S1 6 212 2 2 2 .1 1 0.0800 0.0800 295.2363 | 146.1746
0.0800

Bis1 6 2.1 2 1 1 2 3 0.3200 0.3200 90.03145 45.4086
0.3200 )

Cjs51 66 23 .1 1 1 3 .1 0.7200 0.7200 50.7805 34.7329
0.7200

1

Al82 7 2412 2 2 2 .1 .1 0.0120 0.0120 1857.5844 | 860.2297
0.0120

B|g2 7 241 2 1 1 2 3 0.0960 0.0960 252.6986 132.3494
0.0960

ci82 7 213 1 1 1 3 1 0.3240 0.3240 95.85229 57.3673
0.3240




CHAPTER V

SOME BULK DEMAND TWO COMMODITY
INVENTORY MODELS

51. INTRODUCTION

In this chapter, we consider two models. In Model-I, we analyze a bulk demand
two commodity inventory problem which generalize the results of Krishnamoorthy,
Lakshmi and Basha (1994). They have considered a two commodity inventory problem
with unit demand with no dependants, whatever between the type of commodities
demanded. They provide a characterization of the system state probabilities. In our
model we consider a bulk demand two commodity inventory problem with the
commodities represented by C; and C; respectively. The ( s, Sy ) policy is adopted for
commodity Cx (k=1,2). A demand for both C,and C; together is assumed not to
occur. No shortage is permitted. Replenishment is such that whenever the inventory
level of Ci falls to sk ( k = 1, 2 ) or below that due to a demand after the previous

replenishment, an order is placed and instantaneous replenishment of that occurs so as to
bring the inventory level back to Sy.

In Model-1I1, the probability pi2 for a demand of both commodities together is
assumed positive i.e. {(p1+ p2+piz=1). On the inventory level of C, reaching the level
s;, unit demand for it is only entertained for the first commodity, and sales of C; is
restricted to those demands which demand the second commodity also wuntil
replenishment of C; occurs. Due to a bulk demand, if the inventory level of C,; falls

below s;, such a demand will be satisfied by units sufficient enough to maintain the

reordering level. We assume M; > 2s; and a <s;.

This result ( Model I) is published in Calcutta Statistical Association Bullettin vol. 49,
1999 ,Nos.193-194



Lead time is exponentially distributed for the first commodity and it is zero for the

second commodity. Unmet demands are not backlogged.

Section 5.2 deals with description and the stochastic formulation of Model-1.
Limiting probabilities of the system state is obtained in Section 5.3. An optimization
problem is discussed in Section 5.4. An application of the model along with a

numerical illustration is given in the same section.

Section 5.5 gives the description and analysis of Model-II. Transient state
probabilities are obtained in Section 5.6. Section 5.7 deals with the limiting probabilities

and cost analysis is discussed in Section 5.8.
5.2. DESCRIPTION OF MODEL 1 ;

In this model, we consider a bulk demand two—commodity inventory problem
with the commodities represented by C, and C; respectively. The ( s, Sk ) policy is
adopted for commodity Cx (k =1, 2 ). Given that a demand occured, the probability
that it is for commodity Cx is px (k=1,2), (ps + p2=1), conditioned on a demand
taking place for C, (C;) the probability that it is for i (j)units of C;(Cz)is g (hy)
i=1,2,..., a(j=1,2,...,b). A demand for both C; and C; together is assumed not to
occur.  The inter arrival times of demands are independently and identically distributed
random variables following distribution function G(.) with mean (u <o ). The demand
quantities are independent of the type of the commodity demanded. No shortage is
permitted. Replenishment is such that whenever the inventory level of C; falls to s¢
(k=1, 2) or below that due to a demand after the previous replenishment, an order is
placed and instantaneous replenishment of that occurs so as to bring the inventory level

back to Sx. The following notations are used in this model.

X(t)y = Inventory level of C;attimet



Yt) = Inventory level of C; at time t

1) = X, Y(®)
Mc = Se-s; k=12
* = Convolution.
E; = (st1,...,8) k=12
E = E;xE;
g = Probability that i units of C; are demanded at a demand epoc}l
1=12,...a
by = Probability that j units of C; are demanded at a demand epoch
j=1,2,...,b
a
he = D, gz
i=1
b .
0200 = D, h;z!
j=1

G@)* =(dx(2)) ' d:@) 1=2,3,..; k=12

g() = Probability of / demands for C; consuming i units of it. This is the
coefficient of z'in (¢1 (Z)) ¥

h(q) = Probability of q demands for C; consuming j units of it. This is the
coefficient of ¥ in ((¢ 2 (Z))™
8 i = Probability that i units of C, are demanded at the m th demand epoch,



[

h.

q =[Mo/b I+ 8 Mo/b), ... , Mz where 5[M2] =

in=1,2,...,a m=1,2 ..., where!l denotes the number of demand
epochs for C; between its two consecutive replenishments. i.e. / th demand

epoch leads to next replenishment after the previous replenishment.

_|1if M,/a is not an int eger.
‘i] 1o Otherwise.

a

=[Mi/a] + 6 pvuap, ..., M1 Where 5[

= Probability that j, units of C, are demanded at the nth demand epoch,

w=12,..b;n=12..q whereq denotes the number of demand epochs for
C; between its two consecutive replenishments,i.e. qth demand epoch

leads to next replenishment after the previous replenishment.

1 if M, /b is not an int eger.
0 Otherwise.

Analysis :

Let 0 = T, < Ti<...< Tu<... be the successive demand epochs and X,

Xi,....Xn,... and Yo, Yy,...,Yn,...be the inventory levels of C; and C; respectively,
immediately after demands at these epochs. We may denote the inventory level process at

time t by (X(), Y(£))t >0 with Xo =X (T +) and Yo=Y (Ta +).



Some Distribution Functions of Interest :
Result 5.2.1.
Let T, be the time elapsed between two consecutive S;to S; transition of C; and

Fi( (Si,1), ( Sy, j), t) be its distribution function. Then we have

M,

F((S,i),(8,, /), 1) = 3 3 > p'pp pp.' 8,8,

M iy 4.+ _ <M n,..n20
Mgy S,

q,g_r, +.+n) G‘(Hrﬁm”')(t)

Where q;® is the probability of a transition from i to j of Cs due to r demands for that

commodity, i, j € E3, r=0, 1, 2,... with

(0)_{ llfi=j
g =

0 Otherwise

h_. ifi>j>s, (i—-j<b)

i-j
]
>k, ifj=8, (i-5,<b)

k=i-5,

Proof -

To derive the expression for Fi( ( Si,1), (S, ), t), set time to zero when an order
for Cy is placed. Instantaneous replenishment of that occurs, so that inventory level of

Cireaches S;. Then a total of / demands occurs for the first commodity, resulting in its



replenishment. Thus / — 1 demands take away atmost S; - s;- 1 units of C;. In
between there can be a number of demands for C;. Suppose that r y+; (= 0 ) demands for

Cz occur in the interval containing vth and (v+1)th demand epochs of C;(v=20, 1,
2., 1-0.

Result 5.2.2:

Let T, be the time elapsed between two consecutive S; to S; transition of C, and
F2( (i,, S2), (, S2), t) its distribution function. Then we have

M,

F6.5).U:8,00) = )) Y. Xp'mpppp, bk,
‘7=[M%]+5[M%] Ntotiga<My §y,..0,20

Qi*tig M,

(l4..4,) vgilytoaly)
p q G ? (t)

where

Yi,-(” is the probability of a transition from i toj of C; due to/ demands,/ =0, 1, ...;
Lj € E; with

and
g, fi>j>s (/<9
y.(.l): a
1Y if j=S, (i-s<a)
k=i-g,

53. TIME DEPENDENT SYSTEM STATE PROBABILITIES :

Define Ry [(81.1), (S1.j), t] = i E 18,0, (S 21 for (8,,1),(S,, j) € E

n=0



Next we compute the time dependent system state probabilities. Let I(t) = (X(t),
(Y(t)) be the system state at time t and I(t)=(Xn, Ya ), Ta<t < Tp+1. Then { I(t), t 2 0}

is a semi- Markov process on E. The system state probabilities at time t satisfy the
equation (Cinlar 1975)

t

PSS G = H(SLS) GO+ [ D Fi((518) (51, dv)

0 kEEz

P( ( Sl) k)’(l’ j)’ t-u ) ( l’.l ) €E

where  H( (S, $2), 4, J), t) is the probability of transition from (S;, S2)to (i, j ) with

the state S; of C; not revisited in ( O, t ) if atleast one demand for C; occurs.

@ 8 -i
> Y ECPO-G W) ifixs,
=l l:{fl_:f]ﬂ; s]\-‘ 2r
=) « R
>0 Pm-6re) =S,
n=0

Hence the time dependent system state probabilities satisfy the integral equation.

t

B((81, 82,3, ), ) =H((S1, &2), (i, ), 1) + f Y Fi((81,52)(81.k),du) P((S1,k),G, j).t-v)

0 keE,

and probability is given by



t
P((51,32), (, ), 1) =I Z R ((S1, 82,(81, k), du) H((Sy, k)i, j), t-u)

0 kEE2

(S1,52), (81, k), (L j) €E

Similar derivation leads to expression for P((S;, S2), (i, j), t ) looking at

regeneration points of C;. However we note that, either can be used to compute the
limiting probabilities of the system state.

5.4, LIMITING DISTRIBUTIONS :

Let lim  P((S1,82), (,)), t)=pGj), (,j) €E.

From the transition probability matrix P of Markov chain (X,, Yy), its stationary
distribution T=(m (1, j) ), (i, j) € E can be computed using TP =7 and Te=1 where

e=(1,.. ,DT and 7 is a row vector having M; M; elements.

34.1. Theorem :

The limiting probabilities of the system state are given by p(i,j) = = (i, ));
L)eE
Proof:

The mean sojourn time in any state (1, j) is m(i, j) =I(1—G(t))dt= 7]
0

(assumed finite). Hence the expected sojourn time is same for every state (i, j),(i, ))€E



Thus

G, )| p (@) = G, )T/ 1(0) = G, j)dt
P))= > 76, JymG, )

(LJ)EE

=n(, Jj)

From the above expression
lim p((S;,S).G, /)0) = p(, j) = =G, j)

and independent of the initial state, as is expected from the theory of finite state
irreducible Markov chains.

54.2. Theorem:

If p1 = p2 = p ( = 1/2) then the inventory level follows the discrete uniform
distribution, given by

x(i, j)= for every (i, j)e E.

14742

Proof:
From TP =7 and e =1.

We see that the equation nw (i, j+t)p+n (i+],j)) p=7n (i, j) for i=s+1, ..., Sy
and j= sp*l,..., S; has a solution given by

1

x@, j)= for(i,j)e E

1772



However this solution is unique since the Markov chain has a finite state space. If we

assume pz= 0 so that p;=1 or p;= 0 so that p,= 1, we have a single commodity

inventory problem.

5.5. OPTIMIZATION PROBLEM :

The objective function corresponding to this model is the total expected cost per
unit time under steady state. Here the decision variables are S, s1, Sz, s2.  Let T be
the time duration between two consecutive replenishment epochs of C;. Then, we
define T, as the length of a cycle. So the expected length of a cycle is E(T)).

Distribution of time between two successive visits to S; is

M, © !k a a-r o(l+k)
= Y Xppr Y e U-Dg. ;G
I=[M, 1 a}+8y, 0 k=0 r=1j=0

where g i (1) is defined in page 69. Then

M, ®
ET) = [ % > (I +k)E(int erarrivaltime)p, p,'
1=[M, /a

6[”] /a) k=0

DI I ST (£ VY- ()
r=1j=0
M, ) Ik a a-r
= Y A+ pr )Y 8m, (I -1Dg (D)
1=[M, 1 a}+8y4, 41 k=0 r=1j=0

Hence the expected number of orders placed per unit time for C, is 1/ E (T}).

The expected number of demands for C;in time E(T:) is [E(T))/ u-M,;']" where



rand r; being the unit procurement cost of item C; and C; respectively. The optimal
values M; and M; are calculated for the values ki, kz, vi, vz, 11, 12, 1, P2, 88 by s, i, Sy,
8, S3,52,a and b.

5.6. AN APPLICATION:

Suppose the system has S; identical components of type-I and S; identical
components of type-II. The system is considered operating if atleast s;+1 of type-I and
s+1 of type-II of the components function. Otherwise, the system is in the failed state.
We assume that the lifetime of all components of type-I follows exponential distribution
with mean p; and that of type-II follows exponential distribution with mean p,. At time
origin, all components are operating. Let T be the random variable denoting the time to
failure of the system starting with S; of type-I and S; of type-I components at time
zero. The system reliability in (0, t] is given by

PT>= 2, 2

=0 k=0

M,-1 M,-1
§ :

Sl J(l —e At )I (e‘l‘lt )Sl - (Sz ](l - e‘#z‘)k (e—llzt )S2 -k
Po(t) denotes the probability that the system is in failed state at time t where

& S S2 —piat\k £ —piat\S, -k
R (1) = Z 2 [;J(l—e‘”")' (e"“")s“'(kJ(l—e Y )

k=0

Failed components are replaced by new identical components as soon as the
system fails. Let Y be the random variable denoting the time elapsed between two

successive replacements. We assume that |, = pa



Then

B(Y)= [ P(Y > 1yt
o M,~-1 M,-1

- m(l—e-V)’ (e-”)s‘"l(%)ﬂ~e'”)"<ef”)sz"‘dv/ﬂ1
o I=0 k=0

X

& (S (S,
= By Vo BS, +S, - (I +k),] +k+1]

1 k=

Ji]
[~]
(=]

Particular Case:

When there is only one type of component the above reduces to the problem of

multiple satellite launch discussed by Sivazlian and Stanfel (1975).

57 NUMERICAL ILLUSTRATION :

Consider a two commodity inventory system with k=10, k2= 12, n=35, =
75, vi= 1.00, v2= 1.50, a =5, b = 4 and mean of the distribution of the inter arrival time
of demands p = 4. For four sets of fixed values of pi, p2, gisand bys, i=1,...5; j=

1, ...,4 E(T)) and the average cost are computed and tabulated. Then the optimal

values of M; and M; are obtained.



SINo. S | s1 S | s P1 | P2 hy |E(T) |AC
1 20 |1 10 8 4 6 2 4 .02 2546.30
2 .5 5 2 2 .04 1130.84
3 .6 4 3 2 .10 523.74
4 7 3 A 2 22 242.17
5 8 2 2 3 .56 110.85
1 20 2 10 5 4 .6 2 4 .08 606.71
2 5 S5 2 2 .18 279.27
3 6 4 3 2 .40 138.89
4 ) 3 1 2 91 73.89
5 R 2 2 3 2.28 43.66
1 20 |3 10 6 4 6 2 4 22 227.65
2 .5 .5 2 2 .50 113.74
3 6 4 3 2 1.10 64.93
4 ) 3 1 2 2.51 4238
5 8 2 2 3 6.18 31.92
1 20 {4 10 7 4 .6 2 4 .54 105.03
2 5 .5 2 2 1.23 60.67
3 .6 4 3 2 272 41.67
4 a 3 1 2 6.15 32.92
5 8 2 2 3 14.85 28.87




From the table we see that the optimal pair is M; = 16 and M;=3.

5.8. MODEL I :

In this model, all assumptions of Model-I hold. Further we permit the
possibility of the occurrence of a demand for both C; and C,, the probability for which
is piz (it pzt piz =1). Conditioned on a demand taking place for C, and C,
together the probability that i units of C; and j units of C; are demanded is q; j(i=
1,2, ...,a j=1,2, .., b). Whenever the inventory level of C; reaches the level s,
then only unit demand is entertained for the first commodity. Further, sales of C; is
restricted, to those demands which require the second commodity also. Due to a bulk
demand if the inventory level for C, falls below s;, such a demand will be satisfied by
units sufficient enough to maintain its reordering level. We assume M, > 2s; and
a<s;. Lead time is exponentially distributed for the first commodity and it is zero
for the second commodity. Unmet demands are not backlogged. The following

additional notations are used for this model :

E1 = [ 0,...,81,...,51]

E; = [s:1,...,8:]

This result has been presented in the National Conference on Applied Statistics and
Operations research held at Nagpur (1998)




E = EixE
q ij = Probability that i units of C, and j units of C, are demended at a demand epoch

(i=1,2,...,a;=1,.2,....b)

m"' = Total number of units demanded by m; demands of C,
R+ = Set of non negative real numbers
ko' = Total number of units demanded by k, demands of C;
Wi ® = Probability of a transition from i to j of C; due to r demands

r=0,1,2,...,i jeE

Result 5.8.1:

{((Xa,Yn),To),n=0,1,2,...} is a Markov renewal process on the state space
ExR, with semi-Markov kemel {Q[(l;,m,), (I;,mp), t ], (11,m,), (},m;)€ E and
teR. } where
(@, m), (h,m;).0y = P((X,,,..Y,,)) = (h,m), T, - T, <t/(X,.Y,) = (},,m,))and are as

given below :



(g, G(t)

p:h,G(1)

O, m), by, m;), 1) =

P4, ;G0

Jorl, =1 —i ifl —i >s and
=5 ifl-i <s,
where s, +1< [ < S, withm, =m,

s,+1<m <8,, ii=12..a

Jorm, =m — j, if m - j, >s, and
=5, ifm—j <s,
withl =1, fors+1<l <§

s,+1<m <S,,j,=12,...b

Jor L,=1-i ifl -i>s and
=, ifl—i <s

with  m,=m,—j, ifm —j >s, and
=3, ifm - j, <s,

where s, +1<1 <§ &s,+1<m < S,

i=12..,a,j,=12..b



( t
P, € gw)du
4]

¢t
b e"“g(u)du
0

ph, [e*g(u)du

pg, [(1-e™)gu)du
0

ph, [(1—e*)g)du

Jorl,=1 -1 if 0] <s,

withmy=m - j if m - j, >,
=8, if m-j<s,
s, +1sm <8, ;i =12, ..a;j, =12,...b

Jorl =1, m=m, if 0L <5
s,+1<sm <§,

Jormy=m ~j, if m ~ j, >s,

=S, if m-j<s,

withl =1, for 0L <5,

5, +1<m <8, ;j,=12,...b

hjl (P, +p,2)je““‘g(u)du Jorm,=m, — j if m — j, >s,
0

=8, if m-js<s,
with =1, ] =0

s, +1<m <8, ;j,=12,..,b

Jor L=1 +M, —i if0<] <5,
withm =m, jfors,+1<m <S8,

i=12,....a

Jor L= +M, if 0<] <5,
with m, =m, — j, if m - j, > s,
=S, if m - j<s,, jy=L..,b

s,+1<m <85,



Pud,; [A—€e)g)du  for I, =l +M i if 0<] <
0
withm, =m — j, if m — j, > s,
= =S, ifm-j<s

s, +1<m <8, i =12,....a;}=12,..b

0 otherwise

Some Distribution Functions of Interest :

Let Ty be the time elapsed between two consecutive order placment epochs of
Ciand Fqy[ (s1, 82), (s1, k), t] its distribution function. Then we have

Result 5.8.2 :

Fay [(51,82),(1,K),t1= Fary [(51,52), (51, K),t] + Fny [(s1,82), (51, K),t]

where

t 1 @ o M -1, min(am; M ~1;5)
sSheon=[[[XXY %

u=0v=u w=vh =00 =0l;<s, M‘[E“‘;‘h—z]“s[y,:ﬂz] m =

1
© My—hy-m

my=0 My—lj,—m!
2 mn:[ 17 "‘1}
a

PllI lezplzlnhj, ---hj,z .

M1-112-m)
a

o tig +O ot Cpy, —I<My~ky
Byt tigy +C tt Oy M —hy and(a)

-Av

q’.l’j‘ . “q,_‘n .j[u g‘(‘] +11 +l|z)(u) 1 — p]lﬂl pzllzplz"'llg" . “g'.l

G(v-u)



h,.h 4. .-9. Wéi;{*’u*"'z*"'u) g™ (w — w)((1 - G(t - w) dwdvdu

"2 'd"u

Elz)((sl’Sz),(Sl'k)at)z j j j[ ii Z 2

min{am M, -5) o« M, -5 —m,l

1 -
m'—my my=0 muzliM" spomy! :|+¢$
a

=)

ity 4O+ + Oy, —1<M| -5,
it Hig 4O . A Cpyy ZM =8 and (b)

-Av
/¢ i ! MURIPRY Ae
Pk kg g, g )
pl p2 p12 N ],qul.jl q"u‘“ug ( )I—G(V—u)
p]”h pz'"zpu'"" gil"'giul hfl"'hfnz q‘l-dl"'qc'qz Aoy,
Wop o g ) (w —u)(1- G (1 - w) dwalvdu

where

@=h+..+ip 1+ +..+C, <M or
B+t +O 4. 46, <M

with i +.. .+, +¢+..+¢, 2M

depending on whether the last demand is for C; alone or for C; and C;

together.



B)=h+. . +ip 1 +o+. .+, <M-5 or
Wty o+ 46, | <Mi-s5

with iy +..+i_ +¢+...+c,, 2M;-s
1 m 1 my, 1 1

depending on whether the last demand is for C, alone or for C; and C; together.

Proof :

Clearly, the order placement epochs coincide with some demand epochs.
Between any two consecutive order placement epochs of C;, there is exactly one
replenishment of C;. The term F;,' correspond to the case of no dry period during lead

time, Fy> correspond to the case of dry period during lead time of Cj.

To derive the expression for F(l)l[ (s1, S2), (s1 ,k),t]. Set time to zero, when an
order for C, is placed. During (0, u) there may be number of demands which will be for
C, alone or C; alone or for both C; and C;. Let those be 1, 13, li2 respectively. But at
this time only demands for C; alone or for C; and C; together will be saisfied. Note that
lz<s. Due to replenishment in (v, v + dv) the inventory level of C; rises to Si-l;2.
Due to m; demands for C, alone , m;; demands for C; and C; together with none, one or
more demands for C; alone in (u, w) conditioned on no demand in (u, v), the level of Cy
dropsto s;. Hence an order for replenishment is placed. ( Here m;+m);-1 demands take
away less than M;-l;; units of C;. m;+m;; demands take away atleast M;-l;2 units of
C1.) The expression for Ky can be obtained in a similar way. Only difference is that

l22s1, so that dry period is there during lead time of C;.



Result 5.8.3.

Let Tz be the time between two consecutive order placement epochs of C,.
Probability distribution of the time between two consecutive visits to s, of C; is given
by

t o M, min(bky, M, )
F;(("SZ),('aSZ)’t):J. z z
My —ky!
l Plkl pzkz plzknhj, "'hj,z
k,,:{”’;kz }'S[L;‘_z‘_]

Nttt jug vdp4otdy, -1<My
Qi +dl+...+d,l2 >M, and(c)

88y oty ey, ay, 8 D @)1~ Gt - u) )
where

() =j+.Aj,atd+.+d, <M,
or ji+..tj,td+..+d, <M,

with ji+.+j, +d+..+d, 2M,

depending on whether the last demand is for C; alone or for C; and C, together.

Proof :

Shift the time origin to the epoch of placing an order for C,. Lead time of C;
being zero, there are S, units of C; now available in the system. Due to k» + k2 demands
during (0, u) the inventory level drops down to s; for the first time and due to
instantaneous replenishment, the level of C; is brought to S;.  During this time, there

can be number of demands for C; alone. This provides the expression for F»(.)



5.9. TRANSIENT STATE PROBABILITIES :

Let I(t) be the system state at time t and I(t) = (Xa, Yn), Tn <t < Ty Then [I(1),

t>0] is a semi-Markov process on E. The system state probabilities at time t stisfies the

equation (Cinlar 1975)

Pl(5,,8,). (5, ). 1] = kl(s,,5,), G, /).t]+ jké Fy[(51,83),(s1, k), du ]
P[(Sl,k;, @ 1]),1 —u]
where k[(s1,52),@3, j),t] =Pr [I()=(, j), T1>t / 1(0)=(s1, S2)]
=1-G(t)

Hence the time dependent system size probability is given by

PI(s,,8,).G. )11 = | 3 RI(5,,8,),(s,, k), ]

o keE,

k[(sl’k)r(i,j):t _u]:(sl’k)r(irj)’(slrs2) € E

where R][(SI’SZ)’ (slrk)’t] = iEl)‘n[(sl7S2)a(sl’k)’t]for(sl’Sz)’ (Sl’k) ek

5.10. LIMITING PROBABILITIES :

Let =G, j)=lmP(X,=iY, =j)for(i,j)e E. Then = (ij)s can

uniquely obtained as the solution of p=mn and & e=1 where

P = 1im QI m,), Uy, 11,), 11, (), (1) € E

be



Define
H(,j)= }igloP[(Sl,Sz),(i,j),t];(i,j) ek
Then

G, )| pA@) = G, j); THt/1(0) = G, )t
HED= > %G, jymG,J)

G.j)eE

=n (1)), for i>s1+1 ;5+1<j<S,

(i, j)jp[(f (t) =, )%t/ 1(0) = (i, N1Ae™*(1-G(1)) dt

H(S,j)= Zn'(i,j)m(i,j)
G J)eE

i<s, s,+1<j<S,

where m (i, j) is the mean sojourn time of the Markov renewal process
{Xn,Yn) Tn,n=0, 1,2, ...} in the state (i, j) and is given by

m(i, j) = [[1- Gt forG,j) e E

5.11. COST ANALYSIS :

Let Ty be the time duration between two consecutive reordering epochs of C;.
We define T(;y as the length of the cycle. Probability distribution of time for s; to s;
transition is given by  Fqy [ (s1, 2), (51, k), t]. Then



o0 [ ]
_ Loby oy o capQ el +ly) oA 4y g 4]
E(TEU)—ZZ Zpllpzzpnn (e T —e l+z+u+))

1, =01, =01, <5,

M-, min(amy M—1j;) o

_ i =
m :[Mla e ]+5[u| -ln] mEm ma=0

1
M-l -m,

PP P (G + by + Ly +my ey +myy)p

"= 1"’1"12""’1l +
1 a Tﬂl ~liz-m! ]

a

- - L1 I Au(ly+1,+1y)

- +1, +
z: z: z: plxpzzplzu MUy Hy 12)
Il=0 12=0 Ilzzsl

My-5, rin amy M, 5, ) My—s—m

m m; my;
b P P
| Mo m'=m My-s-m'
Ml_[ a }’J[M'_"] m":————a—+5[m—n~-q'}

G+L+1L, +m+my+m,)u

Similarly T2 be the time duration between two consecutive order placement
epochs of C2.  Probability distribution of the time between two consecutive visits to s; of
C; isgivenby F2{(,, S2), (., S2),t}. Then

P]kl szz Plzklz (k, +k, +k,)u



The expected number of orders placed per unit time for C; is 1/E(T;,) and
that for C; is 1/E(f5)). Let ki and k; be the fixed ordering cost for C, and C

respectively.  Then the total expected cost of ordering for C; and C; per unit time is

(k/E(T;,)) + (k,/ E(T,))). The total average holding cost of C; and C per unit time
5 85 s, 5

is=V,Q0i D7l ) +V,( D jO %G, ), vi and v, being the holding cost of C; and
i=]  j=s5+1 Jj=sp41 =1

C;perunit time. Thus, the total expected cost per unit time under steady state is

Z(S1,51,80,8) =V Sl N+V( S 737G, ))
5 B Bt PR Jmsp+l il

a b
+(k / E(Ty)) + (b E(T) ) My +((Ma - D+ 23 ji(h; +g; )
i=1 j=1

r, and r, being the unit procurement cost of C; and C; respectively.



CHAPTER VI

ANALYSIS OF A TWO COMMODITY INVENTORY

PROBLEM WITH LEAD TIME UNDER N-POLICY

6.1. INTRODUCTION

Some results about multi-commodity, continuous review inventory system can
be found in Sivazlian (1971), Krishnamoorthy, Basha and Lakshmi (1994)
Krishnamoorthy, and Varghese (1995) Krishnamoorthy, @ Merlymol and
Ravindranathan (1999) , N policy for local purchase is introduced by
Krishnamoorthy and Raju (1998). However, the literature on multicommodity item

is much less than this on single commodity inventory.

Local purchase by shop-keepers are very common. Situations of this sort arise
in practice in shops when certain goods run out of stock and reaches a threshold
(negative level ), the owner goes for local purchase. This involves higher cost to
the system. Even this will ensure goodwill of customers to a great extent. Here a
two commodity inventory problem under N — policy for local purchase with lead
time is considered. In this continuous review inventory system the two commodities
are represented by C, and C; respectively.  The (sk, Sk) policy is followed for the
commodity Cx (k=1,2). The inter-arrival times of demands are independently and
identically distributed random variables following distribution function G(.) with
mean y (< o ). Each arrival demands either one unit of first commodity C; alone with
probability p; or one unit of second commodity C, alone with probability p, or one
unit of C; and C, with probability p;2 such that p;+p2+piz = 1. Lead time is
exponentially distributed with parametre A for C, whereas for C; it is zero.

Whenever the inventory level of C, reaches s; , its sales is restricted to those



customers who demand one unit of C; also. Whenever the inventory level of Cy falls
to sk , an order is placed for M units of that commodity k = 1, 2. At the epoch at
which the backlog of C; reaches N ,due to a demand during a lead time, we take one

of the three decisions regarding the replenishment

@) Cancel the existing order placed for C; and make a local
purchase to bring its level to S;, that is buy N + S, umts of C; locally.
The outstanding order is cancelled to avoid the possibility of exceeding
the inventory level of C; beyond S;, due to both local purchase and the

replenishment of the order.  Or

(i)  Alocal purchase is made to raise the inventory level to s;,without

cancelling the order placed.  Or

(ili) A local purchase to clear the backlogs alone is made without

cancelling the replenishment order.

Several transactions in real life takes place as described above. Consider a shop
selling tube and tyre. The demand can be for exactly one of the items or for both
together with certain probabilities. Whenever the inventory level of tube reaches the
level s;, then the sales of tube is restricted to those who take one unit of tyre also.
At the epoch at which due to a demand, the backlog of tube reaches N, during a lead
time of tube we take one of the three decisions regarding the replenishment. We
compute the limiting distribution of the inventory level for all the three cases and

examined associated cost functions.

This chapter is organized as follows. In Section 3, Model 1 (local purchase upto
S cancelling replenishment order) is formulated and analyzed. The time dependent

and stationary probabilities are obtained and the cost analysis is carried out. Model 2



(local purchase upto s;, not cancelling replenishment order ) and Model 3 (local
purchase to meet all outstanding demands, retaining the replenishment order) are
discussed in Sections 4 and 5 respectively.

The following notations are used in this chapter.
Ei = {-N+1,..., sy,...,5:}.Thus {-N} is an instantaneous state.
E: = {szt],..., S2}.
E = El X Ez

X(t) = Inventory level of C, at time t.

To = O, Ty,... are the successive epochs at which demands takes place.

Then

Xn = X(Tut), inventory level of C; immediately after the n th demand.

Y(t) = inventory level of C; at time t

Y. = Y(T,t), inventory level of C; immediately after the n th demand.
It) = The system state at time t; I(t)= (X(t), Y(1)), I(t) = (Xq,Yn), Ta<t <Tnu

My = Sk-s¢ k=12

R+

Set of non negative real numbers.



6.2. ANALYSIS OF THE MODELS :

Let 0=To<T<...<Tn<... be the successive demand epochs such that{T, n>0}
constitutes a renewal process. Let Xo, Xj,...,Xs,... and Yo, Y;...Yn,... be the
inventory levels of C, and C,, just after meeting the demands at these epochs.
Because of the N-policy, for local purchase during lead time of C,, X.,: assumes values
intheset E; ={-N+1, ... s1,...,51} and Y, takes values in the set E, ={s;*+1,...,
S2}. The process {(Xa, Yn),n=0,1,... } forms a Markov chain on the state space E
with initial probability

1 ifi=5,j=S8,
0 otherwise

P(X0,Y)=(5,8)1= 8 jy5,.5) = {

We assume that S;-2s;+1>N to avoid perpetual ordering of C,.
6.3. MODEL 1:

In this model we assume that a local purchase is made to raise the inventory level
of C,toS;, even at a much higher cost, after cancelling the order already pending, if
during lead time the backlog accumulates to N.

Result 6.1

{(XoYn),To),n=0,1,2, ...} is a Markov renewal process on the state space
E x R+ with semi — Markov kernel ,

Qw = {Qu [ (i1, j1),Gz, j2), t}; (i, j1),(iz, j2) € Eand t € Ry}



Where Qqy [ (i1,)1), (12,)2) A1 =P [ (X 041, Y 0t1) = (2,J2) , Tort-To t/ (X, Y ) = (1,j1)]

and are as given below.

pG(0) Joriy=i -1 if s+1<i <S§

with j, = j, fors,+1< j, <8,

pG(®) Jorj,=8, if j=s,+land

J= g -lifs,+2<j, <8,

with i2=il, Sl+]SilSqu
DG Jori, =4 -1 if s +1<i <S§
Q(l)((il’j))’ (iz’jz),’)z 3 with j, =8, if j=s,+land

J=h-lifs,+2< i <85,
I pe g(u)du fori, =i, j,=j, if
-N+1<i<s,5,+1<j, <8,
I
Ipze_‘“g(u)du forj, =8, if j=s,+land
0

=i -lifs,+25 j, <8,

withi, =i, for— N +1<i, <5,



J‘plzedhg(”)du Jorj,=8, ifjy=s,+land

0

L=i-1 ifs+2<<8,
with i, =i -1 for—-N+2<i <5,

and i, =S, Jorip =N +1

j'p,(l—e““)g(u)du fori, =i +M, if -N+1<ij <s
0
with j, = j, Jor s,+1<j, <8,
jpz(l —e*)gu)du  foriy=i+M, if-N+1<j<s
0
with j, = j—=1  fors,+2< j, <§,

and j, =S, ifj=s,+1

Ip,z(l—e““)g(u)dzl Joriy =i, +M, -1 if -N+2<i <5y
0
with j, = j, -1 ifs,+2<j, 5§,
and j, =S8, if j=s5+1

otherwise

6.3.1. Some Distribution Functions of Interest :
Let Ty be the time elapsed between two consecutive order placement epochs of
Ci.and Fy {(s1,.) ,(s1,.),t} its distribution function. Then we have
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%

Result 6.2 : \'v". e
F(l) {(Sl ") ,(S] ")’t} = F(l)l {(S] ’-) ’(Sl )-)’t} + F(l)2 {(Sl ,-) ’(Sl ,-),t}
where

t f

Fiylsi )51} = J [ fii

”1 =0 llz —'ul lls =ll2 u, =u3 k] =0 kZ =0 kn =0

SN (k4 ke + )

plkl p2k2 pleu g'(kl"'kz#qz)(ul) Ze—’b‘z

Mg § Mt @+ b+ )
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5,=0 1,=0 1,=0 11'12'112'
Il +IlZ =M| ——kl2 -1

(I +,+
P py"

2) _
e u])(Pi+P12)g(”4 “3)

plz 1- G(u2 ul)

[l - G(t —Uuy )]du4du3du2dul

and
F (s, 0G50, )83 = j j , j " j Z Z Z (kl;l":!‘;‘:‘u)'

plk1 pzkzplzku g.(kl +kﬁku)(ul) (p, +p,) g, —u) e

%‘ i “*i (‘ G +1,)
h=0 =0 I,=0 AT
b+l =M -1

] 1 1 o1 41,41
PP P g ~u,)p, + p, Jglu, - u,)

(1~ G(t — u,)\du du,du,du,



Proof :

Clearly the order placement epochs coincide with some demand epochs .Between
any two consecutive order placement epochs of C;, there is exactly one replenishment
of C, and this may be against the order placed or due to a local purchase. The terms
Fay' and F(y? correspond to the cases of natural replenishment and local purchase

respectively.

To derive the expression for F(l)l {(s1,.) ,(s1,.),t}: Settime to zero when
an order for C, is placed. There may be a number of demands which will be for C;
alone or C, alone or for both C; and C; during (0, u;). Let these be k;, k2, and k2
respectively. But during this time interval only demands for C; alone or for C, and
C, together will be satisfied. Note that kj;2 < s;+N-1. Due to the replenishment
against the order placed in (uz, uxtduy), the inventory level of C; rises to Si-kjz. Then
during (uz, u3) 1; demands for C; alone , l, demands for C; alone , 1;; demands for C;
and C, together occur ,conditioned on no demand in (u;, uz) .Due to l; and ;2
demands the inventory level of C; comes down to s;+1. Finally due to a demand in
(us, us+d us) for C, or for both C; and C, together, the level of C; comes down to the
reorder level s;. Hence an order for replenishment by a quantity S; -s; is placed. It
may be noted that there can be any number of demands for C; in this duration. The
expression for F(1, 2 can be obtained in a similar fashion. Here we note that at the
epoch at which due to a demand for C; or for C; and C; together the backlog of C,

reaches N, a local purchase is made to raise the inventory level of C; to S;.
Result 6.3 :
Let T, be the time elapsed between two consecutive order placement epochs of

C,.Probability distribution of the time between two consecutive visits to s, of C; is

given by



f o w D (y + Ky + kyp)!
BLSHYGSH= | [ % Ky oy ki ky ey !
=0 w=u k=0 k +k,=M,-1

phplippte g hthth) Gy (p, + pry)g(w - u)dwdu

Proof :

Shift the time origin to the epoch of placing an order for C,. Led time of C; being
zero, there are S; units of C; now available in the system. At some point in (O,u) the
level of C; drops down to s;+1 for the first time. Next demand takes place in (w,
w+dw) and this is for C; alone or C, and C; together, there by bringing down the

level of C; to s; and due to the instantaneous replenishment, the level of C; is brought
to Sz.This provides the expression for F; ().

6.3.2. Transient State Probabilities :

Define P [ (s1,82) ,(3, j), tI=P[(X(®), YO))=(i, HAX(0), Y(0))~(s1,52)].

Then it can be seen that

Pl(l.)) (t)__- P[(Slasz)a(i ’ j),t]= Q(l)[(sl ’ SZ )(‘1 H jl )a du] P[(’l ’ jl )’ (” .’)’t - u]

(h.5)e4

O Sy,

where A={ (S1-1, Sz-l), (51, Sz-l), (Sl-l, Sz—l), (Sl-l, Sz), (Sl, Sz-l) }

Clearly from the state (51, Sz), the system can move to state (i1, j1) in A defined

above, in the transition which takes place in (u, ut+du ) after the one at time zero and

the transition from (i ,j1) to (i, j) in time (i-u) is governed by the P function.



6.3.3.Stationary Distribution :

Let m(@7,j)= lim P(X, =Y, = j) forGi, j)€ E
n—»wo

Then (i, ) s can be uniquely obtained as the solution of 7P, = n,and n,e = 1

Define
Hl(’a.’) = t:_hn‘);])l(,‘./) (t)
(8, )] A~ Gyt +m(s1, H] A -1 - Geyar
N — 0 0
G > 70, jym(,J)
(.7)eE

Jors, <j<S,

@, J) j (-Gt +m G~ (S~ 5), ) f A-e#)1-G@)r

> mG, md, J)
(i,))eE

Jor §{ =51 -N+1<i<§-Ls5,5j< S,

Hl (17]) =9
m, /)¢ (1-G@)ar

0
> m @, j)mG, j)
(i.JeE

fO"—N+1SiSS], Sy SjSSZ




where m (i, j) is the mean sojourm time of the

Markov  renewal
process{[(Xa, Yn),Ta], n=0,1,2,... } in the state (i, j) and is given by

m@i,j)=[(-G)t  forG,j)<E

6.3.4. Cost Analysis :

The objective function corresponding to this model is the total expected cost per

unit time under steady state .Let T, be the time duration between two consecutive
reordering epochs of C,. Then

-] A'X+N—]

o
k; k k - -
E(T;) — Z Z Z P, 1p2 zplz 12 (e Aplhy+ky +hyp) —e iﬂ(k“kz*ku”))

k=0 ky=0 k=0

M-k, o M-kp-h

Z Plllpzlzpulﬂ (k +hy+hy +L +1,+1)p
L=0 1,20 ;=0

+

= = k_k by 1 Au(s, +N +k, +k5)
1 2 12 - 3l+ +l+2

> Y X opeie )

=0 k=0 kp=s,+N

Ml—ll

Z pllx lezpulu k+ky+hy +h+L+h,)u
4=0 5=0  §;=0

Hence the expected number of orders placed per unit time for C; is 1/E(T;). The

expected number of orders placed for C; in E(T,)=E(T,)/expected time duration
between two consecutive replenishments of C,.



uM,

, + Pz

= E(I})/( ] = E(TX(p, + pi)/(eM,)

Hence, the expected number of orders placed per unit time for C; is
(p2tp12) / (uM2).  Let ky and k; be the fixed ordering costs for C, and C; respectively.
Then the total fixed expected cost of ordering for C; and C; per unit time is

=ki/E(T1) ) + ke ((p2+ pr2) / (1 Mz)).

The total average holding cost of C, and C; per unit time is

{le Zz:nl @, ]))+h{ Z _]Zﬂl(l _])J where hy and h; being the holding costs of

i=1 j=s5+1 J=s341  i=l

C, and C; per unit time . Purchase cost per unit of C; (C2) be vi (v2); vi'(>v1) be the

local purchase cost per unit of C,. Then the total procurement cost per unit time is.

v,( M, Jw{pz +puJ+vln(Sl +NJ
ET) p ET) )

Thus the total expected cost per unit time under steady state is

= k/E(Th) )k ((p2Hpiz)/(M2)+ ’H(le 22:71'1 (i,j))*‘h [ z’ JZ”I @ J)J

i=)  j=s+1 j=5,+1  i=1
(M ]+ (pz plz) V(SI+NJ
2
ET) U E(T))

where k is the order cancellation cost.



6.4. Model I
In this model, a local purchase is made to bring the inventory level of C; to s,

without cancelling the order placed. Semi-Markov kernel in this case is given by

t
Q(Z)[(—N+]’jl)a(shj2)’t]: plZJ-e—hg(u)du; forj2 = jl -‘]’

0

or j, =S, when j, = s, +1

For all other combinations, they are same as in Model-I.

Result 6.4.
Let T; be the time elapsed between two consecutive order placement epochs of
C.. Its distribution function F3){(s1,.),(s1,.),t} is given by
Fon{ (1, ) 60,).63= Foy ' {(1, )51, 1+ Fey *{(s1, (s, ).

where

F(3) 1=F(1) 1 of Model-1



and
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where b,[(s,, )(s,,)t]— B[(sl,)(sl,)t]and

Bl[(sl")’(slr)’t]:_[ _[ i i Z Ml’lkll’z plz

u=0 wv=u k=0 k=0 kiy=5+N-1 kl!kzlkn!

g-(lgl »k1+ku)(u) (pl + plZ) g(v - u) [1 - G(t - v)] dvdu

Proof:
Set time equal to zero at the time of placement of order. In (0, u,) there are
exactly (N+s;-1) demands for C; and C; together (with none one or more demands for C,

alone, demands that are exclusively for C, are not satisfied). In (uz, uz+duy) there is



a demand for either C;or for both C,and C; so that the inventory level of C,
drops down to-N resulting inalocal purchase which bring the inventory
level to s;. This is repeated 1 times (1=1,2,3,...). Bi[(s1, .),(s1, .), t] represents the
distribution function of time between two consecutive local purchase epochs.
The last local purchase occurs in (us, ust+dus). After the last local purchase at us, iz
demands occur for C;and C; together where l;2 <N+s;, so that the level of C;
after the natural replenishment at us is S;-l;2. Then due to M;-lj2-1 demands for G

( either for C; alone or along with that of C;) during (us us), the level of C; drops to
si+1. Finally due to a demand in (us, urtduy) for C, or for both C, and C; together
the level of C,; comes down to reorder level s;, and the next order for replenishment is

placed. Considering these facts we get the expression for Fgs)2.

6.4.1. Limiting distribution

Let
7,0, ))=limp(X,=iY,=j) for(i,j)eE. Then x,(i,j) s can be obtained

as the solution of ToP;=7, and 7 e =1 where

B, =1im 0,{Gi, j)(irs 1)1, (i, ) € E and @ is an (N+81)(Sz-52) component

row vector of ones. The probability distribution of the system state at arbitrary epoch

are given by

H,(Gi,))= ¥im p,, () where

P2(i.j)(t) =f ZQ(Z)((SI’SZ)’(il’jl)’du)P((il’jl)’(i’j)’t_u)

Gy, Jy)ed



Then

(i, j)]:(l ~G)dt +m,li- S, + s, jff (- e)1 - G(r))dt
Z”Z(i’j)m(i’ .I)

(i, j)eE

forS, —s, - N+1<i<$§,
s, +1<j<8§,

7, N - Ge)ar

H,G, /)= 2,70, /)mG,))

(i,j)eE

fors, +1<i<§, -5, - N

s, +1<j< S,
7,0, ) e (1 - G
0
(i.))eE
for—-N+1<i<s,
{ 5, +1<j<§,

where u=m(, j)= T(I -G())dt  for(i, j)eE

6.4.2. Cost Analysis

Let T3 be the time elapsed between two consecutive order placement epochs of
C;. Then
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In the case of cost analysis of this model , only change is that, the quantity
purchased in a local purchase is only s;+N and there is no cancellation of the orders

placed. Then the total expected cost per unit time under steady state

= (k‘ E(;;))+kz((p 2P '2/ )+h[21 21”2(’ J))H!{ > JZ”:(’ J)J

i=] j=5y+1 J=53 41 =l

(M E(, )) ((pz +p‘%)+" ((s Ma, ))

6.5.Model I

In this model local purchase to clear only the backlogs, each time the inventory

level drops to-N. Semi-Markov kernel in this case is given by



{

pofegwydn  forj, = j -1,

0

QB((—N+17j1)7(07j2)7t)=W S, +2< jl < S2

and j, =S, whenj =s,+1

For all other combinations of elements of the state space, they are same as in
Model 1

Result 6.5.

Let T4 be the time elapsed between two consecutive order placement epochs of
C.. Then its distribution function F4){(s1,.),(s1,.),t} is given by
Fiay{(s1,.),(51,),t}= Feay' {(51,.).(51,-),t}+ Fay*{(s1,.),(s1,.),t }where

F(4)l= F(l)1 of Model I and

t t t ¢ ¢ ¢ ® w £k PRy
Etesan=] | ] ] | IZ 2 ('z:!k;;ui’)'

=0 up=uy uy=u, ug=uy us=u, wg=us K1 =0 k3=0 kj3=N+s-1

Plk1 szz Plzkug.(kl +kﬁkn)(ux)(p] + p)gu, —u, )Z bz‘l ((0,-),(0,-),“3 - uz)
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where

bz((or)v(o")’t)) = %BZ((O")’(O")JW



- k +k, +k.)! o et
Bo0a)=[ [ 3 3 Elthtba) by gt wyp, + p,)

u=0v=nky=0k3=N-1] kl!kZ!kIZ!

gv—u)1-G(t - v))dvdu
Proof:

Set time equal to zero at the time of placement of orders. In (0,U;) there are
exactly (N+s;-1) demands for C, and C; together (with none , one or more demands for
C; alone ,demands that are exclusively for C,; is not met due to restricted sales.) In (uz,
uz+du,) there is a demand for either C; or for both C; and C; so that the inventory level of
C: drops to —N resulting in a local purchase just to clear the backlogs alone. This is
repeated 1 times (1=1,2,3,...). B2((0, .),(0, .), t) represents the distribution function of time
between two consecutive local purchase epochs. The last local purchase occurs in (us,
us+dus). After the last local purchase at u3 the natural replenishment occurs at
(us, us +d ug ). Due to 1; demands for C, alone , l;; demands for C; and C; together, L
demands for C; alone in (us3, us) , conditioned on no demand in (u3,us) for C; or for both
C, and C; together ,the level of C,drops to s;+1. Fina;ly a demand in (us , ues +dug) for C;
or for both C; and C,, the level of C; becomes the reorder level s;. Hence an order for

replenishment by a quantity S;-s; is placed.
6.5.1. Limiting Distribution.

The limiting probabilities immediately after a demand epoch

ie. lim P((X,,Y,) = (i, j))are obtained by solving

1t3P 3—7t3 and ri% ~ae 1



where

K= li_{llQ(z){(il’jn)’(iz’jz),t}»(il’jl)a(iz’jz) ek and e is an (N+5,)(Sz-s2)

component row vector of ones. The probability distribution of the system state at
arbitrary epochs are given by

H,@,j) = }_.mm };M () where

By @ = 300 ((5:,8:):Gir 4)) ) PG 1), G ot — )

(h.j1)eA

Then
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H %
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where u =m(i, j) = T(l ~G()yt



6.5.2. Cost Analysis

Let T4be the time elapsed between two consecutive order placement epochs of
C[. Then

n+N-

o0 -
E(E) = Z Z Z plktpz"zpn"u (e-lﬂ(h’f"z*"lz) _ e—lﬁl(kx +/‘z”‘uﬂ))
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h=0 1,=0  k,=0
In the case of cost analysis of this model, the quantity purchased in a local

purchase is N units and no order cancellation in this also. Then the total expected cost per
unit time under steady state is

o)+ +P”/w2)+"*(i" i”s("’f)J

+ h:(j:Z:H jim(i, j)} +v, (M%E(Z')) + vz((pZ + p,%)
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