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Chapter 1.

Introduction

1.1 Description of the queueing problem

Queueing theory is a branch of applied probability theory which serves to study

service system prone to congestion. A queueing system can be described as cus

tomers arriving for service, waiting for service if service is not immediate, and

if having waited for service, leaving the system after being served. An accurate

representation of a queueing system require a detailed characterization of the un

derlying processes. The following are the six basis characteristics of a queueing

process.

Arrival pattern of customers

The arrival pattern to a queueing system is often measured in terms of the average

number of arrivals per unit time (mean arrival rate) or by the average time between

successive arrivals (mean inter-arrival time). If the arrival pattern is deterministic,

then it is fully determined by either the mean arrival rate or the mean inter-arrival

time. On the other hand, if it is probabilistic, then their mean values provide only

measures of central tendency for the arrival pattern, and further characterisation
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is required in the form of the probability distribution associated with the random

process.

Arrivals may occur in batches instead of one at a time. In the bulk-arrival

situations, not only may the time between successive arrivals of the batches be

probabilistic, but also the number of customers in a batch.

Another factor to be considered regarding the arrival pattern is the reaction

of the customers in the queue. If the queue is too long, a customer may decide

not to enter it upon arrival and in this situation he is said to have balked. On the

other hand, a customer may enter the queue, but after some time lose patience and

decide to leave. In this case, he is said to have reneged. In the event that there are

more than one queue, customers may switch from one to another, that is jockey

for position. These three situations are all examples of queues with impatient

customers.

If the arrival pattern does .not change with time, then it is called a stationary

arrival pattern, otherwise, it is: called non-stationary.

Service pattern of servers

Much of the discussions concerning the arrival pattern is appropriate in discussing

service patterns. Service pattern can also be described by number of services

per unit time (service rate) or by the time required to service customer (service

time). Service may also be single or in batch, further it can be stationary or non

stationary with respect to time.

One important difference exists, however, between service and arrivals. The

terms, service rate or service time are conditioned on the fact that the system is not

empty; that is, if the system is empty, the server is idle. The servers that beconle

idle may leave the system for a random period of time called vacation. These

vacations may be utilised (0 perform additional work assigned to· the servers.

The service rate may depend in the number of customers waiting for service.
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In this situation, it is called state-dependent service. The problems of customer

impatience can be looked upon as ones of state-dependent arrivals.

Queue discipline

Queue discipline refers to the rule by which customers are selected for service

when a queue is formed. One of the most important and often practiced queue

discipline is first in first out (FIFa). Some others in common usages are last in first

out (LIFO). Another queue discipline is service in random order (RSS). In some

cases, customers are given priorities up on entering the system, the ones with

higher priorities to be selected for service ahead of those with lower priorities,

regardless of their time of arrival to the system. There are two general situations

in priority discipline. In the first, which is called preemptive, a customer with the

highest priority is allowed to enter service immediately after suspending even the

service in progress to a customer with lower priority. In the non-preemptive case,

the highest priority customer .goes to the head of the queue but cannot get into

service until the customer presently in service is completed.

System capacity

In some queueing process, there is a finite upperbound to the queue size. In this

situation, a customer is forced to balk if he arrives at a time when queue size is

at its limit. This is a simple case of balking, since it is known exactly under what

circumstances arriving customers must balk.

Service channels

The number of service channels refers to the number of parallel service stations

which can provide identical service facilities to the customers simultaneously.
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Stages of service

A service station may have several stages. That is, there may exist a series of

service stages through which each customer must progress prior to leaving the

system. They are called tandem queues.

1.2 Notation

A queueing process is described by the notation AIBIXIY"IZ where A is the inter

arrival time distribution, B is the service time distribution, JX" the number of ser

vice channels, Y the system capacity and Z the queue discipline. It was introduced

by Kendall (1953) and is widely used in books and papers.

1.3 Description of retrial queues

Queueing system in which arriving customers who find all servers and waiting

positions (if any) occupied, may retry for service after a period of time, are called

retrial queues or queues with repeated attempts. The most obvious example is

provided by a person who desires to make a phone call. If the line is busy, then he

can not queue up but tries again some time later. Thus, retrial queues are charac

terised by the following feature: a customer arriving when all servers accessible

for him are busy, leaves the service area but after some random time repeats his

demand. Retrial queues are a type of network with reservicing after blocking.

Thus, this network contains two nodes: the main node where blocking is possi

ble and a delay node for repeated attempts. As for other networks with blocking,

the investigation of such systems presents great analytical difficulties. Neverthe

less, the main feature of the theory of retrial queueing systems as an independent

pan of queueing theory are quite clearly drawn. In particular, the nature ot re

sults obtained, methods of analysis and areas of applications allow us to divide
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retrial queues into three large groups in a natural way: Single-channel systems,

multi-channel fully available systems, and structurally complex systems.

The standard queueing models do not take into account the phenomenon of re

trials and therefore cannot be applied in solving a number of practically important

problems. Retrial queues have been introduced to solve this deficiency.

1.4 Areas of application

Queueing theory have been the subject of considerable research since the appear

ance of the first telephone systems. Telephone systems remained the principal

application of the theory through about 1950. But the trend began to change

immediately after the second world war and numerous other applications have

been found and much work in the area. During this time investigations in another

branch of applied probability, namely 'reliability' also began. The 'machine inter

ference model which is a special case of queueing and reliability also developed

around the same time. It was also discovered that models of the reliability of com

plex systems could be formulated in terms of queues (arrivals of breakdowns and

repair services). These three areas of applied probability have much in common

and can be handled by the same mathematical techniques and procedures. In the

60's the modelling of computer systems and data transmissions systems opened

the way to studies of queues characterized by complex service disciplines and

have created the need to analyze inter connected systems. Progress in this area

has been rapid and so many industrial applications have been widely accepted

since the 70's. The methods of queueing networks have always been a basic com

ponent of the study of communication systems. The widespread introduction of

computers into these systems has introduced the use of new results on queueing

networks in studies of the performance of large communication networks. Some

of the other prominent applications of the queueing theory are landing of aircrafts,

loading and unloading of ships, machine repair, taxi services and toll booths.
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1.5 Measures of effectiveness

6

Queueing models can be classified into two general types - descriptive or pre

scriptive. Descriptive models, describe some current "real-world" situation. In

this model for given types of arrival and service patterns and specified queue

discipline and configuration, the state probabilities and expected-value measures

of effectiveness which desirable the system are obtained. That is, to describe a

queueing model we must relate quantities such as queue length, waiting time of

a customer etc. :- to the known quantities such as arrival rate, retrial rate service

rate etc:- On the other hand, the prescriptive model prescribe what the real-world

situation should be, that is, the 'optimal' behaviour at which to aim. This effort

is generally referred to under the title of design and control of queues. Generally,

the controllable parameters are the service pattern, number of channels, and queue

discipline, or some combination of these.

1.6 Literature survey

1.6.1 Standard queues

The first work on queueing theory was The Theory ofProbabilities and Telephone

Conversations by A. K. Erlang who published this paper in 1909. In his later

works, he observed that a telephone system was generally characterized by ei

ther (1) Poisson input, exponential service time, and multiple channel, or (2)

Poisson input, constant service time and a single channel. He was also respon

sible for the notion of stationary equilibrium, for the introduction of the so-called

balance-of-state equations, and for the first consideration of the optimization of

a queueing system. In 1927, Molina published his Application of the Theory

of Probability to Telephone Trunking Problems. Thornton Fry's Probability and

Its Engineering Uses (1928) expanded much of Erlang's earlier works. In the

early 1930's some pioneering works were done by Felix Pollaczek, Kolmogorov,
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Kleinrock, Crommelin and Palm. For a comprehensive review of the main results

and literature, refer Gross and Harris [38]~ Kleinrock [45], Saaty [66] and Hideki

Takaji [39,40,41].

1.6.2 Retrial queues

One of the earliest papers in Retrial queues was On the Influence of Repeated

Calls in the Theory ofProbabilities ofBlocking by Kosten [46]. In 1957, J. W. Co

hen [26] published Basic Problems of Telephone Traffic Theory and the Influence

ofRepeated Calls in which he considered the more generall~llAllcretrial queue

with impatient customers. He also obtained the necessary and sufficient condition

for the ergodicity of retrial queues. But the approach was based on explicit so

lution of the Kolmogorov equations for the stationary distribution which leads to

very cumbersome arguments. Shortly after this paper, the first criteria based on

mean drifts were published. In,1968, Keilson, Cozzolino and Young published the

first result on MICI! retrial queue using the method of supplementary variable.

In the early 1970's Jonin and Sedol independently obtained explicit formulas for

POn and PIn, as well as the blocking probability and expected number in the orbit.

In the late 70's, Falin [32, 33] considered the Markov chain embedded at service

completion, the busy period and the functioning of the system in a non-stationary

regime and the method for obtaining the distribution of the virtual waiting time.

Methods of numerical calculations of the steady state distribution were developed

by de Kok [47, 48]. Wilkinson [71] suggested the use of a truncated model for

numerical solution of the Kolmogorov equations for the original model with un

limited orbit capacity. An approximation with the help of the model where the

retrial rate equals infinity when the number of customers in orbit exceeds some

level was suggested by Falin (1983). In 1990, Neuts and Rao [62] suggested an

approximation with the help of the model where l~U; retrial i aic stays constant

when the number of customers in orbit exceeds some level. Two extensive sur-
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vey articles in retrial queues are due to Yang and Templeton [74] and Falin [36],

covering, respectively, the developments upto mid 80's and late 80's. The only

monograph on this topic is by Falin and Templeton [37] which provides an excel

lent scenario of retrial queues. For a systematic account of the results published

in retrial queues, we refers to the bibliographical information in [5, 6].

1.6.3 Methods for solving queueing models

One of the methods used for solving Markovian queueing models is to build up

a difference-differential equation. There are several methods for the solution of

equation of this type. The simplest method, which is applicable only in very

special cases is to solve recursively. Usually the best method to deal with such

equations is to convert them, if possible into a single equation for a generating

function. This method is discussed in detail by D. R. Cox and H. D. Miller [27].

Embedded Mark0 v chain technique is commonly used when one among the ser

vice time and inter-arrival time is exponentially distributed while the other is not.

This was introduced by Kendall [44]. Cox has analysed non-Markovian mod

els by converting them into Markovian rnodels through the introduction of one

or more supplementary variables. A stable recursive scheme for the computation

of the limiting probabilities can be developed based on a versatile regenerative

approach, Tijms [69].

The investigation of many of the retrial queues is essentially more difficult than

that of queueing models without retrials. Since the equilibrium distribution of the

system state is expressed in terms of contour integrals or as limit of extended con

tinued fractions, they are not convenient for practical applications. More useful is

the implementation of 'computational probability'. By computational probability

we mean the study of stochastic models with a genuine added concern for algo

rithmic ;~a~~bility uvcf a wide, realistic range of parameter values. The matrix ge

ometric methods comes under broader heading of computational probability. For



CHAPTER 1. INTRODUCTION 9

a wide variety of stochastic models, the steady-state and occasionally the transient

measures of the underlying process can be expressed in terms of a matrix R or G.

That matrix is the minimal non-negative solution to a non-linear equation. Such

matrix solutions to stochastic models were first proposed in the early 1970's by

Marcel F. Neuts [59]. Marcel, with his students, and several other researchers

have since then provided much impetus to the mathematical development of this

method. By the introduction of the matrix geometric methods, the "Laplacian

curtain" which covers the solution and hides the structural properties of many in

teresting queueing models is effectively lifted. This technique finds wide spread

application, particularly, in telecommunication performance analysis. This is de

veloped in the context of a two dimensional Markov process (X t , Yi) on the state

space {O, 1, ...} x {O, ... m} with the property that the first co-ordinate of the pro

cess is skip-free upward. Calling by level i the set of states {i} x {O, ... m}, and

denoting the Cm + 1) x (m+ 1) submatrix of transient probabilities (infinitesimal

rates) from i to j by P( i, j), the process were also assumed to posses the spatial

homogeneity property P(i, i + 1 - j) = Aj ; 0 ~ j ~ i, i ~ 0, in addition to the

skip-free upward property for levels given by P(i,j) = 0; for j > i + 1.

1.7 Author's contribution

Retrial queues considered by researchers so far have the characteristic that each

service is preceded and followed by an idle period which is terminated either by

the arrival of a customer from the orbit (secondary customer) or by 'a primary (first

attempt) customer. However, we consider retrial queueing models in which, even

without a waiting room, each service completion epoch need not necessarily be

followed by an idle time. This is achieved as follows: immediately on a service

completion, the server picks up a customer from the orbit with probability Pj,

when there are j customers in the orbit (it is assumed that server is aware of

the orbital status, for example there is a register with him of customers in orbit,
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where as the orbital customers are ignorant of the server status.) With probability

1 - Pj, no search is made on a service completion epoch and in this case, as in the

classical retrial queue, a competition takes pla~e between primary and secondary

customers for service. Thus, if search is made, a service is followed by another

service and if not, a service is followed by an idle time.

Our study has two main objectives. The first one is to introduce orbital search

in retrial queueing models which allows to minimize the idle time of the server. If

the holding costs and cost of implementing the search of customers are introduced,

the results are obtained can be used for the optimal tuning of the parameters of

the search mechanism. The second objective is to provide insight of the link

between the corresponding retrial queue and the standard queue (without retrials).

To this end, we observe that when Pj == 1, our model reduces to the corresponding

classical queueing models (without retrials) and when Pj == 0, it becomes the

corresponding retrial queueing model.

In chapter 2, we concentrate on the performance evaluation of a single server

retrial queue with orbital search as follows: we consider a single server queueing

system to which primary customers arrive according to a Poisson stream of rate

A. If the server is free at the arrival time of a primary customer, the arriving

customer begins to be served immediately and leaves the system after service

completion. Otherwise, if the server is busy, the arriving customer becomes a

source of repeated calls. Every such source produces a Poisson process of repeated

calls with intensity u. The service times are independent with common probability

function B(x) (B(O) == 0). Immediately aft.ercompleting each service, the server

goes for search of customers in the orbit with probability Pj and remains idle with

probability qj == 1-Pj. The stability condition of the system is obtained. Limiting

distribution of the system state is investigated. Explicit expressions of the limiting

probabilities and their moments are obtained.

In chapter 3, a single server retrial queueing model with nonpersistent cus

tomers and orbital search is considered. If the server is busy at the time of arrival
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of a primary call then with probability 1 - HI the call leaves the system without

service and with probability HI > 0, forms a source of repeated calls. Similarly, if

the server is occupied at time of arrival of a repeated call, with probability 1 - H2

the customer leaves the system without service and with probability H2 goes back

to the orbit. All other assumptions and notations introduced in chapter 2 hold in

this chapter as well. An important feature of the model under consideration is

that for many problems the cases H 2 < 1 and H 2 = 1 yield essentially different

solutions. In the case H2 = 1, the model is analysed in full detail using supple

mentary variable method. Stability condition is obtained. The joint distribution

of the server state and the orbit length in steady state is studied. The structure

of the busy period and its analysis in term of Laplace transformation have been

discussed. This chapter also provides a direct method of calculation for the first

and second moment of the busy period. The case H 2 < 1 is far more complicated

and so closed form solution is obtained only in the case of exponential service

time distribution.

In chapter 4, we consider a multiserver retrial queueing model (MAPIAllc)

with search of customers from the orbit. The Markovian arrival process (MAP), a

special class of tractable Markov renewal process, is a rich class of point processes

that includes many well-known process such as Poisson, PH-renewal process, and

Markov-modulated Poisson processes. One of the most significant features of

the MAP is the underlying Markovian structure and fits ideally in the context of

matrix -analytic solutions to stochastic models. The idea of the MAP is to signif

icantly generalize the Poisson process and still keep the tractability for modeling

purposes. In many practical applications, notably in communications engineering,

production and manufacturing engineering, the arrivals do not usually form a re

newal process. MAP is a convenient tool to model both renewal and non-renewal

arrivals. The steady-state analysis of the model using direct truncation and Neuts

Rao truncation are performed. Efficient algorithms for computing various steady

state performance measures and illustrative numerical examples are presented.
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In chapter 5, we consider an M 1PH 11 retrial queue with service interruptions

and orbital search. In addition to the assumptions of the model described in chap

ter 2, the unit undergoing service is subject to interruptions. Service interruption

occur according to a Poisson process with rate a. Here the service times are

assumed to be of phase type. PH-distributions and PH-renewal process were in

troduced by M. F. Neuts. The class of PH-distributions includes many wellknown

distributions such as generalized Erlang, hyper exponential etc., as special cases

and has a number of interesting closure properties. A detailed discussions of the

properties of PH-distributions and their uses in stochastic modelling may be found

in Neuts [59]. Efficient algorithm procedures for the steady-state analysis of the

model are presented.

In chapter 6, we consider an excursion between classical and the retrial queue

in the following way: For the present model as long as the number of customers

in the orbit remains less than or equal to N, the server immediately on a service

completion, picks up, the next customer from the orbit with probability 1 and

starts service. When the orbit size reaches N + 1, no more search is made for

customers until it comes on to N at a service completion epoch. That is, during

the period of no search, customers from orbit have to make trials on their own.

Hence the present model deals with a back and forth movement between classical

queue and retrial queue. The motivation behind this model is that when orbit

size increases, retrial rate also correspondingly increases thereby reducing the idle

time of the server between services. By assigning costs to customer search and

cost for switching to retrial and back to classical, a suitable cost function in N is

constructed. Some numerical results are provided.
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M IG 11 retrial queue with orbital

search

In this chapter, we investigate a single server queue with linear retrial policy,

where the server can go in search of custcmers immediately after each service

completion.

The inter-retrial times can be modelled according to different disciplines de

pending on each particular application. In telephone systems the repeated attempts

are made individually by each blocked customer following an exponential law of

rate J-L. This is the so-called classical retrial policy whose rate is j u, when the

orbit size is j 2 o. In contrast, there are other types of queueing situations in

which the intervals separating successive repeated attempts are independent of

the number of customers in orbit. This second possibility is the constant retrial

policy, i.e. the retrial rate is Q (1 - bj o) where bj o denotes Kronecker function.

It can be motivated in the context of the CSAIAICD (Carrier Sense Multiple

Access with Collision Detection) protocol [25]. Artalejo and Gomez-Corral [8]

unify both policies by defining the linear retrial policy with rate Q (1 - l5j o ) + j u,

The following application motivates the analysis of the model considered here.

Repair service with search of customers: The job-shop keeps a register of cus-

13
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tomers who are forced to leave the system since they encountered a bus)' server

at the time of arrival. On completing a service the server decides to have the next

service started immediately by picking up an unsatisfied (orbital) customer with

probability Pj. The search time is assumed to be negligible. The probability for

not going for the search of customers is qj = 1 - Pj. If the server does not pick up

the next customer to be served from the orbit then there is a competition between

primary and orbital customers for getting into the counter for the next service.

Thus the present work includes classical queue when Pj == 1, j :I 0 and the

classical retrial queue when Pj =0, as particular cases. It should be noted that

the service time distribution, the number of customers in the orbit and the retrial

policy in queueing terminology correspond to the repair time, blocked demands

and customer's/server's search mechanism, respectively, in the above example.

This chapter is organized as follows: In section 2.1 we describe the mathe

matical model and study the stability condition. In section 2.2, we concentrate on

the case of exponential service times to obtain explicit expressions of the limiting

probabilities, factorial moments and various other performance characteristics in

the steady state. MICll case is analysed in section 2.3 using two different ways.

We obtain the limiting probabilities using the supplementary-variable technique

and also develop a stable recursive scheme for the computation of the limiting

probabilities. In section 2.4, we list some system performance measures and in

2.5, the effect of P on these measures are analysed by illustrative numerical exam

ples.

2.1 The mathematical model

We consider a single server queueing system to which primary customers arrive

according to a Poisson stream of rate A. Any customer who, upon arrival, finds the

server busy immediately leaves the service area and joins the orbit. The interval

between two successive repeated attempts is exponentially distributed with rate
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Figure 2.1: State space and transitions

15

a(l - 8jo) + j u, given that the number of customers in orbit is j. The service

times are independent with distribution function B(x) (B(O) == 0).

Let f3(s) = Jooo e-SXdB(x) be the Laplace-Stieltjes transform of B(x), (3k ==
(-l)k f3{k) (0) be the kth moment of the service time about the origin, p == A{3, the

system load due to primary arrivals, h(r) = l~~(~) be the instantaneous service

intensity given that the elapsed service time is equal to x, k(z) == (3(A - AZ).

It can be shown that k(z) = E~=o knzn, where kn = fon C>.:r e->,xdB(x). Let

1Jn be the time at which the rtth service completion occurs. Immediately after

this, the server goes for a search of customers in the orbit with a probability Pi

(Po = 0) which depends on the number of customers j in orbit. With probability

qj = 1 - Pj the server remains free. In the latter case the event to follow depends

on the competition between a primary arrival of rate A and the flow of repeated

attempts of rate a(l - c5jo) + jJ.l. The search time is assumed to be negligible.

The flow of primary arrivals, the intervals between repeated attempts, and service

times are assumed to be mutually independent.

Let N(t) be the number of customers in orbit and C(t) be the state of the

server at time t. We have C(t) equal to 1 or 0 according to whether the server

is busy or free. Note that the state space of the process X (t) == (C(t), N (t)) is

S == {O, I} x N. The transitions among states are shown in Illustration I for the

case of exponential service times with rate u.

We now study necessary and sufficient conditions for the system to be sta

ble. Observe that the sequence Nn = N(1/n +) forms a Markov chain which is

the embedded Markov renewal process of the continuous time Markov process
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(X(t), ~(t)), where ~(t) represents the elapsed service time of the customer being

served (~(t) is 0 if C(t) == 0).

According to the intuitive expectations the system approaches the standard

M/C/1 queue when J-L > 0 and N(t) == j is large, and when limj-tooPj == 1. In

those cases, we expect that p == A(31 < 1 would be the stability condition. This is

proved in the following.

Proposition 2.1. Let us assume that limj--too Pj exists. If J-L > 0, then {Nn}~== 1 is

positive recurrent if and only if p < 1.

Proof. Firstly, we observe that {Nn}~=l satisfies the state equation

where Vn is the number of customers aniving during the nth service time and,

Bn == 1 if the nth customer inservice proceeds from the orbit and B; == 0 other

wise.

Note that {Nn } ~=l is irreducible and aperiodic so to investigate the positive

recurrence we shall use Foster's criterion which states than an irreducible and

aperiodic Markov chain is positive recurrent if there exist a non-negative function

f(j), j E N, and E > 0 such that the mean drift <Pj == E [f (Nn +1) - f (Nn ) I
Nn == j] is finite for all j E N, and <Pj :S -€ except perhaps for a finite number,

By choosing the test function f{j) == j, we obtain

if j == 0,

Then, we have that limj-too '{Jj == p - 1. Thus, p < 1 is sufficient for the positive

recurrence.
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To study non-ergodicity we employ the Theorem 1 in Sennott et al. [67] which

states that {Nn } ~=1 is non-ergodic if Kaplan's condition is fulfilled, <Pj < 00, for

all j E N, and there exists and index jo such that <Pj ~ 0, for j ~ jo· If p 2: 1,

it is obvious that 'Pj ~ 0, for j ~ 1. Furthermore, Kaplan's condition is satisfied

because there exists an index k such that Pij == 0, for j < i - k, i > 0, where

P == (Pij) is the one-step transition matrix associated to {Nn } ~=l. This completes

ilieprooE D

Proposition 2.2. Iflimj-+ooPj =: 1 then {Nn } ~l is positive recurrent if and only

if p < 1.

Proof. We easily find that limj~oo 'Pj == P - 1 so Foster's criterion guarantees

again that p < 1 is sufficient for the positive recurrence. The necessity follows

from the argument given in Proposition 2.1. D

We also analyze the case p == °and Pj == T, for j ~ 1.

Proposition 2.3. If J-l == 0, a > 0 and Pj == T, for j ~ 1, then {Nn } ~=l is positive

recurrent if and only if f3 = p~~~:) < 1.

Proof. The mean drifts are given by

TA+a
<Pj = P - A+ Q ' j ~ 1.

Then the proof follows the lines of the previous propositions. D

Finally, taking into account that the arrival input is a Poisson process and

Burke's theorem [28], pp.187-188, it follows that the limiting probabilities

Pi j == lim P{(C(t),N(t)) == (i,j)}, (i,j) E S,
i-osx:

exist and are positive under the same conditions of the embedded chain {Nn}::= 1•
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2.2 The MIMll case

18

Through this section we consider B(t) = 1-e-v t , t > 0, then the process X (t) be

comes an irreducible continuous time Markov chain. We assume that the positive

recurrence conditions investigated in Section 2.1 are fulfilled. The consideration

of exponential service times allows to express the main performance characteris

tics in terms of hypergeometric functions.

The set of statistical equilibrium equations for the probabilities POj and Pl j is

(.,\ + a(l - 6jo) + jJ.L)POj = qjVP1j, j 2 0 (2.1)

(.,\ + v)Pl j = ,,\P1,j-l + ,,\POj + [a + (j + l)J.t]PO,j+l + VPj+lPl,j+l, j ~ 0

(2.2)

Using equation (2.1), eliminate the probabilities Plj from the equation (2.2). After

some algebra on the resulting equation we get:

vqj-lqj(a + (j + 1)J.L + "\P)+I)PO,j+l - "\qj-lQj+l(A + a + jJ.L)POj

= vqj-lqj+l(a + jJ.L + "\Pj)POj - "\qjQj+l(A + Q(l- 6j - 1,0) + (j -l)/l)PO,j-l

This implies that

Thus
Po " - >1Qj(>.. + a(l - dj-l,O) + (j - 1)J.l) Po "

0J - vqj-l(a + jJ.l + APj) O,J-l-

Solving recursively, we find that

.Jrr"-l A+ a (1 - dkO) + kJ.l . .
POj = PooqjrY k=O PHlA + a + (k + 1)J.l' J 2: 1, (2.3)



CHAPTER 2. MIGll RETRIAL QUEUE WITH· · ·

p . = P, ~+1 ITj A+ a + kJl . > °
I) 00f' \ + + k ,J - ,

k=1 Pk A a J.L
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(2.4)

(2.5)

It seems impossible to express formulas (2.3)-(2.5) in terms of any known func

tion, indeed in the case of geometric search (i.e. Pj = 1 - pi, P E [0, 1], j ~ 1).

Hereafter we assume the case of constant search Pj = P, P E [0,1], j ~ 1, to get

some nice closed-form expressions. First, we introduce some notation. Let F be

the hypergeometric series given by

00 (a) (b) zk
F (a b: C· z) =~ k k -

"" L..J () k' ', C k •k=O

where (x)k is the Pochhammer symbol defined by

{
I , ifk=O,

(x)k =
x(x + l) ...(x + k - 1), if k 2:: 1.

We also introduce the partial generating functions

00

Pi(z) = L zj Pij, i E {O, I}, Izl ~ 1,
j=O

and the partial factorial moments Mk defined by

00

Mj = LPij , i E {O, I},
j=O
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00

Jut = Lj(j -l)...(j - k + I)Pij, i E {D, I}, k 2: 1.
j=k

Theorem 2.4. Let us assume that {X (t); t 2: o} is positive recurrent, then

(i) The limiting probabilities {Pij } (i,j)ES are given by

( A+O)
(1 - p)A. --;- j .

POj = Poo \ rl ( ) ,J 2: 1,/\ + a pA+O + 1
J.L "

J

( A-tO + 1) "
"+1 J.L J.

PI j = Poorl ( ) ,J 2: 0,
pA+O + 1

J.L .
)

-1 (A+a pA+O )Poo = F 1~ -J.-l- + 1; J1 + 1; p .

(ii) The partial generating functions Pi(z), f) ~ i ~ 1, are given by

(
A+ 0 PA + 0 )Po(z) = Poo(l - pz)F 1, -J.-l- + 1; J1 + 1; pz ,

(
A + 0 PA + Q )p}(z) = PoopF 1,-- + 1; + 1; pz .

J.-l It

(iii) The partial factorial moments A1k, i E {a, I}, k 2: 0, are given by

A.Jg = 1 - p,

20

(2.6)

(2.7)

(2.8)

(2.9)

(2.] 0)

I 0 _ ,(1 - p)'x k e~Q)k ,X + et . p,X + et .
Alk - Pook.,X p A+ F(k+l, --+k, +k+1, p), k 2: 1,

+0 (~+ l)k J.-l J.-l
J.L

MJ =p,

'A+a
,I _ , k+l l~+ l)k __ A+Q .pA+a .

•~·lk - Pook.p A+ F(k + 1, + k + 1, + k + 1, p), k 2: 1.
(~+ l)k Jl J.-l

J.L
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Proof. For the case Pj == p, j 2: 1, formulas (2.3)-(2.5) reduce to (2.6)-(2.8). By

taking generating functions, we obtain (2. ]0) and

After some rearrangement (2.1 l ) yields the alternative expression (2.9).

The key to computing the partial factorial moments is the following identity

00 k

" .s:Pi(l + z) = L M~ k!' i E {a, I}.
k=O

After expanding (1+ z)j as E{=D (DZk, we can obtain Mk by a direct identifica

tion of the coefficients of the series Pi(1 + z). D

For the sake of completeness, we next give the expressions corresponding to

the classical and constant retrial policies.

Corollory 2.5. (Classical retrial policy) Let us consider that Q == °and /1, > 0,

then

(i) The limiting probabilities are given by

( ~ + 1)
_ rJ+l J1. j.

PI j - Poop ( ) ,J ~ 0,
~+1

J1. I •

J

-1 (A PA )Poo == F 1, - + 1; -. + 1; p .
I' 11. /
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(ii) The partial generating functions are given by

(
A PA )Po{z) = Poo{l - pz)F 1, P, + 1; -,; + 1; pz ,

P1{z) = PoopF (1, ~ + 1; P: + 1; pz) .

(iii) The partial factorial moments are given by

Mg = 1- p,

22

o _ '( ) k (~) k ( A . PA . )Mk - Pook. 1 - P P ( ) F k -+ 1, - + k, - + k + 1, p ,k 2: 1,
~+1 J.l J.l

J.L k

Md =P,

( ~ + 1)
1 _ ,k+l J.L k' ( A . PA . )u; - Pook.p ( ) .F k + 1, - + k + 1, - + k + 1, P ,k ~ 1.

~~ + 1 J.l J.l
J.L k

Corollory 2.6. (Constant retrial policy) Let us consider that Q > 0 and JL = 0,

then

(i) The limiting probabilities are given by

(1 - p)A j .
POj = Poo A + Cl f3, J ~ 1,

Poo = 1 - {3.

(ii) The partial generating functions are given by

p. (z) = (I - pz)(l - (3)
o 1 - (3z '
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P ( )
= p(1 - f3)

1 Z f3 .1- Z

(iii) The partial factorial moments are given by

M3 = 1- p,

23

MO = k!(l - p),X (_f3_)k k > 1
k A+n 1-f3 ' - ,

MJ =p,

Mf = k!p (1 ~ ,B ) k , k "?- 1.

For the choices Pi = 1, j ~ 1, and Pi == 0, j ~ 1, we can deduce the

performance characteristics of the standard MIMll queue and the MIJvfll retrial

queue.

2.3 The MIGll case

Consider now the case of a general distribution function B(x) of the service times.

We analyze this case in two different ways.

(a) Supplementary variable method

For simplicity, in this method, we put o == 0 (ie. we consider the classical

retrial policy) and Pi == P, P E [0, 1], j ~ 1.

Theorem 2.7. If p < 1 and the system is in the steady state, then the joint distri

bution of the server state and queue (orbit) length

POn == P{C(t) == 0, N(t) == n}
d

P1n(x) = dx P{C(t) -= 1, ~(t) < x, N(t) = n}
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has partial generating functions.

00

Po(z) = LZnPon
n=O

= ,xpPoo(z)~ l z

(t)~-lS(Z, t)dt
J.l 0

00

P1(z,x) = LZnp1n(x)
n=O

A(1 - z) [ ] -A(l-z)x
- [,8(,x - ,xz) _ z] Po(z) 1 - B(x) e

where

24

(2.12)

(2.13)

(2.14)

(2.15)

If, in the case C(t) == 1, we 'neglect the elapsed service time €(t), then for the

probabilities PIn == P[C(t) == 1, N(t) == n],

00

'P1(z) = LZnPla
n=O

= 1 -,8(,x-,xz) Po(z)
,B(A - /\z) - z

Proof. The set of statistical equilibrium equations are obtained as :

(,x + nJ-L)POn = [1 - (1 - 6no)p]100 P1n(x)h(x)dx

P{n(X) == -(A + h(x))P1n(x) + AP1,n-l(X)

P1n(O) = ,xPOn + (n + 1)J-LPO,n+l +P100 P1,nH(X)h(x)dx

(2.16)
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For generating functions Po(z) and PI(Z, x) these equations are transformed to:

'xPo(Z) + J1ZP~(Z) = (1 - p) 100 P1(z,x)h(x)dx + 'xPPoo (2.17)

ap~=,x) = -(,X -,Xz + h(x))P1(z,x) (2.18)

(z - pf3(A - AZ))P1(Z, 0) + ApPoo = J-lZP~(z) + AZPo(Z) (2.19)

Solving (2.18) yields,

P1(Z,x) = P1(z,0)(1- B(x))e-A(l-Z)X

Combining (2.17), (2.19) and (2.20) and after some algebra we get

(2.20)

J-lZ(Z - f3(A - AZ))P~(z) + (AZ - ((1 - p)AZ + Ap)f3(A - AZ))Po(z)

== ApPoo(Z - (3(A - AZ)) (2.21)

Coefficient of P~(z) has two zeros Zl == °and Z2 = 1. Choose an arbitrary

point a E (0,1). Solving (2.21) for Z E (0, a] we get

Z ~ 1 ApPoo jZ ~ 1Po(Z) = [( -) ~ s(a, z)]- {Po(a) + ~ (t) ~ - s(a, t)dt}
a J-l(a) ~ a

~
As Z ---* 0+, Po(O) < 00 and (~) ~ diverges. Thus,

ApR la xPo(a) = ~ (t)~-ls(a, t)dt
J-l(a) ~ 0

(2.22)

On the other hand) solving (2.21) for Z E [a, 1), and taking limit as Z --t 1-, we

get,

D ( ) = Po(1)s(a,1) _ 'xpPoo jl( )~-1 ( )d
FO a ~ ..\ t ~ s a, t t

(a) ~ JJ(a)~ a

(2.23)
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For obtaining relation (2.23), it should be noted that

1
. [1 - (3(A - AZ)] A/31
lID I == < 00

z~1- f3(A - AZ) - Z 1 - A(31

Equating (2.22) and (2.23) we get

ApR 11
xPo (1) == 00 ( t) ~ -1 S (0, t)dt

ILS(O, 1) 0

Then we can rewrite the solution of (2.2] ) as (2.12).

Combining the equation (2.19), (2.20) and (2.21) we get (2.] 3).

Since P1(Z) == Ioco
P1(z,x)dx, we obtain (2.16).

Now applying the normalizing condition Po (1) + PI (1) == 1, we get

26.

(2.24)

Po(l) == 1 - A(31 == 1 - p (2.25)

Using (2.24) and (2.25), we obtain the expression for Poo as in (2.15). 0

Corollory 2.8. The partialfactorial moments AJk, i E {O, I} k E {O, I} are given

by

Alg == 1 - P

.~lci == p

JlI0 _ ApPOO A(p - p)
111 - +---

J-L J-l

I A
2
{2 }All == ( ) 11/32+ Aj31 - P/31 (1 - Poo)

1 - P. J-L

(b) An algorithmic solution.

Our next objective is to develop a stable recursive scheme for the computation

of the limiting probabilities Pi j . The derivation is based on a versatile regenera

tive approach [69], pp. 266-268, which was also useful to compute the limiting
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distribution of other retrial queues [11, 12, 48].

We can assume a more general model description where the arrival rate Aij

depends on the system state and the retrial rate 'Yj depends on the number of

customers in orbit. Let a regeneration cycle be the elapsed time between two

consecutive visits of the process X (t) to the state (0, 0). We define some random

variables:

T = the length of a regeneration cycle,

]ij =theamountoftimeinacycleduringwhichX(t) == (i,j), (i,j) E E,

N ij = the number of service completions in a cycle leaving the system at the

state (i,j), (i,j) E E.

From the theory of regenerative processes, we can express the limiting proba

bilities as

E [Ti j ] (0 0)
Pi j = E[T] , Z,) E E,

where E = {a, I} x {a, ... ,K} and K denotes the orbit capacity.

We now consider the balance equations

(2.26)

Equations (2.27) and (2.28) can be obtained by equating the flow rate into and

theftow rateoutof(O,j) and {(i,k) li E {a, 1},0 ~ k ~ j -I}, respectively.

By combining (2.27) and (2.28), we get
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Now an appeal to Wald's theorem yields

28

K

E [T1j] = LE [Nk](qkAkj + PkBk;) , 0 S j S K, (2.30)
k=O

where N k = NOk + (1 - t5'kO) N1,k-l, and the auxiliary quantities 44k j and B kj are

defined as

Ak j = the expected amount of time that during a service time j customers

are in orbit given that at the previous service completion the server

did not search customers in the orbit and the system state was (0, k),

Bk j = the expected amount of time that during a service time j customers

are in orbit given that at the previous service completion the server

went for a search of a customer in the orbit, so the system state was

(1, k - 1).

From (2.29) and (2.30), we find that

min(j+l,K}

E [T1j] = Ao; + L qkAk; (>'Ok E [TOk] + Al,k-l E [T1,k-l])
k=l

j+1

+L Pk.Bkj (AOk E [TOk] + Al,k-l E [T1,k-d), 0 s j S K. (2.3])
k=l

We now observe that NOj and N1,j-l are Bernoulli trials with success probability

qj and Pj, respectively. Thus, we have

(2.32)

By combining (2.27), (2.29) and (2.32), we obtain
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By inserting (2.33j in (2.31) we find that

29

min(j+l,K) \ ( \ )
~ A1,k-1 AOk + Ik

E [TIj] = AOj + L >. qkAkjE [TI,k-rl
k==l Pk Ok + Ik

":+1

+~ >'I,k-I (>'Ok + 'Yk) B.E [T _]. 0 < "< K. (2.34)L A + Pk kJ l,k 1, - J -
k==1 Pk Ok Ik

Dividing both sides of (2.33) and (2.34) by E [T] and using (2.26) and the fact

that E [T] == (AooPoo) -1, we get

p, . = qj>'l,j-I p. 1 _< J" <_ K,
0J \ + 1,J-l,

PjAOj Ij
(2.35)

min(j+ i,K) \ ( \ )
~ Al,k-1 "'Ok + Ik

PIj = >'ooAojPoo+ L- >. qkAkjP1,k-1
k==l Pk Ok + Ik

j+1 0

+~ >'l,k-I (>'Ok + 'Yk) B.P 0 < . < K (2.36)L A + Pk kJ l,k-l, - J - .
k==I Pk Ok Ik

The above formulas (2.35) and (2.36) provide a stable recursive scheme for com

puting {POj };:1and {PIj};:o in terms of Poo . Letting lirnj-+~Pj == 0 and Tj == j J-l

in (2.35) and (2.36), we get the formulas given by De Kok [48] for the M IG11
queue with classical retrial policy.

It remains to specify how to determine the quantities Ak j and Bk j . This can be

done with the help of a third auxiliary quantity Ck j and the following relationships

A Ij+l C "K
j+1,j = >. ii» 0 :::; J :::; - 1,

O,j+ 1 -t- Ij+ I

Bkj == Ck-I,j, 1 < k < K, k - 1 <j < K,
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where c.; 0 ::; k ::; j < K, is defined as

Okj = the expected amount of time that during a service time j customers

are in orbit given that immediately after the beginning of the service

k customers were in orbit.

Then, if Aij = A, (i,j) E E, we have

30

fOO «:" (,x.t)i-
k

(1 - B(t))dt for K = 00 or J" < K < 00,
Jo (J-k)! '

fooo e-.xt(l - B(t)) f: (A~t dt, for j = K < 00.
n=K-k

(2.37)

Let us verify the validity of Okj in the case that K = 00 or j < K < 00. Note

that the infinitesimal interval (t, t + ~t) contributes to Okj if the service time has

not expired before time t (with probability 1 - B (t)) and j - k primary customers

arrive in (0, t] (with probability e:" (At)j-k /(j - k)!). The case j = K < 00

follows a similar argument noting that there must be at least K - k arrivals in the

interval (0, t].
The integrals in (2.37) can be reduced to a finite sum for many practical service

distributions. For example, if B(t) = 1 - e:", t > 0, then we find that

{

I (,x )j-k "C . - .x+1I .x+1I ,for K = 00 or J < K < 00,
kJ - 1 ( x ) K -k "

;; ,x+v ' for J = K < 00.

Finally, we observe that the probability Poo remains to be specified. A first

possibility is to assume K = 00 and to determine Poo with the help of the partial

generating function Po(z) = Ej:o zj POj by setting Po(O) = Poo. On the other

hand, Poocan be approximated by using the normalizing condition E(i,j)EE Pi j =
1. This second possibility implies in practice the assumption K < 00.

Note that, the closed form solution obtained in the MIM! 1 r~~e can h~ de

duced from MICl1 case using the above method. If suffices to consider B(t) =

1- e'"; t > O. Let us consider again the original model described in Section 2, i.e.
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K == 00, Aij == A and fj == 0:(1 - ()jo) + j u, After some algebraic manipulations,

formulas (2.35) and (2.36) reduce to the following

qoA
POj = >..1 . P1,j-l, j ~ 1,

Pi + Q' + JJ.l

j

P1j = >. L aj-k (POk + P1k ) , j ~ 0,
k=O

where

100 (At)k 1 ( A )k
ak == e-

At
__ (l - B(t))dt == -- -- ,k 2:: o.

o k! A + v ,\ -t- v

From (2.39) we obtain by induction that

Using (2.38) and (2.40) we find that

Now, combining (2.40) and (2.41 ) we get

(2.38)

(2.39)

(2.40)

(2.41 )

'\P1j == l)j+l V Pl,j+1 + (0: + (j + 1) J.l) PO,i+l' j 2 o. (2.42)

Equations (2.4]) and (2.42) play the same role than (2.27) and (2.28) and, conse

quently, they can be viewed as balance equations that equate the flow rate into and

the flow rate out of (O,j) and the jth orbit level, respectively.

Solving recursively (2.41) and (2.42) we get (2.3) and (2.4).



CHAPTER 2. NflGll RETRIAL QUEUE WITH···

2.4 System performance Measures

l . The probability mass function of the server state.

Pr[ server is idle] = Mg == 1 - P

Pr[ server is busy] = .i\1ci == p

32

In particular, the blocking probability (ie, the probability that an arriving

customer is blocked)= AI~ = p.

2. The probability mass function of the number of customers in the orbit

Pr [there are i customers in the orbit] = POi + Pli

3. Expected number of customers in the orbit

The mean EN number of customers in the orbit == l\lP + ~lll

4. The busy period

The expected busy period EL (ie, the period that starts at the epoch when

an arriving customer finds an empty system and ends at the departure epoch

at which the system is empty again),

The above formula can be obtained by the theory of regenerative process

which allow us to express the limiting probabilities Pi j = A-~~~ILI'

5. The overall rate of retrials.

The overall rate /-Li of trials at which the orbiting customers request service

is giver! by
00

JL~ = J1 L i(POi + P1d = p,EN
i== 1
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6. The rate at which the orbiting customers successfully reach the server is

given by
00

/1; = ML iPOi = MM?
i== 1

7. The fraction of successful rate of retrials is given by

!v/o
1

EN

2.5 Numerical examples

In this section, we present some illustrative numerical examples that qualitatively

describe the queueing model under study. These examples are generated using

MATHEMATICA [72].

In section I, we mentioned that the model with constant search can be viewed

as a versatile mechanism which allows us to consider simultaneously both the

standard and the retrial queue. To illustrate this fact, we now display the proba

bility of an empty system Poo, the mean number of customers in the orbit EN,

and the expected busy period EL as a function of the recovery probability p. We

consider the case a == 0, J{ == 0.5 (classical retrial policy). Without loss of gen

erality we normalize the service rate to be v == 1 so that p == .A == 0.25, 0.5, 0.75.

Fig 2.2(a) shows that Poo increases from its values for the MIMl1 retrial queues

(p == 0) to the corresponding one for the standard MIMll queues (p == 1). In,

Fig 2.2(b) and 2.2 (c), it is noted that EN and EL decrease from thier values

for the MIAfll retrial queue to standard MIMll queue. In all the figures we ob

serve that the differences between the standard and the retrial queue become more

apparent for increasing values of p.

The second set of figures 2.3(a), (b), and (c) display the combined effect of p

and pan Poo, EN, and EL respectively.
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Poo

1 P0.80.60.40.20.80.60.40.2

0.6

0.5

0.4

0.3

c.a

0.1

(a) Pao versus p. (b) EN versus p.

15

10

0.4 0.6 0.8 1 P

(c) EL versus p.

Figure 2.2: Red p = 0.25, Green p = 0.5, Blue p = 0.75.
MIMll; a: = 0, J-t = 0.5, v = 1
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(a) Poo versus (P,p). (b) EN versus (P,p).

).

(c) EL versus (P,p).

Figure 2.3: MIMll; a = 0, JJ = 0.5, v = 1



Chapter 3.

MIGll retrial queue with

nonpersistent customers and orbital

search

In this chapter, we extend the search rnechanism to a structurally complex single

server retrial queueing model with nonpersistent customers. We consider a retrial

queueing model with orbital search in which a calling subscriber after some un

successful retrials gives up further repetitions and abandons the system. Let Hi be

the probability that after the ith attempt fails, a customer will make the (i + l)th

one. The set of probabilities {Hi : i ~ I} is called the persistence function. We

assume that the probability of a call reinitiating after failure of a repeated attempt,

does not depend on the number of previous attempts (ie, H2 == H3 == · · · ). Statis

tical measurements in telephone networks show that this is a realistic assumption

in application to such networks. One of the important features of the model under

consideration is that, for many problems, the cases H2 < 1 and H2 = 1 yield es

sentially different solutions. The case H2 == 1 can be analysed in full detail while

the case H2 < 1 is far more complicated and closed form solution is available

only in the case of exponential service time distribution.

36
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This chapter is organised as follows. In section 3.1, we describe the mathemat

ical model: For the case H 2 == 1, the model is analysed in full detail in section 3.2.

In section 3.2.1, stability condition is derived and in 3.2.2,the limiting distribution

of the system state is obtained based on the supplementary-variable technique.

The structure of the busy period and its analysis in terms of Laplace transforms

have been discussed in 3.2.3. In section 3.2.4, we provide a direct method of cal

culation for the first and second moments of the busy period. In section 3.3, the

case H2 < 1 is considered and the closed form solution is obtained for the expo

nential service time distribution in terms of hypergeometric series. In section 3.4,

we present some numerical examples to illustrate the effect of the parameters on

the system performance

3.1 The mathematical model

We consider a single server queueing system to which primary customer arrive

according to a Poisson stream:of rate A. If the server is busy at the time of arrival

of a primary customer, then with probability 1-HI the customer leaves the system

without service and with probability HI > 0 forms a source of repeated calls.

Every such source produces a Poisson process of repeated calls with rate j u, when

there are j customers in the orbit. If the repeated call finds the server free, it is

served and leaves the system permanently. Otherwise, ie, if the server is occupied

at the time of arrival of a repeated call, with probability 1 - H2 , the source leaves

the system without service and with probability H2 , it goes back to the orbit and

retries for service. The service times are independent with common probability

function B(x) (B(O) = 0). Let 13(8) == IoOO e-SXdB(x) be the Laplace-Stieltjes

transform of the service time distribution B(x), f3k == (-l)kf3(k}(O) be the kth

moment of the service time about the origin, h(x) = 1 B'i~}\ be the instantaneous
l- ~\XJ

service intensity given that the elapsed service time is equal to x. Let 7]n be the

time at which the nth service completion occurs. Immediately after this service
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completion, the server goes for search of customers in the orbit with some known

probability p. With probability 1 - p the server remains idle. In the latter case, the

event to follow depends on the competition between a primary arrival and retrial

attempt. The search time is assumed to be negligible. The flow of primary arrivals,

retrial of customers and service times are assumed to be mutually independent.

At time t, let N(t) be the number of customers in the orbit and C(t) be the

state of the server. (C(t) == 1 or 0 according as the server is busy or free). The

state space of the process X(t) == (C(t), N(t)) is S == {a, I} x N. The transitions

among states are illustrated in Figure 3.1

AH, AH,

(ll'OI)~"ph(X)+Jl(1-H: (1

1

' l

j)

~"ph(X)+2~(1-:2) (1
1
'j2)

A h(x) J.l A 2~ A
(1-p) h(x) (1-p) h(x)

(0, 0) (0, 1) (0, 2)

Figure 3.1:

3.2 The case H2 == 1

3.2.1 Stability condition

(11' j_jl) Eph(X)+j ~ (1-H:) (1
1
' j)~

A j~ A
(1-p) h(x) j(l-p) h(x)

(O,j-l) (O,j)

We now study the necessary and sufficient condition for the system to be stable.

Let N, == N(1Ji) be the number of customers in the orbit at the time 1Ji of the ith

service completion.

Theorem 3.1. {Ni, i E N} is positive recurrent if and only if pHI < 1, where

P == A,Bl -

Proof. {Ni, i E N} satisfies the equation
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where Vi is the number of customers arriving during the ith service time, with

39

if the ith customer served proceeds from the orbit

otherwise

The conditional distribution of the Bernoulli random variable B i is given by

nIL
P{Bi=l/Ni - l=n}=(l- p) (.\ )+P 71,10,+ nJl

A
P{Bi = O/Ni - I = n} = (1 - p) (.\ + n/l')

The random variable Vi has distribution

with generating function

00

L knz
1t = f3(.\HI - .\H1z) == k(z)

n=O

and mean value
00

E\i = L nk., = .\Hd31 = pHI
n=O

Thus the sequence of random variables Ni forms a Markov chain. It is not difficult

to see that {Ni; i E N} is irreducible and aperiodic. To prove ergodicity, we shall

use Foster's criterion, which states that an irreducible and aperiodic Markov chain

is ergodic if there exists a non-negative function .f(s), s E N, and f. > 0 such that

the mean drift.

is finite for all s E Nand 4Js ~ -f. for all s E N, except perhaps a finite number.

In our case, we take the function f (oS) = s. We then obtain
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{

pH I ;
l/Js =

-(I-p)sJL _ P + pH' if s >_ 1
A+SJL I,

40

Clearly, if pHI < 1, then we have lims--+oo l/Js < o. Therefore, the embedded

Markov chain {Ni, i E N} is ergodic.

To prove the necessity of the condition, we use theorem 3.1 in Sennott et.

al. [67], which states that {Ni, i E N} is non-ergodic if it satisfies the Kaplan's

condition, l/Jj < +00 (j 2:: 0) and there is a jo such that l/Jj 2: 0, (j 2: jo). Further

more, Kaplan's condition is satisfied because there exists an index k such that

~j = 0 for j < i - k; i > 0; where P = {Pi j }i,jEN is the one-step transition

matrix associated with {Ni; i EN}. This completes the proof. 0

3.2.2 Analysis of the steady state probabilities

In this section we study the steady state distribution of our queueing system.

Theorem 3.2. IfpHI = AH1{31 < 1 and the system is in the steady state, then the

joint distribution ofthe server state and queue length

POn = P{C(t) = 0, N(t) = n}

d
PIn (X) = dxP{C(t) = 1, ~(t) < x, N(t) = n}

has partial generating functions

~ n ApPOO ~ lZ ~ 1PO(Z) = LJ Z POn = --(z) ~ t ~ - r(z, t)dt
n=O ~ · 0

(3.1)

P ( r) - ~ np (r) - A(l - z) p, ( )(1 _ B( )) - A11l ( l - z )x
- 1 Z;_/ - ~z - 1,,\-- - [.B(AH1_ AH1z) _ z] 0 z x e

(3.2)
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where

(3.3)

(3.4)

If in the case C(t) == 1 we neglect the elapsed service time ~(t), then for the

probabilities PIn == P{ C(t) = 1, N(t) == n},

Proof. The set of statistical equilibrium equations are obtained as

(A + np,)POn = [1 - (1 - 6no)pllOO Ptn(x)h(x)dx

P{n(X) == -(>..H1 + h(x))P1n(x) + >..HtPt,n-I(X)

P1n(O) = APOn+ (n + 1)p,PO,n+l +P100 P1,n+l(x)h(x)dx

For generating function Po(z) and P, (z, x) these equations are transformed to:

APO(Z) + p,zP~(z) = (1- p) 100 P1(z,x)h(x)dx + >..pPoo (3.6)

8Pt (z,x)
ox = -(>..H1(1- z) + h(x))P1(z, x) (3.7)

(z - pf3(>"H1- AH1z))Pt(z, 0) + ApPOO== J.lzp~(z) + AZPO(Z) (3.8)

Solving (3.7) yields

(3.9)
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Combining (3.6), (3.8) and (3.9), and aft.er some algebra we get

jjZ(Z - (3(AH1- AHIZ))P~(z) + (AZ - ((1- p)AZ+ Ap) (3(AH1- AH1z))PO(z)

= ApPOO(Z - (3(AH1 - AH1z)) (3.10)

Coefficient of P~(z) has two zeros Zl = 0 and Z2 = 1. Choose an arbitrary point

a E (0,1). Solving (3.10) for Z E (0, a], we get

z ~ 1 ApPOOl Z
~ 1Po(z) = [( -) #£ r(a, or {Po(a) + ~ (t) #£ - r(a, t)dt

a J.L(a) #£ a

~
As z --t 0+, Po(O) < +00 and (~) #£ diverges. Thus we get

ApPOOla ~-lPo(a) = ~ (t) #£ r(a, t)dt
J.L(a) #£ 0

(3.11)

On the otherhand, solving (3.10) for z E [a, 1), and taking limit as z ~ 1-; we

get

D ( ) _ Po(1)r(a, 1) _ ApPOO11
( )~-l ( )d

.1-0 a - ~ ~ t #£ r a, t t
(a) #£ J.L(a) #£ a

Forobtaining the relation (3.12) it should be noted that

Equating (3.11) and (3.12) we get

Po(l) = ApPOO 11

(t)¥-l r(O, t)dt
J.Lr(O,1) 0

(3.12)

(3.13)

Then we can rewrite solution of (3.10), as (3.1). Combining the equations (3.8)

(3.10), we get (3.2). Since PI (z) = IoOO
PI (z, x)dx, we obtain (3.5). Now apply-
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ing the normalizing condition Po(l) + P1(1) = 1, we get

Using (3.13) and (3.14) we obtain (3.4).

(3.14)

D

Corollory 3.3. The partial factorial moments M~, for i E {O, I}, k E {O, I} are

given by

3.2.3 Analysis of the busy period

The busy period is defined as the period starting at an epoch when an arriving

customer finds an empty system and ending at the next departure epoch at which

the system is empty. Without loss of generality we may assume that at time t = 0

thesystem is empty. i.e, C(O) == N(O) = O,and one primary customer just arrives

at time t == O. Then a system busy period starts and ends at the first departure

epoch at which the process {(C(t), N(t)), t ~ O} return to the state (0,0) for the

first time.

Let Po (t) be the distribution function of the busy period L and 1r~ (s) =
E[e-sL ) be the Laplace-Stieltjes transform of L. Let us define the transient taboo

probabilities of process X (t) == {(C(t), N(t), ~(t)), t ~ O} as follows:
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Po(t) = P{C(t) = 0, N(t) = O}, t 2: 0 (3.15)

Pn(t) = P{L > t, C(t) = 0, N(t) = n}, t 2: 0, n ~ 1 (3.16)

Qn(x, t) = P{L > t, C(t) = 1, N (t) = n, x ~ ~ (t) < x + dx}

t~0,x2:0,n2:0 (3.17)

and, the boundary conditions are

(3.18)

where t5no and t5(x) are Kronecker and Dirac functions," respectively.

With the help of supplementary variable, we obtain the Kolmogorov equations

that govern the dynamics of the system behaviour as:

d . 100
dtPo(t) = 0 Qo(X, t)h(x)dx

d 100dtPn(t) = -(A + nfl)Pn(t) + (1 - p) 0 Qn(X, t)h(x)dx,

aQ~~x, t) + aQ~~x, t) = -(AH1 + h(x))Qn(X,t)

+ AH1(1 - 6"nO)Qn-l (x, t), ti ~ 0

Qn(O, t) = A(l - t5nO)Pn(t ) + (n + l)/lPn+l(t)

+ P100 Qn+l (x, t)h(x)dx, n ~ 0

n2:1

(3.19)

(3.20)

(3.21 )

(3.22)

To solve the above equations, we now introduce Laplace transforms and generat

ing functions:
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00

P(s, z) = L znP:(s) (3.23)
n=l
00

Q(x, s, z) = L znQ~(x, s)
n=O

Then equations (3.] 9)-(3.22) become

1r~(s) = 100 Q~(x, s)h(x)dx (3.24)

ap(s~ z) 100
p,z 8z' + (s + ,x)P(s, z) = (1 - p) 0 (Q(x, s, z) - Q~(x, s))h(x)dx

(3.25)

8Q(~~s, z) + (s + ,XH1(1.- z) + h(x))Q(x, s, z) = c5(x)

Q( )
_ J-L 8P(s; z) p(s + >..) + >"(1 - p)zp( )

0, s, z - (1 _ p) 8z + (1 _ p)z s, z

Solving (3.25), we get:

(3.26)

(3.27)

Q(x, s,z) = (1 + Q(O, s,z))(1 - B(x))e-(s+AHl(l-Z))X (3.28)

Combining (3.23), (3.24), (3.26) and (3.27), we get:

8P(s, z)
p,z(z - ,8(s + ,XHt (l - z))) 8z

+ ((s + >..)z - ((1 - p)>..z + (8+ >..)p){3(s + >..H1(1 - Z)))P(8, z)

= (1 - p)z({3(s + /\J!1(1 - z)) - 1r~(s)) (3.29)

Let g(z, s, x) = z - (3(s + >..H1(1 - z)) for Re (8) > 0, Izl :::; 1 and Ixl ::; 1.

Then for each fixed value of (8, x), 9 has a unique zero 1r~(s/>..H1) in the unit
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disc Izl :::; 1, where 1f~(sIAHl) is the Laplace transform of the length of the busy

period in the standard M \G 11\ 00 queue (without retrials) with persistence function

Hi- Thus, coefficient of ap~:,z) has two zeros Zl = 0 and Z2 = 1r~(S/)"Hl).

Choose an arbitrary number z E (Zl' Z2). Solve (3.29) for Z E [z, Z2];

[

Z (8+A) A(1-p)(z-i) ] -1
P(s, z) = (-=) Jj "e Jj r*(z, z)

z

{

{Z U (s+,x)p ,x(l-p)(u-f) }

P(s, z) + iz Q(u)( i)-/-I-e /-I r*(z, u)du

where
Q(U) = (1 - p)uf3(s + )..Hl(l - u)) - (1 - p)U1r(;(S)

{LU(U - f3(s + AH1(1 - u)))

* (1 - p) l t 2
S + A(l - u)

r (t l , t2) = exp{ J.L tl U_ f3(s + XH1(1 _ U)) du}

As z --+ Z2, [r*(z, Z)]-l diverges and P(s, z"~) is finite. Thus,

l z: u (S+A)p '\(l-p)(u-f)

P(s,z) = Q(u)(-=)-/-I-e /-I r*(z,u)du
• Z2 Z

In the next step, solve (3.29) for Z E (Zl' z] and taking limit as Z ~ 0+, we

get:

l
z U (S+A)p ,x(l--p)(u-f)

P(s,z) = Q(u)(-=) It e IJ r*(z,u)du.
Zl Z

Equating the above expressions for P(s, z) and after some algebra, we get:

(S+A)p '\(l-p)u
f1r~(s/>"Hl) {u Jj e Jj P(S+>..Hl(l-U»r*(o,u)}

*() Jo u-P(S+>..Hl (l-u))
1ro S = -------(-~+-,x-)p-~-l--~-u-----

f1r~(S/>"H.l) {u Jj e Jj r*(o,u)}
Jo ~~-J3(s+AHl (1--u»

(3.30)

Note that the domain of 1r~ (s) is s > O. Taking limit as s ~ 0, we get

undetermined expressions. These expressions appears difficult to be solved using

L'Hospital rule.
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3.2.4 Calculation of the first and second moment of the busy

period

In the last section, even though we have obtained the expression for E[e- s L
], the

first moments of L can not be obtained from it. A direct way to find the first

moment of E(L) of the busy period is provided by the theory of regenerative

process as follows: The limiting probabilities Pi j can be expressed as

(3.31 )

where Ti j is the amount of time in a regenerative cycle during which the system

is in the state (i,j). Since E(Too) == ±' we get E(L) == A-1(P00
1

- 1).

In this section we obtain a closed form expression for E(L2
) using the ap

proach adopted in [13].

First we define

Then

a(z) = P(O, z) = t zn 100 Pn(t)dt
n=l 0

l oo 00 100 r oo

b(z) = Q(x, 0, z)dx = L zn I Qn(X, t)dtdx
• 0 n=O 0 Jo

a(l) = 100 P[l > t, C(t) = O]dt

and b(l) = 100 P[L > t, C(t) = l]dt

(3.32)

(3.33)

(3.34)
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Putting s = 0 in (3.29), we get,

J-LZ(Z - (3(AH1 - AH1z))a'(z) + (AZ - ((1 - p)AZ + Ap)(3(AHl - AHlz))a(z)

= (1 - p)z[(3(AHl - AH1z) - 1]

(3.35)

Solution of the above differential equation is obtained by employing the same

technique that we have used for solving (3.10): Then

so that,

-1 p ~ (Z ~ 1
a(z) = T + -p,(z) It 10 (t) It - r(z, t)dt

where r(~~ t) is as in (3.3) and

-1 P r ~ 1
a(1) = T + j.Lr(O, 1) 10 (u) It - r(O, u)du

On the otherhand, putting s == 0 in (3.26), we get

Q(x, 0, z) = (1 + Q(O, 0, z))(1 - B(x))e-AHt(l-Z)X

b(z) = (1 + Q(O, 0, z)) (1 - f~~~l ;H~:lZ))

Putting s = °in (3.27), and as z ~ 1, we get

A
Q(O,O, 1) = AH /3 (a(1) + H1/3d

1 - 1 1

(3.36)

(3.37)

(3.38)

(3.39)

Taking limit as z ~ 1 in (3.38) we get another expression for Q(O, 0,1) and

equating the above two expressions for Q(O, 0,1), we get:

b(1) = (1 - Aa(1)) /31
1 - AH1(31

(3.40)
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Now,

E[L] = a(l) + b(l) = {31 + (1 + )..(31 - )..H1(3d a(l) (3.41)
1 - AH1(31 1 - AH1f31

where a(1) is given by (3.37).

Now, inorder to compute £[£2], we define

8P(s, z)
'l/J(s, z) = as and c(z) = 'l/J(O, z) (3.42)

Differentiating (3.29) with respect to s, and setting s == 0, we obtain after some

algebra

where

'() AZ.- ((1 - p)AZ + >..p){3(>"iI1 - ,XH1z) () ()cz+ cz=gz
j1z(z - {3(>..H1 - >"H1z))

(3.43)

1 { , ' (1-P)Zf31
g(z) = Ilz(z _ (3()..H1_ )"H1z)) (1 - p)z(3 ()..H1 - AH1z) + 1 _ P

_ (1 - p)z(l - (3()..H1 - )..H1z)),B'()..H1 - )"H1z) + (1 - p)z(l + ).,(31 - p)a(l)
z - {j(AH] - AH1z) 1 - P

- (z - ((1 - p)"z + )..p)(3'()..H1- )"H1z) - p(3()"H1 - )"H1z)

+ ()..z - ((1 - p)"z + )..p)8()..H1 - )..H1z))(3'()..H1 - ).,H1z))a(z)}

z - (3()..H
1

- )"H
1z)

(3.44)

Solving (3.43), we get:

and

~ JZ ~c(z) = (z /L r(L Z))-I {c(l) + 1 t /L g(t)r(l, t)dt}

1 (I ~
c(l) = r(O, 1) 10 g(t)t /L r(O, t)dt

(3.45)

(3.46)
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Now we consider the case C (t) == 1 and define

( ) 8Q(x, s, z) () r00 ( )'l/Jl x ;«, z = oz and d z = 10 'l/Jl x, 0, z dx (3.47)

Differentiating (3.26) with respect to s and setting s == 0, yields:

a~l (x, 0, z)
ox = -Q(x, 0, z) - (>..H1 - >..H1z + h(X))'l/Jl (x, 0, z) (3.48)

Solving (3.48) and after some algebra, we get:

Integrating the above expression with respect to x we find that

d( ) == (0 0 ) 1 - {3(AH1 - AH1z)
Z 'l/Jl" Z >..H1 - >..H1z

- (1 + Q(O, 0, z)) 100 e-(AH1-AHl Z)Xx(l - B(x) )dx (3.49)

Thus

d(l) = f31'l/Jl (0,0,1) - ~2 (1 + Q(O, 0,1)) (3.50)

(3.51 )
1 -

'l/Jl (0,0,1) = (1 _ p) (>..c(l) + pa(l) + JLc'(l))

Q(O, 0,1) is given by (3.39). To obtain 1/)1(0,0,1), differentiate (3.27) with respect

to s and set (8,z) == (0,1).

This yields:

From (3.43)
, A AH1f31

c (1) = g(l) + ~ (1 _ >..H
1f31)

c(l) (3.52)

Thus,
1 A

'l/Jl(O, 0, 1) = (1 _ p) (pa(l) + JLg(l) + 1 _ >..H
1f31

c(l)) (3.53)
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Using (3.39), (3.50) and (3.53) we get

d(l) = -{32 + (p{31 _ >"{32 )a(l) _ Jl{32 a'(I)
2 1 - P 2(1 - p) 2(1 - p)

AB1 J-l(31
+ (1 - p)(1 - pHd c(l) + (1 _ p)g(l) (3.54)

From (3.35)

a'(I) = (1 - p)pH1 _ >..(p - pHd a(l) (3.55)
J.t(l - pHI) J.t(l - pHI)

From (3.44),

9(1) = 2Jl(1 ~ pHd2{ ((>..Hd 2(I-p){32 - 2>..(I-p){3\ -2(1- pHd (1- ppHd

- 2>..2(1 - p)H1f32)a(1) - 2(1 - p)(l + A(31 - pH1)a'(1)

- 2AHI(1 - p)(l - pHI)(f3i + (32)

+ (1 -p)(E[L] - {3d(2(1 - pHd - (>..Hd 2{32)} (3.56)

Now

E[L2
] = -2(C(I) + d(I)) = 2100

t P{L > t}dt (3.57)

Using (3.41), (3.55), (3.56) and (3.57) we get:

E[L2] = Jl(1_1pHd 3{[>"Jl(32 - 2>"{31(P - [JHd(1 + >"{31 - pHd]a(l)

+ 2f3lpH1(1- p)(l - pHI) + 2p;pHIlA(1 - p) - J-lpH1(1 - pHI)]

+ J.tf32[1 - 3(pH1)2(1 - pHI)]} - 2[1 + ( )~(31 H )]C(I)
1-p 1-p 1

(3.58)

where a(l) and c(l) are given by (3.37) and (3.46).
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3.3 The care H2 < 1

The care H2 < 1 is far more complicated and closed form solution is available

only in the case of exponential service tirne distribution. We obtain the limiting

distribution of the system state and factorial moments in terms of hypergeometric

series. We also obtain some important performance measures in the steady state

and their numerical results for some examples.

3.3.1 Limiting distribution of the system state

First we introduce some notation.

. A
F](x) == 2F2[i, i + -; A + B + j, A - B + j; .r]

tL

where 2F2 is the hyper geometric series given by

Theorem 3.4. For an MIMl1 retrial queue with nonpersistent customer and or

bital search, in the steady state, the limiting probabilities {Pi j }(i,j)ES are given

by

n-l .

p. - P, (AH )n(l - ) IT{ ,,x + ZJ1 }
On - 00 I P i=O 'xIIP + (i + 1)J1[1I + (1 - H2 )(,X + (i + 1)/l)]

(3.59)

n-l

p - p. (~ )('xH r IT{ ,X + (i + 1)J1 }
In - 00 11 I i=O 'xIIP + (i + 1)J1[1I + (1 - H2 )(,X + (i + 1)J1)]

(3.60)
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where Poo is given by

Corresponding partial generatingfunctions Po(z) and P1(z) are

and

(3.63)

Proof. Since the service time is exponentially distributed, the process X(t) ==
(C(t), N(t)) is a Markov process with state space {a, I} x Z+, where Z+ is the

setof non-negative integers.

The system of statistical equilibrium equations for the probabilities POn and

PIn is

(,,\ + nJl)POn == v[l - p + p8nO]Pln (3.64)

["\H1 + V + nj.t(l - H2)]P1n == ,,\POn + (n + l)j.tPO,n + l + ,,\H1P1,n-l

+ [vp -+- (n + l)Jl(l - H2)]P1,n+l (3.65)

Eliminate probabilities PIn with the help of equation (3.64) and rewrite the result

ing equation as

[AVp + (n + l)J-L(v + (1 - H2 ) ( ,,\ + (n + l)J-l))]PO,n+l - ,,\H1( ,,\ + nJ-L)POn

== ["\vp + nJ-L(v + (1 - H2 ) ( "\ + nJ-L))]POn - ,,\H1 ( ,,\ + (n - l)/l)PO,n- l



CHAPTER 3. QUEUE WITH NONPERSISTENT CUSTOMERS 54

This implies that

Thus
)'H1 (>..+ (n - l)JL) R

POn = ).vp + nJL(v+ (1 - H2 )( ). + nJL)) O,n-l

Then we get (3.59).

Using (3.59) and (3.64), we obtain (3.60). Using equation (3.59) and (3.60),

weget the expression for Po(z) and PI(z) as in (3.62) and (3.63).

Applying the normalizing condition Po(l )+ PI (1) = 1, we get the probability

Pooas in (3.61) D

Corollory 3.5. The patial factorial moments u; defined by M~ = E;:o Pij,

l'lk == Ec;k j(j - 1) . · . (j - k + l)Pij; i E {a, I}, k ~ 1, are given by

Proof To get the above expresions, we use the following well-known relations

for the hypergeometric series

d ab
-d2F2[a, b: c, d; kz] = k-d2F2[a + 1, b + 1; c + 1, d + 1; kz]

z c
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D

In this section \ve analyse the effect of the parameters p, p, HI and H 2 on Poo,

EN and E L through tables and graphs.

In table 3.1, we consider the case H 2 == 1 (ie. ~IIGI1 case) and an MIE3 1~

retrial queue with J.L == 0.5, u == 1 and HI == 0.6. Poo, EN and EL are evaluated

for three different values of pHI (0.25, 0.5 and 0.75). As expected, Poo increases

while EN and EL decrease with the increase of p. We use the equations (3.4),

Corollary 3.3 and (3.41) for the evaluation of there values.

We plot Poo and EN for the case H2 < 1 (ie. M 1M 11 case) in the figures 3.2

3.5. We considers the case J.L == 0.5 and normalize the service rate v == 1 so

that p == .\ == 0.4, 0.7 and 1 in fig. 3.2. It is found that Poo increases and EN

decreases their values for the lv!1 M 11 retrial queues with non-persistent customers

(p == 0) to the corresponding one for the standard M IM 11 queues with non

persistent customers (p == 1). The combined effect of p and p on Poo and EN for

three sets of values of (HI, H2 ) are displayed in fig 3.3. In fig 3.4, the combined

effect of p and HI on Poo and EN for fixed H2 == 0.7 for three different values of

p are analysed.

By a similar way, Poo and EN versus p and H2 for fixed HI == 0.6 for three

different values of p are displayed in fig. 3.5.
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p Poo EN EL

0.1 0.597463 0.240102 4.85096

0.2 0.603311 0.229387 4'.73414

0.3 0.608935 0.219148 4.62392

0.4 0.614344 0.209358 4.51981

0.5 0.61955 0.19999] 4.42135

0.6 0.624561 0.191024 4.32809

0.7 0.629389 0.182434 4.23966

0.8 0.634042 0.174202 4.15571

0.9 0.638529 0.166306 4.07592

1.0 0.642857 0.15873 4

pHI == 0.25

p Poo EN EL
0.1 0.260504 1.31637 10.2194

0.2 0.274927 1.24823 9.4944

0.3 0.288951 1.18398 8.85884

0.4 0.302558 1.12374 8.29854

0.5 0.315733 1.06721 7.80204

0.6 0.328468 1.01419 7.35998

0.7 0.340759 0.964491 6.96464

0.8 0.352609 0.917907 6.60961

0.9 0.36402 0.874249 6.28956

1.0 0.375 0.833333 6
-

pHI == 0.5

p Poo EN EL

0.1 .052253 5.52613 43.5304

0.2 0.062323 5.22899 36.1093

0.3 0.073295 4.94328 30.3443

0.4 0.085087 4.67017 25.8065

0.5 0.097596 4.41066 22.1913

0.6 0.110705 4.16545 19.2792

0.7 0.124292 3.93502 16.9094

0.8 0.138229 3.71958 14.9624

0.9 0.152394 3.51911 13.3487

1.0 0.166667 3.33333 12

pHI == 0.75

Table 3.1 : 1'1IE3 11; J-L == 0.5, u == 1, HI == 0.6.
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Figure 3.2: MIMll : J.l = 0.5, v = 1. Red p = 0.4, Green p = 0.7, Blue p = 1
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(a) Poo versus (P,p) (b) EN versus (P, p)

HI =0.25, H2 =0.3

(c) Poo versus(P,p) (d) EN versus (P,p)

HI = 0.6, H2 = 0.7

(e) Poo versus (P,p) (f) EN versus (P, p)

HI =0.85, H2 =0.9

Figure 3.3: MIMl1 : J.t = 0.5, lJ = 1.
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(a) Poo versus(P,HI) (b) EN versus(P, HI)

p =0.4, H2 =0.7

(c) Poo versus(p,Ht) (d) EN versus(P,HI)

p =0.7, H 2 = 0.7

..

(e) Poo versus (P,Ht) (t) EN versus (P, HI)

p =1, H2 =0.7

Figure 3.4: MIMll : J.L = 0.5, 11 = 1.
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(a) Poo versus(P,H2 ) (b) EN versus(P, H2 )

p = O.4 t H l = 0.6
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(c) Poo versus(P,H2) (d)EN versus (P, H2)

p = O.7,H1 =0.6
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•••

(e) Poo versus(P,H2 ) (t) EN versus(P,H2 )

p= 1,Hl =0.6

Figure 3.5: MIMll : J.L = 0.5, v = 1.



Chapter 4.

M APIM Ic retrial queue with orbital

search

In this chapter, we extend the search mechanism to a multi-server retrial queueing

model. In a multiserver retrial queue, if an arriving primary customer finds some

server free, i~ immediately occupies such a server and leaves the system after

service. Otherwise, if all servers are engaged, it produces a source of repeated

attempts called orbit. Every such source, after some delay, produces repeated

attempts until after one or more attempts it finds a free server, in which case the

source is eliminated and the customer receives service and then leaves the system.

The analysis of multi-server retrial queues is essentially more difficult than

that one of single server models. Except for a few special cases explicit results for

multi-server retrial queues are very rare. Hence, numerical investigation to bring

out the qualitative behaviour of multi-server retrial queues is very important. By

the implementation of approximations and truncated models, numerical investiga

tion is carried out. Very briefly important truncation methods are described below.

61
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Direct truncation method
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In this method, the orbit size is restricted to M such that any arriving customer

finding the orbit full is considered lost. The value of M can be chosen so that the

loss probability is small. Due to the intrinsic nature of the system of equations

obtained, the only choice available for studying M is through numerical analysis.

While a number of approaches is available for determining the cut-off point, M,

the one that seems to perform well (w.r.t. approximating the system performance

measures) is to increase M until the largest individual change in the elements

of the steady state probability vector for two successive values, is less than f, a

predetermined infinitesimal value.

Generalized truncation method

Falin [35] introduced the generalized truncation wherein the infinite system

(which can not be solved directly) is truncated with the help of another infinite,

but solvable system. The factthat the original infinite system is approximated by

another infinite one provides a much better accuracy. In this procedure the retrial

rate is linear (j /L, for j ~ M) up to a level, say M, beyond which it is taken as

infinity (thus reducing the system to a classical queue when orbital size is very

large). Falin's generalized truncation has a pitfall in that for a low retrial rate the

cut-off point for truncation becomes very high. Artalejo and Pozo [14] further

modified the truncation due to Falin for the multi-server retrial queue.

Neuts-Rao truncation

For a multi-server retrial queue in which customers enter into orbit before get

ting service, Neuts and Rao [62] suggested an approximation with the help of the

model where the retrial rate stays constant when the number of customers in the

orbit exceeds some level. Their justification that the probability of a successful

retrial request progressively decreases as the number of customers in the orbit in-
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creases, is applicable to our model and hence we expect this method to work better

in terms of convergence and computational effort. Here retrial rate is taken to be

j J-L for j S N, when there are j customers in the orbit and N J-L for j 2 N. In this

method, the process becomes level independent beyond the truncation level.

Method by Bright & Taylor

Bright and Taylor [17] proposed approximate solutions to level-dependent quasi

birth-and-death processes. Their algorithm requires computation of several ma

trices obtained as solutions to quadratic equations. A considerable amount of

quantities need to be evaluated and the truncation process is based on the tail prob

abilities. As mentioned in Neuts and Rao, this may pose some problem especially

when () is very small.

4.1 The mathematical model
;

We consider a multi-server retrial queueir.g system in which customers arrive

according to a Markovian arrival process (MAP). The M AP, a special class of

tractable Markov renewal process, is a rich class of point processes that includes

many well-known processes such as Poisson, PH-renewal processes, and Markov

modulated Poisson process. One of the most significant features of the M AP

is the underlying Markovian structure and fits ideally in the context of matrix

analytic solutions to stochastic models. As is well known, Poisson processes are

the simplest and most tractable ones used extensively in stochastic modeling. The

idea of the M AP is to significantly generalize the Poisson processes and still

keep the tractability for modelling purposes. Furthermore, in many practical ap

plications, notably in communications engineering, production and manufacturing

engineering, the arrivals do not usually Iorm a renewal process. So, 1\1AP is a

convenient tool to model both renewal and non-renewal arrivals. While M AP is
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defined for both discrete and continuous times, here we will need only the contin

uous time case.

The M AP in continuous time is described as follows. Let the underlying

Markov chain be irreducible and let Q == (qi,j) be the generator of this Markov

chain. At the end of a sojourn time in state i, that is exponentially distributed with

parameter Ai, one of the following two events could occur: with probability Pij the

transition corresponds to an arrival, and the underlying Markov chain is in state j

with 1 ::; i, j ::; m; with probability Pi,j(O) the transition corresponds to no arrival

and the state of the Markov chain is j, j -I ·i. Note that the Markov chain can go

from state i to state i only through an arrival. Also, we have

m m

LPi,j(l) + L PiJ(O) = 1,1 :s: i < m.
j=1 j=1,j#i

Define matrices Dk == (dij(k)) for k == 0,1 such that dii(O) == -Ai, 1 ::; i, j ::; m ;

dij(O) == AiPij(O), for j -I i, 1 ~ i, j ::; m, and dij(l) == AiPij(l). By assuming

Do to be a nonsingular matrix, the interanival times will be finite with probability

one and the anival process does not terminate, Hence, we see that Do is a stable

matrix. The generator Q is then given by Q* == Do + D I .

Thus, Do governs the transitions corresponding to no anival and D1 governs

those corresponding to an anival. The point process described by the AIAP is

a special class of semi-Markov processes with transition probability matrix given

by

l X

eDotdtD1 = [1 - eDOx](-Dot1D1, x ~ O.

Let 1r be the stationary probabilit.y vector of the Markov process with generator

Q*. That is, 1r is the unique (positive) probability vector satisfying.

1rQ* == 0, ne == 1.
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Let et be the initial probability vector of the underlying Markov chain govern

ing the M AP. Then, by choosing et appropriately we can model the time origin

to be (a) an arbitrary arrival point; (b) the end of an interval during which there are

at least k arrivals; (c) the point at which the system is in specific state such as the

busy period ends or busy period begins. The most interesting case is the one where

we get the stationary version of the MAP by a == n, The constant ,\ == 1f D 1e,

referred to as the fundamental rate gives the expected number of arrivals per unit

of time in the stationary version of the MAP.

Often, in model comparisons, it is convenient to select the time scale of the

M AP so that Ahas a certain value. That is accomplished, in the continuous M AP

case, by multiplying the coefficient matrices Di; k == 0, 1, by the appropriate

common constant. For further details on M AP and their usefulness in Stochastic

modeling, we refer to Lucantoni [55], Neuts [58] and for a review and recent work

on M AP we refer to Chakravarthy [22].

For use in sequel, let e(f), ej(r) and IT denote, respectively, the (column)

vector of dimension r consisting of I's, column vector of dimension r with ]

in the jth position and 0 elsewhere, and an identity matrix of dimension r. The

notation ® will stand for the Kronecker product of two matrices. Thus, if A is a

matrix of order m x n and if B is a matrix of order p x q, then A ® B will denote

a matrix of order mp x nq whose (i, j)th block matrix is given by aijB. For more

details on Kronecker products, we refer the reader to Bellman [16].

The customers from the orbit generate the retrial flow whose intensity is equal

to j (J, when j customers are present. in the orbit. Service times are assumed

to be exponentially distributed with rate J-L. Additionally, we assume that each

server can go in search of customers immediately after a service completion with a

known probability p. The search time is assumed to be negligible. The probability

for not going for the search of customers (equivalently, the server remains idle)

is q == 1 - p. If the server does not pick up the next customer to be served from

the orbit then there is a competition between primary and orbital customers for
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getting into the server for the next service.
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4.2 Steady state analysis of the model at an arbi

traryepoch

Let NI (t), N2 (t ), and J(t) denote, respectively, the number of customers in the

orbit, the number of busy servers, and the phase of the arrival process at time t.

The triplets {(NI (t), N 2 (t ), J(t)), t ~ O} form a continuous-time Markov chain

on the state space {(i, i. k) : i ~ 0,0 ::; j < c,l < k < m}. Let i, i ~ 0 denote

the set of states {( i, i. k) : 0 ::; j ::; c, 1 < k < m}. Enumerating the states

of the continuous time Markov chain in lexicographic order, the generator of the

Markov chain is of the form:

Aio Ao 0 0 0

A~l All A o 0 0

Q= 0 A22 Al 2 Ao 0 (4.1)

0 0 A23 Al 3 Ao

where the entries are given by

Do DI 0 0 0 0

jjl Do - Jll D 1 0 0 0

0 2Jll Do - 2jjl D1 0 0
AID =

0 0 0 0 Do - (c - l)J.ll D 1

0 0 0 0 CJl! Do - cul
(4.2)
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0 0 0 0

0 0 0 0

Ao ==

0 0 0 0

0 0 0 D1

and for i 2: 1,

Do - iO/ Dl 0 0 0

IL(1 - p)I Do - (iO+ JL)I Dl 0 0

0 2JL(1 - p)/ Do - (iO + 2JL)I Dl 0
A1i =

67

(4.3)

o
o
o

o
o

o
o

o
o

o
o

Do - (iD+ (c - l)J.t)I Dl

cJ.t(l - p)I Do - cul
(4.4)

0 un 0

0 PM/' uu 0

A2i ==

0 0 0

0 0 0

o 0

o 0

(4.5)

(C - l)PM! iO!

o CILP!

Let p == ~. Then the queuing system under study is stable if and only if p < 1
eJl

(see, e.g., Falin [34]). Let x, partitioned as x == (x(O),x(l), x(2), · · · ), denote the

steady-state probability vector of Q. That IS,x satisfies

xQ == O,xe == 1. (4.6)

In this paper we consider the direct truncation method and the Neuts-Rao trun

cation to solve (4.6). First we consider the direct truncation method.
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4.2.1 Steady-state probability vector using direct truncation
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Let M denote the cut-off point for this truncation method. In this case, the gener

atorQas given in (4.1) is modified as follows.

Ala Aa 0 0 0

A21 All Aa 0 0

0 A22 A l2 Aa 0

Q== 0 0 A23 Al3 Aa

A 2,M - I Al M-I Ao,

A2 M Ao + Al M, ,
(4.7)

The steady-state probability vector, x(M) , is now partitioned as x(M) =
(x(O),x(l),·· ·x(M)) and is solved using (block) Gauss-Seidel procedure.

Since there is no clear cut choice for .I.'-J, we start the iterative process by taking

lv! == 1 and increase it until the individual elements of x do not change signifi

cantly. That is, if M* denote the truncation point, then maxo~i~M· -1 IlxM • (i) 

XAJ·-1(i)lloo < (, where ( is an infinitesimal quantity and the infinity norm is

defined by Ilxlloo == maxl~i:Sn IXil.
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4.2.2 Steady-state probability vector using Neuts-Rao method

Let N denote the cut-off point for this truncation method. In this case, the gener

ator in (l ) is modified as

..4 10 ~40 0 0 0

..421 All ..40 0 0

0 A22 A 12 ..40 0

0 0 ~423 A 13 ..40
Q~ (4.8)

A2 Al Ao

A2 Al Ao

where Al = ~41N and A2 ~ A2 N •

Let n denote the steady state probability vector of the generator A == ..40 +
Al + A2• The vector, n, partitioned as 1f == (1fo,··· ,1rc) is computed by solving

the following equations.

7fo = (1 - p)/-l1r l (N O! - DO)-I,

it, = [1fi-1 (D 1 + NO!) + (i + 1)(1 - P)J-l1fi+l] (NO! + i(l - p)J-l/ - DO)-l. 1 ~ i ~ c - 1

7fc = 1fc- l (D 1 + NO!)(CIJ,(l - p) - ov':

subject to E~=o 1fi ~ 1.

Note that the above equations are well suited for numerical evaluation using

(block) Gauss-Seidel iterative method.

The steady-state probability vector, x, for the modified generator exists if and

only if the following holds good.

(4.9)



CHAPTER 4. M AP\M\C RETRIAL QUEUE WITH· ..

It is easy to verify that the condition t4.9) reduces to

c-l c

1fcD1e < NO L 1fje + PM Lj1fje.
j=O j=1

70

(4.10)

Under the stability condition given in (4.10) the steady-state probability vector x

is given by [58]

x(i + N - 1) == x(N - l)Ri , i ~ 0,

where the matrix R satisfies the matrix quadratic equation:

R2A
2 + RA1 + Ao == 0,

and the vectors x(O), · .. , x(l) are obtained by solving

x(0)A 10 + x(1)A21 == O.

x(i - l)Ao + x(i)A 1i + x(i + 1)A2,i+ l == 0,1 ::; i ~ N - 1,

x(N - 2)Ao+ x(N - 1)[A1,N - I + RA2] == O.

subject to the normalizing condition

N-2

L x(i) + x(N - 1)(/ - R)-le = 1
i=O '

(4.1 ])

(4.12)

(4.13)

(4.14)

The computation of the R matrix and the vector x can be carried out by exploiting

the special structure of the coefficient matrices. The details are given in the next

section.
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4.3 Algorithmic analysis
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In this section we present efficient algorithmic procedures for computing the R

matrix and the vector x, which are the main ingredients for discussing the quali

tative behavior of the model under study.

4.3.1 Computation of the matrix R

Due to the special structure of the coefficient matrices appearing in (4.12), the

matrix R of dimension (c + l)m can be efficiently computed as follows. Since

RA2e = ec+l (c + 1) 0 D1e, R is of the form

R=

000

000
(4.15)

where the matrices R j , for 0 :::; j :::; C are of dimension (c + 1)m. In terms of these

Rj matrices, equation (4.] 2) is rewritten for immediate numerical evaluation as

Ra = J.L(1 - p)R1(NOI - DO)-l,

R; = [NORc~-l + ipJ.LRc~ + ~-lDI

+ (i + 1)J.L(1 - P)~+IJ (iJ.LI + NOI - DO)-l,:::; i ~ c - 1,

R; = [NORcRc- 1+ cPJ-LR~ + Rc-ID1+ D1](cJ-LI - DO)-l.

4.3.1.1 Choice of N

(4.16)

Choosing an appropriate value for N in the truncation process is crucial in using

matrix-geometric approximation for the queuing model under study. In this sec

tion to emphasize the dependence of R matrix on N, we will write R(N) when

referring to R. First note that from (4.]6), as N --+ 00, ~,O ~ i :::; c - 1 ~ 0,
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and R; satisfies

CJ-LR~ + Rc{Do - cJ-LI) + D I = 0.
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(4.17)

Note that the rate matrix satisfying (4.17) is that of the classical M AP/ M / c

queue.

Let 1J{N) denote the spectral radius of the matrix R{N) and let 1J be the spec

tral radius of the rate matrix satisfying (4.17). Observe that as N -t 00, 1J{N) -t

17. Since the steady-state probability vectors, x{i), i 2 0, depend largely on 7](N),

to minimize the effect of the approximation caused by the truncation, we would

like to choose N such that it satisfies (a) the stability condition (4.10) and (b) at

least one of the following two conditions (when all parameters of the model are

fixed).

1. 1J{N) is very close to 17. That is, for a given El > 0, 117{N) - 171 < fl.

2. Change in 17{N) due to ~ marginal increase in N is sufficiently small. That

is, for a given E2 > 0, 117(N + 1) - 17{N) I < E2.

In the sequel, such an N will be denoted by N*. For large values of () the above

criteria yield very small values for N*. Hence, .we put a minimum threshold, say,

10 for such cases.

Evaluation of R{ N): Equations in (4.16) are well suited for (block)Gauss-Seidel

iterative procedure to evaluate R{N). Note that this procedure is numerically sta

ble due to the fact that the quantities involved in the evaluation are all nonnegative.

When the maximum absolute (componentwise) difference between two succes

sive iterates is less than a predetermined infinitesimal value, say, f3, the process is

terminated. Once R{N) is evaluated, the spectral radius 17{N) can be computed

using, say, Elsner's algorithm. However, one can compute 17(N) without explicitly

evaluating R(N). For details on this we refer to [59][pp38-40].
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4.3.2 Computation of the vector x
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Due to the special structure of the matrix R as given in (4.14), the vector, x, can

be computed very efficiently. First, we partition x as

x(i) == (Yo(i),··· ,Yc(i)), i 2:: 0,

where the vectors Yj (i)) are of dimension m.

First note that from equation (4.11), we have

(4.18)

The equations in (4.13) can be rewritten in terms of vectors of dimension m that

are well suited for numerical implementation. For example, the first equation in

(4.13) reduces to

Yo(O) = J.lYl (0)( -DO)-l,

Yj(O) = [Yj-l (0)D1 + (j + 1)JLYj+l (0) + 0Yj-l (1) + jpJlYj(l)] (j III - Do)-1,

1 ~ j ~ C - 1,

Yc(O) = [YC-l (0)D1 + 0Yc-l(1) + cPJ.lYc(l)] (CJL! - DO)-l.

The other equations are similarly written and the details are omitted.

4.4 System performance measures

In this section we will list some important performance measures along with their

formulas. These measures are used to bring out the qualitative behavior of the

queueing model under study.

1. The Probability Mass Function of the Number of Customers in Orbit. The
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probability that there are i customers in orbit is given by
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ai == x( i)e ==

c

LYje,O::; «< N -1,
j=O

c

yc(N - l)R~-N L Rje, i 2 N.
j=O

(4.19)

2. The Mean Number of Customers in Orbit. The mean, MNO, number of

customers in orbit is given by

00 1\"-1 c

M NO = I>x(i)e = I> LYj(i)e
i=O i=O j=O

r

+ Yc(N - 1)(/ - Rc)-I[(N - 1)1 + (/ - Rct 1
] L Rje. (4.20)

j=O

3. The Probability Mass Function of the Number of Busy Servers. The prob

ability that j servers are busy is given by

00 N-l

bj = LYj(i)e = LYj(i)e + Yj(N - l)(i - Rct l Rje, 0 <j < c. (4.21)
i=O i=O

4. The Overall Rate of Retrials. The overall rate of trials at which the orbiting

customers request service is given by

00

B~ = BL ix(i)e = B/),orbit.
i=l

(4.22)

5. The Successful Rate of Rptrials. Thp rate at which the orbiting customers
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successfully reach a free server is given by
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(4.23)

6. The Fraction of Successful Rate of Retrials. The fraction, F S R, of success

ful rate of retrials is given by :~ .
1

7. The Blocking Probability. The probability, P BK, that an orbiting customer

is blocked is given by be which is given in equation (4.21) by putting j = c.

8. The Probability of an Immediate Access. The probability, Paccess, that an

arriving customer will enter into service immediately is given by

(4.24)

9. The Probability of an Immediate Access with at least one customer waiting

in the orbit. The probability. PES, that an arriving customer will enter into

service immediately with at least one customer waiting in the orbit is given by

1 'X> c-l

PES = ~ LLYi(i)D1e.
i=l j=O

4.5 Numerical examples

(4.25)

In order to test the feasibility of the algorithms proposed in this paper, a Fortran

code was developed and tested on a large number of examples. The correctness

and the accuracy of the code are verified by a number of accuracy checks. For
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example, we obtained the numerical solution for the Poisson arrivals in its sim

ple form. Next, we implemented the general algorithm, but using the following

M AP representation: Let Do be an irreducible, stable matrix with eigenvalue of

maximum real part -8 < o. Let a denote the corresponding left eigenvector, nor

malized by ae=I. Taking D 1 = - Dsea, the M AP representation reduces to the

Poisson arrival process with intensity rate 8. The general algorithm does not utilize

this fact in any manner, but the numerical results agreed very much. Also when

N -t 00 or p -t 1, the current model reduces to the classical MAP/ M / c queue.

In this section we discuss some interesting numerical examples that qualitatively

describe the performance of the queuing model under study. For the arrival pro

cess, we consider five Markovian arrival processes with representation Do and D 1

given as follows.

1. Erlang (ERL):

(-2 2)Do == .
: 0 -2

2. Exponential (EXP):

Do == (-1), D1 == (1)

3. Hyperexponential (HEX):

(
- 1.9 0)Do ==

o -0.19' (
1.71 0.19 )

D 1 ==
0.171 0.019

4. MAP with negative correlation (MNC):

Do =
-1.00222

0.00000

0.00000

1.00222

-1.00222

0.00000

0.00000 \

0.00000 )'

-225.75000

0.00000 0.00000 0.00000

U.UIUU:l U.OOOOO 0.99220

223.49250 0.00000 2.25750
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5. MAP with positive correlation (MPC):

77

Do=

-1.00222

0.00000

0.00000

1.00222

-1.00222

0.00000

0.00000

0.00000

-225.75000

0.00000 0.00000 0.00000

0.99220 0.00000 0.01002

2.25750 0.00000 223.49250

All these five M AP processes are normalized so that A = 1. However, these

are qualitatively different in that they have different variance and correlation struc

ture. The first three arrival processes correspond to renewal processes and so the

correlation is O. The arrival process labelled M Ne has correlated arrivals with

a correlation value of -0.48891, and the arrivals corresponding to the process la

belled M PC has a positive correlation with a value of 0.48891. The standard

deviations of these five arrival processes are, respectively, 0.70711, 1.0, 2.24472,

1.40952 and 1.40952.

In all our examples, we fix A = 1. The service rate J.l is chosen so as to

arrive at a specific value of p = C~L given a value for c. We take f = 10-6 in

the direct truncation method; e = 10-7 in the Gauss-Seidel iterative procedure

when computing the rate matrix as well as the steady state probability vector. We

take El == E2 = 10-4 in the matrix-geometric truncation procedure. All other

parameters such as p, p, C, () are varied.

Discussion on M* and N*

Here we illustrate the effect of the parameters p, P, (), and the type of arrival pro

cess on M* and N*. The values of M* and N* are given in Tables 1A (for the case

when C == 1, 2) and] B (when c == 4, 8) below. We notice the following interesting

observations from these tables.

• Generally speaking the truncation cut-off point appears to be smaller under
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matrix-geometric approximation compared to direct truncation whenever

(a) the system load (i.e., p) is large; or (b) the retrial rate (0) is large; or (c)

the search probability (P) is reasonably large, for all five arrival processes

under study and for all values of c. This is to be expected since under

these scenarios, the probability of seeing an idle server will be relatively

small; thus increasing the size of the system of equations and the number of

iterations required to achieve the desired convergence.

• The truncation cut-off point appears to be small for the direct truncation

method whenever (a) p is relatively small; or (b) () is small, for the first four

arrival process. In this case the size of the system of equations is relatively

small; however the rate matrix convergence requires a larger cut-off value.

• With regards to the fifth arrival process that is labelled as M PC, some im

portant observations need to be made when comparing the two truncation

methods. First note th~t this arrival process has variation that is smaller

than that of the hyperexponential; however the interarrival times here are

positively correlated. Secondly, the rate matrix R(N) and its spectral ra

dius converge very slowly to the rate matrix and the corresponding spectral

radius of the classical M AP/ M / c queue as N --t 00. Hence, with the

stopping criteria that is considered here, the truncation cut-off point for the

M PC arrival process is significantly less in the matrix-geometric approx

imation. As we will see later this has a tremendous effect on the system

performance measures. It is worth mentioning that this type of behavior is

not seen with the hyperexponential arrivals even though it has the largest

variation among the five arrival processes considered. Hence, (positive)

correlation appears to play a major role.

• p...s is to expected, N* appears to decrease as 0 decreases. This is true for

all values of p, p, c, and for all five arrival processes. In all cases, the rate of

decrease appears to be large when p is small and p is large.
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• As p increases, M* as well as N* appear to increase for all arrival processes.

Similarly, these two quantities appear to decrease when c is varied by fixing

all other parameters.

• It is interesting to note that M* is significantly large for M PC compared

to that of M NO. Note that both these two arrival processes have the same

mean and variance, but have different correlation structure. This indicates

the vital role played by correlation, which is largely ignored in the literature.

Discussion on system performance measures

The effect of the parameters p, p, (), c, and the type of arrival process on the four

selected system performance measures: (a) the fraction of successful rate of re

trials; (b) the mean number of customers in the orbit; (c) the probability that an

arriving customer will enter i?to service when at least one customer is in the or

bit; and (d) the probability th~.t an orbiting customer is blocked, for a wide range

of parameter values is analyzed, These measures are given in Tables 2A through

58. In interpreting these tables, we need to keep in mind the differences in the

cut-off values (M* in the case of direct truncation and N* in the case of matrix

geometric approximation) for different arrival processes and for various values of

other parameters. Examining these tables we observe the following salient points.

• The matrix-geometric approximation seems to perform extremely well in

all except the following cases: (a) For the first four arrival processes when p

is large and when () is small; (b) For the fifth arrival process (MPC) when

() is small irrespective of the values of p and c. These can be explained as

follows. In case (a), the number of customers in the orbit grows rapidly and

hence limiting the retrial rate to be a fixed quantity may significantly affect

the system dynamics. In case (b) as mentioned before, the rate matrix, R( N)

converges very slowly reflecting in very small cut-off values, N*, compared

to M*. This has a drastic effect in the dynamics of the system, However,
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the system performance measures are greatly improved when N = M* as

seen from Table 6.

• With respect to the performance measure, F SR, the fraction of successful

rate of retrials, we notice the following,

I. FS R appears to decrease whenever either p increases or () increases

or p increases when all other parameters are fixed. This is as expected

since the servers will be made more busy under these cases resulting

in a fewer successful rate for orbiting customers.

2. As c increases (by fixing all other parameters), FS R appears to in

crease for all arrival processes.

• With respect to the performance measure, M NO, the mean number of cus

tomers in the c~·bit, we observe that whenever p increases (or () increases or

c increases) by fixing all other parameters, M NO appears to decrease for

the first four arrival processes. With respect to M PC arrivals, the above

phenomenon doesn't appear to hold good. This indicates that we need to

increase the cut-off points, M" in the case of direct truncation and N* in the

case of matrix-geometric approximation. For example, compare the entries

corresponding to the case when c == 1 and p == 0.9 in Tables 3A and 6.

• It is interesting to note that the performance measure, the probability P EB,

that an arriving customer will enter into service immediately with at least

one customer waiting in the orbit, appears to be not significantly affected

by increasing N from N* to AI" in the case of M PC arrivals for c == 1, 2.

When c == 4,8, there appears to be a significant difference which tend to

increase as p increases.(see Tables 4A, 4B and 6).

• We notice that when c == 1, the blocking probability appears not to depend

on either p or () for all five arrival processes. However, as c increases this
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measure changes depending on the arrival process, p, and () among other

parameters.

• As is to be expected, the system performance measures of the model under

study approach to the corresponding measures in the classical M AP/ M / c

queue whenever (a) 1)~ 1; or (b) N ~ 00; or (c) () ~ 00. The measures

for classical A1 AI)/ M / c arc listed in ·fable 7 for comparison purposes. The

convergence rate is faster for the matrix-geometric approximation compared

to the direct truncation method. This is not surprising since the steady state

probability vector in the classical M AP/ M / c queue is of matrix-geometric

type.

• We have also noticed that the mean number of busy servers is independent

of the values of (J, p and the truncation methods. This mean is given by *.



Table 4.1A: Values of M* and N*
Direct Truncation (M·) Matrix-geometric Approximation(N*)

c p 8 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
1 0.1 0.1 0.00 11 11 16 19 420 53 101 167 131 25

0.50 11 ·11 11 12 388 35 67 109 95 10
0.90 11 11 11 11 430 11 24 37 45 11
0.99 11 11 11 11 433 10 10 10 14 10

1 0.00 11 11 11 11 447 16 33 54 37 11
0.50 11 11 11 11 562 11 23 38 27 11
0.90 11 11 11 11 430 11 11 16 13 10
0.99 11 11 11 11 518 10 10 10 11 10

100.00 0.00 11 11 11 11 ~93 10 10 11 10 10
0.50 11 11 11 11 527 10 10 11 10 10
0.90 11 11 11 11 545 10 10 10 10 10
0.99 11 11 11 11 548 10 10 10 10 10

0.5 0.1 0.00 29 38 70 46 919 213 225 248 233 32
0.50 19 25 47 27 833 146 154 171 163 20
0.90 13 . 19 36 20 883 60 63 68 71 11
0.99 13 17 31 17 903 10 10 10 20 10

1.00 0.00 15 21 38 20 564 67 72 83 73 11
0.50 15 21 40 20 944 47 51 58 51 11
0.90 13 20 34 19 935 21 22 26 10 10
0.99 13 18 33 18 945 10 10 10 11 10

100.00 0.00 13 17 33 17 909 11 11 11 10 10
0.50 13 17 36 17 927 11 11 11 II 10
0.90 13 18 33 17 946 10 10 10 10 10
0.99 13 17 34 17 932 10 10 10 10 10

0.9 0.1 0.00 204 259 384 313 1885 341 301 179 305 96
0.50 197 231 381 253 2091 236 208 125 21:i 1.')
0.90 78 142 343 149 2222 98 87 52 92 11
0.99 70 100 254 90 2223 10 10 10 25 11

1.00 0.00 77 120 267 105 1638 108 96 60 96 14
0.50 69 87 264 97 2277 76 68 43 68 11
0.90 78 100 255 96 2297 34 30 19 31 11
O.!}H (i(; H!) 2:J!} H:J 22HH 10 10 10 1I 10

100.00 0.00 6M 91 233 84 2299 12 11 11 11 10
0.50 64 85 233 83 2361 11 11 11 11 10
0.90 65 86 400 84 2410 11 10 10 10 10
0.99 65 88 359 84 2393 10 10 10 10 10

2 0.1 0.1 0.00 11 11 11 11 509 17 47 92 67 23
0.50 11 11 11 11 :i74 Jl 22 48 :~8 14
0.90 11 11 11 11 503 11 11 11 11 11
0.99 11 11 11 11 537 10 10 10 11 10

1.00 0.00 11 11 11 11 518 11 20 35 23 11
o.so 11 11 11 11 520 11 12 23 Hi 11
O.!JO I I 11 I I 11 S22 10 11 11 I I 10
o.ss 11 11 I1 11 .124 10 10 10 ID 10

100.00 0.00 11 11 11 11 524 10 10 11 10 10
0.50 11 11 11 11 526 10 10 10 10 10
0.90 1I 11 11 11 S28 10 10 10 10 10
0.99 II 11 I1 11 5,1;' 10 10 10 10 10

0.5 0.1 0.00 19 25 ·19 27 1254 145 155 176 163 2fi
0.50 14 20 ;» 21 926 97 104 118 112 10
0.90 12 ]7 -1] 17 922 34 37 10 45 ] 1
0.99 12 16 :J2 17 919 10 10 10 11 10

1.00 0.00 16 20 36 22 826 47 51 59 51 11
0.50 12 16 32 18 922 33 35 41 36 11
0.90 12 16 30 17 927 14 15 18 16 10
0.99 12 16 32 16 923 10 10 10 11 10

100.00 0.00 11 16 :J1 16 917 11 11 11 10 10
0.50 12 16 31 16 929 10 11 11 11 10
0.90 12 16 32 16 922 10 10 10 10 10
0.99 11 16 34 16 920 10 10 10 10 10

0.9 0.1 0.00 137 196 309 168 1940 240 213 130 217 51
0.50 128 165 309 163 2039 164 146 89 150 22
0.90 119 120 295 109 2087 66 59 35 63 11
0.99 65 89 246 78 2089 10 10 10 16 10

1.00 0.00 81 104 244 95 1608 76 68 43 68 11
0.50 63 85 243 87 2145 54 48 30 48 11
0.90 69 93 243 82 2147 10 21 14 22 10
0.99 64 87 ~38 80 2149 10 10 10 11 10

100.00 0.00 64 87 232 80 2150 11 11 11 10 10
0.50 63 86 232 78 2174 11 11 10 11 10
0.90 64 87 310 78 2201 10 10 10 10 10
0.99 64 86 234 78 2203 10 10 10 10 10



Table 4.1B: Values of M* and N*
Direct Truncation (M·) Matrix-geometric Approximation(N·)

c p 0 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
4 0.1 0.1 0.00 11 11 11 11 368 11 13 41 21 23

0.50 11 11 11 11 348 11 11 11 11 13
0.90 11 11 11 11 395 10 11 11 11 11
0.99 11 11 11 11 404 10 10 10 10 10

1.00 0.00 11 11 11 11 510 11 11 22 14 11
0.50 11 11 11 11 516 11 11 13 11 10
0.90 11 11 11 11 519 10 11 11 11 10
0.99 11 11 11 11 522 10 10 10 10 10

100.00 0.00 11 11 11 11 522 10 10 10 10 10
0.50 11 11 11 11 525 10 10 III 10 10
0.90 11 11 11 11 528 10 10 10 10 10
0.99 11 11 11 11 537 10 10 10 10 10

0.5 0.1 0.00 14 19 38 19 1254 98 106 124 114 21
0.50 11 17 40 17 865 62 68 80 76 12
0.90 11 16 32 15 856 16 20 24 27 11
0.99 11 15 30 14 852 10 10 10 11 10

1.00 0.00 11 21 32 17 732 33 36 42 36 11
0.50 11 16 28 15 863 23 25 29 26 11
0.90 11 16 30 14 855 11 11 12 11 10
0.99 11 15 32 15 853 10 10 10 11 10

100.00 0.00 11 15 31 14 846 11 11 11 10 10
0.50 11 15 31 14 861 10 10 10 10 10
0.90 11 15 29 15 855 10 10 10 10 10
0.99 11 15 31 14 854 10 10 10 10 10

0.9 0.1 0.00 98 193 260 240 1806 169 150 94 155 28
0.50 91 110 266 131 2008 114 10l . - 62 - 106 11
0.90 81 106 262 96 2010 43 39 24 43 11
0.99 63 86 240 78 2012 10 10 10 11 10

1.00 0.00 74 96 236 87 1323 54 48 31 49 11
0.50 62 84 236 81 2045 38 34 22 34 11
0.90 66 87 240 79 2047 17 15 11 16 10
0.99 63 85 236 77 2049 10 10 10 11 10

100.00 0.00 63 85 231 77 2050 11 11 10 10 10
0.50 62 83 231 76 2056 11 10 10 11 10
0.90 62 84 283 76 2067 10 10 10 10 10
0.99 62 108 258 82 2069 10 10 10 10 10

8 0.1 0.1 0.00 11 11 11 11 349 11 11 11 11 23
0.50 11 11 11 11 319 11 11 11 11 13
0.90 11 11 11 11 374 10 11 11 11 10
0.99 11 11 11 11 379 10 10 10 10 10

1.00 0.00 11 11 11 11 498 11 11 13 11 11
0.50 11 11 11 11 500 10 11 11 11 10
0.90 11 11 11 11 502 10 10 11 10 10
0.99 11 11 11 11 500 10 10 10 10 10

100.00 0.00 11 11 11 11 500 10 10 10 10 10
0.50 11 11 11 11 506 10 10 10 10 10
0.90 11 11 11 11 511 10 10 10 10 10
0.99 11 11 11 11 506 10 10 10 10 10

0.5 0.1 0.00 11 15 31 15 675 65 72 86 79 18
0.50 11 17 30 17 725 39 44 53 50 11
O.HO 11 I:' '27 I~ XOfi 11 11 1:1 I;' 10
0.99 11 13 26 13 803 10 10 10 11 10

1.00 0.00 11 16 29 12 790 23 25 30 26 11
0.50 11 1-1 26 13 808 16 17 20 18 10
0.90 11 1t1 2fi 12 805 II 11 11 11 10
0.99 11 13 28 12 801 10 10 10 10 10

100.00 0.00 11 1:1 27 12 802 10 10 10 10 10
O}iO 11 I :~ '2fi 1:1 812 10 10 10 10 10
0.90 11 1:4 '27 1:\ 804 10 10 10 10 10
0.99 11 1:3 26 12 802 10 10 10 10 10

0.9 0.1 0.00 7'1 150 2:1:1 137 1786 118 106 68 110 19
0.50 68 85 ~"1 103 185'1 78 70 44 7'1 11
0.90 63 8:1 2'11 85 1857 27 25 16 29 11
0.99 60 82 2:15 76 1859 10 10 10 11 10

1.00 0.00 75 90 2:\1 8:l 1150 39 34 22 35 11
0.50 60 82 231 77 1891 27 24 10 25 10
0.90 60 81 235 76 189:1 12 11 11 11 10
O.!}!) (i() 1·1X '2;\;\ 75 IX!):) 10 10 10 11 10

100.00 0.00 60 85 229 75 1896 11 11 10 10 10
0.50 60 83 229 74 1898 10 10 10 10 10
0.90 59 82 256 74 1901 10 10 10 10 10 .
0.99 62 84 243 74 1903 10 10 10 10 10



Table 4.2./\: Fraction of successful rate of retrials
I)irect Truncation Matrix-geometric Approximation

c p 0 p EH.L EXP IIEX MNC MPC EH.L EXP HEX MNC MPe
1 0.1 0.1 0.00 0.893 O.R91 0.876 0.895 0.482 0.893 0.891 0.876 0.R95 0.765

0.50 0.811 0.815 0.797 0.867 0.314 0.811 0.815 0.797 0.867 0.759
0.90 0.462 0..171 0.444 0.614 0.081 0.462 0.471 0.444 0.614 0.367
0.99 0.079 0.082 0.074 0.140 0.009 0.000 0.000 0.000 0.140 0.057

1 0.00 0.835 0.818 0.770 0.843 0.092 0.835 0.818 0.770 0.843 0.457
0.50 0.719 0.697 0.636 0.755 0.046 0.719 0.697 0.636 0.755 0.296
0.90 0.339 0.=~17 0.263 0.405 0.010 0.339 0.317 0.263 0.405 0.084
0.99 0.049 0.045 0.035 0.065 0.001 0.000 0.000 0.000 0.065 0.009

100.00 0.00 0.OH8 0.082 0.075 0.087 0.001 0.088 0.082 0.075 0.087 0.010
0.50 0.046 0.043 0.039 0.045 0.001 0.046 0.043 0.039 0.045 0.005
0.90 0.010 0.009 0.008 0.009 0.000 0.010 0.009 0.008 0.009 O.OOt
0.99 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000

0.5 0.1 0.00 0.483 0.476 0.430 0.481 0.116 0.483 0.476 0.430 0.481 0.349
0.50 0.391 0.399 0.352 0.441 0.059 0.391 0.399 0.352 0.441 0.281
0.90 0.122 0.133 0.122 0.186 0.012 0.122 0.133 0.122 0.186 0.105
0.99 0.014 0.015 0.014 0.024 0.001 0.000 0.000 0.000 0.024 0.012

1.00 0.00 0.366 O.:J~~=J 0.223 0.354 0.015 0.366 0.333 0.224 0.354 0.148
0.50 0.243 0.219 0.140 0.249 0.007 0.243 0.219 0.140 0.249 0.080
0.90 0.064 0.057 0.035 0.071 0.001 0.064 0.057 0.035 0.071 0.019
0.99 0.007 0.006 0.004 0.008 0.000 0.000 0.000 0.000 0.008 0.002

100.00 0.00 0.012 0.010 0.005 0.010 0.000 0.012 0.010 0.006 0.010 0.002
0.50 0.006 0.005 0.003 0.005 0.000 0.006 0.005 0.003 0.005 0.001
0.90 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.1 0.00 0.093 0.090 0.079 0.091 0.023 0.093 0.091 0.078 0.090 0.099
0.50 0.086 0.082 0.061 0.083 0.010 0.086 0.083 O.~63 0.084 0.099
0.90 0.039 0.037 0.022 0.042 0.002 0.039 0.037 0.025 0.042 0.061
0.99 0.005 0.004 0.003 0.006 0.000 0.000 0.000 0.000 0.006 0.006

1.00 0.00 0.060 0.053 0.027 0.054 0.003 0.060 0.052 0.029 0.053 0.071
0.50 0.040 0.034 0.015 0.035 0.001 0.040 0.034 0.018 0.035 0.046
0.90 0.011 0.009 0.003 0.009 0.000 0.011 0.009 0.006 0.009 0.010
0.99 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001

100.00 0.00 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001
0.50 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001
0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.1 0.1 0.00 0.981 0.972 0.959 0.944 0.547 0.981 0.972 0.959 0.944 0.901
0.50 0.821 0.818 0.798 0.830 0.354 0.821 0.818 0.798 0.830 0.847
0.90 0.214 0.217 0.207 0.269 0.080 0.214 0.217 0.207 0.269 0.422
0.99 0.018 0.018 0.017 0.022 0.008 0.000 0.000 0.000 0.022 0.057

1.00 0.00 0.896 0.881 0.854 0.874 0.093 0.896 0.881 0.854 0.874 0.542
0.50 0.678 0.658 0.615 0.685 0.047 0.678 0.658 0.615 0.685 0.335
0.90 0.165 0.159 0.145 0.182 0.010 0.165 0.159 0.145 0.182 0.087
0.99 0.016 0.015 0.014 0.017 0.001 0.000 0.000 0.000 0.017 0.009

100.00 0.00 0.088 0.082 ·0.076 0.079 0.001 0.088 0.082 0.076 0.079 0.010
0.50 0.045 0.042 0.039 0.040 0.001 0.045 0.042 0.039 0.040 0.005
0.90 0.009 0.009 0.008 0.008 0.000 0.009 0.009 0.008 0.008 0.001
0.99 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000

0.5 0.1 0.00 0.677 0.656 0.576 0.651 0.112 0.677 0.656 0.576 0.651 0.466
0.50 0.450 0.461 0.415 0.504 0.059 0.450 0.461 0.415 0.504 0.457
0.90 0.100 0.109 0.104 0.141 0.012 0.100 0.109 0.106 0.141 0.111
0.99 0.010 0.011 0.010 0.015 0.001 0.000 0.000 0.000 0.015 0.012

1.00 0.00 0.444 0.400 0.268 0.420 0.014 0.444 0.400 0.268 0.420 0.158
0.50 0.253 0.229 0.151 0.253 0.007 0.253 0.229 0.151 0.253 0.083
0.90 0.055 0.050 0.033 0.058 0.001 0.055 0.050 0.033 0.058 0.019
0.99 0.006 0.005 0.003 0.006 0.000 0.000 0.000 0.000 0.006 0.002

100.00 0.00 0.012 0.010 0.006 0.010 0.000 0.012 0.010 0.006 0.010 0.002
0.50 0.006 0.005 0.003 0.005 0.000 0.006 0.005 0.003 0.005 0.001
0.90 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.1 0.00 0.161 0.153 0.120 0.157 0.023 0.161 0.155 0.120 0.155 0.178
0.50 0.135 0.127 0.084 0.132 0.011 0.135 0.127 0.087 0.132 0.181
0.90 0.041 0.040 0.023 0.047 0.002 0.042 0.040 0.030 0.047 0.063
0.99 0.004 0.004 0.003 0.005 0.000 0.000 0.000 0.000 0.006 0.007

1.00 0.00 0.080 0.068 0.031 0.069 0.002 0.080 0.068 0.036 0.069 0.092
0.50 0.047 0.039 0.017 0.041 0.001 0.047 0.039 0.023 0.041 0.047
0.90 0.011 0.009 0.004 0.009 0.000 0.013 0.009 0.008 0.010 0.010
0.99 0.001 0.001 .0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001

100.00 0.00 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001
0.50 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001
0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



Table 4.2B: Fraction of successful rate of retrials
Direct Truncation Matrix-geometric Approximation

c p 8 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
4 0.1 0.1 0.00 0.989 0.988 0.984 0.988 0.627 0.989 0.988 0.984 0.988 0.968

0.50 0.697 0.703 0.693 0.741 0.385 0.701 0.103 0.693 0.141 0.940
0.90 0.129 0.129 0.121 0.144 0.084 0.128 0.129 0.121 0.144 0.463
0.99 0.013 0.013 0.012 0.014 0.008 0.000 0.000 0.000 0.014 0.057

1.00 0.00 0.903 0.895 0.881 0.901 0.095 0.903 0.895 0.881 0.901 0.615
0.50 0.571 0.561 0.538 0.589 0.047 0.571 0.561 0.538 0.589 0.393
0.90 0.113 0.112 0.107 0.122 0.010 0.113 0.112 0.107 0.122 0.089
0.99 0.011 0.011 0.011 0.012 0.001 0.000 0.000 0.000 0.012 0.009

100.00 0.00 0.088 0.082 0.076 0.082 0.001 0.088 0.082 0.076 0.082 0.010
0.50 0.045 0.0-11 0.038 0.041 0.001 0.045 0.041 0.038 0.0-11 0.005
0.90 0.009 0.008 0.008 0.008 0.000 0.009 0.008 0.008 0.008 O.O())
0.99 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000

0.5 0.1 0.00 0.818 0.791 0.689 0.195 0.115 0.818 0.191 0.689 0.195 0.519
0.50 0.453 0.468 0.432 0.515 0.060 0.453 0.468 0.432 0.515 0.469
0.90 0.089 0.097 0.094 0.122 0.012 0.089 0.097 0.094 0.122 0.114
0.99 0.009 0.010 0.009 0.013 0.001 0.000 0.000 0.000 0.013 0.012

1.00 0.00 0.484 0.438 0.297 0.462 0.014 0.484 0.438 0.297 0.462 0.165
0.50 0.250 0.228 0.154 0.251 0.001 0.250 0.228 0.154 0.251 0.084
0.90 0.051 0.046 0.032 0.053 0.001 0.051 0.046 0.032 0.053 0.019
0.99 0.005 0.005 0.003 0.005 0.000 0.000 0.000 0.000 0.005 0.002

100.00 0.00 0.012 0.010 0.006 0.010 0.000 0.012 0.010 0.006 0.010 0.002
0.50 0.006 0.005 0.003 0.005 0.000 0.006 0.005 0.003 0.005 0.001
0.90 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.1 0.00 0.252 0.234 0.163 0.236 0.025 0.251 0.236 0.166 0.240 0.300
0.50 0.177 0.166 0.101 0.177 0.011 0.178 0.166" o.no 0.178 0.301
0.90 0.043 0.041 0.024 0.049 0.002 0.043 0.042 0.037 0.050 0.064
0.99 0.004 0.004 0.003 0.005 0.000 0.000 0.000 0.000 0.007 0.007

1.00 0.00 0.095 0.078 0.033 0.081 0.003 0.095 0.078 0.044 0.081 0.094
0.50 0.051 0.042 0.017 0.044 0.001 0.051 0.042 0.028 0.044 0.048
0.90 0.011 0.009 0.004 0.009 0.000 0.011 0.010 0.010 0.011 0.011
0.99 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.001

100.00 0.00 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001
0.50 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001
0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.1 0.1 0.00 1.000 0.990 0.988 0.990 0.672 1.000 0.990 0.988 0.990 0.986
0.50 0.985 0.593 0.571 0.601 0.406 0.992 0.601 0.572 0.601 0.911
0.90 0.399 0.147 0.114 0.129 0.084 0.110 0.111 0.111 0.121 0.515
0.99 0.011 0.013 0.011 0.014 0.009 0.000 0.000 0.000 0.012 0.057

1.00 0.00 0.663 0.896 0.888 0.903 0.096 0.975 0.899 0.888 0.903 0.675
0.50 0.558 0.631 0.483 0.516 0.048 0.507 0.495 0.483 0.516 0.417
0.90 0.113 0.126 0.096 0.110 0.010 0.099 0.099 0.096 0.106 0.090
0.99 0.010 0.011 0.010 0.012 0.001 0.000 0.000 0.000 0.011 0.009

100.00 0.00 0.084 0.082 0.076 0.082 0.001 0.088 0.082 0.076 0.082 0.010
0.50 0.046 0.041 0.038 0.041 0.001 0.044 0.041 0.038 0.041 0.005
0.90 0.009 0.009 0.008 0.008 0.000 0.009 0.008 0.008 0.008 0.001
0.99 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000

0.5 0.1 0.00 0.883 0.862 0.764 0.872 0.125 0.883 0.862 0.164 0.811 0.691
0.50 0.439 0.455 0.427 0.501 0.061 0.439 0.455 0.426 0.501 0.530
0.90 0.08-1 O.OHl o.oso 0.113 0.012 0.084 0.091 0.090 0.11:1 0.1'2'2
0.99 0.008 0.009 0.009 0.012 0.001 0.000 0.000 0.000 0.012 0.012

1.00 0.00 0.502 0.457 0.314 0.482 0.014 0.502 0.457 0.314 0.481 0.168
0.50 0.247 0.226 0.156 0.248 0.007 0.247 0.226 0.156 0.248 0.093
0.90 0.049 0.045 0.031 0.051 0.001 0.049 0.045 0.032 0.051 0.019
0.99 0.005 0.004 0.003 0.005 0.000 0.000 0.000 0.000 0.005 0.002

100.00 0.00 0.012 0.010 0.006 0.010 0.000 0.012 0.010 0.006 0.010 0.002
0.50 0.006 0.005 0.003 0.005 0.000 0.006 0.005 0.003 0.005 0.001
0.90 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.9 0.1 0.00 0.345 0.315 0.199 0.324 0.026 0.342 0.315 0.210 0.325 0.411
0.50 0.201 0.190 0.112 0.208 0.011 0.203 0.191 0.132 0.209 0.315
0.90 0.043 0.042 0.024 0.050 0.002 0.044 0.044 0.047 0.052 0.065
0.99 0.004 0.004 0.003 0.005 0.000 0.000 0.000 0.000 0.007 0.007

1.00 0.00 0.104 0.084 0.035 0.088 0.003 0.104 0.085 0.056 0.089 0.095
0.50 0.053 0.043 0.017 0.045 0.001 0.054 0.045 0.052 0.047 0.052
0.90 0.011 0.009 0.004 0.009 0.000 0.012 0.012 0.010 0.012 0.011
0.99 0.001 0.001 Q.OOO 0.001 0.000 0.000 0.000 0.000 0.001 0.001

100.00 0.00 0.001 0.001 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001
0.50 0.001 0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.001
0.90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.99 0.000 0.000 0.000 0.000 0.000 0.000 I 0.000 0.000 0.000 0.000



Table 4.3A: Mean Nurnber of Customers in Orbit
Direct Truncation Matrix-geometric Approxi mat ion

c p o p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
1 0.1 0.1 0.00 0.35 1.12 1.83 5.68 10.40 0.35 1.12 1.83 5.68 35.12

0.50 0.03 0.12 0.21 1.22 7.28 0.03 0.12 0.21 1.22 33.77
0.90 0.01 0.02 0.04 0.16 .5.38 0.01 0.02 0.04 0.16 8.89
0.99 0.00 0.01 0.02 0.06 4.96 0.00 0.01 0.02 0.06 5.62

1 0.00 0.04 0.12 0.22 0.60 5.51 0.04 0.12 0.22 0.60 10.72
0.50 0.01 0.05 0.08 0.28 5.44 0.01 0.05 0.08 0.28 7.85
0.90 0.01 0.02 0.03 0.09 4.97 0.01 0.02 0.03 0.09 5.81
0.99 0.00 0.01 0.02 0.06 5.10 0.00 0.01 0.02 0.06 5.32

100.00 0.00 0.00 0.01 0.02 0.06 5.06 0.00 0.01 0.02 0.06 5.33
0.50 0.00 0.01 0.02 0.05 5.12 0.00 0.01 0.02 0.05 5.30
0.90 0.00 0.01 0.02 0.05 5.13 0.00 0.01 0.02 0.05 5.27
0.99 0.00 0.01 0.02 0.05 5.13 0.00 0.01 0.02 0.05 5.27

0.5 0.1 0.00 8.56 10.50 13.99 14.91 61.29 8.56 10.50 14.00 14.92 163.98
0.50 1.41 2.48 5.52 5.00 54.56 1.41 2.48 5.52 5.00 112.70
0.90 0.41 0.68 1.78 1.01 49.85 0.41 0.68 1.78 1.01 62.62
0.99 0.32 0.52 1.34 0.67 48.82 0.31 0.50 1.29 0.67 50.67

1.00 0.00 1.11 1.50 2.95 1.99 45.82 1.11 1.50 2.95 1.99 70.16
0.50 0.59 0.89 2.04 1.21 49.28 0.59 0.89 2.04 1.21 58.80
0.90 0.35 0.56 1.43 0.74 49.04 0.35 0.56 1.43 0.74 51.33
0.99 0.31 0.51 1.31 0.65 48.90 0.31 0.50 1.29 0.65 49.61

100.00 0.00 0.32 0.51 1.32 0.65 18.72 0.32 0.51 1.32 0.65 49.62
0.50 0.31 0.51 1.30 0.65 48.97 0.31 0.51 1.30 0.65 49.52
0.90 0.31 0.50 1.30 0.64 48.98 0.31 0.50 1.30 0.64 49.44
0.99 0.31 0.50 1.29 0.64 48.85 0.31 0.50 1.29 0.64 49.42

0.9 0.1 0.00 96.30 99.99 115.76 103.74 397.71 96.64 99.22 124.93 105.04 33948.41
0.50 45.10 48.67 68.80 53.41 436.41 44.81 48.39 ·70~6Z 53.16 47076.72
0.90 9.67 13.01 32.39 14.66 421.23 9.68 12.85 33.03 14.40 1165.34
0.99 6.24 8.52 25.31 8.84 417.62 5.93 8.10 24.49 8.83 480.73

1.00 0.00 14.68 17.11 34.66 17.60 293.19 14.83 17.15 35.80 17.70 1547.24
0.50 9.96 12.32 29.76 12.80 409.31 9.95 12.31 30.55 12.76 830.96
0.90 6.66 8.89 25.65 9.18 422.33 6.63 8.88 26.26 9.16 496.89
0.99 6.(;1 8.19 24.62 8.40 421.62 5.93 8.10 24.49 8.42 454.32

100.00 0.00 6.01 8.19 24.57 8.40 416.45 6.03 8.22 24.78 8.43 454.58
0.50 5.98 8.16 24.61 8.38 427.67 5.98 8.16 24.63 8.38 452.04
0.90 5.95 8.12 26.74 8.34 428.63 5.94 8.11 24.52 8.33 450.03
0.99 5.94 8.11 25.03 8.32 426.20 5.93 8.10 24.49 8.32 449.58

2 0.1 0.1 0.00 0.03 0.17 0.45 0.36 8.87 0.03 0.17 0.45 0.36 29.49
0.50 0.00 0.01 0.03 0.03 6.23 0.00 0.01 0.03 0.03 19.77
0.90 0.00 0.00 0.01 0.01 5.29 0.00 0.00 0.01 0.01 7.34
0.99 0.00 0.00 0.01 0.00 5.09 0.00 0.00 0.01 0.00 5.39

1.00 0.00 0.00 0.02 O.On 0.04 5.36 0.00 0.02 0.05 0.04 8.62
0.50 0.00 0.01 0.02 0.01 5.20 0.00 0.01 0.02 0.01 6.70
0.90 0.00 0.00 0.01 0.01 5.08 0.00 0.00 0.01 0.01 5.50
0.99 0.00 0.00 0.01 0.00 5.06 0.00 0.00 0.01 0.00 5.24

100.00 0.00 0.00 0.00 0.01 0.00 5.05 0.00 0.00 0.01 0.00 5.25
0.50 0.00 0.00 0.01 0.00 5.07 0.00 0.00 0.01 0.00 5.23
0.90 0.00 0.00 0.01 0.00 5.07 0.00 0.00 0.01 0.00 5.22
0.99 0.00 0.00 0.01 0.00 5.0"8 0.00 0.00 0.01 0.00 5.22

0.5 0.1 0.00 3.08 4.50 7.84 6.27 58.62 3.08 4.50 7.84 6.28 117.66
0.50 0.50 0.94 2.86 1.36 52.01 0.50 0.94 2.86 1.36 113.01
0.90 0.22 0.39 1.25 0,47 49.22 0.22 0.39 1.26 0.47 55.66
0.99 0.19 0.34 1.08 0.39 48.58 0.19 0.33 1.06 0.39 49.75

1.00 0.00 0.49 0.77 1.93 0.94 49.43 0.49 0.77 1.93 0.94 59.32
0.50 0.29 0.49 1.42 0.59 48.87 0.29 0.49 1.42 0.59 53.79.-
0.90 0.20 0.36 1.12 0.41 48.60 0.20 0.36 1.12 0.41 50.09
0.99 0.19 0.34 1.07 0.38 48.52 0.19 0.33 1.06 0.38 49.23

100.00 0.00 0.19 0.34 1.07 0.38 48.46 0.19 0.34 1.07 0.38 49.23
0.50 0.19 0.34 1.07 0.38 48.56 0.19 0.34 1.07 0.38 49.18
0.90 0.19 0.33 1.06 0.38 48.60 0.19 0.33 1.06 0.38 49.14
0.99 0.19 0.33 1.06 0.38 48.52 0.19 0.33 1.06 0.38 49.13

0.9 0.1 0.00 49.46 53.53 71.37 56.56 401.68 49.62 52.95 74.80 57.32 13870.33
0.50 21.78 25.77 46.09 29.20 414.44 21.65 25.62 47.07 29.08 32951.12
0.90 7.28 n.89 27.90 10.64 41:t:J7 7.19 9.81 28.67 10.51 ti66.79

0.99 5.72 7.88 24.35 8.04 410.62 5.56 7.67 23.93 8.06 465.08

1.00 0.00 9.98 12.28 29.27 12.66 382.05 10.02 12.31 30.33. 12.70 862.35
0.50 7.56 9.82 26.70 10.11 401.97 7.55 9.81 27.51 10.08 591.13
0.90 5.94 8.09 24.57 R.25 415.72 5.99 8.09 25.03 8.24 473.96
0.99 5.61 7.72 24.0_0 7.83 414.65 5.56 7.67 23.93 7.85 451.35

100.00 0.00 5.61 7.72 23.95 7.83 408.87 5.62 7.73 24.07 7.86 451.48
0.50 5.60 7.71 24.02 7.83 419.90 5.59 7.70 24.00 7.83 450.22
0.90 5.58 7.6~} 24.04 7.81 419.42 5.57 7.68 23.94 7.80 449.22
0.99 5.57 7.68 23.92 7.79 417.44 5.56 7.67 23.93 7.80 449.00



Table 4.3B: Mean Number of Customers in Orbit
Direct Truncation Matrix-geometric Approximation

c p 0 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
4 0.1 0.1 0.00 0.00 0.01 0.04 0.02 7.37 0.00 0.01 0.04 0.02 25.82

0.50 0.00 0.00 0.00 0.00 5.45 0.00 0.00 0.00 0.00 17.88
0.90 0.00 0.00 0.00 0.00 4.78 0.00 0.00 0.00 0.00 6.:14
0.99 0.00 0.00 0.00 0.00 4.70 0.00 0.00 0.00 0.00 5.21

1.00 0.00 0.00 0.00 0.01 0.00 5.12 0.00 0.00 0.01 0.00 7.28
0.50 0.00 0.00 0.00 0.00 5.03 0.00 0.00 0.00 0.00 6.06
0.90 0.00 0.00 0.00 0.00 4.97 0.00 0.00 0.00 0.00 5.26
0.99 0.00 0.00 0.00 0.00 4.96 0.00 0.00 0.00 0.00 5.13

100.00 0.00 0.00 0.00 0.00 0.00 4.96 0.00 0.00 0.00 0.00 5.13
0.50 0.00 0.00 0.00 0.00 4.97 0.00 0.00 0.00 0.00 5.13
0.90 0.00 0.00 0.00 0.00 4.97 0.00 0.00 0.00 0.00 5.12
0.99 0.00 0.00 0.00 0.00 4.97 0.00 0.00 0.00 0.00 ".12

o.s 0.1 0.00 0.92 I.fif> :1.2fi 2.12 .')4.56 0.92 1.65 4.26 2.12 9).fi7
0.50 0.16 O.:I!> 1.17 0.14 49.64 0.16 0.35 1.47 0.44 73.98
0.90 0.09 0.19 0.84 0.22 48.10 0.09 0.19 0.84 0.22 51.88
0.99 0.08 0.18 0.77 0.20 47.73 0.08 0.17 0.76 0.20 48.93

1.00 0.00 0.18 0.34 l.IU 0.40 47.53 0.18 0.34 1.19 DAD 5:J.72
0.50 0.11 0.2:J o.oa 0.27 47.95 0.11 0.23 0.93 0.27 50.95
0.90 0.09 0.18 0.79 0.21 47.81 0.09 0.18 0.79 0.21 49.10
o.ss O.OH O.IH 0.77 O.IU 47.70 0.08 0.17 0.76 0.19 48.67

100.00 0.00 0.08 0.18 0.77 0.20 47.62 0.08 O.lIe 0.77 0.20 48.67
0.50 0.08 0.18 0.77 0.19 48.07 0.08 0.18 0.77 0.19 48.65
0.90 O.OH 0.17 0.77 0.19 47.78 0.08 0.17 0.77 0.19 48.63
0.99 0.08 0.17 0.76 0.19 47.71 0.08 0.17 0.76 0.19 48.62

O.D 0.1 0.00 26.02 :IO.()() ·1H.07 :J:J.15 :114.58 26.12 29.68 50.35 :J2.fil 8219.£)8
0.50 11..56 1,1.97 34.28 16.81 402.16 11.50 14.91 ·35:26 16.71 7985.05
0.90 5.H7 8.1!) 25.08 8.53 409.14 5.83 8.11 25.82 8046 539.22
0.99 5.15 7.20 23.26 7.29 406.28 5.07 7.09 23.04 7.33 455.93

1.00 0.00 7.3~J 9.50 25.89 9.74 346.26 7.35 9.52 26.83 9.77 599.23
0.50 6.09 8.21 24.54 8.39 395.44 6.08 8.20 25.20 8.38 511.10
0.90 ".27 7.:H 2:JA2 7.42 409.19 5.26 7.32 2:J.70 7.42 460.21
0.99 5.10 7.12 23.08 7.19 408.11 5.07 7.09 23.04 7.20 449.18

100.00 0.00 5.09 7.11 23.04 7.19 401.88 5.10 7.12 23.12 7.21 449.24
0.50 5.09 7.12 23.12 7.20 413.25 5.08 7.11 23.08 7.19 448.61
0.90 5.08 7.10 24.29 7.19 412.00 5.07 7.09 23.05 7.18 448.11
0.99 5.08 7.10 23.24 7.18 409.65 5.07 7.09 23.04 7.18 448.00

8 0.1 0.1 0.00 0.00 0.00 0.00 0.00 6.55 0.00 0.00 0.00 0.00 24.03
0.50 0.00 0.00 0.00 0.00 4.77 0.00 0.00 0.00 0.00 15.97
0.90 0.00 0.00 0.00 0.00 4047 0.00 0.00 0.00 0.00 5.68
0.99 0.00 0.00 0.00 0.00 4.43 0.00 0.00 0.00 0.00 4.97

1.00 0.00 0.00 0.00 0.00 0.00 4.85 0.00 0.00 0.00 0.00 6.30
0.50 0.00 0.00 0.00 0.00 4.79 0.00 0.00 0.00 0.00 5..15
0.90 0.00 0.00 0.00 0.00 4.75 0.00 0.00 0.00 0.00 5.00
0.99 0.00 0.00 0.00 0.00 4.74 0.00 0.00 0.00 0.00 4.94

100.00 0.00 0.00 0.00 0.00 0.00 4.74 0.00 0.00 0.00 0.00 4.94
0.50 0.00 0.00 0.00 0.00 4.75 0.00 0.00 0.00 0.00 4.93
0.90 0.00 0.00 0.00 0.00 4.76 0.00 (LOO 0.00 0.00 4.9:1
0.99 0.00 0.00 0.00 0.00 4.75 0.00 0.00 0.00 0.00· 4.93

0.5 0.1 0.00 0.18 0.44 1.96 0.53 47.82 0.18 0.44 1.96 0.53 77.34
0.50 0.04 0.10 0.69 0.12 47.22 0.04 0.10 0.69 0.12 62.30
0.90 0.02 0.06 0.47 0.07 46.63 0.02 0.06 0.47 0.07 4!l.:l9

0.99 0.02 0.06 0.45 0.01 46.44 0.02 0.06 0.44 0.01 47.81
1.00 0.00 0.04 0.10 0.62 0.12 46.99 0.04 0.10 0.62 0.12 50.22

0.50 0.03 0.01 0.51 0.08 46.60 0.03 0.01 0.51 0.08 48.94
0.90 0.02 0.06 0.45 0.01 46.53 0.02 0.06 0.45 0.01 41.89
0.99 0.02 0.06 0.44 0.01 46.42 0.02 0.06 0.44 0.01 47.67

100.00 0.00 0.02 0.06 0.44 0.01 46.38 0.02 0.06 0.45 0.07 47.68
0.50 0.02 0.06 0.44 0.01 46.54 0.02 0.06 0.44 0.07 41.66
0.90 0.02 0.06 0.44 0.01 46.50 0.02 0.06 0.44 0.01 41.65
0.99 0.02 0.06 0.44 0.07 46.42 0.02 0.06 0.44 0.01 47.65

0.9 0.1 0.00 14.16 11.64 35.45 19.26 332.43 14.40 11.63 31.13 19.24 2113.37
0.50 1.19 9.87 21.50 10.73 386.63 1.11 9.85 28.43 10.65 951.28
0.90 4.81 6.83 22.79 1.04 395.51 4.79 6.83 23.44 7.01 488.39
0.99 4.41 6.37 21.83 6.43 393.53 4.42 6.31 21.11 6.45 450.13

1.00 0.00 5.63 1.65 23.24 1.14 318.89 5.60 7.61 24.06 1.77 512.94
0.50 4.96 6.91 22.54 1.02 ~84.68 4.94 6.91 23.61 1.02 479.23
0.90 4.53 6.43 21.95 6.51 J91.34 4.53 6.45 22.04 6.52 452.23
0.99 4.44 6.44 21..74 6.38 396.14 4.42 6.31 21.11 6.39 446.78

100.00 0.00 4.43 6.32 21.10 6.37 389.50 4.44 6.33 21.75 6.39 446.81
0.50 4.44 6.33 21.79 6.39 400.52 4.43 6.32 21.73 6.39 446.50
0.90 4.43 6.33 22.40 6.38 399.39 4.43 6.32 21.72 6.38 446.25
0.99 4.43 6.32 21.82 6.36 397.08 4.42 6.31 21.11 6.38 446.19



Table 4.4A: P{an arrival enters into service immediately with at least one customer in orbit)
Direct Truncation Matrix-geometric Approximation

c p 8 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
1 0.1 0.1 0.00 0.991 0.931 0.864 0.493 0.498 0.991 0.931 0.864 0.493 0.497

0.50 0.998 0.982 0.949 0.693 0.491 0.998 0.982 0.949 0.693 0.491
0.90 0.999 0.989 0.968 0.937 0.484 0.999 0.989 0.968 0.937 0.484
0.99 0.999 0.990 0.971 0.976 0.482 0.999 0.990 0.971 0.976 0.481

1 0.00 0.998 0.981 0.940 0.812 0.496 0.998 0.981 0.940 0.812 0.499
0.50 0.999 0.987 0.961 0.905 0.489 0.999 0.987 0.961 0.905 0.490
0.90 0.999 0.990 0.970 0.966 0.483 0.999 0.990 0.970 0.966 0.483
0.99 0.999 0.990 0.971 0.979 0.481 0.999 0.990 0.971 0.979 0.481

100.00 0.00 0.999 0.990 0.971 0.979 0.483 0.999 0.990 0.971 0.979 0.485
0.50 0.999 0.990 0.971 0.980 0.482 0.999 0.990 0.971 0.980 0.483
0.90 0.999 0.990 0.971 0.980 0.481 0.999 0.990 0.971 0.980 0.482
0.99 0.999 0.990 0.971 0.980 0.481 0.999 0.990 0.971 0.980 0.481

0.5 0.1 0.00 0.587 0.500 0.400 0.282 0.2f,9 0.587 0.500 0.400 0.282 0.291
0.50 0.742 0.599 0.387 0.344 0.323 0.742 0.599 0.387 0.344 0.314
0.90 0.840 0.727 0.455 0.636 0.331 0.840 0.727 0.455 0.636 0.329
0.99 0.853 0.748 0.477 0.702 0.332 0.854 0.750 0.480 0.702 0.3:i2

1.00 0.00 0.730 0.625 0.411 0.449 0.331 0.730 0.625 0.410 0.449 0.324
0.50 0.806 0.695 0.437 0.578 0.331 0.806 0.695 0.437 0.578 0.328
0.90 0.846 0.740 0.470 0.683 0.332 0.846 0.740 0.470 0.683 0.332
0.99 0.853 0.749 0.479 0.706 0.333 0.854 0.750 0.480 0.706 0.332

100.00 0.00 0.853 0.748 0.478 0.706 0.333 0.853 0.748 0.478 0.706 0.333
0.50 0.853 0.749 0.479 0.707 0.333 0.853 0.749 0.479 0.707 0.333
0.90 0.854 0.750 0.480 0.708 0.332 0.854 0.750 0.480 0.708 0.332
0.99 0.854 0.750 0.480 0.709 0.333 0.854 0.750 0.480 0.709 0.332

0.9 0.1 0.00 0.107 0.099 0.090 0.055 0.066 0.107 0.099 0.089 0.054 0.055
0.50 0.114 0.100 0.079 0.056 0.072 0.114 0.100 O~080·- - 0:056 0.055
0.90 0.193 0.147 0.068 0.107 0.081 0.193 0.147 0.068 0.107 0.069
0.99 0.241 0.185 0.069 0.166 0.083 0.246 0.190 0.070 0.166 0.081

1.00 0.00 0.120 0.109 0.075 0.067 0.090 0.119 0.109 0.075 0.067 0.062
0.50 0.160 0.135 0.071 0.098 0.082 0.160 0.135 0.072 0.098 0.070
0.90 0.226 0.176 0.070 0.154 0.083 0.226 0.176 0.070 0.155 0.080
0.99 0.244 0.189 0.070 0.172 0.083 0.246 0.190 0.070 0.172 0.082

100.00 0.00 0.243 0.188 0.070 0.172 0.084 0.243 0.188 0.070 0.172 0.082
0.50 0.244 0.189 0.070 0.173 0.083 0.244 0.189 0.070 0.173 0.082
0.90 0.246 0.190 0.069 0.174 0.083 0.246 0.190 0.070 0.174 0.082
0.99 0.246 0.190 0.069 0.174 0.0~3 0.246 0.190 0.070 0.174 0.082

2 0.1 0.1 0.00 1.000 0.996 0.980 0.987 0.515 1.000 0.996 0.980 0.987 0.521
0.50 1.000 0.998 0.991 0.994 0.504 1.000 0.998 0.991 0.994 0.511
0.90 1.000 0.998 0.992 0.995 0.491 1.000 0.998 0.992 0.995 0.495
0.99 1.000 0.998 0.992 0.995 0.487 1.000 0.998 0.992 0.995 0.487

1.00 0.00 1.000 0.998 0.990 0.994 0.504 1.000 0.998 0.990 0.994 0.513
0.50 1.000 O.!)!)8 0.H91 O.H!J5 OA!)ti 1.000 0.998 0.991 0.995 0.500
0.90 1.000 0.998 0.!J92 0.995 0.488 1.000 0.998 0.992 0.995 0.489
0.99 1.000 °.998 0.992 0.995 0.486 1.000 0.998 0.992 0.995 0.486

100.00 0.00 1.000 0.998 0.992 0.995 0.488 1.000 0.998 0.992 0.995 0.490
0.50 1.000 0.998 0.992 0.995 0.487 1.000 0.998 0.992 0.995 0.'188
0.90 1.000 0.99R 0.992 0.99~ OARfi 1.000 0.998 0.992 0.995 OAR7
0.99 1.000 O.H!)H (J.~)!J'2 O.!J!J,"") OAXfi 1.000 0.998 0.992 O.9H!) O.'1H(i

0.5 0.1 0.00 0.805 0.713 0.55-1 0.595 0.35-1 0.805 0.713 0.554 0.595 0.372
0.50 0.895 0.803 0.558 0.727 0.3.51 0.895 0.803 0.558 0.727 0.376
0.90 0.910 0.R31 0.574 O.ROO 0.343 0.910 0.831 0.574 0.800 0.350
0.99 0.912 0.8:3:3 0.574 0.810 0.341 0.912 0.833 0.574 0.810 0.341

I 1.00 0.00 0.886 0.802 0.,563 0.736 0.344 0.886 0.802 0.563 0.736 0.353
0.50 0.903 0.822 0.570 0.780 0.343 0.903 0.8~2 0.570 0.780 0.347
0.90 0.911 0.8:J2 0.573 0.806 0.341 0.911 0.832 0.573 0.806 0.:J42
0.99 0.912 0.833 0}j74 0.811 0.:J40 0.912 0.833 0.574 0.811 0.340

100.00 0.00 0.911 O.H:i:3 O.:)7:~ 0.811 0.:l41 0.911 0.833 0.573 0.811 0.341
0.50 0.912 0.83:3 0.573 0.811 0.340 0.912 0.833 0.573 0.811 0.341

I 0.90 0.B12 0.833 0.574 0.812 0.340 0.912 0.833 0.574 0.812 0.:J40
0.99 0.912 0.833 0.574 0.812 0.340 0.912 0.833 0.574 0.812 0.340

0.9 0.1 0.00 0.203 0.180 0.147 0.112 0.092 0.203 0.180 0.146 0.111 0.100
0.50 0.219 0.183 0.124 0.120 0.093 0.220 0.184 0.124 0.120 0.104
0.90 0.278 0.220 0.098 0.189 0.090 0.278 0.221 0.100 0.190 0.096

I

0.99 0.291 0.231 0.092 0.220 0.089 0.293 0.233 0.091 0.220 0.088
1.00 0.00 0.223 0.19:l 0.111 0.145 0.091 0.223 0.193 0.112 0.145 0.094

0.50 0.256 0.211 0.102 0.178 0.091 0.256 0.211 0.103 0.178 0.091 -

0.90 0.285 0.228 0.093 0.213 0.089 0.285 0.228 0.095 0.213 0.088
0.99 0.292 0.232 0.091 - 0.222 0.089 0.293 0.233 0.091 0.222 0.088

100.00 0.00 0.291 0.232 0.091 0.222 0.090 0.291 0.232 0.091 0.222 0.088
0.50 0.292 0.232 0.091 0.222 0.088 0.292 0.232 0.091 0.223 0.088
0.90 0.292 0.233 0.091 0.223 0.088 0.292 0.233 0.091 0.223 ·0.088 -
0.99 0.29:3 O.2:J:J 0.091 0.223 0.089 0.293 0.233 0.091 0.223 0.088 -

I



Table 4.413: P(an arrival enters into service immediately with at least one customer ill orbit)
Direct. Truncation Matrix-geometric Approximation

c p 0 p ERL EXI> HEX MNC ~1PC ERL EXP HEX MNC MPC
,I 0.1 0.1 0.00 1.000 1.000 O.Hun 1.000 0.5:JO 1.0UO 1.000 0.999 1.000 0.:):~7

--
0.50 1.000 1.000 0.999 1.000 0.517 1.000 1.000 0.999 1.000 0.526

--

0.90 1.000 1.000 0.999 1.000 0.502 1.000 1.000 0.999 1.000 0.508
-

0.99 1.000 1.000 0.999 1.000 0.497 1.000 1.000 0.999 1.000 0.497
----

1.00 0.00 1.000 1.000 ().~H)n 1.000 0.515 1.000 1.000 0.999 1.000 0.527
0.50 1.000 1.000 0.999 1.000 0.506 1.000 1.000 0.999 1.000 0.513
0.90 1.000 1.000 0.999 1.000 0.498 1.000 1.000 0.999 1.000 0.500
0.99 1.000 1.000 0.999 1.000 0.496 1.000 1.000 0.999 1.000 0.496 -

100.00 0.00 1.000 1.000 0.999 1.000 0.497 1.000 1.000 0.999 1.000 0.500 -
0.50 1.000 1.000 0.999 1.000 0.4ft7 1.000 1.000 0.999 1.000 0.498

-

0.90 1.000 1.000 0.999 1.000 0.496 1.000 1.000 0.999 1.000 0.496
0.99 1.000 1.000 0.999 1.000 0.496 1.000 1.000 0.999 1.000 0.49fi

0.5 0.1 0.00 0.947 0.892 0.721 0.853 0.381 0.947 0.892 0.720 0.853 0.425
0.50 0.963 0.917 0.720 0.896 0.368 0.963 0.917 0.720 0.896 0.411
0.90 0.962 0.914 0.700 0.903 0.353 0.962 0.914 0.700 0.903 0.3fi1
0.99 0.961 0.91:J O.fiU:I O.n04 0.349 0.961 0.913 0.693 0.904 0.:1.')0 --

LOO 0.00 0.960 0.913 0.713 0.891 0.356 0.960 0.913 0.713 0.891 0.372 --
0.50 0.961 0.914 0.705 0.899 0.353 0.961 0.914 0.705 0.899 0.360
0.90 0.961 0.913 0.696 0.903 0.349 0.961 0.913 0.696 0.903 0.351
0.99 0.961 0.913 0.693 0.904 0.349 0.961 0.913 0.693 0.904 0.349

100.00 0.00 0.961 0.913 0.693 0.904 0.349 0.961 0.913 0.693 0.904 0.349
0.50 0.961 0.91:1 0.69:J 0.H04 0.349 0.961 0.913 0.693 0.904 0.:J49
0.90 0.961 0.913 0.693 0.904 0.349 0.961 0.913 0.693 0.904 0.348
0.99 0.961 0.913 0.693 0.904 0.349 0.961 0.913 0.693 0.904 0.348

0.9 0.1 0.00 0.346 0.300 0.216 0.219 0.120 0.345 0.301 0.216 0.219 0.171
0.50 0.364 0.303 0.180 0.240 0.106 0.364 0.304 0.182 0·.240 0.177
0.90 0.361 0.297 0.138 0.274 0.096 0.362 0.297 0.140 0.275 0.112
0.99 0.356 0.292 0.126 0.283 0.095 0.355 0.291 0.125 0.283 0.095

1.00 0.00 0.342 0.291 0.156 0.247 0.101 0.341 0.291 0.158 0.247 0.117
0.50 0.352 0.293 0.141 0.265 0.097 0.352 0.293 0.144 0.265 0.105
0.90 0.355 0.292 0.128 0.280 0.094 0.355 0.292 0.130 0.281 0.096
0.99 0.355 0.291 0.125 0.284 0.094 0.355 0.291 0.125 0.284 0.093

100.00 0.00 0.355 0.291 0.125 0.284 0.095 0.355 0.291 0.125 0.284 0.093
0.50 0.355 0.291 0.125 0.284 0.094 0.355 0.291 0.125 0.284 0.093
0.90 0.355 0.291 0.124 0.284 0.094 0.355 0.291 0.125 0.284 0.093
0.99 0.355 0.291 0.124 0.284 0.094 0.355 0.291 0.125 0.284 0.093

8 0.1 0.1 0.00 1.000 1.000 1.000 1.000 0.550 1.000 1.000 1.000 1.000 0.555
0.50 1.000 1.000 1.000 1.000 0.537 1.000 1.000 1.000 1.000 0.546
0.90 1.000 1.000 1.000 1.000 0.521 1.000 1.000 1.000 1.000 0.528
0.99 1.000 1.000 1.000 1.000 0.516 1.000 1.000 1.000 1.000 0.516

1.00 0.00 1.000 1.000 1.000 1.000 0.534 1.000 1.000 1.000 1.000 0.548 -

0.50 1.000 1.000 1.000 1.000 0.525 1.000 1.000 1.000 1.000 0.533
0.90 1.000 1.000 1.000 1.000 0.517 1.000 1.000 1.000 1.000 0.518 --

0.99 1.000 1.000 1.000 1.000 0.515 1.000 1.000 1.000 1.000 0.515
100.00 0.00 1.000 1.000 1.000· 1.000 0.516 1.000 1.000 1.000 1.000 0.519

0.50 1.000 1.000 1.000 1.000 0.515 1.000 1.000 1.000 1.000 0.516
0.90 1.000 1.000 1.000 1.000 0.515 1.000 1.000 1.000 1.000 0.515
0.99 1.000 1.000 1.000 1.000 0.515 1.000 1.000 1.000 1.000 0.514

0.5 0.1 0.00 0.992 0.975 0.867 0.968 0.403 0.992 0.975 0.867 0.968 0.467
--

0.50 0.992 0.975 0.852 0.970 0.385 0.992 0.975 0.852 0.970 0.443
0.90 0.991 0.971 0.828 0.968 0.367 0.991 0.971 0.828 0.968 0.382
Q.99 0.990 0.971 0.823 0.968 0.363 0.990 0.971 0.822 0.968 0.364

1.00 .0.00 0.991 0.973 0.845 0.968 0.370 0.991 0.973 0.845 0.968 0.390
0.50 0.991 0.972 0.835 0.968 0.367 0.991 0.972 0.835 0.968 0.377
0.90 0.990 0.971 0.825 0.968 0.363 0.990 0.971 0.825 0.968 0.365
0.99 0.990 0.971 0.822 0.968 0.362 0.990 0.971 0.822 0.968 0.362

100.00 0.00 0.990 0.971 0.823 0.968 0.362 0.990 0.971 0.823 0.968 0.363
0.50 0.990 0.971 0.822 0.968 0.362 0.990 0.971 0.822 0.968 0.362
0.90 0.990 0.971 0.822 0.968 0.362 0.990 0.971 0.822 0.968 0.3fi2
0.99 0.990 0.971 0.822 0.968 0.362 0.990 0.971 0.822 0.968 0.362

0.9 0.1 0.00 0.513 0.447 0.297 0.377 0.135 0.511 0.447 0.299 0.377 0.245
0.50 0.501 0.429 0.248 0.381 0.115 0.501 0.429 0.252 0.381 0.214
0.90 0.453 0.383 0.191 0.367 0.103 0.453 0.384 0.196 0.368 0.123
0.99 0.439 0.370 0.177 0.364 0.101 0.438 0.369 0.175 0.365 0.101

1.00 0.00 0.459 0.394 0.213 0.358 0.110 0.459 0.395 0.219 0.358 0.131
0.50 0.451 0.384 0.195 0.361 0.104 0.452 0.384 0.207 0.362 0.116
0.90 0.441 0.372 0.179 0.363 0.100 0.441 0.372 0.181 0.364 0.102
0.99 0.438 0.368 0.175. 0.364 0.100 0.438 0.369 . 0.175 0.364 0.098

100.00 0.00 0.438 0.369 0.176 0.364 0.102 0.438 0.369 0.176 0.364 0.099
0.50 0.437 0.369 0.175 0.364 0.100 0.438 0.369 0.176 0.364 0.098
0.90 0.437 0.369 0.174 0.364 0.100 0.438 0.369 0.175 0.364 0.098
0.99 0,437 0.369 0.175 O.36~ 0.100'- O.4J8 0.369 0.175 0.364 O.O!JR



Table 4.5A: P{an orbiting customer is blocked)
Direct Truncation Matrix-geometric Approximation

c p 8 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
1 0.1 0.1 0.00 0.100 0.100 0.100 0.100 0.099 0.100 0.100 0.100 0.100 0.100

0.50 0.100 0.100 0.100 0.100 0.099 0.100 0.100 0.100 0.100 0.100
0.90 0.100 0.100 0.100 0.100 0.099 0.100 0.100 0.100 0.100 0.100
0.99 0.100 0.100 0.100 0.100 0.099 0.100 0.100 0.100 0.100 0.100

1 0.00 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.90 0.100 0.100 0.100 0.100 0.099 0.100 0.100 0.100 0.100 0.100
0.99 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

100.00 0.00 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.50 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.90 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
0.99 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

0.5 0.1 0.00 0.500 0.500 0.500 0.500 0.498 0.500 0.500 0.500 0.500 0.500
0.50 0.500 0.500 0.500 0.500 0.499 0.500 0.500 0.500 0.500 0.500
0.90 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.99 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

1.00 0.00 0.500 0.500 0.500 0.500 0.496 0.500 0.500 0.500 0.500 0.500
0.50 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.90 0.500 0.500 O.flOO 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.Q9 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

100.00 0.00 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.50 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.90 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.99 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

0.9 0.1 0.00 0.901 0.901 o.soo 0.901 0.888 0.901 0.901 0.902 0.902 0.900
0.50 0.901 O.!)OO o.not 0.901 0.891 0.900 0.900 0.901 0.901 O.HOO
0.90 0.900 o.soo o.soo 0.900 0.899 0.900 0.900 0.900 0.900 0.900
0.99 0.900 0.900 o.soo 0.900 0.899 0.900 0.900 0.900 0.900 0.900

1.00 0.00 o.oon O.!)OO O.!)OO 0.900 0.882 0.900 0.900 0.900 O.HOO 0.900
0.50 0.900 O.!)OO 0.900 0.900 0.891 0.900 0.900 0.900 0.900 O.HOn
n.no o.son O.!)OO O.!)OO o.soo 0.8H9 0.900 0.900 O.!JOO O.~)OO O.HOO
O.99 0.900 O.!JOO O.!)OO 0.900 0.899 0.900 0.900 0.900 0.900 0.900

100.00 n.oo n.!)OO O.!)OO O.!)()O O.!)()O O.X!}8 O.HOO 0.900 0.900 O.!)OO u.nou
0.50 0.900 0.900 O.BOO 0.900 0.900 0.900 0.900 0.900 0.900 0.900
0.90 0.900 0.900 0.901 0.900 0.900 0.900 0.900 0.900 0.900 0.900
0.99 0.900 0.900 0.900 0.900 0.899 0.900 0.900 0.900 0.900 0.900

2 0.1 0.1 0.00 0.009 0.017 0.025 0.049 0.034 0.009 0.011 0.025 0.049 0.024
0.50 0.009 0.018 0.027 0.050 0.039 0.009 0.018 0.021 0.050 0.021
0.90 0.009 0.018 0.028 0.051 0.049 0.009 0.018 0.028 0.051 0.043
0.99 0.009 0.018 0.029 0.051 0.053 0.009 0.018 0.029 0.051 0.052

1.00 0.00 0.009 0.017 0.026 0.049 0.048 0.009 0.011 0.026 0.049 0.039
0.50 0.009 0.018 0.027 0.050 0.050 0.009 0.018 0.021 0.050 0.045
0.90 0.009 0.018 0.028 0.051 0.053 0.009 0.018 0.028 0.051 0.051
0.99 0.009 0.018 0.029 0.051 0.054 0.009 0.018 0.029 0.051 0.053

100.00 0.00 0.009 0.018 0.029 0.051 0.053 0.009 0.018 0.029 0.051 0.053
0.50 o.eos 0.018 o.n~n n.05) 0.054 0.009 0.018 0.029 0.051 0.054
o.oo 0.009 0.018 0.029 0.051 0.054 0.009 0.018 0.029 0.051 0.054
0.99 0.009 0.018 0.029 0.051 0.054 0.009 0.018 0.029 0.051 0.054

0.5 0.1 0.00 0.280 0.295 0.325 0.314 0.354 0.280 0.295 0.325 0.314 0.320
0.50 0.286 0.301 0.3~)6 0.334 0.363 0.286 0.307 0.356 0.334 0.323
0.90 0.299 0.321 0.391 0.364 0.318 0.299 0.327 0.391 0.364 0.368
0.99 0.302 O.:l3:l OAOB 0.313 0.382 0.302 0.333 0.'110 0.313 0.381

1.00 n.no 0.28fi O.:lOH O.:UiX o.sas 0.:116 0.286 0.308 0.:168 0.:I:J5 0.:160
0.50 0.293 0.319 0.3H6 0.352 0.318 0.292 0.319 0.386 0.352 0.310
0.90 0.300 0.330 0.405 0.369 0.381 0.300 0.330 0.405 0.369 0.380
0.99 0.302 0.333 0.409 0.314 0.382 0.302 0.333 0.410 0.314 0.382

100.00 0.00 0.302 0.333 0.409 0.314 0.382 0.302 0.333 0.409 0.314 0.382
0.50 0.302 0.333 0.409 0.314 0.382 0.302 0.333 0.409 0.314 0.382
0.90 0.302 0.333 0.410 0.374 0.382 0.302 0.333 0.410 0.314 0.383
0.99 0.302 0.333 0.410 0.314 0.382 0.302 0.333 0.410 0.314 0.383

0.9 0.1 0.00 0.819 0.820 0.824 0.819 0.839 0.819 0.820 0.826 0.821 0.818
0.50 0.820 0.822 0.835 0.822 0.848 0.820 0.821 0.834 0.822 0.811
0.90 0.836 0.842 0.865 0.845 0.859 0.836 0.842 0.863 0.844 0.846
0.99 0.844 0.852 0.818 0.859 0.861 0.845 0.853 0.819 0.859 0.861

1.00 0.00 0.826 0.831 0.855 0.832 0.854 0.826 0.831 0.855 0.833 0.839
0.50 0.832 0.838 0.865 0.842 0.851 0.832 0.838 0.864 0.842 0.850
0.90 0.842 0.849 0.816 0.856 0.861 0.841 0.849 0.815 0.856 0.860
0.99 0.844 0.852 0.819 0.860 0.861 0.845 0.853 0.819 0.860 0.863

100.00 0.00 0.844 0.852 0.819 0.860 0.860 0.844 0.852 0.819 0.860 0.863
0.50 0.844 0.852 0.819 0.860 0.862 0.844 0.852 0.879 0.860 0.863
0.90 0.845 0.853 0.880 0.861 0.862 0.844 0.853 0.819 0.861 0.863
0.99 0.845 0.853 0.819 0.861 0.862 0.845 0.853 0.819 0.861 0.863



Table 4.5B: P{an orbiting customer is blocked)
Direct Truncation Matrix-geometric Approximation

c p 8 p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
4 0.1 0.1 0.00 0.000 0.001 0.003 0.002 0.020 0.000 0.001 0.003 0.002 0.001

0.50 0.000 0.001 0.003 0.002 0.028 0.000 0.001 0.003 0.002 0.009
0.90 0.000 0.001 0.003 0.002 0.041 0.000 0.001 0.003 0.002 0.034
0.99 0.000 0.001 0.003 0.002 0.050 0.000 0.001 0.003 0.002 0.049

1.00 0.00 0.000 0.001 0.003 0.002 0.042 0.000 0.001 0.003 0.002 0.021
0.50 0.000 0.001 0.003 0.002 0.046 0.000 0.001 0.003 0.002 0.036
0.90 0.000 0.001 0.003 0.002 0.050 0.000 0.001 0.003 0.002 0.048
0.99 0.000 0.001 0.003 0.002 0.051 0.000 0.001 0.003 0.002 0.051

100.00 0.00 0.000 0.001 0.003 0.002 0.051 0.000 0.001 0.003 0.002 0.051
0.50 0.000 0.001 0.003 0.002 0.051 0.000 0.001 0.003 o.ooa 0.051
0.90 0.000 0.001 0.003 0.002 0.051 0.000 0.001 0.003 0.002 0.051
0.99 0.000 0.001 0.003 0.002 0.051 0.000 0.001 0.003 0.002 0.051

0.5 0.1 0.00 0.108 0.131 0.194 0.139 0.280 0.108 0.131 0.194 0.139 0.201
0.50 0.120 0.149 0.235 0.157 0.302 0.120 0.149 0.235 0.15~1 0.230
0.90 0.131 0.169 0.282 0.181 0.328 0.131 0.169 0.282 0.181 0.311
0.99 0.133 0.113 0.294 0.188 0.335 . 0.134 0.114 0.295 0.188 0.333

1.00 0.00 0.118 0.148 0.245 0.158 0.325 0.118 0.148 0.245 0.158 0.291
0.50 0.126 0.160 0.268 0.111 0.330 0.126 0.160 0.268 0.111 0.316
0.90 0.132 0.171 0.290 0.185 0.334 0.132 0.171 0.290 0.185 0.332
0.99 0.133 0.174 0.295 0.188 0.335 0.134 0.174 0.295 0.188 0.336

100.00 0.00 0.133 0.113 0.294 0.188 0.335 0.133 0.173 0.294 0.188 0.336
0.50 0.133 0.114 0.295 0.188 0.336 0.133 0.114 0.295 0.188 0.336
0.90 0.134 0.174 0.295 0.189 0.336 0.134 0.114 0.295 0.189 0.336
0.99 0.134 0.174 0.295 0.189 0.336 0.134 0.174 0.295 0.189 0.336

0.9 0.1 0.00 0.694 0.700 0.729 0.701 0.780 0.694 0.700 0.731 0.700 0.692
0.50 0.708 0.716 0.162 0.713 0.810 0.708 0.716 0.761 0.713 0.692
0.90 0.7.'l5 0.769 0.824 0.769 0.828 0.754 0.169 0.821 0.768 0.803
0.99 0.168 0.786 0.814 0.790 0.831 0.710 0.788 0.847 0.790 0.831

1.00 0.00 0.728 0.713 0.806 0.144 0.818 0.728 0.743 0.804 0.745 0.788
0.50 0.745 0.762 0.825 0.164 0.825 0.745 0.162 0.822 0.164 0.810
0.90 0.764 0.782 0.842 0.786 0.831 0.764 0.782 0.840 0.786 0.829
0.99 0.769 0.787 0.846 0.792 0.831 0.770 0.788 0.841 0.792 0.834

100.00 0.00 0.769 0.787 0.846 0.792 0.829 0.769 0.787 0.846 0.792 0.834
0.50 0.7f'f) 0.787 0.847 0.793 0.832 0.769 0.787 0.846 0.793 0.834
0.90 0.770 0.788 0.848 0.7!J3 0.832 0.770 0.788 0.847 0.793 0.8:34
0.99 0.770 0.788 0.847 0.793 0.832 0.770 0.788 0.847 0.793 0.834

8 0.1 0.1 0.00 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.000 0.003
0.50 0.000 0.000 0.000 0.000 0.02:i 0.000 0.000 0.000 0.000 0.00'1
0.90 0.000 0.000 0.000 0.000 0.041 0.000 0.000 0.000 0.000 0.027
0.99 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.000 0.047

1.00 0.00 0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.000 0.000 0.020
0..'10 0.000 0.000 0.000 0.000 0.043 0.000 0.000 0.000 0.000 0.031
0.90 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.000 0.016
0.99 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.049

100.00 0.00 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.019
0.50 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.019
0.90 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.0.50
0.99 0.000 0.000 .0.000 0.000 0.049 0.000 0.000 0.000 0.000 0.050

0.:> 0.1 0.00 0.02'1 O.O:H~ ().O~)(i 0.0,10 0.248 (l.024 0.038 0.0~)6 O.().1() O.I:JO
0.50 0.02!l 0.cH8 0.128 0.050 0.282 0.029 0.048 0.128 0.050 0.178
0.90 O.O:~:J O.O!)7 ().lfi2 0.061 O.:H·1 O.03:~ 0.057 0.162 O.()() 1 O.:UJI
0.99 0.034 0.059 0.170 0.063 0.322 0.034 0.059 0.171 0.06:J 0.321

1.00 0.00 0.028 0.047 O.I:J'l 0.050 O.:H I 0.028 0.047 0.134 0.050 0.276
0.50 0.031 0.05:J 0.1.51 0.056 0.316 0.031 0.053 0.151 0.0.56 0.297
0.90 O.O:J:J 0.0!i8 O.lfl7 0.062 O.:l22 0.0:\3 0.058 0.167 0.Ofi2 0.31H
0.99 0.034 0.059 0.171 0.063 0.323 0.034 0.059 0.171 0.063 0.323

100.00 0.00 0.033 0.059 0.170 0.063 0.323 0.033 0.059 0.170 0.063 0.323
0.50 0.034 0.059 0.171 0.063 0.323 0.034 0.059 0.171 0.063 0.324
0.90 0.034 0.059 0.171 0.064 0.323 0.034 0.059 0.171 0.064 0.324
0.99 0.034 0.059 0.171 0.064 0.323 0.034 0.059 0.171 0.064 0.324

0.9 0.1 0.00 0.537 0.555 0.632 0.552 0.750 0.540 0.555 0.631 0.553 0.556
0.50 0.584 0.602 0.689 0.593 0.786 0.584 0.602 0.685 0.593 0.620
0.90 0.653 0.679 0.771 0.677 0.809 0.653 0.678 0.764 0.676 0.777
0.99 0.670 O.69!J 0.795 0.702 0.813 0.672 0.702 0.798 0.702 0.81:J

1.00 0.00 0.614 0.643 0.749 0.642 0.796 0.614 0.642 0.743 0.642 0.757
0.50 0.640 0.669 0.772 0.670 0.807 0.640 0.669 0.760 0.670 0.784
0.90 0.665 0.695 0.793 0.698 0.813 0.665 0.694 0.790 0.697 0.811
0.99 0.671 0.701 0.798 0.705 0.814 0.672 0.702 0.798 0.705 0.817

100.00 0.00 0.670 0.700 0.797 0.704 0.811 0.670 0.700 0.797 0.704 0.817
0.50 0.671 0.701 0.798 0.705 0.815 0.671 0.701 0.798 0.705 0.817
0.90 0.672 0.702 0.799 0.706 0.814 0.671 0.701 0.798 0.705 0.818
0.99 0.672 0.702 0.798 0.705 0.814 0.672 0.702 0.798 0.705 0.818



Table 4 6 Performance Measures for !vIPC arnva process at N = M*
c=1 c=2

p
0.1

0.5

o
0.1

100.00

0.1

1.00

p
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
U.99
0.00
u.50
0.90
0.99

FSR
0.467
0.2B8
0.077
0.008
0.088
0.046
0.009
0.001
0.001
0.001
0.000
0.000
0.112
0.058
0.011
0.001
0.011
0.007
0.001
0.000

PBK
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.500
0.500
0.500

0.500
0.500
0.500
0.500

FSR
0.538
0.333
0.078
0.008
0.090
0.046
0.009
0.001
0.0(\1
0.001
0.000
0.000
0.115
0.058

0.01:}
0.007
0.001
0.000

MNO
9.11
6.87
5.48
5.24
5.!l5
5.38
5.25
5.22
5.23
5.23
5.22
5.22

56.74
rj2.50
49.78
49.23
49.90
49.53
49.24
49.18

PBK
0.034
0.040
0.050
0.05a
0.048
0.051
0.053
0.054
0.054
0.05'1
0.054
0.054
0.352
0.363
0.378
0.382
0.375
0.378
0.382
0.383

100.00 0.00 0.000 O.:u~t1

0.9 0.1

1.00

100.00

0.50
0.90
0.99
0.00
0.50
0.90
O.9H
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99

0.000
0.000
0.000
0.015
0.009
0.002
0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000

0.500
0.500
0.500
0.917
0.903
0.901
0.901
0.950
0.902
0.901
0.901
0.900
0.902
0.901
0.901

0.000
0.000
0.000
0.017
0.009
0.002
0.000
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000

49.19
49.17
49.17
565.46
492.02
465.67
460.30
959.62
469.25
462.10
460.58
1480.42
466.62
462.25
461.18

0.383
0.383
0.383
0.860
0.857
0.863
0.865
0.956
0.864
0.865
0.865
0.986
0.866
0.865
0.865

c=4 c=8
0.1

0.5

0.9

0.1

100.00

0.1

1.00

100.00

0.1

1.00

100.00

0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99
0.00
0.50
0.90
0.99

0.595
0.356
0.078
0.008
0.092
0.046
0.009
0.001
0.001
0.001
0.000
0.000
0.118
0.059
0.012
0.001
0.013
0.007
0.001
0.000
0.000
0.000
0.000
0.000
0.018
0.009
0.002
0.000
0.002
0.001
0.000
0.000
0.000
0.000
0.000
0.000

0.021
0.030
0.045
0.051
0.043
0.046
0.050
0.051
0.051
0.051
0.052
0.052
0.278
0.302
0.329
0.336
0.325
0.330
0.335
0.336
0.341
0.336
0.336
0.336
0.810
0.821
0.833
0.837
0.831
0.835
0.837
0.837
0.984
0.838
0.837
0.8:i7

0.633
0.368
0.078
0.008
0.093
0.046
0.009
0.001
0.001
0.001
0.000
0.000
0.120
0.05!)
0.012
0.001
0.013
0.007
0.001
0.000
0.000
0.000
0.000
0.000
0.018
0.009
0.002
0.000
0.002
0.001
0.000
0.000
0.000
0.000
0.000
0.000

7.24
5.65
5.03
4.96
5.06
4.99
4.95
4.94
4.94
4.94
4.94
4.94

50.06
~8.65

47.88
47.73
47.97
47.84
47.74
47.71
50.38
47.75
47.72
47.71
491.99
475.77
464.18
461.73
456.40
470.72
463.85
462.34
1358.39
470.21
463.89
462.48

0.016
0.025
0.042
0.049
0.039
0.044
0.048
0.050
0.049
0.050
0.050
0.050
0.249
0.282
0.315
0.323
0.311
0.317
0.323
0.324
0.332
0.324
0.324
0.324
.0.784
0.801
0.817
0.821
0.814
0.820
0.821
0.822
0.981
0.824
0.822
0.822



TaIlle 4.7: Performance Measures for NIAP/ At/ c Queue)
Mean Number in the Queue P{arrival finds all servers busy)

c p ERL EXP HEX MNC MPC ERL EXP HEX MNC MPC
1 0.10 0.00 0.01 0.02 0.05 5.27 -([100"-l).100 0.100 0.100 0.100

0.50 0.31 0.50 1.29 0.64 49.42 0.500 0.500 0.500 0.500 0.500
0.90 5.93 8.10 24.49 8.32 449.53 0.900 0.900 0.900 0.900 0.900
0.99 73.25 97.81 295.40 98.49 4953.38 0.990 0.990 0.990 0.990 0.990

2 0.10 0.00 0.00 0.01 0.00 5.22 0.009 0.018 0.029 0.051 0.054
0.50 o.is D.:J:~ I.OG O.:JH '1H.I:J 0.302 0.33:J 0.'110 0.375 0.:JH3
0.90 5.56 7.67 23.93 7.79 448.97 0.845 0.853 0.879 0.861 0.863
0.99 72.82 97.32 294.76 97.90 4952.75 0.984 0.985 0.988 0.986 0.986

4 0.10 0.00 0.00 0.00 0.00 5.12 0.000 0.001 0.003 0.002 0.052
0.50 0.08 0.17 0.76 0.19 48.62 0.134 0.174 0.295 0.189 0.336
0.90 5.01 7.09 23.04 7.18 447.99 0.770 0.788 0.841 0.193 0.834
0.99 72.20 96.62 293.73 97.16 4951.65 0.976 0.978 0.984 0.979 0.983

8 0.10 0.00 0.00 0.00 0.00 4.93 0.000 0.000 0.000 0.000 0.050
0.50 0.02 0.06 0.4'1 0.06 47.65 0.034 0.059 0.111 0.064 0.324
0.90 4.42 6.31 21.71 6.38 446.18 0.672 0.102 0.198 0.105 0.818
0.99 11.34 95.62 292.13 96.14 4949.6~ 0.964 0.968 0.919 0.968 0.980



Chapter 5.

M IP H 11 retrial queue with service

interruption and orbital searc.~

Queueing system with service interruption have been introduced by White and

Christie [73] who considered the problem as a pre-emptive priority system. Dif

ferent types of interruptions have been extensively studied by many researchers.

Service interruptions can be viewed as a special type of breakdown of the server

in which the server is restarted instantaneously. See Aissani [1, 2], Aissani and

Artalejo [3], Artalejo [4] and references therein for queueing system with break

down. Queues with service interruption also fall into the category of queues wit.h

feedback (See Choi and Kulkami [24]) and queues with disaster to the unit un

dergoing service (See A. Krishnamoorthy and P. V. Ushakumari [50]). Artalejo

and Gomez-Correl [] 0] considered a retrial queueing system with two types of

service interruptions. In their model, depending on the type of the interruption

that the unit has encountered, it may rejoin the orbit for another attempt or leave

the system for ever.

In this chapter, we consider a single server retrial queue in which the server

is subject to service interruptions with auto repeat facilities and equipped with

the 'mechanism of search of customers from the orbit' as we have introduced

94
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in chapter 2. The customer whose service is interrupted rejoins the orbit with

some known probability q or leaves the system with the complimentary probability

(1 - q). At the departure epoch, (ie, the epoch at which the server becomes free

either by a successful completion of a service or by a service interruption), the

server goes for search of customers in the orbit with some known probability 1) or

remains idle with the complimentary probability 1 - p.

There are lots of real life situations which fit to our model. For example,

consider the transmission of messages in fascimile 'networks' having the autore

peat facilities. If the transmission is not successfully completed for some reasons

such as a power failure or a transrnission error, then the message leaves the server

and joins the buffer with some known probability and leaves the system with the

complimentary probability. Immediately after a successful transmission or an in

terruption, instead of staying idle, the server goes for search of customers in the

buffer with a known probability. By the introduction of the 'search mechanism',

the idle rime of the server is considerably reduced and there by attaining the opti

mum utilization of the server facility.

5.1 The mathematical model

We consider a single server retrial queueing system at which primary customers

arrive according to a Poisson process with rate A. The retrial is assumed to be

exponential with rate j u; when there as j customers in the orbit (ie, the classical

retrial policy). The service is interrupted at an exponential rate a. The interrupted

customer goes back to the orbit with a known probability q or leaves the system

with the complimentary probability (1-q). At the epoch when the server becomes

free, (either by a service completion or by a service interruption) it goes for search

of customers in the orbit with some known probability p or remains idle with the

probability 1 - p. The search time is assumed to be negligible. The service time is

assume to follow a phase-type distribution (PH-distribution) with representation
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({3, S) of order m.

PH-distributions and 'PH-renewal processes' were introduce by Neuts [59].

They have gained widespread attention in the area of stochastic modelling, par

ticularly in queueing theory. A phase-type distribution on [0, 00) of order m is

defined as the absorption-time distribution in a finite state Markov process with m

transient states and one absorbing state as follows: Consider a Markov process on

the states {a, 1, ... m} with infinitesimal generator

(5.1)

where the m x m matrix S satisfies S« < 0, for 1 ~ i ~- tti, -and Sij ~ 0 for

i =I j. Also Se + SO == 0 and the initial probability vector of Q is given by ({3, (30),

with Be + (30 == 1, where e is a column vector of 1's in all its m positions. It

can be shown that the states 1, ... m are transient if and only if the matrix S is

non-singular. Also, the probability distribution H (.) of the time until absorption

in the state 0, corresponding to the initial probability vector ((3, (30), is given by

H(x) == 1 - (3exp(Sx)e, for x ~ 0 (5.2)

The probability distribution I-f(.) on [0, Q) is a PH-distribution if and only if it is

the distribution of the time until absorption in a finite Markov chain of the type

defined in (5.1). Note that the distribution H (.) has a jump of height (30 at .1: == 0

and its density H'(:r) on (0, (0) is given

H'(.1;) == {3exp(Sx)So

The Laplace-Stieltjes transform f (s) of H (.) is given by

(5.3)

(5.4)
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The non-central moments Ij~ of H (.) are all finite and is give by

J.l~ = (-l)i i!(f3S- i
- e), fori ~ 0

97

(5.5)

Discrete PH-distributions are defined by considering an (m+ 1)- state Markov

chain P of the form

where S is a substochastic matrix, such that I - S is non-singular. The initial

probability vector is ({3, (30). The probability density {Pk} of phase type is given

by

Po = {30

P == (3Sk-l So. k > 1k , _

Its probability generating function P(z) == (30 + z{3(I - ZS)-l SO and the factorial

moments are given by

5.2 Algorithmic solution

Our model may be studied as a level dependent quasi birth-and-death process

(LDQBD) with the state space given by

E == {j,]; j ~ O}, wherej ~ {(j,O); j 2 O} and

.7 == {(.1, 1, k); j ~ 0, 1 <k ~ m}.
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The states j == (j, 0), j 2 0 correspond to the idle server; with j customers in the

orbit; the states J == (j, 1, k), j ~ 0, 1 ::; k ::; m correspond to the busy server

with the service process in the phase k, and j customers in the orbit.

The generator Q is given by

Bo Ao 0 0 0 0

A21 All Ao 0 0 0

(2 ~ 0 j1~~ A l2 Ao 0 0

0 0 A23 Ala Ao 0

Where

[
-A A(3]Bo ==

(1(1 - q)e + 50 5 - (A + a)I + apqe{3

and

A [ -(A + iJl) A{3] i 2 1
li = 50(1 - p) + a(l - q)(l - p)e 5 - (,X + a)/ + apqe{3 ,

Let x == (x(O), x(l), . . .) be the steady state probability vector associated with Q.

That is, when the queue is stable,z is the unique solution to

xQ == 0 and xe == 1 (5.6)

Even though Q is highly structured, x cannot be expressed in a tractable analytical

form. So we propose an algorithmic solution based on the Neuts-Rao truncation
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approach as described in section 2 of chapter 4. Recall that, if the number of cus

tomers in the orbit is small, the likelihood of an idle server and therefore that of a

retrial request being successful is not small. When the number of customers in the

orbit is sufficiently large, a majority of the retrial requests fail to find a free server

and do not result in a change of state. Therefore, if the number of customers in

the orbit who can generate retrial requests is restricted to an appropriately chosen

number N, then the effect on the system dynamics and the equilibrium probability

vector is minimal. That approximation modifies the infinitesimal generator (2 to

that given below:

Bo Ao

A21 All ..40

A22 A l 2 A40

..42 N-I Al N-I Ao, ,

A2 Al Ao

A2 Al Ao

5.2.1 Stability condition

The steady state probability vector exists if and only if

(5.7)

where 1r is the invariant probability vector of the matrix A = Ao+ Al + A2 given

by
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[
-(.\ + Nil,) (.\ + 1VI1,){J ] (5.8)

A = (1 - p)SO + a(1 - p)e SOp/3 + S + opeti - a]

Let 1f == (no, 7f}) where 710 is a scalar and 1TI is a vector of order 111-.

TI A == 0, subject to Tlo + 1fle == 1 implies

Then from (5.7), after some algebra we get the stability condition as

5.2.2 Computation of the vector x

Because of the special structure of Q,x can be expressed as

x (i + N - 1) == x (N - 1)Ri; i ~ 0 (5.9)

where the matrix R is the unique non-negative solution with spectral radius less

than 1 of the equation

R2A2 + RA} + Ao == 0 (5.] 0)

The vectors x(O), ... x(N -1) can be obtained by solving the following equations.

x(O)Bo+ x(1).t421 == 0

x(i - l)Ao+ x(i)A1i + x(i + 1)A2,i+ l = 0, 1 ~ i ~ N - 1 (5.11)

x(N - 2)Ao+ x(N - 1)[A1,N - l + RA2] = 0
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Subject to the normalizing condition

N-2

L x(i) + x(N - 1)(/ - R)-le = 1
i=O

lOl

(5.12)

Due to the special structure of Aa, the matrix R can be computed as follows:

Rewrite the matrix R as

R== [0 0]
Ro RI

(5.]3)

where Ra is a column vector of order m in and RI is a square matrix of order m.

Then (5.10) yields

and

Thus we obtain Ra and RI as

(1-1)) a
Ro = (A rv) {RdS + a(l - q)eJ + aqe}+ J 11.

and

RI == {NIJ,R 1Ro/1 + T)R~S'OfJ + a(l - q)T)R~(~f3 + ARofJ + AI}

{(,\ + a)I - S - aqpe(-J}-l (5.]4)

Partition the components :r(i) of the vector x as :r:(i) == (l:i(O),:ri(l)), i ~ O.

Where :1:.i.(0) is a scalar and :l:i(1) is vector of order m.
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From (5.9), we get

(Xi+N-l (0), Xi+N-l (1)) == (XN-l (0), XN-I (1)) [ .0 0 ]
R~-I u« Rl

which yields
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Now from, (5.11),

and

x(l) = -x(2)A22[A11+ A21(-A~)-lAO]-l

=x(2)A22(-A~)-l

In general,

x(i) = x(i + 1)A2,i+l(-A~)-1; 0::; i::; N -1 (5.16)

where

i=O
(5.] 7)

Now, by applying block Gaussian elimination, the partitioned subvector

(x(N), x(N +1),...) corresponding to non-boundary states, satisfies the relation.

(x(N), x(N + 1)...)

A~ Aa

A2 Al Aa

A2 Al Aa
=0 (5.] 8)
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Let

00

8 = LX(i)e
i=N

and y(i) == 6- 1x(N + i), i ~ 0

From (5.18), we get

x(N)A~ + x(N + 1)A2 == 0

x(N + i) == x(N + i - l)R, i 2: 1

which implies

and

y(i) == y(i - l)R, i ~ 1

Since E:o y(i)e == 1, we get

y(O)(I - R)--le == 1

Thus, x(i) = 6y(O)Ri - N
, i ~ N.

Again by (5.] 6), we get

N

x(i) = 8y(O) IT A2j ( -Ai_It I, 0 <i < N - 1
j=i

Therefore,

103

(5.19)

(5.20)
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where y(O) is the unique solution of the system

y(O)(A~ + RA2 ) == 0

y(O)(I - R)-le == 1

Now xe == 1 implies

N-I JV 00

6y(O) L IT A2j ( -Aj __ l)-le + 6y(O) L Ri-Ne = 1
i==O j ==i i== N

Now by using the second equation in (5.22) we get

A' - I AT

l5 = [1 -I- y(O) L IT A2j ( -Aj_l)--let1

i==O j==i

5.3 Other system characteristics

l . Probability mass function of the number of customers in the orbit.

Pr [i customers in the orbit] is given by

a, == :r(i)e

== {~Y(O)IT;=:_~42j(-Aj_I)-le, o:s c< N-1

tJy(O)Rz-,r.; e, i ~ N

2. Expected number of customers in the orbit is given by

'.X)

EN = L i:r(i)e
i== I
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(5.22)

(5.23)

lV-1 IV

= e5Y(O){L i IT A2j ( -Aj_l)e -I- R(I - R)-2e + N(I - R)-le}
i==O j ==i
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3. Probability mass function of the server state

00

Po = Pr[ server is idle 1= L Xi(O)
i=O
N-I

= L Xi(O) + XN-l(l)(/ - R1)-1R«
i=O
00

PI = Pr[ server is busy 1= L xi(l)e
i=O
N--I

=L xi(l)e + XN-l (1)(/ - Rd- l R1e
t=O

4. The mean time spent by an arbitrary customer in the orbit Wq == tEN.

5. The overall rate of retrials

00

Jl~ = L iJlx(i)e = Jlo EN
i=l

6. The successful rate of retrials

00

11; = L iJlXi(O)
i== 1

N-l

= Jl{L iXi(O) + XN-I(l)[RI (I - Rd-2 + N(I - Rd-11Ro}
i== 1

7. Expected number of busy servers

EC == PI

105
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8. Expected number of customers in the system

ES=EN+EC

9. The mean time spent by an arbitrary customer in the system

1
Ws = >..ES.
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Chapter 6.

Excursion between classical and

retrial queue

In this chapter, we consider an excursion between classical queue and the retrial

queue in the following way: Note that when probability of search for a customer

after each service completion is one, retrial queue behaves like the classical queue,

except for the order in which customers are served. For the present model as long

as the number of customers in the orbit remains less than or equal to N, the server,

immediately on a service completion picks up the next customer from the orbit

with probability 1 and starts service. The search time is assumed to be negligible.

When the orbit size reaches N + 1, no more search is made for customer until it

comes down to N at a service completion epoch. Thus during the period of no

search, customers from orbit have to make trials on their own. Hence the present

problem deals with a back and forth movement between classical queue and retrial

queue. The motivation behind this model is that when orbit size increases, retrial

rate (linear) also correspondingly increases thereby reducing the idle time of the

server between services. Thus for large N, the retrial part behaves very close

to classical queue whereas for small values of N, servers idle time between two

consecutive services will be large if the system is in the retrial setup and so to

]07
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eliminate this, customer search is made as long as orbit has::; N customers. It allay

be noted that the model under investigation is classical retrial queue for N == 0

and it behaves almost like the classical queue for large N, By assigning costs to

customer search and cost for switching to retrial and back to classical we construct

a suitable cost function in ~N. Its behaviour is very much like a convex function,

though we are not able to prove it analytically presumably because of the presence

of hyper geometric functions involving N in the numerator and denominator of the

expression, together with terms in pN (p =traffic intensity), for the total expected

cost per unit time measured over a cycle.

In the next section we obtain explicit expressions for the system state proba

bilities. We also derive several system performance measures._In t.he last section

we examine the cost function. Some numerical illustrations are provided in the

concluding section.

6.1 Mathematical modelling

We assume that arrival of primary customers is governed by a Poisson process of

intensity A. Service times are exponentially distributed with parameter u, Inter

retrial times are exponentially distributed with parameter j u, where j is the num

ber of customers in the orbit.

{

1 if server busy at. time t,
Let C(t) ==

o otherwise

and N(t) == Number of customers in orbit at time t. Thus {(C(t), N(t)), t ~ O}

is a Markov chain on {O, I} X Z+.

By our assumption whenever orbit size is :::; N at a service completion epoch

POj(t) == 0 for j ~ N, since immediately on service completion the server picks

up a customer from the orbit with probability 1 and the time for this procedure is

negligible. Note that the equilibrium condition for the present model is the same as

that for the classical retrial queue, namely that the traffic intensity p (== AIv) < 1.
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A diagrammatic representation of the state transitions is as follows:
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CO. N+1) (0. N+2)

The system of statistical equilibrium equations for the probabilities 1)On and

PIn is

(A + V)PIO == APOO + VPl1

(A + V)Pli == APl,i-1 + V1Jl;i+1 ;

(A + V)PIN == API,N-I + (N + l)J.1Po,N+I

(A + V)]Jli == A]Jl,i--1 + (i + 1)/I.]JO,i+l + A]JOi ;

ApoO == IJPIO

1~i~N-1

i ~ N + 1

i ~ N + 1.

(6.1 )

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

With the help of equations (6.1), (6.2) and (6.6) eliminate probabilities POi, we get

VIJli - A1)I,i-1 == 0 ;

ie 1) Ji+ lp ., li == f 00 ,

Using (6.4) and (6.6),

15:.i5:.N

O~i5:N

(6.7)

(6.8)

(i + l)/J.VPO,i+1 - A(A+ iIJ,)])oi == (i + 2)/.ll/]JO,i+2

- A(A+ (i + l)/l)PO,i+l; i ~ N + 1 (6.9)

i 2 N + 1

ie.

ie,

(i + l)I/.V])o,i-t-1 - ,\(,\ + 'llL)pOi == 0 ;

,\(,\ + ill)
]Jo,i+ 1 == (. + 1) 1JOi ;

'l 11,//

i ~ N + 1 (6.10)

(6. 11 )
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and by using (6.3),

(N + l)/J,/JTJo,N+l - AVPIN == 0

Thus

. i
Apt Il A + (j - 1)JL

POi= J,i-N(N+I) r ; ]Poo;
I j=N+'2 J

Using (6.6)

pN+i+l i A+ (N + j)J-L
v« = J,i Ilr (N + 0) ]Poo;

I j=1 J

i ~ N -t- 2

i ~ N + 1
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(6.] 2)

(6.13)

(6.14)

(6.15)

(6.8), (6.13), (6.14) and (6.15) give the probabilities POn and PIn in terms of POO.

The probability 1)00 can be obtained with the help of normalizing condition

E:o POi + E:o »« == 1 as follows:

First, we introduce some notation. Let 2Fl be the hypergeometric series given

by

where (X)k is the Pochhammer symbol defined by,

{

I if k == 0
(X)k ==

x(x + 1) · · · (x + k - 1) if k ~ 1

Now,

~ { ApN + l ~ Api n [A + (j - 1)J-L]}
~=o POi == POO (N + 1)11- + L-J i-N(N + 1) .,
• r: i=N+2 J.L ;=N+2 J
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which reduces to

{ Xu N+l A r. .}
Poo 1 + (N 1) P 2F1(1, - + IV + 1, N + 2, p)+ IL J.l

and

fPli = pooctpi+l + f pN+;+l IT[A +t +.j)J.L]}
i=O i=O i=N+l J1, j=l ( + J)

which reduces to

{
p(l - pN) N+l ( A }

Poo 1 + P 2Fl 1, - + N + 1; N + 1; p) .
-p J.L

Thus

1I 1

1 p(1 - pN) (N N ( A
Poo=l+ 1 -vp) +p (p+vl-p)hF1(1,-+N+l;N+l;p)

-p J.L
(6.16)

We get the corresponding partial generating functions as :

00

Po(z) = L ipOi
i=O

and

{
I - (pz)N N A

Pl(Z) = PPoo 1 + (pz) 2F,(1, - + N + 1; N + 1; pz)}
- pz JL

(6.18)

The generating function of the stationary distribution of the number of customers

in the orbit N(t) is p(z) == Po(z) + Pl(Z). Thus expected number E(N(t)) of

customers in the orbit is given by p~(l) + p~ (1).
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After some simplification we get

] ]2

E(N(t)) = p2 - pN[p2 + N(l - p)(p + v(l - p))]
(1 - p)2

A
+ pN [N v(1 - p) + p(N - v)] 2Fl (1, - + N + 1; N + 1 ; p)

J-L
pN+l A

+ (N + 1)J.L [.x + (N + 1)J.L] [p+ v(l - P)hFl (2, P, + N + 2; N + 2, p)

(6.19)

B= Blocking probability = Pr [server is busy]= PI(1)

6.2 Control problem

In this section we construct a cost function in N by assigning a fixed cost for

picking up a customer for service at a service completion epoch, provided number

of customers in the orbit is ~ N. A fixed cost is assigned to each switching to

retrial setup and back to system with search for customers.

Let 7i denote the first time that the process starting at x reaches y if E, ==

R[time to reach (0,0) starting with (0,0) I (2i) switchings take place].

and Pi == Pr [(2i) switchings] then expected cycle length E(CL) == 2:%:0 EkPko
. 0 .. (0,0) 1,IV+1
Now, TJo == Pr[ switching] =Prf 7(1,0) < 7 1,0 ]

(6.21 )
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PI = Pr[2 switchings] = Pr[l right switching and a left switching]

= Pr[ 7(1,N+l) < 7(0,0)] = pN+l(1 - p) (6 22)
(1,0) (1,0) 1 _ pN+2· .

Now Plc = Pr[(2k) switchings] = Pr[k right switchings]

= Pr[ 7(1,N+l) < 7(0,0)] [pr 7(I,N+l) < 7(0,0) ]]k-l = pN+l(1 - p) [P2(1 - pN)]k I
(1,0) (1,0) (I,N--·I) (I,N-I) 1 _ p N+'2 (1 _ pN+'2)

(6.23)

Case 1: Eo = E[CLIO switching take place]. Define T1i : Time to reach (1,i-I)

from (1, i) and Tl o : Time to reach (0,0) from (1,0).

Then

v 1 Al.
E[Tli] = (-,-)(-,-)+(-,-){-,-+E[Tli+l]+E[Tli]}; 0 ~ 'l ~ N-1

A+V A+V A+V A+V '

ie, E[T1,il = .!+ pE[T1.i+d; 0 ~ i ~ N - 1
v

1
and E[T1N ] = -

u

(6.24)

(6.25)

Starting with (6.25), and proceeding recursively, we get

E[T ] = (1 - pN+l)
1,0 p(l _ p) (6.26)

Thus
1 (1 - p.rv+l)

Eo =-+A p(l - p)
(6.27)

Case 2: k 2: 1; e;
We proceed in 3 steps. In step 1, the system moves from (1,0) to (1,N + 1)

(ie. one switching). In step 2, it moves from (1, N + 1) to (1, 1V - 1), k times

and from (1, N - 1) to (1, N + 1), (k - 1) times. Finally in step 3, it moves from

(1, N - 1) to (0,0) without any switching.
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Thus

E == r(I,O) + T(I,Ni-I) + k r(I,N-I) + (k - 1) r(I,N+l) + r(O,O)
k (O,D) (1,0) (I,N+l) I (l,N-l) (I,N-l)

Step 1: Define T{i: Time to reach (1, i + 1) from (1, i); °~ i < N. Then

Then we get

Thus
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(6.28)

(6.29)

T~~:~+l) = E[T{,o] + E[T{,d + ···+ E[T{,N]
1 1 - pN+2

= 1I(1 -p)"{ pN+2(1 _ p) - (N + 1)} (6.30)

Step 2: Define sT1,i: time to reach (0, i) from (1, i); i ~ N + 1 and sTJ,i: time to

reach (1, i - 1) from (0, i); i ~ N + 1. Then

Thus,

E[sT1 i] = (~hFl (1, ~+i+1; i+1; p)+(~)( C .x ) hF1 (1, ~+i+1; i+2; p)
, u J-L v z+l J.L J.L

(6.32)

and
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Now,
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T(l,N-l) _ (_l_)(_v_) + A {_l_ + T(l,N) + T(I,N-I)}
(I,N) - A+ lJ A+ lJ (A + lJ) A+ lJ (I~N+I) (I,N)

(I,N-I) _ 1 (I,N)
ie,· T(l,N) - -;; + PT(l,N+l)· (6.34)

But T{I,N-I) - T(I,N) + T(l,N-I) (6.35)
(I,N+I) - (I,N+I) (I,N)

Using (6.34) and (6.35),

(I,N-I) _ 1 (I,N) _ 1 ,
T(l,N+l) - -;; + (1 + p) T(l,N+l) - -;; + (1 + p){E[sT1,N+l] + E[sTo,N+l])

T(l,N-l) = (!) + (1 + p) + (1 + p)[A+ (N + 1)J.t]
(I,N+I) lJ (N + 1)J.L II(N + l)(N + 2)J.L2

A A
[A2FI(1, - + N + 2; N + 3; p) + (N + 2)J.L2FI(l, - + N + 2; N + 2;p)]

J.1. Il

(6.36)

Now

(l,N+I) _ _ 1 - pN 1 - pN+I
T(1,N-I) - E[T1,N-d + E[T1Nl- vpN(l _ p) + vpN+I(l _ p) (6.37)

Step 3: Define T{'i: Time to reach (1, i-I) from (1, i); i ::; N. Then,

E[T{:"l = !
u

and

(6.38)

E[T{'il = (~)(~)+(~){(~)+E[T{'i+ll+E[T{'i]); i <N-1
, /\+v /\+v /\+v /\+v ' ,
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ie,

E[T" ] - ~ ErT" ]e1 i - + P l 1 i+l ,
'V '

i, ~ N - 1 (6.39)

Starting from (6.38) clod proceeding recursively, we get

Thus

1 - pN+l-i
E[T" ] - .

I i - ( )-,, 1/ 1 - p i <N (6.40)

T((~'~_.I) = E[T;'NI] + .. ·+ E[T;'o] = (1 ) {(N + 1)
, ' , 1/ 1 - P

p(l - pN+l)
- (1 _ p) } (6.41)

After some simplification we get

Let E[SW] denote the expected number of switchings in a cycle.

Then E[SW] = E~l (2k)Pk
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Let E[SR] denote the expected number of searches in a cycle.

00

Then E[SR] = L E[ No of searches I(2k) switchings in a cycle]
k=O

· Pr[(2k) switching].

7(0,0) 00 (7(l,N+l) 1) ( 7(l,N+l) 1) 7(0,0)
=~Po +L[ (1,0) - X + (k -1) (I,N-I) - X + k.+- (l,N-l)]Pk

v 1/ V V
K=l

(1 - pN+l)2 pN+l (1 - p) 1 - pN+2 1 p(l _ pN+l)

vp(1 - pHI - pN+2) + (1 - p2) {v2pN+2(1 - p)2 - AV - v(1 - p)2 }

pN+3(l - p)(l - pN) 1 - pN 1 - pN+l 1
+ (1 - p2)2 {V2p2(1 - p) + v2pN+I(1 - p) - AV}

pN+l(l _ p)(l _ pN+2)
+ (1 - p2)2 (6.44)

Let Cw be the cost for one switching and C; be the cost for one search.

. E[SW]Cw + E[SR]Cr
Thus Cost function, CF = E(CL) (6.45)

Though we are not able to prove analytically that the expected cost per unit

time is convex in N, all computations that we have made indicate a strong ten

dency of this function towards convexity. Some typical illustrations are given in

the graphs and the tables. The convexity of the cost function is to be expected

as the number searches and hence search cost increases with increasing N, at the

expected number of .rvitchings per cycle decreases as shown in the tables.
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,\ = 9; J.L = 5; v = 10

N E(N(t)) B E(CL) E[SR] E[SW]

1 20.8300 0.48575 35.480 0.1850 1.21612

11 19.3821 0.67900 4.29840 1.0258 1.16698

21 13.1294 0.83765 1.20961 1.6894 0.49722

31 9.8515 0.88517 0.37565 1.6952 0.18435

41 8.6918 0.89640 0.12127 2.0667 0.06561

51 8.3018 0.89909 0.04004 2.1027 0.02304

61 8.1696 0.89976 0.01341 2.1154 0.00805

71 8.1242 0.89993 0.00454 2.1198 0.00281

81 8.1084 0.89998 0.00154 2.1214 0.00098

91 8.1029 0.89999 0.00052 2.1219 O~OOO34 -

101 8.1010 0.89999 0.00018 2.1221 0.00011

TABLE 6.1.

,\ = 2; J.L = 3; v = 3

N E(N(t)) B E(CL) E[SR] E[SW]

I 2.6409 0.6536 1.6837 1.3178 0.6755

11 1.3891 0.6687 0.0347 I 2.6388 0.0165

21 1.3350 0.6667 0.0005 i 2.6662 0.0002

31 1.33363 0.6667 0.0000 I 2.66668 5.007 x 10-6

41 1.3336 0.6667 1.73x10-7 2.6666 8.68 x 10-8

51 1.3336 0.6667 3.004 x 10-9 2.6666 1.50 x 10-9

61 1.3336 0.6667 5.19 x10- 11 2.6666 2.61 X10- 11

71 1.3~16 0.6667 5.11 x10- 13 2.6666 4.52 x 10- 13

81 1.3336 0.6667 8.81 x 10- 105 2.6666 7.85 x 10-15

91 1.3336 0.6667 1.52x 10- 16 2.6666 1.36 x10- 1fi

101 1.3336 0.6667 2.65x 10- 1M 2.6666 2.36 x 10- 18

TABLE 6.2.
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Figure 6.1: Graph of cost function CF (N along X-axis and cost along Y-axis.)
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RETRIAL QUEUES WITH ORBITAL SEARCH

INT1~OI)IJCTION:

Queueing theory was developed to model that predict behavior of systems which attempt to

provide service for randomly arising demands, Thus, a queueing system can be described as

customers arriving for service, waiting for service if it is not immediate, and if having waited for

service, leaving the system after being served. The earliest problems studied were those of

telephone traffic congestion. The pioneer investigator was the Danish mathematician

A.J(.Erlang, who, in 1909 published "The Theory of Probabilities and Telephone

Conversations". Work on the application of the theory of telephone systems continued after

Erlang. In 1927, Molina published his "Application of the Theory of probability to telephone

Trunking Problems', which was followed by Thornton Fry's "Probability and its Engineering

Uses" which expanded much of Erlang's earlier work. In the early 1930's Fclix Pollaczck did

some further pioneering work on Poisson input, arbitrary output, and single and multiplc-channc]

problems. The early work in queueing theory picked up momentum rather slowly. 'Telephone

systems remained the principal application of the theory through about 1950. But the trend began

to change in the 1950's and of late numerous other applications have been found and there has

been much work in the area. Some of the major applications of the theory are landing of

aircrafts, loading and unloading of ships, taxi services, machine repair, inventory control,

telecommunication networks, computer networks and computer systems.

Qucueing system in which arriving customers who find all servers and waiting positions (if

any) occupied 111ay retry for service after a period of time are called retrial queues or queues with

repeated attempts. Thus, retrial queues are characterized by the following feature: a customer

arriving when all servers accessible for him are busy leaves the service area but after some

random time repeats his demand. Retrial queue is a type of network with rcservicing after

blocking. Thus, this network contains two nodes: the main node where blocking is possible and a

delay node for repeated attempts. As for other networks with blocking, the investigation of such

systems presents great analytical difficulties. In contrast, there arc a great number of numerical



and approximation methods. Nevertheless, the main features of the theory of retrial qucueing

systems as an independent part of queueing theory are quite clearly drawn. In particular, the

nature of results obtained, methods of analysis and areas of applications allow us to divide retrial

queues into three large groups in a natural way: single-channel systems, multi-channel fully

available systems, and structurally complex systems. The first mathematical results about retrial

que~es were publi~hed in the 1950's and at present, a full bibliography consists of several

hundred items. For a systematic account of the fundamental methods and results on this topic" we

refer to the monograph by Falin and Templeton [4], two extensive survey articles due to Yang

and Templeton [7], Falin [5] and the bibliographical information in r. R.Artalejo [1] and f2l

Retrial queues considered by researchers so far have the characteristic that each service is

preceded and followed by an idle period which is terminated either by the arrival of a customer

from the orbit or by a primary customer. Even if there are some customers in the system who

want to get service they cannot occupy the server immediately, because of their ignorance of the

server state. Therefore, after the completion of each service, next customer enters service only

after some time interval during which the server is free while there may be waiting customers in

the orbit. All material of the proposed thesis are concerned with retrial queueing models in

which, even without a waiting room, each service completion epoch need not necessarily be

followed by an idle time. This is achieved as follows: immediately on a service completion, the

server picks up a customer from the orbit with probability Pj, when there arc j customers in the

orbit ( it is assumed that the server is aware of the orbital status, for example there is a register

with him of customers in orbit, whereas the orbital customers are ignorant of the server status ).

With probability l-Pi no search is made on a service completion epoch and in this case, as in the

classical retrial queue, a competition takes place in between primary and secondary (orbital)

customers for service. Thus, if search is made, a service is followed by another service and if no

search is made, a service is followed by an idlc time,

Our study has two main objectives. The first one is to introduce orbital search in retrial

queueing models which allows to minimize the idle time of the server. If the holding costs and

cost of using the search of customers will be introduced" the results we obtained can be used for

the optimal tuning of the parameters of the search mechanism. The second objective is to provide



insight of the link between the corresponding retrial queue and the classical queue. To this end,

we observe that when the search probability Pi == I for all j, the model reduces to the classical

queue and when Pi == 0 for all j, the model becomes thc retrial queue ..

Summary of the Thesis

In chapter 1, an introduction is given to the functioning and analysis of various retrial

queueing models.

In chapter 2, we concentrate on the performance evaluation of a single-server retrial queue

with orbital search as follows: we consider a single-server queucing system to which primary

customers arrive according to a Poisson stream of rate A. If the server is free at the time of arrival

of a primary customer, the arriving customer begins to be served immediately and leaves the

system after service completion. Otherwise, if the server is busy, the arriving customer becomes

a source of repeated calls. Every such source produces a Poisson process of repeated calls with

intensity ).l. The service times are independent with common probability function Bix),

Immediately after completion of each service, the server goes for search of customers in the orbit

with probability Pi and remains idle with probability l-Pi, when there are j customers in the orbit.

The stability condition of the system state is investigated. Explicit expressions of the limiting

probabilities and their moments are obtained for the case of exponential service times.

In chapter 3, a single-server retrial qucucing model with impatient customers and orhital

search is considered. If the server is busy at the time of arrival of a primary call then with

probability 1-1-1) it leaves the system without service and with prohability 1-1 1 > 0, forms a source

of repeated calls. Similarly, if the server is occupied at the time of arrival of a repeated call, with

probability 1-1-12 it leaves the system without service and with probability 1-1 2, it goes hack to the

orbit. All other assumptions and notations introduced in chapter 2 hold in this chapter as well. An

important feature of the model under consideration is that for many problems, the cases H2 < 1

and 1--1 2 == I yield essentially different solutions. In the case ~12 == I, the model is analyzed in full

detail using supplementary-variable method. Stability condition is obtained. The joint

distribution of the server state and the orbit length in steady state is studied. The structure of the

busy period and its analysis in terms of Laplace transforms have been discussed. This chapter

also provides a direct method of evaluation for the first and second moments of the busy period.



The case 1-1 2 < 1 is far more complicated and so closed form solution is obtained only in the case

of exponential service time distribution. In the general case, a complete closed form solution

seems impossible.

In chapter 4, We consider an M/PI-I/l retrial queue with disaster to the unit in service and

orbital search. In addition to the assumptions of the model considered in chapter 2, the unit

undergoing service is subject to disasters; (.or equivalently, the server is subject to interruptions

during service time). Disasters occur according to a Poisson process with rate cr. Here service

times are assumed to be of phase type distribution which has a number of interesting properties.

PH distributions and PI-I renewal processes were introduced by M. f. Neuts [6]. The class of PI-I

distributions includes many well-known distributions such as generalized Erlang, hyper

exponential etc., as special cases and has a number of interesting closure properties.

In chapter 5, we consider a multi- server retrial queueing model (MAP/M/c) with search of

customers from the orbit. The Markovian arrival processes (MAP), a special class of tractable

Markov renewal process, is a rich class of point process that includes many well-known process,

and Markov-modulated Poisson process. One of the most significant features of the MAP is the

underlying Markovisan structure and fits ideally in the context of matrix-analytic solutions to

stochastic models. Matrix- analytic methods were first introduced by M. F. Neuts [6]. The idea

of the MAP is to significantly generalize the Poisson process and still keep the tractability for

modeling purposes. In many practical applications, notably in communication engineering,

production and manufacturing engineering, the arrivals do not usually form a renewal process.

MAP is a convenient tool to model both renewal and non-renewal arrivals. The steady-state

analysis of the model using direct-truncation and matrix-analytic approximation are performed.

Efficient algorithms for computing various steady-state performance measures and illustrative

numerical examples are presented.

In chapter 6, we consider an excursion between classical and the retrial queue in the

following way: As long as the number of customers in the orbit remains less than or equal to N,

the server immediately on a service completion, picks up the next customer from the orbit with

probability 1 and starts service. When the orbit size reaches N+1, no more search is made for

customers until the orbit size C0l11eS down to N at a service completion epoch. Thus, the present

model deals with a back and forth ITIOVCITICnt between classical queue and retrial queue. The



motivation behind this model is that, when orbit size increases, retrial rate also correspondingly

increases thereby reducing the idle time of the server between services. By assigning costs to

customer search and cost for switching to retrial and back to classical, a suitable cost function in

N is constructed. Some numerical results are provided.
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