
DESIGN AND DEVELOPMENT OF AN

INTEGRATED FRAMEWORK FOR PRONOMINAL

ANAPHORA RESOLUTION IN MALAYALAM

Thesis submitted to

Cochin University of Science and Technology

in partial fulfillment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY

by

Ajees A P
Department of Computer Science

Cochin University of Science and Technology
Kochi - 682022

September 2019

Design and Development of an Integrated
Framework for Pronominal Anaphora Resolution
in Malayalam

PhD thesis in the field of Natural Language Processing

Author

Ajees A P
Department of Computer Science

Cochin University of Science and Technology

Kochi - 22

ajeesap87@gmail.com

Research Supervisor

Prof. Sumam Mary Idicula
Department of Computer Science

Cochin University of Science and Technology

Kochi - 22

sumam@cusat.ac.in

Design and Development of an Integrated
Framework for Pronominal Anaphora Resolution
in Malayalam

PhD thesis in the field of Natural Language Processing

Author

Ajees A P
Department of Computer Science

Cochin University of Science and Technology

Kochi - 22

ajeesap87@gmail.com

Research Supervisor

Prof. Sumam Mary Idicula
Department of Computer Science

Cochin University of Science and Technology

Kochi - 22

sumam@cusat.ac.in

CERTIFICATE

Certified that the work presented in this thesis is a bonafide research work

done by Mr. Ajees A P under my guidance in the Department of Comput-

er Science, Cochin University of Science and Technology, Kochi, India -

682022, and has not been included in any other thesis submitted previous-

ly for the award of any degree.

Kochi-22 Prof. Sumam Mary Idicula

September, 2019 (Supervising Guide)

CERTIFICATE

This is to certify that all the relevant corrections and modifications suggested

by the audience during the Pre-Synopsis Seminar and recommendations by

the Doctoral Committee of the candidate have been incorporated in the thesis

entitled “Design and Development of an Integrated Framework for Pronomi-

nal Anaphora Resolution in Malayalam” by Mr. Ajees A P.

Kochi-22 Prof. Sumam Mary Idicula.

September, 2019 (Supervising Guide)

DECLARATION

I hereby declare that the work presented in this thesis is based on the original

research work done by me under the guidance of Prof. Sumam Mary

Idicula, Department of Computer Science, Cochin University of Science and

Technology, Kochi, India - 682022, and has not been included in any other

thesis submitted previously for the award of any degree.

Kochi-22

September, 2019 Ajees A P.

Acknowledgements

All praise and thanks to God Almighty for all the blessings showered on

me from time to time.

First and foremost, I owe my profound sense of respect to my supervisor

and guide, Dr. Sumam Mary Idicula, for her patience, enthusiasm, immense

knowledge and motivating nature and endless support, which paved the way

for successful completion of my doctoral dissertation. I have been extreme-

ly fortunate to have a supervisor who cared so much about my work, and I

cherish the rich experience of working with her.

I am extremely thankful to Dr. G Santhosh Kumar, Head of the Depart-

ment, Department of Computer Science, Cochin University of Science and

Technology for providing me with the facility, support and encouragement to

pursue the Ph D work in the department. My special thanks to K B Muralid-

haran, Assistant Professor, Cochin University of Science and Technology for

the constructive comments and meaningful interactions throughout the work.

I gratefully acknowledge all the teaching and non-teaching staff of Depart-

ment of Computer Science, CUSAT who have been very forthcoming to offer

advice and help in their respective roles.

I would like to extend my sincere gratitude to Prof. M Sreenathan, De-

partment of Linguistics, Thunchath Ezhuthachan Malayalam University, for

providing the linguistic expertise required for this study. Along with the fac-

ulty, I would also like to thank his Ph D student, K J Abrar from the same

University for his contributions towards this thesis.

Throughout this journey, I have had the privilege of interacting with my

colleagues from the same lab. In particular, I remember with gratitude the

timely support and encouragement from Ms. Namitha K, Ms. Sreela S R,

Mr. Graham G, Mr. Anees V, Ms. Manju K, Ms. Jayasree, Ms. Athira M

and Mr. Anil Raj. Apart from the exciting research discussions that we had,

it was a pleasure for me to discuss with them many other social and personal

matters. I am also grateful to all my friends from the department, who are not

mentioned above, for their support and prayers.

I am deeply indebted to my parents A P Pareed and M M Fathima, who

always have been a source of inspiration for the last three decades of my

academic life. Without their unconditional support and prayers, I could never

have reached this point. I would also like to thank my brother, sister and their

families for their endless support to pursue my dreams.

Finally and most importantly, words are too short to express my deep

sense of gratitude towards my beloved wife Marsana M Shereef and my lov-

ing children Faiha Mariyam and Aman Ahsan for their understanding, encour-

agement, patience and unwavering love. I vouch that this journey would not

have been possible without their priceless and perpetual support, invaluable

help and inspiration.

Ajees A P.

Abstract

Language is the way in which humans make utterances and sounds that can

be understandable to the members of the human community. The functions

of language include communication, the expression of identity, emotional re-

lease, and imaginative expression. It can be expressed in two forms; spoken

and written forms. The spoken form of the language is generated using ar-

ticulate sounds, while the written form of the language is generated using a

circumscribed set of symbols. The amount of electronic text data is increasing

day by day. Lot of texts and images are added to the Internet every second.

But this text is stored in an unstructured way. Extracting the relevant infor-

mation from this unstructured data is a demanding task that invites the focus

of NLP researchers.

Anaphora resolution is one of the potential problems in natural language

processing. It is the process of identifying the antecedent of an anaphoric

expression in a natural language text. Most of the NLP applications such

as information, text summarization, machine translation, question answering,

etc. require successful resolution of anaphors. In this thesis, a methodology

for the resolution of pronominal anaphors present in Malayalam text is pro-

posed. Important preprocessing tools required for the resolution of anaphors

were also developed as part of the research work and the development de-

tails are discussed in detail. Resolving the correct antecedent of anaphoric

expressions is a laborious task which demands the clever utilization of NLP

techniques.

The pronominal anaphora Resolution system proposed in this thesis com-

prises of different phases like POS tagging, Named Entity Recognition, Deep

level tagging and Anaphora Resolution. The POS tagging phase experimented

three techniques. One is using Conditional Random Fields, another is using

neural networks and the third one is using deep neural networks. Different

features like word-level features, character level features and affix level fea-

tures were considered in the study. The word-level features were extracted

using pre-trained word embeddings, while the affix-level and character-level

features were identified using feature inferring neural networks and handcraft-

ed rules.

The named entities present in the POS tagged text were identified in the

second phase. The POS tag information obtained from the POS tagging phase

was used as additional information (feature) towards entity extraction. Here

also, different techniques like neural networks, CRFs and deep neural net-

works were experimented to generate the entity tagging model. Effect of

various features like word-level, sub-word-level, character-level and POS tag

information on the performance of the entity recognition task was analyzed.

The model with maximum performance was selected as the entity tagging

module of the overall system.

Although the entity extraction phase gave information about the named

entities present in the text document, semantic information like gender, num-

ber and person (PNG information) were not available at that phase. The deep

level tagging phase, which identified the number and gender information of

person entities, helped in this regard. In order to extract the number and gen-

der information of person entities, various classification techniques like Naive

Bayes, kNN, SVM, Random forest, MLP, etc. were tried. A combination of

morphological features was applied to improve the classification accuracy.

The classifier with maximum performance constituted the deep level tagging

model for the architecture.

Finally, the anaphora resolution phase identified the actual antecedents

corresponding to each pronominal anaphor present in the text. The deep level

tagged text from the deep level tagging phase was given as the input of the

anaphora resolution phase. Here the major focus was on two things; extrac-

tion of feasible candidates and selection of the most probable candidate corre-

sponding to each anaphor. The feasible candidates were shortlisted based on

the number and gender agreement with the anaphor. The selection of the max-

imum possible candidate was carried out using an algorithm which effectively

utilized the linguistic properties of Malayalam language. The performance of

each phase of the overall system was measured using various evaluation met-

rics.

Contents

Table of Contents i

List of Figures vii

List of Tables xi

Abbreviations xiii

1 Introduction 1

1.1 overview . 1

1.2 Characteristics of Malayalam language. 5

1.3 Challenges in Malayalam language processing 6

1.4 Problem statement . 9

1.5 Objectives . 9

1.6 Contributions of the Thesis 10

1.7 Outline of the Thesis . 12

2 Literature Survey 15

2.1 Introduction . 15

2.2 POS tagging . 17

2.3 Named Entity Recognition 22

2.3.1 Supervised methods 23

i

ii CONTENTS

2.3.2 Semisupervised methods 25

2.3.3 Unsupervised methods 27

2.3.4 NER in Malayalam 27

2.4 Anaphora Resolution . 29

2.4.1 Anaphora resolution in non-Indian languages 30

2.4.2 Anaphora Resolution in Indian languages 32

2.4.3 Anaphora Resolution in Malayalam 34

2.5 Summary of the chapter . 35

3 System Architecture 39

3.1 Introduction . 40

3.2 System Overview . 41

3.3 Performance Evaluation . 45

3.4 Summary of the chapter . 47

4 POS tagging 49

4.1 Introduction . 50

4.2 Dataset preparation . 51

4.2.1 Data collection . 51

4.2.2 Data annotation . 52

4.2.3 Data Evaluation . 52

4.3 POS tagging using Conditional Random Fields 54

CONTENTS iii

4.3.1 Introduction . 54

4.3.2 Architecture . 55

4.3.3 Experiments and results 57

4.4 POS tagging using neural networks 59

4.4.1 Introduction . 59

4.4.2 Architecture . 59

4.4.3 Experiments and Results 63

4.5 POS tagging using deep learning 68

4.5.1 Introduction . 68

4.5.2 Architecture . 69

4.5.3 Experiments and Results 81

4.6 Summary of the chapter . 87

5 Named Entity Recognition 89

5.1 Introduction . 90

5.2 Dataset preparation . 91

5.3 NER using neural networks 93

5.3.1 Introduction . 93

5.3.2 Architecture . 94

5.3.3 Experiments and Results 95

5.4 NER using CRF . 97

5.4.1 Introduction . 97

iv CONTENTS

5.4.2 Architecture . 98

5.4.3 Experiments and Results 100

5.5 NER using Deep learning . 101

5.5.1 Introduction . 101

5.5.2 Architecture . 102

5.5.3 Experiments and Results 110

5.6 Summary of the chapter . 113

6 Deep level tagging 115

6.1 Introduction . 116

6.2 Architecture . 118

6.2.1 Preprocessing phase 120

6.2.2 POS tagging phase 121

6.2.3 Named Entity Recognition phase 121

6.2.4 Deep level tagging phase 122

6.3 Experiments and Results . 124

6.3.1 Analysis . 129

6.4 Summary of the chapter . 131

7 Pronominal Anaphora Resolution 133

7.1 Introduction . 134

7.2 Architecture . 135

CONTENTS v

7.3 Experiments and Results . 140

7.3.1 Dataset 1 . 140

7.3.2 Dataset 2 . 141

7.4 Summary of the chapter . 142

8 Conclusions and Future directions 143

8.1 Conclusions . 143

8.2 Future Directions . 147

Bibliography 150

Bibliography 151

List of Figures

3.1 General architecture of the proposed system 43

4.1 Graphical representation of CRF 55

4.2 General architecture of the proposed system 56

4.3 Sample text showing the input and output of the preprocessing
phase . 56

4.4 Sample feature set for a simple sentence from the training data 57

4.5 An example of the tagged Malayalam text generated using
CRF based POS tagger . 58

4.6 The performance of different tagging algorithms in compari-
son with CRF . 58

4.7 ’Relu’ function illustration 61

4.8 Architecture of the proposed system-training and testing mod-
ules . 62

4.9 Performance of neural tagger for different training data size . . 68

4.10 ‘XYZ’is the input sequence and ‘PQR’is the output sequence . 70

4.11 General system architecture 71

4.12 Generalized word representation 72

4.13 Architecture of the character based word composition model . 73

4.14 Architecture of the of Bi-LSTM model with CRF output layer 76

4.15 Bi-LSTM layer architecture 77

4.16 Encoding and Decoding of sequences by LSTM 78

vii

viii LIST OF FIGURES

4.17 Preservation of gradient information by LSTM 79

4.18 Examples of rules used to extract the suffix 82

4.19 Performance of the system for different pre-trained word em-
bedding sizes . 85

4.20 Performance of the model with and without the presence of
suffix embedding . 86

4.21 Example of the tagged text with and without the presence of
suffix embedding . 86

4.22 Accuracy of different tagging algorithms over CUSAT corpus . 88

5.1 Sample text tagged using the BIO tagging scheme 92

5.2 Architecture of the neural network based NER system 95

5.3 Accuracy of the proposed NER system on different word em-
bedding sizes . 97

5.4 Architecture of the CRF-based NER system 98

5.5 Preprocessing . 100

5.6 Feature set for a single word 100

5.7 Generalized word representation 104

5.8 Architecture of the character-based word composition model . 105

5.9 Architecture of the deep learning based NER system 109

5.10 Sample tagged text without incorporating the affix-level features113

5.11 Sample tagged text by incorporating the affix-level features . . 113

5.12 Performance comparison with the existing systems 114

LIST OF FIGURES ix

6.1 General architecture of deep level tagging system 120

6.2 Sample text tagged using deep learning based POS tagger . . . 121

6.3 Sample text showing the input and output of the NER module . 122

6.4 Sample text showing the input and output of the complete ar-
chitecture . 124

6.5 Performance of different classifiers on number and gender
identification task . 126

6.6 Performance of different classifiers on ’TAM’ analysis task . . 126

6.7 Effect of different features on the performance of the number
and gender identification classifier 127

6.8 Effect of different features on the performance of the ’TAM’
identification classifier . 128

6.9 ROC curve of the number and gender classifier 130

6.10 ROC curve of the ’TAM’ classifier 130

7.1 General architecture of the proposed system 137

7.2 Architecture of the anaphora resolution module 138

List of Tables

4.1 BIS Tagset and its Description 53

4.2 Most common tags and their frequencies 54

4.3 Features and descriptions . 65

4.4 Performance of the tagger for different features 66

5.1 Frequency of Different Named Entity Tags present in the Train-
ing Data . 92

5.2 Summary of the dataset . 93

5.3 Accuracy of the system with respect to different feature set . . 96

5.4 Percentage of the training set entities present in FastText word
embedding files. 103

5.5 Impact of different word representations on BiLSTM-CRF
tagger Accuracy(%). 112

6.1 Different classes of verbs according to ’TAM’ analysis 118

6.2 Case markers and corresponding suffixes 119

6.3 Overall performance of the proposed system 129

7.1 Salince factors and their weights 139

7.2 Results of our experiments on dataset 1 141

7.3 Results of our experiments on dataset 2 141

xi

Abbreviations

NLP Natural Language Processing

IE Information Extraction

POS Parts of Speech

SVO Subject Verb Object

ISCII Indian Standard Code for Information
Interchange

ASCII American Standard Code for Information
Interchange

ML Machine Learning

NER Named Entity Recognition

HMM Hidden Markov Model

SVM Support Vector Machine

CRF Conditional Random Field

MXENTK Maximum Entropy Model Toolkit

CIIL Central Institute of Indian Languages

PNG Person Number Gender

TnT TrigramsnTags

MBLP Memory Based Language Processing

MUC Message Understanding Conference

MEMM Maximum Entropy Markov Model

CoNLL Conference on Computational Natural
Language Learning

BIO Begin Inside Outside

WCL Word Codebook Learning

DNN Deep neural network

PMI Pointwise Mutual Information

FIRE Forum for Information Retrieval Evaluation

TAM Tense Aspect Modality

k-NN k-Nearest Neighbors

MLP Multi Layer Perceptron

OCR Optical Character Recognition

xiii

xiv Abbreviations

OOV Out Of Vocabulary

BIS Bureau of Indian Standards

FNR False negative rate

FPR False positive rate

ANN Artificial Neural Networks

ReLU Rectified Linear Unit

API Application Program Interface

SGD Stochastic Gradient Descent

CBOW Continuous Bag of words

CNN Convolutional neural network

LSTM Long Short-Term Memory

BiLSTM Bidirectional Long Short-Term Memory

RNN Recurrent Neural Network

NLTK Natural Language Toolkit

IECSIL Information Extraction for Conversational
Systems in Indian Languages

CE Common Era

PCA Principal component analysis

ROC Receiver operating characteristics

SVM Support vector machine

TNR True negative rate

TPR True positive rate

1
Introduction

1.1 overview

Language is the conventional method of communication be-
tween the members of the human community. It is a set of
symbols or signs arranged in a particular order to express the
message. The origin of language goes back to the beginning of
human species on earth. Various languages are available over
the world, which can express thoughts on an endless number of
topics. Every language consists of tens of thousands of words
which can be used to construct an infinite number of phrases
and sentences. Those sentences can be used not just to con-
vey the information but to express our feelings. There are two
forms in which languages can be expressed- spoken and writ-
ten forms. The spoken form of the language is generated using
articulate sounds. While the written form of the language is
generated using a set of signs and symbols. The spoken form
of the language is generated using a set of signs or symbols. In
the spoken form of the language, much of the meaning is in-
dicated by the context of the speaker. But in the written form
of the language, most of the context should be explicitly pro-
vided by the text. Similarly, the spoken form of the language

1

2 Introduction

prefers to deliver subjective information, whereas the written
form tends to transmit objective information. Moreover, written
texts can be communicated across time, which is not possible
in the case of the spoken form of the language. According to
Henry sweet, ”Language may be defined as the expression of
thought by means of speech sounds” [1]. Each language has
its own dialect, character set, syntax, phonetics, and morpholo-
gy. Within a language itself, there are varieties in dialects based
on geographical distance or social factors. The number of con-
sonants and vowels may vary from language to language. For
example, the language English has 24 consonants and 18 vow-
els (depending on the dialect). While Rotokas, a Bougainville
language has only five vowels and six consonants [2]. Syntax,
the set of rules which defines the combination of words in a lan-
guage also changes from language to language. For example, in
English, we say ”there is a white ball”, whereas, in French, the
structure would be ”il y a une ballon blanc”. Here the position
of adjectives in both the sentences is different. Furthermore,
there are differences among languages in the number of mean-
ings for words. Languages like English are more concise in
nature, while those like Arabic may have tens of meanings.

The amount of written form of the language is increasing day
to day. Lot of texts and images are added to the web every sec-
ond. But this text is stored in an unstructured way. Mining the
important information from this unstructured data is a challeng-
ing task that invites the focus of NLP researchers. Information
extraction, a subdomain of artificial intelligence, handles this
challenge. Unstructured text can be converted into a structured
form using IE techniques. Each of our work presented in this

overview 3

thesis comes under the domain of information extraction. All
of them can be effectively utilized for the computational anal-
ysis of natural language text. In our study, we have considered
Malayalam as the major focus of attention, since it is the na-
tive and official language of Kerala. We were also motivated to
solve the problem of resource-scarcity in Indian languages to a
particular extent.

Anaphora resolution is one of the old problems in natural
language processing. It is the process of identifying the true
referent of an anaphoric expression in a natural language text.
Most of the NLP applications such as text summarization, ma-
chine translation, question answering, etc. require successful
resolution of anaphors. In this thesis, we propose a methodol-
ogy for the successful resolution of anaphors present in Malay-
alam text. The series of preprocessing tools required for the res-
olution of anaphors are also developed and discussed in detail.
Anaphora is a Greek word that originated in the 16th century
[3]. It is comprised of ’ana’ and ’phora’, where ’ana’ means
back, and ’phora’ means carrying. Hence anaphora stands for
the act of carrying back. Anaphors help to avoid repetition
of words in natural language text. Resolving the correct an-
tecedent of anaphoric expressions is a laborious task which re-
quires the clever utilization of NLP techniques.

Most of the studies in anaphora resolution are based on doc-
uments in English, French, Chinese, Persian, Arabic and related
languages. Using the distinctive characteristics of Indian lan-
guages, the works on anaphora resolution are yet to be explored.
In most of the Indian languages, anaphora resolution is in its in-

4 Introduction

fancy stage. Malayalam, a morphologically rich resource-poor
language, deserves its own merits in all the language process-
ing tasks. Detailed analysis of elementary units (words) in a text
document for the resolution of pronominal anaphors in Malay-
alam is a novel approach. Along with an algorithm for anapho-
ra resolution, a set of preprocessing tools such as POS tagger,
named entity tagger, and deep level tagger were also developed
for the computational analysis of Malayalam language.

There is a huge amount of text data available online in Malay-
alam. Malayalam Wikipedia itself contains more than 30,000
articles. This warrants us to develop tools that can be used to
explore digital information present in Malayalam and other na-
tive languages. Anaphora resolution is one such tool that helps
in determining the coherence of text segments. It is also a ne-
cessity in term-based summarization, where the score of a sen-
tence is calculated by adding the weights of words present in it.
Resolving the pronouns to their actual antecedents help in mea-
suring the importance of a sentence using statistical techniques.
Automatic text classification is another application which finds
the importance of anaphora resolution. The quality of text clas-
sification shows significant variation between the texts that are
pronoun resolved and non-pronoun resolved. Furthermore, anapho-
ra resolution also finds its applications in areas such as question
answering, machine translation, information retrieval, etc.

Characteristics of Malayalam language. 5

1.2 Characteristics of Malayalam language.

Malayalam is one of the 22 scheduled languages in India and
bears the status of official language in Kerala, Lakshadweep,
and Puducherry [4]. More than 38 million people speak it over
the world. In Kerala and Lakshadweep, Malayalam is used in
government, commerce, education systems, and in mass com-
munication. It belongs to the family of Dravidian languages.
Even though Malayalam is closely related to Tamil, its origin
is more influenced by Sanskrit, the language of Vedas. The
influence of Sanskrit is clear throughout the development of
Malayalam language. ’Lilatilakam’, the first book of Malay-
alam grammar was written using Sanskrit script. The first record
of Malayalam language is an inscription dated to 831 BC [5].
Vattezhuthu, which contains an alphabet set of 30, was the ear-
ly script used to write Malayalam [6]. Another script of Malay-
alam called ’kolezhuthu’ was derived from ’vattezhuthu’. How-
ever, Brahmi script, a descendant of both the above scripts is the
current script used in Malayalam documents. Malayalam script
has the most number of letters among Dravidian languages [7].

Malayalam is characterized by its morphological richness
and agglutinative nature. Morphology can be defined as the
study of the formation of words from smaller meaning-bearing
units called morphemes. Morphemes are of two kinds- stems
and affixes. Stems carry the basic meaning of word and affix-
es append additional meaning to stems. Affixes can be either
prefix, infix or suffix depending upon the stem. The morpho-
logical richness of Malayalam allows its creation of complex
words which are rich in information. It is not equally promi-

6 Introduction

nent in different Indian languages. Some words in Malayalam
contains meaning which can only be expressed by four or more
English words. For example, the word ‘cheyyendiyirunnilla’in
Malayalam can only be expressed by using 5 English words as
‘should not have been done’. Another characteristic of Malay-
alam language is its inflectional and derivational morphology.
Inflectional morphology deals with the generation of variants of
a word without changing its word category. While derivational
morphology results change in the word category. For example,
a noun may change to verb, adjective or adverb. The languages
that doesn’t permit inflection are called analytic languages (ex:
Chinese) [8]. New words in Malayalam are originated through
inflection and derivation.

Most of the western languages have a specific structure for
their sentences. For example, the sentences in English and Ger-
man always follows SVO (Subject, Verb, and Object) pattern.
However, Malayalam does not follow such common patterns
and is a free word order language. Based on the grammatical
category of words, Malayalam words can be mainly classified
into two, namely- Vachakam and Dyothakam. Word categories
like nouns, verbs and adjectives are included in Vachakam, where-
as word categories like prepositions, conjunctions and interjec-
tions are included in Dyothakam.

1.3 Challenges in Malayalam language processing

There are many challenges that exist in interpreting Indic lan-
guages, including Malayalam. Indic languages use alphabets

Challenges in Malayalam language processing 7

derived from Brahmi scripts instead of Latin alphabets. Brahmi
is a syllabic alphabet, where each sign can be a simple conso-
nant or a syllable with the consonant and the inherent vowel
[9]. Lack of standard publicly available resources is the major
challenge towards Indic language computing. These resources
include wordnets, tagged datasets, parallel corpus, dictionaries,
etc. Moreover, the available datasets are very small in size as
compared to western languages. When it comes to Malayalam,
the different challenges in Malayalam computing are as follows.

1. Agglutinative and inflective nature of the language:

The primary challenge in Malayalam computing is its in-
flective and agglutinative nature. Two or more words can
be united to form another single word based on a set of pre-
defined rules. Similarly, the root of a word can be inflected
to create a new word based on a set of rules. These rules
may vary from languages to language. Both the above fea-
tures of the language pause a big challenge in Malayalam
language computing.

2. Lack of morphological analyzer:

Morphological analysis is the process of analyzing indi-
vidual words into their components. Even though various
attempts are made by different researchers in this field,
Malayalam does not have a full-fledged system for mor-
phological analysis.

3. Lack of labelled datasets:

Labelled datasets are the most critical resources in build-
ing machine learning/statistical models. Statistical/ ma-

8 Introduction

chine learning models are the best performing tools in var-
ious fields of NLP, such as POS tagging, entity extraction,
sentiment analysis, etc. Building the tagged dataset itself
is a laborious task which demands language expertise.

4. Lack of standard encoding:

Unlike most of the Europian languages, Indian languages
do not follow standard encoding format. Different web-
sites are using different encoding formats. Even though
Unicode is widely accepted among the NLP community,
some of the available Malayalam digital content is still
available in ISCII (Indian Standard Code for Information
Interchange) format. ISCII is an 8-bit encoding scheme
specific to Indian scripts and an extension of 7-bit ASCII.
But Unicode is a variable bit encoding scheme which is
accepted worldwide and more dynamic.

5. Constrained wordnet:

Wordnet is the collection of lexical items in any language.
It contains definitions, synonyms, antonyms, and usage
examples for each word in a language. Malayalam does
not have a full-fledged wordnet available online.

6. Lack of online dictionaries:

Dictionaries are electronic resources that record the words
in a language along with its meaning and pronunciation.
Attempts to build a complete online Malayalam dictionary
are ongoing at Malayalam University, Tirur. Availabili-
ty of online dictionaries is essential in word sense disam-
biguation problems.

7. Slow content creation:

Problem statement 9

English dominates most of the web data when compared
with other languages. Nevertheless, recently, there is a
growth in digital Malayalam literature. Difficulty in in-
putting Malayalam through the keyboards is one of the
reasons behind this limited growth. Lack of spell check-
ers, grammar checkers, thesaurus, etc. are also reasons for
this dilemma.

1.4 Problem statement

From the research gaps identified, the problem can be formulat-
ed as ”Developing an integrated framework for the resolution
of pronominal anaphora in Malayalam, which uses machine
learning as well as rule-based techniques”. The complete sys-
tem consists of machine learning as well as rule-based modules.
Hence, we call it an integrated system for anaphora resolution.

1.5 Objectives

Resolution of pronominal anaphors present in Malayalam doc-
uments using machine learning as well as rule-based techniques
is an interesting NLP problem with direct applications in differ-
ent tasks like question answering, text summarization, machine
translation, etc. From the literature, it has been observed that
anaphora resolution can only be accomplished after a series of
pre-processing steps. Since Malayalam does not have publicly
available standard pre-processing tools, tools like POS tagger,
named entity tagger and deep level tagger were also developed

10 Introduction

as part of this work. To achieve our final goal, the objectives of
this research work were identified as follows.

1. Construct and validate a POS tagged corpus for Malay-
alam language.

2. Develop an efficient mechanism for POS tagging in Malay-
alam.

3. Compare the proposed algorithms with the state-of-the-art
algorithms and techniques employed for POS tagging.

4. Construct and validate a Named Entity tagged corpus for
Malayalam language.

5. Develop an efficient mechanism for NE tagging in Malay-
alam.

6. Compare the proposed algorithms with the state-of-the-
art algorithms and techniques employed for Named Entity
tagging.

7. Develop an efficient mechanism for Deep level Tagging in
Malayalam

8. Develop an efficient mechanism for pronominal anaphora
resolution in Malayalam and validate the same.

1.6 Contributions of the Thesis

The major contributions of this thesis to Malayalam NLP can
be summarized as given below.

Contributions of the Thesis 11

• A POS tagged corpus for the Malayalam language was
constructed, evaluated and made publicly available. Each
word in the corpus was labeled with Bureau of Indian Stan-
dard tag set, which consists of 36 tags corresponding to
different categories. The corpus was evaluated using Fleiss
Kappa co-efficient, which measured the inter-rater agree-
ment. This corpus constituted the first publicly available
dataset for POS tagging in Malayalam.

• Different schemes for POS tagging in Malayalam were
designed, implemented and tested. Each of the schemes
involved different phases like pre-processing, feature set
construction, training and testing. Impacts of different fea-
tures on the performance of the developed systems were
experimented. The power of word embeddings were also
utilized for Malayalam POS tagging. The proposed system
beat all the existing POS tagging results in the Malayalam
language.

• A named entity tagged corpus for the Malayalam language
was constructed and evaluated. Four major types of en-
tities, namely person, location, organization, and miscel-
laneous, were considered for tagging. Evaluation of the
dataset was performed using Fleiss Kappa co-efficient.

• Different schemes for named entity recognition in Malay-
alam were tried. The effects of various language level fea-
tures on the performance of entity recognition were ex-
perimented. Word embeddings were also utilized for the
effective representation of words. The proposed system
outperformed all the entity tagging algorithms currently
available in Malayalam language.

12 Introduction

• A deep level tagging scheme for the Malayalam language
was designed, implemented and tested. The developed
system generated deep level information about nouns and
verbs in a text document. The system consisted of different
phases like POS tagging, animate noun identification and
deep level tagging. The morphological richness of Malay-
alam language was effectively utilized for the deep lev-
el analysis of nouns and verbs. This approach is a novel
thought towards the semantic analysis of natural language
text.

• An intelligent framework for the resolution of pronomi-
nal anaphors in Malayalam was designed, developed and
tested. The proposed framework was evaluated using two
small datasets from short stories and news articles domain.
This system is a hybrid of machine learning and rule-based
approaches for anaphora resolution in Malayalam.

1.7 Outline of the Thesis

The complete research work is presented in eight chapters and
the outline of the thesis organization is as follows:

Chapter 1: This chapter discusses the motivation behind the
work, states the research problem, enumerates the objectives of
the research work and gives an overview of the structure of the
thesis. The chapter also discusses the challenges involved in
Indian language computing along with a special emphasis on
the Malayalam language.

Outline of the Thesis 13

Chapter 2: A systematic survey on existing algorithms used
for POS tagging, Named Entity Recognition and Anaphora Res-
olution in Malayalam along with other Indian as well as non-
Indian languages is discussed in this chapter. More emphasis is
given to works from Indian languages since they hold similar
characteristics to Malayalam.

Chapter 3: This chapter gives an overview of the complete
architecture proposed for the resolution of pronominal anaphora
present in Malayalam text. A brief explanation of the metrics
used to evaluate the performance of each module present in the
overall architecture is also given.

Chapter 4: Different algorithms used for Parts of Speech
Tagging of Malayalam text are explained here. They include
algorithms such as CRF, neural networks and deep neural net-
works. The results are compared with the state-of-the-art sys-
tems for the same. A novel word representation which com-
bines rule-based as well as machine learning techniques for
deep learning-based POS tagging is also discussed in detail.
The details involved in the construction of the dataset for POS
tagging in Malayalam are also given there.

Chapter 5: This chapter presents the application of three
different algorithms on Named Entity Recognition for Malay-
alam. The results obtained are compared with the state-of-the-
art systems for NER in Malayalam. An enhanced word repre-
sentation for deep learning-based NER in Indian languages is
proposed and discussed in detail. The details involved in the
construction of a publicly available dataset for NER in Malay-
alam are also given.

14 Introduction

Chapter 6: Deep level tagging of Malayalam text is dis-
cussed in this chapter. The analysis of nouns includes identi-
fying the number, gender and case details, whereas the analysis
of verbs includes determining tense, aspect and modality details
associated with them. The linguistic features employed for the
tasks are also explained in detail.

Chapter 7: Anaphora Resolution is the process of determin-
ing the actual antecedent of an anaphoric expression present in
natural language text. Most of the NLP applications such as in-
formation extraction, question answering, text summarization,
etc. require successful resolution of anaphors. This chapter
on Pronominal Anaphora Resolution for Malayalam presents a
novel approach towards resolution of pronominal anaphora ref-
erences present in Malayalam text.

Chapter 8: This chapter concludes the thesis by summariz-
ing the major contributions of the work and discusses the future
directions for extending the research work.

2
Literature Survey

This chapter briefly reviews the literature on tasks such as POS
tagging, entity recognition, and anaphora resolution. Works in
different Europian and Indian languages are reviewed in de-
tail. The main emphasis is given to works in Indian languages
since Malayalam is one among the classical Indian languages.
POS tagging and Entity extraction in different Indian languages
such as Tamil, Telugu, Malayalam, etc. are discussed in detail.
Different features adapted for POS tagging and NER in Indian
languages are also explored. An overview of different anapho-
ra resolution schemes available in Hindi, Tamil, Telugu, etc. is
also presented.

2.1 Introduction

The growth of digital content and the need for information ex-
traction owes greatly to one of the highly challenging problems
in NLP called anaphora resolution. Identifying the antecedent
of an anaphoric expression is essential for the semantic pro-
cessing of natural language text. The applications of anaphora
resolution can be seen in wide areas such as text summariza-

15

16 Literature Survey

tion, information extraction, question answering, etc. Addition-
ally, POS tagging is a preprocessing step for most of the NLP
applications. However, entity recognition is required in situa-
tions where information extraction is the major goal. Most of
the high-level applications in Natural Language Processing re-
quire a combination of these tools to accomplish the task. To a
certain extent, the development and performance of these tools
contribute to the growth of technological improvement in the
NLP community.

It is evident that the significance of anaphora resolution is
increasing day by day. The need for automatic information
extraction mainly contributes to this significance. Hence, the
number of researchers working in this area is also increasing.
There are more than 7000 spoken languages existing in the
world today [10]. Many of them have very few numbers of
speakers as compared to others. However, each language at-
tributes different threats to the problem of anaphora resolution
depending on the language characteristics. Languages belong-
ing to the same family may have some common characteristics.
Except that, each language demands a language-specific treat-
ment towards the anaphora resolution problem.

The structure of this chapter is as follows. Section 2.2 dis-
cusses the state of the art in POS tagging of Indian and non-
Indian languages. Similarly, section 2.3 reviews state of the art
in Named Entity Recognition. Section 2.4 presents state of the
art in anaphora resolution. Finally, section 2.5 concludes the
chapter with an overall summary.

POS tagging 17

2.2 POS tagging

POS tagging is the process of distinguishing the correct linguis-
tic classification of words based on their meaning and context
in a text document. Most of the available works in POS tagging
uses rule-based and stochastic techniques. One of the first and
most widely used POS tagger in English is Brill’s tagger, which
used a rule-based algorithm [11]. ENGTWOL tagger, Btoush
tagger are also examples of POS taggers that employed rule-
based techniques [12, 13]. Rule-based taggers contain a two-
phase architecture where the first stage makes use of a dictio-
nary to assign potential tags for each word and the second phase
utilizes a set of hand-written rules to disambiguate the tag. ’EN-
GTWOL’ tagger is a well-known example of two-stage archi-
tecture. HMM-based POS taggers employ stochastic methods
for tagging [14–17]. One of the disadvantages of such meth-
ods is the need for large sized training data. Stochastic methods
consider the frequency count of elementary units (words) and
their associated tags in the training data to assess the probabili-
ty of each tag for each word. For example, HMM taggers pick
the tag of a word based on the following equation.

P(tag|word) = P(word|tag)∗P(tag|previous n tags) (2.1)

Works such as [18–20] are examples of HMM-based tagging al-
gorithms. Along with HMM and its variants [21, 22], transfor-
mation based learning [23], maximum entropy model [24, 25],
memory based learning, Decision trees [22], support vector ma-
chines [26], etc. were also experimented for English language.
For some languages such as German and English, the POS tag-
ging accuracy has almost reached 98% [27]. Hunpose, a reim-

18 Literature Survey

plementation of Trigrams’n’Tags (TnT) tagger works well for
morphologically rich languages. For languages such as En-
glish and Hungarian, it works with an accuracy of 96.58% and
98.24% respectively.

Indian languages are far behind in POS tagging accuracy as
compared with other languages. Lack of language resources
like tagged corpus, guidelines, language technology tools, etc.
are the various reasons behind this problem. Among the In-
dian languages, the largest number of works in POS tagging
are reported from Hindi and Tamil. The first work in Hindi
was reported in 2006 by Smrithi Singh [28]. Her tagger was
based on morphological rules without any tag disambiguation
process. A tagged corpus of 15562 words along with a deci-
sion tree based learning algorithm was used to carry out the tag-
ging process. The reported accuracy of the tagger was 93.45%.
The second work was based on a maximum entropy model by
Aniket Dalal and Kumar Nagaraj. They extracted feature func-
tions from the training data. A feature function is a boolean
function which catches some aspect of the language relevant
to sequence labelling task. They achieved an overall accuracy
of 88.4%. CRFs, probabilistic graphical models for sequence
labelling was experimented by Himanshu and Amni Anirudh
[29]. Hindi morph analyzer was used in their study to pro-
duce root words. Different features like word length, suffixes
and special characters were used for training with the help of
CRF++. Training was conducted on a corpus of size 150000
and reported accuracy is 82.67%. The fourth work in Hindi was
an HMM-based methodology which utilized the morphological
features of the language [14]. This work tried to minimize the

POS tagging 19

number of unique types encountered during learning. Manish
Srivastava and Pushpak Bhattacharya used a naive stemmer as a
pre-processor to the HMM-based tagger [30]. They got consid-
erable improvement in performance above all the other works.

Bengali is an Indo-Aryan language primarily spoken by the
people of Bangladesh. First work in Bengali POS tagging was
reported in 2007 [15]. A set of supervised, semi-supervised
and maximum entropy based models were developed in the
first attempt. Training was performed on a corpus of 40000
words over a tagset of 30 tags. It was observed that the su-
pervised models outperform all the other models. The second
work was based on conditional random fields over a tagset of
26 tags, where the feature selection played a vital role in its
performance [31]. This method utilized contextual information
along with other word-level features. Training was performed
on a corpus of size 72000 with an accuracy of 90.3%. The third
reported work on Bengali was based on SVM [32]. The CRF
based corpus used in the previous work was used as the train-
ing data and achieved an accuracy of 86.4%. Another work in
Bengali is reported in 2010 by Hammad Ali [33]. His tagger
was based on beam-welch trained HMM approach. The system
consisted of a four-layer architecture with each layer dedicat-
ed to specific tasks. The first level assigned words to one of
the 12 universal categories. A set of disambiguation rules along
with detailed morphological information was used in the second
level. The third and fourth level will perform local word group-
ing and multiword verb tagging. Last work in Bengali (to our
knowledge) was reported by Kamal Sarkar of Jadavpur Univer-
sity [34]. He developed a tri-gram based POS tagger for Bengali

20 Literature Survey

by constructing the bi-gram based POS tagger as a baseline.

POS tagging in Telugu has reached a much better position
as compared with other south Indian languages. Mainly three
works are reported in Telugu. First work was based on trans-
formation based learning, which recorded an accuracy of 96%
on test data [35]. Second work was based on a rule-based ap-
proach which made use of different functional modules such as
tokenizer, morph analyzer, morph to POS translator, POS dis-
ambiguator, unigram and bigram rules and annotator [36]. Tok-
enizer converted input text into tokens and morph-analyzer pro-
duced morphological information about these tokens. Morph to
POS translator used this morphological information to tag each
word in the text. POS disambiguator was used to resolve the
tag ambiguity problem. Unigram and bigram rules were used
to control the ambiguity in the POS tagger. Finally, annota-
tor produced tagged words. The system reported an accura-
cy of 98% on a limited tagset. The third work in Telugu [37]
was based on a maximum entropy-based model implemented
using publicly available maximum entropy model toolkit [MX-
ENTK]. This system reported an accuracy of 81.78%.

Tamil, the official language of Singapore and Srilanka stands
second in terms of the number of works in Indian languages.
The first work in Tamil was reported by Vasu Ranganathan in
2001 [38]. His work was based on the lexical, phonological
approach and named as ’tagtamil’. Morphological features of
verbs were processed using an index method. Tagtamil was ca-
pable of performing tagging and generation. The second work
was reported by Ganeshan, who utilized the CIIL corpus [39].

POS tagging 21

A portion of CIIL corpus was tagged using a dictionary and
morphological analyzer. Later he trained the system until max-
imum precision was reached. Another work was reported by
Kathambam, who made use of heuristic rules for POS tagging
[40]. No morphological analyzer was used in this work. A set of
12 heuristic rules were used, and tagging was performed using
PNG, tense and case markings. Unknown words were handled
using a bigram approach. Selvam and Natarajan employed sta-
tistical techniques for Tamil POS tagging [41]. According to
them, the derivational and inflectional word forms can’t be han-
dled by rule-based techniques. They were able to make some
improvements over the existing systems and reported an accura-
cy of 85%. Rajendran and a team of Amritha University used a
linear programming based SVM approach towards POS tagging
[42]. They have developed their tagset of 32 tags and tagged a
corpus of 35000 sentences. The system reported good perfor-
mance improvements over the existing systems.

Parts of speech tagging in Malayalam is not a new area of
research. However, only a few numbers of works are report-
ed until now. The first work in Malayalam POS tagging was
reported by Manju K and Soumya S in 2009 [43]. They used
a stochastic HMM-based methodology for tagging. The ma-
jor bottleneck of their work was the limited size of the train-
ing corpus. Only 1400 words were used for training. Anoth-
er work using TnT was reported in the same year by Rajeev
et al. [44]. They used a training corpus of 15,245 words and
tested using a corpus of 200 words. The system reported an
overall accuracy of 90.5% on IIIT-Hyderabad tagset. The third
work was reported in 2010 by Amritha University, Coimbatore

22 Literature Survey

[45]. A training corpus of 100000 words tagged using a tagset
of 29 tags (their own) was used for training. SVM was cho-
sen as the training algorithm. The fourth work was reported
by Robert Jesaraj in 2013 [46]. He used a memory-based lan-
guage processing (MBLP) approach, which utilized the power
of efficient storage of solved examples and similarity-based rea-
soning. A hybrid approach for POS tagging in Malayalam was
reported in 2014 [47]. A combination of rule-based and statisti-
cal approaches were employed in this approach. The rule-based
module made use of lexical analyzer, morphological analyzer
and syntax analyzer to tag the words in the input text. The
statistical module made use of a CRF based tagger to tag the
remaining words. Another hybrid approach for POS tagging in
Malayalam was reported in 2015 by Noorul Mubarak and Sa-
reesh Madhu [48]. The proposed approach made use of dictio-
nary entries along with context tag information for generating
the tag sequence. Another reported work in Malayalam POS
tagging was by Sachin et al. using an EPIC framework [49].
The framework used conditional random fields to generate the
tagging model. The training data contained text from different
domains, such as health, tourism, news articles, etc.

2.3 Named Entity Recognition

Named entity recognition (NER) is an important task in natural
language processing. NER has made a lot of progress in the
past 20 years. Even though different solutions are reported for
the problem, NER still remains as an unsolved problem. The
named entity is a word or phrase which clearly isolate an item

Supervised methods 23

from a set of items having similar attributes. NER can be de-
fined as the problem of locating a word or phrase that refers to a
particular entity within a text. The term named entity is coined
for the first time in the sixth message understanding conference
(MUC-6) [50]. Typically, three kinds of approaches were ap-
plied towards NER, namely- supervised, semi-supervised and
unsupervised. We will go through each of this approach in de-
tail.

2.3.1 Supervised methods

Supervised methods make use of the paradigm called learn-
ing through examples. Different supervised learning algorithms
such as HMM, SVM, decision trees, maximum entropy models,
conditional random fields, etc. were employed for the problem.
Typically, the supervised learning algorithms either learn the
parameters of supposed distribution that maximizes the likeli-
hood or learn the disambiguation rules. HMM, a generative
model for sequence labelling was the earliest model applied for
NER by Bikel et al. in 1999 [51]. He named his system as
’identifier’, which assigns the desired label to each word in a
document. According to him, each word can be assigned with
a single label in any context. The label can be either one of
the desired class or none of the desired class (not an entity).
Hidden Markov Models try to generate the data, given the se-
quences of words and labels from the parameter distribution.
Viterbi algorithm is used to find the best label sequence from the
entire space of label sequences. In 2002, [52] used an HMM-
based NER system for English and reported 96.6% accuracy on

24 Literature Survey

MUC-6 data. They employed different orthographic features,
trigger words and words from gazetteers to identify the named
entities. A comparative study between HMM and MEMM has
been performed by Malouf [53]. He experimented the impact
of different features like capitalization, word position, etc. on
NER. His system reported an F-score of 73.66% on Spanish
CoNLL 2002 data set.

Unlike hidden Markov models, maximum entropy models
are discriminative models for sequence labelling. Here the mod-
el tries to learn the weight for discriminative features from the
given set of features and training data. Each feature is con-
nected with a parameter λi. Maximum entropy models try to
maximize entropy, which in turn ensures that for every feature
qi, the expected value of qi will be equal to the empirical ex-
pectation of qi in the training data. Similar to the HMM model,
the Viterbi algorithm was used to find the best possible label
sequence. The MENE system from Borthwick is an example of
a maximum entropy-based NER model [54]. He experiment-
ed his methodology on MUC-7 datasets and got an accuracy
of 88.8%. Similarly, Carran and Clerk also applied a maxi-
mum entropy-based model to the problem of NER [55]. They
employed a softmax technique to formulate the probability and
achieved an overall accuracy of 84.89% on CoNLL-2003 data.

Mcname and Mayfield were the first to use support vector
machines for entity recognition [56]. They have considered 8-
tags for the task including person, location, organization and
miscellaneous. Eight binary classifiers were used for training.
Features like language-related features, orthographic features

Semisupervised methods 25

and punctuation features were experimented. Each word was
tagged with the set of all possible tags. If that set is empty ’oth-
er’ tag was assigned else the most frequent tag was assigned.
They could achieve an accuracy of 60.97% for the Spanish lan-
guage on CoNLL-2002 dataset.

CRFs were introduced to the problem of NER by McCal-
lum and Li in 2003 [57]. They proposed a feature induction
based statistical modelling technique to the problem of NER.
The conditional probability of a state sequence given an input
sequence is calculated as given below.

P(s | o) = 1
Z

exp(
T

∑
t=1

T

∑
t=1

λk fk(st−1,st ,o, t)) (2.2)

Here ’Z’ is called the normalization factor and Fk is an arbi-
trary feature function. λk is the weight factor for each feature
function. The state transition probabilities were learned using
a dynamic programming approach. And the most likely tag se-
quence was identified using the Viterbi algorithm. They were
able to obtain an overall accuracy of 84.04% for the English
language on CoNLL-2003 dataset.

2.3.2 Semisupervised methods

Semi-supervised learning algorithms make use of a small amount
of labelled data set and create more hypothesis by utilizing a
lot of unlabelled data. The major motivation behind the semi-
supervised type approach is the lack of enough labelled data,
and data sparsity problem. A small amount of labelled data, a

26 Literature Survey

large amount of unlabeled data, and an initial hypothesis are the
pre-requisites for semi-supervised learning algorithms. More
amount of annotated data are generated iteratively until a pre-
defined threshold occurs. The AdaBoost algorithm developed
by Carreras et al. in 2002 was the first example of such an ap-
proach in NER [58]. They used three binary classifiers for the
labelling task, each corresponding to each label. BIO tagging
scheme was used to label the data. Semantic and orthograph-
ic features of words were evaluated over a shifting window
through simple binary propositional features. They were able
to achieve a performance of 79.28% on CoNLL-2002 Spanish
corpus.

Liao et al. [59] proposed a semi-supervised learning ap-
proach using conditional random fields. They could exploit the
evidence that is self-sustained from the features used for a clas-
sifier. They were able to achieve an improvement of 12% in
recall as compared with the supervised classifiers at that time.
Mishra et al. introduced a semi-supervised approach for entity
recognition in noisy-text [60]. They used linear-chain condi-
tional random fields for up-sampling the training data. Features
like word clusters, pre-trained distributed word representations,
updated gazetteer features, etc. were used for ingesting the
meaning of words. Kuksa et al. [61] introduced a novel semi-
supervised technique called Word-Codebook Learning (WCL)
and they used it for biomedical named entity recognition. WCL
try to learn a class of word-level feature embeddings to capture
the semantic meaning of words from a large un-labelled corpus.
They could achieve state-of-the-art performance in bio-medical
NER.

Unsupervised methods 27

2.3.3 Unsupervised methods

The most costly thing in building the supervised models is the
preparation of annotated data. Identifying the robust set of
features is also a burden when dealing with supervised algo-
rithms. Moreover, many resource-poor languages like Malay-
alam, Tamil, etc. don’t have a large set of annotated corpus
available for experimentation. These factors led to the devel-
opment of unsupervised methods for entity extraction. KNOW-
ITALL, a domain-independent system for NER was the first one
reported in this manner [62]. Here the candidate facts are gener-
ated using eight domain independent extraction patterns. These
candidate facts are evaluated using pointwise mutual informa-
tion (PMI) computed using huge web content. Later, a probabil-
ity was assigned to each extracted fact, which eventually helps
to manage the trade-off between precision and recall. Munro
and Manning proposed another work on Unsupervised NER in
2012 [63]. They have developed a language-independent cross-
domain entity recognition system that generated seed candi-
dates via local, cross-language edit likelihood. No external re-
sources were used for the system. Parallel text that may or may
not be aligned was the only resource employed for the prob-
lem. However, they could obtain an F-score of 85% on purely
unsupervised named entity recognition across languages [64].

2.3.4 NER in Malayalam

NER in Malayalam is not a novel area of research. But on-
ly a few numbers of works were reported until now. Lack of

28 Literature Survey

standard data sets, pre-processing tools, the complexity of the
language, etc. are the various reasons for this dilemma. Among
the Indian languages, Hindi and Tamil are the leading ones in
NER. The first work in Malayalam NER was reported by Bindu
et al. in 2012 [50]. They employed a hybrid approach for entity
extraction. A combination of linguistic principles and statistical
methods were employed in their study. [65] reported a statisti-
cal approach using Trigrams‘n’Tags. TnT is an open source
statistical tagger which can be used for any morphologically
rich language. The only limitation to their work was the limited
size of training data. In 2014, a comparative study on the per-
formance of different entity tagging algorithms was conducted
by Amrita University, Coimbatore [66]. Conditional Random
Field (CRF) was used for English and Support Vector Machine
(SVM) for other languages. They were able to achieve compa-
rable performance in Indian languages. A combination of TnT
and Maximum Entropy Markov Model (MEMM) were tested
by Shruthi et al. in 2016 [67]. They too faced the problem of
limited sized training data, which unveils the bottleneck of their
work. Another reported work on Malayalam NER is from Rem-
miya Devi et al. in 2016 [68]. They employed skip-gram based
word embedding features for the identification of named enti-
ties. The tagged social media text shared as part of FIRE-2015
was used for training. They were able to obtain an F-score of
81.55% on test data.

Anaphora Resolution 29

2.4 Anaphora Resolution

Anaphora Resolution is the process of identifying the correct
antecedent of an anaphoric expression present in natural lan-
guage text. It affects the performance of most of the NLP ap-
plications, including text summarization, machine translation,
information retrieval, etc. It is the presence of anaphors, which
makes the natural language text interesting to read. Even though
different solutions were reported for the problem of anapho-
ra resolution, it remains an unsolved problem to a significant
extent. Different researchers across the world have analyzed
anaphors at various levels such as syntactic, semantic and dis-
course levels. The proposed approaches vary from traditional
rule-based and syntactic methods to modern statistical and se-
mantic methods. Works in anaphora resolution started in the
early nineteen fifties. Depending on the linkage between phras-
es and sentences in a paragraph, anaphors can be mainly classi-
fied into three. They are

• pronominal anaphora

• Definite noun phrase anaphora

• One anaphora

pronominal anaphora Pronominal anaphora is the most common-
ly used one in natural language texts [69]. They are realized us-
ing pronouns, short words that refer to some entity mentioned in
the prior discourse. Pronouns include personal pronouns, pos-
sessive pronouns, reflexive pronouns, demonstrative pronouns

30 Literature Survey

and relative pronouns. All of them need not be anaphoric.

Example: Raju went to collect his mark list.

Definite noun phrase anaphora Here the antecedents are referred
by a definite noun phrase which either points to the same con-
cept or semantically close concept.

Example: Donald Trump visited India. The American presi-
dent utilized his opportunity.

One anaphora In one anaphora, the anaphoric expressions with-
in the text are realized using the keyword ’one’.

Example: There are six flowers on the table. But, I like the
one with red colour.

2.4.1 Anaphora resolution in non-Indian languages

Anaphora resolution gained attention with the work of Hobbs
in 1976 [70]. He developed a parse tree based searching al-
gorithm where the noun phrase upon which the search termi-
nates was considered as the probable antecedent of the pro-
noun. There onwards many knowledge-intensive approaches,
including Carter (1979), Carbonell and Brown (1988), Rich and
Luperfloy (1988), etc. were also reported [71–73]. All these
approaches were able to make use of syntactic, semantic and
world knowledge information contained in the text documents.
Centering theory, a theory related to focus of attention based

Anaphora resolution in non-Indian languages 31

on discourse knowledge, was reported by Grosz (1977), Joshi
(1979) and Strube and Hahn (1999) [74–76]. Such methods
were intended to identify the centre of attention (who is being
talked about) in a discourse. Centres are the semantic entities
that contribute to the discourse model. Further thoughts towards
anaphora resolution were identifying the salience features for
antecedents. Appropriate weights were assigned to each fea-
ture, and the antecedent with the highest salience weight is se-
lected as the actual antecedent. Works from Lappin and Leass
(1994), Kennedy Boguraev (1996), and Sobha et al. (2000) be-
longs to this category [77–79].

A two-engine approach by Mitkov was successful to a par-
ticular extent in anaphora resolution [80]. It was based on the
interactivity of two engines, where the first engine incorporat-
ed the constraints and preferences and the second engine fol-
lowed the principles of uncertainty reasoning. Later (1997) he
also presented an indicator based resolution method, where the
possible candidates were assigned scores by a set of indicators
and the candidate with the highest indicator score is selected as
the actual antecedent [81]. The system was able to achieve a
success rate of 89.7%, which was better than the comparable
systems at that time. Machine learning was introduced into this
field with the work of Dagan Hai (1990) [82]. He employed
an unsupervised approach based on co-occurrence patterns in a
large corpus. These statistics reflected the semantic constraints
and were used to disambiguate the antecedents. Dagan Itai’s
work was followed by many supervised and unsupervised ap-
proaches including Aone and Bennet (1995), McCarty and Lah-
nert (1995), Ng and Cardia (2002), Daelman and Van De Bosh

32 Literature Survey

(2005), Hendrickx (2008), Recasen (2009), etc. Different al-
gorithms such as Decision Tree, CRFs, Expectation Maximiza-
tion, etc. were successfully demonstrated for the task.

2.4.2 Anaphora Resolution in Indian languages

Most of the Indian languages are morphologically rich in na-
ture and are verb-ending languages. They are also well known
for their free word ordering property. Indian languages come
under Indo-Aryan, Dravidian, and Tibeto-Burman families of
languages. Among them, Malayalam belongs to the family of
Dravidian languages. Dravidian languages have rich, produc-
tive suffixation and are more agglutinative in nature. Nouns are
affixed with number, gender and case markers. Similarly, tense,
aspect and mood markers are affixed with verbs. But, in lan-
guages like Hindi (Indo-Aryan) case markers take place as post
positions to the nouns. There it should be handled in the pre-
processing stage to understand the proper morphology of nouns.
When it comes to the distinction in number and gender of pro-
nouns, most of the Indian languages agree in number distinc-
tion. However, the scenario is different in gender distinction.
Some of the languages like Sanskrit, Malayalam, Kannada, etc.
allows gender distinction in their pronouns whereas languages
like Hindi, Gujarathi, Assamese, Punjabi, etc. do not provide
any linguistic clue for the classification of gender in their pro-
nouns [83].

In Indian languages, works in anaphora resolution were re-
ported only from a limited set. This includes languages such as
Hindi, Tamil, Malayalam and Bengali. This situation was con-

Anaphora Resolution in Indian languages 33

stituted by the scarcity of resources like preprocessing tools,
standard datasets and parsers. Vasisth, a rule-based system for
anaphora resolution was the earliest work reported by Sobha
and Patnaik (1998) [79]. They proposed a rule-based system for
anaphora resolution by exploiting the morphological richness
of languages such as Malayalam and Hindi. It was a language-
independent system for anaphora resolution, which was primar-
ily focussed on Hindi and Malayalam. Later, centering theory-
based approaches were reported by Prasad and Strube (2000)
[76], Upalapu et al. (2009) [84] and Dekwale et al. (2013). Ac-
cording to them, it was the grammatical role and not the word
order that determines salience in a discourse. Hobb’s algorithm
was attempted by Dutta et al. in 2008 [85]. They had assessed
the roles of subject and object towards the resolution of reflex-
ive and possessive pronouns in the Hindi language. A com-
parative study on the performance of Tamil anaphora resolution
using multi-linear regression and salience score based approach
was presented by Murthy et al. in 2007. [86].

CRF was applied for anaphora resolution by Akilandeswari
et al. in 2013 [87]. CRFs were trained on linguistically mo-
tivated features to boost the performance of the system. They
were able to obtain an average accuracy of 64.83% across texts
from different Tamil novels. Balaji et al. presented a two-stage
bootstrapping approach for the resolution of anaphors in Tamil
text. The first stage of his architecture identified anaphora and
its possible candidates. While the second stage dealt with the
resolution of anaphors. Another work for the same language
(Tamil) was reported by Ram et al. in 2013 [88]. They used
tree CRF for the resolution of anaphors by utilizing the fea-

34 Literature Survey

tures from dependency parsed text. GUITAR, a general tool for
anaphora resolution, was customized by Senapati et al. in 2013
[89]. They fine-tuned the system for Bengali anaphora resolu-
tion. Similarly, BART tool was customized by Sikdar et al. for
Bengali anaphora resolution [90]. Both the above works were
inspired by the works in ICON-2011.

Similar to SemEval 2010, a tool contest for multilingual
anaphora resolution was conducted as part of ICON-2011. The
contest had three languages including Hindi, Tamil and Ben-
gali. Four teams participated in the contest. All four partici-
pants were able to submit their results for Bengali, while Tamil
and Hindi had two participants. All the submitted systems in-
cluded a language dependent module specific to each language.
Later, Sobha et al. came up with a generic anaphora resolution
engine for Indian languages [83]. The system was free from
any language-specific modules. The PNG information associ-
ated with nouns was identified using in-depth morphological
analysis and PNG agreement heuristic rules. The possible can-
didates having the PNG agreement was passed through a CRF
module which identified the correct antecedent of the anaphor.

2.4.3 Anaphora Resolution in Malayalam

Malayalam is a morphologically rich agglutinative language,
where the syntactic and semantic roles played by the nominal
expressions are expressed by the case suffixes and postpositions
rather than by word order. It is a verb-final language that al-
lows scrambling. Most commonly, head nouns are preceded
by adjectives, participial adjectives and free relatives. Postposi-

Summary of the chapter 35

tions carry semantic information about the association between
nouns and verbs. Sometimes they function as case endings with
a usual occurrence after nominals. Prepositions and prefixes are
unattested in the language. Case suffixes in nouns influence the
grammatical relation between words in a sentence which is a
common feature to all Dravidian languages. The first report-
ed work in Malayalam was Vasisth, which was a multilingual
system for anaphora resolution primarily focussed on Malay-
alam and Hindi [79]. It used limited parsing where the parser
required limited information such as POS, clause identification
and subject of the clauses. The system could resolve all the ref-
erentially dependent elements. The second and the next report-
ed work in Malayalam Anaphora Resolution was from Athira
et al. in 2014 [91]. They proposed an algorithm to resolve
the pronominal anaphora in Malayalam text using a hybrid ap-
proach. The system computed the salience value for each pos-
sible candidate and returned the one with the highest salience
score. The system was evaluated using precision and recall
measures with satisfactory results.

2.5 Summary of the chapter

Literature survey has enabled us to survey a wide variety of
techniques available for various NLP tasks in low-resource lan-
guages. In Indian languages, the non availability of efficient
computational tools such as POS tagger, NE tagger, etc. have
adversely affected NLP operations. Complex nature of the lan-
guages is also a problem in most of the cases. Among the In-
dian languages, Hindi stands first in terms of the number of

36 Literature Survey

works and available linguistic tools. The most number of public
datasets for various language processing tasks are also available
in Hindi. Tamil takes second place in this context.

Various techniques available for POS tagging in different In-
dian languages are studied in detail. Also, studies were carried
out in Europian languages like English and French. The shift
of technology from rule-based systems to deep learning based
technology is also observed. Currently, there are very few deep
learning based systems available for POS tagging in Dravidian
languages. In the preliminary analysis, various mechanisms ap-
plied to improve the accuracy of POS tagging were explored.
Later, the focus was shifted to the effective representation of
words in agglutinative languages. Combinations of different
word-level and contextual level features were carried out to im-
prove the POS tagging accuracy in various languages. Stud-
ies show that the features that are effective in one family of
languages may not be effective in another family of languages.
From this, we realized that the features must be selected based
on the characteristic features of individual languages.

In named entity recognition, the survey was more focussed
on the recent advancements in entity extraction. In the earli-
er days of entity recognition, more emphasis was given to the
methodology opted to solve the problem. Later, it was found
that the focus is shifted to the effective representation of words
concerning each language. With the introduction of deep learn-
ing technology, the performance of entity extraction systems
increased predominantly. The need for huge datasets was also
increased since the deep- learning-based systems demand large

Summary of the chapter 37

datasets to train and test. Studies were also carried out to in-
vestigate the impact of deep learning technology in Indian lan-
guage NER. It was found that the introduction of word embed-
ding and deep learning based technologies not only improved
the performance in Europian languages but also changed the
scenario in Indian languages. Our observation reveals the point
that ”still, there is a lot to do with Indian language NER”.

Studies were also carried out to analyse the progress of anapho-
ra resolution in Indian languages along with other family of lan-
guages. In Indian languages, only very few works were report-
ed in anaphora resolution and that too in limited datasets. Most
of the works were rule-based and language-specific, utilizing
the morphological features of the language. From the literature
survey, we understand that the task of anaphora resolution in
Indian languages is still in its infancy.

3
System Architecture

This chapter describes the architecture of the proposed system.
The main goal of this research work is to resolve the pronom-
inal anaphors present in Malayalam text. Different words that
help in resolving the antecedents of anaphors are analyzed in
detail. In order to form the list of possible candidates for each
anaphor, a detailed study regarding the nouns in preceding sen-
tences is also conducted. A combination of rule-based and ma-
chine learning based algorithms constitutes the complete solu-
tion.

Section 3.1 of this chapter gives a brief introduction about
the methodology opted to solve the problem. The necessity of
such a system for anaphora resolution in Malayalam is also
discussed here. Section 3.2 presents a detailed architecture of
the proposed system. Furthermore, each module included in
the overall architecture is discussed in detail. Section 3.3 briefs
about the metrics used to evaluate the performance of the pro-
posed system. Finally, the chapter is concluded in section 3.4,
with an overall summary of the chapter.

39

40 System Architecture

3.1 Introduction

The methodology proposed for the resolution of pronominal
anaphors is addressed in this chapter. Since there is no pub-
licly available system for anaphora resolution in Malayalam,
the need for such a system is one of the demanding areas of
research in the NLP community. In an anaphora resolution
(AR) system, identifying and selecting the proper antecedent
for each anaphoric expression is a challenging task. The ap-
propriate candidate for each anaphor depends on many factors,
including the type of anaphor, nature of the text, the context of
the anaphor, etc. The focus of this research is on the resolution
of pronominal anaphors (the most frequent type of anaphors)
present in Malayalam text.

Anaphora resolution is the process of finding the correct an-
tecedent of an anaphor from the set of all possible antecedents.
It is a complex problem in NLP, which is yet to be explored in
its required dimension. Many definitions have been given to the
problem by different researchers in the field. According to Hal-
liday and Hassan, anaphora is ”the cohesion which points back
to some previous item” [92]. As reported by Hirst, ”anaphora
is a device for making an abbreviated reference to some enti-
ty in the expectation that the receiver of the discourse will be
able to dis-abbreviate the reference and, thereby, determine the
identity of the entity” [93]. AR is required in information ex-
traction systems to summarize a document or to find the answer
to a question. A large amount of text data are available on-
line in Malayalam. Proper understanding of such data demands
anaphora resolution. Hence, anaphora resolution is an area of

System Overview 41

research holding social relevance.

Natural languages across the globe may not be similar. The
structure and syntax of one language may not be the same as
that of the other language. Moreover, anaphora resolution is
a difficult task that demands proficiency in various domains of
language processing, such as syntax analysis, semantic anal-
ysis, discourse analysis, etc. In this study, the resolution of
pronominal anaphors present in Malayalam text document is
considered. As far as Malayalam is concerned, the key chal-
lenges associated with anaphora resolution are

• Lack of standard preprocessing tools

• Lack of standard datasets

• Inflectionally rich nature of the language

• Free word ordering nature of the language

• Influence of case information

• Nonuniform encoding formats, etc.

3.2 System Overview

Figure 3.1 illustrates the general architecture of the proposed
system. The main steps involved in the development of the pro-
posed anaphora resolution system are as follows.

• Preprocessing

42 System Architecture

• POS tagging

• Named Entity Recognition

• Deep level tagging

• Anaphora resolution

In the proposed system, the major objective is to improve
the performance of pronominal anaphora resolution system in
Malayalam, by incorporating syntactic, semantic and discourse
level information. The language level features considered for
this task are the POS tag information, entity tag information,
number and gender information, case information, etc. The pro-
posed architecture mainly include different subtasks, namely-
preprocessing, POS tagging, Named Entity Recognition, Deep
level tagging and anaphora resolution.

Preprocessing is the first phase of the architecture, which
brings the input text into a form that can be easily handled by
the machines (algorithms). The amount of preprocessing re-
quired for one task may not be the same for another task. There-
fore it can be said that ”text preprocessing is not directly trans-
ferable across various tasks”. In the current work, it has been
limited to noise removal, sentence segmentation and word to-
kenization. Noise removal is the process of removing unnec-
essary symbols/characters, that can interfere with the text data.
Sentence segmentation operations carry out the task of separat-
ing the sentences and word tokenization carries out the task of
separating the words in a text document.

The POS tagging phase involves identifying the grammat-

System Overview 43

Figure 3.1: General architecture of the proposed system

ical category of each word in a text document. In order to
identify the POS tag information for words, approaches such
as CRFs, neural networks and deep neural networks were ap-
plied. A combination of word-level, subword-level and charac-

44 System Architecture

ter level features were employed to improve the tagging perfor-
mance. Tagging model with maximum performance constituted
the POS tagging module of the architecture.

The named entity recognition phase recognizes the named
entities present in the POS-tagged text. It is the process of iden-
tifying the named entity mentions present in a natural language
text. The POS tag information carried from the POS tagging
phase act as additional information (feature) towards entity ex-
traction. Here also, different techniques like neural networks,
CRFs and deep neural networks were used to develop the enti-
ty tagger. Effect of various features like word-level, subword-
level, character-level and POS tag information on the perfor-
mance of the entity recognition task was experimented. The
model with maximum performance constituted the entity tag-
ging module of the architecture.

Although the entity extraction phase can give information
about the named entities present in a text document, no seman-
tic information like Person, Number and Gender is available
at that phase. Deep level tagging, which identifies the number
and gender information of person entities, can help in this re-
gard. In order to extract the number and gender information of
person entities, various classification techniques such as Naive
Bayes, kNN, SVM, Random forest, MLP, etc. were employed.
A combination of morphological features was applied to im-
prove the classification accuracy. The classifier with maximum
performance constituted the deep level tagging module of the
architecture.

The anaphora resolution phase identifies the actual antecedents

Performance Evaluation 45

corresponding to each anaphor present in the text. Deep level
tagged text from the previous phase is the input of the anaphora
resolution phase. Here the main focus is given to two things,
namely-extraction of potential candidates and selecting the best
candidate corresponding to each anaphor. The potential candi-
dates are shortlisted based on the number and gender agreement
with the anaphor. The selection of the best candidate is carried
out using an algorithm which effectively utilizes the linguistic
properties of Malayalam language.

3.3 Performance Evaluation

Selection of proper evaluation metrics is very important in an-
alyzing the performance of the proposed system. Various eval-
uation measures such as accuracy, precision, recall, F-score,
ROC-curve, etc. were used for evaluating the performance of
various modules of the proposed architecture [94]. Accuracy is
the most commonly used evaluation metric to measure the per-
formance of any machine learning model. It is the ratio of the
number of accurate predictions to the total number of predic-
tions. However, it fails in situations where there are class im-
balance problems in the dataset. The real problem in sticking to
the accuracy measure alone is that the rate of misclassification
in minor class (class with less training samples) is not well pro-
jected. Hence, it was decided to go for other measures such as
precision, recall, F-score, ROC curve, etc.

Precision-a measure of exactness gives an indication about
the correctness of a classifier. It is the ratio of correct positive

46 System Architecture

data points to the data points that are classified as positive. Pre-
cision gives an idea about the ability of a model to identify only
the relevant data points. It is also called as positive predictive
value of a classifier/algorithm. It is calculated as given in equa-
tion 3.1.

Precision =
True positives

True positives + False positives
(3.1)

Recall-a measure of completeness in any classification prob-
lem. It is the ratio of correct positive data points to the data
points that should have been identified as positive. It is also
called as sensitivity or true positive rate of a classifier [95]. Re-
call gives an idea about the ability of a model to find all relevant
cases within a set of data points. The recall is calculated as giv-
en in equation 3.2.

Recall =
True positives

True positives + False negatives
(3.2)

F-score, measure used to find the balance between precision
and recall gives the correct indication about a model’s perfor-
mance. It is the harmonic mean between precision and recall.
F-score can give true information regarding the preciseness and
robustness of a machine learning model. It can be used in sit-
uations where there are uneven class distributions within the
dataset. F-score is calculated as in equation 3.3.

F− score = 2∗ Precision*Recall
Precision+Recall

(3.3)

Summary of the chapter 47

ROC curve (Receiver Operating Characteristic curve) is a
probability curve used to measure the performance of a ma-
chine learning model. It is a plot between the true positive
rate and false positive rate of a classifier. Here, FPR represents
the X-axis and TPR represents the Y-axis. The area under the
ROC curve (AUC-ROC) represents the degree of separability
between different classes of a classifier. It is a measure indi-
cating how well we can distinguish between various classes of
a classifier. An excellent machine learning model has an AUC-
score near to one, whereas a poor model has an AUC-score near
to zero.

3.4 Summary of the chapter

This chapter puts forward a novel architecture towards pronom-
inal anaphora resolution in Malayalam. The need for such a sys-
tem for Malayalam NLP is also detailed. Various modules and
their functions in the system architecture are briefly discussed.

4
POS tagging

This chapter describes novel approaches towards parts of speech
tagging in Malayalam. Parts of speech tagging is the process of
assigning lexical class markers to each and every term in a text
document. It is also called as grammatical tagging since it finds
the grammatical category of words in a document. Different
approaches like HMM, CRF, neural networks, and deep neu-
ral networks are experimented. The performance of different
tagging algorithms are computed and compared with the exist-
ing systems. Different features that could improve the accuracy
of tagging are also considered and analyzed. Experiments are
conducted to find the impact of word embeddings for the task of
POS tagging.

Section 4.1 of this chapter gives a brief introduction about
POS tagging. Section 4.2 deals with the dataset preparation
for the same. A detailed description of the tagset used and the
method of preparation of dataset is also presented here. Sec-
tion 4.3 of this chapter introduces POS tagging using condi-
tional random fields. It also discusses the basic concepts of
conditional random fields. Section 4.4 discusses POS tagging
using neural networks. Results obtained by different tagging al-
gorithms on the same data set is also included in this section.

49

50 POS tagging

It also includes a comparison of the performance of the pro-
posed system with the existing methods. Section 4.5 proposes a
deep learning based POS tagging system for Malayalam. The
power of word embeddings for Malayalam POS tagging is also
demonstrated in this section. Finally, a brief overview of the
chapter is given in section 4.6.

4.1 Introduction

POS tagging is an important task in most of the NLP applica-
tions. It is the process of identifying the syntactic role of a word
in a phrase or sentence. POS tags can provide linguistic clues
about the word within the scope of a sentence. POS tagging
plays an important role in various stages of NLP, including syn-
tactic processing, semantic processing, pragmatic processing,
etc. They are also useful in distinguishing the sense of a word
in a document. Syntactic patterns of words can also be inferred
from POS tags. Despite of the several attempts made by dif-
ferent researchers, POS tagging in Malayalam still demands lot
of improvement. Resolving the ambiguities of words present in
a document is a challenging task [28]. In comparison with the
growth of POS tagging research in Europian languages, Malay-
alam is far behind in terms of the number and quality of works.
Lack of standard datasets, pre-processing tools and agglutina-
tive nature of the language are the various reasons for this state.

Dataset preparation 51

4.2 Dataset preparation

Lack of standard datasets is the curse of Indian languages. On-
ly very few datasets are publicly available for experimentation.
That too in limited quantity. Most of the digital content avail-
able in Indian languages do not have a standard encoding format
and font. Languages like English had come across a long way
in areas like character representation, character display, OCR
technology, etc. The focus of research in such languages have
shifted towards a semantic angle in the computing world. But
for languages like Malayalam, the focus of research is still in
standard dataset preparation, online spell checking, OCR tech-
nology, morphological word processing, etc. Lack of devel-
opment and implementation standards is another issue in Indi-
an language computing. BIS tagset is developed by the POS
tag standardization committee of the department of information
technology (DIT), NewDelhi, India is used in this work.

4.2.1 Data collection

As part of the dataset preparation, we have crawled lot of texts
from various online newspapers, story sites and literature. All
of them were converted into standard ’utf-8’ encoding format.
Useless symbols and abnormalities were removed using regular
expressions. A set of 28755 sentences were prepared in this
way and tagged with BIS tagset using the publicly available
IIIT-MK POS tagger. The major drawback associated with the
IIIT-MK POS tagger is its inadequate accuracy. It gives only a
real-time performance of about 75% in accuracy. Therefore we

52 POS tagging

decided to go for a POS tagger with improved performance.

4.2.2 Data annotation

The preprocessed tagged text is erroneous in nature since the
performance of the publicly available tagger is comparitively
less. Hence, it was decided to manually correct the tags. The
tagged text was formatted in such a way that each line contain
a word and its tag separated by a tab. A total of 287500 words
were aligned in this way. All these words were separated into 30
files such that each file contains around 1000 sentences. Each
file is distributed among the M. Tech students in our department
along with the description of how to identify and change the er-
roneous tags. The description contains details of BIS tagset
along with some real examples in Malayalam. Around one
month time is given to the students for manual tag correction.
After the manual tag correction phase, each file is collected and
integrated into a single document. The description of the BIS
tagset is given in table 4.1.

4.2.3 Data Evaluation

For evaluating the authenticity of the dataset, we have used
Fleiss Kappa coefficient as an evaluation metric. Fleiss Kap-
pa coefficient is a statistical measure which measures the inter-
rater agreement for categorical items [96]. Unlike Cohens Kap-
pa, Fleiss Kappa can be employed in situations where there are
more than two raters (labellers). The Fleiss kappa can be calcu-
lated as follows. P̄e and P̄ are calculated as given below.

Data Evaluation 53

Table 4.1: BIS Tagset and its Description

Tag Description Tag Description
N NN Common noun RB Adverb

N NNP Proper noun PSP Postposition
N NST Locative noun CC CCD Co-ordinator
V VM Main verb QT QTC Cardinals

V VM VF Finite verb QT QTO Ordinals
V VM VNF Non-finite verb RD RDF Foreign words
V VM VINF Infinite verb RD SYM Symbol

V VN Verbal noun RD PUNC Punctuation
V VAUX Auxiliary verb RD UNK Unknown

JJ Adjective RD ECH Echo words
DM DMD Deictic demonstrative RP INTF Intensifier particle
DM DMR Relative demonstrative RP NEG Negation particle
DM DMQ Wh-word(Demonstrative) QT QTF General quantifier
PR PRP Personal pronoun CC CCS Subordinator
PR PRF Reflexive pronoun CC CCS UT Quotative
PR PRL Relative pronoun RP RPD Default particle
PR PRC Reciprocal pronoun RP CL Classifier particle
PR PRQ Wh-word(Pronoun) RP INJ Interjection particle

k =
P̄− P̄e

1− P̄e
(4.1)

where 1− P̄e gives the degree of agreement that is attainable
above chance and P̄− P̄e gives the degree of the agreement ac-
tually obtained above chance.

P̄ =
1
N

N

∑
i=1

Pi (4.2)

P̄e =
k

∑
j=1

Pj
2 (4.3)

Pi =
1

n(n−1)

k

∑
j=1

ni j(ni j−1) (4.4)

Pj =
1

Nn

N

∑
i=1

ni j (4.5)

Here ’N’ is the total number of words that are given in com-
mon to all raters and ’K’ is the total number of tags considered

54 POS tagging

Table 4.2: Most common tags and their frequencies

Tag Frequency

N NN(Common noun) 112290
V VM VNF(Non finite verb) 31204

JJ(Adjective) 19897
V VM VF(Finite verbs) 16979

N NNP(Proper noun) 15071
V VAUX(Auxiliary verbs) 8891

RB(Adverb) 8364
QT QTF(Cardinals) 5983

DM DMD(Demonstrative) 5953
PSP(Postposition) 5039

for the study. ’n’ is the total number of raters participated in the
manual tagging process. The words are indexed i=1,2,3,...N and
tags are indexed j=1,2,....k. We could achieve an overall Kap-
pa score of 0.71, which shows a substantial agreement between
the different raters (labellers). Table 4.2 shows the statistics
of most frequent tags present in our corpus. The noun is the
most frequent tag in the training corpus. On the other hand,
’wh-word’ is the least frequent tag.

4.3 POS tagging using Conditional Random Fields

4.3.1 Introduction

Conditional random fields are probabilistic graphical models
for sequence labelling. They are often applied in areas like pat-
tern recognition and machine learning. In comparison with a
discrete classifier, CRFs are well known for its ability to take
context into account. But discrete classifiers predict outputs
based on the current sample without considering the neighbour-

Architecture 55

ing samples. CRFs are capable of predicting multiple variables
that are mutually dependent. In our experiments, we have used
linear chain CRF which predict the sequence of tags for the
sequence of words. CRF is a type of undirected probabilistic
graphical model used to encode known relationships between
hidden variables and observations. CRFs are suitable for appli-
cations like POS tagging, named entity recognition, gene find-
ing, etc. Graphical representation of CRF is shown in Figure
4.1.

Figure 4.1: Graphical representation of CRF

4.3.2 Architecture

The CRF based system generally consists of a training phase
and a testing phase. The architecture of the proposed system is
given in Figure 4.2.

The architecture mainly consists of two phases- training phase
and testing phase. The first phase is the training phase which
takes the tagged text as input and build the model. First of all
the tagged text is provided to a preprocessing module which
takes the tagged text as input and transforms into a sequence

56 POS tagging

Figure 4.2: General architecture of the proposed system

Figure 4.3: Sample text showing the input and output of the preprocessing phase

of words and sequence of tags. A sample text showing the in-
put and output of the preprocessing phase is given in figure 4.3.
Each word from the word sequence is sent through a feature
preparation module. The feature preparation module replaces
each word by a set of features corresponding to that word. Dif-
ferent features we have considered in our study are the word
itself, preceding words, succeeding words, suffixes of different
length, etc. A sample feature set for a simple sentence from the
training data is shown in figure 4.4.

The third module of the first phase is the training module,

Experiments and results 57

Figure 4.4: Sample feature set for a simple sentence from the training data

where the model parameters are fine-tuned. A python-based
implementation of CRF called ’pycrfsuite’ is used for training
[97]. After training, the model file is saved for later use. The
second phase of the architecture is the testing phase, where the
saved model is utilized for performance evaluation. Test sen-
tences are also converted into sequences of feature vectors us-
ing the same method employed in the training phase. Finally,
the feature sequences are provided to the saved model for tag
sequence prediction. The predicted sequence is aligned with
the input word sequence to produce the required output.

4.3.3 Experiments and results

The corpus prepared for the task was used for experimentation.
It contains words that are unique and ambiguous which makes
the tagging difficult. The noun is the most common tag present
in the training corpus. Preprocessed tagged text was used for
both training and testing. 80% of the total data was used for
training and rest for testing. The proposed system was trained
on 23,000 sentences and tested on 5750 sentences. The mod-
el parameters were tuned to produce maximum accuracy. The
coefficient of L1 penalty was set as ’1.0’ and L2 penalty as ’1e-
3’. Training was conducted for 50 epochs. The maximum ac-
curacy obtained by the system was 91.2%. Experiments were

58 POS tagging

also conducted to assess the performance of different existing
tagging algorithms on CUSAT corpus. Figure 4.6 shows the
performance of our algorithm, along with different existing al-
gorithms on CUSAT corpus. An example of the tagged Malay-
alam text generated using our tagger is also given in Figure 4.5.

Figure 4.5: An example of the tagged Malayalam text generated using CRF based
POS tagger

Figure 4.6: The performance of different tagging algorithms in comparison with
CRF

POS tagging using neural networks 59

4.4 POS tagging using neural networks

4.4.1 Introduction

Artificial neural networks are computing systems inspired by
the structure and function of biological neural networks which
constitute human brains. The key element in the architecture
of ANNs is the structure of the information processing system.
It is a framework for different machine learning algorithms to
process complex data. Neural networks usually learn from ex-
amples rather than being explicitly programmed. For classi-
fication problems, the characteristics of different classes are
automatically generated from the learning materials provided
to them. Basic units of artificial neural networks are neurons
which mimic the behaviour of biological neurons. The con-
nections between neurons are called edges. Learning is pro-
grammed through the adjustment of weights in these edges.
Neurons are set with a threshold and the aggregate signal pass-
es through them if it crosses that threshold. Typically ANNs
are constituted by a set of layers consisting of a set of neurons.
Each layer will perform different kinds of transformations on
the inputs received by them.

4.4.2 Architecture

In this section, we propose a methodology for POS tagging
through the application of Neural Networks. A Neural Network
contains three types of layers: the input layer, hidden layer, and
the output layer. Here the input features go through the hidden

60 POS tagging

layers to reach the cost function, which calculates the error be-
tween real value and the predicted value. Then backpropagation
algorithm is applied to minimize the error by finding the deriva-
tive of the cost function with respect to the network parameters.
After the error at the output layer is minimized, it is backpropa-
gated to previous layers for minimizing the hidden layer errors.
This process is repeated in all the layers. And this cycle is re-
peated until the difference between the predicted value and the
actual value is acceptable.

Since POS tagging can be considered as a classification task,
we used Neural Network as our classifier. Neural Networks are
potential tools in natural language processing. In neural net-
works, the number of hidden layers can be increased to the re-
quired level. The performance of the system gets improved with
more amount of data. They can model complex nonlinear rela-
tionships. Our architecture contains three main modules. First
is the representation module, which takes the input in some nu-
merical form. Since words are symbolic constituents, it cannot
be directly fed into neural networks. It should be converted into
some numeric form. We have used word2vec for this purpose.
The second module contains hidden layers. We conducted a lot
of experiments with different number of hidden layers of vari-
ous sizes. In our hidden layers, we have used ‘Relu’activation
units to introduce nonlinearity. ‘Relu’provides faster conver-
gence as compared with ‘tanh’and ‘sigmoid’. It also avoids the
vanishing gradient problem in backpropagation algorithms. It
is also known as a ramp function and is analogous to half-wave
rectification in electrical circuits. Figure 4.7 illustrates the val-
ues and computations of the ‘relu’function. The value of the

Architecture 61

Figure 4.7: ’Relu’ function illustration

‘relu’function for any input ‘x’is computed as in equation 4.6.

f (x) = max(0,x) (4.6)

The third module is the output layer, which makes predic-
tions. The output layers contain a set of softmax units. Soft-
max activations are used to represent the categorical distribu-
tion, a probability distribution over a set of different possible
outcomes. The value of the softmax function for any given in-
put y j is calculated as in equation 4.7.

f (y j) =
ey j

∑
K
k=1 eyk

(4.7)

The architecture of the proposed system is shown in Figure
4.8. The pre-processed tagged text was used for training. The
feature set for learning was selected based on the assumption
that the tag for a particular word is decided by the tags of con-
text words, morphological features of the target word and the
target word itself. Hence it was decided to experiment with a

62 POS tagging

set of eight features. The selected features for experiments were
word,word-1,word-2,word+1,word+2,tag-1,tag-2 and morpho-
logical information of the the target word. Words are sym-
bolic units which will make no sense to computers when giv-
en as raw words. Hence it was decided to convert words into
vectors which has some semantic meaning. Word embeddings
were used for this purpose. Word embedding models converted
words into vectors in a semantic space.

(a) Training module (b) Testing module

Figure 4.8: Architecture of the proposed system-training and testing modules

Word2Vec was used to convert words into vectors. Vectors
of different sizes were created for experiments. Morphological
features of the words are converted into vectors of numeric val-
ues using Word2Vec [98]. Tags of previous words were also
converted into a numeric vector using both Word2Vec and one
hot encoder. But later it was found that one hot encoding of
tags were more accurate than Word2Vec representation, since
tags were from a limited vocabulary of size 36. The vectors

Experiments and Results 63

of words, morphology, and tags were finally concatenated into
a single vector to provide as an input to neural networks. The
feature set for the first and second word in each sentence were
filled with dummy vectors of zeros to make the feature set uni-
form in length. Training was done using Keras functional API
model, and the model file was saved. Later on, this file was
used for testing.

During the testing phase, the preprocessed testing data was
fed to the feature extraction module, where the embedded rep-
resentation of the word, embedded representation of suffix, and
one hot representation of previous tags were extracted. For the
first two words in the sentence, the feature vector was filled with
necessary dummy values to make the feature vector uniform
in length. For the rest of the words in the sentence, the one-
hot representation of previous tags were provided dynamically
from the final layer. Then all the features were concatenated to
form the feature vector. Finally, the feature vector was provided
to the trained model for tag prediction.

4.4.3 Experiments and Results

To demonstrate the merits of the proposed system, CUSAT Malay-
alam POS tagged corpus was used to conduct the experiments.
Approximately 35% of the words were ambiguous, which made
the tagging problem a challenging one. The performance of the
tagger for different features and different network parameters
are discussed here. After the preprocessing phase, the data set
was divided into 80 % training and 20% validation sets. To
make our experiments more reliable, 10 fold cross-validation

64 POS tagging

was also performed on the training data.

The functional API of Keras was used for implementation
[99]. Functional model permits the addition of a linear stack of
layers for feature extraction and transformation. Training was
done after configuring the learning process, which was through
the compile method. The compile method had three parame-
ters, namely, optimizer, loss function, and metrics. SGD was
used as the optimizer and categorical cross-entropy as the loss
function. The tagging model is compiled using Tensorflow in
the backend.

The system was trained on 2,30,000 words and tested on
57000 words. The overall accuracy of the tagging is 90.02%.
The pre-processed tagged text was used for training. The de-
veloped model was a neural network with four layers. Setting
the model parameters is an important task in fine-tuning neural
networks. We empirically discovered that the best architecture
for our model is a four-layered architecture. The hidden lay-
ers contain 400 neurons with ‘relu’activation units. The output
layer contain a loss function called categorical cross entropy.
Through experiments, it was found that increasing the number
of layers beyond a limit cannot help in improving accuracy. A
network with two hidden layers was enough to represent the da-
ta. Network with more than two hidden layers did not improve
the accuracy but only delayed the convergence time. The size of
the hidden layers was also varied to fine tune the network. Size
of the first layer was fixed, as it depends on the input dimen-
sion. And the size of the last layer was also fixed as it depends
on the number of output classes. Hidden layers with a small

Experiments and Results 65

number of neurons were not enough to represent the data effi-
ciently, and a large number of neurons only increased the com-
putational complexity. According to the experiments, the best
performance of the network was achieved when the number of
neurons in the hidden layer was 400. A size of 200 was not
enough to represent the data, whereas a size of more than 400
could not improve the performance. Hence, the hidden layer
size was empirically finalized as 400.

The input given is a vector of features. This vector was
formed by the concatenation of vectors of tags, words and mor-
phological features. Constructing the optimal feature set was a
trial and error process. A set of 8 features were considered for
experiments. These features were the word, word morphology,
previous words, successive words and tag of previous words.
Each feature and its descriptions are given in table 4.3.

Table 4.3: Features and descriptions

Feature Description
w Target word

w−1 Previous word
w−2 The word before the previous word
w+1 Successive word
w+2 The word next to the successive word
t−1 Tag of previous word
t−2 Tag of the word before the previous word

Su f f ix Suffix of target word

Input vector for each target word was finalized as fi : [w,w−
morph, t − 1, t − 2], where fi is the concatenation of four fea-
ture vectors. Our goal was to find the most probable tag for the
word wi, where it was followed by two prior tags t-1 and t-2.
W-morph is a vector of morphological features of the word wi.

66 POS tagging

Words and morphological features were converted into vectors
using word2vec. Tags were converted into one hot vector. In
one hot representation, each tag will have a unique representa-
tion in terms of zeros and ones. The performance of the model
for different features is shown in table 4.4.

Table 4.4: Performance of the tagger for different features

Feature set Accuracy
W 72.5%

W,W-1 74.4%
W,W-1,W-2 79.2%

W,W+1 73.3%
W,W+1,W+2 73.8%

W,T-1 75.6%
W,T-1,T-2 80.1%

W,T-1,T-2,Suffix 90.02%
W,W+1,T-1,T-2,Suffix 90.01%

Word2vec model was built based on a manually created cor-
pus of 27 lakhs words. The model was constructed with a con-
text window size of 10 and a minimum count value of one. Dif-
ferent models were built with different vector sizes. Each of
them was used iteratively for training to find the one with the
best performance. In Word2Vec, we had used CBOW (contin-
uous bag of words) configuration. CBOW uses the mean of
context words. Embedding of morphological features was also
done using Word2Vec. The morphological features of words
were extracted using a suffix stripper. Each word from the
corpus was passed to the suffix stripper and the suffix strip-
per will search for the largest suffix matching with the set of
stored rules. If there is no match, the suffix of length five was
returned and if there is a match that matching suffix itself was
returned. So each word in the corpus was replaced by a suffix

Experiments and Results 67

from the rules dictionary or a suffix of length five of that partic-
ular word. A set of 340 suffix stripping rules were prepared for
this purpose. Then that corpus was trained using Word2Vec.
The feature set in the input layer had four sub-vectors(target
word, morphological representation of the target word, one hot
representation of the word-1 tag, one hot representation of the
word-2 tag).

During the experiments, it was found that the performance of
the model gets improved with the increase in word vector size.
Different results were explored with different embedding sizes
of 20,40,60,80,100,120 and 140. The performance of the model
improved until the word vector size reached 100. Beyond 100,
we could not see a gradual change in accuracy. Hence, word
vector size was finalized as 100. The performance of the model
for different features were also experimented. It was found that
the performance of the model was at its best when the number
of features was four[w,w-morph,t-1,t-2]. It was also seen that
the performance of the model increased along with the increase
in training data size. Figure 4.9 shows the performance of the
tagger for different amounts of training data. The performance
of the system can still be increased by increasing the training
data size.

68 POS tagging

Figure 4.9: Performance of neural tagger for different training data size

4.5 POS tagging using deep learning

4.5.1 Introduction

Deep learning is one of the main contributors to the advance-
ment of artificial intelligence in the current scenario. It is a
subfield of machine learning which deals with the algorithms
inspired by the structure and function of the human brain. The
peculiarity of the deep learning models is the presence of mul-
tiple hidden layers with each layer accepting information from
previous layers. Deep learning models can create complex sta-
tistical models from its own iterative output. Performance of
the deep learning models improves with the increase in data,
whereas the traditional machine learning models saturate after
a particular point. Another key difference between traditional
machine learning and deep learning models is on how feature
extraction works. In traditional machine learning, all the fea-
tures are hand-engineered. But in deep learning, the features
are extracted by the hidden layers themselves. No more hand-

Architecture 69

engineering is required in the case of deep neural networks. The
word ’deep’ in ’deep learning’ is inspired by the number of hid-
den layers.

4.5.2 Architecture

Our objective is to construct a POS tagger which tags all the
words in a sentence with corresponding POS tags. Even though
neural networks have shown their outstanding performance in
the last decade, they still have some limitation. They can’t
capture the contextual information, where the current input is
affected by its previous inputs. Moreover, they assume all its
inputs and outputs as independent of each other. If we want to
predict the next tag in a sequence, it is better to know which tags
came before it. Sequence to sequence tagging in deep learning
is a promising solution for that. As shown in Figure 4.10, se-
quence to sequence learning problems optimizes the output se-
quence corresponding to the input sequence [100]. Deep neu-
ral networks are exceptionally powerful tools for the sequence
to sequence learning. They are characterized by hierarchical
feature learning, where each layer creates the abstract repre-
sentation of its lower layer features. They can learn complex
functions that can map the input to output directly.They can al-
so perform parallel computation for an unassuming number of
steps. Figure 4.11 shows the block diagram of our architecture.

In Malayalam, new words are formed by adding suffixes to
words one after another. These suffixes may either carry gram-
matical functions or help in forming new nouns or verbs. And

70 POS tagging

Figure 4.10: ‘XYZ’is the input sequence and ‘PQR’is the output sequence

there is no restriction on the degree and extent of agglutination
in Malayalam language. Hence, it is not advisable to consider
a full word as a processing unit. Unfortunately, there is no reli-
able and publicly available stemmer (or lemmatizer) for Malay-
alam language. Therefore, we decided to go with a word as a
unit of consideration. Using the word level embedding features
alone seems to be insufficient for POS tagging in inflectionally
rich languages. Hence, to achieve additional improvement in
performance, we added suffix level embedding features along
with word-level embedding features.

In the following sections, the major focus is on present-
ing a novel word representation by combining character level,
word level and suffix level features(embeddings) as shown in
figure 4.12.

4.5.2.1 CNN-based character-level word representation

The first successful work on character-based compositional word
embedding was proposed by Dos Santos and Zadrozny in 2014
[101]. They used convolutional neural networks to constitute
word vectors from character embeddings encoded by column
vectors in an embedding matrix. The character-based word em-
bedding vector that we have used is similar to [102], where

Architecture 71

Figure 4.11: General system architecture

convolutional filters of different sizes are applied to capture the
character n-gram features. The concatenated output of differ-
ent convolutional filters through max-pooling layer act as the
character based word embedding vector. Figure 4.13 shows the
architecture of the character based word embedding model.

Given a word ’w’ composed of ’m’ characters c1,c2,c3, ...cm,
where ci ∈Vc is the character vocabulary set. Let C1,C2,C3, ...Cm

be the character embedding vectors that encode the characters
c1,c2,c3, ...cm present in a word ’w’. The character embeddings

72 POS tagging

Figure 4.12: Generalized word representation

are obtained by matrix-vector product as given in equation 5.4.

C1 =WcVc (4.8)

Where Wc is the embedding matrix, Wc ∈ Rdc ∗ |Vc| and Vc is the
one-hot vector representation of a particular character. Hence,
each word is transformed into a sequence of character embed-
dings C1,C2,C3, ...Cm. We apply convolutional kernels to each
of the sliding context window of size ’k’. The resulting vectors
are passed through a max-pooling layer to generate the maxi-
mum value. We then concatenate these vectors from different
convolutional kernels to produce the required word embedding
vectors. These vectors are expected to capture information from
different n-grams of the same word.

Formally, the character level embedding of each word ’w’ is
calculated as follows,

Vc = max
1<i<m

[WconvZm +bconv] (4.9)

Where Wconv and bconv are parameters of the model and Zm is
the concatenation of character embeddings expressed as

Zm =

(
Cm−(k−1)/2,,Cm+(k−1)/2

)
(4.10)

The convolution operation is applied to find the simple patterns
of embedding vectors of different n-grams over the character

Architecture 73

Figure 4.13: Architecture of the character based word composition model

sequence. Among different n-grams the following maxpooling
layer try to extract position invariant n-gram features. There-
fore, the character-based word composition model is expected
to detect unvarying local spelling features from the character
sequence.

74 POS tagging

4.5.2.2 W2V-based pre-trained word representation

Word embeddings are proven tools for capturing the context of
a word along with its syntactic and semantic similarities in vec-
tor representation. They can also model the relation with other
words in a corpus. They are created by applying a large col-
lection of unlabelled text over shallow neural networks. In our
study, we used Word2vec to create pre-trained word embed-
dings. Word2vec is the most popular tool for creating the word
embeddings. It was developed by Tomas Mikolov and team at
Google in 2013.

4.5.2.3 W2V-based pre-trained suffix representation

Embedding of morphological features was done using word2vec.
The suffix level features of words were extracted using a suffix
stripper and those features were used to create embedding vec-
tors. Instead of using sentences of words, here we used sen-
tences of suffixes returned by the suffix stripper. Later that
corpus was used for building suffix embedding of the desired
size using Word2Vec. Everything else remained the same as
the Word2Vec based word representation model.

Formally, assume the given Malayalam sentence S[1:n] is a
sequence of n words, where ‘n’is the maximum length of the
sentence. In our case, it was limited it to 30 for the ease of
computation. Each word ‘w′i in the sentence was converted in-
to a composition of vectors corresponding to that word. These
vectors included character level word composition vector, pre-

Architecture 75

trained word embedding vector and suffix embedding vector.
Hence each word in the sentence was replaced by a vector of
d-dimension, where d = dc+dw+ds such that dc = dimension-
ality of character level word embedding, dw = dimensionality of
pre-trained word embedding and ds = dimensionality of suffix
embedding. Equations 4.11 and 4.12 shows the mathematical
representation of a single sentence.

S = [w1,w2,w3,w4,wn] (4.11)

S = [[vc1,vc2,vc3.....vcp,vw1,vw2,vw3.....vwq,vs1,vs2,vs3.....vsr],

[vc1,vc2,vc3.....vcp,vw1,vw2,vw3.....vwq,vs1,vs2,vs3.....vsr],]

(4.12)

where vc1,vc2,vc3.....vcp corresponds to character based word
vector, vw1,vw2,vw3.....vwq corresponds to pretrained word vec-
tor and vs1,vs2,vs3.....vsr corresponds to suffix embedding vec-
tor. Equation 4.12 shows the complete representation of an
input sentence to Bi-LTM-CRF tagger.

Figure 4.14 demonstrates the complete architecture of our
model. The model accepts sequences of length ’n’. ’We’ and
’Se’ are word embedding and suffix embedding respectively,
where ’We’ is the concatenation of pre-trained word embedding
and character-based word embedding. P0, P1, P2, etc. are the
emission scores coming from the Bi-LSTM layer. Each of them
indicates the probability of a particular tag for a particular word.
Hence, ’m’ corresponds to the maximum number of tags in the
tag set. Final predictions are made by the CRF layer based on

76 POS tagging

Figure 4.14: Architecture of the of Bi-LSTM model with CRF output layer

these probabilities.

Keras functional API was used to build the sequence to se-
quence learning model. In sequence to sequence learning, two
recurrent neural networks work together convert one sequence
to another. First one is known as the encoder network and the
second one is called as the decoder network. The encoder net-
work condenses the input sequence into a vector and the de-
coder network unfolds the encoded vector into a new sequence.
This point is illustrated in Figure 4.16.

Bi-LSTM with CRF on top was used to map the input se-

Architecture 77

Figure 4.15: Bi-LSTM layer architecture

quence to output sequence. LSTM is a variant of RNN and free
from long term dependency problem. Their default behaviour
is to remember information for intervals of time. RNNs are
capable of using contextual information in sequence prediction
problems. But the range of context is limited, which is the ma-
jor drawback of RNN. LSTMs overcomes this problem using
a set of gates, namely input gate, output gate and forget gate.
RNNs and LSTMs can preserve information only in one di-
rection. Bi-LSTM is a bidirectional variant of LSTM that can
preserve the information from both the directions. Figure 4.15
shows the architecture of a single Bi-LSTM layer. The forward
function of LSTM is calculated using the equations 4.13 and
4.14.

at
h =

K

∑
k=1

yt
kWkh +

H

∑
h′=1,t>0

bt−1
h′ Wh′h (4.13)

78 POS tagging

Figure 4.16: Encoding and Decoding of sequences by LSTM

bt
h = Θh(at

h) (4.14)

Where yt is a sequence input, at is the input to the LSTM
unit h at time t, bh is the activation function at time t, wkh is
the weight of the input k towards h. whh’ is the weight between
the hidden layers h and h’ While the backward function of Bi-
LSTM is calculated by the equations 4.15 and 4.16.

δO
δWhl

=

(
T

∑
t=1

δO
δat

h
bt

h

)
(4.15)

δO
δat

h
= Θh(at

h)

(
L

∑
l=1

δO
δat

h
Whl +

H

∑
h′=1,t>0

δO
δat+1

h′
Whh′

)
(4.16)

The shaded nodes in figure 4.17 indicate LSTM sensitivity to
the input at time one. The black nodes are highly sensitive and
white nodes are completely insensitive. The states of different

Architecture 79

gates are displayed to the below, left and right of the hidden lay-
er. All gates are either completely open or closed. The memory
cell can retain the information about the first input as long as the
forget gate is open and the input gate is closed. The sensitivity
of the output layer is controlled by output gates. LSTM tries
to find the conditional probability P(y1,y2, . . . ,yT |x1,x2, . . . ,xT)
as given in equation 4.17, where (x1,x2, . . . ,xT) is the input se-
quence and (y1,y2, . . . ,yT) is the output sequence.

p(y1,y2, . . . ,yT |x1,x2, . . .xT) =
T

∏
t=1

P(yt |v,y1,y2, . . . ,yt−1)

(4.17)

Figure 4.17: Preservation of gradient information by LSTM

A CRF layer was used to make the final predictions, given
the probabilities for various tags for each word. CRF layer is ca-
pable of incorporating some additional constraints to the prob-
abilities generated by the Bi-LSTM layers. These constraints
are automatically learned by the CRF layer from the training
data. Thereby the CRF layer ensures the validity of generat-
ed tag sequence. The CRF layer consider two types of scores

80 POS tagging

namely-emission score and transition score. Emission score is
the probability values coming from the BiLSTM layers and the
transition score is taken from a probability matrix stored in CRF
layer, which indicate the transition probability among different
tags. The summation of these two scores was used in the cal-
culation of path scores of different sentences. The way of cal-
culating the path score for a sentence of length five is shown in
equations 4.18, 4.19 and 4.20.

EmissionScore = x0,START + x1,Noun + x2,Demonstrative

+x3,LocativeNoun + x4,FiniteVerb + x5,Punctuation + x6,END
(4.18)

TransitionScore = tSTART−>Noun + tNoun−>Demonstrative+

tDemonstrative−>LocativeNoun + tLocativeNoun−>FiniteVerb

+tFiniteVerb−>Punctuation + tPunctuation−>END
(4.19)

PathScore = EmissionScore+TransitionScore (4.20)

Here ′x′0 and ′x′6 are the start and end markers which will be
considered for all the sentences. The loss function calculates
the real path score and the total score for all possible paths in
the label sequences. Real path score is the score of the correct
label sequence, and the total score is the sum of all possible path
scores for a particular sequence. During the training process,
the parameters of BiLSTM-CRF model will be updated again
and again as in equation 4.21.

Experiments and Results 81

LossFunction =
PRealPath

P1 +P2 ++PN
(4.21)

The proposed network contains three parts. First one is the
input module, which receives the embedded representation of
words and suffixes. The second one is constituted by a set of
hidden layers. Hidden layers are BiLSTM layers with ’tanh’
activation. The calculation of ’tanh’ value for a particular input
’y’ is shown in equation 5.9.

tanh(y) = (2σ(2y)−1),where

σ(2y) =
e2y

(1+ e2y)

(4.22)

The last layer of the architecture is the output layer. CRF
was used for decoding in the output layer. CRF finds the best
tag sequence corresponding to the word sequence. Dropout was
used to prevent overfitting, which avoids complex co-adaptations
on training data [103].

4.5.3 Experiments and Results

The preprocessed tagged text was converted into a sequence
of words and sequence of their corresponding tags. For exam-
ple, a tagged sentence like ”Raju\NNP met\VB Raman\NNP
.\RD PUNC” was converted into ”Raju met Raman .” and ”NNP
VB NNP RD PUNC”. Since words can’t be directly fed to
neural networks, they were converted to numeric values using
Word2vec. The Word2vec model was constructed using our

82 POS tagging

own corpus of 2.7 million words. The context window size was
set as 6, and the minimum count was set to one. To evaluate
the performance of the proposed deep neural network on dif-
ferent vector sizes, we constructed different Word2vec models
with different vector sizes. CBOW configuration was used to
create the models, which used the mean of context words. Out
of vocabulary words were handled using an Unknown token.
Word2vec was also used to embed the morphological features.
In this case, each word in the training corpus was either replaced
by the morphological feature of the word or part of the word it-
self. The morphological features of words were extracted using
a suffix stripper which searched for the largest suffix matching
with a set of stored rules. It there is a match that matching suffix
was returned else a suffix of length five was returned. Hence,
each word in the corpus was replaced by a suffix from the rules
dictionary or a suffix of length five of that particular word. A
set of 340 suffix stripping rules were prepared for this purpose.
Some of the stored rules are given in Figure 4.18. Finally, that
corpus was used for building the suffix embedding features.

Figure 4.18: Examples of rules used to extract the suffix

Different sentences may have a different length. But Bi-
LSTM network requires sequences of uniform length. Hence,
zero padding was applied to make the sequence length uniform.

Experiments and Results 83

Sentences with less number of words were padded with zeros
to make their length compatible with the maximum length se-
quence. In experiments, the sequence length was limited to 30
for the ease of computation. After that, tag sequences were re-
placed by integer sequences such that each tag was assigned
with a unique integer. These numbers were transformed into
one hot vector to make the network understand the data.

Keras functional API was used to implement the network.
The network was a stack of layers which performs feature ex-
traction and transformation. Information about the shape was
provided in the first layer and rest of the layers did automatic
inference about the shape. Fully connected network with two
Bi-LSTM and one CRF layers constituted the model. ’Adam’
was used as the optimizer and ’categorical cross entropy’ as the
loss function. The model was compiled using Tensor flow in the
backend. Batch size was fixed as 100. The network was trained
for 10 epochs. 80% of the total data was used for training and
the rest of the data was used for testing. The proposed system
achieves an overall accuracy of 94.33%.

4.5.3.1 Impact of network parameters

Parameter setting is the most challenging part when working
with neural networks. We empirically discovered that the best
architecture for our network is a four-layered architecture. The
first layer was the input layer which recieves the input word
representations. The input shape was also specified in the first
layer. The second layer was a Bi-LSTM layer with 400 neu-
rons and ‘tanh’ activation. The third layer was also a Bi-LSTM

84 POS tagging

layer with 400 neurons and ‘tanh’ activation. The return se-
quences argument must be set to true in all Bi-LSTM layers so
that the successive layers has a three-dimensional sequence in-
put. The last layer was the output layer which makes the predic-
tions. CRF layer was used to make final predictions. A network
with more than two hidden layers was not able to improve the
precision and only delayed the convergence time.

The size of the hidden layers was also a vital element in set-
ting the network parameters. Bi-LSTM layers with less number
of neurons could not represent the data efficiently, and a very
large number of neurons only increased the computational com-
plexity. According to the experiments conducted, the network
performs well, when the number of units in the hidden layer was
moderate. A size of 150 was not enough to represent the data,
whereas a layer with more than 400 units did not improve the
performance. Hence the hidden layer size was experimental-
ly finalized to 400. Adam, an extension to stochastic gradient
descent was used to minimize the cost function over training
data. Batch size was fixed at 16 and learning rate was initial-
ized to 0.0001. The remaining set of hyperparameters for our
experiments were fine-tuned as follows: the dimensionality of
character-based word embedding and pre-trained word embed-
ding was set to 100 and the dimensionality of suffix embedding
was fixed to 50.

4.5.3.2 Impact of word embedding size

The effect of different word embedding size on the performance
of the deep neural network was also investigated. Experiments

Experiments and Results 85

were conducted to evaluate the performance of the network for
different word embedding sizes such as 40, 60, 80, 100, 120
and 140. We could see a gradual improvement in accuracy until
the word vector size reaches 100. Beyond 100, there was no
considerable change in performance. This point is illustrated in
Figure 4.19.

Figure 4.19: Performance of the system for different pre-trained word embedding
sizes

4.5.3.3 Impact of suffix embedding features

Effective utilization of suffix level features can improve the
performance of the tagger in morphologically rich languages.
Since Malayalam is a morphologically rich language use of
such features was very helpful in improving the accuracy. The
performance of the proposed system in the presence and ab-
sence of suffix embedding were evaluated. Figure 4.20 illus-

86 POS tagging

trates this point. Here ’A’ is the accuracy of the tagger in the
absence of morphological features and ’B’ is the accuracy of
the tagger in the presence of suffix embedding features. An
improvement of 0.8% was obtained by incorporating suffix em-
bedding along with word embedding features. An example of
the tagged text in the presence and absence of suffix embedding
is given in Figure 4.21. Here the correct tag for the second word
is ’V VM VNF’, which was generated only after incorporating
the morphological embedding.

Figure 4.20: Performance of the model with and without the presence of suffix em-
bedding

Figure 4.21: Example of the tagged text with and without the presence of suffix
embedding

Summary of the chapter 87

4.5.3.4 Comparison with the existing systems

Even though various works were reported for POS tagging in
Malayalam, none of them is publicly available as a tool except
the one from IIITMK, Trivandrum [104]. To compare the per-
formance of the proposed system with different existing meth-
ods, most of them were simulated using scikit-learn and NLTK
libraries. They include SVM, HMM, Unigram, Bigram and
Hunpose. HMM-tagger is implemented using the NLTK im-
plementation available in [105]. The HMM tagger obtained an
accuracy of 72.02% on experiment dataset. Among the avail-
able systems, the best results were produced by the CRF based
POS tagger, which was our previous work [106]. CRF tags with
an accuracy of 91.2%. Hunpose, an open source POS tagger
well suited for morphologically rich languages performed with
an accuracy of 84% [107]. But the proposed system outper-
formed the existing systems by a minimum margin of 3.13%.
A comparison of their performances on the experiment dataset
is given in Figure 4.22.

4.6 Summary of the chapter

This chapter discusses the preparation of a POS tagged corpus
and three different POS tagging mechanisms for Malayalam.
The preparation and validation of dataset are discussed in de-
tail. The proposed algorithms were tested on the constructed
dataset. Experiments were conducted to evaluate the perfor-
mance of different tagging algorithms on our dataset. The pow-
er of word embeddings is also utilized in the study with the

88 POS tagging

Figure 4.22: Accuracy of different tagging algorithms over CUSAT corpus

help of Word2vec. The proposed work is one of the prelim-
inary studies in Malayalam NLP, which utilizes the power of
word embeddings. Deep learning techniques were explored in
the study with the help of Keras neural network API. Morpho-
logical features of the language were utilized in the study with
the help of suffix stripping algorithms. The use of suffix embed-
dings, along with word embedding features, resulted in a signif-
icant improvement in performance. During the training phase
of all the algorithms, it was observed that the performance of the
models increases with the increase in training data size. Hence,
it is better to increase the size of the training data for more im-
proved performance.

5
Named Entity Recognition

This chapter describes different schemes used for NER in Malay-
alam. NER is the process of identifying the basic units (words)
in a text document and classifying them to predefined categories
such as person, location, organization, etc. It is also known
as entity identification since it locates and classifies the enti-
ties mentioned in an unstructured text. It is a subtask of in-
formation extraction that finds important application in content
recommendation and customer support based systems. Due to
the lack of publicly available datasets, a dataset for NER in
Malayalam is prepared. Different methodologies like CRF, neu-
ral networks, deep neural networks, etc. are experimented on
the dataset. A comparative study regarding the performance
of different entity tagging algorithms on Malayalam language
is conducted. Different features that affect the performance of
entity recognition in Malayalam are also experimented.

Section 5.1 of this chapter gives a brief introduction about
named entity recognition. Section 5.2 discusses dataset prepa-
ration. It also discusses the details about the shared data set
that we received as part of the shared data competition. Sec-
tion 5.3 of this chapter describes named entity recognition us-
ing neural networks. Section 5.4 gives a detailed description

89

90 Named Entity Recognition

of NER using Conditional Random Fields. Section 5.5 presents
the application of deep learning techniques for NER in Malay-
alam. A comparative study regarding the performance of differ-
ent sequence labelling algorithms on NER in Malayalam is also
presented in that section. The chapter is concluded in section
5.6 with a brief overview of the summary.

5.1 Introduction

Named entity recognition is an important technique to extract
meaningful information from unstructured text. Named enti-
ties are often more informative and have unique contexts. They
add semantic knowledge to the text and helps to properly un-
derstand the subject of a given document. Entity recognition
systems can automatically scan the complete article and iden-
tify which are the important people, places and organizations
discussed in them. Knowing the relevant tags for articles, helps
in the automatic categorization of articles and smooth content
discovery. NER can also be used in customer support depart-
ments of electronic shops where the customer’s feedbacks go
through the entity recognition API to find out the relevant tags
from the feedback. These tags can be used to categorize the
complaint and allocate it to the concerned department within
the organization.

Lots of challenges are there in building an automatic enti-
ty recognition system for Malayalam. First one is the lack of
capitalization feature, which is one of the major feature used
in languages like English. Inflectional nature of the language

Dataset preparation 91

is the second biggest challenge which allows the appearance of
the same word in different forms. Lack of resources like stan-
dard datasets, POS taggers, morphological analyzers, etc. are
also a barrier for creating a named entity recognition system for
Malayalam.

5.2 Dataset preparation

Since no standard dataset was available for entity recognition
task in Malayalam, a dataset that considered mainly three types
of entities-namely person, location and organization was pre-
pared. The POS tagged corpus developed as part of our POS
tagging works was also used to create the NER corpus. A set
of 204080 words from the POS tagged corpus were tagged us-
ing BIO (Begin, Inside, Outside) tagging scheme. A sample
text tagged using the BIO tagging scheme is shown in Figure
5.1. The authenticity of the prepared dataset was evaluated us-
ing the Fleiss kappa coefficient, as mentioned in the previous
chapter. An overall Kappa score of 0.81 was achieved for the
entity tagged corpus. The statistics of the different tags in the
tagged corpus is given in table 5.1.

Later, a dataset for entity recognition was recieved through
the participation in IECSIL-2018, a track in FIRE-2018 [108].
IECSIL-2018 was a shared data challenge organized by ARNEKT
solutions in association with FIRE-2018 [109]. The dataset
contained training data for five Indian languages, namely Malay-
alam, Kannada, Tamil, Telugu, and Hindi. The dataset con-
tained nine tags including name, location, organization, event,

92 Named Entity Recognition

Table 5.1: Frequency of Different Named Entity Tags present in the Training Data

Tag Expansion of Tag Frequency

B-PER Begin Person 1480
I-PER Inside Person 233
B-LOC Begin Location 871
I-LOC Inside Location 21
B-ORG Begin Organization 264
I-ORG Inside Organization 134
MISC Miscellaneous 74220
OUT Outside 79424

Figure 5.1: Sample text tagged using the BIO tagging scheme

things, occupation, number, date/time and other. Summary of
the dataset is given in table 5.2.

NER using neural networks 93

Table 5.2: Summary of the dataset

Dataset # Sentences # Words # Unique Words

Hindi
76,537
25,513

1,472,033
493,602

87,842
43,797

Kannada
20,536
6846

297,820
100,479

73,712
34,200

Malayalam
65,188
21,730

838,333
280,130

143,990
67,361

Tamil
134,030
44,677

1,492,230
497,548

185,926
89,529

Telugu
63,223
21,075

777,681
259,458

108,059
51,555

5.3 NER using neural networks

5.3.1 Introduction

Neural networks are a set of algorithms that are inspired by the
structure and function of the human brain. They are charac-
terized by their immense ability to recognize patterns. Neural
networks follow a different approach towards solving a prob-
lem than that of the traditional algorithms. The traditional al-
gorithms follow a set of instructions to get the solution for a
problem. If the set of instructions are not clear and concrete,
they can’t solve the problem. This restricts the ability of com-
puters to solve problems using conventional algorithms. Here
comes the advantage of neural networks, where they could do
things that we don’t have an exact solution in an algorithmic

94 Named Entity Recognition

way. Neural networks solve problems in a similar way that the
human brain does. Different layers of the neural network work
together to solve a particular task. As in the case of humans,
examples act as supervisors in the learning scenario.

5.3.2 Architecture

Figure 5.2 depicts the architecture of the proposed system. The
important parts of the architecture are the training phase and the
testing phase. In the training phase, the pre-processed training
data was fed to the feature extraction module. The feature ex-
traction module extracts a set of features for each word. The set
of features considered in the study were the POS information
of the target word and preceding words, embedded represen-
tation of the target word and preceding words and embedded
representation of the suffix. The features returned by the fea-
ture extraction module were concatenated and fed to the neural
network training module along with the labels for each word.
After training, the model file was saved and used for testing.
Testing phase also contained steps like feature extraction and
feature concatenation. The concatenated features were finally
given to the trained model for tag prediction. The predicted
tags were aligned with the input words to produce the required
output.

The proposed network included an input layer, two hidden
layers and an output layer. The feature set for each word was
provided to the input layer, where the input features were mul-
tiplied by a set of weights to reach the hidden layer. In the hid-
den layer, an activation function was applied on the weighted

Experiments and Results 95

Figure 5.2: Architecture of the neural network based NER system

sum of inputs to bring non-linearity. This process was repeat-
ed up to the output layer. Cost functions were used to estimate
the difference between the predicted value and the actual val-
ue. Network weights were adjusted using the backpropagation
algorithm. The process of weight adjustment continued until
the difference between the predicted value and real value was
acceptable.

5.3.3 Experiments and Results

Experiments were conducted using an inhouse corpus. 80% of
the total data was used for training and the rest of the data was
used for testing. MLP classifier was used to conduct training
and testing [110]. The proposed network had two hidden lay-
ers with 400 neurons each. ’Relu’ was used as the activation
function and ’Adam’ as the optimizer. Batch size was fixed at

96 Named Entity Recognition

100 and learning rate as ’0.001’. The network was implemented
in python using Tensorflow in the backend. Word embeddings
and suffix embeddings were prepared, as discussed in section
4.3 of chapter 4. Different features were iteratively applied to
find their effects in accuracy. From experiments, we were able
to find the most relevant features that affected the accuracy of
Malayalam NER systems. They were word embedding of the
target word, POS information of the target word, and suffix em-
bedding of the target word. The influence of different features
on the performance of NER is given in table 5.3. The num-
ber of epochs was limited to the point of maximum validation
accuracy and it was 25 epochs.

Table 5.3: Accuracy of the system with respect to different feature set

Feature set Accuracy

Word 85.4%
Word, POS 86.9%

Word, POS, Suffix 91.3%
Word, POS, POS-1, Suffix 91.45%
Word, POS, Word-1, Suffix 94.4%

Word, POS, Word-1, Word-2, Suffix 95.3%
Word, POS, POS-1, POS-2, Word-1, Suffix 94.25%

Word, POS, POS-1, POS-2, Word-1, Word-2, Suffix 95.33%

Performance of the network for different word vector sizes
were experimented. Different results were obtained by incor-
porating different word vector sizes. Best results were obtained
when the word vector size was 100. Hence, the word embed-
ding size was fixed at 100. Figure 5.3 shows the performance
of the neural network on different word embedding sizes.

NER using CRF 97

Figure 5.3: Accuracy of the proposed NER system on different word embedding
sizes

5.4 NER using CRF

5.4.1 Introduction

CRFs are well known for tools for entity recognition tasks.
Even the best performing Stanford university NER tagger is
based on the linear chain Conditional Random Fields. In In-
dian languages, the application of CRF for NER is not novel.
Variety of works are reported in languages like Tamil, Telugu,
Kannada, etc. that used CRF. But most of them are in per-
sonalized datasets of limited size. CRFs are a class of statis-
tical modelling tools that are often used in structured prediction
problems. They are well-known for their ability to take context
into account in sequence prediction problems. In this work, we
have considered linear chain CRFs, a variant of CRF to mod-
el our problem. The dataset for this work was provided by the

98 Named Entity Recognition

competition organizers of IECSIL-2018 1.

5.4.2 Architecture

The problem was framed in the same way as in the POS tag-
ging problem. The only difference is in the feature selection
part. In the POS tagging problem, a set of different features
such as the previous word, succeeding word, suffixes of differ-
ent length, etc were considered. But here some more features
including POS of the target word and POS of the neighbouring
words were taken into consideration. The schematic view of the
overall architecture is shown in Figure 5.4.

Figure 5.4: Architecture of the CRF-based NER system

Let X = x1,x2,x3, ...xn be the input sequence and Y = y1,y2,y3, ...yn

be the corresponding label sequence. CRFs try to maximize the
conditional probability distributionP(Y/X) given the input se-
quence. The best entity tag sequence corresponding to a word

1https://github.com/BarathiGanesh-HB/ARNEKT-IECSIL

Architecture 99

sequence was calculated as shown in equation 5.1.

ˆ̄y = argmax
ȳ

P(ȳ | x̄; w̄) (5.1)

Here x̄ is the observable word sequence and ȳ is the cor-
responding entity tag sequence. The probability of an entity
tag sequence ȳ, for a given word sequence x̄, was calculated as
shown in equation 5.2. Where w̄ denotes the weight vector and
F is the global feature vector.

P(ȳ | x̄; w̄) =
exp(w̄ ·F(x̄, ȳ))

∑
ȳ′∈Y

exp(w̄ ·F(x̄, ȳ′))
(5.2)

The conditional probability of Yi on X is defined through a
set of feature functions. Each feature function was assigned by
a particular weight, as shown in equation 5.3. CRFs can accom-
modate any number of feature functions. The feature functions
can inspect the entire input sequence X at any point during the
inference. Each feature function can analyze the entire obser-
vation sequence x̄, the current yi and previous yi−1 positions in
the tag sequence and current position i in the observation se-
quence. A feature function is computed by summing fk over all
n different state transitions ȳ.

F(x̄, ȳ) = ∑
i

∑
j

λ j f (yi−1,yi, x̄, i) (5.3)

Finally, the decoding of the best tag sequence was done by using
the Viterbi algorithm.

100 Named Entity Recognition

First of all, the training data was preprocessed by a prepro-
cessing module, where the input data was transformed into a
sequence of words and a sequence of corresponding tags. Fig-
ure 5.5 shows the output of the preprocessing module for a sin-
gle tagged sentence. The preprocessed training data was given
to the feature extraction module, where the feature set for each
word was extracted. Set of features extracted for a sample word
is given in figure 5.6. Afterwards, the sequence of features was
provided to the CRF training module. After training, the model
file was saved for testing. During the testing phase, the input
data was processed in the same way as in the training phase
without the presence of tags. The sequence of words were con-
verted into sequences of features and provided to the trained
model for tag sequence prediction. Finally, the predicted tag
sequence was harmonized with the input word sequence.

Figure 5.5: Preprocessing

Figure 5.6: Feature set for a single word

5.4.3 Experiments and Results

For training, Pycrfsuite, a python implementation of Condition-
al Random Field [97] was used. Fine tuning the model param-
eters is an important step in the training phase. We fixed the

NER using Deep learning 101

coefficient of ’L1’ penalty as ’1.0’ and L2 penalty as ’1e-3’.
Training was conducted on 80% of the total data and testing
was performed on the remaining data. Training was stopped
after 50 epochs and model file was saved. The proposed sys-
tem was tested with two datasets, namely pre-evaluation and
final evaluation datasets. The saved model predicted the tag se-
quence for each sentence. An accuracy of 97.44% was obtained
with CRF.

5.5 NER using Deep learning

5.5.1 Introduction

No works were reported in Malayalam NER using deep learn-
ing techniques. But deep learning has proved its key role in
various sequence labelling tasks such as POS tagging, NER,
time series prediction, etc. Hence, it was decided to go for an
approach that employs deep learning techniques for the entity
recognition task. Deep learning techniques are characterized
by its hierarchical feature learning nature. They can learn com-
plex representations from data that can lead to state-of-the-art
results in various classification tasks. In languages like English
and German, the state of art results in NER are obtained from
deep learning based systems. In addition to the conventional
deep learning architecture, language-specific features were al-
so incorporated to get improved accuracy. Training and testing
were conducted using the shared corpus from ARNEKT solu-
tions [108].

102 Named Entity Recognition

5.5.2 Architecture

Traditional neural networks have been outstanding over the last
decade. Still, they are not up to the mark for sequence labelling
tasks, where the current label is affected by its previous labels.
They consider all its inputs and outputs as mutually indepen-
dent. But, sequence to sequence learning implemented using
deep neural networks is a hopeful solution for this problem.
Deep neural networks have an amazing capability of consid-
ering the entire context in a sequence when dealing with se-
quence labelling tasks. Bi-LSTM-CRF-a well-known solution
for sequence labelling problems was employed for named entity
tagging.

In Indian languages, a word is often constituted by a set of
morphemes corresponding to that language. Therefore, it is
unsuitable to consider a complete word as a processing unit.
Hence, it was decided to consider affixes from both ends of the
word as additional features to represent the word. The method-
ology used was similar to [111], where the character level, word
level and affix level features were combined to represent a com-
plete word. The proposed architecture differed from other mod-
els by the way in which character level and word level fea-
tures were created. In this work, CNN (convolutional neural
network) with various kernel sizes was used to generate the
character level word embedding. The affix level features were
generated by selecting the frequent affixes from a general cor-
pus corresponding to each language. The proposed word vector
generation model can be straightforwardly applied for any mor-
phologically rich language.

Architecture 103

5.5.2.1 Generalized word representation

The pre-trained word embedding models suffer from the Out of
Vocabulary (OOV) problem, where the word embedding vec-
tors may not be present for words that are absent in the train-
ing data. The percentage of various named entities present
in the training data over the FastText [112] word embedding
file is given in table 5.4. The overall missing rate of words is
4.17%. This invites the need for a generalized word representa-
tion, which can effectively avoid the OOV problem confronted
by the pre-trained word representation models. The generalized
word representation model proposed in the work is shown in
figure 5.7. The proposed word representation model combined
features from various aspects of a word namely-character level,
affix level, and word level. The character level features were
formed using CNN’s with different kernel sizes. The word lev-
el features were generated using pre-trained word embedding
models. The affix level features were created using the most
frequent affixes in a language. Finally, all these vectors were
concatenated to form the final word representation.

Table 5.4: Percentage of the training set entities present in FastText word embedding
files.

Language Event Things Org Occupation Name Location Other Average Presence

Hindi 99.69 99.33 99.23 99.48 94.96 98.91 96.38 98.28
Kannada 98.85 97.11 96.85 96.92 89.17 96.94 89.4 95.03

Malayalam 94.86 96.65 97.17 95.72 90.71 96.52 86.14 93.96
Tamil 98.34 98.3 97.95 96.93 91.72 95.13 93.05 95.91
Telugu 98.9 99.16 98.72 98.72 83.65 99.15 93.48 95.96

Class Avg. 98.12 98.11 98.00 97.55 90.04 97.33 91.69 95.83

104 Named Entity Recognition

Figure 5.7: Generalized word representation

5.5.2.2 Convnet based character level word representation

Character level features are proved to be strong for entity recog-
nition tasks [113–115]. Convolutional kernels with various fil-
ter sizes were used to generate the character level word rep-
resentation. These representations are expected to capture the
subword information present in words. Indian languages are
characterized by their lengthy subword units. For this reason,
convolutional filters of different kernel sizes were used. Subse-
quently, the outputs of different convolutional kernels through
max-pooling layer were concatenated to form the character based
word representation. Figure 5.8 shows the architecture of the
character based word representation model.

Given a word ‘w’ composed of ‘m’ characters c1,c2,c3, ...cm,
where ci ∈Vc is the character vocabulary set. Let C1,C2,C3, ...Cm

be the character embedding vectors that encode the characters
c1,c2,c3, ...cm present in a word ‘w’. The character embeddings
were obtained by matrix-vector product as given in equation
5.4.

C1 =WcVc (5.4)

Where Wc is the embedding matrix, Wc ∈ Rdc∗|Vc| and Vc is the

Architecture 105

Figure 5.8: Architecture of the character-based word composition model

one-hot vector representation of a particular character. ‘dc’ is a
hyperparameter corresponding to the size of the character em-
bedding. Hence, each word was transformed into a sequence of
character embeddings C1,C2,C3, ...Cm. Convolutional kernels
were applied to each of the sliding context window of size ’k’.
The resulting vectors are passed through a max-pooling layer
to generate the maximum value. Then these vectors from dif-
ferent convolutional kernels were concatenated to produce the
required word embedding vectors. These vectors are expect-
ed to capture information from different n-grams of the same
word.

106 Named Entity Recognition

Formally, the character-level embedding of each word ‘w’ is
calculated as follows,

Vc = max
1<i<m

[WconvZm +bconv] (5.5)

Where Wconv and bconv are parameters of the model and Zm is
the concatenation of character embeddings expressed as

Zm =

(
Cm−(k−1)/2,,Cm+(k−1)/2

)
(5.6)

The convolution operation was applied to find the simple pat-
terns of embedding vectors of different n-grams over the char-
acter sequence. Among different n-grams the following max-
pooling layer try to extract position invariant n-gram features.
Therefore, the character-based word composition model was
expected to detect unvarying local spelling features from the
character sequence.

5.5.2.3 Pre-trained word representation

Word embeddings are proven tools for capturing the context of
a word along with its syntactic and semantic similarities [98].
They are the representation of words in n-dimensional space.
They are also well known for modelling the relationship with
other words in a corpus. They are typically created by applying
a large collection of unannotated text over shallow neural net-
works through an unsupervised process such as CBOW model.
In this study, FastText, a library for efficient learning of word
representations was used for each language in the training set
[112]. FastText, an extension to Word2vec by Facebook, can

Architecture 107

efficiently represent words from their n-gram units. The em-
bedding vector for a particular word is generated as the sum of
all its n-gram vectors.

5.5.2.4 Affix level word representation

To approximate the true affixes of a language, the most fre-
quent n-gram prefixes and suffixes of words in each language
were identified from an unannotated corpus (specific to each
language). Since frequent n-gram affixes are likely to behave
like the true morphemes of the language, it was decided to learn
a task-specific representation for them. To identify the n-gram
size and the threshold frequency of affixes, various combina-
tions of n (n-gram size) and T (threshold frequency) such as
n=2,3,4,5 and T=100, 300, 500, 750, 1000 were experimented.
The best results from the experiments were obtained, when the
n-gram size was 3 and the threshold frequency was 500. Be-
fore training, the true affixes present in the training data were
identified using a dictionary lookup method with the identified
affixes (from unannotated corpus). During training time, the
affix embeddings were initialized randomly and later tuned to
learn a task-specific semantic representation. Finally, the in-
dividual representations were concatenated to construct a full
vector representation for each word.

Formally, consider a Malayalam sentence S[1:n] that is a se-
quence of ’n’ words, where ‘n’is the maximum length of the
sentence. In experiments, it was limited to 30 for the comfort
of computation. Each word ‘w′i in the sentence was convert-
ed into a vector constituted by a composition of vectors corre-

108 Named Entity Recognition

sponding to that word. Hence, each word in the sentence was
replaced by a vector of d-dimension, where d = dc + dw + da

such that dc = dimensionality of character-level word embed-
ding, dw = dimensionality of pre-trained word embedding and
da = ds + dp is the dimensionality of affix embeddings, where
ds=dimensionality of suffix embedding and dp= dimensionality
of prefix embedding. Equations 5.7 and 5.8 shows the mathe-
matical representation of a single sentence.

S = [w1,w2,w3,w4,wn] (5.7)

S = [[vc1,vc2,vc3.....vcp,vw1,vw2,vw3.....vwq,va1,va2,va3.....var]1,

[vc1,vc2,vc3.....vcp,vw1,vw2,vw3.....vwq,va1,va2,va3.....var]2,]

(5.8)

where vc1,vc2,vc3.....vcp corresponds to character-based word
vector, vw1,vw2,vw3.....vwq corresponds to pretrained word vec-
tor and va1,va2,va3.....var corresponds to affix embedding vec-
tor.

Figure 5.9 shows the schematic diagram of the proposed sys-
tem. The complete architecture is similar to the one used for
POS tagging discussed in the last chapter, with the main differ-
ence in the way in which the words are represented and provid-
ed to the network. The model accepts sequences of length ‘n’.
‘Wp’, ‘Wc’, ‘Wa’ are pre-trained word embedding, character-
based word embedding and affix embedding respectively. P0,
P1, P2, etc. are the emission scores coming from the Bi-LSTM
layer. Each of them indicates the probability of a particular tag

Architecture 109

for a particular word. Hence, ‘m’ corresponds to the maximum
number of tags in the tag set. Final predictions are made by the
CRF layer based on these probabilities.

Figure 5.9: Architecture of the deep learning based NER system

Functional API of Keras was used to create the network [99].
The network contained three modules. First one was the input
module, which receives the concatenated feature vector. The
second module consisted of a set of hidden layers, where the
output of each layer was provided to the successive hidden layer
and finally to the output layer. ’Tanh’ was used as the activation
in hidden layers. The mathematical simulation of ’Tanh’ for a
sample input x is given in equation 5.9. Dropout was used to
prevent overfitting. Python language was used for coding with
Tensorflow in the backend.

110 Named Entity Recognition

tanh(x) = (2σ(2x)−1),where

σ(2x) =
e2x

(1+ e2x)

(5.9)

5.5.3 Experiments and Results

The preprocessed tagged text was used for training. The tagged
text was converted into sequences of words and tags. Here
the first sequence corresponded to the input sequence and the
second sequence was the output sequence. Words were con-
verted into vectors of size 300 using FastText word embed-
ding file [112]. Words that were not present in the vocabu-
lary (OOV) were handled using a dummy vector. The final
feature vector was generated by adding character-based word
embedding and affix embedding to the pre-trained word em-
bedding. Hence, each word was replaced by the concatena-
tion of 150-dimensional character-based word embeddings, 60-
dimensional affix embeddings and 300-dimensional pre-trained
word vectors. The dimensionality of the feature vector was 510,
where 210 was contributed by the combination of character lev-
el and affix level word embeddings. Finally, the input vectors of
dimension 30*510 and the output vectors dimension 30*9 were
sent to the Bi-LSTM network for training. Nine named entity
classes were available in the training data.

The deep learning model of Keras is a linear stack of layers.
Information about the input shape was provided in the first lay-
er. The remaining layers can do automatic inference about the
shape. Adam, an extension to the stochastic gradient descent

Experiments and Results 111

algorithm, was used for optimization task. ’categorical cross
entropy’ was used as the loss function. The network was com-
piled using Tensorlflow in the backend. Network weights were
updated in batches of size 100. The training data consisted of
51000 sentences and testing data consisted of 12000 sentences.
Training was conducted for 20 epochs and the model file was
saved.

5.5.3.1 Impact of network parameters

Fine-tuning the network parameters is very important in deep
learning paradigms. It was empirically found that the best ar-
chitecture for the model is a 4-layered architecture. The first
layer was the input layer, which received the concatenated fea-
ture vectors. Second and third layers were BiLSTM layers with
600 neurons and ’Tanh’ activation. The last layer was the CRF
layer, which makes the prediction. Increasing the number of
neurons in the hidden layer was not promising. Until 600, there
was a considerable improvement in performance. Hence, we
finalized our hidden layer size to 600(300 in forward direction
and 300 in backward direction). Different activations such as
‘ReLU’,‘Sigmiod’and ‘Tanh’were also tried in hidden layers.
But ‘Tanh’seemed to be the optimum choice.

5.5.3.2 Impact of character-based word embedding

In order to assess the effectiveness of the proposed combined
word representations, the same system on different individual
word representations were compared. Combining the character-

112 Named Entity Recognition

level word composition vector to pre-trained word vector seems
to capture character-level features of the word in addition to
word-level features. Table 5.5 presents the impact of different
word representations on Bi-LSTM-CRF tagger. This includes
the performance of the tagging model on individual word repre-
sentations and combined word representations. The character-
based word representations could improve the accuracy of word-
based models by 1.12%. This indicates the significance of char-
acter based word representations.

Table 5.5: Impact of different word representations on BiLSTM-CRF tagger Accu-
racy(%).

Representation Hindi Kannada Malayalam Tamil Telugu Average

FastText 96.87 96.41 96.68 96.22 96.66 96.57
FastText+char ConvNet 97.98 97.30 97.76 97.61 97.84 97.69

FastText+char ConvNet+Affix 98.44 97.62 98.25 98.35 98.41 98.21

5.5.3.3 Impact of affix embeddings

Since Indian languages are morphologically rich, the use of af-
fix level features seems to be very effective in improving the
overall performance of NER systems. The analysis implied that
appending affix level features to the word level features can
capture the inflectional characteristics of agglutinative words.
From table 5.5, it is clear that affix based features can improve
the overall performance. When added to the word level features,
the affix level features could improve the results by .52%. An
example sentence tagged using the proposed Bi-LSTM-CRF
model is shown in figure 5.10 and figure 5.11. Here the cor-
rect tag for the second word is ‘location’, which was obtained
only after incorporating the affix level features to word-level

Summary of the chapter 113

features (figure 8).

Figure 5.10: Sample tagged text without incorporating the affix-level features

Figure 5.11: Sample tagged text by incorporating the affix-level features

5.5.3.4 Performance comparison for Malayalam

The results of the proposed system were compared with the
different existing results in the domain. Among the report-
ed results, the best performance was from Amrutha University
Coimbatore [66]. Their work was reported as part of FIRE-
2014. But the proposed system was able to produce improved
results in the area of NER for Malayalam language. The com-
parison of performance across different works in this area is
given in Figure 5.12.

5.6 Summary of the chapter

This chapter presents a detailed description of the preparation
of a named entity tagged corpus and three different mechanisms
for NER in Malayalam. The exclusive feature of the proposed
systems is their performance in comparison with the existing
methods in the domain. Different features that contribute to the
entity recognition process were iteratively experimented. They
include word embedding of the target word, suffix embedding

114 Named Entity Recognition

Hybrid TnT SVM NN CRF BiLSTM−CRF

Performance comparison with existing systems

Different Methodologies

Ac
cu

rac
y

65
70

75
80

85
90

95
10

0

Figure 5.12: Performance comparison with the existing systems

of the target word, POS information of the target word and sur-
rounding words, and word embeddings of the context words.
Among the proposed systems, the deep learning based entity
recognition system was the most promising one in terms of ac-
curacy. Morphological features of Malayalam language was
effectively utilized in all the above systems with the help of
suffix stripping rules. Incorporating morphological information
of words appears to be a promising thought for languages like
Malayalam. Performance of all the systems can be improved by
increasing the training data size, which is the most tedious job
in the research. The proposed methods can also be used for var-
ious sequence labelling tasks in NLP such as phrase chunking,
semantic role labelling, etc.

6
Deep level tagging

In this chapter, a deep level tagging methodology for Malay-
alam text is attempted using machine learning and rule-based
techniques. Deep level tagging is the process of assigning deep-
er level information to nouns and verbs in a text document along
with normal POS tags. It is one of the preliminary steps in the
automatic analysis and representation of natural language text.
Since Malayalam is a morphologically rich and agglutinative
language, effective utilization of morphological features is es-
sential for the computational analysis of the unstructured text.
In this study, an in-depth analysis of nouns and verbs is con-
ducted which can be effectively utilized for higher level tasks
such as sentiment analysis, anaphora resolution, text summa-
rization, etc. The analysis of nouns includes identifying the
number, gender and case details. The analysis of verbs includes
determining tense, aspect and modality details associated with
them. Both machine learning and rule-based algorithms are
employed for the proposed system.

Section 6.1 of this chapter presents a brief introduction about
deep level tagging of Malayalam text. The necessity of such
a system for the analysis of natural language text is also dis-
cussed in that section. Section 6.2 gives a detailed description

115

116 Deep level tagging

of the architecture of the proposed system. A detailed overview
of the subsections of the schematic diagram is given in that sec-
tion. Sample texts showing the input and output of each module
is also given there. Section 6.3 discusses the experimental part
of the proposed system. Finally, section 6.4 concludes the chap-
ter with an overall summary of the work.

6.1 Introduction

The amount of natural language text over the internet is increas-
ing day by day. Computational analysis of this text is essential
for information extraction. Information extraction is a branch
of artificial intelligence that deals with extracting meaningful
facts from unstructured text. Deep level tagger is a middle way
technology towards information extraction which assigns deep-
er level information to each noun and verb in a text document
along with normal POS tags. Anaphora resolution, automatic
text summarization, semantic graph construction, etc. are some
of the application areas of deep level tagging systems. Identify-
ing the number and gender information from nouns help us to
resolve anaphors present in the text. Since anaphors present in a
discourse refers to a noun which in turn agree with the number
and gender of the anaphor, resolving PNG information associat-
ed with the nouns is of utmost importance in discourse analysis.
Similarly, machine translation systems require adequate knowl-
edge about the subject and object in a sentence. Case infor-
mation associated with the nouns can provide enough linguistic
cues about the subject and object in a sentence. Moreover, sen-
timent analysis systems can make use of the ’TAM’ information

Introduction 117

associated with verbs.

Automatic analysis of verbs and nouns in sentences is an
essential task for the computational understanding of the nat-
ural language text. Different studies are conducted to analyze
the morphology of Malayalam words [116–121]. Morpholog-
ical analyzers take one word at a time and analyze its struc-
ture, syntax, and morphological properties [122]. Identifying
the morphological properties of agglutinative words is a chal-
lenging task. However, it does not contribute much to the se-
mantic understanding of the document. Here comes the advan-
tage of deep level taggers. Deep level taggers are tools that help
to process the text in a semantically meaningful manner. It con-
siders all the nouns and verbs in a document and generates an
in-depth analysis, which can be effectively utilized for higher
end tasks such as anaphora resolution, text summarization, sen-
timent analysis, etc. The in-depth analysis of nouns includes
capturing the number, gender and case information associated
with them. Whereas, the in-depth analysis of verbs includes
capturing the tense, aspect and modality information associated
with them.

The dataset required for various tasks in deep level tagging
was provided by the researchers from Thunjath Ezhuthachan
Malayalam University. A detailed study on ’TAM’ informa-
tion associated with verbs in Malayalam was conducted there.
Malayalam verbs can be classified into 25 categories accord-
ing to the ’TAM’ information associated with it [123]. Table
6.1 shows different classes of verbs identified during the study.
It was found that the verbs in the same class always share the

118 Deep level tagging

Table 6.1: Different classes of verbs according to ’TAM’ analysis

Verb Label Class name
Verb PAST Past Tense
Verb PRES Present Tense
Verb FUT Future Tense
Verb mood IMPR Imperative Mood
Verb mood CMPL Compulsive Mood
Verb mood CMPL NEG Negative Compulsive Mood
Verb mood PROS Promissive Mood
Verb mood PRMS Permissive Mood
Verb mood OPT Optative Mood
Verb mood PRCT Precative Mood
Verb mood PRCT NEG Negative Precative Mood
Verb mood DSRV Desiderative Mood
Verb mood ABLT Abilitative Mood
Verb mood IRLS Irrealis Mood
Verb mood PURP Purposive Mood
Verb mood COND Conditional Mood
Verb mood STSF Satisfactive Mood
Verb mood MONI Monitory Mood
Verb aspect PROG SAT Progressive Stative Aspect
Verb aspect PROG INS Progressive Instantaneous Aspect
Verb aspect PROG ITR Progressive Iterative Aspect
Verb aspect PRF SMPL Simple Perfect Aspect
Verb aspect PRF CTP Contemporaneous Perfect Aspect
Verb aspect PRF RMT Remote Perfect Aspect
Verb aspect HBTL Habitual Aspect

same set of suffixes. Hence, it was decided to capture the suffix
level features for identifying the verb class. A suffix stripping
algorithm with the help of a set of suffix stripping rules was
used for this purpose. The case information associated with the
nouns was identified using a rule-based methodology. A set of
possible cases and associated affixes are given in table 6.2.

6.2 Architecture

Figure 6.1 demonstrates the general block diagram of the pro-
posed deep level tagging system. The proposed architecture

Architecture 119

Table 6.2: Case markers and corresponding suffixes

CASE SUFFIXES
Accusative e
Sociative odu
Dative kku , nu
Genitive aal
Instrumental ude, nte
Locative il
Nominative All remaining suffixes

contains four phases. The first phase is the preprocessing phase,
where the input text is segmentized into sentences and words.
The second phase is the POS tagging phase, where the words
from the input text are tagged with POS information. B.I.S
tagset is used to tag the words from the input document. This
tag set is developed by the POS tag standardization committee
nominated by the department of information technology, Gov-
ernment of India. It exploits the linguistic hierarchy between
different classes of words. The third phase is the named entity
recognition phase. This phase helps to identify the person enti-
ties from the set of nouns in the tagged text. The final phase of
the architecture is the deep level tagging phase, where the deep
level information associated with nouns and verbs are explored.
Working of each phase of the complete architecture is presented
in the following sections.

120 Deep level tagging

Figure 6.1: General architecture of deep level tagging system

6.2.1 Preprocessing phase

Preprocessing is the first phase of the architecture which con-
verts the raw Malayalam text into sentences and words. It is
the phase which converts the raw input text into a form that
can be easily handled by machine learning algorithms. Regular

POS tagging phase 121

expressions and NLTK tools were used for realizing this phase.

6.2.2 POS tagging phase

POS tagging is an important step in most of the NLP applica-
tions. It assigns the words in a document to a particular gram-
matical category based on its meaning and context. The pre-
processed Malayalam text is provided to the POS tagging mod-
ule. In this study, a deep learning based implementation of POS
tagger discussed in section 5 of chapter 4 [106] was used. BiL-
STMs are well-known tools for labelling sequential data. B.I.S
tagset was used for tagging individual words. Hence, the maxi-
mum number of possible tags was from a limited tagset of 36. A
piece of text, tagged using the above-mentioned tagger is given
in figure 6.2.

Figure 6.2: Sample text tagged using deep learning based POS tagger

6.2.3 Named Entity Recognition phase

Named entity recognition (NER)is a preliminary step towards
information extraction that aims to locate and classify the named
entities, including persons, location, organizations, etc. present
in a text document. All the nouns present in a text may not
contain number and gender details. Therefore we should iden-
tify the nouns for which in-depth analysis is to be performed.

122 Deep level tagging

Named entity recognition phase helps to identify the person en-
tities from the POS-tagged text. The deep learning based entity
tagger discussed in chapter 5 was employed for this purpose.
Sample text showing the input and output of the second phase
of the architecture is given in figure 6.3.

Figure 6.3: Sample text showing the input and output of the NER module

6.2.4 Deep level tagging phase

The final phase of the block diagram is the deep level tagging
phase, which accomplishes the in-depth analysis of nouns and
verbs. The in-depth analysis of person entities includes explor-
ing the number, gender and case details associated with them.
Similarly, nouns which are not tagged with person entity tag
were sent to number and case identification module. On the
other side, the in-depth analysis of verbs include exploring the
tense, aspect, and modality details associated with them. Noun

Deep level tagging phase 123

words and verbs from the previous modules are provided as in-
put to the deep level tagging module. The morphological rich-
ness of Malayalam language was utilized to explore the detailed
information associated with verbs and nouns. A suffix stripping
algorithm, along with a set of suffix stripping rules, was em-
ployed for this purpose. MLP classifier was used for the de-
tailed study of verbs and nouns.

From the entity tagged text in the third phase, words with
person entity tag were provided to the number and gender iden-
tification module where the suffixes of various length acted as
the feature set for PNG identification. A suffix stripper was
used to extract suffixes of different size, which acted as the fea-
ture set for the classifier. MLP was used to build the classifier
[110]. MLP is a function approximator which can theoretical-
ly estimate any kind of function. Case information associated
with the nouns were also explored in this phase using a rule-
based technique. Similarly, verbs were provided to the ’TAM’
identification module. Here also the suffixes of different length
acted as the feature set. MLP classifier with 25 class labels
was prepared for this purpose. The class labels itself indicated
the ’TAM’ details associated with the verb. Different config-
urations of the MLP classifier were experimented for both the
tasks. A sample text showing the input and output of the com-
plete system is given in figure 6.4.

124 Deep level tagging

Figure 6.4: Sample text showing the input and output of the complete architecture

6.3 Experiments and Results

This section presents the experiments conducted on each phase
of the proposed architecture. The first step is the preprocess-
ing step, where the raw Malayalam text was given to sentence
segmentation and word tokenization operations. The sentence
segmentation operation was carried out using the NLTK word
tokenizer [124]. The POS tagging module accepts the prepro-
cessed Malayalam text and generates the POS-tagged text. The
POS tagger gave a test accuracy of 94.33%, which appeared as
a comparable performance for languages like Malayalam. The
third phase of the proposed system deals with entity extraction.
A deep learning based approach discussed in chapter 5 was em-
ployed for this purpose. The dataset used to build the entity tag-
ger was the corpus provided by IECSIL-2018 organizers [108].

The final phase of the architecture is the deep level tagging

Experiments and Results 125

phase. The first part of the deep level tagging phase is the case
labelling of nouns. A rule-based algorithm was used for case
labelling. A set of suffixes corresponding to each case was
stored in a lookup table. Each noun identified in the POS tag-
ging phase was sent to a suffix extraction unit, where suffixes
of length 2,3,4 and 5 were extracted and sent to the lookup ta-
ble. If there existed any match between the extracted suffix and
stored rule, the corresponding case was triggered. Otherwise, a
nominative case was returned by the rule-based module.

The second part of the deep level tagging phase deals with
the in-depth analysis of verbs and nouns. Here different classi-
fiers were attempted to distinguish the best performing classifi-
er on the dataset. Unlike in the earlier scenario, MLP outper-
formed the remaining classifiers on both the tasks (’TAM’ anal-
ysis and number-gender analysis). Figures 6.5 and 6.6 illustrate
this point. A list of 12600 names belonging to the different cat-
egories of names was prepared as the training data for number
and gender identification classifier. Suffixes of length 1 to 8
were used as features for each name. Since machine learning
algorithms require features as numeric values, these feature set
(suffixes) was converted to numeric values using Dictvectoriz-
er, a python functionality [125]. Dictvectorizer over Word2vec
was chosen in this phase, since they were well suited in encod-
ing categorical features with multiple possible values. More-
over, Word2vec is appropriate in situations where the syntactic
and semantic roles of words are necessary. Dictvectorizer was
employed in situations where the feature set is a list of dictio-
naries rather than a list of categorical items. The feature set
was a list of dictionaries where each dictionary refers to a set of

126 Deep level tagging

suffixes corresponding to a single word. Thus, the total feature
size was 7468.

Figure 6.5: Performance of different classifiers on number and gender identification
task

Figure 6.6: Performance of different classifiers on ’TAM’ analysis task

Different configurations of the MLP classifier were attempt-

Experiments and Results 127

ed in the study. A smaller network was not able to represent the
data efficiently and increasing the number of layers did not im-
prove the accuracy significantly. Hence, it was experimentally
finalized that the hidden layer configuration as (2*100), where
2 is the number of hidden layers, and 100 is the size of each
hidden layer. ’Relu’ was used as the activation function and
’Adam’ as the optimizer. The performance of the number and
gender classifier with the different number of features is shown
in figure 6.7. From the figure, it is clear that the accuracy of
the system increased with the increase in suffix features and the
maximum accuracy was achieved when the number of features
was 10. The maximum accuracy obtained by the classifier was
96.21%.

Figure 6.7: Effect of different features on the performance of the number and gender
identification classifier

The configuration of the ’TAM’ analysis neural network is
not completely different from the number and gender neural
network. The only difference is in the number of classes and
training data. The training data contained 1205 verbs belong-

128 Deep level tagging

ing to 25 classes. Similar to the number and gender network,
suffixes of different length were used as features. Here also, the
feature vector was converted to a numeric representation using
Dictvectorizer, a python functionality. A neural network with
two hidden layers constituted the model. The parameters of the
network were exactly the same as the number and gender iden-
tification neural network. The maximum performance obtained
by the classifier was 99.17%. Performance of the ’TAM’ anal-
ysis model on different sets of features is shown in figure 6.8.
From the figure, it can be inferred that the accuracy of the model
increases with the increase in suffix features.

Figure 6.8: Effect of different features on the performance of the ’TAM’ identifica-
tion classifier

The training data required for all the experiments were pre-
pared with the help of Malayalam University, Tirur. The final
accuracy of the complete system is 90.2%. The detailed in-
formation regarding the overall performance of the proposed
system is shown in table 6.3.

Analysis 129

Table 6.3: Overall performance of the proposed system

Module-1 Training Testing
Number of words 230371 57517
Accuracy 91.2%
Module-2 Training Testing
Number of words 838333 280130
Accuracy 97.44%
Module-3-A (number and gender) Training Testing
Number of words 10080 2520
Accuracy 96.21%
Module-3-B (TAM) Training Testing
Number of words 964 241
Accuracy 99.17%
Overall accuracy 90.2%

6.3.1 Analysis

To better understand the performance of the models on the con-
structed datasets, a detailed analysis was also performed. ROC
curve-the best metric for evaluating the performance of any
classifier was employed to evaluate the performance of each
model. The area under the ROC curve represents the degree or
measure of separability between different classes predicted by
the classifier. Figures 6.9 and 6.10 show the ROC curves for
the number-gender identification model and ’TAM’ identifica-
tion model respectively. All the models were relatively good in
demonstrating the tradeoff between different classes across var-
ious settings of the classifiers. Nevertheless, it can be observed
that the area under ’TAM’ curve is mostly higher than the area
under the curves of the other models. This is contributed by the
expressive nature of suffix endings in Malayalam verbs.

To determine the contribution of suffixes of different length

130 Deep level tagging

Figure 6.9: ROC curve of the number and gender classifier

Figure 6.10: ROC curve of the ’TAM’ classifier

(as compared to simply using a fixed length suffix) towards clas-
sification accuracy, we ran our model with suffixes of different
length (ranging from 1 to 12). The performance of the mod-

Summary of the chapter 131

els (in-depth analysis) without using the suffixes of different
lengths were even lower than the proposed combined feature
systems. This shows the impact of suffix level features on com-
putational processing of Malayalam text.

Further, the effect of different classifiers on the training data
was also verified. It was found that MLP-one of the best choice
for multiclass classification problems outperformed the other
classifiers. MLP was found to be the best choice for such tasks.
Theoretically, MLP can estimate any function or equivalently
able to find any mappings [126].

6.4 Summary of the chapter

This chapter discussed in detail about the development of a deep
level tagger for Malayalam. The exclusive feature of the pro-
posed system is the detailed analysis of nouns and verbs in a text
document. This detailed information about nouns and verbs can
be effectively utilized for the semantic understanding of the nat-
ural language text. Both machine learning and rule-based tech-
niques were applied for the computational analysis of Malay-
alam text. In this study, entity extraction technique to recognize
the person entities from POS-tagged text was used. Machine
learning based techniques rather than traditional rule-based ap-
proaches were used in the work because of its scalability and
convenience. The morphological richness of Malayalam lan-
guage was effectively utilized for the developed system with
the help of suffix stripping algorithms. The conversion of suf-
fix level features to numeric values was done with the help of

132 Deep level tagging

python functionalities. The impact of deep level tagging system
on different NLP applications like sentiment analysis, anapho-
ra resolution, abstractive summarization, etc can be explored in
future.

7
Pronominal Anaphora Resolution

This chapter presents a novel approach towards resolution of
pronominal anaphors present in Malayalam text. Anaphora
resolution is the process of identifying the antecedent of an
anaphoric expression present in natural language text. Most
of the NLP applications such as information extraction, ques-
tion answering, text summarization, etc. require successful res-
olution of anaphors. Pronominal anaphors are a subclass of
anaphors realized using short words called pronouns. In this
study, we have used a deep level tagger discussed in chapter
6 as a pre-processor for the resolution of pronominal anapho-
ra. The proposed methodology is a hybrid architecture employ-
ing rule-based and machine learning techniques. Two datasets
were prepared to evaluate the proposed system. The perfor-
mance of the proposed system was evaluated using those datasets.

Section 7.1 of this chapter gives a brief introduction to the
problem of anaphora resolution. Section 7.2 presents a detailed
description of the general architecture of the proposed system.
Each part of the architecture is discussed in detail in that sec-
tion. Section 7.3 outlines the experimental part of the method-
ology. Results obtained by the system on sample datasets are
also given there. Finally, the chapter is concluded in section

133

134 Pronominal Anaphora Resolution

7.4 with an overall summary of the work.

7.1 Introduction

Anaphora is the use of an expression which refers to anoth-
er expression in the same document. The origin of the word
anaphora goes back to the 16th century [127]. It consists of
two units called ’ana’ and ’phora’, where ’ana’ means back and
’phora’ means carrying. Anaphors are commonly used to avoid
repetition of an item in a discourse. These items are usually
noun phrases representing real-world objects. But occasionally
they can be verb phrases or sentences. Depending on the way
in which different clauses of a sentence are linked, anaphora
are of mainly three kinds, namely-pronominal, definite noun
phrases and quantifiers [128]. Pronominal anaphora are real-
ized using pronouns. Among the various types of anaphora,
pronominal anaphora is the most widely used one, which is re-
alized through anaphoric pronouns. Pronouns are short words
that can be substituted for a noun or noun phrase. They al-
ways refer to an entity that is already mentioned in the dis-
course. Pronominal anaphors are always stronger than full def-
inite noun phrases [129]. They are again classified into five,
namely personal pronouns, possessive pronouns, reflexive pro-
nouns, Demonstrative pronouns and relative pronouns. All the
above-mentioned pronouns need not be anaphoric. Definite
noun phrase are the second type of anaphors realized using
noun phrases of the form < the >< nounphrase >. Here the
antecedent is always referred using a definite noun phrase rep-
resenting either same concept or semantically similar concept.

Architecture 135

And the quantifier anaphors are realized using words like one,
first, last, etc. Among various types of anaphora, pronominal
anaphora is the commonly used one [129]. Hence, we decided
to go for a system which can effectively resolve all the pronom-
inal anaphors present in a Malayalam document.

It is a dream of humankind to communicate with the com-
puters, since the beginning of the digital era. Communication
with computers is only possible through a proper understanding
of natural language text. The proper understanding of natural
language text is possible only after anaphora resolution. There
is a large amount of text data available online in Malayalam.
Malayalam Wikipedia itself contains more than 30,000 articles.
This warrants us to develop tools that can be used to explore
digital information present in Malayalam and other native lan-
guages. Anaphora resolution is one such tool that helps in se-
mantic analysis of natural language text. It is also necessary for
areas like text summarization, question answering, information
retrieval, machine translation, etc.

7.2 Architecture

The objective is to build a pronominal anaphora resolution sys-
tem for Malayalam. The overall architecture of the proposed
system is illustrated in Figure 7.1. It contains five successive
modules, where each module performs a set of specific tasks.
The first module is the preprocessing module, where the sen-
tence segmentation and word tokenization operations are car-
ried out. After preprocessing, the preprocessed text is chan-

136 Pronominal Anaphora Resolution

nelled to the POS tagging module. In the POS tagging module,
each word from the preprocessed text is assigned with the cor-
responding grammatical category. Similar to section 4.2, BIS
tagset is used in this study. The POS tagged text is then provid-
ed to the Named Entity Recognition module, where the person,
location and organization entities present in the tagged text are
identified. Person entities are the most common antecedent of
pronominal anaphora. They are the most compatible words to
correlate with the pronouns in a text document. Identifying the
person entities from the set of nouns in the text document is the
most crucial part of the proposed system.

The fourth module of the architecture is the deep level tag-
ging module, where the in-depth analysis (number and gender
identification) of person entities is performed. Deep level tag-
ging is performed as discussed in section 6.2.4 of the previous
chapter. Finally, the deep level tagged text is provided to the
anaphora resolution module, which is the core part of our archi-
tecture. The overview of anaphora resolution module is given
in Figure 7.2. The first step in the anaphora resolution module
is the identification of pronouns present in the text. Words with
PRP (Pronoun) POS tag are collected and stored as the pronom-
inal anaphora.

For each pronoun present in the set of pronominal anapho-
ra, a set of possible candidates were shortlisted. Person entities
present in the preceding four sentences of the anaphor which
agree with the number and gender of the anaphor act as the like-
ly candidate set. The possible candidates were assigned with a
set of salience values corresponding to a set of salience factors.

Architecture 137

Figure 7.1: General architecture of the proposed system

Salience values were computed through the proper analysis of
the Malayalam language. The sum of salience values indicate
the possibility of a candidate being the actual antecedent. The
set of salience factors and their corresponding weights are giv-
en in table 7.1. The salience factors considered in the study in-
clude sentence-recency, case information, syntactic role, clause

138 Pronominal Anaphora Resolution

Figure 7.2: Architecture of the anaphora resolution module

information and semantic role.

The clause information and subject-object information of
shortlisted candidates were identified using a rule-based tech-
nique. For that, all the sentences containing the shortlisted can-
didates were divided into clauses. The words with a verb or ad-
jective POS tag act as the clause boundary in a sentence [130].
In the case of adjectives, the nouns following them were also
included in the same clause. For each clause identified in the
last step, the subject, object and predicate information were ex-
tracted using the following set of rules [131].

• Predicate —The verb or adjective present in the clause will

Architecture 139

Table 7.1: Salince factors and their weights

Salience factors Weights
Current sentence 100
Preceding sentences Reduce sentence score by 10
Subject 80
Object 50
Case 10 to 40
Current clause 100
Immediate clause 50

form the predicate.

• Object —If the predicate is a verb, the noun preceding it
will be the object and if the predicate is an adjective, the
noun following it will be the object.

• Subject —If the predicate is a verb, the noun preceding
the object will be the subject. And if there is no noun
preceding the object in the same clause, follow the given
rules.

1. If the predicate of the preceding clause is an adjective,
its object will form the subject.

2. Else the subject of the preceding clause will be the
subject.

Conversely, if the predicate is an adjective, the noun pre-
ceding it will be the subject.

Finally, the possible candidates were sorted based on the to-
tal salience score and the candidate having the highest salience
score was selected as the antecedent of the anaphor.

140 Pronominal Anaphora Resolution

7.3 Experiments and Results

The preprocessing of raw Malayalam text was conducted using
NLTK implementation of sentence tokenizer and word tokeniz-
er [124]. Sentence tokenizer receives the raw Malayalam text
and converts it to a sequence of sentences. The word tokenizer
receives this sequence of sentences and converts each sentence
into a sequence of words. The POS tagging module receives
this sequence of words and generates the POS-tagged text. The
deep learning based POS tagger discussed in section 4.5 was
used for this purpose [106]. The POS tagged text was then giv-
en to the NER module. The person entities from the NE tagged
text was provided to the deep level tagging module, where the
number, gender and case information associated with the nouns
were recognized.

To evaluate the performance of the proposed system, two
different datasets were prepared and experimented. The exper-
iments were also conducted to explore the possibilities of the
proposed deep level tagger. The characteristics of the prepared
datasets are given below.

7.3.1 Dataset 1

This dataset is a collection of short-stories that belongs to the
children story domain. The short stories were downloaded from
[132], a popular site for Malayalam short stories. Each of them
consists of 20 to 30 sentences of reasonable length. Since the
narrative style of children stories follow a straight forward ap-

Dataset 2 141

proach, the structural complexity of the sentences was limit-
ed. Hence, the performance of the proposed algorithm on this
dataset represents the baseline performance. Table 7.2 illus-
trates the performance of the algorithm on this dataset.

Table 7.2: Results of our experiments on dataset 1

Total sentences Total pronouns Correctly resolved Accuracy
353 19 16 84%

7.3.2 Dataset 2

This dataset is a collection of text from news article domain.
The articles were taken from [133], a popular site for news ar-
ticles. Here, the structural complexity of the sentences was not
limited. Each article consists of more than 20 sentences. The
length of the sentences was not limited. Performance of the
proposed system on dataset two is illustrated in table 7.3.

Table 7.3: Results of our experiments on dataset 2

Total sentences Total pronouns Correctly resolved Accuracy
466 21 17 80%

The overall accuracy acquired by the proposed system is
82.5%. The correctness of the results was verified with the help
of language experts. According to the observations, various fac-
tors that affected the performance of the proposed system were

• Free ordering nature of Malayalam language

• Case information associated with the nouns

142 Pronominal Anaphora Resolution

• Use of the same pronoun to refer both animate and non-
animate nouns

• Ability to distinguish person entities from non-person en-
tities, etc.

7.4 Summary of the chapter

This chapter describes a novel idea towards the resolution of
pronominal anaphora in Malayalam. Various factors that affect
the resolution of pronominal anaphors are also studied in de-
tail. The performance of the system is mainly decided by the
accuracy of the NE tagger and deep level tagger. The selected
salience factors and their values are globally accepted param-
eters. The exclusive feature of the proposed system is the use
of machine learning as well as rule-based techniques. The pro-
posed pronoun resolution algorithm is the best use case of the
deep level tagger discussed in chapter 6. The current work is
focussed only on the resolution of pronominal anaphors. In fu-
ture, the resolution of non-pronominal anaphors, which is not
explored in the literature so far can be carried out.

8
Conclusions and Future directions

8.1 Conclusions

This thesis is mainly focussed on the resolution of pronomi-
nal anaphors in Malayalam text using an integrated and hy-
brid approach. Malayalam, being an inflected and agglutina-
tive language, presents many challenges, which results in the
detailed analysis of different language level features that could
improve the overall performance of the system. Different fea-
tures that were considered in the study included word level
features, character level features and affix level features. The
word level features are extracted using pre-trained word embed-
dings, while the affix level and character level features are iden-
tified using feature inferring neural networks and handcrafted
rules. Without losing generality, the proposed word representa-
tion model can be effectively applied for any morphologically
rich language. Experiments were conducted to identify the im-
pact of each feature and combined feature representations on
POS tagging performance. The performance results gave an
important insight about the impact of combined word represen-
tation over the individual ones. This is due to the inflectional
characteristics of Indian languages as compared with other lan-

143

144 Conclusions and Future directions

guages. Without using any form of external resources (lexicon,
POS, etc.), the state of art performance in Malayalam NER and
POS tagging were achieved. It was found that the combination
of features improved the accuracy of tagging systems. Even
though the experiments were mainly focussed on Malayalam,
the proposed approaches could be applied for any of the Indian
languages.

Deep learning techniques were used for different language
processing applications, which were not yet explored in the case
of Malayalam language. Deep learning techniques demand a
large amount of training data and the dataset was prepared in-
house. The authenticity of the data set was verified using stan-
dard evaluation metric such as Fleiss’s Kappa coefficient.

A study on various popular machine learning techniques for
POS tagging and NER has been carried out. Extensive statis-
tical analysis was conducted to recognize the best performing
algorithm for sequence labelling task. A novel word representa-
tion model was developed using convolutional neural networks
and suffix separation rules. The accuracy of the proposed sys-
tems is evident from the results demonstrated in section 4.5 and
5.5. The performance evaluation was carried out in compar-
ison with the traditional sequence labelling techniques such as
HMM, CRF, etc. Experimental results have proven that the pro-
posed deep learning systems perform much better than existing
classical machine learning techniques. In short, deep learning
based POS tagging with improved word representation can be
projected as a novel technique for POS tagging in low resource
languages. Similarly, incorporating affix level features along

Conclusions 145

with pre-trained word embeddings is also a promising thought.

A study on extracting deeper level information associated
with nouns and verbs in a text document is also performed.
Since most of the semantics in a text document is contained in
nouns and verbs, it is necessary to have a deep level tagger for
the proper analysis of Malayalam text. The advantage of this
tagger in contrast to the general POS tagger is the identification
of PNG information associated with nouns and exploration of
’TAM’ details associated with verbs. This deep level of infor-
mation can be used in various language processing applications
like sentiment analysis, anaphora resolution, text summariza-
tion, etc. Since the manual tagging of deeper level information
is costly and labour intensive, a computational approach utiliz-
ing the deep level tagger can be effectively employed. In addi-
tion to deep level tagger, 648 unique suffixes (separable using
rules) for the Malayalam language was extracted and it gave a
clear indication about the rich morphology of Malayalam lan-
guage. The performance of the deep level tagging algorithm
is evident from the results given in section 6.3. Experimental
results have proven this fact.

A study on algorithms to resolve anaphors in natural lan-
guage text has been carried out. But, most of the research works
on anaphora resolution is concentrated on rule-based techniques
utilizing the syntax of the language. Identifying the antecedents
that are not in the vicinity of the anaphor are rarely discussed.
Extracting meaningful antecedents is possible only if one has
semantic information about noun phrases preceding the anaphor.
The deep level tagging algorithms discussed in chapter 6 helps

146 Conclusions and Future directions

to achieve this goal. Hence, a novel pronoun resolution algo-
rithm utilizing the semantics of the noun phrase antecedents
was developed using deep level tagging and anaphora resolu-
tion algorithms. The performance of the proposed algorithm is
evident from the experimental results given in section 7.3. The
performance evaluation was done in comparison with the exist-
ing systems in the domain. Experimental results have proven
that the proposed algorithm performs much better than state of
the art.

One of the most significant challenges in Natural language
processing is the development of computational tools for iden-
tifying the correct antecedents for anaphoric expressions. Since
anaphors are very important for semantic graph construction,
they must be appropriately addressed and solved correctly. The
proposed pronominal anaphora resolution algorithm resolves
all the pronominal anaphors present in Malayalam text. The
advantage of the proposed system is that, in contrast to existing
rule-based systems, the proposed system makes use off deep
level tagger which can give a clear indication about the seman-
tics of nouns and verbs in the text document. The morpho-
logical features of the language are effectively utilized for the
computational analysis of Malayalam text. Despite using lim-
ited linguistic features, the proposed algorithm provides better
results which can be utilized for higher level NLP tasks such as
question answering, machine translation, text summarization,
etc. The power of word embeddings is also exploited in the
study, which helped in recognizing the POS and entity cate-
gories of words. Since the manual resolution of anaphoric ex-
pressions from bulk natural language text is costly and labour

Future Directions 147

intensive, proposed computational strategies can be effectively
employed for automatic text processing mechanisms.

8.2 Future Directions

This thesis includes an elaborate study on different features and
architectures that can be adapted to improve the sequence la-
belling tasks in low resource languages. After unveiling ef-
ficient word representation and seq2seq algorithms, improve-
ments have been attained on these areas resulting in new bench-
mark results. The work also includes a detailed study on the res-
olution of pronominal anaphors present in Malayalam text. The
highlight of all the above systems is the application of machine
learning techniques from all the possible directions. Since the
manual exploration of above-specified areas are labour inten-
sive and time-consuming, computational strategies suggested
through the developed systems can reduce this overhead. As
the word embedding based strategies proposed in this thesis of-
fer a global perspective to feature enhanced NLP, it can be eas-
ily adapted to other Indian languages having the same status.

This work can be further explored to various sequence la-
belling tasks such as semantic role labelling, phrase chunking,
etc. in low resource languages. The thesis also shed some light
towards the influence of affix level features in Malayalam POS
tagging and NER. Moreover, this study helps in the identifi-
cation of factors affecting the disambiguation of tags (POS or
NER) for individual words. This can be extended to the next
level where the word embedding based cluster features act as

148 Conclusions and Future directions

additional information towards sequential labelling. Thus, the
semantic class of the word can be predicted more accurately. As
an extension of this work, the effect of autoencoders in reduc-
ing the combined word representation size can also be investi-
gated. It was able to extract semantic information about nouns
and verbs in Malayalam through a deep level tagger. The same
method could be extended to any agglutinative language with
rich inflections. The availability of local language enabled key-
words, and smartphones steer the increased use of social media
platforms and conversational systems by the Indian language
users. This leads to a drastic increase in the Indian language
content over the web. Hence incorporating the proposed en-
tity extraction systems on online Malayalam document search
can speed up information extractor systems on Malayalam lan-
guage.

List of Publications

Journal Papers

1. Ajees A P, and Sumam Mary Idicula. ‘An Improved
Word Representation for Deep Learning Based NER
in Indian Languages’. Information 10.6 (2019): 186.
MDPI, (ESCI)

2. Ajees A P, and Sumam Mary Idicula. ‘A Deep Lev-
el tagger for Malayalam, a morphologically rich lan-
guage’, Journal of Intelligent Systems, De Gruyter,
(ESCI) (accepted)

3. Ajees A P, and Sumam Mary Idicula. ‘Deep Learn-
ing Based Deep Level Tagger for Malayalam ’, Re-
cent Patents on Computer Science, Bentham Science,
2019, 12, 82-100 , DOI: 10.2174/221327591257. ISSN:
2213-2759. (SCOPUS)

4. Ajees A P, and Sumam Mary Idicula. ‘A Relation Ex-
traction System for Indian Languages’, Advances in
science, technology and engineering systems journal ,
ASTES, 2018, 4 ,65-69, ISSN: 2415-6698.(SCOPUS)

5. Ajees A P, and Sumam Mary Idicula. ‘A POS tagger
for Malayalam using Conditional Random Fields’, In-
ternational Journal of Applied Engineering Research,
RIP, 2017, 13, ISSN: 0973-4562. (SCOPUS)

6. Ajees A P, and Sumam Mary Idicula. ‘A Named En-
tity Recognition System for Malayalam using Neural

Networks’. Procedia computer science , Elsevier, 143
(2018): 962-969., ISSN: 1877-0509.(SCOPUS)

7. Ajees A P, and Sumam Mary Idicula. ‘An Integrated
Framework for Pronominal Anaphora Resolution in
Malayalam’. Advances in science, technology and en-
gineering systems journal , ASTES, ISSN: 2415-6698.
(SCOPUS) (accepted)

8. Ajees A P, and Sumam Mary Idicula. ‘A Novel Word
Representation for Deep Learning Based POS Tag-
ging in Malayalam’. Transactions on Asian low re-
source language processing (TALLIP), ACM, (SCIE)
(under review).

9. Ajees A P, and Sumam Mary Idicula. ‘A Deep Learn-
ing Based POS Tagger for Malayalam, a Morphologi-
cally Rich Language’. Malaysian Journal of computer
science, PKP,(SCIE) (under review).

Conference Papers

1. Ajees A P, and Sumam Mary Idicula. ‘A Named Entity
Recognition System for Malayalam using Conditional
Random Fields’. ICDSE-2018, IEEE, 2018. 33-39.

2. Ajees A P, and Sumam Mary Idicula. ‘A Native Lan-
guage Identification System using Convolutional Neu-
ral Networks’. FIRE-2018, Springer, 2018. 1-8.

3. Ajees A P, and Sumam Mary Idicula. ‘A Named Enti-
ty Recognition System for Indian Languages’. FIRE-
2018, Springer, 2018. 45-53.

Bibliography

[1] Henry Sweet. The history of language. Dent, 1900.

[2] Wikipedia contributors. Rotokas language —
Wikipedia, the free encyclopedia, 2019. [Online; ac-
cessed 24-July-2019].

[3] Memidex. http://www.memidex.com/anaphora+
epanaphora/. Accessed: 2016-08-28.

[4] Wikipedia. Languages with official status in india.
2012 (accessed December 7, 2018).

[5] ENCYCLOPDIA BRITANNICA. Malayalam lan-
guage. 2015 (accessed February 18, 2018).

[6] Wikiquote. Malayalam — wikiquote,, 2019. [On-
line; accessed 19-June-2019].

[7] Wikipedia contributors. Malayalam —
Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=

Malayalam&oldid=902164977, 2019. [Online;
accessed 19-June-2019].

[8] Wikipedia contributors. Analytic language —
Wikipedia, the free encyclopedia, 2019. [Online; ac-
cessed 19-June-2019].

[9] Wikipedia contributors. Brahmi script —
Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=

Brahmi_script&oldid=901772441, 2019. [On-
line; accessed 19-June-2019].

[10] Ethnologue. How many languages are there in the
world?, 2019. [Online; accessed 19-April-2019].

151

152 BIBLIOGRAPHY

[11] Eric Brill. A simple rule-based part of speech tag-
ger. In Proceedings of the third conference on Ap-
plied natural language processing, pages 152–155.
Association for Computational Linguistics, 1992.

[12] Atro Voutilainen. Morphological disambiguation.
Karlsson et al, pages 165–284, 1995.

[13] Mohammad Hjouj Btoush, Abdulsalam Alarabeyy-
at, and Isa Olab. Rule based approach for arabic part
of speech tagging and name entity recognition. Int.
J. Adv. Comput. Sci. Appl.(IJACSA), 7(6):331–335,
2016.

[14] Nisheeth Joshi, Hemant Darbari, and Iti Mathur.
Hmm based pos tagger for hindi. In Proceeding of
2013 International Conference on Artificial Intelli-
gence, Soft Computing (AISC-2013), 2013.

[15] Asif Ekbal, S Mondal, and Sivaji Bandyopadhyay.
Pos tagging using hmm and rule-based chunking.
The Proceedings of SPSAL, 8(1):25–28, 2007.

[16] GM Ravi Sastry, Sourish Chaudhuri, and P Nagen-
der Reddy. An hmm based part-of-speech tagger and
statistical chunker for 3 indian languages. Shallow
Parsing for South Asian Languages, 13, 2007.

[17] Muhammad Fahim Hasan, Naushad UzZaman, and
Mumit Khan. Comparison of unigram, bigram, hmm
and brill’s pos tagging approaches for some south
asian languages. 2007.

[18] Eugene Charniak. Statistical language learning.
MIT press, 1996.

BIBLIOGRAPHY 153

[19] Fatma Al Shamsi and Ahmed Guessoum. A hidden
markov model-based pos tagger for arabic. In Pro-
ceeding of the 8th International Conference on the
Statistical Analysis of Textual Data, France, pages
31–42, 2006.

[20] Thorsten Brants. Tnt: a statistical part-of-speech
tagger. In Proceedings of the sixth conference on Ap-
plied natural language processing, pages 224–231.
Association for Computational Linguistics, 2000.

[21] Lourdes Araujo. Part-of-speech tagging with evolu-
tionary algorithms. In International Conference on
Intelligent Text Processing and Computational Lin-
guistics, pages 230–239. Springer, 2002.

[22] Sang-Zoo Lee, Jun-ichi Tsujii, and Hae-Chang Rim.
Part-of-speech tagging based on hidden markov
model assuming joint independence. In Proceedings
of the 38th Annual Meeting on Association for Com-
putational Linguistics, pages 263–269. Association
for Computational Linguistics, 2000.

[23] Walter Daelemans, Jakub Zavrel, Peter Berck, and
Steven Gillis. Mbt: A memory-based part of speech
tagger-generator. arXiv preprint cmp-lg/9607012,
1996.

[24] Ruhi Sarikaya, Mohamed Afify, Yonggang
Deng, Hakan Erdogan, and Yuqing Gao. Joint
morphological-lexical language modeling for
processing morphologically rich languages with
application to dialectal arabic. IEEE transac-
tions on audio, speech, and language processing,
16(7):1330–1339, 2008.

154 BIBLIOGRAPHY

[25] Adwait Ratnaparkhi. A maximum entropy model for
part-of-speech tagging. In Conference on Empirical
Methods in Natural Language Processing, 1996.

[26] L Màrquez and J Giménez. A general pos tagger
generator based on support vector machines. Journal
of Machine Learning Research, 2004.

[27] Eugenie Giesbrecht and Stefan Evert. Is part-of-
speech tagging a solved task? an evaluation of pos
taggers for the german web as corpus. In Proceed-
ings of the fifth Web as Corpus workshop, pages 27–
35, 2009.

[28] Smriti Singh, Kuhoo Gupta, Manish Shrivastava,
and Pushpak Bhattacharyya. Morphological richness
offsets resource demand-experiences in construct-
ing a pos tagger for hindi. In Proceedings of the
COLING/ACL on Main conference poster sessions,
pages 779–786. Association for Computational Lin-
guistics, 2006.

[29] Amni Anirudh Agarwal Himashu. Part of speech
tagging and chunking with conditional random
fields. In proceedings of NLPAI Contest, 2006.

[30] Manish Shrivastava and Pushpak Bhattacharyya.
Hindi pos tagger using naive stemming: Harnessing
morphological information without extensive lin-
guistic knowledge. In International Conference on
NLP (ICON08), Pune, India, 2008.

[31] Asif Ekbal, Rejwanul Haque, and Sivaji Bandyopad-
hyay. Bengali part of speech tagging using condi-
tional random field. In Proceedings of Seventh Inter-

BIBLIOGRAPHY 155

national Symposium on Natural Language Process-
ing (SNLP2007), pages 131–136, 2007.

[32] Asif Ekbal and Sivaji Bandyopadhyay. Part of
speech tagging in bengali using support vector ma-
chine. In 2008 International Conference on Infor-
mation Technology, pages 106–111. IEEE, 2008.

[33] Hammad Ali. An unsupervised parts-of-speech tag-
ger for the bangla language. Department of Comput-
er Science, University of British Columbia, 20:1–8,
2010.

[34] Kamal Sarkar and Vivekananda Gayen. A trigram
hmm-based pos tagger for indian languages. In Pro-
ceedings of the International Conference on Fron-
tiers of Intelligent Computing: Theory and Applica-
tions (FICTA), pages 205–212. Springer, 2013.

[35] Avinesh PVS and G Karthik. Part-of-speech tagging
and chunking using conditional random fields and
transformation based learning. Shallow Parsing for
South Asian Languages, 21, 2007.

[36] Srinivasu Badugu. Morphology based pos tagging
on telugu. Proceedings of International Journal of
Computer Science Issues, 2014.

[37] PJ Antony and KP Soman. Parts of speech tag-
ging for indian languages: a literature survey.
International Journal of Computer Applications,
34(8):0975–8887, 2011.

[38] Vasu Renganathan. Development of part-of-speech
tagger for tamil. In Tamil Internet 2001 conference,
2001.

156 BIBLIOGRAPHY

[39] M Ganesan. Morph and POS Tagger for Tamil : A
Rule based Approach.

[40] Shodhganga. Literature survey. https:

//shodhganga.inflibnet.ac.in/bitstream/

10603/9233/11/11_chapter%202.pdf, 2016.
[Online; accessed 16-June-2017].

[41] M Selvam, AM Natarajan, and R Thangarajan.
Structural parsing of natural language text in tamil
language using dependency model. Internation-
al Journal of Computer Processing of Languages,
22(02n03):237–256, 2009.

[42] Rajendran S Soman K P Dhanalakshmi V, Anand ku-
mar M. Pos tagger and chunker for tamil language.
In semanticscholar.org, 2010.

[43] Mary Idicula Sumam, S Soumya, and K Manju. De-
velopment of a pos tagger for malayalam-an experi-
ence. 2009.

[44] RR Rajeev and Elizabeth Sherly. A suffix stripping
based morph analyser for malayalam language. In
Proceedings of 20th Kerala Science Congress, pages
482–484, 2007.

[45] PJ Antony, Santhanu P Mohan, and KP Soman. Svm
based part of speech tagger for malayalam. In 2010
International Conference on Recent Trends in Infor-
mation, Telecommunication and Computing, pages
339–341. IEEE, 2010.

[46] P. C. Reghu Raj Robert Jesuraj K. Mblp approach
applied to pos tagging in malayalam language. In

BIBLIOGRAPHY 157

National Conference on Indian Language Comput-
ing (NCILC13), Kochi, India, 2013.

[47] C Sunitha et al. A hybrid parts of speech tagger for
malayalam language. In 2015 International Confer-
ence on Advances in Computing, Communications
and Informatics (ICACCI), pages 1502–1507. IEEE,
2015.

[48] Madhu Sareesh Muhammad Noorul Mubarak D and
S A Shanavas. A new a pproach to parts of
speech tagging in malayalam. International Jour-
nal of Computer Science & Information Technology,
7(5):121–130, 2015.

[49] Sachin Kumar, M Anand Kumar, and KP Soman.
Experimental analysis of malayalam pos tagger us-
ing epic framework in scala. 2016.

[50] MS Bindu and Sumam Mary Idicula. Named entity
identifier for malayalam using linguistic principles
employing statistical methods. International Journal
of Computer Science Issues(IJCSI), 8(5), 2011.

[51] Daniel M Bikel, Richard Schwartz, and Ralph M
Weischedel. An algorithm that learns what’s in a
name. Machine learning, 34(1-3):211–231, 1999.

[52] GuoDong Zhou and Jian Su. Named entity recogni-
tion using an hmm-based chunk tagger. In proceed-
ings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 473–480. Associ-
ation for Computational Linguistics, 2002.

[53] Robert Malouf. Markov models for language-
independent named entity recognition. In COLING-

158 BIBLIOGRAPHY

02: The 6th Conference on Natural Language
Learning 2002 (CoNLL-2002), 2002.

[54] Andrew Borthwick and Ralph Grishman. A maxi-
mum entropy approach to named entity recognition.
PhD thesis, Citeseer, 1999.

[55] James Curran and Stephen Clark. Maximumen-
tropy tagging. https://www.cl.cam.ac.uk/

teaching/1011/L107/clark-lecture6.pdf.
Accessed: 2018-04-04.

[56] Paul McNamee and James Mayfield. Entity ex-
traction without language-specific resources. In
proceedings of the 6th conference on Natural lan-
guage learning-Volume 20, pages 1–4. Association
for Computational Linguistics, 2002.

[57] Andrew McCallum and Wei Li. Early results for
named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 188–191. Association for Computational Lin-
guistics, 2003.

[58] Xavier Carreras, Lluı́s Màrquez, and Lluı́s Padró.
Named entity extraction using adaboost. In
COLING-02: The 6th Conference on Natural Lan-
guage Learning 2002 (CoNLL-2002), 2002.

[59] Wenhui Liao and Sriharsha Veeramachaneni. A
simple semi-supervised algorithm for named entity
recognition. In Proceedings of the NAACL HLT 2009
Workshop on Semi-Supervised Learning for Natural

BIBLIOGRAPHY 159

Language Processing, pages 58–65. Association for
Computational Linguistics, 2009.

[60] Shubhanshu Mishra and Jana Diesner. Semi-
supervised named entity recognition in noisy-text.
In Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT), pages 203–212, 2016.

[61] Pavel P Kuksa and Yanjun Qi. Semi-supervised bio-
named entity recognition with word-codebook learn-
ing. In Proceedings of the 2010 SIAM International
Conference on Data Mining, pages 25–36. SIAM,
2010.

[62] Oren Etzioni, Michael Cafarella, Doug Downey,
Ana-Maria Popescu, Tal Shaked, Stephen Soder-
land, Daniel S Weld, and Alexander Yates. Methods
for domain-independent information extraction from
the web: An experimental comparison. In AAAI,
pages 391–398, 2004.

[63] Robert Munro and Christopher D Manning. Accu-
rate unsupervised joint named-entity extraction from
unaligned parallel text. In Proceedings of the 4th
Named Entity Workshop, pages 21–29. Association
for Computational Linguistics, 2012.

[64] Rahul Sharnagat. Named entity recognition: A liter-
ature survey. Center For Indian Language Technol-
ogy, 2014.

[65] Jisha P Jayan, RR Rajeev, and Elizabeth Sherly. A
hybrid statistical approach for named entity recogni-
tion for malayalam language. In Proceedings of the

160 BIBLIOGRAPHY

11th Workshop on Asian Language Resources, pages
58–63, 2013.

[66] M Anand Kumar Abinaya N, Neethu John and So-
man KP. Amrita cen@ fire 2014: Named entity
recognition for indian languages.

[67] Mr Jiljo and Mr Pranav PV. A study on named en-
tity recognition for malayalam language using tnt
tagger & maximum entropy markov model. Inter-
national Journal of Applied Engineering Research,
11(8):5425–5429, 2016.

[68] G Remmiya Devi, PV Veena, M Anand Kumar, and
KP Soman. Entity extraction for malayalam social
media text using structured skip-gram based embed-
ding features from unlabeled data. Procedia Com-
puter Science, 93:547–553, 2016.

[69] Tyne Liang and Dian-Song Wu. Automatic pronomi-
nal anaphora resolution in english texts. Internation-
al Journal of Computational Linguistics & Chinese
Language Processing, Volume 9, Number 1, Febru-
ary 2004: Special Issue on Selected Papers from RO-
CLING XV, 9(1):21–40, 2004.

[70] Jerry R Hobbs. Resolving pronoun references. Lin-
gua, 44(4):311–338, 1978.

[71] David Maclean Carter. A shallow processing ap-
proach to anaphor resolution. PhD thesis, Univer-
sity of Cambridge, 1986.

[72] Jaime G Carbonell and Ralf D Brown. Anaphora res-
olution: a multi-strategy approach. In Proceedings

BIBLIOGRAPHY 161

of the 12th conference on Computational linguistics-
Volume 1, pages 96–101. Association for Computa-
tional Linguistics, 1988.

[73] Elaine Rich and Susann LuperFoy. An architecture
for anaphora resolution. In Proceedings of the sec-
ond conference on Applied natural language pro-
cessing, pages 18–24. Association for Computation-
al Linguistics, 1988.

[74] Barbara J Grosz. The representation and use of
focus in dialogue understanding. Technical report,
SRI INTERNATIONAL MENLO PARK CA MEN-
LO PARK United States, 1977.

[75] Aravind K Joshi and Steve Kuhn. Centered logic:
The role of entity centered sentence representation in
natural language inferencing. In IJCAI, pages 435–
439, 1979.

[76] Michael Strube and Udo Hahn. Functional center-
ing: Grounding referential coherence in information
structure. Computational linguistics, 25(3):309–
344, 1999.

[77] Shalom Lappin and Herbert J Leass. An algorithm
for pronominal anaphora resolution. Computational
linguistics, 20(4):535–561, 1994.

[78] Christopher Kennedy and Branimir Boguraev.
Anaphora for everyone: pronominal anaphora res-
oluation without a parser. In Proceedings of the 16th
conference on Computational linguistics-Volume 1,
pages 113–118. Association for Computational Lin-
guistics, 1996.

162 BIBLIOGRAPHY

[79] L Sobha and BN Patnaik. Vasisth: An anapho-
ra resolution system for indian languages. In Pro-
ceedings of International Conference on Artificial
and Computational Intelligence for Decision, Con-
trol and Automation in Engineering and Industrial
Applications, 2000.

[80] Ruslan Mitkov. Two engines are better than one:
Generating more power and confidence in the search
for the antecedent. AMSTERDAM STUDIES IN THE
THEORY AND HISTORY OF LINGUISTIC SCI-
ENCE SERIES 4, pages 225–234, 1997.

[81] Ruslan Mitkov. Factors in anaphora resolution: they
are not the only things that matter: a case study
based on two different approaches. In Proceedings
of a Workshop on Operational Factors in Practi-
cal, Robust Anaphora Resolution for Unrestricted
Texts, pages 14–21. Association for Computational
Linguistics, 1997.

[82] Ido Dagan and Alon Itai. Automatic process-
ing of large corpora for the resolution of anapho-
ra references. In Proceedings of the 13th confer-
ence on Computational linguistics-Volume 3, pages
330–332. Association for Computational Linguis-
tics, 1990.

[83] Sobha Lalitha Devi, Vijay Sundar Ram, and Pattab-
hi RK Rao. A generic anaphora resolution engine for
indian languages. In Proceedings of COLING 2014,
the 25th International Conference on Computation-
al Linguistics: Technical Papers, pages 1824–1833,
2014.

BIBLIOGRAPHY 163

[84] Bhargav Uppalapu and Dipti Misra Sharma. Pro-
noun resolution for hindi. In Proceedings of 7th Dis-
course Anaphora and Anaphor Resolution Colloqui-
um (DAARC 09), pages 123–134, 2009.

[85] Kamlesh Dutta, Nupur Prakash, and Saroj Kaushik.
Resolving pronominal anaphora in hindi using hobbs
algorithm. Web Journal of Formal Computation and
Cognitive Linguistics, 1(10):5607–11, 2008.

[86] Kavi Narayana Murthy, L Sobha, and B Muthuku-
mari. Pronominal resolution in tamil using machine
learning. In Proceedings of the First International
Workshop on Anaphora Resolution (WAR-I), pages
39–50, 2007.

[87] A Akilandeswari and Sobha Lalitha Devi. Resolu-
tion for pronouns in tamil using crf. In Proceedings
of the Workshop on Machine Translation and Pars-
ing in Indian Languages, pages 103–112, 2012.

[88] R Vijay Sundar Ram and Sobha Lalitha Devi.
Pronominal resolution in tamil using tree crfs. In
2013 International Conference on Asian Language
Processing, pages 197–200. IEEE, 2013.

[89] Apurbalal Senapati and Utpal Garain. Guitar-based
pronominal anaphora resolution in bengali. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 126–130, 2013.

[90] Utpal Sikdar, Asif Ekbal, Sriparna Saha, Olga
Uryupina, and Massimo Poesio. Adapting a state-of-
the-art anaphora resolution system for resource-poor

164 BIBLIOGRAPHY

language. In Proceedings of the Sixth International
Joint Conference on Natural Language Processing,
pages 815–821, 2013.

[91] S Athira, TS Lekshmi, RR Rajeev, Elizabeth Sherly,
and PC Reghuraj. Pronominal anaphora resolution
using salience score for malayalam. In 2014 First
International Conference on Computational Systems
and Communications (ICCSC), pages 47–51. IEEE,
2014.

[92] Ruqaiya Hassan and M Halliday. Cohesion in en-
glish. P20, 1976.

[93] Graerne Hirst. Discourse-oriented anaphora resolu-
tion in natural language understanding: A review.
Computational Linguistics, 7(2), 1981.

[94] Aditya Misra. Metrics to evaluate your
machine learning algorithm. https:

//towardsdatascience.com/metrics-

to-evaluate-your-machine-learning-

algorithm-f10ba6e38234, 2019. [Online;
accessed 25-June-2019].

[95] Will Koehrsen. Beyond accuracy: Precision and
recall. https://towardsdatascience.com/

beyond-accuracy-precision-and-recall-

3da06bea9f6c, 2019. [Online; accessed 25-June-
2019].

[96] Wikipedia contributors. Fleiss’ kappa —
Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=

BIBLIOGRAPHY 165

Fleiss%27_kappa&oldid=895198898, 2019.
[Online; accessed 25-June-2019].

[97] A python binding for crfsuite. https://github.

com/scrapinghub/python-crfsuite. Accessed:
2017-09-30.

[98] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In
Advances in neural information processing systems,
pages 3111–3119, 2013.

[99] François Chollet et al. Keras. 2015.

[100] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Se-
quence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112, 2014.

[101] Cicero D Santos and Bianca Zadrozny. Learning
character-level representations for part-of-speech
tagging. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pages
1818–1826, 2014.

[102] Xiang Yu, Agnieszka Faleńska, and Ngoc Thang Vu.
A general-purpose tagger with convolutional neural
networks. arXiv preprint arXiv:1706.01723, 2017.

[103] Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

166 BIBLIOGRAPHY

[104] Malayalam POS Tagger Online. http:

//www.iiitmk.ac.in/MalayalamPOSTagger/

index1.jsp. Accessed: 2016-09-30.

[105] Ewan Klein Steven Bird and Edward Loper. Natural
Language Processing with Python. O’Reilly Media,
2009.

[106] AP Ajees and Sumam Mary Idicula. A pos tagger for
malayalam using conditional random fields. 2018.

[107] Ayushi-Jain. Hunpos-tagger. https://github.

com/ayushi-jain97/HunPOS-Tagger, 2017.

[108] HB Barathi Ganesh, KP Soman, U Reshma, Kale
Mandar, Mankame Prachi, Kulkarni Gouri, and Kale
Anitha. Information extraction for conversational
systems in indian languages - arnekt iecsil. In Fo-
rum for Information Retrieval Evaluation, 2018.

[109] Forum for information retrieval evaluation. http://
fire.irsi.res.in/fire/2019/home. Accessed:
2019-02-02.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830, 2011.

[111] Vikas Yadav, Rebecca Sharp, and Steven Bethard.
Deep affix features improve neural named entity rec-
ognizers. In Proceedings of the Seventh Joint Con-

BIBLIOGRAPHY 167

ference on Lexical and Computational Semantics,
pages 167–172, 2018.

[112] Edouard Grave, Piotr Bojanowski, Prakhar Gupta,
Armand Joulin, and Tomas Mikolov. Learning word
vectors for 157 languages. In Proceedings of the In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[113] Seung-Hoon Na, Hyun Kim, Jinwoo Min, and
Kangil Kim. Improving lstm crfs using character-
based compositions for korean named entity recog-
nition. Computer Speech & Language, 54:106–121,
2019.

[114] Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D Manning. Named entity recognition with
character-level models. In Proceedings of the sev-
enth conference on Natural language learning at
HLT-NAACL 2003-Volume 4, pages 180–183. Asso-
ciation for Computational Linguistics, 2003.

[115] Chuanhai Dong, Jiajun Zhang, Chengqing Zong,
Masanori Hattori, and Hui Di. Character-based lstm-
crf with radical-level features for chinese named en-
tity recognition. In Natural Language Understand-
ing and Intelligent Applications, pages 239–250.
Springer, 2016.

[116] Jisha P Jayan, RR Rajeev, S Rajendran, et al. Mor-
phological analyser and morphological generator for
malayalam-tamil machine translation. Internation-
al Journal of Computer Applications, 13(8):0975–
8887, 2011.

168 BIBLIOGRAPHY

[117] Latha R Nair and S David Peter. Development of
a rule based learning system for splitting compound
words in malayalam language. In Recent Advances
in Intelligent Computational Systems (RAICS), 2011
IEEE, pages 751–755. IEEE, 2011.

[118] SK Saranya. Morphological analyzer for malayalam
verbs. Unpublished M. Tech Thesis, Amrita School
of Engineering, Coimbatore, 2008.

[119] PM Vinod, V Jayan, and VK Bhadran. Implementa-
tion of malayalam morphological analyzer based on
hybrid approach. In Proceedings of the 24th Confer-
ence on Computational Linguistics and Speech Pro-
cessing (ROCLING 2012), pages 307–317, 2012.

[120] R Sunil, Nimtha Manohar, V Jayan, and KG Su-
lochana. Morphological analysis and synthesis of
verbs in malayalam. ICTAM-2012, 2012.

[121] RR Rajeev and Elizabeth Sherly. Morph analyser for
malayalam language: A suffix stripping approach.
Proceedings of 20th Kerala Science Congress, 2007.

[122] Jurafsky and Martin. Speech and language processs-
ing. 2002.

[123] Abrar K J. Malayalam verb morphological analysis:
A computational linguistics approach. Thunchath
Ezhuthachan Malayalam University, 2019.

[124] Edward Loper and Steven Bird. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective tools and methodologies for
teaching natural language processing and computa-

BIBLIOGRAPHY 169

tional linguistics-Volume 1, pages 63–70. Associa-
tion for Computational Linguistics, 2002.

[125] Pedregosa Fabian, Varoquaux Gaël, Gramfort
Alexandre, Michel Vincent, Thirion Bertrand,
Grisel Olivier, Blondel Mathieu, Prettenhofer Peter,
Dubourg Vincent, Vanderplas Jake, et al. Scikit-
learn: Machine learning in python. Journal of Ma-
chine Learning Research, 12:2825–2830, 2011.

[126] Peyman Passban, Qun Liu, and Andy Way. Boost-
ing neural pos tagger for farsi using morphological
information. ACM Transactions on Asian and Low-
Resource Language Information Processing (TAL-
LIP), 16(1):4, 2016.

[127] Kath. Word of the day anaphora. 2018 (accessed
December 7, 2018).

[128] M Sadanandam and D Chandra Mohan. Telugu
pronominal anaphora resolution.

[129] Dan Jurafsky and James H Martin. Speech and lan-
guage processing, volume 3. Pearson London, 2014.

[130] MS Bindu and Sumam Mary Idicula. A hybrid mod-
el for phrase chunking employing artificial immunity
system and rule based methods. International Jour-
nal of Artificial Intelligence & Applications, 2(4):95,
2011.

[131] Rajina Kabeer and Sumam Mary Idicula. Text sum-
marization for malayalam documentsan experience.
In 2014 International Conference on Data Science &
Engineering (ICDSE), pages 145–150. IEEE, 2014.

170 BIBLIOGRAPHY

[132] Bed time stories - wonderful stories in malayalam
for kids. https://kuttykadhakal.blogspot.

com/. Accessed: 2018-09-30.

[133] Madhyamam. https://www.madhyamam.com/.
Accessed: 2018-08-28.

