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Abstract

Discovery of knowledge from large volume of data is an active research topic in todays
world. Mining of conventional data pose many challenges, which are overcome by the
research community to a great extent today. The research has now moved to the mining
of spatiotemporal data. Large volumes of spatiotemporal data is being generated in
todays world in the domains of earth science, epidemiology, human mobility, climate
science, transportation and trajectories. Mining spatiotemporal data is important to
many real world applications like environment management, urban planning, health
care, human mobility understanding, weather prediction and smart transportation. Space
and time are the pervasive aspects of the spatiotemporal data. The spatiotemporal data
differs from traditional data in different aspects which creates the challenges as well
as opportunities for mining the same. The presence of spatial and temporal attributes
provide a rich diversity for the formulation of the different types of spatiotemporal data,
which can be exploited for mining patterns.

The research contributions of the thesis work is for spatiotemporal data mining
approaches like classification, frequent pattern mining and change detection. A novel
set of features, namely intra-spectral features and inter-spectral features are proposed
for classifying spatiotemporal data, which performs better in comparison with other
features for existing classifiers. The combined feature vector of the proposed features is
identified as a good discriminant for remote sensing image classification. The features
are appropriately represented and are experimented on various classifiers to establish
their discriminating capabilities.

Colocation pattern mining of spatiotemporal data is sought in spatial as well as
spatiotemporal context. Tensors are used as the underlying data structure and pattern
mining algorithms are proposed on the basis of tensor algebra. Decomposition methods
of tensors are exploited to find the spatial colocation patterns. The algorithms proposed
to find spatial colocation resulted in scalable computation time and less sensitivity in
dense environments. The tensorized modeling of image data eliminated the need to
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convert the same to traditional transaction type data. The colocation patterns mined
yielded patterns with more significance in terms of containment of the number of objects.
An algorithm to mine spatiotemporal colocation patterns is proposed, whose underlying
principle is based on Boolean Tensor Factorization. An incremental approach for the
Boolean Tensor Factorization is proposed for mining spatiotemporal colocation patterns,
which made a considerable save in terms of space. The mined colocation patterns
helps in understanding a region in spatiotemporal perspective and can be used for urban
facility analysis, as well as, detecting the change patterns of a spatial region. Novel
interestingness measures are also defined for the proposed algorithms.

A hierarchical spatiotemporal-metric miner model is proposed to perform change
detection of urban landscapes. Landscape metrics are incorporated into the miner to
obtain more semantics for the change detection. The change detection model helps
to identify changes of a region at different granularities. The changes in a region are
quantified using two growth indices, namely, Inter-Class Growth Index and Intra-Class
Growth Index. Experiments are performed on Indian cities for analyzing the growth
over a temporal tag and the results are found to be promising. The proposed change
detection model is also conceptualized into a spatiotemporal ontology. The ontology
modeled rules which aided to understand the changes which has happened in a region.
The axioms provided more spatiotemporal semantics in terms of morphology, shape
and texture analysis of a region.

The algorithms proposed in this thesis contributes to applications like urban facility
analysis, planning and management.
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Preface

Large volumes of spatiotemporal data in the fields of earth science, epidemiology,
human mobility, climate science, transportation and trajectories are being produced in
today’s world. Space and time are the ubiquitous aspects of the spatiotemporal data.
Spatiotemporal data mining is the process of discovering interesting and previously
unknown, but potentially useful patterns from large spatiotemporal data sets. Due to the
enormous quantity and variety of spatiotemporal data produced in the present scenario,
the field of spatiotemporal data mining is gaining momentum. Mining spatiotemporal
data is important to many real world applications like urban planning, health care,
weather prediction, ecology, environment management and smart transportation.

Spatiotemporal data is primarily complex and embedded in continuous space and
time. Classical data mining techniques tend to perform poorly when applied to such
data due to the inherent autocorrelation and heterogenity. The presence of spatial and
temporal attributes provide a rich diversity for the spatiotemporal data which can be
exploited for mining patterns. Hence the coupling of spatial and temporal information
in the data introduces novel problems, challenges and opportunities in spatiotemporal
data mining, with a broad scope of application in various domains. This formed the
motivation for the work presented in this thesis.

There are various types of spatiotemporal data that differs in the way in which
they are collected and represented. Conventional machine learning and data mining
techniques are limited in their ability to process raw spatiotemporal data. Appropriate
and suitable representation of spatiotemporal data has to be evolved before applying
the data mining techniques. This thesis finds a novel representation of spatiotemporal
data using tensors. Subsequently, tensor factorization method is applied to find patterns
from spatiotemporal data.

The thesis, presented in eight chapters’ deals with the work carried out in mining
spatiotemporal data using the concept of tensor factorization.

Chapter 1 introduces spatiotemporal data mining, discusses the motivation behind
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the work, states the research problem, enumerates the objectives of the research work
and gives an overview of the structure of the thesis.

Chapter 2 presents a systematic survey on the spatiotemporal data, associated data
types, representation techniques and data mining problems addressed in spatiotemporal
data mining. The properties of different spatiotemporal data types are studied. Common
data mining problems like clustering, frequent pattern mining, prediction and change
detection are studied from the perspective of spatiotemporal data. An extensive summary
of these studies are finally presented in the chapter.

A novel set of features termed as intra-spectral features and inter-spectral features
is proposed in Chapter 3 for the spatiotemporal raster data. The novel features are
appropriately represented and are being fed into different classifiers. Experiments proved
that the discriminative capability of the proposed feature is best captured through tensor
representation techniques.

Chapter 4 describes a framework for spatial co-location mining using tensor-based
approaches. The results of the mining are evaluated in terms of novel interestingness
measures called spatial dominance. A detailed analysis of the algorithm against the
current state of- the- art is performed on various decisive parameters.

Chapter 5 presents a tensor-based approach to find spatiotemporal colocation patterns
in classified images. An algorithm to find change patterns in the time series satellite
image data using an incremental approach is also presented. The proposed algorithm is
evaluated with the existing ones.

The tensor-based approach for change detection in urban landscapes with the support
of landscape metrics is proposed in Chapter 6. Growth indices for Indian cities are
proposed and evaluated. The semantic growth index proposed in this thesis can become
handy for town planning authorities.

The studies conducted in this thesis for change pattern analysis is formalized into a
spatiotemporal ontology and is presented in Chapter 7. Case studies of Indian cities are
analyzed using the proposed ontology.

Chapter 8 recapitulates the thesis and briefs appropriate future directions in this
research area.

The results of this thesis are published with international journals and proceedings
of the international conferences, whose details are provided.
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1.1 Overview

The prolific growth of spatial and temporal data, as well as the emergence of

new sets of applications coupled with technologies, accentuate the need for

automated discovery of spatiotemporal knowledge. Spatiotemporal data mining

is the process of discovering interesting and previously unknown, but potentially

useful patterns from large spatiotemporal data sets [1, 2, 3]. Space and time

are pervasive characteristics of observations in many domains. The domains

of such type are climate science, social sciences, epidemiology, criminology,

neuroscience, transportation, and earth sciences. A shared reflection about these

1
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domains is that the deluge of data rapidly transforms them. The data acquired

from these domains are inherently spatiotemporal.

Mining spatiotemporal data is important to many real-world applications

like ecology and environment management [4], urban planning [5], health care

[6, 7], weather prediction [8], smart transportation [5] and public safety [9].

In ecology and environment management, spatiotemporal data mining helps

to discover knowledge about causal relationships in environmental changes,

analysis of forest coverage, and tracking of pollution events. Thus a detailed

analysis of the earth’s surface is possible through mining the data. The study

of a region or a city in terms of all entities present at different timestamps

will help the concerned authorities to do a detailed planning and monitoring

of urban facilities. Detection of disease outbreak is yet another promising

area of spatiotemporal data mining. Climatologists also define predictors for

various events by mining the climatology data. Spatiotemporal data mining has

made its biggest imprint in transportation through traffic monitoring, tracing

vehicle crusade, traffic planning, vehicle navigation, and fuel proficient routes.

Crime analysts are interested in discovering hotspot patterns in a city, and

the government agency can allocate resources to ensure public safety. These

application domains also point to the interdisciplinary nature of spatiotemporal

data mining.

The reasons for the motivation for choosing spatiotemporal data mining

as the research field is described in Section 1.2. This thesis addresses

certain research issues associated with the field of spatiotemporal data mining.

Section 1.3 states the research problem addressed in this thesis and Section 1.4

enumerates the research objectives. The research contributions are highlighted
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in Section 1.5. The outline of the thesis is given in Section 1.6.

1.2 Background and Motivation

The spatiotemporal data differs from relational and transactional data in

different aspects, which creates challenges as well as opportunities for mining

the same [10]. The significant differences are (i) traditional data mining

techniques work on the assumption that the data is independent and identically

distributed (i.i.d.), which is not valid for spatiotemporal data as it is highly

auto correlated (ii) classical data is in discrete forms like transactions or graphs,

whereas spatiotemporal data is embedded in continuous space and (iii) spatial

and temporal properties of the data is more complicated than the conventional

attributes and is challenging to be feature-engineered as well as to discover

patterns. Classical data mining techniques underperform when applied to

spatiotemporal data because of the above-said reasons. The presence of spatial

and temporal attributes provides a rich diversity for the spatiotemporal data,

which can be exploited for mining patterns. Traditional data mining deals

with distinct objects having well-defined features. For spatiotemporal data,

there are numerous novel ways of formulating objects and features. As an

example, for the spatiotemporal data, one way is to model spatial locations as

objects and measurements over time to define the features, and another way is

to model time points as objects and measurements collected from all the spatial

locations to define features. Therefore, the coupling of spatial and temporal

information in the data introduces novel problems, challenges, and opportunities

in spatiotemporal data mining, with a broad scope of application in various

domains.
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Various types of spatiotemporal data differ in the way of data collection

and representation. Following the literature [10], it is understood that the

spatiotemporal data types are (a) event data, (b) trajectory data, (c) point

reference data and (d) raster data. Event data consists of discrete events

occurring at point locations and times (eg-crime event). Trajectories denote

the paths traced by bodies moving in space over time. This data is collected

by the sensors deployed in the moving objects that can periodically transmit

the location of the object over time (eg- moving route of a taxi). Point

reference data consists of measurements of a continuous spatiotemporal field

over a set of moving reference points in space and time. The measurement

of meteorological data using weather balloons floating in space is an example

of point reference data. Raster data is the measurement of the continuous or

discrete spatiotemporal field that is recorded at fixed locations in space and

at fixed points (eg- satellite images of a fixed location at definite intervals of

time). A noticeable advantage associated with the different data types is that it

is possible to transform one data type to another.

Conventional machine learning and data mining techniques are limited in

their ability to process raw spatiotemporal data. Appropriate and suitable

representation of spatiotemporal data has to be evolved before applying the

data mining techniques. For the spatiotemporal data types outlined earlier, the

common representation techniques seen in the literature are the sequence, graph,

matrix and tensor [11, 12, 13]. Sequences are the representation techniques used

for event and trajectory data to find sequential and frequent patterns associated

with the spatiotemporal data. Point reference data generally uses graph or

matrix representation to model data instances. As the raster data started growing
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enormously, the n-way arrays called tensors are used for data representation.

Dimensions of the tensor can be used to represent spatial locations and time

stamps available in the spatiotemporal grid of raster data. An emerging theme

in spatiotemporal data mining research is of studying novel representations of

spatiotemporal data sets.

Another emerging direction in spatiotemporal data mining is the problem of

integrating multimodal data along with the spatiotemporal data. Tensors support

the presence of n-dimensional multimodal data, which can be incorporated

with spatiotemporal data. However, the choice of the representation for

constructing spatiotemporal data instances depends on the nature of the problem

being addressed and the set of data mining methods available for the same.

Spatiotemporal data mining addresses several commonly studied data mining

problems like clustering, predictive learning, frequent pattern mining, anomaly

detection, change detection, and relationship mining.

The diversity of data types, challenges, opportunities, and the range

of evolving applications in which spatiotemporal data is being gathered is

increasing. These make spatiotemporal data mining an exemplary fusion for

innovative research studies in the field of data mining.

1.3 Problem Statement

The research problem is formally stated as follows.

To design and develop algorithms for colocation pattern mining and

semantic change detection through effective representation of spatiotemporal

data.
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1.4 Objectives

The main objective of the work reported in this thesis is to design and develop

algorithms for mining patterns from spatiotemporal data. The mined patterns

contain knowledge of spatial and temporal relationships that exist in the data.

Due to its inherent complex nature of spatiotemporal data, an appropriate

representation technique has to be evolved. The effective data representation

technique can be carried forward to the problems of colocation pattern mining

and change detection. The patterns mined are to be semantic in nature, for better

comphrension. Hence the objectives for this research work is set as follows.

1. To study the existing methodologies for mining spatiotemporal data and

comprehend the challenges and opportunities.

2. To feature engineer spatiotemporal data for effective classification.

3. To investigate and evolve an effective representation technique for

spatiotemporal data.

4. To mine spatial and spatiotemporal colocation patterns from

spatiotemporal data.

5. To perform semantic change detection in spatiotemporal data and develop

an ontology that conceptualizes the process.

1.5 Contributions of the Thesis

Significant findings and contributions of the thesis are summarized as follows.
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• A novel set of features termed as intra-spectral features and inter-spectral

features is proposed for the spatiotemporal raster data that measure the

variance of the pixels in the same spectral channel and different spectral

channels for the different patches of the image. The novel features

are appropriately represented and are being fed into different classifiers.

Experiments proved that the discriminative capability of the proposed

features are best captured through tensor representation techniques.

• The concept of tensor algebra has been brought into the spatiotemporal

domain. Algorithms are proposed for colocation pattern mining in images.

In spatial colocation pattern mining, the algorithm performed better in

two aspects, namely (i) containment of the number of image-objects

in colocation patterns and (ii) computational time. In spatiotemporal

colocation pattern mining, the proposed algorithm follows an incremental

approach to accommodate the time series data, in terms of optimal

space and time, and also yielded significant colocation patterns. Mined

colocation patterns are useful for urban facility analysis.

• A spatiotemporal-metric miner that detects change patterns in urban

landscapes at different granularities is proposed in this thesis. The miner

integrates the landscape metrics data to the raster data to produce semantic

change patterns. The miner computes, a novel set of growth indices,

namely, Intra-Class Growth Index and Inter-Class Growth Index that

quantifies the growth or detainment of a region. A ranking of Indian

cities in terms of change is proposed based on the growth indices. The

contribution is useful to urban planning and management authorities.
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• The landscape metrics contributing to change pattern analysis is

conceptualized into an ontology. The ontology can perform

spatiotemporal reasoning in the form of rules and axioms. The ontology

rules report changes that occurred in a region in terms of the class label

and associated properties. The axioms provide semantic information in

terms of morphology, shape, position, and texture. The rules and axioms

from the ontology helps to understand the growth or detainment of a

region. Case studies on Indian cities are attempted using the proposed

spatiotemporal ontology.

1.6 Outline of the Thesis

The research work is reported in eight chapters, and the outline of the thesis

organization is as follows:

Chapter 1 introduces spatiotemporal data mining, discusses the motivation

behind the work, states the research problem, enumerates the objectives of the

research work, and gives an overview of the structure of the thesis.

Chapter 2 presents a systematic survey on the spatiotemporal data,

associated data types, representation techniques, and data mining problems

addressed in the field of spatiotemporal data mining.

Chapter 3 details the proposed novel features called intra-spectral and

inter-spectral features, which provide new insights on the classification of

remote sensing images.

Chapter 4 describes a framework for spatial colocation mining using

tensor-based approaches. The results of the mining are evaluated in terms

of novel interestingness measures. A detailed analysis of the algorithm is
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performed on various decisive parameters.

Chapter 5 presents a tensor-based approach to find spatiotemporal

colocation patterns in classified images. An algorithm to find change patterns in

the time series satellite image data using an incremental approach is presented

in this chapter.

Chapter 6 applies the tensor-based approach for change detection in urban

landscapes with the support of landscape metrics. Growth indices for Indian

cities are proposed and evaluated.

Chapter 7 outlines an ontology for change detection in remotely sensed

images, which summarizes the studies conducted in this thesis for change

pattern analysis.

Chapter 8 recapitulates the thesis and mentions future directions in this

research area.





Chapter 2

Literature Survey

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Spatiotemporal Data . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Data Instances . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Data Representations . . . . . . . . . . . . . . . . . . . . . 20

2.3 Spatiotemporal Data Mining Approaches . . . . . . . . . . . . . 25
2.3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Predictive Learning . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 Frequent Pattern Mining . . . . . . . . . . . . . . . . . . . 28
2.3.4 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 29
2.3.5 Change Detection . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . 33

This chapter presents the current state of-the-art of the spatiotemporal data

mining field. The challenges and opportunities of the spatiotemporal research

aspects are discussed. The chapter outlines the different types of spatiotemporal

data and the associated data mining problems for each of these data types. The

standard data representations for the different data types are also summarized.
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A comprehensive study of data mining problems seen in the different application

domains of spatiotemporal data is presented. The opportunities and challenges

in the field of spatiotemporal data mining, and varieties of problems studied in

spatiotemporal applications are summarized towards the end of the chapter.

2.1 Introduction

Spatiotemporal data has become increasingly available these days with the

widespread advancement of various positioning techniques like remote sensing

and mobile devices. As the number, size, and resolution of spatiotemporal

data sets have rapidly increased in this era of big data, conventional data

mining approaches are becoming skeptical about dealing with such kind of data.

Mining knowledge from spatiotemporal data has become significant to many

real-world applications, as detailed in the previous chapter. To advance the state

of-the-art in numerous disciplines, the successful study of such increasingly

ubiquitous spatiotemporal data holds great promise. Spatiotemporal data and

the inherent relationships that exist in the data restrict the utility of data

mining methodologies to identify spatiotemporal patterns. This forms the

biggest challenge for the research community of spatiotemporal data mining.

Another problem inborn with the spatiotemporal data mining approach is that

its techniques must be developed with an awareness of the underlying theories in

the application domain due to the interdisciplinary nature of the data. Although

the efficacy of classical data mining algorithms is minimal in spatiotemporal

data mining, the availability of spatial and temporal information also allows

for consideration of novel formulations for data analysis. Objects and related

features of spatiotemporal data can be described in multiple ways. As an
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example, a particular illustration is to consider spatial locations as artifacts and

measurements as characteristics over time, while another illustration is to treat

time points as objects and measurements obtained as characteristics from all

spatial locations. This kind of novel formulations of spatiotemporal data helps

to derive knowledge in different forms and granularities of space and time.

Hence it is noteworthy that there are ample opportunities available in various

application domains of spatiotemporal data. With this context, the chapter is

structured as follows.

Section 2.2 of this chapter details the foundation of spatiotemporal data in

terms of its properties, data types, and representation methods, which helps to

identify any spatiotemporal data encountered in the real-world. A survey of

commonly studied data mining problems using the spatiotemporal data mining

approach is reviewed in Section 2.3. The data mining problems addressed in

this section are clustering, predictive learning, frequent pattern mining, anomaly

detection and change detection. A brief summary of the various data types,

instances and representations from the perspective of applications in the field

of spatiotemporal data mining is drawn towards the end of the chapter. To

complete the first objective of this thesis work, Section 2.4 summarizes the

novel aspects of spatiotemporal data mining and comprehend the challenges

and opportunities, thus paving the way for further studies.

2.2 Spatiotemporal Data

In this section, the generic properties, data types, and representations of

spatiotemporal data are described in detail. This study helps to understand the

richness and diversity associated with spatiotemporal data.
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2.2.1 Properties

There are two properties of spatiotemporal data that brings in challenges and

opportunities in the data mining approaches. Classical data mining algorithms

work on the assumption that the data under consideration is independently

generated and identically distributed. This is not true for spatiotemporal data.

The following are the properties of spatiotemporal data.

1. Auto-correlation [14, 15, 16]—From the very early days, works in

spatial approaches are prevalent. Tobler’s first law of geography states

“Everything is related to everything else, but near things are more

related than distant things” [14]. This is called the auto-correlation

effect. The auto-correlation effect is rational in spatiotemporal data,

as the measurements of nearby locations are always dependent on the

adjacency factor. For example, the temperature measurements at nearby

locations are always dependent and consistent. Assuming independence

on spatiotemporal data will yield salt and pepper errors for classical

data mining algorithms. As the data is not independently generated, the

standard evaluation schemes also may become invalid.

2. Heterogeneity [14, 15, 16]—By identically distributed, it is implied

that every instance belong to the same population. Spatiotemporal

data can exhibit heterogeneity in varying space and time in different

granularities. A common case for non-identical distribution is that

the satellite measurement of a location on earth at seasonal cycles is

differently distributed. Hence the models built for mining spatiotemporal

data should learn to adapt to the different distributions possible for

the data. Thus, contrary to the classical data mining assumption of
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homogeneity of data, even though every instance of spatiotemporal data is

drawn from the same population, they are not identically distributed.

2.2.2 Data Types

There are a variety of spatiotemporal data types that is used in the real world

for various applications. The data differ in what way space and time are used

in the data gathering and representation process, resulting in multiple types of

spatiotemporal data mining problem formulations. The taxonomy adopted by

[10] is followed in this thesis, by which the kinds of spatiotemporal (ST) data

types are: (i) event data, which encompasses of discrete events occurring at

distinct point locations and times (ii) trajectory data, where the measurements

are trajectories of moving bodies (iii) point reference data, where a continuous

spatiotemporal field is being measured at moving spatiotemporal reference

points and (iv) raster data, where observations of a spatiotemporal field is being

collected at fixed cells in a spatiotemporal grid.

Event Data

The advent of event kind of data can be cited in the early nineties [17] in

the literature. Event data includes discrete events that occur at distinct points

and times. Such kind of data are common in criminology [18], epidemiology

[19], transportation [20], and social network [21]. Examples of event data

include incidence of crime, disease outbreak, accident, and even a social event.

Spatiotemporal, as well as non-spatiotemporal attributes, can characterize event

data. As an example, the type of crime, location, and time at which the time

activity occurred can be characterized as a crime event. A series of space-time

events is called a spatial point pattern [22]. A depiction of the same is shown
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Figure 2.1: Events belonging to three types

in Fig.2.1. The circles, squares, and asterisks denote the three types of crime

characterized by (ci, li, ti) where ci is the type of crime, li, is the location of

the crime and ti is the time at which the crime occurred. A disease outbreak

can also be represented using the location and time where the patient was first

infected. An event data can also have a time period of appearance, denoting the

birth and death of the event. Spatiotemporal events are generally represented by

the Euclidean coordinate system, even though for certain spatiotemporal events,

shortest distance connecting events are seen on spatial road networks [23].

Trajectory Data

Trajectories represent the path outlined by bodies moving in space over

time. Trajectory examples include the route taken by a cab from the origin

point to the destination and the migration trail of animals. Sensors are

typically attached to the moving bodies that convey the body’s position over
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time. Thus a moving body can be a person, an animal, a vehicle, a mobile

device, or even a phenomenon. Fig.2.2 illustrates the trajectory of three

moving bodies A, B and C. Each trajectory is characterized by a sequence

of {(l1, t1), (l2, t2), . . . , (ln, tn)} where ti is the time when the moving object

passes the location li. An extensive survey of mining trajectory data can be

found in [24]. Trajectory data collections are sampled depending on storage

and energy limitations. The trajectory data consists of spatial, temporal as

well as spatiotemporal attributes. A wide spectrum of applications are driven

by trajectory data mining techniques like path discovery [25, 26], location or

destination prediction [27, 26, 28], movement behavior analysis [29, 30], group

behavior analysis[31] and urban service [32, 33, 34]. Trajectory data such as

human trajectory, urban traffic trajectory and location trajectory are becoming

ubiquitious in today’s world of mobile applications, GPS, Wi-Fi networks,

RFID and sensors. This kind of data is being exploited to improve the urban

life to a great extent.

Point Reference Data

Point reference data is the measurement of continuous spatiotemporal fields over

a set of moving reference points [10]. Point reference data can be represented as

a set of tuples {(s1, l1, t1), (s2, l2, t2), . . . , (sn, ln, tn)} where each item denotes

the measurement of sensor si at location li at time ti. Sensors are placed at

different locations referred to as reference points, which changes over time.

Raster Data

Raster data is the measurement of continuous or discrete spatiotemporal fields

over fixed locations in space at fixed time points [10]. The difference between
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Figure 2.2: Trajectories of three moving bodies

point reference data and raster data is that the locations are fixed in raster

data where locations are moving in point reference data. The fixed locations

and fixed time can be regularly or irregularly distributed. So for ‘m’ fixed

locations, say, l1, l2, . . . , lm and ‘n’ timestamps, say, t1, t2, . . . , tn, the raster

data is represented by an entry in the matrix Sm×n, where each entry sij is the

measurement at location li at time tj . This matrix, which records the distinct

measurement, is also referred to as a spatiotemporal grid. The images of the

earth’s surface collected by the satellites at fixed revisit times are an example

of raster data. Other examples of raster data include data from climate science,

epidemiology, and brain imaging. Observations of raster data can be recorded

at points as well as regions.

Another feature associated with raster data is the resolution of the

spatiotemporal grid, in terms of space and time. For example, satellite

measurements of the earth’s surface obtained from the LANDSAT sensor are
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at 30 m spatial resolution every 16 days, where the MODIS sensor is at 500 m

spatial resolution on a daily scale. The computational requirements of the

raster data analysis are highly dependent on the resolution of the same. Thus

the resolution of the raster data is a challenging factor to extract the required

information from the spatiotemporal field being measured.

An important aspect of spatiotemporal data is that the data collected in a

particular data type can be transformed into a different data type for relevant

reasons. By aggregating the number of events in each cell of a spatiotemporal

grid, an event data type can be transformed to a raster data form.

2.2.3 Data Instances

Data instance is the basic unit of data upon which the algorithms operate upon.

The standard categories of data instances for the spatiotemporal data types

discussed in the previous section are as shown in Fig. 2.3. Spatiotemporal events

are represented as point instances, where trajectories can be described as an

ordered collection of points, trajectory instance or as a time-series of locations.

Point reference data also can be represented as points where each instance is

a reference point of the spatiotemporal field with respect to space and time.

Spatiotemporal raster data can be represented as time series, spatial maps, or

raster as per the need of application.

The choice of the right approach to the construction of spatiotemporal

instances depends on the nature of the questions being studied and the family of

available approaches for the task.
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Figure 2.3: Data types, Data Instances and Data Representation of ST Data

2.2.4 Data Representations

For the above-mentioned data instances, the standard data representation

techniques are the sequence, graph, matrix, and tensor as depicted in Fig. 2.3.

Trajectories and time series can be represented as sequences. Trajectories

can also be represented as matrices, where the row and column are the

dimensions of the spatiotemporal grid, and an entry value indicates whether

the trajectory traverses the corresponding grid. Matrices can also be represented

as graphs. For example, in a spatiotemporal road network, sensors deployed in

the expressways are nodes in a graph, and the edges denote the road segments

between sensors.

As this research thesis is concentrating on raster data, a detailed study

of data representation for the same is attempted in this section. Raster data

is generally represented in matrices and tensors. Even though matrix is a

more straightforward data representation as compared with tensor, it loses

the spatial correlation information among the locations, and hence the matrix
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representations are generally not encouraged for spatiotemporal raster data.

Figure 2.4: Concepts of Tensors, Fibers and Slices
Figure Courtesy - Cichoki et al.[35]

Concepts of Tensors

Tensors are the multidimensional generalization of arrays or matrices that are

often used to represent large scale, high dimensional data. The convention

adopted in this thesis is to represent tensors in calligraphic font, matrices in

capital letters, and vectors in small bold letters. A N-order tensor is represented

as

X ∈ RI1×I2×···×IN .

The order of a tensor is the number of its modes, ways, or dimensions,

which can be space, time, frequency, classes, and so on. An N × 1 vector x

is considered a tensor of order one, and an N ×M matrix X a tensor of order

two. Subtensors are parts of the original data tensor, created when only a fixed

subset of indices is used. Vector-valued subtensors are called fibers, defined
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by setting every index but one, and matrix-valued subtensors are called slices,

obtained by setting all but two indices [35].

Fig.2.4 depicts the concepts of tensors, fibers, and slices. The slices can

be obtained in horizontal, lateral, and frontal forms, whereas the fibers exist in

column, row, and tube forms. The figure shows the different views of fibers and

slices in a nutshell.

Operations on Tensors

Matricization of Tensors

The manipulation of tensors often requires their reformatting or reshaping;

a particular case of reshaping tensors to matrices is termed matrix unfolding or

matricization. The matricization of a 3-order tensor is shown in Fig.2.5.

Multiplication of Tensors

Various product rules exist for the tensor, which is summarized in Table

2.1[35].

Factorization of Tensors

Tensor factorization aims to represent the tensor as a product of low

order factors. This is also called tensor decomposition in tensor algebra.

The most common factorization methods in tensors are Canonical Polyadic

Decomposition (CPD) and Tucker decomposition (TKD) [35].

A CPD of anN th order tensor, sayX ∈ RI1×I2×···×IN is a linear combination

of rank-1 tensors.

X =
R∑
r=1

b1r � b2r � · · · � bNr . (2.1)

The tensor rank R is the smallest value for which the above equation holds.
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Figure 2.5: Matricization of Tensors
Figure Courtesy - Cichoki et al.[35]

The matrix form of the CPD can be obtained through Khatri-Rao product.

Determining the rank of a tensor is an NP-hard problem [35]. Since the

computation of CPD is intrinsically multilinear, the solution is obtained through

a sequence of linear subproblems as in the alternating least squares (ALS)

framework, whereby the least-squares cost function is optimized for one

component matrix at a time, while keeping the other component matrices fixed

[36]. The concept of CPD for a 3-order tensor is presented in Fig.2.6.

TKD of a N th order tensor say X ∈ RI1×I2×···×IN is a multilinear

combination of a core tensor G ∈ RR1×R2×···×RN and factor matrices Bn =

[bn1b
n
2 . . . b

n
Rn ].

X =
1∑

r1=1

2∑
r2=1

· · ·
RN∑
rN=1

b1r1 � b2r2 � · · · � b
RN
rN . (2.2)
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Table 2.1: Definition of Tensor Products
Mode-n product
C = A×n B A ∈ Rl1×l2×···×lN and B ∈ RJn×ln yields

C ∈ Rl1×···×ln−1×jn×ln+1×···×lN with entries
ci1...in−1jnjn+1...iN =∑ln

in=1 ai1...in−1inin+1...iN bjnin and matrix
representation C(n) = BA(n)

Full multilinear product
C = ‖A;B(1),B(2), . . . ,B(N)‖ C = A×1 B

(1) ×2 B
(2) · · · ×N B(N)

Tensor or Outer Product
C = A ◦ B A ∈ RI1×I2×···×IN and B ∈ RJ1×J2×···×JM

yields C ∈ RI1×I2×···×IN×J1×J2×···×JM with
entries ci1i2...iN j1j2...jM = ai1i2...iN bj1j2...jM

Tensor or Outer Product of
Vectors
X = a(1) ◦ a(2) ◦ · · · ◦ a(N) a(n) ∈ RIn (n = 1, . . . , N ) yields a rank-1

tensor X ∈ Ri1×i2×···×iN with entries
xi1i2...iN = a

(1)
i1
a
(2)
i2
. . . a

(N)
iN

Kronecker Product
C = A⊗B A ∈ RI1×I2 and B ∈ RJ1×J2 yields

C ∈ RI1J1×I2J2 with entries
c(i1−1)J1+j1,(i2−1)J2+j2 = ai1i2bj1j2

Khatri-Rao Product
C = A�B A = [a1, . . . ,aR] ∈ RI×R and

B = [b1, . . . ,bR] ∈ RJ×R yields C ∈ RU×R

with columns cr = ar ⊗ br

The matrix form of the TKD can be obtained through Kronecker products. The

N -tuple (R1, R2, R3, . . . , RN ) is called the multilinear rank of the tensor. The

concept of TKD for a 3-order tensor is shown in Fig.2.7. As a rule of thumb,

the literature advises using CPD for latent parameter estimation and TKD for
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subspace estimation, compression, and dimensionality reduction [37].

Figure 2.6: Canonical Polyadic Decomposition

Figure 2.7: Tucker Decomposition

2.3 Spatiotemporal Data Mining Approaches

2.3.1 Clustering

Clustering is the grouping of instances based on the feature values. Clustering

can be applied on points, trajectories, time series, spatial maps, and raster

for spatiotemporal data. As clustering is based on similarity, techniques to

measure similarity in spatiotemporal features are to be looked into. Similarity

among points in a spatiotemporal field has to be defined in terms of space

as well as time. When measuring similarity among trajectories, commonly



26 Chapter 2. Literature Survey

adopted techniques are colocation frequency [38], longest common subsequence

[39], Frechet distance [40] and dynamic time warping [41]. Among these

methods, Frechet distance and dynamic time warping can also be used to

measure similarity in time series representations. Standard proximity measures

like Euclidean distance can be used to measure similarity among spatial maps,

whereas spatiotemporal raster similarity is computed based on the extracted

features.

There are two commonly observed purposes of clustering points as per the

literature. The first purpose is to find hotspots. Examples of such hotspots

includes finding outbreaks of diseases [42], law-breaking hotspots [43] and

shared movements in twitter data [44]. This is also referred to as event detection.

The problem of finding hotspots was initially studied in spatial statistics in

the late nineties [45]. The second purpose is to find clusters that have similar

non-spatial attributes. This objective is studied in different applications in the

context of crime data [46], twitter data [47], geo-tagged photos [48] and traffic

accidents [49]. ST-DBSCAN [50] and its extensions are the most popularly

seen algorithms in the literature to cluster points. The significant facets of

trajectory clustering are the choice of distance measure and choice of clustering

technique used. A detailed review of the trajectory clustering can be found in

[51]. “Moving clusters” is a recent development seen in trajectory clustering

where moving bodies meet and exit a cluster as it moves through time in space.

Examples are the movement of a convoy of cars and migrating flocks of animals.

Algorithms for moving clusters are seen in [52, 53, 54]. Time-series clustering

involves finding spatially rational groups of locations with the same temporal

behavior. This problem is usually achieved through the common clustering
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techniques like k-means [55] and hierarchical clustering [55]. A disadvantage

associated with the traditional techniques is that the resultant clusters are

not spatially contiguous, which should be rectified by a post-processing step.

Clustering spatial maps are to find timestamp groups with similar spatial maps

such as time stamps of brain activity having similar patterns of spatial activity

[56].

2.3.2 Predictive Learning

Predictive learning is a mapping from the input features to the output variable

with the aid of training samples. In the spatiotemporal domain, both input

and output variables are spatiotemporal instances, thus paving the way for

varieties of problem formulations. A common problem is predicting an output

variable at every spatial location using the time-series as input variables. This

is the context of classification and regression problems. Latent space models

for traffic prediction using time-series is a typical application of a predictive

learning approach [57]. Prediction of the future location of a moving object

based on past data of visited locations is yet another example [58]. Another

common predictive learning problem in the spatiotemporal domain is to predict

the response at a specific location and time using observations collected at other

locations (usually neighborhoods) and timestamps. Such instances can be seen

while estimating ecology [59], and mapping earth sciences data from remotely

observed scenes [60]. Numerous works are seen in the literature that uses

temporal information and spatial information separately to perform predictions

with respect to temporal points and spatial locations.

The research in predictive learning has now migrated to deep learning

models. The traffic accident prediction problem is studied using Convolutional
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Long Short Term Memory neural network model in [61]. In this architecture,

the point data is merged to form a spatiotemporal field and is represented as a

tensor. A road level traffic prediction using stacked encoder [62, 63] and deep

belief networks [64] is also proposed.

2.3.3 Frequent Pattern Mining

There exist several kinds of frequent patterns that can be formulated in the

context of spatiotemporal data, of which the common ones are colocation

patterns, co-occurrence patterns and sequential patterns.

Colocation patterns are subsets of data that occur in close spatial proximity

of each other. Colocation pattern is termed as co-occurrence pattern when

the proximity is in terms of space as well as temporal context. Colocation

pattern was first termed in spatial statistics by Huang [65]. A summary of

colocation pattern mining in the current state of-the-art is presented in Chapter

4. A first approach to discover co-occurrence patterns using Apriori principle

is seen in [66]. Sequential pattern mining is the occurrence of spatiotemporal

events of a specific kind that generates a sequence of spatiotemporal events of

other types, as seen in [67]. For example, the occurrence of a car accident

can trigger traffic jams in the spatiotemporal neighborhood. A slicing-STS-

miner is proposed in [68] which discovers an ordered list of event types, which

discovers significant sequential patterns. Sequential patterns can also be mined

in trajectories, which constitute the spatial locations visited by moving objects.

Extension for association rule mining in spatiotemporal context referred to as

STAR [69] is proposed to find regions visited by moving objects. Sequential

pattern mining can also be sought in spatiotemporal raster, wherein a pattern

of events is discovered in the grid. A commonly studied topic is the study of
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community structure and interactions in the social network [70, 71].

2.3.4 Anomaly Detection

Anomalies are instances that are dissimilar from the majority of the instances.

Detecting anomalies are a by-product of clustering. The anomalies due to their

dissimilarity will not belong at any cluster and are termed as outliers. Examples

of anomalies from the perspective of spatiotemporal context are an anomalous

trajectory taken by a vehicle, anomalous ecological behavior in either spatial or

temporal context. A detailed survey of anomaly detection in time series data is

seen in [72] and spatial data in [73, 74]. The presence of spatial and temporal

aspects together will result in novel ways of describing anomalies.

Distance-based methods to discover anomalous trajectories are discussed in

[75], where trajectories that are in distant spatial regions compared to others

are considered as anomalies. Detecting traffic outliers as edge anomalies are

proposed in [76] where the spatiotemporal trajectories are modeled as a graph.

A trajectory can also be categorized as anomalous if it deviates from the local

neighbors, thus exhibiting the outlier characteristics. Anomalies seen in raster

data are usually group anomalies such as regions or group of locations that

show abnormal behavior during a short period of timestamp when rare events

happen. The approach seen in the literature for group anomalies is the stitching

of spatial and temporal anomalies to find spatiotemporal anomalous values

[77]. A similar method to find ocean eddies by using local space thresholding

technique followed by a stitching process in temporal attributes is proposed in

[78]. Abnormal activities in crowded scenes are difficult to detect due to the

challenge associated with defining normal activities. Borrowing the activity

recognition literature, attempts have been made to detect anomalies by using
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dynamic mixture models [79]. Another category of group anomaly is the mining

of burst activities for specific terms like an earthquake, flood in twitter data

[80, 81].

2.3.5 Change Detection

Change detection is the process of identifying timestamp at which a

system deviates significantly from past behavior. Change detection in the

spatiotemporal domain is highly useful in the study of earth science data and

neuroimaging data. Changes are mined contextually in both space and time in

spatiotemporal raster data. There exists a number of novel formulations for the

contextual concept. For example, the context of time can be thought of as time

series observed at spatial locations in close proximity or time series similar to a

given time series for a period of time. A decrease in vegetation can be detected

using a space-window enumeration and pruning approach as discussed in [82].

A taxonomy of different changes from the perspective of spatiotemporal data is

briefed in [83].

The earth science data in the form of images are analyzed for land cover

or land use. Land cover, as the observed physical cover, and land use, as

the function it serves, are, in most cases, interrelated. Change detection

methodologies for spatiotemporal data in the form of remote sensing images

are generally grouped into two categories, (a) pixel-based approaches and (b)

object-based approaches.

A pixel is considered to be an atomic unit of the image, and the spectral

reflectance values associated with a pixel can be used to detect changes.

Statistical operators are generally used to analyze the pixel values. Common

techniques in pixel-based approaches are image differencing [84], image
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ratioing [85] and image regression [86]. Another common approach is

vegetation index differencing [87], where vegetation indices of two temporal

images are found separately, and the technique of either differencing or ratioing

is applied to find the changes that have happened in the vegetation. In the change

vector analysis method [88], the pixel values of different spectral bands are

treated as vectors, and a change vector is found by calculating the difference

between the pixel values at different dates.

In object-based change detection methods, the unit of analysis in these

methods is an object. The concept is similar to the way a human do analysis,

who identifies the objects from an image, rather than individual pixels and their

associated values. By considering the image as a collection of objects, the

properties of objects like shape, size, texture, and spatial arrangement of objects

in a neighborhood helps to gain the semantics of an image more effectively.

A direct comparison of objects in two images can be sought for as seen in

[89, 90]. Different classification algorithms also can classify the bi-temporal

images to different objects. A change matrix of from-to is outlined to describe

the changes in objects. The performance of this method is strongly related to the

classification accuracy of the algorithms. In multi-temporal object-based change

detection [91, 92], image segmentation, and classification are applied to stacked

multi-temporal images, and the spatially corresponding changes between the

images can be detected. An extensive survey of the change detection methods

is seen in [93].

A brief summary of data types, instances and representations from

the perspective of applications for the various data mining tasks in the

spatiotemporal field is provided in Table 2.2.
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2.4 Summary of the Chapter

The variety of data types, data instances and techniques for representing

spatiotemporal data are described in detail in this chapter. A comprehensive

study of tensor representation methods and its relevant operations are also

done, as the thesis is based on the concept of tensor algebra. A survey

of spatiotemporal data mining problems like clustering, predictive learning,

frequent pattern mining, anomaly detection and change detection approaches

are detailed in this chapter. The following pointers are the highlights of the

study.

• The challenges and opportunities in the field of spatiotemporal data

mining is due to the generic properties of spatiotemporal data, namely,

auto-correlation and heterogeneity.

• Novel and natural formulations of data representation are necessary to

perform the data mining task effectively.

• It is understood that the work in the young field of spatiotemporal data

mining is generally application-driven.

• The representation of multi-faceted data by tensor methods helps to

perform and exploratory analysis of spatiotemporal data, which helps to

discover significant patterns.

• Blending of ideas across disparate application domains is a promising area

in the field of spatiotemporal data mining.

The thesis attempts to bring in effective data representation techniques for

spatiotemporal data and discover significant patterns from spatiotemporal data.
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This chapter intends to learn the data representations for spatiotemporal

raster data. For this purpose, remote sensing images are chosen as

the spatiotemporal dataset in this study. Experiments on different data

representation techniques are done on the remote sensing images, and the

data mining task of classification is performed. In this study, a novel set of

features from the perspective of remote sensing images is proposed, namely,

intra-spectral and inter-spectral features. The features are analyzed in detail

35
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with other feature extraction techniques from the perspective of remote sensing

image classification.

3.1 Introduction

The pixels of remote sensing image contains a set of values, whose count is

proportional to the number of bands of the satellite in which the reflectance

is captured. The classification of remote sensing images involves the task of

categorizing all pixels in an image of terrain into land cover/land use classes.

The basis of the numerical values of each pixel aids in the categorization of

the image. Generally, all land cover/land use classification utilizes pixel by

pixel spectral reflectance values for the same. In a low or medium spatial

resolution satellite images, single-pixel houses more than one class, thus leading

to errors in the classified output. In high or very high-resolution satellite

images, the variability between pixels will be high, and each pixel houses

only one class. To detect each type of land cover/land use classes, appropriate

combinations of bands have to be sought, which is not known in advance. Low

or medium resolution satellite has three to four bands, where the high and very

high-resolution satellites have hundreds of bands. Thus it is evident that to

perform classification, appropriate combinations of bands have to be iterated

through. This will result in more number of computations with increased time

complexity.

The spatiotemporal raster data is studied for different data representation

techniques in this work. For the remote sensing images, instead of finding band

combinations of the pixels for each land cover/land use class, the variance of

the pixels in the same spectral channel and different spectral channel (named
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as intra-spectral and inter-spectral features) are chosen as the discriminant for

performing classification. The features are being fed into different classifiers

and are analyzed in detail. Appropriate conclusions are drawn from the

experiments by comparing the classification accuracy of the classifiers with the

traditional features.

The chapter is organized as follows. The next section 3.2 brings out

the related research in the field of classification of remote sensing images.

The proposed features are detailed in Section 3.3. Experimental setup and

discussions are explained in Section 3.4. The chapter is concluded in Section

3.5.

3.2 Related Research

The literature points to the fact that the task of classification is highly improved

by appropriate feature selection in the particular domain of classification [94,

95]. Classification in low, medium, and high-resolution remote sensing images

is generally attempted using the standard features of raw pixel intensities.

Textures of the images are also a major feature which is used for classification

[96]. Image channels are convolved into Gabor filters, and the response obtained

from the features are used as input to the classifier [97]. The performance

of the classifier varies depending on the type of the texture, and hence each

filter has to be fine-tuned for the feature relevant to the class. The intensities

within a predefined neighborhood around a pixel can also be gathered to

perform classification with larger certainty [98]. Other approaches in the

literature depend upon the concept of reduction of space dimensionality through

conventional methods like LDA [99], PCA [100], partial least squares [101] or
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genetic algorithms [102] for the huge set of pixel features before training the

classifier. In very high-resolution images, the end member feature extraction is

studied separately, and methods are outlined for the same [103, 104].

Machine learning techniques depends on the classifier models to perform

the task of classification. An exclusive study for images from the perspective

of classification is done in [105]. From the study, it is seen that (a) there are

certain classifiers like Neural Networks and k-NN, wherein the features have

to be fed into them and (b) another set of classifiers like random forests and

boosting classifiers, wherein the informative features are being picked by the

classifier during the training phase. An advantage in the second scenario is

that the classifier picks the features that are most discriminative, such that the

selected features work best in combination with a particular classifier and related

classes. The literature advises that the joint problem of feature selection and

classification will be more interesting to solve than to consider both of them

separately. Examples of such work are seen in [106, 107].

3.3 Proposed Features

Sensors of a satellite capture spectral reflectance in multiple spectral bands.

Each band is recorded in a single channel; thus, there are several intensities

per pixel. Usually, all pixel values (spectral values corresponding to each

channel) are chosen as features for classification. This is because it is not

known in advance, which combination of spectral bands will help in separating

the land cover or land use classes optimally. If all the spectral values of a

pixel are considered, then the feature dimension is equivalent to the number

of channels. Instead of building a huge feature space, two new features, namely,
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Figure 3.1: Echoing of (a) Square patch and (b) Rectangular patch in the Sliding
window

intra-spectral features (IASF) and inter-spectral features (IESF), are proposed in

this study.

A window of appropriate size is chosen inside an image patch as depicted

in Fig.3.1. The central pixel of the window is marked as solid dark and is

represented by C. Square patches, and rectangular patches are chosen inside the

window and are echoed with respect to the central pixel C. The figure depicts

square patches and rectangular patches and the echoed correspondences.

The patches are randomly generated, and they help to capture the texture

ranges in the image. Patches of the same sizes (both square and rectangular) are

grouped under the category of “alike” patches and that of different sizes (both

square and rectangular) are grouped under the category of “unalike” patches.

The difference between the mean intensities of both the square and rectangular

patches are calculated. The intra-spectral features and inter-spectral features of

the image are defined as follows.

• Intra-spectral features (IASF)—The difference between the mean values
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Figure 3.2: Intra-spectral Features

of “unalike” patches in the same spectral channel.

• Inter-spectral features (IESF)—The difference between the mean values

of “alike” patches in the different spectral channels.

Fig.3.2 represents the intra-spectral features. The “unalike” patches are

marked in different colors. The difference between the mean values of “unalike”

patches is summed up. The operation is performed in the same spectral channel.

Fig.3.3 represents the inter-spectral features. From the name itself, it is

clear that the feature is extracted from different spectral channels. The “alike”

patches in all spectral channels are marked in colors. The difference between

the mean values of “alike” patches in the different spectral channels constitutes

the inter-spectral features.
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Figure 3.3: Inter-spectral Features

3.4 Results and Discussions

The experiments are performed on different datasets to compare the different

features and to assess the performance of different classifiers for the different

features.

3.4.1 Dataset

The experiments are run on datasets from WorldView-2 satellite images

acquired from [108]. Samples are shown in Fig.3.4. The specifications of

WorldView-2 satellite is described in Appendix A. The images have dimensions

615 × 615 and is of resolution 0.5 m. The images chosen are suburban parts

of famous cities covered in the dataset. The four different images in the dataset

are divided into five strips, wherein four strips are used for training, and the fifth

strip is used for testing (as motivated from [109]). The iterations are repeated by
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Figure 3.4: World View-2 Images

interchanging the training and testing sets. The final result values are obtained

through averaging.

3.4.2 Experiments

The feature sets used in the experiments are (a) IASF and IESF (b) Raw pixel

values (c) Reduced Pixel Values through PCA (Raw Pixel Values + PCA) (d)

Reduced Pixel Values through LDA ( Raw Pixel Values + LDA) and (e) Mean

Features of the Echoed Pixel Values (Echoed Mean Features—EMF). Classifiers

used in this evaluative experiments are of two types. The first category of

classifiers does not perform feature selection, whereas the second category

performs feature selection during the training phase. The classifiers used in
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the experiments are (a) Bayesian (b) Neural Networks (NN) (c) Decision Trees

(DT) (d) Support Vector Machines (SVM) (e) Support Tensor Machines (STM)

and (f) AdaBoost.

The four classes identified from the images are labeled as buildings, roads,

greenery and water. The overall classification accuracy results of the classifiers

achieved for each classifier is as shown in Table 3.1. The different features are

tested for the classifiers. The accuracy is presented with respect to the four

classes—buildings, roads, greenery, and water. The bold-faced values are the

best accuracy values for that particular feature in the concerned class label.

The spectral channel for extracting values of IASF are chosen based on the

classification label. The combined features of IASF and IESF is the feature

vector, which is a discriminant for the purpose of classification.

For the proposed features, IASF and IESF, better classification results are

seen when compared with the raw pixel values. However, certain classifiers

like Bayesian and Neural Networks are not performing at par. Decision Trees

and AdaBoost classifiers show good classification accuracy results for certain

classes. On a generic overview, for the proposed features, the STM shows good

and appreciable values for all classes. One possible explanation for these results

is that the discriminative capability of the proposed features are best captured

by the STM and also by AdaBoost to an extent.

Among the classifiers analyzed, the boosting classifier shows consistent

performance for all features except the raw pixel values. On an analysis with

respect to the class label, to model buildings and roads in high-resolution

images, the decision trees are the best one, when using raw pixel values. All

other classifiers suffer from inconsistent performance with raw pixel values.



44 Chapter 3. Intra-spectral and Inter-spectral Features

When applying PCA and LDA to raw pixel values, the accuracy level fluctuates

between the different class labels, and hence the conclusion drawn is that they

are dependent on the input data points. It is noted that the boosting classifier is

run for 300 iterations.

The raster data is modeled as a matrix as well as a tensor, and is fed to the

corresponding classifier. The matrix representation is also broken down into

vectors, for the sake of input to SVM. The tensor representation of the data is

directly fed into STM. As STM gives better result than SVM, it is evident that

the matrix representation of raster data, does not yield good results. The tensor

representation of the data in STM and the performance of the same leads to

the conclusion that the tensor data representations captures the spatiotemporal

information more accurately than the matrix representation.

Before drawing the final conclusion, it is also necessary to analyze the

results with respect to the feature extraction, training, and testing time of each

classifier with respect to the features. Table 3.2 represent the execution time

for feature extraction, training time, and testing time for each classifier. The

evaluations have been performed on the AMD Opteron 16 core 12 GB RAM

processor. The time is specified in minutes for all cases. A comparative case

study of classifiers that performed well on the classification accuracy is chosen

for further analysis. They include DT, STM, and AdaBoost classifiers. Also, the

features are downsized to three types, namely, IASF + IESF, Raw Pixel Values,

and EMF. The reason for avoiding reduced feature space methods is because

the dimensionality coefficient is set by experiments, and this coefficient highly

influences the time-related in all other areas. Hence they are not chosen for

experiments with respect to time. For the proposed features, feature extraction,
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Figure 3.5: ROC Curve for AdaBoost and STM using IASF + IESF

training, and testing time are much higher when compared with other features.

This is attributed to the fact that the features are made by echoing in the same

channels as well as different channels, rather than simply vectorizing the whole

range of band values.

The AdaBoost and STM classifier is further analyzed with respect to their

ROC, as shown in Fig.3.5. From the ROC, it is evident that the AdaBoost

classifier has an accuracy average of 84%, whereas the STM averages on

78%. But the AdaBoost classifier takes a significant amount of CPU time

in performing the boosting iterations, and also, the accuracy depends on the

number of iterations performed. The ROC is plotted for all the images, and the

true positives and false positives are averaged for all classes in the image.

To fix the optimal patch size, while processing IASF and IESF, an iterative

method is adopted, and the patch size is varied from N/10 to N − 1 for an
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Table 3.1: Accuracy of classifiers for different features

Features Classifier Accuracy (%)
Building Roads Greenery Water

Bayesian 67.1 67.1 69.9 67.8
NN 70.1 71.3 66.8 69.9

IASF+ DT 71.6 79.9 71.6 81.1
IESF SVM 75.6 78.9 77.9 80.2

STM 80.1 83.2 86.8 80.3
AdaBoost 82.1 83.4 80.2 79.2
Bayesian 65.3 61.1 62.7 59.9

NN 67.3 69.9 72.1 71.1
RAW DT 77.5 77.9 71.6 73.5
Pixel SVM 70.0 71.2 77.2 70.2

Values STM 76.2 77.8 78.9 74.2
AdaBoost 70.2 71.8 67.3 71.8

Raw Bayesian 67.5 62.5 70.2 61.3
Pixel NN 61.1 68.4 67.1 67.5

Values + DT 79.9 76.7 80.1 72.1
PCA SVM 69.9 70.2 71.1 72.3

STM 77.8 72.1 77.6 78.9
AdaBoost 71.5 78.5 69.1 78.8

Raw Bayesian 55.6 66.8 61.2 67.1
Pixel NN 60.7 67.1 60.1 59.8

Values + DT 60.2 57.8 57.8 63.7
LDA SVM 71.0 73.2 71.4 71.9

STM 77.8 73.1 76.1 78.9
AdaBoost 79.9 80.1 75.3 76.1
Bayesian 66.7 66.2 66.5 69.1

NN 65.2 61.9 61.5 66.8
EMF DT 78.9 77.5 71.5 71.0

SVM 67.1 58.9 74.1 76.1
STM 61.1 67.5 66.3 66.2

AdaBoost 74.1 78.3 76.1 70.1
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Table 3.2: Execution Time in minutes for Feature Extraction, Training and Testing

Feature Extraction DT STM AdaBoost
IASF + IESF 112 87 56

Raw Pixel Values 3 3 121
EMF 12 10 48

Training
IASF + IESF 227 124 56

Raw Pixel Values 12 12 121
EMF 44 12 48

Testing
IASF + IESF 18 7 9

Raw Pixel Values 6 6 10
EMF 21 25 14

image of size N × N . Experiments are run for different classifiers and the

corresponding classification accuracy is observed closely. It is seen that the

patch size of ranges from 15 × 15 to 25 × 25 gives better results than sizes

greater or lesser than this. The results are plotted in Fig.3.6. For the experiments

reported in this chapter, the patch size is fixed as 24× 24, which shows a stable

value in the experiments.

3.5 Summary of the Chapter

This chapter summarizes the proposed novel feature which is a combination

of the intra-spectral and inter-spectral features of a remote sensing image.

The proposed features perform appreciably well with classifiers like Decision

Trees, Support Tensor Machines and AdaBoost. However, as the features are

computed from different spectral channels as well as from the same spectral

channel, the process of feature extraction consumes time, when compared with
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Figure 3.6: Window Size and Accuracy

the raw pixel values. But, as the classification accuracy gives better results, the

above disadvantage is compromised with. The results of the classification show

appreciable values with Support Tensor Machine for all classes and Adaboost

for certain classes. Hence, it is concluded that the Support Tensor Machine

captures the discriminative ability of the proposed features most effectively.

An insight acquired through the research is that the adequate representation

of spatiotemporal data for the efficacy of the mining task is crucial. It is seen that

the representation of the proposed features by a tensor produces better results

for the mining task of classification. It is therefore concluded that tensor is

an appropriate scheme to represent spatiotemporal raster data and is used in

subsequent studies. The tensor representation of spatiotemporal data and its

effectiveness in colocation pattern mining and change detection is attempted in

the forthcoming chapters.
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In this chapter, a spatial colocation mining framework is proposed that

mines spatial colocation of image-objects present in spatiotemporal raster data

using a tensor factorization approach. The framework takes in spatial raster

image data, tensorize it and perform the mining task, thus eliminating the need

49
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to convert it into a transaction. An interestingness measure called, “spatial

dominance” is also proposed in this work. This measure is an indicator of

the prevalence of the mined colocation pattern. Algorithms are designed in this

framework, first to map the classified pixels as members of image-objects, which

is a pre-stage before mining and second to find spatial colocation patterns.

Experiments are performed to establish the strength of the proposed spatial

colocation mining algorithm.

4.1 Introduction

Colocation pattern mining is the process of finding patterns that are located

together in close proximity. Mining of colocation patterns can be done in

spatial, temporal, and spatiotemporal aspects. Colocation pattern mining yields

important insights in application domains like environment monitoring [4], earth

science [60], mobile services [27], and urban facility analysis [5]. The task of

colocation pattern mining is challenging because of the following facts (a) the

features of the data under study is embedded in continuous space in contrast

to the traditional transaction type discretized structure and (b) numerous spatial

relationships exist between the features of the data thus resulting in considerable

computation time for finding the significant number of colocation instances.

Traditionally, spatial colocations are mined in transaction databases, where

each space instance is modeled as a row in a table. Spatial colocation mining

finds spatial colocation instances and generalize the same to a pattern, based on

interestingness measures. This will result in enormous computation time as the

instances are to be discovered, modeled appropriately, and further downsized

to obtain patterns. The complexity of the work structure mentioned increases
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as there are no transaction databases for image data. Building a transaction

database for image data is a manual interventional task. Hence there is a crucial

need to find spatial colocations from image data without the aid of a transaction

database.

The spatial colocation mining algorithm proposed in this chapter is based on

the concept of tensors, which are basically multi-way arrays. The tensor data

structure captures all kinds of spatial relationships that exist between objects

or entities. The objects or entities in this research are from images, which

are termed as image-objects. Hence there is a necessity of a pre-stage of

finding image-objects from pixel-wise classified images, which is also taken

care of in this work. To the best of our knowledge, this is the first work that

proposes to apply spatial colocation in images. The advantages of modeling

image-objects as tensors are (i) management of huge amount of data with

tensors is easy (scalable images/image-objects) (ii) tensors are easily reducible

to lower dimensions resulting in easy understanding of latent information and

(iii) extraction from tensor data to lower dimensions results in more components

of information than ordinary matrix-based methods.

The chapter is organized as follows. Section 4.2 briefs about the related

research in colocation pattern mining of spatial data. The theoretical study of the

tensor model for pattern discovery in image-objects is described in Section 4.3.

The spatial colocation pattern mining framework and the proposed algorithms

are explained in Section 4.4. The experiments, results, and discussions are

detailed in Section 4.5. The chapter is concluded in Section 4.6.



52 Chapter 4. Spatial Colocation Pattern Mining

4.2 Related Research

Spatial colocation patterns represent the subsets of spatial events whose

instances are often located in close geographic proximity. The first reference

of colocation pattern is seen in spatial statistics by Huang [65]. An attempt

to perform spatial colocation mining is initially observed in [110]. This work

captures a subset of spatial features for a particular class, which is different

from the colocation mining concept in today’s world. An effective approach

is presented in [111] that depicts a space partitioning method for identifying

neighborhood regions that contain instances of colocations. However, the

algorithm may miss colocations across the different neighborhoods, due to

distinct partitions. A join-based colocation mining algorithm is presented in

[112] which works similar to Apriori [113]. This is a computationally expensive

process with an increase in the number of colocation instances. An approach to

perform a partial join to increase computational efficiency is seen in [114]. In

this work, the spatial data is modeled as a clique neighborhood, and the cut

in the neighborhood determines the colocation instances mined. The joinless

approach [115] reduces the computational time by introducing the instance

look-up scheme instead of the regular join operation. The algorithm does not

miss any colocation patterns, even though the computational time is dependent

on the size of the data.

A framework for spatial colocation pattern mining based on association

analysis and maximal clique representation of the spatial data is presented

in [116]. However, in this case, the spatial data has to be modeled as

transaction type data to perform mining of the spatial colocation instances.

Representative Colocation Pattern (RCP) mining is introduced in [117] to
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reduce the exponential number of patterns that arise due to an increase in data

size. Instead of the distance measure, a new prevalence measure is introduced in

this work to find the covering relationship among spatial colocation instances.

In [118] maximal colocations are identified through a maximal clique based

approach wherein a Sparse undirected Graph is used for the purpose. Each

instance clique of a maximal colocation is further stored in a Condensed Tree

to reduce the storage size. This algorithm is hereafter referred to Sparse

Graph Condensed Tree algorithm (SGCT). But the algorithm does redundant

computations when the instances generated have a huge number of object types.

4.3 Tensor Model for Pattern Discovery in Image-Objects

Image-objects are entities in an image, which are actually groups of pixels

of similar digital values. Image-objects possess size and shape in addition

to the pixel value and location, that is, an image-object holds spatial as well

as non-spatial attributes. Non-spatial attributes are the characteristic features

holding nominal values like label or name of image-objects. Spatial attributes

are the spatial location (longitude and latitude), spatial extent (area, perimeter,

size), spatial shape (point, extended, polygon), and even spatial elevation.

As the non-spatial attributes and their relationships are explicit, the focus

is on discovering the implicit spatial attributes and their relationships. The

spatial relationships or patterns that exist among image-objects can be sought

in set space, topological space, metric space, or distance space. Hence it

is felt that the pattern discovery of image-objects in all spaces will yield

knowledge beneficial for decision-making systems. A tensor model for pattern

discovery of image-objects is proposed in this work. Tensor modeling enables a
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paradigm shift from two-way to multi-way components or analysis of the spatial

image-objects.

4.3.1 Tensorization

The multifaceted/multidimensional spatiotemporal data has to be stacked as a

tensor. The ‘N ’ spatial relationships between the image-objects can be modeled

as tensor to start with. Let the tensor be represented as S. The tensor is to be

stacked with the spatial relationship between all image-objects. Assuming there

areK image-objects in the datasets (I1, I2, I3, . . . , IS) and the number of spatial

relationships can be (S1, S2, S3, . . . , SN). Thus the image-objects can now be

looked upon as a tensor as follows.

S ∈ RK×K×S1×S2×···×SN (4.1)

Depending on the spatial relationship in set space, topological space, metric

space, or distance space chosen for study, the set {S1, S2, S3, . . . , SN} can be

decided.

For each image-object, say X ∈ (I1, I2, I3, . . . , IS), generate a set of

matrices K × K, where K is the number of image-objects. The next step is

to stack these matrices to form a third order tensor S ∈ RK×K×N . For a chosen

set of spatial parameters , say, ρn from {S1, S2, S3, . . . , SN}, the nth matrix for

(k1, k2, ...., kK) image objects can be constructed as

s(k1, k2, ρ) in (k1, k2, . . . kK)× (k1, k2, . . . kK) with parameter ρn

Definition 4.1 —Tensorization—The process of converting or stacking all

spatial relationships in the defined space existing between the image-objects

into a tensor.
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4.3.2 Spatial Pattern Discovery from Tensorized Image-Objects

The modeled tensor contains information about the patterns of spatial

relationship that exists between the image-objects. The question posed here

is how to uncover the pattern that exists inside the tensor. The spatial patterns

that exist between the image-objects have to be discovered by extracting the

lower dimensional factors of the tensor. This can be achieved by canonical

decomposition of the tensor, which is introduced in Chapter 2.

Consider a 3-order tensor S ∈ RX×Y×Z . The tensor in factorized form can

be expressed as the sum of component rank-1 tensors as follows, where the

rank-1 tensors are vectors, say, a, b, c.

S =
Rs∑
r=1

ar ◦ br ◦ cr. (4.2)

The symbol ◦ represent the outer product of the vectors and RS is the number

of components in this model and the smallest value of RS is the rank of the

tensor S. The tensor rank cannot be calculated by any known algorithm, as

it is a NP-hard problem. A typical use of 3-order tensor is to model the

interaction between three image-objects, say, X, Y , and Z. An entry sijk of

the tensor denotes the interaction pattern of (xi, yj, zk). In accordance with the

factorization model described as above, each entry in the tensor is the product

of three latent vectors.

sijk =
Rs∑
r=1

xir ◦ yjr ◦ zkr. (4.3)

Thus the tensor contains latent feature represented for the image-objects

under consideration. The interaction pattern of the image-objects can be

recovered once the decomposition is done successfully.
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Continuing with Eq (4.2), to generalize, the set of vectors a{1, 2, . . . , RS},
b{1, 2, . . . , RS} and c{1, 2, . . . , RS}, can be written as a matrix, where each of

the RS vectors is a column of the matrix. Thus the factorization of a 3-order

tensor can thus be represented in terms of three matrices, say, A,B,C. To

conclude, an effective factorization is to minimize the difference between S and

[A,B,C] as

min
A,B,C

‖S − [A,B,C]‖F 2 (4.4)

where A,B,C have dimensions X × R, Y × R, and Z × R respectively and

R < RS .

The way to solve this problem is to find R rank-1 tensors that best

approximate the tensor. The decision of the value of R helps to find the patterns

that exist between image-objects. A lower value of R yields only the strongest

underlying patterns, whereas a higher value of R will produce weakest patterns,

and is also prone to the risk of over-fitting. Thus choosing R is an optimization

problem, and the resulting R number of components yield the spatial patterns

that exist between image-objects.

Definition 4.2 —Spatial Pattern Discovery from Tensorized

Image-Objects—The process of finding explicit patterns in the latent space that

exists between image-objects through the decomposition of tensorized data.

Advantages of using Tensor based Model

(i) The high dimensionality associated with the spatial relationships is to find

different compact spatial patterns without modifying the algorithm in its

entirety.
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(ii) The tensor model can be used for finding the spatial pattern in any space

that exists between the image-objects as long as the relationship patterns

can be appropriately represented. Hence the model can find patterns that

capture multiple interactions in addition to standard pairwise interactions.

4.4 Spatial Colocation Pattern Mining Framework

The spatial pattern discovery using the tensor-based model is attempted in the

metric space. There are two kinds of relationships in the metric space, namely,

distance and topological. Mining the distance relationship that exists between

image-objects helps to discover spatial colocation patterns. In this framework,

the generalized tensor model is adopted for finding spatial colocation patterns.

The workflow of the framework is presented in Fig. 4.1.

The proposed framework has two components (i) a neighborhood growing

technique to find image-objects from a pixel-wise classified image and

(ii) discovering spatial colocation patterns by factorizing the tensorized

image-objects.

The first component performs the mapping of pixels to appropriate

image-objects through a neighborhood growing technique and is named as

“Pixel Mapping to Image-Objects” (PMIO) phase in the framework. The

second component consists of two phases (a) tensorization of image-objects

and (b) tensor factorization to mine spatial colocation patterns and is named

as SCLP-TF.
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Figure 4.1: Spatial Colocation Mining Framework

4.4.1 Pixel Mapping to Image-Objects (PMIO)

The first phase, abbreviated as PMIO, is the phase in which a neighborhood

growing technique is applied on a window of classified pixels. The objective of

this phase is to extract image-objects from the classified image. The heuristic

approach proposed, selects a window of random size, say W . The window

size is generally set to a power of 2, for better computational results. From the

centroid pixel of the window, the neighborhood is examined in log2W group

of pixels, which is referred to as sub-window. On examining the neighborhood,
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find the most occurring class label and assign it to the entire sub-window. The

growing technique terminates when the threshold limits in terms of size (from

the knowledge base input) are reached. The entire set of image-objects in the

image can be identified when this algorithm is applied throughout the image.

The algorithm also finds out the position of image-objects from the centroid

pixel.

The selection of the size of the window as well as the sub-window is

the deciding criteria for the extraction of image-objects. An appropriate

window-size helps to find the image-objects accurately, whereas an under-fitting

window will not identify all image-objects, and an over-fitting window will

result in more computational complexity.

Algorithm 4.1: Pixel Mapping to Image-Objects (PMIO)
Result: Labels of Image-Objects and corresponding Positions

1 Input Classified Image, Window-Size W, Threshold size of Image-Objects

α ;

2 Intialize subwindow size as log2 W;

3 while size of subwindow ≥ α do

4 Find class label of each pixel, say,Cj;

5 For each class label find count (Cj);

6 label (Cj)← max(Cj);

7 Return Cj as class label of Ik and centroid as PIk ;

8 Repeat steps 3 to 8 for the whole image;
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4.4.2 Spatial Colocation Pattern Mining using Tensor Factorization
(SCLP-TF)

After obtaining image-objects and the corresponding position, the next objective

is to mine spatial colocation patterns. The spatial colocation patterns are mined

using the tensor factorization method explained in the previous section.

Tensorization of Image-Objects

The image-objects (I1, I2, . . . , IK) and their corresponding positions PI1 ,

PI1 , . . . , PIk in images under this study have to be stacked as a tensor, and

the process is referred to as tensorization. As the intention is to find spatial

colocation patterns, the spatial relationship has to be sought in metric space,

and Euclidean distance is fixed as the relationship type. The tensor stack has

to model the distance relation between all image-objects. The tensor is built

with labels of image-objects in 1st and 2nd dimension (say, N image-objects),

3rd dimension is tensorized using the Euclidean distance between image-objects

(say, S). Let the tensor be represented as S.

Tensor Factorization to find SCLP

The latent spatial patterns present in the tensorized data have to be discovered

by using the principle of tensor factorization. Tensor factorization yields

components of the tensorized image-objects and their distance relationships.

The tensor S obtained after stacking is of 3rd order kind. The canonical

decomposition is applied on S for factorization using Alternating Least Squares

method as explained in Chapter 2. The general solution is to find different

number of components until the factorization fits into a defined error ratio.

The tensor S is of the order N × N × S. The tensor S, has to be
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factorized to obtain the decomposed components (matrices) say A, B and C

of the dimensions N × R, N × R and S × R respectively, where R is the

rank of the tensor. To start with the factorization, initialize R as Rmin and

randomly choose any two components say A and B. Find C using the formula

given in the Eqn 4.5. The symbol � indicates Khatri-Rao product and ‡ is the

Moore-Penrose pseudo inverse.

C = S3(B � A)((BTB)× (ATA))‡ (4.5)

Repeatedly change the entries in A,B and C and iterate this process over

a definite number of times, where the deciding factor is the difference between

the entries in the original tensor and the recovered tensor from the components

A,B and C. The optimal selection of rank is done by finding the fitting of the

original tensor and the decomposed components. The process terminates when

R reaches Rmax or the difference between the original tensor (S) and recovered

tensor (Ŝ) meets the error-ratio, ε. Thus the decomposed R components for

A,B and C is obtained. The matrices A and B are same, as the two dimensions

of the tensors are labels of image-objects. Each element in the recovered tensor

is calculated as the inner product of ai,bj, ck and the value sijk is assigned the

association between (ai,bj, ck), which is expressed as follows.

sijk = f(ai,bj, ck) =
R∑
r=1

air · bjr · ckr. (4.6)

The decomposed components (air, bjr, ckr) shows the interaction with

respect to image-objects and the distance relation. The R components of A,

shows the interaction among image-objects (or frequent image-objects) with

respect to the spatial pattern under consideration. The prominent/frequent
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Algorithm 4.2: Spatial Colocation mining using Tenson Factorization (SCLP-TF)
Result: Decomposed components A, B, C, Spatial Colocation Pattern air and

Spatial Dominance ckr
1 Input Minimal rank Rmin, Maximum Rank Rmax, Image Objects I1,.., IK ,

Positions PI1 ,..., PIK ;
2 Input Error Ratio ε, Thresholds - Colocation tCL, Dominance tD;
3 Tensorize I1,.., IK and PI1 ,..., PIK to form S;
4 Intialize A and B randomly, R as Rmin;
5 repeat
6 C = S3 (B �A) ((BTB)× (ATA))‡ ;
7 B = S2 (C �A) ((CTC)× (ATA))‡ ;
8 A = S1 (C �B) ((CTC)× (BTB))‡ ;
9 Find approximate tensor Ŝ = [[A,B,C]] , diffA,B,C = sijk - ŝijk;

10 until diffA,B,C ceases to improve;

image-objects are chosen from A as

R∏
r=1

air ≥ tCL. (4.7)

The R components of C, shows the degree of spatial dominance for each

image-object pattern identified from A.

Definition 4.3 —Spatial Dominance—It is an interestingness measure in spatial

domain that determines the degree of domination of a particular spatial

colocation pattern in the set of images and is an indicator of how strong the

pattern is in the given set of images.

R∏
r=1

air ≥ tCL and ckr ≥ tD (4.8)

The prominent image-objects chosen are termed as a spatial colocation
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pattern if and only if the corresponding spatial dominance in {ckr} is greater

than the threshold dominance value tD.

Correctness of the Algorithm

The decomposed components from the tensorized data, namely A, B and C

contain latent structure of the data under study and are equal components.

The component A is of the dimension N × R, where N is the number of

image-objects, and R is the rank of the tensor. It has to be understood that the

R vectors/columns of A contain a weighted assignment of the image-objects

and their spatial relationship. On examining the R components, the weighted

values show variation from a minimum to a maximum value, indicating the

weak or strong association between image-objects. The threshold value called

colocation threshold (tCL) has to be chosen so that the strong associations of

image-objects are to be extracted as patterns from the R columns of A.

The decomposed component C is of the dimension S × R, where S is the

spatial relationship (distance) modeled, and R is the rank of the tensor. The

R components contain a weighted component of the spatial relationship that

exists between image-objects of all images under study. Hence this component

gives a clear indication of the spatial measure under consideration. This is

termed as ‘spatial dominance’ in the study. This interestingness measure gives

an indication of the relevance of the spatial colocation pattern obtained from A.

Associating the spatial dominance with the pattern from A; we obtain a set of

image-objects termed as spatial colocation pattern with a prevalence measure

called spatial dominance.
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4.5 Results and Discussions

4.5.1 Dataset

Sparse and dense datasets are being used in this study to find spatial colocation

patterns. Data1 [119] consists of 10103 images and is a sparse kind of

dataset. Data2 [120] consists of 2873 images and is a dense kind of dataset.

These pixel-wise classified images are first run through PMIO (stage 1) and

image-objects, and their positions are identified. After the identification of

image-objects, the SCLP-TF (stage 2) is applied to find the spatial patterns.

4.5.2 Experiments

The first stage in the framework is to perform the mapping of classified pixels

to image-objects. As the output of stage 1, the labels of image-objects and

their corresponding positions in the images are obtained. Sample examples of

classified image-objects from Data1 and Data2 are shown in the Fig.4.2. The

threshold sizes for the datasets are fixed through manual intervention. After

the stage 1, 59 and 107 image-objects were extracted from Data1 and Data2
respectively. The image-objects are labeled semantically, and their positions in

the images are also obtained as the output in stage 1. On doing an evaluation of

the image-objects extracted with respect to the ground truth data, Data1 consists

of 68 image-objects, and Data2 consists of 146 image-objects. Thus there are

some missing image-objects when the PMIO method is applied, amounting to

0.09% in Data1 and 0.39% in Data2. The higher error rate in Data2 is accounted

for the following two reasons (a) Data2 is a highly dense data set and consists of

overlapping objects (b) Data2 consists of different types of image-objects which

vary much in size (pointing to the fact that the single threshold value is the cause
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(a) Data1 (b) Data2

Figure 4.2: Image-Objects from the Dataset after PMIO

of 39 objects missed in the mapping).

In stage 2, the image-objects in all images, and the spatial relationship

between them is tensorized. The tensor thus holds the association between

image-objects and the distance between them. When the distance between the

image-objects is computed, the resolution of the image helps to find the same.

The distance value is tensorized only after normalization with respect to the

resolution of the image.

After tensorization, the tensor is decomposed by applying ALS method, into

which the minimum and maximum rank of the tensor has to be inputted. The

range is chosen from 2 to 24. For each of the dataset, the convergence of the rank

happens at different points. For Data1, the rank of the approximate tensor is 7

and for Data2, the rank is 11. At these rank values, the decomposed components

resulting from factorization are projected to find spatial colocation patterns as

per Algorithm 4.2.
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Table 4.1: Sample Spatial Colocation Patterns Mined

Sl No. Dataset Sample Spatial Colocation Patterns with Spatial Dominance

1 Data1 { tvmonitor, cabinet, sofa [0.89] }
{ computer, cup, person [0.78] }
{ bicycle, person, road, sidetrack [0.56] }

2 Data2 { deskpart, doorside, screen [0.83] }
{ desk, chairpart, chairwhole, bookshelf [0.77] }
{ mousepad, deskwhole, keypad, mouse [0.77] }
{ chairpart, table, stand, personsitting, shelf [0.68] }
{ telephone, personstanding, poster [0.56] }

4.5.3 Evaluation

The objective of the proposed framework is to find spatial colocation patterns.

The sample patterns mined from the datasets are summarized in the Table 4.1.

The threshold value for spatial dominance is set at 0.5. Following the

antimonotone property, the subsets of spatial colocation patterns are also

colocated.

The number of spatial colocation patterns mined by the proposed framework

and the relevant literature in [117] and [118] are compared for understanding the

significance. The number of image-objects involved in each spatial colocation

pattern is chosen as the performance parameter. The comparison is made in

terms of the number of image-objects involved in mined patterns. It is observed

that patterns containing more number of image-objects are being mined by

the proposed algorithm. It is also understood that longer patterns are less

understandable and hence, the threshold value to choose from the decomposed

components is fixed to obtain a maximum of eight image-objects in the pattern.

Fig. 4.3 shows the number of patterns (indicating the count of image-objects)
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for Data1 and Data2.

The execution time for the algorithm is also compared with [117] and [118]

for finding computational efficiency. The number of images being input to

the data is taken as a function to find the execution time. The influence on

computation time on the size of the input dataset for different algorithms is

compared for Data1 and Data2. The computation time for SCLP-TF increases

as the size of the dataset increases, just like other algorithms. The exponential

increase in the computational time stabilizes after a particular feature/image

size, attributed to the reason that the colocation patterns are largely extracted

in the initial phase. The performance of RCP [117] is better as compared

to the proposed algorithm, SCLP-TF because RCP mines only representative

colocation patterns, and not all patterns in the image dataset. SGCT has longer

computation time as it builds a sparse graph condensed tree for the dataset

and traverses it to find the patterns, whereas SCLP-TF directly operates on

the tensorized data and the factorized components to obtain the colocation

patterns without a pre-processing step. Fig.4.4 plots the scenario described in

this context for both the datasets.

To summarize the discussions on the experiments, the following points are

noted.

• The tensor-based model to find spatial colocation patterns results in

scalable computation time as compared with other algorithms and exhibits

less sensitivity in dense data environments. The dense data set used in the

experiments have helped to evaluate a scenario similar to large data sets,

as it contains more number of image-objects and associated relationships.

• The colocation patterns yielded from the proposed models contain patterns
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(a) Data1

(b) Data2

Figure 4.3: Number of SCLP mined vs Number of Image-Objects
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(a) Data1

(b) Data2

Figure 4.4: Computation Time Vs Size of Images



70 Chapter 4. Spatial Colocation Pattern Mining

with more significance in terms of containment of the number of

image-objects.

• The tensor modeling supports the image data without the need of

conversion to transaction type data.

4.6 Summary of the Chapter

In this chapter, a spatial colocation pattern mining framework is proposed. In the

proposed framework, a pixel mapping of the classified image to image-objects

and their corresponding locations is done in the initial phase. The image-objects

and their positions are then tensorized to stack the objects and their spatial

relationship in a 3-order tensor. The tensorized data is decomposed to obtain

the association between the image-objects in terms of the spatial colocation

relationship existing between them. The significant colocated patterns are

identified with the aid of the spatial dominance factor from the decomposed

component of the tensor. On analysis of the spatial colocation patterns, it is

observed that patterns containing more than three image-objects are obtained

from the proposed framework, and the computation time associated with the

framework also is at par with the existing relevant literature. Thus the proposed

work attains the objective to mine spatial colocation patterns consisting of

image-objects. By tuning the threshold size of the image-objects, the colocation

patterns mined can contain image-objects of varying size.

In this work, the tensor model is used to mine spatial colocation in distance

space. The tensor model can be enhanced to define other spatial relationships

in topological space, metric space, or set space to find patterns accordingly.

Successful spatial colocation mining using the method of tensor factorization
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paved the path to extend the idea to the spatiotemporal colocation model

described in the next chapter. So in the forthcoming chapters, the tensor

factorization methodology is extended to obtain spatiotemporal colocation

patterns, where the temporal relationship between image-objects is the decisive

factor in addition to the spatial relationship.
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This chapter proposes a design to mine spatiotemporal colocation patterns

using the tensor factorization approach. Spatiotemporal colocation patterns

are discovered using the Boolean tensor factorization method. As the time

series data grow immensely, an incremental approach of tensor factorization

73
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is also brought into the enhanced design. The results of mining are discussed

in length, and the proposed algorithm is evaluated for decisive parameters. The

incremental approach consumes optimal storage space, even when the number

of time slots increases.

5.1 Introduction

Spatiotemporal Colocation Pattern mining is the process of finding patterns

that are located together in space and time. Spatiotemporal colocation pattern

mining problem can be applied in all kinds of spatiotemporal data types.

For example, if the data type is event, the colocated events with a hurricane

is a heavy flood, strong winds, and evacuation of low lying land areas.

Spatiotemporal patterns are important in many application domains like crime

analysis, change detection, public safety, and disease outbreak detection.

Spatiotemporal pattern discovery is a challenging problem for two key reasons:

(1) quantifying the measure of interestingness of ST patterns has complex

constraints that include computational tractability and (2) the large cardinality

of candidate patterns, which is exponential in the number of event types, that

makes the problem complex.

In this work, spatiotemporal colocation patterns are sought in raster data.

The raster data is modeled in terms of Boolean features, and the concept of

Boolean Tensor Factorization [121] is applied to discover the spatiotemporal

patterns.The Boolean features are adopted in this work because the pattern being

mined is the presence or absence of a particular spatial colocation on a temporal

tag. As the spatiotemporal data grows in size, an incremental approach to

Boolean Tensor Factorization is applied to save space and time in computational
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aspects. The algorithm based on an incremental approach is analyzed in detail

to evaluate the computational efficiency.

The chapter is organized as follows. The related research pertaining

to spatiotemporal pattern mining is summarized in Section 5.2. The

Spatiotemporal Colocation pattern mining framework and the proposed

algorithms are detailed in Section 5.3. The experiment setup, results, and

discussions are meticulously presented in Section 5.4. The chapter is concluded

in Section 5.5.

5.2 Related Research

Celik et al. introduced the mixed-drove spatiotemporal co-occurrence patterns

(MDCOPs) in [122]. The work used the distance-based event-centric

neighborhood approach to generate spatiotemporal neighborhoods when mining

MDCOPs. In MDCOP mining, the time frames are collapsed, wherein the

temporal framework is divided into disjoint time frames. For each time frame

(1) the event instances are considered to be in the temporal neighborhood,

and (2) the prevalent spatial colocations, which occur during the same time

frame, are found. Then, MDCOPs, which can be interpreted as temporally

persistent spatial colocation patterns, are determined by checking their temporal

persistence (time prevalence). In [122], the time prevalence is measured as the

ratio of time frames where a colocation pattern is present to the total number

of time frames. In Celik’s succeeding work [123], the discovery of partial

spatiotemporal co-occurrence patterns (PACOPs) is inspected. PACOPs are very

similar to MDCOPs. These two works differ in finding the time prevalence of

co-occurrence patterns. When finding PACOPs, the algorithm considers the
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partially present (i.e., less frequently occurring) object types, and uses temporal

participation index when determining the time prevalence. MDCOP mining uses

a support-like time prevalence measure, which is based on the frequency, while

PACOP mining uses temporal participation index, which is based on the relative

participation (frequency). Pillai et al. introduced spatiotemporal co-occurrence

patterns (STCOP) and spatiotemporal co-occurrence rules (STCOR) from

datasets with evolving regions [66, 124, 125]. Recently, spatiotemporal

event sequence (STES) mining algorithms also make use of spatiotemporal

co-occurrence relationships among the evolving regions [126]. Event instances

are considered to form a spatiotemporal co-occurrence if there exists a

spatiotemporal overlap among these instances.

5.3 Spatiotemporal Colocation Pattern Mining Framework

In this framework, a tensor model is adopted for finding spatiotemporal

colocation patterns. The workflow of the framework is analogous to the previous

chapter.

As in the previous chapter, the proposed framework operates in a two-stage

scenario, wherein (i) a neighborhood growing technique to find image-objects

from the pixel-wise classified image and (ii) discovering spatiotemporal

colocation patterns by tensorizing image-objects. The first stage performs the

“Pixel Mapping to Image-Objects” (PMIO) phase in the framework, which

was detailed in the previous chapter. The second stage consists of two

phases (a) tensorization of image-objects and (b) tensor factorization to mine

spatiotemporal colocation patterns and is named as STCLP-BTF.
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5.3.1 Spatiotemporal Colocation Pattern Mining using Boolean Tensor
Factorization (STCLP-BTF)

After obtaining image-objects and their corresponding positions, the next

objective is to mine spatiotemporal colocation patterns. The process is described

in the following subsections.

Tensorization of Image-Objects

As the objective is to find spatiotemporal colocation patterns, the spatial and

temporal relationship has to be modeled as a tensor. The spatial relationship

modeled is the distance relationship in terms of Euclidean measure. The

temporal relationship is a temporal tag for the time series data available. To

perform tensorization of image-objects, a distance threshold value (dth) has to

be provided, depending on the domain of the images under consideration. The

tensor is built with labels of image-objects in 1st and 2nd dimension (say, N

image-objects), and the 3rd dimension for the particular temporal tag. The entry

in the tensor is marked as a binary value depending on the distance between the

two objects, say Oi and Oj on that particular temporal tag. If the distance value

is greater than dth, the presence of spatial colocation is marked as 1, otherwise

as 0. Let the tensor be represented as T .

Tensor factorization to find STCLP

The latent spatiotemporal colocation patterns present in the tensorized data is

discovered by using the principle of tensor factorization. Tensor factorization

yields components of the tensorized image-objects and their spatiotemporal

relationships. The tensor T obtained after stacking is of 3rd order kind. The

canonical decomposition is applied on T for factorization using Alternating
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Least Squares method. The general solution to perform factorization is to find

the different number of components, until the factorization fits into a defined

error ratio.

The tensor T is of the order N × N × T . The tensor T , has to be

factorized to obtain the decomposed components (matrices) say A,B and C

of the dimensions N × R, N × R and T × R respectively, where R is the rank

of the tensor. To start with the factorization, initialize R as Rmin and randomly

choose any two components sayA andB. Find C using the formula given in the

Eqn. The symbol � indicates Khatri-Rao product and ‡ is the Moore-Penrose

pseudo inverse.

C = S3(B�A)((BTB)× (ATA))‡ (5.1)

Repeatedly change the entries in A,B and C and iterate this process over

a definite number of times, where the deciding factor is the difference between

the entries in the original tensor and the recovered tensor from the components

A,B and C. The optimal selection of rank is done by finding the fitting of the

original tensor and the decomposed components. The process terminates when

R reaches Rmax or the difference between the original tensor (T ) and recovered

tensor (T̂ ) meets the error-ratio, ε. Thus the decomposed R components for

A,B and C is obtained. The matrices A and B are same, as the two dimensions

of the tensors are labels of image-objects. Each element in the recovered tensor

is calculated as the inner product of ai, bj , ck and the value tijk is assigned the

association between (ati,btj, ctk), which is expressed as follows.

tijk = f(ati,btj, ctk) =
R∑
r=1

atir.btjr.ctkr (5.2)
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The decomposed components (atir, btjr, ctkr) shows the interaction with

respect to image-objects and the distance relation. The R components of A,

shows the interaction among image-objects (or frequent image-objects) with

respect to the spatiotemporal pattern. The prominent/frequent image-objects

are chosen from A as
R∏
r=1

atir ≥ tCL (5.3)

Algorithm 5.1: STCLP-BTF
Result: Decomposed components A, B, C, ST Colocation Pattern air and ST

Dominance ckr
1 Input Minimal rank Rmin, Maximum Rank Rmax, Image Objects I1,.., IK ,

Positions PI1 ,..., PIK ;
2 Input Error Ratio ε, Thresholds - Distance dth, Colocation tCL, ST Dominance
stD;

3 Tensorize I1,.., IK and PI1 ,..., PIK to form T ;
4 Initialize A and B randomly, R as Rmin;
5 repeat
6 C = T3 (B �A) ((BTB)× (ATA))‡ ;
7 B = T2 (C �A) ((CTC)× (ATA))‡ ;
8 A = T1 (C �B) ((CTC)× (BTB))‡ ;
9 Find approximate tensor T̂ = [[A,B,C]] , diffA,B,C = tijk - t̂ijk;

10 until diffA,B,C ceases to improve;
11 Repeat steps 4-9 until R= Rmax or T - T̂ ≤ ε;
12 Return A, B, C ;
13 for r = 1 to R,

∏R
r=1 atir ≥ tCL;

14 for each air find corresponding spatiotemporal dominance ckr ;
15 Choose image-objects atir whose ctkr ≥ stD;

The R components of C, shows the degree of spatiotemporal dominance for

each image-object pattern identified from A.
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Definition 5.1 —Spatiotemporal Dominance—It is an interestingness measure

in spatiotemporal domain that determines the degree of domination of a

particular spatiotemporal colocation pattern in the set of images and is an

indicator of how strong the pattern is in the given set of images.
R∏
r=1

atir ≥ tCL and ctkr ≥ stD. (5.4)

The prominent image-objects chosen are termed as a spatiotemporal

colocation pattern if and only if the corresponding spatial dominance in {ctkr}
is greater than the threshold dominance value stD.

Remarks. As the temporal resolution increases, the 3rd dimension of the tensor

grows in size, and the storage space is in terms of ‘T ’ modes for ‘T ’ time

slots. Usually, in a time-series image data, each second can contribute data,

henceforth the rise in ‘T ’ is considerable in terms of computation time. Thus

for the proposed Boolean Tensor factorization approach, the storage space for

temporal tensors increases.

Hence an incremental approach for Boolean Tensor factorization is

proposed, which saves space and time.

5.3.2 Spatiotemporal Colocation Pattern Mining using Incremental
Boolean Tensor Factorization (STCLP-ITF)

A. Tucker Decomposition

The previous section adopted canonical polyadic decomposition to factorize

tensors. In this section, Tucker decomposition is applied to perform tensor

factorization [35], which was introduced in Chapter 2. Unlike canonical

decomposition, the Tucker model allows for there to be a different number of

factors, say, R1, R2, R3 along with each mode of a third-order tensor. It can be



Chapter 5. Spatiotemporal Colocation Pattern Mining 81

stated that canonical decomposition is a special case of Tucker decomposition

where R1 = R2 = R3.

The Boolean Tucker decomposition of the binary tensorX and three integers

R1, R2, R3 is given as the product of binary core tensor, G of sizeR1, R2, R3 and

binary factor matrices A ∈ RN×R1 , B ∈ RN×R2 , C ∈ RT×R3 .

X = ∨R1
r1=1 ∨R2

r2=1 ∨R3
r=1Gr1,r2,r3 · ABC. (5.5)

The factorization is optimized when

min
∣∣X − ∨R1

r1=1 ∨R2
r2=1 ∨R3

r=1Gr1,r2,r3 · ABC
∣∣ . (5.6)

Heuristic methods are used to find the core tensor and factor matrices. The

task is more involved than any other decomposition, due to the presence of core

tensor, for whose each value can affect the binary factors. A change in a single

element in G can completely change the product matrices. The algorithm is

guaranteed to converge as the error reduces in each iteration. The core tensor

and factor matrices help to yield the underlying patterns more effectively, as the

interpretation is made in low-order components. The Boolean factorization will

yield a core tensor G and binary factor matrices A ∈ RN×R1 , B ∈ RN×R2 ,

C ∈ RT×R3 .

Each non-zero entry in the matrix A ∈ RN×R1 , say atir1 , will indicate the

presence of the ith object. For the non-zero entry in the matrix C ∈ RT×R3 , say

ctkr3 points to the presence of the time slot.

The reason for preferring Tucker decomposition is that the incremental

approach is already performing an approximation of the tensorized data by

taking covariance between different time slots, and we wish not to perform

another approximation in terms of R1, R2, and R3.
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B. Algorithm

The incremental approach introduced to Boolean Tensor Factorization

contributes to this work. The intuition for incremental approach is based on

the following two points, (a) when dealing with time stamp models, the recent

data is more important than historical data and hence the storage space can be

reduced by storing only the recent one and (b) the change patterns of different

timestamps is best detected by the covariance of the factor matrices during the

iteration.

To perform incremental Boolean Tensor factorization, the initial steps

include initialization of binary factor matrices A ∈ RN×R1 , B ∈ RN×R2 ,

C ∈ RT×R3 randomly and three integers R1, R2, R3 which are the components

for factorization. The initial core-tensor is all set to zeroes. For all images,

t = t3, t4, . . . , tT , the factor matrices are updated as per the Boolean Tucker

factorization using ALS method. After the factor matrices are updated, the

covariance of each of them is calculated. The covariance matrix is updated

in an incremental mode, as given as follows for each matrix.

CA = CA(old) · F (T ) + CA(new) (5.7)

The new covariance matrix is incrementally added to the old one. The selection

of the old covariance matrix is made as a function of time, F (T ). The function

can regulate the selection of the old covariance matrices, which can be opted

to be stored after each incremental addition of a new time slot. The function

can also be modified to take particular covariance matrices at selected time slots

for finding seasonal changes that have happened in the covariance matrix. Once

the covariance matrices are updated, the updation of the core tensor happens.

The iteration continues until the approximation error of factorization is within
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Algorithm 5.2: STCLP-ITF
Result: Decomposed components CA, CB, CC, ST Colocation Pattern air and

ST Dominance ckr
1 Input Image Objects I1,.., IK , Positions PI1 ,..., PIK , Error Ratio ε, Thresholds -

Distance dth,ST Colocation tCL, ST Dominance stD;
2 Tensorize I1 and I2 and PI1 and PI2 to form T ;
3 Initialize A (N × R1), B (N × R2), C(N × R3) randomly, G=0 ;
4 For t = t3, t4,...tT
5 update A(T1, A, G(1), (C ⊗A)T );
6 CAnew = cov(A) ;
7 CA = CAold . F(T) + CAnew;
8 update B(T2, B, G(2), (A⊗ C)T ) ;
9 CBnew = cov(B) ;

10 CB = CBold . F(T) + CBnew;
11 update C(T3, C, G(3), (B ⊗A)T ) ;
12 CCnew = cov(C) ;
13 CC = CCold . F(T) + CCnew;
14 update G (T , G, CA, CB, CC);
15 Find approximate tensor T̂ = [[A,B,C]] , diffA,B,C = tijk - t̂ijk;
16 Calculate error as T - ∨R1

r1=1 ∨
R2
r2=1 ∨

R3
r3=1 Gr1,r2,r3 .CA .CB .CC ;

17 Repeat steps 4-16 until error ≤ ε;
18 Return CA, CB, CC ;
19 for r = 1 to R1,

∏R1
r=1 cair ≥ tCL;

20 for r = 1 to R2,
∏R2
r=1 cbir ≥ tCL;

21 for each cair ∪ cbir find spatiotemporal dominance cckr ;
22 Choose image-objects air whose cckr ≥ stD;
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the minimum error threshold value. The computational cost associated with the

proposed approach is dependent on the rank of the tensor.

The advantage of the incremental Boolean Tensor Factorization lies in the

fact that the space consumption is only dependent on the core tensor whose

dimension isR1×R2×R3, which will be very less than storing ‘T ’ mode tensors

for all the T time slots. The computational cost associated with this incremental

approach only lies in finding the variance matrix of the binary factors.

The remaining steps are analogous to Algorithm 5.1.

5.4 Results and Discussions

5.4.1 Datasets

The spatiotemporal data set used in this experiment consists of

(i) Synthetic images acquired in 100 time frames consisting of 735 classes

(hereafter referred as Spatiotemporal Dataset 1 [127])

(ii) Geospatial images acquired in 120 time frames (hereafter referred

as Spatiotemporal Dataset 2 [128]). The number of objects/classes

associated with the geospatial images are a) Agricultural b) Urban c)

Forest d) Road e) Bare ground (f) Beaches (g) Rivers and (h) Sea-water.

5.4.2 Experiments

Experiments are performed for Algorithm 5.1 and Algorithm 5.2.

The tensorization of image-objects results in a Boolean tensor. For

Algorithm 5.1,which uses the canonical decomposition method, the R

values are 12 and 18 for the first and second dataset, respectively.
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The Algorithm 5.2 depicted the incremental mode of Boolean Tensor

factorization. As Algorithm 5.2 is based on Tucker decomposition, the size of

the core tensor is a decisive factor. The approximation of the original tensor is

achieved through fine-tuning the reconstruction error for different ranks of core

tensor. Fig. 5.1 presents the experimentation result for iterating on different

values of core-tensor size to bring down the reconstruction error within the

threshold value. The core tensor size of (4, 8, 8) is within the permissible value

of the error threshold for Spatiotemporal Dataset 1. The core tensor size values

of (4, 4, 4) and (4, 4, 8) are within the permissible values of error threshold

for Spatiotemporal Dataset 2. From the experiments, the conclusion drawn is

that the core tensor size permissible within the error threshold value is highly

dependent on the dataset. The intention of choosing the synthetic dataset is

to prove that the incremental Boolean Tensor Factorization works theoretically

correct.

Another important measure for the spatiotemporal colocation pattern mining

using STCLP-BTF is the distance threshold value (dth) which is fed to the

algorithm. To know the effect of the distance threshold, the value is varied

in different ranges for the datasets. The observations are made in Fig.5.2. The

distance threshold values for the sparse dataset is varied from 10 to 60 units. It

is seen that the execution time increases when the threshold value is increased.

This is attributed to the fact that as the distance threshold increases, the number

of spatiotemporal colocation patterns mined increases.

The spatiotemporal colocation patterns mined from the datasets are

presented in Table 5.1. Spatiotemporal Domination is indicated in the results,

which is a measure of the prevalence of the spatial colocation during the time
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Figure 5.1: Optimization of Core Tensor Size

Figure 5.2: Execution Time as a function of neighbourhood distance threshold for
STCLP-BTF
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Table 5.1: Sample Spatiotemporal Colocation Patterns Mined using STCLP-BTF

Sl. Dataset Spatiotemporal Colocation Pattern Distance
No. with Domination Strength Threshold
1 SpatioTemporal Dataset 1 {1, 3, 296[0.86]} 100

{711, 392, 412[0.63]}
{415, 412, 529, 741[0.63]}
{3, 296, 510, 686[0.41]}

2 SpatioTemporal Dataset 2 { baregrounds,beaches [0.51] } 50
{ baregrounds,waterbodies [0.49] }
{ river, roads, baregrounds [0.61] }
{ river, roads, buildings [0.42] }

frame in which the patterns are sought.

The change patterns are generally modeled for geospatial image

datasets. Modeling of change patterns is henceforth performed only in

Spatiotemporal Dataset 2, as we feel that change models can be clearly

understood when there is a limited number of objects.

The proportion of class changes over the period of the time frame is given

by Fig. 5.3. In this graph, each bar presents the relative weighted amount of

each class from the core tensor values as each time frame is increased. To see

the overall gain and loss that has happened for the entire time period, Fig. 5.4

provides the proper insight. The red-colored portion indicates the percentage

of loss that has happened to the particular class, and the green colored portion

indicates the percentage of gain.

5.4.3 Evaluation

The algorithms proposed in this chapter, (a) STCLP-BTF and (b) Incremental

BTF (STCLP-ITF) are compared with the relevant work in the literature to
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Figure 5.3: Proportion of class changes over the period of time frame

Figure 5.4: Overall loss/gain of classes over the period of time frame
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understand the efficiency in terms of different factors.

The comparison of STCLP-BTF algorithm with MDCOP [122] is presented

in Fig. 5.5. The figure presents the execution time as a function of the number

of time slots. As the number of time slots increases, the execution time also

increases for both the algorithms, as a result of the increase in the number of

spatiotemporal colocation instances. The ratio of increase of execution time is

smaller for STCLP-BTF in comparison with MDCOP, as the latter is based on

the candidate approach, which results in an increased number of database scans

with an increase in the number of spatiotemporal colocation instances. The

distance threshold for the above experiments was set at 100 units. The patterns

mined for the same datasets for MDCOP is presented in Table 5.2. It is seen that

certain patterns are missing in this result when compared with Table 5.1.

Table 5.2: Sample Spatiotemporal Colocation Patterns Mined using MDCOP

Sl. Dataset Spatiotemporal Colocation Pattern Distance
No. with Domination Strength Threshold
1 SpatioTemporal Dataset 1 {1, 3, 296} 100

{711, 412}
{415, 741}

2 SpatioTemporal Dataset 2 { baregrounds,beaches } 50
{ baregrounds,waterbodies }
{ river, buildings }

The second experiment for spatiotemporal dataset evaluates the effect of the

number of classes/objects on STCLP-BTF and MDCOP. The distance threshold

is set to 100 units. It is seen that for both the algorithms, as the number of

objects increases, the execution time also increases. A sudden change in both

the algorithms is observed between slots 18 and 22; it can be concluded that
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(a) Spatiotemporal Dataset 1

(b) Spatiotemporal Dataset 2

Figure 5.5: Comparison on the effect of time slots on execution time

the newly added objects between 18 and 22 have more neighboring relations

than other recently added objects after and before that particular slot. As the
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Figure 5.6: Comparison of the effect of number of objects on execution time

plots of graphs in Fig. 5.6 does not show a trend, the conclusion drawn is

that the cost of the algorithm is dependent on the neighboring relations of the

newly added objects to the existing objects. Experiments are performed only on

SpatioTemporal Dataset 1 as it is abundant in the number of object classes.

To perform an experimental evaluation of BTF and its incremental version,

the Tucker factorization technique is applied to BTF also. The incremental BTF

is compared with the traditional BTF to deduce the efficiency in terms of (a)

Core Tensor size (b) Factor Matrix Density and (c) Convergence Time.

Both the datasets are evaluated for the core tensor size for (a) BTF and (b)

Incremental BTF approaches. The results are presented in Fig. 5.7. It is seen

that the reconstruction error is less for both the datasets in the same rank of

core-tensor for the incremental approach. It can be deduced that the incremental

approach converges faster as compared to the traditional method.
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(a) Spatiotemporal Dataset 1

(b) Spatiotemporal Dataset 2

Figure 5.7: Reconstruction Error for different Core Tensor Size

The convergence point of the datasets is also analyzed with respect to the

factor matrix density. Fig. 5.8 presents the plot of reconstruction error versus
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factor matrix density. Both methods perform synonymously in this analysis

for the datasets. The denser the data, the higher the reconstruction error, as

expected. Data with dense values will make the performance of algorithms more

complex.

All the above said analysis points to the fact that the total convergence time

for the incremental approach will be less as compared to the traditional method.

Fig. 5.9 shows the experimental results wherein the convergence time for

the Boolean Tensor Factorization for the traditional and incremental approach

is analyzed for both the datasets. It is seen that the incremental approach

converges faster when compared to the traditional approach. It is also noted

that there is a steep rise in the change from the first time slot to the second time

slot in incremental approach, which owes to the computational cost of finding

the variance of the factor matrices and associated diagonalization problem.

However, after the second time slot, the convergence time does not increase

drastically in the incremental approach.

5.5 Summary of the Chapter

The chapter proposed spatiotemporal colocation pattern mining algorithms,

STCLP-BTF and STCLP-ITF, for raster data. The algorithms rely on

tensor factorization approaches to find the colocation instances. STCLP-BTF

uses traditional Boolean tensor factorization, whereas STCLP-ITF uses an

incremental BTF. The incremental approach deviates from the traditional BTF

approach and adopts a variance approach in finding the core-tensor and factor

matrices. It is observed that the execution time for incremental approach is

less as compared with the traditional approach.The core tensor yielded after
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(a) Spatiotemporal Dataset 1

(b) Spatiotemporal Dataset 2

Figure 5.8: Reconstruction Error for different Factor Matrix Densities

factorization will show the overall changes which have happened to the objects

in the area under consideration. There is also a notable save in the space for
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(a) Spatiotemporal Dataset 1

(b) Spatiotemporal Dataset 2

Figure 5.9: Comparison of Convergence Time

incremental approach as T tensors associated with the time slots are not being

stored.
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From the studies, it is understood that the problem of change detection in

spatiotemporal mining of landscapes can be attempted using the above-said

approach, which is explained in the forthcoming chapter.
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The work proposed in this chapter is a Spatiotemporal-Metric Miner, which

uses the spatial, temporal, and landscape metric data to discover the changes

97
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that have occurred in a region. The model works on a hierarchical basis,

wherein the regions of interest are chosen in a landscape and are aggregated

to find the change that has happened over the entire region. The growth of a

region is quantified by two novel parameters, namely, Inter-Class Growth Index

and Intra-Class Growth Index. Experiments are performed on the landscape

regions of Indian cities, and a ranking of cities is presented based on the growth

indices.

6.1 Introduction

Characterization of changes that happened in a region has been a domain of

study for quite a span of time. The understanding of how the region has

changed/evolved in a particular time frame is essential to town planners in

various aspects. The growth of a region is driven by many contributing factors,

which is not in the scope of the study. This chapter characterizes the change

detection of a geographic area through the landscape metrics [129]. Landscape

metrics help in determining landscape characteristics, which are structural

as well as functional. The structural metrics are related to the landscape

configuration in terms of the situation of mosaics in space, and evenness of the

land. The functional metrics are related to the landscape functioning in terms

of land use and its change pattern evolving the land. Due to the vast number

of landscape metrics available in the literature, there always exists confusion as

of which are the prominent one, or what are the different metrics which help

to quantify the smart growth of a region or which metrics helps to identify the

change pattern occurred in a landscape. In this chapter, a study to identify a set

of landscape metrics that helps to detect changes in a landscape, is attempted.
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Followed by this, the prominent landscape metrics thus identified are utilized to

develop a Spatiotemporal-Metric Miner (STM-Miner).

The STM -Miner proposed mines the change patterns of the classified land

area over a particular temporal domain, to obtain further knowledge about the

change regarding class labels and associated features that have occurred in a

geographic region. In this work, mining of change patterns takes the task

further forward by characterizing the change detected using different metrics.

Usually, the change which has happened in a landscape area, after detection is

only characterized by the associated class label and the area spanned. From

this, the knowledge mined is insufficient. The work proposed considers not

only area as the metrics of evaluation but also other metrics that measure the

shape complexity associated with the area, diversity of the growth related to a

region, evenness of the change detected in a landscape and so on. The change

characterization in this work is built on a hierarchical model. To characterize a

landscape area in terms of change pattern occurred, the whole land area is not

mined. Instead of this, certain selected regions within the landscape are chosen

and are mined. These regions are then aggregated in a hierarchical fashion to

characterize the growth of the entire landscape.

The chapter is organized as follows. An evaluative study of landscape

metrics is performed, and the decisive landscape metrics which help to

detect changes are described in Section 6.2. Section 6.3 briefs about the

related research which detects changes in urban landscapes. The design and

architecture of the STM-Miner is proposed in Section 6.4. The experiments and

results of the study are outlined in Section 6.5. The chapter is concluded in

Section 6.6.
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6.2 Evaluative Study of Landscape Metrics

This section introduces the different landscape metrics. A brief description of

the same is also provided. The subsection performs an evaluative comparison of

different landscape metrics to find the prominent or relevant ones to find changes

associated with a region.

6.2.1 Background on Landscape Metrics

Landscape metrics [7] or indices help to describe the structure and pattern of a

landscape. There are numerous metrics available at different levels, like patch,

class, and landscape. From the literature, a set of relevant landscape metrics

are identified, which are tabulated in Appendix B. The terms in the landscape

metrics are also explained in Appendix B. A summary of all the metrics chosen

for study are as follows.

(i) Area and Edge Metrics—Landscape Area denotes the total area of the land

under consideration. Usually, the landscape area is expressed in hectares. The

landscape is characterized by different classes or themes. These classes/themes

characterize a landscape uniquely. Hence the measure Class Area is important

as it provides an insight into the constitution of a landscape in terms of area.

There can be numerous patches (cells) that may belong to the same class. A

summation of these patches over a class is taken to find the class area of a

particular class, say C. This metric is also expressed in hectares. Mean Patch

Size is a function of class area and the number of patches. Individually, Mean

Patch Size will not provide any information regarding how many patches are

present for each class. Variation of Mean Patch Size, which evolves, will point

to the growth/deterioration of a particular class in the landscape.
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(ii) Shape Metrics—The Mean Perimeter-Area Ratio is a function of perimeter

and area. Contiguity Index helps to measure the spatial connectedness, thus

measuring compactness or elongation of a class in a patch. Area Weighted

Mean Fractal Dimension is also a function of perimeter and area. It is computed

over each patch and is averaged on each class in the landscape. It is calculated

by regressing the logarithm of the perimeter on the logarithm of Class Area.

The metric helps to assess the shape complexity associated with a patch of

a particular class/landscape. Thus, this measure gives a value to the patch

depending on the area of the patch, whereas Mean Shape Index is a measure

that behaves independently of the size of the patch. An analogous measure to

this is Contrast Weighted Edge Density, which standardizes edge to a per unit

area and helps to compare between different regions of a landscape.

(iii) Aggregation Metrics—Aggregation metrics deals with the aggregation or

clunking of different patch types. Patch Density is the number of patches

on a per unit area that helps in comparing landscapes of varying sizes. The

aggregation metrics of a landscape can also be assessed through Contagion

Index and Interspersion and Juxtaposition Index (IJI) . The Contagion Index

is based on the sum of different patch types expressed as the product of two

probabilities such as (i) probability that a cell chosen randomly belongs to

patch type i, and (ii) the conditional probability that given a cell is of patch

type i, and one of its neighboring cells belong to patch type j. In short, the

product of these probabilities equals the probability that two randomly chosen

adjacent cells belong to different patch types i and j. The contagion index

is thus based on cell adjacencies. Interspersion and Juxtaposition index is

based on patch adjacencies. The adjacency of each patch is evaluated with
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respect to all other patch types. IJI measures the extent to which the different

patches types are equally adjacent to each other. Splitting Index is a measure

of change of patch distribution. The value increases as the number of patches

in the landscape increases and achieves maximum value when the landscape is

maximally subdivided. Splitting index is an indicative measure of the number

of patches in a landscape, when the landscape is divided into patches of equal

size.

(iv) Diversity Metrics—Diversity metrics measure the richness and evenness of

the different patch types in a landscape. These two factors are the compositional

and structural indicators of a landscape. Shannon’s Diversity Index (SDI) is a

diversity metric based on information theory. There is no limit value for SDI,

as the value grows higher, the interpretation is that the landscape is diversified

in nature. This index represents the amount of information per patch of the

landscape. Shannon’s Evenness Index (SEI) is also a diversity metric obtained

from dividing SDI by the maximum SDI for that number of patch types. The

value ranges between 0 and 1. When the value approaches zero, the distribution

of area among the different patch types becomes uneven.

(v) Contrast Metrics—Contrast Weighted Edge Density (CWED) standardizes

edge to a per unit area that helps in computing landscape of different sizes.

Thus landscape with the same value of CWED will have the same magnitude

for edges from a functional view.

6.2.2 Dataset

The study area is Kochi region of Latitude 9o58’N and Longitude 76o17’ E.

Fig.6.1 depicts the regional division of Kochi into 11 regions. The western part

of the Kochi region is covered by the Arabian Sea. The locations and boundaries
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Figure 6.1: Regional Division of Kochi
Map Courtesy - Department of Town and Country Planning, Kochi Corporation

are only indicative. The water bodies in between the regions are not shown on

this map.

Satellite images of LANDSAT 7 [130] and LANDSAT 8 [131] is used for

the study. The specifications of LANDSAT 7 and LANDSAT 8 is given in

Appendix A. The images were collected for two temporal tags of the year, say,

2006 and 2016. This study is highly restricted by the quality of the data obtained

for analysis. The seasonal difference, illumination of the sun, radiometric

distortions, and cloud coverage of the land are the challenging factors that

restrict the quality of the image under consideration. The image is georeferenced

and geometrically corrected before detecting the land use pattern. The spectral
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data obtained from the satellite is classified into thematic information containing

different classes. The land use classes for the image under study are Builtup,

Water Bodies, Vegetation, and Barren Land. The classes are decided as so, due

to the linear separation possible with the spectral information of the satellite.

Land use patterns for the temporally tagged images of 2006 and 2016 are

derived. The land use pattern obtained is verified with respect to the available

ground truth information.

6.2.3 Assessment of Landscape Metrics

The study attempts to identify the landscape metrics, which help to quantify the

change pattern in a geographic area over a temporal domain. The computation

of the landscape metrics is done with the aid of the FRAGSTATS [132].

FRAGSTATS is a spatial pattern analysis tool that helps in quantifying the

landscape structure. FRAGSTATS can quantify any landscape in terms of the

landscape metrics defined in the literature. The quantification is possible in

patch, class, and landscape level. Depending upon the analysis required, the

appropriate metrics are chosen, as class and landscape metrics are more relevant

for medium resolution images than the patch level metrics which are chosen for

high-resolution images.

The landscape metrics listed in Appendix B is computed and analyzed in

detail, to aid in finding out the parameters that help to characterize the change

pattern of the study area. The study area is analyzed in terms of zones 1

(region 3), 2 (region 5), 3 (region 6) and 4 (region 8) in the central, northern,

north-eastern and southern regions. The land use utilization in terms of each

of the class, is the first measure of any change detection process. The land

use classes used in the study are built-up, water bodies, vegetation, and barren
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Figure 6.2: Mean Patch Size in Different Zones

land. The two timestamps under consideration are 2006 and 2016. Conventional

methods depend only on the land-use area for change detection. In this work, the

measurement of the area is done in terms of Mean Patch Size, which will help to

know how the division of landscape into patches has happened. Mean Patch Size

for the time domain is given in Fig. 6.2. Mean Patch Size is found in terms of the

number of patches of the same type. The figure depicts the growth/retardation of

each land-use class in terms of Mean Patch Size. However, to find the dominant

class in a zone, the Patch Index is measured as a percentage of Class Area of

each land-use class with respect to the total Landscape Area.

It is observed that the built-up land has increased tremendously in zone 1 by

2016, whereas zone 4 equaled with zone 2 in built-up land by 2016. True to the

above findings, heavy vegetation lost is seen in zone 4. An interesting fact which

is observed in the figure is that in spite of the tremendous growth of built-up land



106 Chapter 6. Change Detection in Urban Landscapes

Figure 6.3: Comparison of Mean Shape Index and Area Weighted Mean Fractal
Dimension

in zone 1, there is an increase in the vegetation, by a small percentage. Thus it

is concluded that Mean Patch Size is a relevant area metric as worthy as Class

Area and Landscape Area.

Shape complexity of the land use class in the landscape is an important

indication of how far a landscape/class has undergone changes in the time

domain. The shape metrics taken into consideration are Mean Perimeter-Area

Ratio, Mean Shape Index, Area Weighted Mean Fractal Dimension, and

Contiguity Index. The literature throws light into the fact that the perimeter-area

ratio value varies with the size of the patch under consideration and does not

provide an overall shape complexity of each land-use class. Hence this metric is

not taken into consideration for analysis. Mean Shape Index overcomes this

problem by adjusting the value for a square standard, and it is the simplest
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measure of shape complexity. As observed from Fig. 6.3, Mean Shape Index

is not aiding to find the shape complexity across different zones. The value of

Mean Shape Index behaves indifferently and cannot be assessed properly. Area

Weighted Mean Fractal Dimension is a more reasonable measure in the sense

that it gives understandable values over a range of patch sizes.

From the figure, it is observed that the growth in terms of shape complexity

is happening in all the zones almost equally. The two plots of Area Weighted

Mean Fractal Dimension in 2006 and 2016 almost runs parallel, thus throwing

light to the fact that the shape complexity evolved during this time remains

almost constant. For the analysis of the shape, any compactness or elongation

of the particular class is given by the Contiguity Index. Fig. 6.4 presents the

Contiguity Index of each zone under consideration. It is seen that a drastic

change in Contiguity Index is observed in zone 1 when compared with other

zones, pointing to the conclusion that the rate of growth was high in zone 1 with

respect to shape metric.

Aggregation metrics of the landscape indicate the dispersion and

interspersion of a landscape. Both dispersion and interspersion is an indicator

of landscape texture. Interspersion indicates the degree of intermixing of the

different spatial classes, or more concisely, it is a measure of the degree of

adjacency. Dispersion is the opposite sense of interspersion in indicating how

often a spatial class is adjacent to the same spatial class. Contagion Index

subsumes the measure of interspersion and dispersion.

Interspersion and Juxtaposition Index (IJI) is a measure that indicates only

interspersion. The index measures the extent to which the patch types are

equally adjacent to each other. Lower values of IJI indicate how the patches are
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Figure 6.4: Comparison of Contiguity Index of different zones

Figure 6.5: Comparison of IJI and Contagion Index
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poorly interspersed. Fig. 6.5 is the IJI and contagion metrics for the different

zones of the study area. The analysis of contagion measure is not indicating

a justified rise or fall in any zones of the landscape. The contagion measure

has to be studied by holding either of the interspersion or dispersion constant.

IJI index is not affected by the number of patches, in contrary to the contagion

index. Moreover, the Contagion Index is affected by the resolution of the image.

In the figure, the lower values of IJI are seen in zone 2 and 3, which points to the

reality that those zones are poorly interspersed. A relatively higher value of IJI

is seen in zone 4, which tells that the class types in zone 4 are equally adjacent

to each other.

Another aggregation metric called Splitting Index gives an indication of the

growth in the number of patches of the landscape area. The analysis is given

in Fig. 6.6. It is seen that zone 1 is overwhelmed with numerous patches when

comparing the years 2006 and 2016.

Diversity measures of the landscape indicate the richness and evenness of

a landscape. Richness indicates how diversified are the classes present in the

landscape, whereas evenness indicates how uniform is the classes distributed in

the landscape. Shannon’s Diversity Index (SDI) is the most prominent diversity

indicator in the metrics that measure of a landscape. The SDI values of the zones

are plotted in Fig. 6.7. The absolute value of SDI does not indicate anything

meaningful. But a relative comparison of SDI among the same landscape area

at different timestamps is a good indicator of how diversely the landscape has

changed over the time domain. From the SDI values under consideration, the

most diversified growth has happened in zone 4, towards the southern region of

the landscape. The growth is an aggregated one when the SDI values are lower
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Figure 6.6: Splitting Index of different zones

and is a dispersed one when the SDI values are higher. The figure depicts that

the growth happened in zone 4 is a dispersed one, whereas in other zones, the

growth is aggregated type. It points to the fact that diversified and dispersed

growth of the landscape has happened to the southern part of the mainland. SDI

has an associated disadvantage as the index value is highly influenced by rare

patch types in a landscape area. Thus to compromise for this disadvantage,

Shannon’s Evenness Index (SEI), which measures the contribution of landscape

area to each patch, also has to be taken into consideration. Both SDI and SEI

has to be read hand in hand for understanding a landscape composition.

The observations made from the analysis of the study region (Kochi) points

to the following facts.

• The vast growth of Kochi city has occurred in zone 1, in terms of built-up

area. An increase in vegetation area is also observed in the zone 1, which
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Figure 6.7: SDI and SEI of different zones

points to the smart development happening in the mainland, in spite of the

built-up increase.

• The structure of the growth pattern is almost uniform in all the selected

zones under analysis.

• The southern region of Kochi, which was very poorly developed in 2006,

is now exhibiting a diversified growth in 2016.

• The growth of the southern region is in such a manner that it exhibits

smooth texture growth in terms of adjacency.

The landscape metrics which are found to be relevant from these experiments

are carried forward for the purpose of designing STM-Miner and is presented in

Table 6.1.



112 Chapter 6. Change Detection in Urban Landscapes

6.3 Related Research

Assessing a landscape structure is of immense importance for the different

applications of landscape monitoring and planning. The literature points to

this aspect in the very early stages. An attempt to generalize the past, present,

and future of the landscape is seen in [133], wherein the landscape metrics

are utilized for the purpose. The broad set of landscape metrics are analyzed

in this work, and an indicative measure of each landscape metrics is spelled

out for each characteristic of the same, with convincing reasons. There are

examples where landscape metrics have been utilized for learning geo-diversity

[134, 135] and biodiversity [136, 137]. The usage of landscape metrics for

evaluating urban fragmentation is seen in [138]. Continuous autocorrelation

indices presented in [138], along with chosen landscape metrics, helps to

characterize the spatial patterns of land-use. A new statistical measure called

Urban Public Green Space [139] has been evolved from the landscape metrics

to study the urban space concerning networking connectivity in the space. The

study of landscape metrics on remotely sensed satellite images of different

resolutions was attempted to identify the attributes that rule the values of metrics

[140]. Spatiotemporal analysis of Indian cities is always an interesting area for

the researchers as evident in [141, 142, 143, 144, 145] in all-time spans.

6.4 Design of the Proposed System

Change pattern analysis is a significant research problem which helps the

governance system to monitor the change and plan the future developments of

the land under their control more smartly and effectively. A landscape can be
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analyzed under different scope, depending upon the interest of the governance

system. In this work, the change pattern analysis of a landscape in a hierarchical

manner is proposed. The system works as described below. Images of different

regions are acquired at different timestamps. The region considered can be

varying from a small region to a town, city, state, or landscape. The hierarchical

nature is brought into the system based on the concept that small regions are

aggregated to form towns or cities, and cities are aggregated to form states, and

states are aggregated to form landscapes. Similarly, the change pattern in each

layer under consideration is aggregated in a hierarchical model to observe the

overall change pattern in the next layer. The model presented in Fig. 6.8 explains

the entire flow of the system.

The input to the design proposed is the classified remote sensing imagery at

different time slots/time frames. The next step in the design is tensorization,

that models the classified image into a tensor as detailed in Chapter 4.

An appropriate tensor order has to be chosen for the classified image and

its associated features. From the tensorized representation of the imagery,

appropriate regions of interest (ROIs) are identified for landscape under study

and are aligned/sorted in terms of certain time slots called as the time of

interest (TOI). The next step is the novel approach proposed in this thesis,

wherein the labeled regions and associated features are hierarchically build

to understand the change pattern in different higher-level regions. The steps

involved in the hierarchical spatiotemporal-metric miner are detailed in the

following sections. The STM-Miner computes growth indices for different

ROIs. The growth indices of different ROIs are aggregated to form the indices

for the corresponding cities.
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Figure 6.8: Design of Spatiotemporal-Metric Miner

6.4.1 Tensorization of Image Regions

The section explains the method to represent the image region using tensors.

The image dataset is considered in ‘T ’ consecutive intervals, where each image

accounts for each time frame. The image instant is modeled as matrix M which

has ‘C’ rows of class labels and ‘F ’ columns of featured landscape metrics.

There are ‘T ’ matrices for the different time slots, which are combined to form

a 3-order tensor as X ∈ RC×F×T . This can be considered as a tensor stream,

which is a sequence of 3-order tensor, and the value of T increases with time. At

every instant t1, t2, t3, . . . tT , a new tensor is added to the sequence. The images
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under consideration, grow in quantity as the TOI increases. The landscape

metric features for an ROI are chosen from the earlier study. The metrics are

generally at different levels like patch, class, and landscape. Depending on

whether the ROI is a patch, class, or landscape category, the appropriate metric

can be chosen and added to the metric list. This is referred to as the Metric of

Interest (MOI).

6.4.2 Identification of ROI, TOI and MOI

ROIs from an image has to be selected by considering the domain under study.

As the study concentrates on remote sensing images, certain regions of each

city/state are chosen with the aid of domain expert from Geographical Sciences.

The time frame of the study is chosen at different intervals, say, three years,

five years, seven years, and ten years. The reasoning of selecting such a TOI

solely depends on the availability of the sensor data. The MOIs used in this

study are the landscape metrics or indices, which help to describe the structure

and pattern of a landscape. The landscape/class metrics can be utilized in

quantifying the change pattern in a geographic area over a temporal domain.

The MOIs are summarized as in Table 6.1 from Section 6.2. The table lists the

MOIs considered in this study and their dependency on each other. The remarks

will help to understand the significance of each MOI.

6.4.3 Hierarchical Spatiotemporal-Metric (STM) Miner

The section briefs about the STM miner proposed in this chapter. The steps of

STM-Miner is detailed in Algorithm 6.1.
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Table 6.1: MOI and their dependencies

Metrics of
Interest
(MOI)

Remarks Dependency of
MOI

Class Area Increase/decrease in the total labeled area
indicates a change in the class

–

Mean Patch
Size

Average area distribution under each class label Class Area

Area-Weighted
Mean Fractall
Dimension

Helps to observe the shape complexity of the
class area w.r.t. TOI

Class Area

Contiguity
Index

Measures compactness or elongation of a class
w.r.t. TOI

–

Contrast
Weighted Edge
Density

Standardizes edge to a per unit area Class Area

Patch Density Indicates how the division of landscape into
patches have happened w.r.t. TOI

Class Area

Splitting Index Measure of change in patch distribution w.r.t.
TOI

Patch Density

Interspersion
and
Juxtaposition
Index (IJI)

Measure of degree of adjacency between
different spatial classes

Edge Density

Shannon’s
Diversity Index
(SDI)

Indicates the diversified growth that has
happened to the new class w.r.t. TOI

–

Shannon’s
Evenness Index
(SEI)

Helps in isolating evenness component to
control the value of SDI

Shannon’s
Diversity Index
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Interpretation of Tensor Factors

The image dataset represented as tensor after factorization yields matrices,

X, Y, Z, consisting of R columns. Each matrix corresponds to a component.

It is assumed that the factorization adopted in this design is a non-negative

kind. Each entry of X , say xir will represent a class instance with a weight

value directly proportional to the area of the class under consideration. The Y

component will represent the landscape feature and is of the order ‘F × R’.

Each entry say yjr, will represent a landscape metric value whose weight value

is directly proportional to the actual value of the landscape metric of a particular

ROI.

Algorithm 6.1: STM-Miner
Result: Intra-class Growth Index α, Inter-class Growth Index β

1 Input Image Dataset I , Labelled Classes C, Landscape Feature F , TOI - 1,2,..,T ;
2 For every Ii ∈ I , form Aij = metric value of region(Cj) ;
3 Tensorize all Aij to form X ∈ RC×F×T ;
4 Randomly intialize R ;
5 Calculate Core-Consistency Value of R, if value CC(R) ≤ 0.5, go to next step ;
6 Find X̂ =

∑R
r=1 X ◦ Y ◦ Z ;

7 Y ← Yrref ;
8 For i = 1 to C, j = 1 to T
9 ROIα (CT ) =

∑
(intra MOI(y)) ;

10 ROIβ (CT ) =
∑

(inter MOI(y)) ;
11 For ROI = 1 to N
12 α =

∑
ROIα and β =

∑
ROIβ

The next component Z ∈ RT×R represents the time frame under study

concerning ‘T ’ time intervals. Each entry of Z, say, zkr, will represent

the association among the images within the particular TOI. After the tensor
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factorization of the of images, the first component can be projected with respect

to ROI, the second component with respect to MOI, and the third component

with respect to TOI, thus yielding the MOI for a particular ROI at a certain

TOI. The MOIs can be appropriately combined to yield the following indices as

defined for two modes (i) intra-class and (ii) inter-class

Definition 6.1 Intra-Class Growth Index (α) is defined as the weighted

composition of the metrics that measure the growth/detainment of a region of

interest when there is no change in the class label of the region.

The growth index is calculated as given by

α = w1n1 + · · ·+ wmnn − wm+1n1nj − wm+2n2np − · · · − wnnknp

=
∑
i

wini −
∑
i,j,k

wi.nj.nk. (6.1)

wi—set of weights

ni—set of metrics of interest

nj, nk—set of metrics of interest which are interdependent.

Definition 6.2 Inter-Class Growth Index (β) is defined as the weighted

composition of the metrics that measure the growth/detainment of a region of

interest when there is a change in the class label of the region.

The growth index is calculated as given by

β = v1m1 + · · ·+ vmmk − vm+1m1mj − vm+2m2mp − · · · − vnmkmp

=
∑
i

vimi −
∑
i,j,k

vi.mj.mk (6.2)

vi—set of weights

mi—set of metrics of interest

(mj,mk)—set of metrics of interest which are interdependent.
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Note Interdependent triplet metrics can also be incorporated into the above

equations (6.1) and (6.2).

The equations can be applied on a global level also. The indices computed in

a lower level can be accumulated to the higher level to characterize the change

detection on a collection of ROIs.

6.5 Results and Discussions

The section describes the datasets chosen for the study in detail. The subsection

also discusses the MOIs and their influence in the proposed indices. The

STM-Miner is evaluated to obtain the experimental results on the dataset and

their growth indices.

6.5.1 Datasets

The experiments are run on real-time datasets, which are multispectral images

obtained from the sensors of LANDSAT 7 [130] and LANDSAT 8 [131]. Both

these sensors are used, as the TOI demands it. The study is performed in the

Indian Cities. The Indian cities are categorized as given in Table 6.2 by the

Government of India [146]. There are three classes of cities, namely X, Y, and

Z. Type X consists of the major metropolitan cities in India, which are eight in

number. Type Y cities are ninety-four in number and are the major ones in the

country which are in the developing phase. The datasets are fixed by sampling

from Table 6.2. From the cities sampled, the cities are not analyzed for change

pattern as a whole. Instead of it, three or four ROIs are chosen inside each city,

and the initial change pattern analysis is performed on them. To understand the

growth of the whole city, the hierarchical model is implemented to understand
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the growth of the cities. The sampled cities and their ROIs are presented in

Appendix C. For ‘X’ category cities, four ROIs are chosen, whereas, for ‘Y’

category cities, three ROIs are chosen.

Table 6.2: Categorization of Indian Cities

Category City Count

X Ahmedabad, Bangalore, Chennai, Delhi,
Hyderabad, Kolkata, Mumbai, Pune

8

Y Agra, Ajmer, Aligarh, Allahabad, Amravati,
Amritsar, Asansol, Aurangabad, Bareilly,
Belgaum, Bhavnagar, Bhiwandi, Bhopal,
Bhubaneswar, Bikaner, Bokaro Steel
City, Chandigarh, Coimbatore, Cuttack,
Dehradun, Dhanbad, Durg-Bhilai Nagar,
Durgapur, Erode, Faridabad, Firozabad,
Ghaziabad, Gorakhpur, Gulbarga, Guntur,
Gurgaon, Guwahati, Gwalior, Hubli-Dharwad,
Indore, Jabalpur, Jaipur, Jalandhar, Jammu,
Jamnagar, Jamshedpur, Jhansi, Jodhpur,
Kannur, Kanpur, Kakinada, Kochi, Kottayam,
Kolhapur, Kollam, Kota, Kozhikode, Lucknow,
Ludhiana, Madurai, Malappuram, Malegaon,
Mangalore, Meerut, Moradabad, Mysore,
Nagpur, Nashik, Nellore, Noida, Patna,
Pondicherry, Raipur, Rajkot, Rajahmundry,
Ranchi, Rourkela, Salem, Sangli, Siliguri,
Solapur, Srinagar, Surat, Thiruvananthapuram,
Thrissur, Tiruchirappalli, Tiruppur, Tirupati,
Ujjain, Vadodara, Varanasi, Vasai-Virar City,
Vijayawada, Visakhapatnam, Warangal

94

Z All other cities
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6.5.2 MOIs associated with Growth Indices

Two parameters, namely, intra-class growth index and inter-class growth index,

is introduced in this thesis. Both these indices are the weighted sum of the

different metrics of evaluation of a landscape. The challenging part of this

procedure is to decide on the metrics that account for the growth indices from the

whole set of hundreds of metrics available. The decisive metrics were chosen

from the initial study described in Section 6.2. The metrics so obtained has now

to be categorized into those aiding the computation of both the growth indices.

Intra-class Growth Index quantifies the change pattern of a landscape which

has not changed in its class label over a particular TOI. A change in the Class

Area can be an important metric that might show an increase/decrease in the

total landscape area of the specific class, obviously over the TOI. If there is

an increase/decrease in the total labeled area, it is clear that the shape of the

area has changed. A change in Class Area points to the change in patch

distribution also. Hence the Mean Patch Size is also chosen as an MOI. It is

observed from Section 6.2 that, among the shape metrics, Area-weighted Mean

Fractal Dimension is a decisive shape metric in assessing the change in the

landscape. As the intra-class growth index measures area without a change in

label, any compactness/elongation of the class under consideration are evaluated

by Contiguity Index.

The inter-class growth index quantifies the change pattern of a landscape

which has changed in its class label over a particular TOI. To measure how far

the interclass variance has occurred, the metric called Patch Density is preferable

to the Class Area metric. Patch Density will help to realize how the division of

landscape into patches has happened. The Patch Density is found by considering
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the number of patches of the same type. It depicts the growth or retardation of

each land-use class with respect to the patches. The Patch Density of each class

may vary with TOI. Hence this will be an important metric that will account for

the interclass variance. As Patch Density is a simple measure, the Splitting Index

is also considered as an MOI, to find the number of patches, when a landscape

is divided into patches of equal size. Interspersion and Juxtaposition Index (IJI)

is a measure that indicates only interspersion. It is better to quantify only one

factor between interspersion and dispersion. SDI is the most prominent diversity

indicator in the metrics that measure a landscape. The absolute value of SDI

does not indicate anything meaningful. But a relative comparison of SDI among

the same landscape area at different timestamps is a good indicator of how

diversely the landscape has changed over the TOI. To counter the disadvantages

of SDI, SEI index is also taken into consideration.

As the experiments involve the comparison of landscapes of different areas,

the MOI, contrast weighted edge density is incorporated into both the indices. It

standardizes the edge to a per unit area, which facilitates the comparison among

different landscape areas. The MOIs for assessing the proposed growth indices

is summarized in Table 6.3.

The correlation between the MOIs in Table 6.3 is verified through the

correlation matrix as depicted in Fig. 6.9 and Fig. 6.10. Fig. 6.9 presents

the correlation matrix for the intra-class growth index, and from the positive

correlations, it is evident that the MOIs chosen are appropriate. Similarly,

Fig. 6.10 presents the correlation matrix for the interclass growth index and their

positive correlations. Hence it is validated that the MOIs chosen are relevant and

appropriate for the domain under consideration.



Chapter 6. Change Detection in Urban Landscapes 123

Figure 6.9: Correlation Matrix of MOIs for Intra-Class Growth Index

Figure 6.10: Correlation Matrix of MOIs for Inter-Class Growth Index
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Table 6.3: MOIs influencing Intra-class Growth Index and Inter-Class Growth Index

Coefficients Metrics of Interest (MOI)

Intra-Class Growth Index Class Area (n1)
Mean Patch Size (n2)
Area-Weighted Mean Fractal Dimension (n3)
Contiguity Index (n4)
Contrast Weighted Edge desnity(n5)

Inter-Class Growth Index Patch density(m1)
Splitting Index(m2)
Interspersion and Juxtaposition Index(m3)
Shannons Diversity Index(m4)
Shannons Evenness Index(m5)
Contrast Weighted Edge desnity(m6)

6.5.3 Evaluation

The spatiotemporal-metric miner model depends on tensor factorization. The

approximation of the original tensor is achieved through fine-tuning the R

components for the specified datasets.

The study is performed on all Type X cities and sampled Type Y cities.

The TOI chosen for the study is from the year 2011 to 2016. Definite ROIs

are identified inside the sampled cities, and is available in Appendix C. The

hierarchical STM- Miner is applied to the ROIs, which result in mining the

growth indices for a city. Both the intra-class growth index (α) and inter-class

growth index (β) of all the Type X cities for TOI of 5 years are analyzed and

are presented in Fig. 6.11. It is seen that the growth index is considerably high

for inter-class variance, and the cities Hyderabad and Ahmedabad are the ones

that have grown substantially for the TOI under consideration. All other Type X

cities have exhibited growth on a shallow scale.
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Figure 6.11: Growth Indices for Type X cities

The exciting part of the study is to understand the growth of Type Y cities,

as they belong to the ever-growing category of cities. Through the experiments,

it is attempted to analyze Type Y cities, and find the important cities in the Type

Y category depending on their growth index.

The TOI fixed here is ten years, from 2006 to 2016. Table 6.6 presents the

growth indices of Type Y cities. The data is presented in descending order; the

highest score indicates the city with the most significant growth pattern. It is

clear from the tabular data that the same city does not have the highest score

for both growth indices. The inter-class growth index points to the fact that the

city has changed only on a surface level, with the class-labels remaining the

same. The intra-class growth index points to the information that the city has

transformed drastically, with new class-labels.

High intra-class growth means that the city has undergone exceptional

changes. As far as the analysis of Type Y cities is concerned, Jaipur is the
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Table 6.4: Growth Indices - Type Y cities for TOI - 10 years

Type Y Cities Inter-Class GI Type Y Cities Intra-Class GI
Jaipur 2.68 Surat 0.78
Surat 1.77 Kanpur 0.71
Kanpur 1.65 Indore 0.68
Indore 1.62 Jaipur 0.61
Kochi 1.42 Varanasi 0.59
Varanasi 1.15 Agra 0.52
Agra 1.09 Lucknow 0.49
Lucknow 1.07 Kochi 0.49
Patna 0.87 Patna 0.48
Bhopal 0.87 Bhopal 0.48

city with the highest inter-class growth index of 2.68. In the intra-class growth

index, Surat and Kanpur are almost at par and ranks high on the table. The

growth of these cities are attributed to the socio-economic factors and are not

investigated, as they are beyond the scope of this work.

The top-5 highest-ranked cities are further analyzed for the detailed study.

The growth pattern of the city at different TOIs are depicted as follows. The

figures 6.12 and 6.13 depicts the growth indices at different TOIs. An illustration

of such kind helps to understand in which frame of TOI the city has changed

regarding growth indices. The study projected the inter-class growth index for

ten years of TOI concerning the descending score. For the same top-5 cities,

the different TOIs, produced a different ranking for the cities, as evident from

the graphs. The figure points to the fact that the growth pattern of the cities is

different when seen at different TOIs. Thus, the mechanism of STM- Miner can

be applied to different TOIs to understand the growth pattern of a landscape.

The new indices proposed are highly effective, when a comparative analysis
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Figure 6.12: Inter-Class Growth Index for top-5 ranked Type Y cities at different TOI

Figure 6.13: Intra-Class Growth Index for top-5 ranked Type Y cities at different TOI
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with Gini index [147] of the multi-spectral images at the different TOI is done.

In general terms, the Gini Index is a measure of inequality in the distribution

of data, or it quantifies the non-uniformity of the data under consideration.

In the experiments performed, the average Gini Index value of an ROI over a

particular TOI is analyzed herewith. It is observed that the average Gini index

value for the different type-Y cities varies non-uniformly and does not result in

a pattern, from which effective conclusions regarding change patterns cannot be

drawn. The result is depicted in Fig. 6.14. The average Gini index value is not

supportive to find the change of land use/land cover that has occurred in ROI.

A comparative analysis of the Inter-Class Growth Index, Intra-Class Growth

Index, and Gini Index value is presented in Fig. 6.15 for ten years and seven

years of TOI. From the figures, it is seen that the Gini index value for

different TOI does not yield any specific information regarding changes that

have happened in the landscape. The change in the Gini index value does

not show a specific pattern, whereas the two growth indices proposed shows

consistent values for changes at different TOIs.

A detailed analysis of only the Type-Y cities is shown in the figure. On

a detailed analysis of the growth indices, it is seen that the indices value

is different at different TOIs. A region that was exhibiting good growth at

a particular TOI retards with respect to another TOI. Hence, such kind of

information is also obtained from this study. The higher value of growth index

obviously points to the amount of change pattern that has occurred in a particular

time frame. To enhance the result obtained, an analysis of TOI of five and three

years is also presented in Fig. 6.16.

The results obtained are validated with the studies presented by the National



Chapter 6. Change Detection in Urban Landscapes 129

Figure 6.14: Comparison of Gini Index for Type Y cities for different TOIs

Institute of Urban Affairs, Government of India [148], and are relatively

significant. The results of [148] claim high-growth cities as Pune, Ahmedabad,

and Surat, which are par with the study presented. The dataset for the

experiments are chosen based on the availability of ground truth.

6.6 Summary of the Chapter

The chapter presented an evaluative study of the decisive landscape metrics,

which helps in identifying the changes that have happened in a landscape. After

identifying the relevant landscape metrics, this chapter describes a hierarchical

spatiotemporal metric miner to mine growth of regions of interest, which has

occurred in different time of interest. The change pattern which has occurred

over a period is parameterized using two growth indices, namely, inter-class

growth index and intra-class growth index. The two growth indices are evolved

through iterating with different landscape metrics and converging on relevant
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(a)

(b)

Figure 6.15: Comparison of Inter-Class Growth Index, Intra-Class Growth Index and
average Gini Index values for Type Y cities for TOIs - 10 years and 7 years
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(a)

(b)

Figure 6.16: Comparison of Inter-Class Growth Index, Intra-Class Growth Index and
average Gini Index values for Type Y cities for TOIs - 5 years and 3 years
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metrics, which are termed as metrics of interest. The metrics of interest for

analyzing inter-class growth index and intra-class growth index are found out

by using weight-convergence methods. The images of Indian cities are used in

the experiments. The study is more inclined towards the type-Y cities, which

are analyzed in detail in terms of the growth indices. Different time of interest is

chosen for the study. This miner yields us the knowledge of the different type-Y

cities which are more inclined towards the type-X category. The relevance of

the growth indices is also established through a comparison of the same with

Gini index values.

To formalize the studies conducted in this thesis on change detection,

the metrics contributing to change pattern analysis is conceptualized into an

ontology. The study will help to quantify the growth or detainment of a region

in an urban landscape, as detailed in the next chapter.
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A spatiotemporal ontology to find the changes that have happened in a

particular spatial region at different time periods is modeled in this chapter.

The ontology formalizes the change detection of urban landscapes under study.

The spatial and temporal aspects of the ontology are separately built and are

analyzed in respect of certain case studies. By this attempt, the ontology helps

133
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in conceptualizing the domain knowledge, thereby reducing the semantic gap

between low-level image features and high-level spatiotemporal semantics.

7.1 Introduction

The conventional approach in the change detection method is to perform

classification techniques on the pixel and perform an analysis on changes/no

changes on the class label of the pixel. From this approach, the research has

moved further away to understand the changes more semantically, than in terms

of numeric values. It might also be interesting to see the evolution of changes

on a time axis to govern or assess the driving factors. The chapter presents an

ontology [149] model to understand the change patterns which has evolved on a

temporal scale in a spatial region.

Ontology is a formal name for defining the types, properties, and

relationships of entities that exist in a particular domain. Ontologies are

generally created to limit complexity and organize information, and can then

be applied to problem-solving. They can help to conceptualize the domain

knowledge in the change analysis of a region. In this modeling, information of

each region is obtained from the remote sensing satellite image. The remote

sensing image of the region is assumed to be classified and is marked with

appropriate class labels. Each satellite is associated with a spatial and temporal

resolution, which will govern the extent to which the study can be mapped. The

satellite image obtained at different time intervals are analyzed with respect to

their class labels and associated features to understand the changes which have

happened in the region. The ontology is modeled with semantics for the related

features so that it bridges the gap between the low-level image features and
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high-level spatiotemporal semantics. Thus the proposed ontology will help to

understand the changes in a region more semantically in terms of features like

morphology, shape and texture.

The research work related to spatiotemporal ontology is briefed in Section

7.2. The design and development of spatiotemporal ontology are described in

detail in Section 7.3. The reasoning of spatiotemporal ontology is substantiated

in Section 7.4. The rules and axioms obtained from the proposed ontology

is also briefed in this section. Case Studies of Indian cities on the proposed

ontology is presented in Section 7.5. The chapter is concluded in Section 7.6.

7.2 Related Research

The change detection techniques are now more formalized to bridge the

semantic gap that arises from the analysis. It is noted that there are very

few works in the literature that supports the modeling of change patterns

semantically. Most of the traditional methods rely on post-classification

analysis.

A SOWL was developed to model an ontology in the spatiotemporal domain

[150]. The ontology handles both quantitative and qualitative information in

the spatiotemporal mode. The associated query language supports a set of

operators in the spatial and temporal domain. The work also incorporated

rules for inferring spatiotemporal axioms in the existing domain. Likewise, a

spatiotemporal ontology for change analysis for flood-affected regions using

remote sensing images is described in [151]. The aim of the ontology is to

query, detect, and analyze the disaster-affected region. This concept will help to

analyze the temporal changes that have happened in flood-affected region.
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7.3 Design and Development of Spatiotemporal Ontology

The design and development of spatiotemporal ontology is outlined in this

section. This section also details the different concepts used in the ontology.

As it is a spatiotemporal ontology, the information has to be encoded in the

spatial and temporal domain.

7.3.1 Spatial Information

The spatial information of the region chosen for understanding change patterns

has to be modeled in classes, object properties, data properties and individuals

of the ontology. The entire ontology is built under SpatiotemporalEntity which

is divided into subclasses like SpatialEntity, TemporalEntity, ChangeModel.

The entire spatial information is modeled under SpatialEntity. The main sub

concepts/classes of the spatial domain is Regions, Labels and BoundingBox.

The Regions depict the spatial areas for the land under study. Regions are

the subclasses of Labels. The Labels class is further divided into Builtup,

Baregrounds, Vegetation, and Water. The boundaries of regions are marked

through BoundingBox. The BoundingBox helps to mark the four corners of the

region. The classes are connected through the object properties and associated

data properties. A sample of object properties can be summarized as given in

the following Table 7.1.

The Region class has the most important data property as hasLabel,

which indicates the label on the region. The class is also associated with the

property called RegionFeatures, which is further split into ColorFeatures,

TextureFeatures, ShapeFeatures, Indices and Metrics. The ColorFeatures of the

image has the Lightness, ‘a’ and ‘b’ components, and Near Infra Red features,
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Table 7.1: Object properties, domain and range

Domain Object Properties Range
SatelliteImage AcquireBy Sensor

Sensor InstalledIn Satellite
Tile BelongsToImage SatelliteImage

Region BelongsToTile Tile
Tile BelongsToImage SatelliteImage

Region BelongsToTile Tile
Tile ConsistsOfRegion Region

SatelliteImage ConsistsOfTile Tile
BoundingBox DirectionalRelation BoundingBox

Region hasBBox BoundingBox
TemporalEntity atTime TemporalEntity

hence the data property—ColorFeatures (mean L, SD L, mean a, SD a,

mean b, SD b, mean NIR, SD NIR). Similarly the TextureFeatures is comprised

of (glcm contrast, glcm correelation, glcm dissimilarity, glcm entropy,

glcm homogenity, glcm mean, glcm second moment, glcm variance). The

ShapeFeatures of the region has three components Area, Elongation and

Perimeter. The indices under consideration are NDVI and SBI and hence

the data property—Indices(mean ndvi, SD ndvi, mean sbi, SD sbi). The

relevant landscape metrics (which were deduced from Chapter 6) of

the region are also taken into account in this ontology. Thus the data

property Metrics can be written as (hasClassArea, hasAWFractalDimension,

hasCWEdgeDensity, hasContiguityIndex, hasIJIIndex, hasSDIIndex,

hasSEIIndex, hasSplittingIndex).
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7.3.2 Temporal Information

The entire temporal information is stored in the class TemporalEntity. The

object property atTime binds the Temporal Entity to itself. The entity has the

TimeOfInterest as the subclass which is further depicted as TimeOfInterest (day,

month, year). The temporal information provides the time at which the remote

sensing image is acquired by the satellite.

7.3.3 Spatiotemporal Information

The SpatiotemporalEntity of the ontology models the ChangeModel from

the SpatialEntity and TemporalEntity. The ChangeModel is associated with

features like morphology, shape, position, and texture. The morphology

property has individuals, namely, strip and planar. The individuals of

the shape property are regular and irregular. The positional property

has individuals adjacent and disjoint. The texture features are also

described with individuals rough and smooth. The ontology is developed

in Ontology Web Language –DL (OWL-DL) using Protégé and is available

in https://ontohub.org/repositories/spatiotemporal ontology. The ontology

developed is able to perform spatiotemporal reasoning in the form of rules and

axioms.

7.4 Reasoning of Spatiotemporal Ontology

Semantic Web Rule Languages (SWRL) Rules are modeled from the ontology

to understand the change pattern of a region over a temporal scale. In the

ontology, two different sets of TimeOfInterest is chosen, and a spatial region

is being observed.

https://ontohub.org/repositories/spatiotemporal_ontology
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The SWRL rules is a subset of rules formulated from the proposed ontology.

The rules help to find out the changes that have occurred in a spatial region at

two particular instances of time. The rule reports the changes that have occurred

in the region in terms of the class label and associated properties of the region.

For example, Rule #1 describes the change pattern at two-time intervals, say

t1 and t2, of a region r1 labeled as l1 at t1 has now changed to label l2 at t2.

Similarly, Rules #2–3 describe the features of a region which has changed from

time t1 to t2. These features include color, shape, indices, texture, and metric

features, which has resulted in changes.

There are also inferred axioms, which resulted from the spatiotemporal

ontology. A subset of the axioms is shown as Rules #4–9 in Table 7.2.

The inferred axioms are modeled under ChangeModel. These axioms provide

semantic information regarding changes rather than numeral values. It reports

the evolution of changes in terms of morphology, shape, position, and texture.

Rules #4–5 express the axioms which model the morphological change of a

region as either a strip or a planar region.

Rules #6–7 depicts the shape change of a region in terms of a regular

or an irregular polygon. Similarly, Rules # 8–9 express the change pattern

in terms of position (adjacent and disjoint) and texture (rough and smooth).

Closer examination of these rules point to the fact that the decisive factors on

elaborating the semantics are generally the values associated with the different

landscape metrics. This is the innovative contribution of the spatiotemporal

ontology depicted.
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Table 7.2: SWRL Rules and Inferred Axioms of the Spatiotemporal Ontology

Rule
#

SWRL Rules/Inferred Axiom

1 atTime(?t1,?t2)∧ hasBoundingBox(?r1,?b1)∧

hasLabel(?l1,?t1) -> hasLabel(?l2,?t2)

2 atTime(?t1,?t2)∧ hasBoundingBox(?r1,?b1)∧

hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)

->hasClassArea(?a1,?a2)∧ hasElongation (?e1, ?e2)∧

hasPerimeter (?p1, ?p2)

3 atTime(?t1,?t2)∧ hasBoundingBox(?r1,?b1)∧

hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)

->hasCWEdgeDensity(?c1,?c2)∧ hasIJIindex(?r12,

?iji 12)∧ hasSDI(?sdi 1, ?sdi 2)

4 hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)∧

hasContiguityIndex(?r12,?ci 1) ->

hasMorphology(?strip)

5 hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)∧

hasContiguityIndex(?r12,?ci 2) ->

hasMorphology(?planar)

6 hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)∧

hasAWFractalDimension(?r12, ?aw 1)->

hasShape(?regular)

7 hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)∧

hasAWFractalDimension(?r12, ?aw 2)->

hasShape(?irregular)

8 hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)∧

hasIJIindex(?r12,?iji 1)-> hasPosition(?adjacent)

9 hasLabel(?l1,?t1)∧ hasLabel(?l2,?t2)∧ y

hastexturefeature(?con 1, ?corr 1, ?diss 1,

?ent 1, ?homo 1, ?mean 1, ?sec mom 1, ?var 1)->

hasTexture(?rough)
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7.5 Case Studies

This section briefs about the study area analyzed with the help of modeled

ontology. The change patterns in landscape metrics are analyzed in the next

section to understand the growth of the regions under study.

7.5.1 Study Area

India is a land of diversities. The diversification of the country is attributed

to many factors like the unique linguistic states, culture differences between

northern and southern states, landscape patterns of the states, and population of

the state. The diversification has evolved over the years. Of course, along these

years, the landscape of the region also has undergone a drastic change. To study

how the landscape has changed, two metropolitan cities, which have immensely

contributed to the growth of the nation, namely, Mumbai and Bangalore, are

taken as case studies.

Mumbai (formerly known as Bombay) is a metropolitan city situated on

the west coast of India. It is one of the most populous cities in India. Over

the past decade, Mumbai has grown as the financial and commercial center of

India, thus supporting the nation’s economy. Bangalore (officially known as

Bengaluru), a metropolitan city of the Indian sub-continent and is accepted as a

twin-town/sister city of many cities worldwide, including San Francisco, USA.

It is the third most populous city in India and is located in southern India. The

city is regarded as the Silicon Valley of India and is the leading IT exporter of

the country. Bangalore city also accounts for the nation’s development in terms

of IT sector.
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7.5.2 Discussion of results and Contributions

As mentioned in Section 7.5.1, the study area chosen is the two metropolitan

cities of India (a) Mumbai and (b) Bangalore. The first step in this study is to

apply the classification model to classify the remote sensing images. The second

step is to use the spatiotemporal ontology on the classified images to observe the

changes. The quantitative values resulting from the landscape metrics will aid

in judging the landscape pattern evolution. It is to be noted that the features

used for classification using Support Tensor Machines are intra-spectral and

inter-spectral features, which are detailed in Chapter 3.

The landscape metric, Area Weighted Mean Fractal Dimension, is an

indicator of the shape complexity associated with the region. The range of

values for this metric is from 1 to 2. When the values approach 1, the shapes

have a simple perimeter, and when the values approach 2, the shapes become

more complex. Fig. 7.1 presents the shape complexity associated with Mumbai

and Bangalore at different temporal resolutions. From the observations in the

figure, each vertical line represents the highest and lowest value associated with

that region. The marker in the vertical line is an indicator of the weighted

average value of the fractal dimension. The graph of Mumbai points to the

following facts (a) a drastic change in the shape complexity of the city is

seen between 1999–2008 (b) the period between 1988–1999 does not exhibit

a radical change, only a minor variation in the fractal dimension values are

noted (c) the average value of 1999–2008 lies in the lower range of vertical line,

thus indicating the presence of a large number of patches with simple shapes

and (d) the change in the period 2008–2017 has happened in almost all patches

as the average value has risen to 1.8. Similarly, an examination of Bangalore
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(a)

(b)

Figure 7.1: Area Weighted Mean Fractal Dimension—Shape Analysis
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city points to the following notes (a) the change happened between the years

1988–1999 are appreciable as the average values in the two time ranges differ

by 0.5 (b) almost all patches of Bangalore city has undergone changes in the

period 1999–2008, thus indicating a mid-value average in the vertical line and

(c) more regions have grown to complex shape in the time frame 2008–2017.

The morphological pattern associated with the regions of the landscape is

given by the landscape metric called the contiguity index. It measures the

elongation or compactness of a region, thus naming it as either strip or planar.

The range of values is from 0 to 1. As the areas elongate, the value approaches

zero, and as it becomes more compact, the value approaches 1. Fig. 7.2 depicts

the study of the contiguity index for the two metropolitan cities. The two plots

almost behave similarly, with the range of values in the same time slots is almost

same, but with different averages. This leads to the conclusion that the way the

structure of regions in two metropolitan cities has evolved is similar under the

considered temporal resolutions.

To understand the texture composition of the region and also to understand

the patch dispersion as adjacent or disjoint, the landscape metric Interspersion

and Juxtaposition index comes into play. This is a relative index that indicates

the level of interspersion as a percentage of maximum possible value for a given

number of patch types. So the value is dependent on the number of patch types.

The range of values is from 0 to 100. A higher value indicates a composition of

smooth and adjacent same patch types, and as the value goes down, the texture

becomes rough, and patches will be disjoint. Fig. 7.3 shows the Interspersion

and Juxtaposition Index values for Mumbai and Bangalore cities.

On analysis of the indices, it is seen that for Mumbai city, considering the
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(a)

(b)

Figure 7.2: Contiguity Index—Morphological Analysis
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(a)

(b)

Figure 7.3: Interspersion and Juxtaposition Index–Texture Analysis
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entire temporal resolution, in 2017, there is an equal number of rough and

smooth patches as indicated by the average value. It has to be assumed that the

urban structure contributing to this factor is equally spread in the region along

with non-urban lands. Analyzing Bangalore city, the average value for the given

number of patches is low in the first two temporal domains and high for the next

two. This leads to the conclusion that the urban growth which has happened in

2008–2017 in Bangalore has been reflected in almost all the patches.

The three case studies reported are examples of the inferred axioms Rule #4

and Rule #5 for morphology analysis, Rule #6 and Rule #7 for shape analysis

and Rule #8 for texture analysis.

From the case studies, it is evident that the spatiotemporal ontology proposed

will give the opportunity to analyze the change pattern of a landscape in terms

of shape, morphology, texture, and position of patches. The landscape metric

values computed with the aid of ontology will help us to reach appropriate

conclusions. The interpretation of the study can be summarized as follows

a. Mumbai and Bangalore city have grown tremendously in the period 1999

-2008 as evident from the landscape metrics given by the ontology.

b. Most of the regions in Bangalore city has moved to urban land, whereas in

Mumbai, the development as an urban area in certain regions are more acute

than others.

c. The shape patterns have grown more complex in the cities during the interval

2008 -2017, indicating urban growth at the borderlands.

d. The morphological structure of the regions in both the cities show

synonymous behavior towards an elongated structure.



148 Chapter 7. Spatiotemporal Ontology for Change Detection

The analysis of this work is done using Google Earth Engine Python API.

7.6 Summary of the Chapter

The spatiotemporal ontology to understand the change pattern of the spatial

region is presented in this chapter. The ontology modeled SWRL rules, which

aided to understand the change which has happened to a region in terms of its

class label. The inferred axioms of the ontology help to understand the changes

evolved during the time of interest in terms of spatiotemporal semantics. The

ontology presented can be further extended to model topological relationships

between the regions, which is currently modeled only with the support of

directional relationships. The ontology can also be extended to support the

change analysis of a region to understand the dynamic events happening in a

region like a flood, earthquake, and so on. This ontology can be used along with

the model presented in the previous chapter to understand changes that have

happened in a spatial region over a temporal tag.
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The thesis addressed the research problems in the field of spatiotemporal

data mining. Spatiotemporal data mining, through its inherent characteristics,

presented many challenges as well as opportunities, which was the basic

motivation for the work in this thesis. In this chapter, a summary, which draws

overall conclusions of the research work is outlined. The chapter also provides

recommendation on the future perspectives.

8.1 Conclusion

The aim of the research is to design and develop algorithms for colocation

pattern mining and semantic change detection through effective representation

of spatiotemporal data. The thesis presented has made systematized efforts to

accomplish the objectives set.

149
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To comprehend the challenges and opportunities in the field of

spatiotemporal data mining, an extensive literature review is attempted. The

study included the different types of spatiotemporal data, representation

methods of spatiotemporal data and the different data mining approaches. It

is realized through the study and initial experiments that the tensor-based

representation of spatiotemporal raster data opened up new avenues for pattern

discovery. Experiments are done on remote sensing satellite images for

the different representation techniques. Even though matrix representation

is straight-forward, the spatial correlation information is not captured. The

tensor-based representation preserves the spatial correlation and produces

appreciable results in the classification task. Henceforth in the subsequent

studies, the tensor representation of spatiotemporal data is adopted for the

mining tasks to be performed.

From the literature review, it is observed that there is very few work in

colocation pattern mining of images. The thesis is thus oriented to the colocation

pattern mining problem. Colocation mining of the spatiotemporal data is

attempted on the spatial as well as spatiotemporal context. The concept of tensor

factorization forms the underlying principle of discovering colocation patterns.

Algorithms are proposed for finding spatial and spatiotemporal colocation

patterns in images, which yielded significant patterns. The algorithms

proposed on the tensor-based approach for colocation pattern mining shows

appreciable performance in terms of scalability and computational time, which

is demonstrated by the sparse as well as dense spatiotemporal data sets. A

new interestingness measure, called spatial dominance, is also defined in the

study of spatial colocation mining. The proposed algorithm is compared with
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relevant and similar work in the literature. It is observed that the algorithm finds

spatial colocation patterns in less computational time. The colocation patterns

mined contain patterns with more significance in terms of the containment of

the number of image-objects as compared with the literature.

The success of spatial colocation mining using tensor-based approaches

motivated to apply the concept to spatiotemporal colocation mining as well.

An algorithm which is analogous to the earlier concept is proposed to yield

spatiotemporal colocation patterns. As the component of time increases, the

space to store the temporal tensors also increases. Hence, a modification to

the algorithm in an incremental tensor factorization approach is also performed

in this thesis. This algorithm performs the mining task based on the variance

of the spatiotemporal data and stores only the variance tensor between two

time periods. The incremental algorithm showed better performance in terms

of convergence time when compared with the earlier approach. A new

interestingness measure, called spatiotemporal dominance, is also defined in

this study. The proposed algorithm is compared with the relevant work in

literature in terms of the execution time. The execution time is analyzed in

terms of two parameters (i) time slots and (ii) image-objects. It is observed

that the proposed algorithms perform appreciably well when compared with the

existing ones.

The spatiotemporal dominance value indicates the time prevalence the

colocated pattern. This motivated to apply the above-said approach to detect

changes in a landscape over a time period. Landscape metrics are modeled along

with the spatiotemporal data to enhance the change detection problem with more

semantics. This necessitated the need to do an elaborate and evaluative study of
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the landscape metrics relevant for change detection in landscapes. The change

detection algorithm proposed in this thesis discovers changes in the landscapes

at different granularities of regions and time. Novel growth indices, namely,

Intra-class growth index and Inter-class growth index, are defined in this study.

Experimental results in detecting changes in Indian cities are quantified using

growth indices and is also evaluated with the ground truth values. To formalize

the studies on change detection, a spatiotemporal ontology is conceptualized.

The low-level image features and the relevant landscape metrics identified for

change detection forms the elements of the ontology. The study helped to

understand the change pattern of the cities for a particular time period. The rules

and axioms from the ontology helped to perform an assessment of the cities in

terms of their morphological, texture, and shape patterns. Case studies on Indian

cities (Mumbai and Bangalore) are attempted using the proposed spatiotemporal

ontology. The growth patterns of the cities at different time periods are indicated

by the rules and axioms from the ontology.

The research presented in this thesis has been focused on finding a

representation method for spatiotemporal data. The tensor-based representation

method evolved from the studies preserved the spatial relationships that

exist between the entities, and are hence carried forward for the mining

task. Algorithms are proposed for colocation pattern mining and change

detection. The patterns mined are evaluated with the aid of new interestingness

measures proposed in the thesis. The thesis also paved the way for semantic

mining of patterns in spatiotemporal data. The algorithms proposed in this

thesis contributes to applications like urban facility analysis, planning and

management.
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8.2 Future Perspectives

Tensorized representation of spatiotemporal data introduced in the studies

can be carried to other application domains to find implicit patterns. More

dimensions can also be introduced into the tensor data structure while

incorporating multimodal data, as the proposed algorithms can accommodate

the same without any changes. The possible lag in tensor factorization needs

special attention. Application of convolutional functions in each mode of the

tensor is promising in this direction.

In the proposed algorithms, patterns are derived from the whole set

of colocation instances. Minimal set of colocation instances improve the

computing speed. A technique to choose highly influential colocation instances

need further investigation.

The proposed ontology can be extended to model changes for dynamic

events like earthquake and flood. Features and SWRL rules specific to the events

are to be incorporated into the ontology. Developing a query language for the

proposed ontology is a future prospect.

The tensorized data proposed in the thesis can also be fed into new machine

learning models like Support Tucker Machine, Polynomial Classifie and Higher

Order Boltzmann Machiner for appropriate application. Nowadays, deep

learning techniques are making footprints in the mining of spatiotemporal data

like prediction [152]. This is because an accurate prediction relies on high

quality features and deep learning models are powerful in feature learning. In

contrast, works are still to be progressed in other areas like frequent pattern

mining, change detection, and relationship mining of spatiotemporal data

[153]. So it remains an open problem of how the deep learning models can
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be integrated with the traditional models of frequent pattern mining for the

broader application of spatiotemporal data mining tasks. The tensorization of

spatiotemporal data proposed in this thesis is a stepping stone for the direct

application of deep learning methodologies to the mining of spatiotemporal

data.

Overall, the thesis had tried to contribute to the young field of spatiotemporal

data mining and established promising avenues for work, in effervescent

directions, as “time and space are not conditions in which we live, but modes by

which we think.”
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Satellite Specifications

WorldView-2 Satellite Sensor Specifications
Launch Date 8 October 2009
Spatial Resolution 0.52 m
Orbit 705 +/- 5 km (at the equator) sun-synchronous
Orbit Inclination 98.2 +/- 0.15
Orbit Period 100 minutes
Grounding Track Repeat Cycle 1.1 days

Band # and Type Wavelength (µm) Resolution (m)
Band 1 Coastal 0.400 – 0.450 2
Band 2 Blue 0.450 – 0.510 2
Band 3 Green 0.510 – 0.580 2
Band 4 Yellow 0.585 – 0.625 2
Band 5 Red 0.630 – 0.690 2
Band 6 Red Edge 0.705 – 0.745 2
Band 7 Near Infrared 1 0.770 – 0.895 2
Band 8 Near Infrared 2 0.860 – 1.040 2

Landsat 7 ETM+ Satellite Sensor Specifications
Launch Date 15 April 1999
Spatial Resolution 15m Panchromatic, 30m VNIR/ SWIR
Orbit 705 +/- 5 km (at the equator) sun-synchronous
Orbit Inclination 98.2 +/- 0.15
Orbit Period 98.9 minutes
Grounding Track Repeat Cycle 16 days (233 orbits)
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Band # and Type Wavelength (µm) Resolution (m)
Band 1 – Blue 0.45 – 0.52 30
Band 2 – Green 0.52 – 0.60 30
Band 3 – Red 0.63 – 0.69 30
Band 4 – Near Infrared 0.77 – 0.90 30
Band 5 – Shortwave Infrared 1 1.55 – 1.75 30
Band 6 – Thermal 10.40 – 12.50 60 * (30)
Band 7 - Shortwave Infrared 2 2.09 – 2.35 30
Band 8 - Panchromatic 0.52 – 0.90 15

LANDSAT 8 ETM+ Satellite Sensor Specifications
Launch Date 11 February 2013
Spatial Resolution 15 meters/30 meters/100 meters

(panchromatic/multispectral/thermal)
Orbit 705 +/- 5 km (at the equator) sun-synchronous
Orbit Inclination 98.2 +/- 0.15
Orbit Period 98.9 minutes
Grounding Track Repeat Cycle 16 days (233 orbits)

Band # and Type Wavelength (µm) Resolution (m)
Band 1 Coastal 0.43 – 0.45 30
Band 2 Blue 0.45 – 0.51 30
Band 3 Green 0.53 – 0.59 30
Band 4 Red 0.63 – 0.67 30
Band 5 NIR 0.85 – 0.88 30
Band 6 SWIR 1 1.57 – 1.65 30
Band 7 SWIR 2 2.11 – 2.29 30
Band 8 Pan 0.50 – 0.68 15
Band 9 Cirrus 1.36 – 1.38 30
Band 10 TIRS 1 10.6 – 11.19 30 (100)
Band 11 TIRS 2 11.5 – 12.51 30 (100)
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Landscape Metrics

Terms used in Landscape Metrics

Sl
No

Terms Explanation

1 TA Total area in m2

2 CA Class area in m2

3 N Number of patches
4 E Total length of edge in landscape
5 aij Area of patch ij (‘i’ type ‘j’ number of patches) (in m2)
6 pij Perimeter of patch ij (in m)
7 m Number of classes present in the landscape
8 n Number of patches present in the landscape
9 pi Class i proportionate landscape
10 gik Number of adjacencies between classes of type i and k
11 eik Total length of edge in landscape between classes i and k
12 dik Dissimilarity between patches i and k
13 cijr Contiguity value for pixel r in patch ij
14 v Sum of the values in a 3 by 3 cell template
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Appendix C

Sampled Indian Cities

Sampled Cities, ROIs, Latitude and Longitude

No. City ROI Latitude Longitude
1 Ahmedabad Bavla 22.8928 N 72.3628 E

Dholka 22.7428 N 72.4436 E
Sanand 22.9913 N 72.3755 E
Dhandhuka 23.3797 N 71.9816 E

2 Bangalore Krishnarajapura 13.0040 N 77.6878 E
Yeshwanthpur 13.0280 N 77.5409 E
Nagarbhavi 12.9599 N 77.5083 E
Banashankari 12.9255 N 77.5468 E

3 Chennai Egmore 13.0732 N 80.2609 E
Mylapore 13.0368 N 80.2676 E
Mambalam 13.0387 N 80.2279 E
Purasawalkam 13.0897 N 80.2541 E

4 Delhi New Delhi 28.6139 N 77.2090 E
Narela 28.8540 N 77.0918 E
Dwaraka 28.5921 N 77.0460 E
Daryaganj 28.6448 N 77.2404 E

5 Hyderabad Amberpet 17.3923 N 78.5178 E
Afzalgunj 17.3739 N 78.4702 E
Cyberabad 17.3850 N 78.4867 E
Masabtank 17.4037 N 78.4492 E
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No. City ROI Latitude Longitude
6 Kolkata North Parganas 22.6168 N 88.4029 E

Hooghly 22.8963 N 88.2461 E
Howrah 22.5958 N 88.2636 E
South Parganas 22.1352 N 88.4016 E

7 Mumbai Bandra 19.0607 N 72.8362 E
Kurla 19.0600 N 72.8900 E
Andheri 19.1363 N 72.8277 E
Dadar 19.0213 N 72.8424 E

8 Pune Pimpri 18.6298 N 73.7997 E
Dapodi 18.5867 N 73.8316 E
Bhosari 18.6385 N 73.8478 E
Nigdi 18.6571 N 73.7659 E

9 Jaipur Kotpuli 27.7046 N 76.2013 E
Amber 26.9880 N 75.8610 E
Sanganer 26.8061 N 75.7669 E

10 Lucknow Ashiyana 26.7990 N 80.9710 E
Aliganj 26.9041 N 80.9453 E
Chinhat 26.8771 N 81.0400 E

11 Kanpur Kidwai 26.4263 N 80.3276 E
Jajmau 26.4234 N 80.4020 E
Panki 26.4679 N 80.2473 E

12 Kochi Ernakulam 9.9690 N 76.2910 E
Thrikkakara 10.0327 N 76.3318 E
Aluva 10.1075 N 76.3456 E

13 Gurgaon Gurugram 28.4595 N 77.0266 E
Kanahi 28.4521 N 77.0788 E
Gurgaon Central 28.4795 N 77.0757 E

14 Varanasi Cantt 25.3176 N 82.9739 E
Sigra 25.3111 N 82.9864 E
Bhelpur 25.3040 N 82.9900 E

15 Agra KishanGarh 27.1766 N 78.0080 E
Mohanpura 27.1713 N 78.0617 E
Sadar Bhatti 27.1540 N 78.0146 E

16 Surat Amber 21.1702 N 72.8311 E
Sindhiwad 21.1855 N 72.8239 E
Govalak 21.1596 N 72.8242 E



Appendix C. Sampled Indian Cities 161

No. City ROI Latitude Longitude
17 Patna Kumhrar 25.5928 N 85.1868 E

Sheikpura 25.1417 N 85.8629 E
Danapur 25.6207 N 85.0493 E

18 Bhopal Govindpura 23.2472 N 77.4444 E
Sonagiri 23.2485 N 77.4702 E
Bhauri 23.2816 N 77.2736 E

19 Indore Palasia 22.7244 N 75.8839 E
South Tukoganj 22.7182 N 75.8749 E
Chandan Nagar 22.7130 N 75.8236 E

20 Coimbatore Puliakulam 11.0053 N 76.9917 E
R S Puram 11.0104 N 76.9499 E
Ukkadam 10.9902 N 76.9629 E





References

References

[1] Ranga Raju Vatsavai, Auroop Ganguly, Varun Chandola, Anthony

Stefanidis, Scott Klasky, and Shashi Shekhar. Spatiotemporal data mining

in the era of big spatial data: algorithms and applications. In Proceedings

of the 1st ACM SIGSPATIAL international workshop on analytics for big

geospatial data, pages 1–10. ACM, 2012.

[2] Shashi Shekhar, Zhe Jiang, Reem Ali, Emre Eftelioglu, Xun Tang,

Venkata Gunturi, and Xun Zhou. Spatiotemporal data mining:

A computational perspective. ISPRS International Journal of

Geo-Information, 4(4):2306–2338, 2015.

[3] Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou,

Yufei Tao, and David W Cheung. Mining, indexing, and querying

historical spatiotemporal data. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

236–245. ACM, 2004.

[4] Tammy M Thompson, Sebastian Rausch, Rebecca K Saari, and Noelle E

Selin. A systems approach to evaluating the air quality co-benefits of us

carbon policies. Nature Climate Change, 4(10):917, 2014.

[5] Pablo Samuel Castro, Daqing Zhang, and Shijian Li. Urban

traffic modelling and prediction using large scale taxi gps traces.

In International Conference on Pervasive Computing, pages 57–72.

Springer, 2012.



164 References

[6] Yasuko Matsubara, Yasushi Sakurai, Willem G Van Panhuis, and Christos

Faloutsos. Funnel: automatic mining of spatially coevolving epidemics.

In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 105–114. ACM, 2014.

[7] Gowtham Atluri, Angus MacDonald III, Kelvin O Lim, and Vipin Kumar.

The brain-network paradigm: Using functional imaging data to study how

the brain works. Computer, 49(10):65–71, 2016.

[8] Anuj Karpatne and Vipin Kumar. Big data in climate: Opportunities

and challenges for machine learning. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 21–22. ACM, 2017.

[9] Mark R Leipnik and Donald P Albert. GIS in law enforcement:

Implementation issues and case studies. CRC Press, 2002.

[10] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-temporal data

mining: A survey of problems and methods. ACM Computing Surveys

(CSUR), 51(4):83, 2018.

[11] May Yuan. Use of a three-domain repesentation to enhance gis support

for complex spatiotemporal queries. Transactions in GIS, 3(2):137–159,

1999.

[12] Alina Bialkowski, Patrick Lucey, Peter Carr, Yisong Yue, Sridha

Sridharan, and Iain Matthews. Large-scale analysis of soccer matches

using spatiotemporal tracking data. In 2014 IEEE International

Conference on Data Mining, pages 725–730. IEEE, 2014.



References

[13] Mohammad Taha Bahadori, Qi Rose Yu, and Yan Liu. Fast multivariate

spatio-temporal analysis via low rank tensor learning. In Advances in

neural information processing systems, pages 3491–3499, 2014.

[14] Dipti Verma and Rakesh Nashine. Data mining: Next generation

challenges and futuredirections. International Journal of Modeling and

Optimization, 2(5):603, 2012.

[15] Krzysztof Koperski, Junas Adhikary, and Jiawei Han. Spatial data

mining: progress and challenges survey paper. In Proc. ACM SIGMOD

Workshop on Research Issues on Data Mining and Knowledge Discovery,

Montreal, Canada, pages 1–10. Citeseer, 1996.

[16] Martin Ester, Hans-Peter Kriegel, and Jörg Sander. Spatial data mining:

A database approach. In International Symposium on Spatial Databases,

pages 47–66. Springer, 1997.

[17] Donna J Peuquet and Niu Duan. An event-based spatiotemporal data

model (estdm) for temporal analysis of geographical data. International

journal of geographical information systems, 9(1):7–24, 1995.

[18] Sebastian Schutte and Karsten Donnay. Matched wake analysis: finding

causal relationships in spatiotemporal event data. Political Geography,

41:1–10, 2014.

[19] Peter Revesz and Shasha Wu. Spatiotemporal reasoning about

epidemiological data. Artificial Intelligence in Medicine, 38(2):157–170,

2006.



166 References

[20] Yu-Chiun Chiou and Chiang Fu. Modeling crash frequency and severity

with spatiotemporal dependence. Analytic Methods in Accident Research,

5:43–58, 2015.

[21] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross

Maciejewski, David S Ebert, and Thomas Ertl. Spatiotemporal social

media analytics for abnormal event detection and examination using

seasonal-trend decomposition. In IEEE VAST, pages 143–152, 2012.

[22] Anthony C Gatrell, Trevor C Bailey, Peter J Diggle, and Barry S

Rowlingson. Spatial point pattern analysis and its application in

geographical epidemiology. Transactions of the Institute of British

geographers, pages 256–274, 1996.

[23] Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez. Traffic

density-based discovery of hot routes in road networks. In International

Symposium on Spatial and Temporal Databases, pages 441–459.

Springer, 2007.

[24] Zhenni Feng and Yanmin Zhu. A survey on trajectory data mining:

Techniques and applications. IEEE Access, 4:2056–2067, 2016.

[25] Yanchi Liu, Chuanren Liu, Nicholas Jing Yuan, Lian Duan, Yanjie Fu,

Hui Xiong, Songhua Xu, and Junjie Wu. Exploiting heterogeneous

human mobility patterns for intelligent bus routing. In 2014 IEEE

International Conference on Data Mining, pages 360–369. IEEE, 2014.

[26] Jian Dai, Bin Yang, Chenjuan Guo, and Zhiming Ding. Personalized

route recommendation using big trajectory data. In 2015 IEEE 31st



References

International Conference on Data Engineering, pages 543–554. IEEE,

2015.

[27] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo.

Mining user mobility features for next place prediction in location-based

services. In 2012 IEEE 12th international conference on data mining,

pages 1038–1043. IEEE, 2012.

[28] Yingzi Wang, Nicholas Jing Yuan, Defu Lian, Linli Xu, Xing Xie,

Enhong Chen, and Yong Rui. Regularity and conformity: Location

prediction using heterogeneous mobility data. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 1275–1284. ACM, 2015.

[29] Siyuan Liu, Qiang Qu, and Shuhui Wang. Rationality analytics from

trajectories. ACM Transactions on Knowledge Discovery from Data

(TKDD), 10(1):10, 2015.

[30] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Modeling temporal

effects of human mobile behavior on location-based social networks. In

Proceedings of the 22nd ACM international conference on Information &

Knowledge Management, pages 1673–1678. ACM, 2013.

[31] Anshul Gupta, Aurosish Mishra, Satya Gautam Vadlamudi,

PP Chakrabarti, Sudeshna Sarkar, Tridib Mukherjee, and Nathan

Gnanasambandam. A mobility simulation framework of humans with

group behavior modeling. In 2013 IEEE 13th International Conference

on Data Mining, pages 1067–1072. IEEE, 2013.



168 References

[32] Thomas Liebig, Zhao Xu, Michael May, and Stefan Wrobel. Pedestrian

quantity estimation with trajectory patterns. In Joint European

Conference on Machine Learning and Knowledge Discovery in

Databases, pages 629–643. Springer, 2012.

[33] Xuemei Liu, James Biagioni, Jakob Eriksson, Yin Wang, George Forman,

and Yanmin Zhu. Mining large-scale, sparse gps traces for map inference:

comparison of approaches. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

669–677. ACM, 2012.

[34] Bin Yang, Nicolas Fantini, and Christian S Jensen. ipark: Identifying

parking spaces from trajectories. In Proceedings of the 16th International

Conference on Extending Database Technology, pages 705–708. ACM,

2013.

[35] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou,

Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. Tensor decompositions for

signal processing applications: From two-way to multiway component

analysis. IEEE Signal Processing Magazine, 32(2):145–163, 2015.

[36] Richard A Harshman et al. Foundations of the parafac procedure: Models

and conditions for an” explanatory” multimodal factor analysis. 1970.

[37] Stephan Rabanser, Oleksandr Shchur, and Stephan Günnemann.
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