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ABSTRACT 

Electroencephalogram (EEG) is an important approach in clinical 

diagnosis and research on human brain activity The EEG is extremely nonlinear 

and non-stationary signal. Empirical mode decomposition provides a simpler 

method for analyzing nonlinear and non-stationary data. The Hilbert-Huang 

transform provides a very good view of time-frequency-energy representation of 

signal. The characteristics of instantaneous amplitude function and 

instantaneous frequency function components of Hilbert-Huang transform gives 

a new insight of local information about EEG signal. The features extracted 

from the instantaneous amplitude functions and instantaneous frequency 

functions are used for effective ictal EEG classification. An ictal characterizes 

an EEG signal, during the acute epileptic seizure.  

The EEG is decomposed into different frequency sub-bands of EEG 

using wavelet packet transform. The role of each sub-band frequency during the 

epileptic seizure is analyzed using the feature vectors. Using the empirical mode 

decomposition method, any non-stationary data is decomposed into a finite 

number of components, known as intrinsic mode functions (IMF).  The effect of 

ictal classification with multiple features of the individual intrinsic mode 

functions of both amplitude and frequency contours is analyzed. Also the 

performance of the ictal classification of the individual features from multiple 

intrinsic mode functions is then computed. The discriminating capability of ictal 

EEG and healthy EEG was tested in artificial neural network and adaptive 

neuro-fuzzy inference system classifiers for three Cases. The classification 

performance is statistically compared with the analysis of variance test. 

The different types of ictal classification can be performed in 

autoregressive modeling based spectral features and temporal features of 
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Hilbert-Huang transform twin components. The interictal, ictal and healthy 

EEG signals are classified in the four Cases by using artificial neural network.  

Considering the nonlinear behaviour of the EEG signal, state space modeling 

of the IMFs of the EEG is carried out. Kalman filter is used to take the state 

estimations of each IMF. The features of state estimations are used for classify 

ictal EEG. 

Thus, analysis of the characteristics of the instantaneous amplitude 

function and instantaneous frequency functions of EEG signal is a novel 

method for ictal classification. The first and second IMFs of instantaneous 

amplitude - frequency components show relevant information about the ictal 

EEG, which helps to classify ictal EEG. The proposed method is a simpler and 

meaningful way to analyze the EEG data compared to other methods.  

Keywords:  Artificial neural network, Adaptive neuro-fuzzy inference 

system, Autoregressive model, Empirical mode decomposition, 

Hilbert–Huang transform, Ictal EEG, Intrinsic mode functions, 

State space model. 
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CHAPTER 1 

INTRODUCTION 

 
Biosignal processing and analysis is an emerging field of immense 

influence in modern medical diagnosis. In recent years, the Engineers have 

developed many algorithms and processing techniques in order to help 

medical practitioners in the evaluation of diagnosis in fast and accurate 

manner. New set of information is revealed by using these techniques and 

methodologies in biosignals, which are not easily observable in the raw data. 

This vital information is very useful for properly diagnosing the diseases. 

 

1.1  THE BRAIN 

The human body is one of the most perfect imaginable creations. It is 

controlled by the brain. The efficiency of the human body in achieving the 

assigned tasks is directly related to the capability of the human brain. The 

largest part of the brain is the cerebrum. The outermost layer is the cerebral 

cortex, which is integrated with large number of nervous functions. The 

posterior part of the cerebral cortex is dealing with the perception of the 

environment and anterior part is dealing with the execution of the decision-

making in the brain (Kasper et al. 2015).  

 

The cerebrum is divided into left hemispheres and the right 

hemisphere. Each cerebral hemisphere is divided into four major functional 

lobes, which are frontal, parietal, temporal and occipital lobes. Each lobe is 

concerned with sensation of vision, sound, smell, taste and touch, etc. The 

frontal lobes consist of primary motor cortex which controls the voluntary 

movements of specific body parts. The pre-frontal cortex deals with the mental 

processes such as intelligence, memory, judgement, etc. The temporal lobe 

consists of the auditory sensory area. The parietal lobes interpret size, shape, 

texture and touch sensation. The occipital lobe region realizes the vision 
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(Walker and Colledge, 2013). So whatever happened into the body will refect 

in the fuctional lobes. This will help the diagonis of many neurological 

disorders and other abnormal activities in the human body.  

 

1.2  THE NEURON 

The fundamental unit of the nervous system is the neuron. The neuron is 

a single nerve cell consisting of a cell body (soma). The nucleus, which is the 

heart of the cell contain hereditary information. The Figure 1.1 shows the 

structure of neuron. The several short input projections known as dendrites and 

long propagation channel called axons. The axon together with its myelin sheath 

a covering forms the nerve fibres.  

 

 

Fig.1.1 Structure of neuron 

 

The dendrites are connected to either its axon or to the dendrites of 

other cells. It receives impulses from the nerves or relay the signal to other 

nerves. The nervous system is a complex system. It can be divided into the 

central nervous system, which is the master controller and peripheral nervous 
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system, which interconnect brain to every part of the body (Kasper et al. 

2015). 

 

1.3  ACTION POTENTIAL OF CELL 

The information transmitted through a nerve is a called action 

potential. The action potential is caused by an exchange of ions across the 

neuron membranes. The action potential is a temporary charge in the 

membrane, which is transmitted along the axon. Normally a potential of -70 to 

-60 mV is generated within the cell body with respect to extra cellular fluid, 

called resting potential. The Figure 1.2 illustrated the action potential of a cell. 

 

 When the dendrites of nerve cell receive a stimulus, the characteristic of 

cell membrane is changed. It allows the Na
+
 ions, (which concentrate outside the 

cell) move into the cell from outside through voltage gated Na
+
 channels. The K

+
 

ions, which concentrate inside the cell moves from inside to outside through the 

voltage gated K
+
 channel. The rate of flow of Na

+
 ions is faster as Na

+
 channels 

open and close faster than K
+
 channels. Now the equilibrium potential across the 

cell membrane becomes +30 mV. This potential generated is called an action 

potential. This process is called depolarization. The site of generation of the action 

potential is the initial segment in a spinal motor neuron and the initial node of 

receiver in a sensory neuron as these are the area with the highest concentration of 

Na
+
 channel. 
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Fig. 1.2 Action potential of a cell 

 

After an instant because of Na
+
/K

+ 
ions pumping action, all the Na

+
 

ions inside are pumped out and K
+
 ions are allowed to enter into the cell. This 

process is called repolarization. Now the cell returns to its resting potential. 

After hyperpolarization of Na
+
/K

+ 
pump, membrane regains its resting state of 

-70mV potential. The duration during which the nerve does not respond to a 

second stimulus is called the refractory period. The absolute refractory period 

is during which no response occurs irrespective of strength of stimulus. This is 

from the firing level until the one-third completion of repolarisation. The 

relative refractory period is during which a response is produced if second 

stimulus is stronger than the first one. The relative refractory period is from 

one-third completion of repolarisation to the end of hyperpolarisation. The 

action potentials are initiated by many different types of stimuli, such as 

chemical, light, electricity, pressure, heat, touch, etc. But the nerves within the 

central nervous system (brain and spinal cord) are mostly stimulated by 

chemical activities at synapses. 
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1.4  ELECTROENCEPHALOGRAM 

The electroencephalogram (EEG) has been the most commonly used 

biosignal for clinical evaluation of electrical activity of the brain. In 1924 Han 

Berger, a German psychiatrist and pioneer brain researcher succeeded in 

recording the human EEG (Tudor et al. 2005). The word electro means 

electrical activities, encephalo from Greek word enkephalos, en means in and 

kephalte means head (Collins, 2000).  The EEG signal is inherently 

complicated due to their non-Gaussian, non-stationary, and often nonlinear 

nature. The study of this electrical current can provide information about 

various neurological disorders and other abnormalities in humans. 

 

The EEG signal is recorded in two ways, non-invasive method and 

invasive method. In non-invasive method signal is recorded by placing 

electrodes on the scalp of the brain, called scalp EEG. The limitation of the 

scalp EEG is that the strength of EEG is very low in the order of 10-100 µV. 

This is because of the high skull-scalp resistance. Normally resistivity scale of 

scalp has 2.2 Ωm and skull has 177 Ωm. Even skull can attenuate biosignal to 

one hundred times than the skin tissue. Prior to that very weak amplitude of 

these biosignals are sensitive to different type of artifacts. 

 

In invasive method of EEG recording, a needle electrode is penetrating 

to a certain depth or implanted strip of electrodes into the brain. This type of 

recording is called ECoG (Electrocorticography) or iEEG (intracranial EEG). 

In ECoG, signal strength is improved and clarity is more compared to scalp 

EEG because the microelectrode is penetrated into foci. The main limitations 

of iEEG are the positioning of needle electrode to the target in the brain. 

Normally iEEG is collected from a patient suffering from medically 

intractable epilepsy. So the availability of data of iEEG samples are very less 

(Lachaux et al. 2003). 
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The brain activities can also be recorded and analysed by magneto 

encephalography (MEG) or functional magnetic resonance Imaging (fMRI) 

techniques. The accessibility to fMRI or MEG is limited and it is more 

expensive. Main drawback of MEG is that those who capture magnetics image 

should not wear any implantable materials. The magnetic resonance imaging 

only gives perception of the blood flow during the specific activity in the brain. 

However, fMRI gets better soft tissue imaging. The time resolution of fMRI 

image sequence is very low and many types of mental exertion, brain disorder 

and malfunction of brain are not identified in imaging,  since level of 

oxygenated blood is low (Amaro and Barker, 2006). The spatial resolution 

depends on the number of turns of the coil in MEG. Hence, the scalp EEG is 

more commonly used in both clinical and research purposes. 

 

The electrodes are distributed symmetrically around the scalp as shown 

in Figure 1.3. The Internationally accepted 10-20 electrode system for EEG 

provided a temporal and spectral summary of brain wave activities (Klem et 

al. 1999). Each electrode responds to the aggregate potential generated by 

many neurons in the area beneath it. In most clinical and research activities 19 

electrodes including reference node (A1, A2) are used for EEG recording. 

Normally amplitude range of scalp EEG is between 10 µV -100 µV with a 

frequency band of 0.5Hz to 100 Hz (Alotaiby et al. 2014). 

 

Fig. 1.3 10–20 EEG electrode placement system 
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Three major types of EEG channels that are being used (i) differential mode (ii) 

average mode and (iii) unipolar mode. The differential mode is commonly used, 

which are the differential of any two electrodes on the scalp. In average mode, a 

random electrode records the average of all nodes on the scalp. In a unipolar lead, 

any node is recording with respected to reference node.  

 

 

Fig. 1.4 Frequency rhythms of EEG signal (Jaakko, M. and Robert, 1995) 
 

The EEG signal depends on the functionality of the brain. The EEG 

rhythms are different phenomena or events in the EEG. The commonly used 

EEG frequency ( ) bands are normally classified into delta (δ), theta (θ), alpha 

(α), beta (β) and gamma (γ). The Figure 1.4 shows the frequency rhythms of 

EEG signals.  

      ( )              

      ( )            

      ( )             

    ( )              

      ( )               
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The brain signals are highly complex in nature. The characteristics of 

EEG signal are nonlinear and non-stationary. The EEG signals are strongly 

depending on the individual, age and mental state. The occurrence of the 

symptoms is also random in person by person. The brain reacts differently at 

different stages of time and hence the brain signals will be different 

accordingly. Hence it is difficult to get more information about the 

abnormalities or disorders of brain from raw EEG. But the detailed study of 

frequency rhythms of EEG signal are used to (i) help in detecting and 

localizing cerebral brain lesions, (ii) aid in studying epilepsy, (iii) used in 

diagnosing mental disorders, (iv) assist in studying sleep patterns and (v) 

allow observation and analysis of brain responses to sensory stimuli.  

 

1.5  EPILEPSY 

Epilepsy or Apasmara described in the hand book of the Ayurvedic,  is 

defined as state of consciousness loss (Dash and Jounious, 1997). The word 

Epilepsy is originated from Greek word epilambanein, which has a meaning of 

‘to attack’ or ‘to seize upon’ (Tudor et al. 2015). A seizure is defined as the 

occurrence of sign and/or symptoms due to abnormal excessive or hyper 

synchronous discharge from the neurons in the brain. Epilepsy is two or more 

unprovoked seizure episodes over duration of 24 hours (Walker and Colledge, 

2013). 

 

Approximately 1-2% of world population have epileptic disorder. 

Epilepsy is chronic non-contagious neurological disorder that affects people of 

all countries irrespective of age or gender (Megiddo et al, 2016). In the Indian 

perceptive about 10 million epilepsy patients are there in the Indian 

subcontinent (Santhosh et al, 2014). Many people in India who have an active 

epileptic disorder due to lack of knowledge and lack of access of health care 

facilities are away from the statistics. This phenomenon is called treatment 

gap in epilepsy. About 60% of epileptic disorders have an etiology. The rest 
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40%, also known as secondary epilepsy can be due to metabolic disturbances 

like hypoglycemia, alcohol withdrawal, trauma like severe head injury, brain 

tumour, infection such as meningitis, presence of toxins, brain damage due to 

lack of oxygen etc. (Kasper et al. 2015). The epilepsy is sometimes misleading 

as a migraine or a headache. 

 

Clinically, seizure of different epilepsies varies. It occurs in an 

unprovoked manner and is usually unpredictable, which may last for about a 

few seconds to minutes. Common symptoms of all seizures are loss or 

impairment of consciousness. Typically epileptic seizures are strongly 

correlated with abnormal brain rhythms. The healthy brain activity is 

interrupted and a characteristic abnormal rhythm appears. This epileptic brain 

rhythm is considered as an important indicator for epilepsy and is used for 

further diagnosis. The characteristic of an epileptic seizure is determined based 

on the abnormal pattern of discharge in the region of the brain with underlying 

the condition or syndrome. The physiology of epilepsy can be explained by the 

imbalance between the excitatory and inhibitory neurotransmitters in the brain. 

There is a fall in the inhibitory neurotransmitters gamma-aminobutyric acid 

(GABA) which causes an increase in the influx of Ca
2+

 ions followed by Na
+ 

ions into the nerve fibre which acts as the primary trigger for the seizure. 

 

The epileptic seizures are clinically classified as generalized seizures 

and partial or focal seizures. The focal seizure originates as a paroxysmal 

discharge in a discrete area of the cerebral cortex (often the temporal lobes). 

Then it is subsequently spread to the rest of the brain, called focal seizure with 

secondary generalization via diencephalic activity pathways. The Figure 1.5 

shows the clinical classification of seizures (Kasper et al. 2015). It may or may 

not impair consciousness. After that, the person may or may not feel a 

drowsing period, which lasts between 1-3 minutes. Individuals typically 

experience simple partial seizures for less than a minute, and are able to recall 
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events that occurred during the episode. The complex partial seizures are often 

preceded by an aura and include automatisms such as fumbling, lip smacking, 

picking cloth etc. 

 

 

Fig. 1.5 Clinical classification of seizures 

 

In a primary generalized seizure, the abnormal electrical discharge 

originates from the diencephalic activity system and spread simultaneously to all 

areas of the cortex. It may cause loss of consciousness and/or muscle contraction 

or stiffness. The generalized convulsive seizures are further classified into the 

tonic-clonic seizure, absence seizure and myoclonic seizure. This classification is 

based on the characterization of seizure that has occurred. Generalised tonic-

clonic seizure is almost always accompanied by an aura which would be either 

olfactory (medical temporal lobe lesions) or auditory (lateral temporal lobe 

lesions) or sensory (occipital lobe) hallucinations. This is followed by an increase 

in tone of the body (tonic phase) and jerkiness of the body (clonic phase) 

accompanied by up rolling of eyes and frothing from the mouth. 

 

Ictal is the characterization by due to an acute epileptic seizure (Mula 

and Monaco, 2011). The word ‘ictal’ originates from the Latin word ictus, 

meaning ‘a blow’ or ‘sudden attack’. So an EEG signal during a seizure is 

called ictal. There are different classes of ictal. The symptoms proceeded to 

seizure events are called preictal and symptoms followed by seizure events are 
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called post-ictal. The EEG signal in between two ictal events is called inter-

ictal. The Figure 1.6 illustrates the different ictal stages in the EEG signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Preictal, ictal and interictal stages in EEG recording of a patient  

 (Casaubon et al. 2003) 

 

Unique characterizations of complex wave patterns are observed in EEG 

during the epileptiform discharge. These wave patterns are sharp wave, spike 

wave slow wave or polyphase pattern of spike and slow wave (Janati et al. 2016). 

The duration of volatile sharp wave has 70 to 200ms, spike wave has less than 

70ms and slow wave is greater than 20ms. The epileptiform discharge comprises 

a less than or equal to 3Hz, slow wave or a combination of sharp and slow wave. 

The 3Hz slow wave pattern has higher magnitude than the sharp wave pattern.  

The observation and characterization of these patterns will help in confirming the 

diagnosis of true seizure episodes.  

 

The exposures to intermittent photonic stimulus, hyperventilation 

activity or auditory stimulus were used to increase the epileptiform discharge 

(Xue and Ritaccio, 2006). The epileptiform discharge consists of spike wave 
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and sharp wave, which are the the characterstics of epilepsy. The epileptiform 

discharge can be recorded and analysed using EEG. 

 

1.6  SIGNAL PROCESSING OF EEG 

For an EEG signal analysis, the local information is very important. 

Essentially, a post processing technique is used in EEG analysis. This local 

information is not only in the temporal domain, but also in the spatial domain. We 

cannot neglect or eliminate the crest and trough of each signal. Each crest and or 

trough of the brain wave implies some information about the brain. Therefore the 

EEG signal processing method is the key to determine whether the physiological 

or pathological information of EEG can be accurately reflected. Advanced signal 

processing techniques are required to efficiently detect and analyse the brain 

waves. A precise characterization of the abnormal EEG pattern can lead to a 

clearer view of many diseases. The Figure 1.7 shows block diagram for EEG 

signal processing and analysis. 

 

 

Fig. 1.7 Basic block diagram for EEG signal processing and analysis 
 

The above block diagram shows the computer aided diagnosis or therapy 

based signal processing. The biosignal processing is used to extract valuable 

information from physiological data. The data will give the state of the art of the 

patients, which provide better diagnosis of diseases. In general the entire system 
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can be divided into digital data acquisition, signal processing unit and signal 

analysis section.  

The physiological signal collected from the patient is concerted into an 

electrical quantity with help of EEG electrode placed on scalp. The scalp 

recorded signal consists of mixture of brain signal with lots of noise.  In the 

digital data acquisition system, the weak signal is properly amplified and 

signal conditioning circuit are incorporated to reduces the noise. Then the pre-

processed signal is properly sampled and encoded into a digital signal using 

analog to digital converter. The EEG signal is very weal in the order of    also 

bounded with artifacts. The artifacts are undesirable electrical potentials, which 

are generated by the other part of body along with the brain waves. The noise and 

artifacts are effectively suppressed in the digital domain by using different 

algorithms, which improve the interpretation of EEG signals. 

 

A Neurodiagnostic technologist monitors the behaviour of the EEG signal 

and identified the abnormality of the signal. In the signal processing unit, the 

events are characterized or features have to be extracted into a set of parameters, 

which are the functions of state of the art of the brain. The feature parameters are 

the low dimension data capable of handling by the unsupervised learning 

techniques. The machine learning algorithms are employed for classifying the 

feature vectors according to the status of the events. This will help the Neurologist 

to catch deep insight of the diagnosis and prescribe better therapy to the patients. 

The advanced signal processing techniques are widely applied and proved to 

be beneficial in improving both clinical aspects and experimental studies for 

detection, perception, diagnosis and medication of vast neurological 

abnormality of the brain.  The detailed explanation of advancements in EEG 

signal processing is explained in the next chapter. Advancements in biosignal 

processing improve the life expectancy of human beings. 
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1.7 MOTIVATION OF THE THESIS 

All over the world, the epileptic patients suffer to get timely and right 

treatment. The Mental Health Gap Action Programme (mhGAP) is a programme 

initiated by World Health Organization (WHO), for epileptic patients (WHO, 

2012). The aim of this programme is to reduce the treatment gap in diagnosis 

epileptic patients.  In India, the Ministry of Health and Family Welfare has 

proposed a National Epilepsy Programme to reduce the discrimination and social 

stigma towards the epilepsy and ensured better care of the epileptic patients 

(Megiddo et al., 2016). The social stigma towards the epilepsy is disclosures of 

personal details of the patients which encompasses feelings of isolation, shame 

and also fear to reveal the presence of epilepsy. The major challenges of these 

projects are lack of skilled Neurodiagnostic technologists to diagnose the epilepsy 

in earlier stages from EEG. Traditionally EEG recording is a widely used 

clinical procedure for the diagnosis and treatment of epilepsy. It can be used 

for monitoring and diagnosing the abnormalities of brain and neurological 

disorders. The EEG is also cheaper and has easy mobility to reach patients 

than MEG type diagnosis. 

 

At present, visual screening method is used for detecting and 

classifying epileptiform discharges in EEG by Neurodiagnostic technologists. 

The accuracy and reliability of visual interpretation of the brain signal are 

limited. In the physical analysis, there are limitations for extracting certain 

features from EEG.  Moreover, in the visual screening method, the human eye 

can only interpret and / or concentrate on perceptibly leading features. But in 

long period, observations of features in EEG are skipped or avoided due to 

difficulty to interpret and tackle. Also, for long time analysis, the physical 

interpretation of EEG wave become meaningless because of the dullness of 

Neuro-diagnostic technologist and the biased determination will affect the 

diagnosis of abnormalities in the brain. The decision making is depended on 
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person even though they are professional expertise or skilled Neuro-diagnostic 

technologists, sometimes, due to biased determination.  

 

Therefore, the development of an accurate automatic epileptic 

detection is necessary. In addition, analysis and classification of different ictal 

stages in EEG is also important. 

 

1.8   OBJECTIVE OF THE THESIS 

The main objective of our work is to develop a methodology for 

distinguishing the ictal stages in the EEG. We concentrated on the following 

areas to narrow down this broad objective.  

1. EEG recording and analysis is much developed in clinical, 

experimental setup of a real problem and/or pure computational study. 

The main objective of our work is to propose an effective method to 

improve the computer aided diagnosis system of ictal events in the 

EEG. This improves the development of both diagnosis and better 

treatment for patients with minimum cost. This will help to reduce the 

effort of Neurodiagnostic technologists for diagnosing the epilepsy 

pattern in EEG signal.  

2. The EEG signal is highly non-stationary and has a nonlinear behaviour 

due to the effect of the underlying dynamics of brain activities. Most of 

the EEG signal processing techniques for analysis are considers the 

EEG as a wide sense stationary signal. The non-stationary and 

nonlinear signal analysis efficiently uses empirical mode 

decomposition method. The ictal is a change in the characterization of 

EEG signal due to elliptic seizure. Our objective is to propose ictal 

classification in an empirical mode decomposition domain. Then the 

analysis and classification of ictal EEG based on instantaneous 

amplitude function and instantaneous frequency function of IMFs. 
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3. During the ictal stages and interictal stages, the properties of the EEG 

are changed. However, it is difficult to distinguish between ictal and 

interictal actives with respect to healthy EEG signal in the temporal 

domain. Combination of empirical mode decomposition method 

(Huang transform) and Hilbert transform is an effective method to 

analyze and classify ictal EEG data. Our next objective is to develop 

the components of Hilbert- Huang transform in temporal and spectral 

domain for analysis and classification of different stages of ictal. 

4. Model based EEG analysis is a new trend in biomedical signal 

classification. The nonlinear methods are found to be more effective 

for analysis of EEG signals because they could describe the complex 

nature of the signal in a more effective manner. Our next objective is to 

develop a system to observe the role of EMD components in the state 

space modeling for characterizing of ictal EEG signals. 

 

1.9  HIGHLIGHTS OF THE THESIS 

In items 1 to 4 below, we give the summary of proposed EEG analysis 

and classifications. In this research work, we developed a novel methodology 

for ictal classification using instantaneous amplitude-frequency contour of the 

IMF of an EEG. The different methodologies are effectively improving the 

computer diagnosis for ictal events in the EEG. 

1. We developed a methodology to obtain the different EEG rhythm of 

healthy EEG and epileptic signals using wavelet packet transform. The 

features of selected packets, which are the different frequency band of 

EEG are analysed. The feature vectors of proposed sub-bands of 

healthy EEG and abnormal EEG signals are prepared from the energy, 

entropy mean energy and mean Teager energy parameters.The mean 

Teager energy shows the better performance of discrimination in 

epileptic activities in EEG. The values of features show that the 

characteristics of seizure activities are more in lower frequency bands 
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of EEG. The proposed method is also analysed in CHB-MIT scalp 

EEG database. The mean Teager energy parameter shows the 

significant result in Chb01, an EEG data set of CHB-MIT database. 

 

2. Here we developed a novel method for ictal analysis and classification 

using features of instantaneous amplitude and instantaneous frequency 

functions. In this study the EEG signal is decomposed into intrinsic 

mode functions (IMFs), then amplitude envelope and frequency 

functions on a time-scale basis using the analytic function of Hilbert 

transform.  The effect of ictal classification is done in individual IMF 

features, multiple features with individual IMF, and individual features 

with multiple IMFs. The instantaneous amplitudes and instantaneous 

frequencies of each IMF are computed using the analytic function. The 

energy features mean energy, mean Teager energy, and entropy-based 

features like entropy, approximate entropy were computed respectively 

from the instantaneous amplitudes of IMFs. The statistical features of 

the IMF frequency function are also tabulated. The main contribution 

is to analyse the features individually and in groups intelligently on 

both in statistical approaches and by using ANN and ANFIS 

classification methods. The IMF2 and IMF1 of energy and entropy-

based features of instantaneous amplitude and standard deviation of 

instantaneous frequency have been obtained. The result shows a 100% 

total classification accuracy of ictal EEG classification. 

 

3. In this work, we developed a novel ictal classification method that 

combines the spectral and temporal features of Hilbert-Huang 

transform. The spectral features of the instantaneous amplitude 

function are tabulated and compared using an autoregressive, AR (6) 

model and AR (10) model. The temporal features of both instantaneous 

frequency function (IF) and instantaneous amplitude function (IA) are 
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computed. The spectral analyses is tabulated from the AR power 

spectral density of IA components. The spectral features are spectral 

peak, spectral mean energy, spectral entropy, and spectral mean Teager 

energy, which  are energy or entropy based features. The temporal 

features are coefficient of variation, skewness,  Kurtosis, and 

interquartile range. The feature vector for ictal classification are 

tabulated in both spectral and temporal features of IA-IF and IA-IA 

respectively. Here four different Cases of ictal activities of EEG 

signals are classified. The potency of the feature vector in each class of 

data is statistically tested using one-way analysis of variance, and the 

classification results are verified using an artificial neural network 

classifier. The spectral features of IA-temporal features of IF are better 

in total classification accuracy than spectral - temporal features of IA 

in all the Cases. The spectral features of the AR(10) of IA and the 

temporal features of IA yielded 100% accuracy, 100% sensitivity, and 

100% specificity in the ictal classification. The main observation is that 

instantaneous frequency function and instantaneous amplitude function 

of IMF2 have better ictal classification accuracy than IMF1, which 

indicates that the ictal information are accumulated in IMF2. 

 

4. Here we developed nonlinear methods to analysis the ictal EEG 

classification using states-space model. The Kalman filter is used to 

estimate the state matrix of the IMF of the EEG signal. The features of 

the state value are used for analysing the classification of ictal EEG. 

The extracted features are Mean Energy,  Mean Teager Energy, 

Approximate Entropy,  Sample Entropy, Mean Autocorrelation, 

Interquartile Range, Mean Absolute Deviation, Kurtosis, Variance and 

Standard Deviation. Here results imply the features of IMF2 have 

discriminative information of ictal EEG than other IMFs, which help in 

better classification accuracy of the ictal classification. The artificial 
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neural network is used to classify ictal EEG and healthy EEG status. 

The study shows mean Teager energy have 100% accuracy in ictal 

classification. Apart from this, the combination of mean energy & 

mean Teager energy features shows sensitivity 100%, specificity 100% 

and accuracy 100% are achieved in classification of ictal EEG. 

 

1.10  ORGANIZATION OF THE THESIS 

The thesis is organized into seven chapters as follows: 

 

Chapter 2 covers a detailed literature survey of the different EEG signal 

processing techniques in epileptic seizure detection. The critical analysis of the 

different methodologies is studied and finds a gap of the research, which 

ultimately leads to present work. Many techniques are explained for both 

feature extraction and classification of epileptic seizure detection. The detailed 

description of EEG time series data used in this thesis is also mentioned in this 

chapter. 

 

Chapter 3 the EEG data are decomposed into the different frequency bands of 

the brain wave using Wavelet packet transform. Then the selected packets 

being mapped to each frequency band of EEG. This aids to analysis of the 

temporal behavior during a seizure attack. These feature vectors of each packet 

are used for ictal classification using adaptive neuro-fuzzy inference system 

(ANFIS) classification. WPT system is checked in T7-P7 and T8-P8 lobes of 

CHB-MIT Scalp EEG database. 

 

Chapter 4 discusses a novel method in Instantaneous amplitude function and 

Instantaneous frequency function of the IMFs for effective ictal classification. In 

this the effect of ictal classification with multiple features of the individual IMFs 

of both amplitude and frequency contour are analyzed. In addition, the 

performance of the ictal classification of the individual features from multiple 

IMFs is analyzed. Then both the cases are classified using an artificial neural 



 

20 

network (ANN) and ANFIS. All the cases are statistically evaluated by the 

analysis of variance (ANOVA) test with feature ranking, in Instantaneous 

amplitude function and Instantaneous frequency function. 

 

Chapter 5 discusses a method for the different stages of ictal EEG analysis by 

using autoregressive (AR) spectral and the temporal features of Hilbert-Huang 

transform. The feature vector is formulated from AR spectral features of the 

Instantaneous amplitude function and temporal features of Instantaneous 

frequency function of Hilbert-Huang transform. Different types of actual 

classification are mentioned in four cases and each case is classified by 

artificial neural network. Also, each Case is statistically evaluated by ANOVA 

test. 

 

Chapter 6 proposes a state space modeling of first and second IMFs of EEG 

signal. The Kalman filter was used to obtain the state estimations. Here 

estimation of state vector will reflect the abrupt changes in EEG signals. Then 

multiple features are extracted from the state estimation matrix and are used 

for classification with the aid of ANN classifier. This eventually leads to an 

outstanding classification of the healthy EEG and ictal EEG class. 

 

Chapter 7 Summarizes the conclusions drawn from each of research works. A 

few suggestions for future studies are also incorporated. 

 

 

 

 



 

 

CHAPTER 2 

LITERATURE REVIEW 

 
The chapter deals with a review of the research work reported in the 

open literature in the areas of electroencephalogram (EEG) signal processing. 

In an EEG signal analysis the local information is an extremely important 

activity. Therefore the EEG signal processing method is the key to determine 

whether the physiological or pathological information on EEG can be 

accurately detected. Advanced signal processing techniques are required to 

efficiently analyse the brain waves. A precise characterization of an abnormal 

EEG pattern can lead to a clearer view of many diseases. 

 

The biosignal is recorded with a proper data acquisition system, to convert 

the EEG signal into digital form. This is helpful to interface with the computer 

inorder to analyse the events by suitable feature extraction. Then it is fed to a 

proper classification tool for pattern recognition, which helps in the diagnosis. 

The reordered EEG signal is always integrated with artifacts, which affects the 

analysis of EEG signal. The artifacts are undesirable signals which are mainly 

generated from environment noise, experimental error and physiological artifacts. 

The physiological artifacts are due to eye movement, muscle activity, electrode 

movement, sweating and even muscle movement due to breathing (Islam et al. 

2016). Before processing the feature extraction, it has to be ensured that the 

recorded EEG signals are suppressed for all types of EEG artifacts. There are 

different techniques have been developed for removing unwanted artifacts from 

the EEG signal (Jiang et al. 2019). This literature study is not focused to such 

research work in order to eliminate the different artifacts. The artifacts shall 

change the chacteristics of the EEG signal, which leads a wrong diagnoses of the 

events. This review primarily focuses on the EEG signals analysis and 

classification. 
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2.1  FEATURES EXTRACTION 

There are many algorithms that are developed in feature extraction by 

the researchers for the elliptic detection. These methods are classified as time 

domain analysis, frequency domain analysis, joint time-frequency analysis, 

nonlinear methods and hybrid techniques (Alotaiby et al. 2014). The emerging 

works on these fields are discussed in detail as follows.  

 

The time domain analysis is also known as a conventional method for 

EEG analysis. In conventional methods, the transient pattern of abnormal EEG 

was studied in term of spike waves and sharp waves (Jasper, 2012). Another 

study suggested a waveform analyzer proposed for a human EEG in term of 

first and second derivatives of the input waveform (Klein, 1976). The results 

of derivatives of EEG is as similar to the transient behaviour of the signal. 

These sharply contoured wave patterns carry the characterization of an 

epilepticform discharges (Dingle et al. 1993). In EEG, identify the multiphase 

transient discharges are subject to consider the inter and intra clinical 

evaluation of the status of the brain (Ktonas et al. 1981). 

 

The principal component analyzer is to reduce the dimensionality of 

the data set. These sets are transformed into a new set of variable which are 

orthogonal to each other. The feature vectors of the eigen sets are used to 

differentiate the cause of the elliptic signal (Acharya et al. 2012) . An 

optimization technique is incorporated in the  feature set to improve the 

accuracy of detection  (Siuly and Li, 2015). 

 

The linear prediction is the estimation of the present state and is based on 

the input and past outputs (Altunay et al. 2010).  Here the energy of an estimated 

error output state of abnormal EEG signal is much higher than normal EEG 

signal. The linear prediction is more effective when it incorporates the fractional 

calculus error estimation. The energy of the model parameters will give the 

distinction between ictal and ictal free stages (Joshi et al. 2014). The least square 
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based linear modeling of EEG used to enhance the feature of a seizure signal 

(Zamir, 2016). The status of the ictal activity is projected to Poincaré plane, which 

reduces the dimensionality of the state of the system This helps to give a new 

insight to predict the change in the transition of multiphase wave which causes the 

epileptic seizure (Sharif and Jafari, 2017). 

 

The normalized value of Wilson amplitude was calculated and compared 

with a threshold value to classify signal as a normal or a non-convulsive seizure 

(Fatma et al. 2016). The Wilson amplitude is the sum of the difference of the 

present and past samples of event above the marginal value is treated as a non-

convulsive seizure. The advantage of this method is that without the aid of any 

classifier, the method correctly identifies non-convulsive seizures by analyzing 

amplitude variations in time domain. The drawback of the time series analysis is 

that frequency information of signal is not present. It well known that the activity 

of the brain is also depended on the rhythms of the brain wave. 

 

The power spectrum is characterized by the power of the signal as a 

function of the frequency. The power spectrum is classified into two non-

parametric method and parametric method. In the non-parametric method, the 

spectrum estimation is not  based on model assumption. Fourier Transform is 

used to analyse the energy-frequency assessment of an EEG signal 

(Dumermuth et al. 1970). The fast Fourier transform is used for reducing the 

computational complexity of events detection in EEG (Polat and Güneş, 

2007). The power spectrum of the signal was calculated using fast Fourier 

transform (FFT) and then the spectrum was divided into 15 sub-bands, each of 

width 4Hz (Liang et al. 2010). Then entropy was also calculated for all these 

sub-bands are the main features for the detection. In non-parametric 

techniques for spectral estimation, Fourier transform of the sample 

autocorrelation function is computed. Though non-parametric methods are 

easy to compute, main drawback is spectral leakage due to windowing aspects. 
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The parametric power estimation technique is based upon the model 

based approach, which depends on the input signal, output signal and white 

noise. For power spectral features are extracting desired features, by using the 

model based estimation method (Übeyli  et al, 2010).   Autoregressive (AR) 

coefficients were estimated using Burg method with an order of 10, since a 

lower order results in a smoothed estimation. The choosing of a large AR 

model order results in spurious peaks and instability. The EEG signals were 

collected before and during hypopnea, which is a type of sleep apnea 

syndrome. The mental stress and relaxation of a brain is also analyzed in 

parametric method (Saidatul et al. 2010) . The EEG signal were collected from 

subjects keeping them relaxed after which they were subjected to a 

questionnaire and then they were allowed to relax. Signals feed through a 

notch filter to filter the line noise and then power spectrum was calculated 

using AR parameter estimation like Burg method and Yule Walker method.

  

The power spectrum of EEG signal was fed to an AR model of order 

20 for calculating the AR coefficients. These coefficients were then fed for 

feature reduction, which then employed a principle component analysis and a 

genetic algorithm (Liang et al. 2010). This reduced feature set effectively 

diminished the computation time for classification. Parametric and non-

parametric methods differentiate the evaluation of the EEG activity in young 

Children with controlled epilepsy (Van Vugt et al. 2007). 

 

An efficient feature selection and linear discrimination of  the EEG 

signals were developed (Rodríguez-Bermúdez et al. 2013). Initially, all the 

desired features like spectral features were extracted using FFT then Hjorth 

parameters like activity, mobility and complexity were calculated. The energy 

distribution of the signal was analyzed using the coefficients of AR model. 

The different parametric methods are used in spectral analysis. A random 

sequence is modeled using a time-series model and the model parameters are 
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estimated using the given data. Then spectrum is obtained by substituting the 

parameters in the model spectrum. To avoid the problem of spectral leakage in 

the parametric methods are widely employed for spectral estimation. However, 

if the spectrum is wrongly modeled the estimation can be misleading. 

 

2.1.1  Time -Frequency Methods 

A real time system for analysis of human EEG, the sharp and/ or slow 

wave (Gevins et al. 1976) of EEG will give both time domain transient as well 

as the spectral information. The time-frequency domain analysis is a much 

improved feature extraction method because it uses filtering transient pikes in 

biomedical data. The different version of the time-frequency analysis methods 

is windowed in Fourier transform, wavelet transforms (WT) and wavelet 

packet transforms (WPT). 

 

In a windowed Fourier transform, analysis is achieved in both time and 

spectral resolution. The local spectral information is obtained in the time - 

frequency plane (TFP) by equally spaced windowing (Bigan and Woolfson, 

2000). In singular value decomposition (SVD),   and           orthogonal 

matrix, which are unique for an event in EEG data. The new born EEG signal is 

mapped in TFP and apply the SVD algorithm for feature vector (Hassanpour 

and Mesbah, 2003). 

 

An  appropriate method is proposed  in a  time-frequency analysis  to 

differentiate a normal EEG and seizure  segments in EEG (Tzallas et al. 2009). 

Here the feature vectors are the energy distribution of power spectral density of 

each EEG segment. The TFP is the first moment and second moment of each sub-

band of the EEG is extracted to classify the ictal stages (Musselman and 

Djurdjanovic, 2012). Another method is in the time frequency image pattern for 

analyzing the abnormal activities like seizures in a newborn baby (Boashash et 

al. 2015). Initially, the time domain features are found and it is later  extended to 
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the time-frequency domain, which is succeeded by replacing one-dimensional 

time domain moments with two-dimensional time-frequency domain moments. 

The analysis using WT and WPT decomposes the finite energy signal in 

successive stages each with different scaling factor. Thus, it gives the 

information in both time and frequency domains. But at higher frequencies 

discrimination of frequencies is sacrificed for localization of time (Mertins, 

1999).This enhances the decomposition of signals into sub-bands and a 

simultaneous analysis of the various (wanted) spectral components. The 

wavelet transform is widely used in EEG analysis because of the multi-

resolution capability (Zhang et al. 2003). 

 

Different statistical parameters are tabulated from the detailed 

coefficient of the wavelet transform for the analysis of the seizure detection 

(Khan and Gotman, 2003). The accumulated energy of each level of the 

wavelet transform is computed as the feature set for the seizure detection 

(Gigola et al. 2004). The higher order of Daubechies wavelets, which are 

orthogonal wavelets used to retrieve the multi-resolution property of the EEG 

wave (Adeli et al. 2003). The fourth order Daubechies wavelets is most 

popular mother wavelet for the detection of 3Hz slow and spike epileptic form 

discharge of brain. Compare the classification accuracy and advantages  of 

different wavelets, which are used for feature extraction in the seizure 

detection (Faust et al. 2015). 

 

The energy index of multi level coefficients of both detail and 

approximation in wavelet transform analyses the temporal lobe seizure signal 

(Zandi et al. 2010). The healthy manner and level of alcoholic status is studied 

in the energy of wavelet packets in EEG signal (Faust et al. 2010). The 

classification result is statistically analyzed using   -test method. 
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The features of the TF plane image of seizure signal are used for total 

classification accuracy (Yusaf et al. 2016).  Here the higher order statistical 

properties of the two dimensional discrete wavelet transforms (DWT) in TF 

image are extracted as the feature vectors. Permutation entropy value of the 

neighbouring sample is incorporated in a decomposed level of DWT as a 

feature vector in (Tawfik et al. 2016). The different statistical features are 

extracted from the selected coefficient of DWT (Sharmila and Geethajali, 

2016), dual tree complex WT (Deivasigamani et al. 2016) and fuzzy 

approximate entropy (Kumar et al. 2014). is used for ictal classification. The 

wavelet transform is also used in long term EEG analysis (Liu et al. 2012). In 

this work, multi-channel wavelet decomposition is used for only three bands in 

an intracranial EEG and relative energy parameter is extracted. 

 

The computational complexity of the seizure detection algorithm 

increases as a function of increasing the number of EEG channels for the 

processing (Sharmila and Geethajali, 2016). It is suggested that a method in the 

wavelet analysis is to optimize the minimum number of channels for the detection 

of seizure. Based on the optimal channel selection algorithms, it suggested 2-6 

channels are enough for the seizure detection. 

 

2.1.2  Nonlinear Methods 

The EEG signal is mixture of nonlinear and non-stationary signal. The 

classical methods are not suit for extracting brain information. The nonlinear 

behaviour of these waves is an indication of seizure activities in the brain. The 

EEG signal is consists of spike wave, sharp wave and combination of sharp 

and spike wave are transient in nature. So, the nonlinear techniques are 

suitable for better analysis the EEG signal. The different nonlinear methods 

are Lyapunov Exponent, phase space plot, Hurst exponent, Fractal dimension, 

higher order spectra, state space analysis, etc.  
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A nonlinear method, which is Lyapunov exponent (LE), is trying to 

apply in EEG data to detect the nonlinearities present in EEG using surrogate 

data method (Das et al. 2002). The LEs and fractal dimension of the original 

and surrogate series were compared to check if the LEs can report the loss of 

nonlinearity and hence the loss of information from the dataset. But, since the 

change due to surrogating was small, they concluded that LEs did not 

represent the system complexity of EEG. Another work, (Übeyli, 2010) the 

coefficient of largest Lyapunov exponents is computed to set a feature vector, 

which is used to distinguish the status of EEG. In this method maxima, 

minima and lower order statistics of the largest Lyapunov exponents is 

extracted. Computation of LEs has served as the method of training the 

classifier. 

 

A multi-channel EEG modeling was made in a correlation dimension 

and Lyapunov exponents’ methods (Shayegh et al. 2014). The synthetic signals 

were generated from the model using intrinsic parameter sequences and 

coupling coefficients. The validation of these signals was done by a  parameter 

identification procedure. Cross spectral difference and visual inspection were 

used to check the similarity of real and synthetic EEG signals. The main 

drawback of the method was computationally complex. 

 

To compute the underlying nonlinear dynamical properties of EEG 

signals, a recurrence network based approach was presented (Subramaniyam 

and Hyttinen, 2013). EEG signals in healthy, inter-ictal and ictal stages were 

used. The EEG time series was transformed into a phase space attractor and 

recurrence network. To characterize the underlying attractor, network 

measures such as clustering coefficient and path length on recurrence network 

were determined. The recurrence network based approach was capable of 

characterizing different classes of EEG signals depending on their attractor 

complexity. The epileptic seizure detection was also carried out using 
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Recurrence quantification analysis (RQA), which is a modern method to 

analysis nonlinear data (Sharanya et al. 2014). The RQA measures were 

obtained from a recurrence plot.  Visualization of recurrence behaviour of 

phase space trajectories of dynamic systems could be performed in RQA. This 

method provided good results even for shorter and non-stationary data. No 

assumptions about the data set size or data distribution were required. 

 

In the same year (Rangaprakash, 2014) analyzed the connectivity of 

multichannel EEG signals using recurrence based phase synchronization 

measure. The technique used to perform the study was inherently nonlinear. 

This was of great importance since the brain is indeed a nonlinear system. The 

nonlinear measure is called Correlation between probabilities of recurrence 

(CPR). To understand the interdependence between different brain regions, a 

connectivity analysis was performed. It was a post-processing technique 

applied in CPR matrix. Based on these, a brain connectivity graph and a brain, 

head map were prepared. These could aid in differentiating between EEG 

recordings under eyes open and eyes closed states as well as seizure and pre-

seizure states. The nonlinear features like similarity index, phase 

synchronization, and nonlinear interdependence are obtained long term EEG 

for seizure prediction (Rabbi et al. 2013). 

 

Hurst exponent is a complex nonlinear measure and used it in classifying 

epileptic EEG signal. It could also help in better understanding of the underlying 

chaos in brain signals (Sood and Bhooshan, 2014). The signal was initially split 

into small epochs and nonlinear features were extracted to enable classification. 

Due to fast computation capability, effectiveness in spotting repetitive patterns 

and satisfying stationary criterion, modular approach based on epochs were 

considered. The results emphasized the ability of Hurst exponent to explain 

seizure evolution. Low quantity data requirement and ability to explain the 

complexity of time series made this a superior method.  
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The different entropy measures are an important feature in EEG to 

discriminate the elliptic form of activity in the brain (Kannathal  et al. 2005). 

The entropy related features of the events are the better dimensionality of the 

epileptic form discharge (Acharya et al. 2012). The entropies are an explicit 

gesture of uncertainty in the signal. Computation of different types of 

entropies may measure the level of chaos present in the signal. The various 

entropies were used to extract feature parameter for diagnosing epilepsy 

signals (Acharya et al. 2015).  

 

EEG signals are considered as the fractal signals and based on this 

assumption various fractal properties are used in the analysis of EEG to detect 

the presence of spikes. The fractal dimension is the characterization of 

deduction in the dimension of a signal or an image in space filling capacity 

(Uthayakumar, 2013). In (Azami et al. 2012) introduced another method used 

for EEG analysis. In this method, a Savitzky-Golay filter is used for 

smoothening to accentuate spikes position. The spike detection was done in 

two phases. In the first phase, accentuate the spike position using Savitzky-

Golay filter and then the fractal dimension is calculated. The fractal dimension 

is also used to calculate the dimension reduction of in alpha sub-band of EEG 

in ischemic attack with respect to the normal EEG signal (Zappasodi et al. 

2014). The fractal dimension method is implemented to find the sleep 

disorders from the EEG data (Finotello et al. 2015). 

 

The spectral behaviour of higher order statistics components are used for 

finding abnormalities in the functions of the heart (Martis et al. 2013). Here the 

coefficients of independent components of both higher order cumulants and bi-

spectrum is used for analysis the abnormalities. 

 

The capability to handle time varying parameters, missing data and the 

ability to incorporate changes makes the state space model  quite attractive. A 

state space model is formulated to extract useful information from brain computer 
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interface in a fast and safe manner (Irie et al. 2010). The EEG signals with and 

without visual evoked potentials were considered for the study. The signal was 

then characterized by extracting features from it with the aid of Kalman filter. The 

results suggested that there were significant differences in the signal to noise ratio 

of the EEG signals with and without visual evoked potentials. The seizure 

occurrence is estimated with the aid of features extracted from characteristic 

variables associated with epileptic EEG data in Particle filtering method (Liu and 

Pang, 2008).  

 

The cortical dynamics of multivariate autoregressive (MVAR) were 

given by the state equation and the physical relationship between the cortical 

signal and the measured EEG was given by the observation equation (Cheung 

et al. 2010). The dynamic estimate of Burst suppression ratio is expressed in 

terms of a state space model of computation (Chemali et al. 2011). The 

unobservable brain state whose evolution was to be tracked was expressed in 

terms of Gaussian state equation. Estimation of the model was done using an 

approximate expectation maximization algorithm.  

 

In order to facilitate the epileptic seizure detection in a longer duration 

EEG monitoring system, with a state-space model with Cauchy observation noise 

(SSMC) is used. The SSMC used a nonlinear state-space model helped to identify 

the gradual changes brought by epileptic seizures (Wang et al. 2015). The main 

sub-band EEG signals are modeled in state space model using a variation of noise 

level. The model is useful for the monitoring brain activity during Anastasia 

patients (Wong et al. 2006).   

 

As EEG is nonlinear and non-Gaussian signal, the estimation of EEG 

in nonlinear methods is more accurate than linear steady state methods. The 

effect of different nonlinear modeling methods compares in EEG sub-bands 

under epileptic seizure conditions (Martis el al. 2015). 
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2.1.3  Hybrid Techniques  

The hybrid techniques in EEG signal processing and analysis are the 

combination of time domain methods, frequency domain methods, time-

frequency methods or nonlinear methods. This will help to get better classification 

accuracy on a computer aided diagnosis of epilepsy detection. The comparison of 

some of the transformation methods used for the ictal detection is specified 

(Parvez, and Paul, 2014). 

 

A multivariate autoregressive model inspired from state space 

formulation was developed (Cheung et al. 2010).  to estimate cortical 

connectivity from noisy EEG recordings. The cortical dynamics of MVAR 

model were given by the state equation and the physical relationship between 

the cortical signal and the measured EEG was given by the observation 

equation. To trace the MVAR modeling, the coefficient of activity distribution 

components and the covariance matrix of electromagnetic noise are taken. The 

method worked well, even with relatively low signal to noise ratio, which is a 

characteristic of the EEG signal. There was a significant reduction in the 

number of unknown parameters to be estimated. In addition to these, the 

unknown spatial activity distribution could be incorporated within each region 

of interest. Analysis of Magneto Encephalogram (MEG) data using the same 

model was suggested as a future work. 

 

A method is suggested for detecting artefact present in EEG signal is 

modeled using AR modeling (Lawhern et al. 2012). Since AR parameters are 

used for scaling the changes, these were employed for analysis. Thus variations 

like scalp and skull thickness will not affect AR parameters. Initially, EEG 

signal was collected from the subjects by making them perform eye movements, 

jaw movements and head movements. Then discrete Meyer wavelet transform 

was applied for decomposing the signal into sub-band frequency ranges. 
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The DWT is used for decomposing the EEG signal to get the frequency 

band closer to the EEG sub-band. To compute the coefficients of approximate 

entropy-   ,  ,        and    of DWT coefficient are the feature vector for 

the classification. The lower value of approximate entropy of these 

coefficients will indicate possibility the seizure attacks (Ocak, 2009). The 

Intrinsic Mode Functions (IMF) of selected approximation and detail 

coefficients of DWT are extracted. Then Shannon entropy and Renyi entropy 

of DWT coefficients are computed for the effect of classification in ictal EEG 

(Das and Bhuiyan 2016). The different entropy based features, fractal 

dimension and statistical parameters of selected DWT coefficients  are used 

for epilepsy detection (Upadhyay et al. 2016). Here 16 different wavelet 

functions are employed for decomposition of DWT in 4 sub-band of EEG. 

 

Continuous Wavelet Transform of EEG signal is mapped to a 3D space 

of dilation translational and brightness of each sample (Acharya et al. 2013). 

Then the HOS feature of the image and texture feature of gray level co-

occurrence of each window are figured out for classification of ictal stages. 

The bandwidth of approximation and detailed coefficient is flexibly adjusted 

during DWT decomposition (Sharma et al. 2017). This adjusted bandwidth is 

similar to the EEG sub-band. The Higuchi fractal dimension is tabulated for 

feature vector in the classification of ictal stages. 

 

The Higher order spectra of selected packets of wavelet packet 

decomposition (WPD) are tabulated  for an automatic detection (Acharya et al 

2011). The alcoholic index of brain is also studied in different nonlinear 

methods (Bairy et al. 2017). Initially the EEG signal is decomposed into six 

level of WPT, and then different packets of EEG signals are used for nonlinear 

modeling. The two dimensional singular value decomposition of time-

frequency domain EEG is transformed into a S-domain and the features are 

computed (Xia et al. 2015). The two dimensional DWT features are calculated 
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in the time-frequency image of EEG signal for seizure detection (Yusaf et al. 

2016). 

 

2.1.4  Empirical Mode Decomposition Method  

The EEG signal is nonlinear, non-stationary behavior in nature. Also 

the characteristics of EEG is depended on the status of gender, age and disease 

state. Also, it depends on the mental condition of the individual. Almost all the 

above mentioned EEG signal processing techniques implemented by the 

assumption that EEG signal is a wide sense stationary signal. 

 

In the Fourier spectral analysis of a non-stationary signal, the presence 

of harmonic components causes energy spreading in the spectrum. This results 

in missing the interpretation of energy-frequency distribution of the signal. A 

novel method is developed (Huang et al. 1998), which is appropriate for 

processing of nonlinear and non-stationary time series signal. The new method 

is called as empirical mode decomposition (EMD) method. In the EMD 

method the signal is decomposed into different components called IMF.  

 

The method of decomposition using EMD has found application in 

almost all the areas of brain wave signal processing. EMD has been applied in 

EEG signal pre-processing or enhancement as well as for feature extraction 

process in classification of normal and abnormal EEG signals, localization of 

sources, movement related task classification, motor imagery classification, 

etc. Recently, EMD method has been emerged with a major role in EEG signal 

processing, particularly in epilepsy detection. Losonczi et al. proposed 

analysis of EEG signal using instantaneous frequency and instantaneous phase 

of IMFs (Losonczi et al. 2012). Here analyses both synthesized signal and 

healthy EEG signal. The synthesized signal is generated by mixing of 5Hz and 

10 Hz sinusoidal signal. The instantaneous frequency of IMF5 represents the 

lower events of a channel of EEG signal namely delta ocillation in the 

EEG.The EEG signal duration of the F8 EEG channel is 60s. 
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The local amplitude and local frequency information of IMFs in the 

EEG signal shows differences in the healthy EEG and ictal EEG signals 

(Oweis and Abdulhay, 2011). A more effective analysis was achieved by using 

bandwidth features of IMFs (Bajaj and Pachori, 2012) The lower frequency 

bandwidth parameters and higher frequency bandwidth parameters of four 

higher order IMFs of EEG signal is extracted. These parameters are represents 

the main features of the classification of seizure signal in the EEG segments of 

that work. 

 

The chaotic features of IMFs were found effective in distinguishing the 

ictal, inter-ictal normal healthy EEG signals. The higher order moments that 

include variance, kurtosis, and skewness are extracted from the IMFs of the 

EEG signals, which is used as features to classify the EEG signals (Alam and 

Bhuiyan, 2013). The Coefficient of variation and fluctuation index of IMF1 to 

IMF5 are used for ictal classification (Li et al. 2013). The analytical signal of 

each IMFs of EEG signal is obtained and computed as the modified mean of 

each polar modulated signal (Bajaj and Pachori, 2013). This modified central 

tendency is the features for the classification of ictal signal and healthy EEG 

signal. 

 

The DWT based analysis is in the Hilbert transform (HT) domain. A 5-

level DWT decomposition perform to obtaine a sub-band of EEG signal (Li et 

al. 2017). Then to perform HT of each sub-band and setup the feature vector 

of each band by calculating different central tendency and energy of the 

analytical signal. The statistical features and spectral features of analytical 

function of IMFs are tabulated (Riaz et al. 2016). Here IMF1, IMF2 and IMF3 

are being considered for procuring the status of the brain signal. 

 

The Hilbert spectrum of each IMF will give superimposed view of 

energy-time- frequency distribution of the non-stationary signal. The spectral 

entropy of Hilbert–Huang spectrum of seizure signal shows wide 
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discriminating difference to healthy EEG (Fu et al. 2015) and to monitor 

patients undergoing anaesthesia (Li et al. 2008). The marginal spectrum of the 

EEG is studied in the anesthetic patients for knowing the depth of anaesthesia 

in the brain (Chen et al. 2016).  

 

The first and second order statistics of IMFs components are used for 

classification of epileptic seizure signal from normal EEG signal. The first four 

IMFs have the complete information about epileptic form discharge on the brain 

(Djemili et al. 2016). So it doesn’t compute the features from all the IMF 

components for the seizure classification. 

 

The two dimensional and three dimensional phase space representation of 

first four IMFs component of EEG signal (Sharma and Pachori, 2015). A unique 

pattern is generated in phase space, which has an epic centre for a normal EEG 

signal. The seizure signal classification is performed in ensemble empirical mode 

decomposition and phase space representation (Jia et al. 2017). The time delay 

phase space method is used to execute in the higher order IMFs, then different 

statistical properties are segregated for feature vectors. The spectral parameters of 

ensemble empirical mode decomposition of EEG are used to automate the seizure 

detection (Hassan and Subasi, 2016). The spectral moments are widely scattered 

in EEG abnormality. 

 

Variational mode decomposition (VMD) algorithm is similar to EMD. In 

VMD method, bandwidth of IMFs is varied from amplitude modulation to the 

frequency modulation oscillation. In each, IMFs is estimated using Burg’s auto 

AR modeling. In this work, a system is modeled and the performance is compared 

in AR(6), AR(7), AR(8),  AR(9) and  AR(10) order respectively. The optimal 

classification accuracy was obtained in AR(10) order classification of inter-ictal  

and ictal signals (Zhang et al. 2017). In all EMD studies only the IMFs of EEG 

are used for analysis the seizure classification. The residual signal is not 

considered in the seizure detection (Losonczi et al. 2012; Bajaj and Pachori, 
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2012; Li et al. 2013; Sharma and Pachori, 2015; Djemili et al. 2016; Riaz et al. 

2016). 

 

2.2  CLASSIFICATIONS 

A machine learning algorithm or a mathematical tool, which can map 

explanatory variables or features into desired outcome are called as classifier. The 

classification consists of predicting a certain outcome, based on a certain set of 

feature parameters. In order to predict the outcome, the algorithm process a 

training set containing a set of attributes and the respective outcome called 

prediction attributes. The algorithm tries to discover the relation between the 

attributes that would make it possible to predict the outcome. 

 

A proposal for a new classifier is used with the existing datasets is 

beyond the scope of this thesis. This thesis does not focus the change of 

structure of the particular classifier for the EEG analysis. So standard 

classifiers have been used to verify the preceding steps and compare them with 

each other to achieve maximum efficiency and accurate results. There are a 

few classifiers, which give better classification performance for EEG analysis. 

The leading classifier used in EEG analysis are support vector machine 

(SVM), artificial neural network (ANN), adaptive neuro-fuzzy inference 

system (ANFIS), etc. 

 

The SVM classification is an n-dimensional hyperplane, which 

optimally separates the data into two non-overlapping categories (Kumar, 

2014). SVM is based on structural risk minimization principle, and could 

construct an optimal separating hyper plane in the feature space (Li et al. 

2013). The SVM model used a sigmoid kernel functions to map the nonlinear 

feature set to higher dimensional space to obtain linear separable feature set 

(Fu et al. 2015). The least square support vector machine is which solve linear 

equation instead of quadratic programming having better result in EEG 

classification (Sharma and Pachori, 2015). 
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The artificial neural network is a connection of several neurons from 

the input level to the output level through hidden levels (Isler, 2016). ANN 

used in recent studies in biomedicine, especially in seizure classification, 

because of its good performance (Hassanien et al. 2014; Djemili et al. 2016). 

The different varieties of neural network are used, according to the taxonomy 

of neural network architecture (Basheer and Hajmeer 2000). However, various 

ANN algorithms like multilayer perceptron neural network (MLPNN), 

recurrent neural network (Subramaniyam and Hyttinen, 2013), probabilistic 

neural network (Übeyli, 2010) and neural network ensemble ( Li et al. 2017) 

are used in seizure classification. The MLPNN, is one of the most efficient 

ANN model, which is widely used seizure classification (Djemili et al. 2016). 

The MLPNN comprises three layers. The first layer is the input layer that 

contains a number of neurons with the same size as that of the input feature 

vector. The second layer consists of the hidden layer that increases the 

classification ability of a given network, and the number of neurons in the 

hidden layer can be fixed without constraints. A small number of neurons can 

reduce the accuracy in classification rates, and a large number of neurons can 

exacerbate the complexity of a specific network. The third layer is the output 

layer composed of a number of neurons similar to that of the desired output 

class (Basheer and Hajmeer, 2000).  

 

The ANN is optimally configured by applying train/learning 

algorithms. The weights and bias were updated using different learning 

algorithms namely, conjugate gradient back- propagation, gradient descent 

with momentum, adaptive learning rate back propagation, Levenberg-

Marquardt, scaled conjugate gradient etc. (Raghu and Sriraam, 2017). The 

back propagation algorithm is most commonly used in ANN, rather than the 

simplest feed forward algorithms. The mean square error between calculated 

output and desired output of the network is back propagated to the previous 

layer to minimize error through adjusting the weight of each node. The 
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Levenberg–Marquardt algorithm converges faster, but it is memory-intensive 

(Patnaik and Manyam, 2008).  

 

Neural network models require less formal statistical training compare 

to Logistic regression, which is a widely used statistical modelling technique. 

It means ANN is fast computation than Logistic regression (Tu, 1996). The 

advantages of ANN are work with incomplete knowledge, and it can use 

multiple different training algorithms. ANN is non-paramateric model while 

most of the statistical methods are parametric model that need higher 

background of statistic. ANN based classifiers achieves higher accuracy for 

epilepsy classification compared with SVM in the presence of the noisy 

dataset cases (Qazi et al. 2016). Drawback of ANN is hardware dependence 

and computation time is larger for higher network, like input neurons over 

100. The another major disadvantage is that the most appropriate grouping of 

training, learning and transfer function for classifying the data sets with 

growing number of features and classified sets. 

 

The adaptive neuro-fuzzy inference system is a mathematical model 

for machine learning that is inspired from the structure of both artificial neural 

networks and fuzzy inference system (Jang, 1993). Using a given input/output 

data set, it constructs a fuzzy inference system (FIS), whose membership 

function parameters are tuned using a back propagation algorithm or 

combination of back propagation gradient descent method and least squares 

approach (hybrid) algorithm. This allows fuzzy systems to learn from the data 

set to reach the desired destination. The basic structure of first order Sugeno-

type fuzzy inference system is a model that maps input feature vectors to input 

membership functions, IF-THEN rules, a set of output characteristics, output 

membership functions, and to a single-valued decision associated output.  
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The Sugeno-type of fuzzy inference system has wider advantage of 

integrity of the output space and high optimized prediction (Blej and Azizi, 

2016). The shape of the membership functions depends on parameters. Instead 

of just looking at the data to choose the membership function parameters, 

membership function parameters are automatically chosen. The network 

structure is similar to the ANN. The parameters associated with the 

membership functions changes through the learning process. The computation 

of these parameters is made easier by a gradient vector. When the gradient 

vector is obtained, any of several optimization routines can be applied in order 

to adjust the parameters to reduce some error measure. The error measure is 

defined by the sum of the squared difference between actual and desired 

outputs. The ANFIS classification provides the output as a linear regression 

time series rather than integer values, which represents classes and are 

compared with ANN classifier (Rabbi et al. 2013). The ANFIS classifier is 

effectively used for seizure detection (Yang et al. 2014; Deivasigamani et al. 

2016). 

 

The feature classification performance is statistically tested. The 

different statistically testing methods are student’s t- test (Zappasodi et al. 

2014), one way  analysis of variance test (Acharya et al. 2011; Alam and 

Bhuiyan, 2013; Riaz et al. 2016; Jia et al. 2017), Wilcoxon rank sum test 

(Zhang et al. 2017), etc. The feature ranking is also tabulated for heighted and 

weighted features, among the future vector (Acharya 2015; Upadhyay et al. 

2016; Acharya et al. 2013). The features with highest ranking aid to boost  the 

performance of the classifiers.  

 

2.3  DESCRIPTION OF THE DATABASE 

The EEG data used (“EEG Time series data”, 2015) for this work was 

provided by the Department of Epileptology, University of Bonn, Germany, 

which is a recognized epilepsy research Centre in Europe. The database is 
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widely used for several researchers around the world. There are approximately 

1025 research works that were carried out from this data set. By using this data 

set, the researchers easily compare the performance of their work (Tzallas, et 

al. 2012); Acharya, 2013). The database comprises five classes of data, 

namely, groups A, B, C, D and E. Each set is a zip file of 100 .txt files 

(standard text document) containing American standard code for information 

interchange (ASCII) files of EEG time series data. So each group has 100 

single-channel records with a duration of 23.6 s. Groups A and B are taken in 

awaken with the relaxed state with the patient’s eyes open and closed, 

respectively. The groups A and B are considered as the normal state of the 

brain wave. They are recorded using surface electrodes placed by the standard 

10–20 electrode placement scheme. Group C consists of seizure-free intervals 

(i.e., interictal) from the epileptogenic zone, and group D corresponds to the 

hippocampal formation of the opposite hemisphere. The hippocampal 

formation is located near to temporal lobe of the brain. The Group E contains 

pure ictal EEG. A sampling frequency of 173.61 Hz is used for the data 

acquisition of the EEG signal and each channel length is around 4097 samples. 

The each segments in the EEG data base is cut out by visual inspection for 

removal of artifacts affected segments from the continuous multichannel EEG 

recordings (Andrzejak et al. 2001). Thus, the secondary database of EEG is 

suppressed all types of artifacts.  The spectral bandwith of the aquisition 

system is 0.5 Hz to 85 Hz. 

 

The seizure classification  work using this EEG data with time–frequency 

based methods (Sharmila and Geethanjali,2016; Kumar et al. 2014; Parvez, M. Z., 

and Paul, 2014; Ocak, 2009; Acharya et al. 2013). Also, different nonlinear 

methods are implemented for EEG classification using the same database 

(Acharya et al. 2013; Redelico et al. 2017). Recently the seizure classification 

research work using empirical decomposition this EEG database (Oweis and 

Abdulhay, 2011; Alam and Bhuiyan, 2013; Riaz et al. 2016; Djemili et al. 2016; 
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Jia et al. 2017; Martis et al. 2012). To ensure the cross validation in this work we 

spilt the original data set into random samples for training set data and testing set 

data. 

Another popular EEG database was from CHB-MIT Scalp EEG database, 

which is prepared and hosted by Children's Hospital Boston (CHB) and the 

Massachusetts Institute of Technology (MIT) (“CHB-MIT Scalp EEG database”, 

2014). The signals are in the .edf  (European data format) file format, which is a 

standard file format used for the storage and exchange of medical time series in 

European Union nations. The EEG resource is open to public for to test the 

algorithms of  Biomedical researchers (Goldberger et al. 2000). In most cases, files 

are with a duration of 60 minutes and are in 10-20 international electrode 

placements system. All the files are sampled at 256 samples per second with 16 bit 

resolution and each file includes signals from 23 different channels. This database 

is suppressed all the artifacts. In each set of files having a summary text with 

information of file name, file start time, file end time, number of seizures in file, 

seizure start time and seizure end time. From this meta data information, it can split 

file into seizure affected files and seizure free (healthy) files.  

 

2.4  INFERENCES 

EEG signal can be used as an efficient tool to understand the complex 

dynamics of the brain, to discriminate various mental states and to aid in 

disease diagnosis. The signals are non-Gaussian, nonlinear, random and 

subject dependent and hence special type methods are required for of analysis. 

 

The different methods have been proposed in literature for analysis of 

EEG signals. They can be broadly classified as time domain methods, frequency 

domain methods, time-frequency methods and nonlinear methods. However the 

studies have shown that hybrid techniques are more efficient in quantifying the 

EEG signal. Recently, an empirical mode decomposition method has emerged 

with a major role in EEG signal processing. It does not require any assumption 
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about linearity and stationarity of the data. The literature reviews mainly focus 

on different application in empirical mode decomposition methods and Hilbert-

Huang transform method in EEG signal processing. HHT method is the 

decomposition of the IMF component into instantaneous amplitude function and 

instantaneous frequency function. The characterization of these twin 

components of IMFs create a new arena in the EEG signal processing. There are 

different classifiers are discussed which help to segregate different stages of 

ictal detection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3 

ANALYSIS OF EPILEPTIC SEIZURE USING 

WAVELET PACKET TRANSFORM  

 

In this chapter, EEG data are decomposed into different frequency sub-

band using wavelet packet transform (WPT). Here we have used 4-level WPT 

decomposition in order to obtain packets. The packets in each level are linear 

combinations of wavelet basis functions. The frequency band of selected 

packets are similar to frequency rhythms of EEG, which are delta, theta, alpha, 

beta and gamma sub-bands. The different energy-entropy features of each 

frequency rhythms are tabulated for analysis the effect of epileptic seizure in 

EEG. Finally, the constructed feature vector is used to input ANFIS for better 

classification of the healthy region and epileptic seizure in EEG signals. The 

proposed system also analyses the effects of EEG sub-bands of seizure at 

temporal lobes, T7-P7 and T8-P8. 

 

3.1  INTRODUCTION 

The continuous wavelet transform (CWT) provides a time–frequency 

representation of arbitrary signals with finite energy. The CWT of a signal is the 

integral multiple of translation and dilation of window function called wavelets. 

The CWT provides multi-resolution representation of a continuous signal 

(Grossmann et al. 1990) and is defined as 

  (   )  
 

√√| |
∫  ( ) (

   

 
)  

  

  
                 (3.1) 

Where   is the scaling parameter,   is the shifting parameter,    is a 

temporal signal and  ( )  is the wavelet function. By changing, the value of the 

scaling parameter and shifting parameter, a precise time resolution and precise 

frequency resolution are obtained respectively. 
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For increasing the computation efficiency of CWT, the scaling 

parameter and shifting parameters are replaced by the power of two, in form 

   . In such analysis the transformation is known as discrete wavelet 

transforms (DWT). The DWT can be defined as (Ocak, 2009). 

 

  (   )  
 

√|  |
∫  ( ) (

      

  
)  

  

  
             (3.2) 

Here scaling parameters and shifting parameters of CWT are replaced 

by     and       respectively. This helps an easy computation of both wavelet 

analysis and synthesis of the signal. For computing DWT, an efficient method 

is implemented with the combination of quadrature mirror filters which is 

made up of low pass filter, h(k) and high pass filter, g(k) (Mallat, 1989). 

 

However, this transform does not allow a flexible choice of the regions 

into which the time–frequency plane is divided (Adamczak, 2010). This 

flexibility is in the sense that both approximation coefficient and detailed 

coefficient are decomposed into its sub-band given by the wavelet packet 

transform. The WPT is a generalization of the wavelet transform (WT). 

 

3.2  WAVELET PACKET TRANSFORM  

The wavelet packet transform is a useful extension of wavelets. The 

flexibility of the wavelet packet transform will help to analysis many 

applications in Communications and Biomedical Engineering.  The WPT is 

the continuation of the wavelet transform that provided complete set of all 

level decomposition. The decomposition of each level results in packets of the 

original signal. The WPT will provide resolution in both lower frequency and 

higher frequency (Gao and Yan, 2010). 

The wavelet packet transform is defined as 

      
 ( )   

 

   (     )         (3.3) 
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Where   is the scaling parameter,   is the shifting parameter and   is the 

modulation parameter of WPT. The first two wavelet packet function in terms 

of scaling function,  ( ) and shifting function,  ( ) can be written as  

     
 ( )   ( ) and        

 ( )     ( )  (3.4) 

 

For higher indexing number n= 2, 3, 4... it can be replaced as the 

function of recursive relation 

     
  ( )  √ ∑  ( )      

 (    )   (3.5) 

 

     
    ( )  √ ∑  ( )      

 (    )   (3.6) 

 

where g(k) and h(k) are quadrature mirror filters with scaling and 

shifting functions.  

The wavelet packet coefficients of different levels are calculated by the 

inner product of wavelet function and temporal signal. 

     
  〈 ( )      

 〉  ∫  ( )     
 ( )         (3.7) 

 

The WPT and WT are often implemented using a tree-structured filter 

bank. The tree structure of wavelet packet transform is shown in the Figure 3.1. In 

the WT only the output of the low-pass filter progresses to the next stage, while 

the output of the high-pass filter only gives the detailed coefficients of the signal. 

On the other hand, the WPT is a set of      
  ( )          

    ( ) functions, which 

can construct any type of tree-structure in the filter bank. 
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Fig. 3.1 Tree structure of Wavelet packet Transform 
 

The wavelet packet transform can be viewed as a generalization of the 

classical wavelet transform, which provides a multi-resolution and time–

frequency analysis for non-stationary EEG data. The potential of wavelet 

packets is enriched with menu of orthonormal bases, from which best of them 

can be chosen. The WPT can be fully decomposed into a tree structure. The 

quadrature mirror filters with scaling and shifting functions are repeatedly 

applied to produce complete sub-band tree decomposition of the desired depth. 

The WPT not only decomposes the approximation coefficients of the signal 

but also the detailed coefficients. Therefore, it also holds the important 

information located in higher frequency components, which are used in certain 

applications (Xiong, et al. 1998). 

 

3.3  METHODOLOGY 

Most of the biosignal analysis are either in time domain, frequency 

domain or time-frequency analysis followed by a linear or nonlinear classifier. 

However, in case of the epileptic seizure detection, the EEG signal features are 

extracted in time-frequency domain and pick out a suitable classification 

method, which provides good success rate in seizure detection (Kıymık et al. 

2005). The Figure 3.2 shows signal flow diagram of the WPT based epileptic 

analysis system. 



 

49 

 

Fig. 3.2 Signal flow diagram of the epileptic detection system. 

In this chapter, we have proposed a wavelet packet transform, which 

decomposes the EEG signal into four levels. Therefore, the original signal is 

decomposed into different sub-bands, known as packets. Each wavelet packet 

has a frequency band according to the level of selection. The ranges of 

frequency of some of the packets are correlated to frequency rhythm of EEG, 

like delta, theta, alpha, beta and gamma. The different features of each selected 

packets are extracted according to two types of EEG signal. The classification 

of normal and abnormal EEG is performed using the ANFIS, a hybrid system 

of artificial neural network and fuzzy inference system. We used fourth order 

Daubechies wavelet (db4), which is most suitable for the EEG application 

(Faust et al. 2015). After the four levels of wavelet packet    decomposition, the 

selected packets are assigned as the frequency rhythm of EEG.  The packet W(4, 

0) is assigned as delta band (0-4 Hz), W(4, 1) as theta band (4-8 Hz), W(4, 2) as 

alpha band (8-12 Hz), combination of  W(4, 3) and W(2, 1) as beta band (12-32 

Hz) and W(1, 1) as gamma band (32-64 Hz).  

 

3.4  FEATURE EXTRACTION 

In this section, we deal with feature parameters of EEG signal, which 

are energy, mean energy, mean Teager energy and entropy.   

(i)  Energy: 

Energy of a signal indicates the strength, over a period of time. The 

larger energy level will indicate the presence of spike and slow wave, which is 

the after effect of a seizure. The energy, is defined as 

   ∑ |    
 |

   
           (3.8) 
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where           and              

and      
  is the     coefficient of the wavelet packet transform. 

   is the total number of nodes corresponding to the frequency sub-

band, 

   is the number of wavelet packet coefficients at     nodes. 

The epileptic EEG contains maximum energy compared to normal EEG signal 

(Artameeyanant et al. 2012). 

(ii)  Entropy: 

The entropy is the measure of uncertainty in the EEG segments. The low 

level of uncertainty is indicating the normal EEG, while high levels show the 

abnormal EEG. So the measure of unpredictability in the signal is represented 

mathematically as (Coifman and Wickerhauser, 1992).  

     ∑ |    
 |

   
      |    

 |
 
     (3.9) 

where           and              

The entropy is the information contained in the signal and it is the 

measure of the disorder of the system (Krstacic, 2002). 

 

(iii)  Mean Energy: 

Mean energy is highly sensitive parameters that contributes to the 

increase in signal energy associated with seizure and is given as 

    
 

  
∑ |    

 |
   

          (3.10) 

where           and              

 

(iv)  Mean Teager Energy: 

Mean Teager energy (MTE) is a nonlinear energy operator, which is 

obtained from three adjacent samples. The MTE is the energy estimated for a 

short-term duration of a signal (Teager, 1980). MTE is theoretically derived 

and demonstrated (Kaiser, 1990). MTE is efficient for analysis intermittent 
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and intermixed signal, which cause the abnormal activities of brain (Kamath, 

2011). The MTE can be defined as: 

     
 

  
∑ |    

 |
 
 |      

      
 |

   
        (3.11) 

where           and              

 

The MTE is the refection of instantaneous energy difference in 

neighbouring samples. The mean Teager energy gives significant difference 

between epileptic EEG and healthy EEG signals (Gopan, 2013).  

 

3.5  CLASSIFICATION 

Here, we used an adaptive neuro fuzzy inference system, which is a 

popular classification model (Yildiz et al. 2009). ANFIS is the extension of 

ANN model and Sugeno type fuzzy inference system (FIS) model (Jang, 

1993). The Sugeno type ANFIS consists of five different layers. The first and 

fourth layers of ANFIS, having adaptive nodes and other layers are fixed 

nodes. The hidden layer nodes perform the duty of membership functions and 

rules. The FIS analogues to IF – THEN rule based learning capability of a 

fuzzy set for a nonlinear system. The membership function attributes of FIS 

are modified using hybrid algorithm or back propagation algorithm (Güler and 

Übeyli, 2005). This facilitates the learning of FIS from the data and 

automatically modifies the membership function parameters. The parameters 

of input membership function are selected and desired output membership 

function type is to be either linear or constant. The network type structure is 

similar to neural network, which map the input layer to input membership 

function. The weight of the parameter in the membership function is changed 

as per learning process. A gradient vector expedites the adjustment of these 

parameters. The gradient vector provides how the FIS modeling the 

input/output data for a given set of feature parameters.  
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The anfis function in MATLAB R2014b is without tuning or self-

turning FIS, which is generates a single-output Sugeno type FIS and tunes the 

system parameters using the training data. Here FIS is automatically 

generating using grid partitioning. The training algorithm uses as a 

combination of the least-squares and back propagation gradient descent 

methods (hybrid) The anfisedit GUI (Graphical user interface), the raw FIS 

structure generation based on grid partitioning or subtractive clustering. The 

training algorithm uses is a combination of the least-squares and back 

propagation gradient descent methods (hybrid) or back propagation gradient 

descent method. Select appropriate input membership function and output 

membership function is linear or constant. The epoch and error tolerance is 

also optional (Jang, 1993). 

 

3.6  RESULTS AND DISCUSSION 

The EEG data used in this study was obtained from the Department of 

Epileptology, University of Bonn (“EEG Time series data,” 2015). The data 

set comprises 5 sets of 100 single channel data of 23.3 s duration and sampled 

at 173 samples per second. A total of 4096 samples were present in each 

segment of the dataset. Figure 3.3 shows the EEG signal corresponding to Set 

A and Set E of the Bonn EEG database. The healthy EEG signal has less 

amplitude variations when compared to the epileptic EEG signals. The 

frequency band of EEG signal is fixed as 0.5 to 64 Hz. The frequency greater 

than 64 Hz is considered to be as noise and hence it is eliminated. The supply 

noise of 60 Hz is eliminated using notch filter. 
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Fig. 3.3 Healthy EEG and abnormal EEG Signal in the EEG database. 

 

The signal is first decomposed into four levels of WPT. The selected 

decomposed packets are the sub-bands of EEG rhythm. It appears that db4 is 

the most suitable wavelet for seizure detection. The sub-bands frequency (0.5-

4 Hz), (4-8 Hz), (8-12 Hz) and above 32 Hz are available in W(4, 0), W(4, 1), 

W(4, 2), and W(1, 1) packets respectively. The sub-bands frequency (12-32 

Hz) is obtained by combining the packets W(4, 3) and W(2, 1). The MATLAB 

R2014b tool in Intel R Core (TM) 2 Duo CPU with 4GB RAM, system is used 

for all computations. The Figures 3.4 and Figures 3.6 shows the different 

feature performance of normal EEG signal in delta band and theta band 

respectively. The Figures 3.5 and 3.7 shows the different features performance 

of abnormal EEG signal in delta band and theta band respectively.  
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Fig. 3.4 Feature extraction of delta band in the healthy EEG signal 

 

 

Fig. 3.5 Feature extraction of delta band in the abnormal EEG signal  
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Fig. 3.6 Feature extraction of theta band in the healthy EEG signal 

 

 

Fig. 3.7 Feature extraction of theta band in the abnormal EEG signal 



 

56 

The feature vectors of proposed sub-bands of healthy EEG and 

abnormal EEG signals are prepared from the energy, entropy mean energy and 

mean Teager energy parameters. The parameters extracted from the healthy 

EEG shows high values than the parameters extracted from it seizure EEG 

segments. Among the parameters, mean energy and mean Teager energy 

shows highest values in both the healthy EEG and abnormal EEG signals.   

 

In the case of seizure EEG, the delta band has the highest mean energy 

than other sub-bands. The next highest value of mean energy is theta sub-

band. This indicates that in the abnormal state (epilepsy) the brain produce a 

high level of energy compare to healthy condition. The feature vectors are 

given as an input to the Sugeno-type of FIS. Using ANFIS the given 

input/output data constructs by FIS, whose membership function parameters 

are tuned using a hybrid optimum algorithm. The input membership function 

is trimf, which is a triangular form built-in function and output membership 

function is a linear type. This allows fuzzy systems to learn from the 

input/output data and model an expert system. Table 3.1 shows average error 

of FIS training for 500 epochs in different frequency sub-bands of EEG in 

different feature parameters. Here we used 140 samples for training data, 30 

samples for testing data and remaining samples for checking data. We used 7-

fold cross validation to verify the performance of the classifier.  

 

Table 3.1: Training error for 500 epoch of EEG sub-bands 

 

 (E-energy, MTE- mean Teager energy, ME-mean energy, En- entropy) 

Features delta theta alpha beta gamma

E 0.15416 0.14812 0.27587 0.43215 0.47749

ME 0.16907 0.18527 0.28945 0.47112 0.48058

MTE 3.059 e-07 1.15 e-02 0.38754 0.43137 0.43969

En 0.17257 0.1952 0.28754 0.47529 0.4795

Frequency sub-band of EEG
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Initially data is loaded for training, testing and checking then FIS is 

generated by choosing the membership function. Then it starts to train the FIS 

and finally test the FIS net. The Table 3.1 reveals that the lowest average error 

in FIS training is in delta and the theta sub-band of EEG. It is understood that 

characteristics of an epileptic discharge happens in the delta sub-band, but the 

effect of seizure is also reflected in the theta sub-band. The Figure 3.8 shows 

the training error of mean Teager energy on the delta band in ANFIS Editor 

GUI.  

 

 

Fig. 3.8  Training error of mean Teager energy on the delta band in ANFIS 

Editor GUI. 
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Fig. 3.9 Training data and average testing error of mean 

 Teager  energy on the delta band. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Testing data and FIS output of mean Teager 

energy on the delta band. 
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Figure 3.8 shows the mean Teager energy has a training error of  3.059 

10-07 in the delta sub-band of EEG. The training error of the mean Teager 

energy in all EEG sub-bands have much low values compared to other 

parameters. Figure 3.9 shows training data and average testing error of mean 

Teager energy on the delta band. The checking data and FIS output of mean 

Teager energy on the delta band is shown in Figure 3.10. The blue stars are 

assigned as the desired results, obtained from the EEG metadata and the red 

stars are the observation of the ANFIS classifier. The Figure 3.10 shows the 

mean Teager energy on the delta band and it has a total accuracy of  98.33%. 

The average computation time required for feature extraction of the proposed 

sub-band is 8.11 s. The average computation time required for classification 

time of all features in the delta band is 25.02 s (with tuning) and 12.56 s 

(without tuning). The results show that mean Teager energy is a more suitable 

parameter for further classification of EEG signals. The total accuracy is same 

to both ANFIS with tuning and without tuning. 

 

 

Fig. 3.11 Training data and average testing error of all 

features  in the delta band 
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Fig. 3.12 Testing data and FIS output for all features in the delta band. 

 

Then all the features of delta band are used as the feature vector for the 

classifier. Here ANFIS Editor GUI  having 4 inputs and one output and hence 

overall 280 samples for training and 120 samples are employed for testing the 

classifier. Here, got a training error of  0.04069 for 500 epochs. Figure 3.11 

shows the average testing error is 0.0406. Figure 3.12 shows that three 

samples are misclassified and the testing error is of 0.098. The total 

classification accuracy for the delta band is obtained as 97.5%. The feature 

vector of other frequency bands having less classification accuracy than delta 

band. The average computation time required for classification of the features 

vectors in the delta band is 13.37 s (with tuning) and 12.92 s (without tuning). 

Table 3.2 shows the comparison of other methods in wavelet features for the 

EEG classification. 
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Table 3.2 Comparison with other methods in wavelet features for 

 EEG classification. 

Authors Methods Classifier 
Classification 

accuracy (%) 

Adeli et al. 2003 
Daubechies and harmonic 

wavelets 
Nil - 

Tzallas et al. 2009 
Time–frequency 

distributions 
ANN 89 

Ocak et al.2009 
ApEn on DWT 

coefficients 

Surrogate 

data  analysis 
96 

Cao et al. 2010 
Wavelet Packet Energy 

Spectrum 
Nil - 

Acharya et al. 2012 Entropies Fuzzy 98.1 

Artameeyanant et al. 2012 WPD and ApEn BPNN 89.7 

Musselman and 

Djurdjanovic, 2012 

Time–frequency 

distributions features 
SVM 99.3 

Kumar et al. 2014 Fuzzy ApEn of DWT ANN, SVM 100 

Yang et al. 2014 
Permutation entropy and 

sample entropy 
ANFIS 89 

Proposed method 
EEG sub-band using 

WPT with MTE 
ANFIS 98.33 

 

Then the proposed WPT system is applied to another popular EEG 

database for analysis of the EEG signal. Here the EEG signals at the 

Temporal- Parietal lobes of T7-P7 and T8-P8 scalp EEG is separated from the 

CHB-MIT Scalp EEG database (“CHB-MIT Scalp EEG database”, 2014). An 

unprovoked focal seizure is originated from the temporal lobe of the brain, and 

is known as temporal lobe epilepsy (TLE). The channel T7-P7 is for EEG 

recording from the left hemisphere of brain and channel T8-P8 is for recording 

from the right hemisphere of brain. The duration of each data set varies from 9 

hrs. to 48 hrs. The signals are sampled at 256 Hz. The data set Chb01, consists 

of seven different epileptic seizure occurrences within 45 hrs. Each seizure has 

an average length of 57 seconds. Each set is sub-divided into 10 seconds 
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duration with 2560 samples. Initially the EEG data undergoes 64 Hz low pass 

filter before it decomposes to the different frequency rhythm of delta, theta, 

alpha, beta and gamma bands using WPT. 

 

(E-energy, MTE- mean Teager energy, ME-mean energy, En- entropy) 

Fig. 3.13  Different feature parameters of healthy and abnormal EEG  

in different EEG sub-bands of channel T7-P7 

 

(E-energy, MTE- mean Teager energy, ME-mean energy, En- entropy) 

Fig. 3.14  Different feature parameters of healthy and abnormal EEG in 

different EEG sub-bands of channel T8-P8 
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Each sub-band of the two channels is subjected to calculate the entropy, 

energy, mean energy and mean Teager energy of the EEG signal. This analysis is 

only focuses on the effect of differential signals at Temporal- Parietal lobes of T7-

P7 and T8-P8. Figure 3.13 and Figure 3.14 shows coefficients of different statistical 

parameters of abnormal (ictal) and healthy EEG in different frequency bands of T7-

P7 and T8-P8 channels respectively. It is observed that in Figure 3.13 and Figure 

3.14, a sizeable variation exists in the feature parameters of delta band during 

abnormal EEG (ictal) and a small notable variation is found in theta band. There is 

no significant change in the high frequency band. During the healthy brain 

condition, the feature parameters of the alpha band are high.  The reason for this is 

in normal brain the alpha sub-band frequency are active and dominant compare to 

the other EEG sub-band. The mean Teager energy feature in abnormal state has 

higher discrepancy between normal EEG in alpha band with respect to other 

energy-entropy parameters. This indicates that the mean Teager energy feature is 

the dominated parameter for correlation coefficient between abnormal and normal 

EEG classification compared to other energy-entropy parameters in the proposed 

method. It is observed that the values of feature parameters in channel T8-P8 is 

higher than the parameters of channel T7-P7. The mean Teager energy coefficients 

show significant variation compared to other feature parameters. The Figures 3.8 

and 3.9 shows that the data set Chb01as a case of TLE, which is a focal seizure 

originated from the right hemisphere. Table 6.4 shows the comparison of other 

non-linear algorithms in the EEG classification using the EEG data set. 

 

3.7  INFERENCES 

In this chapter, the EEG signal is analysed using wavelet packet 

transform for feature extraction and „anfiseditor’ tool of MATLAB R2014b is 

used for the classification analysis. The wavelet packet transform decomposes 

the EEG signal into four levels to obtain the frequency rhythm of delta, theta, 

alpha, beta and gamma bands. Then features of the sub-band coefficients are 

analysed by different feature parameters like entropy, energy, mean Teager 
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energy and mean energy. It is observed that at normal condition the brain 

produce high energy in the alpha sub-band. However at seizure state, the brain 

energy level in both the delta sub-band and theta sub-band are increased. It is 

observed that out of four parameters, mean Teager energy coefficient of 

features have the minimum training error. The total classification accuracy for 

the mean Teager energy in delta band is 98.33%. The total classification 

accuracy for the delta band is obtained as 97.5%. The average computation time 

required for classification of ANFIS without tuning is faster than ANFIS with 

tuning in this case. It shows that the mean Teager energy is taken as a suitable 

feature parameter for the classification of healthy EEG and seizure EEG 

signals. 

 

The proposed system also analyses the effects of EEG sub-band during 

seizure at temporal lobes of T7-P7 and T8-P8 in another popular EEG 

database. It is observed that high variations of the proposed energy-entropy 

parameters, both in the delta sub-band and theta sub-band occurs during 

seizure EEG. Among the parameters the mean Teager energy shows the 

significant result in the EEG data set, Chb01.   

 

The limitation of the work is that during the wavelet packet transform 

decompositions the selected packets do not exactly map to the sub-band of the 

EEG rhythm. The packets in the tree of the wavelet packet transform, W(4, 0), 

W(4, 1), W(4, 2) and W(1, 1)  are equivalent to EEG sub-bands frequency 

(0.5-4 Hz), (4-8 Hz), (8-12 Hz) and above 32 Hz respectively. The combined 

of packets W(4, 3) and W(2, 1) is equivalents to (12-32 Hz). This happens 

only when W(0, 0) is assigned as 0-64 Hz EEG signal. But some of the 

assigned sub-band in the WPT band is not exactly same as the EEG frequency. 

The alpha sub-band is (8-13 Hz), but here we take alpha as (8-12) Hz in W(4, 

2). In addition, beta band is (13-30 Hz, but here we took beta as (12-32 Hz). 

Which is the combination of W(4, 3) and W(2, 1). The gamma band is greater 
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than 30 Hz, but we compute gamma as (32-64 Hz). There is an overlap in 

these frequency bands for EEG, which also depends on cut-off frequency of 

low pass filter selected for the EEG data.   
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CHAPTER 4 

ICTAL EEG ANALYSIS USING  

HILBERT-HUANG TRANSFORM 

 

EEG is an important tool in clinical diagnosis and research on human 

brain activity. Recently, empirical mode decomposition (EMD) method is used 

to analyze the EEG data in a more simple and meaningful approach than other 

methods. The EEG signal decomposes into intrinsic mode functions (IMF) 

using EMD. The instantaneous amplitude or envelope and instantaneous 

frequency information is extracted from each of the IMF components using 

analytic function. These parameters are used for ictal EEG analysis by 

computing feature vectors from these twin components. The energy - entropy 

parameters are extracted from the amplitude contour and statistical parameters 

are extracted of the instantaneous frequency contour of each the IMF. 

 

In our study, the above discriminative features are extracted using a 

popular database to classify healthy and ictal EEG signals in three different 

cases. The different conditions are individual IMF features, multiple features 

with individual IMF, and individual features with multiple IMFs. Discriminating 

capability of the three cases were tested using artificial neural network (ANN) 

and adaptive neuro fuzzy inference system (ANFIS) classification. In addition, 

we used the analysis of variance (ANOVA) method to analyze the statistical 

performance of the feature vectors in the above cases.  

 

4.1  INTRODUCTION 

The characteristics of the EEG signal exhibit a non-linear and non-

stationary behavior. In addition, the characteristic of EEG depends upon the 

gender, age, disease state or mental condition of the individual. Most of the 

EEG studies assume that EEG is a wide sense stationary signal and are 
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analysed either in time-domain and/or frequency-domain, which are 

mentioned in the literature review. However, analysis of the EEG requires 

special techniques, which effectively handles the non-stationary behaviour of 

the signal. 

 

In 1998, Norden E. Huang, proposed a new method known as EMD 

method, which is suitable for analysis of nonlinear and non-stationary time 

series signal (Huang et al. 1998). In the EMD method any arbitrary time 

varying signal is decomposed into a finite number of component and residue. 

Each component is known as intrinsic mode functions (IMF) of the original 

signal. The IMFs of an arbitrary signal are orthogonal to each other. 

According to EMD method, during decomposition process the components are 

said to be an IMF, if it satisfies the following criteria. 

a) In the entire data set, the total number of maxima and minima equal to 

zero crossings or the difference should not exceed one 

b) The average of the envelopes of local maxima and minima at any 

instant should be null.  

 

In the EMD method, any data can be decomposed into different 

independent modes of oscillations. The frequency of the IMF components is 

descending from higher frequency of the original signal to lower frequency. 

Finally, in the EMD method the complex signal is converted into IMF 

components. The instantaneous frequencies of each IMF are a function of intra 

wave and inter wave modulation in the EEG signal. The inter wave modulation 

can be analyses using the Fourier transform. The intra wave modulation is 

because of the nonlinear behavior of the EEG signal (Huang et al. 1998). 

 

The EMD decomposition is adaptive because it does not have a fixed 

basis. The basis of the method is derived from the data. The EMD is based on 

local information of time series data, which is suitable for the analyses of non-

stationary and nonlinear signals. 
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4.2  THE SIFTING PROCESS: EXTRACTING IMFs 

The algorithm for the extraction of IMFs from a raw data is given as 

below (Huang et al. 1998). The sifting process helps to suppress transient 

wave and keep off the skewness behaviour of the original signal. 

 For a time series  ( ), different steps in the sifting process are: 

(i) Interconnecting all the local maxima and local minima of   ( ) by 

cubic spline interpolation to get the envelop       ( )  and  

      ( ) respectively.  

(ii) Compute the mean of       ( ) and        ( ) envelops, 

say    (t)  

(iii) Find ,  ( )    ( )    ( )                                                   (4.4)                 

Check whether the   ( ) satisfies the conditions of being an IMF,  

If not step (i)-(iii) is repeated, then increment        and 

equate   ( )    ( )   

Let initially     

else, we get the first component as  

   ( )    ( )                  (4.5)       

The   ( )  where     is a first IMF component  

(iv) After getting the first component, 

                         ( )    ( )    ( )         (4.6)                       

Where   ( ) is known as residual signal. 

(v) If   ( ) is monotonic function or a constant, then stop the 

computation process. 

else  

Repeat the step (i) to (v) 

           Finally obtain   ( ) which satisfies the condition for IMFs. 
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Figure 4.1 shows the trace of the lower envelopes and the upper envelopes 

of the data set. To plot that, first we need to identify all the local maxima, and then 

connect them with a cubic spline line to get the upper envelope. Repeat the 

procedure for the local minima to produce the lower envelope. Then mean of 

upper envelope and lower envelope are to be developed. The mean waveform is 

shown in Figure 4.2. Then check the condition of being an IMF as mentioned in 

the step (iii). If not repeat the step (i) to (iii). Figure 4.3 shows the first IMF 

component of the signal. Similarly, obtain all the IMFs of the signal.      

        

 

Fig. 4.1 Envelop       ( )  and        ( ) 

 

 

Fig. 4.2 Compute the mean of       ( )  and        ( ) 
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Fig. 4.3 Extract the first IMF 

 

Finally, the arbitrary signal can be expressed as a summation of the 

residual component and all the IMF components. The decomposed IMF 

components can be written as   

  ( )   ∑    
 
   ( )    ( )  (4.7) 

 

The original signal can be reconstructed by the summation k of all 

IMFs and the residual of signal. So an arbitrary signal can be expressed as a 

linear combination of all the IMFs and the residual signal. Each IMF 

oscillation may be a combination of amplitude modulation and frequency 

modulation. The number of IMFs depends upon the band of frequency in the 

EEG segments. 

 

4.2.1  Hilbert-Huang Transform 

The Hilbert-Huang transform (HHT) technique is developed to 

investigate the non-linear and non-stationary behavior of water waves (Huang 

et al. 1998). HHT is a combination of the empirical mode decomposition 

method and the Hilbert transform (HT) analysis. The Hilbert transform 

(Bedrosian, 1962), of an arbitrary signal, is defined as the convolution of 
 

  
 

with  ( )  The main advantage of HHT is that it is a powerful tool to convert a 
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real function of the IMFs into analytic function, which is suitable for analyzing 

non-linear and non-stationary time series data. 

The HT of   ( ) is defined as 

 ̂( )   ( )  
 

  
                                                            (4.8) 

The convolution of  ( )  and 
 

  
  is written as  

   ̂( )  
 

 
  ∫

 ( )

   

  

  
                                     (4.9) 

 

Where PV is the Cauchy Principal Value of the integral    

 

As per equation (4.9),    ̂( ) is a single sided signal. A major advantage 

of Hilbert transform is that real valued continuous signal is extended to an 

analytical function. 

 

If a signal  ( ) is said to be an analytical function of an arbitrary signal 

 ( ), then it can be expressed in terms of real part as  ( ) and imaginary part 

as  ̂( ). The  ̂( ) is the Hilbert transform of  ( ). 

 ( )   ( )    ̂( )   ( )    ( )                                                 (4.10) 

 

Where  ( )  √  ( )   ̂ ( ) is the instantaneous amplitude of  ( ) 

and the instantaneous phase of   ( ) is 

   ( )         [
 ̂( )

 ( )
]                                                                     (4.11) 

 

The instantaneous frequency (IF) of  ( ) is defined as the derivative of 

instantaneous phase given by 

   ( )  
  ( )

  
                                                                                   (4.12) 
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The equations (4.10) and (4.12), which are expressed in time-frequency 

distribution of instantaneous amplitude is defined as the Hilbert 

Spectrum  (   ). The marginal spectrum,  ( )  of  ( ) is defined as  

 ( )  ∫  (   )  
 

 
                                                                      (4.13) 

 

The Hilbert spectra will give a wide view of the energy–time 

distribution of each frequency in an arbitrary signal. The Hilbert spectrum 

appears better than Wavelet spectrum. The spectrum shows the frequency 

variations of each IMF. 

 

The instantaneous frequency of the IMFs eliminated the spurious 

harmonic components in the signal, which contribute the nonlinear effect in 

the EEG signal. The analysis of instantaneous frequency of the EEG signal is 

much important, which will reflect the sudden change due to the ictal activities 

(Picinbono, 1997). In this chapter, statistical nature of the instantaneous 

frequency and energy-entropy features of instantaneous amplitude are the 

feature parameters of the different stages of ictal classification.  

 

4.3  METHODOLOGY 

The proposed method is shown in Figure 4.4. The objective is to 

classify seizure attack in EEG segments using features of instantaneous 

amplitude (IA) and instantaneous frequency (IF). Energy-based features, such 

as the mean energy (ME), mean Teager energy (TE), and entropy-based 

features like entropy (En), approximate entropy (ApEn) are calculated as 

amplitude variation of the EEG. The frequency variation is studied using 

statistical features of interquartile range (IQR), mean absolute deviation 

(MAD), and standard deviation (STD) of the frequency function. 
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Fig. 4.4  Proposed Methodology 

 

In this study, ANN and ANFIS classifiers are used to examine how 

features are effectively extracted using discriminating EEG segments with 

seizure attacks from healthy EEG. In this study, classifications are grouped 

into three cases depending on the feature vector used. After the classification 

process, the different classes of the feature vectors are validated using 

ANOVA, a well-established statistical test. 

 

4.4  FEATURE EXTRACTION 

After the HHT computation, the amplitude envelope and frequency 

functions of the first five IMFs are used for further computations of feature 

extraction (Oweis and Abdulhay, 2011). According to the Hilbert amplitude 

spectrum, energy and entropy parameters are essential for extracting feature 

vectors of IA in HHT (Acharya et al. 2012). Statistical parameters, such as 

interquartile range, mean absolute deviation, and standard deviation, are the 

parameters for constructing the feature vector of IF in HHT (Gopan et al. 

2012). The features opted for this work are discussed in Table 4.1, where  ( ) 

is the input EEG sequence of length L. 
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Table 4.1: Basic equation of energy, entropy and statistical parameters  

Sl.no Feature Parameter Equation Remarks 

1 
Mean energy 

(ME) 
       (

 

 
∑  

 

   
 ( )  )  

2 

Mean Teager-

Kaiser Energy  

(TE) 

       (
 

 
∑( ( )  

 

   

 (   ) (   )))  

3 Entropy (En)     ∑  
 

       

   is the 

probability of 

the datum 

being in bin 

k. 

4 
Approximate 

Entropy (ApEn) 

    (     )    ( )      ( ) 

  ( )  (  (   ))  ∑       ( )

     

   

 

    ( )    correl

ation integral, 

r, N, m integer  

5 
Interquartile 

Range (IQR) 
          

Q3 is the third 

quartile and 

Q1 is the first 

quartile 

6 

Mean Absolute 

Deviation    

(MAD) 

    
 

 
∑ (  ( )  

 

   
 ̅ ) 

 ̅ is the mean 

value of x(i) 

7 
Standard 

Deviation (STD) 
    √

 

 
∑ ( ( )

 

   
   ̅)   
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4.5  CLASSIFICATION  

Here ANN and ANFIS classifiers are being used to classify different 

cases, which are mentioned as follows and the performance of each classifier 

is compared. ANN used here is three layer feed forward multilayer perceptron 

neural network (MLPNN). The number of hidden layer chooses as 15. The 

number of neuron in the input layer is depends on the different cases used in 

the study. The output layer is a bilinear classifier. The ANN acquires 

knowledge from the training set of feature vector using the learning algorithm. 

The popular back-propagation learning algorithm is used in ANN. The back-

propagation is a scaled conjugate gradient-based algorithm, which has many 

different types. Through back-propagation, ANN attempts to correlate inputs 

and the desired output. To achieve the desired output, the weights of the 

interlink nodes are adjusted in each epoch using the training process (Vogl et 

al. 1988; Møller, 1993). The different cases of feature vector are given as an 

input to ANFIS. The ANFIS Editor, which a  toolbox function in MATLAB 

R2016b, constructs a fuzzy inference system (FIS) using input/output data set 

and membership function parameters are tuned using back-propagation 

algorithm (Güler and Übeyli, 2005). The ANFIS with tuning and without 

tuning for FIS structure generation (Jang, 1993) are explained in section 3.5. 

To facilitate ictal classification, we formulated different cases based on the 

feature vector. The three different cases are 

 

Case 1: Use of a single feature of individual IMF 

Case 2: Use of multiple features of individual IMF 

Case 3: Use of single feature of multiple IMFs 

 

4.5.1  Performance Evaluation 

The effectiveness of the proposed feature parameters is evaluated using 

total classification accuracy, sensitivity, and specificity. Based on the 

classification and metadata in the database, the True Positive (TP), True 
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Negative (TN), False Positive (FP), and False Negative (FN) events in the 

performance measures are computed as follows (Brodu et al. 2012; Sharma 

and Pachori, 2015; Riaz et al. 2016). The true positives are the data, which are 

correctly identified as ictal EEG, or healthy EEG. False positives are the data, 

which are incorrectly identified as ictal EEG, or healthy EEG. True negatives 

are the data which are correctly rejected. False negatives are the data, which 

are incorrectly rejected. The sensitivity is the ratio of the number of true 

positive values to the number of actual positive cases. The specificity is the 

ratio of the number of true negative values of the number of actual negative 

cases. The total classification accuracy is the ratio of the number of correctly 

detected values to total number of cases for the machine learning process. The 

performance measures are defined as. 

                              
     

           
                  (4.14) 

            
  

     
          (4.15) 

            
  

     
        (4.16) 

 

4.6  RESULTS AND DISCUSSION 

This study proposes the use of ictal classification, which is based on 

the amplitude and frequency contours of IMFs. It is comprised of the  raw 

EEG data of each group acquired using a low-pass filter with cutoff frequency 

of 60 Hz, so as to avoid noise components in the higher frequencies. Section 

4.1, gives a clear-cut description about computation of IMF by applying the 

EMD algorithms.  

 

In the EEG database, discussed in Section 2.2, we considered 100 EEG 

segments in the proposed work. Each set of the segments has a length of 4096 

samples. Each segment was further divided into blocks with a length of 256. 

Each segment has 16 blocks, and each EEG set has 1600 data blocks. Figure 

4.5 shows the sample waveform of different IMFs of the healthy EEG from 
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group A. Figure 4.6 shows the sample waveform of different IMFs of the ictal 

EEG from group E respectively. In this study, EEG signals are decomposed 

into only five sets of IMFs. Abscissa represents the number of samples 

considered and the ordinate represents the signal amplitude in microvolts. 

Figure 4.5 and Figure 4.6 show that the first IMF components are having 

higher cycles than the upcoming IMFs components. It is clearly seen from the 

Figures that there is remarkable difference between the two set of IMF 

components.  

 

Orosco et al. conducted several initial tests and concluded that the 

lower frequency components in the IMFs do not contribute to seizure 

detection. So these IMFs are discarded in the EEG analysis including the 

residual signal, which is a monotonic slope, or a function with only one 

extrema (Orosco et al. 2011). The residual signal is have non-zero values 

during the sifting process of EMD, which does not obey criteria for an IMF. In 

EMD decomposition of an EEG segment of 1 s length in its IMF, the higher 

IMFs is discarded because the amplitude of these IMFs are 20 times minor 

than IMF1 (Diez et al. 2009). In this study, the residual signal is not 

considered for ictal classification (Sharma and Pachori, 2015; Djemili et al. 

2016; Riaz et al. 2016). The main features of the ictal EEG are closely related 

to the initial IMFs (Li et al. 2013).  
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Fig. 4.5  IMFs of healthy EEG  

 

 

Fig. 4.6  IMFs of ictal EEG 
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The instantaneous amplitudes and instantaneous frequencies of each 

IMF are computed using the analytic function. The energy features mean 

energy, mean Teager energy, and entropy-based features like entropy, 

approximate entropy were computed respectively from the instantaneous 

amplitudes of IMFs. The statistical features of the IMF frequency function are 

also tabulated. Two classifications, namely, ANN and ANFIS, are considered 

in this study as mentioned in Section 4.5. 

 

In this study, we considered all the available EEG segments in the 

database, so there is no need of population sampling. The features obtained from 

the first four IMFs are considered in the study. Thus, each IMF is treated using 

Hilbert transform. Then IA and IF functions are obtained. The energy and entropy 

feature parameters are tabulated in each IA function, and statistical features are 

tabulated in IF function. The healthy class comprises the features of groups A and 

ictal class from group E of the EEG data. Out of the total feature set, 70% was 

used for training and 15% was for validation. The rest of the data were used for 

testing purposes to ensure 7-fold validation. The MATLAB R2016a tool in Intel 

R Core (TM) 2 Duo CPU with 4GB RAM, system is used for all 

computations. The computation time required for extracting IA and IF 

components from the EEG is 10.4 s per each category of the data set. 

 

Figure 4.7 (a) shows the distribution of energy of HHT on a time–

frequency scale for healthy EEG. Figure 4.7(b) shows the distribution of 

energy of HHT on a time–frequency scale for ictal EEG. The Hilbert 

amplitude spectrum in Figure 4.7 indicates that a shift in energy spread toward 

lower frequencies and increase in the magnitude of energy can be observed 

when seizure occurs. Based on this finding, we examined the energy and 

entropy based features extracted from instantaneous amplitude function for 

ictal classification. The variation of the instantaneous frequency is also 

statistically extracted. The features are then analyzed for the characterization 

of EEG signal. 
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Fig. 4.7 (a)   Hilbert–amplitude spectrum for healthy EEG and ictal EEG 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 (b)   Hilbert–amplitude spectrum for ictal EEG 
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Three cases were considered in this study. In Case 1, every single 

feature was used independently for each IMF in a separate manner. In Case 2, 

multiple features of IA and IF are considered as the feature vector of each 

individual IMF. In Case 3, single feature was used from multiple IMFs of IA 

and IF. Thus, energy features ME and TE and entropy features En and ApEn 

in Case 1 were computed from the instantaneous amplitudes of the first five 

IMFs. Each EEG sets is computed. Instantaneous frequency features are then 

tabulated from the first five IMFs of each EEG set. Thus, twenty different 

parameters were found in IA. Fifteen parameters are taken in IF. Every feature 

was obtained independently from each IMF. Figures 4.8(a), 4.8(b), 4.8(c), 

4.8(d), 4.9(a), 4.9(b), and 4.9(c) show the average values and standard 

deviation within different data set of features under study. The mean values of 

the feature sets indicate that they vary significantly in the two groups for all 

the features computed.  It also have small values of standard deviation. In Case 

2, IMF1, IMF2, IMF3, IMF4 are the vectors of combined features of 

individual IMF. In Case 3, ME_IA, TE_IF, En_IA, and ApEn_IF are feature 

parameters of instantaneous amplitude  function of  ME, TE, En, ApEn 

respectively, and IR_IF, MAD_IF, and STD_IF are feature parameters of 

instantaneous frequency function of IR, MAD, and STD respectively. The 

average computation time for feature extraction of the instantaneous amplitude 

of IMFs is 53.38 s per each IMF in each category of the data set. The average 

computation time for feature extraction of the instantaneous frequency of 

IMFs is 9.44 s per each IMF in each category of the data set. 
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  (a) Mean energy     (b) Mean Teager energy 

 

 

  (c) Entropy      (d) Approximate entropy  

 

Fig. 4.8 Mean and standard deviation of feature from amplitude function 

 

 

Fig. 4.9 (a)  Mean and standard deviation of interquartile range feature from 

frequency function 
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Fig. 4.9 (b)  Mean and standard deviation of mean absolute deviation feature 

from frequency function 

 

 

 

Fig. 4.9 (c)  Mean and standard deviation of standard deviation feature from 

frequency function 
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Table 4.2 Statistical analysis of different individual IMF features 

Features N mean std std Error F sig F-Rank 

 Statistical analysis of features from IA 

ME_IA1 4800 8.260553 2.142585 0.030926 7732.511 0.000 3 

TE_IA1 4800 4.018363 1.75992 0.025402 6613.37 0.000 4 

En_IA1 4800 1.76E+08 4.96E+08 7164612 1399.418 0.000 10 

ApEn_IA1 4800 5.10E-01 1.19E-01 0.001713 1276.942 0.000 11 

ME_IA2 4797 8.142716 2.124049 0.030668 13752.17 0.000 1 

TE_IA2 4797 2.738934 2.027118 0.029268 5788.537 0.000 5 

En_IA2 4797 1.59E+08 4.13E+08 5961133 1889.718 0.000 8 

ApEn_IA2 4797 3.14E-01 9.62E-02 0.001389 506.122 0.000 15 

ME_IA3 4797 7.425251 2.026768 0.029263 10341.95 0.000 2 

TE_IA3 4797 3.110604 1.842065 0.026596 1863.837 0.000 9 

En_IA3 4797 76298988.1 2.36E+08 3413544 1175.222 0.000 12 

ApEn_IA3 4797 0.169141 6.99E-02 0.00101 530.892 0.000 14 

ME_IA4 4782 6.869021 1.843094 0.026653 2395.779 0.000 6 

TE_IA4 4782 3.489095 1.350156 0.019525 290.926 0.000 18 

En_IA4 4782 29326356.9 98658681 1426693 660.023 0.000 13 

ApEn_IA4 4782 0.101958 0.044755 0.000647 78.647 0.000 19 

ME_IA5 4515 6.672518 1.630384 0.024264 2058.366 0.000 7 

TE_IA5 4515 3.44823 1.237119 0.018411 300.371 0.000 17 

En_IA5 4515 13764413.5 51307150 763570.3 459.486 0.000 16 

ApEn_IA5 4515 0.081539 0.035785 0.000533 18.454 0.000 20 

Statistical analysis of features from IF 

IQR_IF1 4746 0.598322 0.31085 0.004512 948.541 0.000 7 

MAD_IF1 4746 0.259068 0.125909 0.001828 790.863 0.000 8 

STD_IF1 4746 1.49E+00 9.10E-02 0.001322 2630.822 0.000 2 

IQR_IF2 4746 1.80E-01 7.38E-02 0.001072 738.668 0.000 12 

MAD_IF2 4746 0.085488 0.035515 0.000516 780.769 0.000 9 

STD_IF2 4746 1.262892 0.131955 0.001915 2563.289 0.000 3 

IQR_IF3 4774 8.51E-02 4.02E-02 0.000582 757.657 0.000 11 

MAD_IF3 4774 4.01E-02 1.94E-02 0.000281 764.93 0.000 10 

STD_IF3 4774 0.96223 0.13625 0.001972 1338.985 0.000 6 

IQR_IF4 4558 0.032605 0.023641 0.00035 2375.008 0.000 4 

MAD_IF4 4558 0.01492 1.10E-02 0.000163 2307.345 0.000 5 

STD_IF4 4558 0.634434 1.76E-01 0.002606 3278.079 0.000 1 

IQR_IF5 4650 0.013991 0.00916 0.000134 25.101 0.000 15 

MAD_IF5 4650 0.006385 0.004332 6.35E-05 29.426 0.000 13 

STD_IF5 4650 0.490645 0.143553 0.002105 28.287 0.000 14 
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Table 4.3 Statistical analysis of multiple features with individual IMFs 

Feature 

vector 
N mean std std Error F sig F-Rank 

IMF1 33411 25309121.1 1.98E+08 1083310 1010.392 0.000 2 

IMF2 33426 22878935.7 1.66E+08 908400.8 1252.083 0.000 1 

IMF3 33510 1.09E+07 9.34E+07 509949.9 896.4 0.000 3 

IMF4 32801 4.28E+06 3.91E+07 215684 709.808 0.000 4 
 

 

 

Table 4.4: Statistical analysis of Individual features from multiple IMFs 

Feature  

vector 
N mean std std Error F sig F-Rank 

 Statistical analysis of features from IA 

ME_IA 19176 7.675107 2.114221 0.015268 27464.17 0.000 1 

TE_IA 19176 3.339238 1.824955 0.013179 9882.568 0.000 2 

En_IA 19176 1.10E+08 3.53E+08 2546220 4224.966 0.000 3 

EnAp_IA 19176 2.74E-01 1.79E-01 0.001293 480.771 0.000 4 

Statistical analysis of features from IF 

IQR_IF 18797 0.22583 0.275569 0.00201 524.011 0.000 2 

MAD_IF 18823 0.100637 0.116338 0.000848 482.598 0.000 3 

STD_IF 18770 1.09E+00 3.48E-01 0.002538 931.357 0.000 1 

 

We have computed the feature ranking of both instantaneous amplitude 

(IA) features and instantaneous frequency (IF) features. The feature ranking 

(F-Rank) was also applied in all three cases as single feature of individual 

IMF, multiple features of individual IMF, and single feature of multiple IMFs 

respectively. 

 

The ANOVA test is a popular statistical test for finding significant 

differences between two or more groups. Here ANOVA was done in all the 

three cases to study about the discriminatory level of the features in the data 
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set. Table 4.2 shows the statistical analysis of different individual IMF features 

are calculated. The features of the IMF5 having low F-value in the ANOVA 

table. This indicates that the residual signal is the offset of EMD and these dc 

values contained no information about ictal EEG. Table 4.3 shows the 

ANOVA test of multiple features with individual IMFs. Table 4.4 shows the 

ANOVA result of individual features from multiple IMFs. The statically 

analysis is carried out by using SPSS, a popular statistics software for business 

and research activity. 

 

Table 4.2 shows the significant difference among groups under study 

where all the p-value is less than 0.001. The results of ANOVA test are 

performed at the 95% confidence level in all cases. A feature rank is obtained 

from the descending F-value of the ANOVA table of both IA parameters and 

IF parameters. In Table 4.3 ANOVA results of multiple features with 

individual IMFs. The table shows that a significant value (p- value) is less than 

0.001 is obtained in every case. As per the F-ranking, IMF2 dominates among 

the IMFs and it is followed by IMF1, IMF3 and IMF4 respectively. Significant 

difference between the two groups and exact zero value, are obtained in all the 

IMFs. The Table 4.4 shows the result of individual features from multiple 

IMFs. In feature ranking, ME_IA, TE_IA, and STD_IF are dominating in each 

category. The features from amplitude contour exhibits significant difference 

between the two groups and p-value is equal to 0.000 in all vectors. These 

results strongly suggest the suitability of the representative features of data for 

classification.  

 

The ANN and ANFIS classifiers are employed to study how the 

extracted features can be effectively used in discriminating EEG segments 

with seizure attacks from healthy ones. Here the three cases of classification 

are performed, which was explained earlier. The performance of the classifiers 

is determined by the computation of sensitivity, specificity, and total 
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classification of accuracy as mentioned in Equations 4.14, 4.15 and 4.16, 

respectively. Tables 4.5, 4.6 and 4.7 revealed that the achievement of 

performance of the ictal classification in term of accuracy, sensitivity, and 

specificity. 

 

Table 4.5 : Accuracy (%) for Case1: Single features for individual IMFs 

  CL-1 CL-2 CL-3 CL-4 CL-5 

Features from IA 

ME 100.00 100.00 84.60 95.00 100.00 

TE 100.00 92.00 62.00 88.00 83.00 

En 99.00 100.00 83.60 95.00 100.00 

ApEn 75.00 70.00 83.00 60.00 61.00 

Features from IF 

IQR 80.85 95.74 77.73 89.14 92.17 

MAD 76.6 94.89 79.62 88.69 95 

STD 92.55 100 84.03 92.08 72.61 

 

  

Table 4.6 :  Sensitivity (%) for Case1: Single features for individual IMFs 

  CL-1 CL-2 CL-3 CL-4 CL-5 

Features from IA 

ME 100.00 100.00 97.20 90.00 100.00 

TE 100.00 88.00 91.00 90.00 80.00 

En 100.00 100.00 98.00 90.00 100.00 

ApEn 64.00 72.00 90.00 74.00 50.00 

Features from IF 

IR 79.57 94.89 100.00 84.62 88.70 

MAD 78.30 94.04 100.00 85.52 93.48 

STD 100.00 100.00 94.54 84.16 97.83 
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Table 4.7: Specificity (%) for Case1: Single features for individual IMFs 

  CL-1 CL-2 CL-3 CL-4 CL-5 

Features from IA 

ME 100 100 72 100 100 

TE 100 96 33 86 86 

En 98 100 69 100 100 

ApEn 86 68 76 46 72 

Features from IF 

IR 82.13 96.60 55.46 93.67 95.65 

MAD 74.89 95.74 59.24 91.86 96.52 

STD 85.11 100.00 73.53 100.00 47.39 

 

In Case 1, every feature was used independently for each IMF in a 

separate manner to check how each feature behaves independently. The 

average computation time for the ANN classifier of single features for 

individual IMFs is 13.14 s. In the Tables 4.5, 4.6, and 4.7 shows that the 

energy-based features had better performance than the entropy-based features. 

Frequency-based features also perform well in the classification. Among the 

IMFs, first and second IMFs have high classification accuracy. Table 4.8 

shows the results of two classifiers with multiple features of individual IMFs. 

 

Table 4.8: Classification for Case 2: Multiple features with individual IMFs 

  ANN ANFIS 

  
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

IMF_CL-1 98.80 100.00 97.61 100.00 100.00 100.00 

IMF_CL-2 99.52 100.00 99.04 100.00 100.00 100.00 

IMF_CL-3 98.09 96.19 100.00 97.00 95.00 98.00 

IMF_CL-4 98.00 96.19 100.00 89.00 78.00 100.00 

 

In Case 2, multiple features with individual IMFs are considered as 

feature vectors to the classifiers. Four classes with representative features from 

amplitude and frequency contour were used, namely, IMF_CL-1, IMF_CL-2, 

IMF_CL-3, and IMF_CL-4. The last component of IMF-5 is not considered 
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here because it is almost monotonous in nature. All the cases compare the 

classification performance of both ANN and ANFIS classifiers. The average 

computation time for the ANN classifier of multiple features with individual 

IMFs is 9.67 s and for the ANFIS classifier is 855 s (with tuning) and 750 s 

(without tuning). Table 4.8 shows that the performance of ANFIS in IMF_CL1 

and IMF_CL2 was better than that of ANN. However, performance of ANN is 

not much difference in the four classes of IMFs. 

 

Table 4.9: Classification for Case 3: Individual features from multiple IMFs 

  ANN ANFIS 

  
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

ME_IA 100.00 100.00 100.00 92.00 94.00 90.00 

TE_IA 99.29 99.00 100.00 100.00 100.00 100.00 

En_IA 100.00 100.00 100.00 61.00 100.00 22.00 

ApEn_IA 88.33 93.81 82.86 81.00 76.00 86.00 

IQR_IF 95.00 93.33 96.67 65.00 100.00 30.00 

MAD_IF 95.71 94.76 96.67 48.00 56.00 40.00 

STD_IF 100.00 100.00 100.00 74.00 84.00 64.00 

 

In Case 3, all the four IMFs were used to form the feature vector with 

only one feature for classification. A four-dimensional vector was obtained 

with one feature, which was used as the input to the classifier. Thus, we have 

seven classifiers with seven separate features in both IA and IF contours. 

Table 4.9 gives the result of individual features from multiple IMFs. The 

average computation time for the ANN classifier of individual features from 

multiple IMFs is 10.21 s. and for the ANFIS classifier is 50.72 s (with tuning) 

and 12.62 s (without tuning). Entropy-based features have better classification 

accuracy than that in Case 1 where they were used individually.  

 

The features in the CL-2, is same as the second IMF components have 

good sensitivity and specificity in the classification. Among the features 

considered, the mean energy and entropy of the amplitude contour of IMF2 
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has 100% accuracy with 100% specificity. The standard deviation of the 

frequency contour has 100% accuracy, sensitivity, and specificity. The mean 

Teager energy shows good performance of IMF1 with 100% accuracy, but the 

performance is lower for other IMFs. Even though MAD and IQR do not have 

good performance as standard deviation, accuracy above 94% was maintained 

for IMF2. Table 4.10 presents a comparison of this ictal classification with 

other time-frequency based method. 

 

Table 4.10  Comparison with other ictal classification 

 algorithms in the literature   

Authors Methods 
Classification 

Accuracy (%) 

Oweis and Abdulhay, 2011 EMD weighted frequency 94 

Martis et al. 2012 
AR spectrum features of EMD with 

regression tree  
95.33 

Liu et al. 2012 features of  EMD  and SVM 98 

Bajaj and Pachori, 2012 EMD bandwidth LSSVM 99.5 - 100 

Alam and Bhuiyan, 2013 Higher order statistics of IMFs and ANN 80-100 

Bajaj and Pachori, 2013 

Area measure of analytic IMFs of EEG 

signals 
93.7 

Kumar et al. 2014 Fuzzy ApEn of DWT & ANN,SVM 100 

Fu et al. 2015 HHT of EEG TF images and SVM 99.12 

Riaz  et al.  2016 Temporal and Spectral EMD and SVM 96 

Djemili et al. 2016 EMD and MLPNN 97.7 

Proposed method Energy of IA and SD of IF from HHT 100 

 

4.7  INFERENCES 

Empirical mode decomposition is an efficient tool in the analysis of 

non-stationary signals. The IMFs obtained from Hilbert transform provide an 

excellent time–frequency representation of signal energy. In this chapter, after 

computing Hilbert–Huang transform, the different features of instantaneous 

amplitude and instantaneous frequencies of HHT are calculated for the feature 

vectors of the classifiers. Here, two types of classifiers, namely, artificial 
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neural network and adaptive neuro-fuzzy inference system models, are used to 

evaluate the performance of the system. Features such as mean energy, mean 

Teager energy, entropy, and approximate entropy are calculated from the 

amplitude contour of each IMFs and other features such as interquartile range, 

absolute deviation, and standard deviation are computed from instantaneous 

frequencies. In this study, classification was grouped into three cases 

depending on the feature vector used a single feature of individual IMF, 

multiple features of individual IMF and single feature of multiple IMFs. 

Before classifying, the different classes of features are validated using 

ANOVA, a well-established statistical test. The result shows that significant 

differences (value of p < 0.001) are obtained in every individual IMF of ictal 

EEG and healthy EEG. By employing ANN, we see that all these features can 

perform well in the identification of seizure segments of EEG data. In 

particular, IMF 2 has shown good performance with 100% accuracy of 

energy/entropy of amplitude distribution and the standard deviation of 

frequency distribution. In this work, a higher degree of performance was 

obtained with a single feature that represents the information about the time 

series EEG data. The process had less complicated computation than other 

time-frequency analysis techniques.  

 

The limitation of the work is the ictal classification is done only 

between healthy and seizure class EEG data. The work is focus on ictal 

classification based on three cases and each cases are statistically verified the 

discrimination level of the features of all four IMFs. Also two types of 

classifiers are used to evaluate the performance of the system. In this scenario 

the work is more complicated, while considering the interictal EEG signals. So 

here interictal EEG signal is not being considered for the classification 

between ictal EEG or healthy EEG. If consider interictal EEG- ictal EEG 

classification, we have to repeat same the procedure.  



CHAPTER 5 

CLASSIFICATION OF ICTAL USING MODELING 

BASED SPECTRAL AND TEMPORAL COMPONENTS 

OF HILBERT-HUANG TRANSFORM 

 

 

This chapter deals with the different types of ictal classification using 

Auto Regressive (AR) spectral features and temporal features of HILBERT-

HUANG transform (HHT) twin components. The spectral features of 

instantaneous amplitude (IA) function are obtained based on the power 

spectral density of AR modeling. The temporal features of instantaneous 

frequency function (IF) and instantaneous amplitude function are computed as 

well. The discriminating power of each vector is evaluated through one-way 

analysis of variance (ANOVA), and classification results are verified using an 

artificial neural network (ANN) classifier, which is a well-known classifier 

with low computation complexity. Here four different cases of interictal, ictal, 

and normal activities of EEG signals are classified and the classification 

performance indices are compared.  

 

5.1  INTRODUCTION 

EEG is a complex signal, which reflects the status of the brain, is 

difficult to be modeled (Garrett et al. 2013). Spectral estimation is a method to 

know the strength of the frequency components in the EEG. The spectral 

analysis of an arbitrary signal is generally classified into non-parametric 

method or classical method and parametric method. In non-parametric method, 

Fourier transform of autocorrelation of the signal is taken for a power spectral 

estimation. The signal is first masked by a window function and then power 

spectral density of the windowed signal is computed. The drawback of this 

method is the spectral leakage due to windowing (Subha et al. 2010). In 
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parametric or model based spectrum estimation method, the spectral leakage is 

eliminated and gets a better spectral resolution of the signal. It requires lessner 

number of samples for spectral  estimation as compared to that in FFT 

spectrum (Subasi et al. 2005). Here, the signal is supposed to be a random 

process and the input signal is white noise. The signal is modeled in three 

ways- Moving Average process, Auto Regressive process and Auto 

Regressive Moving  Average process. More efficient and accurate method to 

model EEG signal is AR modeling (Khamis et al. 2009).  

 

5.1.1 Hilbert–Huang Transform 

Hilbert–Huang transform (HHT) involves two stages of EEG signal 

analysis: 

(a)   Obtaining the IMF components of the original signal through EMD 

method. 

(b) Finding the Hilbert transform of each IMF of the signal. 

 

HHT is explained in Section 4.2.1. The twin components of HHT, 

instantaneous amplitude (IA) and instantaneous frequency (IF), provide local 

information about energy and frequency of EEG signal respectively. The IA and IF 

are the major components that help to identify the presence of ictal information in 

EEG signal (Fu et al. 2015; Biju et al. 2017). 

 

5.1.2  AR Model Spectra 

Spectral analysis is an elementary tool used to determine whether a 

particular frequency component is present in a primary signal. As discussed 

earlier, spectral estimation is classified into parametric and non-parametric 

method. To avoid the effects of spectral leakage in the non-parametric method, 

researchers obtain superior results in EEG signals by using parametric 

spectrum estimation methods, such as AR modeling. The AR modeling, also 

termed as all pole system design models, is used for the power spectrum 

estimation. If the majority of input signals are unrecognizable by a system, and 
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the output signals are known, then AR model is preferably used to define the 

system (Jansen et al. 1981; Khan and Gotman, 2003). Most of the input to the 

brain is unknown and the only available signal is the scalp EEG signal (Zhang 

et al. 2017). Therefore, the AR modeling is more suitable for EEG power 

spectrum estimation. An AR Burg’s method is a power spectral estimation 

technique which minimizes the forward and backward prediction errors and at 

the same time it constrains the AR parameters to satisfy Levinson–Durbin 

recursion for an AR coefficient calculation (Khamis et al. 2009).  

 

The proposed work makes use of the AR Burg’s algorithm to estimate 

the power spectrum of the IA of each of the IMF channel. It is observed that 

the AR power spectrum estimation closely matches the original signal since 

closely packed sinusoid signals are being resolved with a low noise level. The 

accuracy of the Burg’s method is inversely proportional to the order of the 

model. For EEG signal, the 10
th

 order AR model yields higher classification 

accuracy and hence shows better performance in seizure detection (Zhang et 

al. 2017). 

 

In parametric AR modeling, the signal is modeled as the sum of the 

linear combinations of the previous inputs  (   ) multiplied by the 

corresponding weights  ( ) and         white noise in the signal (Anderson et 

al. 1998). Let  ( )be the incoming signal to be modeled where     ( )  

   , where   is the length of the sequence. 

The signal is thus represented as follows:  

 ̂( )    ( ) (   )   ( ) (   )   ( ) (   )     (5.1) 

Where   is the number of past samples considered for modeling. 

The estimated signal,  ̂( ) is expressed as  

 ̂( )   ∑  ( ) (   )
 
       (5.2) 

Prediction error, e( )  is the difference between the original signal and the 

estimated signal and is given by: 
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 ( )   ( )   ̂( ) (5.3) 

Now, the power spectral density (PSD)    ( ) is determined by using the 

estimated AR coefficients: 

   ( )   
 ̂ 

|  ∑  ̂ 
 
   

( )       |
   (5.4) 

Where  ̂ ( ) is the estimated AR parameter obtained from the Levinson–

Durbin algorithm and   ̂  is the total least-square error given by the following 

(Subha et al. 2010): 

 ̂   ̂     ̂    (5.5) 

Where  ̂   is the forward prediction error, which is defined as 

 ̂     ( )  ∑  ̂     (   )
 
    (5.6)       

and  ̂     is the backward prediction error defined as 

 ̂     (   )  ∑  ̂    (     )
 
    (5.7)          

Where         .  

 

5.2  METHODOLOGY 

Figure 5.1 shows the proposed method for ictal classification based on 

spectral and temporal features of amplitude –frequency contour of HHT. The 

entire diagnostic process can be divided into three stages: Hilbert–Huang 

transform, AR modeling and  feature extraction and classification technique. 

In this work, the different types of ictal signals are classified. The spectral and 

temporal features of the local informatics components of HHT, IA and IF are 

then tabulated. 

 

Fig. 5.1 Illustrations of the proposed method for ictal classification based on 

spectral and temporal features of amplitude –frequency contour of HHT 
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Here, two different set of parameters; AR model parameters of IA with 

IF and AR model parameters of IA with IA, are compared for ictal 

classification. Firstly, the spectral components of IA and the temporal 

components of IF are computed. Then the spectral components of IA and the 

temporal components of  IA are computed, to form the feature vector for 

classification. Four different features are extracted in each, from spectral domain 

and temporal domain. The spectral analyses is tabulated from the AR power 

spectral density of IA components.  The higher-order statistics (HOS), 

interquartile range, and coefficient of variation, which are the different 

descriptive statistics of temporal features, are computed. Thus, the feature 

vectors are obtained and then classified using ANN classifier. 

 

5.3  FEATURE EXTRACTION 

In this study, four types of spectral parameters and four types of 

temporal features are collected for the feature vector. The spectral parameters 

are tabulated from the power spectral density using the Burg’s AR model. 

Here the power spectral density represents the distribution of power as a 

function of the frequency. The spectral features are spectral peak (SP), spectral 

mean energy (SME), spectral entropy (SEn), and spectral mean Teager energy 

(STE), which  are energy or entropy based features (Martis  et al. 2012).  The 

peak of the spectrum of each set of samples is known as spectral peak. The 

spectral entropy is calculated from the amplitude in the power spectral density 

of the different classes of ictal EEG. The spectral entropy reflects the 

irregularity pattern in the PSD of EEG. The spectral mean energy is the 

normalized energy of power spectral density. The difference of energy of 

neighbouring sample in the power spectral density is extracted as spectral 

mean Teager energy. 
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The temporal features are tabulated from the IMF1 and IMF2 of the 

twin components. The features are coefficient of variation (CV), skewness (Sk), 

Kurtosis (KU), and interquartile range (IQR) (Riaz et al. 2016; Alam and 

Bhuiyan, 2013). The coefficient of variation is a function between the standard 

deviation and the mean of the samples. The coefficient of variation measures 

the variability of instantaneous amplitude and instantaneous frequency of 

different ictal EEG. It is used to compare the difference in the sample 

distribution in the different set of samples. The skewness is the measure of an 

asymmetric behaviour of the probability distribution of samples. The null 

value of skewness indicates the perfection of symmetry on both sides of the 

mean. The skewness tabulated is the third moment of data. The Kurtosis is a 

measure of the relative peakedness of the probability distribution of samples. 

The Kurtosis is obtained from the fourth moment of the data. The interquartile 

range is the measure of spread of the sample. In IRQ the spread of samples on 

both sides of the median is considered. Table 5.1 shows the spectral features 

and temporal features used and the corresponding relevant mathematical 

expressions for its computation. Hence, the combination of spectral and 

temporal features of HHT twin components, IA and IF forms the final feature 

vector to the classifier with  eighth order. 

Table 5.1 Spectral features and temporal features in this study 

Spectral features used in this work. 

SL 

NO 

Feature name   Mathematical formulation 

1                       (   ( )) 

2                             
 

 
∑   

 

   

( ) 

3                  
     ∑  (   ( ))

 

      (   ( )) 

4                             

       
 

 
(∑(   

 ( )  

 

   

   (   )   (   ))) 

https://en.wikipedia.org/wiki/Moment_(statistics)
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Temporal features used in this work. 

5 Coefficient of variation    

 

 
∑ ( ( )   ̅)  
   

 ̅ 
 
 

 ̅
 

6 Skewness    = 
 

 
∑

( ( )  ̅) 

  
 
    

7 Kurtosis    
 

 
∑
( ( )   ̅) 

  

 

   

 

8 Interquartile range 
          

Q1 and Q3 are the 1
st
 and 2

nd
quartile respectively 

 

5.4  CLASSIFIER 

ANN is a connection of several units or nodes called artificial neurons 

from the input level to the output level through hidden levels (Isler, 2016). The 

proposed method employs a multilayer perceptron neural network (MLPNN), 

which is the most efficient type ANN model, to recognize the different ictal 

EEG patterns (Hassanien et al. 2014). MLPNN comprises of three layers. The 

first layer is the input layer that contains a number of neurons with the same 

size as that of the input feature vector. The second layer consists of the hidden 

layer that increases the classification ability of a given network, and the 

number of neurons in the hidden layer can be fixed without constraints. A 

small number of neurons can reduce the classification accuracy, and a large 

number of neurons can exacerbate the complexity of a specific network. The 

third layer is the output layer composed of a number of neurons similar to that 

of the desired output class (Basheer and Hajmeer, 2000). The performance 

index in automatic detection of diagnostic methods is tabulated from ANN 

(Van et al. 2009). The total classification accuracy, sensitivity, and specificity 

are the performance index of detection, which are discussed in Section 4.4.1. 

ANN involves the following phases: training, validation, and testing. In the 

first two phases, a neural network, namely MLPNN, should be initially trained 

to adjust its weighing factor in accordance with the required output and should 

be subsequently validated to access network generalization. In the testing 
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phase, the network should be provided with a set of data to measure network 

performance in terms of sensitivity, specificity, and accuracy.  

 

The categorical data is deriving from observations made of qualitative 

data. Here feature vectors of spectral-temporal data are qualitative data. In 

categorical data or grouped data the sample size can be determined by 

Cochran’s sample size formula (Barlett  et. al 2001)  

                                  
   ( )

  
                    (5.8) 

Where n is sample size, Z is Z- value of 95% confidence level, p(q) is 

estimate of variance and e is the margin of error.  

 

Here in this work, four different cases of EEG signals, normal, ictal 

and interictal EEG signals are taken. Four classification problems are being 

considered as follows:  

Case 1:  Classification of normal and ictal EEG signal; 

Case 2:  Classification of normal and interictal EEG signal;  

Case 3:  Classification of interictal and ictal EEG signal;  

Case 4:  Classification of combined normal signal and interictal 

signal with  ictal EEG signal.  

 

In each case, the HHT twin components of first and second IMFs, that 

is the IA and IF of each IMF, are compared. For each case considered, the 

spectral vector of IA and temporal vector of IF or temporal vector of IA are 

tabulated. The frequency resolution of the spectrum is considered by two 

different AR modeling in 6
th

 order and 10
th

 order respectively (Zhang et al. 

2017). 

 

5.5  RESULTS AND DISCUSSION 

The EEG database used in this novel ictal classification is discussed in 

Section 2.2. The normal signals are in groups A and B, ictal signals are in group E 

https://en.wikipedia.org/wiki/Qualitative_data
https://en.wikipedia.org/wiki/Qualitative_data
https://en.wikipedia.org/wiki/Qualitative_data
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only and interictal signals are in groups C and D. The EEG signal contains 100 

segments, and the duration of each segment is 23 s in each category of the 

database. A sampling frequency of each EEG segments is 173.61 Hz. Hence, each 

EEG segment comprises 4,096 samples. These segments are further subdivided 

into blocks with a sample size of 256. The total size of the population is 1600 in 

each category. Here only 250 segments are taken as the random sample with 95% 

confidence level. In this study assume margin of error as ±0.05. As per Cochran’s 

sample size formula  for grouped data the   n, sample size is calculated as 384. So 

for each feature approximately 500 samples are taken for classification. 

 

An EEG signal initially undergoes empirical mode decomposition to 

obtain different IMFs of each segment. In the EMD method, it is revealed the 

local information of the frequency content in a signal. The frequency bands of the 

IMF components are to pass from a higher frequency of the original signal to 

lower frequency and the DC components are accumulated in the residue. The 

residue is not considered for analysis, so effectively DC components are 

eliminated. As per inference from our second work, the first IMFs and second 

IMFs are only considered in this study because the ictal information is 

accumulated into these components (Biju et al. 2017). These findings are also 

mentioned in the recent study on EEG (Mahapatra and Horio, 2018). Thus the 

proposed method makes use of the features calculated from the first and second 

IMFs. Then Hilbert transform is applied to each IMF to obtain the corresponding 

IA and IF components. The computation time required for extracting IA and IF 

components from the EEG is 10.4 s per each category of the data set. 

 

Figure 5.2 shows the first and second IF components, IF1 and IF2, of 

normal, interictal and ictal EEG respectively. The IMF1 has higher frequency 

components than IMF2. So the IF1 components are highly packed than IF2 

components in the Figures 5.2(a), 5.2(b) and 5.2(c). Therefore, IF1 has much 

difference than IF2 values in Figure 5.2.  
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Fig. 5.2  (a) Plots of IF1 and IF2 of normal EEG 

 

Fig. 5.2  (b) Plots of IF1 and IF2 of interictal EEG 

 

 

Fig. 5.2   (c) Plots of IF1 and IF2 of ictal EEG  
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To enhance ictal classification, we obtain the spectral characterizations 

of IA and temporal features of IA or IF. This defines the feature vector to the 

classifier. The work compares better classes of feature vector among IMFs and 

orders of AR models. The spectra of IA1 and IA2 are modeled by Burg's 

method with an order of the AR (6) and AR (10), respectively. The IA1 and 

PSD of IA1 in normal EEG signal is shown in Figure 5.3 (a), while those in 

the interictal EEG signal is illustrated in Figure 5.3 (b). The IA1 and PSD of 

IA1 in ictal EEG signal are shown in Figure 5.3 (c). The PSD plotted in Figure 

5.3 are modeled in Burg's method with an order of the AR (10). The IA2 and 

PSD of IA2 in normal EEG signal is shown in Figure 5.4 (a), while those in 

the interictal EEG signal is demonstrated in Figure 5.4 (b). The IA2 and PSD 

of IA2 in the ictal EEG signal shown in Figure 5.4 (c). The PSD plotted in 

Figure 5.3 are modeled using the AR (10) Burg's method. Similarly, the PSD 

of AR(6) Burg's method of model is also used for constructing with the IA1 

and IA2 of normal, interictal and ictal EEG signals, respectively for 

comparison. 

 

Fig. 5.3 (a) Plots of IA1 and PSD signals of IA1 in normal EEG 
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Fig. 5.3 (b) Plots of IA1 and PSD signals of IA1 in interictal EEG 

 

 

Fig. 5.3 (c) Plots of IA1 and PSD signals of IA1 in ictal EEG 

 

 

Fig. 5.4 (a) Plots of IA2 and PSD signals of IA2 in normal EEG 



105 

  

Fig. 5.4 (b) Plots of IA2 and PSD signals of IA2 in interictal EEG 

 

 
Fig. 5.4 (c) Plots of IA2 and PSD signals of IA2 in ictal EEG 

 

In Figure 5.3, amplitude scale of IA1 in ictal EEG is higher than 

amplitude of IA1 in normal and interictal EEG. However, amplitude of IA1 in 

the normal and interictal EEG are closely being associated with each other. In 

Figure 5.4, also the amplitude of IA2 in ictal EEG is higher than the amplitude 

of IA2 in normal and interictal EEG. In Figure 5.3, Burg power spectral 

density of IA1 in ictal EEG is higher than of IA1 in normal and interictal EEG. 

Comparing the Figures 5.3 and 5.4 in the case of Burg power spectral density 

of ictal EEG, IA2 is dominated than IA1 signal. 

 

The spectra of IA1 and IA2 are modeled in AR Burg's method with an 

order of the AR (6) and AR (10), respectively. The spectral features of IA  SP , 

SME, SEn, and STE are computed from the Burg power spectral density 

estimation. The temporal features considered are CV, SK, KU, and IQR from 
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IA1, IA2, IF1, and IF2 respectively. In this study spectral mean and spectral 

Teager energy are used for the difference and differential energy of the spectra 

respectively. The HOS parameter in the temporal features SK and KU are used 

to ensure the recurrence of IF components in ictal stages. 

 

Figure 5.5 shows the mean of mean values and standard deviation of 

spectral features of normal, ictal and interictal  EEG signal. The Figure 5.5(a), 

5.5(b), 5.5(c) and 5.5(d) shows the IA1_AR(10), IA1_AR(6), IA2_AR(10) and 

IA2_AR(6) plot of spectral peak, spectral mean energy, spectral Teager energy 

and  spectral entropy of feature for the classification respectively. The mean 

and standard deviation of ictal EEG and normal EEG shows significant 

difference. The average computation time required for feature extraction of the 

spectral features of IA in each IMF is 55.06 s per each IMF in each category of 

the data set. 

 

Fig. 5.5 Mean and standard deviation of (a) spectral peak (b) spectral 

mean energy (c) spectral Teager energy (d) spectral entropy. 
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Figure 5.6 shows the mean of mean values and standard deviation of 

temporal features of the different ictal EEG signals. The Figures 5.6(a), 5.6(b), 

5.6(c) and 5.6(d) shows the IA1, IA2, IF1 and IF2 plots of coefficient of 

variation, skewness, Kurtosis and interquartile range of feature for the 

classification. Here, the ictal EEG has notable differences with healthy EEG 

and interictal EEG signal for classification. The mean values of the feature sets 

indicate that they vary significantly between normal, interictal and ictal EEG 

for all the features computed. The average computation time required for 

feature extraction of the temporal features of IA in each IMF is 9.76 s per each 

IMF in each category of the data set and for IF in each IMF is 10.09 s per each 

IMF in each category of the data set. 

 

 

Fig.5.6  Mean and standard deviation of (a) coefficient of variation (b) 

skewness (c) Kurtosis (d) interquartile range. 
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In this chapter, four different cases of ictal classification are computed 

and compared with each other.  Case 1, normal and ictal EEG signal; Case 2, 

normal and interictal EEG signal; Case 3, inter-ictal and ictal EEG signal; and 

Case 4, combined normal signal and interictal signal with ictal of HHT1 and 

HHT2 components. 

 

In all the classifications, the hypothesis testing will help to check the 

significance level of each case. Each parameter in the feature vector is statistically 

validated. The discriminating power of Case 1, Case 2, Case 3, and Case 4 are 

examined through one- way ANOVA using different parameters of the feature 

vectors. 32 parameters are considered in each case. The discrimination is 

determined at 95% confidence level. Therefore, in all cases, the significance value 

(p-value) was set as 0.05. The F-value and p-value of  Case 1, Case 2 and Case 3 of 

the ictal stages are tabulated and shown in Tables 5.2-5.4. The feature ranking of 

each parameter can be calculated according to the F-value. 

 

Table 5.2 Statistical analysis of one- way ANOVA 

 in Case 1: normal-ictal EEG class 

Features n mean std Std Error F sig 

SP_IA1_AR(6) 500 1.26498E+06 2.38069E+06 1.68340E+05 75.191 0.000 

SP_IA1_AR(10) 500 1.05021E+06 1.77534E+06 1.25536E+05 101.799 0.000 

SP_IA2_AR(6) 500 2.71972E+06 4.62386E+06 3.26956E+05 101.323 0.000 

SP_IA2_AR(10) 500 2.90825E+06 5.22583E+06 3.69522E+05 86.671 0.000 

SME_IA1_AR(6) 500 19.02225 4.94693 3.49801E-01 621.751 0.000 

SME_IA1_AR(10) 500 19.01192 4.840067 3.42244E-01 678.940 0.000 

SME_IA2_AR(6) 500 20.62538 5.017526 3.54793E-01 1720.936 0.000 

SME_IA2_AR(10) 500 20.56578 5.111017 3.61403E-01 1754.848 0.000 

STE_IA1_AR(6) 500 17.10084 4.65619 3.29242E-01 518.152 0.000 

STE_IA1_AR(10) 500 17.22209 4.920614 3.47940E-01 435.121 0.000 
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Features n mean std Std Error F sig 

STE_IA2_AR(6) 500 16.94918 4.489431 3.17451E-01 1327.632 0.000 

STE_IA2_AR(10) 500 16.97732 4.579471 3.23818E-01 1453.233 0.000 

SEn_IA1_AR(6) 500 2.93171E+14 7.97603E+14 5.63990E+13 31.103 0.000 

SEn_IA1_AR(10) 500 2.08284E+14 4.84754E+14 3.42773E+13 45.095 0.000 

SEn_IA2_AR(6) 500 9.62229E+14 3.78904E+15 2.67926E+14 13.721 0.000 

SEn_IA2_AR(10) 500 1.20504E+15 4.96131E+15 3.50817E+14 12.479 0.001 

Cv_IF1 500 1.30201E+00 2.39436E-01 1.69307E-02 420.770 0.000 

Cv_IF2 500 2.06844E+00 3.12306E-01 2.20834E-02 203.374 0.000 

Cv_IA1 500 0.653481 0.157579 1.11426E-02 21.157 0.000 

Cv_IA2 500 0.512927 0.150887 1.06693E-02 5.617 0.019 

Sk_IF1 500 2.40094E+00 5.05281E-01 3.57288E-02 456.858 0.000 

Sk_IF2 500 4.01796E+00 6.35032E-01 4.49035E-02 184.862 0.000 

Sk_IA1 500 0.700926 0.577909 4.08643E-02 64.175 0.000 

Sk_IA2 500 0.324129 0.539604 3.81557E-02 14.044 0.000 

Ku_IF1 500 7.44877E+00 2.49714E+00 1.76574E-01 378.985 0.000 

Ku_IF2 500 1.77825E+01 5.38825E+00 3.81007E-01 172.447 0.000 

Ku_IA1 500 3.220242 1.2470560 8.81802E-02 24.432 0.000 

Ku_IA2 500 2.9752 2.24968 1.59076E-01 4.078 0.045 

IQR_IF1 500 0.504971 0.187083 1.32288E-02 202.418 0.000 

IQR_IF2 500 0.160750 0.069954 4.94648E-03 29.049 0.000 

IQR_IA1 500 126.844731 151.0957811 1.06841E+01 174.607 0.000 

IQR_IA2 500 101.872000 114.7008447 8.11057E+00 196.166 0.000 
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Table 5.3 Statistical analysis of one- way ANOVA in  

Case 2: normal-interictal EEG class 

Features n mean std Std Error F sig 

SP_IA1_AR(6) 500 1.56925E+04 2.14463E+04 1.51648E+03 5.243 0.023 

SP_IA1_AR(10) 500 1.50683E+04 2.10497E+04 1.48844E+03 4.720 0.031 

SP_IA2_AR(6) 500 4.88484E+04 7.03354E+04 4.97346E+03 6.623 0.011 

SP_IA2_AR(10) 500 4.96657E+04 8.20803E+04 5.80395E+03 9.715 0.002 

SME_IA1_AR(6) 500 1.35135E+01 2.60205E+00 1.83993E-01 55.130 0.000 

SME_IA1_AR(10) 500 13.53439 2.538478 1.79498E-01 61.075 0.000 

SME_IA2_AR(6) 500 15.96693 1.809751 1.27969E-01 .402 0.527 

SME_IA2_AR(10) 500 15.89305 1.857753 1.31363E-01 1.490 0.224 

STE_IA1_AR(6) 500 1.19690E+01 2.46275E+00 1.74143E-01 59.542 0.000 

STE_IA1_AR(10) 500 12.02165 2.541101 1.79683E-01 49.262 0.000 

STE_IA2_AR(6) 500 12.78418 1.815592 1.28382E-01 .009 0.923 

STE_IA2_AR(10) 500 12.91954 1.869992 1.32228E-01 2.992 0.085 

SEn_IA1_AR(6) 500 2.54862E+10 8.05648E+10 5.69679E+09 .167 0.683 

SEn_IA1_AR(10) 500 2.48657E+10 8.62063E+10 6.09570E+09 .270 0.604 

SEn_IA2_AR(6) 500 1.98186E+11 9.94188E+11 7.02997E+10 4.870 0.028 

SEn_IA2_AR(10) 500 2.48964E+11 1.38301E+12 9.77939E+10 4.940 0.027 

Cv_IF1 500 1.30201E+00 2.39436E-01 1.69307E-02 420.770 0.000 

Cv_IF2 500 1.90705E+00 2.34368E-01 1.65724E-02 21.697 0.000 

Cv_IA1 500 0.657712 0.142968 1.01093E-02 21.474 0.000 

Cv_IA2 500 0.576206 0.139391 9.85645E-03 15.000 0.000 

Sk_IF1 500 2.40094E+00 5.05281E-01 3.57288E-02 456.858 0.000 

Sk_IF2 500 3.68257E+00 4.75492E-01 3.36223E-02 16.071 0.000 

Sk_IA1 500 0.790226 0.535187 3.78434E-02 30.814 0.000 

Sk_IA2 500 0.624728 0.493943 3.49271E-02 9.499 0.002 

Ku_IF1 500 7.44877E+00 2.49714E+00 1.76574E-01 378.985 0.000 

Ku_IF2 500 1.50715E+01 3.76489E+00 2.66218E-01 19.472 0.000 

Ku_IA1 500 3.197499 1.2650579 8.94531E-02 26.703 0.000 

Ku_IA2 500 2.8504 0.948390 0.067061 3.157 0.077 

IQR_IF1 500 5.04971E-01 0.187083 0.013229 202.418 0.000 

IQR_IF2 500 2.07781E-01 6.59880E-02 4.66606E-03 15.345 0.000 

IQR_IA1 500 19.545288 12.4619979 8.81196E-01 24.511 0.000 

IQR_IA2 500 16.653601 8.0135283 5.66642E-01 12.846 0.000 
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Table 5.4 Statistical analysis of one- way ANOVA in Case 3 : interictal-ictal EEG class 

Features n mean std Std Error F sig 

SP_IA1_AR(6) 500 2.71972E+06 4.62386E+06 3.26956E+05 101.323 0.000 

SP_IA1_AR(10) 500 1.50683E+04 2.10497E+04 1.48844E+03 100.342 0.000 

SP_IA2_AR(6) 500 2.92596E+06 5.21664E+06 3.68872E+05 85.580 0.000 

SP_IA2_AR(10) 500 2.92596E+06 5.21664E+06 3.68872E+05 85.580 0.000 

SME_IA1_AR(6) 500 17.20493 4.557472 3.22262E-01 776.041 0.000 

SME_IA1_AR(10) 500 17.20493 4.557472 3.22262E-01 776.041 0.000 

SME_IA2_AR(6) 500 20.72591 5.167870 3.65424E-01 912.259 0.000 

SME_IA2_AR(10) 500 20.72591 5.167870 3.65424E-01 912.259 0.000 

STE_IA1_AR(6) 500 12.02165 2.541101 1.79683E-01 781.477 0.000 

STE_IA1_AR(10) 500 1.69492E+01 4.48943E+00 3.17451E-01 1520.936 0.000 

STE_IA2_AR(6) 500 13.53439 2.538478 1.79498E-01 1005.929 0.000 

STE_IA2_AR(10) 500 2.06254E+01 5.01753E+00 3.54793E-01 1720.936 0.000 

SEn_IA1_AR(6) 500 9.62229E+14 3.78904E+15 2.67926E+14 13.721 0.000 

SEn_IA1_AR(10) 500 2.48657E+10 8.62063E+10 6.09570E+09 13.717 0.000 

SEn_IA2_AR(6) 500 1.20525E+15 4.96125E+15 3.50814E+14 12.474 0.001 

SEn_IA2_AR(10) 500 1.20525E+15 4.96125E+15 3.50814E+14 12.474 0.001 

Cv_IF1 500 1.26909E+00 2.70142E-01 1.91019E-02 529.301 0.000 

Cv_IF2 500 2.13802E+00 3.14462E-01 2.22358E-02 66.746 0.000 

Cv_IA1 500 0.714964 0.222053 1.57015E-02 65.324 0.000 

Cv_IA2 500 0.549825 0.176807 1.25022E-02 29.256 0.000 

Sk_IF1 500 2.30015E+00 6.00966E-01 4.24947E-02 618.775 0.000 

Sk_IF2 500 4.14002E+00 6.53416E-01 4.62035E-02 66.869 0.000 

Sk_IA1 500 0.824036 0.682514 4.82610E-02 111.232 0.000 

Sk_IA2 500 0.389845 0.575448 4.06903E-02 28.777 0.000 

Ku_IF1 500 7.13848E+00 2.77217E+00 1.96022E-01 483.350 0.000 

Ku_IF2 500 1.88620E+01 5.53043E+00 3.91061E-01 60.379 0.000 

Ku_IA1 500 3.543422 1.6983331 1.20090E-01 45.982 0.000 

Ku_IA2 500 3.0253 2.28026 1.61239E-01 2.737 0.100 

IQR_IF1 500 6.20274E-01 3.01447E-01 2.13155E-02 421.052 0.000 

IQR_IF2 500 1.80095E-01 8.42338E-02 5.95623E-03 81.332 0.000 

IQR_IA1 500 122.718965 154.0893085 1.08958E+01 188.216 0.000 

IQR_IA2 500 104.377086 113.4370393 8.02121E+00 181.115 0.000 
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In Case 1, SME_IA2_AR(10), SME_IA2_AR(6) STE_IA2_AR(10) and 

STE_IA2_AR(6)  have the higher feature values which are compared with other 

spectral features. In the temporal features, Sk_IF1, Cv_IF1 and Ku_IF1  are the 

dominating parameters. In Case 2, SME_IA1_AR(10),  SME_IA1_AR(6), 

STE_IA1_AR(10) and STE_IA1_AR(6) having the highest values that to 

compared with other parameters in spectral features, but here each values is  

similar  F-value index. The parameters Sk_IF1, Cv_IF1 and Ku_IF1 are the 

highest valued in temporal features. In the Case 3, STE_IA2_AR(10) and 

STE_IA1_AR(6) have the highest feature values in the spectral feature group. 

The parameters Sk_IF1, Cv_IF1 and Ku_IF1 have highest weights in the 

temporal features.  

 

According to the p-value in the Table 5.2, the significance level of 

each parameter in Case 1 and Case 3 is less than 0.001, except in Case 2. This 

shows that all the parameters in the Case 1 and Case 3 have strong significant 

differences. Interictal signal is the signal between the two adjacent ictal stages. 

If interictal period in the EEG signal is larger, then interictal signal may be 

similar to normal EEG signal. In Case 3, significant level of some of the 

parameters is greater than the expected value, 0.05. This indicates that normal 

EEG and interictal EEG signals are correlated if the durations of the interictal 

period in an EEG signal is extremely high. 

 

In this study, an ANN classifier is used for different ictal classification 

stages. All of the obtained features are collected to constitute an input feature 

vector, which is fed as an input to the three-layer feed-forward neural network 

classifier. The number of hidden layer neurons is set to 15; the network 

contains sigmoid hidden neurons and softmax output neurons. The output 

layer is binary classification of the four different cases. The network is then 

trained with a scaled conjugate gradient back-propagation (trainscg) algorithm. 

Approximately 70% of the samples are used for training. During the training, 
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the network weights are adapted based upon error in  each node. 

Approximately 15% of the samples are employed for validation to determine 

the generalization of the network and consequently terminate the training 

when generalization stops improving. The remaining 15% of the samples are 

effectively used for testing to measure network performance during and after 

training. The training samples, checking samples and testing samples are 

interchanged to verify the cross validation of the classifier result.  The 

classification is performed in the first set of HHT components, HHT1 and 

second set of HHT components, HHT2 respectively. The spectral vector of IA 

and the temporal vector of IF or temporal vectors of IA are classified using 

ANN classifier. Here 4000 samples are taken for each case, out of that 70% 

samples are used for training. The details of samples considered  for 

classification in each feature vector of spectral domain and temporal domain 

are shown in the Table 5.2, Table 5.3  and Table 5.4 respectively.  The effect 

of spectral resolution in modeling is also tested in AR(6) and AR(10). The 

MATLAB R2016a tool in Intel R Core (TM) 2 Duo CPU with 4GB RAM, 

system is used for all computations 

 

The performance and classification efficiency are computed in terms of 

total classification accuracy, sensitivity, and specificity. The four Cases are 

tested with spectral feature of IA and temporal features of IF or temporal 

features of IA as feature vector. Table 5.5 shows the classification efficiency 

of different classes for spectral features of IA and temporal features of IF. The 

average computation time for the ANN classifier of spectral features of IA and 

temporal features of IF is 8.21 s. The Table 5.6 shows the classification 

efficiency of different classes of spectral features of IA and temporal features 

of IA. The average computation time for the ANN classifier of spectral 

features of IA and temporal features of IA is 8.26 s. 
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Table 5.5 Performance measures of Spectral features of IA and 

temporal features of IF 

Spectral features of IA 1 and temporal features of IF1 

AR order AR(6) AR(10) 

  Acc Sen Spe Acc Sen Spe 

Case 1 93.33 100.00 86.67 93.33 100.00 86.67 

Case 2 96.67 100.00 93.33 100.00 100.00 100.00 

Case 3 93.33 100.00 86.67 96.67 100.00 93.33 

Case 4 93.33 96.67 86.67 93.33 96.67 86.67 

Spectral features of IA 2 and temporal features of IF2 

  Acc Sen Spe Acc Sen Spe 

Case 1 100.00 100.00 100.00 100.00 100.00 100.00 

Case 2 70.00 66.67 73.33 83.33 73.33 93.33 

Case 3 100.00 100.00 100.00 100.00 100.00 100.00 

Case 4 100.00 100.00 100.00 100.00 100.00 100.00 

Acc: accuracy, Sen: sensitivity, Spe: specificity 

 

 

Table 5.6 Performance measures of Spectral features of IA and 

temporal features of IA 

Spectral features of IA 1 and temporal features of IA1 

AR order AR(6) AR(10) 

  Acc Sen Spe Acc Sen Spe 

Case 1 100.00 100.00 100.00 100.00 100.00 100.00 

Case 2 96.67 100.00 93.33 96.67 100.00 93.33 

Case 3 93.33 100.00 86.67 96.67 100.00 93.33 

Case 4 96.67 100.00 93.33 86.67 100.00 73.33 

Spectral features of IA 2 and temporal features of IA2 

  Acc Sen Spe Acc Sen Spe 

Case 1 100.00 100.00 100.00 100.00 100.00 100.00 

Case 2 73.33 60.00 86.67 83.33 80.00 86.67 

Case 3 100.00 100.00 100.00 96.67 100.00 93.33 

Case 4 100.00 100.00 100.00 100.00 100.00 100.00 

Acc: accuracy, Sen: sensitivity , Spe: specificity 
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In Case 1, the total classification accuracy is 100% in the HHT1 and 

HHT2 types of signals. The spectral vector of IA and the temporal features of 

IF are successfully classified with higher rates of accuracy. Moreover, the 

classification accuracy is 100% in Case 3 for the classification between 

interictal and ictal classes. In Case 2, interictal and normal classification 

accuracy is only 83%. This finding is cross-verified in the statistical test. The 

ictal EEG signal is significant difference between the normal EEG and 

interictal EEG signals. The sensitivity and specificity of all cases in IA2 and 

IF2 are 100%, except in Case 2 ictal classification. In Case 2, specificity is 

93.3% and sensitivity is only 73.3%.This finding is also confirmed in 

statistical analysis, that is the significant level in all of the cases is less than 

0.001, except in Case 2, which clearly understood that normal EEG and 

interictal signals are correlated for some duration in an EEG signal. In Case 4, 

the normal and interictal EEG signals are combined with the ictal EEG signal 

to obtain a classification accuracy, specificity, and sensitivity of 100% in most 

types. Table 5.7 presents a comparison of ictal classification using AR 

modeling of EEG signal. 

 

Table 5.7 Comparison with other AR modeling of EEG signal in the literature 

using the EEG data set 

Authors Methods  
Classification 

Accuracy (%) 

Martis et al. 2012 
AR spectrum features of EMD with 

regression tree  
95.33 

Fu et al. 2015 HHT spectrum sub-band 95-100 

Riaz  et al.  2016 Temporal and Spectral EMD and SVM 96 

Djemili et al. 2016 IMF features 97.7 

Redelico et al. 2017 Permutation entropy for linear modeling 94.5 

Jia et al. 2017 Ensemble EMD  of phase  space  98 

Zhang et al. 2017 AR model in VMD and Random forest 97.35 

Li  et al. 2017 Dual tree complex wavelet transform 98.87 

Proposed method 
Spectral features of IA and Temporal 

features of IF with ANN  
83-100% 
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5.6  INFERENCES 

This chapter presents an analytical signal function of HHT, which is 

effective for the detection of different ictal stages in EEG signals. The 

proposed method emphasises on the spectral model based features of IA and 

temporal features of IA or IF. The AR Burg’s method is the most suitable, 

model based method for spectral analysis of EEG. The selection of optimal 

order for Burg’s AR modeling is affected by the performance of time series 

data. Here the performances of classification in AR (6) and AR (10) model 

based PSD are compared. The feature vector is set up as a combination of 

spectral features of IA and temporal features of IF. The performance is 

compared by another feature vector of combination of spectral features of IA 

and temporal features of IA. In both the conditions, IA and IF are calculated 

from IMF1 and IMF2.The effective classification of the different stages, 

namely, normal and ictal signal stage, normal and interictal stage, and 

interictal and ictal stages in EEG signal is done. The spectral features of IA 

and temporal features of IF are more apt for an ictal classification. The IA2 

and IF2 yield better results than the IA1 and IF1 components in terms of 

classification performances respectively. The features of AR (10) order model 

shows better results in overall cases. In some cases, the performance of AR(6) 

and AR(10) are same as 100%. 
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 CHAPTER 6 

ICTAL EEG CLASSIFICATION BASED ON STATE 

SPACE MODELING OF IMF SIGNAL 

 
This chapter deals with the ictal classification using nonlinear methods. 

Here IMF components of EEG signal are modeled in state space method. The 

EEG signal is subjected to empirical mode decomposition that yields a set of 

IMFs. Taking into account the nonlinear characteristics of the EEG signal, 

state space analysis of the IMFs is carried out. In order to accommodate the 

abrupt changes taking place within the EEG signal, a recursive estimation of 

the state values is done. Kalman filter is used for estimation of the state of the 

system. Several features are then extracted from the state estimations. Finally, 

a classification of the ictal EEG signal and healthy EEG is performed for the 

feature vectors of the state estimation. 

 

6.1  INTRODUCTION 

The non-linear methods of EEG analysis are found to be more efficient 

because it could describe the complex nature of the signal. A physical system 

described by differential equations in terms of inputs, outputs and state 

variables is called state space model (Sengupta et al. 2014). The state space 

model aims to ascertain information about the states as the new information 

from the given data. The potential to handle time varying attributes, missing 

data and the ability to incorporate changes makes state space model quite 

attractive (Cheung et al. 2010). 

 

In a state space model, differential or difference equations of first order 

are used by the state variables to describe a system rather than using one or 

more nth order differential or difference equations. State variables are hidden 

and can’t be obtained during the experiment, but can be rebuilt from the 
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obtained input-output data. A recursive estimation of the state vector improves 

adaptation to abrupt changes in the EEG signals (Wang et al. 2015). Kalman 

filter is one such method for recursive estimation, which enhances the 

epilepticform discharge spike (Oikonomou et al. 2007). Here in this chapter, 

state space estimation of different IMFs was obtained, which could reveal 

more information regarding the internal states of the system. The Kalman filter 

is used to estimate the state of the system. Then different features were 

extracted from the state vectors which will help to distinguish between ictal 

EEG and healthy EEG signals using a classifier. 

 

6.2  METHODOLOGY 

The Figure 6.1 shows the functional diagram of the proposed method.  

Initially, the EEG signal is made to undergo empirical mode decomposition. 

Then intrinsic mode functions are used for state space analysis. Kalman filter 

is incorporated to obtain the state values of the each IMF. Multiple features are 

extracted from the state values. These features are fed to a classifier, which 

will classify the signal as healthy EEG or ictal EEG. 

 

Fig. 6.1 Functional diagram of the proposed 

 

6.3  ESTIMATION OF STATE SPACE MODEL 

The Kalman filter is an efficient linear quadratic estimator which 

determines the internal state of a system from a set of noisy measurements 

over the time. It is a recursive algorithm for finding the state of a system 



 

119 

(Goshvarpour et al. 2014). It only requires the state estimation from the 

previous time step for estimating the current state value. The Kalman filter can 

be described as a combination of predict phase and update phase. In predict 

phase, the state estimation from previous time step is used to obtain the current 

state estimate. It is called a priori state estimate. In update phase, the state 

estimate at the current time step is combined with observation information to 

obtain the modified state estimation. It is called a posteriori state estimate.  

 

The Kalman filter averages the predicted state and the measurement 

information by making use of a weighted average. The purpose of taking 

weights is that those values with better estimated ambiguity, which are trusted 

more. The ambiguity in state predictions is called covariance. The weights are 

computed from the covariance. It assures that the latest state estimate is in 

between the predicted and the observed state and has better estimated 

ambiguity than either of them considered separately. At every time step, the 

process is repeated with the covariance and new estimate enhancing the 

prediction in the subsequent iteration. Since certainty of measurements is 

difficult to calculate, the Kalman gain is formulated. It is a measure of the 

comparative uncertainty of measurements and it presents the state estimation. 

It can be modified to obtain the desired performance. 

 

The Kalman filter is described by using the state space approach 

(Lacey  2019; Bishop and Greg, 2001). The state vector,      of the state of a 

discrete time controlled process is defined by the linear difference equations: 

                                                                   (6.1) 

                 (6.2) 

 

Where    is measurement data,   is the state transition matrix,   is 

Observation matrix of the discrete time controlled process with measurement 

error,    and white noise,   .   The     and    are independent, white random 
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variables which possess normal probability distributions,      ~        and 

     ~       .  

   [      
 ]       (6.3) 

   [      
 ]       (6.4) 

  is the state noise covariance and       the measurement error covariance. 

The covariance matrix,    is defined from the mean square error as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

    [      
 ]       (6.5) 

    [     ̂        ̂   
 ]     (6.6) 

Assume that  prior estimate of state vector,  ̂   is called  ̂ 
 .  

The estimate of state vector,  ̂  is update from prior estimate of state 

vector,  ̂ 
    is measurement data,     and observation matrix,  . 

 ̂   ̂ 
          ̂ 

         (6.7) 

The       ̂ 
   is the measurement residual,    and    is the Kalman gain. 

Substituting the Equ. (6.1) in Equ. (6.7) 

 ̂   ̂ 
              ̂ 

        (6.8) 

Substituting the Equ. (6.8) in Equ. (6.6) 

    [(             ̂ 
       )(             ̂ 

   

    )
 
 ]           (6.9) 

The error of prior estimate,      ̂ 
   is uncorrected with measurements 

noise, So the covariance matrix,    is reduce as  

            [(     ̂ 
       ̂ 

   )] 

              [    
 ]  

  (6.10) 

Substituting the Equ. (6.4) and  Equ. (6.6) in Equ. (6.10) 

             
                

        (6.11) 

The   
  is the prior estimate     

Rearrange the Equ. (6.11) as 

     
       

    
      

        
         

                       (6.12)
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                 error covariance matrix,    is the sum of mean square error of 

diagonal element in the matrix. 

 [  ]   [  
 ]    [     

 ]   [      
         

 ]   (6.13) 

Where  [  ]                     error covariance matrix,    

The trace of error or mean squared error should be minimized to obtain an 

optimal Kalman gain. So the trace of covariance matrix,    is differentiated 

with respect to    and equated to zero. 

Differentiate the Equ. (6.13) with respect to    

  [  ]

   
       

           
                    (6.14) 

    
          

       

     
       

              (6.15) 

Where    is the Kalman gain. 

Rearrange the Equ. (6.15) 

     
    

       
           

      (6.16) 

Substituting the Equ. (6.15) in Equ. (6.12) 

     
       

           
       (6.17) 

This updates the equation for the error covariance matrix,    with optimal 

gain. 

The Equ. (6.8), Equ. (6.15) and Equ. (6.17) are used for estimate the state 

vector,     

The prior estimate of state vector,  ̂ 
  is by 

  ̂   
    ̂         (6.18) 

Similarly, prior error in time k+1 is  

  
         ̂   

           (6.19) 

Substituting the Equ. (6.1) and Equ. (6.18) in Equ. (6.19) 

    
             ̂              (6.20) 

Similarly, prior covariance matrix,    in time k+1 is by substituting the Equ. 

(6.19) in Equ. (6.6) 

      [                
 ]      (6.21) 
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The noise,      is accumulate in the interval k and k+1   where measurement 

error      is buildup until the time k . So and       and       are perfectly have 

zero cross correlation.  

There for the Equ. (6.21) is  

      [        
 ]   [      

 ]     (6.22) 

Substituting the Equ. (6.3) and Equ. (6.5) in Equ. (6.22)  

         
          (6.23) 

The Equ (6.7) and (6.17) are update the state estimate and error covariance. 

The Equ (6.18) and (6.23) are project into k+1 interval of state estimate and 

error covariance respectively are parameters in the Kalman filter recursive 

algorithm.  

 

6.4  FEATURE EXTRACTION 

In order to perform a successful ictal classification, different features 

are to be extracted. Features form the basis for detection and classification 

procedures in biomedical signal processing. A number of features can be 

obtained from the state estimations and feature reduction was carried out to 

obtain optimum features for effective classification. The extracted features are 

Mean Energy (ME), Mean Teager Energy (MTE), Approximate Entropy 

(ApEn), Sample Entropy (SpEn), Mean Autocorrelation (MA), Interquartile 

Range (IQR), Mean Absolute Deviation (MAD), Kurtosis (KU), Variance (V) 

and Standard Deviation (STD). Table 6.1 shows the relevant mathematical 

expressions for computation of the different features in this analysis (Acharya 

et al. 2012; Gopan et al. 2012; Alam and Bhuiyan 2013).  

 

The energy parameters, entropy parameters, interquartile range are 

explained in Section 4.4. The relevance of higher order statistics parameter, 

Kurtosis is explained in Section 5.3. The approximate entropy indicates the 

ambiguity of time series fluctuations in EEG. It describes the probability that 

additional replicas will not occur after identical observation patterns. The 
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healthy EEG often has a low value of approximate entropy with high regularity 

of data. However, the ictal EEG has high approximate entropy with random 

variations. Sample entropy is an adaptation of approximate entropy. It measures 

the complexity of physiological time series. Approximate entropy includes self 

matches when template matching is performed, which lowers the approximate 

entropy value. The ApEn is a biased estimator and it is lower than expected 

value. The sample entropy is a modification of ApEn, in which the self- 

comparison between vectors is avoided. So sample entropy performs better 

results in the measure of complexity in the time series signal. Autocorrelation of 

the signal is correlation between the signal in different times. The Mean 

Autocorrelation of a random process is the expectation of deviation of mean,  ̅ 

and the time lag of the mean,  ̅. 

 

The distinct of EEG signal are measured based on the IMFs and used it 

for epileptic signal classification (Pachori et al. 2015). The first four IMFs of 

EEG signals show better ictal classification results because of the larger 

information about the ictal EEG that is located in the initial four IMFs 

components (Sharma and Pachori, 2015; Oweis and Abdulhay, 2011). In this 

work, the features of coefficients of state space model of first four IMFs are 

considered for the ictal classification. 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Random_process
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Table 6.1 Relevant mathematical expressions 

 of different features for computation. 

Sl.No Feature Parameter Equation remarks 

1 Mean Energy (ME)         
 

 
∑  

 

   
        

2 
Mean Teager Energy  

(MTE) 
        

 

 
∑       

 

   

         

     

 

3 
Approximate Entropy  

(ApEn) 

                          

                 ∑          

     

   

 

 

           correlation 

integral, 

r, N, m integer 
4 

Sample Entropy  

(SpEn) 
                

       

     
  

 

5 
Mean Autocorrelation 

(MA) 
   

 [    ̅      ̅ ]

  
  

6 
Interquartile Range           

(IQR) 
          

   is the third quartile 

and    is the first 

quartile 

7 
Mean Absolute 

Deviation    (MAD) 
    

 

 
∑        

 

   
 ̅   

 ̅ is the mean value of 

x(n) 

8 Vaiance (V)   
 

 
∑     

 

   
   ̅    

9 
Standard Deviation 

(STD) 
    √

 

 
∑      

 

   
   ̅    

10 Kurtois (KU)    
 

 
∑

       ̅  

  

 

   

  

 

6.5  RESULTS AND DISCUSSION 

Here only set A  is considered for normal EEG signal and set E for 

ictal EEG signal as in the EEG database, discussed in Section 2.2. Each set is 

of 23 second duration with a length of 4096 samples. The first step in the 

analysis was to process EMD of the each of the set of EEG signals. The Figure 

6.2 shows one of the EEG sample signal corresponding healthy EEG from the 

University of Bonn EEG database and its four IMFs in ascending order. The 

Figure 6.3 shows the one of the ictal EEG sample signal from the University 

of Bonn EEG database and its four IMFs in ascending order. The healthy EEG 

signal has less amplitude variations when compared to the ictal EEG signals. 

The EEG signals corresponding to ictal have sudden variations in amplitude, 

which can be observed in Figure 6.2 and Figure 6.4. The average computation 

time required for extracting IMFs from the EEG is 12.53 s per each category 

of the data set. 
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Fig. 6.2 Healthy EEG signal and its IMFs  

 

Fig. 6.3 Epileptic EEG signal and its IMFs 
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The process of decomposing the signal into IMFs causes specific 

frequency components to be separated out. The initial IMF has higher frequency 

components present in the EEG signal and in the lower IMFs, frequency 

components are gradually decreasing from high frequency. Also, the amplitudes 

of lower IMFs vary drastically when compared to higher IMFs. The amplitude 

variations in different IMF are shown in Figure 6.2 and Figure 6.3. 

 

In this study, the features obtained from the first set of four IMFs are 

only considered to estimate the state space model. Then Kalman filter was 

used to obtain the state estimations of neural activity. Here  Kalman filter 

estimate the 10th  order state space model of the EEG data. So 10th order state 

vector is estimated from a set of 10
th

 order recursion equations..  The different 

features are extracted from the state vector. The extracted features are mean 

energy, mean Teager energy, approximate entropy, sample entropy, mean 

autocorrelation, interquartile range, mean absolute deviation, Kurtosis, 

variance and standard deviation. The average computation time for the feature 

extraction of the state space model is 69.99 s per each IMF in each category of 

the data set. An analysis on the effect of mean Teager energy feature of the 

state estimations of different IMFs of seizure and healthy EEG datasets was 

also carried out. The comparison of mean Teager energy values of first four 

IMFs in healthy EEG and ictal EEG are shown in Figure 6.4 and Figure 6.5 

respectively.  



 

127 

 

Fig. 6.4 Mean Teager energy of state values of 

 healthy datasets for different IMFs 

 

Fig. 6.5 Mean Teager energy of state values of ictal datasets for different IMFs 

 

In the Figure 6.4 and 6.5, it is observed that mean Teager energy 

values of ictal EEG data are higher when compared to healthy EEG data. The 

ascending value of IMF is attributed to high frequency information in the 

original signal. The mean Teager energy of initial IMFs in the ictal EEG 



 

128 

shows highest values compared with the healthy EEG signals.  Also among the 

mean Teager energy values of different IMFs, second IMF shows highest 

value for both healthy and ictal EEG signals. It was observed that second 

IMFs could capture relevant information of ictal EEG signals. Hence, it is 

highly efficient for spike detection, which is related to sudden appearance of 

high frequencies and rise in instantaneous energy.  

 

The features of the state estimations of the IMF1, IMF2, IMF3 and 

IMF4 of ictal EEG and healthy EEG signals were fed to an ANN classifier. 

The total size of the population is 140 in each IMFs. So total sample size for 

feature classification is 560, which is enough as per Cochran’s sample size 

formula for grouped data with 95% confidence level and margin of error as 

±0.05. Approximately 70% of the samples are used for training out of 560 

samples and 80 samples are used for testing the classifier performance. The 

ANN classifier yielded a successful classification of the given EEG data to 

ictal or healthy based on supervised learning. The back propagation algorithm 

is selected to train the three layer MLPNN. The gradient descent method was 

used to decrease the error rate in the network. The details of MLPNN structure 

used in the classification is explained in Section 5.5. The performance of the 

classifier was assessed in terms of three statistical parameters called 

sensitivity, specificity and accuracy. Table 6.2 shows the performance of the 

classifier for the proposed features for classification. The average computation 

time for the ANN classifier of each feature is 5.25 s. From the table, it shows 

that mean energy, mean Teager energy and Kurtosis shows better results in the 

classification of ictal EEG signals. Apart from the individual performance of 

each features, the classifier was assessed to a combination of selected features 

were fed as the inputs to the classifier. 
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Table 6.2 Classifier performance for different features 

Feature Sensitivity (%) Specificity (%) Accuracy (%) 

Mean Energy 100 85 92 

Mean Teager Energy 100 100 100 

Approximate Entropy 80 50 65 

Sample Entropy 80 80 80 

Mean Autocorrelation 100 30 65 

Interquartile Range 100 80 90 

Mean Absolute Deviation 100 80 90 

Standard Deviation 100 60 80 

Variance 100 30 65 

Kurtosis 100 85 92 

 

 The combination of features is due to energy features, entropy features 

and statistical features. The mean energy & mean Teager energy, approximate 

entropy & sample entropy, interquartile range & mean absolute deviation and 

Kurtosis & standard deviation are group together for the classification. In 

combined feature selection  approximately 70% of the samples are used for 

training out of 1120 samples and 160 samples are used for testing the MLPNN 

classifier performance.  

 

The performance of the classifier was assessed in terms of confusion 

matrix and Receiver  Operating Characteristics (ROC) curve (Sonego et al. 

2018). The ROC curve is a plot between False Positive Rate (FPR) and True 

Positive Rate (TPR). The collection of all possible combinations of FPR and 

TPR is called ROC curve. TPR is equivalent to sensitivity and FPR is 

equivalent to specificity. The ideal point in ROC space corresponds to 100% 

sensitivity and specificity. This yields the coordinates (0, 1). This point 

indicates perfect classification. The interpretation of ROC curve is that, a 

curve closer to the ideal coordinates yields an accurate test. If a test has 

sensitivity and specificity of 50% then its ROC will be along the diagonal 



 

130 

specified by coordinates (0, 0) and coordinates (0, 1). A random guess yields 

point along this diagonal as per the theory. If a point estimated by a test falls 

into the upper half area relative to the diagonal, it represents good 

classification. Otherwise, classification will be bad. Figures 6.6 to 6.9 shows 

confusion matrix and ROC curve of ANN classifier with the combination of 

different features. Then sensitivity, specificity and accuracy were also 

obtained from the confusion matrix to evaluate the performance of the 

proposed method. 

 

Fig. 6.6  Confusion matrix and ROC curve of ANN classifier with 

Kurtosis-standard deviation features.  

 

Figure 6.6 shows the ROC curve for healthy dataset given by the blue 

line and the ROC curve for epileptic dataset given by the green line. Both 

ROC curves are above the diagonal line. The ROC curve of healthy signal 

approaches the ideal coordinates faster when compared to epileptic signal. 

Hence the classification for healthy signal is more accurate when compared to 

epileptic signal. The classification has a sensitivity of 100%, specificity of 

90% and accuracy of 95%. 
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Fig. 6.7  Confusion matrix and ROC curve of ANN classifier with 

Approximate entropy-Sample entropy features. 

 

The ROC curve for both healthy and epileptic datasets in Figure 6.7 

shows that ROC curve of ANN classifier with approximate entropy and sample 

entropy feature has the same shape. The epileptic dataset’s curve is superimposed 

on healthy dataset’s curve. The ROC curve of epileptic dataset is shown by green 

line. Both ROC curves are above the diagonal line. Both ROC curves approaches 

the ideal coordinates at the same rate. The classification has a sensitivity of 80%, 

specificity of 80% and accuracy of 80%. 

 

Fig. 6.8 Confusion matrix and ROC curve of ANN classifier with 

Interquartile range - Mean absolute deviation features. 
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Fig. 6.9 Confusion matrix and ROC curve of ANN classifier with Mean 

energy - Mean Teager energy features. 

 

Figure 6.8 shows the ROC curve of ANN classifier with interquartile 

range - mean absolute deviation feature. The performance of the classifier has 

a sensitivity of 100%, specificity of 90% and accuracy of 95%. Figure 6.9. 

shows confusion matrix and ROC curve of ANN classifier with Mean energy  

and  Mean Teager energy features. In Figure 6.9, the ROC curves for both 

healthy and epileptic datasets are lines parallel to the x-axis with TPR value of 

1. This indicates that the combination of Mean energy  and  Mean Teager 

energy features have achieved 100% classification accuracy. This combination 

also yields 100% performance in sensitivity and specificity. 

 

Table 6.3 Classifier performance for different combination of features 

Features 
Sensitivity 

(%)  

Specificity 

(%) 

Accuracy 

(%) 

Kurtosis & Standard 

Deviation 
100 90 95 

Approximate Entropy & 

Sample Entropy 
80 80 80 

Interquartile Range & 

Mean Absolute Deviation 
100 90 95 

Mean Energy & Mean 

Teager Energy 
100 100 100 
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The sensitivity, specificity and accuracy of the combination of features are 

tabulated in Table 6.3. The average computation time for the ANN classifier of 

different combination of features is 6.05 s. The table shows that a combination of 

mean energy & mean Teager energy will serve as an appropriate feature set for 

classification of EEG signal into healthy and epileptic class. The combination of 

Kurtosis & standard deviation and interquartile range & mean absolute deviation 

features can also get good accuracy of about 95%. Table 6.4 shows the 

comparison of other non linear algorithms in the EEG classification using the 

EEG data set. 

 

Table 6.4 Comparison with other algorithms 

 in the literature using the EEG data set 

Authors Methods employed 
Classification 

Accuracy (%) 

Riaz F et al.  2016 
Temporal and Spectral EMD and 

SVM 
96 

Martis el al. 2015 Nonlinear features EEG sub-bands 96.33-98 

Djemili et al. 2016 IMF features 97.7 

Acharya et al. 2012 Entopies -Fuzzy classifier 98.1 

Jia et al. 2017 Ensemble EMD  of phase  space 98 

Sharma and Pachori, 2015 IMFs phase  space 98.67 

Bajaj and Pachori, 2012 EMD bandwidth LSSVM 99.5 - 100 

Alam and Bhuiyan, 2013 
Higher order statistics of IMFs and 

ANN 
80-100 

Goshvarpour et al. 2014 
EEG Time series with state space 

model-RMS 
98 

Wang et al. 2015 Cauchy-Based State-Space and SVM 100 

Proposed method 
State space modelling of IMF-ME, 

MTE and ANN 
100 
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6.6   INFERENCES 

In this chapter, combination of empirical mode decomposition and 

state space model were used to analyze the EEG signal and to classify it as 

healthy EEG or ictal EEG. The EEG signal was decomposed into a set of 

IMFs that are band limited using EMD. With the aid of Kalman filter, 

estimation of the state matrix was obtained for the system. Multiple features 

were extracted from the state values and these were used for classification. 

The use of ANN helped fast computation in the classification of the EEG 

signals as epileptic or healthy. Here we used scaled conjugate gradient back-

propagation algorithms for training. Only 140 EEG data are used for training, 

validation and testing sections. The method provided a successful means for 

classifying the ictal EEG signals. It was found that second IMFs could capture 

relevant underlying properties of EEG signals. Among the multiple features, 

the mean Teager energy served as an efficient and reliable feature in automatic 

seizure classification scenarios. 

 



CHAPTER 7 

CONCLUSIONS  

The EEG is non-stationary and nonlinear in nature, which reflects the 

activity of the brain. The EEG measurements will help in diagnosing and 

treatment of many neurological disorders. Epilepsy is one of the most common 

neurological disorders other than stroke. In an EEG recording, the ictal is 

characterized by an acute epileptic seizure. The EMD is a well-accepted method 

for analyzing non-linear and non-stationary time series signal, which is more 

applicable for EEG signal. The EMD algorithm is a novel method for 

decomposing the signal into intrinsic mode function (IMF) and residue. 

 

The combination of EMD with Hilbert transform analysis makes use of 

various parameters obtained from the instantaneous amplitude function and the 

instantaneous frequency function of EEG. Thus, we can explore the non-

stationary and nonlinear EEG data in more detailed manner in comparison 

with other existing EEG analyzing methods. The EMD has lesser complexity. 

Variations in basic EMD approach have been able to reduce the mode-mixing 

problem. 

 

7.1  CONTRIBUTION OF THE THESIS 

The main objective of the thesis was to develop new methodology for 

ictal classification. Here we summarize the work carried out in this thesis to 

realize the goals identified in Chapter 1. 

 

7.1.1  EEG analysis using wavelet packet transform for epileptic seizure 

detection 

In this proposed method, the EEG signal is analyzed using Wavelet packet 

decomposition method. Here the pre-possessed EEG is first decomposed into four 

levels using WPT method. The selected packets on each level of the WPT are 
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map to the sub-band of EEG signals. The different energy and entropy features of 

selected packets are obtained for normal EEG and epileptic EEG. The average 

training error of different sub-bands of EEG is compared. The lowest training 

error of all the feature parameters is in delta and theta sub-band. This shows the 

epileptic discharge not only affects the delta band, but its effects may propagate to 

theta sub-band also. The Mean Teager Energy feature shows a lowest training 

error in FIS training. Finally, mean Teager energy is taken in constructing the 

feature vector for ANFIS to classify the epileptic and normal EEG signals. To 

construct the feature vector of all mentioned energy-entropy features in the delta 

band is performed in the ANFIS classifier for seizure classification. The total 

classification accuracy of 97.5% is obtained. If the Mean Teager Energy in the 

delta band is taken as input to the classifier, 98.33% of total classification 

accuracy is achieved. 

 

The proposed method is also tested in CHB-MIT scalp EEG database. 

Here the effect of seizure EEG signal is examined in T7-P7 and T8-P8 lobes. It 

shows that mean Teager energy has high significant difference in the delta band. 

The feature vector in channel T8-P8 is higher than the feature vector of channel 

T7-P7. It concludes that the selected data set (chb01) is a case of temporal lobe 

epilepsy. The main contribution of the chapter is that the mean Teager energy 

is the most weighted parameter of the EEG signal for classifying epileptic 

seizure. 

 

7.1.2 Energy-Entropy feature extraction of the instantaneous amplitude 

function and statistical features of the instantaneous frequency 

function for ictal EEG classification 

This work focuses on the ictal EEG classification strength of energy and 

entropy-based features using IMF components from EMD and their instantaneous 

amplitudes using HHT. The effect of ictal classification in different individual 

IMF features, feature vectors as multiple features with individual IMFs, and 
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feature vectors as individual features from multiple IMFs of both amplitude and 

frequency contour in HHT are tabulated. Therefore, to obtain an optimal single 

feature, we used the vector of features or vector of IMFs for better classification 

of ictal EEG and healthy EEG. To implement an embedded personal health care 

system, the number of features shall be minimized to reduce computation time 

and system complexity. The main contribution is to analyze the features 

individually in different Cases. These Cases are statistically evaluated by 

ANOVA test with feature ranking, in IA and IF functions. These features are 

concluded to possess a great discriminating power on the instantaneous 

amplitudes. By employing ANN and ANFIS classification, these features can be 

seen to perform well in the identification of seizure segments of EEG data. 

Compared with all IMFs, IMF2 and IMF1 has shown a good performance with 

100% accuracy in the case of energy of an instantaneous  amplitude. The standard 

deviation of frequency distribution also achieves 100% accuracy. These features 

are very much useful in representing the EEG data for an ictal detection. 

 

7.1.3 Different types of ictal classification on spectral and temporal 

features of instantaneous amplitude -frequency components 

In this methodology, the incoming EEG signals are pre-processed by the 

EMD method to obtain the IMFs, which represents a simple oscillatory mode as a 

counterpart to the simple harmonic function. Here only the first and second IMFs 

are extracted, which have relevant information about epileptic seizures. The 

different types of ictal EEG classification are tabulated using the spectral and 

temporal features of HHT. In this method, combining the features of the IA and IF 

functions of HHT is used as a feature vector to classify various ictal types. The 

spectral features of IA and temporal features of IF are more suitable for ictal 

classification. Four different Cases are framed for the classification. The different 

cases are Case 1 for healthy EEG with ictal EEG signal; Case 2 for healthy EEG 

with interictal EEG signal; Case 3, interictal EEG with ictal EEG signal; and Case 
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4 for combination of  healthy EEG signal and interictal EEG signal with ictal 

EEG of HHT1 and HHT2 components respectively. 

 

Spectral features of IA2 and temporal features of IF2 yield better results 

in terms of classification performances. The spectral feature of AR (10) order 

model shows better results when compared to all the Cases.  The statistical 

validation are performed using the EEG datasets. There is siginificant different 

in Case1 and Case 3. The spectral features of IA2 and temporal features of IF2 

of Case1, Case 3 and Case 4 achieve 100% classification accuracy. 

 

7.1.4 Ictal EEG classification based on state space modeling of intrinsic 

mode function 

In this work, the EEG signal is subjected to empirical mode decomposition, 

which yields a set of IMFs. Taking into account the nonlinear character of the 

EEG signal, state space analysis of the IMFs is carried out. In order to 

accommodate the abrupt changes taking place within the EEG signal, a recursive 

estimation of the state values is done. The Kalman filter is used for this purpose. 

Several features are then extracted from the state estimations. The artificial neural 

network is used to classify ictal EEG and healthy EEG status. The study shows 

mean Teager energy have 100% accuracy and Kurtosis and mean energy has  

92% accuracy in ictal classification compared to other features. Finally, a 

classification of the EEG signal into a healthy and epileptic groups is performed. 

The combination of mean energy & mean Teager energy features shows a higher 

classification performance with 100% sensitivity, 100% specificity and 100% 

accuracy. 

 

Novelty and originality of this research work is that an innovation 

methodology for ictal classification by employing an instantaneous amplitude-

frequency contour of the IMFs of an EEG signal. The EMD is a method to 

decompose a nonlinear and non-stationary signal into a set components called, 
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IMFs. The main contribution of the thesis is that instantaneous frequency function 

and instantaneous amplitude function of IMF2 has better ictal classification 

accuracy than IMF1, which indicates that the ictal information is accumulated in 

IMF2.  The IMF1 and IMF2 of instantaneous amplitude - frequency components 

show significant information about the ictal EEG compare to other IMFs.  This 

indicate that  the useful information for the discrimination between the healthy 

EEG and ictal EEG signals is mainly centred in the higher order IMFs. As 

reported in the literature survey that researchers are used features of all IMFs 

components for seizure detection. This will helps the researchers to concentrate 

the seizure detection problems in IMF1 and IMF2 components.  

 

The second novelty of the thesis is to perform an ictal classification 

method, which combines spectral and temporal features of  IA and IF, twin 

components of Hilbert- Huang Transform. Here spectral features are tabulated AR 

Burg’s method, which is most suitable model based spectrum estimation for 

spectral analysis of EEG. The spectral features of IA and temporal features of IF 

is better ictal classification than spectral features of IA and temporal features of 

IA is all the cases discussed in section 5.4. The third novelty is to perform an ictal 

classification based on state space model on the IMFs. The state space analysis of 

the IMFs is carried out due to the non-linear characteristics of the EEG signal. 

The recursive estimation of the state values is done using Kalman filter.   

 

 The main contribution of the thesis is that instantaneous frequency 

function and instantaneous amplitude function of IMF2 has better ictal 

classification accuracy than IMF1, which indicates that the ictal information is 

accumulated in IMF2. In particular, IMF 2 has shown good performance with 

100% accuracy of energy/entropy of amplitude distribution and the standard 

deviation of frequency distribution. The second contribution is the spectral 

features of IA and temporal features of IF is better ictal classification than spectral 

features of IA and temporal features of IA is all the cases discussed in section 5.4. 
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The features of AR (10) order model shows better results in overall cases. The 

third contribution is among the multiple features, the mean Teager energy 

served as an efficient and reliable feature in automatic seizure classification 

scenarios. 

 

In current scenario, as mention in first paragraph of the motivations, 

accuracy and reliability of visual interpretation of the brain signal are limited. This 

lead patients visit normal physicians in multiple times. Later, the patients will end 

up to a specialist. Due to lack of exact features from EEG,  the patients may be 

subject to wrong diagnosis, which will lead to wrong medication for antiepileptic 

medicine (AEM). These medicines, which are generally expensive.  Moreover, 

wrong diagnosis will lead to social stigma that unemployment of the epileptic 

patients. The computer aided diagnosis system will reduce treatment costst for the 

patients. The computer aided diagnosis system for ictal classification does not 

intend to replace Neurologist, but facilitate to diagnosis proper causes of 

epilepsy. It also helps the Neurologist to ensure a second opinion of the 

observation of the complex EEG signal. 

 

7.2  FUTURE SCOPE OF WORK 

Seizure detection in long-term EEG data will be a tedious task for 

clinicians. In brief, most of the existing automated epilepsy detection methods 

are short segment EEG analysis for deducing the computational complexity. 

This will fail to tabulate the exact time of seizures occurrence. The 

conventional method to find the exact time of the seizure is to review from the 

EEG long data. However, this is time consuming and sometimes misidentifies 

the seizure pattern. The multivariate feature extraction of long term EEG using 

instantaneous amplitude function and instantaneous frequency function of 

HHT will give local information of epileptic seizure. Therefore, it shall focus 

on long-term EEG data for feature extraction by using Hilbert spectral 

analysis. It also focuses on complex features of long-term EEG signals, which 
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are directly extracted using deep learning classifier. Then one can select 

dominated features for the ictal classification, to reduce computational 

complexity. If it requires large computation, then computation time can be 

minimized by implementing cloud computing.  

 

Real-time EEG processing can be possible with the Altium nanoboard 

3000 FPGA development board to ensure the performance of the proposed 

.0algorithms. It can also be implemented in an embedded personal health care 

system with a wireless wearable sensor for a real-time seizure alert system. 

 

Now days, medical diagnosis is efficiently possible due to telemetry 

biomedical data. In EEG telemetry applications, Neurologists required an 

efficient system, which provides more accurate, meaningful and timely 

information of reconstructed EEG data. This area of research is more 

challenging because of the large amount of data and randomness in the 

inherent behaviour of the EEG signal. For the efficient storage and/or 

transmission of EEG signals, the EEG telemetry system required a low error in 

reconstruction with  high compression for more timely and accurate diagnosis. The 

intrinsic mode functions of EEG are possible soluation in near-lossless 

compression method, which is capable to store and/or transmit the EEG 

signals for telemetry diagnosis. 
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