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ABSTRACT

In the most generalized context, cloud computing refers to the
on-demand delivery of a shared pool of virtual computing resources
over a network to the remote users. These resources can be rapidly
provisioned based on customer requirement. Cloud service providers
try to attract more customers to increase their profit, while cloud
customer expectations are good Quality of Service (QoS). The
customer requirements and nature of resources are in heterogeneous
nature. Scheduling is generally considered as a difficult problem of
managing jobs within the given time constraint. However, the
problem becomes more complicated when QoS is also considered
with scheduling. QoS depends on several factors like makespan,
delay, response time, over and under loaded conditions, violations in
Service Level Agreement (SLA), frequent migrations, system
stability and parasitic load. Cost, energy and scalability decisions are
other factors that influence the performance. The objective of this
thesis is to provide QoS in cloud scheduling.

We have developed a Virtual Machine (VM) placement
scheme to minimize makespan. It also minimizes the storage
requirement as well as power consumption. Next we have developed
and tested hybrid method based on an evolutionary algorithm for VM
migration through load balancing. It minimized makespan and
imbalance in the cloud eco system. We developed an energy-efficient

clustered load balancing for server farms for promoting green



computing. It achieved energy efficiency through active physical
server clustering. A novel interference aware prediction model to
enhance the stability in the cloud eco system is developed and tested
in real cloud. This mechanism reduced the performance interference
in the cloud datacenter by predicting optimal threshold range for the
maximum efficiency for the physical servers. Another contribution is
the development of an SLA enforcement mechanism with auto
scaling. This dynamic provisioning system with scaling policy
reduced makespan, number of SLA violations, penalty cost and
maximizes profit. Finally, this thesis presents an integrated SLA
enforcement scheme with the aid of a prediction model. The
incorporated prediction model is based on the past usage pattern and
forecasts future SLA violations due to fluctuating workload. It helps
in scaling decisions and resulted in reduced cost, makespan, SLA
violations, and frequent migrations. All the methods mentioned above
resulted in better Quality of Service in cloud scheduling.
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Chapter 1 Introduction

1.1 The Cloud Computing

In the most generalized context, cloud computing refers to the
delivery of computing resources, such as compute, data resources and
application softwares over a network to the remote users. One of the
key attractions of cloud computing is the ability for customers to
access the huge amount of computing resources on a pay-as-you go
basis. According to the National Institute of Standards and
Technology (NIST) [1] cloud is defined as:

“Cloud computing is a paradigm that enables on-demand network
access to a shared pool of configurable virtual resources which can
be rapidly provisioned and used based on the pay-per-use model .
Cloud computing allows storing data and accessing computing
resources such as processing power, data, and applications over the
internet instead of local computer hardware. It is a form of distributed
system based on virtualization technology.

Now, cloud computing became the global computing infrastructure
for business applications by providing large scale services with
minimum cost [2]. The ubiquitous nature with on-demand computing
facilities made it as a popular computing model. It is a promising
paradigm for the computing world that offers on-demand Information
Technology resources and services to the customers over the Internet.
Since the customers only need to pay for the services they actually
used, there is a rapid growth in the usage of cloud resources.

The cloud resources can be dynamically provisioned and
reconfigured to adjust variable load (scale). The pools of resources
are made available to the customers based on pay-per-use model and
guarantee Quality of Service (QoS) as per customized Service Level
Agreement (SLA).
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1.1.1 Cloud Deployment Models

The deployment model refers to the ownership and access

specification of cloud services. The cloud can be deployed using four

models as shown in figure 1.1.

Public cloud: the service provider owns and operates the
cloud infrastructure and services are available to the
general public. Here public means any individual or a
small, medium or large organization.

Private cloud: the cloud is set up for an organization
solely for its own purpose. The organization owns and
operates the cloud infrastructure and services are available
for the employees in general and for the stakeholders of
the organization who have proper access. The
infrastructure may be present on-premise or off-campus.
Community cloud: a specific community may set up a
cloud infrastructure for an intended purpose and shared
concerns. The community may include many
organizations or individuals as members. This cloud may
be owned by the members of the community or maybe
rented from service providers and management is
performed accordingly.

Hybrid cloud: this is a combination of two or more
clouds of the above categories, bound by standardized

technologies for sharing and interoperations.
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Different Type
of Applications

laaS PaaS SaaS

Software as a
service

Platformas a
service

Infrastructure as a
service

Public cloud Community cloud Private cloud

Hybrid cloud

Fig 1.1 Cloud deployment models
1.2 Cloud Delivery Models

The cloud delivery model provides a specific combination of IT
resources offered by a cloud provider. There are three different types

of delivery models as shown in figure 1.2.
1.2.1 Software as a service (SaaS):

In this model, a complete application is offered to the customer, as a
service on demand. A single instance of the service runs on the cloud
and multiple end-users are serviced. On the customers’ side, there is
no need for upfront investment in servers or software licenses, while
for the provider, the costs are lowered, since only a single application

needs to be hosted and maintained.

Software or applications are provided as a service to the consumers.
The software runs on the cloud environment and is accessed by

consumers through well- defined interfaces such as web browsers.
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The clients can be thin, and the overhead of the developing
applications, hosting them, procuring infrastructure necessary for
development and deployment of applications, and maintenance are
eliminated for the clients. Today SaaS is offered by companies such

as:

. GoogleApps by Google [4]
. SQL Azure by Microsoft [6]
. Oracle On Demand by Oracle [7]

1.2.2 Platform as a service (PaaS):

Here, a layer of software or development environment is
encapsulated and offered as a service, upon which other higher levels
of service can be built. The customer has the freedom to build his
own applications, which run on the provider’s infrastructure. To meet
the manageability and scalability requirements of the applications,
PaaS providers offer a predefined combination of OS and application
servers, such as LAMP platform (Linux, Apache, MySQL, and PHP),
restricted J2EE, Ruby, etc.

The platform necessary to develop and deploy applications and
hardware are provided as services to the consumers. Consumers need
not bear the overhead cost of procuring necessary platforms for their
applications, getting license, updates, and renewal of licenses, etc.,
but have control over the configuration settings or on releasing the

next version of their software.
Examples of PaaS services are:

. Force.com by salesforce.com [8]
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. GoGrid CloudCenter [9]
. Google AppEngine [5]
. Windows Azure Platform [6]

1.2.3 Infrastructure as a service (laaS):

laaS provides basic storage and computing capabilities as
standardized services over the network. Servers, storage systems,
networking equipment, data centre space, etc. are pooled and made
available to handle workloads. The customer would typically deploy

his own software on the infrastructure.

e.g. Salesforce; NetSuite;
Zoho;Zimbra; Office Live;
Concur; Taleo

SaaS: App/ Business
Service User/Consumer

e.g. Google app

PaaS: Platform Technical IT Engine; Force.com;

Communi
iy Azure

| eg AmaonEC2&S3;
Technical IT Rackspace; EMC;
Infrastructure Community Sun(Project Caroline);
BlueCloud

Fig 1.2 cloud delivery models

The resources necessary for a consumer to perform a variety of
operations ranging from working with applications, developing
applications, managing network of nodes, setting up networks, taking
backup of data, or computers with different operating systems are
provided as services. The services can be rented by individuals for

personal use or by small and medium enterprises as well as
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multinational organizations with branches distributed across the

globe.

Examples of laaS service providers include:

. Amazon Elastic Compute Cloud (EC2) [10]
. Eucalyptus [11]

. GoGrid [9]

. FlexiScale [12]

. RackSpace Cloud [13]

1.3 Significance of scheduling

Resource management in cloud computing infrastructure is handled
by Virtual Machine (VM) scheduling and it will reduce operational as
well as energy cost. The scheduling is the process of allocation of
different tasks to resources with high quality, considering the

parameters such as makespan, energy, cost, profit, etc.

Schedule

Temporal
cons(raints Task ... n Resource ... n |
Task 3 Resource 3 |
Task 2 Resource 2 |
Task 1 — Resource 1

4 »
% >

Requirement constraints

Fig. 1.3 Scheduling in Cloud.

In cloud computing, resource management is an important task in

scheduling of services, customer tasks, and hardware infrastructure.
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The scheduling is the allocation of user submitted tasks to particular
VM provisioned in a Physical Machine (PM). When demand
increases from the user’s side, then the service provider can extend
their computation resources beyond their boundaries to accommodate
incoming requests. Cloud needs efficient intelligent task scheduling
methods for resource allocation based on workload and time. Optimal
resource allocation minimizes the operational cost as well as
execution time. This, in turn, reduces power and energy consumption
and operational cost. Hybrid technology is needed to support
customers to choose different computation offers from Cloud Service
Providers (CSP). The offers from CSPs are attracted customers to
promote their business and to reduce the operational cost. CSPs offer
services in different categories such as subscription of services with
expertise, Service Level Agreement (SLA) based, compliance,

scalable and cost-effective manner.

The resource provisioning techniques decide which resources are to
be made available to meet the customer requirements, while task
scheduling is the process of allocating customer or user tasks to the
resources based on some criteria. Resource allocation is performed by
the scheduling of resources based on temporal and customer
requirement constraints. In the dynamic cloud environment, both
customer requirements and cloud resource status vary with time,
hence scheduling based on temporal constraints is a cumbersome
task. So constraints play a major role in scheduling. Proper
consideration of constraints will produce a high level of QoS. Figure
1.3 gives an illustration of resource management with the scheduling

of services based on constraints in the cloud.
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There are several scheduling methods existing in the cloud
computing, due to its multi-tenant, on-demand, elastic nature with
pay-as-you-go model, but enhanced methods are necessary to
improve the performance. Also, the dynamicity of cloud in resource
and task scheduling gives several opportunities to the researchers.
Schedulers have to consider the trade-off between functional as well
as non-functional requirements to attract customers and QoS with

profit.

A good resource allocation policy must avoid certain situations as

follows.

. Resource contention: it occurs when more than one
customer or user requests for the same service at the same
time.

. Scarcity of resources: it occurs when the availability of the
resource is limited.

. Resource fragmentation: if the service provider can have
enough resources to accept a new request, but it is unable
to allocate that request.

. Over-provisioning: The application gets surplus resources
than the demanded one.

. Under-provisioning: The application is assigned with less

number of resources than demanded.
1.3.1 Cloud Properties that Affect Scheduling

Certain factors that affect cloud scheduling depends upon the nature
of cloud resources. These factors are homogeneity and heterogeneity

of cloud resources. The elastic nature of cloud resources is also an
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import factor. Scalability of resources auto scaling properties is also

crucial in the scheduling process.
1.3.1.1 Homogeneity

In a homogeneous cloud, the entire software stack including the
hypervisor, intermediate cloud stack, and customer portal are from
the same service provider. So here management is simple since the
entire things are from a single provider. Since everything comes in a
pre-integrated manner, if anything goes wrong, just one party holds
the responsibility. When one CSP is in the possession of so much
power, customers become dependent on the same provider’s technical
and commercial strategy. The advantage of this kind of cloud
environment is that customers can able to specialize in a CSP’s tool.
While administrators can easily cover for each other within this
strategy, the downsides are different. The features are available on
the technical side, but which is exclusively developed by the
particular service provider. Besides, when a customer or user is
“locked-in” to one service vendor strategy, resources can be easily
delegated despite changes in the pricing structure. This belongs to the

commercial side advantage.
1.3.1.2 Heterogeneity

To increase performance and attract more customers, CSPs are
adding different types of computing resources with increased
memory and storage capacities. Thus heterogeneity improves the
overall cloud performance and its power efficiency. Customers are
often looking for sophisticated high-end infrastructure such as high

speed processors, with low cost. The moves towards green computing
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standards are now focusing on energy consumption. So public CSPs
are now implementing different mixtures of architecture for their
infrastructure to improve power efficiency. This complex
heterogeneous cloud data centre needs more powerful dynamic
algorithms for resource and task management. Internets of Things
(1oT) implementations are now rapidly increasing around the world.
These 10T devices generate a massive amount of data and need more
processing power to analyze it. Hence heterogeneous cloud
implementations are necessary for the successful loT and related

Cyber Physical Systems (CPS) implementations.
1.3.1.3 Elasticity

In cloud computing, elasticity is defined as the degree to which a
system is able to adapt workload changes by provisioning and de-
provisioning resources in an automatic manner such that, at each
point in time the available resources match the current demand as
closely as possible. Elastic cloud infrastructure provides a cloud
computing environment with greater flexibility and scalability.

Amazon Web Service (AWS) facilitates web service scalability.

Elasticity is the ability to fit the resources needed to cope with
workloads dynamically usually in relation to scale out. When the load
increases, adding more resources by scaling and when demand
wanes, the system shrinks backs and removes unused resources.
Elasticity is mostly important in cloud environments where pay-per-
use and don't want to pay for resources that customer does not
currently need on the one hand, and want to meet rising demand
when needed on the other hand. Elasticity adapts to both the

"workload increase™ as well as "workload decrease™ by "provisioning
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and de-provisioning” resources in an "autonomic” manner. Intelligent

algorithms that detect workload necessities will aid in this situation.
1.3.1.4 Scalability and Auto Scaling

Scalability is the ability of the cloud ecosystem to accommodate
larger workloads by adding more resources either making hardware
stronger (scale-up) or adding additional nodes. Scalability is
performed before the increase in workload by adding additional
resources or to perform well before to meet the required QoS. This
enables a CSP to meet expected quality demands from the customers
or to meet SLA requirements for services with long-term, strategic
needs. Auto scaling mitigates the resource contention and delay in
processing customer or user tasks. It aids CSPs to offer a high level
of services on-demand with customer satisfaction. By scaling-out
instances seamlessly and automatically when demand increases,
better resource management can be done. By turning off unnecessary
cloud instances automatically, CSPs can save money when demand
reduces thereby achieves energy consumption. Also, it can replace
unhealthy or unreachable instances to maintain higher availability for
customer applications.

Auto scaling helps to ensure the availability of the right quantity of
computing resources to handle customer requirements, by adding or
removing resources depending on the usage. It is one of the
properties of cloud computing to measure the quality of service
(QoS) and performance. The capacity of the resource is scaled up and
scaled down during the demand-supply of customers. Auto scaling
helps to reduce the cost of computation according to resource usage

and can provide a high level of services with customer satisfaction.
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During the scale-out process, VM instances are provided seamlessly
and automatically while during the scale-in process the unneeded
instances are turn-off automatically when demand decreases thus
save energy and money. Another advantage is that it replaces
unhealthy or unreachable instances to maintain higher availability of
customer applications. Thus on-demand cost-effective computing

with seamless execution is possible in the cloud.

Figure 1.4 shows the auto scaling by configuring resources either
allocate instances to new VMs or schedule to the existing

computational resources.

Auto scaling listener

_’ |

Resource Scale- Additional

Application| demand down resource | Application
increases Scale-up: allocated
Resources:
Configure and
I:> Boot New I:>
Allocated
VM Allocated
VMs

Resource Pool

Fig. 1.4 Auto scaling in a cloud infrastructure
1.3.2 Scheduling Constraints

Even though the cloud offers low-cost computing facilities, the
customer concern while adopting cloud as their computing platform
is cost, time and other QoS parameters. The service providers always
concern about their profit and energy consumption. Here we are
interested in performance oriented cloud scheduling that enables a

specific performance targets with minimized resource consumption.
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1.4 Service Level Agreements

The QoS requirement formally described in terms of an SLA
specification [14]. In order to provide customer requested QoS,
Infrastructure as a Service (laaS) providers plays a major role. To
maintain better performance and prevent breaches in SLAS, the laaS
providers must focus on virtualization, the fundamental building

block of Cloud infrastructure.

Usually, a Cloud SLA spans over many jurisdictions, with different
legal applications, especially the personal data hosted in the data
center. Also, there is a need for different SLA terminology and
models for different type of service providers. So it is difficult to
maintain a common format for SLA for comparison. In our study, we
have considered the following parameters for SLA statements covers
time including deadline requirements, cost and penalty, memory
requirements, storage requirements and network parameters like

delay.
1.5 QoS Oriented Cloud Scheduling

As with any service, such as household utilities, QoS plays a critical
role in ensuring that a customer or an end-user receives the service
for which they have paid [3]. QoS for this research is defined as
resource control mechanisms that guarantee a certain level of
performance and availability in terms of makespan including deadline

requirements, maintaining SLA, stability, cost of computation, etc.

Scheduling is generally considered as a difficult problem of
managing jobs within the given time constraint. However, the

problem becomes more complicated when QoS is also considered
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with scheduling. QoS depends on several factors like makespan,
delay, response time, over and under loaded conditions, violations in
Service Level Agreement (SLA), frequent migrations, system
stability, and parasitic load. Cost, energy and scalability decisions are

other factors that influence the performance.

There are a number of challenges facing to assure QoS in clouds. The
two core challenges involve first, the guarantee of resource
reservation by a binding agreement and second, the continued
provisioning of a resource to specified requirements. In the context of
Clouds, this translates to challenges in service provider
interoperability where unification of resource control mechanisms
and the resource types provisioned require standardization and
additionally in challenges a service provider must face with regards
to managing their resources efficiently and in selecting an appropriate
software stack to meet QoS requirements pertaining to the

performance and availability of provided resources.
1.5.1 Quiality factors

In cloud QoS oriented scheduling depends on time, financial, SLA,

stability and scalability factors.
1.5.1.1 Makespan

In cloud, most of the applications are deadline constrained, so it has
to complete within the stipulated time. Customers submitting tasks
with deadline constraints are mainly considered makespan or
completion time as the quality parameter. All the time-dependent
parameters such as response time and execution time are important

factors in achieving better QoS.
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1.5.1.2 Financial

Customers always prefer high-end computing facilities at a low cost.
The financial constraints are applicable to both customers and
providers. Customer always seeks for low cost with quality while
providers trying to increase their business by attracting more
customers so as to maximize their resource utilization and profit. If a
service provider is able to provide high-end computing resources to
their customers within their economic limit, it is a positive thing in

achieving good QoS.
1.5.1.3 Service Level Agreement

The purpose of SLA is to assure the QoS to the customers. The CSPs
that offer services to the customers by maintaining assured QoS in
the SLA. Any violations in the agreed conditions will degrade the
performance of the provider. So minimizing or avoiding SLA

breaches is another QoS factor.
1.5.1.4 Stability

The performance stability can be achieved through a good load
balancing mechanism. The performance drops off due to frequent
load balancing in the cloud data center. i.e transfer of computation
from one location to another or context switching affect or cause a
delay in completing assigned tasks. So the scheduling mechanisms
should consider the impact of performance fluctuations and mitigate

it with efficient load balancing mechanisms.
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1.4.1.5 Scalability

In cloud, scalability is the ability of service provider to expand their
infrastructure to handle the increased workload. With an intelligent
auto scaling mechanism, timely scaling of resources can be done to
avoid SLA breaches.

In general, to attract more customers, CSPs attempt to provide more
sophisticated services with QoS. For ensuring QoS, CSPs need more
accurate resource management services to process customer
submitted tasks. E.g. Amazon’s Elastic Compute Cloud (EC2),
provides an opportunity to auction based spot pricing. So the
techniques to handle spot prices will increase the quality of the

scheduling process.
1.6 Motivation

Most of the cloud scheduling techniques proposed so far is based on
time and cost parameters [19, 21, 23, 24, 26, 27, 28, 29]. Other
parameters such as agreed conditions in the SLA, load balancing, VM
migrations and energy considerations are also important factors that

affect the scheduling process.

The cloud computing has presented new opportunities to the
customers and application developers. They can benefit from the
cloud computing paradigm in-terms of economies of scales,
commoditization of assets and conformance to programming
standards. Its advantages such as low cost in pay-as-you-use criteria,
scalability, and elasticity quickly attracted several business

organizations.
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The utility type of delivery of services and instant pricing methods
termed it as a business model for computing services. So, economic
consideration is the primary issue in this model. Service providers
always look for profit and maximum utilization of their resources
with minimization of operational cost, energy, while consumers focus
on better quality oriented service with minimum cost and time. It is
quite easy when the cost is considered as the primary factor for
scheduling [32, 35, 37], but other factors are more important in

maintaining the quality of service.

The dynamicity of cloud makes resource management and task
scheduling as a cumbersome task. There are several scheduling
methods existing in cloud computing, due to its multi-tenant, on-
demand, elastic nature with pay-as-you-go model, but these methods
pose several challenges in the area of Quality of Service (QoS)
management. Since QoS is the fundamental right for cloud
customers, who expect service providers to deliver the announced or
agreed qualities, the cloud providers should find the right tradeoffs
between QoS levels and operational costs. So, more sophisticated
methods are required to improve the QoS scheduling. Proper
scheduling reduces the operational cost and response time in the
cloud.

Schedulers have to consider the trade-off between functional as well
as non-functional requirements to attract customers and QoS with
profit. In the large scale distributed systems like cloud, the efficiency
of scheduling algorithms is crucial for better efficiency and resource

utilization. The performance of the current state-of-art algorithms
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needs improvement to address this issue. So workload maximization

mechanisms are needed to increase the profit of service providers.

When demand for the services and users change in real-time, there is
a need for dynamic resource provisioning methods. The challenges to
resource provisioning include the distributed nature of resources,
uncertainty, and heterogeneity of resources. Few articles addressed
the load balancing method to improve the performance [58 - 61]. Due
to dynamic nature, resource capacity aware methods try to reallocate
customer requests to better physical servers to improve performance.
These frequent reallocations cause some delay to restart the
processing at new locations. Ultimately this causes performance
degradation in the makespan and thereby decreases in overall

performance.

The VM placement and live migration are trendy method to balance
the load which is achieved by different heuristic and hybrid
algorithms and optimization techniques. Frequent migrations are still
a problem to be resolved. The reallocation can be done by load
balancing techniques to get optimal results. Thus, there is a necessity

of better load balancing techniques in the cloud.

Green computing is the latest buzz word in the computing industry.
Data centers need huge power to run their infrastructure and
associated cooling facilities. In order to cool down the temperature
due to the operation of large server farms, proper air cooling and
circulation equipment are installed in data centers. Server
consolidation techniques will reduce the number of servers in the
active state, so that power consumption for servers and related

cooling equipment can be reduced. Too much workload on a server
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will result in the degradation of makespan and response time. i.e.,
adopting green computing and increasing resource utilization should
not degrade the quality of service delivered or cause any violations in
the agreed conditions in the SLA. So there is a need to improve the
scheduling process by considering the tradeoff between energy and
service quality. In particular sophisticated scheduling mechanism is

needed to address this issue.

Simultaneous optimizations of all parameters are difficult due to the
contradictory effect of each one. E.g., time and cost can’t be achieved
together. When we try to reduce computation time, it needs powerful
servers to complete the task and these powerful machines cost more
than slower servers. Using the multi-objective optimization method
this type of situation can be studied to obtain a better solution.

It is also a fact that for further enhancement in this field, some
challenging issues like performance interference are to be focused.
Energy optimization, promotional offers from providers such as spot
instance price, QoS and SLA considerations are major concerns that
need more attention and improvement for scheduling in cloud data

centers.

Guaranteeing SLA is the key task of a good scheduling mechanism in
maintaining QoS requirements. A proper SLA ensuring mechanism is
needed to ensure whether the provider delivers as in the agreement.
In order to ensure SLA, an SLA violation monitor mechanism with
penalty enforcement is needed. Applying penalty for each SLA
breaches will be a strong way to guarantee SLA conditions. A good

scheduling scheme is essential to address SLA management.
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Auto scaling of resources in cloud computing allows resource
provisioning dynamically and improves performance. The scalability
of the cloud increases the chances to allocate more users and
minimize SLA violations. Scalability helps to maintain QoS when the
demand of services varies with real-time computational environment.
The energy, delay, deadline, time and cost affect the scalability and
these issues are to be addressed in detail for load balancing and VM

placement.

In nutshell, the following are the issues in the existing cloud

scheduling:

Inefficient makespan handling procedures that cause delayed

completion of customer requests.

Inadequate load balancing for virtual machine migration methods

results in long makespan and a large number of migrations.

Inefficient energy consumption methods increase electricity usage

and operational cost.

Lack of methods to ensure system stability caused due to frequent

VM migrations that reduce QoS delivered.

Lack of auto scaling mechanisms with SLA enforcement which

results in pure QoS.

Lack of integrated methods to handle makespan, migrations with

stability, SLA with auto scaling and reduced cost.
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1.7 Problem Statement

To design and develop cloud scheduling techniques that guarantee

Quality of Service.
1.8 Research Objective

Creating scheduling algorithms that confine the customer's practical
needs and constraints would be extremely useful in the distributed
cloud systems. A scheduling policy which will be beneficial to both
service provider, as well as customers is needed. As a part of this
work, we have designed and implemented policies that will improve
the scheduling performance considering makespan, cost, energy,

stability, SLA and other Quality of Service (QoS) requirements.

In order to ensure the quality of service delivered in the cloud, the
following objectives are addressed in this thesis.

= To develop a method to handle makespan.

= To develop an efficient load balancing policy for handling
VM migrations.

= To develop a cluster-based load balancing for improving
energy efficiency.

= To enhance the stability of the cloud ecosystem with
interference prediction.

= To develop a scheduling method to enforce SLA with auto
scaling.

= To develop an integrated SLA enforcement method with

reduced cost.
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1.9 Thesis Organization

This thesis deals with the problems in makespan, load balancing,
energy, service level conditions and auto scaling in cloud computing.
We have organized this thesis into nine chapters. The rest of the
thesis is organized as follows:

Chapter 2 - presents a survey of different scheduling, load balancing,
and resource provisioning methods in Clouds. In this chapter, a
detailed classification and a correlation taking into account different
criteria of the overviewed literature/methods are exhibited and issues
in each method are tabulated.

Chapter 3 — proposes a Virtual Machine placement mechanism for
handling makespan. This method is based on the principle of Bin
packing method. It uses a Best-fit — Remaining-fit approach for VM

placement in the datacenter.

Chapter 4 — proposes an enhanced bee colony based algorithm for

scheduling and load balancing, to handle VM migrations.

Chapter 5 — proposes an energy-aware clustered load balancing
algorithm. In this, an energy-aware clustered load balancing system
in which, heterogeneous cloud resources are grouped into different

clusters, by using a partitioning based clustering algorithm.

Chapter 6 — proposes an interference aware prediction mechanism in
the cloud. Here the proposed model also predicts the optimal load and

threshold range for each physical server using the Pareto principle.
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Chapter 7 — proposes a Petri Net based scheduling model in an
elastic cloud to enforce service level agreements. Using the property

of Petri Nets, a model is developed to aid auto scaling process.

Chapter 8 — this chapter deals with an integrated approach for SLA
aware scheduling and load balancing method. It covers a prediction
model based on the past usage pattern and that aims to provide
optimal resource management without the violations of the agreed

service level conditions in cloud datacenters

Chapter 9 - concludes the thesis with a summary of the contributions

and discussion on future research directions.

24|



Contents

CHAPTER 2
LITERATURE SURVEY

2.1 INtroduction .......eeeeeeeeeeeeeenenenncncnnns

2.2 Parameter Centric Methods .....cccvevurniniirnacnnnenn.
221 MaKeSpan .......ccoviiiiiiiiii i
222 Delay ..o s
223 Deadline ............ccooiiiiiiiiiiii
224 Costand Profit ...............coiiiiiiiiee,
225 ENEIQY .o e
A R o 4 10) 4 U
227  Multi ObJectiVe ...oovviiiiiiiiiiieie e

2.3 VM Placement Methods ......cceeverurernrernsnnmnenneninnnnnens

2.4 Load Balancing Methods ......cccceeeineeninnenseennens

2.5 Dynamic and Adaptive Methods ....ccceeeeeeeeiecnenennnnnn.
251 SLAAware ...

2.6 Optimization Methods

2.5.2

Elasticity based ..............cooiiiiii

2.6.1 Linear programming models ............cccccrovnennns
2.6.2  Heuristic methods ...,
2.6.3  Meta-heuristic methods .............cccooiniiiinennn.
2.6.3.1 Genetic Algorithm ................cooeeee.

2.6.3.2 Ant Colony Optimization methods ......

2.6.3.3 Artificial Bee Colony methods .............

2.6.3.4 Particle Swarm Optimization methods..

2.6.4 Hybridmethods ...............coiiiiiiie e,

2.7 Review ODbSErvations .....ccceeeeereenreenensnn.
2.8 Design Considerations of the Thesis ........cccoeevieenenn...

26
27
29
30
32
33
37
37
39
40
42
44
44
45
46
47
49
49
51
51
53
53
55
57
59

25|



Chapter 2 Literature Survey

2.9 IMELEICS cuuerenneeeennneennnemmmeeneiiiiieiiiee e sireeesanreeesreeens 60
210 SUMMAIY..ceeeieiirineeiicreincnencnnes . 61

2.1 Introduction

The aim of a cloud scheduling model is the optimal allocation of
resources to the tasks. The optimal allocation is to ensure the
conditions mentioned in the service level agreements to deliver better
quality of service. Generally, scheduling algorithms are classified
into static and dynamic methods. We have considered and reviewed
scheduling models based on parameters, VM placement, load
balancing and dynamic-adaptive methods as shown in figure 2.1. It
can be also classified based on the optimization method used. This
classification is shown in figure 2.2 and a detailed description is

given in section 2.6.

Scheduling Models

— Parameter Centric

— VM Placement

— Load Balancing

— Dynamic & Adaptive

Fig. 2.1 General classification of scheduling models.
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Optimization Methods
I
1 L
Optimal Sub Optimal
] 1
I 1 1
Linear Heuristic Meta-Heuristic Hybrid
Programming

Fig. 2.2 Scheduling models based on optimization methods.
2.2 Parameter Centric Methods

The primary function of a cloud resource scheduling mechanism is to
identify the suitable resources for scheduling the apt workloads on
time and to increase the efficacy of resource utilization. An optimal
resource-workload mapping is required for the efficient performance
of scheduling methods. The main aim of cloud scheduling algorithms
is to achieve some user-specified parameters such as low makespan,
deadline achievement, low cost, increased system stability, etc. At the
same time, these methods have to improve the overall performance of
the cloud. Some methods are based on the conditions in the service
level agreement. Both customers' and providers' requirements are to
be considered for efficient resource allocation. The service providers
always looking to increase their profit and reduction in operational
cost, mainly power or energy consumption, while the consumers
focused at cost and good quality of service and experience. Our
literature review emphasizes resource scheduling algorithms based on
different scheduling parameter centric objectives or criteria. These

parameter centric scheduling objectives are shown in figure 2.3.
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Fig. 2.3 Parameter centric scheduling objectives

Makespan: It is the total completion time taken to complete a user-
submitted task. Most of the algorithms mentioned in this survey are

focused on makespan as an important parameter.

Delay: It is one of the important factors in measuring the quality of
service. Delay in giving responses to the customers is one of the

parameters considered in this review.

Deadline: Usually the scientific workflows submitted to the cloud
are to be completed within a specific time. This survey considered a

sufficient number of deadline constrained papers for the comparison.

Cost: The main objective of the cloud is to minimize the cost of
computation. The algorithms try to minimize the usage cost or try to
provide more efficient service to the customers with the amount they

spend to hire the service.

Profit: While offering low-cost services to the customers, CSPs are

trying to maximize their revenue by attracting more customers. This
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is usually done by giving different offerings to the customers and

maximizes their resource utilization rate.

Energy: Consumption of energy is crucial in reducing operational
costs. One of the main costs incurring in running a cloud datacenter is
energy cost. Most of the recently proposed methods are given keen

attention to power utilization and energy consumption.

Priority: Since different types of customers need a vivid variety of
services with varying preferences, priority is an important factor in

resource scheduling.

Multi-Objective: The recent advancements in cloud scheduling
methods have given attention to multiple criterions in task
scheduling. These criterions are sometimes contradictory, so a trade-

off is needed between different solutions produced by the scheduler.
2.2.1 Makespan

Makespan or completion time is the total elapsed time is the
difference between the time of submission of a task to the provider
and its completion. Usually, it is the sum of execution time, delay in
communications, response time, migration time, etc. Scheduling
focus on to reduce completion time [15] and to increase the
maximum utilization of resources [16, 17]. We have analyzed several
makespan oriented scheduling mechanisms and the details are
summarized in table 2.1. These papers failed to address migration
problems. Migrations cause complex interactions between different
entities in the cloud, which creates delay and finally it adversely

affects the overall performance of the system.
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Table 2.1: Makespan

Literature Survey

Paper Method

Parameters

Highlights

Limitations Environment

[15]  Fully Polynomial Migration time Load balancing High SLA  Simulation
Time violations
Approximation Makespan Lews
Algorithm Transmission  Lansmission
(FPTA) rate rate

Bandwidth

[16] VM migration Cost Load balancing Inefficient ~ Simulation
algorithm Migration time  Maximize

resource
Resource ilization
utilization time

Minimum

service

interruption

[17]  Cloud based Makespan Minimum Service Simulation
Workflow completion time interruptions
Scheduling Cost (MCT)

(CWSA)

[18] Map reduce Makespan Dynamic slot ~ Sub optimal Real
framework configuration  solutions
scheduling in Workload feedback
Hadoop e Ioa_d

Control-based  balancing
workload
estimation

2.2.2 Delay

A good scheduler should consider the delay in processing of user-

submitted tasks and the depreciation while evaluating the CSP

services. Queuing delay analysis [19] is one such method that

accounts for both delay-sensitive and delay-tolerant applications.

They used an optimal pricing strategy, based on profit maximization

problem, which is non-convex in nature. The methods proposed for

multi-cloud in [20, 21] causes additional delay and cost occurs due to

inter-cloud communications.

Its’ performance improvement and

financial savings are still significant than single cloud systems.
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Table 2.2: Delay

Paper Method Parameters Highlights Limitations Environment
[19] Pricing Profit Delay tolerance High energy Simulation
algorithm consumption
Delay
No SLA
Cost
[20] Resource Delay SLA constraints No priorities Sjmulation
allocgtlon Cost Multi-cloud No load
algorithm . -
resource allocation balancing
[21] Profit Delay Profit maximization Service Simulation
maximization interruption
a atio Cost Delay bound terruptio
Profit
[22] VM Delay Minimum delay No load Real
chedulin . . balancin
;Igori?hlmg Buffer size Minimum power "9
Power consumption Homogeneo
. resource:
High QoS us resources
[23] Computation  Delay Delay tolerance Frequent Simulation
offloading c ication Mini service
with energy ommunication Minimum energy interruption
cost consumption

constraints .
. Unreliable
Computation

cost

Energy

Cloud scheduling is a cumbersome task due to the uncertainty in the
arrival of tasks with guaranteeing service [20]. The profit
maximization problem can be solved by a Profit Maximization
Algorithm (PMA) and it provides a temporal task scheduling, which
can dynamically schedule all the arrived tasks that can be in private
or public clouds [21]. Most of the existing scheduling algorithms are
pre-emptive in nature and it causes frequent context switching [10,
21]. This is due to context switching need a certain amount of time
and energy for saving and loading the registers and mapping of

respective memory, updating various tables and lists, etc. This again
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is a cause for an increase in energy usage, delay, and CPU overhead.
The method proposed in [23] tried to mitigate these problems but
performance is poor. Works related to delay aware methods are
tabulated in table 2.2. In a nutshell, these methods tried to reduce the

delay, but the overall performance is very low.
2.2.3 Deadline

In maintaining QoS, the deadline of a task is a crucial parameter. If
the applications are deadline constrained, meeting its’ time limit is
critical and it is also a fact that there is no incentive if the application
finishes the task earlier. Meeting an application's deadline
requirement with the least number of resources will increase

customer satisfaction as well as providers' revenue [24].

Table 2.3: Deadline

Paper Method Parameter Highlights Limitations Environment
[24] Minimal Slack Time Execution Minimize Low Simulation
and Minimum time makespan efficiency
Distance (MSMD)
algorithm Cost In_stz_:\nge h_o ur
minimization
Auto-scaling
[25] Min-Min algorithm Execution Optimized High Simulation
Heuristic algorith time parameter-based  execution
eunstic algorthm sweep workflow  time
Cost
Deadline
[26] Heuristic algorithm Time Time slot filtering Pricing Simulation
- . interval not
Minimum Average Cost Greedy and fair- seTe ek
Cost First (MACF) based scheduling
No load
balancing

32|



Chapter 2 Literature Survey

Papers [25] and [26] proposed an intelligent mechanism to meet the
deadline constraints. In method [25] the workflow was executed in
multiple VM instances. They have evaluated the system with
different task mapping heuristics. Their experiment results show that
the proposed technique is able to lower cloud usage cost when the
time constraint is relaxed but have low efficiency. Also, these
methods don't use load balancing mechanisms. We have tabulated the
findings in table 2.3.

2.2.4 Cost and Profit

Since cloud deals with diverse workloads and applications, a one-fit-
all pricing policy does not provide flexibility to the user. Energy
efficiency, cost, and profit are interdependent. A flexible way of
controlling cloud systems is proposed in paper [27] to satisfy the user

and energy cost.

The bidding strategies based methods are mainly based on cost-
benefit analysis [31]. Here VM instances are allocated to the
customers based on all the received bids, as well as on the current
available computing capacity. The bid value above or below this
published price is declared either successful or unsuccessful. Auction
based methods depend on the spot instance price of the resources.
Users can submit bids to the market at any time, using the spot price
history to decide how much to bid. The provider sets the spot price at
regular time intervals, e.g., every five minutes, depending on the
number of bids received from users (demand) and how many
resources are available (supply) at each time slot [28, 32]. In these
mechanisms, users’ bids above the spot price are accepted, and that

below is rejected in each time slot. Running spot instances [37] are

33|



Chapter 2 Literature Survey

terminated if their original bid prices fall below the new spot price
and re-launched only when their bids again exceed the spot price.

Usually, these sport prices are based on historical prices.

The explosive growth of the Internet of Things (IoT), big data, and
emerging fog computing makes the involved services and related
resource management makes more complicated than ever before. Due
to resource limitations [32], resource heterogeneity [33], locality
restrictions, environmental necessities and dynamic nature of
resource demand, resource allocation and scheduling are one of the
essential problems, to be taken into account to adapt to the changing
infrastructure environments [35]. The current literatures give only an

overview and no substantive research on the above issues.

Table 2.4: Minimize cost

Paper Method Parameters Highlights Limitations Environment
[27]  Dynamic Cost Reducing horizon No load Simulation
replication control balancing
[28]  Offline simple task Cost Cost optimality ~ Slow Simulation
heduli i
seheduiing Makespan Cost performance performance
tradeoffs
[29]  Dynamic Data Cost Reduction in No load Simulation
Allocation operational cost  balancing
Makespan
[30]  Spotand dynamic Cost High biding Performance Simulation
pricing R option in online  overhead
esource Use - rpet
Waiting time

Interruption
rate

[31] Bidding strategy  Spot price Optimal bidding Interruption Simulation

A rh
Bid price overhead
[32]  Multi-criteria Cost/benefit  Reduce execution No load Simulation
decision making  ratio time balancing

framework
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Table 2.4: Minimize cost (Continued...)

Paper Method Parameters Highlights Limitations Environment
[33] Bayes classifier ~ Cost Minimize Interruption Simulation
T T execution time rate is high
. Minimize
Deadline operational cost
[34]  Priced Timed Petri Completion Pre-allocated No load Simulation
Net (PTPN) time resources balancing
Cost Credibility
evaluation
[35]  Scheduling based Cost Discriminating Interruption  Simulation
on Credit and Cost function overhead
Task penalty
Credit ori Maximization of No fairness
TeaItprice  seryice supplier  among tasks
[36] Paddy Field Cost Combinatorial Need Simulation
Algorithm (PFA) £ " double auction balancing of
. . xecution policy bid price and
Price detection Time spot price
algorithm Better service
satisfaction
[37]  Holistic brokerage Cost Scalability Underutilizat Simulation
model . ion of
SLA negotiation\ e

In the Petri Net model [34] credit evaluation about a provider is taken
as the primary parameter for task allocation. This uses an income
discriminate function value as a decision making factor for task pre-
emption. This market scheduler first schedules service-suppliers’
tasks with worse credibility among users while realizing the income
maximization of service suppliers so as to eradicate their bad
impression of “income-oriented”, but it doesn’t employ load

balancing methods.
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Table 2.5: Maximize profit

Paper Method Parameters Highlights Limitations Environment
[239] Mixed Integer Profit Server High SLA  Simulation
Non Linear Service consolidation violations
Programmin -
(MI?ILP) g Penalty Heuristic method  Slow
formulation No load
balancing
[240] Price detection  Revenue Minimum energy ~ Network Real
algorithm Profit consumption latency
Cooperation Revenue Delay
. maximization
Competition No load
balancing
[241] Profit driven Profit Scalability Delay in Simulation
optimization . service
Execution
Time Low
makespan

Market oriented cloud is another model to provide high QoS to the
customers and manage this quality during its lifetime [37]. Here
providers have to consider the different service quality parameters of
each customer. Here cloud resource management is based on the
supply demand ratio of resource and the aim is to reach market
equilibrium [29, 36, 37]. Cost minimization methods are summarized
in table 2.4.

Virtual Network Monitoring (VNM) is a big challenge for the service
provider since users send numerous requests to reserve computational
and network resources and they expect their QoS conditions to be
maintained through the request lifetime [38]. Price detection
algorithm [39], profit-driven optimization [40] are mainly focused on
profit but these methods have high SLA violations. The merits and

demerits of profit-oriented methods are given in table 2.5.
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2.2.5 Energy

The articles [38, 39] are based on Dynamic Voltage and Frequency
Scaling (DVFS) is proposed to reduce energy consumption. PreAnt
[40] policy with Bin packing algorithm also focused to reduce the
energy consumption. All the above methods lack QoS support thus
low efficiency. In paper [41] service providers and users reached an
agreement on energy-aware scheduling services. The collaborative
approach mentioned in [42] is also another such approach. The
summary of the above methods is given in table 2.6.

2.2.6 Priority

Some researchers considered priority parameters to schedule the tasks
but priority consideration is only good for high performance scientific
computing. The Memetic Algorithm (MA) in [63] merges the
concept of local and population based search to find a solution to the
scheduling problem. It is a static task scheduling scheme and not
suitable for a dynamic cloud environment. Another method [64] is
based on multiple priority queues. In a cloud computing environment,
multiple customers are submitting job requests with their constraints.
This method is suitable for scientific simulations such as weather
prediction, rainfall simulation, Monsoon prediction, and cyclone
simulation, etc., requires a huge amount of computing resources such
as processors, servers, storage, etc. In this situation, it will be a
problem for the cloud administrator to decide how to allocate the
available resources among the requested users to minimize makespan
and utilize resources effectively [65]. The summary table for the

above methods is provided in table 2.7.
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Table 2.6: Energy

Paper Method Parameters Highlights Limitations Environment
[38] DVFS Execution  Minimum energy Low Simulation
Bin packing time consumption ratio  efficiency
algorithm Cost (ECR)
Energy Minimum worst-case
Frequency €Xecution time
aueney: wee)
[39] DVS Energy Minimum energy Lack of Simulation
Energy-aware Execution ~ consumption QoS
Dynamic Task time Reduce cost support
Scheduling (EDTS) Cost No load
balancing
[40] PreAnt policy Energy Manage Service Simulation
Bin packing Execution instantaneous peak interruption
algorithm time load
Resource intensive
application with QoS
[41] Optimal resource  Energy Increase utility and  No load Simulation
allocation with pre- cost productivity balancing
determined task 5, Linear programming Perform-
placement& ~  o5njetion  Method ance
resource allocation ;.0 degradation
algorithm
[42] Lagrange relaxation Energy Collaborative task  Low Simulation
based Aggregated  Delay execution efficiency
Cost Algorithm Deadline  One-climb policy ~ No load
(LRAC) Minimum energy ~ balancing
consumption
Table 2.7: Priority
Paper Method Parameter Highlights Limitations Environment
[63] Memetic - GA  Makespan Optimization Delay Simulation
method e
Speed Earliest finishing No load
time balancing
[64] Priority Time Maximum profit Frequent Simulation
algorithm Cost Minimum wastage migrations
of resources Low response
time
[65] Min-Min Makespan Scalability Less fault Simulation
algorithm . tolerance
gon Cost Load balancing
Priority-based Frequent
scheduling migrations
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2.2.7 Multi objective

Multi-objective task scheduling algorithms are predominantly well
suited to deal with cloud optimization problems. Some meta-
heuristics methods like simulated annealing [46], Evolutionary
Algorithms (EA) [47] and Particle Swarm Optimization (PSO) [43]
have been proposed to address resource allocation process in the
cloud. Since Genetic Algorithm (GA) is highly time complex, it is
not practically suited for large-scale applications. A PSO-based
heuristics [44] is another method to schedule applications to cloud
resources that take into accounts both computation and energy cost.
The main limitation of evolutionary algorithms is their high
computational cost due to their slow convergence rate. So some sort
of hybridization or enhancement is needed in this type of method.
The DVFS based method [43] is to minimize energy consumption
along with time and cost. This technique allows processors to operate

in different voltage supply levels by sacrificing clock frequencies.

The main aim of multi-objective scheduling strategy is to find a
trade-off between customer requirements and provider or resource
constraints. i.e., the user-submitted tasks have different requirements
on computing time, memory space, data traffic, deadline, response
time, etc. While the cloud resources are heterogeneous and
distributed. One of the problems in the meta-heuristic method is the
ability to avoid getting stuck with sub optimal solutions. Most of the
nature inspired heuristic algorithms like GA and bee colony [45] are
suitable for cloud scheduling, but we have provided detailed reviews
in section 2.6. The summarized information about multi objective

methods are shown in table 2.8.
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Table 2.8: Multi-objective

Paper Method Parameter Highlights Limitations Environment
[43] PSO,DVFS & Cost Workflow Low Simulation
HEFT algorithm Time Scheduling  efficiency
Energy Energy Sub optimal
consumption  response time
[44] Nested PSO- Energy Energy Low service  Simulation
based multi- time optimization  availability
objective task Frequent
scheduling migrations
[45] ABC Algorithm Cost Optimization Frequent Simulation
Time in time and migrations
Energy cost
[46] Multi-objective Time Scalability Low Simulation
cat swarm Cost efficiency
optimization Slower
with SA Sub optimal
solutions
[47] Multi-objective Waiting  Minimize Low Simulation
Evolutionary  time energy efficiency
Algorithm Cost consumption  Slower
(MEA) Energy Cost and time Sub optimal
optimization  solutions
[48] Min-Minbased Time Multi- Lack of Simulation
time and cost  Cost objective failure
trade-off optimization  recovery
algorithm model

2.3 VM Placement Methods

In l1aaS cloud, the major interface to the users to run their applications
through VMs. Here the users can create or maintain with their own
VM preferences. Also, they can maintain software installations and
have complete control over their VM Images. VM creation and
management is complex due to its scale and variety. The VM image
content can be stored as a file, a block device, a logical volume, a
root partition or a complete hard disk drive. So VM placement is a

big challenging problem.
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Table 2.9: VM placement

Paper Method Parameter Highlights Limitations Environment
[49] Common Time Maximize resource Unableto  Simulation
Deployment i utilization handle
Model (CDM) Bandwidth . network
M Use of active and latency
emory passive directory
[50]  Adaptive Bandwidth Slicing scheduled Low Simulation
spread based tenant request model  efficiency
; Cost
ez LY Maximize acceptance Slow
algorithm Response . p
) ate
time Low
Minimize power usage response
rate time
[51] Discrete PSO Response  Maximize resource Less reliable Simulation
time utilization
Low
Cost Minimize energy response
consumption time
[52] MigrateFS Cost Optimization model ~ Low Simulation
Igorithm . - rforman
algorit Execution  Scalability performance
im .
time Detecting SLA
violation
[53] VM resource  Price Resource utilization Low Simulation
d i . L. . f
ynamic Bandwidth Minimize pricing performance
scheduling No load
algorithm 0 loal
balancing
[54] Greedy & PSO Completion Convergence rate is No load Simulation
Algorithm Time optimized balancing
Cost Reduced completion
time
[55] PSO Energy Energy efficient VM No load Simulation
placement balancing
No SLA
[56] Improved PSO Time Increased resource No load Simulation
availability balancing
No SLA
[57] Hybrid discrete Cost Energy efficient VM Frequent Simulation
PSO Energy placement migrations
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The adaptive spread policy based on PSO algorithm used [51] is one
such method to differentiate the long and short user requests based on
a threshold value. It achieves energy savings and carbon emissions
reduction, using server consolidation technology. It consolidates
multiple applications on the same physical machine, with each
application typically running on its own virtual machines. In the
context of virtualized data centers, it is a critical concern to design
energy-efficient virtual machine placement approaches that reduce

energy consumption while satisfying customers [55, 56, 57].

The bandwidth oriented mechanism [53] also load balancing issue.
In short, we can say that there are two VM placement models namely
conventional and economic models. The conventional models assume
that resource providers are non-strategic, whereas economic models
assume that resource providers are rational and intelligent. In
conventional methods, a user pays for the consumed service. In
economic models, a user pays are based on the value derived from the
service. Hence cost-aware VM placement models are more
appropriate in the context of cloud. The details are summarized in
table 2.9.

2.4 Load Balancing Methods

An optimal load in each physical server will improve the system
performance. A load balancing method aims to avoid overloaded or
under loaded conditions in a physical machine or server. Too much
load will result in the violations in SLA conditions and thereby
performance degradation and financial loss. So to maintain QoS
guaranteed service providers have to adopt suitable load balancing

mechanisms across their computational resources. When overload
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causes performance degradation while under loaded conditions will
results in high power consumption, energy and cost. An advanced
cross-entropy based stochastic method [58] for workload scheduling
proposed load balancing is one such method but it creates frequent
migrations. Developing high performance workload scheduling
techniques in cloud computing imposes a great challenge that has
been extensively studied by several researchers. Most of the previous
works aim only at minimizing the completion time of tasks.
However, timeliness is not the only concern, while reliability and
security are also very important. The load-balanced scheduling
focuses on evenly distributing traffic among all links in a data centre
network to enable the network to transmit more data flows with lower

average end-to-end transmission delay.

Due to high cost and low programmable ability, traditional hardware
based load balancing techniques cannot be widely used in
datacenters. Therefore, some researchers pay more attention on
software-defined networking (SDN) techniques (e.g., OpenFlow) [59]
that can improve the transmission capacity of data centers through

programmable load balanced flow control.

A Task Based System Load Balancing method using Particle Swarm
Optimization (TBSLBPSO) [60] that achieves system load balancing
by transferring only extra tasks from an overloaded VM instead of
migrating the entire overloaded VM. There are several other models
to migrate and balance workload across data centre to improve
computation [61]. A good load balancing method also has to limit
frequent migrations. Frequent migrations will create an imbalance in

the system, and that ultimately affects performance. We have
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reviewed several literatures that deals with load balancing issue and
the summary of the findings of these methods are tabulated in table
2.10.

Table 2.10: Load balancing methods

Paper Method Parameter Highlights Limitations  Environment
[58]  Advanced Cross- Service Scalability Delay Simulation
Entropy b ased  rate Flexibility Frequent
Stochastic Arrival rate migrations
Scheduling Optimize QoS >
[59]  Static offline Bandwidth Minimize inter- Low efficiency Simulation
optimal datacenter network Delay
Igorithm .
algorit load reduction
Network
Overhead
Minimization
[60] Task-Based Time Pre-copy process  Delay Simulation
System Load Transf maximizes resource F t
Balancing i ranster consumption r_equte_n
(TBSLB) ime migrations
Cost
[61] Two stage load Cost Pareto optimality ~ Low Simulation
balancing performance
Power
Delay

2.5 Dynamic and Adaptive Methods

Dynamic and adaptive methods are needed to schedule the diverse
and distributed cloud resources efficiently. In order to meet customer
requirements, this kind of method is necessary for the rapid and

efficient leverage of cloud resources.
2.5.1 SLA aware

The aim of SLA aware methods is to provide services with high-

quality service as customer requested. To harmonize the SLA as well
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as to reduce operational cost intelligent mechanisms are needed. Only
a few SLA aware works are currently available in this area. An SLA
aware hybrid cloud scheduling algorithm is used in an elastic
autonomous service network to solve these issues [62]. The details

are shown in table 2.11.

Table 2.11: SLA aware

Paper Method Parameter Highlights Limitations Environment
[62] Hybrid cloud Cost Elastic autonomous No load Simulation
scheduler Deadli service network balancing
algorithm €adline
[189] Power aware Cost PM Clustering Limited to Simulation
consolidation P scientific
ower workflows
[231] Elastic service  Cost Column generation Sub optimal ~ Simulation
placement method solution

2.5.2 Elasticity based

In the cloud, elasticity can be defined as how the amount of
computing resource changes with the current workload. This
definition is quantitative and measurable; however, such a definition
of responsiveness is not entirely adequate, since it only considers
how much, not how fast, the computing resource adapts. If the
provider takes a long time to provide the correct amount of resources
to match the workload (which might not be current anymore), it is not
considered as elastic. So the elasticity is meaningful to the cloud
users only when the acquired VM resources can be provisioned in
time within the user expectation. The long unexpected VM start-up
time could result in resource under-provisioning, which will

inevitably hurt system performance [67]. Similarly, the long
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unexpected VM shut-down time could result in resource over-
provisioning, which will inevitably hurt resource utilization. The
auto-scaling capability of the cloud can ensure the service with QoS
with minimizing the makespan and cost [68]. Table 2.12 gives a

summary of elasticity based methods in cloud scheduling.

Table 2.12: Elasticity based

Paper Method Parameter Highlights  Limitations Environment
[66] Open Cloud Computing Time Autonomic ~ Multiple Real
Interface (OCCI) loop autonomic
Cost 100
P
[67] On-site elastic algorithm Execution Multi-level ~ Performance Simulation
time QoS service  degradation
& Dela
Cost y
Frequent
migrations
[68] Dynamic Fault-Tolerant Execution Primary Delay Simulation
Scheduling (FASTER)  Deadline  backup-based No load
Algorithm scheduling 0 loa
balancing
Auto scaling
Backward
shifting
Resource
utilization

2.6 Optimization Methods

As mentioned in the introduction, another classification of scheduling
method is based on the optimization policies used in the algorithms.
The dynamic nature of the cloud environment makes task scheduling
as a cumbersome task. Scheduling in the dynamic cloud environment
is NP-hard, so finding an optimal solution for the task assignment is
difficult. Also, the solutions are obtained by taking several

assumptions on the state of the cloud ecosystem. Nature inspired
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algorithms are capable to produce good sub optimal solutions using
heuristics. Heuristics used by ants, bees, and flock of birds are some
of the examples. The sub optimal category of algorithms can be
further classified into heuristic, meta-heuristic and hybrid algorithms,

based on how they are applied in the application scenario.
2.6.1 Linear programming model

Linear programming (also called linear optimization) is a method to
achieve the best outcome (such as maximum profit or lowest cost) in
a mathematical model whose requirements are represented by linear
relationships. It is a special case of mathematical programming. An
intelligent agent based approach [69] considers availability, price and
time as scheduling criterion, but it lacks load balancing. Large scale
cloudlet scheduling mechanism proposed in [70] is based on
bandwidth and latency, but it is only suitable for scientific workloads
and suffers a load balancing issue. A fault-tolerant system with less
power consumption is created by a Bayesian approach [71] is good,
but it is to be improved to consider load balancing and cost.
Stochastic models [72], RIAL [73], Greedy method [74] produces
only near optimal solutions. The summary of the above methods is

shown in table 2.13.
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Table 2.13: Linear programming models

Paper Method Parameter Highlights Limitations  Environment
[69] Intelligent agent  Price Agent-based No Simulation
d h A ti int bili

based approac Availability computing interoperability
Ti Event condition  No load
Ime action balancing
[70] Optimum Latency Large scaling of No workload Real
cloudlet selection Bandwidth cloudlet management
strategy - deployment No load
t_esponse Optimal cloudlet balancing
Ime placement
[71] Bayesian Energy Fault recovery No power Simulation
Approach . system consumption
op Execution Y P
Semi-Markov time No cost
model consideration
[72] Hierarchical Time Workload Execution cost Simulation
Stochastic management is high
modelils*ngl} Workload g 159
No load
balancing
[73] Resource Bandwidth Minimize VM Sub optimal ~ Simulation
Intensive Aware M communication  solutions
Load (RIAL) EMOry  cost Frequent
Balancin i . N
g Time Load balancing  migrations
cost
[74] Greedy algorithm Time Revenue No SLA Simulation
maximization
No power
consumption
[76] Practical Cost Security Frequent Simulation
outsourcing overhead migrations
[77] Integer Linear Power, cost Machine learning High overhead Simulation
Programming S based VM
(ILP) eliElefs allocation
Bandwidth
[78] Duality Theorem Cost Feasible region  No stability Simulation

Affine Mapping

protection
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2.6.2 Heuristic methods

Heuristic methods are another class of methods proposed for cloud
scheduling. The term heuristic is used for algorithms that find
solutions among all possible ones, but they do not guarantee the
optimal result. So they can be considered as approximate algorithms.
These algorithms, usually find a solution close to the best one and
they find it fast and easily. These algorithms are designed to solve
problems in a faster and more efficient manner than traditional
methods by sacrificing optimality, accuracy, precision or

completeness for speed.

There are few articles that discuss heuristic algorithms which suggest
some approximations to the solution of optimization problems. In
such problems, the objective is to find the optimal of all possible
solutions by minimizing or maximizing the objective function [80,
83, 85, 86]. In this method, the objective function is used to evaluate
the quality of the generated solution. Even if an exact algorithm can
be developed, its time or space complexity may turn out
unacceptable. In reality, it is often sufficient to find an approximate
or partial solution. Such admission extends the set of techniques to

cope with the problem. Heuristic methods are covered in table 2.14.
2.6.3 Meta-heuristic methods

Heuristic algorithms are good for specific applications and it gives
optimal solutions within a specific time. Meta-heuristic algorithms
are computationally more complex than heuristic algorithms and
more suited for general purpose problems. In the dynamic cloud, the

environment is challenging, meta-heuristics are a good solution for
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obtaining optimal solutions. Several cloud scheduling methods that
used meta-heuristic approach are based on nature inspired algorithms.
The most prominent nature inspired methods used for cloud
scheduling are shown in figure 2.4.

Nature inspired Cloud *  GA- Genetic Algorithm
scheduling algorithms e  ACO- Ant Colony Optimization
L

*  ABC - Artificial Bee Colony
e  PSO - Particle Swarm Optimization

[ GA ACO [ ABC PSO

Fig. 2.4 Nature inspired algorithms

Table 2.14: Heuristic methods

Paper Method Parameter Highlights Limitations  Environment
[79]  Greedy-Ant Makespan  Minimize Slow Simulation
scheduling . execution time
Priority
[80] Modified Best-Fit Cost Autonomic No SLA Simulation
Decreasing £ energy-aware
(MBFD) nergy mechanism
[81] Elasticity Based Cost Self-managed Inefficient Simulation
Scheduling .
Heuristic (EBSH) Profit Slow
[82] Local search Energy Minimize energy  No load Real
. consumption balancing
Time
Bandwidth
[83] Based on Bayes Cost Maximize Low Simulation
theorem and Mak posteriori throughput
Clustering aespan probability value
[84] PSO algorithm  Cost Distribution of No energy Simulation
workload consideration
[85] Critical-Path Execution  Good time Frequent Simulation
based heuristic ~ time management migrations
Cost
[86] Hyper-Heuristic Cost Optimization in ~ Frequent Simulation
Scheduling makespan migrations
Algorithm Makespan
(HHSA)
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2.6.3.1 Genetic Algorithm

The basis of Genetic Algorithm (GA) is the principle of evolution
and natural genetics. It combines the exploitation of past results with
the exploration of new areas of the search space. By using the
survival of the fittest techniques combined with a structured yet
randomized information exchange, GA can mimic some of the
innovative flair of human search [87]. Genetic algorithms based
cloud scheduling shows great efficiency in small instances as in
timetabling problems, but are not efficient in large instances. GA
combined with the stochastic method also shows low efficiency [88].
The tabular information about GA based methods is given in table
2.15.

Table 2.15: GA based methods

Paper Method Parameter Highlights Limitations Environment

[87] GA Completion Minimize Sub optimal Simulation

Local Search Time/Makespan completion time solutions

(LS) technique Workload

[88] Johnson’srule Makespan Multi-processor No load Simulation

based GA Cost scheduling balancing

Low complexity

2.6.3.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is based on real ant's behaviour to
find a good food source from their nest. The principle behind ACO
based algorithm is that ant's ability to produces pheromone and leaves
it into the way they travel. The intensity of pheromone increases

when more ants travel on the same way. Then find out the shortest
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path based on the intensity of the pheromone. The ACO based
scheduling methods simulate the searching behaviour of artificial
ant’s colonies to find a solution. The papers [90, 91, 95] proposed
ACO to reduce the makespan of tasks. While methods proposed in
[92, 93, 94] are to reduce energy consumption in the cloud
datacenters. A few methods are derived to load balance the cloud
[96]. The convergence speeds of these algorithms are quite slow,
hybrid methods are necessary to speed up and to deal with multi-

objective optimization. ACO based methods are tabulated in table

Literature Survey

2.16.
Table 2.16: Ant Colony Optimization methods
Paper Method Parameters Highlights Limitations Environment
[89] Basic ACO  Makespan Random No load Simulation
optimization balancing
Slow
[90] Modified Response Two level cloud  High network  Simulation
ACO time scheduler communication
Throughput Slow
[91] Load Makespan Load balancing Slower when  Simulation
balanced number of
ACO iterations are
high
[92] Basic ACO  Energy Energy aware No load Simulation
balancing
[93] Modified Energy VM consolidation No load Simulation
ACO balancing
[94] Multi Energy Scalability No load Simulation
objective balancing
ACO Resource
usage
[95] List ACO Deadline Deadline Slow Simulation
Cost constrained
[96] LB-ACO Makespan Load balancing Sub optimal Simulation
solutions

Multi-objective
Scheduling
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2.6.3.3 Artificial Bee Colony methods

Artificial Bee Colony (ABC) algorithm is developed based on the
foraging behaviour of honey bees to find a food source. It can be
compared with other methods. The algorithm gives the efficient
performance as it uses both global exploration search and local
exploitation search. The works in [97] addressed time and cost but
not considered load balancing issues. While the paper [98] tested in
private cloud system focused only on energy consumption. The
inefficient load balancing mechanism used in heuristic ABC [99]
causes frequent migrations. Our findings are summarized in table
2.17.

Table 2.17: Artificial Bee Colony methods

Paper Method Parameter Highlights Limitations  Environment
[97] Pareto- based Response  High profit No priority Simulation
ABC time A
Minimize cost Frequent
Cost Load balancing migrations
Makespan
[98] Power-aware  Power Energy Delay Simulation
ABC ti
Energy consumption No load
balancing
[99] Heuristic ABC Makespan  Maximize resource Inefficient Simulation
(HABC) Cost utilization load balancing

Load balancing

2.6.3.4 Particle Swarm Optimization methods

Continuous optimization without prior information is the principle
behind Particle Swarm Optimization (PSO). Researchers have
proposed several methods to address cloud scheduling problems with
multiple objectives [102, 106, 109]. The PSO-based methods [55, 56,
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57, 109, 114] balance the load across the data centres. While the
methods [108, 110, 113] focused on computation time, deadline,
energy, and profit without load balancing. Table 2.18 gives a
summary of PSO methods.

Table 2.18: Particle Swarm Optimization methods

Paper Method Parameter Highlights Limitations  Environment
[100] PSO Makespan  Optimized No QoS Simulation
. execution time
Execution
time
[101] Modified PSO  Completion Load balancing  Slow Simulation
GA time Minimized
Makespan  Execution time
[102] MOPSO Makespan ~ Minimum time & No load Simulation
Waiting energy balancing
time
[103] PSO Execution  Lower execution No scalability Simulation
time time
Response
time
Cost
[104] Self- adaptive Makespan  Load balancing  No SLA Simulation
learning PSO Cost based on resource
usage
[105] PSO Makespan  Minimizes VMs No SLA Simulation
down time
[106] Multi-objective Makespan  Dynamic voltage SLA and Simulation
Pareto based PSO Cost and frequency energy not
scaling considered
[107] PSO for Energy Energy Self adaptive Homogeneous Simulation
Saving (PS-ES) . N cloud
Time Minimize energy
Higher
migration rate
[55] PSO Energy VM placement  No load Simulation
balancing
No SLA
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Table 2.18: Particle Swarm Optimization methods (Continued...)

Paper Method Parameter  Highlights Limitations Environment
[56] Improved PSO  Energy VM placement No load Simulation
balancing
No SLA
[57] Hybrid PSO Cost Energy efficient ~ Slow Simulation
Energy VM placement E
with PSO-TS UL
migrations
[108] Self-Adaptive  Deadline No formal inter-  No load Simulation
Learning PSO  Cost cloud agreement is balancing
needed to
outsource tasks
[109] Multi-objective Time Considered Only quasi-  Simulation
PSO Energy scheduling optimal
problem as a solutions
discrete task No load
permutation balancing
[110] Heterogeneous Deadline Minimize overall Convergent  Simulation
dynamic Cost execution cost time is high
resource while meeting a S|
provisioning user defined ow
deadline
[111] PSO Cost PSO with Energyand  Simulation
Time embedded cross  SLA not
over and mutation considered
operation
[112] PSO Computation Simple heuristics Energy and  Simulation
Transmission PSO with load SLA not
cost consideration considered
[113] Discrete PSO  Cost Discrete PSO with No load Simulation
Deadline deadline balancing
constraints No SLA

2.6.4 Hybrid methods

Hybrid methods are a combination of two or more algorithms to
perform a task and obtain optimal solutions than a single algorithm.
These algorithms are suitable for NP-hard problems like cloud

scheduling in a cost effective manner with minimum execution time.
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Table 2.19: Hybrid methods

Paper Method Parameter Highlights Limitations  Environment
[114] Hybrid PSO Makespan  List based No SLA Simulation
Cost heuristic algorithm
Imbalance
[115] SA-PSO Delay Optimized No QoS Simulation
Temporal delay Cost throughput
bound Delay bound
[116] ACO-ABC-PSO Makespan Load balancing ~ No QoS Simulation
Dynamic meta- Cost
heuristic
Energy
[117] ACO-PSO-SA Makespan Load balancing  Slow Simulation
Scalable multi- Cost Reduce Frequent
objective-Cat £ operational cost ~ migrations
Swarm nergy
Optimization
based SA
(CSM-CSOSA)
[118] ACO-PSO Response  High fault Homogeneous Simulation
Hvbrid met time tolerance SEervers.
h yorid meta-— pesource High resource High cost
ELTIEE utilization  utilization
Low computing
time under high
load
Low response time
[119] Hybrid ACO- Resource Avoids premature Single Simulation
PSO utilization  solutions objective
Makespan No load
balancing
[120] ACO-PSO with Makespan  Load sharing Single targeted Simulation
Min-Max scheduling
Cost
No SLA
[121] GA-PSO Makespan  High resource Low efficiency Simulation
utilization
GA - Hybrid Cost . No SLA
PSO method Low computing

time

Temporal Task Scheduling Algorithm (TTSA) is an example of

optimizing the throughput by using hybrid methods [115] in the
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cloud. It considers delay and cost factor but SLA factors not
considered. To improve the efficiency of the scheduling process,
currently available literatures are considering different parameters.
Cloud Scalable Multi-objective (CSM) task scheduling and
optimization algorithm [117] based on Simulated Annealing (SA)
algorithm considers execution time and cost. The novelty of the
method is that its design enhances the local search procedure of the
algorithm in exploring a larger search space that returns better
optimum solutions. It is slow and frequent migrations affect system

performance.

Nature inspired algorithms can easily combine with classical
algorithms or with other heuristic algorithms, which gives better
results. The hybrid algorithms mentioned here are based on response
time [118], artificial intelligence network load balancing using ACO
[119] and modified GA [120].

In paper [121] the crossover strategy and mutation strategy of the GA
is embedded into PSO, so that it can play a role in the discrete
problem. This hybrid method improves the solution quality, so it can
be used as an effective way to solve the cost minimization problem in
workflow scheduling, but convergence speed is low. Table 2.19
summarizes the different hybrid methods in cloud resource and task

management.
2.7 Review Observations

Our detailed literature review analyzed various problems in resource
allocation, task scheduling, VM placement, and load balancing

methods in the cloud. These literatures are grouped based on the
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objectives considered, methodology used, etc. Also, we have

analyze

d the platform in which the methods were tested.

Since the cloud is a business model, financial considerations are the

primary issue addressed by most of the methods. Service providers

always
and m
focuses

time. O

look for profit by maximization of their resource utilization
inimization of operational cost, energy, while consumer
on better quality oriented service within minimum cost and

ther observations are

Makespan Minimization: One of the important parameters
that directly affect QoS is the makespan, which needs more
attention.

System Stability and Load Balancing: Methods proposed
for load balancing affect system stability severely due to
frequent migrations. This needs immediate attention to
achieve QoS in cloud scheduling.

Energy conservation: In order to harness the green
computing data centers need energy-aware resource allocation
methods.

SLA consideration: Guaranteeing SLA is the key task in
maintaining good quality of service.

Optimization methods: Cloud scheduling is multi-objective
optimization problem with conflicting objectives. Most of the
methods describe in the literature tested in static conditions
and major consideration is a single parameter. Integrated QoS
scheduling methods are needed due to the dynamic nature of

the cloud environment.
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2.8 Design Considerations of the Thesis

An optimal scheduling policy is to be designed to mitigate the issues
in cloud scheduling and ensure QoS. Hence, the design

considerations are:

Optimal scheduling to minimize makespan: The improvement in
the efficiency of the scheduling process mostly in terms of makespan,
cost, and profit. The optimal scheduling improves cloud performance,
by minimizing makespan, operational cost and response time. This
benefits both customers as well as cloud service providers. Other
factors that affect QoS in cloud scheduling needs are to be addressed.
For these advanced techniques are needed to consider these factors to

improve QoS in the cloud.

Load balancing and VM placement to achieve better makespan
and stability: Proper placement of workload across multiple physical
servers will enhance the system performance in terms of makespan
and stability. Since the frequent VM migrations affect system

stability, an enhanced load balancing and VM placement is required.

Energy consideration: Since cloud datacenters consume a large
quantity of power, intelligent power aware resource monitoring and

managing methods are needed to support green computing.

Cost and budget control: In the pay-per-use paradigm, the resources
and services are being billed per usage, so changes in computation
cost is a vital factor in adopting cloud computing. Hence a cost

aware-budget control system is needed for transparency.
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Scalability: SLA violations can be reduced with dynamic autoscaling
of resources. The energy, delay, deadline, time and cost affect the
scalability. Dynamic methods are needed for proper scaling

decisions.

QoS and SLA: SLA oriented computing promises services with
certain quality conditions stipulated in the agreement between
customers and providers. Even though the quality of a service
depends on customer perception and quality of experience, intelligent
methods are necessary to manage and ensure QoS. Efficient QoS and

SLA oriented methods will also reduce violations in the SLA.

Prediction mechanisms: Efficient workload prediction mechanisms
to conduct service level violation free resource allocation. An
interference prediction mechanism to mitigate SLA violations and aid

auto scaling.
2.9 Metrics

Different performance metrics to evaluate the effectiveness of the
methods proposed in this thesis are as follows:

Makespan

Number of Physical Machines used
Energy/Power

Number of VM Migrations

SLA Violations

o ~ W e

Apart from this, specific metrics are used for evaluation purposes in

the respective chapter of the thesis.
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2.10 Summary

This chapter reviewed and identified highlights and limitations of
different scheduling methodologies. After careful study, we have
decided to address the issues in cloud scheduling to provide better
QoS. Also, various metrics are identified to evaluate the performance

of the proposed methods.
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3.1 Introduction

73

In this chapter, a VM placement mechanism is proposed for the

improved quality in the cloud scheduling by handling makespan. This

technique is based on the principle of Bin packing method. The main

objective of the proposed work is to minimize the makespan,

maximize the cloud resource utilization as well as the reduction in

power consumption. We have implemented four methods namely
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Best-Best, Worst-Worst, Worst-Best, and Best-Remaining. In the
proposed Best-Remaining method the incoming user requests are
scheduled using the best-fit method. The cloud broker employs
worst-fit method for VM placement. The experimental results show
that the Best-fit — Remaining-fit strategy reduces makespan compared
to other methods. It also efficiently places the VMs to the less
number of active physical servers that improves the performance of
the cloud system.

3.1.1 Makespan and VM placement

The most critical operation in cloud scheduling is VM placement.
VM placement is the process of determining the most appropriate
physical server or machine to host the user requested VM. The
optimal selection of the physical server may be based on makespan,
energy consideration, processing power, and resource utilization.
These VM selections should also consider QoS parameters provided
by the service provider and requested by the cloud customer. Usually,
all users are concerned about the makespan of their submitted tasks
[15].

In l1aaS cloud main interface to the cloud resources are VMs where
users run their applications. Depending upon the provider policy,
sometimes they allow users to create and maintain VM images (VMI)
with their own requirements (e.g., on Amazon EC2). The design and
implementation of the virtual machine image management
mechanism are challenging, due to the scale, complexity, variety, and
dynamics of VMIs. Since cloud providers are more concerned about
energy reduction, carbon emission reduction, optimal VM placement

and server consolidation mechanism is needed. An efficient

63|



Chapter 3 Handling Makespan

placement mechanism allocates the optimal number of VMs in a
physical server to maintain makespan consideration. So it is a critical
task to design an energy-efficient VM placement mechanism with
other quality of service requirements especially makespan
requirement by the customer [55, 57, 122]. The overview of VM
placement mechanism is shown in figure 3.1. Here physical servers
are sliced into a number of VMs. The user requested VMs are
mapped into the appropriate VM images available in the service
provider's conditions. Then the VM placement mechanism maps
these VM images to the physical servers based on the current status
of each server. These conditions may include load, makespan, storage

and memory requirements, etc.

User requests

by

VM Image Pool
YVYY
VM Placement Mechanism
A 4 v v
VM VM VM VM VM
VM VM VM VM VM VM VM VM
Physical Server / Physical Server 2 Physical Server n

Fig. 3.1 Overview of VM Placement Mechanism
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The resource multiplexing with the help of virtualization technology
improves the overall utilization rate and mainly reduces the total cost
of ownership. Several works are available to solve the issues in VM
placement in the cloud, which addresses various performance
parameters [123], availability [124], network [125], and cost [126].
The service providers are more concerned about revenue generation
in VM placement [127, 128]. Providers always tried to find an
optimal VM placement that will minimize the cost of operation and
maintenance of the infrastructure with good quality of service to the

users.
3.2 Proposed Method

Our proposed architecture consists of the following components:
cloud customers, cloud broker, database manager, virtual machines,
physical machines, and several cloud providers. The architecture is
shown in figure 3.2.

Here the jobs are assigned to the physical servers in two stages. In the
first phase, the customers submit their jobs and respective
requirements to the service providers. This is done through the cloud
broker. The cloud broker acts as an intermediary component between
the customers and the providers. The responsibility of the broker is to
place the submitted jobs to the appropriate VMs provided by the
service providers. The VM repository stores predefined images of the
VMs. In the second phase, the optimization of VM placements to the
physical machines are done.
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User 1 User2 Usern

Job Pool (Job /, 2, ....... n)

Cloud Broker Best-fit VM Database
Manager

Scheduler

VM Image Repository
[\'MJ l\’.\!] [\'.\il I\'.\il [\'.\ll I\M] I\’.\i] [\M] I\'MI
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- -
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Fig. 3.2 Cloud Architecture
3.2.1 Optimal allocation

For the optimal performance dynamic migration of VMs to the
physical servers based on the performance requirements mainly
makespan is needed. If a particular VM does not utilizes all the
reserved resources, then this VM can be logically resized. This
enables us to consolidate VMs to the minimum number of physical
machines. Thus the number of active physical servers can be
minimized, which in turn reduces the power consumption and

reduction in the total energy consumption of the datacenter.
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3.2.1.1 Bin packing method

In this proposed work, we adopted a bin packing based approach for
VM creation. Here the servers or Physical Machines (PM) in the
datacenter are considered as bins. The VMs with user-specified
requirements requested by the customers are the objects which are
going to be filled in the bins. The algorithm aims to minimize the
number of PMs required to place the requested VMs. At the same

time, it aims to reduce the makespan of submitted jobs.

The VM assignment problem in the bin-packing method can be
defined as follows. Suppose each physical machine PM; consists of |
different types of computing resources (R;) and there are k type of
VMs defined by the provider denoted by Vi (where k =1, 2, 3, ...... ,
k). Each physical server PM; is able to accommodate any kind of
virtual machine (Vy;) with any type of resource without exceeding its

processing capacity.

Let y; be the number of physical servers, then our aim is to
Minimizez (y) = X v (3.2)
Subject to the following constraints

0
1 Yis Xy ={1

assigned to a physical server and X;; = 0 means it is not assigned

vi € {1,2,....,N}: where Xj = 1 means VM

to a physical server.
2. YiqLoad;; (t).X;; < Loadp,, : which limits the load to a PM

to the maximum predefined Loadnmax for a particular PM at time t.
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3. yl'={g Vi €{1,2,...,M} :where 0 means PM; is not

assigned with any VM and 1 if any VM is mapped to it.
3.2.1.2 Best-Fit job placement

In the initial phase jobs are submitted to the using best-fit method.
This is to ensure makespan minimization. These jobs are directed to
the cloud through the cloud broker. The pseudo code for this best-fit
approach is given in figure 3.3.

Algorithm: Best-Fit Job Placement
1. Input: JobQueue, VMList

2. Output: Job allocation to VMs in VML.ist
3. Best_fit_Job()

4, Sort VMs based on processing power in ascending order

5 Sort Jobs in ascending order based on MIPS required

6 AssignedJobList < NULL

7. Set VMStatus =0 I[All VMs are job free

8 Set JobStatus =0 //No Jobs are allocated to VMs
9 for each Job i in JobQueue do

10. for each VM j in VMList do

11. If Power of VM[j] > Job[i] && VMStatus = 0 then
12. Assign Job[i] to VM[j]

13. Set VMStatus = 1

14, Set JobStatus = 1

15. Else

16. Append Job[i] to UnAssignedJobList[]

17. End if

18. End for

19. End for

Fig. 3.3 Best-Fit job placement
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Algorithm: Remaining-Fit VM Placement
1. Input: VMList, PMList

2. Output: Mapping of VMs to PMs

3. Worst_fit_VM()

4. Sort VMList in ascending order.

5 Sort PMs in the PMList in descending order.

6 UsedPMList = 0, UnusedPMList =0

7. currentPMstatus = 0 for all PMs / PM not yet allocated.
8

9

start < start VM and last last VM in the VMList
for each PM j in PMList do

10. for each VM i in VMList do

11. if UnusedResource(PM;) > ResourceNeed(VM;) then
12. if PMstatus; == 0 then

13. Add VM; to PM;

14. PM; < PM;- VM

15. else

16. Add VM; to PM;

17. PM; — PM; - VM,

18. Until last VM

19. End if

20. else

21. Set PMstatus; =1 // PM; in PMList is allocated
22. Add PMj to usedPML.ist

23. Start_VM = next VM in VMList (VM)
24, Until last PM in PMList

25. End if

26. End for

217. End for

Fig. 3.4 Remaining-Fit VM placement
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Based on the processing power requirement of each job, it is sorted in
ascending order. Currently available VMs are also sorted in a list
based on their processing capacity. After this, the cloud broker places
the jobs from the job queue to these available VMs. If a particular job
i is assigned to the VM, then the algorithm changes its status to 1 for
both job i and VM.

3.2.1.3 Remaining-Fit VM placement

Next in the second phase, the optimization of VM allocation to the

physical hosts is carried out worst-fit method.

Here the Physical Machines are sorted in decreasing order of
utilization and VMs are sorted based on Million Instruction Per
Second (MIPS). Then, the algorithm finds the first PM the list of
sorted PMs and places the first VM from the sorted VMList to this
selected PM. This process is continued till every VM; in the list are
mapped to PM;. The procedure for the Worst-fit method for VM
placement is given in figure 3.4. Thus VMs are placed to its
maximum capacity; hence the number of PMs required for hosting
VMs can be minimized. This reduction of active physical servers will

reduce the power consumption of the datacenter.
3.3 Experimental Setup and Results

We have evaluated the effectiveness of bin packing method using
CloudSim [129]. It is a powerful simulation tool to test scheduling

and load balancing mechanisms.
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3.3.1 Simulation environment

We have deployed 10 physical machines. These 10 physical servers
together can accommodate up to 100 virtual machines. These PMs
with memory size varies between 1 to 3 GB. The memory capacities
of the VMs are configured within the ranges from 100 MB to 1 GB.
The power consumption of each PM is measured using the built-in
power datacenter in CloudSim. The storage requirement of each
submitted job can vary between 100 to 800 MB randomly. The
storage capacity of each physical server is fixed up to 1TB.

3.3.2 Evaluation parameters

The performance of the method is measured based on the number of
physical machines used, power utilization and storage comparison.
The method is experimented and all these parameters are measured
for Best-Best, Best-Remaining, Worst-Worst and Worst-Best
strategies. All these algorithm combinations are simulated in the

same environment.
3.3.2.1 Number of PMs used

When the active number of PMs increases, that will also increase the
power consumption. The comparative performance of the above
algorithms for the active number of PMs is shown in figure 3.5. It
shows that the significant improvement in power consumption using

the proposed method.
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Fig. 3.5 Comparison — Number of PMs used

The algorithm searches among all the underutilized PMs to find the
appropriate server for the placement of VMs with user-specified
requirements. The proposed method helps in the efficient use of
active servers. Thus it avoids usage of extra PMs to accommodate
virtual machines. Reduction in the active PMs, in turn, reduces the

power consumption that reduces the computation cost.
3.3.2.2 Storage space

We have measured the storage allocation efficiency of the proposed
method. The results are compared and it is plotted in figure 3.6. From
the figure, we can see that the proposed method uses less percentage
of space compared to other strategies. The proposed method

effectively uses the available storage space in the active PMs.
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Fig. 3.6 Storage space utilization
3.3.2.3 Power utilization

The cloud providers always looking for reduced power utilization.
Extensive simulations were carried out and the power utilization of
the proposed method is compared for different number of jobs with
different number of PMs. The results are shown in figure 3.7. From
the above figure, we can conclude that the power consumption
analysis is comparatively promising. This is because the proposed
method uses less number of PMs for placing user-requested VMs.
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70 4 |
E Best-Remaining
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Fig. 3.7 Power utilization
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3.3.2.4 Makespan

From figure 3.8, it is clear that the proposed Best-Remaining fit
strategy reduces the makespan of jobs. Thus effective handling of
makespan by the proposed bin-packing based technique improved the
QoS in terms of makespan.

3000
Best-Best
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B Worst-Worst

2000 O Worst-Best

1500 ElBest-Remaining

Makespan (Seconds)
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%]
Q
=1

10 20 30 40 50 60 70 30 90 100
Number of Jobs

Fig. 3.8 Makespan
3.4 Benefits of Bin packing

The proposed Bin packing method is compared with its other variants
like First Fit Decreasing (FFD) [193] and Max-Min [194] algorithms.
The results shown in figure 3.9 indicates that the proposed method

gives significant performance improvement in terms of makespan.
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Makespan (Seconds)
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Fig. 3.9 Comparison with FFD and Max-Min algorithms
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3.5 Summary

In cloud computing, the effective and efficient use of cloud resources
is crucial for the service provider's revenue. Usually, one of the QoS
parameters requested by the customer is makespan. Also, in order to
harness the green energy concept, the importance of improved energy
efficiency mechanisms is to be considered. This chapter proposed a
Best-fit - Remaining-fit strategy that efficiently handles makespan,
thus improving QoS. It also places the virtual machines to a
minimum number of active physical servers. By the simulated study,
we have shown the effectiveness of Best-fit — Remaining-fit

technique in handling makespan.
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4.1 Introduction

The load balancing method avoids under and heavy loaded conditions
in the datacenters. When some resources are overloaded with several
number of tasks, these tasks are to be migrated to the under loaded
resources of the same datacenter in order to maintain QoS. Frequent
VM migrations also affect the performance of the cloud ecosystem.

Nature inspired algorithms are efficient in solving this kind of
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dynamic problems. In this chapter, we proposed an enhanced bee
colony algorithm for efficient and effective load balancing in the
cloud environment. The honey bees foraging behaviour is used to
balance load across virtual machines. The tasks removed from
overloaded VMs are treated as honeybees and underloaded VMs are
the food sources. The method also tries to minimize makespan as
well as number of VM migrations. The algorithm also reduced the
imbalance in the cloud eco system. The experimental result shows
that there is significant improvement in the QoS delivered to the

customers.
4.1.1 How migrations affect makespan

In order to ensure QoS efficient load balancing among nodes are
required in the distributed cloud environment. An efficient load
balancing mechanism tries to speed up the execution time of user-
requested applications. It also reduces system imbalance and gives a
fair response time to the users. VM migrations are to be carried out

for load balancing.

When migration is happening, the currently execution VM stops and
some time is required to restart at a new location. This delay causes a
potential impact on the makespan. So migration reduction is an
important factor to maintain QoS in the cloud. In order to limit

migrations, a better load balancing mechanism is needed.

The better load balancing will result in reduce response and migration
time. The improvement in the above factors will ensure good QoS to
the customers thereby less Service Level Agreement (SLA)

violations.
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Static load balancing algorithms will work only when there is a small
variation in the workload. Cloud scheduling and load balancing
problems are considered as NP-hard problems. The dynamic nature
of the cloud computing environment needs dynamic algorithms for
efficient and effective scheduling and load balancing among

computing nodes.

4.1.2 Artificial Bee Colony algorithm

The Bee Colony algorithm is a meta-heuristic swarm intelligence
algorithm [130] to solve numerical function optimization problems. It
mimics the foraging behavior of honey bees. It has advantages such
as memory, multi character, local search, and solution improvement
mechanism, so it is an excellent solution for optimization problems
[143, 144, 145].

The Bee Colony consists of three groups of artificial bees: employed
foragers, onlookers, and scouts. The employed bees comprise the first
half of the colony whereas the second half consists of the onlookers.
The employed bees are linked to particular food sources. In other
words, the number of employed bees is equal to the number of food
sources for the hive. The onlookers observe the dance of the
employed bees within the hive, to select a food source, whereas

scouts search randomly for new food sources.
The search cycle of Artificial Bee Colony consists of three rules:

« Sending the employed bees to a food source and evaluating

the nectar quality
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* Onlookers choosing the food sources after obtaining
information from employed bees and calculating the nectar
quality

» Determining the scout bees and sending them onto possible

food sources

The positions of the food sources are randomly selected by the bees
at the initialization stage and their nectar qualities are measured. The
employed bees then share the nectar information of the sources with
the bees waiting at the dance area within the hive. After sharing this
information, every employed bee returns to the food source visited
during the previous cycle, since the position of the food source had
been memorized and then selects another food source using its visual

information in the neighbourhood of the present one.

Algorithm: Artificial Bee Colony Algorithm

1. Initialize the Bee Colony and problem parameters
2. Initialize the Food Source Memory (FSM)

3. Repeat

4. Send the employed bees to the food sources.

5. Send the onlookers to select a food source.

6. Send the scouts to search for possible new food.
7. Memorize the best food source.

8. Until termination criterion is met

9. End

Fig. 4.1 Artificial Bee Colony algorithm

At the last stage, an onlooker uses the information obtained from the
employed bees at the dance area to select a food source. The

probability for the food sources to be selected increases with an

79|



Chapter 4 Enhanced Load Balancing for VM Migrations

increase in its nectar quality. Therefore, the employed bee with
information on a food source with the highest nectar quality recruits
the onlookers to that source. It subsequently chooses another food
source in the neighbourhood of the one currently in her memory
based on visual information (i.e. comparison of food source
positions). A new food source is randomly generated by a scout bee
to replace the one abandoned by the onlooker bees. This search
process is represented shown in figure 4.1 [146].

4.2 Related Works

Efficient scheduling and load balancing ensures better QoS to the
customers and thereby reduces the number of SLA violations. This
section reviews some of the load balancing algorithms.

Modified throttled algorithm based load balancing is presented in
[131]. While considering both the availability of VMs for a given
request and uniform load sharing among the VMs for number of
requests served, it is an efficient approach to handle the load at
servers. It has an improved response time, compared to existing
Round-Robin and throttled algorithms, but it suffers from frequent

migrations.

In [132], a load balancing approach was discussed, which manages
load at server by considering the current status of all available VMs
for assigning the incoming requests. This VM-assign load balancing
technique mainly considers efficient utilization of the resources and
VMs. By simulation, they proved that their algorithm distributes the
load optimally and hence avoids under/over utilization of VMs. The

comparison of this algorithm with an active-VM load balance
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algorithm shows that their algorithm solves the problem of inefficient
utilization of the VMs.

Response time based load balancing is presented in [133]. In order to
decide the allocation of new incoming requests, the proposed model
considers current responses and its variations. The algorithm
eliminates the need for unnecessary communication of the Load
Balancer. This model only considers response time which is easily
available with the Load Balancer as each request and response passes
through the Load Balancer, hence eliminates the need of collecting
additional data from any other source thereby over utilizing the

communication bandwidth.

In [134] a load balancing technique for cloud datacenter, Central
Load Balancer (CLB) was proposed, which tried to avoid the
situation of overloading and under loading of virtual machines. Based
on priority and states, the Central Load Balancer manages load
distribution among various VMs. CLB efficiently shares the load of

user requests among various virtual machines.

Ant colony based load balancing in cloud computing was proposed in
[135]. It works based on the deposition of pheromone. A node with
minimum load is attracted by most of the ants. So maximum
deposition of pheromone occurs at that node and performance is

improved.

Cloud Light Weight (CLW) for balancing the cloud computing
environment workload is presented in [136]. It uses two algorithms
namely, receiver-initiated and sender-initiated approaches. VM

Attribute Set is used to assure the QoS. CLW uses application
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migration (as the main solution) instead of using VM migration

techniques to assure minimum migration time.

A resource weight based algorithm called Resource Intensity Aware
Load balancing (RIAL) is proposed in paper [73]. In this method,
VMs are migrated from over-loaded Physical Machines (PM) to
lightly loaded PMs. Based on resource intensity the resource weight
is determined. A higher-intensive resource is assigned a higher
weight and vice versa in each PM. The algorithm achieves lower-cost
and faster convergence to the load balanced state, and minimizes the
probability of future load imbalance, by considering the weights

when selecting VMs to migrate out and selecting destination PMs.

A cloud partitioning based load balancing model for the public cloud
was proposed in [137]. This algorithm applies game theory to load
balancing strategy in order to improve efficiency. Here a switching
mechanism is used to choose different strategies for different

situations.

Time and cost based performance analysis of different algorithms in
cloud computing were given in [138]. A load balancing mechanism
based on artificial bee colony algorithm was proposed in [139] but it
suffers from frequent migrations. It optimizes cloud throughput by
mimicking the behavior of honey bees. Since the bee colony
algorithm arranges only a little link between requests in the same
server queue, then maximization of the system throughput is
suboptimal. Here, the increasing request does not lead to an increase

in system throughput in certain servers.

An active clustering based load balancing technique is presented in

paper [140]. It groups similar nodes together and works on these
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groups and produces better performance with high utilization of

resources.

Weighted Signature based Load Balancing (WSLB), a new VM level
load balancing algorithm is presented in [141]. This algorithm finds
the load assignment factor for each host in a datacenter and map the
VMs according to that factor. Estimated finish time [142] based load
balancing considers the current load of virtual machines in a
datacenter and the estimation of processing finish time of a task
before any allocation. This algorithm improves performance,
availability and maximizes the use of virtual machines in their
datacenters. In order to avoid a probable blocking of tasks in the
queue, it permanently controls the current load on the virtual
machines and the characteristics of tasks during processing and

allocation.

The authors in [148] proposed a heuristic based scheme for load
balancing in the large cloud data centers based on duplicating jobs
and sending replicas to different servers. They showed that this
mechanism can significantly reduce the queuing time, even with a
small number of replicas and in particular in high workloads.
Determining the right parameter configuration for this method (the
number of replicas, the server job selection policy) is highly
dependent on the system condition, comprising the scale of the
system, load pattern, job processing time, and inter-server delays. As
different systems may be subject to different conditions, there is no
single parameter configuration that is optimal to all systems. So in
order to deploy the scheme, the system manager should conduct a

simulation-based study to determine the right settings for the specific
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system. Cloud is a dynamic environment, so the conditions may
change. Therefore, system performance should be constantly
monitored in order to determine whether any of the parameter values
should be modified.

A dynamic load-balanced scheduling (DLBS) based on heuristic
algorithms approach to maximize the network throughput through
dynamically balancing data flows is developed in [149]. In this
method, the data flow is balanced time slot by time slot. The
simulation result shows that the algorithm works better when data

flow is high.

There are several methods proposed for load balancing in the cloud
such as collaborative agents for distributed problem solving [150],
CLB load balancing architecture and algorithm [151], Temporal task
scheduling with heuristics [152], QoS based methods [153], and
concave pricing [154].

4.3 Proposed Method

When the workload increases, load balancing is an important task in
resource management to ensure quality of service. An optimal task
scheduling algorithm is needed for the load balancing problems as
well as users' expectations in QoS. The load balancing algorithm
called Interaction ABC (IABC) [239] is based on bee colony to
schedule the tasks to virtual machines (VMs), but number of
migration is very high. The paper [147] also tried bee colony
algorithm for load balancing in the cloud, but still, frequent migration

is a problem.
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So in our proposed method, we have considered completion time of
tasks and number of task migrations along with system imbalance

during computation.
4.3.1 Architecture

The architecture for our proposed load balancing method is shown in

figure 4.2. The details of each component are given below.

Cloud Information Service (CIS): It is the repository that contains
all the resources available in the cloud environment. It can be
considered as a registry of datacenters. Whenever a datacenter is

created it has to register to the CIS and update details.

Cloudlets

'

Cloud Broker |«

CIS

Y

Y

Datacenter
Host
VM, VM, VM; VM. VM,
C; C; C; C; C;
2 C2 2 C2 2
Cn Cn Cn Cn Cn
Load Balancing among VMs

Fig. 4.2 Load balancing architecture

Datacenter: Here we have considered Datacenters with

heterogeneous resources. A datacenter consists of several hosts. Each
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host can contain many processing elements (PEs) with RAM and
bandwidth characteristics. Based on the user requirement, the hosts
are virtualized into different number of VMs. VMs may also have
heterogeneous nature as like hosts.

Initialization of Bee colony parameters

Check for

stopping
criterion

A 4

Calculate the fitness of the population

e F s \

Select m locations for neighbourhood search

v

Recruat bees for selected locations

!

Select the best fitness bees from each patch

v

Assign task to VM

N N wa i i __________________ o

Assign tasks to VM based on priority

Neighbourhood search

Fig. 4.3 Enhanced Load balancing using bee colony algorithm
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The role of CIS is to collect information about all the resources in the
datacenters. This information used for the submission of tasks to the

physical hosts.
The enhanced bee colony algorithm is given in figure 4.3.
4.3.2 Steps for cloud load balancing

The basic steps used for cloud load balancing are given in the figure
4.4,

1. Start

2. Find load of each VMs and group VMs as over-loaded or under
loaded.

3. Find the supply of under loaded VMs and demand of
overloaded VMs.

4. Sort the overloaded and under loaded VM sets
5. Sort the tasks in overloaded VVMs based on priority.

6. For each task in each overloaded VM find a suitable under
loaded VM.

7. Update the overloaded and under loaded VM sets and go to step
2.

8. Stop

Fig. 4.4 Steps for cloud load balancing
4.3.3 Parameter mapping

The proposed method used the foraging behaviour of honeybees for
effective load balancing across VMs in the datacenters and
reschedules the tasks to the under loaded VMs. For the

implementation of bee algorithm in the cloud, the characteristics of
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honeybees are to be mapped into the cloud environment. The
mapping of bee colony parameters with the cloud environment is

shown in table 1.

Table 4.1: Mapping of Bee colony parameters with Cloud

environment

Honey Bee Hive Cloud Environment
Honey bee Task (Cloudlet)
Food source VM

Honey bee foraging a food .
source Loading of a task to a VM
Honey bee getting depleted at a VM in overloaded condition
food source

Removed task will be rescheduling
to an under loaded VM having
highest capacity

Foraging bee finding a new food
source

4.3.4 Load balancing

In this proposed method the tasks are considered as honeybees. When
honey bee forage for food source, then the cloudlet will be assigned
in VM for execution. Since the processing capacity varies for
different VMs, sometimes VMs may be overloaded and others will be
underloaded. In these circumstances, an efficient load balancing
mechanism is needed. When a particular VM is overloaded then some
tasks need to be migrated away and have to assign it to an under
loaded location. In this case, the task to be migrated is chosen based
on priority. In the proposed method tasks with the lowest priority will

be selected as a candidate for the migration. This procedure is similar
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as honey is exhausted in nectar and bees are ready to take off from

the food source.

The fitness function used is based on the task length and processing
capacity of a VM. Equation (4.1) gives fitness value of VM j for a
task 1.

Zizrf Task Lengt h;

Fit;; =
g Processing Capacity of VM;

4.2)
The tasks are assigned to a particular VM is based on this fitness
value.

The proposed method works in four different steps as given below.
1. VM Current Load Calculation
2. Load Balancing & Scheduling Decision
3. VM Grouping
4. Task Scheduling

VM Current Load Calculation: The current load on a VM is
measured based on the ratio between total lengths of the tasks
submitted to that VM to the processing rate of that VM at a particular
instance. Suppose N is the total number tasks assigned to a VM and
Len is the length of single tasks and MIPS is the Million Instruction
Per Second rate of that VM, then using the equation (4.2) the current
load can be calculated.

NxLen

LOadVM = —MIPS

(4.2)

Then total load on a datacenter is the sum of load on each VMs. The
equation for total load a datacenter Loadp is given by the equation
(4.3).
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LOQdDC: Z LOQdVMi (43)
i=1

The processing capacity of VM can be calculated using the equation

(4.4) as given below.
Capacityyy = PEpym * PEpips tVMy, (4.4)

Here PE,,,, is the number of processing elements in a particular VM,
PE,,;,s is the processing power of PE in MIPS rate and VM,,, is the

band width associated for a VM.

A datacenter may have several VMS. So the total capacity of the

entire datacenter can be calculated from using the equation (4.5),

Capacitypc = Y%, Capacityyy (4.5)

Then the proposed algorithm computes the processing time of each

task using equation (4.6).

Current Load
pr = &rent Load (4.6)
Capacity

Then the processing time required for datacenter to complete all the
tasks in it can be calculated by the equation (4.7) given below,

PTye = —284oc (4.7

Capacity pc

Then the Standard Deviation (SD) is a good measure of deviations.
The proposed method uses SD for measuring the deviations in the
workload on each VM. If there is m VMs, then Equation (4.8) gives
the SD of loads.

SD = \/%2;’;1(})7} — PT)? (4.8)

Then the load balancing decision is done based on the value of SD.

9o|



Chapter 4 Enhanced Load Balancing for VM Migrations

In this proposed method, bee colony algorithm is modified to find
optimal solution quickly. This algorithm quickly converges into an
optimal solution. The algorithm also tries to minimize the number of
task migrations. It also considers users' priority while scheduling the

tasks.

Algorithm: Steps for Enhanced Bee Colony

1. Start
2. For each task do
3. Calculate the load on VM and decide whether to do load balancing
or not
4. Group the VMs based on load as overloaded or under loaded based
on fitness value.
5. Find the supply of under loaded VMs and demand of overloaded
VMs.
6.  Sort the overloaded and under loaded VM sets
7. Sort the tasks in overloaded VVMs based on priority.
8. Find the capacity of VMs in the under loaded set.
For each lower priority task in the overloaded VM find a suitable
under loaded VM based on capacity.
9. Update the overloaded and under loaded VM sets
10. End of step 2.
11. Stop

Fig. 4.5 Enhanced Bee colony based load balancing algorithm

Load Balancing & Scheduling Decision: In this phase, load
balancing and rescheduling of tasks are decided. This decision
depends on the SD value calculated using equation (4.8). In order to
maintain system stability, the load balancing and scheduling decision

will take only when the capacity of the datacenter is greater than the
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current load. Otherwise, it will create an imbalance in the datacenter.
For finding the load threshold value is set (value lies in 0-1) based on
the SD calculated. The systems compare this value with the
calculated SD measure. The load balancing and scheduling is done
only if the calculated SD is greater than the threshold. This will

improve system stability by minimizing the number of migrations.

VM Grouping: In order to increase the efficiency VMs are grouped
into two groups: overloaded VMs and under loaded VMs. This will
reduce the time required to find optimal VM for task migration. The
overloaded VMs are the candidates for migration. In the proposed
method these removed tasks are considered as honeybees and the
under loaded VMs are their food sources. The VMs are grouped
according to the SD and threshold value already calculated based on
the load.

Task Scheduling: Before initiating load balancing the system have
to find the demand to each overloaded VMs and supply to the under
loaded VMs. Here the VMs are sorted based on the capacity in
ascending order. The task migration is performed only when demand
meets the supply. From the under loaded VM set, the proposed
method selects a VM which has the highest capacity as target VM.
The method selects the task with the lowest priority from an
overloaded VM and it is rescheduled to an under loaded VM with

maximum capacity.

Supply to a particular VM is the difference between its capacity and

current load and it can be calculated using equation (4.9),
Supplyyy = Capacity — Load (4.9

Then the demand of a VM is calculated using the equation (4.10)
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Demand vy = Load — Capacity (4.10)

On submission of each task into the cloud, the VM will measure the
current load status and calculates SD. If the SD of loads is greater
than the threshold then load balancing process is initiated. During this
load balancing process, VMs are classified into under loaded and
overloaded VM sets. Then the submitted tasks are rescheduled to the

VM having the highest capacity.
4.4 Experimental Results

The proposed method is tested in the simulated cloud environment
using CloudSim. VMs with different specifications are deployed.
User requests are submitted to this heterogeneous environment. We
have measured the number of VM migrations, makespan and degree
of imbalance are measured and compared these parameters with

existing methods.
4.4.1 Makespan

Here we have compared makespan of the enhanced bee colony
algorithm with bee colony method. Also, it is compared with RR
[166] and Max-Min [194] algorithms. The migration time i.e., overall
task completion time is graphically represented in figure 4.6. The
results indicate that the proposed method reduced the makespan than
bee colony algorithm and other existing methods. From the results, it
is clear that makespan can be reduced into a significant amount using
load balancing algorithm. Makespan is a good measure of QoS
provided by the service provider. So the proposed method improves
the QoS.
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Fig. 4.6 Comparison of makespan
4.4.2 Number of migrations

If the tasks are continuously shifting from one assigned location to
another, it adversely affects the performance of the system. So the
number of migrations is a performance indicator to measure the
performance of a service provider. In the proposed method the
algorithm considers the priority of tasks when migration is needed. If
lower the priority of a task, there is a higher chance for migration
from the assigned queue. It is to ensure the higher priority tasks are
less affected. The results are represented in figure 4.7. From the
result, we can observe that the enhanced version outperforms bee

colony algorithm in most cases.

The above test results show how the proposed method reduces the
makespan as well as the number of task migrations. Thus it helps to

improve the performance of the cloud service provider.
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Fig. 4.7 Number of task migrations
4.4.3 Degree of imbalance

Another performance parameter is the degree of imbalance. This is to
measure system stability due to migrations. Table 4.2 and figure 4.8
represents the degree of imbalance before and after applying the
algorithm. From the results, it is clear that the proposed method
reduced the imbalance due to migrations since this method employs

less number of migrations.

Table 4.2: Degree of Imbalance

Number of Cloudlets Before After
10 1.000 0.714
15 0.509 0.664
20 0.840 0.268
25 0.667 0.212
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Fig. 4.8 Degree of Imbalance before and after applying the algorithm
4.5 Summary

In this chapter, we have proposed and experimented a bee colony
algorithm for efficient load balancing in the cloud environment. In
this method, we have used the power of swarm intelligence algorithm
to remove the tasks from overloaded resources and migrated these
removed tasks to the most appropriate underutilized or under loaded
resources. This migration policy also considers the priority of the
tasks in the waiting queue. The tasks with the least priority are
selected as candidates for migration. Hence, no tasks are needed to
wait a long time to get processed and reduced makespan migrations.
The experimental results show a lower number of migrations with a

reduced imbalance for the proposed approach.
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5.1 Introduction

Cloud has several advantages such as availability, scalability, and

reliability, but some performance parameters such as energy

consumption, load balancing, response time, resource allocation time,

etc., need further attention. The cloud consists of several huge

datacenters, each with heterogeneous physical machines. When the
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number, diversity, and size of the datacenters are increasing, optimal
resource identification and allocation needs a high resource discovery

time.

This chapter proposes an energy-aware clustered load balancing
method. In this method, first, heterogeneous resources are grouped
into different clusters by using a partitioning based clustering
algorithm. Clustering reduces the number of resources needed to be
searched and therefore, the total searching time required for resource
discovery and allocation can be reduced. Since the search process is
carried out only on a particular cluster, the searching time will be
reduced. In the next phase of the method, an energy-aware best-fit
VM allocation is carried out based on the weight value of the
resource. This weight value depends on its memory, storage and
processing capacity of the resource. Then the corresponding VM
cluster is found out using this weight value. If suitable resources are
available in that cluster, then allocate it. Else, searching progresses
towards second portion of that cluster for the resource availability. If
the VM is unable to allocate in that cluster, then the method checks in
other clusters. Finally, a best-fit allocation strategy is used for
allocating processes to the VMs. The best-fit algorithm helps in
efficient VM placement for optimal space utilization. We have also
implemented Ant Colony Optimization (ACO) based clustering

method and compared it with energy-aware clustering method.
5.1.1 Energy Management

Load balancing methods are good for handling huge requests
efficiently and for placing the VMs in particular PMs [169]. The load

balancing mechanisms consume a large amount of power during VM
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Migration, task execution, etc. This is due to the use of all available
PMs in the datacenter to maintain quality or due to the absence of
good power management policies. If an energy-aware load balancing
mechanism is applied to the clusters to balance the load among PMs,
that will improve power consumption. i.e., it will help to identify and
switch off the idle physical machines. The proposed method also
aims at achieving high user satisfaction by minimizing the response
time, improvement in resource utilization through an even and fair

allocation of cloud resources with reduced energy usage.
5.2 Related Works

CIVSched [157] is communication-aware inter-VM scheduling
focused to reduce network latency between co-located VMs. In this
method, VM Monitor (VMM) monitors traffic and schedule the
processes. The scheduling process is done by the cooperation of
VMM and the guest local operating system, but the power

consumption is not considered in this system.

The green cloud computing [156] method mainly aims to reduce the
carbon emission and energy consumption in the distributed cloud
datacenters having different sources of energy and carbon footprint
rates. Here the rate of carbon footprints at datacenters is used for VM
migration and allocation. The datacenter power usage details are
given in [167] indicate that a large amount of power is wasted due to
inefficient resource management mechanisms. Learning automata
[159] based method is one of the approaches to improve resource

utilization with energy consideration.
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Context switching [155, 164] will reduce the speed of the system as
well as it increases the power consumption during packet transfer.
This is because the state must be saved and restored, even if much of
the restored state is not used before the next context switch. Here a
context cache is introduced, which is used to bind variable names to
individual registers. It allows context switches to be very inexpensive
because registers are only loaded and saved as needed. From the
analysis, the context cache contains more live data than a
multithreaded register file and supports more tasks without spilling to

the memory.

The advanced version of Minimum Laxity First (MLF) called
optimized MLF (OMLF) [160] try to reduce context switches. This
dynamic algorithm is proposed to overcome the problems in MLF
algorithm and makes it more suitable for spacecraft avionics systems.
The OMLF is tested using mathematical modeling and simulation
tools. The results are promising and it has fewer context switches
than the traditional MLF. To make it more suitable for dynamic cloud
scheduling other cloud parameters are to be considered. In [161],
First Fit Decreasing (FFD) based energy-aware scheduling and
workload consolidation algorithms are presented. Both these methods
check the problem of grouping heterogeneous workloads. They try to
accommodate all the VMs to the minimum number of PMs and then
turn off unused physical servers to reduce energy consumption. Even
though the energy considerations are integrated into the algorithm, it

works in three phases that cause some delay in response time.

Another method based on clustering is the Multi Queue Scheduling

(MQS) algorithm that is proposed to reduce the cost of reservation
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and on-demand charges using a global scheduler [163]. In this
method, the global scheduler shares the resources at the maximum
level. Here the jobs are clustered on the basis of burst time. It also
overcomes the fragmentation problems in classical scheduling
methods such as First Come First Serve, Shortest Job First, EASY,
Combinational Backfill and Improved backfill. It is suitable for
continuous workflows. The enhanced version of MQS algorithm
[162] uses a fuzzy logic concept. The fuzzy logic improves efficiency
and it comes up with the best option for shifting the load from one
location to another. In this method also the fuzzy logic mechanism
reduces overall overheads of the live migration techniques but this

method is limited to continuous workflows.

Some algorithms groups incoming jobs in the queue to increase
efficiency. The tri queue scheduling [165] is one such method in
which based on the processor requirement of the job, the queue is
grouped into small, medium and long jobs. It is a dynamic quantum
time based round robin scheduling mechanism. Even though it is a
job grouping mechanism to improve performance, the energy and
cost factor does not consider for the scheduling tasks. An enhanced
weighted round robin (EWRR) [166] method proposed an energy-
efficient job scheduling. It is an advanced form of weighted round
robin scheduler that considers VMs reuse and live VM migration.
Moreover, this algorithm is integrated with DVFS algorithm in CPU
utilization model to specify the required frequency for each task
depending on the task complexity and deadline and experiments were
conducted with a very little number of PMs.
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Table 5.1 Notations used
Notation Definition
Wewm) Weight value of a PM
Mewmi Memory of i" PM
Mutax Pm(i) Maximum memory of a PM
Semg) Total storage of a PM
Smaxpm(i) Maximum storage capacity of a PM

Pspeed PM()
Pmaxpm()
Wuma)
Muwmg)
Mviax vy
Swmai)
SimaxvM()
Pum(

I:’MaxVM(i)

Swmaxp(i)
0
Pwmaxe(iy
0

FP

TP

Processor speed of i PM

Maximum allowed processor speed
Weight value of a VM

Required Memory of a VM

Maximum allowed memory of a VM
Storage capacity of a VM

Maximum storage allowed for a VM
Processing power of VM

Maximum allowed processor speed of VM
Cluster i

Maximum value of Weight for a cluster
Minimum value of Weight for a cluster
Weight value of a process

Required Memory of a process
Maximum allowed memory of a process
Required storage capacity of a process
Maximum storage allowed for a process
Required processing power of a process
Maximum allowed processor speed of a process
Pheromone evaporation rate

Foraging pheromone

Trailing pheromone
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All the above studies show that energy-aware resource management
in the dynamic cloud is a big challenging problem since several
business organizations are adopting this platform. There are several
other methods proposed for load balancing such as profit and energy
based method [158], reservation based [170], task based [171] and an

energy-conscious task consolidation heuristics [168].
5.3 Proposed System

We have used a partitioning based clustering algorithm to group PMs
in our proposed method. Our proposed clustering method is shown in
figure 5.1. It consists of n number of users with n processes. Each
process requires at least one VM to satisfy its requirements. All the
physical machines in the datacenter are grouped into different
clusters. Depending on the processing capacity the number of PMs in
each cluster may be different. The notations used in this chapter are
shown in table 5.1.

The proposed method consists of three steps as given below.

1. Clustering of PMs,
2. Energy aware PM migration

3. Process allocation.

The detailed description of the above three steps are explained in
5.3.1t05.3.4.
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Fig. 5.1 Proposed system architecture
5.3.1 Clustering of physical machines

Clustering needs some criteria to group similar physical machines.
Here we have employed a clustering algorithm based on the
characteristics of the PMs. The parameters considered are processor
speed, memory and storage capacities of PMs. For each PM a weight
value Whpyy is calculated using the equation (5.1) based on these

parameters.
Woemg) = Mpmciy/Mmaxem Gy + Sem (iy/Smaxemi) + Pspeed pmiy/Pmaxemcy (5.1)

The proposed clustering algorithm to group PMs is given in figure
5.2. Based on the weight value calculated using the above equation,
PM with the highest weight value in each cluster is known termed as
cluster head. Cluster head controls that particular cluster. The weight
value Wpy decides a PM belongs to which cluster. Then it checks
for the similar clusters to lodge PM and allocate it into that cluster.
This clustering activity repeats whenever a new PM is active in the

datacenter. This initial clustering reduces resource discovery
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overhead, since at the time of entry of a PM itself. It also helps to

reduce searching and response time during the user request.

Algorithm: Clustering Algorithm

Input: PM with memory, storage and processing power
Output: Different clusters of PMs

Start

Insert a PM to the datacenter

For each PM

Calculate Weny=Mewmiy/Mwiaxem iy +Sem )/ SmaxemytPspeed pmy/Pmaxemy for
entered PM

Move the PM to Cy if Wpny > Inin@and Wemg) < Inax

End for

Return Clusters

Stop

rpODNDE

o No o

Fig. 5.2 PM clustering algorithm
5.3.2 Energy Aware VM Migration

The next step is the energy-aware VM migration. Here each cluster is
divided again into two sub clusters based on the PM weight value.
The algorithm for VM migration is shown in figure 5.3. The detailed
description of the algorithm is given below.

Algorithm: Energy Aware VM Allocation

1. Start

2. Input: VM, PMList.

3. Output: Allocation of VM to PMList.

4. Input a VM with Mywmg), Sume and Pymg

5. For each VM

6. Calculate Wynmgy = (Mymay Mmax vmciy) + (Sumiy/ Smaxvmcy) + (Pumcy/ Pmaxvmcy)
7. Select appropriate Cy using clustering( ) algorithm

8. Consider all PMs in Cy
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9. Sort PMs in C, in descending order of its W
10. For each PM

11 I Wewg < (Inin(Ci) + 17ax(Ci))/2

12.  Assign PM; to C,List

13.  Else

14. Assign PM; to C, List

15. Keep idle all the PMs in C, List
16. Best_FitVM() Allocation

17. Consider C,List

18. For Each PM in C, List

19. If ((Mewmg)> Mumey) and (Sewmgy > Swmgy) and (Pegy > Pumg))
20. Allocate VM; to PM;

21. Memdy = Mpwmg) - Mumg)

22. SPM(i) = SPM(i) - SVM(i)

23. Pema) = Pemg) - Pumg)

24. End For

25. If ((Mpwmgy < Mymgy) 0F (Semiy < Svm) OF (Pegy < Pumg))
26. Consider C, List and move all PMs from idle mode to active mode.
27. For each PM in C, List

28. If ((Memg) > M) and (Semy > Svmy) and (Pegy > Pym))
29. Assign VM; to PM;

30. MPM(i)= MPM(i) - MVM(i)

31. SPM(i) = SPM(i) - SVM(i)

32. PPM(i) = PPM(i) - PVM(i)

33. Else

34. Add VM; to UnAssignedVML.ist
35. End If

36. End For

37. End If

38. End For

Fig. 5.3 Energy Aware VM allocation
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The average weight value is considered for cluster partitioning. So we
have two clusters. The first cluster C; contains PMs with a weight
value less than the average weight value. The cluster C, contains PMs
with a weight value, which is greater than or equal to the average
weight value. Initially, the physical machines in cluster C, is kept
idle. When VM allocation step starts i.e. when a user request reaches
the method first consider the cluster C; for VM allocation, and if a
suitable resource found it allocate VM to it. If the user requested
requirements are not satisfied by the PMs in the cluster C,, then only
the method considers PMs in C,. If a PM in C; is considered and
allocated then the algorithm change the status of the idle PMs to
active mode. While allocating VMs to in these active PMs we have
used Best-Fit allocation strategy. The formation of sub clusters
during the VM allocation process will further result in energy

reduction.

We have adopted the best-fit VM strategy, for VM allocation. In this
allocation method, based on the processing speed we sort VMs in
ascending order. For this, an available PMs list is maintained in the
decreasing order of utilization. The next step is to find a PM having
enough resources from the list of sorted PMs in order to allocate user
request VMs from the VMs list. This allocation procedure is repeated
until every VM; in the list are mapped to host PM;. The VMs are
assigned to PMs up to maximum capacity, without degrading the
processing time. Thus this algorithm reduces the number of active
PMs required for assigning VMs. Since the active PMs are less, the

power consumption in the datacenter will be reduced.
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5.3.3 Process allocation

The users have some requirement to execute their tasks in the cloud.
These requirement specifications may like memory, storage and
processing power. So in order to allocate a user task to a particular
VM, these requirements have to be considered. To do so, we
calculate the weight value of a user-submitted process using the
equation (5.2). This weight value is used to determine the cluster into

which a process has to be considered.
Wheiy = Mp(iy/Mwmax p() + Sp(iy/Smaxp(iy + Pr(iy/Pmaxp(i) (5.2)

From the obtained optimal cluster, then the algorithm considers the
VMs in the ascending order of its weight. Then using the best-fit
strategy the algorithm allocates process to the VMs in this selected
cluster. The status of VMs is set to ‘1’ if it is allocated with a user
process. This allocation is based on the customer requirement for
speed, memory and storage parameters. When an allocation is done at
the same time, the current capacity of that VM and PM are
recalculated. If a process is unable to assign to a VM that satisfies
customer requirements, then a list is maintained for unassigned
processes to reconsider when suitable VMs are available. The
detailed process allocation steps are given in figure 5.4.
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Algorithm: Process Allocation

1. Start
2. Input: process, VMList
3. Output: Process allocation to VM in VMList

4. For each process P;

5.

6
7
8.
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

Calculate Wpeg) = Mpgiy / Myaxpi) + Seqy / Smaxeiiy + Prey/Pvaxeq)
Select appropriate cluster using clustering algorithm()
Best_Fit Process()
Sort VMs in a cluster to VMList based on W in ascending order
Set UnAssignedProcessList = NULL
Set processStatus = 0
For each VM in VMList do
If (Pyma) > Pegy) and (Mvm) > Mpg) and (Svmg) > Sp()) then
Assign P; to VIV
Set processStatus = 1
PVM(i) = PVM(i) - PP(i)
MVM(i) = MVM(i) - MP(i)
Sum) = Svmi) — Spei)
Else
Add P; to UnAssignedProcessList[ ]
End if
End for

22. End for
23. Stop

Fig. 5.4 Process allocation algorithm

5. 4 Ant Colony based Method

Then we developed an ant colony based algorithm for comparative

analysis with our proposed energy-aware clustering method. Ant

colony algorithm is based on probability function and its result
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depends on the value of the pheromone deposited by the ants during
its travel in a path. Here we considered two types of pheromone

values, foraging and trailing pheromone value.

In ant colony algorithms the Trailing Pheromone (TP) is defined as
the pheromone which leads an ant to return it to the nest. Here when
an ant is defined as an agent to find a suitable PM for allocating VM.
Ant will follow the path with the maximum amount of Trailing
Pheromone so that other VM request can follow this path or this PM.
Foraging Pheromone (FP) is the pheromone which ant deposits when
a suitable VM is found. When an ant is not carrying any VM request,
it will try to find a PM with a minimum amount of FP. This is to find
a PM that left from others, so ant needs to follow the minimum
amount of FP unlike using Trailing Pheromone. In this method, the

search space contains all the PMs available in the datacenter.

The ants continuously move in the forward direction in the datacenter
network encountering the overloaded node or under loaded node. The

foraging pheromone is updated using the equation (5.3).
FP¢+1) = (1 —0)FPy) + A(FP) (5.3)

Here 6 is the pheromone evaporation rate. FPy and FP + 1) are the

foraging pheromone at time t and t+1 respectively.
The trailing pheromone is updated using the equation (5.4).
TP(t +1)= (1 — O)TP(t) + A(TP) (54)

TPy and TPy + 1y are the trailing pheromone at time t and t+1

respectively.
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5.5 Experimental Setup and Performance Evaluation

We have experimented the proposed method using 1000 physical
machines in the simulated cloud environment. Each of this PM can
accommodate a number of VMs with a maximum memory size of 32
GB with processing power up to 3000 MIPS. The storage capacities

of each can vary up to 1 TB.

We have compared the performance of the proposed method with
existing Min-Max, and Ant colony load balancing algorithms. For the
performance evaluation, the parameters considered are number of
PMs Searched, response time, resource discovery time, execution
time, number of PMs used for VM allocation, energy consumption,

total energy cost.
5.5.1 Number of PMs searched

Time needed for resource discovery is an important parameter to
measure the performance of a cloud provider. Resource discovery

also affects response time.

Let a cloud ecosystem with K number of PM which is arranged in N
clusters. i.e., each cluster contains an average of K/N number of PMs.
So for a resource discovery, the system has to perform minim N
searches in the beginning. In this scenario, each cluster contains an
average of K/N PMs. Hence, for finding the optimal PM from this
cluster, the algorithm requires maximum K/N searches. Therefore, the
total number of searches required for optimal resource discovery can

be calculated using the equation (5.5).

Total Number_of PMs_Searched (S) = N + (K/N) (5.5)
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We also compared the proposed method with Min-Max algorithm.
This algorithm searches all the PMs for calculating the completion

time for a job.

1600
Min-Max
1400
- —=— Ant Colony
¥l
ﬁ 1200 —+—Clustered
2 1000
£ 500
e
-]
5 600
=
g 100 /-/
z
200 — ,
_.__-—_*____-__.____’______..__-——-Q—'—_'_'
0 e
100 200 400 600 800
Total Number of PMs

Fig. 5.5 Number of PMs searched
The experimental results for the total number of PMs searched for
VM allocation are shown in figure 5.5. From the graph, we can
observe that the proposed cluster oriented algorithm searches only in
the most favourable cluster to find optimal VMs. It also indicates that
the proposed method searches a lesser number of PMs to find VMs
suitable for the customer's requirement. Accordingly this reduces the
resource discovery time to find PMs for placing a particular VM with

user specification.
5.5.2 Response Time

In cloud computing response time is the sum of resource discovery
time and execution time. This can be represented using the equation
(5.6). Resource discovery time depends on bandwidth and network
traffic.
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Response_Time = Resource discovery time + Execution_Time (5.6)
Here execution time of a PM can be calculated using the equation.

. . Loadpy
Execution_Timepy = Capacitypy
YPMm

Here both load and capacity is in Million Instructions Per Second
(MIPS).

Table 5.2: Response time (Number of Processes = 100)

Total Number of Ant Colony Min-Max

Clustered (Sec)

PMs (Sec) (Sec)
100 1.18 1.96 2.78
200 1.12 2.70 4,32
400 1.74 6.44 8.14
600 2.49 7.73 12.09
800 3.27 11.13 16.07

In the dynamic cloud environment bandwidth and speed of the
internet are some of the important factors that affect overall
performance. Due to fluctuating bandwidth, we have fixed 20 ms
time to find a suitable PM for the experimental conditions. We have
applied different loads to different number of PMs and repeated the
experiment several times. Here the response time with different
numbers of PMs for constant number of processes and different

number of processes with a constant number of PMs are measured.
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Fig. 5.6 Response Time Comparison (Number of Processes = 100)

We have fixed number of user processes as 100 and the results are
tabulated in table 5.2 and the respective graph is shown in figure 5.6.
This indicates that the proposed algorithm gives better improvement
in response time than Ant colony algorithm and traditional Min-Max
algorithm. This enables cloud service providers to provide better

quality of service to their customers.
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Fig. 5.7 Response Time Comparison (Number of PMs = 200)
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Next, we have measured response time when the number of PMs kept
constant as 200. Then we varied the number of user process and
response is measured for repeated experiments. The experimental
result is shown in figure 5.7. Our experimental result again shows
that the proposed method improves response time compared to state-

of-art methods like Ant colony and Min-Max algorithms.
5.5.3 Number of PMs Used for VM Allocation

We have conducted the experiments to know the number of PMs used
for VM allocation. The results are compared with both Min-Max and
Ant- Colony algorithm. From the table we can observe that the
proposed system uses a very less number of active servers. This is
due to the advantage of the clustering method which keeps PMs with
minimum weight value is safe or hibernate mode and only activates
these PMs when required. For example, when the total available
PMs are 400, the proposed method uses only 30 PMs at the same
time Ant colony and Min-Max use 114 and 150 PMs respectively.
Similarly, when the cloud environment consists of 800 PMs, the
proposed method used only 50 servers while Ant colony and Min-
Max used 276 and 250 servers respectively. All these results are

tabulated in table 5.3 and the respective graph is shown in figure 5.8.

Table 5.3: Number of PMs Used

Total Number of PMs  Clustered  Ant Colony Min-Max

100 8 29 49
200 18 59 99
400 30 114 150
600 40 190 201
800 50 276 250
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Fig. 5.8 Number of PMs used

5.5.4 Energy Consumption

We have also measured the energy consumption of servers in the
datacenter. The energy usage pattern is shown in figure 5.9. The
figure indicates that the proposed method is energy efficient and
supports green computing. It consumes less energy since it uses only
less number of active PMs for hosting VMs.
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Fig. 5.9 Energy Consumption
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5.5.5 Total Energy Cost

The proposed method uses, less number of PMs and this will be
reflected in the energy cost. The energy price per KWh is taken as
Rs.6/- unit. The cost of energy consumption is calculated based on
the equation (5.7) and the results are tabulated in table 5.4.

Total_Energy_Cost/Day =(24*(Power-utilized* Energy_price)) (5.7)

Table 5.4: Total Energy Cost

Number of VMs  Clustered Ant Colony Min-Max

100 230.40 835.20 1411.20

200 518.40 1699.20 2851.20

400 864.00 3283.20 4320.00

600 1152.00 5472.60 5788.80

800 1440.00 7948.80 7200.00
5.6 Summary

We have proposed and implemented an energy-aware clustered load
balancing mechanism to reduce the searching overhead for resource
discovery and to improve the response time. Our algorithm also
minimizes power consumption and energy cost. It efficiently uses
available active servers. Thus it improves the overall quality of

service in the cloud datacenters.
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6.1 Introduction

The most important aspect of a computing service is user satisfaction

and it doesn’t depend on whether the service is deployed in a cloud or
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in a non-cloud environment. In cloud frequent migrations affects
system stability and thereby decrease in the quality of service
delivered. Proper migration control plan is important in large scale
data centers. Optimal tuning of the resource management method
will avoid frequent VM migrations. This is essential in maintaining
the overall system performance and quality of services delivered to
the end users. A good allocation strategy should consider these
factors and mitigate frequent migrations to improve the QoS offered

to the customers.

Most common type of resource management techniques are based on
the parameters like time (makespan, response time, waiting time, etc),
energy efficiency and cost, with little attention on the interferences
caused due to VM migrations. Such interferences degrade the overall
performance of the system, and consequently violate the conditions in
the service level agreement (SLA) between the cloud service provider
and the customer. So in this chapter we focus on an interference
aware prediction mechanism for VM migration, with auto scaling. A
brief introduction to the automatic scaling policy is given in the

section 6.1.2.
6.1.1 Interference

This work proposes an interference prediction technique for VM
migration that will help in the respective auto scaling of resources. In
a datacenter there are several CPU cores running simultaneously. But
common resources such as memory, buses, etc., are shared among
these cores. Therefore, the actual processing power cannot be

achieved or used. VM data transfer due to migrations also uses these
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common resources, which cause overhead. i.e., migrations cause

undesirable delay in computation.

Since several VMs with different applications are running in a PM,
there will be performance degradation in the performance of the
system due to sharing of common resources. It is also a fact that this
data transfer in buses due to frequent VM migrations results in
instability in the cloud eco system. All the above factors cause
performance degradation or delay in computation is called
interference. By reducing interference, we can achieve system

stability.

In this method, interference is taken as a measure to quantify
stability. Lower interference means higher stability. Also, low
interference will reduce the chance for future VM migrations, thereby
increasing the stability of the cloud eco system. To improve system
stability VMs are migrated to physical machines having low

interference.

The proposed work is intended for the stability in the performance
and scalability of resources, when the user workload increases
beyond a certain threshold value. So, VMs in a particular host can be
migrated to appropriate destinations based on least interference
values, for the performance improvement of entire cloud system. This

will reduce the number of migrations in the cloud system.
6.1.2 Stability and auto scaling

Auto scaling is one of the hot features of cloud computing that
facilitates resource scalability beyond datacenter boundaries.

Scalability increases the performance of cloud eco system in terms of
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storage, processing power, throughput, and reliability. Resource
scalability improves the throughput of the system without rejecting
and reducing the input workload. In the dynamic cloud environment,
auto scaling of resources enable cloud service providers (CSP) to
satisfy customers for their computation needs, without affecting
performance. When a particular PM or a CSP itself can’t cope with
the user requirements, the resources are automatically scaled out to
another PM or any CSP. This scaling of resources must be done as
fast as possible, since any delay during the execution creates
degradation in the performance. The auto scaling should be done
based on some already defined threshold values [172]. When
workload increases beyond the value of this defined threshold,
scaling up has to occur so as to reduce SLA violations. The system
must also have to release unused resources by either scale-down or
scale-in process, when the workload decreases. Due to this automatic
scaling process, the system avoids unnecessary VM migrations. Thus
the cloud eco system can achieve stability and there by performance

improvement.
6.1.3 Need for prediction mechanism

If the system can predict the interferences due to overloaded
conditions, the suitable scaling decisions can be taken in advance to
ensure performance. This ensures seamless execution of the
scheduled user tasks. The proposed prediction model will calculate
the interferences more precisely so that it will be easy to scale VM
and hence maintain guaranteed SLA. The objective of this work is to

make a seamless task execution during the VM migration, using a
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prediction model in the dynamic cloud environment with ensured

SLA, and least prediction error.
6.2 Related Works

Only few papers discusses about parameters like VM bandwidth
allocation and related issues in the performance. VM bandwidth
allocation is one of the severe issues in maintaining good service
quality. The method called Falloc [173] guarantee bandwidth for
VMs based on their base bandwidth requirements and the share
residual bandwidth in proportion to weights of VMs. They have
simulated the system and proved that it ensure the fairness in

allocating bandwidth on congested links to VMs in datacenters.

The iAware [174] is a novel live VM placement method based on
demand-supply model, which try to reduce interferences. It calculates
the interference in PMs based on an empirical formula and the
resource demand of VM. The experiments are validated through
simulated environment using realistic benchmark workloads on Xen
cluster. The algorithm also tries to improve power consumption with
load balancing. The final VM placement decision is based on a

simple ranking method.

The paper [175] points out that multiple task execution creates
interferences in the system. This article presents a 4-dimensional
multiple resource model, along with a brief description about
commonly happening interferences during multiple tasks. VMFlocks
is an incrementally scalable high performance VM migration service

designed for cross datacenters [176]. It efficiently uses the available
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cloud resources to accelerate data de-duplication and to transfer

processes with a minimum access control.

The server consolidation and VM scale-in process create a significant
variation in the power efficiency and thermal performance of
distributed systems [177]. The contention of resources impacts the
distributed system throughput differently, and significant variation is
observed in the performance [178]. Power and cost are related factors
in distributed computing. In pSciMapper [179], to maintain the
required throughput rate, power, and cost analysis is performed in
different iterations. Based on the experiments using real and synthetic
scientific workflows, they have obtained an optimum power and cost

factor.

Migration of VM from one physical machine to another allows load
balancing and fault tolerance in heterogeneous cloud computing
environment. The optimization method in [180] demonstrates how
the migration of a running computer with its state information, can be
transferred to another location. There are some common issues like
delay, cost, and robustness are in live VM migration. Migrations can
degrade the performance of other collocated VMs in the cloud. Paper
[181] proposes a model for live migration between the source and
destination to address this system noise due to migrations. The
performance analysis is done based on multiple resources migrations

and related migration time.

VM migrations cause a side effect called migration noise [182]. This
is a kind of delay that occurs during the VM migration process, due

to certain factors. An algorithm called sonic migration comparatively
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examines the performance of all active VMs, and reduces the

migration noise created due to VM migrations.

In cloud environment, the migration of VM does not transfer host
side cache state [183]. This leads to the degradation in performance
of newly migrated VM, until the cache is rebuilt. To minimize VM-
perceived performance degradation period before the completion of
migration, a host-side cache warm-up mechanism called Successor, is
used to parallelize cache warm-up and VM migrations. Cost and
power prediction during the live migration of VMs is also a critical

factor.

Multiple resource allocation to heterogeneous jobs having different
priority, is an interesting problem in cloud computing. The work in
[184] considers dynamic and non-stationary cloud environment with
two classes of jobs, namely emergency and elective. In this multi-
resource allocation problem, the jobs in emergency class should be
performed immediately, while elective jobs have to wait for its turn.
The simulation results are promising and need to be tested in real
conditions. The objective of live migration is to ensure continuity in
operations, with guaranteed QoS as per the agreed SLA between the
service provider and the customer. This will aid system maintenance,

reconfiguration, load balancing, and fault tolerance.

A virtual machine Dynamic Forecast Migration (VM-DFM)
algorithm deals with the dynamic changes in virtual machine memory
resource consumption [185]. An intelligent cloud load balancing
technique is flexible to integrate multiple load balancers [186]. This
technique can separate the allocating process and migrating process

while preserving a guaranteed level of service. The QoS ensured in
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this method is based on the parameters such as performance,

reliability security and time.

Energy aware VM scheduling based on CPU and 1/0 bound
characteristics [187] is a move towards green IT. The simulated
results in homogeneous environment showed that the reduction in the
number of migrations reduces the energy utilization and SLA
violations. Paper [188] presents a new security incorporated energy
consumption method for task scheduling. This DVFS based method
supports auto scaling for load balancing. Forecasting the resource
requirement will improve the SLA necessities. Proactive scheduling
approach based on fuzzy logic [189] executed on Google trace data
set, analyses its effectiveness with univariate and multivariate
variable approach. A practical approach towards application scaling
is briefly described in [190]. The feasibility and performance of this

method is demonstrated with biomedical workflow.

A Task and Resource Allocation CONtrol (TRACON) is a novel
method based on application characteristics at the runtime [191]. It
reduces the interference due to concurrent data intensive applications
in large scale data centers. In contrast, there are several resource
allocation technologies based on factors like, load, cost, power,

priority and interference for maintaining QoS.
6.3 System Design

We have considered following architecture as shown in the figure 6.1
for the implementation of proposed live migration. The VM
migrations are carried out by considering interferences caused due to

VM migrations and the agreed SLA.
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e The role of performance tracing tool is to monitor the VMs

and PMs in the datacenter.

e The migration protocol comprise of two modules. First

module is for VM utilization and next is a method to separate

under provisioned and over provisioned VMs. The duty of
this module is to identify the right VM candidate for

migration.
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Fig. 6.1 VM live migration architecture

The aim of elastic computing is to scale the computing facility

according to the workload. So it should consider and handle load

balancing and the resulting interference.
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Fig. 6.2 VM live migration scalable architecture

The design of the proposed live migration architecture in intra cloud

with auto scaling is shown in the figure 6.2.

Our proposed live VM migration design contains three main

components namely:

1. Load balancer
2. Virtual cluster monitor system

3. Auto-provisioning system with a scaling algorithm.

Load balancer: The function of load balancer is to balance the
requests between different virtual machines in a virtual cluster of a

cloud service provider that perform the similar type of applications.

Virtual cluster monitor system: For effective monitoring the system
must collect resource usage information of each virtual cluster.
Virtual cluster monitor is responsible for the collection of resource

usage information from these clusters.

Auto provisioning system: According to the workload in a cluster, it

facilitates horizontal expansion or shrinking the number of VMs on
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that particular cluster. For example, if all the computing resources of
a cloud service provider’s are completely under utilization, then the
auto provisioning mechanism will assign the resources to other
suitable service provider transparently without any user intervention.
This is done through live migration of currently running live VM to
another service provider, thus the proposed method assures interrupt

free service to the customers.

The proposed method calculates the VM Utilization (VMU) status
using the equation (6.1).

VMU = Total Resource Allotted — Utilized Resources (6.1)

The resource utilization is periodically checked and based on this
value the proposed method predicts the future resource requirements.
Here we defined a server as a hot spot, if the server resource
utilization is above a hot threshold value. i.e., hotspot status indicates
that the server is overloaded, and hence, some VMs running on it
should be migrated to other locations for ensured QoS.

Every physical machine contains several virtual machines, so we can
define Physical Machine Utilization (PMU) as the sum of total
number of VMUs of all VMs in a particular PM, at a particular time.
The calculation of VMU and PMU is the responsibility of the tracing
tool. According to these values the PMs are marked as under or over

provisioned.
6.3.1 Dynamic scaling

The Amazon provides facility to the users for defining a scaling

policy when their requirement increases. [192]. Regular checking of
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resource usage statistics is necessary for taking effective scaling
decisions. This is impractical since frequent monitoring is expensive
and may leads to frequent VM migrations. So an auto scaling group
with policies is defined that will scale the resources with the
assistance of a prediction mechanism. The mechanism fires when
there is a forecast for the need of resources in future. Thus the policy
automatically decides when to scale-out or scale-in and where to
scale the resources. This resource scale-out or shrinkage may depend
on the resource consumption metric. This resource consumption

metric may be based on network traffic, CPU usage, etc.

The algorithm for auto scaling process is given in figure 6.3.

The auto scaling process

1. Define Metrics for VMs based on SLA
2. Monitor the specified metrics for all VM instances in the auto scaling
group
3. Update metrics depends on the workload
4. If the metrics violate the threshold, fire alarm
5. If the system need more resources
a. Send Scale-in-policy message
5.1 Otherwise
b. Send Scale-out-policy message
6. Receive Auto scaling policy message, and perform auto scaling for the
auto scaling group.
7. Continue the process until user deletes scaling policies or the auto

scaling group.

Fig. 6.3 The auto scaling process
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6.3.2 Application interference

The physical machines in a datacenter contain many CPU cores.
Theoretically we can say that the performance of a physical server
increases linearly with the number of CPU cores increases. i.e., is, the
overall performance of a server can be calculated by multiple of the
performance one core. In reality, the performance doesn’t meet the
theoretical expectation. This is due to sharing of computation power
for other computing related activities. E.g. consider a physical
machine with 6 cores, one memory bus controller. This memory bus
controller is shared among these cores. Due to the speed difference of
memory and bus controller, there will be memory latency. So, the
actual load on the system can be mathematically modeled as in the
equation (6.2).

If a PM contains k cores and has m tasks to process
Loadyya = Xj—q Loady + . ]’[{f}zl Load;/; (6.2)

Here, the second term is the parasitic load, due to interference. y is
the regression coefficient and its value is controlled between [0, 1].

E.g. Consider a situation with two loads A and B. Then the parasitic
load can be represented as

Parasitic Loadag = v.a.L0ada.Loads
6.4 Pareto Derived Interference Prediction Model

In a datacenter, data intensive applications cause interference and this
influence the performance of the services rendered to the customers.

The performance of the system is mainly depends on the execution
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time and throughput, but VM interference affect these performance
parameters. Since multiple VMs are running simultaneously in a
physical machine, the actual workload is also dependent on these
independent VMs. In this kind of condition, multivariate regression
analysis is a good choice to analyze the problem. Hence, the problem
can be modeled as a generalized multivariate linear regression model

as given below.

Let Y represents the total load, here it is dependent variable and X;,
X2, X3, ..., Xk are the individual VM loads, here these are considered
as the independent variables. Also by, by, bs, ..., b are the constants
and k is the number of independent variables. Then Y can be

represented by the equation (6.3)
Y = biX1 + boXo + baXz + ... + bXy (63)

Then, the coefficient of this regression model can be obtained using

the following equation (6.4)
b =[XTX][XxTY] (6.4)
Where X7 stands for transpose of the matrix X

Now we have to reduce the error in the prediction. The error in the
prediction can be reduced when we could minimize the Sum of
Squared Error (SSE). When the SSE is minimum, then the prediction

is considered as best one.

Let us consider that there are only two active VMs are in a PM, and

then the model can be represented using the equation (6.5).

k
Y= Zizl by . Xym 1i T Z?:l b2. Xvm 2,i (6.5)
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Where b; and b, are constants that normalize the prediction error.

The accuracy of the prediction model increases when there is increase
in the number of VMs. The objective of this model is to choose the
most favorable threshold range for the user to carry out the operation,
without compromising the agreement between the provider and the
customer. Using this proposed prediction mechanism provides an

optimum threshold range for the operation with the guaranteed SLA.
6.4.1 Pareto optimality

Single objective optimization problems are quite easy to solve,
usually it have only one optimal solution. A multi-objective
optimization (MOP) problem contains many conflicting objectives
that need simultaneous optimization of these objectives. Since these
objectives are conflicts each other, usually there will not be a single
optimal solution. Therefore, for the decision making, is cumbersome
task and may require a tradeoff between different solutions from the
finite set of possible solutions by making negotiations. In this
tradeoff, the improvement of one objective comes at the expense of
another objective. In this kind of multi-objective optimization

situations Pareto optimality [97, 144, 145] is a good choice.

Pareto principle: The aim of Pareto principle is to converge the
solutions to the Pareto front and then find the diversified solutions

scattered over it.

“According to Pareto principle a set of non-dominated solutions, is
optimal, if no objective can be enhanced without sacrificing at least

one other objective. i.e., a solution « is termed as dominated by
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another solution p if, and only if, p is equally good or better than «

with respect to all other objectives”.

In multi objective or multi attribute optimization problems, the Pareto
set or Pareto front is a subset of the set of feasible points or solutions.
This set contains all the points or solutions with atleast one objective
optimized, while holding all other objectives as constant. For the
conflicting objectives, there may exist some near optimal solutions in
the Pareto front segment. In Pareto-front region, these conflicting
objectives will behave in a non-conflicting manner and optimal
solutions are from this region. So this region is also known as Pareto-
optimal region. We can say that the set of solutions converges to a
Pareto front in this optimal region. Near optimal solutions can easily
be identified from the Pareto-optimal front, since the number of
objectives are less than the actual dimension in this region. This
justifies that Pareto method is a good candidate for multi objective

optimization problems.
6.4.2 Pareto-derived interference aware (PiA) algorithm.

Generally Pareto method is a two step procedure. At first, it
converges to the Pareto front and next it discovers a solution set from
the possible points of solutions sprinkled over the Pareto front. The
figure 6.4 shows the proposed Pareto-derived interference aware
(PiA) algorithm,

In this algorithm Y is the total load value for all the tasks within each
PM. vj;is the load factor for each task within VM; using equation
(6.1). Here linear interference prediction model is based on equation
(6.2).
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The weighted sum or scalarization method allows to combine
multiple objectives into a single objective scalar function. We have
used this concept to model the multi-objective cloud task scheduling

to a single scalar function.

Algorithm: Pareto-derived interference aware (PiA)

Input Data: Targeted VM;, where j €1, ..., n; and

Resource pool consisting of PMy, wherek € 1, ..., m;

Collect load factor y;; for each task within VM using equation (6.1);
/Here model is linear interference prediction model in equation (6.2)
Output: Schedule VM; to PMy assignments

1.Forj=1tondo

2 for k=1tomdo

3 Y;= Predict(y; j, PM)

4 end for

5. end for

6. Apply Pareto ranking

7. Select {Dominant Pareto set from Y; }

8. PMcandidate = Min; (Y))

9. Assign (VM;j, PMcandidate) /IAssigns VMs to candidate PMs

Fig. 6.4 Pareto-derived interference aware algorithm

Let us consider a scheduling problem with n number of virtual
machines and our main aim is to minimize the interferences caused
during VM migrations. Then, the weighted-sum method that
minimizes a positively weighted convex sum of the objectives can be

represented as

min = Y a;. f; (x) (6.6)
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where )y =landa; >0,1,...nandx € X

In the equation (6.6), X is the set of all VMs in the platform, and i
represent the weight vector. The term fi(x) is the objective function in
the total interference. Then the total interference can be represented
as the sum of migration (M;) and co-location interferences (N;).

Hence the function fij(x) can be simplified as in equation (6.7),
fiG) = Xiei(M; + N;); Vi (6.7)
6.5 Experimental Setup and Analysis

We have tested our above method using web service and a parallel
processing application in the cloud computing environment. The web
service is chosen because it should available at any time and should
provide the fastest response time, regardless of the number of users
served. So we can test the dynamicity of the proposed scaling
mechanism. Since cloud allows super computer level computing
facility by distributing the work parallel into several nodes. Usually
the users unaware about the exact number f computing nodes they are
utilized to complete their jobs. When VMs processing user requests
by observing QoS parameters, there is equal role for the interference
awareness in such a scenario. The proposed method VMs that cause

lesser interference are selected for assigning user tasks.
6.5.1 Experimental conditions

We have tested the proposed prediction mechanism in Gungoos cloud
environment with following specifications as shown in table 6.1. We
have chosen Gungoos [204] as our test platform since it is a powerful

cloud provider with strong sever features.
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Table 6.1: Experimental Conditions

CPU Specifications Dual 15 Core Xeon Haswell (total 30 cores)
with 2 x 24 MB cache processors

HDD 8 x 2 TB SSD hard drives mounted on RAID
for the database

4-12 TB disk drive arrays and total 128 GB of
RAM

Environment Hadoop, SQL and XAMPP

6.5.2 Analysis

In order to prove the effectiveness of the proposed method, we have
done comparative analysis with the traditional First Fit Decreasing
(FFD) [193] and iAware [174] prediction algorithms. To develop
experimental setup and environment, we have used Hadoop, SQL and
XAMPP. During the live migration total VMU is measured to
analyze the migration statistics.

The experiment is designed in such a way that the proposed method
predicts the interferences at different threshold ranges. Here we have
adopted threshold ranges 55-60%, 60-65%, 65-70% and 70-75%. The
objectives are defined in terms of VMs or the threshold range at
which the operations are carried out. Here Pareto optimality is
defined as changes to different VM task allocations that makes at
least one individual task execution better off, without making any
other individual VMs worse off. As indicated earlier an allocation
becomes Pareto optimal when no further Pareto improvements can be

made to that allocation.
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6.5.2.1 Threshold range

The interference were measured for different threshold range. The
experiments were conducted with different number of VMs in each
threshold range as specified above and corresponding interference
were recorded. The value for the range 55-60% threshold is shown in
the table 6.2. The figure 6.5 shows the respective Pareto graph for the
above threshold. From the table and figure we can observe that when
the number of VMs increase, the value of the interference also
decreases. The interference value reaches 3 for the threshold range
55-60% when the active numbers of VMs are 9 and 10. This shows
we can’t further improvement in the interference value beyond this
point and hence the method converged to the Pareto optimal solution
at this range.

Table 6.2: Pareto table for threshold range 55-60 %

Virtual Machines Interference Cumulative %
1 36 19.93 %
2 355 39.59 %
3 29 55.65 %
4 23 68.38 %
5 18 78.35 %
6 151 86.71 %
7 10 92.25 %
8 8 96.68 %
9 3 98.34 %
10 3 100 %

Similarly, the experiments were conducted for threshold ranges 60-
65%, 65-70% and 70-75% and the respective interferences are shown

in the figures 6.6, 6.7 and 6.8 respectively.
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Fig. 6.5 Pareto graph for threshold 55-60 %
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Fig. 6.6 Pareto graph for threshold 60-65%
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Fig. 6.7 Pareto graph for threshold 65-70 %
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Fig. 6.8 Pareto graph for threshold 70-75 %

According to the above results, we can say that the proposed
interference aware prediction model predicts the most precise
threshold range with SLA violation free or with very less violation
operation. So this method mitigates the interference caused due to
VM migrations.

6.5.2.2 Prediction error

Standard error is the measure of accuracy of predictions done by the
method. Let I, is the actual and Ip is the predicted interferences, then

it can be calculated using the equation 6.8.

2
Prediction Error = _|Je=)° (6.8)
n

Where n is the total pair of observations.

The comparison of prediction errors at different threshold range are
shown in the table 6.3. From the table we can observe that threshold
range 65-70% gives less prediction error. At this range the error in

the prediction is only 3.706. Hence we showed that the proposed PiA
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method predicted the accurate threshold range with minimum
interference. So the provider can chose this threshold level for SLA
violation free operations. The figure 6.9 shows the graphical
representation of prediction errors in different threshold ranges with
different number of VMs.

Table 6.3: Comparison of prediction errors at different threshold

range
Virtual
. 70-75%  65-70%  60-65%  55-60 %
Machines
1 43 37 40 36
2 34 33 36 355
3 17 29 355 29
4 9 25 29 23
5 6 18 24 18
6 6 125 19 151
7 3 10 15 10
8 3 7 15 8
9 2 65 6 3
10 2 6.4 6 3
SD 145697 117195  12.3433  12.4660
Standard 4 o473 37060  3.90331 3.9421
Error
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Fig. 6.9 Comparison of prediction error among different threshold

ranges
6.5.2.3 Comparative analysis of interference

Again comparative study was conducted to evaluate the delay caused

in the performance with other existing algorithms.

70
®FFD HPiA

Interference in Milli Seconds

4 [
Number of Virtual Machines

Fig. 6.10 Comparison of interference with First Fit Decreasing (FFD)

We have compared the delay with FFD algorithm with different
number of VMs and the graphical representation is shown in the
figure 6.10. The results showed that there is significant improvement
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in the interference, due to the mechanism adopted in the proposed
PiA method.

1.4

EEFFD ¥ jAware-FFD PiA

Normalized Performance

Hadoop XAMPP SQL

Fig. 6.11 Performance comparison
Again in order to prove the efficiency of the system, we have
compared the proposed method based on the workload. For this, we
have used two VMs with Hadoop, XAMPP and SQL. The
performance comparison is done with traditional FFD and iAware
FFD and it is given in the figure 6.11. The iAware-FFD and proposed
PiA method have nearly equal performance improvement compared
to the FFD method. In the Hadoop environment PiA gives 5%
normalized performance improvement than iAware and with XAMPP
the corresponding improvement is 3.31%. We can notice that in the
case of SQL, the performance improved by 4.76% than iAware and
10% than the traditional FFD methods. Overall in all the test cases,
our proposed PiA method outperforms than FFD and iAware-FFD.
The low performance of traditional FFD is that since it works based
on greedy approach for VM consolidation. Due to the greedy nature,
the physical servers have to accommodate more number of VMs,
which causes severe interferences among VMs. While the PiA
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method, consider only less interference PMs for VM placement,

hence the better performance.
6.5.2.4 Number of physical machines used

The utilization of the resource can be measured based on the number
of physical machines used for placing the VMs. We have tested the
system in different load conditions. (a) light load, where 25% of load
is applied to the system, (b) light medium load, where 35% of the
load is applied as input user load, (c) with 50%, considered as
medium load, (d) heavy load, where the input is able to utilize about
75% of the processing capacity of the cloud and (e) an over booked
stage, where any input which is greater than 75% of the processing

capacity of the entire cloud is utilized.

The comparative study in the five different load conditions is shown
in the figure 6.12. The experimental results showed in the figure
indicate that the PiA method uses less number of physical machines
to place the requested VMs in all the scenarios with minimum
interference.

Light (Load <= 25%)
70.00

60.00 -

50.00
40.00
30.00 -
20.00 -
10.00
0.00 +—

Max-Min  Priority Best-Fit iAware

Average Percentage of PMs Used (%)

6.12 (a) Light load
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Average Percentage of PMs Used (%)
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6.12 (b) Light Medium load
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6.12 (c) Medium load
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6.12 (d) Heavy load
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Fig. 6.12 Average Number of Physical Machines used in different

conditions

While analyzing the figures following improvements are happened.
In light load, it used 12% lesser number of PMs than the traditional
Max-Min algorithm [194] and with priority [195] method is 10%.
While with Best-Fit the improvement is 7% and with iAware it is
nearly 4%. We can observe similar result improvement in light

medium and medium loads.

In heavy load conditions our method used 3% less number of PMs
than Max-Min, Priority and Best-fit algorithms. While comparing
with iAware, the proposed method used 1.73% less number of PMs.

When we increased the load to very high leading to an overbooked
stage, Max-Min and Priority methods used all the available PMs in
the environment. Even in this severe load condition, our method kept
0.78% PMs in idle condition. This indicated that the PiA method
effectively and efficiently used all the active PMs.
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6.6 Summary

In this chapter we have proposed an interference aware prediction
mechanism for resource management in the cloud. The proposed live
migration architecture comprises of load balancer, virtual cluster
monitor system and an auto provisioning system with a scaling
algorithm. The proposed PiA method forecasts the interference value
accurately and predicted the optimum threshold range for efficient
operation so that service provider can manage the SLA requirement
requested by the customers. In the case of increased demand, with the
help of prediction values, the auto scaling policy scale the resources
to meets the user requirements with assured quality. So the proposed
method helps in the seamless computing by predicting the accurate
threshold range. The performance of the method is tested in real time
cloud environment and the prediction accuracy is verified by
calculating the standard error in predictions, in different threshold
ranges. Again the comparative analysis was done with other methods
such as FFD and iAware-FFD in Hadoop, XAMPP and SQL
environments. This test results also prove the effectiveness of the
proposed PiA method. The major reason behind this improvement is
that the proposed method always searches for less interference PMs
for VM placement thus it reduces VM migrations and achieves
stability. Again the method is tested in five different workload
conditions to know the resource utilization. The experiments results
confirm that the PiA method efficiently utilizes the active PMs than

other state-of-art algorithms.
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7.1 Introduction

The cloud service vendors offer a vivid variety of purchasing options
and dynamic prices to the customers. They announce spot instance
prices in the market-oriented cloud to attract more customers,

increase the resource usage and earn more revenue. To incorporate
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these purchasing/promotional offers/dynamic prices, a good
scheduling method is needed. Also, methods are needed to ensure
whether these offers are maintained by the service provider through

an SLA enforcement mechanism.

The violations in SLA will degrade the performance of the service
provider and thereby decrease the credibility of them among
customers. So to cope with the service level conditions, sometimes
the providers have to increase the resource capacity by scaling out
within the same datacenter or in a co-located datacenter for a
satisfying marketing option with their consumers. An efficient
scheduling algorithm should consider the demand from the clients for
resource provisioning and de-provisioning. Since the resource
demand and price varies with time, there needs efficient scheduling

mechanisms for optimal allocation of resources to the user workload.

Cloud computing provides purchase provision to enhance 24x7x365
support and monitoring, trust, security understanding of business and
customizable service at a lower cost. The service providers like
Salesforce.com [8], Amazon [10], Rackspace [13], etc., promote their
customizable services among the business enterprises by offering
promotional offers. With the intention to increase their income and
attract more number of customers, these promotional offers are based
on their current and historical resource utilization rate and cost-
benefit analysis. The hybrid technology supports customers to
acquire host and on-premise offers along with other cloud offers to
promote on-demand infrastructure and to reduce the operational cost.
Dynamic provisioning with elastic computing facility and SLA

enforcement is still a problem to be addressed.
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In this chapter, a Petri Net model is proposed and used for scheduling
the tasks based on user requirements and to incorporate dynamic spot
prices. Here SLA is ensured with the help of auto scaling mechanism.
In this model, the SLA requirements considered are CPU speed,
memory, makespan and bandwidth with a fewer number of virtual

machine migrations.

Our experimental results indicate that the proposed system efficiently
performs dynamic provisioning and elasticity in multiple public
clouds with scaling that reduces makespan, number of SLA
violations, penalty cost and maximizes profit with the help of auto

scaling mechanism.
7.1.1 Petri Net

Petri Net is a promising mathematical modeling tool for describing
distributed and parallel systems. It is a good tool for the
representation of distributed and parallel information processing
systems that are characterized by concurrency, asynchronous, non-

deterministic or stochastic [196].

In cloud, scheduling user requests to the available VMs with
minimum completion time is considered as an NP-hard problem. In
this type of situation, Petri Net models are one of the good methods
to obtain optimal results [32, 196, 206]. Here we have proposed a

Petri Net based for resource allocation with auto-scaling.
7.1.2 Spot Instances

Amazon provides a type of prices instances called Spot Instance (SI)

to sell the idle time of its EC2 data centers [10]. It is a rebated pricing

149 |



Chapter 7 SLA Enforcement with Auto Scaling

model used by service providers like Amazon to sell their spare
resource capacity using an auction method in the open cloud market.

This price is based on the demand-supply pattern at real-time.

This spot price history is freely provided by AWS per SI [197] for
each data center and also available through other third parties such as
Cloudxchange [239]. For the experimental purpose, we have taken
the spot instance price from AWS. Figure 7.1 shows the historical
average normalized price of Amazon EC2 for the instance type

cl.xlarge for a day.

Even though spot instances allow opportunity to use unused server
capacity of a service provider at a lower price, there is a need of
efficient algorithms for SLA enforcement for the interrupt free

service.

1.005
lcl. xlarge

0 3 6 9 12 15 18 21 24

Hours in a day

Fig. 7.1 Normalized average spot instance price of cl.xlarge for a day
7.2 Related Works

From the chapter 2 it is understood that the researchers proposed

several scheduling techniques for allocation of tasks, which are
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focused on different parameters such as makespan, load balancing,
power consumption, delay, cost and profit. In this chapter, we
consider some cloud management policies used for scheduling and
related issues in the market oriented cloud. Even though these
techniques have used different scheduling policies but some issues
are to be addressed deeply and needed to be fine tuned. The specialty
of the market oriented cloud is that a customer has an opportunity to
bid the price to hire a service. Usually, service providers' offer price
is based on the historical bidding details and spot instance prices. The
CSPs like AWS defined a spot price as a bidding strategy to

maximizing their revenue.

Auto scaling helps rapid provisioning and de-provisioning of
resources with minimal management effort or service provider
interaction [3]. Open Cloud Computing Interface (OCCI) standard
provides an effective resource management in Service — based
Business Processes (SBPs). Elasticity can adapt the oscillating
workload in the cloud and ensuring QoS by using an autonomic loop
called MAPE (Monitor, Analyze, Plan, Execute). This is an
autonomic infrastructure that supports optimized resource utilization
and save the cost [198]. Scheduling of resources on multiple clouds
will enhance the performance with minimum operational cost and
time. In paper [20] the workflows considered as a sequence of
transactions with multiple micro tasks provides minimum completion

time but no SLA enforcement mechanism.

A lot of auction based mechanisms are proposed for business users.
Mechanisms like continuous double auction [199, 211], knowledge

based double auction [212], combinatorial [36, 213] and negotiation
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model [214] are the some of them comes under this category. These
methods didn’t consider spot instance and historical data about price
calculation for resource allocation. It is also noted that these methods

don't support auto scaling.

In the auction based dynamic scheduling [199] VM resources are
indexed based on the requesting time, loading time, dealing time. It
also considers the cost of the service based on minimum affordable

price policy considering both client and service provider.

Heuristic methods such as PSO [200] that consider communication
and data transmission cost for workflow scheduling. Time and load
balancing issues are not considered in this method. All the above
methods discussed so far suffer from frequent migrations, which
increases system imbalance in the cloud ecosystem and thereby
degradation in the overall performance. Modified version of Dynamic
Voltage and Frequency Scaling (DVFS) [215, 216] have efficient
energy consumption by lowering the frequency, but it increases the

makespan that leads to SLA violations.

The paper [206] presented highlights and tools used for workflow
scheduling using Petri Net theory. Petri Net has format semantics and
has many analysis techniques. It can be used for both event and state
based systems. Since cloud scheduling is state based, Petri Net is

good for cloud task scheduling.

Sever consolidation in the cloud [201, 202] reduces the number of
active physical machines so that it harnesses green computing.
Sometimes improper server consolidation mechanisms result in

frequent migrations and it causes system imbalance in the cloud. So
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these methods have to consider QoS constraints mentioned in the
SLA and the migration overhead. Unfortunately, most of these
methods neglect the effect of imbalance caused due to frequent
migrations. So we have proposed a method to respect QoS constraints

and reduces imbalance using Petri Net.

The PreAnt policy discussed in [40] schedules the heterogeneous
resources in the cloud with minimum cost as well as energy
consumption. Here a fractal-based mathematical prediction model
allocates service requests to VMs in an optimized way to reduce the
energy as well as migration time. However, they have classified
incoming requests into four different categories to map with ant
colony algorithm, which causes additional time overhead while
processing the requests.

The adoption of online marketing strategy provides bidding option
for customers to access the service with affordable charges. The spot
instances and price offered by the providers is based on the auction
mechanism which enables customers to opt for online purchasing
facility of services with minimum cost. Usually, the spot price is
calculated based on the pricing strategies of other providers and real-
time conditions [31]. The Petri Net based multi-criteria decision
framework in the cloud generates a cost effective marketing option
using spot instances in VM resource scheduling. The scheduling of
resources in multiple clouds accelerates the service quality and low
cost with maximum utilization of resources [204]. Their simulated
results prove that the better cost saving can be achieved through spot
instances with auto scaling mechanism but frequent migrations affect

performance.
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The market oriented hierarchical scheduling strategies [203, 209,
210] provides significant improvement in QoS constraint resource
allocation. From the experimental results, we can see that the cost
and time optimized policies will potentially increase the budget.

A scalable self scheduling scheme [207] is another method for large
scale cloud systems that minimize the communication overhead.

These kinds of systems are only suitable for scientific workflows.

In this section, we discussed different techniques used for scheduling
tasks using the auction mechanism and issues in it. Most of these
techniques are focused on the minimization of makespan. A multi-
objective criterion based scheduling is needed to solve state-of-art
problems in the cloud. Auto scaling with less number of migrations is
also another performance indication. From these observations, a Petri
Net based scheduling algorithm can support multi-criterion with
contradictory requirements, which can perform auto-scaling with less

number of migrations and cost saving.
7.3 Petri Net for Cloud

The aim of this work is to develop a model based on Petri Net to
enforce SLA with cost-effective resource scheduling in the market
oriented multi-clouds and with the minimum number of migrations.
The proposed model supports multi objective decision making
strategy in the allocation of service requests to the market oriented

cloud.

The parameters considered are response time, makespan and cost of
computation. These primary parameters are used for calculating the

cost saving is cost-benefit ratio and penalty. If the bid price is higher
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than the spot price updated by service provider, then service is
accepted with SLA negotiations for other parameters. While billing,
penalty is computed based on the cost per number of SLA Violations.
Then auto-scaling is carried out based on the cost-benefit-penalty
calculation. The bid price is varied in real-time depending on the
demand, processing power of requirement and power utilization of

active servers.
7.3.1 Basics

In multi objective scheduling problems, Petri Nets are the adequate
method to model complex dynamic situations. Since cloud
scheduling is an NP hard problem, Petri Net modeling is a good
promising solution to model dynamic cloud task scheduling model. It
is a mathematical modeling language using directed bipartite graph.

The task model in Petri Net can be described as follows.

A task model is represented by the tuple PNtk = (P, T, A, My),
where place P = {p1, p2, ....., pn} IS the set of physical locations, T =
{t1, t, ...., tm} is the set of transitions, A is set of connection between
location and transitions and is represented as {(p;, t;), (p;, ti) and M,

e{R"u, 0}"lis the initial marking.

In Petri Net models the places represent states, conditions or
resources that need to be available and met before an action can be

carried.
7.3.2 Principle of locality and reduced imbalance

In order to reduce frequent migrations, we have used the principle of

locality. The behaviour of Petri Net can be formulated using rules for
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transition to occur. For transition enabling conditions and consequent

actions, the Net considers only immediate vicinity of a transition.
Principle of locality states that

“For a successful transition depends only on local
states of the locations in its immediate vicinity. Also,
a successful transition changes only the local state of

locations in its immediate vicinity ”.

The above property of the Petri Net will reduce the frequent
migrations in the cloud ecosystem, and resultant effects are reduced
imbalance and better response time since the migration of tasks are

based on the capacity of nearby resource specifications.
7.3.3 Petri Nets for cloud scheduling

The Petri net model for cloud scheduling is a seven tuple, PN;= (P, T,
F, Wi, My, C;, Dj) where, P=(pj|1=1,2,3, ....., 11) is a finite set of
places. The graphical representation of the proposed model for the
cloud using Petri Net is given in figure 7.2. The detailed descriptions

of each place is given in table 7.1,

T={t|i=1 2 3, ... 10} is a finite set of transitions, where, the

descriptions of transitions are also given in table 7.1,
F<c(PxT)U (T x P)is a finite set of arcs,

Ci = {(dtj)} U {(ETj;, CT;)} U {(a;)} is the set of colours, where dt;; is
the deadline of task j and, ETj; is the expected execution time of task j

at machine i, CT;; is the expected communication time of task j, a; is
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the current status information of machine i, including available VM’s

number and time that is ready for executing next task at that machine.

Fig. 7.2 Petri Net model for cloud scheduling

Wi=fF)={f|/j=1 2 3.. 22} is a finite set of weighted

functions of arcs, where,

fi = (dt;, ETy;, CT;)} processing requirements of task j submitted at
physical machine i.

f, = (&): the information of physical machine i in a CSP,
fa=fa=fs=f1+ 1,
fe = f2,

fz = (a;’): the updated status information of physical machine i in a
CSP,

fg = f11 = f1p = f13= f1a=Fy,

fo = the task selected by a home scheduler,
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f1o = completed task by a home scheduler,

fis = (ax): the current status information of resource at a remote

datacenter k.
fig="f1+ 15

f;; = the task selected by a home scheduler according to the

algorithm,

f1g = the task completed by home machine,

f19 = Submitting completed remote/home task,

fo0 = Sending completed task to parent datacenter,

f21, f22 = current information of resources.

Mo(p2) = (a;).Others places having no tokens in the initial marking.
D: T2 R is a firing time delay, where, D(t;) is a random number.
D(t2)= D(ts) = D(ts) = D(ts) =D(ts0) = 0.

D(ts) = D(tg) = communication time of task.

D(ts)= D(ty)= execution time or task or sub task.

The service request scheduling is done according to the spot price
defined by AWS then the client can bid the price for servicing their
request. For auto scaling the spot instance price is also a factor. This
results in a considerable increase in performance and cost saving.
While scheduling incoming tasks, the model checks the minimum
execution time, waiting time and number of SLA violations, since the

Petri Nets can check multi-criterion in the decision making. The
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scheduling of tasks is performed based on the number of tasks at a
particular time and resource availability. Scale-up and scale-down are
implemented to reduce the cost, energy and also power consumption.
For auto scaling the proposed model considers a number of
migrations along with penalty and profit. The system acquires better
performance in terms of profit for service providers and with less

number of SLA violations and minimum makespan and cost for the

users. Thus the proposed model ensures the quality of the service.

Table 7.1: Description of Petri Net Places and Transitions

Place | Description Transition | Description
p: | Incoming user tasks ty Submitting a task to a
datacenter/CSP
Information about .
Collecting resource
P2 Pg | home/remote cloud t, information
resources
ps | Ready to schedule a task t3 \Il\lv?tLaSbll_EiAt?ecc?uniqrzlrit:nttaSK
Ready to schedule a task Able to complete with SLA
P4 | at remote datacenter/CSP b in current datacenter
ps | Ready to execute a task ts Current status of resources
pa | Task completed 5| remoteloun tsks
Submitted tasks to remote ¢ Executing assigned own
P71 datacenter ’ tasks
Ready to execute ¢ Sending tasks to remote
Po | remote/own tasks 8 CSP’s local scheduler
Completed remote/home ¢ Task assignment to remote
P | tasks o local scheduler
Submitting remote task to t Submitting completed
Pir | home datacenter 10 remote/own tasks

7.3.4 Scaling process

When the demand increases to satisfy customer requirements, auto
scaling with migration is required. If the demand is very low, then

idle servers have to be switched off. If a scheduled request needs
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more processing power, using scale-up mechanism additional power

can be allocated. Figure 7.3 shows auto scaling algorithm.
7.3.5 Evaluation parameters

We have evaluated the proposed model based on makespan, SLA
violations and profit. The execution time of each task can be found
using the equation (7.1) given below.

Task Lengt h;
ETij = 9= i

(7.1)

Processing Power of VM;
Where ETj; is the execution time of i"" task on j" VM.

The possible reasons for SLA violations are due to situations like
deadline violations, changes in cost, processing power requirement,
etc. Anyway, the violations depend on the QoS parameters specified
in the agreement. The cost of computation or the profit of the

provider depends on SLA violations.

The profit of the provider is the difference between service
provisioning cost (Cp) and cost incurred due to enforcement of
penalties (C;) in SLA violations. This can be calculated using the

equation (7.2).
Profit= ZAE{User}(Cp (A) * Ct (A) - ZwE{Dl,Rt,Cost}(l‘U(w) * Vp ) (72)

Where w is the set of SLA parameters associated with a service A, DI
represents deadline and Rt is the Response Time. The term ¥(w) is
the number of SLA violations detected and V, represents the penalty

associated to the respective violations.
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Algorithm: Auto scaling process

//Let ST represents Service Task and R represents Resource list.
For all Task;e ST and resource rie R
If (UPqctiveservers< PPservicetasks ) then //UP — Utilization Power &
PP — Processing Power
Add Resources r, and allocate task Task; to ry
Update ST and R
Else if (EFT; > DI) and (Task;e ST) /*Dl is the Deadline & EFT; is the
Estimate Finish Time of the i" task */
Scale up resources
Update ST and R
Else if (UPactiveservers > PPservicetasks ) OF ( (Task; notin ST) or (EFT; < DI)
Scale down
ST = ST + {Taski}
Allocate task Task; to ry
Update ST and R
Else
Set the active server to idle mode
End if
End for

Fig. 7.3 Auto scaling process
7.4 Experimental Setup and Performance Analysis

We have simulated the proposed model using CloudSim [129]. The
model is tested with different parameter settings and experiments
were repeated several times. The makespan, number of SLA
violations, cost saving and number of migrations are measured and
compared with existing methods to evaluate the effectiveness of the
proposed system.
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The customer gives service request with requirements such as
memory, speed, requested time and bid price and the resource
manager in the cloud broker analyze these requests with the current
resource availability. The resource manager collector is able to access
the information of each task from SLA monitor, scheduler, and cost
analyzer. Accordingly the resource manager updates the current
status of the tasks and resources. The proposed method is compared
with Dynamic Voltage and Frequency Scaling (DVFS) and best fit

algorithms.
7.4.1 Makespan

We have conducted experiments and the makespan is measured for
different conditions. The makespan is collected for both an increasing
number of VMs and an increasing number of tasks. As expected in
the case of increasing the number of VMs, the average of makespan
is reduced. The experiments were conducted with a fixed number of
VMs as 200, 300 and 500 for a varying number of tasks. Figure 7.4
shows the graphical comparison of the makespan of the proposed
method for a varying number of tasks and VMs with DVFS and Best-
Fit algorithms. In figures 7.4 (a), (b) and (c) we can see that there is a
significant reduction in makespan compared to DVFS and Best-Fit

for the Petri Net method in different experimental conditions.

In figure 7.4 (d) when the number of VMs is increasing, then the rate
of average makespan is decreasing. In the initial part of graph 7.4 (d)
there is a small variation after it goes linear decrement. All the above
results show that the performance of Petri Net model is better than
state-of-art algorithm such as DVFS and Best-fit. This is due to auto

scaling mechanism which causes a low execution rate because scale
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up and down policies in the scheduling process need some time that

causes an initial delay.
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7.4.2 SLA Violations

Violations in the service level conditions will lead to performance
degradations in QoS and thereby penalty is to be imposed. A good
resource management method will always try to maintain the
conditions mentioned in the SLA. One of the objectives of the

proposed method is to reduce the number of violations in SLA.

We have measured the extensions that happened in the time depended
parameters and difference in the cost. The auto scaling mechanism
adopted helped to lower the rate of SLA violations compared to
DVFS and Best-Fit algorithms. We have fixed number of VMs as
200, 300 and 500. In each of the above condition, we increased the
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number of tasks and SLA violations are measured. We can observe
that violations are gradually increasing in all methods due to high
load. The violation rate for the proposed method is very low
compared to other algorithms. This proves the credibility of the
proposed method. We can also observe decrement in the violations
when the number of VMs are increased for a fixed number of tasks.
The analysis shows that Petri Net based system produces 99.87%
efficiency compared to DVFS and Best-Fit policies. This is due to
auto scaling and the adoption of Petri Net's principle of locality
feature. Figure 7.5 shows the graphical analysis of the number of

SLA violations in different scenarios.
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Fig. 7.5 Average number of SLA violations in different scenarios.
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7.4.3 Profit

The bidding method gives customers the opportunity to choose the
best services at affordable price. The customers are trying to select
services at low cost and minimum makespan while the providers try
to attract more customers with different attracting offers to increase
their profit. The experimental results indicate that the average profit
earned with Petri Net based scheduling policy is higher than DVFS
and Best-Fit after consideration of penalty due to SLA violations.
The penalty is also lower in the Petri Net model than the other two
methods under comparison. The figure 7.6 shows the graphical
representation of average profit earned when the number of VMs is
fixed as 500.
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Fig. 7.6 Average profit when number of VMs is 500
7.4.4 Migrations

We have further investigated the number of migrations happened
during resource management. This factor is measured to know the
system stability. Even though the migration procedure is used to
maintain conditions in the service agreement, but sometimes frequent

migrations create an imbalance in the cloud ecosystem and hence
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affects overall system performance. The experiments were conducted
to measure the number of migrations in low and high loads. We have
assigned 500 — 3000 tasks in low load and 3500 — 6000 tasks in high
load conditions. Figure 7.7 (a) show the number of migrations
happened when the number of tasks are increased in low condition.
From the figure, we can observe that when the load increases there is
a linear increase in the number of migrations in both methods. In the
proposed method the migrations is less than the existing VM

selection and VM placement approach [205].
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Fig. 7.7 Migrations when 200 VMs (a) Low load (b) High load

While coming to high load conditions, the number of migrations is
gradually increased when the load increases. Figure 7.7 (b) shows the
result of number of migrations in high load when the number of VMs
is fixed as 200. To increase the resource utilization and reduce power
consumption, later arriving tasks are scheduled to VMs that have
already completed their assigned tasks. Proposed algorithm compared
with VM selection and VM placement approach [205] and shows an
average of 7 % of performance improvement in high load than later.
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Fig. 7.8 Average number of scaling decisions

We have measured the average number of scaling decisions that
happened in different CPU utilization threshold ranges. The
experiments were conducted at threshold ranges 65% to 95% with a
limited number of VMs. The obtained results are graphically
represented in figure 7.8. If there is a chance of violation detected due
to any reason, scaling-out is carried out. It also monitors the
condition of all the servers and takes scale-in decision if it is found
idle. The experiment results show that when the threshold is kept
low, the number of scaling decisions are high and for high workload,
the number of decisions is low, which shows better control over the
workload and resource. This minimizes frequent migrations and

hence related delay and imbalance in the cloud.
7.5 Summary

In this chapter, we have proposed scheduling and load balancing
mechanism based on Petri Net model with auto scaling. Price

variations, violations in deadline and response time are the major
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factors in SLA violations in market oriented cloud. In the proposed
Petri Net model, the properties of Petri Nets are used to enhance the
multi objective cloud scheduling mechanism. This model supports
multi-criterion scheduling with cost saving in the dynamic market
oriented cloud. Here we considered dynamic spot pricing strategy to
test the proposed method in multi-clouds. Penalty is computed based
on the number of violations occurred in the agreed conditions. Multi-
criterion actions coordinate in the resource manager and finally, the
optimal result is delivered to customers with minimized cost and
makespan. This resource-task allocation is based on the historical
data about the providers’ offers and current bid price for a particular
service. The algorithm supports auto scaling to ensure QoS and
power saving. To reduce frequency migrations, the algorithm applies
locality principle, this reduces system imbalance and better load
balancing. By simulation experimental results and comparative
analysis, we have shown that the proposed model provides better

performance in terms of time, cost and migrations.
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8.1 Introduction

In cloud scheduling preservation of conditions in the Service Level
Agreement is essential to maintain Quality of Service (QoS). There
are several scheduling methods in the cloud computing, that
independently handles multi-tenant, on-demand and elastic, but
integrated methods are necessary to improve the performance. Due to
dynamic nature of the workload and resource availability static
methods are not good for optimal scheduling. In this circumstance, a
usage prediction method will help to reduce SLA violations by
forecasting the future resource requirement, so that provider can
arrange required resources to maintain QoS. As mentioned in
previous chapters, frequent VM migrations are also a critical factor
that affects quality of service delivered. Proper resource prediction
will minimize VM migrations. By considering all these factors this
chapter proposes an integrated SLA enforcement scheme that will
consider makespan, migrations, SLA and cost with the aid of a
prediction model. The incorporated prediction model is based on the
past usage pattern and forecasts future SLA violations due to
fluctuating workload. Based on this forecasts appropriate load
balancing and scaling decisions are carried out, which reduced cost,
makespan and SLA violations.

Efficient resource management is required for the effective utilization
of high-end computing resources. In cloud environment VMs are
operating in an isolated environment so that, it can be easily migrated
to other hosts, therefore load balancing through scheduling is a good
solution. Most of the scheduling mechanisms in distributed systems

based on load balancing are trying to use all the hosts in the system to
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maintain SLA. This increases the energy as well as the operational

cost.

SLA enforcement is crucial since cloud is a utility type service just
like electricity or water supply. The proposed method predicts the
probability of SLA violations and penalty due to it.  Thus this
method enforces SLA by applying penalty for SLA breaches. This
method also improves system stability due to scaling mechanism by
limiting frequent migrations. The experimental results show that our
proposed system achieves better QoS delivery in the cloud

scheduling.
8.1.1 Load Resource Allocation

The general load resource allocation architecture under consideration
is given in figure 8.1, which contains the 3-layer cloud organisation.
The datacenter resource manager is responsible for deploying user
tasks into these physical machines. Cloud broker is the mediator
between user and the provider. Most of the cloud task assignment
methods are random or round robin based algorithm. This inefficient
assignment results in the wastage of valuable CPU cycles of physical
servers. Sometimes, heavy load will cause over utilization of some
physical servers, so that the tasks assigned to those physical servers
are in starvation or results in the decline of service. The under
utilization of PMs affects providers revenue while over utilization
results in the degradation of requested QoS and finally results in the
violation of SLA. The load imbalance will degrade overall

performance of the cloud.
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Fig. 8.1 Load resource allocation architecture

8.1.2 Role of SLA

As the applications are moved from dedicated customer premise
hardware to the cloud, these applications need to achieve same or
more demanding levels of services as provided by the classical
installations. Therefore in cloud computing, SLA plays a key role to
ensure the rights of customers. Cloud SLA is a contract between the
CSP and the service consumers. In this agreement the service
provided or requested is formally defined. It may contain the details
about the type of service delivered, its scope, responsibilities of both
parties and quality of the delivered services between the CSP and the
service users. Cloud providers’ resources span across multiple
datacenters. SLA depends on the features of the datacenters managed
by the service provider. Thus SLA is purely service based contract,
and it is offered by the service providers and not a user dominated

agreement. Several works of SLA negotiation have been conducted
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[231, 233]. Usually SLA consider datacenter characteristics. For
better performance, the network parameters are also critical factors at
customer side. SLA monitoring and enforcing penalty are also crucial
in maintaining QoS [222]. Here we have considered VM bandwidth,
VM MIPS rate and RAM capacity as parameters for SLA.

8.1.3 Prediction Model

A good prediction mechanism will help in the proposer task-resource
allocation. So this chapter proposes a prediction model based on the
past usage pattern and aim to provide optimal resource management
without the violations of the agreed service level conditions in cloud
datacenters. It considers SLA in both initial scheduling stage and in
the load balancing stage. Also, it looks into different objectives to
achieve minimum makespan, minimum degree of imbalance and the
minimum number of SLA violations.

The symbols used in this chapter are given in table 8.1. Rest of the
chapter is organized as follows. Section 8.2 reviews different kinds of
load balancing and scheduling techniques in cloud computing.
Mathematical modeling and proposed method and its architecture
described in section 8.3 and 8.4 respectively. Experimental results
and analysis are given in the section 8.5. Finally, this chapter

concludes with section 8.5.
8.2 Related Works

Load balancing and scheduling are the critical tasks in cloud resource
allocation. In datacenters the user requested VMs are mapped on the
physical hosts. There are several numbers of physical hosts in a

datacenter; where a pool of VMs is created in these PMs based on the
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user requests. This VM resource pool contains VMs with different

specifications.

In the dynamic cloud environment task assignment problem can be
considered as a NP hard problem [224]. Finding an optimal task
assignment and load balancing in the dynamic cloud environment is a
cumbersome task. The optimal task deployment increases the
customer satisfaction and provider’s revenue. Majority of the
research works concentrated are either on load balancing or
scheduling. These researches are based on makespan, delay, cost,
power consumption and load. Some of the methods are discussed in

the following paragraphs.

A novel Weighted Signature based Load Balancing (WSLB)
algorithm [218] finds that, the load assignment factor for each host in
a datacenter and maps the VMs according to that specific factor. In
this method, the highest configuration host has maximum load
assignment factor and lowest one has less and so on. WSLB reduces
the average response time in homogeneous cloud environment but

load accumulation will result in SLA violations.

The geographical load balancing [217] for datacenters without prior
knowledge is a good solution but it has delayed execution time due to
allocation or migration at remote datacenters. Uniform load sharing is
another solution proposed for load balancing. The Modified throttled
algorithm [131] is based on this idea and has improved response time,
compared to the existing Round-Robin and other throttled algorithms,

but it considers only execution time.
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The task migration technique used in [219] can improve the response
time and implement parallelism of tasks in computing clusters. The
limitation of this method is the high computational cost and overhead
at the time of scheduling. QoS based geographical load balancing is
used to overcome the impact of short-term overload on multiple
clouds. It delivers acceptable QoS even in the case of resource failure
and flash crowd. In this method as in [220] high monitoring overhead
causes performance degradation.

Load balancing by considering the current status of all the available
resources will solve the problem of inefficient utilization of
resources. A scalable distributed loop self-scheduling scheme [27] is
a load balancing method with reduced communication overhead.
Even though the system is scalable, it is only for the homogeneous

clusters.

Heuristic algorithms are sufficient for providing near optimal
solutions for dynamic NP hard problems in a reasonable time. The
modified intelligent water drop algorithm [221] is one among such
attempt to solve workflow scheduling in computational cloud to
minimize the makespan and cost. These kinds of algorithms are only

capable in providing near optimal solutions.

Swarm intelligence based algorithms like Ant colony [91, 135] can be
used for load balancing and scheduling [89] in cloud. It works on the
basis of pheromone deposition. A node with minimum load is
attracted by most of the ants. Consequently the maximum deposition
of pheromone develops at that particular node and thereby, the
performance is improved. Slow convergence to the optimal solutions

is one of the major limitations of Ant Colony based algorithms.

175 |



Chapter 8 Integrated Approach Towards QoS Scheduling

In Resource Intensity Aware Load balancing (RIAL) [73] method,
the VMs are migrated from overloaded Physical Machines (PM) to
lightly loaded PMs. Here resource weight is determined on the basis
of resource intensity. In a PM, a higher-intensive resource is assigned
with a higher weight and vice versa. RIAL achieves lower-cost and
faster convergence to the load balanced state, and minimizes the
probability of the future load imbalance, by considering the weights
when selecting VMs to migrate out and selecting destination PMs. It

suffers from frequent migrations and affects the overall performance.

Cloud partitioning based load balancing model presented in [137] is
simulated for public cloud, using a switch mechanism. In this
conceptual framework, a switch mechanism is used to choose
different strategies for different situations. This algorithm applies
game theory to the load balancing strategy but it creates

inconsistency in the system.

A simulation study about the SLA aware placement of VMs in elastic
cloud services was done in [231]. This elastic services placement
problem (ESPP) focuses on the profit maximization of service
providers. The authors’ tried to generalize the ESPP to a multi-unit
combinatorial auction based method. This algorithm creates frequent

migration that causes imbalance in the cloud.

Resource management using reinforcement learning with aggressive
provisioning [225], optimality [20], and green scheduling [229] are
some methods that could address the resource allocation problem. It
is suitable for the rapidly increasing workloads especially in a
homogeneous resource environment. Genetic Algorithm [226] based

on the heuristic approach was successfully implemented for dynamic
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dataflow scheduling. Q-aware [230] is a QoS metric oriented
workload classification and scheduling mechanism. They have
minimized cost as well as time while considering QoS requirements
for a class of workload. In this method, the number of migrations is

high which can cause system instability.

The latency aware method [70] is able to reduce both the power and
latency in cloud but has no proper workload management and load
balancing mechanism. The task prioritization and financial criteria
based load balancing mentioned in [52] offers a general model to
adopt variable cost with improved resource utilization. SLA
monitoring with corrective measures in performance as well as the
cost is not incorporated in this method. Energy aware load balancing
method [235] focuses only on energy conservation in homogeneous
clusters. The hierarchical method based on Petri nets [236] considers

only resource utilization rate and cost.

When the number of tasks is increasing the struggle for resources also
increase and this creates complexity. The prime aim of scheduling
algorithm is to speed up the execution of a task in cloud. The load
balancer is responsible for assigning tasks intelligently to virtual
machines considering the current workload and available processing
power. Thus, the load balancer optimizes the resource usage,
minimize execution time and avoid overloaded conditions. SLA
oriented service delivery scheduler should consider server capability
to meet the customer requirements, especially time requirement. To
maximize the resource utilization, most of the schedulers try to
allocate more tasks to a server, which will lead to overloaded

conditions and subsequently SLA violations. Therefore, scheduling
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through load balancing is a good method to cope with SLA
requirements. The methods proposed so far based on this idea
consider only single parameters and lacks SLA. The limitation of two
level load balancing with scheduling [237] is that it considers only
makespan, while the scheduling method presented in [238] based on

load balancing considers only migrations.

We have considered various other reviews [227, 228] about
taxonomy on scheduling algorithms. Besides this we have conducted
a detailed comprehensive review on recently proposed papers on
quality of the service scheduling and load balancing techniques in the
cloud. From this we can conclude that the existing mechanisms
considers time and cost to deliver quality service. All the above facts
point out that, there is scope for further improvement in scheduling
and load balancing procedures. So here we are proposing a model
which uses past usage pattern for predicting the resource requirement
for optimal load balancing to reduce violations in service level

agreements.
8.3 Problem Formulation

The main goal of cloud computing is the low cost computation with
customer requested QoS. For this, the optimal VM allocation with
load balancing is necessary. Due to the dynamic nature of the cloud
environment, the scheduled jobs rarely concur with the expected
execution time. Hence, it requires some sort of intelligence to assign

the jobs to the optimal VMs to meet the expected QoS.
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Table 8.1: Description of symbols
Symbol [Description
R Minimum amount of extra resources to a VM
Ci Cost of execution
i Reserved minimum MIPS for a VM at the time of creation
Wi Average number of MIPS requested by a user i.
O Standard deviation of the number of MIPS requested by user i
Hem Average processing capacity of the PM
PTw |Processing time of a VM
Lpm Current load on a PM
Cem  |Capacity of a PM
o Cost for SLA violation
B Cost for Service rejection
S Total processing power of a host
p Penalty for SLA violations
Opm Standard Deviation of load in PM

Usually user expectations are low makespan time, delay and cost of

computation. The customers are expecting a service that meets the

agreed service conditions or sometimes, something above it. These

multiple objectives often conflict each other, so that, getting an

optimal solution is a cumbersome task. It is also noted that the

violations in service conditions will degrade customer satisfaction.

Time and cost are two critical requirements which conflict with each

other, since in terms of processing power faster resource is more

expensive than slower one. Considering all these factors, the cloud

task scheduling problem can be formulated as below.

e Leti=1,2, 3, ..., mrepresents task indices andj=1,2,3,...,n

is for VM indices.
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o T;jdenotes the time to execute the i" task at j” VM;
e C;jstands for the cost of execution of i" task in j™ virtual machine;
e X;=1liftaski is assigned on machine j; 0, otherwise.

e Pj(k) is the penalty associated in executing a task i on j™ machine
for k™ SLA condition. Here P > 0.

e W;is the workload that contains number of independent tasks at

time t.

So that the scheduling problem can be represented as
n .

Minimize Z ((xyTy) €y + B (0)) ©.1)
i,j=0

Subject to the following conditions
Maximize workload w; without any performance degradation.
Minimize cost and penalty
Minimize Degree of Imbalance (DI) in the cloud.

The DI can be defined as the difference between maximum (PTwvax)
and minimum (PTwin) execution time to the average (PTayg) execution
time of a task among all VMs. It is given by the formula as below.

PT Max _PTMin
PT 44

Dl = (8.2)

The aim is to minimize the shifting of already assigned tasks i.e. to
reduce imbalance in the cloud eco system. The proposed model is

simulated using SLA aware scheduling and load balancing with the
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aid of prediction mechanism. The detailed explanation of proposed

technique is given in section 8.4.
8.4 SLA Aware Scheduling and Load Balancing

Optimal load balancing is one of the main issues in cloud
environment. Efficient resource allocation and scheduling will avoid
a situation where, some of the hosts are overloaded while; others are
idle or engaged with a little work. An efficient SLA aware resource
allocation strategy will improve the overall performance of the
system that might increase the customer satisfaction.

Since many hosts are present in a datacenter, characteristics of the
datacenter are the characteristics of hosts. Hosts have specific
processing elements (PEs), RAM and bandwidth characteristics. Each
host is virtualized into number of VMs.

VMs in a cloud environment have some specific characteristics like
bandwidth, RAM capacity, number of PEs and MIPS rate as like
PMs. Characteristics of each VM will differ from another. When the
user requests arrive at the broker, the broker will submit it to the VMs
at a datacenter for execution. In this proposed architecture before
submitting a task into a specific VM, the broker checks the SLA
requirement of each task. When these properties are matched with the
properties of a particular VM, the task is then submitted to that
specific VM for execution. The SLA verification is performed during
the initial allocation stage and in the load balancing stage.

8.4.1 SLA verification

SLA is an agreement between the service user and the service

provider in a system. In this step SLA requirement of each task is
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verified according to the properties of suitable VMs. The VM MIPS
rate, VM bandwidth and RAM capacity are the various SLA
parameters considered in this SLA aware load balancing algorithm.
The requirement of each task may vary at different times.

SLA verification is performed during the initial allocation of a task to
a VM and also during the load balancing state. User can specify their
SLA requirements and, if the VM properties meet the SLA, then user
can execute that task on the VM. Whenever a task is going to allocate
to a VM, the VM properties like its communication bandwidth, RAM
capacity and MIPS rates are checked. The current PM load is also
considered for VM allocation, since each task has specific SLA

requirements.

To avoid SLA breaches we have calculated the probability of SLA
violations using a prediction model. The procedure for calculating the
probability of occurring SLA violations are explained in section 8.4.5.
Using this prediction model it avoids probable SLA breaches. Thus it
achieves the objective mentioned in the mathematical equation (8.1).
Even after this SLA violation free allocation, the method checks for
violations in each condition (k) in SLA during execution of a task. For
this the proposed method monitors extensions happened in makespan
and parameters related to VMs regularly and apply penalty Pj(k)
mentioned in the agreement to enforce SLA requirement. Ultimately
this helps to reduce penalty and cost of computation.

8.4.2 Load balancing decision

Based on the values of load and standard deviation, the system will

decide whether to do load balancing or not. In this module, first check
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whether the system has the capacity to perform load balancing. Load
balancing is only possible when the capacity of physical server is
greater than the current load. If the current load of the datacenter is
greater than the current capacity, then load balance becomes
impossible. This is because; the datacenter is not in a normal
condition and hence, the system is not capable for load balancing and
scaling of resources will be required for violation free operations.
Scaling is the ability of a cloud datacenter to handle growing or
decreasing demands; thereby it supports the elastic resource

provisioning.

Load balancing is only possible when the load of datacenter is less
than its capacity. In this case the load balancing decision is taken on
the basis of the standard deviation value calculated using equation
(8.3). Here a threshold value is set, and this value is compared with
the calculated value of the standard deviation. Up to that threshold
value, PM is in normal condition and there is no extra load on that
PM. If the standard deviation value is greater than the threshold value
then load balancing is needed, because this overloaded PM have some
difficulties in handling all these tasks. Therefore, some tasks are to be

transferred to other PMs for execution.

Load balancing decision is made using the value of standard deviation
(o). Standard Deviation of load in PM is calculated using the equation
(8.3)

1 m
Opu = \/Zzi=1(PTVM — ppy)? (8.3)

Where PTyy is the sum of processing time of all the active VMs in

the datacenter and ppy is the average processing capacity of the PM.
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8.4.3 PM grouping

The PMs are grouped into overloaded and under loaded PM based on
the standard deviation value of load and the threshold. Each group
contains a set of PMs. Task withdrawn from one of the overloaded
PM set has to be assigned to an under loaded PM based on the load,
SLA parameters and tasks already assigned to the particular under
loaded PM. In this method, PMs whose standard deviation values
greater than threshold are considered as the overloaded PMs and the
PMs whose standard deviation values less than threshold is considered
as under loaded PMs. Since threshold and load on each PM is
changing at every minute, the overloaded and under loaded PM list is
getting updated. Tasks removed from overloaded PMs are assigned to
the under loaded PMs for execution. The task is executed only if, the

under loaded PM set contains VM having desired properties.
8.4.4 Task transfer

In the PM grouping module, PMs are categorized into overloaded and
under loaded PM based on the threshold mentioned in [172]. Since the
load balancing is SLA aware, before checking the SLA, it’s necessary
to find the demand of overloaded PM and the supply of under loaded
PM. Here, demand means requirement of overloaded PM. Supply
means the availability of the under loaded PM. Demand (resource
request to a PM) and supply (resource allocation) can be calculated as

follows:

Resource allocation to an under loaded PM set is given by:

Supply = Maximum PM Capacity — éﬂ (8.4)
PM
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Demand of each machine in overloaded PM set is:

Demand = éﬂ — MaximumPM Capacity (8.5)

PM

In order to perform load balancing, the system needs to identify the
demand of each overload PM and supply to the under loaded PMs.
The task transfer occurs only when the demand meets the supply. The
tasks which were withdrawn are allocated to the PM with highest
capacity. Only based on the priority, the task which is to be
transferred or migrated is selected from the overloaded PM. The task
which has least priority is selected for migration. Since, they have not
started execution; it will be easier to migrate. This migrating task also
comes with some SLA requirements. The task is allocated to a PM
among the under loaded PM set, which has the desired SLA

characteristics under current load situations.
8.4.5 SLA violation detection and VM scaling

In the proposed method initially the VMs are created with minimum
specification such as memory, MIPS rate, and VM bandwidth. When a
particular VM consumes less processing power and memory than
reserved, the remaining memory, processing power and the VM
bandwidth are collected into a resource pool. The resource from this
consolidated resource pool can be shared to VMs, that require more
processing power, memory, etc. The procedure is shown in the figure
8.2.

SLA violation occurs when a VM fails to meet the requirement of a
task such as CPU speed, RAM, and bandwidth. If large number of

requests arrives to the same PM, and if it has to serve all these
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requests, then scaling is performed to reduce SLA violations. VM
bandwidth, VM MIPS rate and VM RAM capacity is scaled to a
particular amount.

[Required [JUnder utilized B3 Additional

Resource Pool of PM;

A

Underutilized Additional resource
allocation
resources to
pool w
A
~ £
(=]
R=I
£
v
VM; VM, VM,

Physical Machine 1

Fig. 8.2 Underutilized reserved VM resources are collected in the PMs

resource pool.

For each new task SLA aware load balancing algorithm is shown in

figure 8.3 and respective enhanced resource allocation policy is shown
in figure 8.4.
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Algorithm: SLA aware load balancing

Start

For each task verify the MIPS rate, bandwidth and RAM capacity of PM
and VM and allocate task.

Calculate the load and capacity of each PM.

Group the PMs based on load as overloaded or under loaded based on
the standard deviation value in equation (8.3) and threshold value T.

Find the supply of under loaded PMs and demand of overloaded PMs
based on equations (8.4) and (8.5).

Sort the overloaded and under loaded PM sets based on load

Sort the tasks in overloaded PMs based on priority.

Select the least priority task for migration to the under loaded PM.
Find the capacity of PMs in the under loaded set.

For each task in each overloaded PM find a suitable under loaded VM

in PM based on capacity and SLA requirement.
Update the overloaded and under loaded PM sets.

Stop.

Fig 8.3 SLA aware load balancing algorithm
8.4.6 Probability of SLA violation and penalty

The folded normal distribution [232] measure the probability of the
normal distribution on (—oo, 0] is folded over to [0, «). It is a
distribution of the absolute value of a random variable with a normal
distribution. In dynamic cloud resource allocation problem the main

focus is on the magnitude of incoming customer requests, which is a
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normally distributed variable, then the folded normal distribution is a

natural solution to calculate probability.

Allot required resources to VMs that
needed less resource than reserved

A4

Sort VMs that needed more resources
than reserved in ascending order

\ 4
Check R

A

Is additional
requirement of
VM; <R?

Yes | Allot requested
extra resources to
VM:;

A
Update remaining

Scaling needed resource status in
pool

A 4
Update VM list by

removing resource
allotted VM from
list

Finish < No

Fig. 8.4 Enhanced resource allocation policy
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The probability of occurrence of a SLA violation is high when the
aggregate resource requirements of all VMs executed on a PM is
greater than the maximum capacity of resources or processing power

available on a PM:

SLA violationson] _
a particular PM |

nj
P Z Requirement > Capacitypy
k=1
Since the input load follows folded normal distribution it can be
written as Y ~N (py, Opu 2)
Here p,y = I K, and opy = Zinio o}
Here ;i is the average and o; is the standard deviation of all the

incoming length (in MIPS) of user tasks to VMs in a PM which
follows standard normal folded distribution with N (10000, 3500).

The aim is to place user specified VMs on optimal physical servers
by considering the SLA and cost. Cost analysis is necessary to
allocate a VM to a PM. The computation cost associated with each
PM is calculated for each requested VM; based on the equation (8.6).
While allocating VM to a particular PM, the mechanism should
consider the objective of the service provider as well as the customer.
Here the service providers have to serve several customer requests
simultaneously, so they are trying to reduce the SLA violations, while
maximizing the profit. By considering these factors the algorithm

places VM to the best available active PMs.
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Cost PM;= a. P[PM; >1/VM;ePM;] +
B . P[Next user rejected by PMi/VM;ePM;] (8.6)
Where a, > 0.

Here the probability of rejection () depends on server processing
power, number of simultaneous request from the users, network
traffic, etc., so that the situation is dynamic and algorithm has no

control over these parameters.

When allocating resources, possibility of the rejection of a service
depends on unreserved resources in the pool. Let S is the total
processing power (in MIPS) available in a PM, then likelihood of

rejection of next VM request can be calculated as

Yvm,epm, ti l

Probability of Rejection of next user = [1 - -
Capacitypy

So that the cost function in equation (6) becomes

XvM ePM ;i
1-— #]

Cost PMi = a. f;" N(tpy, 0pu?) + .| 5

(8.7)

The scaling is determined based on the probability of SLA violations.
The aim of this method is to reduce number of SLA violations with
the help of a prediction model. The prediction model works on the
basis of the past usage pattern, which helps to find out the right
quantity of resources required. Here the past usage pattern is
simulated based on the Lublin model [223]. The scaling process is
carried out using this prediction to avoid SLA breaches. Figure 8.5
shows the process of enhanced resource allocation policy with scaling
process initiated by the prediction mechanism.
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8.4.7 Significance of Alpha and Beta

The performance of the proposed algorithm depends on the SLA
violations and likelihood on SLA breaches so that VM placement

depends on this probability.
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Fig. 8.5 Significance of a and

In the above equation (8.7), the significance of alpha and beta cost of
SLA breaches (a) and cost of service rejection () is shown in the
figure 8.5. If the cost factor dominates then algorithm tries to allocate
maximum number of VMs to a PM which increases the chances for
SLA breaches. By setting suitable a and  value, providers can adjust
these values depending on cost of SLA breaches and service rejection
cost. By adjusting the ratio, the provider can optimize their revenue by

minimizing SLA breaches and service rejection.
8.5 Experimental Setup and Results

The tasks arrive at random time interval to the cloud providers. So to

test the scalability of the algorithm static workload is inefficient,
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because the elastic cloud uses pay-as-you-use model. In order to
make the realistic environment we have used two workload
generation model for user request generation; Lublin model [223] and
Synthetic Random [234] workload.

Usage Pattern

80 |-O Off Peak Hour

W Peak Hour

Number of User Request (%)
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of a Day

Fig. 8.6 Cloud resource usage pattern during a day — Lublin model

The arrival of tasks to the CSP is modeled by Lublin model because
this model considers the daily cycle of arrivals depending on the
working hours as shown in figure 8.6. This distribution models are
based on the Gamma distribution. Gamma distribution is good in
modeling probabilities such as queuing analysis and for sets of values
that may contain skewed distribution. During morning sessions, there
will be lesser number of active users, which gradually increases as the
day moves to business hours and load increases from low to high. In
this situation the allocation policy selects optimal machines and
reserves the resources as user requested. If the convenient VMs are
unavailable in the active hosts it will wake up the additional hosts to
satisfy the customer needs. In order to maintain the QoS and reduce
SLA violations, the optimization and load balancing algorithm

reallocate the tasks from heavily loaded machines to the low loaded
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hosts. By the end of the day the numbers of active users are less. As
the users leave the CSP, some hosts are heavily loaded while others
are idle. In this stage a server consolidation mechanism is needed to
reduce the power consumption. So a server consolidation algorithm is

applied and idle hosts are put into sleep mode.

The performance of the SLA aware load balancing algorithm has been
evaluated by simulation using CloudSim toolkit [129]. CloudSim-3.0
is used as a framework in the simulator environment. Modeling and
simulation of large scale cloud computing data centers, hosts and
virtual machines are provided by CloudSim simulator. The main
components in CloudSim are datacenter, virtual machine and cloudlet.

The parameters for the simulation environment is shown table 8.2.

Table 8.2: Parameters for simulation environment

Parameter Value

Number of tasks in peak hour Upto 2000

Number of tasks in off peak hour Upto 5000

Physical Machines 100
Virtual Machines 1000
Threshold [29] 60%
Cost $1-$3

Physical server or host’s utilization is defined as the percentage of
time the CPU is busy. It is also referred to as the percentage of the
CPU's capacity that is currently being used. In any server machine,
when CPU utilization exceeds a certain threshold value, thrashing sets
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in. Usually to avoid critical conditions in most datacenters, each host
has a maximum threshold (normally 60%) [172]. This threshold value
indicates that if more than 60 percent of the server machine's capacity
is used, an SLA violation is flagged. As in the physical host the
threshold fixed for VM CPU utilization is also fixed as 60%. CPU
utilization can be measured from hypervisor and this 60% mark will
ensure better response time for other applications running on VMs
hosted on the same hosts. As most customers have expectations on
faster application response time, even slight increase in response time

(above the predefined threshold) can result in SLA violations.

VM failures can bring in SLA violations; they can also be caused by
progressive performance degradation of the application which occurs
due to software failures or high workload conditions. The degradation
usually results in an increase of server machine CPU consumption,
virtual machine utilization, delay, application response time and VM
migration time. Consequently, this may lead to an imbalance in the
cloud eco system.

8.5.1 Impact of workload on scalability

The scalability of the proposed algorithm is tested with 100 PMs with
maximum 10 VMs per PM. The experimental results are shown in the
figure 8.7 (a) and (b).

From figure 8.7 (a) it is clear that the average number of migrations
goes up linearly for the increase in number of tasks. Here average
number of migrations is 0.908 and 0.84 for Lublin model for peak
and off peak hours respectively. For random workload this is 1.62

and 1.226 for peak and off peak hours. The number of migrations for
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random workload is higher than the Lublin in peak hours. This is
because; to maintain SLA the system has to use more PMs in active

state due to random load.
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Fig. 8.7 (a) Average number of migrations
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Fig. 8.7 (b) Average number of migrations per VM

Figure 8.7 (b) contains average number of migrations per VM. Here
the migrations are almost linear in nature. There is only a small

195 |



Chapter 8 Integrated Approach Towards QoS Scheduling

increment in number of migrations per 1000 VM. This justifies the
previous results in figure 8.7 (a). These results show that algorithm is

capable for large scale operations in real cloud environment.
8.5.2 Load prediction

The efficiency of a distributed cloud system can be improved by right
prediction about how much resources are required and time duration.
Prediction mechanism allows the scheduler to allocate computing
resources based on the customer requirement in time. With the aid of
this prediction model, the proposed method increases the workload
handling capacity, i.e., service providers can effectively use their
computing resources or they can scale-down or scale-in their

capacity. This increases resource utilization rate.

The optimal resource prediction is shown in figure 8.8.
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Fig. 8.8 Optimal resource prediction

If the scheduler can predict or assess the requirement for next time
period based on the past requirement, then it can allot those resources

to the next customer task in the queue. If the resources are not enough
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to satisfy the customers’ requests, it can go for resource scaling or
elasticity across the different datacenters in the cloud environment.
The optimal prediction mechanism will reduce the number of VM
migrations or consolidations. Figure 8.8 shows the empirical load
prediction using proposed Lublin model over time. The standard error
is one of the best methods in measuring the standard deviation of a
sampling distribution. The standard error in predicting the optimal
load for the proposed method is only 0.00287.
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Fig. 8.9 (a) Overloaded PMs

The figure 8.9 (a) shows the number of overloaded PMs during the
user task execution with and without prediction mechanism. The
prediction reduced the average percentage of overloaded PMs from
62% to 39% in the simulation environment with 100 PMs. This 23%
reduction will improve the performance of the provider to maintain
the SLAs. Again, the average number of migration per VM is

measured with and without load prediction. In the figure 8.9 (b) the
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proposed mechanism experiences 14.3% lesser migrations due the
prediction mechanism than without prediction. This will increase
system stability due to lesser number of VM migrations. This result is
verified with system imbalance analysis, which is given in figure 8.12.
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Fig. 8.9 (b) Number of migration with load prediction
8.5.3 Makespan

Makespan is the overall task completion time. It is the difference
between intial task submission time and its completion time. Figure
8.10 and table 8.3 show the makespan comparison of RR [223], ABC
[98], Random Power Aware [220], Max-Min [194] and SLA aware
load balancing in peak hours mentioned in figure 8.6. From the figure
8.10 and table 8.3, it is clear that makespan is reduced to a

considerable amount by using SLA aware load balancing.
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Table 8.3: Makespan comparison (Milli Seconds)

Number RR Rag‘fveg Max-Min  ABC SLA
of Tasks [223] Aware [220] [194] [98] Aware
100  403.83 387.86  385.14  380.10 37541
200 791.22 76541 76155 75010  721.92
300 127861 124296 1197.96 112118  1065.43
400 167260 160051 161437 153054  1414.94
500 209339  1998.06 1950.78 1867.15  1770.45
600 2459.78 227561 229719 223566  2007.96
700 287917 267316 2703.60 2580.75  2424.47

800 3285.56 3065.71  3090.01 2930.31 2850.98

900 3772.95 3508.26  3456.42  3331.92 3157.49

1000 4390.34 4085.81 3972.83 3725.36 3490.00
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Fig. 8.10 Average makespan

199 |



Chapter 8

8.5.4 SLA

Figure 8.11 (a) shows the number of SLA violations before and after

scaling. Fr

SLA violations than other methods. The standard error in predicting

the scaling

Integrated Approach Towards QoS Scheduling

violations

om the figure it is clear that scaling reduces the number of

is reduced from 1.183 to 0.516, which shows the accuracy

of the method.
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The proposed method predicts the SLA violations on peak and off
peak time. The prediction accuracy is measured and is shown in the
figure 8.11 (b). For measuring the accuracy the entire day is divided
into 5 sessions depending on the task arrival intensity, which is based
on the prediction model shown in figure 8.6. The extensive
simulation results along with the different experimental settings

showed an overall prediction accuracy upto 99.5%.
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Here also the number of tasks on off peak hours is considered in the
range 500 to 2000 and on peak hours up to 5000. Figure 8.11 (c) and
8.11 (d) shows the number of SLA violations on off peak hours and
peak hours respectively. In both cases, the method is able to reduce

the number of SLA violations.

The above results shows that the proposed approach reduced number
of SLA violations as we have modeled in the mathematical equation
(8.1) with the aid of prediction model. Penalty enforcement also
forces service providers to keep the conditions in SLA during the

execution of a customer tasks.
8.5.5 Imbalance

The frequent migrations in the cloud causes load imbalance, which
adversely affect the performance and reduce QoS delivered to the
customers. The proposed method reduces the number of migrations
(DI factor) both in the initial resource allocation stage and load
balancing stage. As in the mathematical model, the proposed method
reduces the number of migrations (DI factor) both in the initial
resource allocation stage and load balancing stage. This is because of
the proper prediction that avoids situation of frequent migrations and
thereby related potential impact on makespan.

From figure 8.12 the DI is compared with Max-Min, RR, ACO [89]
and modified throttled [131] algorithms for different number of tasks.
The average DI factors are 3.71, 3.61, 2.65 and 3.42 respectively for
Max-Min, RR, ACO and modified throttled algorithms, while the

proposed method have only 1.63. Hence it is clear that the proposed
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method reduces the imbalance to a substantial amount and thus the

reduction in imbalance results in better QoS for customers.
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Fig. 8.12 Degree of imbalance using SLA aware load balancing
comparison with Max-Min, RR, ACO and Modified Throttled

algorithms
8.5.6 Cost

To study the effect of the increase in workload, the experiments were
conducted for varying number of input tasks. The result shows that,
the proposed method incurs lesser cost than the non-SLA aware
method. When more number of tasks is entering into the cloud, the
cost of computation also increases as shown in the figure 8.13. This is
because, in SLA aware method, the cloud broker considers the
current status of PMs and distributes the tasks by evaluating the
conditions based on the SLA requirements. While in non-SLA
method, the user requirements are never considered for resource

allocation.
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Fig. 8.13 Cost benefit analysis for SLA aware method

All the above results show that the proposed SLA aware load
balancing and scheduling algorithm reduces the makespan, degree of
imbalance and number of SLA violations in the cloud environment,
which give better performance to the end users in terms of time and
cost, with very less SLA violations. This is achieved with the help of
optimal allocation with prediction methods and enforcement of SLA with
penalty and auto scaling. The method efficiently uses the cloud

resources.
8.6 Summary

This chapter proposed an integrated quality assured SLA aware load
balancing and scheduling algorithm for the cloud environment. This
algorithm migrates tasks from VMs in overloaded hosts and submit it
to the VMs in the under loaded hosts having highest capacity. This
algorithm considers VM processing power, VM memory capacity
and bandwidth as the SLA parameters. During the initial allocation
and load balancing stage, a task is submitted to a VM that meet users’

SLA requirements. The experimental results proved that, the
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proposed integrated SLA aware load balancing and scheduling
algorithm have minimum makespan compared to Random, RR, Min-
Max and ABC algorithms. It also reduced frequent migrations i.e.,
degree of imbalance into a considerable amount. It is cost effective
and SLA violations are reduced using proper prediction method with
timely scaling algorithm thus the proposed method ensure QoS in

cloud scheduling.
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CONCLUSIONS AND CONTRIBUTIONS
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9.1 Overview

The theme of the thesis is centered on the quality of service in cloud
scheduling. Cloud computing is an innovative computing paradigm
designed to provide flexible and low cost way to deliver IT services
on-demand over the internet. Proper scheduling and load balancing of
the resources are required for efficient operations in the distributed
cloud environment. Since cloud computing is growing rapidly and
customers are demanding better performance and more services,
scheduling of the cloud resources that guarantees Quality of Service
(QoS) have become a very interesting and important area of research.
Hence developing scheduling policies that confine with the user's
practical needs and constraints would be extremely useful in cloud
virtual machine systems. Makespan, cost, efficient load balancing
with stability, scalability, and energy consumption are important

factors for providing good QoS in the cloud resource allocation
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process. Also, the scheduling policy will be beneficial to both service
providers as well as customers. It should also allocate adequate
resources for the best performance of user applications and to meet
service level agreements while considering the energy efficiency of a
cloud data center. Considering these factors we have designed and
developed QoS oriented scheduling policies that will consider
minimization of makespan, cost, energy consumption and SLA
violations with improved stability and scalability in this thesis. The

experimental results proved the efficiency of the proposed methods.

The major findings in this thesis are described below. We have done
a comprehensive survey about various scheduling methods proposed
for cloud and identified shortfalls and need for improvement in
achieving QoS. In the first method we have improved the QoS
through the reduction in makespan by an efficient VM placement
method. The second method handled makespan-migrations to
improve QoS. From these we can conclude that quality in the cloud
can be improved with efficient makespan-migrations methods.

Our next finding is that active physical machine clustering improves
the energy efficiency of the data centers. Since clustering improves
resource utilization, unused or idle physical servers can be switched
off and they can be reintroduced when the workload increases, thus

improving energy efficiency.

When the workload increases in a physical server there will be
performance interference due to the sharing of common resources.
We have modeled a mathematical equation for the total load on a
system considering the parasitic load due to interference. Based on

this, a regression model is developed to achieve QoS in the cloud by
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controlling frequent migrations. Thus this method improved the

stability in the cloud.

SLA enforcement can be done through auto scaling mechanism in the
cloud. For this, we have used the principle of locality property of
Petri Net for effective scaling decisions to achieve QoS. Another
finding of this thesis is the controlling of SLA violations through the
enforcement of penalty and the use of a workload prediction

mechanism.
9.2 Research Contributions

Designed and developed QoS guaranteed scheduling mechanism for

cloud. The research contribution of the thesis consists of:

B Makespan is one of the important parameters in achieving
QoS in the cloud. We have developed VM placement scheme
to handle makespan. This scheme also minimizes the storage
requirement as well as power consumption.

B Cloud scheduling is an NP-hard problem. Hence, intelligent
methods are needed to arrive at near optimal solutions to
mitigate the issues related to the dynamic nature of cloud
resources. We have successfully developed and tested hybrid
method based on an evolutionary algorithm for VM-migration
through load balancing. This method minimized makespan
and imbalance in the cloud ecosystem.

B Cloud server farms consume huge energy. Some of the
machines may be in an over loaded or under loaded stage. For
energy efficiency, better energy management policies are

needed. In order to address this energy concern, this thesis
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contributed an energy efficient clustered load balancing
mechanism for server farms promoting green computing. It
improved energy efficiency through active physical server
clustering based load balancing.

B In physical cloud, the total computation power of a physical
machine cannot be used due to some interference created by
the sharing of common resources. It also results in creating a
parasitic load on the system. We have developed a novel
interference aware prediction model to enhance the stability in
the cloud ecosystem. This mechanism reduced the
performance interference in the cloud datacenter with the aid
of an optimal prediction mechanism.  This mechanism
improved the performance of the service provider by
predicting optimal threshold range for the maximum
efficiency for physical servers.

B Maintaining conditions in the SLA is a major step in
achieving QoS in the cloud. We have developed an SLA
enforcement mechanism with auto scaling. This dynamic
provisioning system with scaling policy reduced makespan,
number of SLA violations, penalty cost and maximizes profit.
The development of a Petri Net model for the cloud to
enhance QoS is another contribution of this thesis.

B The methods proposed in this thesis also address the load
balancing and reduced imbalance due to frequent migrations
happening in the cloud. We have successfully developed and
tested the models that reduce frequent migrations thereby
achieving better load balancing and increased stability in the

cloud datacenters.
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B Finally, developed an integrated SLA enforcement scheme
that will consider makespan, migrations, SLA and cost with
the aid of a prediction model. The incorporated prediction
model is based on the past usage pattern and forecasts future
SLA violations due to fluctuating workload. Based on these
forecasts appropriate load balancing and scaling decisions are
carried out, which reduced cost, makespan and SLA
violations. This method also improved system stability due to
the scaling mechanism by limiting frequent migrations. All
our contributions mentioned above resulted in better QoS

delivery in the cloud.

9.3 Proposals Made in this Thesis

In this section, we highlight how different chapter's progress to
accomplish different objectives of the thesis and the difference between

the outcomes of each proposal made in the thesis.

The proposed works mainly deal with the enhancement of cloud
scheduling process to improve the quality of service. Makespan is an
important factor in achieving quality in the cloud environment. The first
method proposed is to enhance the makespan with the maximization of
available resources. For handling makespan it effectively used Best-fit —
Remaining-fit strategy. It also capable to minimizes the storage
overhead. The experiments have proven that this method is capable to

maintain QoS.

The second method proposed is based on load balancing which handles
makespan through migrations. Since makespan is an incredible

parameter for QoS satisfaction, considering it with migration strategy
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produces improvement in the scheduling process. Here, the power of
swarm intelligence is used to reduce makespan and VM migrations thus
it achieved quality. The experimental result obtained proved that the

proposed scheme attained the objective to enhance the makespan.

Cloud datacenters contain several physical servers that consume a huge
amount of electricity. Reducing energy usage is a good move toward
green computing. The third technique is a physical sever clustering
mechanism for improving energy efficiency. In this load balancing
technique, the number of active machines can be reduced. If the
currently active servers not enough to meet the QoS requested by the
customer, then only it considers an inactive idle servers. The clustering
of active physical machines and energy aware virtual machine migration

reduces energy consumption.

The fourth method is to enhance system stability through an interference
aware mechanism. If we have developed a proper prediction mechanism
to know the optimum load that can be processed at a server, the overall
system performance can be improved. i.e., if we know the optimum
workload that can be processed at a server based on the currently
available processing power, the system can avoid frequent virtual
machine migrations. Thus the system achieves stability by limiting
frequent migrations and respective performance degradation. Our
proposed method is capable to achieve system stability through the
prediction mechanism. The prediction gives a prior knowledge about the
workload to be handled by a server. For this model, we have formulated
a novel regression model for parasitic load due to interference. The real
implementation and obtained results proved that the proposed

mechanism accomplished the objective.
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The fifth mechanism deals with SLA enforcement with auto scaling
mechanism. Here auto scaling of resources is adopted to avoid violations
in the SLA conditions. To enforce SLA, the penalty is applied in the
case of any breaches in agreed conditions. If the penalty is imposed for
violations in the SLA conditions, then service providers are keen in
maintaining the agreed QoS. To assist auto scaling process a Petri Net
model for cloud is also designed in this method. We have employed
principle of locality to improve the auto scaling process. Auto scaling
again reduces the migrations, thus it enhances the system stability factor.
The timely scaling mechanism helps to reduce SLA breaches so that
profit of the service provider can be increased. Thus our proposed

scheme adheres with the objective of the thesis.

The sixth technique again addresses the SLA enforcement, with an
integrated approach to achieve good quality of service. This method
considers makespan, SLA, cost with penalty, scalability and stability.
Here the financial obligations due to SLA violations are calculated
before for making scaling decisions. The probability of SLA violations
and penalty is calculated for this purpose. The impact of workload on
scalability is also a factor to maintain QoS. So an optimal scheduling
mechanism with load, system stability and cost is designed in this

technique to cope with SLA and cost.

The fundamental goal of the thesis was to design and development of
QoS guaranteed cloud scheduling techniques with performance
improvement in terms of makespan, energy efficiency, stability, SLA
enforcement, and cost. In this thesis, a progressive approach was

followed to accomplish this objective.
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9.4 Performance Study

In this section we have highlighted a detailed performance analysis of

the proposals made in the thesis.

Chapter 2 presented a comprehensive review in the area of resource
allocation in cloud computing. This review has offered promising
changes in this area. It identified highlights and limitations of
different methods for resource allocation including scheduling, load
balancing and VM placement. The analysis of current literatures has
assisted in finding gaps and identifying research challenges that have
clarified the direction of this thesis. Chapter 2 also identified the

metrics to evaluate the performance of the system.

The Chapter 3 proposed Bin packing based algorithm to minimize
makespan and maximize resource utilization in a cloud datacenter. It
also focused on the profit of a cloud service provider. It proposed a
Best-fit — Remaining-fit strategy that efficiently places the virtual
machines to minimum number of active physical servers. The jobs
are scheduled using Best-fit approach. The cloud broker employs

Remaining-fit method for VM placement.

Here we have considered each PMs in the datacenter are bins. The
VMs requested by the customer, are the objects; which are to be filled
in the bin. Our algorithm attempts to minimize the number of PMs
required for placing customer requested VMs. At the same time the
algorithm also aims to reduce makespan. This method consists of two
phases. In the first phase the jobs are submitted to the cloud through a
cloud broker using Best-fit method. In this step, the jobs are sorted in

ascending order depending on the processing power required. The
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available VMs are sorted in a list based on their processing power.
Then the cloud broker places the jobs in the job queue to available
VMs. By the repeated simulated study we have proved that the Best-
fit — Worst-fit approach efficiently maps VMs to the active PMs, such
that makespan, power consumption and thereby computation cost are
minimized. Thus it’s a promising method to achieve better QoS in the

cloud.

In chapter 4 we have proposed and experimented a bee colony
algorithm for makespan improvement through efficient load
balancing in cloud. In this method, we have used the power of swarm
intelligence algorithm to remove the tasks from overloaded servers
and migrated these removed tasks to the most appropriate
underutilized or under loaded servers. This migration policy also
considered priority of the tasks in the waiting queue. The tasks with
least priority are selected as candidates for migration. Hence no tasks
are needed to wait a longer time in order to get processed and
improve customer satisfaction. In this proposed method honey bees
foraging behavior to find a food source is mapped into the cloud
environment for effective load balancing. Here tasks in the
overloaded machines are removed based on the priority. The task

with lowest priority is transferred to under loaded resources.

The proposed method works in four stages. In the first stage load on
each VM is calculated by adding all the workloads in a PM. In the
next stage, load balancing decision is taken based on the load
deviation. In the third stage, the VMs are grouped into overloaded
and under loaded VMs based on the load on it. In the final step, the

tasks are transferred to the under loaded VMs based on priority. Our
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experimental results proved the efficiency of the proposed approach
in terms of low makespan, number of migrations and degree of

imbalance.

In order to harness the green energy concept, the importance of
improved energy efficiency is proposed in chapter 5. It proposed an
energy aware clustered load balancing system in which,
heterogeneous cloud resources are grouped into different clusters, by
using a partitioning based clustering algorithm. The method
progresses through three stages. First, it clusters active physical
servers into clusters based on the currently available processing
power. Since the search process is carried out only on a particular
cluster searching time will be reduced. Then an energy aware VM
migration is carried out. Finally, the tasks are assigned to these VMs
using process allocation algorithm. This chapter also used a Best-fit —
Worst-fit strategy to place the virtual machines to minimum number
of active physical servers. Here best-fit VM allocation is carried out
based on a weight value of the resource. This weight value depends
on its memory, storage and processing capacity of the resource. Then
the corresponding VM cluster is found out using this weight value. If
suitable resources are available, then allocate it, else goes to second
portion of that cluster and check the resource availability. If the VM
is unable to allocate in that cluster, then the method checks in other
clusters. Finally, again best-fit allocation strategy is used for
allocating processes to the VMSs. Thus the Best-fit algorithm achieve
best VM placement. Here clustering reduced the number of resources
needs to be searched and hence reduced the total searching time
required for resource discovery and allocation. By the simulated
study we have proved that the proposed method reduced energy

215 |



Chapter 9 Conclusions and Contributions

consumption and thereby computation cost is minimized. The method
reduced time for resource discovery, resource allocation and response

time with power consumption.

Chapter 6 considered a new parameter called interference for
resource allocation in the cloud. It proposed an interference aware
prediction mechanism (PiA) for VM migration with auto scaling.
Since several VMs with different applications are running in a PM,
there will be performance degradation that causes interference in the
performance of the system due to sharing of common resources. The
proposed work is intended for the stability in the performance and
scalability of resources when the user workload increases beyond a
certain threshold value. So, VMs in a particular host can be migrated
to appropriate destinations based on the least interference values, for
the performance improvement of entire cloud system. This will

reduce the number of migrations in the cloud system.

The proposed method monitored system load and predicted the
interference using a mathematical regression model so as to aid in
future task allocation. The model also predicted the optimal load in
each server using the Pareto principle and threshold range. It also
helped in scaling decisions for achieving better QoS. Thus the
proposed model achieved automatic scaling that helped to handle
sudden load changes with precise prediction and minimum VM
migrations. Since there is only a rare chance of migrations, the
system achieves stability that improved overall performance of the
system compared to existing methods. We have tested the proposed
method on the real cloud environment in five different workload

conditions. We have tested and proved the accuracy of the prediction
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mechanism. The experimental results and comparative analysis
validated the efficiency of the incorporated prediction mechanism in

the cloud scheduling.

SLA enforcement through an auto scaling mechanism is proposed in
chapter 7. It considered price variations, violations in deadline and
response time as SLA parameter in the market oriented cloud. In this
chapter, we have proposed scheduling and load balancing mechanism
based on Petri Net model with auto scaling. Here we have utilized the
properties of Petri Net to enhance the multi objective cloud
scheduling mechanism. In addition, we have considered a dynamic
spot pricing strategy with penalty if violations occur in the agreed
conditions. The method also supports auto scaling to ensure QoS. To
reduce frequent migrations, algorithm used principle of locality to
reduce imbalance in the cloud. By simulation results and comparative
analysis we have proved that the proposed model provides better

performance in terms of time, cost and migrations.

Finally, the chapter 8 proposed an integrated quality assured SLA
aware load balancing and scheduling algorithm for the cloud
environment with cost consideration. This method considers
processing power, memory requirement, bandwidth and cost as the
SLA parameters. We have also proposed a prediction model based on
the past usage pattern and that aims to provide optimal resource
management without the violations of the agreed service level
conditions in cloud datacenters. It considered SLA in both initial
scheduling stage and in the load balancing stage and also, it looks
into different objectives to achieve minimum makespan, minimum

degree of imbalance and the minimum number of SLA violations
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with reduced cost. The experimental results proved the effectiveness
of the proposed system compared to other state-of-art algorithms in

terms of cost, makespan, SLA violations and stability.

Thus this thesis designed and developed QoS guaranteeing
scheduling methodologies to improve cloud performance while
considering makespan, stability with better load balancing,

scalability, cost, and energy efficiency with service level agreements.
9.5 Future Directions

As one tries to derive the further directions of future research form
the results summarized in the present thesis, it turns out that the
scheduling and resource allocation in cloud is a live problem on
account of the diverse requirements of applications and user needs.
The world is moving towards Internet of Things (loT)
implementations. That data disseminated from these 10T devices is
huge and more cloud implementations are needed to handle the data
and applications. This scenario leads to the Cloud of Things (CoT)
situation. The algorithms and methods developed in this is thesis can

be extended to handle this scenario.
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