
Design and Development of QoS Guaranteed Cloud

Scheduling

A THESIS

Submitted by

REMESH BABU K R

(Reg No. 4740)

for the award of the degree of

DOCTOR OF PHILOSOPHY

DIVISION OF INFORMATION TECHNOLOGY

SCHOOL OF ENGINEERING

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY, KOCHI

APRIL 2019

CERTIFICATE

This is to certify that the thesis entitled Design and Development of

QoS Guaranteed Cloud Scheduling submitted by Remesh Babu K R to

the Cochin University of Science and Technology, Kochi for the award of

the degree of Doctor of Philosophy is a bonafide record of research work

carried out by him under my supervision and guidance at the Division of

Information Technology, School of Engineering, Cochin University of

Science and Technology. The content of this thesis, in full or in parts, have

not been submitted to any other University or Institute for the award of any

degree or diploma. I further certify that the corrections and modifications

suggested by the audience during the pre-synopsis seminar and

recommended by the Doctoral Committee of Mr. Remesh Babu K R are

incorporated in the thesis.

Kochi - 682022 Dr. Philip Samuel

Date: 10 – 04 – 2019 Research Guide

 Professor

 Department of Computer Science

 CUSAT

DECLARATION

I hereby declare that the work presented in the thesis titled Design

and Development of QoS Guaranteed Cloud Scheduling is based on the

original research work carried out by me under the supervision and guidance

of Dr. Philip Samuel, Professor, Department of Computer Science, for the

award of the degree of Doctor of Philosophy with Cochin University of

Science and Technology. I further declare that the contents of this thesis in

full or in parts have not been submitted for the award of any degree, diploma,

associate ship, or any other title or recognition from any other University/

Institution.

Kochi – 682022 Remesh Babu K R

Date: 10 – 04 – 2019 Research Scholar

Dedicated to

My Parents

Mr. B Raman

&

Mrs. K L Sarada

i

ACKNOWLEDGEMENTS

All praise and thanks to God Almighty for all the blessings

showered on me from time to time.

First and foremost, I owe my profound sense of reverence to

my supervisor and guide, Dr. Philip Samuel, for his patience,

enthusiasm, immense knowledge and motivating nature and endless

support, which paved the way for the successful completion of my

doctoral dissertation. I have been extremely fortunate to have a

supervisor who cared so much about my work and I cherish the

opulent experience of working with him.

My special word of thanks to Dr. Sudheep Elayidom M, for

being my Doctoral Committee member as well as a motivator.

I am extremely thankful to Dr. Renumol V G, Head, Division

of Information Technology for providing me the facility, support and

encouragement to pursue the PhD work in the department. I

gratefully acknowledge all the teaching and nonteaching staff of

Division of Information Technology and Division of Computer

Science & Engineering, who have been very forthcoming to offer

advice and help in their respective roles.

My deep felt gratitude goes to all my teachers, who

introduced me to the vast expanses of knowledge, throughout my

education. Without their help, I would not have been able to

accomplish my professional ambitions.

ii

I fondly remember the friendship I had with the research

scholars in our Division. I am thankful to all my friends and my

colleagues in Government Engineering College, Idukki. In particular,

I remember with gratitude the timely support and encouragement

from Mr. Ratheesh T K, Ms. Asha Ali, Ms. Mickey James, Ms.

Geethu K Mohan, Dr. Preetha K G, Ms. Saritha S and Mr. Binu A. I

am grateful to all my students, especially Ms. Sreelekshmi S and Ms.

Arya K S, for their thoughts, wishes and prayers.

I would like to thank all the anonymous reviewers for giving

critical suggestions, to improve this research.

I am deeply indebted to my parents, in-laws and my brother

Rajesh Babu and sister Rekha, who have been always a source of

inspiration, offering a helping hand with reassuring support in all

situations that looked difficult to me.

Finally and most importantly, words are too short to express

my deep sense of gratitude towards my beloved wife Ms.

Krishnalekha P L and my most loving children Redhu R Krishna &

Rishika R Krishna for their understanding, encouragement, patience

and unwavering love. I vouch that this journey would not have been

possible without their priceless and perpetual support, invaluable help

and inspiration.

Remesh Babu K R

iii

ABSTRACT

In the most generalized context, cloud computing refers to the

on-demand delivery of a shared pool of virtual computing resources

over a network to the remote users. These resources can be rapidly

provisioned based on customer requirement. Cloud service providers

try to attract more customers to increase their profit, while cloud

customer expectations are good Quality of Service (QoS). The

customer requirements and nature of resources are in heterogeneous

nature. Scheduling is generally considered as a difficult problem of

managing jobs within the given time constraint. However, the

problem becomes more complicated when QoS is also considered

with scheduling. QoS depends on several factors like makespan,

delay, response time, over and under loaded conditions, violations in

Service Level Agreement (SLA), frequent migrations, system

stability and parasitic load. Cost, energy and scalability decisions are

other factors that influence the performance. The objective of this

thesis is to provide QoS in cloud scheduling.

We have developed a Virtual Machine (VM) placement

scheme to minimize makespan. It also minimizes the storage

requirement as well as power consumption. Next we have developed

and tested hybrid method based on an evolutionary algorithm for VM

migration through load balancing. It minimized makespan and

imbalance in the cloud eco system. We developed an energy-efficient

clustered load balancing for server farms for promoting green

iv

computing. It achieved energy efficiency through active physical

server clustering. A novel interference aware prediction model to

enhance the stability in the cloud eco system is developed and tested

in real cloud. This mechanism reduced the performance interference

in the cloud datacenter by predicting optimal threshold range for the

maximum efficiency for the physical servers. Another contribution is

the development of an SLA enforcement mechanism with auto

scaling. This dynamic provisioning system with scaling policy

reduced makespan, number of SLA violations, penalty cost and

maximizes profit. Finally, this thesis presents an integrated SLA

enforcement scheme with the aid of a prediction model. The

incorporated prediction model is based on the past usage pattern and

forecasts future SLA violations due to fluctuating workload. It helps

in scaling decisions and resulted in reduced cost, makespan, SLA

violations, and frequent migrations. All the methods mentioned above

resulted in better Quality of Service in cloud scheduling.

v

TABLE OF CONTENTS

LIST OF FIGURES ……………………………………………. xi

LIST OF TABLES ……………………………………..………. xv

ABBREVIATIONS …………………………………………….. xvii

SYMBOLS ……………………………………………………… xx

Chapter 1: INTRODUCTION

1.1 The Cloud Computing ………….…...……..…..……...……... 2

1.1.1 Cloud Deployment Models…….………… ……… 3

1.2 Cloud Delivery Models ……………………………………….. 4

1.2.1 Software as a Service ………………………………… 4

1.2.2 Platform as a Service …………………………...……. 5

1.2.3 Infrastructure as a Service …………..……………….. 6

1.3 Significance of Scheduling …………………………….……... 7

1.3.1 Cloud Properties that Affect Scheduling …………….. 9

1.3.1.1 Homogeneity …………...………………... 10

1.3.1.2 Heterogeneity …………………………….. 10

1.3.1.3 Elasticity …………...…………………….. 11

1.3.1.4 Scalability and Auto scaling ………...….... 12

1.3.2 Scheduling Constraints ………………………………. 13

1.4 Service Level Agreements ……………………………………. 14

1.5 QoS Oriented Scheduling …………………………………..... 14

 1.5.1 Quality Factors ………………...….………………… 15

 1.5.1.1 Makespan ………………………………… 15

 1.5.1.2 Financial …………………………………. 16

 1.5.1.3 Service Level Agreement .……………….. 16

 1.5.1.4 Stability ...………………………………… 16

 1.5.1.5 Scalability …...…………………………… 17

1.6 Motivation …………………………..………………………… 17

1.7 Problem Statement ……………………………………..…….. 22

1.8 Research Objective ……………………………………..…….. 22

1.9 Thesis Organization ……………………….…………………. 23

vi

Chapter 2:LITERATURE SURVEY

2.1 Introduction ..……....…...………... 26

2.2 Parameter Centric Methods ………………..…..…...……….. 27

2.2.1 Makespan ……………………..………….................... 29

2.2.2 Delay ……………………..………………................... 30

2.2.3 Deadline ……………………….................................... 32

2.2.4 Cost and Profit …………………….............................. 33

2.2.5 Energy ………………………...…................................ 37

2.2.6 Priority ……………………..…………………………. 37

2.2.7 Multi Objective ………………...………...................... 39

2.3 VM Placement Methods ...…………………............................. 40

2.4 Load Balancing Methods ..………………................................ 42

2.5 Dynamic and Adaptive Methods …...….…………….............. 44

2.5.1 SLA aware ……………... 44

2.5.2 Elasticity based ……………...………………………... 45

2.6 Optimization Methods …………………………………........... 46

2.6.1 Linear programming models .………............................ 47

2.6.2 Heuristic methods ………….. 49

2.6.3 Meta-heuristic methods …………................................. 49

2.6.3.1 Genetic Algorithm ………………...……….. 51

2.6.3.2 Ant Colony Optimization methods …........... 51

2.6.3.3 Artificial Bee Colony methods 53

2.6.3.4 Particle Swarm Optimization methods…….. 53

2.6.4 Hybrid methods …………………................................. 55

2.7 Review Observations ……………………................................. 57

2.8 Design Considerations of the Thesis …………………............ 59

2.9 Metrics ………………….. 60

2.10 Summary……………...……..…….. 61

Chapter 3: HANDLING MAKESPAN

3.1 Introduction ..……..........…………... 62

3.1.1 Makespan and VM placement ……….…................... 63

3.2 Proposed Method ... 65

3.2.1 Optimal placement .. 66

vii

3.2.1.1 Bin packing method 67

3.2.1.2 Best-Fit job placement algorithm 68

3.2.1.3 Remaining-Fit VM placement algorithm.... 70

3.3 Experimental Setup and Results ...……..……......................... 70

3.3.1 Simulation environment .. 71

3.3.2 Evaluation parameters ... 71

3.3.2.1 Number of PMs used 71

3.3.2.2 Storage space .. 72

3.3.2.3 Power utilization,................................... 73

3.3.2.4 Makespan ……………………………..….. 74

3.4 Benefits of Bin packing…...…………………........................... 74

3.5 Summary ……………...…..…………………........................... 75

Chapter 4: ENHANCED LOAD BALANCING FOR VM

MIGRATIONS

4.1 Introduction ………………..………………………….………. 76

4.1.1 How migrations affect makespan …….….....……..… 77

4.1.2 Artificial Bee Colony algorithm …..….……….….… 78

4.2 Related Works ...…………………...…...……..………………. 80

4.3 Proposed Method .………………………...…………..……..... 84

4.3.1 Architecture ……………………..……………….….. 85

4.3.2 Steps for cloud load balancing ………….......…….… 87

 4.3.3 Parameter mapping ..……………… …….….……… 87

 4.3.4 Load balancing ……………………….…………...… 88

4.4 Experimental Results ……………..………………..…………. 93

4.4.1 Makespan ………………………………………….... 93

4.4.2 Number of migrations …………………………….… 94

4.4.3 Degree of imbalance .………… ………………..…... 95

4.5 Summary ……..………………………………………….…….. 96

Chapter 5: LOAD BALANCING FOR IMPROVING ENERGY

EFFICIENCY

5.1 Introduction ……………………...…..……………….….……. 97

5.1.1 Energy management ..……………. ……….....…...… 98

5.2 Related Works ………………………..…...……………..….… 99

viii

5.3 Proposed System ………………………..……..………..…….. 103

5.3.1 Clustering of physical machines ………...…...……… 104

 5.3.2 Energy aware VM migration .…………...…...……… 105

 5.3.3 Process allocation .……………………...……..…….. 108

5.4 Ant Colony Based Method …………..…………………..…… 109

5.5 Experimental Setup and Performance Analysis ………..…... 111

5.5.1 Number of PMs searched .……………………..……. 111

5.5.2 Response time ……………………………..………... 112

5.5.3 Number of PMs used for VM allocation ……....……. 115

5.5.4 Energy consumption ……………………..…...……... 116

5.5.5 Total energy cost ……………………………..……... 117

5.6 Summary …………………………..……………………...…… 117

Chapter 6: ENHANCED STABILITY THROUGH

INTERFERENCE AWARE PREDICTION

6.1 Introduction ………………..…………………...……..……… 118

6.1.1 Interference ……………………….………...………. 119

 6.1.2 Stability and auto scaling .….....…. .……….…..…… 120

 6.1.3 Need for prediction mechanism ……….……….…… 121

6.2 Related Works ……………………….………..……………… 122

6.3 System Design ...………………………...………………..…… 125

 6.3.1 Dynamic scaling …………...……….…….…….……. 128

6.3.2 Application interference ……………………........…... 130

6.4 Pareto Derived Interference Prediction Model .………..…... 130

6.4.1 Pareto optimality …………….………………….……. 132

 6.4.2 Pareto-derived interference aware algorithm …...….... 133

6.5 Experimental Setup and Analysis …………….…………..… 135

6.5.1 Experimental conditions …….………………….……. 135

6.5.2 Analysis …………………………………………....… 136

6.5.2.1 Threshold range ……………………...……. 137

6.5.2.2 Prediction error ………….……...……….… 139

6.5.2.3 Comparative analysis of interference ..……. 141

6.5.2.4 Number of physical machines used ..…….... 143

6.6 Summary.…..………………………………………………..… 146

ix

Chapter 7: SLA ENFORCEMENT WITH AUTO SCALING

7.1 Introduction ……………………...………………………….... 147

7.1.1 Petri Net ……..…………………………………...…... 149

7.1.2 Spot Instances …………………………………...…… 149

7.2 Related Works ………………………..….………...……….… 150

7.3 Petri Net for Cloud ………………………...………………..... 154

7.3.1 Basics .……….…………………………..…………… 155

 7.3.2 Principle of locality and reduced imbalance ………..... 155

 7.3.3 Petri Nets for cloud scheduling ……...…...…...…..…. 156

 7.3.4 Scaling process ……………..…………………...…… 159

 7.3.5 Evaluation parameters ……………...…………...…… 160

7.4 Experimental Setup and Performance Analysis ……….…… 161

7.4.1 Makespan ……………………………..………….…… 162

7.4.2 SLA violations ……………………..…………….…… 163

7.4.3 Profit ………………………………..………………… 165

7.4.4 Migrations ……………………………….……….…… 165

7.5 Summary ………………………………………...……….…… 167

Chapter 8: INTEGRATED APPROACH TOWARDS QoS

8.1 Introduction …………………….…………………..………… 170

8.1.1 Load resource allocation …………..….......……….….. 171

8.1.2 Role of SLA …...……………...……….……………… 172

 8.1.3 Prediction model ……………………………………… 173

8.2 Related Works .………………….……………………...…….. 173

8.3 Problem Formulation ………………....………………..….… 178

8.4 SLA Aware Scheduling and Load Balancing ……….…..….. 181

8.4.1 SLA verification ………………....…………………… 181

8.4.2 Load balancing decision ……....………….…………... 182

8.4.3 PM grouping ………….………...………….................. 184

 8.4.4 Task transfer ………………..……...…………………. 184

 8.4.5 SLA violation detection and VM scaling …………….. 185

 8.4.6 Probability of SLA violation and penalty …………….. 187

 8.4.7 Significance of alpha and beta …………...…………… 191

8.5 Experimental Setup and Results ………………….…………. 191

 8.5.1 Impact of workload on scalability …………….……… 194

x

 8.5.2 Load prediction ……….………………....……………. 196

 8.5.3 Makespan ….………………………………………….. 198

 8.5.4 SLA violations …………..…………...……………….. 200

 8.5.5 Imbalance ……….……………………........………….. 202

 8.5.6 Cost …………………………………………………… 203

8.6 Summary ………………………….…………………………... 205

Chapter 9: CONCLUSIONS AND CONTRIBUTIONS

9.1 Overview ………………………………………………….…... 206

9.2 Research Contributions ………………..…………………….. 208

9.3 Proposals Made in this Thesis ………………………….……. 210

9.4 Performance Study …………………..……………………….. 213

9.5 Future Directions …..……………………………..………...… 218

REFERENCES 219

LIST OF PUBLICATIONS BASED ON THIS THESIS 251

xi

LIST OF FIGURES

Figures Title Page No.

1.1 Cloud deployment models 4

1.2 Cloud delivery models 6

1.3 Scheduling in cloud 7

1.4 Auto scaling in a cloud infrastructure 13

2.1 General classification of scheduling models 26

2.2 Scheduling models based on optimization

methods

27

2.3 Parameter centric scheduling objectives 28

2.4 Nature inspired algorithms 50

3.1 Overview of VM placement mechanism 64

3.2 Cloud architecture 66

3.3 Best-Fit job placement 68

3.4 Remaining-Fit VM placement 69

3.5 Comparison – Number of PMs used 72

3.6 Storage space utilization 73

3.7 Power utilization 73

3.8 Makespan 74

3.9 Comparison with FFD and Max-Min

algorithms

74

4.1 Artificial Bee Colony algorithm 79

4.2 Load balancing architecture 85

4.3 Load balancing using bee colony algorithm 86

4.4 Steps for cloud load balancing 87

xii

Figures Title Page No.

4.5 Enhanced bee colony based load balancing

algorithm

91

4.6 Comparison of makespan 94

4.7 Number of task migrations 95

4.8 Degree of imbalance before and after applying

algorithm

96

5.1 Proposed system architecture 104

5.2 PM clustering algorithm 105

5.3 Energy aware VM allocation 105

5.4 Process allocation algorithm 109

5.5 Number of PMs searched 112

5.6 Response time comparison (Number of

processes = 100)

114

5.7 Response time comparison (Number of PMs =

200)

114

5.8 Number of PMs used 116

5.9 Energy consumption 116

6.1 VM live migration architecture 126

6.2 VM live migration scalable architecture 127

6.3 The auto scaling process 129

6.4 Pareto-derived interference aware algorithm 134

6.5 Pareto graph for threshold 55-60 % 138

6.6 Pareto graph for threshold 66-65 % 138

6.7 Pareto graph for threshold 65-70 % 138

6.8 Pareto graph for threshold 70-75 % 139

6.9 Comparison of prediction error among

different threshold ranges

141

xiii

Figures Title Page No.

6.10 Comparison of interference with First Fit

Decreasing

141

6.11 Performance comparison 142

6.12 Average number of physical machines used in

different conditions (a to e)

143-145

7.1 Normalized average spot instance price of

c1.xlarge for a day

150

7.2 Petri Net model for cloud scheduling 157

7.3 Auto scaling process 161

7.4 Average makespan when VMs number is fixed

(a) 200 (b) 300 (c) 500 (d) Number of tasks

fixed = 500

163

7.5 Average number of SLA violations in different

scenarios

164

7.6 Average profit when number of VMs is 500 165

7.7 Migrations when 200 VMs (a) low load (b)

high load

166

7.8 Average number of scaling decisions 167

8.1 Load resource allocation architecture 172

8.2 Underutilized reserved VM resources are

collected in the PMs resource pool

186

8.3 SLA aware load balancing algorithm 187

8.4 Enhanced resource allocation policy 188

8.5 Significance of alpha and beta 191

8.6 Cloud resource usage pattern during a day –

Lublin model

192

8.7 (a) Average number of migrations 195

 (b) Average number of migrations per VM 195

xiv

Figures Title Page No.

8.8 Optimal resource prediction 196

8.9 (a) Overloaded PMs 197

 (b) Number of migrations with load prediction 198

8.10 Average makespan 199

8.11 (a) Average number of SLA violations before

and after scaling

200

 (b) Prediction accuracy 200

 (c) Average SLA violations during off peak

hours

201

 (d) Average SLA violations in peak hours 201

8.12 Degree of imbalance using SLA aware load

balancing comparison with Max-Min, RR,

ACO and modified throttled algorithm

203

8.13 Cost benefit analysis for SLA aware method 204

xv

LIST OF TABLES

Tables Title Page No.

2.1 Makespan 30

2.2 Delay 31

2.3 Deadline 32

2.4 Minimize cost 34

2.5 Maximize profit 36

2.6 Energy 38

2.7 Priority 38

2.8 Multi-objective 40

2.9 VM placement 41

2.10 Load balancing methods 44

2.11 SLA aware 45

2.12 Elasticity based 46

2.13 Linear programming models 48

2.14 Heuristic methods 50

2.15 GA based methods 51

2.16 Ant Colony Optimization methods 52

2.17 Artificial Bee Colony methods 53

2.18 Particle Swarm Optimization methods 54

2.19 Hybrid methods 56

4.1 Mapping of Bee colony parameters with cloud

environment

88

xvi

Tables Title Page No.

4.2 Degree of imbalance 95

5.1 Notations used 102

5.2 Response time (Number of processes = 100) 113

5.3 Number of PMs used 115

5.4 Total energy cost 117

6.1 Experimental conditions 136

6.2 Pareto table for threshold range 55-60 % 137

6.3 Comparison of prediction errors at different

threshold range

140

7.1 Description of Petri Net places and transitions 159

8.1 Description of symbols 179

8.2 Parameters for simulation environment 193

8.3 Makespan comparison 199

xvii

ABBREVIATIONS

ABC Artificial Bee Colony Algorithm

ACO Ant Colony Algorithm

AWS Amazon Web Service

CIS Cloud Information Service

CoT Cloud of Things

CPS Cyber Physical Systems

CSM Cloud Scalable Multi-objective

CSP Cloud Service Provider

DFM Dynamic Forecast Migration

DI Degree of Imbalance

DVFS Dynamic Voltage and Frequency Scaling

EA Evolutionary Algorithm

EC2 Elastic Compute Cloud

ESPP Elastic Services Placement Problem

EWRR Enhanced Weighted Round Robin

FFD First Fit Decreasing

FP Foraging Pheromone

GA Genetic Algorithm

IaaS Infrastructure as a Service

IABC Interaction Artificial Bee Colony Algorithm

IoT Internet of Things

LAMP Linux, Apache, MySQL, PHP

xviii

MA Memetic Algorithm

MAPE Monitor, Analyze, Plan, Execute

MIPS Million Instruction Per Second

MLF Minimum Laxity First

MOP Multi-objective Optimization

MQS Multi Queue Scheduling

NIST National Institute of Standards and Technology

NP Non-deterministic Polynomial

OCCI Open Cloud Computing Interface

PaaS Platform as a Service

PE Processing Element

PiA Pareto-derived interference aware

PM Physical Machine

PMA Profit Maximization Algorithm

PMU Physical Machine Utilization

PSO Particle Swarm Optimization

PT Processing Time

QoS Quality of Service

RIAL Resource Intensity Aware Load balancing

RR Round Robin

SBP Service-based Business Process

SA Simulated Annealing

SD Standard Deviation

SDN Software Defined Network

SI Spot Instances

xix

SLA Service Level Agreement

SaaS Software as a Service

TP Trailing Pheromone

TRACON Task and Resource Allocation CONtrol

TTSA Temporal Task Scheduling Algorithm

VM Virtual Machine

VMI Virtual Machine Image

VMM Virtual Machine Monitor

VMU Virtual Machine Utilization

VNM Virtual Network Monitoring

WSLB Weighted Signature based Load Balancing

xx

SYMBOLS

Symbol Description

θ Pheromone evaporation rate

Ṗ Penalty

γ Regression coefficient

λ A cloud service

ω Set of SLA parameters with a service λ

Ψ(ω) Number of SLA violations

R Minimum amount of extra resources to a VM

μ Average

σ Standard deviation

α Cost for SLA violation

β Cost for Service rejection

S Total processing power of a host

1

CHAPTER 1

INTRODUCTION

Contents

1.1 The Cloud Computing ………….…...……..…..……...……... 2

1.1.1 Cloud Deployment Models……………… ……… 3

1.2 Cloud Delivery Models ……………………………………….. 4

1.2.1 Software as a Service ………………………………… 4

1.2.2 Platform as a Service …………………………...……. 5

1.2.3 Infrastructure as a Service …………..……………….. 6

1.3 Significance of Scheduling …………………………….……... 7

1.3.1 Cloud Properties that Affect Scheduling …………….. 9

1.3.1.1 Homogeneity …………...………………... 10

1.3.1.2 Heterogeneity …………………………….. 10

1.3.1.3 Elasticity …………...…………………….. 11

1.3.1.4 Scalability and Auto scaling ………...….... 12

1.3.2 Scheduling Constraints ………………………………. 13

1.4 Service Level Agreements ……………………………………. 14

1.5 QoS Oriented Scheduling …………………………………..... 14

 1.5.1 Quality Factors ………………...….………………… 15

 1.5.1.1 Makespan ………………………………… 15

 1.5.1.2 Financial …………………………………. 16

 1.5.1.3 Service Level Agreement .……………….. 16

 1.5.1.4 Stability ...………………………………… 16

 1.5.1.5 Scalability …...…………………………… 17

1.6 Motivation …………………………..………………………… 17

1.7 Problem Statement ……………………………………..…….. 22

1.8 Research Objective ……………………………………..……. 22

1.9 Thesis Organization ……………………….…………………. 23

Chapter 1 Introduction

2

1.1 The Cloud Computing

In the most generalized context, cloud computing refers to the

delivery of computing resources, such as compute, data resources and

application softwares over a network to the remote users. One of the

key attractions of cloud computing is the ability for customers to

access the huge amount of computing resources on a pay-as-you go

basis. According to the National Institute of Standards and

Technology (NIST) [1] cloud is defined as:

“Cloud computing is a paradigm that enables on-demand network

access to a shared pool of configurable virtual resources which can

be rapidly provisioned and used based on the pay-per-use model”.

Cloud computing allows storing data and accessing computing

resources such as processing power, data, and applications over the

internet instead of local computer hardware. It is a form of distributed

system based on virtualization technology.

Now, cloud computing became the global computing infrastructure

for business applications by providing large scale services with

minimum cost [2]. The ubiquitous nature with on-demand computing

facilities made it as a popular computing model. It is a promising

paradigm for the computing world that offers on-demand Information

Technology resources and services to the customers over the Internet.

Since the customers only need to pay for the services they actually

used, there is a rapid growth in the usage of cloud resources.

The cloud resources can be dynamically provisioned and

reconfigured to adjust variable load (scale). The pools of resources

are made available to the customers based on pay-per-use model and

guarantee Quality of Service (QoS) as per customized Service Level

Agreement (SLA).

Chapter 1 Introduction

3

1.1.1 Cloud Deployment Models

The deployment model refers to the ownership and access

specification of cloud services. The cloud can be deployed using four

models as shown in figure 1.1.

1. Public cloud: the service provider owns and operates the

cloud infrastructure and services are available to the

general public. Here public means any individual or a

small, medium or large organization.

2. Private cloud: the cloud is set up for an organization

solely for its own purpose. The organization owns and

operates the cloud infrastructure and services are available

for the employees in general and for the stakeholders of

the organization who have proper access. The

infrastructure may be present on-premise or off-campus.

3. Community cloud: a specific community may set up a

cloud infrastructure for an intended purpose and shared

concerns. The community may include many

organizations or individuals as members. This cloud may

be owned by the members of the community or maybe

rented from service providers and management is

performed accordingly.

4. Hybrid cloud: this is a combination of two or more

clouds of the above categories, bound by standardized

technologies for sharing and interoperations.

Chapter 1 Introduction

4

Fig 1.1 Cloud deployment models

1.2 Cloud Delivery Models

The cloud delivery model provides a specific combination of IT

resources offered by a cloud provider. There are three different types

of delivery models as shown in figure 1.2.

1.2.1 Software as a service (SaaS):

In this model, a complete application is offered to the customer, as a

service on demand. A single instance of the service runs on the cloud

and multiple end-users are serviced. On the customers’ side, there is

no need for upfront investment in servers or software licenses, while

for the provider, the costs are lowered, since only a single application

needs to be hosted and maintained.

Software or applications are provided as a service to the consumers.

The software runs on the cloud environment and is accessed by

consumers through well- defined interfaces such as web browsers.

Chapter 1 Introduction

5

The clients can be thin, and the overhead of the developing

applications, hosting them, procuring infrastructure necessary for

development and deployment of applications, and maintenance are

eliminated for the clients. Today SaaS is offered by companies such

as:

• GoogleApps by Google [4]

• SQL Azure by Microsoft [6]

• Oracle On Demand by Oracle [7]

1.2.2 Platform as a service (PaaS):

Here, a layer of software or development environment is

encapsulated and offered as a service, upon which other higher levels

of service can be built. The customer has the freedom to build his

own applications, which run on the provider’s infrastructure. To meet

the manageability and scalability requirements of the applications,

PaaS providers offer a predefined combination of OS and application

servers, such as LAMP platform (Linux, Apache, MySQL, and PHP),

restricted J2EE, Ruby, etc.

The platform necessary to develop and deploy applications and

hardware are provided as services to the consumers. Consumers need

not bear the overhead cost of procuring necessary platforms for their

applications, getting license, updates, and renewal of licenses, etc.,

but have control over the configuration settings or on releasing the

next version of their software.

Examples of PaaS services are:

• Force.com by salesforce.com [8]

Chapter 1 Introduction

6

• GoGrid CloudCenter [9]

• Google AppEngine [5]

• Windows Azure Platform [6]

1.2.3 Infrastructure as a service (IaaS):

IaaS provides basic storage and computing capabilities as

standardized services over the network. Servers, storage systems,

networking equipment, data centre space, etc. are pooled and made

available to handle workloads. The customer would typically deploy

his own software on the infrastructure.

Fig 1.2 cloud delivery models

The resources necessary for a consumer to perform a variety of

operations ranging from working with applications, developing

applications, managing network of nodes, setting up networks, taking

backup of data, or computers with different operating systems are

provided as services. The services can be rented by individuals for

personal use or by small and medium enterprises as well as

Chapter 1 Introduction

7

multinational organizations with branches distributed across the

globe.

Examples of IaaS service providers include:

• Amazon Elastic Compute Cloud (EC2) [10]

• Eucalyptus [11]

• GoGrid [9]

• FlexiScale [12]

• RackSpace Cloud [13]

1.3 Significance of scheduling

Resource management in cloud computing infrastructure is handled

by Virtual Machine (VM) scheduling and it will reduce operational as

well as energy cost. The scheduling is the process of allocation of

different tasks to resources with high quality, considering the

parameters such as makespan, energy, cost, profit, etc.

Fig. 1.3 Scheduling in Cloud.

In cloud computing, resource management is an important task in

scheduling of services, customer tasks, and hardware infrastructure.

Chapter 1 Introduction

8

The scheduling is the allocation of user submitted tasks to particular

VM provisioned in a Physical Machine (PM). When demand

increases from the user’s side, then the service provider can extend

their computation resources beyond their boundaries to accommodate

incoming requests. Cloud needs efficient intelligent task scheduling

methods for resource allocation based on workload and time. Optimal

resource allocation minimizes the operational cost as well as

execution time. This, in turn, reduces power and energy consumption

and operational cost. Hybrid technology is needed to support

customers to choose different computation offers from Cloud Service

Providers (CSP). The offers from CSPs are attracted customers to

promote their business and to reduce the operational cost. CSPs offer

services in different categories such as subscription of services with

expertise, Service Level Agreement (SLA) based, compliance,

scalable and cost-effective manner.

The resource provisioning techniques decide which resources are to

be made available to meet the customer requirements, while task

scheduling is the process of allocating customer or user tasks to the

resources based on some criteria. Resource allocation is performed by

the scheduling of resources based on temporal and customer

requirement constraints. In the dynamic cloud environment, both

customer requirements and cloud resource status vary with time,

hence scheduling based on temporal constraints is a cumbersome

task. So constraints play a major role in scheduling. Proper

consideration of constraints will produce a high level of QoS. Figure

1.3 gives an illustration of resource management with the scheduling

of services based on constraints in the cloud.

Chapter 1 Introduction

9

There are several scheduling methods existing in the cloud

computing, due to its multi-tenant, on-demand, elastic nature with

pay-as-you-go model, but enhanced methods are necessary to

improve the performance. Also, the dynamicity of cloud in resource

and task scheduling gives several opportunities to the researchers.

Schedulers have to consider the trade-off between functional as well

as non-functional requirements to attract customers and QoS with

profit.

A good resource allocation policy must avoid certain situations as

follows.

• Resource contention: it occurs when more than one

customer or user requests for the same service at the same

time.

• Scarcity of resources: it occurs when the availability of the

resource is limited.

• Resource fragmentation: if the service provider can have

enough resources to accept a new request, but it is unable

to allocate that request.

• Over-provisioning: The application gets surplus resources

than the demanded one.

• Under-provisioning: The application is assigned with less

number of resources than demanded.

1.3.1 Cloud Properties that Affect Scheduling

Certain factors that affect cloud scheduling depends upon the nature

of cloud resources. These factors are homogeneity and heterogeneity

of cloud resources. The elastic nature of cloud resources is also an

Chapter 1 Introduction

10

import factor. Scalability of resources auto scaling properties is also

crucial in the scheduling process.

1.3.1.1 Homogeneity

In a homogeneous cloud, the entire software stack including the

hypervisor, intermediate cloud stack, and customer portal are from

the same service provider. So here management is simple since the

entire things are from a single provider. Since everything comes in a

pre-integrated manner, if anything goes wrong, just one party holds

the responsibility. When one CSP is in the possession of so much

power, customers become dependent on the same provider’s technical

and commercial strategy. The advantage of this kind of cloud

environment is that customers can able to specialize in a CSP’s tool.

While administrators can easily cover for each other within this

strategy, the downsides are different. The features are available on

the technical side, but which is exclusively developed by the

particular service provider. Besides, when a customer or user is

“locked-in” to one service vendor strategy, resources can be easily

delegated despite changes in the pricing structure. This belongs to the

commercial side advantage.

1.3.1.2 Heterogeneity

To increase performance and attract more customers, CSPs are

adding different types of computing resources with increased

memory and storage capacities. Thus heterogeneity improves the

overall cloud performance and its power efficiency. Customers are

often looking for sophisticated high-end infrastructure such as high

speed processors, with low cost. The moves towards green computing

Chapter 1 Introduction

11

standards are now focusing on energy consumption. So public CSPs

are now implementing different mixtures of architecture for their

infrastructure to improve power efficiency. This complex

heterogeneous cloud data centre needs more powerful dynamic

algorithms for resource and task management. Internets of Things

(IoT) implementations are now rapidly increasing around the world.

These IoT devices generate a massive amount of data and need more

processing power to analyze it. Hence heterogeneous cloud

implementations are necessary for the successful IoT and related

Cyber Physical Systems (CPS) implementations.

1.3.1.3 Elasticity

In cloud computing, elasticity is defined as the degree to which a

system is able to adapt workload changes by provisioning and de-

provisioning resources in an automatic manner such that, at each

point in time the available resources match the current demand as

closely as possible. Elastic cloud infrastructure provides a cloud

computing environment with greater flexibility and scalability.

Amazon Web Service (AWS) facilitates web service scalability.

Elasticity is the ability to fit the resources needed to cope with

workloads dynamically usually in relation to scale out. When the load

increases, adding more resources by scaling and when demand

wanes, the system shrinks backs and removes unused resources.

Elasticity is mostly important in cloud environments where pay-per-

use and don't want to pay for resources that customer does not

currently need on the one hand, and want to meet rising demand

when needed on the other hand. Elasticity adapts to both the

"workload increase" as well as "workload decrease" by "provisioning

Chapter 1 Introduction

12

and de-provisioning" resources in an "autonomic" manner. Intelligent

algorithms that detect workload necessities will aid in this situation.

1.3.1.4 Scalability and Auto Scaling

Scalability is the ability of the cloud ecosystem to accommodate

larger workloads by adding more resources either making hardware

stronger (scale-up) or adding additional nodes. Scalability is

performed before the increase in workload by adding additional

resources or to perform well before to meet the required QoS. This

enables a CSP to meet expected quality demands from the customers

or to meet SLA requirements for services with long-term, strategic

needs. Auto scaling mitigates the resource contention and delay in

processing customer or user tasks. It aids CSPs to offer a high level

of services on-demand with customer satisfaction. By scaling-out

instances seamlessly and automatically when demand increases,

better resource management can be done. By turning off unnecessary

cloud instances automatically, CSPs can save money when demand

reduces thereby achieves energy consumption. Also, it can replace

unhealthy or unreachable instances to maintain higher availability for

customer applications.

Auto scaling helps to ensure the availability of the right quantity of

computing resources to handle customer requirements, by adding or

removing resources depending on the usage. It is one of the

properties of cloud computing to measure the quality of service

(QoS) and performance. The capacity of the resource is scaled up and

scaled down during the demand-supply of customers. Auto scaling

helps to reduce the cost of computation according to resource usage

and can provide a high level of services with customer satisfaction.

Chapter 1 Introduction

13

During the scale-out process, VM instances are provided seamlessly

and automatically while during the scale-in process the unneeded

instances are turn-off automatically when demand decreases thus

save energy and money. Another advantage is that it replaces

unhealthy or unreachable instances to maintain higher availability of

customer applications. Thus on-demand cost-effective computing

with seamless execution is possible in the cloud.

Figure 1.4 shows the auto scaling by configuring resources either

allocate instances to new VMs or schedule to the existing

computational resources.

Fig. 1.4 Auto scaling in a cloud infrastructure

1.3.2 Scheduling Constraints

Even though the cloud offers low-cost computing facilities, the

customer concern while adopting cloud as their computing platform

is cost, time and other QoS parameters. The service providers always

concern about their profit and energy consumption. Here we are

interested in performance oriented cloud scheduling that enables a

specific performance targets with minimized resource consumption.

Chapter 1 Introduction

14

1.4 Service Level Agreements

The QoS requirement formally described in terms of an SLA

specification [14]. In order to provide customer requested QoS,

Infrastructure as a Service (IaaS) providers plays a major role. To

maintain better performance and prevent breaches in SLAs, the IaaS

providers must focus on virtualization, the fundamental building

block of Cloud infrastructure.

Usually, a Cloud SLA spans over many jurisdictions, with different

legal applications, especially the personal data hosted in the data

center. Also, there is a need for different SLA terminology and

models for different type of service providers. So it is difficult to

maintain a common format for SLA for comparison. In our study, we

have considered the following parameters for SLA statements covers

time including deadline requirements, cost and penalty, memory

requirements, storage requirements and network parameters like

delay.

1.5 QoS Oriented Cloud Scheduling

As with any service, such as household utilities, QoS plays a critical

role in ensuring that a customer or an end-user receives the service

for which they have paid [3]. QoS for this research is defined as

resource control mechanisms that guarantee a certain level of

performance and availability in terms of makespan including deadline

requirements, maintaining SLA, stability, cost of computation, etc.

Scheduling is generally considered as a difficult problem of

managing jobs within the given time constraint. However, the

problem becomes more complicated when QoS is also considered

Chapter 1 Introduction

15

with scheduling. QoS depends on several factors like makespan,

delay, response time, over and under loaded conditions, violations in

Service Level Agreement (SLA), frequent migrations, system

stability, and parasitic load. Cost, energy and scalability decisions are

other factors that influence the performance.

There are a number of challenges facing to assure QoS in clouds. The

two core challenges involve first, the guarantee of resource

reservation by a binding agreement and second, the continued

provisioning of a resource to specified requirements. In the context of

Clouds, this translates to challenges in service provider

interoperability where unification of resource control mechanisms

and the resource types provisioned require standardization and

additionally in challenges a service provider must face with regards

to managing their resources efficiently and in selecting an appropriate

software stack to meet QoS requirements pertaining to the

performance and availability of provided resources.

1.5.1 Quality factors

In cloud QoS oriented scheduling depends on time, financial, SLA,

stability and scalability factors.

1.5.1.1 Makespan

In cloud, most of the applications are deadline constrained, so it has

to complete within the stipulated time. Customers submitting tasks

with deadline constraints are mainly considered makespan or

completion time as the quality parameter. All the time-dependent

parameters such as response time and execution time are important

factors in achieving better QoS.

Chapter 1 Introduction

16

1.5.1.2 Financial

Customers always prefer high-end computing facilities at a low cost.

The financial constraints are applicable to both customers and

providers. Customer always seeks for low cost with quality while

providers trying to increase their business by attracting more

customers so as to maximize their resource utilization and profit. If a

service provider is able to provide high-end computing resources to

their customers within their economic limit, it is a positive thing in

achieving good QoS.

1.5.1.3 Service Level Agreement

The purpose of SLA is to assure the QoS to the customers. The CSPs

that offer services to the customers by maintaining assured QoS in

the SLA. Any violations in the agreed conditions will degrade the

performance of the provider. So minimizing or avoiding SLA

breaches is another QoS factor.

1.5.1.4 Stability

The performance stability can be achieved through a good load

balancing mechanism. The performance drops off due to frequent

load balancing in the cloud data center. i.e transfer of computation

from one location to another or context switching affect or cause a

delay in completing assigned tasks. So the scheduling mechanisms

should consider the impact of performance fluctuations and mitigate

it with efficient load balancing mechanisms.

Chapter 1 Introduction

17

1.4.1.5 Scalability

In cloud, scalability is the ability of service provider to expand their

infrastructure to handle the increased workload. With an intelligent

auto scaling mechanism, timely scaling of resources can be done to

avoid SLA breaches.

In general, to attract more customers, CSPs attempt to provide more

sophisticated services with QoS. For ensuring QoS, CSPs need more

accurate resource management services to process customer

submitted tasks. E.g. Amazon’s Elastic Compute Cloud (EC2),

provides an opportunity to auction based spot pricing. So the

techniques to handle spot prices will increase the quality of the

scheduling process.

1.6 Motivation

Most of the cloud scheduling techniques proposed so far is based on

time and cost parameters [19, 21, 23, 24, 26, 27, 28, 29]. Other

parameters such as agreed conditions in the SLA, load balancing, VM

migrations and energy considerations are also important factors that

affect the scheduling process.

The cloud computing has presented new opportunities to the

customers and application developers. They can benefit from the

cloud computing paradigm in-terms of economies of scales,

commoditization of assets and conformance to programming

standards. Its advantages such as low cost in pay-as-you-use criteria,

scalability, and elasticity quickly attracted several business

organizations.

Chapter 1 Introduction

18

The utility type of delivery of services and instant pricing methods

termed it as a business model for computing services. So, economic

consideration is the primary issue in this model. Service providers

always look for profit and maximum utilization of their resources

with minimization of operational cost, energy, while consumers focus

on better quality oriented service with minimum cost and time. It is

quite easy when the cost is considered as the primary factor for

scheduling [32, 35, 37], but other factors are more important in

maintaining the quality of service.

The dynamicity of cloud makes resource management and task

scheduling as a cumbersome task. There are several scheduling

methods existing in cloud computing, due to its multi-tenant, on-

demand, elastic nature with pay-as-you-go model, but these methods

pose several challenges in the area of Quality of Service (QoS)

management. Since QoS is the fundamental right for cloud

customers, who expect service providers to deliver the announced or

agreed qualities, the cloud providers should find the right tradeoffs

between QoS levels and operational costs. So, more sophisticated

methods are required to improve the QoS scheduling. Proper

scheduling reduces the operational cost and response time in the

cloud.

Schedulers have to consider the trade-off between functional as well

as non-functional requirements to attract customers and QoS with

profit. In the large scale distributed systems like cloud, the efficiency

of scheduling algorithms is crucial for better efficiency and resource

utilization. The performance of the current state-of-art algorithms

Chapter 1 Introduction

19

needs improvement to address this issue. So workload maximization

mechanisms are needed to increase the profit of service providers.

When demand for the services and users change in real-time, there is

a need for dynamic resource provisioning methods. The challenges to

resource provisioning include the distributed nature of resources,

uncertainty, and heterogeneity of resources. Few articles addressed

the load balancing method to improve the performance [58 - 61]. Due

to dynamic nature, resource capacity aware methods try to reallocate

customer requests to better physical servers to improve performance.

These frequent reallocations cause some delay to restart the

processing at new locations. Ultimately this causes performance

degradation in the makespan and thereby decreases in overall

performance.

The VM placement and live migration are trendy method to balance

the load which is achieved by different heuristic and hybrid

algorithms and optimization techniques. Frequent migrations are still

a problem to be resolved. The reallocation can be done by load

balancing techniques to get optimal results. Thus, there is a necessity

of better load balancing techniques in the cloud.

Green computing is the latest buzz word in the computing industry.

Data centers need huge power to run their infrastructure and

associated cooling facilities. In order to cool down the temperature

due to the operation of large server farms, proper air cooling and

circulation equipment are installed in data centers. Server

consolidation techniques will reduce the number of servers in the

active state, so that power consumption for servers and related

cooling equipment can be reduced. Too much workload on a server

Chapter 1 Introduction

20

will result in the degradation of makespan and response time. i.e.,

adopting green computing and increasing resource utilization should

not degrade the quality of service delivered or cause any violations in

the agreed conditions in the SLA. So there is a need to improve the

scheduling process by considering the tradeoff between energy and

service quality. In particular sophisticated scheduling mechanism is

needed to address this issue.

Simultaneous optimizations of all parameters are difficult due to the

contradictory effect of each one. E.g., time and cost can’t be achieved

together. When we try to reduce computation time, it needs powerful

servers to complete the task and these powerful machines cost more

than slower servers. Using the multi-objective optimization method

this type of situation can be studied to obtain a better solution.

It is also a fact that for further enhancement in this field, some

challenging issues like performance interference are to be focused.

Energy optimization, promotional offers from providers such as spot

instance price, QoS and SLA considerations are major concerns that

need more attention and improvement for scheduling in cloud data

centers.

Guaranteeing SLA is the key task of a good scheduling mechanism in

maintaining QoS requirements. A proper SLA ensuring mechanism is

needed to ensure whether the provider delivers as in the agreement.

In order to ensure SLA, an SLA violation monitor mechanism with

penalty enforcement is needed. Applying penalty for each SLA

breaches will be a strong way to guarantee SLA conditions. A good

scheduling scheme is essential to address SLA management.

Chapter 1 Introduction

21

Auto scaling of resources in cloud computing allows resource

provisioning dynamically and improves performance. The scalability

of the cloud increases the chances to allocate more users and

minimize SLA violations. Scalability helps to maintain QoS when the

demand of services varies with real-time computational environment.

The energy, delay, deadline, time and cost affect the scalability and

these issues are to be addressed in detail for load balancing and VM

placement.

In nutshell, the following are the issues in the existing cloud

scheduling:

Inefficient makespan handling procedures that cause delayed

completion of customer requests.

Inadequate load balancing for virtual machine migration methods

results in long makespan and a large number of migrations.

Inefficient energy consumption methods increase electricity usage

and operational cost.

Lack of methods to ensure system stability caused due to frequent

VM migrations that reduce QoS delivered.

Lack of auto scaling mechanisms with SLA enforcement which

results in pure QoS.

Lack of integrated methods to handle makespan, migrations with

stability, SLA with auto scaling and reduced cost.

Chapter 1 Introduction

22

1.7 Problem Statement

To design and develop cloud scheduling techniques that guarantee

Quality of Service.

1.8 Research Objective

Creating scheduling algorithms that confine the customer's practical

needs and constraints would be extremely useful in the distributed

cloud systems. A scheduling policy which will be beneficial to both

service provider, as well as customers is needed. As a part of this

work, we have designed and implemented policies that will improve

the scheduling performance considering makespan, cost, energy,

stability, SLA and other Quality of Service (QoS) requirements.

In order to ensure the quality of service delivered in the cloud, the

following objectives are addressed in this thesis.

 To develop a method to handle makespan.

 To develop an efficient load balancing policy for handling

VM migrations.

 To develop a cluster-based load balancing for improving

energy efficiency.

 To enhance the stability of the cloud ecosystem with

interference prediction.

 To develop a scheduling method to enforce SLA with auto

scaling.

 To develop an integrated SLA enforcement method with

reduced cost.

Chapter 1 Introduction

23

1.9 Thesis Organization

This thesis deals with the problems in makespan, load balancing,

energy, service level conditions and auto scaling in cloud computing.

We have organized this thesis into nine chapters. The rest of the

thesis is organized as follows:

Chapter 2 - presents a survey of different scheduling, load balancing,

and resource provisioning methods in Clouds. In this chapter, a

detailed classification and a correlation taking into account different

criteria of the overviewed literature/methods are exhibited and issues

in each method are tabulated.

Chapter 3 – proposes a Virtual Machine placement mechanism for

handling makespan. This method is based on the principle of Bin

packing method. It uses a Best-fit – Remaining-fit approach for VM

placement in the datacenter.

Chapter 4 – proposes an enhanced bee colony based algorithm for

scheduling and load balancing, to handle VM migrations.

Chapter 5 – proposes an energy-aware clustered load balancing

algorithm. In this, an energy-aware clustered load balancing system

in which, heterogeneous cloud resources are grouped into different

clusters, by using a partitioning based clustering algorithm.

Chapter 6 – proposes an interference aware prediction mechanism in

the cloud. Here the proposed model also predicts the optimal load and

threshold range for each physical server using the Pareto principle.

Chapter 1 Introduction

24

Chapter 7 – proposes a Petri Net based scheduling model in an

elastic cloud to enforce service level agreements. Using the property

of Petri Nets, a model is developed to aid auto scaling process.

Chapter 8 – this chapter deals with an integrated approach for SLA

aware scheduling and load balancing method. It covers a prediction

model based on the past usage pattern and that aims to provide

optimal resource management without the violations of the agreed

service level conditions in cloud datacenters

Chapter 9 - concludes the thesis with a summary of the contributions

and discussion on future research directions.

25

CHAPTER 2

LITERATURE SURVEY

Contents

2.1 Introduction ..……....…...………...................................... 26

2.2 Parameter Centric Methods ………………..…..…...….. 27

2.2.1 Makespan ……………………..…………............ 29

2.2.2 Delay ……………………..………………........... 30

2.2.3 Deadline ………………………............................ 32

2.2.4 Cost and Profit ……………………...................... 33

2.2.5 Energy ………………………...…........................ 37

2.2.6 Priority ……………………..…………………… 37

2.2.7 Multi Objective ………………...……….............. 39

2.3 VM Placement Methods ...…………………..................... 40

2.4 Load Balancing Methods ..………………........................ 42

2.5 Dynamic and Adaptive Methods …...….……………...... 44

2.5.1 SLA aware ……………....................................... 44

2.5.2 Elasticity based ……………...………………….. 45

2.6 Optimization Methods …………………………………... 46

2.6.1 Linear programming models .………................... 47

2.6.2 Heuristic methods …………................................. 49

2.6.3 Meta-heuristic methods …………........................ 49

2.6.3.1 Genetic Algorithm ………………...…. 51

2.6.3.2 Ant Colony Optimization methods …... 51

2.6.3.3 Artificial Bee Colony methods 53

2.6.3.4 Particle Swarm Optimization methods.. 53

2.6.4 Hybrid methods …………………........................ 55

2.7 Review Observations ……………………......................... 57

2.8 Design Considerations of the Thesis ………………….... 59

Chapter 2 Literature Survey

26

2.9 Metrics ………………….. 60

2.10 Summary……………...……..…….................................... 61

2.1 Introduction

The aim of a cloud scheduling model is the optimal allocation of

resources to the tasks. The optimal allocation is to ensure the

conditions mentioned in the service level agreements to deliver better

quality of service. Generally, scheduling algorithms are classified

into static and dynamic methods. We have considered and reviewed

scheduling models based on parameters, VM placement, load

balancing and dynamic-adaptive methods as shown in figure 2.1. It

can be also classified based on the optimization method used. This

classification is shown in figure 2.2 and a detailed description is

given in section 2.6.

Fig. 2.1 General classification of scheduling models.

Chapter 2 Literature Survey

27

Fig. 2.2 Scheduling models based on optimization methods.

2.2 Parameter Centric Methods

The primary function of a cloud resource scheduling mechanism is to

identify the suitable resources for scheduling the apt workloads on

time and to increase the efficacy of resource utilization. An optimal

resource-workload mapping is required for the efficient performance

of scheduling methods. The main aim of cloud scheduling algorithms

is to achieve some user-specified parameters such as low makespan,

deadline achievement, low cost, increased system stability, etc. At the

same time, these methods have to improve the overall performance of

the cloud. Some methods are based on the conditions in the service

level agreement. Both customers' and providers' requirements are to

be considered for efficient resource allocation. The service providers

always looking to increase their profit and reduction in operational

cost, mainly power or energy consumption, while the consumers

focused at cost and good quality of service and experience. Our

literature review emphasizes resource scheduling algorithms based on

different scheduling parameter centric objectives or criteria. These

parameter centric scheduling objectives are shown in figure 2.3.

Chapter 2 Literature Survey

28

Fig. 2.3 Parameter centric scheduling objectives

Makespan: It is the total completion time taken to complete a user-

submitted task. Most of the algorithms mentioned in this survey are

focused on makespan as an important parameter.

Delay: It is one of the important factors in measuring the quality of

service. Delay in giving responses to the customers is one of the

parameters considered in this review.

Deadline: Usually the scientific workflows submitted to the cloud

are to be completed within a specific time. This survey considered a

sufficient number of deadline constrained papers for the comparison.

Cost: The main objective of the cloud is to minimize the cost of

computation. The algorithms try to minimize the usage cost or try to

provide more efficient service to the customers with the amount they

spend to hire the service.

Profit: While offering low-cost services to the customers, CSPs are

trying to maximize their revenue by attracting more customers. This

Chapter 2 Literature Survey

29

is usually done by giving different offerings to the customers and

maximizes their resource utilization rate.

Energy: Consumption of energy is crucial in reducing operational

costs. One of the main costs incurring in running a cloud datacenter is

energy cost. Most of the recently proposed methods are given keen

attention to power utilization and energy consumption.

Priority: Since different types of customers need a vivid variety of

services with varying preferences, priority is an important factor in

resource scheduling.

Multi-Objective: The recent advancements in cloud scheduling

methods have given attention to multiple criterions in task

scheduling. These criterions are sometimes contradictory, so a trade-

off is needed between different solutions produced by the scheduler.

2.2.1 Makespan

Makespan or completion time is the total elapsed time is the

difference between the time of submission of a task to the provider

and its completion. Usually, it is the sum of execution time, delay in

communications, response time, migration time, etc. Scheduling

focus on to reduce completion time [15] and to increase the

maximum utilization of resources [16, 17]. We have analyzed several

makespan oriented scheduling mechanisms and the details are

summarized in table 2.1. These papers failed to address migration

problems. Migrations cause complex interactions between different

entities in the cloud, which creates delay and finally it adversely

affects the overall performance of the system.

Chapter 2 Literature Survey

30

Table 2.1: Makespan

Paper Method Parameters Highlights Limitations Environment

[15] Fully Polynomial

Time

Approximation

Algorithm

(FPTA)

Migration time

Makespan

Transmission

rate

Bandwidth

Load balancing

Low

transmission

rate

High SLA

violations

Simulation

[16] VM migration

algorithm

Cost

Migration time

Resource

utilization time

Load balancing

Maximize

resource

utilization

Minimum

service

interruption

Inefficient Simulation

[17] Cloud based

Workflow

Scheduling

(CWSA)

Makespan

Cost

Minimum

completion time

(MCT)

Service

interruptions

Simulation

[18] Map reduce

framework

scheduling in

Hadoop

Makespan

Workload

Dynamic slot

configuration

feedback

Control-based

workload

estimation

Sub optimal

solutions

No load

balancing

Real

2.2.2 Delay

A good scheduler should consider the delay in processing of user-

submitted tasks and the depreciation while evaluating the CSP

services. Queuing delay analysis [19] is one such method that

accounts for both delay-sensitive and delay-tolerant applications.

They used an optimal pricing strategy, based on profit maximization

problem, which is non-convex in nature. The methods proposed for

multi-cloud in [20, 21] causes additional delay and cost occurs due to

inter-cloud communications. Its’ performance improvement and

financial savings are still significant than single cloud systems.

Chapter 2 Literature Survey

31

Table 2.2: Delay

Paper Method Parameters Highlights Limitations Environment

[19] Pricing

algorithm

Profit

Delay

Cost

Delay tolerance High energy

consumption

No SLA

Simulation

[20] Resource

allocation

algorithm

Delay

Cost

SLA constraints

Multi-cloud

resource allocation

No priorities

No load

balancing

Simulation

[21]

Profit

maximization

Delay

Cost

Profit

Profit maximization

Delay bound

Service

interruption
Simulation

[22] VM

scheduling

algorithm

Delay

Buffer size

Power

Minimum delay

Minimum power

consumption

High QoS

No load

balancing

Homogeneo

us resources

Real

[23] Computation

offloading

with energy

constraints

Delay

Communication

cost

Computation

cost

Energy

Delay tolerance

Minimum energy

consumption

Frequent

service

interruption

Unreliable

Simulation

Cloud scheduling is a cumbersome task due to the uncertainty in the

arrival of tasks with guaranteeing service [20]. The profit

maximization problem can be solved by a Profit Maximization

Algorithm (PMA) and it provides a temporal task scheduling, which

can dynamically schedule all the arrived tasks that can be in private

or public clouds [21]. Most of the existing scheduling algorithms are

pre-emptive in nature and it causes frequent context switching [10,

21]. This is due to context switching need a certain amount of time

and energy for saving and loading the registers and mapping of

respective memory, updating various tables and lists, etc. This again

Chapter 2 Literature Survey

32

is a cause for an increase in energy usage, delay, and CPU overhead.

The method proposed in [23] tried to mitigate these problems but

performance is poor. Works related to delay aware methods are

tabulated in table 2.2. In a nutshell, these methods tried to reduce the

delay, but the overall performance is very low.

2.2.3 Deadline

In maintaining QoS, the deadline of a task is a crucial parameter. If

the applications are deadline constrained, meeting its’ time limit is

critical and it is also a fact that there is no incentive if the application

finishes the task earlier. Meeting an application's deadline

requirement with the least number of resources will increase

customer satisfaction as well as providers' revenue [24].

Table 2.3: Deadline

Paper Method Parameter Highlights Limitations Environment

[24] Minimal Slack Time

and Minimum

Distance (MSMD)

algorithm

Execution

time

Cost

Minimize

makespan

Instance hour

minimization

Auto-scaling

Low

efficiency

Simulation

[25] Min-Min algorithm

Heuristic algorithm

Execution

time

Cost

Deadline

Optimized

parameter-based

sweep workflow

High

execution

time

Simulation

[26] Heuristic algorithm

Minimum Average

Cost First (MACF)

Time

Cost

Time slot filtering

Greedy and fair-

based scheduling

Pricing

interval not

considered

No load

balancing

Simulation

Chapter 2 Literature Survey

33

Papers [25] and [26] proposed an intelligent mechanism to meet the

deadline constraints. In method [25] the workflow was executed in

multiple VM instances. They have evaluated the system with

different task mapping heuristics. Their experiment results show that

the proposed technique is able to lower cloud usage cost when the

time constraint is relaxed but have low efficiency. Also, these

methods don't use load balancing mechanisms. We have tabulated the

findings in table 2.3.

2.2.4 Cost and Profit

Since cloud deals with diverse workloads and applications, a one-fit-

all pricing policy does not provide flexibility to the user. Energy

efficiency, cost, and profit are interdependent. A flexible way of

controlling cloud systems is proposed in paper [27] to satisfy the user

and energy cost.

The bidding strategies based methods are mainly based on cost-

benefit analysis [31]. Here VM instances are allocated to the

customers based on all the received bids, as well as on the current

available computing capacity. The bid value above or below this

published price is declared either successful or unsuccessful. Auction

based methods depend on the spot instance price of the resources.

Users can submit bids to the market at any time, using the spot price

history to decide how much to bid. The provider sets the spot price at

regular time intervals, e.g., every five minutes, depending on the

number of bids received from users (demand) and how many

resources are available (supply) at each time slot [28, 32]. In these

mechanisms, users’ bids above the spot price are accepted, and that

below is rejected in each time slot. Running spot instances [37] are

Chapter 2 Literature Survey

34

terminated if their original bid prices fall below the new spot price

and re-launched only when their bids again exceed the spot price.

Usually, these sport prices are based on historical prices.

The explosive growth of the Internet of Things (IoT), big data, and

emerging fog computing makes the involved services and related

resource management makes more complicated than ever before. Due

to resource limitations [32], resource heterogeneity [33], locality

restrictions, environmental necessities and dynamic nature of

resource demand, resource allocation and scheduling are one of the

essential problems, to be taken into account to adapt to the changing

infrastructure environments [35]. The current literatures give only an

overview and no substantive research on the above issues.

Table 2.4: Minimize cost

Paper Method Parameters Highlights Limitations Environment

[27] Dynamic

replication

Cost

Reducing horizon

control

No load

balancing

Simulation

[28] Offline simple task

scheduling

Cost

Makespan

Cost optimality

Cost performance

tradeoffs

Slow

performance

Simulation

[29] Dynamic Data

Allocation

Cost

Makespan

Reduction in

operational cost

No load

balancing

Simulation

[30] Spot and dynamic

pricing

Cost

Resource use

Waiting time

Interruption

rate

High biding

option in online

market

Performance

overhead

Simulation

[31] Bidding strategy

Spot price

Bid price

Optimal bidding Interruption

overhead

Simulation

[32] Multi-criteria

decision making

framework

Cost/benefit

ratio

Reduce execution

time

No load

balancing

Simulation

Chapter 2 Literature Survey

35

Table 2.4: Minimize cost (Continued…)

Paper Method Parameters Highlights Limitations Environment

[33] Bayes classifier

Cost

Waiting time

Deadline

Minimize

execution time

Minimize

operational cost

Interruption

rate is high

Simulation

[34] Priced Timed Petri

Net (PTPN)

Completion

time

Cost

Pre-allocated

resources

Credibility

evaluation

No load

balancing

Simulation

[35] Scheduling based

on Credit and Cost

Cost

Task penalty

Credit price

Discriminating

function

Maximization of

service supplier

Interruption

overhead

No fairness

among tasks

Simulation

[36] Paddy Field

Algorithm (PFA)

Price detection

algorithm

Cost

Execution

Time

Combinatorial

double auction

policy

Better service

satisfaction

Need

balancing of

bid price and

spot price

Simulation

[37] Holistic brokerage

model

Cost

Scalability

SLA negotiation\

Underutilizat

ion of

resources

Simulation

In the Petri Net model [34] credit evaluation about a provider is taken

as the primary parameter for task allocation. This uses an income

discriminate function value as a decision making factor for task pre-

emption. This market scheduler first schedules service-suppliers’

tasks with worse credibility among users while realizing the income

maximization of service suppliers so as to eradicate their bad

impression of “income-oriented”, but it doesn’t employ load

balancing methods.

Chapter 2 Literature Survey

36

Table 2.5: Maximize profit

Paper Method Parameters Highlights Limitations Environment

[239] Mixed Integer

Non Linear

Programming

(MNLP)

formulation

Profit

Service

Penalty

Server

consolidation

Heuristic method

High SLA

violations

Slow

No load

balancing

Simulation

[240] Price detection

algorithm

Cooperation

Competition

Revenue

Profit

Minimum energy

consumption

Revenue

maximization

Network

latency

Delay

No load

balancing

Real

[241] Profit driven

optimization

Profit

Execution

Time

Scalability Delay in

service

Low

makespan

Simulation

Market oriented cloud is another model to provide high QoS to the

customers and manage this quality during its lifetime [37]. Here

providers have to consider the different service quality parameters of

each customer. Here cloud resource management is based on the

supply demand ratio of resource and the aim is to reach market

equilibrium [29, 36, 37]. Cost minimization methods are summarized

in table 2.4.

Virtual Network Monitoring (VNM) is a big challenge for the service

provider since users send numerous requests to reserve computational

and network resources and they expect their QoS conditions to be

maintained through the request lifetime [38]. Price detection

algorithm [39], profit-driven optimization [40] are mainly focused on

profit but these methods have high SLA violations. The merits and

demerits of profit-oriented methods are given in table 2.5.

Chapter 2 Literature Survey

37

2.2.5 Energy

The articles [38, 39] are based on Dynamic Voltage and Frequency

Scaling (DVFS) is proposed to reduce energy consumption. PreAnt

[40] policy with Bin packing algorithm also focused to reduce the

energy consumption. All the above methods lack QoS support thus

low efficiency. In paper [41] service providers and users reached an

agreement on energy-aware scheduling services. The collaborative

approach mentioned in [42] is also another such approach. The

summary of the above methods is given in table 2.6.

2.2.6 Priority

Some researchers considered priority parameters to schedule the tasks

but priority consideration is only good for high performance scientific

computing. The Memetic Algorithm (MA) in [63] merges the

concept of local and population based search to find a solution to the

scheduling problem. It is a static task scheduling scheme and not

suitable for a dynamic cloud environment. Another method [64] is

based on multiple priority queues. In a cloud computing environment,

multiple customers are submitting job requests with their constraints.

This method is suitable for scientific simulations such as weather

prediction, rainfall simulation, Monsoon prediction, and cyclone

simulation, etc., requires a huge amount of computing resources such

as processors, servers, storage, etc. In this situation, it will be a

problem for the cloud administrator to decide how to allocate the

available resources among the requested users to minimize makespan

and utilize resources effectively [65]. The summary table for the

above methods is provided in table 2.7.

Chapter 2 Literature Survey

38

Table 2.6: Energy

Paper Method Parameters Highlights Limitations Environment

[38] DVFS

Bin packing

algorithm

Execution

time

Cost

Energy

Frequency

Minimum energy

consumption ratio
(ECR)

Minimum worst-case

execution time
(WCET)

Low

efficiency

Simulation

[39] DVS

Energy-aware

Dynamic Task

Scheduling (EDTS)

Energy

Execution
time

Cost

Minimum energy
consumption

Reduce cost

Lack of

QoS

support

No load
balancing

Simulation

[40] PreAnt policy

Bin packing
algorithm

Energy

Execution
time

Manage

instantaneous peak
load

Resource intensive
application with QoS

Service
interruption

Simulation

[41] Optimal resource

allocation with pre-

determined task

placement &

resource allocation

algorithm

Energy

Cost

Job

completion

time

Increase utility and

productivity

Linear programming

method

No load

balancing

Perform-

ance
degradation

Simulation

[42] Lagrange relaxation

based Aggregated

Cost Algorithm
(LRAC)

Energy

Delay

Deadline

Collaborative task

execution

One-climb policy

Minimum energy

consumption

Low

efficiency

No load
balancing

Simulation

Table 2.7: Priority

Paper Method Parameter Highlights Limitations Environment

[63] Memetic - GA

method

Makespan

Speed

Optimization

Earliest finishing

time

Delay

No load

balancing

Simulation

[64] Priority

algorithm

Time

Cost

Maximum profit

Minimum wastage

of resources

Frequent

migrations

Low response

time

Simulation

[65] Min-Min

algorithm

Priority-based

scheduling

Makespan

Cost

Scalability

Load balancing

Less fault

tolerance

Frequent

migrations

Simulation

Chapter 2 Literature Survey

39

2.2.7 Multi objective

Multi-objective task scheduling algorithms are predominantly well

suited to deal with cloud optimization problems. Some meta-

heuristics methods like simulated annealing [46], Evolutionary

Algorithms (EA) [47] and Particle Swarm Optimization (PSO) [43]

have been proposed to address resource allocation process in the

cloud. Since Genetic Algorithm (GA) is highly time complex, it is

not practically suited for large-scale applications. A PSO-based

heuristics [44] is another method to schedule applications to cloud

resources that take into accounts both computation and energy cost.

The main limitation of evolutionary algorithms is their high

computational cost due to their slow convergence rate. So some sort

of hybridization or enhancement is needed in this type of method.

The DVFS based method [43] is to minimize energy consumption

along with time and cost. This technique allows processors to operate

in different voltage supply levels by sacrificing clock frequencies.

The main aim of multi-objective scheduling strategy is to find a

trade-off between customer requirements and provider or resource

constraints. i.e., the user-submitted tasks have different requirements

on computing time, memory space, data traffic, deadline, response

time, etc. While the cloud resources are heterogeneous and

distributed. One of the problems in the meta-heuristic method is the

ability to avoid getting stuck with sub optimal solutions. Most of the

nature inspired heuristic algorithms like GA and bee colony [45] are

suitable for cloud scheduling, but we have provided detailed reviews

in section 2.6. The summarized information about multi objective

methods are shown in table 2.8.

Chapter 2 Literature Survey

40

Table 2.8: Multi-objective

Paper Method Parameter Highlights Limitations Environment

[43] PSO, DVFS &

HEFT algorithm

Cost

Time

Energy

Workflow

Scheduling

Energy

consumption

Low

efficiency

Sub optimal

response time

Simulation

[44] Nested PSO-

based multi-

objective task

scheduling

Energy

time

Energy

optimization

Low service

availability

Frequent

migrations

Simulation

[45] ABC Algorithm Cost

Time

Energy

Optimization

in time and

cost

Frequent

migrations

Simulation

[46] Multi-objective

cat swarm

optimization

with SA

Time

Cost

Scalability

Low

efficiency

Slower

Sub optimal

solutions

Simulation

[47] Multi-objective

Evolutionary

Algorithm

(MEA)

Waiting

time

Cost

Energy

Minimize

energy

consumption

Cost and time

optimization

Low

efficiency

Slower

Sub optimal

solutions

Simulation

[48] Min-Min based

time and cost

trade-off

algorithm

Time

Cost

Multi-

objective

optimization

model

Lack of

failure

recovery

Simulation

2.3 VM Placement Methods

In IaaS cloud, the major interface to the users to run their applications

through VMs. Here the users can create or maintain with their own

VM preferences. Also, they can maintain software installations and

have complete control over their VM Images. VM creation and

management is complex due to its scale and variety. The VM image

content can be stored as a file, a block device, a logical volume, a

root partition or a complete hard disk drive. So VM placement is a

big challenging problem.

Chapter 2 Literature Survey

41

Table 2.9: VM placement

Paper Method Parameter Highlights Limitations Environment

[49] Common

Deployment

Model (CDM)

Time

Bandwidth

Memory

Maximize resource

utilization

Use of active and

passive directory

Unable to

handle

network

latency

Simulation

[50] Adaptive

spread based

scheduling

algorithm

Bandwidth

Cost

Response

time

Slicing scheduled

tenant request model

Maximize acceptance

rate

Minimize power usage

rate

Low

efficiency

Slow

Low

response

time

Simulation

[51] Discrete PSO Response

time

Cost

Maximize resource

utilization

Minimize energy

consumption

Less reliable

Low

response

time

Simulation

[52] MigrateFS

algorithm

Cost

Execution

time

Optimization model

Scalability

Detecting SLA

violation

Low

performance

Simulation

[53]

VM resource

dynamic

scheduling

algorithm

Price

Bandwidth

Resource utilization

Minimize pricing

Low

performance

No load

balancing

Simulation

[54] Greedy & PSO

Algorithm

Completion

Time

Cost

Convergence rate is

optimized

Reduced completion

time

No load

balancing

Simulation

[55] PSO

Energy Energy efficient VM

placement

No load

balancing

No SLA

Simulation

[56]

Improved PSO Time Increased resource

availability

No load

balancing

No SLA

Simulation

[57] Hybrid discrete

PSO

Cost

Energy

Energy efficient VM

placement

Frequent

migrations

Simulation

Chapter 2 Literature Survey

42

The adaptive spread policy based on PSO algorithm used [51] is one

such method to differentiate the long and short user requests based on

a threshold value. It achieves energy savings and carbon emissions

reduction, using server consolidation technology. It consolidates

multiple applications on the same physical machine, with each

application typically running on its own virtual machines. In the

context of virtualized data centers, it is a critical concern to design

energy-efficient virtual machine placement approaches that reduce

energy consumption while satisfying customers [55, 56, 57].

The bandwidth oriented mechanism [53] also load balancing issue.

In short, we can say that there are two VM placement models namely

conventional and economic models. The conventional models assume

that resource providers are non-strategic, whereas economic models

assume that resource providers are rational and intelligent. In

conventional methods, a user pays for the consumed service. In

economic models, a user pays are based on the value derived from the

service. Hence cost-aware VM placement models are more

appropriate in the context of cloud. The details are summarized in

table 2.9.

2.4 Load Balancing Methods

An optimal load in each physical server will improve the system

performance. A load balancing method aims to avoid overloaded or

under loaded conditions in a physical machine or server. Too much

load will result in the violations in SLA conditions and thereby

performance degradation and financial loss. So to maintain QoS

guaranteed service providers have to adopt suitable load balancing

mechanisms across their computational resources. When overload

Chapter 2 Literature Survey

43

causes performance degradation while under loaded conditions will

results in high power consumption, energy and cost. An advanced

cross-entropy based stochastic method [58] for workload scheduling

proposed load balancing is one such method but it creates frequent

migrations. Developing high performance workload scheduling

techniques in cloud computing imposes a great challenge that has

been extensively studied by several researchers. Most of the previous

works aim only at minimizing the completion time of tasks.

However, timeliness is not the only concern, while reliability and

security are also very important. The load-balanced scheduling

focuses on evenly distributing traffic among all links in a data centre

network to enable the network to transmit more data flows with lower

average end-to-end transmission delay.

Due to high cost and low programmable ability, traditional hardware

based load balancing techniques cannot be widely used in

datacenters. Therefore, some researchers pay more attention on

software-defined networking (SDN) techniques (e.g., OpenFlow) [59]

that can improve the transmission capacity of data centers through

programmable load balanced flow control.

A Task Based System Load Balancing method using Particle Swarm

Optimization (TBSLBPSO) [60] that achieves system load balancing

by transferring only extra tasks from an overloaded VM instead of

migrating the entire overloaded VM. There are several other models

to migrate and balance workload across data centre to improve

computation [61]. A good load balancing method also has to limit

frequent migrations. Frequent migrations will create an imbalance in

the system, and that ultimately affects performance. We have

Chapter 2 Literature Survey

44

reviewed several literatures that deals with load balancing issue and

the summary of the findings of these methods are tabulated in table

2.10.

Table 2.10: Load balancing methods

Paper Method Parameter Highlights Limitations Environment

[58]

Advanced Cross-

Entropy based

Stochastic

Scheduling

Service

rate

Arrival rate

Scalability

Flexibility

Optimize QoS

Delay

Frequent

migrations

Simulation

[59] Static offline

optimal

algorithm

Network

Overhead

Minimization

Bandwidth

Minimize inter-

datacenter network

load reduction

Low efficiency

Delay

Simulation

[60] Task-Based

System Load

Balancing

(TBSLB)

Time

Transfer

time

Cost

Pre-copy process

maximizes resource

consumption

Delay

Frequent

migrations

Simulation

[61] Two stage load

balancing

Cost

Power

Pareto optimality Low

performance

Delay

Simulation

2.5 Dynamic and Adaptive Methods

Dynamic and adaptive methods are needed to schedule the diverse

and distributed cloud resources efficiently. In order to meet customer

requirements, this kind of method is necessary for the rapid and

efficient leverage of cloud resources.

2.5.1 SLA aware

The aim of SLA aware methods is to provide services with high-

quality service as customer requested. To harmonize the SLA as well

Chapter 2 Literature Survey

45

as to reduce operational cost intelligent mechanisms are needed. Only

a few SLA aware works are currently available in this area. An SLA

aware hybrid cloud scheduling algorithm is used in an elastic

autonomous service network to solve these issues [62]. The details

are shown in table 2.11.

Table 2.11: SLA aware

Paper Method Parameter Highlights Limitations Environment

[62] Hybrid cloud

scheduler

algorithm

Cost

Deadline

Elastic autonomous

service network

No load

balancing

Simulation

[189] Power aware

consolidation

Cost

Power

PM Clustering Limited to

scientific

workflows

Simulation

[231] Elastic service

placement

Cost Column generation

method

Sub optimal

solution

Simulation

2.5.2 Elasticity based

In the cloud, elasticity can be defined as how the amount of

computing resource changes with the current workload. This

definition is quantitative and measurable; however, such a definition

of responsiveness is not entirely adequate, since it only considers

how much, not how fast, the computing resource adapts. If the

provider takes a long time to provide the correct amount of resources

to match the workload (which might not be current anymore), it is not

considered as elastic. So the elasticity is meaningful to the cloud

users only when the acquired VM resources can be provisioned in

time within the user expectation. The long unexpected VM start-up

time could result in resource under-provisioning, which will

inevitably hurt system performance [67]. Similarly, the long

Chapter 2 Literature Survey

46

unexpected VM shut-down time could result in resource over-

provisioning, which will inevitably hurt resource utilization. The

auto-scaling capability of the cloud can ensure the service with QoS

with minimizing the makespan and cost [68]. Table 2.12 gives a

summary of elasticity based methods in cloud scheduling.

Table 2.12: Elasticity based

Paper Method Parameter Highlights Limitations Environment

[66] Open Cloud Computing

Interface (OCCI)

Time

Cost

Autonomic

loop

Multiple

autonomic

loop

Real

[67] On-site elastic algorithm Execution

time

Cost

Multi-level

QoS service

Performance

degradation

& Delay

Frequent

migrations

Simulation

[68] Dynamic Fault-Tolerant

Scheduling (FASTER)

Algorithm

Execution

Deadline

Primary

backup-based

scheduling

Auto scaling

Backward

shifting

Resource

utilization

Delay

No load

balancing

Simulation

2.6 Optimization Methods

As mentioned in the introduction, another classification of scheduling

method is based on the optimization policies used in the algorithms.

The dynamic nature of the cloud environment makes task scheduling

as a cumbersome task. Scheduling in the dynamic cloud environment

is NP-hard, so finding an optimal solution for the task assignment is

difficult. Also, the solutions are obtained by taking several

assumptions on the state of the cloud ecosystem. Nature inspired

Chapter 2 Literature Survey

47

algorithms are capable to produce good sub optimal solutions using

heuristics. Heuristics used by ants, bees, and flock of birds are some

of the examples. The sub optimal category of algorithms can be

further classified into heuristic, meta-heuristic and hybrid algorithms,

based on how they are applied in the application scenario.

2.6.1 Linear programming model

Linear programming (also called linear optimization) is a method to

achieve the best outcome (such as maximum profit or lowest cost) in

a mathematical model whose requirements are represented by linear

relationships. It is a special case of mathematical programming. An

intelligent agent based approach [69] considers availability, price and

time as scheduling criterion, but it lacks load balancing. Large scale

cloudlet scheduling mechanism proposed in [70] is based on

bandwidth and latency, but it is only suitable for scientific workloads

and suffers a load balancing issue. A fault-tolerant system with less

power consumption is created by a Bayesian approach [71] is good,

but it is to be improved to consider load balancing and cost.

Stochastic models [72], RIAL [73], Greedy method [74] produces

only near optimal solutions. The summary of the above methods is

shown in table 2.13.

Chapter 2 Literature Survey

48

Table 2.13: Linear programming models

Paper Method Parameter Highlights Limitations Environment

[69] Intelligent agent

based approach

Price

Availability

Time

Agent-based

computing

Event condition

action

No

interoperability

No load

balancing

Simulation

[70] Optimum

cloudlet selection

strategy

Latency

Bandwidth

Response

time

Large scaling of

cloudlet

deployment

Optimal cloudlet

placement

No workload

management

No load

balancing

Real

[71] Bayesian

Approach

Semi-Markov

model

Energy

Execution

time

Fault recovery

system

No power

consumption

No cost

consideration

Simulation

[72] Hierarchical

Stochastic

modeling

Time

Workload

Workload

management

Execution cost

is high

No load

balancing

Simulation

[73] Resource

Intensive Aware

Load (RIAL)

Balancing

Bandwidth

Memory

Time

cost

Minimize VM

communication

cost

Load balancing

Sub optimal

solutions

Frequent

migrations

Simulation

[74] Greedy algorithm Time Revenue

maximization

No SLA

No power

consumption

Simulation

[76] Practical

outsourcing

Cost

overhead

Security

Frequent

migrations

Simulation

[77] Integer Linear

Programming

(ILP)

Power, cost

Storage

Bandwidth

Machine learning

based VM

allocation

High overhead Simulation

[78] Duality Theorem

Affine Mapping

Cost Feasible region

protection

No stability Simulation

Chapter 2 Literature Survey

49

2.6.2 Heuristic methods

Heuristic methods are another class of methods proposed for cloud

scheduling. The term heuristic is used for algorithms that find

solutions among all possible ones, but they do not guarantee the

optimal result. So they can be considered as approximate algorithms.

These algorithms, usually find a solution close to the best one and

they find it fast and easily. These algorithms are designed to solve

problems in a faster and more efficient manner than traditional

methods by sacrificing optimality, accuracy, precision or

completeness for speed.

There are few articles that discuss heuristic algorithms which suggest

some approximations to the solution of optimization problems. In

such problems, the objective is to find the optimal of all possible

solutions by minimizing or maximizing the objective function [80,

83, 85, 86]. In this method, the objective function is used to evaluate

the quality of the generated solution. Even if an exact algorithm can

be developed, its time or space complexity may turn out

unacceptable. In reality, it is often sufficient to find an approximate

or partial solution. Such admission extends the set of techniques to

cope with the problem. Heuristic methods are covered in table 2.14.

2.6.3 Meta-heuristic methods

Heuristic algorithms are good for specific applications and it gives

optimal solutions within a specific time. Meta-heuristic algorithms

are computationally more complex than heuristic algorithms and

more suited for general purpose problems. In the dynamic cloud, the

environment is challenging, meta-heuristics are a good solution for

Chapter 2 Literature Survey

50

obtaining optimal solutions. Several cloud scheduling methods that

used meta-heuristic approach are based on nature inspired algorithms.

The most prominent nature inspired methods used for cloud

scheduling are shown in figure 2.4.

Fig. 2.4 Nature inspired algorithms

Table 2.14: Heuristic methods

Paper Method Parameter Highlights Limitations Environment

[79] Greedy-Ant

scheduling

Makespan

Priority

Minimize

execution time

Slow Simulation

[80] Modified Best-Fit

Decreasing

(MBFD)

Cost

Energy

Autonomic

energy-aware

mechanism

No SLA Simulation

[81] Elasticity Based

Scheduling

Heuristic (EBSH)

Cost

Profit

Self-managed Inefficient

Slow

Simulation

[82] Local search Energy

Time

Bandwidth

Minimize energy

consumption

No load

balancing

Real

[83] Based on Bayes

theorem and

Clustering

Cost

Makespan

Maximize

posteriori

probability value

Low

throughput

Simulation

[84] PSO algorithm Cost Distribution of

workload

No energy

consideration

Simulation

[85] Critical-Path

based heuristic

Execution

time

Cost

Good time

management

Frequent

migrations

Simulation

[86] Hyper-Heuristic

Scheduling

Algorithm

(HHSA)

Cost

Makespan

Optimization in

makespan

Frequent

migrations

Simulation

Chapter 2 Literature Survey

51

2.6.3.1 Genetic Algorithm

The basis of Genetic Algorithm (GA) is the principle of evolution

and natural genetics. It combines the exploitation of past results with

the exploration of new areas of the search space. By using the

survival of the fittest techniques combined with a structured yet

randomized information exchange, GA can mimic some of the

innovative flair of human search [87]. Genetic algorithms based

cloud scheduling shows great efficiency in small instances as in

timetabling problems, but are not efficient in large instances. GA

combined with the stochastic method also shows low efficiency [88].

The tabular information about GA based methods is given in table

2.15.

Table 2.15: GA based methods

Paper Method Parameter Highlights Limitations Environment

[87] GA

Local Search

(LS) technique

Completion

Time/Makespan

Workload

Minimize

completion time

Sub optimal

solutions

Simulation

[88] Johnson’s rule

based GA

Makespan

Cost

Multi-processor

scheduling

Low complexity

No load

balancing

Simulation

2.6.3.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is based on real ant's behaviour to

find a good food source from their nest. The principle behind ACO

based algorithm is that ant's ability to produces pheromone and leaves

it into the way they travel. The intensity of pheromone increases

when more ants travel on the same way. Then find out the shortest

Chapter 2 Literature Survey

52

path based on the intensity of the pheromone. The ACO based

scheduling methods simulate the searching behaviour of artificial

ant’s colonies to find a solution. The papers [90, 91, 95] proposed

ACO to reduce the makespan of tasks. While methods proposed in

[92, 93, 94] are to reduce energy consumption in the cloud

datacenters. A few methods are derived to load balance the cloud

[96]. The convergence speeds of these algorithms are quite slow,

hybrid methods are necessary to speed up and to deal with multi-

objective optimization. ACO based methods are tabulated in table

2.16.

Table 2.16: Ant Colony Optimization methods

Paper Method Parameters Highlights Limitations Environment

[89] Basic ACO Makespan Random

optimization

No load

balancing

Slow

Simulation

[90] Modified

ACO

Response

time

Throughput

Two level cloud

scheduler

High network

communication

Slow

Simulation

[91] Load

balanced

ACO

Makespan Load balancing Slower when

number of

iterations are

high

Simulation

[92] Basic ACO Energy Energy aware No load

balancing

Simulation

[93] Modified

ACO

Energy VM consolidation No load

balancing

Simulation

[94] Multi

objective

ACO

Energy

Resource

usage

Scalability No load

balancing

Simulation

[95] List ACO Deadline

Cost

Deadline

constrained

Slow Simulation

[96] LB-ACO Makespan

Load balancing

Multi-objective

Scheduling

Sub optimal

solutions

Simulation

Chapter 2 Literature Survey

53

2.6.3.3 Artificial Bee Colony methods

Artificial Bee Colony (ABC) algorithm is developed based on the

foraging behaviour of honey bees to find a food source. It can be

compared with other methods. The algorithm gives the efficient

performance as it uses both global exploration search and local

exploitation search. The works in [97] addressed time and cost but

not considered load balancing issues. While the paper [98] tested in

private cloud system focused only on energy consumption. The

inefficient load balancing mechanism used in heuristic ABC [99]

causes frequent migrations. Our findings are summarized in table

2.17.

Table 2.17: Artificial Bee Colony methods

Paper Method Parameter Highlights Limitations Environment

[97] Pareto- based

ABC

Response

time

Cost

Makespan

High profit

Minimize cost

Load balancing

No priority

Frequent

migrations

Simulation

[98] Power-aware

ABC

Power

Energy

Energy

consumption

Delay

No load

balancing

Simulation

[99] Heuristic ABC

(HABC)

Makespan

Cost

Maximize resource

utilization

Load balancing

Inefficient

load balancing

Simulation

2.6.3.4 Particle Swarm Optimization methods

Continuous optimization without prior information is the principle

behind Particle Swarm Optimization (PSO). Researchers have

proposed several methods to address cloud scheduling problems with

multiple objectives [102, 106, 109]. The PSO-based methods [55, 56,

Chapter 2 Literature Survey

54

57, 109, 114] balance the load across the data centres. While the

methods [108, 110, 113] focused on computation time, deadline,

energy, and profit without load balancing. Table 2.18 gives a

summary of PSO methods.

Table 2.18: Particle Swarm Optimization methods

Paper Method Parameter Highlights Limitations Environment

[100] PSO Makespan

Execution

time

Optimized

execution time

No QoS Simulation

[101] Modified PSO

GA

Completion

time

Makespan

Load balancing

Minimized

Execution time

Slow Simulation

[102] MOPSO Makespan

Waiting

time

Minimum time &

energy

No load

balancing

Simulation

[103] PSO Execution

time

Response

time

Cost

Lower execution

time

No scalability Simulation

[104] Self- adaptive

learning PSO

Makespan

Cost

Load balancing

based on resource

usage

No SLA Simulation

[105] PSO

Makespan

Minimizes VMs

down time

No SLA Simulation

[106] Multi-objective

Pareto based PSO

Makespan

Cost

Dynamic voltage

and frequency

scaling

SLA and

energy not

considered

Simulation

[107] PSO for Energy

Saving (PS-ES)

Energy

Time

Self adaptive

Minimize energy

Homogeneous

cloud

Higher

migration rate

Simulation

[55] PSO

Energy

VM placement

No load

balancing

No SLA

Simulation

Chapter 2 Literature Survey

55

Table 2.18: Particle Swarm Optimization methods (Continued…)

Paper Method Parameter Highlights Limitations Environment

[56] Improved PSO Energy VM placement

No load

balancing

No SLA

Simulation

[57] Hybrid PSO

Cost

Energy

Energy efficient

VM placement

with PSO-TS

Slow

Frequent

migrations

Simulation

[108] Self-Adaptive

Learning PSO

Deadline

Cost

No formal inter-

cloud agreement is

needed to

outsource tasks

No load

balancing

Simulation

[109]

Multi-objective

PSO

Time

Energy

Considered

scheduling

problem as a

discrete task

permutation

Only quasi-

optimal

solutions

No load

balancing

Simulation

[110] Heterogeneous

dynamic

resource

provisioning

Deadline

Cost

Minimize overall

execution cost

while meeting a

user defined

deadline

Convergent

time is high

Slow

Simulation

[111] PSO

Cost

Time

PSO with

embedded cross

over and mutation

operation

Energy and

SLA not

considered

Simulation

[112]

PSO

Computation

Transmission

cost

Simple heuristics

PSO with load

consideration

Energy and

SLA not

considered

Simulation

[113] Discrete PSO

Cost

Deadline

Discrete PSO with

deadline

constraints

No load

balancing

No SLA

Simulation

2.6.4 Hybrid methods

Hybrid methods are a combination of two or more algorithms to

perform a task and obtain optimal solutions than a single algorithm.

These algorithms are suitable for NP-hard problems like cloud

scheduling in a cost effective manner with minimum execution time.

Chapter 2 Literature Survey

56

Table 2.19: Hybrid methods

Paper Method Parameter Highlights Limitations Environment

[114] Hybrid PSO

Makespan

Cost

Imbalance

List based

heuristic algorithm

No SLA

Simulation

[115] SA-PSO

Temporal delay

bound

Delay

Cost

Optimized

throughput

Delay bound

No QoS Simulation

[116] ACO-ABC-PSO

Dynamic meta-

heuristic

Makespan

Cost

Energy

Load balancing

No QoS Simulation

[117] ACO-PSO-SA

Scalable multi-

objective-Cat

Swarm

Optimization

based SA

(CSM-CSOSA)

Makespan

Cost

Energy

Load balancing

Reduce

operational cost

Slow

Frequent

migrations

Simulation

[118] ACO-PSO

Hybrid meta-

heuristic

Response

time

Resource

utilization

High fault

tolerance

High resource

utilization

Low computing

time under high

load

Low response time

Homogeneous

servers.

High cost

Simulation

[119] Hybrid ACO-

PSO

Resource

utilization

Makespan

Avoids premature

solutions

Single

objective

No load

balancing

Simulation

[120] ACO-PSO with

Min-Max

Makespan

Cost

Load sharing Single targeted

scheduling

No SLA

Simulation

[121] GA-PSO

GA - Hybrid

PSO method

Makespan

Cost

High resource

utilization

Low computing

time

Low efficiency

No SLA

Simulation

Temporal Task Scheduling Algorithm (TTSA) is an example of

optimizing the throughput by using hybrid methods [115] in the

Chapter 2 Literature Survey

57

cloud. It considers delay and cost factor but SLA factors not

considered. To improve the efficiency of the scheduling process,

currently available literatures are considering different parameters.

Cloud Scalable Multi-objective (CSM) task scheduling and

optimization algorithm [117] based on Simulated Annealing (SA)

algorithm considers execution time and cost. The novelty of the

method is that its design enhances the local search procedure of the

algorithm in exploring a larger search space that returns better

optimum solutions. It is slow and frequent migrations affect system

performance.

Nature inspired algorithms can easily combine with classical

algorithms or with other heuristic algorithms, which gives better

results. The hybrid algorithms mentioned here are based on response

time [118], artificial intelligence network load balancing using ACO

[119] and modified GA [120].

In paper [121] the crossover strategy and mutation strategy of the GA

is embedded into PSO, so that it can play a role in the discrete

problem. This hybrid method improves the solution quality, so it can

be used as an effective way to solve the cost minimization problem in

workflow scheduling, but convergence speed is low. Table 2.19

summarizes the different hybrid methods in cloud resource and task

management.

2.7 Review Observations

Our detailed literature review analyzed various problems in resource

allocation, task scheduling, VM placement, and load balancing

methods in the cloud. These literatures are grouped based on the

Chapter 2 Literature Survey

58

objectives considered, methodology used, etc. Also, we have

analyzed the platform in which the methods were tested.

Since the cloud is a business model, financial considerations are the

primary issue addressed by most of the methods. Service providers

always look for profit by maximization of their resource utilization

and minimization of operational cost, energy, while consumer

focuses on better quality oriented service within minimum cost and

time. Other observations are

• Makespan Minimization: One of the important parameters

that directly affect QoS is the makespan, which needs more

attention.

• System Stability and Load Balancing: Methods proposed

for load balancing affect system stability severely due to

frequent migrations. This needs immediate attention to

achieve QoS in cloud scheduling.

• Energy conservation: In order to harness the green

computing data centers need energy-aware resource allocation

methods.

• SLA consideration: Guaranteeing SLA is the key task in

maintaining good quality of service.

• Optimization methods: Cloud scheduling is multi-objective

optimization problem with conflicting objectives. Most of the

methods describe in the literature tested in static conditions

and major consideration is a single parameter. Integrated QoS

scheduling methods are needed due to the dynamic nature of

the cloud environment.

Chapter 2 Literature Survey

59

2.8 Design Considerations of the Thesis

An optimal scheduling policy is to be designed to mitigate the issues

in cloud scheduling and ensure QoS. Hence, the design

considerations are:

Optimal scheduling to minimize makespan: The improvement in

the efficiency of the scheduling process mostly in terms of makespan,

cost, and profit. The optimal scheduling improves cloud performance,

by minimizing makespan, operational cost and response time. This

benefits both customers as well as cloud service providers. Other

factors that affect QoS in cloud scheduling needs are to be addressed.

For these advanced techniques are needed to consider these factors to

improve QoS in the cloud.

Load balancing and VM placement to achieve better makespan

and stability: Proper placement of workload across multiple physical

servers will enhance the system performance in terms of makespan

and stability. Since the frequent VM migrations affect system

stability, an enhanced load balancing and VM placement is required.

Energy consideration: Since cloud datacenters consume a large

quantity of power, intelligent power aware resource monitoring and

managing methods are needed to support green computing.

Cost and budget control: In the pay-per-use paradigm, the resources

and services are being billed per usage, so changes in computation

cost is a vital factor in adopting cloud computing. Hence a cost

aware-budget control system is needed for transparency.

Chapter 2 Literature Survey

60

Scalability: SLA violations can be reduced with dynamic autoscaling

of resources. The energy, delay, deadline, time and cost affect the

scalability. Dynamic methods are needed for proper scaling

decisions.

QoS and SLA: SLA oriented computing promises services with

certain quality conditions stipulated in the agreement between

customers and providers. Even though the quality of a service

depends on customer perception and quality of experience, intelligent

methods are necessary to manage and ensure QoS. Efficient QoS and

SLA oriented methods will also reduce violations in the SLA.

Prediction mechanisms: Efficient workload prediction mechanisms

to conduct service level violation free resource allocation. An

interference prediction mechanism to mitigate SLA violations and aid

auto scaling.

2.9 Metrics

Different performance metrics to evaluate the effectiveness of the

methods proposed in this thesis are as follows:

1. Makespan

2. Number of Physical Machines used

3. Energy/Power

4. Number of VM Migrations

5. SLA Violations

Apart from this, specific metrics are used for evaluation purposes in

the respective chapter of the thesis.

Chapter 2 Literature Survey

61

2.10 Summary

This chapter reviewed and identified highlights and limitations of

different scheduling methodologies. After careful study, we have

decided to address the issues in cloud scheduling to provide better

QoS. Also, various metrics are identified to evaluate the performance

of the proposed methods.

62

CHAPTER 3

HANDLING MAKESPAN

Contents

3.1 Introduction ..……..........………….. 62

3.1.1 Makespan and VM placement ……….….................. 63

3.2 Proposed Method ... 65

3.2.1 Optimal placement .. 66

3.2.1.1 Bin packing method 67

3.2.1.2 Best-Fit job placement algorithm 68

3.2.1.3 Remaining-Fit VM placement algorithm... 70

3.3 Experimental Setup and Results ...……..……...................... 70

3.3.1 Simulation environment .. 71

3.3.2 Evaluation parameters ... 71

3.3.2.1 Number of PMs used 71

3.3.2.2 Storage space .. 72

3.3.2.3 Power utilization,................................. 73

3.3.2.4 Makespan……………….……………….. 74

3.4 Benefits of Bin packing……………………………………... 74

3.5 Summary ……………...…..…………………........................ 75

3.1 Introduction

In this chapter, a VM placement mechanism is proposed for the

improved quality in the cloud scheduling by handling makespan. This

technique is based on the principle of Bin packing method. The main

objective of the proposed work is to minimize the makespan,

maximize the cloud resource utilization as well as the reduction in

power consumption. We have implemented four methods namely

Chapter 3 Handling Makespan

63

Best-Best, Worst-Worst, Worst-Best, and Best-Remaining. In the

proposed Best-Remaining method the incoming user requests are

scheduled using the best-fit method. The cloud broker employs

worst-fit method for VM placement. The experimental results show

that the Best-fit – Remaining-fit strategy reduces makespan compared

to other methods. It also efficiently places the VMs to the less

number of active physical servers that improves the performance of

the cloud system.

3.1.1 Makespan and VM placement

The most critical operation in cloud scheduling is VM placement.

VM placement is the process of determining the most appropriate

physical server or machine to host the user requested VM. The

optimal selection of the physical server may be based on makespan,

energy consideration, processing power, and resource utilization.

These VM selections should also consider QoS parameters provided

by the service provider and requested by the cloud customer. Usually,

all users are concerned about the makespan of their submitted tasks

[15].

In IaaS cloud main interface to the cloud resources are VMs where

users run their applications. Depending upon the provider policy,

sometimes they allow users to create and maintain VM images (VMI)

with their own requirements (e.g., on Amazon EC2). The design and

implementation of the virtual machine image management

mechanism are challenging, due to the scale, complexity, variety, and

dynamics of VMIs. Since cloud providers are more concerned about

energy reduction, carbon emission reduction, optimal VM placement

and server consolidation mechanism is needed. An efficient

Chapter 3 Handling Makespan

64

placement mechanism allocates the optimal number of VMs in a

physical server to maintain makespan consideration. So it is a critical

task to design an energy-efficient VM placement mechanism with

other quality of service requirements especially makespan

requirement by the customer [55, 57, 122]. The overview of VM

placement mechanism is shown in figure 3.1. Here physical servers

are sliced into a number of VMs. The user requested VMs are

mapped into the appropriate VM images available in the service

provider's conditions. Then the VM placement mechanism maps

these VM images to the physical servers based on the current status

of each server. These conditions may include load, makespan, storage

and memory requirements, etc.

Fig. 3.1 Overview of VM Placement Mechanism

Chapter 3 Handling Makespan

65

The resource multiplexing with the help of virtualization technology

improves the overall utilization rate and mainly reduces the total cost

of ownership. Several works are available to solve the issues in VM

placement in the cloud, which addresses various performance

parameters [123], availability [124], network [125], and cost [126].

The service providers are more concerned about revenue generation

in VM placement [127, 128]. Providers always tried to find an

optimal VM placement that will minimize the cost of operation and

maintenance of the infrastructure with good quality of service to the

users.

3.2 Proposed Method

Our proposed architecture consists of the following components:

cloud customers, cloud broker, database manager, virtual machines,

physical machines, and several cloud providers. The architecture is

shown in figure 3.2.

Here the jobs are assigned to the physical servers in two stages. In the

first phase, the customers submit their jobs and respective

requirements to the service providers. This is done through the cloud

broker. The cloud broker acts as an intermediary component between

the customers and the providers. The responsibility of the broker is to

place the submitted jobs to the appropriate VMs provided by the

service providers. The VM repository stores predefined images of the

VMs. In the second phase, the optimization of VM placements to the

physical machines are done.

Chapter 3 Handling Makespan

66

Fig. 3.2 Cloud Architecture

3.2.1 Optimal allocation

For the optimal performance dynamic migration of VMs to the

physical servers based on the performance requirements mainly

makespan is needed. If a particular VM does not utilizes all the

reserved resources, then this VM can be logically resized. This

enables us to consolidate VMs to the minimum number of physical

machines. Thus the number of active physical servers can be

minimized, which in turn reduces the power consumption and

reduction in the total energy consumption of the datacenter.

Chapter 3 Handling Makespan

67

3.2.1.1 Bin packing method

In this proposed work, we adopted a bin packing based approach for

VM creation. Here the servers or Physical Machines (PM) in the

datacenter are considered as bins. The VMs with user-specified

requirements requested by the customers are the objects which are

going to be filled in the bins. The algorithm aims to minimize the

number of PMs required to place the requested VMs. At the same

time, it aims to reduce the makespan of submitted jobs.

The VM assignment problem in the bin-packing method can be

defined as follows. Suppose each physical machine PMi consists of j

different types of computing resources (Rj) and there are k type of

VMs defined by the provider denoted by Vk (where k = 1, 2, 3,,

k). Each physical server PMi is able to accommodate any kind of

virtual machine (Vkj) with any type of resource without exceeding its

processing capacity.

Let yi be the number of physical servers, then our aim is to

Minimize z (y) = 𝑦𝑖
𝑛
𝑖=1 (3.1)

Subject to the following constraints

1. 𝑋𝑖𝑗 𝑛
𝑖=1 =

0
1
 ∀𝑖 ∈ {1, 2, … . , 𝑁}: where Xij = 1 means VM

assigned to a physical server and Xij = 0 means it is not assigned

to a physical server.

2. 𝐿𝑜𝑎𝑑𝑖𝑗 𝑡 .𝑛
𝑖=1 𝑋𝑖𝑗 ≤ 𝐿𝑜𝑎𝑑𝑚𝑎𝑥 : which limits the load to a PM

to the maximum predefined Loadmax for a particular PM at time t.

Chapter 3 Handling Makespan

68

3. 𝑦𝑖 =
0
1
 ∀𝑖 ∈ {1, 2, … . , 𝑀} :where 0 means PMi is not

assigned with any VM and 1 if any VM is mapped to it.

3.2.1.2 Best-Fit job placement

In the initial phase jobs are submitted to the using best-fit method.

This is to ensure makespan minimization. These jobs are directed to

the cloud through the cloud broker. The pseudo code for this best-fit

approach is given in figure 3.3.

Algorithm: Best-Fit Job Placement

1. Input: JobQueue, VMList

2. Output: Job allocation to VMs in VMList

3. Best_fit_Job()

4. Sort VMs based on processing power in ascending order

5. Sort Jobs in ascending order based on MIPS required

6. AssignedJobList ← NULL

7. Set VMStatus = 0 //All VMs are job free

8. Set JobStatus = 0 //No Jobs are allocated to VMs

9. for each Job i in JobQueue do

10. for each VM j in VMList do

11. If Power of VM[j] ≥ Job[i] && VMStatus = 0 then

12. Assign Job[i] to VM[j]

13. Set VMStatus = 1

14. Set JobStatus = 1

15. Else

16. Append Job[i] to UnAssignedJobList[]

17. End if

18. End for

19. End for

Fig. 3.3 Best-Fit job placement

Chapter 3 Handling Makespan

69

Algorithm: Remaining-Fit VM Placement

1. Input: VMList, PMList

2. Output: Mapping of VMs to PMs

3. Worst_fit_VM()

4. Sort VMList in ascending order.

5. Sort PMs in the PMList in descending order.

6. UsedPMList = 0, UnusedPMList = 0

7. currentPMstatus = 0 for all PMs // PM not yet allocated.

8. start ← start_VM and last _ last_VM in the VMList

9. for each PM j in PMList do

10. for each VM i in VMList do

11. if UnusedResource(PMj) ≥ ResourceNeed(VMi) then

12. if PMstatusj == 0 then

13. Add VMi to PMj

14. PMj ← PMj - VMi

15. else

16. Add VMi to PMj

17. PMj ← PMj - VMi

18. Until last VM

19. End if

20. else

21. Set PMstatusj =1 // PMj in PMList is allocated

22. Add PMj to usedPMList

23. Start_VM = next VM in VMList (VMi+1)

24. Until last PM in PMList

25. End if

26. End for

27. End for

Fig. 3.4 Remaining-Fit VM placement

Chapter 3 Handling Makespan

70

Based on the processing power requirement of each job, it is sorted in

ascending order. Currently available VMs are also sorted in a list

based on their processing capacity. After this, the cloud broker places

the jobs from the job queue to these available VMs. If a particular job

i is assigned to the VMj, then the algorithm changes its status to 1 for

both job i and VMj.

3.2.1.3 Remaining-Fit VM placement

Next in the second phase, the optimization of VM allocation to the

physical hosts is carried out worst-fit method.

Here the Physical Machines are sorted in decreasing order of

utilization and VMs are sorted based on Million Instruction Per

Second (MIPS). Then, the algorithm finds the first PM the list of

sorted PMs and places the first VM from the sorted VMList to this

selected PM. This process is continued till every VMi in the list are

mapped to PMj. The procedure for the Worst-fit method for VM

placement is given in figure 3.4. Thus VMs are placed to its

maximum capacity; hence the number of PMs required for hosting

VMs can be minimized. This reduction of active physical servers will

reduce the power consumption of the datacenter.

3.3 Experimental Setup and Results

We have evaluated the effectiveness of bin packing method using

CloudSim [129]. It is a powerful simulation tool to test scheduling

and load balancing mechanisms.

Chapter 3 Handling Makespan

71

3.3.1 Simulation environment

We have deployed 10 physical machines. These 10 physical servers

together can accommodate up to 100 virtual machines. These PMs

with memory size varies between 1 to 3 GB. The memory capacities

of the VMs are configured within the ranges from 100 MB to 1 GB.

The power consumption of each PM is measured using the built-in

power datacenter in CloudSim. The storage requirement of each

submitted job can vary between 100 to 800 MB randomly. The

storage capacity of each physical server is fixed up to 1TB.

3.3.2 Evaluation parameters

The performance of the method is measured based on the number of

physical machines used, power utilization and storage comparison.

The method is experimented and all these parameters are measured

for Best-Best, Best-Remaining, Worst-Worst and Worst-Best

strategies. All these algorithm combinations are simulated in the

same environment.

3.3.2.1 Number of PMs used

When the active number of PMs increases, that will also increase the

power consumption. The comparative performance of the above

algorithms for the active number of PMs is shown in figure 3.5. It

shows that the significant improvement in power consumption using

the proposed method.

Chapter 3 Handling Makespan

72

Fig. 3.5 Comparison – Number of PMs used

The algorithm searches among all the underutilized PMs to find the

appropriate server for the placement of VMs with user-specified

requirements. The proposed method helps in the efficient use of

active servers. Thus it avoids usage of extra PMs to accommodate

virtual machines. Reduction in the active PMs, in turn, reduces the

power consumption that reduces the computation cost.

3.3.2.2 Storage space

We have measured the storage allocation efficiency of the proposed

method. The results are compared and it is plotted in figure 3.6. From

the figure, we can see that the proposed method uses less percentage

of space compared to other strategies. The proposed method

effectively uses the available storage space in the active PMs.

Chapter 3 Handling Makespan

73

Fig. 3.6 Storage space utilization

3.3.2.3 Power utilization

The cloud providers always looking for reduced power utilization.

Extensive simulations were carried out and the power utilization of

the proposed method is compared for different number of jobs with

different number of PMs. The results are shown in figure 3.7. From

the above figure, we can conclude that the power consumption

analysis is comparatively promising. This is because the proposed

method uses less number of PMs for placing user-requested VMs.

Fig. 3.7 Power utilization

Chapter 3 Handling Makespan

74

3.3.2.4 Makespan

From figure 3.8, it is clear that the proposed Best-Remaining fit

strategy reduces the makespan of jobs. Thus effective handling of

makespan by the proposed bin-packing based technique improved the

QoS in terms of makespan.

Fig. 3.8 Makespan

3.4 Benefits of Bin packing

The proposed Bin packing method is compared with its other variants

like First Fit Decreasing (FFD) [193] and Max-Min [194] algorithms.

The results shown in figure 3.9 indicates that the proposed method

gives significant performance improvement in terms of makespan.

Fig. 3.9 Comparison with FFD and Max-Min algorithms

Chapter 3 Handling Makespan

75

3.5 Summary

In cloud computing, the effective and efficient use of cloud resources

is crucial for the service provider's revenue. Usually, one of the QoS

parameters requested by the customer is makespan. Also, in order to

harness the green energy concept, the importance of improved energy

efficiency mechanisms is to be considered. This chapter proposed a

Best-fit - Remaining-fit strategy that efficiently handles makespan,

thus improving QoS. It also places the virtual machines to a

minimum number of active physical servers. By the simulated study,

we have shown the effectiveness of Best-fit – Remaining-fit

technique in handling makespan.

76

CHAPTER 4

ENHANCED LOAD BALANCING FOR

VM MIGRATIONS

Contents

4.1 Introduction ………………..………………………….… 76

4.1.1 How migrations affect makespan …….….....…… 77

4.1.2 Artificial Bee Colony algorithm …..….….….…… 78

4.2 Related Works ...…………………...…...……..………… 80

4.3 Proposed Method .………………………...…………..…. 84

4.3.1 Architecture ……………………..……………….. 85

4.3.2 Steps for cloud load balancing ………….......…… 87

 4.3.3 Parameter mapping ..……………… …….….…… 87

 4.3.4 Load balancing ……………………….………..… 88

4.4 Experimental Results ……………..………………..…… 93

4.4.1 Makespan ………………………………………... 93

4.4.2 Number of migrations …………………………… 94

4.4.3 Degree of imbalance .………… …………….…... 95

4.5 Summary ……..………………………………………….. 96

4.1 Introduction

The load balancing method avoids under and heavy loaded conditions

in the datacenters. When some resources are overloaded with several

number of tasks, these tasks are to be migrated to the under loaded

resources of the same datacenter in order to maintain QoS. Frequent

VM migrations also affect the performance of the cloud ecosystem.

Nature inspired algorithms are efficient in solving this kind of

Chapter 4 Enhanced Load Balancing for VM Migrations

77

dynamic problems. In this chapter, we proposed an enhanced bee

colony algorithm for efficient and effective load balancing in the

cloud environment. The honey bees foraging behaviour is used to

balance load across virtual machines. The tasks removed from

overloaded VMs are treated as honeybees and underloaded VMs are

the food sources. The method also tries to minimize makespan as

well as number of VM migrations. The algorithm also reduced the

imbalance in the cloud eco system. The experimental result shows

that there is significant improvement in the QoS delivered to the

customers.

4.1.1 How migrations affect makespan

In order to ensure QoS efficient load balancing among nodes are

required in the distributed cloud environment. An efficient load

balancing mechanism tries to speed up the execution time of user-

requested applications. It also reduces system imbalance and gives a

fair response time to the users. VM migrations are to be carried out

for load balancing.

When migration is happening, the currently execution VM stops and

some time is required to restart at a new location. This delay causes a

potential impact on the makespan. So migration reduction is an

important factor to maintain QoS in the cloud. In order to limit

migrations, a better load balancing mechanism is needed.

The better load balancing will result in reduce response and migration

time. The improvement in the above factors will ensure good QoS to

the customers thereby less Service Level Agreement (SLA)

violations.

Chapter 4 Enhanced Load Balancing for VM Migrations

78

Static load balancing algorithms will work only when there is a small

variation in the workload. Cloud scheduling and load balancing

problems are considered as NP-hard problems. The dynamic nature

of the cloud computing environment needs dynamic algorithms for

efficient and effective scheduling and load balancing among

computing nodes.

4.1.2 Artificial Bee Colony algorithm

The Bee Colony algorithm is a meta-heuristic swarm intelligence

algorithm [130] to solve numerical function optimization problems. It

mimics the foraging behavior of honey bees. It has advantages such

as memory, multi character, local search, and solution improvement

mechanism, so it is an excellent solution for optimization problems

[143, 144, 145].

The Bee Colony consists of three groups of artificial bees: employed

foragers, onlookers, and scouts. The employed bees comprise the first

half of the colony whereas the second half consists of the onlookers.

The employed bees are linked to particular food sources. In other

words, the number of employed bees is equal to the number of food

sources for the hive. The onlookers observe the dance of the

employed bees within the hive, to select a food source, whereas

scouts search randomly for new food sources.

The search cycle of Artificial Bee Colony consists of three rules:

• Sending the employed bees to a food source and evaluating

the nectar quality

Chapter 4 Enhanced Load Balancing for VM Migrations

79

• Onlookers choosing the food sources after obtaining

information from employed bees and calculating the nectar

quality

• Determining the scout bees and sending them onto possible

food sources

The positions of the food sources are randomly selected by the bees

at the initialization stage and their nectar qualities are measured. The

employed bees then share the nectar information of the sources with

the bees waiting at the dance area within the hive. After sharing this

information, every employed bee returns to the food source visited

during the previous cycle, since the position of the food source had

been memorized and then selects another food source using its visual

information in the neighbourhood of the present one.

Algorithm: Artificial Bee Colony Algorithm

1. Initialize the Bee Colony and problem parameters

2. Initialize the Food Source Memory (FSM)

3. Repeat

4. Send the employed bees to the food sources.

5. Send the onlookers to select a food source.

6. Send the scouts to search for possible new food.

7. Memorize the best food source.

8. Until termination criterion is met

9. End

Fig. 4.1 Artificial Bee Colony algorithm

At the last stage, an onlooker uses the information obtained from the

employed bees at the dance area to select a food source. The

probability for the food sources to be selected increases with an

Chapter 4 Enhanced Load Balancing for VM Migrations

80

increase in its nectar quality. Therefore, the employed bee with

information on a food source with the highest nectar quality recruits

the onlookers to that source. It subsequently chooses another food

source in the neighbourhood of the one currently in her memory

based on visual information (i.e. comparison of food source

positions). A new food source is randomly generated by a scout bee

to replace the one abandoned by the onlooker bees. This search

process is represented shown in figure 4.1 [146].

4.2 Related Works

Efficient scheduling and load balancing ensures better QoS to the

customers and thereby reduces the number of SLA violations. This

section reviews some of the load balancing algorithms.

Modified throttled algorithm based load balancing is presented in

[131]. While considering both the availability of VMs for a given

request and uniform load sharing among the VMs for number of

requests served, it is an efficient approach to handle the load at

servers. It has an improved response time, compared to existing

Round-Robin and throttled algorithms, but it suffers from frequent

migrations.

In [132], a load balancing approach was discussed, which manages

load at server by considering the current status of all available VMs

for assigning the incoming requests. This VM-assign load balancing

technique mainly considers efficient utilization of the resources and

VMs. By simulation, they proved that their algorithm distributes the

load optimally and hence avoids under/over utilization of VMs. The

comparison of this algorithm with an active-VM load balance

Chapter 4 Enhanced Load Balancing for VM Migrations

81

algorithm shows that their algorithm solves the problem of inefficient

utilization of the VMs.

Response time based load balancing is presented in [133]. In order to

decide the allocation of new incoming requests, the proposed model

considers current responses and its variations. The algorithm

eliminates the need for unnecessary communication of the Load

Balancer. This model only considers response time which is easily

available with the Load Balancer as each request and response passes

through the Load Balancer, hence eliminates the need of collecting

additional data from any other source thereby over utilizing the

communication bandwidth.

In [134] a load balancing technique for cloud datacenter, Central

Load Balancer (CLB) was proposed, which tried to avoid the

situation of overloading and under loading of virtual machines. Based

on priority and states, the Central Load Balancer manages load

distribution among various VMs. CLB efficiently shares the load of

user requests among various virtual machines.

Ant colony based load balancing in cloud computing was proposed in

[135]. It works based on the deposition of pheromone. A node with

minimum load is attracted by most of the ants. So maximum

deposition of pheromone occurs at that node and performance is

improved.

Cloud Light Weight (CLW) for balancing the cloud computing

environment workload is presented in [136]. It uses two algorithms

namely, receiver-initiated and sender-initiated approaches. VM

Attribute Set is used to assure the QoS. CLW uses application

Chapter 4 Enhanced Load Balancing for VM Migrations

82

migration (as the main solution) instead of using VM migration

techniques to assure minimum migration time.

A resource weight based algorithm called Resource Intensity Aware

Load balancing (RIAL) is proposed in paper [73]. In this method,

VMs are migrated from over-loaded Physical Machines (PM) to

lightly loaded PMs. Based on resource intensity the resource weight

is determined. A higher-intensive resource is assigned a higher

weight and vice versa in each PM. The algorithm achieves lower-cost

and faster convergence to the load balanced state, and minimizes the

probability of future load imbalance, by considering the weights

when selecting VMs to migrate out and selecting destination PMs.

A cloud partitioning based load balancing model for the public cloud

was proposed in [137]. This algorithm applies game theory to load

balancing strategy in order to improve efficiency. Here a switching

mechanism is used to choose different strategies for different

situations.

Time and cost based performance analysis of different algorithms in

cloud computing were given in [138]. A load balancing mechanism

based on artificial bee colony algorithm was proposed in [139] but it

suffers from frequent migrations. It optimizes cloud throughput by

mimicking the behavior of honey bees. Since the bee colony

algorithm arranges only a little link between requests in the same

server queue, then maximization of the system throughput is

suboptimal. Here, the increasing request does not lead to an increase

in system throughput in certain servers.

An active clustering based load balancing technique is presented in

paper [140]. It groups similar nodes together and works on these

Chapter 4 Enhanced Load Balancing for VM Migrations

83

groups and produces better performance with high utilization of

resources.

Weighted Signature based Load Balancing (WSLB), a new VM level

load balancing algorithm is presented in [141]. This algorithm finds

the load assignment factor for each host in a datacenter and map the

VMs according to that factor. Estimated finish time [142] based load

balancing considers the current load of virtual machines in a

datacenter and the estimation of processing finish time of a task

before any allocation. This algorithm improves performance,

availability and maximizes the use of virtual machines in their

datacenters. In order to avoid a probable blocking of tasks in the

queue, it permanently controls the current load on the virtual

machines and the characteristics of tasks during processing and

allocation.

The authors in [148] proposed a heuristic based scheme for load

balancing in the large cloud data centers based on duplicating jobs

and sending replicas to different servers. They showed that this

mechanism can significantly reduce the queuing time, even with a

small number of replicas and in particular in high workloads.

Determining the right parameter configuration for this method (the

number of replicas, the server job selection policy) is highly

dependent on the system condition, comprising the scale of the

system, load pattern, job processing time, and inter-server delays. As

different systems may be subject to different conditions, there is no

single parameter configuration that is optimal to all systems. So in

order to deploy the scheme, the system manager should conduct a

simulation-based study to determine the right settings for the specific

Chapter 4 Enhanced Load Balancing for VM Migrations

84

system. Cloud is a dynamic environment, so the conditions may

change. Therefore, system performance should be constantly

monitored in order to determine whether any of the parameter values

should be modified.

A dynamic load-balanced scheduling (DLBS) based on heuristic

algorithms approach to maximize the network throughput through

dynamically balancing data flows is developed in [149]. In this

method, the data flow is balanced time slot by time slot. The

simulation result shows that the algorithm works better when data

flow is high.

There are several methods proposed for load balancing in the cloud

such as collaborative agents for distributed problem solving [150],

CLB load balancing architecture and algorithm [151], Temporal task

scheduling with heuristics [152], QoS based methods [153], and

concave pricing [154].

4.3 Proposed Method

When the workload increases, load balancing is an important task in

resource management to ensure quality of service. An optimal task

scheduling algorithm is needed for the load balancing problems as

well as users' expectations in QoS. The load balancing algorithm

called Interaction ABC (IABC) [239] is based on bee colony to

schedule the tasks to virtual machines (VMs), but number of

migration is very high. The paper [147] also tried bee colony

algorithm for load balancing in the cloud, but still, frequent migration

is a problem.

Chapter 4 Enhanced Load Balancing for VM Migrations

85

So in our proposed method, we have considered completion time of

tasks and number of task migrations along with system imbalance

during computation.

4.3.1 Architecture

The architecture for our proposed load balancing method is shown in

figure 4.2. The details of each component are given below.

Cloud Information Service (CIS): It is the repository that contains

all the resources available in the cloud environment. It can be

considered as a registry of datacenters. Whenever a datacenter is

created it has to register to the CIS and update details.

Fig. 4.2 Load balancing architecture

Datacenter: Here we have considered Datacenters with

heterogeneous resources. A datacenter consists of several hosts. Each

Chapter 4 Enhanced Load Balancing for VM Migrations

86

host can contain many processing elements (PEs) with RAM and

bandwidth characteristics. Based on the user requirement, the hosts

are virtualized into different number of VMs. VMs may also have

heterogeneous nature as like hosts.

Fig. 4.3 Enhanced Load balancing using bee colony algorithm

Chapter 4 Enhanced Load Balancing for VM Migrations

87

The role of CIS is to collect information about all the resources in the

datacenters. This information used for the submission of tasks to the

physical hosts.

The enhanced bee colony algorithm is given in figure 4.3.

4.3.2 Steps for cloud load balancing

The basic steps used for cloud load balancing are given in the figure

4.4.

1. Start

2. Find load of each VMs and group VMs as over-loaded or under

loaded.

3. Find the supply of under loaded VMs and demand of

overloaded VMs.

4. Sort the overloaded and under loaded VM sets

5. Sort the tasks in overloaded VMs based on priority.

6. For each task in each overloaded VM find a suitable under

loaded VM.

7. Update the overloaded and under loaded VM sets and go to step

2.

8. Stop

Fig. 4.4 Steps for cloud load balancing

4.3.3 Parameter mapping

The proposed method used the foraging behaviour of honeybees for

effective load balancing across VMs in the datacenters and

reschedules the tasks to the under loaded VMs. For the

implementation of bee algorithm in the cloud, the characteristics of

Chapter 4 Enhanced Load Balancing for VM Migrations

88

honeybees are to be mapped into the cloud environment. The

mapping of bee colony parameters with the cloud environment is

shown in table 1.

Table 4.1: Mapping of Bee colony parameters with Cloud

environment

Honey Bee Hive Cloud Environment

Honey bee Task (Cloudlet)

Food source VM

Honey bee foraging a food

source
Loading of a task to a VM

Honey bee getting depleted at a

food source
VM in overloaded condition

Foraging bee finding a new food

source

Removed task will be rescheduling

to an under loaded VM having

highest capacity

4.3.4 Load balancing

In this proposed method the tasks are considered as honeybees. When

honey bee forage for food source, then the cloudlet will be assigned

in VM for execution. Since the processing capacity varies for

different VMs, sometimes VMs may be overloaded and others will be

underloaded. In these circumstances, an efficient load balancing

mechanism is needed. When a particular VM is overloaded then some

tasks need to be migrated away and have to assign it to an under

loaded location. In this case, the task to be migrated is chosen based

on priority. In the proposed method tasks with the lowest priority will

be selected as a candidate for the migration. This procedure is similar

Chapter 4 Enhanced Load Balancing for VM Migrations

89

as honey is exhausted in nectar and bees are ready to take off from

the food source.

The fitness function used is based on the task length and processing

capacity of a VM. Equation (4.1) gives fitness value of VM j for a

task i.

Fitij =
 𝑇𝑎𝑠𝑘 𝐿𝑒𝑛𝑔𝑡 𝑖

𝑖=𝑛
𝑖=1

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑉𝑀𝑗
 (4.1)

The tasks are assigned to a particular VM is based on this fitness

value.

The proposed method works in four different steps as given below.

1. VM Current Load Calculation

2. Load Balancing & Scheduling Decision

3. VM Grouping

4. Task Scheduling

VM Current Load Calculation: The current load on a VM is

measured based on the ratio between total lengths of the tasks

submitted to that VM to the processing rate of that VM at a particular

instance. Suppose N is the total number tasks assigned to a VM and

Len is the length of single tasks and MIPS is the Million Instruction

Per Second rate of that VM, then using the equation (4.2) the current

load can be calculated.

𝐿𝑜𝑎𝑑𝑉𝑀 =
𝑁∗𝐿𝑒𝑛

𝑀𝐼𝑃𝑆
 (4.2)

Then total load on a datacenter is the sum of load on each VMs. The

equation for total load a datacenter 𝐿𝑜𝑎𝑑𝐷𝐶 is given by the equation

(4.3).

Chapter 4 Enhanced Load Balancing for VM Migrations

90

𝐿𝑜𝑎𝑑𝐷𝐶= 𝐿𝑜𝑎𝑑𝑉𝑀𝑖

𝑚

𝑖=1
 (4.3)

The processing capacity of VM can be calculated using the equation

(4.4) as given below.

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑉𝑀 = 𝑃𝐸𝑛𝑢𝑚 ∗ 𝑃𝐸𝑚𝑖𝑝𝑠 +𝑉𝑀𝑏𝑤 (4.4)

Here 𝑃𝐸𝑛𝑢𝑚 is the number of processing elements in a particular VM,

𝑃𝐸𝑚𝑖𝑝𝑠 is the processing power of PE in MIPS rate and 𝑉𝑀𝑏𝑤 is the

band width associated for a VM.

A datacenter may have several VMS. So the total capacity of the

entire datacenter can be calculated from using the equation (4.5),

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐷𝐶 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑉𝑀
𝑛
𝑣𝑚=1 (4.5)

Then the proposed algorithm computes the processing time of each

task using equation (4.6).

𝑃𝑇 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑜𝑎𝑑

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (4.6)

Then the processing time required for datacenter to complete all the

tasks in it can be calculated by the equation (4.7) given below,

𝑃𝑇𝐷𝐶 =
𝐿𝑜𝑎𝑑 𝐷𝐶

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐷𝐶
 (4.7)

Then the Standard Deviation (SD) is a good measure of deviations.

The proposed method uses SD for measuring the deviations in the

workload on each VM. If there is m VMs, then Equation (4.8) gives

the SD of loads.

𝑆𝐷 =
1

𝑚
 𝑃𝑇𝑖 − 𝑃𝑇 2𝑚

𝑖=1 (4.8)

Then the load balancing decision is done based on the value of SD.

Chapter 4 Enhanced Load Balancing for VM Migrations

91

In this proposed method, bee colony algorithm is modified to find

optimal solution quickly. This algorithm quickly converges into an

optimal solution. The algorithm also tries to minimize the number of

task migrations. It also considers users' priority while scheduling the

tasks.

Algorithm: Steps for Enhanced Bee Colony

1. Start

2. For each task do

3. Calculate the load on VM and decide whether to do load balancing

 or not

4. Group the VMs based on load as overloaded or under loaded based

 on fitness value.

5. Find the supply of under loaded VMs and demand of overloaded

 VMs.

6. Sort the overloaded and under loaded VM sets

7. Sort the tasks in overloaded VMs based on priority.

8. Find the capacity of VMs in the under loaded set.

 For each lower priority task in the overloaded VM find a suitable

 under loaded VM based on capacity.

9. Update the overloaded and under loaded VM sets

10. End of step 2.

11. Stop

Fig. 4.5 Enhanced Bee colony based load balancing algorithm

Load Balancing & Scheduling Decision: In this phase, load

balancing and rescheduling of tasks are decided. This decision

depends on the SD value calculated using equation (4.8). In order to

maintain system stability, the load balancing and scheduling decision

will take only when the capacity of the datacenter is greater than the

Chapter 4 Enhanced Load Balancing for VM Migrations

92

current load. Otherwise, it will create an imbalance in the datacenter.

For finding the load threshold value is set (value lies in 0-1) based on

the SD calculated. The systems compare this value with the

calculated SD measure. The load balancing and scheduling is done

only if the calculated SD is greater than the threshold. This will

improve system stability by minimizing the number of migrations.

VM Grouping: In order to increase the efficiency VMs are grouped

into two groups: overloaded VMs and under loaded VMs. This will

reduce the time required to find optimal VM for task migration. The

overloaded VMs are the candidates for migration. In the proposed

method these removed tasks are considered as honeybees and the

under loaded VMs are their food sources. The VMs are grouped

according to the SD and threshold value already calculated based on

the load.

Task Scheduling: Before initiating load balancing the system have

to find the demand to each overloaded VMs and supply to the under

loaded VMs. Here the VMs are sorted based on the capacity in

ascending order. The task migration is performed only when demand

meets the supply. From the under loaded VM set, the proposed

method selects a VM which has the highest capacity as target VM.

The method selects the task with the lowest priority from an

overloaded VM and it is rescheduled to an under loaded VM with

maximum capacity.

Supply to a particular VM is the difference between its capacity and

current load and it can be calculated using equation (4.9),

𝑆𝑢𝑝𝑝𝑙𝑦𝑉𝑀 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝐿𝑜𝑎𝑑 (4.9)

Then the demand of a VM is calculated using the equation (4.10)

Chapter 4 Enhanced Load Balancing for VM Migrations

93

𝐷𝑒𝑚𝑎𝑛𝑑 𝑉𝑀 = 𝐿𝑜𝑎𝑑 − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (4.10)

On submission of each task into the cloud, the VM will measure the

current load status and calculates SD. If the SD of loads is greater

than the threshold then load balancing process is initiated. During this

load balancing process, VMs are classified into under loaded and

overloaded VM sets. Then the submitted tasks are rescheduled to the

VM having the highest capacity.

4.4 Experimental Results

The proposed method is tested in the simulated cloud environment

using CloudSim. VMs with different specifications are deployed.

User requests are submitted to this heterogeneous environment. We

have measured the number of VM migrations, makespan and degree

of imbalance are measured and compared these parameters with

existing methods.

4.4.1 Makespan

Here we have compared makespan of the enhanced bee colony

algorithm with bee colony method. Also, it is compared with RR

[166] and Max-Min [194] algorithms. The migration time i.e., overall

task completion time is graphically represented in figure 4.6. The

results indicate that the proposed method reduced the makespan than

bee colony algorithm and other existing methods. From the results, it

is clear that makespan can be reduced into a significant amount using

load balancing algorithm. Makespan is a good measure of QoS

provided by the service provider. So the proposed method improves

the QoS.

Chapter 4 Enhanced Load Balancing for VM Migrations

94

Fig. 4.6 Comparison of makespan

4.4.2 Number of migrations

If the tasks are continuously shifting from one assigned location to

another, it adversely affects the performance of the system. So the

number of migrations is a performance indicator to measure the

performance of a service provider. In the proposed method the

algorithm considers the priority of tasks when migration is needed. If

lower the priority of a task, there is a higher chance for migration

from the assigned queue. It is to ensure the higher priority tasks are

less affected. The results are represented in figure 4.7. From the

result, we can observe that the enhanced version outperforms bee

colony algorithm in most cases.

The above test results show how the proposed method reduces the

makespan as well as the number of task migrations. Thus it helps to

improve the performance of the cloud service provider.

Chapter 4 Enhanced Load Balancing for VM Migrations

95

Fig. 4.7 Number of task migrations

4.4.3 Degree of imbalance

Another performance parameter is the degree of imbalance. This is to

measure system stability due to migrations. Table 4.2 and figure 4.8

represents the degree of imbalance before and after applying the

algorithm. From the results, it is clear that the proposed method

reduced the imbalance due to migrations since this method employs

less number of migrations.

Table 4.2: Degree of Imbalance

Number of Cloudlets Before After

10 1.000 0.714

15 0.509 0.664

20 0.840 0.268

25 0.667 0.212

Chapter 4 Enhanced Load Balancing for VM Migrations

96

Fig. 4.8 Degree of Imbalance before and after applying the algorithm

4.5 Summary

In this chapter, we have proposed and experimented a bee colony

algorithm for efficient load balancing in the cloud environment. In

this method, we have used the power of swarm intelligence algorithm

to remove the tasks from overloaded resources and migrated these

removed tasks to the most appropriate underutilized or under loaded

resources. This migration policy also considers the priority of the

tasks in the waiting queue. The tasks with the least priority are

selected as candidates for migration. Hence, no tasks are needed to

wait a long time to get processed and reduced makespan migrations.

The experimental results show a lower number of migrations with a

reduced imbalance for the proposed approach.

97

CHAPTER 5

LOAD BALANCING FOR IMPROVING

ENERGY EFFICIENCY

Contents

5.1 Introduction ……………………...…..……………………. 97

5.1.1 Energy management ..……………. ………...…...… 98

5.2 Related Works ………………………..…...…………….… 99

5.3 Proposed System ………………………..……..………….. 103

5.3.1 Clustering of physical machines ………...………… 104

 5.3.2 Energy aware VM migration .…………...………… 105

 5.3.3 Process allocation .……………………...………….. 108

5.4 Ant Colony Based Method …………..…………………… 109

5.5 Experimental Setup and Performance Analysis ………... 111

5.5.1 Number of PMs searched .…………………………. 111

5.5.2 Response time ……………………………………... 112

5.5.3 Number of PMs used for VM allocation ……..……. 115

5.5.4 Energy consumption ……………………..………... 116

5.5.5 Total energy cost …………………………………... 117

5.6 Summary …………………………..………………….…… 117

5.1 Introduction

Cloud has several advantages such as availability, scalability, and

reliability, but some performance parameters such as energy

consumption, load balancing, response time, resource allocation time,

etc., need further attention. The cloud consists of several huge

datacenters, each with heterogeneous physical machines. When the

Chapter 5 Load Balancing for Improving Energy Efficiency

98

number, diversity, and size of the datacenters are increasing, optimal

resource identification and allocation needs a high resource discovery

time.

This chapter proposes an energy-aware clustered load balancing

method. In this method, first, heterogeneous resources are grouped

into different clusters by using a partitioning based clustering

algorithm. Clustering reduces the number of resources needed to be

searched and therefore, the total searching time required for resource

discovery and allocation can be reduced. Since the search process is

carried out only on a particular cluster, the searching time will be

reduced. In the next phase of the method, an energy-aware best-fit

VM allocation is carried out based on the weight value of the

resource. This weight value depends on its memory, storage and

processing capacity of the resource. Then the corresponding VM

cluster is found out using this weight value. If suitable resources are

available in that cluster, then allocate it. Else, searching progresses

towards second portion of that cluster for the resource availability. If

the VM is unable to allocate in that cluster, then the method checks in

other clusters. Finally, a best-fit allocation strategy is used for

allocating processes to the VMs. The best-fit algorithm helps in

efficient VM placement for optimal space utilization. We have also

implemented Ant Colony Optimization (ACO) based clustering

method and compared it with energy-aware clustering method.

5.1.1 Energy Management

Load balancing methods are good for handling huge requests

efficiently and for placing the VMs in particular PMs [169]. The load

balancing mechanisms consume a large amount of power during VM

Chapter 5 Load Balancing for Improving Energy Efficiency

99

Migration, task execution, etc. This is due to the use of all available

PMs in the datacenter to maintain quality or due to the absence of

good power management policies. If an energy-aware load balancing

mechanism is applied to the clusters to balance the load among PMs,

that will improve power consumption. i.e., it will help to identify and

switch off the idle physical machines. The proposed method also

aims at achieving high user satisfaction by minimizing the response

time, improvement in resource utilization through an even and fair

allocation of cloud resources with reduced energy usage.

5.2 Related Works

CIVSched [157] is communication-aware inter-VM scheduling

focused to reduce network latency between co-located VMs. In this

method, VM Monitor (VMM) monitors traffic and schedule the

processes. The scheduling process is done by the cooperation of

VMM and the guest local operating system, but the power

consumption is not considered in this system.

The green cloud computing [156] method mainly aims to reduce the

carbon emission and energy consumption in the distributed cloud

datacenters having different sources of energy and carbon footprint

rates. Here the rate of carbon footprints at datacenters is used for VM

migration and allocation. The datacenter power usage details are

given in [167] indicate that a large amount of power is wasted due to

inefficient resource management mechanisms. Learning automata

[159] based method is one of the approaches to improve resource

utilization with energy consideration.

Chapter 5 Load Balancing for Improving Energy Efficiency

100

Context switching [155, 164] will reduce the speed of the system as

well as it increases the power consumption during packet transfer.

This is because the state must be saved and restored, even if much of

the restored state is not used before the next context switch. Here a

context cache is introduced, which is used to bind variable names to

individual registers. It allows context switches to be very inexpensive

because registers are only loaded and saved as needed. From the

analysis, the context cache contains more live data than a

multithreaded register file and supports more tasks without spilling to

the memory.

The advanced version of Minimum Laxity First (MLF) called

optimized MLF (OMLF) [160] try to reduce context switches. This

dynamic algorithm is proposed to overcome the problems in MLF

algorithm and makes it more suitable for spacecraft avionics systems.

The OMLF is tested using mathematical modeling and simulation

tools. The results are promising and it has fewer context switches

than the traditional MLF. To make it more suitable for dynamic cloud

scheduling other cloud parameters are to be considered. In [161],

First Fit Decreasing (FFD) based energy-aware scheduling and

workload consolidation algorithms are presented. Both these methods

check the problem of grouping heterogeneous workloads. They try to

accommodate all the VMs to the minimum number of PMs and then

turn off unused physical servers to reduce energy consumption. Even

though the energy considerations are integrated into the algorithm, it

works in three phases that cause some delay in response time.

Another method based on clustering is the Multi Queue Scheduling

(MQS) algorithm that is proposed to reduce the cost of reservation

Chapter 5 Load Balancing for Improving Energy Efficiency

101

and on-demand charges using a global scheduler [163]. In this

method, the global scheduler shares the resources at the maximum

level. Here the jobs are clustered on the basis of burst time. It also

overcomes the fragmentation problems in classical scheduling

methods such as First Come First Serve, Shortest Job First, EASY,

Combinational Backfill and Improved backfill. It is suitable for

continuous workflows. The enhanced version of MQS algorithm

[162] uses a fuzzy logic concept. The fuzzy logic improves efficiency

and it comes up with the best option for shifting the load from one

location to another. In this method also the fuzzy logic mechanism

reduces overall overheads of the live migration techniques but this

method is limited to continuous workflows.

Some algorithms groups incoming jobs in the queue to increase

efficiency. The tri queue scheduling [165] is one such method in

which based on the processor requirement of the job, the queue is

grouped into small, medium and long jobs. It is a dynamic quantum

time based round robin scheduling mechanism. Even though it is a

job grouping mechanism to improve performance, the energy and

cost factor does not consider for the scheduling tasks. An enhanced

weighted round robin (EWRR) [166] method proposed an energy-

efficient job scheduling. It is an advanced form of weighted round

robin scheduler that considers VMs reuse and live VM migration.

Moreover, this algorithm is integrated with DVFS algorithm in CPU

utilization model to specify the required frequency for each task

depending on the task complexity and deadline and experiments were

conducted with a very little number of PMs.

Chapter 5 Load Balancing for Improving Energy Efficiency

102

Table 5.1 Notations used

Notation Definition

WPM(i) Weight value of a PM

MPM(i) Memory of i
th
 PM

MMax PM(i) Maximum memory of a PM

SPM(i) Total storage of a PM

SMaxPM(i) Maximum storage capacity of a PM

Pspeed PM(i) Processor speed of i
th
 PM

PMaxPM(i) Maximum allowed processor speed

WVM(i) Weight value of a VM

MVM(i) Required Memory of a VM

MMax VM(i) Maximum allowed memory of a VM

SVM(i) Storage capacity of a VM

SMaxVM(i) Maximum storage allowed for a VM

PVM(i) Processing power of VM

PMaxVM(i) Maximum allowed processor speed of VM

Ci Cluster i

Imax Maximum value of Weight for a cluster

Imin Minimum value of Weight for a cluster

WP(i) Weight value of a process

MP(i) Required Memory of a process

MMax P(i) Maximum allowed memory of a process

SP(i) Required storage capacity of a process

SMaxP(i) Maximum storage allowed for a process

PP(i) Required processing power of a process

PMaxP(i) Maximum allowed processor speed of a process

θ Pheromone evaporation rate

FP Foraging pheromone

TP Trailing pheromone

Chapter 5 Load Balancing for Improving Energy Efficiency

103

All the above studies show that energy-aware resource management

in the dynamic cloud is a big challenging problem since several

business organizations are adopting this platform. There are several

other methods proposed for load balancing such as profit and energy

based method [158], reservation based [170], task based [171] and an

energy-conscious task consolidation heuristics [168].

5.3 Proposed System

We have used a partitioning based clustering algorithm to group PMs

in our proposed method. Our proposed clustering method is shown in

figure 5.1. It consists of n number of users with n processes. Each

process requires at least one VM to satisfy its requirements. All the

physical machines in the datacenter are grouped into different

clusters. Depending on the processing capacity the number of PMs in

each cluster may be different. The notations used in this chapter are

shown in table 5.1.

The proposed method consists of three steps as given below.

1. Clustering of PMs,

2. Energy aware PM migration

3. Process allocation.

The detailed description of the above three steps are explained in

5.3.1 to 5.3.4.

Chapter 5 Load Balancing for Improving Energy Efficiency

104

Fig. 5.1 Proposed system architecture

5.3.1 Clustering of physical machines

Clustering needs some criteria to group similar physical machines.

Here we have employed a clustering algorithm based on the

characteristics of the PMs. The parameters considered are processor

speed, memory and storage capacities of PMs. For each PM a weight

value WPM(i) is calculated using the equation (5.1) based on these

parameters.

WPM(i) = MPM(i)/MMaxPM (i) + SPM (i)/SMaxPM(i) + Pspeed PM(i)/PMaxPM(i) (5.1)

The proposed clustering algorithm to group PMs is given in figure

5.2. Based on the weight value calculated using the above equation,

PM with the highest weight value in each cluster is known termed as

cluster head. Cluster head controls that particular cluster. The weight

value WPM(i) decides a PM belongs to which cluster. Then it checks

for the similar clusters to lodge PM and allocate it into that cluster.

This clustering activity repeats whenever a new PM is active in the

datacenter. This initial clustering reduces resource discovery

Chapter 5 Load Balancing for Improving Energy Efficiency

105

overhead, since at the time of entry of a PM itself. It also helps to

reduce searching and response time during the user request.

Algorithm: Clustering Algorithm

Input: PM with memory, storage and processing power

Output: Different clusters of PMs

1. Start

2. Insert a PM to the datacenter

3. For each PM

4. Calculate WPM(i)=MPM(i)/MMaxPM (i)+SPM (i)/SMaxPM(i)+Pspeed PM(i)/PMaxPM(i) for

entered PM

5. Move the PM to Ck if WPM(i) ≥ Imin and WPM(i) < Imax

6. End for

7. Return Clusters

8. Stop

Fig. 5.2 PM clustering algorithm

5.3.2 Energy Aware VM Migration

The next step is the energy-aware VM migration. Here each cluster is

divided again into two sub clusters based on the PM weight value.

The algorithm for VM migration is shown in figure 5.3. The detailed

description of the algorithm is given below.

Algorithm: Energy Aware VM Allocation

1. Start

2. Input: VM, PMList.

3. Output: Allocation of VM to PMList.

4. Input a VM with MVM(i), SVM(i) and PVM(i)

5. For each VM

6. Calculate WVM(i) = (MVM(i)/MMax VM(i))+(SVM(i)/SMaxVM(i))+(PVM(i)/PMaxVM(i))

7. Select appropriate Ck using clustering() algorithm

8. Consider all PMs in Ck

Chapter 5 Load Balancing for Improving Energy Efficiency

106

9. Sort PMs in Ck in descending order of its W

10. For each PM

11. If WPM(i) < (Imin(Ck) + Imax(Ck))/2

12. Assign PMi to C1List

13. Else

14. Assign PMi to C2 List

15. Keep idle all the PMs in C2 List

16. Best_FitVM() Allocation

17. Consider C1List

18. For Each PM in C2 List

19. If ((MPM(i) > MVM(i)) and (SPM(i) > SVM(i)) and (PP(i) > PVM(i)))

20. Allocate VMi to PMi

21. MPM(i) = MPM(i) - MVM(i)

22. SPM(i) = SPM(i) - SVM(i)

23. PPM(i) = PPM(i) - PVM(i)

24. End For

25. If ((MPM(i) < MVM(i)) or (SPM(i) < SVM(i)) or (PP(i) < PVM(i)))

26. Consider C2 List and move all PMs from idle mode to active mode.

27. For each PM in C2 List

28. If ((MPM(i) > MVM(i)) and (SPM(i) > SVM(i)) and (PP(i) > PVM(i)))

29. Assign VMi to PMi

30. MPM(i) = MPM(i) - MVM(i)

31. SPM(i) = SPM(i) - SVM(i)

32. PPM(i) = PPM(i) - PVM(i)

33. Else

34. Add VMi to UnAssignedVMList

35. End If

36. End For

37. End If

38. End For

Fig. 5.3 Energy Aware VM allocation

Chapter 5 Load Balancing for Improving Energy Efficiency

107

The average weight value is considered for cluster partitioning. So we

have two clusters. The first cluster C1 contains PMs with a weight

value less than the average weight value. The cluster C2 contains PMs

with a weight value, which is greater than or equal to the average

weight value. Initially, the physical machines in cluster C2 is kept

idle. When VM allocation step starts i.e. when a user request reaches

the method first consider the cluster C1 for VM allocation, and if a

suitable resource found it allocate VM to it. If the user requested

requirements are not satisfied by the PMs in the cluster C1, then only

the method considers PMs in C2. If a PM in C2 is considered and

allocated then the algorithm change the status of the idle PMs to

active mode. While allocating VMs to in these active PMs we have

used Best-Fit allocation strategy. The formation of sub clusters

during the VM allocation process will further result in energy

reduction.

We have adopted the best-fit VM strategy, for VM allocation. In this

allocation method, based on the processing speed we sort VMs in

ascending order. For this, an available PMs list is maintained in the

decreasing order of utilization. The next step is to find a PM having

enough resources from the list of sorted PMs in order to allocate user

request VMs from the VMs list. This allocation procedure is repeated

until every VMi in the list are mapped to host PMj. The VMs are

assigned to PMs up to maximum capacity, without degrading the

processing time. Thus this algorithm reduces the number of active

PMs required for assigning VMs. Since the active PMs are less, the

power consumption in the datacenter will be reduced.

Chapter 5 Load Balancing for Improving Energy Efficiency

108

5.3.3 Process allocation

The users have some requirement to execute their tasks in the cloud.

These requirement specifications may like memory, storage and

processing power. So in order to allocate a user task to a particular

VM, these requirements have to be considered. To do so, we

calculate the weight value of a user-submitted process using the

equation (5.2). This weight value is used to determine the cluster into

which a process has to be considered.

WP(i) = MP(i)/MMax P(i) + SP(i)/SMaxP(i) + PP(i)/PMaxP(i) (5.2)

From the obtained optimal cluster, then the algorithm considers the

VMs in the ascending order of its weight. Then using the best-fit

strategy the algorithm allocates process to the VMs in this selected

cluster. The status of VMs is set to ‘1’ if it is allocated with a user

process. This allocation is based on the customer requirement for

speed, memory and storage parameters. When an allocation is done at

the same time, the current capacity of that VM and PM are

recalculated. If a process is unable to assign to a VM that satisfies

customer requirements, then a list is maintained for unassigned

processes to reconsider when suitable VMs are available. The

detailed process allocation steps are given in figure 5.4.

Chapter 5 Load Balancing for Improving Energy Efficiency

109

Algorithm: Process Allocation

1. Start

2. Input: process, VMList

3. Output: Process allocation to VM in VMList

4. For each process Pi

5. Calculate WP(i) = MP(i) / MMax P(i) + SP(i) / SMaxP(i) + PP(i)/PMaxP(i)

6. Select appropriate cluster using clustering algorithm()

7. Best_Fit Process()

8. Sort VMs in a cluster to VMList based on W in ascending order

9. Set UnAssignedProcessList = NULL

10. Set processStatus = 0

11. For each VM in VMList do

12. If (PVM(i) > PP(i)) and (MVM(i)) > MP(i)) and (SVM(i) > SP(i)) then

13. Assign Pi to VMi

14. Set processStatus = 1

15. PVM(i) = PVM(i) – PP(i)

16. MVM(i) = MVM(i) – MP(i)

17. SVM(i) = SVM(i) – SP(i))

18. Else

19. Add Pi to UnAssignedProcessList[]

20. End if

21. End for

22. End for

23. Stop

Fig. 5.4 Process allocation algorithm

5. 4 Ant Colony based Method

Then we developed an ant colony based algorithm for comparative

analysis with our proposed energy-aware clustering method. Ant

colony algorithm is based on probability function and its result

Chapter 5 Load Balancing for Improving Energy Efficiency

110

depends on the value of the pheromone deposited by the ants during

its travel in a path. Here we considered two types of pheromone

values, foraging and trailing pheromone value.

In ant colony algorithms the Trailing Pheromone (TP) is defined as

the pheromone which leads an ant to return it to the nest. Here when

an ant is defined as an agent to find a suitable PM for allocating VM.

Ant will follow the path with the maximum amount of Trailing

Pheromone so that other VM request can follow this path or this PM.

Foraging Pheromone (FP) is the pheromone which ant deposits when

a suitable VM is found. When an ant is not carrying any VM request,

it will try to find a PM with a minimum amount of FP. This is to find

a PM that left from others, so ant needs to follow the minimum

amount of FP unlike using Trailing Pheromone. In this method, the

search space contains all the PMs available in the datacenter.

The ants continuously move in the forward direction in the datacenter

network encountering the overloaded node or under loaded node. The

foraging pheromone is updated using the equation (5.3).

FP(t + 1) = (1 – θ)FP(t) + ∆(FP) (5.3)

Here θ is the pheromone evaporation rate. FP(t) and FP(t + 1) are the

foraging pheromone at time t and t+1 respectively.

The trailing pheromone is updated using the equation (5.4).

TP(t + 1) = (1 – θ)TP(t) + ∆(TP) (5.4)

TP(t) and TP(t + 1) are the trailing pheromone at time t and t+1

respectively.

Chapter 5 Load Balancing for Improving Energy Efficiency

111

5.5 Experimental Setup and Performance Evaluation

We have experimented the proposed method using 1000 physical

machines in the simulated cloud environment. Each of this PM can

accommodate a number of VMs with a maximum memory size of 32

GB with processing power up to 3000 MIPS. The storage capacities

of each can vary up to 1 TB.

We have compared the performance of the proposed method with

existing Min-Max, and Ant colony load balancing algorithms. For the

performance evaluation, the parameters considered are number of

PMs Searched, response time, resource discovery time, execution

time, number of PMs used for VM allocation, energy consumption,

total energy cost.

5.5.1 Number of PMs searched

Time needed for resource discovery is an important parameter to

measure the performance of a cloud provider. Resource discovery

also affects response time.

Let a cloud ecosystem with K number of PM which is arranged in N

clusters. i.e., each cluster contains an average of K/N number of PMs.

So for a resource discovery, the system has to perform minim N

searches in the beginning. In this scenario, each cluster contains an

average of K/N PMs. Hence, for finding the optimal PM from this

cluster, the algorithm requires maximum K/N searches. Therefore, the

total number of searches required for optimal resource discovery can

be calculated using the equation (5.5).

Total_Number_of_PMs_Searched (S) = N + (K/N) (5.5)

Chapter 5 Load Balancing for Improving Energy Efficiency

112

We also compared the proposed method with Min-Max algorithm.

This algorithm searches all the PMs for calculating the completion

time for a job.

Fig. 5.5 Number of PMs searched

The experimental results for the total number of PMs searched for

VM allocation are shown in figure 5.5. From the graph, we can

observe that the proposed cluster oriented algorithm searches only in

the most favourable cluster to find optimal VMs. It also indicates that

the proposed method searches a lesser number of PMs to find VMs

suitable for the customer's requirement. Accordingly this reduces the

resource discovery time to find PMs for placing a particular VM with

user specification.

5.5.2 Response Time

In cloud computing response time is the sum of resource discovery

time and execution time. This can be represented using the equation

(5.6). Resource discovery time depends on bandwidth and network

traffic.

Chapter 5 Load Balancing for Improving Energy Efficiency

113

Response_Time = Resource discovery time + Execution_Time (5.6)

Here execution time of a PM can be calculated using the equation.

Execution_TimePM =
LoadPM

CapacityPM

Here both load and capacity is in Million Instructions Per Second

(MIPS).

Table 5.2: Response time (Number of Processes = 100)

Total Number of

PMs
Clustered (Sec)

Ant Colony

(Sec)

Min-Max

(Sec)

100 1.18 1.96 2.78

200 1.12 2.70 4.32

400 1.74 6.44 8.14

600 2.49 7.73 12.09

800 3.27 11.13 16.07

In the dynamic cloud environment bandwidth and speed of the

internet are some of the important factors that affect overall

performance. Due to fluctuating bandwidth, we have fixed 20 ms

time to find a suitable PM for the experimental conditions. We have

applied different loads to different number of PMs and repeated the

experiment several times. Here the response time with different

numbers of PMs for constant number of processes and different

number of processes with a constant number of PMs are measured.

Chapter 5 Load Balancing for Improving Energy Efficiency

114

Fig. 5.6 Response Time Comparison (Number of Processes = 100)

We have fixed number of user processes as 100 and the results are

tabulated in table 5.2 and the respective graph is shown in figure 5.6.

This indicates that the proposed algorithm gives better improvement

in response time than Ant colony algorithm and traditional Min-Max

algorithm. This enables cloud service providers to provide better

quality of service to their customers.

Fig. 5.7 Response Time Comparison (Number of PMs = 200)

Chapter 5 Load Balancing for Improving Energy Efficiency

115

Next, we have measured response time when the number of PMs kept

constant as 200. Then we varied the number of user process and

response is measured for repeated experiments. The experimental

result is shown in figure 5.7. Our experimental result again shows

that the proposed method improves response time compared to state-

of-art methods like Ant colony and Min-Max algorithms.

5.5.3 Number of PMs Used for VM Allocation

We have conducted the experiments to know the number of PMs used

for VM allocation. The results are compared with both Min-Max and

Ant- Colony algorithm. From the table we can observe that the

proposed system uses a very less number of active servers. This is

due to the advantage of the clustering method which keeps PMs with

minimum weight value is safe or hibernate mode and only activates

these PMs when required. For example, when the total available

PMs are 400, the proposed method uses only 30 PMs at the same

time Ant colony and Min-Max use 114 and 150 PMs respectively.

Similarly, when the cloud environment consists of 800 PMs, the

proposed method used only 50 servers while Ant colony and Min-

Max used 276 and 250 servers respectively. All these results are

tabulated in table 5.3 and the respective graph is shown in figure 5.8.

Table 5.3: Number of PMs Used

Total Number of PMs Clustered Ant Colony Min-Max

100 8 29 49

200 18 59 99

400 30 114 150

600 40 190 201

800 50 276 250

Chapter 5 Load Balancing for Improving Energy Efficiency

116

Fig. 5.8 Number of PMs used

5.5.4 Energy Consumption

We have also measured the energy consumption of servers in the

datacenter. The energy usage pattern is shown in figure 5.9. The

figure indicates that the proposed method is energy efficient and

supports green computing. It consumes less energy since it uses only

less number of active PMs for hosting VMs.

Fig. 5.9 Energy Consumption

Chapter 5 Load Balancing for Improving Energy Efficiency

117

5.5.5 Total Energy Cost

The proposed method uses, less number of PMs and this will be

reflected in the energy cost. The energy price per KWh is taken as

Rs.6/- unit. The cost of energy consumption is calculated based on

the equation (5.7) and the results are tabulated in table 5.4.

Total_Energy_Cost/Day =(24*(Power-utilized* Energy_price)) (5.7)

Table 5.4: Total Energy Cost

Number of VMs Clustered Ant Colony Min-Max

100 230.40 835.20 1411.20

200 518.40 1699.20 2851.20

400 864.00 3283.20 4320.00

600 1152.00 5472.60 5788.80

800 1440.00 7948.80 7200.00

5.6 Summary

We have proposed and implemented an energy-aware clustered load

balancing mechanism to reduce the searching overhead for resource

discovery and to improve the response time. Our algorithm also

minimizes power consumption and energy cost. It efficiently uses

available active servers. Thus it improves the overall quality of

service in the cloud datacenters.

118

CHAPTER 6

ENHANCED STABILITY THROUGH

INTERFERENCE AWARE PREDICTION

Contents

6.1 Introduction ………………..…………………...………… 118

6.1.1 Interference ……………………….………………. 119

 6.1.2 Stability and auto scaling ….....…. .……….……… 120

 6.1.3 Need for prediction mechanism ……….……..…… 121

6.2 Related Works ……………………….………..…..……… 122

6.3 System Design ...………………………...………………… 125

 6.3.1 Dynamic scaling …………...……….…….………. 128

6.3.2 Application interference ……………………...…... 130

6.4 Pareto Derived Interference Prediction Model .………... 130

6.4.1 Pareto optimality …………….……………………. 132

 6.4.2 Pareto-derived interference aware algorithm ...….... 133

6.5 Experimental Setup and Analysis …………….………… 135

6.5.1 Experimental conditions …….……………………. 135

6.5.2 Analysis ………………………………………...… 136

6.5.2.1 Threshold range …………………..……. 137

6.5.2.2 Prediction error ………….……...……… 139

6.5.2.3 Comparative analysis of interference ..… 141

6.5.2.4 Number of physical machines used ..…... 143

6.6 Summary …..……………………………………………… 146

6.1 Introduction

The most important aspect of a computing service is user satisfaction

and it doesn’t depend on whether the service is deployed in a cloud or

Chapter 6 Enhanced Stability Through Interference Aware Prediction

119

in a non-cloud environment. In cloud frequent migrations affects

system stability and thereby decrease in the quality of service

delivered. Proper migration control plan is important in large scale

data centers. Optimal tuning of the resource management method

will avoid frequent VM migrations. This is essential in maintaining

the overall system performance and quality of services delivered to

the end users. A good allocation strategy should consider these

factors and mitigate frequent migrations to improve the QoS offered

to the customers.

Most common type of resource management techniques are based on

the parameters like time (makespan, response time, waiting time, etc),

energy efficiency and cost, with little attention on the interferences

caused due to VM migrations. Such interferences degrade the overall

performance of the system, and consequently violate the conditions in

the service level agreement (SLA) between the cloud service provider

and the customer. So in this chapter we focus on an interference

aware prediction mechanism for VM migration, with auto scaling. A

brief introduction to the automatic scaling policy is given in the

section 6.1.2.

6.1.1 Interference

This work proposes an interference prediction technique for VM

migration that will help in the respective auto scaling of resources. In

a datacenter there are several CPU cores running simultaneously. But

common resources such as memory, buses, etc., are shared among

these cores. Therefore, the actual processing power cannot be

achieved or used. VM data transfer due to migrations also uses these

Chapter 6 Enhanced Stability Through Interference Aware Prediction

120

common resources, which cause overhead. i.e., migrations cause

undesirable delay in computation.

Since several VMs with different applications are running in a PM,

there will be performance degradation in the performance of the

system due to sharing of common resources. It is also a fact that this

data transfer in buses due to frequent VM migrations results in

instability in the cloud eco system. All the above factors cause

performance degradation or delay in computation is called

interference. By reducing interference, we can achieve system

stability.

In this method, interference is taken as a measure to quantify

stability. Lower interference means higher stability. Also, low

interference will reduce the chance for future VM migrations, thereby

increasing the stability of the cloud eco system. To improve system

stability VMs are migrated to physical machines having low

interference.

The proposed work is intended for the stability in the performance

and scalability of resources, when the user workload increases

beyond a certain threshold value. So, VMs in a particular host can be

migrated to appropriate destinations based on least interference

values, for the performance improvement of entire cloud system. This

will reduce the number of migrations in the cloud system.

6.1.2 Stability and auto scaling

Auto scaling is one of the hot features of cloud computing that

facilitates resource scalability beyond datacenter boundaries.

Scalability increases the performance of cloud eco system in terms of

Chapter 6 Enhanced Stability Through Interference Aware Prediction

121

storage, processing power, throughput, and reliability. Resource

scalability improves the throughput of the system without rejecting

and reducing the input workload. In the dynamic cloud environment,

auto scaling of resources enable cloud service providers (CSP) to

satisfy customers for their computation needs, without affecting

performance. When a particular PM or a CSP itself can’t cope with

the user requirements, the resources are automatically scaled out to

another PM or any CSP. This scaling of resources must be done as

fast as possible, since any delay during the execution creates

degradation in the performance. The auto scaling should be done

based on some already defined threshold values [172]. When

workload increases beyond the value of this defined threshold,

scaling up has to occur so as to reduce SLA violations. The system

must also have to release unused resources by either scale-down or

scale-in process, when the workload decreases. Due to this automatic

scaling process, the system avoids unnecessary VM migrations. Thus

the cloud eco system can achieve stability and there by performance

improvement.

6.1.3 Need for prediction mechanism

If the system can predict the interferences due to overloaded

conditions, the suitable scaling decisions can be taken in advance to

ensure performance. This ensures seamless execution of the

scheduled user tasks. The proposed prediction model will calculate

the interferences more precisely so that it will be easy to scale VM

and hence maintain guaranteed SLA. The objective of this work is to

make a seamless task execution during the VM migration, using a

Chapter 6 Enhanced Stability Through Interference Aware Prediction

122

prediction model in the dynamic cloud environment with ensured

SLA, and least prediction error.

6.2 Related Works

Only few papers discusses about parameters like VM bandwidth

allocation and related issues in the performance. VM bandwidth

allocation is one of the severe issues in maintaining good service

quality. The method called Falloc [173] guarantee bandwidth for

VMs based on their base bandwidth requirements and the share

residual bandwidth in proportion to weights of VMs. They have

simulated the system and proved that it ensure the fairness in

allocating bandwidth on congested links to VMs in datacenters.

The iAware [174] is a novel live VM placement method based on

demand-supply model, which try to reduce interferences. It calculates

the interference in PMs based on an empirical formula and the

resource demand of VM. The experiments are validated through

simulated environment using realistic benchmark workloads on Xen

cluster. The algorithm also tries to improve power consumption with

load balancing. The final VM placement decision is based on a

simple ranking method.

The paper [175] points out that multiple task execution creates

interferences in the system. This article presents a 4-dimensional

multiple resource model, along with a brief description about

commonly happening interferences during multiple tasks. VMFlocks

is an incrementally scalable high performance VM migration service

designed for cross datacenters [176]. It efficiently uses the available

Chapter 6 Enhanced Stability Through Interference Aware Prediction

123

cloud resources to accelerate data de-duplication and to transfer

processes with a minimum access control.

The server consolidation and VM scale-in process create a significant

variation in the power efficiency and thermal performance of

distributed systems [177]. The contention of resources impacts the

distributed system throughput differently, and significant variation is

observed in the performance [178]. Power and cost are related factors

in distributed computing. In pSciMapper [179], to maintain the

required throughput rate, power, and cost analysis is performed in

different iterations. Based on the experiments using real and synthetic

scientific workflows, they have obtained an optimum power and cost

factor.

Migration of VM from one physical machine to another allows load

balancing and fault tolerance in heterogeneous cloud computing

environment. The optimization method in [180] demonstrates how

the migration of a running computer with its state information, can be

transferred to another location. There are some common issues like

delay, cost, and robustness are in live VM migration. Migrations can

degrade the performance of other collocated VMs in the cloud. Paper

[181] proposes a model for live migration between the source and

destination to address this system noise due to migrations. The

performance analysis is done based on multiple resources migrations

and related migration time.

VM migrations cause a side effect called migration noise [182]. This

is a kind of delay that occurs during the VM migration process, due

to certain factors. An algorithm called sonic migration comparatively

Chapter 6 Enhanced Stability Through Interference Aware Prediction

124

examines the performance of all active VMs, and reduces the

migration noise created due to VM migrations.

In cloud environment, the migration of VM does not transfer host

side cache state [183]. This leads to the degradation in performance

of newly migrated VM, until the cache is rebuilt. To minimize VM-

perceived performance degradation period before the completion of

migration, a host-side cache warm-up mechanism called Successor, is

used to parallelize cache warm-up and VM migrations. Cost and

power prediction during the live migration of VMs is also a critical

factor.

Multiple resource allocation to heterogeneous jobs having different

priority, is an interesting problem in cloud computing. The work in

[184] considers dynamic and non-stationary cloud environment with

two classes of jobs, namely emergency and elective. In this multi-

resource allocation problem, the jobs in emergency class should be

performed immediately, while elective jobs have to wait for its turn.

The simulation results are promising and need to be tested in real

conditions. The objective of live migration is to ensure continuity in

operations, with guaranteed QoS as per the agreed SLA between the

service provider and the customer. This will aid system maintenance,

reconfiguration, load balancing, and fault tolerance.

A virtual machine Dynamic Forecast Migration (VM-DFM)

algorithm deals with the dynamic changes in virtual machine memory

resource consumption [185]. An intelligent cloud load balancing

technique is flexible to integrate multiple load balancers [186]. This

technique can separate the allocating process and migrating process

while preserving a guaranteed level of service. The QoS ensured in

Chapter 6 Enhanced Stability Through Interference Aware Prediction

125

this method is based on the parameters such as performance,

reliability security and time.

Energy aware VM scheduling based on CPU and I/O bound

characteristics [187] is a move towards green IT. The simulated

results in homogeneous environment showed that the reduction in the

number of migrations reduces the energy utilization and SLA

violations. Paper [188] presents a new security incorporated energy

consumption method for task scheduling. This DVFS based method

supports auto scaling for load balancing. Forecasting the resource

requirement will improve the SLA necessities. Proactive scheduling

approach based on fuzzy logic [189] executed on Google trace data

set, analyses its effectiveness with univariate and multivariate

variable approach. A practical approach towards application scaling

is briefly described in [190]. The feasibility and performance of this

method is demonstrated with biomedical workflow.

A Task and Resource Allocation CONtrol (TRACON) is a novel

method based on application characteristics at the runtime [191]. It

reduces the interference due to concurrent data intensive applications

in large scale data centers. In contrast, there are several resource

allocation technologies based on factors like, load, cost, power,

priority and interference for maintaining QoS.

6.3 System Design

We have considered following architecture as shown in the figure 6.1

for the implementation of proposed live migration. The VM

migrations are carried out by considering interferences caused due to

VM migrations and the agreed SLA.

Chapter 6 Enhanced Stability Through Interference Aware Prediction

126

 The role of performance tracing tool is to monitor the VMs

and PMs in the datacenter.

 The migration protocol comprise of two modules. First

module is for VM utilization and next is a method to separate

under provisioned and over provisioned VMs. The duty of

this module is to identify the right VM candidate for

migration.

Fig. 6.1 VM live migration architecture

The aim of elastic computing is to scale the computing facility

according to the workload. So it should consider and handle load

balancing and the resulting interference.

Chapter 6 Enhanced Stability Through Interference Aware Prediction

127

Fig. 6.2 VM live migration scalable architecture

The design of the proposed live migration architecture in intra cloud

with auto scaling is shown in the figure 6.2.

Our proposed live VM migration design contains three main

components namely:

1. Load balancer

2. Virtual cluster monitor system

3. Auto-provisioning system with a scaling algorithm.

Load balancer: The function of load balancer is to balance the

requests between different virtual machines in a virtual cluster of a

cloud service provider that perform the similar type of applications.

Virtual cluster monitor system: For effective monitoring the system

must collect resource usage information of each virtual cluster.

Virtual cluster monitor is responsible for the collection of resource

usage information from these clusters.

Auto provisioning system: According to the workload in a cluster, it

facilitates horizontal expansion or shrinking the number of VMs on

Chapter 6 Enhanced Stability Through Interference Aware Prediction

128

that particular cluster. For example, if all the computing resources of

a cloud service provider’s are completely under utilization, then the

auto provisioning mechanism will assign the resources to other

suitable service provider transparently without any user intervention.

This is done through live migration of currently running live VM to

another service provider, thus the proposed method assures interrupt

free service to the customers.

The proposed method calculates the VM Utilization (VMU) status

using the equation (6.1).

VMU = Total Resource Allotted – Utilized Resources (6.1)

The resource utilization is periodically checked and based on this

value the proposed method predicts the future resource requirements.

Here we defined a server as a hot spot, if the server resource

utilization is above a hot threshold value. i.e., hotspot status indicates

that the server is overloaded, and hence, some VMs running on it

should be migrated to other locations for ensured QoS.

Every physical machine contains several virtual machines, so we can

define Physical Machine Utilization (PMU) as the sum of total

number of VMUs of all VMs in a particular PM, at a particular time.

The calculation of VMU and PMU is the responsibility of the tracing

tool. According to these values the PMs are marked as under or over

provisioned.

6.3.1 Dynamic scaling

The Amazon provides facility to the users for defining a scaling

policy when their requirement increases. [192]. Regular checking of

Chapter 6 Enhanced Stability Through Interference Aware Prediction

129

resource usage statistics is necessary for taking effective scaling

decisions. This is impractical since frequent monitoring is expensive

and may leads to frequent VM migrations. So an auto scaling group

with policies is defined that will scale the resources with the

assistance of a prediction mechanism. The mechanism fires when

there is a forecast for the need of resources in future. Thus the policy

automatically decides when to scale-out or scale-in and where to

scale the resources. This resource scale-out or shrinkage may depend

on the resource consumption metric. This resource consumption

metric may be based on network traffic, CPU usage, etc.

The algorithm for auto scaling process is given in figure 6.3.

The auto scaling process

1. Define Metrics for VMs based on SLA

2. Monitor the specified metrics for all VM instances in the auto scaling

group

3. Update metrics depends on the workload

4. If the metrics violate the threshold, fire alarm

5. If the system need more resources

a. Send Scale-in-policy message

5.1 Otherwise

b. Send Scale-out-policy message

6. Receive Auto scaling policy message, and perform auto scaling for the

auto scaling group.

7. Continue the process until user deletes scaling policies or the auto

scaling group.

Fig. 6.3 The auto scaling process

Chapter 6 Enhanced Stability Through Interference Aware Prediction

130

6.3.2 Application interference

The physical machines in a datacenter contain many CPU cores.

Theoretically we can say that the performance of a physical server

increases linearly with the number of CPU cores increases. i.e., is, the

overall performance of a server can be calculated by multiple of the

performance one core. In reality, the performance doesn’t meet the

theoretical expectation. This is due to sharing of computation power

for other computing related activities. E.g. consider a physical

machine with 6 cores, one memory bus controller. This memory bus

controller is shared among these cores. Due to the speed difference of

memory and bus controller, there will be memory latency. So, the

actual load on the system can be mathematically modeled as in the

equation (6.2).

If a PM contains k cores and has m tasks to process

LoadTotal = Loadk
𝑛
𝑘=1 + γ. Loadi/j

m
i,j=1 (6.2)

Here, the second term is the parasitic load, due to interference. γ is

the regression coefficient and its value is controlled between [0, 1].

E.g. Consider a situation with two loads A and B. Then the parasitic

load can be represented as

Parasitic LoadA|B = γ.A|B.LoadA.LoadB

6.4 Pareto Derived Interference Prediction Model

In a datacenter, data intensive applications cause interference and this

influence the performance of the services rendered to the customers.

The performance of the system is mainly depends on the execution

Chapter 6 Enhanced Stability Through Interference Aware Prediction

131

time and throughput, but VM interference affect these performance

parameters. Since multiple VMs are running simultaneously in a

physical machine, the actual workload is also dependent on these

independent VMs. In this kind of condition, multivariate regression

analysis is a good choice to analyze the problem. Hence, the problem

can be modeled as a generalized multivariate linear regression model

as given below.

Let Y represents the total load, here it is dependent variable and X1,

X2, X3, …, Xk are the individual VM loads, here these are considered

as the independent variables. Also b1, b2, b3, …, bk are the constants

and k is the number of independent variables. Then Y can be

represented by the equation (6.3)

Y = b1X1 + b2X2 + b3X3 + … + bkXk (6.3)

Then, the coefficient of this regression model can be obtained using

the following equation (6.4)

𝑏 = 𝑋𝑇𝑋 −1 𝑋𝑇𝑌 (6.4)

Where 𝑋𝑇stands for transpose of the matrix X

Now we have to reduce the error in the prediction. The error in the

prediction can be reduced when we could minimize the Sum of

Squared Error (SSE). When the SSE is minimum, then the prediction

is considered as best one.

Let us consider that there are only two active VMs are in a PM, and

then the model can be represented using the equation (6.5).

𝑌 = b1 . Xvm 1,𝑖 +
𝑘

𝑖=1
 b2. Xvm 2,𝑖

𝑛

𝑖=1
 (6.5)

Chapter 6 Enhanced Stability Through Interference Aware Prediction

132

Where b1 and b2 are constants that normalize the prediction error.

The accuracy of the prediction model increases when there is increase

in the number of VMs. The objective of this model is to choose the

most favorable threshold range for the user to carry out the operation,

without compromising the agreement between the provider and the

customer. Using this proposed prediction mechanism provides an

optimum threshold range for the operation with the guaranteed SLA.

6.4.1 Pareto optimality

Single objective optimization problems are quite easy to solve,

usually it have only one optimal solution. A multi-objective

optimization (MOP) problem contains many conflicting objectives

that need simultaneous optimization of these objectives. Since these

objectives are conflicts each other, usually there will not be a single

optimal solution. Therefore, for the decision making, is cumbersome

task and may require a tradeoff between different solutions from the

finite set of possible solutions by making negotiations. In this

tradeoff, the improvement of one objective comes at the expense of

another objective. In this kind of multi-objective optimization

situations Pareto optimality [97, 144, 145] is a good choice.

Pareto principle: The aim of Pareto principle is to converge the

solutions to the Pareto front and then find the diversified solutions

scattered over it.

“According to Pareto principle a set of non-dominated solutions, is

optimal, if no objective can be enhanced without sacrificing at least

one other objective. i.e., a solution is termed as dominated by

Chapter 6 Enhanced Stability Through Interference Aware Prediction

133

another solution β if, and only if, β is equally good or better than

with respect to all other objectives”.

In multi objective or multi attribute optimization problems, the Pareto

set or Pareto front is a subset of the set of feasible points or solutions.

This set contains all the points or solutions with atleast one objective

optimized, while holding all other objectives as constant. For the

conflicting objectives, there may exist some near optimal solutions in

the Pareto front segment. In Pareto-front region, these conflicting

objectives will behave in a non-conflicting manner and optimal

solutions are from this region. So this region is also known as Pareto-

optimal region. We can say that the set of solutions converges to a

Pareto front in this optimal region. Near optimal solutions can easily

be identified from the Pareto-optimal front, since the number of

objectives are less than the actual dimension in this region. This

justifies that Pareto method is a good candidate for multi objective

optimization problems.

6.4.2 Pareto-derived interference aware (PiA) algorithm.

Generally Pareto method is a two step procedure. At first, it

converges to the Pareto front and next it discovers a solution set from

the possible points of solutions sprinkled over the Pareto front. The

figure 6.4 shows the proposed Pareto-derived interference aware

(PiA) algorithm.

In this algorithm Y is the total load value for all the tasks within each

PM. γi,j is the load factor for each task within VMj using equation

(6.1). Here linear interference prediction model is based on equation

(6.2).

Chapter 6 Enhanced Stability Through Interference Aware Prediction

134

The weighted sum or scalarization method allows to combine

multiple objectives into a single objective scalar function. We have

used this concept to model the multi-objective cloud task scheduling

to a single scalar function.

Algorithm: Pareto-derived interference aware (PiA)

Input Data: Targeted VMj, where j ∈ 1, . . . , n; and

Resource pool consisting of PMk, where k ∈ 1, . . . , m;

Collect load factor γi,j for each task within VMj using equation (6.1);

//Here model is linear interference prediction model in equation (6.2)

Output: Schedule VMj to PMk assignments

1. For j = 1 to n do

2. for k = 1 to m do

3. Yj= Predict(γi, j, PMk)

4. end for

5. end for

6. Apply Pareto ranking

7. Select {Dominant Pareto set from Yj }

8. PMcandidate = Minj (Yj)

9. Assign (VMj, PMcandidate) //Assigns VMs to candidate PMs

Fig. 6.4 Pareto-derived interference aware algorithm

Let us consider a scheduling problem with n number of virtual

machines and our main aim is to minimize the interferences caused

during VM migrations. Then, the weighted-sum method that

minimizes a positively weighted convex sum of the objectives can be

represented as

𝑚𝑖𝑛 = 𝛼𝑖 . 𝑓𝑖
𝑛
𝑖=1 (𝑥) (6.6)

Chapter 6 Enhanced Stability Through Interference Aware Prediction

135

where αi
𝑛
𝑖=1 = 1 and 𝛼𝑖 > 0,1, …𝑛 and 𝑥 ∈ 𝑋

In the equation (6.6), X is the set of all VMs in the platform, and i

represent the weight vector. The term fi(x) is the objective function in

the total interference. Then the total interference can be represented

as the sum of migration (Mi) and co-location interferences (Ni).

Hence the function fi(x) can be simplified as in equation (6.7),

𝑓𝑖 𝑥 = 𝑀𝑖 + 𝑁𝑖
𝑛
𝑖=1 ; ∀𝑖 (6.7)

6.5 Experimental Setup and Analysis

We have tested our above method using web service and a parallel

processing application in the cloud computing environment. The web

service is chosen because it should available at any time and should

provide the fastest response time, regardless of the number of users

served. So we can test the dynamicity of the proposed scaling

mechanism. Since cloud allows super computer level computing

facility by distributing the work parallel into several nodes. Usually

the users unaware about the exact number f computing nodes they are

utilized to complete their jobs. When VMs processing user requests

by observing QoS parameters, there is equal role for the interference

awareness in such a scenario. The proposed method VMs that cause

lesser interference are selected for assigning user tasks.

6.5.1 Experimental conditions

We have tested the proposed prediction mechanism in Gungoos cloud

environment with following specifications as shown in table 6.1. We

have chosen Gungoos [204] as our test platform since it is a powerful

cloud provider with strong sever features.

Chapter 6 Enhanced Stability Through Interference Aware Prediction

136

Table 6.1: Experimental Conditions

CPU Specifications Dual 15 Core Xeon Haswell (total 30 cores)

with 2 x 24 MB cache processors

HDD 8 x 2 TB SSD hard drives mounted on RAID

for the database

4-12 TB disk drive arrays and total 128 GB of

RAM

Environment Hadoop, SQL and XAMPP

6.5.2 Analysis

In order to prove the effectiveness of the proposed method, we have

done comparative analysis with the traditional First Fit Decreasing

(FFD) [193] and iAware [174] prediction algorithms. To develop

experimental setup and environment, we have used Hadoop, SQL and

XAMPP. During the live migration total VMU is measured to

analyze the migration statistics.

The experiment is designed in such a way that the proposed method

predicts the interferences at different threshold ranges. Here we have

adopted threshold ranges 55-60%, 60-65%, 65-70% and 70-75%. The

objectives are defined in terms of VMs or the threshold range at

which the operations are carried out. Here Pareto optimality is

defined as changes to different VM task allocations that makes at

least one individual task execution better off, without making any

other individual VMs worse off. As indicated earlier an allocation

becomes Pareto optimal when no further Pareto improvements can be

made to that allocation.

Chapter 6 Enhanced Stability Through Interference Aware Prediction

137

6.5.2.1 Threshold range

The interference were measured for different threshold range. The

experiments were conducted with different number of VMs in each

threshold range as specified above and corresponding interference

were recorded. The value for the range 55-60% threshold is shown in

the table 6.2. The figure 6.5 shows the respective Pareto graph for the

above threshold. From the table and figure we can observe that when

the number of VMs increase, the value of the interference also

decreases. The interference value reaches 3 for the threshold range

55-60% when the active numbers of VMs are 9 and 10. This shows

we can’t further improvement in the interference value beyond this

point and hence the method converged to the Pareto optimal solution

at this range.

Table 6.2: Pareto table for threshold range 55-60 %

Virtual Machines Interference Cumulative %

1 36 19.93 %

2 35.5 39.59 %

3 29 55.65 %

4 23 68.38 %

5 18 78.35 %

6 15.1 86.71 %

7 10 92.25 %

8 8 96.68 %

9 3 98.34 %

10 3 100 %

Similarly, the experiments were conducted for threshold ranges 60-

65%, 65-70% and 70-75% and the respective interferences are shown

in the figures 6.6, 6.7 and 6.8 respectively.

Chapter 6 Enhanced Stability Through Interference Aware Prediction

138

Fig. 6.5 Pareto graph for threshold 55-60 %

Fig. 6.6 Pareto graph for threshold 60-65%

Fig. 6.7 Pareto graph for threshold 65-70 %

Chapter 6 Enhanced Stability Through Interference Aware Prediction

139

Fig. 6.8 Pareto graph for threshold 70-75 %

According to the above results, we can say that the proposed

interference aware prediction model predicts the most precise

threshold range with SLA violation free or with very less violation

operation. So this method mitigates the interference caused due to

VM migrations.

6.5.2.2 Prediction error

Standard error is the measure of accuracy of predictions done by the

method. Let Ia is the actual and IP is the predicted interferences, then

it can be calculated using the equation 6.8.

Prediction Error =
 𝐼𝑎−𝐼𝑝

2

𝑛
 (6.8)

Where n is the total pair of observations.

The comparison of prediction errors at different threshold range are

shown in the table 6.3. From the table we can observe that threshold

range 65-70% gives less prediction error. At this range the error in

the prediction is only 3.706. Hence we showed that the proposed PiA

Chapter 6 Enhanced Stability Through Interference Aware Prediction

140

method predicted the accurate threshold range with minimum

interference. So the provider can chose this threshold level for SLA

violation free operations. The figure 6.9 shows the graphical

representation of prediction errors in different threshold ranges with

different number of VMs.

Table 6.3: Comparison of prediction errors at different threshold

range

Virtual

Machines
70-75 % 65-70 % 60-65 % 55-60 %

1 43 37 40 36

2 34 33 36 35.5

3 17 29 35.5 29

4 9 25 29 23

5 6 18 24 18

6 6 12.5 19 15.1

7 3 10 15 10

8 3 7 15 8

9 2 6.5 6 3

10 2 6.4 6 3

SD 14.5697 11.7195 12.3433 12.4660

Standard

Error
4.6073 3.7060 3.90331 3.9421

Chapter 6 Enhanced Stability Through Interference Aware Prediction

141

Fig. 6.9 Comparison of prediction error among different threshold

ranges

6.5.2.3 Comparative analysis of interference

Again comparative study was conducted to evaluate the delay caused

in the performance with other existing algorithms.

Fig. 6.10 Comparison of interference with First Fit Decreasing (FFD)

We have compared the delay with FFD algorithm with different

number of VMs and the graphical representation is shown in the

figure 6.10. The results showed that there is significant improvement

Chapter 6 Enhanced Stability Through Interference Aware Prediction

142

in the interference, due to the mechanism adopted in the proposed

PiA method.

Fig. 6.11 Performance comparison

Again in order to prove the efficiency of the system, we have

compared the proposed method based on the workload. For this, we

have used two VMs with Hadoop, XAMPP and SQL. The

performance comparison is done with traditional FFD and iAware

FFD and it is given in the figure 6.11. The iAware-FFD and proposed

PiA method have nearly equal performance improvement compared

to the FFD method. In the Hadoop environment PiA gives 5%

normalized performance improvement than iAware and with XAMPP

the corresponding improvement is 3.31%. We can notice that in the

case of SQL, the performance improved by 4.76% than iAware and

10% than the traditional FFD methods. Overall in all the test cases,

our proposed PiA method outperforms than FFD and iAware-FFD.

The low performance of traditional FFD is that since it works based

on greedy approach for VM consolidation. Due to the greedy nature,

the physical servers have to accommodate more number of VMs,

which causes severe interferences among VMs. While the PiA

Chapter 6 Enhanced Stability Through Interference Aware Prediction

143

method, consider only less interference PMs for VM placement,

hence the better performance.

6.5.2.4 Number of physical machines used

The utilization of the resource can be measured based on the number

of physical machines used for placing the VMs. We have tested the

system in different load conditions. (a) light load, where 25% of load

is applied to the system, (b) light medium load, where 35% of the

load is applied as input user load, (c) with 50%, considered as

medium load, (d) heavy load, where the input is able to utilize about

75% of the processing capacity of the cloud and (e) an over booked

stage, where any input which is greater than 75% of the processing

capacity of the entire cloud is utilized.

The comparative study in the five different load conditions is shown

in the figure 6.12. The experimental results showed in the figure

indicate that the PiA method uses less number of physical machines

to place the requested VMs in all the scenarios with minimum

interference.

6.12 (a) Light load

Chapter 6 Enhanced Stability Through Interference Aware Prediction

144

6.12 (b) Light Medium load

6.12 (c) Medium load

6.12 (d) Heavy load

145

6.12 (e) Over booked stage

Fig. 6.12 Average Number of Physical Machines used in different

conditions

While analyzing the figures following improvements are happened.

In light load, it used 12% lesser number of PMs than the traditional

Max-Min algorithm [194] and with priority [195] method is 10%.

While with Best-Fit the improvement is 7% and with iAware it is

nearly 4%. We can observe similar result improvement in light

medium and medium loads.

In heavy load conditions our method used 3% less number of PMs

than Max-Min, Priority and Best-fit algorithms. While comparing

with iAware, the proposed method used 1.73% less number of PMs.

When we increased the load to very high leading to an overbooked

stage, Max-Min and Priority methods used all the available PMs in

the environment. Even in this severe load condition, our method kept

0.78% PMs in idle condition. This indicated that the PiA method

effectively and efficiently used all the active PMs.

Chapter 6 Enhanced Stability Through Interference Aware Prediction

146

6.6 Summary

In this chapter we have proposed an interference aware prediction

mechanism for resource management in the cloud. The proposed live

migration architecture comprises of load balancer, virtual cluster

monitor system and an auto provisioning system with a scaling

algorithm. The proposed PiA method forecasts the interference value

accurately and predicted the optimum threshold range for efficient

operation so that service provider can manage the SLA requirement

requested by the customers. In the case of increased demand, with the

help of prediction values, the auto scaling policy scale the resources

to meets the user requirements with assured quality. So the proposed

method helps in the seamless computing by predicting the accurate

threshold range. The performance of the method is tested in real time

cloud environment and the prediction accuracy is verified by

calculating the standard error in predictions, in different threshold

ranges. Again the comparative analysis was done with other methods

such as FFD and iAware-FFD in Hadoop, XAMPP and SQL

environments. This test results also prove the effectiveness of the

proposed PiA method. The major reason behind this improvement is

that the proposed method always searches for less interference PMs

for VM placement thus it reduces VM migrations and achieves

stability. Again the method is tested in five different workload

conditions to know the resource utilization. The experiments results

confirm that the PiA method efficiently utilizes the active PMs than

other state-of-art algorithms.

147

CHAPTER 7

SLA ENFORCEMENT WITH AUTO

SCALING

Contents

7.1 Introduction ……………………...………………………... 147

7.1.1 Petri Net ……..……………………………………... 149

7.1.2 Spot Instances ……………………………………… 149

7.2 Related Works ………………………..….………...……… 150

7.3 Petri Net for Cloud ………………………...…………….... 154

7.3.1 Basics .……….…………………………..………… 155

 7.3.2 Principle of locality and reduced imbalance ……..... 155

 7.3.3 Petri Nets for cloud scheduling ……...…...……..…. 156

 7.3.4 Scaling process ……………..……………………… 159

 7.3.5 Evaluation parameters ……………...……………… 160

7.4 Experimental Setup and Performance Analysis ………… 161

7.4.1 Makespan ……………………………..…………… 162

7.4.2 SLA violations ……………………..………….…… 163

7.4.3 Profit ………………………………..……………… 165

7.4.4 Migrations ……………………………….………… 165

7.5 Summary ………………………………………...………… 167

7.1 Introduction

The cloud service vendors offer a vivid variety of purchasing options

and dynamic prices to the customers. They announce spot instance

prices in the market-oriented cloud to attract more customers,

increase the resource usage and earn more revenue. To incorporate

Chapter 7 SLA Enforcement with Auto Scaling

148

these purchasing/promotional offers/dynamic prices, a good

scheduling method is needed. Also, methods are needed to ensure

whether these offers are maintained by the service provider through

an SLA enforcement mechanism.

The violations in SLA will degrade the performance of the service

provider and thereby decrease the credibility of them among

customers. So to cope with the service level conditions, sometimes

the providers have to increase the resource capacity by scaling out

within the same datacenter or in a co-located datacenter for a

satisfying marketing option with their consumers. An efficient

scheduling algorithm should consider the demand from the clients for

resource provisioning and de-provisioning. Since the resource

demand and price varies with time, there needs efficient scheduling

mechanisms for optimal allocation of resources to the user workload.

Cloud computing provides purchase provision to enhance 24x7x365

support and monitoring, trust, security understanding of business and

customizable service at a lower cost. The service providers like

Salesforce.com [8], Amazon [10], Rackspace [13], etc., promote their

customizable services among the business enterprises by offering

promotional offers. With the intention to increase their income and

attract more number of customers, these promotional offers are based

on their current and historical resource utilization rate and cost-

benefit analysis. The hybrid technology supports customers to

acquire host and on-premise offers along with other cloud offers to

promote on-demand infrastructure and to reduce the operational cost.

Dynamic provisioning with elastic computing facility and SLA

enforcement is still a problem to be addressed.

Chapter 7 SLA Enforcement with Auto Scaling

149

In this chapter, a Petri Net model is proposed and used for scheduling

the tasks based on user requirements and to incorporate dynamic spot

prices. Here SLA is ensured with the help of auto scaling mechanism.

In this model, the SLA requirements considered are CPU speed,

memory, makespan and bandwidth with a fewer number of virtual

machine migrations.

Our experimental results indicate that the proposed system efficiently

performs dynamic provisioning and elasticity in multiple public

clouds with scaling that reduces makespan, number of SLA

violations, penalty cost and maximizes profit with the help of auto

scaling mechanism.

7.1.1 Petri Net

Petri Net is a promising mathematical modeling tool for describing

distributed and parallel systems. It is a good tool for the

representation of distributed and parallel information processing

systems that are characterized by concurrency, asynchronous, non-

deterministic or stochastic [196].

In cloud, scheduling user requests to the available VMs with

minimum completion time is considered as an NP-hard problem. In

this type of situation, Petri Net models are one of the good methods

to obtain optimal results [32, 196, 206]. Here we have proposed a

Petri Net based for resource allocation with auto-scaling.

7.1.2 Spot Instances

Amazon provides a type of prices instances called Spot Instance (SI)

to sell the idle time of its EC2 data centers [10]. It is a rebated pricing

Chapter 7 SLA Enforcement with Auto Scaling

150

model used by service providers like Amazon to sell their spare

resource capacity using an auction method in the open cloud market.

This price is based on the demand-supply pattern at real-time.

This spot price history is freely provided by AWS per SI [197] for

each data center and also available through other third parties such as

Cloudxchange [239]. For the experimental purpose, we have taken

the spot instance price from AWS. Figure 7.1 shows the historical

average normalized price of Amazon EC2 for the instance type

c1.xlarge for a day.

Even though spot instances allow opportunity to use unused server

capacity of a service provider at a lower price, there is a need of

efficient algorithms for SLA enforcement for the interrupt free

service.

Fig. 7.1 Normalized average spot instance price of c1.xlarge for a day

7.2 Related Works

From the chapter 2 it is understood that the researchers proposed

several scheduling techniques for allocation of tasks, which are

Chapter 7 SLA Enforcement with Auto Scaling

151

focused on different parameters such as makespan, load balancing,

power consumption, delay, cost and profit. In this chapter, we

consider some cloud management policies used for scheduling and

related issues in the market oriented cloud. Even though these

techniques have used different scheduling policies but some issues

are to be addressed deeply and needed to be fine tuned. The specialty

of the market oriented cloud is that a customer has an opportunity to

bid the price to hire a service. Usually, service providers' offer price

is based on the historical bidding details and spot instance prices. The

CSPs like AWS defined a spot price as a bidding strategy to

maximizing their revenue.

Auto scaling helps rapid provisioning and de-provisioning of

resources with minimal management effort or service provider

interaction [3]. Open Cloud Computing Interface (OCCI) standard

provides an effective resource management in Service – based

Business Processes (SBPs). Elasticity can adapt the oscillating

workload in the cloud and ensuring QoS by using an autonomic loop

called MAPE (Monitor, Analyze, Plan, Execute). This is an

autonomic infrastructure that supports optimized resource utilization

and save the cost [198]. Scheduling of resources on multiple clouds

will enhance the performance with minimum operational cost and

time. In paper [20] the workflows considered as a sequence of

transactions with multiple micro tasks provides minimum completion

time but no SLA enforcement mechanism.

A lot of auction based mechanisms are proposed for business users.

Mechanisms like continuous double auction [199, 211], knowledge

based double auction [212], combinatorial [36, 213] and negotiation

Chapter 7 SLA Enforcement with Auto Scaling

152

model [214] are the some of them comes under this category. These

methods didn’t consider spot instance and historical data about price

calculation for resource allocation. It is also noted that these methods

don't support auto scaling.

In the auction based dynamic scheduling [199] VM resources are

indexed based on the requesting time, loading time, dealing time. It

also considers the cost of the service based on minimum affordable

price policy considering both client and service provider.

Heuristic methods such as PSO [200] that consider communication

and data transmission cost for workflow scheduling. Time and load

balancing issues are not considered in this method. All the above

methods discussed so far suffer from frequent migrations, which

increases system imbalance in the cloud ecosystem and thereby

degradation in the overall performance. Modified version of Dynamic

Voltage and Frequency Scaling (DVFS) [215, 216] have efficient

energy consumption by lowering the frequency, but it increases the

makespan that leads to SLA violations.

The paper [206] presented highlights and tools used for workflow

scheduling using Petri Net theory. Petri Net has format semantics and

has many analysis techniques. It can be used for both event and state

based systems. Since cloud scheduling is state based, Petri Net is

good for cloud task scheduling.

Sever consolidation in the cloud [201, 202] reduces the number of

active physical machines so that it harnesses green computing.

Sometimes improper server consolidation mechanisms result in

frequent migrations and it causes system imbalance in the cloud. So

Chapter 7 SLA Enforcement with Auto Scaling

153

these methods have to consider QoS constraints mentioned in the

SLA and the migration overhead. Unfortunately, most of these

methods neglect the effect of imbalance caused due to frequent

migrations. So we have proposed a method to respect QoS constraints

and reduces imbalance using Petri Net.

The PreAnt policy discussed in [40] schedules the heterogeneous

resources in the cloud with minimum cost as well as energy

consumption. Here a fractal-based mathematical prediction model

allocates service requests to VMs in an optimized way to reduce the

energy as well as migration time. However, they have classified

incoming requests into four different categories to map with ant

colony algorithm, which causes additional time overhead while

processing the requests.

The adoption of online marketing strategy provides bidding option

for customers to access the service with affordable charges. The spot

instances and price offered by the providers is based on the auction

mechanism which enables customers to opt for online purchasing

facility of services with minimum cost. Usually, the spot price is

calculated based on the pricing strategies of other providers and real-

time conditions [31]. The Petri Net based multi-criteria decision

framework in the cloud generates a cost effective marketing option

using spot instances in VM resource scheduling. The scheduling of

resources in multiple clouds accelerates the service quality and low

cost with maximum utilization of resources [204]. Their simulated

results prove that the better cost saving can be achieved through spot

instances with auto scaling mechanism but frequent migrations affect

performance.

Chapter 7 SLA Enforcement with Auto Scaling

154

The market oriented hierarchical scheduling strategies [203, 209,

210] provides significant improvement in QoS constraint resource

allocation. From the experimental results, we can see that the cost

and time optimized policies will potentially increase the budget.

A scalable self scheduling scheme [207] is another method for large

scale cloud systems that minimize the communication overhead.

These kinds of systems are only suitable for scientific workflows.

In this section, we discussed different techniques used for scheduling

tasks using the auction mechanism and issues in it. Most of these

techniques are focused on the minimization of makespan. A multi-

objective criterion based scheduling is needed to solve state-of-art

problems in the cloud. Auto scaling with less number of migrations is

also another performance indication. From these observations, a Petri

Net based scheduling algorithm can support multi-criterion with

contradictory requirements, which can perform auto-scaling with less

number of migrations and cost saving.

7.3 Petri Net for Cloud

The aim of this work is to develop a model based on Petri Net to

enforce SLA with cost-effective resource scheduling in the market

oriented multi-clouds and with the minimum number of migrations.

The proposed model supports multi objective decision making

strategy in the allocation of service requests to the market oriented

cloud.

The parameters considered are response time, makespan and cost of

computation. These primary parameters are used for calculating the

cost saving is cost-benefit ratio and penalty. If the bid price is higher

Chapter 7 SLA Enforcement with Auto Scaling

155

than the spot price updated by service provider, then service is

accepted with SLA negotiations for other parameters. While billing,

penalty is computed based on the cost per number of SLA Violations.

Then auto-scaling is carried out based on the cost-benefit-penalty

calculation. The bid price is varied in real-time depending on the

demand, processing power of requirement and power utilization of

active servers.

7.3.1 Basics

In multi objective scheduling problems, Petri Nets are the adequate

method to model complex dynamic situations. Since cloud

scheduling is an NP hard problem, Petri Net modeling is a good

promising solution to model dynamic cloud task scheduling model. It

is a mathematical modeling language using directed bipartite graph.

The task model in Petri Net can be described as follows.

A task model is represented by the tuple PNTask = (P, T, A, Mo),

where place P = {p1, p2, ….., pn} is the set of physical locations, T =

{t1, t2, …., tm} is the set of transitions, A is set of connection between

location and transitions and is represented as {(pi, tj), (pj, ti) and Mo

∈{R
+∪, 0}

|P|
is the initial marking.

In Petri Net models the places represent states, conditions or

resources that need to be available and met before an action can be

carried.

7.3.2 Principle of locality and reduced imbalance

In order to reduce frequent migrations, we have used the principle of

locality. The behaviour of Petri Net can be formulated using rules for

Chapter 7 SLA Enforcement with Auto Scaling

156

transition to occur. For transition enabling conditions and consequent

actions, the Net considers only immediate vicinity of a transition.

Principle of locality states that

“For a successful transition depends only on local

states of the locations in its immediate vicinity. Also,

a successful transition changes only the local state of

locations in its immediate vicinity”.

The above property of the Petri Net will reduce the frequent

migrations in the cloud ecosystem, and resultant effects are reduced

imbalance and better response time since the migration of tasks are

based on the capacity of nearby resource specifications.

7.3.3 Petri Nets for cloud scheduling

The Petri net model for cloud scheduling is a seven tuple, PNi= (P, T,

F, Wi, Mo, Ci, Di) where, P = (pi| i = 1, 2, 3, ….., 11) is a finite set of

places. The graphical representation of the proposed model for the

cloud using Petri Net is given in figure 7.2. The detailed descriptions

of each place is given in table 7.1,

T = {ti| i= 1, 2, 3, …. 10} is a finite set of transitions, where, the

descriptions of transitions are also given in table 7.1,

F ⊆ (P × T) ∪ (T × P) is a finite set of arcs,

Ci = {(dtij)} ∪ {(ETij, CTij)} ∪ {(ai)} is the set of colours, where dtij is

the deadline of task j and, ETij is the expected execution time of task j

at machine i, CTij is the expected communication time of task j, ai is

Chapter 7 SLA Enforcement with Auto Scaling

157

the current status information of machine i, including available VM’s

number and time that is ready for executing next task at that machine.

Fig. 7.2 Petri Net model for cloud scheduling

Wi = f(Fi) = {fj | j = 1, 2, 3,….. 22} is a finite set of weighted

functions of arcs, where,

f1 = (dtij, ETij, CTij)} processing requirements of task j submitted at

physical machine i.

f2 = (ai): the information of physical machine i in a CSP,

f3 = f4 = f5 = f1+ f2,

f6 = f2,

f7 = (ai’): the updated status information of physical machine i in a

CSP,

f8 = f11 = f12 = f13= f14=f1,

f9 = the task selected by a home scheduler,

Chapter 7 SLA Enforcement with Auto Scaling

158

f10 = completed task by a home scheduler,

f15 = (ak): the current status information of resource at a remote

datacenter k.

f16 = f1 + f15,

f17 = the task selected by a home scheduler according to the

algorithm,

f18 = the task completed by home machine,

f19 = Submitting completed remote/home task,

f20 = Sending completed task to parent datacenter,

f21, f22 = current information of resources.

Mo(p2) = (ai).Others places having no tokens in the initial marking.

D: T R is a firing time delay, where, D(t1) is a random number.

D(t2)= D(t3) = D(t4) = D(t5) =D(t10) = 0.

D(t8) = D(t9) = communication time of task.

D(t6)= D(t9)= execution time or task or sub task.

The service request scheduling is done according to the spot price

defined by AWS then the client can bid the price for servicing their

request. For auto scaling the spot instance price is also a factor. This

results in a considerable increase in performance and cost saving.

While scheduling incoming tasks, the model checks the minimum

execution time, waiting time and number of SLA violations, since the

Petri Nets can check multi-criterion in the decision making. The

Chapter 7 SLA Enforcement with Auto Scaling

159

scheduling of tasks is performed based on the number of tasks at a

particular time and resource availability. Scale-up and scale-down are

implemented to reduce the cost, energy and also power consumption.

For auto scaling the proposed model considers a number of

migrations along with penalty and profit. The system acquires better

performance in terms of profit for service providers and with less

number of SLA violations and minimum makespan and cost for the

users. Thus the proposed model ensures the quality of the service.

Table 7.1: Description of Petri Net Places and Transitions

Place Description Transition Description

p1 Incoming user tasks t1
Submitting a task to a

datacenter/CSP

p2/ p8

Information about

home/remote cloud

resources

t2
Collecting resource

information

p3 Ready to schedule a task t3
Not able to complete task

with SLA requirement

p4
Ready to schedule a task

at remote datacenter/CSP
t4

Able to complete with SLA

in current datacenter

p5 Ready to execute a task t5 Current status of resources

p6 Task completed t6
Executing assigned

remote/own tasks

p7
Submitted tasks to remote

datacenter
t7

Executing assigned own

tasks

p9
Ready to execute

remote/own tasks
t8

Sending tasks to remote

CSP’s local scheduler

p10
Completed remote/home

tasks
t9

Task assignment to remote

local scheduler

p11
Submitting remote task to

home datacenter
t10

Submitting completed

remote/own tasks

7.3.4 Scaling process

When the demand increases to satisfy customer requirements, auto

scaling with migration is required. If the demand is very low, then

idle servers have to be switched off. If a scheduled request needs

Chapter 7 SLA Enforcement with Auto Scaling

160

more processing power, using scale-up mechanism additional power

can be allocated. Figure 7.3 shows auto scaling algorithm.

7.3.5 Evaluation parameters

We have evaluated the proposed model based on makespan, SLA

violations and profit. The execution time of each task can be found

using the equation (7.1) given below.

ETij =
𝑇𝑎𝑠𝑘 𝐿𝑒𝑛𝑔𝑡 𝑖

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝑉𝑀𝑗
 (7.1)

Where ETij is the execution time of i
th

 task on j
th

 VM.

The possible reasons for SLA violations are due to situations like

deadline violations, changes in cost, processing power requirement,

etc. Anyway, the violations depend on the QoS parameters specified

in the agreement. The cost of computation or the profit of the

provider depends on SLA violations.

The profit of the provider is the difference between service

provisioning cost (Cp) and cost incurred due to enforcement of

penalties (Ct) in SLA violations. This can be calculated using the

equation (7.2).

Profit= (𝐶𝑝𝜆∈ 𝑈𝑠𝑒𝑟 𝜆 ∗ 𝐶𝑡(𝜆) − (𝛹(𝜔)𝜔∈ 𝐷𝑙 ,𝑅𝑡 ,𝐶𝑜𝑠𝑡 ∗ 𝑉𝑝) (7.2)

Where ω is the set of SLA parameters associated with a service λ, Dl

represents deadline and Rt is the Response Time. The term Ψ(ω) is

the number of SLA violations detected and Vp represents the penalty

associated to the respective violations.

Chapter 7 SLA Enforcement with Auto Scaling

161

Algorithm: Auto scaling process

//Let ST represents Service Task and R represents Resource list.

For all Taskiϵ ST and resource rkϵ R

 If (UPactiveservers< PPservicetasks) then //UP – Utilization Power &

 PP – Processing Power

 Add Resources rk and allocate task Taski to rk

 Update ST and R

 Else if (EFTi ≥ Dl) and (Taski ϵ ST) /*Dl is the Deadline & EFTi is the

 Estimate Finish Time of the i
th
 task */

 Scale up resources

 Update ST and R

 Else if (UPactiveservers > PPservicetasks) or ((Taski not in ST) or (EFTi < Dl)

 Scale down

 ST = ST + {Taski}

 Allocate task Taski to rk

 Update ST and R

 Else

 Set the active server to idle mode

 End if

End for

Fig. 7.3 Auto scaling process

7.4 Experimental Setup and Performance Analysis

We have simulated the proposed model using CloudSim [129]. The

model is tested with different parameter settings and experiments

were repeated several times. The makespan, number of SLA

violations, cost saving and number of migrations are measured and

compared with existing methods to evaluate the effectiveness of the

proposed system.

Chapter 7 SLA Enforcement with Auto Scaling

162

The customer gives service request with requirements such as

memory, speed, requested time and bid price and the resource

manager in the cloud broker analyze these requests with the current

resource availability. The resource manager collector is able to access

the information of each task from SLA monitor, scheduler, and cost

analyzer. Accordingly the resource manager updates the current

status of the tasks and resources. The proposed method is compared

with Dynamic Voltage and Frequency Scaling (DVFS) and best fit

algorithms.

7.4.1 Makespan

We have conducted experiments and the makespan is measured for

different conditions. The makespan is collected for both an increasing

number of VMs and an increasing number of tasks. As expected in

the case of increasing the number of VMs, the average of makespan

is reduced. The experiments were conducted with a fixed number of

VMs as 200, 300 and 500 for a varying number of tasks. Figure 7.4

shows the graphical comparison of the makespan of the proposed

method for a varying number of tasks and VMs with DVFS and Best-

Fit algorithms. In figures 7.4 (a), (b) and (c) we can see that there is a

significant reduction in makespan compared to DVFS and Best-Fit

for the Petri Net method in different experimental conditions.

In figure 7.4 (d) when the number of VMs is increasing, then the rate

of average makespan is decreasing. In the initial part of graph 7.4 (d)

there is a small variation after it goes linear decrement. All the above

results show that the performance of Petri Net model is better than

state-of-art algorithm such as DVFS and Best-fit. This is due to auto

scaling mechanism which causes a low execution rate because scale

Chapter 7 SLA Enforcement with Auto Scaling

163

up and down policies in the scheduling process need some time that

causes an initial delay.

The Fig. 7.4 Average makespan when VMs number is fixed (a) 200

(b) 300 (c) 500 (d) Number of tasks fixed = 500.

7.4.2 SLA Violations

Violations in the service level conditions will lead to performance

degradations in QoS and thereby penalty is to be imposed. A good

resource management method will always try to maintain the

conditions mentioned in the SLA. One of the objectives of the

proposed method is to reduce the number of violations in SLA.

We have measured the extensions that happened in the time depended

parameters and difference in the cost. The auto scaling mechanism

adopted helped to lower the rate of SLA violations compared to

DVFS and Best-Fit algorithms. We have fixed number of VMs as

200, 300 and 500. In each of the above condition, we increased the

Chapter 7 SLA Enforcement with Auto Scaling

164

number of tasks and SLA violations are measured. We can observe

that violations are gradually increasing in all methods due to high

load. The violation rate for the proposed method is very low

compared to other algorithms. This proves the credibility of the

proposed method. We can also observe decrement in the violations

when the number of VMs are increased for a fixed number of tasks.

The analysis shows that Petri Net based system produces 99.87%

efficiency compared to DVFS and Best-Fit policies. This is due to

auto scaling and the adoption of Petri Net's principle of locality

feature. Figure 7.5 shows the graphical analysis of the number of

SLA violations in different scenarios.

Fig. 7.5 Average number of SLA violations in different scenarios.

Chapter 7 SLA Enforcement with Auto Scaling

165

7.4.3 Profit

The bidding method gives customers the opportunity to choose the

best services at affordable price. The customers are trying to select

services at low cost and minimum makespan while the providers try

to attract more customers with different attracting offers to increase

their profit. The experimental results indicate that the average profit

earned with Petri Net based scheduling policy is higher than DVFS

and Best-Fit after consideration of penalty due to SLA violations.

The penalty is also lower in the Petri Net model than the other two

methods under comparison. The figure 7.6 shows the graphical

representation of average profit earned when the number of VMs is

fixed as 500.

Fig. 7.6 Average profit when number of VMs is 500

7.4.4 Migrations

We have further investigated the number of migrations happened

during resource management. This factor is measured to know the

system stability. Even though the migration procedure is used to

maintain conditions in the service agreement, but sometimes frequent

migrations create an imbalance in the cloud ecosystem and hence

Chapter 7 SLA Enforcement with Auto Scaling

166

affects overall system performance. The experiments were conducted

to measure the number of migrations in low and high loads. We have

assigned 500 – 3000 tasks in low load and 3500 – 6000 tasks in high

load conditions. Figure 7.7 (a) show the number of migrations

happened when the number of tasks are increased in low condition.

From the figure, we can observe that when the load increases there is

a linear increase in the number of migrations in both methods. In the

proposed method the migrations is less than the existing VM

selection and VM placement approach [205].

Fig. 7.7 Migrations when 200 VMs (a) Low load (b) High load

While coming to high load conditions, the number of migrations is

gradually increased when the load increases. Figure 7.7 (b) shows the

result of number of migrations in high load when the number of VMs

is fixed as 200. To increase the resource utilization and reduce power

consumption, later arriving tasks are scheduled to VMs that have

already completed their assigned tasks. Proposed algorithm compared

with VM selection and VM placement approach [205] and shows an

average of 7 % of performance improvement in high load than later.

Chapter 7 SLA Enforcement with Auto Scaling

167

Fig. 7.8 Average number of scaling decisions

We have measured the average number of scaling decisions that

happened in different CPU utilization threshold ranges. The

experiments were conducted at threshold ranges 65% to 95% with a

limited number of VMs. The obtained results are graphically

represented in figure 7.8. If there is a chance of violation detected due

to any reason, scaling-out is carried out. It also monitors the

condition of all the servers and takes scale-in decision if it is found

idle. The experiment results show that when the threshold is kept

low, the number of scaling decisions are high and for high workload,

the number of decisions is low, which shows better control over the

workload and resource. This minimizes frequent migrations and

hence related delay and imbalance in the cloud.

7.5 Summary

In this chapter, we have proposed scheduling and load balancing

mechanism based on Petri Net model with auto scaling. Price

variations, violations in deadline and response time are the major

Chapter 7 SLA Enforcement with Auto Scaling

168

factors in SLA violations in market oriented cloud. In the proposed

Petri Net model, the properties of Petri Nets are used to enhance the

multi objective cloud scheduling mechanism. This model supports

multi-criterion scheduling with cost saving in the dynamic market

oriented cloud. Here we considered dynamic spot pricing strategy to

test the proposed method in multi-clouds. Penalty is computed based

on the number of violations occurred in the agreed conditions. Multi-

criterion actions coordinate in the resource manager and finally, the

optimal result is delivered to customers with minimized cost and

makespan. This resource-task allocation is based on the historical

data about the providers’ offers and current bid price for a particular

service. The algorithm supports auto scaling to ensure QoS and

power saving. To reduce frequency migrations, the algorithm applies

locality principle, this reduces system imbalance and better load

balancing. By simulation experimental results and comparative

analysis, we have shown that the proposed model provides better

performance in terms of time, cost and migrations.

169

CHAPTER 8

INTEGRATED APPROACH TOWARDS

QoS

Contents

8.1 Introduction …………………….………………...………… 170

8.1.1 Load resource allocation …………..….......……….. 171

8.1.2 Role of SLA …...……………...……….…………… 172

 8.1.3 Prediction model …………………………………… 173

8.2 Related Works .………………….………………………….. 173

8.3 Problem Formulation ………………....………………….… 178

8.4 SLA Aware Scheduling and Load Balancing ……….…….. 181

8.4.1 SLA verification ………………....………………… 181

8.4.2 Load balancing decision ……....………….………... 182

8.4.3 PM grouping ………….………...………….............. 184

 8.4.4 Task transfer ………………..……...………………. 184

 8.4.5 SLA violation detection and VM scaling ………….. 185

 8.4.6 Probability of SLA violation and penalty ………….. 187

 8.4.7 Significance of alpha and beta …………...………… 191

8.5 Experimental Setup and Results ………………….….……. 191

 8.5.1 Impact of workload on scalability …………….…… 194

 8.5.2 Load prediction ……….………………....…………. 196

 8.5.3 Makespan ….……………………………………….. 198

 8.5.4 SLA violations …………..…………...…………….. 200

 8.5.5 Imbalance ……….……………………........……….. 202

 8.5.6 Cost ………………………………………………… 203

8.6 Summary ………………………….………………….……... 205

Chapter 8 Integrated Approach Towards QoS Scheduling

170

8.1 Introduction

In cloud scheduling preservation of conditions in the Service Level

Agreement is essential to maintain Quality of Service (QoS). There

are several scheduling methods in the cloud computing, that

independently handles multi-tenant, on-demand and elastic, but

integrated methods are necessary to improve the performance. Due to

dynamic nature of the workload and resource availability static

methods are not good for optimal scheduling. In this circumstance, a

usage prediction method will help to reduce SLA violations by

forecasting the future resource requirement, so that provider can

arrange required resources to maintain QoS. As mentioned in

previous chapters, frequent VM migrations are also a critical factor

that affects quality of service delivered. Proper resource prediction

will minimize VM migrations. By considering all these factors this

chapter proposes an integrated SLA enforcement scheme that will

consider makespan, migrations, SLA and cost with the aid of a

prediction model. The incorporated prediction model is based on the

past usage pattern and forecasts future SLA violations due to

fluctuating workload. Based on this forecasts appropriate load

balancing and scaling decisions are carried out, which reduced cost,

makespan and SLA violations.

Efficient resource management is required for the effective utilization

of high-end computing resources. In cloud environment VMs are

operating in an isolated environment so that, it can be easily migrated

to other hosts, therefore load balancing through scheduling is a good

solution. Most of the scheduling mechanisms in distributed systems

based on load balancing are trying to use all the hosts in the system to

Chapter 8 Integrated Approach Towards QoS Scheduling

171

maintain SLA. This increases the energy as well as the operational

cost.

SLA enforcement is crucial since cloud is a utility type service just

like electricity or water supply. The proposed method predicts the

probability of SLA violations and penalty due to it. Thus this

method enforces SLA by applying penalty for SLA breaches. This

method also improves system stability due to scaling mechanism by

limiting frequent migrations. The experimental results show that our

proposed system achieves better QoS delivery in the cloud

scheduling.

8.1.1 Load Resource Allocation

The general load resource allocation architecture under consideration

is given in figure 8.1, which contains the 3-layer cloud organisation.

The datacenter resource manager is responsible for deploying user

tasks into these physical machines. Cloud broker is the mediator

between user and the provider. Most of the cloud task assignment

methods are random or round robin based algorithm. This inefficient

assignment results in the wastage of valuable CPU cycles of physical

servers. Sometimes, heavy load will cause over utilization of some

physical servers, so that the tasks assigned to those physical servers

are in starvation or results in the decline of service. The under

utilization of PMs affects providers revenue while over utilization

results in the degradation of requested QoS and finally results in the

violation of SLA. The load imbalance will degrade overall

performance of the cloud.

Chapter 8 Integrated Approach Towards QoS Scheduling

172

Fig. 8.1 Load resource allocation architecture

8.1.2 Role of SLA

As the applications are moved from dedicated customer premise

hardware to the cloud, these applications need to achieve same or

more demanding levels of services as provided by the classical

installations. Therefore in cloud computing, SLA plays a key role to

ensure the rights of customers. Cloud SLA is a contract between the

CSP and the service consumers. In this agreement the service

provided or requested is formally defined. It may contain the details

about the type of service delivered, its scope, responsibilities of both

parties and quality of the delivered services between the CSP and the

service users. Cloud providers’ resources span across multiple

datacenters. SLA depends on the features of the datacenters managed

by the service provider. Thus SLA is purely service based contract,

and it is offered by the service providers and not a user dominated

agreement. Several works of SLA negotiation have been conducted

Chapter 8 Integrated Approach Towards QoS Scheduling

173

[231, 233]. Usually SLA consider datacenter characteristics. For

better performance, the network parameters are also critical factors at

customer side. SLA monitoring and enforcing penalty are also crucial

in maintaining QoS [222]. Here we have considered VM bandwidth,

VM MIPS rate and RAM capacity as parameters for SLA.

8.1.3 Prediction Model

A good prediction mechanism will help in the proposer task-resource

allocation. So this chapter proposes a prediction model based on the

past usage pattern and aim to provide optimal resource management

without the violations of the agreed service level conditions in cloud

datacenters. It considers SLA in both initial scheduling stage and in

the load balancing stage. Also, it looks into different objectives to

achieve minimum makespan, minimum degree of imbalance and the

minimum number of SLA violations.

The symbols used in this chapter are given in table 8.1. Rest of the

chapter is organized as follows. Section 8.2 reviews different kinds of

load balancing and scheduling techniques in cloud computing.

Mathematical modeling and proposed method and its architecture

described in section 8.3 and 8.4 respectively. Experimental results

and analysis are given in the section 8.5. Finally, this chapter

concludes with section 8.5.

8.2 Related Works

Load balancing and scheduling are the critical tasks in cloud resource

allocation. In datacenters the user requested VMs are mapped on the

physical hosts. There are several numbers of physical hosts in a

datacenter; where a pool of VMs is created in these PMs based on the

Chapter 8 Integrated Approach Towards QoS Scheduling

174

user requests. This VM resource pool contains VMs with different

specifications.

In the dynamic cloud environment task assignment problem can be

considered as a NP hard problem [224]. Finding an optimal task

assignment and load balancing in the dynamic cloud environment is a

cumbersome task. The optimal task deployment increases the

customer satisfaction and provider’s revenue. Majority of the

research works concentrated are either on load balancing or

scheduling. These researches are based on makespan, delay, cost,

power consumption and load. Some of the methods are discussed in

the following paragraphs.

A novel Weighted Signature based Load Balancing (WSLB)

algorithm [218] finds that, the load assignment factor for each host in

a datacenter and maps the VMs according to that specific factor. In

this method, the highest configuration host has maximum load

assignment factor and lowest one has less and so on. WSLB reduces

the average response time in homogeneous cloud environment but

load accumulation will result in SLA violations.

The geographical load balancing [217] for datacenters without prior

knowledge is a good solution but it has delayed execution time due to

allocation or migration at remote datacenters. Uniform load sharing is

another solution proposed for load balancing. The Modified throttled

algorithm [131] is based on this idea and has improved response time,

compared to the existing Round-Robin and other throttled algorithms,

but it considers only execution time.

Chapter 8 Integrated Approach Towards QoS Scheduling

175

The task migration technique used in [219] can improve the response

time and implement parallelism of tasks in computing clusters. The

limitation of this method is the high computational cost and overhead

at the time of scheduling. QoS based geographical load balancing is

used to overcome the impact of short-term overload on multiple

clouds. It delivers acceptable QoS even in the case of resource failure

and flash crowd. In this method as in [220] high monitoring overhead

causes performance degradation.

Load balancing by considering the current status of all the available

resources will solve the problem of inefficient utilization of

resources. A scalable distributed loop self-scheduling scheme [27] is

a load balancing method with reduced communication overhead.

Even though the system is scalable, it is only for the homogeneous

clusters.

Heuristic algorithms are sufficient for providing near optimal

solutions for dynamic NP hard problems in a reasonable time. The

modified intelligent water drop algorithm [221] is one among such

attempt to solve workflow scheduling in computational cloud to

minimize the makespan and cost. These kinds of algorithms are only

capable in providing near optimal solutions.

Swarm intelligence based algorithms like Ant colony [91, 135] can be

used for load balancing and scheduling [89] in cloud. It works on the

basis of pheromone deposition. A node with minimum load is

attracted by most of the ants. Consequently the maximum deposition

of pheromone develops at that particular node and thereby, the

performance is improved. Slow convergence to the optimal solutions

is one of the major limitations of Ant Colony based algorithms.

Chapter 8 Integrated Approach Towards QoS Scheduling

176

In Resource Intensity Aware Load balancing (RIAL) [73] method,

the VMs are migrated from overloaded Physical Machines (PM) to

lightly loaded PMs. Here resource weight is determined on the basis

of resource intensity. In a PM, a higher-intensive resource is assigned

with a higher weight and vice versa. RIAL achieves lower-cost and

faster convergence to the load balanced state, and minimizes the

probability of the future load imbalance, by considering the weights

when selecting VMs to migrate out and selecting destination PMs. It

suffers from frequent migrations and affects the overall performance.

Cloud partitioning based load balancing model presented in [137] is

simulated for public cloud, using a switch mechanism. In this

conceptual framework, a switch mechanism is used to choose

different strategies for different situations. This algorithm applies

game theory to the load balancing strategy but it creates

inconsistency in the system.

A simulation study about the SLA aware placement of VMs in elastic

cloud services was done in [231]. This elastic services placement

problem (ESPP) focuses on the profit maximization of service

providers. The authors’ tried to generalize the ESPP to a multi-unit

combinatorial auction based method. This algorithm creates frequent

migration that causes imbalance in the cloud.

Resource management using reinforcement learning with aggressive

provisioning [225], optimality [20], and green scheduling [229] are

some methods that could address the resource allocation problem. It

is suitable for the rapidly increasing workloads especially in a

homogeneous resource environment. Genetic Algorithm [226] based

on the heuristic approach was successfully implemented for dynamic

Chapter 8 Integrated Approach Towards QoS Scheduling

177

dataflow scheduling. Q-aware [230] is a QoS metric oriented

workload classification and scheduling mechanism. They have

minimized cost as well as time while considering QoS requirements

for a class of workload. In this method, the number of migrations is

high which can cause system instability.

The latency aware method [70] is able to reduce both the power and

latency in cloud but has no proper workload management and load

balancing mechanism. The task prioritization and financial criteria

based load balancing mentioned in [52] offers a general model to

adopt variable cost with improved resource utilization. SLA

monitoring with corrective measures in performance as well as the

cost is not incorporated in this method. Energy aware load balancing

method [235] focuses only on energy conservation in homogeneous

clusters. The hierarchical method based on Petri nets [236] considers

only resource utilization rate and cost.

When the number of tasks is increasing the struggle for resources also

increase and this creates complexity. The prime aim of scheduling

algorithm is to speed up the execution of a task in cloud. The load

balancer is responsible for assigning tasks intelligently to virtual

machines considering the current workload and available processing

power. Thus, the load balancer optimizes the resource usage,

minimize execution time and avoid overloaded conditions. SLA

oriented service delivery scheduler should consider server capability

to meet the customer requirements, especially time requirement. To

maximize the resource utilization, most of the schedulers try to

allocate more tasks to a server, which will lead to overloaded

conditions and subsequently SLA violations. Therefore, scheduling

Chapter 8 Integrated Approach Towards QoS Scheduling

178

through load balancing is a good method to cope with SLA

requirements. The methods proposed so far based on this idea

consider only single parameters and lacks SLA. The limitation of two

level load balancing with scheduling [237] is that it considers only

makespan, while the scheduling method presented in [238] based on

load balancing considers only migrations.

We have considered various other reviews [227, 228] about

taxonomy on scheduling algorithms. Besides this we have conducted

a detailed comprehensive review on recently proposed papers on

quality of the service scheduling and load balancing techniques in the

cloud. From this we can conclude that the existing mechanisms

considers time and cost to deliver quality service. All the above facts

point out that, there is scope for further improvement in scheduling

and load balancing procedures. So here we are proposing a model

which uses past usage pattern for predicting the resource requirement

for optimal load balancing to reduce violations in service level

agreements.

8.3 Problem Formulation

The main goal of cloud computing is the low cost computation with

customer requested QoS. For this, the optimal VM allocation with

load balancing is necessary. Due to the dynamic nature of the cloud

environment, the scheduled jobs rarely concur with the expected

execution time. Hence, it requires some sort of intelligence to assign

the jobs to the optimal VMs to meet the expected QoS.

Chapter 8 Integrated Approach Towards QoS Scheduling

179

Table 8.1: Description of symbols

Symbol Description

R Minimum amount of extra resources to a VM

Cij Cost of execution

ti Reserved minimum MIPS for a VM at the time of creation

μi Average number of MIPS requested by a user i.

σi Standard deviation of the number of MIPS requested by user i

µPM Average processing capacity of the PM

PTVM Processing time of a VM

LPM Current load on a PM

CPM Capacity of a PM

α Cost for SLA violation

β Cost for Service rejection

S Total processing power of a host

Ṗ Penalty for SLA violations

𝜎PM Standard Deviation of load in PM

Usually user expectations are low makespan time, delay and cost of

computation. The customers are expecting a service that meets the

agreed service conditions or sometimes, something above it. These

multiple objectives often conflict each other, so that, getting an

optimal solution is a cumbersome task. It is also noted that the

violations in service conditions will degrade customer satisfaction.

Time and cost are two critical requirements which conflict with each

other, since in terms of processing power faster resource is more

expensive than slower one. Considering all these factors, the cloud

task scheduling problem can be formulated as below.

 Let i = 1, 2, 3,, m represents task indices and j = 1, 2, 3,, n

is for VM indices.

Chapter 8 Integrated Approach Towards QoS Scheduling

180

 Tij denotes the time to execute the i
th

 task at j
th

 VM;

 Cij stands for the cost of execution of i
th

 task in j
th

 virtual machine;

 Xij= 1 if task i is assigned on machine j; 0, otherwise.

 Ṗij(k) is the penalty associated in executing a task i on j
th

 machine

for k
th

 SLA condition. Here Ṗ ≥ 0.

 wt is the workload that contains number of independent tasks at

time t.

So that the scheduling problem can be represented as

Minimize 𝑋𝑖𝑗𝑇𝑖𝑗 ∗ 𝐶𝑖𝑗 + Ṗ𝑖𝑗 (𝑘)
𝑛

𝑖 ,𝑗=0
 (8.1)

Subject to the following conditions

 Maximize workload wt without any performance degradation.

 Minimize cost and penalty

 Minimize Degree of Imbalance (DI) in the cloud.

The DI can be defined as the difference between maximum (PTMax)

and minimum (PTMin) execution time to the average (PTAvg) execution

time of a task among all VMs. It is given by the formula as below.

𝐷𝐼 =
𝑃𝑇𝑀𝑎𝑥 −𝑃𝑇𝑀𝑖𝑛

𝑃𝑇𝐴𝑣𝑔
 (8.2)

The aim is to minimize the shifting of already assigned tasks i.e. to

reduce imbalance in the cloud eco system. The proposed model is

simulated using SLA aware scheduling and load balancing with the

Chapter 8 Integrated Approach Towards QoS Scheduling

181

aid of prediction mechanism. The detailed explanation of proposed

technique is given in section 8.4.

8.4 SLA Aware Scheduling and Load Balancing

Optimal load balancing is one of the main issues in cloud

environment. Efficient resource allocation and scheduling will avoid

a situation where, some of the hosts are overloaded while; others are

idle or engaged with a little work. An efficient SLA aware resource

allocation strategy will improve the overall performance of the

system that might increase the customer satisfaction.

Since many hosts are present in a datacenter, characteristics of the

datacenter are the characteristics of hosts. Hosts have specific

processing elements (PEs), RAM and bandwidth characteristics. Each

host is virtualized into number of VMs.

VMs in a cloud environment have some specific characteristics like

bandwidth, RAM capacity, number of PEs and MIPS rate as like

PMs. Characteristics of each VM will differ from another. When the

user requests arrive at the broker, the broker will submit it to the VMs

at a datacenter for execution. In this proposed architecture before

submitting a task into a specific VM, the broker checks the SLA

requirement of each task. When these properties are matched with the

properties of a particular VM, the task is then submitted to that

specific VM for execution. The SLA verification is performed during

the initial allocation stage and in the load balancing stage.

8.4.1 SLA verification

SLA is an agreement between the service user and the service

provider in a system. In this step SLA requirement of each task is

Chapter 8 Integrated Approach Towards QoS Scheduling

182

verified according to the properties of suitable VMs. The VM MIPS

rate, VM bandwidth and RAM capacity are the various SLA

parameters considered in this SLA aware load balancing algorithm.

The requirement of each task may vary at different times.

SLA verification is performed during the initial allocation of a task to

a VM and also during the load balancing state. User can specify their

SLA requirements and, if the VM properties meet the SLA, then user

can execute that task on the VM. Whenever a task is going to allocate

to a VM, the VM properties like its communication bandwidth, RAM

capacity and MIPS rates are checked. The current PM load is also

considered for VM allocation, since each task has specific SLA

requirements.

To avoid SLA breaches we have calculated the probability of SLA

violations using a prediction model. The procedure for calculating the

probability of occurring SLA violations are explained in section 8.4.5.

Using this prediction model it avoids probable SLA breaches. Thus it

achieves the objective mentioned in the mathematical equation (8.1).

Even after this SLA violation free allocation, the method checks for

violations in each condition (k) in SLA during execution of a task. For

this the proposed method monitors extensions happened in makespan

and parameters related to VMs regularly and apply penalty Ṗij(k)

mentioned in the agreement to enforce SLA requirement. Ultimately

this helps to reduce penalty and cost of computation.

8.4.2 Load balancing decision

Based on the values of load and standard deviation, the system will

decide whether to do load balancing or not. In this module, first check

Chapter 8 Integrated Approach Towards QoS Scheduling

183

whether the system has the capacity to perform load balancing. Load

balancing is only possible when the capacity of physical server is

greater than the current load. If the current load of the datacenter is

greater than the current capacity, then load balance becomes

impossible. This is because; the datacenter is not in a normal

condition and hence, the system is not capable for load balancing and

scaling of resources will be required for violation free operations.

Scaling is the ability of a cloud datacenter to handle growing or

decreasing demands; thereby it supports the elastic resource

provisioning.

Load balancing is only possible when the load of datacenter is less

than its capacity. In this case the load balancing decision is taken on

the basis of the standard deviation value calculated using equation

(8.3). Here a threshold value is set, and this value is compared with

the calculated value of the standard deviation. Up to that threshold

value, PM is in normal condition and there is no extra load on that

PM. If the standard deviation value is greater than the threshold value

then load balancing is needed, because this overloaded PM have some

difficulties in handling all these tasks. Therefore, some tasks are to be

transferred to other PMs for execution.

Load balancing decision is made using the value of standard deviation

(𝜎). Standard Deviation of load in PM is calculated using the equation

(8.3)

𝜎𝑃𝑀 =
1

𝑚
 (𝑃𝑇𝑉𝑀 − 𝜇𝑃𝑀)2𝑚

𝑖=1 (8.3)

Where PTVM is the sum of processing time of all the active VMs in

the datacenter and µPM is the average processing capacity of the PM.

Chapter 8 Integrated Approach Towards QoS Scheduling

184

8.4.3 PM grouping

The PMs are grouped into overloaded and under loaded PM based on

the standard deviation value of load and the threshold. Each group

contains a set of PMs. Task withdrawn from one of the overloaded

PM set has to be assigned to an under loaded PM based on the load,

SLA parameters and tasks already assigned to the particular under

loaded PM. In this method, PMs whose standard deviation values

greater than threshold are considered as the overloaded PMs and the

PMs whose standard deviation values less than threshold is considered

as under loaded PMs. Since threshold and load on each PM is

changing at every minute, the overloaded and under loaded PM list is

getting updated. Tasks removed from overloaded PMs are assigned to

the under loaded PMs for execution. The task is executed only if, the

under loaded PM set contains VM having desired properties.

8.4.4 Task transfer

In the PM grouping module, PMs are categorized into overloaded and

under loaded PM based on the threshold mentioned in [172]. Since the

load balancing is SLA aware, before checking the SLA, it’s necessary

to find the demand of overloaded PM and the supply of under loaded

PM. Here, demand means requirement of overloaded PM. Supply

means the availability of the under loaded PM. Demand (resource

request to a PM) and supply (resource allocation) can be calculated as

follows:

Resource allocation to an under loaded PM set is given by:

𝑆𝑢𝑝𝑝𝑙𝑦 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑀 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −
𝐿𝑃𝑀

𝐶𝑃𝑀
 (8.4)

Chapter 8 Integrated Approach Towards QoS Scheduling

185

Demand of each machine in overloaded PM set is:

𝐷𝑒𝑚𝑎𝑛𝑑 =
𝐿𝑃𝑀

𝐶𝑃𝑀
− 𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑃𝑀𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (8.5)

In order to perform load balancing, the system needs to identify the

demand of each overload PM and supply to the under loaded PMs.

The task transfer occurs only when the demand meets the supply. The

tasks which were withdrawn are allocated to the PM with highest

capacity. Only based on the priority, the task which is to be

transferred or migrated is selected from the overloaded PM. The task

which has least priority is selected for migration. Since, they have not

started execution; it will be easier to migrate. This migrating task also

comes with some SLA requirements. The task is allocated to a PM

among the under loaded PM set, which has the desired SLA

characteristics under current load situations.

8.4.5 SLA violation detection and VM scaling

In the proposed method initially the VMs are created with minimum

specification such as memory, MIPS rate, and VM bandwidth. When a

particular VM consumes less processing power and memory than

reserved, the remaining memory, processing power and the VM

bandwidth are collected into a resource pool. The resource from this

consolidated resource pool can be shared to VMs, that require more

processing power, memory, etc. The procedure is shown in the figure

8.2.

SLA violation occurs when a VM fails to meet the requirement of a

task such as CPU speed, RAM, and bandwidth. If large number of

requests arrives to the same PM, and if it has to serve all these

Chapter 8 Integrated Approach Towards QoS Scheduling

186

requests, then scaling is performed to reduce SLA violations. VM

bandwidth, VM MIPS rate and VM RAM capacity is scaled to a

particular amount.

Fig. 8.2 Underutilized reserved VM resources are collected in the PMs

resource pool.

For each new task SLA aware load balancing algorithm is shown in

figure 8.3 and respective enhanced resource allocation policy is shown

in figure 8.4.

Chapter 8 Integrated Approach Towards QoS Scheduling

187

Algorithm: SLA aware load balancing

Start

For each task verify the MIPS rate, bandwidth and RAM capacity of PM

and VM and allocate task.

 Calculate the load and capacity of each PM.

Group the PMs based on load as overloaded or under loaded based on

the standard deviation value in equation (8.3) and threshold value T.

Find the supply of under loaded PMs and demand of overloaded PMs

based on equations (8.4) and (8.5).

Sort the overloaded and under loaded PM sets based on load

Sort the tasks in overloaded PMs based on priority.

Select the least priority task for migration to the under loaded PM.

Find the capacity of PMs in the under loaded set.

For each task in each overloaded PM find a suitable under loaded VM

in PM based on capacity and SLA requirement.

Update the overloaded and under loaded PM sets.

Stop.

Fig 8.3 SLA aware load balancing algorithm

8.4.6 Probability of SLA violation and penalty

The folded normal distribution [232] measure the probability of the

normal distribution on (−∞ , 0] is folded over to [0, ∞). It is a

distribution of the absolute value of a random variable with a normal

distribution. In dynamic cloud resource allocation problem the main

focus is on the magnitude of incoming customer requests, which is a

Chapter 8 Integrated Approach Towards QoS Scheduling

188

normally distributed variable, then the folded normal distribution is a

natural solution to calculate probability.

Fig. 8.4 Enhanced resource allocation policy

Chapter 8 Integrated Approach Towards QoS Scheduling

189

The probability of occurrence of a SLA violation is high when the

aggregate resource requirements of all VMs executed on a PM is

greater than the maximum capacity of resources or processing power

available on a PM:

P
SLA violations on

a particular PM
 = P 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 > CapacityPM

𝑛𝑖

𝑘=1

Since the input load follows folded normal distribution it can be

written as Y ∼𝑁(μ
PM

, σPM
2)

Here μ
PM

= μ
i

𝑛𝑖
i=0 and 𝜎PM = σi

2𝑛𝑖
i=0

Here µi is the average and σi is the standard deviation of all the

incoming length (in MIPS) of user tasks to VMs in a PM which

follows standard normal folded distribution with N (10000, 3500).

The aim is to place user specified VMs on optimal physical servers

by considering the SLA and cost. Cost analysis is necessary to

allocate a VM to a PM. The computation cost associated with each

PM is calculated for each requested VMi based on the equation (8.6).

While allocating VM to a particular PM, the mechanism should

consider the objective of the service provider as well as the customer.

Here the service providers have to serve several customer requests

simultaneously, so they are trying to reduce the SLA violations, while

maximizing the profit. By considering these factors the algorithm

places VM to the best available active PMs.

Chapter 8 Integrated Approach Towards QoS Scheduling

190

Cost PMi = α. P[PMi ≥1/VMiϵPMi] +

β . P[Next user rejected by PMi/VMiϵPMi] (8.6)

Where , β ≥ 0.

Here the probability of rejection (β) depends on server processing

power, number of simultaneous request from the users, network

traffic, etc., so that the situation is dynamic and algorithm has no

control over these parameters.

When allocating resources, possibility of the rejection of a service

depends on unreserved resources in the pool. Let S is the total

processing power (in MIPS) available in a PM, then likelihood of

rejection of next VM request can be calculated as

Probability of Rejection of next user = 1 −
 t𝑖𝑉𝑀𝑖ϵ𝑃𝑀𝑖

CapacityPM

So that the cost function in equation (6) becomes

Cost PMi = 𝛼. 𝑁(μ
PM

, 𝜎PM
2)

∞

𝑆
+ 𝛽. 1 −

 t𝑖𝑉𝑀 𝑖ϵ𝑃𝑀 𝑖

𝑆
 (8.7)

The scaling is determined based on the probability of SLA violations.

The aim of this method is to reduce number of SLA violations with

the help of a prediction model. The prediction model works on the

basis of the past usage pattern, which helps to find out the right

quantity of resources required. Here the past usage pattern is

simulated based on the Lublin model [223]. The scaling process is

carried out using this prediction to avoid SLA breaches. Figure 8.5

shows the process of enhanced resource allocation policy with scaling

process initiated by the prediction mechanism.

Chapter 8 Integrated Approach Towards QoS Scheduling

191

8.4.7 Significance of Alpha and Beta

The performance of the proposed algorithm depends on the SLA

violations and likelihood on SLA breaches so that VM placement

depends on this probability.

Fig. 8.5 Significance of α and β

In the above equation (8.7), the significance of alpha and beta cost of

SLA breaches (α) and cost of service rejection (β) is shown in the

figure 8.5. If the cost factor dominates then algorithm tries to allocate

maximum number of VMs to a PM which increases the chances for

SLA breaches. By setting suitable α and β value, providers can adjust

these values depending on cost of SLA breaches and service rejection

cost. By adjusting the ratio, the provider can optimize their revenue by

minimizing SLA breaches and service rejection.

8.5 Experimental Setup and Results

The tasks arrive at random time interval to the cloud providers. So to

test the scalability of the algorithm static workload is inefficient,

Chapter 8 Integrated Approach Towards QoS Scheduling

192

because the elastic cloud uses pay-as-you-use model. In order to

make the realistic environment we have used two workload

generation model for user request generation; Lublin model [223] and

Synthetic Random [234] workload.

Fig. 8.6 Cloud resource usage pattern during a day – Lublin model

The arrival of tasks to the CSP is modeled by Lublin model because

this model considers the daily cycle of arrivals depending on the

working hours as shown in figure 8.6. This distribution models are

based on the Gamma distribution. Gamma distribution is good in

modeling probabilities such as queuing analysis and for sets of values

that may contain skewed distribution. During morning sessions, there

will be lesser number of active users, which gradually increases as the

day moves to business hours and load increases from low to high. In

this situation the allocation policy selects optimal machines and

reserves the resources as user requested. If the convenient VMs are

unavailable in the active hosts it will wake up the additional hosts to

satisfy the customer needs. In order to maintain the QoS and reduce

SLA violations, the optimization and load balancing algorithm

reallocate the tasks from heavily loaded machines to the low loaded

Chapter 8 Integrated Approach Towards QoS Scheduling

193

hosts. By the end of the day the numbers of active users are less. As

the users leave the CSP, some hosts are heavily loaded while others

are idle. In this stage a server consolidation mechanism is needed to

reduce the power consumption. So a server consolidation algorithm is

applied and idle hosts are put into sleep mode.

The performance of the SLA aware load balancing algorithm has been

evaluated by simulation using CloudSim toolkit [129]. CloudSim-3.0

is used as a framework in the simulator environment. Modeling and

simulation of large scale cloud computing data centers, hosts and

virtual machines are provided by CloudSim simulator. The main

components in CloudSim are datacenter, virtual machine and cloudlet.

The parameters for the simulation environment is shown table 8.2.

Table 8.2: Parameters for simulation environment

Parameter Value

Number of tasks in peak hour Upto 2000

Number of tasks in off peak hour Upto 5000

Physical Machines 100

Virtual Machines 1000

Threshold [29] 60%

Cost $1-$3

Physical server or host’s utilization is defined as the percentage of

time the CPU is busy. It is also referred to as the percentage of the

CPU's capacity that is currently being used. In any server machine,

when CPU utilization exceeds a certain threshold value, thrashing sets

Chapter 8 Integrated Approach Towards QoS Scheduling

194

in. Usually to avoid critical conditions in most datacenters, each host

has a maximum threshold (normally 60%) [172]. This threshold value

indicates that if more than 60 percent of the server machine's capacity

is used, an SLA violation is flagged. As in the physical host the

threshold fixed for VM CPU utilization is also fixed as 60%. CPU

utilization can be measured from hypervisor and this 60% mark will

ensure better response time for other applications running on VMs

hosted on the same hosts. As most customers have expectations on

faster application response time, even slight increase in response time

(above the predefined threshold) can result in SLA violations.

VM failures can bring in SLA violations; they can also be caused by

progressive performance degradation of the application which occurs

due to software failures or high workload conditions. The degradation

usually results in an increase of server machine CPU consumption,

virtual machine utilization, delay, application response time and VM

migration time. Consequently, this may lead to an imbalance in the

cloud eco system.

8.5.1 Impact of workload on scalability

The scalability of the proposed algorithm is tested with 100 PMs with

maximum 10 VMs per PM. The experimental results are shown in the

figure 8.7 (a) and (b).

From figure 8.7 (a) it is clear that the average number of migrations

goes up linearly for the increase in number of tasks. Here average

number of migrations is 0.908 and 0.84 for Lublin model for peak

and off peak hours respectively. For random workload this is 1.62

and 1.226 for peak and off peak hours. The number of migrations for

Chapter 8 Integrated Approach Towards QoS Scheduling

195

random workload is higher than the Lublin in peak hours. This is

because; to maintain SLA the system has to use more PMs in active

state due to random load.

Fig. 8.7 (a) Average number of migrations

Fig. 8.7 (b) Average number of migrations per VM

Figure 8.7 (b) contains average number of migrations per VM. Here

the migrations are almost linear in nature. There is only a small

Chapter 8 Integrated Approach Towards QoS Scheduling

196

increment in number of migrations per 1000 VM. This justifies the

previous results in figure 8.7 (a). These results show that algorithm is

capable for large scale operations in real cloud environment.

8.5.2 Load prediction

The efficiency of a distributed cloud system can be improved by right

prediction about how much resources are required and time duration.

Prediction mechanism allows the scheduler to allocate computing

resources based on the customer requirement in time. With the aid of

this prediction model, the proposed method increases the workload

handling capacity, i.e., service providers can effectively use their

computing resources or they can scale-down or scale-in their

capacity. This increases resource utilization rate.

The optimal resource prediction is shown in figure 8.8.

Fig. 8.8 Optimal resource prediction

If the scheduler can predict or assess the requirement for next time

period based on the past requirement, then it can allot those resources

to the next customer task in the queue. If the resources are not enough

Chapter 8 Integrated Approach Towards QoS Scheduling

197

to satisfy the customers’ requests, it can go for resource scaling or

elasticity across the different datacenters in the cloud environment.

The optimal prediction mechanism will reduce the number of VM

migrations or consolidations. Figure 8.8 shows the empirical load

prediction using proposed Lublin model over time. The standard error

is one of the best methods in measuring the standard deviation of a

sampling distribution. The standard error in predicting the optimal

load for the proposed method is only 0.00287.

Fig. 8.9 (a) Overloaded PMs

The figure 8.9 (a) shows the number of overloaded PMs during the

user task execution with and without prediction mechanism. The

prediction reduced the average percentage of overloaded PMs from

62% to 39% in the simulation environment with 100 PMs. This 23%

reduction will improve the performance of the provider to maintain

the SLAs. Again, the average number of migration per VM is

measured with and without load prediction. In the figure 8.9 (b) the

Chapter 8 Integrated Approach Towards QoS Scheduling

198

proposed mechanism experiences 14.3% lesser migrations due the

prediction mechanism than without prediction. This will increase

system stability due to lesser number of VM migrations. This result is

verified with system imbalance analysis, which is given in figure 8.12.

Fig. 8.9 (b) Number of migration with load prediction

8.5.3 Makespan

Makespan is the overall task completion time. It is the difference

between intial task submission time and its completion time. Figure

8.10 and table 8.3 show the makespan comparison of RR [223], ABC

[98], Random Power Aware [220], Max-Min [194] and SLA aware

load balancing in peak hours mentioned in figure 8.6. From the figure

8.10 and table 8.3, it is clear that makespan is reduced to a

considerable amount by using SLA aware load balancing.

Chapter 8 Integrated Approach Towards QoS Scheduling

199

Table 8.3: Makespan comparison (Milli Seconds)

Number

of Tasks

RR

[223]

Random

Power

Aware [220]

Max-Min

[194]

ABC

[98]

SLA

Aware

100 403.83 387.86 385.14 380.10 375.41

200 791.22 765.41 761.55 750.10 721.92

300 1278.61 1242.96 1197.96 1121.18 1065.43

400 1672.60 1600.51 1614.37 1530.54 1414.94

500 2093.39 1998.06 1950.78 1867.15 1770.45

600 2459.78 2275.61 2297.19 2235.66 2007.96

700 2879.17 2673.16 2703.60 2580.75 2424.47

800 3285.56 3065.71 3090.01 2930.31 2850.98

900 3772.95 3508.26 3456.42 3331.92 3157.49

1000 4390.34 4085.81 3972.83 3725.36 3490.00

Fig. 8.10 Average makespan

Chapter 8 Integrated Approach Towards QoS Scheduling

200

8.5.4 SLA violations

Figure 8.11 (a) shows the number of SLA violations before and after

scaling. From the figure it is clear that scaling reduces the number of

SLA violations than other methods. The standard error in predicting

the scaling is reduced from 1.183 to 0.516, which shows the accuracy

of the method.

Fig. 8.11 (a) Average number of SLA violations before and after

scaling

Fig. 8.11 (b) Prediction accuracy

Chapter 8 Integrated Approach Towards QoS Scheduling

201

Fig. 8.11 (c) Average SLA violations during off peak hours

Fig. 8.11 (d) Average SLA violations in peak hours

The proposed method predicts the SLA violations on peak and off

peak time. The prediction accuracy is measured and is shown in the

figure 8.11 (b). For measuring the accuracy the entire day is divided

into 5 sessions depending on the task arrival intensity, which is based

on the prediction model shown in figure 8.6. The extensive

simulation results along with the different experimental settings

showed an overall prediction accuracy upto 99.5%.

Chapter 8 Integrated Approach Towards QoS Scheduling

202

Here also the number of tasks on off peak hours is considered in the

range 500 to 2000 and on peak hours up to 5000. Figure 8.11 (c) and

8.11 (d) shows the number of SLA violations on off peak hours and

peak hours respectively. In both cases, the method is able to reduce

the number of SLA violations.

The above results shows that the proposed approach reduced number

of SLA violations as we have modeled in the mathematical equation

(8.1) with the aid of prediction model. Penalty enforcement also

forces service providers to keep the conditions in SLA during the

execution of a customer tasks.

8.5.5 Imbalance

The frequent migrations in the cloud causes load imbalance, which

adversely affect the performance and reduce QoS delivered to the

customers. The proposed method reduces the number of migrations

(DI factor) both in the initial resource allocation stage and load

balancing stage. As in the mathematical model, the proposed method

reduces the number of migrations (DI factor) both in the initial

resource allocation stage and load balancing stage. This is because of

the proper prediction that avoids situation of frequent migrations and

thereby related potential impact on makespan.

From figure 8.12 the DI is compared with Max-Min, RR, ACO [89]

and modified throttled [131] algorithms for different number of tasks.

The average DI factors are 3.71, 3.61, 2.65 and 3.42 respectively for

Max-Min, RR, ACO and modified throttled algorithms, while the

proposed method have only 1.63. Hence it is clear that the proposed

Chapter 8 Integrated Approach Towards QoS Scheduling

203

method reduces the imbalance to a substantial amount and thus the

reduction in imbalance results in better QoS for customers.

Fig. 8.12 Degree of imbalance using SLA aware load balancing

comparison with Max-Min, RR, ACO and Modified Throttled

algorithms

8.5.6 Cost

To study the effect of the increase in workload, the experiments were

conducted for varying number of input tasks. The result shows that,

the proposed method incurs lesser cost than the non-SLA aware

method. When more number of tasks is entering into the cloud, the

cost of computation also increases as shown in the figure 8.13. This is

because, in SLA aware method, the cloud broker considers the

current status of PMs and distributes the tasks by evaluating the

conditions based on the SLA requirements. While in non-SLA

method, the user requirements are never considered for resource

allocation.

Chapter 8 Integrated Approach Towards QoS Scheduling

204

Fig. 8.13 Cost benefit analysis for SLA aware method

All the above results show that the proposed SLA aware load

balancing and scheduling algorithm reduces the makespan, degree of

imbalance and number of SLA violations in the cloud environment,

which give better performance to the end users in terms of time and

cost, with very less SLA violations. This is achieved with the help of

optimal allocation with prediction methods and enforcement of SLA with

penalty and auto scaling. The method efficiently uses the cloud

resources.

8.6 Summary

This chapter proposed an integrated quality assured SLA aware load

balancing and scheduling algorithm for the cloud environment. This

algorithm migrates tasks from VMs in overloaded hosts and submit it

to the VMs in the under loaded hosts having highest capacity. This

algorithm considers VM processing power, VM memory capacity

and bandwidth as the SLA parameters. During the initial allocation

and load balancing stage, a task is submitted to a VM that meet users’

SLA requirements. The experimental results proved that, the

Chapter 8 Integrated Approach Towards QoS Scheduling

205

proposed integrated SLA aware load balancing and scheduling

algorithm have minimum makespan compared to Random, RR, Min-

Max and ABC algorithms. It also reduced frequent migrations i.e.,

degree of imbalance into a considerable amount. It is cost effective

and SLA violations are reduced using proper prediction method with

timely scaling algorithm thus the proposed method ensure QoS in

cloud scheduling.

206

Chapter 9

CONCLUSIONS AND CONTRIBUTIONS

Contents

9.1 Overview …………………………………………….……. 206

9.2 Research Contributions ………………..………………… 208

9.3 Proposals Made in this Thesis ……. ……………………. 210

9.4 Performance Study …………………..…………………... 213

9.5 Future Directions …..……………………………..……… 218

9.1 Overview

The theme of the thesis is centered on the quality of service in cloud

scheduling. Cloud computing is an innovative computing paradigm

designed to provide flexible and low cost way to deliver IT services

on-demand over the internet. Proper scheduling and load balancing of

the resources are required for efficient operations in the distributed

cloud environment. Since cloud computing is growing rapidly and

customers are demanding better performance and more services,

scheduling of the cloud resources that guarantees Quality of Service

(QoS) have become a very interesting and important area of research.

Hence developing scheduling policies that confine with the user's

practical needs and constraints would be extremely useful in cloud

virtual machine systems. Makespan, cost, efficient load balancing

with stability, scalability, and energy consumption are important

factors for providing good QoS in the cloud resource allocation

Chapter 9 Conclusions and Contributions

207

process. Also, the scheduling policy will be beneficial to both service

providers as well as customers. It should also allocate adequate

resources for the best performance of user applications and to meet

service level agreements while considering the energy efficiency of a

cloud data center. Considering these factors we have designed and

developed QoS oriented scheduling policies that will consider

minimization of makespan, cost, energy consumption and SLA

violations with improved stability and scalability in this thesis. The

experimental results proved the efficiency of the proposed methods.

The major findings in this thesis are described below. We have done

a comprehensive survey about various scheduling methods proposed

for cloud and identified shortfalls and need for improvement in

achieving QoS. In the first method we have improved the QoS

through the reduction in makespan by an efficient VM placement

method. The second method handled makespan-migrations to

improve QoS. From these we can conclude that quality in the cloud

can be improved with efficient makespan-migrations methods.

Our next finding is that active physical machine clustering improves

the energy efficiency of the data centers. Since clustering improves

resource utilization, unused or idle physical servers can be switched

off and they can be reintroduced when the workload increases, thus

improving energy efficiency.

When the workload increases in a physical server there will be

performance interference due to the sharing of common resources.

We have modeled a mathematical equation for the total load on a

system considering the parasitic load due to interference. Based on

this, a regression model is developed to achieve QoS in the cloud by

Chapter 9 Conclusions and Contributions

208

controlling frequent migrations. Thus this method improved the

stability in the cloud.

SLA enforcement can be done through auto scaling mechanism in the

cloud. For this, we have used the principle of locality property of

Petri Net for effective scaling decisions to achieve QoS. Another

finding of this thesis is the controlling of SLA violations through the

enforcement of penalty and the use of a workload prediction

mechanism.

9.2 Research Contributions

Designed and developed QoS guaranteed scheduling mechanism for

cloud. The research contribution of the thesis consists of:

 Makespan is one of the important parameters in achieving

QoS in the cloud. We have developed VM placement scheme

to handle makespan. This scheme also minimizes the storage

requirement as well as power consumption.

 Cloud scheduling is an NP-hard problem. Hence, intelligent

methods are needed to arrive at near optimal solutions to

mitigate the issues related to the dynamic nature of cloud

resources. We have successfully developed and tested hybrid

method based on an evolutionary algorithm for VM-migration

through load balancing. This method minimized makespan

and imbalance in the cloud ecosystem.

 Cloud server farms consume huge energy. Some of the

machines may be in an over loaded or under loaded stage. For

energy efficiency, better energy management policies are

needed. In order to address this energy concern, this thesis

Chapter 9 Conclusions and Contributions

209

contributed an energy efficient clustered load balancing

mechanism for server farms promoting green computing. It

improved energy efficiency through active physical server

clustering based load balancing.

 In physical cloud, the total computation power of a physical

machine cannot be used due to some interference created by

the sharing of common resources. It also results in creating a

parasitic load on the system. We have developed a novel

interference aware prediction model to enhance the stability in

the cloud ecosystem. This mechanism reduced the

performance interference in the cloud datacenter with the aid

of an optimal prediction mechanism. This mechanism

improved the performance of the service provider by

predicting optimal threshold range for the maximum

efficiency for physical servers.

 Maintaining conditions in the SLA is a major step in

achieving QoS in the cloud. We have developed an SLA

enforcement mechanism with auto scaling. This dynamic

provisioning system with scaling policy reduced makespan,

number of SLA violations, penalty cost and maximizes profit.

The development of a Petri Net model for the cloud to

enhance QoS is another contribution of this thesis.

 The methods proposed in this thesis also address the load

balancing and reduced imbalance due to frequent migrations

happening in the cloud. We have successfully developed and

tested the models that reduce frequent migrations thereby

achieving better load balancing and increased stability in the

cloud datacenters.

Chapter 9 Conclusions and Contributions

210

 Finally, developed an integrated SLA enforcement scheme

that will consider makespan, migrations, SLA and cost with

the aid of a prediction model. The incorporated prediction

model is based on the past usage pattern and forecasts future

SLA violations due to fluctuating workload. Based on these

forecasts appropriate load balancing and scaling decisions are

carried out, which reduced cost, makespan and SLA

violations. This method also improved system stability due to

the scaling mechanism by limiting frequent migrations. All

our contributions mentioned above resulted in better QoS

delivery in the cloud.

9.3 Proposals Made in this Thesis

In this section, we highlight how different chapter's progress to

accomplish different objectives of the thesis and the difference between

the outcomes of each proposal made in the thesis.

The proposed works mainly deal with the enhancement of cloud

scheduling process to improve the quality of service. Makespan is an

important factor in achieving quality in the cloud environment. The first

method proposed is to enhance the makespan with the maximization of

available resources. For handling makespan it effectively used Best-fit –

Remaining-fit strategy. It also capable to minimizes the storage

overhead. The experiments have proven that this method is capable to

maintain QoS.

The second method proposed is based on load balancing which handles

makespan through migrations. Since makespan is an incredible

parameter for QoS satisfaction, considering it with migration strategy

Chapter 9 Conclusions and Contributions

211

produces improvement in the scheduling process. Here, the power of

swarm intelligence is used to reduce makespan and VM migrations thus

it achieved quality. The experimental result obtained proved that the

proposed scheme attained the objective to enhance the makespan.

Cloud datacenters contain several physical servers that consume a huge

amount of electricity. Reducing energy usage is a good move toward

green computing. The third technique is a physical sever clustering

mechanism for improving energy efficiency. In this load balancing

technique, the number of active machines can be reduced. If the

currently active servers not enough to meet the QoS requested by the

customer, then only it considers an inactive idle servers. The clustering

of active physical machines and energy aware virtual machine migration

reduces energy consumption.

The fourth method is to enhance system stability through an interference

aware mechanism. If we have developed a proper prediction mechanism

to know the optimum load that can be processed at a server, the overall

system performance can be improved. i.e., if we know the optimum

workload that can be processed at a server based on the currently

available processing power, the system can avoid frequent virtual

machine migrations. Thus the system achieves stability by limiting

frequent migrations and respective performance degradation. Our

proposed method is capable to achieve system stability through the

prediction mechanism. The prediction gives a prior knowledge about the

workload to be handled by a server. For this model, we have formulated

a novel regression model for parasitic load due to interference. The real

implementation and obtained results proved that the proposed

mechanism accomplished the objective.

Chapter 9 Conclusions and Contributions

212

The fifth mechanism deals with SLA enforcement with auto scaling

mechanism. Here auto scaling of resources is adopted to avoid violations

in the SLA conditions. To enforce SLA, the penalty is applied in the

case of any breaches in agreed conditions. If the penalty is imposed for

violations in the SLA conditions, then service providers are keen in

maintaining the agreed QoS. To assist auto scaling process a Petri Net

model for cloud is also designed in this method. We have employed

principle of locality to improve the auto scaling process. Auto scaling

again reduces the migrations, thus it enhances the system stability factor.

The timely scaling mechanism helps to reduce SLA breaches so that

profit of the service provider can be increased. Thus our proposed

scheme adheres with the objective of the thesis.

The sixth technique again addresses the SLA enforcement, with an

integrated approach to achieve good quality of service. This method

considers makespan, SLA, cost with penalty, scalability and stability.

Here the financial obligations due to SLA violations are calculated

before for making scaling decisions. The probability of SLA violations

and penalty is calculated for this purpose. The impact of workload on

scalability is also a factor to maintain QoS. So an optimal scheduling

mechanism with load, system stability and cost is designed in this

technique to cope with SLA and cost.

The fundamental goal of the thesis was to design and development of

QoS guaranteed cloud scheduling techniques with performance

improvement in terms of makespan, energy efficiency, stability, SLA

enforcement, and cost. In this thesis, a progressive approach was

followed to accomplish this objective.

Chapter 9 Conclusions and Contributions

213

9.4 Performance Study

In this section we have highlighted a detailed performance analysis of

the proposals made in the thesis.

Chapter 2 presented a comprehensive review in the area of resource

allocation in cloud computing. This review has offered promising

changes in this area. It identified highlights and limitations of

different methods for resource allocation including scheduling, load

balancing and VM placement. The analysis of current literatures has

assisted in finding gaps and identifying research challenges that have

clarified the direction of this thesis. Chapter 2 also identified the

metrics to evaluate the performance of the system.

The Chapter 3 proposed Bin packing based algorithm to minimize

makespan and maximize resource utilization in a cloud datacenter. It

also focused on the profit of a cloud service provider. It proposed a

Best-fit – Remaining-fit strategy that efficiently places the virtual

machines to minimum number of active physical servers. The jobs

are scheduled using Best-fit approach. The cloud broker employs

Remaining-fit method for VM placement.

Here we have considered each PMs in the datacenter are bins. The

VMs requested by the customer, are the objects; which are to be filled

in the bin. Our algorithm attempts to minimize the number of PMs

required for placing customer requested VMs. At the same time the

algorithm also aims to reduce makespan. This method consists of two

phases. In the first phase the jobs are submitted to the cloud through a

cloud broker using Best-fit method. In this step, the jobs are sorted in

ascending order depending on the processing power required. The

Chapter 9 Conclusions and Contributions

214

available VMs are sorted in a list based on their processing power.

Then the cloud broker places the jobs in the job queue to available

VMs. By the repeated simulated study we have proved that the Best-

fit – Worst-fit approach efficiently maps VMs to the active PMs, such

that makespan, power consumption and thereby computation cost are

minimized. Thus it’s a promising method to achieve better QoS in the

cloud.

In chapter 4 we have proposed and experimented a bee colony

algorithm for makespan improvement through efficient load

balancing in cloud. In this method, we have used the power of swarm

intelligence algorithm to remove the tasks from overloaded servers

and migrated these removed tasks to the most appropriate

underutilized or under loaded servers. This migration policy also

considered priority of the tasks in the waiting queue. The tasks with

least priority are selected as candidates for migration. Hence no tasks

are needed to wait a longer time in order to get processed and

improve customer satisfaction. In this proposed method honey bees

foraging behavior to find a food source is mapped into the cloud

environment for effective load balancing. Here tasks in the

overloaded machines are removed based on the priority. The task

with lowest priority is transferred to under loaded resources.

The proposed method works in four stages. In the first stage load on

each VM is calculated by adding all the workloads in a PM. In the

next stage, load balancing decision is taken based on the load

deviation. In the third stage, the VMs are grouped into overloaded

and under loaded VMs based on the load on it. In the final step, the

tasks are transferred to the under loaded VMs based on priority. Our

Chapter 9 Conclusions and Contributions

215

experimental results proved the efficiency of the proposed approach

in terms of low makespan, number of migrations and degree of

imbalance.

In order to harness the green energy concept, the importance of

improved energy efficiency is proposed in chapter 5. It proposed an

energy aware clustered load balancing system in which,

heterogeneous cloud resources are grouped into different clusters, by

using a partitioning based clustering algorithm. The method

progresses through three stages. First, it clusters active physical

servers into clusters based on the currently available processing

power. Since the search process is carried out only on a particular

cluster searching time will be reduced. Then an energy aware VM

migration is carried out. Finally, the tasks are assigned to these VMs

using process allocation algorithm. This chapter also used a Best-fit –

Worst-fit strategy to place the virtual machines to minimum number

of active physical servers. Here best-fit VM allocation is carried out

based on a weight value of the resource. This weight value depends

on its memory, storage and processing capacity of the resource. Then

the corresponding VM cluster is found out using this weight value. If

suitable resources are available, then allocate it, else goes to second

portion of that cluster and check the resource availability. If the VM

is unable to allocate in that cluster, then the method checks in other

clusters. Finally, again best-fit allocation strategy is used for

allocating processes to the VMs. Thus the Best-fit algorithm achieve

best VM placement. Here clustering reduced the number of resources

needs to be searched and hence reduced the total searching time

required for resource discovery and allocation. By the simulated

study we have proved that the proposed method reduced energy

Chapter 9 Conclusions and Contributions

216

consumption and thereby computation cost is minimized. The method

reduced time for resource discovery, resource allocation and response

time with power consumption.

Chapter 6 considered a new parameter called interference for

resource allocation in the cloud. It proposed an interference aware

prediction mechanism (PiA) for VM migration with auto scaling.

Since several VMs with different applications are running in a PM,

there will be performance degradation that causes interference in the

performance of the system due to sharing of common resources. The

proposed work is intended for the stability in the performance and

scalability of resources when the user workload increases beyond a

certain threshold value. So, VMs in a particular host can be migrated

to appropriate destinations based on the least interference values, for

the performance improvement of entire cloud system. This will

reduce the number of migrations in the cloud system.

The proposed method monitored system load and predicted the

interference using a mathematical regression model so as to aid in

future task allocation. The model also predicted the optimal load in

each server using the Pareto principle and threshold range. It also

helped in scaling decisions for achieving better QoS. Thus the

proposed model achieved automatic scaling that helped to handle

sudden load changes with precise prediction and minimum VM

migrations. Since there is only a rare chance of migrations, the

system achieves stability that improved overall performance of the

system compared to existing methods. We have tested the proposed

method on the real cloud environment in five different workload

conditions. We have tested and proved the accuracy of the prediction

Chapter 9 Conclusions and Contributions

217

mechanism. The experimental results and comparative analysis

validated the efficiency of the incorporated prediction mechanism in

the cloud scheduling.

SLA enforcement through an auto scaling mechanism is proposed in

chapter 7. It considered price variations, violations in deadline and

response time as SLA parameter in the market oriented cloud. In this

chapter, we have proposed scheduling and load balancing mechanism

based on Petri Net model with auto scaling. Here we have utilized the

properties of Petri Net to enhance the multi objective cloud

scheduling mechanism. In addition, we have considered a dynamic

spot pricing strategy with penalty if violations occur in the agreed

conditions. The method also supports auto scaling to ensure QoS. To

reduce frequent migrations, algorithm used principle of locality to

reduce imbalance in the cloud. By simulation results and comparative

analysis we have proved that the proposed model provides better

performance in terms of time, cost and migrations.

Finally, the chapter 8 proposed an integrated quality assured SLA

aware load balancing and scheduling algorithm for the cloud

environment with cost consideration. This method considers

processing power, memory requirement, bandwidth and cost as the

SLA parameters. We have also proposed a prediction model based on

the past usage pattern and that aims to provide optimal resource

management without the violations of the agreed service level

conditions in cloud datacenters. It considered SLA in both initial

scheduling stage and in the load balancing stage and also, it looks

into different objectives to achieve minimum makespan, minimum

degree of imbalance and the minimum number of SLA violations

Chapter 9 Conclusions and Contributions

218

with reduced cost. The experimental results proved the effectiveness

of the proposed system compared to other state-of-art algorithms in

terms of cost, makespan, SLA violations and stability.

Thus this thesis designed and developed QoS guaranteeing

scheduling methodologies to improve cloud performance while

considering makespan, stability with better load balancing,

scalability, cost, and energy efficiency with service level agreements.

9.5 Future Directions

As one tries to derive the further directions of future research form

the results summarized in the present thesis, it turns out that the

scheduling and resource allocation in cloud is a live problem on

account of the diverse requirements of applications and user needs.

The world is moving towards Internet of Things (IoT)

implementations. That data disseminated from these IoT devices is

huge and more cloud implementations are needed to handle the data

and applications. This scenario leads to the Cloud of Things (CoT)

situation. The algorithms and methods developed in this is thesis can

be extended to handle this scenario.

219

REFERENCES

1. Peter M. Mell and Timothy Grance, ―The NIST definition of cloud

computing‖, Technical Report, SP 800-145, National Institute of

Standards & Technology, USA 2011.

2. Rajkumar Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic,

―Cloud computing and emerging it platforms: Vision, hype, and

reality for delivering computing as the 5th utility‖, Future Generation

computer systems, Vol. 25, No. 6, pp.599–616, 2009. Elsevier.

3. Rajkumar Buyya, Christian Vecchiola and S. Thamarai Selvi,

―Mastering Cloud Computing: Foundations and Applications

Programming‖, Waltham, MA: 2013, Elsevier.

4. ―Google Apps‖, Available: [Online]. https://apps.google.com/

(accessed on 24/12/2018).

5. ―Google App Engine‖, Available: [Online]. https:

//appengine.google.com/ (accessed on 24/12/2018).

6. ―Microsoft Azure‖, Available: [Online]. https: //azure.microsoft.com/

(accessed on 24/12/2018).

7. ―Oracle Cloud‖, Available: [Online]. https://cloud.oracle.com/

(accessed on 24/12/2018).

8. ―force.com‖, Available: [Online]. https://www.salesforce.com/

(accessed on 24/12/2018).

9. ―GoGrid‖, Available: [Online]. https://www.rackspace.com/

(accessed on 24/12/2018).

10. ―Amazon Elastic Cloud EC2‖, Available: [Online].

https://aws.amazon.com/ec2/ (accessed on 24/12/2018).

11. ―Eucalyptus cloud‖, Available: [Online].

https://www.eucalyptus.cloud/ (accessed on 24/12/2018).

References

220

12. ―Flexiscale cloud‖, Available: [Online]. http://www.flexiscale.com/

(accessed on 24/12/2018).

13. ―Rackspace cloud‖, Available: [Online]. https://www.rackspace.com/

(accessed on 24/12/2018).

14. Linlin Wu and Rajkumar Buyya, "Service Level Agreement (SLA) in

Utility Computing Systems", CoRR, pp.1-27, 2010. IGI.

15. Bhaskar Prasad Rimal and Martin Maier, ―Workflow Scheduling in

Multi-Tenant Cloud Computing Environments‖, IEEE Transactions

on Parallel and Distributed Systems, Vol.28, No.1, pp.290-304,

2017.

16. Walter Cerroni and Flavio Esposito, ―Optimizing Live Migration of

Multiple Virtual Machines‖, IEEE Transactions on Cloud Computing,

Vol. 6, Issue: 4, pp.1096 -1109, 2018.

17. Huandong Wang, Yong Li, Ying Zhang and Depeng Jin, ―Virtual

Machine Migration Planning in Software-Defined Networks‖,

Proceedings of the IEEE Conference on Computer Communication,

pp.487-495, 2015. IEEE.

18. Yi Yao, Jiayin Wang, Bo Sheng, Chiu C. Tan and Ningfang Mi,

―Self-Adjusting Slot Configurations for Homogeneous and

Heterogeneous Hadoop Clusters‖, IEEE Transactions on Cloud

Computing, Vol. 5, No. 2, pp.344-357, 2017.

19. Hamed Shah-Mansouri, Vincent W. S. Wong and Robert Schober,

―Joint Optimal Pricing and Task Scheduling in Mobile Cloud

Computing Systems‖, IEEE Transactions on Wireless

Communications, Vol. 16, No. 8, 2017.

20. Simon S. Woo and Jelena Mirkovic, ―Optimal application allocation

on multiple public clouds‖, Computer Networks, Vol. 68, pp.138-148,

2014. Elsevier.

21. Haitao Yuan, Jing Bi, Wei Tan and Bo Hu Li, ―Temporal Task

Scheduling With Constrained Service Delay for Profit Maximization

References

221

in Hybrid Clouds‖, IEEE Transactions on Automation Science and

Engineering, Vol. 14, No. 1, 2017.

22. Jincy Joseph and K.R. Remesh Babu, ―Scheduling to Minimize

Context Switches for Reduced Power Consumption and Delay in the

Cloud‖, Proceedings of the International Conference on Micro-

Electronics and Telecommunication Engineering, pp.545-549, 2016.

IEEE.

23. Xianling Meng, Wei Wang and Zhaoyang Zhang, ―Delay-

Constrained Hybrid Computation Offloading with Cloud and Fog

Computing‖, IEEE Access, Vol. 5, pp.21355-21367, 2017.

24. Hao Wu, Xiayu Hua, Zheng Li and Shangping Ren, ―Resource and

Instance Hour Minimization for Deadline Constrained DAG

Applications Using Computer Clouds‖, IEEE Transactions on Parallel

and Distributed Systems, Vol. 27, No. 3, pp.885-899, 2016.

25. Kanchana Viriyapant and Sucha Smanchat, ―A Deadline-constrained

Scheduling for Dynamic Multi-instances Parameter Sweep

Workflow‖, Proceedings of the 15
th
 International Conference on

Computer and Information Science (ICIS), pp.1-6, 2016. IEEE/ACIS.

26. Xiaoping Li, Lihua Qian and Rub´en Ruiz, ―Cloud workflow

scheduling with deadlines and time slot availability‖, IEEE

Transactions on Services Computing, Vol.11, pp.329-340, Issue: 2,

2018.

27. Yaser Mansouri, Adel Nadjaran Toosi and Rajkumar Buyya, ―Cost

Optimization for Dynamic Replication and Migration of Data in

Cloud Data Centers‖, IEEE Transactions on Cloud Computing, Vol.

PP, pp.(1-1), 2017.

28. Moussa Ehsan, Karthiek Chandrasekaran, Yao Chen and Radu Sion,

―Cost-Efficient Tasks and Data Co-Scheduling with Afford Hadoop‖,

IEEE Transactions on Cloud Computing, Vol. PP, pp.(1-1), 2017.

29. Keke Gai, Meikang Qiu and Hui Zhao, ―Cost-Aware Multimedia

Data Allocation for Heterogeneous Memory Using Genetic

References

222

Algorithm in Cloud Computing‖, IEEE Transactions on Cloud

Computing, Vol. PP, pp.(1-1), 2016.

30. Sowmya Karunakaran and Rangaraja P. Sundarraj, ―Bidding

Strategies for Spot Instances in Cloud Computing Markets‖, IEEE

Internet Computing, Vol. 19, Issue: 3, 2015.

31. Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang and

Xinyu Wang, ―How to Bid the Cloud‖, SIGCOMM'15, Proceedings

of the 2015 ACM Conference on Special Interest Group on Data

Communication, pp.71-84, 2015.

32. Maristella Ribs, C.G.Furtado, José Neuman de Souza, Giovanni

Cordeiro Barroso, Antão Moura, Alberto S Lima and Flávio R.C

Sousa, ―A Petri net-based decision-making framework for assessing

cloud services adoption: The use of spot instances for cost reduction‖,

Journal of Network and Computer Applications Vol. 57, pp.102-118,

2017. Elsevier.

33. PeiYun Zhang and Meng Chu Zhou, ―Dynamic Cloud Task

Scheduling Based on a Two-Stage Strategy‖, IEEE Transactions on

Automation Science and Engineering, Vol.15, Issue: 2, pp.772-783,

2018.

34. Lina Ni, Jinquan Zhang, Changjun Jiang, Chungang Yan and Kan Yu,

―Resource Allocation Strategy in Fog Computing Based on Priced

Timed Petri Nets‖, IEEE Internet of Things Journal, Vol. 4, No. 5,

pp.772–783, 2017.

35. Yi-Li Zhang and Jin-Bai Zhang, ―Schedule model in a cloud

computing based on credit and cost‖, Computer Science, Technology

and Application, pp.381-388, 2016. World Scientific.

36. Neethu B and K.R Remesh Babu, ―Dynamic Resource Allocation in

Market Oriented Cloud using Auction Method‖, Proceedings of

International Conference on Micro-Electronics and

Telecommunication Engineering, pp.145-150, 2016. IEEE.

References

223

37. Mohammad Aazam, Eui-Nam Huh, Marc St-Hilaire, Chung-Horng

Lung and Ioannis Lambadaris, ―Cloud Customer’s Historical Record

Based Resource Pricing‖, IEEE Transactions on Parallel and

Distributed Systems, Vol. 27, No. 7, pp.1929 -1940, 2016.

38. Songyun Wang, Zhuzhong Qian, Jiabin Yuan and Ilsun You, ―A

DVFS Based Energy-Efficient Tasks Scheduling in a Data Center‖,

IEEE Access, Vol. 5, pp.13090 -13102, 2017.

39. Yibin Li, Min Chen, Wenyun Dai and Meikang Qiu, ―Energy

Optimization With Dynamic Task Scheduling Mobile Cloud

Computing‖, IEEE Systems Journal, Vol. 11, No. 1, pp.96-105, 2017.

40. Hancong Duan, Chao Chen, Geyong Min and Yu Wu, ―Energy-

Aware Scheduling of Virtual Machines in Heterogeneous Cloud

Computing Systems‖, Future Generation Computer Systems, Vol. 74,

pp.142-150, 2017. Elsevier.

41. Li Shi, Zhemin Zhang, and Thomas Robertazzi, ―Energy-Aware

Scheduling of Embarrassingly Parallel Jobs and Resource Allocation

in Cloud‖, IEEE Transactions on Parallel and Distributed Systems,

Vol. 28, No. 6, pp.1607-1620, 2017.

42. Weiwen Zhang and Yonggang Wen, ―Energy-efficient Task

Execution for Application as a General Topology in Mobile Cloud

Computing‖, IEEE Transactions on Cloud Computing,Vol.6, Issue: 3,

pp.707-719, 2018.

43. Sonia Yassa, Rachid Chelouah, Hubert Kadima and Bertrand

Granado, ―Multi-Objective Approach for Energy-Aware Workflow

Scheduling in Cloud Computing Environments‖, The Scientific

World Journal, Vol. 2013, Article ID 350934, 13 pages, 2013.

Hindawi.

44. R. K. Jena, ―Multi Objective Task Scheduling in Cloud Environment

Using Nested PSO Framework‖, Procedia Computer Science, Vol.

57, pp.1219-1227, 2015, Elsevier.

References

224

45. Orachun Udomkasemsub, Li Xiaorong and Tiranee Achalakul, ―A

Multiple-Objective Workflow Scheduling Framework for Cloud Data

Analytics‖, Proceedings of the Ninth International Joint Conference

on Computer Science and Software Engineering (JCSSE), pp.391-

398, 2012. IEEE.

46. Danlami Gabi, Abdul Samad Ismail, Anazida Zainal and Zalmiyah

Zakaria, ―Scalability-aware Scheduling Optimization Algorithm for

Multi-Objective Cloud Task Scheduling Problem‖, Proceedings of the

6
th
 ICT International Student Project Conference (ICT-ISPC), pp.1-6,

2017. IEEE.

47. K. Muralitharan R. Sakthivel and Y.Shi, ―Multiobjective optimization

technique for demand side management with load balancing approach

in smart grid‖, Journal of Neuro computing, Vol. 177, pp.110-119,

2016. Elsevier.

48. Heyang Xu, Bo Yang, Weiwei Qi and Emmanuel Ahene, ―A Multi-

objective Optimization Approach to Workflow Scheduling in Clouds

Considering Fault Recovery‖, KSII Transactions on Internet and

Information Systems, Vol. 10, No. 3, pp.976-995, 2016.

49. C. Saravanakumar and C. Arun, ―Efficient Idle Virtual Machine

Management for Heterogeneous Cloud using Common Deployment

Model‖, KSII Transactions on Internet and Information Systems Vol.

10, No. 4, pp.1501-1518, 2016.

50. Aissan Dalvandi, Mohan Gurusamy and Kee Chaing Chua,

―Application Scheduling, Placement, and Routing for Power

Efficiency in Cloud Data Centers‖, IEEE Transactions on Parallel and

Distributed Systems, Vol. 28, Issue: 4, pp.947-960, 2017.

51. Shangguang Wang, Zhipiao Liu, Zibin Zheng, Qibo Sun and

Fangchun Yang, ―Particle Swarm Optimization for Energy-Aware

Virtual Machine Placement Optimization in Virtualized Data

Centers‖, Proceedings of the 19
th
 IEEE International Conference on

Parallel and Distributed Systems, pp.102-109, 2013.

References

225

52. Konstantinos Tsakalozos, Vasilis Verroios, Mema Roussopoulos and

Alex Delis, ―Live VM Migration under Time-Constraints in Share-

Nothing IaaS-Clouds‖, IEEE Transactions on Parallel and Distributed

Systems, Vol. 28, No. 8, pp.2285-2298, 2017.

53. Weiwei Kong, Yang Lei and Jing Ma, ―Virtual machine resource

scheduling algorithm for cloud computing based on auction

mechanism‖, International Journal Optik, Vol. 127, pp.5099-5104,

2016. Elsevier.

54. Zhifeng Zhong, Kun Chen, Xiaojun Zhai and Shuange Zhou, ―Virtual

Machine-Based Task Scheduling Algorithm in a Cloud Computing

Environment‖, Tsinghua Science and Technology, Vol. 21, No. 6,

pp.660-667, 2016. IEEE.

55. Seyed Ebrahim Dashti and Amir Masoud Rahmani, ―Dynamic VMs

placement for energy efficiency by PSO in cloud computing‖, Journal

of Experimental & Theoretical Artificial Intelligence, Vol. 28, Issue:

1-2, pp.97-112, 2016. Taylor & Francis.

56. Shaobin Zhan and Hongying Huo, ―Improved PSO-based Task

Scheduling Algorithm in Cloud Computing‖ Journal of Information

& Computational Science, Vol. 9, No. 13, pp.3821-3829, 2012.

World Academic Press.

57. Jianen Yan, Hongli Zhang, Haiyan Xu and Zhaoxin Zhang, ―Discrete

PSO-based workload optimization in virtual machine placement‖,

Personal and Ubiquitous Computing, Vol. 22: 589, pp.589-596, 2018.

Springer.

58. Yunliang Chen, Lizhe Wang, Xiaodao Chen, Rajiv Ranjan, Albert Y,

Zomaya, Yuchen Zhou and Shiyan Hu, ―Stochastic Workload

Scheduling for Uncoordinated Datacenter Clouds with Multiple QoS

Constraints‖, IEEE Transactions on Cloud Computing, Vol. PP,

pp.(1-1), 2016.

59. Nikos Tziritas, Samee U. Khan, Thanasis Loukopoulos, Spyros Lalis,

Cheng-Zhong Xu, Keqin Li and Albert Y. Zomaya, ―Online Inter-

References

226

Datacenter Service Migrations‖, IEEE Transactions on Cloud

Computing, Vol. PP, pp.(1-1), 2017.

60. Fahimeh Ramezani, Jie Lu and Farookh Khadeer Hussain, ―Task-

Based System Load Balancing in Cloud Computing Using Particle

Swarm Optimization‖, International Journal of Parallel Programming,

Vol. 42, Issue: 5, pp.739-754, 2014. Springer.

61. Hsu-Yang Kung, Ting-HuanKuo, Chi-Hua Chen and Yu-Lun Hsu,

―Two-stage cloud service optimisation model for cloud service

middleware platform‖, The Journal of Engineering, Vol. 2018, Issue:

3, pp. 155-161, 2018. IET.

62. Yadaiah Balagoni and Rajeswara Rao, ―A Cost-effective SLA-Aware

Scheduling for Hybrid Cloud Environment‖, Proceedings of the

International Conference on Computational Intelligence and

Computing Research, pp.15-17, 2016. IEEE.

63. Bahman Keshanchi and Nima Jafari Navimipour, ―Priority-Based

Task scheduling in the Cloud Systems Using a Memetic Algorithm‖,

Journal of Circuits, Systems, and Computers, Vol. 25, No. 10, 2016.

World Scientific.

64. P. K. Suri and Sunita Rani, ―Simulator for Priority based Scheduling

of Resources in Cloud Computing‖, International Journal of

Computer Applications, Vol. 146, No.14, pp.10-15, 2016.

65. D. I. George Amalarethinam and S Kavitha, ―Priority based

Performance Improved Algorithm for Meta-task Scheduling in Cloud

environment, Proceedings of the 2
nd

 International Conference on

Computing and Communications Technologies (ICCCT’17), pp.69-

73, 2017. IEEE.

66. Mohamed Mohamed, Mourad Amziani, Djamel Belaïd, Samir Tata

and Tarek Melliti, ―An autonomic approach to manage elasticity of

business processes in the Cloud‖, Future Generation Computer

Systems , Vol. 50, pp.49-61, 2015. Elsevier.

References

227

67. Jiali You, Nannan Qiao, Jinlin Wang, Guoqiang Zhang,Yiqiang

Sheng, Haojiang Deng and Xue Liu, ―An On-Site Elastic

Autonomous Service Network with Efficient Task Assignment‖,

Proceedings of the 41
st
 Conference on Local Computer Networks

Workshops, pp.42-29, 2016. IEEE.

68. Xiaomin Zhu, Ji Wang, Hui Guo, Dakai Zhu, Laurence T. Yang and

Ling Liu, ―Fault Tolerant Scheduling for Real-Time Scientific

Workflows with Elastic Resource Provisioning in Virtualized

Clouds‖, IEEE Transactions on Parallel and Distributed Systems,

Vol. 27, No. 12, pp.3501-3517, 2016.

69. Kwang Mong Sim, ―Agent-based Approaches for Intelligent

Intercloud Resource Allocation‖, IEEE Transactions on Cloud

Computing, Vol. PP, pp.(1-1), 2016.

70. Anwesha Mukherjee, Debashis De and Deepsubhra Guha Roy, ―A

Power and Latency Aware Cloudlet Selection Strategy for Multi-

Cloudlet Environment‖, IEEE Transactions on Cloud Computing,

Vol. 7, Issue: 1, pp.141-154, 2019.

71. XQiu, Y Dai, Y Xiang and L Xing, ―Correlation Modeling and

Resource Optimization for Cloud Service with Fault Recovery‖,

IEEE Transactions on Cloud Computing, Vol. PP, pp.(1-1), pp.1-13,

2017.

72. Xiaolin Chang, Ruofan Xia, Jogesh K. Muppala, Kishor S. Trivedi

and Jiqiang Liu, ―Effective Modeling Approach for IaaS Data Center

Performance Analysis under Heterogeneous Workload‖, IEEE

Transactions on Cloud Computing, Vol. 6 Issue: 4, pp.991-1003,

2016.

73. Haiying Shen, ―RIAL: Resource Intensity Aware Load Balancing in

Clouds‖, IEEE Transactions on Cloud Computing, Vol. PP, pp.(1-1),

2017.

74. Binglai Niu, Yong Zhou, Hamed Shah-Mansouri and Vincent W. S.

Wong, ―A Dynamic Resource Sharing Mechanism for Cloud Radio

References

228

Access Networks‖, IEEE Transactions on Wireless Communications,

Vol. 15, No. 12, pp. 8325-8338, 2016.

75. Cong Wang, Kui Ren and Jia Wang, ―Secure and Practical

Outsourcing of Linear Programming in Cloud Computing‖,

Proceedings of INFOCOM’ 11, pp.820-828, 2011. IEEE.

76. Ali Pahlevan, Xiaoyu Qu, Marina Zapater and David Atienza,

―Integrating Heuristic and Machine-Learning Methods for Efficient

Virtual Machine Allocation in Data Centers‖, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol.37,

Issue: 8, pp.1667-1680, 2018.

77. Cong Wang, Kui Ren and Jia Wang, ―Secure Optimization

Computation Outsourcing in Cloud Computing: A Case Study of

Linear Programming‖, IEEE Transactions on Computers, Vol. 65,

Issue: 1, pp.216-229, 2016.

78. Bin Xiang, Bibo Zhang and Lin Zhang, ―Greedy-Ant: Ant Colony

System-Inspired Workflow Scheduling for Heterogeneous

Computing‖, IEEE Access, Vol. 5, pp.11404-11412, 2017.

79. Anton Beloglazov, Jemal Abawajy and Rajkumar Buyya, ―Energy-

aware resource allocation heuristics for efficient management of data

centers for Cloud computing‖, Future Generation Computer Systems,

Vol. 25, Issue: 5, pp.755-768, 2012. Elsevier.

80. Ali Al Buhussain, Robson E. De Grande and Azzedine Boukerche,

―Elasticity Based Scheduling Heuristic Algorithm for Cloud

Environments‖, Proceedings of the IEEE/ACM 20
th
 International

Symposium on Distributed Simulation and Real Time Applications,

pp.1-8, 2016. IEEE.

81. Yacine Kessaci, Nouredine Melab and El-Ghazali Talbi, ―A multi-

start local search heuristic for an energy efficient VMs assignment on

top of the OpenNebula cloud manager", Future Generation Computer

Systems, Vol. 36, pp. 237-256, 2014. Elsevier.

References

229

82. Jia Zhao, Kun Yang, Xiaohui Wei, Yan Ding, Liang Hu and Gaochao

Xu, ―A Heuristic Clustering-Based Task Deployment Approach for

Load Balancing Using Bayes Theorem in Cloud Environment‖, IEEE

Transactions on Parallel and Distributed Systems, Vol. 27, No. 2,

2016.

83. Shengjun Xue, Wenling Shi, and Xiaolong Xu, ―A Heuristic

Scheduling Algorithm based on PSO in the Cloud Computing

Environment‖, International Journal of u- and e- Service, Science and

Technology, Vol. 9, No. 1, pp.349-362, 2016. SERSC.

84. Syed Hamid Hussain Madni, Muhammad ShafieAbd Latiff,

Mohammed Abdullahi, Shafi'i Muhammad Abdulhamid and

Mohammed Joda Usman, ―Performance comparison of heuristic

algorithms for task scheduling in IaaS cloud computing

environment‖, PLOS ONE, Vol. 12, Issue: 5, pp.1-26, 2017.

85. Zhicheng Cai, Xiaoping Li and Jatinder N.D. Gupta, ―Heuristics for

Provisioning Services to Workflows in XaaS Clouds‖, IEEE

Transactions on Services Computing, Vol. 9, No. 2, 2016.

86. Chun-Wei Tsai, Wei-Cheng Huang, Meng-Hsiu Chiang, Ming-Chao

Chiang and Chu-Sing Yang, ―A Hyper-Heuristic Scheduling

Algorithm for Cloud‖, IEEE Transactions on Cloud Computing, Vol.

2, No. 2, 2014.

87. Shengxiang Yang and Sadaf Naseem Jat, ―Genetic Algorithms With

Guided and Local Search Strategies for University Course

Timetabling‖, IEEE Transactions on Systems, Man, and

Cybernetics—Part C: Applications and Reviews, Vol. 41, No. 1,

2011.

88. Yonghua Xiong, Suzhen Huang, Min Wu, Jinhua She and Keyuan

Jiang, ―A Johnson’s-Rule-Based Genetic Algorithm for Two-Stage-

Task Scheduling Problem in Data-Centers of Cloud Computing‖,

IEEE Transactions on Cloud Computing, Vol. PP, pp.(1-1), 2017.

References

230

89. Tawfeek MA, El-Sisi A, Keshk AE and Torkey FA, ―Cloud task

scheduling based on ant colony optimization‖, Proceedings of the 8
th

International Conference on Computer Engineering & Systems

(ICCES), pp.64-69. 2013. IEEE.

90. Pacini E, Mateos C and Carlos García Garinoad, ―Balancing

throughput and response time in online scientific clouds via ant

colony optimization‖, Advances in Engineering Software, Vol.84,

Issue C, pp.31-47, 2015. Elsevier.

91. Li K, Xu G, Zhao G, Dong Y and Wang D, ―Cloud task scheduling

based on load balancing ant colony optimization‖, Proceedings of the

Sixth Annual Chinagrid Conference, pp.3-9, 2011. IEEE.

92. Liu X, Zhan Z, Du K and Chen W, ―Energy aware virtual machine

placement scheduling in cloud computing based on ant colony

optimization‖, Proceedings of the Annual Conference on Genetic and

Evolutionary Computation (GECCO '14), pp.41-48, 2014. ACM.

93. Md Hasanul Ferdaus, Manzur Murshed, Rodrigo N. Calheiros and

Rajkumar Buyya, ―Virtual machine consolidation in cloud data

centers using ACO metaheuristic‖, Lecture Notes in Computer

Science, Vol. 8632. Cham Proceedings of the Euro-Par 2014 parallel

process, pp.306-317, 2014. Springer.

94. Y. Gao, H. Guan, Z. Qi, Y. Hou and L. Liu, ―A multi-objective ant

colony system algorithm for virtual machine placement in cloud

computing‖, Journal of Computer and System Sciences, Vol. 79,

Issue: 8, pp.1230-1242, 2013. Elsevier.

95. Quanwang Wu, Fuyuki Ishikawa, Qingsheng Zhu, Yunni Xia and

Junhao Wen, ―Deadline-constrained Cost Optimization Approaches

for Workflow Scheduling in Clouds‖, IEEE Transactions on Parallel

and Distributed Systems, Vol. 28, Issue: 12, pp.3401-342, 2017.

96. Ashish Gupta and Ritu Garg, ―Load Balancing Based Task

Scheduling with ACO in Cloud Computing‖, Proceedings of the

References

231

International Conference on Computer an Applications (ICCA),

pp.174-179, 2017. IEEE.

97. Asmae Benali, Bouchra El Asri and Houda Kriouile, ―A Pareto-based

Artificial Bee Colony and Product Line for Optimizing Scheduling of

VM on Cloud Computing‖, Proceedings of the International

Conference on Cloud Technologies and Applications (CloudTech),

pp.1-7, 2015. IEEE.

98. Kriti Agrawal and Priyanka Tripathi, ―Power aware Artificial Bee

Colony Virtual Machine Allocation for Private Cloud Systems‖,

Proceedings of the International Conference on Computational

Intelligence and Communication Networks (CICN), pp.947-950,

2015. IEEE.

99. Warangkhana Kimpan and Boonhatai Kruekaew, ―Heuristic Task

Scheduling with Artificial Bee Colony Algorithm for Virtual

Machines‖, Proceedings of the Joint 8
th
 International Conference on

Soft Computing and Intelligent Systems and 17
th
 International

Symposium on Advanced Intelligent Systems, pp.281-286, 2016.

IEEE.

100. An-ping Xiong and Chun-xiang Xu, ―Energy Efficient Multiresource

Allocation of Virtual Machine Based on PSO in Cloud Data Center,‖

Mathematical Problems in Engineering, Vol. 2014, pp.1-8, 2014.

Hindawi.

101. Solmaz Abdi, Seyyed Ahmad Motamedi and Saeed Sharifian, ―Task

Scheduling using Modified PSO Algorithm in Cloud Computing

Environment‖, Proceedings of the International Conference on

Machine Learning, Electrical and Mechanical Engineering

(ICMLEME'2014), pp.37-41, 2014. IEEE.

102. Entisar S. Alkayal, Nicholas R. Jennings and Maysoon F. Abulkhair,

―Efficient Task Scheduling Multi-Objective Particle Swarm

Optimization in Cloud Computing‖, Proceedings of the 41
st

References

232

Conference on Local Computer Networks Workshops, pp.17-24,

2016. IEEE.

103. Dinesh Kumar and Zahid Raza, ―A PSO based VM Resource

Scheduling Model for Cloud Computing‖, Proceedings of the

International Conference on Computational Intelligence &

Communication Technology, pp.213-219, 2015. IEEE.

104. Liu Z and Wang X, ―A PSO-based algorithm for load balancing in

virtual machines of cloud computing environment‖, Lecture Notes in

Computer Science, ICSI 2012, Advances in Swarm Intelligence, Vol.

7331, pp.142-147, 2012. Springer.

105. Shahrzad Aslanzadeh and Zenon Chaczko, ―Load balancing

optimization in cloud computing: Applying Endocrine-particale

swarm optimization‖, Proceedings of the International Conference on

Electro/Information Technology (EIT), pp.165-169, 2015. IEEE.

106. Juan J, Durillo, Vlad Nae and Radu Prodan, ―Multi-objective energy-

efficient workflow scheduling using list-based heuristics‖, Future

Generation Computer Systems, Vol. 36, pp. 221-236, 2014. Elsevier.

107. Jia Zhao, Liang Hu, Yan Ding, Gaochao Xu, Ming Hu, ―A Heuristic

Placement Selection of Live Virtual Machine Migration for Energy-

Saving in Cloud Computing Environment‖, PLoS ONE, 9(9),

e108275, 2014.

108. Xingquan Zuo, Guoxiang Zhang and Wei Tan, ―Self-Adaptive

Learning PSO-Based Deadline Constrained Task Scheduling for

Hybrid IaaS Cloud‖, IEEE Transactions on Automation Science and

Engineering, Vol. 11, No. 2, pp.564-573, 2014.

109. Hua He, Guangquan Xu, Shanchen Pang and Zenghua Zhao, ―AMTS:

Adaptive multi-objective task scheduling strategy in cloud

computing‖, China Communications, Vol. 13, Issue: 4, pp. 162 -171,

2016. IEEE.

110. Maria Alejandra Rodriguez and Rajkumar Buyya, ―Deadline Based

Resource Provisioning and Scheduling Algorithm for Scientific

References

233

Workflows on Clouds‖, IEEE Transactions on Cloud Computing,

Vol. 2, Issue 2, pp. 222 -235, 2014.

111. Lizheng Guo, Shuguang Zhao, Shigen Shen and Changyuan Jiang,

―Task Scheduling Optimization in Cloud Computing Based on

Heuristic Algorithm, Journal of Networks‖, Vol. 7, No. 3, pp.547-

553, 2012. Academy Publisher.

112. Pandey S, Wu L, Guru and Buyya R, ―A particle swarm optimization-

based heuristic for scheduling workflow applications in cloud

computing environments‖, Proceedings of the 24
th
 International

Conference on Advanced Information Networking and Applications,

pp.400-407, 2010. IEEE.

113. Zhangjun Wu, Ni Z, Gu L and Liu X, ―A revised discrete particle

swarm optimization for cloud workflow scheduling‖, Proceedings of

the International Conference on Computational Intelligence and

Security, pp.184-188, 2010, IEEE.

114. Nazia Anwar and Huifang Deng, ―A Hybrid Metaheuristic for Multi-

Objective Scientific Workflow Scheduling in a Cloud Environment‖,

Applied Sciences, 8, 538, 2018. MDPI.

115. Haitao Yuan, Jing Bi, Wei Tan, Meng Chu Zhou, Bo Hu Li and

Jianqiang Li, ―TTSA: An Effective Scheduling Approach for Delay

Bounded Tasks in Hybrid Clouds‖, IEEE Transactions on

Cybernetics, Vol. 47, No. 11, pp.3658-3668, 2017.

116. Gamal F. Elhady and Medhat A. Tawfeek, ―A Comparative Study

into Swarm Intelligence Algorithms for Dynamic Tasks Scheduling in

Cloud Computing‖, Proceedings of the Seventh International

Conference on Intelligent Computing and Information Systems

(ICICIS'15), pp.362-269, 2015. IEEE.

117. Danlami Gabi and Abdul Samad Ismail, ―Cloud Scalable Multi-

Objective Task Scheduling Algorithm for Cloud Computing Using

Cat Swarm Optimization and Simulated Annealing‖, Proceedings of

References

234

the 8
th
 International Conference on Information Technology ,

pp.1007-1012, 2017. IEEE.

118. Keng-Mao Cho, Pang-Wei Tsai, Chun-Wei Tsai and Chu-Sing Yang,

―A hybrid meta-heuristic algorithm for VM scheduling with load

balancing in cloud computing‖, Neural Computing and Applications,

Vol. 26, Issue: 6, pp.1297-1309, 2015. Springer-Verlag.

119. Wen X, Huang M and Shi J, ―Study on resources scheduling based on

ACO algorithm and PSO algorithm in cloud computing‖, Proceedings

of the 11
th
 International Symposium on Distributed Computing and

Applications to Business, Engineering & Science, pp.219-222, 2012.

IEEE.

120. Kanwarpreet Kaur and Amardeep Kaur, ―A hybrid approach of load

balancing through VMs using ACO, Min Max and genetic

algorithm‖, Proceedings of the 2
nd

 International Conference on Next

Generation Computing Technologies (NGCT), pp.615-620, 2016.

IEEE.

121. Sheng-Jun Xue and Wu Wu, ―Scheduling Workflow in Cloud

Computing Based on Hybrid Particle Swarm Algorithm‖,

TELKOMNIKA, Vol.10, No.7, pp.1560-1566, 2012.

122. Shaobin Zhan and Hongying Huo, ―Improved PSO-based Task

Scheduling Algorithm in Cloud Computing‖, Journal of Information

& Computational Science, Vol. 9, No.13, pp.3821-3829, 2012.

123. D. Kusic, J. Kephart, J. Hanson, N. Kandasamy and G. Jiang, ―Power

and performance management of virtualized computing environments

via lookahead control‖, Proceedings of the International Conference

on Autonomic Computing, pp.3-12, 2008. IEEE.

124. E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti and D.

Lorenz, ―Guaranteeing high availability goals for virtual machine

placement‖, Proceedings of 31
st
 International Conference on

Distributed Computing Systems, pp.700 -709, 2011. IEEE.

References

235

125. J. T. Piao and J. Yan, ―A network-aware virtual machine placement

and migration approach in cloud computing‖, Proceedings of the 9
th

International Conference on Grid and Cloud Computing (GCC

2010), pp.87-92, 2010. IEEE.

126. U. Sharma, P. Shenoy, S. Sahu and A. Shaikh, ―A cost-aware

elasticity provisioning system for the cloud‖, Proceedings of 31
st

International Conference on Distributed Computing Systems, pp.559-

570, 2011. IEEE.

127. S. Chaisiri, B.-S. Lee and D. Niyato, ―Optimal virtual machine

placement across multiple cloud providers‖, Proceedings of the IEEE

Asia-Pacific Services Computing Conference, pp.103-110, 2009.

IEEE.

128. Guofu Feng, Saurabh Garg, Rajkumar Buyya and Wenzhong Li,

―Revenue maximization using adaptive resource provisioning in

cloud computing environments‖, Proceeding GRID '12 Proceedings

of the ACM/IEEE 13th International Conference on Grid Computing,

pp. 192-200, 2012. ACM.

129. Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F.

De Rose and Rajkumar Buyya, ―CloudSim: a toolkit for modeling

and simulation of cloud computing environments and evaluation of

resource provisioning algorithms‖, Software: Practice and

Experience, Vol. 41, Issue: 1, pp.23-50, 2011. John Wiley & Sons

130. Dervis Karaboga and Bahriye Basturk, ―A powerful and efficient

algorithm for numerical function optimization: artificial bee colony

(ABC) algorithm‖, Journal of Global Optimization, Vol. 39, pp.459-

471, 2007. Springer.

131. Shridhar G. Domanal and G. Ram Mohana Reddy, ―Load Balancing

in Cloud Computing Using Modified Throttled Algorithm‖,

Proceedings of International Conference on Cloud Computing in

Emerging Markets (CCEM), pp.1-5, 2013. IEEE.

References

236

132. Shridhar G. Domanal and G. Ram Mohana Reddy, ―Optimal Load

Balancing in Cloud Computing By Efficient Utilization of Virtual

Machines‖, Proceedings of Sixth International Conference on

Communication Systems and Networks (COMSNETS), pp.1-4,

2014. IEEE.

133. Agraj Sharma and Sateesh K Peddoju, ―Response Time Based Load

Balancing in Cloud Computing‖, Proceedings of International

Conference on Control, Instrumentation, Communication and

Computational Technologies (ICCICCT), pp.1287-1293, 2014. IEEE.

134. Gulshan Soni and Mala Kalra, ―A Novel Approach for Load

Balancing in Cloud Data Center‖, Proceedings of International

Conference on Advance Computing Conference (IACC), pp.807-812,

2014. IEEE.

135. Santanu Dam, Gopa Mandal, Kousik Dasgupta and Paramartha Dutta,

―An Ant Colony Based Load Balancing Strategy in Cloud

Computing‖, Advanced Computing, Networking and Informatics-

Vol. 2. Smart Innovation, Systems and Technologies, Vol. 28,

pp.403-413, 2014. Springer.

136. Mohammadreza M., Amir M.R and Anthony T.C, ―Cloud Light

Weight: a New Solution for Load Balancing in Cloud Computing‖,

Proceedings of International Conference on Data Science &

Engineering (ICDSE), pp. 44-50, 2014. IEEE.

137. Gaochao Xu, Junjie Pang and Xiaodong Fu, ―A Load Balancing

Model Based on Cloud Partitioning for the Public Cloud‖, Journal of

Tsinghua Science and Technology, pp.34-39, 2013. IEEE.

138. M. Randles, D. Lamb and A. Taleb-Bendiab, ―A comparative study

into distributed load balancing algorithms for cloud computing‖,

WAINA '10 Proceedings of the IEEE 24
th
 International Conference

on Advanced Information Networking and Applications Workshops,

pp.551-556, 2010. IEEE.

References

237

139. Jing Yao and Ju-hou He, ―Load Balancing Strategy of Cloud

Computing based on Artificial Bee Algorithm‖, Proceedings of 8
th

International Conference on Computing Technology and Information

Management (ICCM), pp.185-189, 2012. IEEE.

140. Pooja Samal and Pranati Mishra, ―Analysis of variants in Round

Robin Algorithms for load balancing in Cloud Computing‖,

International Journal of Computer Science and Information

Technologies, Vol. 4, No. 3, pp. 416-419, 2013.

141. Ajit. M. and Vidya. G., ―VM Level Load Balancing in Cloud

Environment‖, Proceedings of IEEE Fourth International Conference

on Computing, Communications and Networking Technologies

(ICCCNT), pp. 1-5, 2013. IEEE.

142. Youssef Fahim, Elhabib Ben Lahmar, El houssine Labriji and Ahmed

Eddaoui, ―The load balancing based on the estimated finish time of

tasks in cloud computing‖, Proceedings of 2
nd

 World Conference on

Complex Systems (WCCS), pp.594-598, 2014. IEEE.

143. Rakesh Madivi and S Sowmya Kamath, ―An hybrid bio-inspired task

scheduling algorithm in cloud environment‖, Proceedings of

International Conference on Computing, Communication and

Networking Technologies (ICCCNT), pp. 1-7, 2014. IEEE.

144. Remesh Babu K.R., P Mathiyalagan and S.N. Sivanandam, ―Pareto

based hybrid Meta heuristic ABC – ACO approach for task

scheduling in computational grids‖, International Journal of Hybrid

Intelligent Systems, Vol. 11, No. 4, pp.241-255, 2014. IOS Press.

145. Ling Wang, Gang Zhou, Y Xu and M Liu, ―An enhanced Pareto-

based artificial bee colony algorithm for the multi-objective flexible

job-shop scheduling‖, International Journal of Advanced

Manufacturing Technology, Vol. 60, Issue: 9-12, pp. 1111-1123,

2012. Springer.

146. Artificial Bee Colony Algorithm. Home page.

http://mf.erciyes.edu.tr/abc/.:, Retrieved on 15
th
 January 2016.

References

238

147. Dhinesh Babu L.D and P. Venkata Krishna, ―Bee behavior inspired

load balancing of tasks in cloud computing environments‖, Applied

Soft Computing, Vol. 13, Issue: 5, pp.2292-2303, 2013. Elsevier.

148. Amir Nahir, Ariel Orda and Danny Raz, ―Replication-Based Load

Balancing‖, IEEE Transactions on Parallel and Distributed Systems,

Vol. 27, No.2, pp.494-507, 2016.

149. Feilong Tang, Laurence T. Yang, Can Tang, Jie Li and Minyi Guo,

―A Dynamical and Load-Balanced Flow Scheduling Approach for

Big Data Centers in Clouds‖, IEEE Transactions on Cloud

Computing, Vol.6, Issue: 4, pp.915-928, 2018.

150. J. Octavio Gutierrez-Garcia and Adrian Ramirez-Nafarrate,

"Collaborative Agents for Distributed Load Management in Cloud

Data Centers Using Live Migration of Virtual Machines", IEEE

Transactions on Services Computing, Vol.6, No.8, pp.916-929, 2015.

151. Shang-Liang Chen, Yun-Yao Chen and Suang-Hong Kuo, ―CLB: A

novel load balancing architecture and algorithm for cloud services‖,

Computers & Electrical Engineering, Vol. 58, pp.154-160, 2017.

Elsevier.

152. Haitao Yuan, Jing Bi, Wei Tan and Bo Hu Li, ―Temporal Task

Scheduling With Constrained Service Delay for Profit Maximization

in Hybrid Clouds‖, IEEE Transactions on Automation Science and

Engineering, Vol. 14, Issue: 1, pp.337-348, 2017.

153. W. K. Hsieh, W. H. Hsieh, J. L. Chen and P. J. Yang, ―CssQoS: A

load balancing mechanism for cloud serving system‖, Proceedings of

Information Technology and Applications, pp.269-275, 2015. CRC

Press.

154. Rui Zhang, Kui Wu, Minming Li and Jianping Wang, ―Online

Resource Scheduling Under Concave Pricing for Cloud Computing‖,

IEEE Transactions on Parallel and Distributed Systems, Vol. 27,

No.4, pp. 1131-1145, 2016.

References

239

155. P. R. Nuth and W. J. Dally, ―A mechanism for efficient context

switching‖, Proceedings of International Conference on Computer

Design: VLSI in Computers and Processors (ICCD '91), pp. 301-304,

1991. IEEE.

156. Yamini R, ―Power management in cloud computing using green

algorithm‖, Proceedings of International Conference on Advances in

Engineering, Science and Management (ICAESM), pp.128-133,

2012. IEEE.

157. Bei Guan, Jingzheng Wu, Yongji Wang and Samee U. Khan,

―Civsched: A communication-aware inter-VM scheduling technique

for decreased network latency between collocated VMs‖, IEEE

Transactions on Cloud Computing, Vol. 2, Issue: 3, pp.320-332,

2014.

158. A. Bharathi, R. S. Mohana and A. Ushapriya, ―Profit and energy

aware scheduling in cloud computing using task consolidation‖,

Proceedings of International Conference on Information

Communication and Embedded Systems (ICICES), pp.1-6, 2014.

IEEE.

159. Sampa Sahoo, Bibhudatta Sahoo and Ashok Kumar Turuk, ―An

Energy-efficient Scheduling Framework for Cloud Using Learning

Automata‖, Proceedings of 9
th
 International Conference on

Computing, Communication and Networking Technologies

(ICCCNT), pp.1-5, 2018. IEEE.

160. B. Zolfaghari, ―A dynamic scheduling algorithm with minimum

context switches for spacecraft avionics systems‖, Proceedings of

Aerospace Conference, Vol.4, pp.2618-2624, 2004. IEEE.

161. Alahmadi, A., D. Che, M. Khaleel, M. M. Zhu and P. Ghodous, ―An

innovative energy-aware cloud task scheduling framework‖,

Proceedings of 8
th
 International Conference on Cloud Computing

(CLOUD), pp.493-500, 2015. IEEE.

References

240

162. G. Kaur, R. K. Bedi and S. K. Gupta, ―Design and implementation of

enhanced MQS algorithm‖, Proceedings of International Conference

on Green Computing and Internet of Things (ICGCIoT), pp.470-473,

2015. IEEE.

163. A. V. Karthick, E. Ramaraj and R. G., Subramanian, ―An Efficient

Multi Queue Job Scheduling for Cloud Computing‖, Proceeding of

World Congress on Computing and Communication Technologies

(WCCCT), pp.164-166, 2014. IEEE.

164. Ajoy K. Datta and Rajesh Patel, ―CPU Scheduling for Power/Energy

Management on Multicore Processors Using Cache Miss and Context

Switch Data‖, IEEE Transactions on Parallel and Distributed

Systems, Vol. 25, No. 5, pp. 1190-1199, 2014.

165. A. V. Karthick, E. Ramaraj and R. Kannan, ―An efficient Tri Queue

job Scheduling using dynamic quantum time for cloud environment‖,

Proceedings of International Conference on Green Computing,

Communication and Conservation of Energy (ICGCE), pp. 871-876,

2013, IEEE.

166. Alnowiser, E. Aldhahri, A. Alahmadi and M. M. Zhu, ―Enhanced

Weighted Round Robin (EWRR) with DVFS Technology in Cloud

Energy-Aware‖, Proceedings of International Conference on

Computational Science and Computational Intelligence (CSCI), Vol.

1, pp. 320-326, 2014. IEEE.

167. M. Dayarathna, Y. Wen and R. Fan, ―Data Center Energy

Consumption Modeling: A Survey‖, IEEE Communications Surveys

& Tutorials, Vol. 18, No. 1, pp.732-794, 2016.

168. Lee, Y.C. and Albert Y. Zomaya, ―Energy efficient utilization of

resources in cloud computing systems‖, The Journal of

Supercomputing, Vol. 60, Issue: 2, pp.268-280, 2012. Springer.

169. Haihua Chang and Xinhuai Tang, ―A Load-Balance Based Resource-

Scheduling Algorithm under Cloud Computing Environment‖,

Proceedings New Horizons in Web-Based Learning - ICWL 2010

References

241

Workshops, Lecture Notes in Computer Science, Vol. 6537, pp.85-

90, 2010. Springer.

170. Hong He, ―Virtual resource provision based on elastic reservation in

cloud computing‖, International Journal of Networking and Virtual

Organisations, Vol. 15, No. 1, pp.30-47, 2015. Inderscience.

171. Fahimeh Ramezani, Jie Lu and Farookh Khadeer Hussain, ―Task-

Based System Load Balancing in Cloud Computing Using Particle

Swarm Optimization‖, International Journal of Parallel Programming,

Vol. 42, Issue: 5, pp.739-754, 2014. Springer.

172. Arpan Roy, Rajeshwari Ganesan and Santonu Sarkar, ―Keep It

Moving: Proactive workload management for reducing SLA

violations in large scale SaaS clouds‖, Proceedings of 24
th

International Symposium on Software Reliability Engineering

(ISSRE), pp.421-430, 2013. IEEE.

173. Jian Guo, Fangming Liu, Haowen Tang, Yingnan Lian, Hai Jin and

John C.S. Lui, ―Falloc: Fair network bandwidth allocate on in IaaS

datacenters via a bargaining game approach‖, Proceedings of 21
st

International Conference on Network Protocols (ICNP), pp.7-10,

2013. IEEE.

174. Fei Xu, Fangming Liu, Linghui Liu, Hai Jin, Bo Li and Baochun Li,

―iAware: Making Live Migration of Virtual Machines Interference-

Aware in the Cloud‖, IEEE Transactions on Computers, Vol. 63,

Issue: 12, pp.3012-3025, 2014.

175. Christopher D Wickens, ―Multiple resources and performance

prediction‖, Theoretical Issues in Ergonomics Science, Vol.3, No.2,

pp.159-177, 2002. Taylor & Francis.

176. Samer Al-Kiswany, Dinesh S, P Sarkar and M Ripeanu, ―VMFlock:

Virtual Machine Co-Migration for the Cloud‖, Proceedings of the 20
th

International Symposium on High performance Distributed

Computing, HPDC '11, pp.159-170, 2011. IEEE.

References

242

177. Frank Yong-Kyung Oh, Hyeong S. Kim, Hyeonsang Eom and Heon

Y. Yeom, ―Enabling consolidation and scaling down to provide

power management for cloud computing‖, Proceedings of the 3
rd

USENIX conference on Hot topics in cloud computing, HotCloud’11,

pp.14-14, 2011. USENIX.

178. Yefu Wang and Xiaorui Wang, ―Performance-controlled server

consolidation for virtualized data centers with multi-tier

applications‖, Sustainable Computing: Informatics and Systems, Vol.

4, Issue: 1, pp. 52-65, 2014. Elsevier.

179. Qian Zhu, Jiedan Zhu and Gagan Agrawal, ―Power-aware

consolidation of scientific workflows in virtualized environments‖,

SC'10: Proceedings of the ACM/IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis,

pp.1-12, 2010. IEEE.

180. Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,

Monica S. Lam, and Mendel Rosenblum, ―Optimizing the migration

of virtual computers‖, Proceedings of the 5
th
 Symposium on

Operating Systems Design and Implementation (OSDI '02), ACM

SIGOPS Operating Systems Review, Vol.36, Issue: SI, pp.377-390,

2002. ACM.

181. Seung-Hwan Lim, Jae-Seok Huh, Youngjae Kim and Chita R. Das,

―Migration, assignment, and scheduling of jobs in virtualized

environment‖, Proceedings of the 3
rd

 USENIX conference on Hot

topics in cloud computing, HotCloud'11, pp.2-2, 2011. USENIX.

182. A Koto, H Yamada, K Ohmura and K Kono, ―Towards unobtrusive

VM live migration for cloud computing platforms‖, Proceedings of

the Asia-Pacific Workshop on Systems (APSys’12), Article No.7,

pp.1-6, 2012. ACM.

183. Tao Lu, Ping Huang, Morgan Stuart, Yuhua Guo, Xubin He and

Ming Zhang, ―Successor: Proactive cache warm-up of destination

hosts in virtual machine migration contexts‖, Proceedings of the 35
th

References

243

Annual International Conference on Computer Communications

Computer Communications, INFOCOM 2016, pp.1-9, 2016. IEEE.

184. Woonghee Tim Huh, Nan Liu and Van-Anh Truong, ―Multiresource

Allocation Scheduling in Dynamic Environments‖, Manufacturing &

Service Operations Management, Vol. 15, No. 2, pp.280-291, 2013.

INFORMS.

185. V H Nguyen, S Khaddaj, A Hoppe and Eric Oppong, ―A QoS Based

Load Balancing Framework for Large Scale Elastic Distributed

Systems‖, Proceedings of 10
th
 IEEE International Symposium on

Distributed Computing and Applications to Business, Engineering

and Science (DCABES), pp.146-150, 2011. IEEE.

186. Jun Chen, Yunchuan Qin, Yu Ye and Zhuo Tang, ―A Live Migration

Algorithm for Virtual Machine in a Cloud Computing Environment‖,

Proceedings of IEEE 12
th
 Intl Conf on Ubiquitous Intelligence and

Computing and IEEE 12
th
 Intl Conf on Autonomic and Trusted

Computing and IEEE 15
th
 Intl Conf on Scalable Computing and

Communications and Its Associated Workshops (UIC-ATC-

ScalCom), pp.1319-1326, 2015.

187. Felipe Fernandes, David Beserra, Edward David Moreno, Bruno

Schulze and Raquel Coelho Gomes Pinto, ―A VM Scheduler Based in

CPU and IO-bound Features for Energy-aware in High Performance

Computing Clouds‖, Computers & Electrical Engineering, Vol. 56,

pp.854-870, 2016. Elsevier.

188. A Jakóbik, D Grzonka and J Kołodziej, ―Security Supportive Energy

Aware Scheduling and Scaling for Cloud Environments‖,

Proceedings of 31
st
 European Conference on Modelling and

Simulation, pp.583-590, 2017. ECMS.

189. Dang Tran, Nhuan Tran, Giang Nguyen and Binh Minh Nguyen, ―A

Proactive Cloud Scaling Model Based on Fuzzy Time Series and SLA

Awareness‖, Procedia Computer Science, Vol. 108, pp.365-374,

2017. Elsevier.

References

244

190. Michael T Krieger, Oscar Torreno, Oswaldo Trelles and Dieter

Kranzlmüller, ―Building an open source cloud environment with

auto-scaling resources for executing bioinformatics and biomedical

workflows‖, Future Generation Computer Systems , Vol. 67, pp. 329-

340, 2017. Elsevier.

191. R C Chiang and H H Huang, ―Tracon: interference-aware scheduling

for data intensive applications in virtualized environments‖, IEEE

Transactions on Parallel and Distributed Systems, Vol. 25, Issue: 5,

pp.1349-1358, 2014.

192. Auto Scaling: User guide, http://docs.aws.amazon.com

/autoscaling/latest/userguide/as-dg.pdf, retrieved on 6
th
 March 2017.

193. Akshat Verma, Puneet Ahuja and Anindya Neogi, ―pMapper: Power

and Migration Cost Aware Application Placement in Virtualized

Systems‖, Proceedings of 9
th
 ACM/IFIP/USENIX International

Conference on Middleware, pp.243-264, 2008. Springer.

194. Xiaofang Li, Yingchi Mao, Xianjian Xiao and Yanbin Zhuang, ―An

Improved Max-Min Task-Scheduling Algorithm for Elastic Cloud‖,

Proceedings of International Symposium on Computer, Consumer

and Control (IS3C), pp.340-343, 2014. IEEE.

195. Huankai Chen, Frank Wang, Na Helian and Gbola Akanmu, ―User-

priority guided Min-Min scheduling algorithm for load balancing in

cloud computing‖, Proceedings of 2013 IEEE National Conference

on Parallel Computing Technologies (PARCOMPTECH), pp. 1-8,

2013. IEEE.

196. Tadao Murata, ―Petri Nets: Properties, Analysis and Applications‖,

Proceedings of the IEEE, Vol. 77, No.4, pp.541-580. IEEE.

197. Amazon pricing history, Available [Online].

http://web.archive.org/web/20130601050642/http://aws.amazon.com:

80/ec2/pricing/

198. M Mohamed, M Amziani, D Belaid and S Tata, ―An Autonomic

Approach to Manage Elasticity of Business Processes in the Cloud‖,

References

245

Future Generation Computer Systems, Vol.50, pp.49-61, 2015.

Elsevier.

199. W Kong, Y Lei and Jing Ma, ―Virtual Machine Resource Scheduling

Algorithm for Cloud Computing based on Auction Mechanism‖,

Journal of Optik, Vol. 127, Issue: 12, pp.5099-5104, 2016. Elsevier.

200. Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru and Rajkumar

Buyya, ―A Particle Swarm Optimization-based Heuristic for

Scheduling Workflow Applications in Cloud Computing

Environments‖, Proceedings of 24
th
 International Conference on

Advanced Information Networking and Applications, pp.400-407,

2010. IEEE.

201. Amit Nathani, Sanjay Chaudhary and Gaurav Somani, ―Policy based

resource allocation in IaaS cloud‖, Future Generation Computer

Systems‖, Vol. 28, Issue: 1, pp.94-103, 2012. Elsevier.

202. Bobroff N, Kochut A and Beaty K A, ―Dynamic placement of virtual

machines for managing SLA violations‖, Proceedings of the 10
th

IFIP/IEEE International Symposium on Integrated Network

Management, pp.119-128, 2007. IEEE.

203. Bowen Zhou, Satish Narayana Srirama and Rajkumar Buyya, ―An

Auction-based Incentive Mechanism for Heterogeneous Mobile

Clouds‖, Journal of Systems and Software, Vol. 152, pp.151-164,

2019. Elsevier.

204. ―Gugoos Cloud‖, Available: [Online]. http://www.gungoos.com/

(Accessed on 06/01/2017).

205. Anita Choudhary, M. C. Govil, Girdhari Singh and Lalit K. Awasthi,

―Energy-Efficient Resource Allocation Approaches with Optimum

Virtual Machine Migrations in Cloud Environment‖, Proceedings of

4
th
 International Conference on Parallel, Distributed and Grid

Computing (PDGC), pp.182-187, 2016. IEEE.

References

246

206. W. M. P. Van Der Aalst, ―The Application of Petri Nets to Workflow

Management‖, Journal of Circuits, Systems and Computers, Vol. 08,

No.1, pp.21-66, 1998. World Scientific.

207. Yiming Han and Anthony T. Chronopoulos, ―Scalable Loop Self-

Scheduling Schemes for Large-Scale Clusters and Cloud Systems‖,

International Journal of Parallel Programming, Vol. 45, Issue: 3,

pp.595-611, 2017. Springer.

208. Cloud exchange website, Available [online]. https://cloudxchange.io/

209. Zhangjun Wu, Xiao Liu, Zhiwei Ni, Dong Yuan and Yun Yang, ―A

market-oriented hierarchical scheduling strategy in cloud workflow

systems‖, Journal of Supercomputing, Vol. 63, Issue: 1, pp. 256-293,

2013. Springer.

210. Salehi M A and Rajkumar Buyya, ―Adapting market-oriented

scheduling policies for cloud computing‖, Proceedings of the 10
th

International conference on Algorithms and Architectures for Parallel

Processing, LNCS, Vol. Part I, pp.351-362, 2010. Springer.

211. Xuelin Shi, Ke Xu, Jiangchuan Liu and Yong Wang, ―Continuous

Double Auction Mechanism and Bidding Strategies in Cloud

Computing Markets‖, CoRR abs/1307.6066 , 2013. ArXiv.

212. Shifeng Shang, Jinlei Jiang, Yongwei Wu, Guangwen Yang and

Weimin Zheng, ―A Knowledge-based Continuous Double Auction

Model for Cloud Market‖, Proceedings of 6
th
 International

Conference on Semantics Knowledge and Grid, pp.129-134, 2010.

IEEE.

213. M. Macías and J. Guitart, ―Using Resource-level Information into

Non additive Negotiation Models for Cloud Market Environments‖,

Proceedings of Network Operations and Management Symposium,

pp.325-332, 2010. IEEE.

214. P. Samimia, Y. Teimourib and M. Mukhtara, ―A Combinatorial

Double Auction Resource Allocation Model in Cloud Computing‖,

Information Sciences, Vol. 357, No.20, pp.201-216, 2016. Elsevier.

References

247

215. Patricia Arroba, José M. Moya, José L. Ayala and Rajkumar Buyya,

―Dynamic Voltage and Frequency Scaling-aware dynamic

consolidation of virtual machines for energy efficient cloud data

centers‖, Concurrency and Computation: Practice & Experience, Vol.

29, Issue: 10, e4067, 2017. John Wiley & Sons.

216. Georgios L. Stavrinides and Helen D. Karatza, ―An energy-efficient,

QoS-aware and cost-effective scheduling approach for real-time

workflow applications in cloud computing systems utilizing DVFS

and approximate computations‖, Future Generation Computer

Systems, Vol. 96, pp.216-226, 2019. Elsevier.

217. Adel Nadjaran Toosi, Chenhao Qua, Marcos Dias de Assunção and

Rajkumar Buyyaa, ―Renewable-aware Geographical Load Balancing

of Web Applications for Sustainable Data Centers‖, Journal of

Network and Computer Applications, Vol.83, pp.155-168, 2017.

Elsevier.

218. Yousseffahim, Elhabib Ben Lahmar,El Houssine Labrlji and Ahmed

Eddaoui, ―The load balancing based on the estimated finish time of

tasks in cloud computing‖, Proceedings of Second World Conference

on Complex Systems (WCCS 2014), pp. 594-598, 2014. IEEE.

219. Yu Liu, Changjie Zhang, Bo Li and Jianwei Niu, ―DeMS : A hybrid

scheme of task scheduling and load balancing in computing clusters‖,

Journal of Network and Computer Applications, Vol. 83, pp.213-220,

2017. Elsevier.

220. Chenhao Qu, Rodrigo Neves Calheiros and Rajkumar Buyya,

―Mitigating impact of short-term overload on multi-cloud web

applications through geographical load balancing‖, Concurrency and

Computation: Practice & Experience, Vol. 29, No.12, e4126, 2017.

John Wiley & Sons.

221. Shaymaa Elsherbiny, Eman Eldaydamony, Mohammed Alrahmawy

and Alaa Eldin Reyad, ―An extended Intelligent Water Drops

algorithm for workflow scheduling in cloud computing environment‖,

References

248

Egyptian Informatics Journal, Vol.19, Issue: 1, pp.33-55, 2018.

Elsevier.

222. Amir Vahid Dastjerdi1, Sayed Gholam Hassan Tabatabaei and

Rajkumar Buyya, ―A dependency-aware ontology-based approach for

deploying service level agreement monitoring services in Cloud‖,

Software Practice & Experience, Vol.42, Issue:4, pp.501-518, 2012.

John Wiley & Sons.

223. Uri Lublin and Dror G. Feitelson, ―The workload on parallel

supercomputers: modeling the characteristics of rigid jobs‖, Journal

of Parallel and Distributed Computing‖, Vol. 63, Issue: 11, pp.1105-

1122. Elsevier.

224. Fan Zhang, Junwei Cao, Kai Hwang, Keqin Li, and Samee U. Khan,

―Adaptive Workflow Scheduling on Cloud Computing Platforms with

Iterative Ordinal Optimization‖, IEEE Transactions on Cloud

Computing, Vol. 3, No.2, pp.156-168, 2015.

225. Jinzhao Liu, Yaoxue Zhang, Yuezhi Zhou, Di Zhang, and Hao Liu,

―Aggressive Resource Provisioning for Ensuring QoS in Virtualized

Environments‖, IEEE Transactions on Cloud Computing, Vol.3,

No.2, pp.119-131, 2015.

226. Alok Gautam Kumbhare, Yogesh Simmhan, Marc Frincu and Viktor

K. Prasanna, ―Reactive Resource Provisioning Heuristics for

Dynamic Dataflows on Cloud Infrastructure‖, IEEE Transactions on

Cloud Computing, Vol.3, No.2, pp. 105-118, 2015.

227. Maria Alejandra Rodriguez and Rajkumar Buyya, ―A taxonomy and

survey on scheduling algorithms for scientific workflows in IaaS

cloud computing environments‖, Concurrency and Computation:

Practice & Experience, Vol.29, Issue: 8, e4044, 2016. John Wiley &

Sons.

228. Abdelzahir Abdelmaboud, Dayang N.A. Jawawi, Imran Ghani,

Abubakar Elsafi and Barbara Kitchenham, ―Quality of service

approaches in cloud computing: A systematic mapping study‖, The

References

249

Journal of Systems and Software, Vol. 101, pp.159-179, 2015.

Elsevier.

229. Tom Guérout, Samir Medjiah, Georges Da Costa and Thierry

Monteil, ―Quality of service modeling for green scheduling in

Clouds‖, Sustainable Computing: Informatics and Systems, Vol.4,

Issue: 4, pp.225-240, 2014. Elsevier.

230. Sukhpal Singh and Inderveer Chana, ―Q-aware: Quality of service

based cloud resource provisioning‖, Computers and Electrical

Engineering, Vol. 47, pp.138-160, 2015. Elsevier.

231. David Breitgand and Amir Epstein, ―SLA-aware Placement of Multi-

Virtual Machine Elastic Services in Compute Clouds‖, Proceedings

of 12
th
 IFIP/IEEE International Symposium on Integrated Network

Management (IM 2011) and Workshops, pp.161-168, 2011. IEEE.

232. Leone FC, Nelson LS and Nottingham RB, ―The folded normal

distribution‖, Technometrics, Vol. 3, No.4, pp.543-550, 1961. Taylor

& Francis.

233. Patel, P., Ranabahu, A. H and Sheth A. P, ―Service Level Agreement

in Cloud Computing‖, 2009. Source:

http://corescholar.libraries.wright.edu/knoesis/78. Kno.e.sis

Publications.

234. Deborah Magalhaes, Rodrigo N. Calheiros, Rajkumar Buyya and

Danielo G. Gomes, ―Workload modeling for resource usage analysis

and simulation in cloud computing‖, Computers and Electrical

Engineering, Vol. 47, pp.69-81, 2015. Elsevier.

235. Ashkan Paya and Dan C Marinescu, ―Energy-aware Load Balancing

and Application Scaling for the Cloud Ecosystem‖, IEEE

Transactions on Cloud Computing, Vol. 5, Issue: 1, pp.15-27, 2017.

236. Guisheng Fan, Liqiong Chen, Huiqun Yu and Dongmei Liu,

―Formally modeling and analyzing cost-aware job scheduling for

cloud data center‖, Software Practice & Experience, Vol. 49, Issue: 9,

pp.1536-1559, 2018. John Wiley & Sons.

References

250

237. Yiqiu Fang, Fei Wang and Junwei Ge, ―A Task Scheduling

Algorithm Based on Load Balancing in Cloud Computing‖,

International Conference on Web Information Systems and Mining.

WISM 2010. Lecture Notes in Computer Science, Vol. 6318, pp.271-

277, 2010. Springer.

238. Jinhua Hu, Jianhua Gu, Guofei Sun and Tianhai Zhao, ―A Scheduling

Strategy on Load Balancing of Virtual Machine Resources in Cloud

Computing Environment‖, Proceedings of 3
rd

 International

Symposium on Parallel Architectures, Algorithms and Programming,

pp.89-96, 2010. IEEE.

251

LIST OF PUBLICATIONS BASED ON THIS

THESIS

International Journals

1. K R Remesh Babu, Philip Samuel, “Service-level agreement–

aware scheduling and load balancing of tasks in cloud”,

Software: Practice and Experience, Vol. 49, No. 6, pp.995-

1012, 2019. John Wiley & Sons.

2. K R Remesh Babu, Philip Samuel, “Interference aware

prediction mechanism for auto scaling in cloud”, Computers

and Electrical Engineering, Vol. 69, pp.351-363, 2018.

Elsevier.

3. K R Remesh Babu, Philip Samuel, “Energy aware clustered

load balancing in cloud computing environment”,

International Journal of Networking and Virtual Organisations,

Vol.19, No.2/3/4, pp.305-320, 2018. Inderscience.

4. K R Remesh Babu, Philip Samuel, “Review of the quality of

service scheduling mechanisms in cloud”, International

Journal of Engineering & Technology, Vol. 7, No. 3, pp.1677-

1695, 2018. SPC.

5. K R Remesh Babu, Philip Samuel, “Enhanced Resource

Scheduling with Autoscaling in Elastic Cloud”, International

Journal of Networking and Virtual Organisations. (Accepted).

2019. Inderscience.

List of Publications

252

International Conferences

6. K R Remesh Babu, Philip Samuel, “Virtual Machine

Placement for Improved Quality in IaaS Cloud”, In

proceedings of the 4
th

 International Conference on Advances in

Computing and Communications, pp.190-194, 2014. IEEE.

7. K R Remesh Babu, Philip Samuel, “Enhanced Bee Colony

Algorithm for Efficient Load Balancing and Scheduling in

Cloud”, Advances in Intelligent Systems and Computing, Vol.

424, pp. 67-78, 2015. Springer Verlag.

