
Automatic Code Generation From UML

Behavioural Models

A Thesis submitted to

Cochin University of Science and Technology

in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

Under the Faculty of Technology

By

SUNITHA E V

(Reg No. 4213)

Under the Guidance of

Dr. PHILIP SAMUEL

Department of Computer Science

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India

April 2019

Automatic Code Generation From UML

Behavioural Models
Ph.D. Thesis under the Faculty of Technology

Author

SUNITHA E V

Research Scholar
Department of Computer Science
Cochin University of Science and Technology
Kochi - 682022
Email: sunithaev@gmail.com

Supervising Guide

Dr PHILIP SAMUEL

Professor
Department of Computer Science
Cochin University of Science and Technology
Kochi - 682022
Email: philipcusat@gmail.com

Department of Computer Science

Cochin University of Science and Technology

Kochi -682022

CERTIFICATE

This is to certify that the thesis entitled "Automatic Code Generation From

UML Behavioural Models” submitted by Ms. Sunitha E.V. (Reg. No.

4213) to the Cochin University of Science and Technology, Kochi for the

award of the degree of Doctor of Philosophy is a bonafide record of research

work carried out by her under my supervision and guidance in the

Department of Computer Science, Cochin University of Science and

Technology. The content of this thesis, in full or in parts, have not been

submitted to any other University or Institute for the award of any degree or

diploma. I further certify that the corrections and modifications suggested by

the audience during the pre-synopsis seminar and recommended by the

Doctoral Committee of Ms. Sunitha E V are incorporated in the thesis.

Kochi Dr. Philip Samuel

25th April 2019 (Supervising Guide)

DECLARATION

I hereby declare that the work presented in this thesis entitled

"Automatic Code Generation From UML Behavioural Models” is

based on the original work done by me under the guidance of Dr.

Philip Samuel, Professor, Department of Computer Science, Cochin

University of Science and Technology and has not been included in

any other thesis submitted previously for the award of any degree.

Kochi Sunitha E V

25th April 2019

ACKNOWLEDGMENTS
At the outset, I thank God Almighty for providing me the great

opportunity to do this research work and complete it within the stipulated

time.

I have great pleasure in expressing my profound gratitude to my

guide, Dr. Philip Samuel, for the motivation and guidance provided

throughout this research work. I have been extremely lucky to have a guide

who cared so much about my work and who responded to my questions and

queries so promptly. I appreciate his approachability and the trust bestowed

on my research efforts. Consistent support, patient hearing and sincere

encouragement provided throughout the period are gratefully acknowledged.

I wish to express my sincere gratitude to Dr. G. Santhosh Kumar,

Head, Department of Computer Science, Cochin University of Science and

Technology, for his guidance, help and encouragement throughout the period

of this work. I extent my deep sense of gratitude to Prof. (Dr.) Sumam

Mary Idicula for her support as the Co-guide during the initial stage of the

research work. I am grateful to Dr. K. Poulose Jacob, ex Pro-Vice-

Chancellor of Cochin University of Science and Technology, for being a

source of support and encouragement. His sincerity and supportive attitude

enabled the successful completion of this work.

I thank the doctoral committee members, all the faculty members of

Department of Computer Science and Information Technology Division,

School of Engineering, Cochin University of Science and Technology for the

cooperation extended towards me. The excellent computing and library

facilities offered by the department were really supportive for carrying out

my thesis work. The support of all the non teaching staff of Department of

Computer Science, Cochin University of Science and Technology

throughout the period is gratefully acknowledged.

I have no words to express my deep sense of gratitude to my

colleagues and well wishers at Toc H Institute of Science and Technology,

Arakkunnam, for helping me to complete this work. Special thanks to Dr. K

Varghese, Founder Director & Manager, other management members and

Principal, TIST for their valuable cooperation and encouragement during this

period. My sincere thanks to all teaching & non teaching staff of department

of Information Technology TIST for their cordial relations, sincere co-

operation and valuable help during different stages of this research work.

I would like to extend my sincere thanks to my friends Ms. Rani

Augustine, Ms. Lichia Reghu, Mr. Ajeesh G Krishnan and Dr. Joby Jose

for their valuable and timely support for the thesis preparation.

I am blessed to have the unconditional everlasting love from my

parents Late Mr. E N Viswanathan & Mrs. Lalitha Viswanathan and my

parents in law Mr. T K Mohanan & Mrs. Lalitha Mohanan whose

encouragement and support always kept me overcoming hard times. I

dedicate this accomplishment to them.

Finally, but most importantly, I would like to thank my dearest

husband, Prof. Arun Mohan, for being so understanding and for putting up

with me through the toughest moments of my life. I thank God for

enlightening my life with his presence. Without his sacrifices, love and

support, this thesis would not have been possible. I also dedicate this Ph.D.

thesis to my two lovely children, Meenakshi and Parvathi who are the pride

and joy of my life.

Sunitha E V

CONTENTS

ABSTRACT .. i�

GLOSSARY OF SYMBOLS AND ABBREVIATIONS iii�

LIST OF FIGURES .. v�

LIST OF TABLES ... ix�

Chapter 1 INTRODUCTION .. 1�

1.1� Introduction ... 1�
1.2� Unified Modeling Language ... 2�
1.3� Automatic Code Generation From UML Behavioural Models 4�
1.4� Motivation .. 5�
1.5� Problem Statement .. 9�
1.6� Research Objectives ... 9�
1.7� Thesis Overview ... 10�

Chapter 2 LITERATURE REVIEW ... 13�

2.1� Introduction ... 13�
2.2� Code Generators .. 14�
2.3� Existing Methods For Code Generation From Use Case Diagrams And

Sequence Diagrams ... 18�
2.4� Existing Methods For Code Generation From Activity Diagrams 21�
2.5� Existing Methods For Code Generation From State Chart Diagrams 24�

2.5.1� State machine implementation using switch statement: 25�
2.5.2� State machine implementation using state tables: .. 27�
2.5.3� State machine implementation using state design patterns: 28�

2.6� Summary .. 31�

Chapter 3 UML BEHAVIOURAL MODELS 35�

3.1� Introduction ... 35�
3.2� Behaviour Models .. 36�

3.2.1� Use case diagram ... 37�

3.2.2� Sequence diagram ... 38�
3.2.3� Activity diagram .. 39�
3.2.4.� State chart diagram .. 43�

3.3� Use of Object Constraint Language (OCL) .. 46�
3.4� Summary .. 48�

Chapter 4 CODE GENERATION FROM UML USE CASE

MODELS .. 51�

4.1� Introduction ... 51�
4.2� Requirements Modeling With Use Cases .. 53�
4.3� Code Generation .. 55�

4.3.1� Code generation from use case ... 55�
4.3.2� Code generation from sequence diagrams .. 56�

4.4� Elevator System as Case Study .. 62�
4.5� Analysis .. 65�
4.6� Conclusion ... 67�

Chapter 5 CODE GENERATION FROM ACTIVITY MODELS

ENHANCED WITH OCL .. 69�

5.1� Introduction ... 70�
5.2� Meta Model For OCL Expression In UML Activity Diagram 73�

5.2.1� State of the art ... 73�
5.2.2� Meta model for operation contracts ... 75�
5.2.3� Meta model for initial values .. 78�
5.2.4� Meta model for instance ... 78�
5.2.5� Meta model for actual parameter ... 79�
5.2.6� Meta model for condition .. 79�

5.3� Formal Semantics of OCL Enhanced Activity Diagrams 82�
5.3.1� Operational semantics of OCL enhanced activity diagrams 84�
5.3.2� Variables used in the finite state machine .. 85�
5.3.3� Transitions .. 89�

5.4� Code Generation From OCL Enhanced Activity Diagram 91�
5.5� Proof of Correctness of the Algorithm .. 98�
5.6� Case Study ... 107�

5.7� Implementation of Automatic Code Generator .. 112�
5.8� Evaluation .. 115�

5.8.1� Type of code generated ... 115�
5.8.2� Percentage of code generated ... 116�
5.8.3� Time complexity for code generation .. 118�

5.9� Conclusion ... 120�

Chapter 6 CODE GENERATION FROM ACTIVITY MODELS

ENHANCED WITH INTERACTIONS 123�

6.1� Introduction ... 123�
6.2� Associating Activity Diagram With Sequence Diagram 125�

6.2.1� Formal definition for associating activity diagram with sequence

diagram ... 126�
6.2.2� Mapping of the definition elements to UML meta model 127�

6.3� Code Generation Process .. 128�
6.4� Code Generation Algorithm .. 130�

6.4.1� Algorithm Am_To_Prototype .. 131�

6.4.2� Algorithm Excecution_Logic(����, �, parentThread, currentThread,

start).. 132�

6.4.3� Algorithm Method_Body (ca_obj, �, T, �	, �) .. 136�

6.5� ATM Case Study .. 138�
6.6� Comparison with Related Works ... 141�
6.7� Conclusion ... 144�

Chapter 7 CODE GENERATION FROM STATE CHART

MODELS .. 147�

7.1� Introduction ... 147�
7.2� Implementing Hierarchical, Concurrent And History States 150�
7.3� Design Pattern for Hierarchical, Concurrent and History States 152�
7.4� Implementing Alarm Clock ... 156�
7.5� The Code Generation Process ... 162�
7.6� Evaluation and Comparison with Related Works ... 167�

7.6.1� Element based comparison ... 168�

7.6.2� Feature based comparison .. 169�
7.7� Conclusion ... 169�

Chapter 8 CONCLUSION AND CONTRIBUTIONS............................. 173�

8.1 � Overview .. 173�
8.2 � Contributions ... 173�
8.3 � Future Scope.. 178�

REFERNENCES ... 179�

LIST OF PUBLICATIONS ... 199�

i

ABSTRACT

The emergence of Unified Modeling Language (UML) as the industrial
standard for modeling software systems has encouraged the use of automated tools
that facilitate the development process from analysis through coding. Software
models are important in building large software systems. Even though these models
are used to simplify the software system, they can be in themselves, quite
complicated. It is not all clear how to build these software from the models in the
best way. This work tackles that problem. In UML, the static structure of a system
is represented by a class diagram while the dynamic behavior of the system is
represented by a set of behavioural diagrams. To facilitate the software
development process, it would be ideal to have tools that automatically generate or
help to generate source code from the models. In this thesis, we present a novel
approach to automatically generate source code from the UML behavioural models.
An object oriented approach has been proposed to generate implementation code
from use case diagram, sequence diagram, activity diagram and state chart diagram
in an object-oriented programming language.

The functional requirements of a software system expressed in use case
models are utilized to modularize the source code. The object interactions to
accomplish the use cases have been converted to the method declarations and
definition statements. It is useful to fine tune the user requirements. The process
flow depicted using the activity models are considered to update the method
definition of the system. The additional information regarding the pre and post
conditions of each activity, the method parameters, etc., are incorporated in the
activity diagram using the Object Constraint Language. Sequence diagrams can be
used in association with the activity nodes to include the object interaction details.
These interactions are made use of to complete the method definitions. A new
design pattern to implement state chart diagram with hierarchical, concurrent and
history states is proposed in this thesis. These methods have been implemented by
developing an automatic code generator which converts the UML behavioural
models to the source code. It has been used for the evaluation of the methods. Our
approach successfully generated code from UML behaviour models. The research
findings conclude that the automatic code generation from the system models
reduces the software development efforts and time.

iii

GLOSSARY OF SYMBOLS AND ABBREVIATIONS

AD �� Activity Diagram

��
�� �� Activity Graph enhanced with OCL

���� �� Activity Graph enhanced with Sequence Diagram

AM �� Activity Model

AN �� Activity Node

��� �� Action Node

BPEL4WS : Business Process Execution Language for Web

Services

CASE : Computer Aided Software Engineering

��� : Call Behavior Action

CD : Class Diagram

CM �� Collaboration Model

CN �� Control Node

CPNs : Colored Petri Nets

DTD : Document Type Definition

DSML : Domain Specific Modeling Language

FSM : Finite State Machine

HSM : Hierarchical State Machine

HST : Hierarchical Structure Tree

IDE : Integrated Development Environment

MDA : Model Driven Architecture

MDD : Model Driven Development

OCL : Object Constraint Language

Glossary of symbols and abbreviations

iv

OMG : Object Management Group

OMT : Object Modeling Technique

OO : Object Oriented

OOD : Object Oriented Development

OOSE : Object Oriented Software Engineering

PIM : Platform Independent Model

PSM : Platform Specific Model

QHSM : Quantum Hierarchical State Machine

rCOS : Relational Calculus of Object Systems

RSL : RAIS Specification Language

RTPA : Real Time Process Algebra

RTPA-VM : Real Time Process Algebra - virtual machine

SC : Source Code

SD : Sequence Diagram

SIG : Sequence Interactions Graph

SRS : Software Requirement Specification

UI : User Interface

UML : Unified Modeling Language

UML-RSDS : UML Reactive System Development Support

XMI : XML Metadata Interchange

XML : eXtensible Markup Language

XSL : eXtensible Stylesheet Language

XSLT : eXtensible Stylesheet Language Transformations

v

LIST OF FIGURES

Figure 2.1 : Programmer centric code generator .. 15�

Figure 2.2: Designer centric code generator ... 16�

Figure 2.3: SD and corresponding SIG ... 19�

Figure 2.4: Sample state chart diagram... 24�

Figure 2.5: Class generated for the state machine .. 26�

Figure 2.6: Sample State Design Pattern .. 28�

Figure 3.1: Sample Use Case diagram .. 37�

Figure 3.2: Sample sequence diagram .. 38�

Figure 3.3: Notation for initial node .. 39�

Figure 3.4: Notation for an activity state ... 39�

Figure 3.5: Notation for control Flow ... 40�

Figure 3.6: Guards being used next to a decision node 40�

Figure 3.7: Notation for fork ... 41�

Figure 3.8: Join notation ... 41�

Figure 3.9: Notation for merge node ... 41�

Figure 3.10: Swimlanes notation .. 41�

Figure 3.11: Time event notation .. 42�

Figure 3.12: Notation for final Node .. 42�

Figure 3.13 : Sample Activity diagram ... 42�

Figure 3.14: Initial State .. 43�

Figure 3.15: Transition.. 43�

Figure 3.16: State notation .. 44�

Figure 3.17: A diagram using the fork notation .. 44�

Figure 3.18: Join notation .. 44�

Figure 3.19 : Self transition notation .. 44�

List of Figures

 vi

Figure 3.20: A state with internal activities .. 45�

Figure 3.21: Final state notation ... 45�

Figure 3.22: A sample State chart diagram ... 45�

Figure 4.1: Software Life Cycle .. 51�

Figure 4.2: Sample Use Case diagram .. 54�

Figure. 4.3: Sample sequence diagram ... 54�

Figure 4.4 : Steps for code generation from UML use case diagram 56�

Figure 4.5: Sample sequence diagram .. 57�

Figure 4.6: Hierarchical structure tree .. 57�

Figure 4.7: Use-Case diagram of Elevator System and the sequence diagram

 for process hall call operation ... 61�

Figure 4.8: Class diagram for elevator system .. 62�

Figure 4.9: code generated by Algorithm 4.1 ... 63�

Figure 4.10: Code generated by Algorithm 4.2 .. 64�

Figure 4.11: Code updated by Algorithm 4.3 ... 64�

Figure. 4.12: Comparison of code generated and actual code 66�

Figure 4.13 : Percentage of code generated .. 66�

Figure 5.1: Simplified Meta model of UML2.0 Activity Diagram............. 73�

Figure 5.2: OCL in UML .. 74�

Figure 5.3: Metamodel for Pre and Post Condition of an Action 76�

Figure 5.4 : Metamodel for OCL representation of instances (objects) 77�

Figure 5.5 : Metamodel for OCL representation of Initial value 78�

Figure 5.6: Metamodel for Actual parameter to an action 80�

Figure 5.7: Meta model for OCL representation of guard conditions of

 decision node .. 81�

Figure 5.8: Simplified Meta model of UML2.0 Activity Diagram with OCL

 expressions .. 82�

List of Figures

 vii

Figure 5.9 : The activity diagram Project Development and its formal

 semantics .. 83�

Figure 5.10 : The declarations and definition of transitions of the activity

 diagram Project Development .. 90�

Figure 5.11: Steps to generate code from UML diagram 92�

Figure 5.12 : XML document format .. 93�

Figure 5.13 : Operation body in XML ... 93�

Figure 5.14: Initial value in XML .. 93�

Figure 5.15: instance in XML ... 93�

Figure 5.16: Pre condition in XML.. 93�

Figure 5.17: Post condition in XML ... 93�

Figure 5.18: Activity diagram for money withdrawal from ATM machine

 (without OCL) .. 108�

Figure 5.19: Activity diagram for money withdrawal from ATM machine

 (with OCL) ... 110�

Figure 5.20: ActivityOCLKode Architecture ... 113�

Figure 5.21: Percentage of Code Generated without OCL 117�

Figure 5.22: Percentage of Code Generated with OCL 117�

Figure 5.23: Complexity Vs execution time ... 119�

Figure 6.1: Associating activity diagram with sequence diagrams 125�

Figure 6.2: Simplified Meta model of UML2.0 Activity Diagram 128�

Figure 6.3: Code Generation process .. 129�

Figure 6.4: Class diagram generated from Am_To_Prototype for Figure 6.7 ..

 .. 131�

Figure 6.5: Sample fork and join nodes ... 133�

Figure 6.6: A sample sequence tree. ... 136�

Figure 6.7: ATM Transaction ... 139�

Figure 7.1: State chart essentials ... 149�

List of Figures

 viii

Figure 7.2: Composite state A with two sub states 151�

Figure 7.3: Implementation Pattern of the composite state A 151�

Figure 7.4: Composite state A with two orthogonal regions 152�

Figure 7.5: Implementation of the composite state A 152�

Figure 7.6: Implementation Pattern of the composite state A with orthogonal

 regions .. 152�

Figure 7.7: The proposed design pattern “Template HHCStateMachine” for

 state machines ... 153�

Figure 7.8: UML state diagram representing the Alarm Clock 157�

Figure 7.9: Implementation Pattern for the alarm clock 158�

Figure 7.10: Architecture of code generation from state models 162�

Figure 7.11: UML state diagram representing the microwave oven 163�

Figure 7.12: XML representation of Microwave Oven 164�

Figure 7.13: XML representation of Microwave Oven with concurrent states

 .. 165�

Figure 7.14: Execution time for SMConverter and other tools 168�

List of Tables

 ix

LIST OF TABLES

Table 2.1 : State table structure for UML state chart diagrams 27�

Table 4.1: Category of code generated by AutoKodeUC 65�

Table 5.1: Type of code generated by ActivityOCLKode 116�

Table 5.2: Levels of complexity and the execution time in milliseconds .. 119�

Table 6.1: Mapping the formalization elements to Metamodel 128�

Table 6.2: Comparison with related works .. 143�

Table 7.1: Mapping State machine elements to program constructs 154�

Table 7.2: State transition table of the alarm clock 156�

Table 7.3: Efficiency of SMConverter compared with Rhapsody & OCode

 ... 167�

Table 7.4: Element based comparison with related works 170�

Table 7.5: Feature based comparison with related works 171�

Cochin University of Science and Technology 1

Chapter 1 INTRODUCTION

1.1� Introduction ... 1�
1.2� Unified Modeling Language ... 2�
1.3� Automatic Code Generation From UML Behavioural Models 4�
1.4� Motivation .. 5�
1.5� Problem Statement .. 9�
1.6� Research Objectives ... 9�
1.7� Thesis Overview ... 10�

1.1 Introduction

Software systems are vital part of our day to day life. Automobiles,

mobile phones, computers, TV and many other home appliances depend on

software. While the demand of software is increasing, its complexity

increases exponentially. Eventually, the process of building the software

becomes harder and harder to manage and much more difficult to maintain.

In order to make the software development process easier and

manageable, the engineers started using different diagrams to design the

system. Drawings can easily convey information than words. Unified

Modeling Language (UML) is the best choice for software system design

[99]. Now-a-days UML is widely accepted as a modeling language for

software systems.

The use of UML eases the software designing process. Once the

design is ready, the next phase is software implementation. How the system

design in UML can aid the implementation phase, so that the complexity of

the coding phase gets reduced? Is it possible to generate source code from

Chapter 1

2 Department of Computer Science

the UML models? Yes. This is one interesting solution to reduce the

complexity of software development process, that is, generating source code

automatically from the software system designs [4, 107]. Software designs

get an upper hand in software development process and they remain as the

leading element in the process. It is called as Model Driven Development

(MDD).

1.2 Unified Modeling Language

UML is the de-facto standard in industry for designing software

systems [139, 103]. As the complexity of the software is increased, the lines

of code and the interfaces to other software are also increased drastically.

When this complexity became unmanageable, researchers in the area of

Object Oriented (OO) development started proposing visualizing techniques

to present the system design. Grady Booch, Ivar Jacobson and James

Rumbaugh were the three most important contributors in this field. Booch

method proposed by Grady Booch, Object Oriented Software Engineering

(OOSE) method contributed by Ivar Jacobson and Object Modeling

Technique (OMT) by James Rumbaugh [55].

Another big movement in this field was the unification of these three

methods. They unified their own approaches to software modelling in the

rules and definitions of UML, today being the standard for building object-

oriented software systems. The software developers started using UML

notations and the CASE tool vendors started supporting UML in their tools.

The Object Management Group (OMG) maintains a list of available tools

helping the software engineer using UML and this list reflects the high

reputation of UML as a modelling language.

UML provides, mainly, eight basic diagrams [99]. The static structure

of a software system is modeled using Class diagram. It describes the static

 Introduction

Cochin University of Science and Technology 3

aspect of the system in the form of classes, packages and their relations. The

functionality of the software system is described using the Use case diagram,

from the viewpoint of the user. It gives a highly abstract view of the system.

The interaction between objects to accomplish a use case is depicted using

Sequence Diagram. The interactions as well as the structural relationships of

the objects are designed using Collaboration Diagrams. The entire life cycle

of an object, which includes the different states of the object, the state

transitions and the events that force these state changes are illustrated using

the State Chart Diagram. The sequence of activities involved in a use case

realization and the different objects involved in it are described using the

Activity Diagram. Dependency between different components in a system is

designed using Component Diagram. Finally, Deployment Diagram gives the

architecture of the system.

The entire software development process is supported by UML that

is, starting from analysis till the maintenance of the system. It helps forward

engineering as well as reverse engineering. That is the source code can be

generated from the UML designs and the systems designs can be generated

from the source code which will be more helpful during the maintenance

phase. The UML designs give us the high level design details of the system.

When a programmer implements these designs, he/she includes so

many implementation specific details [87] like, variable declarations,

initializations, pre-defined constant values, method definitions, class

definitions, etc. Automatic code generation could be possible in its real

sense, only when we are able to automatically generate all these

implementation specific details. In forward engineering the completeness of

the code generated is the main issue. Therefore, how to develop UML based

environment for software development is a hot research issue.

Chapter 1

4 Department of Computer Science

1.3 Automatic Code Generation From UML Behavioural
Models

The structure and behaviour of the system is modeled using UML

diagrams. UML class diagrams are used for system structure modeling and it

allows source code generation [97]. It gives the details about the problem

domain unit, its characteristics and operations. Class declarations with

attributes and method signatures can be generated from the UML class

diagram [29]. It gives the structure of the software system. It cannot be

executed since the generated code is incomplete. The developers have to

explicitly complete the source code with the object behaviours and

interactions. Then the system becomes executable. An alternative for this is

the code generation from the UML behavioural models of the system. Use

Case Diagram, Sequence Diagram, Activity Diagram and State chart

Diagram are the main UML behavioral models.

Use case diagrams represent the different functionalities of the

software system and so it is used for modularizing the source code

(implementation code) of the system based on the features it supports. Each

use case in a use-case diagram represents a functional service of the system

that is to be used by a specific actor and satisfies a requirement specified in

terms of a pair of pre and post conditions. That is, it gives the external

objects, which interact with the system. The features that are accessible by

the different external objects, the extended or included operations of each

functionality etc are described in the use case diagram. These details are used

for code generation, to modularize the code, to provide access privileges to

the objects and to organize internal function calls.

Sequence diagrams show the interaction between objects with the

sequence number. It gives the messages passed (the function calls) between

objects to accomplish a use case. In addition to these details, it also gives

 Introduction

Cochin University of Science and Technology 5

some details indirectly. Each message to an object says that the class of the

object should have methods to handle those messages. These details will help

us to generate method definitions as well as to update the class diagrams.

Activity diagrams give the process flow. It describes different

activities in a process. Activity diagram can be used in design to model

different parts of the system. It can be used to design the entire process flow

of the system. In a deeper view, we can draw activity diagram corresponds to

each use case in the use case diagram. Sub activity diagrams can be drawn to

expand a complex activity in the main activity diagram. For each activity,

there can be pre and post conditions. Concurrent activities, decision making

etc., can be modeled in the activity diagram. So, it helps us to generate the

source for the main function of the software system. It can also be used for

generating method definitions. The constraints, decision making statements

etc can be generated from the activity diagram.

The state chart diagrams of UML can be used to automatically

generate program source code. Code generation from state charts diagrams

only generates the behavior code for a particular object. It generates code for

one class only with which the state chart is attached. The developer has to

explicitly join this code with other parts of the application to make the code

for the entire application.

1.4 Motivation

Automatic code generation from system designs is an emerging

research area [3, 73, 88, 115, 33, 87, 35]. This concept has versatile

dimensions in software industry. The idea behind this concept is that, before

implementing a system, we can model it using standard notations, like UML

[62, 61, 9, 48]. Then automatically generate code from these models. This

idea is quite interesting since the coding and testing phases of software

Chapter 1

6 Department of Computer Science

development process are very much expensive. It can reduce the effort we

put for coding and testing and in turn, can improve the quality of the

software.

Due to evolution, adaptation and changing requirements, software

maintenance is a challenging task. During maintenance phase, the

maintenance engineer changes the source code, but not the designs. So, each

maintenance work reduces the correlation with the design and the source

code. Gradually the system design becomes obsolete and it may not have any

relation with the actual system [115]. The model based code generation gives

a solution for this scenario. During maintenance the engineer can change the

system models instead of the actual code and then generate code out of the

system model. The idea is pretty good, but the implementation is difficult.

UML supports object orientation in the design phase. UML help us to

design the structure as well as behavior of the system. Similarly, OO

programming languages like Java, C++, C# etc., are useful in the

implementation phase. This helps us to continue the object orientation in the

design phase to the implementation phase. There are some elements in UML

design which can be directly mapped to any object oriented programming

construct. Some elements in UML cannot be directly mapped to any

programming element. Earlier, the designers design the system models using

UML or other tools and hand it over to the software engineers for coding.

The software engineers had to start from the scratch, beginning from the

inclusion of header files, declaration of variables etc. Over time, this scenario

had been changed and there came some CASE tools, IDEs etc., for

supporting the software engineers. These tools generate skeletal code from

the designs we have modeled in UML or similar languages so that the

programmer need not start from the scratch.

 Introduction

Cochin University of Science and Technology 7

In the next generation of software development, there comes the

Model Driven Development (MDD) [114, 109, 129, 144]. MDD describes

methods to develop software purely based on the system design. Even

though the code generation from the UML models sounds an interesting

concept, it is not an easy one to implement. The research in this area starts

with the code generation from the structural models like class diagrams [29,

139, 146, 147].

The system design may include class diagrams, state charts, activity

diagrams, sequence diagrams etc. Some methods are available to convert

UML Class Diagram to source code. The OO languages support the class

concept. The class declaration statements, class definition statements,

method definition statements, object creation, method invocation statement

etc., are available in the existing OO languages.

A method to convert the class diagram represented in XMI format to

Java code is presented in Bjoraa [29]. They have developed a prototype to

output one Java file per class specified in the class diagram. The class

diagram drawn in UML will be converted to XMI format. The XMI file will

be parsed using XML parser and extracts the details, like class name,

attributes and methods. Using this information the skeleton of the class

definition will be produced in Java. [139] uses stereotyped class diagram for

code generation. Classes marked with the stereotype <<entity>> will be

mapped into an interface and a pair of implementing classes. One class will

be abstract class and the other one will be instantiable.

Later OCL expressions are added to UML to specify constraints. The

conversion of OCL enhanced class diagrams to some specification

languages, like RAIS Specification Language (RSL), or implementation code

in C++, Java etc., has been proposed by some researchers [91, 52, 70, 148,

149].

Chapter 1

8 Department of Computer Science

UML Reactive System Development Support (UML-RSDS) is

another subset of UML [67, 74, 72]. It provides semantics for class, use case

diagram and OCL for automatic code generation. OCL constraints are used

to show the relations between system models. In this approach OCL is used

for specifying class and state invariants, pre and post conditions for

operations and use cases, etc.

Anyhow, these methods are not capable of converting UML

behavioural models to source code. Behavioural models like state chart

diagram, activity diagram etc., cannot be directly mapped to OO program

[56]. This is because of the lack of programming elements that can represent

the elements in these diagrams. In addition to that, the code generated from

the structural models will have a skeletal code, not the complete one, since

the system behavior is not taken into account. So, the studies in code

generation diverts to behavioral models like activity diagram, sequence

diagram, state diagram etc.

The literature in the area of code generation says that the prime issue

in the code generation is the gap between the model and the software system.

A model-system gap exists primarily due to the different levels of

abstraction. Software designs are used to communicate with the clients. So it

cannot be implementation oriented. It should clearly explain how the client

requirements will be satisfied by the software system. So the designs are at

high level of abstraction. For example, Use case diagram just gives the

different functional services provided by the system. Sequence diagram gives

the object interactions; the messages passed between objects are not so

relevant for the client. If we include more implementation specific details in

the design, it will be complex for the clients to understand.

 Introduction

Cochin University of Science and Technology 9

The object-oriented methodologies describe the steps to be followed

during the analysis and design phase, but fail to describe how the analysis

and design models of a system shall be converted into implementation code.

A big problem in the development of a system through object-oriented

methodologies is that, even after having created good models, it is difficult

for a large fraction of software developers to convert the design models into

source code. It would be ideal to have tools that support the developer and

automatically generate or help to generate source code from the models. In

this thesis we address these difficulties to automatically generate source code

from the object-oriented system designs.

1.5 Problem Statement

The goal of this research is to investigate methods to automatically

generate code from the UML behavioural models.

1.6 Research Objectives

The aim of this research is to device methods to automatically

generate code from the UML behavioural models. It includes approaches to

automatically generate source code from the UML Use Case diagram,

Sequence Diagram, Activity Diagram and State Chart Diagram. Thus the

objectives addressed in this research work are:

• To device a method to generate code from UML Use Case Diagram.

• To device a method to generate code from UML Sequence Diagram.

• To device a method to generate code from UML Activity Diagram.

• To device a method to generate code from UML State Chart
Diagram.

Chapter 1

10 Department of Computer Science

1.7 Thesis Overview

The rest of the thesis is organized into 7 chapters.

The Chapter 2 gives a systematic literature review on the existing

code generation methods based on the behavioural models; use-case

diagram, sequence diagram, activity diagram and state chart diagram. Code

generation methods described in the literature review have its own

advantages and limitations. The diagrams used for system design depends on

the kind of software we are going to develop. The percentage of code

generated in each method varies depends on the features that are considered

for the code generation. Algorithms for code generation is lacking in the

existing literatures. Moreover, some features of the diagrams are not

considered for code generation in these methods. The proposed code

generation methods in this thesis addressed the features that are not explored

in the existing works and there by generates more code than the existing

methods. In addition to that, theoretical proof for connecting different system

modeling diagrams and precise steps for code generation is proposed in this

thesis. The formal semantics for enhancing the UML activity diagram with

OCL, its proof and the algorithm for code generation from the OCL

enhanced activity diagram are presented in this thesis.

 The chapter 3 presented different UML behavioral diagrams and

their use in automatic code generation. This chapter gives an overview of the

UML use-case diagram, sequence diagram, activity diagram and state chart

diagram and the contribution of these diagrams in the code generation.

The chapter 4 discussed the code generation from the use-case

diagrams and sequence diagrams. Use-case diagram is used to frame the

context class and the sequence diagram is used to add details to the class.

The code generation from use case diagram is done in five steps and from

 Introduction

Cochin University of Science and Technology 11

sequence diagram is done in three steps. Algorithm for each one is given in

the chapter. The algorithms give a formal way to do the prototype generation

and this method is easy to implement. The analysis of the proposed method

shows that it can generate even more than 30% of code for frequently

interacted classes. This is a promising result in code generation from the use

case models.

The chapter 5 discussed the cod generation from the OCL enhanced

activity models. A Theoretical proof to connect OCL statements for

operation body, actual parameters, initial values, instances and guard

conditions with the activity diagram is depicted here. The operational

semantics for OCL enhanced activity diagram and a concrete method for

converting it into source code are also explained in this chapter. The

proposed algorithms give a proper guideline for the code generation from

OCL enhanced activity diagram. ActivityOCLKode, the tool implemented

based on proposed algorithm, provides a user friendly environment for the

users to model the process flow based software systems. The evaluation of

the tool shows the proposed method of code generation helps us to generate

more than 83% code. When the OCL is added with the activity diagrams,

this raises up to 84.4%. The code, generated from OCL, is very crucial since

it includes method definitions and the specific pre- and post conditions.

Moreover, the time required for code generation based on the proposed

method is 11.46 milliseconds approximately. The use of OCL improves the

percentage of code generated. The use of XML to save the models in text

format improves the portability of the models. UML models, OCL and XML

all are widely accepted and used in software industry and so the proposed

method can be easily adapted to the software development process in the

software industry.

Chapter 1

12 Department of Computer Science

The chapter 6 proposed a method to combine activity models and

sequence models to improve the code generation. Activity diagram alone

cannot give the implementation details like object interactions. We found a

formal association between activity and sequence diagrams to add object

interaction details to the work flow. Moreover, we formulated an algorithm,

Am_To_Prototype, which is composed of two subroutines named

Method_Body & Excecution_Logic, to generate code from the combined

model of activity and sequence diagrams consisting of concurrent activities.

The authors compared the proposed method with other research outcomes

with respect to workflow automation, support for concurrency, etc. The

proposed algorithms are able to generate class definition, method definition

and control flow.

The chapter 7 proposed a method for automatic code generation

from UML state chart diagrams. The event driven systems can be modeled

and implemented using UML state chart diagrams. The existing

programming elements cannot effectively implement two main components

of the state diagram namely state hierarchy and concurrency. We proposed a

novel design pattern for the implementation of the state diagram which

includes hierarchical, concurrent and history states. The state transitions of

parallel states are delegated to the composite state class. The architecture of

the code generator and the step by step process of code generation from

UML state machine are proposed in the chapter.

The chapter 8 concludes the thesis by presenting the main

contributions and future research directions.

Cochin University of Science and Technology 13

Chapter 2 LITERATURE REVIEW

2.1� Introduction ... 13�
2.2� Code Generators .. 14�
2.3� Existing Methods For Code Generation From Use Case Diagrams And

Sequence Diagrams ... 18�
2.4� Existing Methods For Code Generation From Activity Diagrams 21�
2.5� Existing Methods For Code Generation From State Chart Diagrams 24�

2.5.1� State machine implementation using switch statement: 25�
2.5.2� State machine implementation using state tables: .. 27�
2.5.3� State machine implementation using state design patterns: 28�

2.6� Summary .. 31�

2.1 Introduction

Design and coding are the two important phases of software

development process. Designers draw the structural and behavioral models of

the software system according to the analysts’ report and Software

Requirement Specification (SRS). Nowadays, use of UML [99] to design the

models of a system is very common. Programmers develop the

implementation code based on the design models and the SRS. Each module

of the whole system will be given to different programmers. Manual

programming is very expensive and error prone.

In addition, some programmers may not add proper documentation in

the source code. This reduces the readability and understandability of the

code and thereby making the maintenance of the software very difficult.

Syntax errors are another unavoidable headache in manual coding. In short, a

lion’s share of the software development effort is put on coding and

Chapter 2

 14 Department of Computer Science

debugging [108]. A better solution to this problem is the use of automatic

code generators.

UML is one of the designing languages which support object

orientation in the design phase. It supports the important concepts of Object

Oriented Development (OOD) such as, abstraction, inheritance, modularity,

polymorphism etc. UML help us to design the structure as well as behavior

of the system. They are called structural modeling and behavioral modeling.

Structure diagram includes class diagram, object diagram, deployment

diagram etc. Behavioral diagrams include activity diagram, state chart

diagram, sequence diagram etc.

The code generated from the structural models will have a skeletal code,

not the complete one, since the system behavior is not taken into account. So,

the studies in code generation diverts to behavioral models like activity

diagram, sequence diagram, state diagram etc. In this chapter we discuss

code generators and different approaches for code generation from UML

models.

2.2 Code Generators

According to the software engineering practices, major share of the

software development effort is put on manual coding and debugging [108].

In this scenario, CASE tools with automatic code generators can do wonders.

The code generators can also be called as model compilers [11, 40, 87],

which take UML models as input and produce implementation code as

output. It can do model validation too. Code generators separate the system

model from the source code and thereby reduce the complexity of the

software development. It helps us to save time by generating a major part of

the source code. The code generators handle the code duplication and

Literature Review

Cochin University of Science and Technology 15

refactoring. Moreover, the code generators help us to impose coding

standards and so the quality of the source code will be improved.

Code generators use eXtensible Stylesheet Language (XSL) [20] for

representing system models which takes the advantage of widely accepted

XML standard. It gives a standard and flexible data format. The improved

performance over code generation and maintenance obtained by using a code

generator does comes at the expense of the effort to create an information

model and to customize the code generation logic. The benefits of code

generation outweigh the additional overhead, especially in larger projects.

Georgescu [20] categorizes the code generators into two types. First one

is programmer centric and the second one is designer centric.

Figure 2.1 : Programmer centric code generator

Figure 2.1 shows the components of a programmer centric code

generator. It takes two inputs, first one is a conceptual model and the second

one is the implementation logic. Business expert provides the information

models or data which explain the conceptual model of the problem domain.

The additional data required here is the meta model, which contains the data

about the model. System analyst will provide this information. Programmer

plays an important role in this type of code generators. The key parts of the

code generation will be done based on the input of the programmer not from

the conceptual model of the system. That is the implementation logic is given

Chapter 2

 16 Department of Computer Science

by the programmer with the help of the designer of the system. It specifies

the instructions to generate code.

A second type of code generator is model centric code generators. It

has a more elaborated architecture that involves the creation of an

intermediate design model and possibly iterating through several design

models before the final step of code generation (see Figure 2.2). Along with

the conceptual model, the designer adds the design logic to generate the

system model. Designers play an important role in this type of code

generators. The major part of the code generation logic is given by the

designer through the design logic and hence the name.

Figure 2.2: Designer centric code generator

We use the designer centric code generation approach in our research

work. UML is used as the software system modeling tool. The code

generation from UML diagrams is an ever growing research area. Many

authors contributed to this [28, 29, 39, 49, 53, 70, 77, 84, 85, 90, 92, 93, 107,

110, 128, 132, 133, 139, 141, 142, 143] even from late 90s.

Other than standard modeling tools like UML, some research works

proposed code generation from formal specification of the system [21], or

code generation from new modeling languages [45].

Literature Review

Cochin University of Science and Technology 17

Key problems in automatic code generation on the basis of formal

methods are that: (a) Formal specifications are abstract descriptions of a

system and each specification may be satisfied by many different

implementations. (b) Most formal notations use mathematics to express

systems behaviors. There is no direct transformability for some of the

abstract descriptions in executable target languages. Cyprian [21] presented a

method to transform the formal specifications in Real Time Process Algebra

(RTPA) to Java code. RTPA denotes system behaviors by meta and complex

processes.

Most RTPA processes can be translated directly into Java. For those

processes that cannot be translated into RTPA directly, a special class in the

virtual machine (RTPA-VM) will be called, which provides a set of

predefined functions for executing the nontraditional processes.

Code generation from new modeling language, ThingML, is proposed

by Harrand [45] to utilize the benefits of the Model Based System

Engineering (MBSE). ThingML is a domain specific modeling language

(DSML). It supports automated code generation from system models, thereby

increases the productivity of the software development team. [45] states that

they implement the behavior of a system using code generation from the state

machines of the system. For code generation, they use existing design

patterns in C++ or Java, or else other existing frameworks such as State.js

[95]. They focus on heterogeneous target platforms.

In the following sections we present the existing methods for code

generation from the UML use case models, sequence models, activity models

and state chart models.

Chapter 2

 18 Department of Computer Science

2.3 Existing Methods For Code Generation From Use Case
Diagrams And Sequence Diagrams

UML use-case models are used primarily for the requirement analysis

in software development [38]. It draws the external view of a software

system. It describes the functionalities of the system which are used or

initiated by a human user. A use-case description is associated with each use-

case in the use-case diagram which explains the name of the use-case, the

summary of its working, the actor (human user) who uses the use-case, the

pre and post conditions, the description of the use-case and the alternative

options in the use-case. All these details will be given in natural languages

like English [116].

The use case model is used throughout the software development. In

the requirement specification phase, it is used for specifying functional

requirements. This will be used in analysis and design phase as the base

input. Moreover, the use case model is used as input to iteration planning, for

test case generation and as a major component for user documentation.

UML use case and sequence diagrams can be used to generate source

code of a software system. The use cases give the list of services provided by

the system. The sequence diagrams allow us to expand the service methods

as a sequence of method calls.

Prototyping is an efficient and effective way to close the gap between

customers and designers in their understanding of the system and its

requirements and validating the customers’ requirements. Li [141] define

system requirements model as a pair of a conceptual class model and a use-

case model. They decompose each use case declared with its pre and post

conditions into a sequence of primitive actions and then generate an

executable source code in Java. The prototype can be executed for validating

Literature Review

Cochin University of Science and Technology 19

the use cases under the given conceptual class model and checking the

consistency of the requirements model.

For complex use cases, we need to draw their corresponding sequence

diagrams. There are a couple of methods to generate code from such

sequence diagrams [86, 22, 30, 102, 60, 109, 107, 83, 142].

Sequence diagram along with class diagram help us to generate prototype

of the system. UML class diagram is used to generate a structural view and

sequence diagrams to generate the behavior view [86, 102]. The system

design contains a main sequence diagram which defines main method and

defines the start point of the behavioral code. Structural code is generated

from the class diagram. The sequence of methods is captured including

returns and arguments, from the sequence diagrams.

Figure 2.3: SD and corresponding SIG

Another approach for code generation from sequence diagram is based on

intermediate models [22]. The sequence diagrams (SD) first converted to

sequence interactions graphs (SIG) with help of a set of mapping rules. These

graphs contain information like messages, control flow and method scope of

interactions. This information is then used to generate code. During code

generation, first identify the subgraphs of the graph model which belongs to

the same method scope of a class method. Then apply the mapping rules to

Chapter 2

 20 Department of Computer Science

the model elements contained in the subgraphs to generate the code of

different class methods.

Figure 2.3 gives a sequence diagram and its corresponding SIG. The SIG

contains 6 nodes V1, V2, V3, V4, V5 and V6 corresponding to the 6 messages

(m1, m2, m3, r3, r2 and r1), respectively.

A reverse approach is presented by Aziz [93] where the sequence

diagrams are generated from the source code. This reverse engineering helps

us to extract system abstractions and design information from existing

software.

Instead of SIG, an intermediate structural model representing the Java

platform specific model (PSM) can be generated from the sequence diagram

of system’s internal behavior, which is a platform independent model (PIM)

[30]. A set of model transformation rules has been defined for the same.

Objects involved in use cases and sequence diagrams are transformed to Java

classes by merging details in the domain class diagram. Then, the methods

involved in the sequence diagram interaction are converted to source code.

Method body has to be added explicitly since it’s not available from the

sequence diagram.

A different approach is proposed by [60]. During requirements

engineering, each use case is elaborated with sequence diagrams. These

sequence diagrams are combined into one to form a global single sequence

diagram capturing the behavior of the entire system. The use case diagram

and all sequence diagrams are transformed into Hierarchical Colored Petri

Nets (CPNs). Finally, a system prototype and code is generated from the

global single sequence diagram and can be embedded in a user interface (UI)

builder environment for further refinement.

Literature Review

Cochin University of Science and Technology 21

Ruben Campos has proposed a method for xUML engine which hide the

details behind translating UML models into a high level program [109]. The

sequence diagram is selected as the focal point of execution in that xUML

Engine. It uses the class diagram as the entry point in implementing the class

methods and the Activity diagrams are used to implement the details of a

class method.

 Instead of intermediate models, intermediate languages can also be

used. In [107], Relational Calculus of Object Systems (rCOS) is used as the

intermediate language. The sequence diagrams and the class diagram are first

checked for consistency. Error report is generated if there is any

inconsistency. Otherwise the diagrams are given for code generation.

During the generation of method bodies, traverse through the

sequence diagram. When a message is sent (or in other words, method is

called), the signature of the method is created. For a send point, if it calls

method m, the algorithm writes the signature of m to the body of the method

that is currently being generated, leaving the method body unfinished, begins

to write the body of method m.

Thongmak [83] converts the sequence diagrams to java code. They

defined transformation rules for the same. According to their method, class

diagram and sequence diagrams are transformed to a meta-model. This meta-

model will be then converted to java code using the transformation rules.

The programmer’s intervention is required to complete the program.

2.4 Existing Methods For Code Generation From Activity
Diagrams

Behavioral modeling is very much important in the context of

automatic code generation, since it helps us to represent the control flow in

the system. Activity diagram is one of the most important diagrams for

Chapter 2

 22 Department of Computer Science

behavioral modeling. It is the only UML diagram which models control flow

(work flow). Activity diagram gives the activity model of the system which

shows the workflow from activity to activity. Activity diagrams are activity

centric and it shows flow of control from activity to activity.

Activity diagram can show the group of activities done by different

objects in the system. We can specify which object is responsible for which

activity. This is a unique feature of activity diagram compared with other

behavior diagrams like state chart diagrams.

An approach to the model driven generation of programs in the

Business Process Execution Language for Web Services (BPEL4WS) which

transforms a platform independent model to platform specific model is

described in Koehler [53]. Business process modeling is done using the

activity diagrams. They define rules for integrating business process. This

rule helps them to reduce complex activity diagrams to comparatively simple

diagrams which do not contain loops. According to their approach, the

control flow models will be analyzed first. Sub processes in the model will

be identified.

These are the regions in the model which have a single entry node to

the region and single exit node from the region. Check whether this region

can be reduced to a single node. To find the reducibility they provide some

rules. Further, they provide a declarative method to convert these reduced

models to BPEL4WS.

Business process is modeled using UML2.0 activity diagram in Yin

[143]. The semantics of it is also given by [143]. Set of the activities,

including the Primitive Actions, CallBehaviorActions and Pseudo actions; set

of transitions, flow relation; InitialNode and ActivityFinalNode; set of local

variables within the activity diagram are included in the formal semantics of

Literature Review

Cochin University of Science and Technology 23

the business process model. A PrimitiveAction defines a method that is to be

called by its actor to perform its functionality. The functionality is specified

by a pair of OCL precondition and postcondition, which describes a relation

between the states of the system before and after the execution of the

PrimitveAction. It is implemented as a sequence of atomic actions simulating

the state change. Method interactions are not considered here.

An activity within an activity diagram is specified by a pair of

precondition and postcondition in OCL [63]. The objects declared in the

class diagram are used in the OCL expressions to carry out functionalities of

the activities. By analyzing the semantics of the precondition and

postcondition, the behavior of an activity can be generally decomposed into a

sequence of atomic actions manipulating the objects. An activity is

transformed to a Java class with the sequence of atomic actions. An activity

diagram is transformed into a Java class with a method simulating the

execution of it. Activity classes are instantiated to perform their

functionalities according to the control flow defined in the activity diagram.

Pins used as arguments of activities are transformed into parameters of the

calling of the activity classes.

The Object Management Group (OMG) has specified a subset of

UML 2.0 exclusively for Model Driven Development [129]. This subset is

named as Foundational UML (fUML) [129]. fUML considers only class

diagram and activity diagram. In order to improve the precision an action

language named Alf [96] is used with fUML. It is a textual action language.

However, it does not have any advantage over UML and OCL, since fUML

requires detailed modeling and precisions should be added using an action

language like OCL. A sound knowledge in fUML and Alf is necessary to

convert fUML models to code. The same thing can be done with UML and

Chapter 2

 24 Department of Computer Science

OCL and with less effort since most of the developers and designers are

familiar with those standards.

2.5 Existing Methods For Code Generation From State
Chart Diagrams

UML state chart diagrams can effectively represent the behavior of

event driven systems aka reactive systems. The behavior of the event-driven

system changes with the interactions (events) with the environment. The state

diagrams show that the behavior of a system depends on the current input to

the system as well as the previous interactions by the environment. Event

driven systems modeled using the state machines can represent the full life

cycle of an object. The different states of the object and the transition

between those states are all portrayed in this. The challenge is to work out an

efficient method to convert state charts to a program since there is no

programming construct exist to directly represent elements in the state

diagram.

Figure 2.4: Sample state chart diagram

Dominguez [26] presented a review of research works that propose

methods to implement UML state chart diagrams. Dominguez summarizes

the review by saying that the state transition process in most of the works is

Literature Review

Cochin University of Science and Technology 25

based on switch statement, state table or state design patterns. Another key

finding of [26] is that very few papers support hierarchy and concurrency of

states. State machine implementation techniques include nested switch

statement, state table and state design patterns.

2.5.1 State machine implementation using switch statement:
Using switch statement the system state is implemented as a variable

and events are implemented as methods. The general structure of the state

chart implementation using switch statement for the Figure 2.4 is shown

below.

The switch statement receives the current state and the nested switch

statement chooses appropriate action for each event. This is straight forward

method for state chart implementation [5]. The entire system will be

represented in a class called context class and the event methods are its

members. Even though it’s a simple method of state chart implementation, it

Chapter 2

 26 Department of Computer Science

can’t support concurrent states in a state chart diagram. In addition to that,

the composite states cannot be implemented using this method, since the

state hierarchies cannot be represented in switch case statements.

A different implementation method is proposed by Jakimi [1]. In his

approach, the state machine is represented as a class and the states are the

attributes of the class. The events in the system are represented as the

member functions of the class. An example of this approach is given in figure

2.5. It is a state diagram of an engine which has two states; idle and running.

One event in the system is switchON which causes the state transition. The

state diagram is implemented as class Engine. An integer attribute, on, is

defined to represent the system state. When the system in idle state, on=0;

and when the system is in running state, on=1. The event is represented as the

member function switchOn() which changes the value of state variable.

Figure 2.5: Class generated for the state machine

In order to implement composite states and parallel states the

language specific features like enumerators have been used in research

works. Ali [54] presents the implementation of concurrent and hierarchical

state machines by making use of enumerators in Java language. In Java,

enums can have data members and member functions similar to class

concept. The enum values can override the member functions. Events and

states are represented using enumerator variables. Each event and state

becomes an enum value. The transitions from states can be implemented as

Literature Review

Cochin University of Science and Technology 27

member functions. In [1], the state of a system is implanted as scalar

variables and events are represented as methods. Aabidi [79] proposed a

method to implement hierarchical-concurrent and history states by

combining the methods proposed in [1]and [54]. They aimed to provide a

better way to implement state machines leveraging the positive points of both

approaches, state machine encapsulated within a single class, code well

structured, clear, compact and easy to understand for the first approach and a

better identification of the state for the second approach.

2.5.2 State machine implementation using state tables:

Another method for representing state machine is state tables. It is a

two dimensional structure like a matrix. Each row represents different states

of the system and the columns show the possible events that can happen in

the system. Each element in the table shows which action has to be taken

when an event occurs and the next state of the system. The Table 2.1 gives

the state table of the state chart shown in Figure 2.4. In state 1, if event 2

occurs the state will be changed to state 2.

Table 2.1 : State table structure for UML state chart diagrams

State \ Events Event 1 Event 2 Event 3 Event 4 Event 5

State 1 State 1 State 2

State 2 State 1 State 3

State 3 State 1

This approach is more convenient for coding simple state chart

diagrams and better than switch case method. As the number of states and

events increases the table size increases drastically. It is the main drawback

of this approach. Moreover the table size does not depend on the number of

transitions. Hence the table can be large even though the numbers of

transitions are less. This in turn results in wastage of memory.

Chapter 2

 28 Department of Computer Science

2.5.3 State machine implementation using state design patterns:

In state design pattern approach, there will be a class diagram pattern

that has to be followed for implementing all state chart diagrams [55, 2 , 56].

There will be one class in the pattern which represents the context (domain)

of the state chart diagram. The states in the state chart diagram are abstracted

in a single abstract class which will act as an interface to the states in the

state chart. The events will be the virtual member functions of the abstract

state class. Each individual state in the state chart will be represented as the

object of the derived class of abstract state class. If there are ‘m’ states in the

state chart, then there will be ‘m’ different concrete state classes derived from

the abstract state class. A sample state design pattern is shown in Figure 2.6.

Figure 2.6: Sample State Design Pattern

The object of the context class represents the domain object that

needs to be represented in the program. The context class will have a data

member (state variable) which represents the current state of the domain

object. All the events are represented as member functions of the context

class which in turn delegates the function to the corresponding state class

objects.

Literature Review

Cochin University of Science and Technology 29

Using state design patterns we can bring the object orientation in the

state machine implementation. The domain object, whose state chart is

drawn, is implemented as the object of the context class, each state of the

domain object is implemented as the object of the corresponding concrete

state class. Events are represented as the handles of the abstract state class

and the transitions are accomplished by updating the state variables. This

approach supports code reusability and avoids redundancy in coding.

There can be variable type of patterns that can be used to represent

the state chart diagram. In both the patterns, there is an abstract class which

acts as an interface for the state classes. The interface will be connected to

the context class. The pattern has an additional object called collaboration

object to accomplish the sub states. It is an abstract class which acts as an

interface for the sub states [94].

This object oriented approach creates some inconvenience too. In

order to add a new state, we have to derive one more concrete state class

from the abstract state class. Similarly, to add a new event, we need to add

one more virtual function to the abstract state class.

The above mentioned methods failed to represent the concurrent

states. Some literature, based on State Design Patterns, attempted to address

this issue but resulted in very complex design patterns [131, 54, 133, 132]

and failed to implement the key features of state machine. [131] addresses

concurrent and hierarchical state implementation. They proposed a double

dispatch based event handling. The reaction of the state machine depends on

the current state of the system as well as the event occurred. This is the

theory behind double dispatch. The implementation pattern presented in this

work is very bulky since it requires 17 classes in the implementation for

representing a state machine with 6 states and 6 events. It makes the

implementation very bulky.

Chapter 2

 30 Department of Computer Science

A separate class is added to represent the current state of the system

in Niaz [94, 49, 2]. In this proposed approach single event can trigger

multiple transitions. This is against the semantics of the UML state machine.

UML specifies that one event should be consumed for only one transition.

Some researchers have presented customized methods for state

machine implementation like [89, 78]. They defined patterns like HSM

(hierarchical state machine) and QHSM (Quantum Hierarchical State

Machine) in which states machines are defined as a composition of states, not

as inheritance of state class as we see so far. [78] used Quantum

Programming paradigm.

Some methods, like [111], extend the HSM pattern method. It

presents a template based approach to directly convert the state chart

diagrams to the C++ code. This method avoids the use of separate code

generation tools for the state machine to code conversion. The generated

code is optimized using in-lining. The advanced features like concurrent

states and history states do not supported by [111].

Combining state chart diagrams with other behavioral diagrams is a

different approach to improve the code generation from the system models.

[56] is an attempt to make use of state chart diagrams and activity diagrams

together for the code generation. Ali [56] proposed a method to implement

the dynamic behavior of an application. State transition diagrams and activity

diagrams are used for modeling the dynamic behavior. The state of the

system is represented as object and the state transition is implemented as

method. Similar to the previous methods, the state hierarchy and concurrency

are implemented using inheritance and composition.

Direct execution of the state chart diagrams are also investigated by

few researchers [126, 57] etc. Schattkowsky [126] demonstrates how a fully

Literature Review

Cochin University of Science and Technology 31

featured UML 2.0 state machine can be represented using a small subset of

the UML state machine features that enables efficient execution. They are

trying to directly execute the state machines without converting it to

implementation code. It is an alternative to native code generation

approaches since it significantly increases portability. [57] presented a

method to generate C++ code from the State chart. State chart is modeled in

XML and then using Python the XML document is parsed to Python object.

In the next step a templating engine is used to convert the parsed XML to

C++ code. For this conversion they use a pattern based approach. The pattern

contains state controller, state chart, state and events.

2.6 Summary

In this chapter, a review of literature on code generation techniques

from different UML models is carried out. The review was done for static

models as well as dynamic models. The structural models can contribute to

the structure of the software system and the dynamic models are most

important to generate the source code for the behaviour of the software

system, mainly the control flow and method definitions. The code generation

approaches for use case diagram, sequence diagram, activity diagram and

state diagram, have been reviewed in detail. Based on the review of code

generation based works, some inferences were drawn.

The main issues observed during the study of use case and sequence

diagram based code generation were:

� Use case diagrams are not considered for modularizing the generated

code.

� The relationships between use cases, like <<extend>> and

<<include>>, is not taken into account for code generation.

Chapter 2

 32 Department of Computer Science

� An algorithm based code generation from use case and sequence

models is not adopted in the literatures.

� Combining sequence models with other model for the better

expressiveness of the software system design is not addressed in the

literatures.

Activity models are the best tool to represent the process flow in a

system. The control flow of the source code can be generated from this

model. The main issues observed during the study of activity models based

code generation were:

� Enhancing activity models with additional information for better code

generation is not addressed well in the literature.

� Combining activity models with other model for the better

expressiveness of the software system design is not addressed in the

literatures.

� An algorithm based code generation from activity models is not

adopted in the literatures.

UML state chart diagram is a very strong tool to model embedded

systems. From these state chart diagrams, we can generate complete code for

the system. Some advanced features, like history state, are not so far

considered for code generation, or an effective method is not proposed so far.

The main issues observed during the study of state chart models based code

generation were:

� Existing design patterns for state machine implementation are

complex and customized for a problem and so difficult to reuse in

other scenarios.

Literature Review

Cochin University of Science and Technology 33

� The available design patterns do not support the concurrent states and

the history states.

It is evident from the literature review that, there are more

opportunities to improve code generation from the UML behavioural models

by solving the above issues.

Cochin University of Science and Technology 35

Chapter 3 UML BEHAVIOURAL MODELS

3.1� Introduction ... 35�
3.2� Behaviour Models .. 36�

3.2.1� Use case diagram ... 37�
3.2.2� Sequence diagram ... 38�
3.2.3� Activity diagram .. 39�
3.2.4.� State chart diagram .. 43�

3.3� Use of Object Constraint Language (OCL) .. 46�
3.4� Summary .. 48�

3.1 Introduction

UML forms a de-facto standard for software system design [99]. It is

used for high level system design. It is a modeling language based on Model-

driven engineering [33, 115, 123] concepts and consists on the application of

models to raise the level of abstraction in which developers create software

with the objective of making easier to cope development processes with the

required standardized methodologies. The application of these techniques

improves software quality, reduces the problem and creates a possible

solution in the developer perspective. This higher level of abstraction offered

by models also leads to a better reuse of software business logic. In addition

to these advantages, it is possible to use tools to transform UML models into

other models (meta-models) as well as source code. This will lead to a

reduction of software development time, costs and preventing diagram’s data

losses due to misinterpretation of the model during code generation.

Chapter 3

36 Department of Computer Science

UML can be used to model the architecture and behavior of any kind

of software project. This is due to the fact that UML provides many different

diagrams or views of a system: class, component and deployment diagrams

focus on different aspects of the structure of a system while the behavioral

diagrams such as use case, state chart, activity and interaction diagrams focus

on its dynamics. All the behavioral diagrams except use case diagrams are

closely related. We can convert a collaboration diagram into a sequence

diagram and vice versa. State charts are used as the semantic foundation of

the activity diagrams and it is possible to represent an execution (a trace) of a

state chart or an activity diagram as a sequence or collaboration diagram

[34].

UML provides structural and behavioural diagrams to design a

system [34, 58]. Structure diagrams show the static structure of the system

and its parts on different abstraction and implementation levels and how they

are related to each other. These static structures are represented in UML by

class diagrams, object diagrams, component diagrams and deployment

diagrams.

The behaviour diagrams show the dynamic behaviour of the objects

in a system, which can be described as a series of changes to the system over

time. UML provides five types of behavioural diagrams; use case diagram,

sequence diagram, collaboration diagram, activity diagram and state chart

diagram [34].

3.2 Behaviour Models

The internal behaviour of a system is described using the behavioural

models. The UML sequence diagrams and activity diagrams are used for

business process modeling. The change in the data (state) is modeled using

the state chart diagrams.

UML Behavioural Models

Cochin University of Science and Technology 37

The system modeling starts with the identification of different use

cases in the problem. Next, we have to identify the objects and their

interactions to achieve the use cases. The sequence of messages that pass

between the objects is described in the sequence diagram. It helps the users

as well as programmers in understanding real-time specifications and

complicated use cases. The state of the objects may change in response to an

event. These changes in the state of the objects are represented using state

chart diagrams.

3.2.1 Use case diagram
Use case diagrams are used to represent the use case or functionalities

of a system. It represents the high level requirements that the system fulfills.

It has three main components; use cases, actors and relationships.

Use cases represent the functional requirements of the system. Actors are

the controllers who interact with the use cases. Relationships (or

associations) exist between actors and use cases as well.

A sample use case diagram which shows the main components of the use

case diagram is given in figure 3.1.

Figure 3.1: Sample Use Case diagram

Chapter 3

38 Department of Computer Science

Use cases help in organizing and defining the software. So the code

generation can be started from this model.

3.2.2 Sequence diagram

It is the most commonly used interaction diagram. It basically

represents the interactions or sequence of messages between objects to

accomplish a specific functionality or use case of the system. It has five main

components; actors, objects, lifelines, messages and guards.

A sample sequence diagram which shows the main components of the

sequence diagram is given in figure 3.2.

Figure 3.2: Sample sequence diagram

The sequence diagram visualizes the logic behind sophisticated

functions [109]. They are used to describe how a use case is achieved

through object (or component) interactions. So linking sequence diagrams

with the use cases will help to add more execution logic in the

implementation code. Sequence diagrams are best suited for implementing

UML Behavioural Models

Cochin University of Science and Technology 39

the control classes since it represents the execution logic of each use case and

the objects involved in it.

Collaboration diagram is similar to sequence diagram. It basically shows

the object interactions and the organization of the objects as well. We can

convert sequence diagram to collaboration diagrams and vice versa without

losing any information.

3.2.3 Activity diagram
The control flow of the entire system is described using activity

diagrams. It gives a clear picture of how the system will work when

executed. That is, the activity diagram describes the control flow between

different activities. Activities are the functions of the system and the control

flow can be sequential, concurrent or branched.

The components of the activity diagrams are initial and final nodes,

activity node, control flow, decision node, fork and join nodes, merge node,

swimlanes and time event node as shown in figures 3.3 to 3.12.

Activity Diagram Notations

Initial Node – The starting state before an activity takes place is depicted

using the initial node (Figure 3.3). A process can have only one initial state

unless we are depicting nested activities. We use a black filled circle to

depict the initial state of a system. For objects, this is the state when they are

instantiated. The initial node from the UML Activity Diagram marks the

entry point and the initial Activity State.

Figure 3.3: Notation for initial node Figure 3.4: Notation for an activity state

Chapter 3

40 Department of Computer Science

Action or Activity Node – An activity represents execution of an action on

objects or by objects. We represent an activity using a rectangle with rounded

corners (Figure 3.4). Basically any action that takes place is represented

using an activity.

Action Flow or Control flows – Action flows or Control flows are also

referred to as paths and edges. They are used to show the transition from one

activity state to another (Figure 3.5). An activity state can have multiple

incoming and outgoing action flows. We use a line with an arrow head to

depict a Control Flow. If there is a constraint to be adhered to while making

the transition it is mentioned on the arrow.

Decision node and Branching – When we need to make a decision

before deciding the flow of control, we use the decision node (Figure 3.6).

The outgoing arrows from the decision node can be labeled with conditions

or guard expressions. It always includes two or more output arrows.

Figure 3.5: Notation for control Flow
Figure 3.6: Guards being used next to a

decision node

Guards – A Guard refers to a statement written next to a decision node on an

arrow sometimes within square brackets (Figure 3.6). The statement must be

true for the control to shift along a particular direction. Guards help us know

the constraints and conditions which determine the flow of a process.

UML Behavioural Models

Cochin University of Science and Technology 41

Figure 3.7: Notation for fork Figure 3.8: Join notation

Fork – Fork nodes are used to support concurrent activities (Figure 3.7).

When we use a fork node when both the activities get executed concurrently

i.e. no decision is made before splitting the activity into two parts. Both parts

need to be executed in case of a fork statement. We use a rounded solid

rectangular bar to represent a Fork notation with incoming arrow from the

parent activity node and outgoing arrows towards the newly created

activities.

Join – Join nodes are used to support concurrent activities converging into

one. For join notations we have two or more incoming edges and one

outgoing edge (Figure 3.8).

Figure 3.9: Notation for merge node Figure 3.10: Swimlanes notation

Merge or Merge Event – Scenarios arise when activities which are not being

executed concurrently have to be merged. We use the merge notation for

such scenarios. We can merge two or more activities into one if the control

proceeds onto the next activity irrespective of the path chosen (Figure 3.9).

Swimlanes – We use swimlanes for grouping related activities in one

column. Swimlanes group related activities into one column or one row.

Swimlanes can be vertical and horizontal. Swimlanes are used to add

Chapter 3

42 Department of Computer Science

modularity to the activity diagram. It is not mandatory to use swimlanes.

They usually give more clarity to the activity diagram. It’s similar to creating

a function in a program. It’s not mandatory to do so, but, it is a recommended

practice. We use a rectangular column to represent a swimlane as shown in

the Figure 3.10.

Time Event – We can have a scenario where an event takes some time to

complete. We use an hourglass to represent a time event (Figure 3.11).

Figure 3.11: Time event notation Figure 3.12: Notation for final Node

Final Node or End Node – The state which the system reaches when a

particular process or activity ends is known as a Final node or End node

(figure 3.12). We use a filled circle within a circle notation to represent the

final state in an activity diagram. A system or a process can have multiple

final nodes.

A sample activity diagram which shows the main components of the

activity diagram is given in figure 3.13. This figure shows the initial and final

nodes, the decision node, merge node, fork node, join node, activity nodes

and the control flows.

����������	
 ������	

	
�������
��	

�������	

�
��
���	

���������������
��	

�������

�������

������	

������

�������

Figure 3.13 : Sample Activity diagram

UML Behavioural Models

Cochin University of Science and Technology 43

Activity Diagrams are essential in code generation since they describe

control flow of how use cases are achieved, by depicting conditions,

constraints, sequential and concurrent activities. Apart from sequence

diagram, activity diagrams can add more information to implementation code

like, the concurrent activities, conditions and sequence of activities inside

and among the objects. Activity diagrams show the various steps involved in

UML use cases. It can also give the constraints, conditions and logic behind

algorithms.

The combination of use case diagram and the sequence diagram is

used to prepare the prototype of the system. The details in the activity

diagram will help us to incrementally add method definitions to the prototype

to evolve it as the final software.

3.2.4. State chart diagram
The state chart diagram represents the event driven state changes of a

system components (or objects). It visualizes the reaction of a system by

internal/external factors.

State chart diagrams represent the events responsible for state

changes and the different states of the objects (or components) in the system.

 The basic components of the state diagram are initial & final nodes,

state node, fork and join nodes and transitions labeled with events.

Initial state – We use a black filled circle represent the initial state of a

System or a class (Figure 3.14).

Figure 3.14: Initial State Figure 3.15: Transition

Chapter 3

44 Department of Computer Science

Transition – We use a solid arrow to represent the transition or change of

control from one state to another. The arrow is labeled with the event which

causes the change in state (Figure 3.15).

State – We use a rounded rectangle to represent a state. A state represents the

conditions or circumstances of an object of a class at an instant of time

(Figure 3.16).

Figure 3.16: State notation
Figure 3.17: A diagram using the fork notation

Fork – We use a rounded solid rectangular bar to represent a Fork notation

with incoming arrow from the parent state and outgoing arrows towards the

newly created states. We use the fork notation to represent a state splitting

into two or more concurrent states (Figure 3.17).

Figure 3.18: Join notation Figure 3.19 : Self transition notation

Join – We use a rounded solid rectangular bar to represent a Join notation

with incoming arrows from the joining states and outgoing arrow towards the

common goal state. We use the join notation when two or more states

concurrently converge into one on the occurrence of an event or events

(Figure 3.18).

Self transition – We use a solid arrow pointing back to the state itself to

represent a self transition. There might be scenarios when the state of the

UML Behavioural Models

Cochin University of Science and Technology 45

object does not change upon the occurrence of an event. We use self

transitions to represent such cases (Figure 3.19).

Figure 3.20: A state with internal activities Figure 3.21: Final state notation

Composite state – We use a rounded rectangle to represent a composite state

also. We represent a state with internal activities using a composite state

(figure 3.20).

Final state – We use a filled circle within a circle notation to represent the

final state in a state machine diagram (figure 3.21).

�

Figure 3.22: A sample State chart diagram

A sample state chart diagram which shows the main components of

the state chart diagram is given in figure 3.22. It has three states, States A, B

and C. States A and B are simple states. State C is a composite state with two

parallel regions. Each transition in the state transition diagram is labeled with

the event name which causes the state transition, the guard condition

(optional) and the actions to be executed. Inside each state we can specify the

entry action, exit action and the internal actions.

Chapter 3

46 Department of Computer Science

UML State chart diagrams represent the state changes of the objects

or entities in the system. So, it is best suited to generate code for entity

classes. Entities are the objects representing the system data. Moreover, state

chart diagrams can be used to generate code for embedded system where we

can represent the states of the whole system in a single state chart diagram.

3.3 Use of Object Constraint Language (OCL)

UML is not a fully formal language. Its semantics are not fully

formalized. In many places natural language is used for model specification.

It leads us to a scenario where the precise model presentation is difficult. So,

whenever we use activity diagram, or any UML diagram, for code

generation, it is recommended to complement it with specification languages

like Object Constraint Language (OCL) [98, 7, 138]. OCL can supplement

some of the shortcomings of UML notations, like lack of precision. We need

to give the constraints of the objects in the UML models. Usually, these

constraints are given in natural languages. This may be ambiguous. A formal

language is required to unambiguously present the constraints. Since OCL is

a formal language and all constructs in OCL are well defined, it can

unambiguously specify the constraints on the object or system. At the same

time OCL is familiar and widely used in software industry.

OCL is a formal language used to express constraints. These typically

specify invariant conditions that must hold for the system being modeled.

Note that when the OCL expressions are evaluated, they do not have side

effects.

A UML diagram, such as a class diagram, is typically not refined

enough to provide all the relevant aspects of a specification. There is, among

other things, a need to describe additional constraints about the objects in the

model. Such constraints are often described in natural language. Practice has

UML Behavioural Models

Cochin University of Science and Technology 47

shown that this will always result in ambiguities. In order to write

unambiguous constraints, so-called formal languages have been developed.

The disadvantage of traditional formal languages is that they are usable to

persons with a string mathematical back ground, but difficult for the average

business or system modeler to use.

OCL has been developed to fill this gap. It is a formal language that

remains easy to read and write. It has been developed as a business modeling

language within the IBM Insurance division and has its roots in the Syntropy

method.

OCL is a pure expression language; therefore, an OCL expression is

guaranteed to b e without side effect. When an OCL expression is evaluated,

it simply returns a value. It cannot change anything in the model. This means

that the state of the system will never change because of the evaluation of an

OCL expression, even though an OCL expression can be used to specify a

state change (e.g., in a post-condition).

OCL is not a programming language; therefore, it is not possible to

write program logic or flow control in OCL. You cannot invoke processes or

activate non-query operations within OCL. Because OCL is a modeling

language in the first place, not everything in it is promised to be directly

executable.

OCL is a typed language, so that each OCL expression has a type. To

be well formed, an OCL expression must conform to the type conformance

rules of the language. For example, you cannot compare an Integer with a

String. Each Classifier defined within a UML model represents a distinct

OCL type. In addition, OCL includes a set o f supplementary predefined

types.

Chapter 3

48 Department of Computer Science

As a specification language, all implementation issues are out of

scope and cannot be expressed in OCL. The evaluation of an OCL expression

is instantaneous. This means that the states of objects in a model cannot

change during evaluation.

OCL can be used for a number of different purposes: To specify

invariants on classes and types in the class model; To specify type invariant

for Stereotypes; To describe pre- and post conditions on Operations and

Methods; To describe Guards; As a navigation language; To specify

constraints on operations

The use of OCL improves the clarity of specification. In this regard,

researchers show interest in usage of OCL. OCL is a pure expression

language which uses expressions similar to object oriented languages [81,

125]. The evaluation of the OCL expression [16, 17, 47] will not change the

state of the system. So, it is safe to use the OCL expressions in the UML

diagrams and they are said to be side-effect free. The OCL statements are not

directly executable since it is a modeling language. Moreover, all OCL

statements should conform to the type conformance rule of the language.

3.4 Summary

This chapter presented the UML behavioural models which are used

to model (design) the behaviour of a system. The core UML behavioural

diagrams are use case diagram, sequence diagram, collaboration diagram,

activity diagram and state chart diagram.

The overall functions and actors of the software is given in use case

diagrams. So the code generation can be started from this model. It helps us

to realize the boundary and control classes.

UML Behavioural Models

Cochin University of Science and Technology 49

Sequence diagrams are best suited for implementing the control

classes since it represents the execution logic of each use case and the objects

involved in it. They are used to describe how a use case is achieved through

object (or component) interactions. So linking sequence diagrams with the

use cases will help to add more execution logic in the implementation code.

Activity Diagrams are essential in code generation since they describe

control flow of how use cases are achieved, by depicting conditions,

constraints, sequential and concurrent activities. Apart from sequence

diagram, activity diagrams can add more information to implementation code

like, the concurrent activities, conditions and sequence of activities inside

and among the objects. Activity diagrams show the various steps involved in

UML use cases. It can also give the constraints, conditions and logic behind

algorithms.

UML State chart diagrams represent the state changes of the objects

or entities in the system. So, it is best suited to generate code for entity

classes. Entities are the objects representing the system data. Moreover, state

chart diagrams can be used to generate code for embedded system where we

can represent the states of the whole system in a single state chart diagram.

So, the UML behavioural diagrams named use case diagram,

sequence diagram, collaboration diagram, activity diagram and state chart

diagram together with class diagram can generate implementation code for

the boundary, control and entity classes.

Cochin University of Science and Technology 51

Chapter 4 CODE GENERATION FROM UML
USE CASE MODELS

4.1� Introduction ... 51�
4.2� Requirements Modeling With Use Cases .. 53�
4.3� Code Generation .. 55�

4.3.1� Code generation from use case ... 55�
4.3.2� Code generation from sequence diagrams .. 56�

4.4� Elevator System as Case Study .. 62�
4.5� Analysis .. 65�
4.6� Conclusion ... 67�

4.1 Introduction

In software development life cycle, requirement specification is a

critical phase. The correctness, completeness and consistency of the

requirement specifications need to be checked. Otherwise it may lead to the

failure of the project itself. Prototyping is a widely accepted approach for

gathering customer requirements completely and for testing it [141, 100, 66,

24]. The prototype of the system will be made after collecting the customer

requirements. These initial requirements will be refined after testing the

prototype. The prototype will be modified based on the customer reviews on

the requirements. The updated version of the prototype will again be tested by

the customer and this process repeats till the customer gets satisfied [108]. This

process is shown in Figure 4.1.

Figure 4.1: Software Life Cycle

Chapter 4

52 Department of Computer Science

The use case model represents the business use cases of the system and

gives the important functionalities and their relationships. UML use-case

models are used primarily for the requirement analysis in software

development [38]. It draws the external view of a software system. It describes

the functionalities of the system which are used or initiated by a human user.

A use-case description is associated with each use-case in the use-case

diagram which explains the name of the use-case, the summary of its working,

the actor (human user) who uses the use-case, the pre and post conditions, the

description of the use-case and the alternative options in the use-case. All these

details will be given in natural languages like English [116].

The use case model is used throughout the software development. In

the requirement specification phase, it is used for specifying functional

requirements. This will be used in analysis and design phase as the base input.

Moreover, the use case model is used as input to iteration planning, for test

case generation and as a major component for user documentation.

The readers may wonder how a description with no technical details

can contribute to prototype generation. There are a few research works going

on, to directly convert the software requirements to source code. Our focus is

on Model Driven Development [113, 123, 3, 73, 88, 115, 117] and Executable

UML [87] since these two terms are welcomed in the software industry and are

widely accepted these days. Our aim is to convert the use-case model to

prototype of the system. In this view, we use use-case diagrams along with

sequence diagrams for prototype generation. Most of the research works in this

area concentrate only on sequence diagrams and class diagram for code

generation [83, 102, 107]. The use case diagrams are very useful and

informative for the clients. Since the functional requirements are marked in the

use case diagrams, any change in requirement will also be reflected in it. So the

initial stage of code generation, especially the prototype generation, should

Code generation from UML use case models

Cochin University of Science and Technology 53

take use case diagram as one of its inputs. This will help us to modularize the

generated code based on the functional requirements and so it gives traceability

from design to code.

The use cases are summarized to a software package which satisfies the

required functionalities of the system. It helps to map the system requirements

with the features provided by the system. Sequence diagram alone cannot

project the customer requirements satisfied by the implemented system. That’s

why we included use case diagram for code generation.

The main contribution of this chapter:

• Presents a method to generate code from UML use case diagram, where

use case scenarios are expanded with sequence diagrams.

4.2 Requirements Modeling With Use Cases

A use case diagram is the graphical representation of the functional

requirements of a proposed system [59]. It gives the scope of the proposed

system. It is mainly used for communicating with the end-users of the system.

So it is always kept non technical.

The two components in a use case diagram are the use cases and the actors.

A use case is a single unit of meaningful work. That means, one aspect of the

behavior of a system is represented by a use case. A use case can be described

with diagrams or textual descriptions. A description includes the requirements,

constraints, scenarios and scenario diagrams. UML sequence diagram is used

as the scenario diagram. The users of the system are marked as actors in use

case diagram. An actor in a use case diagram can be something with a behavior

or role. For example, a person, another system, organization etc. Actors

interact with the system. The use case diagram describes how actors related to

use cases. The use case diagram helps to package the user specific methods in

the actor classes during code generation.

Chapter 4

54 Department of Computer Science

Figure 4.2: Sample Use Case diagram

A sample use case diagram along with its different components is

shown in Figure 4.2. The use cases are Add Member, Issue Book, Renew Book

and Search for a Book. The actors are the Member and Librarian. The lines

between the use cases and the actors are called association. The proposed

system is represented as the rectangular box in which the uses cases are

embedded.

Figure. 4.3: Sample sequence diagram

Sequence diagram represents the interaction between different objects

and actors in a system to accomplish a functional requirement of the system

Code generation from UML use case models

Cochin University of Science and Technology 55

[59]. The basic components in the sequence diagram are objects, actors, lifeline

& activation and messages. Objects and actors are the instances of classes. The

existence of an object is represented by lifeline (the dashed vertical lines). The

rectangular box on the life line shows the activation period of the object.

Messages are represented with arrows from the life line of one object to

another. It indicates the communication between objects.

A sample sequence diagram is shown in the Figure 4.3. Three objects

are there, one actor and two other objects; obj1 and obj2. Usually, in each

sequence diagram the communication starts from an actor. Here, m1 and m2

are the messages. The reply of the messages are marked using dotted arrows.

Here, r1 and r2 are the replies. Normally there will be a sequence number

along with each message to show their order. The dashed line from each object

(vertical) is called the life line. And the rectangular boxes on the life line

shows the activation period.

4.3 Code Generation

The static structure of a system is presented using UML use case

diagram and class diagram. The dynamic and behavioral aspects of the system

are presented using UML sequence diagrams. Sequence diagram emphasizes

the time ordering of message between objects.

For code generation, we first analyze the system requirements and

prepare use case diagram with necessary scenario descriptions. Then develop

the class diagram to show the system architecture. Further, the behavioral

details of the system are designed using sequence diagram. Finally, using the

information in all the three diagrams generates code out of it [109, 46].

4.3.1 Code generation from use case
The use case diagram is used in code generation to identify different

services provided by the proposed system. Each service is mentioned as a use

case in the diagram. Each use case will be associated with one or more actors

Chapter 4

56 Department of Computer Science

in the system. The use cases are converted to service methods in the associated

actor classes. The steps, shown in figure 4.4, are used to generate the code

from the use case diagrams.

Figure 4.4 : Steps for code generation from UML use case diagram

As the first step identify an actor in the use case diagram. The name of

actor is directly available in the <actor> tag of the XML representation of the

use case diagram. Then check whether the class diagram contains the class of

the actor. If not create the class. The actor may associate with multiple use

cases. Each use case is added to the actor class as a service method. The

relationships like ‘extend’ and ‘include’ with other use cases are also mapped

to the Actor class. Since the ‘extend’ relation is optional, the extended use case

will be called only when the extension condition is satisfied. So the

corresponding sub service call will be given inside if statement. The relation

‘include’ is mandatory, so the ‘included’ sub service call in made inside the

service method. After adding all use cases search for another actor in the use

case diagram which is not mapped to the class diagram. Repeat this procedure

till we map all actors to the class diagram.

In short, each use case is converted to a method definition named as

service method. Each service method is expanded using the sequence diagram

which depicts the scenario.

4.3.2 Code generation from sequence diagrams
A sequence diagram can be formally defined as follows [76, 121].

Code generation from UML use case models

Cochin University of Science and Technology 57

()
{ }

()

,

| /
{ | }

 .

: , : , , i i j j

SD m where

x x is an object actor
msg msg is a message

where msg is a tuple

msg ob C ob C action order

=

=
=

=

�

The sequence diagram is a tuple which includes set of objects (o) and

set of messages (m) send between the objects. A message, msg, contains the

sender object obi of the class Ci, the receiver object obj of the class Cj, the

method call action and finally the sequence order of the message. These details

are essential for code generation from sequence diagrams. The same notations

have been used in the code generation algorithms proposed in this chapter.

The sequence diagram is converted to the hierarchical structure tree

[18, 104] before code generation. Structure tree is nothing but a tree structure

of the messages passed between the objects. The nodes in the tree are the

objects which are participated in the communication and the edges are actually

the messages passed between the objects. The root of the tree will be one of the

actors in the use case diagram. A sample sequence diagram and its hierarchical

structure tree (HST) are shown in Figures 4.5 and 4.6.

Figure 4.5: Sample sequence diagram Figure 4.6: Hierarchical structure tree

The code generation from sequence diagram has two passes. In the first

pass, identify the messages and populate the classes by adding the

corresponding method in the receiver class. In the second pass, the service

methods will be defined.

Chapter 4

58 Department of Computer Science

The rest of this section presents three algorithms to generate code from

the sequence diagrams. Algorithm 4.1 generates the service functions

corresponds to each use case or sequence diagram that represents the scenario

of a use case. Algorithm 4.2 is used to populate each class with the method

declarations based on the messages passed between objects as depicted in the

sequence diagram. Algorithm 4.3 generates the method definitions.

Algorithm 4.1 Generate Services

Algorithm 4.1 generate_services (�����)

Input : �����
Output : �

���� ����	�
�	����
������������	���		������
���� �	���	����	���	�������	��������	�
������������
	�����	�	�����	����	���	�� �!"��	������#��������$%�	����	���	�&�
��''()*)����	�
	�	$��������
+�������,	���
	���������	��-������
.��� �	�������������
/��� (�0	��
	��	���1	����1��2��
���1����	����������
3��� �	�	��	�)45���1��45��-����	���1���������
6��� 7#���	���4"�#�#�����1��
	��	�
����	����	���	���2��
���	�	��	�)45�-����	��&$��
8��� 9	#	�����	#��/����6�����
	�	���	�������	��	���1	������	���-�����
	�������

���:��� ;��	��
	��	�
����	-��������
������� 9	��������

The algorithm generate_services () takes HST and the prototype P as

input and returns the updated P. Each HST represents a scenario of the use

case. This scenario name will be taken as the service name. Service is the

method which implements a scenario of a use case. The service methods will

be added to the context class. Each service method is defined as a series of

method calls from the actor object. The sequence of the method calls are

decided by the order of the message, msg.order. The method calls are added as

objName.fnName(). Here objName we get from msg.obj and fnName from

msg.action. Repeat this for all messages going from the root. Then return the

updated prototype P.

Code generation from UML use case models

Cochin University of Science and Technology 59

Algorithm 4.2 Populate classes

The algorithm populate_classes() is used to add the method declaration

to the classes based on the messages passed between objects of each class. The

algorithm takes hierarchical structure tree (HST) of the sequence diagram and

the class diagram CD as input. The output of the algorithm is the modified

class diagram.

Algorithm 4.2 populate_classes(�����)

Input : �����	
Output : �	

���� ����	�
�	����
������������	���		������
���� ,������
	���������	����"����<���	��
���� 9	����	���1	�-�����
	�	�1	��-����<���	����"���1��
+��� !	���
��������1�;5�����	�-������	�
������	����1���������
.��� �-������	������	=������������1���������� �!"��	������#��������$%��1��������&�����������������

� � � ''�()*)����	�
	�	��>$�����������1�;5�
/��� ?�@�	�	��45����@�	�	��A#����
3��� 9	����	=���	���1	�	�1	��-����<���	��
6��� 9	#	�����	#��+����3�������
	�	����������	�	�1	��������	��	��
8��� *	@�	�	�A#��������<���	���

 10: Repeat steps 3 to 9 until Qpc is empty.
 11: return �	

First of all the HST is parsed to retrieve the data in the tree. Go to the

root node which is normally an actor in the use case diagram. Take it as the

current node, cur_node. From this point we start a breadth first traversal in the

HST. Take each message edge of the cur_node and find the msg.action. This

represents a method call. Check whether this method is already declared or

defined in the receiver class, msg.Cj. If not, add a method declaration for

msg.action in that class. Similarly take each node and find all message edges

starting from it and checks whether those have corresponding method

declarations in the respective receiver classes. Qpc is the queue used for

executing the tree traversal. After checking each message the receiver object

obj is enqueued in Qpc. Each time, an object is dequeued from Qpc and find out

Chapter 4

60 Department of Computer Science

the messages associated with it. Enqueue all receiver objects of those messages

to Qpc. Continue this till the queue is empty. Then return the updated CD.

Algorithm 4.3 populate methods

Algorithm4.3 populate_methods(�����)

Input : �����	
Output : �	

���� ����	�
�	����
������������	���		������
���� ���<���	�����������	��
���� (�0	���	����	����	���1	����1��-�������<���	��������0�����	����
+��� B-��
	�	�	=�����������	����	���1	���
	��1�������	#�.��	�	�1�������	#��:��
.���)#	���������1�;5������	�
������	����1��������
/��� #��
����<���	��������0��
3��� ���<���	�����1�;5��
6��� -�������	���1	��-�������<���	��
8��� B-���"��	���1	�	=�������
�����������������8����������0	���	��	���1	����1������-����	���1����������

� � �������45���1��45�
�����������������8���������##	���������	�	�����45�-����	��&$�����
	��	�
����#	�	��

� � �����������	#�.�
�����������������8��������9	#	�����	#��8�������8�������
	�	����������	��	���1	����

� � ���������0	��
 10: else go to step 12
 11: Repeat steps 3 to 9 till there are no more messages to read.
 12: cur_node = popStack().
 13: Repeat steps 3 to 12 till the stack is empty.
 14: Return CD

 This algorithm takes HST and CD as input. It returns the class diagram

with updated method definitions. The parsed hierarchical structure tree is used

for updating method definitions. First the toot node is taken as the current

node, cur_node. There can be many messages initiating from cur_node. These

messages will be taken one by one. Already considered messages are labeled

as ‘read’. If there exists an unread message, then open the receiver class

(msg.Cj) of the message and the method definition that is being called

(msg.action). then push the cur_node to stack for future reference. Set new

cur_node as receiver node (msg.Cj). Find all messages initiated from the

cur_node and append the corresponding method call statements to the method

Code generation from UML use case models

Cochin University of Science and Technology 61

F
ig

ur
e

4.
7:

 U
se

-C
as

e
di

ag
ra

m
 o

f E
le

va
to

r S
ys

te
m

 a
nd

 th
e

se
qu

en
ce

 d
ia

gr
am

 fo
r p

ro
ce

ss
 h

al
l c

al
l o

pe
ra

tio
n

Chapter 4

62 Department of Computer Science

definition. Repeat the whole process until there are no more messages to read.

Then, backtrack to the parent node by popping it out from the stack and set as

cur_node. Finally return the updated class diagram.

In the next section we present a case study to demonstrate the working

of the above algorithms.

Figure 4.8: Class diagram for elevator system

4.4 Elevator System as Case Study

In this section we present a case study, the elevator system. We

consider a few basic features of an elevator; open and close doors, process car

calls, indicate car position and process hall call.

The door open and close operation will be done automatically by the door.

The passenger need not initiate it. Car calls means, inside the elevator there are

buttons corresponding to each floor. The passenger can choose his destination

floor using these buttons. It is called car call. The passenger initiates the car

call operation. The third operation, indicate car position, is done automatically

by the door. The last operation, hall call operation is done by the passenger. In

Code generation from UML use case models

Cochin University of Science and Technology 63

every floor there is two buttons. The passenger can press any one button

depending on the direction he wants to go, up or down.

The four features are presented in the use case diagram in Figure 4.7. The

sequence diagram for the use case ‘process hall calls’ is also shown in the

figure. The class diagram for the elevator system implementation is shown in

Figure 4.8.

The service methods will be generated by the algorithm 4.1. Here in the

case study we have shown the service ‘process hall calls’. A method in this

name will be generated in the context class which will be then delegated to the

actor class Passenger. The code generated from Algorithm 4.1 is shown in

Figure 4.9.

Figure 4.9: code generated by Algorithm 4.1

From the class diagram the class skeleton can be generated using any

CASE tool. Then apply the algorithm 4.2 to populate the classes. The

algorithm takes the class diagram and the sequence diagram structure tree as

input. The code generated from Algorithm 4.2 is shown in figure 4.10.

We have to call the algorithm for each sequence diagram of the system.

For example, here we show the sequence diagram for processing hall call

operation. The communication for processing hall call operation includes the

objects of the classes like, HallButton, HallButtonControl, Dispatcher,

DriveControl, Drive, DoorControl and Door. These classes will be updated by

algorithm 4.1.

Chapter 4

64 Department of Computer Science

Figure 4.10: Code generated by Algorithm 4.2

Figure 4.11: Code updated by Algorithm 4.3

Code generation from UML use case models

Cochin University of Science and Technology 65

Algorithm 4.3 expands the method definitions in each class. The code

generated from Algorithm 4.3 is shown in figure 4.11.

4.5 Analysis

We have developed a tool, AutoKodeUC, which implements the

method that we explained in section 4.3. We analyzed the code generated from

AutoKodeUC. It is found that it can generate class definitions and the skeletal

member function definitions. Table 4.1 gives a summary of the category of

code generated.

Table 4.1: Category of code generated by AutoKodeUC

Sl. No Type of code Generated by
AutoKodeUC

1 Variable declaration & initialization No

2 Method declarations & definitions Yes

3 Method calls Yes

4 Class definitions Yes

5 Main class and Main method No

6 Constructors No

The code generation from the UML uses case and sequence diagram is

very limited. Use cases and sequence diagram will help us to generate method

declarations and definitions, class definitions and method calls. The method

and class definitions remain incomplete since we won’t be able to generate

variable declarations & initialization and any modification of the variables.

Since, neither use case nor sequence diagram gives the overall working of the

system; we cannot generate main class or main method.

We have taken the elevator system as case study and analyzed the code

generated from the system models (class diagram, use case and sequence

diagram). 14 classes are there in the class diagram. The code generated for

each class is shown in Figure 4.12. It is obvious that the code generated is

Chapter 4

66 Department of Computer Science

proportional to the number occurrence of the class in the sequence diagram. If

a class is involved in many scenarios, then it will help us to generate more lines

of code. For example, Drive, DriveControl and DoorControl are the three

classes which involved in the use cases and scenarios considered in the

example. So the code generated for those classes are comparatively high.

0
10
20
30
40
50
60

L
in

es
 o

f C
od

e

Classes

Total code Vs generated code

LOC generated
Total LOC

Figure. 4.12: Comparison of code generated and actual code

0
10
20
30
40
50
60

%
 o

f c
od

e
ge

ne
ra

te
d

Classes

% of code generated

Figure 4.13 : Percentage of code generated

Code generation from UML use case models

Cochin University of Science and Technology 67

Figure 4.13 shows that the percentage of code generated for those

classes are more than 40%. If we include more details in the sequence diagram,

we can generate more code out of it. It will improve the completeness of the

prototype and then improve the completeness of the requirements. On an

average, this method generates 30% of total code.

Sequence diagrams help us to add details to the class definitions and the

use case diagram allows us to update the actor classes.

4.6 Conclusion

The functional requirements of a system can be modeled using UML

use case diagram and sequence diagrams. It is easy for the client to understand

the system. For the system designers (architects), these diagrams give a

baseline on what to be designed and implemented. If we are able to

automatically generate code from these diagrams, it will be easy for the client

as well as the system architect to communicate each other by generating

prototypes. It will help us to refine the system requirements and thereby reduce

the change in requirements in the later phases of software development.

Moreover, we can reduce the development time and cost by the generation of

such prototypes.

This chapter explained a method to generate code of a software system

from the UML use-case diagram and sequence diagram. The literatures show

that almost all works concentrate on sequence diagrams alone not on use case

diagrams [18, 22, 30, 83, 86, 93, 102, 110, 145]. Researchers do not consider

use case diagram for code generation because it does not contain any platform

specific details or technical details for implementation. Use case diagrams help

us to organize and define the software. So, it is good to start code generation

from this model. Hence, in our work, use-case diagram is used to frame the

context class and the sequence diagram is used to add details to the class.

Chapter 4

68 Department of Computer Science

Even though many research works [22, 30, 83, 86, 93, 102, 110, 145]

focused on code generation from the sequence diagrams, a precise step by step

approach is not found in the literatures. So we presented algorithms for code

generation from the use case and sequence diagrams. The code generation from

use case diagram is done in five steps and from sequence diagram is done in

three steps. Algorithm for each one is given in the chapter. The algorithms give

a formal way to do the code generation and this method is easy to implement.

The analysis of the proposed method shows that it can generate even more than

30% of code for frequently interacted classes. This is a promising result.

Cochin University of Science and Technology 69

Chapter 5 CODE GENERATION FROM
ACTIVITY MODELS ENHANCED
WITH OCL

5.1� Introduction ... 70�
5.2� Meta Model For OCL Expression In UML Activity Diagram 73�

5.2.1� State of the art ... 73�
5.2.2� Meta model for operation contracts .. 75�
5.2.3� Meta model for initial values .. 78�
5.2.4� Meta model for instance .. 78�
5.2.5� Meta model for actual parameter ... 79�
5.2.6� Meta model for condition .. 79�

5.3� Formal Semantics of OCL Enhanced Activity Diagrams 82�
5.3.1� Operational semantics of OCL enhanced activity diagrams 84�
5.3.2� Variables used in the finite state machine .. 85�
5.3.3� Transitions ... 89�

5.4� Code Generation From OCL Enhanced Activity Diagram 91�

5.5� Proof of Correctness of the Algorithm.. 98�
5.6� Case Study .. 107�
5.7� Implementation of Automatic Code Generator .. 112�
5.8� Evaluation .. 115�

5.8.1� Type of code generated .. 115�
5.8.2� Percentage of code generated .. 116�
5.8.3� Time complexity for code generation... 118�

5.9� Conclusion ... 120�

Chapter 5

70 Department of Computer Science

5.1 Introduction

Behavioural modeling is very much important in the context of

automatic code generation, since it helps us to represent the control flow in the

system. Activity diagram is one of the most important diagrams for

behavioural modeling. It is the only UML diagram which models control flow

(work flow). State models lack this information. Activity diagram gives the

activity model of the system which shows the workflow from activity to

activity. Unlike state chart diagrams, activity diagrams are activity centric and

it shows flow of control from activity to activity.

Activity diagram includes elements to show control flow. For example,

action, activity, activity edges, swim lanes (partitions) etc, are some of the

strong elements in activity diagram. The activity diagram can be considered as

a graph [121].

The activity graph contains nodes and edges. The nodes can be control

nodes such as initial & final nodes, decision nodes, fork node, join node etc.

Edges in activity graph are the activity edge which shows the transition from

one activity to another. These nodes can be converted to programming

constructs without much complexity. The edges give the sequence order of the

operations (or activities). The concept of activity graph helps us to traverse

through the activity diagram and generate the overall execution logic of the

system.

OCL expressions are used with UML models to formally specify the

constraints in a precise and concise way, where the graphical notations fail to

do so. It can be used for specifying pre/post conditions on operations and

methods, the actual parameters that are passed to the operations, the initial

values of the attributes, the guard conditions etc. It can also be used to specify

invariants and types in UML class diagrams. It can be even used as navigation

language and also to specify the well formedness rules of the UML meta

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 71

model. The evaluation of the OCL expression [16, 17, 47] will not change the

state of the system. So, it is safe to use the OCL expressions in the activity

diagrams and they are said to be side-effect free.

Few research works have been reported on code generation from the

UML activity diagrams, but those works primarily concentrate on control flow

generation. Moreover, those works do not present any well defined formal

method for code generation. Method definitions are not generated because

activity diagrams show a high level activity model. Each activity in the

activity diagram can be a method (function) in the program. The actions inside

each activity and the control flow between them may not be specified in

activity diagrams. Fine tuning the activity models to include those details will

help in improved code generation.

In chapters 5 and 6, we propose different methods for this fine tuning.

One method is to use OCL statements in the activity diagram which is

explained in this chapter. Another approach is to expand each activity node

with a sub activity diagram as we proposed in our work [105]. The third

approach is to expand the activity nodes with sequence diagrams, which is

explained in the next chapter.

The use of code generators will improve the software development

process and it raises the quality of the code produced [4, 10, 18, 28, 51, 82, 86,

92, 105, 127, 147]. Many CASE tools are available in software development

which supports UML standards for system design. Most of them won’t support

OCL as a specification language [7]. In this scenario, we introduce the meta

models for including the OCL statements in the UML models. It will

encourage the CASE tool developers to include OCL in their products and

there by improve the software process to much better level.

In this chapter, we propose the meta models to include OCL

expressions in the UML activity models. Different possibilities to include

Chapter 5

72 Department of Computer Science

OCL in activity models are explored in our previous work [119]. The

operational semantics for OCL enhanced activity diagram is defined in this

chapter. We also present a method to generate code from the OCL enhanced

activity models. We followed the Model Driven Development (MDD)

approach [97, 64] in our work, since OCL is an important component of model

driven engineering. The developers who follow MDD will start with system

designing using UML models and then generates the code automatically from

the system designs. In MDD approach, the model compiler converts the

platform independent model (PIM) which is system model in executable UML

to platform specific model (PSM) like C/C++ programs [8, 15]. It prevents the

alterations in PSM. MDD streamlines the software development process. It

provides traceability between system requirements and system design

elements. MDD even supports model execution, which will help us to locate

logical errors and inconsistencies in the system specifications at early stages of

the software development. It reduces the development effort.

The main contributions of this chapter:

• We have shown how to connect OCL statements for operation body,

actual parameters, initial values, instances and guard conditions with

the activity diagram. Meta models for the same are also provided in

this chapter.

• We have developed operational semantics for OCL enhanced activity

diagram and used this for proving correctness of the code generation

algorithm.

• We devised a concrete method to convert the OCL enhanced activity

models to source code.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 73

5.2 Meta Model For OCL Expression In UML Activity
Diagram

This section proposes a theoretical background for including OCL in

UML activity models. Meta models give an excellent way to describe the

models. So, in this section, the authors present the meta models for

incorporating OCL statements in UML activity diagrams. It gives a clear

picture on how to include OCL in activity models. The authors studied the

possibilities to include OCL in UML activity diagram and examined the UML

meta models [139] and OCL meta models [98] and formulated the meta

models to incorporate OCL expressions [134, 68] in activity diagram.

Figure 5.1: Simplified Meta model of UML2.0 Activity Diagram

5.2.1 State of the art

The OMG specification for the UML activity diagram considers an

activity diagram as a graph called Activity Graph. Activity Graph consists of

activities as shown in Figure 5.1. Each Activity is associated with an Object

which is responsible for the activities to be done. There will be associated

Events and variables. Each activity is composed of Activity Edges and activity

nodes. Each activity edge can be either Control flow or Object flow. Each

Activity Node can be Control node, Object node or Executable node. Control

Chapter 5

74 Department of Computer Science

nodes are initial node, final node, decision node, merge, fork or join.

Executable nodes are the directly executable action nodes. The Value

Specification associated with activity edge involves guard conditions,

variable/object values, etc.

The Object Management Group has defined the metamodel for OCL

expressions as shown in Figure 5. 2 [98]. The shaded classes are the new

additions to the UML. ExpressionInOcl which is defined to be a subclass of

the class Expression in the UML meta model.

Figure 5.2: OCL in UML

OclExpression class is associated with ExpressionInOcl through the

bodyExpression attribute. ExpressionInOcl is associated to Variable class

through different type of variable attributes, like contextVariable,

parameterVariable and resultVariable. The ExpressionInOcl class is used in

the following meta models to represent the OCL expressions. This is the

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 75

current state of the OCL specification and the UML Activity diagram

specification.

In the following sub sections, the authors present the meta models to

merge the models in Figure 5.1 and Figure 5.2 to incorporate the OCL

statements in the activity graph. The OCL expressions can be used for

specifying Operation contracts, Operation bodies, Initial values, Instances,

Actual parameters and Conditions.

5.2.2 Meta model for operation contracts
The activities in an activity diagram may have some pre conditions,

which should hold when the execution of the activity starts. Similarly, the

activities may have post conditions which should hold when the activity

completes its execution. This pre and post conditions can be specified in a

UML activity diagram with the help of OCL notations [42, 41, 13, 32, 52].

The pre and post conditions are added to the UML meta model as

Constraint class. The Constraint class is associated to the Action class with

values localPrecondition and localPostcondition which are elements in the

ownedElement set defined in UML2.x specification. These constraints are

implemented using the OCL expressions. The Constraint class is associated to

the Expression class and which is the superclass of ExpressionInOcl. The

metamodel that is shown in Figure 5.3 implies that the pre and post conditions

can be associated with the Activity node in the activity diagram.

Chapter 5

76 Department of Computer Science

F
igure 5.3: M

etam
odel for Pre and Post C

ondition of an A
ction

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 77

F
igure 5.4 : M

etam
odel for O

C
L representation of instances (objects)

Chapter 5

78 Department of Computer Science

5.2.3 Meta model for initial values
OCL provides mechanisms to specify the initial values of attributes as

well as association ends. The initial value representation in UML metamodel is

shown in the Figure 5.4. The initial value is always attached to the

attribute/property of a classifier or to an association end. The metamodel

implies that the property/attribute value can be represented using an OCL

expression. The initialValue should be of the type of the attribute. The

Property class is associated to the Expression class. The association is based

on the property.

Figure 5.5 : Metamodel for OCL representation of Initial value

5.2.4 Meta model for instance
The instance (object) of a class can be identified with unique

identifiers. OCL 2.x supports this unique identification of objects [101, 23].

The metamodel for instance representation using OCL is shown in

Figure 5. 5. The ObjectNode is a subclass of TypedElement. The ObjectNode

have State and Behavior. The object node can be represented using the OCL

expression.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 79

5.2.5 Meta model for actual parameter
OCL provides syntax to mention the actual parameters to an activity.

The list of parameters as well as the return type of the activity (operation) can

be mentioned [19].

The metamodel for including the OCL expression in parameter

specification is shown in the Figure 5. 6. Parameter is associated with the

ParameterSet. ParameterSet is a subclass of NamedElement as per the UML

2.x specification. Each parameter can be represented using the OCL

expression. There can be once OCL expression corresponds to each

Parameter.

5.2.6 Meta model for condition
In activity diagrams, the guard conditions (or conditions, in short) can

occur in decision nodes. The guards will be given inside square brackets in the

activity diagram.

Figure 5.7 shows the metamodel for the OCL representation of guard

conditions of decision nodes. The DecisionNode class is associated to the

Guard class using the guard condition. DecisionNode and other siblings are

subclasses of ControlNode class.

Decision node has zero or one guard conditions. These guard

conditions are represented using the OCL expression. The same method can be

applied to the other control nodes like, JoinNode, MergeNode etc.

Chapter 5

80 Department of Computer Science

F
igure 5.6: M

etam
odel for A

ctual param
eter to an action

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 81

F
igure 5.7: M

eta m
odel for O

C
L representation of guard conditions of decision node

Chapter 5

82 Department of Computer Science

5.3 Formal Semantics of OCL Enhanced Activity Diagrams

Figure 5.8: Simplified Meta model of UML2.0 Activity Diagram with OCL expressions

An Activity Graph, ��
��, is a tuple which contains nodes �, edges

�, events �, guard conditions �, local variables ���, set of objects
 and

OCL expressions �. A node can be of four types, AN (activity node), CN
(control node), EN (executable node) and ON (object node). AN is the activity
node which represents activity in ��
��� CN represents the control node

which includes the decision node, fork, and join. EN is the executable node
which represents single atomic action in ��
����� is the transition from one

node to another, where the nodes � �. ‘�’ is the external events that can occur

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 83

in the system. ‘�‘ is the guard expressions that can be applied to edges. � is

the OCL expression that can be used in the activity graph.

The OCL expressions include the parameter values, initial values,

instances, conditions, operation contracts etc. An OCL expression may contain

the classifier (C), context variables (vc), parameter variables (vp), result

variables (vr) and OCL statements (�). The simplified metamodel for the OCL

enhanced activity diagram is given in Figure 5. 8.

��
����������������
����where
������������	���
�������������
�������������������	�����	���
�����
��������

�������������������	����������������������
���
���iterations=3, iterations<3
�����iterations

��obj_pd_1
���ProjectDevelopment, {iterations},

 {operationbody}, {self.develop();self.test();}�

Figure 5.9 : The activity diagram Project Development and its formal semantics

Figure 5.9 gives the activity diagram that represents the control flow of

Project Development. The formal semantics of it is given in Figure 5.9 and

Figure 5. 10. Project Development has four activity nodes, one decision node,

initial node and final node. The nodes have been named internally as n1, n2, ..

n7, including pseudo nodes and activity nodes. The edges (E) have been

defined as a pair of end nodes. First edge is from initial node to

‘receiveproject’.

Chapter 5

84 Department of Computer Science

That’s from n1 to n2. So the edge is represented as (n1,n2). The guard

conditions G are given as iterations=3 and iterations<3. The activity node

‘work’ is enhanced with OCL statements for the operation body. The variables

(var) used in the control flow is ‘iterations’. The object (o) which is active is

obj_pd_1. The OCL expression (� = (C, v, t, �)) has the class

ProjectDevelopment as context (C), iterations as local variable (v), type (t) of

the OCL statement is operationbody and the statements (�) are ‘self.develop();

self.test();’.

The operational semantics of this activity diagram is shown in Figure

5.10. The variable definition and initialization is given. The variables are

activeNode, ac and iterations and seven ID variables correspond to each node

in the activity diagram. In the following section the variables have been

initialized. What happens when edges are taken is explained in the ‘definition’

section. The rules for state transition are described in the ‘transition’ section.

5.3.1 Operational semantics of OCL enhanced activity diagrams

We define operational semantics of OCL enhanced Activity Diagrams

using Finite State machine (FSM) by extending the semantics given in [112].

State variables and a set of predicates describing the transitions of the state

variables are given in the description of the FSM. The state variable(s) will be

changed at each state. The transition functions described using the predicates

give the relation between current value and next value of the state variables.

The logical operators &, | and ! are used in the predicates. Constant values 1

and 0 are used to denote true and false respectively.

An Activity Diagram is mapped into FSM. The execution of a single

activity in the activity diagram is mapped as a single step in the FSM. The

final node of the activity diagram is mapped as infinite loop of “no operation”

action.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 85

5.3.2 Variables used in the finite state machine

The state variables have been defined in Rule 1. First one is the

variable (_ .in annID) to represent the control flow in each node. This variable

(_ .in annID) says whether a node is active or not. The control nodes like Fork

and Join nodes have separate variables for each outgoing (_ . .in Ft tgt nId)

transition and incoming (_ . .in Jt srcnId) transitions respectively. These variables

are used to decide which transition steps can be executed. ‘o’ is the set of

objects that take part in the process flow. Each node in the AG belongs to one

of these objects. (i.e, .anobj o∈).

The variable activeNode denotes the activity node which is currently

active. The variable ac holds the name of the executed action. The unique id of

each node is denoted as nID.

The initialization of the state variables is given in Rule 2. The variable

of the initial node (_ . .in ad initialNode nID) is set to true and other variables

are set to false. Local variables (v) are initialized to their pre-defined values.

The value of activeNode and ac is determined by the initial node.

Rule 1: Variables

{ }

,

{ . }

. : _ . : ;

. . : _ . . : ;

. . : _ . . : ;

:{ . };

: ;

init final

fork

join

an AN

acname N name

an AN CN an obj o in an nId boolean
fn CN t fn out fn obj o in Ft tgt nId boolean
jn CN t jn in jn obj o in Jt src nId boolean

activeNode an nId

ac acname
∈

∈

∀ ∈ ∧ ∈

∀ ∈ ∀ ∈ ∧ ∈

∀ ∈ ∀ ∈ ∧ ∈

∪

�

�

v var : v. :v. ;name typeDecl∀ ∈

Chapter 5

86 Department of Computer Science

Rule 2: Initialization

_ . . 1 &
: _ . 0&

. : _ . . 0&

. : _ . . 0&

v var: v. v. &
. . &

. . ;

fork

join

in ad initialNode nID
an AN in an nId
fn CN t fn out in Ft tgt nId

jn CN t jn in in Jt src nId

name init
activeNode ad initialNode nID
ac ad initialNode acName

=
∀ ∈ =
∀ ∈ ∀ ∈ ∧ =

∀ ∈ ∀ ∈ ∧ =

∀ ∈ =
=

=

Rule 3: Definition of Transitions

()

,

.

.

. .

3.1 . , . :

_ : _ . . & _ . .
& (_ . .) &

_ . . & (_ . .)

& next(in_t . tgt .nId) & . . ;
3.

initial final

t src AN

t tgt AN

t src AN t tgt AN

t E t src t tgt AN CN
t taken in t src nID in t src

next in t src
in t src e next in t src e

next activeNode t tgt nID

ψ
ψ

∈

∈

∈ ∈

∀ ∈ ∧ ∈ ∪

= ∨
∨

∨ ∨

=

()

()
. .

2 . :

_ : _ . . & next(in_t . tgt .nId)
& . . ;

3.3 . :

_ : _ . . & next(in_t . tgt .nId)
& . . ;

3.4 .

fork

join

t t src in

t E t src CN
t taken in Ft tgt nId

next activeNode t tgt nID
t E t src CN

t taken in Jt src nId
next activeNode t tgt nID

t E t tg

∈

∀ ∈ ∧ ∈

=
=

∀ ∈ ∧ ∈

= ∧
=

∀ ∈ ∧

()

()

:

_ : _ . . & next(in_t . tgt .nId)
& . . ;

3.5 . :
_ : _ . . & . & next(in_t . tgt .nId)

& . . ;

merge

decision

t CN
t taken in t src nID

next activeNode t tgt nID
t E t src CN

t taken in t src nID t G
next activeNode t tgt nID

∈

=
=

∀ ∈ ∧ ∈
=

=

The edges in the activity diagram are taken as the transitions in FSM.

Rules 3.1 to 3.5 specify the possible transitions. The transitions from and to

the activity nodes, initial node, final node, fork, join, merge and decision

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 87

nodes are considered. In each transition the t_taken and the activeNode

variables are updated according to the type of source and target nodes of the

edge.

The next() function is used to change the value of the variables. The

next() function assigns the next state value to a variable based on the current

state value of the variables [14]. The next() function is used to evaluate

statements or Boolean expressions at the next state of the system.

In rule 3.1, the transition from or to the initial node (CNinitial), final

node (CNfinal) and activity node (AN) is considered. When a transition is taken,

the variable t_taken enables successor control flow variables (in_t.tgt.nId) in

the next state and the variable activeNode is updated to the target node of t

(t.tgt.nID). If the activeNode is an AcceptEvent action node (i.e, _ . .in t src e is

true), the corresponding target node (t.tgt.nID) will be taken as the next

activeNode.

Rule 3.2 states that every transition t leaving a fork node (CNfork) can

be taken if it's control flow variable in_Ft.tgt.nId is true. These variables are

set in rule 4. Rule 3.3 states that, to take a transition preceding a join node, all

control flow variables in_Jt.src.nId have to be true, indicating that all previous

concurrent branches have reached the join node.

The variables in_Ft.tgt.nId and in_Jt.src.nId controls the transition to

and from the fork and join nodes respectively. Rule 3.4 specifies that, for

merge nodes (CNmerge), the incoming control flows are routed to the outgoing

edge. In the case of decision nodes (CNdecision), the transition will be taken if

the guard condition (t.G) of the outgoing edge is true. It is given in Rule 3.5.

Chapter 5

88 Department of Computer Science

()

()

.

4
:

(.
_ . .) &

. :

(.
_ . .);

fork

t fn out

join

Rule
fn CN

activeNode fn nodeID
next in Ft tgt nId

jn CN t jn in
activeNode jn nodeID

next in Jt src nId

∈

∀ ∈

= − >
∧

∀ ∈ ∀ ∈

∧ = − >

()

)

. . . , _

. . . , .

. . . , .

5 :
((_ . (.)) &

_ . _ .

_

_

_ &

. :

_ . .

fork

join

fork

t n in n out t takendefined

t n out tgt out t src CN

t n out tgt out t src CN

Rule n AN
in n execute n

in n nID next in n nID

t taken

t taken

t taken

fn CN t fn out

in Ft tgt nId n

ψ ψ

∈ ∪

∈ ∈

= ∈

∀ ∈
− >

=

∨

∨

∨

∀ ∈ ∀ ∈

= ()(
)

()(
)

' .

' .

_ . .

'_ &

. :

_ . . _ . .

'_ ;

t fn in t

join

t t jn out

ext in Ft tgt nId

t taken

jn CN t jn in

in Jt src nId next in Jt src nId

t taken

∈ ∪

∈ ∪

∨

∀ ∈ ∀ ∈

=

∨

()
(), _

6 :

_ . &

_ . _ ;

final

t T t taken defined

Rule n CN

in n nID next activeNode nop

in n nID t taken∈

∀ ∈

∧ − > =

∨ ∨

()(
() ()(

()))
()(
())

sgn

7 var :

. .

. &

. . . ;

8 .

. ;

n a Var v

an AN

Rule v

v vName next v vName

next activeNode n nID

next v vName n asgmtv val

Rule next activeNode an nID

next ac an acName

∈

∈

∀ ∈

∧ =

∨ =

=

∧ = − >

=

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 89

5.3.3 Transitions

Rule 4: The fork node variables get activated when the control flow reaches

the fork node. Similarly, join node variable gets activated when the control

flow reaches the join node.

Rule 5: when the incoming or outgoing edges are taken, the corresponding

an.nID will be changed. Fork nodes can change these variables with every

outgoing transition and join nodes with their one outgoing transition. If the AN

contains an OCL expression (�), it will be evaluated using the function

execute(). If the activeNode contains an OCL expression (.nψ), depending

upon the type of the OCL statement (. .n tψ), corresponding actions will be

taken by executing the OCL expressions. If . .n tψ =initialvalue, the variable

specified will be assigned with the value given. Similarly, if . .n tψ

=precondition or postcondition, those conditions will be checked.

In the case of fork (CNfork) and join nodes (CNjoin), this variable will be

changed whenever an outgoing edge is taken. The fork variable in_Ft.tgt.nId

will be changed when an incoming edge of the fork node is taken. The join

variables in_Jt.src.nId will be changed if the outgoing edge of the join node is

taken.

Rule 6: In each step a new edge will be taken till the last node.

Rule 7: The value of the local variables (v) changes whenever there is an

assignment statement (n.asgmtv) in the currently executed node (n). The value

of the assignment (n.asgmtv.val) will be assigned to the variable v.vName.

Rule 8: Assigns the value of activeNode to the variable ac.

Chapter 5

90 Department of Computer Science

Variables:-

activeNode : { n1, n2, n3, n4, n5, n6, n7, nop };
ac : { receiveproject, definework , work, decision, finalreport, nop}
iterations = {0,1,2,3,4}
nID_n1=boolean; nID_n2= boolean; nID_n3= boolean; nID_n4= boolean;
nID_n5= boolean; nID_n6= boolean; nID_n7= boolean;

�

Initialization:-

nID_n1=1; nID_n2=0; nID_n3=0; nID_n4=0; nID_n5=0; nID_n6=0; nID_n7=0;
iterations = 0;
activeNode=n1;
ac=nop;

�

Definition:-

t_taken_n1n2 = n1;
next(iterations)=0;
next(activeNode)=n2;

t_taken_n2n3 = n2
next (activeNode)=n3

t_taken_n3n4 = n3
next (activeNode)=n4

t_taken_n4n5 = n4 & (operationbody)
next(iterations)=iterations+1;
next(activeNode)=n5

t_taken_n5n3 = n5 & (iterations<3)
next(activeNode)=n3

t_taken_n5n6 = n5 & (iterations==3)
next(activeNode)=n6

t_taken_n6n7 = n6
next(activeNode)=n7

�

Transition:-

((nID_n1=next(nID_n1)) | t_taken_n1n2) &
((nID_n2=next(nID_n2)) | t_taken_n1n2 | t_taken_n2n3) &
((nID_n3=next(nID_n3)) | t_taken_n4n3 | t_taken_n2n3 | t_taken_n3n4 | t_taken_n5n3) &
((nID_n4=next(nID_n4)) | t_taken_n3n4 | t_taken_n4n5) &
((nID_n5=next(nID_n5)) | t_taken_n4n5 | t_taken_n5n3 | t_taken_n5n6) &
((nID_n6=next(nID_n6)) | t_taken_n5n6 | t_taken_n6n7) &
((nID_n7=next(nID_n7)) | t_taken_n6n7);

Figure 5.10 : The declarations and definition of transitions of the activity diagram Project
Development

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 91

5.4 Code Generation From OCL Enhanced Activity Diagram

In this section we explain the code generation process from the OCL

enhanced activity diagram. The OCL expressions added in the design will be

checked for errors. If there is no error it will be incorporated with the XML

document for code generation. The code generation steps are given in Figure

5. 11.

The system design is prepared in activity diagram (AD) and additional

details, like method body, pre- and post conditions, are added with the help of

OCL expressions. This system model is then converted to XML format. The

UML modeler, which is used as a part of the code generator, will do the

conversion. The XML follows the DTD (Document Type Definition) which is

mentioned in [106]. The OCL expressions are added to the XML document as

a separate element named <OCL> associated with node element and edge

elements. When we add precondition to an activity using OCL expression, the

type attribute of <OCL> will be given as “precondition”. Similarly, for post

condition, type is “postcondition”. See Figure 5.12 for the tree view of the

document. Before code generation we need to check the OCL expressions for

errors. If there is any error, report it and allow the system architect to modify

the design. If there is no error, rebuild the XML document and pass it to the

code generation module.

The XML document, after checking the OCL expressions, will be

given for code generation. First the code generator creates a java package with

the name of the activity diagram. Then it searches on AG to visit all nodes in

the activity graph. A method declaration will be added whenever a new action

node is taken. It checks each node in the AG and identifies all action nodes

and writes the method declaration for all those action nodes. The algorithm

identifies currently active object and its type.

Chapter 5

92 Department of Computer Science

Figure 5.11: Steps to generate code from UML diagram

The active objects will be fetched from the XML document of AG. If

no class exists corresponding to the object, then a class will be created.

Otherwise the existing class will be updated with the method declarations and

added to the source code SC. The search stops when all nodes have been

taken. A main class will be created and embed a main() method in it.

Each activity will appear as a function call in the implementation code.

So, first the XML document is parsed to get the object tree of the XML

document [80]. We consider six types of nodes in the activity diagram. Initial

node, final node, activity node, decision node, fork node and join node. Read

each node element. If it is an activity node, add the operation call statement. If

it contains the OCL element, the algorithm methodDefinition() has to be

called. The pre and post conditions will be added to the method definitions. If

the node type is decision, a decision making statement will be added to the

implementation code. The fork node has to be handled with special care. The

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 93

implementation of the fork node is the most complicated one to implement,

since it handles concurrency.

Figure 5.12 : XML document
format

Figure 5.13 : Operation body
in XML

Figure 5.14: Initial
value in XML

Figure 5.15: instance in XML Figure 5.16: Pre condition in
XML

Figure 5.17: Post
condition in XML

In our method, we implement concurrency using Threads. The number

of child nodes of the fork node shows the number of concurrent paths in the

process flow. There can be multiple paths between fork-join combinations.

One of the paths is taken as the main thread itself. So, other paths should

initiate threads. All these threads, including the main thread, have to wait at

join node till all other threads reach join node. If the node type is fork, we have

to initiate threads depending on the number of child nodes of the fork node. If

there are 3 child nodes, it means 1 main thread and 2 sub threads. So we have

to initiate two sub threads. Each path from fork node to join node is considered

Chapter 5

94 Department of Computer Science

as an activity diagram. If node type is join, the main thread will wait for other

threads to complete. Continue this process till we find the final node. These

steps have been summarized in Algorithm 5.1: codeGeneration

Algorithm 5.1 CodeGeneration(��
��, P, parentThread, currentThread,
start)

Input : ��
��, P, parentThread, currentThread, start
Output : Updated P

Perform Depth First Search on ��
�� by keeping start as starting vertex
1.visit next node N.out_edge.target
2.identify currently active object, ca_obj,
3.if(N.type = = activity)

3.1 create statement ca_obj.actionName();
write to main() if currentThread=’main’
otherwise write to run() method where

threadname=currentThread
3.2 If this node element contains OCL element <ocl>

3.2.1 Call methodDefinition(P,ocl)

4. else if(�.type = = decision)
4.1 For each �.out_edge, create “if(�.out_edge guard)” statement

write to main() if currentThread=’main’
otherwise write to run() method where

threadname=currentThread
5.else if(�.type = = fork)

5.1. count the number of child nodes, say c.
5.2. while (c>=1)

5.2.1. create and start thread with name parentThread _tc ,
write to main() if currentThread=’main’
otherwise write to run() method where

threadname=currentThread
5.2.2. push parentThread_tc to stack
5.2.3. decrement c by 1

5.3. if (currentThread = ‘main’)
5.3.1. Call CodeGeneration(��
��,P, currentThread,

currentThread, currentForkNode)
5.3.2. Pop sub threads from stack and call

CodeGeneration(��
��,P, currentThread,parentThread_tc,
currentForkNode) till stack is empty

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 95

5.4.Else if(currentThread � ‘main’)
5.4.1. Call CodeGeneration(��
��,P, currentThread,

currentThread, currentForkNode)
5.4.2. modify run() method in Thread class
5.4.3. add “if(threadname==parentThread_tc){ “ statement to run()

method
5.4.4. call

CodeGeneration(��
��,P,currentThread,parentThread_tc,cur
rentForkNode)

6. else if (�.type = = join)
6.1. if(currentThread==’main’)
 return
6.2. else if(currentThread==parentThread)
 return
6.3. else if(parentThread==’main’)
 add “currentThread.join()” to main() method
 return
6.4. else if currentThread � parentThread

add “currentThread.join()” to run() method where
threadname=parentThread
return

7.else if (�.type = = merge)
go to step 1

8.else if(�.type = = finalNode)
 return P
9. Repeat steps 1 to 7 until all nodes have been taken
10. return

The method definitions are generated using the algorithm

methodDefinition. The OCL expressions are used for this purpose. As per

section 5.2, the OCL statements can appear in an activity diagram in five

forms; initial values for variables, the instances, operation body, pre- and post

conditions. The XML format for these data is shown in Figure 5.13, Figure

5.14, Figure 5.15, Figure 5.16 and Figure 5.17. The OCL statements in the

activity diagram will be converted to XML and stored as part of the node

element of ActivityGraph in the XML document. The <ocl> element can be of

Chapter 5

96 Department of Computer Science

the above five types. This type is mentioned in the attribute type. The <ocl>

element has the data context which gives the name of the context class.

Figure 5.13 represents the components in the OCL statements for

operation body and the tags used for each component. Similarly, Figure 5.14

gives the XML tags to store the initial value of a variable. Figure 5.15 gives

the XML format for storing instances that is being used in the activity model.

Figure 5.16 & Figure 5.17 show the XML representation of pre and post

conditions respectively. The representation of actual parameter is contained in

the operation body itself. So, no separate <ocl> tag is used to store the actual

parameters.

The element <ocl type=”initialvalue”> contains the variable name,

variable type and the initial value. This is sufficient to generate code for the

initialization of a local variable. The element <ocl type=”instance”> has the

instance name and type.

These details are used for the generation of object declaration

statement. The element <ocl type=”precondition”> stores the details of context

name (class name), method name, return type and the precondition of the

method. The class name and method name defines the scope of the

precondition.

The pre conditions will be added as the assertion statements at the

beginning of the method definition [31, 69, 25, 122, 71, 82, 36, 65]. Similarly,

<ocl type=”postcondition”> includes the same details as that of <ocl

type=”precondition”>. The only difference is that, instead of precondition it

contains post conditions. This post condition will be added as the assertion

statements at the end of the method definition. The method will return with the

result only when the post condition is true.

When we represent operation body in <ocl>, it will contain the method

name, list of parameters with their data types; return type of the method and

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 97

the method body. These data will be extracted and inserted to the source code,

P, in the form of method definition. If we represent initial value of a variable

in <ocl>, it will contain the property (variable) name, data type and its initial

value. It will be written to P as “data_type variable_name = initial_value;”. In

the instance declaration,the <ocl> contains the instance name and its class

name. The instance declaration will be added to source code as “class_name

instance_name = new class_name (); ”.

These conversions have been formally specified in Algorithm 5.2:

methodDefinition.

Algorithm 5.2 methodDefinition(P, ocl)

Input : P, ocl

Output : P

1. If ocl@type == initialvalue

1.1 Let varName� ocl.property@name

1.2 Let varType � ocl.datatype@type

1.3 Let varValue� ocl.init@value

1.4 Add the statement to P “<varType> <varName> = <varValue>;”

2 If ocl@type == instance

2.1 Let insName� ocl.instance@name

2.2 Let insType� ocl.datatype@type

2.3 Add statement “<insType> <insName> = new <insType>();” to P.

3 If ocl@type== precondition

3.1 Open method with name ocl.method@name in P.

3.2 Let preCondition� valueof(ocl.pre)

3.3 Add the ‘if condition’

“ if(<preCondition>==true){ “ to the opened method immediately

after the opening {

4 If ocl@type== postcondition

Chapter 5

98 Department of Computer Science

4.1 Open method with name ocl.method@name in P.

4.2 Let postCondition� valueof(ocl.post)

4.3 Add ‘if condition’

“if(<postCondition>==true) return result;” to the opened method

just before the closing }

5 If ocl@type == operationbody

5.1 Let returnType� ocl.return@type

5.2 Let metName� ocl.method@name

5.3 Let i=1;

5.3.1 Let param<i> � ocl.method.parameter@name

5.3.2 Let paramT<i> � ocl.method.parameter@type

5.3.3 i=i+1;

5.3.4 repeat steps 5.3.1 to 5.3.3 until there is no more

parameter to read from ocl.method.

5.4 Create method signature as “<returnType> < metName>

(<paramT1> <param1> , <paramT2> <param2>, …

<paramT<i>> <param<i>>) {“ and add to P

5.5 Add method body as “<valueof(ocl.body)> }}” to P

6 Return P

5.5 Proof of Correctness of the Algorithm

The operation semantics of AG gives the definition of transitions from

activity nodes, initial node, final node, fork node, join node, merge node and

decision node. The algorithm 5.1 CodeGeneration() illustrates how these

nodes and transitions are converted to source code. The algorithm perform

depth first search on AG starting with the initial node. It generates source code

corresponds to each node and edge present in the AG. The algorithm processes

the nodes of the type activity, decision, merge, initial, final, fork and join. If

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 99

the AG is enhanced with the OCL statements, that will also be converted to

source code.

The operation semantics gives the behavior of AG mainly focusing on

when to take a transition and which is the next node to be visited. First part of

the semantics (Rules 1 and 2) gives the variables used and their initialization.

Second part (Rules 3.1 to 3.5) is the definition of transitions. The third part

(Rules 4 to 8) is the change of state variables and specifies which node to be

visited next.

In the first two steps of the algorithm 5.1, we choose the next node to

be visited, in Depth First Search manner and the currently active object. Rules

3.1 to 3.5, 4, 5 and 6 of the operation semantics choose the appropriate

transition and find the next active node (in_n.nID).

All nodes (activity node, initial node, decision node and join node)

have single outgoing transitions, except for fork node and the next active node

will be the target node of the outgoing transition. For decision node, even

though there is more than one possible outgoing transitions only one of them

will be taken based on the guard condition. The same is achieved in the

algorithm 5.1 too. That is, except for the fork node, for all other nodes, the

next node is taken using the common step (i.e, step 1).

In step 3 of algorithm 5.1, activity nodes are processed. If OCL

statements are included in the node, that will also be converted to the source

code. As per the operational semantics Rule 5, (_ . (.))in n execute nψ ψ− > , if

there is any OCL statement in the node, it has to be executed before finding

the next node to be visited. The Boolean variable to activate the next node

in_n.nID has to be activated

Chapter 5

100 Department of Computer Science

() . . . , _

. . . , , .

(_ . _ . _

_ _
joinfork

t n in n out t takendefined

t n out tgt out t src CN t n out tgt out t src CN

in n nID next in n nID t taken

t taken t taken

∈ ∪

∈ ∈ = ∈
�
�
�

= ∨

∨ ∨

The assertion for this can be mentioned as

P1� Execute OCL statement in the node (if any)

P2� Activate the next node to be visited, target node

As per the operational semantics Rule 3.1, the transitions from the activity

node is handled as follows

()

. .

. .

_ : _ . . & _ . . & (_ . .)&
_ . . & (_ . .)&

next(in_t.tgt.nId) & . . ;

t src AN t tgt AN

t src AN t tgt AN

t taken in t src nID in t src next in t src
in t src e next in t src e

next activeNode t tgt nID

ψ ψ∈ ∈

∈ ∈

= ∨ ∨
∨ ∨

=

The transition is taken if the source node is visited and the OCL

statements and external events have been processed (if any). Next target node

is set as the activeNode. From the above semantics we can formulate the

assertion as follows.

P3� Traverse to next node if all OCL statements are executed and

events are handled.

These three assertions are satisfied in the algorithm steps 1 and 3, as shown

below.
Perform Depth First Search on ��
�� by keeping start as starting vertex

1.visit next node N.out_edge.target
2.identify currently active object, ca_obj,
3.if(N.type = = activity)

3.1 create statement ca_obj.actionName();
write to main() if currentThread=’main’
otherwise write to run() method where threadname=currentThread

3.2 If this node element contains OCL element <ocl>
3.2.1 Call methodDefinition(P,ocl)

P1 is attained in step 3.2, in which the OCL statements have been

processed and generate the corresponding source code. Algorithm 5.2

is used for converting OCL statements to source code.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 101

P2 is attained in step 1, since it finds out the next node to be visited

using the outgoing edges from the current node and in a depth first

search fashion.

P3 is attained in steps 3.1 and 3.2. Step 3.1 handles the activities and

events in the node. The events are handled as the actions in the activity

node and the corresponding event handling functions will be called.

The implementation of the activities and the event handling are done in

a similar way. So the events are also handled in step 3.1. In step 3.2,

the OCL statements have been processed. The transition to next node is

preceded by these two steps and hence, assertion P3 is ensured.

In step 4 of algorithm 5.1, the decision node is processed. As per the

operational semantics, an outgoing edge with true guard condition will be

taken. The next node to be visited is set to the target node of the outgoing

edge.

()

. : _ : _ . . &
. & next(in_t.tgt .nId) &

. . ;

decisiont E t src CN t taken in t src nID
t G
next activeNode t tgt nID

∀ ∈ ∧ ∈ =

=

The assertion for this can be mentioned as

P4� Traverse to the next node if the guard condition is true and the

next active node has been set as the target node.

This assertion is satisfied in the step4 of the algorithm 5.1, as shown below.

4. else if(�.type = = decision)
4.1 For each �.out_edge, create “if(��out_edge guard)” statement

write to main() if currentThread=’main’
otherwise write to run() method where threadname=currentThread

�
Step 4 takes each decision node and step 4.1 takes each outgoing edge

from the decision node. The guard conditions for each edge is made a part of

the code generated, so that the right path will be taken based on the true guard

Chapter 5

102 Department of Computer Science

condition. After processing all the edges, step 1 is executed to find the next

node using DFS. So we can say,

P4 is attained in step 4 and step 1 since the source code is generated for

each edge along with its guard condition and the next active node is

chosen based on the guard condition.

In step 5 of algorithm 5.1, the fork node is handled. As per the

operational semantics, when the currently active node is a fork node, all

control variables of the fork node (in_Ft.tgt.nId) has to be activated.

().:(. _ . .)fork t fn outfn CN activeNode fn nodeID next in Ft tgt nId∈∀ ∈ = − > ∧ .

Change the control variables of the fork node (in_Ft.tgt.nId) whenever an

incoming or outgoing edge to the fork node is taken.

() ' .. : _ . . _ . . '_fork t fn in tfn CN t fn out in Ft tgt nId next in Ft tgt nId t taken∈ ∪
� �

�� ��
∀ ∈ ∀ ∈ = ∨

The outgoing edge from a fork node has to be taken if its control variable

(in_Ft.tgt.nId) is activated and the next active node is set to the target node of

the edge.

()
. : _ : _ . . & next(in_t . tgt .nId) &

. . ;
forkt E t src CN t taken in Ft tgt nId

next activeNode t tgt nID

∀ ∈ ∧ ∈ =

=

So the assertions can be formulated as follows.

P5�if the current node is a fork node activate the control flow

variables of the outgoing edges

P6� change the value of control variable whenever an in or out edge

has been taken.

P7� an out edge is taken when the control variable is enabled and next

active node is set as the target node.

These three assertions are satisfied in the steps 1 and 5 of algorithm 5.1, as

shown below.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 103

5. else if(�.type = = fork)
5.1. count the number of child nodes, say c.
5.2. while (c>=1)

5.2.1. create and start thread with name parentThread _tc ,
write to main() if currentThread=’main’
otherwise write to run() method where threadname=currentThread

5.2.2. push parentThread_tc to stack
5.2.3. decrement c by 1

5.3. if (currentThread = ‘main’)
5.3.1. Call CodeGeneration(��
��,P, currentThread, currentThread,

currentForkNode)
5.3.2. Pop sub threads from stack and call CodeGeneration(��
��,P,

currentThread,parentThread_tc, currentForkNode) till stack is empty
5.4.Else if(currentThread � ‘main’)

5.4.1. Call CodeGeneration(��
��,P, currentThread, currentThread,
currentForkNode)

5.4.2. modify run() method in Thread class
5.4.3. add “if(threadname==parentThread_tc){ “ statement to run() method
5.4.4. call

CodeGeneration(��
��,P,currentThread,parentThread_tc,currentForkNode)

Step 5.1 counts the number of outgoing edges (or child nodes) of the

fork node. Step 5.2 takes each edge (path) separately and keep ready for

processing. Steps 5.3 and 5.4 create source code for each parallel path between

the fork and join nodes. The next node to be visited is taken using recursion

and DFS. So we can say,

P5 and P6 are attained in step 5.1 and step 5.2. All outgoing edges

from the fork nodes are processed in these steps.

P7 is attained in steps 5.3 and 5.4. All the outgoing paths from the fork

node have been visited using recursion. Threads are used for

implementing the control flows of parallel paths.

In step 6 of algorithm 5.1, join node is handled. As per the operational

semantics, if the currently active node is a join node, activate its incoming

edge, or the last traversed edge (in_Jn.src.nId set to true).

(). : (. _ . .);joinjn CN t jnin activeNode jnnodeID next in Jt srcnId∀ ∈ ∀ ∈ ∧ = −>

Chapter 5

104 Department of Computer Science

The control variable of the join node (in_Jn.src.nId) is changed whenever an

incoming or outgoing edge is taken.

()()' .. : _ . . _ . . '_ ;join t t jn outjn CN t jnin in Jt src nId next in Jt src nId t taken∈ ∪∀ ∈ ∀ ∈ = ∨

The outgoing edge of a join node is taken only when all the incoming edges

are taken (activated) and the next active node is set to its outgoing edges’s

target node.

()
. .. : _ : _ . . & next(in_t .tgt .nId) &

. . ;
join t t src int E t src CN t taken in Jt src nId

next activeNode t tgt nID
∈∀ ∈ ∧ ∈ = ∧

=

The assertions can be formulated as follows.

P8�if the current node is a join node activate the control flow variable

of the incoming edge. Repeat it until all incoming edges get activated.

P9� change the value of control variable whenever an in or out edge

have been taken.

P10� an out edge is taken when all the control variables are enabled

and the next active node is set as the target node.

These assertions are satisfied in steps 1 and 6 of algorithm 5.1, as shown

below.

6. else if (�.type = = join)
6.1. if(currentThread==’main’)
 return
6.2. else if(currentThread==parentThread)
 return
6.3. else if(parentThread==’main’)
 add “currentThread.join()” to main() method
 return
6.4. else if currentThread � parentThread

add “currentThread.join()” to run() method where threadname=parentThread
return

Steps 6.1 and 6.2 look for the next parallel path (sibling) without

processing the join node. If the current thread is a child thread it has to wait till

all other threads reach join node. it is done in steps 6.3 and 6.4. Transition

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 105

from the join node is taken only when all the parallel paths have been reached

the join node. it is ensured with the recursive calls in steps 5.3 and 5.4. Hence,

P8and P9 are attained in steps 6.1 to 6.4. Waiting for all edges to be

taken is implemented using the join() function. Main thread will wait

till all the child threads complete their execution.

P10 is attained using step 1. The recursive calls made at the fork node

will be returned in steps 6.1 to 6.4. After returning all threads,(ie, all

incoming edges to the join node are traversed) the control goes to step

1 and traverse to the next node after the join node.

In step 7 of algorithm 5.1, the merge node is handled. As per the

operational semantics, the merge node is a control node that brings together

multiple alternate flows. The outgoing edge from a merge node is taken when

its previous node is visited and the next active node is set.

()
. : _ : _ . . &next(in_t.tgt.nId) &

. . ;
merget E t tgt CN t taken in t src nID

next activeNode t tgt nID
∀ ∈ ∧ ∈ =

=

The assertion for the same is written as follows.

P11� if the previous node has been visited activate the target node

and set the next active node to the target node.

Step 7 of the algorithm 5.1 satisfies this assertion, as shown below.. When a

merge node is encountered, the control goes to step 1 and fetch the next node

to be visited.

7. else if (N.type = = merge)
go to step 1

So we can say that,

P11 is achieved in step 7 since it redirects the execution to step 1, finding next

node to be visited.

Chapter 5

106 Department of Computer Science

In step 8 the final node of the activity diagram is processed. As per the

semantics, when all nodes have been visited, the next active node is set as ‘no

operation’.

()
(), _

: _ . &

_ . _ ;
final

t T t takendefined

n CN in n nID next activeNode nop

in n nID t taken∈

∀ ∈ ∧ − > =

∨ ∨

So the assertion can be written as follows.

P12� if all nodes have been enabled then set next active node to ‘no

operation’.

This assertion is attained in step 8 of algorithm 5.1, as shown below.

8. else if(N.type = = finalNode)
 return P

When the final node is encountered the algorithm stops processing the

activity diagram and returns the source code generated. No further processing

is done. The steps 1 to 7 ensure that all nodes have been visited before

reaching the final node. Hence it is true that,

P12 is attained in step 8 since it stops processing the AG and return the

code generated.

The algorithm is capable to handle and generate implementation code

for activity nodes with OCL, decision nodes, fork nodes, join nodes, merge

nodes, initial and final nodes. The algorithm 5.1 accepts any activity diagram

with activity node, decision node, fork node, join node, merge node, initial and

final nodes and convert it to source code. Hence, the correctness of the

algorithm is proved.

Algorithm 5.2 is used to convert the OCL statements to corresponding

source code. It processes five types of the OCL statements, like initial value,

object, pre condition, Post condition and operation body. How each type of the

OCL statement is converted to source code is mentioned in steps 1 to 5. The

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 107

initial value of an attribute will be assigned in step 1. An instance of a class of

the given name is generated in step 2. The pre condition and post condition

statements are generated in steps 3 and 4. In step 5 the method body for the

specified method is generated. So it is evident that the algorithm 5.2 can

handle any kind of OCL statements present in the activity diagram and can

generate corresponding implementation code. Hence, the correctness of the

algorithm is proved.

In order to demonstrate the working of these algorithms we present a

case study in the next section. The money withdrawal operation of a bank

ATM is taken as the case study.

5.6 Case Study

In this section we consider the process flow of the money withdrawal

operation in a bank ATM. We have considered a subset of the operation in the

ATM for our case study. We consider that the process flow starts with secret

code verification as shown in Figure 5.18. If the code is correct, the machine

will proceed with transaction and ask for amount to withdraw.

If the secret code is incorrect, the machine displays error message and

also rechecks the code. If the code found correct, the machine will ask for

amount. Otherwise, the ATM rejects the transaction.

After reading the amount for withdrawal, there are two concurrent

processes, dispense cash and prepare the receipt. Finally the transaction will

be closed and the receipt will be printed out. The guard conditions associated

with the edges for the decision making nodes are given in the model. The

generated code can be in the following format.

Chapter 5

108 Department of Computer Science

Figure 5.18: Activity diagram for money withdrawal from ATM machine (without OCL)

/********************* Main Class ***************************/
public class WithdrawMoneyMainClass
{

 public static void main(String arg[])
 { atm_obj_01.verifyAccessCode();
 if(correct)

{ atm_obj_01.askForAmount();
NewThread thrd_01=new NewThred(“thrd_id_01”);
if(available)
{ atm_obj_01.dispenseCash();
 thrd_01.join();
 atm_obj_01.finishTransaction();
}

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 109

 }
 if(incorrect)
 { atm _obj_01.handleIncorrectAccessCode();

…………………
…………………

 }
 …………..
 }
}
/************** Class for Managing Fork & Join ***************/
public class NewThread implements Runnable
{ …………………

…………………
public void run()
{ if(name.compareTo(“thrd_id_01”)==0)
 { atm_obj_01.prepareReceipt(); }
}

}
/********************* Context Class *********************/
public class WithdrawMoneyClass
{ public void verifyAccessCode(){ /* TODO CODE HERE*/ }

public void askForAmount(){ /* TODO CODE HERE*/ }
public void dispenseCash (){ /* TODO CODE HERE*/ }
public void finishTransaction (){ /* TODO CODE HERE*/ }
public void handleIncorrectAccessCode(){ /* TODO CODE HERE*/ }
public void prepareReceipt(){ /* TODO CODE HERE*/ }

}
/******************* CODE ENDS ************************/

Some details are still missing. Using OCL, we try to include some

more details that are useful for the system implementation as shown in Figure

5.19. For example, ‘Handle incorrect access code’ is a confusing term. How to

handle the incorrect code is not derivable from the activity name. So, we add

the OCL statements, as operation body, to add these details.

<<operation body>>

context withdrawMoney :: handleIncorrectAccessCode()

body: self. displayIncMsg()

 self.recheckCode()

Chapter 5

110 Department of Computer Science

Figure 5.19: Activity diagram for money withdrawal from ATM machine (with OCL)

Similarly, the activity ‘prepare to print receipt’ is also ambiguous. The

details of the preparations are given as the operation body in OCL statements.

<<operation body>>

context withdrawMoney::prepareReceipt()

body: getAcDetails()

 getTransDetails()

Moreover, some pre and post conditions are given along with the

activities ‘verify access code’, ‘finish transaction and print receipt’ and

‘dispense cash’ respectively.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 111

<<precondition>>

context withdrawMoney:: verifyAccessCode ()

self.displayPrcMsg()

<<precondition>>

context withdrawMoney:: finishTransaction ()

self.displayTnkMsg()

<<postcondition>>

context withdrawMoney:: dispenseCash ()

self.displayMnyMsg()

These OCL expressions help to improve the code generation,

especially the generation of the method definitions. The OCL statements given

in Figure 5.19 include pre- and post conditions and operation body. So these

statements help us to modify the context class WithdrawMoneyClass. The

code generated from the OCL enhanced activity diagram is as follows.

/********************* Context Class *********************/
public class WithdrawMoneyClass
{ public void verifyAccessCode(){

/* TODO CODE HERE*/
//-----precondition-----
displayPreMsg();
//-------------------------

}
public void askForAmount(){ /* TODO CODE HERE*/ }
public void dispenseCash (){

/* TODO CODE HERE*/

//-----postcondition-----
displayMnyMsg();
//-------------------------

 }
public void finishTransaction (){

 /* TODO CODE HERE*/
//-----precondition-----
displayTnkMsg();
//-------------------------

Chapter 5

112 Department of Computer Science

}
public void handleIncorrectAccessCode(){

/* TODO CODE HERE*/

//-----operation body-----
displayIncMsg();
recheckCode();
//-------------------------

}
public void prepareReceipt(){

/* TODO CODE HERE*/

//-----operation body-----
getAcDetails();
getTransDetails();
//-------------------------

}
}
/******************* CODE ENDS ************************/

We will get promising results when we apply our method with low

level activity diagrams, for example, describing the logic of an operation using

activity diagram. High level activity diagrams outline the business process or

task and its flow. So, the realization of those diagrams will end up in a series

of method calls, as given in the above example.

5.7 Implementation of Automatic Code Generator

The code generation process and the algorithm for code generation are

implemented in Java and we developed a tool called ActivityOCLKode. It has

mainly three modules; ActivityOCLModeler, OCL checker and ActivityOCL

Code generator as shown in Figure 5.20.

The ActivityOCL Modeler, as the name indicates, helps the user to

model the system design using activity diagram as well as OCL statements.

The modeler supports all the essential elements in UML activity diagram. It

supports the activity node, decision node, fork node and join node. Moreover,

the modeler gives us options to include OCL statements with each element in

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 113

the activity diagram. In the current version, ActivityOCLKode supports OCL

expression for pre- and post conditions, operation body and guard conditions.

Figure 5.20: ActivityOCLKode Architecture

The modeler has some additional features to save the activity diagram

in JPEG format. Internally, the modeler saves the model as XML document. It

also provides XML parser to parse the XML document and to get the object

tree of the document. This is necessary to retrieve data from XML documents.

In addition to parser, the modeler provides a tree view option which gives the

tree structure of the XML document.

Another important part of the ActivityOCLKode is the OCL checker.

The user designs the process flow, or the system design using activity diagram

and the finer details will be furnished using OCL expressions. These

expressions can be made hidden in the diagram or it can be explicitly visible.

Since OCL is a formal language, it follows some syntax rules [124]. So, before

compilation we are supposed to check the well formedness of the expressions.

This is the duty of the OCL Checker. It checks for syntax errors in the OCL

statements. The parsed XML document is used for this purpose. After parsing

the XML document we get an in-memory tree representation of the XML

document. Extract all the nodes with name ‘<OCL>’ from the object tree and

do the checking. We check the syntax of the pre- and post conditions,

operation body and guard conditions. The type of the expression is mentioned

Chapter 5

114 Department of Computer Science

along with the <OCL> tag. If there is any error, it will be reported to the user

using appropriate error messages. Then the user can make necessary changes

to the OCL statements and regenerates the XML document. This will continue

till the model is error free.

Finally, the Activity OCL code generator is the heart of the

ActivityOCLKode. We use Model Driven Development approach for code

generation. The tool helps to model process flow using activity diagram and

then it will be converted to XML. The tool uses Java and XML for platform

specific modeling (PSM).

The tool takes the XML document that is built after checking and

correcting the OCL statements. The OCL statements will not be processed

separately after regenerating XML. For code generation, we follow the

algorithms which are mentioned in the previous section. The code generator

has two main components; execution logic generator and the method definition

generator. The first one uses algorithm 5.1 for code generation and the second

one uses algorithm 5.2 for method definition generation.

As per the algorithm, the overall execution logic is formed by checking

each node in the activity diagram starting from the initial node. The edges give

the flow of execution. Each activity is converted as a function call. These

functions can be defined with the help of OCL. The decision making nodes are

converted to if…else statements with the guard conditions of the associated

edges.

The fork and join nodes are implemented as start of threads and join of

threads. Concurrent actions are given between the same fork and join nodes.

Threads are used for concurrent actions in Java. Independent threads will be

initiated for each path from the fork node. One of them may be the main

thread. There is a unique identifier for each thread as t_forkid_no. the presence

of fork id in each thread id ensures its uniqueness.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 115

Implementation of method definition is supported by OCL expressions.

If we add more OCL statements to specify the operation body and other

details, the generated code will be better. The use of OCL increases the

percentage of code generated. Each method definition is packed in the order;

pre condition, operation body and post condition. If these elements are given

in the activity diagram using OCL, it will contribute much to the code

generation.

5.8 Evaluation

The proposed method is implemented and evaluated. The evaluation is

done in three dimensions; the type of code generated, percentage of code

generated and the time complexity for code generation.

5.8.1 Type of code generated
The implementation of a system design normally contains the class

definitions, method declarations, method definitions, method calls,

constructors, method & variable declarations and variable initialization. We

evaluated our approach in this regard. It is summarized in the Table 5.1.

The ActivityOCLKode can successfully generate the definition of the

context class with method declarations, the supporting class for implementing

fork and join and the main class and main method for the application using

logical method calls.

Variable initializations and method definitions can be generated with

the help of OCL statements in the activity model. The skeletal code of the

class constructors will also be generated by ActivityOCLKode. The local

variable declarations and its manipulations cannot be generated automatically

by ActivityOCLKode.

Chapter 5

116 Department of Computer Science

Table 5.1: Type of code generated by ActivityOCLKode

Sl. No Type of code Generated by ActivityOCLKode

1 Variable declaration No

2 Method declarations Yes

3 Method calls Yes

4 Class definitions Yes

5 Main class and Main method Yes

6 Variable initialization generated with the help of OCL statements

7 Method definitions generated with the help of OCL statements

8 Constructors Skeletal code will be generated

5.8.2 Percentage of code generated
The ActivityOCLKode is tested for its performance. We have tested

the tool with system designs having different complexity levels. Process flow

designs with decision making nodes, concurrent flows etc have been taken for

evaluation. For a systematic evaluation we have taken activity diagrams with

different levels of details like 1, 2, 3 and 4. In level 1, we represent the system

model with simple activity diagram which contains only activity nodes. Level

2 is the activity model of the system which includes decision nodes too.

Similarly, level 3 includes concurrent nodes. Moreover, we compared the code

generated from activity diagrams with and without OCL expressions.

The main logic of the method definitions are included using OCL. The

pre- and post conditions are added with operations give a precise boundary for

the implementation. All these things improved the code generation from

activity diagrams.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 117

Figure 5.21: Percentage of Code Generated without OCL

We evaluated the code generated from activity diagrams which do not

contain OCL expressions. It gives more than 80% code coverage. The activity

diagrams without decision or fork nodes are tested for code generation and

they give 83% of the source code. Similarly, we evaluated the percentage of

code generated from activity diagrams having decision making nodes. It

evaluates to 85.2%. The activity diagrams with concurrent paths give 86.1%

code coverage.

Figure 5.22: Percentage of Code Generated with OCL

Finally the complex diagrams with both decision and fork nodes give 87%

of code. As a next step, we evaluated the code generated from the activity

diagrams which are supported by OCL. We could see that the inclusion of

80

82

84

86

88

1 2 3 4Pe
rc

en
ta

ge
 o

f c
od

e
ge

ne
ra

te
d

Level of details

Percentage of code gernerated (without OCL)

82
83
84
85
86
87
88

1 2 3 4pe
rc

en
ta

ge
 o

f c
od

e
ge

ne
ra

te
d

Level of details

Percentage of code gernerated (with OCL)

Chapter 5

118 Department of Computer Science

OCL improved the code generation. Simple diagrams give 84.4%, diagrams

with decision making give 86.2, diagrams with fork nodes give 87% and

diagrams with decision and fork nodes give 87.5%. Figure 5.21 and Figure

5.22 show the graphical representation of the performance evaluation.

5.8.3 Time complexity for code generation
We have evaluated the performance of ActivityOCLKode in terms of

the time complexity too. For this we considered activity diagrams with

different complexity levels. An activity diagram may contain activity nodes,

decision nodes, merge nodes and concurrent activities with fork and join.

If the activity diagram includes only the activity nodes, then it can be

called as simple diagram falling in complexity level 1. If the diagram contains

decision node and merge node, the complexity increases slightly; still we keep

it in level 1. If there is a fork & join nodes in the diagram, it increases the

complexity, since it introduces concurrent activities. We keep this kind of

diagrams in level 2. Now, we can have multiple decision nodes in a diagram, it

lies in level 3. Similarly we can have different combinations of decision nodes

and fork & join nodes to get the complexity levels from 4 to 9. The

introduction of each fork node to the diagram increases its complexity, since

each fork initiates one or more threads of execution.

We executed ActivityOCLKode for different types of activity diagrams

which falling under any one of the above nine complexity levels. The

complexity levels and the time taken for execution are shown in Table 5.2.

Complexity levels 1 to 4 includes the decision making nodes and two or three

concurrent execution paths of the activities. Levels 5 to 9 include complex

activity models which contain more than one fork & join nodes with two or

more parallel paths.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 119

Table 5.2: Levels of complexity and the execution time in milliseconds

Complexity

Level
Type of nodes included Exec time in ms

Level 1 Decision nodes and activities 6.94

Level 2 Concurrent activities 9.52

Level 3 Multiple decision nodes 10.84

Level 4 Decision with concurrent activities 11.35

Level 5 Multiple fork & join 11.58

Level 6 Multiple decision nodes with concurrent activities 12.35

Level 7 Multiple fork & join with more parallel activities 12.60

Level 8 Multiple decision, fork & join, and merge nodes 13.38

Level 9 More than 5 fork & join 14.59

Figure 5.23: Complexity Vs execution time

An activity model in complexity level 1 will be converted to source

code in 6.94 milliseconds. The execution time for Level 2 is 9.52 ms, Level 3

is 10.84 ms, Level 4 is 11.35ms, Level 5 is 11.58 ms, Level 6 is 12.35ms,

Level 7 is 12.6 ms, Level 8 is 13.38 ms and Level 9 is 14.59ms. The analysis

shows that the execution time slightly increases with the increase in the

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9

E
xe

c
T

im
e

in
 m

s

Complexity Level

Complexity vs Exec Time

Chapter 5

120 Department of Computer Science

number of concurrent paths in the activity model. Whenever the

ActivityOCLKode finds a fork node in the diagram, it will create (n-1) threads,

where n is the number of child nodes of the fork node. Tracing out each

parallel path and update the source code accordingly steals some execution

time. So, the execution time increases with the number of fork nodes. The

analysis is shown in Figure 5.23.

5.9 Conclusion

This chapter presents the semantics for enhancing UML Activity

diagram with OCL, in the form of meta models and operational semantics. The

literatures related to the code generation from the UML Activity diagrams lack

a formal semantic for enhancing the activity models with OCL.

We have developed several metamodels for enhancing activity diagram

with OCL and presented in this chapter. This gives a clear picture about how

to incorporate OCL in UML activity diagram. The operation semantics

proposed in this chapter explain how an OCL enhanced activity diagram

works. The proposed algorithms give a proper guideline for the code

generation from OCL enhanced activity diagram. To the best of our

knowledge no other research outcome reported a precise algorithm for code

generation from OCL enhanced UML activity diagram.

ActivityOCLKode, the tool implemented based on proposed algorithm,

provides a user friendly environment for the users to model the process flow

based software systems. The evaluation of the tool shows the proposed method

of code generation helps us to generate more than 83% code. When we add

OCL with the activity diagrams, this raises up to 84.4%. The code, generated

from OCL, is very crucial since it includes method definitions and the specific

pre- and post conditions. Moreover, the time required for code generation

based on the proposed method is 11.46 milli seconds (average) only.

Code Generation From Activity Models Enhanced With OCL

Cochin University of Science and Technology 121

The proposed code generation approach reduces the software

implementation and documentation efforts. The use of OCL improves the

percentage of code generated. The use of XML to save the models in text

format improves the portability of the models. UML models, OCL and XML

all are widely accepted and used in software industry and so the proposed

method can be easily adapted to the software development process in the

software industry.

Cochin University of Science and Technology 123

Chapter 6 CODE GENERATION FROM
ACTIVITY MODELS ENHANCED
WITH INTERACTIONS

6.1� Introduction .. 123�
6.2� Associating Activity Diagram With Sequence Diagram 125�

6.2.1� Formal definition for associating activity diagram with sequence
diagram ... 126�

6.2.2� Mapping of the definition elements to UML meta model 127�
6.3� Code Generation Process ... 128�
6.4� Code Generation Algorithm ... 130�

6.4.1� Algorithm Am_To_Prototype ... 131�
6.4.2� Algorithm Excecution_Logic(����, �, parentThread, currentThread,

start) .. 132�
6.4.3� Algorithm Method_Body (ca_obj, �, T, �	, �) ... 136�

6.5� ATM Case Study... 138�
6.6� Comparison with Related Works ... 141�
6.7� Conclusion.. 144�

6.1 Introduction

Activity diagram can show the group of activities done by different

objects in the system. We can specify which object is responsible for which

activity. This is a unique feature of activity diagram compared to other

behaviour diagrams like state chart diagrams. This feature, which is not

exploited so far, is very much useful in automatic code generation.

In this chapter, we define a method to fine tune the activity diagrams

for improved code generation. We tried to associate activity diagram with

sequence diagram to include object interactions in activity diagram. We

introduced a formal method for this association. Even though activity and

sequence diagrams are behavioural models, they model the system from

Chapter 6

124 Department of Computer Science

different perspective. First one is activity centric and the latter is object

interaction oriented. If we put them together we can generate more complete

source code because, activity diagram contributes to control flow and class

definitions and sequence diagram contributes to method definitions and object

interactions.

The concepts like activity node, work flow, decision node are easy to

implement, since there are built in programming constructs like method

invocation statements, if...else statements, etc. When we consider more

advanced and expressive features like fork & join nodes, the implementation is

not so straight forward. We surveyed many research publications to find a

method to handle concurrency (fork & join) in the activity diagrams.

Unfortunately, we could not find any method/algorithm to do so. Hence, we

formulated an algorithm to convert concurrent activities in the activity diagram

to source code. In addition, we introduced algorithms for code generation from

activity and sequence combined models. Our method gives a well defined

algorithm for code generation which is lacking in other published works in this

field of research.

In this chapter, we use UML 2.0 activity & sequence diagrams for

system design. We have evaluated our method by developing a tool called

AutoKode.

The main contributions of this chapter are as follows:

• It provides formalization for associating activity diagram with

sequence diagram.

• It provides a method to generate control flow from activity diagram

and method definition and object interactions from sequence diagrams.

• It provides a better algorithm for code generation from activity and

sequence diagrams.

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 125

6.2 Associating Activity Diagram With Sequence Diagram

Associating activity diagram with sequence diagram will help us in

code generation from activity models. In this section, we explain a method to

associate activity and sequence diagrams for workflow modeling. The basic

idea behind this is that all the control flow and data flows are depicted using

the activity diagram and the method invocations (communication between

objects) are depicted using sequence diagrams. Each activity in an activity

diagram can be expanded using a sequence diagram. This will help us to

include more details to the activity diagram. That is we have one activity

diagram and many sequence diagrams associated with it as shown in Figure

6.1. Each activity node in the activity diagram generates a method declaration

and the corresponding sequence diagram generates the method definition as a

sequence of method calls. The execution control flow will be based on the

control flow in activity diagram.

Figure 6.1: Associating activity diagram with sequence diagrams

Formal definition for the association of activity and sequence diagrams

is presented in section 2.1 and section 2.2 explains the mapping of the

definition elements to the UML 2.0 Activity diagram meta model.

Chapter 6

126 Department of Computer Science

6.2.1 Formal definition for associating activity diagram with sequence
diagram

In this section, we formally define activity diagram and sequence

diagram. The definition reveals the association between them. This formal

definition shows the elements in activity diagram and sequence diagram that

are considered for work flow modeling and collaboration modeling

respectively. This formal definition is used in the algorithm for prototype

generation, which is explained in the next section. In the earlier versions

(UML 1.x), activity diagram had been considered as an extension of the state

machine. As per UML2.0, it is considered as a graph [139, 103]. So we use the

term Activity Graph to represent activity diagram in our definition.

Formalization of Sequence Diagram: A sequence diagram, ��, is a

tuple. It is a set of objects � and the interactions � between them. The

interactions are through message passing. As Li [76] defines message, it has

four main components – action, sender obi, receiver obj and sequence order of

the message. The action can be of five types; synchronous message,

asynchronous message, return, create and destroy.

()
{ }

()

,

| /
{ | }

 .

: , : , , i i j j

m where

x x is an object actor
msg msg is a message

where msg is a tuple

msg ob C ob C action order

=

=
=

=

�	

�

 [� – objects, � – messages, obi – source object of class Ci, obj – target

object of class Cj, action – method call, order- the sequence number of the

message in the current sequence diagram, Ci and Cj are classes].

Formalization of Activity Graph : An Activity Graph, ����, is a hextuple

which contains nodes �, edges �, events �, guard conditions 	, local variables

�� and set of objects �. A node can be of two types, ActionNode ��� and

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 127

ControlNode ��. ��� includes action node, acceptEvent node, sendSignal

node and CallBehaviorAction (���� node. The CallBehaviorAction node is

used to represent a function call in the activity diagram. It is implemented as a

call to a sequence diagram which details the function. �� includes initial

node, actionFinal node, flowFinal node, decision node, merge node and fork

and join node.

{ }

()

, ,

, , ,
, , ,

{ | }

, |

��

�

�

�� �������������
��
� �� ��

�� ���
 ��

��� �	 ��
�

where

action accpetEvent sendSignal

initialNode actionFinal flowFinal
decision merge fork join
x x is an or

x y transit

=
= ∪
= ∪

� 	
=
 �
�

=

= { }
{ }
{ }

{ }
{ }

|

 |

 |

| /

 !" �
�
�

���

ion from x to y where

x x is an external event

x x is a guard expression

x x is a local variables

x x is an object actor

ε

=

=

=

=

The Activity Graph, ����, contains callBehaviorAction nodes (���),

which are associated with sequence diagram, since ��� is implemented using

�	. In both ���� and �	, set of objects/actors
 is common.

6.2.2 Mapping of the definition elements to UML meta model
The abstract syntax of ���� is shown in Figure 6.2. The Activity

diagram (����) may contain many activities. The element Activity Diagram in

the figure represents the ����. The mapping is shown in Table 6.1. ����

contains many activities. Each Activity is associated with an Object which is

responsible for the activities to be done. There will be associated Events and

variables. Each activity is composed of Activity Edges and activity nodes.

Each activity edge can be either Control flow or Object flow. Each Activity

Chapter 6

128 Department of Computer Science

Node can be Control node, Object node or Executable node. Control nodes are

initial node, final node, decision node, merge, fork or join. Executable nodes

are the directly executable action nodes. The Call Behavior Action (���) node

comes under executable node. The Value Specification associated with activity

edge involves guard conditions, variable/object values, etc.

Figure 6.2: Simplified Meta model of UML2.0 Activity Diagram

Table 6.1: Mapping the formalization elements to Metamodel

Element in Metamodel Components in Formalization
Activity Graph ����
ActivityNode �
ActivityEdge �

Events �
ValueSpecification �

Variable #��
Objects

ControlNode ��
ExecutableNode �������

6.3 Code Generation Process

The prototype generation process includes four major steps. In the first

step, the workflow of a system is modelled using activity and sequence

diagrams. The OCL statements are included for adding finer details. In the

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 129

second step, the diagrams and OCL statements are checked for errors. In the

third step, the diagrams and OCL statements are converted to XML files. In

the final step, these XML files are converted to prototype of the system. This

four step process of code generation is shown in Figure 6.3.

The modeler gives the option to design a system using UML 2.0

activity diagram and sequence diagram. The model processor does the parsing

and modification of the object tree. The XML generator regenerates the XML

document which contains the modified data. Transformation Engine includes

Activity Diagram Transformer and Sequence Diagram Transformer. The

Activity Diagram Transformer transforms the activity diagram to the

prototype. It is subdivided into three parts; AD parser, AD prototype generator

and the transformation rules. The AD parser takes the input as the XML files.

It will be parsed to get the details of the activity diagram. These data will be

given to the prototype generator.

Figure 6.3: Code Generation process

The AD prototype generator applies transformation rules on the

activity diagram data to get the prototype. Since the sequence diagrams have

Chapter 6

130 Department of Computer Science

been attached to the activity diagram, the prototype generation will not be

independent. It has to refer to the sequence diagram details and should be

merged with the prototype. The AD prototype generator sends the sequence

diagram reference, which has been used in the workflow modeling, to the

Sequence Diagram Transformer.

The corresponding sequence diagram tree will be traced out and parsed

by the SD parser. The SD parser takes the XML document of the sequence

diagram as input. The SD prototype generator generates the method definitions

based on the sequence diagram and its transformation rules. The prototype

generators (AD prototype generator and the SD prototype generator) use the

algorithms which are given in the next section for code generation.

6.4 Code Generation Algorithm

The prototype generation algorithm, Am_To_Prototype, takes the

object tree of activity graph (����) and sequence diagram (�) as input and

the output is the prototype � of the activity model (AM). We use the term

activity model (AM) to refer to the combination of activity and sequence

diagram. It generates one Main class and one class for each type of object

present in ����. Main class includes a main() method which initiates

execution. This algorithm uses two sub procedures, Excecution_Logic and

Method_Body. Excecution_Logic is used to implement the main() method in

the Main class. Method_Body is used to implement the definition of all

methods in ����.

The classes generated after Am_To_Prototype is shown in the Figure

6.4. There will be one main class, say the Context class and other associated

class corresponds to each object present in the work flow.

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 131

Figure 6.4: Class diagram generated from Am_To_Prototype for Figure 6.7

6.4.1 Algorithm Am_To_Prototype
Am_To_Prototype algorithm first creates a java package with the name

of the activity diagram. It applies Depth First Search on ����to visit all nodes

in the activity graph. A method declaration will be added whenever a new

action node is visited. It checks each node in the ���� and identifies all action

nodes and writes the method declaration for all those action nodes. If there is

any callBehaviorAction node, then call the subroutine Method_Body. The

algorithm identifies currently active object, ca_obj and its type. The active

objects will be fetched from the XML document of ����. If no class exists

corresponding to the object, then a class will be created. Otherwise the existing

class will be updated with the method declarations and added to the prototype

�. The search stops when all nodes have been visited. A main class will be

created and embed a main() method in it. Then call Excecution_Logic

subroutine to implement the main() body. The generated class diagram can be

edited to add attributes in the classes.

Chapter 6

132 Department of Computer Science

Algorithm 6.1 Am_To_Prototype

Input : Object tree of ����and�	
Output : Prototype �

 1: create a Java package with the name of ����
 2: perform Depth First Search on ���� by keeping initialNode as the
 starting vertex.
 2.1 visit next node �
 2.2 identify the currently active object, say ca_obj and its type,
 say �
 2.3 check whether class � exists in �.

 2.4 if no, add class � to �
 2.5 if (�= =��)
 add method declaration of nodeName() to class �
 2.6 else if (�= = ���)

 call subroutine Method_Definition(ca_obj� �� �� �	�
 �)
 2.7 Repeat steps 2.1 to 2.6 until all nodes have been visited
3: Add a Main class to �
4: write first line of main() method of Main class to �
5: call subroutine Excecution_Logic(����� �� main, main, initialNode) to

define main execution logic of the system
6: return�

6.4.2 Algorithm Excecution_Logic(��, �, parentThread,
currentThread, start)

The Excecution_Logic algorithm generates the execution logic from

����. It converts each node in the ���� to its corresponding programming

statements. It considers activity nodes, decision nodes, fork, join, etc., for

conversion. The overall ���� is traversed in depth first search manner starting

from the initial node. When it is an action node, corresponding method will be

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 133

called using the currently active object. The ‘if statement’ will be generated for

the corresponding decision nodes.

Figure 6.5: Sample fork and join nodes

Fork and join are handled in a different manner. Fork starts some sub

threads at that point of execution. Each thread should run concurrently. If fork

node has two child nodes one sub thread should be created and started there.

Out of two child nodes, one will be the current node itself and the second one

is the sub thread.

See Figure 6.5 for sample fork-join segment in an �����Suppose T1 is

the current thread and it calls method A(). Then it reaches a fork node. Fork

node has two child nodes and one of them is T1 itself and the other one is T2

which is a sub thread of T1. All actions coming under T1 will belong to main()

method if T1 is the main thread. Otherwise it will belong to the run() method

of Thread class. Whenever a new thread is generated it is named after its

parent thread suffixed with t1, t2, etc. If T1 is the main thread, then T2 will be

named as main_t1. These thread names will be pushed to stack for future use.

The segment of AG�� between fork and join node is treated separately.

Excecution_Logic() method will be called recursively for each thread between

a pair of fork and join. For Figure 6.5, Excecution_Logic() will be called for

T1 and T2 after the fork node.

Chapter 6

134 Department of Computer Science

When a join node is encountered by the parent thread (here it is T1), it

will just return the recursion. If it is a sub thread, a currentThread.join()

statement needs to be added in the parent method. When T2 reaches the join

node it adds main_t1.join(); statement to the main() method (assume T1 is the

main thread. If T1 is not the main thread, then the main_t1.join(); statement

needs to be added to the run() method where threadName=name of T1. All

these updates will be added to the prototype �. when the search reaches the

actionFinal node, the algorithm returns with the updated prototype �. The

Excecution_Logic algorithm is given below.

Algorithm 6.2 Excecution_Logic(�������parentThread, currentThread, start)

Input� �� ���������������	���
���������	���
��������
Output� �� Updated���

Perform�*	#�
�First�Search���������by keeping�������as�starting��	��	=�

���� �������	=�����	���
���� ��	���-"�����	��"������	��45	������<�45���
���� �-�����������

������	��	�����	�	�����<�45����������	��&��
2���	������������-�����	��(
�	���C����C�
��
	�2��	�2���	�����������	�
���2
	�	�

�
�	�����	�����	��(
�	���
+��� 	�	��-��������	��������

+���� ��	��	���-�1���������������$�����	�	����
2���	������������-�����	��(
�	���C����C�
��
	�2��	�2���	�����������	�
���2
	�	�

� �
�	�����	�����	��(
�	���
+��� 1�������	#���

.��� 	�	��-�������-��0��

� � .��� �������
	����4	���-��
������	�����"����
� � .��� 2
�	����D�����

��������� .���������	��	������������
�	���2��
����	�#��	��(
�	���<������

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 135

� � 2���	������������-�����	��(
�	���C����C�
� � ��
	�2��	�2���	�����������	�
���2
	�	�� �

� � �
�	�����	�����	��(
�	���
.����� #��
�#��	��(
�	��<����������0�
.����� �	��	�	�����4"���

.��� ��-������	��(
�	�����E����C��
.������� ;��?=�	������<��1���������������	��(
�	����
� ����	��(
�	��������	��F��0���	��
.����������#���4��
�	����-��������0��������
� ?=�	������<��1�����������

� ����	��(
�	���#��	��(
�	��<��������	��F��0���	��
� �������0����	�#�"�

.�+� ?�	��-�����	��(
�	���G�E����C��
� .�+��� ;��?=�	������<��1���������������	��(
�	����
����	��(
�	��������	��F��0���	��

.�+��� ����-"��������	�
������(
�	��������

.�+��� ������-��
�	�����	��#��	��(
�	��<��� ���
����	�	�������������	�
���
.�+�+� ���?=�	������<��1����������������	��(
�	����
� #��	��(
�	��<��������	��F��0���	��

/��� 	�	��-��������5�����
/��� �-�����	��(
�	����C����C��
� �	������
/��� 	�	��-�����	��(
�	����#��	��(
�	����
� �	�����
/��� 	�	��-�#��	��(
�	����C����C��
� ���������	��(
�	���5�����$������������	�
���
� �	�����
/�+� 	�	��-�����	��(
�	���G�#��	��(
�	���

���������	��(
�	���5�����$�����������	�
���2
	�	�
�
�	�����	�#��	��(
�	���
�	�����

3�� �� 	�	��-�������������F�����

Chapter 6

136 Department of Computer Science

� � �	�������

6�� 9	#	�����	#�������3�����������	��
��	�4		�������	��
8��� �	�����

 6.4.3 Algorithm Method_Body (ca_obj, �, T, ��, �)

Figure 6.6: A sample sequence tree.

The Method_Body algorithm takes current node, currently active

object, its class � and sequence diagram tree as input and returns the modified

prototype �. Sequence diagram tree is nothing but a tree which is constructed

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 137

[104] using object nodes and message flow edges [76]. The �	 tree gives a

tree representation of the sequence diagrams. This tree representation allows

the traversal through the sequence diagram and it is essential when we

automate the sequence diagram implementation process.

Each node in the �	 tree is the objects that are parts of the

collaboration model. Edges represent the messages. The root of the tree will be

the object which initiates the collaboration. For instance, there are four objects

in a collaboration, say :Customer, :ATM, :Network and :Bank as shown in

Figure 6.6. :Customer initiates three message sequences. It is shown as three

edges from the customer object. The receiver of the messages is shown at the

other end of the edge. For example, the receiver of msg1() is :ATM. It is given

as the end node of the first branch from :Customer. The message msg1() gets a

return value from :ATM, so that sequence (path in tree) ends at :ATM. Each

path in the tree ends when it reaches a node which gives a return for the

instantiating message. This tree helps to show the synchronization between

messages.

The Method_Body algorithm defines the function related to the current

activity node � in the activity graph and it will be added to the prototype �.

First of all, search the �	 tree to find a node with the name of the current

object. The number of child nodes will be counted, if the current object is

found in the tree. Each edge to the child node is converted to a method

invocation statement. It is done for all child nodes and in the order of the

message. The Method_Body algorithm is given below.

Algorithm 6.3 Method_Body (ca_obj, N, T, �	, �)

Input : current active object, current activity node, T, �	, �
Output : method body

���� H���	�-�������	��-��	�
����	-������������T�������	���	���� ��������

Chapter 6

138 Department of Computer Science

���� !	���
��	���		����-���������	�2��
����	���<�45��

���� B-�-�������������
	����4	���-��
������	���-���<�45����"��������
+��� (�0	��	���1	����1����	���2��
����	������	��� ���4	���
.��� H���	�����	�	����45���������&���������2
	�	�������������1��������

�����45�����
	��	�	��	�����	��-���1����	��
/��� 9	���	�������4"���
3��� 9	���	���1����	���-�����	��		�
6��� 9	#	�����	#��+����3������������4	���	��:�
8��� ;��	��
	��	�
����	-��������

 10: return

The working of these algorithms is demonstrated using a case study in

the next section. The operation of a bank ATM is taken as the case study.

6.5 ATM Case Study

Consider the work flow of an ATM machine. Figure 6.7 gives a simple

activity diagram for ATM transaction. It includes four activities and one

decision making. The four activity nodes cause the generation of four method

declarations, say, login(), withdraw(), updateBalance() and eject() in the class

Atm. The activities login and withdraw are expanded using sequence diagrams.

These sequence diagrams will fill up the definition of the methods login() and

withdraw().

The activities inside login are described in the sequence diagram. It

includes PIN verification (verifyPIN()), validation and verification of the

account with the bank network. The sequence of interactions is shown as

method calls. The activity withdraw is shown in the second sequence diagram.

It includes the selection of the service from the choice menu, verifying the

feasibility of the transaction, issue of receipt, etc.

In short, the case study presented here contains one activity diagram
(����) and two sequence diagrams (�) to elaborate the login() and

withdraw() functionalities. The object tree of ���� and �	 are the inputs to

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 139

the algorithm Am_To_Prototype. The following paragraphs show how the
algorithms convert the ���� and �	 to the prototype.

Figure 6.7: ATM Transaction

Code generated by algorithm Am_To_Prototype

The algorithm, Am_To_Prototype, will create a package called ATM

since ���� is named as ATM. Perform DFS on ����. Visit Login node.

Create a class, Atm, for the current object and add to the package ATM. Call

subroutine Method_Body() to generate the method definition of Login().

Visit next nodes and call subroutine Method_Body() to generate the method

definition of withdraw(). Add a Main class to the package ATM. Call

subroutine Excecution_Logic() to generate the definition of main() function.

Chapter 6

140 Department of Computer Science

/* ========= Generated Code ================= */
 /* creates package*/
 package AM.myPrototype.ATM;
 /* class definitions*/
 public class Atm
 { boolean login(PIN);

void withdraw(); ��
void updateBalance();

 void ejectCashNCard();
 }
 /* Define Main class */
 Public Main
 {
 /* variable declarations*/
 }

/* =================== Code Ends ================= */

Code generated by algorithm Method_Body

The subroutine, Method_Body(), will be called twice to generate the

definitions for login() and withdraw(). For login():- Creates definition of

login(). Search �	 tree to find the node with name atm. Identify all messages

originating from atm. There is only one message verifyPIN() and prepare a

function call statement with the receiver of the message (here it is

transaction). Similar processing is done for the function withdraw().

/* ========= Generated Code ================= */
 /*Method definition for Atm:: login() */
 boolean login(PIN) {
 transaction.verifyPIN(PIN);
 }
 /*Method definition for Atm:: withdraw() */
 Atm:: withdraw() {
 transaction.selectService();
 transaction.anotherTransaction();
}

/* =================== Code Ends ================= */

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 141

Code generated by algorithm Excecution_Logic

The subroutine, Excecution_Logic(), generates the definition of main()

function. The ���� is traversed in Breadth First Search manner and find out

each node and interprets accordingly. The only object active here is atm. So,

all the action nodes are called with the object atm. For decision making, the

guard conditions are checked and true/false paths are traversed. There can be

nodes of type action node, initial and final nodes, decision node, fork/join

nodes, call behaviour action nodes, etc.

/* ========= Generated Code ================= */
 /* main () method definition */
 Main :: main(String arg[]){
 dn_1=atm.login(PIN);
 if(dn_1){

atm.withdraw();
 atm.ejectCashNCard();

 }
 else
 { exit(0); }
 }
 /*Method definition for Atm:: withdraw() */
 Atm:: withdraw() {
 transaction.selectService();
 transaction.anotherTransaction();
 }

/* =================== Code Ends ================= */

To make the description simpler, we omitted the codes that are generated

to declare the variables and objects. The additional codes for constructors and

destructors also remain hidden in this description.

6.6 Comparison with Related Works

Focus on work flow automation. Code generation from UML models is

an interesting research area. However, few works [53, 143] focus on work

Chapter 6

142 Department of Computer Science

flow automation. Most of the research works in code generation focus on class

diagrams and state machines [29, 49, 55]. We focus on activity diagrams to

model work flow. We propose a method to automate work flow/ process flow.

We have presented a formal definition for the activity models (work flow

models) and collaboration models which reveals the association between the

two. The formal definition helps us to device an algorithm to generate

software prototype from the UML models.

Prototype generation process. Our work presents a precise description

of the prototype generation process. The prototype generation process is

enriched with a detailed algorithm based on the formal definitions of AM and

CM. Even though few research works [29, 53, 90, 139] give a minimal

description of the code generation process, very few works [107] present an

algorithm for prototype generation. To the best of our knowledge, no

algorithms are reported for code generation that associates AM and CM. We

have presented an efficient algorithm for prototype generation in our work,

bearing time complexity O (|E|), where E is the number of transitions in the

activity diagram. The algorithm works in the depth first search fashion and

hence holds the same time complexity.

Degree of automatic code/prototype generation. When we develop a

software using object oriented concepts, it includes class declarations, method

definitions and the instructions to show control flow. Many of the research

works in the field of code generation support automatic generation of class

declarations [29, 139]. Some of the research works produce class declaration

as well as a part of the method definitions [53, 70, 107, 150]. Few research

works provide methods to implement class declarations, control flow and part

of the method definition [143, 90]. Still, the code generation of method (or

function) definitions remains incomplete. In our work we propose a method to

implement method definitions with the help of activity diagram and sequence

diagram.

Co
de

 g
en

er
at

io
n

fr
om

 a
ct

iv
ity

 m
od

el
s e

nh
an

ce
d

wi
th

 in
te

ra
ct

io
ns

Co
ch

in
 U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

 1

43

Ta
bl

e
6.

2:
 C

om
pa

ris
on

 w
ith

 re
la

te
d

w
or

ks

Sl
. N

o
R

el
at

ed
 W

or
ks

[1
50

]
[2

9]

[1
39

]
[1

07
]

[5
3]

[7

0]

[9
0]

[1

43
]

A
ut

oK
od

e

Fe
at

ur
es

1
W

or
k

flo
w

 A
ut

om
at

io
n

N
il

N
il

N
il

N
il

ye
s

N
il

N
IL

ye

s
ye

s

2
C

od
e

G
en

er
at

io
n

fr
om

 A
ct

iv
ity

M
od

el
s w

ith
 C

on
cu

rr
en

t a
ct

io
ns

N

il
N

il
N

il
N

il
N

il
N

il
N

il
ni

l
ye

s

3
Fo

rm
al

 D
ef

in
iti

on
 fo

r
as

so
ci

at
in

g

A
M

 w
ith

 C
M

N

il
N

il
N

il
N

il
N

il
N

il
N

il
ni

l
Y

es

4
Pr

oc
es

s o
f p

ro
to

ty
pe

 g
en

er
at

io
n

Y
es

ye

s
ye

s
N

il
ye

s
N

il
ye

s
ni

l
Y

es

5
Ef

fic
ie

nt
 a

lg
or

ith
m

 fo
r

co
de

/P
ro

to
ty

pe
 g

en
er

at
io

n
N

il
N

il
N

il
ye

s
N

il
N

il
N

il
ni

l
Y

es

6
D

eg
re

e
of

 a
ut

om
at

ic
 c

od
e/

pr
ot

ot
yp

e

ge
ne

ra
tio

n

C
la

ss
 d

ef
in

iti
on

,

If
..e

lse
 s

ta
te

m
en

ts

sk
el

et
al

 c
od

e
fo

r c
la

ss

de
fin

iti
on

s

cl
as

s

de
fin

iti
on

 &

as
so

ci
at

io
ns

cl
as

s

de
cl

ar
at

io
ns

,

m
et

ho
d

de
fin

iti
on

s

co
nt

ro
l f

lo
w

cl

as
s &

 m
et

ho
d

de
cl

ar
at

io
ns

co
nt

ro
l f

lo
w

,

ob
je

ct

m
an

ip
ul

at
io

n,

us
er

 in
te

ra
ct

io
n

cl
as

s

de
cl

ar
at

io
ns

,

co
nt

ro
l f

lo
w

cl
as

s d
ec

la
ra

tio
n,

m
et

ho
d

de
fin

iti
on

,

co
nt

ro
l f

lo
w

7
Im

pl
em

en
ta

tio
n

of
 th

e
m

et
ho

d
N

il
ye

s
ye

s
N

il
N

il
ye

s
ye

s
ye

s
Y

es

8
M

D
A

 a
pp

ro
ac

h
Y

es

N
il

N
il

N
il

ye
s

ye
s

ye
s

N
il

ye
s

9
Su

pp
or

t f
or

 U
M

L2
.0

Y

es

N
il

ye
s

ye
s

ye
s

ye
s

ye
s

ye
s

Y
es

10

Su
pp

or
t f

or
 A

ct
iv

ity
 d

ia
gr

am

Y
es

N

il
N

il
N

il
ye

s
N

il
ye

s
ye

s
ye

s

11

Su
pp

or
t f

or
 S

eq
ue

nc
e

di
ag

ra
m

N

il
N

il
N

il
ye

s
N

il
N

il
ye

s
N

il
ye

s

12

Pr
og

ra
m

m
in

g
la

ng
ua

ge
 su

pp
or

te
d

Ja
va

Ja

va

Ja
va

rC

O
S

BP
E

LW
S

Ja
va

,C
++

Ja

va

ja
va

Ja

va

Code generation from activity models enhanced with interactions

144 Department of Computer Science

Table 6.2 gives a summary of the comparison with the related works.

Considering the degree of automatic prototype generation, we could find that

our method has a clear advantage over existing research works. Our method

generates class declarations along with the method definitions, preserving the

control flow of the system. Concurrency in activity models is not considered in

other publications for code generation.

6.7 Conclusion

The UML activity diagrams help us to generate the source code for the

control flow in the system, since it describes how use cases are achieved by

providing conditions, constraints and sequential & concurrent activities. The

object interactions cannot be generated from the activity diagrams. So, in this

chapter we proposed a method to associate UML activity diagram with

sequence diagrams to improve the information contained in the activity

diagram and thereby improve the generated source code.

We presented a new method to generate Java code from workflow

models, which is represented as a set of UML activity diagrams and sequence

diagrams. We defined activity diagram and sequence diagram formally which

proves the association among both the diagrams. This formal definition helped

us to formulate a precise algorithm for code generation. To the best of our

knowledge, no other reported research outcome provides both the formal

definition and the precise algorithm for code generation combining object

interactions and activity.

The proposed algorithms deal with concurrency in the activity diagram

which is a big step in research in this area. The algorithms have been

implemented, AutoKode, which automatically generates Java source code

from the workflow model of a system. Our method ensures more than 80% of

completion of the prototype of the system. Since we associate activity models

Code generation from activity models enhanced with interactions

Cochin University of Science and Technology 145

with collaboration models we are able to handle object interactions and are

able to generate more complete source code automatically.

Comparison with the related works shows that our approach provides a

new method to associate the activity diagram with sequence diagram which

improves the quantity and quality of information included in the activity

model. Our method provides a new method for work flow automation with the

help of a formal definition for activity diagram and sequence diagram

association and an efficient algorithm which can deal with concurrent

activities in the system models. The degree of automatic prototype generation

is better than other related works since our method produces complete class

definition, method definition and control flow considering object interactions.

Our method will be suitable for current and future software development

scenarios since we use MDA approach and supports UML 2.x and machine

independent language Java.

Cochin University of Science and Technology 147

Chapter 7 CODE GENERATION FROM
STATE CHART MODELS

7.1� Introduction .. 147�
7.2� Implementing Hierarchical, Concurrent And History States 150�
7.3� Design Pattern for Hierarchical, Concurrent and History States 152�
7.4� Implementing Alarm Clock .. 156�
7.5� The Code Generation Process ... 162�
7.6� Evaluation and Comparison with Related Works ... 167�

7.6.1� Element based comparison .. 168�
7.6.2� Feature based comparison .. 169�

7.7� Conclusion.. 169�

7.1 Introduction

A software system can be modeled using class diagrams, state chart

diagrams and activity diagrams. Software system consists of communicating

objects. Each object has its own state transition diagram. State diagram listen

for events and act accordingly. The interesting part is that these diagrams can

contribute much to the automatic code generation. The system modeled using

these three diagrams can be translated to implementation code using code

generation tools. Class diagrams help us to generate structural codes and the

other two diagrams help us to generate behavioral codes. Out of these three

diagrams, UML state chart diagrams are most popular standard for embedded

system design [135] and event driven system modeling [75, 137, 44, 136, 39].

This chapter concentrates on state machines since it can generate 100% code

out of simple state chart diagrams.

Chapter 7

148 Department of Computer Science

In this chapter we present a method to convert hierarchical states,

concurrent and history states to Java code. In our method, we follow a design

pattern based approach. A design pattern gives the overall implementation

outline using a class diagram [12, 140]. The surveys on code generation from

state machines [27] show that the research outcomes are not giving an

effective method to implement the concurrent states. We present a design

pattern to implement the state hierarchy, concurrency and history state.

The main contributions of the chapter are as follows:

• It presents an easily understandable and reusable design pattern for

state machine implementation.

• The design pattern is expandable and is able to handle hierarchical

states.

• It gives an effective method to implement composite states with

parallel regions in object oriented way.

• It presents a simple method to keep shallow and deep history in a state

machine

A state machine can be defined as a graph of states and transitions [62,

43]. State chart diagram may be attached to classes, use cases and

collaborations to describe the dynamics of an individual object. It models all

possible life histories of an object of a class. Any external influence to the

object is called as an event. The response to the event may include the

execution of an action and transition to a new state. Events may have

parameters that characterize each individual event instance. Inheritance and

concurrency can be modeled in state machines. A sample state chart diagram is

shown in the Figure 7.1.

Code generation from state chart models

Cochin University of Science and Technology 149

Figure 7.1: State chart essentials

The commonly used features of a state chart diagram are listed as state,

transition, event, guard, entry action(s), exit action(s), transition action(s) and

internal action inside state

The state of an object is defined as a time period in its life. During this

period, the object may wait for some event, or it may perform some activity.

There can be named states as well as unnamed (anonymous) states. The

transition is the response of the object to an event occurrence. Transition will

have an event trigger and a target state. It may include a guard condition and

an action. There can be different types of transitions like, entry action, exit

action, external transition and internal transition. A Guard condition is a

Boolean expression which is evaluated when a trigger event occurs. If the

expression evaluates to true, then the transitions occurs. An action is an atomic

computation which can be a simple assignment or arithmetic evaluation

statement. It can also be a sequence of simple actions. The Entry and Exit

actions exist in composite states which contains nested states. Entering the

target state executes an entry action and when the transition leaves the original

state; its exit action is executed before the action on the transition and the entry

action on the new state.

The composite state may contain sequential states (OR type states), or

(and) concurrent states (AND type states). The concurrent states form

Chapter 7

150 Department of Computer Science

orthogonal regions in the composite states. The states in two orthogonal

regions are concurrent states. For example, in Figure 7.1, state B is a

composite state which contains two orthogonal regions. In one region, there

are two sequential states B1 and B2 and in the other region there are two states

B3 and B4. The existence and execution of state B3 and B4 is independent of

that of states B1 and B2. In other words, states B3 and B4 are concurrent with

states B1 and B2.

In this chapter, we discuss how these elements can be represented in an

object oriented program. We assume that the source code has to be generated

automatically from the state chart diagram with the help of some CASE tool.

The following section examines different methods to map the state chart

diagram to program constructs.

7.2 Implementing Hierarchical, Concurrent And History
States

In design pattern based approach, each state of the system (or object) is

implemented as a class. If the object has three states, then there will be 3

classes, representing each state, in the implementation. Generalization is

applied when there are hierarchical states (composite states). For example in

Figure 7.2, state A is a composite state. It contains two sub states B and C. So

there will be three classes A, B and C. In the implementation pattern they

appear as in Figure 7.3. The sub states B and C share the properties of the

super state A. So, inheritance (generalization) is the best choice to implement

the state hierarchy.

There can be composite states with orthogonal regions. For example, in

Figure 7.4 we can see, state A contains 2 sub states B and D. So the

implementation contains three state classes, class A, class B and class D. The

super state and sub states are implemented using generalization as in Figure

Code generation from state chart models

Cochin University of Science and Technology 151

7.5. This generalization can only show that A is a super state and B and D are

the sub states. Another important property of the sub states is not addressed

here. It is the concurrency between the sub states. State B belongs to one

region and state D belongs to another region. That means the existence of state

B is independent of that of state D. The state transitions of the state in the

orthogonal regions are independent of each other, or in other words, they are

concurrent.

To implement the concurrent states, we defined a base class called

OrthogonalProperty. According to our new approach, every composite state

class has to inherit the properties of the OrthogonalProperty class as in Figure

7.6. The OrthogonalProperty class has two class has two methods to set the

number of regions and to execute the sub transistions.

Each composite state has two important attributes to store the number

of regions as well as the active sub states. The number of orthogonal regions in

the composite state will be stored in the attribute no_of_regions. The active

sub states will be registered in the sub state array named as sub_states []. If

there are two orthogonal regions, then there can be a maximum of two active

sub states. As the number of regions increases, the entries in the sub state array

increases. Now, the sub state transitions are implemented based on the sub

state array. Whenever there is a transition between sub states, the sub state

array will be updated with the new target sub state.

Figure 7.2: Composite state A with two
sub states

Figure 7.3: Implementation Pattern of the
composite state A

Chapter 7

152 Department of Computer Science

Figure 7.4: Composite state A with two
orthogonal regions

Figure 7.5: Implementation of the composite
state A

Figure 7.6: Implementation Pattern of the composite state A with orthogonal regions

Next task is to implement history states. There can be two types of

history; shallow and deep. Deep history gives the inner (nested) states that

were active previously and the shallow history gives the outer state which was

active previously. According to the above pattern for orthogonal state, the

active state (outer state) is managed by context class and the nested states are

managed by the composite class. So it is easy to maintain the shallow history

in Context Class and the deep history in CompositeState class.

7.3 Design Pattern for Hierarchical, Concurrent and History
 States

In this section, we present the design pattern for implementing the

UML state chart diagram. In our previous work [121] we have presented a

design pattern for concurrent and hierarchical states. Another important feature

Code generation from state chart models

Cochin University of Science and Technology 153

of state diagram, the state history, is incorporated in the new pattern, named as

“Template HHCStateMachine”, as shown in Figure 7.7. As per Gamma [37]

giving name to a design pattern will help us to refer to the pattern frequently.

The pattern gives a simple and easy to use method for state chart

implementation using object oriented concepts.

Figure 7.7: The proposed design pattern “Template HHCStateMachine” for state machines

The states and events in a system are implemented as classes in the

pattern. There will be events in the system that may or may not change the

state of the system. State changing events should initiate state transition. All

these terms are included in the StateMachine class which is a blue print of

every state machine.

The ContextClass is the class which represents the actual system to be

implemented. The currently active state and the shallow history are maintained

as the attributes of this class. It has an event dispatch function. This method is

used to delegate the events to the corresponding state classes.

State hierarchy is represented using inheritance of state classes. The

pattern defines an abstract class called State which acts as the base class for

deriving the states in the system. Each state in the system is defined as a

Chapter 7

154 Department of Computer Science

derived class of State class. If there is a composite state, all the sub states will

be implemented as the derived class of the composite state class. It keeps the

semantics of composite state in UML state chart diagram. According to UML,

the sub states have the properties of the composite (outer) state. This property

can be satisfied by the use of inheritance to derive the sub state classes.

Another important feature of the state chart diagram is parallel regions

inside the composite states. The pattern defines a special class called

OrthogonalProperty which captures the features of parallel regions in the

composite state. It sets the number of regions using the methods setRegions().

The transition between sub states is implemented using the method

subTransitions().

Table 7.1: Mapping State machine elements to program constructs

State Machine Element Program Construct
State State Class

Transition Method in StateMachine class

Event Events class

Entry / Exit Actions Method in State class

Internal Action Method in State class

Hierarchical States Hierarchy of State classes

Concurrent Transitions Method in the OrthogonalProperty class

Shallow History Attribute in ContextClass

Deep History Attribute in CompositeState class

The CompositeState class maintains the properties of the composite

states with or without parallel regions. It has three main attributes;

no_of_regions, sub_states[] and deepHistory. In a composite state there can be

one or more regions. It is stored in the first attribute. If there are multiple

regions in a composite state, there will be parallel states. These states which

are active simultaneously are stored in the second attribute. Before state

transition, the old state is stored in the third attribute. The deepHistory[] stores

Code generation from state chart models

Cochin University of Science and Technology 155

the inner states which were active previously. Hence, concurrent states and

history are maintained using the CompositeState class.

The mapping of the state machine elements and the Object Oriented

Programming constructs is shown in table 7.1.

The skeletal code structure of the pattern is as follows. It includes the

classes for Events, State, StateMachine, ContextClass, OrthogonalProperty

and CompositeState.

public class Events {
 public void setSignal(){
 }
}
public class State {
 public void dispatch(ContextClass cc, Events e){
 }
}
public class StateMachine{
 public void transition(State target){
 }
}
public class ContextClass extends StateMachine {
 State activeState;
 State shallowHistory;
 public ContextClass () {
 }
 public void init(){
 }
 public void dispatch(Events e) {
 }
}
public interface OrthogonalProperty {
 public void init();
 public void subTransition(int region, State target);
 public void setRegions(int no_of_regions);
}

Chapter 7

156 Department of Computer Science

public class HistoryState extends State{
 public void restoreHistory(){…}
 public void updateHistory(){…..}
}
public class CompositeState extends State implements OrthogonalProperty{
 int no_of_regions;
 State[] sub_states; HistoryState[] deep_history;
 public void init(){
 }
 public void subTransition(int region, State target) {………… }
 public void dispatch(ConetxtClass context, Events e) {………… }
 public void setRegions(int no_of_regions) {
 …………………………. }
}

Next section presents a case study to demonstrate the implementation

of the design pattern “Template HHCStateMachine”. Different states of an

alarm clock are taken as the case study here.

Table 7.2: State transition table of the alarm clock

Current
State Sub State Events [guard] next state

clockON timekeeping TICK timekeeping
 SWITCH_OFF clockOFF

alarmON TICK curr_time =
alarm_time alarmON

SWITCH_OFF clockOFF

ALARM_SET alarmON

ALARM_OFF alarmOFF
alarmOFF ALARM_SET alarmOFF

ALARM_ON alarmON

SWITCH_OFF clockOFF
clockOFF SWITCH_ON clockON

7.4 Implementing Alarm Clock

We consider the case of an alarm clock. The clock can be in ON state

or OFF state. When the clock is ON it can be in two modes simultaneously,

timekeeping mode and alarm mode. There are six events in the alarm clock;

Code generation from state chart models

Cochin University of Science and Technology 157

TICK, ALARM_ON, ALARM_OFF, SWITCH_ON, SWITCH_OFF and SET.

TICK is the advancement of time in seconds. ALARM_ON is to switch on the

alarm and ALARM_OFF is to switch off the alarm. SET signal is used to set

the alarm time. SWITCH_ON and SWITCH_OFF signals are used to switch

on and switch off the clock respectively. When clock is off, the SWITCH_ON

event changes the clock state to clockON state.

Figure 7.8: UML state diagram representing the Alarm Clock

In the ON state, by default, the clock will be in timekeeping and

alarmOFF state. The state changes are shown in Table 7.2. The state diagram

of the alarm clock is shown in Figure 7.8. The implementation pattern of the

Alarm clock is shown in Figure 7.9.

Chapter 7

158 Department of Computer Science

The implementation of the AlarmClock has 6 state classes. The context

class here is the AlarmClock. It uses the Events class and the State class for

setting the state of the system and event dispatching. The initial state is set to

TimeKeepingState and AlarmOff. Whenever an event encounters the

corresponding event handling function will be called by using the run time

polymorphism. Whenever the system enters the composite states, the init()

function of the class has to be invoked. So this function call is included in the

transition function.

Figure 7.9: Implementation Pattern for the alarm clock

public class AlarmClock extends StateMachine {
…………………………………………………….
…………………………………………………….
…………………………………………………….

public static ClockOnCompoState clockOn=new ClockOnCompoState();
 public static ClockOff clockOff=new ClockOff();
 public AlarmClock(int hr, int min, int sec)
 { curr_time_hr=hr; curr_time_min=min; curr_time_sec=sec;
}

Code generation from state chart models

Cochin University of Science and Technology 159

 final public void init(){ m_state=clockOff; tran(m_state); }
 final public void dispatch(ClockEvents e)
 { m_state.dispatch(this, e); }
 final public void tran(ClockState target){
 shallowHistory=m_state;

 m_state=target;
 if(m_state==clockOn)
 { flag++;
 if(flag==1) { clockOn.initCompo();}
 else { clockOn.restoreHistory();}
 }}
 ……………………………………………………. }

The clockOn state is a composite state. It contains two parallel regions;

one for time keeping and the other for alarm. It is implemented as

ClockOnCompoState. It also implements the sub transition function and

history restoring function along with the event dispatch function.

public class ClockOnCompoState extends ClockState implements
ClockOrthogonalProperty{

…………………………………………………….
…………………………………………………….

 public void initCompo()
 {
 deepHistory[1]=timing;
 deepHistory[2]=alarmoff;
 subTransition(1,timing);
 subTransition(2,alarmoff);
 }
 public void subTransition(int region, ClockState target)
 {
 deepHistory[region]=sub_states[region];
 sub_states[region]=target;
 }
 public void dispatch(AlarmClock context, ClockEvents e){
 int i=0;
 for(i=1;i<=no_of_regions;i++){
 sub_states[i].dispatch(context, e);
 } }
}

Chapter 7

160 Department of Computer Science

The clockOff state receives only SWITCH_ON event which causes stat
transition to clockOn state. It is implemented in the class ClockOff.

public class ClockOff extends ClockState{
 public void dispatch(AlarmClock context, ClockEvents e){
 switch(e.signal){
 case SWITCH_ON : {context.tran(AlarmClock.clockOn);break;}
 } } }

During alarmOff state, the clock receives ALARM_SET, ALARM_ON

and SWITCH_OFF events. It is implemented as AlarmOffState class. The

alarmOn state is implemented as AlarmOnState class. It accepts TICK,

ALARM_SET, ALARM_OFF and SWITCH_OFF events.

ALARM_ON causes sub transition to alarmOn state. During TICK

event, the current time is matched with alarm time and if matches it generates

alarm sound. ALARM_SET event prompt the user to enter the alarm time.

ALARM_OFF event causes sub transition from alarmOn state to alarmOff

state.

public class AlarmOffState extends ClockOnCompoState{
 Scanner sc= new Scanner(System.in);
 public void dispatch(AlarmClock context, ClockEvents e){
 switch(e.signal){
 case ALARM_SET : { System.out.println("Enter Hr : ");
 context.alarm_time_hr=sc.nextInt();
 System.out.println("Enter Min : ");
 context.alarm_time_min=sc.nextInt();
 System.out.println("Enter Sec : ");
 context.alarm_time_sec=sc.nextInt();

System.out.println("Alarm Set to --->
"+context.alarm_time_hr+":"+
context.alarm_time_min+":"+
context.alarm_time_sec); break;}

 case ALARM_ON : {super.subTransition(2, alarmon);break; }
 case SWITCH_OFF : { context.tran(AlarmClock.clockOff);break; }
} } }
public class AlarmOnState extends ClockOnCompoState{

Code generation from state chart models

Cochin University of Science and Technology 161

 Scanner sc= new Scanner(System.in);
 public void dispatch(AlarmClock context, ClockEvents e){
 switch(e.signal){
case TICK : {
if((context.curr_time_hr==context.alarm_time_hr)
&&(context.curr_time_min==context.alarm_time_min)&&
(context.curr_time_sec==context.alarm_time_sec))
 { java.awt.Toolkit.getDefaultToolkit().beep(); }
 break;}
 case ALARM_SET : { System.out.println("Enter Hr : ");

 context.alarm_time_hr=sc.nextInt();
 System.out.println("Enter Min : ");

 context.alarm_time_min=sc.nextInt();
 System.out.println("Enter Sec : ");
 context.alarm_time_sec=sc.nextInt();

 break;}
 case ALARM_OFF : { super.subTransition(2, alarmoff);break; }
 case SWITCH_OFF : { context.tran(AlarmClock.clockOff);break;}
} } }

The timekeeping state is implemented as TimeKeepingState class. This

state is a sub state of the clockOn state. So, the TimeKeepingState is inherited

from ClockOnCompoState. This class handles two events ; TICK event and

SWITCH_OFF event. TICK event advances the clock time by one second.

SWITCH_OFF event causes the state transition to clockOff state.

public class TimeKeepingState extends ClockOnCompoState{
 @Override
 public void dispatch(AlarmClock context, ClockEvents e){
 switch(ClockEvents.signal){
 case TICK : { AlarmClock.curr_time_sec++;
 if(AlarmClock.curr_time_sec==60)
 { AlarmClock.curr_time_min++;
 AlarmClock.curr_time_sec=0;
 if(AlarmClock.curr_time_min==60)
 { AlarmClock.curr_time_hr++;
 AlarmClock.curr_time_min=0;
 if(AlarmClock.curr_time_hr==13)
 { AlarmClock.curr_time_hr=0;
 } } } break;}

Chapter 7

162 Department of Computer Science

 case SWITCH_OFF : { context.tran(AlarmClock.clockOff);
 break; } } } }

The history state is implemented as HistoryState class includes a
restoreHistory() function which restores the previous state of the Alarm Clock.

public class HistoryState extends ClockState{
 public void restoreHistory(ClockOnCompoState compo)
 { compo.sub_states[1]= compo.deepHistory[1];
 compo.sub_states[2]= compo.deepHistory[2];
 } }

Figure 7.10: Architecture of code generation from state models

7.5 The Code Generation Process

The proposed pattern is saved in the pattern library. This pattern library

is used during code generation. The code generation process includes the

system modeling in UML state chart diagram, generation of XML for the

model, parsing XML and then generating code. The process of code generation

is depicted in Figure 7.10.

The representation of the state chart diagram is based on State Chart

extensible Markup Language (SCXML) [6]. Based on SCXML, the tags

<state>, <transition>, <onentry>, <onexit>, <initial>, <final>, <parallel>,

and <history> are used to represent the states, transitions, entry condition, exit

condition, initial state, final state, parallel states, and history states

respectively. For example, a state with two transitions is given below.

Code generation from state chart models

Cochin University of Science and Technology 163

<state id=s">
 <transition event="e" cond="x==1" target="s1"/>

 <transition event="e" target="s2"/>
</state>
In state ‘s’, if an event ‘e’ occurs and the condition ‘x==1’ is satisfied

the state will take transition to state ‘s1’. If the condition is not satisfied, the

state will take a transition to the state ‘s2’. The parallel states are represented

as follows.

<parallel id="p">
<transition event="done.state.p" target= "someOtherState"/>
 <state id="S1" initial="S11">
 …………………..
 …………………..
 </state>
 <state id="S2" initial="S21">
 …………………..
 …………………..
 </state>
</parallel>

Two parallel regions start with sub states S11 and S21. The internal transitions
are given between <state> and </state> tags.

Figure 7.11: UML state diagram representing the microwave oven

Chapter 7

164 Department of Computer Science

During code generation the parsed XML document is given to the code

generator. The code generator has mainly three modules. One module analyzes

the parsed XML and find out the state nodes. It generates one state class for

each state node based on the design pattern in the pattern library. The

composite states are implemented as the extension of State abstract class and

the OrthogonalProperty class. The nested states are implemented as the

derived classes of the corresponding composite states.

Figure 7.12: XML representation of Microwave Oven

Consider the state chart diagram of a microwave oven as in Figure

7.11. It includes parallel regions, history states and composite states. The tree

view of the XML representation of this is given in the Figure 7.12. It contains

two states; off and on. So, two state classes will be generated; offState and

onState. The on state contains some sub states. It shows that onState is a

composite state. Since <parallel> tag is not there, it is understood that the sub

states are not concurrent states. The on state will be defined as OnCompoState

class by extending the State class and the OrthogonalProperty class. The off

state will be defined as offState class. The inner states idle and cooking will be

Code generation from state chart models

Cochin University of Science and Technology 165

defined as derived classes of the OnCompoState class; idleState class and

cookingState class.

Figure 7.13: XML representation of Microwave Oven with concurrent states

Similarly, the parallel states can be identified by the tag <parallel> as

in Figure 7.13. Parallel states are composite states by default. The number of

Chapter 7

166 Department of Computer Science

states inside the <parallel> tag will help us to set the number of regions. In the

example we have two states inside the <parallel>, that means two parallel

regions.

The second module in the code generator analyzes the events and

transitions. It generates the event class and updates the event dispatch

functions in each state class.

The event is stored as the attribute of the element <transition>. For

example, <transition event="e" target="s2"/>. So all <transition> elements

have to be checked and list out all those events in the Event class by

eliminating the duplications.

 <state id="S2" initial="S21">
 <state id=S21">
 <transition event="e1" target="S22"/>
 </state>
 <state id="S22">
 <transition event="e2" target="S2Final/>
 </state>
 <final id="S2Final"/>
 </state>

In the above XML statements, a composite state with two sub states is

given. Two transitions have been described in this composite state. In each

<transition> we can identify an event; say e1 and e2. These events will be

added to the Events class. If already existing event (in the Event class) is

found, it will be ignored.

The event dispatch function will be updated with the transition and the

target state. For example, in state S21, there is a transition to state S22 when

an event e1 occurs. So, the dispatch function of the class S21State will be

updated by adding the corresponding ‘case’ statement and the state transition

with a call to transition() function. The activity inside each state will be

converted as the program statements and added to the dispatch function of the

corresponding state class.

Code generation from state chart models

Cochin University of Science and Technology 167

The third module in the code generator analyzes the state transitions

and its flow. It generates the context class for the system. The context class

represents the entire system, or the system state chart. It receives the events

and delegates the actions to the corresponding active state. The action to be

done on a particular transition is defined in the dispatch function of each state

class.

The next section presents an evaluation of the code generation method

presented in this section. We considered two tools, OCode and Rhapsody for

the comparison with our method.

Table 7.3: Efficiency of SMConverter compared with Rhapsody & OCode

 Ocode (ms)
Rhapsody

(ms)

SMConverter

(ms)

Effieciency

over Ocode

Efficiency

over

Rhapsody

Total time for events

without transitions
8.8 4.3 3.55

Average time per event

without transition
0.004949 0.002418 0.001997 59.66 17.44

Total time for events

having transitions
28.3 19.35 11.35

Average time per event

having transition
0.012736 0.008708 0.005108 59.89 41.34

Total time for all events 37.1 23.65 14.9

Average time per event 0.009275 0.005913 0.003725 59.84 37

7.6 Evaluation and Comparison with Related Works

The proposed pattern is implemented using the code generator called

SMConverter. The performance of SMConverter is compared with other tools

like Rhapsody [50] and OCode [56, 55]. We considered the events with and

without transitions. Total execution time taken for each type is calculated in

milliseconds. Total number of requests for events without transition is 1778

Chapter 7

168 Department of Computer Science

and for events with transition is 2222. The efficiency of our tool

(SMConverter) over other tools is shown in the Table 7.3. Figure 7.14 compare

the total time taken for events without and with transition respectively.

Figure 7.14: Execution time for SMConverter and other tools

The proposed approach is compared with 10 major research works in

this area. [94, 2, 56, 49, 55, 131, 78, 89, 111, 132, 133]. For the comparison,

we considered the method of implementation of different elements in the state

chart diagrams like simple state, composite state, history state etc., and the

support for different features of state machines like, hierarchy, concurrency

etc. The details of comparison are given in tables 7.4 and 7.5.

7.6.1 Element based comparison
For element based comparison, we considered the basic elements like, current

state, state transition etc., in state machines and the components like,

orthogonal states, composite states, history states etc., that improve the

expressive richness of the state machine. We studied how each of these

elements is implemented in the present literatures and how well they support

0

5

10

15

20

25

30

Ocode Rhapsody SMConverter

T
im

e
in

 m
ill

i s
ec

on
d

Tools

Execution time

Total time for events
without transitions

Total time for events with
transitions

Code generation from state chart models

Cochin University of Science and Technology 169

object orientation. The current state, simple states and the context class are

represented in a similar way in all the literatures. In case of state transition all

literatures except [131] uses switch statement. The components like,

composite, orthogonal and history states are supported by few research works.

The element based comparison, given in table 7.4, shows that our

method implements the state chart elements in object oriented way, but many

of the related works do not.

7.6.2 Feature based comparison
In feature based comparison, we considered the features like,

expandability, reusability, understandability etc., and the support for state

hierarchy and concurrency in the state chart diagrams.

The state hierarchy is supported by almost all works, except [5], but

concurrency is not well supported by the research works. History of state

machine state is also not supported by many literatures. Many research

outcomes provide methods with good modularity and understandability, but

they failed to provide reusability due to the lack of general reusable design

pattern. Our proposed method gives a design pattern and which gives good

understandability, reusability and expandability.

Feature based comparison, given in table 7.5, shows that our method

supports hierarchy and concurrency without spoiling the understandability,

reusability and expandability.

7.7 Conclusion

There are different methods for code generation from UML state chart

diagrams, like, implementation using switch-case statements, state tables and

design patterns. Design pattern approach is widely accepted because of it

supports object oriented design and implementation. Moreover, the design

Chapter 7

170 Department of Computer Science

Table 7.4: E
lem

ent based com
parison w

ith related w
orks

E
lem

ents\ R
eference

[94,2,56,49,55
]

[132,133]
[131]

[89]
[78]

[111]
Proposed
m

ethod

C
ontext C

lass
class

class
subclass

sub class
sub class

class
sub class

C
urrent State

attribute
attribute

attribute
attribute

attribute
attribute

attribute

Sim
ple State

separate class
for each state

defining a single
state class for all

states

separate class for
each state

defining a single
state class for all

states

m
em

ber
functions for
each state

defining a single
state class for

all states

separate class
for each state

state transition process
sw

itch stm
t

sw
itch stm

t
double-dispatch

sw
itch stm

t
sw

itch stm
t

sw
itch stm

t
sw

itch stm
t

sim
ple C

om
posite state

derived class
of abstract
state class

m
em

ber
functions

derived class of
abstract state

class

a class state for
all states

m
em

ber
functions

a tem
plate

class

derived class
of O

rthogonal
State class (no
of regions = 1)

O
rthogonal C

om
posite state

derived class
of abstract
state class

thread

A
 class for all

orthogonal states,
derived from

abstract state

class

X
X

X
derived class
of O

rthogonal
State class

Shallow
 H

istory
attribute

attribute
attribute

attribute
X

X
attribute

D
eep H

istory
X

attribute
attribute

X
attribute

X
attribute

Code generation from state chart models

Cochin University of Science and Technology 171

Table 7.5: F
eature based com

parison w
ith related w

orks

Features\ R
eference

[94, 2, 56, 49,
55]

[132, 133]
[131]

[89]
[78]

[111]
Proposed
M

ethod

H
ierarchy

supported
supported

*supported
supported

supported
supported

supported

C
oncurrency

supported
supported

supported
not supported

not supported
not supported

supported

H
istory

partially
supported

supported
supported

partially
supported

partially
supported

not supported
supported

Expandability
good

bad
bad(no pattern)

good
m

edium
m

edium
good

Sim
plicity

yes
no

neutral
yes

neutral
yes

R
eusability

m
edium

bad(no pattern)
good

U
nderstandability

good
m

edium
m

edium
m

edium
good

m
edium

good

M
odularity

good
m

edium
good

good
good

m
edium

good

Chapter 7

172 Department of Computer Science

pattern approach is easily expandable due to its modular structure. The

use of design pattern in code generation improves the quality of the generated

code.

The design patterns available in the literatures mainly support

hierarchical states in the UML state chart diagrams. The more essential

features like concurrent states and history states are not addressed in those

design patterns.

In this chapter, we introduced a design pattern based implementation of

state machine with hierarchical, concurrent and history states. The design

pattern proposed in the chapter provides modularity, reusability and

understandability. Moreover it keeps the semantics of state hierarchy and

concurrency and history state as well. The code generator presented in the

chapter gives a systematic way of code generation from the UML state chart

diagrams with the help of the proposed design pattern.

Comparison with related works shows that the proposed method of

state chart diagram implementation is a better way to support the important

features like concurrency and history states. Moreover, the qualitative

comparison with the related works shows that our method supports state

concurrency and history without compromising the expandability, reusability

and understandability, whereas other methods compromise the above qualities.

Comparison with other tools shows that our method is more efficient in

terms of the time taken for event processing. The case study and comparison

with other tools reveals that the proposed approach gives less complex code

and promising results.

Cochin University of Science and Technology 173

Chapter 8 CONCLUSION AND CONTRIBUTIONS

8.1 � Overview ... 173�
8.2 � Contributions .. 173�
8.3 � Future Scope .. 178�

8.1 Overview

This thesis focuses on an essential requirement in the Software

industry, the automation of software development process. The automation

will considerably reduce the effort and time required for the software

development. Automatic code generation from the system designs is a major

mile stone to automation in software development. The behaviour of a system

can be designed using UML behavioural models. Many industries like IBM,

Microsoft etc and many researchers are interested in generating code from

UML models [35]. It is evident from the literature that the current

technologies do not provide precise methods for code generation. So the

methods for automatic code generation from UML behavioural models are

addressed in this thesis.

8.2 Contributions

This thesis proposed methods to generate source code automatically

from UML behavioural models. There is no one to one mapping between the

behavioural models and the object oriented programming constructs. So far,

there is no standard method in the literature to convert the UML behavioural

models to source code. In this study, we proposed novel approaches to

Chapter 8

174 Department of Computer Science

automatically generate source code from the important behavioural models

like use-case diagram, sequence diagram, activity diagram and state chart

diagram. These methods will help the software industry to reduce their effort

and time, spend on software development. The contributions of the thesis are

listed as follows.

1. Modularization of Code with UML Use Case Models

Specifying the requirements flawlessly is very essential to save time

and money in software development. In UML Use case diagram

specifies the functional requirements. Moreover, the use cases allows

the modularization of the source code based on the services (use cases)

provided by the software system. The sequence diagram gives the

object interactions to achieve the use case. This thesis proposed a

method to generate Java code from the UML use case diagram

elaborating the scenarios with sequence diagrams. This prototype code

generation helps the software development team to fine tune the

customer requirements thereby reduce the flaws in the later stages of

the software development.

2. Enhancing UML activity models with OCL.

The activity diagram gives the sequence of activities, condition and the

objects involved in the control flow to achieve a use case. The finer

details like, the constraints on activities, initial values for the attributes,

parameters to the activities etc have to be added to the implementation

code by the developer during the software implementation phase. This

thesis proposed a novel approach to enhance UML activity models

with OCL so that the code generated from the activity diagram will

contain these finer details and thereby reduces the rework during the

implementation phase. When we enhance an existing model, it should

be stated and proved theoretically. The possibilities to enhance UML

Conclusion and contributions

Cochin University of Science and Technology 175

activity diagrams with OCL are stated using meta models in this thesis.

The thesis introduced several meta models for enhancing activity

diagram with OCL. This helps in specifying pre/post conditions on

operations and methods, the actual parameters that are passed to the

operations, the initial values of the attributes and the guard conditions.

This gives a strong foundation to improve the information (or details)

given in an activity models and thereby support the code generation

from the activity models.

3. Operational Semantics for OCL enhanced activity model

The formal semantics of a model gives the characteristics and

behaviour of the model. No formal semantics for OCL enhanced

activity diagram was available in the literature. This thesis presented

the formal semantics for OCL enhanced UML activity diagrams. The

structural semantics describes the components in the OCL enhanced

UML activity diagrams and the operational semantics describes the

behaviour of the same.

4. Enhancing UML activity models with object interaction details.

The activity in the UML activity diagram may include interactions

between different objects. These interaction details cannot be modeled

using the activity diagram. We have introduced a new method for

associating the sequence diagram with complex activities which helps

to solve this deficiency. In UML, each diagram is defined independent

of each other. So, we have formally defined the association of activity

diagram with sequence diagram. This formal definition specifies how

the activity and sequence models can be combined and thereby

improving the code generation.

Chapter 8

176 Department of Computer Science

5. Design pattern for UML state chart diagram with hierarchical,

concurrent and history states.

UML state chart diagrams shows the state changes of an event driven

system. The design patterns specify how to implement a state chart

diagram. The available design patterns do not support the concurrent

states and the history states. This thesis proposed a new design pattern

for state machines with hierarchical, concurrent and history states. This

design pattern gives an approach for code generation. Since it is

reusable and expandable, more features can be easily added to the

pattern during the future research work.

6. Automatic code generation process from UML behavioural models.

Code generation is a step by step process. In this thesis, we have

presented methods for Java code generation utilizing the UML use case

models, sequence models, activity models and state chart models.

The static structure of the system can be designed using UML class

diagrams. The UML class diagrams can be directly converted to source code

in any object oriented language. The programming constructs in object

oriented languages allows one to one mapping with each and every element of

the class diagram.

The behaviour of a system can be designed using UML behavioural

models like use case diagram, sequence diagram, activity diagram and state

chart diagram. Unlike the class diagrams, the behavioural models do not have

one to one mapping with the programming constructs. There is no straight

forward approach to convert these models to source code. So, different

researchers follow different methods for code generation from the UML

behavioural models. During the literature survey, we have come across some

shortcomings in the present methods of code generation. One most important

Conclusion and contributions

Cochin University of Science and Technology 177

issue is that we cannot generate complete source code from any one of the

behavioural models. It is required to add additional information in these

diagrams to assist code generation. Chapters 5 and 6 introduced the methods to

enhance the UML activity diagram with OCL and sequence diagram. The

operational semantics for OCL enhanced activity diagrams is also presented in

chapter 5.

The existing code generation methods, as described in the literature

review, have its own advantages and limitations. The diagrams used for

system design depends on the kind of software we develop. The percentage of

code generated in each method varies depends on the features that are

considered for the code generation. The main drawback in the existing

research works is the lack of algorithms for code generation. Moreover, some

features of the diagrams, like concurrent activities, parallel and history states

etc, are not considered for code generation in these methods. These features

are explored in this research work to generate more lines of code than the

existing methods. The code generation from use case and sequence diagrams

helps the Business Analyst to generate system prototype and thereby fine tune

the user requirements. The chapters 4, 5 and 6 of this thesis presented

algorithms for code generation from use case diagram, sequence diagram and

activity diagram.

In the case of UML state chart diagrams, few researchers have been

working on the code generation from it. These literatures do not present a

design pattern for UML state chart diagram with hierarchical, concurrent and

history states. The design pattern allows us to generate the source code from

the state chart diagrams. This thesis presented a design pattern for the UML

state chart diagrams which contains hierarchical, concurrent and history states,

in chapter 7.

Chapter 8

178 Department of Computer Science

The aim of the study was to establish code generation approaches for

UML behavioural models. The thesis also proposed methods to associate

different system models (use case, activity, sequence and state machine) and

associating constraint specification languages like OCL with these models for

improved code generation. We examined each models separately and

investigated for possible combinations of these models to get better results.

Operation semantics for such combinations were designed and well explained

in the thesis.

These methods provide a novel approach for automatic code generation

from the UML behavioural models. It gives guidelines to the CASE tool

developers on how to use UML behavioural models for code generation. It

will, in turn, be very much useful for the software industry to handle the

complexity of the software systems. These approaches will have their

reflections in all phases of the software development, till the maintenance

phase.

8.3 Future Scope

In the present study, the code generation from the UML Activity

Diagrams got improved with the help of OCL. It helps to add more

implementation specific details in the activity models. We would like to extend

this work to other behavioural models like sequence diagram and state chart

diagram.ie, improving the code generation from the sequence and state chart

diagrams by enhancing them with the OCL statements.

References

Cochin University of Science and Technology 179

REFERNENCES

[1] A.Jakimi, M Elkoutbi, “Automatic Code Generation From UML State

chart”, International Journal of Engineering and Technology, vol. 1,

no.2, June 2009, pp. 165-168

[2] Ali, Jauhar, and Jiro Tanaka, "Converting statecharts into Java

code", 5th International Conference on Integrated Design and Process

Technology (IDPT’99), Texas, USA, May, 17, 1999.

[3] Alvarez, María Luz, et al, "A Methodological Approach to Model-

Driven Design and Development of Automation Systems." IEEE

Transactions on Automation Science and Engineering, vol. 15, no.1,

June 16 2016, pp. 67-79.

[4] Asma Charfi, et.al, “Does Code Generation Promot or Prevent

Optimizations?”, 13th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed

Computing (ISORC), 5-6 May 2010. pp. 75 – 79.

[5] B. P. Douglass, “Real Time UML – Developing Efficient Objects for

Embedded Systems”, Massachusetts: Addison-Wesley, 1998.

[6] Barnett, J., et al. "State chart XML (SCXML) state machine notation

for control abstraction. W3C Recommendation." (2015).

[7] Beckert, Bernhard, Uwe Keller, and Peter H. Schmitt, "Translating the

Object Constraint Language into first-order predicate logic", in the

Proceedings of the Second Verification Workshop: VERIFY'02,

Copenhagen, Denmark, July 25--26, 2002, S. Autexier and H. Mantel,

Eds. DIKU technical reports, vol. 02, no. 07, July 2002, pp. 113--123.

[8] Beierlein, Thomas, Dominik Fröhlich, and Bernd Steinbach, "Model-

driven compilation of UML-models for reconfigurable architectures",

References

180 Department of Computer Science

2nd RTAS Workshop on Model-Driven Embedded Systems

(MoDES’04), Toronto, Canada, May 25-28, 2004.

[9] Bendraou, Reda, et al, "A comparison of six uml-based languages for

software process modeling", IEEE Transactions on Software

Engineering, vol 36 no.5 pp. 662-675, September 2010.

[10] Benjamin Davison, Tom Ruckle, et. al, “Automated Code

Generators”, Department of Computer Science, University of

Minnesota, 2006.

[11] Bichler, Lutz, "A flexible code generator for MOF-based modeling

languages", 2nd OOPSLA Workshop on Generative Techniques in the

context of Model Driven Architecture. October, 2003.

[12] Bruegge, Bernd, and Allen H. Dutoit, “Object-Oriented Software

Engineering Using UML, Patterns and Java”, Prentice Hall, Munich,

Germany, 2004.

[13] Cabot, Jordi, and Martin Gogolla, "Object constraint language (OCL):

a definitive guide", Formal methods for model-driven engineering.

Springer Berlin Heidelberg, June 18-23, 2012, pp. 58-90.

[14] Caplinskas, Albertas, and Johann Eder, eds, “Advances in Databases

and Information Systems”, 5th East European Conference, ADBIS

2001, Vilnius, Lithuania September 25-28, 2001 Proceedings. Vol.

2151. Springer, 2003.

[15] Charfi, Asma, Chokri Mraidha, and Pierre Boulet, "An Optimized

Compilation of UML State Machines", IEEE 15th International

Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing. IEEE, 11-13 April 2012.

[16] Chiorean D., Petrascu V., Petrascu D, “How My Favorite Tool

Supporting OCL Must Look Like”, in the Proceedings of the 8th Inter.

Work. on OCL Concepts and Tools (OCL’08) at MoDELS, 2008.

References

Cochin University of Science and Technology 181

[17] Chiorean, D., Bortes¸, M., Corut¸iu, D, “Proposals for a Widespread

Use of OCL”, in: the proceedings of the MoDELS’05 Conference

Workshop on Tool Support for OCL and Related Formalisms - Needs

and Trends, Montego Bay, Jamaica October 4, 2005.

[18] Chitra, M. T., and Elizabeth Sherly, "Refactoring sequence diagrams

for code generation in UML models", Advances in Computing,

Communications and Informatics (ICACCI, 2014 International

Conference on. IEEE, September 24-27, 2014.

[19] Correa, Alexandre, and Cláudia Werner, "Refactoring object

constraint language specifications", Software & Systems Modeling,

vol. 6,. no.2, June 2007, pp. 113-138.

[20] Cristian Georgescu, “Code Generation Templates Using XML and

XSL”, C/C++ Users Journal - Mixed-language programming, ACM,

vol. 20 no. 1, January 2002, pp. 6-19.

[21] Cyprian F. Ngolah and Yingxu Wang, “Exploring Java Code

Generation Based on Formal Specifications in RTPA”, Canadian

Conference on Electrical and Computer Engineering vol. IV, 2004, pp.

1533-36.

[22] D. Kundu, D. Samanta, and R. Mall, “Automatic code generation from

unified modelling language sequence diagrams”, IET Software , vol.7

, no. 1, pp. 12-28, February 2013.

[23] Dang, Duc-Hanh, and Martin Gogolla, "An OCL-Based Framework

for Model Transformations", VNU Journal of Science: Computer

Science and Communication Engineering, vol. 32, no.1, March 2016.

[24] Dang, Duc-Hanh, Anh-Hoang Truong, and Martin Gogolla,

"Checking the Conformance between Models Based on Scenario

Synchronization", J. UCS vol. 16, no. 17 2010: pp. 2293-2312.

References

182 Department of Computer Science

[25] Daw, Zamira, and Rance Cleaveland, "An extensible formal semantics

for UML activity diagrams", arXiv preprint arXiv:1604.02386, April

2016.

[26] E. Dominguez et.al, “A Systematic review of code generation

proposals from state machine specifications”, Journal of Information

and Software Technology, vol. 54, no. 10, October 2012, pp. 1045-

1066..

[27] E. Dominguez et.al. “A Systematic review of code generation

proposals from state machine specifications”, Journal of Information

and Software Technology, vol. 54, no.10, October 2012 pp 1045-

1066.

[28] Eikermann, Robert & Hölldobler, Katrin & Roth, Alexander &

Rumpe, Bernhard, "Reuse and Customization for Code Generators:

Synergy by Transformations and Templates", 6th International

Conference, MODELSWARD 2018, Funchal, Madeira, Portugal,

January 22-24, 2018.,pp. 34-55

[29] Eivind Bjoraa, Torgeir Myhre, Espen Westlye Straapa, “Generating

Java Skeleton From XMI”, Open Distributed Systems, Paper

presented on Open Distributed Systems, Agder University College,

2000.

[30] EL B. Omar, B. Brahim and G. Taoufiq, “Automatic code generation

by model transformation from sequence diagram of systems internal

behavior”, International Conference on Information Technology and

Communication Systems, vol. 1, no. 2, 2012.

[31] Eshuis, Rik, and Roel Wieringa, "A formal semantics for UML

Activity Diagrams-Formalising workflow models”, Centre for

Telematics and Information Technology (CTIT), CTIT Technical

Report Series, vol.1, no. 4, February 2001, p. 44.

References

Cochin University of Science and Technology 183

[32] Flake, S, “Enhancing the Message Concept of the Object Constraint

Language”, In SEKE vol. 4, June 2004, pp. 161-166.

[33] France, Robert B., et al, "Model-driven development using UML 2.0:

promises and pitfalls", Computer, vol. 39, no. 2, Feb. 2006, pp. 59-66.

[34] G. Booch, J. Rumbaugh, and I. Jacobson. “The Unified Modelling

Language User Guide” Addison-Wesley Object Technology Series,

January 1999.

[35] G.K.A. DIAS, "Evolvement of Computer Aided Software Engineering

(CASE) Tools: A User Experience", International Journal of

Computer Science and Software Engineering (IJCSSE), Volume 6,

Issue 3, March 2017, ISSN (Online): 2409-4285 pp. 55-60

[36] Gall, Dariusz & Walkowiak, Anita, "An Approach to Semantics for

UML Activities", Advances in Intelligent Systems and Computing ·

September 2018, pp. 252-262.

[37] Gamma, Erich, “Design patterns: elements of reusable object-oriented

software”, Pearson Education India, Edition. 1, November 2015.

[38] Gomaa, Hassan, and Erika Mir Olimpiew, "The role of use cases in

requirements and analysis modeling", in the proceedings of the 2nd

International Workshop on Use Case Modeling (WUsCaM-05): Use

Cases in Model-Driven Software Engineering, Montego Bay, Jamaica,

October 2-7 2005.

[39] Gonzalez, Ariel & Luna, Carlos & Cuello, Roque & Pérez, Marcela &

Daniele, Marcela, "Towards an automatic model transformation

mechanism from UML state machines to DEVS models", CLEI

electronic journal [online], vol.18, no.2, August 2015, pp.4-4.

[40] Gotti, Sara, and Samir Mbarki, "UML executable: A comparative

study of UML compilers and interpreters", 2016 International

Conference on Information Technology for Organizations

References

184 Department of Computer Science

Development (IT4OD), USMBA University, Fez, Morocco, March 30

- April 1st, 2016. IEEE, 2016.

[41] Hamie, A, “Translating the object constraint language into the java

modelling language”, in Proceedings of the 2004 ACM symposium on

Applied computing, Nicosia, Cyprus, March 14 - 17, 2004, pp. 1531-

1535.

[42] Hamie, A., Howse, J., & Kent, S, “Interpreting the object constraint

language”, in the proceedings of the 5th Asia-Pacific Software

Engineering Conference (APSEC '98), Taipei, Taiwan, ROC,

December 2-4 1998, IEEE Computer Society 1998, pp. 288-295.

[43] Harel, David, and Amnon Naamad, "The STATEMATE semantics of

statecharts", ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 5 no.4, October 1996, pp. 293-333.

[44] Harel, David, and Orna Kupferman, "On object systems and

behavioral inheritance", in IEEE Transactions on Software

Engineering, vol. 28, no. 9, September 2002, pp. 889-903.

[45] Harrand, Nicolas, et al, "ThingML: a language and code generation

framework for heterogeneous targets", in the proceedings of the

ACM/IEEE 19th International Conference on Model Driven

Engineering Languages and Systems, Saint-malo, France, October 02

- 07, 2016, pp. 125-135.

[46] Hitz, Martin, and Gerti Kappel, "Developing with UML – Some

Pitfalls and Workarounds.” In: Bézivin J., Muller PA. (eds) The

Unified Modeling Language. «UML»’98: Beyond the Notation. UML

1998, Springer, Berlin, Heidelberg 1998, Lecture Notes in Computer

Science, vol. 1618,

[47] Hussmann, Heinrich, and Steffen Zschaler, "The object constraint

language for UML 2.0–overview and assessment", Upgrade

References

Cochin University of Science and Technology 185

Journal, vol.5, no.2, February, 2004.

[48] I. Jacobson, . Rumbaugh, and G. Booch, “The Unified Modelling

Language Reference Manual”, Addison-Wesley, 1999.

[49] Iftikhar Azim Niaz, “Automatic Code Generation From UML Class

and State chart Diagrams”, Thesis Report, University of Tsukuba,

Japan, 2005.

[50] I-Logix Inc. Rhapsody. Accessed: Mar. 2010. [Online].

Available:http://www.ilogix.com

[51] Imran Sarwar Bajwa, M. Imran Siddique, M. Abbas Choudhary, ”Rule

based Production Systems for Automatic Code Generation in Java”,

Digital Information Management, 1st International Conference,

Bangalore, India, December 06-08, 2006, pp.300 – 305.

[52] J Cabot et. Al, “Verification of UML/OCL Class Diagrams using

Constraint Programming”, Proceedings of the IEEE International

Conference on Software Testing Verification and Validation

Workshop, ICSTW’08, Lillihammer, Norway, 9-11 April, 2008.

[53] J Kochler, R Hauser, S Sendall, M Wahler, “Declarative techniques

for model-driven business process integration”, IBM Systems Journal,

Volume 44, No 1, pp. 47-65, 2005.

[54] J. Ali, “Using Java Enums to implement Concurrent-Hierarchical

State Machines”, Journal of Software Engineering, vol. 4, no. 3,

October, 2010, pp. 215-230

[55] J. Ali, and J. Tanaka, “An Object Oriented Approach to Generate

Executable Code from OMT-Based Dynamic Model”, Journal of

Integrated Design and Process Science, vol. 2, no. 4, 1998, pp. 65-77.

[56] J. Ali, and J. Tanaka, “Implementing the Dynamic Behavior

Represented as Multiple State Diagrams and Activity Diagrams”,

References

186 Department of Computer Science

Journal of Computer Science & Information Management (JCSIM),

vol. 2, no. 1, 2001, pp. 24-36.

[57] J. Breti, “State Machine Code Generation in Python”, document

version 1.0.1, Gnosis Version, Canada, 2007.

[58] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Software

Development Process”, Addison-Wesley, 1999.

[59] Jacobson, Ivar, “Object-oriented software engineering: a use case

driven approach”, Pearson Education India, 1993.

[60] Jakimi, A., El Koutbi, M, “An object-oriented approach to UML

scenarios engineering and code generation”, International Journal of

Computer Theory Engineering, vol. 1, no.1, 2009, pp. 35–41.

[61] James Rumbaugh, Ivar Jacobson, Grady Booch, “Object-Oriented

Analysis and Design with Applications, Third Edition ”, Addison-

Wesley, 2007.

[62] James Rumbaugh, Ivar Jacobson, Grady Booch, “The Unified

Modeling Language Reference Manual”, Addison-Wesley, 1999.

[63] Jiang, Ke, Lei Zhang, and Shigeru Miyake, "An executable UML with

OCL-based action semantics language", 14th Asia-Pacific Software

Engineering Conference (APSEC'07), Aichi, December 04 – 07, 2007,

pp. 302-309.

[64] Jon Siegel, “Introduction to OMG’s Model Driven Architecture”,

Object Management Group, 2004.

[65] Jurack, Stefan, et al. "Sufficient criteria for consistent behavior

modeling with refined activity diagrams", Model Driven Engineering

Languages and Systems, LNCS vol. 5301, 2008, pp. 341-355.

[66] Kamalrudin, Massila, John Hosking, and John Grundy, "Improving

requirements quality using essential use case interaction patterns", in

the Proceedings of the 33rd International Conference on Software

References

Cochin University of Science and Technology 187

Engineering. ACM, Waikiki, Honolulu, HI, USA, May 21 - 28, 2011,

pp. 531-540.

[67] Kevin Lano, “The UML-RSDS manual”, Technical report,

Department of Informatics, King’s College London, May 2014.

[68] Kleppe, Anneke, Jos Warmer, and Steve Cook, "Informal formality?

the Object Constraint Language and its application in the UML

metamodel", International Conference on the Unified Modeling

Language. Springer Berlin Heidelberg, June 3-4, 1998.

[69] Knieke, Christoph, et al, "Defining domain specific operational

semantics for activity diagrams", Technical Report, Institut für

Informatik, Technische Universität Clausthal, Zellerfeld, Germany,

vol.12, no.04, December 2012.

[70] Kurt T Rudhal, Sally E Goldin, “Adaptive multi-language code

generation using YAMDAT”, Proceedings of ECTI-CON 2008,

Proceedings of the 5th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and

Information Technology, 2008.Volume 1, May 2008, pp. 181 – 184 .

[71] Kyas, Marcel, and Frank S. de Boer, "On message specifications in

OCL", Electronic Notes in Theoretical Computer Science vol. 101,

November 2004, pp. 73-93, Available: 10.1016/j.entcs.2004.02.017.

[72] Lano, Kevin, "A compositional semantics of UML-RSDS." Software

and Systems Modeling, vol. 8 no.1 February 2009, pp. 85-116.

[73] Lano, Kevin, and Shekoufeh Kolahdouz-Rahimi, "Model-

transformation design patterns." IEEE Transactions on Software

Engineering, vol. 40, no.12, 2014, pp. 1224-1259.

[74] Lano, Kevin, and Shekoufeh Kolahdouz-Rahimi, "Specification and

verification of model transformations using UML-

RSDS" International Conference on Integrated Formal Methods,

References

188 Department of Computer Science

Nancy, France, 11 - 14 October 2010, Lecture Notes in Computer

Science, vol. 6396. Springer, Berlin, Heidelberg.

[75] Lethbridge, Timothy Christian, and Robert Laganiere, Object-oriented

software engineering. New York: McGraw-Hill, 2005.

[76] Li, Xiaoshan, Zhiming Liu, and He Jifeng, "A formal semantics of

UML sequence diagram", 2004 Australian Software Engineering

Conference. Proceedings, Melbourne, Victoria, Australia, 2004, pp.

168-177.

[77] Ljubica Lazareviae, Dragan Miliaev, “Finite State Machine Automatic

Code Generation”, IASTED conference, Austria, 2000.

[78] M. Samek, “Practical Statecharts in C/C++, Quantum Programming

for Embedded Systems”, CMP Books, 2002.

[79] M.H Aabidi et.al. “An Object Oriented Approach to generate Java

code from hierarchical- concurrent and history states”, International

Journal of Information and Network Security (IJINS), vol-2, no. 10,

December 2013, pp 429-440.

[80] Madhusudhan Govindaraju, “XML Schemas Based Flexible

Distributed Code generation Framework”, IEEE International

Conference on Web Services (ICWS 2007), Salt Lake City, UT, 2007,

pp. 1212-1213. doi: 10.1109/ICWS.2007.199.

[81] Mage, Kjetil. "A Pratical Application of the Object Constraint

Language OCL", 2002.

[82] Maryam Jamal, Nazir Ahmad Zafar, "Formal Semantics of Executable

Node and Activity Group of UML 2.5 Activity Diagram",

International Conference on Communication Technologies

(ComTech), Rawalpindi, 19-21 April 2017, pp. 174-179

References

Cochin University of Science and Technology 189

[83] Mathupayas Thongmak, Pornsiri Muenchaisri, “Design of Rules for

Transforming UML Sequence Diagrams into Java code”, Ninth Asia-

Pacific Software Engineering Conference, 2002., Gold Coast,

Queensland, Australia, 2002, pp. 485-494.

[84] Maylawati, Dian & Darmalaksana, Wahyudin & Ramdhani,

Muhammad, "Systematic Design of Expert System Using Unified

Modelling Language", IOP Conference Series: Materials Science and

Engineering, vol. 288, January 2018, pp. 1-7

[85] Maylawati, Dian & Ramdhani, Muhammad & Syakur Amin, Abdusy,

"Tracing the Linkage of Several Unified Modelling Language

Diagrams in Software Modelling Based on Best Practices",

International Journal of Engineering and Technology, UAE, vol. 7,

2018, pp. 776-780.

[86] Mehjabin Pathan, Aakash Patkar, Sayali Surve, "Automatic Partial

Code Generation Using Class and Sequence Diagrams", International

Journal on Recent and Innovation Trends in Computing and

Communication, Volume: 4 Issue: 3 ISSN: 2321-8169, March 2016,

pp-365 - 368

[87] Mellor, J. Stephen, Balcer, M., and Foreword By-Jacoboson, I,

“Executable UML: A foundation for model-driven architectures”,

Addison-Wesley Longman Publishing Co., Inc.., 2002.

[88] Milicev, Dragan. "Automatic model transformations using extended

UML object diagrams in modeling environments", in IEEE

Transactions on Software Engineering, vol. 28, no. 4, pp. 413-431,

April 2002..

[89] Miro Samek, “Practical UML Statecharts in C/C++: Event-Driven

Programming for Embedded Systems", Newnes, Newton, MA, 2008.

References

190 Department of Computer Science

[90] Muhammad Usman, Aamer Nadeem, Tai-hoon Kim, “UJECTOR: A

tool for Executable Code Generation from UML Models”, 2008

Advanced Software Engineering and Its Applications, Hainan Island,

2008, pp. 165-170.

[91] N. Debnath, A. Funes, A. Dasso, G. Montejano, D. Riesco and R.

Uzal, "Integrating OCL expressions into RSL specifications," 2007

IEEE International Conference on Electro/Information Technology,

Chicago, IL, 2007, pp. 158-162.

[92] N. S. Bhullar, B. Chhabra and A. Verma, "Exploration of UML

diagrams based code generation methods," 2016 International

Conference on Inventive Computation Technologies (ICICT),

Coimbatore, 2016, pp. 1-6.

[93] Nanthaamornphong, Aziz & Leatongkam, Anawat, "Extended

ForUML for Automatic Generation of UML Sequence Diagrams from

Object-Oriented Fortran", Scientific Programming, Febraury 2019, pp.

1-22.

[94] Niaz, Iftikhar Azim, and Jiro Tanaka, "An object-oriented approach to

generate Java code from UML statecharts." International Journal of

Computer & Information Science, vol. 6, no.2, 2005, pp. 315-321.

[95] Nick Fargo, "State.js", MIT, 2013. Last Accessed: January 2019,

"http://statejs.org/docs/"

[96] Object Management Group Standard, “Action Language For

FoundationalUML - ALF,” Available:

http://www.omg.org/spec/ALF/1.0/ Beta2 [Accessed: April 15,

2013].

[97] “MDA Guide Version rev 2.0”, OMG Document ormsc/2014-06-01,

OMG, June 2014. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.

Last accessed on 11-04-2019.

References

Cochin University of Science and Technology 191

[98] “Object Constraint Language”, OMG Available Specification, Version

2.4, February 2014.

[99] OMG Unified Modeling Language (OMG UML), Infrastructure,

V2.5, [Online]. Available: http://www.omg.org/spec/UML. Dec 2017

[100] Paetsch, Frauke, Armin Eberlein, and Frank Maurer, "Requirements

engineering and agile software development." WET ICE 2003,

Proceedings, Twelfth IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, 2003.,

Linz, Austria, 2003, pp. 308-313.

[101] Pandey, R. K, "Object constraint language (OCL): past, present and

future." ACM SIGSOFT Software Engineering Notes, vol. 36, no. 1,

2011, pp. 1-4.

[102] Parada, A.G., Siegert, E., de Brisolara, L.B.: ‘Generating Java code

from UML class and sequence diagrams’. Proc. of the 2011 Brazilian

Symp. on Computing System Engineering, 2011, pp. 99–101

[103] Philip Samuel and R. Mall, “Slicing-based Test Case Generation from

UML Activity Diagrams”, ACM SIGSOFT Software Engineering

Notes, vol.34, no. 4, 2009, pp. 1-14.

[104] Philip Samuel, Rajib Mall, Pratyush Kanth, “Automatic test case

generation from UML communication diagrams”, Elsevier, Science

Direct, Journal of Information and Software Technology, vol. 49, no.

2, pp. 158–171, February 2007.

[105] Philip Samuel, Sunitha E V, “Automatic Code Generation using

Model Driven Architecture”, Proceedings of 2009 IEEE International

Advance Computing Conference (IACC 2009), Patiala, India, March

2009, pp. 2339 – 2344,.

[106] Philip Samuel, Sunitha E.V, “Document Type Definition for the XMI

Representation of UML2.0 Activity Diagram”, International Journal

References

192 Department of Computer Science

of Recent Trends in Engineering, vol. 1, no. 1, May 2009, pp. 206 –

210.

[107] Q.Long, Z.Liu et.al., “Consistent Code Generation from UML

Models”, 2005 Australian Software Engineering Conference,

Brisbane, Queensland, Australia, 2005, pp. 23-30. doi:

10.1109/ASWEC.2005.17.

[108] Roger S Pressman, “Software Engineering: A Practitioner's

Approach”, 7th edition, McGraw-Hill, 2014.

[109] Ruben Campos, “Model Based Programming: Executable UML with

Sequence Diagrams”, CS Thesis, California State University, Los

Angeles, 2007

[110] S Sengupta et. al, “Automated Translation of behavioral models using

OCL and XML”, T ENCON 2005 - 2005 IEEE Region 10

Conference, Melbourne, Qld., 2005, pp. 1-6.

[111] S. Heinzmann, “Yet another hierarchical state machine”, Association

of C & C++ Users, Overload Journal no. 64, December 2004, pp. 14–

21.

[112] S. Maoz, J. O. Ringert, and B. Rumpe. “An Operational Semantics for

Activity Diagrams using SMV”, Technical Report AIB, 2011-07,

RWTH Aachen University, Germany, January 2011.

[113] Sami Beydeda , Volker Gruhn, “Model-Driven Software

Development”, Springer-Verlag New York, Inc., Secaucus, NJ, 2005.

[114] Scott W. Amble, “Agile Modeling: A Brief Overview”, Presented at

the Workshop of the pUMLGroup held together with the «UML»2001

on Practical UML-Based RigorousDevelopment Methods -

Countering or Integrating the eXtremists, Toronto, Canada, 01,

October, 2001.

References

Cochin University of Science and Technology 193

[115] Sendall, Shane, and Wojtek Kozaczynski, “Model transformation the

heart and soul of model-driven software development”, in IEEE

Software, vol. 20, no. 5, pp. 42-45, Sept.-Oct. 2003.

[116] Smialek, Michal, Norbert Jarzebowski, and Wiktor Nowakowski,

"Translation of use case scenarios to Java code", Computer

Science, vol. 13, no. 4, 2012, pp. 35-52.

[117] Solomencevs, Arturs, "Comparing Transformation Possibilities of

Topological Functioning Model and BPMN in the Context of Model

Driven Architecture", Applied Computer Systems, vol.19, no. 1, May

2016, pp. 15-24.

[118] Sunitha E.V, Philip Samuel, “Automatic code generation using

unified modeling language activity and sequence models”, in IET

Software, vol. 10, no. 6, December 2016, pp. 164-172.

[119] Sunitha E.V, Philip Samuel, “Enhancing UML Activity Diagrams

using OCL”, Proceedings of the 2013 IEEE International Conference

on Computational Intelligence and Computing Research, Enathi,

2013, pp. 1-6.

[120] Sunitha E.V, Philip Samuel, “Translation of behavioral models to

source code”, 2012 12th International Conference on Intelligent

Systems Design and Applications (ISDA), CUSAT, Kochi, India,

November 2012, pp 598-603.

[121] Sunitha, E. V., and Philip Samuel, "Object Oriented Method to

Implement the Hierarchical and Concurrent States in UML State Chart

Diagrams" Software Engineering Research, Management and

Applications. Springer International Publishing, May 2016, pp. 133-

149.

[122] Syriani, Eugene, and Hüseyin Ergin, "Operational semantics of UML

activity diagram: An application in project management", 2012

References

194 Department of Computer Science

Second IEEE International Workshop on Model-Driven Requirements

Engineering (MoDRE), Chicago, IL, 2012, pp. 1-8.

[123] T Stahl, M Voelter, K Czarnecki, “Model-Driven Software

Development: Technology, Engineering, Management”, John Wiley &

Sons, July 2006 , ISBN:0470025700

[124] Tamas Vajk and Gergely Mezei, “Incremental OCL to C# Code

Generation”, 2010 International Joint Conference on Computational

Cybernetics and Technical Informatics, Timisoara, 2010, pp. 277-280.

[125] TC Lethbridge, R Laganiere, "Object-Oriented Software Engineering

Practical software development using UML and Java", Tata McGraw-

Hill Education, 2004.

[126] Tim Schattkowsky, Wolfgang Muller, “Transformation of UML State

Machines for Direct Execution”, 2005 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC'05), Dallas, TX,

USA, 2005, pp. 117-124.

[127] Tomas G Moreira, et. Al, “Automatic code generation for embedded

systems: from UML specifications to VHDL Code”, 2010 8th IEEE

International Conference on Industrial Informatics, Osaka, 2010, pp.

1085-1090.

[128] U. A. Nickel, J. Niere, R. P. Wadsack, A. Zundorf, “Roundtrip

Engineering with FUJABA”, in the proceedings of 2nd Workshop on

Software-Engineering, Bad Honnef, Germany, 2000.

[129] “Object Management Group Standard, Semantics of a Foundational

Subset for Executable UML Models”, Version 1.2.1., 2013. [Online].

Available: http://www.omg.org/spec/FUML/

[130] Usman, M., Nadeem, A. “Automatic generation of Java code from

UML diagrams using UJECTOR”, International Journal of Software

Engineering and its Applications, vol. 3, no. 2, May 2009, pp. 21–38.

References

Cochin University of Science and Technology 195

[131] V. Spinke, “An object-oriented implementation of concurrent and

hierarchical state machines”, Journal of Information and Software

Technology, vol. 55, no. 10, October 2013, pp. 1726-1740.

[132] Van Cam Pham, Ansgar Radermacher, Sebastien Gerard and Shuai Li,

"Complete Code Generation from UML State Machine", 5th

International Conference on Model-Driven Engineering and Software

Development (MODELSWARD 2017), France, 2017, pp. 208-219

[133] Van Cam Pham, Ansgar Radermacher, Sébastien Gérard, "From UML

State Machines to code and back again!", in the Proceedings of the

Conference on Computer Science and Information Systems ACSIS,

France, vol. 9, 2016, pp. 283–290.

[134] Vaziri, M., & Jackson, D, “Some Shortcomings of OCL, the Object

Constraint Language of UML”, TOOLS '00 Proceedings of the

Technology of Object-Oriented Languages and Systems (TOOLS

34'00), vol. 34, July 2000, pp. 555-562.

[135] Wagner, Flávio R., and Luigi Carro, "Embedded SW Design Space

Exploration and Automation using UML-Based Tools", Embedded

System Design: Topics, Techniques and Trends, Springer US, 2007.

437-440.

[136] Wang, Jiacun, "Finite�State Machines", in book Real-Time Embedded

Systems, Wiley Publications, July 2017, pp. 179-195

[137] Wang, Jiacun, ed, “Handbook of Finite State Based Models and

Applications”, First Edition, CRC Press, November 2016.

[138] Warmer, Jos B., and Anneke G. Kleppe, "The Object Constraint

Language: Precise Modeling With Uml, Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA, 1999

References

196 Department of Computer Science

[139] William Harrison, Charles Barton, Mukund Raghavachari, “Mapping

UML designs to Java”, in the proceedings of the 15th ACM

SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, Minneapolis, Minnesota, USA , vol. 35,

no. 10, Oct 2000, pp: 178 - 187.

[140] Wolfgang, Pree, “Design patterns for object-oriented software

development, Reading, Mass”, Addison-Wesley, 1994.

[141] X Li, Z Liu, “Prototyping System Requirements Model”, Journal of

Electronic Notes in Theoretical Computer Science (ENTCS), vol. 207,

April 10, 2008

[142] Yilong Yang, Xiaoshan Li, Zhiming Liu, Wei Ke, Quan Zu, and

Xiaohong Chen, "Automated Prototype Generation from Formal

Requirements Model",Computing Research Repository (CoRR) in

arXiv, August 2018, pp. 1-23

[143] Yin, Ling, Jing Liu, and Zuohua Ding, "Modeling and Prototyping

Business Processes in AutoPA," Theoretical Aspects of Software

Engineering (TASE), 2011 Fifth International Conference on

Theoretical Aspects of Software Engineering, Xi'an, Shaanxi, 2011,

pp. 169-176.

[144] Federico CiccozziMälardalen University, Västerås, Sweden “Unicomp: a

semantics-aware model compiler for optimised predictable software”,

Proceedings of the 40th International Conference on Software

Engineering: New Ideas and Emerging Results, Gothenburg, Sweden —

May 27 - June 03, 2018, pp. 41-44

[145] Andrén, Filip, Thomas Strasser, and Wolfgang Kastner. "Engineering

smart grids: Applying model-driven development from use case design

to deployment", Energies, vol. 10, no. 3, 2017, pp. 374.

References

Cochin University of Science and Technology 197

[146] Cunha, Alcino, Ana Garis, and Daniel Riesco. "Translating between

Alloy specifications and UML class diagrams annotated with

OCL." Software & Systems Modeling, vol. 14, no. 1, 2015, pp. 5-25.

[147] Rumpe B. “Agile Modeling with UML: Code Generation, Testing,

Refactoring”, Springer International Publishing, Germany, 26 April

2017.

[148] Fouad T, Mohamed B, “Transforming XML Schema Constraining

Facets And XML Queries To Object Constraint Language (OCL)”,

Journal of Theoretical & Applied Information Technology, vol. 87, no.

3, 31 May 2016.

[149] Pauker F, Wolny S, Fallah SM, Wimmer M. “UML2OPC-

UATransforming UML Class Diagrams to OPC UA Information

Models”, Procedia CIRP, vol. 67, 1 Jan 2018, pp. 128-33.

[150] Perera, Nipuni. "Automatic conversion of activity diagrams into flexible

smart home apps." PhD diss., Auckland University of Technology, 2018.

List of Publications

Cochin University of Science and Technology 199

LIST OF PUBLICATIONS

Journal Publication:

1. Sunitha E.V, Philip Samuel, "Automatic code generation using

unified modeling language activity and sequence models." IET

Software, IEEE Xplore Digital Library, vol.10, no. 6, 2016, pp.

164-172.

2. Sunitha E.V, Philip Samuel, “Object constraint language for

code generation from activity models”, Journal of Information

and Software Technology, Elsevier, vol. 103, 2018, pp. 92–111.

3. Sunitha E.V, Philip Samuel,” Automatic Code Generation From

UML State Chart Diagrams”, IEEE Access Journal, IEEE

Xplore Digital Library, vol. 7, 2019, pp. 8591 - 8608..

4. Sunitha E.V, Philip Samuel, “Translation of Behavioral Models

to Java Code and Enhance With State Charts “, International

Journal of Computer Information Systems and Industrial

Management Applications. Dynamic Publishers, Inc., USA, vol.

6, 2014, pp. 294 - 304.

5. Sunitha E.V, Philip Samuel, “Code generation from Use case

and sequence diagrams”, (communicated).

List of Publications

200 Department of Computer Science

Conference Publication:

1. Sunitha E.V, Philip Samuel, "Object Oriented Method to

Implement the Hierarchical and Concurrent States in UML

State Chart Diagrams." Software Engineering Research,

Management and Applications. Springer, 2016. pp.133-149.

2. Sunitha E.V, Philip Samuel, “Enhancing UML Activity Diagrams

using OCL”, IEEE International Conference on Computational

Intelligence and Computing Research (ICCIC), IEEE Xplore

Digital Library, Tamilnadu. 2013.

3. Sunitha E.V, Philip Samuel, “Translation of Behavioral Models

to source code”, 12th International Conference on Intelligent

Systems Design and Applications (ISDA) CUSAT, IEEE Xplore

Digital Library, 2012.

Other Publications:

1. Text Book on “Object Oriented Programming – Basic Concepts”,

Sunitha EV, Jyothis Publishers. 2011. ISBN -978-93-5351-261-3

