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Chapter 1 
The breaking of the wave cannot explain the whole Sea 

-Vlamadir Nabokov 



Chapter-1   Introduction 

1 
Phytoplankton dynamics and its influence on optical properties  

1. Introduction 

1.1. Background of the study 

  The marine fisheries sector in India has witnessed a phenomenal 

growth during the last five decades both quantitatively and qualitatively. India 

ranks second in position, contributing about 3.59 million tones of marine 

landings to the world fish production (ICAR 2011; FSI 2012; CMFRI 2013a; 

FAO 2013, 2014a, b). Maximum marine landings were from Gujarat,        

Tamil Nadu, and Kerala contributing 54% to the total marine fish landings of 

the country. Total marine fish landings in Kerala estimated at 5.76 lakh tones 

(CMFRI 2015). The increase in fish production over the years has been the 

result of increased vessel number and availability of large and more efficient 

gear systems, developments in electronic, navigational, and acoustic 

detection equipment, which increased the area of operation of the 

mechanized fishing fleet (Edwin et al., 2014).  

  Advances in satellite-based technologies such as global positioning 

system (GPS) influenced the precision in fishing and Global Maritime 

Distress Safety System (GMDSS) based rescue system facilitated safety for 

fishermen (Edwin et al., 2014). Satellite remote sensing in Indian fisheries 

helped to map of potential fishing zones (PFZ) which helped the fishermen to 

reduce search time and significantly increase catch per unit effort (Solanki et 

al., 2003). Finding schools of fish and productive fishing areas are the main 

cause of fuel consumption in many commercial fisheries. Accurate prediction 

and detection of economically fishable aggregations of fish in                 
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space and time lowers the cost of fishing operations. Remote sensing helps 

management of fisheries at a sustainable level along with guiding fishing 

fleets to increase their catch. Satellites monitor and the data used to predict 

potentially favorable areas of fish aggregation based on remotely detectable 

environmental indicators. These indicators include ocean fronts which 

separate waters of different temperature or colour, upwelling areas, which 

are cooler and more productive than background waters, specific 

temperature ranges preferred by certain fishes (Solanki et al., 2015). The 

recruitment, survival condition, distribution patterns, and migration of fish 

stocks are affected by changes due to short and long-term environmental 

variations. Any use of environmental data for the preparation of 

oceanographic analysis and forecasts in support of fishery operations will 

depend on an adequate understanding of the complex linkage between 

marine environmental and biological processes (Makris et al., 2009). These 

environmental variations frequently observed in satellite-derived patterns of 

ocean temperature and productivity (Longhurst 2010; Chassot et al., 2011). 

  The specific environmental parameters measured from satellite 

remote sensors include –sea surface temperature (SST),                      

surface optical or bio-optical properties (Ocean colour,                            

diffuse attenuation coefficient (Kd), total suspended matter,                 

coloured dissolved organic matter (CDOM), chlorophyll pigments), salinity, 

fronts and gyres, oil pollution, wind and sea state (Klemas2013).          

Satellite data from chlorophyll concentration (Chla) and SST have            
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been used to identify productive fishing areas (i.e. PFZ). The biological 

productivity indicated by photosynthetic pigment of phytoplankton –Chla. 

Gower (1986) reported that Chl a above 0.2 mg m-3 indicated the presence of 

sufficient plankton activity to sustain a viable commercial fishery. 

Examination of fishing grounds on Albacore tuna by using satellite SST and 

ocean colour data showed that the species were high in locations 

corresponding to frontal zones and anti-cyclonic eddies (Zynuddin et al., 

2006). Satellite measurement of spectral reflectance (ocean colour) is an 

effective method for monitoring phytoplankton by its index chlorophyll 

concentration (Schofield et al., 2004).  

  The spectral radiance emerging from the ocean surface measured at 

the top of atmosphere (TOA) by satellite remote sensors. The surface 

radiances converted to reflectances provides the spectral signatures required 

for identifying Chl and other water constituents (Behrenfeld and Falkowski 

1997; Carder et al., 1989). A meticulous calibration and validation approach 

used for producing valid products such as ocean Chla and other constituents 

derived from ocean colour data (Robinson 2004; Schofield et al., 2004; 

Bailey and Werdell 2006). In this study, an approach to understand the 

phytoplankton dynamics affecting the optical properties of coastal waters off 

Kochi, Southeastern Arabian Sea (SEAS), and to validate the satellite 

products on a regional scale carried out. 
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1.2. Classification of ocean waters 

  Morel and Prieur (1977) classified oceanic waters into two basic 

optical types- Case 1 and Case 2 waters. In Case 1 waters, the concentration 

of phytoplankton is high compared to non-living particles and the 

phytoplankton pigments and co-varying detrital material play an important 

role in actual absorption. 

  Jerlov (1976) classified oceanic waters based on the spectral shape of 

the diffuse attenuation coefficient, Kd(z,l), defined as: 

𝐾𝑑 𝑧, 𝑙 = −𝑑[ln 𝐸𝑑  (𝑧, 𝑙)]/ 𝑑𝑧  

where Ed(z, l) is the downwelling irradiance at depth ‗z‘ and wavelength ‗l‘. 

The variability of diffuse attenuation coefficient depends on the inherent 

optical properties of water such as total absorption and backscattering and 

hence considered as a quasi-inherent optical property. Baker and Smith 

(1979) showed that Ed is insensitive to environmental effects except for 

extreme conditions, such as of very large solar zenith angles.  

 The Jerlov's classification of ocean waters is based on water clarity. 

The types are numbered I (clearest), IA, IB, II and III (most turbid) for open 

ocean waters and 1 (clearest) through 9 (most turbid) for coastal waters. The 
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Jerlov types I – III correspond to case 1 waters (Morel & Prieur 1977) and 

type 1-9 correspond to case 2 waters. 

 Mobley (1994) reported that 98% of the world‘s open and coastal 

waters fall into case 1 category. These waters, where major bio-optical 

research was oriented, considered as less complex and phytoplankton 

dominant. Previous studies have developed many models and 

parameterizations to relate optical properties of water (such as absorption 

and backscattering) and remote sensing reflectance (Rrs) and Chl (Prieur 

and Sathyendranath 1981; Gordon and Morel 1983; Gordon et al., 1988; 

Morel 1991). For case 2 waters, these models developed for case1 waters, 

are not applicable. Case 2 waters are highly complex, typically near-shore, 

coastal and estuarine waters. In case 2 waters, significant optical variability is 

caused by human-induced processes (drainage of water from factories and 

industries) and natural process (river runoff). 

1.3. Optical properties of natural waters 

The properties of the air-water interface sea salts, sea spray, 

aerosols) and the optical properties of water column mainly influence the 

amount of light that penetrates to a given depth. Cloud cover, wind speed, 

solar zenith angle and time determines the transmission of solar radiation 

through the air-water interface whereas the                                        
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variability in the angular distribution of incident irradiance and the effect of 

surface waves are the factors modulating the intensity at particular depth. 

  Water has two groups of properties viz. apparent and inherent optical 

properties (Preisendorfer 1976). Apparent optical properties (AOPs) depend 

on both the water‘s composition and the geometrical distribution of the light 

field. They include properties such as reflectance, average angles of incident 

radiation and irradiance attenuation coefficients. Inherent optical properties 

(IOPs) depend solely on the water‘s composition and the optical 

characteristics of each individual constituent and include absorption, 

scattering and attenuation coefficients, index of refraction, and scattering 

phase functions. 

1.3.1. Composition of natural waters 

 Natural waters are considered as highly complex consisting of living 

and non-living matter. Apart from this, organic, inorganic, particulate, and 

dissolved matter is also present. Eventhough seawater contains a range of 

distinct units varying in size from that of large mammals to that of a water 

molecule, the constituents of seawater traditionally divided into ―dissolved‖, 

and ―particulate‖ matter. Dissolved material is everything that passes through 

a ~ 0.2 – 0.4 µm pore sized filter. 

a. Pure seawater and its constituent like various dissolved salts increase 

scattering by about 30%. In visible wavelengths, effect of these constituents 

on absorption is negligible (Mobley 1994). But absorption by these 
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components increases at ultraviolet wavelengths and at very long 

wavelengths (>0.1 mm). 

b. Dissolved Organic Matter (DOM) plays a major role in determining 

underwater light availability in oceans. Major sources of DOM include 

autochthonous primary production and river run-off of terrestrial organic 

matter (allochthonous production). Coloured Dissolved Organic Matter 

(CDOM) is the optically active fraction of DOM. CDOM has a strong 

absorption in the short, Ultra-Violet (UV) wavelength regions. In coastal 

environments, its concentration is usually higher when compared to open 

ocean waters, hence considered as one of the major component controlling 

the amount of underwater light. 

c. Particulate matter consists of living and nonliving organic particles and 

inorganic particles. Living organic particles comprise of phytoplankton, 

zooplankton, viruses and bacteria whereas non-living organic particles 

includes colloids and organic detritus. 

Phytoplankton is microscopic, free floating organisms and is the 

principal primary producers of the oceans. Their size ranges from 0.2 µm to 

2mm. 

Microplankton-20-200 µm 

Macroplankton->200 µm 

Picoplankton-0.2-2µm 

Nanoplankton-2-20 µm 

  The optical properties of most oceanic waters (Case 1)         

determined primarily by Phytoplankton and its co-varying                       

matter. Phytoplankton  contains primary pigments and accessory        

pigment such as Chl, carotenoids etc. that strongly absorbs the                                                                                      
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blue and red light of the visible spectra. Phytoplankton also influences the 

total scattering properties of seawater. Due to their relatively large size, the 

larger phytoplankton species contributes relatively little to backscattering in 

the visible spectrum. The principal phytoplankton taxonomic groups include-  

Class Bacillariophyceae - Diatoms 

Class Pyrrophyceae  - Dinoflagellates 

Class Prymnesiophyceae - Coccolithophores 

Class Chysophyceae  - Silicoflagellates 

Class Euglenophyceae - Euglenoid flagellates  

Class Chlorophyceae  - Green algae 

Class Cyanophyceae  - Blue-green algae  

Class Haptophyceae  - Brown coloured Phytoflagellates 

       (Kennish 2001) 

Zooplankton are small living organisms of animal realm. They have  

only limited mobility. Their sizes range from 10 mm to 5 cm. They     

generally considered feeble in modifying the underwater optics. They usually 

ignored in most watercolour models. This is because of their small 

concentration compared to higher concentrations of phytoplankton            

and bacterioplankton. In some locations, zooplankton populations also    

affect water optical properties. Their large concentration increases              

the scattering (Mobley 1994). The effects of light on zooplankton        

deserves more attention (Fortier et al., 2001; Cottier et al., 2006; Batnes et 

al., 2013) Daase et al., (2008) pointed to the importance of                                                                                                
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light and optical water properties for the behaviours, distributions and life 

histories of the dominant Arctic copepods (Calanus spp. and Metridia longa) 

at the end of the productive season. Trudnowska et al., (2013) observed 

vertical separation of Calanus sp. development and showed that the 

variability in zooplankton distribution and community structure closely related 

to the hydrographic and optical characteristics of the water. 

  Microscopic unicellular organisms with size ranging between 0.2-2μm 

comprise the living bacteria. The free-living heterotrophic bacteria also play a 

major role in scattering and absorbance of light mainly in blue wavelengths 

(Spinrad et al., 1989; Morel and Ahn 1990; Stramski and Kiefer 1991) and in 

oligotrophic waters with low Chl concentrations.  

  Kepner et al., (1998) and Bergh et al., (1989) reported that the 

concentration of virus particles range from 106 to 1015 particles per m3 in 

eutrophic marine waters. Viruses have size ranging between 20-250 nm. 

Viruses control planktonic microorganisms by infecting all members (Proctor 

and Fuhrman 1990). The absorption and scattering by viruses in marine 

waters are doubtful eventhough they form large numbers (Mobley 1994). 

Studies conducted by Balch et al., (2000) reported that there is no possibility 

of contribution by viruses to the back scattering coefficient. They conducted 

laboratory experiments in which four bacterial viruses (bacteriophages) of 

varying sizes measured for their volume scattering functions and suggested 

that viruses, are not a major source of backscattering. 
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  Trace metals, clay minerals, quartz, sand, silt etc are the main 

components of inorganic particles. These particles have wide range of sizes. 

The concentrations of these particles are substantially high in coastal waters 

due to large river discharges, heavy sediment load, and wind driven transport 

of dust particles. These particles found significantly affecting the light 

penetration. Detritus particles are non-living organic particles of various sizes 

formed from the fragments of decayed plants and animals along with their 

excretions. Significant contribution by these particles more in the shorter 

wavelengths and as the wavelength increases it found that the contribution 

decreases in an exponential manner (Kishino et al., 1985; Roesler et al., 

1989). Sub-micron detritus and mineral particles found to be the most 

significant backscatterers in the ocean (Stramski and Kiefer 1991). Lehahn et 

al (2014) developed satellite-based approaches to quantify the impact of 

diverse environmental stresses on the fate of phytoplankton blooms and 

reveled that high level of specific viruses causes mortality of coccolithophore 

cells. 

1.3.2. Optical characteristics of pure sea water -absorption and 

scattering 

Bukata et al., (1995) defined pure water as a chemically pure 

substance comprised of a mixture of several water isotopes of various 

molecular masses. Pure seawater consists of pure water plus various 

dissolved salts that average about 35‰ (35 psu) by weight (Mobley 1994). 
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Absorption by water is weakly dependent on temperature, especially in the 

red and near-infrared region (Pegau and Zaneveld 1993; Hojerslev and 

Trabjerg 1990; Buiteveld et al., 1994). Absorption by water molecules is 

dominant relative to scattering by water at wavelengths larger than 550 nm. 

Water scattering becomes very important at wavelengths smaller than       

500 nm (Buiteveld et al., 1994). 

1.3.3. Phytoplankton community structure 

Marine phytoplankton are considered as important contributors to 

marine food web thereby regulating global carbon fluxes (Falkowski et al., 

1998). In the ocean, many different phytoplankton taxonomic groups existed 

which together determines the primary production. For the better 

understanding of structure and dynamics of marine ecosystems from space 

quantification of phytoplankton biomass and community composition is very 

important.  

Phytoplankton are plant like microscopic organisms that freely float or 

swim in waters (phytoplankton comes from the Greek words phyton=plant 

and plankton=to wander). Phytoplankton is one among the major substances 
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that determine the optical and biological characteristics of open ocean and 

coastal waters. Phytoplankton is diverse in species, shape, size and 

numerical abundance. They constitute the basis for the marine food web. 

Subrahmanyan (1958) studied the phytoplankton abundance along the 

South Eastern Arabian Sea (SEAS) and reported high abundance during the 

southwest monsoon period, with seasonal variation in its composition. 

Studies by Qasim& Reddy (1967), Radhakrishna (1969), Subrahmanyan et 

al., (1975), Rajagopalan et al., (1992), and Habeebrehman et al., (2008) 

reported variability of Chl patterns during monsoon season. During monsoon 

period, the vertical flux of inorganic nutrients triggers phytoplankton 

production and lead to high biological productivity (Ryther et al., 1966; Qasim 

1982). Along the SEAS, intense phytoplankton production found from May–

June to September during the summer monsoon upwelling (Bhattathiri et al., 

1996).  

Tarran et al., (1999), in their study on phytoplankton community 

structure in the Arabian Sea (AS) during and after Southwest (SW) monsoon                                                                                                                                                                                                                                                                            
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has found that during SW monsoon diatoms were of greatest diversity and 

during inter-monsoon coccolithophores were the most diverse phytoplankton. 

They also showed that during both the SW monsoon and inter-monsoon, 

phytoplankton abundance and biomass was dominated by prokaryote taxa 

and Synechococcus spp. were the abundant phytoplankton which formed 

>103 cells L-1. During SW monsoon, the near shore waters are dominated by 

mixed community of diatoms and Synechococcus. 

 Shalapyonok et al., (2001) as part of their study in the Arabian Sea 

during summer southwest and fall northeast monsoon showed that the 

phytoplankton community structure was strongly linked to water-mass 

characteristics and was affected by both intense monsoon related 

environmental forcing and widespread and dynamic mesoscale structures. 

They also showed that, the prokaryotes Prochlorococcus and 

Synechococcus contributed about 50% of phytoplankton carbon biomass 

measured by flow cytometry during both seasons and the changes in 

phytoplankton community composition during the SW monsoon were 

accompanied by characteristic shifts in phytoplankton community structure. 

Roy et al., (2006) studied the spatial variation of phytoplankton 

pigments along the SW coast of India towards the end of upwelling season 

and inferred that the phytoplankton community shifted from a dominant 

picoplankton fraction and Prymnesiophytes to diatom dominated 

microplankton. 
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Thomas et al., (2013) made an attempt to understand the influence of 

upwelling events on the phytoplankton community in the inshore as well as 

shelf waters of SEAS during the upwelling period of the summer monsoon of 

2009. They found that centric diatom Chaetoceros curvisetus and pennate 

diatoms Nitzschia seriata and Pseudo-nitzschia sp. dominated during phase 

1 upwelling and during phase 2, pennate diatoms are replaced by centric 

diatoms. They also reported significant presence of solitary pennate diatoms 

Amphora sp. and Navicula sp. in the waters off Kochi. Further, they showed 

that the proportion of dinoflagellates was comparatively higher and was 

represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis 

spp. 

The dinoflagellate Neoceratium platycorne was reported for the first 

time from the Northeastern Arabian Sea (NEAS) (Padmakumar et al., 2014). 

The species found in the open ocean subsurface waters during late winter 

monsoon period. Banerjee and Prasanna Kumar (2014) studied the role of 

dust deposition in enhancing phytoplankton blooms during winter monsoon in 

the Central Arabian Sea (CAS) by tracking the dust storms using satellite 

imagery. They showed that during winter monsoon, the CAS away from the 

realm of active winter convection supports episodic phytoplankton blooms 

fueled by episodic dust storms that are important in driving the inter-annual 

variability in chlorophyll in a region away from active winter convection. 
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1.3.4. Absorption by phytoplankton (aph) 

  Depending on the phytoplankton species, its cell size and 

physiological state, light energy absorbed by various photosynthetic pigments 

present inside them. The light energy converted to chemical energy through 

the process of photosynthesis. The absorption properties of phytoplankton 

depend on the species and their pigment composition. The three basic types 

of photosynthetic pigments are the chlorophylls, the carotenoids and the 

biliproteins. Chl and carotenoid pigments are present in almost all 

phytoplankton but biliproteins are present in certain blue-green and red 

algae. 

 Chl are the main photosynthetic pigments in plants. Chl pigment is 

present in distinct types as chlorophyll a, b, c and d (Chla, Chlb, Chlc and 

Chld respectively). All photosynthetic plants contain Chla, while most classes 

of plants contain in addition Chlb or Chlc. The role of Chld in photosynthesis 

is uncertain (Bukata et al., 1995).  

 Chla and Chlb strongly absorb light in the red region of the spectrum 

(~675nm for Chla and ~650nm for Chlb), and in blue region of the visible 

spectra (~440 nm for Chla and ~460 nm for Chlb). Chlc includes of Chlc 1, 

Chlc 2 and Chlc 3, which are spectrally distinct components and has strong 

absorption in the blue region of the spectrum while they show some smaller 
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absorption maxima at larger wavelengths (~580 and ~630nm). The term 

―Chlorophyll concentration‖ refers to the sum of Chla and related 

phaeophytin-a (Phaeoa). This sum often called ‗pigment concentration‘. Chl 

ranges from 0.01 mg m-3 in the clearest waters, to more than 100 mg m-3 in 

eutrophic estuaries or lakes (Mobley 1994). The carotenoid absorbs mainly 

between 450nm to 550nm and represents more than 100 different pigments. 

 Diatoms are the major phytoplankton found in most marine and 

freshwater environments (Kirk 1994). Division Chrysophyta under the class 

Bacillariophyta in diatoms are usually yellow-brown coloured due to the 

presence of two xanthophyll pigments-fucoxanthin and diatoxanthin. 

Dinoflagellates (Division Pyrrophyta) are the second major group of 

phytoplankton in total marine environment. They have brownish to reddish 

colour due to the presence of carotenoid pigment peridinin. They form red 

tides during bloom conditions. Peridinin strongly absorbs 500-560 nm of the 

visible spectrum. Open oceans with warm waters are dominant in 

coccolithophorids (Division Chrysophyta, Class Haptophyceae) which have 

also yellow-brown cells. Their bloom appears as milky turquoise in the ocean. 

Phylum Chlorophyceae comprising green algae found mainly in freshwater 

environments contains Chl a and Chl b as dominant pigments.  
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 Sathyendranath et al., (1987) found that, for phytoplankton groups of 

Chlorophyceae, Haptophyceae and Bacillariophyceae, specific absorption at 

440 nm [a*ph(440)], varied between 0.019 and 0.047 m2 mg-1, while a*ph 

(676) varied between 0.011 and 0.023 m2 mg-1. Another study by Prieur and 

Sathyendranath (1981) found that a*ph (440) vary within the range 0.013 to 

0.077 m2 mg-1. 

 Phytoplankton size and taxonomic information can be inferred from 

features of the spectral phytoplankton absorption coefficient (Bricaud and 

Stramski 1990; Ciotti et al., 2002; Bricaud et al., 2004; Vijayan and 

Somayajula, 2014). In optically-complex waters with high spatial and 

temporal variability in both phytoplankton and detritus concentration and 

composition, direct pigment analyses are more sensitive for getting 

information on phytoplankton size and taxonomy (Bricaud and Stramski1990; 

Ciotti et al., 2002; Bricaud et al., 2004). The time evolution of phytoplankton 

size structure over the global ocean was studied (Roy et al., 2012). The light 

absorption coefficient of phytoplankton was used to retrieve quantitative 

information about phytoplankton size structure from satellite-derived ocean-

colour data. The results showed that, the spatial distribution of the size-

spectrum exponent and the biomass fractions of pico-, nano- and micro-

phytoplankton estimated are consistent with current understanding of 

phytoplankton functional types in the global oceans. 

 The variability in the absorption spectra of phytoplankton and 

particulate matter of case 2 coastal waters of the SEAS were studied  
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Table 1.1: Absorption maxima by Chl, carotenoids and biliproteins 

Pigment groups 

main 
 Absorption Peak Reference 

Chlorophyll a  
~ 440 nm  

~675 nm 

Prezelin and Alberte (1978); 

Prezlin and Boczar (1986); 

Aguirre-Gomez et al., (2001) 

Chlorophyll b  
~ 460 nm  

~650 nm 
Millie et al., (1997) 

Chlorophyll c c1  ~ 460 nm 
Millie et al., (1995); 

Millie et al., (1997); 
 c2 ~ 580 nm 

 c3  ~ 630 nm 

Carotenoids  450 - 550 nm Aguirre-Gomez et al., (2001) 

Biliproteins  480 - 600 nm 

Millie et al., (1995); 

Millie et al., (1997); 

Louchard et al., (2003) 

Ong et al., (1984) 

between June 2010 to November 2011 by Shaju et al., (2015).                

Their     results showed that the phytoplankton specific absorption coefficient, 

at 440 nm   and 675 nm, a*ph (440) and a*ph (675) varied from 0.018              

to 0.32 m2 mg-1   and from 0.0005 to 0.16 m2 mg-1. They reported                

that the amplitude of maxima obtained is proportional to the         

concentration of the chromoprotein, which absorbed that wavelength. 

Lorenzoni et al., (2015) examined phytoplankton taxonomic and          

pigment  time series data collected between 2006 and 2012, to understand  
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how seasonal changes in these parameters relate to bio-optical data. They 

reported that, the absorption properties exhibited seasonal variations and 

could not identify diagnostic pigments in a quantitative way using derivative 

analysis of phytoplankton absorption because of overlapping of absorption 

spectra among the pigments present. 

1.3.5. Absorption by Non-Algal Particulate matter (aNAP) 

Mixing processes like wind induced turbulence and tidal currents 

cause re-suspension of sediments, non-living organic and inorganic particles. 

Detrital particulate matter includes non-living organic particles, fragments of 

decayed organisms along with their excretions. Minerals such as fine clay, 

silt particles, sand etc. and precipitates of iron oxide, manganese hydroxide 

and calcium carbonate form the inorganic particles (Bukata et al1995). aNAP 

is prominent in the short, ultra-violet wavelengths and the shape of the 

spectra resembles that of absorption by coloured dissolved organic matter 

(aCDOM) (Yentch 1962). Studies by Kishino et al (1985), Roesler et al (1989) 

and Morrow et al (1989) showed that aNAP increases with decreasing 

wavelength. Roesler et al (1989) found that in the wavelength range         

400-750 nm, aNAP reaches upto 0.01 m-1. Various other studies showed that 

the absorption by NAP ranged between 0.006 and 0.014 m-1 (Kishino et al., 

1986 (studies in NW pacific); Maske and Haardt 1987 (studies in Kiel harbor); 

Morrow et al., 1989; Iturriaga and Siegel 1988; Bricaud and Stramski 1990 

(studies in the Sargasso Sea)). 
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The proportion of non-algal particles in the water column is affected by 

substantial disposal of sewage (Abril et al., 2002; Callahan et al., 2004; 

Spencer et al., 2007). Rivier et al., (2012) investigated the spatial and 

temporal variability of non-algal suspended particulate matter (SPM) in 

surface waters of the English Channel and highlighted that three explanatory 

variables—the tide, waves and Chl a is able to estimate non-algal surface 

SPM with a coefficient of determination reaching 70% at many locations. 

Eleveld et al., (2014) investigated, how large-scale estuarine SPM 

concentrations were affected by tidal and bulk meteorological drivers, and 

how retrieved SPM is biased by tidal aliasing and sampling under clear sky 

conditions using optical data from a sun-synchronous satellite. The results 

showed spatial patterns in SPM as a function of semi-diurnal tidal phase, 

fortnightly tidal phase, or season and distance to shallow source area, tidal 

current velocity, and advection of North Sea and estuarine surface waters 

controls surface Suspended Particulate matter. Minu et al., (2015) studied 

the hyperspectral variability of phytoplankton blooms in SEAS and reported 

that, the detrital absorption spectra showed marked difference for different 

blooms.  

1.2.6. Absorption by coloured dissolved organic matter (aCDOM) 

 Varying concentrations of dissolved organic substances found in 

aquatic environments. The optically active fraction is known as CDOM or 

chromophoric organic matter or gelbstoff or gilvin. It plays a major role in 

determining the underwater light field along with phytoplankton and non-algal 
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particles. CDOM consists of mainly fulvic and humic acids (Jerlov 1976; 

Leyendekkers 1967). When the concentration of CDOM is large, water may 

have its yellow or yellowish brown colour. Autochthonous primary production 

and river runoff of terrestrial organic matter (allochthonous production) 

considered as the major sources of CDOM in natural waters. Oceanic CDOM 

formed by the decomposition of phytoplankton (Kopelevich and Burenkov 

1977; Bricaud et al., 1981). Mixing, photochemical, and microbial processes 

as well as human activities like wetland drainage etc. can alter CDOM‘s 

composition, structure, and optical properties. Photo bleaching of CDOM and 

biological production of certain compounds absorb more strongly in ultraviolet 

region than in visible region (Coble and Brophy 1994; Gao and Zepp1998) 

resulting in the increase of spectral slope. Vodacek et al., (1997) showed that 

as distance to off shore increases the CDOM absorption decreases. This is 

because dissolved materials originating from the land reaches coastal waters 

thereby increasing their absorption. 

CDOM strongly absorbs light in shorter wavelengths especially in the 

ultraviolet-visible region. Its concentration is more in coastal waters 

compared to open ocean. Studies related to climate change using 

modifications in CDOM concentrations showed that cloudiness, intensity and 

frequency of storm events, mixing processes and river runoff significantly 

affect biologically destructive UV radiation causing changes in aquatic biota 

and composition of aquatic food webs and thereby affecting overall structure 

and dynamics of the ecosystem (Gibson et al., 2000; Pienitz and Vincent 
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2000). Coastal waters significantly affected by CDOM absorption in shorter 

wavelengths causing reduction in photosynthetically active radiation (PAR) 

available to phytoplankton. CDOM also influences the measurements of Chl 

and primary productivity using global ocean satellites. 

As wavelength increases aCDOM spectra typically decrease in an 

exponential fashion. aCDOM(355) ranges from <0.05 m-1 in very                 

clear, oligotrophic waters to >15 m-1 in some rivers, lakes, and coastal 

regions (Blough and DelVecchio 2002). Variability in aCDOM is associated   

with changes in the composition of the dissolved material present in the 

water. Various factor influences the absorption and spectral slope of     

CDOM. Boyd and Osburn (2003) in their studies suggested that          

bacterial degradation of CDOM components have severe impact on       

optical properties of CDOM. CDOM strongly absorbs in the blue and its 

varying proportion in the absorption confuses classical ―blue-to-green‖ band 

ratio algorithms for the determination of Chla from remote platforms      

(Siegel et al., 2005; Morel and Gentili 2009a). Zhu et al., (2011) developed a 

semi analytical algorithm to study the seasonal and spatial variations of 

CDOM absorption. Bricaud et al (2012) showed that the exponential slope 

values of CDOM also vary among three major oceanic basins and follow 

specific seasonal dynamics. Ocean currents transport CDOM over            

long distances (>1000 km) in a few months (Matsuoka et al 2011; 2012). A 

semi-analytical algorithm for estimating light absorption coefficients of the 

CDOM developed using Rrs by Matsuoka et al., (2013). They claimed that the  
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algorithm can be used to separate CDOM and non-algal particles (NAP) 

using an empirical relationship between NAP absorption and particle 

backscattering coefficients. A novel algorithm presented by Cao and Miller 

(2015) for resolving CDOM absorption spectra accurately from ocean colour. 

The model developed for remotely determining the amount and type of 

CDOM in the environments of coastal lagoon and the coastal waters around 

Chennai on the Southeast part of India, recognized healthy phytoplankton 

cells and macrophytes contributing to the authochthonous production of 

coloured humic-like substances in variable amounts (Shamnugam et al., 

2016).  

Since, the geographical extent of the terrestrially dominated regions 

varies seasonally, depending on the magnitude of freshwater inputs and its 

dilution by physical mixing processes of the coastal areas, it is very important 

to understand the performance of sensors in assessing the CDOM on 

regional scales.  

1.3.7. Remote sensing of Phytoplankton community structure 

 The chlorophyll concentration, considered as an indicator of 

phytoplankton biomass, determines the optically active constituents altering 

the underwater light field. Hence in-situ measurements of phytoplankton and 

their optical characteristics in the coastal areas can provide the database 

required to develop bio-optical algorithms useful in retrieving chlorophyll from 

space (Carder et al., 1991; Tassan, 1994; Le et al., 2011). Chlorophyll a (Chl 

a) is the major pigment in phytoplankton which absorbs blue and red light in 

the visible spectrum and results in the blue-green color of ocean. Also the 

regional, seasonal and inter-annual variations of the ocean color products 

and its retrieval depend on the types of dominant phytoplankton that 

contribute to the ocean colour. Hence understanding the variations in 

phytoplankton community structure helps to know its own inherent optical 

properties and dynamics of complex coastal waters in which they inhabit, 

thereby to get a clear idea about the water leaving signal reaching the sensor 

(IOCCG report No.9). Phytoplankton taxonomic studies provide basic 

information on the phytoplankton species which can be used in pigment 

marker studies. The contribution of various marker pigments used for the 
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development of algorithms to determine the contribution of these pigments to 

the total Chl a concentration 

Matondkar et al., (2006) studied the seasonal variation of 

phytoplankton abundance and types in the NEAS and Lakshadweep Sea 

using sequential images from IRS P4/OCM satellite and shipboard sampling 

and found that Chl concentration varied spatially and temporally and from 

coastal to offshore waters. They reported the sequential transition of blooms 

from a mixture of dinoflagellates to Noctiluca miliaris to Trichodesmium 

erythraeum and Trichodesmium thiebautii. The studies conducted in west 

coast of India showed that nitrogen depletion below detectable limits resulted 

in the declination of both diatom and prymnesiophytes and gave way to 

dinoflagellates and in well oxygenated surface waters with non-detectable 

levels of nitrate and ammonia led to the domination of pico-cyanobacterial 

populations. 

Gonsalves et al., (2011) reported that the water column of slope of 

EAS is more diverse and dominated by heterotrophic dinoflagellates whereas 

water column offshore showed low diversity and dominated by diatoms. Inter-

annual variability of phytoplankton blooms in northwestern AS and Gulf of 

Oman studied by Marvasti et al., (2015) using SeaWIFS Ocean colour data. 

Their study exhibited two climatological blooms in the region. A pronounced 

anti-correlation between the AVISO sea surface height anomaly (SSHA) and 

Chl found during the wintertime bloom. They concluded that on a regional 

scale, inter-annual variability of the wintertime bloom is dominated by 

cyclonic eddies which vary in location from one year to another. 

Species identification of mixed algal blooms, in the Northern Arabian 

Sea, using remote sensing techniques were done by Dwivedi et al., (2015). 

The approach developed for detection of bloom-forming algae Noctiluca 

scintillans from diatoms using Moderate Resolution Imaging 

Spectroradiometer (MODIS)-Aqua data in a mixed-species environment went 

successful. The phytoplankton pigment signatures and nutrient distribution 

from a front in the NEAS showed that nutrient concentrations were high 

within the filament and front compared to the surrounding waters and had a 

unique phytoplankton assemblage. The study demonstrated that 

phytoplankton groups respond strongly to nutrient enhancement that 
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encountered within the vicinity of the SST fronts that characterize the 

Potential Fishing Zones (Roy et al., 2015). The seasonal and intra annual 

variation of phytoplankton availability showed that Chl a, concentration was 

almost identical throughout the year in the northern Arabian sea near the 

coastline and open sea waters of Pakistan, India, Iran and Oman (Khan et 

al., 2015). An optical system was developed to detect and monitor three 

major algal blooms (viz. Noctiluca scintillans, Noctiluca miliaris, 

Trichodesmium erythreum, cochlodinium polykrikoides) over ecologically 

relevant scales around India. The model were successful in delineating the 

presence of the blooms in a heterogenous phytoplankton community; but 

were not able to detect specific species during their pre -bloom conditions 

and to indicate whether a particular bloom is toxic or harmful (Gokul and 

Shanmugam 2016). A study of spatial-temporal variability of Noctiluca 

scintillans blooms using satellite data expressed a cyclic pattern of their 

spread over a period of 13 years (Dwivedi et al., 2016). 

Few studies carried out in the coastal waters off Kochi, in the eastern 

Arabian Sea to know the phytoplankton community characteristics and its 

influence on other optical properties, even though, the backwaters and 

Arabian Sea were investigated in detail. Previous studies in the area mainly 

focused on physical and chemical characteristics of phytoplankton blooms. 

Every phytoplankton irrespective of their species and size has their own 

peculiarity, influencing different parts of the visible electromagnetic radiation 

in terms of absorption. It is important to understand the characteristics and 

associated bio-optical properties in the area on a regional scale. Hence, a 

study carried out in the coastal waters of SEAS with the following objectives:-   

1.4. Objectives of the work 

1. To characterize the phytoplankton community structure in order to assess 

seasonality and physiological characteristics.  

2. To understand the influence of index chlorophyll of dominant phytoplankton 

species on inherent and apparent optical properties 

3. To evaluate the performance of standard empirical algorithms for 

chlorophyll and coloured dissolved organic matter. 
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All the rivers run into the sea; yet the sea is not full.  
-King Solomon 
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2. Field Observations of physical, chemical 

and optically active substances in coastal 

waters 

2.1 Study area 

Bio-optical measurements were carried spatially, once in a month 

from coastal waters off Kochi. The sampling stations are shown in Figure 

(2.1). The study area forms part of SEAS. The area has a strong monsoonal 

influence resulting in seasonal changes of hydrographic conditions 

influenced by river water discharge and surface circulation. During Pre-

monsoon (February-May) wind-induced upwelling along with a northward 

undercurrent and a southward surface flow associated with strong vertical 

mixing is observed off Kochi waters (Kumar and Kumar 1995). Upwelling 

process supported by the southerly current is also observed along the 

coastal waters during monsoon season (Joshi and Rao 2012). After 

monsoon season, the hydrographic features change causing very strong 

freshwater discharge from backwaters (Srinivas and Kumar 2006).        

During    monsoon period, the nutrient input of the coastal waters      

increases along with detrital load and surface salinity and water    

temperature falls down diminishing light penetration. These rapid       

changes often lead to high production at primary and secondary              

levels (Devassy 1983; Madhupratap et  aI., 1990; Honjo et al., 1999; 

Jyothibabu et al., 2008). During the transition period of monsoon to            

the post-monsoon season, the freshwater containing high levels of nutrients 

are   transported   through   the  Cochin  inlet  or  Barmouth,  thus  making  a  
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significant contribution to the nutrient budget of the coastal waters 

(Balachandran 2008). At certain locations, during the southwest monsoon 

period, seasonal phytoplankton blooms (Srinivas and Kumar 2006) were also 

observed. Usha et al.,(2014) pointed that increase of influx of nutrients 

contributes to the domination of a single species of phytoplankton and results 

in a high pelagic fishery.  

Figure 2.1. Map showing the study area and station locations 

2.2. Sample Collection, Preservation and Storage 

Station 1 is in the nearby estuarine area, where                      

increased nutrient-rich freshwater influx occurs during monsoon           

season.    Station    4    is     represented   by   the   area   where   mixing    of  
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marine and freshwater occurs. Other stations were on the northern and 

southern parts of an inlet to the Kochi estuary.  

 Surface water samples were taken on a monthly basis from 8 

sampling sites during April 2010 to December 2015. Sampling was done 

using a commercial purse seiner. Samples collected using Niskin water 

sampler and clean bucket (for surface samples) were stored in clean, dark 

polyethene bottles and kept in cold and transported to the laboratory where 

further analysis was carried out. aCDOM was measured within 8 hours after 

sample collection and absorption by particulate matter (ap) and Chla 

concentration within 48 hours after sample collection. For analysis of 

hydrographic parameters samples were stored in -40 and -20°C.   

2.3. Chlorophyll a Concentration 

Seawater samples were collected from the surface for Chla analysis. 

Seawater was filtered (2 litres) through Whatman GF/F filters (0.7μm        

pore size and 47 mm diameter) at a vacuum of less than 0.5 atm. The filters       

were extracted with 10 ml of 90% acetone solution.  The samples             

were allowed to extract overnight (about 12 hours) in the dark at 4 °C          

(in the refrigerator). Samples were centrifuged at 3500 rpm for 10        

minutes to remove cellular debris. Chla concentration was measured using a 

10AU Turner Design fluorometer with 90% acetone as blank. Chla standard 

obtained  from  Sigma  was  used  to  calibration  the  instrument. A standard  
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stock solution was prepared and a minimum of five dilutions prepared from 

the standard (Strickland and Parsons 1972). 

𝐶𝑙𝑎 =
𝑚 ∗ 𝐹0 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐴𝑐𝑒𝑡𝑜𝑛𝑒 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
 

m= slope of regression obtained from the calibration 

F0= Fluorescence value  

Table 2.1: Location of sampling sites 

Station 

 No. 

Station 

Code 
Latitude Longitude 

1 S1 090 58‘ 160‘‘ N 760 15‘ 323‘‘ E 

2 S2 090 54‘ 34‘‘ N 760 12‘ 47‘‘ E 

3 S3 090 54‘ 28‘‘ N 760 09‘ 40‘‘ E 

4 S4 090 57‘ 40‘‘ N 760 10‘ 10‘‘ E 

5 S5 100 00‘ 02‘‘ N 760 06‘ 05‘‘ E 

6 S6 100 02‘ 37‘‘ N 760 05‘ 58‘‘ E 

7 S7 100 02‘ 58‘‘ N 760 09‘ 15‘‘ E 

8 S8 090 59‘ 57‘‘ N 760 09‘ 15‘‘ E 

9 D4 090 56‘ 15‘‘ N 760 03‘ 15‘‘ E 

2.4. Total Suspended Matter 

 Total Suspended Matter (TSM) concentration (mg L-1)  was 

determined gravimetrically following the procedures                                      

by       Strickland      and      Parsons (1972)      and      JGOFS         protocols  
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(UNESCO 1994). 0.7μm GF/F filters (Whatman) are used for filtering 

suspended particles. Before filtration, the glass fibre filters are pre-weighed 

and pre-dried at 90° C for 3 hours. A known volume of water (1.5 L) was 

filtered through filters. After filtration, the filters are rinsed with Milli-Q water to 

remove salts followed by drying (90° C for 3 hours) and then reweighed on a 

high precision balance.  

TSM by using the equation below 

𝑇𝑆𝑀 
𝑚𝑔

𝐿
 =

  𝐴 − 𝐵 ∗ 1000 

𝐶
 

where 

A = final dried weight of the filter (in milligrams = mg) 

B = Initial weight of the filter (in milligrams = mg) 

C = Volume of water filtered (in Litres) 

2.5. Absorption by Coloured dissolved organic matter (aCDOM) 

aCDOM was measured spectrophotometrically following Kowalczuk and 

Kaczmarek (1996). Seawater samples were filtered through 0.2 μm cellulose 

nitrate membrane filters (Whatmann). The sample transparency was 

measured using ShimadzuTMdouble beam UV-2450 spectrophotometer, over 

the spectral range 400 to 700 nm at a 1 nm resolution, in 10cm quartz 

cuvette relative to a bi-distilled Milli-Q reference blank. aCDOM was calculated 
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from the optical density of the sample and the cuvette path-length following 

the methods are given in Twardowski et al., (2004). 

aCDOM(λ ) = aCDOM (440) exp [-s (λ - 440)] [m-1] 

where, aCDOM (440) is the absorption measured at 440 nm and s is the 

slope coefficient which was calculated as the slope of the curve resulted by 

plotting the logarithm of aCDOM against wavelength (λ). The magnitude of 

aCDOM (440) indicates the concentration while the spectral slope (s) indicates 

its composition (Stedmon and Markager 2003). The absorption coefficients 

were then corrected for backscattering of small particles and colloids, which 

pass through filters (Green and Blough 1994). 

aCDOM_corr (λ) = aCDOM(λ) – aCDOM(700) * (λ/700) [m-1] 

2.6. Absorption by phytoplankton (aph) 

 Seawater samples (2-5 litres) are filtered under low vacuum (<25 hPa) 

through 25 mm Whatman GF/F filters of pore size 0.7µm. The volume of   

seawater taken for filtration varies depending on the season and stations. All 

filtration done under low light conditions. After the sample is filtered,         

each filter is transferred to a pre- washed and dried filter case. The           

light absorption spectrum of phytoplankton is measured by the quantitative 

filter technique (QFT) method (Mitchell 1990). The absorption spectra of    

total particulate matter, relative to a blank filter saturated with seawater       

are measured in the wavelength range 400 to 750 nm with a resolution of      

1 nm using a  double-beam  spectrophotometer equipped with an integrating  
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sphere. For each of the measured spectra, the optical density obtained at 

750 nm was subtracted from that of all other wavelengths. Optical density of 

the total suspended matter was corrected for the pathlength amplification 

(effect) and converted into light absorption coefficients by the total particulate 

matter and detrital matter, viz. ap(λ) and ad(λ) respectively according to 

Cleveland and Weidemann (1993). 

The particulate (ap(λ)) and detritus absorption (ad (λ)) were determined using 

the equation 

aph (λ)=ap (λ)-ad (λ) 

ap (λ)=[2.303 [OD]_s (λ)] 
  (V/S)  

 

ad (λ)=[2.303[OD]_s (λ)] 
       (V/S) 

 

OD_s (λ) =0.378OD_f (λ) +0.523[[OD_f (λ)]] 2 

where ODs is the optical density of total suspended particulate matter or 

detritus matter, V is the filtration volume (m3) and S is the filtration area (m2). 

The filtration area is calculated by the formula 𝑆 = 𝜋𝑟2, where 'r' is the radius 

of filter area of filtration. The coefficients 0.378 and 0.523 are the path-length 

correction factors caused by multiple scattering in the glass fibre filter. 

Following this extraction, the absorption of the filters relative to blank filters 

also treated with methanol and re-saturated with filtered seawater was 

determined in the spectrophotometer. These spectra represent absorption by 

non-methanol extractable detrital material (ad (λ)). 
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𝑎𝑑 𝜆 =
 2.303 𝑂𝐷𝑠 𝜆  

(𝑣/𝑠)
 

where ODs (λ) is calculated using the same equation as described for 

particulate absorption. The terms 'v' and 's' stand for the filtration volume (m3) 

and filtration area (m2) respectively. The filtration area is calculated using the 

diameter of the filter paper where the residue is concentrated. An estimate of 

phytoplankton component of the total particulate absorption (aph(λ)) was 

determined by subtracting ad(λ) from ap(λ) (Kishino et al., 1985). The 

chlorophyll-specific light absorption coefficients of phytoplankton (a*ph(λ)) 

were obtained by dividing (aph(λ)) by the Chla concentration. 

2.7. Phytoplankton taxonomy 

Surface water samples of 1-2 L were collected onboard and then 

filtered through 20 µm mesh of bolting silk material to concentrate 

microphytoplankton. The filtration volume varied depending on seasons and 

stations. The filtrate was concentrated in 5-10 ml of filtered seawater and 

preserved in 4% buffered formalin/Lugol's Iodine solution. Phytoplankton 

numerical abundance was estimated by counting the number of cells of each 

species of phytoplankton in one millilitre of seawater using Sedgewick Rafter 

counting chamber. The total number of microphytoplankton cells present was 

calculated per litre using the formula (Santhanam et al., 1989) 

𝑁 =
𝑛 ∗ 𝑣

𝑉
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 Where, 

N = Total number of microphytoplankton cells present per litre 

n = Number of microphytoplankton cells in one ml 

v = volume of plankton sample preserved in ml 

 V = Total volume of water filtered in litre 

 Species identification using standard identification keys was done with 

LeicaTM Generic DMIL inverted microscope attached to camera. Photographs 

of phytoplankton species were taken for confirmation and identification. 

Small sized fractionation of phytoplankton was not included in this study. 

Identification was carried according to Cupp (1943), Tomas (1997) and 

Subrahmanyan (1959). 

2.8. Hyperspectral Radiometer 

 At each station, a standalone hyperspectral radiometer of     

SatlanticTM Instruments was operated. The hyperspectral                 

radiometer provided by Indian National Centre for Ocean                

Information Services under the SATCORE programme. The                

Satlantic hyperspectral ocean colour radiometer (Hyper OCR) is a sensor 

which can measure radiations up to 255 channels of optical data with the 

wavelength ranging from 300 – 1200 nm. It is a standalone instrument 

capable of measuring spectral energy in the oceanic environment. The 

profiler design includes hyperspectral sensors of OCR – 3000 series, 

temperature, pressure, tilt, Chla, CDOM and salinity sensors. The instrument  
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was deployed in the sea from the aft of the ship in free falling mode. The 

data was collected when the tilt and descending speed was less than 3° and 

0.5 m s-1, respectively. The continuous data were collected in the deck unit 

which was connected to the instrument via power telemetry cable. The data 

was recorded using SatViewTM software and multilevel processing carried out 

using the ProsoftTM software. The radiometer was deployed 3 times away 

from the boat shadow (Muller and Fargion 2002). 

 The reference sensor is connected at the point where direct sunlight is 

falling on the sensor. The reference and profiler are connected to the MDU 

unit and then to the laptop using USB terminals. After all the connections are 

done, the profiler is kept onboard vertically to perform the pressure tare. 

Pressure Tare is required to ―zero‖ the pressure sensor in all Satlantic optical 

systems that measure depth. SatViewTM subtracts this offset from the depth 

field and provides actual depth of the profiler. This data is also used by 

ProSoftTM to correct for the pressure offset during post-processing. The 

pressure tare must be performed every time the instrument's power is cycled 

and if the data acquisition software is re-launch. After pressure tare is done, 

the profiler is deployed in the water in a free falling mode by continuously 

monitoring the depth, velocity and tilt of the instrument. 
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Plate 1. Identification of Phytoplankton using LeicaTM Inverted 
Microscope and analysis done using ShimadzuTM UV-VIS 
Spectrophotometer 
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Plate 2. Photos of SatlanticTM Hyperspectral Radiometer Operation and 
TurnerTM 10 AU Fluorometer analysis. 
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 The operation was performed three times at each station. The data 

recorded by the SatViewTM software is processed using ProSoftTM. ProSoftTM 

is available as a Windows™ application and is supplied as a single self-

extracting install program on CD-ROM. It can be downloaded directly from 

(http://www.satlantic.com/software.asp?CategoryID=3) Satlantic website. 

The data were processed as a single level or as multi-level (from raw data to 

level-4). Initial processing of the ‗.raw‘ files create ‗.hdf‘ files. The ‗.hdf‘ files 

were converted to Ascii files for easier analysis of the data (Lotliker et al., 

2009).   

2.9. Hydrographic parameters 

During the study period, the hydrographic parameters affecting the 

phytoplankton were investigated. Turbidity was measured using 

Nephelometer (NTU), water temperature (degree Celsius) with thermometer 

and pH with pH meter. Dissolved Oxygen (DO) was determined using 

Winkler method and Salinity determined by Mohr-Knudsen titration method 

(Grasshoff et al., 1983). 

a. Determination of silicate 

Silicate was determined by treating the 25ml of water sample (taken in 

plastic containers) with reagents- acid molybdate solution (1 ml), oxalic acid 

(1 ml) and ascorbic acid (0.5ml). The mixture forms a blue complex and     
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the concentration was measured using spectrofluorometer at 810 nm within 

30minutes of preparation of the sample for analysis (Grasshoff et al., 1983).  

b. Determination of phosphate 

Phosphate concentration was determined by taking 15 ml sample and 

treating with 0.5ml ascorbic acid reagent and 0.5ml mixed reagent. The 

absorbance was measured at 880 nm within 30 minutes of complex 

formation (Grasshoff et al., 1983). 

c. Determination of Nitrate 

Nitrate concentration was determined using Resorcinol method. 10ml 

of the sample is treated with 1.2 ml resorcinol, 10ml H2SO4 (conc) reagents 

taken in 50 ml standard flask and kept in dark for 30 minutes. After that the 

mixture is made up to 50 ml and absorbance measured at 505 nm (Grasshoff 

et al., 1983).  

d. Determination of Nitrite 

15ml sample is treated with 0.5 ml sulphanilamide and 0.5 ml NNED (N-

naphthyl ethylene diamine hydrochloride) and kept for 15 minutes. The 

absorbance is measured at 540 nm (Grasshoff et al., 1983). 
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The sea, once it casts its spell, holds one in its net of wonder forever 

-Jacques Yves Cousteau,  
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3. Phytoplankton Diversity and Abundance 

3.1. Introduction 

  Phytoplankton refers to the autotrophic component of the 

plankton that drifts in the water column. They are single celled and 

microscopic (0.5 to 250µm) plants that form the base of aquatic food web 

(Wikipedia). They undergo the process of photosynthesis, like plants in the 

terrestrial area, and produce carbohydrates and oxygen using carbon dioxide 

and solar radiation. They are known as primary producers of the ocean. 

Phytoplankton lives near the surface of water where they get enough sunlight 

for the process of photosynthesis and are mostly limited to the top 100-200m 

in the euphotic zone (Woodshole Institution). In addition to carbon dioxide 

and sunlight, they also require inorganic nutrients such as nitrates, 

phosphates, and silicate which they convert into proteins, fats, and 

carbohydrates. 

  Phytoplankton are some of earth's most critical organisms and 

so it is vital to study and understand them. They generate about half the 

atmosphere's oxygen and form the base of virtually every ocean food web 

making most other ocean life possible. They play an essential part of Earth's 

carbon cycle, by taking up carbon dioxide from the atmosphere and carrying 

this atmospheric carbon to the deep sea when they die and sink to the 

bottom. In a balanced ecosystem, phytoplankton provides food for a wide 

range of sea creatures including whales, shrimp, snails, and jellyfish. Since 

phytoplankton depends upon certain conditions for growth, they are a good 

indicator of changes in their environment. For these reasons, and because 
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they also exert a global-scale influence on climate, phytoplankton are of 

primary interest to oceanographers and Earth scientists around the world. 

Phytoplankton are ubiquitous and abundant (up to 105cells per ml).  They 

contain a green pigment, Chl, which helps in the process of photosynthesis. 

Although microscopic, phytoplankton blooms in such large numbers that they 

can change the colour of the ocean that can be measured from space. The 

presence of more phytoplankton in the water imparts green colour and less 

phytoplankton imparts blue colour to the ocean. 

  Insitu measurements of phytoplankton and their optical 

characteristics in the coastal waters provide the database required to 

develop bio-optical algorithms useful in retrieving Chl from space (Carder et 

al., 1991; Tassan, 1994; Le et al., 2011). The regional, seasonal and inter-

annual variations of the ocean colour products and its retrieval depend on 

the types of dominant phytoplankton that contribute to the ocean colour 

(Minu et al., 2014). Phytoplankton taxonomic studies provide basic 

information on the phytoplankton species which can be used in pigment 

marker studies. The contribution of various marker pigments is used for the 

development of algorithms to determine the contribution of these pigments to 

the total Chla concentration. Hence, understanding the variations in 

phytoplankton community structure helps to understand its own inherent 

optical properties and dynamics of complex coastal waters in which they 

inhabit, thereby to get a clear idea about the water leaving signal reaching 

the sensor (IOCCG report No.9). 
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  Several studies are available from Cochin backwaters (Qasim 

1970; Qasim et. al., 1972 a, b; Devassy and Bhattathiri 1974; Qasim et. al., 

1974; Madhupratap and Haridas 1975; Madhupratap 1987; Joy et. al., 1990; 

Menon et.al., 2000; Haridevi et. al., 2004; Jyothibabu et. al., 2006; Madhu et. 

al., 2007 and 2010; Martin et. al.,2013; Mohan et al., 2016) on plankton 

ecology. Studies conducted in the coastal waters mainly focused on physical 

and chemical characteristics of phytoplankton and their numerical 

abundance during single season (Kaladharan et al., 1990; Selvaraj et al., 

2003; Jugunu 2006; Roy et al., 2006; Madhu et al., 2010; Padmakumar et 

al., 2010, 2012; Sarangi and Mohammed 2011; D’Silva et al., 2012; Thomas 

et al., 2013; Martin et al., 2013; Robin et al., 2013) and on phytoplankton 

blooms (Thomas et al., 2014; Bhagirathan et al., 2014; Jagadeesan et al., 

2017). A complete record of intra annual variation in phytoplankton diversity 

and community structure based on different seasons within 20m bathymetry 

are limited. Hence a study was carried out in coastal waters to understand 

the phytoplankton community structure, its diversity and abundance in 

relation to its diversity index.  

  Previous studies on the community structure, during the onset 

and establishment of southwest monsoon, confirmed nanoplankton, having 

maximum photosynthetic efficiency in coastal waters, as the major 

contributor to the total Chla and primary production in the region (Madhu et 

al., 2010). The response of microzooplankton (20–200 μm) to coastal 

upwelling and summer stratification in the SEAS showed abundance of 

phytoflagellates in the inshore waters and diatoms followed by dinoflagellates 



Chapter 3  Phytoplankton Diversity and Abundance 

54 
Phytoplankton dynamics and its influence on optical properties 

in the offshore waters. Presence of Trichodesmium erythraeum in the high 

temperature and nitrate-depleted surface waters were also reported 

(Jyothibabu et al., 2008). The studies on diversity, abundance, biomass of 

phytoplankton and primary productivity in the shelf waters of four stations 

along the southwest coast of India during May - June 2005 revealed 

phytoplankton community comprising  67 species of phytoplankton belonging 

to bacillariophyceae (49 species), pyrrophyceae (17 species) and 

cyanophyceae (1 species). The study also reported that              

Chaetoceros lorenzianus constituted maximum abundance throughout the 

water column (Robin et al., 2010). An assessment of phytoplankton standing 

crop along the SEAS during the different phases of coastal upwelling in 2009 

was done in detail (Thomas et al., 2013). Their study reported significant 

presence of solitary pennate diatoms Amphora sp. and Navicula sp. in the 

waters off Kochi during phase 2 of upwelling.  

  Anthropogenic influence shaping the nutrient dynamics and 

phytoplankton biomass in the coastal waters of southwest India studied by 

Kumar et al., (2014). They explained that, for most of the diatom      

variability, silicate supply acts as a driving force. 185 species of 

phytoplankton were identified in a study conducted on phytoplankton 

diversity, abundance and distribution in the AS waters off Kerala and 

Karnataka coasts. The diatoms, namely Cymbella aspera, Licmophora 

abbreviata and Skeletonema costatum were found to be dominant while 

Oscillatoria limosa was the prevailing cyanobacterium identified in the   study 

(Rai  and Rajasekhar 2015).  Godhe et al., (2015)  studied   on  21  years   of  
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phytoplankton and environmental monitoring data from the surface waters of 

coastal southeast AS showed a shift in phytoplankton community towards 

higher sample genus richness and diatom abundance. 

3.2. Materials and Methods 

  Phytoplankton taxonomy, abundance, diversity and evenness 

studies were carried out in 8 stations (S1-S8) in the study area. To 

demonstrate annual variations in phytoplankton abundance the study area 

was divided into two transects along 10m and 20m bathymetry. Taxonomical 

difference along both transects were also studied.  

3.2.1. Phytoplankton taxonomic composition and abundance 

 Phytoplankton taxonomic studies were carried out and a detailed 

methodology adopted for identification and calculation of numerical 

abundance is presented in Chapter 2, Section 2.7. For studies on monthly 

variations, common phytoplankton found along the 10m and 20m bathymetry 

selected.  

3.2.2. Phytoplankton diversity and evenness 

 Species diversity is the number of different species in a particular 

area, which is an important index in characterizing the community structure 

and community importance in ecosystem. Changes in phytoplankton 

dynamics examined using Shannon-Wiener diversity index (H’) (Zar, 1984).  
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where ‘pi’ is the proportion of characters belonging to the ith type of letter in 

the string of interest. 

  Evenness, a measure of the relative abundance of the different 

species constituting the richness of an area, is an indicator of whether the 

community structure is developed and stable. Species evenness indicated by 

Pielou’s evenness index (Pielou 1966). 

 

Where  is the number derived from the Shannon diversity 

index and  is the maximum value of ,  

3.3. Results and Discussion 

3.3.1. Phytoplankton taxonomy 

 The composition of different phytoplankton species were shown in 

Table 3.1.A total of 73genera of phytoplankton from 19 orders and 41 

families were identified. Main orders identified were Biddulphiales with 11 

family and 23 genera, Bacillariales with 5 family and 15 genera and 

Gonyaulacales with 5 family and 6 genera. The largest community identified 

was Thalassiosiraceae with 5 genera, Fragilariaceae and Gymnodiniaceae 

with 4 genera each. The principal species of the family Thalassiosiraceae 

were Skeletonema spp., Planktionella spp.and Thalassiosira spp. 

Representation of diatoms, dinoflagellates and Phytoflagellates, Green 

algaeand Blue Green Algae were shown in Plates 3.1, Plate 3.2 and Plate 

3.3. respectively.  

https://en.wikipedia.org/wiki/Shannon_index
https://en.wikipedia.org/wiki/Shannon_index
https://en.wikipedia.org/wiki/Shannon_index
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Table 3.1. List of phytoplankton species identified during the study 

1. Diatoms:- 

Centric diatoms: -  

Skeletonema costatum, Cyclotella, Lauderia annulata, Planktionella spp., 

Thalassiosira subtilis, Melosira, Leptocylindrus danicus, Corethron spp., 

Coscinodiscus spp., Hemidiscus, Azpeitia, Asteromphalus,Guinardia, Eucampia 

spp., Hemiaulus, Triceratium, Ditylum brightwelltii, Streptotheca, Odontella, 

Climacosphenia, Licmophora, Cyclophora 

Rhizosoleniaspp.:- R. setigera, R. delicatula, R. imbricate, R. styliformis, 

R. stolterfothii, R. alata 

Bacteriastrum spp.:-B. hyalinum, B. delicatulam, B. furcatum, 

Chaetoceros spp.:- C. decipiens, C. curvisetus, 

Biddulphia spp.:-Biddulphia sinensis, B. mobiliensis, B. aurita 

Pennate diatoms:- 

Amphiprora, Navicula spp., Striatella, Pseudoeunotia, Asterionella japonica, 

Fragilaria, Thalassiothrix, Synedra, Thalassionema spp., Phaeodactylum, 

Nanoneis, Pseudonitzschia spp., Cylindrotheca closterium 

Pleurosigmaspp.:-Pleurosigma elongatum, P. directum  

Nitzschia spp.:- N. longissima, N. seriata, N. sigma 

2. Dinoflagellates: - 

Mesoporos, Gymnodinium, Gyrodinium, Chochlodinium, Katodinium, Pyrocystis, 

Pyrophacus, Alaxandrium,  Gonyaulax, Lingulodinium, Peridinium, 

Preperidinium, Scripisella, Noctiluca, Heterocapsa 

Prorocentrum spp.:- P.micans, P.lima 

 Dinophysis spp.:-  D. caudata, D. acuminate, D. fortii, D. tripos, , 

Ceratium spp.:-Ceratium fusus, C. tripos, C. furca, C. inflatum, C. horridum,, 

Protoperidinium sp.:- P. ovatum, P. leonis, 

3. Green algae:- 

Agmenellum, Oscillatoria, Lyngbya, Anabaena, Nostoc, Staurastrum 

4. Blue green algae: -Trichodesmium erythraeum, Synecococcus 

5. Phyto flagellates: - Euglena, Pediastrum spp., Senedesmus, Actinastrum, 

Dictyocha 
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Plate 3.1. Photographs showing major Diatoms observed along the coast off Kochi. 

A. Pseudionitzschia pungens, B. Thalassiosira species in chain form,C. Chaetoceros lorenzianus,  D. Skeletonema 
indicum, E. Planktionella sol, F. Coscinodiscus granii, G. Thalassionema nitzschioides, H. Navicula lanceolata 
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Plate 3.2. Photographs showing Major Dinoflagellates observed along the coast off Kochi. 

 A. Karenia mikimotoi, B. Prorocentrum micans, C. Preperidinium meunieri, D. Prorocentrum mexicanum, E. Akashiwo 
sanguinum  F. Peridinium quinquecorne, G. Noctiluca scintillans, H. Ceratium massiliense, I. Dinophysis caudate, J. 
Dinophysis acuminate, K. Dinophysis fortii, L. Dinophysis bloom. 
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Plate 3.3. Photographs showing Phytoflagellates, 
Green algae and Blue Green Algae observed 
along the coast off Kochi.  
 
A. Octactis octonaria, B. Dictyocha fibula, C. 
Euglena acusformis, D. Dinobryon sp., E. 
Scenedesmus quadricauda, F. Pediastrum 
clathratum, G. Microcystis sp., H. Agmenellum 
quadruplicatum, I. Trichodesmium erythraeum 
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Table 3.2. Table showing the average numerical abundance of phytoplankton along 10m bathymetry from 2010 to 

2013. 

  
Sl.  

No.  

Phytoplankton 

along 10m 

bathymetry 

January February March April May June August September October November December 

Diatoms 

1 Asterionella ++ ++ ++ ++ ++ +++ + ++ + ++ +++ 

2 Fragialria - + + + + ++ + + + - + 

3 Navicula + + + + + + + + + + + 

4 Pleurosigma - + ++ + + ++ + + + ++ + 

5 Nitzschia ++ + + + + + + + + + + 

6 Cylindrotheca + + + + + + + + + - + 

7 Pseudonitzschia +++ ++++ +++ +++ +++ ++ + + + +++ ++ 

8 Hemiaulus ++ + +++ - + ++ - + + - ++ 

9 Biddulphia + ++ + - +++ + + + + + ++ 

10 Chaetoceros ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ 

11 Bacteriastrum ++++ ++ ++ - + - - - - - + 

12 Leptocylindrus ++ ++ +++ ++ ++ ++ + ++ + ++++ + 

13 Rhizosolenia + + + + + + + + + +++ + 

14 Guinardia ++++ ++ +++ +++ ++ + + + + ++++ + 

15 Skeletonema +++ ++++ ++ + +++ ++++ + ++ + ++++ ++++ 

16 Lauderia - +++ ++ ++ ++ + + - + + ++ 

17 Thalassiosira ++ ++ ++ ++ + ++++ ++ ++++ + +++ ++ 

18 Coscinodiscus ++ ++++ +++ ++ ++ ++ + + ++ + +++ 

19 Hemidiscus - + - - + + - + ++ - - 

20 Eucampia ++ ++ + - + + ++++ - ++ - + 

21 Ditylum + - - - + + + - ++ - - 

22 Striatella - - - - + + + - + - + 

23 Thalassionema ++++ +++ + +++ + + + ++++ + ++++ ++ 
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- Absent 
+ < 1, 00,00 cells per litre 
++ 10,000-20,000 cells per litre 
+++ 20,000-1,00,000 cells per litre 
++++ >1,00,000 cells per litre

Dinoflagellates 

24 Prorocentrum ++++ ++ + + + ++ + + + +++ ++ 

25 Akashiwo - - - ++ - + + + + + + 

26 Gyrodinium + - - - + - + + + - - 

27 Preperidinium - + +++ +++ ++ ++ + + + - +++ 

28 Protoperidinium + + +++ ++ + + + + + ++++ +++ 

29 Peridinium - - ++ - + - + - - - ++ 

30 Dinophysis - + ++ - +++ + + - + - ++ 

31 Ceratium ++ +++ + + ++ ++ + + + ++ ++ 

Phytoflagellates, Green algae and Cyanophytes 

32 Dictyocha + + ++ + + - + - - - ++ 

33 Euglena ++ +++ - + - + - - - - - 

34 Pediastrum - - - - - - - + - - - 

35 Trichodesmium - ++++ +++++ +++ - +++ +++ +++ +++ - - 
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  Monthly variations in phytoplankton taxonomy were carried out 

from 2010 to 2013. The average abundance of phytoplankton at genus level 

along 10m bathymetry is shown in Table 3.2.  35 number of phytoplankton 

were selected at genus level along 10m bathymetry for the study. These 

include 23 diatoms, 8 Dinoflagellates, 4 from other groups such as 

phytoflagellates (1), green algae(2) and blue-green algae(1). Among 

diatoms, Asterionella sp. Navicula sp., Nitzschia sp., Pseudonitzschia sp., 

Chaetoceros sp., Leptocylindrus sp., Rhizosolenia sp., Guinardia sp., 

Skeletonema sp., Thalassiosira sp., Coscinodiscus sp., and Thalassionema 

sp. comprising 12 diatoms occurred throughout the year. Out of 8 

dinoflagellates observed, 3 were seen permanently throughout the year. 

They were Prorocentrum sp., Protoperidinium sp., and Ceratium sp. Among 

phytoflagellates, green algae and blue-green algae, no member was seen 

throughout the year.   

  The average abundance of phytoplankton at genus level along 

20m bathymetry is shown in table 3.3. Total of 25 diatoms, 7 dinoflagelates 4 

others including phytoflagellates, green algae and cyanobacteria were taken 

for understanding monthly variations along 20m bathymetry. Out of 25 

diatoms, 11 species of diatoms existed throughout the year. Only 1 species 

of dinoflagellate existed all year round along 20m bathymetry. None among 

the phytoflagellates, green algae and cyanobacteria was seen throughout the 

year.  
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Table 3.3. Table showing numerical abundance of phytoplankton along 20m bathymetry 

Sl. 
No. 

Phytoplankton 
along 20m bathymetry 

January February March April May June August September October November December 

Diatoms 

1 Asterionella ++ ++ ++++ +++ +++ +++ + +++ + + + 

2 Fragialria - ++ + +++ + + + + + - + 

3 Navicula + + + + + + + + + ++ + 

4 Pleurosigma +++ ++ ++ - + ++ + - - ++ - 

5 Nitzschia + + + + + + + + + +++ ++ 

6 Cylindrotheca + + + ++ + + + + - +++ ++ 

7 Pseudonitzschia + + + + + + + - - ++++ + 

8 Hemiaulus + - +++ + ++ ++ + + + - + 

9 Biddulphia + +++ ++ + ++ ++ + + + - + 

10 Triceratium - - - - - - - - + - + 

11 Chaetoceros +++ +++ ++++ +++ ++++ ++++ ++ +++ +++ ++++ +++ 

12 Bacteriastrum - + + ++ + + + + - - - 

13 Leptocylindrus +++ +++ ++++ +++ ++ ++ + ++ + ++ ++ 

14 Rhizosolenia ++++ ++++ +++ ++ +++ + + + + ++ + 

15 Guinardia ++++ ++ +++ ++ ++ + + + + ++ + 

16 Skeletonema +++ + +++ ++ +++ ++++ + + + +++ + 

17 Lauderia ++ +++ ++ ++ + + - + + +++ ++ 

18 Cyclotella ++ + + + + + + + - - + 

19 Thalassiosira ++ + ++ + + ++ + ++ + ++++ ++ 

20 Corethron - + - - - ++ - - - - ++++ 

21 Coscinodiscus ++ + +++ ++ + + + + ++ +++ + 

22 Hemidiscus - + - - + + + + + + + 

23 Eucampia - + + _ ++ + ++ + +++ - - 

24 Ditylum - - + - ++ + + - - - + 

25 Thalassionema ++++ ++ ++++ ++ ++ ++++ + +++ ++ +++ +++ 
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- Absent 
+ < 1, 00,00 cells per litre 
++ 10,000-20,000 cells per litre 
+++ 20,000-1,00,000 cells per litre 
++++ >1,00,000 cells per litre

Dinoflagellates 

26 Prorocentrum ++++ + + + + + - + + ++ + 

27 Gyrodinium ++ - + - + + ++ ++++ +++ ++ - 

28 Preperidinium - + ++ ++ + + + + + ++ + 

29 Protoperidinium ++++ ++ ++ + + ++ + + + +++ + 

30 Peridinium - + + - + + - - + ++ + 

31 Dinophysis - + + + ++ + + - + - + 

32 Ceratium ++ ++ ++ - + ++ + + + +++ ++ 

Phytoflagellates, Green algae and Cyanophytes 

31 Dictyocha + + + + - - - + - - + 

32 Euglena + ++ - + + + + - - - - 

33 Pediastrum - - - - - + + - - - + 

34 Trichodesmium - ++++ ++++ +++ - +++ +++ +++ +++ - - 
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  Seasonal variation of phytoplankton along entire study area 

was analysed. Cyclotella spp., Striatella spp., Paralia spp., Fragilaria spp., 

Euglena spp., Alexandrium spp. and green algae were not seen during 

monsoon season whereas it occurred in the other two seasons. 

Phytoplankton such as Climacosphenia, Licmophora, Gyrosigma and 

Pediastrum were seen only during monsoon season. Gonyaulax spp. was 

not seen during the postmonsoon season while Staurastrum spp. occurred 

only during postmonsoon season. Phytoplankton species such as Azpeitia 

spp., Streptotheca spp., Odontella spp., Amphiprora spp., Synedra spp., 

Nanoneis spp., Agmenellum spp., and Noctiluca spp. were identified during 

premonsoon season only but Senedesmus spp. observed during other two 

seasons was not seen in premonsoon. Trichodesmium were absent during 

postmonsoon season. 

  Matondkar et al.,(2006) reported the dominance of green algae 

and Noctiluca during premonsoon season and Trichodesmium and 

flagellates during post monsoon seasons in the northeastern Arabian Sea. 

Dominance of Trichodesmium and Noctiluca were reported during 

premonsoon season and diatoms and coccolithophores during monsoon 

season along the eastern Arabian Sea by Parab et al., (2006) and Martin et 

al., (2013). They also reported the dominance of dinoflagellates and 

picobacteria soon after the monsoon season. The presence of Licmophora 

gracilis, Gyrosigma littorale, during summer monsoon in the coastal waters 

were reported (Habeebrahman 2009; Shunmugaraj et al., 2002).   

Occurrence of Pediastrum species, primarily a freshwater form during 
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monsoon season has been reported in Cochin backwaters by several 

authors (Devassy and Gopinathan 1970; Joseph and Pillai 1975; Madhu et 

al., 2007; Dayala et al., 2013). The presence of Pediastrum in the coastal 

waters is reported during the study period. The presence of this 

phytoplankton in the coastal waters is a result of high river flow during 

monsoon season from estuary to sea (Minu and Ashraf 2012). With respect 

to earlier reports, this study also confirms the dominance of Trichodesmium 

during Premonsoon season.  

3.3.2. Spatial and Temporal Analysis of Phytoplankton abundance 

  Station wise analysis of phytoplankton numerical abundance 

showed that Stn. S4 (46 genera) had the highest phytoplankton species 

richness index followed by Stn. S8 (45 genera). The species richness in the 

estuarine Stn. S1 was 39 genera. The changes in species richness of 

phytoplankton with respect to seasons were also studied. Monsoon season 

recorded 43 genera of phytoplankton whereas post-monsoon recorded 48 

genera. High species richness with highest numerical abundance occurred 

during pre-monsoon season with 57 species. As a tropical coastal region, the 

dominant ecotype of phytoplankton was at estuarine region (Stn. S1)         

with higher abundance during pre-monsoon season followed by post-

monsoon and monsoon seasons, and the second dominant ecotypes      

were at Stn. S6 and Stn. S8 during pre-monsoon season. Low          

numerical density of phytoplankton was exhibited in all the                   

stations during monsoon. Even though post-monsoon recorded                

high species richness, numerical abundance of phytoplankton in this      

region  during  the  season  was  comparatively  low. The  cell  abundance of  
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phytoplankton varied from 14.23×103 to 55.07×106 cells L-1 (Fig. 3.1). The 

predominant abundance was by centric diatoms which ranged from 

27.84×103 to 25.10×105cells L-1throughout the year. The lowest and highest 

density of centric diatoms was in Stn. S1 during monsoon (27.84×103      

cells   L-1) and pre-monsoon seasons (25.10×105cells L-1). On examining the 

Nitrite and Phosphate dynamics in Stn. S1, it was found that nitrite 

concentration was 0.65 µmol L-1and 0.25 µmol L-1 respectively during 

monsoon and pre-monsoon season, and phosphate concentration was 2.45 

µmol L-1 and 1.57 µmol L-1 respectively during both the seasons. 

 Pennate diatoms ranged from 48.95×102 to 21.47×105cells L-1 during 

the entire study. Spatial analysis recognized the lowest numerical abundance 

of pennate diatoms in Stn. S1 during monsoon season and highest in Stn. S8 

during premonsoon. Dinoflagellate abundance ranged from 44.10×102 to 

44.92×104cells   L-1 in the study area. 
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Figure. 3.1. Spatial and temporal analysis of numericalabundance of 
phytoplankton species in the study area. X axis represented by stations 
and Y axis by numerical abundance expressed in cells L-1. 
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  Lowest abundance of dinoflagellate was recorded during 

monsoon season in Stn. S1 and highest was during pre-monsoon season in 

Stn. S8. Phytoflagellates ranged from 2.23×102 to 5.05×104cells   L-1 and it 

exhibited lowest numerical density during monsoon season in Stn. S5. The 

highest abundance of phytoflagellate was recorded during pre-monsoon 

season in Stn. S7. Monsoon season showed lowest abundance and         

pre-monsoon season showed highest abundance of blue-green algae which 

ranged from 33×103 to 3.80×106cells L-1. Lowest abundance of blue green 

algae was seen in Stn. S4 and highest in Stn. S6. 

  The study showed that the during monsoon season the 

numerical abundance of all groups of phytoplankton identified in this study 

area are lower. The physico-chemical factors such as pH, salinity, 

temperature, DO and nutrients played a significant role in determining the 

abundance of phytoplankton in this region. Low numerical density of 

phytoplankton exhibited during the monsoon season was influenced by the 

low pH and temperature along with highest nitrite and silicate concentration 

and lowest phosphate concentration prevailed in the area (Shaju et al., 2015; 

Qasim 2003; Menon et al., 2000; Qasim et al., 1968; Pinker and Laszlo 

1992; Banse and English 2000; Choudhary and Pal 2010). Contradictory to 

these findings, Gopinathan et al., (1974) highlighted the high numerical 

abundance of phytoplankton in the inshore and estuarine areas of Cochin 

backwaters during monsoon season which coincided with low salinity and 

temperature along with high nutrient concentration. Marked decrease in 
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nutrient and phytoplankton pigment levels due to mixing with marine waters 

was reported in later studies (Sankaranarayanan and Qasim 1969; 

Saraladevi et al., 1991; Lierheimer and Banse 2002). 

 During pre-monsoon season river runoff decreases and the 

transparency level increases. During pre-monsoon season, marked 

decreased in NO3 and SiO4 levels lead to increased phytoplankton diversity 

in the coastal waters. The low NO3 and SiO4 levels in the coastal waters 

decreased the ecological advantage of certain species and favour the co-

occurrence of others in the environment (Niemi 1973; Hobro 1979; Rinne et 

al., 1981; Kononen and Niemi 1984; Niemisto et al., 1989; Martin et al., 

2013). During pre-monsoon season, solar radiation, salinity, and temperature 

favoured blue-green algal growth especially Trichodesmium growth (Capone 

et al., 1998; Hegde et al., 2008).The results from this study agree with the 

findings that phytoplankton numerical abundance is positively correlated to 

pH and phosphate and negatively related to nitrite and silicate.  

3.3.3. Percentage composition of Phytoplankton communities 

  Centric diatoms were identified as the dominant groups in the 

study, but their percentage contribution during pre-monsoon was lower than 

that of other seasons (Table 3.4.). Centric diatoms contributed to an average 

of 59.09% during monsoon season whereas during post-monsoon and pre-

monsoon seasons, the average percentage composition was 47.64 and 

38.96 % respectively. In contrast, pennate diatoms showed high percentage  
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composition during post-monsoon season (31.25%) and least during 

monsoon season (14.87%). Dinoflagellates had higher abundance during 

monsoon season (average of 24.63%) and lowest during pre-monsoon 

season (average of 7.69%). Stn. S7 exhibited highest percentage of 

dinoflagellates (75.35%) during monsoon season whereas Stn. S2 exhibited 

lowest percentage (3.58%) during pre-monsoon season. Phytoflagellates 

and blue-green algae were minor contributors to the entire phytoplankton 

community in the region (≤1%) during monsoon and post-monsoon seasons. 

In case of phytoflagellates, highest percentage was observed in Stn. S6 

during postmonsoon season and in case of blue green algae, it was in the 

same station during premonsoon season (71%). The occurrence and highest 

contribution of blue green algae during premonsoon season was attributed to 

the presence of Trichodesmium erythraeum bloom prevailed during the 

season. 

Table 3.4. Table showing the dominant group during different seasons 

Phytoplankton Monsoon 
Order/Family/ 

Genera 

Postmonsoon 
Order/Family/ Genera 

Premonsoon 
Order/Family/ 

Genera 

Centric diatoms 3/13/21    1/11/20    1/11/23    

Pennate diatoms 1/4/9        1/4/12      1/5/14      

Dinoflagellates 5/8/9        5/8/9        7/11/12  

Phytoflagellates 1/1/1          3/3/3       2/2/2        

Blue green algae 1/1/1       1/1/1        3/3/3   

Other communities 1/2/2       

 

2/2/2       

 

1/1/1        
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Figure 3.2 Percentage compositions of phytoplankton communities in 
the study area during the three seasons 

  The percentage composition of centric diatoms during 

monsoon season was 59%, while it decreased to 49% and 41 % during 

postmonsoon and premonsoon seasons. The pennate diatoms showed an 

increase of 15% to 35% from monsoon to postmonsoon and then decreased 

during premonsoon season (28%). Dinoflagellate contribution (25%) 

remained same irrespective of seasons. A remarkable change was observed 

in the percentage contribution by bluegreen algae from monsoon to 

premonsoon through postmonsoon. The contribution was 0.2 %, 2% and 

22% respectively in monsoon, postmonsoon and premonsoon seasons. 

Flagellate contribution was high during postmonsoon season. 

  Proliferation and high abundance of diatoms during monsoon 

season has been reported in earlier studies (Madhupratap and Haridas 1990; 

Nair et al., 1992; Sawant and Madhupratap 1996). This study reveals that 

centric diatoms are the major contributors during monsoon season. They are 

known for their fast growth responses to nutrient enrichments (Harrison and 

Davis 1979; Sanders et al., 1987; Kuosa et al., 1997) and dominate often in 

natural eutrophic waters. Kochi coastal waters are considered to be among 

one of the highly productive regions in the world because of its high 

eutrophication due to upwelling and wind driven water mixing (Rao et al., 

1992; Gopinathan et al., 2001). Pennate diatoms generally have lower 

growth rates than the centric species (Grover 1989; Sommer 1989).  Late 

monsoon season (September – October), encounters the weakening of the 

upwelling process, favouring the green flagellates and dinoflagellates to form 

a major  component  of  the  phytoplankton community in SEAS  (Ramaiah et  
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al., 2005; Sahayak et al., 2005; and Roy et al., 2006). Contradictory to this, 

Jyothibabu et al., (2008) reported that diatoms, followed by dinoflagellates 

dominated in the SEAS during Southwest monsoon season, except for area 

between 10° and 13° N latitudes. According to them, phytoflagellates are the 

dominant group occurred between 10° and 13° N latitudes. The 

phytoplankton community during premonsoon consists mainly of smaller 

diatoms and cyanobacteria (Nair et al., 1992; Sawant and Madhupratap, 

1996; Anoop et al., 2007). This study shows that waning of centric diatoms 

encouraged proliferation of pennate diatoms and blue-green algae in 

postmonsoon and declining of both centric and pennate diatoms encouraged 

proliferation of blue green algae during premonsoon. There is no change in 

dinoflagellate community in all seasons. 

  The present study showed some variations in the contribution 

by dominant species, the sequence of dominance and cell abundance when 

compared with the previous studies carried out in the region. The study 

revealed the composition of dominant species of phytoplankton as complex 

and centric diatoms as the most common constituent. Diatoms are normally 

associated with high production rates and elevated organic matter export. 

The alteration of dominance between the groups from diatoms to 

dinoflagellate and cyanobacteria, in different seasons can result in significant 

changes in the light absorption by phytoplankton pigments in the region. This 

inturn affects the ocean color estimation used for various applications. Thus 

the data on the phytoplankton numerical abundance and diversity along with 

its absorption properties in the present study will provide insight to 
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community dynamics and to the phytoplankton pigment composition of this 

water mass. This can also be used to indicate that major differences in 

phytoplankton absorption spectra, which forms the basis of ocean colour 

remote sensing, with respect to seasons in the area. 

3.3.4. Shannon-Weiner species diversity index (H index) 

 

Figure 3.3. Spatial and temporal analysis of Shannon-Weiner Species 
Diversity index (H index) of phytoplankton in 8 stations during three 
seasons. 

  Species diversity is the number of different species in a 

particular area, which is an important index in characterizing the community 

structure and community importance in ecosystem. The Shannon-Wiener 

diversity index (H index) was relatively high during monsoon, postmonsoon 

and premonsoon seasons (Fig. 3.3). The maximum index obtained was 4.08 

(S4) during monsoon, 4.59 (S8) during postmonsoon and 4.52 (S5) during 
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premonsoon. The minimum diversity index observed during monsoon season 

was 2.62 (S7), and 4.03 (S5) during postmonsoon and 2.30 (S6) during 

premonsoon seasons. 

  Station wise analysis of Shannon-Weiner diversity indices (Fig. 

3.3) showed that Stn. S8 had highest diversity during all the seasons. In Stn. 

S1 and S6, diversity index during monsoon season was higher than 

postmonsoon season. In Stn. S4 diversity index seemed to be unchanged in 

all the seasons whereas in Stn. S7, monsoon season showed lower diversity 

index and during postmonsoon and premonsoon season the diversity 

remained the same. Station S5 exhibited the same diversity index during 

monsoon and premonsoon season. Other two Stn. S2 and S3 showed the 

lowest values during monsoon season followed by premonsoon and the 

highest values during postmonsoon season. 

  Phytoplankton diversity was lowest during premonsoon season. 

Pre-monsoon season along eastern and central Arabian Sea was associated 

with toxic algal blooms. This causes one species to dominate over others. 

Hence the diversity was lower. Also, high transparency and low nutrient 

condition in the coastal waters during premonsoon favours algal blooms 

dominated by one or two phytoplankton species resulting in decreased 

phytoplankton diversity (Padmakumar 2010; Martin et al., 2013; Dwivedi et 

al., 2015). A study conducted in a coastal waters off Kasargode, Kerala 

exhibited diverse diatom and cyanobacteria community during post-monsoon 

and pre-monsoon seasons respectively (Rai and Rajashekhar 2014). 
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  The increased abundance of phytoplankton during post-

monsoon and pre-monsoon seasons was attributed to the increased salinity, 

pH, temperature, high nutrient content and high intensity of light penetration 

(Martin et al., 2010; Badsi et al., 2012). Thestratified water column due to 

heavy rainfall, reduced salinity, high turbidity, decreased temperature and pH 

resulted in lowest total count of phytoplankton during monsoon (Perumal et 

al., 2009). The study concludes that lowest species diversity occurs in 

monsoon season and highest in postmonsoon season. The phytoplankton 

diversity in the barmouth remains same throughout the year.  

3.3.5. Pielou’s evenness index 

  

Figure 3.4. Spatial and temporal analysis of Pielou’s evenness index (J) 
of 8 stations during three seasons. 

  Evenness is an indicator of whether the community structure is 

developed and stable. It is measured as relative abundance of the different 

species constituting the richness of an area. The Pielou’s evenness index 

was high in all the stations except S4 during postmonsoon season followed 
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by monsoon (except in Stn. S3 and S7) and premonsoon seasons (Fig. 3.3). 

In Stn. S4, high evenness was during monsoon followed by postmonsoon 

and premonsoon seasons. Stn. S3 and S7 exhibited high evenness during 

postmonsoon followed by premonsoon season. The abundance of each 

species varies highly on the basis of its relationship with other species 

thereby affecting the patterns of assembling or groupings are established at 

locations throughout the region (Paul et al., 2007).  

  Decreased salinity, low temperature and mixing of fresh water 

favoured the rapid growth of both freshwater and marine species thereby 

creating a favourable environment for the even distribution of phytoplankton 

during postmonsoon season. 

3.4. Conclusion 

 The present study determined 73 phytoplankton genera from 19 

orders and 41 families. Biddulphiales evolved as the dominant order 

and the dominant family was Thalassiosiraceae. 

 The dominant phytoplankton identified were Skeletonema spp. during 

the entire study period.  

 In terms of abundance and diversity, diatoms formed the major groups 

compared to other taxonomic groups.  

 This study shows that waning of centric diatoms encouraged 

proliferation of pennate diatoms and blue-green algae in postmonsoon 

and declining of both centric and pennate diatoms encouraged 

proliferation of blue green algae during premonsoon. There is no 

change in dinoflagellate community in all seasons. 
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 The study concludes that lowest species diversity occurs in monsoon 

season and highest in postmonsoon season. The phytoplankton 

diversity in the barmouth remains same throughout the year. 

 The study concludes that phytoplankton community structure is well 

developed and stable during postmonsoon season in the coastal 

waters and estuarine station. 
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In one drop of water are found all the secrets of all the oceans; in one 
aspect of You are found all the aspects of existence.” 

  -Kahlil Gibran 

 

  



Chapter 4   Inherent and Apparent optical properties  

87 
Phytoplankton dynamics and its influence on optical properties 

4. Apparent and Inherent Optical 

Properties in coastal waters off Kochi 

4.1. Introduction 

 Ocean Optics is the branch of physics concerned with the interactions 

of light with ocean, as the light propagates through the ocean. There are two 

types of optical properties-Apparent optical properties and Inherent optical 

properties.  

An optical property of the water body that is dependent upon the spatial 

distribution of the incident radiation is apparent optical property (AOP) and 

an optical property of the water body which is totally independent of the 

spatial distribution of the radiation is known as inherent optical property 

(IOP). These properties determine the ‘colour’ of the oceans. When light hits 

the water surface, the different colours are absorbed, transmitted, scattered, 

or reflected in differing intensities by water molecules and optically-active 

constituents in suspension in the upper layer of the ocean.  

 Chla is considered as the main optically active variable affecting 

ocean colour. For case 2 waters apart from phytoplankton, other optically 

active substances (OAS) such as CDOM, total suspended matter (TSM) 

contribute significantly to the water leaving reflectance (Morel and Prieur 

1977; Gordon et al., 1988). Links between optical properties, pigment 

composition of phytoplankton and other photosynthetic parameters are 

reported recently (Morel 1997; Kahru and Mitchell 1998; Stuart et al.,1998; 

Stramski et al., 2001;Aiken et al., 2004; Barlow et al., 2002, 2004; Moore et 

al., 2005; Fishwick et al., 2006). But these links are seriously affected by 
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phytoplankton communities including species, differing in size structure and 

pigment composition. Optical properties of surface waters, affected by 

variability in phytoplankton communities, can be described by identifying 

factors that are co-varying with Chla (Ciotti et al., 2002). The relationships 

among optical properties and phytoplankton community structure were 

evaluated and showed that many optical characteristics varied significantly 

by a change in phytoplankton community structure (Barron et al., 2014).   

 The absorption characteristics of three optically-distinct phytoplankton 

classes from measurements of total phytoplankton absorption coefficient and 

Chla concentration showed a representation of three phytoplankton classes 

pico-, nano- and microphytoplankton (Devred et al., 2011). Remote sensing 

of size structure of phytoplankton communities using optical properties 

suggested that phytoplankton size was responsive to changes in SST 

(Fujiwara et al., 2011), to mixing, stratification, and stability within different 

regions of the Gulf of Maine (Sauer and Roesler 2013), to both dissolved and 

particle absorption and scattering properties (Barron et al., 2014). High 

variability in microphytoplankton a*ph coefficients between 400 and 500 nm 

was revealed by Brito et al., (2015).  

 Satellite remote sensing of ocean colour is the only method currently 

available for synoptic measurements of phytoplankton Chl biomass. 

Phytoplankton cells contain Chl that absorbs light and contributes green 

colour to ocean waters. Chla, specific form of chlorophyll used in oxygenic 

photosynthesis absorbs most energy from wavelengths of violet-blue and 

orange-red light and reflects green or yellow light. Several empirical and 

semi-analytical algorithms have been proposed for the retrieval of Chl       
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from satellite ocean colour data (Gordon et al., 1983; Carder et al., 1999; 

O’Reilly et al., 2000; Lee et al., 2002). These algorithms were based on the 

non-linear relationship between oceanic reflectance and in-situ measured 

Chla (Marghany and Hashim 2010), more precisely the ratios of reflectance 

in blue and green bands or their combinations (Gordon and Morel 1983; 

O’Reilly et al., 1998, 2000; Montres- Hugo et al., 2008).  

 Remote sensing reflectance (Rrs) is an apparent optical property in 

which the electromagnetic radiation reflected or emitted from an object is 

identified, measured or analysed by a sensor without direct contact. The 

reflectance properties of an object depend on the particular material and its 

physicochemical characteristics, surface roughness and geometric 

circumstances. The reflectance spectrum shape characteristics are highly 

affected by the trophic and humic state of the waters (Pulliainen et al., 

2001). Variations in radiance reflectance in Case 2 waters are affected by 

the concentrations of OAS (Pierson and Strombeck 2001). Kutser et al., 

(2006) reported an ‘abnormal’ shape of the remote sensing reflectance 

spectra when concentrations of OAS were high. The study carried out by 

Cannizaro and Carder (2006) showed that, in non-coastal oligotrophic 

waters, the peak Rrs was at 400 nm which was shifted to ~490 nm in highly 

reflective, optically shallow, mesotrophic waters and ~560nm in optically 

deep eutrophic waters. Ouillon and Petrenko (2005) also reported          

peak Rrs at 443 and 490 nm in case 1 water and at 560 nm in                 

case 2 waters. Thus the apparent optical properties (AOP) of             

aquatic media, such as Rrs, largely affected by OAS along with the 

geometry of ambient light field and the effect can be quantified using     

IOP’s of the OAS (Morel1991; Mobley 1994; Mishra and Mishra 2012). The  
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fundamental IOP influencing the Rrs are absorption (a), scattering (b) and 

volume scattering function (β). The volume scattering describes the angular 

distribution of light scattered from an incident beam. In the absence of 

inelastic scattering, IOP of a medium is completely determined by the 

absorption coefficient and β. These when combined with the angular and 

spectral distribution of the incident radiance field just below the surface, the 

full radiative flux balance of the ocean can be simulated. It also works as a 

key to current applications measured from remote airborne and satellite 

platforms (Lee and Lewis 2003). Studies using hyperspectral radiometers, on 

the relationships between IOP and concentration of OAS, indicated the 

presence of identifiable sub-types of coastal water within the conventional 

Case 2 classification (Mckee and Cunningham 2006).  The detection and 

differentiation between phytoplankton size classes based on their optical 

signatures carried out by a new model showed that nanophytoplankton and 

microphytoplankton populations are high in surface waters of Arabian Sea 

(Varunan and shanmugam 2015).  In SEAS, so far no attempts were done to 

study the link between IOP and concentration of OAS using hyperspectral 

radiometers. In this Chapter efforts were taken to understand, how the 

different communities of phytoplankton categorized according to their size 

and dominant taxa affect the shape of phytoplankton absorption and remote 

sensing reflectance spectra. 

4.2. Materials and Methods 

4.2.1. Optically active substances 

 The data collected on a monthly frequency from 8 stations during 

2010 and 2011 were used for absorption studies. The data for the distribution 

of OAS and reflectance studies carried out using Hyperspectral radiometer 

operated in the study area from 2009 to 2011.  

 OAS such as Chla, CDOM and β measured using SatlanticTM 

hyperspectral  radiometer.  The  radiometer  was  equipped  with  ECO triplet 
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sensor (WetlabsTM ECO series) which measures chlorophyll fluorescence, 

CDOM fluorescence (measures as Quinine sulphate dehydrate equivalent) 

and β at 650 nm. The data from hyperspectral radiometer was recorded 

using SatViewTM software and multi-level processing was carried out using 

ProsoftTM software (Details are given in chapter 2). 

4.2.2. Phytoplankton absorption  

 For measuring phytoplankton absorption, 0.2 to 2 L of seawater were 

filtered through 25 mm Whatman GF/F filters of 0.7µm pore size, with low 

pressure (25mm Hg pressure) and measured using Shimadzu UV-2450 

attached with integrating sphere (Mitchell and Kahru 1998). Detailed 

methodology explained in Chapter 2. 

4.2.3. Remote sensing Reflectance (Rrs) 

 Remote sensing reflectance is the upwelling radiance emerging from 

the ocean divided by the downwelling irradiance reaching the water surface. 

It is proportional to the ratio of backscattering (bb), and absorption (a), 

coefficients, [bb/(a+bb)] (Morel and Prieur 1977). Remote sensing 

reflectance was measured using hyperspectral radiometer. 

The spectral Rrs was computed as 

𝑅𝑟𝑠 0+,𝜆 =
𝐿𝑤 0+,𝜆 

𝐸𝑑 0+,𝜆 
      ---------- (1) 

where Lw (0+, λ) is water leaving radiance and Ed (0+, λ) is downwelling 

irradiance above the sea surface. Further, the upwelling radiance and 

downwelling radiance were computed as follows. 

𝐸𝑑 0+,𝜆 =
𝐸𝑑 0−𝜆 

1−𝛼
      ---------- (2) 
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where 
 α – Fresnel reflection albedo for irradiance from sun and sky 
And 

𝐿𝑤 0+,𝜆 = 𝐿𝑢 0−,𝜆 
 1−𝜌 𝜆 ,𝜃  

𝜂𝑤
2  𝜆 

    ---------- (3) 

where  

ρ(λ,θ) – Fresnel reflectance index of seawater 

ηw(λ) – Fresnel refractive index of seawater  

  The derivative analysis was performed to identify the 

absorption and reflectance peaks of each pigment. The convexity and 

concavity of a given absorption curve from the derivative analysis is useful 

for separating the secondary absorption peaks and shoulders produced by 

algal pigments in regions of overlapping absorption. The 4th derivative 

analysis was concentrated, since the magnitude of the 2nd derivative does 

not provide a reliable measure of the concentration of photosynthetic 

pigments, due to the absorption contributed by overlapping pigments effect 

(Gomez et al., 2001). The maxima of the 4th derivative occur close to or at 

wavelengths where there are absorption peaks attributable to photosynthetic 

pigments. The procedure was carried out using Microcal Origin 8.0 Scientific 

analysis software. The fourth derivative of the a*ph(λ) and Rrs(λ) was 

calculated by applying a 41 point fourth-degree polynomial smoothing and 

then differentiating using the Savitzky- Golay method (Savitzky and Golay 

1964).  The polynomial smoothing was applied because differentiation tends 

to amplify the effects of high-frequency noise in the spectra (Aguirre- Gomes 

et al., 2001). Peaks in the fourth derivative curves were selected using the 

peak finder tool in the software. 
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4.3. Results and Discussion 

4.3.1. Distribution of Optically Active Substances 

 The analysis of spatio-temporal variability in OAS (Chla and CDOM) 

and their IOP (β at 650 nm) has been carried out based on the frequency 

distribution of these substances (Fig. 4.1). The volume scattering function, β, 

when integrated into backward direction provides estimates of backscattering 

(Beardsley and Zaneveld 1969; Balch et al., 2001). The backscattering at a 

longer wavelength, especially in red, is more sensitive to the suspended 

matter. Hence by analyzing ‘β’, we can interpret the effect of suspended 

sediment. The frequency distribution showed large variability in the OAS over 

the sampling period in the study area. The Chla concentration varied 

between 0.077 and 23 mg m-3 (Fig. 4.1.a). The maximum concentration of 

Chla was recorded during the month of October 2010 (23.99mg m-3) 

whereas the minimum was during November 2010 (St-02, 0.077 mg m-3). 

Further, it was also observed that number of stations encountered within the 

Chla range of 0.077 to 5 mg m-3. The coefficient of volume scattering 

function, β, ranged between 0.0002 m-1 sr-1 (November 2010) and 0.0070 m-

1sr-1(April 2009) (Fig. 4.1.b). The β values between 0.0002 to 0.002 m-1 sr-1 

occurred most frequently. 

 The frequency distribution of CDOM (QSDE) showed the range of 

0.39 to 2.75 ppb L-1 (Fig. 4.1.c). The maximum value of 2.75 ppb L-1 was 

recorded during April 2009 whereas the minimum value of 0.39 ppb L-1 was 

during January 2011. High frequency was observed in concentrations 

ranging from 0.8 to 2.4 ppb L-1.The distribution of these OAS was controlled 
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by hydrography of the study area. The study area is subjected to coastal 

upwelling and heavy freshwater discharge from the estuary of Periyar River 

in monsoon period which enhances nutrient uptake resulting in the increased 

biological production (Nair et al., 1992; Jyothibabu et al., 2006). Studies by 

Srinivas et al., (2003) also reported that the coastal waters of SEAS are the 

recipient of approximately 1.9×1010 m3 of freshwater annually from the 

Cochin backwaters. The study concludes that Chla in the study area far high 

along with β and CDOM (QSDE). 

4.3.2. Seasonal variations in Absorption by Phytoplankton based on 

high and low Shannon Weiner index  

 Absorption by phytoplankton in 3 seasons from stations with high and 

low Shannon-Weiner index described in Chapter 3 was shown in Fig. 4.2. 

The phytoplankton absorption at blue and red wavelengths depends on the 

species diversity and seasons. During monsoon season, when the 

phytoplankton species diversity was high, maximum absorption, measured 

was at 440 nm (0.760 m-1) and it shifted to 430 nm when the diversity was 

low. The absorption coefficient during low diversity was 0.689 m-1. 

 In postmonsoon, the absorption coefficients were 0.508 m-1 at 436 nm 

during high diversity and 0.397 m-1 at 439 nm during low diversity. During 

premonsoon, the absorption was comparatively low and it was 0.150 m-1 at 

437 nm and 0.047 m-1 at 436 nm during high and low phytoplankton 

diversity. Postmonsoon season showed lower absorption coefficient 

compared to monsoon season and the difference in aph values at blue and 

red region was clear in the stations with high and low diversity index. 
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Compared to monsoon and postmonsoon, the lowest aph values were 

observed during the premonsoon season. The phytoplankton absorption 

peak showed a shift from the usual 440 nm towards shorter wave length. 

 

 

 

 

  

650 
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Figure 4.2. Phytoplankton absorption spectra from the stations with 
highest (H) and lowest (L) Shannon-Weiner diversity index during the 
three seasons (monsoon, postmonsoon and premonsoon). X-axis 
represented by wavelength ranging from 400-750 nm and Y axis by 
phytoplankton absorption coefficient expressed as m-1. 
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Table 4.1. Summary of photosynthetic pigment absorption maxima 
determined by fourth derivative analysis in this study 

Wave lengths (nm) of absorption in seasons 
in high (H) or low (L) concentrations 

Pigment  

Group 

Reference 

Monsoon Postmonsoon Premonsoon 

High Low High Low High Low 

438 438 438 440 439 441 Chlorophyll a Prezelin and Alberte 
(1978); 
 Prezlin and Boczar 
(1986);  
Gomez et al., (2001) 

467 465 467 467 465 466 

 

Chlorophyll c 

Peridinin 

Millie, Kirkpatrick and 
Vinyard (1995);  
Millie et al., (1997);  
Goericke and Repeta 
(1993) 

497 493 495 495 491 495 Phycourobilin Millie, Kirkpatrick and 
Vinyard (1995);  
Millie et al., (1997):  
Louchard et al., (2002) 

- 546 - 541 542 542 Phycoerythrobilin Ong et al., (1984) 

588 - 590 592 585 584 Chlorophyll b Millie et al., (1997) 

641 639 641 641 641 646 Chlorophyll c Millie, Kirkpatrick and 
Vinyard (1995);  
Millie et al., (1997) 

677 674 675 675 676 675 Chlorophyll a Prezelin and Alberte 
(1978); Gomez et al., 
(2001) 

 

 A fourth derivative analysis was performed to identify the pigment 

peak contributions other than Chla (Fig.4.3). The fourth derivative analysis 

identified peaks at 438-441 nm and 674-677 nm for Chla, 465-467,639-641 

nm for Chlc, 491-497 nm for phycourobilin and 541-546 nm for 

phycoerythrobilin.  Peaks at 584-592 nm were identified for Chlb (Table 4.1.). 

The results of the derivative analysis showed that Cochin coastal waters are 

dominated by phytoplankton containing pigments such as Chla, Chlb and 

Chlc, peridinin, diadinoxanthin, fucoxanthin, β-carotene and 

phycoerythrobilin. Pigment phycoerythrobilin was present during monsoon  
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7

 

Figure 4.3. Fourth derivative analysis of phytoplankton absorption 
spectra from the stations exhibited with highest (H) and lowest (L) 
Shannon-Weiner diversity index during three seasons (monsoon, 
postmonsoon and premonsoon). X axis represented by wavelength 
ranging from 400-750 nm and Y axis by phytoplankton absorption 
coefficient after performing 41 point Savitsky–Golay polynomial 
smoothing and differentiation. 
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and postmonsoon seasons when the Shannon-Weiner diversity (H’ index) 

was low, while premonsoon season showed the pigment during both high 

and low phytoplankton diversity index. (Bricaud and Stramski 1990; Morel 

and Ahn 1990; Babin et al., 1993). Peridinin is the biomarker pigment of 

dinoflagellates. Phycoerythrobilin, a subtype of the pigment phycobiliproteins 

are the light harvesting pigment found in cyanobacteria, rhodophytes and 

cryptophytes. Fucoxanthin and diadinoxanthin are carotenoid pigments found 

in diatoms, prymnesiophytes, raphidophytes, and chrysophytes (Hsiu-Ping et 

al., 2002). The pigment β carotene is found in cyanobacteria. Shaju et al., 

(2015) identified Fucoxanthin and diadinoxanthin, the carotenoid pigments 

found in the diatoms using the derivatives peaks from the study area. 

 From the peaks of the fourth derivative analysis, pigments contributing 

to the phytoplankton absorption were identified. Chlorophyll a, chlorophyll 

b,chlorophyll c, peridinin, phycourobilin and phycoerythrobilin are the 

pigments identified using the 4th derivative analysis. Shifting of absorption to 

shorter wavelengths in different seasons and diversity variation was due to 

the influence of the high amount of non-algal particles by the decomposition 

of Chl or the superimposition of some other pigments. These studies provide 

an insight into the presence of diverse phytoplankton species in the region. 
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4.3.3. Remote Sensing Reflectance 

The Rrs data measured using hyperspectral radiometer exhibited three 

different types of spectra and their spectral variability was shown in Fig. 4.4. 

Based on the variability in Rrs spectra, the coastal waters off Cochin are 

optically classified into three types. Type-I (T1) waters had spectra (Fig 

4.4.a) with flatter curve between 400 to 450 nm which then increased to a 

maximum at 482 nm. After 482 nm, Rrs decreased gradually to 608 nm and 

then the curve flattened again till 700 nm indicating no reflectance in the 

region. 

 The spectral Rrs in Type-II (TII) waters (Fig 4.4.b) was found to be 

distinct from that of T1. The average Rrs increased gradually from shorter 

wavelength (400 nm) and showed almost flat region between 532 nm and 

566 nm with marginally higher value at 560 nm. Beyond 560 nm a steep 

decrease was observed till 610 nm. After which the decrease was gradual till 

670 nm. A secondary maximum was also present at 681 nm. The Rrs spectra 

in Type-III (TIII) waters (Fig 4.4.c) showed similarity to that of the Type-II at a 

longer wavelength. In this type, a steep increase in Rrs was seen from 400 

nm till 570 nm. The peak Rrs was more prominent. The spectral behaviour of 

Rrs from 570 nm to 700 nm in TIII was similar to that of Type-II. However, the 

secondary maximum was more prominent at 684 nm with high magnitude. 

 The distribution of OAS within different water types were analysed for 

evidencing the difference in Rrs spectral shapes. In Type-I waters, Rrs spectra 

showed the maximum in the blue (400 to 480 nm) and almost negligible in 

the red region (beyond 600 nm). The variability in the concentration of Chla 

and CDOM was very low in this water type with a standard deviation of less 

than 50% of the average value. The β650 also showed less variability in this 

water types. The low concentration in the distribution of OAS in Type-I 

waters was responsible for least absorption in the shorter wavelength 

resulting in high Rrs. However, the lower Rrs in the longer wavelength may be 

attributed to the strong absorption due to water molecules. This shows that 

the water molecules were the principal light absorbing component in this 

water type along with Chla. 



Chapter 4   Inherent and Apparent optical properties  

101 
Phytoplankton dynamics and its influence on optical properties 

 

Figure 4.4. Mean and standard deviation of three classes of reflectance 
spectra obtained during the study. X axis represents wavelength (nm) 
and Y axis represents coefficient of reflectance (Sr-1) 
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The result was is in agreement with the previous studies carried out in 

oligotrophic waters of Lakshadweep Islands, hyper oligotrophic waters in the 

South Pacific gyre and in the Chesapeake Bay wherein the authors have 

shown that the water molecules are the major component responsible for the 

absorption in longer wavelength resulting in minimal variability of Rrs (Menon 

et al., 2005; Morel et al., 2007; Tzortziou et al., 2007).  

  The spectral signature of Rrs in Type-II waters showed the 

significant difference at the shorter wavelength. In Type-II, waters Chla 

concentration and β650 was tenfold higher than in Type-I waters. Also, the 

CDOM concentration was almost twice in magnitude. The phytoplankton 

pigment, Chla, has a primary absorption peak in the blue region (~ 440 nm). 

Apart from this CDOM also has a tendency for strong absorption in UV and 

blue region (Jorgenson, 1999; Siegal et al., 2002; Menon et al., 2005). 

Therefore, the respective signature of Rrs in Type-II waters was 

predominantly due to the combined effect of absorption due to Chla and 

CDOM.  

 In Type-III waters, the peak in the Rrs spectra was shifted more 

towards the longer wavelength as compared to that in Type-II waters. In 

addition, the peak Rrs was more prominent as compared to Type-I and II 

waters. In this water type, β650 was comparable with Type-II waters. 

However, Chla and CDOM concentration were found to be increased by 64% 

and 76% respectively. The impact of Chla and CDOM absorption has further 

increased in this type of waters which resulted in still lower Rrs at the shorter 

wavelength. The results showed that CDOM significantly influences the 

water leaving radiance at the shorter wavelengths and its impact can be 

spread up to 650 nm (Menon et al., 2006). Kutser et al., (2006) reported an 

‘abnormal’ shape of the Rrs spectra when the concentrations of optically 
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active substances were high. The study carried out by Cannizaro and Carder 

(2006) showed that, in non-coastal oligotrophic waters, the peak Rrs was at 

400 nm which was shifted to ~490 nm in highly reflective, optically shallow, 

mesotrophic waters and ~560nm in optically deep eutrophic waters. Ouillon 

and Petrenko (2005) also reported peak Rrs at 443 and 490 nm in case 1 

water and at 560 nm in case 2 waters. 

 The study concludes that concentration of OAS plays an important 

role in determining the Rrs signals in the study area. In Type-I waters Chla, 

CDOM and β650 were very low indicating that these were pure Case-I waters 

and the peak Rrs was in the blue band. In Type-II waters, the peak Rrs shifted 

to the green band which was attributed to the elevated concentration of Chla, 

CDOM and β650. In Type-III waters, the peak Rrs further shifted to longer 

wavelengths due to an increase in Chla and CDOM. 

4.3.4. Performance of 4th Derivative analysis 

 Differences between optical signatures between phytoplankton 

species are reflected in the location of local maxima and minima in the 

reflectance spectrum and changes in the relative height of characteristic 

peaks with changes in phytoplankton concentration. The different pigment 

composition of different phytoplankton species results in different location of 

local maxima and minima in the reflectance spectrum (Soja-Wozniak et al., 

2017). It is under the assumption that the positive peaks in the absorption 

spectra corresponding to a negative peak in the reflectance spectra. In order 

to understand the contribution of different pigments to the reflectance 

spectrum, a 4th derivative analysis of remote sensing reflectance spectra 

were carried and is shown in Figure 4.5. The noise level in the 4th derivative 

analysis of remote sensing reflectance spectra was minimum for    

wavelength ranging from 400 nm to 553 nm). Towards the red region of the 

visible spectra, the noise level was higher especially at wavelengths    

ranging between 665 nm to 711 nm. Figure 4.6 showed the              

derivative spectra for 3 types of remote sensing reflectance        

corresponding to Chla 0.2516 mg m-3 (± 0.174), 7.403 mg m-3                      

(± 4.81) and 11.491 mg m-3 (± 6.778) respectively for Type-I, II and III waters.  
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As the Chla concentration increased, the shape of the derivative spectra also 

became distinct. 

 

Figure 4.5. Fourth derivative analysis of the Remote sensing reflectance 
spectra from the study area.  X axis represented by wavelength ranging from 
400-700 nm and Y axis by remote sensing reflectance after performing 41 
point Savitsky–Golay polynomial smoothing and differentiation. 

 

 Derivative analysis of Type-I reflectance spectra differed in the blue 

region with that of Type-II and Type-III. The positive peaks at 451±1 nm, 480 

±1 nm and negative peaks at 465±1 nm and 493±1 nm in Type-II spectra were 

absent in Type-I waters. The intensity of peaks was comparatively less for 

Type-I waters except for at wavelength 515±1 nm. No markable difference was 

observed between Type-II and Type-III spectra. The only difference attributed 

to distinguish Type-III spectra from Type-II is the intensity of the            

negative   peak at 665 nm. The positive peak at 685 nm reported by            

Kirk (2011)   corresponding  to   the   sum   of    irradiance  produced   through  
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natural fluorescence emission by Chla and elastic scattering were absent in 

the derivative data. 
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Figure 4.6.Fourth derivative analysis of the three types of Remote 

sensing reflectance spectra from the study area.  X axis represented by 

wavelength ranging from 400-700 nm and Y axis by remote sensing 

reflectance after performing 41 point Savitsky–Golay polynomial 

smoothing and differentiation. 

 

The positive peaks identified for pigments in the absorption spectra is 

matching with the negative peaks of remote sensing reflectance spectra. The 

positive peaks at 451±1 nm identified in the 4th derivative analysis of Type-II 

and III reflectance spectra corresponds to contribution by picoplankton and at 
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568±3 nm by microphytoplankton, especially diatoms. Large peaks at 450nm 

associated with picoplankton (Uitz et al., 2015).  The signals for diatoms 

were evidenced at 570nm of the 4th derivative reflectance spectra (Soja-

Wozniak et al., 2017) 

4.3.5. The Interrelationship of Chlorophyll a with CDOM and β650 

 Analysis of inter-relationship of Chla with CDOM and β650 in different 

water types is shown in Fig 4.7. The Chla and CDOM did not show any 

significant inter-relationship in Type-1 waters. This indicated that the CDOM 

was independent of the variations in Chla in these waters. However, a large 

association seen in Type-II and Type-III waters. In these waters, the 

concentration of Chla and CDOM was very high. The covariance of Chla with 

CDOM indicated that the source of nutrient, for phytoplankton growth, and 

organic matter was same. Since the primary source of CDOM was from the 

riverine sources, it can be inferred that river discharge was one of the 

primary forcing mechanism for distribution of Chla and CDOM in the study 

area (Nair, Devassy, and Madhupratap 1992; Jyothibabu et al., 2006;  



Chapter 4   Inherent and Apparent optical properties  

108 
Phytoplankton dynamics and its influence on optical properties 

 

 

Figure. 4.7. Scatter plot showing relation between (a) insitu chlorophyll-
a (Chla) and CDOM in QSDE unit (b) insitu Chla and β. The plus () sign 
corresponds to Type-I, open triangle (Δ) correspond to Type-II and 
open circles (○) correspond to Type-III waters. 
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Minu et al., 2014). The 650 did not show any significant relationship with 

Chla in any of the water types. This shows that Chla and suspended matter 

do not covary in water types. Hence it can be inferred that river discharge is 

not the primary source of suspended matter in the study area. Studies by 

Thomas et al., (2004), Srinivas et al., (2003) and Jyothibabu et al., (2006) 

reported that continuous dredging process in the study area occurring 

around the year drains increased nutrient and sediment load from the 

estuary into the coastal waters. 

4.4. Conclusion 

 Phytoplankton containing pigments such as Chla, Chlb, Chlc, 

peridinin, diadinoxanthin, fucoxanthin, β carotene and 

phycoerythrobilin identified from the results of derivative analysis 

dominated in these waters.  

 The Rrsspectra exhibited three distinct water types based on its 

variability.  

 Type-I waters exhibited very low Chla, CDOM and β650 indicating that 

these were case-I waters and peak Rrs was in the blue band.  

 Type-II waters had the peak Rrs shifted to the green band which was 

attributed to the elevated concentration of Chla, CDOM and β650.  

 The peak Rrs further shifted to longer wavelength in Type-III waters, 

due to increase in Chla and CDOM.  

 Further, Chla was found to be associated with CDOM indicating that 

river is one of the primary sources for discharging essential 

parameters for the growth of phytoplankton.  

 From the derivative analysis of remotes sensing reflectance, marker 

peaks for picoplankton and microplankton were evident, while it failed 

to distinct peaks for nanophytoplankton. 
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 The strong water absorption can be studied from reflectance peaks 

corresponding to 571nm to 602 nm, picophytoplankton from 451±1, 

nanophytoplankton from negative peaks around 515±2 nm and 600±2 

nm and microplankton from 568±3 nm in the study area.  

 Apart from this, picoplankton dominates in the Type-II and Type-III 

waters.  
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You can't cross the sea merely by standing and staring at the water 
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5. Performance of Operational Empirical 

Algorithms 
5.1. Introduction 

 Validation of Chl algorithms have been widely done in Arabian 

Sea(AS). The phytoplankton distribution in the Arabian Sea (AS) using IRS-

P4 OCM (Indian Remote Sensing Satellite- P4 Ocean Colour Monitor) data 

exhibited relatively low Chla concentration in the southern part compared to 

northern part of the Sea. The retrieval of Chla using sea-leaving radiance 

from Modular Optoelectronics Scanner (MOS-B) showed failure of single 

ratio of Coastal Zone Colour Scanner (CZCS) algorithm in AS (Sathe and 

Jadhav 2001). They also reported that the two factor algorithm of SeaWIFS 

fails in 30% of the cases.  Further, Nagamani et al., (2008) reported that 

OC4v4 algorithm overestimates Chla in northern AS when compared to 

Maximum Band Ratio (MBR) based OCM-2 algorithm. In addition to these 

Chauhan et al., (2002) evaluated the accuracy, precision and suitability of 

different ocean colour algorithms for AS. According to his study OC2 and 

OC4 algorithms performed well in Case 1 waters of AS. But both algorithms 

failed to estimate Chl in Trichodesmium dominated waters. Tilstone et al., 

(2011) also assessed three algorithms, OC4v6, Carder and OC5, for 

retrieving Chla in coastal areas of the Bay of Bengal and open ocean areas 

of the AS. Based on the accuracy of assessment, they recommended the 

use of OC5 algorithm in the area of study. 

 The development of Ocean chlorophyll 2-band (OC2) and ocean 

chlorophyll 4-band (OC4) algorithms was done using SeaBAM data set. The 

OC2 algorithm was revised (OC2 v2) based on an extensive data set of 
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1,174 in-situ observations and thereafter with the SIMBIOS data set (McClain 

and Fargion 1999). O’Reilly et al., (2000) updated OC2 and OC4 with 2,853 

insitudata sets (OC2v2 and OC4v4) and suggested the need to determine 

accuracy of these revised algorithms in lowest Chl concentrations. 

  The distributions of CDOM and DOC in coastal waters of south 

China were studied by Chen et al., (2004) and research on the absorption of 

CDOM fluorescence in the Pearl River estuary were done by Hong et al., 

(2005). According to them, the regionality and complexity of Case 2 waters 

ruled out employing universally applicable model. The retrieval of Chla based 

on phytoplankton abundance failed in the turbid coastal waters and enclosed 

marine basins which are mainly influenced by suspended particles and 

CDOM of terrigenous origin. (Gordon et al., 1980, 1983; Smith and Baker 

1982; Kowalzuk et al., 2005). CDOM absorption, as a major variable in 

remote sensing algorithms, was included during evaluation of data from the 

CZCS mission. The relationship between CDOM, phytoplankton pigments 

and suspended detrital particles were established from the model simulations 

but failed to quantify these optical substances which is necessary for model 

evaluation, testing and optimization (Prieur and Sathyendranath 1981; 

Sathyendranath et al., 1989; Carder et al., 1991; Tassan 1994). The spatial 

and temporal distribution of aCDOM (440) in Mandovi and Zuari estuaries, 

carried out using OCM after applying an algorithm developed for the site, 

exhibited a good correlation between satellite derived CDOM and insitu data 

(Menon et al., 2011). The effect of CDOM concentration can prevail up to 

650 nm of the optical spectrum of electromagnetic radiation, if it exists in high 

concentration (Menon et al., 2005). 



Chapter 5  Validation of Algorithms 

119 
Phytoplankton dynamics and its influence on optical properties 

Table 5.1. Table showing the Characteristics of Sensors with their respective algorithms 

 

 

(Source IOCCG Report No. 1)

 

 
Ocean Colour 

Monitor 

MODIS-

AQUA 

SeaWIFS OCTS CZCS MERIS 

 OCM 2 OC3M-547 OC4 OC4O OC3C OC4E 

Agency ISRO (India) NASA (USA) NASA (USA) NASDA (Japan) NASA (USA) ESA (Europe) 

Satellite Oceansat-2 (India) Aqua (EOS-

PM1) 

OrbView-2 

(USA) 

ADEOS (Japan) Nimbus-7 (USA) Envisat-1 

(Europe) 

Launch Date 23/09/2009 04/05/02 
01/08/97 

17/08/96 - 

01/07/97 

24/10/78 - 

22/06/86 

01/03/02 

Swath (Km) 1420 2330 2806 1400 1556 1150 

Resolution (M) 1-4 km 1000 1100 700 825 300/1200 

# Of Bands 8 36 8 12 6 15 

Spectral 

Covrage 

(Nm) 

400 - 900 405-14385 402-885 402-12500 433-12500 412-1050 
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Numerous bio-optical algorithms have been developed to retrieve CDOM 

absorption or closely related products from ocean colour satellite 

observations including SeaWiFS, MODIS and MERIS. These algorithms 

determines the aCDOM and detrital (non-pigmented) particles as a single 

parameter (adg), since CDOM and detritus have similar spectral responses in 

the visible spectrum (Bricaud et al 2012; Carder et al 1999; Doerffer and 

Schiller 2007; Hoge et al 2001; Lee et al 2010; Lee et al 2002; Maritorena et 

al 2002; Siegel et al 2005; Siegel et al  2005; Tilstone et al., 2012; Werdell et 

al., 2013).The empirical algorithms presently used for retrieving SeaWIFS 

and MODIS data based on ratios of algorithms aims at simultaneous retrieval 

of several inherent optical properties. The maximal absorption by yellow 

substance (CDOM) (at 400 nm) and by algae (at ~440 nm) are found within 

the violet-blue region (Morel 1980) of the visible spectrum. It is found that the 

slopes in the 400 to 440 nm domain of the absorption spectra by CDOM 

decreases and by that of phytoplankton increases. This information can be 

used to discriminate aCDOM and aph (Morel and Gentili 2009).                        

An algorithm has been developed for the MODIS, which uses both the 412 

and the 443 nm band to derive the absorption due to CDOM                  

(Carder et al., 1999). This algorithm takes advantage of the                       

fact that CDOM absorbs more strongly at 412 than at 443 nm, while 

phytoplankton absorbs more strongly at 443 than at 412 nm. In               

Case 1 waters, retrieval of adg  using  inversion  algorithms yields reasonable  
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results (Siegel, Maritorena, Nelson, Behrenfeld, & McClain 2005; Siegel et 

al., 2002), but in coastal waters it fails due to high levels of CDOM, coloured 

detrital particles, and phytoplankton (Aurin & Dierssen 2012). Remote 

sensing algorithms for estimating CDOM in coastal waters by linking the 

CDOM absorption with apparent optical properties have been initiated by 

Kowalczuk et al., (2003). The spatial and temporal variability of CDOM in the 

California Current has been studied by applying SeaWIFS imagery (Kahru 

and Mitchell 1999, 2001). A quantitative understanding of autochthonous 

production or removal of CDOM allows us to better identify occasions where 

(Kowalczuk et al., 2006) suitable algorithms can be used for its retrieval from 

space. Regionally tuned Tassan’s or Carder’s ag440 algorithm retrieved 

ag440 with uncertainties as high as 35% when applied in the Yellow and East 

China Sea (Siswanto et al., 2011). Tehrani et al., (2013) developed seasonal 

band ratio empirical algorithms to estimate DOC using the relationships 

between CDOM and Rrs and seasonal CDOM and DOC for SeaWiFS, 

MODIS and MERIS. Results revealed accurate estimation of DOC during 

summer time and underestimation during spring-winter time by both MODIS 

and MERIS.  

 A study performed with Rrs’s of HICO at estuaries of the river Indus 

and GBM of North Indian Ocean suggested the need for ocean colour 

sensors with central wavelength’s of 426, 484, 490, 581 and 610 nm to 

estimate the concentrations of Chla, Suspended Sediments and CDOM in 

case-2 waters (Rao et al., 2016). Only a few algorithms have undergone 

rigorous validation involving direct comparison of field measurements with 

coincident satellite data. The primary limitation to rigorous validation is the 
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lack of sufficient data of coincident field measurements and satellite 

observations that are independent from the data used to develop the 

algorithm.  Hence a study was carried to understand the dynamics of CDOM 

and the performance of MODIS adg443 retrieval algorithm in the coastal 

waters off Cochin, SEAS. 

5.2. Materials and Methods 

5.2.1. Chlorophyll Algorithms 

 Six operational empirical algorithms (OC3C, OC4O, OC4, OC4E, 

OC3M, OC4O2) were selected for this study. The data used for the study 

were between April 2009 and 2011. The algorithms selected have been 

operationally implemented as default algorithms for Coastal Zone Colour 

Scanner (CZCS), Ocean Colour and Temperature Scanner (OCTS), Sea-

viewing Wide Field-of-view Sensor (SeaWiFS), Medium Resolution Imaging 

Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Ocean Colour Monitor (OCM2). The characteristics of sensors 

with their respective algorithms are shown in Table 5.1 and the functional 

forms of these algorithms are given in Table 5.2. 

 The algorithms designed for ocean colour sensors such as Coastal 

Zone Colour Scanner (CZCS), Ocean Colour and Temperature Scanner 

(OCTS), Medium Resolution Imaging Spectrometer (MERIS), Sea-viewing 

Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) have undergone several revisions based on the 

insitu data generated from different water types.  
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 The OC2 algorithm, designed for CZCS, has undergone eight 

versions (OC2a, OC2b, OC2c, OC2d, OC2e, OC2, OC2v2 and OC2v4). 

OC2a algorithm was a modified cubic polynomial using Rrs at 412 and 

555nm. OC2b uses Rrs at 443nm instead of 412 nm in OC2a. OC2c uses 

Rrs520 and OC2d Rrs510 instead of Rrs412 in the original algorithm.  These 

algorithms were very sensitive and produced unrealistically high Chl 

estimates in cases of high gelbstoff, detrital and accessory pigment 

absorption, hence in 1998, NASA announced a revised version of OC2 

algorithm(OC2v2), which eliminated overestimation at high concentrations of 

Chl (O’Reilley et al.,1998). OC2v2, a modified cubic polynomial uses band 

ratio of Rrs490 and Rrs555 but it highlighted the underestimation in the 

intermediate Chl range (Kahru and Mitchell 1998). The OC2v2 algorithm is 

similar to OC2 except for the value of coefficients. OC2v4 algorithm operates 

with five coefficients and has a modified cubic polynomial form and it 

differswith only the value of coefficients of OC2v2. The latest of which is 

OC3C which has a modified cubic polynomial form. 

 The OC4O algorithm, designed for OCTS (Ocean Chlorophyll 4-Band 

OCTS) is a 4th-order polynomial function relating the maximum of three band 

ratios and has version 4 (O'Reilly et al., 2000). The OC4O algorithm uses 

band ratio of Rrs443,490 and 520 with Rrs 565. 

 The OC4E algorithm, designed for MERIS uses Rrs443, Rrs443, 490 

and 510 and 565.All the bands are as same as OC4 algorithm except in the 

reference wavelength (In OC4 Rrs 555 is used).OC4E algorithm is the tuned 

version of OC4v4 (O'Reilly et al. 2000). 
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 The OC4 algorithm, designed for SeaWiFS has two versions (OC4 

and OC4v4). The first version of OC4 (O’Reilly et al. 1998) was a modified 

cubic polynomial (i.e., a third order polynomial plus an extra coefficient) with 

4 bands of Rrs spectra and the current version of OC4 uses a fourth order 

polynomial with five coefficients(O’Reilley et al., 2000, Maritorena and 

O’Reilley 2000).  

 The OC3 algorithm, designed for MODIS had undergone two versions 

(OC3d, and OC3e). OC3 algorithm incorporates 443 nm and 488 nm bands. 

OC3M also uses a fourth order polynomial function. 

 The default algorithm for OCM-2 is third order modified cubic 

polynomial which used the maximum ratio of four bands (Nagamani et al., 

2008). 

5.2.2. CDOM Algorithm 

 CDOM algorithm used in MODIS aqua sensor was used for validation. 

MODIS-Aqua Level-2 (L2) data over the study areas were acquired from 

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am, official website of 

Ocean Colour NASA. L2- IOP files were downloaded and data were 

processed using SeaDAS software.  MODIS-A uses six Rrs bands (412, 443, 

488, 531, 547 and 667 nm) for CDOM retrieval, with a spatial resolution of 

1.1 km and the data were acquired on the same dates of the field 

measurements from 2010–2015 (temporal window between satellite 

overpass and the time of field sampling = ±12 h).  The algorithm, 

developed by Carder et al., (1999), used in MODIS retrieves the absorption 

coefficients of the sum (adg m−1) of CDOM (ag m−1) and detritus (ad m
−1), 
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collectively named as CDM. This algorithm does not separate adg into ag and 

ad analytically and hence for this study the combined effect of adg is used.  

 The functional form of algorithm used to retrieve adg (443) in MODIS is 

an empirical power function based on the ratio of Rrs. 

adg (443) = 10 0.043−0.185𝑎0−1.081𝑎1+1.234𝑎2  

where 𝑎0 =
𝑅𝑟𝑠 (443)

𝑅𝑟𝑠 (551)
, 𝑎1 =

𝑅𝑟𝑠 (488)

𝑅𝑟𝑠 (551)
 and 𝑎2 =

𝑅𝑟𝑠 (667)

𝑅𝑟𝑠 (551)
. 

5.3. Results and Discussion 

5.3.1. Validation of Chlorophyll Algorithms 

 The scatter plot showing relation between insitu measured Chla and 

that derived using OC4, OC3C, OC4O, OC4E, OC3M and OC4O2 algorithm 

is given as Fig 5.1. The validation statistics has been computed using data 

from all water types. The corresponding statistical indicators are given in 

Table 5.3. The R2 was better in case of OC4 (0.70), which was also 

comparable with that of OC3M (0.68). Further OC4 and OC3M showed least 

Log10- Root Mean Square Error (Log10-RMSE=0.37). However, Absolute 

Percentage Difference (APD) (35.9%) was better in case of OC4 whereas 

OC3M showed better slope (0.69), Relative percentage difference (RPD) 

was (4.8%) and Unbiased percentage difference (UPD) was (17.1%). The 

intercept (i=0.07) was least in the case of OC4O and regression coefficient, 

'r' was closer to unity in case of OC4O2.  

 The inverse transform ratios also showed that OC3M performs better 

at the median scale with Fmed close to unity. The overall statistical analysis 
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showed that OC3M and OC4 produced comparable results having least 

significant difference between estimated and measured Chla. 

Table 5.2.: Table showing the functional forms of the algorithms used 
to generate Chla from Coastal Zone Colour Scanner (CZCS), Ocean 

Colour and Temperature Scanner (OCTS), Sea-viewing Wide Field-of-
view Sensor (SeaWiFS), Medium Resolution Imaging Spectrometer 

(MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and 
Ocean Colour Monitor 2 (OC4O2). 

Algorithm EQUATION Model 

Type 

OC2M 
R = log10  

𝑅𝑟𝑠488

𝑅𝑟𝑠547
  

𝑎 = [0.25,−2.4752,1.4061,−2.8237,0.5405] 

𝐶 = 10(𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎3𝑅

3) + 𝑎4 

Modified 

Cubic 

Polynomial 

OCM2 

MBR 𝑅 = log10{max   
𝑅𝑟𝑠443

𝑅𝑟𝑠555
 ,  

𝑅𝑟𝑠490

𝑅𝑟𝑠555
 ,  

𝑅𝑟𝑠510

𝑅𝑟𝑠555
  } 

𝑎 = [0.475,−3.029, 2.240,−1.253,−0.027] 

𝐶 = 10(𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎3𝑅

3) + 𝑎4 

Modified 

Cubic 

Polynomial 

OC3M 

MBR 𝑅 = log10
 max   

𝑅𝑅𝑠443

𝑅𝑅𝑠547
  

𝑅𝑟𝑠488

𝑅𝑟𝑠547
   

 

𝑎 = [0.2424,−2.7423,1.8017,0.0015,−1.228] 

𝐶 = 10(𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎3𝑅

3+𝑎4𝑅
4) 

Fourth 

Order 

Polynomial 

OC4 

MBR 𝑅 = log10{max   
𝑅𝑟𝑠443

𝑅𝑟𝑠555
 ,  

𝑅𝑟𝑠489

𝑅𝑟𝑠555
 ,  

𝑅𝑟𝑠510

𝑅𝑟𝑠555
  } 

𝑎 = [0.3272,−2.9940, 2.7218,−1.2259,−0.5683] 

𝐶 = 10(𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎4𝑅

4) 

4
th

 Order 

Polynomial 

OC4O 

MBR 
𝑅 = log10{max[(

𝑅𝑟𝑠443

𝑅𝑟𝑠565
) ,  

𝑅𝑟𝑠490

𝑅𝑟𝑠565
 , (

𝑅𝑟𝑠520

𝑅𝑟𝑠565
)]} 

𝑎 = [0.3325,−2.8275,3.0939,−2.0917,−0.0257] 

𝐶 = 10(𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎3𝑅

3+𝑎4𝑅
4) 

4
th

 Order 

Polynomial 

OC3C 

MBR 

 

𝑅 = log10{max[ 
𝑅𝑟𝑠443

𝑅𝑟𝑠550
 ,  

𝑅𝑟𝑠520

𝑅𝑟𝑠550
 ]} 

𝑎 = [0.330,−4.377, 7.6267,−7.1457, 1.6673] 

𝐶 = 10(𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎3𝑅

3+𝑎4𝑅
4) 

4
th

 Order 

Polynomial 

OC4E 

MBR 

 

𝑅 = log10{[(
𝑅𝑟𝑠443

𝑅𝑟𝑠560
) ,  

𝑅𝑟𝑠490

𝑅𝑟𝑠560
 , (

𝑅𝑟𝑠510

𝑅𝑟𝑠560
)]} 

𝑎 = [0.3255,−2.7677, 2.4409,−1.1288,−0.4990] 

𝐶 = 10𝑎0+𝑎1𝑅+𝑎2𝑅
2+𝑎3𝑅

3+𝑎4𝑅
4
 

4
th

 Order 

Polynomial 
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 Although the validation has been carried out for the entire data set, 

the accuracy of the algorithms was also evaluated in the different water 

types. The assessment of measured and estimated Chla in type-1 waters 

(Details in Chapter 4) showed a good agreement with a coefficient of 

determination (R2) of 0.93 in the case of OC4O, OC4, OC4E and OC3M and 

0.89 in the case of OC3C. The Chla estimated using OC4O2 algorithm 

showed relatively lower correlation (R2=0.74). However, the measured Chla 

was lower in magnitude than the estimated Chla, having a slope of 1.06, 

0.60, 0.68, 0.67, 0.71 and 0.68 for OC3C, OC4O, OC4, OC4E, OC3M and 

OC4O2 respectively. 

 The result based on the statistical analysis indicated that OC3M 

performs better than other algorithm in Type-I waters. In Type-II waters, it 

was observed that a cluster of points having Chla concentration between 9.0 

to 13 mg-m-3 had a poor relation between estimated and measured Chla. At 

these points, β650 was tenfold higher than that in Type-I waters. In addition, 

the CDOM was higher than the average value (2.1 to 2.5 ppb Quinine 

Sulphate Dihydrate Equivalents, QSDE). In the absence of this cluster, the 

estimated and measured Chla had moderate agreement in case of OC3C 

(R2=0.52), OC4 (R2=0.67), OC4E (R2=0.67), OC3M (R2=0.67) and OC4O2 

(R2=0.67). In this water type estimated Chla was lower in magnitude than the 

measured with a slope of 0.59, 0.50, 0.63, 0.63, 0.90 and 0.88 for OC3C, 

OC4O, OC4, OC4E, OC3M and OC4O2 respectively. Based on the 

statistical analysis comparable result was seen between OC3M and OC4O2. 

The performance of both these algorithms was better than other algorithm in 

Type-II waters. In Type-III waters estimated Chlawas found to be higher in 
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magnitude as compared to measured Chla. The slope of regression was 

1.46, 1.45, 1.39, 1.65, 1.44 and 1.84 for OC3C, OC4O, OC4, OC4E, OC3M 

and OC4O2 respectively. Although the estimated and measured Chlawas 

found to be variable in magnitude, the trend was in good agreement. The R2 

was 0.68, 0.63, 0.69, 0.66, 0.70 and 0.70 for OC3C, OC4O, OC4, OC4E, 

OC3M and OC4O2 respectively. The result based on the statistical analysis, 

in Type-III waters, indicated that OC3M and OC4 performs better. 
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Figure. 5.1.Correlation between insitu Chla and that derived using OC4, 

OC3C, OC4O, OC4E, OC3M and OC4O2 algorithms in Type-I (plus), II 

(triangle) and III (circle) waters. The solid line indicate the trend and the 

dottedlinecorrespondsto1:1. 

 Among all the algorithms OC3M and OC4 performed better in the 

study area. In general all algorithms showed that, in Type-I waters, the 

measured Chla was less than that of estimated Chl. These waters were 

having typical case-1 characteristics. Also, the Rrs signals were dominated in 

443 nm band(Chapter 4. Fig.4.4). In Type-II waters cluster of points was 

found to be weakly correlated. Further in Type-II waters the dominant signal 

in Rrs was from blue-green band.  

 In the case of OC4, OC4E and OC4O2 the dominant Rrs signal was 

from 510 nm whereas it was 520 nm in the case of OC3C and OC4O. For 

OC3M Rrs signal was dominated by the 488 nm band. Similar conditions 

were observed in Type-III waters. The performance of all the algorithms were 

poor in Type-II waters where as it was comparatively better in Type-III 

waters. Although the Type-II and Type-III waters were having Chla and  
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Table 5.3. : Performance indices for relative errors between insitu measured and estimated Chla from insitu Rrs 

using OC3C, OC4O, OC4, OC4E, OC3M and OC4O2 algorithms. These indices include correlation 

coeffcient (R2), slope (s), intercept (I), summation of ratio of measured to estimated (r), root mean squared 

error (RMSE), absolute percentage difference (APD), relative percentage difference (RPD) and unbiased 

percentage difference (UPD). The geometric mean and one-sigma range of the ratio (F =Valuealg/Valuemeas) 

are given by Fmed, Fmin, and Fmax, respectively. The values closer to 1 are more accurate. Total 42 data 

points were used for the analysis.

Algorithm R
2
 S I r RMSE APD RPD UPD Fmin Fmed Fmax 

OC3C 0.66 0.65 0.11 1.74 0.39 41.0 17.2 29.8 0.50 1.21 2.94 

OC4O 0.65 0.63 0.07 1.95 0.41 40.3 23.6 36.5 0.56 1.36 3.34 

OC4 0.70 0.67 0.10 1.69 0.37 35.9 16.3 26.7 0.53 1.22 2.82 

OC4E 0.67 0.67 0.10 1.70 0.38 37.2 16.6 27.7 0.50 1.20 2.88 

OC3M 0.68 0.69 0.16 1.47 0.37 50.4 4.8 17.1 0.44 1.04 2.45 

OC4O2 0.54 0.54 0.35 1.21 0.45 47.1 3.26 30.1 0.29 0.82 2.29 
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CDOM concentration tenfold higher than Type-I waters. The covariance 

between Chla and CDOM was significantly higher in Type-III waters.  

 Desa et al. (2001) showed that the ratio of Rrs at 490 to 555 nm is a 

better indicator of Chlain eastern AS. They illustrated significant 

improvement in R2(0.93), slope (0.96) and intercept (0.26) by modifying 

SeaWiFS OC4v4 coefficients. HoweverShanmugam (2011) suggested that 

although OC3 reliably estimates Chlain open ocean waters, it tends to fails in 

the coastal waters of the AS. The Chlaand CDOM compete for absorption of 

light in almost similar wavelengths in the blue region. As a result the signal 

emerging out from the water column carries signature of both Chlaand 

CDOM. The empirical algorithms takes the ratio of blue to green band with 

an assumption that water leaving radiance decreases in blue band width 

increase in Chla concentration. However, if the water column is dominated 

by Chla and CDOM, both significantly contribute for decrease in water 

leaving radiance in blue band. In such a scenario the performance of ratio 

based algorithms weakens for retrieval of Chla. In the earlier studies 

Tzortziou et al. (2007) also reported that the failure of MODIS algorithm in 

inshore waters of Chesapeake Bay was due the large contribution by non co-

varying CDOM and non-algal particles to total light absorption in the blue. 

The study concludes that OCM and OC4 algorithms can be used in retrieval 

of Chla in the area. The performance of these algorithms is better during 

eutrophic conditions, where waters are of Type-III. Further, the ratio Rrs 490 

to Rrs 555 can be used in estimating Chl from Rrs data. 
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5.3.2. Validation of CDOM Algorithms 
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Figure 5.2. Monthly variation of Absorption by CDOM at 443nm during 
2010, 2011, 2012, 2013 and 2014. X axis represents Months and Y axis 
represents coefficient of absorption by CDOM at 443nm.aCDOM(m-1) 

  

Figure 5.3. Matchup analysis between insitu (solid line) adg(443) data 

and MODISA (symbols) data. In X axis stations are plotted and in Y axis 

adg (443) coefficients are plotted. 

 The monthly variation in aCDOM (443) spanning 5 years were studied 

from 2010 to 2014 in the study area (Fig. 5.2). Monthly variations in the 2010 

-2014 showed similar trends in monthly variation of absorption by CDOM at 
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443nm. The trend followed a zig-zag pattern with maximum during June in 

2010 and 2011. After June, eventhough the pattern remained same, the 

absorption showed a decreasing trend. In 2012 February, the absorption was 

very high. 2014 also had high absorption values with maximum during 

January.   

 Matchup analysis between insitu measured absorption by detritus and 

gelbstoff at 443 nm (adg443) and ag443M from MODIS Aqua sensor were 

done (Figure 5.3.).  All together 25 matchup data were obtained from 

MODISA during the period 2010 to 2014 December. Due to heavy cloud 

coverage satellite data over SEASare limited.  The raw data exhibited a few 

matchups between insitu and satellite data. The insitu data ranged from 

0.003 m-1 to 1.49 m-1 while satellite data ranged between 0.0344 m-1 and 

1.0847 m-1. In Stations 0 to 10 and 22-26, insitu data was over estimated by 

satellite data whereas Stations 11-19 underestimation of insitu data was 

observed. A few matchups were observed when the insitu data falls between 

0.15 and 0.3 m-1.  

 Since the matchup analysis didn’t work for raw data, another 

correlation analysis was performed using insitu data and ratio of Chla and 

CDOM data obtained from satellite (Figure 5.4). The analysis exhibited a 

negative correlation between the two with R2 0.484. To know the influence of 

seasons, the data corresponding to two seasons were analysed separately 

and correlation analyses were performed.   
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Figure 5.4. Matchup analysis between insituadg(443) data and ratio between 
MODISA Chl and CDOM.  

 

Figure 5.5. Matchup analysis between insituadg(443) data and ratio 
between MODISA Chla and CDOM during Premonsoon and 
Postmonsoon. 
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Premonsoon season exhibited a tuned algorithm as follows 

Log10 (insitu CDOM) =1.61779-1.58259* Log10 (Chl/CDOM) 

For post monsoon season, the algorithm was as follows 

Log10 (insitu CDOM) =1.23526-1.61945* Log10 (Chl/CDOM) 

 Both data exhibited negative correlation. The R2 value for 

premonsoon season and postmonsoon season were 0.79 and 0.77 

respectively. The data points from satellite for both the seasons were low 

because of cloud coverage in the area.  

 The origin of CDOM in marine waters was mainly by the 

decomposition of biological activity and by terrestrial input such as river 

discharge. Hence, CDOM absorption may be related to phytoplankton 

biomass or salinity. However, adg(443) in Cochin coastal waters did not 

correlate with Chla (Minu et al., 2014). During January and February (late 

postmonsoon and early premonsoon) occurs phytoplankton blooms along 

with preshowers of southwest monsoon. The high phytoplankton density 

results in increased decomposition of organic matter during the senescence 

of bloom. This results in high CDOM production. The peaks found during 

January and February coincides with the phytoplankton blooms.  

 MODIS aqua data was biased when the annual data were taken for 

correlation. Since the CDOM absorption showed monthly variations, the data 

when taken as a whole exhibited bias. This bias was reduced when the data 

were splitted to two seasons and when the ratio of Chl and CDOM were 

taken. It was expected that during monsoon and postmonsoon season the 

CDOM absorption should exceed Chl, however, the coastal waters off 



Chapter 5  Validation of Algorithms 

138 
Phytoplankton dynamics and its influence on optical properties 

Cochin are considered as eutrophic environment promoting phytoplankton 

production far more than organic matter production (Lathika et al 2013, 

Bhavya et al 2016). 

The study concludes that algorithms for retrieving adg(443) has to be season 

specific.  

5.4. Conclusion  

 The present study primarily focussed on the evaluation of six empirical 

algorithms (OC3C, OC4O, OC4, OC4E, OC3M and OC4O2), 

operationally used to retrieve Chla from CZCS, OCTS, SeaWiFS, 

MERIS, MODIS and OCM-2.  

 The algorithms were applied to the spectral Rrs measured in situ using 

hyperspectral radiometer with an intention to assess the functional 

form and the coefficients.  

 The overall statistical analysis showed that the performance of OC3M 

and OC4 was better as compared to other algorithms. 

 Further in the case of Chlamore than 1.0 mg-m-3 it was found that the 

ratio of higher wavelength (488, 510 and 520 nm) dominates.  

 The assessment of algorithms in different water types indicated better 

performance of all the algorithms in Type-I waters.  

 The performance was poor in Type-II and Type-III waters. The errors 

associated with the estimation of Chlaco-varied with CDOM in Type-III 

waters.  

 CDOM absorption algorithms need to be tuned for different seasons in 

the area. Therefore, in the regions where there is dominance of OAS 
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other than Chla, developing IOP based algorithm that takes into 

account of absorption and scattering due to individual OAS is 

required. 
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6. Summary and Conclusion
The studies on phytoplankton dynamics in the coastal waters of the

Southeastern Arabian Sea in different seasons exhibited 73 genera of

phytoplankton from 19 orders and 41 families. The numerical abundance of

phytoplankton varied from 14.235×103 to 55.075×106cells L-1. Centric

diatoms dominated in the region and the largest family identified was

Thalassiosiraceae with main genera as Skeletonema spp., Planktionella spp.

and Thalassiosira spp. Annual variations in abundance of phytoplankton

showed a typical one-peak cycle, with the highest recorded during

premonsoon season and the lowest during monsoon season. The species

diversity index of phytoplankton exhibited low diversity during monsoon

season.

Phytoplankton diversity also played a major role in determining the

inherent optical properties in the area. The absorption coefficients and

wavelength at peak absorption varied significantly with high and low diversity

irrespective of seasons. Phytoplankton with pigments Chla, Chlb, Chlc,

peridinin, diadinoxanthin, fucoxanthin, β-carotene and phycoerythrobilin

dominated in these waters. From the derivative analysis of Rrs, marker peaks

for picoplankton and microplankton was evident, while it failed to distinct

peaks for nanophytoplankton. The strong water absorption can be studied

from reflectance peaks corresponding to 571nm to 602 nm,

picophytoplankton from 451±1nm, nanophytoplankton from negative peaks

around 515±2 nm and 600±2 nm and microplankton from 568±3 nm in the
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study area. Apart from this, picoplankton dominates in the Type-II and Type-

III waters.

The alteration of dominance between the groups from diatoms to

dinoflagellate and cyanobacteria, in different seasons can result in significant

changes in the light absorption by phytoplankton pigments in the region. This

inturn affects the ocean colour estimation used for various applications. Thus

the data on the phytoplankton numerical abundance and diversity along with

its absorption properties in the present study will provide insight to

community dynamics and to the phytoplankton pigment composition of this

water mass.

The concentration of Chla, an index of phytoplankton biomass, played

a major role in the spectral variance of apparent optical properties. The

variations in OAS such as Chla, CDOM and β650 showed three distinct water

types associated with 3 different spectral Rrs. Low Chla resulted in spectral

Rrs peak at 470 nm in the blue band in the Type-I waters. The tenfold

increase in Chla concentration and β650 resulted in reflectance peaking at

560 nm. 64% increase in Chla concentration further resulted in shifting of Rrs

peak at 570 nm. The study concluded that an increase in concentration of

OAS results in shifting of the peak Rrs at the longer wavelength.

The six bio-optical algorithms (OC3C, OC4O, OC4, OC4E, OC3M and

OC4O2) used operationally to retrieve Chla from CZCS, OCTS, SeaWiFS,

MERIS, MODIS and OCM2. For Chla concentration greater than 1.0 mg m-3,

algorithms based on the reference band ratios 488/510/520 nm
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to547/550/555/560/565 nm have to be considered. The assessment of

algorithms showed better performance of OC3M and OC4. All the algorithms

exhibited better performance in Type-I waters. However, the performance

was poor in Type-II and Type-III waters which could be attributed to the

significant co-variance of Chla with CDOM.

The Chla and CDOM compete for absorption of light at almost similar

wavelengths in the blue region. As a result, the signal emerging from the

water column carries signatures of both Chla and CDOM. The empirical

algorithms take the ratio of the blue to the green band with an assumption

that the water leaving radiance decreases in the blue band with an increase

in Chla concentration. If the water column is dominated by Chla and CDOM,

both significantly contribute to the decrease in the water leaving radiance in

the blue band. In such a scenario, the performance of a ratio based

algorithms weakens the retrieval of Chla.

Future Recommendations

 Understanding the dynamics of individual phytoplankton and their

absorption studies can be used to indicate major differences in

phytoplankton absorption spectra, which forms the basis of ocean

colour remote sensing, with respect to seasons in the area.

 Interpretation of pigment data can improved by analysis of pure

strains of local algal cultures under a range of conditions

 Size fractionation of samples will facilitate studies by removing large

diatoms from the nanoplankton and picoplankton, thereby
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understand their contribution to the inherent and apparent optical

properties in the region.

 Hyperspectral radiometer measurements has to be carried out

continuously irrespective of seasons to records the spectral

underwater light field at depth, reaching the depths of phytoplankton

maxima (10 to 30meters) and deeper.

 The concentration of optically active substances has to be validated

using valuable ocean colour remote-sensing measurements.
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