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Chapter 1

Introduction

1.1 Motivation

The analysis of time series in classical setup utilizes Gaussian linear models to

explain the phenomenon. With this assumption, the inference procedures result in

explicit forms and tractable solutions, while the real life data are more explained

by the non-Gaussian models. In this direction, many non-Gaussian models are

available in the literature.

Nowadays, modelling of high frequency data in financial markets is of great interest.

The information from trade durations, volume of the trade of a commodity and the

price of each commodity can be utilized to study the movement of stock in the

market. Engle and Russell (1998) proposed conditional duration models to analyse

this type of irregularly spaced financial transaction data. Due to the availability of

these intraday day price data, more sophisticated models are introduced to study

such data. The complex structure and the intractable forms of the likelihood func-

tion motivated many researchers in proposing new estimation methods to explain

the properties of the estimators in detail. In view of this, many researchers have

contributed estimation methods to the existing literature.

1



Chapter 1. Introduction 2

Our main objective in this thesis is to study and develop non-Gaussian time series

models and to device or utilise some estimation methods in analysing financial data.

1.2 Time series examples

Time series is a series of observations observed over a period of time ‘t’. Typically,

the observations can be collected over an entire interval, randomly sampled on

an interval or at fixed time points. Different types of sampling require different

approaches to data analysis. The time series analysis is concerned with analysing

and modelling the observations in order to extract the inherent information of the

data. Let us discuss some examples where the data is recorded against time.

Example 1.1. In the first example, we consider the GDP growth (annual %) of

India obtained from World Bank website. The data consists of 56 observations from

1961 to 2016. The time series plot is shown in Figure 1.1.

Example 1.2. Here, we consider the monthly price of Coconut Oil (Philippines/In-

donesia in Indian Rupee per Metric Ton). The data is obtained from World Bank

website. The data consists of 240 observations from July 1997 to June 2017. The

time series plot of the data is shown in Figure 1.2.

Example 1.3. In the third example, we consider daily maximum of BSE Index

from May 18th 2006 to June 27st 2007. There are 277 observations. The plots of

the actual time series is shown in Figure 1.3. (https : //in.finance.yahoo.com)

Some other examples are (1) monthly price of commodities, (2) currency exchange

rate of two countries, (3) daily price of share indices, (4) inflation rate, (5) transac-

tion data in security markets etc.
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Figure 1.1: GDP growth (annual %) of India from 1961 to 2016.
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Figure 1.2: Monthly coconut oil price from July 1997 to June 2017

1.3 Basic Concepts

1.3.1 Stochastic Process

Let (Ω,F ,P) be a given probability space. A collection of random variables

{Zt, t ≥ 0} defined on the probability space (Ω,F ,P) is called a stochastic process.
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Figure 1.3: Time series plot of daily maximum of BSE Index values

In other words, a stochastic process is a collection {Zt, t ∈ T} of random variables

Zt, T being some indexed set, usually an interval of real numbers. An observed time

series {z1, z2, . . . zn} can be thought of as a particular realization function from a

certain stochastic process. Let {Zt, t ∈ T} be a stochastic process. For a fixed

ω : Zt(ω) is a function on T , called a sample function or realization of the process.

It is usually written as Z(t) or Zt. The mean function and variance function of the

process are defined as µt = E(Zt) and σt
2 = V (Zt) = E(Zt−µt)2, where V (.) is the

variance function of the process.

To analyse time series data, we need to find suitable mathematical model for the

data. The model is utilised to study the nature of the data. As the observations

are possibly unpredictable, the series {zt, t = 1, 2, . . . , n} can be thought of as a

particular realization from a certain stochastic process.
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1.3.2 White noise process

The process {at} is said to be white noise with mean 0 and variance σ2, written

{at} ∼ WN(0, σ2), if and only if {at} has zero mean and covariance function

ν(k) =


σ2 if k = 0

0 if k = 0

.

If the random variable at are independent and identically distributed (iid) with

mean zero and variance σ2, then we shall write {at} ∼ iid(0, σ2).

1.3.3 Gaussian Time Series

The process {at} is a Gaussian time series if and only if the finite dimensional

distribution function of {at} are all multivariate normal.

1.3.4 Stationary Process

Stationarity is a kind of invariant property. It is a way to model the dependence

structure. There are two important forms of stationarity, weak stationarity and

strict stationarity.

1.3.4.1 Strict Stationarity

The time series {Zt} is said to be strictly stationary if we assume that the common

distribution function of the stochastic process does not change by a shift in time,
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i.e., if the joint densities of (Zt1 , Zt2 , . . . , Ztk)
′ and (Zt1+h

, Zt2+h
, . . . , Ztk+h

)′ are the

same for all positive integers k and for all t1, t2, . . . , tk, h ∈ Z. It supposes the

distributions are invariant over time. This is a very strong condition that is difficult

to verify in practice. A weaker version of stationarity is frequently referred to in

the literature as weak stationarity, covariance stationarity, stationarity in the wide

sense or second order stationarity.

1.3.4.2 Second order Stationarity/Weak stationarity

The time series {Zt} with index set Z = 0,±1,±2, . . . is said to be second order

stationary if

1. E|Zt2| <∞ for all t ∈ Z,

2. EZt = m for all t ∈ Z and

3. νZ(r, s) = νZ(r + t, s+ t) for all r, s, t ∈ Z,

where νZ(r, s) = Cov(Zr, Zs). If {Zt} is strictly stationary and its first two moments

are finite, then it is also weakly stationary, but the converse is not true. If {Zt}, t ∈ Z

is a weakly stationary Gaussian process then {Zt} is strictly stationary.

For a strictly stationary process, since the distribution function is same for all t, the

mean function E(Zt) = E(Zt−k) = µ is a constant, provided E(Zt) <∞. Likewise,

if E(Z2
t ) <∞, then V ar(Zt) = V ar(Zt−k) = σ2 for all t and hence is also a constant.
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1.3.5 Autocovariance Function

If {Zt} is a process such that V ar(Zt) <∞ for each t ∈ T , then the autocovariance

function νZ(., .) of {Zt} is defined by νZ(r, s) = Cov(Zr, Zs) = E[(Zr − EZr)(Zs −

EZs)], r, s ∈ T .

If {Zt}, t ∈ Z is stationary, then νZ(r, s) = νZ(r− s, 0) for all r, s ∈ Z. So the auto-

covariance function of a stationary process can be redefined as νZ(k) = νZ(k, 0) =

Cov(Zt, Zt−k) for all t, k ∈ Z. The function νZ(.) will be referred to as the autoco-

variance of {Zt} and νZ(k) as its value at lag ‘k’.

1.3.6 Autocorrelation Function

The correlation coefficient between Zt and Zt−k is called autocorrelation function

(ACF) at lag ‘k’ and is given by

ρZ(k) = Corr(Zt, Zt−k) =
Cov(Zt, Zt−k)√

V ar(Zt)
√
V ar(Zt−k)

. (1.1)

The ACF is a way to measure the linear relationship between an observation at

time t and t± k.
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1.3.7 Partial Autocorrelation Function

The Partial Autocorrelation Function (PACF) of a stationary process, {Zt}, denoted

by φk,k for k = 1, 2, . . . is defined by

φ1,1 = Corr(Z1, Z0) = ρ1

and

φk,k = Corr(Zk − Ẑk, Z0 − Ẑ0), k ≥ 2,

where Ẑk = l1Zk−1 + l2Zk−2 + . . .+ lk−1Z1 is the linear predictor. Both (Zk, Ẑk) and

(Z0, Ẑ0) are correlated with {Z1, Z2, . . . , Zk−1}. By stationarity, the PACF, φk,k is

the correlation between Zt and Zt−k obtained by fixing the effect of Zt−1, . . . , Zt−(k−1).

1.3.8 Decomposition of Time Series

An observed time series may exhibit time dependent factors such as trend and sea-

sonality, as well as stochastic time dependence. The decomposition of a time series

into various components can be achieved using suitable additive or multiplicative

models. The additive structural decomposition of a given time series {Wt} is given

by

Wt = mt + St + Et, t = 1, 2, . . . , n,

where mt is a slowly changing function known as the trend component, St is a

function with known period s referred to as seasonal component and Et = Wt −

mt − St is a random error component. Our aim is to estimate and extract the
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deterministic components mt and St. After eliminating the time-dependent factors,

the residuals or the noise component {Et} may be independent and identically

distributed or stationary. These residuals (random components) are treated as a

realization of some stationary stochastic process.

1.4 Linear Time Series

A time series Zt is said to be linear if it can be written as

Zt = µ+
∞∑
i=0

ϕiat−i,

where µ is the mean of Zt, ϕ0 = 1, and {at} is a sequence of iid random variables

with mean 0 and variance σ2 i.e., {at} is a white noise series. It is referred to as

the innovation or shock at time t. The dynamic structure of Zt is governed by the

coefficients ϕi, which are called the ϕ−weights of Zt in the time series literature.

These models are econometric and statistical models employed to describe the pat-

tern of the ϕ−weights of Zt. These models include Autoregressive, Moving Average,

Autoregressive Moving Average, Autoregressive Integrated Moving Average etc.

1.4.1 Autoregressive Models

The time series {Zt} is said to be an autoregressive process of order p, (AR(p)) if

it satisfies the equation

Zt − φ1Zt−1 − . . .− φpZt−p = at, t ∈ Z, (1.2)
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where at is a sequence of uncorrelated random variable with zero mean and finite

variance termed as innovations. In terms of backshift operators

Zt − φ1BZt − . . .− φpBpZt = at,

⇒ Φ(B)Zt = at where Φ(B) = 1 −
∑p

j=1 φjB
j, B is the backshift operator and

is defined such that BkZt = Zt−k and Φ(B) is referred to as the characteristic

polynomial associated with an AR(p) process. The process {Zt} is a linear function

of its own past values. The resulting AR(p) process is weakly stationary if the roots

of the characteristic equation Φ(B) = 0 lie outside the unit circle. For a stationary

AR(p) process, the autocorrelation function, ρZ(k), is obtained by solving a set of

difference equations called the Yule-Walker equations given by

(1− φ1B − φ2B
2 . . . φpB

p)ρZ(k) = 0, k > 0.

In particular, the autoregressive process of first order (p=1) is of practical impor-

tance. The first order autoregressive process, AR(1) is defined by

Zt = φZt−1 + at, (1.3)

where {at} ∼ WN(0, σ2) and φ satisfies the condition −1 < φ < 1 for the process

to be weakly stationary. The model (1.3) is like the regression model in which

the deviation from the mean at time t is regressed on itself, but with a lag of one

time period. Under stationarity, we have E(Zt) = 0, V (Zt) = σ2/(1 − φ2) and the

autocorrelation function is given by ρZ(k) = φk, k = 0, 1, . . . .The ACF of a weakly

stationary AR(1) series decays exponentially to zero with φ is positive, but decays
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exponentially to zero and oscillates in sign when φ is negative. If we assume that

the innovation sequence {at} is iid, then the AR(1) sequence is Markovian. The

PACF of Zt is

φ11 = ρ1 = φ and φkk = 0 for k > 1.

1.4.2 Moving Average Model

In this model the observed time series is represented as a finite moving average

process. A moving average model of order q (MA(q)) is defined by

Zt = at − θ1at−1 − θ2at−2 − . . .− θqat−q, (1.4)

or Zt = Θ(B)at, where Θ(B) = 1−θ1B−θ2B
2−. . . θqBq, is the characteristic polyno-

mial associated with the MA(q) model, where θ′is are constant, {at} ∼ WN(0, σ2).

In this model, the observation at time t, Zt is expressed as a linear function of the

present and past shocks. MA models are always weak stationary because they are

finite linear combinations of a white noise sequence for which the first two moments

are time invariant. From (1.4) E(Zt) = 0, V (Zt) = σ2
∑q

j=1 θ
2
j and the ACF is,

ρZ(k) =


−θk+θ1θk+1+...+θq−kθq

1+θ2
1+θ2

2+...+θ2
q

, k = 1, 2, . . . q

0, k > q

. (1.5)
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The ACF for a MA(q) model vanishes after lag ‘q’. When q = 1, (1.4) reduces to

an MA(1) model. The form of an MA(1) model is

Zt = at − θat−1, {at} ∼ WN(0, σ2) (1.6)

with the condition −1 < θ < 1 for the process to be invertible. The unconditional

variance of an MA(1) process is given by V (Zt) = (1 + θ2)σ2. The ACF of the

MA(1) process is

ρZ(k) =


−θ

1+θ2 , k = 1

0, k > 1

. (1.7)

and the PACF is given by

φkk =
−θk(1− θ2)

1− θ2(k+1)
, k ≥ 1. (1.8)

The PACF of an MA(1) model decays to zero exponentially.

1.4.3 Autoregressive Moving Average Models

A useful generalization of the pure autoregressive and pure moving average is the

mixed autoregressive moving average (ARMA) process. It contains the ideas of

AR and MA models into a compact form so that the number of parameters used

is kept small, achieving parsimony in parametrization. An ARMA(p, q) model is

represented as

Zt − φ1Zt−1 − φ2Zt−2 − . . .− φpZt−p = at − θ1at−1 − θ2at−2 . . .− θqat−q, (1.9)
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that is

(1− φ1B − φ2B
2 − . . .− φpBp)Zt = (1− θ1B − θ2B

2 . . .− θqBq)at

or

Φ(B)Zt = Θ(B)at, (1.10)

where Φ(B) and Θ(B) are polynomials of degree p and q in B. The model has

p AR terms and q MA terms. The model is stationary if AR(p) component is

stationary and invertible if MA(q) component is so. Letting p = q = 1, we have the

simplest and important example of an autoregressive moving average process, the

ARMA(1, 1) process is given by,

Zt − φZt−1 = at − θat−1. (1.11)

The process is stationary if −1 < φ < 1, and invertible if −1 < θ < 1. The mean

and variance of ARMA(1, 1) model is E(Zt) = 0 and V ar(Zt) = ν0 = E(Z2
t ). The

autocorrelation function is given by

ρZ(k) =
(1− θφ)(φ− θ)

1− 2θφ+ θ2
φk−1 fork ≥ 1. (1.12)

The autocorrelation function decays exponentially as the lag k increases . The

damping factor starts from initial value ρ1, which also depends on θ. One may refer

Box et al. (1994) for detailed analysis of linear time series.
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1.4.4 Autoregressive Integrated Moving Average Models

Many empirical time series do not have homogeneous stationary behaviour. A

time series Zt is said to follow an Autoregressive Integrated Moving Average Model

(ARIMA) model if the dth difference Wt = 5dZt = (1 − B)dZt is a stationary

ARMA process. Since Wt is then a stationary process, ARMA models can be used

to describe Wt. The corresponding model can be written as

Φ(B)(1−B)dZt = Θ(B)at, (1.13)

where Φ(B), Θ(B) and {at} are defined as in (1.10). The model (1.13) is called the

autoregressive integrated moving average model of order (p, d, q) and is denoted by

ARIMA(p, d, q).

1.5 Box Jenkins Modelling Techniques

The Box-Jenkins methodology uses ARMA or ARIMA models to model the data. It

is achieved by a three stage iterative procedure based on identification, estimation

and diagnostic checking. The first step is to identify a suitable model that may fit

the time series data. In the second stage, the unknown parameters in the model are

estimated. The third stage is to check for the model adequacy. If the model fails

the diagnostic checks, the appropriate model modification can be made by repeating

the first two stages. We shall explain each stages in more detail.
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1.5.1 Identification

In this stage, by using the data, or the information regarding the data generation

process, is utilized to identify and build a model. One of the principle tool for iden-

tifying the model is the ACF and PACF plots. The sample ACF plot and PACF

plot are compared to theoretical behaviour of these plots when the order is known.

These are estimated from the data. The autocorrelation function of an autoregres-

sive process of order p tails off, its partial autocorrelation function has a cut off

after lag p. Conversely, the autocorrelation function of moving average process of

order q has a cut off after lag q, while its partial autocorrelation tails off. A mixed

process is suggested when both the autocorrelation and partial autocorrelation tail

off. The autocorrelation function for a mixed process, containing a p− th order au-

toregressive component and a q− th order moving average component, is a mixture

of exponentials and damped sine waves after the first q−p lags. The PACF function

is dominated by a mixture of exponentials and damped sine waves after the first

p − q lags. Canonical correlation methods, AIC and BIC are the other approach

to model selection. According to Akaike (1973) Information Criterion (AIC), one

should select the model that minimizes

AIC = −2 log(maximum likelihood)+2 k, (1.14)

where k = p + q + 1, if the model contains an intercept term and k = p + q

otherwise. Another approach to determine the ARMA orders is to select a model

that minimizes the Schwarz (1978) Bayesian Information Criterion (BIC) defined
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as

BIC = −2 log(maximum likelihood)+k log(n), (1.15)

where k = p+ q + 1 and n is the (effective) sample size.

1.5.2 Parameter Estimation

One of the important aspect of time series analysis is to estimate the model param-

eters and hence various methods for estimating the parameters in a stationary time

series are available in literature (see Box et al. (1994)). Among them, the main ap-

proaches to fitting Box-Jenkins models are non-linear least squares and maximum

likelihood estimation. The least square (LS) estimator of a parameter is obtained

by minimizing the residual sum of squares function. For pure AR models, the LS

estimator leads to the linear ordinary least squares (OLS) estimators. If moving

average components are present, the LS estimator becomes non-linear and we must

resort to numerical optimization techniques. The Maximum Likelihood (ML) esti-

mators are those values of the parameters that maximize the likelihood function.

The advantage of the method of ML estimation is that, all of the information in the

data is used rather than just the first and second moments, as is the case with least

squares. Also, many large sample properties are known under general conditions

for ML estimators. Some of the other methods for estimating the model parameters

are Method of Moments (MM) and Generalized Method of Moments (GMM). For

pure AR models Yule-Walker estimate is also another choice of estimation procedure

when the ML estimation becomes difficult.
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1.5.3 Daignostic Method

The third stage in Box-Jenkins approach is called model diagnostic checking. After

estimating the parameters in a model, it is necessary to check whether the model

assumptions are satisfied. It involves techniques like over-fitting, residual plots and

checking that the residuals are approximately uncorrelated. If the assumptions are

not met, the model should be respecified. A good model should be able to produce

residuals that are approximately uncorrelated, that is, the autocorrelations of the

residuals should be close to being uncorrelated after taking into account the effect

of estimation. If the model is correctly specified, and the parameters are reasonably

close to the true values, then the residuals should have nearly the properties of a

white noise which gives the interpretation that the chosen model extracts almost

all of the information from the data. To check on the correlation of the noise terms

in the model, we consider the sample autocorrelation function of the residuals. The

asymptotic distribution of the residual autocorrelation play a central role. The key

reference on the distribution of residual autocorrelation in ARIMA model is Box

and Pierce (1970), the results of which were generalized in McLeod (1978). From

the asymptotic distribution of the residual autocorrelation we can derive tests for

individual residual autocorrelation and overall tests for an entire group of residual

autocorrelation assuming that the model is adequate. These overall tests are often

called portmanteau tests. The main idea underlying these portmanteau tests is to

identify if there is any dependence structure which is yet unexplained by the fitted

model.
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Ljung-Box test

Ljung and Box (1978) propose the portmanteau statistic

Q(m) = n(n+ 2)
m∑
k=1

ρ̂(k)2

n− k
,

as a test statistic for the null hypothesis H0 : ρ1 = ρ2 = . . . = ρm = 0 against

the alternative hypothesis Ha : ρi 6= 0 for some i ∈ {1, . . . ,m}. The decision rule

is to reject H0 if Q(m) > χ2
α, where χ2

α denotes the 100(1 − α)th percentile of a

chi-squared distribution with m degrees of freedom.

1.5.4 Forecasting

One of the primary objective of building a model for a time series is to be able to

forecast the values for that series at future time. To assess the precision of those

forecast is also of equal importance. For a linear time series model, Minimum Mean

Square Error (MMSE) forecasting method is widely used. To derive MMSE, we

first consider the stationary ARMA model,

Zt − φ1Zt−1 − φ2Zt−2 − . . .− φpZt−p = at − θ1at−1 − θ2at−2 . . . θqat−q

or

Φ(B)(1−B)dZt = Θ(B)at.

In terms of moving average

Zt =
Θ(B)

Φ(B)
at = Ψ(B)at =

∞∑
j=0

ϕjB
jat = at + ϕ1at−1 + ϕ2at−2 + . . . (1.16)
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with ϕ0 = 1. For t = n+ l, we have

Zn+l =
∞∑
j=0

ϕjat+l−j. (1.17)

Suppose at time t = n, we have the observations Zn, Zn−1, Zn−2, . . . and wish to

forecast l − step ahead value, Zn+l, as a linear combination of the observations

Zn, Zn−1, Zn−2, . . . . Since Zt for t = n, n−1, n−2, . . . can all be written in the form

of (1.17), we can let the MMSE forecast Zn(l) of Zn+l be

Ẑn(l) = ϕ∗1an + ϕ∗l+1an−1 + ϕ∗l+2an−2 + . . . ,

where the ϕ∗j are to be determined. The mean square error of the forecast is

E(Zn+l − Ẑn(l))2 = σ2

l−1∑
j=0

ϕ2
j + σ2

∞∑
j=0

(ϕl+1 − ϕ∗l+j)2,

which is seen to be minimized when ϕ∗l+j = ϕl+j. Hence,

Ẑn(l) = ϕlan + ϕl+1an−1 + ϕl+2an−2 + . . . ·

But using (1.17) and the fact that

E(an+j|Zn, Zn−1, . . .) =


0, j > 0,

an+j, j ≤ 0,

we have

E(Zn+l|Zn, Zn−1, . . .) = ϕlan + ϕl+1an−1 + ϕl+2an−2 + . . . ·
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Thus, the minimum mean square error forecast of Zn+l is given by its conditional

expectation. That is, Ẑn(l) = E(Zn+l|Zn, Zn−1, . . .). Ẑn(l) is usually read as the

l − step ahead of the forecast of Zn+l at the forecast origin n. The forecast error is

en(l) = Zn+l − Ẑn(l).

1.5.5 Illustration of Box-Jenkins Methodology

Here, we shall analyse and model the examples discussed in Section 1.2.

Example 1: The GDP data is taken from world bank website https://data.worldbank.org.

As the data is not stationarity, we consider the differenced series and the plot is

shown in Figure 1.4. The stationarity of the data is confirmed from Box.test() func-

tion in R which gives the p-value< 0.01. The ACF and PACF plots are shown in

Figure 1.5.

From ACF and PACF plots we suggest a MA(1) model for the series. The least

square fit of the model is

Ẑt = ât − 0.8627 at−1.

To check the adequacy of the model, we plot the ACF of residuals. Also, we perform

the Box.test() function in R program and obtained the p-value as 0.25 with Ljung-

Box statistic value 1.336, which is less than the Chi-square critical value 10.117 at

degrees of freedom 20, which does not reject the null hypothesis of independence in

the series. To check the normality of the innovations, the Anderson-Darling (AD)

normality test is performed with ‘nortest’ package in R and obtained the p-value as
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Figure 1.5: ACF and PACF plot for differenced annual gdp growth series

0.4789. This AD test performs the test for the composite hypothesis of normality.

The Q-Q plot is given in Figure 1.6. From the p-value of AD test and Figure 1.6

the normality assumptions are validated. So the MA(1) model fits the data.
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Figure 1.6: ACF and Q-Q plot of residuals for annual gdp growth series

Example 2: This example is the monthly price (Indian Rupee per Metric Ton) of

Coconut Oil (Philippines/Indonesia) which consists of 240 observations. As a first

step, we check the stationarity of the data. As the data is not stationary we consider

the first differenced series. The time series plot of the first differenced series is given

in Figure 1.7. The stationarity is tested with Augmented Dickey Fuller (ADF) test

and the differenced series is stationary with p-value < 0.01. Now, to identify a

model we plot the ACF and PACF of the data which is shown in Figure 1.8.

From the ACF and PACF we can see a significant spike in the PACF and a small

correlation in the ACF. So, an AR(1), MA(1) or ARMA(1,1) may fit the differenced

data. We have tested ARMA(p,q) models of orders 0 ≤ p ≤ 4, 0 ≤ q ≤ 4. To

compare these models we consider the AIC values. The resulting values are given

in Table 1.1. From the Table 1.1 and Figure 1.8 we conclude that, an ARMA(1,1)

model is of good fit, as ARMA(1,1) is having the lowest AIC value. The maximum

likelihood estimates of the parameters are obtained as φ̂1 = −0.7077 and θ̂1 =
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Figure 1.7: Stationary series of differenced monthly coconut oil price from July
1997 to June 2017
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Figure 1.8: ACF and PACF plot for differenced monthly coconut oil price

0.8733. Thus the fitted model is

Ẑt = 365.07 + Ẑt−1 − 0.7077 Ẑt−1 + ât − 0.8733 at−1.
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To check the adequacy of the model, the model diagnosis are done. We have plotted

the residuals of ACF in Figure 1.9, to check the autocorrelation in residuals . In

Figure 1.9 the ACF shows no significant correlation, which implies that the residuals

are uncorrelated. Also, the p-value obtained from the Ljung-Box test is 0.5097,

which does not reject the null hypothesis of independence in the series. Now, to

check the normality assumption we consider the Q-Q plot given in Figure 1.9. We

also perform the AD test and obtain the p-value< 0.0001, which shows that the

assumption of normality is not justified.

Figure 1.9: ACF and Q-Q plot of residuals for coconut Oil price data

Table 1.1: AIC of fitted models for differenced coconut oil price data

Order(p,q) 0 1 2 3 4
q −→, p ↓

0 AIC 4663.814 4664.643 4663.755 4665.650
1 4664.950 4661.486 4661.859 4665.313 4667.311
2 4666.017 4661.869 4663.547 4665.480 4664.233
3 4664.352 4666.344 4662.127 4656.952 4656.592
4 4666.348 4668.352 4666.263 4656.891 4658.540
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Here, one of the assumptions of the innovation series is not satisfied. So to model

this data or similar data sets, either some transformation to the data should be

performed or a non-Gaussian time series model should be introduced. Also, one can

utilise the available non-Gaussian time series models mentioned in the literature.

1.6 Non- Gaussian time series

The Box-Jenkins methodology of time series analysis focusses on stationary ARMA

models with Gaussian innovations. However, many real life situations are better

explained by non-Gaussian distributions. From Example 2, we can see the exis-

tence of such type of data. While modelling these type of data, the usual practice

is to make some transformations to data, so that the changes results in normal

distribution. But, in many cases, the transformation method results in poor results

(cf. Lawrance (1991)). So the characteristics of the data is studied by non-Gaussian

time series models. In view of this, many non-Gaussian models are developed during

the last four decades. This is evident from the studies of H. L. Nelson and Granger

(1979), Weiss (1977) and Yakowitz (1973). In the case of Gaussian models both

the series {Zt} and the innovations {at} have normal distributions whereas it is not

the case in non-Gaussian models. As the literature of the non-Gaussian models are

distribution specific, two approaches are studied in detail. Either to construct a

model which have predesignated marginal distribution or to consider a time series

model with pre-specified distribution for innovation. Some of the examples of former

class of models are Exponential autoregressive and Gamma autoregressive models

of Gaver and Lewis (1980) and Lawrance and Lewis (1985), Laplace AR models

of Dewald and Lewis (1985), Linnik AR models of Anderson and Arnold (1993),
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Mittag-Leffler AR model of Jayakumar and Pillai (1993), Inverse Gaussian model of

Abraham and Balakrishna (1999), Cauchy model of Balakrishna and Nampoothiri

(2003), Gumbel extreme value model of Balakrishna and Shiji (2014) and the ex-

amples for latter class are non-Gaussian ARMA model of Li and McLeod (1988),

first order autoregressive model with exponential innovations of Andel (1988), and

the models proposed by Bell and Smith (1986), Tiku et al. (2000), Hughes et al.

(2007), Hurlimann (2012), Bondon (2009) and so on.

1.7 Outline of the thesis

The studies on financial time series reveals the purpose to introduce new class of lin-

ear models. Chapter 2 discusses the specific literature of financial time series. The

models for financial time series can be broadly classified as observation driven and

parametric driven models. In observation driven models, the volatility (conditional

variance) is assumed to be a function of the past observations, which introduces

the heteroscedasticity in the models. The autoregressive conditional heteroscedas-

tic (ARCH) model of Engle (1982) and Generalized ARCH (GARCH) models of

Bollerslev (1986) are examples of these. The parameter driven models assume that

the volatilities are generated by some latent models, in terms of unobservable vari-

ables. These models are referred to as Stochastic Volatility (SV) models. The

Log-normal Stochastic Volatility model of Taylor (1986) is one of the examples of

parameter driven model. Then we discuss the concept of financial duration and

different types of financial duration processes. The statistical properties of financial

durations and the type of models used in modelling the duration are also discussed.

One of the difficulties in these duration models is to estimate the parameters. Also,
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we discuss some of the available estimation procedures in analysing the duration

models.

Generalized Error distribution (GED) is a natural generalization of the normal

distribution. As particular cases it includes the normal and Laplace distributions.

As the distribution has leptokurtic and mesokurtic forms for its different values

of its shape parameter it is used in the financial studies. This distribution was

introduced by Subbotin (1923) and was later used in robustness studies by Box and

Tiao (1962). In Chapter 3, we propose an ARMA model with GED innovations.

Firstly, we discuss the model and its properties. We estimate the parameters of the

model using conditional maximum likelihood and Generalised method of moments.

Thus the resulting estimators are shown to be consistent and asymptotically normal.

In the next Section, we carry out the simulation studies. As the last Section of the

Chapter, the applicability of the proposed model is illustrated using BSE 500 data.

The method involved in the parameter estimation for a specified model is very im-

portant as it affects the efficiency of the model. In AR(1) model, the least square

estimators is chosen as an estimate of the coefficient of autocorrelation, which shows

less efficiency when the distribution under study is heavy tailed or asymmetric. In

Chapter 4, we propose Hurwicz estimator for the coefficient of a first order autore-

gressive process with GED innovations. We study the performance of the Hurwicz

estimator and least square estimator through a Monte Carlo simulation study. Fi-

nally, the prediction interval of the one-step ahead observation of the autoregressive

process is considered. Also, some simulation studies are employed to investigate the

performance of the two estimators in predicting the future observation.
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In the study of financial time series, modelling the non-negative random variables

is of great importance to understand the evolution of conditional variances. The

changes in volatility (conditional variance) over time can be analysed by utilising

the statistical models for time-dependent variances. In these models, the time-

dependent variances are random variables generated by an underlying stochastic

process. One among them is the lognormal stochastic volatility model introduced by

Taylor (1986). In Chapter 5, we propose a Lindley SV model. Here, the volatilities

are generated by Lindley first order autoregressive process. The Lindley-SV model

and the second order properties of the model are studied. The parameter estimation

is carried out using the method of moments. The applicability of the model is

illustrated by analysing financial data set.

The empirical analysis of durations between the occurrences of certain financial

events is important in understanding the market behaviour. In Chapter 6, we pro-

pose a Lindley Autoregressive Conditional Duration (ACD) model. The increasing

nature of the hazard function of Lindley ACD model makes it as an alternative

distribution in modelling duration data. The parameter estimation of the proposed

model is carried out by conditional maximum likelihood method. The performance

of the estimation method are studied through simulation methods. Also, we study

the applicability of the Lindley ACD model in modelling real data.

In Chapter 7, we give a review on the existing literature of the Stochastic Condi-

tional Duration (SCD) models. One of difficulties in studying these models is in

estimating the parameters. So the parameter estimation procedures are analysed

and further, we propose Bayesian Monte Carlo Markov Chain (MCMC) methods to

estimate the parameters of an Inverse Gaussian SCD model. Simulation studies are
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conducted to analyse the behaviour of the proposed method. In the last Section,

the applicability of model is illustrated through IBM trades data and Brunt Crude

Oil data.

In Chapter 8, the major conclusions of the works in the thesis are presented. Also,

we briefly discuss some related problems as future study.





Chapter 2

Models for Financial Time Series

2.1 Introduction

One of the basic assumptions in the classical time series is the assumption of con-

stant variance with respect to time. But many of the financial time series usually

exhibit the characteristic feature that the variances change with time. Here, the

main objective is to model the volatility and forecast its future value. The key

feature that distinguishes financial time series is that both the financial theory and

its empirical time series contain an element of uncertainty. In view of this, a large

number of non-linear and non-Gaussian time series models are introduced in the

literature, see Tong et al. (1995), Tsay (2005) and the references therein. Another

objective of analysing financial time series is to study and model the behaviour of

the market using statistical techniques.

Due to advances in information technology, the observations recorded daily or at

time scale have gained importance. The study and modelling of these high frequency

data are important in empirical study of market infrastructure and high frequency

trading. These models which are used to analyse the time interval between each

trade are called the duration models. The study of these models helps to understand

the dynamic behaviour of durations.

31
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In the next Section of this Chapter we briefly discuss the characteristics of financial

time series and the important tools useful in their analysis. In Section 2.3 we

discuss about the volatility models in finance. The conditional duration models are

explained in Section 2.4. An outline of the Markov Chain Monte Carlo method and

Metropolis-Hastings (MH) algorithm are discussed in Section 2.5 .

2.2 Characteristics of Financial Time Series

2.2.1 Asset returns

Asset is a generic term used for the products being traded. According to Campbell

et al. (1997) the financial studies involve returns instead of prices. It is because the

returns of an asset is complete and scale free summary of the investment oppor-

tunists and the return series are more easy to handle. For a given series of prices

{Pt}, the corresponding series of returns is defined by

Rt =
Pt − Pt−1

Pt−1

=
Pt
Pt−1

− 1, t = 1, 2, . . . ,

and the log-return series is defined by

yt = log

(
Pt
Pt−1

)
, t = 1, 2, . . . ·

Many empirical studies (see Bollerslev et al. (1992), Mandelbrot (1963), Fama

(1965), Shephard (1996)) show that a set of common features among financial data
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that are known as ‘stylized facts’. Cont (2001) provides a comprehensive survey of

these stylized facts, which include :

1. Fat tails : the unconditional distribution of returns have fatter tails than that

expected from a normal distribution.

2. Asymmetry : the unconditional distribution is negatively skewed.

3. Aggregated normality.

4. Absence of serial correlation in {yt}.

5. Volatility clustering: volatility of returns is serially correlated.

6. Time varying cross-correlation.

Example 2.1. To illustrate the stylized facts we consider the data of log-returns

on Nikkei 225 stock market index for the Tokyo Stock Exchange (TSE). The sample

period is from 18 November 2010 to 17 November 2017. Figure 2.1 displays the

log-returns on Nikkei stock market index and 2.2 displays the histogram of the log-

returns.

The summary of the data is given in Table 2.1.

Table 2.1: Summary statistics of the Nikkei 225 return series

Mean 0.008705
Median 0.013247
Std Deviation 1.122376
Skewness -0.09373
Kurtosis 13.97556
Minimum -16.1354
Maximum 8.891297
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Figure 2.2: Histogram of daily log-returns of Nikkei 225 index

From the Table 2.1 and the Figure 2.1 and 2.2, the persistence of stylized facts in

financial data can be easily understood.

The linear time series models are useful when we have the assumption of constant

error variance. But in real life situation, particularly the information recorded in
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economics and financial areas, the conditional variances are non-constants. From

Example 2.1, we can observe these characteristics of financial data. So volatility

models are introduced to model the financial market variables.

2.3 Models for Volatility

A volatility model describes the evolution of conditional variance . The dynamics of

volatility can be essentially described by two types of models. In the first category,

volatility is described as a deterministic function of a given set of past values, that

is, the observation driven models. This category includes the Autoregressive Con-

ditional Heteroscedastic model/ Generalized ARCH models. In the second category

of model, volatility is generated by a stochastic model, that is, the parameter driven

models. It includes Stochastic Volatility models.

2.3.1 Observation Driven Models

The observation driven models assume that the conditional variances are the func-

tions of past values of the series. The famous autoregressive conditional het-

eroscedastic (ARCH) model introduced by Engle (1982) is an example of such mod-

els. The simplest form of ARCH model assumes that the conditional variance of yt

given the past is a linear function of the squares of the past data.
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2.3.1.1 Autoregressive Conditional Heteroscedastic model

The first model that provides a systematic framework for volatility modelling is the

ARCH model of Engle (1982). The basic idea of ARCH models is as follows :

• The shock yt of an asset return is serially uncorrelated but dependent, and

• The dependence of yt can be described by a simple quadratic function of its

lagged values.

ARCH models have been widely used in financial time series analysis and partic-

ularly in analysing the risk of holding an asset, evaluating the price of an option,

forecasting time-varying confidence intervals and obtaining more efficient estimators

under the existence of heteroscedasticity. An ARCH(p) model assumes that

yt = εt
√
ht , (2.1)

ht = φ0 +

p∑
i=1

φi y
2
t−i,

where {εt} is a sequence of independent and identically distributed symmetric ran-

dom variables with mean zero and variance 1, φ0 > 0, and φi ≥ 0 for i > 0. If {εt}

has standardized Gaussian distribution, yt is conditionally normal with mean 0 and

variance ht. We can also assume more heavy-tailed distributions, such as the Stu-

dent’s t-distribution, Generalized error distribution etc for {εt}. Now we describe

the properties of a first order ARCH model in detail.
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ARCH(1) model and Properties

The structure of the ARCH(1) model implies that the conditional variance ht of

yt, evolves according to the most recent realizations of y2
t−1 analogous to an AR(1)

model. Large past squared shocks, {y2
t−i}

p
i=1, imply a large conditional variance, ht,

for yt. As a consequence, yt tends to assume a large value which in turn implies

that a large shock tends to be followed by another large shock. To understand the

ARCH models, let us now take a closer look at the ARCH(1) model,

yt = εt
√
ht, ht = φ0 + φ1y

2
t−1, (2.2)

where φ0 > 0 and φ1 ≥ 0.

1. The unconditional mean of yt is zero, since

E (yt) = E (E (yt|yt−1)) = E
(√

htE (εt)
)

= 0.

2. The conditional variance of yt is

E
(
y2
t |yt−1

)
= E

(
htε

2
t |yt−1

)
= htE

(
ε2
t |yt−1

)
= ht = φ0 + φ1 y

2
t−1.

3. The unconditional variance of yt is V (yt) = E(y2
t ) = E(E(y2

t |yt−1)) = E(φ0 +

φ1y
2
t−1) = φ0 + φ1E(y2

t−1).

Because yt is a stationary process with E(yt) = 0, V (yt) = V (yt−1) = E(y2
t−1).

Therefore, V (yt) = φ0/(1− φ1). Because the variance of yt must be positive,

we require 0 ≤ φ1 < 1.
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4. Assuming that the fourth moment of yt is finite, the kurtosis Ky of yt, is given

by

Ky =
E (y4

t )

E (y2
t )

2 = 3
1− φ2

1

1− 3φ2
1

> 3 provided φ2 < 1/3.

The ARCH model with a conditionally normally distributed yt leads to heavy

tails in the unconditional distribution. In other words, the excess kurtosis of

yt is positive and the tail distribution of yt is heavier than that of the normal

distribution.

5. The autocovariance of yt is defined by

Cov(yt, yt−k) =E(ytyt−k)− E(yt)E(yt−k) (2.3)

=E(
√
ht
√
ht−k)E(εtεt−k) = 0. (2.4)

Thus, the ACF of yt is zero. The ACF of {y2
t } becomes ρy2

t
= φk1, and notice that

ρy2
t
(k) ≥ 0 for all k, a result which is common to all linear ARCH models.

Thus, the ARCH(1) process has a mean of zero, a constant unconditional variance,

and a time-varying conditional variance. These properties continue to hold for

general ARCH models, but the formulae become more complicated for higher order

ARCH models.

Estimation

The most commonly used estimation procedure for ARCH models is the method of

maximum likelihood. Under the normality assumption for εt, the likelihood function
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of an ARCH(p) model is

f(y1, y2, ..., yn|Φ) =
n∏

t=p+1

1√
2πht

exp(− y2
t

2ht
)f(y1, y2, ..., yp|Φ),

where Φ = (φ0, φ1, . . . , φn)′ and f(y1, y2, ..., yp|Φ) is the joint probability density

function of y1, y2, ..., yp. Since the exact form of f(y1, y2, ..., yp|Φ) is complicated, it

is commonly dropped from the prior likelihood function, especially when the sample

size is sufficiently large. This results in using the conditional-likelihood function

f(yp+1, yp+2, ..., yn|Φ, y1, y2, ..., yp) =
n∏

t=p+1

1√
2πht

exp(− y2
t

2ht
). (2.5)

Model diagnosis

After estimating the model parameters, the standardized residuals are calculated

by

∼
εt =

yt√
ĥt

t = 1, 2, 3, . . . .,

where ĥt = φ̂0 +
∑p

i=1 φ̂i y
2
t−i. For a properly specified ARCH(p) model,

∼
ε1,

∼
ε2, . . . ,

∼
εn

are iid. The adequacy of the fitted ARCH model is checked by examining the
∼
εt

series. One can utilise the Ljung-Box test, Q-Q-plot and the skewness and kurtosis

measures to check the validity of the assumptions.
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Forecasting

An important use of ARCH models is the evaluation of the accuracy of volatil-

ity forecasts. In standard time series methodology which uses conditionally ho-

moscedastic ARMA processes, the variance of the forecast error does not depend

on the past information. If the series being forecasted displays ARCH effect, the

current information set can indicate the accuracy by which the series can be fore-

casted. Engle and Kraft (1983) were the first to consider the effect of ARCH on

forecasting. As the conditional variance is a linear function of the squares of the

past observations, one can use the minimum mean square error (MMSE) method

for forecasting the volatility as in the case of classical AR models.

Using the MMSE method, the l-step-ahead forecast for

hn(l) = φ0 +

p∑
i=1

φihn(l − i),

where hn(l − i) = y2
n+l−i if l − 1 ≤ 0.

Weakness of ARCH models

1. The model assumes that positive and negative shocks have the same effects

on volatility because it depends on the square of the previous shocks. In

practice, it is well known that the price of a financial asset responds differently

to positive and negative shocks.

2. The ARCH model is rather restrictive. For instance, φ1
2 of an ARCH(1) model

must be in the interval [0, 1
3
) if the series is to have a finite fourth moment. The
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constraint becomes complicated for higher order ARCH models. In practice,

it limits the ability of ARCH models with Gaussian innovations to capture

excess kurtosis.

3. The ARCH model does not provide any new insight for understanding the

source of variations of financial time series. It merely provides a mechanical

way to describe the behaviour of conditional variance. It gives no indication

about what causes such behaviour to occur.

4. ARCH models are likely to over-predict the volatility because they respond

slowly to large isolated shocks to the return series.

2.3.1.2 Generalized ARCH Models

Although the ARCH model is simple, it often requires many parameters to ade-

quately describe the volatility process of an asset return. Sometimes an ARCH(p)

model, where p is of higher order may be needed for the volatility process. The pos-

sibility that estimated parameters in ARCH model do not satisfy the stationarity

condition increases with lag. So an alternative model must be sought. Bollerslev

(1986) proposes a useful extension known as the generalized ARCH (GARCH)

model. That is, the GARCH model is an extension that allows the conditional

variance to depend on the previous conditional variance and the squares of previous

returns. The GARCH(p,q) model is defined by

yt = εt
√
ht, (2.6)

ht = φ0 +

p∑
i=1

φiy
2
t−i +

q∑
j=1

βjh
2
t−j,
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where {εt} is a sequence of independent and identically distributed random variables

with mean zero, variance 1, φ0 > 0, φi ≥ 0, βj ≥ 0 and
∑max(p,q)

i=1 (φi + βi) < 1. The

constraint on φi + βi implies that the unconditional variance of yt is finite, whereas

its conditional variance ht evolves over time.

The GARCH model has several extensions like log-GARCH, Exponential GARCH,

Integrated GARCH, Fractionally Integrated GARCH, Threshold GARCH etc. The

model parameters may be estimated by the method of conditional maximum likeli-

hood, for details see Tsay (2014), Chapter 4.

2.3.2 Parameter Driven Models

The parameter driven models assume that the volatilities are generated by some

latent models, such as the an autoregressive process.

2.3.2.1 Stochastic Volatility Models

One of the empirical findings of asset returns is its volatility. It varies randomly

with time. This type of changes in volatility (conditional variance) over time can be

analysed by utilising the statistical models for time-dependent variances. For these

models the volatility depends on some unobserved components or a latent structure.

One interpretation for latent ht is to represent the random and uneven flow of new

information, which is very difficult to model directly, into financial markets. The

most popular of these parameter-driven stochastic volatility models, is the one by

Taylor (1986)

yt = εt exp(ht/2), ht = φ0 + φ1ht−1 + ηt, (2.7)
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where εt and ηt are two independent Gaussian white noises, with variances 1 and

ση
2, respectively. Due to the Gaussianity of ηt, this model is called a log-normal SV

model. The properties of this model are discussed in Taylor (1986, 1994).

2.3.3 Some examples of non-Gaussian distributions in mod-

elling volatility

Let us consider an example to illustrate the applicability of some non-Gaussian

models for financial data.

Students t-distribution

A rv X is said to follow a Student t distribution with ν degrees of freedom if its

probability density function is given by

f(x|ν) =
Γ((ν + 1)− 2)

Γ(ν − 2)
√

(ν − 2)π
(1 +

x2

ν − 2
)(ν+1)−2 ν > 2, (2.8)

where Γ(x) is the gamma function ( i.e., Γ(x) =
∞∫
0

yx−1 exp(−y)dy).

Generalized Error Distribution

A rv X is said to follow a GED(µ, σ, β) if its probability density function is given

by

f(x) =
β

2σ Γ(1/β)
exp

{
−
(∣∣∣∣(x− µ)

σ

∣∣∣∣)β
}

, −∞ < x <∞

−∞ < µ <∞, σ > 0, β > 0. (2.9)
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For β = 1 the above density reduces to Laplace distribution and for β = 2, it takes

the form of Normal distribution.
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Figure 2.3: Density function for Generalized error distribution

Example 2.2. We analyse the returns for the daily exchange rate between INR and

US Dollar from January 1, 2015 to September 30, 2017. The time series plot of the

data is given in Figure 2.4.

The time plot of log-return for the daily exchange rate between INR and US Dollar

is given in Figure 2.5. The summary of the data is given in Table 2.2.
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Figure 2.4: Time series plot of INR vs USD Exchange rate

Table 2.2: Summary statistics of INR vs USD log return series

Data Summary
no: of obs 663

Minimum -0.010105
Maximum 0.010269

Mean 0.000048
Median 0.000011

Variance 0.000008
Stdev 0.002913

Skewness 0.072711
Kurtosis 1.175012

In Figure 2.6 the sample ACF of the log return series and sample ACF and PACF

of the squared series of daily log returns are given. Here, the sample ACF suggest

no serial correlation whereas the sample ACF and PACF plots of the squared log

return series are significant. It confirms that there is significant ARCH effect in

the series of daily log returns. The value of Ljung-Box test statistic for squared
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Figure 2.5: Daily log returns of the exchange rate between INR and USD from
January 1, 2015, to September 30, 2017

series gives Q(20)= 37.681 with p-value close to zero and hence it confirm the

ARCH effects in the exchange rate series. We model the series by utilizing the R

commands of fGarch package. We propose a GARCH(1,1) model. In fGarch package

the garchFit() allows for several conditional distributions. The edited output of

GARCH modelling is given in Table 2.3. We use AIC and BIC values to select

the model and results are tabulated in Table 2.4. From Table 2.4 the AIC value

obtained for GARCH(1,1) with t distributed innovations is -8.88817 and for GED

innovations is -8.88565. The corresponding BIC values are -8.85426 and -8.85174

respectively. We choose the model with minimum AIC/BIC value. The Q-Q plot

of standardized residuals with different conditional distributions are given in Figure

2.7. From the Q-Q plot we can see that the normality assumptions are not satisfied
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Figure 2.6: sample ACF of returns , squared series and sample PACF of squared
series of daily log returns of the exchange rate between INR and USD from

January 1, 2015, to September 30, 2017

by GARCH(1,1) model with normal and skewed normal innovations. The p-value

obtained for testing no skewness is 0.9, which rejects the null hypothesis of skewness.

So we choose the GARCH(1,1) model with t and GED innovations. The histogram

of residuals with superimposed normal, t and GED density on the histogram of

residuals is given in Figure 2.8. From the Figure the GARCH(1,1) model with t

and GED innovations seems to be of good fit.
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Table 2.3: Results of Garch Modelling : Standardised Residuals Tests

Conditional Distribution Jarque-Bera Test Ljung-Box Test R Ljung-Box Test R2

norm Statistic 17.1099 18.8347 13.55707
p-Value 0.000192 0.53259 0.85222

t Statistic 18.5864 18.8764 14.3444
p-Value 9.204686e− 05 0.52986 0.81261

ged Statistic 17.59493 18.85807 13.7775
p-Value 0.000151 0.53106 0.84159

snorm Statistic 17.1096 18.83608 13.54916
p-Value 0.000192 0.53251 0.85259

sstd Statistic 18.59724 18.87617 14.35559
p-Value 9.155071e− 05 0.52988 0.812001

sged Statistic 17.59682 18.85766 13.78268
p-Value 0.00015097 0.53109 0.84134

Table 2.4: The Information Criterion Statistics of GARCH model with different
conditional distributions

Conditional Distribution Information Criterion Statistics
norm AIC -8.86904

BIC -8.84191
t AIC -8.88817

BIC -8.85426
ged AIC -8.88565

BIC -8.85174
snorm AIC -8.86604

BIC -8.83213
sstd AIC -8.88516

BIC -8.84446
sged AIC -8.88264

BIC -8.84194

2.4 Duration Models

The availability of the intraday databases consisting of detailed information on the

complete trading process led to the modelling of high-frequency data. These are

the transaction-by-transaction or tick-by-tick data in security markets. Here, let
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Figure 2.7: The Quantile-to-quantile plot
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Figure 2.8: The superimposed t and GED density on the histogram of residuals

‘ti’ be the calender time which is measured in seconds from midnight, at which the

ith trade of an asset takes place. These data have some unique characteristics that
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do not appear in lower frequencies. The durations are subjected to strong intraday

seasonality patterns, which is also reflected in the autocorrelation functions. In

particular, the empirical characteristics of trading data are:

1. unequally spaced time intervals.

2. existence of a daily periodic or diurnal pattern.

3. multiple transactions within a single second.

To study the behaviour of the durations and to describe the evaluation of the du-

rations of stocks Engle and Russell (1998) proposed the Autoregressive Conditional

Duration model, described below.

2.4.1 Autoregressive Conditional Duration Models.

Let τi be the time of occurrence of an event(or transaction) of interest with τ0 = 0

and Xi = τi − τi−1, i = 1, 2, . . . , n be the ith trade duration, which is defined as the

waiting time between two consecutive transactions of an underlying asset from time

i to i + 1. Also, let ψi be the expected adjusted duration given Fi, where Fi−1 is

the information set available at the (i− 1)th trade. That is, ψi = E(Xi|Fi−1) is the

conditional expectation of the adjusted duration between the (i−1)th and ith trades,

where Fi−1 = σ(X1, X2, . . . , Xi−1) is the sigma field generated by (X1, X2, . . . , Xi−1)

is the information known at time i− 1. The basic ACD model is defined as

Xi = ψiεi (2.10)
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where εi is a sequence of independent and identically distributed non-negative ran-

dom variables such that E(εi) = 1. The choice of different specifications for the

expected duration ψi and different distributions for εi results in a variety of mod-

els. When the distribution of εi is exponential, the resulting model is called an

Exponential autoregressive conditional duration (EACD(r, s)) model. Similarly, if

εi follows a Weibull distribution, the model is a Weibull autoregressive conditional

duration (WACD(r, s)) model. For further details on duration models, one can re-

fer Grammig and Maurer (2000), Pacurar (2008) and the references therein. Engle

and Russell (1998) proposed the ACD(r, s) model specifying ψ as

ψi = ω +
r∑
j=1

αjXi−j +
s∑
j=1

βjψi−j, (2.11)

where r and s are non-negative integers. The sequence is stationary if ω > 0, αj ≥

0, βj ≥ 0,
∑r

j=1 αj +
∑s

j=1 βj < 1. The model in (2.11) can also be formulated as

an ARMA(r,s) model for durations. The ACD model and the GARCH model of

Bollerslev (1986) defined in Section 2.3 share several common features.

2.4.2 Stochastic Conditional Duration Models.

Bauwens and Veredas (2004) introduced a class of models called the stochastic

conditional duration models to study the evolution of durations driven by latent

variables. Unlike ACD model, SCD model generates a double stochastic process,

that is, a model with two stochastic innovations, one for the observed duration

and the other for the latent variable. The SCD model treats the conditional mean

of durations as a stochastic process captured by an appropriate distribution with
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positive support. The SCD model is defined by

Xi = eψiεi,

ψi = ω + φψi−1 + ηi , i = 1, 2, . . . , n,

ψ0 ∼ N

(
0,

σ2

1− φ2

)
,

(2.12)

where |φ| < 1 to ensure the stationarity of the process and ηi follows independent

and identically distributed N(0, σ2) so that {ψi} follows a Gaussian AR(1) sequence

and {εi} is an independent and identically distributed sequence on the positive

support with common probability density function f(εi) and ηj is independent of

εi ∀ i, j. Note that the model depends on the unobservable ψi, called the latent

variable. One interpretation for the latent variable is that, it captures the random

flow of information which is not directly observable.

The estimation of the parameters of the SCD model involves the evaluation of a

multiple integral and hence find its difficult to compute the likelihood function.

This requires computing an integral that has the dimension of the sample size. In

view of this, several authors introduced different estimation methods. (Bauwens

and Galli (2009) , Strickland et al. (2006) etc).

2.5 Bayesian Estimation of Duration Models

In Bayesian inference, the Bayes’ theorem is used to update the information of the

unknown model parameters. The continuous form of Bayes’ theorem is

p(Θ|y) ∝ L(Θ|y)π(Θ) (2.13)
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where Θ=unknown parameter to be estimated.

y = (y1, y2, . . . , yn).

π(Θ)=prior distribution of Θ depending on one or more parameters, called hyper-

parameters.

L(Θ|y)=likelihood function for Θ.

p(Θ|y)=posterior(updated) distribution of Θ.

The likelihood function for an SCD model is difficult to evaluate exactly. In view

of this Strickland et al. (2006) developed a Bayesian Markov Chain Monte Carlo

approach using Gibbs sampling and Metropolis-Hastings(M-H) algorithm for the

estimation of parameters of SCD models. As the evaluation of integral is difficult

the sampling is done through Monte Carlo simulation.

2.5.1 Markov Chain Monte Carlo Methods

Algorithms for simulating from the posterior distribution can be divided as in-

dependent simulation and dependent simulation categories. Rejection sampling

and importance sampling are the representatives of the first category. These al-

gorithms produce an independent and identically distributed sample from the pos-

terior. In dependent simulation algorithms, the output is a sample of identically

distributed(but not independent) draws from the posterior. All algorithms based

on generation (simulation) of a Markov Chain belongs to this category.
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Metropolis-Hastings Algorithm

The algorithm consists of two stages: first, a draw from the proposal density is

obtained and second, that draw is either retained or rejected with certain probabil-

ity. Let p(Θ|y) be the posterior density from which sampling is not possible. Let

Θ be a K-dimensional parameter vector, Θ = (θ1, θ2, . . . , θk) and q(Θ|Θt−1) be the

approximating density, called the proposal density or the candidate-generating den-

sity. This is to generate randomly a realization of Θ given the value at the previous

iteration of the algorithm. The steps involved in the algorithm are given as follows:

1. Let Θ(0) be the initial value from the parameter space of Θ.

2. At tth iteration, draw a (multivariate) realization, Θ∗, from the proposal den-

sity, q(Θ|Θt−1), where Θt−1 is the parameter value at the previous step.

3. Compute the acceptance probability, given by

a(Θ∗,Θt−1) = min

{
1,

p(Θ∗)
q(Θ∗|Θt−1)

p(Θt−1)
q(Θt−1|Θ∗)

}
,

4. Draw u from the uniform distribution on (0,1), U(0,1). Then,

if u ≤ a(Θ∗,Θt−1), set Θ(t) = Θ∗.

Otherwise, set Θ(t) = Θ(t−1).

5. Go back to Step 2.

The algorithm is iterated(step 2 through step 5) a large number of times. After the

convergence of the chain, a sample from the posterior distribution is obtained .
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2.5.2 Slice Sampling

Neal (2003) introduced the class of slice sampling methods. In Slice sampling

method, one can sample points uniformly from the region under the curve of its

density function and then look only at the horizontal coordinates of the sample

points. A Markov chain that converges to this uniform distribution can be con-

structed by alternately sampling uniformly from the vertical interval defined by the

density at the current point and from the union of intervals that constitutes the

horizontal “slice ”though the plot of the density function that this vertical position

defines. It makes use of the fact that drawing a sample from a distribution p(x)

is the same as uniformly sampling from the points underneath the curve of such a

distribution. Let us consider the case of single-variable slice sampling method in

detail.

Single-variable slice sampling method

Let xi be the single real variable being updated(with subscripts denoting different

such points). To update xi, compute a function, fi(xi), that is proportional to

p(xi|{xj}j 6=i), where {xj}j 6=i are the values of the other variables. Let f(x) be the

function proportional to the probability density of x. In the single variable slice

sampling method the current value, x0 is replaced with a new value, x1, found by a

three-step procedure:

i Draw a real value, y, uniformly from (0, f(x0)), thereby defining a horizontal

slice: S = {x : y < f(x)}. Here, x0 is always within S.

ii Find an interval, I = (L,R), around x0 that contains all, or much, of the slice.

iii Draw the new point, x1, from the part of the slice within this interval.
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Step (i) picks a value for the auxiliary variable that is characteristic of slice sampling.

To avoid possible problems with floating-point underflow one can also compute

g(x) = log(f(x)), and use the auxiliary variable z = log(y) = g(x0)− e, where e is

exponentially distributed with mean one, and define the slice by S = {x : z < g(x)}.

Steps (ii) and (iii) are implemented in such a way that the resulting Markov chain

leaves the distribution defined by f(x) invariant.



Chapter 3

Autoregressive Moving Average Model with

Generalized Error Distributed innovations

3.1 Introduction

The Box-Jenkins methodology of time series analysis focusses on stationary Autore-

gressive Moving Average models with Gaussian innovations. That is, the observed

time series {Zt} is generated by a linear ARMA(p, q) model defined as in (1.10).

The likelihood based analysis of time series in classical set up assumes that, the

innovations are independent and identically distributed normal random variables

with mean 0 and constant variance σ2. Even though the assumption of normality

makes the analysis simpler, the model, fails to take care of many real life situations

which are better explained by non-Gaussian distributions. This motivated several

researchers to introduce classes of non-Gaussian time series models during the last

three decades. One of the advantages of assuming normally distributed innovations

in ARMA models is that, it leads to a normally distributed stationary marginal

distribution for Zt and vice-versa. This is not true for non-Gaussian ARMA models

and as a result, there is no unified theory available in this case. Most of the non-

Gaussian time series models are distribution specific, either in terms of a specified

stationary marginal distribution or in terms of a specific innovation distribution.

57
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Some of the examples of these type of models are discussed in Section 1.6 of Chap-

ter 1. One of the difficulties in developing the former class of models is that the

likelihood based inference becomes intractable due to a complicated form of the

innovation distributions. In the latter class of models, a suitable distribution is

specified for the innovation variables, but not bothered about the specific marginal

distribution except that the time series is stationary. In this Chapter, we propose an

ARMA model whose errors follow a Generalized Error Distribution which includes,

Normal and Laplace as special cases.

3.1.1 Generalized Error Distribution

Let us recall the probability density function of GED discussed in the previous

Chapter. A random variable X is said to follow a GED(µ, σ, β) if its probability

density function is given by

f(x) =
β

2σ Γ(1/β)
exp

{
−
(∣∣∣∣(x− µ)

σ

∣∣∣∣)β
}

, −∞ < x <∞

−∞ < µ <∞, σ > 0, β > 0. (3.1)

This is a symmetric distribution with mean µ, variance σ2Γ(3/β)/(Γ(1/β) and coef-

ficient of kurtosis (Γ(1/β)Γ(5/β))/(Γ(3/β)2). One may refer Johnson et al. (1995),

Chapter 24 for more details. The density function (3.1) is also known as the ex-

ponential power distribution and is a parametric family of symmetric distributions,

which allows leptokurtic (0 < β < 2) and platykurtic (β > 2) distributions. In

particular the probability density function in (3.1) reduces to that of Laplace dis-

tribution for β = 1 and it becomes N (µ, σ
2

2
) for β = 2. Further the pointwise
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limit lim
β→∞

f(x, µ, σ, β) coincides with the probability density function of the uni-

form distribution U(µ−σ, µ+σ). Explicit expression for the characteristic function

of GED(µ, σ, β) with pdf (3.1) is given by Pogány and Nadarajah (2010) as

ζX(s) =

√
πeisµ

Γ[ 1
β
]

1Ψ1

 ( 1
β
, 2
β
)

(1
2
, 1)

;−(σs)2

4

 ,
provided β > 1, where pΨq(.) denotes the Fox-Wright generalized hypergeometric

function with p numerator and q denominator parameters, defined by

pΨq =

 (α1, A1), . . . , (αp, Ap)

(β1, B1), . . . , (βq, Bq)
; z

 =
∞∑
n=0

p∏
j=1

Γ(αj + Ajn)

q∏
j=1

Γ(βj +Bjn)

zn

n!
,

where the series converges for Aj, Bk > 0 and 1 +
q∑
j=1

Bj −
p∑
j=1

Aj > 0.

Some other forms of the distribution and related properties are discussed in D. B. Nel-

son (1991), Diananda (1949) and Nadarajah (2005). Agro (1995) addresses the

problem of obtaining maximum likelihood estimates for the three parameters of

GED and Varanasi and Aazhang (1989) discuss parameter estimation of GED us-

ing the method of moments and maximum likelihood.

The Chapter is organized as follows: In Section 3.2, we describe the stationary

ARMA(p,q) model with GED innovations. In this Section, the ARMA(1,1), MA(1)

and AR(1) models are discussed. In Section 3.3, the estimation procedures for the

models discussed in Section 3.2 are considered. Section 3.4 establish the asymptotic

properties of AR(1) model with GED innovations. Section 3.5 consists of the simu-

lation studies for ARMA(1,1), MA(1) and AR(1) model. In Section 3.6, we discuss



Chapter 3. ARMA Model with GED innovations 60

the applicability of this model to two financial data sets.

3.2 GED-ARMA(p,q) Model

Consider the ARMA(p, q) model for the time series {Zt} defined by (1.10). Also,

the innovation sequence {at} is assumed to follow independent and identically dis-

tributed GED with common probability density function

f(a) =
β

2σ Γ(1/β)
exp

{
−
(∣∣∣a
σ

∣∣∣)β} , −∞ < a <∞ , σ > 0, β > 0. (3.2)

Now, the model becomes

Φ(B)Zt = Θ(B)at, (3.3)

with {at} given by (3.2). The time series {Zt} defined by (3.3) with GED errors is

stationary when the roots of the polynomial φ(B) lie outside the unit circle. How-

ever, there is no explicit expression for the stationary distribution. Our focus is on

the applicability of this model in describing the real life problems. The ARMA(p,q)

model with GED innovations for p = q = 1 is defined as follows.

3.2.1 GED-ARMA(1,1) Model

The stationary ARMA(1, 1) model for {Zt} may be defined by

Zt − φZt−1 = at − θat−1 t = 1, 2, . . . (3.4)
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with |φ| < 1, |θ| < 1. The errors are assumed to be independent and identically dis-

tributed with common probability density function given by (3.2). All the moments

of {Zt} exists. The first four moments are:

E(Zt) = 0 = E(Z3
t ).

E(Z2
t ) =

(1 + θ2 − 2θφ)(σ2Γ(3/β))

(1− φ2)(Γ(1/β))
. (3.5)

E(Z4
t ) =

σ4

1− φ4

(
6φ2 θ2

((
φ2

1− φ2
+
(
θ2 − 2 θ φ

))
g1

2 + g2

)
−
(

12φ θ + 6 θ2 +
6φ2

1− φ2

)
g1

2 +
(
1− 4φ θ3 + θ4

)
g2

)
,

(3.6)

where g1 = Γ(3/β)
Γ(1/β)

and g2 = Γ(5/β)
Γ(1/β)

.

The Autocorrelation function, ACF is given by

ρZ(k) =
(1− φθ)(φ− θ)

1− 2θφ+ θ2
φk−1 k ≥ 1, (3.7)

which is the standard form of ACF for any stationary ARMA(1, 1) model.

3.2.2 GED-MA(1) Model

The stationary MA(1) model for {Zt} with GED innovations is defined by

Zt = at − θat−1 t = 1, 2, ..., (3.8)
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with |θ| < 1 and {at} is an independent and identically distributed GED with

common probability density function (3.2). The first four moments of {Zt} are

E(Zt) = 0.

E(Zt
2) = V (Zt) = (1 + θ2) σ2 Γ(3/β)

Γ(1/β)
. (3.9)

E(Zt
3) = 0.

E(Zt
4) = (1− 4θ + 6θ2 − 4θ3 + θ4)σ4 Γ(5/β)

Γ(1/β)
.

(3.10)

Also Cov(Zt, Zt−1) = −θ σ2 Γ(3/β)
Γ(1/β)

or γZ(k) =

−θ σ
2 Γ(3/β)

Γ(1/β)
if |k| < 1,

0 if |k| = 1.

The ACF is given by

ρZ(k) =


−θ

1+θ2 if |k| = 1.

0 if |k| > 1.

3.2.3 GED-AR(1) Model

Let {Zt} be a stationary AR(p) model defined by

Zt = φ1Zt−1 + φ2Zt−2 + · · ·+ φpZt−p + at, t = 1, 2, . . . ·
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For p=1, we get the AR(1) process. The AR(1) model is defined by

Zt = φZt−1 + at, t = 1, 2, . . . , (3.11)

where |φ| < 1 . The at’s are independent and identically distributed with common

probability density function (3.2). The mean, variance , third and fourth moments

are

E(Zt) = 0.

V (Zt) = σ2

(1−φ2)
Γ(3/β)
Γ(1/β)

.

E(Z3
t ) = 0, and

E(Z4
t ) = σ4

(
(6φ2)Γ( 3

β )
2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )

)
/(1− φ4).

The autocorrelation function is ρZ(k) = φk, k = 1, 2, .... The characteristic func-

tion is given by

ζz(s) = ζz(φ
ts)

t−1∏
j=1

(φ(j−1)s

= ζz0(φts)
t−1∏
j=1

√
π

Γ[ 1
β
]
1Ψ1

 ( 1
β
, 2
β
)

(1
2
, 1)

;
−(σφjs)2

4

 .
Under stationarity, |φ| < 1. Then

ζz(s) = ζz0(0)
∞∏
j=1

√
(π)

Γ[ 1
β
]

1Ψ1

 ( 1
β
, 2
β
)

(1
2
, 1)

;
−(σφjs)2

4

 .
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3.3 Estimation of Parameters

To explain the applicability of the model, we need to estimate the parameters ap-

pearing in the model. The usual estimation methods such as Yule-Walker, Method

of moments, Maximum likelihood may be applied in this case, as well. The likeli-

hood function of the parameters based on a realization (z1, z2, . . . , zn) can be ob-

tained from the joint probability density function of the innovations a1, a2, . . . , an

using an explicit form of the model (3.3). In this case the joint density function of

a1, a2, . . . , an is given by

f(a1, a2, . . . , an) =
βn

2nσnΓ(1/β)n
exp

(
−

n∑
t=1

∣∣∣at
σ

∣∣∣β) , −∞ < at <∞ , σ > 0, β > 0.

(3.12)

In order to express the likelihood function in terms of the data, we can represent

(3.12) in terms of data by replacing each of at’s as at = zt + φ1zt−1 + φ2zt−2 + . . .+

φpzt−p − θ1at−1 − θ2at−2 − . . .− θqat−q for t = 1, 2, . . . , n. Conditioning on at−q = 0

for (t− q) ≤ 0 and zt−p = 0 for (t− p) ≤ 0 the term in the exponential
∑n

t=1

∣∣at
σ

∣∣β
can be represented in terms of zt’s. The parameter vector to be estimated is Λ =

(Φ,Θ, σ, β)′, where Φ = (φ1, φ2, . . . , φp)
′ and Θ = (θ1, θ2, . . . , θq)

′ and we consider

the method of ML and method of moments. The ML method provides an estimate

of Λ that maximize the likelihood function, L(Λ|z1, z2, . . . , zn) or equivalently the

log-likelihood function. Here the ML estimators do not have closed forms and

they have to be obtained by numerical methods (Newton-Raphson). The sample

autocorrelation and moment estimates can be used as initial guess for estimating
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the parameters in the iteration procedures. Now a detailed inference for p = q = 1

is considered.

3.3.1 GED-ARMA(1,1) model

As a preliminary analysis, we estimate the parameters by the method of moment

using E(Z2
t ), E(Z4

t ), ρ1 and ρ2. Replacing ρ1 and ρ2 by the corresponding sample

ACF’s r1 and r2 respectively in (3.7), we get φ̂ = (r2/r1). Then solve for θ̂ in

r1 = ((1 − φ̂θ)(φ̂ − θ))/(1 − 2θφ̂ + θ2) and for β using the equation
E[Z4

t ]

E[Z2
t ]2

=
∑
Z4
t

(
∑
Z2
t )2

using some iterative root finding technique, with β > 0. Finally, obtain the estimate

of σ using the moment equation (3.5) after substituting for the estimates of φ, θ, β.

From (3.5), we have σ =
(

(1−φ2)(Γ(1/β))E(Z2
t )

(1+θ2−2θφ)Γ(3/β)

) 1
2
. We can obtain the estimate of σ by

replacing φ, θ and β with their corresponding estimates in the above explicit form.

We apply the method of conditional likelihood to estimate the parameter vector

Λ = (φ, θ, σ, β)′ by taking a0 = 0 and zj = 0 for j ≤ 0 by using the inverted form of

the model (cf. Box et al. (1994)):

at = zt −
∞∑
j=1

πjzt−j, where πj = (φ− θ)θj−1, j = 1, 2, . . . ; t = 2, 3, . . .

and a1 = z1.

Under the condition that, zt = 0 for t ≤ 0, we have at = zt+(θ−φ)
t−1∑
j=1

θ(j−1)zt−j

for t = 2, 3, . . . , n.

So the resulting conditional likelihood function via (3.3) can be expressed as

L(φ, θ, σ, β) =
βn

2n σn Γ(1/β)n
exp

{
− 1

σβ

(
|a1|β + |a2|β + . . .+ |an|β

)}
(3.13)
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= βn

2n σn Γ(1/β)n
exp

{
− 1
σβ

(
|z1|β + |z2 + (θ − φ)z1|β+ . . .

+

∣∣∣∣∣zt + (θ − φ)
t−1∑
j=1

θ(j−1)zt−j

∣∣∣∣∣
β
 .

Then the log likelihood function is given by

log L = c+n log β−n log σ−n log Γ(1/β)− 1
σβ

 n∑
t=1

∣∣∣∣∣zt + (θ − φ)
t∑

j=1

θ(j−1)zt−j

∣∣∣∣∣
β
,

where c is a constant. The ML estimates of parameters can be obtained by max-

imizing this likelihood form. However, to obtain the ML estimate as a solution

of the likelihood equation we consider the following likelihood equations. The log

likelihood function is differentiable for β > 1, and the first derivative of the log

likelihood function w.r.t Λ can be expressed as

∂
∂φ
logL = β

σβ

n∑
t=1


∣∣∣∣∣zt + (θ − φ)

t∑
j=1

θ(j−1)zt−j

∣∣∣∣∣
β−2 (

t∑
j=1

θj−1zt−j

)
(
zt + (θ − φ)

t∑
j=1

θj−1zt−j

)}
,

∂
∂θ
logL = − β

σβ

n∑
t=1


∣∣∣∣∣zt + (θ − φ)

t∑
j=1

θj−1zt−j

∣∣∣∣∣
β−2 (

zt + (θ − φ)
t∑

j=1

θj−1zt−j

)

(
(θ − φ)

n∑
j=1

(j − 1) θj−2 zt−j +
t∑

j=1

(θj−1zt−j)

)}
,

∂
∂σ
logL = −n

σ
+ β

σ(1+β)

n∑
t=1

∣∣∣∣∣zt + (θ − φ)
t∑

j=1

θj−1zt−j

∣∣∣∣∣
β

, and

∂
∂β
logL = n

β
+ nΨ(1/β)

β2 + 1
σβ

n∑
t=1


∣∣∣∣∣zt + (θ − φ)

t∑
j=1

θj−1zt−j

∣∣∣∣∣
β

(
log σ − log

(∣∣∣∣∣zt + (θ − φ)
t∑

j=1

θj−1zt−j

∣∣∣∣∣
))}

,

where Ψ(z) = d
dz

log Γ(z) = Γ′(z)
Γ(z)

is the digamma function.
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The ML estimators of φ, θ, β, σ are obtained as the solutions of the likelihood

equations. As the likelihood equations do not lead to closed form solutions, we have

used numerical methods for obtaining the ML estimates. The computations based

on simulated data are presented in Section 3.5.

3.3.2 GED-MA(1) model

In order to express the likelihood function in terms of the data, we again consider

the inverted form of the model given by

at = zt +
t∑

j=1

θjzt−j, t = 1, 2, . . . , n,

with the condition zt = 0 for t ≤ 0 and a0 = 0.

So the likelihood function can be expressed as

L(θ, σ, β) =
βn

2n σn Γ(1/β)n

exp

{
−1

σβ

(
|z1|β + |z2 + θ z1|β + . . .+

∣∣zn + θzn−1 + . . .+ θn−1z1

∣∣β)}
(3.14)

=
βn

2n σn Γ(1/β)n
exp

− 1

σβ

 n∑
l=1

∣∣∣∣∣
l−1∑
k=0

θkzl−k

∣∣∣∣∣
β
 .

The log likelihood function (without the constant) is given by

log L = n log β − n log σ − n log Γ(1/β)− 1

σβ

 n∑
l=1

∣∣∣∣∣
l−1∑
k=0

θkzl−k

∣∣∣∣∣
β
 . (3.15)
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By maximizing the above log-likelihood form, we can obtain the ML estimates. In

terms of the likelihood equations, the derivative of the log likelihood equations for

β > 1 is obtained as

∂
∂θ

log L = − β
σβ

(
n∑
l=1

(∣∣∣∣ l−1∑
k=0

θkzl−k

∣∣∣∣β−2 l−1∑
k=0

θkzl−k
l−1∑
k=0

kθk−1zl−k

))
,

∂
∂β

log L = n
β

+ n
β2 Ψ( 1

β
)−

(
1
σβ

n∑
l=1

(∣∣∣∣ l−1∑
k=0

θkzl−k

∣∣∣∣β log

(∣∣∣∣ l−1∑
k=0

θkzl−k

∣∣∣∣)
))

+ log σ
σβ

(
n∑
l=1

(∣∣∣∣ l−1∑
k=0

θkzl−k

∣∣∣∣β
))

,

∂
∂σ

log L = −n
σ

+ β
σβ+1

(
n∑
l=1

(∣∣∣∣ l−1∑
k=0

θkzl−k

∣∣∣∣β
))

,

where Ψ(z) = d
dz

log Γ(z) = Γ′(z)
Γ(z)

, is the digamma function. The ML estimators of

θ, β, σ are the solutions of the likelihood equations. As the likelihood equations do

not lead to closed form solutions, we have used numerical methods for obtaining

ML estimates. The computations based on simulated data are presented in Section

3.5. The sample autocorrelation and the moment estimate are used as the initial

guess for the estimates in the iteration procedures.

We have ρ(1) = −θ
1+θ2 . Equating ρ1 to r1, we are led to solve a quadratic in θ,

where r1 is the sample autocorrelation given by r1 =

n∑
t=2

(zt−z̄)(zt−1−z̄)

n∑
t=1

(zt−z̄)
2 . Then the two

real roots are given by
−1±
√

1−4r12

2r1
. However, only one of the solution satisfy the

invertibility condition |θ| < 1 and is obtained as θ̂m =
−1+
√

1−4r12

2r1
. If r1 = ±0.5,

unique, real solution exist, namely ∓1, but neither is invertible. If |r1| > 0.5, no
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real solution exist, and so the method of moments failed to yield an estimator of θ.

On squaring (3.9) and dividing by (3.10), the resulting equation is

(
1
n

n∑
i=1

zi
2

)2

1
n

n∑
i=1

zi4
=

(θ2+1)
2
Γ( 3

β )
2

(θ4+1)Γ( 1
β )Γ( 5

β )+6θ2Γ( 3
β )

2 .

As an initial estimate of θ is obtained, it is possible to rewrite the above equation as

Γ(5/β)(Γ(1/β))

(Γ(3/β))2 =
−6 θ̂2

m

(
1
n

n∑
i=1

zi
2

)2

+ 1
n

n∑
i=1

zi
4(1+θ̂2

m)
2

(1+θ̂4
m)

.

In the above equation the RHS can be evaluated as θ̂m is obtained. By equating it

to the LHS, we can find the value of β, ie., an initial guess for β, β̂m is obtained.

The likelihood equation for σ has an explicit form. By substituting the values of θ̂

and β̂ in the equation

σ =

β

 n∑
l=1

∣∣∣∣∣ l−1∑
k=0

θkzl−k

∣∣∣∣∣
β


n


1
β

, we can obtain the estimate of σ.

3.3.3 GED-AR(1) model

Let us consider the AR(p) model with GED innovations. The conditional likelihood

function of the general AR(p) model with parameters Λ = (Φ, σ, β) can be expressed



Chapter 3. ARMA Model with GED innovations 70

as

L(Λ|z1, z2, ..., zn) ∝ f(z1)f(z2|z1) . . . f(zp|z1, . . . , zp−1)

n∏
t=p+1

ft|t−1,t−2...,t−p(zt|zt−1, zt−2, . . . , zt−p)

=
βn

2n σn Γ(1/β)n
exp

{
−

n∑
t=p+1

(
| (zt − φ1zt−1 − φ2zt−2 − · · · − φpzt−p) |

σ

)β
 .

The ML estimators are obtained by maximizing the above log likelihood function.

For β > 1, the likelihood equations can be obtained as

∂

∂φi
logL =

β

σβ

n∑
t=p+1

(|zt − φ1zt−1 − φ2zt−2 − . . .− φpzt−p|)β−2

(zt − φzt−1 − . . .− φpzt−p) (zt−i) = 0 (i = 1, 2, . . . , p),

∂

∂β
log L =

n

β
+

n

β2
Ψ

(
1

β

) n∑
t=p+1

(|zt − φ1zt−1 − φ2zt−2 − . . .− φpzt−p|)β

log

(
|zt − φ1zt−1 − φ2zt−2 − . . .− φpzt−p|

σ

)
,

∂

∂σ
log L =

−n
σ

+
β

σ

n∑
t=p+1

(
|zt − φzt−1 − . . .− φpzt−p|

σ

)β
,

where Ψ(·) is the digamma function defined by Ψ(z) = d
dz
log(Γ(z)) = Γ′(z)

Γ(z)
. The

ML estimators of φi, β andσ are obtained as the the solutions of the likelihood

equations. As the ML estimates of Φ, β, σ do not possess explicit forms, we need to

obtain them by numerical methods.
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By taking p=1, 2,. . . k, k ≤ p, in an AR(p) model, we get the corresponding autore-

gressive model of lag ’k’ with GED innovations. However, we discuss the estimation

problem of AR(1) process in view of its Markov property, which leads to some

asymptotic properties.

The {Zt} defined by (3.1) is a Markov sequence with transition density

f(zt|zt−1) =
β

2σ Γ(1/β)
exp

{
−
(
|zt − φzt−1|

σ

)β
}

, −∞ < zt <∞,

σ > 0, β > 0. (3.16)

Then the conditional likelihood function of Λ = (φ, σ, β) is given by

L(Λ|z1, z2, ..., zn) ∝
n∏
t=2

ft|t−1(zt|zt−1)

=
βn

2n σn Γ(1/β)n
exp

{
−

n∑
t=2

(
| (zt − φzt−1) |

σ

)β
 . (3.17)

The ML estimates of the parameters are obtained by maximizing this likelihood

form. To study the properties and check the regularity conditions of the estimators,

we obtain the ML estimators as the solution of likelihood equations. The log-

likelihood function (without the constant) becomes

logL = n log β − n log σ − n log Γ(1/β)−
n∑
t=2

(
|zt − φzt−1|

σ

)β
.

(3.18)
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As the likelihood function is differentiable for β > 1, the first derivative of the

likelihood function w.r.t Θ can be expressed as

∂

∂φ
log L =

β

σβ

n∑
t=2

(|zt − φ zt−1|)β−2 (zt − φ zt−1) (zt−1), (3.19)

∂

∂β
log L =

n

β
+

n

β2
Ψ

(
1

β

)
−

n∑
t=2

(
|zt − φ zt−1|

σ

)β
log

(
|zt − φ zt−1|

σ

)
, (3.20)

∂

∂σ
log L =

−n
σ

+
β

σ

n∑
t=2

(
|zt − φ zt−1|

σ

)β
, (3.21)

where Ψ(·) is the digamma function defined by Ψ(z) = d
dz
log(Γ(z)) = Γ′(z)

Γ(z)
for

β > 1. The ML estimators of φ, β, σ are the solutions of the likelihood equations

∂logL
∂φ

= 0, ∂logL
∂β

= 0, ∂logL
∂σ

= 0 for β > 1. We solve the resulting likelihood equations

iteratively, using the moment estimates as the initial values, and the computation

results based on simulated data is summarised in Section 3.5. However, in our case,

the regularity conditions hold only when β = 2 and β ≥ 3. Problem here is the

non-differentiability of the likelihood function with respect to φ for other values

of β. So we study the properties of the MLE of σ and β by considering φ to be

known. The estimates of β and σ can be obtained by solving ∂logL/∂β = 0 and

∂logL/∂σ = 0.

Generalized Method of Moments

The method of maximum likelihood discussed in the earlier Section helps in studying

the ML estimators properties only for two parameters σ and β. So in this Section,

we propose the method of moments to estimate all the three parameters, and es-

tablish their asymptotic properties. To estimate the parameter vector Λ′ we use the
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following moment equations

E(Z2
t ) = (σ2Γ

(
3
β

)
)/((1− φ2) Γ

(
1
β

)
).

E(Z4
t ) = (σ4

(
(6φ2)Γ( 3

β )
2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )

)
)/(1− φ4).

E (ZtZt−1) = (σ2φΓ
(

3
β

)
)/((1− φ2) Γ

(
1
β

)
).

In order to establish the properties of the estimators, we define the estimating func-

tion:

g(zt, zt−1,Λ) =


z2
t −

σ2Γ( 3
β )

(1−φ2)Γ( 1
β )

z4
t −

σ4

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


1−φ4

ztzt−1 −
σ2φΓ( 3

β )
(1−φ2)Γ( 1

β )


.

Then the moment estimator Λ̂′= (φ̂, σ̂, β̂) of Λ′ may be obtained by solving the

equation

1

n

n∑
t=1

g (zt, zt−1,Λ) = 0.

The resulting moment equations for estimating φ, σ and β are expressed as

φ̂ = (Y11)/(Y2); Y4

Y 2
2

=

(1−φ2)
2
Γ( 1

β )
2

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


(1−φ4)Γ( 3

β )
2 ; σ =

√
Y2 (1−φ̂2)Γ

(
1

β̂

)
Γ
(

3

β̂

) ,

where Y2 = (
n∑
t=1

z2
t )/(n), Y11 = (

n∑
t=1

ztzt−1)/(n), Y4 = (
n∑
t=1

z4
t )(n).
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3.4 Asymptotic properties of the estimators for

GED-AR(1) Model.

3.4.1 Maximum Likelihood Estimates

Under certain regularity conditions listed below, Billingsley (1961) (pp. 10-14)

proved that the MLE is Consistent and Asymptotically Normal for Markov se-

quence. Let {Zt} be a stationary Markov sequence with one-step transition density

function f(zt; θ|zt−1) and the initial density fZ(z1; θ) and Θ be the parameter space.

i) logf(zt; θ|zt−1) is thrice differentiable with respect to θ for all θ in a neighbour-

hood I of θ0.

ii) E|∂2logf(zt; θ0|zt−1)/∂θiθj| <∞;

E|∂2logf(zt; θ0|zt−1)/∂θiθj|+ (∂logf(zt; θ0|zt−1)/∂θi)
2| <∞.

iii) There exist sequences {K(t)} and {M(t)} of positive constants with K(T )→∞

and M(T )→∞, as T →∞ such that

(a) M(T ){K(T )}−1
∑T

t=1 ∂logf(zt; θ0|zt−1/∂θi
L−→ N(0, B(θ0)) for some non-

random function B(θo) > 0,

(b) {K(T )}−1|
∑T

t=1 ∂
2logf(zt; θ0|zt−1/∂θi∂θj|

p−→ A(θ0), and

(c) for all ε > 0 and for all ν > 0, there exists δ = δ(ε, ν) and N = N(ε, ν)

such that for all T > N,

P

[
{K(T )}−1

∣∣∣∣∣
T∑
t=1

(
∂2logf(zt; θ

∗|zt−1)

∂θiθj
− ∂2logf(zt; θ0|zt−1)

∂θiθj

)∣∣∣∣∣ > ν

]
< ε,
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whenever, |θ∗−θ0| < δ, where θ∗ = θ0+r(θ−θ0) with r = r(T, θ0) satisfying

|r| < 1.

Hence, there exists a root θ̂ of the likelihood equation with Pθ0-probability ap-

proaching one which is consistent for θ0 as n −→∞. Under the conditions (i)-(iii),

any consistent solution of the maximum likelihood equation is asymptotic normal

(CAN). That is,

M(T )(θ̂ − θ0)
L−→ N(0, C(θ0)),

where C(θ0) = ((Cij(θ0))) = A(θ0)−1B(θ0)A(θ0)−1 and

Aij(θ0) = E(∂2logf(zt; θ0|zt−1/∂θi∂θj)),

Bij(θ0) = E((∂logf(zt; θ0|zt−1/∂θi)(∂logf(zt; θ0|zt−1/∂θj).

In our case, the above regularity conditions hold only when β = 2 and β > 3

(Varanasi and Aazhang (1989)). It is due to the non-differentiability of the like-

lihood function with respect to φ for other values of β. So, considering φ to be

known, we obtain the MLE of σ and β. The MLE
√
n

σ̂ − σ

β̂ − β

 → N2 (0, I−1)

where I11 = β
σ2

I12 = I21 =
1+β+Ψ( 1

β
)

β σ
and

I22 =
β2+β(Ψ(1+ 1

β
))2+2βΨ( 1

β
)+βΨ′(1+ 1

β
)+Ψ′( 1

β
)

β4 ,

where Ψ(z) = d
dz

log Γ(z) = Γ′(z)
Γ(z)

, is the digamma function. One can construct

asymptotic confidence interval based on the diagonal elements of I−1.
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3.4.2 Generalized Method of Moment estimates

The asymptotic properties for generalized method of moments are established using

the results of Hansen (1982). According to Hansen (1982) GMM estimators are

obtained using a large number of moment equations. Under the following assump-

tions, Hansen (1982) proved that the generalized moment estimators are consistent

and asymptotically normal. We state the result below.

1. {zt : −∞ < t <∞} is stationary and ergodic sequence.

2. The parameter space Θ is an open subset of Rq that contains the true param-

eter θ0.

3. g(., θ) and ∂g(., θ)/∂θ are Borel-measurable for each θ ∈ Θ and ∂g(z, .)/∂θ is

continuous on Θ for each z ∈ Rq.

4. ∂g1/∂θ is first moment continuous at θ0, D = E[∂g(zt, θ0)/∂θ] exists, is finite,

and has full rank.

5. Let ωt = g(zt, θ0), −∞ < t <∞ and

νj = E(ω0|ωt−j, ω−j−1, . . .) − E(ω|ω−j−1, ω−j−2, . . .), j ≥ 0. The assumptions

are that E(ω0ω
′
0) exists and is finite, E(ω0|ω−j, ω−j − 1, . . .) converges in

mean square to zero and
∑∞

j=0 E(ν ′jνj)
1/2 is finte.

Now, we have the following Theorem proved by Hansen (1982).

Theorem 3.1. Suppose the sequence {zt : −∞ < t <∞} satisfies the assumptions

stated in Hansen (1982). Then
{√

T (Λ̂− Λ), T ≥ 1
}

converges in distribution to a

normal random vector with mean 0 and dispersion matrix [DS−1D′]−1, where D =
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E
(
∂g(zt,Λ0)

∂Λ

)
exists, is finite, and has full rank and ∂g

∂Λ
is the first moment continuous

at Λ0 , S =
∞∑

k=−∞
Γ(k), Γk = E

(
ωtω

′
t−k
)

where ωt = g(zt,Λ0),−∞ < t <∞.

The sequence {zt} defined in (3.11) is stationary, ergodic and has finite moments.

The partial derivatives of f w.r.t Λ are

∂g
∂σ

=



− 2σΓ( 3
β )

(1−φ2)Γ( 1
β )

−
4σ3

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


1−φ4

− 2σφΓ( 3
β )

(1−φ2)Γ( 1
β )


;

∂g
∂β

=



3σ2Γ( 3
β )Ψ( 3

β )
β2(1−φ2)Γ( 1

β )
− σ2Γ( 3

β )Ψ( 1
β )

β2(1−φ2)Γ( 1
β )

−
σ4

 12φ2Γ( 3
β )

2
Ψ( 1

β )
β2(1−φ2)Γ( 1

β )
2 −

36φ2Γ( 3
β )

2
Ψ( 3

β )
β2(1−φ2)Γ( 1

β )
2 +

Γ( 5
β )Ψ( 1

β )
β2Γ( 1

β )
−

5Γ( 5
β )Ψ( 5

β )
β2Γ( 1

β )


1−φ4

3σ2φΓ( 3
β )Ψ( 3

β )
β2(1−φ2)Γ( 1

β )
− σ2φΓ( 3

β )Ψ( 1
β )

β2(1−φ2)Γ( 1
β )


;

and
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∂g
∂φ

=



− 2σ2φΓ( 3
β )

(1−φ2)2Γ( 1
β )

−
σ4

 12φΓ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
12φ3Γ( 3

β )
2

(1−φ2)2
Γ( 1

β )
2


1−φ4 −

4σ4φ3

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


(1−φ4)2

− σ2Γ( 3
β )

(1−φ2)Γ( 1
β )
− 2σ2φ2Γ( 3

β )
(1−φ2)2Γ( 1

β )


.

where Ψ(.) is the digamma function defined by Ψ(z) = d
dz
log(Γ(z)) = Γ′(z)

Γ(z)
. Thus,

∂g/∂θ exists and continuous for all θ. Similarly, we can show that E
(
∂g
∂Λ

)
where

E (ω0ω
′
0) exists and finite. Hence, the regularity conditions of Hansen hold good

for our model. The derivation of the elements of the dispersion matrix which are

required to compute the asymptotic standard errors of the estimators are given as

follows.

Let Γ(k) =


γ

(k)
11 γ

(k)
12 γ

(k)
13

γ
(k)
21 γ

(k)
22 γ

(k)
23

γ
(k)
31 γ

(k)
32 γ

(k)
33

 ; k = 0,±1,±2, . . .

and Γ(k)=Γ(−k), k = 1, 2, . . . . Then the 3 × 3 matrix S is given by S = Γ(0) +

2
∑∞

k=1 Γ(k).

When k = 0, the elements of Γ(0)= E (ωtω
′
t) are obtained as

γ
(0)
11 =

σ4
(
(9φ2+3)Γ( 3

β )
2
−(φ2−1)Γ( 1

β )Γ( 5
β )
)

(φ2−1)2(φ2+1)Γ( 1
β )

2 ;

γ
(0)
12 =

σ6
(

6φ2(−14φ4+φ2+1)Γ( 3
β )

3
+(29φ6−15φ4−15φ2+1)Γ( 1

β )Γ( 5
β )Γ( 3

β )+(−φ6+φ4+φ2−1)Γ( 1
β )

2
Γ( 7

β )
)

(φ2−1)3(φ2+1)(φ4+φ2+1)Γ( 1
β )

3 ;
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γ
(0)
13 =

σ4
(
φ(3φ4−φ2+2)Γ( 3

β )
2
−φ3(φ2−1)Γ( 1

β )Γ( 5
β )
)

(φ2−1)2(φ2+1)Γ( 1
β )

2 ;

γ
(0)
21 = γ

(0)
12 ;

γ
(0)
22 =

(
σ8

(
36φ4 (69φ8 − φ6 − 2φ4 − φ2 − 1) Γ

(
3
β

)4

−12φ2 (104φ10 − 35φ8 − 36φ6 − 34φ4 + 1) Γ
(

1
β

)
Γ
(

3
β

)2

Γ
(

5
β

)
+28φ2 (2φ10 − φ8 − 2φ6 + 1) Γ

(
1
β

)2

Γ
(

3
β

)
Γ
(

7
β

)
− (φ2 − 1)

2
(φ4 + φ2 + 1) Γ

(
1
β

)2
(

(1− 69φ4) Γ
(

5
β

)2

+ (φ4 − 1) Γ
(

1
β

)
Γ
(

9
β

))))
(

(φ2 − 1)
4

(φ2 + 1)
2

(φ4 + 1) (φ4 + φ2 + 1) Γ
(

1
β

)4
)−1

;

γ
(0)
23 = −σ6φ

(
6φ2 (5φ8 − φ4 + 9φ2 − 1) Γ

(
3
β

)3

+ (−15φ10 + 5φ8 + 11φ6 − 15φ4 + 10φ2 + 4) Γ
(

1
β

)
Γ
(

3
β

)
Γ
(

5
β

)
+φ4 (φ2 − 1)

2
(φ2 + 1) Γ

(
1
β

)2

Γ
(

7
β

))(
(φ2 − 1)

3
(φ2 + 1) (φ4 + φ2 + 1) Γ

(
1
β

)3
)−1

;

γ
(0)
31 = γ

(0)
13 ;

γ
(0)
32 = γ

(0)
23 ;

γ
(0)
33 =

σ4Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 −
σ4φ2Γ( 3

β )
2

(1−φ2)2Γ( 1
β )

2 +

σ4φ2

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


1−φ4 .
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Similarly, these following are the elements of Γ(k) for k = 1, 2, . . . .

γ
(k)
11 = c1

(
k∑
i=1

φ2(i−1)

)
c3 + φ2kc4 − c2

3;

γ
(k)
12 = c1

(
k∑
i=1

φ2(i−1)

)
c4 + φ2kc5 − c3c4;

γ
(k)
13 = c1

(
k∑
i=1

φ2i−1

)
c3 + 3φ2k+1c1c3 + φ2k+3c4 − c7c3;

γ
(k)
21 = 6c2

1c3

(
k∑
j=0

j+k−1∑
i=2j+1

φ2i

)
+ 6c1

(
k∑
i=1

φ2((i−1)+k)

)
c4 + c2

(
k∑
i=1

φ4(i−1)

)
c3 + φ4kc5 −

c3c4;

γ
(k)
22 = 6c2

1c4

(
k∑
j=0

j+k−1∑
i=2j+1

φ2i

)
+ 6c1

(
k∑
i=1

φ2((i−1)+k)

)
c5 + c2

(
k∑
i=1

φ4(i−1)

)
c4 + φ4kc6 −

c3c4;

γ
(k)
23 = 18c2

1

(
k∑
i=1

φ2((i−1)+k)+1

)
c3 + 6c1

(
k∑
i=1

φ2((i−1)+k)+3

)
c4 + c2

(
k∑
i=1

φ4(i−1)+1

)
c3 +

k∑
j=0

j+k−1∑
i=2j+1

φ2i+1 + 10φ4k+3c1c4 + 5φ4k+1c2c3 + φ4k+5c5 − c7c4;

γ
(k)
31 =

(
c1

(
k−1∑
i=1

φ2i−1

)
c3 + φ2k−1c4

)
− c7c3;

γ
(k)
32 =

(
c1

(
k−1∑
i=1

φ2i−1

)
c4 + φ2k−1c5

)
− c7c4;
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γ
(k)
33 =

(
c1

(
k−1∑
i=1

φ2i

)
c3 + 3φ2kc1c3 + φ2k+2c4

)
− c2

7,

where c1 = σ2Γ(3/β)
Γ(1/β)

, c2 = σ2Γ(5/β)
Γ(1/β)

, c3=E(Z2
t ), c4 =E(Z4

t ), c5=E(Z6
t ), c6=E(Z8

t )

and c7=Cov(z1, z2).

The 3 × 3 matrix D is evaluated using the form D = E
(
dg(zt,Λ)

dΛ

)
and its elements

are :

D11 = − 2σΓ( 3
β )

(1−φ2)Γ( 1
β )

;

D12 = −
4σ3

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


1−φ4 ;

D13 = − 2σφΓ( 3
β )

(1−φ2)Γ( 1
β )

;

D21 =
3σ2Γ( 3

β )Ψ( 3
β )

β2(1−φ2)Γ( 1
β )
− σ2Γ( 3

β )Ψ( 1
β )

β2(1−φ2)Γ( 1
β )

;

D22 = −
σ4

 12φ2Γ( 3
β )

2
Ψ( 1

β )
β2(1−φ2)Γ( 1

β )
2 −

36φ2Γ( 3
β )

2
Ψ( 3

β )
β2(1−φ2)Γ( 1

β )
2 +

Γ( 5
β )Ψ( 1

β )
β2Γ( 1

β )
−

5Γ( 5
β )Ψ( 5

β )
β2Γ( 1

β )


1−φ4 ;

D23 =
3σ2φΓ( 3

β )Ψ( 3
β )

β2(1−φ2)Γ( 1
β )
− σ2φΓ( 3

β )Ψ( 1
β )

β2(1−φ2)Γ( 1
β )

;

D31 = − 2σ2φΓ( 3
β )

(1−φ2)2Γ( 1
β )

;
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D32 = −
σ4

 12φΓ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
12φ3Γ( 3

β )
2

(1−φ2)2
Γ( 1

β )
2


1−φ4 −

4σ4φ3

 6φ2Γ( 3
β )

2

(1−φ2)Γ( 1
β )

2 +
Γ( 5

β )
Γ( 1

β )


(1−φ4)2 ;

D33 = − σ2Γ( 3
β )

(1−φ2)Γ( 1
β )
− 2σ2φ2Γ( 3

β )
(1−φ2)2Γ( 1

β )
.

Hence the asymptotic dispersion matrix becomes 1
n
[DS−1D′]−1. The diagonal el-

ements of this matrix are used to compute the asymptotic standard errors of the

estimators.

3.5 Simulation study

3.5.1 Conditional Maximum Likelihood Estimates

A simulation study is carried out to assess the performance of the estimation pro-

cedure for ARMA(1,1), MA(1) and AR(1) models by the method of maximum

likelihood for β > 3 with the sample size 500, 1000. This was repeated 100 times.

The parameter estimates were obtained for each simulated series. The average and

standard errors of the resulting estimates are presented in Tables 3.1, 3.2, 3.3. From

the tables we can see that the estimates of ARMA(1,1), MA(1) and AR(1) are close

to the true values. Thus, the simulation results suggest that ML estimates behave

reasonably well for large samples. A simulation study is carried out with sample size

3000 to obtain the ML estimates of β and σ for specified values of φ. The average of

the estimates and the corresponding standard errors of the estimates are presented

in Table 3.4
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Table 3.1: The average estimates and the corresponding standard errors of the
maximum likelihood estimates based on simulated sample of size n=500 and 1000

for ARMA(1,1)

True Values(n=500) Maximum Likelihood Estimates

φ θ σ β φ̂ sd(φ̂ ) θ̂ sd(θ̂) σ̂ sd(σ̂) β̂ sd(β̂)

0.6 0.2

2

3.1 0.59375 0.07709 0.19336 0.09200 1.98833 0.08211 3.07965 0.24503

3.3 0.61003 0.06345 0.20522 0.08516 2.00623 0.07687 3.29812 0.27960

3.5 0.61634 0.06762 0.22063 0.08535 2.00302 0.08662 3.51649 0.25124

-0.7 0.2

3.1 -0.69794 0.04039 0.20192 0.04887 1.99941 0.09020 3.09581 0.26828

3.3 -0.69158 0.03910 0.20358 0.05350 1.99106 0.09726 3.35463 0.28364

3.5 -0.69317 0.03705 0.20973 0.04959 2.00704 0.08487 3.46460 0.26621

-0.6 -0.3

3.1 -0.58970 0.09995 -0.29105 0.11302 2.00092 0.09750 3.13889 0.26306

3.3 -0.59910 0.09104 -0.30108 0.11019 2.01911 0.10425 3.29637 0.27342

3.5 -0.59746 0.08511 -0.30518 0.10503 2.00713 0.08970 3.49720 0.27030

0.2 -0.7

3.1 0.21255 0.05463 -0.68996 0.04502 2.00501 0.08880 3.04239 0.28078

3.3 0.19473 0.04869 -0.70054 0.03350 1.99517 0.09371 3.24452 0.28924

3.5 0.19746 0.04854 -0.69591 0.03351 2.00571 0.09479 3.49831 0.27427

n=1000

0.6 0.2

2

3.1 0.59419 0.05488 0.19562 0.07003 1.99809 0.06589 3.12764 0.19348

3.3 0.59633 0.04905 0.19553 0.05952 1.99455 0.07274 3.33283 0.22187

3.5 0.59881 0.04906 0.19891 0.06327 1.99290 0.06461 3.46590 0.22039

-0.7 0.2

3.1 -0.70002 0.02568 0.20156 0.03725 1.99742 0.06917 3.08627 0.20719

3.3 -0.70032 0.02717 0.19882 0.03985 2.00879 0.07348 3.32635 0.20311

3.5 -0.70267 0.02653 0.19911 0.03417 1.99007 0.07273 3.50906 0.23380

-0.6 -0.3

3.1 -0.59674 0.06276 -0.29397 0.07812 2.00244 0.06630 3.13741 0.24829

3.3 -0.58927 0.07179 -0.28669 0.08621 1.99800 0.06135 3.32393 0.22693

3.5 -0.59192 0.06153 -0.29026 0.07387 2.00314 0.07436 3.48030 0.22915

0.2 -0.7

3.1 0.20244 0.03652 -0.69951 0.02723 2.00687 0.06612 3.09970 0.19558

3.3 0.20203 0.03601 -0.69831 0.02450 1.99447 0.06764 3.27086 0.20868

3.5 0.19675 0.04061 -0.70062 0.02582 1.99309 0.07138 3.47421 0.24635

3.5.2 Generalized method of moment estimates

In Tables 3.5 and 3.6 the GMM estimators of Λ are calculated with the sample size

3000 and 5000. For each simulated series the parameter estimates were obtained.

We also calculate the asymptotic standard errors based on the theoretical values of

the parameter. They are obtained as the square root of the diagonal elements of
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Table 3.2: The average estimates and the corresponding standard deviation of
the maximum likelihood estimates based on simulated observations of sample size

n=500 and 1000 for MA(1) model.

True Values Maximum Likelihood Estimates

θ σ β θ̂ sd(θ̂) σ̂ sd(σ̂) β̂ sd(β̂)

-0.7

2

3.1 -0.70280 0.03165 1.99365 0.05453 3.10463 0.06259

3.3 -0.70247 0.02999 1.99425 0.05510 3.31550 0.07233

3.5 -0.69702 0.02738 1.98920 0.05354 3.50744 0.07363

-0.3

3.1 -0.29575 0.04082 1.99923 0.05539 3.10964 0.07525

3.3 -0.30072 0.03944 1.99487 0.05497 3.32058 0.07061

3.5 -0.29887 0.04243 1.99541 0.04585 3.50758 0.07677

0.2

3.1 0.20058 0.03874 1.99039 0.05592 3.10867 0.06911

3.3 0.19535 0.04248 1.99187 0.05239 3.30207 0.06805

3.5 0.19634 0.03834 1.99012 0.05133 3.49968 0.07708

0.7

3.1 0.70031 0.02543 1.99276 0.05071 3.11378 0.06897

3.3 0.71017 0.04853 1.99107 0.06235 3.26445 0.15322

3.5 0.69996 0.03055 1.99757 0.05520 3.51590 0.08005

-0.7

2

3.1 -0.70011 0.01873 1.99184 0.03035 3.10837 0.05017

3.3 -0.70096 0.02045 1.99945 0.03589 3.31925 0.05019

3.5 -0.69765 0.02297 1.99985 0.03599 3.5068 0.05462

-0.3

3.1 -0.30090 0.03091 1.99987 0.03713 3.10394 0.04706

3.3 -0.29953 0.02849 1.99243 0.03465 3.30183 0.05042

3.5 -0.29970 0.02846 2.00463 0.04114 3.50287 0.05964

0.2

3.1 0.20116 0.02718 2.00478 0.03643 3.10065 0.04802

3.3 0.2036 0.03283 1.99209 0.03591 3.30054 0.05816

3.5 0.20602 0.02922 1.99964 0.03780 3.50450 0.04995

0.7

3.1 0.69728 0.02321 1.99470 0.03783 3.09729 0.04729

3.3 0.70317 0.03398 1.99680 0.03720 3.27854 0.09702

3.5 0.69966 0.02078 1.99687 0.03738 3.50058 0.05893

the corresponding asymptotic dispersion matrix. These values are compared with

the estimated standard errors of respective elements.
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Table 3.3: The average estimates and the corresponding standard errors of the
maximum likelihood estimates based on simulated observations of sample size

n=500 and 1000 for AR(1) model.

True Values Maximum Likelihood Estimates

n φ σ β φ̂ sd(φ̂) σ̂ sd(σ̂) β̂ sd(β̂)

500

-0.7

2

3.1 -0.69574 0.02576 1.98617 0.06913 3.13188 0.29644

3.3 -0.69667 0.02166 1.99449 0.05673 3.33743 0.297789

3.5 -0.69348 0.02564 1.99903 0.05370 3.59775 0.301358

-0.3

3.1 -0.29469 0.02638 1.99428 0.05451 3.09561 0.25252

3.3 -0.30196 0.02361 1.99962 0.05071 3.34939 0.26267

3.5 -0.29677 0.02980 2.00787 0.05186 3.57451 0.29966

0.2

3.1 0.20003 0.02656 2.00150 0.06316 3.12273 0.28295

3.3 0.20496 0.03069 1.99659 0.05062 3.33680 0.28813

3.5 0.19799 0.03082 1.99929 0.04994 3.55290 0.283429

0.6

3.1 0.60366 0.02505 1.99667 0.05914 3.13311 0.26461

3.3 0.60080 0.02426 1.99356 0.05972 3.29678 0.29236

3.5 0.59233 0.02310 1.99401 0.05346 3.48860 0.29171

1000

-0.7

2

3.1 -0.69931 0.01875 1.99274 0.04823 3.07917 0.207264

3.3 -0.70044 0.01544 1.99419 0.04294 3.31003 0.22374

3.5 -0.69952 0.01810 2.00480 0.04207 3.55943 0.254925

-0.3

3.1 -0.29683 0.02179 1.99638 0.04733 3.08192 0.200464

3.3 -0.30276 0.02278 2.00224 0.04314 3.32579 0.24673

3.5 -0.29785 0.022834 2.003742 0.042997 3.515516 0.249564

0.2

3.1 0.19992 0.02504 1.99960 0.04953 3.13211 0.20576

3.3 0.19687 0.02282 1.99727 0.04289 3.30485 0.21901

3.5 0.20434 0.02397 1.99793 0.04349 3.55918 0.27322

0.6

3.1 0.60036 0.02022 1.99576 0.04625 3.11241 0.20227

3.3 0.59349 0.02087 1.99703 0.04364 3.31851 0.214171

3.5 0.59836 0.01813 2.00048 0.04199 3.56516 0.273019
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Table 3.4: Average of estimates and the corresponding standard errors of the
mle’s of β and σ based on simulated sample size n=3000, σ = 1.5 and for specified

values of φ. for an AR(1)

φ β σ̂ se(σ̂) β̂ se(β̂)

0.3

1.3 1.4922 0.0550 1.2929 0.0439
1.7 1.4983 0.0379 1.7009 0.0575
2.1 1.5029 0.0322 2.1135 0.0805

0.5
1.3 1.5030 0.0477 1.3026 0.0397
1.7 1.4943 0.0349 1.6909 0.0632
2.1 1.5015 0.0316 2.1084 0.0741

0.7
1.3 1.5031 0.0538 1.3021 0.0449
1.7 1.5050 0.0302 1.7067 0.0618
2.1 1.4983 0.0326 2.1004 0.0787

0.85

1.3 1.5022 0.0437 1.3053 0.0353
1.7 1.4967 0.0396 1.7013 0.0563
2.1 1.5011 0.0309 2.1085 0.0737

Table 3.5: The average estimates and the corresponding standard errors of the
moment estimates based on simulated observations of sample size n=3000. The

estimates of asymptotic standard errors are also given for AR(1) model

True Values φ̂ σ̂ β̂

σ β φ Mean Std Dev Asymp sd Mean Std Dev Asymp sd Mean Std Dev Asymp sd

2

1.3

0.3 0.29949 0.01784 0.02727 2.00618 0.12927 0.07328 1.30645 0.07811 0.03728

0.5 0.49937 0.01531 0.02727 2.02097 0.16051 0.07328 1.31795 0.09799 0.03728

0.7 0.69908 0.01358 0.05893 2.03429 0.25203 0.07135 1.33575 0.15948 0.03312

0.85 0.84909 0.00918 0.02393 2.18336 0.58132 0.08981 1.59367 0.71321 0.03209

1.5

0.3 0.29951 0.01767 0.02178 2.00936 0.09846 0.06535 1.51283 0.08837 0.03958

0.5 0.49979 0.01595 0.05846 2.01339 0.11702 0.07595 1.51685 0.10407 0.04489

0.7 0.69944 0.01315 0.04952 2.03335 0.23112 0.11292 1.55654 0.21851 0.01859

0.85 0.85007 0.00976 0.02469 2.13914 0.51309 0.09828 1.95850 1.00912 0.04839

1.7

0.3 0.30143 0.01773 0.01023 2.00077 0.07830 0.05903 1.70596 0.09001 0.03555

0.5 0.49985 0.01542 0.05418 2.00525 0.10201 0.07723 1.71349 0.12086 0.06737

0.7 0.69827 0.01251 0.03081 2.02773 0.19383 0.03768 1.77535 0.26582 0.05313

0.85 0.84896 0.00981 0.02393 2.09693 0.45059 0.09634 2.26266 1.14557 0.06196

1.85

0.3 0.30063 0.01823 0.03026 2.00258 0.06852 0.09656 1.86143 0.10193 0.01469

0.5 0.50049 0.01539 0.04793 2.00092 0.09202 0.07616 1.86668 0.14091 0.09274

0.7 0.69873 0.01318 0.02615 2.02739 0.18596 0.02304 1.95419 0.35314 0.07703

0.85 0.84918 0.00998 0.02248 2.05779 0.41003 0.08878 2.46909 1.24752 0.06634
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Table 3.6: The average estimates and the corresponding standard errors of the
moment estimates based on simulated observations of sample size n=5000. The

estimates of asymptotic standard errors are also given for AR(1) model

True Values φ̂ σ̂ β̂

σ φ β Mean Std Dev Asymp sd Mean Std Dev Asymp sd Mean Std Dev Asymp sd

2

0.3

1.3

0.30081 0.01458 0.01219 1.98701 0.09828 0.03277 1.2934 0.05787 0.01667

0.5 0.49928 0.01208 0.00993 2.02245 0.12473 0.03087 1.31826 0.07561 0.01709

0.7 0.69876 0.00999 0.00781 2.01905 0.19648 0.03298 1.32310 0.12786 0.01927

0.85 0.84902 0.00710 0.00563 2.03641 0.44063 0.03817 1.37042 0.30720 0.01732

0.3

1.5

0.29850 0.01341 0.00974 1.99210 0.05986 0.02922 1.49629 0.05215 0.01770

0.5 0.50159 0.01171 0.01835 2.01603 0.10416 0.02711 1.51949 0.09146 0.02547

0.7 0.69860 0.00892 0.00742 2.02962 0.16107 0.03182 1.53588 0.15075 0.02567

0.85 0.84940 0.00767 0.00492 2.10235 0.38802 0.03809 1.71109 0.49808 0.03153

0.3

1.7

0.30265 0.01301 0.00457 2.00378 0.06307 0.02639 1.71071 0.07530 0.01590

0.5 0.50068 0.01220 0.02287 2.00870 0.06803 0.03047 1.71235 0.08168 0.03568

0.7 0.70013 0.01038 0.00779 2.05017 0.15455 0.02045 1.78649 0.20506 0.05209

0.85 0.85056 0.00813 0.00541 2.06041 0.37724 0.03665 2.06986 0.95352 0.03292

0.3

1.85

0.30092 0.01273 0.02088 1.99711 0.04866 0.03165 1.85483 0.06960 0.06725

0.5 0.49975 0.01248 0.02945 2.01420 0.06496 0.04026 1.88191 0.10081 0.04131

0.7 0.69828 0.01015 0.00561 2.00850 0.14723 0.02701 1.89760 0.24964 0.03669

0.85 0.84946 0.00707 0.01005 1.98510 0.34376 0.03970 2.11583 0.94585 0.02967

3.6 Data Analysis

3.6.1 BSE Index

To illustrate the models discussed in the Chapter, we consider two sets of financial

data. The first set of data consists of daily maximum of BSE Index from May 18th

2006 to June 27st 2007. There are 277 observations. The plots of the actual time

series, logarithmic differences, ACF and PACF of the log returns are given in Figure

3.1. One can see from the plots that the original series is not stationary, where as

the logarithmic difference of the series is stationary. The ACF and PACF in Figure

3.1 give an indication that the log difference series might follow an AR(1) model.

As a starting point we fitted an AR(1) model with Gaussian innovations and found
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Figure 3.1: Time series plot of BSE Index and returns(top panel) and ACF
and PACF plot of returns(bottom panel)

that the estimate of φ, φ̂ as 0.1791. However, the Q-Q plot which is shown in Figure

3.2 and the p-value( <0.0001) based on KolmogorovSmirnov(KS) test lead to the

rejection of the null hypothesis that the residuals are normal.

Then we fit an AR(1) model with GED innovations to the data and obtained the

estimates as φ̂=0.18156, σ̂=.00928 and β̂=1.1 by the method maximum likelihood.

Now to check the validity of the model we consider the KS test. The KS statistic

is obtained as 0.07524 and the p-value is 0.01508. So we cannot reject at 5% level

of significance. The ACF plot of residuals given in Figure 3.2 shows that they are

uncorrelated. The superimposition of the histogram of the residuals on the pdf of

GED in the last panel of Figure 3.2 shows that there is a close agreement.
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Figure 3.2: ACF and PACF plot of residuals(top panel) and Q-Q plot and
histogram of residuals with superimposed GED density(bottom panel)

3.6.2 BSE 500 Index

Another set of data we considered is a time series of daily opening of BSE 500

INDEX from July 7th 2010 to December 31st 2010. There are 125 observations.

The time series plot, logarithmic difference plot, ACF and PACF of the log returns

are given in Figure 3.3.

The ACF/PACF plots in Figure 3.3 suggest that an MA(1) or an ARMA(1,1) model

may be suitable for the data. Initially an MA(1) model and an ARMA(1,1) model

with Gaussian innovations was fitted to the data. We obtained the estimate of θ as

-0.435 for the MA(1) model and φ̂ = −0.334 and θ̂ = 0.9 for the ARMA(1,1) model.

But the Q-Q plot and the p-value lead to the rejection of normality. Now we fit an

MA(1) model with GED innovations to the data and obtained the estimates as θ̂=-

0.41387, σ̂=0.003652 and β̂=0.75601 by GMM method. Also an ARMA(1,1) model

with GED innovations is fitted and obtained the estimates as φ̂=0.1, θ̂=0.4518,
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Figure 3.3: Time series plot of BSE 500 Index and returns(top panel) and ACF
and PACF plot of returns(bottom panel)

Figure 3.4: Histogram of residuals with superimposed GED density and Q-Q
plot(top panel) and ACF plot of residuals(bottom panel)
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σ̂=0.00378 and β̂=0.6. To fix the model, we use Akaike information criterion. The

AIC values obtained for MA(1) and ARMA(1,1) model are -1074.3 and -951.89

respectively. The criterion identifies MA(1) model for the series. The KS statistic

for MA(1) model is obtained as 0.11031 and the p-value is 0.21595. Also, the ACF of

residuals given in Figure 3.4(c) are not significant. In Figure 3.4(a) we superimpose

the GED density on the histogram of the residuals.

The results of this Chapter are reported in the paper Balakrishna and Sri Ranganath

(2015).





Chapter 4

Hurwicz Estimator for Autoregressive model

with Generalized Error Distributed inno-

vations

4.1 Introduction

In the literature, the statistical problem of estimating the parameters of linear time

series models has gained the interests of many researchers. The classical analysis

of time series assumes that the sequence of observations is a realization from some

Gaussian sequence. But the real life situations can be explained by non-Gaussian

time series models, as seen in the previous Chapter. Majority of the literature deals

with the linear autoregressive models in the study of Gaussian and non-Gaussian

time series. So a contribution to the inference and estimation of AR(1) models may

help to handle many real life situations. Several authors have proposed different

estimation methods to estimate the coefficient of an AR(1) process as it is of great

importance. For an AR(1) model, the least squares method is chosen frequently

to estimate the autoregressive parameter. Sen (1968), Fox (1972) and Denby and

Martin (1979) pointed out the estimation problem associated with the least square

estimator in a first order autoregressive process. In literature, several authors study

93
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the problem of obtaining a robust estimate for the parameter of a stationary first-

order AR process. In that direction, Hurwicz (1950) considered the problem of least

square bias in time series of the AR(1) model Zt = φZt−1 + εt, t=1,2,. . . ,n , where

|φ| < 1 is the autoregressive parameter. He observed that every ratio, {(Zt)/(Zt−1)}

is an unbiased estimator of φ and proposed the estimator φ̂ = med(Zt/Zt−1, t =

1, 2, 3, . . . , n), where med is the median.

Andrews (1993) studied the problem of LS estimator and proposed exactly median-

unbiased estimator of φ. Fellag and Zieliński (1996) studied the bias of the LS es-

timator in a contaminated Gaussian model. Andel (1988) derived the distribution

of an approximation to the Maximum Likelihood estimator φ̂ = min2≤t≤n(Zt/Zt−1)

where the innovations are distributed according to exponential distributions. Zielinski

(1999) proved that the median of the ratios of the consecutive observations of a sta-

tionary first order autoregressive process Zt = φZt−1 + at with P (at ≥ 0) = P (at ≤

0) = 1/2 and P (Zt = 0) = 0 is a median unbiased estimator of φ. Also he showed

that, it is true not only in the Gaussian case but whenever the medians of inde-

pendent (not necessarily identically distributed) innovations a1, a2, . . . , an are equal

to zero. Haddad (2000) developed a robust estimation method for the stationary

Gaussian AR(1) process with autoregressive parameter φ. The method was based

on the median of a product of two correlated normal variates. Guo (2000) pro-

posed a robust estimator for φ, the median of ratio’s of observations. Also, he

compare the performance of the proposed estimator with Theil’s , Hussain’s and

LS estimator. Berkoun et al. (2003) studied the testing problem of serial corre-

lation in AR(1) model. Provost and Sanjel (2005) considered four estimates of

φ, that can be expressed as the ratio of two quadratic forms in terms of observa-

tions, namely, a modified LS ,the Yule-Walker, Burg’s estimator and the ordinary
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LS estimators. They proposed bias-corrected estimators and obtained the bounds

for the supports of the YW and Burgs estimators. The bias associated with cer-

tain time series parameters is also discussed in Kendall (1954), Marriott and Pope

(1954) and Tjøstheim and Paulsen (1983). Breton and Pham (1989) determined

the bias of the LS estimator under Gaussian white noise and provided asymptotic

results. Luger (2006) shows that the Hurwicz estimator remains median-unbiased

for the AR model with ARCH innovations. Fellag (2010) consider the problem of

stability of estimation in AR models for the finite sample case . He compare the

performance of the LS estimator and the Hurwicz estimator and showed that the

Hurwicz estimator performs better when the distribution of innovations is heavy

tailed. Berkoun and Douki (2011) extend the result of Haddad (2000) by taking the

innovations to be in the domain of attraction of α−stable symmetric distributions.

Berkoun and Fellag (2011) established the asymptotic result of Hurwicz estimator

for the coefficient of autoregressive in a linear process with innovations belonging

to the domain of attraction of an α-stable law(1 < α < 2).

In view of the above studies, in this Chapter, we propose the Hurwicz’s estimator for

the coefficient of AR(1) model whose errors follow a Generalized Error Distribution

which includes, normal and Laplace as special cases. Balakrishna and Sri Ranganath

(2015) discussed the estimation methods such as method of moments and maximum

likelihood and the difficulties involved in estimating the parameters. Here, we con-

sider the the Hurwicz’s estimator for the autoregressive coefficient and analyse the

asymptotic properties for the autoregressive parameter φ. A Monte Carlo simula-

tion is carried out to study the nature of LS and Hurwicz estimators when the

innovations follow GED. A comparison study of bias, mean square error and Mean
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Absolute Deviation(MAD) of φ̂Hur and φ̂LS is done. The performance of two es-

timators are analysed with respect to Pitman-Closeness Criterion (PCC) (Wenzel

(2002)). Also, we study the coverage level of 95% and 90% bootstrap prediction

intervals and length of interval when using the LS estimate and Hurwicz estimator.

Definitions

Hurwicz Estimator:- An estimator θ = θ∗(x) of a real-valued parameter θ is

called median-unbiased if Prob[θ∗(X) < θ|θ] =Prob [θ∗(X) > θ|θ] for each θ; that

is, if for each θ, the median of the estimator’s distribution is θ (Birnbaum (1964)).

A random variable X is said to follow GED(µ, σ, β) if its probability density function

is given by (3.1). The properties of GED are discussed in Chapter 3 and the

references therein.

In Section 4.2, we give the details of an AR(1) model with GED innovations and

the Hurwicz’s estimation method. Section 4.3 deals with the asymptotic properties

of Hurwicz’s estimator for the GED-AR(1) model. In Section 4.4, the bootstrap

prediction interval for the GED-AR(1) model is discussed. The simulation studies

are carried out in Section 4.5 to check the performance of the proposed estimator.

Also, simulation studies are done to compare the performance of LS and Hurwicz

estimator. Data analysis is considered in Section 4.6.
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4.2 GED-AR(1) model and Hurwicz Estimation

Let {Zt} be a stationary AR(1) model defined by

Zt = φZt−1 + at, t = 1, 2, . . . , (4.1)

where |φ| < 1 . Here we consider the innovation sequence {at} as independent and

identically distributed GED with common probability density function defined as

in (3.2). The properties of autoregressive model with GED innovations are detailed

in Section 3.3.

The joint density function of the innovation random variables a1, a2, . . . , an is given

by

f(a1, a2, . . . , an) =
βn

2nσnΓ(1/β)n
exp

(
−

n∑
t=1

∣∣∣at
σ

∣∣∣β) . (4.2)

The conditional likelihood function can be written as (Balakrishna and Sri Ran-

ganath (2015))

L(φ, σ, β) =
βn

2n σn Γ(1/β)n
exp

{
− 1

σβ

(
n∑
t=1

|zt − φzt−1|β
)}

, (4.3)

which can be expressed as

L(φ, σ, β) =
βn

2n σn Γ(1/β)n
exp

{
− 1

σβ

(
n∑
t=1

|zt−1|β
∣∣∣∣ ztzt−1

− φ
∣∣∣∣β
)}

. (4.4)
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Here we propose the Hurwicz estimator to estimate φ. We take

φ̂Hur = med

(
Z2

Z1

,
Z3

Z2

, . . . ,
Zn
Zn−1

)
(4.5)

as an estimator of φ where med(ξ1, ξ2, . . . , ξn) denotes the sample median of the

observations. For further details on Hurwicz estimator refer Zielinski (1999). On

replacing φ by its Hurwicz estimator the estimators of σ and β are obtained by the

method of moments. Also, we can obtain σ̂ and β̂ by solving the likelihood function

iteratively by taking the Hurwicz estimator as φ̂.

4.3 Asymptotic Properties

The asymptotic distribution of the Hurwicz estimator for the coefficient of autore-

gression in a linear process with innovations belonging to the domain of attraction

of an α-stable law (1 < α < 2) is studied by Berkoun and Fellag (2011). Here we

study the asymptotic distribution of Hurwicz estimator when the innovations follow

GED. The main result in Berkoun and Fellag (2011) can be applied to the model

(4.1) to establish the asymptotic property, provided the linear process in (4.1) sat-

isfy some necessary conditions.

Let Ut = Zt+1

Zt
, t = 1, 2, . . . , n, and let G be their common distribution function

with density function g. Let U(1), U(2), . . . , U(n) be the corresponding ordered ran-

dom variables. Let up be the pth quantile of G defined by up = G−1(p) = inf{u :

G(u) ≥ p}. We define the pth sample quantile by G−1
n (p) = inf{u : Gn(u) ≥ p}.
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Then

Gn
−1(p) = Û(np) =


U(np), if np is an integer,

U([np]+1) if not,

where [np] denotes the integer part of np and Gn is the empirical distribution based

on the random variables U1, U2, . . . , Un. In particular, φHur = med
(
Z2

Z1
, Z3

Z2
, . . . , Zn

Zn−1

)
=

Gn
−1(1

2
), which we denote by Û(np). (Here p=1/2.)

Let Yt = p − I(Ut≤up). Also let Sn =
∑n

t=1 Yt and σ2
n = V (n−1/2Sn). Also, consider

the condition (A) given as follows

g = dG is bounded in some neighbourhoodV0 of up with 0 < up <∞

and 0 < g(up) <∞,

g′ is bounded inV0.


(A)

Result 1: Assume condition (A) holds. Then,

(Û(np) − up)g(up) = (p−Gn(up)) +Oa.s(n
−3
4+δ log(n)), (δ > 0).

In addition, if infn σ
2
n > 0, then

√
n(Û(np) − up)g(up)

σn

L−→ N(0, 1),

where σ2
n = E(Y 2

1 ) + 2
∑n−1

k=1(1− k
n
)E(Y1Y1+k).

In order to apply the Result 1, the following conditions should be satisfied

i) the process defined in (4.1) satisfies the strong mixing property.
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ii) The Bahadur representation of sample quantiles for strong mixing random vari-

ables should hold for (4.1).

In particular, we need to verify whether condition (A) holds. The necessary and suf-

ficient conditions for a linear process to be strong mixing is developed in Gorodestkii

(1977), Withers (1981), Andrews (1983) and Athreya and Pantula (1986). By veri-

fying the conditions (see notes at the end of this Chapter) of Athreya and Pantula

(1986) we show that the process defined in (4.1) satisfies the strong mixing prop-

erty. Now, to show that the Bahadur representation of sample quantiles for strong

mixing rv holds for (4.1), we need to verify condition (A). For that, we need to

obtain the density function of ratio of Ut = Zt+1/Zt, where Zt is the process de-

fined in (4.1). The process Zt defined by (4.1) has no explicit expression for the

stationary marginal distribution. However, Niehsen (1999) has approximated the

pdf of first order AR process driven by generalized Gaussian white noise by a gen-

eralized Gaussian pdf. However, the ratio of two correlated GED has no explicit

known forms. So, we analyse the distribution of φ̂Hur empirically. We carry out a

Monte Carlo simulation to study the empirical distribution of φ̂Hur. A parametric

bootstrap procedure is carried out to check the performance of the φ̂Hur. The steps

in this procedure are indicated below:

1. We create the bootstrap sample by first estimating the residuals ât.

2. For that, obtain residuals ât = zt− φ̂zt−1 by substituting φ̂Hur, the Hurwicz’s

estimator in (4.1).

3. Obtain n independent replicate samples from ât, which is the bootstrap sample

(â1
∗, â2

∗, . . . , ân
∗).

4. For each sample obtain the Hurwicz’s estimator φ̂∗Hur.
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The histogram of the bootstrap distribution of Hurwicz’s estimator are plotted and

the normality is confirmed by Jarque-Bera test. The Figure 4.1 corresponds to the

simulated bootstrap distributions .

Figure 4.1: Histogram of the bootstrap distribution of φHur for φ = 0.7(left
panel) and φ = 0.3(right panel).

Hence the empirical distribution of Hurwicz estimator is analysed using the Monte

Carlo simulation and found to be normal.

Mean Absolute Deviation and Pitman-Closeness Criterion

Here we compare the proposed estimator with the LS estimate. A comparison of

bias, MSE and MAD are done. Also we analyse the performance of two estimators

with respect to PCC.

We define Mean Absolute Deviation of φ̂Hur and φ̂LS as follows :

φ̂LS = Eφ|φ̂LS − φ̂| and φ̂Hur = Eφ|φ̂Hur − φ̂|.

Pitman-Closeness:- Let θ̂1 and θ̂2 be two estimators for unknown parameter

θ ∈ Θ, where Θ denotes the parameter space. Then θ̂1 is Pitman-closer(with respect
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ot θ) than θ̂2 if and only if

P{|θ̂1 − θ| < |θ̂2 − θ|} ≥
1

2
,

with strict inequality for at least one θ ∈ Θ.

4.4 Bootstrap Prediction Interval for GED-AR(1)

model

Forecasting a time series is one of the main objectives of analysing it. By observing

up to time t, the observation at a future time should be predictable. The uncertainty

of the predicted value is indicated by computing the prediction interval. Due to the

dependency and non-Gaussian nature, some form of resampling techniques are to

be implemented to construct prediction intervals. We follow the algorithm of Pan

and Politis (2016) for constructing bootstrap prediction interval. The pseudo- series

can be generated by either a forward or backward bootstrap, using either fitted or

predictive residuals. Here, by simulation we construct forward bootstrap prediction

intervals using fitted residuals algorithm to construct bootstrap prediction interval.

The detailed algorithm is given below.

Algorithm : Forward bootstrap with fitted residuals.

1. Use all observations z1, . . . , zn to obtain the LS estimator and Hurwicz esti-

mator φ̂Hur.

2. For t = 2, 3, . . . , n, compute the fitted value and fitted residuals :

ẑt = φ̂1zt−1 ât = zt − ẑt.
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3. Center the fitted residuals : let zt = ât − ¯̂a for t = 2, 3, . . . , n and ¯̂a =

(n− 1)−1
∑n

2 ât; let the empirical density of zt be denoted by F̂n.

(i) Draw bootstrap pseudo-residuals {a∗t , t ≥ 1} i.i.d from F̂n.

(ii) To ensure stationarity of bootstrap series, generate n + m pseudo data

for some large positive m and then discard the first m data. Let (u∗1) be

chosen at random from the {(z1, . . . , zn)}; then generate {u∗t , t ≥ 2} by

recursion :

u∗t = φ̂1u
∗
t−1 + â∗, for t = 2, 3, . . . , n + m. Then define z∗t = u∗m+t for

t = 1, 2, . . . , n.

(iii) Based on the pseudo-data {z∗1 , z∗2 , . . . , z∗n}, re-estimate the coefficient φ

by the LS estimator/Hurwicz estimator. Then compute the future boot-

strap one-step ahead predicted value ẑt
∗
n+1 by recursion:

ẑ∗n+1 = φ̂1

∗
ẑn
∗ where ẑ∗n+1 = zn.

(iv) In order to conduct conditionally validate predictive inference, re-define

the last observation to match the original observed value, i.e., let z∗n = zn.

Then generate the future observation z∗n+1 by the recursion :

z∗n+1 = φ̂z∗n + a∗n.

(v) Calculate a bootstrap root replicate as z∗n+1 − ẑ∗n+1.

4. Steps (i) to (v) above are repeated B times, and the B bootstrap replicates

are collected in the form of an empirical distribution whose α − quantile is

denoted q(α).

5. Compute the one step ahead predicted future value ẑn+1 by the following

recursion :

ẑn+1 = φ̂ẑn where ẑn = zn.
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6. Construct the (1− α)100% equal-tailed prediction interval for Zn+1 as

[ẑn+1 + q(α/2), ẑn+1 + q(1− α/2)].

4.5 Simulation study

A simulation study is carried out to assess the performance of the estimation pro-

cedure with the sample size 200 and 500. We consider different specified values for

φ(= 0.3, 0.5, 0.75) and β(= 1.3, 1.5, 1.7, 1.9, 2.1, 2.3). The value of σ is taken to be

1.5. This was repeated 100 times. A comparison of LS and the proposed estimator

is done. The average and the mean square error of the estimates are presented in

Table 4.1 and Table 4.2. Also the corresponding bias is shown in bold fonts below

each average estimate and mse. The bias is lower for Hurwicz estimator for different

values of φ.

4.5.1 Comparison of Least Square and Hurwicz estimators

A simulation study is carried out to compare the performance of φLS and φHur

estimators for the AR(1) model with GED innovations. We consider the simulation

study for β values(1 , 1.1) for sample size 50 and 100. Also, a comparison of the

bias, Mean square error is also done. The results are given in Table 4.3-4.6 and it

can be concluded that the proposed estimator performs better. The performance

of both the estimators is also checked through PCC and mean absolute deviation.

The computational results are shown in Table 4.7 and Table 4.8. From the results

we can observe that MADHur values are small for heavy tailed distributions and
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Table 4.1: AR(1) with GED innovations(Comparison of Hurwicz and LS esti-
mates of φ),σ = 1.5,n=200. Moment estimates of σ and β and their corresponding

bias and mse are also obtained.

LS Estimtes of φ and moment estimates of σ and β Hurwicz Estimate of φ and moment estimates of σ and β
and their corresponding mse and bias and their corresponding mse and bias

φ̂ mse(φ̂) σ̂ mse(σ̂) β̂ mse(β̂) φ̂m mse(φ̂m) σ̂m mse(σ̂m) β̂m mse(β̂m)
φ=0.3 0.28927 0.00256 1.50881 0.02386 1.31056 0.01667 0.29231 0.00152 1.52399 0.02739 1.32343 0.02012
β=1.3 -0.01073 0.00881 0.01056 -0.00769 0.02399 0.02343
φ=0.3 0.28848 0.00199 1.50183 0.01304 1.52112 0.02303 0.30170 0.00328 1.50520 0.01560 1.52813 0.02436
β=1.5 -0.01152 0.00183 0.02112 0.00170 0.00520 0.02813
φ=0.3 0.30442 0.00374 1.49650 0.01119 1.72769 0.02828 0.30264 0.00198 1.50948 0.01056 1.74332 0.02747
β=1.7 0.00442 -0.00350 0.02769 0.00264 0.00948 0.04332
φ=0.3 0.29001 0.00423 1.49613 0.01027 1.91420 0.04089 0.29742 0.00182 1.50293 0.00713 1.92169 0.03377
β=1.9 -0.00999 -0.00387 0.01420 -0.00582 0.00293 0.02169
φ=0.3 0.29050 0.02903 1.51526 0.00766 2.18256 0.06405 0.29373 0.04648 1.51114 0.00830 2.19261 0.09635
β=2.1 -0.00950 0.01526 0.08256 -0.00627 0.01114 0.09261
φ=0.3 0.29325 0.00214 1.50127 0.00578 2.33204 0.05845 0.29959 0.00511 1.50057 0.00621 2.36002 0.08334
β=2.3 -0.00675 0.00127 0.03204 -0.00041 0.00057 0.06002
φ=0.5 0.49706 0.00132 1.50475 0.02531 1.30680 0.01548 0.49740 0.00196 1.52496 0.03128 1.32911 0.02011
β=1.3 -0.00294 0.00475 0.00680 -0.00260 0.02496 0.02911
φ=0.5 0.50513 0.00280 1.51052 0.01385 1.53229 0.02157 0.50028 0.00158 1.54177 0.01973 1.57735 0.03466
β=1.5 0.00513 0.01052 0.03229 0.00028 0.04177 0.07735
φ=0.5 0.49482 0.02629 1.48209 0.01121 1.70751 0.02649 0.49573 0.03968 1.51595 0.01951 1.74798 0.04468
β=1.7 -0.00518 -0.01791 0.00751 -0.00427 0.01595 0.04798
φ=0.5 0.50341 0.02464 1.52057 0.00876 1.96695 0.04571 0.50315 0.04221 1.52873 0.00974 2.00679 0.09052
β=1.9 0.00341 0.02057 0.06695 0.00315 0.02873 0.10679
φ=0.5 0.49180 0.00171 1.49510 0.00921 2.14383 0.06579 0.49648 0.00398 1.51071 0.01655 2.22519 0.12676
β=2.1 -0.00820 -0.00490 0.04383 -0.00352 0.01071 0.12519
φ=0.5 0.49180 0.03753 1.51745 0.00815 2.37747 0.08475 0.49559 0.02600 1.52181 0.00986 2.44762 0.14420
β=2.3 -0.00820 0.01745 0.07747 -0.00441 0.02181 0.14762
φ=0.75 0.74437 0.00143 1.50020 0.01817 1.31840 0.01429 0.74548 0.00101 1.58547 0.08127 1.41109 0.07425
β=1.3 -0.00563 0.00020 0.01840 -0.00452 0.08547 0.11109
φ=0.75 0.74848 0.01911 1.49778 0.01047 1.50205 0.01394 0.74962 0.02721 1.52161 0.08192 1.61713 0.18651
β=1.5 0.00152 -0.00222 0.00205 -0.00038 0.02161 0.11713
φ=0.75 0.74412 0.02324 1.50007 0.01005 1.73675 0.02853 0.74469 0.03494 1.47725 0.05545 1.83647 0.19672
β=1.7 -0.00588 0.00007 0.03675 -0.00531 -0.02275 0.13647
φ=0.75 0.75563 0.00229 1.49010 0.00830 1.89984 0.03050 0.74598 0.00089 1.48244 0.05637 2.05795 0.21894
β=1.9 0.00563 -0.00990 -0.00016 -0.00402 -0.01756 0.15795
φ=0.75 0.74026 0.00080 1.49254 0.00652 2.13180 0.05180 0.74045 0.00210 1.45297 0.03592 2.09974 0.23261
β=2.1 -0.00974 -0.00746 0.03180 -0.00955 -0.04703 -0.00026
φ=0.75 0.74258 0.00090 1.50754 0.00534 2.39662 0.07955 0.74649 0.00205 1.46049 0.02699 2.33360 0.25316
β=2.3 -0.00742 0.00754 0.09662 -0.00351 -0.03951 0.03360

for large φ values. Also, the PCC suggests that φHur performs better than φLS for

heavy tailed distributions.

Monte Carlo studies for bootstrap prediction interval

The performance of the Forward bootstrap with fitted residuals (Ff) method is

carried out as follows:
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Table 4.2: AR(1) with GED innovations (Comparison of Hurwicz and LS es-
timates of φ), σ = 1.5, n=500. Moment estimates of σ and β and their corre-

sponding bias and mse are also obtained.

LS Estimate of φ and moment estimates of σ and β Hurwicz Estimate of φ and moment estimates of σ and β
and their corresponding mse and bias and their corresponding mse and bias

φ̂ mse(φ̂) σ̂ mse(σ̂) β̂ mse(β̂) φ̂m mse(φ̂m) σ̂m mse(σ̂m) β̂m mse(β̂m)
φ = 0.3 0.30096 0.03388 1.51348 0.01713 1.31008 0.07960 0.30031 0.04056 1.53652 0.01479 1.33201 0.09496
β = 1.3 0.00095 0.01348 0.01008 0.00031 0.03652 0.03201
φ = 0.3 0.29964 0.02874 1.50140 0.08464 1.51244 0.09585 0.29651 0.04457 1.51197 0.08906 1.52397 0.09653
β = 1.5 -0.00036 0.00140 0.01244 -0.00349 0.01197 0.02397
φ = 0.3 0.30401 0.04331 1.49526 0.07499 1.70055 0.10997 0.30113 0.02782 1.49361 0.07885 1.70509 0.12396
β = 1.7 0.00401 -0.00474 0.00055 0.00113 -0.00639 0.00509
φ = 0.3 0.29185 0.05631 1.51394 0.06759 1.90866 0.12254 0.29797 0.03471 1.51505 0.07443 1.92155 0.14510
β = 1.9 -0.00815 0.01394 0.00866 -0.00203 0.01505 0.02155
φ = 0.3 0.30486 0.00388 1.50355 0.06237 2.11415 0.15970 0.30114 0.00207 1.50547 0.06254 2.12417 0.16483
β = 2.1 0.00486 0.00355 0.01415 0.00114 0.00547 0.02417
φ = 0.3 0.29738 0.04316 1.50211 0.05765 2.33637 0.20513 0.29895 0.03204 1.50938 0.04836 2.35222 0.18624
β = 2.3 -0.00262 0.00211 0.03637 -0.00105 0.00938 0.05222
φ = 0.5 0.50088 0.02860 1.49003 0.10182 1.29445 0.07668 0.49915 0.03263 1.50762 0.14455 1.30934 0.11467
β = 1.3 0.00088 -0.00997 -0.00555 -0.00085 0.00762 0.00934
φ = 0.5 0.49596 0.02660 1.48786 0.08741 1.49610 0.10156 0.49792 0.03611 1.50987 0.11406 1.52738 0.14168
β = 1.5 -0.00404 -0.01214 -0.00390 -0.00208 0.00987 0.02738
φ = 0.5 0.49542 0.00127 1.48967 0.07579 1.69764 0.11283 0.49590 0.00324 1.52031 0.09461 1.75167 0.15782
β = 1.7 -0.00458 -0.01033 -0.00236 -0.00410 0.02031 0.05167
φ = 0.5 0.49969 0.00162 1.50508 0.06004 1.90989 0.12670 0.50021 0.00371 1.51978 0.09326 1.96221 0.16221
β = 1.9 -0.00031 0.00508 0.00989 0.00021 0.01978 0.06221
φ = 0.5 0.49920 0.04455 1.49986 0.06122 2.11024 0.15600 0.49959 0.02694 1.49768 0.07960 2.11993 0.19178
β = 2.1 -0.00080 -0.00014 0.01024 -0.00041 -0.00232 0.01993
φ = 0.5 0.49364 0.00189 1.50188 0.06141 2.32702 0.18366 0.49628 0.00355 1.50921 0.07577 2.36201 0.21194
β = 2.3 -0.00636 0.00188 0.02702 -0.00372 0.00921 0.06201
φ = 0.75 0.74616 0.02216 1.49884 0.09996 1.30155 0.08151 0.74911 0.02578 1.57540 0.10277 1.40967 0.08524
β = 1.3 -0.00384 -0.00116 0.00155 -0.00089 0.07540 0.10967
φ = 0.75 0.74866 0.00091 1.51169 0.07850 1.52189 0.09260 0.74996 0.00151 1.54528 0.06421 1.58861 0.13798
β = 1.5 -0.00134 0.01169 0.02189 -0.00034 0.04528 0.08861
φ = 0.75 0.74688 0.00083 1.51447 0.07207 1.73709 0.12410 0.75025 0.00194 1.48689 0.09310 1.76582 0.14806
β = 1.7 -0.00312 0.01447 0.03709 0.00025 -0.01311 0.06582
φ = 0.75 0.75302 0.02087 1.49310 0.06170 1.89670 0.12108 0.75252 0.03323 1.51009 0.08272 2.01633 0.17967
β = 1.9 0.00302 -0.00690 -0.00330 0.00252 0.01009 0.11633
φ = 0.75 0.74301 0.03523 1.49867 0.06043 2.11514 0.14555 0.74553 0.02034 1.47415 0.14465 2.12289 0.19318
β = 2.1 -0.00699 -0.00133 0.01514 -0.00447 -0.02585 0.02289
φ = 0.75 0.74383 0.03673 1.49566 0.05661 2.31394 0.18255 0.74540 0.01797 1.45497 0.15150 2.25700 0.22774
β = 2.3 -0.00617 -0.00434 0.01394 -0.00460 -0.04503 -0.04300

1. AR(1) model with iid GED innovations rescaled to unit variance.

2. 500 ‘true’ datasets each of size n = 50 or n = 100, and for each ‘true’ dataset

creating B = 1000 bootstrap pseudo-series.

3. prediction intervals with nominal coverage levels of 95% and 90%.

For the ith ’true’ dataset, we use one of the bootstrap methods to create B=1000

sample paths (step 4 of the algorithm), and construct the prediction interval (step 6
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Table 4.3: Comparison of φLS and φHur estimators for β = 1 (Laplace) for
n=50. Moment estimates of σ and β and their corresponding bias and mse are

also obtained with σ = 1.5.

Estimate
φ̂ σ̂ β̂

φ value (Bias,Mse) (Bias,Mse) (Bias,Mse)

0.3

φLS 0.27506 1.62029 1.08701
(-0.02493, 0.00960) (0.12029, 0.14927) (0.08700, 0.04351)

φHur 0.29011 1.59284 1.06976
(-0.00988, 0.01301) (0.09284, 0.14900) (0.06976, 0.04039)

0.5

φLS 0.46884 1.62219 1.08752
(-0.03116,0.00859) (0.12219,0.151) (0.08752, 0.04389)

φHur 0.48953 1.58542 1.06615
(-0.01047,0.00913) (0.08541,0.13866) (0.06615, 0.03728)

0.7

φLS 0.66134 1.63075 1.09088
(-0.03866,0.00717) (0.13075,0.15639) (0.09087, 0.04536)

φHur 0.68471 1.58805 1.06759
(-0.01529,0.00622) (0.08805,0.14672) (0.06759, 0.03892)

0.8

φLS 0.75608 1.64096 1.09469
-0.04392, 0.00647 0.14096, 0.16325 0.09469, 0.04684

φHur 0.78637 1.59238 1.07013
-0.01363, 0.00495 0.09238, 0.15783 0.07013, 0.04195

0.9

φLS 0.84833 1.67152 1.08250
(-0.05167,0.00598) (0.12836,0.19517) (0.10644, 0.05101)

φHur 0.88018 1.59586 1.06973
(-0.01982,0.00389) (0.09586,0.15621) (0.06973, 0.03928)

0.95

φLS 0.89176 1.74996 1.13704
(-0.05823,0.006004) (0.24995,0.25443) (0.13703,0.06765)

φHur 0.92699 1.62837 1.08706
(-0.02300,0.00301) (0.09635,0.16623) (0.08249, 0.04619)

-0.5

φLS -0.49234 1.61994 1.08763
(0.00765,0.00775) (0.11994,0.15198) (0.08736, 0.04477)

φHur -0.49180 1.58514 1.06708
(-0.00719,0.01043) (0.08514,0.14889) (0.06708, 0.04092)

-0.95

φLS -0.92272 1.63192 1.09170
(0.02727,0.00231) (0.13192,0.16535) (0.09169, 0.04715)

φHur -0.94349 1.58152 1.06472
(0.00650,0.00145) (0.0815,0.14414) (0.06472, 0.03824)
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Table 4.4: Comparison of φLS and φHur estimators for β = 1.1 for n=50.
Moment estimates of σ and β and their corresponding bias and mse are also

obtained with σ = 1.5.

Estimate
φ̂ σ̂ β̂

φ value (Bias,Mse) (Bias,Mse) (Bias,Mse)

0.3

φLS 0.28113 1.56547 1.18335
(-0.01887,0.01071) (0.06547,0.13244) (0.08335, 0.06379)

φHur 0.29695 1.54506 1.16544
(-0.00305,0.01467) (0.04506,0.13128) (0.06544, 0.05842)

0.5

φLS 0.47270 1.56833 1.18504
(-0.0273,0.0097) (0.06833,0.13666) (0.08504, 0.06495)

φHur 0.48864 1.54150 1.16383
(-0.01136,0.01154) (0.0415,0.13453) (0.06383, 0.05985)

0.7

φLS 0.66341 1.57404 1.18746
(-0.03659,0.00779) (0.07404,0.14019) (0.08745, 0.06518)

φHur 0.68519 1.54422 1.16445
(-0.01481,0.00817) (0.04422,0.13445) (0.06445, 0.05711)

0.8

φLS 0.75818 1.58258 1.19113
-0.04182, 0.00654 0.08258, 0.14165 0.09113, 0.06509

φHur 0.78382 1.54138 1.16208
-0.01618, 0.00537 0.04138, 0.13244 0.06208, 0.05397

0.9

φLS 0.85145 1.60250 1.19945
(-0.04855,0.00537) (0.1025,0.15264) (0.09945, 0.06797)

φHur 0.88019 1.54803 1.16508
(-0.01981,0.00371) (0.04803,0.13974) (0.06508, 0.0561)

0.95

φLS 0.89485 1.65685 1.22375
(-0.05515,0.00525) (0.15685,0.1969) (0.12375, 0.08205)

φHur 0.92727 1.56513 1.17169
(-0.02273,0.00303) (0.06513,0.16527) (0.07169, 0.06347)

-0.5

φLS -0.48621 1.55773 1.17727
(0.01379,0.00778) (0.05773,0.1277) (0.07727, 0.06046)

φHur -0.49152 1.52891 1.15530
(0.00848,0.01008) (0.02891,0.12403) (0.05529, 0.05542)

-0.95

φLS -0.92197 1.56307 1.17835
(0.02803,0.00248) (0.06307,0.12813) (0.07835, 0.05711)

φHur -0.94160 1.52709 1.15460
(0.0084,0.00197) (0.02709,0.12342) (0.0546, 0.05317)
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Table 4.5: Comparison of φLS and φHur estimators for β = 1 (Laplace) for
n=100. Moment estimates of σ and β and their corresponding bias and mse are

also obtained with σ = 1.5.

Estimate
estimate estimate estimate

φ value (Bias,Mse) (Bias,Mse) (Bias,Mse)

0.3

φLS 0.27656 1.58902 1.12418
(-0.02344, 0.03225) (0.08902, 0.30401) (0.12418, 0.18545)

φHur 0.25430 1.63388 1.15717
(-0.0457, 0.02038) (0.13388, 0.30242) (0.15717, 0.20787)

0.5

φLS 0.43858 1.64947 1.16266
(-0.06142, 0.0202) (0.14947, 0.31448) (0.16266, 0.19906)

φHur 0.46461 1.58145 1.11318
(-0.03539, 0.02659) (0.08145, 0.29944) (0.11318, 0.1526)

0.7

φLS 0.62087 1.66953 1.16435
(-0.07913, 0.01963) (0.16953, 0.3428) (0.16435, 0.193)

φHur 0.65551 1.58727 1.12370
(-0.04449, 0.01838) (0.08727, 0.31697) (0.1237, 0.19939)

0.8

φLS 0.70916 1.70146 1.18090
(-0.09084, 0.01993) (0.20146, 0.38924) (0.1809, 0.20907)

φHur 0.75682 1.59381 1.12303
(-0.04318, 0.01506) (0.09381, 0.33258) (0.12303, 0.20964)

0.9

φLS 0.79115 1.84202 1.24189
(-0.10885, 0.02196) (0.34202, 0.67816) (0.24189, 0.29328)

φHur 0.85158 1.65334 1.14630
(-0.04842, 0.01296) (0.15334, 0.44823) (0.1463, 0.21187)

0.95

φLS 0.82715 2.14973 1.40998
(-0.12285, 0.02386) (0.64973, 1.66405) (0.40998, 0.77704)

φHur 0.89907 1.78592 1.20089
(-0.05093, 0.01088) (0.28592, 0.89797) (0.20089, 0.33918)

-0.5

φLS -0.48230 1.61986 1.14510
(0.0177, 0.01558) (0.11986, 0.30722) (0.14509, 0.16945)

φHur -0.49140 1.56318 1.09800
(0.0086, 0.02388) (0.06318, 0.29947) (0.098, 0.13612)

-0.95

φLS -0.89647 1.65032 1.14679
(0.05353, 0.00765) (0.15032, 0.3111) (0.14679, 0.16667)

φHur -0.93399 1.56044 1.10494
(0.01601, 0.00517) (0.06044, 0.29993) (0.10494, 0.18753)
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Table 4.6: Comparison of φLS and φHur estimators for β = 1.1 for n=100.
Moment estimates of σ and β and their corresponding bias and mse are also

obtained with σ = 1.5.

Estimate
estimate estimate estimate

φ value (Bias,Mse) (Bias,Mse) (Bias,Mse)

0.3

φLS 0.25463 1.55685 1.24514
(-0.04537, 0.0192) (0.05685, 0.29644) (0.14514, 0.22563)

φHur 0.27208 1.52049 1.20161
(-0.02792, 0.02958) (0.02049, 0.30539) (0.10161, 0.17181)

0.5

φLS 0.43887 1.55997 1.23425
(-0.06113, 0.01898) (0.05997, 0.29852) (0.13425, 0.18785)

φHur 0.46637 1.51003 1.19208
(-0.03363, 0.02317) (0.01003, 0.29685) (0.09208, 0.15755)

0.7

φLS 0.61941 1.57469 1.24504
(-0.08059, 0.01883) (0.07469, 0.3069) (0.14504, 0.20597)

φHur 0.65559 1.51645 1.20215
(-0.04441, 0.02087) (0.01645, 0.2933) (0.10215, 0.19919)

0.8

φLS 0.70679 1.60490 1.25330
(-0.09321, 0.01948) (0.1049, 0.33339) (0.1533, 0.20906)

φHur 0.75194 1.53778 1.20540
(-0.04806, 0.0169) (0.03778, 0.31682) (0.1054, 0.17863)

0.9

φLS 0.78991 1.70854 1.32075
(-0.11009, 0.02096) (0.20854, 0.49688) (0.22075, 0.3873)

φHur 0.85225 1.57095 1.22408
(-0.04775, 0.01128) (0.07095, 0.388) (0.12408, 0.20716)

0.95

φLS 0.82883 1.91414 1.47378
(-0.12117, 0.02227) (0.41414, 1.01009) (0.37378, 1.10653)

φHur 0.88860 1.69097 1.30337
(-0.0614, 0.01285) (0.19097, 0.84172) (0.20337, 0.69424)

-0.5

φLS -0.49212 1.55325 1.23769
(0.00788, 0.01285) (0.05325, 0.2902) (0.13769, 0.21748)

φHur -0.50251 1.49774 1.18557
(-0.00251, 0.02268) (-0.00226, 0.28373) (0.08557, 0.16881)

-0.95

φLS -0.89930 1.57680 1.24898
(0.0507, 0.00628) (0.0768, 0.29511) (0.14898, 0.25909)

φHur -0.93806 1.50354 1.19371
(0.01194, 0.00433) (0.00354, 0.28364) (0.09371, 0.18781)
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Table 4.7: Simulated values of MADLS ,MADHur and PCC for GED with
β(= 1, 1.1, 1.3, 1.5, 1.7, 2) values and n=50.

β = 1 MADLS MADHur PCC
φ φ σ β φ σ β φ σ β

0.30 0.11340 0.43642 0.26277 0.14126 0.43599 0.24947 0.434 0.504 0.514
0.50 0.11122 0.44373 0.26516 0.12392 0.43295 0.24031 0.468 0.514 0.546
0.70 0.10626 0.45933 0.26491 0.10108 0.44220 0.24956 0.526 0.510 0.552
0.80 0.10540 0.48031 0.27639 0.09073 0.44686 0.24991 0.538 0.546 0.528
0.90 0.11196 0.57471 0.32737 0.07945 0.48597 0.26704 0.644 0.594 0.606
0.95 0.12287 0.80742 0.46963 0.07280 0.60082 0.31708 0.760 0.590 0.584
-0.50 0.09948 0.43180 0.25549 0.11774 0.42304 0.23182
-0.95 0.05847 0.43440 0.24560 0.04788 0.41926 0.23433
β = 1.1

0.30 0.11340 0.43642 0.26277 0.14126 0.43599 0.24947 0.434 0.504 0.514
0.50 0.11122 0.44373 0.26516 0.12392 0.43295 0.24031 0.468 0.514 0.546
0.70 0.10626 0.45933 0.26491 0.10108 0.44220 0.24956 0.526 0.510 0.552
0.80 0.10540 0.48031 0.27639 0.09073 0.44686 0.24991 0.538 0.546 0.528
0.90 0.11196 0.57471 0.32737 0.07945 0.48597 0.26704 0.644 0.594 0.606
0.95 0.12287 0.80742 0.46963 0.07280 0.60082 0.31708 0.760 0.590 0.584
-0.50 0.09948 0.43180 0.25549 0.11774 0.42304 0.23182
-0.95 0.05847 0.43440 0.24560 0.04788 0.41926 0.23433
β = 1.3

0.30 0.11695 0.36634 0.37081 0.15397 0.36883 0.34746 0.376 0.498 0.492
0.50 0.11531 0.36165 0.37032 0.14819 0.36527 0.35935 0.404 0.488 0.468
0.70 0.10976 0.35938 0.37247 0.12468 0.37256 0.37147 0.460 0.468 0.476
0.80 0.10709 0.36186 0.36272 0.10281 0.38440 0.37028 0.520 0.462 0.486
0.90 0.10975 0.40151 0.42162 0.09277 0.41166 0.37533 0.592 0.504 0.502
0.95 0.11816 0.51102 0.52916 0.08231 0.47874 0.46844 0.720 0.516 0.520
-0.50 0.09580 0.36850 0.37454 0.12582 0.37257 0.34596
-0.95 0.05301 0.36309 0.38866 0.05005 0.37929 0.35721
β = 1.5

0.30 0.11247 0.27527 0.38425 0.16322 0.29232 0.36647 0.362 0.438 0.470
0.50 0.10854 0.27964 0.40594 0.15219 0.29702 0.39516 0.374 0.470 0.494
0.70 0.10373 0.28595 0.42360 0.12812 0.29974 0.39486 0.416 0.446 0.506
0.80 0.10124 0.28915 0.43562 0.11147 0.30462 0.38575 0.444 0.468 0.526
0.90 0.10472 0.30497 0.46773 0.09895 0.30634 0.40149 0.528 0.482 0.520
0.95 0.11353 0.37754 0.56012 0.08708 0.34478 0.44431 0.648 0.506 0.530
-0.50 0.09768 0.27959 0.39763 0.13762 0.29651 0.37097
-0.95 0.06448 0.28442 0.41504 0.06039 0.29377 0.37898
β = 1.7

0.30 0.10762 0.26592 0.47303 0.17395 0.27940 0.43476 0.298 0.442 0.492
0.50 0.10462 0.26476 0.47993 0.15695 0.28021 0.44991 0.306 0.452 0.498
0.70 0.10152 0.26460 0.47581 0.12792 0.28168 0.46731 0.362 0.448 0.482
0.80 0.10040 0.26793 0.48980 0.11450 0.28189 0.46996 0.436 0.434 0.482
0.90 0.10373 0.28162 0.53893 0.10107 0.30213 0.53512 0.522 0.480 0.442
0.95 0.11249 0.32987 0.63634 0.09265 0.33819 0.59458 0.638 0.482 0.464
-0.50 0.10145 0.26384 0.45918 0.14640 0.28322 0.45584
-0.95 0.05651 0.27249 0.51240 0.05745 0.29006 0.48862
β = 2

0.30 0.10976 0.24064 0.76749 0.16948 0.25117 0.70547 0.300 0.424 0.438
0.50 0.10555 0.24185 0.75103 0.14979 0.25292 0.70219 0.368 0.456 0.472
0.70 0.10063 0.24744 0.73419 0.13521 0.25247 0.67902 0.372 0.452 0.474
0.80 0.09999 0.24704 0.69654 0.12218 0.25671 0.68572 0.414 0.462 0.490
0.90 0.10565 0.25526 0.70217 0.10734 0.27340 0.63179 0.498 0.460 0.478
0.95 0.11595 0.30091 0.77565 0.10556 0.31602 0.65696 0.588 0.472 0.498
-0.50 0.09274 0.24353 0.82208 0.15317 0.25536 0.66929
-0.95 0.05230 0.24222 0.74135 0.06225 0.25499 0.69239
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Table 4.8: Simulated values of MADLS ,MADHur and PCC for GED with
β(= 1, 1.1, 1.3, 1.5, 1.7, 2) values and n=100.

β = 1 MADLS MADHur PCC

φ φ σ β φ σ β φ σ β

0.30 0.07893 0.30951 0.15514 0.08722 0.30433 0.14631 0.488 0.508 0.546
0.50 0.07293 0.31208 0.15521 0.07256 0.29742 0.14238 0.514 0.584 0.596
0.70 0.06483 0.31657 0.15586 0.05900 0.30367 0.14518 0.552 0.548 0.574
0.80 0.06026 0.32252 0.15760 0.05290 0.31093 0.14986 0.520 0.540 0.524
0.90 0.05688 0.33008 0.16292 0.04600 0.31398 0.14888 0.572 0.530 0.532
0.95 0.05920 0.38219 0.18571 0.03940 0.33422 0.15835 0.660 0.582 0.598
-0.50 0.06896 0.31124 0.15614 0.08021 0.30752 0.14847
-0.95 0.03406 0.32518 0.15886 0.02828 0.30437 0.14462
β = 1.1

0.30 0.08029 0.28954 0.18230 0.09137 0.28773 0.17498 0.454 0.524 0.526
0.50 0.07552 0.29426 0.18472 0.08311 0.29164 0.17505 0.452 0.502 0.528
0.70 0.06780 0.29845 0.18595 0.06412 0.29454 0.17526 0.502 0.524 0.540
0.80 0.06231 0.30006 0.18743 0.05661 0.28915 0.17179 0.528 0.534 0.574
0.90 0.05608 0.30911 0.19263 0.04538 0.29676 0.17592 0.568 0.530 0.536
0.95 0.05660 0.33935 0.20773 0.03890 0.30741 0.18138 0.656 0.572 0.564
-0.50 0.06959 0.28277 0.17666 0.07827 0.27589 0.16678
-0.95 0.03502 0.28470 0.17514 0.03139 0.27708 0.16621
β = 1.3

0.30 0.07542 0.24127 0.21167 0.10299 0.24456 0.21038 0.380 0.480 0.504
0.50 0.07190 0.24114 0.21291 0.09123 0.24326 0.20476 0.392 0.490 0.504
0.70 0.06549 0.24200 0.21463 0.07360 0.24687 0.20947 0.438 0.516 0.534
0.80 0.06186 0.24238 0.21491 0.06016 0.24777 0.20859 0.502 0.504 0.536
0.90 0.05699 0.24389 0.21681 0.05198 0.24695 0.20926 0.544 0.494 0.504
0.95 0.05727 0.26157 0.22909 0.04237 0.25779 0.21677 0.634 0.476 0.506
-0.50 0.06455 0.24279 0.21490 0.09443 0.24914 0.21335
-0.95 0.03492 0.23842 0.21441 0.03468 0.24733 0.20838
β = 1.5

0.30 0.07333 0.20808 0.25664 0.10334 0.21839 0.26291 0.382 0.460 0.438
0.50 0.06899 0.20859 0.25690 0.10119 0.21676 0.25503 0.364 0.466 0.458
0.70 0.06195 0.21090 0.25774 0.08704 0.21876 0.25458 0.360 0.466 0.480
0.80 0.05786 0.21277 0.25989 0.07450 0.21949 0.25631 0.380 0.452 0.456
0.90 0.05395 0.21648 0.25767 0.05822 0.22021 0.24930 0.440 0.478 0.468
0.95 0.05522 0.22863 0.26686 0.04809 0.22965 0.25926 0.564 0.500 0.496
-0.50 0.07054 0.20552 0.25211 0.09442 0.21335 0.25065
-0.95 0.03689 0.20527 0.25522 0.03910 0.21374 0.25150
β = 1.7

0.30 0.07579 0.19081 0.30438 0.11284 0.19867 0.29862 0.344 0.482 0.498
0.50 0.07049 0.19078 0.29677 0.10653 0.19946 0.30751 0.322 0.472 0.468
0.70 0.06404 0.18914 0.29481 0.08622 0.20128 0.30136 0.352 0.434 0.454
0.80 0.06009 0.18772 0.29283 0.07363 0.20111 0.30332 0.422 0.450 0.460
0.90 0.05604 0.18831 0.29488 0.06265 0.19942 0.29522 0.424 0.458 0.486
0.95 0.05689 0.19733 0.29428 0.05232 0.20539 0.29903 0.520 0.478 0.458
-0.50 0.07029 0.18791 0.30177 0.10279 0.19486 0.28851
-0.95 0.03539 0.19042 0.29662 0.04272 0.19678 0.28529
β = 2

0.30 0.07112 0.16975 0.44157 0.11463 0.17099 0.42056 0.324 0.486 0.482
0.50 0.06644 0.17050 0.43812 0.10401 0.17181 0.42494 0.364 0.488 0.492
0.70 0.06151 0.17169 0.43729 0.08940 0.17201 0.40820 0.388 0.502 0.542
0.80 0.05822 0.17154 0.43717 0.08111 0.17050 0.40258 0.360 0.484 0.490
0.90 0.05421 0.17090 0.43766 0.06012 0.17090 0.40898 0.488 0.486 0.508
0.95 0.05449 0.17641 0.43816 0.05364 0.18334 0.41726 0.510 0.476 0.464
-0.50 0.06469 0.16729 0.43827 0.10804 0.17202 0.42061
-0.95 0.03567 0.16432 0.42159 0.04132 0.17182 0.40248
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of the algorithm)[Li, Ui]. To assess the corresponding empirical coverage level (cvr)

and average length (len) of the constructed interval, we also generate 1000 one-

step ahead future values Yn+1,j = φ̂1zni + a∗j for j = 1, 2, . . . , 1000 where φ̂1 is the

estimate from the ith ’true’ dataset and zni is the ith dataset’s last value. Then

the empirical coverage level and length from the ith dataset are given by cvri =

1
1000

∑1000
j=1 1|Li,Ui|(Yn+1,j) and leni = Ui−Li where 1A(z) is the indicator function of

set A. The coverage level and length is calculated by the average {cvri} and {leni}

over the 500 ’true’ datasets, i.e. cvr = 1
500

∑500
i=1 cvri and len = 1

500

∑500
i=1 leni. Table

4.9 summarize the empirical coverage level (cvr), average length (len) and standard

error associated with each average length (serr) of prediction interval. From the

table we can infer that, for the heavy tailed distribution (β ≤ 1.5) the Hurwicz

estimator yields a better coverage level which is shown in bold fonts.

Table 4.9: Simulation results of AR(1) with GED innovation (for β =
1, 1.1, 1.3, 1.5, 1.7, 2 values) and φ = 0.9.

φ = 0.9 nominal coverage 95% nominal coverage 90%
σ = 1 cvr len serr cvr len serr

β = 2
LS 0.952 3.27438 0.01325 0.900 2.55926 0.00991

HUR 0.950 3.29504 0.01334 0.898 2.57248 0.00996

1.7
LS 0.948 3.52452 0.01499 0.920 2.71718 0.01152

HUR 0.946 3.55480 0.01534 0.910 2.70497 0.01137

1.5
LS 0.942 3.71255 0.01863 0.902 2.79499 0.01170

HUR 0.944 3.73374 0.01866 0.906 2.79621 0.01179

1.3
LS 0.936 3.99018 0.01990 0.890 2.96035 0.01542

HUR 0.940 4.00729 0.02015 0.892 2.96968 0.01542

1.1
LS 0.938 4.38040 0.02454 0.878 3.13251 0.01712

HUR 0.940 4.38839 0.02488 0.884 3.13031 0.01712

1
LS 0.934 4.61106 0.02774 0.886 3.23719 0.01826

HUR 0.940 4.60540 0.02761 0.888 3.23100 0.01860
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4.6 Data Analysis

4.6.1 BSE Index

The model is applied to financial data sets. The first set of data consists of daily

maximum of BSE Index from May 5th 2015 to July 1st 2016. There are 290 ob-

servations. The plots of the actual time series, logarithmic differences, ACF and

PACF of the log returns are given in Figure 4.2. The original series is not station-

ary and hence by taking the logarithmic difference the series becomes stationary

and is confirmed by augmented Dickey Fuller test. The Ljung-Box test lead to the

Figure 4.2: Time series plot of BSE index and returns(top panel) and ACF
and PACF plots of return series(bottom panel)

conclusion that the logarithmic difference series is not independently distributed.
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From Figure 4.2 we can infer that the ACF is exponentially decaying and PACF

cuts off after lag 1, so the log difference series may follow an AR(1) model. As a

starting point we fitted an AR(1) model with Gaussian innovations and found that

the estimate of φ as 0.2131. However, the Q-Q plot which is shown in Figure 4.3 and

the p-value( <0.0001) based on Kolmogorov-Smirnov test lead to the rejection of

the null hypothesis that the residuals are normal. Then we fit an AR(1) model with

GED innovations to the data and obtained the estimates as φ̂=0.2979, σ̂=.003862

and β̂=1.3979 by taking Hurwicz estimator and method of moments respectively.

The K-S test statistic is obtained as 0.067381 and the p-value is 0.1463. The ACF

plot of residuals and the superimposition of the histogram of the residuals on the

pdf of GED given in Figure 4.3 gives that the model is of good fit.

Figure 4.3: Q-Q plot (left panel) and histogram of the residuals superimposed
with GED density and ACF plot of residuals (right panel)
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4.6.2 NIFTY 50 INDEX

Another set of data considered is a time series of daily maximum of NIFTY 50

INDEX May 5th 2015 to July 1st 2016. There are 290 observations. The plots of

the actual time series, logarithmic differences, ACF and PACF of the log returns

are given in Figure 4.4. The ACF is exponentially decaying and PACF cuts off after

lag 1 so the ACF/PACF of stationary series suggest an AR(1) model for the data.

Figure 4.4: Time series plot of Nifty index and returns (top panel) and ACF
and PACF plots of return series (bottom panel)

We fit an AR(1) model with Gaussian innovations and found that the estimate of

φ as 0.2107. From the Q-Q plot shown in Figure 4.4 and the p-value( <0.0001)

obtained based on K-S test lead to the rejection of the null hypothesis that the

residuals are normal.
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An AR(1) model with GED innovations is fitted to the data and obtained the

estimates as φ̂=0.243, σ̂=.00464 and β̂=1.3248 by Hurwicz estimation and method

of moments respectively. The K-S test statistic is obtained as 0.06956 and the p-

value is 0.1219. So this model is suitable for the data. The ACF plot of residuals

and the superimposition of the histogram of the residuals on the pdf of GED are

given in Figure 4.5.

Figure 4.5: Histogram of residuals superimposed with GED density and Q-Q
plot (top panel) and ACF of the residuals (bottom panel)
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Notes

Verification of strong mixing property

Result (Athreya and Pantula (1986)): Let {Zt} be an AR process given by Zt =

φZt−1 + at; |φ| < 1 and |at| are iid random variables independent of Z0. Assume

that

1. E[{log|a1|}+] is finite and

2. a1 has a non trivial absolutely continuous component. Then for any initial

distribution Λ of Z0, Zn is strong mixing.

Theorem 4.1. Vasudeava and Vasantha Kumari (2013) Let X1, X2, . . . , Xn be in-

dependent and identically distributed GED-I random variables with parameter ν.

Then
n∑
i=1

|Xi|ν is a gamma distributed random variable. (Gamma(1/(2λν), n/ν))

Remark: The probability density function of GED-I is given as

fν =
ν exp

(
−1

2

∣∣x
ν

∣∣ν)(
λ2

1
ν

+1Γ
(

1
ν

)) , ν > 0, x ∈ R,

where λ =

(
2−2/νΓ( 1

ν )
Γ( 3

ν )

) 1
2

and Γ(·) denotes the Gamma function.

To verify the above conditions we have to show E[{log|a1|}+] is finite, where at is

defined by (3.2).
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Let

log|a1|+ =


0, if |a1| ≤ 1,

log|a1|, if |a1| > 1.

Put y = |a1|. Then E[log y] =
∫

log(y)f(y)dy <∞.

Then from Theorem 4.1, if X ∼ GED − I, then |X| is Gamma[ 1
2λ
, 1]. Then

E[log y]+ = Γ(1.414)−1

∞∫
0

log y exp(−y) y−1+1.414dy <∞

Further, at is absolutely continuous and hence Zt is strong mixing.

The results of this Chapter are reported in the article Sri Ranganath (2017a)





Chapter 5

Lindley Stochastic Volatility Model

5.1 Introduction

In this class of models volatility are assumed to be generated by latent stochas-

tic models. One among them is the lognormal stochastic volatility model intro-

duced by Taylor (1986). The presence of unobservable volatility in the model makes

the inference problems difficult. Many alternatives for the conditional distribution

in the model (2.7) have been suggested by Taylor (1994), Jacquier et al. (2002).

Andersson (2001) considered the stochastic volatility model with an inverse Gaus-

sian distributed conditional variance. Later, Abraham et al. (2006) proposed a

gamma SV model and investigated its distributional and time series properties. In

this chapter, we study the properties of Lindley Stochastic Volatility model.

In Section 5.2, a brief introduction to the Lindley distribution is given. In Section

5.3, the Lindley SV model and its second order properties are described. We discuss

the method of moments estimation procedure to estimate the parameters of Lindley

SV model in Section 5.4. The asymptotic properties of the estimators are established

in Section 5.5. A simulation study is carried out in Section 5.6. As the last Section,

the proposed model is illustrated using a financial data.

121
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5.2 Lindley distribution

Lindley distribution was introduced by Lindley (1958, 1970). A random variable is

said to follow Lindley distribution, if its probability density function is of the form

f(x) =
θ2(x+ 1)e−θx

θ + 1
x > 0, θ > 0 (5.1)

and with cumulative distribution function

F (x) = 1− e−(θx)(θ + θx+ 1)

θ + 1
x > 0, θ > 0. (5.2)

The mean, variance, skewness and kurtosis are given below.

E(X) = θ+2
θ(θ+1)

.

V (X) = 2
θ2 − 1

(θ+1)2 .

Skewness =
2(θ3+6θ2+6θ+2)

(θ2+4θ+2)3/2 .

KX =
3(3θ4+24θ3+44θ2+32θ+8)

(θ2+4θ+2)2 .

Also, E(Xk) = k!(θ+k+1)
θk(θ+1)

.

Lindley distribution can be written as a mixture of an Exponential distribution with

shape parameter θ and Gamma distribution, Gamma(2, θ) with mixing proportion

p = θ
θ+1

. Ghitany et al. (2008) has discussed some statistical properties of Lindley

distribution.
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5.3 Lindley SV model

Let {Yt} be the sequence of returns on certain financial asset at time t, t =

0,±1,±2, . . . . Define the SV model

Yt = εt
√
ht, (5.3)

ht = φht−1 + ηt, t = 1, 2, . . . . 0 ≤ φ < 1, (5.4)

where {εt} is a sequence of independent and identically distributed standard normal

random variables. We assume that the sequence η1 is independent of h1 and {εt}

is independent of ht for every t. Here, we assume that {ht} is a stationary AR(1)

process defined by Bakouch and Popović (2016), with stationary Lindley marginal

function given in (5.3). They have established that the distribution of the inno-

vation random variable, ηt is specified as the mixture of the singular and absolute

continuous distribution given by

fη(x) = φδ(x) + (1− φ)g(x), (5.5)

where δ(x) is the Dirac Delta function defined by

δ(x) =


+∞, x = 0,

0, x 6= 0.
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and g(x) is a probability density function having the form

g(x) =
θ2(1− φ)2 + θ(1− φ2) + 2φ

(φ(1− φ) + 1)2
θ exp(−θx) +

1− φ
(θ(1− φ) + 1)

θ2x exp(−θx)

− θ + 1

(θ(1− φ) + 1)2
exp(−θ + 1

φ
)x (5.6)

with θ > 0, x ≥ 0. The mean and variance of are

E(ηt) =
θ + 2

θ(θ + 1)
(1− φ), V (ηt) =

(1− φ2)(θ2 + 4θ + 2)

θ2(θ + 1)2
. (5.7)

Then the characteristic function (cf) of Yt is given by

ζ(s) = E(exp(isYt))

= E(exp(isεt
√

(ht)))

=

∫ ∞
0

E(exp(is
√

(x)εt))fh(x)dx [∵ ht = x]

=
θ

θ + 1

2θ

2θ + s2
+

1

θ + 1

(
2θ

2θ + s2

)2

(5.8)

That is,

ζ(s) =
θ

θ + 1
L1 +

1

θ + 1
L2 +

1

θ + 1
L3 (5.9)

Thus {Yt} is a stationary Markov sequence whose marginal distribution has the cf

(5.8), which can be expressed as in (5.9), where L1, L2, L3 are independent and

identically distributed random variables with Laplace distribution with probability

density function

fL(y) = θ exp(−2θ|y|) −∞ < y <∞, θ > 0.
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Figure 5.1: The plot of kurtosis, KY , of Yt

The odd moments of Yt are zero and its even moments are given by

E(Y 2k
t ) = E

(
(εt
√
ht)

k
)

= E(εkt )E(h
k
2
t )

= 1.3.5. . . . .

(
k!(θ + k + 1)

θk(θ + 1)

)
, k = 1, 2, . . . . (5.10)

E(Y 2
t ) = E(ε2

t )E(ht) =
θ + 2

θ(θ + 1)
= V ar(Yt) (5.11)

E(Y 4
t ) = E(ε2

t )E(h2
t ) = 3

2(θ + 3)

θ2(θ + 1)
(5.12)

The kurtosis of Yt is

KY = 6
(θ2 + 4θ + 3)

θ2 + 4θ + 4
< 6.

Laplace distribution has a constant kurtosis(=6). But in the present case, KY < 6,

but is a function of θ and hence more flexible. Figure 5.1 shows the flexibil-

ity of the kurtosis, KY for different θ values. Also, the autocovariance function,
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Cov(ht, ht−k) = φ|k| θ
2+4θ+2
θ2(θ+1)2 . So that,

νY 2
t

(k) = E(Y 2
t , Y

2
t−k)− E(Y 2

t )E(Y 2
t−k)

= E(ε2
thtε

2
t−kht−k)− E(ε2

tht)E(ε2
t−kht−k)

= E(htht−k)− E(ht)E(ht−k)

= φ|k|
θ2 + 4θ + 2

θ2(θ + 1)2
−
(

θ + 2

θ(θ + 1)

)2

. (5.13)

and the ACF of {Y 2
t } is given by

ρY 2
t

(k) = Corr(Y 2
t , Y

2
t−k) =

((θ + 4)θ + 2)φk

(θ + 2)2
− 1.

5.4 Estimation of Lindley-SV model

The likelihood function of a SV model involves multiple integrals. So it is difficult

to integrate out the unobservable latent variables in the likelihood function. This

possess difficulties in the likelihood based inference of the model. In view of this,

the estimation procedure is carried out by Generalized Method of Moments (Hansen

(1982)).

Let (y1, y2, . . . , yT ) be a realization of length T from Lindley SV model (5.3) and let

Θ = (φ, θ)′ be the parameter vector to be estimated. To estimate these parameters,

we use the moments E(Y 2
t ) = θ+2

θ(θ+1)
and E(Y 2

t Y
2
t−1) = φ θ

2+4θ+2
θ2(θ+1)2 . Define the function

g(yt, yt−1,Θ) as

g(yt, yt−1,Θ) =

 y2
t − θ+2

θ(θ+1)

y2
t y

2
t−1 − φ θ

2+4θ+2
θ2(θ+1)2

 . (5.14)
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Then the moment estimator Θ̂ = (φ̂, θ̂)′ of Θ can be obtained by solving the equation

1

T

T∑
t=1

g(yt, yt−1,Θ) = 0.

The resulting moment equations for φ and θ can be expressed as

Ȳ 2 =
θ + 2

θ(θ + 1)
; φ̂ = Ȳ22

(θ̂2(θ̂ + 1)2)

θ̂2 + 4θ̂ + 2
, (5.15)

where Ȳ 2 = (1/T )
∑T

t=1 y
2
t , Ȳ22 = (1/T )

∑T
t=1 y

2
t y

2
t−1.

5.5 Asymptotic properties of the estimators

The asymptotic properties for generalized method of moment estimators are es-

tablished using the results of Hansen (1982) as given in Section 3.4.2. According

to Hansen (1982) GMM estimators are obtained using a large number of moment

equations. Under the assumptions mentioned in Section 3.4.2, Hansen (1982) proved

that the generalized moment estimators are consistent and asymptotically normal.

The Theorem 3.1 states that
{√

T (Θ̂−Θ), T ≥ 1
}

converges in distribution to a

normal random vector with mean 0 and dispersion matrix [DS−1D′]−1, where D is

as given in Section 3.4.2. From Bakouch and Popović (2016), the sequence {ht}

is stationary, ergodic and has finite moments. So, these properties follows for the

sequence {yt} given in Section 5.3. The partial derivatives are given as

∂g

∂θ
=

 1
(θ+1)2 − 2

θ2

−2(θ(θ(θ+6)+6)+2)φ
θ3(θ+1)3


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and

∂g

∂φ
=

 0

θ2+4θ+2
θ2(θ+1)2

 .

Thus, we can confirm the existence of the partial derivatives, ∂g/∂Θ and also they

are continuous for all Θ. Similarly, E(∂g/∂Θ) and E(ω0ω
′
0) exists and are finite.

Hence, the regularity conditions stated in Section 3.4.2 hold good for Lindley-SV

model. To compute the asymptotic standard errors of the estimators, we need the

dispersion matrix D. The computations for obtaining the D matrix are discussed as

follows.

Let Γ(k) =

 γ
(k)
11 γ

(k)
12

γ
(k)
21 γ

(k)
22

 , k = 0,±1,±2, . . .

and Γ(k)=Γ(−k), k = 1, 2, . . . . Then the 2 × 2 matrix S is given by S = Γ(0) +

2
∑∞

k=1 Γ(k).

When k = 0, the elements of Γ(0)= E (ωtω
′
t) are obtained as

γ
(0)
11 =

6(θ + 3)

θ2(θ + 1)
− (θ + 2)2

θ2(θ + 1)2
;

γ
(0)
12 = γ

(0)
21 =

90(θ + 4)

θ3(θ + 1)
− (θ + 2)(φ(θ2 + 4θ + 2))

θ(θ + 1)(θ2)(θ + 1)2
;

γ
(0)
22 = 9

(
24(θ + 5)φ2

θ4(θ + 1)
+

(2(θ + 3))

θ4(θ + 1)

(
6(1− φ)

θ2
+

2(1− φ)

θ2
+

2(1− φ)φ2

(θ + 1)2

))

−
(

(θ2 + 4θ + 2)φ

θ2(θ + 1)2

)2

.
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The elements of Γ(k) fork = 1, 2, . . . are

γ
(k)
11 = φ|k|

θ2 + 4θ + 2

θ2(θ + 1)2
− (θ + 2)2

θ2(θ + 1)2
;

γ
(k)
12 = φk+2h3 + 2φk+1e1h2 + φke2h2 + h1h12

k−1∑
j=0

φj − ck2h1 − c1h12 + c1c
k
2;

γ
(k)
21 = φ

(
φ2(k−1)h3 + 2φk−1e1h2

k∑
j=1

φk−j

)
+ e1

(
φk−1e2 + e1h1

k∑
j=1

φk−j

)

− c1h12 − c2h1 + c1c2;

γ
(k)
22 = φ2(k+1)+1

(
φ3h4 + 3φ2e1h3 + 3φe2h2 + e3h1

)
+ 2φk

k∑
j=1

φk−je1

(
φ2h3

+2φe1h2 + e2h1) + φe1h12

k∑
j=1

φk−j + e1φ
k
(
φ2h3 + 2φe1h2 + e2h1

)
+ e1

k∑
j=1

φk−je1h12 − ck2h12 − c2h12 + c2c
k
2,

where c1 = e1 = h1 = (θ + 2)/(θ(θ + 1)), e2 = 2(θ2 + 4θ + 3− φ)/(θ2(θ + 1)2), h2 =

6(θ+3)/(θ2(θ+1)), h3 = 3(θ+2)/(θ3(θ+1)) h12 = c2 = φ(θ2 +4θ+2)/(θ2(θ+1)2),

ck2 = φ|k|(θ2 + 4θ + 2)/(θ2(θ + 1)2).
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The 2 × 2 matrix D is evaluated using the form D = E(df(yt,Θ)/dΘ) and its

elements are :

D11 =
2

θ2
− 1

(θ + 1)2
;

D12 =
2φ(θ3 + 6θ2 + 6θ + 2)

θ3(θ + 1)3
;

D21 = 0;

D22 =
θ2 + 4θ + 2

θ2(θ + 1)2
.

Hence the asymptotic dispersion matrix becomes 1
T

(Σ), where Σ = [DS−1D′]−1.

The asymptotic standard errors of the estimators are computed by utilising the

diagonal elements of Σ.

5.6 Simulation Study

A simulation study is carried out to check the performance of the estimators. We

consider the sample sizes 2000 and 3000. The distribution and density function of

innovation random variable for a Lindley Markov sequence, {ht}, is given in (5.5)

and (5.6). First, we generate {ht}. Based on this, we simulate the sequence yt using

(5.3). Then we obtain the estimates by solving the equations in (5.15).

The experiment was carried out 1000 times for specified values of the parameters.

The average estimates and the corresponding mean square error values based on

the simulation are tabulated in Tables 5.1 and 5.2.
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Table 5.1: The average estimates and the corresponding mean square error of
moment estimates based on sample of size, n=2000 for different θ and φ values.

True Values Average estimate values

n θ φ θ̂ std dev φ̂ std dev

0.60 0.10 0.56196 0.02928 0.06212 0.15700
2000 0.50 0.30 0.53980 0.02922 0.24063 0.19880

0.40 0.50 0.45211 0.03045 0.46554 0.25560
0.30 0.75 0.35474 0.03369 0.79559 0.34780
0.50 0.60 0.46179 0.03276 0.55609 0.28289

Table 5.2: The average estimates and the corresponding mean square error of
moment estimates based on sample of sizes, n=3000 for different θ and φ values.

True Values Average estimate values

n θ φ θ̂ std dev φ̂ std dev

0.60 0.10 0.58050 0.01982 0.07426 0.11393
3000 0.50 0.30 0.51864 0.02082 0.26982 0.16568

0.40 0.50 0.43616 0.02102 0.48105 0.18839
0.30 0.75 0.33427 0.02304 0.77842 0.27844
0.50 0.60 0.48061 0.02387 0.57134 0.19232

5.7 Data Analysis

We analyse the daily stock price index returns using the Lindley SV model. The

closing index data of Nikkei 225 for the period 1st January 2012 to 31st December

2015 of Tokyo Stock Exchange (TSE) is considered. The time series plot and the

plot of the log-return series are given in Figure 5.2 and Figure 5.3 respectively.

The summary statistics of the return series are given in Table 5.3, where Q(20)

and Q2(20) are the Ljung-Box statistic for the return and squared return series

with lag 20, respectively. The corresponding χ2 table value at 5% significance level

is 10.117, which suggest that the return series is uncorrelated and the squared

return series shows significant correlation. The acf of the returns and the squared
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Figure 5.2: The time series plot of Nikkei 225 closing index
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Figure 5.3: The time series plot of Nikkei 225 return series

Table 5.3: Summary statistics of Nikkei 225 return series

Statistics Nikkei Closing Index

Sample size 980
Std.Dev 1.35447

Minimum -7.3159
Maximum 7.70886

Q(20) 3.7131
Q2(20) 11.5735
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returns are plotted in Figure 5.4. It can be observed from Figure 5.4 that the serial

Figure 5.4: ACF of returns(left panel) and the squared returns(right panel)

correlation in the return series are insignificant where as the ACF of the squared

returns is significant. The parameters are estimated and obtained as θ̂ = 0.8386

and φ̂ = 0.6230. To validate the model, we need to perform the model diagnostic

check based on the residuals. That is, we need to check whether the assumptions

on the model (5.3) are satisfied with respect to the data we have analysed. Here,

the model is defined in terms of the unobservable volatilities, ht. One can estimate

these volatilities by utilising the Kalman-Filter method. It is a recursive algorithm

that computes estimates for the unobserved components at time t, based on the

information available at the same time. To employ this method, the model should be

represented in state space form with the random variables involved having a normal

distribution. This is because, the Kalman method assumes that the distribution

of underlying rvs is normal. Jacquier et al. (2002) and Tsay (2005) discuss about

this method in detail. Here we approximate the distribution of ηt by a normal

distribution and then adopt Kalman filter method for estimating the volatilities.
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The state space representation of the SV model given in (5.3) can be written as

log Y 2
t = −1.27 + log ht + ϑt, E(ϑt) = 0, V (ϑt) =

π2

2
; (5.16)

and ht = φht−1 + ηt, where ηt is assumed to be normally distributed with mean

E(ηt) = (θ+2)(1−φ)/θ(θ+1) and variance V (ηt) = (1−φ2)(θ2 +4θ+2)/(θ2(θ+1)2

which are given in (5.7). If the distribution of ϑt is approximated by a normal

distribution then the preceding system (5.16) becomes a standard dynamic linear

model, to which Kalman filter can be applied. Let ht|t−1 be the prediction of ht based

on the information available at time t−1 and Ωt|t−1 be the variance of the predictor.

Here we are making a presumption that the update that uses the information at

time t as ht|t and the variance of the update as Ωt|t. The equations that recursively

compute the predictions and updating are given by

ht|t−1 =φht−1|t−1 + (θ + 2)(1− φ)/θ(θ + 1)

Ωt|t−1 =φ2Ωt−1|t−1 + (1− φ2)(θ2 + 4θ + 2)/(θ2(θ + 1)2

and

ht|t =ht|t−1 +
Ωt|t−1

ft
[log Y 2

t + 1.27− ht|t−1]

Ωt|t =Ωt|t−1(1−
Ωt|t−1

ft
),

where ft = Ωt|t−1 + π2

2
. Then we can compute the residuals by the equation ε̂ =

yt/
√
ht and use this sequence for the residual analysis. The system is initialised at

the unconditional values, Ω0 = (θ2 + 4θ+ 2)/(θ2(θ+ 1)2 and h0 = (θ+ 2)/θ(θ+ 1).

The parameters θ and φ in the above system are replaced by their estimates θ̂ and

φ̂ respectively. The ACF plot of the residuals is given in Figure 5.5. Further the
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Figure 5.5: ACF of residuals

significance of ACF in the residuals is computed using the Ljung-Box statistic for

the series {ε̂} and {ε̂2} and the values obtained are 3.687 and 6.135 respectively.

All these values are less than the 5% Chi-square critical value (10.117) at degrees of

freedom 20. Hence we conclude that there is no significant serial dependence among

the residuals and squared residuals. In Figure 5.6, we superimpose the histogram
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Figure 5.6: Histogram of residuals with superimposed standard normal density
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of the residuals with standard normal density to check whether the series follows

standard normal distribution. From the figure, the standard normal density is a

good fit for the residuals.

Hence our proposed model is capable of capturing the stylized facts of the above

data set.

The results of this Chapter are reported in Sri Ranganath and Balakrishna (2018).



Chapter 6

Lindley Autoregressive Conditional Dura-

tion model

6.1 Introduction

The modelling of time interval between trades have gathered momentum in recent

years. The study of this irregularly space trade durations contains useful informa-

tion about intraday market activities. Engle (1982) proposed the autoregressive

conditional duration model to analyse the dynamic behaviour of financial duration

data. They assume the Exponential and Weibull distribution as the conditional

distribution of an interval given the past information. Lunde (1999) considered

the generalized Gamma distribution and Grammig and Maurer (2000) assumed the

Burr distribution as ACD specifications. To ensure the non-negativity durations

without any parameter restrictions Bauwens and Giot (2000) proposed a logarith-

mic ACD model. Hautsch (2001) suggested an additive ACD model based on power

transformation which can be written in terms of Box-Cox transformation. Pacurar

(2008) gives a survey of the theoretical and empirical literature on the ACD mod-

els. The Exponential, Weibull and Gamma distributions are usually considered for

modelling the conditional durations. In this Chapter, we propose an ACD model

with Lindley distribution as the conditional distribution. Ghitany et al. (2008) has

137
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discussed some statistical properties of Lindley distribution. They showed that,

due to the flexible nature of Lindley distribution it performs better than exponen-

tial distribution in some applications. So, Lindley distribution can be considered as

an alternative to exponential distribution in modelling duration models. Bakouch

and Popović (2016) proposed an autoregressive process of first order based on Lind-

ley marginal distribution. Raqab et al. (2017) consider the problem of the model

selection or discrimination among three different positively skewed lifetime distri-

butions, the Lindley, Weibull, and Gamma distributions. They use the likelihood

ratio test and minimum Kolmogorov distance tools to analyse the distributions and

concluded that the Lindley distribution is closer to Weibull distribution in the sense

of likelihood ratio and Kolmogorov criteria.

In Section 6.2, the Lindley-ACD(1,1) model is defined. The second order properties

are described in Section 6.3. We discuss the estimation procedure by conditional

maximum likelihood method in Section 6.4. A simulation study is carried out in

Section 6.5. In Section 6.6, we present the data analysis using the proposed duration

model.

6.2 Lindley ACD model

Let X follow Lindley distribution with mean θ+2
θ(θ+1)

. Then ε = X/ θ+2
δ(θ+1)

follows a

unit mean Lindley distribution with pdf (6.1.)

fεi(ε) =
θ2

θ + 1

(
1 +

θ + 2

θ(θ + 1)
ε

)
exp−( θ+2

θ+1
)ε ε > 0. (6.1)
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Now we define the Lindley ACD(1,1) model as

Xi = ψiεi

ψi = ω + αXi−1 + βψi−1 , i = 1, 2, . . . , n

(6.2)

The conditional pdf of Xi given ψi is

f(Xi|ψi)(xi) =
1

ψi
fεi

(
xi
ψi

)
=

θ(θ + 2)
(

1 + (θ+2)xi
θ(θ+1)ψi

)
exp

(
−

(θ+2)
xi
ψi

θ+1

)
(θ + 1)2

1

ψi
, θ > 0.

(6.3)

6.3 Properties of Lindley ACD model

Consider the model given in (6.2). The conditional mean of the ACD model is given

by E[Xi|Fti−1] = ψi. Taking expectation the unconditional mean is,

E(Xi) = E[E(ψiεi|Fi−1)] = E(ψi),

E(ψi) = ω + αE(Xi−1) + βE(ψi−1). (6.4)

Under weak stationarity, E(ψi) = E(ψi−1) so that, (6.4) gives

µx ≡ E(Xi) = E(ψi) =
ω

1− α− β
. (6.5)

Consequently, for weak stationarity of {Xi} we need the condition 0 ≤ α + β < 1.

Also, E(Xi
2) = E[E(ψi

2εi
2|Fi−1)] . From (6.4), we have E(ε2

i ) = 2(1+θ)(3+θ)
(2+θ2)

. So,

taking the square of ψi in (6.4) and the expectation and using weak stationarity of
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ψi and Xi, we have,

E(ψ2
i ) = E(ω2 + α2X2

i−1 + β2ψ2
i−1 + 2αωXi−1 + 2βωψi−1 + 2αβXi−1ψi−1)

= ω2 + α2E(X2
i−1) + β2E(ψ2

i−1) + 2ωαµx + 2ωβµx + 2αβµ2
x

= ω2 + α2E(ψ2
i )

2(1 + θ)(3 + θ)

(2 + θ)2
+ β2E(ψ2

i ) + 2ωαµx + 2ωβµx + 2αβµ2
x

=
ω2 + 2ωαµx + 2ωβµx + 2αβµ2

x

1− 2(1+θ)(3+θ)
(2+θ)2 α2 + β2 − 2αβ

=
µ2
x(1− (α + β)2)

1− 2(1+θ)(3+θ)
(2+θ)2 α2 + β2 − 2αβ

so that

E(Xi
2) =

µ2
x(1− (α + β)2)

1− 2(1+θ)(3+θ)
(2+θ)2 α2 − β2 − 2αβ

2(1 + θ)(3 + θ)

(2 + θ2)
. (6.6)

Using V ar(Xi) = E(X2
i )− (E(Xi))

2 and (6.6) , we have the unconditional variance

as

V (Xi) =
µ2
x(1− (α + β)2)

1− 2(1+θ)(3+θ)
(2+θ)2 α2 + β2 − 2αβ

2(1 + θ)(3 + θ)

(2 + θ2)
− µ2

x

=
(2(1+θ)(3+θ)

(2+θ)2 − 1)µ2
x(1− β2 − 2αβ)

1− 2(1+θ)(3+θ)
(2+θ)2 α2 + β2 − 2αβ

=
(δ − 1)µ2

x(1− β2 − 2αβ)

1− δα2 + β2 − 2αβ
, (6.7)

where δ = 2(1+θ)(3+θ)
(2+θ)2 .
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Autocorrelation function

The kth order auto-covariance function of {Xi} is defined as

νX(k) = Cov(Xi, Xi−k) = Cov(ψi, Xi−k)

= Cov(ω + αXi−1 + βψi−1, Xi−k)

= αCov(Xi−1, Xi−k) + βCov(ψi−1, Xi−k)

= (α + β)νk−1. (6.8)

The first order autocovariance function of Xi is

ν1 = Cov(Xi, Xi−1) = Cov(ψi, Xi−1)

= Cov(ω + αXi−1 + βψi−1, Xi−1)

= αν0 + βV ar(ψi−1)

= α
(δ − 1)µ2

x(1− β2 − 2αβ)

1− δα2 + β2 − 2αβ
+ βV ar(ψi−1),

where V ar(ψi) = E(ψ2
i )− E(ψi)

2

=
µ2
x(1− (α + β)2)

1− 2(1+θ)(3+θ)
(2+θ)2 α2 + β2 − 2αβ

− µ2
x

=
(δ − 1)α2µ2

x

1− δα2 + β2 − 2αβ
.

ACF of lag k for k > 1 is

ρX(k) = (α + β)ρk−1, (6.9)

with ρ1 =
α(1− β2)− αβ
1− β2 − 2αβ
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Hazard function of Lindley distribution

The transaction duration in finance is inversely related to trading intensity, which

in turn depends on the arrival of new information. So the choice of the distribution

of the error term in (6.2) impacts the conditional intensity or hazard function of

the ACD model. As the hazard function of durations is not constant over time, the

exponential specification is quite restrictive. The hazard function of Lindley distri-

bution shows flexibility over the exponential distribution. For a random variable

X, the survival function is defined as

S(x) ≡ P (X > x) = 1− P (X ≤ x) x > 0, (6.10)

which gives the probability that a subject, which follows the distribution of X,

survives upto the time x. The hazard function (or the intensity function) of X is

then defined by

h(x) =
f(x)

S(x)
, (6.11)

where f(.) and S(.) are the pdf and survival function of X, respectively. The hazard

function of Lindley distribution is h(x) = (θ2(1 + x))/(θ + 1 + θx) x ≥ 0.

Hazard function of Lindley-ACD(1,1) model

The conditional hazard function of Lindley-ACD(1,1) is given by

h(xi) =
θ(θ + 2)

(
(θ+2)xi
θ(θ+1)ψi

+ 1
)

(θ + 1)2ψi + (θ + 2)xi
(6.12)

For an exponential distribution, the hazard function is constant. The hazard

function curves for different θ values are shown in Figure 6.1. Here h(x) is an

increasing function in x and θ. This shows the flexibility of Lindley distribution
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Figure 6.1: Plot of Hazard rate

over the exponential distribution.

6.4 Estimation of Lindley-ACD(1,1) model

Here we discuss the problem of estimation of Lindley-ACD(1,1) model. Lu et al.

(2016) proposed the moment closed form estimator (MCFE) for the autoregres-

sive conditional duration model. The ACD model is represented as Autoregressive

Moving Average using identical transformation. Then using the sample mean and

sample autocorrelation function the estimators of the parameters ω, α and β can be

obtained. Once these estimators are known, the estimate for θ is computed.

Maximum likelihood method

The parameter vector of the Lindley-ACD(1,1) model is Θ = (θ, ω, α, β)′. From

(6.3), we have the conditional pdf of Xi given ψi. The likelihood function is defined
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as

L(X|Θ) = f(X1|Θ)
n∏
i=2

fXi|ψi(Xi|Fi−1; Θ), (6.13)

where f(X1|Θ) is the density function of the initial random variable where Fi =

σ(X1, X2, . . . , Xi). We consider the conditional log-likelihood function by ignoring

f(X1; Θ) as this is of negligible effect on the overall likelihood function as the sample

size becomes larger. The conditional log-likelihood is given by

logL =
n∑
i=2

log
(
fXi|ψi(Xi|Fi−1; Θ)

)
=

n∑
i=2

log

[
θ(θ + 2)

(θ + 1)2

(
θ(θ + 1)ψi + (θ + 2)Xi

θ(θ + 1)ψi

)
exp

(
−θ + 2

θ + 1

Xi

ψi

)
1

ψi

]
= n logθ(θ + 2)− 2n log(θ + 1) +

n∑
i=2

log (θ(θ + 1)(ω + αXi−1 + βψi−1) + (θ + 2)Xi)

n∑
i=2

log (θ(θ + 1)(ω + αXi−1 + βψi−1))− θ + 2

θ + 1

n∑
i=2

Xi

(ω + αXi−1 + βψi−1)

n∑
i=2

log(ω + αXi−1 + βψi−1). (6.14)

The ML estimator of Θ̂ = (θ̂, ω̂, α̂, β̂)′ of Θ = (θ, ω, α, β)′ can be obtained by solving

the following likelihood equations.

∂ logL

∂θ
= 0 =

(θ + 2)

(θ + 1)2

n∑
i=2

Xi

βψi−1 + αXi−1 + ω
− 2n

θ + 1
− (2θ + 1)n

θ(θ + 1)

+
n∑
i=2

θ (βψi−1 + αXi−1 + ω) + (θ + 1) (βψi−1 + αXi−1 + ω) +Xi−1

θ(θ + 1) (βψi−1 + αXi−1 + ω) + (θ + 2)Xi−1

− 1

θ + 1

n∑
i=2

Xi

βψi−1 + αXi−1 + ω
. (6.15)
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∂

∂ω
logL = 0 =

n∑
i=2

θ(θ + 1)

θ(θ + 1) (βψi−1 + αXi−1 + ω) + (θ + 2)Xi−1

− (θ + 2)

θ + 1

n∑
i=2

− Xi

(βψi−1 + αXi−1 + ω) 2
− 2

n∑
i=2

1

βψi−1 + αXi−1 + ω
.

(6.16)

∂

∂α
logL = 0 =

n∑
i=2

θ(θ + 1)Xi−1

θ(θ + 1) (βψi−1 + αXi−1 + ω) + (θ + 2)Xi−1

−

(θ + 2)

θ + 1

n∑
i=2

− Xi−1Xi

(βψi−1 + αXi−1 + ω) 2
− 2

n∑
i=2

Xi−1

βψi−1 + αXi−1 + ω
.

(6.17)

∂

∂β
logL = 0 =

n∑
i=2

θ(θ + 1)ψi−1

θ(θ + 1) (βψi−1 + αXi−1 + ω) + (θ + 2)Xi−1

− (θ + 2)

θ + 1

n∑
i=2

− Xiψi−1

(βψi−1 + αXi−1 + ω) 2
− 2

n∑
i=2

ψi−1

βψi−1 + αXi−1 + ω
.

(6.18)

As the likelihood equations have no explicit solutions, numerical methods are used

to obtain the estimates. We use the optim() function in R. This is a General-

purpose optimization based on NelderMead, quasi-Newton and conjugate-gradient

algorithms. We use the moment closed form estimator for the ACD model (Lu et

al. (2016)) as the initial value.
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6.5 Simulation Study

In this Section, a simulation study is carried out to assess the performance of the

estimators. We consider different values for the parameter vector Θ, with sample

size 1500, 2500, 4000 and 5000 and took 500 replications. As θ value increases the

estimated value approaches closer to true value, for large sample size. In Table

6.2 we take θ = 2.5 for different sample sizes. The true values, estimated values

and the corresponding mean square error are given in the Table 6.1 and Table 6.2

with mean square error given in parenthesis. In Lindley distribution the estimator

of θ̂ is positively biased. The simulation results show a similar behaviour to θ̂ for

Lindley-ACD(1,1) model.

6.6 Data Analysis

In this Section, the intraday transactions of exchange rates data of Canadian dollar

vs Swiss Franc downloaded from the Website of Dukascopy, Swiss Forex bank and

Marketplace is illustrated. We consider the traded data on 1st November, 2017.

The transactions occurred during the normal trading hours from 9 : 30AM to

4 : 00PM Eastern time are taken. It consists of 65378 transactions and 65377

duration data. The downloaded tick data consists of Local time with date,Ask,Bid,

Ask Volume and Bid Volume. We took the trade entered time (HH:MM:SS) and

compute the durations between each consecutive transactions in seconds. After

removing the zero durations we have 9547 intraday durations and the plot is given

in Figure 6.2. As the data exhibit diurnal pattern, we consider the adjusted time
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Table 6.1: The average ML estimators and the corresponding mean square error
for Lindley-ACD(1,1) model

n True Values θ̂ ω̂ α̂ β̂
(θ, ω, α, β) (mse) (mse) (mse ) (mse)

1500 ( 0.50,1.50, 0.20, 0.60) 0.51885 1.67318 0.20305 0.5725
(0.00424) (0.01723) (0.0012) (0.00288)

( 1, 1, 0.30, 0.5) 1.01211 1.05086 0.30351 0.48687
(0.00938) (0.00786) (0.00144) (0.00231)

( 1.50, 1.50, 0.60, 0.20) 1.58073 1.52419 0.59654 0.19661
(0.02069) (0.00683) (0.00171) (0.00162)

( 2, 1, 0.70, 0.10) 2.22813 1.01408 0.69883 0.09557
(0.07296) (0.00427) (0.00181) (0.00143)

2500 ( 0.50,1.50, 0.20, 0.60) 0.51197 1.60878 0.20466 0.58093
(0.00347) (0.01232) (0.00094) (0.00215)

( 1, 1, 0.30, 0.5) 1.02328 1.02392 0.29992 0.49494
(0.00757) (0.00648) (0.00104) (0.00185)

( 1.50,1.50, 0.60, 0.20) 1.52906 1.52406 0.59706 0.1968
(0.01363) (0.00571) (0.00137) (0.00132)

( 2, 1, 0.70, 0.10) 2.10475 1.00993 0.6983 0.09743
(0.02694) (0.00312) (0.00149) (0.00111)

4000 ( 0.50,1.50, 0.20, 0.60) 0.50662 1.56516 0.20267 0.58856
(0.00251) (0.0096) (0.00075) (0.00166)

( 1, 1, 0.30, 0.5) 1.01429 1.0121 0.30084 0.49728
(0.0057) (0.00478) (0.00087) (0.00141)

( 1.50,1.50, 0.60, 0.20) 1.51474 1.50228 0.60096 0.19957
(0.01084) (0.00424) (0.00097) (0.00094)

( 2, 1, 0.70, 0.10) 2.07841 1.00161 0.69992 0.09959
(0.01874) (0.00241) (0.00114) (0.00082)

5000 ( 0.50,1.50, 0.20, 0.60) 0.50544 1.55843 0.20319 0.58922
(0.00228) (0.0081) (0.00066) (0.00145)

( 1, 1, 0.30, 0.5) 1.00619 1.01446 0.30131 0.49613
(0.00509) (0.00409) (0.00075) (0.00123)

( 1.50,1.50, 0.60, 0.20) 1.52172 1.50128 0.60008 0.19919
(0.00832) (0.00389) (0.00093) (0.00092)

( 2, 1, 0.70, 0.10) 2.00911 1.00276 0.70014 0.10016
(0.015) (0.00225) (0.00096) (0.00073)

duration X∗i = Xi/f(ti), where Xi is the difference of the observed duration ith

and i− 1th transactions. We follow the method described in (Tsay, 2014),( pp 298-

300) to remove this deterministic component. Let f(ti) be a deterministic function

consisting of the cyclical component of Xi. f(ti) depends on the underlying asset

and the systematic behaviour of the market. We assume

f(ti) = exp[d(ti)], d(ti) = β0 + β1f1(ti) + β2f2(ti), (6.19)
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Table 6.2: The average ML estimators and the corresponding mean square error
for Lindley-ACD(1,1) model for (θ, ω, α, β)=(2.5,1,0.30,0.50)

Sample True Values θ̂ ω̂ α̂ β̂
size (θ, ω, α, β) (mse) (mse) (mse) (mse)

2500 (2.5,1,0.30,0.50) 3.73919 1.02765 0.30091 0.493564
0.65433 0.00422 0.00081 0.00130

4000 2.66466 1.01882 0.30014 0.49592
0.02557 0.00340 0.00062 0.00102

5000 2.64926 1.01558 0.30063 0.49587
0.02503 0.00303 0.00056 0.00093

10000 2.55664 1.00371 0.30030 0.49889
0.01275 0.00209 0.00039 0.00064

where

f1(ti) =
ti − 43200

23400
and f2(ti) = f 2

1 (ti),

where 43200 denotes the 12 : 00 noon and 23400 is number of trading hours mea-

sured in seconds. The coefficients βj in (6.19) are obtained by the least squares

method of the linear regression

log(Xi) = β0 + β1f1(t1) + β2f2(t2) + εi.

The residual is then given by

ε̂i = log(Xi)− β̂0 − β̂1f1(t1)− β̂2 − β̂2f2(t2).

Then f(ti) = exp{êi}. Using f(ti), we obtain the adjusted duration X∗i . Figure 6.3

shows the time plot of adjusted durations. From the plot, the diurnal pattern is

largely removed.

The summary of the duration data and the adjusted duration data are given in

Table 6.3
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Figure 6.2: Time plot of nonzero durations of Canadian dollar vs Swiss Franc .
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Figure 6.3: Time plot of adjusted nonzero durations of Canadian dollar vs Swiss
Franc .

Table 6.3: Descriptive statistics for nonzero durations and adjusted duration
data of Canadian dollar vs Swiss Franc

Statistic duration data adjusted duration data
Sample size 9547 9547
Minimum 1 0.2255
Maximum 40 19.7920

Mean 2.451 1.3591
Median 1.023 0.7038
Q(10) 19 0.7038

The estimates of the parameters are carried out using the conditional ML method.

Then the fitted model is

Xi = ψiεi, ψi = 0.02892 + 0.04422Xi−1 + 0.93463ψi−1
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Figure 6.4: ACF plot of residual series of Lindley-ACD(1,1) model and his-

togram of the residuals superimposed by Lindley density

where εi follows a standardized Lindley distribution with parameter θ = 0.005.

The residual series is computed by ε̂i = Xi/ψ̂i. Here ε̂i should be uncorrelated

random variables. The ACF plot of innovations and the histogram of the innovations

superimposed by the unit mean Lindley distribution is given in Figure 6.4. Also

the Ljung-Box statistics value with corresponding p-value is given in Table 6.4.

Table 6.4: Lung-Box statistics results for residuals and squared residuals with
lags 10 and 20

Ljung-Box ε̂i ε̂2
i

Q(10) 17.083. 15.217
(p-value) 0.07254 0.1244

Q(20) 30.173 17.893
(p-value) 0.0671 0.5944

From the above results we can confirm that the residuals of Lindley-ACD(1,1) model

have no significant serial correlation and conditional heteroscedasticity at 5% level

of significance.

The results of this Chapter are reported in Sri Ranganath and Balakrishna (2018).



Chapter 7

Bayesian Analysis of Inverse Gaussian Stochas-

tic Conditional Duration Model

7.1 Introduction

The empirical analysis of durations between the occurrences of certain financial

events is important in understanding the market behaviour. To describe the evo-

lution of such durations, Bauwens and Veredas (2004) proposed a class of models

called the stochastic conditional duration models. One can refer Engle and Rus-

sell (1998), Pacurar (2008) for details on such duration models. The SCD model

assumes that the conditional mean of durations between events is generated by a

latent stochastic process. The likelihood based inference for such models requires

evaluation of multiple integral with respect to latent variables. In view of these dif-

ficulties Bauwens and Veredas (2004) estimated the parameters by quasi-maximum

likelihood by expressing the model into a linear state space form and then apply-

ing Kalman filter method. Feng et al. (2004) proposed an extension to Bauwens

and Veredas (2004) SCD model in order to capture the asymmetric behaviour or

leverage effect in the duration process. They adopted the Markov Chain Maximum

Likelihood(MCML) approach proposed by Durbin and Koopman (1997). Strickland

et al. (2006) proposed a Bayesian Markov Chain Monte Carlo method in which the

151
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sampling scheme employed is a hybrid of the Gibbs and Metropolis-Hastings algo-

rithm, with the latent vector sampled in blocks. Knight and Ning (2008) discussed

the empirical characteristic function(ECF) and the generalized method of moments

estimation. Bauwens and Galli (2009) developed a Maximum Likelihood estimation

based on the efficient importance sampling (EIS) method to estimate the param-

eters. Xu et al. (2010) extend the SCD model proposed by Bauwens and Veredas

(2004) by imposing mixtures of bivariate normal distributions on the innovations of

the observation and latent equations of the duration process. The estimation was

carried out by extending the ECF approach of Knight and Ning (2008). Men et al.

(2015) introduced a correlation between the error process and the innovations of the

duration process and adopted Monte Carlo methods for estimation. Ramanathan

et al. (2016) introduced a new procedure for estimation, filtering and smoothing

in SCD models, based on estimating functions. Majority of the literature on SCD

models assume that the errors follow either a Weibull, Gamma or exponential dis-

tribution. Balakrishna and Rahul (2014) proposed a stochastic conditional duration

model having inverse Gaussian(IG) distribution for innovations. In this Chapter, we

consider the Bayesian analysis of SCD model with inverse Gaussian error random

variables. We propose Bayesian MCMC methods to estimate the parameters of the

model. Here we follow the algorithm mentioned in Men et al. (2016), Edwards and

Sokal (1988) and Neal (2003). Since it is difficult to obtain the analytical condi-

tional densities of observed data, the auxiliary particle filter in Pitt and Shephard

(1999) is employed to evaluate the likelihood function.

A brief review of inverse Gaussian SCD model is given in Section 7.2. The Bayesian

estimation methodology and MCMC algorithm are discussed in Section 7.3. Simu-

lation studies are carried out in Section 7.4. Section 7.5 presents the application of
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proposed method to real life data sets.

7.2 The Stochastic Conditional Duration Model

Let τi be the time of occurrence of an event (or transaction) of interest with τ0 = 0

and Xi = τi − τi−1, i = 1, 2, ..., n be the ith trade duration, which is defined as the

waiting time between two consecutive transactions of an underlying asset from time

i to i+ 1.

The SCD model is defined by

Xi = eψiεi

ψi = φψi−1 + ηi , i = 1, 2, . . . , n

ψ0 ∼ N

(
0,

σ2

1− φ2

)
,

(7.1)

where |φ| < 1 to ensure the stationarity of the process and ηi follows independent

and identically distributed (iid) N(0, σ2) so that {ψi} follows a Gaussian AR(1)

sequence and {εi} is an iid sequence on the positive support with common pdf f(εi)

and ηj is independent of εi ∀ i, j. Note that the model depends on the unobservable

ψi, called the latent variable. Most of the SCD models available in the literature

assume that the innovations follow iid exponential, gamma or Weibull distributions.

One can refer Bauwens and Veredas (2004), Strickland et al. (2006), Knight and

Ning (2008), Durbin and Koopman (1997) and so on for the details on such models.

Xu et al. (2010) proposed a SCD model by assuming a bivariate mixture of normal

distribution for (εi, ηi). Balakrishna and Rahul (2014) assumed an inverse Gaussian
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distribution for εi and estimated the model parameters by efficient importance sam-

pling method. Here, we propose a Bayesian method for this SCD model with inverse

Gaussian innovations. We consider the unit mean inverse Gaussian distribution for

εi in the model (7.1).

A random variable Y is said to have an inverse Gaussian distribution with param-

eters µ and λ, and is denoted by IG(µ, λ) if its probability density function (pdf)

is of the form

f(y;µ, λ) =

√
λ

2πy3
exp

(
−λ(y − µ)2

2µ2y

)
, y > 0, µ > 0, λ > 0. (7.2)

If we restrict εi to follow a unit mean inverse Gaussian distribution then its pdf is

of the form

fε(εi) =

√
λ

2πε3
i

exp

(
−λ(εi − 1)2

2εi

)
, εi > 0. (7.3)

In order to develop an estimation procedure for the model letX = (x1, x2, ..., xn−1, xn)′

be a vector of observations from the model (7.1) and ψ = (ψ1, ψ2, ..., ψn)′ be a vector

of associated latent variable, where ′ denotes the transpose of a vector. If we denote

the joint density function of (X,ψ) by f(X,ψ|θ), then the likelihood function of

the parameter θ = (φ, σ, λ)′ based on the observations is

L(θ;X) =

∫
f(X,ψ|θ)dψ, (7.4)

which is an n-fold integral with respect to ψ. We need to evaluate this integral to

obtain the likelihood function. Towards that end, some numerical methods such

as MCMC are to be used. In the next Section, we propose a Bayesian method for

estimating the parameters.
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7.3 Bayesian Estimation

7.3.1 Algorithm

We consider the problem of estimation for the SCD model when the innovations of

the durations follow an inverse Gaussian distribution in a Bayesian framework. By

Bayes theorem, the joint conditional distribution of ψ and θ given the observations

is

f(θ,ψ|X) ∝ f(X|ψ,θ)f(ψ|θ)f(θ) , (7.5)

where f(X|ψ,θ) is the density of X given (θ,ψ), f(ψ|θ) is the density of ψ and

f(θ) is the prior density of θ. Bayesian inference on (θ,ψ) is based upon the

posterior distribution f(θ,ψ|X). From this joint posterior, the marginal f(θ|X)

can be used to make inferences about the parameters of SCD model with inverse

Gaussian innovations and the marginal f(ψ|X) provides the inference about the

latent variables. We assume that the prior distribution of φ, σ, λ are mutually

independent. We take prior distribution of φ as a normal distribution truncated

in the interval (−1, 1) which results in flat density over the supporting region. For

σ2 we take an inverse gamma prior distribution as in Pitt and Shephard (1999)

which is a conjugate prior. For the parameter λ, we use a truncated Cauchy prior

distribution with density

f(λ) ∝ 1

1 + λ2
, λ > 0 (7.6)

which is considered in Bauwens and Lubrano (1998).
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To construct an appropriate Markov Chain sampler, the joint posterior should be

expressed as proportional to various conditional distributions. So in (7.5), the joint

posterior, f(ψ|θ) is further decomposed into a set of conditionals f(ψi|ψ−i,θ,X)

where ψ−i means all terms of ψ except ψi. Here, since ψ is a vector of latent vari-

ables, it is difficult to sample from these univariate conditional distribution. So we

follow the Markov Chain Monte Carlo algorithm proposed by Men et al. (2016) for

estimation.

While developing MCMC algorithm, the latent variables are augmented with the

vector of parameters and then the estimation is carried out. We start drawing

samples from the conditional posterior distribution of the latent variable ψ and the

parameters θ. The sampling algorithm required to draw the samples from each

conditional posterior and the required Steps are detailed below.

The parameters θ = (φ, σ, λ)′ are initialized with values (0.5, 0.5, 1)′. The initial

value of ψ is generated from latent AR(1) model by using the above value for θ.

Step 1. Sample ψ = (ψ1, ψ2, ..., ψn) by drawing ψi from f(ψi|ψ−i,X,θ) for

i = 1, 2, 3, . . . , n. By employing the Markovian structure of the model in (7.1),

f(ψi|ψ−i,X,θ) can be expressed as f(ψi|ψi−1, ψi+1,X,θ). A single-move M-H al-

gorithm is used to sample ψi. The conditional distribution of latent random vari-

ables ψi, given the other parameters in the model have been previously sampled is

given by

f(ψ1|X, ψ2,θ) ∝ f(x1|ψ1)f(ψ1|θ)f(ψ2|ψ1, x1,θ)
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f(ψi|X, ψi−1, ψi+1,θ) ∝ f(X|ψi)f(ψi|ψi−1, xi−1,θ)f(ψi+1|ψi, xi,θ) i = 2, . . . , n− 1

f(ψn|X, ψn−1,θ) ∝ f(xn|ψn)f(ψn|ψn−1, xn−1,θ),

where f(xi|ψi) , i = 1, 2, . . . , n are the conditional density functions of the durations,

f(ψ1|θ) is the density of the latent state ψ1 , f(ψi|ψi−1, xi−1,θ) is the conditional

density of ψi given ψi−1 and f(ψi+1|ψi, xi,θ) is the conditional density of ψi+1 given

ψi. Since xn is the last observation, the posterior distribution of ψn depends only on

xn, xn−1 and ψn−1. The conditional distribution of ψ1 and ψn are given respectively.

The conditional distribution of parameter ψ1 is

f(ψ1|X, ψ2,θ) ∝ f(x1|ψ1)f(ψ1|θ)f(ψ2|ψ1, x1, θ)

= f(x1|ψ1) exp

(
−(1− φ2)ψ2

1

2σ2

)
exp

(
−(ψ2 − φψ1)2

2σ2

)
.

The conditional distribution of parameter ψn is

f(ψn|X, ψn−1,θ) ∝ f(xn|ψn)f(ψn|ψn−1, xn−1, θ)

∝ f(xn|ψn) exp

(
(ψn − φψn−1)2

2σ2

)
.

If the conditional distribution does not possess a simple form as in the present case

then it is not possible to draw the samples directly. In such cases one of the obvious

choice is to consider an accept/reject method. Following Men et al. (2016) we use

a single move Metropolis Hastings algorithm to sample the latent states, where

the proposal distribution is simulated by slice sampler method. The slice sampler

method proposed by Edwards and Sokal (1988) and Neal (2003) is a method to

sample random variables which do not have simple probability density functions or
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their probability density functions are known up to a normalizing constant. As the

slice sampler adapts to the analytical structure of the underlying density, it is more

efficient. Also it ensures faster convergence to the underlying distribution. So, to

generate random variates from the conditional distribution we employ the method

of slice sampler. In the case of analysing a data, to obtain the estimate of these

unobservable latent variables ψ, we use Auxiliary Particle Filter proposed by Pitt

and Shephard (1999). In the following discussion, we obtain specific forms of the

required samplers.

For i = 2, 3, . . . , n− 1,

f(ψi|ψi−1) ∼ N(φψi−1, σ
2) and f(ψi+1|ψi) ∼ N(φψi, σ

2).

Substituting for the corresponding normal densities and on simplifying the square

terms we get

f(ψi|ψ−i,θ) ∝ exp

(
−(1 + φ2)

2σ2

(
ψ2
i − 2ψi

(
φ

φ2 + 1
(ψi−1 + ψi+1)

)))

∝ N(ω1, σ
2
1)

where ω1 = φ
1+φ2 (ψi−1 + ψi+1) and σ2

1 = σ2

1+φ2 .



Chapter 7. Bayesian Analysis of IG-SCD Model 159

Hence the conditional posterior distribution of ψi can be represented as

f(ψi|X, ψi−1, ψi+1,θ) ∝f(xi|ψi)f(ψi|ψi−1,θ)f(ψi+1|ψi,θ) (7.7)

∝

√
λeψi

x3
i

exp

(
−λ(xi − eψi)2

2eψixi

)
exp

(
−(ψi − φψi−1)2

2σ2

)
exp

(
−(ψi+1 − φψi)2

2σ2

)
∝(λ exp(ψ))

1
2 exp

(
−λ(xi − eψi)2

2eψixi

)
exp

(
−(ψi − ai)2

2b

)
(7.8)

where ai = φ(ψi+ψi+1)
1+φ2 and b = σ2

1+φ2 .

In (7.8), the posterior distribution is proportional to a product of three positive

functions that cannot be simulated directly. So we propose a method of slice sampler

and summarize its algorithm below.

Algorithm for slice sampler for ψi. Let us rewrite the conditional distribution

in (7.8) as

g(ψi) ∝ exp

(
−λ(xi − eψi)2

2eψixi

)
exp

(
−(ψi − a1i)

2

2b

)
, (7.9)

where a1i = ai + b
2

and follow the algorithm given below.

To start the slice sampling procedure, the sampled value of ψi from the last MCMC

step is set as the initial value.

i Initialize ψ
(0)
i . Set t=0.

ii Draw a random observation u1 uniformly from the interval

(
0, exp

(
−λ(xi − eψ

(t)
i )2

2eψ
(t)
i xi

))
.
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Then we define an interval for ψi through the inequality u1 ≤ exp
(
−λ(xi−eψi )2

2eψixi

)
,

which is equivalent to

ψi ≥ log

 xi(1 + 1
ε2i

)

2
(

1− (log(u1))
λ

)
 . (7.10)

iii Similarly draw a random observation u2 uniformly from the interval(
0, exp

(
− (ψi−a

(t)
1i )2

2b

))
, where a

(t)
1i is calculated from (7.9). We define an in-

terval for ψi through the inequality u2 ≤ exp
(
− (ψi−a1i)

2

2b

)
, which is equivalent

to

a
(t)
1i −

√
−2 b log(u2) ≤ ψi ≤ a

(t)
1i +

√
−2 b log(u2). (7.11)

iv Draw ψ
(t+1)
i uniformly from the interval(

max

{
log

(
xi(1+ 1

ε2
i

)

2
(

1− (log(u1))
λ

)
)
, a

(t)
1i −

√
−2 b log(u2)

}
, a

(t)
1i +

√
−2 b log(u2)

)
determined by the inequalities (7.10) and (7.11).

v Stop, if a stopping criterion is met; otherwise, set t = t+ 1 and repeat from ii.

Step 2. Sample φ.

The prior distribution of φ is assumed to follow a univariate normal distribution

truncated in the interval (-1,1). Given a truncated normal prior distribution, φ ∼

N(αφ, β
2
φ) and the other parameters in the model have been previously sampled,
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the conditional distribution of φ is The conditional distribution of parameter φ is

f(φ|X, σ, λ) ∝ f(ψ|θ,X)f(φ) (7.12)

= f(ψ1|θ,X)
n∏
i=2

f(ψi|ψi−1,θ,X) exp

(
−(φ− αφ)2

2β2
φ

)

∝ exp

(
−(1− φ2)ψ2

1

2σ2

)
exp

(
−
∑n

i=1(ψi − φψi−1)2

2σ2

)
exp

(
−(φ− αφ)2

2β2
φ

)
(1− φ2)

1
2 (7.13)

∝ exp

(
−1

2

(
φ2

{∑n
i=1 ψ

2
1

σ2
+

1

β2
φ

}
− 2φ

{∑n
i=1 ψiψi−1

σ2
+
αφ
β2
φ

}))

(1− φ2)
1
2 (7.14)

∝ N

(
d

c
,
1

c

)√
1− φ2,

where c =
∑n
i=1 ψ

2
1

σ2 + 1
β2
φ
, d =

∑n
i=2 ψiψi−1

σ2 +
αφ
β2
φ
. It is proportional to the product of

a normal distribution and a positive function. Hence we can use the slice sampling

method to sample the parameter φ.

Step 3. Sample σ2.

We sample σ2 by taking an inverse gamma prior distribution i.e., σ2 ∝ inverse

Gamma(ασ2 , βσ2), where ασ2 and βσ2 are hyperparameters. As the prior for σ2

is a conjugate prior the sampling is carried out by simulating from the inverse

Gamma distribution with the corresponding parameters obtained. The conditional
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distribution of parameter σ2 , is given by

f(σ2|X, φ, λ) = f(ψ|θ,X)f(ασ2 , βσ2)

= f(ψ1|θ,X)
n∏
i=2

f(ψi|ψi−1,θ,X)f(ασ2 , βσ2)

∝ exp

(
−ψ

2
i (1− φ2)

2σ2

)
× exp

(∑N
i=2(ψi − φψi−1)2

2σ2

)

× (σ2)−
n
2 × (βσ2)ασ2

Γ(ασ2)
(σ2)−ασ2−1 exp(

−βσ2

σ2
).

∝ (σ2)−
(2α

σ2 )−n+2

2 exp

(
−ψ

2
i (1− φ2)−

∑N
i=2(ψi − φψi−1)2 + 2 βσ2

2σ2

)

∝ inverseGamma(a, b),

where a = ασ2 + n
2

and b = (1−φ2)(ψi)
2

2
+ 1

2

∑n
i=2(ψi − φψi−1)2 + βσ2 .

Step 4. Sample λ.

The conditional distribution of λ is

f(λ|X,ψ, φ, σ2) = f(X|ψ, λ)f(λ)

= f(λ)
n∏
i=1

√
λeψi

x3
i

exp

(
−λ(xi − eψi)2

2eψixi

)
, (7.15)

where f(λ) is a prior density of λ, given by (7.6). Here the samples cannot be

simulated directly from (7.15). So we use a random walk MH algorithm with stan-

dard normal distribution as the proposal distribution to sample λ . The acceptance

probability is computed using equation (7.15).

In summary, the sampling procedure for (θ′,ψ′)′ is as follows :
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• Sample ψ′ using the single-move Metropolis Hastings algorithm with pro-

posal distribution simulated by the method of slice sampling which is briefly

explained in Step 1.

• Sample φ from (7.12) following the explanations in Step 2.

• Sample σ2 directly from the inverse Gamma density using Step 3.

• Sample λ using a random walk MH algorithm with the acceptance probability

computed through (7.15) given in Step 4.

In the next section we demonstrate the applications of the above methods through

a simulation study.

7.4 Simulation study

A simulation study is carried out to assess the performance of the Bayes estimators,

described in the previous Section. From (7.1), we generate 5000 observations. Then

the MCMC algorithm discussed in Section 7.3.1 is run and first 25000 iterations were

discarded as burn-in from 100000 iterations. The parameters are estimated and the

simulation results are tabulated in Table 7.1. The plots of histograms of posterior

samples of φ ,σ, λ are shown in Figure 7.1 (a), 7.1 (b) and 7.1 (c) respectively. The

trace plots are shown in Figure 7.2 (a), 7.2 (b) and 7.2 (c) respectively.

To illustrate the application of Bayesian estimation method we analyse two sets of

data. We perform model diagnosis based on the residuals to explain model ade-

quacy. The residuals of SCD model with inverse Gaussian innovations are defined
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Table 7.1: True and estimated parameters of the IG-SCD model

φ σ λ
True. 0.65 1.5 1
Est. 0.651699 1.49213 1.09243
mse. 0.0000155 0.0000291 0.000047

HPD CI(95%) (0.64943, 0.66751) (1.47612, 1.54811) (0.96213, 1.1321)
φ σ λ

True. 0.75 1.5 1
Est. 0.763302 1.529561 0.999191
mse. 0.000039 0.000094 0.0000039

HPD CI(95%) (0.74633, 0.78840) (1.47808, 1.57561) (0.9557, 1.1477)
True. 0.85 1.5 1
Est. 0.84699 1.55057 0.999242
mse. 0.0000322 0.000095 0.0000041

HPD CI(95%) (0.82633, 0.86840) (1.49808, 1.58561) (0.9657, 1.1413)
True. 0.90 1.5 1
Est. 0.895114 1.569688 1.052775
mse. 0.000105 0.0000372 0.000028

HPD CI(95%) (0.88438, 0.91799) (1.481613, 1.59031) (0.99861, 1.06868)
*Highest Probability Density Confidence Interval (HPD CI)

as ε̂i =xi/e
ψ̂i , where ψ̂i is the estimator of ψi. The estimators of the parameters

φ, σ and λ can be obtained by the MCMC algorithm discussed in Section 7.3. To

obtain the estimates of the unobservable component ψi, we employ an auxiliary

particle filter proposed by Pitt and Shephard (1999). This method is described in

the following subsection.

Figure 7.1: Histogram of the posterior samples using simulated data.
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Figure 7.2: Trace plots of the posterior samples using simulated data.

Particle Filter

Particle filters are a class of simulation-based filters that recursively approximate

the filtering distribution using a collection of particles with some probability masses.

The particles are samples of unknown states from the state space, and the particle

weights are probability mass computed by Bayes theory. The basic idea is the

recursive computation of relevant probability distribution and approximation of

probability distribution.

By successive conditional decomposition, the likelihood of the IG-SCD model is

f(X|θ) = f(x1|θ)
n∏
i=2

f(xi|Fi−1,θ), (7.16)
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where Fi = σ(x1, x2, . . . , xi) , the sigma field generated by (x1, x2, . . . , xi) is the

information known at time i. The conditional density of xi+1 given θ and Fi is

given by

f(xi+1|Fi,θ) =

∫
f(xi+1|ψi+1,θ)dF (ψi+1|Fi,θ)

=

∫
f(xi+1|ψi+1,θ)f(ψi+1|ψi,θ)dF (ψi|Fi,θ). (7.17)

The difficulty in obtaining an analytical form of the above integral leads to the

utilization of APF. Suppose that we have a particle sample {ψ(t)
i , t = 1, 2, . . . , N}

of ψi from the filtered distribution (ψi|Fi, θ) with weights {πt, t = 1, 2, . . . , N} such

that
∑N

t=1 πt = 1. From this sample, the one-step ahead predictive density of ψi+1

is

f(ψi+1|Fi,θ) ≈
N∑
t=1

πtf(ψi+1|ψ(t)
i ,θ) (7.18)

The one step ahead prediction distribution of ψi+1 can then be sampled and the

conditional density (7.17) can be evaluated numerically by

f(xi+1|Fi,θ) ≈
N∑
t=1

πtf(xi+1|ψ(t)
i+1,θ), (7.19)

where ψ
(t)
i+1 are particles from the prediction distribution of (ψi+1|Fi,θ). The pre-

dictive density of ψi+1 should be known for the approximation (7.18) to be feasible.

From latent AR(1) process, we have ψi+1 has a conditional normal distribution

ψi+1 ∼ N(φψi, σ
2).



Chapter 7. Bayesian Analysis of IG-SCD Model 167

Given the particle sample from a filtered distribution (ψi|Fi,θ) we need to sample

(ψi+1|Fi+1,θ) . For that, we follow the procedure of Chib et al. (2006) and Men et

al. (2016), which is summarized below.

Algorithm for APF

1. (a) Given a sample {ψ(t)
i , t = 1, 2, . . . , N} from (ψi|Fi,θ) , calculate the ex-

pectation ψ̂
∗(t)
i+1 = E(ψi+1|ψ(t)

i ) and

πt = f(xi+1|ψ̂∗(t)i+1 ,θ), t = 1, 2, . . . , N

and sample N times with replacement the integers 1,2,. . . ,N with probability

π̂t = πt∑N
t=1 πt

. Let the sampled indexes be k1, k2, . . . , kN and associate these

with particles {ψ̂∗(k1)
i , ψ̂

∗(k2)
i , . . . , ψ̂

∗(kN )
i }.

2. For each value of kt from 1(a), sample the values {ψ∗(1)
i+1 , . . . , ψ

∗(N)
i+1 } from

ψ
∗(t)
i+1 = φψ

(kt)
i + ηi+1, t = 1, . . . , N

where ηi+1 ∼ N(0, 1).

3. Calculate the weights of the values {ψ∗(1)
i+1 , . . . , ψ

∗(N)
i+1 } as

π∗t =
f(xi+1|ψ∗(t)i+1 ,θ)

f(xi+1|ψ̂∗(kt)i+1 ,θ)
, t = 1, 2, . . . , N

and using these weights resample the values {ψ∗(1)
i+1 , . . . , ψ

∗(N)
i+1 } N times with

replacement to obtain a sample {ψ(1)
i+1, . . . , ψ

(N)
i+1} from the filtered distribution

(ψi+1|Fi+1,θ). Here we use N=2000.
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7.5 Data Analysis

We demonstrate the applications of the model, by analysing two sets of data. Data

sets are on intraday trades of IBM OHLC bar data downloaded from Algoseek

Website and intraday trades of US Brent Crude Oil downloaded from the Website

of a Swiss Forex bank. Only trades between 9:30:00 am and 4:00:00 pm are recorded

as this is the normal trading hour.

7.5.1 IBM trades data

The model is applied to intraday IBM trades data as on 16th June 2015. Consider

the 1 second Trade OHLC Bar data with a sample size of 6708 observations. The

data sets are obtained from Website of Algoseek. The trade durations are defined as

the time intervals between consecutive trades, measured in seconds. We ignore the

zero trade duration and the time plot of the nonzero intra-day IBM trade duration

series is shown in Figure 7.3. Now, removing the effect of the diurnal pattern we

take the adjusted time duration (Tsay (2014), pp 298-300) to model the intraday

pattern. In Table 7.2 the summary statistics of IBM trades data are given.

Table 7.2: Descriptive statistics for IBM Trades data

Statistic IBM Trades data

Sample size 6708
Minimum 1
Maximum 37

Mean 3.48
Median 2
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Figure 7.3: IBM trade duration time series.

The estimation of the parameters is carried out by the MCMC algorithm described

in Section 7.3.1 and the estimates are provided in Table 7.3. For model diagnosis

we compute residuals, ε̂i =xi/e
ψ̂i , where ψ̂i is the estimator of ψi which is obtained

by APF. If the fitted model is adequate then the acf of {ε̂i} will be negligible. The

residual acf plot given in Figure 7.4 indicates that they are uncorrelated. Bauwens

and Veredas (2004) considered the time series version of Spearman’s ρ correlation

coefficient and the p-value plots instead of the Ljung-Box statistic. Here we follow

a rank portmanteau statistic given in Dufour and Roy (1986) to check the lack of

autocorrelation of the obtained residuals. The p-value obtained is 0.7. Also the run

test confirms the independence of the residuals {ε̂i}. In Figure 7.5 the histogram of

the residuals is superimposed by the Inverse Gaussian density curve for the IG-SCD

model. So it can be concluded that the fitted model is adequate for explaining the

dynamics, which generated the data.

Table 7.3: Estimated parameters of the IG-SCD model based on IBM Trades
duration data.

φ σ λ

Est. 0.69803 1.2366 1.1566
std error. 0.00143 0.00906 0.00658
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Figure 7.4: ACF plot of residuals
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Figure 7.5: Histogram of residuals superimposed by inverse Gaussian density
for IG-SCD model.

7.5.2 US Brent Crude Oil

The second set of data is the intraday trades data of US Brent Crude Oil downloaded

from the Website of a Swiss Forex bank and Marketplace. The intraday trade of the

Brent Crude Oil on 20 February 2017 is considered. Taking the normal trading hours

and ignoring the zero durations the sample size obtained is 1625 trade durations.

The time plot of the nonzero intra-day durations and the time plot of the adjusted

duration series is shown in Figure 7.6 and 7.7. The summary of data is given in

Table 7.4.
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Figure 7.6: Duration plot of US Brent Crude Oil.
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Figure 7.7: Adjusted Duration plot of US Brent Crude Oil.

Table 7.4: Descriptive statistics for US Brent Crude Oil Trades data

Statistic IBM Trades data

Sample size 1625
Minimum 1
Maximum 439

Mean 14.4
Median 6

The parameters are estimated by the algorithm mentioned in Section 3 and is tabu-

lated in Table 7.5. From the residual plot given in Figure 7.8 and the p-value(=0.8)
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Table 7.5: Estimated parameters of the IG-SCD model based on US Brent
Crude Oil trades duration data.

φ σ λ

Est. 0.77263 1.34885 0.945069
std error. 0.00567 0.00975 0.01018

obtained from rank portmanteau statistic we conclude that the residuals are inde-

pendent. In Figure 7.9 the histogram of the residuals is superimposed by the inverse

Gaussian density curve and is of good fit.
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Figure 7.8: Residual plot of US Brent Crude Oil.
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Figure 7.9: Histogram of residuals superimposed by inverse Gaussian density
for IG-SCD model.

The results of this Chapter are reported in Sri Ranganath and Balakrishna(2017b).



Chapter 8

Conclusions and Future Works

The classical method of time series deals with the linear models with Gaussian

errors. Many real life situations, in particular the financial time series cannot be

explained by the Box-Jenkins methodology. So, to study and understand the be-

haviour of financial data, many non-Gaussian non-linear models have been intro-

duced in the literature. In this thesis, we propose non-Gaussian models and studied

their suitability to model non-Gaussian time series data. The study of financial data

also reveal the absence of correlation among returns but the absolute or squared

returns shows significant correlation. This type of behaviour cannot be modelled

with a linear model. So, to model the conditional variance we propose stochastic

volatility model and conditional duration model and examined their applicability

to model financial data. Also we propose MCMC Bayesian estimation procedure to

inverse gaussian conditional duration model.

We have proposed an ARMA model with Generalized Error Distribution innova-

tions. The properties of the proposed model are studied. The detailed analysis of

ARMA(1,1), MA(1) and AR(1) models are considered. Estimation of AR(1) model

is carried out by Generalized Method of Moments and the method of Maximum

Likelihood. Simulation studies are carried out to assess the performance of the esti-

mators. Asymptotic properties of the estimators are established using GMM. Two

sets of data are analysed to illustrate the application of the proposed model. We

173
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found that the proposed model is able to explain the characteristics of the data.

The validity of the model is mainly performed with statistical plots. More theories

are to be developed to diagnose the model under non-normal errors. Also, due

to the non differentiability of the likelihood function, the asymptotic properties of

Maximum Likelihood estimates are established for β = 2 and β > 3. We hope to

consider some other efficient estimation methods and will be taken up in the future

work.

The problem of estimation is an important stage in stochastic modelling. In au-

toregressive model of first order, the least square estimator is chosen frequently to

estimate the autoregressive parameters. Due to the estimation problem associated

with the least square estimator, many authors study the problem of obtaining a ro-

bust estimate to estimate the autoregressive parameter. In Chapter 4, we propose

Hurwicz estimator to estimate the autoregressive coefficient in an AR(1) model with

GED innovations. A Monte Carlo simulation is carried out to study the nature of

LS and Hurwicz estimator when the errors follow GED. A comparison study of the

two estimators is done using the statistical measures such as bias, mean square error

and mean absolute deviation. The performance of LS and Hurwicz estimator are

analysed with respect to Pitman-Closeness Criterion. Also, a simulation study on

the coverage level of bootstrap prediction interval and length of intervals is done.

From the above studies we found that Hurwicz estimator performs better in heavy

tail distribution than LS estimator. The asymptotic distribution of the proposed

estimator is analysed through parametric bootstrap methods. As a future work, we

plan to study and establish its theoretical asymptotic properties.

A number of models have been introduced to describe the evolution of conditional
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variances in modelling stochastic volatilities. We propose a Lindley distributed

errors to define an SV model. The parameters of the model are estimated using

method of moments and the asymptotic properties are studied. Also the applicabil-

ity of the model is illustrated through real data set. Some other efficient methods

like MCMC Bayesian approach or Efficient Importance Sampling will be handier

here.

The analysis and modelling of conditional durations is of great importance in finan-

cial data to study the market behaviour. We propose Lindley ACD model to analyse

the transaction duration. The increasing nature of the hazard function makes it as

an alternative to exponential distribution. The properties of the proposed model

are studied and the parameters are estimated by conditional maximum likelihood

estimation method. To illustrate the model, we have analysed a real data. Other

estimation methods can be accommodated to check the performance of the estima-

tors. The increasing nature of the hazard function makes it as an alternative to

exponential distribution. As an additional choice to analyse transaction durations

in financial point process, a Stochastic Conditional Duration model based on the

Lindley distribution can be studies, which will be taken up in the future work.

One of the problems in dealing with the stochastic conditional duration models is

its estimation. The likelihood based inference for such models needs the evaluation

of multiple integral with respect to latent variable. We propose Bayesian MCMC

estimation methods to estimate the parameters of Inverse Gaussian SCD model.

Simulation studies are conducted to check the performance of the estimators. Two

sets of data are analysed and proposed method performs well. The diagnosis tools

employed in this model needs to be developed. More rigorous statistical tests are to
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be developed to perform model diagnosis in the presence of latent variables, which

will be of great interest and we hope to consider this for our future work.



Appendix A

R code for estimation of parameters of

GED-AR model

n1 = 2100

ph = 0.3;

mu = 0;

si = 2;

p = 1.3;

s = si/(p(1/p));

p1 = c()

s1=c()

phi1=c()

r1=c()

for(j in 1:100)

{ e=rnormp(n1,mu,s,p)

x=c()

x[1]=1;

for(o in 2 : n1){

x[o] = ph ∗ x[o− 1] + e[o] }

x1 = x[1001 : n1]
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n = length(x1) r1[j] = sum((x1[2 : n]) ∗ (x1[1 : n− 1]))/sum((x1[1 : n])2);

p3 = seq(.1, 5, .001);

fnp3 = (gamma(3/p3)2)/((gamma(1/p3)2) ∗ ((((6 ∗ r1[j]2) ∗ (gamma(3/p3)2))/

((1− r1[j]2) ∗ (gamma(1/p3)2))) + (gamma(5/p3)/gamma(1/p3))))

con = ((mean(x12))2 ∗ (1− r1[j]2))/(mean(x14) ∗ (1 + r1[j]2));

fn=abs(fnp3-con);

val=which.min(fn);

p1[j]=p3[val]

s1[j] = sqrt((mean(x12) ∗ (1− r1[j]2) ∗ (gamma(1/p1[j])))/gamma(3/p1[j]))

}

mean(r1);

sd(r1);

mean(s1);

sd(s1);

mean(p1);

sd(p1);



Appendix B

R code for estimation of parameters of

GED-AR(1) Model taking Hurwicz esti-

mator

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

library(normalp)

n1 = 450;

ph = 0.3;

mu = 0;

si = 1.5

p = 2;

s = si/(p(1/p));

phi2 = c();

s2 = c();

p2 = c();

for(t in 1 : 500)

{

e = rnormp(n1,mu, s, p)

x = c()
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x[1] = 1;

for(o in 2 : n1)

{

x[o] = ph ∗ x[o− 1] + e[o]

}

x1 = x[401 : n1]

n = length(x1)

phi1 = c()

s1 = c()

p1 = c()

r1 = sum((x1[2 : n]−mean(x1)) ∗ (x1[1 : n− 1]−

mean(x1)))/sum((x1[1 : n]−mean(x1))2)

phi1[1] = r1;

s1[1] = sum((abs(x−mu))2)/n ∗ (gamma(1/p)/gamma(3/p));

p1[1] = p;

for(k in 1 : 20)

{

phi = c();

phih = r1;

d = ((abs(x1[2 : n]− (phih ∗ x1[1 : n− 1])))/s1[k])

p0 = c()

p0 = p

for(j in 1 : 10)

{

fp = (n/p0[j]) + ((n/(p0[j] ∗ p0[j]))∗
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digamma(1/p0[j]))− sum((dp0[j]) ∗ (log(d)))

fdp = −(n/(p0[j]2))− (((2 ∗ n)/(p0[j] ∗ p0[j] ∗ p0[j])) ∗ digamma(1/p0[j]))

−((n/(p0[j]4)) ∗ trigamma(1/p0[j]))− sum((dp0[j]) ∗ ((log(d))2))

p0[j + 1] = p0[j]− (fp/fdp)

if((p0[j + 1]− p0[j]) < .00001) pp = p0[j + 1]

}

sh = ((pp/n) ∗ sum((abs(x1[2 : n]− (phih ∗ x1[1 : n− 1])))pp))(1/pp)

phi1[k + 1] = phih

s1[k + 1] = sh

p1[k + 1] = pp

if((phi1[k + 1]− phi1[k]) < 0.001) phih1 = phi1[k + 1]

if((p1[k + 1]− p1[k]) < 0.001) pp1 = p1[k + 1]

if((s1[k + 1]− s1[k]) < 0.001) sh1 = s1[k + 1]

}

s2[t] = sh1

p2[t] = pp1

phi2[t] = phih1

}

mean(phi2)

var(phi2)

mean(s2)

var(s2)

mean(p2)

var(p2)

mean(abs(ph− phi2))
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mean(abs(si− s2))

mean(abs(p− p2))



Appendix C

R code for estimation of parameters of

Lindley SV model

Estimation of Lindley-SV

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rm(list = ls(all = TRUE))

#Quadratic equation function to solve theta

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

result < −function(a, b, c)

{

if(delta(a, b, c) > 0){#first case D >0

x1 = (−b+ sqrt(delta(a, b, c)))/(2 ∗ a)

x2 = (−b− sqrt(delta(a, b, c)))/(2 ∗ a)

result = c(x1, x2)

} elseif(delta(a, b, c) == 0)

{#second case D=0

x = −b/(2 ∗ a)

}

else{”There are no real roots.”}#third case D<0

} #Constructing delta
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delta < −function(a, b, c)

{

b2 − 4 ∗ a ∗ c

} #MAIN program

n1 = 2000

y = rep();

h1 = rep();

h = rep();

eta = c();

phihat = rep();

thetahat = rep();

y1 = rep();

biasphi = rep();

e = rep()

m1 = rep();

v1 = rep();

m2 = rep();

v2 = rep();

c1 = rep();

eta1 = rep();

u = rep();

theta = 0.1;

phi = 0.1;

h[1] = 1; initial valuues

w1 = ((theta ∗ theta) ∗ ((1− phi) ∗ (1− phi))) + (theta ∗ (1− (phi ∗ phi))) + (2 ∗ phi)
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w2 = (1− phi);w3 = phi;

w4 = (theta ∗ (1− phi) + 1);

w2 = (1− phi);

w3 = phi ∗ (theta+ 1);

w4 = (theta ∗ (1− phi) + 1);

(w1/(w4 ∗ w4)) + (w2/w4)− (w3/((w4 ∗ w4))) sumofweights = 1

for(kin1 : 1000)

{ #k loop begins for replications

for(i in 1 : n1){

u[i] = runif(1)

if(u[i] < phi){

eta1[i] = 0

}

else{ eta1[i] = rgamma(1, 2, (1/theta))+

rexp(1, theta) + rexp(1, ((theta+ 1)/phi))

}

}

y1[1] = e[1] ∗ h[1]

for(j in 2 : n1)

{

h[j] = phi ∗ h[j − 1] + eta1[j]

}

g = (h(0.5))

e = rnorm(n1, 0, 1);

y1 = g ∗ e;
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y = y1[1001 : n1]

n = length(y)

mu2 = mean(y[2 : n] ∗ y[2 : n])

a = mu2 quadratic equation coefficients

b = (a− 1) quadratic equation coefficients

c = (−2) quadratic equation coefficients

res < −result(a, b, c); res

thetahat[k] = res[1];

for(i in 2 : n)

{

c1[i− 1] = (1/n) ∗ ((y[i]2 ∗ y[i− 1]2))

}

c1 = sum(c1)

c2 = ((thetahat[k] + 2)/(thetahat[k] ∗ (thetahat[k] + 1)))2

c3 = (thetahat[k]2 + 4 ∗ thetahat[k] + 2)/((thetahat[k]2 ∗ (thetahat[k] + 1)2))

phihat[k] = (c1− c2)/c3

} k loop ending

msephi = var(phihat) + (mean(phihat)− phi)2;

mseth = var(thetahat) + ((mean(thetahat)− theta))2;

mean(thetahat)

mean(phihat)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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R code for estimation of parameters of

Lindley ACD(1,1) model

MLE of Lindley-ACD(1,1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rm(list = ls(all = TRUE))

n1 = 5500;

n = n1− 500;

y = c();

y1 = c();

psi = c();

theta = 1;

ome = 1; alp = 0.3;

bet = 0.5;

lam = (theta+ 2)/(theta ∗ (theta+ 1));

est1 = rep();

est2 = rep();

est3 = rep();

est4 = rep();

L = function(par)
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{

theta = par[1];

w = par[2];

alpha = par[3];

beta = par[4];

a = n ∗ log(theta ∗ (theta+ 2))− 2 ∗ n ∗ log(theta+ 1)

b = rep();

c = rep();

d = rep();

e = rep()

psi = rep();

psi[1] = 0.5

for(i in 2 : n)

{

b[i− 1] = ((theta ∗ (theta+ 1) ∗ (w + alpha ∗ y[i− 1] + beta ∗ psi[i− 1]))

+(theta+ 2) ∗ y[i])

c[i− 1] = ((theta ∗ (theta+ 1) ∗ (w + alpha ∗ y[i− 1] + beta ∗ psi[i− 1])))

d[i− 1] = ((theta+ 2)/(theta+ 1)) ∗ (y[i]/(w + alpha ∗ y[i− 1] + beta ∗ psi[i− 1]))

e[i− 1] = ((w + alpha ∗ y[i− 1] + beta ∗ psi[i− 1]))

psi[i] = w + alpha ∗ y[i− 1] + beta ∗ psi[i− 1]

}

d1 = which(b < 0);

if(length(d1) == 0) b = b;

if(length(d1) > 0) b = b[−d1];

b = log(b)
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d2 = which(c < 0);

if(length(d2) == 0) c = c;

if(length(d2) > 0) c = c[−d2];

c = log(c)

d3 = which(e < 0);

if(length(d3) == 0) e = e;

if(length(d3) > 0) e = e[−d3];

e = log(e)

b = sum(b);

c = sum(c);

d = sum(d);

e = sum(e);

l = a+ b− c− d− e

return(−l)

}

w = ome;

alpha = alp;

beta = bet;

Init = c(theta, w, alpha, beta)

for(j in 1 : 500){

eps1 = rexplindley(n1, theta, 1)

eps = eps1/lam;

psi[1] = 0.5;

y1[1] = 1;

for(i in 2 : n1){
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psi[i] = ome+ alp ∗ y1[i− 1] + bet ∗ psi[i− 1];

y1[i] = psi[i] ∗ eps[i];

} y = y1[501 : n1];

RES = optim(Init, L,method = ”L−BFGS−B”, lower = c(0.01, 0.01, 0.01, 0.01),

upper = c(Inf, Inf, 1, 1))

est1[j] = RESpar[1]

est2[j]=RESpar[2]

est3[j] = RESpar[3]

est4[j]=RESpar[4]

} mean(est1);

seest1 < −sd(est1)/sqrt(length(est1));

mean(est2);

seest2 < −sd(est2)/sqrt(length(est2));

mean(est3);

seest3 < −sd(est3)/sqrt(length(est3));

mean(est4);

seest4 < −sd(est4)/sqrt(length(est4));

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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R code for Bayesian estimation of param-

eters of IG-SCD model

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rm(list = ls(all = TRUE))

met4 = function(iters)

{

xvec = numeric(iters)

lamcand = 2

for(i in 1 : iters)

{

repeat{

xs = lamcand+ rnorm(1)

if(xs > 0)

break

}

A = (log(1/(1 + xs2))− sum((log(p1[1 : n] ∗ xs(1/2)))− xs ∗ p2[1 : n]))/

(log(1/(1 + lamcand2))− sum((log(p1[1 : n] ∗ lamcand(1/2)))−

lamcand ∗ p2[1 : n]))

if(runif(1) < A)
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lamcand = xs

xvec[i] = lamcand

}

return(xvec)

}

main program

n1=4000

x=c(); psi=c(); phi=0.5;sigma=1;mu=1;lambda=1;u1=c();u2=c();

a=c();mua=c();lamb=c();postlamb=c();lambcand=c();la=c();

slphi=c();psi11=c(); psi1=phi;a[1]=0.5; iters=n1;

pe=c();up1=c();up2=c();phiest=c();

betphi=10;alpphi=0.5;phi1=c();phi1[1]=phi;

alpsig=1.5;betsig=0.2;sig2=c();lambout=c();

sig2[1]=sigma;

for(s in 1 : 100){

eta=rnorm(n1,0,sigma)

e=rinvgauss(n1, mu,lambda)

x[1]=phi;psi[1]=.5;

for(i in 2 : n1){

psi[i]=phi*psi[i-1]+eta[i]

x[i] = exp(psi[i]) ∗ e[i]; }

n1=length(x)

psi1=psi[501:n1];

x1=x[501:n1];

sampling psi
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n=length(x1)

for(l in 2:(n-1))

{

a[l] = (phi/(1 + phi2)) ∗ (psi1[l] + psi1[l + 1])

}

b = sigma/(1 + phi2);

for(l1 in 2 : (n− 1))

{

mua[l1]=a[l1]+(b/2)

}

psi1[1] = sqrt(lambda∗exp(psi1[1])/x[1]3)∗exp(−lambda∗(((x1[1]−exp(psi1[1]))2))/

(2 ∗ exp(psi1[1] ∗ x1[1]))) ∗ exp((−(1− phi2) ∗ psi1[1])/2 ∗ sigma)∗

exp(−(psi1[2]− phi ∗ psi1[1])2/2 ∗ sigma)

t=2;

while(t<(n-1))

{

l1 = exp(−lambda ∗ (((x1[t]− exp(psi1[t]))2))/(2 ∗ exp(psi1[t] ∗ x1[t])))

u1=runif(1,0,l1)

q1 = log(x[t]/(1+(1/sqrt(lambda))∗sqrt(−2∗x[t]∗log(u1/sqrt(lambda))/lambda)))

l2 = exp(−(((psi1[t]−mua[t]))2)/(2 ∗ b))

u2=runif(1,0,l2)

q2=mua[t]-(sqrt(-2*b*log(u2)))

q3=mua[t]+(sqrt(-2*b*log(u2)))

if(max(q1,q2) <q3)

{psi1[t] = runif(1,max(q1, q2), q3)}
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else {psi1[t] = psi1[t− 1]}

t = t+ 1; }

psi1[n]=phi;

t1=1; slphi[t1]=phi;

c1 = (sum(psi1[2 : n]2)/sigma) + (1/betphi2);

d1 = ((sum(psi1[1 : (n− 1)] ∗ psi1[2 : n]))/sigma) + (alpphi/betphi2);

mup = d1/c1 np = n

while(t1 < np){

l11 = as.numeric(exp(−as.brob(((slphi[t1])− (d1/c1))2/(2))))

u21 = runif(1, 0, l11) l12 = sqrt((1− slphi[t1]2))

u22 = runif(1, 0, l12)

pq1 = ((d1/c1)− sqrt((−2/c1) ∗ log(u21)))

pq2 = ((d1/c1) + sqrt((−2/c1) ∗ log(u21)))

pq3 = sqrt(1− u222)

if(pq1 < min(pq2, pq3)) slphi[t1 + 1] = runif(1, pq1,min(pq2, pq3))

elseslphi[t1 + 1] = slphi[t1]

t1 = t1 + 1; } si1 = (alpsig + (n/2));

si2 = (((1− (phi2)) ∗ (psi1[1])2)/2+

(sum((psi1[2 : n]− (phi ∗ psi1[1 : (n− 1)]))2))/2 + (betsig))

sig2[s] = rinvgamma(1, si1, si2)

p1 = (exp(psi1[1 : n])/(x1[1 : n]3))(1/2);

p2 = ((x1[1 : n]− exp(psi1[1 : n]))2)/(2 ∗ exp(psi1[1 : n]) ∗ x1[1 : n]);

lambou = met4(iters)

lambout[s] = mean(lambou)}



List of Published/Communicated Papers

1. Balakrishna, N., and Sri Ranganath, C. G. (2015). Arma Models with gener-

alized error distributed innovations. Journal of Indian Statistical Association,

53, 11-34.

2. Sri Ranganath, C. G. (2017a). Hurwicz estimator for Autoregressive model

with Generalized Error Distributed Innovations. Journal of the Indian Society

for Probability and Statistics. (Revised and resubmitted)

3. Sri Ranganath, C. G., and Balakrishna, N. (2017b). Bayesian Analysis of

Inverse Gaussian Stochastic Conditional Duration Model(Submitted).

4. Sri Ranganath, C. G., and Balakrishna, N. (2018). Stochastic volatility and

conditional durations generated by Lindley distributions. (Submitted).

195





References

Abraham, B., & Balakrishna, N. (1999). Inverse gaussian autoregressive models.

Journal of Time Series Analysis , 20 (6), 605–618.

Abraham, B., Balakrishna, N., & Sivakumar, R. (2006). Gamma stochastic volatil-

ity models. Journal of Forecasting , 25 (3), 153–171.

Agro, G. (1995). Maximum likelihood estimation for the exponential power func-

tion parameters. Communications in Statistics-Simulation and Computation,

24 (2), 523–536.

Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive

moving average models. Biometrika, 60 (2), 255–265.

Andel, J. (1988). On AR(1) processes with exponential white noise. Communica-

tions in Statistics-Theory and Methods , 17 (5), 1481–1495.

Anderson, D. N., & Arnold, B. C. (1993). Linnik distributions and processes.

Journal of Applied Probability , 30 (2), 330–340.

Andersson, J. (2001). On the normal inverse gaussian stochastic volatility model.

Journal of Business & Economic Statistics , 19 (1), 44–54.

Andrews, D. W. (1983). First order autoregressive processes and strong mixing

(Tech. Rep.). Cowles Foundation for Research in Economics, Yale University.

Andrews, D. W. (1993). Exactly median-unbiased estimation of first order autore-

gressive/unit root models. Econometrica: Journal of the Econometric Society ,

139–165.

Athreya, K. B., & Pantula, S. G. (1986). A note on strong mixing of arma processes.

Statistics & probability letters , 4 (4), 187–190.

197



Bibliography 198
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