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Chapter 1

Introduction

Stochastic Modelling is the application of probability theory to the de-

scription and analysis of real world phenomena. These are usually so

complex that deterministic laws cannot be formulated, a circumstance

that leads to pervasive use of stochastic concepts. Stochastic modelling

is a science with close interactions between theory and practical applica-

tions. It combines the possibility of theoretical beauty with a real world

meaning of its key concepts. Application fields as telecommunication

or insurance bring methods and results of stochastic modelling to the

attention of applied sciences such as engineering, economics.

One of the most important domains in stochastic modelling is the field

of queueing theory. Many real systems can be reduced to components

which can be modelled by the concept of queue. The basic idea of this

concept has been borrowed from the every-day experience of queues at

the checkout counters in a supermarket. A queue consists of a system

into which there comes a stream of users who demand some capacity

of the system over a certain time interval before they leave the system.

1
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Users are served in the system by one or many servers. Thus a queueing

system can be described by a stochastic specification of the arrival stream

and of the system demand for every user as well as a definition of the

service mechanism. The former describe the input into a queue, while

the latter represents the function of the inner mechanisms of a queueing

system.

Computer networks(the most prominent example is the internet) have

increasingly become the object of applications of queueing theory. Queues

find further applications in airport traffic and computer science. More

complicated queueing models have been developed for the design of traffic

lights at crossroads.

One of the important tasks in a business world is to manage inven-

tory. Any resource that is stored to satisfy the current as well as future

needs is called an inventory. Examples of inventory are spare parts, raw

materials, work-in-process etc. Inventory models are widely used in hos-

pitals, educational institutions, agriculture, industries, banks etc. Two

questions faced while dealing with inventory models are: how much to

order and when to order. First is the order quantity and second is reorder

level. The number of items ordered when an order is placed to minimize

total running cost is called the optimum order quantity. Reorder level

is determined based on the inventory models. In inventory management

we try to find a balance between two conflicting goals- one is to make

available the required item at a time of need and second is to minimize

related costs.

For inventory transaction several control policies are considered. Some

of the control policies are:

• (s, S) policy- In (s, S) policy s is the reorder level and S is the
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maximum inventory level. At the replenishment epoch the order

quantity is that many units required to bring the level back to S.

• (s,Q) policy- In (s,Q) policy s is the reorder level and Q is the

fixed order quantity. Here the number of items to be replenished is

fixed and is equal to Q = S − s.

• (S − 1, S)- policy, an order is placed for exactly one unit at each

epoch of occurrence of a demand. This is used for controlling the

stock levels of expensive and slow moving items.

• Random order policy- Replenishment order is placed whenever

inventory level is at some point in the set {0, 1, 2, ..., s}. Once an

order is placed, the next order goes only after the replenishment

against the first order is realized.

For solving an inventory problem, an appropriate cost function is

needed. A typical cost function consists of following type of costs.

• Variable Procurement Cost- Cost of buying items. This cost is the

actual price per unit paid for the procurement of items.

• Holding Cost-Cost incurred for carrying or holding inventory items

in the warehouse.

• Fixed Ordering(set-up) Cost-Cost incurred each time an order is

placed for procuring items from the vendors.

• Stock-out(Shortage Cost)- Shortage occurs when items cannot be

supplied due to non availability.
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In classical queues the availability of item to be served need not be

considered whereas in classical queueing-inventory models at least one

customer and at least an item in inventory is needed to provide service.

A queue is formed when time taken to serve the items is positive. If

service time is negligible a queue is formed only during stock-out pe-

riod and when unsatisfied customers are allowed to wait. For inventory

models with positive service time a queue is formed even when items are

available. This is because new customers join while a service is going on.

Also a queue is formed when time between placement of an order and its

receipt (lead time) is positive.

1.1 Stochastic Processes

The theory of stochastic processes is concerned with the investigation

of the structure of families of random variables Xt, where t is a param-

eter running over a suitable index set T . The index set t may corre-

spond to discrete units of time T = {0, 1, 2, 3, ...} or T = [0,∞]. If

T = {0, 1, 2, 3, ...} then {Xt} is a discrete time stochastic process. If

T = [0,∞], then {Xt} is called a continuous time process. State space is

the space in which the possible values of each Xt lie.

Markov Processes

A Markov process is a process with the property that, given the value of

Xt, the values of Xs, s > t, do not depend on the value of Xu, u < t; that

is, the probability of any particular future behaviour of the process, when

its present state is known exactly, is not altered by additional knowledge

concerning its past behaviour. In formal terms a process is said to be
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Markov if

Pr{a < Xt ≤ b|Xt1 = x1, Xt2 = x2....Xtn = xn}

= Pr{a < Xt ≤ b|Xtn = xn}

whenever t1 < t2 < .... < tn < t.

Markov Chain

A Markov process having a finite or denumerable state space is called a

Markov chain.

Continuous time Markov Chain

A continuous time stochastic process {X(t), t ≥ 0} with discrete state

space I is said to be a continuous time Markov chain if

Pr{X(tn) = in|X(t0) = i0, ..., X(tn−1) = in−1}

= Pr{X(tn) = in|X(tn−1) = in−1}

for all 0 ≤ t0 < ... < tn and i0, ....in−1, inεI

1.2 The Exponential Distribution

A nonnegative random variable X has an exponential distribution if its

probability distribution function is given by

F (t) = Pr{X ≤ t} = 1− exp(−λt), t ≥ 0
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where λ is a positive real number. We call X an exponential random

variable with parameter λ. The exponential distribution is widely used

in queueing models because of the memoryless property,

Pr{X > t+ s|X > s} = Pr{X > t}

holds for t ≥ 0 and s ≥ 0 of this distribution.

The Poisson Process

The counting process {N(t), t ≥ 0} where N(t) is the number of events

occurring in [0, t], is called a Poisson Process having rate λ, λ > 0, if

1. N(0)=0.

2. The process has stationary and independent increments.

3. P{N(h) = 1} = λh+ o(h).

4. P{N(h) ≥ 2} = o(h).

A counting process is said to possess independent increments if the num-

ber of events that occur in disjoint time intervals are independent. A

counting process is said to possess stationary increments if the distribu-

tion of the number of events that occur in any interval of time depends

only on the length of the time interval.
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1.3 Phase Type distribution

(Continuous time)

Phase type distributions provide a versatile set of tractable models for

applied probability. They are based on the method of stages, a tech-

nique introduced by A.K.Erlang and generalized to its full potential by

M.F.Neuts. The key idea is to model random time intervals as being

made up of a possibly random number of exponentially distributed seg-

ments and to exploit the resulting Markovian structure to simplify the

analysis. It is possible to approximate any distribution on the non-

negative real numbers by a phase type distribution, and the resulting

queueing models can be analyzed almost as if we have dealt with the

exponential distribution.

Let X = {X(t) : t ≥ 0} be a homogeneous Markov chain with finite

state space {1, ...,m,m+ 1} and generator

Q =

(
Tm×m T 0

0 0

)

where the elements of the matrices T and T 0 satisfy Tii < 0 for 1 ≤ i ≤
m, Tij ≥ 0 for i 6= j; Ti0 ≥ 0 and Ti0 > 0 for at least one i, 1 ≤ i ≤ m

and T e+ T 0 = 0.

Let the initial distribution of X be the row vector (α, αm+1), α being

a row vector of dimension m with the property that αe+αm+1 = 1. The

states 1, 2, . . . ,m shall be transient, while the state m+ 1 is absorbing.

Let Z = inf{t ≥ 0 : X(t) = m+ 1} be the random variable represent-

ing the time until absorption in state m+1. Then the distribution of Z is

Phase type distribution (or shortly PH distribution) with representation
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(α, T ). The dimension m of T is called the order of the distribution.

The states 1, 2, ...,m are also called phases.

• The distribution function of Z is given by

F (t) = P (X ≤ t) = 1−α exp(Tt)e≡ 1−α

(
∞∑
r=0

trT r

r!

)
e, t ≥ 0

where,

α is row vector of non-negative elements of order m(> 0) satisfying

αe ≤ 1. and T is an m×m matrix such that

i) all off-diagonal elements are nonnegative

ii) all main diagonal elements are negative

iii) all row sums are non-positive and

iv) T is invertible.

The 2- tuple (α, T ) is called a phase-type representation of order

m for the PH distribution and T is called a generator of the PH

distribution..

• The density function is

f(t) = α exp(T .t) T 0 for every t > 0

• E[Xn] = (−1)nn!αT −ne, n ≥ 1.

• The Laplace-Stieltjes transform of F (.) is

φ(s) = αm+1 +α(sI − T )−1 T 0 for Re(s) ≥ 0.

Theorem 1.3.1 (see, Latouche and Ramaswami [40]). Consider a
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PH distribution (α, T ). Absorption into state m+ 1 occurs with proba-

bility 1 from any phase i in {1, 2, . . . ,m} if and only if the matrix T is

nonsingular.

Moreover, (−T −1)i,j is the expected total time spent in phase j during

the time until absorption, given that the initial phase is i.

For further information about the PH distribution, see, Neuts [48],

Breuer and Baum [15], Latouche and Ramaswami [41] and Qi-Ming

He[50]. Usefulness of PH distribution as service time distribution in

telecommunication networks is elaborated, e.g., in Pattavina and Parini

[49] and Riska, Diev and Smirni [53].

1.4 Quasi-birth-death processes

Quasi-birth-death processes (QBDs) are matrix generalizations of simple

birth-and-death processes on the nonnegative integers. A birth increases

the size by one and a death decreases its size by one. Consider a Markov

Chain
{
Xt, t ∈ R+

}
on the two dimensional state space

Ω =
⋃
n≥0

{(n, j) : 1 ≤ j ≤ m}. The first coordinate n is called the level,

and the second coordinate j is called a phase of the nth level. The number

of phases in each level may be either finite or infinite. The Markov chain

is called a QBD process if one-step transitions from a state are restricted

to phases in the same level or to the two adjacent levels. In other words,

(n− 1, j′) 
 (n, j) 
 (n+ 1, j′′) for n ≥ 1.

If the transition rates are level independent, the resulting QBD process

is called level independent quasi-birth-death process (LIQBD); else it is
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called level dependent quasi-birth-death process (LDQBD). Arranging

the elements of Ω in lexicographic order, the infinitesimal generator of a

LIQBD process is block tridiagonal and has the following form:

Q =


B1 A0

B2 A1 A0

A2 A1 A0

. . . . . . . . .

 (1.1)

where the sub matrices A0, A1, A2 are square and have the same dimen-

sion; matrix B1 is also square and need not have the same size as A1.

Also, the matrices B2, A2 and A0 are nonnegative and the matrices

B1 and A1 have nonnegative off-diagonal elements and strictly nega-

tive diagonals. The row sums of Q are equal to zero, so that we have

B1e+A0e = B2e+A1e+A0e = (A0 +A1 +A2)e = 0. Among the several

tools that we employed in this thesis Matrix geometric method plays a

key role. A brief description of this is given below.

1.5 Matrix Geometric Method

Matrix Geometric Method, introduced by M. F. Neuts is popular as

modelling tools because they give one the ability to construct and an-

alyze, in a unified way and in algorithmically tractable manner, a wide

class of stochastic models. The methods are applied in several areas, of

which the performance analysis of telecommunication systems is one of

the most notable at the present time. In matrix geometric methods the

distribution of a random variable is defined through a matrix; its density

function, moments etc., are expressed with this matrix.
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Theorem 1.5.1 (see Theorem 3.1.1. of Neuts [48]). The process

Q in (1.1) is positive recurrent if and only if the minimal non-negative

solution R to the matrix-quadratic equation

R2A2 +RA1 + A0 = O (1.2)

has all its eigenvalues inside the unit disk and the finite system of equa-

tions

x0 (B1 +RB2) = 0

x0(I −R)−1e = 1 (1.3)

has a unique positive solution x0.

If the matrix A = A0 +A1 +A2 is irreducible, then sp(R) < 1 if and

only if

πA0e < πA2e (1.4)

where π is the stationary probability vector of A.

The stationary probability vector x = (x0,x1, . . .) of Q is given by

xi = x0R
i for i ≥ 1. (1.5)

Once R, the rate matrix, is obtained, the vector x can be computed.

We can use an iterative procedure or logarithmic reduction algorithm

(see Latouche and Ramaswami [40]) or the cyclic reduction algorithm

(see Bini and Meini [11]) for computing R.
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1.6 G/M/1 type model

Consider a Markov chain with bivariate state space

{(i, j), i ≥ 0, 1 ≤ j ≤ k},

where i represent the level and j the phase of the chain. Its generator Q

has the form:

Q =


B0 A0

B1 A1 A0

B2 A2 A1 A0

. . . . . . . . .

 (1.6)

where the off-diagonal elements of Q are non-negative and diagonal ele-

ments are negative such that

n∑
r=0

Are +Bne = 0, n = 0, 1, .....

Such a model is called G/M/1 type model.

Theorem 1.6.1. The irreducible Markov process Q is positive re-

current if and only if the minimal non negative solution R of the equation

∞∑
k=0

RkAk = 0

has sp(R) < 1 and if there exists a positive vector x0 such that

x0 B[R] = 0.
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The matrix B[R] =
∑∞

k=0R
kBk = 0 is a generator. The stationary

probability vector x, satisfying xQ = 0, xe = 1, is then given by

xk = x0R
k, for k ≥ 0,

and x0 is normalized by

x0(I −R)−1e = 1.

The matrix R has a positive maximal eigen value η. If the generator A is

irreducible, the left eigen vector u∗ of R corresponding to η, is determined

up to a multiplicative constant and may be chosen to be positive. The

matrix R then satisfies sp(R) < 1, if and only if

πA0e <
∞∑
k=2

(k − 1)πAke,

where π is given by πA = 0, πe = 1.

1.7 Computation of R matrix

There are several algorithms for computing rate matrix R.

Iterative algorithm

From (1.2), we can evaluate R in a recursive procedure as follows.

Step 0: R(0) = O.
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Step 1:

R(n+ 1) = A0(−A1)−1 +R2(n)A2(−A1)−1, n = 0, 1, . . .

Continue Step 1 until R(n+ 1) is close to R(n).

That is, ||R(n+ 1)−R(n)||∞ < ε.

For G/M/1 type models, we use

R(0) = 0,

and

R(n+ 1) = −A0A
−1
1 −R2(n)A2A

−1
1 −R3(n)A3A

−1
1 − ..., n ≥ 0.

Uniformization Technique

Uniformization or Randomization technique is a powerful method which

allows one to interpret a continuous time Markov process as a discrete

time Markov chain for which one merely replaces the constant unit of

time between any two transitions by independent exponential random

variables with the same parameter. On the other hand it allows us to

evaluate the transition matrix P (t) without recourse to any differential

equations.

Consider a Markov process {X(t); t ≥ 0} with generator Q such that

|qii| ≤ c <∞ for all i for some constant c. Then, the matrix K = 1
c
Q+ I

is stochastic. Define the stochastic process {Y (t) : t ≥ 0} as follows. Take



1.7. Computation of R matrix 15

a Poisson process with rate c and denote by 0 = t0, t1, t2, ... the epochs of

events in that process. Take a discrete time Markov chain {Zn : n ≥ 0}
with transition matrix K independent of the Poisson process. Define the

process {Y (t) : t ≥ 0} such that Y (t) = Zn for tn ≤ t < tn+1, for n ≥ 0.

{Y (t) : t ≥ 0} happens to be a Markov chain with generator Q. If we

define the transition matrix P (t) where Pij(t) = P [Y (t) = j|Y (0) = i],

by a simple conditioning argument on the number of Poisson events in

(0, t] that

P (t) =
∑
n≥0

e−ct
(ct)n

n!
Kn

= exp(Qt)

which is the transition matrix of the process X(t); t ≥ 0.

Computation of density and distribution function of

PH(τ, T ) random variable

Uniformize the associated Markov process with generator

Q =

[
0 0

t T

]

by choosing c = max(−Tii : 1 ≤ i ≤ n) and K = 1
c
Q+ I=

=

[
1 0

p P

]
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where P = 1
c
T + I, and p = 1

c
t. Then we get

exp(Tx) =
∑
k≥0

e−cx
(cx)k

k!
P k

so that

F (x) = 1−
∑
k≥0

e−cx
(cx)k

k!
τP k1

and

f(x) = c
∑
k≥0

e−cx
(cx)k

k!
τP kp

1.8 Review of related work

Inventory with positive service time was introduced independently by

Melikov and Molchanov[45] and Sigman and Levi ( [59]). In [59] the

authors introduced the concept of positive service time into inventory

models with arbitrarily distributed service duration, exponentially dis-

tributed lead time with customer arrival constituting a Poisson process.

A light traffic heuristic approximation procedure was used to find per-

formance measures of the system.

Among queueing-inventory problems, of particular interest are those

which yield product form solution. Product form refers to the ob-

servation that the steady state distribution of the models with a vector

valued state process is the product of the marginal steady state distri-

butions. In queueing-inventory models this means that the asymptotic

and stationary distribution of the joint(queue length and inventory size)

process factorizes into the stationary queue length and inventory size

distributions. In the long run and in equilibrium the queue length pro-
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cess and the inventory process behave as if they are independent. This

is a rather strange phenomenon because the processes strongly interact,

whether being in equilibrium or otherwise.

The literature providing product form solution for system state distri-

bution is quite scarce. The reason for this could be attributed to the fact

that we have to impose severe restrictions on the structure of the system

under consideration. The product form solution is of great significance

since it provides asymptotic independence of the components of the state

space which are highly correlated. The high degree of correlation comes

through the fact that the number of customers joining during lead time

and the length of lead time are strongly dependent.

Schwarz et al. [57] derived stationary distributions of joint queue

length and inventory processes in explicit product form for variousM/M/1-

systems with inventory under continuous review and different inventory

management policies, and with lost sales. It is assumed that demand

is Poisson, service times and lead times are exponentially distributed.

Schwarz et al. [58] investigated a new class of stochastic networks that

exhibit a product form steady state distribution. The stochastic models

developed here are integrated models for networks of service stations and

inventories. Here they integrate a server with attached inventory under

(r,Q) or (r, S)-policy into Jackson or Gordon-Newell networks. Replen-

ishment lead times are non-zero and random and depend on the load

of the system. While the inventory is depleted the server with attached

inventory does not accept new customers but they assume that lost sales

are not lost to the system. Three different approaches are used to handle

routing with respect to this node during the time the inventory is empty.

The stationary distributions of joint queue lengths and inventory process

is derived in explicit product form.
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Saffari et al.[56] considers an M/M/1/∞ queueing system with in-

ventory under continuous review (s,Q) policy with lead times mixed

exponentially distributed. During stock out, arriving demands are lost

They derive stationary distribution of product form of joint queue length

and on-hand inventory. Saffari et al. [55] consider an M/M/1 queueing

system with inventory under the (r,Q) policy with lost sales. Demands

occur according to a Poisson process and service times are exponentially

distributed. Customers arriving during stock-out period are lost. They

derive the stationary distributions of the joint queue length and on- hand

inventory when lead time is random.

Krishnamoorthy and Viswanath [39] consider an (s, S) production in-

ventory system where demand process is Poisson, duration of each service

and time required to add an item to the inventory when the production

is on, are independent non-identically distributed exponential random

variables. An explicit product form solution for the steady state prob-

ability vector is obtained under the assumption that no customer joins

the queue when inventory level is zero. We refer to the survey paper

by Krishnamoorthy et al. [34] for details on queueing-inventory models

with positive service time. Quite recently, Krishnamoorthy et al. ([30],

[35], [36]) have analyzed a single server queueing-inventory system with

positive service time. In all these cases explicit product form solution for

the system state is obtained.

Krenzler and Daduna ([29], [28]) have analyzed a single server system

with positive service time in a random environment. The service system

and the environment interact in both directions. Whenever the envi-

ronment enters a specific subset of its state space, the service process

is completely blocked and new arrivals are lost. They obtain a neces-

sary and sufficient condition for a product form steady state distribution
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of the joint queueing-environment process. This blocking set cannot be

enlarged to a partial blocking set to obtain product form solution.

Discrete time (s, S) inventory model in which the stored items have a

random common life time with a discrete phase type distribution where

demands arrive in batches following a discrete phase type renewal process

is considered by Lian et al. [42]

Inventory systems dealing with several/distinct commodities are very

common, (see for example [46][1]). Such systems are more complex than

single commodity system which could be attributed to the reordering

procedures. Whether the ordering policies of joint, individual or some

mixed type are superior will depend on the particular problem at hand.

Balintfy [7] evaluates and compares multi-item inventory problems

where joint order of several items may save a part of the set up cost.

The comparisons call for the necessity of a new policy for reorder point-

triggered random output multi-item systems. This policy, the ”random

joint order policy” operates through the determination of a reorder range

within which several items can be ordered. The existence of an optimum

reorder range is proved, and a computational technique is demonstrated

with the help of a machine-interference type queueing model.

Federgruen et al.[19] considered a continuous review multi-item inven-

tory system with compound Poisson demand processes; excess demands

are backlogged and each replenishment requires a lead time. There is

a major setup cost associated with any replenishment of the family of

items, and a minor (item dependent) setup cost when including a partic-

ular item in this replenishment. Moreover, there are holding and penalty

costs. An algorithm which searches for a simple coordinated control rule

which minimizes the long run average cost per unit time subject to a

service level constraint per item on the fraction of demand satisfied di-
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rectly from on hand inventory is presented. This algorithm is based on

a heuristic decomposition procedure and a specialized policy -iteration

method to solve the single-item subproblems generated by the decompo-

sition procedure.

Two commodity continuous review inventory system without lead

time is considered by Krishnamoorthy et al.[33] where each demand is

for one unit of the first commodity or one unit of the second commod-

ity or one unit each of both commodities with a prefixed probability.

Krishnamoorthy and Varghese[37] considered two commodity inventory

problem without lead time and with Markovian shift in demand for first

commodity, second commodity and both commodities. Using results

from Markov renewal theory Sivasamy and Pandiyan[61] derived various

results by the application of filtering techniques for the same problem.

A two commodity continuous review inventory system with indepen-

dent Poisson demands is considered by Anbazhagan and Arivarignan

[2]. Here the maximum inventory level for i − th commodity is fixed as

Si, i = 1, 2 and net inventory level at time t for the i−th commodity is de-

noted by Ii(t), i = 1, 2. If the total net inventory level I(t) = I1(t)+I2(t)

drops to a prefixed level, s [≤ S1−2
2

or S2−2
2

] an order is placed for (Si−s)
units of i− th commodity (i = 1, 2). Here the probability distribution for

inventory level and mean reorders and shortage rates in the steady state

are computed. Two commodity continuous review inventory system with

renewal demands and ordering policy as a combination of individual and

joint ordering policies is considered by Sivakumar et al.[60]. Two com-

modity stochastic inventory system with lost sales, Poisson arrivals with

joint and individual ordering policies is considered by Yadavalli et al.[62]

Two commodity continuous review inventory system with substi-

tutable items and Markovian demands is considered by Anbazhagan et
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al.[3]. Here reordering for supply is initiated as soon as the sum of the

on-hand inventory levels of the two commodities reaches a certain level

s.

The last chapter considers a queueing - inventory model under the

context of crowdsourcing. The concept of crowdsourcing is used by many

industries such as food, consumer products, hotels, electronics and other

large retailers. A number of examples of crowdsourcing can be found in

[51].

According to Howe[23], ”Crowdsourcing represents the act of a com-

pany or institution taking a function once performed by employees and

outsourcing it to a large network of people in the form of an open call.

This can take the form of peer production(when the job is performed

collaboratively), but is also often undertaken by sole individuals. The

crucial prerequisite is the use of the open call format and the large net-

work of potential labourers”.

In the paper by Chakravarthy and Dudin[16], they use crowdsourcing

in the context of service sectors getting possible help from one group of

customers who first receive service from them and then opt to execute

similar service to another group of customers. They consider a multi-

server queueing system with two type of customers, Type-I and Type-II.

Type-I customers visit the store to procure items while Type-II customers

orders over some medium such as internet and phone and expects them

to be delivered. The store management use the customers visiting them

as couriers to serve the other type of customers. Since not all in-store

customers may be willing to act as servers, a probability is introduced

for in-store customers to opt for serving the other type. They assumed

that Type-I have non-preemptive priority over Type-II. This is the first

reported work on crowdsourcing modelled in the queueing theory con-
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text. A multi-server priority queue with preemption in crowdsourcing is

considered in Krishnamoorthy et al [32]. Here they assume that arrival

of a Type-I customer interrupts the ongoing service of any one of Type-

II customers if any in service, and hence this preempted customer joins

back as the head of the Type-II queue.

This thesis analyzes models providing explicit solution for system

state distribution and also those that need algorithmic analysis. The

matrix-geometric structure of the steady-state distributions introduced

by Neuts[48] is used in the models for obtaining solutions.

1.9 Summary of the thesis

This thesis includes analysis of some queueing inventory models which

we face in many real life situations. They are studied by means of contin-

uous time Markov chains.In all the models we have assumed that arrival

process is a Poisson process and service times are exponential.

This thesis is divided into 6 chapters. including the introductory

chapter. Chapter 2 deals with queueing inventory models with several

modes of service and chapters 3 and 4 deal with queueing inventory

models with reservation, cancellation and common life time. Chapter 5

is on queueing inventory model with two commodites and the last chapter

is on queueing inventory model under the context of crowdsourcing.

In chapter 2 we study an M/M/1 queue with an attached inventory

system. Customers arrive to the system according to a Poisson process,

and are served by a single server. The stock is replenished by (s,Q)-policy

and (s, S)-policy which has an exponentially distributed lead time. The

service time is exponentially distributed with parameter µ2 whenever the
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inventory level is above s and αµ2 (0 < α ≤ 1) whenever the inventory

level is below s + 1. This is to reduce customer loss on account of the

inventory level droping to zero – we assume that customers do not join

when the inventory level is zero, thereby leading to product form solution.

Using the joint distribution, we introduce long-run performance measures

and a cost function. We also provide several numerical examples.

In chapter 3 we consider a single server queueing - inventory system

having capacity to store S items at a time which have a common-life

time (CLT ), exponentially distributed with parameter γ. On realization

of CLT a replenishment order is placed so as to bring the inventory

level back to S, the lead time of which follows exponential distribution

with parameter β. Items remaining are discarded on realization of CLT .

Customers waiting in the system stay back on realization of common

life time. Reservation of items and cancellation of sold items before

its expiry time is permitted. Cancellation takes place according to an

exponentially distributed inter-occurrence time with parameter iθ when

there are (S−i) items in the inventory. We assume that the time required

to cancel the reservation is negligible. Customers arrive according to a

Poisson process of rate λ and service time follows exponential distribution

with parameter µ. The main assumption that no customer joins the

system when inventory level is zero, leads to a product form solution of

the system state distribution. Several system performance measures are

obtained.

In chapter 4 we study an M/M/1 queue with a storage system having

capacity S which have a common life time (CLT ), exponentially dis-

tributed. On realization of common life time or the first time inventory

level drops to zero in a cycle whichever occurs first, a replenishment order

is placed so as to bring the inventory level back to S (zero lead time).
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Customers arrive to the system according to a Poisson process and their

service time is exponentially distributed. Reservation of items and can-

cellation of sold items is permitted before the realization of common life

time. Cancellation takes place according to an exponential distribution.

In this chapter we assume that the time required to cancel the reserva-

tion is negligible. When the inventory level becomes zero through service

completion or CLT realization, a replenishment order is placed which is

realized instantly. We first derive the stationary joint distribution of the

queue length and the on-hand inventory in product form. Using the joint

distribution, long-run performance measures and a revenue function. The

case of positive lead time is also investigated. Numerical illustrations are

provided.

A two commodity inventory system with a single server is considered

in chapter 5. We assume that the buffer sizes(to store the two types

of commodities) are finite. Customers (or demands) arrive according to

a Poisson Process and the requirement for either type or both type of

commodities are assigned certain probabilities. Customers are lost when

their demands are not met due to shortage at the time of offering of

service as opposed to getting lost when the inventory level is zero at

the time of arrival. This is to allow the possibility of inventory being

replenished during the time of existing service. A customer’s demand for

both items will be met with only one item if their is a situation in which

only one type of inventory is readily available and the other is zero at the

time of initiating a service. The processing time for meeting the demands

are random and modelled using exponential distribution with parameters

depending on the type of demands being processed. We adopt (s,S)- type

replenishment policy which depends on the type of commodity. Assuming

the lead time to be exponentially distributed with parameters depending
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on the type of commodity, we employ matrix-analytic methods to study

the queueing inventory system and report interesting results including

an optimization problem dealing with various costs.

In chapter 6, we consider a multi- server queueing inventory system

with two type of customers: Type I and Type II. Type II customers are

virtual ones. Arrival of both Type I and Type II customers follow two

independent Poisson processes. Type I are to be served by one of the

servers and service time is assumed to be exponential. Type II customer

may be served by a Type I customer having already been served and ready

to act as a server or by one of the servers with exponentially distributed

service time. Type I customer has non preemptive priority over Type II.

Type II is served by a Type I only if inventory is available after attaching

inventory to the existing Type-I customers available in the system. Type

II is served by a Type I with probability p and with complementary

probability q = 1 − p served Type I leaves the system. Arrival of both

type of customers is permitted only when excess inventory, which is

defined as the difference between on hand inventory and number of busy

servers, is positive. There is a limited system capacity for Type I, where

as Type II has unlimited waiting area. When inventory level drops to

c + s, an order for replenishment is placed to bring the inventory level

to c + S. The ordered items are received after a random amount of

time which is exponentially distributed. An optimization problem is

numerically analyzed.

Finally a section“concluding remarks and suggestions for future study”

is included.
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Chapter 2

Queueing-Inventory System

with Several Modes of Service

In this chapter a queueing-inventory model under (s,Q) and (s, S) poli-

cies with several modes of service is analyzed. We introduce distinct rates

of service based on whether inventory level is above s or less than or equal

to s and proved that under certain assumptions stochastic decomposition

of the vector process is possible for the (s,Q) and (s, S) policies. The pur-

pose of introducing different service rates is to minimize ‘customer loss’

which is a consequence of the assumption that no customer joins the

system when inventory level is zero. It is this assumption that enables

us to derive stochastic decomposition of the system state and consequent

product form solution. The minimization of customer loss is achieved by

Some results in this chapter are included in the paper. Dhanya Shajin, Binitha
Benny, Rostislav V. Razumchik and A. Krishnamoorthy : Queueing Inventory
system with two modes of service, Journal of Automation and Control of Russian
Academy Of Sciences. (To appear in October 2018 issue; the English translation will
appear subsequently in the same journal)

27
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switching over to a reduced service rate during lead time. However, it

is done at the expense of an increase in the waiting cost of customers.

We try to have a trade off between the two. To this end we construct a

cost function with the objective of minimizing “total expected cost”. It

is seen that (s,Q) policy outperforms the (s, S) policy.

A continuous review (s, S) inventory system at a service facility with

two types of services and finite waiting hall was considered by Anbazha-

gan et al. [4]. Demands arrive according to a Poisson Process and the

server provides two types of services, type 1 with probability p1 and type

2 with probability p2 with the service time following distinct exponen-

tial distributions. They derived the joint probability distribution of both

the inventory level and the number of customers in the steady state case

where the lead times are negative exponential and demands during stock

-out periods are lost.

2.1 Mathematical formulation

Consider a single server queueing-inventory system where service rule is

FIFO. Arrival process is assumed to be Poisson with rate λ. Service time

follows exponential distribution with parameter µ1 if the inventory level

lies between 1 and s both inclusive, else it is µ2 with µ1 = αµ2 (0 ≤ α ≤
1). The maximum capacity of the inventory level is fixed as S, when

the inventoried items reach the level s ≥ 0, an order for replenishment

by fixed quantity Q, where Q = S − s, is placed. The lead time is

exponentially distributed with parameter β which is independent of the

service and arrival processes. No customer is allowed to join the queue

when the inventory level is zero. Further in the absence of inventory,
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service cannot take place even when customers are present. Let

N(t) : Number of customers in the system at time t

I(t) : Number of items in the inventory at time t

Then Ω = {(N(t), I(t)), t ≥ 0} forms a CTMC with state space

{(n, i);n ≥ 0, 0 ≤ i ≤ S}.

We now describe the infinitesimal generator matrix Q of this CTMC.

Note that by the assumptions made above the CTMC Ω is a LIQBD.

We have

Q =


A00 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 (2.1)

Each matrix A00, A0, A1, A2 is a square matrix of order (S + 1) where

(A00)ij =



β j = i+Q, 1 ≤ i ≤ s+ 1

−β j = i, i = 1

−(λ+ β) j = i, 2 ≤ i ≤ s+ 1

−λ j = i, s+ 2 ≤ i ≤ S + 1

0 otherwise

(A0)ij =

{
λ j = i, 2 ≤ i ≤ S + 1

0 otherwise
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(A1)ij =



β j = i+Q, 1 ≤ i ≤ s+ 1

−β j = i, i = 1

−(λ+ β + µ1) j = i, 2 ≤ i ≤ s+ 1

−(λ+ µ2) j = i, s+ 2 ≤ i ≤ S + 1

0 otherwise

(A2)ij =


µ1 j = i− 1, 2 ≤ i ≤ s+ 1

µ2 j = i− 1, s+ 2 ≤ i ≤ S + 1

0 otherwise

2.1.1 Stability condition

Next we examine the system stability. Define A = A0 + A1 + A2. Then

A=



0 1 . . . s s+ 1 . . . Q Q+ 1 . . . S

0 −β β

1 µ1 −(β + µ1) β
...

. . .
. . .

. . .

s µ1 −(β + µ1) β

s+ 1 µ2 −µ2
...

. . .
. . .

Q µ2 −µ2
Q+ 1 µ2 −µ2
...

. . .
. . .

S µ2 −µ2



.

This is the infinitesimal generator of the finite state CTMC Ω′ =

{I(t), t ≥ 0} corresponding to the inventory level in the system {0, 1, ..., S}.
Let π = (π0, π1, ..., πS) be the steady state probability vector of A. Then

πA = 0, πe = 1. (2.2)
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From (2.2) we have

πi =


β
µ1

(
β+µ1
µ1

)i−1

π0 1 ≤ i ≤ s

β
µ1

(
β+µ1
µ1

)s−1 (
β+µ1
µ2

)
π0 s+ 1 ≤ i ≤ Q

β
µ2

(
β+µ1
µ1

)i−(Q+1)
[(

β+µ1
µ1

)S−(i−1)

− 1

]
π0 Q+ 1 ≤ i ≤ S

where π0 is obtained from the normalizing condition as

π0 =

[
1 +

(
µ2 − µ1

µ2

)((
β + µ1

µ1

)s
− 1

)
+Q

β

µ2

(
β + µ1

µ1

)s]−1

.

The following lemma establishes the stability condition of the queueing-

inventory system under study.

Lemma 2.1.1. The system under study is stable if and only if

λ <
Qβ
(
β+µ1
µ1

)s
(
µ2−µ1
µ2

)((
β+µ1
µ1

)s
− 1
)

+Q β
µ2

(
β+µ1
µ1

)s . (2.3)

Proof. The queueing-inventory system under study with the QBD

type generator given in (2.1) is stable if and only if the left drift rate

exceeds the right drift rate. In the present case these drift rates are

respectively πA2e and πA0e(see Neuts [48]) Thus the above condition

reduces to,

πA0e < πA2e (2.4)

From the matrices A0, A2 we have πA0e = λ

S∑
i=1

πi = λ(1 − π0) and
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πA2e = µ1

s∑
i=1

πi + µ2

S∑
i=s+1

πi = Qβ

(
β + µ1

µ1

)s
π0.

Using relation (2.4) we obtain the stability condition as

λ(1− π0) < Qβ
(
β+µ1

µ1

)s
π0

⇒ λ <
[
Qβ
(
β+µ1

µ1

)s
+ λ
]
π0

⇒ λ <
[
Qβ
(
β+µ1

µ1

)s
+ λ
] [

1 +
(
µ2−µ1

µ2

)((
β+µ1

µ1

)s
− 1
)

+Q β
µ2

(
β+µ1

µ1

)s]−1
⇒ λ

[
1 +

(
µ2−µ1

µ2

)((
β+µ1

µ1

)s
− 1
)

+Q β
µ2

(
β+µ1

µ1

)s]
<
[
Qβ
(
β+µ1

µ1

)s
+ λ
]

⇒ λ+ λ
[(

µ2−µ1

µ2

)((
β+µ1

µ1

)s
− 1
)

+Q β
µ2

(
β+µ1

µ1

)s]
< Qβ

(
β+µ1

µ1

)s
+ λ

⇒ λ
[(

µ2−µ1

µ2

)((
β+µ1

µ1

)s
− 1
)

+Q β
µ2

(
β+µ1

µ1

)s]
< Qβ

(
β+µ1

µ1

)s
.

From the above inequality we get the stated result (2.3).

2.2 Steady state analysis

For finding the steady state probability vector of the CTMC Ω, we first

consider the system where the serving of the inventory is instantaneous.

Thus the infinitesimal generator is given by

Ã=



0 1 . . . s s+ 1 . . . Q Q+ 1 . . . S

0 −β β

1 λ −(β + λ) β
...

. . .
. . .

. . .

s λ −(β + λ) β

s+ 1 λ −λ
...

. . . −
. . .

Q λ −λ
Q+ 1 λ −λ
...

. . .
. . .

S λ −λ



.

Let ξ = (ξ0, ξ1, ..., ξS) be the steady state vector of Ã. Then ξ satisfies
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the equations

ξÃ = 0, ξe = 1. (2.5)

From ξÃ = 0 we have

−βξ0 + λξ1 = 0,

−(β + λ)ξi + λξi+1 = 0, 1 ≤ i ≤ s

−λξi + λξi+1 = 0, s+ 1 ≤ i ≤ Q− 1

βξi−Q − λξi + λξi+1 = 0, Q ≤ i ≤ S − 1

βξs − λξS = 0

and ξi can be obtained as

ξi =


β
λ

(
β+λ
λ

)i−1
ξ0 1 ≤ i ≤ s

β
λ

(
β+λ
λ

)s
ξ0 s+ 1 ≤ i ≤ Q

β
λ

[(
β+λ
λ

)s − (β+λ
λ

)i−(Q+1)
]
ξ0 Q+ 1 ≤ i ≤ S

The unknown probability ξ0 can be found from the normalizing condition

ξ0 =

[
1 +Q

β

λ

(
β + λ

λ

)s]−1

.

Now using the vector ξ, we can find the steady state vector of the given

system. Let x be the steady state vector of the generator Q. Then x

must satisfy the set of equations

xQ = 0, xe = 1. (2.6)

Partition x as x = (x0,x1,x2, ...). Then the above system of equations
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reduces to:

x0A00 + x1A2 = 0, (2.7)

xi−1A0 + xiA1 + xi+1A2 = 0, i ≥ 1. (2.8)

Then by using the relations (2.7) and (2.8), we get

−βxi(0) + µ1xi+1(1) = 0, i ≥ 0

−(β + λ)x0(j) + µ1x1(j + 1) = 0, 1 ≤ j ≤ s− 1

λxi−1(j)− (β + λ+ µ1)xi(j) + µ1xi+1(j + 1) = 0, i ≥ 1, 1 ≤ j ≤ s− 1

−(β + λ)x0(s) + µ2x1(s+ 1) = 0,

λxi−1(s)− (β + λ+ µ1)xi(s) + µ1xi+1(s+ 1) = 0, i ≥ 1

−λx0(j) + µ2x1(j + 1) = 0, s+ 1 ≤ j ≤ Q− 1

λxi−1(j)− (λ+ µ2)xi(j) + µ2xi+1(j + 1) = 0, i ≥ 1, s+ 1 ≤ j ≤ Q− 1

βx0(j −Q)− λx0(j) + µ2x1(j + 1) = 0, Q ≤ j ≤ S − 1

λxi−1(j) + βxi(j −Q)− (λ+ µ2)xi(j) + µ2xi+1(j + 1) = 0, i ≥ 1, Q ≤ j ≤ S − 1

βx0(s)− λx0(S) = 0,

λxi−1(S) + βxi(s)− (λ+ µ2)xi(S) = 0, i ≥ 1

Solving the above system of linear relations we get

xi(j) =

 ϑ−1Ci(j)
(
λ
µ1

)i
ξj for i ≥ 0, 0 ≤ j ≤ s

ϑ−1Ci(j)
(
λ
µ2

)i
ξj for i ≥ 0, s+ 1 ≤ j ≤ S

(2.9)

where Ci(j) are constants to be determined.
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The constants Ci(j) are given by

Ci(j) =


C0(0) for i = 0, 1 ≤ j ≤ S

C0(0) for i = 1, 0 ≤ j ≤ S

C0(0) for i ≥ 2, 0 ≤ j ≤ s

wi(j)C0(0) for i ≥ 2, s+ 1 ≤ j ≤ S

(2.10)

where

wi(j) =



(
µ2
µ1

)i−1
i ≥ 2, j = s+ 1

1 i = 2, s+ 2 ≤ j ≤ Q
U
[
hs − µ2

µ1

]
i = 2, j = Q+ 1

V
[
hs − hj−(Q+2)

(
βµ2+λµ1
λµ1

)]
i = 2, Q+ 2 ≤ j ≤ S

µ2
λ

[
λ+µ2
µ2

w2(j − 1)− 1
]

i = 3, s+ 2 ≤ j ≤ Q
µ2
λ

[
λ+µ2
µ2

wi−1(j − 1)− wi−2(j − 2)
]

i ≥ 4, s+ 2 ≤ j ≤ Q

µ22U
[
hs
(
λ+µ2

λµ2
2
w2(Q)− 1

λµ2

)
− 1
µ2
1

]
i = 3, j = Q+ 1

µi−1
2 U

[
hs
(
λ+µ2

λµi−1
2

wi−1(Q)− wi−2(Q)

λµi−2
2

)
− 1

µi−1
1

]
i ≥ 4, j = Q+ 1

µ2
2
λ
V
[
hs λ+µ2

µ2
2
w2(j − 1)− hj−(Q+2)

(
1
µ2
− β

µ2
1

)]
i = 3, Q+ 2 ≤ j ≤ S

µi−1
2
λ
V
[
hs λ+µ2

µi−1
2

w2(j − 1)− hj−(Q+2)

(
wi−2(j−1)

µi−2
2

− β

µi−1
1

)]
i ≥ 4, Q+ 2 ≤ j ≤ S

with h =
(
β+λ
λ

)
,U = [hs − 1]−1 ,V =

[
hs − hj−(Q+1)

]−1
.

Thus we have

∞∑
i=0

[
s∑
j=0

Ci(j)
(
λ

µ1

)i
ξj +

S∑
j=s+1

Ci(j)
(
λ

µ2

)i
ξj

]

=

{
hs

∞∑
i=0

(
λ

µ1

)i
+
λ+ µ2

µ2

[
hs
(
Q
β

λ
− 1

)
+ 1

]
+
β

λ

∞∑
i=2

(
λ

µ2

)i
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[
hs

S∑
j=s+1

wi(j)−
S∑

j=Q+1

hj−(Q+1)wi(j)

]}[
1 +Q

β

λ
hs
]−1

C0(0).

If we note xe = 1 and (2.9) we have

ϑ−1

∞∑
i=0

[
s∑
j=0

Ci(j)
(
λ

µ1

)i
ξj +

S∑
j=s+1

Ci(j)
(
λ

µ2

)i
ξj

]
= 1.

Write ϑ =

hs
∞∑
i=0

(
λ

µ1

)i
+
λ+ µ2

µ2

[
hs
(
Q
β

λ
− 1

)
+ 1

]
+
β

λ

∞∑
i=2

(
λ

µ2

)i hs S∑
j=s+1

wi(j)

−
S∑

j=Q+1

hj−(Q+1)wi(j)


[
1 +Q

β

λ
hs
]−1
C0(0).

Hence we have the theorem:

Theorem 2.2.1. If the stability condition (2.3) holds, then the

components of the steady-state probability vector are

xi(j) =

 ϑ−1Ci(j)
(
λ
µ1

)i
ξj for i ≥ 0, 0 ≤ j ≤ s

ϑ−1Ci(j)
(
λ
µ2

)i
ξj for i ≥ 0, s+ 1 ≤ j ≤ S

the probabilities ξj, 0 ≤ j ≤ S corresponds to the distribution of number

of items in the inventory in the system.

2.3 Performance Measures

• Mean number of customers in the system, EN =
∞∑
i=1

ixie

• Mean number of customers in the system whenever the inventory
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level is less than s+ 1, N1 =
∞∑
i=1

s∑
j=0

ixi(j)

• Mean number of customers in the system whenever the inventory

level is above s, N2 =
∞∑
i=1

S∑
j=s+1

ixi(j)

• Expected number of items in the inventory, EI =
∞∑
i=0

S∑
j=1

jxi(j)

• Expected reorder rate, ER = µ2

∞∑
i=1

xi(s+ 1)

• Expected loss rate of customers, EL = λ
∞∑
i=0

xi(0)

• Expected number of customers arriving per unit time, EA = λ
∞∑
i=0

S∑
j=1

xi(j)

• Expected waiting time of the customers in the system, EW =
EN
EA

• Mean number of customers waiting in the system when inventory

is available, EN1 =
∞∑
i=1

S∑
j=1

ixi(j)

• Mean number of customers waiting in the system during the stock

out period, EN2 =
∞∑
i=1

ixi(0)

• Mean number of replenishment per unit time, ENR = β
∞∑
i=0

s∑
j=0

xi(j)
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Next we proceed to determine α so as to have at least a desired

probability 1− ε of replenishment preceding the sale of s items from the

epoch at which order for the former is placed. In other words we wish to

attain a high probability for no customer loss for want of inventory. We

consider different cases and obtain the following results.

2.3.1 Max. prob(lead time process < time required

to serve s demands)

Before going further let us introduce some notations. Let ξ denote the

lead time and η denote the time to serve s customers. Assume that

at instant τ the replenishment order is placed. Introduce the following

probabilities

aij = P{ξ < η|I(τ) = i, N(τ) = j}, 1 ≤ i ≤ s, j ≥ 0.

According to the considered replenishment rule, the replenishment order

is placed if and only if the inventory level drops down to s. Thus we are

interested in the probabilities

as,j, j ≥ 0.

These probabilities are of interest because, as it was mentioned in the

description of the system, when the inventory level is zero, no customers

are allowed to enter the system. Thus once the inventory level reaches 0,

there is a chance for potential customer losses. Indeed, the probability

that after the replenishment order has been made, at least one customer
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will be lost is equal to

(1− as,j)
λ

λ+ β
.

When speaking about the inventory system one is usually interested in

choosing such parameter values which lead to the optimal value of a

certain value function. We will discuss the value function and its opti-

mization in section 2.5.1. But we notice that such function may include

additional costs for customer losses. The only way to influence the cus-

tomer loss probability is to adjust the service rate αµ2 i.e. to manipulate

the value of α.

Now we will show how to calculate as,j, j ≥ 0.

Firstly notice that in order to calculate as,j, j ≥ 0, one has to be able

to calculate other probabilities ai,j, 1 ≤ i ≤ s, j ≥ 0.

Secondly notice that we have to distinguish 2 cases:

1. j ≥ s;

2. 0 ≤ j < s.

Case 1: Number of customers in the system at the epoch of

placing an order for replenishment is ≥ s

Let us calculate the P(lead time process < time required to serve s demands).

If the number of customers in the system at the epoch of placing an order

for replenishment ≥ s, using the notation introduced above we have

P(lead time process < time required to serve s demands) = as,j, j ≥ s.

Due to the fact that for each j the probabilities as,j are the same (i.e.

as,s = as,s+1 = as,s+2 = . . . ) all we need is to calculate one of them. Let

us calculate as,s.
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In this case we need not consider future arrivals for the computation

of the required probability because s customers are already present in

the system. For illustration purposes in this case we will use the matrix

notation. Consider the inventory level process {I(t), t ≥ 0} whose state

space {1 ≤ i ≤ s}
⋃
{∆s}

⋃
{∆r} where {∆s} is the absorbing state

meaning service of s demands has occurred before replenishment and

{∆r} is the absorbing state meaning the replenishment occurred before

service of s demands. Thus its infinitesimal generator is of the form

W =



−(αµ2 + β) αµ2 0 β

−(αµ2 + β) αµ2 0 β
. . . . . .

...

−(αµ2 + β) αµ2 β

0 0 ... ... 0 0

0 0 ... ... 0 0



=

[
T ~ts ~tr

0 ~0 ~0

]
with the matrix T of size s× s.

If the initial probability vector is ~γ = (1, 0, ..., 0) of order s, then

the probability as,s, that the replenishment occurs before the service of

s demands if the replenishment order was placed when the total number

of customers in the system was ≥ s, is equal to

as,s = −γT−1~tr.

Using the explicit form of the inverse of T (which is an upper triangular



2.3. Performance Measures 41

matrix), after some simple computations one obtains

as,s =
β

αµ2 + β

s−1∑
n=0

(
αµ2

αµ2 + β

)n
.

This expression has a clear probabilistic interpretation.

In general it is easy to see that the probabilities ai,i, 1 ≤ i ≤ s, are

equal to

ai,i =
β

αµ2 + β

i−1∑
n=0

(
αµ2

αµ2 + β

)n
, 1 ≤ i ≤ s.

The complementary probability, the replenishment occurs later than

the service of s demands if the replenishment order was placed when the

total number of customers in the system was ≥ s, is equal to

P( time required to serve s demands < lead time process ) = 1− as,s

= −~γT−1~ts =

(
αµ2

αµ2 + β

)s
.

Finally, notice that the probability π≥s that at least one customer will

be lost, if at the epoch of placing an order for replenishment the number

of customers in the system ≥ s, is equal to

π≥s =

(
αµ2

αµ2 + β

)s
λ

λ+ β
. (2.11)

Case 2: Number of customers in the system at the epoch of

placing an order for replenishment is < s

In this case we have to consider future arrivals for the computation of

the required probability because there are less than s customers in the
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system at the epoch of placing the order for replenishment.

Assume that at the epoch of placing the order for replenishment there

are j, 0 ≤ j < s customers in the system. Thus the probability we have

to find is as,j.

We will not use the matrix notation as in the previous section, instead

will use the first step analysis.

Let us start with j = s − 1 i.e. there are (s − 1) customers in the

system at the epoch of placing the order for replenishment. Using the first

step analysis we can write out the following (finite) system of algebraic

equations for finding as,s−1:

as,s−1 =
β

λ+ µ2α + β
+

λ

λ+ µ2α + β
as,s +

µ2α

λ+ µ2α + β
as−1,s−2,

as−1,s−2 =
β

λ+ µ2α + β
+

λ

λ+ µ2α + β
as−1,s−1 +

µ2α

λ+ µ2α + β
as−2,s−3,

. . .

a2,1 =
β

λ+ µ2α + β
+

λ

λ+ µ2α + β
a2,2 +

µ2α

λ+ µ2α + β
a1,0,

a1,0 =
β

λ+ β
+

λ

λ+ β
a1,1.

Notice that the values of ai,i, 1 ≤ i ≤ s, have already been found in

the previous section.

The above system of equations can be solved recursively, starting from

the last equation. Denoting d = µ2α
λ+µ2α+β

, the solution can be written out

in the following form:

ak+1,k =
1

λ+ µ2α + β

k+1∑
i=2

[λai,i + β]dk+1−i +
λa1,1 + β

λ+ β
dk, 0 ≤ k ≤ s− 1.
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The expression for the required probability as,s−1 is found by putting

k = s− 1 in the previous relation:

as,s−1 =
1

λ+ µ2α + β

s∑
i=2

[λai,i + β]ds−i +
λa1,1 + β

λ+ β
ds−1.

In order to find other probabilities as,s−2, as,s−3, . . . , as,0 we can
proceed in the same way i.e. we can use the first step analysis, then
write out the system of equations and solve it. By doing so we can arrive
at the following expression for the computation of any probability ai,j,
0 ≤ k ≤ s− i, 1 ≤ i ≤ s:

ak+i,k =
1

λ+ µ2α+ β

k+1∑
n=2

[λan−1+i,n+β]dk+1−n+
λai,1 + β

λ+ β
dk, 0 ≤ k ≤ s−i, 1 ≤ i ≤ s.

(2.12)

But the computation has to be performed sequentially. At first one

fixes i = 1 and computes ak+1,k for 0 ≤ k ≤ s− 1. Then one fixes i = 2

and computes ak+2,k for 0 ≤ k ≤ s− 2 and so on until i = s.

Now we can calculate the probability πj, 0 ≤ j ≤ s − 1, that at

least one customer will be lost, if at the epoch of placing an order for

replenishment the number of customers in the system is j:

πj = (1− as,j)
λ

λ+ β
. (2.13)

Thus,we have the lemma,

Lemma 2.3.1. If at the epoch of placing an order for replen-

ishment,

(i) P {at least one customer will be lost, where the number of customers
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in the system is j,0 ≤ j ≤ s− 1}= (1− as,j) λ
λ+β

.

(ii) P {at least one customer will be lost, where the number of customers

in the system is j,j ≥ s}=
(

αµ2
αµ2+β

)s
λ

λ+β
.

Table 2.1 shows the probability of loss of customers in the cases dis-

cussed in the above lemma for varying values of α when we fix (S, s, λ, µ2, β) =

(15, 7, 3, 10, 4).

α n ≥ s n = 0 0 < n < s
(n = 4)

1 0.0474 0.0007 0.0149
0.9 0.0381 0.0006 0.0128
0.8 0.0293 0.0005 0.0105
0.75 0.0251 0.0005 0.0094
0.7 0.0211 0.0004 0.0082
0.6 0.0140 0.0003 0.0059
0.5 0.0082 0.0002 0.0038
0.4 0.0039 0.0001 0.0020
0.3 0.0013 0.0001 0.0008
0.25 0.0006 0 0.0004
0.2 0.0002 0 0.0001
0.1 0 0 0

Table 2.1: α verses loss probability

The numerical output shown in Table 2.1 are on expected lines. We

notice that with number of customers (n) at order placement epoch (in-

ventory level = s) is at least equal to s, the inventory level depletes faster

to go down to zero, resulting in high loss probability of customers. The

loss probability is least for the case n = 0. This is no surprise since it re-

quired s new arrivals and their services completed before replenishment,
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in order that customers are lost.

2.4 System under (s, S) policy

Now we turn to a brief description of the system under the (s, S) policy.

The generator matrix is similar to the system under (s,Q) policy (see

(2.1)) but with

(A00)ij =



β j = S + 1, 1 ≤ i ≤ s+ 1

−β j = i, i = 1

−(λ+ β) j = i, 2 ≤ i ≤ s+ 1

−λ j = i, s+ 2 ≤ i ≤ S + 1

0 otherwise.

(A1)ij =



β j = S + 1, 1 ≤ i ≤ s+ 1

−β j = i, i = 1

−(λ+ β + µ1) j = i, 2 ≤ i ≤ s+ 1

−(λ+ µ2) j = i, s+ 2 ≤ i ≤ S + 1

0 otherwise.

2.4.1 Stability Condition

To establish the stability condition, define A = (A0 + A1 + A2). This is

the infinitesimal generator of the finite state CTMC {I(t):t ≥ 0}, where

I(t) is as defined earlier whose state space is given by{0, 1, 2, · · ·S}. Let

φ = (φ0, φ1, ..., φS) be the steady-state probability vector of A. Then φ

satisfies the equation

φA = 0, φe = 1. (2.14)
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A =



0 1 2 3 · · · s s+ 1 · · · S − 1 S

0 −β β

1 µ1 −(µ1 + β β

2 µ1 −(µ1 + β) β
...

s β

s+ 1 −µ2 0
... 0

S − 1 µ2 −µ2 0

S µ2 −µ2



Then the components of φ can be obtained as

φi =


β
µ1
φ0 i = 1

β
µ1i

(β + µ1)i−1φ0 2 ≤ i ≤ s
β

µ1sµ2
(β + µ1)sφ0, i = s+ 1 ≤ i ≤ S

The unknown probability φ0 can be found from the normalizing con-

dition φe = 1 as

φ0 =

(( µ1

µ1 + β

)s(µ2 + (S − s)β
µ2

))−1

(2.15)

The LIQBD description of the model indicates that the queueing system

is stable (see Neuts [48]) if and only if

φA0e < φA2e (2.16)
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which on simplification gives the stability condition as

(λ− µ1)

[(
β + µ1

µ1

)s
− 1

]
< (µ2 − λ)(S − s) β

µ2

(
β + µ1

µ1

)s
. (2.17)

2.4.2 Steady-State probability Vector

Assuming that stability condition is satisfied, we compute the steady

state probability of the original system. Let x̃ be the steady-state prob-

ability vector of the generator Q. Then

x̃Q = 0 and x̃e = 1. (2.18)

Partitioning x̃ as x̃ = (x̃0, x̃1, x̃2, ...) where x̃i = (x̃i(0), x̃i(1), ...x̃i(S) for

i ≥ 0. Then by the relation (2.18) we get

x̃0A00 + x̃1A2 = 0,

x̃i−1A0 + x̃iA1 + x̃i+1A2 = 0, i ≥ 1.

From the above relations, we have

−βx̃i(0) + µ1x̃i+1(1) = 0, i ≥ 0

−(λ+ β)x̃0(j) + µ1x̃1(j + 1) = 0, 1 ≤ j ≤ s− 1

−(λ+ β)x̃0(s) + µ2x̃1(s+ 1) = 0,

−λx̃0(j) + µ2x̃1(j + 1) = 0, s+ 1 ≤ j ≤ S − 1

β

j=s∑
j=0

x̃0(j)− λx̃0(S) = 0,

λx̃i−1(j)− (λ+ β + µ1)x̃i(j) + µ1x̃i+1(j + 1) = 0, i ≥ 1, 1 ≤ j ≤ s− 1

λx̃i−1(s)− (λ+ β + µ1)x̃i(s) + µ2x̃i+1(s+ 1) = 0,

λx̃i−1(j)− (λ+ µ2)x̃i(j) + µ2x̃i+1(j + 1) = 0, i ≥ 1, s+ 1 ≤ j ≤ S − 1

λx̃i−1(S) + β

s∑
j=0

x̃i(j)− (λ+ µ2)x̃i(S) = 0.
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We seek the solution in the form

x̃i(j) =


Di(j)

(
λ

µ1

)i
φj, 0 ≤ j ≤ s

Di(j)
(
λ

µ2

)i
φj, s+ 1 ≤ j ≤ S

(2.19)

where Di(j) are constants to be determined and

φj =



β

λ

(
β + λ

λ

)j−1

φ0, 1 ≤ j ≤ s

β

λ

(
β + λ

λ

)s
φ0, s+ 1 ≤ j ≤ S(

λ

β + λ

)s [
1 + (S − s)β

λ

]−1

, j = 0

(2.20)

which represent the inventory level probabilities.

The constants Di(j) are given by

Di(j) =


D0(0), i = 0, 1 ≤ j ≤ S

D0(0), i = 1, 0 ≤ j ≤ S

D0(0), i ≥ 2, 0 ≤ j ≤ s

ψi(j)D0(0), i ≥ 2, s+ 1 ≤ j ≤ S

(2.21)

where

ψi(j) =



(
µ2
µ1

)i−1

i ≥ 2j = s+ 1

1 i ≥ 2, s+ i ≤ j ≤ S(
µ2
µ1

)i−3
µ2
λ

[(
λ+µ2
µ2

)
µ2
µ1
− 1
]

i ≥ 3, j = s+ 2

µ2
λ

[
λ+µ2
µ2

ψi−1(j − 1)− ψi−2(j − 1)
]

i ≥ 4, s+ 3 ≤ j ≤ S.

(2.22)
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From the normalizing condition we get

D0(0) =

[
1 + (S − s)β

λ

] ∞∑
i=0

(
λ

µ1

)i
+
β

λ

(S − s)
(

1 +
λ

µ2

)
+

∞∑
i=2

S∑
j=s+1

(
λ

µ2

)i
ψi(j)

−1 .

Performance Measures

In order to compare the performance with that of model under (s,Q)

policy, we consider the following basic measures.

• Expected number of customers in the system, EN =
∞∑
i=1

ix̃ie

• Expected number of item in the inventory,EI =
∞∑
i=0

S∑
j=1

jx̃i(j)

• Expected loss rate of customers, EL = λ
∞∑
i=0

x̃i(0)

2.5 Numerical illustration

In this section we provide numerical illustrations to compare the relative

performance of the two queueing-inventory models.

The increase in the expected number of customers increase drastically

for (s,Q) policy in comparison with that for (s, S) policy for increasing

value of λ. However, the expected inventory level decreases with increase

in value of λ. These are on expected lines (see Table 2.2).

Table 2.3 provides a comparison of EN , EI and EL values for (s,Q)

and (s, S) policies, with variation in µ2. The expected loss rate is seen
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λ
(s,Q) policy (s, S) policy

EN EI EL EN EI EL
4 0.6604 10.3905 9.6477×10−5 0.6116 9.9907 2.6392×10−4

5 1.0709 10.1786 2.3277×10−4 0.9620 9.7931 5.8555×10−4

6 1.7307 9.9831 5.2460×10−4 1.4938 9.6162 0.0011

7 2.8822 9.8002 0.0013 2.3567 9.4570 0.0020

8 5.0723 9.6336 0.0028 3.8746 9.3161 0.0038

9 9.5550 9.5006 0.0050 6.7654 9.1996 0.0064

Table 2.2: Effect of λ for (α, β, µ2, s, Q, S) = (0.1, 3, 15, 7, 8, 15)

to be minimum for the (s,Q) policy. The same observation is applicable

when we consider the effect of replenishment rate (see Table 2.4).

µ2
(s,Q) policy (s, S) policy

EN EI EL EN EI EL
11 3.3399 10.0785 5.1419×10−4 5.5761 9.5803 0.0017

12 2.6808 10.0497 4.4167×10−4 4.1438 9.5392 0.0016

13 2.2516 10.0248 4.2652×10−4 3.2934 9.5066 0.0017

14 1.9517 10.0028 4.5693×10−4 2.7410 9.4797 0.0018

15 1.7307 9.9831 5.2460×10−4 2.3567 9.4570 0.0020

16 1.5611 9.9654 6.2479×10−4 2.0751 9.4376 0.0024

Table 2.3: Effect of µ2 for (α, β, λ, s,Q, S) = (0.1, 3, 6, 7, 8, 15)

Table 2.5 provides a comparison between (s,Q) and (s, S) policies

based on the measures EN , EI and EL. Here the behaviour of the first

two measures are on expected lines. However, EL, the expected loss rate

shows higher values for (s, S) for α = 0.2 and 0.3 and for still higher

values of α, the (s,Q) policy has larger values.
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β
(s,Q) policy (s, S) policy

EN EI EL EN EI EL
2 3.7928 9.7141 0.0013 3.0021 9.3840 0.0019

2.5 2.6808 10.0497 3.6806×10−4 2.2896 9.6739 5.4854× 10−4

3 2.1565 10.2754 1.2508 ×10−4 1.9226 9.8722 1.9090× 10−4

3.5 1.8633 10.4379 4.9690 ×10−5 1.7056 10.0170 7.5970× 10−5

4 1.6802 10.5608 2.2620×10−5 1.5649 10.1277 3.3840× 10−5

4.5 1.5565 10.6573 1.1574 ×10−5 1.4675 10.2153 1.6615× 10−5

Table 2.4: Effect of β for (α, λ, µ2, s, Q, S) = (0.1, 5, 10, 7, 8, 15)

α
(s,Q) policy (s, S) policy

EN EI EL EN EI EL
0.2 11.3777 8.4804 0.0443 6.2383 8.5352 0.0553

0.3 7.2463 8.1600 0.1113 4.1143 8.4738 0.1162

0.4 4.7245 7.9475 0.1817 2.9964 8.4597 0.1710

0.5 3.3075 7.8120 0.2410 2.3688 8.4675 0.2146

0.6 2.5004 7.7229 0.2863 1.9853 8.4838 0.2482

0.7 2.0139 7.6605 0.3201 1.7332 8.5024 0.2741

Table 2.5: Effect of α for (λ, β, µ2, s, Q, S) = (4, 1, 7, 7, 8, 15)

2.5.1 Optimization Problem

We consider a cost minimization problem associated with the (s,Q) pol-

icy.

For computing the minimal costs of the given queueing-inventory

model we introduce the cost function F(α) as

F(α) = C

(
N1

α
+N2

)
+ (C0 +QC1)ER + C2EI + C3EL
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where

C : unit holding cost of customer for one unit of time

C0 : fixed cost for placing an order

C1 : variable procurement cost per item

C2 : unit holding cost of inventory for one unit of time

C3 : cost incurred due to loss per customer

N1, N2, ER, EI and EL are defined in section on the performance mea-

sures.

Effect of α

α F(α)
0.1 154.4116
0.2 151.2455
0.3 150.1005
0.4 149.4784
0.5 149.0754
0.6 148.7881
0.7 148.5706
0.8 148.3992
0.9 148.5803
1 148.6452

Table 2.6: Effect of α on F(α)

For (λ, β, µ2, s, Q, C,C0, C1, C2, C3) = (2, 3, 5, 5, 15, $10, $500, $25, $2, $20)

and α from 0.1 to 1, Table 2.6 provides the effect of α on the expected

system cost per unit time. F(α) decreases first with increasing value

of α and after a certain stage in starts increasing. There is a global
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minimum. Of course this has heavy dependence on the input parame-

ter values. Nevertheless, the existence of a global minimum seems to be

guaranteed, though quite hard to prove mathematically.
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Chapter 3

Queueing Inventory System

with Reservation,

Cancellation and Common

Life Time

Whereas in chapter 2 we considered varying service rates, with items

sold never to be returned, nor items perish separately or together. In

the present chapter we are concerned with features other than the first

described above. This problem is again based on real life situation. It is

common to purchase an item in the inventory and later cancel (return)

it. We shall refer purchase of an item from inventory as reservation (for

Some results of this chapter appeared in OPSEARCH- Operational Research So-
ciety of India:
A. Krishnamoorthy, Binitha Benny and Dhanya Shajin : A revisit to queueing-
inventory system with reservation, cancellation and common life time,
OPSEARCH, Springer, Operational Research Society of India, vol.54(2),pages 336-
350,June 2017.

55
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example, reservation of a seat in bus/train/flight for a future journey).

Sometimes a few of the purchased items are returned. We call this as

cancellation (for example, canceling a reserved seat). Each item on hand

may have an expiry date which in some cases is common to all. Several ex-

amples can be cited for this: batch of medicines that were manufactured

together have a common expiry date; once a bus/train/flight departs,

the vacant seats have no use, those could not board the transport system

before departure, miss it. In this chapter we study a queueing inventory

process consisting of S items which have an expiry time, called common

life time where reservation of items and cancellation of sold items within

the expiry time is allowed. The common life time (CLT ) of items is

exponentially distributed with parameter γ, on realization of which the

remaining items are discarded, but the waiting customers stay back in

the system. Cancellation and reservation are permitted as long as com-

mon life time is not realized. Inter-cancellation time follows exponential

distribution with parameter depending on the number of items in the

reservation list at that moment. Time required to cancel a reservation is

assumed to be negligible. Demands for the item form a Poisson process

of rate λ; one unit of item is supplied to a customer at the end of his

service. The service time follows exponential distribution with parameter

µ.

Queueing inventory with reservation, cancellation, common life time

and retrial is introduced by Krishnamoorthy et al. [31]. They assumed

that a customer on arrival to an idle server with at least one item in

inventory is immediately taken for service or else he joins the buffer

of varying size depending on the number of items in the inventory. If

there is no item in the inventory the arriving customer first queue up

in a finite waiting space of capacity K. When it overflows an arrival
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goes to an orbit of infinite capacity with probability p or is lost forever

with probability 1 − p. From the orbit he retries for service. However

the authors could not produce a “product form solution”, namely joint

system state distribution equal to product of the marginal distributions.

For the model discussed here we do away with the buffer, waiting

space and orbit; instead a single queue is considered. This is at the ex-

pense of loss of some crucial information - the finite waiting list is gone

and is replaced by the number in the waiting room at any time. Never-

theless, under the crucial assumption that no customer joins the system

when inventory level is zero, we establish the stochastic decomposition

property of the system state.

3.1 Mathematical formulation

We consider a single server queueing-inventory system consisting of a

homogeneous items having a CLT . The time duration from the epoch

at which we start with maximum inventory level S at a replenishment

epoch, to the moment when the CLT is realized is called a cycle. The

CLT of items is exponentially distributed with parameter γ. On realiza-

tion of CLT customers waiting in the system stay back in the system.

When CLT is reached a replenishment order is placed, which is realized

on completion of a positive lead time, exponentially distributed with pa-

rameter β. Reservation of items and cancellation of sold items before

the CLT realization is permitted in each cycle. Cancellation takes place

according to an exponentially distributed inter-occurrence time with pa-

rameter iθ, when (S − i) items are present in the inventory. Through

cancellation of purchased item, inventory gets added to the existing one;



58
Chapter 3. Queueing Inventory System with Reservation, Cancellation

and Common Life Time

nevertheless inventory level will not go above S (the sum of items in sold

list and those in store equal to S). The customers arrive according to a

Poisson process of rate λ. Each customer requires exactly one item from

the inventory, which is served to him at the end of a random duration

of service which follows exponential distribution with parameter µ. No

customer joins the system when inventory level is zero.

The above system is modelled as a continuous time Markov Chain

Γ={(N(t), I(t)), t ≥ 0} with state space

{(n, 0∗), n ≥ 0}
⋃
{(n, i), n ≥ 0, 0 ≤ i ≤ S},

where 0∗ is inventory level on common life time realization but before

the replenishment and

N(t) : Number of customers in the system at time t

I(t) : Number of items in the inventory at time t.

The transitions in the Markov Chain are

• Transitions due to arrival:

(n, i) → (n+ 1, i) at the rate λ for n ≥ 0, 1 ≤ i ≤ S.

• Transitions due to service completions:

(n, i) → (n− 1, i− 1) at the rate µ for n ≥ 1, 1 ≤ i ≤ S.

• Transitions due to common life time realization:

(n, i) → (n, 0∗) at the rate γ for n ≥ 0, 0 ≤ i ≤ S.

• First transition that is counted after CLT is realized (which is due

to replenishment):
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(n, 0∗) → (n, S) at the rate β for n ≥ 0.

• Transition due to cancellation:

(n, i) → (n, i+ 1) at the rate (S − i)θ for n ≥ 0, 0 ≤ i ≤ S − 1.

The infinitesimal generator of Γ with entries governed as described above

is

Q =



B A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


.

where B contains transitions within level 0; A0 represents transitions

from n to n + 1 for n ≥ 0, A1 represents transitions within n for n ≥ 1

and A2 represents transitions from n to n − 1 for n ≥ 1. All these are

square matrices of order S + 2.

B =



0 1 2 · · · S − 1 S 0∗

0 bS Sθ γ

1 bS−1 (S − 1)θ γ

2 bS−2 (S − 2)θ γ
...

. . . . . .
...

S − 1 b1 θ γ

S b0 γ

0∗ β −β


,
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A1 =



0 1 2 · · · S − 1 S 0∗

0 bS Sθ γ

1 aS−1 (S − 1)θ γ

2 aS−2 (S − 2)θ γ
...

. . . . . .
...

S − 1 a1 θ γ

S a0 γ

0∗ β −β


,

A0 =



0

λ
. . .

λ

0


, A2 =



0

µ 0
. . . . . .

µ 0

0 0


.

with bS = −(γ + Sθ), bi = −(λ + iθ + γ), ai = −(λ + µ + iθ + γ) for

0 ≤ i ≤ S − 1.

3.1.1 Stability Condition

To establish the stability condition, we consider the Markov chain {I(t):t ≥
0}, where I(t) is as defined earlier with state space given by {0, 1, 2, · · ·S, 0∗}.
Let φ = (φ0,φ1, ...,φS,φ

∗
0) be the steady-state probability vector of this

Markov chain. Then φ satisfies the equations

φA = 0, φe = 1. (3.1)
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where A = (A0 +A1 +A2) = is the infinitesimal generator of this Markov

chain.

A =



0 1 2 · · · S − 1 S 0∗

0 bS Sθ γ

1 µ b′S−1 (S − 1)θ γ

2 µ b′S−2 (S − 2)θ γ
...

. . . . . . . . .
...

S − 1 µ b′1 θ γ

S µ b′0 γ

0∗ β −β


with bS = −(γ + Sθ), b′i = −(µ+ iθ + γ) for 0 ≤ i ≤ S − 1.

The components of φ are obtained as

φi =

{
Viφ0 1 ≤ i ≤ S

V ∗0 φ0 i = 0∗

where

Vi =



1 i = 0
γ + Sθ

µ
i = 1

(γ + µ+ (S − (i− 1))θ)Vi−1 − (S − (i− 2))θ)Vi−2

µ
2 ≤ i ≤ S

γ

β

S∑
i=0

Vi i = 0∗

The unknown probability φ0 can be found from the normalizing condition
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φe = 1 as

φ0 =

(
S∑
i=0

Vi + V ∗0

)−1

. (3.2)

The LIQBD description of the model indicates that the queueing-inventory

system is stable (see Neuts [48]) if and only if the left drift exceeds that

of right drift. That is,

φA0e < φA2e (3.3)

which on simplification gives the stability condition as

λ < µ. (3.4)

This leads to

Lemma 3.1.1. The process Γ= {(N(t), I(t)), t ≥ 0} is stable if and

only if λ < µ.

3.2 Steady-state Analysis

For finding the steady state vector of the process Γ, we first consider

an inventory system with negligible service time and no backlog of de-

mands. The corresponding Markov Chain may be defined as Γ̃={I(t),

t ≥ 0} where I(t) has the same definition as described in Section 3.1. Its

infinitesimal generator is given by
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H =



0 1 2 · · · S − 1 S 0∗

0 bS Sθ γ

1 λ bS−1 (S − 1)θ γ

2 λ bS−2 (S − 2)θ γ
...

. . . . . . . . .
...

S − 1 λ b1 θ γ

S λ b0 γ

0∗ β −β


Let π = (π0, π1, π2, · · · , πS, π∗0) be the steady state vector of the process

Γ̃. Then π satisfies the equations

πH = 0, πe = 1. (3.5)

Then the components of π can be obtained as

πi =

{
Uiπ0 1 ≤ i ≤ S

U∗0π0 i = 0∗

where

Ui =



1 i = 0
γ + Sθ

λ
i = 1

(γ + λ+ (S − (i− 1))θ)Ui−1 − (S − (i− 2))θ)Ui−2

λ
2 ≤ i ≤ S

γ

β

S∑
i=0

Ui i = 0∗

The unknown probability π0 can be found from the normalizing con-
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dition πe = 1 as

π0 =

(
S∑
i=0

Ui + U∗0

)−1

. (3.6)

Assuming that (3.4) is satisfied, we compute the steady state probability

of the original system. Let x denote the steady-state probability vector

of this system. Then

xQ = 0, xe = 1. (3.7)

Partitioning x as x = (x0,x1,x2, ...) where

xi = (xi(0), xi(1), ...xi(S), xi(0
∗)), fori ≥ 0

.Then by (3.7) we get

x0B + x1A2 = 0, (3.8)

xiA0 + xi+1A1 + xi+2A2 = 0; i ≥ 0. (3.9)

We produce a solution of the form

xi = K

(
λ

µ

)i
π; i ≥ 0 (3.10)

where K is a constant to be determined. With these xi substituted in

xQ = 0 we get

x0B + x1A2 = Kπ

(
B +

λ

µ
A2

)
= KπH = 0,
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xiA0+xi+1A1+xi+2A2 = K

(
λ

µ

)i+1

π

(
B +

λ

µ
A2

)
= K

(
λ

µ

)i+1

πH = 0.

Thus we can see that (3.10) satisfy the equations (3.8) and (3.9). Now

applying the normalizing condition xe =1 we get

K

(
1 +

(
λ

µ

)
+

(
λ

µ

)2

+ ...

)
= 1.

Hence under the condition λ < µ, we have K = 1− λ
µ
.

Thus under the condition that λ < µ, the steady state probabil-

ity vector of the process Γ with generator matrix Q is given by x =

(x0,x1,x2, ...), where

xi = K

(
λ

µ

)i
π; i ≥ 0 (3.11)

where

K = 1− λ

µ
. (3.12)

Thus, the system state distribution under the stability condition is the

product of marginal distributions of the number of customers in an

M/M/1 system and the number of items in the inventory.

Now we look at a few of the system characteristics that throw light

on the performance of the system.

3.2.1 Performance Measures

We have the following entities providing information on the system.

1. Expected number of customers in the system, EC =
λ

µ− λ
.
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2. Expected number of item in the inventory,EI =
S∑
i=1

iπi.

3. Expected cancellation rate, ECR =
S∑
i=0

(S − i)θπi.

4. Expected number of cancellation, ECN =

∑S
i=0(S − i)θπi

γ
.

5. Expected inventory purchase rate by customers, EPR = λ
S∑
i=1

πi.

6. Expected number of inventory purchased by customers in a cycle,

EPN =
λ
∑S

i=1 πi
γ

.

7. Expected loss rate of customers, EL = λπ0.

8. Probability that all items are in sold list before CLT realization,

Pvacant = π0.

9. Probability that all items are in the system before CLT realization,

Pfull = πS.

3.2.2 Expected sojourn time in zero inventory level

in a cycle before realization of CLT

This is the expected time during which the system stays with no in-

ventory. We derive this for a finite capacity system. For that con-

sider the Markov Chain {(N(t), I(t)) : t ≥ 0}. The state space is

{(n, 0) : 0 ≤ n ≤ K}
⋃
{∆} where {∆} denotes the absorbing state

of the Markov chain which is realization of CLT or cancellation and K
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is the maximum number of customers accommodated in the system. Its

infinitesimal generator is of the form

H1 =

[
T T 0

0 0

]
where

T =



0 1 2 · · · K − 1 K ∆

0 −(Sθ + γ) (Sθ + γ)

1 −(Sθ + γ) (Sθ + γ)

2 −(Sθ + γ) (Sθ + γ)
...

...

K − 1 −(Sθ + γ) (Sθ + γ)

K −(Sθ + γ) (Sθ + γ)

∆ 0 0 0 0



Thus expected sojourn time in zero inventory level, E0
T = −αKT−1e

where αK = (x0(0), x1(0), · · · , xK(0)). Expected number of visits =
µρ
γ
π1. Thus the expected sojourn time in zero inventory level in a cy-

cle = µρ
γ
π1(−αKT−1e).

3.2.3 Expected sojourn time in maximum inventory

level S in a cycle before realization of CLT

This is the expected time system stays with maximum inventory. Here

also derivation is done in case of finite number of customers. For that

consider the Markov Chain {(N(t), I(t)), t ≥ 0}. The state space is

{(n, S) : 0 ≤ n ≤ K}
⋃
{∆}, where {∆} denotes the absorbing state of

the Markov chain which represents realization of CLT or service comple-

tion. Its infinitesimal generator is of the form
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H2 =

[
T1 T 0

1

0 0

]
where

T1 =



0 1 2 · · · K − 1 K ∆

0 −(λ+ µ+ γ) λ (µ+ γ)

1 −(λ+ µ+ γ) λ (µ+ γ)

2 −(λ+ µ+ γ) λ (µ+ γ)
...

...

K − 1 −(λ+ µ+ γ) (µ+ γ)

K −(λ+ µ+ γ) (µ+ γ)

∆ 0 0 0 0



Thus the expected sojourn time in maximum inventory level, ES
T1

=

−αKT−1
1 e where αK = (x0(S), x1(S), · · · , xK(S)) and expected number

of visits to S = θ
γ
πS−1. Thus, expected sojourn time in maximum inven-

tory level in a cycle = (−αKT−1
1 e) θ

γ
πS−1.

3.3 Numerical illustration

In this section we provide numerical illustration of the system perfor-

mance with variation in values of underlying parameters.

Effect of λ on various performance measures

Table 3.1 indicates that increase in λ value makes increase in expected

number of customers in the system, expected loss rate, expected purchase

rate, expected cancellation rate. As λ increases there is a decrease in

the expected number of items in the inventory. Also, as λ increases

probability that all items are in the sold list prior to realization of CLT
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λ EC EI EL ECR EPR Pvacant Pfull
9 1.4992 16.2817 1.3246× 10−6 8.2979 8.5697 1.4717× 10−7 0.0602
10 1.9946 15.9726 6.1139× 10−6 9.2258 9.5154 6.1139× 10−7 0.0459
11 2.7185 15.6629 2.1047× 10−5 10.1563 10.4442 1.9133× 10−6 0.0355
12 3.8342 15.3587 5.5471× 10−5 11.0717 11.3313 4.6226× 10−6 0.0280
13 5.6433 15.0756 1.1340× 10−4 11.9242 12.1367 8.7234× 10−6 0.0229

Table 3.1: Effect of λ:Fix S = 20, θ = 3, µ = 15, γ = 0.1, β = 2

increases and probability that all items are in the system just prior to

realization of CLT decreases. These are all natural consequences as

arrival rate increases.

Effect of the service rate µ

µ EC EI EL ECR EPR Pvacant Pfull
12 7.7781 15.7020 8.3553× 10−5 10.0471 10.1282 7.5957× 10−6 0.0380
13 4.9860 15.6684 6.0072× 10−5 10.1447 10.3136 5.4611× 10−6 0.0364
14 3.5499 15.6618 3.7134× 10−5 10.1616 10.4034 3.3759× 10−6 0.0357
15 2.7185 15.6629 2.1047× 10−5 10.1563 10.4442 1.9133× 10−6 0.0355
16 2.1905 15.6665 1.1363× 10−5 10.1490 10.4622 1.0330× 10−6 0.0354
17 1.8302 15.6665 5.9801× 10−6 10.1440 10.4700 5.4364× 10−7 0.0353

Table 3.2: Effect of µ: S = 20, θ = 3, λ = 11, γ = 0.1, β = 2

Table 3.2 indicates that increase in µ values leads to decrease in the

expected number of customers and expected loss rate of customers in

the system. As service rate increases, it is natural that loss rate of cus-

tomers and expected number of customers in the system decreases. As

µ increases expected number of items in the inventory shows a decreas-

ing tendency first and then it increases. This could be attributed to

the increase in cancellation of purchased items. Expected purchase rate

increases, which is on expected lines. However, expected cancellation

rate increases first and then decreases as µ value increases. The initial

increase in cancellation rate is due to large number of purchases taking
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place consequent to increasing value of µ; however with further increase

in value of µ, the traffic intensity decreases and so the number of actual

purchase decreases, which in turn results in the decrease of the rate of

cancellations. Probability for all items in sold list prior to CLT realiza-

tion decreases, so also that for all items in system.

Effect of common life time parameter γ

In Table 3.3, there are few surprises. These are in the behaviour of

EI , ECR and EPR with increase in value of γ. Increase in γ means

the CLT realization is faster. We observe that as γ increases there is

a decrease in expected number of items in the inventory, expected loss

rate of customers. Shorter the CLT , lesser will be the purchase rate, so

cancellation rate also decreases. Also, we observe that as CLT realization

decreases probability that all items are in sold list just prior to CLT

realization decreases and probability that all items are in system prior

to CLT realization increases.

γ EC EI EL ECR EPR Pvacant Pfull
0.1 4.9860 15.6684 6.0072× 10−5 10.1447 10.3136 5.4611× 10−6 0.0364
0.2 4.9865 15.0569 5.6983× 10−5 9.3877 9.8460 5.1803× 10−6 0.0449
0.3 4.9871 14.4928 5.4177× 10−5 8.7134 9.4188 4.9251× 10−6 0.0524
0.4 4.9875 13.9706 5.1615× 10−5 8.1101 9.0272 4.6923× 10−6 0.0590
0.5 4.9880 13.4857 4.9268× 10−5 7.5680 8.6669 4.4789× 10−6 0.0648
0.6 4.9884 13.0342 4.7109× 10−5 7.0791 8.3342 4.2827× 10−6 0.0699

Table 3.3: Effect of γ: S = 20, θ = 3, λ = 11, µ = 13, β = 2

Effect of cancellation rate θ

Table 3.4, shows that as cancellation rate increases expected number

of customers in the system initially show a slight increase and then it
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remains constant. Expected number of items in the inventory and ex-

pected cancellation rate show an upward trend, which is a consequence

of increasing value of θ. Expected purchase rate increases first and then

remains constant and expected loss rate of customers decrease with re-

spect to increase in θ. Also, we observe that as cancellation rate increases

probability that all items are in sold list just prior to CLT realization

decreases and probability that all items are in system just prior to CLT

realization increases.This tendency is a consequence of higher cancella-

tion rate for the same CLT parameter value.

θ EC EI EL ECR EPR Pvacant Pfull
1 4.9854 9.7793 0.0278 9.2706 10.2863 0.0025 0.0099
2 4.9859 14.0978 1.5007× 10−4 9.9043 10.3136 1.3643× 10−5 0.0153
3 4.9860 15.6684 6.0072× 10−5 10.1447 10.3136 5.4611× 10−6 0.0364
4 4.9860 16.4797 3.4360× 10−5 10.2809 10.3137 3.1236× 10−6 0.0726
5 4.9860 16.9753 2.3040× 10−5 10.3736 10.3137 2.0946× 10−6 0.1165
6 4.9860 17.3093 1.7012× 10−5 10.4440 10.3137 1.5466× 10−6 0.1624

Table 3.4: Effect of θ: S = 20, γ = 0.1, λ = 11, µ = 13, β = 2

Effect of replenishment rate β

From Table 3.5, we observe that as replenishment rate increases expected

number of customers in the system show a slight decreasing tendency and

expected loss rate of customers increase. There is an increase in expected

number of items in the inventory, expected cancellation rate, expected

purchase rate. Also, we observe that as replenishment rate increases

probability that all items are in sold list just prior to CLT realization

and probability that all items are in system just prior to CLT realization

increases.
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β EC EI EL ECR EPR Pvacant Pfull
1 4.9865 14.9579 5.720× 10−5 9.6846 9.8460 5.2001× 10−6 0.0347
2 4.9860 15.6684 6.0072× 10−5 10.1447 10.3136 5.4611× 10−6 0.0364
3 4.9858 15.9205 6.1094× 10−5 10.3079 10.4796 5.5540× 10−6 0.0370
4 4.9857 16.0496 6.1618× 10−5 10.3915 10.5646 5.6017× 10−6 0.0373
5 4.9856 16.1281 6.1937× 10−5 10.4423 10.6162 5.6306× 10−6 0.0374
6 4.9856 16.1808 6.2151× 10−5 10.4764 10.6509 5.6501× 10−6 0.0376

Table 3.5: Effect of β: S = 20, θ = 3, λ = 11, µ = 13, γ = 0.1

3.3.1 Optimization Problem

Based on the above performance measures we construct a cost function

to check the maximality of profit function.

We define a revenue function as RF as

RF = C1EPR + C2ECR − hIEI − hCEC

= π0{C1λ
S∑

1=1

Ui + C2

S−1∑
i=0

(S − i)θUi − hI
S∑
i=1

iUi} − hC
λ

µ− λ

where

• C1 = revenue to the system due to per unit purchase of item in the

inventory

• C2 = revenue to the system due to per unit cancellation of inventory

purchased

• hI = holding cost per unit time per item in the inventory

• hC = holding cost of customer per unit per unit time

In order to study the variation in different parameters on profit function

we first fix the costs C1 = $150, C2 = $50, hI = $20, hC = $5.
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Effect of variation in S, γ and θ on RF

Table 3.6 shows that the change in revenue function with respect to

S and θ. The revenue function increases first with θ and then keep

going down. It may be noted that cancellation to some extent prior to

common life realization results in higher profit to the system since there

is a cancellation penalty imposed on the customer. As common life time

realization decreases profit becomes less. This is due to lower cancellation

rate. Table 3.7 shows that the change in revenue function with respect

to S and γ keeping rate of cancellation a constant. Table 3.8 shows the

change in revenue function with respect to γ and θ.

S ↓ θ → 1 1.5 2 2.5 3 3.5 4

10 1511.2 1789.9 1882.4 1904.6 1906.8 1904.3 1901.2

11 1602 1835.4 1890.2 1895.8 1892.1 1887.6 1883.7

12 1677 1859.5 1885.2 1881.5 1875.2 1869.9 1865.8

13 1735.7 1867.3 1873.1 1864.7 1857.4 1851.9 1847.8

14 1778.6 1863.9 1857.5 1847.1 1839.4 1833.9 1829.8

15 1806.7 1853.5 1840.4 1829.1 1821.4 1815.8 1811.7

16 1882 1839.1 1822.6 1811.1 1803.3 1797.8 1793.7

Table 3.6: Effect of S and θ. Fix λ = 11, µ = 13, γ = 0.1, β = 2



74
Chapter 3. Queueing Inventory System with Reservation, Cancellation

and Common Life Time

S ↓ γ → 0.1 0.15 0.2 0.25 0.3 0.35 0.4

10 1882.4 1828.1 1776.7 1728 1681.6 1637.6 1595.6

11 1890.2 1834.5 1781.7 1731.7 1684.2 1639.2 1596.4

12 1885.2 1828.5 1775.5 1725 1677.1 1631.7 1588.6

13 1873.1 1816.6 1763.2 1712.7 1664.8 1619.4 1576.3

14 1857.5 1801.2 1748 1697.7 1650 1604.8 1561.8

15 1840.4 1784.4 1731.5 1681.4 1634.1 1589.1 1546.5

16 1822.6 1767 1714.4 1664.7 1617.7 1573.1 1530.7

Table 3.7: Effect of γ and S.Fix λ = 11, µ = 13, β = 2, θ = 2

γ ↓ θ → 1 1.5 2 2.5 3

0.1 1806.7 1747.2 1691.3 1638.8 1589.4

0.15 1853.5 1793.3 1736.7 1683.5 1633.3

0.2 1840.4 1784.4 1731.5 1681.4 1634.1

0.25 1829.1 1776 1725.7 1677.9 1632.6

0.3 1821.4 1770.2 1721.6 1675.4 1631.4

0.35 1815.8 1766.0 1718.7 1673.6 1630.7

0.4 1811.7 1763 1716.6 1672.4 1630.3

Table 3.8: Effect of θ and γ. Fix S = 15 λ = 11, µ = 13, β = 2
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(a) Effect of S and θ
(b) Effect of S and γ

(c) Effect of γ and θ
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Chapter 4

Queueing Inventory System

with Reservation,

Cancellation, Common Life

Time- Case of Zero and

Positive Lead Time

4.1 Introduction

In this chapter we continue our investigation of queueing-inventory with

reservation,cancellation and CLT . Two different scenarios are discussed:(i)the

case of zero lead time,in which on realization of CLT or the first time

Some results in this chapter appeared in Communications in Applied Analysis :
Dhanya Shajin, Binitha Benny, Deepak T.G and A. Krishnamoorthy : A relook to
queueing-inventory system with reservation, cancellation and common life
time,Communications in Applied Analysis.20(2016),545-574

77
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inventory level hits zero for the first time in the cycle, whichever occurs

first, the inventory reaches its maximum level S through an instanta-

neous replenishment for the next cycle. (ii)the case of positive lead time

which is exponentially distributed. When the inventory level is zero,

new arrivals and cancellation of purchased items are not permitted. In

both cases we produce product form solutions. Assumption concerning

arrival process, service time distribution, distribution of CLT are as in

Chapter-3.

To start with we need to define a few terms.

Definition 4.1.1. A cycle is the time starting from the maximum

inventory S in stock at an epoch, until the next epoch of replenishment,

that is, duration between two consecutive S to S transitions.

The end of a cycle and hence the beginning of the next cycle can

be either due to CLT realization or by a service completion when there

was just one item left in the inventory (the customer completing service,

walks away with this item), whichever occurs first.

We define two types of events that causes the beginning of a new

cycle. We call these two events A and B, respectively.

Definition 4.1.2. A Event

A event is the one, occurrence of which causes the end of a cycle in

the following way: suppose a service is going on with just one item of

inventory left. Assume that neither CLT realization nor a cancellation

takes place before this service is completed. Thus at the end of the present

service the customer walks away with the single item left in the inventory.

If this happens for the first time starting from the moment the inven-



4.2. Mathematical formulation 79

tory is replenished most recently, we refer to it as A event. This means

that we don’t allow cancellation once the inventory level goes down to

zero.

Definition 4.1.3. B Event

When a cycle ends (and so the new cycle begins) with occurrence of CLT

we say that a B event has occurred resulting in the cycle completion.

The significance of the model rests in the fact that a replenishment

is triggered by either realization of CLT or by a demand when there is

only one item left in the inventory, whichever occurs first. This means

that the cycle time (length of a cycle) is given by min( exp(α), time

until inventory level drops to zero from S (starting from the epoch of

replenishment in that cycle)). The distribution of this, which is phase

type, will be derived at a later stage in this chapter.

4.2 Mathematical formulation

We have a single server queueing-inventory system with a storage space

for a maximum of S items of the inventory at the beginning of a cycle.

Customers arrive according to Poisson process of rate λ, each demanding

exactly one unit of the item. To deliver one unit of the item to a customer,

it requires an exponentially distributed amount of time with parameter

µ for service. The inventoried items have a common life time (CLT )

which means that they all perish together on realization of this time.

We assume that this common life time is exponentially distributed with

parameter α. On realization of CLT or the first time inventory level hits

zero for the first time in the cycle, whichever occurs first, the inventory
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reaches its maximum level S (denoted by S∗ for identification purpose)

through an instantaneous replenishment for the next cycle. In addition

the possibility of cancellation of purchased item (return of the item with

a penalty), is introduced here. Inter cancellation time follows exponential

distribution with parameter iβ when there are (S − i) items present in

the inventory.

4.3 Steady state analysis

In this section we analyze the queueing-inventory model described in 4.2

in steady state. Let

N(t) : Number of customers in the system at time t

I(t) : Number of items in the inventory at time t

The process Ω = {(N(t), I(t)) , t ≥ 0} is a continuous time Markov chain

with state space given by

{(n, i), n ≥ 0, 1 ≤ i ≤ S}
⋃
{(n, S∗), n ≥ 0}.

where S∗ denotes inventory level on realization of common life time (con-

sequent to the replenishment. This is same as S; however, just to dis-

tinguish the beginning of the next cycle we use it as a purely temporary

notation). The transition rates are:

(a) Transitions due to arrival:

(n, i)→ (n+ 1, i) : rate λ for n ≥ 0, 1 ≤ i ≤ S

(n, S∗)→ (n+ 1, S∗) : rate λ for n ≥ 0.
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(b) Transitions due to service completions:

(n, i)→ (n− 1, i− 1) : rate µ for n ≥ 1, 2 ≤ i ≤ S

(n, 1)→ (n− 1, S∗) : rate µ for n ≥ 1,

(n, S∗)→ (n− 1, S − 1) : rate µ for n ≥ 1.

(c) Transitions due to CLT realization:

(n, i)→ (n, S∗) : rate α for n ≥ 0, 1 ≤ i ≤ S.

(d) Transition due to cancellation:

(n, i)→ (n, i+ 1) : rate (S − i)β for n ≥ 0, 1 ≤ i ≤ S − 1.

Other transitions have rate zero.

Thus the infinitesimal generator of Ω is of the form

Q =



A00 A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


. (4.1)

Each matrix A00, A0, A1, A2 is a square matrix of order S + 1.

Entries of A0 are given in (a); that of A2 are given in (b) and those in

A0,0 and A1 correspond to transition rates given by (c) and (d). In ad-

dition diagonal entries in A00 and A1 are non-positive, having numerical
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value equal to but with negative sign the sum of other elements of the

same row found in A00, A0, A1 and A2. All other transitions have rate

zero.

4.3.1 Stability condition

Let π be the steady state probability vector of A = A0 +A1 +A2, where

π = (π1, π2, ..., πS, πS∗). That is, π satisfies

πA = 0, πe = 1. (4.2)

where

A =



1 2 3 · · · · · · S − 1 S S∗

1 bS−1 aS−1 α + µ

2 µ bS−2 aS−2 α

3 µ bS−3 aS−3 α
...

. . . . . . . . .
...

S − 2 µ b2 a2 α

S − 1 µ b1 a1 α

S µ b0 α

S∗ µ −µ


with bi = −(µ+α+ iβ), 0 ≤ i ≤ S− 1 and aj = jβ, 1 ≤ j ≤ S− 1. Then

π can be obtained as

πi = Uiπ1, 1 ≤ i ≤ S, S∗
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where

Ui =



1 i = 1,
µ+ α + (S − 1)β

µ
i = 2,

µ+ α + (S − i+ 1)β

µ
Ui−1 −

(S − i+ 2)β

µ
Ui−2 3 ≤ i ≤ S − 1,

β

µ+ α
US−1 i = S

µ+ α + β

µ
US−1 −

2β

µ
US−2 − US i = S∗.

The unknown probability π1 can be found from the normalizing condition

π1 =

[
S∑
i=1

Ui + US∗
]−1

.

The following theorem establishes the stability condition of the queueing-

inventory system under study.

Theorem 4.3.1. The queueing-inventory system under study is

stable if and only if λ < µ.

Proof. The queueing-inventory system under study with the LIQBD

type generator given in (4.1) is stable if and only if (see Neuts [48])

πA0e < πA2e. (4.3)

Note that from the transition rates (a) (which give the elements of A0),

and (b) (which give the form of A2), we get

πA0e = λ(π1 + ...+ πS + πS∗) and πA2e = µ(π1 + ...+ πS + πS∗). (4.4)
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From the normalizing condition we have π1 + ...+ πS + πS∗ = 1.

Substituting this expression into (4.4) and using (4.3) we get the stated

result.

4.3.2 Steady state probability vector

Let x be the steady state probability vector of Q. Then x must satisfy

the set of equations

xQ = 0, xe = 1. (4.5)

Note that the vector x partitioned as x = (x0,x1,x2, ...), is such that the

ith component of xn gives the steady state probability that there are n

customers in the system and i items in the inventory. Then the above

set of equations reduce to:

x0A00 + x1A2 = 0, (4.6)

xn−1A0 + xnA1 + xn+1A2 = 0, n ≥ 1. (4.7)

For computing the steady state probability vector of the CTMC Ω, we

first consider the system with negligible service time. Thus the infinites-
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imal generator is given by

Ã =



1 2 3 · · · · · · S − 1 S S∗

1 dS−1 aS−1 α + λ

2 λ dS−2 aS−2 α

3 λ dS−3 aS−3 α
...

. . . . . . . . .
...

S − 2 λ d2 a2 α

S − 1 λ d1 a1 α

S λ d0 α

S∗ λ −λ


with di = −(λ+ α + iβ), 0 ≤ i ≤ S − 1 and aj = jβ, 1 ≤ j ≤ S − 1.

Let ξ = (ξ1, ..., ξS, ξS∗) be the steady state vector of Ã. Then ξ

satisfies the equations

ξÃ = 0, ξe = 1. (4.8)

From ξÃ = 0 we have

−(λ+ α + (S − 1)β)ξ1 + λξ2 = 0,

−(λ+ α + (S − i+ 1)β)ξi−1 + (S − i)βξi + λξi+1 = 0, 2 ≤ i ≤ S − 2

2βξS−2 − (λ+ α + β)ξS−1 + λξS + λξS∗ = 0,

βξS−1 − (λ+ α)ξS = 0,

α(ξ1 + ...+ ξS) + λξ1 − λξS∗ = 0
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and ξi can be obtained as ξi = Viξ1, 1 ≤ i ≤ S, S∗ where

Vi =



1 i = 1,
λ+ α + (S − 1)β

λ
i = 2,

λ+ α + (S − i+ 1)β

λ
Vi−1 −

(S − i+ 2)β

λ
Vi−2 3 ≤ i ≤ S − 1,

β

λ+ α
VS−1 i = S

λ+ α + β

λ
VS−1 −

2β

λ
VS−2 − VS i = S∗.

The unknown probability ξ1 can be found from the normalizing condition

ξ1 =

[
S∑
i=1

Vi + VS∗
]−1

.

Now using the vector ξ we proceed to compute the steady state proba-

bility vector of the original system. It is seen that

xn = K
(
λ

µ

)n
ξ for n ≥ 0 (4.9)

where K is a constant to be determined, is the unique solution to (4.5).

From (4.6), we have

x0A00 + x1A2 = Kξ
(
A00 +

λ

µ
A2

)
= KξÃ = 0 (4.10)
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and from relation (4.7), we have

xn−1A0 + xnA1 + xn+1A2 = K
(
λ
µ

)n
ξ
(
µ
λ
A0 + A1 + λ

µ
A2

)
= K

(
λ
µ

)n
ξ
(
µ
λ
A0 + A00 − µ

λ
A0 + λ

µ
A2

)
= K

(
λ
µ

)n
ξÃ = 0.

(4.11)

Thus (4.9) satisfies (4.6) and (4.7). Now applying the normalizing con-

dition xe = 1, we get

Kξ

[
1 +

(
λ

µ

)
+

(
λ

µ

)2

+ ...

]
e = 1.

Hence under the condition that λ < µ, we have

K = 1− λ

µ
. (4.12)

Thus we arrive at our main result:

Theorem 4.3.2. Under the necessary and sufficient condition λ < µ

for stability, the components of the steady state probability vector of the

CTMC Ω, with generator Q, is given by (4.9) and (4.12). That is,

xn =

(
1− λ

µ

)(
λ

µ

)n
ξ for n ≥ 0. (4.13)
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4.3.3 Probability that the next cycle starts with ser-

vice completion / realization of common life

time in the previous cycle

In this section we analyze the probability that a cycle starts with service

completion / realization of common life time in the previous cycle. First

choose K such that

K∑
n=0

(
1− λ

µ

)(
λ

µ

)n
> 1− ε for any preassigned ε.

Consider the Markov chain {(I(t), N(t)), t ≥ 0} whose state space

{(i, n), 1 ≤ i ≤ S, 0 ≤ n ≤ K}
⋃
{∆µ}

⋃
{∆CLT}

where {∆µ} is the absorbing state consequent to the replenishment order

placed on realization of event A and {∆CLT} represents the realization

of common life time. Thus its infinitesimal generator is of the form

P =

(
T T 0

µ T 0
CLT

0 0 0.

)

where

T =



S S − 1 S − 2 · · · 3 2 1

S B1 B2

S − 1 B
(1)
0 B

(1)
1 B2

S − 2 B
(2)
0 B

(2)
1 B2

...
. . .

. . .
. . .

3 B
(S−3)
0 B

(S−3)
1 B2

2 B
(S−2)
0 B

(S−2)
1 B2

1 B
(S−1)
0 B

(S−1)
1


,
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T 0
µ =


0
...

0

B′2

 , T 0
CLT =


αe
...

αe

αe


with

B′2 =


0

µ
...

µ

 , B2 =


0

µ 0
. . . . . .

µ 0

 , B
(i)
0 =


iβ

iβ
. . .

iβ

 ,

B1 =



a0 λ

a λ
. . . . . .

a λ

aK


, B

(i)
1 =



b0 λ

b λ
. . . . . .

b λ

bK


with a0 = −(λ+ α), a = −(λ+ µ+ α), aK = −(µ+ α), b0 = −(λ+ iβ +

α), b = −(λ+ µ+ iβ + α), bK = −(µ+ iβ + α), 1 ≤ i ≤ S − 1.

Let γ = (γS, 0, ..., 0) be the initial probability vector of order S(K+1)

where γS =
1

(1− ρK+1)
((1− ρ), (1− ρ)ρ, ..., (1− ρ)ρK) with ρ =

λ

µ
.

Thus we arrive at

Theorem 4.3.3. (a) Probability that the inventory level drops to

zero before realization of common life time, pµ = −γT −1T 0
µ .

(b) Probability that the common life time realizes before inventory level

becomes zero, pCLT = −γT −1T 0
CLT = −γT −1αe.
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(c) Mean duration of the time until either the inventory level becomes

zero or realization of common life time whichever occurs first, µT =

−γT −1e.

4.3.4 System performance measures

In this section we consider system performance measures.

• Expected number of customers in the system

EN =
∞∑
n=1

S∑
i=1

nxn(i) =
λ

µ− λ

S∑
i=1

ξi.

• Expected number of items in the inventory

EI =
∞∑
n=0

S∑
i=1

ixn(i) =
S∑
i=1

iξi.

• Expected rate of purchase

EPR = µ

∞∑
n=1

S∑
i=1

xn(i) = λ
S∑
i=1

ξi.

• Expected cancellation rate

ECR =
∞∑
n=0

S∑
i=1

(S − i)βxn(i) =
S∑
i=1

(S − i)βξi.
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• Expected number of reservations for inventory made in a cycle

EPN =
EPR
µT

.

• Expected number of cancellations in a cycle

ECN =
ECR
µT

.

4.4 Case of positive lead time

In this section we consider the system with positive lead time. Thus

on realization of CLT or when the inventory level reaches zero through

a service completion, an order for replenishment is placed. The lead

time is exponentially distributed with parameter θ. Subsequently the

inventory level reaches its maximum S (denoted by S∗ for convenience

in identification). When the inventory level is zero, new arrivals and

cancellation of purchased items are not permitted. The above condition

is imposed since inventory level can drop to zero through a demand or

through realization of CLT . The significance of this assumption is that

a passenger bus leaves the station with all seats full and so cancellation

thereafter has no meaning. Remaining assumptions are as in Section 4.2.

We have the CTMC {(N(t), I(t)), t ≥ 0} with state space

{(n, i), n ≥ 0, 0 ≤ i ≤ S}
⋃
{(n, S∗), n ≥ 0}.

Thus the infinitesimal generator is the same as that given in (4.1). But

with entries of A0 as given in (i); that of A2 as given in (ii) and that

in A0,0 and A1 correspond to transition rates given by (iii), (iv) and
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(v) below. In addition diagonal entries in A00 and A1 are non-positive,

having numerical value equal to the sum of other elements of the same

row found in A00, A0, A1 and A2. All other transitions have rate zero.

(i) Transitions due to arrival:

(n, i)→ (n+ 1, i) : rate λ for n ≥ 0, 1 ≤ i ≤ S

(n, S∗)→ (n+ 1, S∗) : rate λ for n ≥ 0.

(ii) Transitions due to service completions:

(n, i)→ (n− 1, i− 1) : rate µ for n ≥ 1, 1 ≤ i ≤ S

(n, S∗)→ (n− 1, S − 1) : rate µ for n ≥ 1.

(iii) Transitions due to common life time realization:

(n, i)→ (n, 0) : rate α for n ≥ 0, 1 ≤ i ≤ S.

(iv) Transition due to cancellation:

(n, i)→ (n, i+ 1) : rate (S − i)β for n ≥ 0, 1 ≤ i ≤ S − 1.

(v) Transition due to lead time:

(n, 0)→ (n, S∗) : rate θ for n ≥ 0.

Each matrix A00, A0, A1, A2 is a square matrix of order S + 2.
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Stability condition

Let φ = (φ0, φ1, ..., φS, φS∗) be the steady state probability vector of

A = A0 + A1 + A2. Then

φA = 0, φe = 1.

The Markov chain is stable if and only if (see Neuts [48]) the left drift

rate exceeds the right drift rate. That is,

φA0e < φA2e.

Using this relation we have the following

Theorem 4.4.1. The system under study is stable if and only if

λ < µ.

4.4.1 Stochastic decomposition of system states

Let y = (y0,y1,y2, ...) be the steady-state probability vector of Q where

each component

yn = (yn(0), yn(1), ..., yn(S), yn(S∗)), n ≥ 0. Then

yQ = 0, ye = 1.

yn(i) = lim
t→∞

Prob.(N(t) = n, I(t) = i), n ≥ 0, 0 ≤ i ≤ S and i = S∗.

Assume

yn = Kρnψ, n ≥ 0
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where ψ is steady-state probability vector when the service time is neg-

ligible, K is a constant and ρ =
λ

µ
.

Now we first consider the system with instantaneous service time.

The infinitesimal generator is given by

Ã =



0 1 2 3 · · · · · · S − 1 S S∗

0 −θ θ

1 α + λ fS−1 hS−1

2 α λ fS−2 hS−2

3 α λ fS−3 hS−3
...

...
. . . . . . . . .

S − 2 α λ f2 h2

S − 1 α λ f1 h1

S α λ f0

S∗ λ −λ


with fi = −(λ+ α + iβ), 0 ≤ i ≤ S − 1 and hj = jβ, 1 ≤ j ≤ S − 1.

Let ψ = (ψ0, ψ1, ..., ψS, ψS∗) be the steady state vector of Ã. Then ψ

satisfies the equations

ψÃ = 0, ψe = 1.

Each ψi can be obtained as

ψi =


Uiψ1 0 ≤ i ≤ S,

US∗ψ1 i = S∗,[
S∑
i=0

Ui + US∗
]−1

i = 1,

(4.14)
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where

Ui =



λ

θ
US∗ i = 0,

1 i = 1,
α + λ+ (S − 1)β

λ
U1 i = 2,

α + λ+ (S − i+ 1)β

λ
Ui−1 −

(S − i+ 2)β

λ
Ui−2 3 ≤ i ≤ S − 1,

β

α + λ
US−1 i = S,

α + λ+ β

λ
US−1 −

2β

λ
US−2 − US i = S∗.

(4.15)

Now from yQ = 0 and yn = Kρnψ, n ≥ 0, we have

y0A00 + y1A2 = KψÃ = 0,

and

yn−1A0 + ynA1 + yn+1A2 = KρnψÃ = 0.

Using ye = 1 we get K = 1− ρ.

Theorem 4.4.2. The steady-state probability vector y of Q is

obtained as

yn(i) = (1−ρ)ρnψi, n ≥ 0, 0 ≤ i ≤ S and i = S∗ at the beginning of the new cycle

(4.16)

where ρ =
λ

µ
and ψi represents the inventory level probabilities when

service time is negligible and are given in (4.14).
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4.4.2 Probability that the next cycle starts with ser-

vice completion or realization of common life

time

Unlike in section 4.3.3, we cannot compute the probabilities of a new

cycle starting with a service completion/ realization of CLT , with the

help of the same infinitesimal generator since the lead time is positive.

In this section we analyze the probabilities of the next cycle starting

with service completion and realization of common life time. Choose K

sufficiently large that

K∑
n=0

(
1− λ

µ

)(
λ

µ

)n
> 1− ε, for arbitrary small ε > 0.

Except for heavy traffic (that is, λ
µ

close to 1) the above approximation

is very much near to exact value.

First we compute the probability that the inventory level becomes

zero before realization of CLT . Consider the Markov chain

{(I(t), N(t)), t ≥ 0}

whose state space {(i, n), 0 ≤ i ≤ S, 0 ≤ n ≤ K}
⋃
{∆µ} where {∆µ} is

the absorbing state which means the replenishment order is placed after

realization of event A. Thus its infinitesimal generator is of the form

P1 =

(
T1 T̃ 0

0 0

)
where
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T1 =



S S − 1 S − 2 · · · 3 2 1 0

S B0
1 B2

S − 1 B
(1)
0 B

0(1)
1 B2

S − 2 B
(2)
0 B

0(2)
1 B2

...
. . .

. . .
. . .

3 B
(S−3)
0 B

0(S−3)
1 B2

2 B
(S−2)
0 B

0(S−2)
1 B2

1 B
(S−1)
0 B

0(S−1)
1 B2

0 −θI


,

T̃ 0 =


0
...

0

θe

 where B2 =


0

µ 0

. . .
. . .

µ 0

 , B
(i)
0 =


iβ

iβ

. . .

iβ

 ,

B0
1 =



a0 λ

a λ

. . .
. . .

a λ

aK


, B

0(i)
1 =



b0 λ

b λ

. . .
. . .

b λ

bK


with a0 = −λ, a = −(λ + µ), aK = −µ, b0 = −(λ + iβ), b = −(λ + µ +

iβ), bK = −(µ+ iβ), 1 ≤ i ≤ S − 1.

Let η = (ηS, 0, ..., 0) be initial probability vector of order (S+1)(K+

1) where ηS =
1

(1− ρK+1)
((1− ρ), (1− ρ)ρ, ..., (1− ρ)ρK).

Thus we have

Theorem 4.4.3. Probability that the inventory level becomes zero

before realization of common life time, pµ = −η (T1)−1 T̃ 0.

Next we compute the probability that CLT realized before inventory
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level becomes zero. Consider the Markov chain {(I(t), N(t)), t ≥ 0}
whose state space {(i, n), 0 ≤ i ≤ S, 0 ≤ n ≤ K}

⋃
{∆CLT} where

{∆CLT} is the absorbing state which means the replenishment order is

placed after realization of event B. Thus its infinitesimal generator is of

the form

P2 =

(
T2 T̃ 0

0 0

)
where

T2 =



S S − 1 S − 2 · · · 3 2 1 0

S B1 B2 αI

S − 1 B
(1)
0 B

(1)
1 B2 αI

S − 2 B
(2)
0 B

(2)
1 B2 αI

...
. . .

. . .
. . .

...

3 B
(S−3)
0 B

(S−3)
1 B2 αI

2 B
(S−2)
0 B

(S−2)
1 B2 αI

1 B
(S−1)
0 B

′(S−1)
1 αI

0 −θI


,

T̃ 0 =


0
...

0

θe

 where B
(i)
0 =


iβ

iβ
. . .

iβ

 ,

B
′(S−1)
1 =



b0 λ

b′ λ
. . . . . .

b′ λ

b′K


, B2 =


0

µ 0
. . . . . .

µ 0

 ,
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B1 =



a0 λ

a λ
. . . . . .

a λ

aK


, B

(i)
1 =



b0 λ

b λ
. . . . . .

b λ

bK


with a0 = −(α + λ), a = −(λ + α + µ), aK = −(α + µ), b0 = −(λ + α +

iβ), b = −(λ + α + µ + iβ), bK = −(µ + α + iβ), 1 ≤ i ≤ S − 2, b′ =

−(λ+ α + iβ), b′K = −(α + iβ).

Let η = (ηS, 0, ..., 0) be the initial probability vector of order (S +

1)(K + 1) where ηS =
1

(1− ρK+1)
((1− ρ), (1− ρ)ρ, ..., (1− ρ)ρK).

The above discussion leads us to

Theorem 4.4.4. Probability that common life time realizes before

the inventory level becomes zero, pCLT = −η (T2)−1 T̃ 0.

4.4.3 Mean duration of the time between two suc-

cessive replenishment

Consider the Markov chain {(I(t), N(t)), t ≥ 0} whose state space

{(i, n), 0 ≤ i ≤ S, 0 ≤ n ≤ K}
⋃
{∆}

where {∆} is the absorbing state which means the replenishment order

is placed after realization of event A or event B. Thus its infinitesimal

generator is of the form

P3 =

(
T3 T̃ 0

0 0

)
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where

T3 =



S S − 1 S − 2 · · · 3 2 1 0

S B1 B2 αI

S − 1 B
(1)
0 B

(1)
1 B2 αI

S − 2 B
(2)
0 B

(2)
1 B2 αI

...
. . .

. . .
. . .

...

3 B
(S−3)
0 B

(S−3)
1 B2 αI

2 B
(S−2)
0 B

(S−2)
1 B2 αI

1 B
(S−1)
0 B

(S−1)
1 αI +B2

0 −θI


,

T̃ 0 =


0
...

0

θe

 where B2 =


0

µ 0

. . .
. . .

µ 0

 , B
(i)
0 =


iβ

iβ

. . .

iβ

 ,

B1 =



a0 λ

a λ

. . .
. . .

a λ

aK


, B

(i)
1 =



b0 λ

b λ

. . .
. . .

b λ

bK


with a0 = −(α + λ), a = −(λ+ α + µ), aK = −(α + µ), b0 = −(λ+ α +

iβ), b = −(λ+ α + µ+ iβ), bK = −(µ+ α + iβ), 1 ≤ i ≤ S − 1.

Let η = (ηS, 0, ..., 0) be the initial probability vector of order (S +

1)(K + 1) where ηS =
1

(1− ρK+1)
((1− ρ), (1− ρ)ρ, ..., (1− ρ)ρK).

The above discussions lead us to

Lemma 4.4.1. Mean duration of the time between two successive

replenishment, µT = −η (T3)−1 e.
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Mean duration of the time for the inventory level to reach zero

through realization of event A or event B

Consider the Markov chain {(I(t), N(t)), t ≥ 0} whose state space {(i, n), 1 ≤
i ≤ S, 0 ≤ n ≤ K}

⋃
{∆′} where {∆′} is the absorbing state which means

the inventory level becomes zero after realization of event A or event B.

Thus its infinitesimal generator is of the form

P4 =

(
T4 T̃

′0

0 0

)
where

T4 =



S S − 1 S − 2 · · · 3 2 1

S B1 B2

S − 1 B
(1)
0 B

(1)
1 B2

S − 2 B
(2)
0 B

(2)
1 B2

...
. . . . . . . . .

3 B
(S−3)
0 B

(S−3)
1 B2

2 B
(S−2)
0 B

(S−2)
1 B2

1 B
(S−1)
0 B

(S−1)
1


,

T̃ ′0 =



αe

αe

αe
...

αe

αe

B′2


with B′2 =


α

α + µ
...

α + µ

 .

Let η′ = (ηS, 0, ..., 0) be the initial probability vector of T4 (see Sec-
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tion 4.3) is of order S(K + 1).

The above discussion lead us to

Lemma 4.4.2. The mean time until the inventory level becomes

zero, µ′T = −η′ (T4)−1 e.

4.4.4 Waiting time distribution of a tagged customer

To derive the waiting time distribution of a tagged customer who joins

the queue as the rth customer, r > 0, we consider the Markov process

W (t) = {(N ′(t), I(t)), t ≥ 0} where N ′(t) is the rank of the customer

and I(t) is the size of the inventory at time t. The rank N ′(t) of the

customer is assumed to be i if he is the ith customer in the queue at time

t. His rank decreases to 1 as the customers ahead of him leave the system

after completing their service. Since the customers who arrive after the

tagged customer can not change that rank, level changing transitions in

W (t) is only to one side of the diagonal. We arrange the state space of

W (t) as {r, r− 1, . . . , 2, 1}× {0, 1, 2, . . . , S − 1, S, S∗} ∪ {∆}, where {∆}
is the absorbing state denoting that the tagged customer is selected for

service. Thus the infinitesimal generator W of the process W (t) assumes

the form

W =

(
T̃ T̃

0

0 0

)
where

T̃ =



A1 A2

A1 A2

. . . . . .

A1 A2

A1


and T̃

0
=



0

0
...

0

A′2


with A′2 =


0

µ
...

µ

 .
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Note that A1 and A2 are the same matrices as defined at the beginning

of 4.3.

Now, the waiting time W of a customer, who joins the queue as the rth

customer is the time until absorption of the Markov chain W (t). Thus the

waiting time of this particular customer is a PH-variate with representa-

tion PH(φ, T̃), where φ = (ψ,0, ...,0) with ψ = (0, ψ′1, ψ
′
2, . . . , ψ

′
S, ψ

′
S∗)

and ψ′i = ψi
1−ψ0

for i ∈ {1, 2, ..., S, S∗} (see Section 4.1). Thus we have

arrived at

Theorem 4.4.5. The waiting time distribution function and the

expected waiting time of a tagged customer are given by

F (t) = 1− φ exp{T̃t}e

and

ET
W = −φ(T̃)−1e

respectively.

For the computation of F (t) in the above theorem we employ the

uniformization procedure (see Latouche and Ramaswami [41]).

Essentially, the uniformization approach associates the infinitesimal

generator W of the Markov chain with another matrix K which can be

viewed as the transition matrix for a discrete time Markov chain. The

two matrices are related via K = (1/c)W + I =

(
P̃ p̃

0 0

)
where c is

at least as big as the maximum of the absolute value of the diagonal

elements of W; ordinarily it equals this maximum. Now we have
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F (t) = 1−
∞∑
k=0

e−ct
(ct)k

k!
φP̃e.

Algorithm to compute the distribution function of a

continuous PH(φ, T̃) random variable

M := φ(I − P̃ )−1e;

a0 := φe;

k := 0;

ν := P̃e;

repeat

k := k + 1;

ak := φν;

ν := P̃ ν;

until

∣∣∣∣∣
k∑
i=0

ai −M

∣∣∣∣∣ < ε;

K1 := k;

for any t of interest do

p := exp(−ct);
F1 := pa0;

for k := 1 to K1 do

p := ctp/k;

F1 := F1 + pak

end

end

F := 1− F1
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p t F (t)

0.1 0.1460 0.7555
0.2 0.1020 0.6268
0.3 0.0763 0.5219
0.4 0.0581 0.4299
0.5 0.0439 0.3465
0.6 0.0324 0.2692
0.7 0.0226 0.1967
0.8 0.0141 0.1281
0.9 0.0067 0.0627
1 0 0

Table 4.1: Values of F (t): Fix (S, λ, µ, β, α, θ) = (8, 2, 3, 0.25, 0.1, 0.2)

4.4.5 System performance measures

In this section we obtain system performance measures as under.

• Expected number of customers in the system

E ′N =
∞∑
n=1

S∑
i=0

nyn(i) =
λ

µ− λ

S∑
i=0

ψi.

• Expected number of items in the inventory

E ′I =
∞∑
n=0

S∑
i=1

iyn(i) =
S∑
i=1

iψi.

• Expected rate of purchase

E ′PR = µ
∞∑
n=1

S∑
i=1

yn(i) = λ

S∑
i=1

ψi.
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• Expected cancellation rate

E ′CR =
∞∑
n=0

S∑
i=1

(S − i)βyn(i) =
S∑
i=1

(S − i)βψi.

• Expected loss rate of customers during the lead time

E ′LR = λ
∞∑
n=0

yn(0).

• Expected number of purchases up to order placement in a cycle

E ′PN =
E ′PR
µ′T

.

• Expected number of cancellations up to order placement in a cycle

E ′CN =
E ′CR
µ′T

.

• Expected number of customers lost during lead time

E ′LN =
E ′LR
θ
.

4.5 Numerical illustration

In this section we provide numerical illustration of the system perfor-

mance with variation in values of underlying parameters.
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Effect of arrival rate λ

Changes in arrival rate has no significant impact on the measures irre-

spective of the lead time (see Table 4.2 (a) and (b)). This is so since no

customer joins when inventory is zero.

λ EN EI EPR ECR
4 0.5714 17.6074 3.9024 3.8095
5 0.8333 17.2267 4.9018 4.7623
6 1.1993 16.8134 5.8999 5.7170
7 1.7420 16.3790 6.8895 6.6762
8 2.6027 15.9334 7.8473 7.6310
9 4.0594 15.5035 8.7253 8.5332

(a) Zero lead time

λ E′N E′I E′PR E′CR E′LR
4 0.5714 17.1882 3.8095 3.7188 0.0238
5 0.8333 16.8146 4.7845 4.6483 0.0239
6 1.1993 16.4099 5.7583 5.5798 0.0240
7 1.7420 15.9850 6.7238 6.5157 0.0241
8 2.6027 15.5495 7.6582 7.4472 0.0241
9 4.0594 15.1292 8.5146 8.3273 0.0241

(b) Positive lead time for θ = 4

Table 4.2: Effect of λ: Fix (S, µ, β, α) = (20, 11, 2, 0.1)

Effect of service rate µ

Tables 4.3 (a)and (b) tell us that there is significant impact of lead time

on expected inventory held and moderate impact on expected purchase

and cancellation rates with respect to service time parameter.

µ EN EI EPR ECR
9 3.3118 20.2354 6.8135 6.6075
10 2.2982 20.2516 6.8692 6.5899
11 1.7420 20.2631 6.8895 6.5754
12 1.3979 20.2687 6.8969 6.5680
13 1.1661 20.2712 6.8997 6.5648
14 0.9998 20.2722 6.9007 6.5634

(a) Zero lead time

µ E′N E′I E′PR E′CR E′LR
9 3.3125 16.9061 5.6925 5.5204 0.1645
10 2.2984 16.9174 5.7382 5.5050 0.1646
11 1.7420 16.9262 5.7550 5.4925 0.1647
12 1.3979 16.9305 5.7610 5.4863 0.1647
13 1.1661 16.9325 5.7633 5.4835 0.1647
14 0.9998 16.9333 5.7641 5.4824 0.1647

(b) Positive lead time for θ = 0.5

Table 4.3: Effect of µ: Fix (S, λ, β, α) = (25, 7, 1.5, 0.1)
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Effect of cancellation rate β

Impact of lead time with respect to cancellation rate β, is significant

on measures such as expected inventory, expected purchase, loss and

cancellation rates (see Table 4.4 (a) and (b)).

β EN EI EPR ECR
1 4.0594 21.5214 8.7258 8.1372

1.5 4.0594 23.9795 8.7260 8.5197
2 4.0594 25.2908 8.7260 8.7378

2.5 4.0594 26.1062 8.7261 8.8842
3 4.0594 26.6623 8.7261 8.9930

3.5 4.0594 27.0659 8.7261 9.0795

(a) Zero lead time

β E′N E′I E′PR E′CR E′LR
1 4.0592 14.3995 5.8383 5.4448 0.3309

1.5 4.0611 16.0525 5.8414 5.7036 0.3306
2 4.0619 16.9342 5.8428 5.8509 0.3304

2.5 4.0624 17.4825 5.8436 5.9497 0.3303
3 4.0628 17.8564 5.8441 6.0230 0.3303

3.5 4.0630 18.1279 5.8445 6.0813 0.3302

(b) Positive lead time for θ = 0.2

Table 4.4: Effect of β for (S, λ, µ, α) = (30, 9, 11, 0.1)

Effect of common life time parameter α

A look at Tables 4.5(a) and (b) tell the sharp difference between zero

lead time and positive lead time. Since during the lead time inventory

level stays at zero, the sharp decrease seen in Table 4.5(b) is justified in

contrast to quite moderate decrease rate indicated in Table 4.5(a).

α EN EI EPR ECR
0.1 3.3118 15.3454 6.8132 6.5482
0.2 3.3118 15.3216 6.7177 6.1714
0.3 3.3118 15.2779 6.6248 5.8359
0.4 3.3118 15.2182 6.5344 5.5352
0.5 3.3118 15.1457 6.4465 5.2642
0.6 3.3118 15.0629 6.3609 5.0187

(a) Zero lead time

α E′N E′I E′PR E′CR E′LR
0.1 3.3120 10.2792 4.5639 4.3865 0.3301
0.2 3.3142 7.7755 3.4091 3.1320 0.4925
0.3 3.3154 6.2744 2.7207 2.3968 0.5893
0.4 3.3161 5.2717 2.2636 1.9175 0.6536
0.5 3.3165 4.5531 1.9380 1.5826 0.6994
0.6 3.3168 4.0120 1.6942 1.3367 0.7336

(b) Positive lead time for θ = 0.2

Table 4.5: Effect of α for (S, λ, µ, β) = (20, 7, 9, 1.5)

The common life time parameter α plays a significant role on measures

such as pµ, pCLT , µT . We see from Table 4.6 that for the zero lead time
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case the measures pµ and µT decrease sharply with respect to increasing

α, whereas pCLT shows a fast increasing trend with increasing value of

α. The latter tendency is on account of faster CLT realization.

α pµ pCLT µT
0.1 0.8212 0.1788 1.7878
0.2 0.6768 0.3232 1.6158
0.3 0.5597 0.4403 1.4675
0.4 0.4644 0.5356 1.3389
0.5 0.3866 0.6134 1.2269
0.6 0.3227 0.6773 1.1288
0.7 0.2702 0.7298 1.0426
0.8 0.2268 0.7732 0.9665
0.9 0.1909 0.8091 0.8989
1 0.1611 0.8388 0.8388

Table 4.6: Effect of α on pµ, pCLT , µT

4.5.1 Cost analysis

Based on the above performance measures we define the following two

revenue (profit) functions as:

For zero lead time,

F (α, β, S) = C1EPR + C2ECR − C3EI − C4EN

For positive lead time,

FPL(α, β, S) = C1E
′
PR + C2E

′
CR − C3E

′
I − C4E

′
N − C5E

′
LR

where
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• C1 = revenue to the system due to per unit purchase (by a customer

at the end of his service)

• C2 = revenue to the system due to per unit cancellation

• C3 = holding cost per inventoried item per unit time

• C4 = holding cost per customer per unit time

• C5 = cost due to customer lost per unit time (applicably only to

positive lead time case)

In order to study the variation in different parameters on profit func-

tion we first take the values (C1, C2, C3, C4, C5) = ($100, $30, $10, $2, $10).

Zero lead time

Table 4.7 is indicative of the fact that as cancellation rate increases op-

timal S value decreases. This could be explained as follows: with can-

cellation rate increasing, the trend for accumulation of lesser quantity of

inventory increases at the time of realization of CLT , the items left in

the inventory also tend to be longer which brings down the profit (see

figure 4.1(a)).

In Table 4.8 (see figure 4.2(a)) we notice that optimal S value stays

at 11 as rate of realization of CLT moves from 0.1 to 0.35. This could

be attributed to the fact that the expected number of cancellations is

brought down thereby the left over items at CLT realization becomes

smaller and smaller.

Table 4.9 (figure 4.3(a)) shows a decreasing trend for profit for fixed

cancellation rate(s) as CLT is varied from 0.1 to 0.35. This is so since
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S ↓ β → 0.6 0.7 0.8 0.9 1 1.1
12 695.7005 715.6908 733.6266 748.914 761.226 770.5668
13 705.4946 726.1356 743.6778 757.4794 767.4486 774.0164
14 714.3682 734.999 751.1854 762.5007 769.4356 773.0453
15 722.2044 741.9401 755.7128 763.7802 767.5236 768.5599
16 728.7723 746.5474 756.9911 761.5639 762.5276 761.7047
17 733.7456 748.473 755.1026 756.5191 755.4446 753.4817
18 736.7633 747.5921 750.5101 749.4988 747.1415 744.5712
19 737.5331 744.0955 743.905 741.2767 738.2117 735.3537
20 735.9427 738.447 735.9863 732.4085 728.994 726.0119

Table 4.7: Effect of S and β on F (α, β, S) for (λ, µ, α) = (7, 9, 0.1)

S ↓ α→ 0.1 0.15 0.2 0.25 0.3 0.35
10 783.0723 774.2038 765.587 757.2099 749.0611 741.1301
11 787.4177 777.6512 768.2145 759.088 750.2537 741.6951
12 786.0369 775.6812 765.7166 756.1166 746.8573 737.917
13 780.696 770.0332 759.7997 749.9644 740.4992 731.379
14 773.0865 762.3077 751.9776 742.0626 732.5323 723.3596
15 764.3822 753.5897 743.2543 733.3410 723.8184 714.6585

Table 4.8: Effect of S and α on revenue F (α, β, S) for (λ, µ, β) =
(7, 9, 1.5)

the number of cancellations decrease thereby decreasing the revenue from

canceled items.

α ↓ β → 1 1.5 2 2.5 3 3.5

0.1 767.5236 764.3822 758.8378 755.3327 753.0308 751.4426
0.15 754.3746 753.5897 749.7732 747.3268 745.732 744.6488
0.2 741.9535 743.2543 740.999 739.529 738.5952 737.9888
0.25 730.191 733.341 732.4984 731.9296 731.6143 731.4584
0.3 719.0269 723.8184 724.2561 724.52 724.7837 725.0534
0.35 708.408 714.6585 716.2579 717.2917 718.0978 718.7699

Table 4.9: Effect of α and β on profit F (α, β, S) for (λ, µ, S) = (7, 9, 15)
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Positive lead time

Tabulations in Tables 4.10 to 4.12 (see figure 4.1(b) to 4.3(b))pertain to

positive lead time. A comparison between Tables 4.7 and 4.10 reveal that

revenue is less for positive lead time case. This could be attributed to

loss of customers during time in the latter. Within Table 4.10 we notice

that there is a decreasing trend in the optimal value of S with increase

in cancellation rate for which the same explanation as given for Table ??

is valid.

S ↓ β → 0.6 0.7 0.8 0.9 1 1.1
14 308.8123 352.6232 395.7066 433.407 462.5295 482.5812
15 339.5486 387.1692 429.6957 462.0075 483.024 495.012
16 369.6888 418.3271 456.1647 480.1111 492.7432 498.406
17 398.0574 443.9862 473.7589 488.8044 494.8443 496.5527
18 423.1877 462.6233 482.9697 490.6662 492.4892 492.1152
19 443.6235 473.9276 485.6684 488.3703 487.8934 486.5574
20 458.3777 478.8463 484.0916 483.8823 482.2969 480.558
21 467.2944 479.0377 480.0756 478.3637 476.2921 474.3943
22 471.0636 476.1888 474.8192 472.4018 470.1294 468.169
23 470.8868 471.6039 468.9873 466.2601 463.9054 461.9177

Table 4.10: Effect of S and β on profit FPL(α, β, S) for (λ, µ, α, θ) =
(7, 9, 0.1, 0.2)

The results in Table 4.11 could be explained on the same lines as that

for Table 4.8.

S ↓ α→ 0.1 0.15 0.2 0.25 0.3 0.35
10 418.2949 367.6324 327.1204 294.0112 266.465 243.2032
11 466.8609 403.2336 353.9116 314.5891 282.5283 255.9052
12 495.1468 422.7614 367.7864 324.6489 289.9221 261.3835
13 506.7439 429.9542 372.2739 327.3945 291.5059 262.1714
14 508.2789 429.9933 371.484 326.1333 289.9766 260.4944
15 505.0019 426.6814 368.2638 323.0535 287.0522 257.7253

Table 4.11: Effect of S and α on revenue FPL(α, β, S) for (λ, µ, β, θ) =
(7, 9, 1.5, 0.2)

Finally, coming to Table 4.12, we notice that for fixed cancellation
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rates, the revenue decreases with increase in the rate of realization of

CLT , which is on expected lines. On the other hand for fixed rates of

realization of CLT , profit is seen to reach a maximum and then starts

decreasing with increasing cancellation rates, until α grows up to 0.25.

This should be due to a trend of holding cost and revenue from cancel-

lations. However, for higher rates of CLT realization, the profit due to

increase in cancellation dominate the loss due to higher rate of realization

of CLT . A comparison between values in Tables (for example 4.7 and

α ↓ β → 1 1.5 2 2.5 3 3.5

0.1 483.024 505.0019 502.6008 500.4557 499.0076 498.0052
0.15 411.3161 426.6814 425.3642 424.096 423.2434 422.6629
0.2 356.7699 368.2638 367.7428 367.1023 366.6791 366.4049
0.25 313.9579 323.0535 323.1262 322.9488 322.845 322.8004
0.3 279.5138 287.0522 287.5732 287.7448 287.8844 288.016
0.35 251.2406 257.7253 258.588 259.0269 259.3551 259.6245

Table 4.12: Effect of α and β on revenue FPL(α, β, S) for (λ, µ, S, θ) =
(7, 9, 15, 0.2)

4.10) indicate that lead time plays a crucial role in the revenue genera-

tion of the system. For zero lead time revenue is much larger than that

corresponding to positive lead time. This is due to customer loss during

lead time. Thus if we additionally introduce a cost for reduction in lead

time, we will be able to have a trade off between duration of lead time

and customer loss.
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(a) zero lead time
(b) positive lead time

Figure 4.1: Effect of S and β on revenue

(a) zero lead time (b) positive lead time

Figure 4.2: Effect of S and α on profit
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(a) zero lead time (b) positive lead time

Figure 4.3: Effect of α and β on profit function
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Chapter 5

Queueing-Inventory Model

with Two Commodities

So far we were concentrating on single commodity problems. In Chapters

2-4 we were specifically looking for product form solution. This was of

interest on its own right. A suitable choice of blocking set helped in

arriving at product form solution. However, when we move from single

to two or more commodity problems, the identification of blocking set

seems to be complex.

In this chapter we analyse a two- commodity queueing inventory prob-

lem. The QBD structure of the CTMC’s in earlier chapters was a conse-

quence of the fact that in the absence of inventory the server stays idle.

However in the two commodity problem that we have at hand we relax

the above assumption. So when an item is demanded by the customer at

the head of the queue and that turned out to be out-of-stock, that cus-

tomer leaves the system. This results in the QBD structure of the CTMC

at hand being lost. In fact what we get is a GI/M/1 type infinitesimal

117
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generator. Thus our analysis of the problem needs more sophistication.

Inventory systems dealing with several/distinct commodities are very

common, (see for example [46][1]). Such systems are more complex than

single commodity system which could be attributed to the reordering

procedures. Whether the ordering policies of joint, individual or some

mixed type are superior will depend on the particular problem at hand.

For commodities which are of clearly distinct types and are subject

to different supply systems, the individual strategies would be the first

choice. The individual order policy consists of the calculation of optimum

order quantities and/or time periods from item to item, disregarding

any economic interaction between them. This policy has considerable

flexibility in selecting the individually best inventory models for each

single item, as well as in the possibility of modifying independently any

constant entering the calculations.

The joint policies may have advantages in situations where a pro-

curement is made from the same suppliers/ items produced on the same

machine/ items have to be supplied by the same transport facility, so

that joint ordering policy might be superior with regard to cost effi-

ciency. The modelling of multi-item inventory systems are getting more

attention now a days. In this chapter we will use ’item’ and ’commodity’

interchangeably. The replenishment policy is to place order for an item

when its level drops to the reorder level.

5.1 Model Description

Consider a two commodity inventory system with a single server. The

maximum storage capacity for the i−th commodity is Si units for i = 1, 2.
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Demands arrive according to a Poisson Process of rate λ and demand for

each commodity is of unit size. Customers are not allowed to join the

system when inventory levels of both commodities are zero. However,

customers join the system even when the server is busy with no excess

inventory available at hand. This is with the hope that during the cur-

rent service the replenishment of the items would take place, so that at

the epoch when taken for service, the item demanded by the customer

can be provided. Also Customers are lost when no item of the com-

modity demanded by them is available at the time of offering service.

At the time when taken for service the customer demands item Ci with

probability pi, for i = 1, 2 or both C1 and C2 with probability p3 such

that p1 + p2 + p3 = 1 . The demanded item is delivered to the customer

after a random duration of service. The service times for processing or-

ders for C1, C2 or both C1 and C2 are exponentially distributed with

parameters µ1, µ2 and µ3 respectively. We adopt (si, Si) replenishment

policy for commodity Ci, i = 1, 2. That is, whenever the inventory level

of commodity Ci falls to si an order is placed for that alone to bring the

inventory level back to Si, i = 1, 2 at the time of replenishment. The time

till replenishment from the epoch at which order is placed(lead time) is

exponentially distributed with parameters βi for Ci, i = 1, 2.

The above problem can be modelled as a continuous time Markov chain

of the GI/M/1 type

{(N(t), I1(t), I2(t), J(t)), t ≥ 0}
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where

N(t) : Number of customers in the queue at time t

Ii(t) : Excess inventory level of commodity Ci , i = 1, 2 at time t

J(t) : State of the server at timet

and

J(t) =


0 if server is idle;

1 if server is busy processing C1;

2 if server is busy processing C2;

3 if server is busy processing C1 and C2.

The state space of the above process is Ω =
⋃∞
n=0 `(n) where `(n) denotes

level n,

`(0) = {(0, j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 0 ≤ r ≤ 3}

and

`(n) = {(n, j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3}, n ≥ 1

Thus, the infinitesimal generator matrix of the Markov chain has the

form

Q =



B1 B0

B2 A1 A0

B3 A2 A1 A0

B4 A3 A2 A1 A0

...
...

...
. . . . . . . . .


(5.1)
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where

Bn+1, n ≥ 0 contains transitions from `(n) to `(0),

B0 contains the transition from `(0) to `(1),

A1 contains the transitions within `(n) n ≥ 1,

A0 contains transitions from `(n) to `(n+ 1) i ≥ 1

and Ak+1 contains transitions from `(n) to `(n− k), 1 ≤ k ≤
n− 1, n ≥ 2.

Then A0, A1, A2, · · · are square matrices of dimension a, where

a = 3(S1 + 1)(S2 + 1). B1 is a square matrix of dimension b, b = 4(S1 +

1)(S2 + 1). B0, Bi, i ≥ 2, are of dimensions b× a, a× b, respectively.

Transitions in the Markov chain and the corresponding rates are de-

scribed below: The matrix B1 governs,

1. (0, j1, j2, r)→ (0, j1, j2, 0) with rate µr for 1 ≤ r ≤ 3, 0 ≤ j1 ≤ S1,

0 ≤ j2 ≤ S2

2. (0, j1, j2, r) → (0, S1, j2, r) with rate β1 for 0 ≤ r ≤ 3 0 ≤ j1 ≤ s1,

0 ≤ j2 ≤ S2

3. (0, j1, j2, r) → (0, j1, S2, r) with rate β2 for 0 ≤ r ≤ 3 0 ≤ j1 ≤ S1,

0 ≤ j2 ≤ s2

4. (0, 0, 0, r)→ (1, 0, 0, r) with rate λ for 1 ≤ r ≤ 3

5. (0, 0, j2, 0)→ (0, 0, j2 − 1, 2) with rate λ(p2 + p3) for 1 ≤ j2 ≤ S2
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6. (0, j1, 0, 0)→ (0, j1 − 1, 0, 1) with rate λ(p1 + p3) for 1 ≤ j1 ≤ S1

7. (0, j1, j2, 0) → (0, j1 − 1, j2, 1) with rate λp1 for 1 ≤ j1 ≤ S1, 1 ≤
j2 ≤ S2

8. (0, j1, j2, 0) → (0, j1, j2 − 1, 2) with rate λp2 for 1 ≤ j1 ≤ S1, 1 ≤
j2 ≤ S2

9. (0, j1, j2, 0)→ (0, j1−1, j2−1, 3) with rate λp3 for 1 ≤ j1 ≤ S1, 1 ≤
j2 ≤ S2

The matrix, Bn+1, n ≥ 1, governs

1. (n, 0, 0, r)→ (0, 0, 0, 0) with rate µr for 1 ≤ r ≤ 3

2. (n, 0, j2, r)→ (0, 0, j2, 0) with rate µrp
n
1 for 1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3

3. (n, 0, j2, r)→ (0, 0, , j2−1, 2) with rate µrp
n−1
1 (p2 +p3) for 1 ≤ j2 ≤

S2, 1 ≤ r ≤ 3

4. (n, j1, 0, r)→ (n, j1, 0, 0) with rate µrp
n
2 for 1 ≤ j1 ≤ S1,1 ≤ r ≤ 3

5. (n, j1, 0, r)→ (0, j1− 1, 0, 1) with rate µrp
n−1
2 (p1 + p3) for 1 ≤ j1 ≤

S1, 1 ≤ r ≤ 3

6. (1, j1, j2, r) → (0, j1 − 1, j2, 1) with rate µrp1 for 1 ≤ j1 ≤ S1,1 ≤
j2 ≤ S2,1 ≤ r ≤ 3

7. (1, j1, j2, r) → (0, j1, j2 − 1, 2) with rate µrp2 for 1 ≤ j1 ≤ S1,1 ≤
j2 ≤ S2, 1 ≤ r ≤ 3

8. (1, j1, j2, r)→ (0, j1−1, j2−1, 3) with rate µrp3 for 1 ≤ j1 ≤ S1,1 ≤
j2 ≤ S2, 1 ≤ r ≤ 3
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The matrix, Ak+1, 1 ≤ k ≤ n− 1, n ≥ 3, governs

1. (n, 0, j2, r) → (n − k, 0, j2 − 1, 2) with rate µrp
k−1
1 (p2 + p3) for

1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3

2. (n, j1, 0, r) → (n − k, j1 − 1, 0, 1) with rate µrp
k−1
2 (p1 + p3) for

1 ≤ j1 ≤ S1, 1 ≤ r ≤ 3

3. (n, j1, j2, r) → (n − 1, j1 − 1, j2, 1) with rate µrp1 for 1 ≤ j1 ≤ S1,

1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3

4. (n, j1, j2, r) → (n − 1, j1, j2 − 1, 2) with rate µrp2 for 1 ≤ j1 ≤ S1,

1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3

5. (n, j1, j2, r)→ (n−1, j1−1, j2−1, 3) with rate µrp3 for 1 ≤ j1 ≤ S1,

1 ≤ j2 ≤ S2, 1 ≤ r ≤ 3

The matrix, A1, governs:

1. (n, j1, j2, r) → (n, S1, j2, r) with rate β1 for 0 ≤ j1 ≤ s1, 0 ≤ j2 ≤
S2, 1 ≤ r ≤ 3

2. (n, j1, j2, r) → (n, j1, S2, r) with rate β2 for 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤
s2, 1 ≤ r ≤ 3

Thus, the elements of the matrices can be described as

B0(n, i1, i2, r;m, j1, j2, l) =


λ, m = n+ 1, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, r = l = 1, 2, 3;

j1 = i1, j2 = i2, l = r;

0, otherwise.

A0(n, i1, i2, r;m, j1, j2, l) =


λ, m = n+ 1, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, r = 1, 2, 3,

j1 = i1, j2 = i2, l = r;

0, otherwise.
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For 1 ≤ k ≤ i− 1, i ≥ 3,

Ak+1(n, i1, i2, r;m, j1, j2, l) =



µrp
k−1
1 (p2 + p3), m = i− k, 1 ≤ i2 ≤ S2,

i1 = j1 = 0, r = 1, 2, 3, l = 2;

µrp
k−1
2 (p1 + p3), m = i− k, 1 ≤ i1 ≤ S1,

i2 = j2 = 0, r = 1, 2, 3, l = 1;

0, otherwise.

B2(n, i1, i2, r;m, j1, j2, l) =



µr, m = n− 1, i1 = i2 = j1 = j2 = 0,

r = 1, 2, 3, l = 0;

µr(p2 + p3), m = n− 1, i1 = j1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2 − 1, r = 1, 2, 3, l = 2 ;

µrp1, m = n− 1, i1 = j1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2, r = 1, 2, 3, l = 0 ;

µr(p1 + p3), m = n− 1, 1 ≤ i1 ≤ S1, i2 = j2 = 0,

j1 = i1 − 1, r = 1, 2, 3, l = 1 ;

µrp2, m = n− 1, 1 ≤ i1 ≤ S1, i2 = j2 = 0,

j1 = i1, r = 1, 2, 3, l = 0 ;

µrp1, m = n− 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j1 = i1 − 1, r = 1, 2, 3, l = 1;

µrp2, m = n− 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 1, 2, 3, l = 2;

µrp3, m = n− 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j1 = i1 − 1, j2 = i2 − 1,

r = 1, 2, 3, l = 3;

0, otherwise.

For i ≥ 2

Bi+1(n, i1, i2, r;m, j1, j2, l) =



µr, m = 0, i1 = i2 = j1 = j2 = 0,

r = 1, 2, 3, l = 0;

µrpi1, m = 0, i1 = j1 = 0,

1 ≤ i2, j2 ≤ S2, r = 1, 2, 3, l = 0 ;

µrp
i−1
1 (p2 + p3), m = 0, i1 = j1 = 0,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 1, 2, 3, l = 2 ;

µrp
i−1
2 (p1 + p3), m = 0, 1 ≤ i1 ≤ S1,

j1 = i1 − 1, i2 = j2 = 0, r = 1, 2, 3, l = 1;

µrpi2 m = 0, 1 ≤ i1 ≤ S1, i2 = j2 = 0,

r = 1, 2, 3, l = 0;

0, otherwise.
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A2(n, i1, i2, r;m, j1, j2, l) =



µr(p2 + p3), m = n− 1, i1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2 − 1, r = 1, 2, 3, l = 2;

µr(p1 + p3), m = n− 1, 1 ≤ i1 ≤ S1,

i2 = 0, j1 = i1 − 1, r = 1, 2, 3, l = 1;

µrp1, m = n− 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j1 = i1 − 1, r = 1, 2, 3, l = 1;

µrp2, m = n− 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 1, 2, 3, l = 2;

µrp3, m = n− 1, 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ S2, j1 = i1 − 1, j2 = i2 − 1,

r = 1, 2, 3, l = 3;

0, otherwise.

A1(n, i1, i2, r;m, j1, j2, l) =



β2, n = m, 0 ≤ i1, j1 ≤ S1,

0 ≤ i2 ≤ s2, j2 = S2, r = l = 1, 2, 3;

β1, n = m, 0 ≤ i1 ≤ s1, j1 = S1,

0 ≤ i2, j2 ≤ 1, 2, ..S2, r = l = 0, 1, 2, 3;

−(λ+ µr + β1 + β2) n = m, 0 ≤ i1, j1 ≤ s1,

0 ≤ i2, j2 ≤ s2, r = l = 1, 2, 3;

−(λ+ µr + β1) n = m, 0 ≤ i1, j1 ≤ s1,

s2 + 1 ≤ i2, j2 ≤ S2, r = l = 1, 2, 3;

−(λ+ µr + β2) n = m, s1 + 1 ≤ i1, j1 ≤ S1,

0 ≤ i2, j2 ≤ s2, r = l = 1, 2, 3;

−(λ+ µr) n = m, s1 + 1 ≤ i1, j1 ≤ S1,

s2 + 1 ≤ i2, j2 ≤ S2, r = 1, 2, 3;

0, otherwise.

B1(n, i1, i2, r;m, j1, j2, l) =



−(β1 + β2), n = m = 0, i1 = i2 = j1 = j2 = 0,

k = l = 0;

µr, n = m = 0, 0 ≤ i1, j1 ≤ S1,

0 ≤ i2, j2 ≤ S2, r = 1, 2, 3, l = 0;

β2, n = m = 0, 0 ≤ i1, j1 ≤ S1,

0 ≤ i2 ≤ s2, j2 = S2, r = l = 0, 1, 2, 3;

β1, n = m = 0, 0 ≤ i1 ≤ s1, j1 = S1,

0 ≤ i2, j1 ≤ 1, 2, ..S2, r = l = 0, 1, 2, 3;

λ(p2 + p3) n = m = 0, i1 = j1 = 0, 1 ≤ i2 ≤ S2,

j2 = i2 − 1, r = 0, l = 2;

λ(p1 + p3) n = m = 0, 1 ≤ i1 ≤ S1, j1 = i1 − 1,

i2 = j2 = 0, r = 0, l = 1;
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B1(n, i1, i2, r;m, j1, j2, l) =



λp1 n = m = 0, 1 ≤ i1 ≤ S1, j1 = i1 − 1,

1 ≤ i2, j2 ≤ S2, r = 0, l = 1;

λp2 n = m = 0, 1 ≤ i1, j1 ≤ S1,

1 ≤ i2 ≤ S2, j2 = i2 − 1, r = 0, l = 2;

λp3 n = m = 0, 1 ≤ i1 ≤ S1, 1 ≤ i2 ≤ S2,

j1 = i1 − 1, j2 = i2 − 1, r = 0, l = 3;

−(λ+ µr + β1 + β2) n = m = 0, 0 ≤ i1, j1 ≤ s1,

0 ≤ i2, j2 ≤ s2, r = l = 1, 2, 3;

−(λ(p2 + p3) + β1 + β2) n = m = 0, i1 = j1 = 0,

0 ≤ i2, j2 ≤ s2, r = l = 0;

−(λ(p1 + p3) + β1 + β2) n = m = 0, i2 = j2 = 0,

0 ≤ i1, j1 ≤ s2, r = l = 0;

−(λ+ β1 + β2) n = m = 0, 1 ≤ i1, j1 ≤ s1,

1 ≤ i2, j2 ≤ s2, r = l = 0;

−(λ+ µr + β1) n = m = 0, 1 ≤ i1 ≤ s1,

s2 + 1 ≤ i2 ≤ S2, r = l = 1, 2, 3;

−(λ+ µr + β2) n = m = 0, s1 + 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ s2, r = l = 1, 2, 3;

−(λ+ β2) n = m = 0, s1 + 1 ≤ i1 ≤ S1,

1 ≤ i2 ≤ s2, r = l = 0;

−(λ+ β1) n = m = 0, 1 ≤ i1 ≤ s1,

s2 + 1 ≤ i2 ≤ S2, r = 0;

−λ n = m = 0, s1 + 1 ≤ i1 ≤ S1, j1 = i1,

s2 + 1 ≤ i2 ≤ S2, j2 = i2, r = 0 = l;

0, otherwise.

5.2 Steady- State Analysis

A necessary condition for Q to be irreducible is B1 and A1 are nonsin-

gular. Consider the matrix A =
∑∞

k=0 Ak. Let the unique stationary

distribution of A be π. Under the condition,

πA0e <
∞∑
k=2

(k − 1)πAke,



5.2. Steady- State Analysis 127

an irreducible Markov chain with generator Q possesss a unique station-

ary solution vector x = (x0,x1,x2, ...) satisfying

xQ = 0,xe = 1.

Partitioning x as x = (x0,x1,x2, ...) where

x0 = (x0(j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 0 ≤ r ≤ 3),

xi = (xi(j1, j2, r) : 0 ≤ j1 ≤ S1, 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3), fori ≥ 1,

where x0 is of dimension 1 × b and xi for i ≥ 1, is of dimension 1 × a
Then x is obtained as

xi = x1R
i−1, i ≥ 2

where R is the minimal non negative solution of the matrix equation∑∞
k=0X

kAk = 0. The boundary equations are given by

∞∑
r=0

xrBr+1 = 0

x0B0 +
∞∑
r=1

xrAr = 0

The normalizing condition xe = 1 gives

x0e + x1[I −R]−1e = 1

R matrix is obtained using the algorithm:

R(0) = 0
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R(n+ 1) = −A0A
−1
1 −R2(n)A2A

−1
1 −R3(n)A3A

−1
1 − . . . , n ≥ 0

Theorem 5.2.1. The Markov chain with infinitesimal generator Q
given by 5.1 is stable.

Proof. Consider a service completion epoch at which stock of both

commodities or atleast one commodity drops to zero. Suppose n cus-

tomers are waiting in the queue at this epoch. If all of them ask for the

same commodity which is not available in stock then all these customers

leave the system instantly with the result that queue becomes empty.

The probability for the above indicated event is
∑∞

n=1

∑3
r=1 µrp

n
i > 0.

Hence from any level the queue size may drop to zero with positive prob-

ability, however small(as n becomes very large), in a very short time

following a service completion. This can be thought of as a catastrophic

model in that the catastrophic events occur at epochs when service is to

begin and there is no inventory left.

5.3 System Characteristics

Next we proceed to compute measures that are indications of the system

performance.

• Expected number of customers in the queue,

EN =
∞∑
n=1

n

S1∑
j1=0

S2∑
j2=0

3∑
r=1

xn(j1, j2, r).

• Expected number of customers demanding C1 alone,

EC1 = p1EN .
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• Expected number of customers demanding C2 alone,

EC2 = p2EN .

• Expected number of customers demanding both C1 and C2,

EC12 = p3EN .

• Expected number of item C1 in the system,

EI1 =
∞∑
n=0

S1∑
j1=1

S2∑
j2=0

3∑
r=0

j1xn(j1, j2, r).

• Expected number of item C2 in the system,

EI2 =
∞∑
n=0

S1∑
j1=0

S2∑
j2=1

3∑
r=0

j2xn(j1, j2, r).

• Probability that server is busy processing a demand for C1 alone,

PC1 =
∞∑
n=1

S1∑
j1=0

S2∑
j2=0

xn(j1, j2, 1).

• Probability that server is busy processing a demand for C2 alone,

PC2 =
∞∑
n=1

S1∑
j1=0

S2∑
j2=0

xn(j1, j2, 2).

• Probability that server is busy processing a demand for both C1
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and C2,

PC12 =
∞∑
n=1

S1∑
j1=0

S2∑
j2=0

xn(j1, j2, 3).

• Probability that server is busy,

Pbusy =
∞∑
n=1

S1∑
j1=0

S2∑
j2=1

3∑
r=1

xn(j1, j2, r) +
∞∑
n=1

S1∑
j1=1

3∑
r=1

xn(j1, 0, r).

• Probability that inventory C1 alone is zero,

PC10 =
∞∑
n=0

S2∑
j2=0

3∑
r=0

xn(0, j2, r).

• Probability that inventory C2 alone is zero,

PC20 =
∞∑
n=0

S1∑
j1=0

3∑
r=0

xn(j1, 0, r).

• Probability that both inventory C1 and C2 equal to zero,

P00 =
∞∑
n=0

3∑
r=0

xn(0, 0, r).

• Probability that customer demanding C1 alone is lost,

PC1lost = p1

∞∑
n=1

S2∑
j2=0

3∑
r=1

µrxn(0, j2, r).
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• Probability that customer demanding C2 alone is lost,

PC2lost = p2

∞∑
n=1

S1∑
j1=0

3∑
r=1

µrxn(j1, 0, r).

• Probability that customer demanding both C1 and C2 is lost,

PC12lost = p3

∞∑
n=1

3∑
r=1

µrxn(0, 0, r).

• Probability that customer demanding both C1 and C2 is met with

C1,

PC121 = p3

∞∑
n=1

S1∑
j1=1

3∑
r=1

µrxn(j1, 0, r).

• Probability that customer demanding both C1 and C2 is met with

C2,

PC122 = p3

∞∑
n=1

S2∑
j2=1

3∑
r=1

µrxn(0, j2, r).

• Expected rate of replenishments for item C1,

ERC1
= β1

∞∑
n=0

s1∑
j1=0

S2∑
j2=0

3∑
r=0

xn(j1, j2, r).

• Expected rate of replenishments for item C2,

ERC2
= β2

∞∑
n=0

S1∑
j1=0

s2∑
j2=0

3∑
r=0

xn(j1, j2, r).
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• Expected reorder rate of commodity C1,

ER1 = µ1

∞∑
n=0

S2∑
j2=0

xn(s1 + 1, j2, 1).

• Expected reorder rate of commodity C2,

ER2 = µ2

∞∑
n=0

S1∑
j1=0

xn(j1, s2 + 1, 2).

• Expected reorder rate of commodity C1 and C2,

ER12 = µ3

∞∑
n=0

xn(s1 + 1, s2 + 1, 3).

We now look for additional information needed to optimally design the

system.

5.3.1 Expected loss rate of customers in the queue

demanding C1 alone

In order to compute the expected loss rate of customers in the queue

demanding C1 alone, consider the Markov chain

{(N(t), I1(t), I2(t), J(t)), t ≥ 0}

where N(t), I1(t), I2(t),J(t)) were as defined in section 5.1. The state

space of the above process is {(n, 0, j2, r) : 1 ≤ n ≤ K, 0 ≤ j2 ≤ S2, 1 ≤
r ≤ 3}

⋃
{∆} where {∆} is the absorbing state which represents the
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state that number of customers in the queue becomes zero and K( the

size of the queue). It is the maximum value to which the queue size can

grow. Thus we have a finite state space Markov chain. The possible

transitions and corresponding rates are:

• (n, 0, 0, r) → (0, 0, 0, 0) at the rate µr for r = 1, 2, 3

• (n, 0, j2, r) → (0, 0, j2, 0) at the rate µrp
n
1 for r = 1, 2, 3

• (n, 0, j2, r) → (n+ 1, 0, j2, r) at the rate λ for r = 1, 2, 3

• (n, 0, j2, r) → (n, 0, S2, r) at the rate β2 for r = 1, 2, 3

The infinitesimal generator G of the above Markov chain is of the form

G1 =

[
T1 T 0

1

0 0

]

with initial probability vector

α = (cx1(0, j2, r), cx2(0, j2, r), ..., cxK(0, j2, r) : 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3),

where

c =

{
K∑
n=1

S2∑
j2=0

3∑
r=1

xn(0, j2, r)

}−1

;

T1 is a matrix of order 3K(S2 + 1) and T 0
1 is a column vector of order

3K(S2 + 1) such that T1e + T 0
1 = 0.

Hence we arrive at

Theorem 5.3.1. The expected loss rate of customers in the queue
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demanding C1 alone is,

EL1 =
{
−αT−1

1 e
}−1

On similar lines we can compute the expected loss rate of customers

in the queue demanding C2 alone and both C1 and C2. The following

results are arrived at, the details of which are omitted.

Theorem 5.3.2. The expected loss rate of customers in the queue

demanding C2 alone is

EL2 = {−α1T
−1
2 e}−1

where initial probability vector

α1 = (cx1(j1, 0, r), cx2(j1, 0, r), ..., cxK(j1, 0, r) : 0 ≤ j1 ≤ S1, 1 ≤ r ≤ 3),

and

c =

{
K∑
n=1

S1∑
j1=0

3∑
r=1

xn(j1, 0, r)

}−1

;

and T2 is a matrix of order 3K(S1 +1) and T 0
2 is a column vector of order

3K(S1 + 1) such that T2e + T 0
2 = 0.

Theorem 5.3.3. The expected loss rate of customers demanding

both C1 and C2 is,

EL12 = {−α2T
−1
3 e}−1 ×

K∑
n=1

3∑
r=1

xn(0, 0, r)
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with initial probability vector

α2 = (cx1(0, 0, r), cx2(0, 0, r), ..., cxK(0, 0, r) : 1 ≤ r ≤ 3),

c =

{
K∑
n=1

3∑
r=1

xn(0, 0, r)

}−1

;

T3 is a matrix of order 3K and T 0
3 is a column vector of order 3K such

that T3e + T 0
3 = 0.

5.3.2 Analysis of C1 cycle time

The cycle time of item C1 is defined as the time interval between two con-

secutive instants at which its inventory level hits S1 due to replenishment.

We assume that with at mostM demands the first return to S1 of C1 takes

place. Let us consider a Markov chain {(N(t), I1(t), I2(t), J(t), D(t)), t ≥
0} where D(t) denotes the type of the demand of the commodity; and

rest of the notations are as defined in section 5.1. The state space of

the above process is {(n, j1, j2, r, d) : 0 ≤ n ≤ K, 0 ≤ i1 ≤ S1, 0 ≤ j2 ≤
S2, 1 ≤ r ≤ 3, 1 ≤ d ≤ M}

⋃
{∆} where {∆} is the absorbing state

which represents the state that level of C1 returns to S1 and K, the max-

imum size the queue can grow up. Thus we have a finite state space

Markov chain. The possible transitions and corresponding rates are:

• (n, S1, j2, r, d)→ (n− 1, S1 − 1, j2, 1, d) with rate µrp1

• (n, 0, j2, r, d) → (0, 0, j2, 0, d) with rate µrp
n
1 or (0, 0, , j2 − 1, 2, d)

with rate µrp
n−1
1 (p2 + p3)
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• (n, j1, 0, r, d) → (0, j1, 0, 0, d) with rate µrp
n
2 or (0, j1 − 1, 0, 1, d)

with rate µrp
n−1
2 (p1 + p3)

• (n, j1, j2, r, d) → (n − 1, j1 − 1, j2, 1, d) with rate µrp1, or to (n −
1, j1, j2− 1, 2, d) with rate µrp2 or to (n− 1, j1− 1, j2− 1, 3, d) with

rate µrp3

• (n, 0, j2, r, d)→ (n− k, 0, j2 − 1, 2, d) with rate µrp
k−1
1 (p2 + p3)

• (n, j1, 0, r, d)→ (n− k, j1 − 1, 0, 1, d) with rate µrp
k−1
2 (p1 + p3)

• (n, j1, j2, r, d) → (n, S1, j2, r, d) with rate β1 for 0 ≤ j1 ≤ s1, 0 ≤
j2 ≤ S2, 1 ≤ r ≤ 3

• (n, j1, j2, r, d) → (n + 1, j1, j2, r, d) with rate λ for 0 ≤ n ≤ K − 1

for 0 ≤ j1S1, 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3, 1 ≤ d ≤ N

The infinitesimal generator C of the above Markov chain is of the form

C =

[
D D0

0 0

]

with initial probability vector

γ = (cx0(S1, j2, r), cx1(S1, j2, r), ..., cxK(S1, j2, r), 0, 0, ...) : 0 ≤ j2 ≤ S2, 1 ≤ r ≤ 3),



5.4. Numerical illustration 137

where

c =

{
K∑
n=0

S2∑
j2=0

3∑
r=1

xn(S1, j2, r)

}−1

;

D is a matrix of order 3(K+1)(S1 +1)(S2 +1) and D0 is a column vector

of order 3(K + 1)(S1 + 1)(S2 + 1) such that De + D0 = 0. Hence, the

expected cycle length is −γD−1e

Similarly the cycle time of item C2 has expected value −γ1D−1
1 e

where

γ1 = (cx0(j1, S2, r), cx1(j1, S2, r), ..., cxK(j1, S2, r), 0, 0, ...) : 0 ≤ j1 ≤ S1, 1 ≤ r ≤ 3),

where

c =

{
K∑
n=0

S1∑
j1=0

3∑
r=1

xn(j1, S2, r)

}−1

;

D1 is a matrix of order 3(K + 1)(S1 + 1)(S2 + 1).

5.4 Numerical illustration

In this section we provide numerical illustration of the system perfor-

mance with variation in values of underlying parameters.

Effect of λ on various performance measures

Table 5.1 indicates that increase in λ values results in increase in expected

number of customers in the queue, expected loss rate of customers de-

manding C1 alone, C2 alone, both C1 and C2. As λ increases there is

a decrease in the expected number of items in the inventory. Also, as
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λ increases reorder rates for C1 alone, C2 alone, both C1 and C2 also

increase. These are all natural consequences of increase in arrival rate.

λ EN EI1 EI2 EL1 EL2 EL12 ER1 ER2 ER12

1 0.1202 6.7153 9.8163 0.0063 0.0064 1.5765× 10−6 0.0135 0.0090 0.0095
2 0.7984 6.4346 9.6441 0.0109 0.0111 1.0875× 10−4 0.0256 0.0189 0.0173

2.5 1.8468 6.3055 9.5655 0.0133 0.0136 4.0599× 10−4 0.0313 0.0247 0.0205

Table 5.1: Effect of λ: Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, µ1 = 2, µ2 =
3, µ3 = 4, β1 = 2, β2 = 3, p1 = 0.1, p2 = 0.1, p3 = 0.8

Effect of µ1 on various performance measures

µ1 EN EI1 EI2 EL1
EL2

EL12
ER1

ER2
ER12

1 0.3669 6.7168 9.8208 0.0057 0.0058 3.6197× 10−6 0.0135 0.0090 0.0095
1.5 0.2570 6.7131 9.8145 0.0059 0.0059 2.1050× 10−6 0.0135 0.0090 0.0095
2 0.2196 6.7123 9.8119 0.0059 0.0061 1.7035× 10−6 0.0135 0.0090 0.0095

2.5 0.2022 6.7123 9.8107 0.0059 0.0061 1.5593× 10−6 0.0135 0.0090 0.0095
3 0.1926 6.7126 9.8110 0.0060 0.0062 1.4964× 10−6 0.0135 0.0090 0.0095

Table 5.2: Effect of µ1:Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, µ2 =
2, µ3 = 3, β1 = 2, β2 = 3, p1 = 0.1, p2 = 0.1, p3 = 0.8

Table 5.2 indicates that increase in service rateµ1 for processing com-

modity 1, makes decrease in expected number of customers in the system.

As µ1 increases there is a slight decrease initially in the expected number

of C1, then it shows increasing tendency. There is increase in expected

loss rate of customers demanding C1 alone initially and then it remains

constant and then it increases. Reorder rates for C1 alone, C2 alone, for

both C1 and C2 remains constant. Expected number of C2 decreases first

and then increases. Expected loss rate of customers demanding C2 alone

increases and loss rate demanding both C1 and C2 decreases.
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µ2 EN EI1 EI2 EL1
EL2

EL12
ER1

ER2
ER12

1 0.3361 6.7228 9.8150 0.0056 0.0059 2.8812× 10−6 0.0135 0.0090 0.0095
1.5 0.2289 6.7154 9.8110 0.0058 0.0061 1.7583× 10−6 0.0135 0.0090 0.0095
2 0.1926 6.7126 9.8100 0.0060 0.0062 1.4964× 10−6 0.0135 0.0090 0.0095

2.5 0.1758 6.7112 9.8098 0.0061 0.0062 1.4330× 10−6 0.0135 0.0090 0.0095
3 0.1666 6.7106 9.8100 0.0061 0.0063 1.4275× 10−6 0.0135 0.0090 0.0096

Table 5.3: Effect of µ2:Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, µ1 =
3, µ3 = 3, β1 = 2, β2 = 3, p1 = 0.1, p2 = 0.1, p3 = 0.8

Effect of µ2 on various performance measures

Table 5.3 indicates that increase in µ2 decreases expected number of cus-

tomers in the queue. Expected number of C1 decreases and C2 decreases

first and then it increases. Expected loss rate of customers demanding

C1 alone, C2 alone increases, but loss rate demanding both C1 and C2

decreases. Reorder rates for C1, C2 remains constant and that for both

C1 and C2 remains constant first then it shows a slight increase.

Effect of µ3 on various performance measures

µ3 EN EI1 EI2 EL1 EL2 EL12 ER1 ER2 ER12

1 5.6693 6.7262 9.8367 0.0053 0.0056 1.2930× 10−5 0.0132 0.0089 0.0092
1.5 1.0176 6.7059 9.8116 0.0055 0.0055 3.4897× 10−6 0.0135 0.0090 0.0095
2 0.4562 6.7053 9.8091 0.0057 0.0057 2.2389× 10−6 0.0135 0.0090 0.0096

2.5 0.2748 6.7075 9.8101 0.0059 0.0059 1.8148× 10−6 0.0135 0.0090 0.0096
3 0.1922 6.7103 9.8120 0.0061 0.0061 1.6445× 10−6 0.0135 0.0090 0.0095

Table 5.4: Effect of µ3:Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, µ1 =
2, µ2 = 3, β1 = 2, β2 = 3, p1 = 0.1, p2 = 0.1, p3 = 0.8

Table 5.4 indicates, as the service rate for processing both commodi-

ties increases, expected number of customers in the queue decreases. Ex-

pected number of items C1 and C2 first decreases and then it increases.

Reorder rates for C1, C2 first increases and then remains a constant and
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for both C1 and C2 increases, remains constant and then decrease. Ex-

pected loss rate of customers demanding C1 alone, C2 alone increases,

but loss rate demanding both C1 and C2 decreases.

Effect of β1 on various performance measures

β1 EN EI1 EI2 EL1 EL2 EL12 ER1 ER2 ER12

1 0.1917 6.4335 9.8120 0.0061 0.0064 4.3735× 10−6 0.0127 0.0097 0.0090
1.5 0.1921 6.6183 9.8120 0.0061 0.0062 2.5750× 10−6 0.0132 0.0091 0.0093
2 0.1922 6.7103 9.8120 0.0061 0.0061 1.6445× 10−6 0.0135 0.0090 0.0095

2.5 0.1923 6.7652 9.8120 0.0061 0.0061 1.1078× 10−6 0.0137 0.0089 0.0097
3 0.1923 6.8018 9.8120 0.0061 0.0060 7.7633× 10−7 0.0138 0.0089 0.0098

Table 5.5: Effect of β1:Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, µ1 =
2, µ2 = 3, µ3 = 3, β2 = 3, p1 = 0.1, p2 = 0.1, p3 = 0.8

Table 5.5 indicates that as the replenishment rate for the first com-

modity increases expected number of customers in the queue increases

and then remains constant. Expected number of items C1 increases but

that of C2 remains constant. Expected loss rate of customers demanding

C1 alone is constant, but those for C2 alone and both C1 and C2 decrease.

Reorder rates for C1 alone and both C1 and C2 increases and for C2 alone

decreases and then remains constant.

Effect of β2 on various performance measures

Table 5.6 indicates as the replenishment rate for the first commodity

increases expected number of customers in the queue decreases. Expected

number of items C2 increases and C1 remains constant. Expected loss

rate of customers demanding C1 alone decreases first and the remains

constant, C2 alone increases and for both C1 and C2 decreases. Reorder
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β2 EN EI1 EI2 EL1
EL2

EL12
ER1

ER2
ER12

1 0.1929 6.7103 9.4642 0.0062 0.0059 2.0465× 10−5 0.0139 0.0084 0.0090
1.5 0.1924 6.7103 9.6399 0.0061 0.0060 9.2289× 10−6 0.0136 0.0088 0.0093
2 0.1923 6.7103 9.7263 0.0061 0.0060 4.7830× 10−6 0.0135 0.0089 0.0094

2.5 0.1922 6.7103 9.7778 0.0061 0.0061 2.7138× 10−6 0.0135 0.0089 0.0095
3 0.1922 6.7103 9.8120 0.0061 0.0061 1.6445× 10−6 0.0135 0.0090 0.0095

Table 5.6: Effect of β2:Fix S1 = 10, S2 = 15, s1 = 3, s2 = 4, λ = 1, µ1 =
2, µ2 = 3, µ3 = 3, β1 = 2, p1 = 0.1, p2 = 0.1, p3 = 0.8

rates for C1 alone decreases first and then it is a constant and reorder

rates for both C1 and C2, for C2 alone increases.

5.5 Optimization Problem

We now construct an optimization problem involving costs for holding,

procurement and due to loss of demands when the item asked for is not

available. Consider the cost function,

hEN + c1EI1 + c2EI2 + c3EL1 + c4EL2 + c5EL12 + c6ER1 + c7ER2 + c8ER12

where

h : holding cost per customer per unit time,

ci: per unit holding cost of Ci per unit time,for i = 1, 2,

ci, for i = 3, 4, 5: cost due to loss of customer demanding C1 alone,

C2 alone and both C1 and C2 respectively,

ci for i = 6, 7, 8: fixed procurement cost for C1, C2, and both C1 and
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C2 respectively.

In the absence of analytical expressions for system state distribution,

discussions on global optimum is impossible. However, costs for various

(si, Si) for i = 1, 2 is given below:

(S1, S2) (9,10) (10,11) (11,12) (12,13)

Cost 108.9064 112.8852 117.7741 123.1719

Table 5.7: Value of cost function for various (S1, S2): Fix s1 = 4, s2 =
5, h = 3, c1 = 5, c2 = 8, c3 = 15, c4 = 20, c5 = 10, c6 = 100, c7 = 150, c8 =
200
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Chapter 6

Queueing Inventory Model

for Crowdsourcing

In this chapter we focus on a topic-crowdsourcing- hitherto not investi-

gated in the queueing-inventory literature. Hence it is not in any way

related to themes in earlier chapters except that positive service time is

considered for serving items to customers. Crowdsourcing is the process

of getting work usually online from a crowd of people. It is a combination

of ’crowd’ and ’outsourcing’. The idea is to take work and outsource it

to a crowd of workers. The principle of crowdsourcing is that more heads

are better than one. By canvassing a large crowd of people for ideas,

skills or participation, the quality of content and idea generation will be

superior.

Wikipedia, the most comprehensive encyclopedia the world has ever

seen, is a famous example of crowdsourcing. Instead of creating an ency-

Some results of this chapter was presented in International Conference on Stochas-
tic Modelling, Analysis and Applications held at CMS College ,Kottayam on January
11-12,2018.

145
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clopedia on their own, they gave a crowd the responsibility to create the

information on their own. The concept of crowdsourcing is used by many

industries such as food, consumer products, hotels, electronics and other

large retailers. A number of examples of crowdsourcing can be found in

[51].

The motivation for this chapter is from Chakravarthy and Dudin[16]

and Krishnamoorthy et al.[34]. In these the authors use the crowdsourc-

ing in the context of service sectors getting possible help from one group

of customers who first receive service from them and then opt to execute

similar services to another group. The resources for service is assumed

to be abundantly available. In the present chapter we assume finiteness

of availability of item to be served. Thus, when the item is not available

service cannot be provided.

6.1 Model Description

Consider a queueing inventory system with c servers. There are two

types of customers: Type I and Type II. Type II customers are virtual

ones, ordering through phone or internet or through some other means.

Arrival of Type I and Type-II customers follow Poisson process with pa-

rameter λ1 and λ2, respectively. Type I are to be served by one of the

c servers with service time assumed to be exponentially distributed with

parameter µ1. Type II customers may be served by a Type I customer

having already been served and ready to act as a server, or by one of c

servers. Type II when served by one of the c servers, the service time

is exponentially distributed with parameter µ2. Type I customers has

non preemptive priority over Type II. Type II is served by a Type I only
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if inventory is available after attaching the existing items to the priority

customers already present. Type II is served by a Type I with probability

p, 0 ≤ p ≤ 1 and with complementary probability q = 1−p, served Type

I will leave the system. If a Type I customer serves a Type II customer,

then that Type II customer is removed from the system immediately on

completion of the corresponding Type-I customer’s service. Arrival of

both type of customers is permitted only when excess inventory, which

is defined as the difference between on hand inventory and number of

busy servers, is positive. A finite waiting space L for Type I is assumed

whereas Type II has unlimited waiting area. When inventory level drops

to c+ s, an order for replenishment is placed to bring the inventory level

to c+ S. We assume c < s < L < S = c+ 2L. The replenishment takes

place after a random amount of time which is exponentially distributed

with parameter β.

Define

N1(t) : Number of Type II customers in queue (waiting for service) at time t

N2(t) : Number of servers busy with Type II customers at time t

N3(t) : Number of Type I customers in system at time t

I(t) : Inventory level at time t

Then

{(N1(t), N2(t), N3(t), I(t)) : t ≥ 0}

is a continuous time Markov chain. The state space of the above process

is

Ω =
∞⋃
i=0

`(i)
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where `(i) denotes level i. The elements of Ω are as described below:

`(0) = {(0, j, k, l) : 0 ≤ j ≤ c, 0 ≤ k ≤ L, j ≤ l ≤ c+ S}

and

`(i) = {(i, j, k, l) : i > 0, 0 ≤ j ≤ c, 0 ≤ k ≤ c− j − 1, j ≤ l ≤ j + k}⋃
{(i, j, k, l) : i > 0, 0 ≤ j ≤ c, c− j ≤ k ≤ L, j ≤ l ≤ c+ S}.

The level 0, `(0), can be further partitioned as

`(0) = {(0, 0), (0, 1), (0, 2), ..., (0, c)}

where the set of states (0, j) corresponds to the case when there is no

Type II customer waiting in the queue and j Type II customers are in

service and each {(0, j) : 0 ≤ j ≤ c} has (L+ 1)(c+ S − j + 1) elements

for 0 ≤ j ≤ c. Similarly, `(i) can also be further partitioned as

`(i) = {(i, 0), (i, 1), (i, 2), ..., (i, c)},

where the set of states (i, j) corresponds to the case when there are i

Type II customer waiting in the queue and j Type II customers are in

service, each has (1 + 2 + 3 + ....+ c− j) + (L− (c− j− 1))(c+S− j+ 1)

elements for 0 ≤ j ≤ c. The transitions in the above Markov chain can

be described as follows:

1. Transition due to arrival of customers:

• Due to the arrival of Type I customer:
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– (0, j, k, l) → (0, j, k + 1, l) with rate λ1 if j + k < l, 0 ≤
j ≤ c, 0 ≤ k ≤ c− j − 1, j ≤ l ≤ c+ S

– (i, j, k, l)→ (i, j, k+ 1, l) for i ≥ 1 with rate λ1 if 0 ≤ j ≤
c, c− j ≤ k ≤ L− 1, c+ 1 ≤ l ≤ c+ S

• Due to the arrival of Type II customer:

– (0, j, k, l) → (0, j + 1, k, l) with rate λ2 if j + k < l, 0 ≤
j ≤ c− 1, 0 ≤ k ≤ c− j − 1, j ≤ l ≤ c+ S

– (0, j, k, l) → (1, j, k, l) with rate λ2 if j = c, c − j ≤ k ≤
L, c+ 1 ≤ l ≤ c+ S

– (i, j, k, l)→ (i+1, j, k, l) with rate λ2 for 0 ≤ j ≤ c, c−j ≤
k ≤ L, c+ 1 ≤ l ≤ c+ S

2. Transitions due to service completions:

• (0, j, k, l)→ (0, j− 1, k, l− 1) with rate jµ2 for 1 ≤ j ≤ c, 0 ≤
k ≤ L, j ≤ l ≤ c+ S

• (0, j, k, l)→ (0, j, k − 1, l − 1) with rate min(c− j, k, l − j)µ1

for 0 ≤ j ≤ c, 1 ≤ k ≤ L, j ≤ l ≤ c+ S

• (i, j, k, l) → (i, j, k − 1, l − 1) with rate min(c − j, k, l − j)µ1

for 0 ≤ j ≤ c, 1 ≤ k ≤ c− j, j ≤ l ≤ j + k

• (i, j, k, l) → (i − 1, j, k − 1, l − 2) with rate p(c − j)µ1 for

0 ≤ j ≤ c− 1, c− j ≤ k ≤ L, j + k + 1 ≤ l ≤ c+ S

• (i, j, k, l)→ (i− 1, j + 1, k − 1, l − 1) with rate q(c− j)µ1 for

0 ≤ j ≤ c− 1, k = c− j, c+ 1 ≤ l ≤ c+ S

3. Transition due to replenishment:
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• (0, j, k, l)→ (0, j, k, c+ S) with rate β for 0 ≤ j ≤ c, 0 ≤ k ≤
L, 0 ≤ l ≤ c+ s

• (i, j, k, l)→ (0, j+ i, k, c+S) with rate β for 0 ≤ j ≤ c− i, 0 ≤
k ≤ c− j − i, 0 ≤ l ≤ j + k

• (i, j, k, l) → (i, j, k, c + S) with rate β for 0 ≤ j ≤ c, c − j ≤
k ≤ L, j ≤ l ≤ c+ s

The infinitesimal generator of the above process is
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Q
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                            A
0
,0

A
0
,1

A
1
,0

A
1
,1

A
1
,2

A
2
,0

A
2
,1

A
2
,2

A
2
,3

A
3
,0

A
3
,1

A
3
,2

A
3
,3

A
3
,4

. . . . . .

A
c
−
2
,0

A
c
−
2
,1

A
c
−
2
,2

..
.

..
.

..
.

A
c
−
2
,c
−
2

A
c
−
2
,c
−
1

A
c
−
1
,0

A
c
−
1
,1

A
c
−
1
,2

..
.

..
.

..
.

A
c
−
1
,c
−
2

A
c
−
1
,c
−
1

A
c
−
1
,c

A
c
,0

A
c
,1

A
c
,2

..
.

..
.

A
c
,c
−
2

A
c
,c
−
1

A
c
,c

A
c
,c
+
1

A
c
+
1
,1

A
c
+
1
,2

..
.

..
.

..
.

A
c
+
1
,c

A
c
+
1
,c
+
1

A
c
+
2
,2

A
c
+
2
,3

..
.

..
.

..
.

. .
.

. .
.

A
2
c
,c

A
2
c
,c
+
1

..
.

A
2
c
+
1
,c
+
1

..
.

. .
.

. .
.

                            
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For c = 2 the matrices appearing in Q are

B0(i, j, k, l; i′, j′, k′, l′) =

{
λ2, i = 0, i′ = i+ 1, 0 ≤ j ≤ c,

c− j ≤ k ≤ L, c+ 1 ≤ l ≤ c+ S;

A10(i, j, k, l; i′, j′, k′, l′) =



p(c− j)µ1, i = 1, i′ = 0, 0 ≤ j ≤ c− 1,

c− j ≤ k ≤ L, j + k + 1 ≤ l ≤ c+ S,

j′ = j, k′ = k − 1, l′ = l − 2;

q(c− j)µ1, i = 1, i′ = 0, 0 ≤ j ≤ c− 1,

k = c− j, c+ 1 ≤ l ≤ c+ S;

j′ = j + 1, l′ = l − 1;

β, i = 1, i′ = 0, 0 ≤ j ≤ c− 1,

0 ≤ k ≤ c− 1, j′ = j + 1,

0 ≤ l ≤ j + k, k′ = k, l′ = c+ S;

cµ2, i = 1, i′ = 0, j = c, k = c− j,
c+ 1 ≤ l ≤ c+ S;

A20(i, j, k, l; i′, j′, k′, l′) =


p(c− j)µ1, i = 2, i′ = 0, 0 ≤ j ≤ c− 1,

k = c− j, c+ 2 ≤ l ≤ c+ S;

β, i = 2, i′ = 0, j = 0, l = 0,

k = 0, j′ = j + 2, k′ = k, l′ = c+ S

A2(i, j, k, l; i′, j′, k′, l′) =



p(c− j)µ1, 0 ≤ j ≤ c− 1, k = c− j, l = c+ 1,

k′ = k − 1, l′ = l − 2;

p(c− j)µ1, 0 ≤ j ≤ c− 1, c− j + 1 ≤ k ≤ L,

j + k + 1 ≤ l ≤ c+ S, j′ = j, k′ = k − 1, l′ = l − 2;

q(c− j)µ1, 0 ≤ j ≤ c− 1, k = c− j, c+ 1 ≤ l ≤ c+ S,

j′ = j + 1, k′ = k − 1, l′ = l − 1

β, j = 0, k = 1, 0 ≤ l ≤ j + k,

j′ = j + 1, k′ = k, l′ = c+ S,

β, j = 1, k = 0, l = 1,

j′ = j + 1, k′ = k, l′ = c+ S,

jµ2, 1 ≤ j ≤ c, k = c− j, c+ 1 ≤ l ≤ c+ S,

j′ = j, k′ = k, l′ = l − 1,
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A3(i, j, k, l; i′, j′, k′, l′) =


p(c− j)µ1, 0 ≤ j ≤ c− 1, k = c− j,

c+ 2 ≤ l ≤ c+ S, j′ = j + 1, k′ = k − 1, l′ = l − 2;

β, j = 0, k = 0, l = 0,

j′ = j + 2, k′ = k, l′ = c+ S,

A0(i, j, k, l; i′, j′, k′, l′) =


λ2, i ≥ 1, i′ = i+ 1, 0 ≤ j ≤ c,

c− j ≤ k ≤ L, c+ 1 ≤ l ≤ c+ S;

0 otherwise

Let aj = min(c− j, k, l − j)µ1 for 0 ≤ j ≤ c

B1(i, j, k, l; i′, j′, k′, l′) =



β, j = 0, k = 0,

j ≤ l ≤ c+ s, l′ = c+ S;

−β, i = i′ = 0, j = 0,

0 ≤ k ≤ L, l = l′ = 0;

−(β + λ1 + λ2), i = i′ = 0, j = 0,

k = 0, 1 ≤ l ≤ c+ s;

−(λ1 + λ2), i = i′ = 0, j = 0,

k = 0, c+ s+ 1 ≤ l ≤ c+ S,

λ1, i = i′ = 0, 0 ≤ j, j′ ≤ c− 1,

0 ≤ k ≤ c− j − 1, j ≤ l, l′ ≤ c+ S,

k′ = k + 1, j + k < 1;

λ1, i = i′ = 0, 0 ≤ j, j′ ≤ c,
c− j ≤ k ≤ L− 1, c+ 1 ≤ l, l′ ≤ c+ S,

k′ = k + 1, j + k < 1;

λ2, i = i′ = 0, 0 ≤ j ≤ c− 1,

0 ≤ k ≤ c− j − 1, j ≤ l ≤ c+ S,

j′ = j + 1, j + k < 1;

aj , i = i′ = 0, j = 0,

1 ≤ k ≤ L, k′ = k − 1, j ≤ l ≤ c+ S,

l′ = l − 1;

−(β + aj), j = 0 = j′, k = 1 = k′, l = 1 = l′,

−(β + aj + λ1 + λ2), j = 0 = j′, k = 1 = k′,

2 ≤ l ≤ c+ s,
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B1(i, j, k, l; i′, j′, k′, l′) =



−(aj + λ1 + λ2), j = 0 = j′, k = 1 = k′,

c+ s+ 1 ≤ l ≤ c+ S,

−(β + aj), j = 0 = j′, c ≤ k ≤ L, 1 ≤ l ≤ c,
−(β + aj + λ1 + λ2), j = 0 = j′, c ≤ k ≤ L− 1,

c+ 1 ≤ l ≤ c+ s,

−(aj + λ1 + λ2), j = 0 = j′, c ≤ k ≤ L− 1,

c+ s+ 1 ≤ l ≤ c+ S,

−(β + aj + λ2), j = 0 = j′, k = L,

c+ 1 ≤ l ≤ c+ s,

−(aj + λ2), j = 0 = j′, k = L,

c+ s+ 1 ≤ l ≤ c+ S,

−(β + jµ2), i = i′ = 0, j = 1,

0 ≤ k ≤ L, l = j;

−(β + jµ2 + λ1 + λ2), i = i′ = 0, j = 1,

k = 0, 2 ≤ l ≤ c+ s;

−(jµ2 + λ1 + λ2), i = i′ = 0, j = 1,

k = 0, c+ s+ 1 ≤ l ≤ c+ S;

−(β + jµ2 + aj), i = i′ = 0, j = 1,

k = 1, l = 2;

−(β + jµ2 + aj + λ1 + λ2), i = i′ = 0, j = 1,

1 ≤ k ≤ L− 1, c+ 1 ≤ l ≤ c+ s;

−(jµ2 + aj + λ1 + λ2), i = i′ = 0, j = 1,

1 ≤ k ≤ L− 1, c+ s+ 1 ≤ l ≤ c+ S;

−(β + jµ2 + aj + λ2), i = i′ = 0, j = 1,

k = L, c+ 1 ≤ l ≤ c+ s;

−(jµ2 + aj + λ2), i = i′ = 0, j = 1,

k = L, c+ s+ 1 ≤ l ≤ c+ S;

jµ2, i = i′ = 0, 1 ≤ j ≤ c,
0 ≤ k ≤ L, 1 ≤ l ≤ c+ S;

−(β + jµ2), i = i′ = 0, j = c,

0 ≤ k ≤ L, l = j;

−(β + jµ2 + λ1 + λ2), i = i′ = 0, j = c,

0 ≤ k ≤ L− 1, c+ 1 ≤ l ≤ c+ s;
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B1(i, j, k, l; i′, j′, k′, l′) =



−(jµ2 + λ1 + λ2), i = i′ = 0, j = c,

0 ≤ k ≤ L− 1, c+ s+ 1 ≤ l ≤ c+ S;

−(β + jµ2 + λ2), i = i′ = 0, j = c,

k = L, c+ 1 ≤ l ≤ c+ s;

−(jµ2 + λ2), i = i′ = 0, j = c,

k = L, c+ s+ 1 ≤ l ≤ c+ S;

A1(i, j, k, l; i′, j′, k′, l′) =



−β, i = i′ = 1, j = 0,

k = 0, 1, l = 0;

aj , i = i′ = 1, 0 ≤ j ≤ 1,

1 ≤ k ≤ L, 0 ≤ l ≤ j + k;

q(c− j)µ1, i = i′ = 1, j = 0,

c+ 1 ≤ k ≤ L, j + k + 1 ≤ l ≤ c+ S;

β, i = i′ = 1, j = 0,

c ≤ k ≤ L, 0 ≤ l ≤ c+ s, l′ = c+ S;

−(β + aj), i = i′ = 1, j = 0,

1 ≤ k ≤ L, 0 ≤ l ≤ c;
−(β + aj + λ1 + λ2), i = i′ = 1, j = 0,

c ≤ k ≤ L− 1, c+ 1 ≤ l ≤ c+ s;

−(aj + λ1 + λ2), i = i′ = 1, j = 0,

c ≤ k ≤ L− 1, c+ s+ 1 ≤ l ≤ c+ S;

−(β + aj + λ2), i = i′ = 1, j = 0,

k = L, c+ 1 ≤ l ≤ c+ s;

−(aj + λ2), i = i′ = 1, j = 0,

k = L, c+ s+ 1 ≤ l ≤ c+ S;

jµ2, i = i′ = 1, j = 1,

0 ≤ k ≤ L, j ≤ l ≤ j + k;

jµ2, i = i′ = 1, j = 1,

c ≤ k ≤ L, j ≤ l ≤ c+ S;

q(c− j)µ1, i = i′ = 1, j = 1,

c ≤ k ≤ L, j + k + 1 ≤ l ≤ c+ S;

−(β + µ2), i = i′ = 1, j = 1,

k = 0, 1, l = 1;
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A1(i, j, k, l; i′, j′, k′, l′) =



−(β + µ2 + µ1), i = i′ = 1, j = 1,

1 ≤ k ≤ L− 1, l = 2;

−(β + µ2 + µ1 + λ1 + λ2), i = i′ = 1, j = 1,

1 ≤ k ≤ L− 1, c+ 1 ≤ l ≤ c+ s;

−(µ2 + µ1 + λ1 + λ2), i = i′ = 1, j = 1,

1 ≤ k ≤ L− 1, c+ s+ 1 ≤ l ≤ c+ S;

−(β + µ2 + µ1 + λ2), i = i′ = 1, j = 1,

k = L, c+ 1 ≤ l ≤ c+ s;

−(µ2 + µ1 + λ2), i = i′ = 1, j = 1,

k = L, c+ s+ 1 ≤ l ≤ c+ S;

−(β + jµ2), i = i′ = 1, j = c,

0 ≤ k ≤ L, l = j;

−(β + jµ2 + λ1 + λ2), i = i′ = 1, j = c,

0 ≤ k ≤ L− 1, c+ 1 ≤ l ≤ c+ s;

−(jµ2 + λ1 + λ2), i = i′ = 1, j = c,

0 ≤ k ≤ L− 1, c+ s+ 1 ≤ l ≤ c+ S;

−(β + jµ2 + λ2), i = i′ = 1, j = c,

k = L, c+ 1 ≤ l ≤ c+ s;

−(jµ2 + λ2), i = i′ = 1, j = c,

k = L, c+ s+ 1 ≤ l ≤ c+ S;

jµ2, i = i′ = 1, j = 2,

0 ≤ k ≤ L, j ≤ l ≤ c+ S;

The matrices Ai,i−1 and Ai,i+1 represents the transitions from `(i) to

`(i − 1) and to `(i + 1) respectively and Ai,i has as elements transition

rates within `(i). Ai,j has as entries transition rates from `(i) to `(j) for

0 ≤ j ≤ i− 2 for i ≥ 2. From the transitions described above we can see

that Ai,i+1 are same for i ≥ 1 and is denoted by A0, Ai,i, for i ≥ 1, are

same and they are denoted by A1, Ai,i−1 , for i ≥ 1, are same and they

are denoted by A2. Similarly, Ai,i−2 for i ≥ 3, Ai,i−3 for i ≥ 4, Ai,i−4 for

i ≥ 5, . . ., Ai,i−(c−1) for i ≥ c and Ai,i−c for i ≥ c + 1 are same. They

are denoted by A3, A4, A5, . . . , Ac, Ac+1 respectively. The model under
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study can be studied as a QBD process by combining the set of states

as follows:

L(1) = {`(1), `(2), `(3), . . . , `(c)}

L(2) = {`(c+ 1), `(c+ 2), `(c+ 3), . . . , `(2c)}

L(3) = {`(2c+ 1), `(2c+ 2), `(2c+ 3), . . . , `(3c)}

and so on. Thus ,the new generator is

Q′ =



B1 B′0

A′2 Ã1 Ã0

Ã2 Ã1 Ã0

Ã2 Ã1 Ã0

. . . . . . . . .


.

where the block entries appearing in Q′ are obtained from those of Q as

follows.

B′0 =
[
B0 0 . . .

]
, A′2 =



A10

A20

A30

...

Ac0


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Ã0 =


0 . . . 0
...

...

0

A0 0 0 0 . . . . . . . . . 0



Ã2 =



Ac+1 Ac . . . A2

Ac+1 Ac . . . A3

Ac+1 Ac A4

. . .

. . .

. . .

Ac+1 Ac

0 . . . . . . Ac+1



Ã1 =



A1 A0

A2 A1 A0

A3 A2 A1 A0

...
. . .

. . .
...

. . .

A1 A0

Ac Ac−1 Ac−2 . . . . . . A2 A1



6.2 Steady State Analysis

We proceed with the steady state analysis of the queueing -inventory

system under study. The first step is to look for the condition for stability.
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6.2.1 Stability Condition

Define Ã = Ã0 + Ã1 + Ã2. Then it is the infinitesimal generator of the

finite state continuous time Markov chain. Let π̃=(π̃1, π̃2, ...π̃c) be the

steady state probability vector of this generator Ã. That is π̃ satisfies

π̃Ã = 0

and

π̃e = 1

Ã is a circulant matrix and so the vector π̃ is of the form π̃=(π/c, π/c, π/c, ....π/c)

where π satisfies

πA = 0

and

πe = 1

with A = A0 +A1 +A2 + ....+Ac+1, and π=(π0, π1, π2, ....πc). The QBD

type generator is stable if and only if

π̃Ã0e < π̃Ã2e,

which on simplification yields

π/cA0e < π/c{cAc+1e+(c−1)Ace+(c−2)Ac−1e+. . . 2A3e+A2e} (6.1)

i.e,

λ2 < Prob(excess inventory level exceeds number of priority customer waiting)
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Prob(r priority customers are in service)

r µ1 pProb(atleast one low priority waiting)

+Prob(l low priority customers in service)l µ2

6.2.2 Steady state Probability vector

Let y = (y0,y1,y2, . . .) denote the steady state probability vector of Q′.
Then,

yQ′ = 0,ye = 1.

Note that, y0=x0, and y1 = (x1,x2,x3, . . .xc), y2 = (xc+1,xc+2,xc+3, . . .x2c)

and so on where x = (x0,x1,x2, . . .) being the steady state probability

vector of Q. The component vectors are partitioned as

x0 = {x0(j, k, l) : 0 ≤ j ≤ c, 0 ≤ k ≤ L, j ≤ l ≤ c+ S}

and

xi = {xi(j, k, l) : 0 ≤ j ≤ c, 0 ≤ k ≤ c− j − 1, j ≤ l ≤ j + k}
⋃

{xi(j, k, l) : 0 ≤ j ≤ c, c− j ≤ k ≤ L, j ≤ l ≤ c+ S}, for i ≥ 1

Under the stability condition (6.1), the steady state probability vector

yi = y1R
i−1, i ≥ 2

where R is the minimal nonnegative solution to the matrix quadratic

equation

R2Ã2 +RÃ1 + Ã0 = 0,
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and the vectors y0 and y1 are obtained by solving

y0B1 + y1A
′
2 = 0

y0B
′
0 + y1[Ã1 +RÃ2] = 0

subject to the normalizing condition

y0 + y1(I −R)−1e = 1

6.3 System Characteristics

1. Expected number of Type-II customers in the queue,

ETII =
∞∑
i=1

ixie.

2. Expected number of Type-I customers in system,

ETI =
c∑
j=0

L∑
k=1

k

c+S∑
l=j

x0(j, k, l) +
∞∑
i=1

c∑
j=0

c−j−1∑
k=1

k

j+k∑
l=j

xi(j, k, l)

+
∞∑
i=1

c∑
j=0

L∑
k=c−j

k

c+S∑
l=j

xi(j, k, l).

3. Rate at which Type-II customers leave with Type-I customers upon

completion of latter’s service,

RTII,T I =
∞∑
i=1

c−1∑
j=0

p(c− j)µ1

L∑
k=c−j

k

c+S∑
l=j+k+1

xi(j, k, l).
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4. Rate at which Type II customers served out by servers,

RTIIS =
c∑
j=1

jµ2

L∑
k=0

c+S∑
l=j

x0(j, k, l)

+
∞∑
i=1

c∑
j=1

jµ2

c−j−1∑
k=0

k

j+k∑
l=j

xi(j, k, l)

+
∞∑
i=1

c∑
j=1

jµ2

L∑
k=c−j

c+S∑
l=j

xi(j, k, l).

5. Probability that a Type II customer leaves with a Type-I cus-

tomer,=
1

λ2

RTII,T I .

6. Probability that Type II customer leaves with service from one of

c servers=
1

λ2

RTIIS.

7. Probability that Type-I is lost due to no inventory,

PTInoinv =
c∑
j=0

c−j∑
k=0

j+k∑
l=j

x0(j, k, l) +
c∑
j=0

L−1∑
k=c−j+1

c∑
l=j

x0(j, k, l)

+
∞∑
i=1

c∑
j=0

c−j∑
k=0

j+k∑
l=j

xi(j, k, l)

+
∞∑
i=1

c∑
j=0

L−1∑
k=c−j+1

c∑
l=j

xi(j, k, l).
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8. Expected loss rate of Type-I customer due to no inventory,

ETIlossrate = λ1PTInoinv.

9. Expected loss rate of Type-II customer due to no inventory,

ETIIlossrate = λ2PTIInoinv.

10. Probability that an arriving Type-I customer is lost due to lack of

space in buffer,

Pnospace =
∞∑
i=0

c∑
j=0

c+S∑
l=j

xi(j, L, l).

11. Probability that Type-II is lost due to no inventory,

PTIInoinv =
c∑
j=0

c−j∑
k=0

j+k∑
l=j

x0(j, k, l) +
c∑
j=0

L∑
k=c−j+1

c∑
l=j

x0(j, k, l)

+
∞∑
i=1

c∑
j=0

c−j∑
k=0

j+k∑
l=j

xi(j, k, l)

+
∞∑
i=1

c∑
j=0

L∑
k=c−j+1

c∑
l=j

xi(j, k, l).

12. Probability that all servers are idle,

c+S∑
l=0

x0(0, 0, l) +
∞∑
i=1

l∑
k=0

xi(0, k, 0).
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13. Probability that all servers are busy,

∞∑
i=0

c∑
j=0

L∑
k=c

c+S∑
l=c

xi(j, k, l).

14. Probability that all servers are busy with Type-I,

∞∑
i=0

L∑
k=c

c+S∑
l=c

xi(0, k, l).

15. Probability that all servers are busy with Type-II,

∞∑
i=0

L∑
k=c

c+S∑
l=c

xi(c, k, l).

16. Probability that no server is busy with Type-I,

c∑
j=0

c+S∑
l=j

x0(j, 0, l) +
c∑
j=0

L∑
k=1

x0(j, k, j) +
L∑
k=1

c+S∑
l=c+1

x0(c, k, l)

+
∞∑
i=0

c∑
j=0

L∑
k=0

xi(j, k, j) +
L∑
k=0

c+S∑
l=c+1

xi(c, k, l).

17. Probability that exactly ’m’ servers are busy with Type-I, =

∞∑
i=0

c−m∑
j=0

L∑
k=m

xi(j, k, j + 1) +
c−m∑
j=0

c+S∑
l=j+k+1

x0(j,m, l).
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18. Probability that no server is busy with Type-II,

L∑
k=0

c+S∑
l=0

x0(0, k, l) +
∞∑
i=1

c∑
k=0

j+k∑
l=0

xi(0, k, l)

+
L∑

k=c+1

c+S∑
l=c+1

xi(0, k, l).

19. Probability that exactly ’m’ servers are busy with Type-II,

L∑
k=0

c+S∑
l=m

x0(m, k, l) +
∞∑
i=1

{
c−m∑
k=0

j+k∑
l=m

xi(m, k, l) +
L∑
k=c

c+S∑
l=m

xi(m, k, l)

}
.

20. Expected reorder rate,

ER = kµ1

c∑
k=1

x0(0, k, c+ s+ 1) + cµ1

L∑
k=c+1

x0(0, k, c+ s+ 1)

+
c∑
j=1

jµ2

L∑
k=0

x0(j, k, c+ s+ 1)

+
c∑
j=1

(c− j)µ1

L∑
k=1

x0(j, k, c+ s+ 1)

+
∞∑
i=1

c−1∑
j=0

q(c− j)mu1

L∑
k=c−j

xi(j, k, c+ s+ 1)

+
∞∑
i=1

cµ2

L∑
k=0

xi(j, k, c+ s+ 1)
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+
∞∑
i=1

c−1∑
j=0

p(c− j)mu1

c+s+2−(j+1)∑
k=c−j

xi(j, k, c+ s+ 2).

21. Expected number of items in the inventory,

EI =
L∑
k=0

c+S∑
l=1

lx0(0, k, l) +
c∑
j=1

L∑
k=0

c+S∑
l=j

lx0(j, k, l)

+
∞∑
i=1

xi(0, 1, 1) +
c−1∑
k=2

j+k∑
l=1

lxi(0, k, l)

+
∞∑
i=1

c∑
j=1

c−j−1∑
k=0

j+k∑
l=j

lxi(j, k, l) +
∞∑
i=1

c∑
j=0

L∑
k=c−j

c+S∑
l=j

lxi(j, k, l)

6.3.1 Optimization Problem

Based on the above performance measures we construct a revenue func-

tion. We define this revenue function as RF as

RF = (C1−C2−C3)RTII,T I+(C1−C2)RTIIS−C4Pnospace−C5Pnoinv−hIEI

−C2ER − hCIETI − hCIIETII

where

• C1 = Selling Cost per unit item

• C2 = Purchase Cost per unit item

• C3 = Incentive to Type-I for serving Type-II

• C4=Cost for loss due to lack of space in buffer
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• C5 = Cost for customer loss due to no inventory

• hI = holding cost per unit time per unit item in the inventory

• hCI = holding cost per Type-I customer per unit time

• hCII = holding cost per Type-II customer per unit time

In order to study the variation in different parameters on profit function

we first fix the costs C1 = $75, C2 = $50, C3 = $2, C4 = $10, C5 =

$10, hI = $5, hCI = $5, hCI = $2.

Effect of p on RF

The effect of p on the revenue function for c=1,c=2 and c=3 are given

below:

p 0 0.25 0.5 0.75 1

RF -37.4033 -40.8083 -43.0853 -44.4609 -45.2468

Table 6.1: Value of revenue function for various p: Fix c = 1, L = 8, S =
17, s = 5, λ1 = 0.9, λ2 = 0.8, β = 1, µ1 = 2, µ2 = 3

p 0 0.25 0.5 0.75 1

RF -35.2785 -50.1243 -54.6316 -54.6847 -53.7205

Table 6.2: Value of revenue function for various p: Fix c = 2, L = 8, S =
18, s = 5, λ1 = 0.9, λ2 = 0.8, β = 2, µ1 = 2, µ2 = 3

As p increases the value of the revenue function decreases for c =

1, c = 3. For c = 2, revenue function decreases first and then it shows a

slight increase. This is because as p increases incentives given increases.
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p 0 0.25 0.5 0.75 1

RF 515.4303 404.3992 339.7477 298.8594 267.5835

Table 6.3: Value of revenue function for various p: Fix c = 3, L = 8, S =
19, s = 5, λ1 = 1, λ2 = 1.1, β = 2, µ1 = 1.1, µ2 = 1.2

Effect of β on loss rates and number of items in in-

ventory

As β value increases loss rate of Type-I customers, Type-II customers due

to no inventory is evaluated and we can see that loss rate of customers

decreases, and as β increases expected number of items in the inventory

increases.

β 1 1.5 2 2.5 3

ETIlossrate 0.0141 0.0049 0.0019 9, 1408× 10−4 4.8460× 10−4

ETIIlossrate 0.0125 0.0042 0.0017 8.1252× 10−4 4.3075× 10−4

EI 10.4024 10.7832 10.9746 11.0889 11.1644

Table 6.4: Value of revenue function for various value of β: Fix c =
1, L = 8, S = 17, s = 5, λ1 = 0.9, λ2 = 0.8, µ1 = 2, µ2 = 3, p = 0.5

β 1 1.5 2 2.5 3
ETIlossrate 0.0081 0.0024 9.3577× 10−4 4.1559× 10−4 1.9997× 10−4

ETIIlossrate 0.0072 0.0021 8.1711× 10−4 3.5942× 10−4 1.7045× 10−4

EI 12.8770 13.2197 13.3877 13.4867 13.5519

Table 6.5: Value of revenue function for various values of β: Fix c =
2, L = 8, S = 18, s = 5, λ1 = 0.9, λ2 = 0.8, µ1 = 2, µ2 = 3, p = 0.5
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β 1 1.5 2 2.5 3

ETIlossrate 0.0749 0.0474 0.0342 0.0270 0.0224

ETIIlossrate 0.0837 0.0535 0.0389 0.0307 0.0256

EI 12.0157 13.1016 13.5791 13.8264 13.9762

Table 6.6: Value of revenue function for various values of β: Fix c =
3, L = 8, S = 19, s = 5, λ1 = 1, λ2 = 1.1, µ1 = 1.1, µ2 = 1.2, p = 0.5

Effect of β on revenue function

As β increases value of revenue function increases for c = 2 and c = 3,

whereas for c = 1 it decreases.

β 1 1.5 2 2.5 3

RF -43.0853 -44.5015 -45.1581 -45.5057 -45.7053

Table 6.7: Value of revenue function for various values of β: Fix c =
1, L = 8, S = 17, s = 5, λ1 = 0.9, λ2 = 0.8, µ1 = 2, µ2 = 3, p = 0.5

β 1 1.5 2 2.5 3

RF -58.7539 -56.5816 -54.6316 -53.1138 -51.9845

Table 6.8: Value of revenue function for various values of β: Fix c =
2, L = 8, S = 18, s = 5, λ1 = 0.9, λ2 = 0.8, µ1 = 2, µ2 = 3, p = 0.5

β 1 1.5 2 2.5 3

RF 195.6691 278.4610 339.7477 381.2734 410.2780

Table 6.9: Value of revenue function for various values of β: Fix c =
3, L = 8, S = 19, s = 5, λ1 = 1, λ2 = 1.1, µ1 = 1.1, µ2 = 1.2, p = 0.5



Concluding remarks and suggestions for future study:

In this thesis we discussed queueing -inventory models with several modes

of service, those with reservation, cancellation and common life time,

queueing inventory model with two commodities and inventory problems

associated with crowdsourcing. In certain cases explicit product form

solution of the system state could be arrived at.

In chapter 2 we investigated a queueing-inventory model under (s,Q)

and (s, S) policies. We introduced two distinct rates of service based

on whether inventory level is above s or less than or equal to s. The

purpose of these distinct service rates is to reduce the customer loss in

the absence of inventory. It is seen that (s,Q) policy outperforms the

(s, S) policy. In addition to producing product form solution in both

cases we investigated the effect of various parameters on different system

performance measures.

It is easy to compute distribution of the time between two successive

visits to S (or for that matter s). However, it turns out to be extremely

hard to compute the distribution of a busy period (starting with a single

customer in the system at an arrival epoch, until the system returns to

‘no customer’ state at a departure epoch). We will take up this in a

future investigation.

In chapter 3, we analyzed an inventory system with reservation and

CLT for inventory. Purchased items could be returned before expiry of

CLT . The CLT of items is exponentially distributed. On realization of

CLT customers waiting in the system stay back. When CLT is reached a

replenishment order is placed, lead time of which follows exponential dis-

tribution. No new arrival joins when inventory level is zero. This leads to



Concluding remarks

a product form solution. Under stability condition we computed the long

run system state distribution. These are in turn used for computing sev-

eral system performance measures. Expected sojourn time in maximum

inventory level and zero inventory level in a cycle are derived. An opti-

mization of a revenue function is also done numerically. We propose to

examine whether a product form solution exist for a queueing-inventory

system with finite capacity.

In chapter 4 we considered a queueing-inventory model with reserva-

tion (purchase), cancellation (return of purchased items) when the items

in a batch have common life time. The cases of both zero lead time as

well as positive lead time were examined. In these two cases we arrived

at the stochastic decomposition of the system state and further product

form solution in the long run - that asymptotic independence of number

of items in the inventory and number of customers in the system. Sev-

eral performance characteristics of the system were studied. A significant

application of the model is indicated in the transport system.

In a future work we propose to analyze the effect of lead time when

it is arbitrarily distributed.

In chapter 5 we analyzed a two commodity queueing inventory prob-

lem with Poisson arrival of demands. Customers reveal their requirement

at the time when taken for service. If item demanded is not available, the

customer leaves the system forever. If both items are demanded when

taken for service and only one item is available, then the customer is

served that item. Service times are exponentially distributed with pa-

rameter depending on the type of demand. The lead times for i − th

commodity is exponentially distributed with parameter βi, 1 = 1, 2. The

continuous time Markov chain is seen to be of GI/M/1 type. The system

is shown to be stable. Several system performance indices are derived



and numerical illustration provided. An optimization problem is set up

and its numerical investigation is carried out.

Extension of the model discussed to n− commodity system with MAP

and PH type service time with representation depending on the commod-

ity served, is proposed. ’Emergency purchase’ made whenever inventory

level of an item drops to zero without cancelling replenishment order

seems to produce product form solution. This is also proposed to be

investigated.

In chapter 6 we considered a queueing inventory system useful in

crowdsourcing. We investigated a multi-server queueing inventory model

in which one type of customers are encouraged to serve another type

of customers which improves the efficiency of the service facility. Here

we assumed that resources to be provided to the customer on service

completion to be finite. We assumed the arrival process to be Poisson

and service times exponentially distributed. A revenue function is con-

structed and effect of probability p on the revenue function for single

server, two server and three server is numerically analyzed. Effect of β

on the loss rate of customers and revenue function is numerically ana-

lyzed. We propose to extend the above model where arrival is MAP and

service time is Phase-type.
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