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ABSTRACT 

Big Data is evolving as a „gold mine‟ for data analysts. Flexible & scalable algorithms and 

architectures are needed, to excavate the hidden treasures from this „gold mine‟. Cloud 

architectures satisfy the requirements very well and have been found inevitable for Big Data 

storage and analysis. However, the outsourcing and resource sharing features of cloud 

deployment raise some security challenges to the confidentiality of data and privacy of users. 

Security challenges along with the pressing demand for adopting Big Data technologies together 

motivate the development of strong encryption algorithms, for the implementation of secure Big 

Data information retrieval.  

Encrypting the data makes it difficult to retrieve the most matching documents with respect to the 

query keywords. The Server side document ranking based on Searchable Symmetric Encryption 

(SSE) and Order Preserving Encryption (OPE) schemes reduce data privacy. Therefore, the 

objective of my research is to develop a secure and privacy preserving data storage and retrieval 

scheme that supports multiple keyword searches, ranked information retrieval and scalability.  

Well known techniques in information retrieval like the vector space model and TF-IDF, are 

utilized for similarity matching. Existing Fully Homomorphic Encryption scheme is modified to 

ensure scalable and privacy preserving user searches, for our encrypted information retrieval 

scenario. The proposed Modified Homomorphic Encryption Scheme (MHE) calculates similarity 

scores at the server side, by applying homomorphic operations on encrypted TF-IDF values. The 

queries issued by users are also encrypted using the MHE, to ensure privacy.  

To eliminate any data leakages including statistical leakages or term distribution, a Dual Round 

Encrypted Information Retrieval (DREIR) scheme is proposed, which efficiently utilizes the 

processing power of the cloud server to compute the similarity scores, leaving the decryption and 

ranking to the client side.  The stages of the DRIER scheme are accelerated by proposing a Map 

Reduce implementation powered by Hadoop. This ensures scalability and faster execution for Big 

Data. The performance and accuracy of the method is evaluated using AWS Hadoop Cluster and 

found to be scalable, efficient and practical. The proposed MHE scheme is tested for correctness 

and security. The thesis also covers how the proposed technique can be applied to security critical 

applications like Email servers and logging. 
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Chapter 1 

Introduction 

 

 

 

 

“We can evade reality but we cannot evade the consequences of 

evading reality."  

 

–Ayn Rand 

 

 

 

 

 

This chapter introduces the need for ensuring secure and privacy preserving 

searches while outsourcing large amount of data to third party servers. 
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1.1 Introduction 

Today, data is evolving at a very huge rate. World Wide Web, social media, 

organizational data, health care data, sensor data etc are all sources of data. To eliminate 

the difficulty in storage and retrieval of the data, people started outsourcing their data to 

service providers. This will enable easy and hassle free storage. But, outsourcing of 

sensitive data to third parties lead to severe security violations and affect the privacy of 

the user. In this thesis, we will define a novel and comprehensive approach to store and 

retrieve large amount of sensitive data without compromising the privacy of the user. The 

remaining sections of the chapter detail the importance and motivation of my research. 

 

1.2 Introduction to Big Data 

Large amount of data characterized by high volume, velocity, value, veracity and variety 

is termed as Big Data. Big Data can be in the form of texts, audio, video, images etc. 

According to a study conducted by the International Data Corporation (IDC) [66], the 

amount of data in the digital world will grow by 35 trillion gigabytes (1 gigabyte 

equivalent to 40 (four-drawer) file cabinets of text), between 2015 and 2025. That is 

greater than the number of stars in the whole universe!   

 

1.3 Challenges associated with Big Data 

Big Data storage, transfer and sharing should address a lot of challenges. As Big Data 

contains Petabytes to Xetabytes of data, storage itself has to be outsourced to some third 

party system. With this, the availability, security and integrity of the data are adversely 

affected. Hardware fault tolerance, end point validation etc are other factors to be taken 

care of. National Institute of Standards and Technology, NIST [1] has identified and 

classified the top 10 challenges in Big Data (Figure 1.1). Security and Privacy [76] is one 

of the major challenges that have been identified.  Secure computations in distributed 

programming environment, security restriction for storing non-relational data, privacy 

preserving data analytics, data security by applying cryptographic techniques, granular 

access control etc are some of the other open problems. 
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Figure 1.1: Top 10 Big Data Challenges identified by NIST 

1.4 Need for Big Data Security 

To eliminate the hurdles associated with storing Big Data, organizations and people are 

moving to third party storage like Cloud [69]. Different service providers like Google, 

Amazon, Azure etc are capable of providing the needed resources for storage and 

processing. These providers follow a „pay as you go‟ pricing strategy which makes the 

customers pay for the resources and bandwidth they consume. This architecture will 

allow scalability and easy maintenance. The downside of depending on a third party to 

store the data is security violation. The data may contain many sensitive information like 

personal details, documents of national importance, login details etc. Due to the 

distributed nature of storage, data owners may not be knowing where actually their data 

is getting stored and who all have access to their data. Also, every user wishes to preserve 

their privacy. They wouldn‟t want any other person to know what they are searching for 

and what data they are accessing. That is, the user searches should be private.  Since 

these conditions are not met in third party storage, a part of the population seems 
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reluctant to adopt the cloud benefits. Also, data with sensitive nature are not stored in the 

cloud.  

A researcher at security firm UpGuard [67] reportedly discovered a repository containing 

the names, addresses, account details and account PINs of 14 million Verizon customers 

in the U.S. Their AWS S3 bucket is owned and run by Nice Systems, a third-party vendor 

based in Israel that Verizon uses to handle its back-office and call center operations. The 

personal data of millions of Verizon customers was exposed because of a misconfigured 

Amazon Web Services S3 bucket leak.  

On a Cloud Computing platform [75], the key security challenges to be addressed are 

shown in figure 1.2. 

a. Infrastructure Security: Data is stored at third party machines. Intrusions, 

attacks, memory corruptions, physical damage etc may lead to loss of user‟s data. 

b. Data Management:  Data should be stored and replicated in different machines 

so as to enable easy recovery, high availability and fault tolerance. 

c. Data Privacy: Even though users access data from third party machines, the 

service providers should not be able to see the queries, files or data issued and 

accessed by the users.  

d. Integrity and Reactive Security: There should be provision for data owners to 

make sure that the uploaded data is present in the server as such and no 

modifications or access has been done by unauthorized entities. Attacks 

happening on data collection devices and programs should be monitored real time. 

 

1.5 Challenges in ensuring Big Data Security 

a. Data is too huge to store and process within a single system. Hence, there arises 

the need for a distributed storage. Distributed storage will impose a lot of 

additional security violations like storage theft, disk corruption, storage network 

intrusion, etc.  

b. Distributed systems are difficult to maintain and program. The cost and effort 

associated with it is very high. 



1. Introduction 

5  
 

c. To eliminate the need for maintaining our own distributed clusters, the help of a 

service provider can be taken. But again, at the cost of a higher risk. Access 

control, location details, integrity, etc of the uploaded data will be unknown to the 

owner of the data. 

d. Encryption can add security to the data. But, the operations that can be applied to 

encrypted data will be very much limited. For example, if the text is stored in 

encrypted form, we cannot perform a normal keyword search [74]. If the 

numerical data is encrypted and stored, we cannot perform normal addition or 

multiplication over it.  

e. Privacy of the user is another concern. Service providers should not be able to 

monitor the queries issued and documents accessed by them.  

f. Security and Privacy preserving technique should not add implementation 

complexity to the system and should allow the data analytics options. 

 

Figure 1.2: Cloud Computing Security Challenges 

1.6 Challenges with secure and efficient mining of Big Data 

Cloud Computing is now a paradigm shift to store, process and analyze a huge amount of 

data. It comes with benefits like low upfront setup & running cost, easy maintenance and 

efficient execution.  However, genuine concerns are being put forward regarding the 

security and privacy associated with sensitive data. These fears are being further 
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strengthened by the new security challenges posed by media [2] like the „PRISM‟, 

„Breach of JPMorgan Chase‟, „NSA Scandal‟ etc.  

 

The data stored in the cloud is always prone to attack mainly due to the anonymous, 

virtual, shared, replicated, multi-node storage and execution. Unauthorized access or 

manipulation leads to data theft or data loss. NIST [3] has identified „Data Security and 

Privacy‟ as the major bottleneck to adopt the Cloud platform. 

 

A sound encryption algorithm with efficient management of keys, is the only solution to 

the security issues put forth by cloud. Encryption is a „mathematical guardian wall‟ built 

around your sensitive data. Even if your data is encrypted, compromising the key will 

lead to attacks on data. Hence, key management [2] also needs to be made efficient 

through techniques like split-key management or secret-key-sharing.   

 

The retrieval of relevant information from the encrypted data [73] stored in the Cloud is 

the next issue to be solved. For e.g., consider a scenario where the company uploads day-

to-day system logs to the cloud after encryption. If some problem occurs to the system, 

the system administrator will have to go through the activities that happened in that 

system.  But, since the logs are encrypted, the only option available would be to 

download the entire logs, decrypt it at the client side and search for the logs of this 

particular system. In terms of the execution time as well as the network bandwidth 

consumption, this method is quite inefficient. In short, some other mechanism is needed 

to search within an encrypted domain, based on the keywords issued by the user.  The 

problem of encrypted data searching [4] was first proposed by Song et.al, in the year 

2000, but the problem became more significant with the evolution of cloud computing 

and distributed processing. 

 

1.7 Problem Statement 

Big Data is being outsourced and stored in an encrypted form, in a cloud system. The 

users issuing the keywords should retrieve the relevant files ranked according to the order 

of significance from this encrypted form, within a fraction of a second. The data should 
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be securely stored in such a way so as to avoid any statistical leakage. To summarise, the 

objective of this research is to develop a multi-keyword ranked information retrieval, 

without revealing the statistical pattern on a Big Data domain. 

 

 

 

 

1.7.1 System Model 

The proposed system consists of a model with three actors, the Data Owner who uploads 

the documents, the Data User, who searches for particular documents by issuing 

keywords and a Cloud Server who actually stores the data and does the computations to 

find matching documents. Authorization between data owner and user is assumed to be 

well established. An encrypted index is uploaded along with encrypted files for finding 

the similarity with the queried keywords. Figure 1.3 illustrates the system model.  

1.7.2 Threat Model 

Since, the cloud servers are third party systems, we assume them to be “honest but 

curious”. Apart from ensuring the security of the file contents, the index, search 

keywords and search pattern should also be hidden from the Cloud to preserve the 

privacy of each user. 

1.7.3 Design Goals 

a. Statistical Leakage  

Even though, the vector space and the uploaded documents are in encrypted form, the 

cloud system can guess some document contents by analysing the search patterns and by 

predicting the term distribution, inter-distribution etc. Hence, the access patterns and 

search patterns should be hidden from a cloud provider. This can be explained in the 

context of encrypted log storage of a company on the cloud system, which was discussed 

 

Problem Statement: To design, implement and analyze a secure and privacy 

preserving multi-keyword ranked search on an encrypted big data domain. 
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in Section 4.6. Imagine the proxy logs of a company are stored in cloud in encrypted 

form. Since, it contains the domain details, the most frequently occurring word will be 

„www‟, „allow‟, etc. If the attacker cracks the encrypted form of „www‟, subsequently he 

can crack „com‟. Thus proceeding, entire file can be cracked.  

Figure 1.3: System Model 

b. K-similarity Relevance 

 Based on the statistical measure on how frequently two or more terms co-occur in 

different documents, information leakage can exist. To rectify this, all keywords should 

be encrypted before applying the search function. 

c. Scheme Robustness 

 If the ranking of documents is performed at the Cloud Server, then the keywords 

should be made available to the server. This may lead to information leakage. So as to 

overcome this, the ranking process is delegated to the client itself. This may increase the 

processing time and affect the speed of the ranking function, but will ensure better 

privacy to the user. 
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1.8 Motivation  

Numerous researches were conducted on encrypted data searching techniques and a lot of 

solutions with Searchable Symmetric Encryption (SSE) [5, 70] were proposed, but most 

of them supported only boolean keyword search, which retrieves the document based on 

the presence or absence of a keyword. These schemes [4,6] that supported similarity of 

documents, were able to handle only one keyword. Even though there exists some work 

[7, 71] on multi-keyword ranked retrieval, they were not able to reduce the tradeoff 

between the security and efficiency of their implementations. Homomorphic encryption 

schemes proposed by Craig Gentry in 2009 [8-9] lead to further researches on encrypted 

data searching. But the method was not easy to adopt because of the difficulty in practical 

implementation. Here our principle objective is to utilise and extend the concepts of 

Homomorphic encryption [72] for an information retrieval scenario based on similarity 

matching. The scheme should also support multiple keyword searches. 

In order to bring down the data leakage to a minimum, it is better to delegate all the 

encryption and decryption operations to the client side. But today as data is evolving at a 

tremendous rate, an efficient mechanism needs to be used to do this processing.  Hence, 

distributed processing using Hadoop architecture has been proposed for faster and more 

secure information retrieval.  

1.9 Real-time use-cases where encrypted data searching in Big Data becomes 

inevitable 

1. Consider an organization maintaining their mail server in a Cloud System. To 

implement secure data sharing, the emails are stored in an encrypted form in the 

Cloud. Later if one user needs to retrieve the emails matching the query “Secret 

Mission X”, the system should support encrypted data searching. 

 

2. A company having thousands of computers need to store the logs for a long 

period. Logs will help in auditing, troubleshooting, disaster recovery etc. But, 

maintaining the logs of the entire machines for a longer period, will consume a 

large part of the storage. To overcome this, logs can be stored in Cloud systems. 

But, raw storage of logs affects security as login or other critical details become 
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accessible to the attackers. Hence, logs should be encrypted before outsourcing. 

Then, how can the logs corresponding to a particular machine IP be retrieved, 

when something happens to that machine? The system should support encrypted 

data search. 

3. In the healthcare domain, to store the health records in cloud system without 

compromising the security and privacy of the patients. 

1.10 Contribution of the Thesis 

The contribution of this thesis can be summarised as follows: 

1. The thesis describes the existing problems associated with Big Data storage like 

security & privacy issues, and statistical data leakage and went through the 

existing methods to deal with encrypted data searching. 

2. Modified Homomorphic Encryption (MHE) scheme is proposed, which is a 

variation of the existing homomorphic encryption scheme & can be practically 

applied to the information retrieval domain. The scheme retrieves relevant 

documents based on the similarity score, using generalised TF-IDF. 

3. The proposed MHE scheme is tested for correctness, security and privacy. 

4. A Map Reduce implementation powered by Hadoop is proposed for the MHE 

based information retrieval. A performance analysis done on the proposed scheme 

demonstrates higher efficiency, scalability and linear execution time for large 

amount of data. 

1.11 Organisation of the Thesis 

The thesis is organized as follows. Chapter 2 discusses the work that has already been 

done to retrieve data from encrypted domain. Chapter 3 defines the problem with 

preliminaries needed to understand the problem in deep. Chapter 4 gives a background 

knowledge needed to understand Homomorphic Encryption and its variants. Chapter 5 

details the design of the proposed MHE scheme whereas Chapter 6 discusses the phases 

in development and implementation of the MHE scheme for Ranked Information 

Retrieval. Implementation of MHE using Map Reduce Programming model is explained 
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in Chapter 7. Applications of the proposed MHE based information retrieval are handled 

by Chapter 8. Finally, Chapter 9 concludes the thesis and mentions the future scope of the 

research. Additional works done which supported the thesis indirectly to improve the 

design and implementation are included as Appendices. Appendix 1 lists the articles 

published as part of the research. Appendix 2 details how the information retrieval 

techniques used in our thesis can effectively applied in the context of predicting the 

winner of an election. Appendix 3 provides the CPP code used for implementing the 

MHE scheme. 

 

Summary 

This chapter outlines the security and privacy challenges associated with storing Big 

Data. Third party storage is the most viable solution but not considering the security 

factor. Encryption can be used to secure the outsourced data but at a cost of minimum 

computability on the data. Research aims to investigate on efficient and secure 

mechanisms that helps to store and retrieve the large amount of data in a third party 

system like cloud. The scheme should support multiple keyword search and ranked 

information retrieval. Also, the privacy of the user is another factor to be considered. 

Service providers should not be able to see the query terms or search results which 

compromise the privacy of the users.  
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Chapter 2 

Literature Review 

 

 

“Encryption enables protecting fundamental rights such as freedom of 

expression and the protection of personal data and ensures safe online 

commerce.” 

 

- European Commission, Sep 2017. 

 

 

 

This chapter discusses the existing well known techniques available in literature that 

deals with encrypted data searching. The techniques are compared based on their 

complexity, security, key size needed etc. 
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2.1 Introduction 

To implement solutions for Big Data storage as well as for problems involving severe 

computations, cloud computing is the most appropriate method. But use of the public 

cloud has resulted in a lot of security and privacy issues. Several reports [10-16] reveal 

about the security breaches and data theft that took place in real world scenarios. 

„Encryption of data‟ [77] seems to be a first hand solution to ensure secrecy and privacy. 

But encryption limits the computations that can be performed on data, like retrieving a 

particular file containing a specific keyword or extracting features from an image etc. 

Always, there exists a trade-off between security and usability [90-92]. But the solution 

here is to apply the security mechanism in such a way that it will not limit the 

functionality as well.  

2.2 Search on encrypted data 

Encrypted data searching [93, 95, 96] techniques need to be developed to overcome many 

of the security and privacy issues associated with the cloud. The problem has got much 

significance because: 

 Big Data storage is practical and easy with cloud architectures. 

 To ensure secrecy, encryption can be applied, but users need to search, sort, compare 

different data stored in this encrypted format. 

 We cannot completely trust the service providers. 

This chapter analyses different encryption schemes suitable for implementing secure and 

privacy preserving applications in the cloud. Each technique differs in practicality, 

security, functionality and flexibility. 

2.3 Review of Existing Solutions to Enable Encrypted Data Searching 

Basically we identified six different ways to search on encrypted data, each based on one 

of the following cryptographic primitives: 
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2.3.1 Property Preserving Encryption 

2.3.2 Functional Encryption 

2.3.3 Fully-Homomorphic Encryption 

2.3.4 Searchable Symmetric Encryption 

2.3.5 Oblivious RAMs 

 

2.3.1 Property Preserving Encryption (PPE) 

 PPE scheme [17] encrypt the text in such a way that it leaks certain properties of the 

underlying data. Different PPE schemes are proposed, based on the property that is 

leaked. The basic one is „Deterministic Encryption‟ [18] in which one message always 

generates same cipher text after encryption. Thus, by comparing the cipher text, one can 

determine whether the messages are same. These types of encryptions are hence 

applicable to problems where similarity is compared. 

For e.g., if „m1‟ encrypts to „c1‟ and „m2‟ encrypts to „c2‟, then by comparing the value of 

c1and c2 we can determine whether m1 is equal to m2. 

Order Preserving Encryption (OPE) [19-23], Orthogonality Preserving Encryption etc are 

some variations of the Property Preserving Encryption. Bellare et. al. [21] proposed a 

method where PPE scheme can be efficiently applied on securing databases.  

The High-Level Idea: Assume we have both a Deterministic encryption scheme E
D
 and 

a standard Randomized encryption scheme E
R
. Then we can create an encrypted 

database EDB as follows.  

For each record Di in the database (D1…Dn), the user computes deterministic encryptions 

of each keyword, Di. If each record, Di has m keywords (wi1, w12, ….., wim), the EDB then 

simply consists of n tuples. 

ri = (di1,di2…dim,ptr(ci)) 

       where dij=E
D

k2(wi,j), ci=E
R

k1(Di),  and ptr(ci)  is a pointer to cipher text Ci. 

The user will finally send the encrypted database EDB(r1….rn) to the third party server 

along with the randomized encryptions of the records (c1….cn). 
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Consider a scenario where a user needs to search for a particular query term, w, find 

deterministic encryption of w and send this to the server.  

Therefore, the token to be searched is  dw=E
D

K2(w).  

Every server that holds partitions of data will search for dw by simple string comparison 

and if a match is found, by following the corresponding pointer, the corresponding record 

can be retrieved. 

Theoretically, for all 1<= i <=n and 1<= j<=m, server tests if dw=dij and if they are 

equal, it follows ptr(ci) to return ci. 

Computational Complexity: Search complexity is O(nm), where ‘m’ is the number of 

documents. i.e., linear complexity. But data structures like Binary search trees can 

improve the speed.  

Security of PPE: Since encryption on m1 always generates same cipher text, security is 

limited since this can lead to some statistical leakages. 

 

2.3.2 Functional & Identity-Based Encryption 

The concept behind Functional Encryption was first proposed by Sahai and Waters in a 

conference and later formalized and proved to be practical by Boneh, Sahai, Waters and 

by O‟Neill [24]. Identity Based Encryption, Attribute Encryption, Predicate Encryption 

etc can be considered as variations of Functional Encryption. The working of Identity 

encryption can be explained by a simple real world application. For instance, Alice wants 

to send some secret message to Bob. Alice knows that Bob works at Google.  

According to Functional Encryption, Google will initialize the security system by 

generating a pair of master keys (msk,mpk), where one is a secret key and the other is 

public. Google then distributes mpk together with a valid certificate to its authorized 

employees.  

To encrypt a message „m’, Alice will collect Google‟s Master Public key mpk, and apply 

the encryption algorithm on „m’ using mpk and Bob‟s public identity, „bob@google.com’.  
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c= E(mpk,’bob@google.com’,m) 

For Bob, to decrypt the message ‘c’, Bob generates his secret key using Google‟s master 

key and his own id. 

sk=KeyGen(msk,’bob@google.com’) 

Bob recovers the message by applying the decryption algorithm. 

m=Dec(sk,c). 

The advantage of this method is its simplicity. Without revealing any public key of Bob, 

Alice can send encrypted messages to him or any person in the organization, knowing 

only the public key of that organization. 

In case of attribute based encryption, some attributes approved by the organization will 

be utilized for encryption. For e.g., consider a hospital domain. Alice needs to upload a 

file which can be viewed by a person if he is a „doctor specialized in oncology with 

masters degree‟. Hence the attributes can be „doctor‟, „MD‟, „Oncology‟ etc.  

Computational Complexity: Complexity is O(nm) as the algorithms has to try to 

decrypt each cipher text in the encrypted domain. But always m<<n, hence the time 

complexity needed will always be more, compared to PPE. 

 Security: This approach substantially ensures security, since neither statistical leakages 

nor brute force attacks exist in the system. 

 

2.3.3 Fully Homomorphic Encryption  

A cryptosystem that supports both addition and multiplication operations on encrypted 

data is called fully homomorphic encryption (FHE) and is far more powerful compared to 

the existing searchable encryption schemes. Homomorphic encryption schemes process 

data in its encrypted form itself. No decryption is needed. Thus, these types of 

applications are best suited for third party computations like cloud computing. Encrypted 

searching does not reveal any information to external agents.  
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Homomorphism with respect to addition or multiplication has been made possible since 

the development of RSA and paillier encryption [25]. They are called partial 

homomorphic systems. The concept of Fully Homomorphic encryption which made 

possible additions and multiplications over the encrypted data was first proposed by 

Gentry [8].  

Craig Gentry developed lattice based cryptosystem to achieve fully homomorphic 

property and he was successful in evaluating arbitrary depth circuits. The scheme was 

also bootstrappable, which means as the circuit grows, the noise rises and ultimately the 

circuit will get capable of decrypting its own encrypted data i.e. the circuit gains self 

referential property. Even though the scheme had a strong mathematical base and 

correctness, it was not possible to implement the scheme for practical applications 

because the computational complexity was very high. Even a high performance system 

will consume more time in implementing the scheme. Cipher text size and computational 

time increased as the security level increased and the scheme is assumed to have a 

complexity 2
K
, where k is the security level. Hence, in 2012, Gentry along with 

Vaikundanathan [14], proposed a variation of the original scheme using the property of 

ideal lattices over integers. 

Idea of fully homomorphic encryption with a simple application context is as follows. 

Consider a „Privacy preserving search on Google‟. The owner uploads files in an 

encrypted format to Google server. When a query comes, Google will evaluate a certain 

function F on the encrypted data and return that result to the user. The user now decrypts 

that result to obtain the original files. Construction of F depends on the application 

context. 

Let us illustrate the fully homomorphic symmetric encryption scheme with an example: 

Let the shared secret key, p  be an odd number 101.  The domain consist of bits {0,1}. To 

encrypt m = 1; Choose a random value, q =9 and small prime number r =5. 

Encryption (m) = c = m + 2r + pq = 11 + 909 = 920 

Here cipher text will always be close to a multiple of p. 
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Therefore, m ≈ LSB of distance to nearest multiple of p. 

 Decryption is m = (c % p) % 2 = 11 % 2 = 1. 

Proof: 

The proof for the correctness of the above mentioned scheme is: 

m = c – p * [c/p] % 2 = c – [c/p] % 2 = LSB(c) - LSB([c/p]) 

If it is a Fully Homomorphic Public Encryption scheme then: 

Secret key is an odd p as before. Public key is many “encryptions of 0” i.e. 

xi = qip + 2ri 

Encpk(m) = subset-sum(xi’s)+m+2r 

Decsk(c) = (c % p) % 2 

Computational Complexity: Comparing Fully-homomorphic encryption using integers 

and ideal lattices, the latter method has exponential complexity which is not at all 

tolerable. The Integer based method is assumed to have complexity λ
5
. Table 2.1 

describes the complexity details. 

 

2.3.4 Searchable Encryption Schemes 

The Searchable Encryption Scheme [79-83] allows users to search for a particular 

keyword from an encrypted domain. Authorized users possessing the requisite keys are 

able to create the trapdoors to retrieve information from an encrypted data. Trapdoor 

generation can be done based on a symmetric or asymmetric encryption scheme.  

i. Asymmetric Searchable Encryption (ASE) Scheme: ASE scheme is best 

suited for storing data generated by one user and used by other users. Here, 

the public key of the user can be used for encrypting the data, and secret key 

of the intended recipient is used for decryption. Asymmetric encryption 



2. Literature Review 
 
 

19  
 

scheme like RSA can be utilised for encryption and decryption. Since, the 

implementation of ASE scheme requires elliptic curve, pairing, etc, the 

scheme is inefficient compared to the symmetric ASE version.  

 

Table 2.1: Complexity Comparison 

Dimension KeyGen PK size Re-Crypt 

512 

200,000-bit 

integers 

2.4 sec 17 MB 6 sec 

2048 

800,000-bit 

integers 

40 sec 70 MB 31 sec 

8192 

3,200,000-bit 

integers 

8 min 285 

MB 

3 min 

32728 

13,000,000-

bit integers 

2Hrs 2.3 GB 30 min 

 

ii. Symmetric Searchable Encryption (SSE) Scheme: SSE schemes are more 

practical due to their simplicity in operations like hashing or block ciphering 

[88]. In functionality, it is preferred to store the data which is uploaded and 

accessed by the same set of users. Symmetric encryption schemes like AES 

can be used for the implementation. 
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Let D={D1, D2,…. DN} denotes a set of documents.  

Let W = {W1, W2, …WL} be a set of keywords. 

Let D(w) denote the set of documents which contain a keyword w ∈ W.  

If X is a string, then |X| denotes the bit length of X. If X is a set, then |X| denotes the 

cardinality of X. Basically, any SSE scheme consists of five polynomial time algorithms  

  SSE = (Gen, Enc, Trapdoor, Search, Dec) such that  

 – K ← Gen(1
k
): is a probabilistic algorithm which generates a key K, where k is a 

security parameter.  

 – (I, C) ← Enc(K, D, W): is a probabilistic encryption algorithm which outputs an 

encrypted index I and C = {C1, ··· , CN }, where Ci is a cipher text of Di.  

 – t(w) ← Trapdoor(K, w): is a deterministic algorithm which outputs a trapdoor 

t(w) for a keyword w.  

 – (C(w), Tag) ← Search(I, C, t(w)): is a deterministic search algorithm, where  

  C(w) = {Ci | Ci is a cipher text of Di ∈ D(w)}  

 

Complexity: All the basic functions are executed in polynomial time. Apart from the 

basic encryption, SSE utilizes pseudo random functions and permutations which make 

the encryption scheme more complex. Additional storage space is required to store the 

encrypted index. 

 

Security: Even though SSE schemes help to achieve only controlled searching, the 

scheme supports provable security. Server cannot learn anything from the queries issued. 

But, same word search may result in the same query which leads to search pattern 

leakage.  

 

2.3.5 Oblivious RAM 

Oblivious RAM concept was first proposed by Goldreich and Ostrovsky [25, 68] as a 

method to implement software protection on third party servers.  But at that time it 

seemed irrelevant because cloud computing or third party computing were not at all in 

practice. But now, the work has gained so much application related to cloud storage. 
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 An ORAM scheme basically consists of 3 stages Setup, Read and Write. 

 Setup: inputs are 

 security parameter 1
K
  

 RAM (memory array) of N items. 

  Outputs: Secret key K and an oblivious memory ORAM. 

 Read: A two-party algorithm that runs between client and server. The client runs 

the Read function with a secret key K and an index i as input while the server runs 

the Read Function with an oblivious memory ORAM as input. At the end of the 

execution, the client receives RAM[i] while the server receives Ɛ, i.e., null.  

Read( ( K , i ) ,ORAM ) = ( RAM[i] , Ɛ ). 

 Write : Two party protocol executed between the client and a server. The client 

runs the Write function with a key K, an index i and a value v as input and the 

server runs the Write function with an oblivious memory ORAM as input. At the 

end of the protocol, the client receives nothing (again denoted as Ɛ) and the server 

receives an updated oblivious memory ORAM’ such that the i
th

 location now 

holds the value v. This can be represented as,  

Write ( ( K , i , v ) , ORAM ) = ( Ɛ , ORAM’ ). 

Oblivious RAM via FHE: In this section we will see how ORAM is related to FHE. 

Actually an implementation of ORAM is made possible by applying FHE concept. If 

FHE scheme can be represented with the following functions (Gen, Enc, Eval, Dec), then 

ORAM can be constructed as: 

 Setup(1
k
,RAM): Obtain a key for the ORAM scheme by computing 

K=FHE.Gen(1
k
)  and encrypt RAM  as c = FHE.Enck(RAM). This cipher text c is kept 

as the oblivious memory ORAM. 

 Read( ( K , i ) ,ORAM ): Client encrypts the index „ ‟ to generate ci=FHE.Enck(i) 

and sends ci to the server. Server then computes  

  c’ = FHE.Eval( f , ORAM , ci ) 
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 C’ is decrypted by client to recover RAM[i]. 

 Write ((K , i, v), ORAM) : Value generated apart from cipher text is  

  cv= FHE.Enck(v) and sends c and cv to server so that the server can now 

compute  c’= FHE.Eval (g, ORAM, ci, cv) where ‘g’ is a random number. 

Security of ORAM: ORAM is constructed such that server is unable to derive any 

information about RAM [94]. Read and Write functions do not leak information about the 

index and values either. 

Computational Complexity: Since FHE has to be implemented in Read and Write 

phase, ORAM is the slowest of all techniques mentioned above.  

Among the techniques that are discussed above, PPE, Functional encryption using 

attributes or IDs and SSE are the most commonly used ones. Public Key Encryption with 

Keyword Search (PEKS) [34, 78] proposed by Boneh et al was a preliminary work done 

on encrypted data searching which searches for a single keyword in the encrypted 

domain. Here, if Alice needs to secure her mails, she will store it in an encrypted form in 

the mail server and to retrieve a mail containing the keyword „K‟, she will deliver a 

„gateway key‟ to the server which enables the server to check for the presence of that 

keyword alone without revealing any other information. Confidentiality-Preserving 

Rank-Ordered Search [35] proposed by Swaminathan et.al. was another breakthrough in 

similarity based searching. Here, an inverted index is maintained to retrieve the 

documents based on the similarity to the keywords used in searching. But, the index is 

not encrypted. 

A comparison of the different schemes based on the complexity of information retrieval 

is presented in Table 2. Search complexity implies the complexity of the algorithm 

represented in Big O notation. Search type indicated the way of searching. Linear implies 

a sequential search. A search scheme applied on the initially prepared index is termed as 

„Pre-processed index‟. In the case of SSE and Rank Ordered search, searching requires a 

recalculation of scores based on the scores present in index, since the index is stored in 

encrypted form. 
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Based on the ability to search, a comparison is provided in Table 3.Here, „Exact Match‟, 

„Sub-Match‟ [85-87], ‟Case Insensitivity‟, „Regex‟ [84], „Proximity‟ [89] and 

„Stemming‟ implies, whether the scheme supports „word to word match‟, „substring 

matching‟, „matching irrespective of case of  the letters‟, „matching based on regular 

expression‟, „matching based on difference of two or three letters‟, and „matching of base 

words‟.       

Table 2.2: Critical Comparison of searching schemes 

Scheme Search 

Complexity 

Search Type Insert Requires 

Recalculation? 

PPE O(n) Linear No 

Functional 

Encryption 

O(d) Pre-processed 

Index 

No 

SSE O(1) Pre-processed 

Index 

Yes 

PEKS [34] O(n) Linear No 

Rank 

Ordered [35] 

O(d) Pre-processed 

Index 

Yes 
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Table 2.3: Summary of major search schemes and their ability to perform certain search 

options 

Scheme Exact 

Match 

Sub 

Match 

Case 

Insensiti

vity 

Regex Proximity Stemming 

Practical 

Technique 

Yes No No No Yes No 

Secure 

Indexes 

Yes Maybe Maybe No No Maybe 

SSE Yes Maybe Maybe No No Maybe 

PEKS  Yes Maybe Maybe No No Maybe 

Rank 

Ordered 

No No Yes No No Yes 

 

Table 2.4: Summary of different encryption schemes 

Scheme Summary 

PPE Fast search, but at the expense of information 

leakage. 

Functional 

Encryption 

Easy implementation, Secure but slow search time 

FHE Secure but application dependant, We should choose 

a homomorphic function based on the application 

context in which it is implemented. 
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SSE Scheme is provably secure but leaks the search 

pattern. 

ORAM Most secure solution which hides even the access 

pattern. But, the implementation complexity is very 

high. 

 

Summary 

Cloud computing is gaining much interest due to the huge amount of data generated and 

the need for computations to be performed on these data. Security and privacy is the only 

factor that hinders the usability of cloud. Users of data do not trust a third party agent like 

cloud to store their sensitive data. The solution is encryption. But encryption limits the 

computability and searchability of data. To overcome such limitations, we can choose 

encryptions that properly match each application, reducing the tradeoff between security 

and usability. This chapter surveys different encryption schemes available in literature 

and compare them based on factors like security, complexity etc. From the study, my 

research adopted a Fully Homomorphic Encryption based technique to implement secure 

and privacy preserving ranked retrieval.  
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Chapter 3 

Preliminaries and Background for  

Ranked Information Retrieval 

 

 

“A human is not a device that reliably reports a gold standard judgment of 

relevance of a document to a query.”  

 

― Henrich Schutz, Introduction to Information Retrieval 

 

 

 

This chapter explains the theory and existing techniques used for information retrieval 

scenario. 
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3.1 Introduction 

This chapter discusses the basic concepts adopted from Information Retrieval domain 

that served as the backbone of our secure and privacy preserving information retrieval 

technique. The well-known techniques for information retrieval, like vector space model 

[26] and TF-IDF [27], are utilized for retrieving the relevant documents. The search 

similarity index thus generated is encrypted using homomorphic encryption [28] scheme 

and encrypted functions are applied on it to retrieve the similar document indices.  This 

list is then sent to the client side and the ranking is done there by decrypting the obtained 

indices and sorting them based on their similarity score.  

3.2 Components of an Information Retrieval System 

The basic web information retrieval system has the following functions.  

1. The system browses the document collection and fetches documents - Crawling  

2. The system builds an index of the documents – Indexing 

 3. User gives the query - Searching 

4. The system retrieves documents that are relevant to the query from the index and 

displays that to the user - Ranking  

5. User may give relevance feedback to the search engine - Relevance Feedback.  

The goal of any information retrieval system is to satisfy user‟s information need. 

Unfortunately, characterization of user information need is not simple. Users often do not 

know clearly about the information need. Query is only a vague and incomplete 

description of the information need. Query operations like query expansion, stop word 

removal etc are usually done on the query.  
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Figure 3.1 Basic Information Retrieval System 

3.3 Information Retrieval System – Formal Definition 

Theoretical models of IR show many different ways in which the IR problem can be 

formulated and solved. Formally, the IR model can be defined as a 4-tuple [D, Q, F, R(qi 

, dj )] where  

D is document collection. In most of the modeling approaches (Boolean, Vector or 

probabilistic) each document is modeled as a bag of index terms where index terms are 

assumed to be independent of each other. This way the semantics of the document is lost.  

Q is the query collection. The queries fired by the user belong to this set. It is also 

modeled as a bag of index terms in most of the cases.  

F is the framework for modeling document representations, queries and their relationship.  

R(qi , dj ) is a ranking function which associates a score (real number) with the pair (qi , 

dj ) where qi ∈ Q and dj ∈ D. Given the query (qi) the documents are ranked according to 

this score. 

3.4 Classical Model of Information Retrieval 

This section discusses three classical models of IR; namely, Boolean, Vector Space and 

Probabilistic Model. 
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a. Boolean Model 

Boolean Model is one of the oldest and simplest models of Information Retrieval. It is 

based on set theory and Boolean algebra.(Baeza-Yates and Ribeiro-Neto, 1999) In this 

model, each document is taken as a bag of index terms. Index terms are simply words or 

phrases from the document that are important to establish the meaning of the document. 

The query is a Boolean algebra expression using connectives like ∧, ∨, ¬ etc. The 

documents retrieved are the documents that completely match the given query. Partial 

matches are not retrieved. Also, the retrieved set of documents is not ordered. 

Advantages:  

• It is simple, efficient and easy to implement.  

• It was one of the earliest retrieval methods to be implemented. It remained the primary 

retrieval model for at least three decades.  

• It is very precise in nature. The user exactly gets what is specified. 

 • Boolean model is still widely used in small scale searches like searching emails, files 

from local hard drives or in a mid-sized library.  

Disadvantages:  

• In Boolean model, the retrieval strategy is based on binary criteria. So, partial matches 

are not retrieved. Only those documents that exactly match the query are retrieved. 

Hence, to effectively retrieve from a large set of documents users must have a good 

domain knowledge to form good queries.  

• The retrieved documents are not ranked.  

• Given a large set of documents, say, at web scale, the Boolean model either retrieves 

too many documents or very few documents.  

• The reason of the above is: users usually do not form complex queries. Either they use 

very few (often a single) term fetching a tremendously large list of unordered documents. 

Else, they use a large set of terms joined by AND. This fetches very few documents.  
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• The model does not use term weights. Even if a term occurs once in a document or 

several times, it is treated the same. 

b. Vector Space Model 

The main problem with Boolean model is its inability to fetch partial matches and the 

absence of any scoring procedure to rank the retrieved documents. This problem was 

addressed in the vector based model of information retrieval.  

In this model documents are represented as a vector of index terms.  

dj = {w1j , w2j , . . . , wtj} 

where t is the total number of index terms in the collection of documents. Each wij > 0 if 

and only if the term i is present in document dj . Unlike Boolean model, we do not 

consider only presence or absence of terms. So in vector model, these term weights are 

not binary. Like documents, queries are also represented as vectors in a similar way. The 

similarity between the query vector and document vector is a measure of relevance of the 

document and used as a ranking score. The similarity between document vector and 

query vector is usually calculated as the cosine similarity (equation 3.1) between them. If 

the similarity is greater than a predefined threshold, the document is retrieved. 

 

If d2 and q are tf-idf vectors, then 

                                                           ………….. (3.1) 

 

 

Advantages:  

• The cosine similarity measure returns value in the range 0 to 1. Hence, partial matching 

is possible.  

• Ranking of the retrieved results according to the cosine similarity score is possible.  



3. Preliminaries and Background for Ranked Information Retrieval 

 
 

28  
 

Disadvantages: 

• Index terms are considered to be mutually independent. Thus, this model does not 

capture the semantics of the query or the document.  

• It cannot denote the “clear logic view” like Boolean model. 

Despite its simplicity, the vector based model works well with general collections. It is 

widely used in practical systems. 

c. Probabilistic Model  

In probabilistic model we try to capture the information retrieval process from a 

probabilistic framework. The basic idea is to retrieve the documents according to the 

probability of the document being relevant. The basic question the system needs to ask 

before deciding whether to retrieve a document or not is: „What is the probability of this 

document being relevant given this query‟. Here it is assumed that the relevance of a 

document to a query is independent of other documents in collection. Probabilistic 

ranking principle: 

If a reference retrieval system‟s response to each request is a ranking of the documents in 

the collection in order of decreasing probability of relevance to the user who submitted 

the request, where the probabilities are estimated as accurately as possible on the basis of 

whatever data have been made available to the system for this purpose, the overall 

effectiveness of the system to its user will be the best that is obtainable on the basis of 

that data. 

Advantage: 

Higher accuracy compared to other models 

Disadvantage: 

Not suitable for large scale data mining. 
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3.5 Indexing of the documents 

Text indexing will really improve the retrieval efficiency of documents. Search engines 

retrieving a subset of documents that exactly match the keywords issued by the user 

within a fraction of the second would not have been possible without indexing. Instead of 

searching through the entire documents, these engines will traverse through the index that 

is created at the time of document upload. Documents can be indexed with the meta-data 

or the full text they contains. Indexing is essential for storage and retrieval of 

unstructured data like emails, research reports, news contents, etc. 

Indexing involves several stages as given below: 

Tokenization: Extracts words from text.  

Eg : The President is invited for the party. -> [the, president, is, invited, for, the, party] 

Stop Word Elimination: Eliminate frequently occurring words like prepositions, 

conjunctions, articles, etc that do not have any disambiguation power.  

Eg: [The, President, Is, invited, for, the, party] -> [president, invited, party] 

Stemming: Obtain the root form of words.  

Eg: [President, invited, party] -> [president, invite, party] 

Inverted List Creation: Words matched to the list containing documents they contain. 

Eg:  

Doc 1: [president, invite, party] 

Doc2: [president, address, people] 

Inverted List: 

President  Doc1, Doc2 

Invite    Doc1 
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Party    Doc1 

Address   Doc2 

People    Doc2 

3.6 Ranked Information Retrieval of the Documents 

User searching for the documents will issue the queries without knowing the details of 

the words in the index. They might issue multiple keywords and a large number of 

matching files will be retrieved. To make the search results useful for the user, the results 

should be ranked based on the similarity with the query issued.  

Given a document collection D = {d1, d2, … dt} and a query, Q={q1, q2, … qm}, the 

ranked information retrieval algorithm should calculate a score, Si= similarity(Q, Di) 

based on the similarity between query set and each document di in D. Files are then 

displayed in the descending order of Si. 

Score can be calculated based on Boolean model and Vector based approach. In the 

Boolean model we will only search for the presence or absence of the keywords. Hence, 

partial matches are not considered. To implement a better ranking scheme, vector space 

model is adopted in our approach. Here, instead of just boolean values, each term is 

associated with a term weight. Term weight defines the strength of relation between a 

word and a document. Method below illustrates the steps in constructing Vector Space 

Model. 

a. TF-IDF Calculation 

Term Frequency – Inverse Document Frequency is a statistical measure used to evaluate 

the importance of a word in a document, or a corpus. Term Frequency implies the 

cardinality of occurrence of each word in a document and Inverse Document Frequency 

implies the importance of a word in the entire corpus.  

TFi,j = 
𝑁𝑖𝑗

 𝑁𝑘𝑗
                 …………….. (3.2) 
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Where TFijimplies the term frequency of an i
th

 word in j
th

 document, Nij implies the 

frequency of occurrence of i
th

 word in j
th

 document and  ∑Nkj implies the total number of 

words in the j
th

 document. Since we are dealing with Big Data, we utilise a normalised 

TF value for further evaluations. 

TFnij = 
𝑇𝐹𝑖𝑗

max (𝑇𝐹)
                ………………………… (3.3) 

Where TFnij implies the normalised TF value for the i
th

 word in the j
th 

document and 

max(TF) implies the maximum value for TF obtained for any word in the document 

collection.  

IDFi = 1 +log
|𝐷|

|𝐹𝑖|
   ………………………….     (3.4) 

where |D| implies total number of documents in the corpus and |Fi| implies total number 

of occurrence of terms in the corpus. 

b. Vector Space Model 

Vector Space model [29] represents text documents in rows and columns, where the rows 

are distinct words, and the columns are documents in the corpus and each cell represents 

the degree to which each word belongs to a document. TF-IDF is used as the metric to 

represent the degree of relevance of words in a document.  This model represents 

documents and words as a vector. 

Document collection, Dt = (d1, d2 ,d3 , …. , dt) 

Word Collection, Wk= (w1, w2, w3 , …. , wk) 

If Dt is arranged in columns and Wk in rows, each cell, Ctk represents the similarity score. 

When a query comes with x words, Qx= (w1, w2… wx), the similarity of the document is 

identified by equation 3.5. 

Similarity Score, St =   𝐶𝑖𝑡 ∗𝑥
𝑖=1 𝐵𝑖  …….. (3.5) 
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Here, Bi has a value 0/1, depending on whether the word is present in the query list or 

not.  

After obtaining the similarity score for „t‟ documents, they are ranked in order to find the 

most similar documents. 

c. Generalised Vector Space Model 

For lengthy documents, the vector space model might not be a good information retrieval 

technique. More number of words and fewer documents will result in lengthening of the 

index, without improving scalar product values. Hence, the similarity score obtained will 

not be accurate. To rectify this, the generalised vector space model [30] can be utilised. 

Here, term to term correlation is measured rather than the pair wise orthogonality as that 

of vector space. Hence, the similarity function now becomes; 

Similarity_Score, St = 
  𝑊𝑖𝑘∗𝑊𝑗𝑞 ∗𝑇𝑖 .𝑇𝑗𝑛

𝑖=1
𝑛
𝑗=1

  𝑤𝑖 ,𝑘
2𝑛

𝑖=1 ∗  𝑤𝑖 ,𝑞
2𝑛

𝑖=1

 ……    (3.6) 

where ti and tj are term correlation vectors of n-dimensional space. Term correlation 

vectors can be implemented using term occurrence frequency matrix [31] or semantic 

correlations [32]. 

Algorithm 3.1 summarises the steps for implementing a vector space model. 

 

Algorithm 3.1: Ranked Retrieval Using Vector Space Implementation 

Input: Vector Space arranged in t columns for documents and k words as rows 

Output: Sorted List of Documents based on score. 

Steps: 

For each document di in the document collection 

 for every query term qj in Q do 

   retrieve the TF-IDFij for qj from the vector space 

  Calculate score(di) = score(di) + TF-IDFij 

  End 

 End  

Sort documents according to their score 

Return the sorted list of documents. 



3. Preliminaries and Background for Ranked Information Retrieval 

 
 

33  
 

Summary 

This chapter summarizes the basic concepts in information retrieval discussing the 

existing methods like Boolean, Vector Space and Probabilistic models. The chapter also 

outlines the methods to help implementing the IR model like indexing, vector space 

construction, score calculation, etc to retrieve files in ranked order of similarity with 

multiple query terms. My research adopted vector space model based information 

retrieval technique because they are proved to be the best in literature and widely used by 

search engines, mail servers etc.  

 



34  
 

 

 

Chapter 4 

Preliminaries and Background on Homomorphic Encryption 

 

 

"Alice, the owner of a jewelry store wants her employees to assemble precious materials 

into finished jewelry, but she is worried about theft. She addresses the problem by 

constructing glove boxes for which only she has the key." 

- Craig Gentry. 

 

 

 

 

Provides a formal background on homomorphic properties and explains different 

encryption algorithms that support homomorphism. 
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4.1 Introduction 

Homomorphic encryption is a form of encryption which allows specific types of 

computations to be carried out on cipher texts, and generates an encrypted result which, 

when decrypted, matches the result of operations performed on the plain texts. This is a 

desirable feature in modern communication system architectures. RSA [103] is the first 

public-key encryption scheme with a homomorphic property. However, for security, RSA 

has to pad a message with random bits before encryption [97-98], to achieve semantic 

security. The padding results in RSA losing the homomorphic property. To avoid padding 

messages, many public-key encryption schemes with various homomorphic properties 

have been proposed in the last three decades. In this chapter, basic homomorphic 

encryption techniques are discussed. It begins with a formal definition of homomorphic 

encryption, followed by some well-known homomorphic encryption schemes. 

 4.2 Homomorphic Encryption- Definition 

In abstract algebra, a homomorphism is a structure-preserving map between two 

algebraic structures, such as groups.  

A group is a set G, together with an operation o, (called the group law of G) that 

combines any two elements a & b, to form another element, denoted as aob. To qualify 

as a group, the set and operation (G, o), must satisfy four requirements known as the 

group axioms:  

 Closure: For all a, b in G, the result of the operation, aob, is also in G.  

 Associativity: For all a,b, and c in G, (aob)oc = ao(boc ) 

 Identity element: There exists an element e in G, such that for every element a in 

G, the equality eoa = aoe = a holds. Such an element is unique, and is called the 

identity element. 

 Inverse element: For each a in G, there exists an element b in G such that aob = 

boa = e, where e is the identity element. The identity element of a group G is 

often written as 1.  
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The result of an operation may depend on the order of the operands. In other words, the 

result of combining element a with element b, need not yield the same result as 

combining element b with element a; the equation ao b = bo a may not always be true. 

This equation always holds in the group of integers under addition, because a+b = b+a, 

for any two integers (commutativity of addition). Groups for which the commutativity 

equation a o b = b o a always holds, are called abelian groups.  

Given two groups (G, ◊) and (H,o), a group homomorphism from (G, ◊) to (H,o) is a 

function f : G->H, such that for all g and g‘ in G, 

F(g◊g‘) =  f(g)o f(g‘) …….. 4.1 

Let (P,C,K,E,D) be an encryption scheme, where P,C are the plain text and cipher text 

spaces, K is the key space, and E,D are the encryption and decryption algorithms. 

Assume that the plain texts form a group (P,◊) and the cipher texts form a group (C, o), 

then the encryption algorithm E is a map from the group P to the group C, i.e., Ek : P -> 

C, where k ε K is either a secret key (in a secret key cryptosystem) or a public key (in a 

public-key cryptosystem [105]).  

For all a and b in P and k in K, if Ek(a) o Ek(b) =  Ek(a◊b), the encryption scheme is 

homomorphic. 

In an unpadded RSA [36], assume that the public key pk=(n,e), the plaintexts form a 

group (P,*), and the cipher texts form a group (C,*), where * is the modular 

multiplication. For any two plain texts m1* m2 in P, it holds that  

E(m1,pk)*e(m2,pk) = m1
e
*m2

e 
(mod n)  

                                                     = (m1*m2)
e
 (mod n) 

                                         = E(m1*m2,pk)      

Therefore, the unpadded RSA has the homomorphic property. Unfortunately, the 

unpadded RSA is insecure. 
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4.3 Fully Homomorphic Encryption 

Homomorphic encryption is a very useful tool with a number of attractive applications. 

However, the applications are limited by the fact that only one operation is possible 

(usually addition or multiplication in the plain text space) so as to manipulate the plain 

text by using only the cipher text. What would really be useful is to be able to utilize both 

addition and multiplication simultaneously. This would permit more manipulation of the 

plain text by modifying the cipher text. In fact, this would allow one without the secret 

key to compute any efficiently computable function on the plain text, when given only 

the cipher text. Fully homomorphic encryption (FHE) techniques allow one to evaluate 

both addition and multiplication of plaintext, while remaining encrypted. The concept of 

FHE was introduced by Rivest [14] under the name privacy homomorphism. The 

problem of constructing a scheme with these properties remained unsolved until 2009, 

when Gentry [6] presented his breakthrough result. His scheme allows arbitrary 

computation on the cipher texts, and it yields the correct result when decrypted.  

4.4 Fully Homomorphic Encryption - Definition 

Fully homomorphic encryption can be considered as ring homomorphism. In 

mathematics, a ring is a set R equipped with two operations + and x, satisfying the 

following eight axioms called the ring axioms. R is an abelian group under addition, 

meaning:  

1. (a + b) + c = a + (b + c) for all a,b,c in R (+ is associative). 

2. There is an element 0 in R such that a + 0 = 0 + a = a (0 is the additive identity).  

3. For each a in R there exists -a in R such that a + (-a) = (-a) + a = 0 ( -a is the 

additive inverse of a).  

4. a+b = b+a for all a and b in R (C is commutative).  

 

R is a monoid under multiplication, meaning: 

5. (a .b).c = a.(b.c) for all a,b,c in R (. is associative).  

6. There is an element 1 in R such that a.1=a, and 1.a=a (1 is the multiplicative 

identity).  
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Multiplication distributes over addition:  

7. a.(b+c) = (a.b)+(a.c)  for all a, b, c in R (left distributivity).  

8. (b+c).a = (b.a) + (b.c) for all a,b,c in R (right distributivity).  

 

A ring homomorphism is a function between two rings which respect the structure. More 

explicitly, if R and S are two rings, then a ring homomorphism is a function f: R -> S 

such that f (a+b) = f(a) + f(b) and f(a.b) = f(a) . f(b) for all a and b in R. 

  

Let us see an example of ring homomorphism. Consider the function f: Z2 -> Z2 given by 

f(x) = x
2
 where x = 0 or 1.  

First,  

f(x+y) = (x+y)
2 

 = x
2 

+ 2xy + y
2 

 =  x
2
+y

2
 = f(x) + f(y) 

where 2xy = 0 because 2 times anything is 0 in Z2. 

 

Next, 

f(x.y) = (xy)
2
 = x

2
 * y

2
 = f(x) * f(y) 

The second equality follows from the fact that Z2 is commutative. Thus, f is a ring 

homomorphism.  

 

Let (P,C,K,E, D) be a encryption scheme, where P,C are the plain text and cipher text 

spaces, K is the key space, and E,D are the encryption and decryption algorithms. 

Assume that the plain texts form a ring (P, p, p) and the cipher texts form a ring (C, 

c, c ); then the encryption algorithm E is a map from the ring P to the ring C, i.e., Ek : P 

-> C, where k ε K is either a secret key (in the secret key cryptosystem) or a public key 

(in the public-key cryptosystem). 

For all a and b in P and k in K, if  

Ek(a)  c Ek(b) = Ek(a  p b) 

Ek(a)  c Ek(b) = Ek(a  p b) 

 Then the encryption scheme is fully homomorphic.  
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4.5 Overview of Fully Homomorphic Encryption 

Craig Gentry [8, 37], using lattice-based cryptography, showed the first fully 

homomorphic encryption scheme as announced by IBM on 25 June 2009. His scheme 

supports evaluations of arbitrary depth circuits. His construction starts from a somewhat 

homomorphic encryption scheme using ideal lattices, that is limited to evaluating low-

degree polynomials over encrypted data. It is limited because each cipher text is noisy in 

some sense, and this noise grows as one adds and multiplies cipher texts, until ultimately 

the noise makes the resulting cipher text indecipherable. He then shows how to modify 

this scheme to make it bootstrappable—in particular, he shows that by modifying the 

somewhat homomorphic scheme slightly, it can actually evaluate its own decryption 

circuit, a self-referential property. Finally, he showed that any bootstrappable somewhat 

homomorphic encryption scheme can be converted into a fully homomorphic encryption, 

through a recursive self-embedding.  

In the particular case of Gentry‘s ideal-lattice-based somewhat homomorphic scheme, 

this bootstrapping procedure effectively ―refreshes‖ the cipher text by reducing its 

associated noise so that it can be used thereafter in more additions and multiplications, 

without resulting in an indecipherable cipher text. Gentry based the security of his 

scheme on the assumed hardness of two problems: certain worst-case problems over ideal 

lattices and the sparse (or low-weight) subset sum problem.  

Regarding performance, the cipher texts in Gentry‘s scheme remain compact so far as 

their lengths do not depend at all on the complexity of the function that is evaluated over 

the encrypted data. The computational time only depends linearly on the number of 

operations performed. However, the scheme is impractical for many applications, 

because the cipher text size and computation time increase sharply as one increases the 

security level. To obtain 2
k
 security against known attacks, the computation time and 

cipher text size are high-degree polynomials in k. Stehle and Steinfeld [38] reduced the 

dependence on k substantially. They presented optimizations that permit the computation 

to be only quasi-k
3.5

 per Boolean gate of the function being evaluated.  
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In 2009, Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan [9] 

presented a second fully homomorphic encryption scheme, which used many of the tools 

of Gentry‘s construction, but did not require ideal lattices. They showed that the 

somewhat homomorphic component of Gentry‘s ideal lattice based scheme can be 

replaced with a very simple somewhat homomorphic scheme that uses integers. The 

scheme was conceptually simpler than Gentry‘s ideal lattice scheme, but had similar 

properties when it came to homomorphic operations and efficiency.  

In 2010, Nigel P. Smart and Frederik Vercauteren [39] presented a fully homomorphic 

encryption scheme with smaller key and cipher text sizes. The Smart– Vercauteren 

scheme followed the fully homomorphic construction based on ideal lattices given by 

Gentry. It also produced a fully homomorphic scheme from a somewhat homomorphic 

scheme. For the somewhat homomorphic scheme, the public and the private keys 

consisted of two large integers (one of which was shared by both the public and the 

private keys), and the cipher text consisted of one large integer. The Smart–Vercauteren 

scheme had smaller cipher text and reduced key size than Gentry‘s scheme, which was 

based on ideal lattices. Moreover, the scheme also allowed efficient fully homomorphic 

encryption over any field of characteristic two. However, the major problem with this 

scheme was that the key generation method was very slow. Hence, this scheme was still 

not fully practical. 

At the rump session of Eurocrypt 2011, Craig Gentry and Shai Halevi [40] presented a 

working implementation of fully homomorphic encryption (i.e., the entire bootstrapping 

procedure) together with performance numbers.  

Recently, Coron, Naccache, and Tibouchi [41] proposed a technique that would reduce 

the public-key size of the van Dijk et al. scheme to 600 KB. In April 2013 the HElib [42] 

was released, via GitHub, to the open source community which implements the 

Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme [43], along 

with many optimizations, to make homomorphic evaluation runs faster. 
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4.6 Homomorphic Encryption Scheme over Integers 

Although interesting from a theoretical standpoint, the lattice-based construction is 

difficult to describe. But its integer-based version is easy to implement. That is, we can 

embed an ideal into an integer ring, and if the parameters are set correctly, the scheme 

can be considered secure (against known attacks).  

4.6.1 Secret Key Somewhat Homomorphic Encryption 

Let us begin with the description of the secret key integer-based somewhat homomorphic 

encryption scheme [9]. The scheme is surprisingly simple, and we can construct very 

complex functionality from it. 

Key Generation KeyGen: The secret key is an odd integer, chosen from some interval p ε 

[2
η-1 

- 2
η
].  

Encryption Encrypt(pk,m): To encrypt a bit m ε {0,1}, set the cipher text as an integer 

whose residue mod p, has the same parity as the plain text. Namely, set  

C = pq +2r + m 

 Where, the integers q, r are chosen at random in some other prescribed intervals, such as 

2r is smaller than p/2 in absolute value.  

Decryption Decrypt(p,c): Given a cipher text c and the secret key p, output  

M = (c (mod p)) (mod 2) 

The decryption equation holds because  

(c (mod p)) (mod 2) = (pq +2r + m (mod p)) (mod 2)   

                     = 2r + m (mod 2)   = m 

Fully Homomorphic Property: Given two cipher text c1 = pq1 + 2r1 + m1 and c2 = pq2 + 

2r2 + m2, we have 

c1 + c2 = pq1 + 2r1 + m1 + pq2 + 2r2 + m2  
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                      = p(q1 + q2) + 2(r1 + r2) + m1 + m2 

c1 * c2 = (pq1 + 2r1 + m1) * (pq2 + 2r2 + m2) 

           = (pq1q2 + 2q1r2 + 2q2r1 + m1q2 + m2q1)p + 2(2r1r2 + m1r2 + m2r1) +              

                                     m1m2 

when  

r1 + r2 < p/2      ……………… (4.1) 

2r1r2 + m1r2 + m2r1 < p/2  ……………… (4.2) 

we have   

(c1 + c2 (mod p)) (mod 2) = m1 + m2 

(c1 * c2 (mod p)) (mod 2) = m1 * m2 

Therefore, this scheme has the fully homomorphic property. 

However, when we use the fully homomorphic property to evaluate a Boolean function 

f(x1,x2,..,xn) where xi ε {0,1},  given ci , the encryption of xi , for i = 1,2, … , n, it is 

noticed in Eqs. (4.1) and (4.2) that  

r1 + r2 ≥ max(r1,r2)  

2r1r2 + m1r2 + m2r1  ≥ max(r1,r2) 

That is, the size of the noise component r in the resulting cipher text is increasing with the 

number of the additions and multiplications in the Boolean function. Once 

r1 + r2 > p/2  and 

2r1r2 + m1r2 + m2r1 > p/2, 

 the decryption of f(c1,c2,..,cn) may not be f(x1,x2,..,xn). Therefore, this scheme can be 

only used to evaluate low-degree Boolean functions over encrypted data. This is why this 

scheme is called the somewhat homomorphic encryption scheme.  
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If we choose r ≈ 2
n
, p ≈ 2

n2
, and q ≈ 2

n5
, the somewhat encryption scheme can compute 

polynomials of degree ≈ n, before the noise grows too large.  

Security: The security of this scheme can be reduced to the hardness of the approximate 

integer greatest common divisor (approximate GCD) problem [44]. As an example, we 

explain this in the more specific and familiar case of greatest common divisors. If we are 

given two integers a and b, we can clearly find their GCD d, say, in polynomial time. If d 

is in some sense large, then it may be possible to incur some additive error on either of 

the inputs a and b, or both, and still recover this GCD. This is what we refer to as an 

approximate common divisor problem. Of course if there is too much error incurred on 

the inputs, the algorithm may well not be able to discern the GCD d we had initially, over 

some other approximate divisors d (e.g., they may all leave residues of similar magnitude 

when dividing a and b). In this sense, the problem is similar to those found in error 

correcting codes.  

Continuing this error correcting code analogy, we can state the problem from the 

standpoint of the design of the decoding algorithm, i.e., we wish to create an algorithm 

which is given two inputs a0 and b0 and bounds X, Y, and M for which one is assured 

that d|(a0 + x0) and d|(b0 + y0) for some d>M and x0, y0 satisfying |x0| ≤ X, |y0|≤ Y . The 

output of the algorithm should be the common divisor d, or all of the possible ones, if 

more than one exist.  

Howgrave-Graham analyzed the (approximate GCD) problem in [44]. The problem is 

believed to be a hard problem in lattice theory. With a judicious choice of parameters, the 

secret key somewhat homomorphic encryption scheme is even more secure. 

 

4.6.2 Public Key Somewhat Homomorphic Encryption 

The secret key somewhat homomorphic encryption needs the secret key p to encrypt a 

message. Now we describe a public-key somewhat homomorphic encryption scheme [9] 

that allows encryption without the knowledge of the secret p.  
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Parameters: The scheme has many parameters, controlling the number of integers in the 

public key and the bit-length of the various integers. Specifically, we use the following 

four parameters (all polynomial in the security parameter λ):  

γ, which is the bit-length of the integers in the public key 

η, which is the bit-length of the secret key (which is the hidden approximate GCD of all 

the public-key integers). 

ρ, which is the bit-length of the noise (i.e., the distance between the public-key elements 

and the nearest multiples of the secret key). 

τ, which is the number of integers in the public key.  

These parameters must be set under some constraints [9]. A convenient parameter set to 

keep in mind is ρ = λ, ρ‘ = 2λ, η = O(λ
2
), η = O(λ

5
) and τ = γ + λ . The setting results in a 

scheme with complexity O(λ
10

).  

Key Generation KeyGen(λ): Choose a random η-bit odd integer p as the private key. 

Using the private key, generate the public key as  

xi = pqi + ri 

Where, qi ε Z ∩ [0,2
γ
/p) and ri  ε Z ∩ (-2

ρ
,2

ρ
) e chosen randomly, for i =  0, 1, …, τ. 

Relabel so that x0 is the largest. Restart unless x0 is odd and x0(mod p) is even. The public 

key is  

pk = <x0, x1, …., xτ> 

Encryption Encrypt(pk, m): Given m ε {0,1} and the public key pk, choose a random 

subset S ⊆ {1,2,…, τ } and a random integer r ε (2
- ρ‘

,2
ρ‘

), and output  

c = (m + 2r + 2∑ iεS xi ) (mod x0) 

Decryption Decrypt(sk,c): Given the cipher text c and the private key p, output  

m = (c (mod p)) mod 2 
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Here, c(mod p) = c – p.[c/p]  where ‗[]‘ denotes rounding to the nearest integer. 

Security: Like the secret key homomorphic encryption scheme, the security of the 

public-key somewhat homomorphic encryption scheme is also based on the approximate-

GCD problem. Consider the approximate-GCD instance {x0, x1, …, xt }, where xi = pqi + 

ri . Known attacks on the approximate-GCD problem for two numbers include brute 

forcing the reminders, continued fractions, and Howgrave-Graham‘s approximate GCD 

algorithm [44].  

A simple brute-force attack is to try to guess r1 and r2 and verify the guess with a GCD 

computation. Specifically, for r1‘,r2‘ ε (2
- ρ‘

,2
ρ‘

), set  

x1‘ = x1 – r1‘, x2‘ = x2 – r2‘, p‘ = GCD(x1‘,x2‘). 

If p‘ has η bits, then output p‘ is a possible solution. The solution p will definitely be 

found by this technique, and for the parameter choices, where ρ is much smaller than η, 

the solution is likely to be unique. The running time of the attack is approximately 2
2ρ

.  

Attacks for arbitrarily large values of t include lattice-based algorithms for simultaneous 

Diophantine approximate [45], Nguyen and Stern‘s orthogonal lattice [47], and 

extensions of Coppersmith‘s method to multivariate polynomials [46].  

4.7 Fully Homomorphic Encryption Scheme 

In this section, we describe the construction of a fully homomorphic encryption scheme 

given by van Dijk [9]. It is built on the somewhat homomorphic encryption scheme 

described in the last section and squashing the decryption circuit. 

4.7.1 Squashed Encryption 

Let κ,θ, Ω be three more parameters which are functions of λ. We set κ = γ η/ ρ‘, θ = λ, 

and Ω = ω(κ.log λ). For a secret key sk
*
 = p and public key pk

* 
from the original 

somewhat homomorphic encryption scheme, we add to the public key, a set y={ y1, y2, 

… yΩ } of rational numbers in [0,2) with κ bits of precision, such that there is a sparse 

subset S ⊂ {1,2,…, Ω} of size θ with 
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∑iεS yi  ≈ 1/p(mod 2) 

Now the secret key is replaced by the indicator vector of the subset S. The encryption 

scheme is modified by van Dijk [9] as follows. 

Key Generation KeyGen(λ): Generate sk* = p and pk* as before. Set xp = [2
k
/p], choose a 

random Ω bit vector (s1, s2, …, sΩ) with hamming weight θ and let S = {i : si = 1}. 

Choose at random ui ε Z ∩ [0,2
κ+1

), i = 1,2, … , Ω subject to the condition that 

∑iεS ui = xp (mod 2
κ+1

) 

Set yi = ui/2κ and y = {y1,y2,…yΩ}. Hence, each yi is a positive number smaller than 2, 

with κ bits of precision after the binary point. Also we have  

∑iεS yi  (mod 2) =  (1/p) - ∆p 

For some |∆p| < 2
- κ 

because 

∑iεS yi  = ∑iεS ui/2
κ 

         = (xp + α 2
κ+1

) / 2
κ
 

          = xp/ 2
κ 

+ α.2 

         = [2
κ 

/ p]/ 2
κ 

+ α.2 

                     = (1/p - ∆/2
κ
) + α.2 

                                                                           = 1/p - ∆ p(mod 2) 

Where, ∆ < 1 

Output the secret key sk = S and the public key {pk, y}. 

 Encryption Encrypt(pk,c
*
): Given a cipher text c

*
, for  i ε {1,2,…, Ω},set  

zi = c* .yi (mod 2) 

Keeping only n = [log θ]+3 bits of precision after the binary point for each zi. 
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Output both c* and z = {z1,z2,…zΩ} 

Decryption Decrypt(sk,c*,z): Given the ciphertext c*, z and the private key p, output 

m = (c* - [∑iεS zi] )(mod 2) 

4.7.2 Bootstrappable Encryption 

It constructs homomorphic encryption for circuits of any depth from the ‗somewhat 

homomorphic encryption‘, which is capable of evaluating just a little more than its own 

decryption circuit.  

Augmented Decryption Circuit: Let £ be an encryption scheme, where decryption is 

implemented by a circuit that depends only on the security parameter. For a given value 

of the security parameter λ, the set of augmented decryption circuits consist of two 

circuits, both of which take a secret key and two cipher texts as input.  

 The circuit decrypts both cipher text and adds the resulting plain text bits mod 2.  

 The circuit decrypts both cipher text and multiplies the resulting plain text bits 

mod 2. 

Bootstrappable Encryption: Let £ be a homomorphic encryption scheme. We say that £ is 

bootstrappable, if its augmented decryption circuits are permitted circuits for every value 

of the security parameter λ. 

The squashed encryption scheme is bootstrappable. During evaluation, every time we 

have a cipher text that grows beyond 2
γ
 , we reduce its first modulo xγ‘, then modulo xγ-

1‘and so on all the way down to x0‘, at which point, we again have a cipher text of bit-

length no more than γ.  

Recall that a single operation at most, doubles the bit-length of the cipher text. Hence, 

after any one operation, the cipher text cannot be larger than 2 xγ‘ and therefore the 

sequence of modular reductions involves only small multiples of the xi‘ , which means 

that, it only adds a small amount of noise. It is not clear to what extent adding these larger 

integers to the public key influences the security of the scheme. Fully homomorphic 

encryption (FHE) allows a worker to perform implicit additions and multiplications on 
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plain text values, while exclusively manipulating encrypted data. The fully homomorphic 

scheme proceeds in several steps. First, one constructs a somewhat homomorphic 

encryption scheme, which only supports a limited number of multiplications: cipher texts 

contain some noise that becomes larger with successive homomorphic multiplications, 

and only cipher texts whose noise size remains below a certain threshold can be 

decrypted correctly. The second step is to squash the decryption procedure associated 

with an arbitrary cipher text, so that it can be expressed as a low-degree polynomial in the 

secret key bits. Then the key idea called bootstrapping evolves, homomorphically 

evaluating this decryption polynomial on encryptions of the secret key bits, resulting in a 

different cipher text associated with the same plain text, but with possibly reduced noise. 

This refreshed cipher text can then be used in subsequent homomorphic operations. By 

repeatedly refreshing cipher texts, the number of homomorphic operations become 

unlimited, resulting in a fully homomorphic encryption scheme. 

Summary 

This chapter discussed the basics of Homomorphic encryption, fully homomorphic 

encryption with symmetric and asymmetric keys, along with well known techniques 

currently used by researchers to solve the problem of encrypted data searching. 

Homomorphic encryption schemes are extensively used in Electronic voting, private 

searching, etc. The primary open problem is to improve the efficiency of the existing 

schemes based on the application context, to the extent that it is possible while preserving 

the hardness of the approximate-GCD problem.    
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Chapter 5 

Modified Homomorphic Encryption (MHE) Scheme 

 

 

“There’s a lot of engineering work to be done. But until now we’ve thought this might 

not be possible. Now we know it is.” 

 

- Ronald Linn Rivest. 

 

 

Modified Homomorphic Encryption (MHE) scheme is a fully homomorphic encryption 

algorithm that enables operations to be applied on a cipher text and obtain the result 

without decrypting the data.   
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 5.1 Introduction 

Homomorphic Encryption scheme enables operations to be applied on an encrypted 

domain with results obtaining similar to operations applied on raw data. The advantage is 

that, there is no need of decrypting the operands to perform the operation and hence the 

operation can be applied on a third party system without revealing any sensitive 

information to them. However, original FHE scheme proposed by Gentry employs ideal 

lattices over polynomial ring and it is proven to be too expensive for practical 

applications. Gentry‟s FHE scheme can be modified to suit each application scenario thus 

reducing the implementation cost. This chapter discusses the Modified Homomorphic 

Encryption scheme that my research proposed to suit the ranked information retrieval 

scenario. 

5.2 Need for modifying Gentry’s FHE Scheme    

According to Gentry‟s public key FHE scheme [12], the encryption and decryption 

formulae are c = pq + 2r + 2∑xi and m = (c mod p) mod 2, which can be applied on 

messages, m= {0,1}. Since the algorithm takes only 0 and 1 as inputs, every number is 

converted to binary before it is applied to the operation, and the encryption and 

decryption algorithm is applied over each bit. This solution is ideal when the value of the 

message is unpredictable. But, if the value of the message to be secured is predefined to 

be within a range, then the space and time complexity of the algorithm can be improved 

by redefining the algorithm, thus eliminating the need for conversion to binary and 

encrypting bit by bit.  

For the ranked information retrieval scenario, my research utilizes vector space model 

where each cell is filled with TF-IDF values. Hence, here only multiplication and 

summation operation is needed to be applied on TF-IDF to find the similarity score of 

query to documents. Before encrypting the TF-IDF, normalization is applied on the 

values which always ensure that the resulting values range between 0 and 10. Thus the 

proposed MHE scheme needs to handle only integer multiplication and summation 

operation to support the encrypted similarity calculation. 

5.3 Modified Homomorphic Encryption (MHE) Scheme 

Let m and c denotes the plaintext and cipher text message respectively. 

Gentry‟s FHE scheme can be defined as follows: 

Encryption: c = pq + 2r + m  

Decryption: m = (c mod p) mod 2 

Here, p denotes the secret key, q denotes the multiplying parameter and r denotes the 

noise to protect from brute force attack. „pq+r‟ serves as the public key. 
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This encryption scheme encrypts each bit to ||p|| + ||q|| bits where the notation ||x|| refers 

to bit length of x. If this scheme is applied as such to encrypt the TF-IDF values, then 

each bit will be transformed to very large values which make the storage, transfers and 

computations costly, especially when the index to be encrypted is huge. 

To reduce the communication overhead, the FHE scheme is modified to reduce the 

resultant cipher text size. The Modified Homomorphic Encryption Scheme (MHE) is 

defined as: 

Symmetric Encryption: c = pq + sr +m, where s = 2
2||m||

, p >> r and r >> s ensures correct 

decryption. As the size of the cipher text doubles after multiplication, select the noise 

parameter „r‟ greater than or at least equal to  2
2||m||

. 

Asymmetric Encryption: c = pq + sr + s∑xi, where s depends on the maximum value 

possible for message, m.  

For both the schemes, decryption becomes m = (c mod p ) mod s 

5.4 Advantage of the MHE Scheme 

Apart from eliminating the need for separate bit by bit encryption, this scheme reduces 

the number of bits in cipher text by approximately 1/||m||, where ||m|| implies the number 

of bits in the maximum possible value of m. In Gentry‟s scheme, the number of bits will 

be nearly n.(||p||+||q||) bits (n = number of bits in message) whereas in ours, the number of 

bits will remain approximately ||p||+||q||. For example, if the score has a value of 2
100

, then 

size of the cipher text will be 100*(||p||+||q||) for Gentry‟s FHE scheme whereas it will be 

simply (||p||+||q||) for the modified MHE.  

5.4.1 Formal definition of Modified Homomorphic Encryption (MHE)  

Let m ranges from 1 to n, then set s = 2
2||n||

. The Private key, p and noise parameter, r are 

chosen such that, p >> r >>s. To be specific, choose private key, p >> s . ∑ ri + noise and                

p >> s
2
. ∏

2
1 (∑ ri) to preserve the correctness of decryption. Public Key, PK = 

<pk0,pk1…pk>  is a set of  elements where pk0 is the largest. Each element, pki = pqi + 

ri  where qi  Z ∩ [0, 2
γ
/ρ) and ri  Z ∩ [2

-ρ
, 2

ρ
] are chosen randomly for i=0,1,… . Here, 

γ = O(λ
5
), ρ = λ and  = λ+γ, for a security parameter λ. Refer Section 5.4.3 to see the 

numeric examples of MHE scheme. 

Encryption: Encrypt(PK, m): 

Given m  Zn and the public key PK, choose a random subset X  {1, 2, .. } and a 

random integer, r and output c = m + s.r + s.∑iX pki . 
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Decryption: Decrypt(SK, c): 

Given the private key/secret key, „p‟ and the cipher text, „c‟ then output is, m = (c mod 

p) mod s. 

 

5.4.2 Proof of Correctness for MHE Algorithm 

i. Proof of correctness for decryption 

 c1 = m1 + sr  + s.∑iX pki       

                 = m1 + sr + s .∑iX (pqi+ri)  

          = m1 + sr + s p .∑iX (qi )+ s.∑iX (ri) 

          m1 = (c1 mod p) mod s 

               = ((m1 + sr + s p .∑iX (qi )+ s.∑iX (ri)) mod p) mod s 

               = (m1 + sr + s.∑iX (ri)) mod s        since     s.(r + ∑iS (ri) ) < p 

               = m1 

 

ii. Proof of correctness for homomorphic addition 

c1 + c2  = (m1 + sr1 + s p .∑iX (qi )+ s.∑iX (ri)) +  (m2 + sr2 + s p .∑iX (qi )+ s.∑iX (ri)) 

             = m1 +  m2  + s (r1 + z2 ) +  sp (.∑ix (qi ) + ∑jx (qj )) + s. (∑iS (ri) + ∑jx (rj) )  

 

m1 + m2  =  ((c1 + c2 ) mod p) mod s 

               = ((m1 +  m2  + s (r1 + z2 ) +  sp (.∑ix (qi ) + ∑jx (qj )) + s. (∑iS (ri) + ∑jx (rj) 

)))mod p) mod s ,   since     s.(noise + ∑ix (ri) ) < p 

                = (m1 +  m2 + s (r1 + r2 )  + x. (∑iS (ri) + ∑jS (rj)  ) mod s 

                = m1 +  m2 

 

iii. Proof of correctness for homomorphic multiplication 

c1 * c2   = (m1 + sr1 + s p .∑iX (qi )+ s.∑iX (ri)) *  (m2 + sr2 + s p .∑iX (qi )+ s.∑iX (ri)) 
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              = (m1 ((m2 + sr2 + sp .∑jx (qj )+s.∑jS (rj)) + sr1 ((m2 + sr2 + sp .∑jx (qj )+x.∑jx 

(rj)))+sp.∑ix (qi ). (m2 + sr2 + sp.∑jx (qj )+s.∑jx (rj)  + s.∑ix (ri) ((m2 + sr2 + sp .∑jx (qj 

)+s.∑jx (rj)))  

m1 * m2 = ((c1 * c2 ) mod p) mod s 

              =  (m1 ((m2 + sr2 + sp .∑jx (qj )+s.∑jS (rj)) + sr1 ((m2 + sr2 + sp .∑jx (qj )+x.∑jx 

(rj)))+ sp.∑ix (qi ). (m2 + sr2 + sp.∑jx (qj )+s.∑jx (rj)  + s.∑ix (ri) ((m2 + sr2 + sp .∑jx (qj 

)+s.∑jx              (rj))) mod p ) mod s   (since p > s
2
. ∏

2
1 (∑ ri)) 

             =  ( (m1 ((m2 + sr2 + s.∑jS (rj)) + sz1 ((m2 + sr2 + s.∑jS (rj))) + s.∑ix (ri) ((m2 +  sr2 

+ s.∑jx (rj)) )) mod s 

             = m1*m2   

 

5.4.3 Numerical Example for MHE 

 

Let the secret key be p = 19760800000    (P>>r>>x) . Based on p, we construct the public 

key as follows. 

x= 2
2.4 

= 2
8
 = 256  

 

Q = [q0,q1,q2,q3] = [36,27,34,6] 

R = [r0,r1,r2,r3] = [8,5,4,2] 

 

Xi = pqi + ri 

X0 = 19760800000 * 36 + 8 = 711388800008 

X1 = 19760800000 * 27 + 5 = 533541600005 

X2 = 19760800000 * 34 + 4 = 671867200004 

X3 = 19760800000 * 6 + 2 = 118564800002 

X=[x0,x1,x2,x3] = [711388800008, 533541600005, 671867200004, 118564800002 ] 
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Let M1=5  r1=500 I = [1,3] 

 

C1 = 5+256*(500)+256*(533541600005 + 118564800002 )  

      =  5+256*(500)+256(652106400007)  =  5+ 128000 +  166939238401792  

      = 166939238529797      

M1 = 166939238529797 % 19760800000 % 256 =5 

As expected, the cipher text is decrypted correctly. 

 

Another example: 

M2=11 r2=600 i=[0,1] 

C2 = 11 + 256*(600)+256*( 1244930400013) =  11+ 153600+ 318702182403328  

      =  318702182556939 

M2 = 156939 %256 = 11 

C1*c2 = 53203899673839748484600611383 % 19760800000 % 256 = 55 (=11*5) 

C1 + C2 = 485641421086736 % 19760800000 = 286736 % 256 = 16 (=11+5) 

Proves, the algorithm satisfies homomorphic addition and multiplication. 

 

Let M3 = 12  rm = 550 i= [3,4] 

C3 =  12 + 140800 + 256*790432000006 = 202350592001536 + 140812 = 

202350592142348 

Above example shows that MHE is not order preserving. Here, E(11) > E(12) 

M3 = 202350592142348 % 19760800000 % 256 = 12 

 

C2 * C3 = 64489575357455298640503152772 %19760800000 = 2579152772 %256 = 

132 

C2 +C3 = 521052774699287 % 19760800000 % 256 = 23 
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5.5 Security of the MHE scheme used for securing the index  

The proposed MHE scheme is secure and can be explained based on the approximate 

GCD problem. Consider the approximate-GCD instance {x0, x1,….xt} where xi = pqi + ri. 

Known attacks on the approximate-GCD problem for two numbers include brute forcing 

the reminders, continued fractions, and Howgrave-Graham‟s approximate-GCD 

algorithm [14]. Given two integers, we can compute their greatest common divisor 

efficiently using Euclid‟s algorithm. Howgrave-Graham [28] formulated and gave an 

algorithm to solve an approximate version of this problem, asking the question “What if 

instead of exact multiples of some common divisor, we only know approximations?” In 

the simplest case, we are given one exact multiple N = pq0 and one near multiple a1 = pq1 

+ r1, and the goal is to learn p, or at least p gcd(q0, q1). Our scheme is based on the 

hardness of approximate integer common divisors problems introduced by Howgrave-

Graham. In the general version of this problem (approximate GCD), the goal is to recover 

a secret number p (typically a large prime number), given polynomially many near-

multiples x0, . . . , xm of p, that is, each integer xi is of the hidden form xi = pqi +ri  where 

each qi is a very large integer and each ri is a very small integer.  

A simple brute-force attack is to try to guess r1 and r2 and verify the guess with a GCD 

computation. Specifically, for r1‟, r2‟ Ɛ (2
-ρ

, 2
ρ
), set x1‟ = x1-r1‟, x2‟=x2-r2‟, 

p‟=GCD(x1‟,x2‟). 

If p‟ has ᵑ bits, output p‟ as a possible solution. The solution p will definitely be found by 

this technique, and for the parameter choices, where ρ is much smaller than ᵑ, the solution 

is likely to be unique. The running time of the attack is approximately 2
2ρ

. For terms, t>2 

the complexity still increases to O(t
3
2

2ρ
) which is too much impractical to implement real 

time.   

Attacks for arbitrarily large values of t include lattice-based algorithms for simultaneous 

Diophantine approximate [15], Nguyen and Stern‟s orthogonal lattice [16], and 

extensions of Coppersmith‟s method to multivariate polynomials [17]. 

In the continued fractions attack, a sequence of integer pairs is obtained (yi,zi) such that 

|(x1/x2)-(yi/zi) | < 1/zi
2
. Since q1/q2 is a good approximation of x1/x2, i.e.,(x1/x2 – q1/q2) ≈ 0 
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, (q1,q2) probably occurs in the sequence. If so, p can be recovered by p = [x1/q1]. The 

(x1/x2 – q1/q2) in our scheme, however, is not small enough to be recovered by this attack. 

Specifically, q22
 

𝑥1

𝑥2
−

𝑞1

𝑞2
=

 𝑞2. 𝑟1 − 𝑞1. 𝑟2 

𝑞2(𝑝𝑞2 + 𝑟2)
 ≈

𝑞2. 𝑟1 − 𝑞1. 𝑟2

𝑝
.

1

𝑞2. 𝑞2
 

Since, 
𝑞2.𝑟1−𝑞1.𝑟2

𝑝
 >> 1, according to the parameter selection in our scheme, the pair 

(q1,q2) cannot be obtained. Therefore, the continued fraction attack cannot break into our 

system. 

Howgrave-Graham gives a lattice attack on the multi-element approximate-gcd problem. 

In this attack, when t = 2, the relevant lattice may contain exponential vectors unrelated 

to the approximate-gcd solution, so that lattice reduction turns out to be in vain. For 

arbitrary t > 2, the time needed to guarantee a 2
η
 approximation is roughly (2

η
)
γ/2

, 

resulting the overall computing complexity is Ω(2
λ
), which is difficult to crack. In 

conclusion, the MHE scheme guarantees sufficient security. 

5.6 Implementation of MHE 

HElib [17] is an open-source library which implements the homomorphic encryption 

scheme with some optimizations such as cipher text packing techniques (SIMD) [28] and 

optimizations in [14]. There are many useful functions in the library besides the 

evaluation of the AND gate and the XOR gate, including some initialization functions, 

and some helper classes like Encrypted Array which provides us with easy encryption 

and manipulation to the cipher text slots. The library is written in C++ and uses the MTL 

Mathematical Library. The code that we used for creating a vector and perform the 

addition and multiplication has been included in the appendix. 

There are many parameters in HElib interface, most of which are used to compute the 

integer m. The library provides a function FindM() which can determine a proper m 

according to the input parameters. In our experiments, we set the security level λ = 80 

(that implies the breaking time of the encryption scheme is roughly 2
80

) which is a 
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reasonable value. We test our implementation, which is single-threaded, on a PC with a 

Intel Core i4 CPU at 3.60GHz and 8GB RAM. 

5.7 Results and Discussion 

To compare the performance of MHE with FHE we randomly generated some vectors of 

mxn dimension and multiplied it with a 1xn array of values. (The test is designed to 

match our application scenario, because in our application multiplication and summation 

is needed to calculate the similarity score.) Execution time incurred to perform the matrix 

multiplication is as shown below. For this experiment, we set m=257.  

  

 

Figure 5.1: Comparison of Execution time  
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The execution time needed for addition and multiplication for the mentioned parameters 

is given below. For smaller values of „m‟ the Modified Homomorphic Encryption shows 

better execution performance than FHE.  Hence, in our application scenario we will 

normalize the TF-IDF such that it always falls within a smaller interval. For this analysis 

we considered a 100x100 matrix. 

Apart from the execution time, the MHE scheme outperforms the FHE in terms of cipher 

text space consumed.  

For different vector dimensions and maximum value m of 257, the cipher text space 

consumed is plotted below. The space consumed is less for MHE as the operation is not 

done on a bit by bit. Instead the numeral is considered as such for the operation which 

reduces the storage space. 

 

Figure 5.2: Execution Time for Addition 
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Figure 5.3: Execution Time for Multiplication 

 

 

Figure 5.4: Comparison on Cipher text Space 
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Figure 5.5: Comparison on cipher text space 

 

Summary 

This chapter discussed in detail the Modified Homomorphic Encryption proposed that 

makes it suitable for information retrieval based on similarity score. The proposed 

method is proven to be secure and it performs well compared to the base scheme 

especially in terms of the cipher text size consumed, which is very much significant when 

dealing with large amount of data. Analysis done on the scheme proves that it is secure 

and optimized and can be applied in privacy preserving ranked information retrieval. 
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CHAPTER 6 

Dual Round Encrypted Information Retrieval (DRIER) 

Framework 

 

 

 

“There are two types of encryption: one that will prevent your sister from reading your 

diary and one that will prevent your government.” 

- Bruce Shneier. 

 

 

 

The DRIER framework describes how to apply the proposed Modified Homomorphic 

Encryption scheme for secure and privacy preserving keyword searches from outsourced 

encrypted data. 
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6.1 Introduction 

This chapter describes how we can apply the MHE algorithm we proposed, for efficient 

ranked information retrieval from outsourced data. Well known techniques in information 

retrieval, like vector space and Term Frequency-Inverse Document Frequency are 

utilized for relevance matching. The searching scheme supports multiple keyword 

searches and ranking, based on query keywords. DRIER framework establishes two 

rounds of communication between the user and the cloud, to retrieve the matching 

documents, in a secure and privacy preserving way. 

6.2 Searchable Index Generation 

To store the files in a secure manner and to enable searching from the encrypted domain, 

we need to maintain a searchable index which is protected by encryption. Initially, we 

create the vector space model, which is a two dimensional representation of the words 

and files in the documents. Then, each cell is filled with the TF-IDF values as described 

in chapter 3. We apply Min-Max normalization technique to rescale the values to a new 

range, 1 to 10. Now, we encrypt each cell with our MHE scheme and remove the words 

and file IDs from the index. We maintain the list of words and list of files as keys, and 

distribute these keys to privileged users. Only the encrypted index is uploaded to the 

cloud. 

Actual files are encrypted using any symmetric algorithm and stored in the cloud 

separately. AES is used to encrypt the actual files. Figure 6.1 illustrates the secure index 

generation stages. 

6.3 Information Retrieval using MHE encrypted index 

When a user needs to search for a particular file, he will issue a query Q= {q1,q2,…qt}, 

having some keywords qi. If the index is present in plain text format, the score of each 

file will be calculated by adding the TF-IDFij for all j and for all i, for which wi is present 

in Q. After obtaining the sum of TF-IDF of all files, we will sort the files based on the 

value of scores obtained. Those files having higher scores are ranked relevant to the 

query. 
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Figure 6.1 Encrypted Index Generation 

Algorithm 6.1: Searchable Index Generation 

 

 

 

 

 

 

 

 

 

 

Input: Files to be securely stored F = {F1,F2,…Fn} 

Output: Secure Searchable Index Generated using MHE 

Steps: 

1. Extract each word from the text.  

2. Apply Stemming to the words. 

3. Eliminate stop words like a, an, the, is etc. and form the final wordlist, W = {w1,w2,w3,…wm} 

4. Find TF-IDF values of each word in each file. 

5. Form the vector space model W X F, with cell values filled with TF-IDF. i.e. for all values of i,j  put 

WiFj = TF-IDFij where 1 ≤ i ≤ m and 1 ≤ j ≤ n. 

6. Apply Min-Max normalization technique to rescale the values to the range 1 to 10. 

6. For all i, j replace TF-IDFi,j with MHE(TF-IDFi,j) 

8. Remove the words and file IDs from the Index to form the secure mxn index, SI. 
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Considering the secure index, SI is in an encrypted form and we do not have words 

present in the index to match with the query terms; hence we need to modify the basic 

information retrieval scheme. Also, the file names will not be present in the encrypted 

index. If we can generate a pattern, P of 0s and 1s of length m, such that 1 indicates the 

presence of the word, wi in Q and 0 indicates the absence of wi in Q, and if this pattern is 

generated based on the exact word order followed in the index SI, we need to just 

multiply each bit Pi with the TF-IDFi, and find the sum of scores for each file. Figure 6.2 

illustrates the modified scheme for score calculation. 

Let the query be Q= {q1,q2,…qt}. Generate a binary pattern BQuery, based on the 

presence or absence of words in the query. BQuery will be of length m. The procedure is 

illustrated in figure 6.2. Here, to find the similarity score, only addition and 

multiplication operation is needed. Hence, the idea is to encrypt the values in Secure 

Index and bits in binary query, with the modified encryption scheme that we proposed. 

After obtaining the BQuery, each bit is encrypted using the MHE algorithm to form the 

encrypted query, EQuery. Since our MHE scheme is fully homomorphic, the score 

calculated on the encrypted data will be equal to the raw data after decryption. This 

encrypted query, acts as the trapdoor for score calculation. 

The list containing encrypted scores of files, ES, is then sent to the user. At the user side, 

scores are decrypted to identify the files having maximum scores. The user can select 

how many files are to be retrieved from the server, based on his requirement.  

If the number of files is very high, the ranking of the scores Sn to obtain the top K files 

having highest match, can be found out by following the algorithm below. 

Algorithm 6.2: Trapdoor Generation 

 

 

Input:   Query keywords, Q={ q1,q2,…qt} 

Word Order, W = {w1,w2,w3,…wm} 

Output: Encrypted Query, EQuery 

For i in 1 to m,  

 BQueryi = If wi is present in Q, the value is 1 or else it is 0.  

               EQueryi = MHE(BQueryi) 

Return EQuery 
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Figure 6.2: Similarity Score Calculation from Secure Index. 

 

Algorithm 6.3: Score Calculation with Secure Index 

 

 

 

 

 

 

 

Query, Q = {who,wrote,wild,boys} 

Binary Query, BQ : [0,1,1,0,0,0,0,0,1,1] 

Upload encrypted index, 

SI after removing file 

names and word names. 

Secure Index, SI 

Calculate similarity score for each file, score(Fi) = ∑(Pi*SIi,j) for j=1 to m 

Input: Encrypted Query, EQ={ eq1,eq2,…eqt} 

            Secure Index, SI[m][n] 

Output: Encrypted Scores, ES[n] 

For i = 1 to n 

For j = 1 to m 

  ES[i] = ES[i] + ( SI[j][i] * EQ[j] )  

 End For 

End For 

Return ES  
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Algorithm 6.4: Top-K Similar Document Select Algorithm (Sn,K) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 6.4, Top-K Similar Document Select Algorithm, takes the decrypted scores of 

each file (Sn) as the input, and finds the top k matching files in minimal execution time. 

Instead of sorting the entire list which follows a complexity of O(n
2
), the proposed 

algorithm reduces the execution time to O(nk). Here, the worst case needs to sort only k 

elements. By, implementing max-heap concept, the complexity can still be reduced to 

O(logn). Also, the next chapter illustrates how we can reduce this complexity to O(k) by 

applying Map Reduce programming model to rank the list. 

 

Input: 

Sn : list containing scores of each file Sn=((fid1,s1),(fid2,s2),….,(fidn,sn)) 

K : number of files to be retrieved. 

Output: 

TopListK = Top K-Relevant Files 

1. Initialize: TopListK = NULL 

2. For each item Ɛ Sn  

3.  If length(TopListi) < K 

4.   Add item  to TopList in ascending order of the score 

5.  Else  

6.   If(item[‘score’] > TopList0[‘score’]) 

7.    Replace TopList0 with item 

8.    Sort first K elements in TopListk in ascending order. 

9.   Else 

10.    Discard the item 

11.   End IF 

12.  End IF 

13. End For 

14. Return TopListk 
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6.4 Dual Round Encrypted Information Retrieval (DRIER) framework to retrieve 

the similar documents 

After obtaining the top K matching documents, the user will send the list containing top k 

file identifiers FIDk = {i1,i2, … ik} to the cloud. The cloud will send the encrypted file 

corresponding to the FID. At the user side, the files are decrypted to retrieve the required 

contents. If the required files are not found, user can issue the next set of file IDs and 

continue the process till the required files are found. The Dual Round Information 

Retrieval Scheme to find the matching documents is illustrated in figure 6.3. 

           

 

Figure 6.3 Dual Round Secure Information Retrieval 

Dual Round Secure Information Retrieval Framework can be summarized as follows: 

1. Setup(λ): Based on the security parameter λ, the data owner generates the public 

key PK, and the secret key SK. The public key PK is then delivered to authorized 

users. 

2. IndexBuild(DocCollection,PK): Documents are arranged in vector space model 

after applying IR techniques like stemming and stop word elimination. The index 

is homomorphically encrypted to generate a secure index, SI with height m and 

width n, using the public key, PK.  Then, SI is uploaded to cloud server along with 

other encrypted files. Files are encrypted using AES and index is encrypted using 

MHE. 

Encrypted 
    Files 

Secure Index 

Index 

Encrypted 

Scores, ES 

Top K File IDs 

Mail-IDs) 

Encrypted Files 

Round1 

Round2 

     Cloud 

Owner Privileged User 

Encrypted Query, EQ 
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3. TrapdoorGenerate(Query,PK): The query keywords obtained from user Qt, are 

arranged into a Boolean Query vector form BQt, where Qj = 1 if wj is present in 

Qt or else 0. BQt is then homomorphically encrypted using PK to form the trap 

door EQt. This is then sent to the cloud server. 

4. ScoreCalculate(Tq,Ie): Encrypted score, „es‟ of each document is calculated using 

equation 1. Resulting vector will be SSd = (es1, es2,…., esd) 

5. Rank(SSn,SK,k): Encrypted Scores are decrypted at client machine using secret 

key, SK and retrieve the actual scores, Sd=((fid1,s1),(fid2,s2),….,(fidn,sn)) . Sort the 

scores to find the top k similar documents matching with the query. 

6. Retrieve Top Matching Files: The top-K ranked document ids are sent to the 

cloud server and it returns the encrypted documents to the clients, which can then 

be decrypted by authorized users. 

6.5 Security Analysis of the DRIER Framework using MHE 

Security of the MHE scheme has already been analyzed in chapter 5. Here, the security of 

the Dual Round framework for Information Retrieval is analyzed. 

6.5.1 Security against Brute Force Attack 

Apart from the security of the homomorphic encryption, the proposed scheme utilizes 

word order and document order as the keys for correct retrieval.  M words and N 

documents can be arranged in M! X N! ways, and as M or N increases, the complexity of 

brute force increases. Hence, we can say that as the data to be protected increases, the 

security of the proposed scheme increases. 

6.5.2 Security against Statistical Data Leakage  

The most common attack that happens in text encryption is the statistical data based brute 

forcing. For example, „the‟ is the most frequently occurring word in English documents. 

Based on this prior information on frequency distribution of words, critical brute forcing 

can be initiated. For example, if we identified one word as „human‟, the next possible 

word that follows can be „resource‟. To summarize, there exists basically two types of 
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statistical leakages: term distribution and inter-distribution. Term distribution refers to the 

frequency distribution of terms within a document, and inter-distribution refers to a file‟s 

frequency distribution for each term.  

Term distribution and inter-distribution are analyzed by attackers in two ways. In the 

direct method, prior information available on statistical distribution is utilized as such. 

But, such attacks may not be fully effective, as most of the frequent words are stop 

words, and we eliminate such words during indexing. Also, TF-IDF value taken for 

indexing instead of just frequency will eliminate the statistical distribution of the terms 

on documents.  

Indirect way of attack will utilize the previous access and search pattern of users, to 

identify the term distribution. Order preserving encryption schemes will encrypt to 

similar result, for words having similar occurrences. But, since the MHE scheme does not 

preserve any order, the scheme encrypts the same value to different results at each 

encryption, because the result depends on the public key subset that we select during the 

encryption. 

Term distribution of some frequently occurring words are analyzed and found that the 

proposed scheme does not preserve the frequency as such, before and after encryption. 

Figure 6.4 illustrates this. 

Search Pattern and Access patterns are hidden from the attacker as well. Each time, the 

user searches for a set of keywords, the query is encrypted such that the cloud cannot 

assume what the user has searched for, and what is present in the file. Also, if two 

different queries contain the same words, different encryptions at different time will yield 

different encrypted results, as the encryption depends on the subset of the public key that 

was chosen. Formally, same keyword k, is requested in two different queries Q1 and Q2, 

and each of this will be encrypted to two cipher texts C1 and C2, by taking different 

subsets of the public key PK. Also, the index stored in the cloud does not contain the 

words or file names, thus preventing any guessing attacks about the content of the files.  
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Figure 6.4: Distribution of similarity relevance of 142 terms with (a) “data”, and (b) “resources” before and 

after MHE in the Newsgroups data set. 

6.6 Performance Analysis of the DRIER Framework 

This section analyzes the performance of the proposed DRIER scheme, taking into 

account the execution time as well as the communication complexity. 

6.6.1 Experimental Setup and Dataset used 

The experiment is conducted with two machines acting as client and server. The user 

machine is setup on a laptop with Windows 7 installed, having Core 2 Duo CPU and 

speed 2 GHz. The server machine is installed on an AWS Ubuntu instance with Xeon 

E5620 CPU and speed 2.4 GHz. The client machine is the user‟s system that creates the 

index, encrypts and uploads the files.  The server machine is considered as the cloud 

server that stores the index, calculates the scores and sends request files to the user. The 

DRIER framework is developed in Java and utilizes HELib libraries (C++) to perform 

homomorphic operations. 

The dataset used for testing is Thomson Reuters Text Research Collection (TRC2). It 

contains 1,800,370 stories, which occurred between the period 01-01-2008 00:00:03 and 
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28-02-2009 23:54:14. The size of the dataset is 2.8GB. TRC2 is a single long file with 

date, headlines and stories, stored in comma separated form. To match our testing 

requirement, we split this large file into multiple files, where each file is named with a 

date in ddmmyyy.txt format and the content of that file is the headlines and stories on that 

particular day. Thus 419 files have been generated, where each file size ranges from 8MB 

to 16MB.  

6.6.2 Performance Analysis  

The performance of the proposed scheme is dependent on different stages of the 

framework like index generation, trapdoor generation, score calculation, decryption of 

score at client side, and score ranking. 

i. Index Generation Time 

Initially, we need to run the setup(λ) algorithm to derive the public and secret keys 

needed for encryption and decryption. To reduce the tradeoff between security and 

efficiency, the value of λ is fixed as 128. The secret key will be a value between [2
ᵑ-1

,2
ᵑ
]. 

The set of public keys, PK = {k0,k1,k2, … , kt} Ɛ (-2
ρ
,2

ρ
), where ρ indicates bit length of 

noise. Thus, the complexity of this stage will be O(λ
ᵑρ

) which is a constant, as λ is 

constant. 

The index building stage involves tf-idf calculation and homomorphic encryption. To 

reduce the execution time of index building of large data, we implement a distributed 

map reduce parallel programming model that reduces the complexity to linear and it will 

be explained in chapter 7. Also, tokenization, stemming and stop word elimination is 

done, to reduce the volume of keywords to be indexed. To update the documents, re-

iteration of the entire index building stage is needed and to avoid such a scenario, we 

store idf values separately. Hence, only the updated part of the file needs to be re-

evaluated to find tf-idf of the corresponding words. Encryption can be implemented in 

O(dw)  time, where d is the number of documents and w is the number of words. Time 

needed to generate the index is same for all methods, whereas the time needed to encrypt 

the index using traditional SSE, FHE and proposed MHE is as given in Figure 6.5. Here, 
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the index size is always very much less in size compared to original file, because there is 

lot of repeated words in the original text.  

 

Figure 6.5 Encrypted Index Generation Time 

ii. Trapdoor Generation Time 

The retrieval phase includes different stages like Trapdoor generation, Score Calculation 

and Sorting & shuffling, to identify the top-k documents. The complexity of our proposed 

scheme is highly dependent on the retrieval phase, as this has to be repeated each time a 

user posts a query. Hence, we parallelize the most time-consuming retrieval phase i.e., 

sorting and shuffling of top-k results. The concept is described in Chapter 7. 

Trapdoor Generation involves the binary conversion of a posted query and the 

homomorphic encryption of each bit. If the query contains n keywords, then the 

complexity will be O(n). Figure 6.6 illustrates the time needed to compute the Trapdoor 
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by employing homomorphic encryption, as well as traditional searchable symmetric 

encryption (SSE), by varying the number of total distinct words in the document 

collection and the number of terms in a query. It is well observed that, the execution time 

is approximately half for our proposed modified homomorphic encryption scheme 

(MHE). 

 

Figure 6.6: a) Trapdoor Generation Time by varying the total number of words in the document collection  

b) Execution Time by varying the total number of terms in the query. 

iii. Score Calculation Time 

To calculate the encrypted similarity score, the inner product has to be performed. This 

calls for w multiplications and d additions, where w is the number of words and d is the 

number of documents which lead to a complexity of O(wd). Here, the execution time 

varies with a variation in the number of query terms and documents. The comparison is 

illustrated in figure 6.7. It is well observed that, for the MHE scheme, the execution time 

is increasing almost linearly, whereas for SSE, it is an exponential increase. 

iv. Decryption of Score at client side 

Decryption of scores to obtain the similarity score is done at the client side and the 

number of terms to be decrypted depends on the total number of documents in the 

collection. Hence, the complexity will be utmost O(d). If there are too many documents, 
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then distributed parallel processing can be employed to decrypt the terms. Figure 6.8 

illustrates the decryption time of MHE scheme. 

 

Figure 6.7: a) Encrypted Index Score Calculation Time by varying the total number of words in the 

document collection.  b) Execution Time by varying the total number of terms in the query. 

v. Score Ranking Time  

Ranking and shuffling of File identifiers based on similarity score is the last stage to be 

executed, to identify the most similar documents. Modifying the sorting algorithm as 

described in algorithm 1, will itself reduce the execution time to O(d.n) and by 

introducing MR programming, it can be again reduced to O(d). More reduction is 

possible by introducing heap tree implementation.  

Figure 6.9.a shows the execution time of ranking, with a variation in k, where k denotes 

the number of similar files to be retrieved by the user. Here, the number of documents is 

set to 1000. Then, figure 6.9.b illustrates how the performance varies, with an increase in 

the query terms. As the number of query terms change, there is no much observable 

difference in the execution time, as scoring is independent of number of terms queried. 

Scoring is dependent on the number of top files to be retrieved. 
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Figure 6.8: a) Decryption time by taking number of query terms constant b) Decryption time by taking 

number of files constant as 500 

 

Figure 6.9: a) Ranking Time by varying number of files b) Ranking Time by varying the number of 

keywords in the query. 

vi.  Communication Overhead 

The core of our approach is the homomorphic encryption of vectored index, which 

eliminates the need for transferring the entire index to the client side, for decryption and 

ranking. The score is calculated at the server side itself, and only the encrypted scores are 

forwarded to the client for ranking. Consider that there are 100 files and 1000 distinct 
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keywords. Then, the size of the index file to be transferred for traditional SSE, will be 

approximately 100x1000x1024 bits (equal to 12MB), if each cell value is set to 1024 bits. 

But, for the Modified Homomorphic Encryption Scheme, it will only be 100x1024 bits, 

which are equal to .01MB. Hence, there is a large variation in the amount of data to be 

transferred through the network, when we compare SSE and MHE.  

Summary 

This chapter describes how the proposed Modified Homomorphic Encryption algorithm 

can be applied for secure and searchable encrypted vectored index construction and how 

to retrieve the top matching similar documents from the documents uploaded in a third 

party server. The algorithm for different stages as well as the security and performance 

analysis of the proposed scheme is compared. From the analysis of results, it is observed 

that, the performance of the DRIER framework is highly dependent on the retrieval stage, 

as it should be repeated each time a request comes from the user. Also, most of the 

operations in retrieval stage can be parallelized, which could reduce the execution time a 

lot.   
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Chapter 7 

Accelerating MHE using Map Reduce 

 

 

“The future has already arrived. It’s just not evenly distributed yet.” 

- William Gibson 

 

 

 

Distirbuted Programming powered by MapReduce, can significantly increase the 

performance of information retrieval processes. This chapter describes how to improve 

the DRIER performance, utilizing the Map Reduce programming model. 
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7.1 Introduction 

Performance analysis done on the MHE scheme showed higher execution time for 

encrypted index generation and retrieval stages. This chapter details on how to improve 

the performance of different stages of the proposed DRIER framework, using distributed 

programming. Hadoop is utilized as a distributed platform and Map Reduce programming 

model is adopted for distributed processing. Since scoring happens at the cloud end, we 

are not describing any mechanism to improve the performance, even though the proposed 

scheme supports parallel execution.    

7.2 Accelerating Secure Index Generation  

Secure Index generation composes of two phases. First, the inverted list and vector space 

is computed and filled with TF-IDF values. The TF-IDF values thus obtained are 

encrypted using MHE, in the second phase. We utilize a 2 stage Map Reduce strategy as 

shown in figure 7.1 to accomplish the two phases of this secure index generation, and 

they are as described here. 

Stage 1: Inverted Index Creation with the frequency of occurrence 

An inverted index is a data structure which stores the details of mapping from words to 

files. After forming the inverted index, we need to form a vector space model, with each 

cell containing TF-IDF values. In order to simplify the vector space generation stage, we 

calculated the frequency of occurrence of each word in each document, simultaneously 

with the inverted index creation.  This list is kept separately so that it can be re-used, 

when some modifications happen in the input document collection. 

At Map-Reduce stage 1, each mapper (worker) will take a collection of documents and 

find the distinct tokens, remove the stop words, and return the count as 1, whenever an 

occurrence is found. Thus the <key,value> output of each mapper will be <word,1>. At 

the reduction stage, the reducer will combine the outputs from all mappers, to find the 

number of times each word is repeated in the whole document collection. Thus the 

reducer output will return a list of [<word, frequency>]. From the obtained results, TF-

IDF is calculated and the final vector space is formed.  
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Stage 2: Encrypted Vector Index Generation 

At Map-Reduce stage 2, each Mapper is programmed to process the TF-IDFs of distinct 

files. The Mapper will apply MHE encryption (chapter 5, section 5.2) to each TF-IDF 

value in its input list, to form the secure encrypted index. Thus, the output of each 

mapper will be <word, MHE(TF-IDF)>.The entire output from different mappers, is then 

merged to form the final encrypted vector space index. Now, remove the words and file 

IDs from the list and save it to be used as keys for decryption. This is then uploaded to 

cloud. Stage 2 does not require a Reduction stage. Figure 3 illustrates the details of Map 

Reduce Stages. Encryption of each document can also be done efficiently, by adding one 

more Mapper stage. 

                              

                              

                                         Fig 7.1: Map Reduce Implementation of Secure Index Creation 
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7.3 Ranking to retrieve K-Similar Documents 

To retrieve top k similar documents, split the scores and give it to ‘X’ number of mappers 

available, where X<N. Each mapper evaluates algorithm 4 described in chapter 6, to find 

the top K scores, which are of highest value in their input split. Reducing the output from 

‘X’ Mappers in a merged manner will give the top K matching documents.  

  

 

Figure 7.2 Map Reduce implementation of Ranking of files. 

Figure 7.2 gives a higher level view of the Map Reduce implementation for ranking. The 

entire secure vector space is split. The detailed explanation with an example is provided 

next. 

Input to Mapper : <RecordNumber,Encrypted Score> 

Output of Mapper : <MapperID, 

list of top 2 scores[<RecordNumber,Score1>,<RecordNumber,Score2>]> 

Output of  Reducer :  <”Top”, list of top 2 

scores[<RecordNumber,Score1>,<RecordNumber,Score2>]> 
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A detail of the scheme is illustrated with an example here.  

 

Figure 7.3 Ranking scores using Map Reduce 

Let K=2, N=15 and X=3, where K is the number of top similar documents to be retrieved, 

N is the total number of files and X is the number of mappers available. 

Let the input to the Map Reduce stage with <DocID, Score> be : <F1,20>, <F2,10>, 

<F3,2>, <F4,15>, <F5,8>, <F6,3>, <F7,16>, <F8,7>, <F9,1>, <F10,5>, <F11,30>, <F12,2>, 

<F13,12>, <F14,5>, <F15,15> 

Mapper 1 Input: <F1,20>, <F2,10>, <F3,2>, <F4,15>, <F5,8> 

Initial Values 

<F2,10>

<F1,20> <F4,15>

<F1,20> 

Replace 10 and 

insert <F4,15> 

Mapper 2 Input: <F6,3>, <F7,16>, <F8,17>, <F9,1>, <F10,5> 

Initial Values 

<F6,3> 

<F7,16> 

<F7,16>, 

<F3,17> 

Replace 3 and 

insert <F4,15>,   

do shuffle 

Mapper 3 Input: <F11,30>, <F12,2>, <F13,12>, <F14,5>, <F15,15> 

Initial Values 

<F12,2> 

<F11,30> 
<F13,12>, 

<F11,30> 

Replace 2 and 

insert <F13,12> 

<F15,15>, 

<F11,30> 

Replace 12 and 

insert <F15,15> 

Reduce the map outputs to 

get the top 2 high scored 

documents. 

<F1,20>,<F11,30> 
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Since N= 15 and X=3, each mapper receives N/X, i.e. 3 tuples. 

Here, for the first mapper, input is <F1,20>, <F2,10>, <F3,2>, <F4,15>, <F5,8>.  As 

<F1,20>comes, top list is updated with a value 20. Then as <F2,10> comes, the top_list is 

updated by inserting 10 to the top of the list, as 10<20. Next comes <F3,2>. But no 

change is needed for the top_list as 2 is less than 10. For the next record, <F4,15> , 10 is 

swapped out from the top_list and 15 is added. No change when <F5,8> arrives, as 8 is 

less than 15. At the reduction stage again a top_list with k entries is created and updated, 

following the same strategy described above. 

A point to be noted here is, the mapper will do decryption of encrypted scores before 

adding it to the top_list data structure. Ranking and shuffling of file identifiers based on 

similarity score, thus identifies the most top K similar documents. Modifying the sorting 

algorithm as described in chapter 6 itself will reduce the execution time to O(d.n), and by 

introducing MR programming, it can be again reduced to O(d). More reduction is 

possible by introducing heap tree implementation, where ‘d’ is the number of documents 

and ‘n’ is the number of words. 

7.4 Experimental Setup and Evaluations 

During the initial phases of the research, we utilized a virtual machine setup to run 

Hadoop. To analyze the performance in a distributed environment, Amazon Web 

Services is utilized.The specifications of machines used in AWS are as follows: 

CPU Intel(R) Xeon(R) CPU E5-2650 0 @ 

2.00GHz 

Cores 2 to 10 

Cache Size 20480 KB 

OS UBUNTU Linux 

Linux Kernel 3.2.30-49.59.amzn1.x86_64 

Hadoop version 1.0.3 

Hive Version 0.11.0.1 

File System Size 8GB 
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The experiment is evaluated on a 10 node Hadoop cluster setup on Amazon Web Service 

(AWS). The namenode is a t2.large instance. The secondary namenode and datanodes are 

t2.micro instances. All machines are Ubuntu 14.2, installed with OpenJDK 1.7 and 

Hadoop stable version 1.0.2. The HDFS Replication factor is set to 3 and the HDFS block 

size is 8MB. To enable security between Hadoop machines, Kerberos protocol is enabled. 

The dataset used for testing is Thomson Reuters Text Research Collection (TRC2). The 

dataset contains 1,800,370 stories, which occurred between the period 01-01-2008 

00:00:03 to 28-02-2009 23:54:14. The size of the dataset is 10GB. TRC2 is a single long 

file with date, headlines and stories stored in a comma separated form. To match our 

testing requirement, we split this large file into multiple files, where each file is named 

with a date in ddmmyyy.txt format and the content of that file is the headlines and stories 

on that particular day. Thus 419 files have been generated, where each file size ranges 

from 8MB to 16MB. We replicated the files to make it 10GB. To store and retrieve these 

small files efficiently from Hadoop Distributed File System, we followed a technique 

called Balanced Multi-FileInputSplit (BaMS) Technique. BaMS is proposed to avoid 

small file problem in Hadoop. For Hadoop to access small files, it is always an overhead. 

BaMS is introduced to rectify that. The technique will be described in detail while 

discussing the applications of the proposed algorithm in chapter 8. 

7.4.1 Performance Evaluation 

This section compares the execution time of different stages of the  information retrieval 

scheme proposed. 

Secure Index Generation Time 

Secure Index generation using a Map Reduce Programming model, utilizes two stages. 

The first stage will create the inverted index and the second stage will generate the 

encrypted vector space. The execution time needed for each stages is compared, and it is 

found that the time needed by Map Reduce programs are very much less.  

Figure 7.4 shows the time needed for inverted index creation. The time needed can be 

reduced to milliseconds range by increasing the number of workers. Here, we considered 

sizes upto 2GB, as it is not possible to generate the encrypted index beyond that using 
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MHE, in a single machine having the mentioned specifications. Figure 7.5 shows the time 

needed for secure index generation. Thus, the total time to generate the final secure 

searchable index can be reduced to milliseconds, since distributed processing is 

introduced.

 

Figure 7.4 Comparison of inverted index creation time

 

Figure 7.5 : Comparison of  secure index generation time 
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Decrytpion and ranking time 

Using the Map Reduce programming model, decryption and ranking is done using a 

single stage Map Reduce program. Figure 7.6 shows the variation in the decryption and 

ranking time, when the decryption of scores is done using a map reduce model. As the 

execution happens in parallel and distributed, the time needed is very less as compared to 

the original MHE. Another observation is that, as the number of files increase, there is no 

much varitaion in the execution time, if the operations are performed parallel. Also, the 

time needed can still be reduced by increasing the number of worker nodes. In the figure, 

MR-MHE implies the Map Reduce version of the original MHE scheme. 

 

Figure 7.6 Decryption time using Map Reduce programming modal 

 Next, the change in execution time by varying the number of data nodes, is observed and 

plotted. File size is increased to 20 and 50GB by replicating the original files we have. 

Figure 7.7 shows the change in secure index generation time by varying the number of 

datanodes. As the number of datanodes increase to 50, even if to process large amount of 

files, the time needed becomes almost a constant. Also, another thing to be noted is that, 

if the number of datanodes is too large, and the file size is small, then, due to the 

overhead in processing, the execution time may become greater for small files. According 

to the study conducted on the execution time comparison by varying the datanodes, it is 
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observed that fixing the datanodes to 10 is always optimal, even if the size of files 

increases.  

Figure 7.8 shows the change in decryption and ranking time by varying the number of 

files in the input list. Here, the number of datanodes is varied from 5 to 20. But, the 

analysis shows that, even if the number of files in the input list is huge, there is not much 

variation in the decryption and ranking time. Also, from the study, it is obvious that the 

datanodes from 5 to 10 is sufficient to rank the documents, even if the number of files 

increases to 3 lakh.  

 

Figure 7.7 Comparison of secure index generation time by varying the number of datanodes. 

Next, the change in execution time by varying the number of query terms and the number 

of top K files to be retrieved is analyzed. Figure 7.9 shows the comparison. Here, the 

number of datanodes is kept a constant 10, and the size of files is 10GB. It is observed 

that, the execution time for Map Reduce MHE is almost half for different K values. And 

as the number of query terms increase, there is no change in execution time. 

 

 



7. Accelerating MHE using Map Reduce 
 

87  
 

Speedup 

Scalability of the proposed MHE scheme is evaluated using a SpeedUp metric. The 

SpeedUp factor defines the ratio of time needed to execute an algorithm in one machine, 

to the time needed to execute it on N machines. In an ideal case, the method is considered 

scalable, if the speedup factor remains constant for different values of N.  

 

Figure 7.8 Decryption and Ranking time by varying the number of datanodes 

SpeedUp, Su= T1/TN …… (7) 

Figure 7.10 illustrates the change in execution time for retrieving the files, varying the 

data size and the corresponding speedup. From the figure, it is clear that, even if the data 

size increases, there is no much variation in the execution time, as the number of nodes 

increase. Thus, the algorithm is becoming more scalable, and approaching ideal values 

with the increase in data size. Also, for practical scenarios, the number of datanodes can 

be fixed at 10, to achieve optimal performance for varied file sizes and query terms.  
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Figure 7.9 Comparison of Ranking time (a) Varying K value (b) Varying the number of query terms 
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Figure 7.10 Comparison of Speedup  (a) Varying the data size (b) Speedup 

7.6 Distributed Methodology followed in DRIER 

All the schemes mentioned in the thesis follow distributed and parallel execution 

strategy. Encryption and decryption in MHE scheme is implemented using Map Reduce 

which can be adopted for Hadoop distributed platform. Searching, ranking and retrieval 

are parallelized using Map Reduce which significantly improves the query response time. 

To summarize, all the schemes mentioned in the thesis can be parallelized using Map 

Reduce programming model which makes it suitable for any distributed applications like 

client server, peer to peer or cloud computing. 

Summary 

This chapter explained how to improve the performance of the proposed dual round 

encrypted information retrieval scheme, using distributed programming. Hadoop is used 

as the distributed framework. By increasing the number of workers to find the secure 

index and ranking, the speed of execution can be improved. From the performance 

analysis done on the distributed system, it is observed that by setting 10 to 15 node 

Hadoop cluster, the speed up of the system can be nearly made equal to ideal values.  
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Chapter 8 

Applications of the Modified Homomorphic Encryption 

Scheme 

 

 

 

 

“Privacy is not an option, and it shouldn’t be the price we accept for just 

getting on the Internet.” 

 

– Gary Kovacs  

 

 

 

 

Securing personal information as well as organizational information, is getting very 

difficult nowadays, with the emergence of internet and cloud computing. This chapter 

deals with two significant applications that demand high level security, and how to 

achieve that using the proposed MHE scheme. 
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8.1 Introduction 

This chapter discusses some important applications where, the proposed secure and 

privacy preserving information retrieval scheme can be efficiently utilized. Different 

applications where the MHE based information retrieval can be utilized are electronic 

voting, secure Email servers, secure log analysis, storage of data that is of national 

importance, and many more. From the wide list of applications, this chapter describes the 

design criteria and method by which the proposed MHE scheme can be applied for secure 

storage of Emails and logs. 

8.2 Secure Email Servers 

Today, Email is becoming the easiest, most inexpensive and comparatively faster method 

of personal and formal communications. Many people utilize the free Email service 

provided by Google, Yahoo etc. Private organizations maintain their own mail servers, to 

ensure more privacy and security for the users and the data transferred. But, as the number 

of employees and the size of mails increase, these organizations should maintain a good 

infrastructure for the efficient storage, which will result in a heavy maintenance cost. 

Cloud computing comes to the rescue here. But, ensuring the privacy and security of the 

users and Emails is a challenging issue. “Hilary Clinton‟s Email Leak”, “Effect of Email 

Leak during French Elections” [63] etc are the result of inefficient and insecure storage 

and transfer of Emails.  

My research proposes a secure and privacy preserving technique to store, retrieve and 

transfer sensitive Emails. To ensure security, traditional encryption techniques can be 

utilized. Encrypt each Email before passing through the network and decrypt it at the 

receiver side. Also, before storing the mails in the cloud system encrypt it. Thus, the 

storage and transmission of the encrypted mail is possible, by utilizing existing well 

known cryptosystems. But the search and retrieval of some specific mail, is the difficult 

part. Since all mails are stored in an encrypted form, the direct solution is to download all 

the mails to the client machine, decrypt them and find the matching mails. But this will 

consume a large bandwidth and hence, is not at all an economic solution, considering the 

pay-as-you-use pricing model of the cloud.  Also, if there are too many mails, the 
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download and decryption of each mail will be a time consuming task, and will not be 

feasible if the client machine does not have much processing capability. 

 

8.2.1 Motivation and Problem Definition 

Electronic mail (Email) or the paperless mail is now becoming the most acceptable, fastest 

and cheapest way of formal and informal information sharing between users. Around five 

hundred billion mails are sent each day and the count is expected to be increasing. Today, 

even the most sensitive and private information is shared through Emails, thus making it 

the primary target for attackers and hackers. Also, the companies having their own mail 

server relies on the cloud system, to store the mails at a lower cost and maintenance. This 

affects the privacy of users, as the searching pattern is visible to the cloud. To rectify this, 

we need to have a secure architecture for storing the Emails and retrieving them according 

to the user queries. Data as well as the queries and computations needed to retrieve the 

relevant mails should be hidden from the third party. 

 

The scenario given in figure 8.1 illustrates the need for a secure Email server. Alice is 

working in „ABC‟ Company, which processes information dealing with the national 

security. They maintain their own mail server for the transfer of mails between their 

employees. The mail server is hosted on a Cloud system. Hence, to ensure the security, 

mails are stored in an encrypted form. Later, to retrieve all mails related to “Mission X”, 

either Alice needs to download all mails to her system, decrypt them & search, or, she has 

to decrypt all mails at the Cloud system and search & retrieve only the specific mails. The 

former method wastes a lot of bandwidth and latter results in security violation, as 

decryption is done at a cloud machine. 

8.2.2 System Design for Secure Email Storage  

 

Secure Mail Servers encrypt each mail before passing it through the network. The Public 

Key Cryptosystem powered by LDAP is utilized for this. For the storage of mails as well 

as for the secure transfer of mails, traditional cryptographic techniques are utilized, as it is 

found to be more efficient and less time complex. For encrypting the mails, AES is 

utilized. Each mail is encrypted by the user‟s secret key, and then uploaded to the cloud. 
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While fetching a particular mail, the same key is used for decryption. Also, while sending 

a mail, it is encrypted by the receivers‟ public key, using the RSA encryption system. The 

receiver can use his secret key to decrypt and view the contents of the mail.   

                                                                                                                                                                                     

 

 

                                     Figure 8.1: Scenario illustrating the need for secure Email server 

 

Each mail will be stored in the cloud system in an encrypted form. To search and 

retrieve the matching mails from this encrypted domain, a vector space is generated and 

encrypted using the Modified Homomorphic Encryption scheme (discussed in chapter 5). 

A two round search and retrieval strategy is followed. During the first round, a trapdoor is 

generated with the query keywords, and is used to calculate the encrypted score of each 

mail. The cloud system will return the Mail-ID along with the encrypted score, to the user. 

The user will decrypt the scores, rank them and send the top-K mail-IDs to the cloud. The 

cloud will now send the corresponding encrypted mails to the user in the second round of 

communication. Figure 8.2 illustrates the two round search and retrieval scheme. Secure 

mail storage and transmission is achieved using traditional cryptosystems. Details on how 

to securely retrieve the relevant mails are discussed in the next section.   

To search for a particular mail containing some query keywords Q = (q1,q2,…qn),  a string 

S is generated, which is a combination of  0s and 1s. The length of the string will be equal 

to the size of the Wordlist. Corresponding to each word in the Wordlist, if that word is 

present in the query, it will be set. Otherwise, it will be unset. Each bit of this string is then 

encrypted using MHE to form the trapdoor.  

 

Return mails 

matching “Mission X” 

Mail Server of Company ABC 
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Figure 8.2: Dual Round Search and Retrieval Scheme 

 

For each wordi in the Wordlist, 

  If(wordi in Q) Si = 1; else Si =0;         

 

On receiving the trapdoor, the cloud will do multiplication and summation on the index, to 

obtain the encrypted scores corresponding to each column. Due to the additive and 

multiplicative homomorphic property of MHE, the operations done on this encrypted data 

will be homomorphic to the operations done on raw data. The list of encrypted scores thus 

obtained, is returned to the user.  

         

Similarity_Score, SSm = ∑
w

i=1  TF-IDFid * Twi . 

 

The user will decrypt the score with his secret key and rank them to identify the top-K 

matching mails. The corresponding mail IDs are then sent to the cloud. The cloud will 

return the encrypted mails, which are then decrypted at the client side. Thus, a two round 

communication is initiated between the user and the cloud system, to retrieve the matching 

mails. Decryptions take place only at the client side, to ensure absolute security. Also, 

Encrypted Files 

Encrypted 

Index 

   Trapdoor 

(q1,q2,..qn) 

(Mail-ID, Enc(Score)) 

(Top K Mail-IDs) 
Enc(Mails) 

Round1 

Round2 

Mail Storage 
Mail Retrieval 
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compute intensive operations like score calculation takes place at the cloud, which ensures 

efficiency.  

8.2.3 Improving the ranking of Emails 

Apart from the content similarity of the mail with the query keywords, there are other 

factors that affect the ranking of similar documents. For example, if a user has marked one 

Email as „important‟, then such mails shall be given some weightage, even if their 

similarity score is a bit less. This is achieved by adding one more row to the vector space, 

for including the weight of the mail. If the mail has been marked as „important‟ by the 

user, the field will be set as 1, else 0. The value can be increased or decreased based on the 

application requirement. The same technique can be applied to Emails tagged as spam, 

promotions, etc.  

 

8.3 Secure Log Storage 

 

Logs store the data related to different levels of security. Companies and organizations use 

different types of logs, to store the activities related to firewalls, intrusion detection 

systems, anti malware systems, switches, routers, operating systems, applications, 

workstations etc. Secure logging is a critical part of any organization, and it is clearly 

understood by security practitioners as well as researchers. Logs record different details of 

a communication, from the moment a user logs into a system, to the moment the data 

reaches the destination. For example, when a user logs into the system, the details are 

logged into Active Directory Logs, then the domain access details gets logged in DNS, the 

browsing pattern gets logged in proxy logs and finally the packet level details gets logged 

in netflow logs. Analyzing the entire logs will help to identify different types of anomalies 

like brute force attempts (counting number of distinct user attempts within a time frame), 

visits to threatintel/blocked sites, and traffic outliers like DDOS etc.  

 

To identify threats and to prevent the damages caused by these threats, companies are 

forced to store these logs over a long time.  When the threat is identified, the logs 

generated over several years may be analyzed, to pin point the cause for the threat. It 

might have happened from a malware that was installed years back, which was activated 
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after several years by some script. Today, efficient anomaly detection is made possible by 

applying Machine learning techniques. But these algorithms need large amount of training 

data, for effective threat analysis. 

 

Thus, for the companies, it is very critical to store the logs over a long period. But the 

entire logs may sum up to terabytes of data. Dedicating some machines for log storage 

alone, is not a good solution. Most of the companies today make use of a third party 

service like Cloud storage, to sync their logs. When a threat is identified, the required logs 

are retrieved and analyzed.  

 

8.3.1 Motivation and Problem Definition 

 

The logs stored as plain text in third party systems, are vulnerable to a lot of attacks. A 

user who gains access to the cloud resources, can see the data and as well as obtain several 

critical information related to the machines of the organization, like IPs, Usernames, 

Passwords, Employee details, traffic details etc. To overcome this problem, encryption can 

be applied to the logs before uploading.  However, the usefulness of your logging system 

will be highly dependent on how you make the information available for search, how fast 

you can search and whether your solution is scalable. Say for example, one day a threat is 

identified on a machine having the IP address „x‟.  The security engineer needs all the logs 

related to the IP „x‟ for a period „a‟ to „b‟. Since we stored the entire logs encrypted, how 

can these particular logs be retrieved from the cloud? Either download the entire logs from 

the cloud, decrypt them and search for the needed log or else, decrypt at the cloud itself 

and search for the logs and download that alone. The former method leads to a lot of 

bandwidth wastage whereas the latter completely violates the security of the framework.  

 

The Secure Log storage problem deals with how to securely store the logs in a third party 

system. such that the data is available for searching using keywords. The solution should 

be scalable and practical as well. 
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8.3.3 System Design for Secure Log Storage 

 

The proposed MHE scheme can be used for secure storage and retrieval of the logs. Based 

on the logs, a secure index is generated and uploaded to the cloud, along with the 

symmetric encrypted version of each log file. To search for the logs meeting some criteria, 

issue queries with relevant keywords, generate trapdoor from the keywords and send it to 

the cloud. The cloud will return the encrypted similarity score corresponding to each log, 

and at the client side, decryption and ranking can be done to identify the most matching 

logs. The corresponding logs are retrieved and decrypted.  

 

8.3.4 Challenges identified while storing logs 

 

Challenge 1: Solving ‘Small File Problem’ in Hadoop 

 

Logs are of different types and will be generated each second of the day. Instead of 

syncing the logs each second, it is better to aggregate the logs before uploading. But, as 

logs generated may be of very less size (most of them in KiloBytes), it is an overhead for 

the Hadoop framework to calculate the index. The problem is termed as „Small File 

Problem‟ in Hadoop Terminology. The Hadoop Ditributed File system is designed to 

process a large amount of data. However, processing large number of small files seems 

inefficient, since Hadoop supports only block level operations. To overcome this problem, 

a „Balance Multi File Input Split Technique‟ is proposed. Data is converted to bytes and 

collectively stored in ArrayWritable format. To avoid the need for separate indexing, we 

follow a hierarchical file naming & storing scheme. The method describes how to access 

the merged files through Map Reduce Programs. Analysis performed on BaMS proves 

that it is much more efficient compared to the existing methods like HAR and sequence 

files, in terms of storage and access efficiency. 

 

i. Existing Methods to solve ‘Small File problem in Hadoop’ 

Processing small files significantly increase the overhead of Namenode, and adversely 

affect the performance of Map Reduce programs. There are several solutions [59-61] 

proposed in literature to solve this issue. Hadoop Archive Files (HAR) [52] compresses a 
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lot of small files to form a separate layer over the HDFS. But reading HAR files require 

two disk accesses, i.e. to read the namenode address and to read the location of files 

within the HAR. The Federated Namenodes [53] approach involves multiple namenodes, 

where the subset of metadata is stored. But it does not change how the small files are 

stored inside each of these Namenodes. Sequence Files [54] feed the „filename‟ as key, 

and the „file content‟ as value, to a map reduce program. But it is also not efficient, 

because Hadoop supports only immutable, not appending operations. HBase [55] 

columnar database can be used to store frequently accessed file contents, but possess the 

overhead of installing the database over HDFS. Batch processing tools like PIG [56], 

HIVE [57] etc can be utilized, but does not solve the basic problem of small file storage. 

Amazon S3 storage [58] is preferable, but pre built tools will be needed, to access the 

data. 

 

ii. Balanced Multifileinput Split (BAMS) Technique 

To solve the problem of large number of small files in Hadoop, we adopt a software 

technique by exploiting the map reduce programming model. We consider files as the 

atomic unit of splitting. That is, no more splitting beyond files! CustomFileInputFormat 

available with Hadoop‟s org.apache.hadoop.mapred  of  Class MultiFileSplit, can be 

utilized to achieve this. The technique to process large number of small files in Hadoop 

using BaMS is described in Algorithm 8.1. 

Initially, convert the entire input files into bytes format separately. The input files can be 

of any form, from text files to compressed file formats like Zip, GZip etc.  The bytes are 

then wrapped to form a ByteWritable object, and a set of such objects merge to form an 

ArrayWritable object. To process the ArrayWritbale objects, use CustomeFileInput, 

where the granularity of splitting is a file. To feed input into the Mapper, use 

(NullWritable, ArrayWritable) as the (key, value) type. Here, NullWritbale is used to just 

fill the key position. It stores an immutable singleton value. Now, to process the files 

stored in ArrayWritable format, convert it back to text using get() method. The procedure 

is illustrated in figure 8.3. 



8. Applications of the Modified Homomorphic Encryption Scheme 
 
 

99  
 

 

iii. Retrieving Required Files using BaMS 

BaMS processes a collection of files in ArrayWritable format. But in most of the 

applications (log processing, patient monitoring, market analysis etc), data need to be 

analyzed based on some criteria like time, date, period, etc. To make our algorithm 

efficiently handle such situations, we organize the files into a balanced hierarchical form, 

which helps to easily retrieve the specific files based on application requirement. A 

Balanced File Storage algorithm is provided by algorithm 2. 

The procedure described in algorithm 8.2 helps to store files in a balanced and easy to 

retrieve form. Initially, name the files with the current date. For e.g., let us assume that 

the file is created on 23
rd

 Jan 2016, then, the name is „23012016.txt‟. Add leading zeroes 

to make the name 10 bit. That is the file name would be „0023012016‟. In our 

application, we applied the hash function CRC-16, to get an output „10010011‟. Split the 

name into 2 length tokens, „10/01/00/11‟. So the file path will be 

10/01/00/11/23012016.txt.  

 

 

Algorithm 8.1: Balanced MultiFileInput Split (BaMS) 

Algorithm 
Input: Large number of small files.  

Output: Processed Files. 

Steps: 

1. Convert each file into bytes format. 

2. Wrap the bytes obtained, into a ByteWritable object. 

3. Multiple ByteWritables are combined to form ArrayWritable objects. 

4. Repeat step 3 till the file size reaches default HDFS block size. 

5. Use customFileInputFormat to process the ArrayWritable objects. 

6. (NullWritable, ArrayWritable) is the key value pair input format, for each Mapper. 

7. Restore the original data by converting the ArrayWritables to BytesWritbale inside the 

Mapper Logic. 
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Figure 8.3 Balanced MultiFileInput Split (BaMS) Data Flow 

 

 

Algorithm 8.2: Balanced File Storage for easy Retrieval 

Input: Set of files to be retrieved, based on date. 

Output: Balanced storage of files. 

Steps: 

1. Name the files with the current date, in (ddmmyyyy) format.  

2. Pad it with leading zeroes to form a 10 bit number, and add the suffix. 

3. Perform hash function on the name. 

4. Divide the new name with two characters in each division. The tokens thus obtained 

indicate the directory structure. 

5. Store the file under the generated directory. 
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iv. Analysis 

The file stored will follow a balanced hierarchical structure. The hash function can be 

varied to MD5 or SHA, to increase the span of the directory structure. Since we used 

CRC-16, the output will always be in binary format. By splitting the hash value into 

tokens of length 2, we can store up to 65535000 files, if each directory is limited to 1000 

files. We can vary the token length to increase or decrease the directory levels. Too many 

directory levels may waste disk space to store the directory structure itself. Also, it may 

result in holes. Hashing is applied to follow a balanced distribution. Even if we delete 

some files, it does not affect the directory structure, because we are performing the hash 

operation. Also, this type of storage will help easy retrieval of files of a specific time 

period. Suppose we need to analyze the logs for the month January 2016, create all 

possible dates within this month, apply hash function and obtain the directory level where 

the file is stored. Then, apply Algorithm 8.1 over the obtained files.  

v. Experimental Evaluation 

The application is tested on 10 node Hadoop cluster, setup on Amazon Web Service 

(AWS). The namenode is a t2.large instance. The secondary namenode and datanodes are 

t2.micro instances. All machines are Ubuntu 14.2 installed with OpenJDK 1.7, and the 

Hadoop version is 1.0.2. HDFS Replication factor is set to 3 and HDFS block size is set 

to 64MB.  

BaMS technique is compared with the existing commonly used techniques, to avoid 

small file problems in Hadoop like HAR files and Sequencer (SQ). We are not taking 

„Consolidator‟ approach, because it is found to be the least efficient and practical method 

[48]. Also, HBase is not considered, because it needs an additional database installed 

over HDFS.  HBase is commonly used for streaming data analysis. 

vi. DataSet 

The dataset used for testing is Thomson Reuters Text Research Collection (TRC2). The 

dataset contains 1,800,370 stories, which occurred between a period 01-01-2008 00:00:03 

to 28-02-2009 23:54:14. The size of the dataset is 2,871,075,221 bytes. TRC2 is a single 
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long file with date, headlines and stories stored in a comma separated form. To match our 

testing requirements, we split this large file into multiple files, where each file is named 

with date in ddmmyyy.txt format, and the content of that file is the headlines & stories on 

that particular day. Thus 419 files are generated, where each file size ranges from 8MB to 

16MB. Thus we created a large number of small files. 

vii. Comparison of HAR, SQ and BaMS on storage efficiency: 

The memory required by the Namenode to store small files in HAR, SQ and BaMS is 

compared. The Namenode storage size reduction is highly crucial for a Hadoop cluster. 

The memory of a Namenode is exhausted by the storage of metadata and block details of 

huge number of files. Thus, a large number of small files will limit the scalability of 

Hadoop cluster, and lead to the failure of the cluster, as Namenode is the single point of 

failure. The File Number Per KB of Memory of Namenode, (FNPKMN) [49] is an 

important measure to determine the storage efficiency of Namenode. FNPKMN is the 

ratio of number of files stored in HDFS to the memory required by Namenode. 

FNPKMN = N / MNN 

Where, N is the number of files stored in HDFS and MNN implies the memory required by 

Namenode to store the details of N files. 

Due to the archiving capability, HAR and BaMS show maximum memory efficiency. 

Figure 8.4 compares the storage efficiency of different schemes. Also, in case of HAR 

and BaMS, for comparison, we deleted the original files after compression. From the 

graph it is clear that, the HAR and BaMS methods strictly increase the storage efficiency 

by a minimum of 42% and the efficiency increases as datasize increases. Also, the BaMS 

method maintains the consistency in storage efficiency, irrespective of the data sizes. 

Figure 8.4.b illustrates how the storage efficiency varies, as the replication factor is 

varied. We tested for replication factor 2, 4 and 6, keeping 8 datanodes and dataset size 

2GB to 5GB. The graph shows exponential decrease in FNPKMN as the replication 

factor doubles, for Native Hadoop and Sequencer method. The BaMS shows minimum 

improvement of 12% compared to the existing well known method, HAR.  
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Figure 8.4 Comparison of FNPKMN a) Varying Datasize 
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Figure 8.4: Comparison of FNPKMN a) Varying Datasize b) Varying Replication Factor c) Varying Block 

size 

Figure 8.4.c illustrates the variation in storage efficiency as the default block size is 

varied. It can be noticed that, as the block size increases, HAR and BaMS show higher 

efficiency. In the native Hadoop as well as the Sequencer method, increasing the block 

size will lead to more holes in the memory. Hence, it is evident from the graph that, as 

block size increases, the storage efficiency is steadily decreasing in them. But in HAR 

and BaMS, compression is done till default block size is reached. Hence, a higher block 

size implies higher storage efficiency.  

viii. Comparison of HAR, SQ and BaMS on Access Efficiency 

Access efficiency is measured using the Millisecond Per Accessing a File (MSPF) [50] 

metric. MSPF calculates the average time needed to access files in the benchmarked 

datasets.  

MSPF = T/N 

Where, T is the time taken to access the files and N implies the number of files. 
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Figure 8.5 reveals that MSPF is inversely proportional to the block sizes. As the block 

size increases, MSPF reduces. But BaMS and HAR shows much improvement in access 

time, compared to the uncompressed method like Sequencer.  

 

Figure 8.5 MSPF Comparison 

ix. SpeedUp of BaMS 

Another important parameter that should be analyzed is the Speed Up. Speedup implies 

the ratio of time required to execute a program, parallel to the time required to execute it 

sequentially. Speed Up can be represented as  

 Su = Tn / T1, where Tn is the time taken to execute on n number of machines and 

T1 is the time required to execute on a single machine.  

It is desirable to have linear speed up values, to ensure good scalability of the underlying 

approach. 
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To measure the speed up, we analyzed the time taken to execute an inverted index 

creation for the entire dataset, by varying the number of datanodes. It is observed from 

figure 8.6 that our method shows almost linear speedup for varying datanodes, Also, as 

data size increases, the speedup becomes more linear, which implies higher scalability. 

 

Figure 8.6 SpeedUp Comparison 

Challenge 2: Reduce the communication overhead 

Log analysis is usually done to detect some anomalies or threats. If these anomalies can 

be identified from the encrypted logs itself, there is no need for a second round of 

communication. For example, to find the brute-force attempts, the primary data needed is 

the total number of login attempts from a source IP. Since the proposed MHE scheme is 

additive homomorphic, the cloud server can return the encrypted sum of total attempts. 

The value can be decrypted at the client side, to find the number of login attempts from 

each IP. Here, there is no need for a second round of communication. 
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Similarly, to find the traffic outlier, to detect DDoS attacks etc, the sum of bytes 

transferred from a network is what is needed. This can also be calculated in a single 

round. Thus, by efficient storage of logs as per retrieval needs, the communication 

overhead of the proposed scheme can be reduced.  

Summary: 

This chapter illustrates the two significant application scenarios, where the proposed 

MHE scheme can be efficiently applied. The challenges and design details are also 

discussed. To deal with the „Small File Problem‟ in Hadoop, Balanced MultiFile Input 

Split is also proposed. The chapter discusses how to feed input to Map Reduce programs 

using BaMS technique, and the analysis performed on the approach proves that it is 

efficient in terms of storage, access and speedup. Secure Email server need mails to be 

stored in encrypted format and retrieve relevant mails based on keywords issued. Secure 

log storage need storage of data in encrypted form and retrieval of data after applying 

some operations. 
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Chapter 9 

Conclusion 

 

 

“Whether you think you can, or that you can’t, you are usually right.” 

- Henry Ford 

 

 

 

This chapter summarizes the entire research, discussing the limitations of the work as 

well as shredding light on some future directions in this research area. 
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9.1 Secure and Privacy preserving search 

Today, as internet and social media has taken over the control of the day to day activities 

of each person, the privacy of a person and the security of their personal information has 

become a severe issue. Even though a lot of personal information leakage and privacy 

breaches are being reported, the true impact is identified only when a person is genuinely 

affected by that. By the time a privacy breach is identified, it might be too late to apply 

some rectification measures. On 5
th

 April 2018, the official report came out from 

Facebook [64] confirming that half a million Indian users who have installed their app, 

might have become victims of data breaches. The situation becomes more critical, when 

the data that is stolen contains some sensitive information like data of national 

importance, government data, healthcare data, organization data etc. An exclusive report 

[65] sent out by ZDNet on 28
th

 May 2018, says that even without enrolling to our 

national database on Aadhar, companies like Amazon or Uber can download the entire 

personal information of all the 11 billion users, who have registered with the database. 

Even though the report has not been officially confirmed by any government officials, the 

threat and impact is significant.  

Apart from security of the stored data, the privacy of the user who searches for any 

particular information is another factor to be considered seriously. For example, if a 

person searches for the keyword “secret mission” and retrieves some file, it implies that 

the person is associated with some secret mission or he is in need of information 

regarding a secret mission. Thus, the queries issued by users can be used to obtain 

information about them, leading to privacy breaches. It should be kept in mind here that 

security and privacy are very much critical for today’s digital world. The research 

primarily addressed this problem of secure and privacy preserving searches that can be 

applied over sensitive information. 

To ensure security of the data stored in third party systems, encryption is utilized. 

Searching is made possible within this encrypted domain, by creating and uploading a 

secure and searchable index along with the encrypted data, to the third party system. To 

implement ranked information retrieval from the stored encrypted data, well known 

techniques in information retrieval like the TF-IDF and vector space model, are utilized. 
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Also, since data is evolving at a huge rate, the method that we proposed is accelerated by 

adopting distributed processing strategies.    

9.2 Modified Homomorphic Encryption (MHE)  

The research proposed a fully homomorphic encryption scheme, deriving insights from 

the Craig Gentry’s integer based bootstrappable FHE scheme. Currently, the scheme 

supports integer operations at the cost of higher execution steps and space complexity. 

We aimed to reduce the time and space complexity, by modifying the existing Gentry’s 

scheme in such a way so as to make it applicable for secure information retrieval. The 

TF-IDF values are scaled to a specified range so that always the MHE needs to be applied 

only to a specified set of values. Thus, my research modified the original scheme to suit 

the secure and privacy preserving search. The scheme is additive and multiplicative 

homomorphic. Security analysis done on the MHE scheme proves that the scheme is 

secure against many known attacks like Bruteforce, fraction attack and Howgrawe 

Graham’s GCD attack. 

9.3 Dual Round Encrypted Information Retrieval (DRIER)    

Ranked information retrieval needs to find a score associated with each file, based on the 

degree of similarity with the query keywords. To implement a scoring scheme, the vector 

space model with TF-IDF values is combined. The index is encrypted using MHE and 

uploaded. As a user issues a query, a bit pattern of zeroes and ones are made, which is 

then encrypted using MHE. Multiplication and summation operation is performed on 

each encrypted score of the words in a file, and the encrypted score associated with each 

file is identified. The cloud server will return this encrypted score to the client. At the 

client side, the decryption and ranking of the score is performed, to identify the top K 

matching documents. The corresponding File IDs are then sent to the server, and the 

server in turn, returns the encrypted files. The files are then decrypted at client side. Thus, 

a two round communication is initiated between the client and the server, to retrieve the 

most matching documents from the server. The security analysis done on the scheme 

proves that it is secure and privacy preserving. As the documents are encrypted and 

stored in the cloud, data is not available in raw form. Only authorized users gain access to 
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the contents. As the index is stored in an encrypted form, any statistical leakages or 

guessing attacks are prevented. The words and file names are deleted from the index. The 

queries are encrypted and send to the cloud. Hence, the privacy of the user is preserved. 

Multiple queries issued with even the same keywords will result in different results, thus 

avoiding any guessing attacks.  

9.4 Accelerating MHE using Map Reduce Programming Model 

One of the drawbacks associated with the DRIER scheme is the execution time needed 

for computing a secure index, for large data. Also, the retrieval stage should be made 

faster, as this should be repeated several times. The advantage of the proposed scheme is 

that, all the operations can be parallelized and executed. So, the power of Hadoop with 

MapReduce programming model is utilized to make the uploading and retrieval stages 

scalable and fast. Map Reduce always works on <key,value> pairs. The DRIER 

document indexing and retrieval stages are modified to match this <key, value> type of 

input and output parameters. The analysis done on the Hadoop cluster hosted on Amazon 

Web Services, demonstrated better scalability and faster execution.  

9.5 Overcoming ‘Small File Problem’ in Hadoop 

Most of the applications like logs, emails etc need to index a large amount of small files. 

But, this causes some overhead to Hadoop, as the files are smaller than their default block 

size. To overcome this limitation, the Balanced MultiFileInput Split technique is 

proposed. The scheme utilizes the inherent data structures available in Map Reduce 

framework like Array Writable, ByteWritable etc, to process data efficiently.  

9.6 Merits of the proposed Secure and Privacy preserving information retrieval  

1. Security of the data is ensured. 

2. User’s privacy is preserved. 

3. Multiple keywords can be issued. 

4. Ranking based on similarity of the keywords in queries.  
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5. Resistant to Statistical leakages and Term distribution/inter-distribution attacks. 

6. Third party data storing server cannot see the file contents, name of files, words 

present in files, keywords issued by user, original similarity score or any other 

details that could initiate some sort of guessing attacks. 

7. The method can be applied to store large amount of data as it has been proven 

scalable. 

8. The scheme proposed a BaMS technique to process large amount of small files, 

which is very critical for the processing of real time logs, outputs of each Map 

Reduce stages, logs, emails, reports, transaction details etc. 

9.7 Limitations of the proposed scheme 

1. Needs two rounds of communication between the client and the server, thus 

causing a communication overhead. 

2. Along with the encrypted files, a secure and searchable index should be stored, 

which causes a space overhead. 

9.8 Applications of the proposed scheme 

1. Secure Email storage. 

2. Secure Log storage. 

3. Secure storage of data of national importance like Unique Identification, 

surveillance data, government reports etc. 

4. Secure storage and sharing of Health records. 

5. Electronic Voting. 

9.9 Future Directions of our Research 

1. The scheme can be extended in such a way so as to suit more applications, by altering 

the design of storage and retrieval. For example, to make the scheme applicable to 



9. Conclusion 
 
 

113  
 

Electronic Voting, there is no need of information retrieval based on keywords. The 

MHE scheme can be directly applied to encrypt the votes. The total votes can be counted 

by taking the sum of encrypted votes, as the scheme is additive homomorphic. 

2. A separate area of research can be initiated on the encrypted operations that can be 

applied using MHE. For example, in a secure log storage application, how to identify the 

networks that deviate from the mean of traffic utilization compared to others, how to 

identify the people who logged in from different geographic locations within a small time 

frame etc. Apart from the MHE scheme, some geo hashing techniques can also be 

incorporated for better analysis. 

3.   The research utilized Term Frequency – Inverse Document frequency for identifying 

similar documents to a keyword. Apart from this, if the meaning of the words can also be 

taken into consideration, it will improve the ranking a lot. For example, if a person 

searches for “apple phone”, here, apple is more associated to a product than a fruit. If this 

information can be included in such a way that the security is not much compromised, the 

application gains a lot more credibility. 

4. Extend the encrypted operating capability of the server such that the operations 

required can be performed in a single round of communication. 

Summary 

This chapter enclosed in a nut shell, the entire work done as part of the research. Each 

stages of the research have been summarized following the merits and limitations of the 

scheme. Some of the significant application scenarios have also been provided. The 

chapter concludes by mentioning some of the future enhancements of the research.  
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APPENDIX 2 

Time based Collective User Sentiment Analysis for  

Twitter Data 

Overview 

Analyzing social media contents will excavate knowledge treasures in the form of 

customer behavior, feedback, suggestions, opinions etc which could be utilized for 

business intelligence. Even though, sentiment analysis from social media is a severely 

explored domain, this part of the research studies the importance of “Time of posting the 

contents”. There are several real world applications where mere sentiment analysis is not 

sufficient and „time‟ at which that content is posted should be given a weightage. For eg., 

to compare two products or to do trend analysis, recent posts should be given more 

weightage. The authors introduce a novel and scalable algorithm to introduce the time 

factor to improve the accuracy of sentiment analysis. To support Big Data, Hadoop Map 

Reduce based implementation is provided. To prove the efficiency of the method, Delhi 

Assembly Election Winner Prediction by Twitter Analysis is taken as a case study. The 

results prove that, the algorithm is accurate, scalable and time efficient as compared to 

the existing ones. 

Steps in Implementation 

1. Building a sample sentiment domain thesaurus for tweet classification 

 

Figure A2.1: Sample Sentiment domain thesaurus for Tweet Classification 
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2. Cluster tweets from different users. Find the sentiment class of each tweet based on 

TF-IDF 

 

 

Figure A2.2: Overall Data Flow in tweet sentiment Classification of each User 
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3. Apply Map Reduce programming model to improve the execution time and ensure 

scalability 

 

Figure A2.3: Information Flow in the Classification of Tweets 

 

4. Assign weightage to tweets based on time.  

Algorithm A.1: Sentiment Classification giving weightage to latest tweets 

Input: Lexicons extracted from tweets, Tk  

Sentiment Domains SD ={sd1, sd2, …, sdN} , The threshold   in the filtering phase, 

The number K  

Tl = last time of posting a tweet 

Ti = Initial time of posting a tweet 

Output: Identified sentiments with the Top-K highest similarity {tsd1,tsd2, …, tsdK}  
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1: for each sentiment sdi Ɛ SD  

 2: Q=, count=0, r=0, λ= Tl – Ti 

 3: for each feature word Rj of sentiment sdi  

  4: process the tweet into a probable keyword set PKj  

  5: if PKj ∩ TK  ≠   then  

   6: insert PKj into Q  

  7: end if  

 8: end for  

 9: for each keyword set PKj ∑ Q 

  10: similarity_score = SIM(TK, PKj )  

  11: if similarity_score ≤   then  

   12: remove PKj from Q  

   13: else count = count +1, r=r+rj  

  14: end if  

  15: end for  

 16: r* =  r / count 

 17: ps = r* + k ∑ PKj ∑Q SIM(PK , TK). (rj – r*)  

 18. pt = λ * ps 

19: end for  

20: sort the sentiment domains according to the personalized sentiment matching 

with weightage to time, pt  

21: return the sentiment domains with the Top-K highest matching {tsd1,tsd2, …, tsdK} 
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5. Find the aggregated sum of support giving weightage to latest tweets. 

 

Figure A2.4: MapReduce Implementation Stages 

 

Summary 

From the results, it was inferred that, the newly formed party named „Aam Aadmi Party 

(AAP)‟ had higher support among people compared to the well established party like 

“Bharathiya Janatha Party (BJP)”. By altering the domain thesaurus, this method can be 

adopted for multiple applications like product marketing based on customer feedback, 

spam detection, deal recommendations, collecting people‟s feedback on political reforms, 

and potential customer identification in agricultural sector.  
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APPENDIX 3 

  HELib Code for Modified Homomorphic Encryption 

 

This source code is a modified version of FHE that shows how to fills two vectors with 

integrals, encrypts them homomorphically, and performs component-wise addition and 

multiplication. This process is actually more involved, the real steps we will go through 

are: declare our parameters (plaintext space, levels, columns, secret key hamming weight, 

security), generate a secret key, obtain an EncryptedArray, which is a class that aids in 

later computations, encrypt our vectors, perform addition and multiplication, decrypt the 

results and print. The code is based on one of HELibs 'Test_*.cpp' examples. 

 

#include "FHE.h" 

#include "EncryptedArray.h" 

#include <NTL/lzz_pXFactoring.h> 

#include <fstream> 

#include <sstream> 

#include <sys/time.h> 

 

int main(int argc, char **argv) 

{ 

    // On our trusted system we generate a new key (or read one in) and encrypt the secret 

data set. 

 

    long m=0, p=2, r=1; // Native plaintext space. Computations will be 'modulo p' 

    long L=16;          // Levels 

    long c=3;           // Columns in key switching matrix 

    long w=64;          // Hamming weight of secret key 

    long d=0; 

    long security = 128; 

    ZZX G; 

    m = FindM(security,L,c,p, d, 0, 0); 

 

/*The parameter names are pretty consistent in HELib examples as well as the literature. 

In this case, I am building for GF(2) - so my homormorphic addition is XOR and 

multiplication is AND. Changing this is as easy as changing the value of p. To 

perform 2+2=4, set p to something that matches their desired domain, such as 257 to 

obtain 8 bit integer.*/ 

 

    FHEcontext context(m, p, r);     // initialize context 

    buildModChain(context, L, c);     // modify the context, adding primes to the modulus 

chain 

    FHESecKey secretKey(context);     // construct a secret key structure 

    const FHEPubKey& publicKey = secretKey;    /* an "upcast": FHESecKey is a 

subclass of FHEPubKey */ 
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     G = context.alMod.getFactorsOverZZ()[0]; 

    secretKey.GenSecKey(w); 

   // actually generate a secret key with Hamming weight w 

 

    addSome1DMatrices(secretKey); 

    cout << "Generated key" << endl; 

 

We have now generated a secret key. Notice the public key was extracted from the 

private key. Interestingly, a public key in this context need only be an encryption of "1". 

Instantiating Helper class: 

 

   EncryptedArray ea(context, G);   /* constuct an Encrypted array object ea that is  

associated with the given context and the polynomial G */ 

 

   long nslots = ea.size(); 

 

For encryption: 

 

   vector<long> v1; 

   for(int i = 0 ; i < nslots; i++) { 

       v1.push_back(i*2); 

   } 

   Ctxt ct1(publicKey); 

   ea.encrypt(ct1, publicKey, v1); 

     

   vector<long> v2; 

   Ctxt ct2(publicKey); 

   for(int i = 0 ; i < nslots; i++) { 

       v2.push_back(i*3); 

   } 

   ea.encrypt(ct2, publicKey, v2); 

 

   // On the public (untrusted) system we can now perform our computation 

 

   Ctxt ctSum = ct1; 

   Ctxt ctProd = ct1; 

 

   ctSum += ct2; 

   ctProd *= ct2; 
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// Finally, decrypt the sum and product results: 

    vector<long> res; 

    ea.decrypt(ctSum, secretKey, res); 

 

    cout << "All computations are modulo " << p << "." << endl; 

    for(int i = 0; i < res.size(); i ++) { 

        cout << v1[i] << " + " << v2[i] << " = " << res[i] << endl; 

    } 

 

    ea.decrypt(ctProd, secretKey, res); 

    for(int i = 0; i < res.size(); i ++) { 

        cout << v1[i] << " * " << v2[i] << " = " << res[i] << endl; 

    } 

 

    return 0; 

} 
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