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Chapter 1

Introduction to Linear and Non Linear Time

Series

1.1 Motivation

Non stationarity is a property common to many applied time series. An im-

portant problem associated with non stationarity is that the statistical inference

associated with stationary processes is no longer valid if time series are re-

alisations of non stationary processes. The classical statistical methods used

in building and testing large simultaneous equation models, such as Ordinary

Least Squares (OLS), were based on the assumption that the variables involved

are stationary. Hence, if the time series are non stationary, it is not possible to

use OLS to estimate their long-run linear relationships because it would lead to

spurious regression. However, this is no longer the case after introducing the

concept of cointegration by Granger(1983) (as stated in Engle & Granger (1987)).

According to which, models containing non stationary stochastic variables can

be constructed in such a way that the derived results are both statistically and

economically meaningful.

1



Introduction to Linear and Non Linear Time Series 2

Further, classical time series methods are based on the assumption that a par-

ticular stochastic model generates the observed data. The most commonly used

assumption is that the data is a realisation of stationary Gaussian process. How-

ever most of the series we come across in practical situations are far from Gaus-

sian series and hence it is of interest to study the non Gaussian type of models.

So we extend our study of modelling cointegration in the presence of non Gaus-

sian innovations.

Our objective of the present study is to explore the possibility of employing

some non Gaussian error distributions to model cointegration. Cointegration in

the presence of hetroskedastic non Gaussian errors has also been studied to in-

vestigate the long run equilibrium relationship between the financial variables.

This lead us to work on the related problem on statistical inference for cointe-

grating models with non Gaussian innovations, which is the main contribution

of the thesis.

1.2 Introduction

A time series typically consists of set of observations on a variable, taken at

equally spaced intervals over time. Some examples includes, the daily maxi-

mum temperature, the price series of gold, the daily exchange rate, etc. Time

series occur in a variety of fields such as business and economics, agriculture,

medical sciences, engineering etc. One of the intrinsic features of time series

analysis is that successive observations are always dependent. So the time se-

ries analysis is concerned with the techniques involved for this dependence.
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The aim of analysis is to summarise the properties of a series and to charac-

terise its salient features. Time series analysis starts with selection of a suitable

mathematical model (or class of models) for the data. The main objective for

modelling of a time series is to enable forecasting of its future values. In time

series analysis, it is natural to suppose that each observation xt is a realisation

of certain random variable Xt. In particular, it has been found that certain time

series models are very useful in modelling and analysing of economic and finan-

cial data. The sequence of observations representing the prices or price indices

are referred to as financial time series.

There are two main objectives in investigating financial time series. First, it is

important to know the behaviour of a price series over a period of time. The

variance of a price series is particularly relevant to understand the presence of

hetroskedasticity in the series. The prices of tomorrow is uncertain and it must

therefore be described by a suitable probability distribution. This implies that

statistical methods are the natural way to investigate the price behaviour of a

time series. The second objective is to use our knowledge of price behaviour in

order to reduce risk or to take better decisions. The models of time series can

be used for forecasting, option pricing and risk management. This motivates

the econometricians and statisticians to devote themselves to the development

of new time series models and methods.

The classical set up of time series, known as Box and Jenkins time series ap-

proach, deals with the modelling and analysis of finite variance linear time

series models (See Box et al. (1994), Brockwell & Davis (1987)). Their approach

of modelling time series is based on the assumption that the time series is a

realisation from a Gaussian sequence and the value at time point t is a linear
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function of past observations. Box et al. (1994) discussed a four stage procedure

for analysing a time series which includes, model identification, parameter es-

timation, diagnostic checking and forecasting. The detailed discussion is given

in Sections 1.5 to 1.8.

1.3 Useful Characteristics of Time Series

We assume that observed time series is a realisation of {Xt, t = 0,±1,±2, ....}

which is a discrete time, continuous state-space stochastic process. Let us define

some of the commonly used characteristics of time series. The mean, m(t),

variance, V(t), auto covariance γ(t, s) and auto correlation functions ρ(t, s) of

{Xt} are respectively defined by,

m(t) = E(Xt)

V(t) = E(Xt −m(t))2

γ(t, s) = E{(Xt −mt)(Xs −ms)}

and

ρ(t, s) = γ(t, s)
/√

V(t)V(s).
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1.3.1 Stationarity

Time series may be stationary or non-stationary. A stationary process is impor-

tant for time series analysis. A time series {Xt} is said to be strictly station-

ary if the joint probability distribution of (Xt, Xt+1, ..., Xt+n) is exactly same as

the joint probability distribution of (Xt+h, Xt+h+1, ..., Xt+h+n) for every point t,

t + 1,..t + n, h in the time space ((Brooks (2014))). The process {Xt} is said to be

weakly stationary if it has a constant mean, finite variance and its autocovari-

ance function γ(t, s) depends only on the time lag |t− s|. A strictly stationary

stochastic process with finite variance is always weakly stationary.

1.3.2 White noise

A time series {Xt} is called a white noise if {Xt} is a sequence of uncorrelated

random variables with zero mean and constant variance. In particular, if for

every t, {Xt} is normally distributed with mean zero and variance σ2, the series

{Xt} is called a Gaussian white noise.

1.4 Linear Time Series Models

Time series models are designed to capture various characteristics present in

time series data. These models have been widely used in many disciplines

such as science, economics, finance etc. This motivated econometricians and

statisticians to develop more and more new (or refined) time series models and
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methods. The classical set up of time series analysis asserts that the observed

series is generated by a linear structure (Box-Jenkins method) and we call such

time series as linear time series. The models introduced for such studies include

Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average

(ARMA), Autoregressive Integrated Moving Average (ARIMA), etc.

1.4.1 Autoregressive models

A stochastic model that can be extremely useful in the representation of certain

practically occurring time series is the autoregressive model. An Autoregressive

model of order p, AR(p), is given by

Xt = φ0 + φ1Xt−1 + · · · · · ·+ φpXt−p + at.

Or equivalently, Φ(L)Xt = at with Φ(L) = 1− φ1L− φ2L2 − . . .− φpLp, where

L is the back shift operator, defined by LXt = Xt−1, p is a non negative integer

and {at} is a white noise. This model says that the past p values Xt−i ,i=1,2,..p

jointly determine the conditional expectation of Xt given the past data. Further

at is uncorrelated with Xt−i for every i > 0.

1.4.2 Properties of AR models

The mean of stationary AR(p) series is

E(Xt) =
φ0

1− φ1 − · · · · · · − φp
.
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The associated polynomial equation of the model is

1− φ1L− · · · · · · − φpLp = 0,

which is referred to as the characteristic equation of the model. The resulting

process {Xt} is weakly stationary, if all the roots of the associated polynomial

Φ(L) = 0 lie outside the unit circle. For a stationary AR(p) series, the ACF

satisfies the difference equation

(1− φ1L− · · · · · · − φpLp)ρh = 0, h > 0,

known as Yule-Walker equations. A plot of the ACF of a stationary AR(p)

model would then show a mixture of damping sine and cosine patterns and

exponential decays depending on the nature of its characteristic roots.

1.4.3 Partial Autocorrelation Function(PACF)

The PACF of a stationary time series is a function of its ACF and is a useful tool

for determining the order p of an AR model. For an AR(p) model, PACF of lag

more than p vanishes. We make use of this property to determine the order p.

1.4.4 Moving Average Models

Another model of great practical importance in the representation of observed

time series is the finite moving average process. The model can be treated as a

simple extension of white noise series. In this model, the observation at time t,
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is expressed as a linear function of the present and past shocks. Specifically an

MA(q) model is given by

Xt = µ + at − θ1at−1 − · · · · · · − θqat−q.

Or, Xt = Θ(L)at, where Θ(L) = 1− θ1L− θ2L2 − . . .− θqLq is the characteristic

polynomial associated with the MA(q) model, where θ1’s are constants, {at} is

a white noise sequence.

1.4.5 Properties

MA models are always weakly stationary because they are finite linear com-

binations of a white noise sequence for which the first two moments are time

invariant. That is,

E(Xt) = µ.

V(Xt) = (1 + θ1
2 + · · · · · ·+ θq

2)σ2
a ,

and the ACF is,

ρX(k) =


−θk+θ1θk+1+...+θq−kθq

1+θ2
1+θ2

2+...+θ2
q

, k = 1,2, . . . . . . ,q

0, k > q
.

Hence, for a MA(q) model, its ACF vanishes after lag q. In particular, the PACF

of MA(q) process tails off after lag q. The ACF is useful in identifying the order

of MA(q) model.
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1.4.6 Autoregressive Moving Average Models

In some applications, the AR or MA models discussed in the previous sec-

tions become cumbersome because one may need a higher-order model with

many parameters to adequately describe the dynamic structure of the data. To

overcome this difficulty, the autoregressive moving-average (ARMA) models are

introduced; see Box et al. (1994). A general ARMA(p, q) model is in the form

Xt = µ +
p

∑
i=1

φiXt−i + at +
q

∑
i=1

θiat−i,

here {at} is a white noise series and p and q are non-negative integers. The

model is stationary, if AR(p) component is stationary and invertible if MA(q)

component is so. The ACF and PACF are not informative in determining the

order of an ARMA model. Tsay & Tiao (1984) propose a new approach that uses

the extended autocorrelation function (EACF) to specify the order of an ARMA

process.

1.5 Model Identification

The most widely used tools for model identification are the plots of autocorre-

lation and the partial autocorrelation functions. The behaviour of sample au-

tocorrelation and the sample partial autocorrelation plots are compared to the

corresponding theoretical behaviour of these plots when the order is known.

ACF of an AR(p) process tails off and PACF has a cut off after lag p. On the

other hand, the ACF of moving average process cuts off after lag q, while its
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PACF tails off after lag q. And, if both ACF and PACF tail off, then a mixed pro-

cess is suggested. Furthermore, the ACF for an ARMA process contains a pth

order AR component and qth order moving average component, and is a mix-

ture of exponential and damped sine waves after the first |q− p| lags. The PACF

for a mixed process is dominated by a mixture of exponential and damped sine

waves after the first |q− p| lags.

1.6 Parameter Estimation

Estimating the model parameters is an important aspect of time series analysis.

The main approaches followed to fit Box-Jenkins models are the non-linear least

squares and maximum likelihood estimation. The least squares estimator (LSE)

of the parameter is obtained by minimizing the sum of the squared residuals.

The maximum likelihood estimator (MLE) maximizes the (exact or approximate)

log-likelihood function associated with the specified model. Other methods

for estimating model parameters are the method of moments (MM) and the

generalized method of moments (GMM), which are easy to compute but not

very efficient. When maximum likelihood method becomes difficult for a given

model, which is common in the case of stochastic volatility models, we adopt

GMM to estimate the parameters.
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1.7 Diagnosis Method

When a model has been fitted to a time series, it is advisable to check that the

model really does provide an adequate description of the data. As with most

statistical models, this is usually done by looking at the residuals, which are

generally defined by, residual = observed value - fitted value.

After estimating the parameters one has to test the model adequacy by checking

the validity of the assumptions imposed on the errors. This is the stage of di-

agnosis check. Model diagnostic checking involves techniques like over fitting,

residual plots, and more importantly, checking that the residuals are approxi-

mately uncorrelated. This makes good modelling sense since in the time series

analysis a good model should be able to describe the dependence structure of

the data adequately, and one important measure of dependence is the autocor-

relation function. In other words, a good time series model should be able to

produce residuals that are approximately uncorrelated, that is, residuals that are

approximately white noise. One of the most commonly used model checking

methods used in time series analysis is the Portmanteau test.

1.7.1 Portmanteau Test

It is often required to test jointly that several autocorrelations of {Xt} are zero.

Box & Pierce (1970) propose the Portmanteau statistic,

Q∗m = T
m

∑
h=1

ρ̂2
h,
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as a test statistic for the null hypothesis H0 : ρ1 = ρ2 = · · · = ρm = 0 against

the alternative hypothesis Ha : ρi 6= 0 for some i ∈ {1, ..., m}, where T is the

sample size. Under the assumption that {Xt} is an iid sequence with certain

moment conditions, Q∗m asymptotically follows a chi-squared distribution with

m degrees of freedom. Ljung & Box (1978) modify the Q∗m statistic as below to

increase the power of the test in finite samples:

Q(m) = T(T + 2)
m

∑
h=1

ρ̂2
h

T − h
.

The decision rule is to reject H0 if Q(m) > χα
2, at given significance level α.

1.8 Forecasting

One of the objectives of analysing time series is to forecast its future behaviour.

That is, based on the observation up to time t, we should be able to predict the

value of the variable at a future time point using the fitted model. The method

of Minimum Mean Square Error (MMSE) forecasting is widely used when the

time series follows a linear model. In this case an l-step ahead forecast at time t

becomes the conditional expectation,

E(Xt+l|Xt,Xt−1, · · · ).

In the study of financial time series, our goal is to forecast the volatility and we

have to deal with non-linear models.
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1.9 Financial Time Series

Financial time series is concerned with the theory and practice of asset valuation

over time. One of the objectives of financial time series is to model the stochastic

volatility and forecast its future values. The volatility is measured in terms of the

conditional variance of the random variable involved. Although volatility is not

directly observable it has some characteristics that are commonly seen in asset

return. First, there exist volatility clusters- that is, volatility may be high for cer-

tain time periods and low for other periods. Second, volatility evolves over time

in a continuous manner- that is, volatility jumps are rare. Third, volatility does

not diverge to infinity- that is, volatility varies within some fixed range. Statis-

tically speaking, this means that volatility is often stationary. Fourth, volatility

seems to react differently to a big price increase or a big price drop, referred to

as the leverage point.

In financial markets, the data on price Pt of an asset at time t is available at

different time points. However, in financial studies, the experts suggest that the

series of returns be used for analysis instead of the actual price series,see Tsay

(2005). For a given series of prices Pt, the corresponding series of returns is

defined by

Rt =
Pt − Pt−1

Pt−1
=

Pt

Pt−1
− 1, t = 1, 2, · · · .

The advantages of using the return series are,

(1) for an investor, the return series is a scale free summary of the investment

opportunity,

(2) the return series are easier to handle than the price series because of their
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attractive statistical properties. The log-return series defined by,

Yt = log
(

Pt
/

Pt−1
)

, t = 1, 2, · · · .

is more suitable for analysing the stochastic nature of the market behaviour.

Hence, we focus our attention on the modelling and analysis of the log-return

series. We refer

{Yt = log
(

Pt
/

Pt−1
)

, t = 1, 2, ...}

as financial time series. Empirical studies on financial time series (See Mandelbrot

(1963) and Fama (1965)) show that the series {Yt} defined above is characterized

by the properties below.

1. Absence of autocorrelation in {Yt}.

2. Significant autocorrelation in {Y2
t }.

3. The marginal distribution {Yt} is symmetric and heavy-tailed.

4. Conditional variance of {Yt} given the past is not constant.

The linear time series models such as ARIMA or ARMA are not suitable for

describing the series {Yt} and hence new class of models need to be introduced.

While introducing new class of models for such series, we have to see that the



Introduction to Linear and Non Linear Time Series 15

model takes care of the special characteristics listed above. Mainly there are

two class of models available for analysing the financial time series, namely,

observation driven and parameter driven. In observation driven, volatility is

assumed to be a function of past observations, where as in parameter driven

case, the conditional variances are generated by some latent models.

1.10 Observation Driven Models

The observation driven models assume that the conditional variances are the

functions of past values of the series. The famous autoregressive conditional

hetroscedastic (ARCH) model introduced by Engle (1982) is an example of such

models. The simplest form of ARCH model assumes that the conditional vari-

ance of Yt given the past is a linear function of the squares of the past data.

1.10.1 Autoregressive Conditional Hetroscedastic model

The autoregressive conditional hetroscedastic(ARCH) model introduced by Engle

(1982) was the first attempt in econometrics to capture volatility clustering in

time series data. In particular, Engle (1982) used conditional variance to charac-

terise volatility and postulate a dynamic model for conditional variance. ARCH

models have been widely used in financial time series analysis and particularly

in analysing the risk of holding an asset, evaluating the price of an option, fore-

casting time varying confidence intervals and obtaining more efficient estima-

tors under the existence of heteroscedasticity. Specifically, an ARCH(p) model
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assumes that

Yt =
√

htεt, ht = α0 +
p

∑
i=1

αiY2
t−i,

where {εt} is a sequence of independent and identically distributed (iid) ran-

dom variables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0.

If {εt} has standardised Gaussian distribution, Yt is conditionally normal with

mean 0 and variance ht. The coefficients αi must satisfy some regularity condi-

tions to ensure that the unconditional variance of yt to be finite. From the struc-

ture of the model, it is seen that large past squared shocks imply a large condi-

tional variance. This means that, under the ARCH framework, large shocks tend

to be followed by another large shock. This feature is similar to the volatility

clusterings observed in asset returns.

1.10.2 Estimation

The most commonly used estimation procedure for ARCH models has been the

maximum likelihood approach. Under the normality assumption, the likelihood

function of an ARCH(p) model is

L(α|y1, y2, · · · yn) =
n

∏
t=p+1

1√
2πht

exp(− y2
t

2ht
) f (y1, y2, · · · , yp|α),

where α = (α0, α1, · · · , αp)
′

and f (y1, y2, · · · , yp|α) is the joint probability den-

sity function of y1, y2, · · · , yp. Since the exact form of f (y1, y2, · · · , yp|α) is com-

plicated, it is commonly dropped from the prior likelihood function, especially
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when the sample size is sufficiently large. This results in using the conditional-

likelihood function

L(α|y1, y2, · · · yn) =
n

∏
t=p+1

1√
2πht

exp(− y2
t

2ht
).

Maximising the conditional-likelihood function is equivalent to maximising its

logarithm, which is easier to handle. A variety of alternative estimation methods

can be also considered. Least squares and quasi maximum likelihood estima-

tions in ARCH models were considered in the seminal paper by Engle (1982).

1.10.3 Volatility forecasting

An important use of ARCH models is the evaluation of the accuracy of volatil-

ity forecasts. In standard time series methodology which uses conditionally

homoscedastic ARMA processes, the variance of the forecast error does not de-

pend on the current information set. If the series being forecasted displays

ARCH effect, the current information set can indicate the accuracy by which

the series can be forecasted. Engle & Kraft (1983) were the first to consider the

effect of ARCH on forecasting. As the conditional variance is a linear function

of the squares of the past observations, one can use the minimum mean square

error (MMSE) method for forecasting the volatility as in the case of classical AR

models.
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1.11 Weakness of ARCH models

The ARCH model has some drawbacks:

1. The model assumes that positive and negative shocks have the same effects on

volatility because it depends on the square of the previous shocks. In practice,

it is well known that price of a financial asset responds differently to positive

and negative shocks.

2. The ARCH model is rather restrictive. For instance, α2
1 of an ARCH(1) model

must be in the interval [0, 1/3] if the series has to have a finite fourth moment.

The constraint becomes complicated for higher order ARCH models. In practice,

it limits the ability of ARCH models with Gaussian innovations to capture excess

kurtosis.

3. The ARCH model does not provide any new insight for understanding the

source of variations of financial time series. It merely provides a mechanical

way to describe the behaviour of conditional variance. It gives no indication

about what causes such behaviour to occur.

4. ARCH models are likely to over predict the volatility because they respond

slowly to large isolated shocks to the return series.

1.12 Generalised Observation Driven Models

Although the ARCH model is simple, it often requires many parameters to

adequately describe the volatility process of an asset return. Sometimes an

ARCH(p) model, where p is of higher order may be needed for the volatility
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process. So an alternative model must be sought. Bollerslev (1986) proposes a

useful extension known as the generalized ARCH (GARCH) model. That is, the

Generalized ARCH (GARCH) model is an extension that allows the conditional

variance to depend on the previous conditional variance and the squares of

previous returns. The possibility that estimated parameters in ARCH model do

not satisfy the stationarity condition increases with lag. Thus GARCH model is

an alternative to ARCH model. The GARCH(p,q) is defined by

Yt =
√

htεt, ht = α0 +
p

∑
i=1

αiY2
t−i +

q

∑
j=1

β jht−j,

where εt is ae of iid random variables with mean 0 and variance 1, α0 > 0,

αi ≥ 0, β j ≥ 0 and
max(p,q)

∑
i=1

(αi + β j) < 1. As before εt is often assumed to be

a standard normal or standardized Student-t distribution or generalised error

distribution.

The GARCH model has several extensions like log-GARCH, Exponential GARCH,

Integrated GARCH, Fractionally Integrated GARCH, Threshold Garch etc (See

Tsay (2005) for more details) .

1.13 Parameter Driven Models

The parameter driven models assume that the volatilities are generated by some

latent models. The log-normal stochastic volatility (SV) model by Taylor (1986)

is the simplest and the best known example: Yt|ht ∼ N(0, exp(ht)), where ht

represents the log-volatility, which is unobserved but can be estimated using
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the observations. With respect to the previous class, these models are driven by

two types of shock, one of which influences the volatility.

1.13.1 Stochastic Volatility Models

For these models the volatility depends on some unobserved components or a

latent structure. The most popular of these parameter-driven driven stochastic

volatility models, is one by Taylor(1986):

Yt = εt exp(ht/2), ht = α + βht−1 + ηt,

where εt and ηt are two independent Gaussian white noises, with variances 1

and σ2
ν , respectively. Due to the Gaussianity of ηt, this model is called a log-

normal SV model.

1.14 Outline of the Thesis

Many time series exhibit trend or non stationary behaviour. If the time series

appears to be non stationary, the standard econometric analysis and distribution

theories cannot be applied. Previously, data are differenced in order to make the

non stationary series as stationary. Although, this method can be used in large

samples, but it may give rise to misleading inferences or spurious regressions

in small sample situations. So it is necessary to develop new classes of models

to deal with two or more non stationary time series. If two or more series are
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themselves non stationary, and a linear combination of those series becomes

stationary, then the series are said to be cointegrated (William & Wei (2006)).

During the last decade, several estimation methods and test procedures for coin-

tegration among non stationary time series have appeared in the literature. One

of the efficient methods for cointegration analysis is the maximum likelihood

approach, suggested by Johansen (1988). This method starts from a vector au-

toregressive (VAR) model representation for a set of variables with Gaussian

errors. Some of the test procedures for cointegration in the literature include

the Dickey-Fuller unit root test, Engle and Granger two step estimator, Johansen

likelihood ratio test etc. Engle & Granger (1987) suggest an efficient estimation

technique of the error correction model with the assumption of Gaussianity of

errors. All the above mentioned theories and studies are based on the assump-

tion that the possibly cointegrated VAR or error correction model (ECM) has

normally distributed errors and, hence, they have the same likelihood function

as the classical Johansen method. In this thesis, we study the modelling of coin-

tegration in the presence of non Gaussian innovations.

Chapter 2 briefly discusses an introduction to multivariate time series and coin-

tegration models. Our objective in this study is to identify some non Gaussian

time series models among bivariate time series and study their suitability for

modelling cointegration.

Cointegration model with logistic innovations is introduced in Chapter 3. In

this chapter, a unit root process and cointegration model of first order for I(1)

processes which allows for logistic innovation is defined. We propose the max-

imum likelihood estimator of the cointegrating vector from a first order vector
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autoregressive process. Then we develop a likelihood ratio test for unit root

and cointegration associated with two time series. Monte Carlo simulations are

performed to verify the finite sample properties of the estimator and the test

statistic. To account for the distortions caused by the specific sample, a boot-

strap test based on MLE is performed. Rubber consumption and export data

are analysed to illustrate the applications of the proposed model.

In chapter 4, we study the properties of a cointegration model with the errors are

generated by a bivariate Student’s t distribution. The maximum likelihood esti-

mation for the error correction model and its testing procedure is also discussed.

We have also developed a unit root test procedure when the error distribution

follows a univariate Student’s t distribution with a fixed degrees of freedom.

Applications of the model is illustrated using some financial variables.

In Chapter 5, we discuss the cointegration modelling with some non Gaussian

GARCH innovations. This chapter presents the estimation procedures for a

bivariate cointegration model when the errors are generated by a constant con-

ditional correlation model. In particular, the method of maximum likelihood is

discussed when the errors follow Generalised Autoregressive Conditional Het-

roskedastic (GARCH) models with Gaussian and some non Gaussian innova-

tions. The method of estimation is illustrated using simulated observations.

Since the model is effective in modelling financial data, the descriptive ability

of the model is illustrated for a set of data on prices of Oil, Diesel, Palm oil and

Soya bean Oil.

Chapter 6 focusses on a bivariate cointegrating model with non-normal errors
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using a copula. In particular, we propose a bivariate error distribution con-

structed using two non-identical marginals through a copula. The model pa-

rameters are estimated using the method of inference functions for margins and

maximum likelihood. Applications of the proposed model is illustrated through

real life examples.

Finally, we present the conclusions of the study in Chapter 7.





Chapter 2

Multivariate time series and Cointegration

2.1 Introduction

In modern times, the collection of data became such an easy process that we

are able to gather data as frequently as we want, as well as on any number of

variables. Since the availability of information is not a big concern nowadays, it

only makes sense to analyse all related variables simultaneously to gain more

insight on a specific variable. Thus instead of observing a single time series,

we rather observe several related time series. That is, a multivariate time series

consist of multiple single series referred to as components. If each time series

observation is a vector series, then we can model them using a multivariate form

of Box-Jenkins model. In particular, the techniques of multivariate time series is

used, when we want to analyse and explain the interaction and co movements

among a group of time series variables.

The application is wide-spread from, for example, the medical field where the

relationship between exercise and blood glucose can be modeled (Crabtree et al.

(1990)) to the engineering field where the process control effectiveness can be

evaluated (DeVries & Wu (1978)). Whittle (1953) derived the least square estima-

tion equations for a non-deterministic stationary multiple process, while Bartlett

25
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& Rajalakshman (1953) were concerned with the goodness of fit of simultane-

ous autoregressive series. Akaike (1969), Hannan (1970), up to the more recent

Hamilton (1994), Reinsel (2003), Tsay (2013) are just some of the many that have

studied and made contributions to the field of multivariate time series analysis.

Multivariate time series analysis introduced a way to observe the relationship

of variables over time, thus making use of all possible information. In the case

of univariate time series, one investigated the influence of all the past values of

a single time series on the future values of that specific time series. Now we can

extend this to also look at the influence of other variables across time periods.

This will ultimately improve the accuracy of the forecasts of an individual time

series.

The concepts of vector and matrix are useful in understanding multivariate time

series analysis. This chapter serves as an introduction to some of the concepts,

namely covariance stationarity, cross correlation matrix, integration, cointegra-

tion, and the vector models used in multivariate time series analysis. The aim

of this chapter is to study the econometric models for analysing the multivari-

ate process {Xt}. Many of the methods and models in univariate time series

can be generalised directly to the multivariate case. But there arise situations

in which the generalisation requires some attention. We may need new mod-

els and methods to handle the complicated relationships between multiple time

series. In this chapter, we discuss the general methods and models of multiple

time series with emphasis on intuitions and applications. For statistical theory

of multivariate time series analysis, one can refer to Liitkepohl (1991), Reinsel

(2003).
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2.2 Notations

Let {Xt} be a vector of time series with k-components, say X1t, X2t, . . . , Xkt. That

is,

Xt =



X1t

X2t

...

...

Xkt


. (2.1)

For example, an investor holding stocks of IBM, Microsoft and General Motors

may consider the three dimensional series of these companies. Here X1t denotes

the daily IBM stock series, X2t is that of Microsoft and X3t denotes the series of

General Motors. Now, if k time series are observed for a specific time period,

say t=1 to T, then the series may be represented in a k× T matrix form as,

Xt =


X11 . . . X1T

... . . . ...

Xk1 · · · XkT

 , (2.2)

where each row represents a univariate time series and each column represents

the observed measurements made on k variables at a specific point in time.
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2.3 Weak (Covariance) Stationarity

The vector time series {Xt} is said to be weak or covariance stationary, if its

first and second moments are time invariant. In particular, the mean vector and

covariance matrix of a covariance stationary time series are constant over time t.

For a covariance stationary process {Xt} , we define its mean vector and covari-

ance matrix as

E (Xt) = µ, Γ0 = E[(Xt −µ)(Xt −µ)
′
],

where the expectation is taken element by element over the joint distribution of

{Xt}.

The mean vector µ is a k dimensional vector consisting of the unconditional

expectations of the components of {Xt} given by, µ =



µ1

µ2

...

...

µk


=



E(X1t)

E(X2t)

...

...

E(Xkt)


.

The covariance matrix Γ0 is a k× k matrix. The i th diagonal element of Γ0 is the

variance of Xit, whereas the (i,j)th element of Γ0 is the covariance between Xit

and Xjt.

2.4 Cross-Correlation Matrix

In chapter 1, we have seen that, the auto covariance of a univariate time series

{Xt} is a function that gives the covariance of the process with itself at pairs of
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time points. If the process {Xt} has the mean function µt, then the lag-l auto

covariance is given by

cov(Xt, Xt−l) = Γ(l) = [E(Xt − µt)(Xt−l − µt−l)].

For a vector of time series {Xt} with k-components, say X1t, X2t, . . . , Xkt, the

concept of cross covariance is used to define the covariance between more than

one time series. The cross-covariance is a function that gives the covariance of

one process with other, at pairs of time points.

Let Γij(h) = Cov(Xit, Xj,t−h) and let D be a k× k diagonal matrix consist-

ing of the standard deviations of the individual series of {Xit}. That is, D =

diag
{√

Γ11(0), . . . ,
√

Γkk(0)
}

. Then, the lag 0 cross correlation matrix of {Xt} is

defined as

ρ0 = [ρij(0)] = D−1Γ0D−1,

where Γ0 is the covariance matrix of {Xt} at lag 0. Hence the cross-covariance

and cross-correlation between the i-th and j-th components of the vector Xt at

lag 0 is given by

Γij(0) = cov(Xit, Xj,t) = E(Xit − µi)(Xjt − µj), (2.3)

where the (i,j)th element of ρ0 is given by,

ρij(0) =
cov(Xit, Xj,t)

std(Xit)std(Xj,t)
=

Γij(0)(
Γii(0)Γjj(0)

)1/2
, (2.4)
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where Γii(0) = Var(Xit). In time series context, such a correlation coefficient is

referred to as a concurrent, or contemporaneous correlation coefficient because

it is the correlation of two time series at a time point t. One of the important

topics in multivariate time series analysis is the lead lag relationships between

component series. To this end, the cross correlation matrices are used to measure

the strength of linear dependence between time series. The lag-l cross covariance

matrix of {Xt} is defined as

Γl = [Γij(l)] = E[(Xt − µ)(Xt−l − µ)
′
].

And, the lag-l cross-correlation matrix of {Xt} is the correlation between Xit and

Xj,t−l, which is defined as

ρl = [ρij(l)] = D−1ΓlD−1,

where ρij(l) is given by,

ρij(l) =
cov(Xit, Xj,t−l)

std(Xit)std(Xj,t−l)
=

Γij(l)(
Γii(l)Γjj(l)

)1/2
. (2.5)

If l > 0, then ρij(l) measures the linear dependence of Xit on Xj,t−l, which oc-

curred prior to time t. Equation (2.5) also shows that the diagonal element ρii(l)

is simply the lag-l autocorrelation coefficient of {Xit}. In general, the correlation

between i-th variable at time t and j-th variable at time t− l, is not same as the

correlation between the j-th variable at time t and i-th variable at time t− l.

i.e; ρij(l) 6= ρji(l).
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2.4.1 Sample Cross-correlation Matrices

Given the data {xt, t = 1, 2...n}, the cross-covariance matrix Γl can be estimated

by

Γ̂l =
1
n

n

∑
t=l+1

(xt − x̄)(xt−l − x̄)
′
, l ≥ 0,

where x̄ = 1
n

n
∑

t=1
xt, is the vector of sample means. The cross-correlation matrix

ρl is estimated by

ρ̂l = D̂−1Γ̂(l)D̂−1, l ≥ 0,

where D̂ is the k× k diagonal matrix of the sample standard deviations of the

component series.

Similar to the univariate case, asymptotic properties of the sample cross cor-

relation matrix ρ̂l have been investigated under various assumptions; see for

instance, Fuller (1976). The estimate is consistent but is biased in a finite sam-

ple.

2.5 Multivariate Portmanteau Tests

The univariate Ljung Box Statistics has been generalised to the multivariate case

by Hosking (1980) and Li & McLeod (1981). For a multivariate series, the null

hypothesis of interest is H0 : ρ1 = ρ2 = · · · · · · = ρm = 0 and the alternate

hypothesis H1 : ρi 6= 0 for some i ∈ {1, 2, ...m}, where ρi denotes the lag-i cross

correlation matrix of the time series {Xt}. The test statistics is given by
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Qk(m) = T2
m

∑
l=1

1
T − l

tr
(

Γ̂
′
l Γ̂−1

0
Γ̂l Γ̂−1

0

)
, (2.6)

where T is the sample size, k is the dimension of Xt and tr
(

Γ̂
′
l Γ̂−1

0
Γ̂l Γ̂−1

0

)
is the trace of the matrix

(
Γ̂
′
l Γ̂−1

0
Γ̂l Γ̂−1

0

)
, which is the sum of diagonal

elements of the matrix (Tsay (2005), page 347). Under the null hypothesis, Qk(m)

follows asymptotically a chi squared distribution with k2m degrees of freedom

(Hosking (1980), page 605).

2.6 Vector Autoregressive (VAR) Model

The vector autoregressive model generalizes the univariate autoregressive model

by allowing for more than one evolving variable. Vector auto regression is a

mechanism that is used to link several or multiple stationary time series to-

gether. The structure is that, each variable is a linear function of past lags of

itself and past lags of the other variables. A p-th order VAR, denoted as VAR(p),

is

Xt = ϕ0 +ϕ1Xt−1 +ϕ2Xt−2 + · · · · · ·+ϕpXt−p + at,

or in a lag operator form

(Ik −ϕ1L− · · · · · ·ϕpLp)Xt = ϕ0 + at, (2.7)

where

LjXt = Xt−j.

Xt : k× 1 random vector.
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ϕ0 : k× 1 vector of constant terms.

ϕi : k× k autoregressive coefficient matrix.

at : k× 1 white noise process, satisfying:

E (at) = 0 and E
(
atat

′
)
= E



E(a1t
2) E(a1ta2t) · · · E(a1takt)

E(a1ta2t) E(a2t
2) · · · E(a2takt)

...
...

...
...

E(a1takt) E(a2takt) · · · E(a2
kt)


= Σa,

which is a k × k symmetric, positive, definite matrix, called the white noise

covariance matrix and

E
(
atas

′
)
= 0,

for t 6= s, therefore uncorrelated across time.

By replacing the vectors and matrices with scalars will give the definition of an

AR(p) process. The process {Xt} is stationary if the zeros of determinant

∣∣Ik −ϕ1L− · · · · · ·ϕpLp∣∣
are all greater than one, or in other words, if the zeros of determinant

∣∣Ik −ϕ1L− · · · · · ·ϕpLp∣∣
lie outside the complex unit circle (have modulus greater than one).
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2.6.1 Bivariate AR(1) model

The simplest VAR is the first order bivariate VAR model which can be expressed

as,

Xt = ϕ0 +ϕ1Xt−1 + at. (2.8)

That is,

 X1t

X2t

 =

 φ10

φ20

+

 φ11,1 φ12,1

φ21,1 φ22,1


 X1,t−1

X2,t−1

+

 a1t

a2t

 .

Therefore,

X1t = φ10 + φ11,1X1,t−1 + φ12,1X2,t−1 + a1t,

X2t = φ20 + φ21,1X1,t−1 + φ22,1X2,t−1 + a2t.

It can be seen that each element of {Xt} is a function of each element of {Xt−1}.

VAR(1) model is always invertible.

2.6.2 Stationarity

The VAR(1) process is covariance stationary, if the eigen values of ϕ1 are less

than one in modulus. In the univariate case, this is equivalent to the condition

|φ1| < 1.
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2.7 Vector Moving Average (VMA) Model

A vector moving average of order q, or VMA(q), is in the form

Xt = Θ0 + at −Θ1at−1 − · · · · · · −Θqat−q, (2.9)

or

Xt = Θ (L)at,

where Θ0 is a k-dimensional vector, Θi are k× k matrices and

Θ(L) =
(

I −Θ1L− · · · · · · −ΘqLq) is the MA matrix polynomial in lag operator

L. Similar to univariate case, VMA(q) process are weakly stationary provided

that the covariance of {at} exists. A VMA(q) process is invertible if the zeros of

determinant ∣∣I −Θ1L− · · · · · · −ΘqLq∣∣
are all greater than one, or in other words, the zeros of determinant

∣∣I −Θ1L− · · · · · · −ΘqLq∣∣
lie outside the complex unit circle.
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2.7.1 Bivariate MA(1) model

To better understand the VMA process, let us consider the bivariate VMA(1)

model given by

Xt = Θ0 + at −Θ1at−1.

That is,

 X1t

X2t

 =

 θ10

θ20

+

 a1t

a2t

−
 θ11,1 θ12,1

θ21,1 θ22,1


 a1,t−1

a2,t−1

 ,

which gives,

X1t = θ10 + a1t − θ11,1a1,t−1 + θ12,1a2,t−1.

X2t = θ20 + a2t − θ21,1a1,t−1 + θ22,1a2,t−1.

The model says that the current series {Xt} only depends on the current and

past shocks. The vector MA(1) process is clearly stationary. For the process

{Xt} to be invertible, the eigen values of Θ1 should be less than one in absolute.

2.8 Vector Autoregressive Moving Average (VARMA)

Model

The Vector autoregressive moving average model, VARMA(p,q) of order p and q

is a combination of the VAR(p) and VMA(q) processes. The VARMA(p,q) model

can be written as
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Xt = ϕ0 +ϕ1Xt−1 +ϕ2Xt−2 + · · · · · ·+ϕpXt−p +at−Θ1at−1− · · · · · · −Θqat−q,

(2.10)

or in the lag operator form

(Ik −ϕ1L− · · · · · ·ϕpLp)Xt = ϕ0 +
(

Ik −Θ1L− · · · · · · −ΘqLq) at, (2.11)

or

ϕ (L) Xt = ϕ0 + Θ(L)at,

where

Xt : k× 1 random vector.

ϕi : k× k autoregressive coeficient matrix.

Θi : k× k moving average matrix.

ϕ0 : k× 1 vector of constant terms.

at : k× 1 white noise process, which is defines as follows:

E (at) = 0 and E(atat
′
) = Σa. The process is stationary if the zeros of determi-

nant ∣∣Ik −ϕ1L− · · · · · ·ϕpLp∣∣
are all greater than one and invertible if the zeros of determinant

∣∣Ik −Θ1L− · · · · · · −ΘqLq∣∣



Multivariate time series and Cointegration 38

are all greater than one.

2.8.1 Bivariate ARMA(1,1) model

The bivariate VARMA(1,1) model is given by

(I2 −ϕ1L)Xt = ϕ0 + (I2 −Θ1L) at, (2.12)

or,

 ϕ11(L) ϕ12(L)

ϕ21(L) ϕ22(L)


 X1t

X2t

 =

 ϕ10

ϕ20

+

 θ11(L) θ12(L)

θ21(L) θ22(L)


 a1t

a2t

 .

The model is stationary if the zeros of the determinant polynomial |1−ϕ1B| are

outside the unit circle or, if all the eigen values of ϕ1 are inside the unit circle.

2.9 Unit root Non Stationarity and Cointegration

A sequence that contains one or more roots of its characteristic polynomial that

are equal to one is called a unit root process. The simplest model that may

contain a unit root is the autoregressive model of order one,

Xt = φXt−1 + at, (2.13)

where at denotes a serially uncorrelated white noise with 0 mean and constant

variance.
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If φ= 1, equation (2.13) becomes a random walk without drift model, that is, a

non-stationary process. Dickey & Fuller (1979) developed a test procedure to

determine whether a variable has a unit root, or equivalently, the variable fol-

lows a random walk model. If, |φ| < 1, then the series {Xt} is stationary. A

process which is not stationary in levels, but stationary in differences is called

an integrated series. More generally, a univariate time series {Xt} with no de-

terministic component which has a stationary, invertible, ARMA representation

after differencing d times, is said to be integrated of order d, denoted Xt ∼ I(d).

Thus for d=0, {Xt} will be stationary and for d=1, the change, ∆Xt = Xt − Xt−1

is stationary (Engle & Granger (1987)). But differencing the vector of time se-

ries Xt, is more complicated and should be handled carefully. Over differencing

the series may often lead to complications in model fitting. More recently, an

alternative way to handle non-stationarity has become popular. Cointegration

builds on this structure by defining relationship across time series which trans-

form I(1) series in to I(0). So, when modelling several unit root non stationary

time series jointly, we may encounter the case of cointegration.

2.9.1 Cointegration

Even though each individual series under consideration may be I (1), we may

still be able to find a linear combination of these series which is I (0). If this is

the case, then the series are said to be cointegrated (of order 1). Examples might

be short and long term interest rates, capital appropriations and expenditures,

household income and expenditures, and prices of the same commodity in dif-

ferent markets. Cointegration may also characterise two or more variables. For
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example, the existence of money demand function implies that a linear combi-

nation of log series of real money stock, the log aggregate income and nominal

interest rate may be stationary even though each of the three variables is I(1).

The remedy for problematic regressions with non stationary variables is, to test

for cointegration and to estimate a vector error-correction model to distinguish

between short-run and long-run responses, since cointegration provides more

powerful tools when the data sets are of limited length. An individual economic

variable, viewed as a time series, can wander extensively and yet some pairs of

series may be expected to move so that they do not drift too apart. Typically

economic theory will propose forces which tend to keep such series together.

Thus, cointegration is an econometric concept which mimics the existence of a

long-run equilibrium among economic time series.

The general definition of cointegration is given below, (cf. Engle & Granger

(1987)).

Definition 2.1. The components of the vector {Xt} are said to be co-integrated

of order d, b, denoted Xt ∼ CI(d, b), if (i) all components of {Xt} are I(d); (ii)

there exists a vector α 6= 0 so that zt = α
′
Xt ∼ I(d− b), b>0.

Some observations (cf. Engle & Granger (1987)).

• The vector α is called cointegating vector.

• The cointegration vector is not unique. If α is a cointegrating vector, then

so is λα for any λ 6= 0
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• Economically, a cointegrating relationship may be interpreted as a long-

run equilibrium, in the sense that variables have a tendency to revert to

this relationship in the long run. However, cointegration is primarily a

statistical concept and whether or not it has meaning in an economic sense

depends a lot on the specific application.

• The above definition can be extended to allow for constant term.

• For n integrated series, n− 1 independent cointegrating vector may exist.

• Differencing the data has the disadvantage that information contained in

the data is lost. Explicitly taking the non-stationarity into account has the

advantage that the information about the long-run behaviour of the data

is used in the estimation.

Since we are mainly focussing on bivariate cointegration in our entire thesis,

here we state the definition for bivariate cointegration.

Definition 2.2. (Bivariate Cointegration). Let us assume that {X1t} and {X2t}

be two I(1) series. These series are said to be cointegrated, if there exist a vector

α = (α1, α2)
′

with both elements non zero such that,

α
′
[X1t, X2t]

′
= α1X1t − α2X2t ∼ I(0).

2.10 Error Correction model

A principal feature of cointegrated series is that their time paths are influenced

by the extent of any kind of deviation from long-run equilibrium. After all, if
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the system is to return to the long-run equilibrium, the movements of atleast

some of the variables must respond to the magnitude of the disequilibrium. For

example, the theories of the term "structure of interest rates" imply a long-run

relationship between long and short-term interest rates. If the gap between the

long and short-term rates is "large" relative to the long-run relationship, the

short term rate must ultimately rise relative to the long-term rate. This gap can

be closed by (1) an increase in the short-term rate and/or a decrease in the long

term rate, (2) an increase in the long-term rate but a larger rise in the short-

term rate, (3) a fall in the long-term rate but a smaller fall in the short-term

rate. Hence, without a full dynamic model specification of the model, we can-

not determine which of the possibilities will occur. Nevertheless, the short-run

dynamics must be influenced by the deviation from the long-run relationship.

The dynamic model implied by the above discussion is one of error correction.

If we difference the I(1) data, we may loose the long run information and could

estimate only the short run model. Because, with the differenced data, we can

only know the effect of change on one variable on another, not the level effect.

An alternative is to use the error correction model, which estimates both short

and long run relationships jointly, if variables are cointegrated. Error Correction

models have been widely used in economics. Engle & Granger (1987) discuss

an error correction representation for a co-integrated system that overcomes the

difficulty of estimating non invertible VARMA models.

The Granger representation theorem states that: if the variables {Xit}, t = 1, 2, · · ·N

are cointegrated, then there exists an error correction representation for Xt =

(X1t, X2t, · · · , XNt)
′

(See Engle & Granger (1987)). For the better understanding

of cointegration, we focus on VAR models for their simplicity in estimation. The
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simplest form of the VAR model is with the bivariate case and is given by,

∆X1t

∆X2t

 =

P11 P12

P21 P22


X1,t−1

X2,t−1

+

a1t

a2t

 . (2.14)

Equation (2.14) states that the changes in {X1t} and {X2t} are related to the lev-

els of {X1t} and {X2t} through a cointegration matrix P. But since the variables

{X1t} and {X2t} are cointegrated, there exist an α such that X1t − αX2t is I(0).

Hence, substituting this relation in equation (2.14) leads to,

∆X1t

∆X2t

 =

β1

β2

(1 −α

)X1,t−1

X2,t−1

+

a1t

a2t


Hence the short run dynamics or the error correction form for the VAR(1) pro-

cess {Xt} takes the form:

∆X1t = β1(X1,t−1 − αX2,t−1) + a1t.

∆X2t = β2(X1,t−1 − αX2,t−1) + a2t.

The term X1,t−1 − αX2,t−1 represents the deviation from the long run trend

(equilibrium correction term) and β1 and β2 are the speed adjustment parame-

ters.

Example 2.1. Consider a simple bivariate cointegrated VAR(1) model given by,

 X1t

X2t

 =

 0.8 0.2

0.2 0.8


 X1,t−1

X2,t−1

+

 a1t

a2t

 . (2.15)
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In order to transform this VAR in to error correction model, we begin by subtracting X1,t−1

X2,t−1

 from both the sides of equation (2.15),

X1t

X2t

−
X1,t−1

X2,t−1

 =

0.8 0.2

0.2 0.8


X1,t−1

X2,t−1

−
X1,t−1

X2,t−1

+

a1t

a2t

 .

∆X1t

∆X2t

 =


0.8 0.2

0.2 0.8

−
1 0

0 1



X1,t−1

X2,t−1

+

a1t

a2t

 .

∆X1t

∆X2t

 =

−0.2 0.2

0.2 −0.2


X1,t−1

X2,t−1

+

a1t

a2t

 .

∆X1t

∆X2t

 =

−0.2

0.2

(1 −1

)X1,t−1

X2,t−1

+

a1t

a2t

 .

For this example, we can see that the speed of adjustment parameter is -0.2 for

∆X1t and 0.2 for ∆X2t, and the cointegrating vector is
(

1 −1

)
.

Remark 2.1. It is possible to transform a bivariate cointegrated VAR process in

to an error correction model by recursive substitution. For that, we consider the

cointegrated VAR(3) process given by,

Xt = ϕ1Xt−1 +ϕ2Xt−2 +ϕ3Xt−3 + at.
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To begin the transformation, we add and subtract ϕ3Xt−2 to the right side,

Xt = ϕ1Xt−1 +ϕ2Xt−2 +ϕ3Xt−2 −ϕ3Xt−2 +ϕ3Xt−3 + at

= ϕ1Xt−1 +ϕ2Xt−2 +ϕ3Xt−2 −ϕ3∆Xt−2 + at

= ϕ1Xt−1 + (ϕ2 +ϕ3)Xt−2 −ϕ3∆Xt−2 + at.

Now we add and subtract (ϕ2 +ϕ3)Xt−1 to the right side gives,

Xt = ϕ1Xt−1 + (ϕ2 +ϕ3)Xt−1 − (ϕ2 +ϕ3)Xt−1 + (ϕ2 +ϕ3)Xt−2 −ϕ3∆Xt−2 + at

= ϕ1Xt−1 + (ϕ2 +ϕ3)Xt−1 − (ϕ2 +ϕ3)∆Xt−1 −ϕ3∆xt−2 + at

= (ϕ1 +ϕ2 +ϕ3)Xt−1 − (ϕ2 +ϕ3)∆Xt−1 −ϕ3∆Xt−2 + at.

Finally, on subtracting Xt−1 from both the sides,

∆Xt = (ϕ1 +ϕ2 +ϕ3 − I2)Xt−1 − (ϕ2 +ϕ3)∆Xt−1 −ϕ3∆Xt−2 + at

= ΠXt−1 −Π1∆Xt−1 −Π2∆Xt−2 + at (2.16)

= βα
′
Xt−1 −Π1∆Xt−1 −Π2∆Xt−2 + at, (2.17)

where β contains the speed of adjustment parameters, α contains the cointe-

gration vectors, Π = (ϕ1 + ϕ2 + ϕ3 − I2), Π1 = (ϕ2 + ϕ3) and Π2 = ϕ3. Pro-

ceeding like this, we can transform any cointegrated VAR(p) process in to its

error correction representation. Hence recursively doing, the error correction

representation associated with a VAR(p) process is given by

∆Xt = ΠXt−1 + Π1∆Xt−1 + Π2∆Xt−2 + . . . . . . + Πp−1∆Xt−p+1 + at, (2.18)
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where Π = −I2 +
P
∑

i=1
ϕi and Πj = −

p
∑

i=j+1
ϕi, j = 1, 2, · · · , p− 1. (Details of this

section can be seen in Tsay (2005), Chapter 8) .

2.11 Test for Cointegration in the presence of Gaus-

sian Errors

Once the variables have been classified as integrated of order I(0), I(1), I(2) etc,

we can set up models that lead to stationary relations among the variables,

and where standard inference is possible. As one or more integrated variables

may have a stationary cointegrating relationship, it is of interest to test for the

existence of such a cointegrating relationship. Cointegration is an essential step

to check if our modelling has empirically meaningful relationships. If variables

have different trends processes, they cannot stay in fixed long-run relation to

each other, implying that we cannot model the long-run, and there is usually

no valid base for inference based on standard distributions. If we do not find

co-integration, it is necessary to continue to work with variables in differences

instead. There are a number of cointegration tests in literature, and here we

briefly discuss the Engle and Granger two step procedure and the Johansen’s

procedure, which have the assumption of Gaussian distribution for the errors

{at} in the error correction equation given by

∆Xt = ΠXt−1 + Π1∆Xt−1 + Π2∆Xt−2 + . . . . . . + Πp−1∆Xt−p+1 + at.
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2.11.1 Engle-Granger method

Among a number of alternative methods, the Engle-Granger Method, originally

suggested by Engle & Granger (1987), has received a great deal of attention in

recent years. The main benefit is that the long-run equilibrium relationship (i.e.

the co-integrating regression) can be modeled by a straight forward regression

involving the levels of the variables. If each component variable of an observed

time series vector is subjected to unit root analysis and it is found that all the

variables are integrated of order one, I(1), then they contain a unit root. There

is a possibility that the regression can still be meaningful (ie; not spurious) pro-

vided that the variables co-integrate. In order to find out whether the variables

co-integrate, the least squares regression equation is estimated and the residuals

(the error term) of the regression equation are subjected to unit root analysis. If

the residuals are stationary, that is I (0), it means that the variables under study

co-integrate and have a long-term or equilibrium relationship. Accordingly, the

steps for determining whether two integrated variable co-integrate of the same

order are the following:

• Pre test each variable to determine its order of integration and,

• Estimate the error correction model.

In the two-step estimation procedure, Engle-Granger considered the problem of

testing the null hypothesis of no co-integration between a set of variables by es-

timating the coefficient of a static relationship between economic variables using

the OLS and applying well-known unit root tests to the residuals for stationarity.
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If the integrated variables are found to be integrated of same order, then it must

be tested whether these variables are co-integrated (Johansen (1988)). Rejecting

the null hypothesis of a unit root is the evidence in favour of co-integration.

2.12 Testing for Co-integration Using Johansens

Methodology

Here we discuss the maximum likelihood estimator of the cointegration space

and the likelihood ratio test for testing the rank of Π matrix in the model:

∆Xt = ΠXt−1 + Π1∆Xt−1 + Π2∆Xt−2 + . . . . . . + Πp−1∆Xt−p+1 + at, (2.19)

where {at} is assumed to be iid Gaussian random variables with mean 0 and

covariance matrix Λ. Here Π = βα
′
, then we shall assume that, although ∆Xt

is stationary and {Xt} is non stationary as a vector process, the linear combi-

nation given by βα
′
Xt−1 is stationary. This means that the vector process {Xt}

is cointegrated with cointegration vectors α. The space spanned by α is the

space spanned by the rows of the matrix Π, called the cointegration space. The

estimation of α is performed by regressing ∆Xt and Xt−k on the lagged differ-

ences. From the residuals of these regressions, we can calculate the matrix of

product moments. The estimates of α is the empirical canonical variates of Xt−k

with respect to ∆Xt corrected for the lagged differences (See Johansen (1988)).

For any m ≤ 2, the hypothesis of interest is H0:Rank(Π) ≤ m. Here we cannot

estimate the parameters α and β, since they form an over parametrisation of the
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model, but one can estimate the space spanned by α . The main result about the

estimation of sp(α) is stated below, whose proof may be found in Tsay (2005),

Chapter 8.

Theorem 2.3. The maximum likelihood estimator of the space spanned by α is the space

spanned by the m canonical variates corresponding to the m largest squared canonnical

correlations between the residuals of Xt−k and ∆Xt corrected for the lagged differences

of the process.

For the testing purpose, let H(m) be the null hypothesis which states that the

rank of Π is m. Under H(0), Rank(Π)=0, so that Π = 0, and hence there is

no cointegration. The cointegrating rank determines the number of linearly

independent cointegrating vectors. Johansen (1988) proposes two different like-

lihood ratio tests to perform the test, namely, the trace test and maximum eigen

value test.

2.12.1 The trace Test

The hypothesis of interest is

H0 : Rank(Π) = m versus Ha : Rank(Π) > m.

The test statistic is given by

Jtrace = − (T − p)
k

∑
i=m+1

ln(1− λ̂i), (2.20)
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where T is the sample size and λ̂i is the i-th largest canonical correlation. If

Rank(Π)=m, then λ̂i should be small for i > m and hence Jtrace should be small.

Due to the presence of unit roots, the asymptotic distribution of the test statistic

is not chi-squared, but it is a function of standard Brownian motions. Thus, the

critical values of Jtrace must be obtained via simulation technique.

2.12.2 Maximum Eigen Value Test

The maximum eigen value test, on the other hand tests the null hypothesis of m

co-integrating vectors against the alternative hypothesis of m + 1 co-integrating

vectors. The hypothesis of interest is

H0 : Rank(Π) = m versus Ha : Rank(Π) = m + 1.

The test statistic is given by

Jmax = − (T − p) ln(1− λ̂m+1). (2.21)

Neither of these test statistics will follow a chi square distribution in general;

assymptotic critical values can be found in Johansen & Juselius (1990). Since

the critical values used for the maximum eigenvalue and trace test statistics are

based on a pure unit-root assumption, they will no longer be correct when the

variables in the system are near-unit-root processes. This method assumes that

the co-integrating vector remains constant during the period of study. In reality,

it is possible that the long-run relationships between the underlying variables

change. The reason for this might be technological progress, economic crisis,
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changes in people’s preferences and behaviour accordingly, policy or regime

alteration and institutional development. This is especially the case if the sample

period is long.

2.13 Example for Engle Granger Cointegration method-

ology

This section illustrates the concepts and ideas of cointegration methodology

through a financial example. We consider weekly series of BSE sensex and Nifty

for the period 2011 to 2017 to see whether there exist any long run relationship

between the variables. We transformed both the variables in to their natural

logarithm. The time series data are plotted in Fig 2.1. A descriptive summary
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Figure 2.1: Weekly stock price data

of the data is given in Table 2.1.
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Table 2.1: Summary Statistics of log series

BSE Nifty

Min 9.650 8.439
1st Qu.: 9.879 8.681
Median 10.148 8.954

Mean 10.072 8.879
3rd Qu.: 10.237 9.049

Max 10.426 9.253

To begin with, we need to pre test each variable in order to find the order of

integration. This is needed because cointegration necessitates the variables to

be integrated of same order. This has been tested by Augmented Dickey Fuller

test. The p values obtained for the series are 0.1474 and 0.1523. Since both the p

values are obtained to be large, we cannot reject the null hypothesis of unit root

for the variables. This means that the variables contain unit roots and are non

stationary.

Next we need to test whether the series is I(2), that is whether it is possible

for second order of integration. Fig 2.2 is the plot of the differenced series

and it can been seen that the first differenced series is stationary. Second order

integration is also tested by using augmented Dickey Fuller test. Both the p

values are obtained to be less than 2.2e-16, which also gives the indication that

the differenced series are stationary. Now we can test for the existence of the

long run relationship between the variables, that is, cointegration.

To implement the Engle Granger methodology, we begin by regressing the S &

P BSE sensex and Nifty 50 series on each other and then assess the model fit. If

a cointegrating relationship exists among the variables, then the OLS regression

yields a super consistent estimator of the cointegrating parameters. That is,
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Figure 2.2: Differenced series of log-stock price data

there exist a very strong relationship between the estimated parameters. Taking

the S & P BSE sensex series as the dependent variable and Nifty 50 series as the

independent variable, gives the following regression equation

S&P = 1.5146 + 0.9631 ∗ Ni f ty50.

Table 2.2: Estimates of regression coefficient for BSE series

Coefficients

Estimates Std.Error t value P-value
Intercept 1.5146 0.0279 54.12 <2e-16

Nifty 0.9637 0.0031 305.9 <2e-16
Multiple R-squared: 0.9967

It is seen that the p value of the Nifty 50 series is very small (<2e-16), hence the

regression is statistically significant. Also, the R-Squared value is 0.9967, means

that 99.67% of the variation in S&P Series is explained by Nifty 50 series. The
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regression equation corresponds to NIfty 50 series is

Ni f ty50 = −1.5368 + 1.0341 ∗ S&P.

Next we test the residuals from the regression relationship in order to deter-

Table 2.3: Estimates of regression coefficient for Nifty series

Coefficients

Estimates Std.Error t value P-value
Intercept -1.5368 0.0340 -45.12 <2e-16

S&P 1.0341 0.0033 305.9 <2e-16
Multiple R-squared: 0.9967

mine if the variables actually form a cointegration relation. So we perform an

ADF test for the residuals of the regression equation. The p value obtained

for the ADF test is 0.0029 and 0.00268, implies that the residuals are stationary.

Hence we can conclude that the two variables form a stationary cointegrating

relationship.

In the next step, we have estimated the error correction model for the cointe-

grated series. The estimated ECM for the S&P and Nifty series are given by,

∆Ŝ&P = 0.00003 + 0.949∆N̂i f ty− 0.0340â1t−1,

∆N̂i f ty = 0.00001 + 1.028∆Ŝ&P− 0.0344â2t−1.
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2.14 ECM for a bivariate Cointegrating system

As pointed out in subsection 2.9.1, our main interest in this thesis is a detailed

analysis of bivariate cointegrating models when innovations of their error cor-

rection model follow non Gaussian distributions. In this section, we consider

the general form of a bivariate cointegrating model and its error correction rep-

resentation.

Let us consider an example of bivariate model discussed by Engle & Granger

(1987), where {X1t} and {X2t} are two cointegrating time series defined by

X1t + βX2t = u1t, u1t = u1t−1 + a1t (2.22)

X1t + αX2t = u2t, u2t = φu2t−1 + a2t, |φ| < 1, (2.23)

where {(a1t, a2t)
′}, t=1,2,3,.. is a sequence of iid bivariate random variables.

Reason for the above two series become cointegrated is as follows: The reduced

form for the process in (2.22) and (2.23) will make the variables X1t and X2t

as a linear combination of u1t and u2t and therefore both the series will be

nonstationary (Integrated of order 1). From (2.22) and (2.23) we will get,

X1t =

(
α

α− β

)
u1t −

(
β

α− β

)
u2t (2.24)

and

X2t =

(
1

α− β

)
u2t −

(
1

α− β

)
u1t. (2.25)
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Hence from the above two equations, it is clear that {X1t} and {X2t} are non

stationary as they are linear combinations of a stationary and a non stationary

series. Since {X1t} and {X2t} are integrated series, equation (2.23) describes a

stationary linear combination of the nonstationary variables. Thus the variables

X1t and X2t are cointegrated and hence we can say that they have a long run

relationship in equilibrium. But if φ → 1, then the series are uncorrelated ran-

dom walks and hence they are no longer cointegrated. The model given above

has been studied by Engle & Granger (1987) in detail with possibly correlated

white noise and the model can be transformed in to the error correction form

by subtracting the lagged values from both the sides.

Before studying the properties of the model it is convenient to reparameterise

the model in (2.22) and (2.23) by subtracting the lagged values from both sides.

Let ∆ be a difference operator, on applying ∆ operator on X1t and X2t of both

sides of equations (2.22) and after some algebra we will get,

∆X1t = u1t − βX2t − X1t−1

= u1t−1 + a1t − βX2t − X1t−1

= X1t−1 + βX2t−1 + a1t − βX2t − X1t−1

= βX2t−1 + a1t −
β

α
(u2t − X1t)

= βX2t−1 + a1t −
β

α
(φu2t−1 + a2t − X1t)

= βX2t−1 + a1t −
β

α
(φ (X1t−1 + αX2t−1) + a2t − X1t) .
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That is,

(
1− β

α

)
∆X1t = βX2t−1 (1− φ) +

β

α
X1t−1 (1− φ) + a1t −

β

α
a2t.

On adjusting the terms, we get

∆X1t =
(1− φ)

α− β
β (X1t−1 + αX2t−1) + η1t

= δβZt−1 + η1t,

where Zt−1 = X1,t−1 + αX2,t−1, η1t =
α

(α−β)

(
a1t − β

α a2t

)
, where α is the cointe-

grating parameter. Similarly by using Equation (2.23), we can obtain the second

error correction equation. On subtracting αX2t−1 from both sides of equation

(2.23),we get

X1t + αX2t − αX2t−1 = u2t − αX2t−1.

That is,

α∆X2t = φu2t−1 + a2t − αX2t−1 − X1t

= φ(X1t−1 + αX2t−1) + a2t − αX2t−1 − X1t

= φ(X1t−1 + αX2t−1) + a2t − αX2t−1 − (u1t − βX2t)

= φ(X1t−1 + αX2t−1) + a2t − αX2t−1 − (u1t−1 + a1t − βX2t)

= φ(X1t−1 + αX2t−1) + a2t − αX2t−1 − (X1t−1 + βX2t−1 + a1t − βX2t).

Thus on adjusting the terms,

(α− β)∆X2t = X1t−1(φ− 1) + αX2t−1(φ− 1) + a2t − a1t.
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Hence,

∆X2t = −δ(X1,t−1 + αX2,t−1) + η2t,

where η2t =
1

(α−β) (a2t − a1t) and δ = 1−φ
α−β . Hence the Error Correction repre-

sentation becomes:

∆X1t = δβZt−1 + η1t, (2.26)

∆X2t = −δZt−1 + η2t. (2.27)

The next four Chapters are devoted to the study of bivariate cointegrating mod-

els, when (η1t, η2t) follow some non Gaussian distributions.



Chapter 3

Unit root and cointegration with logistic

errors

3.1 Introduction

The methods for analysing time series are developed by assuming that the ob-

served series is a realization of certain discrete parameter stationary stochastic

process. However, a time series representing a real situation need not be sta-

tionary. Box et al. (2015) argued that certain non-stationary time series can be

converted in to stationary one by successive differences. The study on basic

linear time series reveals that, if the series becomes stationary ARMA, after d−

differences then there are d unit roots in the characteristic polynomial of the

underlying autoregressive model. That is, we are assuming that the non station-

arity was only due to the presence of unit roots. Granger (1981) pointed out that

set of all time series which achieve stationarity after differencing may have lin-

ear combinations which are stationary without differencing. Engle & Granger

(1987) formalized this idea and introduced the concept of co-integration. Since

the problem of cointegration and the unit root are closely related, test for coin-

tegration can be carried out by testing for unit root from the residuals of coin-

tegrating regression series. Kim & Schmidt (1993) considered the finite sample

59
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accuracy(size) of the Dickey Fuller unit root test when the errors were condi-

tionally hetroskedastic. Lee & Tse (1996) examined the performance of Johansen

likelihood ratio tests for cointegration in the presence of GARCH errors.

To the best of our knowledge, apart from the above cointegration tests based on

conditionally hetroskedastic errors, to date, there is no study on cointegration

and error correction model when the innovations are non normal in their distri-

butions. There are several standard non normal distributions in literature and

each distributions may need independent attention.

In this chapter, we study the properties of two cointegrating time series and

model them with independent and identically distributed logistic error vari-

ables. We propose an estimation procedure for cointegrating parameters using

the method of conditional maximum likelihood estimation and then develop

a test procedure for unit root and cointegration when the innovation processes

are generated by iid logistic random variables. Since the underlying distribution

of the test statistic is well-known (asymptotic Chi-square), a bootstrap method

provides a way to account for the distortions caused by the finite sample. To

account that, we perform a bootstrap test based on MLE for the likelihood ratio

test for cointegration.

Rest of the chapter is organized as follows. In Section 3.2, we define a cointegra-

tion model with logistic innovations and study the likelihood based estimation

in Section 3.3. In Sections 3.4 and 3.5 we study the problems of testing of hy-

pothesis on unit root and cointegration. A simulation study is conducted in

Section 3.6 followed by bootstrap method in Section 3.7. To illustrate the appli-

cations of our model, a data analysis is presented in Section 3.8.
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A brief discussion of cointegration model in the presence of Gaussian innovation

is included in Chapter 2, Section 2.12.

3.2 Cointegrating model with logistic innovations

In this Chapter, we discuss a bivariate cointegrating model when the innova-

tions of the corresponding ECM follow iid logistic distributions. That is, we as-

sume that {(η1t, η2t)
′
, t = 1, 2, · · · } in (2.26) and (2.27) are iid bivariate random

variables with independent marginals following symmetric logistic distribution

with probability density function of the form

f (ηit) =
e−ηit

(1 + e−ηit)2 , i = 1, 2,−∞ < ηit < ∞. (3.1)

with E(ηit) = 0 and V(ηit) =
π2

3 . Further details on logistic distribution may be

found in Johnson et al. (1994).

The definition of a bivariate cointegrating model and its properties are discussed

in Section 2.14. The error correction representation given in (2.26) and (2.27) has

three unknown parameters and we estimate them by the method of conditional

maximum likelihood.
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3.3 Conditional MLE for Error Correction Model with

iid logistic errors

Estimation of model parameters is one of the important problems involved in

modelling of Gaussian and non Gaussian time series. Tiku et al. (1999) de-

veloped estimation method for a regression model with autocorrelated errors

following a shift scaled Student’s t distribution. Wong & Bian (2005) extended

the work of Tiku et.al to the case, where the underlying distribution is a gener-

alised logistic distribution using the modified maximum likelihood estimators

since maximum likelihood estimates are intractable. However, in our model we

do not encounter such a problem while estimating the cointegration parameters

using logistic innovations and hence we can proceed with the estimation tech-

nique using the conditional maximum likelihood method. If an explicit form

for the innovation density function is available, then the conditional likelihood

based inference is possible for error correction model given in (2.26) and (2.27).

To obtain the maximum likelihood estimation of parameters in the error correc-

tion model, the innovation random variables are assumed to follow iid logistic

distribution with marginal pdf (3.1). The joint probability density function of

(η1t, η2t) through the ECM (2.26) and (2.27) is given by

f (η1t, η2t) =
e−[(∆x1t−δβzt−1)+(∆x2t+δzt−1)]

(1 + e−(∆x1t−δβzt−1))
2
(1 + e−(∆x2t+δzt−1))

2 , (3.2)

where α, β, δ, x1, x2 are all real. The parameter vector to be estimated are the

elements of θ = (α, β, δ)
′
. The conditional log-likelihood function for the ECM

for specified values of x10, x20 becomes:
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LT(θ) =
n
∑

t=1
{−[(∆x1t − δβzt−1) + (∆x2t + δzt−1)]

−2 log(1 + e−(∆x1t−δβzt−1))− 2 log(1 + e−(∆x2t+δzt−1))},

where z0 = x1,0 + αx2,0. The form of the above log likelihood function suggest

that we have to maximize it by some numerical methods. Hence on differenti-

ating the log-likelihood function with respect to the parameter vector θ, we will

get three equations given by,

∂LT(θ|x10, x20)

∂δ
=

n

∑
t=1
{zt−1(β− 1)− 2βzt−1e−(∆x1t−δβzt−1)

(1 + e−(∆x1t−δβzt−1))

+
2zt−1e−(∆x2t+δzt−1)

(1 + e−(∆x2t+δzt−1))
} = 0. (3.3)

∂LT(θ|x10, x20)

∂α
=

n

∑
t=1
{δx2t−1(β− 1− 2βe−(∆x1t−δβzt−1)

(1 + e−(∆x1t−δβzt−1))

+
2e−(∆x2t+δzt−1)

(1 + e−(∆x2t+δzt−1))
)} = 0. (3.4)

∂LT(θ|x10, x20)

∂β
=

n

∑
t=1
{δzt−1(1−

2e−(∆x1t−δβzt−1)

(1 + e−(∆x1t−δβzt−1))
)} = 0. (3.5)

These equations are solved numerically by using Newton Raphson method and

are illustrated using simulated samples in Table 3.3. An algorithm for the sim-

ulated sample is summarised in Section 3.6.1.

The study of cointegrating models with logistic errors uses the properties of first

order autoregressive models with logistic innovations, which we discuss in the

next Section.
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3.4 Unit root test for AR(1) model with logistic errors

Dickey & Fuller (1979) developed a unit root test for cointegration among non-

stationary time series when the innovations were assumed to follow Gaussian

series. Some other authors have examined the size distortions of this test when

the errors were conditionally hetroskedastic. In particular, our interest is to

analyse the time series in the presence of non-normal innovations, specifically

logistic errors. If the time series are integrated of same order and are non sta-

tionary, then test for cointegration can be carried out by developing a unit root

test for the residual series of either cointegrating regression equation or of the

ECM. If the residuals obtained from the error correction model are stationary,

then the variables could explain a long run behaviour in the equilibrium and

hence they are cointegrated.

Let us consider the first order autoregressive process {Xt} defined by,

Xt = φXt−1 + at, (3.6)

where X0 = 0 and {at} is a sequence of independent logistic random variables

with mean zero. Note that Xt = at + φ at−1 + ... + φt−1 a1 and if |φ| < 1,

Xt converges to a stationary process as t → ∞ with E(Xt) = 0 and V(Xt) =

π2/3(1− φ2). If a realisation (X1,X2,X3,.....,Xn) of a first order autoregressive

time series are given, we are interested in finding an estimator of φ and in tests

of the null hypothesis that H0 : φ = 1. Mostly, the alternative hypothesis of

interest, H1 : φ < 1 is that the time series {Xt} was generated by Xt = φ Xt−1 +

at, where |φ| < 1. One can also consider the alternative hypothesis of interest
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that the time series is generated by Xt = βt+ φ Xt−1+ at, where |φ| < 1. Our

interest is to find φ̂, the maximum likelihood estimator for φ in model (3.6) and

hence shall obtain the test procedure of unit root under the null hypothesis.

Let us suppose n observations, say x1,x2,x3,.....,xn are available for the analysis

and we shall obtain the likelihood function based on n observations generated

by the model (3.6). The joint density function of (a1, a2, a3, .....an) is

n

∏
t=1

e−at

(1 + e−at)2 .

For the model (3.6), the joint probability density function of (x1, x2, · · · , xn|x0)

is
n

∏
t=1

e−(xt−φxt−1)(
1 + e−(xt−φxt−1)

)2 .

The log-likelihood function of φ conditioned on x0 is

LT(φ | x0) = −
n

∑
t=1
{(xt − φxt−1) + 2 log(1 + e−(xt−φxt−1))}.

The critical points of the above log likelihood function can be obtained by setting

the first derivative with respect to φ equal to zero.

∂LT(φ | x0)

∂φ
=

n

∑
t=1

(
xt−1 − 2xt−1

e−(xt−φxt−1)

(1 + e−(xt−φxt−1))

)

=
n

∑
t=1

[xt−1 − 2xt−1Γ], (3.7)

where Γ = e−(xt−φxt−1)

(1+e−(xt−φxt−1))
. The first order partial derivative equation suggest that

the value of φ that maximises log likelihood function must satisfy
n
∑

t=1
[xt−1 −

2xt−1Γ] = 0. This equation can be solved by some numerical technique and if
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any such solution exists specifies a critical point, which is either a maximum or

a minimum. It should be noted that if the partial derivative of second order is

negative, then the critical point will correspond to a maximum.

∂2LT(φ | x0)

∂φ∂φ
′ = −

n

∑
t=1

xt−1

(
2xt−1

e−(xt−φxt−1)

(1 + e−(xt−φxt−1))
2

)

=
n

∑
t=1
−2x2

t−1Γ(1− Γ).

We obtain the estimator of φ numerically by using the Newton Raphson method.

Now let us consider the hypothesis, H0 : φ = 1 against the alternative

H1 : |φ| < 1, that is the time series {Xt} was generated by a stationary model.

Under H0, the maximum value of the likelihood function is

L0 = e
−

n
∑

t=1
(xt−xt−1) n

∏
t=1

(
1 + e

−
n
∑

t=1
(xt−xt−1)

)
and under the alternative, the maxi-

mum value of likelihood function is, L1 = e
−

n
∑

t=1
(xt−φ̂xt−1) n

∏
t=1

(
1 + e

−
n
∑

t=1
(xt−φ̂xt−1)

)
.

For φ̂ ∈ H1, the likelihood ratio test rejects H0 when λ= e
−

n
∑

t=1
(Xt(1−φ̂) n

∏
t=1

(
1+e−(xt−φ̂xt−1)

1+e−(xt−xt−1)

)
is small. Wilks (1938) established that under suitable regularity conditions (that

is, the MLE exist and is unique), the distribution of −2 log λ is asymptotically

Chi-square distribution. The regularity conditions are all verified and hence the

decision of unit root in the model can be made by comparing the likelihood

ratio test statistic

− 2 log λ = −2
n

∑
t=1

[
xt−1(1− φ̂) + 2 log(

1 + e−(xt−φ̂xt−1)

1 + e−(xt−xt−1)
)

]
(3.8)

with the corresponding Chi-squared table value at a given level of significance.

Accordingly, reject H0 if −2 log λ > χ2
α.
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3.5 Test for Cointegration in an ECM

Modern economic theory often suggests that certain pairs of financial or eco-

nomic variables should be linked by some long run economic relationship. One

of the primary interest concerned with such variables is that to test whether the

set of variables are cointegrated. There are several test procedures available for

cointegration when the disturbances in vector error correction model are i.i.d

Gaussian and some authors have examined the performance of these tests by

comparing the sizes and powers of the tests in which the model assumptions

are violated (see for example, Kosapattarapim et al. (2013)). If φ → 1 in the

cointegrating equation, then the series will be a random walk and therefore

model cannot explain any long run behaviour in the observed series. Hence it

is necessary to assure that the variables are all integrated with same order and

are non stationary before we test for the presence of cointegration. Then the

idea of testing the presence of unit root in the auto regression equation (3.6) can

be extended to test the presence of cointegration using a similar approach that

considered in Engle & Granger (1987). That is, once the series are identified to

be unit root nonstationary with same order of integration, we can extend the

test procedure of unit root for testing the presence of cointegration to the resid-

uals of the fitted error correction model. The null hypothesis of unit root φ = 1

can then be identically equal to testing δ = 0 in the error correction model.

Note that, unlike the usual cointegration test that applied to the residuals of

the cointegrating regression, here we apply the test for the residuals from error

correction model. So to test for cointegration, the null hypothesis that has to be

taken is no cointegration. That is, H0 : δ = 0 against the alternative hypothesis
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of H1 : δ 6= 0. Once the model parameters are estimated from the data, we test

the residuals from the error correction model using the test procedure described

below. If the residuals are stationary, (ie; the null hypothesis of no cointegration

is rejected) then we can conclude that the variables are cointegrated.

Assuming that the innovations of the ECM (2.26) and (2.27) follow iid logistic

distribution, the residuals based on conditional MLE are denoted by,

η̂1t = ∆x1t − β̂δ̂ẑt−1 and η̂2t = ∆x2t + δ̂ẑt−1, where ẑt−1 = x1,t−1 + α̂x2,t−1, α̂ and

β̂, δ̂ are the estimates of α, δ and β, respectively.

For the model (2.26), under the null hypothesis, the maximum value of the like-

lihood function is

L0= e
−

n
∑

t=1
∆x1t n

∏
t=1

(1 + e−∆x1t)−2 and under the alternative hypothesis, the maxi-

mum value of the likelihood function is, L1=e
−

n
∑

t=1
(∆x1t−β̂δ̂ẑt−1) n

∏
t=1

(1 + e−(∆x1t−β̂δ̂ẑt−1))−2.

L0

L1
=

e
−

n
∑

t=1
∆x1t n

∏
t=1

(1 + e−∆x1t)
−2

e
−

n
∑

t=1
(∆x1t−β̂δ̂ẑt−1) n

∏
t=1

(1 + e−(∆x1t−β̂δ̂ẑt−1))
−2

= e
−

n
∑

t=1
β̂δ̂ẑt−1

n

∏
t=1

(1 + e−(∆x1t−β̂δ̂ẑt−1))
2

(1 + e−∆x1t)
2 .

Hence the log of likelihood ratio is given by,

−2log
(

L0

L1

)
= −2

[
−

n

∑
t=1

β̂δ̂ẑt−1 + 2
n

∑
t=1

log
(1 + e−(∆x1t−β̂δ̂ẑt−1))

(1 + e−∆x1t)

]
.
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For the model (2.27), under the null, the maximum of the likelihood function is

L0 = e
−

n
∑

t=1
∆x2t n

∏
t=1

(1 + e−∆x2t)−2 and under the alternative, maximum of the like-

lihood function is L1= e
−

n
∑

t=1
(∆x2t+δ̂ẑt−1) n

∏
t=1

(1 + e−(∆x2t+δ̂ẑt−1)−2.

Thus,

L0

L1
=

e
−

n
∑

t=1
∆x2t n

∏
t=1

(
1 + e−∆x2t

)−2

e
−

n
∑

t=1
(∆x2t+δ̂ẑt−1) n

∏
t=1

(
1 + e−(∆x2t+δ̂ẑt−1

)−2

= e
−

n
∑

t=1
δ̂ẑt−1

n

∏
t=1

(
1 + e−(∆x2t+δ̂ẑt−1

)2

(1 + e−∆x2t)
2 .

Hence the likelihood ratio test statistic is given by,

−2log
(

L0

L1

)
= −2

[
n

∑
t=1

δ̂1zt−1 + 2
n

∑
t=1

log
(1 + e−(∆x2t+δ̂1 ẑt−1))

(1 + e−(∆x2t))

]
.

We reject the null hypothesis of no cointegration if the likelihood ratio test statis-

tic

− 2

[
n

∑
t=1

δ̂1zt−1 + 2
n

∑
t=1

log
(1 + e−(∆x2t+δ̂1 ẑt−1))

(1 + e−(∆x2t))

]
(3.9)

or

2

[
−

n

∑
t=1

β̂δ̂ẑt−1 + 2
n

∑
t=1

log
(1 + e−(∆x1t−β̂δ̂ẑt−1))

(1 + e−∆x1t)

]
(3.10)

is too large or too small based on Chi-square critical value. As our study deals

with two time series, we have two error correction models that represent the

cointegrating relationship. Though both the ECM have a unique representation

for the long run cointegrating relationship, which is represented by the term zt,
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the null hypothesis of no cointegration will be rejected if the above test statistic

exceeds the Chi-square critical value. If we can reject the null hypothesis of no

cointegration, then there exist a long run and a short run relationship between

the variables X1t and X2t.

3.6 Simulation Study

As the estimating equations (3.3), (3.4), (3.5) and (3.7) do not admit explicit solu-

tions, we analyse the performance of the above methods by simulation. Hence

we carry out a simulation study to understand the performance of the estimator

and test statistic described in Sections 3.3 to 3.5 for various sample sizes and

for different specified values of the model parameters. We used the method of

Newton Raphson to perform the numerical calculations in the simulation study.

Simulation experiments are conducted with the help of the software "Mathe-

matica".

3.6.1 Simulation result for logistic errors

For the simulation purpose, we first generate the innovation random variable

from a logistic distribution. Then for specified values of the model parameter,

we simulated the sequence {xt}, t=1,2,...,n using the relation described in (3.6).

Based on this sample, we obtain the maximum likelihood estimates of φ by solv-

ing the score function given in Section 3.4. We used sample autocorrelation as

the initial estimate while solving the log likelihood equations numerically. For

the given values of the model parameter, we repeated the experiment 100 times
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for computing the estimates and then averaged them over the repetitions. Next

we compute the likelihood ratio test statistic given in equation (3.8) for vari-

ous sample sizes and for different parameter values. Finally we compute the

number of rejections in 500 trials for testing the null hypothesis of interest. The

numerical computations are carried out for various value of the model parame-

ter and are summarised in Tables 3.1 and 3.2. Next to evaluate the accuracy of

Table 3.1: The average estimates and the corresponding root mean squares
errors (RMSE) of the MLE

Sample size True value φ MLE φ̂ RMSE

100 -0.8 -0.7766 0.0706
-0.5 -0.5006 0.0883
-0.3 -0.2951 0.0874
0.2 0.1797 0.0977
0.3 0.2781 0.0917
0.6 0.5699 0.0829
0.8 0.8832 0.0708

300 -0.8 -0.7921 0.0354
-0.5 -0.5007 0.0456
-0.3 -0.2874 0.0547
0.2 0.2006 0.0492
0.3 0.3008 0.0571
0.6 0.6007 0.0425
0.8 0.7944 0.0341

500 -0.8 -0.7949 0.0477
-0.5 -0.4995 0.0375
-0.3 -0.2989 0.0446
0.2 0.1967 0.0394
0.3 0.3031 0.0404
0.6 0.5977 0.0357
0.8 0.7929 0.0271

the estimation and testing procedure of the error correction model, a simulation

study is carried out for different sample sizes and for different values of the

model parameters. For the study, we generate the error correction model using

(2.26) and (2.27). Then we obtained the MLE of the parameters by solving the

likelihood equations in (3.3), (3.4) and (3.5). We then repeated the experiment 50
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Table 3.2: No of rejections in 500 trials of the hypothesis H0 : φ = 1 against
H1 : |φ| < 1 using the test statistic given in (3.8) for different values of φ

Sample size 50 100 250 350

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

φ =-.50 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500
φ =-.20 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500
φ = .80 218 327 411 460 466 493 499 500 500 500 500 500 500 500 500 500
φ = .85 122 216 312 389 376 448 482 496 500 500 500 500 500 500 500 500
φ = .90 59 133 197 283 197 311 399 464 500 500 500 500 500 500 500 500
φ = .95 56 103 167 273 53 108 167 277 285 388 439 480 482 496 500 500

times for computing the estimates and then averaged them over the repetitions.

After the parameters of ECM being estimated, we test for cointegration using

the residuals from the error correction model. We use the test statistic given

in (3.9) and (3.10) to compute the number of rejections of the null hypothesis

under the various alternatives. In practical situations, we could reject the null

hypothesis of no cointegration based on either of the two test statistics. The

numerical computations for estimation and testing are carried out for various

values of the model parameters and are summarised in Tables 3.3, 3.4 and 3.5.

Note that from Table 3.1 and 3.3, for series of length 100 and 300, estimates

are reasonably satisfactory and become more accurate with increasing sample

size. From Table 3.2, it is evident that as φ becomes closer to 1, the number of

rejections of the null hypothesis of unit root becomes smaller. For example, in a

length of 50 series, the hypothesis H0 : φ = 0.95 was rejected 56 times at the 0.01

significance level, while it was rejected 218 times when φ was 0.8. Hence we

claim that the derived test statistic is powerful for testing the presence of unit

root in an observed nonstationary time series. From Tables 3.4 and 3.5, it is seen

that for large values of φ or as φ increases to 1, the number of rejections of the

null hypothesis in 500 trial decreases.

Summary of the Algorithms used for the simulation results are given below.



Unit root and cointegration with Logistic Errors 73

Table 3.3: The average estimates and the corresponding root mean squared
errors of MLE

Sample Size True values MLE

δ β α δ̂ β̂ α̂

300 2.6 1.5 1.8 2.7080(0.3125) 1.4965(0.0156) 1.8016(0.0049)
0.5 2 3 0.5080(0.0851) 1.9600(0.2108) 3.0096(0.0258)
0.3 2.5 3.5 0.3178(0.0683) 2.4966(0.1028) 3.5290(0.0547)
0.2 3 4 0.1863(0.0588) 2.9448(0.1667) 4.0270(0.0837)
0.1 3 4 0.1018(0.0429) 2.7962(0.1550) 4.0290(0.2978)

500 2.6 1.5 1.8 2.6777(0.2319) 1.5009(0.0108) 1.8040(0.0275)
0.5 2 3 0.5133(0.0624) 1.9915(0.1727) 3.0351(0.0161)
0.3 2.5 3.5 0.3107(0.0537) 2.4892(0.0507) 3.5116(0.0269)
0.2 3 4 0.2037(0.0488) 3.0027(0.0643) 4.0179(0.0451)
0.1 3 4 0.1048(0.0390) 2.9740(0.1498) 4.0560(0.1380)

700 2.6 1.5 1.8 2.6651(0.1182) 1.5003(0.0068) 1.8006(0.0019)
0.5 2 3 0.5075(0.0522) 2.0208(0.1477) 3.0244(0.0113)
0.3 2.5 3.5 0.3035(0.0391) 2.4976(0.0418) 3.5072(0.0194)
0.2 3 4 0.1904(0.0379) 2.9789(0.0619) 4.0079(0.0421)
0.1 3 4 0.1047(0.0260) 3.0078(0.0948) 4.0182(0.0653)

Table 3.4: No of rejections in 500 trials of the hypothesis H0 : φ = 1 ( δ=0)
against the alternative of |φ| < 1( δ 6= 0) using the first ECM

ECM-1

sample size 50 100

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

φ=0.5 500 500 500 500 500 500 500 500
φ=0.8 450 462 472 475 486 489 491 492
φ=0.9 413 429 441 452 470 475 480 492
φ=.95 220 250 270 285 295 300 325 347

Table 3.5: No of rejections in 500 trials of the hypothesis H0 : φ = 1 ( δ=0)
against the alternative of φ < 1( δ 6= 0) using the second ECM

ECM-2

Sample size 50 100

0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

φ=0.5 500 500 500 500 500 500 500 500
φ=0.8 477 488 489 491 484 490 491 496
φ=0.9 453 465 477 483 476 480 484 490
φ=.95 259 270 280 280 370 320 340 363
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Algorithm 1: Algorithm for Table 3.1
1 Set x0 and φ, for some sample of size n.
2 Draw samples {at}, from logistic distribution.
3 Generate xt using xt = φxt−1 + at, t = 1, 2, ...n
4 Choose the initial value of φ as φ0 and obtain φ̂, using the method of

maximum likelihood.
5 Repeat Steps 2 to 4, say 100 times.
6 Choose the value of φ̂ as the averages of φ̂ obtained in step 4.

Algorithm 2: Algorithm for Table 3.2
1 Set x0 and φ, for some sample of size n.
2 Draw samples {at}, from logistic distribution.
3 Generate xt using xt = φxt−1 + at, t = 1, 2, ...n
4 Choose the initial value of φ as φ0 and obtain φ̂, using the method of

maximum likelihood.
5 Obtain the LRT in Equation (3.8) for the simulated data.
6 Repeat Steps 2 to 5, say 500 times.
7 Count and record the number of rejections of unit root hypothesis in 500

trials.

Algorithm 3: Algorithm for Table 3.3
1 Set x10, x20, α, β and δ, for some sample of size n.
2 Draw samples (η1t, η1t) using Logistic distribution.
3 Draw samples from the ECM in Equations (2.26) and (2.27).
4 Choose the initial value as α0, β0 and δ0. Solve Equations (3.3) to (3.5) for

obtaining the maximum likelihood estimates α̂, β̂ and δ̂.
5 Repeat Steps 2 to 4 for 50 times.
6 Set the values of α̂, β̂, δ̂ as the averages of α̂, β̂ and δ̂ obtained in step 4.

Algorithm 4: Algorithm for Tables 3.4 and 3.5
1 Set x10, x20, α, β and δ, for some sample of size n.
2 Draw samples (η1t, η1t) using Logistic distribution.
3 Draw samples from the ECM in Equations (2.26) and (2.27).
4 Choose the initial value as α0, β0 and δ0. Solve Equations (3.3) to (3.5) for

obtaining the maximum likelihood estimates α̂, β̂ and δ̂.
5 Obtain the LRT in Equations (3.9) and (3.10) for the simulated data.
6 Repeat Steps 2 to 5 for 500 times.
7 Count and record the number of rejections of the hypothesis

H0 : φ = 1(δ=0) against the alternative of |φ| < 1( δ 6= 0) in 500 trials.



Unit root and cointegration with Logistic Errors 75

3.7 Bootstrap Method

In small sample situations, the asymptotic likelihood ratio test discussed in the

earlier sections may not be suitable for determining the cointegrating relation-

ship between two or more time series. The theoretical chi-square distribution

for likelihood ratio test will provide much better results if the sample size is

reasonably large. Hence for finite sample situations, we can use a parametric

bootstrap approach in which we constructs the distribution of the likelihood

ratio test statistic empirically. So we provide a Monte Carlo simulation to com-

pare the performance of bootstrap testing with the usual method based on an

asymptotic approximation of the distribution of the test statistic.

In this section we address the accuracy of a bootstrap algorithm in small sam-

ples for testing the presence of cointegration in an ECM. In recent years, there

has been an increasing interest in parametric and non parametric bootstrap in-

ference for econometric and financial time series. The technique of parametric

bootstrap suggest estimation of the sampling distribution of the statistic using

random sampling methods and it may also be used for constructing tests of

hypothesis. Here we provide a simulation based parametric bootstrap method

that involves simulating data sets using the maximum likelihood estimates and

hence computing the likelihood ratio test statistic for each available simulated

data set. The method involves 4 steps.

As a starting point, we estimate the parameters of the cointegration model using

the conditional maximum likelihood estimation method and then obtain the

asymptotic likelihood ratio test statistic for the real data. Secondly, we generate



Unit root and cointegration with Logistic Errors 76

a bootstrap sample using the maximum likelihood estimates and then compute

the likelihood ratio test statistic for the bootstrap sample. Thirdly, we repeat

the above step 10000 times which yield an estimate of the distribution of the

likelihood ratio test statistic. Finally, we compute the empirical quantiles of the

test statistic and then take the decision on the null hypothesis of no cointegration

by comparing the calculated critical values with the calculated likelihood ratio

test value.

A summary of the algorithm used for bootstrap sampling is given below.

Algorithm 5: Parametric Bootstrap
1 Assuming data sets x1 = (x11, x12, · · · · · · , x1n) , x2 = (x21, x22, · · · · · · , x2n)

are available.
2 Assume that the innovation random variable’s (η1t, η2t) comes from a iid

logistic distribution given by the pdf

fθ(η1t, η2t) =
e−[(∆x1t−δβzt−1)+(∆x2t+δzt−1)]

(1 + e−(∆x1t−δβzt−1))
2
(1 + e−(∆x2t+δzt−1))

2 ,

described by a set of parameters θ = (α, β, δ) .
3 Estimate θ by using maximum likelihood, obtaining the estimate θ̂.

4 Obtain the LRT, −2log
(

L0
L1

)
in Equation (3.9) and (3.10) for the data.

5 Fix the number of bootstrap re-samples, N=10000.
6 Draw bootstrap data x∗1 , x∗2 set of size n from fθ̂(η1t, η2t).
7 Estimate θ from x∗1 , x∗2 . Call the estimate θ̂∗.

8 Obtain the LRT, −2log
(

L0
L1

)
for the simulated data.

9 Repeat steps 6 to 8, 10000 times. Compute the empirical quantiles of the test
statistic.

We analyse a real data set for testing the presence of cointegration by our pro-

posed model in section 3.8.
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3.8 Data Analysis

In this section, we illustrate the analysis of cointegration with logistic innova-

tions using the real data set. The data set consists of monthly observations on

consumption and export of natural rubber (Tonnes) collected from "The Rubber

Board", Ministry of Commerce and Industry, Govt. of India, Kottayam. The

Figure 3.1 provides the time series plot of the log transformed data and they

indicates that the time series are nonstationary.

(a) Time plot of consumption series (b) Time plot of Export series

Figure 3.1: Time Series plots

First we tested the data for cointegration with normally distributed errors using

the Johansen test for cointegration. For that, we have tested whether the time

series are non stationary or not by using the Augmented Dickey Fuller test.

Both the p-values obtained for ADF test are 0.112 and 0.213, implying that the

variables are non stationary. In Chapter 2, we have seen that, Johansen’s trace

test tests the null hypothesis of m cointegrating vectors against the alternative

hypothesis of n(>m) cointegrating vectors. If m=0, it means that there is no
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relationship among the variables, that is stationary. The maximum eigen value

test tests the null hypothesis of m cointegrating vectors against the alternative

of (m + 1) cointegrating vectors. Table 3.6 and 3.7 show the Johansen test of

cointegration for normally distributed errors. The values given in brackets are

the table values corresponding to 10%, 5% and 1% level of significance.

Table 3.6: Johansen Trace test

test 10% 5% 1%

m=1 4.9 (7.52) (9.24) (12.97)

m=0 32.29 (17.85) (19.96) (24.6)

From the tables, it can be seen that in both cases the null hypothesis of one coin-

tegrating vector is not rejected. This implies that, cointegration exist between

the rubber consumption and export series.

Table 3.7: Johansen Eigen Value test

test value 10% 5% 1%

m=1 4.9 (7.52) (9.24) (12.97)

m=0 27.39 (13.75) (15.67) (20.2)

The parameter estimates are obtained as α̂ = −1.33, β̂ = −0.0059 and δ̂ =

−0.203. x1t − 1.33x2t is the estimated cointegrating relationship using the Jo-

hansen test. Finally to evaluate the adequacy of the model using normal errors,

we checked whether the residual series obtained from the fitted model follows

normal distribution. But the assumption of normality is rejected for the resid-

ual series, hence we tested for cointegration with errors generated by logistic

innovations. Although the plot seems to be nonstationary, it is important to test
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whether a series is stationary or not before we test for cointegration. Hence we

performed a unit root test developed for logistic error variables to the data set

in order to test whether the series is stationary or not.

The p-values obtained for testing the unit root for consumption and export se-

ries are obtained as 0.9928 and 0.9723 respectively. Since both the p-values ob-

tained are very large, we do no reject the null hypothesis of unit root and hence

the series meets cointegration test condition. Next we carry out a maximum

likelihood estimation as described in Section 3.3 in order to find the parameter

estimates of an error correction model of order 1. The parameter estimates are

obtained as α̂ = −1.43, β̂ = −0.0158 and δ̂ = −0.1542. Thus the estimated

cointegrating relationship, is x1t − 1.43x2t, where {x1t} is the month-wise rub-

ber consumption series and {x2t} is the month-wise rubber export series. The

residuals from the error correction model are obtained as

ξ1t = ∆x1t − δ̂β̂ẑt−1

ξ2t = ∆x2t + δ̂β̂ẑt−1, t = 1, 2, 3, .....

Using the parameter estimates of the ECM, we tested whether the residuals

follow a logistic distribution using Kolmogorov-Smirnov test. The p-values ob-

tained for the series are 0.965 and 0.303 respectively, which indicate that logistic

distribution is suitable for the residuals. The probability-probability plots of the

residuals are shown in Figure 3.2 also confirm the result.

Finally we performed a bootstrap algorithm for testing cointegration using the

error correction model with logistic errors. The bootstrap values and asymptotic
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(a) PP- plot of residuals of Consumption series (b) PP- plot of residuals of Export series

Figure 3.2: Monthly Rubber data

values of the two sided hypothesis, H0 : δ = 0 against H1 : δ 6= 0 at a given level

of significance are given in Table 3.8.

Table 3.8: Empirical levels for bootstrap and asymptotic tests for the two sided
testing of hypothesis H0 : δ = 0 against H1 : δ 6= 0.

Nominal Level 0.2 0.1 0.05
Bootstrap values 0.024 2.719 0.0005 3.849 -0.095 5.146

Asymptotic values 0.016 2.710 0.0039 3.840 0.009 5.020

The value of the test statistic obtained for the error correction equation of import

series is 0.000219. Thus from Table 3.8 we can conclude that we reject the null hy-

pothesis of no cointegration at 10 percent level of significance using a bootstrap

test and asymptotic test, implying that the residuals from the ECM are station-

ary. If the null hypothesis of no cointegration is rejected, then the cointegrating

vector parameter estimate provides an estimate of a long run relationship. That

is, x1t − 1.43x2t is the cointegrating relationship and the cointegrated vector is

[1,−1.43]
′
.

Thus in both situations, that is with normal and logistic errors, the existence

of cointegration relationship in the data is identified. But the residual series
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obtained from the cointegrating regression using normal errors rejects the as-

sumption of normality. Hence we proceed with the vector autoregression model

that allows for logistic innovations to arrive at a right conclusion.

The results of this Chapter are published in Nimitha & Balakrishna (2018b).





Chapter 4

Modelling of Cointegration with bivariate

Student t innovation

4.1 Introduction

Our focus in the previous Chapter was modelling of cointegration in the pres-

ence of logistic errors. In this Chapter, we focus on the cointegration model

when the errors are generated by a bivariate Student t distribution. The Student

t distribution can be a useful theoretical tool in the area of applied statistics. The

work by Boswijk et al. (1999) considers Student’s t distribution with 3 degrees of

freedom, a truncated Cauchy distribution, Gaussian mixtures and others. Tiku

et al. (2000) discusses an autoregressive models in time series with non normal

innovations represented by a member of a wide family of symmetric Student

t distributions. Creal et al. (2011) introduced the multivariate Student t gen-

eralised autoregressive score model for volatilities and correlations, in which

the multivariate normal distribution is a special case. Here, we propose the

modelling of two cointegrating time series when the innovations of its ECM are

generated from a bivariate student t distribution.

The rest of the chapter is organised as follows. Section 4.2 briefly discusses the

cointegration model with bivariate Student t errors. We discuss the conditional

83
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maximum likelihood estimation procedure in Section 4.3. Section 4.4 deals with

the problems of testing of hypothesis on unit root and cointegration. To evalu-

ate the accuracy of the estimators and test statistic, we carried out a simulation

study in Section 4.5. Finally, an application of the proposed model is illustrated

in Section 4.6.

4.2 Model Description

Let us assume that {X1t} and {X2t} be two non stationary cointegrating time

series. We use the error correction representation, (2.26) and (2.27) given in

Chapter 2 for defining the cointegrating model with Student t distributed er-

rors. The error correction representation with lag 1 is given by :

∆X1t = δβZt−1 + η1t (4.1)

∆X2t = −δZt−1 + η2t, (4.2)

where Zt−1 = X1,t−1 + αX2,t−1.

Assume that the error variables ηt = (η1t, η2t)
′

in (4.1) and (4.2) follow a bivari-

ate Student t distribution with the probability density function (pdf) given by,

f (η1t, η2t) =
1

2π
√

1− ρ2

[
1 +

1
v(1− ρ2)

(
η2

1t
− 2ρη1tη2t + η2

2t

)]− (ν+2)
2

,

where ν > 0,−1 < ρ < 1, x, y > 0.

It should be noted that both the marginal distributions are Student t with same
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degrees of freedom ν ( see Balakrishnan & Lai (2009)) with the pdf

f (ηit) =
Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

)(1 +
(ηit)

2

ν

)−( ν+1
2 )

,−∞ < ηit < ∞, i = 1, 2.

The above bivariate distribution can be obtained by the transformation,

η =

(√
s

ν

)−1

Z + µ, (4.3)

where η = (η1t, η1t), Z is a bivariate normal random variable with mean 0 and

dispersion matrix ∑ =

 1 ρ

ρ 1

, s ∼ χ2
ν. The case with ν=1 reduces to a

bivariate Cauchy distribution.

4.3 Conditional MLE for ECM with bivariate student

t errors

In this section, we focus on the problem of maximum likelihood estimation

of cointegrated model with bivariate Student t distributed errors. When there

exist an explicit density function for the innovation random variables, one can

use the conditional maximum likelihood estimation for estimating the model

parameters. Let the parameter vector to be estimated are the elements of θ =

(ρ, α, β, δ, ν)
′
. The explicit form of the conditional log likelihood function for

θ = (ρ, α, β, δ, ν)
′
, given (x10, x20) = (0, 0) based on sample (x1t, x2t), t = 1, 2, · · ·
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of size n is given by ,

LT(θ) =− n log
(

1− ρ2
)1/2

− (ν + 2)
2

n

∑
t=1

log
(

1 +
1

ν (1− ρ2)

[(
η2

1t
− 2ρη1tη2t + η2

2t

)])
,

where (x1t, x2t) are obtained from the equations (4.1) and (4.2). The form of

the log likelihood function suggest that we have to maximise the log likelihood

function by using some numerical methods. Here we obtain the parameter es-

timates by using a two step estimation procedure. First we obtain the estimates

of ρ, α, β, δ by solving the respective score equations. Then we use the profile

likelihood technique for estimating the parameter ν. That is, the estimate of

ν is obtained by maximizing the log likelihood function using the maximum

likelihood estimates of ρ, α, β, δ. The discussion on profile likelihood and its

asymptotic properties can be seen in Murphy & Van der Vaart (2000).

On differentiating the log-likelihood function with respect to the parameters

ρ, α, β, δ, we will get four equations given by,

∂ log l
∂ρ

= 0⇒ n
ρ

(1− ρ2)
−

n

∑
t=1

(ν + 2)

[
ρ

(
η2

1t
−2ρη1tη2t+η2

2t

)
ν(1−ρ2)2 − η1tη2t

ν(1−ρ2)

]
(

1 + 1
ν(1−ρ2)

[(
η2

1t
− 2ρη1tη2t + η2

2t

)]) = 0. (4.4)

∂ log l
∂δ

= 0⇒
n

∑
t=1

(ν + 2) [2zt−1A(θ)(β + ρ)− 2zt−1B(θ)(1 + βρ)]

2ν(1− ρ2)

[
1 + (A(θ))2+(B(θ))−2ρA(θ)B(θ)

ν(1−ρ̂2)

] = 0. (4.5)

∂ log l
∂β

= 0⇒
n

∑
t=1

(ν + 2) [2zt−1δA(θ)− 2zt−1δρB(θ)]

2ν(1− ρ2)

[
1 + (A(θ))2+(B(θ))−2ρA(θ)B(θ)

ν(1−ρ2)

] = 0. (4.6)
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∂ log l
∂α

= 0⇒
n

∑
t=1

(ν + 2) [2x2t−1δ(β + ρ)A(θ) + 2x2t−1δ(1 + βρ)B(θ)]

2ν(1− ρ2)

[
1 + (A(θ))2+(B(θ))−2ρA(θ)B(θ)

ν(1−ρ2)

] = 0,

(4.7)

where A(θ) = ∆x1t − δβzt−1, B(θ) = ∆x2t + δzt−1. Since there does not exist an-

alytically closed form expressions for the estimators, we have to maximize the

score functions by using some numerical methods. We have solved these equa-

tions by using Newton Raphson method for obtaining the parameter estimates.

Let the estimates of ρ, α ,β ,δ be ρ̂, α̂, β̂, δ̂ respectively. Once the model param-

eters are obtained, the profile likelihood function L
(
ν, α̂, β̂, δ̂, ρ̂

)
is maximized

over ν to get ν̂. The profile log likelihood function is given by,

LT(θ) =− n log (1− ρ̂2)
1
2

− (ν + 2)
2

n

∑
t=1

log
(

1 +
1

ν(1− ρ̂2)

(
A(θ̂)

2 − 2ρA(θ̂)B(θ̂) + B(θ̂)
2
))

,

(4.8)

where A(θ̂) = ∆x1t− δ̂β̂ẑt−1, B(θ̂) = ∆x2t + δ̂ẑt−1. Solution of the above equation

is obtained numerically, which yields the estimates of the parameter ν.

The properties of first order autoregressive models with students t distributed

errors is needed to develop a test procedure for cointegration model in (4.1) and

(4.2), which we discuss in Section 4.4.
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4.4 Unit root test for AR(1) model with Student t er-

rors

Here, our interest is to analyse the first order autoregressive equation in the

presence of Students t errors. We consider the first order autoregressive process

{Xt} with the errors {at} is a sequence of Student t random variables.

i.e;

Xt = φXt−1 + at, (4.9)

where X0 = 0. Our interest is to find the maximum likelihood estimator of φ,

say φ̂ and the test procedure of unit root under the hypothesis H0 : φ = 1 against

H1 : |φ| < 1. Suppose n observations are available for the analysis and we shall

obtain the likelihood function based on n observations generated by the model

(4.9). The joint density function of (a1, a2 · · · · · · , an) is given by,

n

∏
t=1

Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

)(1 +
a2

t
ν

)−( ν+1
2 )

.

For the model (4.9), the joint probability density function of (x1, x2, · · · , xn|x0)

is
n

∏
t=1

Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

)(1 +
(xt − φxt−1)

2

ν

)−( ν+1
2 )

.

And the conditional likelihood function is,

L (φ | x0) =

 Γ
(

ν+1
2

)
√

νπΓ
(

ν
2

)
n

n

∏
t=1

(
1 +

(xt − φxt−1)
2

ν

)−( ν+1
2 )

.
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The corresponding log-likelihood function is,

LT (φ | x0) =−
(

ν + 1
2

) n

∑
t=1

log

(
1 +

(xt − φxt−1)
2

ν

)

+ n log Γ
(

ν + 1
2

)
− n log

√
νπ − n log Γ

(ν

2

)
(4.10)

The critical points of the above log likelihood function can be obtained by solv-

ing the score equations given by,

∂L(φ | x0)

∂φ
= 0⇒

(
ν + 1

2

) T

∑
t=1

2xt−1
(xt − φxt−1)

ν

(
1 + (xt−φxt−1)

2

ν

) = 0 (4.11)

The above equation can be solved by numerically in order to obtain the estimate

of φ. We obtain the estimator of φ numerically by using the Newton Raphson

method. Once the estimate of φ is obtained, then the profile log likelihood

function

LT
(
φ̂ | x0

)
=−

(
ν + 1

2

) n

∑
t=1

log

(
1 +

(
xt − φ̂xt−1

)2

ν

)

+ n log Γ
(

ν + 1
2

)
− n log

√
νπ − n log Γ

(ν

2

)
(4.12)

is maximized over ν to get ν̂. We maximize the above profile log likelihood

function by using numerical methods for obtaining the estimate of ν.

Now let us consider the hypothesis H0 : φ = 1 against the alternative H1 : |φ| <

1, that is the time series {Xt} was generated by a stationary model. Under H0,
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the maximum value of the likelihood function is

L0 =

 Γ
(

ν̂+1
2

)
√

ν̂πΓ
(

ν̂
2

)
n

n

∏
t=1

(
1 +

(xt − xt−1)
2

ν̂

)−( ν̂+1
2 )

and under the alternative, the maximum value of likelihood function is,

L1 =

 Γ
(

ν̂+1
2

)
√

ν̂πΓ
(

ν̂
2

)
n

n

∏
t=1

(
1 +

(
xt − φ̂xt−1

)2

ν̂

)−( ν̂+1
2 )

.

Hence, for φ̂ ∈ H1, the likelihood ratio test rejects H0 when

−2 log λ = −2 log
n

∏
t=1

1 + (xt−φ̂xt−1)
2

ν̂

1 + (xt−xt−1)
2

ν̂


( ν̂+1

2 )

= −2
(

ν̂ + 1
2

)( n

∑
t=1

Log

(
1 +

(
xt − φ̂xt−1

)2

ν̂

)
−

n

∑
t=1

log

(
1 +

(xt − xt−1)
2

ν̂

))
.

(4.13)

We reject H0 if −2Logλ is either too small or too large.

4.4.1 Test for cointegration

If φ → 1 in (4.9) , then the time series contains a unit root. Here one can

extend the idea of testing the presence of unit root for testing the presence of

cointegration using the approach discussed in Engle & Granger (1987). First,

we have to confirm all the variables are integrated of same order and are non

stationary in nature. Once the series are confirmed to be non stationary with

same order of integration, we can test for the presence of cointegration by using
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the residuals from the fitted error correction model. Here the hypothesis of

interest for testing the cointegration is, H0 : δ = 0 against δ 6= 0. Once we

obtain the parameter estimates using the data, we tests the residuals from the

error correction model using the test procedure described below. We denote

the residuals from the error correction model (4.1) and (4.2) by, η̂1t = ∆x1t −

β̂δ̂ẑt−1 and η̂2t = ∆x2t + δ̂ẑt−1, where ẑt−1 = x1,t−1 + α̂x2,t−1, α̂ and β̂, δ̂ are the

parameter estimates of α, δ and β . And, if the residuals obtained from the ECM

are stationary, (ie; the null hypothesis of no cointegration is rejected) then we

can conclude that the variables will be cointegrated.

Now we will obtain the likelihood ratio test statistic for testing the presence

of cointegration in an error correction model. Under the null hypothesis, the

maximum value of the likelihood function is,

L0 =
n

∏
t=1

1√
1− ρ̂2

0

(
1 +

1
ν̂(1− ρ̂2

0)

(
∆x2

1t − 2ρ̂0∆x1t∆x2t + ∆x2
2t

))− (ν̂+2)
2

,

and under the alternative hypothesis, the maximum value of the likelihood func-

tion is,

L1 =
n

∏
t=1

1√
1− ρ̂2

1

(
1

ν̂(1− ρ̂2
1)

((
A1(θ̂)

)2 − 2ρ̂1A1(θ̂)B1(θ̂) +
(

B1(θ̂)
)2
))− (ν̂+2)

2

.
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The likelihood ratio test statistic obtained is given by,

n log

[
1− ρ̂2

0

1− ρ̂2
1

]

− (ν̂ + 2)
n

∑
t=1

log

1 + 1
ν̂(1−ρ̂2

1)

((
A1(θ̂)

)2 − 2ρ̂1A1(θ̂)B1(θ̂) +
(

B1(θ̂)
)2
)

1 + 1
ν̂(1−ρ̂2

0)

(
∆x2

1t − 2ρ̂0∆x1t∆x2t + ∆x2
2t
)

.

(4.14)

Here we reject the null hypothesis of no cointegration if the likelihood ratio tests

statistic is large in absolute.

To evaluate the performance of the estimators and test statistic, a simulation

study is carried out, which is illustrated in Section 4.5.

4.5 Simulation study for t distributed errors

First we carry out a simulation study for the first order autoregressive model

with Student t distributed errors. For the study, we generate the innovation

random variable from a Student t distribution. Then for specified values of the

model parameter, we simulated the sequence {xt}, t=1,2,...,n using the relation

described in (4.9). Based on this sample, we obtain the maximum likelihood

estimates by solving the equation (4.11). For the given values of the model pa-

rameter, we repeated the experiment 100 times for computing the estimates and

then averaged them over the repetitions. Using the estimate of φ, we obtained

the maximum likelihood estimate of ν by maximizing the profile log likelihood

function. Next we compute the likelihood ratio test statistic in equation (4.13)
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for various sample sizes and for different parameter values. Finally we compute

the number of rejections in 500 trials for testing the null hypothesis of interest.

The numerical computations are carried out for various value of the model pa-

rameter and are summarised in Tables 4.1 to 4.4.

Table 4.1: The average estimates and the corresponding root mean squares
errors of the MLE for ν = 3

n φ φ̂ ν̂

300 -0.5 -0.5058(0.0017) 3.0882(0.3451)
-0.3 -0.2857(0.0038) 3.1144(0.3380)
0.3 0.8991(0.0026) 3.1082(0.2145)
0.5 0.4994(0.0022) 3.0703(0.2514)
0.7 0.6929(0.0020) 3.0560(0.3270)
0.9 0.8941(0.0007) 3.1036(0.2802)

500 -0.5 -0.4930(0.0009) 3.0564(0.1084)
-0.3 -0.3002(0.0012) 3.0130(0.1031)
0.3 0.2992(0.0014) 3.0976(0.1511)
0.5 0.5011(0.0012) 3.0391(0.1563)
0.7 0.6987(0.0008) 3.0473(0.1489)
0.9 0.9020(0.0003) 3.0724(0.1832)

Table 4.2: The average estimates and the corresponding root mean squares
errors of the MLE for ν = 4

n φ φ̂ ν̂

300 -0.5 -0.5055(0.0011) 4.0858(0.2152)
-0.3 -0.3048(0.0037) 4.0941(0.3121)
0.3 0.3005(0.0013) 4.0702(0.2112)
0.5 0.4859(0.0021) 4.1221(0.1999)
0.7 0.6999(0.0024) 4.0927(0.2100)
0.9 0.8980(0.0006) 4.0854(0.1221)

500 -0.5 -0.4975(0.0015) 4.0521(0.1132)
-0.3 -0.2973(0.0016) 4.0139(0.1523)
0.3 0.2932(0.0008) 4.0891(0.1021)
0.5 0.4926(0.0019) 4.1020 (0.1989)
0.7 0.7004(0.0013) 4.0698(0.1654)
0.9 0.8996(0.0003) 4.0541(0.0989)

Next we carried out a simulation study to evaluate the performance of the error

correction model based on bivariate Student t distributed errors. For the study,

we generate a sample of size, say n, from the bivariate Student t distribution
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Table 4.3: No of rejections in 500 trials of the hypothesis H0 : φ = 1 against
H1 : φ < 1 using the test statistic given in (4.13) for different values of φ and

ν = 3

n 50 100 250 500
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

φ=-0.5 500 500 500 500 500 500 500 500 500 500 500 500
φ=-0.2 500 500 500 500 500 500 500 500 500 500 500 500
φ=0.5 500 500 500 500 500 500 500 500 500 500 500 500
φ=0.8 356 417 453 489 500 500 500 500 500 500 500 500
φ=0.9 184 209 324 365 427 461 452 473 492 499 500 500

φ=0.95 63 106 170 192 228 333 428 478 493 491 496 498

Table 4.4: No of rejections in 500 trials of the hypothesis H0 : φ = 1 against
H1 : φ < 1 using the test statistic given in (6.13) for different values of φ and

ν = 4

n 50 100 250 500
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

φ=-0.5 500 500 500 500 500 500 500 500 500 500 500 500
φ=-0.2 500 500 500 500 500 500 500 500 500 500 500 500
φ=0.5 500 500 500 500 500 500 500 500 500 500 500 500
φ=0.8 337 395 417 458 472 477 498 500 500 500 500 500
φ=0.9 167 236 265 328 385 396 409 435 438 498 499 500

φ=0.95 80 139 169 152 238 266 407 434 439 449 438 463

and then genrerate the ECM in (4.1) and (4.2). Finally we obtained the MLE of

the parameters by solving the likelihood equations in (4.4) to (4.7). Using the

estimated parameter values of ρ, α, β, δ, we maximized the profile log likelihood

function in (4.8) and obtained the estimate of ν. We then repeated the experi-

ment 100 times for computing the estimates and then averaged them over the

repetitions. Once the parameters of ECM being estimated, we test for cointegra-

tion using the residuals from the error correction model. We use the test statistic

given in (4.14) to compute the number of rejections of the null hypothesis under

the various alternatives.

Table 4.5 and 4.6 corresponds to the parameter estimates of the error correction

model associated with t distribution with ν = 3 and ν = 4. Table 4.7 and 44.8
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gives the number of rejections of the null hypothesis under the various alterna-

tives. Note that from Tables 4.1 and 4.3, for series of length 300, estimates are

Table 4.5: The average estimates and the corresponding root mean squared
errors of MLE for ν = 3

n ρ α β δ ρ̂ α̂ β̂ δ̂ ν̂

150 -0.2 2 3 -0.6 -0.1599(0.0244) 2.0010(0.0068) 3.0048(0.0025) -0.6013(0.0001) 2.6894(0.2216)
-0.5 3 1 0.2 -0.4369(0.0084) 3.0036(0.0032) 1.0046(0.0044) 0.2016(0.0022) 2.6516(0.3512)
0.2 1.8 0.5 1 0.1618(0.0088) 1.801(0.0001) 0.4992(0.0009) 1.0031(0.0005) 2.7346(0.2052)
0.5 1.4 1.5 -7 0.4355(0.0089) 1.3999(0.0006) 1.5000(0.0009) -6.7570(0.0121) 2.6910(0.2342)
0.9 0.2 3.5 -0.18 0.8779(0.0007) 0.2038(0.0001) 3.4834(0.0140) -0.1816(0.0001) 2.6817(0.2878)

300 -0.2 2 3 -0.6 -0.1772(0.0184) 1.9999(0.0031) 2.9997(0.0001) -0.6001(0.00001) 2.8292(0.1165)
-0.5 3 1 0.2 -0.4899(0.0053) 2.9917(0.0010) 0.9847(0.0034) 0.1985(0.0001) 2.8032(0.1621)
0.2 1.8 0.5 1 0.1733(0.0048) 1.7999(0.0042) 0.5029(0.0003) 1.0006(0.0002) 2.8452(0.1123)
0.5 1.4 1.5 -7 0.4426(0.0055) 1.3999(0.0005) 1.3999(0.0001) 1.4996(0.0002) 2.8012(0.2012)
0.9 0.2 3.5 -0.18 0.8790(0.0006) 0.2017(0.0001) 3.4966(0.0073) -0.1811(0.00009) 2.8321(0.1325)

Table 4.6: The average estimates and the corresponding root mean squared
errors of MLE for ν = 4

n ρ α β δ ρ̂ α̂ β̂ δ̂ ν̂

150 -0.2 2 3 -0.6 -0.1907(0.0061) 2.0017(0.0002) 3.0080(0.0032) -0.601(0.0001) 4.0538(0.2012)
-0.5 3 1 0.2 -0.4974(0.0044) 3.0050(0.0020) 0.9813(0.0032) 0.2001(0.0002) 3.9830(0.2136)
0.2 1.8 0.5 1 0.1933(0.0073) 1.8009(0.00002) 0.4945(0.0007) 0.9993(0.0004) 4.1559(0.2013)
0.5 1.4 1.5 -7 0.4914(0.0047) 1.3999(0.0005) 1.4998(0.0001) -7.0004(0.0001) 3.9764(0.1962)
0.9 0.2 3.5 -0.18 0.8964(0.0002) 0.205(0.0001) 3.5130(0.0014) -0.1822(0.00002) 4.0261(0.1032)

300 -0.2 2 3 -0.6 -0.2045(0.0028) 2.0013(0.0001) 3.0048(0.0016) -0.6008(0.00006) 4.0025(0.1145)
-0.5 3 1 0.2 -0.4940(0.0024) 2.9949(0.0017) 0.9985(0.0009) 0.1999(0.00009) 4.0706(0.1098)
0.2 1.8 0.5 1 0.1869(0.0038) 1.8004(0.00001) 0.5005(0.0003) 0.9990(0.0001) 4.1018(0.1021)
0.5 1.4 1.5 -7 0.4982(0.0020) 1.3999(0.00004) 1.5001(0.00005) -7.0003(0.0060) 4.0778(0.1213)
0.9 0.2 3.5 -0.18 0.9016(0.0003) 0.2026(0.00009) 3.4999(0.0040) -0.1817(0.00001) 3.9870(0.1026)

Table 4.7: No of rejections in 500 trials of the hypothesis H0 : φ = 1 ( δ=0)
against the alternative of φ < 1( δ 6= 0) for ν = 3

n 50 100 150
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

φ=0.5 500 500 500 500 500 500 500 500 500
φ= 0.8 426 456 468 500 500 500 500 500 500
φ= 0.9 242 298 342 424 448 465 500 500 500

φ= 0.95 101 137 177 223 258 314 361 391 422
φ= 0.99 38 42 45 80 85 92 125 130 135

reasonably satisfactory and become more accurate with increasing sample size.

From Table 4.3, 4.4, 4.7 and 4.8, it can be seen that as φ becomes closer to 1, the
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Table 4.8: No of rejections in 500 trials of the hypothesis H0 : φ = 1 ( δ=0)
against the alternative of φ < 1( δ 6= 0) for ν = 4

n 50 100 150
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

φ=0.5 500 500 500 500 500 500 500 500 500
φ= 0.8 440 452 500 500 500 500 500 500 500
φ= 0.9 285 312 350 451 468 481 500 500 500

φ= 0.95 111 132 170 218 241 311 350 381 410
φ= 0.99 42 46 50 85 98 101 128 140 144

number of rejections of the null hypothesis of unit root and no cointegration be-

comes smaller. For example, in a length of 50 series in Table 4.3, the hypothesis

H0 : φ = 0.95 was rejected 63 times at the 0.01 significance level, while it was

rejected 184 times when φ was 0.9. Hence we claim that the derived test statistic

is powerful for testing the presence of unit root in an observed non stationary

time series.

Algorithm 6: Algorithm for Table 4.1 and 4.2
1 Set x0, ν and φ, for some sample of size n.
2 Draw samples {at}, from Student t distribution.
3 Generate xt using xt = φxt−1 + at, t = 1, 2, ...n
4 Choose the initial value of φ, ν as φ0, ν0 and obtain φ̂, using the method of

maximum likelihood.
5 Using the estimate φ̂, obtain the estimate of ν by maximizing the profile

likelihood function.
6 Repeat Steps 2 to 5, say 100 times.
7 Choose the value of φ̂ as the averages of φ̂ obtained in step 4.
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Algorithm 7: Algorithm for Table 4.3 and 4.4
1 Set x0, ν and φ, for some sample of size n.
2 Draw samples {at}, from Student t distribution.
3 Generate xt using xt = φxt−1 + at, t = 1, 2, ...., n
4 Choose the initial value of φ, ν as φ0, ν0 and obtain φ̂, using the method of

maximum likelihood.
5 Using the estimate φ̂, obtain the estimate of ν by maximizing the profile

likelihood function.
6 Obtain the LRT statistic in Equation (4.13) for the simulated data.
7 Repeat Steps 2 to 6, say 500 times.
8 Count and record the number of rejections of unit root hypothesis in 500

trials.

Algorithm 8: Algorithm for Table 4.5 and 4.6
1 Set {(x10, x20)}, ν, α, β and δ, for some sample of size n.
2 Draw the bivariate samples (η1t, η1t) using the equation given by (4.3).
3 Generate the samples of ECM, using Equations (4.1) and (4.2).
4 Choose the initial value as ν0, ρ0, α0, β0 and δ0. Solve Equations (4.4) to (4.7)

for obtaining the maximum likelihood estimates ρ̂0, α̂, β̂ and δ̂.
5 Using the estimates obtained in step 4, obtain the estimate of ν by

maximizing the profile likelihood function.
6 Repeat steps 2 to 5 for 100 times.
7 Set the values of ρ̂, α̂, β̂, δ̂ as the averages of ρ̂, α̂, β̂ and δ̂ obtained in step 5.

Algorithm 9: Algorithm for Table 4.7 and 4.8
1 Set {(x10, x20)}, ν, α, β and δ, for some sample of size n.
2 Draw the bivariate samples (η1t, η1t) using the equation given by (4.3).
3 Generate the samples of ECM, using Equations (4.1) and (4.2).
4 Choose the initial value as ν0, ρ0, α0, β0 and δ0. Solve Equations (4.4) to (4.7)

for obtaining the maximum likelihood estimates ρ̂0, α̂, β̂ and δ̂.
5 Using the estimates obtained in step 4, obtain the estimate of ν by

maximizing the profile likelihood function.
6 Obtain the LRT statistic in Equation (4.14) for the simulated data.
7 Repeat Steps 2 to 6 for 500 times.
8 Count and record the number of rejections of the hypothesis H0 : φ = 1

(δ=0) against the alternative of |φ| < 1 ( δ 6= 0) in 500 trials.
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4.6 Data Analysis

Here we illustrate the analysis of cointegration model with bivariate Student t

errors with identical marginals using the real data set. The data set consists

of 192 monthly observations of crude oil price and Bombay stock exchange in-

dex for the period 2000 to 2016. All the variables are transformed in to their

natural logarithm. The data set is downloaded from the website of Ministry of

Petroleum and Natural gas, Govt. of India (www.ppac.org.in) and the website

of Reserve Bank of India (www.rbi.org.in). The time series plots are given in

Figure 4.1.

First, we performed a unit root test developed for Student t error variables to
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Figure 4.1: Time series plot

the data set in order to test whether the series is stationary or not. By setting

H0 : φ = 1 against H1 : |φ| < 1 the test statistic value obtained for crude oil

and BSE series are 0.00029 and 0.0015 respectively. These values are much less

than the corresponding Chi squared table value. Hence we conclude that the
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null hypothesis of unit root cannot be rejected at any given level of significance.

So we perform a maximum likelihood estimation described in Section 4.3 in

order to find the parameter estimates of an error correction model of order 1.

The parameter estimates of the model are given by ρ̂ = 0.2425, α̂ = −2.8930,

β̂ = −0.6960, δ̂ = 0.00207 and ν̂ = 4.54.

The value of the test statistic obtained for the error correction model is -90 and

from the Chi-squared table for two tailed test, we reject the null hypothesis of

no cointegration at 5 percent level of significance, implying that the residuals

from the ECM are stationary. Thus the cointegrating vector parameter estimate

provides an estimate of a long run relationship. That is, x1t − 2.893x2t is the

cointegrating relationship and the cointegrated vector is [1,−2.893]
′
. Using the

parameter estimates of the ECM, we tested whether the residuals follow a Stu-

dent t distribution using Kolmogorov-Smirnov test.

The p-values obtained for the series are 0.638 and 0.562 respectively, which indi-

cates that Student t distribution is suitable for the residual series. PP-plot and

(a) PP- plot of residuals of crude oil series (b) PP- plot of residuals of BSE series

Figure 4.2: Probability- Probability Plots

histogram given in Figure 4.2 and 4.3 also confirms that the chosen distribution

is suitable for the residual series.
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(a) Histogram of crude oil price with ν=3.69 (b) Histogram of BSE index with ν=4.35

Figure 4.3: Residual Histogram



Chapter 5

Cointegration Models with non-Gaussian

GARCH innovations

5.1 Introduction

The discussion in the previous chapter largely rely on the assumption that the

observed time series fluctuates around changing level with constant variance or

homoskedastic in nature. Recent empirical evidences suggest that, financial time

series exhibit the presence of heteroskedasticity in the sense that, it possesses

non constant conditional variance given the past observations. Conditional het-

eroskedastic models have been developed to capture this empirical feature in the

volatility of financial returns. Engle (1982) introduced the autoregressive con-

ditionally heteroskedastic (ARCH) models and their extension, Generalised au-

toregressive conditionally heteroskedastic (GARCH) model is due to Bollerslev

(1986). For the study of ARCH-type models, see for instance, Bollerslev et al.

(1992), Bollerslev et al. (1994), Pagan (1996), Palm (1996), Wong et al. (2005)

and Tsay (2005). A time series {εt} is said to follow Generalised Autoregressive

Conditional Heteroskedastic (GARCH(p,q)) model if

εt = at
√

ht,

101
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where {at} is a sequence of independent and identically distributed (iid) ran-

dom variables with zero mean and unit variance, and

ht = α0 +
p

∑
i=1

αiε
2
t−i +

q

∑
i=1

βiht−i

defines the conditional variance. In general, the error term at may follow

any symmetric distribution like Student t, Generalised error distribution etc.

But most of the models in the literature assume that innovations are normally

distributed. The structure of the GARCH model makes the likelihood based

inference more manageable. Bollerslev (1986) described the maximum likeli-

hood estimation of a GARCH regression model with normally distributed er-

rors. Bollerslev (1987) and Yang & Brorsen (1992) discussed a non normal error

GARCH model based on the symmetric, but leptokurtic Student t distribution.

Apart from these, Bollerslev (1990) proposes a new class of multivariate GARCH

models in which the conditional correlations are constant.

Despite the extensive literature on cointegration and heteroskedastic models,

little attention is given to the issue of testing cointegration in the presence of

hetroskedastic errors. The available works are mostly based on simulation tech-

niques and hence no formal theories have been developed, see for instance Kim

& Schmidt (1993) and Lee & Tse (1996). Perhaps, the work by Li et al. (2001)

was the first one to perceive the issues of cointegration and heteroskedasticity

together. To our knowledge, there is no systematic studies on cointegration un-

der hetroskedasticity when the innovations are generated from non Gaussian

distributions. So, the main objective of the present Chapter is to explore the

possibility of modelling cointegrating time series when the errors are generated
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by non-Gaussian GARCH models.

We propose the modelling of two cointegrating time series with GARCH er-

rors, based on the heteroskedastic model proposed by Bollerslev (1990). Since

most of the empirical distributions of financial time series show deviations from

normality, a joint modelling of bivariate cointegration in the presence of het-

eroskedasticity using non Gaussian innovations is also called for. The model

applicability is then discussed with the modelling of several price series.

The rest of the chapter is organised as follows. In Section 5.2, we introduce the

cointegration GARCH model using Engle-Granger error correction representa-

tion and Phillip’s triangular representation. Section 5.3 deals with the inference

procedures of the cointegration GARCH model under Gaussian and non Gaus-

sian set up. We present the simulation study in Section 5.4. In Section 5.5, we

illustrate the application of the proposed model by analysing certain commodity

price series.

5.2 Cointegrating Models with GARCH innovations

5.2.1 Using Engle-Granger Error Correction representation

Let {X1t} and {X2t} be two cointegrating time series and both are integrated of

order one. For the formulation of Error Correction representation, we assume

that the error term at = (a1t, a2t)
′
, t=1,2,3,... follow GARCH with iid innovations.

In the following discussion, we obtain an ECM involving two lags, which is

required for analysing the model in the present Chapter.
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Following Engle & Granger (1987), let us write

X1t + βX2t = u1t, u1t = u1t−1 + a1t (5.1)

X1t + αX2t = u2t, u2t = φu2t−1 + a2t, |φ| < 1, (5.2)

where {u1t} follows a random walk model and {u2t} is a stationary sequence.

The Error Correction representation takes of the form:

∆X1t = δβZt−1 + η1t (5.3)

∆X2t = −δZt−1 + η2t, (5.4)

where Zt−1 = X1t−1 + αX2t−1.

Equivalently, ∆Xt = AZt−1 + ηt, with ∆Xt =

 ∆X1t

∆X2t

, A =

 δβ

−β

 and

ηt = (η1t, η2t)
′
. The above equation relates to the cointegrated vector auto re-

gression model with lag one, that is CVAR(1) model. Similarly, we can obtain

CVAR(2) model by adding one more lag in Equations (5.1), (5.2). Let us assume

that,

(1− θ1L)(1− θ2L)u1t = a1t

⇒ u1t − θ2u1t−1 − θ1u1t−1 + θ1θ2u1t−2 = a1t

⇒ u1t = (θ1 + θ2)u1t−1 − θ1θ2u1t−2 + a1t

⇒ u1t = φ1u1t−1 + φ2u1t−2 + a1t

,

where θ1 + θ2 = φ1 and −θ1θ2 = φ2. If θ2 = 1, the model has a unit root. That

is, u1t = u1t−1 + θ1(u1t−1 − u1t−2) + a1t. Now let us redefine equations (5.1) and
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(5.2) by

X1t + βX2t = u1t, u1t−1 + θ1(u1t−1 − u1t−2) + a1t (5.5)

X1t + αX2t = u2t, u2t = φu2t−1 + a2t, |φ| < 1, (5.6)

On subtracting with αX2t−1 on both sides of Equation (5.6) gives,

X1t + αX2t − αX2t−1 = u2t − αX2t−1.

α∆X2t = φ1 (X1t−1 + αX2t−1)− αX2t−1 − X1t + a2t

= φ1 (X1t−1 + αX2t−1)− αX2t−1 − (u1t − βX2t) + a2t

= φ1 (X1t−1 + αX2t−1)− αX2t−1 − (u1t−1 + θ1 (u1t−1 − u1t−2) + a1t − βX2t)

+ a2t.

On substituting for u1t−1 and u2t−1,

α∆X2t = (φ1 − 1) X1t−1 + αX2t−1 (φ1 − 1) + β∆X2t − θ1 (∆X1t−1 + β∆X2t−1)

− a1t + a2t.

Thus,

(α− β)∆X2t = (φ1 − 1) X1t−1 + αX2t−1 (φ1 − 1)− θ1 (∆X1t−1 + β∆X2t−1)

− a1t + a2t.
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∆X2t = −δ (X1t−1 + αX2t−1) + δ (∆X1t−1 + β∆X2t−1) + ζ2t

= −δZt−1 + δ∆Zt−1 + ζ2t,

where δ = (1−φ1)
α−β , Zt−1 = X1t−1 + αX2t−1, ∆Zt−1 = ∆X1t−1 + β∆X2t−1 and

ζ2t =
a2t−a1t

α−β .

On subtracting X1t−1 from both the sides of Equation (5.5) gives,

∆X1t = u1t − X1t−1 − βX2t

= u1t−1 + θ1 (u1t−1 − u1t−2) + a1t − X1t−1 − βX2t.

Substituting for u1t−1 and u2t−1,

∆X1t = βX2t−1 + θ1 (∆X1t−1 + β∆X2t−1) + a1t −
β

α
(u2t − X1t)

= βX2t−1 + θ1 (∆X1t−1 + β∆X2t−1) + a1t −
β

α
(X1t−1 + αX2t−1 − X1t)−

β

α
a2t.

Thus,

∆X1t

(
1− β

α

)
= β (1− φ1) X2t−1 +

(
β

α− β

)
(1− φ1) X1t−1

+

(
α

α− β

)
(1− φ1)∆Zt−1 + a1t −

β

α
a2t.

∆X1t =
αβ

α− β
(1− φ1) X2t−1 +

αβ

α− β
(1− φ1) X1t−1 +

(
α

α− β

)
(1− φ1)∆Zt−1 + ζ1t

= βδZt−1 + αδ∆Zt−1 + ζ1t,
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where ζ1t =
α

α−β

(
a1t − β

α a2t

)
. Thus the CVAR(2) model thus takes of the form,

∆X1t = βδZt−1 + αδ∆Zt−1 + ζ1t

∆X2t = −δZt−1 + δ∆Zt−1 + ζ2t.

This model is needed and defined for the purpose of obtaining the correct lag

order for the cointegrating equation.

Now we define the bivariate CVAR(1)-GARCH model as,

∆Xt = AZt−1 + ηt

ηt = H1/2
t at

at | It−1 ∼ N2(0, J2), (5.7)

with E (ηt | It−1) = 0 and V (ηt | It−1) = H1/2
t J2H1/2

t , where It−1 is the infor-

mation available up to time t-1, J2 is a 2× 2 identity matrix and Ht is the time

varying conditional covariance matrix which is almost surely positive definite

for all t and the conditional correlation is given by ρijt = hijt/
√(

hiithjjt
)
, hijt

denote the ijth element of Ht. However, this conditional covariance will be time

varying as Ht varies over time. But, in some applications, the time varying con-

ditional covariances can be proportional to the square root of the product of the

two conditional variances given by,

hijt = ρij

√(
hiithjjt

)
,

leaving the conditional correlations constant through time.
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5.2.2 Using Phillip’s triangular representation

Another convenient representation of cointegrated system, is the triangular rep-

resentation, introduced by Phillips (1991). Writing of the same model in (5.3)

and (5.4) in the usual triangular representation (see Hayashi (2000), Chapter 10),

reduces the number of parameters (δ is eliminated) and the estimation proce-

dure becomes simpler. In particular, it simplifies the parameter vector of cointe-

gration.

Phillip’s triangular representation is used for the purpose of estimating coin-

tegrating vectors. This representation is valid for any cointegrating rank, but

often it is assumed that the cointegrating rank is 1. The representation is called

triangular, because the parameter matrices are in a triangular form with fewer

number of parameters. So, on following Hayashi (2000), we use the Phillip’s

triangular representation for the purpose of defining cointegration model with

GARCH innovations. Suppose that Xt = (X1t X2t)
′

is a vector of non stationary

series with order of integration one, and let the cointegrating vector α be

α =

 1

−γ

 .

We focus on vector moving average model of order 1 and further we assume

that the rank of cointegration is one. So on choosing the appropriate coefficient

matrix with rank one, the triangular representation in bivariate case consists of

two equations, the cointegrating regression equation given by,

X1t = µ + γX2t + (η1t − γη2t), (5.8)
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where µ = (X1,0 − γX2,0)− (η1,0 − γη2,0) and the second row of

∆Xt
(2×1)

= δ
(2×1)

+ψ(L)
(2×2)

εt
(2×1)

,ψ(L) = I2 +ψ1L +ψ2L2 + · · · (5.9)

We choose the coefficient matrix in such a way that the rank of cointegration is

one. So on choosing the appropriate coefficient matrix with rank one, the above

equation becomes,

∆X1t

∆X2t

 =

δ1

δ2

+

1 0

0 1


η1t

η2t

+

−1 γ

0 0


η1t−1

η2t−1

 . (5.10)

Hence the second equation of the triangular representation is:

∆X2t = δ2 + η2t. (5.11)

The above equation relates to the triangular representation of cointegration

model with lag one, that is cointegrated vector moving average model of order 1

(CVMA(1) model), see Hayashi (2000). The cointegrated vector moving average

model with higher lags may be needed for obtaining the correct lag length of

the cointegration while modelling a real data set. In this case, equation (5.10)

become,

∆X1t

∆X2t

 =

δ1

δ2

+

1 0

0 1


η1t

η2t

+

−1 γ

0 0


η1t−1

η2t−1

+

0 0

0 −1


η1t−2

η2t−2

 .

(5.12)
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Hence the triangular representation associated with CVMA(2) model becomes:

X1t = µ + γX2t + (η1t − γη2t)

∆X2t = δ2 + η2t − η2t−2.

Now we define the bivariate CVMA(1)- GARCH model as,

X1t = µ + γX2t + (η1t − γη2t)

∆X2t = δ2 + η2t

ηt = H1/2
t at

at | It−1 ∼ N2(0, J2), (5.13)

where ηt = (η1t, η2t)
′

with E (ηt | It−1) = 0 and V (ηt | It−1) = H1/2
t J2H1/2

t .

In both representations (5.7) and (5.13), we assume that the error variable ηt

follow a constant conditional correlation model proposed by Bollerslev (1990).

Since the vector at | It−1 follows a conditional bivariate normal distribution,

ηt ∼ N2(0, Ht). Further, following Bollerslev (1990), we assume that the condi-

tional covariance matrix Ht is of the type,

Ht = DtΓDt,
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where Dt, denotes 2× 2 diagonal matrix given by Dt = diag(σ1t, σ2t), the condi-

tional variances given It−1 takes the form,

σ2
it = ci + biη

2
it−1 + giσ

2
it−1 (5.14)

for i=1,2 and t=1,2,...N with ci > 0, bi ≥ 0, gi ≥ 0, and the correlation matrix is

assumed to be, Γ =

 1 ρ

ρ 1

 , where ρ is the correlation parameter. Hence the

conditional correlation matrix Ht becomes,

Ht =

 σ1t 0

0 σ2t


 1 ρ

ρ 1


 σ1t 0

0 σ2t


=

 σ2
1t ρ(σ1tσ2t)

ρ(σ1tσ2t) σ2t
2

 , (5.15)

with det(Ht) = σ2
1tσ

2
2t(1− ρ2). Here each of the conditional variances is obtained

as hijt = ρ(σ1tσ2t) and hiit = σ2
it, i, j = 1, 2. From (5.15) it follows that Ht will be

almost surely positive definite for all t.

In the following section, we discuss the classical approach for the parameter

estimation of the joint modelling of cointegration and GARCH model using

Gaussian and some non-Gaussian error distribution.

5.3 Inference for a given model

The parameter estimation of heteroskedastic models is usually carried out by

some numerical maximum likelihood technique such as method of scoring or



Cointegration Models with non-Gaussian GARCH innovations 112

direct likelihood optimization, as the likelihood function is highly non linear in

parameters; see, for instance, Mak (1993), Mak et al. (1997) and Berndt et al.

(1974). Vrontos et al. (2003) obtained the parameter estimates of a full fac-

tor GARCH model by using Fisher scoring algorithm and Bayesian approach.

Bollerslev (1990) discuss the estimation procedures for the multivariate time se-

ries model with time varying conditional variances and covariances by using

a numerical iterative maximisation technique. In this section, we discuss the

problem of estimation for the bivariate cointegration model (5.7) and (5.13) with

GARCH errors when the errors at ∼ N2(0, J2) and at ∼ GED with shape pa-

rameter υ = 2 (cf. (5.27)). We obtain the maximum likelihood estimates of the

parameters of cointegration model with GARCH errors that have normal errors

by using Fisher scoring algorithm, and by using numerical optimization tech-

nique for the cointegration GARCH model using GED errors. The motivations

for using Fisher scoring algorithm in our research comes from the results of the

above mentioned works. The kth iteration of the algorithm takes the form,

θ̂(k) = θ̂(k−1) +

{
−E

(
∂2LT

∂θ∂θ
′

)}−1
∂LT

∂θ
, (5.16)

where θ̂(k−1) denotes the estimate of the parameter vector obtained after k-1

iterations, LT denotes the conditional log likelihood function; which is condi-

tioned on past observations,
{
−E

(
∂2LT
∂θ∂θ

′

)}−1
denotes the expected information

matrix computed at θ̂(k−1) and ∂LT
∂θ denote the gradient computed at θ̂(k−1). An

advantage of the model (5.7) and (5.13) is that, under the assumption of bivari-

ate normality, a closed form expression is readily available for the gradient and

expected information matrix. Besides, as the covariance matrix is guaranteed
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to be positive definite, the model parameters are easily estimated and can be

extended to higher dimensions (See Vrontos et al. (2003)).

5.3.1 MLE using Gaussian GARCH errors

Now we discuss the maximum likelihood estimation of the parameters involved

in model (5.7) and(5.13) based on the sample xt = {x1t, x2t}, t = 1, 2, ...T. Under

the assumption of a bivariate normal distribution for the vector at, the condi-

tional likelihood function given (η10, η20, σ10, σ20) for the cointegration GARCH

model can be written as,

L (θ| xt) =
T

∏
t=1

(1/2π) |Ht|−1/2Exp

[
−1

2

T

∑
t=1

(η
′
tH
−1
t ηt)

]
, (5.17)

where θ denotes the vector of unknown parameters to be estimated. For the ease

of the computational procedures, we will assume that ηi0 and σi0 (i = 1, 2) are

known. The log likelihood function for the above cointegration GARCH model

is given by:

LT (θ |xt ) = −1/2
T

∑
t=1

log
(

σ2
1tσ

2
2t(1− ρ2)

)
− 1/2

T

∑
t=1

(
η
′
t(DtΓDt)

−1ηt

)
= −1/2

T

∑
t=1

log
(

1− ρ2
)
− 1/2

T

∑
t=1

(
2

∑
i=1

log
(

σ2
it

))
− 1/2

T

∑
t=1

(
ε
′
tΓ
−1εt

)
,

(5.18)
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where εt = D−1
t ηt =

(
η1t
σ1t

, η2t
σ2t

)′
and ε

′
tΓ
−1εt =

1
1−ρ2

(
η2

1t
σ2

1t
+

η2
2t

σ2
2t
− 2ρη1tη2t

σ1tσ2t

)
,

so that LT (θ |xt ) = −1/2
T
∑

t=1
log
(
1− ρ2)− 1/2

T
∑

t=1

(
2
∑

i=1
log
(
σ2

it
))

−1/2
T

∑
t=1

1
1− ρ2

(
η2

1t
σ2

1t
+

η2
2t

σ2
2t
− 2ρη1tη2t

σ1tσ2t

)
.

Here the parameters to be estimated are the elements of θ, where

θ = (ρ, γ, δ2, c1, c2, b1, g1, b2, g2)
′
. The form of the log likelihood function in-

dicates that we have to maximize it by some numerical methods. Following

Vrontos et al. (2003), we transformed all our positive parameters in to its log-

arithmic transformation in order to avoid the positivity restrictions built in the

GARCH model. The transformations of the positive parameters leads to the

variance equation :

σ2
it = ec∗i + eb∗i η2

it−1 + eg∗i σ2
it−1, i = 1, 2. (5.19)

Several GARCH models can be seen in the literature and they have been anal-

ysed by many researchers. The model proposed by Bollerslev (1990) and Engle

(2002) does not impose any positivity conditions for the GARCH model, hence

it may lead to difficulty in estimation of large set of parameters simultaneously.

Among those, the assumptions stated here are very easy to verify and it reduces

the difficulty in parameter estimation as it avoids the positivity restrictions in

the model; see Vrontos et al. (2003) and Engle & Kroner (1995) for a similar

discussion for a multivariate GARCH model. Now for obtaining the estimates,

the parameter vector is partitioned in to three blocks. The first block consists of
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the correlation parameter, θ1 = ρ, second block consists of the cointegration pa-

rameters, θ2 = (α, β, δ)
′

(for the model (5.7)), θ2 = (γ, δ2)
′

(for the model (5.13))

and the final block contains the GARCH parameters, θ3 = (c1, c2, b1, g1, b2, g2)
′
.

Since the GARCH model is dynamic, some restrictions are needed for the initial

values of the variance term σ2
it. That is we assume σ2

i0 = 0, i = 1, 2. Hence differ-

entiating the log likelihood function with respect to the correlation parameter

θ1 = ρ yields,

∂LT

∂ρ
=

T

∑
t=1

(
ρ

(1− ρ2)

)
−

T

∑
t=1

[
ρ

(1− ρ2)

(
η2

1t
σ2

1t
+

η2
2t

σ2
2t

)]
+

T

∑
t=1

[
η1tη2t

σ1tσ2t

(
1 + ρ2

(1− ρ2)2

)]
.

(5.20)

And,

∂2LT

∂ρ2 =
T

∑
t=1

(
1 + ρ2

(1− ρ2)2

)
−

T

∑
t=1

(
η2

1t
σ2

1t
+

η2
2t

σ2
2t

)(
1 + 2ρ2 − 3ρ4

(1− ρ2)4

)

+
T

∑
t=1

(
η1tη2t

σ1tσ2t

)(
6ρ2 − 4ρ4 − 2ρ6

(1− ρ2)4

)
. (5.21)

For obtaining the expected Fisher Information term −E
(

∂2LT
∂ρ2

)
, we need to cal-

culate the covariance between η1t and η2t which is given by,

Cov (η1t, η2t) = ρσ1tσ2t.

Hence,

−E
(

∂2LT

∂ρ2

)
= −

T

∑
t=1

(
1 + ρ2

(1− ρ2)2

)
+ 2

T

∑
t=1

(
1 + 2ρ2 − 3ρ4

(1− ρ2)4

)
−

T

∑
t=1

(
6ρ2 − 4ρ4 − 2ρ6

(1− ρ2)4

)
.

(5.22)



Cointegration Models with non-Gaussian GARCH innovations 116

Differentiating LT with respect to the cointegration parameters, θ2 = (γ, δ2)
′

yields,

∂LT

∂θ2
=

T

∑
t=1

[
2

∑
i=1

1
2σ2

it

∂σ2
it

∂θ2

(
η2

it
(1− ρ2) σ2

it
− 1

)
+

ηit

(1− ρ2) σ2
it

∂ηit

∂θ2

]
+

T

∑
t=1

ρ

(1− ρ2)

[
η1tη2t

2σ3
1tσ2t

∂σ2
1t

∂θ2
+

η1tη2t

2σ3
2tσ1t

∂σ2
2t

∂θ2

]

+
ρ

(1− ρ2)

T

∑
t=1

[
η1t

∂η2t

∂θ2
+ η2t

∂η1t

∂θ2

]
(5.23)

And the expected information matrix for the second block is given by,

−E

(
∂2LT

∂θ2∂θ
′
2

)
=

T

∑
t=1

[
2

∑
i=1

1
σ4

it

∂σ2
it

∂θ2

∂σ2
it

∂θ
′
2

(
1

(1− ρ2)
− 1

2

)]
− 1

(1− ρ2)

T

∑
t=1

[
2

∑
i=1

1
σ2

it

∂ηit

∂θ2

∂ηit

∂θ
′
2

]

−
T

∑
t=1

ρ

(1− ρ2)

[
∂η2t
∂θ2

∂η1t

∂θ
′
2
+ ∂η1t

∂θ2

∂η2t

∂θ
′
2

]
σ1tσ2t

−
T

∑
t=1

ρ

(1− ρ2)

[
ρ

2σ5
1tσ2t

[
3
2

σ1tσ2t
∂σ2

1t
∂θ2

∂σ2
1t

∂θ
′
2
+

1
2

σ−1
2t σ3

1t
∂σ2

2t
∂θ2

∂σ2
2t

∂θ
′
2

]]

−
T

∑
t=1

ρ

(1− ρ2)

[
ρ

2σ5
2tσ1t

[
3
2

σ2tσ1t
∂σ2

2t
∂θ2

∂σ2
2t

∂θ
′
2
+

1
2

σ−1
1t σ3

2t
∂σ2

1t
∂θ2

∂σ2
1t

∂θ
′
2

]]
, (5.24)

where ∂σ2
it

∂θ2
= 2eb∗i ηit−1

∂ηit−1
∂θ2

+ eg∗i
∂σ2

it−1
∂θ2

, i = 1, 2. and the derivatives of ηit with re-

spect to the cointegration parameters θ2 are given by, ∂η1t
∂θ2

= (x2,0 − η2,0 − x2t + η2t,−γ)
′

and ∂η2t
∂θ2

= (0,−1)
′
.

Differentiating LT with respect to the GARCH parameters, θ3 = (c1, c2, b1, g1, b2, g2)
′

yields,
∂LT

∂θ3
= −1

2

T

∑
t=1

[
2

∑
i=1

1
σ2

it

(
η2

it
σ2

it(1− ρ2)
− 1

)
∂σ2

it
∂θ3

]
− ρ

(1− ρ2)
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T

∑
t=1

η1tη2t

σ2
1tσ

2
2t

[
1
2

σ−1
1t σ2t

∂σ2
1t

∂θ3
+ σ1tσ

−1
2t

∂σ2
1t

∂θ3

]
. (5.25)

And the expected information matrix for the third block becomes,

J3 = −E

(
∂2LT

∂θ3∂θ
′
3

)
=

T

∑
t=1

[
2

∑
i=1

1
σ4

it

∂σ2
it

∂θ3

∂σ2
it

∂θ
′
3

(
1

(1− ρ2)
− 1

2

)]

− ρ2

(1− ρ2)

T

∑
t=1

[
2

∑
i=1

[
3
2

σ2
1tσ

2
2t

∂σ2
1t

∂θ3

∂σ2
1t

∂θ
′
3

]
+

2

∑
i=1

[
1
2

σ1tσ
4
2t

∂σ2
1t

∂θ3

∂σ2
2t

∂θ3
+

3
2

σ2
1tσ

2
2t

∂σ2
2t

∂θ3

∂σ2
2t

∂θ
′
3

]]
,

(5.26)

where ∂σ2
it

∂θ3
= ri,t + eg∗i

∂σ2
it−1

∂θ3
, i = 1, 2 and the vectors

r1,t =
(

ec∗1 , 0, eb∗1 η2
1t−1, 0, eg1

∗
σ2

1t−1, 0
)′

and r2,t =
(

0, ec∗2 , 0, eb∗2 η2
2t−1, 0, eg∗2 σ2

2t−1

)′
.

Once the expected information matrix and the gradients of three blocks are ob-

tained, we can find the maximum likelihood estimators by using Fisher scoring

algorithm given in (5.16). A simulation study to illustrate the computations is

discussed in Section 5.4.

5.3.2 MLE using some non-Gaussian GARCH errors

In this section, we discuss the estimation procedure for the cointegration GARCH

model using a generalised error distribution(GED). The probability density func-

tion of a univariate generalised error distribution is defined by,

f (x; µ, φ, υ) =
1

φΓ
(

1 + 1
2υ

)
21+ 1

2υ

exp

{
−1

2

∣∣∣∣x− µ

φ

∣∣∣∣2υ
}

,−∞ < x < ∞,

µ ∈ R and φ, ν > 0. The multivariate generalisation of the above model will be

useful to model the multidimensional random phenomena that have heavy or
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thin tails than those of normal distribution. Gómez et al. (1998) introduced a

multivariate generalisation of the generalised error distributions for modelling

multidimensional random phenomena. Their definition is as follows: A random

variable X = (X1, X2 · · · · · ·Xn)
′

with n ≥ 1 has an n-dimensional generalised

error distribution with parameters µ = (µ1, µ2, · · · , µn), Σ, υ if its density has

the form

f (X;µ, Σ, υ) = k|Σ|−
1
2 exp

{
−1

2

[
(X−µ)

′
Σ−1 (X−µ)

]υ
}

,

where k =
nΓ( n

2 )
π

n
2 Γ(1+ n

2υ)21+ n
2υ

. In our case, we assume that at follows the above

distribution with υ = 2, n = 2 and pdf:

f (at; µ, Σ, β) =
2

πΓ
(3

2

)
2

3
2
|Σ|−

1
2 exp

{
−1

2

[
(at)

′
Σ−1 (at)

]2
}

. (5.27)

Further E (at|It−1) = 0 and V (at|It−1) = 1√
2π

Σ, where Σ is assumed to be an

identity matrix. Now we redefine the bivariate cointegration GARCH model in

(5.7) and (5.13) as,

∆Xt = AZt−1 + ηt

ηt = H1/2
t at

at | It−1 ∼ GED (5.28)

and

X1t = µ + γX2t + (η1t − γη2t)
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∆X2t = δ2 + η2t

ηt = H1/2
t at

at | It−1 ∼ GED, (5.29)

with shape parameter υ = 2. Here E (ηt|It−1) = 0, Cov (ηt|It−1) = 1√
2π

Ht and

as previously, Ht is defined as,

Ht = DtΓDt,

where Dt denotes 2× 2 diagonal matrix given by Dt = diag(σ1t, σ2t) with σ2
it

following a GARCH (1,0) model defined by,

σ2
it = ci + biη

2
it−1, i = 1, 2.

As mentioned in Section 5.3.1, the transformations of the positive parameters

lead to the variance equation σ2
it, i=1,2 given by

σ2
it = ec∗i + eb∗i η2

it−1, i = 1, 2, t = 1, 2, 3, ... (5.30)

To avoid computational difficulties, we assume that the correlation matrix is an

identity matrix. Under the assumption of a bivariate generalised error distribu-

tion, the conditional likelihood function given (η10, η20) is given by,

L(θ |xt ) =
T

∏
t=1

2

πΓ
(3

2

)
2

3
2
|Ht|−

1
2 Exp

{
−1

2

(
η
′
tH
−1
t ηt

)2
}

.
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And the corresponding log likelihood function becomes

LT(θ |xt ) = −
1
2

T

∑
t=1

2

∑
i=1

log
(

σ2
it

)
− 1

2

T

∑
t=1

[
2

∑
i=1

η2
it

σ2
it

]2

. (5.31)

Since a closed form expression for the expected information matrix is not read-

ily available for the chosen distribution, we obtain the parameter estimates by

directly optimizing the log likelihood function. In the next section, we simulate

observations from the cointegration GARCH model described in (5.28), (5.29)

and obtain the estimates using numerical optimization techniques. We used the

method of Newton Raphson to solve the equations numerically.

5.4 Simulation study

We carried out a simulation study for computing the estimates and to exam-

ine the finite sample performance of the model proposed in previous sections.

We used the method of Newton Raphson to obtain the parameter estimates by

solving the log likelihood equation for the case of non normal error distribution.

5.4.1 Simulation study for the model (5.7) with Normal errors

Here, we simulate the bivariate data (x1t, x2t) from the model specified in equa-

tion (5.7). The maximum likelihood estimates are obtained by solving the gra-

dients and expected information matrix given in Section 5.3.1

We repeat the experiment 500 times for computing the maximum likelihood
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estimates and then averaged over the repetitions. Computational time for ob-

taining the estimates is 24 and 48 minutes for the sample sizes 150 and 300

respectively. Tables 5.1 to 5.4 give the average estimates and MSE based on

simulated observations. Tables 5.1, 5.3 reports the parameter estimates of coin-

tegration with GARCH parameters b=0.2, g=0.3 and b=0.1, g=0.85 respectively.

The corresponding estimates of GARCH parameters are reported in Tables 5.2

and 5.4.

Table 5.1: The average estimates of the MLE and MSE (in parenthesis) of
cointegration and correlation parameters with GARCH parameters, c1=10,

c2=15,b=0.2,g=0.3.

n ρ α β δ ρ̂ α̂ β̂ δ̂

150 0.1 0.8 1 -4.95 0.1222(0.0251) 0.8003(0.0515) 1.002(0.0032) -4.974(0.0323)
2 2.5 -1.4 0.1644(0.0647) 1.9978(0.0027) 2.348(0.1648) -1.428(0.0366)
4 4.5 -0.6 0.1232(0.0257) 4.0098(0.0108) 4.3581(0.1010) -0.6150(0.0196)

0.8 0.8 1 -4.95 0.8471(0.0510) 0.8010(0.0007) 1.0002(0.0012) -4.9490(0.0181)
2 2.5 -1.4 0.9114(0.0517) 1.9990(0.0001) 2.5019(0.0034) -1.4001(0.0061)
4 4.5 -0.6 0.7974(0.0284) 4.00003(0.008) 4.5018(0.004) -0.6005(0.0069)

300 0.1 0.8 1 -4.95 0.1025(0.0143) 0.8004(0.0226) 1.0010(0.0012) -4.9604(0.0225)
2 2.5 -1.4 0.1452(0.0456) 2.0021(0.0013) 2.4932(0.0388) -1.4020(0.0161)
4 4.5 -0.6 0.1345(0.0121) 4.0001(0.0012) 4.5123(0.0412) -0.6005(0.0012)

0.8 0.8 1 -4.95 0.8461(0.0482) 0.8005(0.0003) 0.9999(0.0002) -4.9510(0.0015)
2 2.5 -1.4 0.9110(0.0112) 2.0002(0.00003) 2.4997(0.0018) -1.3990(0.0009)
4 4.5 -0.6 0.7972(0.0115) 4.0002(0.0040) 4.4923(0.0009) -0.6002(0.0031)

From Tables 5.1 and 5.3, we can see that the estimates of ρ are slightly biased,

compared to the other estimates. But when the sample size increases, the esti-

mates perform reasonably well and there is a significant reduction in MSE. Fur-

ther we can see that, the estimates of δ, β, α perform well and the mean square

error decreases when the sample size increases. Table 5.2, 5.4 give the average

values and MSE of the GARCH parameters for different choice of GARCH pa-

rameters. It can be seen that mean square errors of the estimates decreases as

the value of g increases.
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Table 5.2: Average values of the MLE and MSE (in paranthesis) of GARCH
parameters c1=10, c2=15,b=0.2,g=0.3.

n ρ ĉ1 ĉ2 b̂ ĝ

150 0.1 10.4361(0.0815) 15.5505(0.0688) 0.1906(0.0626) 0.3001(0.0031)
10.4051(0.0491) 15.4914(0.0441) 0.1904(0.0646) 0.3028(0.0104)

9.9912(0.0029) 15.0108(0.0087) 0.200(0.0093) 0.3001(0.0006)

0.8 9.9916(0.0018) 15.0153(0.0088) 0.2000(0.0093) 0.3001(0.0005)
9.9916(0.0018) 15.0115(0.0088) 0.20002(0.0093) 0.3001(0.0051)

9.9912(0.00178) 15.0108(0.0087) 0.2000(0.0093) 0.3001(0.0068)

300 0.1 10.4142(0.0488) 15.5440(0.0281) 0.1914(0.0585) 0.300(0.0012)
10.4570(0.0320) 15.582(0.0106) 0.1909(0.0144) 0.2988(0.0045)

9.9920(0.0018) 15.0119(0.0088) 0.2001(0.0053) 0.3001(0.0004)

0.8 9.9910(0.0017) 15.0111(0.0060) 0.2000(0.0093) 0.30016(0.0006)
9.9916(0.0018) 15.0110(0.0042) 0.2000(0.0061) 0.3010(0.0021)

10.0020(0.0002) 15.0006(0.0022) 0.1990(0.0029) 0.3010(0.0015)

Table 5.3: The average estimates of the MLE and MSE (in parenthesis) of
cointegration and correlation parameters with GARCH parameters, c1=10,

c2=15,b=0.1, g=0.85.

n ρ α β δ ρ̂ α̂ β̂ δ̂

150 0.1 0.8 1 -4.95 0.1807(0.0807) 0.8002(0.0026) 0.9999(0.0002) -4.9490(0.0612)
2 2.5 -1.4 0.1905(0.0905) 2.0003(0.00048) 2.5078(0.0101) -1.3906(0.0129)
4 4.5 -0.6 0.18110(0.0811) 4.00074(0.0008) 4.5149(0.0172) -0.5960(0.0044)

0.8 0.8 1 -4.95 0.9472(0.1473) 0.8001(0.0008) 1.0002(0.0004) -4.95002(0.0004)
2 2.5 -1.4 0.9617(0.1610) 2.000(0.0007) 2.5003(0.0003) -1.399(0.0002)
4 4.5 -0.6 0.9366(0.1368) 4.0001(0.0002) 4.5003(0.0004) -0.5999(0.006)

300 0.1 0.8 1 -4.95 0.1811(0.0411) 0.8003(0.0012) 1.0001(0.0001) -4.948(0.0018)
2 2.5 -1.4 0.1906(0.0407) 2.0007(0.0021) 2.5063(0.0011) -1.3921(0.0086)
4 4.5 -0.6 0.1100(0.0413) 4.0005(0.0006) 4.5109(0.0012) -0.5971(0.0034)

0.8 0.8 1 -4.95 0.9450(0.0176) 0.7999(0.0005) 1.0002(0.0021) -4.9499(0.0024)
2 2.5 -1.4 0.9613(0.0512) 1.9999(0.0030) 2.4999(0.0001) -1.3998(0.0001)
4 4.5 -0.6 0.9377(0.0519) 4.00001(0.0001) 4.5007(0.0001) -0.5999(0.0008)
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Table 5.4: The average estimates of the MLE and MSE (in parenthesis) of
GARCH parameters c1=10, c2=15,b=0.1, g=0.85.

n ρ ĉ1 ĉ2 b̂ ĝ

150 0.1 10.1015(0.0027) 14.9910(0.0081) 0.0999(0.0029) 0.8508(0.0001)
10.1010(0.0026) 14.9981(0.0080) 0.0998(0.0028) 0.8650(0.0001)
10.2015(0.0027) 14.9792(0.0080) 0.0997(0.0029) 0.8601(0.0027)

0.8 9.9950(0.0025) 15.1012(0.0080) 0.100(0.0025) 0.8508(0.0001)
9.9990(0.0025) 15.1101(0.0081) 0.1001(0.0025) 0.8512(0.0001)
9.9990(0.0025) 15.0011(0.0082) 0.1001(0.0025) 0.8511(0.0001)

300 0.1 9.9989(0.0022) 15.0001(0.0051) 0.1001(0.0012) 0.8503(0.00001)
9.9991(0.0013) 15.0001(0.0011) 0.1001(0.0011) 0.8502(0.0001)

10.0013(0.0017) 14.9990(0.0047) 0.0999(0.0019) 0.8503(0.00002)

0.8 10.0002(0.0015) 15.0030(0.0042) 0.1005(0.0015) 0.8499(0.0016)
9.9998(0.0025) 15.0020(0.0039) 0.1001(0.0020) 0.8502(0.0001)
9.9990(0.0015) 15.0010(0.0040) 0.1002(0.0017) 0.8500(0.00001)

Algorithm 10: Algorithm for Table 5.1 to 5.4
1 Set x10, x20, σ10, σ20, θ1, θ2, θ3 for a sample of size n.
2 Generate the bivariate samples {x1t, x2t} using (5.7).
3 Compute the gradients and the expected information matrix in Equation

(5.20) to (5.26).
4 Compute the the estimates θ̂1, θ̂2, θ̂3 by using the Fisher scoring equation in

(5.16)
5 Repeat steps 2 to 4 say 500 times.
6 Choose the value of θ̂i as the averages of θ̂i obtained in step 6 for i = 1, 2.

5.4.2 Simulation Study for the model (5.28) with GED errors

In this case, the bivariate data (x1t, x2t) is simulated from the model given in

(5.28). Then we maximize the log likelihood function in (5.31) using likelihood

numerical optimization and hence obtained the parameter estimates.

We repeat the experiment 500 times for computing the estimates and then aver-

aged them over the repetitions. Computational time for obtaining the estimates

is 20 and 40 minutes for sample sizes 150 and 300 respectively. Tables 5.5, 5.6
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give the average estimates and MSE based on simulated observations. From the

tables, we observe that, the estimates perform reasonably well with the increase

of sample size and there is a significant reduction in MSE. Also, the estimates of

δ, β, α perform well as sample size increases. For instance, if δ = −1, β = 3.5,

α = 3, the average δ̂ = −0.9672, β̂ = 3.4875, α̂ = 2.999, for n=150. When the

sample size is increased to 300, the estimates of δ, β and α are respectively -1.005,

3.50 and 3.0003. Further the mean square error of the estimates decrease when

the sample size increases. The estimates of GARCH parameters also behave in

a similar way.

Table 5.5: Average values of the MLE and MSE (in parenthesis) of Cointegra-
tion parameters based on simulated observations of sample sizes n=150,300.

n δ α β δ̂ α̂ β̂

150 -4.95 0.8 1 -4.9570(0.0428) 0.80004(0.0007) 1.0080(0.0032)
-1.8 2 2.5 -1.8009(0.0156) 2.0001(0.0015) 2.5102(0.0481)

-1 3 3.5 -0.9672(0.0142) 2.999(0.00004) 3.4875(0.3027)

300 -4.95 0.8 1 -4.948(0.0211) 0.7999(0.0003) 0.9998(0.0016)
-1.8 2 2.5 -1.8001(0.0079) 1.999(0.00007) 2.5224(0.0286)

-1 3 3.5 -1.005(0.0072) 3.0003(0.00146) 3.5065(0.1420)

Table 5.6: Average values of the MLE and MSE (in paranthesis) of GARCH
parameters

n c1 c1 b ĉ1 ĉ2 b̂

150 6 12 0.4 5.9930(0.0200) 12.016(0.0201) 0.4192(0.0510)
10 16 0.6 9.9721(0.0230) 15.9486(0.0224) 0.5920(0.0602)
18 22 0.7 1.5232(0.0269) 21.9321(0.0275) 0.7100(0.0311)

300 6 12 0.4 6.0580(0.0109) 12.1931(0.0124) 0.4116(0.0391)
10 16 0.6 10.0703(0.0113) 16.4862(0.0116) 0.6109(0.0487)
18 22 0.7 18.2952(0.0111) 22.4604(0.0114) 0.7082(0.0271)
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Algorithm 11: Algorithm for Table 5.5 to 5.6
1 Set x10, x20, σ10, σ20, α, β, δ, ci, bi, i = 1, 2 for a sample of size n.
2 Draw GARCH samples ηt in Equation (5.28).
3 Generate the bivariate samples {x1t, x2t} using (5.28)
4 Choose the initial values α0, β0, δ0, ci0, bi0 and obtain the estimates, α̂, β̂, δ̂,

ĉi, b̂i by solving Equation (5.31).
5 Repeat Steps 2 to 4 say 500 times.
6 Choose the value of estimates as the averages of estimates obtained in step

6.

5.4.3 Simulation study for the model (5.13) with Normal errors

Here, we demonstrate the estimation procedure described in Section 5.1 using

a simulated sample. For the simulation study, we first generate the innova-

tion random variables from a Normal distribution. Then for specified values of

model parameters, we obtained the bivariate observations from the model given

by (5.13). Based on this sample, we obtained the maximum likelihood estimates

by solving the gradients and expected information matrix given in Section 5.3.1.

The experiment was repeated 500 times for computing the maximum likelihood

estimates and then averaged over the repetitions. Computational time for ob-

taining the estimates of the well specified model is 4 and 9 minutes for the

sample sizes 150 and 300 respectively. All the computations in section 5.3.1 are

carried out using the software Mathematica with an i3 CPU and 2.93 G.Hz. Ta-

bles 5.7 to 5.10 give the average estimates and mean squared error(MSE) based

on simulated observations.

In order to better describe the performance of the proposed model, we com-

pare the estimation results on the simulated data obtained both by the pro-

posed model (well specified) and by a traditional co-integration model without
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GARCH error (miss-specified). The evaluation of the performance obtained by

the well specified and the misspecified model can help to understand how the

error-misspecification affect the parameter estimation and it will provide further

motivation to use the proposed model. Mis-specified model means, a model

that has an incorrect functional form. Misspecification can arise either because

of the omission of a variable specified by truth, or because of inclusion of a

variabe not specified by truth. Tables 5.7, 5.9 reports the estimates of the coin-

tegration parameters with well specified (Model specified in Section 5.2) and

miss-specified innovations. The corresponding estimates of the GARCH param-

eters for the proposed model with well specified errors are reported in Tables

5.8 and 5.10. γ̂miss.spec and δ̂miss.spec correspond the parameter estimates of a

miss-specified innovations. From the tables it can be seen that, when the sample

size increases, the estimates perform reasonably well and there is a significant

reduction in MSE. From Tables 5.7 and 5.9, it can be seen that, the parameter es-

timates corresponds to the miss-specified innovations are little biased compare

to the estimates of the well-specified innovations.

Table 5.7: The average estimates of the MLE and MSE (in parenthesis) of
cointegration and correlation parameters with GARCH parameters, c1=3, c2=4,

b1=0.15, b2=0.1, g1=0.8, g2=0.85

n ρ γ δ2 ρ̂ γ̂ δ̂2 γ̂miss.spec δ̂miss.spec

150 0.8 -1 3 0.7801(0.0192) -0.9870(0.0031) 3.1702(0.1198) -1.5120(0.1121) 2.6120(0.2771)
-2 6 0.7601(0.0192) -2.1091(0.0090) 6.1495(0.1760) -2.5120(0.1321) 5.5212(0.5650)
3 2 0.7800(0.0200) 2.8991(0.0043) 2.1190(0.1301) 3.411(0.1102) 1.6012(0.5521)

300 0.8 -1 3 0.7902(0.0091) -1.1021(0.0003) 2.9783(0.0270) -1.4951(0.0690) 2.7094(0.1122)
-2 6 0.7801(0.0080) -2.1022(0.0041) 6.1062(0.0811) -2.4651(0.0780) 5.4191(0.2565)
3 2 0.8010(0.0091) 3.0201(0.0011) 2.0443(0.0741) 3.3011(0.0662) 1.6992(0.3742)
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Table 5.8: Average values of the MLE and MSE (in paranthesis) of GARCH
parameters c1=3, c2=4, b1=0.15, b2=0.1, g1=0.8, g2=0.85

n ĉ1 ĉ2 b̂1 b̂2 ĝ1 ĝ2

150 2.9711(0.0223) 4.0524(0.0131) 0.1401(0.0040) 0.1101(0.0053) 0.8194(0.006) 0.8692(0.0044)
2.9112(0.0084) 3.9321(0.0176) 0.1396(0.0094) 0.0897(0.0055) 0.8210(0.0045) 0.8651(0.0042)
2.9913(0.0083) 4.1094(0.0173) 0.1675(0.0064) 0.0954(0.0055) 0.7985(0.0025) 0.8665(0.0045)

300 2.9950(0.0061) 4.0104(0.0022) 0.1453(0.0031) 0.1091(0.0035) 0.8092(0.0043) 0.8591(0.0023)
2.9913(0.0051) 4.0250(0.0024) 0.1581 (0.0045) 0.1156(0.0031) 0.8101(0.0035) 0.8596(0.0022)
2.9942(0.0045) 4.0144(0.0015) 0.1559(0.0047) 0.1168(0.0021) 0.7991(0.0011) 0.8601(0.0033)

Table 5.9: The average estimates of the MLE and MSE (in parenthesis) of
cointegration and correlation parameters with GARCH parameters, c1=5, c2=7,

b1=0.1, b2=0.08, g1=0.85, g2=0.9, ρ=0.3.

n ρ γ δ2 ρ̂ γ̂ δ̂2 γ̂miss.spec δ̂miss.spec

150 0.3 -1 3 0.3342(0.0481) -0.9855(0.0034) 3.1746(0.2566) -1.6164(0.1015) 3.4212(0.3124)
-2 6 0.3345(0.0644) -1.9122(0.0053) 6.2302(0.1046) -2.5125(0.1105) 6.5124(0.2125)
3 2 0.3291(0.0493) 3.1021(0.0092) 2.2022(0.1041) 3.4211(0.1112) 2.5120(0.2211)

300 0.3 -1 3 0.3110(0.0213) -1.0252(0.0021) 2.9846(0.1412) -1.5112(0.0612) 3.3002(0.1122)
-2 6 0.3312(0.0212) -1.9993(0.0031) 6.1101(0.0602) -2.4127(0.0508) 6.4218(0.1016)
3 2 0.3046(0.0217) 2.9984(0.0046) 1.9952(0.0662) 3.3012(0.0600) 2.4102(0.1122)

Table 5.10: Average values of the MLE and MSE (in paranthesis) of GARCH
parameters c1=5, c2=7, b1=0.1, b2=0.08, g1=0.85, g2=0.9, ρ=0.3.

n ĉ1 ĉ2 b̂1 b̂2 ĝ1 ĝ2

150 4.9859(0.0034) 6.8901(0.0083) 0.0983(0.0095) 0.0774(0.0053) 0.8351(0.0053) 0.8861(0.0023)
4.9862(0.0031) 6.9512(0.0092) 0.1021 (0.0062) 0.0754(0.0032) 0.8643(0.0064) 0.9212(0.008)
5.1215(0.0054) 6.9120(0.0072) 0.1172(0.0073) 0.0854(0.0052) 0.8424(0.0054) 0.9126(0.0034)

300 4.9990(0.0011) 6.9952(0.0054) 0.0994(0.0055) 0.0800(0.0024) 0.8495(0.0035) 0.9104(0.0014)
5.0116(0.0024) 7.0214(0.0056) 0.0915 (0.0044) 0.0814(0.0015) 0.8594(0.0035) 0.9014(0.0042)
4.9992(0.0031) 6.9911(0.0031) 0.0991(0.0035) 0.0802(0.0022) 0.8511(0.0022) 0.9013(0.0013)

5.4.4 Simulation Study for the model (5.29) with GED errors

In this case, the bivariate data (x1t, x2t) is simulated from the model given in

(5.29). Then we maximize the log likelihood function in (5.31) using likelihood

numerical optimization and hence obtained the parameter estimates.
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Algorithm 12: Algorithm for Table 5.7 to 5.10
1 Set x10, x20, σ10, σ20, θ1, θ2, θ3 for a sample of size n.
2 Draw GARCH samples ηt in Equation (5.13).
3 Generate the bivariate samples {x1t, x2t} using (5.13)
4 Compute the gradients and the expected information matrix in Equation

(5.20) to (5.26).
5 Compute the Fisher Scoring Algorithm in Equation(5.16) to get the

estimates θ̂1, θ̂2, θ̂3.
6 Repeat steps 2 to 6 say 500 times.
7 Choose the value of θ̂i as the averages of θ̂i obtained in step 6, i = 1, 2.

We repeat the experiment 500 times for computing the estimates and then av-

eraged them over the repetitions. Computational times for obtaining the esti-

mates of the well specified model is 6 and 13 minutes for sample sizes 150 and

300 respectively. Tables 5.11, 5.12 give the average estimates and MSE based on

simulated observations. From the tables, we observe that, the estimates perform

reasonably well with the increase of sample size. Further the mean square error

of the estimates decrease when the sample size increases. From Table 5.11, it can

be seen that the parameter estimates corresponds to the miss-specified model is

little biased compared to the proposed model with GARCH innovations.

Table 5.11: Average values of the MLE and MSE (in parenthesis) of Cointegra-
tion parameters based on simulated observations of sample sizes n=150,300.

n γ δ2 γ̂ δ̂2 γ̂miss.spec δ̂miss.spec

150 1 3 1.1122(0.0062) 3.1020(0.0510) 1.3101(0.1210) 3.5612(0.1112)
2 1 1.9882(0.0034) 0.9795(0.0520) 2.4131(0.1020) 1.4013(0.1215)
3 0.5 3.1115(0.0020) 0.5203(0.0122) 3.4002(0.2134) 0.8124(0.1105)

300 1 3 0.9984(0.0022) 3.0012(0.0354) 1.3013(0.0623) 3.3213(0.0515)
2 1 2.0197(0.0015) 1.0056(0.0376) 2.3908(0.6108) 1.3905(0.0721)
3 0.5 2.9925(0.0016) 0.4998(0.0086) 3.3115(0.1103) 0.7015(0.0411)
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Table 5.12: Average values of the MLE and MSE (in paranthesis) of GARCH
parameters

n c1 c2 b1 b2 ĉ1 ĉ2 b̂1 b̂2

150 2 3 0.3 0.4 1.9631(0.1022) 2.9162(0.1413) 0.3105(0.1002) 0.3920(0.0962)
5 6 0.5 0.7 4.9653(0.1262) 5.9231(0.1322) 0.4702(0.1203) 0.6863(0.1125)

0.5 0.6 0.8 0.9 0.5015(0.0543) 0.6153(0.1251) 0.7622(0.1435) 0.8473(0.1434)

300 2 3 0.3 0.4 1.9901(0.0623) 2.9912(0.0512) 0.3053(0.0721) 0.4002(0.0782)
5 6 0.5 0.7 4.9893(0.0653) 6.0200(0.0752) 0.4842(0.0402) 0.7053(0.0663)

0.5 0.6 0.8 0.9 0.4932(0.0301) 0.5992(0.0083) 0.7881(0.0632) 0.8931(0.0753)

5.5 Data Analysis

We now analyse two data sets to illustrate the applications of cointegrated

GARCH model described in Section 5.3.1 and 5.3.2.

Example 1- Oil and Diesel Price series

The data set consists of 144 quarterly real value price series of heating Oil and

Diesel from 1979 to 2014. Units are measured in US dollars/gallon. The data set

is downloaded from the website of data market (www.datamarket.com). Sea-

sonally adjusted values of the price series are considered for the further analysis.

Figure 5.1 provides the time series plot of the data and it indicates that the time

series are non stationary. We have confirmed the non stationarity of time series

by using Augmented Dickey Fuller test. Here we test the null hypothesis of non

stationary time series against the alternative hypothesis of stationarity about a

linear time trend.
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Figure 5.1: Quarterly price data

The p-values for Augmented Dickey Fuller test of the oil and diesel price is

obtained as 0.215 and 0.290 respectively, and the corresponding lag order for

both the series is obtained to be 2. The p-values indicate that both the series are

non stationary. The summary statistics of the price series are reported in Table

5.13.

Table 5.13: Summary statistics of the price series ($|gallon)

Statistics Oil price Diesel Price

Sample size 144 144
Std. Dev 0.861 0.818

Mean 2.359 2.527
Minimum 1.146 1.441
Maximum 4.663 4.843

Next we perform the maximum likelihood estimation method described in Sec-

tion 5.3.1 for the model (5.13), to find the parameter estimates of the model.

The Akaike Information Criterion(AIC) for the model with one and two lags are

51525 and 62349 respectively.
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It is found that AIC is minimum for the CVMA(1) model compared to CVMA(2),

and hence we use the model with one lag for the given data. In Table 5.14, we

present the parameter estimates of model (5.13) with well specified and miss-

specified errors.

Table 5.14: MLE of Cointegration parameter under well specifed and misspec-
ified errors

Parameters Estimates Std.Error

ρ 0.983 0.0004
γ -0.996 0.0004
δ -0.008 0.0202

γmiss.spec -2.239 0.8816
δmiss.spec -1.431 1.3250

From the table it can be seen that, the parameter estimates of the model with the

error misspecification is biased and also the standard error of the estimates has

increased. Therefore it is evident that the proposed cointegration model with

GARCH errors using normal innovations are suitable for the given data. The

estimated parameter values of GARCH model and standard errors are given in

Table 5.15. Next we have to test the adequacy of the model by checking the

Table 5.15: MLE of GARCH parameters

Parameters Estimates Std.Error

c1 0.297 0.006
c2 0.002 0.0001
b1 0.030 0.012
b2 0.041 0.041
g1 0.961 0.028
g2 0.930 0.006

validity of the assumptions imposed on errors. In Fig 5.3, we superimpose the

histogram of the residuals with normal density to check whether the series fol-

lows normal distribution. We have also validated the assumption of normality
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of errors using CramerVonMises test. The p-values obtained are 0.231 and 0.552

respectively for oil and diesel price series. The p-values indicate that the null

hypothesis of normality is not rejected at 10 percent level of significance.

For a visual check, we plot the ACF of the fitted residuals of the GARCH series

in Figure 5.2. It is observed that the ACF of the resulting residual series is neg-

ligible and hence there is no significant serial correlation among the residuals.

The ACF, PACF and histogram of the residual series suggest that the cointegra-

tion GARCH model with normal errors is a good fit for the above data sets.

Example 2- Palm oil and Soya bean oil Price series

The data set consists of 147 quarterly real price series of Palm oil and Soya bean

Oil with reference to US market from 1980 to 2016. The data set is downloaded

from the website of data market (www.datamarket.com). The prices are sea-

sonally adjusted, which is with respect to the average of the global quotations

and the units are measured in US dollars. Alias & Othman (1997) present a

cointegration approach to ascertain whether there exist a long run relationship

between palm oil price and Soya bean oil price under the normality of errors.

Their study concluded that the time series are cointegrated and hence there

exists a long run equilibrium relationships between the variables.

For our study, we transformed the variables to their natural logarithm. The time

series plots of the log transformed data is given in Figure 5.4 and it indicates

that the time series is non stationary. The p-values for ADF test are obtained as
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(d) Residual PACF of Diesel price

Figure 5.2: ACF and PACF from fitted GARCH series

0.077 and 0.183 respectively, indicates that both the variables are non stationary

with respect to the linear time trend and the corresponding lag order is obtained

to be 2. The summary statistics for the price series are given in Table 5.16.

Table 5.16: Summary statistics of the price series ($|gallon)

Statistics Palm Oil Soyabean Oil

Sample size 147 147
Std. Dev 0.428 0.346

Mean 6.106 6.341
Minimum 5.183 5.767
Maximum 7.074 7.173
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(a) Normal Histogram of oil price (b) Normal Histogram of diesel price

Figure 5.3: Histogram of the residuals of fitted GARCH series

Time

pa
lm

oi
l

1980 1990 2000 2010

5.
5

6.
0

6.
5

7.
0

(a) Palm oil price

Time

so
ya

be
an

oi
l

1980 1990 2000 2010

5.
8

6.
0

6.
2

6.
4

6.
6

6.
8

7.
0

7.
2

(b) Soyabean Oil price

Figure 5.4: Quarterly Oil price data

The AIC for the model with one and two lags are 31218 and 36775 respectively.

Since the CVMA(1) model results with the minimum AIC, we proceed with the

model (5.29) for fitting the cointegration GARCH model.

We fit a cointegration GARCH model described in Section 5.3.2 for the given

data set. The maximum likelihood estimates described in Section 5.2 of model

(5.29) are obtained and reported in Tables 5.17 and 5.18.

The parameter estimates of the model with the error misspecification is bi-

ased and also the standard error of the estimates have increased. Therefore the
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Table 5.17: MLE of Cointegration parameters under well specified and mis-
specified errors

Parameters Estimates Std.Error

δ -0.755 0.062
γ 0.976 0.052

δmiss.spec -2.612 0.511
γmiss.spec 0.653 0.131

proposed model with GARCH errors is more suitable for the given data.

Table 5.18: MLE of GARCH parameters

Parameters Estimates Std.Error

c1 0.090 0.021
c2 0.434 0.066
b1 0.845 0.016
b2 0.907 0.002

Next we have to test the adequacy of the model by checking the validity of the

assumptions imposed on errors. In Figure 5.5, we superimpose the histogram

of the residuals with GED density to check whether the series follows Gener-

alised Error distribution. We have also validated the assumption of errors using

CramerVonMises test.

The p-values obtained are 0.960 and 0.889 respectively for Palm oil and Soya

bean oil price series. The p-values indicate that the null hypothesis of GED

errors is not rejected. The squared ACF and PACF of the fitted residuals of the

GARCH series is shown in Figure 5.6.

The residual ACF plots and residual histogram suggest that the cointegration

GARCH model with GED errors is a good fit for the above data set.

The results of this Chapter are summarized in Nimitha & Balakrishna (2018a).
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(a) Histogram of Palm Oil price with shape
paraameter υ = 1.79

(b) Histogram of Soyabean Oil price with shape
parameter υ = 1.85

Figure 5.5: Histogram of the Residual series
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(b) Residual PACF of Palm Oil price
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(c) Residual ACF of Soyabean Oil price
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Figure 5.6: Residual ACF and PACF from fitted GARCH series



Chapter 6

Copula based bivariate cointegration model

6.1 Introduction

There is a vast literature on modelling and analysis of financial time series using

copula, but the use of copula in cointegration modelling is virtually nil. Some

of the most influential papers on copula in finance is Cherubini et al. (2004),

which addressed the mathematics of copula functions illustrated using finan-

cial applications, Chen & Fan (2006), which developed the estimation of cop-

ula based semi parametric stationary models, Lee & Long (2009), developed a

copula based multivariate GARCH model and Scaillet & Fermanian (2002), dis-

cussed a non parametric method of estimation of copulas in time series model.

Sklar (1959), justified the importance of modelling the distribution of a multi-

variate random variable through a copula. By coupling different marginal distri-

butions with different copula functions, it is possible to construct a wide variety

of copula based time series models and it helps one to model the dependence

structure and the marginal behaviour separately. Due to this flexibility, copu-

las have gained much attention in finance and economics in the past few years.

Joe & Xu (2016) proposed a method for estimating the parameters separately

by maximizing the marginal likelihoods and then estimating the dependence

137



Copula based bivariate cointegration model 138

parameter from the joint likelihood function. Choroś et al. (2010) provided a

survey of estimation methods including both parametric and non-parametric,

on copula based time series models. While modelling the dependence structure

between the variables using a copula, it is also of interest to find the long run

relationship between the financial variables, that can be captured through coin-

tegration.

A famous theorem that describes the relationship between copula function and

the joint distribution is due to Sklar (1959). The theorem is stated as follows:

Theorem 6.1. Let F(X1,X2) be a joint distribution function with margins FX1 and FX2 .

Then there exists a copula C such that for all X1,X2 in R̄,

F(X1,X2) (x1, x2) = C (FX1 (x1) , FX2 (x2)) .

If FX1 and FX2 are continuous, then C is unique; otherwise C is uniquely determined

on RanF × RanG, where RanF is the range of F. Conversely, if C is a copula and FX1

and FX2 are distribution functions, then the function F(X1,X2) defined above is a joint

distribution functions with margins FX1 and FX2 .

To the best of our knowledge, modelling and estimation on copula based coin-

tegration model has not yet been studied in literature. Hence this Chapter takes

the advantage of modelling copulas and cointegration jointly. Clearly this is

important, since most of the financial multivariate series exhibit dependence

structures between themselves and hence the dependence can be modelled with

the help of a suitable copula function, and at the same time the marginal dis-

tributions need not be necessarily identical. Unlike the usual assumption of
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identical distributions for all the set of marginals, we obtain the joint distribu-

tion function by considering different marginal distributions for the error terms.

The rest of the Chapter is organised as follows. In Section 6.2, we discuss the

cointegrated model with the errors generated using a Clayton copula with dif-

ferent marginals. In Section 6.3, we discuss the inference procedures of the

model. Algorithm for random number simulation for the obtained bivariate

density is given in Section 6.4. Section 6.5 deals with the simulation studies and

results. We then apply the model to a real data set in Section 6.6.

6.2 Model and Properties

Our focus here is the cointegration model generated by copula errors in which

the marginal distributions and copula function is completely specified. The

explicit form of a bivariate cointegration model can be written as,

∆X1t = δβZt−1 + η1t (6.1)

∆X2t = −δZt−1 + η2t, t = 1, 2, ... (6.2)

where Zt−1 = X1t−1 + αX2t−1, see Engle & Granger (1987) for more details.

Equations (6.1) and (6.2) correspond to the cointegrated vector error correction

model with lag one. The cointegrated vector error correction model with higher

lags may be needed for obtaining the correct lag length of the cointegration

while modelling a real set of data. We have obtained the cointegrated vec-

tor error correction model with lags two by following the method described in
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Chapter 4, and is given by

∆X1t = βδZt−1 + αδ∆Zt−1 + η1t

∆X2t = −δZt−1 + δ∆Zt−1 + η2t,

where ∆Zt−1 = ∆X1t−1 + β∆X2t−1. In a similar way, we can obtain the expres-

sion for the cointegration model with lags three, four and so on. Now we as-

sume that the innovation random variables η1t and η2t defined in (6.1) and (6.2)

follow non-identical marginals, specifically Logistic and Normal distributions

with the respective densities given by,

f (η1t) =
e
−η1t

s

s(1 + e
−η1t

s )
2 ,−∞ < η1t < ∞, s > 0

f (η2t) =
1√
2πσ

e−
η2

2t
2σ2 ,−∞ < η2t < ∞, σ > 0.

It is possible to construct a bivariate distribution or density function, having the

desired marginal distribution along with a chosen dependence structure, that

is a copula. Conversely with every bivariate distribution functions F(X1,X2) with

corresponding marginal distributions FX1 and FX2 , there associates a unique

function, C : [0, 1]× [0, 1]→ [0, 1] called a copula such that,

F(X1,X2) (x1, x2) = C (FX1 (x1) , FX2 (x2)) .

One may refer Sklar (1959) for details on copula. Analogously, for a given copula

C, there exist a unique survival copula Ĉ such that,

Ĉ(u, v) = u + v− 1 + C(1− u, 1− v).
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Hence the advantage of the copula approach is that we have the freedom to

choose the copula function and margins separately. Let us consider the Clayton

survival copula given by:

Ĉθ (u, v) =
(

u−
1
θ + v−

1
θ − 1

)−θ
, θ > 0, (6.3)

with the corresponding conditional copula densities are:

Ĉv|u(u, v) =
∂

∂u
Ĉ (u, v) = u−1− 1

θ

(
−1 + u−

1
θ + v−

1
θ

)−1−θ
,

Ĉu|v(u, v) =
∂

∂v
Ĉ (u, v) = v−1− 1

θ

(
−1 + u−1/θ + v−1/θ

)−1−θ
.

Note that the above copula is a member of one parameter families of Archimedean

copula which is useful for modelling positive dependent data as can be seen in

Remark 6.1. The generator of the Clayton survival copula given in (6.3) is,

ϕ(t) =
(

t−
1
θ − 1

)
.

This generator is used to find the cumulative distribution of the copula which is

useful while checking the goodness of fit of the data. Recall from Sklar (1959),
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for a given marginal survival function,

S (η1t) =

∞∫
η1t

f (η1t) dη1t

=

∞∫
η1t

e
−η1t

s

s(1 + e
−η1t

s )
2 dη1t

=
1

(1 + e
η1t

s )
.

S (η2t) =

∞∫
η2t

f (η2t) dη2t

=

∞∫
η2t

1√
2πσ

e−
η2

2t
2σ2 dη2t

=

[
1
2

Er f c
(

η2t√
2σ

)]

and for the Clayton survival copula defined by (6.3), the joint survival function

of η1t and η2t can be written as:

H (η1t, η2t) = Ĉθ (S (η1t) , S (η2t))

=


 1(

1 + e
η1t
s

)
− 1

θ

+

(
1
2

Er f c
(

η2t√
2σ

))− 1
θ

− 1


−θ

,

where Er f c represents the complimentary error function which takes the form,

Er f c(z) =
2√
π

∞∫
z

e−t2
dt.
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It can be shown that the survival copula has uniform marginals given by,

Ĉθ (u, 1) =
(

u−
1
θ

)−θ
= u =

1

(1 + e
η1t

s )

and

Ĉθ (1, v) =
(

v−
1
θ

)−θ
= v =

[
1
2

Er f c
(

η2t√
2σ

)]
.

Also, the margins of H̄(·, ·) are the functions H̄ (η1t, ∞) and H̄ (−∞, η2t) , which

are the univariate survival functions. That is,

H̄ (η1t, ∞) =
1

(1 + e
η1t

s )
= S1 (η1t)

and,

H̄ (−∞, η2t) =

[
1
2

Er f c
(

η2t√
2σ

)]
= S2 (η2t) .

The cumulative distribution function of the Clayton’s copula W∗ = C(u, v) is

given by,

Kc(w) = w− φ(w)

φ
′(w)

= w− w−
1
θ − 1

−w−1− 1
θ

θ

=
1
θ w−

1
θ + w−

1
θ − 1

w−1− 1
θ

=
1
θ

w + w− w1+ 1
θ

= w + θw− θw1+ 1
θ

= w
(

1 + θ − w
1
θ θ
)

; 0 ≤ w ≤ 1,
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where φ(w) is the generator of the defined copula. The above function Kc(w) can

be used to check whether the proposed copula model is a good fit for the data

by plotting the cumulative distribution, Kc(w) and the empirical distribution

function, kn(w) from the data, as can be seen in Section 6.6.

For a defined survival Copula function, the bivariate density associated can be

obtained by,

h (η1t, η2t) = (−1)2 ∂2H̄ (η1t, η2t)

∂η1t∂η2t
,

where ∂2H̄(η1t,η2t)
∂η1t∂η2t

can be further decomposed in to,

∂2H̄ (η1t, η2t)

∂η1t∂η2t
=

∂2

∂η1t∂η2t
Ĉθ (S (η1t) , S (η2t))

=
∂2Cθ (u, v)

∂u∂v
∂u

∂η1t

∂v
∂η2t

= ĉθ (u, v) . f (η1t) f (η2t) .

Thus the bivariate density function constructed using Logistic and Normal marginals

is of the form,

h (η1t, η2t) =
−2

1
2+

1
θ

√
πsθσ

e−
η2t

2

2σ2 +
η1t

s
(

1 + e
η2t

s

)−1+ 1
θ
(−1− θ) Er f c

(
η2t√
2σ

)− 1
θ−1

.

−1 +

 1(
1 + e

η1t
s

)
− 1

θ

+ 2
1
θ Er f c

(
η2t√
2σ

)− 1
θ


−2−θ

.

As discussed above, the bivariate density can be written in terms of the product

of univariate marginals and a copula function, which describes the dependence
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structure between the variables. That is,

h (η1t, η2t) =

−1 +

 1(
1 + e

η1t
s

)
− 1

θ

+ 2
1
θ Er f c

(
η2t√
2σ

)− 1
θ


−2−θ

.
−21+ 1

θ

θ

(
1

1 + e
η1t

s

)−1− 1
θ

(−1− θ) Er f c
(

η2t√
2σ

)− 1
θ−1

f (η1t) f (η2t) . (6.4)

For a sample of T observations, the conditional log-likelihood function given

(x10, x20) is given by,

L (Θ) =
T

∑
t=1

log
[
Ĉθ (S (η1t) , S (η2t)) . f (η1t) f (η2t)

]
, (6.5)

where Θ is the set of all parameters in the model. Fig 6.1(A) shows the plot

(a) Plot of Log likelihood function (b) Plot of Kendall’s correlation

Figure 6.1: Plot of log likelihood function & Kendall’s correlation

of log likelihood function for various values of θ and for a fixed set of density

parameters α=1, β=0.5, φ = 0.5 σ=1 and s=1. It can be seen that the function is

concave up and decreasing, as the value of θ increases.

It is of interest to obtain the measure of dependence for non elliptical distribu-

tions, for which the linear correlation coefficient is inappropriate and mislead-

ing. One of the alternatives to the linear correlation coefficient is the Kendalls
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Tau measure of dependence, for more details refer Kruskal (1958).

Remark 6.1. For a given copula function Ĉθ (u, v) =
(

u−
1
θ + v−

1
θ − 1

)−θ
, θ > 0,

the population version of Kendall’s tau is obtained as

τη1t,η2t = τĈ = 4
1∫

0

1∫
0

Ĉ (u, v) dĈ (u, v)− 1

=
(−1− θ)

θ

1∫
0

1∫
0

−u−1− 1
θ v−1− 1

θ

(
−1 + u−1/θ + v−1/θ

)−2−2θ
dudv− 1

= − (−1− θ)

θ(2 + 1
θ )

1∫
0

u−1− 1
θ

(
u−

1
θ

)−(2+ 1
θ )θ

du− 1

=
1

(1 + 2θ)
.

Remark 6.2. The diagonal section of copula is the function δc from I to I defined

as δc(t) = C (t, t) which is non decreasing and uniformly continuous on I, where

I = [0, 1]. The diagonal section of the copula is given by,

δc(t) = C (t, t)

=
(

t
−1
θ + t

−1
θ − 1

)θ
, 0 ≤ t ≤ 1.

Plot of the diagonal section of the copula is given in Figure 6.2. It is confirmed

that the diagonal section of the copula is non decreasing and uniformly contin-

uous on I. From Figure 6.1(B), it is clear that the defined copula is a positive

dependent, since the dependency measure τ is always positive for all values of

θ. Figure 6.3 shows the plot of density functions and contours with the chosen
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marginals for different values of copula parameters and it is clear that the new

distribution is uni-modal for different choice of parameters.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Plot of diagonal section of the copula
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(a) θ=1, σ=2,s=1 (b) θ=1, σ=2,s=1

(c) θ=3,σ=2,s=1 (d) θ=2,σ=1,s=1

(e) θ=5,σ=0.8,s=1 (f) θ=5,σ=0.8,s=1

(g) θ=10,σ=1,s=0.8
(h) θ=10, σ=1,s=0.8

Figure 6.3: Bivariate Density Plots and Contours with Normal and Logistic
marginals



Copula based bivariate cointegration model 149

6.3 Estimation of Copula based cointegration model

The method of maximum likelihood estimation (MLE) in copula modelling is

computationally intensive, especially for high dimensional cases, as it needs

estimation of the marginal and copula parameters jointly. Joe & Xu (2016) pro-

posed a two step estimation procedure for obtaining the parameters of a copula

based model. Their method is computationally simpler than estimating all pa-

rameters simultaneously from the log likelihood equation in (6.5). This section

deals with the estimation of a copula based bivariate cointegration model using

the method of Inference functions for margins. The efficiency of this estimator

is compared with the MLE (cf. Xu (1996),Barnard (1991)).

6.3.1 Inference Functions for Margins (IFM) method

This approach consists of obtaining the maximum likelihood estimates of model

parameters based on marginal likelihood function and maximum likelihood es-

timate of dependency parameter based on the whole likelihood function.

Let us assume that we have a set of T observations from two financial series. The

conditional log likelihood functions based on the univariate marginals based on

iid random variables {η1t} and {η2t}, t = 1, 2, · · · , T given (x10, x20) are respec-

tively

L1 (Θ1) =
T

∑
t=1

log f (η1t; Θ1) (6.6)

and

L2 (Θ2) =
T

∑
t=1

log f (η2t; Θ2), (6.7)
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where Θ1 = (s, α, β, δ)
′

and Θ2 = (σ, α, δ)
′
. The corresponding log likelihood

function based on the joint distribution function is,

L (θ, α, β, δ, σ, s) =
T

∑
t=1

log h (ηit; θ, α, β, δ, σ, s)

=
T

∑
t=1

log
[
Ĉθ (S (η1t) , S (η2t)) . f (η1t) f (η2t)

]
.

The procedure of IFM works as follows: We first obtain the estimates of Θ1

and Θ2 by maximizing the log likelihood functions given in (6.6) and (6.7). The

estimates of the parameters common to both margins are obtained by taking the

averages of the individual estimators. If α̂, β̂, δ̂, σ̂, ŝ are the estimators obtained

using first step, in the second stage we obatin the estimate of θ by maximizing,

L
(
θ, α̂, β̂, δ̂, σ̂, ŝ

)
=

T

∑
t=1

log h
(
ηit; θ, α̂, β̂, δ̂, σ̂, ŝ

)
with respect to θ.

Now we apply this procedure to the model (6.1) and (6.2). The conditional

log likelihood function of Θ1 based on (x1t, x2t), t = 1, 2, · · · , T given (x10, x20)

when the errors have logistic distribution is given by,

L1 (Θ1) =
T

∑
t=1

log

 e
−η1t

s

s(1 + e
−η1t

s )
2


=

T

∑
t=1

(
−η1t

s
− log(s)− 2 log

(
1 + e

−η1t
s

))
=

T

∑
t=1

(
−
(

∆x1t − δβzt−1

s

)
− log(s)− 2 log

(
1 + e−

(∆x1t−δβzt−1
s

)))
.
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The likelihood equations for the parameters δ, β, α and s are:

∂L1 (Θ1)

∂δ
= 0⇒

T

∑
t=1

βzt−1

s

1− 2e−
(∆x1t−δβzt−1

s

)
(

1 + e−
(∆x1t−δβzt−1

s

))
 = 0. (6.8)

∂L1 (Θ1)

∂β
= 0⇒

T

∑
t=1

δ̂1zt−1

s

1− 2e
−
(

δ̂1x1t−δ̂1βzt−1
s

)
(

1 + e
−
(

∆x1t−δ̂1βzt−1
s

))
 = 0. (6.9)

∂L1 (Θ1)

∂α
= 0⇒

T

∑
t=1

δ̂1β̂1x2t−1

s

1− 2e
−
(

∆x1t−δ̂1 β̂1zt−1
s

)
(

1 + e
−
(

∆x1t−δ̂1 β̂1zt−1
s

))
 = 0. (6.10)

∂L1 (Θ1)

∂s
= 0⇒

T

∑
t=1


(

∆x1t − δ̂1β̂1ẑt−1

s2

)1− 2e
−
(

∆x1t−δ̂1 β̂1 ẑt−1
s

)
(

1 + e
−
(

∆x1t−δ̂1 β̂1 ẑt−1
s

))
−

1
s

 = 0,

(6.11)

where ẑt−1 = x1,t−1 + α̂1x2,t−1. We do not have analytically closed form expres-

sions for the estimators. Thus on solving the likelihood equations numerically

we will get the estimates of δ, β, α and s and we call them as δ̂1, β̂1, α̂1 and ŝ.

The conditional log likelihood function on (x10, x20) based on the normally dis-

tributed errors is given by,
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L2 (Θ2) =
T

∑
t=1

(
log

1√
2πσ

e
−η2

2t
2σ2

)

=
T

∑
t=1

(
log
(

1√
2πσ

)
− 1

2
η2

2t
σ2

)

=
T

∑
t=1

(
log
(

1√
2πσ

)
− (∆x2t + δzt−1)

2

2σ2

)
.

On solving the likelihood equations, the MLE’s of the parameter δ, α and σ are

recorded as δ2, α2 and σ and are given by:

δ̂2 =

T
∑

t=1
−∆x2tzt−1

T
∑

t=1

z2
t−1

. (6.12)

α̂2 =

−
T
∑

t=1

[
∆x2tx2t−1 + δ̂2x1t−1x2t−1

]
T
∑

t=1
δ̂2x2

2t−1

. (6.13)

σ̂ =
1
n

T

∑
t=1

(∆x2t − δẑ1,t−1)
2, (6.14)

where ẑ1,t−1 = x1,t−1 + α̂2x2,t−1. If a parameter appears in more than one bi-

variate margin, there are several ways to obtain its estimate. A possible way to

obtain the parameter estimates is to average the estimators from the log like-

lihoods of the margin with the common parameter (cf. Joe (1997)). One can

also obtain the estimates by using the higher dimensional log likelihood with

the given univariate parameters. In our case, two of the parameters α and δ are

common in both the margins. We consider the first method as it will reduce the

computational complexity of the estimation procedure. Thus the estimates of
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the common parameters are given by,

δ̂ = δ̂1+δ̂2
2 .

α̂ = α̂1+α̂2
2 .

Once the marginal parameters are obtained , the function L
(
θ, α̂, β̂, δ̂, σ̂, ŝ

)
is

maximized over θ to get θ̂. On differentiating the log likelihood function over

the maximised set of parameters with respect to θ implies,

∂ log L (Θ1)

∂θ
= 0⇒

T

∑
t=1

− 1
−1− θ

− 1
θ
− log [2]

θ2 +
log
[

A(Ω̂)

1+A(Ω̂)

]
θ2 +

log
[
Er f c

[
B(Ω̂)

]]
θ2

log

−1 +

(
A(Ω̂)

1 + A(Ω̂)

)−1/θ

+ 2
1
θ Er f c

[
B(Ω̂)

]−1/θ


+

(−2− θ) θ−2
(

A(Ω̂)

1+A(Ω̂)

)−1/θ
log
[

A(Ω̂)

1+A(Ω̂)

]
−1 +

(
A(Ω̂)

1+A(Ω̂)

)−1/θ
+ 2

1
θ Er f c

[
B(Ω̂)

]−1/θ

−

(
(−2− θ) 2

1
θ Er f c

[
B(Ω̂)

]−1/θ
θ−2 (log [2]− log

(
Er f c(B(Ω̂))

)))
−1 +

(
A(Ω̂)

1+A(Ω̂)

)−1/θ
+ 2

1
θ Er f c

[
B(Ω̂)

]−1/θ

 = 0,

(6.15)

where A(Ω̂) = e
∆x1t−δ̂β̂ẑt−1

ŝ and B(Ω̂) = ∆x2t+δ̂ẑt−1√
2σ̂

.

Solution of the above equation is obtained numerically, which yields the esti-

mates of the parameter θ using the method of inference functions for margins.
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The two stage estimators obtained above are consistent estimator for the un-

known parameters, see Joe & Xu (2016).

6.3.2 Maximum Likelihood Estimation

Here we discuss the maximum likelihood estimation of the parameters involved

in the likelihood function based on the sample {x1t, x2t}, t = 1, 2, ...T. Under

the assumption of the bivariate distribution given in (6.4), for a sample of T

observations, the conditional likelihood function given (x10, x20) for the copula

based cointegration model can be written as,

L (Θ | xt) =
T

∏
t=1

(
−1 +

(
1 + e

η1t
s

)−1
+ 2

1
θ Er f c

(
η2t√
2σ

)− 1
θ

)−2−θ

×

T

∏
t=1

−21+ 1
θ

θ

(
1

1 + e
η1t

s

)−1− 1
θ

(−1− θ)
1√
2πσ

e
η2

2t
2σ2

e
−η1t

s

s(1 + e
−η1t

s )
2

,

where Θ denotes the vector of unknown parameters to be estimated. For the

above copula based cointegration model, the log likelihood function is given as

follows:

log L (Θ | xt) =
T

∑
t=1

((
1 +

1
θ

)
log(−2)− log(θ)−

(
−1− 1

θ

)
log
(

1 + e
η1t

s

)−1
+

(−2− θ)

(
log(−1 +

(
1 + e

η1t
s

)−1
+ 2

1
θ Er f c

(
η2t√
2σ

))
+

(
1
θ
− 1
)

− η2
2t

2σ2 − log σ− η1t

s
+ log (−1− θ)− log s− 2 log

(
1 + e

η1t
s

))
.
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The likelihood equations for the parameters σ, s, β, δ, α and θ are:

∂ log L (Θ1)

∂σ
= 0

⇒
T

∑
t=1

− 1
σ
+

(A(Ω̂))
2
√

2
π

(
−1− 1

θ

)
(∆x2t + δzt−1)

σ2Er f c
[
B(Ω̂)

] +
(∆x2t + δzt−1)

2

σ3

−
2

1
2+

1
θ (A(Ω̂))

2
(−2− θ) Er f c

[
B(Ω̂)

]−1− 1
θ (∆x2t + δzt−1)

√
πθσ2

(
−1 +

(
A(Ω̂)

1+A(Ω̂)

)−1/θ
+ 2

1
θ Er f c

[
B(Ω̂)

]−1/θ
)
 = 0, (6.16)

where A(Ω̂) = e
∆x1t−δβzt−1

s and B(Ω̂) = ∆x2t+δzt−1√
2σ

.

∂ log L (Θ1)

∂s
= 0

⇒
T

∑
t=1

(
−1

s
+

η1t

s2 −
2A(Ω̂)η1t(

1 + A(Ω̂)
)

s2
+A(Ω̂)

(
1 + A(Ω̂)

) (
−1− 1

θ

)
(

A(Ω̂)η1t(
1 + A(Ω̂)

)
s2
− e−

2η1t
s η1t(

1 + A(Ω̂)
)2s2

)(
A(Ω̂)

1 + A(Ω̂)

)−1− 1
θ1

(−2− θ)

(
− e−

2η1t
s η1t

(1+A(Ω̂))
2
s2
+ A(Ω̂)η1t

(1+A(Ω̂))s2

)

θ

(
−1 +

(
A(Ω̂)

1+A(Ω̂)

)−1/θ
+ 2

1
θ Er f c[B1(Ω)]−1/θ

)
 = 0, (6.17)

where B1(Ω̂) = ∆x2t+δzt−1√
2σ̂

.
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∂ log L (Θ1)

∂β
= 0

⇒
T

∑
t=1

(
δzt−1
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)
 = 0,

(6.18)

where A1(Ω̂) = e
∆x1t−δβzt−1

ŝ .

∂ log L (Θ1)

∂δ
= 0

⇒
T

∑
t=1
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 = 0, (6.19)

where A2(Ω̂) = e
∆x1t−δβ̂zt−1

ŝ and C(Ω̂) = e
β̂δzt−1

ŝ

e
β̂δzt−1

ŝ +e
(∆x1t)

ŝ

.
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∂ log L (Θ1)

∂α
= 0

⇒
T
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t=1
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 = 0, (6.20)

where A3(Ω̂) = e
∆x1t−δ̂β̂zt−1

ŝ and B2(Ω̂) = ∆x2t+δ̂zt−1√
2σ̂

.
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∂ log L (Θ1)

∂θ
= 0

⇒
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− 1
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1
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[
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 = 0,

(6.21)

where A4(Ω̂) = e
∆x1t−δ̂β̂ẑt−1

ŝ and B3(Ω̂) = ∆x2t+δ̂ẑt−1√
2σ̂

. Since the score functions

are in a complicated form, we will obtain the MLE’s by solving the likelihood

equations numerically. Here we used the method of Newton Raphson to solve

the likelihood equations.

6.4 Algorithm for Random Number Generation

The copula Ĉ of (η1t, η2t) is given by

Ĉ (u, v) =
(

u−
1
θ + v−

1
θ − 1

)−θ
,
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and so the conditional distribution function Ĉu is given by

Ĉu (v) =
∂

∂u
Ĉ (u, v)

= u−1− 1
θ

(
−1 + u−

1
θ + v−

1
θ

)−1−θ
.

Now the quasi inverse Ĉ−1
u can be obtained by setting Ĉu (v) = t.

⇒ u−1− 1
θ

(
−1 + u−

1
θ + v−

1
θ

)−1−θ
= t

⇒
(
−1 + u−

1
θ + v−

1
θ

)
=
(

tu1+ 1
θ

) 1
−1−θ

⇒ Ĉ−1
u (t) =

(
t1/(−1−θ)u(1+ 1

θ )/(−1−θ) − u−
1
θ + 1

)−θ
.

Thus an algorithm to generate the bivariate data from the given copula is (cf.

Nelsen (2007)):

Step 1: Generate two independent uniform random variates u and t.

Step 2: Set v=Ĉ−1
u (t) .

i.e; v =
(

t1/(−1−θ)u(1+ 1
θ )/(−1−θ) − u−

1
θ + 1

)−θ
.

Step 3: Set η1 = F−1
u and η2 = F−1

v .

On solving we will get, η1 = log
(
u−1 − 1

)
and η2 =

√
2 (Er f c (2v))−1 . Now we

have the bivariate data from (η1, η2).

6.5 Simulation

In this section, we carried out a simulation study to evaluate the efficiency of

the estimates obtained by IFM method relative to the MLE method.
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For the simulation study, we first generate the bivariate data (η1t, η2t) using the

procedure discussed in Section 6.4 for a specified choice of the dependency pa-

rameter, θ. Then for different values of the model parameters we simulated the

bivariate data (x1t, x2t) using (6.1) and (6.2). Based on this bivariate sample, we

obtain the estimates of the parameters through the method of Inference func-

tions for margins and the method of maximum likelihood. The estimates are

obtained by solving the equations (6.8) to (6.21). For each specified value of the

parameter, we repeated the experiment 500 times and then averaged them over

the repetitions. Alternatively, we calculated the dependency parameter θ using

the population version of Kendall’s tau measure given in Remark 6.1, θ̂τ = (1−τ)
2τ

The estimates of IFM as well as MLE along with their root mean squared error

are reported in Tables 6.1- 6.8.

Table 6.1: Average values and MSE of Cointegration and distribution parame-
ters based on IFM for θ=0.5, σ=1 and κ=0.5

n α β δ α̂ β̂ δ̂ σ̂ κ̂

500 1 0.5 1.8 1.0051(0.0006) 0.5114(0.0235) 1.8316(0.0889) 0.9496(0.0992) 0.4945(0.0489)
2 1.5 1.4 1.9995(0.0058) 1.533(0.0547) 1.5235(0.1952) 0.8893(0.1516) 0.5260(0.0427)
3 2.5 1 2.9957(0.0052) 2.5620(0.0670) 1.1547(0.1713) 1.1018(0.1841) 0.4556(0.0582)
4 3.5 0.6 3.9954(0.0052) 3.5694(0.0754) 0.7032(0.1182) 1.2026(0.2380) 0.6413(0.1211)
5 4.5 0.2 4.9544(0.0500) 4.2386(0.2862) 0.1455(0.0589) 0.8131(0.223) 0.4517(0.0634)

1000 1 0.5 1.8 1.0021(0.0003) 0.5245(0.0013) 1.8713(0.0625) 0.9616(0.0494) 0.4849(0.0290)
2 1.5 1.4 1.9993(0.0025) 1.468(0.0349) 1.3190(0.089) 0.9148(0.0964) 0.4901(0.0204)
3 2.5 1 2.9981(0.0020) 2.4592(0.0479) 0.9321(0.0809) 1.0673(0.0902) 0.6169(0.0612)
4 3.5 0.6 3.9978(0.0029) 3.4842(0.0255) 0.5846(0.0270) 0.9341(0.1028) 0.5048(0.033)
5 4.5 0.2 4.9885(0.0136) 4.4170(0.0958) 0.1767(0.0274) 1.0596(0.0904) 0.4325(0.0404)

Note that from Tables 6.1 to 6.8, for series of length 500 estimates are reasonably

satisfactory and become more accurate with increasing sample size, n=1000. It

is seen that, both methods are efficient with respect to the mean square errors
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Table 6.2: Average values and MSE of dependency parameter estimates based
on IFM (θ̂IFM ) and Kendals tau measure ( θ̂τ) and the estimate of the measure

of dependence (τ) for θ=0.5, σ=1 and κ=0.5

n α β δ θ̂IFM θ̂τ τ̂

500 1 0.5 1.8 0.4999(0.0557) 0.5132(0.0724) 0.4958(0.0244)
2 1.5 1.4 0.5056(0.0522) 0.5119(0.0696) 0.4962(0.0191)
3 2.5 1 0.5080(0.1189) 0.5070(0.0510) 0.4977(0.0602)
4 3.5 0.6 0.5163(0.0933) 0.4868(0.0678) 0.5088(0.0549)
5 4.5 0.2 0.6159(0.2386) 0.5082(0.0656) 0.4978(0.0869)

1000 1 0.5 1.8 0.5080(0.0341) 0.5112(0.0377) 0.4930(0.0143)
2 1.5 1.4 0.50061(0.0253) 0.4979(0.0346) 0.5016(0.0114)
3 2.5 1 0.5076(0.0335) 0.4983(0.0325) 0.5013(0.0181)
4 3.5 0.6 0.5014(0.0516) 0.4955(0.0363) 0.5029(0.0249)
5 4.5 0.2 0.5142(0.0973) 0.4938(0.028) 0.5034(0.0478)

Table 6.3: Average values and MSE of Cointegration and distribution parame-
ters based on IFM for θ=1, σ=3 and κ=2

n α β δ α̂ β̂ δ̂ σ̂ κ̂

500 1 0.5 1.8 1.0040(0.0054) 0.5807(0.1004) 2.1476(0.4511) 2.9035(0.2208) 1.9358(0.1502)
2 1.5 1.4 1.9998(0.0004) 1.5708(0.1148) 1.6863(0.4656) 3.0809(0.3128) 2.6816(0.4321)
3 2.5 1 2.9984(0.0018) 2.5531(0.0717) 1.1299(0.1809) 2.9265(0.2144) 2.3650(0.4645)
4 3.5 0.6 3.9948(0.0054) 3.5353(0.0554) 0.6580(0.0886) 2.6791(0.3751) 1.9417(0.1841)
5 4.5 0.2 4.9733(0.0322) 4.4270(0.1485) 0.1910(0.0343) 2.5978(0.6056) 1.8646(0.1992)
1 0.5 1.8 1.0070(0.0008) 0.5010(0.0177) 1.7793(0.0612) 2.9861(0.1527) 2.1497(0.1735)

1000 2 1.5 1.4 1.9994(0.00074) 1.5081(0.0165) 1.4285(0.0482) 3.0603(0.3010) 1.909(0.1241)
3 2.5 1 2.998(0.0015) 2.5023(0.0202) 1.0103(0.0412) 3.1478(0.1980) 1.9289(0.1860)
4 3.5 0.6 3.9948(0.0054) 3.5353(0.055) 0.6580(0.0886) 2.6912(0.3751) 1.9417(0.1841)
5 4.5 0.2 4.990(0.0117) 4.4361(0.0342) 0.1940(0.0088) 3.002(0.1532) 1.6696(0.1045)

Table 6.4: Average values and MSE of dependency parameter estimates based
on IFM and Kendals tau measure (θ̂IFM ) and Kendals tau measure ( θ̂τ) and

the estimate of the measure of dependence (τ) for θ=1, σ=3 and κ=2

n α β δ θ̂IFM θ̂τ τ̂

500 1 0.5 1.8 0.9992(0.1554) 0.9947(0.1865) 0.3394(0.0261)
2 1.5 1.4 0.98926(0.1311) 1.0051(0.1598) 0.3358(0.0241)
3 2.5 1 1.0067(0.1567) 1.0030(0.1946) 0.3380(0.0263)
4 3.5 0.6 1.042(0.1739) 1.0164(0.1479) 0.3328(0.0397)
5 4.5 0.2 1.0651(0.1992) 1.0414(0.2598) 0.3284(0.0448)

1000 1 0.5 1.8 1.0253(0.1065) 1.0362(0.0965) 0.3265(0.0166)
2 1.5 1.4 0.9993(0.0729 0.9899(0.0882) 0.3367(0.0122)
3 2.5 1 1.081(0.0929) 0.9889(0.0808) 0.3367(0.0142)
4 3.5 0.6 1.044(0.1032) 1.0104(0.1107) 0.3318(0.0297)
5 4.5 0.2 1.0412(0.1739) 1.0164(0.1479) 0.3328(0.0397)



Copula based bivariate cointegration model 162

Table 6.5: Average values and MSE of Cointegration and distribution parame-
ters based on MLE for θ=0.5, σ=1 and κ=0.5

n α β δ α̂ β̂ δ̂ σ̂ κ̂

500 1 0.5 1.8 0.9996(0.0002) 0.4741(0.0032) 1.7310(0.1031) 0.8891(0.1289) 0.482(0.0373)
2 1.5 1.4 2.00003(0.0005) 1.5118(0.0149) 1.4347(0.0453) 1.1336(0.1456) 0.5945(0.1627)
3 2.5 1 2.998(0.0030) 2.517(0.0293) 1.0438(0.0708) 0.9917(0.0717) 0.6977(0.0227)
4 3.5 0.6 4.0003(0.0004) 3.553(0.0565) 0.6709(0.0762) 1.0632(0.0787) 0.4466(0.0679)
5 4.5 0.2 4.9981(0.0025) 4.5015(0.0241) 0.2021(0.0096) 1.0471(0.0785) 0.5631(0.0699)

1000 1 0.5 1.8 1.0013(0.0015) 0.5044(0.0080) 1.8126(0.0287) 1.0748(0.0796) 0.4821(0.0221)
2 1.5 1.4 2.0001(0.0002) 1.5152(0.0200) 1.4419(0.0570) 0.9724(0.0528) 0.5257(0.0429)
3 2.5 1 2.9991(0.0001) 2.4949(0.0106) 0.9913(0.0194) 0.9430(0.0707) 0.5173(0.022)
4 3.5 0.6 4.0008(0.0001) 3.5253(0.0305) 0.6313(0.0384) 0.9828(0.0350) 0.4943(0.0102)
5 4.5 0.2 5.0004(0.0006) 4.4408(0.0066) 0.1798(0.0012) 1.0400(0.0564) 0.5062(0.0180)

Table 6.6: Average values and MSE of dependency parameter estimates based
on MLE and Kendals tau measure (θ̂IFM ) and Kendals tau measure ( θ̂τ) and

the estimate of the measure of dependence (τ) for θ=0.5, σ=1 and κ=0.5

n α β δ θ̂IFM θ̂τ τ̂

500 1 0.5 1.8 0.5011(0.0373) 0.5126(0.0417) 0.4965(0.0252)
2 1.5 1.4 0.4985(0.0396) 0.5131(0.0678) 0.4954(0.0190)
3 2.5 1 0.5002(0.0380) 0.5134(0.0673) 0.4954(0.0255)
4 3.5 0.6 0.4976(0.0679) 0.5142(0.0327) 0.4946(0.0211)
5 4.5 0.2 0.6126(0.1212) 0.4116(0.1254) 0.4085(0.0249)

1000 1 0.5 1.8 0.4986(0.0398) 0.5024(0.0096) 0.4995(0.0195)
2 1.5 1.4 0.5032(0.00043) 0.5112(0.0010) 0.4948(0.0016)
3 2.5 1 0.5173(0.0205) 0.4983(0.0362) 0.5014(0.0130)
4 3.5 0.6 0.5010(0.0219) 0.5020(0.0353) 0.4996(0.0122)
5 4.5 0.2 0.4985(0.0189) 0.4960(0.0342) 0.5025(0.0103)

Table 6.7: Average values and MSE of Cointegration and distribution parame-
ters based on MLE for θ=1, σ=3 and κ=2

n α β δ α̂ β̂ δ̂ σ̂ κ̂

500 1 0.5 1.8 0.9988(0.0013) 0.477(0.0538) 1.7386(0.1808) 3.0441(0.3190) 2.5056(0.1160)
2 1.5 1.4 2.0001(0.0008) 1.4783(0.0467) 1.3549(0.1125) 2.8935(0.1772) 1.7943(0.2955)
3 2.5 1 3.0001(0.0015) 2.4071(0.0994) 0.8496(0.1608) 3.448(0.1123) 1.7896(0.2657)
4 3.5 0.6 4.0022(0.0011) 3.5472(0.0718) 0.6739(0.1139) 2.8725(0.3827) 2.4273(0.1254)
5 4.5 0.2 5.0001(0.0031) 4.634(0.1522) 0.2818(0.1001) 3.1861(0.2625) 2.1664(0.1370)

1000 1 0.5 1.8 1.0002(0.0003) 0.5491(0.0526) 1.9896(0.0119) 2.606(0.2252) 1.8371(0.1826)
2 1.5 1.4 2.0007(0.0007) 1.5023(0.0125) 1.4071(0.0342) 2.9502(0.0994) 1.7509(0.1090)
3 2.5 1 3.0002(0.00025) 2.5066(0.0169) 1.0141(0.0357) 3.1933(0.2307) 1.9113(0.1277)
4 3.5 0.6 3.9997(0.0003) 3.5236(0.0276) 0.6301(0.0360) 3.4008(0.2428) 2.1087(0.1035)
5 4.5 0.2 4.9998(0.0015) 4.4360(0.035) 0.1785(0.0246) 3.4352(0.1882) 1.8137(0.1036)
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Table 6.8: Average values and MSE of dependency parameter estimates based
on MLE and Kendals tau measure (θ̂IFM ) and Kendals tau measure ( θ̂τ) and

the estimate of the measure of dependence (τ) θ=1, σ=3 and κ=2

n α β δ θ̂IFM θ̂τ τ̂

300 1 0.5 1.8 1.0066(0.0952) 1.0209(0.1526) 0.3320(0.0221)
2 1.5 1.4 0.9862(0.2955) 0.9968(0.1358) 0.3383(0.0222)
3 2.5 1 0.9932(0.1069) 0.3372(0.1625) 0.3386(0.0208)
4 3.5 0.6 0.9991(0.1231) 1.0254(0.1832) 0.3322(0.0230)
5 4.5 0.2 1.0142(0.1037) 1.0451(0.1741) 0.3270(0.0220)

500 1 0.5 1.8 0.9904(0.0442) 1.0014(0.0833) 0.3339(0.0124)
2 1.5 1.4 0.9968(0.0522) 0.9856(0.0877) 0.3377(0.0136)
3 2.5 1 0.9966(0.0581) 1.0071(0.0201) 0.3331(0.0126)
4 3.5 0.6 1.0028(0.0470) 1.0013(0.0804) 0.3339(0.0117)
5 4.5 0.2 0.9856(0.0578) 0.9950(0.0807) 0.3354(0.0103)

of the estimates. The comparison suggests that ML method of estimation is

slightly efficient than IFM method for our proposed model.

Algorithm 13: Algorithm for Table 6.1 to 6.4

1 Set x10, x20, θ, Θ1 = (s, α, β, δ)
′

and Θ2 = (σ, α, δ)
′

for a sample of size n.
2 Generate η1 and η2 as described in Section 6.4.
3 Generate x1t and x2t using Equation (6.1) and (6.2).
4 Set the initial values α0, β0, δ0, σ0, s0.
5 Record the estimates of Θ1 as Θ̂1 by solving Equations (6.8) to (6.11).
6 Compute Θ̂2 by using Equations (6.12) to (6.14).

7 Set δ̂ = δ̂1+δ̂2
2 , α̂ = α̂1+α̂2

2 .
8 Obtain θ̂ by maximising Equation (6.15). Set θ = θ̂
9 Repeat Steps 2 to 8, say 500 times.

10 Choose the value of estimates as the averages of estimates obtained in step
9.
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Algorithm 14: Algorithm for Table 6.5 to 6.8

1 Set x10, x20, θ, Θ1 = (s, α, β, δ)
′

and Θ2 = (σ, α, δ)
′

for a sample of size n.
2 Generate η1 and η2 as described in Section 6.4.
3 Generate x1t and x2t using Equation (6.1) and (6.2).
4 Set the initial values α0, β0, δ0, σ0, s0, θ0.
5 Compute the estimates α̂, β̂, δ̂, σ̂, ŝ, θ̂ by solving equations (6.16) to (6.21).
6 Repeat Steps 2 to 6, say 500 times.
7 Choose the value of estimates as the averages of estimates obtained..

6.6 Data Analysis

To illustrate the use of the model developed above, we consider some real data

sets. The data set consists of 192 monthly observations of crude oil price and

Bombay stock exchange index for the period 2000 to 2016. All the variables are

transformed in to their natural logarithm. We have used the same data set as

given in Chapter 4.

Figure 6.4 provides the time series plot of the log transformed data and it indi-

cates that the time series is non stationary. We also confirmed the non station-

arity of time series by using Augmented Dickey Fuller test. The p-values for

Augmented Dickey fuller test of the oil and diesel price is obtained as 0.9108

and 0.3208 respectively, indicates that both the variables are non stationary in

nature.

Next we perform the estimation procedure of the cointegration model using in-

ference functions for margins to find the parameter estimates of cointegration

and the dependence parameter θ. Table 6.9 reports the AIC for the cointegra-

tion model with one and two lags. It is found that AIC is minimum for the

CVAR(1) model compared to CVAR(2), and hence we use the model with one
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Figure 6.4: Time series plot

Table 6.9: Information criterion

Model AIC

CVAR(1) -37638.018
CVAR(2) -2498.425

lag for the given data. The parameter estimates of the cointegration parameters

and the copula parameters are obtained using the method of Inference functions

for margins and are, θ̂=0.29240, α̂=-0.70509, β̂=-0.06485, δ̂=0.02911 and the scale

parameters of the distributions are σ=0.02077 and s=0.02888. Alternatively, the

dependency parameter is also estimated from Kendall’s tau measure of depen-

dence using the formula, θ = (1−τ)
2τ = 0.3807, where τ is the sample version

of the measure of association (Kendall’s Tau). It can be seen that the depen-

dency parameter θ we obtained using the two step procedure is close to the one

obtained using the dependency measure of association. The estimated cointe-

grating relationship is x1t − 0.70509x2t.

Now the residuals from the fitted cointegration model is observed and analysed.
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The residuals from the fitted error correction model is obtained as

η̂1t = ∆x1t − δ̂β̂ẑt−1

η̂2t = ∆x2t + δ̂β̂ẑt−1, t = 1, 2, ...

Using the above estimates of the ECM, we tested whether the marginal resid-

ual series follow a logistic and normal distribution using Kolmogorov-Smirnov

test. The marginals of the data can be fitted by Logistic[0.003306, 0.0288] and

Normal[-0.0166, 0.0207] with Kolmogorov- Smirnov test statistic values, 0.454

and 0.129 respectively. The probability-probability plots and histograms of the

residuals are shown in Figure 6.5 and Figure 6.6. Plots indicate that the residu-

als follow the chosen distributions.

(a) Residual pp-plot of Crude oil price (b) Residual pp-plot of BSE index

Figure 6.5: Probability-Probability Plot

(a) Residual Histogram of Crude oil price (b) Residual histogram of BSE index

Figure 6.6: Residual Histogram
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Thus the joint density of the errors can be fitted by,

f (η1t, η2t) = C
(

f
(
∆x1t − δ̂β̂(x1t−1 + α̂x2t−1)

)
, f
(
∆x2t + β̂(x1t−1 + α̂x2t−1)

)
; 0.29240

)
× f
(
∆x1t − δ̂β̂(x1t−1 + α̂x2t−1)

)
, f
(
∆x2t + β̂(x1t−1 + α̂x2t−1)

)
.

Next we evaluate the goodness of fit of the copula model. There are many meth-

ods of goodness of fit tests for multivariate models in literature (D’Agostino &

Stephens (1986) ,Fang et al. (2000)). We adopt the method of Fang et al. (2000)

which is based on the copula technique and independent of the marginal dis-

tributions. Suppose that (X, Y) is a bivariate random vector with cdf F(x,y) and

copula function C(u,v), then we have, that

K(w) = P (H(X, Y) ≤ w)

is a univariate distribution function on the interval (0,1).

This K(w) can be used as a statistic to test the goodness of fit of a copula. For

the Clayton survival copula, K(w) = w− ϕ(w)

ϕ
′ (w)

, where ϕ(w) is the generator of

the copula.

Let (x1, y1), (x2, y2) · · · · · · , (xn, yn) be a sample drawn from a bivariate distri-

bution H(x,y). Then a non parametric estimate of K(w) is given by Kn(w) =
n
∑

i=1

δ(w−Wi)
n , where

Wi =
1

(n− 1)
#
{
(xj, yj) : xj < xi, yj < yi

}
, 1 ≤ i ≤ n,
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and # represents the cardinality of a set.

The cdf K(w) with θ=0.29240 and the empirical distribution function Kn(w) from

the data are plotted in Figure 6.7. Now to test whether the chosen copula is

Figure 6.7: Plots of K(w) and Kn(w)

suitable for the data, we test the hypothesis H0 : C (u, v) = C (u, v, θ) with

θ=0.29240 using the test statistics given in Franq et.al(2000),

Dn =
√

n sup
0≤w≤1

|Kn(w)− K(w)| .

Dn is exactly the Kolmogorov test statistic (Refer Saunders and Laud (1980)).

For the the level of test 0.05, L(1-0.05)=1.358, where L(r) is the limit distribu-

tion function of the Kolmogorov test statistic. We obtained the value of Dn as

Dn=0.16682<1.358, thus we can not reject the null hypothesis and hence the

given copula can be fitted by C (u, v, 0.29240) . Hence, the proposed distribution

is suitable for the data. The estimates obtained using the method of maximum

likelihood also lead to the same conclusion, so we omit those results here.

The results of this Chapter are communicated in Nimitha & Balakrishna (2017).



Chapter 7

Conclusions and Future Work

The focus of this thesis is modelling and analysis of bivariate cointegration un-

der various non normal distributions. The method of analysing time series

based on the assumption of linear ARMA models with Gaussian errors are

found to be unrealistic in many areas of finance and economics as most of the

financial time series deviates from Gaussianity. If two or more series under

consideration are non stationary, but a linear combination of those series can

brought to be a stationary series, then the variables are cointegrated. On taking

this in to account, in the present thesis, we studied the modelling of bivariate

cointegrating time series and examined their suitability in the presence of non

Gaussian errors.

We have proposed a bivariate cointegration model with the errors generated

from a iid logistic distribution. We have developed maximum likelihood esti-

mation of the cointegration vector in a first order vector autoregressive model

that allows for logistic innovations. Then we developed a likelihood ratio test

to detect the presence of cointegration for the residuals of the ECM. All the

estimating equations are solved by numerical techniques. From the simulation

studies, it is observed that the proposed procedure is powerful for detecting the

presence of unit root and cointegration. Along with the usual asymptotic test,

a bootstrap test based on MLE is carried out to account for the size distortions

169
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caused by the finite samples. Finally the study provides an evidence of the

long-run cointegrating relationship of Rubber consumption and Export series.

Existence of cointegration with normally distributed errors using the Johansen

likelihood ratio test has also been tested. The results indicate that the existence

of cointegration relationship in the data set is identified with both normal and

logistic errors. But the residuals obtained from the cointegrating regression us-

ing normal errors rejects the assumption of normality. Hence we proceeded with

the vector autoregression model that allows for logistic innovations. The data

analysis confirms that the proposed model detects the presence of cointegration.

We developed a bivariate cointegration model with the errors generated from

a bivariate Student t distribution. The estimation procedure and testing for

the presence of cointegration with bivariate Student t distributed errors is de-

veloped. The model parameters are estimated using the method of maximum

likelihood. To evaluate the performance of the estimators and test statistic, a

simulation study has been conducted. The simulation study shows that es-

timates perform reasonably well and become more accurate with increase of

sample sizes. Finally, data analysis are conducted to illustrate the applications

of the proposed model and found that model is a good fit for the data.

In the context of developing models for financial time series, we investigated the

presence of non Gaussian heteroskedasticity in a bivariate cointegration model.

We introduced a bivariate Cointegrating time series model with time varying

conditional variances and covariances with constant and zero conditional corre-

lations. We have considered two different forms of cointegration representation,

namely the Engle and Granger’s error correction form and Phillip’s triangular
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representation, for estimating the long run relationship between the variables.

We developed the maximum likelihood estimation of the parameter vector for

our proposed model with Gaussian and non Gaussian innovations. As the es-

timating equations do not admit explicit solution, the likelihood equations are

all solved by using numerical techniques such as the method of Fisher scoring

and likelihood optimization technique. A simulation study has been conducted

for estimating the parameters of the model. The simulation experiments show

that the estimates perform reasonably well. Finally to illustrate the applications

of the proposed model, two data sets are analysed and found that the proposed

model is a good fit for the data sets.

We introduced a bivariate cointegration model with errors generated from a sur-

vival copula model. Unlike the usual copula density obtained through identical

marginals, we obtained the bivariate density by specifying different marginal

distributions. The parameters of the marginal distributions and copula func-

tion are estimated through simulation technique using the method of inference

functions for margins and the method of maximum likelihood estimation. Even

though ML estimates are found to be slightly better than IFM, mean square

errors suggest that in both cases the estimates are found to be efficient. The

applicability of the proposed model using the dependence structure is analysed

and is illustrated by using financial time series of crude oil price and Bombay

stock exchange index.

We summarise this thesis with the note that there are several unsolved problem

that have to be undertaken. The problems related to forecasting of cointegrating

time series under non Gaussian error distribution are yet to be discussed. In
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applied work, it is very common to render a strong seasonal time series in

to a stationary series by seasonal differencing. For example, if {Xt} is a non

stationary quarterly time series, its seasonal difference ∆4Xt = Xt − Xt−4 may

be I(0). And, if two non stationary seasonal series {Xt} and {Yt}can be made I(0)

by seasonal differencing and if there exists a linear combination Yt− βXt ∼ I(0),

then the two series are called seasonally co-integrated. So we plan to undertake

a study of series which are seasonally cointegrated under non Gaussian error

distributions.
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