

Development & Implementation of Visual Approach and Parallel
Distributed Architecture for 2-D DFT & UMRT computation

A THESIS

Submitted by

BHADRAN V.

for the award of the degree of

DOCTOR OF PHILOSOPHY

Under the guidance of

R. GOPIKAKUMARI

DIVISION OF ELECTRONICS ENGINEERING
SCHOOL OF ENGINEERING

COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY
KOCHI – 682 022, INDIA

NOVEMBER 2009

CERTIFICATE

 This is to certify that the thesis entitled “Development &
Implementation of Visual Approach and Parallel Distributed Architecture for
2-D DFT & UMRT computation” is a bonafide record of the research work
carried out by Bhadran V. under my supervision and guidance in the Division of
Electronics Engineering, School of Engineering, Cochin University of Science and
Technology and that no part thereof has been presented for the award of any other
degree.

 Dr. R. Gopikakumari
 (Supervising Guide)
 Head
 Division of Electronics Engineering
Kochi School of Engineering
10 November 2009 Cochin University of Science and Technology

DECLARATION

 I hereby declare that the work presented in the thesis entitled

“Development & Implementation of Visual Approach and Parallel Distributed

Architecture for 2-D DFT & UMRT computation” is based on original research

work carried out by me under the supervision and guidance of Dr. R. Gopikakumari

in the Division of Electronics Engineering, School of Engineering, Cochin

University of Science and Technology and that no part thereof has been presented

for the award of any other degree.

Kochi
10 November 2009 Bhadran V.

 i

ABSTRACT

Transform theory plays a key role in signal/image processing, as well as in other areas, as it

allows the processing simple and flexible. The Fourier transform is especially prevalent, partially

since it is the eigen function representation of Linear Time Invariant (LTI) systems. Discrete

Fourier Transform (DFT) becomes a powerful tool for frequency domain analysis of discrete time

signals due to the increasing flexibility and reconfigurability of digital systems. But the

conventional DFT computation is time consuming, especially for 2-D applications, as the

processing is done in the complex domain. In this thesis, the 2-D DFT computation is visually

represented using a set of primitive symbols based on 2 × 2 data. The computations are mostly

real, except at the final stage. The size of the data matrix is assumed to be even. The DFT

coefficients are classified. A basic set of DFT coefficients necessary and sufficient to represent

the entire signal is identified using the redundancy analysis. An algorithm is developed for the

computation of 2-D DFT by visual approach. Two approaches namely visual representation of

DFT coefficients based on 2 × 2 DFT and 2 × 2 data are used to design and develop Parallel

Distributed Architecture for the computation of 2-D DFT. Version I and version II Parallel

Distributed Architectures for the computation of 8 × 8 point DFT are developed based on former

approach while M spacing based 2-D DFT computation employs the latter. The comparison

results show the powerful performance of the M spacing based method for 2-D DFT computation

against the three existing methods namely conventional DFT computation, modified DFT and

closed form method as well as the two other methods developed namely the visual approach and

modified DFT using basic DFT in terms of speed. Four different algorithms are also designed for

the computation of particular solution required for the M spacing based algorithm. Further

derived redundancy present in the MRT coefficients is analyzed and eliminated to obtain 2-D

UMRT, which require only the same memory space as required for the original image. A suitable

placement scheme is developed to place the UMRT coefficients. Three approaches, one of which

is a Parallel Distributed Architecture, are designed, developed and compared for the computation

 ii

of 2-D UMRT. Finally, the FPGA implementation of the three architectures developed for the

computation of 8 × 8 point UMRT is compared in terms of area and speed. Different schemes for

the M spacing based 2-D UMRT computation are simulated and synthesized in FPGA and their

performance are also compared.

 iii

ACKNOWLEDGEMENTS

First and foremost I would like to express my profound gratitude to my research guide, Dr. R.

Gopikakumari, Head, Division of Electronics Engineering, School of Engineering, Cochin

University of Science and Technology, under whose supervision and guidance I have been able to

complete my research. But for her able guidance, encouragement and inspiration, this would have

never materialized. I wish to express my sincere gratitude to her daughter and mother for the

patience in supporting Dr. R. Gopikakumari to spent long hours in the lab outside normal

working hours.

I wish to thank the Vice Chancellor and Registrar, CUSAT for the opportunity to complete

the research work and submit the thesis. I also thank the Principal, School of Engineering, and

members of the Research Committee for guidance and help at various stages of the period of

research. I thank the Doctoral Committee members Dr. P. Mythli and Dr. S. Mridula for the

support and help throughout the span of research. I wish to express gratitude to the office staff of

various sections of CUSAT for the help and assistance. Thanks are also due to the faculty,

Division of Electronics Engineering, School of Engineering, and office staff at School of

Engineering for all help and assistance provided in relation with the research work. I would like

to thank the Director, IHRD for providing me study leave to complete the research work.

I would like to convey my appreciation to Mr. Renjith R., Technical Assistant, Department of

Computer Science, his wife Mrs. Bindu, Mr. Rajesh, LBS center for Science and technology, Mr.

Jyothish and Mr. Binesh for the timely help. Special thanks are due to Mrs. Deepa, Lecturer,

College of Engineering, Thiruvananthapuram, Mr. Pradeep M., Mr. Manilal D., Mr. Shanavaz K.

T. and Mr. Sunilkumar K. research scholars for the valuable suggestions.

I wish to acknowledge the blessings of all my teachers from elementary level. I acknowledge

the valuable discussions with and support given by Mr. Rajesh Cherian Roy, research scholar at

Division of Electronics Engineering, School of Engineering. Special thanks are due to Mrs.

Rekha K. James, Dr. Sahana, Mr. Unni and Mr. Sasigopal for the valuable suggestions,

encouragement and timely help, offered me during the period of the research work. I take the

opportunity to disclose my sincere thanks to all my colleagues, research scholars, students and

friends who helped me directly or indirectly in carrying out the research work to fruitful level.

 iv

I express my profound gratitude to my wife Mrs. M. Jayasree, for the timely help, patience

and support. I wish to convey my appreciation to my two sons Master Vishnu and Master Nandu

for the patience and support during the years when I was pursuing my studies. I wish to

acknowledge my parents whose blessings have guided me throughout this period. I wish to thank

my father in law, mother in law, sisters and brother in laws for the faith and patience during the

phase of research.

I am indebted to one and all, who have enlightened me in this crucial period of life.

Bhadran V.

SYMBOLS AND DEFINITIONS

Z - Set of integers

q ∈ Z - q is an element of set Z

a, b, h, i, j, l, n, q, r, s, t, v, z, α - Integer variables

n1 - Signal spatial index in the vertical direction

n2 - Signal spatial index in the horizontal direction

N - Integer, N ∈ Z, mostly used to indicate size of input signal
M = N/2

1 2,n nx - 2-D signal sample at n1, n2

k1 - Frequency index in the vertical direction

k2 - Frequency index in the horizontal direction

 p - Phase index
p

kkY
2,1
 - 2-D MRT coefficient at k1, k2, p.

WN = Nje /2π− , Twiddle factor

2,1 kkY - 2-D DFT coefficient at k1, k2.

gcd(,)a b - Greatest Common Divisor (GCD) of integers a and b

dm = gcd(k1, k2, M), is a divisor of M

a | b - a divides b

a |/ b - a does not divide b

||a bα - aα is the highest power of a dividing b

 ((a))b - Remainder of a/b (Modulo operation)

)(Nϕ - Euler Totient function of N

q∀ - For all values of q

⇒ - Such that

A - Cardinality of the set A

mc - Number of complex multiplications for a DFT coefficient

ac - Number of complex additions for a DFT coefficient

ar - Number of real additions for a DFT coefficient

np - Number of p
kkY
2,1
 corresponding to a DFT coefficient

nb - Number of basic DFT coefficients for N

nbdm - Number of basic DFT coefficients where gcd(k1, k2, M) = dm

v

nddm - Number of DFT coefficients that could be derived from a basic DFT coefficient

where gcd(k1, k2, M) = dm

nptdm - Total number of DFT coefficients where gcd(k1, k2, M) = dm

dmo - gcd(k1, k2, M) when gcd(dmo, dm) = dm and dmo > dm

ddm - Divisors of dm other than dm

nr - Number of redundant MRT coefficients for each dm

dme - gcd(k1, k2, M) where derived redundancy exist in MRT coefficients

nu - Number of UMRT coefficients in a basic DFT coefficient

pi - Number of odd prime divisors of M/dm

n - Number of odd prime divisors of N

iβ - Power of odd prime divisors pi in the prime factorization of M/dm

α - Power of 2 in the prime factorization of M/dm

nmrtdm - Total number of MRT coefficients corresponding to the basic DFT coefficients

where gcd(k1, k2, M) = dm, except for dm = M

nmrtM - Total number of MRT coefficients corresponding to the basic DFT coefficients

where gcd(k1, k2, M) = M

nmrtnb - Total number of MRT coefficients for the entire basic DFT coefficients

Tnu - Total number of UMRT coefficients corresponding to all the basic DFT

coefficients where gcd(k1, k2, M) = dm

AR(UMRT) - Total number of real additions to compute 2-D UMRT, for N

vi

LIST OF TABLES

Table 3.1: Influence of ‘dm’ when N = 16 .. 51
Table 3.2: Index relation for N = 20 .. 55
Table 3.3: nddm that could be derived from the basic DFT coefficients for different N 56
Table 3.4: nb when N/2 is prime.. 60
Table 3.5: nb when N is a power of 2 .. 60
Table 4.1: Mnemonics used to represent the DFT coefficients for N = 8............................ 71
Table 4.2: Number of data points involved in the computation of p

kkY
2,1
 for N = 4, 6 & 8 ... 90

Table 4.3: Execution time of different methods for particular solution 110
Table 5.1: Index relation in derived redundancy - N = 6 ... 114
Table 5.2: Index relation in derived redundancy - N/2 prime.. 115
Table 5.3: Derived redundancy when N = 6 .. 115
Table 5.4: Example of index relation in derived redundancy - N = 12.............................. 116
Table 5.5: Index relation in derived redundancy - N = 12 ... 116
Table 5.6: Derived redundancy for N = 12 .. 117
Table 5.7: Example of index relation in derived redundancy - N = 18.............................. 118
Table 5.8: Index relation in derived redundancy - N = 18... 118
Table 5.9: Derived redundancy when N = 18 .. 119
Table 5.10: Derived redundancy when N = 8. ... 119
Table 5.11: nr corresponding to each dm for N, where ((N))4 = 0 & N not a power of 2. . 120
Table 5.12: nr corresponding to each dm for N, where ((N))4 = 2 and N/2 not prime....... 121
Table 5.13: Reduction in computation due to derived redundancy 122
Table 5.14: nbdm and nu for different N. ... 123
Table 5.15: nb for each dm when N power of 2... 124
Table 5.16: nu to be computed by each group for different N ... 127
Table 6.1: Execution time (in sec.) of 2-D DFT computational schemes for N. 132
Table 6.2: Comparison of computational complexity of 2-D DFT computation 135
Table 6.3: Execution time (in sec.) of 2-D UMRT computational schemes for N. 137
Table 6.4: Computational complexity of 2-D DFT & UMRT for M spacing method....... 138
Table 6.5: Computation time for 8 × 8 point DFT by different methods 139
Table 6.6: Computation time for 8 × 8 point UMRT by different methods 140
Table 6.7: Synthesis results of fully parallel version of 2-D UMRT................................. 141
Table 6.8: Synthesis results of fully parallel, 3 & 4 layer M spacing 8 × 8 point UMRT. 142
Table 6.9: MCPD for the computation of different combinations of UMRT coefficients 142
Table 6.10: Synthesis results of fully parallel, three layer M spacing 8 × 8 point UMRT 144
Table 6.11: Synthesis results of 8 × 8 UMRT chips shown in fig. 6.10 and 6.11. 145

vii

TABLE OF FIGURES

Fig. 3.1: Primitive symbols for visual representation of DFT coefficients using 2 × 2 data...46
Fig. 3.2: Visual representation of 2-D DFT coefficients for N = 4..46
Fig. 3.3: Visual representation of 2-D DFT coefficients for N = 6..46
Fig. 3.4: Visual representation of 2-D DFT coefficients for N = 8..47
Fig. 3.5: nb for different N ...60
Fig. 3.6: Visuals of p

kkY
2,1
corresponding to the basic DFT coefficients for N = 4.....................64

Fig. 3.7: Visuals of p
kkY
2,1
corresponding to the basic DFT coefficients for N = 6.....................64

Fig. 3.8: Visuals of p
kkY
2,1
corresponding to the basic DFT coefficients for N = 8.....................64

Fig. 3.9: Flow chart depicting the computation of DFT using visual method66
Fig. 4.1: Visual representation of 64 unique set of p

kkY
2,1
 for N = 8...70

Fig. 4.2: Version I parallel distributed architecture for 8 × 8 point DFT computation74
Fig. 4.3: Schematic diagram for version I architecture of 8 × 8 point DFT............................76
Fig. 4.4: Version II parallel distributed architecture for 8 × 8 point DFT...............................85
Fig. 4.5: Patterns seen repeated in p

kkY
2,1

...91
Fig. 4.6: M spacing based five layer architecture for 8 × 8 DFT...95
Fig. 4.7: M spacing based four layer architecture for 8 × 8 DFT..98
Fig. 4.8: Four layer architecture for N × N DFT ...102
Fig. 4.9: Comparison of execution time when employing different particular solution........109
Fig. 5.1: Example 1 for derived redundancy for N = 6 ..114
Fig. 5.2: Example 2 for derived redundancy for N = 6 ..114
Fig. 5.3: Example for derived redundancy for N = 12 ...115
Fig. 5.4: Example for derived redundancy for N = 18 ...117
Fig. 5.5: Placement details of 8 × 8 MRT..125
Fig. 5.6: M spacing parallel distributed architecture for N × N UMRT.................................128
Fig. 6.1: Comparison of execution time of different 2-D DFT computational schemes.132
Fig. 6.2: MR of different 2-D DFT computational scheme for N. ..134
Fig. 6.3: AR of different 2-D DFT computational scheme for N. ...136
Fig. 6.4: Comparison of execution time for different 2-D UMRT computational schemes..136
Fig. 6.5: Fully parallel 8 × 8 UMRT..140
Fig. 6.6: 8 × 8 UMRT chip with one data in (parallel implementation)143
Fig. 6.7: 8 × 8 UMRT chip with two data in (parallel implementation)................................143
Fig. 6.8: 8 × 8 UMRT chip with four data in (parallel implementation)143
Fig. 6.9: Block diagram of the 8 × 8 UMRT chip with four data in......................................144
Fig. 6.10: 8 × 8 UMRT chip with four Data in (sequential implementation)144
Fig. 6.11: 8 × 8 UMRT chip with two Data in and single UMRT out serially......................145
Fig. A.1: List of primitive symbols based on 2 × 2 DFT...153
Fig. A.2: Visual representation based on 2 × 2 DFT for N = 8..154
Fig. A.3: Matrix showing the grouping of DFT coefficients for N = 8155

ix

CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iii
SYMBOLS AND DEFINITIONS v
LIST OF TABLES vii
TABLE OF FIGURES ix

TABLE OF CONTENTS xi

CHAPTER 1...1

INTRODUCTION ...1

1.1 DIGITAL SIGNAL PROCESSING ...1
1.2 TRANSFORMS..4

1.2.1 Laplace Transform...4
1.2.2 Z Transform ...5
1.2.3 Fourier Transform..5

1.2.3.1 One Dimensional DFT (1-D DFT) ..6
1.2.3.2 Two Dimensional DFT (2-D DFT)..6
1.2.3.3 Algorithms to implement 2-D DFT ...7

1.2.3.3.1 Direct computation...7
1.2.3.3.2 Row-column decomposition ..7
1.2.3.3.3 Vector-radix Fast Fourier Transform (FFT) ..7

1.2.3.4 Modified DFT computation ...8
1.2.4 M-Dimensional Real Transform (MRT)..9
1.2.5 Unique MRT (UMRT) for N power of 2 ...10
1.2.6 Discrete Cosine Transform (DCT)...10
1.2.7 Wavelet Transform ..11

1.2.7.1 Haar Transform..12
1.2.8 Hadamard Transform...13

1.3 IMPLEMENTATIONS ...14
1.4 VISUALIZATION ..15
1.5 MOTIVATION FOR THE PRESENT WORK..16
1.6 BRIEF SKETCH OF THE PRESENT WORK ..18

CHAPTER 2...21

REVIEW OF PAST WORK...21

2.1 1-D TRANSFORMS...22
2.1.1 DFT..22
2.1.2 DCT..25
2.1.3 Hadamard Transform...25

2.2 TWO-DIMENSIONAL TRANSFORM..26

xi

2.2.1 DFT..26
2.2.2 Modified DFT ..27
2.2.3 DCT..28
2.2.4 Hadamard Transform...28
2.2.5 Wavelet Transform ..29
2.2.6 Haar Transform..29
2.2.7 MRT...30

2.3 IMPLEMENTATIONS ...30
2.3.1 DFT..30
2.3.2 Modified DFT ..35
2.3.3 DCT..36
2.3.4 Wavelet Transform ..37
2.3.5 Haar Transform..38
2.3.6 Hadamard Transform...39

2.4 CONCLUSION...40

CHAPTER 3...41

VISUAL REPRESENTATION AND COMPUTATION OF 2-D DFT............................41

3.1 VISUAL REPRESENTATION BASED ON 2 × 2 DFT...42
3.2 VISUAL REPRESENTATION BASED ON 2 × 2 DATA ...42

3.2.1 Primitive symbols ..42
3.2.2 Visual representation ...45
3.2.3 Analysis of the visual representation ...45

3.2.3.1 Classification of DFT coefficients based on the appearance45
3.2.3.2 Classification of DFT coefficients based on the existence of p

kkY
21 ,49

3.2.3.3 Classification of visual representation based on N51
3.2.4 Redundancy..52
3.2.5 Calculation of number of basic DFT coefficients..58
3.2.6 Algorithm for computing the index of all basic DFT coefficients...................61
3.2.7 Patterns in basic DFT coefficients ...63

3.3 DFT COMPUTATION USING VISUAL METHOD...66
3.4 CONCLUSION...68

CHAPTER 4...69

PARALLEL DISTRIBUTED ARCHITECTURE FOR N × N DFT................................69

4.1 DEVELOPMENT FOR 8 × 8 DFT BASED ON 2 × 2 DFT...70
4.1.1 Hierarchical computation scheme..71
4.1.2 Development of Version I architecture..72

4.1.2.1 Algorithm...75
4.1.2.2 Sample computation...80

4.1.3 Version II architecture ...84
4.1.3.1 Algorithm...84

4.1.4 Comparison of version I & II models with the model for ((N))4 = 2...............89
4.2 DEVELOPMENT OF M SPACING BASED ARCHITECTURE FOR N × N DFT89

4.2.1 Patterns in p
kkY
2,1
 of basic DFT coefficients...89

4.2.2 M spacing based data availability ..90
4.2.3 Five layer architecture for 8 × 8 DFT ..95
4.2.4 Four layer architecture for 8 × 8 DFT..98

4.2.4.1 Sample computation...100

xii

4.2.5 Proposed architecture for N × N DFT ...102
4.2.5.1 Number of additions for each p

kkY
2,1
in layer 3 ...103

4.2.5.2 Development of algorithm for layer 3 computation104
4.2.5.3 Particular solution ..105

4.2.5.3.1 Trial and error method ...106
4.2.5.3.2 Using extended Euclidean algorithm...106
4.2.5.3.3 Combination of visual approach and other methods............................108
4.2.5.3.4 Modified trial and error method...108
4.2.5.3.5 Simulation results...109

4.2.5.4 M spacing based algorithm for any even N ...110
4.3 CONCLUSION...112

CHAPTER 5...113

2-D UMRT..113

5.1 DERIVED REDUNDANCY IN MRT ..113
5.1.1 Analysis of the MRT coefficients for N = 6 (N/2 prime)114
5.1.2 Analysis for N = 12 where ((N))4 = 0 and N not a power of 2115
5.1.3 Analysis for N = 18 where ((N))4 = 2 and N/2 not prime..............................117
5.1.4 Analysis of MRT coefficients when N is a power of 2..................................119

5.2 COMPUTATION OF REDUNDANT MRT COEFFICIENTS ..119
5.3 MRT COEFFICIENTS IN BASIC DFT COEFFICIENTS FOR N, POWER OF 2123
5.4 SELECTION OF UMRT COEFFICIENTS..124
5.5 PLACEMENT/MATRIX REPRESENTATION OF UMRT COEFFICIENTS125

5.5.1 Algorithm for placement of a UMRT coefficient ..126
5.6 DEVELOPMENT OF ALGORITHMS FOR THE COMPUTATION OF 2-D UMRT...............126

5.6.1 Three layer M spacing method ..126
5.6.1.1 Algorithm...128

5.6.2 Visual method ..130
5.6.3 Modified direct method for UMRT computation ..130

5.7 CONCLUSION...130

CHAPTER 6...131

IMPLEMENTATION OF PARALLEL DISTRIBUTED ARCHITECTURE FOR THE
COMPUTATION OF 2-D DFT & UMRT ..131

6.1 MATLAB SIMULATION...131
6.1.1 2-D DFT...131

6.1.1.1 Computational complexity...133
6.1.2 2-D UMRT...136

6.1.2.1 Computational complexity...137
6.1.3 Parallel distributed architectures and other methods for 8 × 8 point DFT.....139
6.1.4 Parallel distributed architectures and other methods for 8 × 8 point UMRT.139

6.2 FPGA IMPLEMENTATION OF THE ARCHITECTURES FOR 2-D UMRT.......................140
6.2.1 Fully parallel implementation of 2-D UMRT..140
6.2.2 Different schemes of M spacing based architecture for 8 × 8 point UMRT..141

6.2.2.1 Fully parallel implementation of four layer architecture141
6.2.2.2 Semi parallel implementation ..142
6.2.2.3 Parallel distributed architecture with data in/out serially142
6.2.2.4 Sequential implementation...144

6.2.2 Comparison of different FPGA implementations ..145

xiii

6.3 CONCLUSION...146

CHAPTER 7...147

DISCUSSIONS AND CONCLUSIONS...147

7.1 VISUAL REPRESENTATION...147
7.1.1 The software...147
7.1.2 Computation...147
7.1.3 Exploitation of redundancy..148

7.2 COMPUTATION OF 2-D DFT..149
7.3 ARCHITECTURE...149
7.4 2-D UMRT...150
7.5 FPGA IMPLEMENTATION ..150
7.6 SUGGESTIONS FOR FURTHER WORK IN THE FIELD..151

7.6.1 Visual representation ...151
7.6.2 Algorithm...151
7.6.3 Architecture..152

APPENDIX A...153

VISUAL REPRESENTATION OF DFT COEFFICIENTS BASED ON 2 × 2 DFT153

A.1 PRIMITIVE SYMBOLS AND ITS MNEMONICS ...153
A.2 VISUAL REPRESENTATION OF 8 × 8 DFT BASED ON 2 × 2 DFT...............................154
A.3 MATRIX SHOWING THE GROUPING OF DFT COEFFICIENTS FOR N = 8155

APPENDIX B ...157

B.1 GREATEST COMMON DIVISOR (GCD) ..157
B.2 LINEAR DIOPHANTINE EQUATION...157
B.3 BEZOUT’S LEMMA: ...157
B.4 THEOREMS ON LINEAR CONGRUENCE...157
B.5 PRINCIPLE OF INCLUSION EXCLUSION...158
B.6 EUCLIDEAN ALGORITHM, EXTENDED EUCLIDEAN ALGORITHM.158
B.7 CO-PRIME INTEGER. ..158
B.8 EULER TOTIENT FUNCTION...158

APPENDIX C..159

C.1 LAYER 3 COMPUTATIONS FOR N = 4 ...159
C.2 LAYER 3 COMPUTATIONS FOR N = 6 ...159
C.3 LAYER 3 COMPUTATIONS FOR N = 10 ...160
C.4 LAYER 3 COMPUTATIONS FOR N = 12 ...163

REFERENCES...173

LIST OF PUBLICATIONS ..185

xiv

An idea that is developed and put into action is more important than an idea that exists only as an
idea.

---Buddha

CHAPTER 1

INTRODUCTION

1.1 Digital Signal processing
Digital Signal Processing (DSP) is the processing of signals by digital means. A signal in this context

can mean a stream of information representing number of different things. The origin of signal

processing is in electrical engineering, and a signal here means an electrical signal carried by a wire or

telephone line, or perhaps by a radio wave. Signals contain information about a variety of things and

activities in physical world. They can be represented in time domain and frequency domain. In time

domain representation, a signal is a time varying quantity. In frequency domain, a signal is

represented by its frequency spectrum. Generally, a signal is anything from stock prices to data from

a remote-sensing satellite. A digital signal can be processed by performing numerical calculations.

 In many cases, the signal of interest is initially in the form of an analog electrical voltage or

current, produced for example by a microphone or some other type of transducer. In some situations,

such as the output from the readout system of a compact disc (CD) player, the data is already in

digital form. An analog signal must be converted into digital form before DSP techniques can be

applied. An analog electrical signal can be digitized using an analog-to-digital converter (ADC) [151].

This generates a digital output as a stream of binary numbers whose values represent the electrical

input to the device at each sampling instant.

 Signals commonly need to be processed in a variety of ways. E.g., the output signal from a

transducer may well be contaminated with unwanted electrical "noise" [151]. The electrodes attached

to a patient's chest, when an ECG is taken, measure tiny electrical voltage changes due to the activity

of the heart and other muscles. The signal is often strongly affected by "mains pickup" due to

electrical interference from the mains supply. Processing the signal using a filter circuit can remove or

at least reduce the unwanted part of the signal. Increasingly nowadays, the filtering of signals to

improve signal quality or to extract important information is done by DSP techniques [165] rather

than by analog electronics.

 DSP becomes more powerful due to the increasing flexibility and re-configurability of digital

systems. DSP technology is nowadays commonplace in such devices as mobile phones, multimedia

2 Introduction

computers, video recorders, CD players, hard disc drive controllers and modems, and will soon

replace analog circuitry in TV sets and telephones. An important application of DSP is in signal

compression and decompression [119]. Signal compression is used in digital cellular phones to allow

a greater number of calls to be handled simultaneously within each local "cell". DSP signal

compression technology allows people not only to talk to one another but also to see one another on

their computer screens, using small video cameras mounted on the computer monitors, with only a

conventional telephone line linking them together. In audio CD systems, DSP technology is used to

perform complex error detection and correction on the raw data as it is read from the CD.

General-purpose microprocessors [18] such as the Intel x86 family are not ideally suited to

the numerically intensive requirements of DSP. The DSP chip [115], a specialized microprocessor

with architectures designed specifically for the types of operations required in DSP can carry out such

operations incredibly fast, processing hundreds of millions of samples every second, to provide real-

time performance. Like a general-purpose microprocessor, programmable digital signal processor

(PDSP) is a programmable device, with its own native instruction code. DSP chips are capable of

carrying out millions of floating point operations per second, and like their better-known general-

purpose cousins, faster and more powerful versions are continually being introduced. DSP chips can

also be embedded within complex "system-on-chip" (SoC) [136] devices, often containing both

analog and digital circuitry. It has the ability to process a signal "live" as it is sampled and then output

the processed signal, for example to a loudspeaker or video display. All of the practical examples of

DSP applications mentioned earlier, such as hard disc drives and mobile phones, demand real-time

operation.

The major electronics manufacturers have invested heavily in DSP technology. Because they

now find application in mass-market products, DSP chips account for a significant proportion of

worldwide semiconductor sales, amounting to billions of dollars annually. This trend seems, likely to

continue to increase rapidly.

 Application specific integrated circuits (ASICs), programmable and field programmable gate

arrays (FPGAs) platforms [84] are now mostly used to manufacture DSP chips. ASIC includes logic

cells that are customized and all mask layers that are customized. Customizing all of the IC’s features

in this way allows designers to include analog circuits, optimized memory cells, or mechanical

structures on an IC. An FPGA is a semiconductor device containing programmable logic components

called "logic blocks", and programmable interconnects. The FPGA platform creates a programmable

design chip as against the ASIC platform, where the programme is fixed and cannot be changed once

the chip is developed.

FPGAs are a part of Programmable Logic Devices (PLDs) and they facilitate lower time and

cost in designing. PLDs are becoming popular while ASICs are becoming more expensive. Deciding

between ASICs and FPGAs designers require to answer tough questions concerning costs, tool

availability and effectiveness etc. These could include cost (including nonrecurring engineering

 Introduction 3

charges), die size, time-to-market, tools, performance, intellectual property requirements and

reconfigurability. Time-to-market is often at the top of the list. Some large ASICs can take a year or

more to design. An option is to do a "rapid ASIC" using preformed ASIC blocks, which saves time

and lowers NRE costs. A good way to shorten development time is to make prototypes using FPGAs

and then switch to an ASIC. The development cost of chips on an ASIC platform starts from $5

million and it requires a long time as against for an FPGA platform starts from $20,000, and can be

developed faster than an ASIC. The tools are free on the Web for the smaller FPGAs, while you'll

have to pay for a license file for the ones with high gate counts. But there are no NRE charges.

Modern FPGAs [183] are packed with features that were not previously available. Today's FPGAs

usually come with phase-locked loops, low-voltage differential signal, clock data recovery, more

internal routing, high speed (most tools measure timing in picoseconds) hardware multipliers for

DSPs [110], memory, programmable I/O, IP cores and microprocessor cores. You can integrate all

your digital functions into one part and really have a system on a chip (SoC). A wide range of

electronics devices such as mobile phones, digital cameras, base station equipments etc. need SoC.

There is no doubt that SoC will drive various applications. Digital devices like cameras use FPGA

chips. FPGA-based SoCs have a bright future. Major companies are working on developing the

Intellectual Property Cores and these are predefined blocks of various functions. IP cores also perform

custom logic operations. Since FPGAs are re-programmable, customers can program the chips to their

specifications. Reconfiguration at speeds fast enough to permit run time reconfiguration (RTR)

without intolerable overheads is possible [84]. This enables FPGAs to be used as general purpose

parallel computing devices [183]. Perhaps this is the major reason as to why FPGAs are not only

driving the business, but are also overtaking the ASIC market in costs, start from a couple of dollars

to several hundred or more depending on the features, recent times.

Another trend in the DSP hardware design world is the migration from graphical design entries

to hardware description language (HDL). Although many DSP algorithms can be described with

signal flow graphs, it has been found that code re-use is much higher with HDL-based entries than

with graphical design entries. Two HDL languages are popular namely Very High Speed Integrated

Circuit Hardware Description Language (VHDL) and Verilog® HDL and both seem to be well suited

for FPGA. Nowadays there are many tools available in the market for designing FPGA. A set of tools,

that were jointly developed by RTI and Virginia Tech, that semi-automates the process of

constructing VHDL performance models for DSP applications was described by F.G. Gray [86]. Use

of these tools allows rapid evaluation of larger design spaces than was previously feasible. M. Haldar

[102] presented the MATCH compiler that takes MATLAB as input and produces hardware in RTL

VHDL, which can be mapped to an FPGA using commercial CAD tools. Even though the design time

reduces from days to minutes, the generated hardware is slower than the manually designed hardware.

P. Banerjee [133] described a behavioral synthesis tool called Accel FPGA, which reads in high-level

descriptions of DSP applications written in MATLAB, and automatically generates synthesizable

4 Introduction

RTL models and simulation test benches in VHDL or Verilog. The RTL models can be synthesized

using commercial logic synthesis tools and place and route tools onto FPGAs. S. Balakrishnan [173]

discussed the challenges and requirements of creating portable algorithmic IP for FPGAs and ASICs

and illustrates how an ESL synthesis methodology using Synplicity’s Synplify DSP tool can

significantly reduce the time and effort to implement either technology. The Synplify DSP tool

automatically creates optimized logic implementations for both FPGAs and ASICs.

1.2 Transforms
In the field of signal/image processing as well as in other areas, transform theory plays a central role.

Transforms are used to find an alternative domain where processing of the task at hand is easier or

advantageous to perform. E.g. the convolution in the time domain is equivalent to multiplication in

the frequency domain. Transformation of signals also helps in identifying distinct information, which

might otherwise be hidden in the original signal. Transforms come in many forms. Linear transforms,

especially Fourier and Laplace transforms are widely used to solve problems in science and

engineering. Depending on the application, the transformation technique is chosen, and each

technique has its advantages and disadvantages.

1.2.1 Laplace Transform

Laplace Transform (LT) is a mathematical tool [123], which provides broader characterization of

signals and systems compared to Fourier transform (FT). In some cases LT can be used where FT

cannot be used. LT can be used for the analysis of unstable systems where as FT has several

limitations. There are several signals for which FT does not converge but the LT converges. An

important difference between FT and LT is that FT uses a summation of waves of positive and

negative frequencies whereas the LT employs damped waves through the use of an additional factor

e−σ where, σ a positive number. Both FT and LT convert time domain function x(t) to the frequency

domain function ()jX e ω and X(s) respectively. Also the LT provides the total solution to the

differential equation and the corresponding initial and final value problems.

For periodic or non periodic time function x(t) which is zero for t ≤ 0 and deferred for t > 0,

the LT of x(t) denoted as L[x(t)] may be defined as

L[x(t)] = X(s) = 0 () .stx t e dtα −∫

where s = σ +j ω .

The inverse Laplace transform is expressed as

X(t) = L-1[x(t)] =
0

0

1 () .
2

j
st

j
X s e ds

j

σ + ω

σ − ω
∫

π
.

 Introduction 5

LT uses a transform variable in the complex plane. The transform variable in FT is a pure

imaginary number restricted to s = j ω as can be seen soon.

1.2.2 Z Transform

Z transform [78] plays the same role in the analysis of discrete time signals and LTI systems as the LT

plays in the analysis of Continuous time signals and LTI systems i.e., the Z transform is the discrete

time counter part of the LT. Z transform of a discrete time signal x(n) may be expressed as

X(z) = () n

n
x n z

∞
−

=−∞
∑ ,

where z is a complex variable.

Inverse Z transform is expressed as

x(n) = 11 () .
2

n
c F z z dz

j
−∫

π
� .

1.2.3 Fourier Transform

The Fourier transform is used in almost every area of Science and Engineering. When we analyze

continuous-time signals with the help of Fourier series and Fourier transforms, the Fourier series and

Fourier transforms are called continuous-time Fourier series and continuous time Fourier transform

[179] respectively or simply Fourier series and Fourier transform. But when we analyze discrete time

signals with the help of Fourier series and Fourier transform, then the Fourier series and Fourier

transforms are called discrete-time Fourier series and discrete time Fourier transform respectively.

Fourier series is used to get frequency spectrum of a time domain signal, when the signal is a

periodic function of time. With the help of Fourier series, a given periodic function of time may be

expressed as the sum of an infinite number of sinusoids whose frequencies are harmonically related.

The frequency spectrum of a periodic signal is discrete. Fourier transform is used to get frequency

spectrum of a time domain signal when the signal waveform is a non periodic function of time. The

Fourier transform provides a continuous frequency spectrum of an arbitrary time domain signal

waveform. The continuous time Fourier series exists only when the function x(t) satisfies Dirichlet’s

condition.

Like continuous Fourier transform discrete time Fourier transform (DTFT) is used for the

analysis of discrete time aperiodic signals. DTFT is periodic with period 2 π . So any interval of length

2 π is sufficient for the complete specification of the spectrum. Generally, the spectrum is drawn in

the fundamental interval (- π , π). Like continuous time FT, the frequency spectrum in DTFT is also

continuous in nature. But the frequency spectrum is not periodic in CTFT where as in DTFT the

spectrum is periodic with period 2 π .

6 Introduction

The frequency analysis of discrete time signals is usually performed on a digital computer.

Since the representation of the above signal is not a computationally convenient one, we go one step

further by sampling its continuous spectrum. This type of frequency domain representation of a signal

is known as Discrete Fourier Transform (DFT). The DFT plays a very crucial role in DSP ever since

its inception. It is a very powerful tool for frequency analysis of discrete time signals.

DFT is itself a sequence rather than a function of a continuous variable and it correspond to

equally spaced frequency samples of DTFT of a signal. Also, FS representation of the periodic

sequence corresponds to the DFT of the finite length sequence i.e., by using DFT the discrete time

sequence x(n) is transferred into corresponding discrete frequency sequence. DFT offer frequency

domain analysis of signals and systems and allows time domain signal processing operations to be

performed equivalently in the frequency domain.

1.2.3.1 One Dimensional DFT (1-D DFT)

Let x(n) be a finite duration sequence of length N samples so that x(n) = 0 outside the range 0 ≤ n ≤

N - 1. Then
1

0
() ().

N
kn

N
n

X k x n W
−

=
= ∑ , 0 ≤ k ≤ N - 1

 = 0 , otherwise. (1.1)

where WN =
2j
Ne

π
−

 is called the twiddle factor. Then the corresponding Inverse DFT is expressed as

1

0

1() ().
N

kn
N

k
x n X k W

N
−

−

=
= ∑ , 0 ≤ n ≤ N-1

 = 0 , otherwise. (1.2)

1.2.3.2 Two Dimensional DFT (2-D DFT)

There are myriads of image processing and two-dimensional applications where the DFT

representation of two-dimensional sequences is of considerable computational importance [63].

Consider a finite duration sequence x(n1, n2) of size N1 × N2 samples so that x(n1, n2) = 0

outside the range 0 ≤ n1 ≤ N1-1, 0 ≤ n2 ≤ N2-1. Then the Discrete Fourier Transform [21] relations are

given by

1 11 2
1 1 2 2

1 2 1 2 1 20 01 2
(,) (,) .

N N
n k n k

N N
n n

X k k x n n W W
− −

= =
= ∑ ∑ , 0 ≤ k1 ≤ N1 - 1, 0 ≤ k2 ≤ N2 - 1 (1.3)

1 11 2
1 1 2 21

21 2 1 2 1 20 01 2
(,) (,)

N N
n k n k

N NN k k
x n n x k k W W

− −
− −

= =
= ∑ ∑ , 0 ≤ n1 ≤ N1 - 1, 0 ≤ n2 ≤ N2 – 1. (1.4)

 Introduction 7

1.2.3.3 Algorithms to implement 2-D DFT

There are many algorithms for calculating 2-D DFT, which vary, considerably in their computational

complexity [21]. However, we shall examine four algorithms in the following sections, to bring out

the salient aspects of 2-D DFT computation.

1.2.3.3.1 Direct computation

 The direct calculation of 2-D DFT is simply the evaluation of the double sum as in (1.3). If we

assume that the complex exponential in equation (1.3) have been pre-computed and stored in a table,

then the direct evaluation of one sample of X(k1, k2) requires N1N2 complex multiplications and a like

number of complex additions. Since the entire DFT involves N1.N2 output samples, the total number

of complex multiplications and complex additions needed to evaluate the DFT by direct calculation is

N1
2 .N2

2. Also, the computation time for multiplication will be much more than that of addition.

1.2.3.3.2 Row-column decomposition

The DFT relation can be rewritten as
1 11 2

2 2 1 1
1 2 1 2 2 10 01 2

(,) [(,).].
N N

n k n k
N N

n n
X k k x n n W W

− −

= =
= ∑ ∑

If we write
12

2 2
1 2 1 2

02

N
n k

N2n
G(n ,k) = x(n ,n)W

−

=
∑ then,

11
1 1

1 2 1 2
01

N
n k

N1n
X(k ,k) = G(n ,k). W

−

=
∑ .

 Each column of G is the 1-D DFT of the corresponding column of x. Each row of X is the 1-

D DFT of the corresponding row of G. Thus we can compute a 2-D DFT by decomposing it into row

and column DFTs. We first compute the DFT of each column of x, put the results into an

intermediate array, then compute the DFT of each row of the intermediate array. Alternatively we

could do the row DFTs first and the column DFTs second.

 If a direct calculation is used to compute the 1-D DFTs in a row-column decomposition, then

the evaluation of a 2-D DFT requires, Cr/cdirect = N1.N2(N1+N2) complex multiplications and additions .

If each of N is a power of 2, so that 1-D Fast Fourier Transforms (FFT) can be used, the complex

multiplications are further reduced to Cr/c FFT = N1.N2 (log N1.N2)/2. The number of complex

additions needed is twice this number.

1.2.3.3.3 Vector-radix Fast Fourier Transform (FFT)

 The 1-D FFT algorithm achieves its computational efficiency through a `divide and conquer' strategy.

If the DFT length is, for example, a power of 2, the DFT can be expressed in turn as a combination of

two quarter-length DFTs and so on [32]. The 2-D vector-radix FFT algorithm is philosophically

identical [21]. A 2-D DFT is broken down into successively smaller 2-D DFTs until, ultimately, only

trivial 2-D DFTs need be evaluated.

8 Introduction

 We can derive the decimation-in-time version of the algorithm by expressing an (N × N)-point

DFT in terms of four N/2 × N/2 DFTs (if N is divisible by 2). The DFT summation can be

decomposed into four summations: one over those samples of x for which n1 and n2 is even, and one

for which both n1 and n2 are odd. This gives us,

X(k1, k2) = S00(k1, k2) + S01(k1, k2)WN
k2 + S10(k1, k2)WN

k1+ S11(k1, k2)WN
k2+k1,

where
/2 1 /2 1

2. . 2. .1 1 2 2
00 1 2 1 2

0 01 2
(,) (2. ,2.)

N N
m k m k

N
m m

S k k x m m W
− −

+

= =
= ∑ ∑

/2 1 /2 1
1 1 2 2

1 2 1 2
0 01 2

N N
2.m .k +2.m .k

01 N
m m

 S (k ,k)= x(2.m ,2.m +1)W
− −

= =
∑ ∑

/2 1 /2 1
1 1 2 2

1 2 1 2
0 01 2

N N
2.m .k +2.m .k

10 N
m m

S (k ,k) = x(2.m +1,2.m)W
− −

= =
∑ ∑

/2 1 /2 1
1 1 2 2

1 2 1 2
0 01 2

N N
2.m .k +2.m .k

11 N
m m

S (k ,k) = x(2.m +1,2.m +1)W .
− −

= =
∑ ∑

The arrays S00, S01, S10, S11 are each periodic in (k1, k2) with horizontal and vertical periods N/2.

 The above said equations expresses the samples of the N × N DFT, X(k1, k2), in terms of four

N/2 × N/2 DFTs. By analogy with the corresponding equations from the 1-D case, the computation is

represented by a butterfly, or more properly a radix (2 × 2) butterfly.

 Each butterfly requires that three complex multiplications and eight complex additions be

performed. To compute all samples of X from S00, S01, S10, S11 requires calculation of N2/4 butterflies.

This decimation process can be performed log2N times if N is a power of 2. The number of complex

multiplications that need to be performed during the computation of a (N × N) point radix (2 × 2) FFT

is

Cvr(2x2) =
4
3 N2 log2N.

 The foregoing discussion would have revealed that the 2-D DFT is computationally quite

intensive. While research have been progressing on speeding up the 2-D DFT, the transform itself

found many applications in image processing, which describes information in two dimensions. Some

of the issues in digital image processing is worth considering to stress the diversity of the utility of 2-

D DFT.

1.2.3.4 Modified DFT computation

In the modified 2-D DFT [88], the expression for the 2-D DFT computation was restructured by

grouping data associated with a given twiddle factor in addition to the exploitation of periodicity and

symmetry properties. Then the DFT coefficients ,1 2k kY , 1 20 , 1k k N≤ ≤ − corresponding to the given data

,1 2n nx , 1 20 , 1n n N≤ ≤ − , N even, can be expressed as

 Introduction 9

1

,1, 2 1 20
.

M
p p

k k k k N
p

Y Y W
−

=
= ∑ , 1 20 , 1k k N≤ ≤ − (1.5)

where , , ,1 2 1 2 1 2(,) (,)1 2 1 2

p
k k n n n n

n n z p n n z p M
Y x x

∀ ⇒ = ∀ ⇒ = +
= −∑ ∑ (1.6)

1 1 2 2(())Nz n k n k= + (1.7)

2
NM = . (1.8)

Thus the computational complexity is reduced from N2 complex multiplications for each DFT

coefficient required in direct DFT to that of N/2.

A pictorial representation for the computation of 2-D DFT in terms of 2 × 2 point DFT was

developed in [88]. This simplifies the computation, as 2 × 2 DFT involves only real additions. The

primitive symbols used for its representation are shown in fig. A.1 and the visual representation of 8 ×

8 point DFT is shown in fig. A.2. All the operations are complex in direct DFT, whereas in visual

representation, the computations are mostly real and the scaling by the twiddle factor is done only in

the final stage. As a result, the 2-D DFT computation was reduced in terms of real additions and

complex multiplication from 2N to N/2 for each coefficient where N is the dimension of the Data

matrix and is even.

A hierarchical neural network model was also developed in [88] to implement 2-D DFT for a

particular order N such that ((N))4 = 2. The model used a parallel distributed scheme of computation

in which the processing is in terms of real additions. The only complex operation involved is the

scaling by the pre-computed twiddle factors done at the final layer.

1.2.4 M-Dimensional Real Transform (MRT)

In the modified 2-D DFT computation [88], 2-D DFT representation was modified in terms of real

additions, which requires N/2 complex multiplication in the computation of each of the N2 DFT

coefficients. The complex multiplications can be avoided if the representation of the signal is done in

terms of the signal components which would otherwise be multiplied with the exponential term in the

DFT representation developed in [88]. A transform named MRT [140] represent 2-D signals in terms

of real additions alone rather than using complex multiplications.

MRT coefficients of a data matrix [x] of size N × N is expressed as

 , , ,1 2 1 2 1 2(,) (,)1 2 1 2

p
k k n n n n

n n z p n n z p M
Y x x

∀ ⇒ = ∀ ⇒ = +
= −∑ ∑ (1.9)

 z = ((n1.k1 + n2.k2))N (1.10)

 M = N/2 (1.11)

k1 = 0, 1, …, N − 1, k2 = 0, 1, ..., N − 1, p = 0, 1, …, M − 1.

This transform maps the data matrix into M matrices using real additions alone. MRT helps to

do the frequency domain analysis of 2-D signals without any complex operations but in terms of real

additions.

10 Introduction

1.2.5 Unique MRT (UMRT) for N power of 2

The MRT representation has redundant elements, which makes it unsuitable for use in situations

where memory usage needs to be minimized. A procedure to obtain a lean MRT or Unique MRT

(UMRT) representation of an image is presented in [167] for image size of N × N, where N power of

2. The UMRT coefficients are unique, numerically compact and require only the same memory space

as required for the original image. Each MRT coefficient is formed by unique, linear, multiplication-

less combinations of image data and thus has spatial significance.

1.2.6 Discrete Cosine Transform (DCT)

Ahmed et al [6] proposed Discrete Cosine Transform (DCT) and based on empirical evidence,

conjecture that its performance is closer to the optimal Karhunen-Loeve Transform (KLT) than the

other commonly used transforms.

A DCT expresses a sequence of finitely many points in terms of a sum of cosine functions

oscillating at different frequencies. The use of cosine rather than sine function is critical in many

applications like compression, numerical solutions of partial differential equations, etc. DCT is a

Fourier related transform similar to DFT, but using only real numbers. DCTs are equivalent to DFTs

of roughly twice the length, operating on real data with even symmetry. There are eight standard DCT

variants, of which four are common namely DCT-I, DCT-II, DCT-III and DCT-IV. The most

common is the type-II DCT, which is often called “the DCT” and its inverse, the type-III DCT is the

inverse DCT. DCT of an N point signal can be computed using a 2N point DFT [6]. A method that

employs an N point DFT of a reordered version of the signal (where N is assumed to be even) to

compute an N point DCT is presented in [9], resulting in a saving of ½ over the previous method.

The DCT of a list of N real numbers S(x), x = 0, 1, …, N - 1 is the list of length N given by

1

0

2 cos(2 1). .() . (). ()
2.

N

x

x uS u C u s x
N N

−

=

+ π
= ∑ , u = 0, 1, …, N - 1

where, 1/2() 2C u −= for u = 0

= 1 otherwise.

Each element of the transformed list S(u) is the dot product of the input list S(x) and a basis vector.

The constant factors are chosen so that the basis vectors are orthogonal and normalized.

DCT is a technique for converting signal into elementary frequency components. The DCT

helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the

image's visual quality). It transforms a signal or image from the spatial domain to the frequency

domain. With an input image A the coefficients for the output image B are:
1 11 2

1 2
1 2

0 0
1 2

. .(,) 4. (,).cos((2. 1)).cos((2. 1))
2. 2.

N N

i j

k kB k k A i j i j
N N

− −

= =

π π
= + +∑ ∑

 Introduction 11

The input image is N2 pixels wide by N1 pixels high; A(i, j) is the intensity of the pixel in row i and

column j; B(k1, k2) is the DCT coefficient in row k1 and column k2 of the DCT matrix. All DCT

multiplications are real. This lowers the number of required multiplications, as compared to the

discrete Fourier transform. For most images, much of the signal energy lies at low frequencies; these

appear in the upper left corner of the DCT. The lower right values represent higher frequencies, and

are often small enough to be neglected with little visible distortion.

The DCT is by far the most popular transform used for image compression applications [45],

[52]. Reasons for its popularity include not only its good performance in terms of energy compaction

for typical images but also the availability of several fast algorithms [89]. It has found a wide

spectrum of applications in image and video processing and several other signal processing

application domains [181]. Joint Photographic Experts Group (JPEG) for compression of still images

[45], Moving Picture Experts Group (MPEG) for compression of motion video [44] and International

Telegraph and Telephone Consultative Committee (CCITT H.261, also known as P × 64) for

compression of video telephony and teleconferencing employ DCT. Its application to image

compression was pioneered by Chen and Pratt [19].

1.2.7 Wavelet Transform

The Fourier transform, with its wide range of applications, like many other mathematical tools, has its

limitations. For example, this transformation cannot be applied to non-stationary signals. These

signals, e.g. speech and image, have different characteristics at different time or space. Although the

modified version of the Fourier transform, referred to as short-time (or time-variable) Fourier

transform (STFT) can resolve some of the problems associated with non-stationary signals, but does

not address all issues of concern. There is only a minor difference between STFT and FT. In STFT,

the signal is divided into small enough segments, where these segments of the signal can be assumed

to be stationary. For this purpose, a window function ‘w’ is chosen. The width of this window must be

equal to the segment of the signal where its stationarity is valid. In STFT, the window is of finite

length, and we no longer have perfect frequency resolution. The STFT is extensively used in speech

signal processing but rarely, if ever, used in image processing.

Wavelets were developed independently in the field of mathematics, quantum physics,

electrical engineering, and seismic geology [149]. Interchanges between these fields during the last

ten years have led to many new wavelet applications such as image compression, turbulence, human

vision, radar, and earthquake prediction. The wavelet transform, which was developed independently

on different fronts, is gradually substituting the Fourier transform in some essential signal processing

applications. Multi resolution signal processing used in computer vision; subband coding, developed

for speech and image compression; and wavelet series expansions developed in applied mathematics,

have been recognized as different views of a single theory.

12 Introduction

Wavelet transform applies to both continuous and discrete signals [156]. This transformation

provides a general technique that is applicable to many tasks in signal processing. The wavelet

transform is successfully applied to non-stationary signals for analysis & processing and provides an

alternative to STFT. In contrast to STFT, which uses a single analysis window, the wavelet transform

uses short windows at high frequencies and long windows at low frequencies. This flexibility is

introduced in the spirit of so-called constant Q. or constant relative bandwidth frequency analysis. For

some applications it is desirable to obtain the wavelet transform as signal decomposition onto a set of

basis functions, referred to as wavelets. These basis functions are obtained from a single prototype

wavelet by dilations and contractions (scaling) as well as shifts. Recent surge in application of

wavelet transform in various areas of signal processing resulted from the effectiveness of this

mathematical tool for analysis and synthesis of signals. But as the transforms evolved so did the

complexities involved with them. And hence simpler approaches were always welcomed.

1.2.7.1 Haar Transform

The Haar transform [130] is the simplest of the wavelet transform. This transform cross-multiplies a

function against a wavelet called Haar wavelet with various shifts and stretches, like the Fourier

transform cross-multiplies a function against a sine wave with two phases and many stretches. The

Haar transform is derived from the Haar matrix.

The Haar function hk(x) are defined on a continuous interval, [0,1]x ∈ , and for k = 0, 1, …, N

- 1, where N = 2n. The integer k can be uniquely decomposed as

k = 2p + q – 1

where 0 ≤ p ≤ n - 1; q = 0, 1 for p = 0 and 1 ≤ q ≤ 2p for p ≠ 0.

Representing k by (p, q), the Haar functions are defined as

0 0,0

1() () ,h x h x
N

= = [0,1]x ∈ .

1
2/2

1
2/2

.

12 ,
2 2

1() () 2 ,
2 2

0, [0,1]

p

p p

p
k p q p p

q qx

q qh x h x x
N

otherwise for x

− −⎧ ≤ <⎪
⎪

−⎪= = − ≤ <⎨
⎪

∈⎪
⎪⎩

The Haar transform is real and orthogonal. It is a very fast transform and the basis vectors are

sequency ordered. The energy compaction for images is poor.

The Haar Transform Matrix

The Haar transform is obtained by letting x take discrete values at m/N, m = 0, 1, …, N – 1. For

example, when N = 4, we have

 Introduction 13

4

1 1 1 1
1 1 1 11
2 2 0 02
0 0 2 2

H
⎡ ⎤

− −⎢ ⎥
= ⎢ ⎥−

⎢ ⎥−⎣ ⎦

Higher order Haar matrices follow the same structure as the 4 × 4 matrix. When N = 8,

8

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 2 2 0 0 0 0

1 0 0 0 0 2 2 2 2
2 2 0 0 0 0 0 08
0 0 2 2 0 0 0 0
0 0 0 0 2 2 0 0
0 0 0 0 0 0 2 2

H

⎡ ⎤
− − − −⎢ ⎥

⎢ ⎥− −
⎢ ⎥− −= ⎢ ⎥−⎢ ⎥−⎢ ⎥

−⎢ ⎥
−⎣ ⎦

.

The Haar transform can be envisioned as a sampling process in which rows of the transform

matrix act as samples of finer and finer resolution. The Haar transform provides a transform domain

in which energy is concentrated in localized regions.

1.2.8 Hadamard Transform

The elements of the basis vectors of the Hadamard transform [130] take only ± 1 and are therefore

well suited for digital signal processing. The Hadamard matrices, Hn, are N × N matrices, where N =

2n, n = 1, 2, 3.

Recursively, the 1 × 1 Hadamard transform H0 can be defined as H0 = 1, and then define HN

for N > 0 by

1 1

1 1

1
2

N N

N

N N

H H
H

H H
− −

− −

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

,

where the 1/ 2 is a normalization factor that is sometimes omitted. Thus other than this

normalization factor, the Hadamard matrices is made up entirely of 1 and -1. Some examples of the

Hadamard matrices are

1

1 11
1 12

H
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 and

3

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 11
1 1 1 1 1 1 1 18
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

H

⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥= ⎢ ⎥− − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥− − − −⎢ ⎥

− − − −⎢ ⎥⎣ ⎦

14 Introduction

Sampling a class of functions called the Walsh functions can also generate the basis vectors of the

Hadamard transform. These functions also take only the bipolar values ± 1 and form a complete

orthonormal basis for square integrable functions. Due to this, the above transform is also called the

Walsh-Hadamard transform. The Hadamard transform is real, symmetric and orthogonal. It is a fast

transform and has good energy compaction for highly correlated images.

1.3 Implementations
In the field of signal processing, the development of algorithms and the progress of implementation

are closely tied to each other. Programmable processors such as microprocessors or Digital signal

processors implement a limited and fixed set of arithmetic and control operations that can be

organized and sequenced to implement any transforms. The speed of such processors has steadily

increased to match the needs of emerging applications. However the fundamental physical limitation

imposed by the speed of light makes it impossible to achieve further improvements in the speed of

such processors. Speed of computation, important in real time applications can be improved by

parallel processing techniques. In cases where the native processor operations are not well suited to

the task at hand or in cases where massive amount of parallelism can be exploited, these processors

are inefficient and deliver poor performance [84].

Several implementations of transforms on different parallel computer architectures such as

vector processors, parallel processors etc. are available in the literature. Even these approaches will

not meet design requirements, in many applications. Either they are too expensive in terms of power

and size, or their performance may still be insufficient. The algorithm for such implementations are

designed keeping in mind the underlying architecture and hence is not portable. Such implementations

cannot be used in mobile equipments [53]. In such cases a custom hardware can often resolve the

problem. For real-time very high speed signal processing, a dedicated special purpose hardware

processor is often required. Nowadays, ASIC and FPGA platforms are mostly used to manufacture

such processors [84].

Selection of proper architecture and implementation styles can strongly influence the

performance of dedicated VLSI DSP circuit [53]. E.g., J. Pihl [74] has shown that bit-serial and bit

parallel architectures are comparable by area-time measure, but indicate that bit-serial design for high

performances are not as efficient from a power consumption point of view. One of several

architectures may be chosen, depending on the requirements such as speed, cost, power etc. E.g., in

space borne application, efficient implementations are of paramount importance because of power and

size constraints. The circuit architecture for high speed applications will continue to evolve in the

direction of exploiting parallelism in algorithms using multiple processing elements. Furthermore,

keeping architecture and implementation in mind, we can design inherently new signal processing

algorithms which are possessed with concurrency.

 Introduction 15

1.4 Visualization

There is still a huge gap between our ability to extract answers and our ability to present the

information in meaningful ways. The explosive generation of massive data sets and our ability to

extract data’s inherent information has continued to spawn research in several significant areas. The

aim of such research is to increase our understanding of the data, what useful information is latent

within it, and how to detect portions of it that are of strong interest. The primary relevant fields to this

endeavor are statistics, data visualization, databases, and the combinational fields of data mining,

pattern recognition, machine learning, and artificial intelligence. In the early days, statistics is used for

data analysis by applying various mathematical and numerical methods to determine the fit of

mathematical models to the data. The majority of the work in statistics has focused on methods for

verifying apriori hypothesis about the data.

“A Picture is worth a thousand words”. Different people give different interpretation to a

visual seen by them. Visualization technique is a very useful method in discovering patterns present in

data sets [93]. The early set of techniques and technologies used to analyze and model data sets,

revolved around the visualization of the data using graphs, charts and tables. Digital computers and

data storage dramatically changed the picture. The data volumes ruled out traditional ‘manual’

approaches to analysis.

Visualization, well done, harnesses the perceptual capabilities of humans to provide visual

insight into data. Early statistical methods provided reasonable visual support for data explorers.

Similarly modern graphical techniques help to provide visual comprehension of the various

computational approaches. Moreover, visualizations are also being used to display properties of data

that have complex relations – possibly patterns not obtainable by current computation methods.

a) Purpose of data visualization

Human beings look for structure, featuring patterns, trends, anomalies and relationships in data.

Visualization supports this by presenting the data in various forms with differing interactions.

Visualization can i) provide a qualitative overview of large and complex data sets, ii) summarize data

and iii) assist in identifying regions of interest and appropriate parameters for more focused

quantitative analysis. In an ideal system, visualization harnesses the perceptual capabilities of the

human visual system.

b) Classification of visualization techniques

Visualization can be classified in a number of ways, based on (i) the task at hand, (ii) the structure of

the underlying data set, or (iii) the dimension of the display [101].

Visualization can be used i) to explore data, ii) to confirm a hypothesis, or iii) to manipulate a

viewer. In an exploratory visualization, the user does not necessarily know what he is looking for.

This creates a dynamic scenario in which the interaction is critical. The user is searching for a

16 Introduction

structure or trends and is attempting to arrive at some hypothesis. In a confirmatory visualization, the

user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System

parameters are often predetermined. Analytical tools are especially necessary to be able to confirm or

refute the hypothesis. In productive visualization, the user has a validated hypothesis and so knows

exactly what is to be presented and focuses on refining the visualization to optimize that presentation.

This is the most stable and predictable visualization.

Visualizations can also be classified as to whether (1) the underlying data is spatial or non

spatial or (2) the displayed data is to be 2-D or 3-D.

c) Visualization components

Data can be either stable or dynamic. A PET scan for example, is static, where as cloud vapor over

time is dynamic. Visualization can be stationary, animated or interactive, respectively, for example, a

set of MRI image, a simulation of a finite element analysis over time, or a real time representation of

wind flow across an automobile. The processing of data in the visualization system can be batch or

interactive; batch for the analysis of a set of images, interactive for pre-surgery analysis.

d) Visualization interaction

The user can interact with the data in a variety of ways. These include (i) browsing, to get the big

picture; (ii) sampling, to reduce data size; (iii) directed, for adhoc querying; and (iv) associative, to

access related data.

The user can also interact with the visualization system. E.g. the user can create, edit or

manipulate the visualization networks; the user can specify data files to be retrieved, data fields to be

displayed, specify visualization pipeline parameters, create or manipulate the output (for further

queries) or display further available information about the data.

1.5 Motivation for the present work
Transform theory has a prime task in signal processing, as well as in other areas. The transforms find

an alternate domain, so that it is easier and convenient to process the task. The predominance of

Fourier transform is partially because it represents the eigen function of Linear Time Invariant (LTI)

systems [123]. Due to the increasing flexibility and re-configurability of digital systems, DSP is

becoming more and more powerful. The DFT is widely used in DSP in various forms so as to exploit

the advantages of digital system, especially when J. W. Cooley and J. W. Tukey popularized the idea

of FFT by a publication [1]. It is used for frequency domain analysis of signals by mapping the digital

data into the frequency domain. Furthermore the convolution theorem also holds in DFT. There are

many fast algorithms for computing the DFT, which made it quite popular. But most of them suffer

from the complex operations in implementation phase, i.e., in conventional DFT computation

algorithms, the data will also be converted to complex form and the computations are carried out in

complex form. This increases the computation time and memory requirement, especially in 2-D

applications. But most of the world problems have real data. One complex multiplication requires 4

 Introduction 17

real multiplications and two real additions. Two memory locations will be required to store one

complex data. Also, the computation time will be more for multiplication than addition. Thus the

speed of computation can be improved by reducing the number of complex multiplications.

 In [88], 2-D DFT computation was modified in terms of real additions rather than complex

multiplications by grouping data associated with a given twiddle factor in addition to the periodicity

and symmetry properties. This modification of the 2-D DFT computation enabled to reduce the

computational complexity from N4 complex multiplications of conventional DFT to N3/2 in the

modified DFT. By exploring the features of DFT computation in the real domain, the computational

complexity can further be reduced.

 From the beginning of science, visual observation has played a major role. Pictorial

information provides much more details, than what you explain. Visualization techniques are of

increasing importance in exploring and analyzing large amounts of multidimensional data, as the

personal computers are powerful enough to process it. A major advantage of visualization is that it

allows a direct interaction with the user and provides an immediate feed back, which is difficult to

achieve in most non-visual approaches. A visual representation for the computation of 2-D DFT in

terms of 2 × 2 point DFT was developed in [88]. However, the visual representation based on 2 × 2

DFT does not give a direct relationship between the data and the DFT coefficients. A visual

representation based on data may give a better insight into the relationship between time domain data

and the frequency domain representation. Analysis of the visual representation can be used to derive

simple and efficient computational schemes.

 Although purely from a computational efficiency point of view, the DFT is more expensive

than the FFT, from a VLSI implementation point of view there are significant reasons why the DFT

may be preferable to the FFT (particularly with a small number of coefficients). The FFT’s complex

data routing limits overall speed and is expensive in terms of chip area [28], [17]. Majority of the

available VLSI implementation of 2-D DFT are based on the popular row-column approach, where

the 2-D transform is performed in three steps: (i) 1-D transformation of the input rows, followed by

(ii) intermediate results transposition (usually implemented with a transposition memory) and (iii) 1-D

transformation of the intermediate result columns. A hierarchical neural network model was

developed [71], [72] to implement 2-D DFT for a particular order N such that ((N))4 = 2. The scheme

can be used to compute 2-D DFT with few real multiplications and real additions. The speed of

computation will be very high due to the parallel distributed nature, at the same time reducing the

memory requirement due to the hierarchical structure. Repetitive nature of the simple modules shows

a potential in easy and cost effective VLSI implementation of the 2-D DFT. Fast hardware

implementation of the parallel distributed computation of 2-D DFT, for any even N, could be

developed which enables 2-D signal processing easy.

MRT [140], [155], as explained in section 1.2.4, represent 2-D signals in terms of real additions

alone rather than using complex multiplications. This transform maps the data matrix into M matrices

18 Introduction

using real additions alone. MRT, in the raw form contains significant redundancy. In [167] it was

shown that the UMRT coefficients are unique, numerically compact and require only the same

memory as required for the original image, when N is a power of 2. The visual representation can be

analyzed to obtain unique MRT for any even N. Further a fast hardware implementation of a parallel

distributed computation of 2-D UMRT, for any even N, could be developed which enables 2-D signal

processing easy.

1.6 Brief sketch of the present work
The scheme of the work presented in this thesis is given below:

A review of the important research work done in the field of signal transforms aimed at

improving the performance viz. a viz. speed are presented in chapter 2. The emphasis is given to the

fast implementations so as to expose the significance of the present work.

The visual representation of 2-D DFT computation using a set of primitive symbols based on

2 × 2 data are described in chapter 3. Analysis of visual representation is extensively done in section

3.2.3. The classification of DFT coefficients is also explained in section 3.2.3. Different levels of

redundancy present in the visual representation of DFT coefficients are analyzed in section 3.2.4. A

basic set of DFT coefficients necessary and sufficient to represent the entire signal, identified using

the redundancy analysis, is narrated in section 3.2.6. The chapter concludes with the development of

an algorithm for the computation of an N × N point DFT, using visual approach, for any even N.

Chapter 4 gives details of the development of Parallel Distributed Architectures for the

computation of 2-D DFT. Version I and II Parallel Distributed Architectures for the computation of 8

× 8 point DFT, designed by the analysis of the visual representation of DFT coefficients based on 2 ×

2 DFT, are explained in section 4.1.2 and 4.1.3 respectively. M spacing based DFT computation

developed, by analyzing the visual representation of DFT coefficients in terms of 2 × 2 data, is

outlined in section 4.2. Four different algorithms for the computation of particular solution required

for the M spacing based algorithm are also explained in section 4.2.5.3.

Analysis of derived redundancy present in the MRT coefficients and its elimination to obtain

2-D UMRT is outlined in chapter 5. Analysis of derived redundancy is explained in section 5.1.

Section 5.2 narrates the computation of number of MRT coefficients, which are redundant in a basic

DFT coefficient. Selection of UMRT coefficients is outlined in section 5.4. A suitable placement

scheme developed to place the UMRT coefficients is described in section 5.5. Three approaches, one

of which is a Parallel Distributed Architecture, designed and developed for the computation of 2-D

UMRT are presented in section 5.6.

The simulation results & comparison of the various algorithms and the parallel distributed

architectures developed in chapter 3, 4 & 5 are discussed in chapter 6. Results of the Matlab®

simulation of 2-D DFT & UMRT algorithms and their comparisons are summarized in section 6.1.

The simulation results of the three architectures for the computation of 8 × 8 point DFT and UMRT

 Introduction 19

using Matlab are compared in section 6.1.3 and 6.1.4 respectively. Further, the details of the FPGA

implementation of the three architectures for the computation of 8 × 8 point UMRT is described in

section 6.2. Different schemes for the M spacing based 2-D UMRT computation, which are simulated

and synthesized in FPGA, are outlined in section 6.2.2 and their performance is also compared in this

chapter.

The discussions and conclusions based on the results available from the implementation of

various algorithms and architectures are dealt with in chapter 7. Important features of visual

representation of DFT coefficients in terms of 2 × 2 data, presented in chapter 3, are discussed in

section 7.1. Section 7.2 discusses the aspects of the 2-D DFT computation using visual approach.

Results based on the development of different architectures for 2-D DFT computation are discussed in

section 7.3. Salient features of 2-D UMRT algorithms and architectures are discussed in section 7.4.

The synthesis results of the FPGA implementations corresponding to different architectures for 2-D

UMRT computations are discussed in section 7.5. The chapter also discusses the scope for future

research work.

Appendix A provides the primitive symbols used for the visual representation of 2-D DFT

coefficients based on 2 × 2 DFT and the visual representation of 8 × 8 point DFT. The grouping of

the DFT coefficients is shown in fig A.3. Appendix B presented the elements of number theory used

for the analysis of visual representation and derivations of the algorithms. Appendix C deals with

relevant information in the derivation of the M spacing based algorithm.

20 Introduction

CHAPTER 2

REVIEW OF PAST WORK

The Fourier transform provides a continuous frequency spectrum of an arbitrary time domain signal

waveform and hence used for frequency domain analysis of the signal ever since its inception in 1807.

Due to the increase in flexibility and other numerous advantages of digital circuits over analog

circuits, digital signal processing has developed very rapidly. Also, for processing very low frequency

signals like seismic signals, EEG signals etc., analog circuits require inductance and capacitance of a

very large size whereas digital processing is more suited for such type of applications [150]. The first

electronic digital computers were completed in the late 1940’s. People started using digital computers

extensively for scientific computing. Hence the frequency domain representation of a signal using

DFT became popular. Subsequent development of the digital computer over the years has been

synonymous with developments in semiconductor technology. From the invention of the transistor at

BELL telephone Labs in 1947, the rate of progress has been ever quickening. In 1968, Jack Kilby,

then working at Texas Instruments, produced the first ‘integrated circuit’, which contained just a

couple of transistors on a chip of about 1 cm square. According to Moore’s law the number of

transistors in an IC doubles every 18 months. Today’s chips are having more than 2 billion transistors.

This pace of development seems to show no sign of halting. But the DFT of an N point sequence

require N2 complex multiplications and N(N - 1) number of complex additions which make it

unsuitable for most of the applications. FFT became popular after J. W. Cooley of IBM and John. W.

Tukey of Princeton [1] published a paper in 1965 reinventing the algorithm and describing how to

perform it conveniently on a computer. Even though FFT is quite efficient for 1-D signals, due to the

large number of complex multiplications required, it is not of much use in 2-D signal processing

applications. The time domain processing and the use of real transforms in image processing therefore

prevailed. E.g., JPEG for compression of still images [45] and MPEG for compression of motion

video [44] employ DCT, whereas JPEG 2000 [118] is based on Discrete Wavelet Transform (DWT).

Within the mean time computational aspects of the Fourier transform were further developed

to speedup the computation that is demanded for real time applications. To achieve computational

speeds for such applications, a hardware implementation is often necessary. An examination of the

history of signal processing shows that new algorithms in signal processing result from the need to

improve the efficiency and reduce the cost of implementation [80]. New design and implementation

techniques are often triggered by signal processing algorithms that tend to be computation intensive.

In the field of signal processing, the development of algorithms and the progress of implementation

 22 Review of Past Work

are closely tied to each other. The literature review comprising of the important work done in the

above fields are presented below.

2.1 1-D Transforms
2.1.1 DFT
Various methods are available in the literature to compute the 1-D DFT. Few of them are listed below.

Two methods for computing DFT by polynomial transforms are proposed by H. J.

Nussbaumer et al. [11] and shown that these techniques are particularly well adapted to

multidimensional DFT’s as well as to some 1-D DFT’s and yield algorithms that are, in many

instances, more efficient than FFT or the Winograd Fourier Transform (WFTA).

A systematic method of sparse matrix factorization developed by Z. Wang [22] for all four

versions of the discrete W transform, the DCT, and the discrete sine transform, as well as for the DFT

in which only real arithmetic is involved. A scheme for reducing multiplications and a convenient

index system are introduced.

C. X. Fan et al. [25] introduced an FFT algorithm using Hadamard transform (HAT), which is

called Hadamard Fourier Transform (HFT). In the proposed algorithm, a HAT is used as mid-

transform and the redundant calculation in the original FFT algorithm is reduced by double

transformation. The results of theoretical analysis show that the number of multiplications and

additions of HFT are both decreased by 60% compared with that of traditional FFT and the executed

result shows the computing speed of HFT is 1.6 to 1.7 times faster than FFT.

O. K. Ersoy [29] developed a two-stage representation in terms of preprocessing and Post-

processing of DFT by vector transformation of sines and cosines into basis functions using Mobius

inversion of number theory. The preprocessing matrix, with elements 1, - 1, and 0, is obtained by

replacing cos 2πn/ N and sin 2πn/ N by µ(n / N + 1 / 4) and µ (n/ N) , respectively, where µ (.) is the

bipolar rectangular wave function. The post-processing matrix is block diagonal where each block is a

circular correlation and consists of the above basis functions. They claim that the two-stage

representation is useful for parallel implementation of DFT.

Basis-vector-decomposition based two-stage computational algorithms for DFT and DHT

were proposed by J. L. Wu et al. [54]. The computations of DFT are divided into two stages: an

add/subtract preprocessing and a block-diagonal post-processing. Both stages can be computed

effectively. They claim that the computational complexity of the proposed DFT algorithm is identical

to that of the most popular split radix FFT yet requires real number arithmetic only. Generation and

storage of the real multiplicative coefficients are easier than that in conventional FFT’s.

Decimation-in-time-frequency (DITF) FFT algorithm is obtained by combining the

decimation-in-time (DIT) and the decimation-in-frequency (DIF) FFT algorithms as proposed by A.

Saidi [61] which reduces the number of real multiplications and additions. The above algorithm

reduces the arithmetic complexity while using the same computational structure as the conventional

Review of Past Work 23

Cooley-Tukey (CT) FFT algorithm. The algorithm is extended to radix-R FFT as well as the

multidimensional FFT algorithm using the vector-radix FFT.

A 1D-to-1D mapping was designed to get an iterative structure of Winograd FFT algorithm

(WFTA) by X. Qingbin et al. [66]. With this representation, the WFTA has the features of in-place

computation and unified computational structure as same as Cooley-Tukey algorithm.

Q. H. Liu et al. [87] proposed an accurate algorithm for the non uniform forward FFT

(NUFFT) based on a new class of matrices, the regular Fourier matrices for a non-uniformly sampled

data. For the non-uniform inverse FFT (NU-IFFT) algorithm, the conjugate-gradient method and the

regular FFT algorithm are combined to speed up a matrix inversion.

Y. Jiang et al. [112] presented an FFT algorithm to reduce the frequency of memory access as

well as multiplication operations. For an N-point FFT, they designed the FFT with two distinct

sections: (1) the first section of the FFT structure computes the butterflies involving twiddle factors
j

nW (j ≠ 0) through a computation/partitioning scheme similar to the Hoffman coding. In this section,

all the butterflies sharing the same twiddle factor will be clustered and computed together. In this

way, redundant memory access to load twiddle factors is avoided. (2) In the second section, the

remaining (N-1) butterflies involving the twiddle factor 0
NW are computed with a register-based

breadth-first tree traversal algorithm.

G. X. Fan et al. [132] presented a fast algorithm for the evaluation of the Fourier transform of

piecewise smooth functions with uniformly or non uniformly sampled data by using a double

interpolation procedure combined with the FFT algorithm. This is a discontinuous FFT algorithm. The

method also provides a non-uniform FFT algorithm for continuous functions.

Zhong Cui-xiang et al. [148] introduced a general method to deduce FFT algorithms and then

transforms the deduced second radix-2 decimation-in-time FFT algorithm into another parallelizable

sequential form. Finally the latter algorithm is transformed into a parallel FFT algorithm, reducing the

time complexity of DFT to O(NlogN/p) (where p is the number of processors). Using similar methods,

other parallel 1-D and 2-D FFT algorithms can be designed.

S. Lee et al. proposed the [161] modified Single-path Delay Feedback (SDF) architecture for

FFT implementation, which implements a mixed Decimation-in-Frequency (DIF) /Decimation-in-

Time (DIT) FFT algorithm. Since final stage is computed as DIT FFT algorithm and other stages

including input stage are computed as DIF FFT algorithm, both input and output data occur in normal

order and additional clocks for reordering input or output is not required.

There are many algorithms with different radix, most of which are refined since its

development. In terms of implementation, it should be noted that all of these radix algorithms can be

performed 'in-place'; that is, at each stage of the algorithm the output data may overwrite the input

data and so no storage is required beyond the size of the original data. Furthermore, each algorithm is

amenable to simple recursive programming techniques.

 24 Review of Past Work

An extended split-radix FFT algorithm that has the same asymptotic arithmetic complexity as

the conventional split-radix FFT algorithm was proposed by D. Takahashi [104]. This algorithm has

the advantage of fewer loads and stores than either the conventional split radix FFT algorithm or the

radix-4 FFT algorithm.

S. Bouguezel et al. [131] proposed an improved radix-16 DIF FFT algorithm by introducing

new indices for some of the output sub-sequences resulting from the conventional radix-16 DIF

decomposition of the DFT. This improved radix-16 DIF FFT algorithm achieves savings of more than

46% in the number of twiddle factor evaluations or accesses to the lookup table and address

generations compared to the conventional radix-I6 DIF FFT algorithm.

An alternate method to derive higher radix FFT algorithms by using a recursive approach and

by appropriately combining the twiddle factors without increasing the structural complexity was

proposed by S. Bouguezel et al. [164]. They have designed efficient radix-8 and radix-16 FFT

algorithms and their arithmetic complexities shown to be slightly less than those of the corresponding

existing Cooley-Tukey FFT algorithms.

Y.J Moon et al. [153] developed a Mixed-Radix 4-2 Butterfly Structure with simple bit

reversing output sequences derived by index decomposition technique, which was used in the Radix-

2i algorithm. Compared with the Radix-23 algorithm and the Split-Radix 2/4/8 algorithm, the proposed

algorithm has the same number of multipliers and the less number of stages and butterflies than the

Radix-23 and the Split-Radix 2/4/8 algorithm. Moreover, the proposed algorithm makes an offer, the

simple bit reversing for ordering the output sequences, which is only supported by a fixed-radix FFT

algorithm.

S. Bouguezel et al. [174] proposed a general class of split-radix FFT algorithms for

computing the length-2m DFT by introducing a recursive approach coupled with an efficient method

for combining the twiddle factors. This enables the development of higher split-radix FFT algorithms

from lower split-radix FFT algorithms without any increase in the arithmetic complexity.

Many algorithms were developed for implementation in different parallel computers and DSP

chips.

D. Rodrigzez [43] presented an algorithm for computing the DFT and implemented on DSP

96002. This FFT algorithm is obtained through decomposition of the Fourier matrix representing the

DFT operator into a product of sparse matrices not all square matrices. The algorithm is based on

additive properties of the input and output indexing sets of the Fourier transformation.

High-performance parallel 1-D FFT algorithms, for distributed-memory parallel computers

with vector symmetric multiprocessor (SMP) nodes, were proposed by D. Takahashi [95]. In the

parallel FFT algorithms implemented in four-step and five-step methods, since cyclic distribution is

used, all-to-all communication takes place only once. Moreover, the input data and output data are

both in natural order.

Review of Past Work 25

The grouped scheme was applied by C. P. Fan et al. [166] to compute the FFT when the

portions of transformed outputs are calculated selectively. The grouped FFT algorithm applies the

scheme of the grouped frequency indices to accelerate the computation of selected DFT outputs. The

advantage of the grouped FFT algorithm is that it is more cost-effective than the conventional FFT

algorithms when we need to compute parts of the transformed outputs, not all outputs. By sharing

coefficients of the twiddle factors in the same frequency group, the grouped FFT can be implemented

with hardware sharing VLSI architectures.

2.1.2 DCT
A discrete cosine transform (DCT) is defined and an algorithm to compute it using the FFT was

developed by N. Ahmed et al. [6]. It is shown that the DCT can be used in the area of digital

processing for the purposes of pattern recognition and Wiener filtering. Its performance is compared

with that of a class of orthogonal transforms and is found to compare closely to that of the KLT,

which is known to be optimal. The performances of the KLT and DCT are also found to compare

closely with respect to the rate-distortion criterion.

M. J. Narasimha et al. [9] used an N-point DFT algorithm to evaluate a DCT by a simple

rearrangement of the input data. This method is about two times faster compared to the conventional

method, which uses a 2N-point DFT.

S. C. Chan et al. [47] presented efficient methods for mapping odd-length type-II, type-III,

and type-IV DCT’s to a real-valued DFT. It is found that odd-length type II and type III DCT’s can be

transformed, by means of an index mapping, to a real-valued DFT of the same length using

permutations and sign changes only. The real-valued DFT can then be computed by efficient real-

valued FFT algorithms such as the prime factor algorithm. Similar mapping is introduced to convert a

type-IV DCT to a real-valued DFT up to a scaling factor and some additions. Methods for computing

DCT’s with even lengths are also discussed.

2.1.3 Hadamard Transform
Hadamard transforms (HAT) can save additional computer time since only real-number operations are

involved. However, the power spectra represent groups of frequencies rather than individual

frequencies, and in general, there is loss of phase information.

An algorithm for computing Hadamard transforms was presented by D. Coppersmith et al.

[59]. If N is a power of four, then the algorithm uses 7/8 Nlog2N multiply/adds to compute a

Hadamard transform of length N.

B. J. Falkowski et al. [70] defined a family of Unified Complex Hadamard Transforms

derived from Walsh functions. Different types of Complex Hadamard matrices can be generated from

the developed direct matrix operator. Sparse matrix factorization or matrix partitioning of the

Complex Hadamard matrices leads to the fast algorithms with complexity N log2N suitable for

hardware implementation.

 26 Review of Past Work

A Generalized Hadamard Transform for multiphase or multilevel signals was introduced by

K. J. Horadam [145], which includes the Fourier, Generalized, Discrete Fourier, Walsh-Hadamard

and Reverse Jacket Transforms. The jacket construction is formalized and shown to admit tensor

product decomposition.

A family of fast Walsh Hadamard transform algorithms that have an identical and iterative

stage factorization was presented by P. M. Puig [160]. The transform factorization is in terms of

identical sparse matrices that implement the stages of general radix-R factorization, where R is a

power of 2.

2.2 Two-dimensional Transform
2.2.1 DFT
G. Bongiovanni et al. [7] showed that if a one-dimensional vector A is fractured into a two-

dimensional matrix E, a one-dimensional generalized discrete Fourier transforms (GFT) on A and a

two-dimensional GFT on E give the same result and require the same number of operations to be

computed. The result holds also for the DFT, as it is a particular case of the GFT.

C. Caraiscos et al. [14] has combined the well-known decimation-in-time and decimation-in

frequency FFT algorithms to give a 2-D DFT algorithm, the Mixed Simultaneous Decimation FFT

algorithm.

R. D. Preuss [15] developed and presented a radix-2 FFT algorithm that reduces the number

of multiplications to two-thirds of that required by most radix-2 algorithms. Its structure is particularly

appealing when transforming pure real or imaginary sequences and/or symmetric or anti symmetric

sequences and that the memory requirements other than those for storing the input data do not grow

with the size of the transform.

A. Guessoum et al. [26] generalized the prime factor algorithm for the evaluation of a 1-D

DFT to the evaluation of M-D DFTs defined on arbitrary periodic sampling lattices. It is shown that

such an algorithm is equivalent in computational complexity to the evaluation of a rectangular DFT.

A fast discrete Radon transform (FDRT) algorithm for computing 2-D DFTs, which has the

advantage of having the lowest number of multiplications and is more suitable for parallel

implementations compared with other related algorithms was presented by D. YANG [36].

D. Yang [38] presented a decomposition in which the 2-D DFT can be converted into a series

of the odd DFT using the discrete Radon transform (DRT). Further a Fast DRT based 2-D DFT

algorithm is presented which has the advantage of greater regularity suitable for parallel architecture.

Use of Radon transform algorithm for reducing the number of 1-D DFTs to compute a 2-D

DFT, are offset by a costly increase in the number of additions required to perform the Radon

transform. A common factor 2-D FFT algorithm to compute the 2-D DFT is O(N2log2N)

computationally, whereas L. M. Napolitano et al. [46] in their approach reduced the number of FFT

additions and multiplications by 25%, but adds 0(N3) additions.

Review of Past Work 27

The split-radix approach for computing the DFT is extended for the vector-radix FFT to two

and higher dimensions by S. C. Chan et al. [51]. It is obtained by further splitting the (N/2 × N/2)

transforms with twiddle factors in the radix-(2 × 2) FFT algorithm.

S. Bouguezal et al. [91] derived an algorithm for computing multidimensional Cooley-Tukey

FFT’s that is suitable for implementation on a variety of multiprocessor architectures from a Cooley

decimation-in-time algorithm by using an appropriate indexing process and the tensor product

properties. It is seen that the number of multiplications necessary to compute the algorithm is

significantly reduced while the number of additions remains almost identical to that of conventional

Multidimensional FFT’s (MFFT).

An original multidimensional FFT algorithm was proposed by R. Bernardini [97], where the

computation is first organized into multiplier-free butterflies and then completed by 1-D FFT’s. The

properties of well-known 1-D FFT algorithms blend in quite nicely with those of the proposed

multidimensional FFT scheme, extending their computational and structural characteristics to it.

S. Bouguezel et al. [135] presented an efficient algorithm for pruning the output samples of

the radix- (2 × 2) 2-D DIT algorithm. This is done by grouping, in the radix- (2 × 2) 2-D DIT FFT

algorithm, all the stages that involve unnecessary operations into a single stage and introducing a

recursive technique for computing the resulting stage. Due to this grouping and the efficient indexing

process, the implementation of the proposed algorithm requires a minimum number of stages there by

reduces the overall control and structural complexities.

S. C. Pei et al. [134] presented an efficient split vector-radix-2/8 FFT algorithm which saves

14% real multiplications and has much lower arithmetic complexity than the split vector-radix-2/4

FFT algorithm. The algorithm also reduces 25% data loads and stores compared with the split vector-

radix-2/4 FFT algorithm.

2.2.2 Modified DFT
A pictorial Representation for the computation of 6 × 6 point DFT in terms of 2 × 2 point DFT was

developed by R. Gopikakumari et al. [69]. All the operations are complex in direct DFT, whereas in

visual representation, the computations are mostly real and the scaling by the twiddle factor is done

only in the final stage. As a result, the 2-D DFT computation was reduced in terms of real additions

and complex multiplication from 2N to N/2 for each coefficient where N is the dimension of the Data

matrix and is even. The DFT computation and analysis of 2-D signals can be simplified using this

visual representation.

R. Gopikakumari et al. [73] proposed a visualization technique for the analysis of 2-D Data

based on DFT.

In [83] a visual manipulation of symbols to implement 2-D DFT was developed by R.

Gopikakumari et al.

 28 Review of Past Work

R. Gopikakumari [88] modified 2-D DFT representation in terms of real additions, which

requires N/2 complex multiplication in the computation of each of the N2 DFT coefficients. The above

restructuring was made possible by grouping data associated with a given twiddle factor in addition to

the exploitation of periodicity and symmetry properties.

A fast approach for visual representation of selected DFT for ((N))4 = 2 was proposed in [126]

by R. Gopikakumari et al. using direct and indirect method. The direct method involves selection of

appropriate symbols for each 2 × 2 DFT from the symbol table after computation, whereas the indirect

method was derived after analyzing the properties of visual representation. This method is suitable

when a few DFT coefficients need be computed which will help in visualizing the influence of data at

different time / spatial index over a particular frequency.

In [125] R. Gopikakumari et al. presented a semantic rule based visual representation of 2-D

DFT for N = 6. This facilitates the construction of the complete set of DFT coefficients from a very

few coefficients, reducing the computational complexity and normal memory requirement of visual

representation.

2.2.3 DCT
J. Makhoul [12] showed that the DCT of an N-point real signal may be obtained using only an N-point

DFT of a reordered version of the original signal, with a resulting saving of 1/2. The method is then

extended to two dimensions, with a saving of 1/4 over the traditional method that uses the DFT.

M. Vetterli [22] presented a fast radix-2 2-D DCT by first improving the mapping of a real

signal into a 2-D DFT followed by an usual polynomial transform approach to map the 2-D DFT into

a reduced size 2-D DFT and 1-D odd DFTs. Odd DFT algorithms is optimized for real signals. There

is a reduction in the number of multiplications and additions in comparison to other algorithms.

A 2-D DCT algorithm based on a direct polynomial approach is proposed by P. Duhamel et al

[35] which results in a reduction in the number of both multiplications and additions compared to the

previous ones.

A fast algorithm for the 2-D DCT computation was derived based on index permutation by Y.

M. Huang [81] which require only the computation of N l-D DCT’s of length N samples and some

post additions for a data matrix of size N. The associated post addition stage possesses a more regular

butterfly structure, which makes it more suitable for VLSI and parallel implementations.

Y. M. Huang et al. [89] presented an index permutation-based fast 2-D DCT algorithm and

shown that the N × N 2-D DCT, where N = 2m, can be computed using only N 1-D DCT’s and some

post additions.

2.2.4 Hadamard Transform
A modified factorization for the Hadamard matrix was developed by H. Y. L. Mar et al. [5] for

obtaining the fast Hadamard transform, which may be interpreted as operations on an H diagram.

Review of Past Work 29

A four level Hadamard transform which maintains the row orthogonality as the binary

Hadamard transform but requires the use of complex numbers is presented by J. J. komo et al. [31].

The four level Hadamard transform is more general than the binary Hadamad transform.

A column (row)-wise algorithm for computing the 2-D DHAT of size 2r × 2r, r > 1, by using

the paired algorithm of the 1-D DHAT, was presented by A. M. Grigoryan et al. [98]. The discrete

paired transforms, which split the 2r -point DHAT, r > 1, into a set of smaller 2r-i point transforms, i =

1: n, is introduced.

The Hadamard transform was generalized to the case of lapped transform and many methods

have been proposed to construct lapped Hadamard matrices by S. E. Phoong et al. [121].

W. Ouyang et al. [188] proposed a fast algorithm for Walsh Hadamard Transform on sliding

windows, which can be used to implement pattern matching efficiently. The computational

requirement of the proposed algorithm is about 1.5 additions per projection vector for each sample.

2.2.5 Wavelet Transform

N. Ahmed et al. [4] showed that the Haar transform can be computed using a Cooley-Tukey-type

algorithm that is implemented in 2 (N— 1) additions/subtractions. This algorithm is derived by

relating the Haar transform to the modified Walsh-Hadamard transform using a simple bit-reversal

scheme.

P. R. Roeser et al. [13] presented the implementation of Fast Haar transform by performing

the transform in place and limiting the amount of data movement there by attaining greater memory

efficiency and speed.

T. S. Lee [67] extended to two dimensions the frame criterion developed by Daubechies for 1-

D wavelets, and it computes the frame bounds for the particular case of 2-D Gabor wavelets. He also

derived the conditions under which a set of continuous 2-D Gabor wavelets will provide a complete

representation of any image. He found the self-similar wavelet parameterizations, which allow stable

reconstruction by summation as though the wavelets formed an orthonormal basis.

2.2.6 Haar Transform
A reformulation of the Haar transform algorithm is used to design systolic arrays for data compression

by G. M. Megson [85]. First a triangular array is developed for the normalised 1-D transform and it is

then extended to produce an inverse transformation. The 1-D designs are then incorporated into a 2-D

design for image compression using row and column operations.

A transformation to localize the equations defining the successive levels of the Mallat

pyramid for 2-D Haar wavelets was presented by P. Lenders et al. [92]. A methodology for

implementing these wavelet transforms in parallel architectures like systolic arrays was also proposed

by them and shown that there is a perfect match between the wavelet algorithms and the multiphase

multirate array (MPRA) architectures.

 30 Review of Past Work

An algorithm to compute the running discrete Haar wavelet transform of samples which

reduces the computational complexity to log2N is proposed by J. A. R. Macias et al. [152].

2.2.7 MRT

A transform named MRT was proposed by R. C. Roy et al. [140], which represent 2-D signals in

terms of real additions alone rather than using complex multiplications. This transform maps the data

matrix into M matrices using real additions alone. Some of the properties of this transform are also

presented.

R. C. Roy et al. [155] presented MRT as an alternative approach for frequency-domain

representation of 2-D signals and a comparison is made with DFT. MRT helps to do the frequency

domain analysis of two-dimensional signals without any complex operations but in terms of real

additions.

M. S. Anish Kumar et al. [158] developed an image compression and decompression

technique based on 8 × 8 MRT. The advantage of this method is the flexibility in determining the

percentage compression at the expense of image quality by choosing appropriate threshold.

R. C. Roy [167] presented a procedure to obtain a lean MRT representation of an image when

the image size is a power of two. The lean MRT coefficients are unique, numerically compact and

require only the same memory space as required for the original image and that the proposed lean

MRT representation can be used effectively to compress images.

A transform coder based on 4 × 4 MRT was proposed by M. S. Anish Kumar et al. [185] and

its performance are analyzed for all types of gray scale images.

2.3 Implementations

2.3.1 DFT

A decimation-in-time radix-2 FFT algorithm was considered by L. N. Bhuyan et al. [16] for

performance analyses in multiprocessors with shared bus, multistage interconnection network (MIN),

and in mesh connected computers. It is shown that a computer with multistage interconnection

network gives much higher speedup for processors greater than 16 and is more cost effective even

with the high cost of switches when compared to a shared bus multiprocessor.

S. M. Said [20] demonstrates an FFT algorithm implemented on the 68000 microprocessor

that can calculate a 256-point transform in less than 48 ms. The algorithm employs an interesting

method of scaling data to overcome overflow.

In [24] five major DFT algorithms were evaluated on seven different computers by M. A.

Mehalic et al. It is found that on the average, data transfers account for a greater percentage of the

execution time than floating-point operations.

Review of Past Work 31

T. K. Truong et al. [30] used a conventional prime factor DFT algorithm of the Winograd

type to realize a discrete Fourier-like transform on the finite field GF(q2), where q is a Mersenne

prime. A pipeline structure is used to implement this prime factor DFT over GF(qn).

R. Polge et al. [34] compares a multiple radix Fast Fourier Number Theoretic Transform with

the standard FFT algorithms in terms of performance and hardware cost.

A. Gupta et al. [39] analyzed the scalability of the parallel FFT algorithm on mesh and

hypercube connected multicomputers. The paper also present experimental speedup results on a 1024-

processor Ncube/l multicomputer which support the analytical results.

A VLSI architecture was suggested by I. S. Reed [48] for the simplified arithmetic Fourier

transform (AFT) algorithm using a butterfly structure which reduces the number of additions by 25%

of that used in the original AFT algorithm.

S. I. Sayegh [50] described a method for performing FFT’s of various sizes, whose sizes are

powers of the pipeline’s radix, simultaneously in one pipeline processor. The processor consists of

several stages of butterfly computational elements alternated with delay-switch-delay (DSD) modules

that reorder the data between the butterfly stages. FFT’s of radix 2, radix 4, and mixed 2 and 4 are

considered.

A. Kumar et al. [57] proposed an FFT algorithm, which minimizes the number of cache

misses, after analyzing the implementation of some existing FFT algorithms.

Parallel architectures for short time Fourier transform based on adaptive time-recursive

processing was proposed for efficient VLSI implementation in [58] by K. J. Ray et al. Only N - 1

multipliers and N + 1 adders are required.

Variants of the Winograd FFT algorithm for prime transform size are derived, that offer

options as to the operational counts and arithmetic balance by J. W. Cooley et al. [55]. The

implementations on VAX, IBM 3090 VF, and IBM RS16000 are also discussed For processors that

perform floating-point addition, floating-point multiplication, and floating-point “multiply-add” with

the same time delay, variants of the FFT algorithm have been designed such that all floating-point

multiplications can be overlapped by using “multiply-add.” The use of a tensor product formulation,

throughout, gives a means for producing variants of algorithms matching to computer architectures.

N. Shirazi et al. [64] implemented the 2-D FFT on a FPGA-based custom computer namely,

Splash-2. The computation of a 2-D FFT requires O(N2log2N) floating point arithmetic operations for

an N × N image.

H. Park et al. [56] proposed modular and area efficient VLSI architectures for computing the

arithmetic Fourier transform (AFT). By suitable design of PE’s and I/O sequencing, nonuniform data

dependencies in the AFT computation which require nonequidistant inputs and assignment of Mobius

function values are resolved. The design achieves O(N) speedup.

T. S. Wailes [60] described the use of VHDL in the specification, design, and development of

a large-scale project that includes several custom ASICs, standard digital components, board-level

 32 Review of Past Work

design, and bus interfacing. The common mechanism for the design was the use of VHDL in system

testing, behavioral descriptions, structural descriptions, and synthesis. The use of VHDL allowed the

project to be completed in onefifth of the time used for previous methods.

A parallel FFT algorithm that removes the complex multiplier between the two pipeline

stages is proposed in [65] by Y. T. Ma, which also enables each FFT processor at the pipelines to be

integrated easily onto a single chip. The algorithm also simplifies the address generation of twiddle

factors and reduces the number of twiddle factors to a minimum as it is now.

An approach for the systolic implementation of FFT algorithms was presented by H. Lim et

al. [68] which is based on the fundamental principle that a 1-D DFT can be decomposed to a 2-D DFT

(with or without twiddle factors) and the 2-D DFT can be computed efficiently on a 2-D systolic

array. The essence of the proposed systolic array is to combine different types of semi-systolic arrays

into one array.

In [76], two algorithms namely a stage by stage method and a multistage method parallel

radix R FFT algorithms on a multiprocessor or multicomputer system with a global interconnection

network was proposed by O. Taketa et al. The paper shows that the communication time is very

sensitive to and affected by data exchange strategy. These algorithms are implemented on two

commercial massively parallel computers (nCUBE/2 and CM5) and measured the communication

time.

In [82] an adaptive FFT program that tunes the computation automatically for any particular

hardware was presented by M. Frigo et al. The above program’s self-optimizing approach usually

yields significantly better performance than all other publicly available software.

T. Chen [90] presented an optimized column FFT architecture, which utilizes bit-serial

arithmetic and dynamic reconfiguration to achieve a complete overlap between computation and

communication.

In [96], a fixed-point FFT algorithm was presented by Jizhong I-fan et al., which can make

designers easily, adjust the precision and execution time of FFT. It also analyzes the above algorithm

from the viewpoint of round-off error analysis and presents the benchmarks on ‘C620.

A complex parallel Radix-4 FFT algorithm was simulated, implemented and realized in

hardware using VHDL and a Xilinx Virtex-E 1000 FPGA circuit by M. Nilsson [103]. The VHDL

code was simulated and synthesized in Ease and Synplify Environment and provide speed

improvements due to a parallel approach.

P. Rodriguez V [113] implemented a general radix -2 FFT algorithm for SIMD on the Intel

Pentium and Motorola Power PC architecture for 1-D and 2-D.

J. Heikkinen et al. [116] designed an application specific instruction set processors (ASIP) for

a 32 point DCT using the tools from the MOVE frame work, which is semi-automatic design

methodology for designing processors that utilize the paradigm of transport triggered architecture. In

ASIP design the hardware resources are tailored according to the requirement of the application.

Review of Past Work 33

In [122], a method to minimize memory references due to twiddle factors for implementing

any existing FFT algorithms on DSP processors was presented by Y. Tang et al. The above method

takes advantage of previously proposed twiddle factor reduction method (TFRM) and twiddle-factor-

based butterfly grouping method (TFBBGM). DIT FIT implementation in TI TMS320C64x DSP,

achieves an average reduction in the number of memory references by 79% for accessing the twiddle

factors, and 17.5% reduction in the number of clock cycles.

Regular and nonmultiplicative mapping algorithms between different types of Generalized

Discrete Fourier Transform (GDFT) were proposed by H. I. Saleh et al. [124]. Hardware realization of

16-point FFT, based on the proposed mapping algorithms, with real twiddle factor butterfly rather

than complex twiddle factors in traditional FFT algorithms, is implemented in Xilinx XC4000 and

Virtex series FPGA.

P. Coussy et al. presented [147] a methodology and a tool that permit the High-Level

Synthesis of DSP applications, under both I/O timing and memory constraints. Based on formal

models and a generic architecture, this tool helps the designer in finding a reasonable trade-off

between the circuit’s latency and its architectural complexity. The efficiency of the approach is

demonstrated on the case study of a FFT algorithm.

An FFT array processing mapping algorithm was proposed in [142] by Z. Liu in which,

arbitrary 2k butterfly units (BUs) could be scheduled to work in parallel on n = 2s data (k = 0, 1, …, s-

1). An 18-bit word-length 1024 point FFT architecture with 4 BUs is given to demonstrate this

mapping algorithm. The design is implemented with TSMC 0.18µm CMOS technology. This

processor could complete 1024 FFT calculation in 7.839µs.

To try to reconcile the dual requirements of high performance and ease of development, I.S.

Uzun et al. [143] reported on the design and realization of high level frame work for the

implementation of 1-D and 2-D FFTs for real-time applications. A wide range of FFT algorithms,

including radix-2, radix-4, split-radix and fast Hartley transform (FHT) have been implemented under

a common framework in order to enable the system designers to meet different system requirements.

G. Lakshminarayanan [144] developed a techniques for efficient implementation of FPGA

based wave-pipelined (WP) multipliers, accumulators, and filters. WP multipliers of size 2 × 6 and the

filters using them are found to be 11% faster and require lower power than those using pipelined

multipliers. Filters with higher order WP multipliers also operate with lower power at the cost of

speed. The delay-register products of such filters are found to be about 60% lower than those using

the pipelined multipliers.

J. Y. Oh et al. [146] proposed the modified radix-2 and the radix-4 FFT algorithms and

efficient pipeline FFT architectures based on those algorithms for Orthogonal Frequency Division

Multiplexing (OFDM) systems. From the synthesis simulations of a standard 0.35µm CMOS

SAMSUNG process, a proposed Canonical Signed Digit (CSD) constant complex multiplier achieved

 34 Review of Past Work

more than 60% area and power efficiency when compared to the conventional programmable complex

multiplier.

T. Lenart [162] presented architectures for supporting dynamic data scaling in pipeline FFTs,

suitable when implementing large size FFTs in applications such as digital video broadcasting and

digital holographic imaging. A 2048 point pipeline FFT has been fabricated in a standard CMOS

process and a FPGA prototype integrating a 2-D FFT core in a larger design.

CORDIC based split-radix FFT/ IFFT processor dedicated to the computation of

2048/4096/8192 point DFTs was presented by T. Y. Sung [159]. The arithmetic unit of a butterfly

processor and a twiddle factor generator are based on a CORDIC algorithm. The modified pipelining

CORDIC arithmetic unit is employed for complex multiplication. A CORDIC twiddle factor

generator is proposed and implemented for reducing the size of ROM required for storing the twiddle

factors.

X. Li [163] compares the performance of a single processor implementation with two types of

dual-processor implementations for a widely used Radix-2 N-point FFT algorithm in terms of

processing speed and FPGA resource utilization. In the first dual-processor implementation, the

partitioning is performed based on the computation complexity - O(Nlog(N)) of the Radix-2 FFT

algorithm. In the second implementation, the partitioning is based on a detailed profiling procedure

applied to each line of the code in the single-processor implementation. This result shows that detailed

profiling is crucial in identifying the bottlenecks of an algorithm (i.e., all the factors are taken into

consideration) and consequently the algorithm can be efficiently mapped on a multiprocessor system

based on the correct decision.

In [157] O. Atak et al. presented two Application-Specific Instruction-Set Processor (ASIP)

design concepts for the Cached FFT algorithm (CFFT). A reduction in energy dissipation of up to

25% is achieved compared to an ASIP for the widely used Cooley-Tukey FFT algorithm, which was

designed by using the same design methodology and technology. Further, a modified CFFT

algorithm, which enables a better cache utilization, was also presented. This modification reduces the

energy dissipation by up to 10% compared to the original CFFT implementation.

The modified Single-path Delay Feedback (SDF) architecture for FFT implementation, which

implements a mixed Decimation-in-Frequency (DIF) /Decimation-in-Time (DIT) FFT algorithm, was

proposed S. Lee et al. [170]. The proposed architecture has the same throughput as that of Radix-4

SDF and Radix-4 MDC architecture, and reduces the latency and hardware complexity with some

tradeoff in hardware complexity increase compared to original SDF.

A prime length DFT can be reformulated into a (N - 1) length complex cyclic convolution and

then implemented by systolic array or distributed arithmetic. C. Cheng et al. [168] proposed a

hardware efficient fast cyclic convolution algorithm which is combined with the symmetry properties

of DFT to get a hardware efficient fast algorithm for small length DFT, and then WFTA is used to

control the increase of the hardware cost when the transform length N is large. The proposed design

Review of Past Work 35

has much more choices for different applicable DFT transform lengths and the processing speed can

be flexible and balanced with the hardware cost.

Memory reference reduction methods to minimize memory references due to twiddle factors

for implementing various different FFT algorithms on DSP were presented by Y. Wang [169]. The

proposed methods first group the butterflies with identical twiddle factors from different stages in the

FFT diagrams and compute them before computing other butterflies with different twiddle factors,

and then reduce the number of twiddle factor lookups by taking advantage of the properties of twiddle

factors. Consequently, each twiddle factor is loaded only once and the number of memory references

due to twiddle factors can be minimized. Performance gain is achieved for implementing radix-2 DIT

FFT algorithms on TI TMS320C64x DSP using the above methods.

B. J. Mohd [175] examined the superscalar pipeline FFT algorithm and architecture. The

algorithm presents a memory management scheme to prevent memory contention throughout the

pipeline stages. The fundamental algorithm, a switch-based FFT pipeline architecture and an example

64-point FFT pipeline was presented. The pipeline consists of log2N stages, where N is the number of

FFT points. Each stage can have M Processing Elements (PEs.) As a result, the architecture speed up

is M×log2N. The pipeline algorithm is configurable to any M > 1.

S. K. Palaniappan [177] described the detail design of semi-custom ASIC CMOS FFT

architecture for computing 16 point radix-4 FFT, and realized, utilizing 0.18µm standard CMOS

technology. Fixed point data format is preferred in comparison of floating point data format for a

shorter dynamic range and reduced hardware utilization; thus, catering to the needs of portability. The

computation results at particular stage are rounded to avoid overflow issue and to be stored in register.

M. Szmajda et al. [176] presented basic analog-to-digital conversion parameters, which are

defined in the norms, the time duration analysis of DFT algorithms, considering described

assumptions and comparing them to FFT. The software including the aforementioned codes was

implemented in a low-cost power quality measurement system based on the TMS320c6713 floating

point DSP processor from Texas Instruments.

 In [178], an efficient algorithm with parallel and pipelining methods was proposed by N.

Mahdavi et al. to implement high speed and high resolution FFT algorithm. Latency reduction is an

important issue to implement the high speed FFT on FPGA. The Proposed FFT algorithm shows the

latency of 5131 clock pulse when N refers to 1024 points. The design has the mean squared error

(MSE) of 0.0001 which is preferable to Radix 2 FFT.

J. H. Bahn et al.[180] presented several parallel FFT algorithms with different degree of

communication overhead for multiprocessors in Network-on-Chip (NoC) environment.

2.3.2 Modified DFT
R. Gopikakumari et al. [71] proposed a Modulo Arithmetic based Hierarchical Neural Network

(MAHNN) model to implement N × N point DFT for ((N))4 = 2. In this model, there are 4 layers of

 36 Review of Past Work

computational units, the first three layers are using only real additions and the last layer alone

involves complex operation, which is also scalar multiplication of pre-computed twiddle factor

values.

Performance evaluation of MAHNN model to implement N × N point DFT for ((N))4 = 2 was

done in [72] by R. Gopikakumari et al. This scheme of computation has the advantage that it is based

on parallel and distributed scheme in which each operation is a simple real addition except at the last

layer, where it will be converted to the complex form.

R. Gopikakumari et al. [75] implemented a parallel distributed computation of 6 × 6 point

DFT.

In [77] R. Gopikakumari et al. used the Parallel distributed computation of 6 × 6 point DFT

for the determination of Ray Paths.

2.3.3 DCT
In [42] S. Uramoto et al. describes a 100-MHz 2-D DCT core processor, which is applicable to the

real-time processing of HDTV signals. An excellent architecture utilizing a fast DCT algorithm and

multiplier accumulators based on distributed arithmetic have contributed to reducing the hardware

amount and to enhancing the speed performance. A layout scheme with a column-interleaved memory

and a ROM circuit are introduced for the efficient implementation of memory-based signal processing

circuits. The core integrates about 102K transistors, and occupies 21 mm2 using 0.8 µm double-metal

CMOS technology.

D. Slawecki et al. [49] presented an 8 × 8 2-D DCT/IDCT processor chip that can be used for

high data rate image and video coding. It is designed using the MOSIS 2 µ scalable CMOS

technology. The chip is highly pipelined with a latency of 127 cycles and a maximum delay time of

18 ns between any two pipeline stages.

A fully parallel architecture for the computation of either the forward or the inverse 2-D DCT,

based on row-column decomposition is presented by A. Aggoun [120]. It uses the same 1-D DCT unit

for the row and column computations and (N2 + N) registers to perform the transposition. It can

compute a N x N point DCT at a rate of one complete transform per N cycles after an appropriate

initial delay.

G. A. Ruiz [141] presented a parallel-pipelined architecture of an 8 × 8 forward 2-D Integer

Cosine Transform (ICT) processor for image encoding. The ICT kernel is integer-based, so

computation only requires adding and shifting operations. A fully pipelined row-column

decomposition method based on two one-dimensional (1-D) ICTs and a transpose buffer based on D-

type flip-flops is used. The main characteristics of 1-D ICT architecture are high throughput, parallel

processing, reduced internal storage, and 100% efficiency in computational elements.

A schedule for 2-D DCT computation to reduce the hardware cost based on the fast

row/column decomposition algorithm was proposed in [171] by S. C. Hsia. With this approach, the

Review of Past Work 37

transposed memory can be simplified using shift-registers for the data transposition between two 1-D

DCT units. A special shift cell with MOS circuit is designed using the energy transferring

methodology. They claim that the maximum frequency of shift operation achieved is about 120 MHZ,

when implemented by 0.35 µm technology.

Z. Szadkowski [181] described an optimization of 16 point DCT algorithm using parallel

architecture implemented into a FPGA.

S. An et al [186] computed the 2-D DCT by a simple procedure of the 1-D recursive

calculations involving only cosine coefficients. The recursive kernel for the proposed algorithm

contains a small number of operations. Architecture for the 2-D DCT designed by direct mapping

from the computation structure of the proposed algorithm has been implemented in an FPGA board.

Another architecture using one recursive computation block to perform different functions developed

by them reduced the hardware by almost one-half.

A hardware implementation of a hybrid architecture to compute three 8 point transforms

namely the DCT, the DFT, and the DWT on a single FPGA was proposed by K. Wahid et al. [187].

The architecture is based on an element-wise matrix factorization and row-permutation algorithm,

where the forward basis transformation matrices are decomposed into multiple submatrices and the

common units are shared among them. The hardware implementation is parallel, pipelined and

multiplication-free.

L. V. Agostini [106] presented the architecture and VHDL design of a 2-D DCT for JPEG

image compression. This architecture uses 4792 logic cells of one Altera Flex 10k E FPGA and

reaches an operating frequency of 12.2 MHZ. One input block with 8 × 8 elements of 8 bits each is

processed in 25. 2 µs and the pipeline latency is 160 clock cycles.

2.3.4 Wavelet Transform
A single chip implementation of DWT is described by G. Knowles [33].

A VLSI architecture suitable for 2-D orthogonal wavelet transforms was presented by A. S.

Lewis [41], which for the Daubechies wavelet implements the forward and inverse transforms without

multipliers. The four-coefficient Daubechies wavelet transform has excellent spatial and spectral

locality, properties which make it very useful in image compression. A sample implementation is

described.

In [107] the FPGA implementation of the wavelet transform with lattice filters and achieves

the FFT with the Coordinate Rotational Digital Computation (CORDIC) was presented by W. Zhilu et

al. Then, the emulation data of the Daubechies D4 & D6 wavelet transforms and the FFT with 16

points are given, and their performances are analyzed.

M. Nibouche et al. in [108] presented a framework for an FPGA-based DWT system. The

approach helps the end-user to generate FPGA configuration for DWT at a higher level without any

knowledge of the low-level design styles and architectures.

 38 Review of Past Work

Z. Razak [114] described the development process of a DWT chip design comprising of

simulation by MATLABTM, simulation and synthesis by SYNOPSYSTM .

A methodology for building up filters for JPEG 2000 std that can be applied efficiently for

both 1-D forward and inverse Wavelet transform was presented by G. Dimitroulakos et al. [118].

They are characterized by reduced memory access, area, power and the ability of progressive

computation. The architecture can be embedded in systems, which are used in real time applications.

N. Aranki et al. [117] described an efficient hardware implementation of the DWT suitable

for deployment on a reconfigurable FPGA based platform. This implementation is based on the lifting

factorization of the wavelet filter banks that uses the overlap-state algorithm. They claim that it

minimizes memory usage, computational complexity and communication overhead associated with

parallel implementation.

A VHDL implementation of FDWT utilizing its lossless features and based on the JPEG 2000

was presented by S.M. Aziz et al.[128]. The architecture does not comprise any hardware multiplier

unit and therefore suitable for development of high performance image processors.

In [129], the implementation of the 2-D DWT in VHDL is presented by R. Mateos et al. The

proposed system has as advantages the segmentation of the wavelet algorithm in different processes

and presents as novelty the control and addressing of input and output data.

An approach towards VLSI implementation of the DWT for image compression was

presented by A. A. Muhit et al. [137]. The design follows the JPEG2000 standard and can be used for

both lossy and lossless compression. In order to reduce complexities of the design, linear algebra view

of DWT and IDWT has been used.

P. Salama et al. [154] presented a VHDL implementation of a decomposition unit based on

Mallat’s fast Wavelet Transform, which utilizes a two-channel c sub band coder. The units were

simulated, synthesized, and optimized using Mentor® design tools.

Two different architectures for reversible integer to integer Wavelet Transforms was proposed

in [127] by M. A. B. Ayed et al. One uses the lifting frame work as an architecture support and the

other make advantage of the two finite impulse filter structure representing the wavelet transform

function. The architectures are evaluated based on their computational complexity, latency time,

hardware occupancy and the maximum operating clock frequency.

2.3.5 Haar Transform
Linear systolic array architecture for the implementation of Haar, Walsh, and the DFTs based upon

matrix vector multiplication algorithms where the matrix elements can be computed from their row

and column indexes was presented by G. E. Bridges et al. [27] . The method presented enables the n2

matrix elements to be computed in situ directly from the 2n matrix indexes. A generalized method is

Review of Past Work 39

given for the development of recursively formed matrices and specifically the VLSI implementation

of the Haar and Walsh transforms.

Three VLSI computing architectures namely systolic tree architecture, linear data flow array

and sequential queue architecture were proposed by K. J. Ray et al. [40] for fast implementation of the

Haar transform.

A processor chip programmable between N = 8 and N = 1024 for 1-D IFHT was presented by

G. A. Ruiz et al. [79]. The processor uses a low latency data-flow with an architecture that minimizes

the internal memory and an adder/subtracter as the only computing element. The control logic has a

single and modular structure and can be easily extended to longer transforms. A prototype of the 1-D

IFHT processor has been implemented using a standard-cell design methodology and a 1.0-µm

CMOS process on a 11.7 mm2 die. The maximum data rate is close to 60 MHz.

An FPGA implementation of a processor for the 1-D IFHT programmable for N = 8 up to N =

1024, with low latency data flow is presented by O. Martin et al. [172]. It enables on-line computing

for both the normalized and the non-normalized IFHT to be performed, with very low nrmse.

2.3.6 Hadamard Transform
An algorithm of a simple systolic array processor for the HAT was presented by M. H. Lee et al. [37]

that provides high pipelining rates. It is based on Hadamard coefficient generator, which makes the

signs of the Hadamard matrix (HAM) elements and the execution of matrix vector multiplication.

An architecture for the Fast Hadamard Transform, using distributed arithmetic techniques,

was proposed by A. Amira et al. [99]. The associated design using both a distributed arithmetic ROM

and Accumulator structure and a sparse matrix factorization technique are also described. The above

architecture is implemented on a Xilinx FPGA board by A. Amira et al. [105].

The FPGA implementation of two architectures namely systolic architecture and distributed

arithmetic techniques for the computation of fast Walsh-Hadamard transform is presented in [109] by

A. Amira et al. The first approach uses the Baugh-Wooley multiplication algorithm whereas the

second approach is based on both a distributed arithmetic ROM and accumulator structure, and a

sparse matrix factorization technique. The second method exhibits better performances when

compared to the first one.

I. Amer et al. [139] presented a VLSI prototype for the 2 × 2 Hadamard transform that is

applied to the DC coefficients of the four 4 × 4 blocks of each chroma component as described in the

MPEG -4 Part 10 Advanced Video Coding (AVC) standard. The transform is computed using add

operations only and the architecture satisfies the real-time constraints required by HDTV.

A hardware unit for producing binary Orthogonal Variable Spreading Factor (OVSF),

Hadamard and Walsh codes for WCDMA/CDMA2OOO systems was presented by T. Rintakoski et

al. [138]. The generator uses a spreading factor, mode select, and the code index as the control input.

 40 Review of Past Work

A fast algorithm for the sequency-ordered complex Hadamard transform (SCHAT) based on

the decomposition method of decimation-in-sequency was proposed by G. Bi et al. [182]. To support

high speed real time applications, a pipelined hardware structure is also proposed to deal with

sequentially presented input/output data streams which requires only log2 N complex adder/subtracters

and 2(N - 1) complex data stores for an –N point SCHT.

Fully pipelined simple modular structures for the hardware realization of DHAT were

proposed by P. H. Meher et al. [184]. Four different pipelined modular designs for transform length N

= 4 were derived from the kernel matrix of HAT. It is shown further that the HAT of transform length

N = 8 can be obtained from two 4-point HAT modules, and similarly, the HAT of transform length N

= 16 can be obtained from four 4-point HAT modules. Long length transforms can be computed from

these short length modules.

2.4 Conclusion
The literature reviewed here set the background to develop the main idea in the work reported. The

chapters to follow shall demonstrate this aspect.

CHAPTER 3

VISUAL REPRESENTATION AND COMPUTATION OF 2-D DFT

“A Picture is worth a thousand words”. Hence for a long time, visual methods have been

successfully applied to analyze data, in many application domains. Ordinary visualization of such

data can lead to over crowded and cluttered displays and are therefore of limited use, especially

when the data volume is large. Data abstraction can help to gain insight even into large data sets.

Providing appropriate methods to facilitate analysis of data is a key issue. This is the point where

analytical methods come into play. Integrating visual and analytical methods has become an

increasingly important issue. The method adopted in this chapter is also an illustration of the

usefulness of combining visual and analytical methods. The analytical method should i)

communicate the fact that something interesting has been found, ii) emphasize interesting data

among the rest of the data and iii) convey what makes the data interesting. When the data size is

huge, the challenge of visualizing it in a comprehensible manner can be dealt with by analytical

methods.

In the modified 2-D DFT, explained in section 1.2.3.4, computation of the N2 DFT

coefficients
2,1 kkY involves M complex multiplications each. But for a particular (k1, k2), (1.6)

involves computation of z for all values of (n1, n2) which is time consuming. A visual representation

of N × N DFT was developed, in [88], in terms of 2 × 2 DFT. It represented ,1 2k kY visually using a

set of primitive symbols. The visual representation developed in [88] provided a relation between N

× N point DFT and 2 × 2 DFT.

 A visual representation based on 2 × 2 data on the other hand will give direct relationship

between time domain data and the frequency domain representation in terms of pictures. These

visuals are the representatives of data points involved in the computation of DFT coefficients. By

analyzing the visual representation, we can extract lot of information to derive simple and efficient

schemes for DFT computation.

 42 Visual Representation and Computation of 2-D DFT Coefficients

3.1 Visual representation based on 2 × 2 DFT

Let X be the 2 × 2 data matrix and Y be the corresponding 2 × 2 DFT matrix as shown.

00 01 00 01

10 11 10 11

X X Y Y
X Y

X X Y Y
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Then the relationships between these two matrices [88] can be expressed by symbols as shown

below.

Y00 = X00 + X01 + X10 + X11

(3.1)

Y01 = (X00 + X10) - (X01 + X11)

(3.2)

Y10 = (X00 + X01) - (X10 + X11)

(3.3)

Y11 = (X00 + X11) - (X10 +X01)

(3.4)

By combination of (3.1), (3.2), (3.3) and (3.4) other relationships can be derived. The 36 primitive

symbols and its Mnemonics based on 2 × 2 DFT are shown in fig. A.1. These primitive symbols

were derived from the relation between 2 × 2 data and 2 × 2 DFT coefficients. The visual

representation of 8 × 8 point DFT based on these primitive symbols is also shown in fig. A.2. The

computation of p
kkY
2,1

 doesn’t require any multiplications. The frequency domain analysis of 2-D

signals is also made easy using these visuals.

3.2 Visual representation based on 2 × 2 data

Visual representation of 2-D DFT coefficients can also be developed based on 2 × 2 data instead of

2 × 2 DFT. Such visuals provide a direct relationship between the data and the DFT coefficients.

These visuals can be used to compute the DFT coefficients rather than computing (1.6) and (1.7).

The patterns in the visual representation can be analyzed, there by exploring different

computational schemes for 2-D DFT.

3.2.1 Primitive symbols
The expression for the 2-D DFT computation was restructured in [88], and [140], by exploiting the

periodicity and symmetry properties of twiddle factors, thereby reducing the computational

Visual Representation and Computation of 2-D DFT Coefficients 43

complexity from N2 complex multiplications for each DFT coefficient required in direct DFT to that

of N/2 in the present approach.

Time consuming computation in (1.6) is simplified by the visual representation developed

in [88], [69] in terms of 2 × 2 DFT. The representation of N × N DFT using 2 × 2 data is obtained

by replacing the primitive symbols corresponding to 2 × 2 DFT with the primitive symbol

corresponding to data. This will help to compute the DFT coefficients, without computing (1.6) and

(1.7), by using it as a look up table. The computation of p
kkY
2,1

using the visual representation

involves only real additions.

The 37 primitive symbols based on data are shown in fig. 3.1. In the primitive symbols “▫”

and“▪” denote that the data from the respective position is to be added and subtracted respectively.

The meaning of a few primitive symbols and the corresponding mnemonics used in the visual

representation are given below:

1. The symbol called MPA (Matrix Positive Above) indicates that the two data on the top (i.e.

data on the (0, 0)th and (0, 1)th position) are positive and that on the bottom (i.e. on the (1, 0)th

and (1, 1)th position) of the 2 x 2 data matrix are sign reversed for computing p
kkY
2,1

.

2. The symbol called DP (Diagonal Positive) indicates that the data on the (0, 0)th and (1, 1)th

position are positive and the rest of the data in the 2 × 2 matrix are not involved in the

computation.

3. Symbol named LAP (Left Above Positive) indicates that the data on the (0, 0)th position of

the 2 × 2 data matrix is taken with a positive sign and rest of the data are not considered.

Similarly, RAP (right above positive), RBP (right below positive), LBP (left below positive)

indicates consideration of data at positions (0, 1), (1, 1) and (1, 0) respectively. It is to be noted

that in the visual representation a hollow square symbol represents single positive data point.

 4. Symbol named LAN (Left Above Negative) indicates that the data on the (0, 0)th position of

the 2 × 2 data matrix is taken with a Negative sign and rest of the data are not considered.

Similarly, RAN (right above Negative), RBN (right below Negative), LBN (left below

Negative) indicates consideration of data at positions (0, 1), (1, 1) and (1, 0) respectively. It is to

be noted that in the visual representation a filled square symbol represents single negative data

point.

5. Symbol named HAP (Horizontal above positive) indicates that the two data points on the

upper row of the 2 × 2 data matrix i.e. at positions (0, 0) and (0, 1) are taken with a positive sign

and the rest are not considered. Similar is the case for HBP (Horizontal below positive), VLP

 44 Visual Representation and Computation of 2-D DFT Coefficients

(Vertical left positive) and VRP (Vertical right positive) each considering 2 data points with a

positive sign. The precise data positions for HBP are (1, 0) and (1, 1), they are (0, 0) and (1, 0)

for VLP and that for VRP are (0, 1) and (1, 1). It is to be noted that in the visual representation

a thin line symbol represents a group of 2 adjacent positive data points.

6. Symbol named HAN (Horizontal above negative) indicates that the two data points on the

upper row of the 2 × 2 data matrix i.e. at positions (0, 0) and (0, 1) are taken with a negative sign

and the rest are not considered. Similar is the case for HBN (Horizontal below negative), VLN

(Vertical left negative) and VRN (Vertical right negative) each considering 2 data points with a

positive sign. The precise data positions for HBN are (1, 0) and (1, 1), they are (0, 0) and (1, 0)

for VLN and that for VRN are (0, 1) and (1, 1). It is to be noted that in the visual representation

a thick line symbol represents a group of 2 adjacent negative data points.

7. Symbol named DN (diagonal negative) indicates that the two data points on the diagonal of

the 2 × 2 data matrix i.e. at positions (0, 0) and (1, 1) are taken with a negative sign and the rest

are not considered. A thick diagonal line is shown in the visual representation. Similarly CN

(cross-diagonal negative) considers points on the cross- diagonal i.e., at positions (0, 1) and (1,

0). A thick cross-diagonal line shows it.

8. Symbol named MPL (Matrix Positive on the Left) indicates that the two data on the left (i.e.

on the (0, 0)th and (1, 0)th positions) are taken with a positive sign and the data on the right

(i.e., on the (0, 1)th and (1, 1)th positions) of the 2 × 2 data matrix are taken with a negative

sign for computing p
kkY
2,1

. The other similar symbol is MPA.

9. The symbol HAPR (horizontal above positive right) indicates that two data points are

considered with right one i.e., (0, 1) with a positive sign and left one i.e., (0, 0) with a negative

sign. It is shown in the visual representation as a rectangle, which is half filled from the left side

denoting negative data point and is half empty from the right side denoting positive data point.

Similar symbols are used for HAPL, HBPR, HBPL, VLPA, VRPA, VLPB, VRPB, DPA, DPB,

CPA and CPB.

10. The symbol MP (matrix positive) indicates that all the four data points of a 2 × 2 matrix are

considered with a positive sign. It is shown in the visual representation by a big square covering

almost the whole block constructed with a thin line.

Visual Representation and Computation of 2-D DFT Coefficients 45

11. A blank block denotes that none of the four data points are necessary for the DFT

computation using p
kkY
2,1

.

3.2.2 Visual representation
The coefficient p

kkY
2,1

, for any (k1, k2) and 10 −≤≤ Mp , is represented visually in terms of the

primitive symbols in fig. 3.1. The visual representation of p
kkY
2,1

 will have MM × cells with a

primitive symbol in each cell. For each time index),(21 nn , the value of Nknknz))..((2211 += is

determined. If pz = , the data is to be added, else if Mpz += , the data is to be subtracted and

otherwise the data is to be neglected. The primitive symbol to be used in each cell can be selected

from fig. 3.1, based on the number of data used from that cell and its sign. Thus each cell represents

a mapping of 22× data into primitive symbol based on the value of z in (1.7). E.g., for any even

value of N, if 1 2(,) (0, 0)k k = then 0))((2211 =+ Nknkn for all values of),(21 nn in the MM × cells.

Thus all the four data in each cell will be involved with plus sign if p = 0 and the primitive symbol

will be with mnemonic ‘MP’. The visual representation for k1 = k2 = 0 exists only for p = 0.

Similarly, for k1 = 0 and k2 = M, z = 0 or M when n2 is even or odd respectively. Thus in the

columns of even n2, the data is to be added and for odd values of 2n the data is to be subtracted.

Equivalently, all the cells will have the symbol corresponding to the mnemonic ‘MPL’ for p = 0

alone. Similarly we can construct the visual representation for any (k1, k2) corresponding to any

even value of N. The fig. 3.2, 3.3 and 3.4 show the visual representation for N = 4, 6 and 8

respectively.

3.2.3 Analysis of the visual representation

The visual representation of DFT is analyzed for N = 4 to 64. The representation shows specific

pattern depending on 1) the appearance, 2) existence of p
kkY
2,1

for selected p based on (k1, k2) and 3)

order N.

3.2.3.1 Classification of DFT coefficients based on the appearance

In fig. 3.2, 3.3, and 3.4, pY 0,0 , p
MY ,0 , p

MY 0, , and p
MMY , have representation for p = 0 only and each of

them have identical cells. There are only 4 such real coefficients, for any even N, each of them can

be represented by just one cell and is classified as group 1.

 46 Visual Representation and Computation of 2-D DFT Coefficients

Fig. 3.1: Primitive symbols for visual representation of DFT coefficients using 2 × 2 data

Fig. 3.2: Visual representation of 2-D DFT coefficients for N = 4

Fig. 3.3: Visual representation of 2-D DFT coefficients for N = 6

Visual Representation and Computation of 2-D DFT Coefficients 47

Fig. 3.4: Visual representation of 2-D DFT coefficients for N = 8

 48 Visual Representation and Computation of 2-D DFT Coefficients

Fig. 3.4: Cont’d

In fig. 3.3 and 3.4 where, N = 6 and 8 respectively, 0
0,1Y , 2

0,1Y , 0
0,2Y , 2

0,2Y etc. show a regular

structure and use a pair of primitive symbols, where as 1
0,1Y , 3

0,1Y , 3
0,2Y , 1

0,2Y etc. also show a regular

structure but use another pair. When N = 6, as in fig. 3.3, 0
0,1Y , 2

0,1Y , 2
0,2Y etc. use a pair of primitive

symbols where as 1
0,1Y , 3

0,1Y , 3
0,2Y etc. use another pair. Each column of these coefficients is identical

Visual Representation and Computation of 2-D DFT Coefficients 49

to the other columns of the coefficients. In 0
1,0Y , 2

1,0Y , 2
2,0Y etc. each row is identical to the other rows.

This type of characteristics is seen in the coefficients in the 0th column, 0th row, Mth column and Mth

row other than in group 1, i.e., coefficients 0,kY , MkY , , kY ,0 , kMY , where gcd(k, M) ≠ M. There are

4(N – 2) such coefficients, classified as group 2.

The rest of the coefficients does not show any of the characteristics described above, but

shows a specific pattern. E.g., 0
1,1Y of N = 6 in fig. 3.3, each column can be obtained from the other

by a circular shift. The pattern also changes systematically depending on the change in the value of

k1, k2 and p of p
kkY
2,1
. E.g., in fig. 3.4 where N = 8, as p changes incrementally in)(

1,1
pY , the pattern

shift right horizontally in the same number of increments in a circular fashion. Similarly in 0
1,1k

Y , as

k1 changes incrementally, the pattern in each row shift left horizontally ‘n’ times, where ‘n’ is the

row number of the data present in that 0
1,1k

Y . So also in 0

2,1 kY , as k2 changes incrementally, the pattern

in each column shift up vertically ‘n’ times, where ‘n’ is the column number. This is observed in

N2 - 4(N - 1) coefficients, for any even N, classified as group 3.

In brief, only one cell is enough to represent the coefficients in group 1 and one

row/column for group 2 coefficients. In the case of group 3 coefficients, even though other

rows/columns are not identical, they can be obtained by circular shift of one row/column. Again if

the visual representation of p
kkY

21 , for p = 0 is available, the visual representation for other values of

p (i.e. p = 1, 2, etc.) could be obtained by circular shift of the pattern. Hence the visual

representation can be obtained by visual manipulation rather than doing the computation in (1.6)

and (1.7), which will simplify the representation.

3.2.3.2 Classification of DFT coefficients based on the existence of p
kkY

21 ,

Fig. 3.2, 3.3, and 3.4, show that for certain DFT coefficients, p
kkY
2,1
 does not exist for all values of p.

When N = 8,)(
2,0
pY ,)(

0,2
pY ,)(

2,4
pY ,)(

4,6
pY etc. have p = 0, and 2 only as shown in fig. 3.4. Here

2),,gcd(21 =Mkk , 2),gcd(=Mp and 10 −≤≤ Mp , where 2 is a divisor of M [10]. Similarly
when N = 12,)(

3,0
pY ,)(

0,3
pY ,)(

3,6
pY ,)(

9,3
pY etc. have p = 0, and 3 only, since 3 is a divisor of M.)(

4,4
pY ,)(

8,0
pY ,

)(
4,8
pY etc. have p= 0, 2, and 4 since 2),,gcd(21 =Mkk , 2),gcd(=Mp and 10 −≤≤ Mp . When

both k1 and k2 are 0,)(
0,0
pY exists for p = 0 only. So the existence of p

kkY
2,1
 depends on ‘dm’, where

‘dm’ is the divisor of M, which is illustrated in the following theorem.

Theorem 3.1
 When ‘dm’ is a divisor of M and gcd(k1, k2, M) = dm, then p

kkY
2,1

exists for 0 ≤ p ≤ M-1,

where gcd(p, M) = dm.

 50 Visual Representation and Computation of 2-D DFT Coefficients

Proof
From (1.6) & (1.7), for p

kkY
2,1

 to exist z should be equal to p or p M+ for at least one (n1, n2),

1 20 , 1n n N≤ ≤ − . Let dm be a divisor of M, then M r
dm

= .

Let 1 .k s dm= and 2 .k t dm= , where 0 , 1Ns t
dm

≤ ≤ − .

Then from (1.7), 1 2 1 2((. . . .)) ((((. .)) (())))N N N Nz n s dm n t dm n s n t dm= + = + (3.5)

For 0 ≤ 1 2(. .)n s n t+ ≤N - 1, (3.5) becomes

0, , ((2.)) , ((3.)) ,....((.))((().))N N N Nz dm dm dm dm r dm= α α +

∴ ((.))Nz q dm= , 0 1Nq
dm

≤ ≤ − (3.6)

i.e., z is an integral multiple of dm .

Case 1: 1 2 0k k= =

Then z = 0 for all values of n1 and n2. Hence ,1 2

p
k kY exists for p = 0 only.

Case 2: 1 2gcd(, ,)k k M dm=

a) .p dm= α , where 0 1M
dm

≤ α ≤ − .

For .
,1 2

dm
k kY α to exist z should be equal to α .dm or (α + r)dm.

From (3.6), both α and α + r falls within the range of q

So .
,1 2

dm
k kY α exist for .p dm= α , 0 1M

dm
≤ α ≤ − and k1 = s.dm and k2 = t.dm , 0 , 1Ns t

dm
≤ ≤ − i.e., when

1 2gcd(, ,)k k M dm= .

b) .p dm≠ α , 0 1M
dm

≤ α ≤ −

Since .p dm≠ α and . .p M dm r dm+ ≠ α + , i.e., .p dm≠ α and ().p M r dm+ ≠ α + is not an

integral multiple of dm. But, z should be an integral multiple of dm for ,1 2

p
k kY to exist.

Hence ,1 2

p
k kY does not exist for .p dm≠ α , 0 1M

dm
≤ α ≤ − and 1 2gcd(, ,)k k M dm= .

Case 3: 1 2gcd(, ,) .k k M dm= α and p = dm.

 α .dm is a divisor of M, 2 1M
dm

≤ α ≤ − and

Visual Representation and Computation of 2-D DFT Coefficients 51

k1 = s. α .dm and k2 = t. α .dm , 0 . , . 1Ns t
dm

≤ α α ≤ − . Then replacing s and t in (3.5) with s. α and

t. α , z becomes

1 2 1 2((.)) ((((. .)) ((.))))N N N Nz n s dm n t dm n s n t dm= α + α = + α

Thus z is an integral multiple of α .dm. But when p = dm, z should be equal to dm or (1 + r).dm for

,1 2

p
k kY to exist. For that α should be 1 which contradict our initial assumption that α is greater than

1. Thus ,1 2

p
k kY does not exist for p = dm when 1 2gcd(, ,) .k k M dm= α .

 From the above, it can be seen that even though the number of real additions (ar) involved

in the computation of each of the DFT coefficient is same, due to the non existence of certain ,1 2

p
k kY ,

the number of complex multiplications (mc) and the number of complex additions (ac) has been

reduced. This reduction is proportional to the value of the divisors of M. The number of ,1 2

p
k kY (np)

required for DFT computation decreases as the value of the divisor, dm increases, where,

dmMkk =),,gcd(21 . E.g., when N = 16, pY 1,1 has p = 0, 1, 2, 3, …, 7, pY 0,2 has p = 0, 2, 4 and 6, pY 8,4

has p = 0 and 4 only and pY 8,8 has p = 0 only. It can be observed that when dm = 1, 2, 4 & 8 np = M,

2
M ,

4
M &

8
M respectively. Hence, mc = np – 1 = ac. This is clear from table 3.1 for N = 16. Thus

the number of complex multiplication for a DFT coefficient is M/dm - 1.

Table 3.1: Influence of ‘dm’ when N = 16

p
kkY

21, , dmMkk =),,gcd(21 . dm ar np mc ac

1,0Y , 1,2Y , 2,3Y , etc. 1 255 8 7 7

2,0Y , 2,2Y , 4,2Y , etc. 2 255 4 3 3

4,0Y , 4,4Y , 8,4Y , etc. 4 255 2 1 1

8,0Y , 8,8Y , 0,8Y , etc. 8 255 1 0 0

3.2.3.3 Classification of visual representation based on N

The visual representation shows specific properties depending on N and can be classified into four.

(i) N/2 prime

The visual representation of N = 6 is shown in fig. 3.3 where N/2 is prime. In fig. 3.3,)(
0,0
pY ,)(

3,0
pY ,

)(
0,3
pY , and)(

3,3
pY have p = 0 only, where as all other coefficients have p = 0, 1 and 2. Here M = 3 is

prime, hence dm = 1 and 3. When ‘dm = 3’, ,1 2

p
k kY exists for p = 0 only. Similarly when ‘dm = 1’

 52 Visual Representation and Computation of 2-D DFT Coefficients

,1 2

p
k kY exists for all values of p, 10 −≤≤ Mp . The above characteristics can be seen whenever N/2

is prime, since the divisors are 1 and M.

(ii) ((N))4 = 2 and N/2 not prime
The smallest positive integer in this category is 18 and the divisors ‘dm’ of M are 1, 3 and 9. When

dm = 1, ,1 2

p
k kY exists for all 10 −≤≤ Mp for a given (k1, k2) such that 1),,gcd(21 =Mkk as seen in

the visual representation.

Similarly when 3),,gcd(21 =Mkk , ,1 2

p
k kY exists for p = 0, 3, and 6 only and when

9),,gcd(21 =Mkk , ,1 2

p
k kY exists for p = 0 only. Here dm is odd, as M is odd and composite. Similar is

the case when N = 30, 42, 50 etc. where N/2 is odd and composite.

(iii) N power of 2
The visual representation of N = 8 is shown in fig. 3.4 where N is a power of 2. When N = 8, the

divisor ‘dm’ = 1, 2, and 4. When dm = 1, from the visual representations derived, ,1 2

p
k kY exists for all

10 −≤≤ Mp for a given (k1, k2) such that 1),,gcd(21 =Mkk .

 Similarly, when 2),,gcd(21 =Mkk , ,1 2

p
k kY exists for p = 0, & 2 and when 4),,gcd(21 =Mkk ,

,1 2

p
k kY exists for p = 0 only. In this category dm is a power of 2. Same features can be seen when N =

4, 16, 32, 64 etc.

(iv) ((N))4 = 0 and N not a power of 2
The smallest positive integer in this category is 12 and the divisors ‘dm’ of M are 1, 2, 3 and 6.

From the visual representations derived, when dm = 1, ,1 2

p
k kY exists for all (k1, k2) such that

1),,gcd(21 =Mkk , 10 −≤≤ Mp . Similarly, when 2),,gcd(21 =Mkk , ,1 2

p
k kY exists for p = 0, 2 and 4;

when 3),,gcd(21 =Mkk , ,1 2

p
k kY exists for p = 0 and 3 only and when 6),,gcd(21 =Mkk , ,1 2

p
k kY exists

for p = 0 only. ‘dm’, the divisors of M in this case are both even and odd. Similar is the case when

N = 20, 24, 28 etc. where N/2 is even.

3.2.4 Redundancy
Redundancy in the visual representation can be noticed at three different levels. In section 3.2.3.1, it

is inferred that only one cell is enough to represent the coefficients in group 1 and one row/column

for group 2 and 3 coefficients. This is the redundancy available within the visual representation of

,1 2

p
k kY and termed as first level of redundancy.

Visual Representation and Computation of 2-D DFT Coefficients 53

In section 3.2.3.1, it is also inferred that if the visual representation of ,1 2

p
k kY for p = 0 is

available; the visual representation for other values of p (i.e. p = 1, 2, etc) could be obtained by

circular shift of the pattern. Hence the visual representation of ,1 2

p
k kY for any one value of p is enough

to represent the DFT coefficient. This is the redundancy that can be observed within a DFT

coefficient, termed as second level.

Several similarities can be noticed in the visual representations of the 1st column

coefficients and the last column coefficients when N = 8, where the index k2 is 1 and 7 respectively,

which can be seen in fig. 3.4. The visual representation for 0

2,1 kkY of 1st column coefficients (0
1,1Y , 0

1,2Y ,

0
1,3Y , etc.), from top to bottom are same as that of the corresponding coefficients in the last column,

taken in the reverse order (0
7,7Y , 0

7,6Y , 0
7,5Y , etc.), except for the 0th row coefficients. E.g., the visual

representation of 0
1,1Y is same as that of 0

7,7Y . 0

2,1 kkY of 0th row coefficients of the above columns are

same, i.e., the visual representation of 0
1,0Y is same as that of 0

7,0Y . The representation for other values

of p is also related. E.g., the visual representation of 3
7,7Y is the sign reversed form of 1

1,1Y . Several

such similarities can be noticed between other coefficients also. The above similarities are

predominant in the visual representations of higher orders. E.g. when N = 12, the visual

representations for 0
2,1Y , 0

10,11Y , 0
10,5Y and 0

2,7Y are similar. The frequency indices of 0
2,1Y is N minus the

corresponding indices of 0
10,11Y . The indices of 0

10,5Y are 5 times that of 0
2,1Y . Similarly the visual

representation of 5
10,11Y and 1

2,7Y is the sign reversed form of 1
2,1Y and 5

10,5Y . Here (k1, k2) have the same

relations as explained above. There is also a definite relationship between the values of p in such

coefficients. Value of p in 5
10,11Y is M minus the value of p in 1

2,1Y and that of 5
10,5Y is 5 times the value

of p in 1
2,1Y . The above relations can be generalized and extended to other coefficients as shown

below. The redundancy thus observed between p
kkY
2,1
 of different DFT coefficients is termed as third

level of redundancy.
*

* (,)1 2(,)1 2

p p
k kk k

Y Y= − for p ≠ 0 (3.7)

where *p = ((M - p))M and *
21),(kk = (((N - k1))N , ((N - k2))N)

'

' ' ,1 2,1 2

p p
k kk k

Y Y= − if ((k.p))N ≥ M

 else '

' ' ,1 2,1 2

p p
k kk k

Y Y= (3.8)

where p’ = ((p.k))M, '
1k = ((k.k1))N, '

2k = ((k.k2))N
 and gcd(,) 1k N = , Mk <<0 .

 ' * '() ()
' ' * ' '(,) (,)1 2 1 2

p p

k k k k
Y Y= − . (3.9)

When p = 0,

 54 Visual Representation and Computation of 2-D DFT Coefficients

 * ' ' *() () () ()
(,) * ' ' ' ' *1 2 (,) (,) (,)1 2 1 2 1 2

p p p p
k k k k k k k k

Y Y Y Y= = = . (3.10)

 Table 3.2 shows the indices for which the coefficients could be derived from one another

for N = 20. In the table *
1k = ((N - k1))N, *

2k = ((N - k2))N and k = 3, 7 and 9. If ,1 2

p
k kY for all values

of p of the DFT coefficient with index pair (1, 0) is available, then the DFT coefficients with index

pairs as shown along the same row in the table 3.2 could be derived. There is lot of such

redundancy in ,1 2

p
k kY . Due to the above redundancy, only one of the DFT coefficients from among

them named ‘basic DFT coefficient’ need be calculated and other coefficients could be derived.

Theorem 3.2

 (())
(()) ,(())1 2

M p M
N k N kN N

Y −

− − could be derived from that of ,1 2

p
k kY with a sign reversal when p ≠ 0. When p =

0, (())
(()) ,(())1 2

M p M
N k N kN N

Y −

− − = ,1 2

p
k kY .

Proof

In (1.7) let *
1k = N - k1, *

2k = N - k2 and *p = M – p. Then

1 1 2 2((() ())) (()) (())
2N N N

Nz n N k n N k M p or M p= − + − = − − +

i.e. 1 1 2 2((. .)) () ()Nz n k n k p M or p= + = + (3.11)
In (3.11) data is to be added when z p M= + and subtracted when z p= and hence the sign
reversal.

∴ *
*, * ,1 2 1 2

p p
k k k kY Y= −

When p = 0, then from above,
 0 0

*, * ,1 2 1 2k k k kY Y= (3.12)

Theorem 3.3

((.))
((.)) ,((.))1 2

k p M
k k k kN N

Y could be derived from ,1 2

p
k kY , with a sign reversal if ((.))Nk p M≥ , else no sign

reversal, where gcd(,) 1k N = , 0 k M< < . When p = 0, ((.))
((.)) ,((.))1 2

k p M
k k k kN N

Y = ,1 2

p
k kY .

Proof

In (1.7) let '
1k = 1.kk and '

2k = 2.kk then,

 ' '
1 1 2 2 1 1 2 2((. .)) ((((. .))))N N Nz n k n k k n k n k= + = + = ((.))Nk p or ((()))

2 N

Nk p + (3.13)

Case 1: gcd(,) 1k N =

(3.13) becomes 1 1 2 2((((. .))))N Nz k n k n k= + = ((.))Nk p or (((())))
2N N

Nkp + (3.14)

When ((.))Nk p M≥ , say M + s, where 0 1s M≤ ≤ − , R.H.S of (3.14) becomes M + s or s.

Therefore data is to be added when z = M + s and subtracted when z = s and hence the sign
reversal.

Visual Representation and Computation of 2-D DFT Coefficients 55

Table 3.2: Index relation for N = 20

k1, k2 k1*, k2* 3k1, 3k2 3k1*, 3k2* 7k1, 7k2 7k1*, 7k2* 9k1, 9k2 9k1*, 9k2*
1, 0 19, 0 3, 0 17, 0 7, 0 13, 0 9, 0 11, 0
0, 1 0, 19 0, 3 0, 17 0, 7 0, 13 0, 9 0, 11
1, 1 19, 19 3, 3 17, 17 7, 7 13, 13 9, 9 11, 11
2, 1 18, 19 6, 3 14, 17 14, 7 6, 13 18, 9 2, 11
3, 1 17, 19 9, 3 11, 17 1, 7 19, 13 7, 9 13, 11
4, 1 16, 19 12, 3 8, 17 8, 7 12, 13 16, 9 4, 11
5, 1 15, 19 15, 3 5, 17 15, 7 5, 13 5, 9 15, 11
6, 1 14, 19 18, 3 2, 17 2, 7 18, 13 14, 9 6, 11
7, 1 13, 19 1, 3 19, 17 9, 7 11, 13 3, 9 17, 11
8, 1 12, 19 4, 3 16, 17 16, 7 4, 13 12, 9 8, 11
9, 1 11, 19 7, 3 13, 17 3, 7 17, 13 1, 9 19, 11

10, 1 10, 19 10, 3 10, 17 10, 7 10, 13 10, 9 10, 11
11, 1 9, 19 13, 3 7, 17 17, 7 3, 13 19, 9 1, 11
12, 1 8, 19 16, 3 4, 17 4, 7 16, 13 8, 9 12, 11
13, 1 7, 19 19, 3 1, 17 11, 7 9, 13 17, 9 3, 11
14, 1 6, 19 2, 3 18, 17 18, 7 2, 13 6, 9 14, 11
15, 1 5, 19 5, 3 15, 17 5, 7 15, 13 15, 9 5, 11
16, 1 4, 19 8, 3 12, 17 12, 7 8, 13 4, 9 16, 11
17, 1 3, 19 11, 3 9, 17 19, 7 1, 13 13, 9 7, 11
18, 1 2, 19 14, 3 6, 17 6, 7 14, 13 2, 9 18, 11
19, 1 1, 19 17, 3 3, 17 13, 7 7, 13 11, 9 9, 11

1, 2 19, 18 3, 6 17, 14 7, 14 13, 6 9, 18 11, 2
3, 2 17, 18 9, 6 11, 14 1, 14 19, 6 7, 18 13, 2
5, 2 15, 18 15, 6 5, 14 15, 14 5, 6 5, 18 15, 2
7, 2 13, 18 1, 6 19, 14 9, 14 11, 6 3, 18 17, 2
9, 2 11, 18 7, 6 13, 14 3, 14 17, 6 1, 18 19, 2
1, 4 19, 16 3, 12 17, 8 7, 8 13, 12 9, 16 11, 4
3, 4 17, 16 9, 12 11, 8 1, 8 19, 12 7, 16 13, 4
5, 4 15, 16 15, 12 5, 8 15, 8 5, 12 5, 16 15, 4
7, 4 13, 16 1, 12 19, 8 9, 8 11, 12 3, 16 17, 4
9, 4 11, 16 7, 12 13, 8 3, 8 17, 12 1, 16 19, 4
1, 5 19, 15 3, 15 17, 5 7, 15 13, 5 9, 5 11, 15
2, 5 18, 15 6, 15 14, 5 14, 15 6, 5 18, 5 2, 15
3, 5 17, 15 9, 15 11, 5 1, 15 19, 5 7, 5 13, 15
4, 5 16, 15 12, 15 8, 5 8, 15 12, 5 16, 5 4, 15
1, 10 19, 10 3, 10 17, 10 7, 10 13, 10 9, 10 11, 10
2, 0 18, 0 6, 0 14, 0
4, 0 16, 0 12, 0 8, 0
0, 2 0, 18 0, 6 0, 14
2, 2 18, 18 6, 6 14, 14
4, 2 16, 18 12, 6 8, 14
8, 2 12, 18 4, 6 16, 14
6, 2 14, 18 18, 6 2, 14

10, 2 10, 18 10, 6 10, 14
12, 2 8, 18 16, 6 4, 14
14, 2 6, 18 2, 6 18, 14
16, 2 4, 18 8, 6 12, 14
18, 2 2, 18 14, 6 6, 14

0, 4 0, 16 0, 12 0, 8
2, 4 18, 16 6, 12 14, 8
4, 4 16, 16 12, 12 8, 8
6, 4 14, 16 18, 12 2, 8
8, 4 12, 16 4, 12 16, 8

10, 4 10, 16 10, 12 10, 8
12, 4 8, 16 16, 12 4, 8
14, 4 6, 16 2, 12 18, 8
16, 4 4, 16 8, 12 12, 8
18, 4 2, 16 14, 12 6, 8

2, 10 18, 10 6, 10 14, 10
4, 10 16, 10 12, 10 8, 10
5, 0 15, 0
0, 5 0, 15
5, 5 15, 15

10, 5 10, 15
15, 5 5, 15

5, 10 15, 10

 56 Visual Representation and Computation of 2-D DFT Coefficients

0, 0
10, 0

0, 10
10, 10

Case 2: gcd(,) 1k N ≠

In (11) let k = α .dm, where ‘dm’ is any divisor of M and 0 1M
dm

≤ α ≤ − then,

 1 1 2 2((((.)) ((. .))N Nz dm n k n k= α + (3.15)

z in (3.15), is always an integral multiple of ‘ dm ’ and since ‘ dm ’ is a divisor of M, ,1 2

p
k kY exists only

for gcd(p, M) = dm. But ,1 2

p
k kY exists for all values of p, 0 ≤ p ≤ M - 1 and thus proved.

 In the Table 3.2 where N = 20, dm = 1, 2, 5 and 10. Each of the coefficients in the first 12

rows, of the table 3.2, could derive 7 other coefficients in the same row, where gcd(k1, k2, M) = 1. In

the next four rows, each of the coefficient could derive 3 other coefficients in the same row, where

gcd(k1, k2, M) = 2; in the next three rows, each of the coefficient could derive 1 coefficient , where

gcd(k1, k2, M) = 5 and in the next two rows, the coefficient could not derive any other coefficients ,

where gcd(k1, k2, M) = 10. Hence the number of DFT coefficients that could be derived by

permutation over p depends on dm. When gcd(k1, k2, M) = dm, the number of coefficients that

could be derived is given by 1)(−
dm
Nϕ where, ϕ is the Euler Totient function [62] as defined in

B.8. Number of DFT coefficients, ‘nddm’, that could be derived from a particular basic DFT

coefficient, where gcd(k1, k2, M) = dm for different N is shown in table 3.3. E.g., when N = 20, we

need compute only 70 DFT coefficients out of 400, as in table 3.2.

Table 3.3: nddm that could be derived from the basic DFT coefficients for different N

1)(−=
dm
Nnddm ϕ , when gcd(k1, k2, M) = dm

 dm

 N 1 2 3 4 5 6 7 8 9 10

4 1 0 - - - - - - - -
6 1 - 0 - - - - - - -
8 3 1 - 0 - - - - - -

10 3 - - - 0 - - - - -
12 3 1 1 - - 0 - - - -
14 5 - - - - - 0 - - -
16 7 3 - 1 - - - 0 - -
18 5 - 1 - - - - - 0 -
20 7 3 - - 1 - - - - 0

Visual Representation and Computation of 2-D DFT Coefficients 57

Table 3.3 shows that the number of coefficients that could be derived from the basic DFT

coefficient decreases, as the value of dm increases for a particular N. This in turn increases ‘the

number of basic DFT coefficients, nb’ for the N. The number of basic DFT coefficients also

increases as the number of dm increases. Hence the number of basic DFT coefficients depends on

N. ϕ (N/dm) is the redundancy factor for a particular basic DFT coefficient, since 1)(−
dm
Nϕ

coefficients could be derived from any DFT coefficients whose gcd(k1, k2, M) = dm.

Redundancy so far seen is in the visual representation of DFT coefficients within an N. On

comparison of visual representation of different N, it is seen that the visual representation of lower

orders are contained in that of higher orders. E.g., from fig. 3.2 and 3.4, it is seen that 2
2,2Y of N = 8

contains the visual representation of 1
1,1Y of N = 4 and repeated 4 times. Similarly 2

4,4Y of N = 12

contains the visual representation of 1
2,2Y of N = 6 and repeated 4 times. 1

1,1Y of N = 4 is seen

repeated 9 times in the visual representation of 3
3,3Y of N = 12. This is illustrated with the following

theorems.

Theorem 3.4

 p
kkY

2,1
 of N contains the visual representation of dm

p

dm
k

dm
kY

2,1
 of N/dm where gcd(k1, k2, M) = dm

and repeated dm2 times.

Proof

Let gcd(k1, k2, M) = dm, '
11 .kdmk = , '

22 .kdmk = '.pdmp = and '.MdmM = . Then from (1.7),

dmpkdmnkdmn N .))....((''
22

'
11 =+ or dmMp)('' +

i.e., dmpknkndm NN .))))..((((''
22

'
11 =+ or dmMp)('' +

Then from theorem B.4.1,
''

22
'

11))..((pknkn
dm
N =+ or '' Mp + (Q gcd(dm, N) = dm).

Theorem 3.5

 pc
kckcY .

2.,1. of N contains the visual representation of p
kkY

2,1
 of N/d where d = gcd(c, N).

Proof

 Let k1 =c.k1 and k2 =c.k2 in (1.7) then,

((n1.c.k1 + n2.c.k2))N = c.p or c(p + M)

i.e., ((c((n1.k1 + n2.k2))N))N= c.p or c(p + M).

Then from B.4.1, if d = gcd(c, N)

((n1.k1 + n2.k2))N/d = p or p + M.

 58 Visual Representation and Computation of 2-D DFT Coefficients

E.g., 6
6,6Y of N = 20 contains the visual representation of 1

1,1Y of N = 10 and repeated 4 times.

It can be easily verified that the visual representation of N = 4 is contained in the visual

representation of N = 8 as well as in N = 12. It can be inferred from theorem 3.6 that the visual

representation of the DFT coefficient for an order N will contain the representation of all N/d such

that d | N and 2 ||n N but 2n |/ d.

3.2.5 Calculation of number of basic DFT coefficients
For every dm, the total number of DFT coefficients whose gcd(k1, k2, M) = dm could be calculated.

As discussed in section 3.2.4, ϕ (N/dm) is the redundancy factor for a particular basic DFT

coefficient. Hence the number of basic DFT coefficients whose gcd(k1, k2, M) = dm could be

obtained by dividing the total number of DFT coefficients whose gcd(k1, k2, M) = dm by the

redundancy factor. The number of basic DFT coefficients whose gcd(k1, k2, M) = dm is given by

 nbdm = nptdm/ϕ (N/dm) (3.16)
where nptdm is the total number of DFT coefficients whose gcd(k1, k2, M) = dm.

 Summation of all “nbdm” over all divisors, dm of M will give the total number of basic DFT

coefficients (nb) for any even N; i.e.,

nb = dm
dm

nb∑ =
()

dm

dm

npt
N
dm

∑
ϕ

. (3.17)

The total number of DFT coefficients (nptdm) whose gcd(k1, k2, M) = dm can be computed

using Principle of Inclusion-Exclusion [2], as defined in B.5, is explained below.

When gcd(k1, k2, M) = M, k1 and k2 can have either of the values 0 or M, i.e., N/M = 2

values. From the definition of permutations, the number of permutations of 2 things, taken

‘2’ at a time, when each of them can be repeated 2 times is given by 22 = 4; i.e., (N/M)2.

Here the coefficients are (0, 0), (0, M), (M, 0) and (M, M).

 Now assume that gcd(k1, k2, M) = M/2. Then both of the indices k1 and k2 can have

the values 0, M/2, M and 3M/2, but cannot be 0 and M together, i.e., k1 and k2 have values

except those for which gcd(k1, k2, M) = M. The number of permutations of 4 things, taken 2

at a time, when each of them can be repeated 2 times is 42, i.e., (N/M/2)2. The above

permutations include (0, 0), (0, M), (M, 0) and (M, M), i.e., the permutations for which

gcd(k1, k2, M) = M, which has to be excluded. The exclusion is necessary since M and M/2

have common multiples in the range 0 to N - 1. Therefore the number of DFT coefficients

whose gcd(k1, k2, M) is M/2 = (N/M/2)2 – (N/M)2 = 42 – 22 =12.

Visual Representation and Computation of 2-D DFT Coefficients 59

i.e., the coefficients are (0, M/2), (0, 3M/2), (M/2, 0), (M/2, M/2), (M/2, M), (M/2, 3M/2), (M, M/2),

(M, 3M/2), (3M/2, 0), (3M/2, M/2), (3M/2, M) and (3M/2, 3M/2).

 In general, the total number of DFT coefficients, when gcd(k1, k2, M) = dm, is obtained by

subtracting the number of permutations of indices whose gcd(k1, k2, M) = dmo, where gcd(dmo, dm)

= dm and dmo > dm, from (N/dm)2. Let nptdm is the number of permutations of (k1, k2) when gcd(k1,

k2, M) = dm, then

 nptdm = (N/dm)2 - dmodmo
npt∑

This can be illustrated with an example.

 When N = 24, M =12 and the divisors dm of M are 12, 6, 4, 3, 2, and 1.

npt12 = (N/dm)2 = (24/12)2 =4

npt6 = (N/dm)2 - npt12 = (24/6)2 - (24/12)2 =12

npt4 = (N/dm)2 - npt12 = (24/4)2 - (24/12)2 = 32

npt3 = (N/dm)2 - npt6 - npt12 = (N/3)2 – ((N/6)2 - npt12) - npt12 = (N/3)2 – (N/6)2 = 64 – 16 = 48

npt2 = (N/dm)2 – npt4 - npt6 - npt12 = (N/2)2 – ((N/4)2 - npt12) – ((N/6)2 - npt12) - npt12

 = (N/2)2 – (N/4)2– (N/6)2 + (N/12)2 = 122 – 62 -42 + 22 = 96

npt1 = (N/dm)2 – npt2 - npt3 - npt4 - npt6 - npt12 = (N/1)2 – (N/2)2 – (N/3)2 + (N/6)2

 = 576 – 144 – 64 + 16 = 384

 In the expression for npt12, npt6, npt4 and npt3, there is only exclusion of common indices,

whereas in npt2, (N/2)2 is the number of DFT coefficients whose indices k1 and k2 is even. This set

include those coefficients for which gcd(k1, k2, M) = 4 and 6 which have to be excluded. (N/4)2 is

the number of coefficients whose k1 and k2 are divisible by 4 and (N/6)2 is the number of

coefficients whose k1 and k2 are divisible by 6. Both of them have common elements since

0 and 12 are divisible by both 4 and 6. While excluding those coefficients whose gcd(k1, k2,

M) = 4 and 6, the common elements are subtracted twice. Hence the intersection of the set

of the coefficients for which gcd(k1, k2, M) = 4 and 6 has to be included, i.e., (N/12)2.

Similarly, both inclusion and exclusion occurs in npt1 also.

Since ϕ (N/12) = 1, ϕ (N/6) = 2, ϕ (N/4) = 2, ϕ (N/3) = 4, ϕ (N/2) = 4, and ϕ (N/1) = 8, the

number of basic DFT coefficients whose gcd(k1, k2, M) = dm can be calculated using (3.16).

nb12 = npt12/ϕ (N/12) = 4

 Similarly, nb6 = 6, nb4 = 16, nb3 = 12, nb2 = 24, and nb1 = 48.

From (3.17), total number of basic DFT coefficients

nb = dm
dm

nb∑ = 4 + 6 + 16 + 12 + 24 + 48 = 110.

 60 Visual Representation and Computation of 2-D DFT Coefficients

 The number of basic DFT coefficients (nb), for any even N, can be calculated using (3.17).

The above results were verified with the visual representations also and found correct.

Tables 3.4 & 3.5 show the number of basic DFT coefficients when N/2 is prime and when

N is a power of 2 respectively. From the tables, it can be seen that the number of basic DFT

coefficients is 2.N + 8 when N/2 is prime whereas when N is a power of 2, it is 3.N - 2.
Table 3.4: nb when N/2 is prime

N 6 10 14 22 26 34 38 46

nb 20 28 36 52 60 76 84 100

Table 3.5: nb when N is a power of 2

N 4 8 16 32 64 128

nb 10 22 46 94 190 382

Fig. 3.5 shows the plot of the number of basic DFT coefficients required to be computed to

obtain the entire coefficients for different N. In the plot, the overshoots are due to more number of

dm for the corresponding N, w.r.t. the near by N’s. E.g., when N is any number like 12, 24, 36, 48

and 60, which are having more number of divisors, the sharp overshoot can be noticed.

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

N

N
um

be
r o

f b
as

ic
 D

FT
 c

oe
ffi

ci
en

ts

Fig. 3.5: nb for different N

Visual Representation and Computation of 2-D DFT Coefficients 61

3.2.6 Algorithm for computing the index of all basic DFT coefficients

The nb basic DFT coefficients become the true representatives of the entire N2 DFT coefficients

and they are to be identified. On analysis of the visual representation of DFT coefficients for N = 4

to 64, as done in section 3.2.4, and from (3.10) it is observed that the basic DFT coefficients can be

identified from p
kkY
2,1
 for p = 0 and that the same can be selected in three different ways namely (i)

column wise, (ii) row wise, and (iii) quadrant wise.

(i) Column wise

In this method, selection of basic DFT coefficients is done from each column starting for column 0,

row 0. Each of the coefficients is verified to see whether it matches with the already selected basic

DFT coefficients; if so discard it, else it is included as one of the basic DFT coefficients. Once

column 0 is completed, column 1 is verified, followed by other columns till the entire N - 1

columns were verified. Once the selection is completed, each of the DFT coefficients in the set of

basic DFT coefficients is unique.

(ii) Row wise

It uses the same method as that in the column wise method except for the fact that, here selection

was done from each row starting from row 0. On verification of the selected basic DFT coefficients

based on this method show that the same can be obtained by exchanging k1 and k2 of that of column

wise selection.

(iii) Quadrant wise

In this method, basic DFT coefficients are selected from one quadrant at a time starting from

quadrant 1, followed by other quadrants.

On analysis of the indices of the basic DFT coefficients obtained from the column wise

method, following observations were significant:

1. Basic DFT coefficients are selected from column numbers (implies k2) which are divisors

mod N of N. E.g., when N = 12, basic DFT coefficients are selected from columns 1, 2, 3, 4,

6 and 0.

2. In columns 0 and M, the basic DFT coefficients selected have k1 which are divisors mod N

of N. E.g., when N = 12, the frequency index k1, of basic DFT coefficients in column 0 and

M, are 1, 2, 3, 4, 6 and 0.

3. If the index k1 and k2 of the basic DFT coefficients in column 0 are interchanged, index of

basic DFT coefficients in row 0 will be obtained. E.g., when N = 12, basic DFT coefficients

 62 Visual Representation and Computation of 2-D DFT Coefficients

in column 0 are (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), and (6, 0) where as that of row 0 are (0,

0), (0, 1), (0, 2), (0, 3), (0, 4) and (0, 6).

4. In column number k2 = 2.dm where gcd(2.dm, N) = 2.dm and gcd(2.dm, M) = dm, the

number of basic DFT coefficients and the corresponding frequency index k1 will be same as

that of column number k2/2 = dm. E.g., when N = 12, the number of basic DFT coefficients

and the corresponding frequency index k1 in column numbers ((N))N = 0 and M are same.

Similarly the number of basic DFT coefficients and the corresponding frequency index k1

in column numbers 4 and 2 are same.

5. When N/2 is prime, apart from the basic DFT coefficients in column 0 and M, the entire

DFT coefficients in column 1 and 2 are required to complete the set of basic DFT

coefficients. All other columns are ignored. Since N is having only four divisors namely, 1,

2, M, and N, there are four basic DFT coefficients each in column 0 and M, and N basic

DFT coefficients each in column 1 and 2 resulting in a total of 2N + 8 basic DFT

coefficients.

6. When N is a power of 2, in each column where k2 = dm, select all DFT coefficients where

gcd(k1, k2) = dm. E.g., when N =16, in column 4, (0, 4), (4, 4), (8, 4), and (12, 4), are basic

DFT coefficients. Then for each divisors ‘ddm’, of dm other than dm, select the first

N/(2.dm) frequency index k1, where gcd(k1, ddm) = ddm. E.g., when N = 16, in column 4, 2 is

a divisor of 4 and so select the first N/(2 × 4), i.e., 2 coefficients whose gcd(k1, 2) = 2 are

(2, 4) and (6, 4). Similarly 1 is a divisor of 4 and so select the first two coefficients whose

gcd(k1, 1) = 1, namely, (1, 4) and (3, 4).

In columns where k2= ((2.dm))N, where gcd(2.dm, M) = dm and gcd(2.dm, N) =

2.dm, the number of basic DFT coefficients and the frequency index k1 is same as that of

column k2 = dm. E.g., when N = 16, there are five basic DFT coefficients namely, (0, 8), (1,

8), (2, 8), (4, 8), and (8, 8) in column 8 and five basic DFT coefficients namely, (0, 0), (1,

0), (2, 0), (4, 0), and (8, 0) in column ((16))16 = 0.

7. However in general, in each column where k2 = dm, all the DFT coefficients from (0, dm)

to (N/dm, dm) are included in the basic set of DFT coefficients. To find the basic DFT

coefficients from the rest of the coefficients in that column, find all k which are co-prime to

N, as defined in B.7, where k = 1 + q.N/dm where q is any positive integer. Exclude all k1

which are k. Select all coefficients whose frequency index k1 = ((k1.k))N and ((k1.k))N not

equal to any of the k1 already selected in that column. E.g., when N = 12, in column k2 = 3,

first select all DFT coefficients from (0, 3) to (4, 3). Now calculate all k = 1 + q.N/dm. The

value of k is 5. So exclude (5, 3). Now when k1 = 6, ((k1.k))N = 6, therefore (6, 3) is a basic

Visual Representation and Computation of 2-D DFT Coefficients 63

DFT coefficient. When k1 = 7, ((k1.k))N = 11 which is not k1, but is not any of the k1 already

selected, so select (7, 3). Similarly we can find that (9, 3) is also a basic DFT coefficient,

whereas (8, 3), (10, 3) and (11, 3) are not.

The above analysis has been used to derive an algorithm to compute the index of basic DFT

coefficients for any even N.

1. Calculate the divisors ‘dm’ of M.

2. For each column where k2 = dm

i) Select all coefficients from (0,dm) to (((N/dm))N, dm)

ii) Find all k = 1 + q.N/dm such that gcd(k, N) = 1 and k < N

iii) For k1= N/dm + 1 to N - 1

a. For every k, if k1 = k exclude it and repeat step (a) for next k1

b. Else calculate ((k.k1))N

 If k1 = ((k.k1))N select k1 and

 repeat step (a) for next k1

 Else if ((k1.k))N is equal to any of the k1 already selected,

 then discard k1 and repeat step (a) for next k1 ;

 or else repeat step (b) with the next k.

3. Find k2 = ((2.dm))N such that gcd(2.dm, M) = dm and gcd(2.dm, N) = 2.dm.

4. For each column, where k2 = ((2.dm))N, calculated in step 3.,

the basic DFT coefficients will have same k1 as that of k2 = dm.

So copy k1 from k2 = dm to that of k2 = ((2dm))N.

3.2.7 Patterns in basic DFT coefficients

Visual representation of p
kkY
2,1
corresponding to the basic DFT coefficients has a definite pattern in

the data involved in its computation. Fig. 3.6, 3.7, and 3.8 shows the visual representation of p
kkY
2,1

corresponding to the basic DFT coefficients for N = 4, 6, and 8 respectively. Figures show that,

computation of 0
0,0Y involves the sum of all data for any N. Similarly for the computation of 0

1,0Y of N

= 4, 6 and 8, all data in the 0th row is involved with a plus sign and all data in the Mth row is

involved with a minus sign. Here k1 is a divisor ‘dm’ of M for N = 4, 6 and 8. This can be

generalized for any N as follows:

For every k1 = dm, all the data in the rows .(1)k k M
dm

− , 0 2 1k dm≤ ≤ − are involved in the

computation of 0
,0dmY .

 64 Visual Representation and Computation of 2-D DFT Coefficients

Fig. 3.6: Visuals of p

kkY
2,1

corresponding to the basic DFT coefficients for N = 4

Fig. 3.7: Visuals of p

kkY
2,1

corresponding to the basic DFT coefficients for N = 6

Fig. 3.8: Visuals of p

kkY
2,1

corresponding to the basic DFT coefficients for N = 8

For 0

2,0Y of N = 6, all the data in the 0th row and Mth row are involved with a plus sign,

whereas for N = 8, all data in the 0th row and Mth row involved with a plus sign and data in the 2nd

Visual Representation and Computation of 2-D DFT Coefficients 65

and (2 + M)th row involved with a minus sign. Here k1 = 2.dm for N = 6, whereas k1 = dm for N = 8.

Therefore for 0
2,0Y of N = 8, data of rows .(1)k k M

dm
− , 0 2 1k dm≤ ≤ − are involved. For 0

2,0Y of N =

6, since k1 = 2.dm, rows .k M
dm

, 0 2 1k dm≤ ≤ − are involved. Thus for every k1 = 2.dm all the data

in the rows .k M
dm

, 0 2 1k dm≤ ≤ − , are involved if gcd(k1, N) = 2.dm and gcd(k1, M) = dm, to obtain

all 0
2. ,0dmY .

 Visual representation of 0
0,1Y of N = 4, 6, and 8 can be obtained by rotating the visual

representation of respective 0
1,0Y by 90o. It is equivalent to interchanging k1 and k2, i.e., for every k2

= dm, all the data in the columns .(1)k k M
dm

− , 0 2 1k dm≤ ≤ − are involved to obtain all 0
0,dmY and for

every k2 = 2.dm all the data in the columns .k M
dm

, 0 2 1k dm≤ ≤ − are involved if gcd(k2, N) = 2.dm

and gcd(k2, M) = dm, to obtain all 0
0,2.dmY .

 Now on analysis of visual representation of all 0
,1k dmY in a column, it is noticed that the data

involved in the computations differ from one another, as there is circular shifts of the data rows.

These circular shifts are in a specific pattern. E.g., when N = 8 in fig. 3.8, the data involved in the

computation of 0
1,1Y and 0

0,1Y differ. Even though same data rows are involved in their computations,

each data row in 0
1,1Y is circularly shifted to the left k1 times its row number (i.e., left shift of data

row 0 by 0, row 1 by 1 time, row 2 by 2 times etc.). Here k2 is a divisor of M. The data row

involved in the computation depends on k1 and k2. E.g., when N = 8 in fig. 3.8, for the computation

of 0
1,2Y , data in the rows 0, 2, 4, and 6 are involved whereas for 0

0,2Y data in all the rows are involved.

It can also be noticed that there is a circular shift left in the data rows involved in the computation

of 0
1,2Y , i.e., left shift of data row 0 by 0 time, row 2 by 1 time, row 4 by 2 times and row 6 by 3

times. When k2 = 2.dm, where gcd(k2, N) = 2.dm and gcd(k2, M) = dm, the number of shift differs.

 There is a specific pattern change in p
kkY
2,1
within a basic DFT coefficient. E.g., in fig. 3.8,

where N = 8, all the data in the 0th row are involved with a plus sign and all data in the Mth row are

involved with a minus sign for the computation of 0
0,1Y . But for 1

1,0Y all the data in the 1st row are

involved with a plus sign and all data in the (1 +M)th row are involved with a minus sign, i.e., there

 66 Visual Representation and Computation of 2-D DFT Coefficients

is a shift in the data rows involved in the computation when compared to 0
0,1Y . Similarly for the

computation of 0
0,1Y and 1

0,1Y , there is a shift in the data columns involved.

 The above analysis has been used to derive an algorithm for the computation of p
kkY
2,1
.

3.3 DFT computation using visual method
In the modified 2-D DFT, the computational complexity for each DFT coefficient is reduced from

N2 complex multiplications required in direct DFT to that of N/2. In (1.5), p
kkY
2,1
is computed using a

formula derived from the analysis of the visual representation as stated in section 3.2.7, rather than

doing the computation in (1.6) and (1.7). Further by exploiting the redundancy present in p
kkY
2,1
of

DFT coefficients as explained in section 3.2.4, p
kkY
2,1
 of only basic DFT coefficients are computed.

By permuting p
kkY
2,1
 of basic DFT coefficients, over p as stated in theorem 3.3, the remaining DFT

coefficients can be derived. The steps for DFT computation using visual method is shown in fig.

3.9 and the algorithm for important steps are as follows.

Fig. 3.9: Flow chart depicting the computation of DFT using visual method

1. Compute indices (k1, k2) of all the basic DFT coefficients and the no. of basic DFT

(no_of_basicDFT) as in section 3.2.5. and 3.2.6.

2. Algorithm for computing ,1 2

p
k kY of all the basic DFT coefficients

Given N × N

Compute the divisors ‘dm’ of M

1. Identify the basic DFT coefficients
and its count

2. Compute ,1 2

p
k kY corresponding to the basic DFT

coefficients

3. Compute the N/2 twiddle factors

4. Compute permutation factors for each dm and
its count

5. Compute the basic and derived DFT coefficients

Visual Representation and Computation of 2-D DFT Coefficients 67

For q = 1 to no_ of_basicDFT

 If ((k2(q)))M = 0

 dm = k2(q)

 else

 dm = k2(q)/2

 l = gcd(k1(q),dm), v = gcd(k1(q), k2(q),M), u = gcd(k1(q), k2(q),N)

 For p = 0 to M - 1 in steps of v

 compute particular solution (n1, n2) using Extended Euclidean algorithm

 If ((n1. k1(q) + n2. k2(q)))N = p

 ng = 0

 else

 ng = 1, ro_limit = N.l/dm - 1, col_limit = 2.dm - 1

 For kr = 0 to ro_limit

 For kc = 0 to col_limit

 next_n1 = ((kr.dm/l + n1))N

 If ((k2(q)))M = 0

 next_n2 = (-1)(kc + ng).((kc.M/dm - kr.k1(q)/l + n2))N

 else

 next_n2 = (-1)(kr.u/v + ng). ((kc.M/dm + kr.k1(q).(N - 2.dm)/(4.l.dm) + n2))N

 Y(k1(q),k2(q),p) = Y(k1(q),k2(q),p)+ x(next_n1, next_n2)

3. Compute N/2 twiddle factors

 For p = 0 to M - 1

 w(p) = exp(-j.2.π .p)/N)

4. Compute ϕ (N/dm) and the co-prime integers of every N/dm up to N/dm defined as

coprime.Nbydm(r)

5. Algorithm for computing all DFT coefficients using permutations and combinations of ,1 2

p
k kY of

basic DFT coefficients

For q = 1 to no_ofbasicDFT

 v = gcd(k1(q), k2(q),M)

 For r = 1 to ϕ (N/dm)

 kcp = coprime.Nbydm(r)

 fk1 = ((kcp. k1(q)))N, fk2 = ((kcp. k2(q)))N

 For p = 0 to M - 1 in steps of v

 68 Visual Representation and Computation of 2-D DFT Coefficients

 kpn = ((kcp.p))N, kpm = ((kcp.p))M

 If (kpn < M)

 Y(fk1, fk2) = Y(fk1, fk2) + Y(k1(q), k2(q),p).w(kpm)

 else

 Y(fk1, fk2) = Y(fk1, fk2) – Y(k1(q), k2(q),p).w(kpm)

3.4 Conclusion
The visual representation of DFT, in terms of 2 × 2 data for any even value of N, can be constructed

and the same can be used for signal analysis. This representation is quite useful in applications that

require only a selected few DFT coefficients. The analysis of visual representation shows specific

pattern in the visual representation, depending on the appearance and hence can be used to derive

efficient computational schemes. It is shown that the existence of p
kkY
2,1
depends on the divisors of M

and that the number of complex multiplication is not exactly N/2, but less than that depending on

the divisors. By exploiting the redundancy at various levels, the computational complexity can be

reduced.

The modified 2-D DFT representation enables 2-D signal representation and frequency

domain analysis in terms of few DFT coefficients dependent on the size of the matrix N. A

mathematical relation is developed for the number of basic DFT coefficients depending on N and its

validity is verified for different values of N. When N is a power of 2, 3.N - 2 coefficients need be

computed whereas if N/2 is prime, there will be only 2.N + 8 basic DFT coefficients. The number of

basic DFT coefficients is higher for N, having more number of factors. The algorithm presented

gives a procedure for computing the index values of the basic set of DFT coefficients. The 2-D

DFT computation can be simplified using the basic DFT coefficients identified.

The patterns in the basic DFT coefficients have been used to derive an algorithm for its

computation. Computation of selected DFT coefficients is possible. The complex multiplication can

further be reduced if the signal representation and analysis are done with the basic DFT coefficients

alone. The complex multiplication can be avoided, if the signal is represented in terms of the MRT

coefficients and then the computation requires only real addition. In such a case, the number of

computation will be less, when N/2 is prime.

CHAPTER 4

PARALLEL DISTRIBUTED ARCHITECTURE FOR N × N DFT

It is difficult to have significant improvement in the speed of conventional computers due to the

physical limitation imposed by the speed of light. Further improvement in speed, required for real

time DSP applications, can be achieved by reducing the number of multiplications and/or by

parallel processing. New architectures can be evolved for high speed applications by exploiting

parallelism inherent in algorithms, and by employing pipeline techniques. This can be met by one-

to-one mapping of algorithm onto multiple processing elements. The motivating factor is that the

expected performance improvements in the VLSI technology will essentially come from the ability

to fabricate a large number of transistors on a chip. Only a minor contribution will come from

increased circuit speed. Hence, it is of importance to develop efficient methods for mapping DSP

algorithms onto optimal architectures that efficiently utilizes the parallelism. The performance of

dedicated VLSI DSP circuits relies on underlying architectures and implementation styles. Thus it

is necessary to design not just a single architecture, but a family of architectures out of which an

appropriate architecture can be selected for a specified application [94]. Another way of looking at

it is to design new algorithms, which are possessed with concurrency, by keeping architecture and

implementations in mind.

Parallel distributed architecture for N × N point DFT computation where ((N))4 = 2 was

developed in [71]. This was evolved from the analysis of the visual representation based on 2 × 2

DFT. In most of the FFT computations in use, the size of N is limited to power of 2. However, this

limitation on N is not a natural choice for many of the applications. Thus there is a strong rationale

for developing an efficient, high performance, scalable architecture that is suitable for applications

in need of DFT sizes that are not necessarily a power of 2 [111]. The parallel distributed

architecture developed in [71] is required to be extended to any N to suit such applications. A

parallel distributed architecture for ((N))4 = 0 if developed, closely following the approach in [71],

can be combined with that of ((N))4 = 2 to have a generalized architecture. In this direction, to start

with a small value of N where ((N))4 = 0, the design of an 8 × 8 point DFT is attempted first.

 70 Parallel Distributed Architecture for N × N DFT

4.1 Development for 8 × 8 DFT based on 2 × 2 DFT
In order to develop a parallel distributed architecture, for the computation of 8 × 8 point DFT, it is

necessary to analyze the visual representation based on 2 × 2 DFT. The fig. A.2 shows the visual

representation of the DFT coefficients for N = 8. Only a unique set of p
kkY
2,1
 need be computed from

the entire set of p
kkY
2,1
 for N = 8, as in section 3.2.4. Visual representation for 64 unique set of p

kkY
2,1
,

corresponding to the 22 basic DFT coefficients, required to be computed is shown in fig. 4.1.

Fig. 4.1: Visual representation of 64 unique set of p

kkY
2,1
 for N = 8

 The grouping of DFT coefficients correspond to 8 × 8 point DFT as was done in [88] is

shown in fig A.3. The DFT coefficients are classified into three groups depending on the way the

primitive symbols are present in them. The circled coefficients (i.e., Y0,0, Y0,4, Y4,0, Y4,4) represent

group 1. The group 1 coefficients depend on one DFT coefficient from each 2 × 2 cell. The above

group have real coefficients with visual representation only for p = 0 and have identical cells. Thus

the group 1 coefficients have the same property as that of ((N))4 = 2.

The coefficients Y1,0, Y2,0, Y3,0, Y5,0, Y6,0 , Y7,0, Y0,1, Y0,2, Y0,3, Y0,5, Y0,6, Y0,7, Y1,4, Y2,4, Y3,4,

Y5,4, Y6,4, Y7,4, Y4,1, Y4,2, Y4,3, Y4,5, Y4,6, Y4,7 that are between two dotted lines represent group 2.

The group 2 coefficients also show a positional relation as shown in table 4.1. In the table the

group 2 coefficients in column 0 will depend on the two coefficients in the left of the cells, i.e.,

VLP, VLN for even p and VLPA, VLPB for odd p. Similarly group 2 coefficients in column 4 will

depend on the two coefficients in the right of the cells, i.e., VRP, VRN for even p and VRPA,

VRPB for odd p. In this group, the symbols in one row/column of cells are sufficient to represent

Parallel Distributed Architecture for N × N DFT 71

the complete coefficient. The representation for different values of p can be derived by circularly

shifting.
Table 4.1: Mnemonics used to represent the DFT coefficients for N = 8

Group DFT coefficients Even p Odd p

Y0,0 LAP (p = 0 only) BLANK

Y0,4 RAP (p = 0 only) BLANK

Y4,0 LBP (p = 0 only) BLANK

1

Y4,4 RBP (p = 0 only) BLANK

Column 0 VLP, VLN VLPA, VLPB

Column 4 VRP, VRN VRPA, VRPB

Row 0 HAP, HAN HAPL, HAPR

2

Row 4 HBP, HBN HBPL,HBPR

Y1,1, Y3,3, Y5,5, Y7,7 MP, MN, MPD, MPC DPA, DPB

Y5,1, Y7,3, Y1,5, Y3,7 MP, MN, MPD, MPC CPA, CPB

Y7,1, Y5,3, Y3,5, Y1,7 DP, DN MPL, MPR, MPA,MPB

Y3,1, Y1,3, Y7,5, Y5,7 CP, CN MPL, MPR, MPA,MPB

Y2,2, Y6,6 CP, CN for p = 0

DPA, DPB for p = 2

BLANK

3

Y2,6, Y6,2 DP, DN for p = 0

CPA, CPB for p = 2

BLANK

The rest of the coefficients form the group 3. They also show a specific pattern depending

on the position of the frequency index. In group 3 coefficients, even though other rows/columns

are not identical, they can be obtained by circular shift of one row/column. Table 4.1 also shows

the Mnemonics for the visual representation of group 3 coefficients. Thus, when N = 8, the

pictorial representation corresponding to even p will use one set of primitive symbols and that for

odd p will use another set of primitive symbols in groups 2 & 3. The above analysis is used for the

development of the parallel distributed architecture for the computation of 8 × 8 DFT.

4.1.1 Hierarchical computation scheme
The regular pattern present in the visual representation of the DFT coefficients was used to derive a

hierarchical computation scheme [71] for the computation of N × N point DFT when ((N))4 = 2.

The computation scheme for 8 × 8 point DFT, as far as possible should follow the above structure,

since the aim is to develop a generalized architecture for N × N point DFT where N is any even

integer. The primitive symbols are computed first. Different combinations of the primitive

symbols and their circularly shifted versions are formed next to represent one row/column. The

 72 Parallel Distributed Architecture for N × N DFT

third step is to combine the various row/column of symbols so that a set of the coefficients p
kkY
2,1
can

be obtained for a selected set of (k1, k2). The last step is to combine p
kkY
2,1
 in proper order, scaled by

the twiddle factor to obtain the N2 DFT coefficients. Similar operations are grouped together to

enable parallel distributed computation, so that the speed of computation can be improved

significantly.

4.1.2 Development of Version I architecture
The 22 DFT coefficients can be classified into three groups, as discussed in section 4.1, each

depending on a separate set of primitive symbols. In all the three groups of coefficients, a

hierarchy of computation can be derived using the structure available in the visual representation.

All the cells are identical in group 1 where as all the rows/columns are identical in group 2. In the

case of group 3 coefficients, even though other rows/columns are not identical, they can be

obtained by circular shift of one row/column. Also, many coefficients will have the same

combination of primitive symbols with different circular shift depending on the frequency index.

Thus the DFT coefficients can be obtained in a hierarchy of four levels. In the first level the

primitive symbols corresponding to all the 2 × 2 matrices are calculated. A few primitive symbols

are chosen to form a combination representing a row / column of symbols corresponding to a

selected set of p
kkY
2,1
 for p = 0 and all such combinations are computed in the second level. In the

third level, proper combination of rows / columns of primitive symbols are chosen to obtain the

selected set of p
kkY
2,1
, 0 ≤ p ≤ M - 1. The output of the fourth level will be the complete set of DFT

coefficients, derived from the weighted sum of few p
kkY
2,1
 and a set of pre-computed twiddle factor

values.

The block schematic of the model is given in fig. 4.2. Layer L1 is similar to that used in

the parallel distributed architecture for ((N))4 = 2. In layer L1, all the cell-planes are of dimension 4

× 4. The cell-planes are named after the operations performed to generate them from the

partitioned 2 × 2 data matrices. In layer L2, the group L2G1 consists of 4 cell planes of dimension

4 × 1and L2G2 with 4 planes of dimension 1 × 4. Group L2G3 consists of three subgroups namely,

L2G3.1, L2G3.2 and L2G3.3. L2G3.1 consists of 4 planes of size 4 × 1; L2G3.2 has 4 planes of

dimension 1 × 4 and L2G3.3 with 4 planes of size 4 × 2. In layer L3, L3G1 consists of 4 cell

planes of single cells. Groups L3G2 and L3G3 have 2 and 4 numbers of subgroups respectively.

L3G2 consists of two subgroups namely, L3G2.1 with 8 cell planes of single cells, and L3G2.2

with 8 planes of dimension 2 × 1. L3G3 consists of four subgroups namely, L3G3.1 and L3G3.2

with 2 planes of size 2 × 2; L3G3.3 has 2 planes of dimension 2 × 1 and L3G3.4 with 4 planes of

Parallel Distributed Architecture for N × N DFT 73

size 2 × 2. The outputs of layer L4 are the DFT coefficients that are grouped into three. The

outputs of group L4G1 are the real coefficients. L4G2 and L4G3 respectively give 24 and 36

complex coefficients. Thus L4G1 has similar cells as in other layers whereas L4G2 and L4G3 have

complex cells involving scalar multiplications of complex numbers.

In the layer L1, primitive symbols VLP, VLPA, HAP and HAPL are used in L1G1; VRP,

VRPA, HBP and HBPL are used in L1G2 and MP, MPL, MPA and MPD are used in L1G3.

Corresponding to each primitive symbol, a plane is formed with the name of the plane indicating

the primitive symbol. Each plane in layer 1 is a square array of 4 × 4 cells. Corresponding cells in

each of these planes operate on the same 2 × 2 data matrix obtained from L0. However the

operations done on these differ and these planes are grouped together based on the type of

operation. In the first group of planes, L1G1, cell values are obtained as the sum of two particular

elements of the 2 × 2 data matrix. The corresponding cell values in the counterpart planes in L1G2

are obtained from the same set of two elements in L1G1. However the operation performed on

them is subtraction. Cell values of the planes in L1G3 are obtained from a single specific element

of the partitioned 2 × 2 data matrices. Once computations on the first layer are completed, the

input layer L0 is no more required.

The second layer, L2, also consists of three groups. The planes in L2G1 are row vectors of

dimension 4 with names indicating the input plane and the operation to be carried out. The planes

are RVLP, RVLPA, RVRP and RVRPA in which ‘R’ indicates a row sum. RVLP indicates that

each cell value in this plane is obtained from the sum of the cell values of the corresponding row of

the plane VLP in L1G1. RVLPA, RVRP and RVRPA are similarly obtained from the planes

VLPA, VRP and VRPA. The planes in the second group, L2G2, are CHAP, CHBP, CHAPL and

CHBPL, each a column vector of dimension M. Here ‘C’ indicates the column sum and planes are

generated from HAP, HBP, HAPL and HBPL. There are three subgroups in L2G3, each with 4

planes. The planes in subgroup L2G3.1 & L2G3.2 are row vectors & column vectors respectively

of dimension M and L2G3.3 with dimension 4 × 2, with names indicating the input plane and the

operation to be carried out. E.g., the four planes of subgroup L2G3.3 are DMP, DMPL, DMPA and

DMPD in which ‘D’ indicates a difference. The (0, 0)th cell of the plane DMP is obtained from the

difference of MP00 and MP02.

Layer L3 has three groups. L3 is computed using planes from L2 and is hence

independent of both L0 and L1. L3G1 contains cell planes SRVLP, SRVLPA, SRVRP and

SRVRPA each possessing a single cell. Here the ‘S’ in the nomenclature indicates that the sum of

the cell values in the respective cell planes from L2 is used to obtain the cell value in this group.

 74 Parallel Distributed Architecture for N × N DFT

Fig. 4.2: Version I parallel distributed architecture for 8 × 8 point DFT computation

Parallel Distributed Architecture for N × N DFT 75

Hence to obtain SRVRP, the cell values of RVLP are to be summed. Similarly SRVLPA, SRVRP

and SRVRPA are obtained from RVLPA, RVRP and RVRPA respectively. There are two

subgroups in second group namely, L3G2.1 and L3G2.2. L3G2.1 consists of 8 cell planes with one

cell each. The cell planes are RVLPP&M, RVLPAP&M, RVRPP&M, RVRPAP&M, CHAPP&M,

CHAPLP&M, CHBPP&M and CHBPLP&M. Cell values in RVLPP&M are obtained by addition

or subtraction of four specific cells from the planes RVLP. L3G2.2 consists of 8 planes with size 2

× 1. Cell values in RVLPM are obtained by subtracting two specific cells from the plane RVLP.

In the group 2 a ‘P&M’ in the name of the plane indicates plus and minus and a ‘M’ indicates

minus. Group 3 consists of four subgroups namely, L3G3.1, L3G3.2, L3G3.3, and L3G3.4.

L3G3.1 and L3G3.2 has 2 planes of size 2 × 2, L3G3.3 consists of 2 cell planes of dimension 2 × 1

whereas L3G3.4 has 4 planes of size 2 × 2. The cell values in the planes L3G3.1 and L3G3.3 are

obtained by adding values of selected cells from L2G3.1. The inputs for L3G3.2 are from L2G3.2

whereas the inputs for L3G3.4 are from L2G3.3.

Layer L4 gives the N2 DFT coefficients. The planes in L4 are grouped into three. Group 1

has 4 planes with single cells in each, giving the real coefficients Y0,0, Y0,4, Y4,0 and Y4,4. Group 2

consists of 24 cell planes with one cell in each plane. The outputs from this group correspond to

the coefficients from row 0, row M, column 0 and column M other than group 1 coefficients.

Group 3 in this layer consists of 36 cell planes with one cell each. The output from this group will

be the DFT coefficients of group 3. The cells in L4G2 and L4G3 involve scalar multiplication of

complex coefficients, whereas the cells in all other layers and groups involve only real addition and

subtraction. Since the computations in a layer are dependent only on the cell planes of the previous

layer, the similar calculations in a layer can be grouped in different ways.

Fig. 4.3 shows the detailed schematic diagram of parallel distributed computation of 8 × 8

point DFT. In the fig, the dots in each rectangle represent the cells and the dimension of each

plane, represented by rectangles with continuous line, can easily be identified. Next section

outlines the algorithm for the computation of each layer.

 4.1.2.1 Algorithm

Layer1

For L1G1

For 0 ≤ i, j < M = N/2

VLP(i, j) = x(2.i, 2.j) + x(2.i, 2.j +1) VLPA(i, j) = x(2.i + 1,2.j) + x(2.i +1,2.j +1)

HAP(i, j) = x(2.i, 2.j)+ x(2.i +1,2.j) HAPL(i, j) = x(2.i, 2.j+1) + x(2.i+1, 2.j+1)

 76 Parallel Distributed Architecture for N × N DFT

Fig. 4.3: Schematic diagram for version I architecture of 8 × 8 point DFT

Parallel Distributed Architecture for N × N DFT 77

For L1G2

VRP(i, j) = x(2i, 2j) - x(2i, 2j +1) VRPA(i, j) = x(2i + 1,2j) - x(2i +1,2j +1)

HBP(i, j) = x(2i, 2j) - x(2i +1,2j) HBPL(i, j) = x(2i, 2j+1) - x(2i+1, 2j+1)

For L1G3

 MP(i, j) = x(2i, 2j) MPL(i, j) = x(2i, 2j +1)

 MPA(i, j) = x(2i +1,2j) MPD(i, j) = x(2i +1, 2j +1)

Layer 2

For L2G1

M 1
RVLP(i) VLP(i, j)

j 0

−
= ∑

=
, 0 ≤ i < M

Similarly, the values of the arrays RVLPA, RVRP and RVRPA could be arrived at by replacing

VLP with VLPA, VRP, and VRPA respectively in the above equation.

For L2G2

M 1
CHAP(i) HAP(j, i)

j 0

−
= ∑

=
, 0 ≤ i < M

Similarly, the values of the arrays CHBP, CHAPL and CHBPL are obtained by replacing HAP with

HBP, HAPL and HBPL respectively in the above equation.

For L2G3.1

1

0
() (1) (,)

M j

j
RMP i MP i j

−

=
= −∑ , 0 ≤ i < M

Similarly the values of the arrays RMPL, RMPA, RMPD are obtained by replacing MP with MPL,

MPA, MPD respectively in the above equation.

For L2G3.2
1

0
() (1) (,)

M j

j
CMP i MP j i

−

=
= −∑ , 0 ≤ i < M

Similarly the values of the arrays CMPL, CMPA, CMPD are obtained by replacing MP with MPL,

MPA, MPD respectively in the above equation.

For L2G3.3

(,) (, (())) (,((2)))M MDMP i j MP i j i MP i j i= + − + + , 0 ≤ i < M, 0 ≤ j< M/2

Similarly DMPL, DMPA, DMPD are obtained by replacing MP with MPL, MPA, MPD

respectively in the above equation.
Layer 3

i) For L3G1

 78 Parallel Distributed Architecture for N × N DFT

1

0
()

M

i
SRVLP RVLP i

−

=
= ∑

 Similarly, the values of the cells SRVLP, SRVLPA, SRVRPA are derived by replacing

RVLP with RVLPA, RVRP and RVRPA respectively in the above equation.

ii) For L3G2.1
M 1 i

i 0
RVLPP&M (1) RVLP(i)

−

=
= −∑

 Similarly, RVLPAP&M, RVRPP&M, RVRPAP&M, CHAPP&M, CHAPLP&M,

CHBPP&M and CHBPLP&M are derived by replacing RVLP with RVLPA, RVRP,

RVRPA, CHAP, CHAPL, CHBP and CHBPL respectively in the above equation.

iii) For L3G2.2

)RVLPM(i) RVLP(i)-RVLP(i 2= + , 0 ≤ i < M/2

Similarly RVLPAM, CHAPM, CHAPLM, RVRPM, RVRPAM, CHBPM, CHBPLM are

obtained by replacing RVLP with RVLPA, CHAP, CHAPL, RVRP, RVRPA, CHBP, CHBPL

respectively in the above equation.

iv) For L3G3.1

For 0 ≤ i, j < M/2

RE(i,j) = (-1)i*j [RMP(i) + (-1)j RMPL(i+1) – RMP((i+2))M + (-1)j+1 RMPL((i+3))M]

RO(i,j) = (-1)i*j [(-1)j+1RMPD(i+j) + RMPA(i+j+1) + (-1)j RMPD((i+j+2))M - RMPA((i+j+3))M]

v) For L3G3.2

For 0 ≤ i, j < M/2

CE(i,j) = CMP(i) + (-1)j+1 CMPA(i+1) – CMP(i+2) + (-1)j CMPA((i+3))M

CO(i,j) = CMPL(i) +(-1)j+1 CMPD(i+1) - CMPL(i+2) - (-1)j CMPD((i+3))M

vi) For L3G3.3
M 1 i j 1

i 0
A(j) (1) [RMP(i) (1) RMPD(i)]

−
+

=
= − + −∑ , 0 ≤ j < M/2

Similarly B(j) is derived by replacing RMP & RMPD with RMPA & RMPL respectively in the

above equation.

vii) For L3G3.4

For 0 ≤k, j < M/2
M 1 i i k ((1 j))M/2

M/2)
i 0

D(j,k) (1) DMP(i,j) (1) DMPD(i,((j 1))
−

+ + +

=
= − + − +∑

Parallel Distributed Architecture for N × N DFT 79

M 1 i k k

i 0
E(j,k) (1) [DMPA(i,j) (1) DMPL(i,j)]

−
+

=
= − + −∑

M 1 k 1

i 0
F(j,k) DMP(i,j) (1) DMPD(i,j)

−
+

=
= + −∑

/2)
M 1 j k 1

M
i 0

G(j,k) DMPL(i,j) (1) DMPA(i,((j+1))
−

+ +

=
= + −∑

Layer 4
i) For L4G1

 Y0,0 = SRVLP + SRVLPA Y4,0 = SRVLP - SRVLPA

 Y0,4 = SRVRP + SRVRPA Y4,4 = SRVRP - SRVRPA

i) For L4G2

Y1,0 = RVLPM(0) + RVLPAM(0).W1 + RVLPM(1).W2 + RVLPAM(1).W3

Y7,0 = RVLPM(0) - RVLPAM(1).W1 - RVLPM(1).W2 - RVLPAM(0).W3

Y3,0 = RVLPM(0) + RVLPAM(1).W1 - RVLPM(1).W2 + RVLPAM(0).W3

Y5,0 = RVLPM(0) - RVLPAM(0).W1 + RVLPM(1).W2 - RVLPAM(1).W3

Y2,0 = RVLPP&M + RVLPAP&M.W2 Y6,0 = RVLPP&M - RVLPAP&M.W2

Y1,4 = RVRPM(0) + RVRPAM(0).W1 + RVRPM(1).W2 + RVRPAM(1).W3

Y7,4 = RVRPM(0) - RVRPAM(1).W1 - RVRPM(1).W2 - RVRPAM(0).W3

Y3,4 = RVRPM(0) + RVRPAM(1).W1 - RVRPM(1).W2 + RVRPAM(0).W3

Y5,4 = RVRPM(0) - RVRPAM(0).W1 + RVRPM(1).W2 - RVRPAM(1).W3

Y2,4 = RVRPP&M + RVRPAP&M.W2 Y6,4 = RVRPP&M - RVRPAP&M.W2

 Y0,1 = CHAPM(0) + CHAPLM(0).W1 + CHAPM(1).W2 + CHAPLM(1).W3

Y0,7 = CHAPM(0) - CHAPLM(1).W1 - CHAPM(1).W2 - CHAPLM(0).W3

Y0,3 = CHAPM(0) + CHAPLM(1).W1 - CHAPM(1).W2 + CHAPLM(0).W3

Y0,5 = CHAPM(0) - CHAPLM(0).W1 + CHAPM(1).W2 - CHAPLM(1).W3

Y0,2 = CHAPP&M + CHAPLP&M.W2 Y0,6 = CHAPP&M - CHAPLP&M.W2

Y4,1 = CHBPM(0) + CHBPLM(0).W1 + CHBPM(1).W2 + CHBPLM(1).W3

Y4,7 = CHBPM(0) - CHBPLM(1).W1 - CHBPM(1).W2 - CHBPLM(0).W3

Y4,3 = CHBPM(0) + CHBPLM(1).W1 - CHBPM(1).W2 + CHBPLM(0).W3

Y4,5 = CHBPM(0) - CHBPLM(0).W1 + CHBPM(1).W2 - CHBPLM(1).W3

Y4,2 = CHBPP&M + CHBPLP&M.W2 Y4,6 = CHBPP&M - CHBPLP&M.W2

i) For L4G3

Y1,1 = D(0,0) + E(0,0).W1 + D(1,0).W2 + E(1,0).W3

Y7,7 = D(0,0) - E(1,0).W1 - D(1,0).W2 - E(0,0).W3

Y3,3 = D(0,0) + E(1,0).W1 - D(1,0).W2 + E(0,0).W3

 80 Parallel Distributed Architecture for N × N DFT

Y5,5 = D(0,0) - E(0,0).W1 + D(1,0).W2 - E(0,0).W3

Y5,1 = D(0,1) + E(0,1).W1 + D(1,1).W2 + E(1,1).W3

Y1,5 = D(0,1) - E(0,1).W1 + D(1,1).W2 - E(1,1).W3

Y3,7 = D(0,1) - E(1,1).W1 - D(1,1).W2 - E(0,1).W3

Y7,3 = D(0,1) + E(1,1).W1 - D(1,1).W2 + E(0,1).W3

Y3,1 = F(0,0) + G(0,0).W1 + F(1,0).W2 + G(1,0).W3

Y7,5 = F(0,0) - G(0,0).W1 + F(1,0).W2 -G(1,0).W3

Y1,3 = F(0,0) + G(1,0).W1 - F(1,0).W2 + G(0,0).W3

Y5,7 = F(0,0) - G(1,0).W1 - F(1,0).W2 - G(0,0).W3

Y7,1 = F(0,1) + G(0,1).W1 + F(1,1).W2 + G(1,1).W3

Y5,3 = F(0,1) + G(1,1).W1 - F(1,1).W2 + G(0,1).W3

Y1,7 = F(0,1) - G(1,1).W1 - F(1,1).W2 - G(0,1).W3

Y3,5 = F(0,1) - G(0,1).W1 + F(1,1).W2 - G(1,1).W3

Y3,2 = RE(0,0) + RO(0,0).W1 - RE(1,0).W2 - RO(1,0).W3

Y7,2 = RE(0,0) - RO(0,0).W1 - RE(1,0).W2 + RO(1,0).W3

Y5,6 = RE(0,0) + RO(1,0).W1 + RE(1,0).W2 - RO(0,0).W3

Y1,6 = RE(0,0)- RO(1,0).W1+ RE(1,0).W2 + RO(0,0).W3

Y5,2 = RE(0,1) + RO(0,1).W1 - RE(1,1).W2 - RO(1,1).W3

Y7,6 = RE(0,1) -RO(1,1).W1 + RE(1,1).W2 + RO(0,1).W3

Y3,6 = RE(0,1) +RO(1,1).W1+ RE(1,1).W2 - RO(0,1).W3

Y1,2 = RE(0,1) - RO(0,1).W1 - RE(1,1).W2 + RO(1,1).W3

Y2,1 = CE(0,0) + CO(0,0).W1 + CE(1,0).W2 + CO(1,0).W3

Y2,5 = CE(0,0) - CO(0,0).W1 + CE(1,0).W2 - CO(1,0).W3

Y6,3 = CE(0,0) + CO(1,0).W1 - CE(1,0).W2 + CO(0,0).W3

Y6,7 = CE(0,0) - CO(1,0).W1 - CE(1,0).W2 - CO(0,0).W3

Y6,1 = CE(0,1) + CO(0,1).W1 + CE(1,1).W2 + CO(1,1).W3

Y2,7 = CE(0,1) - CO(1,1).W1 - CE(1,1).W2 - CO(0,1).W3

Y6,5 = CE(0,1) - CO(0,1).W1 + CE(1,1).W2 - CO(1,1).W3

Y2,3 = CE(0,1) + CO(1,1).W1 - CE(1,1).W2 + CO(0,1).W3

Y2,2 = A(0) + B(1).W2 Y6,6 = A(0) - B(1).W2

Y2,6 = A(1) + B(0).W2 Y6,2 = A(1) - B(0).W2

4.1.2.2 Sample computation

For the data matrix [x] shown below, the computation of 8 × 8 point DFT is as follows

Parallel Distributed Architecture for N × N DFT 81

[]

1 2 3 2 1 0 2 1
0 3 1 3 2 1 1 1
1 2 3 0 0 2 1 3
3 1 0 2 0 1 1 3
0 2 3 1 2 1 2 1
1 2 0 1 3 1 0 1
1 1 2 2 0 0 2 2
2 2 0 0 1 3 1 2

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L1G1

VLP VLPA HAP HAPL

3 5 1 3
3 3 2 4
2 4 3 3
2 4 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

3 4 3 2
4 2 1 4
3 1 4 1
4 0 4 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 4 3 3
4 3 0 2
1 3 5 2
3 2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

5 5 1 2
3 2 3 6
4 2 2 2
3 2 3 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L1G2

VRP VRPA HBP HBPL

1 1 1 3
1 3 2 2
2 2 1 1
0 0 0 0

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

3 2 1 0
2 2 1 2
1 1 2 1
0 0 2 1

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦

1 2 1 1
2 3 0 0
1 3 1 2
1 2 1 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

1 1 1 0
1 2 1 0
0 0 0 0
1 2 3 0

− − −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

L1G3

MP MPL MPA MPD

1 3 1 2
1 3 0 1
0 3 2 2
1 2 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 2 0 1
2 0 2 3
2 1 1 1
1 2 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 2 1
3 0 0 1
1 0 3 0
2 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

3 3 1 1
1 2 1 3
2 1 1 1
2 0 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L2G1

RVLP RVLPA RVRP RVRPA

12
12
12
10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

12
11
9

11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2
2
2
0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

4
3
1
3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 82 Parallel Distributed Architecture for N × N DFT

L2G2

CHAP CHAPL CHBP CHBPL

[]9 12 9 10 []15 11 9 14 []3 10 3 4− − []1 1 3 0− − −

L2G3.1

 RMP RMPL RMPA RMPD

3
3
3
3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

1
1
1
3

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

0
2
4
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0
3
1
3

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

L2G3.2

CMP CMPL CMPA CMPD

[]1 1 3 1− []1 1 1 3− − []4 1 4 1− − []2 2 2 3− −

L2G3.3

 DMP DMPL DMPA DMPD

0 1
2 1
2 1
0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

2 1
3 0
1 0
0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

2 0
1 3
2 0
1 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 2
1 0
1 0
2 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

L3G1

 SRVLP SRVLPA SRVRP SRVRPA

[]46 []43 []2 []1−

L3G2.1

RVLPP&M RVLPAP&M RVRPP&M RVRPAP&M

[]2 []1− []6 []1

CHAPP&M CHAPLP&M CHBPP&M CHBPLP&M

[]4− []1− []20− []3−

L3G2.2

RVLPM RVLPAM RVRPM RVRPAM

[]0 2 []3 0 []0 2− []3 0−

CHAPM CHAPLM CHBPM CHBPLM

[]0 2 []6 3− []0 6 []2 1−

Parallel Distributed Architecture for N × N DFT 83

L3G3.1 L3G3.2

 RE RO CE CO

4 4
2 2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2

10 1
−⎡ ⎤

⎢ ⎥−⎣ ⎦

6 2
8 8

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

3 7
8 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

L3G3.3

 A B

[]1 1− []2 2−

L3G3.4
 D E F G

3 3
0 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

4 4
2 2

⎡ ⎤
⎢ ⎥−⎣ ⎦

2 6
1 1

⎡ ⎤
⎢ ⎥−⎣ ⎦

0 4
2 2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

L4G1 L4G2 L4G3

2.1213 - 4.1213
2

2.1213 0.1213
2.1213 0.1213

2
2.1213 4.1213
2.1213 4.1213

6
2.1213 0.1213
2.1213 0.1213

89 6
3 2.1213 4.1213
9 6.364 4.

13

 j
 j

 j
 j

 j
 j
 j

 j
 j

 j
 j

 j
 j

+
− −
− +

−
+

− +
−

+
−

+⎡ ⎤
⎢ ⎥ − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

1213
4

6.364 0.1213
6.364 0.1213

4
6.364 4.1213

2.1213 6.7071
20 3

2.1213 5.2929
2.1213 5.2929

20 3
2.1213

 j
 j
 j

 j
 j

 j
 j

 j
 j

 j

− +
− −
− +

− −
+
−

− +
− +
− −

− −

1.5858 4.2426
13.7782 4.4645

0.5858 0.4142
7.2426 1.4142

2.9497 12.949

6.7071

 j
 j

 j
 j

 j

 j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥ − +
⎢ ⎥

−⎢ ⎥
⎢ ⎥ −⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

7
1.7574 0.4142
1.8787 1.2929

1 2
11.7782 8.364
6.1213 2.7071

1 2
3.7782 4.364

3.4142 2.4142
6.9497 3.0503
4.4142

 j
 j

 j
 j

 j
 j

 j
 j

 j
 j

+
− +

− −
+

− +
−

− −
−

− +
− −

1.2426 1.4142
1.7782 11.5355
10.2426 2.4142

4.2426
10.2426 2.4142
1.7782 11.5355
1.2426 1.4142

 j
 j
 j

 j
 j

 j

− +⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥ −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎣ ⎦

4.4142 4.2426
6.9497 3.0503
3.4142 2.4142

3.7782 4.364
1 2

6.1213 2.7071
11.7782 8.364

1 2
1.8787 1.2929

1.7574 0

 j
 j

 j
 j

 j
 j

 j
 j

 j
 j

− +
− −

+
− +

+
− −

−
− +

− −
− .4142

2.9497 12.9497
7.2426 1.4142
0.5858 0.4142

13.7782 4.4645
1.5858 4.2426

 j
 j
 j

 j
 j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥

+⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− +⎣ ⎦

 84 Parallel Distributed Architecture for N × N DFT

4.1.3 Version II architecture
In the version I parallel distributed model developed in section 4.1.2.1, effort has been made to

preserve many layers and planes of the architecture model for the computation of N × N point DFT

[88] where ((N))4 = 2 so as to develop a generalized architecture for any even N. E.g., layer 1 is

exactly same in both the model. In layer 2 cell-planes of group G1 and G2 are same in both the

models, whereas the cell-planes of group 3 has been divided into three subgroups namely G3.1,

G3.2 and G3.3 in 8 × 8 point DFT. But in layer 3 only one group is common to both ((N))4 = 2 and

8 × 8 point DFT, while all other groups are different. On analysis of the version I architecture for 8

× 8 point DFT computation, it can be seen that the number of computations in each cell-planes of

different groups in a particular layer differ. For example in layer 1, there is one addition in each

cell of planes in group G1 and G2 whereas there is no computation in the cell-planes of group G3.

Due to this the number of computations in the cell-planes of group G3 in layer 3 has increased. In

a computation scheme where the computation of each group of a particular layer is to be completed

before the commencement of the computation in the subsequent layer, this will cause a bottleneck.

Even though each group of a particular layer processes the output of the corresponding group in the

previous layer, the above delay affects the total execution time. On analysis of the version I

architecture it is noticed that the computation accumulated in group 3 of layer 3 can be distributed

to different layers, if the group 3 computations are modified.

 In the version II architecture shown in fig 4.4, the number of computation in each cell-

plane of layer 1 and 2 are made equal. In layer 3 however the number of computation in the cell-

plane of subgroup G3.2 is two more than the other planes. In layer 4, the number of computations

in each cell-plane of different groups depends on the number of p
kkY
2,1
 involved in the computation

of the DFT coefficients. E.g., there are no complex multiplications in L4G1, whereas in L4G2,

computation of the DFT coefficient Y1,0 require three complex multiplications and Y2,0 require one

complex multiplication. In L4G3, computation of the DFT coefficient Y1,1 require three complex

multiplications and Y2,2 require one complex multiplication. So the variations in the number of

computations in each cell-plane of groups L4G2 and L4G3 cannot be eliminated. The algorithm for

group 3 in all the layers of version II model is shown below.

4.1.3.1 Algorithm

The computation of group 1 and 2 in all the layers are same as that of version I architecture. The

computations of all the layers of group 3 are shown below.

Parallel Distributed Architecture for N × N DFT 85

Fig. 4.4: Version II parallel distributed architecture for 8 × 8 point DFT

 86 Parallel Distributed Architecture for N × N DFT

Layer 1
The input-output relation for each cell in L1 for group 3 is as follows.

For L1G3.1
 For 0 ≤ i < M

 For 0 ≤ j < M/2

SMP(i, j) = MP(i, j) + MP(i , j+2) =
1

0
(, 2)

k
MP i j k

=
+∑ = x(2i, 2 j) + x(2i , 2(j+2))

 Similarly SMPL, SMPD and SMPA can be obtained by replacing MP with MPL, MPD and

MPA or with the corresponding data in the 2 × 2 matrix.

For L1G3.2
 For 0 ≤ i < M

 For 0 ≤ j < M/2

DMP(i, j) = MP(i, j + i) – MP(i, ((j + 2 + i))M =
1

0
(1) (,((2)))M

k
MP i j i k

=
′− + +∑

 = x(2i, ((2j + 2i))N) – x(2i, ((2(j + 2) + 2i))N)

 Similarly DMPL, DMPD and DMPA can be obtained by replacing MP with MPL, MPD

and MPA or with the corresponding data in the 2 × 2 matrix.

Layer 2

L2G3.1
2RSMP(i) =

/2 1 1

0 0
(1) (/ 2,)

M
k j

j k
SMP i jxM k

−
+

= =
− +∑ ∑ , 0 ≤ i < M/2

 Similarly 2RSMPL, 2RSMPD and 2RSMPA can be obtained by replacing SMP with

SMPL, SMPD and SMPA respectively.

L2G3.2

/2 1 /2 1

0 0
(,) (1) (2 ,)

M M l

k l
X o i SMP k i l

− −

= =
= − +∑ ∑ , 0 ≤ i ≤ M/2

 Similarly X(1, i), X(2, i) and X(3, i) can be obtained by replacing SMP with SMPA, SMPD

and SMPL respectively in the above equation.

L2G3.3

2CSMP(i) =
/2 1

0
(1) (((2),) ((2 2),))

M jxi

j
DMP i j xjxi j DMP i j xjxi j

−

=
− + − − + + −∑ , 0 ≤ i < M/2

 Similarly 2CSMPL, 2CSMPD and 2CSMPA can be obtained by replacing DMP with

DMPL, DMPD and DMPA respectively in the above equation.

Parallel Distributed Architecture for N × N DFT 87

L2G3.4

SDMP(i) =
1

0
(1) (,)

M j

j
DMP j i

−

=
−∑ , 0 ≤ i < M/2

 Similarly SDMPL, SDMPD and SDMPA can be obtained by replacing DMP with DMPL,

DMPD and DMPA respectively in the above equation.

L2G3.5
1

0
(0,) (,)

M

k
Y i DMP k i

−

=
= ∑ , 0 ≤ i ≤ M/2

 Similarly Y(1, i), Y(2, i) and Y(3, i) can be obtained by replacing DMP with DMPA,

DMPD and DMPL respectively in the above equation.

Layer 3

L3G3.1

RE(i,j) = /2(1) (2 () (1) 2 (((1))))ixj i j
MRSMP i RSMPL i+− + − + , 0 ≤ i, j < M/2

RO(i,j) = 1
/2 /2(1) 2 ((())) (1) 2 (((1)))j i j

M MRSMPD i j RSMPA i j+ +− + + − + + , 0 ≤ i, j < M/2

L3G3.2

A(i, j) =
/2 1 /2 1

0 0
(1) (2 ,)

M M l k kx j

k l
X k i l

− −
+ +

= =
− +∑ ∑ , 0 ≤ i, j ≤ M/2 - 1

L3G3.3

CE(i, j) = 1
/22 () (1) 2 ((1))j

MCSMP i CSMPA i++ − + , 0 ≤ i, j < M/2

CO(i, j) = 1
/22 () (1) 2 ((1))i j

MCSMPL i CSMPD i+ ++ − + , 0 ≤ i, j < M/2

L3G3.4
1

/2(,) () (1) ((1))i j
MD i j SDMP i SDMPD i+ += + − + , 0 ≤ i, j ≤ M/2

(,) (1) (() (1) ()i ixj jE i j SDMPA i SDMPL i+= − + − , 0 ≤ i, j ≤ M/2

L3G3.5
/2 1 (1)

0
(,) (1) (2 ,)

M j k

k
F i j Y k i

−
+

=
= −∑ , 0 ≤ i, j ≤ M/2

1
/2(,) (1) ((1,((1)) (1) (3,))i ixj i j

MG i j Y i Y i+ + += − + + − , 0 ≤ i, j ≤ M/2

Layer 4

i) For L4G3

Y1,1 = D(0,0) + E(0,0).W1 + D(1,0).W2 - E(1,0).W3

Y7,7 = D(0,0) + E(1,0).W1 - D(1,0).W2 - E(0,0).W3

Y3,3 = D(0,0) - E(1,0).W1 - D(1,0).W2 + E(0,0).W3

Y5,5 = D(0,0) - E(0,0).W1 + D(1,0).W2 + E(0,0).W3

 88 Parallel Distributed Architecture for N × N DFT

Y5,1 = D(0,1) - E(0,1).W1 + D(1,1).W2 - E(1,1).W3

Y1,5 = D(0,1) + E(0,1).W1 + D(1,1).W2 + E(1,1).W3

Y3,7 = D(0,1) + E(1,1).W1 - D(1,1).W2 + E(0,1).W3

Y7,3 = D(0,1) - E(1,1).W1 - D(1,1).W2 - E(0,1).W3

Y3,1 = F(0,0) - G(0,0).W1 + F(1,0).W2 - G(1,0).W3

Y7,5 = F(0,0) + G(0,0).W1 + F(1,0).W2 +G(1,0).W3

Y1,3 = F(0,0) - G(1,0).W1 - F(1,0).W2 - G(0,0).W3

Y5,7 = F(0,0) + G(1,0).W1 - F(1,0).W2+ G(0,0).W3

Y7,1 = F(0,1) + G(0,1).W1 + F(1,1).W2 -G(1,1).W3

Y5,3 = F(0,1) - G(1,1).W1 - F(1,1).W2 + G(0,1).W3

Y1,7 = F(0,1) + G(1,1).W1 - F(1,1).W2 - G(0,1).W3

Y3,5 = F(0,1) - G(0,1).W1 + F(1,1).W2+G(1,1).W3

Y3,2 = RE(0,0) + RO(0,0).W1 - RE(1,0).W2 - RO(1,0).W3

Y7,2 = RE(0,0) - RO(0,0).W1 - RE(1,0).W2 + RO(1,0).W3

Y5,6 = RE(0,0) + RO(1,0).W1 + RE(1,0).W2 - RO(0,0).W3

Y1,6 = RE(0,0)- RO(1,0).W1+ RE(1,0).W2 + RO(0,0).W3

Y5,2 = RE(0,1) + RO(0,1).W1 - RE(1,1).W2 - RO(1,1).W3

Y7,6 = RE(0,1) -RO(1,1).W1 + RE(1,1).W2 + RO(0,1).W3

Y3,6 = RE(0,1) +RO(1,1).W1+ RE(1,1).W2 - RO(0,1).W3

Y1,2 = RE(0,1) - RO(0,1).W1 - RE(1,1).W2 + RO(1,1).W3

Y2,1 = CE(0,1) + CO(0,1).W1 - CE(1,0).W2 - CO(1,1).W3

Y2,5 = CE(0,1) - CO(0,1).W1 - CE(1,0).W2 + CO(1,1).W3

Y6,3 = CE(0,1) - CO(1,1).W1 + CE(1,0).W2 + CO(0,1).W3

Y6,7 = CE(0,1) + CO(1,1).W1 + CE(1,0).W2 - CO(0,1).W3

Y6,1 = CE(0,0) + CO(0,0).W1- CE(1,1).W2 - CO(1,0).W3

Y2,7 = CE(0,0) + CO(1,0).W1+ CE(1,1).W2 - CO(0,0).W3

Y6,5 = CE(0,0) - CO(0,0).W1 - CE(1,1).W2 + CO(1,0).W3

Y2,3 = CE(0,0) - CO(1,0).W1 + CE(1,1).W2 + CO(0,0).W3

Y2,2 = A(0,0) + A(1,1).W2 Y6,6 = A(0,0) - A(1,1).W2

Y2,6 = A(0,1) + A(1,0).W2 Y6,2 = A(0,1) - A(1,0).W2

Parallel Distributed Architecture for N × N DFT 89

4.1.4 Comparison of version I & II models with the model for ((N))4 = 2
Version I and version II parallel distributed architecture for the computation of 8 × 8 point DFT are

developed using the visual representation based on 2 × 2 DFT. Since the aim is to develop a

generalized architecture for N × N point DFT where N is any even integer, both the models are

designed in the same way as that for ((N))4 = 2 [71]. E.g., the computation of group 1 coefficients

in version I and II models are same as that of the model for ((N))4 = 2. The computation for group

2 coefficients in layer 1 and 2 are same in all the models. Similarity ends there. The computation

for group 2 coefficients is different in layer 3 for the 8 × 8 point computation models, from that of

computation of 2-D DFT for ((N))4 = 2. Primitive symbol combinations for group 2 and 3

coefficients differs for ((N))4 = 2 and N = 8. Hence a generalized architecture based on the above

model is not feasible.

4.2 Development of M spacing based architecture for N × N DFT
Analysis of visual representation of ,1 2

p
k kY based on 2 × 2 data can be used to derive simple and

efficient computational scheme as the representation shows a direct relationship between data and

the frequency domain representation. Analysis shows similarities in the representation for ,1 2
p

k kY of

several DFT coefficients as in section 3.2.4. Due to the redundancy, only the basic DFT

coefficients need be calculated and other coefficients could be derived. Hence the analysis of

visual representation can be confined to the p
kkY

2,1
 of basic DFT coefficients, since others are

redundant.

4.2.1 Patterns in p
kkY

2,1
 of basic DFT coefficients

The computation of p
kkY

2,1
using the visual representation involves only real additions as is evident

from fig. 3.6, 3.7 and 3.8. The theorem 3.1 says that the existence of p
kkY

2,1
 depends on ‘dm’, where

‘dm’ is the divisor of M. But the number of data points involved in the computation of each of the

DFT coefficient is same. Table 4.2 shows the number of data points involved in the computation of
p

kkY
2,1

for N = 4, 6 and 8 corresponding to each gcd(k1, k2, M). From the table, for N = 4 and gcd(k1,

k2, M) = 1, there are two p
kkY

2,1
 each having eight data points, i.e., sixteen data points have been

equally distributed between the two p
kkY

2,1
, whereas for gcd(k1, k2, M) = 2, there is only one p

kkY
2,1

with

sixteen data points involved in the computation. When N = 6, there are three p
kkY

2,1
 each having

twelve data points when gcd(k1, k2, M) = 1 and one p
kkY

2,1
 with thirty six data points when gcd(k1, k2,

M) = 3. Similarly for N = 8, there are four p
kkY

2,1
 with sixteen data points each when gcd(k1, k2, M) =

 90 Parallel Distributed Architecture for N × N DFT

1, two p
kkY

2,1
 with thirty two data points each when gcd(k1, k2, M) = 2 and one p

kkY
2,1

 with sixteen

data points each when gcd(k1, k2, M) = 4. Similar pattern is observed in the visual representation of

higher values of N. Thus the number of data points involved in the computation of p
kkY

2,1
can be

computed and can be generalized for any even N.

Number of p
kkY

2,1
, when gcd(k1, k2, M) is dm, np = M/dm

∴Number of data points involved in the computation of p
kkY

2,1
= N2/ np = 2.N.dm (4.1)

 Since N is even, from (4.1), the number of data points in any p
kkY

2,1
will always be an integral

multiple of four.

Table 4.2: Number of data points involved in the computation of p

kkY
2,1

 for N = 4, 6 & 8

N gcd(k1, k2, M) = dm Number of p
kkY

2,1
 Number of data in each p

kkY
2,1

1 2 8 4
2 1 16
1 3 12 6
3 1 36
1 4 16
2 2 32

8

4 1 64

4.2.2 M spacing based data availability
On analysis of the visual representation of p

kkY
2,1

, a pattern is seen present among the data involved

in its computation and is illustrated in the following theorem.

Theorem 4.1

If a data at (n1, n2) is present in the visual representation of p
kkY

2,1
then the data at (n1, n2 + M), (n1 +

M, n2) and (n1 + M, n2 + M) will also be present.

Proof

 Let us assume that there is a data at (n1, n2).

Then from (1.6) and (1.7),

((n1.k1 + n2.k2))N = p or p + M. (4.2)

a). Now for the data point which is M space apart from the above i.e., (n1, n2+M) is given by

 ((n1.k1 + (n2 + M)k2))N = ((n1.k1 + n2.k2 + M.k2))N = ((((n1.k1 + n2.k2))N + M.k2))N

= ((p + M.k2))N or ((p + M + M.k2))N (4.3)

Parallel Distributed Architecture for N × N DFT 91

There are two cases
Case 1: k2 is even or 0
 Let k2 = 2.t, then (4.3) becomes

((p + M.2.t))N or ((p + M + M.2.t))N = p or p + M (4.4)
Case 2: k2 is odd
 Let k2 = 2.t + 1, then (4.3) becomes

((p + M(2.t + 1)))N or ((p + M + M(2.t + 1)))N = p + M or p (4.5)

 From (4.4) and (4.5) it can be inferred that if there is a data at (n1, n2) for p
kkY

2,1
, then there

will always be a data at (n1, n2 + M).

b) Now for the point (n1 + M, n2) which is also M space apart from (n1, n2)
 (((n1 + M)k1 + n2.k2))N = ((n1.k1 + M.k1 + n2.k2))N = ((((n1.k1 + n2.k2))N + M.k1))N

= ((p + M.k1))N or ((p + M + M.k1)N (4.6)

There are two cases here:

Case 1: k1 is even or 0

 Let k1 = 2.s, then (4.6) becomes

((p + M.2.s))N or ((p + M + M.2.s))N = p or p + M (4.7)

Case 2: k1 is odd
 Let k1 = 2.s + 1, then (4.6) becomes

((p + M(2.s + 1)))N or ((p + M + M(2.s + 1)))N = p + M or p (4.8)

 From (4.7) and (4.8) it is proved that if there is a data at (n1, n2) for a p
kkY

2,1
, then there will

always be a data at (n1 + M, n2) also. From (4.4) and (4.5), it follows that if there is a data at (n1 +
M, n2), then there will always be data at (n1 + M, n2 + M). Thus the theorem is proved.

Section 4.2.1 shows that the number of data points in p
kkY

2,1
is always a multiple of four and

theorem 4.1 proves that the four data points are available at a spacing of M data points. In fig. 3.6,

3.7, and 3.8, one of the four patterns shown in fig. 4.5 is seen repeated in p
kkY

2,1
. In the fig. 4.5 “▫”

and“▪” denote that the data from the respective position is to be added and subtracted respectively.
Hence the data at the above four points can be clubbed together and computed. The data is to be
added or subtracted depends on whether k1 and k2 is even or odd as can be seen in the following
theorem.

Fig. 4.5: Patterns seen repeated in p

kkY
2,1

 92 Parallel Distributed Architecture for N × N DFT

Theorem 4.2

One type of pattern ‘C’, ‘D’, ‘E’, or ’F’ and/or its sign reversed form in fig. 4.5 will be present in

the visual representation of p
kkY

2,1
. The type of the pattern depends on whether the frequency index

k1 and/or k2 is even or odd.

Proof

Case 1: k1 and k2 even or 0

Let the data at (n1, n2) is to be added in the computation of p
kkY

2,1
. Then ((n1.k1 + n2.k2))N = p

For data point (n1, n2+M), from (4.4),

((n1.k1 + (n2 + M)k2))N = p

For data point (n1 + M, n2), from (4.7),

(((n1 + M)k1 + n2.k2))N = p

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p.

 Thus, it can be seen that if the data at (n1, n2) is to be added, then all the other three data at

M spacing are also to be added in the computation.

Similarly if (n1, n2) is to be subtracted, then

((n1.k1 + n2.k2))N = p + M

For data point (n1, n2 + M) from (4.4),

((n1.k1 + (n2 + M)k2))N = p + M

For data point (n1 + M, n2) from (4.7),

(((n1 + M)k1 + n2.k2))N = p + M

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p + M.

 Hence the data at (n1, n2 + M), (n1 + M, n2) and (n1 + M, n2 + M) are to be subtracted, if the

data at (n1, n2) is to be subtracted. So the addition of the above four points can be defined as C(n1,

n2) when k1 and k2 is either even or 0. For a p
kkY

2,1
, depending on the position of (n1, n2), C(n1, n2)

has to be added or subtracted in the computation of p
kkY

2,1
.

Case 2: k1 and k2 odd

 Let the data at (n1, n2) is to be added in the computation of p
kkY

2,1
. Then

((n1.k1 + n2.k2))N = p.

For data point (n1, n2 + M) from (4.5),

((n1.k1 + (n2 + M)k2))N = p + M.

For data point (n1 + M, n2) from (4.8),

Parallel Distributed Architecture for N × N DFT 93

(((n1 + M)k1 + n2.k2))N = p+ M.

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p.

 Thus, it can be seen that if (n1, n2) is to be added, then (n1, n2 + M), (n1 + M, n2) is to be

subtracted and (n1 + M, n2 + M) is to be added in the computation.

Similarly if (n1, n2) is to be subtracted, then

((n1.k1 + n2.k2))N = p + M.

For data point (n1, n2 + M) from (4.5),

((n1.k1 + (n2 + M)k2))N = p.

For data point (n1 + M, n2) from (4.8),

(((n1 + M)k1 + n2.k2))N = p.

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p + M.

 i.e., if data at (n1, n2) is to be subtracted, then the data at (n1, n2 + M), (n1 + M, n2) are to be

added and (n1 + M, n2 + M) is to be subtracted in the computation.

 So if k1 and k2 are odd, then the data at (n1, n2) & (n1 + M, n2 + M) are to be added and that

at (n1, n2 + M) & (n1 + M, n2) are to be subtracted or vice-versa. So the addition of the above four

points can be defined as F(n1, n2) when k1 and k2 are odd. For a p
kkY

2,1
, depending on the position of

(n1, n2), F(n1, n2) has to be added or subtracted in the computation of p
kkY

2,1
.

Case 3: k1 even and k2 odd

Let the data at (n1, n2) is to be added in the computation of p
kkY

2,1
. Then

((n1.k1 + n2.k2))N = p.

For data point (n1, n2+M) from (4.5),

((n1.k1 + (n2+M)k2))N = p + M.

For data point (n1 + M, n2) from (4.7),

(((n1 + M)k1 + n2.k2))N = p.

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p + M.

 Thus, if the data at (n1, n2) is to be added, then that at (n1, n2 + M), (n1 + M, n2 + M) are to

be subtracted and (n1 + M, n2) is to be added in the computation.

Similarly if the data at (n1, n2) is to be subtracted, then

((n1.k1 + n2.k2))N = p + M.

For data point (n1, n2 + M) from (4.5),

 94 Parallel Distributed Architecture for N × N DFT

((n1.k1 + (n2+M)k2))N = p.

For data point (n1 + M, n2) from (4.7),

(((n1 + M)k1 + n2.k2))N = p + M.

For data point (n1+M, n2+M),

(((n1 + M)k1 + (n2 + M)k2))N = p.

 i.e., if data at (n1, n2) is to be subtracted, then those at (n1, n2 + M) & (n1 + M, n2 + M) are to

be added and that at (n1 + M, n2) is to be subtracted in the computation.

 So if k1 is even and k2 is odd, then the data at (n1, n2) & (n1 + M, n2) are to be added and (n1,

n2 + M) & (n1 + M, n2 + M) are to be subtracted or vice-versa. So the addition of the above four

points can be defined as E(n1, n2) when k1 is even and k2 is odd. For a p
kkY

2,1
, depending on the

position of (n1, n2), E(n1, n2) has to be added or subtracted in the computation of p
kkY

2,1
.

Case 4: k1 odd and k2 even

Let the data at (n1, n2) is to be added in the computation of ,1 2
p

k kY . Then ((n1.k1 + n2.k2))N = p.

For data point (n1, n2 + M) from (4.4),

((n1.k1 + (n2 + M)k2))N = p.

For data point (n1 + M, n2) from (4.8),

(((n1 + M)k1 + n2.k2))N = p + M.

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p + M.

 Thus if the data at (n1, n2) is to be added, then those at (n1 + M, n2) & (n1 + M, n2 + M) are

to be subtracted and that at (n1, n2 + M) is to be added in the computation.

Similarly if the data at (n1, n2) is to be subtracted, then

((n1.k1 + n2.k2))N = p + M.

For data point (n1, n2 + M) from (4.4),

((n1.k1 + (n2 + M)k2))N = p + M.

For data point (n1 + M, n2) from (4.8),

(((n1 + M)k1 + n2.k2))N = p.

For data point (n1 + M, n2 + M),

(((n1 + M)k1 + (n2 + M)k2))N = p.

 i.e., if the data at (n1, n2) is to be subtracted, then those at (n1 + M, n2) & (n1 + M, n2 + M)

are to be added and that at (n1, n2 + M) is to be subtracted in the computation.

 So if k1 is odd and k2 is even, then the data at (n1, n2) & (n1, n2 + M) are to be added and
those at (n1 + M, n2) & (n1 + M, n2 + M) are to be subtracted or vice-versa. So the addition of the

Parallel Distributed Architecture for N × N DFT 95

above four points can be defined as D(n1, n2) when k1 is even and k2 is odd. For a p
kkY

2,1
, depending

on the position of (n1, n2), D(n1, n2) has to be added or subtracted in the computation of p
kkY

2,1
.

4.2.3 Five layer architecture for 8 × 8 DFT
The five layer M spacing based model is designed using a hierarchical structure in a layered

architecture as shown in fig. 4.6. It consists of a cascade connection of a number of modular

structures preceded by an input layer L0. L0 is a 2-D array of input data, x(i, j), 0 , 1i j N≤ ≤ − .

There are five layers L1 to L5 other than the input layer.

Redundancy in the computation of patterns C and D in fig. 4.5 can be noticed. Similar

redundancy is present in the computation of E and F. Hence the four data at M spacing is computed

as per the patterns shown in fig. 4.5 in two steps, as in layer 1 and 2 of fig. 4.6, so as to eliminate

the redundancy. In the first step, the sum and difference of data x(i, j) and x(i, j + M) are computed

and stored in matrix A and B respectively, each of size 8 × 4. In the second step, the sum and

difference of A(i, j) and A(i + M, j) as well as that of B(i, j) and B(i + M, j) are computed resulting

in the computation of the patterns C, D, E, and F, each of size 4 × 4.

Fig. 4.6: M spacing based five layer architecture for 8 × 8 DFT

p
kkY

2,1
corresponding to those basic DFT coefficients with gcd(k1, k2, M) = 1 are completely

computed in layer 3 and that of the remaining are completed only in Layer 4. In layer 4, p
kkY

2,1
 of

 96 Parallel Distributed Architecture for N × N DFT

the basic DFT coefficients corresponding to the indices (0, 0), (4, 0), (0, 4), (4, 4) and (2, 0), (2, 4),

(4, 2), (2, 2), (6, 2), (0, 2) with gcd(k1, k2, M) = 4 and 2 respectively are computed completely.

These p
kkY

2,1
 require additional computation due to the involvement of more number of data.

Complete set of DFT coefficients are computed in layer 5 as per the steps 3, 4 and 5 given in the

algorithm in section 3.3.

 The algorithm for computation is as shown below.

Layer 1

 In layer 1, there are two groups A and B. Algorithm for layer 1 is given below.

For 0 ≤ i < N – 1, 0 ≤ j < M - 1

(,) (,) (,)A i j x i j x i j M= + + (,) (,) (,)B i j x i j x i j M= − +
Both A and B will be of size N × M.

Layer 2

 In layer 2 there are four groups C, D, E and F. Algorithm for layer 2 is given below.

For 0 ≤ j < M - 1

),(),(),(jMiAjiAjiC ++=),(),(),(jMiAjiAjiD +−=

),(),(),(jMiBjiBjiE ++=),(),(),(jMiBjiBjiF +−=

 C, D, E and F will be of size M × M.

Layer3

C group

For 0 ≤ j < M - 1
1

0
() (,)

M

i
G j C j i

−

=
= ∑

1

0
() (1) (,)

M i

i
O j C j i

−

=
= −∑

1

0
() (,)

M

i
H j C i j

−

=
= ∑

1

0
() (1) (,)

M i

i
Q j C i j

−

=
= −∑

1

0
() (, (((1))))

M

M
i

R j C i j i M
−

=
= + −∑

1

0
() (,((.3(1))))

M

M
i

S j C i j i M
−

=
= + −∑

D group

For 0 ≤ j < M - 1

1

1,0
0

(,)
M

j

i
Y D j i

−

=
= ∑

1

1,4
0
(1) (,)

M
j i

i
Y D j i

−

=
= −∑

0
3,2 (0,0) (0,2) (2,1) (2,3)Y D D D D= − + − 1

3,2 (1,1) (1,3) (3,0) (3,2)Y D D D D= − + + −

2
3,2 (0,1) (0,3) (2,0) (2,2)Y D D D D= − − + 3

3,2 (1,0) (1,2) (3,1) (3,3)Y D D D D= − + −

0
1,2 (0,0) (0,2) (2,1) (2,3)Y D D D D= − − + 1

1,2 (1,0) (1,2) (3,1) (3,3)Y D D D D= − − +

Parallel Distributed Architecture for N × N DFT 97

2
1,2 (0,1) (0,3) (2,0) (2,2)Y D D D D= − + − 3

1,2 (1,1) (1,3) (3,0) (3,2)Y D D D D= − + −

E group

For 0 ≤ j < M - 1

1

0,1
0

(,)
Mj

i
Y E i j

−

=
∑=

1

4,1
0
(1) (,)

Mj i

i
Y E i j

−

=
∑= −

0
6,1 (0,0) (1,2) (2,0) (3,2)Y E E E E= + − − 1

6,1 (0,1) (1,3) (2,1) (3,3)Y E E E E= + − −

2
6,1 (0,2) (1,0) (2,2) (3,0)Y E E E E= − − + 3

6,1 (0,3) (1,1) (2,3) (3,1)Y E E E E= − − +

0
2,1 (0,0) (1,2) (2,0) (3,2)Y E E E E= − − + 1

2,1 (0,1) (1,3) (2,1) (3,3)Y E E E E= − − +

2
2,1 (0,2) (1,0) (2,2) (3,0)Y E E E E= + − − 3

2,1 (0,3) (1,1) (2,3) (3,1)Y E E E E= + − −

F group
0

1,1 (0,0) (1,3) (2,2) (3,1)Y F F F F= − − − 1
1,1 (0,1) (1,0) (2,3) (3,2)Y F F F F= + − −

2
1,1 (0,2) (1,1) (2,0) (3,3)Y F F F F= + + − 3

1,1 (0,3) (1,2) (2,1) (3,0)Y F F F F= + + +

0
3,1 (0,0) (1,1) (2,2) (2,3)Y F F F F= − + − 1

3,1 (0,1) (1,2) (2,3) (3,0)Y F F F F= − + +

2
3,1 (0,2) (1,3) (2,0) (3,1)Y F F F F= − − + 3

3,1 (0,3) (1,0) (2,1) (3,2)Y F F F F= + − +

0
5,1 (0,0) (1,3) (2,2) (3,1)Y F F F F= + − + 1

5,1 (0,1) (1,0) (2,3) (3,2)Y F F F F= − − +

2
5,1 (0,2) (1,1) (2,0) (3,3)Y F F F F= − + + 3

5,1 (0,3) (1,2) (2,1) (3,0)Y F F F F= − + −

0
7,1 (0,0) (1,1) (2,2) (3,3)Y F F F F= + + + 1

7,1 (0,1) (1,2) (2,3) (3,0)Y F F F F= + + −

2
7,1 (0,2) (1,3) (2,0) (3,1)Y F F F F= + − − 3

7,1 (0,3) (1,0) (2,1) (3,2)Y F F F F= − − −

Layer 4
10

0,1
0

()
M

i
Y G i

−

=
∑=

10
4,0

0
(1) ()

M i

i
Y G i

−

=
∑= −

10
0,4

0
(1) ()

M i

i
Y H i

−

=
∑= −

10
4,4

0
(1) ()

M i

i
Y O i

−

=
∑= −

0
2,0 (0) (2)Y G G= − , 2

2,0 (1) (3)Y G G= − 0
2,4 (0) (2)Y O O= − , 2

2,4 (1) (3)Y O O= −

0
4,2 (0) (2)Y Q Q= − , 2

4,2 (1) (3)Y Q Q= − 0
0,2 (0) (2)Y H H= − , 2

0,2 (1) (3)Y H H= −

0
2,2 (0) (2)Y R R= − , 2

2,2 (1) (3)Y R R= − 0
6,2 (0) (2)Y S S= − , 2

6,2 (1) (3)Y S S= −

Layer 5

The computations in layer 5 are same as that of the steps 3, 4 and 5 of the algorithm shown in

section 3.3.

 98 Parallel Distributed Architecture for N × N DFT

4.2.4 Four layer architecture for 8 × 8 DFT
In the architecture shown in fig. 4.6, p

kkY
2,1

 corresponding to all basic DFT coefficients with gcd(k1,

k2, M) = 1 are available at the output of layer 3. The number of additions/subtractions in layer 3 is

same for all groups, but that in layer 4 depends on gcd(k1, k2, M). For a p
kkY

2,1
when gcd(k1, k2, M) =

1, there is no computation in layer 4, whereas when gcd(k1, k2, M) = 2 and 4, the number of

additions/subtractions is 1 and 3 respectively. The number of computations is gcd(k1, k2, M) – 1

and hence cannot be made equal. Therefore layer 3 and 4 are combined in the four layer M spacing

architecture as shown in fig. 4.7. The computation for layer 3 is given below, whereas the

computations for layer 1, 2 & 4 remain same as that of layer 1, 2 & 5 respectively as in section

4.2.3.

Fig. 4.7: M spacing based four layer architecture for 8 × 8 DFT

Layer 3 computations

C group
0
0,0Y = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(0,1)+C(1,1)+C(2,1)+C(3,1)+C(0,2)+C(1,2)+C(2,2)+ C(3,2)

+C(0,3)+C(1,3)+C(2,3)+C(3,3)
0

4,0Y = C(0,0)-C(1,0)+C(2,0)-C(3,0)+C(0,1)-C(1,1)+C(2,1)-C(3,1)+C(0,2)-C(1,2)+C(2,2)-C(3,2)

+C(0,3)-C(1,3)+C(2,3)-C(3,3)

Parallel Distributed Architecture for N × N DFT 99

0
0,4Y = C(0,0)+C(1,0)+C(2,0)+C(3,0)-C(0,1)-C(1,1)-C(2,1)-C(3,1)+C(0,2)+C(1,2)+C(2,2)+ C(3,2) -

C(0,3)-C(1,3)-C(2,3)-C(3,3)
0

4,4Y = C(0,0)-C(1,0)+C(2,0)-C(3,0)-C(0,1)+C(1,1)-C(2,1)+C(3,1)+C(0,2)-C(1,2)+C(2,2)-C(3,2)-

C(0,3)+C(1,3)-C(2,3)+C(3,3)
0
0,2Y = C(0,0)+C(0,2)-C(2,0)-C(2,2)+C(0,1)+C(0,3)-C(2,1)-C(2,3)

2
0,2Y = C(1,0)+C(1,2)-C(3,0)-C(3,2)+C(1,1)+C(1,3)-C(3,1)-C(3,3)

0
2,0Y = C(0,0)+C(2,0)+C(1,0)+C(3,0)-C(0,2)-C(2,2)-C(1,2)-C(3,2)

2
2,0Y = C(0,1)+C(2,1)+C(1,1)+C(3,1)-C(0,3)-C(2,3)-C(1,3)-C(3,3)

0
2,4Y = C(0,0)+C(0,2)+C(2,1)+C(2,3)-C(0,1)-C(0,3)-C(2,0)-C(2,2)

2
2,4Y = C(1,0)+C(1,2)+C(3,1)+C(3,3)-C(1,1)-C(1,3)-C(3,0)-C(3,2)

0
4,2Y = C(0,0)+C(2,0)+C(1,2)+C(3,2)-C(0,2)-C(2,2)-C(1,0)-C(3,0)

2
4,2Y = C(0,1)+C(2,1)+C(1,3)+C(3,3)-C(0,3)-C(2,3)-C(1,1)-C(3,1)

0
6,2Y = C(0,0)+C(1,1)+C(2,2)+C(3,3)-C(0,2)-C(1,3)-C(2,0)-C(3,1)

2
6,2Y = C(0,1)+C(1,2)+C(2,3)+C(3,0)-C(0,3)-C(1,0)-C(2,1)-C(3,2)

0
2,2Y = C(0,0)+C(2,2)-C(1,1)-C(3,3)-C(0,2)-C(2,0)+C(1,3)+C(3,1)

2
2,2Y = C(0,1)+C(2,3)-C(1,2)-C(3,0)-C(0,3)-C(2,1)+C(1,0)+C(3,2)

D group

0
0,1Y = D(0,0)+D(0,1)+D(0,2)+D(0,3) 1

0,1Y = D(1,0)+D(1,1)+D(1,2)+D(1,3)

2
0,1Y = D(2,0)+D(2,1)+D(2,2)+D(2,3) 3

0,1Y = D(3,0)+D(3,1)+D(3,2)+D(3,3)

0
2,1Y = D(0,0)-D(0,2)-D(2,1)+D(2,3) 1

2,1Y = D(1,0)-D(1,2)-D(3,1)+D(3,3)

2
1,2Y = D(0,1)-D(0,3)+D(2,0)-D(2,2) 3

1,2Y = D(1,1)-D(1,3)+D(3,0)-D(3,2)

0
3,2Y = D(0,0)-D(0,2)+D(2,1)-D(2,3) 1

3,2Y = -D(1,1)+D(1,3)+D(3,0)-D(3,2)

2
3,2Y = D(0,1)-D(0,3)-D(2,0)+D(2,2) 3

3,2Y = D(1,0)-D(1,2)+D(3,1)-D(3,3)

0
1,4Y = D(0,0)-D(0,1)+D(0,2)-D(0,3) 1

1,4Y = D(1,0)-D(1,1)+D(1,2)-D(1,3)

2
1,4Y = D(2,0)-D(2,1)+D(2,2)-D(2,3) 3

1,4Y = D(3,0)-D(3,1)+D(3,2)-D(3,3)

 100 Parallel Distributed Architecture for N × N DFT

E group
0
1,0Y = E(0,0)+E(1,0)+E(2,0)+E(3,0) 1

1,0Y = E(0,1)+E(1,1)+E(2,1)+E(3,1)

2
1,0Y = E(0,2)+E(1,2)+E(2,2)+E(3,2) 3

1,0Y = E(0,3)+E(1,3)+E(2,3)+E(3,3)

0
1,2Y = E(0,0)-E(1,2)-E(2,0)+E(3,2) 1

1,2Y = E(0,1)-E(1,3)-E(2,1)+E(3,3)

2
1,2Y = E(0,2)+E(1,0)-E(2,2)-E(3,0) 3

1,2Y = E(0,3)+E(1,1)-E(2,3)-E(3,1)

0
1,4Y = E(0,0)-E(1,0)+E(2,0)-E(3,0) 1

1,4Y = E(0,1)-E(1,1)+E(2,1)-E(3,1)

2
1,4Y = E(0,2)-E(1,2)+E(2,2)-E(3,2) 3

4,1Y = E(0,3)-E(1,3)+E(2,3)-E(3,3)

0
6,1Y = E(0,0)+E(1,2)-E(2,0)-E(3,2) 1

1,6Y = E(0,1)+E(1,3)-E(2,1)-E(3,3)

2
1,6Y = E(0,2)-E(1,0)-E(2,2)+E(3,0) 3

1,6Y = E(0,3)-E(1,1)-E(2,3)+E(3,1)

F group
0
1,1Y = F(0,0)-F(1,3)-F(2,2)-F(3,1) 1

1,1Y = F(0,1)+F(1,0)-F(2,3)-F(3,2)

2
1,1Y = F(0,2)+F(1,1)+F(2,0)-F(3,3) 3

1,1Y = F(0,3)+F(1,2)+F(2,1)+F(3,0)

0
1,3Y = F(0,0)-F(1,1)+F(2,2)+F(3,3) 1

1,3Y = F(0,1)-F(1,2)+F(2,3)+F(3,0)

2
1,3Y = F(0,2)-F(1,3)-F(2,0)+F(3,1) 3

1,3Y = F(0,3)+F(1,0)-F(2,1)+F(3,2)

0
1,5Y = F(0,0)+F(1,3)-F(2,2)+F(3,1) 1

1,5Y = F(0,1)-F(1,0)-F(2,3)+F(3,2)

2
1,5Y = F(0,2)-F(1,1)+F(2,0)+F(3,3) 3

1,5Y = F(0,3)-F(1,2)+F(2,1)-F(3,0)

0
7,1Y = F(0,0)+F(1,1)+F(2,2)+F(3,3) 1

1,7Y = F(0,1)+F(1,2)+F(2,3)-F(3,0)

2
1,7Y = F(0,2)+F(1,3)-F(2,0)-F(3,1) 3

1,7Y = F(0,3)-F(1,0)-F(2,1)-F(3,2)

4.2.4.1 Sample computation

For the data matrix [x] shown below, the computation of 8 × 8 point DFT is as follows

[]

1 2 3 2 1 0 2 1
0 3 1 3 2 1 1 1
1 2 3 0 0 2 1 3
3 1 0 2 0 1 1 3
0 2 3 1 2 1 2 1
1 2 0 1 3 1 0 1
1 1 2 2 0 0 2 2
2 2 0 0 1 3 1 2

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Parallel Distributed Architecture for N × N DFT 101

Layer 1

A B

2 2 5 3
2 4 2 4
1 4 4 3
3 2 1 5
2 3 5 2
4 3 0 2
1 1 4 4
3 5 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 2 1 1
2 2 0 2
1 0 2 3
3 0 1 1
2 1 1 0
2 1 0 0
1 1 0 0
1 1 1 2

⎡ ⎤
−⎢ ⎥

⎢ ⎥−
⎢ ⎥− −
⎢ ⎥−
⎢ ⎥−
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Layer 2

C D E F

4 5 10 5
6 7 2 6
2 5 8 7
6 7 2 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 0 1
2 1 2 2
0 3 0 1
0 3 0 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

2 3 2 1
4 3 0 2
2 1 2 3
4 1 2 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− − −⎣ ⎦

2 1 0 1
0 1 0 2
0 1 2 3
2 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

Layer 3

C Group D Group E Group F Group
0 0 0 0

0,0 4,0 0,4 4,4Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3
1,0 1,0 1,0 1,0Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

0,1 0,1 0,1 0,1Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3
1,1 1,1 1,1 1,1Y Y Y Y⎡ ⎤⎣ ⎦

[]89 3 9 13− []0 3 2 0 []0 6 2 3− []3 4 0 2−

0 2 0 2
2,0 2,0 0,2 0,2Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

1,2 1,2 1,2 1,2Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3
2,1 2,1 2,1 2,1Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

3,1 3,1 3,1 3,1Y Y Y Y⎡ ⎤⎣ ⎦

[]2 1 4 1− − − []4 2 2 1− − − []6 3 8 8− − − []2 0 1 2−

0 2 0 2
2,4 2,4 4,2 4,2Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

3,2 3,2 3,2 3,2Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3
4,1 4,1 4,1 4,1Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

5,1 5,1 5,1 5,1Y Y Y Y⎡ ⎤⎣ ⎦

[]6 1 20 3− − []4 1 2 10− − []0 2 6 1− []3 4 0 2−

0 2 0 2
2,2 2,2 6,2 6,2Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

1,4 1,4 1,4 1,4Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3
6,1 6,1 6,1 6,1Y Y Y Y⎡ ⎤⎣ ⎦ 0 1 2 3

7,1 7,1 7,1 7,1Y Y Y Y⎡ ⎤⎣ ⎦

[]1 2 1 2− []0 3 2 0− − []2 7 8 0− []6 4 1 2−

Layer 4

89 6.364-j4.1213 -4+j -6.364-j0.1213 -9 -6.364+j0.1213 -4-j 6.364+j4.1213
2.1213-j4.1213 -1.5858-j4.2426 -1.8787+j1.2929 3.4142-j2.4142 -2.1213+j4.1213 -1.2426+j1.4142 -3.7782+j4.364 1.7574-j4142

2+j -13.7782+j4.4645 -1-j2 -6.9497+j3.0503 6-j 1.7782+j11.5355 1+j2 2.9497+j12.9497
-2.1213-j0.1213 0.5858-j0.4142 11.7782+j8.364 -4.4142-j4.2426 2.1213+j0.1213 10.2426-j2.4142 -6.1213-j2.7071 7.2426+j1.4142

3 2.1212-j6.7071 -20+j3 -2.1213+j5.2929 13 -2.1213-j5.2929 -20-j3 2.1213+j6.7071
-2.1213+j0.1213 7.2426-j1.4142 -6.1213+j2.7071 10.2426+j2.4142 2.1213-j0.1213 -4.4142+j4.2426 11.7782-j8.364 0.5858+j4142

2-j 2.9497-j12.9497 1-j2 1.7782-j11.5355 6+j -6.9497-j3.0503 -1+j2 -13.7782-4.4645
2.1213+j4.1213 1.7574+j0.4142 -3.7782-j4.364 -1.2426-j1.4142 -2.1213-j4.1213 3.4142+j2.4142 -1.8787-j1.2929 -1.5858+j4.2426

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 102 Parallel Distributed Architecture for N × N DFT

4.2.5 Proposed architecture for N × N DFT
In the five layer architecture, Layer 3 and 4 consists of four groups C, D, E and F. The number of
computations for a p

kkY
2,1

 in layer 3 and 4 is M – 1 and dm – 1 respectively, i.e., the number of

computations in layer 4 varies. On analysis it is seen that p
kkY

2,1
 with different gcd(k1, k2, M) are

evenly distributed between the four groups when ((N))4 = 2 and hence the computations are also
evenly distributed in layer 4. When ((N))4 = 0 and N not a power of 2, p

kkY
2,1

 with different gcd(k1,

k2, M) are unevenly distributed between the four groups. When N is a power of 2, p
kkY

2,1
 with gcd(k1,

k2, M) = 1 which are completely computed in layer 3 are in group D, E and F, whereas the
remaining are in group C. Hence there is no computation block for group D, E and F in layer 4
when N is a power of 2 , as in fig 4.6. This irregularity is rectified in four layer architecture by
combining layer 3 and 4 as in section 4.2.4. In the four layer architecture, when ((N))4 = 0, even
though the number of computations in layer 3 is different for each group, the number of p

kkY
2,1

to be

computed is same. When ((N))4 = 2, the number of computations in each group will also be same.
Due to this advantage, further analysis is done only for four layer architecture.

Four layer M spacing based architecture for the computation of 2-D DFT for N = 4, 6, 8, 10
and 12 are developed. Based on the analysis of these architectures, a generalized architecture is
developed for any even N, as in fig 4.8.

Fig. 4.8: Four layer architecture for N × N DFT

Parallel Distributed Architecture for N × N DFT 103

In layer 1, A and B are of dimension N × M. C, D, E and F in layer 3 are of dimension M ×

M. Layer 4 is of dimension N × N. The computation of layer 1, 2 and 4 uses a common algorithm

and the total size of each layer is N × N. The size of layer 3 is N2 and N2 + 2.N + 4 when N is a

power of 2 and N/2 prime respectively. In general, the size of layer 3 can be computed as follows.

Number of p
kkY

2,1
 in a basic DFT coefficient = M/dm

∴ Total number of p
kkY

2,1
 in N = ∑

dm
dm dm

Mnb .

Analysis of layer 3 for different sizes and coefficients are carried out in the following

sections to develop a common algorithm for its computation for any even N.

4.2.5.1 Number of additions for each p
kkY

2,1
in layer 3

When the data at the above four points are clubbed together and considered as a single unit, then

((n1.k1 + n2.k2))N = p or p + M (4.9)

((n1.k1 + (n2 + M)k2))N = p or p + M (4.10)

(((n1 + M)k1 + n2.k2))N = p or p + M (4.11)

(((n1 + M)k1 + (n2 + M)k2))N = p or p + M (4.12)

Adding (4.9), (4.10), (4.11) and (4.12)

((n1.k1 + n2.k2))N + ((n1.k1 + (n2 + M)k2))N + (((n1 + M)k1 + n2.k2))N + (((n1 + M)k1 + (n2 + M)k2))N

= 4p or 4(p + M)

i.e., 4((n1.k1 + n2.k2))N = 4p or 4(p + M) (4.13)

Since N is even, from theorem B.4.1 (4.13) becomes,

 ((n1.k1 + n2.k2))M = p or (p + M) (4.14)

As a special case, if ((N))4 = 0, from theorem B.4.1 (4.13) becomes,

((n1.k1+n2.k2))M/2 = p or (p + M)

From theorem B.4.2, the linear congruence equation (4.14) has solution if and only if dm | p where

dm = gcd(k1, k2, M). E.g., when N = 8 and gcd(k1, k2, M) = 2, then p
kkY

2,1
 exists only for p = 0 and

2, whereas for gcd(k1, k2, M) = 1, p
kkY

2,1
 exists for 0 ≤ p ≤ M – 1, which supports theorem 3.1.

If gcd(k1, M) = 1 or gcd(k2, M) = 1 then, from theorem B.4.3, (4.14) has exactly M solutions. E.g.

when N = 8 2
1,1Y has exactly four F terms in its expression, as in F group computations in layer 3 of

section 4.2.4. From theorem B.4.4, (4.14) has exactly ‘dm.M’ incongruent solutions. E.g. when N

= 8, 0
2,4Y has eight C terms in its expression, as in C group computations in layer 3 of section 4.2.4.

 104 Parallel Distributed Architecture for N × N DFT

Therefore the number of terms to be added in layer 3 ranges from M to M2 since dm varies from 1

to M.

4.2.5.2 Development of algorithm for layer 3 computation

The expression for the computation of layer 3 is simplified, based on the relation between the terms

in the expression for the p
kkY

2,1
, as shown below for N = 8.

Computation in layer 3 for N = 8

C group
1 1

0
0,0

0 0
(,)

M M

i j
Y C i j

− −

= =
= ∑ ∑

1 1
0

4,0
0 0

(1) (,)
M M

i

i j
Y C i j

− −

= =
= −∑ ∑

1 1
0

0,4
0 0

(1) (,)
M M

j

i j
Y C i j

− −

= =
= −∑ ∑

1 1
0

4,4
0 0

(1) (,)
M M

i j

i j
Y C i j

− −
+

= =
= −∑ ∑

1 1

2,2
0 0

(1) (2. ,), 0 2
M

l i

i j
Y C i l j l

−

= =
= − + ≤ ≤∑ ∑

1 1

0,2
0 0

(1) (,2.), 0 2
M

l j

j i
Y C i j l l

−

= =
= − + ≤ ≤∑ ∑

1 1

2,4
0 0

(1) (2. ,) 0 2
M

l j i

i j
Y C i l j l

−
+

= =
= − + ≤ ≤∑ ∑

For l = 0, 2

For j = 0 to 1

For i = 0 to M - 1

 k1 = 4, k2 = 2, n1 = i, n2= j + l/2

 If ((n1.k1 + n2.k2))N ≥ M, temp = -C(i, 2.j + l/2) else temp = C(i, 2.j + l/2)

 4,2
lY = 4,2

lY + temp

(For the computation of 2,0Y and 6,2Y replace C(i, 2.j + l/2) with C(i, i + 2.j + l/2) in the above

algorithm)

D group

For p = 0 to M - 1

For i = 0 to M - 1

 k1 = 1, k2 = 0, n1 = ((p + (M - k2)i))M, n2 = ((k1.i))M

 If ((n1.k1 + n2.k2))N ≥ M

 temp = - D(((p + (M - k2)i))M, ((k1.i))M)

 Else temp= D(((p + (M - k2)i))M, ((k1.i))M)

 1,0
pY = 1,0

pY + temp

 (For the computation of 1,2
pY , 3,2

pY and 1,4
pY replace k1 and k2 with the corresponding values.)

E group

For p = 0 to M - 1

Parallel Distributed Architecture for N × N DFT 105

For i = 0 to M - 1

 k1 = 0, k2 = 1, n1 = i, n2 = ((p + (M - k1)i))M

 If ((n1.k1 + n2.k2))N ≥ M

 temp = - E(i, ((p + (M - k1)i))M)

 Else temp = E(i, ((p +(M - k1)i))M)

 0,1
pY = 0,1

pY + temp

 (For the computation of 2,1
pY , 4,1

pY and 6,1
pY replace k1 and k2 with the corresponding values.)

F group

For p = 0 to M - 1

For i = 0 to M - 1

 k1 = 1, k2 = 1, n1 = i, n2 = ((p+(M - k1)i))M

 If ((n1.k1 + n2.k2))N ≥ M

 temp = - F(i, ((p + (M - k1)i))M)

 Else temp = F(i, ((p + (M - k1)i))M)

 1,1
pY = 1,1

pY + temp

 (For the computation of 3,1
pY , 5,1

pY and 7,1
pY replace k1 and k2 with the corresponding values.)

From the algorithm described, it can be seen that the indices of the terms in the expression

for p
kkY

2,1
 are related. Hence, if the indices of one of the terms are available, others can be derived.

To find the indices for one of the terms in p
kkY

2,1
, it is necessary to compute the particular solution

(n1, n2) for (4.14). The computation of particular solution is explained in the next section.

Subsequently, the indices of the next term to be added/subtracted are computed. Based on the

analysis of equation /algorithms for the computation of layer 3 for N = 8, it is found that the relation

between the index of the terms in the expression for p
kkY

2,1
 depends on k1 and k2. Appendix C shows

the computation of layer 3 for N = 4, 6, 10 and 12. On analysis of those computations, it is found

that the relation between index of the terms also depends on gcd(k1, k2, M), gcd(k2, N), gcd(k2, M)

and N. The general index relation between the terms, for any even N, is derived based on the above

analysis. The next term is to be added if ((n1.k1+n2.k2))N < M, or else subtract it.

4.2.5.3 Particular solution

It is necessary to find the particular solution (n1, n2) for the basic equation ((n1.k1+n2.k2))N = p or p

+ M, i.e., to find the position of one of the data points of ,1 2

p
k kY whose frequency indices are k1 and k2

 106 Parallel Distributed Architecture for N × N DFT

and the phase index is p. Since the four data points are clubbed together it is enough to find one

particular solution for (4.14) in order to obtain the general solution.

 The particular solution for (4.14) can be obtained by 1) Trial and error, 2) Using extended

Euclidean algorithm 3) Combination of visual approach and other methods 4) Modified trial and

error method.

4.2.5.3.1 Trial and error method

One of the most general methods of finding the particular solution of linear Diophantine equation

[3] is by trial and error. A Diophantine equation is one in which the solutions are required to be

integers as stated in B.2. Congruence mod N is an equivalence relation. Hence, congruence has

many of the same properties as ordinary equations. The particular solution for (4.14), is to find one

integer value for n1 and n2 for a given k1, k2 and p. Since 0 ≤ n1, n2 ≤ M - 1, find n1 and n2 which

satisfies (4.14) by trial and error. Algorithm is as follows:

1. Given k1, k2 and p

 For n1 = 0, M - 1

 For n2 = 0, M - 1

 If ((n1.k1 + n2.k2))M = p

 select n1 and n2 and return

 else if ((n1.k1 + n2.k2))M = p + M

 select n1 and n2 and return

4.2.5.3.2 Using extended Euclidean algorithm

The extended Euclidean algorithm as described in B.6 is an extension to the Euclidean algorithm to

find the gcd of integers a and b: it also finds the integers s and t in the Bezout’s identity (see B.3),

a.s + b.t = gcd(a, b). In (4.14) two cases arise depending upon the value of k1 and k2.

case 1: gcd(k1, k2) = 1

When gcd(k1, k2) = 1, (4.14) can be initially considered as if a linear Diophantine equation as shown

below:

n1.k1+n2.k2 = p
By extended Euclidean algorithm find gcd(k1, k2) and s and t such that

k1.s +k2.t = gcd(k1, k2)
Multiplying by p

k1.s .p+k2.t.p = gcd(k1, k2).p.
Divide it by gcd(k1, k2)

1 2
1 2 1 2

. .. .
gcd(,) gcd(,)

s p t pk k p
k k k k

+ =

Parallel Distributed Architecture for N × N DFT 107

Particular solutions are

1
1 2

(()) .(())
((gcd(,)))

M
M

M

s pn
k k

= and 2
1 2

(()) .(())
((gcd(,)))

M
M

M

t pn
k k

=

case 2: gcd(k1, k2) ≠ 1

When gcd(k1, k2) ≠ 1, (4.14) can be written as

n1.k1+n2.k2 + M.q = p

The above equation is the most general one. First, factor gcd(k1, k2) out of the first two terms:

1 2
1 2 1 2

1 2 1 2

gcd(,).(. .) .
gcd(,) gcd(,)

k kk k n n M q p
k k k k

+ + =

Let 2
21

2
1

21

1 .
),gcd(

.
),gcd(

n
kk

kn
kk

kw += , then the above equation becomes

1 2gcd(,). .k k w M q p+ =

This two variable equation is solvable using extended Euclidean algorithm. So find a particular

solution for w and ignore q. Now find n1 and n2 from

wn
kk

kn
kk

k
=+ 2

21

2
1

21

1 .
),gcd(

.
),gcd(

This is a two variable equation, which can be solved as in case 1.

Algorithm to find the particular solution for n1.k1+n2.k2 + M.q = p is as follows:

1. Given k1, k2, M and p

 Find gcd(k1, k2)

2. For the reduced equation 1 2gcd(,). .k k w M q p+ = apply extended Euclidean algorithm

to find gcd(gcd(k1, k2), M) and s and t such that

 gcd(k1, k2).s +M.t = gcd(gcd(k1, k2), M)

3. Calculate
1 2

.
gcd(gcd(,),)

s pw
k k M

=

4. For the equation 2
21

2
1

21

1 .
),gcd(

.
),gcd(

n
kk

kn
kk

kw += apply extended Euclidean

algorithm to find)
),gcd(

,
),gcd(

gcd(
21

2

21

1

kk
k

kk
k

 and u and v such that

 v
kk

ku
kk

k
kk

k
kk

k .
),gcd(

.
),gcd(

)
),gcd(

,
),gcd(

gcd(
21

2

21

1

21

2

21

1 +=

 108 Parallel Distributed Architecture for N × N DFT

5. Calculate M

kk
k

kk
k

wun))

),gcd(
,

),gcd(
gcd(

.((

21

2

21

1
1 = and

 M

kk
k

kk
k

wvn))

),gcd(
,

),gcd(
gcd(

.((

21

2

21

1
2 =

The above algorithm can be illustrated with an example. Given k1 = 2, k2 = 6, and p = 4 for N = 20.

((2.n1 + 6.n2))10 = 4.

Then 2.n1 + 6.n2 + 10.q = 4 for some q.

Set

21 .
)6,2gcd(

6.
)6,2gcd(

2 nnw +=

Then the above equation becomes, gcd(2, 6).w + 10.q = 4

w + 5.q = 2.

w = −3, q = 1, is a particular solution. Ignore q and substitute for ((w))10:

21 .
)6,2gcd(

6.
)6,2gcd(

27 nn +=

n1 + 3.n2 = 7

∴ n1 = 1 and n2 = 2 is a particular solution.

4.2.5.3.3 Combination of visual approach and other methods

By direct computation of particular solution for certain p
kkY

2,1
 based on the analysis of visual

representation, as shown below, and the rest of the coefficients may be calculated by either of the

above two methods:

 Analysis of the visual representation has enabled to come out with the particular solution of

certain p
kkY

2,1
 even without calculating the same. E.g., whatever be the value of k1 and k2, if p = 0

then n1 = 0 and n2 = 0 is a particular solution. Similarly when k2 = 0, then n2 = 0, and n1 = p/k1

provided ((p/k1))1 = 0 else n1 =(p +M)/k1. Similarly when k1 = 0, then n1 = 0, and n2 = p/k2 provided

((p/k2))1 = 0 else n2 =(p +M)/k2.

4.2.5.3.4 Modified trial and error method

On analysis of the visual representation of p
kkY

2,1
 for different values of N, it is found that either of n1

or n2 has a maximum value of 2. So trial and error method can be limited to checking those values

only. This method takes the minimum time for obtaining particular solution for all p
kkY

2,1
. The

algorithm is described below:

Parallel Distributed Architecture for N × N DFT 109

1. Given k1, k2 and p
2. if p = 0, then n1 = 0 and n2 = 0
3. else if k2 = 0, then n2 = 0, and n1 = p/k1 provided ((p/k1))1 = 0 else n1 =(p +M)/k1
4. else if k1 = 0, then n1 = 0 and n2 = p/k2 provided ((p/k2))1 = 0 else n2 =(p +M)/k2
5. else if p/k1 is an integer, then n1 = p/k1 and n2 = 0
6. else for i = 0 to M - 1

 if (((p – i.k1)/k2))1 = 0
 n2 = (p – i.k1)/k2, n1 = i, return
 else if (((p + M-i.k1)/k2))1 = 0
 n2 = (p + M – i.k1)/k2, n1 = i, return
 else if (((p – i.k2)/k1))1 = 0
 n1 = (p – i.k2)/k1, n2 = i, return
 else (((p + M – i.k2)/k1))1 = 0
 n1 = (p + M-i.k2)/k1, n2 = i, return

7. end

4.2.5.3.5 Simulation results
Three algorithms, developed to find the particular solution in the M spacing based 2-D DFT

computational scheme namely, trial and error method, extended Euclidean and modified trial and

error method are simulated using Matlab® 7.0. Time of execution in seconds, on Intel®

Pentium®4 CPU 1.5 GHZ, machine, for the three methods is shown in table 4.3 and plotted in fig.

4.9. Simulation results show that modified trial and error method performs better for N > 8.

Fig. 4.9: Comparison of execution time when employing different particular solution

 110 Parallel Distributed Architecture for N × N DFT

Table 4.3: Execution time of different methods for particular solution
N Trial and Extended Euclidean Modified Trial and
4 0 0.015 0
6 0.016 0.031 0.016
8 0.015 0.031 0.016

10 0.032 0.047 0.032
12 0.063 0.141 0.062
14 0.062 0.079 0.047
16 0.078 0.172 0.079
18 0.125 0.25 0.125
20 0.141 0.266 0.125
22 0.187 0.266 0.109
24 0.296 0.422 0.281
26 0.218 0.328 0.172
28 0.296 0.39 0.234
30 0.468 0.672 0.438
32 0.328 0.453 0.328
34 0.359 0.516 0.328
36 0.625 0.922 0.547
38 0.422 0.688 0.406
40 0.672 0.968 0.594
42 0.829 1.265 0.796
44 0.688 0.969 0.625
46 0.672 1.015 0.61
48 1.109 1.641 1.047
50 0.938 1.39 0.86
60 2.391 3.219 2.032
64 1.547 2.156 1.344
70 2.625 3.531 2.188
80 3.625 4.531 3.031
90 6.828 8.375 5.407

100 6.329 7.641 5.141
124 8.985 10.704 7.359
200 48.688 47.984 36.688
256 77.781 74.281 59.969
300 237.062 203.234 166.359
400 400.203 325.719 280.828
500 710.813 580.172 505.657
512 628.344 520.031 460.969

4.2.5.4 M spacing based algorithm for any even N

An algorithm is developed based on the above analysis and the same is verified for different values

of N for N = 4 to 300 and suitably modified so that the algorithm gives exact result for any even N.

Algorithm for layer 1, 2 and 4 are same as in section 4.2.3. Layer 3 computations give p
kkY

2,1
 of all

the basic DFT coefficients. Complete set of DFT coefficients are computed in layer 5 as per the

steps 3, 4 and 5 given in the algorithm in section 3.3. The important steps of M spacing algorithm

for DFT computation are as follows.

Parallel Distributed Architecture for N × N DFT 111

1. Compute indices (k1, k2) of all the basic DFT coefficients and the no. of basic DFT

(no_of_basicDFT) as in section 3.2.6 and 3.2.5.

2. Algorithm for computing p
kkY

2,1
 of all the basic DFT coefficients

Layer 1 and 2

Layer 1 and 2 computations are same as in section 4.2.3.

Layer 3

(In layer 3, for every basic DFT coefficient, corresponding p
kkY

2,1
are computed)

For q = 1 to no_ of_basicDFT

compute dm = gcd(k1(q), k2(q), M), h = gcd(k1(q), M), v = gcd(k2(q), M), z = gcd(k2(q), N)

 If ((k1(q)))2 = 0 ---depending on the nature of (k1, k2) C, D, E or F block is selected for

computation

 if ((k2(q)))2 = 0

 U = C

 else U = E

 elseif ((k2(q)))2 = 0

 U = D

 else U = F

 For p = 0 to M - 1 in steps of dm
 compute particular solution (n1, n2) using modified trial and error algorithm as in section 4.2.5.3.4

 For r = 0 to dm

 For s = 0 to dm

 For t = 0 to M/dm - 1

 next_n1 = ((n1+r.v/ dm+ k2(q).t))M --computation for index of next element of U

 If ((M))k2(q) = 0

 next_n2 = ((n2+r.((M- k1(q)))M/dm+s.M/v+(M- k1(q)).t))M --index when k2|M

 else

 next_n2= ((n2+((r[N - z]. k1(q)/[2. z.dm]))M/ dm+ s.M/v + [M- k1(q)].t))M --index when k2 |/ M

 If ((next_n1.k1(q)+ next_n2.k2(q)))N ≥ M --testing for element to be added or subtracted

 next_term = -U(next_n1, next_n2)

 else

 next_term = U(next_n1, next_n2)

 Y(k1(q), k2(q), p)= Y(k1(q), k2(q), p)+ next_term

 112 Parallel Distributed Architecture for N × N DFT

Layer 4

The computations in layer 5 are same as that of the steps 3, 4 and 5 of the algorithm shown in

section 3.3.

4.3 Conclusion
High speed of computation and reduced memory requirement were the salient features of the

parallel distributed model developed in [88] to implement 2-D DFT for a particular order N such

that ((N))4 = 2. Version I and II parallel distributed architecture for the computation of 8 × 8 point

DFT (developed by the analysis of the visual representation based on 2 × 2 DFT) are designed

following the above model. The aim was to develop a model for ((N))4 = 0 and then combine it

with the one developed in [88] to form a generalized architecture for any even N. But since the

primitive symbol combinations for group 2 and 3 coefficients differ for ((N))4 = 2 and N = 8, the

architecture developed also differs. Hence a generalized architecture based on the above model is

not feasible.

Four layer and five layer M spacing based architectures developed by the analysis of visual

representation of 2-D DFT based on 2 × 2 data, on the other hand, can be used to compute N × N

DFT for any even N and is scalable. Four layer architecture is more suitable for computation due to

the irregularity in the structure of layer 4 of the five layer architecture. Since the computations are

evenly distributed between different groups, the architecture is highly efficient for N/2 prime.

CHAPTER 5

2-D UMRT

In the parallel distributed architectures developed for the computation of 2-D DFT in chapter 4,

there are only real additions involved till the penultimate layer. The number of complex

multiplication for each coefficient in the last layer is N/2. Since only scaling by the twiddle factor is

done, each complex multiplication is equivalent to two real multiplications. However multipliers

are expensive components. They use large silicon area, consume more power and introduce long

latencies into a circuit. In contrast, primitive operators such as adders, subtractors, and shifts are

much cheaper in terms of power, area and delay.

The complex multiplications can be avoided, if the signals can be represented in terms of

the MRT coefficients [140] and then the only computation required will be the real additions as in

(1.9). MRT, in the raw form contains significant redundancy. The analysis of the visual

representation explained in section 3.2.4 shows that there are three levels of redundancy in the

coefficients. In [167] it was shown that the UMRT coefficients are unique, numerically compact

and require only the same memory as required for the original image, when the image size is a

power of 2. The number of MRT coefficients remains after removing the third level of redundancy

is N2 when N is a power of 2, as explained in section 3.2.4. But when N is not a power of 2, even

after removing the third level of redundancy, the number of MRT coefficients remains is not N2.

The visual representation is further analyzed to exploit a form of redundancy present between the

MRT coefficients, namely derived redundancy [189], so as to obtain unique MRT with N2

coefficients for any even N. Derived redundancy in 1-D was analyzed in [189].

5.1 Derived redundancy in MRT
The number of MRT coefficients left after eliminating the redundancy, as explained above, is N2

when N is a power of 2. The transformed coefficients thus occupy the same memory as required for

the original image. When N is not a power of two, the number of MRT coefficients after removing

the redundancy is more than N2. Hence the visual representation of MRT coefficients are analyzed

to explore the derived redundancy present between the MRT coefficients.

114 2-D UMRT

5.1.1 Analysis of the MRT coefficients for N = 6 (N/2 prime)
Fig. 5.1 shows that the visual representation of 2

2,0
0
2,0 &YY are combined together along with the sign

reversed form of 1
2,0Y , gives 0

0,0Y . So one of the MRT coefficients of 2,0Y can be eliminated since the

same can be derived from the other coefficients and 0
0,0Y . This type of redundancy present between

the MRT coefficients is called derived redundancy.

 + - =
Fig. 5.1: Example 1 for derived redundancy for N = 6

 Similarly, if the visual representation of 0 2
1,2 1,2&Y Y are combined along with the sign

reversed form of 1
1,2Y , it will result in the visual representation of 0

3,0Y as in fig. 5.2. If the MRT

coefficients of 3,2 5,2 1.0, ,Y Y Y etc. are combined separately it will result in 3,0Y . Here the gcd(k1, k2, M)

of 3,2 5,2 1.0, ,Y Y Y etc. is 1 and that of 3,0Y is M. On analysis of the basic DFT coefficients with gcd(k1,

k2, M) = 1, it is found that one MRT coefficient each can be eliminated, as the same can be derived

as shown above. When k1 & k2 are even, ,1 2

p
k kY of such DFT coefficients can be combined to get 0

0,0Y ,

as shown in table 5.1. The table shows that when N = 6, the MRT coefficients are combined to form
one of the group 1 coefficients depending on the nature of the frequency index (k1, k2). This can be

noticed for higher orders of N, where N/2 is prime and has a general relation, ,
p

even evenY±∑ will yield
0

0,0Y , ,
p

odd evenY±∑ will yield 0
,0MY , ,

p
even oddY±∑ will yield 0

0,MY and ,
p

odd oddY±∑ will yield 0
,M MY when N/2 is

prime, as shown in table 5.2.

+ - =
Fig. 5.2: Example 2 for derived redundancy for N = 6

Table 5.1: Index relation in derived redundancy - N = 6
Combination of MRT coefficients Resulting MRT

0 2 1
0,2 0,2 0,2Y Y Y+ − 0

0,0Y
0 2 1

1,2 1,2 1,2Y Y Y+ − 0
3,0Y

0 2 1
2,1 2,1 2,1Y Y Y+ − 0

0,3Y
0 2 1

1,1 1,1 1,1Y Y Y+ − 0
3,3Y

 For N = 6, as in table 5.3, the number of basic DFT coefficients (nb) is 20. These 20 basic

DFT coefficients together have 52 MRT coefficients. 4 basic DFT coefficients, where dm = M,

have one MRT coefficient (i.e., p = 0 only) each. One MRT coefficient each can be eliminated from

2-D UMRT 115

the remaining 16 basic DFT coefficients, where dm = 1. Then there will be 52 – 16 = 36 UMRT

coefficients, as shown in table 5.3, which is nothing but N2. Similar features can be seen when N =

10, 14, 22 etc. So when N/2 is prime, one MRT coefficient from each of the basic DFT coefficients,

where gcd(k1, k2, M) = 1 can be eliminated so as to obtain UMRT with N2 coefficients.
Table 5.2: Index relation in derived redundancy - N/2 prime

Combination of MRT coefficients Resulting MRT

,
p

even evenY±∑ 0
0,0Y

,
p

odd evenY±∑ 0
,0MY

,
p

even oddY±∑ 0
0,MY

,
p

odd oddY±∑ 0
,M MY

Table 5.3: Derived redundancy when N = 6
dm nbdm Total no. of MRT

Coefficients

dmnb
dm
M

×

No. of MRT
coefficients
that can be
eliminated
from each

Total
coefficients
that can be
eliminated

No. of UMRT coefficients

1 16 48 1 16 32
M=3 4 4 0 0 4
Total 20 52 16 36

5.1.2 Analysis for N = 12 where ((N))4 = 0 and N not a power of 2
In fig. 5.3, for N = 12, the visual representation of 0

1,0Y and 4
1,0Y are combined together along with the

sign reversed form of 2
1,0Y , where gcd(k1, k2, M) = 1. The result of the combination is the visual

representation of 0
3,0Y , where gcd(k1, k2, M) = 3. Similarly the combination of 1

1,0Y and 5
1,0Y along with

the sign reversed 3
1,0Y will yield 3

3,0Y . The combination of visual representation of MRT coefficients

with odd p i.e., 1.0
oddY±∑ , will result in 3

3,0Y . Similarly the combination of MRT coefficients with

even p i.e., 1.0
evenY±∑ will yield 0

3,0Y .

+ - =

+ - =
Fig. 5.3: Example for derived redundancy for N = 12

116 2-D UMRT

The combination of MRT coefficients with even phase index will yield an MRT coefficient

with even phase, as seen in the 1st row of the table 5.4. Similarly, as seen in the 2nd row of table

5.4, the combination of MRT coefficients with odd phase index will yield an MRT coefficient with

an odd phase index. In the third row of table 5.4, 2.0
evenY±∑ yield 0

6,0Y . Hence the combination of

MRT coefficients with k1 & k2 even, will result in an MRT coefficient with k1 & k2 even. This can

be noticed for different combinations of (k1, k2, p), as in table 5.5. These features can be seen for N

= 20, 24, 28 etc. where ((N))4 = 0 and N not a power of 2. Thus the combination of MRT

coefficients, as described above, will result in an MRT coefficient with the same index pattern in

(k1, k2, p) as in the combination.
Table 5.4: Example of index relation in derived redundancy - N = 12

Combination of MRT coefficients Resulting MRT
0 4 2

1,0 1,0 1,0Y Y Y+ − 0
3,0Y

1 5 3
1,0 1,0 1,0Y Y Y+ − 3

3,0Y
0 2 4

2,0 2,0 2,0Y Y Y+ − 0
6,0Y

Table 5.5: Index relation in derived redundancy - N = 12

Combination of MRT coefficients Resulting MRT
dm = 1

,
even

odd evenY±∑

,
odd

odd evenY±∑

dm = 3
,

even
odd evenY±∑

,
odd

odd evenY±∑

,
even

even oddY±∑

,
odd

even oddY±∑

,

even
even oddY±∑

,
odd

even oddY±∑

,
even

odd oddY±∑

,
odd

odd oddY±∑

,

even
odd oddY±∑

,
odd

odd oddY±∑
dm = 2

,
even

even evenY±∑ dm = M
,

even
even evenY±∑

 On analysis of the visual representation for N = 12, there are 4 basic DFT coefficients for

gcd(k1, k2, M) = M = 6 with one MRT coefficient each, 6 basic DFT coefficients for gcd(k1, k2, M)

= 3 with two MRT coefficient each , 16 basic DFT coefficients for gcd(k1, k2, M) = 2 with three

MRT coefficients each and 24 basic DFT coefficients for gcd(k1, k2, M) = 1 with six MRT

coefficients each respectively as shown in table 5.6. Thus there are a total of 208 MRT coefficients

for the 50 basic DFT coefficients for N = 12. One MRT coefficient each can be eliminated from the

basic DFT coefficients having gcd(k1, k2, M) = 2 since the same can be derived from the other MRT

coefficients of the respective basic DFT coefficient and the corresponding MRT coefficients having

gcd(k1, k2, M) = M. Similarly the redundancy in the basic DFT coefficients with gcd(k1, k2, M) = 1

in which two MRT coefficients can be eliminated as the same can be derived from the other MRT

coefficients and the corresponding MRT coefficient having gcd(k1, k2, M) = 3. Since there are 16

2-D UMRT 117

and 24 basic DFT coefficients with gcd(k1, k2, M) = 2 and 1 respectively, a total of 16 × 1 + 24 × 2

= 64 MRT coefficients are redundant and can be removed without any loss of information resulting

in 208 – 64 = 144 = N2 MRT coefficients.
Table 5.6: Derived redundancy for N = 12

dm nbdm Total no. of MRT
coefficients

dmnb
dm
M

×

No. of MRT
coefficients
that can be
eliminated
from each

Total
coefficients
that can be
eliminated

No. of UMRT coefficients

1 24 144 2 48 96
2 16 48 1 16 32
3 6 12 0 0 12

M=6 4 4 0 0 4
Total 50 208 64 144

5.1.3 Analysis for N = 18 where ((N))4 = 2 and N/2 not prime
There are 68 basic DFT coefficients for N = 18, of which 4, 16 and 48 correspond to gcd(k1, k2, M)

= M, 3 and 1 respectively, with a total of 484, (i.e., 4 × 1 + 16 × 3 + 48 × 9), MRT coefficients. In

fig. 5.4, the combination of visual representation of 0
1,0Y , 6

1,0Y and the sign reversed 3
1,0Y will result in

0
3,0Y . Similar combinations can be observed as illustrated in table 5.7. Thus there is derived

redundancy in MRT coefficients for N = 18 and they can be eliminated.

+ - =

+ - =

+ - =
Fig. 5.4: Example for derived redundancy for N = 18

118 2-D UMRT

Table 5.7: Example of index relation in derived redundancy - N = 18

Combination of MRT coefficients Resulting MRT
0 6 3

1,0 1,0 1,0Y Y Y+ − 0
3,0Y

1 7 4
1,0 1,0 1,0Y Y Y+ − 3

3,0Y
2 8 5

1,0 1,0 1,0Y Y Y+ − 6
3,0Y

0 6 3
6,0 6,0 6,0Y Y Y+ − 0

0,0Y

In table 5.7, the combination of MRT coefficients when k1 & k2 are odd & even

respectively, will result in an MRT coefficient where k1 & k2 are odd & even respectively. Similarly

the visual representation of MRT coefficients, having k1 & k2 even, are combined, the frequency

indices of the resulting MRT coefficient will also be even, as in the 4th row of table 5.7. This can

be noticed for different combinations of k1 and k2. Similar feature is seen for N = 30, 42 etc. The

similarity in the pattern of phase index as noticed in ((N))4 = 0 and N not a power of 2 is not seen

when N = 18. Table 5.8 shows the pattern of frequency index, for different values of gcd(k1, k2, M)

= dm, when N = 18.

As in the first three rows of table 5.7, one MRT coefficient each can be eliminated, without

loss of information, since the same can be derived from the other coefficients. Three MRT

coefficients can thus be eliminated. The MRT coefficients of all the basic DFT coefficients with

gcd(k1, k2, M) = 1 can be combined, as shown in Table 5.8, to obtain the corresponding MRT

coefficients having gcd(k1, k2, M) = 3. So a total of 48 × 3 = 144 MRT coefficients can thus be

eliminated.
Table 5.8: Index relation in derived redundancy - N = 18

Combination of MRT coefficients Resulting MRT
dm = 1

,odd evenY±∑

,even oddY±∑

,odd oddY±∑

,even evenY±∑

dm = 3
,odd evenY

,even oddY

,odd oddY

,even evenY
dm = 3

,even evenY±∑

,even oddY±∑

,odd evenY±∑

,odd oddY±∑

dm = M 0
0,0Y
0

0,MY
0

,0MY
0

,M MY

 Similarly the combination of the visual representation of 0

6,0Y , 6
6,0Y and the sign reversed

3
6,0Y will yield 0

0,0Y as in the 4th row of table 5.7. Thus the combination of the MRT coefficients where

gcd(k1, k2, M) = 3 will result in the MRT coefficient where gcd(k1, k2, M) = M. One MRT
coefficient can be eliminated from the basic DFT coefficients with gcd(k1, k2, M) = 3 and there are a

2-D UMRT 119

total of 16 such coefficients. Hence the number of MRT coefficients that can be eliminated from
the basic DFT coefficients are 144 and 16 corresponding to gcd(k1, k2, M) = 1 and 3 respectively.
Thus only N2 unique MRT coefficients are sufficient to represent the signal, as in table 5.9. The
other MRT coefficients of the basic DFT coefficients can be reconstructed from the MRT
coefficients, which are retained.

Table 5.9: Derived redundancy when N = 18

dm nbdm Total no. of MRT
Coefficients

dmnb
dm
M

×

No. of MRT
coefficients
that can be
eliminated
from each

Total
coefficients
that can be
eliminated

No. of UMRT
coefficients

1 48 432 3 144 288
3 16 48 1 16 32

M=9 4 4 0 0 4
Total 68 484 160 324

5.1.4 Analysis of MRT coefficients when N is a power of 2
There are 22 basic DFT coefficients for N = 8, of which 4, 6 and 12 basic DFT coefficients

correspond to gcd(k1, k2, M) = 4, 2 and 1 respectively with a total of 64, (i.e., 4 + 6 × 2 + 12 × 4),

MRT coefficients. There are only N2 MRT coefficients for the basic DFT coefficients which is

unique and hence no elimination of MRT coefficients is required in the case of N = 8, as in table

5.10. Similar features can be noticed for N = 16, 32, 64 etc. Thus there is no derived redundancy in

MRT coefficients when N is a power of 2.

Table 5.10: Derived redundancy when N = 8

dm nbdm Total no. of MRT
coefficients

dmnb
dm
M

×

No. of MRT
coefficients
that can be
eliminated
from each

Total
coefficients
that can be
eliminated

No. of UMRT
coefficients

1 12 48 0 0 48
2 6 12 0 0 12

M=4 4 4 0 0 4
Total 22 64 0 64

5.2 Computation of redundant MRT coefficients
Analysis of derived redundancy has been done for different N, from 4 to 4620, selected suitably

based on the peculiarity of its divisors and the results are summarized, for ((N))4 = 0 & N not a

power of 2 and ((N))4 = 2 & N/2 not prime, in tables 5.11 and 5.12 respectively. In the tables nr is

the number of redundant MRT coefficients corresponding to each dm, due to the derived

redundancy. When N/2 prime, one MRT coefficient from each of the basic DFT coefficients can be

eliminated, when gcd(k1, k2, M) = 1, so as to obtain UMRT. There is no derived redundancy for N

power of 2.

120 2-D UMRT

Table 5.11: nr corresponding to each dm for N, where ((N))4 = 0 & N not a power of 2.
N

dm 1 2 12
nr 2 1
dm 1 2 20
nr 2 1
dm 1 2 4 24
nr 4 2 1
dm 1 2 28
nr 2 1
dm 1 2 3 6 36
nr 6 3 2 1
dm 1 2 4 40
nr 4 2 1
dm 1 2 44
nr 2 1
dm 1 2 4 8 48
nr 8 4 2 1
dm 1 2 52
nr 2 1
dm 1 2 4 56
nr 4 2 1
dm 1 2 3 5 6 10 60
nr 14 7 2 2 1 1
dm 1 2 3 4 6 12 72
nr 12 6 4 3 2 1
dm 1 2 3 6 7 14 84
nr 18 9 2 1 2 1
dm 1 2 5 10 100
nr 10 5 2 1
dm 1 2 3 6 9 18 108
nr 18 9 6 3 2 1
dm 1 2 3 4 5 6 10 12 20120
nr 28 14 4 7 4 2 2 1 1
dm 1 2 3 6 11 22 132
nr 26 13 2 1 1 1
dm 1 2 3 4 6 8 12 24144
nr 24 12 8 6 4 3 2 1
dm 1 2 3 4 6 7 12 14 28168
nr 36 18 4 9 2 4 1 2 1
dm 1 2 3 5 6 9 10 15 18 30180
nr 42 21 14 6 7 2 3 2 1 1
dm 1 2 4 5 10 20 200
nr 20 10 5 4 2 1
dm 1 2 3 4 6 9 12 18 36216
nr 36 18 12 9 6 4 3 2 1
dm 1 2 4 5 7 10 14 20 28280
nr 44 22 11 4 4 2 2 1 1
dm 1 2 3 4 6 7 8 12 14 2428 56 336
nr 72 36 8 18 4 8 9 2 4 1 2 1
dm 1 2 3 4 5 6 9 10 12 1518 20 30 36 60360
nr 84 42 28 21 12 14 4 6 7 4 2 3 2 1 1
dm 1 2 4 5 8 10 20 40400
nr 40 20 10 8 5 4 2 1
dm 1 2 3 5 7 6 10 14 15 2130 35 42 70420
nr 114 57 22 18 14 11 9 7 2 2 1 2 1 1
dm 1 2 3 5 6 10 11 15 22 3033 55 66 110660
nr 170 85 30 26 15 13 14 2 7 1 2 2 1 1

2-D UMRT 121

dm 1 2 3 5 6 10 13 15 26 3039 65 78 130780
nr 198 99 34 30 17 15 14 2 7 1 2 2 1 1
dm 1 2 3 5 6 9 10 15 18 253045 50 75 90 150900
nr 210 105 70 42 35 10 21 14 5 6 7 2 3 2 1 1
dm 1 2 4 5 10 20 25 50 1001000
nr 100 50 25 20 10 5 4 2 1
dm 1 2 5 7 10 11 14 22 35 5570 77 110 1541540
nr 290 145 34 30 17 22 15 11 2 2 1 2 1 1
dm 1 2 3 4 5 6 9 10 12 151820 25 30 36 45 50 6075 90 100 150 1803001800
nr 420 210140 105 84 70 20 42 35 281021 12 14 5 4 6 7 4 2 3 2 1 1
dm 1 2 3 5 6 7 10 11 14 15212230333542 55 66 7077105110154165 210231330 3854627704620
nr 1350675290 222145170 111114 85 34305717222615 18 11 1314 2 9 7 2 1 2 1 2 1 1

Table 5.12: nr corresponding to each dm for N, where ((N))4 = 2 and N/2 not prime

N
dm 1 3 18
nr 3 1
dm 1 3 5 30
nr 7 1 1
dm 1 3 7 42
nr 9 1 1
dm 1 5 50
nr 5 1
dm 1 3 9 54
nr 9 3 1
dm 1 3 11 66
nr 13 1 1
dm 1 5 7 70
nr 11 1 1
dm 1 3 13 78
nr 15 1 1
dm 1 3 5 9 15 90
nr 21 7 3 1 1
dm 1 7 98
nr 7 1
dm 1 3 17 102
nr 19 1 1
dm 1 3 5 7 15 21 35 210
nr 57 11 9 7 1 1 1
dm 1 5 25 250
nr 25 5 1
dm 1 3 5 9 15 25 45 75 450
nr 105 35 21 5 7 3 1 1

 The total number of redundant MRT coefficients can be obtained from the table 5.11 and

5.12 using the formula ∑
edm edm nrnb . where dme = gcd(k1, k2, M) having redundant MRT coefficients.

Table 5.13 shows the total number of MRT coefficients for the entire basic DFT coefficients, the

number of MRT coefficients that can be derived and the percentage reduction for ((N))4 = 0 & N

not a power of 2, ((N))4 = 2 & N/2 not prime and N/2 prime. In the table, for N = 630, 1050, 1470,

1890, 2310, 3990 and 4620, the percentage reduction is more than fifty percentage since the

number of dm is more. Derived redundancy is only 2N + 4 for N/2 prime and hence the percentage

122 2-D UMRT

of reduction is low. Thus it can be inferred that in general, derived redundancy is high when the

number of dm is more. However there is no derived redundancy for N power of 2, the reason for

which is explained below.
 Table 5.13: Reduction in computation due to derived redundancy

((N))4 =0 & N not a power of 2 ((N))4 =0 & N/2 not prime N/2 prime
N nmrtnb nr % reduction N nmrtnb nr %

reduction
N nmrtnb

(N2+2N+4)
nr

(2N+4)
%

reduction
56 3648 512 14.03 18 484 160 33.06 6 52 16 30.77
60 6448 2848 44.17 30 1612 712 44.17 34 1228 72 5.86
72 7744 2560 33.06 42 2964 1200 40.49 62 3972 128 3.22
84 11856 4800 40.49 50 3124 624 19.97 106 11452 216 1.89
96 13312 4096 30.77 54 4372 1456 33.30 202 41212 408 0.99

100 12496 2496 19.97 66 6916 2560 37.02 298 89404 600 0.67
108 17488 5824 33.30 70 7068 2168 30.67 394 156028 792 0.51
120 25792 11392 44.17 78 9516 3432 36.07 502 253012 1008 0.39
132 27664 10240 37.02 90 15004 6904 46.01 586 344572 1176 0.34
144 30976 10240 33.06 98 11204 1600 14.28 718 516964 1440 0.28
168 47424 19200 40.49 102 15964 5560 34.83 818 670764 1640 0.24
200 49984 9984 19.97 210 367536 191136 52.00 922 851932 1848 0.22
216 69952 23296 33.30 250 78124 15624 19.99 1018 1038364 2040 0.20
280 113088 34688 30.67 450 378004 175504 46.43 1142 1306452 2288 0.18
336 189896 76800 40.44 494 278892 34856 12.49 1502 2259012 3008 0.13
360 240064 11464 47.76 630 855228 458328 53.59 1574 2480628 3158 0.13
400 199956 39936 19.97 858 1265628 529464 41.83 1642 2699452 3288 0.12
660 857584 421984 49.21 1050 2314884 1212384 52.37 1706 2913852 3416 0.12
780 1179984 571584 48.44 1470 4515212 2354312 52.14 1774 3150628 3552 0.11
900 1512016 702016 46.43 1890 7725324 4153224 53.76 1814 3294228 3632 0.11
1000 1249984 249984 19.99 2310 12220572 6884472 56.34 1858 3455884 3720 0.11
1540 3760176 1388576 36.93 3718 16460612 2637088 16.02 1906 3636652 3816 0.10
1800 6048064 2808064 46.43 3990 35007804 19087704 54.52 1994 3980028 3992 0.10
4620 48882288 27537888 56.34 4598 24544020 3402416 13.86 4622 21372132 9248 0.04

In the first row of table 5.11, for N = 12, the derived redundancy is noticed in the basic

DFT coefficients where dm = 1 and 2 whereas derived Redundancy is not present when dm = 6 and

3, i.e., when dm = M and M/2. Redundant MRT coefficients are not present when dm = 10 and 5,

for N = 20, i.e., when dm = M and M/2, as seen in the 2nd row of table 5.11. Similar features are

noticed for all N listed in table 5.11 and 5.12. It can be inferred that the derived redundancy in MRT

coefficients is present in all the basic DFT coefficients except when gcd(k1, k2, M) falls in the series

M, M/2, M/22…….M/2n - 1 where, 2 ||n N . For N power of 2, all dm falls in the above series and

hence there is no derived redundancy. Redundancy present can be determined as follows:

Number of MRT coefficients in a basic DFT coefficient, np = M/ gcd(k1, k2, M) = M/dm (5.1)

 (since gcd(k1, k2, M) = dm)

Table 5.14 shows the number of basic DFT coefficients (nbdm) and the number of UMRT

coefficients (nu) corresponding to each dm for N = 12, 20, 24 and 30. From the analysis of the

table, the number of UMRT coefficient in a basic DFT coefficient is given by,

2-D UMRT 123

 nu =)
),,gcd(

(
21 Mkk

Nϕ =)(
dm
Nϕ (5. 2)

Then from (5.1) and (5.2), the number of redundant MRT coefficients in a basic DFT coefficient is

given by

 nr = M/dm -)(
dm
Nϕ . (5. 3)

From the analysis of table 5.11 & 5.12 and by trial and error, the total number of MRT

coefficients that are redundant in all the basic DFT coefficients when gcd(k1, k2, M) = dm is given

by 11

1 1
2 ((1) ())

n n
n i i i

i i i
i i

p p pβ − β βα +

= =
− − +∏ ∏ where pi is the odd prime divisors of M/dm, n is the number

of odd prime divisors of N, α is the power of 2 in the prime factorization of M/dm and iβ is the

power of odd prime divisors pi in the prime factorization of M/dm.

From the table 5.14, it can be seen that the total number of UMRT coefficients is N2. This

can be extended to any even value of N. From (5.2), total number of UMRT coefficients =

. ()dm
dm

Nnb
dm

ϕ∑ = N2.

Table 5.14: nbdm and nu for different N

N Total UMRT coefficients
dm 1 2 3 6

nbdm 24 16 6 4
12

nu 4 2 2 1

144

dm 1 2 5 10

nbdm 36 24 6 4
20

nu 8 4 2 1

400

dm 1 2 3 4 6 12

nbdm 48 24 12 16 6 4
24

nu 8 4 4 2 2 1

576

dm 1 3 5 15
nbdm 96 24 16 4

30

nu 8 4 2 1

900

5.3 MRT coefficients in basic DFT coefficients for N, power of 2
Let N = 2n, then dm(i) = 20, 21, 22,… 2n - 1 are the n divisors of M.

Total no. of basic DFT coefficients where gcd(k1, k2, M) = M is given by, nbM = 4

Total no. of ,1 2

p
k kY where gcd(k1, k2, M) = M is given by, nmrtM = 4

From table 5.15, total no. of basic DFT coefficients where gcd(k1, k2, M) = dm (except for dm = M),

nbdm = 3.M/dm (5.4)

From (5.1), no. of ,1 2

p
k kY for a basic DFT coefficient where gcd(k1, k2, M) is dm,

 np = M/dm (5.5)

124 2-D UMRT

From (5.4 & 5.5), total no. of ,1 2

p
k kY corresponding to the basic DFT coefficients where gcd(k1, k2, M)

is dm (except for dm = M),

 nmrtdm = 3.M2/dm2 (5.6)

Total no. of ,1 2

p
k kY = 4 +

2
2 2

0
3. / ()

n

i
M dm i

−

=
∑ = 4 +

2
2

0
3. (1)

n

i
dm n i

−

=
− −∑

(() / (1)dm i M dm n i= − −Q)

E.g. when N = 8 = 23, dm(i) = 1, 2, and 4.

Total no. of ,1 2

p
k kY = 4 +

3 2
2

0
3. (3 1)

i
dm i

−

=
− −∑ = 4 + 3.42 +3.22 = 64

So in general when N is a power of 2, the MRT coefficients of the basic DFT coefficients are

unique and form the UMRT.

Table 5.15: nb for each dm when N power of 2

nbdm Total (3N-2) dm

 N

1 2 4 8 16 32

4 6 4 - - - - 10
8 12 6 4 - - - 22

16 24 12 6 4 - - 46
32 48 24 12 6 4 - 94
64 96 48 24 12 6 4 190

5.4 Selection of UMRT coefficients
Section 5.2 shows that there is no derived redundancy in MRT coefficients when gcd(k1, k2, M) falls

in the series M, M/2, M/22,…….M/2n - 1 where, 2 ||n N . When N is a power of 2, all the coefficients

fall within the above series i.e., gcd(k1, k2, M) of the basic DFT coefficients is either M, M/2,

M/22,……or M/2n-1. It is also verified that, when N is a power of 2, for every dm, M/dm =

ϕ (N/dm). So from (5.3), there is no derived redundancy when N is a power of 2.

It was also seen in section 5.1 and 5.2 that the total number of UMRT coefficients is N2 for

any even N. But the total number of MRT coefficients of the basic DFT coefficients is more than

that due to the derived redundancy present, except when N is a power of 2. We have to select the

MRT coefficients when N/2 prime, ((N))4 = 2 & N/2 not prime, and ((N))4 = 0 and N not a power of

2 by discarding redundancy. When N is not a power of 2, there are MRT coefficients whose gcd(k1,

k2, M) does not fall in the above series i.e., when M/dm ≠ ϕ (N/dm). The MRT coefficients of such

basic DFT coefficients have to be selected so as to eliminate the redundant one. For each basic DFT

coefficient, depending on gcd(k1, k2, M), the number of redundant MRT coefficients can be found,

as in section 5.2. These redundant MRT coefficients can be removed in three ways: 1) from the

2-D UMRT 125

beginning 2) from the middle or 3) from the end. If there are ‘nr’ redundant MRT coefficients, then

either the first ‘nr’ MRT coefficients, or the middle most ‘nr’ coefficients or the last ‘nr’

coefficients can be removed. If the first nr MRT coefficients are to be removed where gcd(k1, k2,

M) = dm, then p = 0, dm, 2.dm, … (nr-1)dm are removed retaining the remaining MRT coefficients,

i.e., p = nr.dm, (nr + 1)dm, (nr + 2)dm, …, M/dm - 1. E.g., when N = 24 and (k1, k2) = (2, 0) where

dm = 2, then p = 0 and 2 can be removed retaining p = 4, 6, 8 and 10.

5.5 Placement/Matrix representation of UMRT coefficients
In [167], the positional details of 8 × 8 MRT matrix has been shown, which places the MRT

coefficients corresponding to k2 = 0, M, 1 and 2 in that order from left to right in a 8 × 8 matrix. The

above scheme even though places the MRT coefficients corresponding to a (k1, k2) in a row, a

generalized placement is not possible. Here a new placement method of UMRT coefficients for an

N × N matrix is proposed.

The number of UMRT coefficients is N2. When N is a power of 2, the MRT coefficients of
basic DFT coefficients form the UMRT. E.g. when N = 8, the MRT coefficients corresponding to
the following (k1, k2) are unique: (0, 0), (1, 0), (2, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1),
(6, 1), (7, 1), (0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (6, 2), (0, 4), (1, 4), (2, 4) and (4, 4). In the
placement scheme, the nonnegative integers (kcpn) co-prime to N/dm and less than N/dm are
computed, where dm = gcd(k1, k2, M) is the divisor of M. Then the MRT coefficients corresponding
to (k1, k2) are placed in (((k1.kcpn))N, ((k2.kcpn))N). E.g. when (k1, k2) = (0, 0), gcd(k1, k2, M) = 4 and
kcp1 = 1. Hence p = 0 corresponding to (0, 0) is placed at (0, 0). When (k1, k2) = (1, 0), gcd(k1, k2,
M) = 1 and kcpn = 1, 3, 5 and 7. Hence p = 0, 1, 2, and 3 are placed at location (1, 0), (3, 0), (5, 0),
and (7, 0) respectively. When (k1, k2) = (2, 0), gcd(k1, k2, M) = 2 and kcpn = 1, and 3. Hence p = 0,
and 2 are placed respectively at location (2, 0), and (6, 0). Placement of all the MRT coefficients for
N = 8 is shown in fig. 5.5 in which entries ‘102’ indicates that the coefficient with index (k1, k2, p)
= (1, 0, 2) is placed in that position of the 2-D array.

000 010 020 011 040 012 022 013
100 110 120 311 140 512 321 713
200 210 220 611 240 212 622 613
101 310 320 111 141 712 121 513
400 410 420 411 440 412 422 413
102 510 122 711 142 112 323 313
202 610 620 211 242 612 222 213
103 710 322 511 143 312 123 113

Fig. 5.5: Placement details of 8 × 8 MRT

The above scheme of placement can be extended to any even N. As a special case when N is a

power of 2, the number of nonnegative integers co-prime to N/dm and less than N/dm, (i.e.,

ϕ (N/dm), where ϕ is the Euler Totient function) is M/dm. Therefore the nonnegative integers

which are co-prime to N/dm and less than N/dm are the odd numbers from 1 to N/dm.

126 2-D UMRT

Number of unique MRT coefficients present in a basic DFT coefficient is equal to the

redundancy factor of the corresponding basic DFT coefficient. The UMRT coefficients of a basic

DFT coefficient are placed in the positions corresponding to the redundant DFT coefficients.

Algorithm for placement of one of the MRT coefficient Y(k1, k2, p) is illustrated below. The

placement scheme satisfies the linearity property. But it does not satisfy other matrix properties

such as transpose etc.

5.5.1 Algorithm for placement of a UMRT coefficient
1. Given k1, k2, p and the MRT coefficient Y(k1, k2, p)

2. Compute dm = gcd(k1, k2, M)

3. Compute ϕ (N/dm) and the nonnegative integers co-prime to N/dm and less than N/dm

defined as coprime.Nbydm(r)

4. kcp = coprime.Nbydm(p/dm)

5. Y(((k1.kcp))N, ((k2.kcp))N) = Y(k1, k2, p)

5.6 Development of algorithms for the computation of 2-D UMRT
In 2-D UMRT only unique MRT coefficients are present. Unique MRT coefficients are the ,1 2

p
k kY of

the basic DFT coefficients after removing those ,1 2

p
k kY which can be derived. Hence UMRT can be

computed using any of three methods described below.

5.6.1 Three layer M spacing method
The four layer M spacing method, for the computation of 2-D DFT described in section 4.2.5.4, can

be suitably modified for computing UMRT. The computations in layer 4 are fully avoided. There is

no need to compute the N/2 twiddle factors as required for the 2-D DFT computation. In layer 3,

only unique MRT coefficients need be computed.

The number of MRT coefficients to be eliminated for each dm has to be pre-computed

using (5.3). These MRT coefficients can be derived from the unique MRT coefficients and hence

need not be computed. For each divisor ‘dm’ of M, ϕ (N/dm) and the co-prime integers of every

N/dm and upto N/dm has to be pre-computed, as discussed in section 5.5, for placement of the

coefficients. Table 5.16 shows the number of UMRT coefficients required to be computed in each

group C, D, E and F for different N. In the table Tnu is the total number of UMRT coefficients

corresponding to all the basic DFT coefficients where gcd(k1, k2, M) = dm. It can be seen that the

number of UMRT coefficients corresponding to C, D, E and F are same. Hence the number of

UMRT coefficients is equally distributed between C, D, E and F. This inference is helpful in

developing scalable architecture. But the number of computations in each group is not same for

2-D UMRT 127

((N))4 = 0. This is due to the uneven distribution of MRT coefficients with the same dm. The

number of computation is evenly distributed between the four groups when ((N))4 = 2, since the

MRT coefficients with the same dm is equally distributed between the four groups, as in table 5.16.

Table 5.16: nu to be computed by each group for different N

N C (k1=even, k2=even) D (k1=odd, k2=even) E (k1=even, k2=odd) F (k1=odd, k2=odd)
dm 2 Total 1 Total 1 Total 1 Total
nb 4 4 2 2 2 2 2 2

4

Tnu 4 4 4 4 4 4 4 4
dm 3 1 3 1 3 1 3 1
nb 1 4 5 1 4 5 1 4 5 1 4 5

6

Tnu 1 8 9 1 8 9 1 8 9 1 8 9
dm 4 2 1 1 1
nb 4 6 10 4 4 4 4 4 4

8

Tnu 4 12 16 16 16 16 16 16 16
dm 5 1 5 1 5 1 5 1
nb 1 6 7 1 6 7 1 6 7 1 6 7

10

Tnu 1 24 25 1 24 25 1 24 25 1 24 25
dm 6 2 1 3 1 3 1 3
nb 4 16 20 8 2 10 8 2 10 8 2 10

12

Tnu 4 32 36 32 4 36 32 4 36 32 4 36
dm 7 1 7 1 7 1 7 1
nb 1 8 9 1 8 9 1 8 9 1 8 9

14

Tnu 1 48 49 1 48 49 1 48 49 1 48 49
dm 8 4 2 1 1 1
nb 4 6 12 22 8 8 8 8 8 8

16

Tnu 4 12 48 64 64 64 64 64 64 64
dm 9 1 3 9 1 3 9 1 3 9 1 3
nb 1 12 4 17 1 12 4 17 1 12 4 17 1 12 4 17

18

Tnu 1 72 8 81 1 72 8 81 1 72 8 81 1 72 8 81
dm 10 2 5 1 5 1 5 1
nb 4 24 28 2 12 14 2 12 14 2 12 14

20

Tnu 4 96 100 4 96 100 4 96 100 4 96 100
dm 11 1 11 1 11 1 11 1
nb 1 12 13 1 12 13 1 12 13 1 12 13

22

Tnu 1 120 121 1 120 121 1 120 121 1 120 121
dm 12 6 4 2 3 1 3 1 3 1
nb 4 6 16 24 50 4 16 20 4 16 20 4 16 20

24

Tnu 4 12 32 96 144 16 128 144 16 128 144 16 128 144
dm 14 2 7 1 7 1 7 1
nb 4 32 36 2 16 18 2 16 18 2 16 18

28

Tnu 4 192 196 4 192 196 4 192 196 4 192 196
dm 15 5 3 1 15 5 3 1 15 5 3 1 15 5 3 1
nb 1 4 6 24 35 1 4 6 24 35 1 4 6 24 35 1 4 6 24 35

30

Tnu 1 8 24 192 225 1 8 24 192 225 1 8 24 192 225 1 8 24 192 225
dm 16 8 4 2 1 1 1
nb 4 6 12 24 46 16 16 16 16 16 16

32

Tnu 4 12 48 192 256 256 256 256 256 256 256

128 2-D UMRT

The fig. 5.6 shows the M spacing based parallel distributed architecture for the computation

of N × N UMRT. The important steps of M spacing algorithm for UMRT computation are as

follows.

Fig. 5.6: M spacing parallel distributed architecture for N × N UMRT

5.6.1.1 Algorithm

1. Compute divisors of M = dm(i), number of divisors of M = no_of_divisors_of_M, indices (k1, k2)

of all the basic DFT coefficients and the no. of basic DFT = no_of_basicDFT as in section 3.2.5

and 3.2.6.

2. For each divisor of M, dm(i) calculated in step 1, compute ϕ (N/dm(i)), the co-prime integers of

every N/dm(i) up to N/dm(i) and the number of MRT coefficients to be eliminated corresponding to

each dm.

 For i = 1 to no_of_divisors_of_M

 Nbydm = N/dm(i), r = dm(i), s = 1

 phy_ofNbydm(r) = 1, coprime(r, s) = 1, s = 2

 For t = 2 to Nbydm

 If gcd(t, Nbydm) = 1

 coprime(r, s) = t, s = s + 1, phy_ofNbydm(r) = phy_ofNbydm(r) + 1

2-D UMRT 129

 MRT_eliminate(r) = M/r - phy_ofNbydm(r) --number of redundant MRT coefficients for each

dm are computed and stored

3. Algorithm for computing UMRT coefficients

Layer 1 & 2

Layer 1 & 2 are same as in section 4.2.3.

Layer 3

(Unique MRT coefficients corresponding to every basic DFT coefficients are computed in layer 3)
For q = 1 to no_ of_basicDFT
 Compute dm = gcd(k1(q), k2(q), M), h = gcd(k1(q), M), v = gcd(k2(q), M), z = gcd(k2(q), N)

 If ((k1(q)))2 = 0 ---depending on the nature of (k1, k2) C, D, E or F block is selected for
computation

 if ((k2(q)))2 = 0
 U = C
 else U = E
 elseif ((k2(q)))2 = 0
 U = D
 else U = F
 For p = 0 to M - 1- MRT_eliminate(dm).dm in steps of dm ---redundant MRT coefficients are

removed from the last
 kcp = coprime (dm, p/dm + 1)

 fk1 = ((kcp. k1(q)))N, fk2 = ((kcp. k2(q)))N --- placement of coefficients are computed here
 compute particular solution (n1, n2) using modified trial and error algorithm as in section 4.2.5.3.4

 For r = 0 to dm
 For s = 0 to dm
 For t = 0 to M/dm - 1
 next_n1 = ((n1 + r.v/ dm + k2(q).t))M --computation for index of next element of U

 If ((M))k2(q) = 0
 next_n2 = ((n2+r.((M - k1(q)))M/dm + s.M/v + (M - k1(q)).t))M --index when k2|M
 else

 next_n2= ((n2+((r[N - z]. k1(q)/[2. z.dm]))M/ dm+ s.M/v + [M - k1(q)].t))M --index when k2 |/ M

 If ((next_n1.k1(q) + next_n2.k2(q)))N ≥ M --testing for element to be added or subtracted
 next_term = -U(next_n1, next_n2)
 else
 next_term = U(next_n1, next_n2)

 Y(fk1, fk2)= Y(fk1, fk2) + next_term

130 2-D UMRT

5.6.2 Visual method
Visual method, as discussed in section 3.3, can be suitably modified to compute the UMRT

coefficients. The modifications are similar to that done in the M spacing method. In the first step

compute the divisors of M, number of divisors of M, indices of all the basic DFT coefficients and

the number of basic DFT. In the second step compute the number of MRT coefficients to be

eliminated for each dm, ϕ (N/dm), and the co-prime integers of every N/dm up to N/dm. In the final

step compute the unique MRT coefficients using the visual method.

5.6.3 Modified direct method for UMRT computation
UMRT coefficients are computed using the modified DFT method using (1.6). The MRT

coefficients that can be derived are not computed using the elimination algorithm discussed in the

other two methods. The placement of unique MRT coefficients is also done using the algorithm

developed in section 5.5.1. The important steps of the algorithm are as follows.

1. Steps 1 and 2 are same as that of the algorithm in section 5.6.1.1

2. UMRT coefficients corresponding to every basic DFT coefficients are computed next

For q = 1 to no_ of_basicDFT

 Compute dm = gcd(k1(q), k2(q), M)

 For p = 0 to M - 1 - MRT_eliminate(dm).dm in steps of dm ---redundant MRT coefficients are

removed from the last

 kcp = coprime (dm, p/dm + 1)

 fk1 = ((kcp. k1(q)))N, fk2 = ((kcp. k2(q)))N --- placement of coefficients are computed here

 For n1 = 0 to N - 1

 For n2 = 0 to N - 1

 z = ((n1.k1 +n2.k2))N

 If z = p

 Y(fk1, fk2)= Y(fk1, fk2) + A(n1, n2)

 elseif z = p + M

 Y(fk1, fk2)= Y(fk1, fk2) - A(n1, n2)

5.7 Conclusion
The 2-D UMRT coefficients are unique and fit in the N × N memory space, for any even N. The 2-

D UMRT maps a 2-D array of real data in time/spatial domain into another 2-D array of real data in

frequency domain using real additions only. Different algorithms are designed and developed for

the computation of 2-D UMRT. The proposed placement scheme satisfies linearity property, but

does not satisfy other matrix properties such as transpose.

CHAPTER 6

IMPLEMENTATION OF PARALLEL DISTRIBUTED ARCHITECTURE FOR THE
COMPUTATION OF 2-D DFT & UMRT

The algorithms developed in chapters 3, 4, and 5 are simulated in Matlab®. The algorithm

developed in software provides maximum flexibility but lacks performance. To meet the tight

throughput constraint of the real time processing, a very high speed, dedicated special purpose

hardware processor is required. Nowadays, more complex DSP and image/video processing

algorithms are implemented on single chip. Hardware implementations in ASICs were proposed to

speed up the algorithm. But this is an inflexible solution and lacks cost efficiency. Another

approach suitable for implementation is the use of reconfigurable hardware using FPGA. The

performance of FPGA is quickly nearing that of ASICs.

6.1 Matlab simulation

6.1.1 2-D DFT
The 2-D DFT computation, using visual method, M spacing method and modified DFT using basic

DFT coefficients, is compared with three other methods viz. a viz., direct DFT, modified DFT and

closed form DFT [189]. Direct DFT computation uses the basic 2-D DFT equation to compute the

coefficients. Modified DFT computation is used to compute the DFT coefficients using (1.5) in the

second method. In another method named as “Modified DFT using basic DFT coefficients”, p
kkY
2,1
of

only basic DFT coefficients are computed using (1.6) and (1.7). Then the entire DFT coefficients

are computed by the permutations over p as done in visual method in section 3.3. Visual method is

also involved in the comparison. Closed form method [189] is used to compute the MRT of basic

DFT coefficients and then the entire DFT coefficients are computed by the permutations over p as

above. Six methods described above are simulated using Matlab 7.0 on Intel® Pentium®4 CPU,

1.5 GHZ, machine. The computation time of all the methods are shown in table 6.1 and plotted in

fig. 6.1. The fig. shows that M spacing method performs better when compared to all other methods

in terms of speed, for N > 16. However, modified DFT using basic DFT coefficients performs

slightly better for small values of N. This is due to the overhead in computing the particular

solution, in M spacing method, which is significant for small values of N.

132 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

Table 6.1: Execution time (in sec.) of 2-D DFT computational schemes for N

Modified DFT

N
Direct

DFT (s)

Closed
form

DFT(s)
Direct(s)

using basic
DFT(s)

Visual
DFT(s)

M
spacing
DFT(s)

4 0.016 0.016 0.008 0.007 0.015 0.016
6 0.047 0.063 0.016 0.015 0.016 0.031
8 0.157 0.063 0.031 0.015 0.031 0.031
10 0.422 0.094 0.046 0.031 0.032 0.047
12 0.844 0.234 0.109 0.063 0.078 0.078
14 1.437 0.234 0.204 0.062 0.063 0.078
16 2.469 0.282 0.36 0.078 0.093 0.094
18 3.984 0.438 0.672 0.187 0.203 0.14
20 6.125 0.484 0.984 0.219 0.234 0.188
22 8.781 0.438 1.484 0.234 0.234 0.125
24 12.672 0.797 2.235 0.375 0.312 0.312
26 17.062 0.671 3.266 0.359 0.297 0.219
28 23.265 0.813 4.422 0.468 0.422 0.297
30 30.047 1.453 6.438 0.922 0.687 0.453
32 39.578 1.031 8 0.719 0.500 0.328
34 49.719 1.125 11.984 0.765 0.532 0.297
36 62.172 1.937 13.407 1.391 1.000 0.578
38 76.984 1.500 17.89 1.187 0.687 0.406
40 96.156 2.047 20.766 1.594 1.063 0.625
42 115.14 2.906 28.266 2.594 1.516 0.766
44 141.55 2.203 33.406 1.985 1.172 0.578
46 166.01 2.328 43.344 2.281 1.094 0.578
48 200.09 3.609 48.453 3.297 2.016 1
50 231.76 3.359 64.015 3.64 1.750 0.797
60 486.97 7.453 145.16 10.016 4.781 1.985
70 881.42 8.843 336.38 15.703 5.359 2.125
80 1407.1 11.375 575.94 20.156 7.641 3.078
90 2252 21.438 1131.6 52 15.297 5.438

100 3435.1 20.047 1735.1 51.187 14.125 5.11

Fig. 6.1: Comparison of execution time of different 2-D DFT computational schemes.

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 133

6.1.1.1 Computational complexity

In the visual method, p
kkY
2,1
 of the basic 2-D DFT coefficients are computed either using the formula

derived from the analysis of visual representation or by using the visual representation as a look up
table rather than doing the computations in (1.6) & (1.7). These p

kkY
2,1
 can be used to compute all the

DFT coefficients by permutation over p. When N is the size of the data matrix and is even, from

(4.1) the number of real additions for a p
kkY
2,1
 = 1.2

−
M

dmN , (6.1)

where gcd(k1, k2, M) = dm.

No. of real additions for a basic DFT coefficient =)1..(
2

−
M

dmN
dm
M . (6.2)

∴ total number of real additions (AR) required for the 2-D DFT computation is given by,
2 .. (1)R dm

dm

M N dmA nb
dm M

= −∑ = ∑ −
dm

dm dm
MNnb)(2 , (6.3)

 where M = N/2 , & nbdm is the number of basic DFT coefficients for a given dm.
Total number of complex multiplications for a basic DFT coefficient = M/dm – 1.
Redundancy factor of a basic DFT coefficient = nddm + 1 = ϕ (N/dm),

where nddm is the number of DFT coefficients that can be derived from the basic DFT coefficients
by permutation.
Total number of complex multiplications (MC) is same as the total number of complex additions
(AC) and is given by

 (1)(1)C C dm dm
dm

MM A nb nd
dm

= = + −∑ = ∑ −
dm

dm dm
M

dm
Nnb)1).((.ϕ , (6.4)

Here one complex multiplication involves two real multiplications and no real additions since the
data is real which is multiplied with the twiddle factor.

Difference between the M spacing method and the visual method of 2-D DFT is in the

computation of p
kkY
2,1
 and hence the number of complex multiplications and additions are same in

both the cases, whereas the number of real additions differs. Total number of real additions (AR)

required for the 2-D DFT computation using M spacing method is given by,

AR = Number of additions in layer 1 + layer 2 + layer 3.

Number of additions in layer 1 = 2.N.M = N2

Number of additions in layer 2 = 4(M.M)= N2
The number of additions in layer 3 can be calculated as follows:

From (6.1), number of additions for a p
kkY
2,1
 in layer 3 = 1

.4
.2

−
M
dmN = M.dm – 1. (6.5)

Number of additions for a basic DFT coefficient in layer 3 = M/dm(M.dm-1). (6.6)

Number of additions in layer 3 = ∑ −
dm

dm dm
MMnb).(2 (6.7)

134 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

2 22. ()R dm
dm

MA N nb M
dm

∴ = + −∑ (6.8)

 Table 6.2 shows the number of real multiplications (MR) and additions (AR) required for 2-
D DFT computation based on the visual approach and M spacing based method along with the
number of computations required for the Direct 2-D DFT [130], row/column DFT [21], vector radix
FFT [8] and row/column FFT [100] for different N. One complex multiplication in the above cases
is equivalent to four real multiplications and two real additions. Even though the number of
computations for vector radix FFT and r/c FFT is less, they require that the size of the data matrix
to be of powers of 2. One must be willing to constrain oneself to sizes like 1024 & 2048 or zero
pad one’s data to the next power of 2 and thereby lowering the algorithm’s efficiency. For many of
the applications, this limitation on N cannot be tolerated. The visual approach and M spacing
method, which might be less efficient in particular case, but provide much better coverage of
allowed DFT size. Both methods allow the size of the data matrix to be any even N. So it is a trade
off between flexibility and efficiency that make the visual approach and M spacing methods
attractive. The results are also shown as a plot in fig. 6.2 and 6.3 as a logarithmic function of
number of real multiplications and real additions respectively for different data size. The spike
visible when N = 30 in the plot of visual/M spacing DFT, in fig. 6.2, is due to the fact that N = 32 is
having more dm and hence requires low number of multiplications. The small spikes in the plot are
also due to the same reason i.e., the next higher N is having more dm. The spike visible in the plots
of visual and M spacing DFT in fig. 6.3 is for N having more number of divisors where the number
of real additions is more. E.g., N = 60 is having more number of divisors when compared to N = 62.
The spike is predominant in the plots of visual DFT.

0 20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

9

10

N

N
um

be
r o

f r
ea

l m
ul

tip
lic

at
io

ns
 (l

og
10

)

Direct DFT
Row column DFT
Vector radix FFT
Row column FFT
Visual/M space based DFT

Fig. 6.2: MR of different 2-D DFT computational scheme for N

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 135

Table 6.2: Comparison of computational complexity of 2-D DFT computation
Direct DFT Row column DFT Vector radix FFT Row column FFT Visual DFT M space DFT

N
MR AR MR AR MR AR MR AR MR AR MR AR

4 1024 896 512 512 96 96 128 192 24 168 24 80
6 5184 4752 1728 1728 128 796 128 328
8 16384 15360 4096 4096 576 576 768 1152 312 1656 312 728

10 40000 38000 8000 8000 768 3444 768 1544
12 82944 79488 13824 13824 1112 8104 1112 2992
14 153664 148176 21952 21952 2304 9132 2304 4232
16 262144 253952 32768 32768 3072 3072 4096 6144 3000 14520 3000 6200
18 419904 408240 46656 46656 4736 26284 4736 10408
20 640000 624000 64000 64000 5976 33480 5976 13280
22 937024 915728 85184 85184 9600 34236 9600 16328
24 1327104 1299456 110592 110592 9848 72376 9848 26008
26 1827904 1792752 140608 140608 16128 55956 16128 26888
28 2458624 2414720 175616 175616 17304 86952 17304 35600
30 3240000 3186000 216000 216000 49280 173668 49280 80968
32 4194304 4128768 262144 262144 15360 15360 20480 30720 26040 121272 26040 51128
34 5345344 5266736 314432 314432 36864 123492 36864 59912
36 6718464 6625152 373248 373248 35096 253480 35096 90832
38 8340544 8230800 438976 438976 51840 171612 51840 83528
40 10240000 10112000 512000 512000 50040 294456 50040 112856
42 12446784 12298608 592704 592704 63872 378428 63872 143816
44 14992384 14822016 681472 681472 70104 319656 70104 134768
46 17909824 17715152 778688 778688 92928 302316 92928 147848
48 21233664 21012480 884736 884736 83192 609784 83192 216952
50 25000000 24750000 1000000 1000000 115968 482844 115968 210344
52 29246464 28965248 1124864 1124864 116952 519624 116952 220832
54 34012224 33697296 1259712 1259712 139520 753340 139520 295528
56 39337984 38986752 1404928 1404928 142008 759288 142008 299864
58 45265984 44875760 1560896 1560896 188160 601812 188160 295688
60 51840000 51408000 1728000 1728000 162200 1415752 162200 477952
62 59105344 58628688 1906624 1906624 230400 733836 230400 360968
64 67108864 66584576 2097152 2097152 73728 73728 98304 147456 216504 990648 216504 415160
66 75898944 75323952 2299968 2299968 255488 1381132 255488 540424
68 85525504 84896640 2515456 2515456 264984 1138632 264984 488960
70 96040000 95354000 2744000 2744000 316416 1544148 316416 627848
72 107495424 106748928 2985984 2985984 285752 2216824 285752 773080
74 119946304 119135856 3241792 3241792 393984 1242612 393984 612872
76 133448704 132570752 3511808 3511808 371544 1578408 371544 680240
78 148060224 147111120 3796416 3796416 424832 2240516 424832 883784
80 163840000 162816000 4096000 4096000 412152 2465016 412152 932216
82 180848704 179745968 4410944 4410944 537600 1687236 537600 833288
84 199148544 197963136 4741632 4741632 457688 3621032 457688 1253744
86 218803264 217531152 5088448 5088448 620928 1944636 620928 960968
88 239878144 238515200 5451776 5451776 565752 2772024 565752 1126424
90 262440000 260982000 5832000 5832000 635264 4475860 635264 1635100
92 286557184 284999808 6229504 6229504 663192 2770344 663192 1200272
94 312299584 310638416 6644672 6644672 812544 2535372 812544 1254152
96 339738624 337969152 7077888 7077888 683768 5001976 683768 1771768
98 368947264 367064880 7529536 7529536 905472 3391308 905472 1537736

100 400000000 398000000 8000000 8000000 826776 4514280 826776 1759280
102 432972864 430850448 8489664 8489664 958592 4896148 958592 1951816
104 467943424 465693696 8998912 8998912 939768 4497336 939768 1842008
106 504990784 502608752 9528128 9528128 1168128 3628596 1168128 1797128
108 544195584 541676160 10077696 10077696 994136 7158568 994136 2545456
110 585640000 582978000 10648000 10648000 1254528 5642436 1254528 2363336
112 629407744 626597888 11239424 11239424 1158456 6337080 1158456 2467256
114 675584064 672620976 11852352 11852352 1342208 6780716 1342208 2712968
116 724255744 721133952 12487168 12487168 1337304 5494728 1337304 2393120
118 775511104 772225040 13144256 13144256 1614720 4998012 1614720 2477768
120 829440000 825984000 13824000 13824000 1302200 12364408 1302200 4077208
122 886133824 882502128 14526784 14526784 1785600 5521236 1785600 2737928
124 945685504 941872256 15252992 15252992 1635864 6694056 1635864 2919248
126 1008189504 1004188752 16003008 16003008 1782656 11471180 1782656 4215848
128 1073741824 1069547520 16777216 16777216 344064 344064 458752 688128 1764792 8007096 1764792 3345848
130 1142440000 1138046000 17576000 17576000 2081280 9156588 2081280 3866888

136 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

0 20 40 60 80 100 120 140
1

2

3

4

5

6

7

8

9

10

N

N
um

be
r o

f r
ea

l a
dd

iti
on

s(
lo

g1
0)

Direct DFT
Row column DFT
Vector radix FFT
Row column FFT
Visual DFT
M spacing based DFT

Fig. 6.3: AR of different 2-D DFT computational scheme for N

6.1.2 2-D UMRT
The 2-D UMRT computation by three methods developed in section 5.6 namely, modified direct
method, visual method and three layer M spacing based method are simulated using Matlab 7.0 on
Intel® Pentium®4 CPU, 1.5 GHZ, machine. Table 6.3 shows the time taken (in seconds) for the
computation of 2-D UMRT by the above schemes for different sizes of data matrix and fig. 6.4
shows the corresponding plot. It is seen that for smaller values of N up to 12, the modified Direct
UMRT method performs slightly better. This is due to the overheads in the computation of
particular solution for each UMRT coefficient, which is significant. However for higher values of
N, the M spacing based UMRT out performs the other methods in terms of speed.

Fig. 6.4: Comparison of execution time for different 2-D UMRT computational schemes

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 137

Table 6.3: Execution time (in sec.) of 2-D UMRT computational schemes for N

N

Modified Direct
UMRT

(s)

Visual
UMRT

(s)

M spacing
UMRT

(s)
4 0 0.016 0.016
6 0.15 0.016 0.015
8 0.015 0.016 0.016

10 0.016 0.031 0.031
12 0.016 0.031 0.062
14 0.031 0.047 0.031
16 0.047 0.062 0.047
18 0.079 0.109 0.078
20 0.11 0.125 0.094
22 0.125 0.172 0.078
24 0.218 0.25 0.204
26 0.219 0.235 0.172
28 0.36 0.313 0.219
30 0.469 0.406 0.203
32 0.469 0.344 0.265
34 0.657 0.36 0.188
36 0.829 0.641 0.375
38 1.032 0.562 0.297
40 1.156 0.781 0.422
42 1.5 0.89 0.468
44 1.672 0.891 0.391
46 2.016 0.829 0.438
48 2.204 1.344 0.656
50 2.797 1.266 0.562
60 5.438 2.594 1.078
70 10.453 3.406 1.219
80 15.547 5.516 2.047
90 27.438 7.89 2.688

100 39.828 10.203 3.297
128 92.812 20.391 6.062
200 602.063 87.937 23.578
256 1455.297 169.25 42.484
300 3186.578 333.343 86.36
400 9197.656 757.359 185.047
500 23817.031 1324.5 321.625

6.1.2.1 Computational complexity

No complex operations are involved in 2-D UMRT computation. The number of real additions
involved in the computation of 2-D UMRT can be calculated by subtracting the total number of real
additions in layer 3 for the redundant MRT coefficients from that required for M spacing based 2-D DFT.
From (6.5), number of real additions for the redundant MRT coefficients corresponding to the basic

DFT coefficients in layer 3 = ∑ −
edm

eedm nrdmMnb).1..(, (6.9)

where dme is the gcd(k1, k2, M) when M/dm ≠ ϕ (N/dm).

2 2
(). ., 2. () (. 1)R UMRT dm dm eedm dme

Mi e A N nb M nb M dm nr
dm

= + − − −∑ ∑ . (6.10)

138 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

The number of complex multiplications is a significant component in the 2-D DFT

computation using M spacing based method, as can be seen in Table 6.4. Fewer number of MRT

coefficients are computed in UMRT, when N is not a power of 2, which reduces the number of real

additions required. When N is a power of 2, the number of real additions required for 2-D DFT and

UMRT are same, since same number of MRT coefficients need be computed. From the table, it can

be observed that for 2-D DFT computation, N having more number of divisors is suitable as it

require less number of complex operations, whereas for 2-D UMRT, N/2 prime is suitable.

Table 6.4: Computational complexity of 2-D DFT & UMRT for M spacing method
M spacing based method

2-D DFT 2-D UMRT
N MC AC AR AR
4 12 12 56 56
6 64 64 200 168
8 156 156 416 416

10 384 384 776 680
12 556 556 1880 1464
14 1152 1152 1928 1736
16 1500 1500 3200 3200
18 2368 2368 5672 4104
20 2988 2988 7304 6200
22 4800 4800 6728 6248
24 4924 4924 16160 14304
26 8064 8064 10760 10088
28 8652 8652 18296 16184
30 11200 11200 31688 20040
32 13020 13020 25088 25088
34 18432 18432 23048 21896
36 17548 17548 55736 39096
38 25920 25920 31688 24568
40 25020 25020 62816 52640
42 31936 31936 79944 52584
44 35052 35052 64664 59576
46 46464 46464 54920 52808
48 41596 41596 133760 99456
50 57984 57984 94376 77000
52 58476 58476 103880 96824
54 69760 69760 156008 106920
56 71004 71004 157856 138656
58 94080 94080 107528 104168
60 81100 81100 315752 195000
62 115200 115200 130568 126728
64 108252 108252 198656 198656

210 4033600 4033600 13887816 7413000
660 111453100 111453100 495508616 276243000
780 184461100 184461100 798561816 450972600
1540 1505888076 1505888076 4856834024 3220124600
4620 37685147500 37685147500 218507101512 106207193400
4622 49348252800 49348252800 49433704328 49412341448

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 139

6.1.3 Parallel distributed architectures and other methods for 8 × 8 point DFT
Three parallel distributed architectures and other methods for 2-D DFT computation are simulated

in Matlab 7.4 and their time of execution for 8 × 8 point DFT, in AMD Athlon™ 64 processor

running at 2.39 GHZ with a memory of 768 MB of RAM, is shown in table 6.5. As seen in section

6.1.1, for small values of N, modified DFT perform slightly better when compared to Modified

DFT using basic DFT, M spacing and visual methods. This is due to the overhead due to the

requirement of computing indices of basic DFT coefficients. This overhead is negligible for higher

values of N when compared to the computation gain obtained by the new algorithms. In M spacing

based method and visual method there is additional overhead due to the computation of particular

solution, which is significant for small values of N. In M spacing based method, it is required to

classify the basic DFT coefficients based on frequency index. This also contribute to the

computation time and is significant for small values of N. M spacing based method is simulated in

three different ways, one using the general algorithm developed in section 4.2.5.4, second and third

one by using equations developed in section 4.2.4 with and without calculating the indices of basic

DFT coefficients respectively. Column no. 6 of table 6.5 shows the timing of M spacing method,

where layer 3 is computed directly using equations without the requirement of computing the

particular solutions and hence the improvement in timing. The timing of M spacing method in

column 7 is obtained by computing layer 3 directly using equations and by using pre-computed

values for the indices of basic DFT coefficients. The performance improvement is noticed as the

software overhead reduces. The timing in column 7 is comparable with the simulation results of

version I and II architectures. Among the parallel distributed architectures, version I performs

slightly better than the other two.
Table 6.5: Computation time for 8 × 8 point DFT by different methods

Direct
DFT

(1)

Modified
Direct

(2)

Modified
Direct
using
basic
DFT

(3)

Visual
method

(4)

M spacing
(using

algorithm)

(5)

M spacing
(using

equations)

(6)

M spacing
(using

equations
and without
calculating
Basic DFT

coefficients)
(7)

Version I
Architecture

(8)

Version II
Architecture

(9)
40.25ms 6.893ms 12.123ms 14.417ms 24.215ms 6.995ms 6.733ms 6.544ms 6.569ms

6.1.4 Parallel distributed architectures and other methods for 8 × 8 point UMRT
Even though MRT computation [140] does not involve complex multiplications, redundancy is too

high. In section 5.1 it is shown that UMRT coefficients can be obtained by removing all types of

redundancy so that it require only the same memory as required for the original data. Table 6.6

140 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

shows the time of execution, in AMD Athlon™ 64 processor running at 2.39 GHZ with a memory

of 768 MB of RAM, for both non architecture methods and the architecture methods for the

computation of 8 × 8 point UMRT. The discussion in section 6.1.3 holds true here also. Version I

and II architectures perform better when compared to all other methods.

Table 6.6: Computation time for 8 × 8 point UMRT by different methods

Modified
Direct method

Visual
method

M spacing
(using

algorithm)

M spacing
(using

equations)

M spacing
(using

equations
and without
calculating
Basic DFT

coefficients)

Version I Version II

4.998ms 9.563ms 12.623ms 1.483ms 1.323ms 0.211ms 0.221ms

6.2 FPGA implementation of the architectures for 2-D UMRT
In the architecture models for the computation of 8 × 8 point DFT, UMRT coefficients are obtained

at the output of the penultimate layer. All the three parallel distributed architectures are simulated

and synthesized using Xilinx® 10.1 ISE where optimization selected is ‘balanced’ with a speed

grade of -2. VHDL using behavioral modeling is used to describe the model. Target device selected

is the Xilinx’s xc5vlx330-2-ff1760 of Virtex V family of FPGA. The device is so selected to have

maximum number of I/O pins for fully parallel implementation of the architecture where all the 8 ×

8 data will be available in parallel at the input and the UMRT coefficients will be available in

parallel at the output pins at the end of computation. Test benches are created and the results of

computation are verified with the actual values and found to be exact.

6.2.1 Fully parallel implementation of 2-D UMRT
In the fully parallel implementation of 8 × 8 UMRT it is assumed that the data size is 7 bit and all

the 8 × 8 data arrives at the input in parallel, as shown in fig. 6.5. The 64 UMRT coefficients, each

of 8 bit size, are available in parallel at the output after computation. The massive parallelism

available in FPGA is exploited. The implementation uses fully combinational logic.

Fig. 6.5: Fully parallel 8 × 8 UMRT

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 141

The results of the synthesis of the three parallel distributed architectures are shown in table 6.7. It is

noticed that the M spacing model performs slightly better when compared to the other two in terms

of speed, where as it outperforms the other two in terms of the area. Moreover the version I and

version II architectures are designed for N = 8 only and the algorithm cannot be extended to other

values of N. The M spacing based architecture can be used for any even value of N. Table 6.7 also

shows the synthesis results of 10 × 10 point UMRT. Two devices are required to implement the

same due to the limitation in the maximum number of I/O buffers (1200) available in the target

device selected.

Table 6.7: Synthesis results of fully parallel version of 2-D UMRT

8 × 8 UMRT 10 × 10 UMRT Performance factors
Version I Version II M Spacing M spacing

No. of
adders/subtractors

594 527 371 673

Cell usage- BELs 12276 10544 8027 14436
No. of SLICE LUTs 4584 4032 2920
Max. combinational

path delay
10.848ns 10.848ns 10.618ns 25.211ns

Logic delay 6.984ns 6.984ns 7.007ns 12.102ns
Routing delay 3.864ns 3.864ns 3.611ns 13.109ns

6.2.2 Different schemes of M spacing based architecture for 8 × 8 point UMRT
DSP algorithms are used in various real time applications with different sampling rate

requirements. The different sample rate and computation requirements necessitate different

architecture considerations for implementation of DSP algorithms. Different schemes for M spacing

based 8 × 8 point UMRT implemented in FPGA are illustrated below.

6.2.2.1 Fully parallel implementation of four layer architecture

In the M spacing based architecture synthesized in section 6.2.1, the number of computations in

layer 3 is not same for all coefficients. The number of terms to be added, for UMRT coefficients in

layer 3, when gcd(k1, k2, M) > 1 is gcd(k1, k2, M) times more than that required for the computation

of UMRT coefficients with gcd(k1, k2, M) = 1. In order to make the number of computations of each

UMRT coefficient in layer 3 the same, i.e., M - 1 additions, it is split into two as in section 4.2.3.

The number of additions in the newly formed layer (i.e. layer 4) is gcd(k1, k2, M) -1. The number of

computations in layer 4 is maximum for UMRT coefficients when gcd(k1, k2, M) = M and

minimum when gcd(k1, k2, M) = 1. The synthesis results are as shown in table 6.8. Due to the

increase in number of layers, both the hardware requirement and time of execution has increased

when compared to the three layer architecture. But the model is quite suitable for pipelined

142 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

computation in which the computation of a new block of data starts before completing the

computation of the previous data set.

Table 6.8: Synthesis results of fully parallel, 3 & 4 layer M spacing 8 × 8 point UMRT

Performance factors M Spacing
(three layer)

M spacing
(four layer)

No. of
adders/subtractors

371 393

Cell usage- BELs 8027 8228
No. of SLICE LUTs 2920 3047
Max. combinational

path delay
10.618ns 11.073ns

Logic delay 7.007ns 7.007ns
Routing delay 3.611ns 4.066ns

6.2.2.2 Semi parallel implementation

In this type of implementation data are read in parallel. 8 × 8 UMRT coefficients are available in

parallel at the output and the computation of first two layers is also done in parallel. But in layer 3

all UMRT coefficients are computed concurrently, while computation of each UMRT coefficient is

done sequentially. The table 6.9 shows synthesis result of the maximum combinational path delay

(MCPD) in different scenarios.

Table 6.9: MCPD for the computation of different combinations of UMRT coefficients

Computation of UMRT coefficients involved Max. comb. path delay (ns)
All N2 coefficients 18.645

Coefficients when gcd(k1, k2, M) = 4 alone 18.590
Coefficients when gcd(k1, k2, M) = 2 alone 13.285
Coefficients when gcd(k1, k2, M) = 1 alone 10.215
Coefficients when gcd(k1, k2, M) = 4 and 2 18.613
Coefficients when gcd(k1, k2, M) = 2 and 1 13.432

Coefficients when gcd(k1, k2, M) = 1 and UMRT(4, 2) & UMRT(4,6) 13.105
Coefficients when gcd(k1, k2, M) = 1 and UMRT(0, 0) 14.929
Coefficients when gcd(k1, k2, M) = 1 and UMRT(2, 0) 12.765

In table 6.9, the UMRT coefficients when gcd(k1, k2, M) = 4 takes maximum time due to the M2 – 1

computations required, while the computation of UMRT coefficients when gcd(k1, k2, M) = 1 takes

minimum time as there are only M – 1 computations for each UMRT coefficient. First two rows of

the table 6.9 shows that apart from the logic delay, as the number of UMRT coefficients increases,

routing delay also increases.

6.2.2.3 Parallel distributed architecture with data in/out serially

a) Single data in and single coefficient out

 In this type of implementation data are read in serially one per clock cycle. This requires 64

clock cycles. After all the data are available, the computations are done in parallel. The results of

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 143

the computations, i.e. the UMRT coefficients are send out one per clock cycle. The UMRT chip is

shown in fig. 6.6 and the synthesis results are shown in table 6.10. The entire process requires 64 +

64 = 128 clock cycles.

Fig. 6.6: 8 × 8 UMRT chip with one data in (parallel implementation)

b) Two data in and single coefficient out
 Two data at M spacing as in fig. 6.7 are read, during each clock cycle. The computations in

parallel commence only after all the 8 × 8 data are available. The results are sent out serially one

per clock cycle. Total number of clock cycles required for the entire operation is 32 + 64 = 96. The

synthesis results are depicted in table 6.10.

Fig. 6.7: 8 × 8 UMRT chip with two data in (parallel implementation)

c) Four data in and single coefficient out
 In fig. 6.8, four data at M spacing are read in one clock cycle. The number of clock cycle to

read in all the data reduces to 16 at the expense of increase in the number of input pins. After all the

data are available the computations are carried out in parallel and the results are sent out serially

one per clock cycle. Total number of clock cycles required is 16 + 64 = 80. In the block diagram

shown in fig. 6.9, the memory block is used to store the input data, which is a fully parallel one.

The synthesis results are in table 6.10.

Fig. 6.8: 8 × 8 UMRT chip with four data in (parallel implementation)

144 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

Fig. 6.9: Block diagram of the 8 × 8 UMRT chip with four data in

Table 6.10: Synthesis results of fully parallel, three layer M spacing 8 × 8 point UMRT

Performance factors Single Data in, single
coefficient out

Two Data in, single
coefficient out

Four Data in, single
coefficient out

Max. frequency 620.848 MHZ 510.347 MHZ 629.743 MHZ
Cell usage: BELS 8317 8278 8260

Flip flops 538 536 534
IO Buffers 17 24 39

Clock buffers 1 1 1

6.2.2.4 Sequential implementation

a) Four input serially and one result out sequentially
In fig. 6.10, four data at M spacing are read in parallel per clock cycle and the computation

of the pattern C, D, E and F corresponding to the above data are also done and stored in the
registers. 16 clock cycles are required to read in the 8 × 8 data. After all the data are read in, the
computation of UMRT is carried out. First UMRT coefficient is send out in the 17th clock cycle. 64
UMRT coefficients are sent out sequentially which takes 64 clock cycles. 80 clock cycles are
required for the entire results to be available. The maximum frequency of operation is 581.311
MHZ. This frequency mainly depends on the maximum computational delay in any of the clock
cycles. The maximum time of computation required for UMRT coefficients is when gcd(k1, k2, M)
= 4 i.e., in the computation of UMRT(0, 0), UMRT(4, 0), UMRT(0, 4) and UMRT(4, 4) where
there are 7 additions. The synthesis results are shown in table 6.11. This architecture requires that
the data should be given in a definite order.

Fig. 6.10: 8 × 8 UMRT chip with four Data in (sequential implementation)

Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT 145

b) Two input serially and one UMRT out sequentially
In this scheme two data are read at a time in each clock cycle and the corresponding A and

B values are computed, as in fig. 6.11. After reading all the data and computing A and B, the

computation of C, D, E and F commences. One value each of C, D, E and F are computed per clock

cycles and hence require 16 clock cycles to compute. In the 49th clock cycle first UMRT coefficient

is computed and the result is sent out through the output pins. In the subsequent clock cycle, UMRT

coefficients are computed and sent out sequentially. So the entire process requires 32 + 16 + 64 =

112 clock cycles.

Fig. 6.11: 8 × 8 UMRT chip with two Data in and single UMRT out serially

Table 6.11: Synthesis results of 8 × 8 UMRT chips shown in fig. 6.10 and 6.11

Performance factors Four Data in, single
coefficient out

Two Data in, single
coefficient out

Max. frequency 581.311 MHZ 631.532 MHZ
Cell usage: BELS 2375 3725

Flip flops 530 1044
IO Buffers 39 25

Clock buffers 16 16

6.2.2 Comparison of different FPGA implementations
FPGA implementation of version I, II and three layer M spacing based method for 8 × 8 UMRT
computation, as in section 6.2.1, shows that the M spacing method is better in terms of time and
space as it require less number of adders.

Routing delay of 8 × 8 UMRT and 10 × 10 UMRT using M spacing architectures in section
6.2.1 is 3.611ns and 13.109ns respectively. The increase in routing delay for 10 × 10 UMRT is due
to the increase in hardware complexity as it requires an additional 302 adders. Moreover the
generated hardware is a highly interconnected one as each output of layer 2 in fig. 5.6 is required
for computing several UMRT coefficients. This also contributes to the routing delay.

The cell usage of fully parallel implementation of 8 × 8 UMRT using four layer M spacing
parallel distributed architecture in section 6.2.1 is 8027, whereas that of sequential implementation

146 Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT

with four data input, as in section 6.2.2.4, requires only 2375. The number of external I/O data pins
required for the fully parallel version is 960 whereas that of the sequential one is 36. However, the
sequential version requires data storage and there will be problems connected with clocks. The
entire computation in fully parallel version takes only 10.618ns, whereas the sequential version
require 80 clock cycles with a clock frequency of 581 MHZ. Hence the selection of either of the
above architecture is a trade off between time and space. Both the time and space is high in the
implementation developed in 6.2.2.2, since the input/output are sequential and the computations are
in parallel.

6.3 Conclusion
The 2-D DFT/UMRT computation using M spacing based method performs better when compared
to the existing methods as well as the other methods developed namely visual method and Modified
direct method. Table 6.4 suggests that the M spacing based method is more suitable for 2-D DFT
computation when N has more number of divisors, whereas 2-D UMRT computes faster for N/2
prime. FPGA implementations of 8 × 8 UMRT using different methods show that the M spacing
based method has the potential to be used for high speed real time applications. The different
schemes implemented for M spacing based method show its flexibility in implementation to suit
different applications. It is the trade off between time and space, which determines the selection of
proper scheme for the application.

CHAPTER 7

DISCUSSIONS AND CONCLUSIONS

Visual representation of 2-D DFT coefficients in terms of 2 × 2 data is presented in chapter 3 and

the same is analyzed to develop an algorithm to compute 2-D DFT.

7.1 Visual representation

A visual representation of DFT coefficients based on 2 × 2 DFT was developed in [88] for ease of

analysis of 2-D signals in the frequency domain. The DFT coefficients were represented visually

using a set of primitive symbols derived from the relation between 2 × 2 data and 2 × 2 DFT

coefficients. This gives a visual representation of the relation between N × N point DFT and 2 × 2

point DFTs. A visual representation based on 2 × 2 data, presented in chapter 3 on the other hand,

gives a direct relationship between time domain data and the frequency domain representation in

terms of visuals. These visuals are the representatives of data points involved in the computation of

DFT coefficients. Thus the frequency domain analysis of 2-D signals using these visuals is possible

without computing the DFT coefficients, there by reducing the computational requirement

significantly.

The important features of the visual representation based on 2 × 2 data are discussed below.

7.1.1 The software
The visual representation of 2-D DFT coefficients in terms of 2 × 2 data for any even value of N

can be constructed using the software developed in VC++. If the visual representation of a few

selected DFT coefficients is only required, the software allows the user to indicate the desired

frequency index and obtain the visual output. Similarly if only a selected few p
kkY
2,1
 are required, by

indicating the desired frequency and phase, the user will obtain the desired visual representation.

7.1.2 Computation
The visual representation is data independent and hence can be used as a lookup table to compute

the DFT coefficient of any index (1k , 2k). The position and nature of the data involved in

148 Discussions and Conclusions

computing ,1 2

p
k kY of any DFT coefficient can be analyzed. The patterns available in the selected few

DFT coefficients can be analyzed easily and can be used to generate simple and efficient schemes

for its computation.

7.1.3 Exploitation of redundancy
Redundancy in computation present at different levels has been analyzed using the visual

representation, which enables to reduce the computational complexity. E.g., p
kkY
2,1
 of many DFT

coefficients are either same or sign reversed form of some other DFT coefficients. Hence it is

enough to compute p
kkY
2,1
 of one among such DFT coefficients named basic DFT coefficient and

other coefficients could be derived. The fig. 3.5 shows that the number of basic DFT coefficient is

high when the number of dm is more. It is more efficient when N/2 is prime, where nb is only 2N +

8.

Section 5.1 shows that, when N is not a power of 2, many p
kkY
2,1
of several DFT coefficients

need not be computed due to derived redundancy. There is no derived redundancy when N is a

power of 2. The derived redundancy is eliminated to obtain UMRT, which can be used as an

alternate way of representing signals. From table 5.13, the derived redundancy is high when N has

more number of divisors. The number of real additions is low when N/2 is prime as in table 6.4.

Hence UMRT will be most efficient when N/2 is prime.

In section 3.2.3.1, it is observed that one cell is enough to represent the coefficients in group

1 and one row/column for group 2 and 3 coefficients. Also deduced that the visual representation

of p
kkY
2,1
 for p = 0 if available, the visual representation for other values of p could be obtained by

circular shift of the pattern. Hence the visual representation of p
kkY
2,1
 for any one value of p is enough

to represent the DFT coefficient. So flexibility in the visual representation scheme can be provided

to effectively utilize the memory without affecting the speed. E.g., if there is memory constraint,

storing of the visual representation can be done by eliminating the redundancy at all levels, so that

at the time of retrieval, it can be derived by proper circular shift of the identical row/column. Thus

the visual representation of unique cells of the unique p
kkY
2,1
 need be stored and others could be

derived.

It is seen in section 3.2.4 that the visual representation of p
kkY
2,1
 corresponding to lower orders

of N are contained in higher orders. The redundancy in visual representation of p
kkY
2,1
 between

different N’s is illustrated using theorem 3.4 and 3.5. Thus it is enough to store the visual

Discussions and Conclusions 149

representation of few higher orders of N so that the visual representation of all p
kkY
2,1
 of lower orders

of N if required can be obtained by visual manipulation, using the relation stated in the theorems.

7.2 Computation of 2-D DFT
Theorem 3.1 shows that the existence of p

kkY
2,1
 depends on the divisors, dm, of M and that the

number of complex multiplications for a DFT coefficient is not exactly N/2, but less than that

depending on the divisors. The number of complex multiplications for a DFT coefficient is M/dm –

1. Thus the number of complex multiplications is less for N with more number of divisors.

Due to the redundancy present among p
kkY
2,1
of several DFT coefficients, p

kkY
2,1
 of a basic set of

DFT coefficients need be computed and others could be derived. The mathematical relation

developed in section 3.2.5 for the number of basic DFT coefficients show that, it is low when N/2 is

prime and high when N is having more number of divisors. The algorithm presented in section

3.2.6 gives a procedure for computing the index values of the basic set of DFT coefficients. The 2-

D DFT computation can be simplified using the basic DFT coefficients identified.

The patterns in the basic DFT coefficients have been analyzed to derive an algorithm for its

computation. Using the visual approach, entire 2-D DFT coefficients, for any even N, could be

computed by permutation over p. Computation of selected few DFT coefficients is also possible.

The visual approach for 2-D DFT computation outperforms the conventional DFT computation,

modified DFT and closed form method in terms of speed as seen in figure 6.1.

7.3 Architecture
Parallel Distributed architecture developed in [71] is suitable for 2-D DFT for a particular order N

such that ((N))4 = 2. Using a similar approach, Version I and Version II parallel distributed

architecture for the computation of 8 × 8 point DFT is developed based on the analysis of visual

representation in terms of 2 × 2 DFT. A parallel distributed approach is employed in which the

computations are in terms of real additions. There are 4 layers of computational units. The last

layer alone involves complex operations that too are scaling by the pre-computed twiddle factor

values. The architecture has a highly parallel structure and can be employed, since most of the

image processing applications use the standard 8 × 8 size. The architectures are developed as a step

towards extending the model to implement 2-D DFT for ((N))4 = 0. A generalized architecture can

then be derived for an even N. But the primitive symbols combination for group 2 and 3

coefficients differs for ((N))4 = 2 and N = 8. There is significant difference in the architecture

developed with that of [71] and hence a generalized architecture based on the above approach is not

feasible.

150 Discussions and Conclusions

The analysis of visual representation based on 2 × 2 data lead to the development of M

spaced architecture for 2-D DFT computation. The model is capable of implementing 2-D DFT of

any even N. 2-D DFT computation can be done for odd values of N using the M spacing method,

by padding one row and column with zero to make it even.

There are 4 layers of computational units in the M spacing based architecture. The

computations in the processing layers are in terms of real additions and hence the speed of

operations is high. Scaling by the twiddle factors in the last layer is the only complex operations

involved in this architecture. Redundancy of computation at various levels has been eliminated. The

number of complex multiplication and addition are same for version I, II and M spacing based

architectures, for an 8 × 8 data matrix. However the number of real addition are 592, 504 and 416

for version I, II and M spacing based 8 × 8 point DFT computation respectively.

7.4 2-D UMRT

The 2- D UMRT coefficients for any even N are unique, numerically compact and require only the

same memory space as required for the original image. If the signal can be represented in terms of

2-D UMRT coefficients, then the only computation required will be the real additions. In versions I

and II architectures shown in fig. 4.2 & 4.4, for the computation of 8 × 8 point DFT, UMRT

coefficients are available at the output of layer 3, except for the group 1 coefficients. One real

addition performed for the group 1 coefficients in the fourth layer has to be accommodated in the

third layer. So the layer 3 has to be modified slightly. The computations are in terms of real

addition only. So the speed of operation is high and memory requirement is low. In the four layer

M spacing based architecture shown in fig. 4.8, which compute the N × N point DFT, where N is

even, MRT coefficients corresponding to the basic DFT coefficients are available at the output of

layer 3. For the computation of 2-D UMRT, the fourth layer can be fully avoided. The third layer

is modified in fig. 5.6 so that we need compute only UMRT coefficients rather than computing all
p

kkY
2,1
 corresponding to the basic DFT coefficients. There is reduction in computation for layer 3, as

shown in table 6.4. Simulation results in MALAB®, section 6.1.2, shows that M spacing based 2-D

UMRT is better in terms of speed when compared to the existing methods and the visual approach.

7.5 FPGA implementation

The three fully parallel distributed architecture for the computation of 8 × 8 point UMRT, namely

version I, version II and M spacing method, are implemented in FPGA using Xilinx®. The

synthesized results show that the M spacing based architecture performs better when compared to

the other two architectures in terms of area and speed. Moreover it is a generalized architecture.

Discussions and Conclusions 151

FPGA can be reconfigured to compute 2-D UMRT for the data matrix of any even N. Different

schemes of M spacing based architectures synthesized in FPGA reveal that it can be modified to

meet the different constraints such as area and speed.

7.6 Suggestions for further work in the field

7.6.1 Visual representation
1. Visual representation of DFT coefficients can be made more interactive by incorporating the

result of the analysis. E.g., the software may be modified to display the basic DFT coefficients,

of a data matrix of size N, having a particular value of gcd(k1, k2, M). Thus by integrating the

visual and analytical methods, only the relevant visuals need be handled for further analysis.

2. The software can be modified to highlight the patterns or features available in the selected

coefficients. E.g., in applications like texture analysis where a few DFT coefficients need be

computed, the identification of similar patterns in such coefficients can be used to derive simple

computational techniques for hardware implementation.

3. Instead of using the primitive symbols based on 2 × 2 data, the data in an MRT coefficient can be

represented using “▫” for data to be added and “▪” if the corresponding data is to be subtracted.

Absence of a symbol indicates that the data in the corresponding position is not involved in the

computation. This type of representation scheme if employed can be used to obtain the visual

representation of a DFT/MRT coefficient from that of a known coefficient by visual

manipulation. In cases where memory is a constraint, the visual representation of a selected few

coefficients need be stored, in the form of one cell or one row/column of cells while that of the

other coefficients, if required, can be obtained by visual manipulation.

4. In section 3.2.4, it is shown that the visual representation of p
kkY
2,1
corresponding to lower orders is

contained in higher orders. Similarly many of the visual representation of p
kkY
2,1
 of higher orders

can be constructed using the visual representation of lower orders. Analysis of the visual

representation of different N can be carried out to obtain all p
kkY
2,1
 of higher orders from lower

orders by visual manipulation. This will enable to compute 2-D DFT of higher orders using the

hardware, which compute lower orders.

7.6.2 Algorithm
1. 2-D signal representation using basic DFT coefficients is possible and hence can be used to form

a variable length transform. The length of the transform is 2N + 8 for N/2 prime and 3N – 2

when N is a power of 2. The properties of the variable length transform can be analyzed.

152 Discussions and Conclusions

2. Algorithm for computing the inverse of the transform formed from the basic DFT coefficients

can be developed.

3. A suitable algorithm is to be developed which will compute 2-D DFT of higher ordes, if the

visual representation of lower orders are available and vice-versa.

4. 2-D IUMRT algorithm is to be developed.

5. The placement scheme satisfies the linearity property. It does not satisfy the matrix properties

such as transpose and hence the possibility of developing a suitable scheme for placement of

UMRT coefficients can be explored.

6. The possibility of obtaining a direct mapping between data and UMRT coefficients is to be

explored.

7. During the analysis of derived redundancy in section 5.1, ,1 2

p
k kY of a DFT coefficient is combined

to obtain ,1 2

p
k kY of some other DFT coefficient. Relation between the frequency indices of these

DFT coefficients can be analyzed.

7.6.3 Architecture
1. Pipelined techniques can be incorporated in the architecture to improve performance. E.g., the

number of computations for UMRT coefficients depends on gcd(k1, k2, M). In a fully parallel

implementation, this is a bottle neck for coefficients with higher value of gcd(k1, k2, M). This

can be minimized by employing parallel/pipeline technique.

2. 8 × 8 point DFT computation using version I and II parallel distributed architecture can be

implemented in FPGA.

3. N × N DFT computation using four layer and five layer M spacing parallel distributed

architectures can be implemented in FPGA.

4. An architecture is to be developed which will compute 2-D DFT/UMRT of higher orders using

that of lower orders and vice-versa.

5. Parallel distributed architecture for the computation of 2-D IDFT/IUMRT can be developed.

6. Parallel distributed architecture incorporating the duality property of 2-D UMRT/IUMRT is to be

developed.

7. A suitable scheme to reconfigure FPGA, multiple times during computation, for different size of

the data matrix as per the application demands.

APPENDIX A

VISUAL REPRESENTATION OF DFT COEFFICIENTS BASED ON 2 × 2 DFT

A.1 Primitive symbols and its Mnemonics

Fig. A.1: List of primitive symbols based on 2 × 2 DFT

In order to understand picture in general the following rule may be applied:

• A white rectangle implies that the DFT coefficient at that point is to be added.
• A black rectangle implies that the DFT coefficient at that point is to be subtracted.
• Thin lines indicate that the nodes involved are to be added.
• Bold lines indicate that the nodes involved are to be subtracted.

The meaning of a few primitive symbols and the corresponding mnemonics used in the visual
representation are as below:
1. Symbol named LAP (Left Above Positive) indicates that the DFT coefficients on the (0, 0)th

position of the 2 × 2 DFT is taken with a positive sign and rest of the data are not considered.
Similarly, RAP (right above positive), RBP (right below positive), LBP (left below positive)
indicates consideration of DFT coefficients at positions (0, 1), (1, 1) and (1, 0) respectively. It is
to be noted that in the visual representation a hollow square symbol represents single positive
DFT point.

2. Symbol named DP (diagonal positive) indicates that the two DFT coefficients on the diagonal of
the 2 × 2 DFT matrix i.e. at position (0, 0) and (1, 1) are taken with a positive sign and the rest are
not considered. A thin diagonal line is shown in the visual representation. Similarly CP (cross-
diagonal positive) considers DFT points on the cross- diagonal i.e. at position (0, 1) and (1, 0). A
thin cross-diagonal line shows it.

154 Appendix A

A.2 Visual representation of 8 × 8 DFT based on 2 × 2 DFT

Fig. A.2: Visual representation based on 2 × 2 DFT for N = 8

Appendix A 155

Fig. A.2: Visual representation of DFT coefficients for N = 8 (contd…)

A.3 Matrix showing the grouping of DFT coefficients for N = 8

 Y0,0 Y0,1 Y0,2 Y0,3 Y0,4 Y0,5 Y0,6 Y0,7

 Y1,0 Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6 Y1,7

 Y = Y2,0 Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6 Y2,7

 Y3,0 Y3,1 Y3,2 Y3,3 Y3,4 Y3,5 Y3,6 Y3,7

 Y4,0 Y4,1 Y4,2 Y4,3 Y4,4 Y4,5 Y4,6 Y4,7

 Y5,0 Y5,1 Y5,2 Y5,3 Y5,4 Y5,5 Y5,6 Y5,7

 Y6,0 Y6,1 Y6,2 Y6,3 Y6,4 Y6,5 Y6,6 Y6,7

 Y7,0 Y7,1 Y7,2 Y7,3 Y7,4 Y7,5 Y7,6 Y7,7

Fig. A.3: Matrix showing the grouping of DFT coefficients for N = 8

156 Appendix A

APPENDIX B

B.1 Greatest Common Divisor (gcd)
Definition: Let , ,a b c∈Z. If 0a ≠ or 0,b ≠ gcd(,)a b is defined to be the largest integer d such

that d | a and d | b and is denoted as g(,)a b .

gcd properties:

1. If e | a then –e | a..

2. If 0a ≠ , then the largest positive integer that divides a is .a

3. () ()gcd , gcd , .a b a b=

4. () ()gcd , gcd , .a b b a=

5. If 0a ≠ or 0b ≠ , then ()gcd ,a b exists and satisfies

 () { }0 gcd , min , .a b a b< ≤

6. () ()gcd , , gcd(gcd , ,).a b c a b c=

B.2 Linear Diophantine Equation
Diophantine equations are equations that require integer solutions. The linear Diophantine

equation a.x + b.y = c has a solution only if gcd(,)a b divides c. In that case, there are infinite

number of solutions given by: x = x0 + (b / gcd(,)a b)t, y = y0 – (a / gcd(,)a b)t, where (x0,y0) is a

solution, t∈Z.

B.3 Bezout’s Lemma:
For all integers a and b there exist integers s and t such that

gcd(,)a b = s.a + t.b

B.4 Theorems on Linear Congruence
Theorem B.4.1:

If a.c ≡ ((b.c))m and gcd(c, m) = g, then a ≡ ((b))m/g

158 Appendix B

Theorem B.4.2:

The linear congruence a.x + b.y ≡ ((c))m has solutions if and only if g | c where g =
gcd(a, b, m).
Theorem B.4.3:

If gcd(a, m) = 1 or gcd(b, m) = 1, then the linear congruence a.x + b.y ≡ ((c))m has
exactly m incongruent solutions.
Theorem B.4.4:

The linear congruence a.x + b.y ≡ ((c))m has exactly gm incongruent solutions, where g =
gcd(a, b, m), provided g | c.

B.5 Principle of Inclusion Exclusion
If A1, A2, …, An are finite set, then

1
1

1 , :1 , , , :11
... (1) ...

n n
n

i i i j i j k n
i i j i j n i j k i j k ni

A A A A A A A A A−

= ≤ < ≤ ≤ < < ≤=
= − + − + −∑ ∑ ∑U I I I I I ,

where A denotes the cardinality of the set A.

B.6 Euclidean Algorithm, Extended Euclidean Algorithm.
The Euclidean algorithm is used to determine the gcd of any two integers.
Let ,a b∈Z be such that 0.a b≥ > Set 0r a= and 1r b= . Suppose that

0 1 1 2 2 1

1 2 2 3 3 2

2 1 1 1

1

,0
,0

.....
,0

.
n n n n n n

n n n

r r q r r r
r r q r r r

r r q r r r
r r q

− − − −

−

= + ≤ <

= + ≤ <

= + ≤ <

=

Then, ()gcd , na b r= = (the last non-zero remainder).

B.7 Co-prime integer.
Definition: A co-prime integer of N is a positive integer less than or equal to a number N which
is also relatively prime to N, where 1 is counted as being relatively prime to all numbers.
B.8 Euler Totient Function.
Definition: The Euler totient function ()Nφ , also called totient function, is defined as the

number of positive integers less than N, that are co-prime to (i.e., do not contain any factor other
than 1 in common with) N, where 1 is counted as being co-prime to all numbers. The totient
function ()Nϕ can be simply defined as the number of co-prime integers of N. E.g., ()24 8ϕ = .

It is mathematically expressed as

|

1() 1
r N

N N
r

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∏ϕ

APPENDIX C

Computation of layer 3 for N = 4, 6, 10 and 12. p

kkY
21 , /MRT coefficients of basic DFT coefficients

are computed.

C.1 Layer 3 computations for N = 4

0
0,0Y = C(0,0)+C(0,1)+C(1,0)+C(1,1) 0

0,2Y = C(0,0)+C(0,1)-C(1,0)-C(1,1)

0
2,0Y = C(0,0)-C(0,1)+C(1,0)-C(1,1) 0

2,2Y = C(0,0)-C(0,1)-C(1,0)+C(1,1)

0
0,1Y = D(0,0)+D(0,1) 1

0,1Y = D(1,0)+D(1,1)

0
2,1Y = D(0,0)-D(0,1) 1

2,1Y = D(1,0)-D(1,1)

0
1,0Y = E(0,0)+E(1,0) 1

1,0Y = E(0,1)+E(1,1)

0
1,2Y = E(0,0)-E(1,0) 1

1,2Y = E(0,1)-E(1,1)

0
1,1Y = F(0,0)-F(1,1) 1

1,1Y = F(0,1)+F(1,0)

0
1,3Y = F(0,0)+F(1,1) 1

1,3Y = F(0,1)-F(1,0)

C.2 Layer 3 computations for N = 6

0
0,0Y = C(0,0)+C(0,1)+C(0,2)+C(1,0)+C(1,1)+C(1,2)+C(2,0)+C(2,1)+C(2,2)

0
0,3Y = D(0,0)+D(0,1)+D(0,2)-D(1,0)-D(1,1)-D(1,2)+D(2,0)+D(2,1)+D(2,2)

0
3,0Y = E(0,0)-E(0,1)+E(0,2)+E(1,0)-E(1,1)+E(1,2)+E(2,0)-E(2,1)+E(2,2)

0
3,3Y = F(0,0)-F(0,1)+F(0,2)-F(1,0)+F(1,1)-F(1,2)+F(2,0)-F(2,1)+F(2,2)

0
0,1Y = D(0,0)+D(0,1)+D(0,2) 1

0,1Y = D(1,0)+D(1,1)+D(1,2)

2
0,1Y = D(2,0)+D(2,1)+D(2,2) 0

0,2Y = C(0,0)+C(0,1)+C(0,2)

1
0,2Y = -C(2,0)-C(2,1)-C(2,2) 2

0,2Y = C(1,0)+C(1,1)+C(1,2)

0
1,0Y = E(0,0)+E(1,0)+E(2,0) 1

1,0Y = E(0,1)+E(1,1)+E(2,1)

2
1,0Y = E(0,2)+E(1,2)+E(2,2) 0

1,1Y = F(0,0)-F(1,2)-F(2,1)

1
1,1Y = F(0,1)+F(1,0)-F92,2) 2

1,1Y = F(0,2)+F(1,1)+F(2,0)

160 Appendix C

0
1,2Y = E(0,0)-E(1,1)+E(2,2) 1

1,2Y = E(0,1)-E(1,2)-E(2,0)

2
1,2Y = E(0,2)+E(1,0)-E(2,1) 0

1,3Y = F(0,0)-F(1,0)+F(2,0)

1
1,3Y = F(0,1)-F(1,1)+F(2,1) 2

1,3Y = F(0,2)-F(1,2)+F(2,2)

0
1,4Y = E(0,0)+E(1,2)-E(2,1) 1

1,4Y = E(0,1)-E(1,0)-E(2,2)

2
1,4Y = E(0,2)-E(1,1)+E(2,0) 0

1,5Y = F(0,0)+F(1,1)+F(2,2)

1
1,5Y = F(0,1)+F(1,2)-F(2,0) 2

1,5Y = F(0,2)-F(1,0)-F(2,1)

0
2,0Y = C(0,0)+C(1,0)+C(2,0) 1

2,0Y = -C(0,2)-C(1,2)-C(2,2)

2
2,0Y = C(0,1)+C(1,1)+C(2,1) 0

2,1Y = D(0,0)-D(1,1)+D(2,2)

1
2,1Y = -D(0,2)+D(1,0)-D(2,1) 2

1,2Y = D(0,1)-D(1,2)+D(2,0)

0
2,2Y = C(0,0)+C(1,2)+C(2,1) 1

2,2Y = -C(0,2)-C(1,1)-C(2,0)

2
2,2Y = C(0,1)+C(1,0)+C(2,2) 0

2,3Y = D(0,0)-D(1,0)+D(2,0)

1
2,3Y = -D(0,2)+D(1,2)-D(2,2) 2

2,3Y = D(0,1)-D(1,1)+D(2,1)

0
2,4Y = C(0,0)+C(1,1)+C(2,2) 1

2,4Y = -C(0,2)-C(1,0)-C(2,1)

2
2,4Y = C(0,1)+C(1,2)+C(2,0) 0

2,5Y = D(0,0)-D(1,2)+D(2,1)

1
2,5Y = -D(0,2)+D(1,1)-D(2,0) 2

2,5Y = D(0,1)-D(1,0)+D(2,2)

0
3,1Y = F(0,0)-F(0,1)+F(0,2) 1

3,1Y = F(1,0)-F(1,1)+F(1,2)

2
3,1Y = F(2,0)-F(2,1)+F(2,2) 0

3,2Y = E(0,0)-E(0,1)+E(0,2)

1
3,2Y = -E(2,0)+E(2,1)-E(2,2) 2

3,2Y = E(1,0)-E(1,1)+E(1,2)

C.3 Layer 3 computations for N = 10

0
0,0Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+C(2,0)+

C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(3,0)+C(3,1)+C(3,2)+C(3,3)+C(3,4)+C(4,0)+C(4,1)+C(4,

2)+ C(4,3)+C(4,4)
0
0,5Y = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4)-D(1,0)-D(1,1)-D(1,2)-D(1,3)-D(1,4) + D(2,0) +

D(2,1) + D(2,2)+D(2,3)+D(2,4)-D(3,0)-D(3,1)-D(3,2)-D(3,3)-D(3,4) + D(4,0) + D(4,1) +

D(4,2) + D(4,3) + D(4,4)
0
5,0Y = E(0,0)-E(0,1)+E(0,2)-E(0,3)+E(0,4)+E(1,0)-E(1,1)+E(1,2)-E(1,3)+E(1,4)+E(2,0)-E(2,1)

+E(2,2)-E(2,3)+E(2,4)+E(3,0)-E(3,1)+E(3,2)-E(3,3)+E(3,4)+E(4,0)-E(4,1)+E(4,2)-

E(4,3)+E(4,4)

Appendix C 161

0
5,5Y = F(0,0)-F(0,1)+F(0,2)-F(0,3)+F(0,4)-F(1,0)+F(1,1)-F(1,2)+F(1,3)-F(1,4)+F(2,0)-F(2,1)

+F(2,2)-F(2,3)+F(2,4)-F(3,0)+F(3,1)-F(3,2)+F(3,3)-F(3,4)+F(4,0)-F(4,1)+F(4,2)-

F(4,3)+F(4,4)

0
0,1Y = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4) 1

0,1Y = D(1,0)+D(1,1)+D(1,2)+D(1,3)+D(1,4)

2
0,1Y = D(2,0)+D(2,1)+D(2,2)+D(2,3)+D(2,4) 3

0,1Y = D(3,0)+D(3,1)+D(3,2)+D(3,3)+D(3,4)

4
0,1Y = D(4,0)+D(4,1)+D(4,2)+D(4,3)+D(4,4) 0

0,2Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)

1
0,2Y = -C(3,0)-C(3,1)-C(3,2)-C(3,3)-C(3,4) 2

0,2Y = C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)

3
0,2Y = -C(4,0)-C(4,1)-C(4,2)-C(4,3)-C(4,4) 4

0,2Y = C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)

0
1,0Y = E(0,0)+E(1,0)+E(2,0)+E(3,0)+E(4,0) 1

1,0Y = E(0,1)+E(1,1)+E(2,1)+E(3,1)+E(4,1)

2
1,0Y = E(0,2)+E(1,2)+E(2,2)+E(3,2)+E(4,2) 3

1,0Y = E(0,3)+E(1,3)+E(2,3)+E(3,3)+E(4,3)

4
1,0Y = E(0,4)+E(1,4)+E(2,4)+E(3,4)+E(4,4) 0

1,1Y = F(0,0)-F(1,4)-F(2,3)-F3,2)-F(4,1)

1
1,1Y = F(0,1)+F(1,0)-F(2,4)-F(3,3)-F(4,2) 2

1,1Y = F(0,2)+F(1,1)+(2,0)-F(3,4)-F(4,3)

3
1,1Y = F(0,3)+F(1,2)+F(2,1)+F(3,0)-F(4,4) 4

1,1Y = F(0,4)+F(1,3)+F(2,2)+F(3,1)+F(4,0)

0
1,2Y = E(0,0)-E(1,3)-E(2,1)+E(3,4)+E(4,2) 1

1,2Y = E(0,1)-E(1,4)-E(2,2)-E(3,0)+E(4,3)

2
1,2Y = E(0,2)+E(1,0)-E(2,3)-E(3,1)+E(4,4) 3

1,2Y = E(0,4)+E(1,2)+E(2,0)-E(3,3)-E(4,1)

4
1,2Y = E(0,4)+E(1,2)+E(2,0)-E(3,3)-E(4,1) 0

1,3Y = F(0,0)-F(1,2)+F(2,4)+F(3,1)-F(4,3)

1
1,3Y = F(0,1)-F(1,3)-F(2,0)+F(3,2)-F(4,4) 2

1,3Y = F(0,2)-F(1,4)-F(2,1)+F(3,3)+F(4,0)

3
1,3Y = F(0,3)+F(1,0)-F(2,2)+F(3,4)+F(4,1) 4

1,3Y = F(0,4)+F(1,1)-F(2,3)-F(3,0)+F(4,2)

0
1,4Y = E(0,0)-E(1,1)+E(2,2)-E(3,3)+E(4,4) 1

1,4Y = E(0,1)-E(1,2)+E(2,3)-E(3,4)-E(4,0)

2
1,4Y = E(0,2)-E(1,3)+E(2,4)+E(3,0)-E(4,1) 3

4,1Y = E(0,3)-E(1,4)-E(2,0)+E(3,1)-E(4,2)

4
1,4Y = E(0,4)+E(1,0)-E(2,1)+E(3,2)-E(4,3) 0

1,5Y = F(0,0)-F(1,0)+F(2,0)-F(3,0)+F(4,0)

1
1,5Y = F(0,1)-F(1,1)+F(2,1)-F(3,1)+F(4,1) 2

1,5Y = F(0,2)-F(1,2)+F(2,2)-F(3,2)+F(4,2)

3
1,5Y = F(0,3)-F(1,3)+F(2,3)-F(3,3)+F(4,3) 4

1,5Y = F(0,4)-F(1,4)+F(2,4)-F(3,4)+F(4,4)

0
6,1Y = E(0,0+E(1,4)-E(2,3)+E(3,2)-E(4,1) 1

1,6Y = E(0,1)-E(1,0)-E(2,4)-E(3,3)+E(4,2)

2
1,6Y = E(0,2)-E(1,1)-E(2,0)+E(3,4)-E(4,3) 3

1,6Y = E(0,3)-E(1,2)+E(2,1)-E(3,0)-E(4,4)

4
1,6Y = E(0,4)-E(1,3)+E(2,2)-E(3,1)+E(4,0) 0

7,1Y = F(0,0)+F(1,3)-F(2,1)-F(3,4)+F(4,2)

1
1,7Y = F(0,1)+F(1,4)-F(2,2)+F(3,0)+F(4,3) 2

1,7Y = F(0,2)-F(1,00-F(2,3)+F(3,1)+F(4,4)

162 Appendix C

3
1,7Y = F(0,3)-F(1,1)-F(2,4)+F(3,2)-F(4,0) 4

1,7Y = F(0,4)-F(1,2)+F(2,0)+F(3,3)-F(4,1)

0
8,1Y = E(0,0)+E(1,2)+E(2,4)-E(3,1)-E(4,3) 1

8,1Y = E(0,1)+E(1,3)-E(2,0)-E(3,2)-E(4,4)

2
8,1Y = E(0,2)+E(1,4)-E(2,1)-E(3,3)+E(4,0) 3

8,1Y = E(0,3)-E(1,0)-E(2,2)-E(3,4)+E(4,1)

4
8,1Y = E(0,4)-E(1,1)-E(2,3)+E(3,0)+E(4,2) 0

9,1Y = F(0,0)+F(1,1)+F(2,2)+F(3,3)+F(4,4)

1
9,1Y = F(0,1)+F(1,2)+F(2,3)+F(3,4)-F(4,0) 2

9,1Y = F(0,2)+F(1,3)+F(2,4)-F(3,0)-F(4,1)

3
9,1Y = F(0,3)+F(1,4)-F(2,0)-F(3,1)-F(4,2) 4

9,1Y = F(0,4)-F(1,0)-F(2,1)-F(3,2)-F(4,3)

0
2,0Y = C(0,0)+ C(1,0)+C(2,0)+C(3,0)+C(4,0) 1

2,0Y = -C(0,3)- C(1,3)-C(2,3)-C(3,3)-C(4,0)

2
2,0Y = C(0,1)+ C(1,1)+C(2,1)+C(3,1)+C(4,1) 3

0,2Y = -C(0,4)- C(1,4)-C(2,4)-C(3,4)-C(4,4)

4
0,2Y = C(0,2)+ C(1,2)+C(2,2)+C(3,2)+C(4,2) 0

2,1Y = D(0,0)-D(1,2)+D(2,4)-D(3,1)+D(4,3)

1
2,1Y = -D(0,3)+D(1,0)-D(2,2)+D(3,4)-D(4,1) 2

1,2Y = D(0,1)-D(1,3)+D(2,0)-D(3,2)+D(4,4)

3
1,2Y = -D(0,4)+D(1,1)-D(2,3)+D(3,0)-D(4,2) 4

1,2Y = D(0,2)-D(1,4)+D(2,1)-D(3,3)+D(4,0)

0
2,2Y = C(0,0)+C(1,4)+C(2,3)+C(3,2)+C(4,1) 1

2,2Y = -C(0,3)-C(1,2)-C(2,1)-C(3,0)-C(4,4)

2
2,2Y = C(0,1)+C(1,0)+C(2,4)+C(3,3)+C(4,2) 3

2,2Y = -C(0,4)-C(1,3)-C(2,2)-C(3,1)-C(4,0)

4
2,2Y = C(0,2)+C(1,1)+C(2,0)+C(3,4)+C(4,3) 0

3,2Y = D(0,0)-D(1,1)+D(2,2)-D(3,3)+D(4,4)

1
3,2Y = -D(0,3)+D(1,4)-D(2,0)+D(3,1)-D(4,2) 2

3,2Y = D(0,1)-D(1,2)+D(2,3)-D(3,4)+D(4,0)

3
3,2Y = -D(0,4)+D(1,0)-D(2,1)+D(3,2)-D(4,3) 4

3,2Y = D(0,2)-D(1,3)+D(2,4)-D(3,0)+D(4,1)

0
4,2Y = C(0,0)+C(1,3)+C(2,1)+C(3,4)+C(4,2) 1

4,2Y = -C(0,3)-C(1,1)-C(2,4)-C(3,2)-C(4,0)

2
4,2Y = C(0,1)+C(1,4)+C(2,2)+C(3,0)+C(4,3) 3

4,2Y = -C(0,4)-C(1,2)-C(2,0)-C(3,3)-C(4,1)

4
4,2Y = C(0,2)+C(1,0)+C(2,3)+C(3,1)+C(4,4) 0

5,2Y = D(0,0)-D(1,0)+D(2,0)-D(3,0)+D(4,0)

1
5,2Y = -D(0,3)+D(1,3)-D(2,3)+D(3,3)-D(4,3) 2

5,2Y = D(0,1)-D(1,1)+D(2,1)-D(3,1)+D(4,1)

3
5,2Y = -D(0,4)+D(1,4)-D(2,4)+D(3,4)-D(4,4) 4

5,2Y = D(0,2)-D(1,2)+D(2,2)-D(3,2)+D(4,2)

0
6,2Y = C(0,0)+C(1,2)+C(2,4)+C(3,1)+C(4,3) 1

6,2Y = -C(0,3)-C(1,0)-C(2,2)-C(3,4)-C(4,1)

2
6,2Y = C(0,1)+C(1,3)+C(2,0)+C(3,2)+C(4,4) 3

6,2Y = -C(0,4)-C(1,1)-C(2,3)-C(3,0)-C(4,2)

4
6,2Y = C(0,2)+C(1,4)+C(2,1)+C(3,3)+C(4,0) 0

7,2Y = D(0,0)-D(1,4)+D(2,3)-D(3,2)+D(4,1)

1
7,2Y = -D(0,3)+D(1,2)-D(2,1)+D(3,0)-D(4,4) 2

7,2Y = D(0,1)-D(1,0)+D(2,4)-D(3,3)+D(4,2)

3
7,2Y = -D(0,4)+D(1,3)-D(2,2)+D(3,1)-D(4,0) 4

7,2Y = D(0,2)-D(1,1)+D(2,0)-D(3,4)+D(4,3)

0
8,2Y = C(0,0)+C(1,1)+C(2,2)+C(3,3)+C(4,4) 1

8,2Y = -C(0,3)-C(1,4)-C(2,0)-C(3,1)-C(4,2)

2
8,2Y = C(0,1)+C(1,2)+C(2,3)+C(3,4)+C(4,0) 3

8,2Y = -C(0,4)-C(1,0)-C(2,1)-C(3,2)-C(4,3)

Appendix C 163

4
8,2Y = C(0,2)+C(1,3)+C(2,4)+C(3,0)+C(4,1) 0

9,2Y = D(0,0)-D(1,3)+D(2,1)-D(3,4)+D(4,2)

1
9,2Y = -D(0,3)+D(1,1)-D(2,4)+D(3,2)-D(4,0) 2

9,2Y = D(0,1)-D(1,4)+D(2,2)-D(3,0)+D(4,3)

3
9,2Y = -D(0,4)+D(1,2)-D(2,0)+D(3,3)-D(4,1) 4

9,2Y = D(0,2)-D(1,0)+D(2,3)-D(3,1)+D(4,4)

0
1,5Y = F(0,0)+F(0,1)+F(0,2)+F(0,3)+F(0,4) 1

1,5Y = F(1,0)+F(1,1)+F(1,2)+F(1,3)+F(1,4)

2
1,5Y = F(2,0)+F(2,1)+F(2,2)+F(2,3)+F(2,4) 3

1,5Y = F(3,0)+F(3,1)+F(3,2)+F(3,3)+F(3,4)

4
1,5Y = F(4,0)+F(4,1)+F(4,2)+F(4,3)+F(4,4) 0

2,5Y = E(0,0)-E(0,1)+E(0,2)-E(0,3)+E(0,4)

1
2,5Y = -E3,0)+E(3,1)-E(3,2)+E(3,3)-E(3,4) 2

2,5Y = E(1,0)-E(1,1)+E(1,2)-E(1,3)+E(1,4)

3
2,5Y = -E(4,0)+E(4,1)-E(4,2)+E(4,3)-E(4,4) 4

2,5Y = E(2,0)-E(2,1)+E(2,2)-E(2,3)+E(2,4)

C.4 Layer 3 computations for N = 12

0
0,0Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)+C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+

C(1,5)+C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(2,5)+C(3,0)+C(3,1)+C(3,2)+C(3,3)+C(3,

4)+C(3,5)+C(4,0)+C(4,1)+C(4,2)+C(4,3)+C(4,4)+C(4,5)+C(5,0)+C(5,1)+C(5,2)+C(5,3)+

C(5,4)+C(5,5)
0

6,0Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)-C(1,0)-C(1,1)-C(1,2)-C(1,3)-C(1,4)-C(1,5)

+C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(2,5)-C(3,0)-C(3,1)-C(3,2)-C(3,3)-C(3,4)-C(3,5)

+C(4,0)+C(4,1)+C(4,2)+C(4,3)+C(4,4)+C(4,5)-C(5,0)-C(5,1)-C(5,2)-C(5,3)-C(5,4)-C(5,5)
0

0,6Y = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(4,0)+C(5,0)-C(0,1)-C(1,1)-C(2,1)-C(3,1)-C(4,1)-

C(5,1)+C(0,2)+C(1,2)+C(2,2)+C(3,2)+C(4,2)+C(5,2)-C(0,3)-C(1,3)-C(2,3)-C(3,3)-C(4,3)-

C(5,3)+ C(0,4)+C(1,4)+C(2,4)+C(3,4)+C(4,4)+C(5,4) -C(0,5)-C(1,5)-C(2,5)-C(3,5)-

C(4,5)-C(5,5)
0

6,6Y = C(0,0)-C(0,1)+C(0,2)-C(0,3)+C(0,4)-C(0,5)+ C(1,0)-C(1,1)+C(1,2)-C(1,3)+C(1,4)-C(1,5)+

C(2,0)-C(2,1)+C(2,2)-C(2,3)+C(2,4)-C(2,5)+ C(3,0)-C(3,1)+C(3,2)-C(3,3)+C(3,4)-C(3,5)+

C(4,0)-C(4,1)+C(4,2)-C(4,3)+C(4,4)-C(4,5)+ C(5,0)-C(5,1)+C(5,2)-C(5,3)+C(5,4)-C(5,5)
0
0,1Y = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4)+D(0,5)

1
0,1Y = D(1,0)+D(1,1)+D(1,2)+D(1,3)+D(1,4)+D(1,5)

2
0,1Y = D(2,0)+D(2,1)+D(2,2)+D(2,3)+D(2,4)+D(2,5)

3
0,1Y = D(3,0)+D(3,1)+D(3,2)+D(3,3)+D(3,4)+D(3,5)

4
0,1Y = D(4,0)+D(4,1)+D(4,2)+D(4,3)+D(4,4)+D(4,5)

5
1,0Y = D(5,0)+D(5,1)+D(5,2)+D(5,3)+D(5,4)+D(5,5)

164 Appendix C

0
0,2Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)-C(2,0)-C(2,1)-C(2,2)-C(2,3)-C(2,4)-C(2,5)

2
0,2Y = C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+C(1,5)-C(3,0)-C(3,1)-C(3,2)-C(3,3)-C(3,4)-C(3,5)

4
0,2Y = C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(2,5)-C(4,0)-C(4,1)-C(4,2)-C(4,3)-C(4,4)-C(4,5)

0
3,0Y = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4)+D(0,5)- D(2,0)-D(2,1)-D(2,2)-D(2,3)-D(2,4)-

D(2,5)+ D(4,0)+D(4,1)+D(4,2)+D(4,3)+D(4,4)+D(4,5)
3

3,0Y = D(1,0)+D(1,1)+D(1,2)+D(1,3)+D(1,4)+D(1,5)- D(3,0)-D(3,1)-D(3,2)-D(3,3)-D(3,4)-

D(3,5)+ D(5,0)+D(5,1)+D(5,2)+D(5,3)+D(5,4)+D(5,5)
0

4,0Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)+C(3,0)+C(3,1)+C(3,2)+C(3,3)+C(3,4)+C(3,5)

2
4,0Y = -C(2,0)-C(2,1)-C(2,2)-C(2,3)-C(2,4)-C(2,5)- C(5,0)-C(5,1)-C(5,2)-C(5,3)-C(5,4)-C(5,5)

4
4,0Y = C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+C(1,5)+C(4,0)+C(4,1)+C(4,2)+C(4,3)+C(4,4)+C(4,5)

0
1,0Y = E(0,0)+E(1,0)+E(2,0)+E(3,0)+E(4,0)+E(5,0)

1
1,0Y = E(0,1)+E(1,1)+E(2,1)+E(3,1)+E(4,1)+E(5,1)

2
1,0Y = E(0,2)+E(1,2)+E(2,2)+E(3,2)+E(4,2)+E(5,2)

3
1,0Y = E(0,3)+E(1,3)+E(2,3)+E(3,3)+E(4,3)+E(5,3)

4
1,0Y = E(0,4)+E(1,4)+E(2,4)+E(3,4)+E(4,4)+E(5,4)

5
0,1Y = E(0,5)+E(1,5)+E(2,5)+E(3,5)+E(4,5)+E(5,5)

0
1,1Y = F(0,0)-F(1,5)-F(2,4)-F(3,3)-F(4,2)-F(5,1)

1
1,1Y = F(0,1)+F(1,0)-F(2,5)-F(3,4)-F(4,3)-F(5,2)

2
1,1Y = F(0,2)+F(1,1)+F(2,0)-F(3,5)-F(4,4)-F(5,3)

3
1,1Y = F(0,3)+F(1,2)+F(2,1)+F(3,0)-F(4,5)-F(5,4)

4
1,1Y = F(0,4)+F(1,3)+F(2,2)+F(3,1)+F(4,0)-F(5,5)

5
1,1Y = F(0,5)+F(1,4)+F(2,3)+F(3,2)+F(4,1)+F(5,0)

0
1,2Y = E(0,0)-E(1,4)-E(2,2)-E(3,0)+E(4,4)+E(5,2)

1
1,2Y = E(0,1)-E(1,5)-E(2,3)-E(3,1)+E(4,5)+E(5,3)

2
1,2Y = E(0,2)+E(1,0)-E(2,4)-E(3,2)-E(4,0)+E(5,4)

3
1,2Y = E(0,3)+E(1,1)-E(2,5)-E(3,3)-E(4,1)+E(5,5)

4
1,2Y = E(0,4)+E(1,2)+E(2,0)-E(3,4)-E(4,2)-E(5,0)

5
2,1Y = E(0,5)+E(1,3)+E(2,1)-E(3,5)-E(4,3)-E(5,1)

Appendix C 165

0
1,3Y = F(0,0)-F(1,3)-F(2,0)+F(3,3)+F(4,0)-F(5,3)

1
1,3Y = F(0,1)-F(1,4)-F(2,1)+F(3,4)+F(4,1)-F(5,4)

2
1,3Y = F(0,2)-F(1,5)-F(2,2)+F(3,5)+F(4,2)-F(5,5)

3
1,3Y = F(0,3)+F(1,0)-F(2,3)-F(3,0)+F(4,3)+F(5,0)

4
1,3Y = F(0,4)+F(1,1)-F(2,4)-F(3,1)+F(4,4)+F(5,1)

5
3,1Y = F(0,5)+F(1,2)-F(2,5)-F(3,2)+F(4,5)+F(5,2)

0
1,4Y = E(0,0)-E(1,2)+E(2,4)+E(3,0)-E(4,2)+E(5,4)

1
1,4Y = E(0,1)-E(1,3)+E(2,5)+E(3,1)-E(4,3)+E(5,5)

2
1,4Y = E(0,2)-E(1,4)-E(2,0)+E(3,2)-E(4,4)-E(5,0)

3
4,1Y = E(0,3)-E(1,5)-E(2,1)+E(3,3)-E(4,5)-E(5,1)

4
1,4Y = E(0,4)+E(1,0)-E(2,2)+E(3,4)+E(4,0)-E(5,2)

5
4,1Y = E(0,5)+E(1,1)-E(2,3)+E(3,5)+E(4,1)-E(5,3)

0
1,5Y = F(0,0)-F(1,1)+F(2,2)-F(3,3)+F(4,4)-F(5,5)

1
1,5Y = F(0,1)-F(1,2)+F(2,3)-F(3,4)+F(4,5)+F(5,0)

2
1,5Y = F(0,2)-F(1,3)+F(2,4)-F(3,5)-F(4,0)+F(5,1)

3
1,5Y = F(0,3)-F(1,4)+F(2,5)+F(3,0)-F(4,1)+F(5,2)

4
1,5Y = F(0,4)-F(1,5)-F(2,0)+F(3,1)-F(4,2)+F(5,3)

5
5,1Y = F(0,5)+F(1,0)-F(2,1)+F(3,2)-F(4,3)+F(5,4)

0
6,1Y = E(0,0)-E(1,0)+E(2,0)-E(3,0)+E(4,0)-E(5,0)

1
1,6Y = -E(0,1)+E(1,1)-E(2,1)+E(3,1)-E(4,1)+E(5,1)

2
1,6Y = E(0,2)-E(1,2)+E(2,2)-E(3,2)+E(4,2)-E(5,2)

3
1,6Y = -E(0,3)+E(1,3)-E(2,3)+E(3,3)-E(4,3)+E(5,3)

4
1,6Y = E(0,4)-E(1,4)+E(2,4)-E(3,4)+E(4,4)-E(5,4)

5
6,1Y = -E(0,5)+E(1,5)-E(2,5)+E(3,5)-E(4,5)+E(5,5)

0
7,1Y = F(0,0)+F(1,5)-F(2,4)+F(3,3)-F(4,2)+F(5,1)

1
1,7Y = F(0,1)-F(1,0)-F(2,5)+F(3,4)-F(4,3)+F(5,2)

2
1,7Y = F(0,2)-F(1,1)+F(2,0)+F(3,5)-F(4,4)+F(5,3)

3
1,7Y = F(0,3)-F(1,2)+F(2,1)-F(3,0)-F(4,5)+F(5,4)

166 Appendix C

4
1,7Y = F(0,4)-F(1,3)+F(2,2)-F(3,1)+F(4,0)+F(5,5)

5
7,1Y = F(0,5)-F(1,4)+F(2,3)-F(3,2)+F(4,1)-F(5,0)

0
8,1Y = E(0,0)+E(1,4)-E(2,2)+E(3,0)+E(4,4)-E(5,2)

1
8,1Y = E(0,1)+E(1,5)-E(2,3)+E(3,1)+E(4,5)-E(5,3)

2
8,1Y = E(0,2)-E(1,0)-E(2,4)+E(3,2)-E(4,0)-E(5,4)

3
8,1Y = E(0,3)-E(1,1)-E(2,5)+E(3,3)-E(4,1)-E(5,5)

4
8,1Y = E(0,4)-E(1,2)+E(2,0)+E(3,4)-E(4,2)+E(5,0)

5
8,1Y = E(0,5)-E(1,3)+E(2,1)+E(3,5)-E(4,3)+E(5,1)

0
9,1Y = F(0,0)+F(1,3)-F(2,0)-F(3,3)+F(4,0)+F(5,3)

1
9,1Y = F(0,1)+F(1,4)-F(2,1)-F(3,4)+F(4,1)+F(5,4)

2
9,1Y = F(0,2)+F(1,5)-F(2,2)-F(3,5)+F(4,2)+F(5,5)

3
9,1Y = F(0,3)-F(1,0)-F(2,3)+F(3,0)+F(4,3)-F(5,0)

4
9,1Y = F(0,4)-F(1,1)-F(2,4)+F(3,1)+F(4,4)-F(5,1)

5
9,1Y = F(0,5)-F(1,2)-F(2,5)+F(3,2)+F(4,5)-F(5,2)

0
10,1Y = E(0,0)+E(1,2)+E(2,4)-E(3,0)-E(4,2)-E(5,4)

1
10,1Y = E(0,1)+E(1,3)+E(2,5)-E(3,1)-E(4,3)-E(5,5)

2
10,1Y = E(0,2)+E(1,4)-E(2,0)-E(3,2)-E(4,4)+E(5,0)

3
10,1Y = E(0,3)+E(1,5)-E(2,1)-E(3,3)-E(4,5)+E(5,1)

4
10,1Y = E(0,4)-E(1,0)-E(2,2)-E(3,4)+E(4,0)+E(5,2)

5
10,1Y = E(0,5)-E(1,1)-E(2,3)-E(3,5)+E(4,1)+E(5,3)

0
11,1Y = F(0,0)+F(1,1)+F(2,2)+F(3,3)+F(4,4)+F(5,5)

1
11,1Y = F(0,1)+F(1,2)+F(2,3)+F(3,4)+F(4,5)-F(5,0)

2
11,1Y = F(0,2)+F(1,3)+F(2,4)+F(3,5)-F(4,0)-F(5,1)

3
11,1Y = F(0,3)+F(1,4)+F(2,5)-F(3,0)-F(4,1)-F(5,2)

4
11,1Y = F(0,4)+F(1,5)-F(2,0)-F(3,1)-F(4,2)-F(5,3)

5
11,1Y = F(0,5)-F(1,0)-F(2,1)-F(3,2)-F(4,3)-F(5,4)

0
2,0Y = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(4,0)+C(5,0)-C(0,3)-C(1,3)-C(2,3)-C(3,3)-C(4,3)-C(5,3)

2
2,0Y = C(0,1)+C(1,1)+C(2,1)+C(3,1)+C(4,1)+C(5,1)-C(0,4)-C(1,4)-C(2,4)-C(3,4)-C(4,4)-C(5,4)

Appendix C 167

4
0,2Y = C(0,2)+C(1,2)+C(2,2)+C(3,2)+C(4,2)+C(5,2) -C(0,5)-C(1,5)-C(2,5)-C(3,5)-C(4,5)-C(5,5)

0
2,1Y = D(0,0)-D(0,3)-D(2,2)+D(2,5)-D(4,1)+D(4,4)

1
2,1Y = D(1,0)-D(1,3)-D(3,2)+D(3,5)-D(5,1)+D(5,4)

2
1,2Y = D(0,1)-D(0,4)+D(2,0)-D(2,3)-D(4,2)+D(4,5)

3
1,2Y = D(1,1)-D(1,4)+D(3,0)-D(3,3)-D(5,2)+D(5,5)

4
1,2Y = D(0,2)-D(0,5)+D(2,1)-D(2,4)+D(4,0)-D(4,3)

5
1,2Y = D(1,2)-D(1,5)+D(3,1)-D(3,4)+D(5,0)-D(5,3)

0
2,2Y = C(0,0)+C(1,5)+C(2,4)+C(3,3)+C(4,2)+C(5,1)-C(0,3)-C(1,2)-C(2,1)-C(3,0)-C(4,5)-C(5,4)

2
2,2Y = C(0,1)+C(1,0)+C(2,5)+C(3,4)+C(4,3)+C(5,2)-C(0,4)-C(1,3)-C(2,2)-C(3,1)-C(4,0)-C(5,5)

4
2,2Y = C(0,2)+C(1,1)+C(2,0)+C(3,5)+C(4,4)+C(5,3)-C(0,5)-C(1,4)-C(2,3)-C(3,2)-C(4,1)-C(5,0)

0
3,2Y = D(0,0)-D(0,3)-D(2,0)+D(2,3)+D(4,0)-D(4,3)

1
3,2Y = -D(1,2)+D(1,5)+D(3,2)-D(3,5)-D(5,2)+D(5,5)

2
3,2Y = D(0,1)-D(0,4)-D(2,1)+D(2,4)+D(4,1)-D(4,4)

3
3,2Y = D(1,0)-D(1,3)-D(3,0)+D(3,3)+D(5,0)_D(5,3)

4
3,2Y = D(0,2)-D(0,5)-D(2,2)+D(2,5)+D(4,2)-D(4,5)

5
3,2Y = D(1,1)-D(1,4)-D(3,1)+D(3,4)+D(5,1)-D(5,4)

0
4,2Y = C(0,0)+C(1,4)+C(2,2)+C(3,0)+C(4,4)+C(5,2)-C(0,3)-C(1,1)-C(2,5)-C(3,3)-C(4,1)-C(5,5)

2
4,2Y = C(0,1)+C(1,5)+C(2,3)+C(3,1)+C(4,5)+C(5,3)-C(0,4)-C(1,2)-C(2,0)-C(3,4)-C(4,2)-C(5,0)

4
4,2Y = C(0,2)+C(1,0)+C(2,4)+C(3,2)+C(4,0)+C(5,4)-C(0,5)-C(1,3)-C(2,1)-C(3,5)-C(4,3)-C(5,1)

0
5,2Y = D(0,0)-D(0,3)+D(2,1)-D(2,4)+D(4,2)-D(4,5)

1
5,2Y = -D(1,1)+D(1,4)-D(3,2)+D(3,5)+D(5,0)-D(5,3)

2
5,2Y = D(0,1)-D(0,4)+D(2,2)-D(2,5)-D(4,0)+D(4,3)

3
5,2Y = -D(1,2)+D(1,5)+D(3,0)-D(3,3)+D(5,1)-D(5,4)

4
5,2Y = D(0,2)-D(0,5)-D(2,0)+D(2,3)-D(4,1)+D(4,4)

5
5,2Y = D(1,0)-D(1,3)+D(3,1)-D(3,4)+D(5,2)-D(5,5)

0
6,2Y = C(0,0)-C(1,0)+C(2,0)-C(3,0)+C(4,0)-C(5,0)-C(0,3)+C(1,3)-C(2,3)+C(3,3)-C(4,3)+C(5,3)

2
6,2Y = C(0,1)-C(1,1)+C(2,1)-C(3,1)+C(4,1)-C(5,1)-C(0,4)+C(1,4)-C(2,4)+C(3,4)-C(4,4)+C(5,4)

4
6,2Y = C(0,2)-C(1,2)+C(2,2)-C(3,2)+C(4,2)-C(5,2)-C(0,5)+C(1,5)-C(2,5)+C(3,5)-C(4,5)+C(5,5)

168 Appendix C

0
8,2Y = C(0,0)+C(1,2)+C(2,4)+C(3,0)+C(4,2)+C(5,4)-C(0,3)-C(1,5)-C(2,1)-C(3,3)-C(4,3)-C(5,1)

2
8,2Y = C(0,1)+C(1,3)+C(2,5)+C(3,1)+C(4,3)+C(5,5)-C(0,4)-C(1,0)-C(2,2)-C(3,4)-C(4,0)-C(5,2)

4
8,2Y = C(0,2)+C(1,4)+C(2,0)+C(3,2)+C(4,4)+C(5,0)-C(0,5)-C(1,1)-C(2,3)-C(3,5)-C(4,1)-C(5,3)

0
10,2Y = C(0,0)+C(1,1)+C(2,2)+C(3,3)+C(4,4)+C(5,5)-C(0,3)-C(1,4)-C(2,5)-C(3,0)-C(4,1)-C(5,2)

2
10,2Y = C(0,1)+C(1,2)+C(2,3)+C(3,4)+C(4,5)+C(5,0)-C(0,4)-C(1,5)-C(2,0)-C(3,1)-C(4,2)-C(5,3)

4
10,2Y = C(0,2)+C(1,3)+C(2,4)+C(3,5)+C(4,0)+C(5,1)-C(0,5)-C(1,0)-C(2,1)-C(3,2)-C(4,3)-C(5,4)

0
0,3Y = E(0,0)+E(1,0)+E(2,0)+E(3,0)+E(4,0)+E(5,0)-E(0,2)-E(1,2)-E(2,2)-E(3,2)-E(4,2)-E(5,2) +

E(0,4)+E(1,4)+E(2,4)+E(3,4)+E(4,4)+E(5,4)
3

0,3Y = E(0,1)+E(1,1)+E(2,1)+E(3,1)+E(4,1)+E(5,1)-E(0,3)-E(1,3)-E(2,3)-E(3,3)-E(4,3)-E(5,3) +

E(0,5)+E(1,5)+E(2,5)+E(3,5)+E(4,5)+E(5,5)
0

1,3Y = F(0,0)-F(0,2)+F(0,4)-F(3,1)+F(3,3)-F(3,5)

1
1,3Y = F(1,0)-F(1,2)+F(1,4)-F(4,1)+F(4,3)-F(4,5)

2
1,3Y = F(2,0)-F(2,2)+F(2,4)-F(5,1)+F(5,3)-F(5,5)

3
1,3Y = F(0,1)-F(0,3)+F(0,5)+F(3,0)-F(3,2)+F(3,4)

4
1,3Y = F(1,1)-F(1,3)+F(1,5)+F(4,0)-F(4,2)+F(4,4)

5
1,3Y = F(2,1)-F(2,3)+F(2,5)+F(5,0)-F(5,2)+F(5,4)

0
2,3Y = E(0,0)-E(0,2)+E(0,4)-E(3,0)+E(3,2)-E(3,4)

1
2,3Y = -E(2,1)+E(2,3)-E(2,5)+E(5,1)-E(5,3)+E(5,5)

2
2,3Y = E(1,0)-E(1,2)+E(1,4)-E(4,0)+E(4,2)-E(4,4)

3
2,3Y = E(0,1)-E(0,3)+E(0,5)-E(3,1)+E(3,3)-E(3,5)

4
2,3Y = E(2,0)-E(2,2)+E(2,4)-E(5,0)+E(5,2)-E(5,4)

5
2,3Y = E(1,1)-E(1,3)+E(1,5)-E(4,1)+E(4,3)-E(4,5)

0
3,3Y = F(0,0)-F(0,2)+F(0,4)-F(1,1)+F(1,3)-F(1,5)-(F(2,0)-F(2,2)+F(2,4)-F(3,1)+F(3,3)-

F(3,5))+F(4,0)-F(4,2)+F(4,4)-F(5,1)+F(5,3)-F(5,5)
3

3,3Y = F(0,1)-F(0,3)+F(0,5)+F(1,0)-F(1,2)+F(1,4)-(F(2,1)-F(2,3)+F(2,5)+F(3,0)-

F(3,2)+F(3,4))+F(4,1)-F(4,3)+F(4,5)+F(5,0)-F(5,2)+F(5,4)
0

4,3Y = E(0,0)-E(0,2)+E(0,4)+E(3,0)-E(3,2)+E(3,4)

1
4,3Y = -E(1,1)+E(1,3)-E(1,5)-E(4,1)+E(4,3)-E(4,5)

Appendix C 169

2
4,3Y = -E(2,0)-E(2,2)-E(2,4)-E(5,0)+E(5,2)-E(5,4)

3
4,3Y = E(0,1)-E(0,3)+E(0,5)+E(3,1)-E(3,3)+E(3,5)

4
4,3Y = E(1,0)-E(1,2)+E(1,4)+E(4,0)-E(4,2)+E(4,4)

5
4,3Y = -E(2,1)+E(2,3)-E(2,5)-E(5,1)+E(5,3)-E(5,5)

0
6,3Y = E(0,0)-E(1,0)+E(2,0)-E(3,0)+E(4,0)-E(5,0)-(E(0,2)-E(1,2)+E(2,2)-E(3,2)+E(4,2)-E(5,2))+

E(0,4)-E(1,4)+E(2,4)-E(3,4)+E(4,4)-E(5,4)
3

6,3Y = E(0,1)-E(1,1)+E(2,1)-E(3,1)+E(4,1)-E(5,1)-(E(0,3)-E(1,3)+E(2,3)-E(3,3)+E(4,3)-E(5,3))+

E(0,5)-E(1,5)+E(2,5)-E(3,5)+E(4,5)-E(5,5)
0

7,3Y = F(0,0)-F(0,2)+F(0,4)+F(3,1)-F(3,3)+F(3,5)

1
7,3Y = -F(1,0)+F(1,2)-F(1,4)-F(4,1)+F(4,3)-F(4,5)

2
7,3Y = F(2,0)-F(2,2)+F(2,4)+F(5,1)-F(5,3)+F(5,5)

3
7,3Y = F(0,1)-F(0,3)+F(0,5)-F(3,0)+F(3,2)-F(3,4)

4
7,3Y = -F(1,1)+F(1,3)-F(1,5)+F(4,0)-F(4,2)+F(4,4)

5
7,3Y = F(2,1)-F(2,3)+F(2,5)-F(5,0)+F(5,2)-F(5,4)

0
9,3Y = F(0,0)-F(0,2)+F(0,4)+F(1,1)-F(1,3)+F(1,5)-(F(2,0)-F(2,2)+F(2,4)+F(3,1)-F(3,3)+F(3,5))+

F(4,0)-F(4,2)+F(4,4)+F(5,1)-F(5,3)+F(5,5)
3

9,3Y = F(0,1)-F(0,3)+F(0,5)-F(1,0)+F(1,2)-F(1,4)-(F(2,1)-F(2,3)+F(2,5)-F(3,0)+F(3,2)-F(3,4))+

F(4,1)-F(4,3)+F(4,5)-F(5,0)+F(5,2)-F(5,4)
0

0,4Y = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(4,0)+C(5,0)+C(0,3)+C(1,3)+C(2,3)+C(3,3)+C(4,3)+C(5,3)

2
0,4Y = -C(0,2)-C(1,2)-C(2,2)-C(3,2)-C(4,2)-C(5,2)-C(0,5)-C(1,5)-C(2,5)-C(3,5)-C(4,5)-C(5,5)

4
0,4Y = C(0,1)+C(1,1)+C(2,1)+C(3,1)+C(4,1)+C(5,1)+C(0,4)+C(1,4)+C(2,4)+C(3,4)+C(4,4)+C(5,4)

0
1,4Y = D(0,0)+D(0,3)-D(2,1)-D(2,4)+D(4,2)+D(4,5)

1
1,4Y = D(1,0)+D(1,3)-D(3,1)-D(3,4)+D(5,2)+D(5,5)

2
1,4Y = -D(0,2)-D(0,5)+D(2,0)+D(2,3)-D(4,1)-D(4,4)

3
1,4Y = -D(1,2)-D(1,5)+D(3,0)+D(3,3)-D(5,1)-D(5,4)

4
1,4Y = D(0,1)+D(0,4)-D(2,2)-D(2,5)+D(4,0)+D(4,3)

5
1,4Y = D(1,1)+D(1,4)-D(3,2)-D(3,5)+D(5,0)+D(5,3)

0
2,4Y = C(0,0)+C(0,3)+C(2,2)+C(2,5)+C(4,1)+C(4,4)-C(1,1)-C(1,4)-C(3,0)-C(3,3)-C(5,2)-C(5,5)

170 Appendix C

2
2,4Y = -C(0,2)-C(0,5)-C(2,1)-C(2,4)-C(4,0)-C(4,3)+C(1,0)+C(1,3)+C(3,2)+C(3,5)+C(5,1)+C(5,4)

4
2,4Y = C(0,1)+C(0,4)+C(2,0)+C(2,3)+C(4,2)+C(4,5)-C(1,2)-C(1,5)-C(3,1)-C(3,4)-C(5,0)-C(5,3)

0
3,4Y = D(0,0)+D(0,3)-D(2,0)-D(2,3)+D(4,0)+D(4,3)

1
3,4Y = -D(1,1)-D(1,4)+D(3,1)+D(3,4)-D(5,1)-D(5,4)

2
3,4Y = -D(0,2)-D(0,5)+D(2,2)+D(2,5)-D(4,2)-D(4,5)

3
3,4Y = D(1,0)+D(1,3)-D(3,0)-D(3,3)+D(5,0)+D(5,3)

4
3,4Y = D(0,1)+D(0,4)-D(2,1)-D(2,4)+D(4,1)+D(4,4)

5
3,4Y = -D(1,2)-D(1,5)+D(3,2)+D(3,5)-D(5,2)-D(5,5)

0
4,4Y = C(0,0)+C(0,3)+C(2,1)+C(2,4)+C(4,2)+C(4,5)+C(1,2)+C(1,5)+C(3,0)+C(3,3)+C(5,1)+C(5,4)

2
4,4Y = -C(0,2)-C(0,5)-C(2,0)-C(2,3)-C(4,1)-C(4,4)-C(1,1)-C(1,4)-C(3,2)-C(3,5)-C(5,0)-C(5,3)

4
4,4Y =C(0,1)+C(0,4)+C(2,2)+C(2,5)+C(4,0)+C(4,3)+C(1,0)+C(1,3)+C(3,1)+C(3,4)+C(5,2)+C(5,5)

0
5,4Y = D(0,0)+D(0,3)-D(2,2)-D(2,5)+D(4,1)+D(4,4)

1
5,4Y = D(1,2)+D(1,5)-D(3,1)-D(3,4)+D(5,0)+D(5,3)

2
5,4Y = -D(0,2)-D(0,5)+D(2,1)+D(2,4)-D(4,0)-D(4,3)

3
5,4Y = -D(1,1)-D(1,4)+D(3,0)+D(3,3)-D(5,2)-D(5,5)

4
5,4Y = D(0,1)+D(0,4)-D(2,0)-D(2,3)+D(4,2)+D(4,5)

5
5,4Y = D(1,0)+D(1,3)-D(3,2)-D(3,5)+D(5,1)+D(5,4)

0
6,4Y = C(0,0)-C(1,0)+C(2,0)-C(3,0)+C(4,0)-C(5,0)+C(0,3)-C(1,3)+C(2,3)-C(3,3)+C(4,3)-C(5,3)

2
6,4Y = -C(0,2)+C(1,2)-C(2,2)+C(3,2)-C(4,2)+C(5,2)-C(0,5)+C(1,5)-C(2,5)+C(3,5)-C(4,5)+C(5,5)

4
6,4Y = C(0,1)-C(1,1)+C(2,1)-C(3,1)+C(4,1)-C(5,1)+C(0,4)-C(1,4)+C(2,4)-C(3,4)+C(4,4)-C(5,4)

0
8,4Y =C(0,0)+C(0,3)+C(2,2)+C(2,5)+C(4,1)+C(4,4)+C(1,1)+C(1,4)+C(3,0)+C(3,3)+C(5,2)+C(5,5)

2
8,4Y = -C(0,2)-C(0,5)-C(2,1)-C(2,4)-C(4,0)-C(4,3)-C(1,0)-C(1,3)-C(3,2)-C(3,5)-C(5,1)-C(5,4)

4
8,4Y =C(0,1)+C(0,4)+C(2,0)+C(2,3)+C(4,2)+C(4,5)+C(1,2)+C(1,5)+C(3,1)+C(3,4)+C(5,0)+C(5,3)

0
10,4Y = C(0,0)+C(0,3)+C(2,1)+C(2,4)+C(4,2)+C(4,5)-C(1,2)-C(1,5)-C(3,0)-C(3,3)-C(5,1)-C(5,4)

2
10,4Y = -C(0,2)-C(0,5)-C(2,0)-C(2,3)-C(4,1)-C(4,4)+C(1,1)+C(1,4)+C(3,2)+C(3,5)+C(5,0)+C(5,3)

4
10,4Y = C(0,1)+C(0,4)+C(2,2)+C(2,5)+C(4,0)+C(4,3)-C(1,0)-C(1,3)-C(3,1)-C(3,4)-C(5,2)-C(5,5)

0
1,6Y = D(0,0)-D(0,1)+D(0,2)-D(0,3)+D(0,4)-D(0,5)

1
1,6Y = D(1,0)-D(1,1)+D(1,2)-D(1,3)+D(1,4)-D(1,5)

Appendix C 171

2
1,6Y = D(2,0)-D(2,1)+D(2,2)-D(2,3)+D(2,4)-D(2,5)

3
1,6Y = D(3,0)-D(3,1)+D(3,2)-D(3,3)+D(3,4)-D(3,5)

4
1,6Y = D(4,0)-D(4,1)+D(4,2)-D(4,3)+D(4,4)-D(4,5)

5
1,6Y = D(5,0)-D(5,1)+D(5,2)-D(5,3)+D(5,4)-D(5,5)

0
2,6Y = C(0,0)-C(0,1)+C(0,2)-C(0,3)+C(0,4)-C(0,5)-(C(3,0)-C(3,1)+C(3,2)-C(3,3)+C(3,4)-C(3,5))

2
2,6Y = C(1,0)-C(1,1)+C(1,2)-C(1,3)+C(1,4)-C(1,5)-(C(4,0)-C(4,1)+C(4,2)-C(4,3)+C(4,4)-C(4,5))

4
2,6Y = C(2,0)-C(2,1)+C(2,2)-C(2,3)+C(2,4)-C(2,5)-(C(5,0)-C(5,1)+C(5,2)-C(5,3)+C(5,4)-C(5,5))

0
3,6Y = D(0,0)-D(0,1)+D(0,2)-D(0,3)+D(0,4)-D(0,5)-(D(2,0)-D(2,1)+D(2,2)-

D(2,3)+D(2,4)-D(2,5)) + D(4,0)-D(4,1)+D(4,2)-D(4,3)+D(4,4)-D(4,5)

3
3,6Y = D(1,0)-D(1,1)+D(1,2)-D(1,3)+D(1,4)-D(1,5)-(D(3,0)-D(3,1)+D(3,2)-D(3,3)+D(3,4)-

D(3,5))+ D(5,0)-D(5,1)+D(5,2)-D(5,3)+D(5,4)-D(5,5)
0

4,6Y = C(0,0)-C(0,1)+C(0,2)-C(0,3)+C(0,4)-C(0,5)+ C(3,0)-C(3,1)+C(3,2)-C(3,3)+C(3,4)-C(3,5)

2
4,6Y = -(C(2,0)-C(2,1)+C(2,2)-C(2,3)+C(2,4)-C(2,5)+ C(5,0)-C(5,1)+C(5,2)-C(5,3)+C(5,4)-C(5,5))

4
4,6Y = C(1,0)-C(1,1)+C(1,2)-C(1,3)+C(1,4)-C(1,5)+ C(4,0)-C(4,1)+C(4,2)-C(4,3)+C(4,4)-C(4,5)

172 Appendix C

REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of complex
Fourier series,” Math. Comp., vol. 19, pp. 297-301, Apr 1965.

[2] C. L. Liu, Introduction to Combinatorial Mathematics. New York: McGraw-Hill, 1968.

[3] A. J. Pettofrezzo, D. R. Byrkit, Elements of Number Theory. New Jersey: Prentice-Hall,
1970.

[4] N. Ahmed, T. Natarajan and K. R. Rao, “Cooley-Tukey-type algorithm for the Haar
transform,” Electronics Lett., vol. 9, no. 12, pp. 276-278, 14th June 1973.

[5] Y. L. Henry, C. L. Mar and Sheng, “Fast Hadamard transform using the H diagram,”
IEEE Trans. on Comput., pp. 957-960, Oct 1973.

[6] N. Ahmed, T. Natarajan and K. R. Rao, “Discrete cosine transform,” IEEE Trans.
Comput., vol. C-23, pp. 90-93, Jan. 1974.

[7] G. Bongiovanni, P. Corsini and G. Frosini, “One-dimensional and two-dimensional
generalized discrete Fourier transforms,” IEEE Trans. on Acoust., Speech, and Signal
Process., pp. 97-99, Feb. 1976.

[8] D. B. Harris, J. H. McClellan, D. S. K. Chan, H. W. Schuessler, “ Vector radix fast
Fourier transform,” IEEE Int. Conf. on Acoust., Speech and Signal Process., Hartford,
May 9-11, 1977, pp. 548-551.

[9] M. J. Narasimha and A. M. Peterson, “On the computation of the discrete cosine
transform,” IEEE Trans. on Comm., vol. COM-26, no. 6, pp. 934-936, June 1978.

[10] J. H. McClellan and C. M. Rader, Number theory in digital signal processing. Englewood
Cliffs, NJ: Prentice - Hall, 1979.

[11] H. J. Nussbaumer, and P. Quandalle, “Fast computation of discrete Fourier transforms
using polynomial transforms,” IEEE Trans. Acoustics, Speech and Signal Process., vol.
27, no. 2, pp. 169-181, April 1979.

[12] J. Makhoul, “A fast cosine transform in one and two dimensions,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 28, no. 1, pp. 27-34, Feb 1980.

[13] P. R. Roeser and M. E. Jernigan, “Fast Haar transform algorithms,” IEEE Trans. on
comput., vol. c-3 1, no. 2, pp. 175-177, Feb. 1982.

[14] C. Caraiscos and B. Liu, “Two dimensional DFT using mixed time and frequency
decimations,” in proc. IEEE Int. Conf. on Acoust., Speech and Signal Process., May
1982, vol. 7, pp. 24-27.

[15] R. D. Preuss, “Very fast computation of the radix-2 discrete Fourier transform,” IEEE
Trans. Acoustics, Speech and Signal Process., vol. ASSP-30, no. 4, Aug. 1982, pp. 595-
607.

[16] L. N. Bhuyan and D. P. Agrawal, “Performance analysis of FFT algorithms on
multiprocessor systems,” IEEE Trans. on software engineering, vol. se-9, no. 4, Jul. 1983,
pp. 512-521.

174 References

[17] C. D. Thompson, “Fourier transforms in VLSI,” IEEE Trans. on comput., vol. c-32, 1983,
pp. 1047-1057.

[18] D. V. Hall, Microprocessors and digital systems. 2nd edition, Singapore: McGraw Hill,
1983.

[19] W. H. Chen and W. K. Pratt, “Scene Adaptive Coder,” IEEE Trans. on commun., vol.
com-32, no. 3, pp. 225-233, Mar. 1984.

[20] S. M. Said and K. R. Dimond, “Improved implementation of FFT algorithm on a high-
performance processor,” Electron. Lett., vol. 20, no. 8, pp. 347-349, 12th Apr. 1984.

[21] D. E. Dudgeon and R. M. Mersereau, Multidimensional signal processing. Englewood
Cliffs, NJ: Prentice - Hall, 1984.

[22] Z. Wang, “Fast algorithms for the discrete W transform and for the discrete Fourier
transform,” IEEE Trans. Acoustics, Speech and Signal Process., vol. ASSP-32, no. 4, pp.
803-816, Aug. 1984.

[23] M. Vetterli, “Fast 2-d discrete cosine transform,” ICASSP Apr. 1985, vol. 10, pp. 1538-
1541.

[24] M. A. Mehalic, P. L. Rustan and G. P. Route, “Effects of architecture implementation on
DFT algorithm performance,” IEEE Trans. Acoustics, Speech and Signal Process., vol.
asp-33, no. 3, Jun. 1985, pp. 684-693.

[25] C.X.Fan and S.H.Wancr, “A fast Fourier transform algorithm using Hadamard
transform,” ICASSP, Tokyo, 1986, pp. 225-228.

[26] A. Guessoum and R. M. Mersereau, “Fast Algorithms for the multidimensional discrete
Fourier transform,” IEEE Trans. Acoustics, Speech and Signal Process., vol. assp-34, no.
4, Aug. 1986, pp. 937-943.

[27] G. E. Bridges, W. Pries, R. D. Mcleod, M. Yunik, P. G. Gulak and H. C. Card, “Dual
systolic architectures for VLSI digital signal processing systems,” IEEE Trans. on
comput., vol. c-35, no. 10, pp. 916-923, Oct. 1986.

[28] E. E. Swartzlander Jr., VLSI signal processing systems. Kluwer-Academic, 1986.

[29] O. K. Ersoy, “A two-stage representation of DFT and its appllications,” IEEE Trans.
Acoustics, Speech and Signal Process., vol. 35, no. 6, pp. 825-831, Jun. 1987.

[30] T.K. Truong, I. S. Reed, I. Hsu, H. C. Shyu, and H.M. Shao, “A pipeline design of a fast
prime factor DFT on a finite field,” IEEE Trans. on comput., vol. 37, no. 3, pp.266-273,
Mar. 1988.

[31] J. J. Komo and C. Yuan, “Four level Hadamard transform,” in Proc. of the 20th
Southeastern Symp. on Syst. Theory, Mar. 20-22, 1988, pp. 188-191.

[32] E. O. Brigham, The fast Fourier transform and its applications. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[33] G. Knowles, “VLSl architecture for the discrete wavelet transform,” Electron. Lett., vol.
26 no. 15, pp. 1184-1185, 19th Jul. 1990

[34] R. Polge and B. Lawrence, “Comparison of a new multiple radix fast Fourier number
theoretic transform with FFT algorithms in terms of performance and hardware cost,” in
Proc. Southeast conference, Apr. 1-4 1990, pp. 744-749.

References 175

[35] P.Duhamel and C.Guillemot, “Polynomial transform computation of the 2-D DCT,”
ICASSP, Apr. 3-6 1990, vol. 3, pp. 1515-1518.

[36] D. Yang, “Fast discrete radon transform and 2-d discrete Fourier transform,” Electron.
Lett., vol. 26, no. 8, pp. 550-551, 12th Apr. 1990.

[37] M. H. Lee and Y. Yasuda, “Simple systolic array algorithm for Hadamard transform,”
Electron. Lett., vol. 26, no. 18, pp. 26-28, 30th Aug. 1990.

[38] D. Yang, “Fast computation of two-dimensional discrete Fourier transform using fast
discrete radon transform,” in Proc. 10th IEEE Region Conf. on Comput. and Commun.
Syst., Hong Kong, Sep. 1990, pp. 207-210.

[39] A. Gupta and V. Kumar, “On the scalability of FFT on parallel computers,”in Proc. 3rd
Symposium Frontiers of Massively Parallel Computation, Oct 8-10 1990, pp. 69-74.

[40] K. J. R. Liu, “VLSI computing architectures for Haar transform,” Electron. Lett., vol. 26,
no 23, pp. 1962-1963, 8th Nov. 1990.

[41] A. S. Lewis and G. Knowles, “VLSI architecture for 2-D Daubechies wavelet transform
without multipliers,” Electron. Lett., vol. 27, no. 2, pp.171-173, 17th Jan. 1991.

[42] S. Uramoto, O. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane and M.
Yoshimoto, “A 100-MHz 2-D discrete cosine transform core processor,” IEEE J. of
Solid-State Circuits. vol. 27, no. 3, pp. 492-499, Apr. 1991.

[43] D. Rodriguez, “A new FFT algorithm and its implementation on the DSP96002,”
ICASSP, Toronto, Canada, Apr. 14-17, 1991, vol. 3, pp. 2189-2192.

[44] A. Puri and R. Aravind, “Motion-compensated video coding with adaptive perceptual
quantization,” IEEE Trans. Circuits Syst. for Video Technol., vol. 1, no. 4, pp. 351-361,
Dec. 1991.

[45] G. K. Wallace, “The JPEG still picture compression standard,” Commun. ACM, 34(4),
pp. 30-40, 1991.

[46] L. M. Napolitano, and G. R. Redinbo, “On the efficiency of a new efficient algorithm to
compute the two-dimensional discrete Fourier transform,” IEEE Trans. Signal Process.,
vol. 40, no. 2, pp. 469-470, Feb. 1992.

[47] S. C. Chan and K. L. Ho, “Fast Algorithms for Computing the Discrete Cosine
Transform,” IEEE Trans. Circuits Syst.-11: Analog Digital Signal Process., vol. 39, no. 3,
pp. 185-190, Mar. 1992.

[48] I. S. Reed, M. T. Shih, T. K. Truong, E. Hendon and D. W. Tufts, “A VLSI architecture
for simplified arithmetic Fourier transform algorithm,” IEEE Trans. Signal Process., vol.
40, no. 5, pp. 1122-1133, May 1992.

[49] D. Slawecki and W. Li, “DCT/IDCT processor design for high data rate image coding,”
IEEE Trans. Circuits Syst. for Video Technol., vol. 2, no. 2, pp. 135-146, June 1992.

[50] S. I. Sayegh, “A pipeline processor for mixed-size FFT’s,” IEEE Trans. Signal Process.,
vol. 40, no. 8, pp. 1892-1990, Aug. 1992.

[51] S. C. Chan and K. L. Ho, “Split vector-radix fast Fourier transform,” IEEE Trans. Signal
Process., vol. 40, no. 8, pp. 2029-2039, Aug 1992.

[52] Y. Huang, H. M. Dreizen and N. P. Galatsanos, “Prioritized DCT for compression and
progressive transmission of images,” IEEE Trans. Image Process., vol. 1, no. 4, pp. 477-
487, Oct. 1992.

176 References

[53] K. K. Parhi, “Impact of architecture choices on DSP circuits,” in proc. 10th Regional IEEE
Conf., Tencon 92, Nov 11-13, 1992.

[54] J. L. Wu, W. J. Duh, and S. H. Hsu, “Basis-vector-decomposition based two-stage
computational algorithms for DFT and DHT,” IEEE Trans. Signal Process., vol. 41, no. 4,
Apr. 1993, pp. 1562-1575.

[55] C. Lu, J. W. Cooley and R. Tolimieri, “FFT algorithms for prime transform sizes and
their implementations on VAX, IBM3090VF, AND IBM RS/6000,” IEEE Trans. Signal
Process., vol. 41, no. 2, Feb. 1993, pp. 638-648

[56] H. Park and V. K. Prasanna, “Modular VLSI architectures for computing the arithmetic
Fourier transform,” IEEE Trans. Signal Process., vol. 41, no. 6, pp.2236-2246, Jun. 1993.

[57] A. Kumar and L. N. Bhuyan, “Parallel FFT algorithms for cache based shared memory
multiprocessors,” in Proc. Int. Conf. on Paral. Process., Aug. 1993, vol. 3, pp. 23-27.

[58] K. J. Ray and Liu, “Novel parallel architectures for short-time Fourier transform,” IEEE
Trans. Circuits Syst.-11: Analog Digital Signal Process., vol. 40, no. 12, pp. 786-790,
Dec. 1993.

[59] D. Coppersmith, E. Feig, and E. Linzer, “Hadamard transforms on multiply/add
architectures,” IEEE Trans. Signal Process., vol. 42, no. 4, Apr. 1994 pp. 969-970.

[60] T. S. Wailes, W. D. O’Connor and M. A. Mehalic, “Design of a 16-point Winograd fast
Fourier transform algorithm,” in Proc. Spring Conf. Integrated Circuit Syst., VHDL Int.
Users Forum, May 1-4, 1994, pp. 120-129.

[61] A. Saidi, “Decimation-in-time-frequency FFT algorithm,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 1994, vol. 3, pp. 453-456.

[62] N. Koblitz, A course in number theory and cryptography, 2nd Edition. New Delhi, India:
Springer, 1994.

[63] J. G. Proakis and D. G. Manolakis, Digital signal processing: principles, algorithms and
applications. New Delhi, India: Prentice- Hall, 1995.

[64] N. Shirazi, P. M. Athanas and A. L. Abbott, “Implementation of a 2-D fast Fourier
transform on a FPGA-based custom computing machine,” in Proc. 5th Int. Workshop
Field-Programmable Logic and applications, Sept 1, 1995, pp. 282-292.

[65] Y. T. Ma, “A VLSI-oriented parallel FFT algorithm,” IEEE Trans. Signal Process., vol.
44, no. 2, pp. 445-448, Feb. 1996.

[66] X. Qingbin, Z. Qing and S. Shenghe, “Iterative structure of Winograd FFT algorithm,” in
Proc. Conference Precision Electromagnetic Measurement Digest, China, Jun.17-21,
1996, pp. 57-58.

[67] T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 18, no. 10, pp. 959-971, Oct. 1996.

[68] H. Lim and E. E. Swartzlander, Jr., “Efficient systolic arrays for FFT algorithms,” in
Proc. 29th ASILOMAR, Oct. 30 - Nov. 2, 1996, pp. 141-145

[69] R. Gopikakumari and C. S. Sridhar, “A pictorial representation of 6x6 – point DFT in
terms of 2x2 – point DFT,” in Proc. NCBME, Chennai, Mar. 28 – 29, 1997.

[70] B. J. Falkowski and S. Rahartlja, “Properties and applications of unified complex
Hadamard transforms,” in Proc. 27th Int. Symp. on Multiple Valued Logic, May 1997, pp.
131-136.

References 177

[71] R. Gopikakumari and C. S. Sridhar, “A new modulo arithmetic based hierarchical neural
network (MAHNN) model to implement N x N point DFT for ((N))4 = 2,” in Proc. NET-
X, CSI, Cochin, May 16-17, 1997.

[72] R. Gopikakumari and C. S. Sridhar, “ Performance evaluation of MAHNN model to
implement N x N point DFT for ((N))4 = 2,” in Proc. NET-X, CSI, Cochin, May 16-17,
1997.

[73] R. Gopikakumari and C. S. Sridhar, “Visual manipulation of data for analysis – a DFT
example,” in Proc. BECON, Cochin, Sept. 4-6, 1997.

[74] J. Pihl, “Tradeoffs between parallel and serial architectures in high performance digital
signal processing”, Proc. of IEEE ISIC’97, Singapore, 10-12 September 1997.

[75] R. Gopikakumari and C. S. Sridhar, “A parallel distributed implementation of 6 x 6 point
DFT,” in Proc. Int. Conf. (ISIC), Nanyang Technological Uty, Singapore, Sept. 10-12,
1997, pp. 106-108.

[76] T. Taketa , K. Tannol and S. Horiguch, “Radix r parallel FFT algorithms with a global
interconnection networks and its evaluation,” in Proc. 3rd Int. Symp. Parallel
Architectures, Algorithms, and Networks, Dec. 18-20, 1997, pp. 424-428.

[77] R. Gopikakumari and C. S. Sridhar, “An application of parallel distributed computation of
6 x 6 point DFT in the determination of ray paths,” in Proc. National Symp. SYMBOL,
Cochin, Dec. 16-17, 1997.

[78] A. Papoulis, Signal Analysis, 1st edition. New york: McGraw Hill, 1977.

[79] G. A. Ruiz and J. A. Michell, “Memory efficient programmable processor chip for inverse
Haar transform,” IEEE Trans. Signal Process., vol. 46, no. 1, pp.263-268, Jan. 1998.

[80] J. M. Rabaey, “VLSI design and implementation fuels the signal processing revolution,”
IEEE Signal Process. Magazine, January 1998 pp. 22-36.

[81] Y. M. Huang, J. L. Wu and C. T. Hsu, “A refined fast 2-D discrete cosine transform
algorithm with regular butterfly structure,” IEEE Trans. on Consumer Electronics, vol.
44, no. 2, pp. 376-383, May 1998.

[82] M. Frigo and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” in
Proc. Int. Conf. Accoust., Speech Signal process., May 12-15, 1998, vol. 3, pp. 1381-
1384.

[83] R. Gopikakumari, P. Salil and C. S. Sridhar, “Visual manipulation of symbols to
implement 2-D DFT,” in Proc. National Symp. (ANCS), Cochin, Sept. 23-25, 1998.

[84] J. Villasenor and B. Hutchings, “The flexibility of configurable computing,” IEEE Trans.
Signal Process., vol. 15, no. 5, pp. 67-84, Sept. 1998.

[85] G.M.Megson, “Systolic arrays for the Haar transform,” in Proc. IEE Comput. Digit.
Tech., vol. 145, no. 6, pp. 403-410, Nov. 1998.

[86] F.G. Gray, G.A. Frank, B. Clark, D. Ziegenbein, S. Vuppala and P. Balasubramanian,
"4.2: Tools for rapid construction of VHDL performance models for DSP systems," in
Proc. Int. Verilog HDL Conf. and VHDL Int. Users Forum, IVC-VIUF, 1998, pp.77.

[87] Q. H. Liu, and N. Nguyen and X. Y. Tang, “Accurate algorithms for nonuniform fast
forward and inverse Fourier transforms and their app.lications,” in Proc. IEEE Int. Symp.
Geoscience and Remote Sensing, IGARSS, 1998, pp. 288 – 90.

178 References

[88] R. Gopikakumari, “Investigations on the development of an ANN model & visual
manipulation approach for 2-D DFT computation in image processing,” Ph.D.
Dissertation, Cochin University of Science and Technology, Kochi, 1998.

[89] Y. M. Huang and J. L. Wu, “A refined fast 2-D discrete cosine transform algorithm,”
IEEE Trans. Signal Process., vol. 47, no. 3, pp. 904-907, Mar 1999.

[90] T. Chen, G. Sunada and J. Jin, “COBRA: A 100-MOPS single-chip programmable and
expandable FFT,” IEEE Trans. VLSI Syst., vol. 7, no. 2, pp. 174-182, Jun. 1999.

[91] S. Bouguezal, D. Chikouche, and A. Khellaf, “An efficient algorithm for the computation
of the multidimensional discrete Fourier transform,” J. Multidim. Syst. Signal Process.,
vol. 10, pp. 275–304, Jul. 1999.

[92] P. Lenders and A. Sjostrom, “On the implementation of nonseparable two-dimensional
Haar wavelet transforms,” IEEE Trans. Signal Process., vol. 47, no. 11, Nov. 1999, pp.
3137-3139.

[93] P. Adriaans and D. Zantinge, Data mining, 1st edition. Singapore: Addison Wesley, 1999.

[94] K. K. Parhi, VLSI digital signal processing systems, design and implementation. New
York: John Wiley & Sons, 1999.

[95] D. Takahashi, “High-performance parallel FFT algorithms for the HITACHI SR8000,” in
Proc. 4th Int. Conf. High performance computing in the Asia-Pacific region (HPC-Asia
2000), May 14-17, 2000, vol. 1., pp. 192-199.

[96] J. Han, G. Ren and C. Han, “A novel fixed-point FFT algorithm on embedded digital
signal processing systems, in Proc. Signal process., WCCC-ICSP Aug. 21-25, 2000, vol.
1, pp.48-53.

[97] R. Bernardini, “A new multidimensional FFT based on one-dimensional decompositions,”
IEEE Trans. Circuits Syst.-11: Analog Digital Signal Process., vol. 47, no. 10, pp. 1123-
1126, Oct. 2000.

[98] A. M. Grigoryan and S. S. Agaian, “Method of fast 1-d paired transforms for computing
the 2-D discrete Hadamard transform,” IEEE Trans. Circuits Syst.-11: Analog Digital
Signal Process., vol. 47, no. 12, pp. 1399-1404, Dec. 2000.

[99] A. Amira, A. Bouridane and P. Milligan, “A novel architecture for Walsh Hadamard
transforms using distributed arithmetic,” in Proc. 7th IEEE Int. Conf. Circuits and Syst.,
ICECS, 2000, vol. 1, pp. 182-185.

[100] I. Pitas, Digital image processing algorithms and applications. Wiley – IEEE, 2000.

[101] M. Usama, Fayyad, G. G. Grinstein and A. Wierse, Information visualization in data
mining and knowledge discovery. San Francisco, California: Morgan kaufmann, Elsevier,
2000.

[102] M. Haldar, A. Nayak, N. Shenoy, A. Choudhary and P. Banerjee, “FPGA hardware
synthesis from MATLAB,” in Proc. 14th Int. Conf. VLSI Design., Bangalore, India, Jan.
3-7, 2001, pp. 299-304.

[103] M. Nilsson, “FFT, realization and implementation in FPGA,” Msc. Thesis, Griffith
University, Brisbane, Feb. 2001.

[104] D. Takahashi, “An extended split-radix FFT algorithm,” Signal Process. Lett., vol. 8, no.
5, pp. 145-147, May 2001.

References 179

[105] A. Amira, A. Bouridarne and P. Milligan, “An FPGA based Walsh Hadamard
Transforms,” in Proc. Int. Symp. Circuits and Syst. (ISCAS), May 2001, vol. 2, pp. 569-
572.

[106] L. V. Agostini, I. S. Silva and S. Bampi, “Pipelined fast 2-D DCT architecture for JPEG
image compression,” in Proc. 14th Symp. Integrated circuits and syst. design, Sept 10-15,
2001, pp. 226.

[107] W. Zhilu, R. Guanghui and Z. Yaqin, “A study on implementing wavelet transform and
FFT with FPGA,” in Proc. 4th Int. Conf. ASIC., Shanghai, China, Oct. 23-25, 2001, pp.
486-489.

[108] M. Nibouche, a. Bouridane, F. Murtagh , and O. Nibouche, “FPGA-based discrete
wavelet transforms system,” in Proc. 11th Int. Conf. FPGA, 2001, vol. 2147, pp. 607-612.

[109] A. Amira, A. Bouridane, P. Milligan and R. Roula, “Novel FPGA implantations of
Walsh-Hadamard transforms for signal processing,” in Proc. IEEE Vis. Image Signal
Process, vol. 148, no. 6, Dec. 2001, pp. 377-388.

[110] U. M. Baese, Digital signal processing with field programmable gate arrays. New York:
Springer, 2001.

[111] Z. X. Yang, Y-P Hu, C. Y. Pan and L . Yang, “Design of a 3780 point IFFT processor for
TDS-OFDM,” IEEE Trans. Broadcast, vol. 48, pp. 57-61, Mar. 2002.

[112] Y. Jiang, T. Zhou, Y. Tang and Y. Wang, “Twiddle-factor-based FFT algorithm with
reduced memory access,” in Proc. Int. Symp. Paral. Distributed Process. IPDPS., April
15-19, 2002, pp. 70-77.

[113] P. Rodriguez V., “A radix-2 FFT algorithm for modern single instruction multiple data
(SIMD) architectures,” in Proc. Int. Conf. Accoust., Speech and signal process., ICASSP
May 13-17, 2002, vol. 3, pp. 3220-3223.

[114] Z. Razak and M. H. Yaacob, “VHDL development of a discrete wavelet transform,”
Malayasian J. Comput. Sci., vol. 15, no. 1, pp. 84-92, June 2002.

[115] E. C. Ifeachor and B. W. Jeril, Digital signal processing – a practical approach. Delhi:
Pearson Edn., 2002.

[116] J. Heikkinen, J. Sertamo, T. Rautiainen and J. Takala, “Design of transport triggered
architecture processor for DCT,” in Proc. 15th Annual IEEE Int. ASIC/SOC Conf., Sep.
2002, pp. 87-91.

[117] A. Moopenn and R. Tawel, “Parallel FPGA implementation of the split and merge
discrete wavelet transform,” 12th International conference FPL 2002 proceedings,
Montpellier, France, Sept 2-4 2002.

[118] G. Dimitroulakos, N. D. Zervas, N. Sklavos and C.E. Goutis, “An efficient VLSI
implementation for forward and inverse wavelet transform for JPEG 2000,” in Proc. 14th
Int. IEEE Conf. Digital Signal Process., 2002, vol. 1, pp. 233-236.

[119] R. G. Gonzalez and R. E. Woods, Digital Image Processing, 2nd edition. Delhi: Pearson
Edn., 2002.

[120] A. Aggoun and I. Jalloh, “Two-dimensional DCT/IDCT architecture,” in Proc. IEE
Comput. Digit. Tech., vol. 150, no 1, Jan. 2003, pp. 2-10.

[121] S. M. Phoong and Y. P. Lin, “Lapped Hadamard transforms and filter banks,” ICASSP,
Apr. 6-10, 2003, vol. 6, pp. 509-512.

180 References

[122] Y. Tang, L. Qian, Y. Wang and Y. Savaria, “A new memory reference reduction method
for FFT implementation on DSP,” in Proc. Int. IEEE Symp. Circuits and Syst., May 25-
28, 2003, vol. 4, pp. 496-499.

[123] C. L. Philips, J.M.Parr and E.A. Riskin, Signals, Systems and Transforms, 3rd edition.
Delhi: Pearson Edn, 2003.

[124] H. I. Saleh, M A. Ashour and A. E. Salamal, “GDFT types mapping algorithms and
structured regular FPGA implementation,” in Proc. Int. Symp. Circuits and Syst., May
25-28, 2003, vol. 4, pp. 129-132.

[125] R. Gopikakumari, C. K. Jayadas, R. C. Roy, R. S. Roshni and C. S. Sridhar, ” Semantic
rule based visual representation of 2-D DFT for N = 6,” in Proc. CISST, Las Vegas,
Nevada, USA, Jun. 23-26, 2003, vol. 1, pp. 220-224.

[126] R. Gopikakumari, C. K. Jayadas, R. C. Roy, R. S. Roshni and C. S. Sridhar, “A fast
approach to visual representation of selected DFT for ((N))4 = 2,” in Proc. CISST, Las
Vegas, Nevada, USA, Jun. 23-26, 2003, vol. 1, pp. 225-229.

[127] M. A. B. Ayed, M. Loulou, N. Masmoudi and L. Kamoun, “Reversible integer to integer
wavelet transforms for image compression: implementation and evaluation,” Lebanese
science J., vol. 4, No. 2, 2003.

[128] S. M. Aziz and M. Michel, “VHDL based design of an FDWT processor,” IEEE Tencos,
2003, pp. 1609-1613.

[129] R Mateos, A. Gardel, A. Hernandez, I. Bravo and C. Garcia, “Lossless implementation in
VHDL of an image wavelet transform,” in Proc. IEEE Emerging Technologies and
Factory Automation, Sept 16-19, 2003, vol. 2, pp. 195-198.

[130] A K. Jain, Fundamentals of digital image processing. New Delhi, India: Prentice Hall,
2003.

[131] S. Bouguezel, M. O. Ahmad, and M.N.S. Swamy, “An improved radix-16 FFT
algorithm,” CCECE, Niagara Falls, Maylmai, 2004, pp. 1089-1092.

[132] G. X. Fan, and Q. H. Liu, “Fast Fourier transform for discontinuous functions,” IEEE
Trans. Antennas Propagation, vol. 52, no. 2, pp. 461-465, Feb. 2004.

[133] P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S. Pal, N.
Tripathi, D. Zaretsky, R. Anderson, and J. R. Uribe, “Overview of a compiler for
synthesizing MATLAB programs onto FPGAs,” IEEE Trans. Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 3, pp. 312-324, Mar. 2004.

[134] S. C. Pei and W. Y. Chen, “Split vector-radix-2/8 2-D fast Fourier transform,” IEEE
Signal Process. Lett., vol. 11, no. 5, pp. 459-462, May 2004.

[135] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Efficient output-pruning of the 2-D
FFT algorithm,” ISCAS, May 23-26, 2004, vol. 3, pp. 285-288.

[136] C. Panis, U. Hirnschrott, S. Farfeleder, A. Krall, G. Laure, W. Lazian, J. Nurmi, “A
scalable embedded DSP core for SoC applications,” in Proc. Int. Symp. Syst on Chip,
Nov. 16-18, 2004, pp. 85-88.

[137] A. A. Muhit, Md. S. Islam and M. Othman, “VLSI implementation of discrete wavelet
transform (DWT) for image compression,” in Proc. 2nd Int. Conf. Autonomous Robots
and Agents, Palmerston North, New Zealand, Dec. 13-15, 2004, pp. 391-395.

References 181

[138] T. Rintakoski, M. Kuulusa and J. Nurmi, “Hardware unit for OVSF/Walsh/Hadamard
code generation,” in Proc. Int. Symp. System-on-Chip, Nov. 2004, pp. 143-145.

[139] I. Amer, W. Badawy and G. Jullien, “A VLSI prototype for Hadamard transform with
application to MPEG-4 part 10,” in Proc. IEEE Int. Conf. Multimedia and Expo (ICME),
2004, pp. 1523-1526.

[140] R. C. Roy and R. Gopikakumari “A new transform for 2-D signal representation (MRT)
and some of its properties,” 2004 IEEE Int. Conf. on Signal Process. Commun.
(SPCOM), Bangalore, India, Dec. 11-14, 2004, pp. 363-367.

 (http://www.ieeexplore.ieee.org/xpls/abs_all.jps?arnumber=1458423)

[141] G. A. Ruiz, J. A. Michell and A. M. Buron, “Parallel-pipeline 8 x 8 forward 2-D ICT
processor chip for image coding,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 714-
723, Feb. 2005.

[142] Z. Liu, Y. Song, T. Ikenaga and S. Goto, “A VLSI array processing oriented fast Fourier
transform algorithm and hardware implementation,” in Proc. 15th ACM Great Lake Symp.
VLSI (GLSVLSI’05), Chicago, Illinois, USA, Apr. 17–19, 2005, pp. 291-295.

[143] I.S. Uzun, A.Amira and A.Bouridane, “FPGA implementation of fast Fourier transforms
for real-time signal and image processing,” IEE proc. Vis. image signal process., vol. 152,
no. 3, Jun. 2005.

[144] G. Lakshminarayanan and B. Venkataramani, “Optimization techniques for FPGA-based
wave-pipelined DSP blocks,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,
vol. 13, no. 7, pp. 783-793, Jul. 2005.

[145] K. J. Horadam, “A generalized Hadamard transform,” in Proc. Int. Symp. Inf. Theory
(ISIT), Sep. 2005, pp. 1006-1008.

[146] J. Y. Oh and M. S. Lim, “Area and power efficient pipeline FFT algorithm,” in Proc. Int.
Workshop. Signal Process. Syst. Design implementation, SIPS, Nov. 2-4, 2005, pp. 520-
525.

[147] P. Coussy, G. Corre, P. Bomel, E. Senn and E. Martin, “A more efficient and flexible
DSP design flow from matlab-simulink,” ICASSP 2005, pp. V-61-64.

[148] Zhong Cui-xiang, Han Guo-qiang and Huang Ming-he, “Some new parallel fast Fourier
transform algorithms,” in Proc. 6th Int. Conf. Paral. Distrib. Comput., Appl. Technol.,
Dec. 5-8, 2005, pp. 624-628.

[149] K. P. Soman and K. I. Ramachandran, Insight into wavelets from theory to practice, 2nd
edition. New Delhi: PHI, 2005.

[150] Sanjay Sharma, “Digital Signal Processing,” 2nd revised edition, S. K. Kataria and Sons,
New Delhi, 2005.

[151] R. B. Northrop, Introduction to Instrumentation and measurements, 2nd edition. New york:
CRC press, 2005.

[152] J. A. R. Macias and A. G. Exposito, “Efficient computation of the running discrete Haar
transform,” IEEE Trans. Power Delivery, vol. 21, no. 1, pp. 504-505, Jan. 2006.

[153] Y. J. Moon and Y. K. Daejeon, “A mixed-radix 4-2 butterfly with simple bit reversing for
ordering the output sequences,” in Proc. ICA0T, Korea, Feb. 20-22, 2006, pp. 1771-1774.

[154] P. Salama, M. E. Rizkalla, M. Eckauer, “VHDL implementation of the fast wavelet
transform,” J. of VLSI Signal Process., vol. 42, pp. 223-239, 13 Feb. 2006.

182 References

[155] R. C. Roy, M. S. Anish Kumar and R. Gopikakumari, “MRT: An alternate frequency
domain representation,” - IETE zonal conf., Kochi, Kerala, India, Mar. 25, 2006.

[156] J. C. Goswami and A. K. Chan, Fundamentals of Wavelets, reprint. New Delhi, India:
Wiley, 2006.

[157] O. Atak, A. Atalar, E. Arikan, H.Ishebabi, D. Kammler, G. Ascheid, H. Meyr M. Nicola
and G. Masera, “Design of application specific processors for the cached FFT algorithm,”
ICASSP, 2006, pp. III 1028-1031.

[158] M. S. Anish Kumar, R. C. Roy, R. Gopikakumari, “A new image compression and
decompression technique based on 8 x 8 MRT,” ICGST Int. J. Graphics, Vision and
Image Process., vol. 6, no. 1, pp. 51-53, Jul. 2006.

[159] T. Y. Sung, “Memory-efficient and high-speed split-radix FFT/IFFT processor based on
pipelined CORDIC rotations,” in Proc. IEE Proc. Vis. Image Signal Process., vol. 153,
no. 4, pp. 405-410, Aug. 2006.

[160] P. M. Puig, “A family of fast Walsh Hadamard algorithms with identical sparse matrix
factorization,” IEEE Signal Process. Lett., vol. 13, no. 11, pp. 672-675, Nov. 2006.

[161] S. Lee and S. C. Park, “Modified SDF architecture for mixed DIF/DIT FFT,” in Proc. Int.
Conf. Commun. Technol., Nov. 27-30, 2006, pp. 1-5.

[162] T. Lenart and V. Owall, “Architectures for dynamic data scaling in 2/4/8k pipeline FFT
cores,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 14, no. 11, pp.
1286-1290, Nov. 2006.

[163] X. Li, S. Areibi and R. Dony, “Parallel processing on FPGAs: the effect of profiling on
performance,” in Proc. 6th Int. Workshop System on Chip for Real Time Appl., Dec.
2006, pp. 179-184.

[164] S. Bouguezel, M. O. Ahmad, and M.N.S. Swamy, “An alternate approach for developing
higher radix FFT algorithms,” in Proc. IEEE Asia Pacific conf. on circuits and Syst.
(APCCAS), Dec. 4-7, 2006, pp. 227-230.

[165] A. Antoniou, Digital Signal processing, signals, systems and filters. New york: McGraw
Hill, 2006.

[166] C. P. Fan and G. A. Su, “A grouped fast Fourier Transform algorithm design for selective
transformed outputs,” in Proc. IEEE APCCAS, 2006, pp. 1939-1942.

[167] R. C. Roy, M. S. Anish Kumar, R. Gopikakumari, “An invertible transform for image
representation and its application to image compression,” in Proc. 9th ISSPA, Sharjah,
UAE, Feb. 12-15, 2007.

 (http://www.ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4555504)

[168] C. Cheng, and K. K. Parhi, “Low-cost fast VLSI algorithm for discrete Fourier
transform,” IEEE Trans. Circuits Syst. - I: Regular Papers, vol. 54, no. 4, Apr. 2007, pp.
791-806.

[169] Y. Wang, Y. (Felix) Tang, Y. Jiang, J. G. Chung, S. S. Song and M. S. Lim, “Novel
memory reference reduction methods for FFT implementations on DSP processors,”
IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2338-2349, May 2007.

[170] S. Lee and S. Chong, “Modified SDF architecture for mixed DIF/DIT FFT,” in Proc.
ISCAS IEEE Int. Symp. on circuits and syst., May 27-30, 2007, pp. 2590-2593.

References 183

[171] S. C. Hsia and S. H. Wang, “Shift-register based data transposition for cost effective
discrete cosine transform,” IEEE Trans. VLSI syst., vol. 15, no. 6, pp. 725-728, Jun.
2007.

[172] O. Martin and J.M. Solana, “Programmable processor for on-line computing of inverse
Haar transform,” Electron. Lett., vol. 37, no. 16, pp. 1050-1052, 2nd August 2007.

[173] S. Balakrishnan and C. Eddington, “Efficient DSP algorithm development for FPGA and
ASIC technologies,” in Proc. Int. Conf. Very Large Scale Integration, VLSI-SoC 2007,
pp. 168-171.

[174] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A general class of split-radix FFT
algorithms for the computation of the DFT of length-2m,” IEEE Trans. Signal Process.,
vol. 55, no. 8, Aug. 2007, pp. 4127- 4138.

[175] B. J. Mohd, A. Aziz and E. E. Swartzlander, Jr, “The Hazard free superscalar pipeline fast
Fourier transform algorithm and architecture,” in Proc. IFIP Int. Conf. VLSI/SoC, Oct.
15-17, 2007, pp. 194-199.

[176] M. Szmajda, K. Gorecki, J. Mroczka, “DFT algorithm analysis in low-cost power quality
measurement systems based on a DSP processor,” in Proc. 9th Int. Conf. Electrical Power
Quality and utilization, Barcelona, Oct. 9-11, 2007, pp. 1-6.

[177] S. K. Palaniappan and T. Z. A. Zulkifli, “Design of 16-point radix-4 fast Fourier
transform in 0.18µm CMOS technology,” American J. of Appl. Sci. 4 (8): 570-575, 2007

[178] N. Mahdavi, R. Teymourzadeh and M. B. Othman, “VLSI implementation of high speed
and high resolution FFT algorithm based on radix 2 for DSP application,” in Proc. 5th
Student Conf. on Research and Development, Malaysia, Dec. 11-12, 2007, pp. 1-4.

[179] M. J. Roberts, Fundamentals of signals and systems, Special Indian Edition. New Delhi:
Tata McGraw Hill, 2007.

[180] J. H. Bahn, J. Yang and N. Bagherzadeh, “Parallel FFT algorithms on network-on-chips,”
in Proc. Int. Conf. Inf. technol.: New generations ITNG, Apr. 7-9, 2008, pp. 1087-1093.

[181] Z. Szadkowski, “An optimization of 16-point discrete cosine transform implemented into
a FPGA as a design for a spectral 1st level surface detector trigger in the Pierre Auger
observatory,” in Proc. Nuclear Sci. Symp. Conf., IEEE, 2008, pp. 2596-2601.

[182] G. Bi, A. Aung, and B. Poh Ng, “Pipelined hardware structure for sequency-ordered
complex Hadamard transform,” IEEE Signal Process. Lett., vol. 15, pp. 401-404, 2008.

[183] S. Chaudhuri, S. Guilley, F. Flamen, “An 8 × 8 run-time reconfigurable FPGA embedded
in a Soc,” in Proc. 45th ACM/IEEE Design Automation Conf. DAC, Jun. 8-13, 2008, pp.
120-125.

[184] P. K. Meher and J. C. Patra, “Fully-pipelined efficient architectures for FPGA realization
of discrete hadamard transform,” in Proc. Int. Conf. Appl. Specific Syst., Architectures
and Processors (ASAP), Jul. 2008, pp. 43-48.

[185] M. S. Anish Kumar, R. C. Roy and R. Gopikakumari, “A new transform coder for gray
scale images using 4x4 MRT,” AEU, Int. J. Electronics and Commun., vol. 62, no. 8, pp.
627-630, September 2008.

[186] S. An, C. Wang, “Recursive algorithm, architectures and FPGA implementation of the
two-dimensional discrete cosine transform,” IET Image Process., 2008, vol. 2, no. 6, pp.
286–294.

184 References

[187] K. Wahid, S. Shimn, M. Islam, D. Teng, S.B. Ko and M. H. Lee, “Efficient hardware
implementation of hybrid cosine-Fourier-wavelet transforms on a single FPGA," Taipei,
Taiwan, May 24-27, 2009.

[188] W. Ouyang and W.K. Cham, “Fast algorithm for Walsh Hadamard transform on sliding
windows,” IEEE Trans. Pattern Anal. Machine Intell., pp. 1-8, May 2009.

[189] R. C. Roy, “Development of a new transform: MRT,” Ph.D. Dissertation, Cochin
University of Science and Technology, Kochi, 2009.

LIST OF PUBLICATIONS

Journal Publications
[1] Bhadran V., Rajesh Cherian Roy, and R. Gopikakumari, “Algorithm to identify basic

coefficients of 2-D DFT for any even N,” vol. III, no. 1, pp 73-78, International Journal of
Computational Intelligence, Research and applications, Jan-June 2009.

[2] Bhadran V., Rajesh Cherian Roy, and R. Gopikakumari, “Computation of 2-D DFT: A
Visual approach”, (Communicated to IETE journal of research during April 2009).

Conference Publications
[1] Bhadran V., Somesh Kashyap, Shubham Jain, Rupesh kumar, R. Gopikakumari, “A

Visual representation of MRT in terms of 2 × 2 DATA”, in proc. IETE zonal conference,
Kochi, Kerala, India, Mar. 25, 2006.

[2] Bhadran V., Rajesh Cherian Roy, and R. Gopikakumari, “A Visual representation of 2D-
DFT in terms of 2 × 2 Data: A pattern analysis,” in proc. International Conference on
Computing Communication and Networking (ICCCN’08), Chettinad college of
Engineering and Technology, Karur, India, Dec. 18-20, 2008.
(http://www.ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4787762&isnumber=47
87659)

[3] Bhadran V., Rajesh Cherian Roy, and R. Gopikakumari, “Algorithm to identify basic
coefficients of 2-D DFT for any even N,” in proc. ICVCOM, Saintgits college of
Engineering, Kottayam, Apr. 16-18, 2009.

		2009-11-08T21:28:27+0530
	Bhadran.V.
	I am the author of this document

