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ABSTRACT 
 

 
Transform theory plays a key role in signal/image processing, as well as in other areas, as it 

allows the processing simple and flexible. The Fourier transform is especially prevalent, partially 

since it is the eigen function representation of Linear Time Invariant (LTI) systems. Discrete 

Fourier Transform (DFT) becomes a powerful tool for frequency domain analysis of discrete time 

signals due to the increasing flexibility and reconfigurability of digital systems. But the 

conventional DFT computation is time consuming, especially for 2-D applications, as the 

processing is done in the complex domain. In this thesis, the 2-D DFT computation is visually 

represented using a set of primitive symbols based on 2 × 2 data. The computations are mostly 

real, except at the final stage. The size of the data matrix is assumed to be even. The DFT 

coefficients are classified. A basic set of DFT coefficients necessary and sufficient to represent 

the entire signal is identified using the redundancy analysis. An algorithm is developed for the 

computation of 2-D DFT by visual approach. Two approaches namely visual representation of 

DFT coefficients based on 2 × 2 DFT and 2 × 2 data are used to design and develop Parallel 

Distributed Architecture for the computation of 2-D DFT. Version I and version II Parallel 

Distributed Architectures for the computation of 8 × 8 point DFT are developed based on former 

approach while M spacing based 2-D DFT computation employs the latter. The comparison 

results show the powerful performance of the M spacing based method for 2-D DFT computation 

against the three existing methods namely conventional DFT computation, modified DFT and 

closed form method as well as the two other methods developed namely the visual approach and 

modified DFT using basic DFT in terms of speed. Four different algorithms are also designed for 

the computation of particular solution required for the M spacing based algorithm. Further 

derived redundancy present in the MRT coefficients is analyzed and eliminated to obtain 2-D 

UMRT, which require only the same memory space as required for the original image. A suitable 

placement scheme is developed to place the UMRT coefficients. Three approaches, one of which 

is a Parallel Distributed Architecture, are designed, developed and compared for the computation 



 ii

of 2-D UMRT. Finally, the FPGA implementation of the three architectures developed for the 

computation of 8 × 8 point UMRT is compared in terms of area and speed. Different schemes for 

the M spacing based 2-D UMRT computation are simulated and synthesized in FPGA and their 

performance are also compared.   
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SYMBOLS AND DEFINITIONS 
 
Z          -           Set of integers 

q ∈  Z   -            q is an element of set Z 

a, b, h, i, j, l, n, q, r, s, t, v, z, α             -           Integer variables 

n1 - Signal spatial index in the vertical direction  

n2 - Signal spatial index in the horizontal direction  

N - Integer, N ∈  Z, mostly used to indicate size of input signal 
M = N/2 

1 2,n nx  - 2-D signal sample at n1, n2 

k1 - Frequency index in the vertical direction  

k2 - Frequency index in the horizontal direction 

 p - Phase index  
p

kkY
2,1
 - 2-D MRT coefficient at k1,  k2,  p.  

WN = Nje /2π− , Twiddle factor 

2,1 kkY  - 2-D DFT coefficient at k1,  k2. 

gcd( , )a b  - Greatest Common Divisor (GCD) of integers a and b  

dm = gcd(k1, k2, M), is a divisor of M 

a | b - a divides b 

a |/ b - a does not divide b 

||a bα  - aα  is the highest power of a dividing b 

 ((a))b - Remainder of a/b (Modulo operation)    

)(Nϕ  - Euler Totient function of N 

q∀        -           For all values of q 

⇒         -          Such that 

A        -          Cardinality of the set A 

mc - Number of complex multiplications for a DFT coefficient 

ac - Number of complex additions for a DFT coefficient 

ar - Number of real additions for a DFT coefficient 

np - Number of p
kkY
2,1
 corresponding to a DFT coefficient 

nb - Number of basic DFT coefficients for N 

nbdm - Number of basic DFT coefficients where gcd(k1, k2, M) = dm 

v



nddm     - Number of DFT coefficients that could be derived from a basic DFT coefficient 

where gcd(k1, k2, M) = dm 

nptdm - Total number of DFT coefficients where gcd(k1, k2, M) = dm 

dmo - gcd(k1, k2, M) when gcd(dmo, dm) = dm and dmo > dm 

ddm - Divisors of dm other than dm 

nr - Number of redundant MRT coefficients for each dm 

dme - gcd(k1, k2, M) where derived redundancy exist in MRT coefficients 

nu - Number of UMRT coefficients in a basic DFT coefficient 

pi - Number of odd prime divisors of M/dm 

n - Number of odd prime divisors of N 

iβ  - Power of odd prime divisors pi in the prime factorization of M/dm 

α  - Power of 2 in the prime factorization of M/dm 

nmrtdm  - Total number of MRT coefficients corresponding to the basic DFT coefficients 

where gcd(k1, k2, M) = dm, except for dm = M 

nmrtM   - Total number of MRT coefficients corresponding to the basic DFT coefficients 

where gcd(k1, k2, M) = M 

nmrtnb - Total number of MRT coefficients for the entire basic DFT coefficients 

Tnu      - Total number of UMRT coefficients corresponding to all the basic DFT 

coefficients where gcd(k1, k2, M) = dm  

AR(UMRT) - Total number of real additions to compute 2-D UMRT, for N 

vi
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CHAPTER 1 

INTRODUCTION 

 
 
 
1.1 Digital Signal processing 
Digital Signal Processing (DSP) is the processing of signals by digital means. A signal in this context 

can mean a stream of information representing number of different things. The origin of signal 

processing is in electrical engineering, and a signal here means an electrical signal carried by a wire or 

telephone line, or perhaps by a radio wave. Signals contain information about a variety of things and 

activities in physical world. They can be represented in time domain and frequency domain. In time 

domain representation, a signal is a time varying quantity. In frequency domain, a signal is 

represented by its frequency spectrum.  Generally, a signal is anything from stock prices to data from 

a remote-sensing satellite. A digital signal can be processed by performing numerical calculations. 

 In many cases, the signal of interest is initially in the form of an analog electrical voltage or 

current, produced for example by a microphone or some other type of transducer. In some situations, 

such as the output from the readout system of a compact disc (CD) player, the data is already in 

digital form. An analog signal must be converted into digital form before DSP techniques can be 

applied. An analog electrical signal can be digitized using an analog-to-digital converter (ADC) [151]. 

This generates a digital output as a stream of binary numbers whose values represent the electrical 

input to the device at each sampling instant.  

 Signals commonly need to be processed in a variety of ways. E.g., the output signal from a 

transducer may well be contaminated with unwanted electrical "noise" [151]. The electrodes attached 

to a patient's chest, when an ECG is taken, measure tiny electrical voltage changes due to the activity 

of the heart and other muscles. The signal is often strongly affected by "mains pickup" due to 

electrical interference from the mains supply. Processing the signal using a filter circuit can remove or 

at least reduce the unwanted part of the signal. Increasingly nowadays, the filtering of signals to 

improve signal quality or to extract important information is done by DSP techniques [165] rather 

than by analog electronics. 

 DSP becomes more powerful due to the increasing flexibility and re-configurability of digital 

systems. DSP technology is nowadays commonplace in such devices as mobile phones, multimedia 
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computers, video recorders, CD players, hard disc drive controllers and modems, and will soon 

replace analog circuitry in TV sets and telephones. An important application of DSP is in signal 

compression and decompression [119]. Signal compression is used in digital cellular phones to allow 

a greater number of calls to be handled simultaneously within each local "cell". DSP signal 

compression technology allows people not only to talk to one another but also to see one another on 

their computer screens, using small video cameras mounted on the computer monitors, with only a 

conventional telephone line linking them together. In audio CD systems, DSP technology is used to 

perform complex error detection and correction on the raw data as it is read from the CD.  

General-purpose microprocessors [18] such as the Intel x86 family are not ideally suited to 

the numerically intensive requirements of DSP. The DSP chip [115], a specialized microprocessor 

with architectures designed specifically for the types of operations required in DSP can carry out such 

operations incredibly fast, processing hundreds of millions of samples every second, to provide real-

time performance. Like a general-purpose microprocessor, programmable digital signal processor 

(PDSP) is a programmable device, with its own native instruction code. DSP chips are capable of 

carrying out millions of floating point operations per second, and like their better-known general-

purpose cousins, faster and more powerful versions are continually being introduced. DSP chips can 

also be embedded within complex "system-on-chip" (SoC) [136] devices, often containing both 

analog and digital circuitry. It has the ability to process a signal "live" as it is sampled and then output 

the processed signal, for example to a loudspeaker or video display. All of the practical examples of 

DSP applications mentioned earlier, such as hard disc drives and mobile phones, demand real-time 

operation.  

The major electronics manufacturers have invested heavily in DSP technology. Because they 

now find application in mass-market products, DSP chips account for a significant proportion of 

worldwide semiconductor sales, amounting to billions of dollars annually. This trend seems, likely to 

continue to increase rapidly.  

  Application specific integrated circuits (ASICs), programmable and field programmable gate 

arrays (FPGAs) platforms [84] are now mostly used to manufacture DSP chips. ASIC includes logic 

cells that are customized and all mask layers that are customized. Customizing all of the IC’s features 

in this way allows designers to include analog circuits, optimized memory cells, or mechanical 

structures on an IC. An FPGA is a semiconductor device containing programmable logic components 

called "logic blocks", and programmable interconnects. The FPGA platform creates a programmable 

design chip as against the ASIC platform, where the programme is fixed and cannot be changed once 

the chip is developed.  

FPGAs are a part of Programmable Logic Devices (PLDs) and they facilitate lower time and 

cost in designing. PLDs are becoming popular while ASICs are becoming more expensive. Deciding 

between ASICs and FPGAs designers require to answer tough questions concerning costs, tool 

availability and effectiveness etc. These could include cost (including nonrecurring engineering 
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charges), die size, time-to-market, tools, performance, intellectual property requirements and 

reconfigurability. Time-to-market is often at the top of the list. Some large ASICs can take a year or 

more to design. An option is to do a "rapid ASIC" using preformed ASIC blocks, which saves time 

and lowers NRE costs. A good way to shorten development time is to make prototypes using FPGAs 

and then switch to an ASIC. The development cost of chips on an ASIC platform starts from $5 

million and it requires a long time as against for an FPGA platform starts from $20,000, and can be 

developed faster than an ASIC. The tools are free on the Web for the smaller FPGAs, while you'll 

have to pay for a license file for the ones with high gate counts. But there are no NRE charges. 

Modern FPGAs [183] are packed with features that were not previously available. Today's FPGAs 

usually come with phase-locked loops, low-voltage differential signal, clock data recovery, more 

internal routing, high speed (most tools measure timing in picoseconds) hardware multipliers for 

DSPs [110], memory, programmable I/O, IP cores and microprocessor cores. You can integrate all 

your digital functions into one part and really have a system on a chip (SoC). A wide range of 

electronics devices such as mobile phones, digital cameras, base station equipments etc. need SoC. 

There is no doubt that SoC will drive various applications. Digital devices like cameras use FPGA 

chips. FPGA-based SoCs have a bright future. Major companies are working on developing the 

Intellectual Property Cores and these are predefined blocks of various functions. IP cores also perform 

custom logic operations. Since FPGAs are re-programmable, customers can program the chips to their 

specifications. Reconfiguration at speeds fast enough to permit run time reconfiguration (RTR) 

without intolerable overheads is possible [84]. This enables FPGAs to be used as general purpose 

parallel computing devices [183]. Perhaps this is the major reason as to why FPGAs are not only 

driving the business, but are also overtaking the ASIC market in costs, start from a couple of dollars 

to several hundred or more depending on the features, recent times. 

Another trend in the DSP hardware design world is the migration from graphical design entries 

to hardware description language (HDL). Although many DSP algorithms can be described with 

signal flow graphs, it has been found that code re-use is much higher with HDL-based entries than 

with graphical design entries. Two HDL languages are popular namely Very High Speed Integrated 

Circuit Hardware Description Language (VHDL) and Verilog® HDL and both seem to be well suited 

for FPGA. Nowadays there are many tools available in the market for designing FPGA. A set of tools, 

that were jointly developed by RTI and Virginia Tech, that semi-automates the process of 

constructing VHDL performance models for DSP applications was described by F.G. Gray [86]. Use 

of these tools allows rapid evaluation of larger design spaces than was previously feasible. M. Haldar 

[102] presented the MATCH compiler that takes MATLAB as input and produces hardware in RTL 

VHDL, which can be mapped to an FPGA using commercial CAD tools. Even though the design time 

reduces from days to minutes, the generated hardware is slower than the manually designed hardware. 

P. Banerjee [133] described a behavioral synthesis tool called Accel FPGA, which reads in high-level 

descriptions of DSP applications written in MATLAB, and automatically generates synthesizable 
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RTL models and simulation test benches in VHDL or Verilog. The RTL models can be synthesized 

using commercial logic synthesis tools and place and route tools onto FPGAs. S. Balakrishnan [173] 

discussed the challenges and requirements of creating portable algorithmic IP for FPGAs and ASICs 

and illustrates how an ESL synthesis methodology using Synplicity’s Synplify DSP tool can 

significantly reduce the time and effort to implement either technology. The Synplify DSP tool 

automatically creates optimized logic implementations for both FPGAs and ASICs. 

 

1.2 Transforms 
In the field of signal/image processing as well as in other areas, transform theory plays a central role. 

Transforms are used to find an alternative domain where processing of the task at hand is easier or 

advantageous to perform. E.g. the convolution in the time domain is equivalent to multiplication in 

the frequency domain. Transformation of signals also helps in identifying distinct information, which 

might otherwise be hidden in the original signal. Transforms come in many forms. Linear transforms, 

especially Fourier and Laplace transforms are widely used to solve problems in science and 

engineering. Depending on the application, the transformation technique is chosen, and each 

technique has its advantages and disadvantages. 
 

1.2.1 Laplace Transform 

Laplace Transform (LT) is a mathematical tool [123], which provides broader characterization of 

signals and systems compared to Fourier transform (FT). In some cases LT can be used where FT 

cannot be used. LT can be used for the analysis of unstable systems where as FT has several 

limitations. There are several signals for which FT does not converge but the LT converges. An 

important difference between FT and LT is that FT uses a summation of waves of positive and 

negative frequencies whereas the LT employs damped waves through the use of an additional factor 

e−σ  where, σ  a positive number. Both FT and LT convert time domain function x(t) to the frequency 

domain function ( )jX e ω  and X(s) respectively. Also the LT provides the total solution to the 

differential equation and the corresponding initial and final value problems. 

For periodic or non periodic time function x(t) which is zero for t ≤ 0 and deferred for t > 0, 

the LT of x(t) denoted as L[x(t)] may be defined as  

L[x(t)] = X(s)  = 0 ( ) .stx t e dtα −∫  

where s = σ +j ω . 

The inverse Laplace transform is expressed as  

X(t) = L-1[x(t)] = 
0

0

1 ( ) .
2

j
st

j
X s e ds

j

σ + ω

σ − ω
∫

π
. 
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LT uses a transform variable in the complex plane. The transform variable in FT is a pure 

imaginary number restricted to s = j ω  as can be seen soon. 
  

1.2.2 Z Transform 

Z transform [78] plays the same role in the analysis of discrete time signals and LTI systems as the LT 

plays in the analysis of Continuous time signals and LTI systems i.e., the Z transform is the discrete 

time counter part of the LT. Z transform of a discrete time signal x(n) may be expressed as  

X(z) = ( ) n

n
x n z

∞
−

=−∞
∑ , 

where z is a complex variable. 

Inverse Z transform is expressed as 

x(n) = 11 ( ) .
2

n
c F z z dz

j
−∫

π
� . 

 

1.2.3 Fourier Transform 

The Fourier transform is used in almost every area of Science and Engineering. When we analyze 

continuous-time signals with the help of Fourier series and Fourier transforms, the Fourier series and 

Fourier transforms are called continuous-time Fourier series and continuous time Fourier transform 

[179] respectively or simply Fourier series and Fourier transform. But when we analyze discrete time 

signals with the help of Fourier series and Fourier transform, then the Fourier series and Fourier 

transforms are called discrete-time Fourier series and discrete time Fourier transform respectively. 

Fourier series is used to get frequency spectrum of a time domain signal, when the signal is a 

periodic function of time. With the help of Fourier series, a given periodic function of time may be 

expressed as the sum of an infinite number of sinusoids whose frequencies are harmonically related. 

The frequency spectrum of a periodic signal is discrete. Fourier transform is used to get frequency 

spectrum of a time domain signal when the signal waveform is a non periodic function of time. The 

Fourier transform provides a continuous frequency spectrum of an arbitrary time domain signal 

waveform. The continuous time Fourier series exists only when the function x(t) satisfies Dirichlet’s 

condition.  

Like continuous Fourier transform discrete time Fourier transform (DTFT) is used for the 

analysis of discrete time aperiodic signals. DTFT is periodic with period 2 π . So any interval of length 

2 π  is sufficient for the complete specification of the spectrum. Generally, the spectrum is drawn in 

the fundamental interval (- π , π ). Like continuous time FT, the frequency spectrum in DTFT is also 

continuous in nature. But the frequency spectrum is not periodic in CTFT where as in DTFT the 

spectrum is periodic with period 2 π .  
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The frequency analysis of discrete time signals is usually performed on a digital computer. 

Since the representation of the above signal is not a computationally convenient one, we go one step 

further by sampling its continuous spectrum. This type of frequency domain representation of a signal 

is known as Discrete Fourier Transform (DFT). The DFT plays a very crucial role in DSP ever since 

its inception. It is a very powerful tool for frequency analysis of discrete time signals. 

DFT is itself a sequence rather than a function of a continuous variable and it correspond to 

equally spaced frequency samples of DTFT of a signal. Also, FS representation of the periodic 

sequence corresponds to the DFT of the finite length sequence i.e., by using DFT the discrete time 

sequence x(n) is transferred into corresponding discrete frequency sequence. DFT offer frequency 

domain analysis of signals and systems and allows time domain signal processing operations to be 

performed equivalently in the frequency domain.  

1.2.3.1 One Dimensional DFT (1-D DFT) 

Let x(n) be a finite duration sequence of length N samples so that x(n) = 0  outside the range  0 ≤ n ≤ 

N - 1.  Then 
1

0
( ) ( ).

N
kn

N
n

X k x n W
−

=
= ∑ , 0 ≤ k ≤ N - 1 

                                     = 0                     , otherwise.                                     (1.1) 

where   WN = 
2j
Ne

π
−

 is called the twiddle factor. Then the corresponding Inverse DFT is expressed as      

1

0

1( ) ( ).
N

kn
N

k
x n X k W

N
−

−

=
= ∑ , 0 ≤ n ≤ N-1 

      = 0                        , otherwise.                                     (1.2) 

1.2.3.2 Two Dimensional DFT (2-D DFT) 

There are myriads of image processing and two-dimensional applications where the DFT 

representation of two-dimensional sequences is of considerable computational importance [63]. 

Consider a finite duration sequence x(n1, n2) of size N1 × N2 samples so that x(n1, n2) = 0  

outside the range  0 ≤ n1 ≤ N1-1, 0 ≤ n2 ≤ N2-1.  Then the Discrete Fourier Transform [21] relations are 

given by  

1 11 2
1 1 2 2

1 2 1 2 1 20 01 2
( , ) ( , ) .

N N
n k n k

N N
n n

X k k x n n W W
− −

= =
= ∑ ∑ , 0 ≤ k1 ≤ N1 - 1, 0 ≤ k2 ≤ N2 - 1               (1.3)   

1 11 2
1 1 2 21

21 2 1 2 1 20 01 2
( , ) ( , )

N N
n k n k

N NN k k
x n n x k k W W

− −
− −

= =
= ∑ ∑ , 0 ≤ n1 ≤ N1 - 1, 0 ≤ n2 ≤ N2 – 1.         (1.4)   
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1.2.3.3 Algorithms to implement 2-D DFT 

There are many algorithms for calculating 2-D DFT, which vary, considerably in their computational 

complexity [21].  However, we shall examine four algorithms in the following sections, to bring out 

the salient aspects of 2-D DFT computation.  

1.2.3.3.1 Direct computation 

 The direct calculation of 2-D DFT is simply the evaluation of the double sum as in (1.3). If we 

assume that the complex exponential in equation (1.3) have been pre-computed and stored in a table, 

then the direct evaluation of one sample of X(k1, k2) requires N1N2 complex multiplications and a like 

number of complex additions. Since the entire DFT involves N1.N2 output samples, the total number 

of complex multiplications and complex additions needed to evaluate the DFT by direct calculation is 

N1
2 .N2

2. Also, the computation time for multiplication will be much more than that of addition.                                      

1.2.3.3.2 Row-column decomposition 

The DFT relation can be rewritten as 
1 11 2

2 2 1 1
1 2 1 2 2 10 01 2

( , ) [ ( , ). ].
N N

n k n k
N N

n n
X k k x n n W W

− −

= =
= ∑ ∑  

If we write 
12

2 2
1 2 1 2

02

N
n k

N2n
G(n ,k ) =  x(n ,n )W

−

=
∑  then, 

11
1 1

1 2 1 2
01

N
n k

N1n
X(k ,k ) =  G(n ,k ). W

−

=
∑ . 

   Each column of G is the 1-D DFT of the corresponding column of x.  Each row of X is the 1-

D DFT of the corresponding row of G. Thus we can compute a 2-D DFT by decomposing it into row 

and column DFTs.  We first compute the DFT of each column of x, put the results into an 

intermediate array, then compute the DFT of each row of the intermediate array. Alternatively we 

could do the row DFTs first and the column DFTs second. 

  If a direct calculation is used to compute the 1-D DFTs in a row-column decomposition, then 

the evaluation of a 2-D DFT requires, Cr/cdirect = N1.N2(N1+N2) complex multiplications and additions .  

If each of N is a power of 2, so that 1-D Fast Fourier Transforms (FFT) can be used, the complex 

multiplications are further reduced to Cr/c FFT = N1.N2 (log N1.N2)/2. The number of complex 

additions needed is twice this number.            

1.2.3.3.3 Vector-radix Fast Fourier Transform (FFT) 

 The 1-D FFT algorithm achieves its computational efficiency through a `divide and conquer' strategy.  

If the DFT length is, for example, a power of 2, the DFT can be expressed in turn as a combination of 

two quarter-length DFTs and so on [32].  The 2-D vector-radix FFT algorithm is philosophically 

identical [21].  A 2-D DFT is broken down into successively smaller 2-D DFTs until, ultimately, only 

trivial 2-D DFTs need be evaluated. 
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 We can derive the decimation-in-time version of the algorithm by expressing an (N × N)-point 

DFT in terms of four N/2 × N/2 DFTs  (if N is divisible by 2).  The DFT summation can be 

decomposed into four summations: one over those samples of x for which n1 and n2 is even, and one 

for which both n1 and n2 are odd.  This gives us, 

X(k1, k2) = S00(k1, k2) + S01(k1, k2)WN
k2 + S10(k1, k2)WN

k1+ S11(k1, k2)WN
k2+k1, 

where 
/2 1 /2 1

2. . 2. .1 1 2 2
00 1 2 1 2

0 01 2
( , ) (2. ,2. )

N N
m k m k

N
m m

S k k   x m m W
− −

+

= =
= ∑ ∑  

/2 1 /2 1
1 1 2 2

1 2 1 2
0 01 2

N N
2.m .k +2.m .k

01 N
m m

 S (k ,k )= x(2.m ,2.m +1)W
− −

= =
∑ ∑  

/2 1 /2 1
1 1 2 2

1 2 1 2
0 01 2

N N
2.m .k +2.m .k

10 N
m m

S (k ,k ) = x(2.m +1,2.m )W
− −

= =
∑ ∑  

/2 1 /2 1
1 1 2 2

1 2 1 2
0 01 2

N N
2.m .k +2.m .k

11 N
m m

S (k ,k ) = x(2.m +1,2.m +1)W .
− −

= =
∑ ∑  

The arrays S00, S01, S10, S11 are each periodic in (k1, k2) with horizontal and vertical periods N/2. 

 The above said equations expresses the samples of the N × N DFT, X(k1, k2), in terms of four 

N/2 × N/2 DFTs.  By analogy with the corresponding equations from the 1-D case, the computation is 

represented by a butterfly, or more properly a radix (2 × 2) butterfly. 

 Each butterfly requires that three complex multiplications and eight complex additions be 

performed.  To compute all samples of X from S00, S01, S10, S11 requires calculation of N2/4 butterflies.  

This decimation process can be performed log2N times if N is a power of 2.  The number of complex 

multiplications that need to be performed during the computation of a (N × N) point radix (2 × 2) FFT 

is  

Cvr(2x2) = 
4
3 N2 log2N. 

 The foregoing discussion would have revealed that the 2-D DFT is computationally quite 

intensive. While research have been progressing on speeding up the 2-D DFT, the transform itself 

found many applications in image processing, which describes information in two dimensions.  Some 

of the issues in digital image processing is worth considering to stress the diversity of the utility of 2-

D DFT. 

1.2.3.4 Modified DFT computation 

In the modified 2-D DFT [88], the expression for the 2-D DFT computation was restructured by 

grouping data associated with a given twiddle factor in addition to the exploitation of periodicity and 

symmetry properties. Then the DFT coefficients ,1 2k kY , 1 20 , 1k k N≤ ≤ − corresponding to the given data 

,1 2n nx , 1 20 , 1n n N≤ ≤ − , N even, can be expressed as 
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1

,1, 2 1 20
.

M
p p

k k k k N
p

Y Y W
−

=
= ∑  , 1 20 , 1k k N≤ ≤ −                              (1.5) 

where  , , ,1 2 1 2 1 2( , ) ( , )1 2 1 2

p
k k n n n n

n n z p n n z p M
Y x x

∀ ⇒ = ∀ ⇒ = +
= −∑ ∑                                       (1.6) 

1 1 2 2(( ))Nz n k n k= +                                              (1.7) 

2
NM = .                                                                        (1.8) 

Thus the computational complexity is reduced from N2 complex multiplications for each DFT 

coefficient required in direct DFT to that of N/2.  

A pictorial representation for the computation of 2-D DFT in terms of 2 × 2 point DFT was 

developed in [88]. This simplifies the computation, as 2 × 2 DFT involves only real additions. The 

primitive symbols used for its representation are shown in fig. A.1 and the visual representation of 8 × 

8 point DFT is shown in fig. A.2. All the operations are complex in direct DFT, whereas in visual 

representation, the computations are mostly real and the scaling by the twiddle factor is done only in 

the final stage. As a result, the 2-D DFT computation was reduced in terms of real additions and 

complex multiplication from 2N  to N/2 for each coefficient where N is the dimension of the Data 

matrix and is even. 

A hierarchical neural network model was also developed in [88] to implement 2-D DFT for a 

particular order N such that ((N))4 = 2. The model used a parallel distributed scheme of computation 

in which the processing is in terms of real additions. The only complex operation involved is the 

scaling by the pre-computed twiddle factors done at the final layer.  

1.2.4 M-Dimensional Real Transform (MRT) 

In the modified 2-D DFT computation [88], 2-D DFT representation was modified in terms of real 

additions, which requires N/2 complex multiplication in the computation of each of the N2 DFT 

coefficients. The complex multiplications can be avoided if the representation of the signal is done in 

terms of the signal components which would otherwise be multiplied with the exponential term in the 

DFT representation developed in [88]. A transform named MRT [140] represent 2-D signals in terms 

of real additions alone rather than using complex multiplications.  

MRT coefficients of a data matrix [x] of size N × N is expressed as  

 , , ,1 2 1 2 1 2( , ) ( , )1 2 1 2

p
k k n n n n

n n z p n n z p M
Y x x

∀ ⇒ = ∀ ⇒ = +
= −∑ ∑                                            (1.9) 

  z = ((n1.k1 + n2.k2))N                                                                                                (1.10) 

                                M = N/2                                                                                   (1.11) 

k1 = 0, 1, …, N − 1, k2 = 0, 1, ..., N − 1, p = 0, 1, …, M − 1. 

This transform maps the data matrix into M matrices using real additions alone. MRT helps to 

do the frequency domain analysis of 2-D signals without any complex operations but in terms of real 

additions.  
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1.2.5 Unique MRT (UMRT) for N power of 2 

The MRT representation has redundant elements, which makes it unsuitable for use in situations 

where memory usage needs to be minimized. A procedure to obtain a lean MRT or Unique MRT 

(UMRT) representation of an image is presented in [167] for image size of N × N, where N power of 

2. The UMRT coefficients are unique, numerically compact and require only the same memory space 

as required for the original image. Each MRT coefficient is formed by unique, linear, multiplication-

less combinations of image data and thus has spatial significance. 
 

1.2.6 Discrete Cosine Transform (DCT) 

Ahmed et al [6] proposed Discrete Cosine Transform (DCT) and based on empirical evidence, 

conjecture that its performance is closer to the optimal Karhunen-Loeve Transform (KLT) than the 

other commonly used transforms.  

A DCT expresses a sequence of finitely many points in terms of a sum of cosine functions 

oscillating at different frequencies. The use of cosine rather than sine function is critical in many 

applications like compression, numerical solutions of partial differential equations, etc. DCT is a 

Fourier related transform similar to DFT, but using only real numbers. DCTs are equivalent to DFTs 

of roughly twice the length, operating on real data with even symmetry. There are eight standard DCT 

variants, of which four are common namely DCT-I, DCT-II, DCT-III and DCT-IV. The most 

common is the type-II DCT, which is often called “the DCT” and its inverse, the type-III DCT is the 

inverse DCT. DCT of an N point signal can be computed using a 2N point DFT [6]. A method that 

employs an N point DFT of a reordered version of the signal (where N is assumed to be even) to 

compute an N point DCT is presented in [9], resulting in a saving of ½ over the previous method. 

The DCT of a list of N real numbers S(x), x = 0, 1, …, N - 1 is the list of length N given by 

1

0

2 cos(2 1). .( ) . ( ). ( )
2.

N

x

x uS u C u s x
N N

−

=

+ π
= ∑ ,   u = 0, 1, …, N - 1 

where, 1/2( ) 2C u −=  for u = 0 

= 1 otherwise. 

Each element of the transformed list S(u) is the dot product of the input list S(x) and a basis vector. 

The constant factors are chosen so that the basis vectors are orthogonal and normalized. 

DCT is a technique for converting signal into elementary frequency components. The DCT 

helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the 

image's visual quality). It transforms a signal or image from the spatial domain to the frequency 

domain. With an input image A the coefficients for the output image B are:  
1 11 2

1 2
1 2

0 0
1 2

. .( , ) 4. ( , ).cos( (2. 1)).cos( (2. 1))
2. 2.

N N

i j

k kB k k A i j i j
N N

− −

= =

π π
= + +∑ ∑  
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The input image is N2 pixels wide by N1 pixels high; A(i, j) is the intensity of the pixel in row i and 

column j; B(k1, k2) is the DCT coefficient in row k1 and column k2 of the DCT matrix. All DCT 

multiplications are real. This lowers the number of required multiplications, as compared to the 

discrete Fourier transform. For most images, much of the signal energy lies at low frequencies; these 

appear in the upper left corner of the DCT. The lower right values represent higher frequencies, and 

are often small enough to be neglected with little visible distortion.  

The DCT is by far the most popular transform used for image compression applications [45], 

[52]. Reasons for its popularity include not only its good performance in terms of energy compaction 

for typical images but also the availability of several fast algorithms [89]. It has found a wide 

spectrum of applications in image and video processing and several other signal processing 

application domains [181]. Joint Photographic Experts Group (JPEG) for compression of still images 

[45], Moving Picture Experts Group (MPEG) for compression of motion video [44] and International 

Telegraph and Telephone Consultative Committee (CCITT H.261, also known as P × 64) for 

compression of video telephony and teleconferencing employ DCT. Its application to image 

compression was pioneered by Chen and Pratt [19].  

1.2.7 Wavelet Transform 

The Fourier transform, with its wide range of applications, like many other mathematical tools, has its 

limitations. For example, this transformation cannot be applied to non-stationary signals. These 

signals, e.g. speech and image, have different characteristics at different time or space. Although the 

modified version of the Fourier transform, referred to as short-time (or time-variable) Fourier 

transform (STFT) can resolve some of the problems associated with non-stationary signals, but does 

not address all issues of concern. There is only a minor difference between STFT and FT. In STFT, 

the signal is divided into small enough segments, where these segments of the signal can be assumed 

to be stationary. For this purpose, a window function ‘w’ is chosen. The width of this window must be 

equal to the segment of the signal where its stationarity is valid. In STFT, the window is of finite 

length, and we no longer have perfect frequency resolution.  The STFT is extensively used in speech 

signal processing but rarely, if ever, used in image processing. 

Wavelets were developed independently in the field of mathematics, quantum physics, 

electrical engineering, and seismic geology [149]. Interchanges between these fields during the last 

ten years have led to many new wavelet applications such as image compression, turbulence, human 

vision, radar, and earthquake prediction. The wavelet transform, which was developed independently 

on different fronts, is gradually substituting the Fourier transform in some essential signal processing 

applications. Multi resolution signal processing used in computer vision; subband coding, developed 

for speech and image compression; and wavelet series expansions developed in applied mathematics, 

have been recognized as different views of a single theory. 
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Wavelet transform applies to both continuous and discrete signals [156]. This transformation 

provides a general technique that is applicable to many tasks in signal processing. The wavelet 

transform is successfully applied to non-stationary signals for analysis & processing and provides an 

alternative to STFT. In contrast to STFT, which uses a single analysis window, the wavelet transform 

uses short windows at high frequencies and long windows at low frequencies. This flexibility is 

introduced in the spirit of so-called constant Q. or constant relative bandwidth frequency analysis. For 

some applications it is desirable to obtain the wavelet transform as signal decomposition onto a set of 

basis functions, referred to as wavelets. These basis functions are obtained from a single prototype 

wavelet by dilations and contractions (scaling) as well as shifts. Recent surge in application of 

wavelet transform in various areas of signal processing resulted from the effectiveness of this 

mathematical tool for analysis and synthesis of signals. But as the transforms evolved so did the 

complexities involved with them. And hence simpler approaches were always welcomed. 

1.2.7.1 Haar Transform 

The Haar transform [130] is the simplest of the wavelet transform. This transform cross-multiplies a 

function against a wavelet called Haar wavelet with various shifts and stretches, like the Fourier 

transform cross-multiplies a function against a sine wave with two phases and many stretches. The 

Haar transform is derived from the Haar matrix. 

The Haar function hk(x) are defined on a continuous interval, [0,1]x ∈ , and for k = 0, 1, …, N 

- 1, where N = 2n. The integer k can be uniquely decomposed as  

k = 2p + q – 1 

where 0 ≤ p ≤ n - 1; q = 0, 1 for p = 0 and 1 ≤ q ≤ 2p for p ≠ 0.  

Representing k by (p, q), the Haar functions are defined as 
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The Haar transform is real and orthogonal. It is a very fast transform and the basis vectors are 

sequency ordered. The energy compaction for images is poor.  

The Haar Transform Matrix  

The Haar transform is obtained by letting x take discrete values at m/N, m = 0, 1, …, N – 1. For 

example, when N = 4, we have  
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Higher order Haar matrices follow the same structure as the 4 × 4 matrix. When N = 8, 
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The Haar transform can be envisioned as a sampling process in which rows of the transform 

matrix act as samples of finer and finer resolution. The Haar transform provides a transform domain 

in which energy is concentrated in localized regions.  

1.2.8 Hadamard Transform 

The elements of the basis vectors of the Hadamard transform [130] take only ± 1 and are therefore 

well suited for digital signal processing. The Hadamard matrices, Hn, are N × N matrices, where N = 

2n, n = 1, 2, 3.  

Recursively, the 1 × 1 Hadamard transform H0 can be defined as H0 = 1, and then define HN  

for N  > 0 by 
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where the 1/ 2  is a normalization factor that is sometimes omitted. Thus other than this 

normalization factor, the Hadamard matrices is made up entirely of 1 and -1. Some examples of the 

Hadamard matrices are  
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Sampling a class of functions called the Walsh functions can also generate the basis vectors of the 

Hadamard transform. These functions also take only the bipolar values ± 1 and form a complete 

orthonormal basis for square integrable functions. Due to this,  the above transform is also called the 

Walsh-Hadamard transform. The Hadamard transform is real, symmetric and orthogonal. It is a fast 

transform and has good energy compaction for highly correlated images. 

 

1.3 Implementations 
In the field of signal processing, the development of algorithms and the progress of implementation 

are closely tied to each other. Programmable processors such as microprocessors or Digital signal 

processors implement a limited and fixed set of arithmetic and control operations that can be 

organized and sequenced to implement any transforms. The speed of such processors has steadily 

increased to match the needs of emerging applications. However the fundamental physical limitation 

imposed by the speed of light makes it impossible to achieve further improvements in the speed of 

such processors. Speed of computation, important in real time applications can be improved by 

parallel processing techniques. In cases where the native processor operations are not well suited to 

the task at hand or in cases where massive amount of parallelism can be exploited, these processors 

are inefficient and deliver poor performance [84].  

Several implementations of transforms on different parallel computer architectures such as 

vector processors, parallel processors etc. are available in the literature. Even these approaches will 

not meet design requirements, in many applications. Either they are too expensive in terms of power 

and size, or their performance may still be insufficient. The algorithm for such implementations are 

designed keeping in mind the underlying architecture and hence is not portable. Such implementations 

cannot be used in mobile equipments [53]. In such cases a custom hardware can often resolve the 

problem. For real-time very high speed signal processing, a dedicated special purpose hardware 

processor is often required. Nowadays, ASIC and FPGA platforms are mostly used to manufacture 

such processors [84].  

Selection of proper architecture and implementation styles can strongly influence the 

performance of dedicated VLSI DSP circuit [53]. E.g., J. Pihl [74] has shown that bit-serial and bit 

parallel architectures are comparable by area-time measure, but indicate that bit-serial design for high 

performances are not as efficient from a power consumption point of view. One of several 

architectures may be chosen, depending on the requirements such as speed, cost, power etc. E.g., in 

space borne application, efficient implementations are of paramount importance because of power and 

size constraints. The circuit architecture for high speed applications will continue to evolve in the 

direction of exploiting parallelism in algorithms using multiple processing elements. Furthermore, 

keeping architecture and implementation in mind, we can design inherently new signal processing 

algorithms which are possessed with concurrency.  
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1.4 Visualization 

There is still a huge gap between our ability to extract answers and our ability to present the 

information in meaningful ways. The explosive generation of massive data sets and our ability to 

extract data’s inherent information has continued to spawn research in several significant areas. The 

aim of such research is to increase our understanding of the data, what useful information is latent 

within it, and how to detect portions of it that are of strong interest. The primary relevant fields to this 

endeavor are statistics, data visualization, databases, and the combinational fields of data mining, 

pattern recognition, machine learning, and artificial intelligence. In the early days, statistics is used for 

data analysis by applying various mathematical and numerical methods to determine the fit of 

mathematical models to the data. The majority of the work in statistics has focused on methods for 

verifying apriori hypothesis about the data. 

“A Picture is worth a thousand words”. Different people give different interpretation to a 

visual seen by them. Visualization technique is a very useful method in discovering patterns present in 

data sets [93]. The early set of techniques and technologies used to analyze and model data sets, 

revolved around the visualization of the data using graphs, charts and tables. Digital computers and 

data storage dramatically changed the picture. The data volumes ruled out traditional ‘manual’ 

approaches to analysis. 

Visualization, well done, harnesses the perceptual capabilities of humans to provide visual 

insight into data. Early statistical methods provided reasonable visual support for data explorers. 

Similarly modern graphical techniques help to provide visual comprehension of the various 

computational approaches. Moreover, visualizations are also being used to display properties of data 

that have complex relations – possibly patterns not obtainable by current computation methods. 

a) Purpose of data visualization 

Human beings look for structure, featuring patterns, trends, anomalies and relationships in data. 

Visualization supports this by presenting the data in various forms with differing interactions. 

Visualization can i) provide a qualitative overview of large and complex data sets, ii) summarize data 

and iii) assist in identifying regions of interest and appropriate parameters for more focused 

quantitative analysis. In an ideal system, visualization harnesses the perceptual capabilities of the 

human visual system. 

b) Classification of visualization techniques 

Visualization can be classified in a number of ways, based on (i) the task at hand, (ii) the structure of 

the underlying data set, or (iii) the dimension of the display [101]. 

Visualization can be used i) to explore data, ii) to confirm a hypothesis, or iii) to manipulate a 

viewer. In an exploratory visualization, the user does not necessarily know what he is looking for. 

This creates a dynamic scenario in which the interaction is critical. The user is searching for a 
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structure or trends and is attempting to arrive at some hypothesis. In a confirmatory visualization, the 

user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System 

parameters are often predetermined. Analytical tools are especially necessary to be able to confirm or 

refute the hypothesis. In productive visualization, the user has a validated hypothesis and so knows 

exactly what is to be presented and focuses on refining the visualization to optimize that presentation. 

This is the most stable and predictable visualization.  

Visualizations can also be classified as to whether (1) the underlying data is spatial or non 

spatial or (2) the displayed data is to be 2-D or 3-D. 

c) Visualization components 

Data can be either stable or dynamic. A PET scan for example, is static, where as cloud vapor over 

time is dynamic. Visualization can be stationary, animated or interactive, respectively, for example, a 

set of MRI image, a simulation of a finite element analysis over time, or a real time representation of 

wind flow across an automobile. The processing of data in the visualization system can be batch or 

interactive; batch for the analysis of a set of images, interactive for pre-surgery analysis. 

d) Visualization interaction 

The user can interact with the data in a variety of ways. These include (i) browsing, to get the big 

picture; (ii) sampling, to reduce data size; (iii) directed, for adhoc querying; and (iv) associative, to 

access related data. 

The user can also interact with the visualization system. E.g. the user can create, edit or 

manipulate the visualization networks; the user can specify data files to be retrieved, data fields to be 

displayed, specify visualization pipeline parameters, create or manipulate the output (for further 

queries) or display further available information about the data. 
 

1.5 Motivation for the present work 
Transform theory has a prime task in signal processing, as well as in other areas. The transforms find 

an alternate domain, so that it is easier and convenient to process the task. The predominance of 

Fourier transform is partially because it represents the eigen function of Linear Time Invariant (LTI) 

systems [123]. Due to the increasing flexibility and re-configurability of digital systems, DSP is 

becoming more and more powerful. The DFT is widely used in DSP in various forms so as to exploit 

the advantages of digital system, especially when J. W. Cooley and J. W. Tukey popularized the idea 

of FFT by a publication [1]. It is used for frequency domain analysis of signals by mapping the digital 

data into the frequency domain. Furthermore the convolution theorem also holds in DFT. There are 

many fast algorithms for computing the DFT, which made it quite popular. But most of them suffer 

from the complex operations in implementation phase, i.e., in conventional DFT computation 

algorithms, the data will also be converted to complex form and the computations are carried out in 

complex form. This increases the computation time and memory requirement, especially in 2-D 

applications. But most of the world problems have real data. One complex multiplication requires 4 
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real multiplications and two real additions. Two memory locations will be required to store one 

complex data. Also, the computation time will be more for multiplication than addition. Thus the 

speed of computation can be improved by reducing the number of complex multiplications. 

 In [88], 2-D DFT computation was modified in terms of real additions rather than complex 

multiplications by grouping data associated with a given twiddle factor in addition to the periodicity 

and symmetry properties.  This modification of the 2-D DFT computation enabled to reduce the 

computational complexity from N4 complex multiplications of conventional DFT to N3/2 in the 

modified DFT.  By exploring the features of DFT computation in the real domain, the computational 

complexity can further be reduced. 

  From the beginning of science, visual observation has played a major role. Pictorial 

information provides much more details, than what you explain. Visualization techniques are of 

increasing importance in exploring and analyzing large amounts of multidimensional data, as the 

personal computers are powerful enough to process it. A major advantage of visualization is that it 

allows a direct interaction with the user and provides an immediate feed back, which is difficult to 

achieve in most non-visual approaches. A visual representation for the computation of 2-D DFT in 

terms of 2 × 2 point DFT was developed in [88]. However, the visual representation based on 2 × 2 

DFT does not give a direct relationship between the data and the DFT coefficients. A visual 

representation based on data may give a better insight into the relationship between time domain data 

and the frequency domain representation. Analysis of the visual representation can be used to derive 

simple and efficient computational schemes. 

 Although purely from a computational efficiency point of view, the DFT is more expensive 

than the FFT, from a VLSI implementation point of view there are significant reasons why the DFT 

may be preferable to the FFT (particularly with a small number of coefficients). The FFT’s complex 

data routing limits overall speed and is expensive in terms of chip area [28], [17]. Majority of the 

available VLSI implementation of 2-D DFT are based on the popular row-column approach, where 

the 2-D transform is performed in three steps: (i) 1-D transformation of the input rows, followed by 

(ii) intermediate results transposition (usually implemented with a transposition memory) and (iii) 1-D 

transformation of the intermediate result columns. A hierarchical neural network model was 

developed [71], [72] to implement 2-D DFT for a particular order N such that ((N))4 = 2. The scheme 

can be used to compute 2-D DFT with few real multiplications and real additions. The speed of 

computation will be very high due to the parallel distributed nature, at the same time reducing the 

memory requirement due to the hierarchical structure. Repetitive nature of the simple modules shows 

a potential in easy and cost effective VLSI implementation of the 2-D DFT. Fast hardware 

implementation of the parallel distributed computation of 2-D DFT, for any even N, could be 

developed which enables 2-D signal processing easy. 

MRT [140], [155], as explained in section 1.2.4, represent 2-D signals in terms of real additions 

alone rather than using complex multiplications. This transform maps the data matrix into M matrices 
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using real additions alone.  MRT, in the raw form contains significant redundancy. In [167] it was 

shown that the UMRT coefficients are unique, numerically compact and require only the same 

memory as required for the original image, when N is a power of 2. The visual representation can be 

analyzed to obtain unique MRT for any even N. Further a fast hardware implementation of a parallel 

distributed computation of 2-D UMRT, for any even N, could be developed which enables 2-D signal 

processing easy. 
 

1.6 Brief sketch of the present work 
The scheme of the work presented in this thesis is given below: 

A review of the important research work done in the field of signal transforms aimed at 

improving the performance viz. a viz. speed are presented in chapter 2. The emphasis is given to the 

fast implementations so as to expose the significance of the present work. 

The visual representation of 2-D DFT computation using a set of primitive symbols based on 

2 × 2 data are described in chapter 3. Analysis of visual representation is extensively done in section 

3.2.3. The classification of DFT coefficients is also explained in section 3.2.3. Different levels of 

redundancy present in the visual representation of DFT coefficients are analyzed in section 3.2.4. A 

basic set of DFT coefficients necessary and sufficient to represent the entire signal, identified using 

the redundancy analysis, is narrated in section 3.2.6. The chapter concludes with the development of 

an algorithm for the computation of an N × N point DFT, using visual approach, for any even N. 

Chapter 4 gives details of the development of Parallel Distributed Architectures for the 

computation of 2-D DFT. Version I and II Parallel Distributed Architectures for the computation of 8 

× 8 point DFT, designed by the analysis of the visual representation of DFT coefficients based on 2 × 

2 DFT, are explained in section 4.1.2 and 4.1.3 respectively. M spacing based DFT computation 

developed, by analyzing the visual representation of DFT coefficients in terms of 2 × 2 data, is 

outlined in section 4.2.  Four different algorithms for the computation of particular solution required 

for the M spacing based algorithm are also explained in section 4.2.5.3. 

Analysis of derived redundancy present in the MRT coefficients and its elimination to obtain 

2-D UMRT is outlined in chapter 5. Analysis of derived redundancy is explained in section 5.1. 

Section 5.2 narrates the computation of number of MRT coefficients, which are redundant in a basic 

DFT coefficient. Selection of UMRT coefficients is outlined in section 5.4.  A suitable placement 

scheme developed to place the UMRT coefficients is described in section 5.5. Three approaches, one 

of which is a Parallel Distributed Architecture, designed and developed for the computation of 2-D 

UMRT are presented in section 5.6. 

The simulation results & comparison of the various algorithms and the parallel distributed 

architectures developed in chapter 3, 4 & 5 are discussed in chapter 6. Results of the Matlab® 

simulation of 2-D DFT & UMRT algorithms and their comparisons are summarized in section 6.1. 

The simulation results of the three architectures for the computation of 8 × 8 point DFT and UMRT 
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using Matlab are compared in section 6.1.3 and 6.1.4 respectively.  Further, the details of the FPGA 

implementation of the three architectures for the computation of 8 × 8 point UMRT is described in 

section 6.2. Different schemes for the M spacing based 2-D UMRT computation, which are simulated 

and synthesized in FPGA, are outlined in section 6.2.2 and their performance is also compared in this 

chapter. 

The discussions and conclusions based on the results available from the implementation of 

various algorithms and architectures are dealt with in chapter 7. Important features of visual 

representation of DFT coefficients in terms of 2 × 2 data, presented in chapter 3, are discussed in 

section 7.1. Section 7.2 discusses the aspects of the 2-D DFT computation using visual approach. 

Results based on the development of different architectures for 2-D DFT computation are discussed in 

section 7.3. Salient features of 2-D UMRT algorithms and architectures are discussed in section 7.4. 

The synthesis results of the FPGA implementations corresponding to different architectures for 2-D 

UMRT computations are discussed in section 7.5. The chapter also discusses the scope for future 

research work. 

Appendix A provides the primitive symbols used for the visual representation of 2-D DFT 

coefficients based on 2 × 2 DFT and the visual representation of 8 × 8 point DFT.  The grouping of 

the DFT coefficients is shown in fig A.3. Appendix B presented the elements of number theory used 

for the analysis of visual representation and derivations of the algorithms. Appendix C deals with 

relevant information in the derivation of the M spacing based algorithm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20   Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

CHAPTER 2 

REVIEW OF PAST WORK 

The Fourier transform provides a continuous frequency spectrum of an arbitrary time domain signal 

waveform and hence used for frequency domain analysis of the signal ever since its inception in 1807. 

Due to the increase in flexibility and other numerous advantages of digital circuits over analog 

circuits, digital signal processing has developed very rapidly. Also, for processing very low frequency 

signals like seismic signals, EEG signals etc., analog circuits require inductance and capacitance of a 

very large size whereas digital processing is more suited for such type of applications [150]. The first 

electronic digital computers were completed in the late 1940’s. People started using digital computers 

extensively for scientific computing. Hence the frequency domain representation of a signal using 

DFT became popular. Subsequent development of the digital computer over the years has been 

synonymous with developments in semiconductor technology. From the invention of the transistor at 

BELL telephone Labs in 1947, the rate of progress has been ever quickening. In 1968, Jack Kilby, 

then working at Texas Instruments, produced the first ‘integrated circuit’, which contained just a 

couple of transistors on a chip of about 1 cm square. According to Moore’s law the number of 

transistors in an IC doubles every 18 months. Today’s chips are having more than 2 billion transistors. 

This pace of development seems to show no sign of halting. But the DFT of an N point sequence 

require N2 complex multiplications and N(N - 1) number of complex additions which make it 

unsuitable for most of the applications. FFT became popular after J. W. Cooley of IBM and John. W. 

Tukey of Princeton [1] published a paper in 1965 reinventing the algorithm and describing how to 

perform it conveniently on a computer. Even though FFT is quite efficient for 1-D signals, due to the 

large number of complex multiplications required, it is not of much use in 2-D signal processing 

applications. The time domain processing and the use of real transforms in image processing therefore 

prevailed. E.g., JPEG for compression of still images [45] and MPEG for compression of motion 

video [44] employ DCT, whereas JPEG 2000 [118] is based on Discrete Wavelet Transform (DWT).  

Within the mean time computational aspects of the Fourier transform were further developed 

to speedup the computation that is demanded for real time applications. To achieve computational 

speeds for such applications, a hardware implementation is often necessary. An examination of the 

history of signal processing shows that new algorithms in signal processing result from the need to 

improve the efficiency and reduce the cost of implementation [80]. New design and implementation 

techniques are often triggered by signal processing algorithms that tend to be computation intensive. 

In the field of signal processing, the development of algorithms and the progress of implementation 
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are closely tied to each other. The literature review comprising of the important work done in the 

above fields are presented below. 
 

2.1 1-D Transforms 
2.1.1 DFT 
Various methods are available in the literature to compute the 1-D DFT. Few of them are listed below.   

Two methods for computing DFT by polynomial transforms are proposed by H. J. 

Nussbaumer et al. [11] and shown that these techniques are particularly well adapted to 

multidimensional DFT’s as well as to some 1-D DFT’s and yield algorithms that are, in many 

instances, more efficient than FFT or the Winograd Fourier Transform (WFTA). 

A systematic method of sparse matrix factorization developed by Z. Wang [22] for all four 

versions of the discrete W transform, the DCT, and the discrete sine transform, as well as for the DFT 

in which only real arithmetic is involved. A scheme for reducing multiplications and a convenient 

index system are introduced. 

C. X. Fan et al. [25] introduced an FFT algorithm using Hadamard transform (HAT), which is 

called Hadamard Fourier Transform (HFT). In the proposed algorithm, a HAT is used as mid-

transform and the redundant calculation in the original FFT algorithm is reduced by double 

transformation. The results of theoretical analysis show that the number of multiplications and 

additions of HFT are both decreased by 60% compared with that of traditional FFT and the executed 

result shows the computing speed of HFT is 1.6 to 1.7 times faster than FFT.  

O. K. Ersoy [29] developed a two-stage representation in terms of preprocessing and Post-

processing of DFT by vector transformation of sines and cosines into basis functions using Mobius 

inversion of number theory. The preprocessing matrix, with elements 1, - 1, and 0, is obtained by 

replacing cos 2πn/ N and sin 2πn/ N by µ(n / N + 1 / 4) and µ (n/ N ) , respectively, where µ (. ) is the 

bipolar rectangular wave function. The post-processing matrix is block diagonal where each block is a 

circular correlation and consists of the above basis functions. They claim that the two-stage 

representation is useful for parallel implementation of DFT. 

Basis-vector-decomposition based two-stage computational algorithms for DFT and DHT 

were proposed by J. L. Wu et al. [54]. The computations of DFT are divided into two stages: an 

add/subtract preprocessing and a block-diagonal post-processing. Both stages can be computed 

effectively. They claim that the computational complexity of the proposed DFT algorithm is identical 

to that of the most popular split radix FFT yet requires real number arithmetic only. Generation and 

storage of the real multiplicative coefficients are easier than that in conventional FFT’s.  

Decimation-in-time-frequency (DITF) FFT algorithm is obtained by combining the 

decimation-in-time (DIT) and the decimation-in-frequency (DIF) FFT algorithms as proposed by A. 

Saidi [61] which reduces the number of real multiplications and additions. The above algorithm 

reduces the arithmetic complexity while using the same computational structure as the conventional 
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Cooley-Tukey (CT) FFT algorithm. The algorithm is extended to radix-R FFT as well as the 

multidimensional FFT algorithm using the vector-radix FFT. 

A 1D-to-1D mapping was designed to get an iterative structure of Winograd FFT algorithm 

(WFTA) by X. Qingbin et al. [66]. With this representation, the WFTA has the features of in-place 

computation and unified computational structure as same as Cooley-Tukey algorithm. 

Q. H. Liu et al. [87] proposed an accurate algorithm for the non uniform forward FFT 

(NUFFT) based on a new class of matrices, the regular Fourier matrices for a non-uniformly sampled 

data. For the non-uniform inverse FFT (NU-IFFT) algorithm, the conjugate-gradient method and the 

regular FFT algorithm are combined to speed up a matrix inversion.  

Y. Jiang et al. [112] presented an FFT algorithm to reduce the frequency of memory access as 

well as multiplication operations. For an N-point FFT, they designed the FFT with two distinct 

sections: (1) the first section of the FFT structure computes the butterflies involving twiddle factors 
j

nW  (j ≠ 0) through a computation/partitioning scheme similar to the Hoffman coding. In this section, 

all the butterflies sharing the same twiddle factor will be clustered and computed together. In this 

way, redundant memory access to load twiddle factors is avoided. (2) In the second section, the 

remaining (N-1) butterflies involving the twiddle factor 0
NW  are computed with a register-based 

breadth-first tree traversal algorithm. 

G. X. Fan et al. [132] presented a fast algorithm for the evaluation of the Fourier transform of 

piecewise smooth functions with uniformly or non uniformly sampled data by using a double 

interpolation procedure combined with the FFT algorithm. This is a discontinuous FFT algorithm. The 

method also provides a non-uniform FFT algorithm for continuous functions.  

Zhong Cui-xiang et al. [148] introduced a general method to deduce FFT algorithms and then 

transforms the deduced second radix-2 decimation-in-time FFT algorithm into another parallelizable 

sequential form. Finally the latter algorithm is transformed into a parallel FFT algorithm, reducing the 

time complexity of DFT to O(NlogN/p) (where p is the number of processors). Using similar methods, 

other parallel 1-D and 2-D FFT algorithms can be designed. 

S. Lee et al.  proposed the [161] modified Single-path Delay Feedback (SDF) architecture for 

FFT implementation, which implements a mixed Decimation-in-Frequency (DIF) /Decimation-in-

Time (DIT) FFT algorithm. Since final stage is computed as DIT FFT algorithm and other stages 

including input stage are computed as DIF FFT algorithm, both input and output data occur in normal 

order and additional clocks for reordering input or output is not required.  

There are many algorithms with different radix, most of which are refined since its 

development. In terms of implementation, it should be noted that all of these radix algorithms can be 

performed 'in-place'; that is, at each stage of the algorithm the output data may overwrite the input 

data and so no storage is required beyond the size of the original data. Furthermore, each algorithm is 

amenable to simple recursive programming techniques. 
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An extended split-radix FFT algorithm that has the same asymptotic arithmetic complexity as 

the conventional split-radix FFT algorithm was proposed by D. Takahashi [104]. This algorithm has 

the advantage of fewer loads and stores than either the conventional split radix FFT algorithm or the 

radix-4 FFT algorithm. 

S. Bouguezel et al. [131] proposed an improved radix-16 DIF FFT algorithm by introducing 

new indices for some of the output sub-sequences resulting from the conventional radix-16 DIF 

decomposition of the DFT. This improved radix-16 DIF FFT algorithm achieves savings of more than 

46% in the number of twiddle factor evaluations or accesses to the lookup table and address 

generations compared to the conventional radix-I6 DIF FFT algorithm.  

An alternate method to derive higher radix FFT algorithms by using a recursive approach and 

by appropriately combining the twiddle factors without increasing the structural complexity was 

proposed by S. Bouguezel et al. [164]. They have designed efficient radix-8 and radix-16 FFT 

algorithms and their arithmetic complexities shown to be slightly less than those of the corresponding 

existing Cooley-Tukey FFT algorithms. 

Y.J Moon et al. [153] developed a Mixed-Radix 4-2 Butterfly Structure with simple bit 

reversing output sequences derived by index decomposition technique, which was used in the Radix-

2i algorithm. Compared with the Radix-23 algorithm and the Split-Radix 2/4/8 algorithm, the proposed 

algorithm has the same number of multipliers and the less number of stages and butterflies than the 

Radix-23 and the Split-Radix 2/4/8 algorithm. Moreover, the proposed algorithm makes an offer, the 

simple bit reversing for ordering the output sequences, which is only supported by a fixed-radix FFT 

algorithm. 

S. Bouguezel et al. [174] proposed a general class of split-radix FFT algorithms for 

computing the length-2m DFT by introducing a recursive approach coupled with an efficient method 

for combining the twiddle factors. This enables the development of higher split-radix FFT algorithms 

from lower split-radix FFT algorithms without any increase in the arithmetic complexity.  

Many algorithms were developed for implementation in different parallel computers and DSP 

chips. 

D. Rodrigzez [43] presented an algorithm for computing the DFT and implemented on DSP 

96002. This FFT algorithm is obtained through decomposition of the Fourier matrix representing the 

DFT operator into a product of sparse matrices not all square matrices. The algorithm is based on 

additive properties of the input and output indexing sets of the Fourier transformation.  

High-performance parallel 1-D FFT algorithms, for distributed-memory parallel computers 

with vector symmetric multiprocessor (SMP) nodes, were proposed by D. Takahashi [95]. In the 

parallel FFT algorithms implemented in four-step and five-step methods, since cyclic distribution is 

used, all-to-all communication takes place only once. Moreover, the input data and output data are 

both in natural order. 
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The grouped scheme was applied by C. P. Fan et al. [166] to compute the FFT when the 

portions of transformed outputs are calculated selectively. The grouped FFT algorithm applies the 

scheme of the grouped frequency indices to accelerate the computation of selected DFT outputs. The 

advantage of the grouped FFT algorithm is that it is more cost-effective than the conventional FFT 

algorithms when we need to compute parts of the transformed outputs, not all outputs. By sharing 

coefficients of the twiddle factors in the same frequency group, the grouped FFT can be implemented 

with hardware sharing VLSI architectures. 

2.1.2 DCT 
A discrete cosine transform (DCT) is defined and an algorithm to compute it using the FFT was 

developed by N. Ahmed et al. [6]. It is shown that the DCT can be used in the area of digital 

processing for the purposes of pattern recognition and Wiener filtering. Its performance is compared 

with that of a class of orthogonal transforms and is found to compare closely to that of the KLT, 

which is known to be optimal. The performances of the KLT and DCT are also found to compare 

closely with respect to the rate-distortion criterion. 

M. J. Narasimha et al. [9] used an N-point DFT algorithm to evaluate a DCT by a simple 

rearrangement of the input data. This method is about two times faster compared to the conventional 

method, which uses a 2N-point DFT. 

S. C. Chan et al. [47] presented efficient methods for mapping odd-length type-II, type-III, 

and type-IV DCT’s to a real-valued DFT. It is found that odd-length type II and type III DCT’s can be 

transformed, by means of an index mapping, to a real-valued DFT of the same length using 

permutations and sign changes only. The real-valued DFT can then be computed by efficient real-

valued FFT algorithms such as the prime factor algorithm. Similar mapping is introduced to convert a 

type-IV DCT to a real-valued DFT up to a scaling factor and some additions. Methods for computing 

DCT’s with even lengths are also discussed. 

2.1.3 Hadamard Transform 
Hadamard transforms (HAT) can save additional computer time since only real-number operations are 

involved. However, the power spectra represent groups of frequencies rather than individual 

frequencies, and in general, there is loss of phase information. 

An algorithm for computing Hadamard transforms was presented by D. Coppersmith et al. 

[59]. If N is a power of four, then the algorithm uses 7/8 Nlog2N multiply/adds to compute a 

Hadamard transform of length N. 

B. J. Falkowski et al. [70] defined a family of Unified Complex Hadamard Transforms 

derived from Walsh functions. Different types of Complex Hadamard matrices can be generated from 

the developed direct matrix operator. Sparse matrix factorization or matrix partitioning of the 

Complex Hadamard matrices leads to the fast algorithms with complexity N log2N suitable for 

hardware implementation. 
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A Generalized Hadamard Transform for multiphase or multilevel signals was introduced by 

K. J. Horadam [145], which includes the Fourier, Generalized, Discrete Fourier, Walsh-Hadamard 

and Reverse Jacket Transforms. The jacket construction is formalized and shown to admit tensor 

product decomposition. 

A family of fast Walsh Hadamard transform algorithms that have an identical and iterative 

stage factorization was presented by P. M. Puig [160]. The transform factorization is in terms of 

identical sparse matrices that implement the stages of general radix-R factorization, where R is a 

power of 2. 
 

2.2 Two-dimensional Transform 
2.2.1 DFT 
G. Bongiovanni et al. [7] showed that if a one-dimensional vector A is fractured into a two-

dimensional matrix E, a one-dimensional generalized discrete Fourier transforms (GFT) on A and a 

two-dimensional GFT on E give the same result and require the same number of operations to be 

computed. The result holds also for the DFT, as it is a particular case of the GFT. 

C. Caraiscos et al. [14] has combined the well-known decimation-in-time and decimation-in 

frequency FFT algorithms to give a 2-D DFT algorithm, the Mixed Simultaneous Decimation FFT 

algorithm.  

R. D. Preuss [15] developed and presented a radix-2 FFT algorithm that reduces the number 

of multiplications to two-thirds of that required by most radix-2 algorithms. Its structure is particularly 

appealing when transforming pure real or imaginary sequences and/or symmetric or anti symmetric 

sequences and that the memory requirements other than those for storing the input data do not grow 

with the size of the transform. 

A. Guessoum et al. [26] generalized the prime factor algorithm for the evaluation of a 1-D 

DFT to the evaluation of M-D DFTs defined on arbitrary periodic sampling lattices. It is shown that 

such an algorithm is equivalent in computational complexity to the evaluation of a rectangular DFT. 

A fast discrete Radon transform (FDRT) algorithm for computing 2-D DFTs, which has the 

advantage of having the lowest number of multiplications and is more suitable for parallel 

implementations compared with other related algorithms was presented by D. YANG [36]. 

D. Yang [38] presented a decomposition in which the 2-D DFT can be converted into a series 

of the odd DFT using the discrete Radon transform (DRT). Further a Fast DRT based 2-D DFT 

algorithm is presented which has the advantage of greater regularity suitable for parallel architecture. 

Use of Radon transform algorithm for reducing the number of 1-D DFTs to compute a 2-D 

DFT, are offset by a costly increase in the number of additions required to perform the Radon 

transform. A common factor 2-D FFT algorithm to compute the 2-D DFT is O(N2log2N) 

computationally, whereas L. M. Napolitano et al. [46]  in their approach reduced the number of FFT 

additions and multiplications by 25%, but adds 0(N3) additions.  
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The split-radix approach for computing the DFT is extended for the vector-radix FFT to two 

and higher dimensions by S. C. Chan et al. [51]. It is obtained by further splitting the (N/2 × N/2) 

transforms with twiddle factors in the radix-(2 × 2) FFT algorithm.  

S. Bouguezal et al. [91] derived an algorithm for computing multidimensional Cooley-Tukey 

FFT’s that is suitable for implementation on a variety of multiprocessor architectures from a Cooley 

decimation-in-time algorithm by using an appropriate indexing process and the tensor product 

properties. It is seen that the number of multiplications necessary to compute the algorithm is 

significantly reduced while the number of additions remains almost identical to that of conventional 

Multidimensional FFT’s (MFFT). 

An original multidimensional FFT algorithm was proposed by R. Bernardini [97], where the 

computation is first organized into multiplier-free butterflies and then completed by 1-D FFT’s. The 

properties of well-known 1-D FFT algorithms blend in quite nicely with those of the proposed 

multidimensional FFT scheme, extending their computational and structural characteristics to it.  

S. Bouguezel et al. [135] presented an efficient algorithm for pruning the output samples of 

the radix- (2 × 2) 2-D DIT algorithm. This is done by grouping, in the radix- (2 × 2) 2-D DIT FFT 

algorithm, all the stages that involve unnecessary operations into a single stage and introducing a 

recursive technique for computing the resulting stage. Due to this grouping and the efficient indexing 

process, the implementation of the proposed algorithm requires a minimum number of stages there by 

reduces the overall control and structural complexities. 

S. C. Pei et al. [134] presented an efficient split vector-radix-2/8 FFT algorithm which saves 

14% real multiplications and has much lower arithmetic complexity than the split vector-radix-2/4 

FFT algorithm. The algorithm also reduces 25% data loads and stores compared with the split vector-

radix-2/4 FFT algorithm. 

2.2.2 Modified DFT 
A pictorial Representation for the computation of 6 × 6 point DFT in terms of 2 × 2 point DFT was 

developed by R. Gopikakumari et al. [69]. All the operations are complex in direct DFT, whereas in 

visual representation, the computations are mostly real and the scaling by the twiddle factor is done 

only in the final stage. As a result, the 2-D DFT computation was reduced in terms of real additions 

and complex multiplication from 2N  to N/2 for each coefficient where N is the dimension of the Data 

matrix and is even. The DFT computation and analysis of 2-D signals can be simplified using this 

visual representation. 

R. Gopikakumari et al. [73] proposed a visualization technique for the analysis of 2-D Data 

based on DFT.  

In [83] a visual manipulation of symbols to implement 2-D DFT was developed by R. 

Gopikakumari et al. 
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R. Gopikakumari [88] modified 2-D DFT representation in terms of real additions, which 

requires N/2 complex multiplication in the computation of each of the N2 DFT coefficients. The above 

restructuring was made possible by grouping data associated with a given twiddle factor in addition to 

the exploitation of periodicity and symmetry properties. 

A fast approach for visual representation of selected DFT for ((N))4 = 2 was proposed in [126]  

by R. Gopikakumari et al. using direct and indirect method. The direct method involves selection of 

appropriate symbols for each 2 × 2 DFT from the symbol table after computation, whereas the indirect 

method was derived after analyzing the properties of visual representation. This method is suitable 

when a few DFT coefficients need be computed which will help in visualizing the influence of data at 

different time / spatial index over a particular frequency. 

In [125] R. Gopikakumari et al. presented a semantic rule based visual representation of 2-D 

DFT for N = 6. This facilitates the construction of the complete set of DFT coefficients from a very 

few coefficients, reducing the computational complexity and normal memory requirement of visual 

representation. 

2.2.3 DCT 
J. Makhoul [12] showed that the DCT of an N-point real signal may be obtained using only an N-point 

DFT of a reordered version of the original signal, with a resulting saving of 1/2. The method is then 

extended to two dimensions, with a saving of 1/4 over the traditional method that uses the DFT. 

M. Vetterli [22] presented a fast radix-2 2-D DCT by first improving the mapping of a real 

signal into a 2-D DFT followed by an usual polynomial transform approach to map the 2-D DFT into 

a reduced size 2-D DFT and 1-D odd DFTs. Odd DFT algorithms is optimized for real signals. There 

is a reduction in the number of multiplications and additions in comparison to other algorithms. 

A 2-D DCT algorithm based on a direct polynomial approach is proposed by P. Duhamel et al 

[35] which results in a reduction in the number of both multiplications and additions compared to the 

previous ones. 

A fast algorithm for the 2-D DCT computation was derived based on index permutation by Y. 

M. Huang [81] which require only the computation of N l-D DCT’s of length N samples and some 

post additions for a data matrix of size N. The associated post addition stage possesses a more regular 

butterfly structure, which makes it more suitable for VLSI and parallel implementations. 

Y. M. Huang et al. [89] presented an index permutation-based fast 2-D DCT algorithm and 

shown that the N × N 2-D DCT, where N = 2m, can be computed using only N 1-D DCT’s and some 

post additions. 

2.2.4 Hadamard Transform 
A modified factorization for the Hadamard matrix was developed by H. Y. L. Mar et al. [5] for 

obtaining the fast Hadamard transform, which may be interpreted as operations on an H diagram. 
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A four level Hadamard transform which maintains the row orthogonality as the binary 

Hadamard transform but requires the use of complex numbers is presented by J. J. komo et al. [31]. 

The four level Hadamard transform is more general than the binary Hadamad transform. 

A column (row)-wise algorithm for computing the 2-D DHAT of size 2r × 2r, r > 1, by using 

the paired algorithm of the 1-D DHAT, was presented by A. M. Grigoryan et al. [98]. The discrete 

paired transforms, which split the 2r -point DHAT, r > 1, into a set of smaller 2r-i  point transforms, i = 

1: n, is introduced. 

The Hadamard transform was generalized to the case of lapped transform and many methods 

have been proposed to construct lapped Hadamard matrices by S. E. Phoong et al. [121]. 

W. Ouyang et al. [188] proposed a fast algorithm for Walsh Hadamard Transform on sliding 

windows, which can be used to implement pattern matching efficiently. The computational 

requirement of the proposed algorithm is about 1.5 additions per projection vector for each sample.   

2.2.5 Wavelet Transform 

N. Ahmed et al. [4] showed that the Haar transform can be computed using a Cooley-Tukey-type 

algorithm that is implemented in 2 (N— 1) additions/subtractions. This algorithm is derived by 

relating the Haar transform to the modified Walsh-Hadamard transform using a simple bit-reversal 

scheme. 

P. R. Roeser et al. [13] presented the implementation of Fast Haar transform by performing 

the transform in place and limiting the amount of data movement there by attaining greater memory 

efficiency and speed. 

T. S. Lee [67] extended to two dimensions the frame criterion developed by Daubechies for 1-

D wavelets, and it computes the frame bounds for the particular case of 2-D Gabor wavelets. He also 

derived the conditions under which a set of continuous 2-D Gabor wavelets will provide a complete 

representation of any image. He found the self-similar wavelet parameterizations, which allow stable 

reconstruction by summation as though the wavelets formed an orthonormal basis.  

2.2.6 Haar Transform 
A reformulation of the Haar transform algorithm is used to design systolic arrays for data compression 

by G. M. Megson [85]. First a triangular array is developed for the normalised 1-D transform and it is 

then extended to produce an inverse transformation. The 1-D designs are then incorporated into a 2-D 

design for image compression using row and column operations.  

A transformation to localize the equations defining the successive levels of the Mallat 

pyramid for 2-D Haar wavelets was presented by P. Lenders et al. [92]. A methodology for 

implementing these wavelet transforms in parallel architectures like systolic arrays was also proposed 

by them and shown that there is a perfect match between the wavelet algorithms and the multiphase 

multirate array (MPRA) architectures. 
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An algorithm to compute the running discrete Haar wavelet transform of samples which 

reduces the computational complexity to log2N is proposed by J. A. R. Macias et al. [152]. 

2.2.7 MRT 

A transform named MRT was proposed by R. C. Roy et al. [140], which represent 2-D signals in 

terms of real additions alone rather than using complex multiplications. This transform maps the data 

matrix into M matrices using real additions alone. Some of the properties of this transform are also 

presented.  

R. C. Roy et al. [155] presented MRT as an alternative approach for frequency-domain 

representation of 2-D signals and a comparison is made with DFT. MRT helps to do the frequency 

domain analysis of two-dimensional signals without any complex operations but in terms of real 

additions. 

M. S. Anish Kumar et al. [158] developed an image compression and decompression 

technique based on 8 × 8 MRT. The advantage of this method is the flexibility in determining the 

percentage compression at the expense of image quality by choosing appropriate threshold. 

R. C. Roy [167] presented a procedure to obtain a lean MRT representation of an image when 

the image size is a power of two. The lean MRT coefficients are unique, numerically compact and 

require only the same memory space as required for the original image and that the proposed lean 

MRT representation can be used effectively to compress images. 

A transform coder based on 4 × 4 MRT was proposed by M. S. Anish Kumar et al. [185] and 

its performance are analyzed for all types of gray scale images.  
 

2.3 Implementations 

2.3.1 DFT 

A decimation-in-time radix-2 FFT algorithm was considered by L. N. Bhuyan et al. [16] for 

performance analyses in multiprocessors with shared bus, multistage interconnection network (MIN), 

and in mesh connected computers. It is shown that a computer with multistage interconnection 

network gives much higher speedup for processors greater than 16 and is more cost effective even 

with the high cost of switches when compared to a shared bus multiprocessor. 

S. M. Said [20] demonstrates an FFT algorithm implemented on the 68000 microprocessor 

that can calculate a 256-point transform in less than 48 ms. The algorithm employs an interesting 

method of scaling data to overcome overflow. 

In [24] five major DFT algorithms were evaluated on seven different computers by M. A. 

Mehalic et al. It is found that on the average, data transfers account for a greater percentage of the 

execution time than floating-point operations. 
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T. K. Truong et al. [30] used a conventional prime factor DFT algorithm of the Winograd 

type to realize a discrete Fourier-like transform on the finite field GF(q2), where q is a Mersenne 

prime. A pipeline structure is used to implement this prime factor DFT over GF(qn). 

R. Polge et al. [ 34] compares a multiple radix Fast Fourier Number Theoretic Transform with  

the standard FFT algorithms in terms of performance and hardware cost. 

A. Gupta et al. [39] analyzed the scalability of the parallel FFT algorithm on mesh and 

hypercube connected multicomputers. The paper also present experimental speedup results on a 1024-

processor Ncube/l multicomputer which support the analytical results. 

A VLSI architecture was suggested by I. S. Reed [48] for the simplified arithmetic Fourier 

transform (AFT) algorithm using a butterfly structure which reduces the number of additions by 25% 

of that used in the original AFT algorithm. 

S. I. Sayegh [50] described a method for performing FFT’s of various sizes, whose sizes are 

powers of the pipeline’s radix, simultaneously in one pipeline processor. The processor consists of 

several stages of butterfly computational elements alternated with delay-switch-delay (DSD) modules 

that reorder the data between the butterfly stages. FFT’s of radix 2, radix 4, and mixed 2 and 4 are 

considered.  

A. Kumar et al. [57] proposed an FFT algorithm, which minimizes the number of cache 

misses, after analyzing the implementation of some existing FFT algorithms. 

Parallel architectures for short time Fourier transform based on adaptive time-recursive 

processing was proposed for efficient VLSI implementation in [58] by K. J. Ray et al. Only N - 1 

multipliers and N + 1 adders are required. 

Variants of the Winograd FFT algorithm for prime transform size are derived, that offer 

options as to the operational counts and arithmetic balance by J. W. Cooley et al. [55]. The 

implementations on VAX, IBM 3090 VF, and IBM RS16000 are also discussed For processors that 

perform floating-point addition, floating-point multiplication, and floating-point “multiply-add” with 

the same time delay, variants of the FFT algorithm have been designed such that all floating-point 

multiplications can be overlapped by using “multiply-add.” The use of a tensor product formulation, 

throughout, gives a means for producing variants of algorithms matching to computer architectures. 

N. Shirazi et al. [64] implemented the 2-D FFT on a FPGA-based custom computer namely, 

Splash-2. The computation of a 2-D FFT requires O(N2log2N) floating point arithmetic operations for 

an N × N image. 

H. Park et al. [56] proposed modular and area efficient VLSI architectures for computing the 

arithmetic Fourier transform (AFT).  By suitable design of PE’s and I/O sequencing, nonuniform data 

dependencies in the AFT computation which require nonequidistant inputs and assignment of Mobius 

function values are resolved. The design achieves O(N) speedup. 

T. S. Wailes [60] described the use of VHDL in the specification, design, and development of 

a large-scale project that includes several custom ASICs, standard digital components, board-level 
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design, and bus interfacing. The common mechanism for the design was the use of VHDL in system 

testing, behavioral descriptions, structural descriptions, and synthesis. The use of VHDL allowed the 

project to be completed in onefifth of the time used for previous methods. 

A parallel FFT algorithm that removes the complex multiplier between the two pipeline 

stages is proposed in [65] by Y. T. Ma, which also enables each FFT processor at the pipelines to be 

integrated easily onto a single chip. The algorithm also simplifies the address generation of twiddle 

factors and reduces the number of twiddle factors to a minimum as it is now.  

An approach for the systolic implementation of FFT algorithms was presented by H. Lim et 

al. [68] which is based on the fundamental principle that a 1-D DFT can be decomposed to a 2-D DFT 

(with or without twiddle factors) and the 2-D DFT can be computed efficiently on a 2-D systolic 

array. The essence of the proposed systolic array is to combine different types of semi-systolic arrays 

into one array. 

In [76], two algorithms namely a stage by stage method and a multistage method parallel 

radix R FFT algorithms on a multiprocessor or multicomputer system with a global interconnection 

network was proposed by O. Taketa et al. The paper shows that the communication time is very 

sensitive to and affected by data exchange strategy. These algorithms are implemented on two 

commercial massively parallel computers (nCUBE/2 and CM5) and measured the communication 

time. 

In [82] an adaptive FFT program that tunes the computation automatically for any particular 

hardware was presented by M. Frigo et al. The above program’s self-optimizing approach usually 

yields significantly better performance than all other publicly available software. 

T. Chen [90] presented an optimized column FFT architecture, which utilizes bit-serial 

arithmetic and dynamic reconfiguration to achieve a complete overlap between computation and 

communication. 

In [96], a fixed-point FFT algorithm was presented by Jizhong I-fan et al., which can make 

designers easily, adjust the precision and execution time of FFT. It also analyzes the above algorithm 

from the viewpoint of round-off error analysis and presents the benchmarks on ‘C620. 

A complex parallel Radix-4 FFT algorithm was simulated, implemented and realized in 

hardware using VHDL and a Xilinx Virtex-E 1000 FPGA circuit by M. Nilsson [103]. The VHDL 

code was simulated and synthesized in Ease and Synplify Environment and provide speed 

improvements due to a parallel approach. 

P. Rodriguez V [113] implemented a general radix -2 FFT algorithm for SIMD on the Intel 

Pentium and Motorola Power PC architecture for 1-D and 2-D. 

J. Heikkinen et al. [116] designed an application specific instruction set processors (ASIP) for 

a 32 point DCT using the tools from the MOVE frame work, which is semi-automatic design 

methodology for designing processors that utilize the paradigm of transport triggered architecture. In 

ASIP design the hardware resources are tailored according to the requirement of the application. 
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In [122], a method to minimize memory references due to twiddle factors for implementing 

any existing FFT algorithms on DSP processors was presented by Y. Tang et al. The above method 

takes advantage of previously proposed twiddle factor reduction method (TFRM) and twiddle-factor-

based butterfly grouping method (TFBBGM). DIT FIT implementation in TI TMS320C64x DSP, 

achieves an average reduction in the number of memory references by 79% for accessing the twiddle 

factors, and 17.5% reduction in the number of clock cycles. 

Regular and nonmultiplicative mapping algorithms between different types of Generalized 

Discrete Fourier Transform (GDFT) were proposed by H. I. Saleh et al. [124]. Hardware realization of 

16-point FFT, based on the proposed mapping algorithms, with real twiddle factor butterfly rather 

than complex twiddle factors in traditional FFT algorithms, is implemented in Xilinx XC4000 and 

Virtex series FPGA. 

P. Coussy et al. presented [147] a methodology and a tool that permit the High-Level 

Synthesis of DSP applications, under both I/O timing and memory constraints. Based on formal 

models and a generic architecture, this tool helps the designer in finding a reasonable trade-off 

between the circuit’s latency and its architectural complexity. The efficiency of the approach is 

demonstrated on the case study of a FFT algorithm. 

An FFT array processing mapping algorithm was proposed in [142] by Z. Liu in which, 

arbitrary 2k butterfly units (BUs) could be scheduled to work in parallel on n = 2s data (k = 0, 1, …, s-

1). An 18-bit word-length 1024 point FFT architecture with 4 BUs is given to demonstrate this 

mapping algorithm. The design is implemented with TSMC 0.18µm CMOS technology. This 

processor could complete 1024 FFT calculation in 7.839µs. 

To try to reconcile the dual requirements of high performance and ease of development, I.S. 

Uzun et al. [143] reported on the design and realization of high level frame work for the 

implementation of 1-D and 2-D FFTs for real-time applications. A wide range of FFT algorithms, 

including radix-2, radix-4, split-radix and fast Hartley transform (FHT) have been implemented under 

a common framework in order to enable the system designers to meet different system requirements. 

G. Lakshminarayanan  [144] developed a techniques for efficient implementation of FPGA 

based wave-pipelined (WP) multipliers, accumulators, and filters. WP multipliers of size 2 × 6 and the 

filters using them are found to be 11% faster and require lower power than those using pipelined 

multipliers. Filters with higher order WP multipliers also operate with lower power at the cost of 

speed. The delay-register products of such filters are found to be about 60% lower than those using 

the pipelined multipliers.  

J. Y. Oh et al. [146] proposed the modified radix-2 and the radix-4 FFT algorithms and 

efficient pipeline FFT architectures based on those algorithms for Orthogonal Frequency Division 

Multiplexing (OFDM) systems. From the synthesis simulations of a standard 0.35µm CMOS 

SAMSUNG process, a proposed Canonical Signed Digit (CSD) constant complex multiplier achieved 
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more than 60% area and power efficiency when compared to the conventional programmable complex 

multiplier.  

T. Lenart [162] presented architectures for supporting dynamic data scaling in pipeline FFTs, 

suitable when implementing large size FFTs in applications such as digital video broadcasting and 

digital holographic imaging. A 2048 point pipeline FFT has been fabricated in a standard CMOS 

process and a FPGA prototype integrating a 2-D FFT core in a larger design. 

CORDIC based split-radix FFT/ IFFT processor dedicated to the computation of 

2048/4096/8192 point DFTs was presented by T. Y. Sung [159].  The arithmetic unit of a butterfly 

processor and a twiddle factor generator are based on a CORDIC algorithm. The modified pipelining 

CORDIC arithmetic unit is employed for complex multiplication. A CORDIC twiddle factor 

generator is proposed and implemented for reducing the size of ROM required for storing the twiddle 

factors. 

X. Li [163] compares the performance of a single processor implementation with two types of 

dual-processor implementations for a widely used Radix-2 N-point FFT algorithm in terms of 

processing speed and FPGA resource utilization. In the first dual-processor implementation, the 

partitioning is performed based on the computation complexity - O(Nlog(N)) of the Radix-2 FFT 

algorithm. In the second implementation, the partitioning is based on a detailed profiling procedure 

applied to each line of the code in the single-processor implementation. This result shows that detailed 

profiling is crucial in identifying the bottlenecks of an algorithm (i.e., all the factors are taken into 

consideration) and consequently the algorithm can be efficiently mapped on a multiprocessor system 

based on the correct decision. 

In [157] O. Atak et al. presented two Application-Specific Instruction-Set Processor (ASIP) 

design concepts for the Cached FFT algorithm (CFFT). A reduction in energy dissipation of up to 

25% is achieved compared to an ASIP for the widely used Cooley-Tukey FFT algorithm, which was 

designed by using the same design methodology and technology. Further, a modified CFFT 

algorithm, which enables a better cache utilization, was also presented. This modification reduces the 

energy dissipation by up to 10% compared to the original CFFT implementation. 

The modified Single-path Delay Feedback (SDF) architecture for FFT implementation, which 

implements a mixed Decimation-in-Frequency (DIF) /Decimation-in-Time (DIT) FFT algorithm, was 

proposed S. Lee et al. [170]. The proposed architecture has the same throughput as that of Radix-4 

SDF and Radix-4 MDC architecture, and reduces the latency and hardware complexity with some 

tradeoff in hardware complexity increase compared to original SDF. 

A prime length DFT can be reformulated into a (N - 1) length complex cyclic convolution and 

then implemented by systolic array or distributed arithmetic. C. Cheng et al. [168] proposed a 

hardware efficient fast cyclic convolution algorithm which is combined with the symmetry properties 

of DFT to get a hardware efficient fast algorithm for small length DFT, and then WFTA is used to 

control the increase of the hardware cost when the transform length N is large. The proposed design 
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has much more choices for different applicable DFT transform lengths and the processing speed can 

be flexible and balanced with the hardware cost. 

Memory reference reduction methods to minimize memory references due to twiddle factors 

for implementing various different FFT algorithms on DSP were presented by Y. Wang [169]. The 

proposed methods first group the butterflies with identical twiddle factors from different stages in the 

FFT diagrams and compute them before computing other butterflies with different twiddle factors, 

and then reduce the number of twiddle factor lookups by taking advantage of the properties of twiddle 

factors. Consequently, each twiddle factor is loaded only once and the number of memory references 

due to twiddle factors can be minimized. Performance gain is achieved for implementing radix-2 DIT 

FFT algorithms on TI TMS320C64x DSP using the above methods. 

B. J. Mohd [175] examined the superscalar pipeline FFT algorithm and architecture. The 

algorithm presents a memory management scheme to prevent memory contention throughout the 

pipeline stages. The fundamental algorithm, a switch-based FFT pipeline architecture and an example 

64-point FFT pipeline was presented. The pipeline consists of log2N stages, where N is the number of 

FFT points. Each stage can have M Processing Elements (PEs.) As a result, the architecture speed up 

is M×log2N. The pipeline algorithm is configurable to any M > 1. 

S. K. Palaniappan [177] described the detail design of semi-custom ASIC CMOS FFT 

architecture for computing 16 point radix-4 FFT, and realized, utilizing 0.18µm standard CMOS 

technology. Fixed point data format is preferred in comparison of floating point data format for a 

shorter dynamic range and reduced hardware utilization; thus, catering to the needs of portability. The 

computation results at particular stage are rounded to avoid overflow issue and to be stored in register. 

M. Szmajda et al. [176] presented basic analog-to-digital conversion parameters, which are 

defined in the norms, the time duration analysis of DFT algorithms, considering described 

assumptions and comparing them to FFT. The software including the aforementioned codes was 

implemented in a low-cost power quality measurement system based on the TMS320c6713 floating 

point DSP processor from Texas Instruments. 

  In [178], an efficient algorithm with parallel and pipelining methods was proposed by N. 

Mahdavi et al. to implement high speed and high resolution FFT algorithm. Latency reduction is an 

important issue to implement the high speed FFT on FPGA. The Proposed FFT algorithm shows the 

latency of 5131 clock pulse when N refers to 1024 points. The design has the mean squared error 

(MSE) of 0.0001 which is preferable to Radix 2 FFT. 

J. H. Bahn et al.[ 180] presented several parallel FFT algorithms with different degree of 

communication overhead for multiprocessors in Network-on-Chip (NoC) environment.  

2.3.2 Modified DFT 
R. Gopikakumari et al. [71] proposed a Modulo Arithmetic based Hierarchical Neural Network 

(MAHNN) model to implement N × N point DFT for ((N))4 = 2. In this model, there are 4 layers of 
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computational units, the first three layers are using only real additions and the last layer alone 

involves complex operation, which is also scalar multiplication of pre-computed twiddle factor 

values. 

Performance evaluation of MAHNN model to implement N × N point DFT for ((N))4 = 2 was 

done in [72] by R. Gopikakumari et al. This scheme of computation has the advantage that it is based 

on parallel and distributed scheme in which each operation is a simple real addition except at the last 

layer, where it will be converted to the complex form. 

R. Gopikakumari et al. [75] implemented a parallel distributed computation of 6 × 6 point 

DFT.  

In [77] R. Gopikakumari et al. used the Parallel distributed computation of 6 × 6 point DFT 

for the determination of Ray Paths.  

2.3.3 DCT 
In [42] S. Uramoto et al. describes a 100-MHz 2-D DCT core processor, which is applicable to the 

real-time processing of HDTV signals. An excellent architecture utilizing a fast DCT algorithm and 

multiplier accumulators based on distributed arithmetic have contributed to reducing the hardware 

amount and to enhancing the speed performance. A layout scheme with a column-interleaved memory 

and a ROM circuit are introduced for the efficient implementation of memory-based signal processing 

circuits. The core integrates about 102K transistors, and occupies 21 mm2 using 0.8 µm double-metal 

CMOS technology. 

D. Slawecki et al. [49] presented an 8 × 8 2-D DCT/IDCT processor chip that can be used for 

high data rate image and video coding. It is designed using the MOSIS 2 µ scalable CMOS 

technology. The chip is highly pipelined with a latency of 127 cycles and a maximum delay time of 

18 ns between any two pipeline stages. 

A fully parallel architecture for the computation of either the forward or the inverse 2-D DCT, 

based on row-column decomposition is presented by A. Aggoun [120]. It uses the same 1-D DCT unit 

for the row and column computations and (N2 + N) registers to perform the transposition. It can 

compute a N x N point DCT at a rate of one complete transform per N cycles after an appropriate 

initial delay. 

G. A. Ruiz [141] presented a parallel-pipelined architecture of an 8 × 8 forward 2-D Integer 

Cosine Transform (ICT) processor for image encoding. The ICT kernel is integer-based, so 

computation only requires adding and shifting operations. A fully pipelined row-column 

decomposition method based on two one-dimensional (1-D) ICTs and a transpose buffer based on D-

type flip-flops is used. The main characteristics of 1-D ICT architecture are high throughput, parallel 

processing, reduced internal storage, and 100% efficiency in computational elements. 

A schedule for 2-D DCT computation to reduce the hardware cost based on the fast 

row/column decomposition algorithm was proposed in [171] by S. C. Hsia. With this approach, the 
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transposed memory can be simplified using shift-registers for the data transposition between two 1-D 

DCT units. A special shift cell with MOS circuit is designed using the energy transferring 

methodology. They claim that the maximum frequency of shift operation achieved is about 120 MHZ, 

when implemented by 0.35 µm technology. 

Z. Szadkowski [181] described an optimization of 16 point DCT algorithm using parallel 

architecture implemented into a FPGA.  

S. An et al [186] computed the 2-D DCT by a simple procedure of the 1-D recursive 

calculations involving only cosine coefficients. The recursive kernel for the proposed algorithm 

contains a small number of operations. Architecture for the 2-D DCT designed by direct mapping 

from the computation structure of the proposed algorithm has been implemented in an FPGA board. 

Another architecture using one recursive computation block to perform different functions developed 

by them reduced the hardware by almost one-half. 

A hardware implementation of a hybrid architecture to compute three 8 point transforms 

namely the DCT, the DFT, and the DWT on a single FPGA was proposed by K. Wahid et al. [187]. 

The architecture is based on an element-wise matrix factorization and row-permutation algorithm, 

where the forward basis transformation matrices are decomposed into multiple submatrices and the 

common units are shared among them. The hardware implementation is parallel, pipelined and 

multiplication-free.  

L. V. Agostini [106] presented the architecture and VHDL design of a 2-D DCT for JPEG 

image compression. This architecture uses 4792 logic cells of one Altera Flex 10k E FPGA and 

reaches an operating frequency of 12.2 MHZ. One input block with 8 × 8 elements of 8 bits each is 

processed in 25. 2 µs and the pipeline latency is 160 clock cycles. 

2.3.4 Wavelet Transform 
A single chip implementation of DWT is described by G. Knowles [33]. 

A VLSI architecture suitable for 2-D orthogonal wavelet transforms was presented by A. S. 

Lewis [41], which for the Daubechies wavelet implements the forward and inverse transforms without 

multipliers. The four-coefficient Daubechies wavelet transform has excellent spatial and spectral 

locality, properties which make it very useful in image compression. A sample implementation is 

described. 

In [107] the FPGA implementation of the wavelet transform with lattice filters and achieves 

the FFT with the Coordinate Rotational Digital Computation (CORDIC) was presented by W. Zhilu et 

al. Then, the emulation data of the Daubechies D4 & D6 wavelet transforms and the FFT with 16 

points are given, and their performances are analyzed. 

M. Nibouche et al. in [108] presented a framework for an FPGA-based DWT system. The 

approach helps the end-user to generate FPGA configuration for DWT at a higher level without any 

knowledge of the low-level design styles and architectures. 
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Z. Razak [114] described the development process of a DWT chip design comprising of 

simulation by MATLABTM, simulation and synthesis by SYNOPSYSTM . 

A methodology for building up filters for JPEG 2000 std that can be applied efficiently for 

both 1-D forward and inverse Wavelet transform was presented by G. Dimitroulakos et al. [118]. 

They are characterized by reduced memory access, area, power and the ability of progressive 

computation. The architecture can be embedded in systems, which are used in real time applications.  

N. Aranki et al. [117] described an efficient hardware implementation of the DWT suitable 

for deployment on a reconfigurable FPGA based platform. This implementation is based on the lifting 

factorization of the wavelet filter banks that uses the overlap-state algorithm. They claim that it 

minimizes memory usage, computational complexity and communication overhead associated with 

parallel implementation. 

A VHDL implementation of FDWT utilizing its lossless features and based on the JPEG 2000 

was presented by S.M. Aziz et al.[128]. The architecture does not comprise any hardware multiplier 

unit and therefore suitable for development of high performance image processors. 

In [129], the implementation of the 2-D DWT in VHDL is presented by R. Mateos et al. The 

proposed system has as advantages the segmentation of the wavelet algorithm in different processes 

and presents as novelty the control and addressing of input and output data.  

An approach towards VLSI implementation of the DWT for image compression was 

presented by A. A. Muhit et al. [137]. The design follows the JPEG2000 standard and can be used for 

both lossy and lossless compression. In order to reduce complexities of the design, linear algebra view 

of DWT and IDWT has been used.  

P. Salama et al. [154] presented a VHDL implementation of a decomposition unit based on 

Mallat’s fast Wavelet Transform, which utilizes a two-channel c sub band coder. The units were 

simulated, synthesized, and optimized using Mentor® design tools. 

Two different architectures for reversible integer to integer Wavelet Transforms was proposed 

in [127] by M. A. B. Ayed et al. One uses the lifting frame work as an architecture support and the 

other make advantage of the two finite impulse filter structure representing the wavelet transform 

function. The architectures are evaluated based on their computational complexity, latency time, 

hardware occupancy and the maximum operating clock frequency. 
 

2.3.5 Haar Transform 
Linear systolic array architecture for the implementation of Haar, Walsh, and the DFTs based upon 

matrix vector multiplication algorithms where the matrix elements can be computed from their row 

and column indexes was presented by G. E. Bridges et al. [27] . The method presented enables the n2 

matrix elements to be computed in situ directly from the 2n matrix indexes. A generalized method is 
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given for the development of recursively formed matrices and specifically the VLSI implementation 

of the Haar and Walsh transforms. 

Three VLSI computing architectures namely systolic tree architecture, linear data flow array 

and sequential queue architecture were proposed by K. J. Ray et al. [40] for fast implementation of the 

Haar transform.  

A processor chip programmable between N = 8 and N = 1024 for 1-D IFHT was presented by 

G. A. Ruiz et al. [79]. The processor uses a low latency data-flow with an architecture that minimizes 

the internal memory and an adder/subtracter as the only computing element. The control logic has a 

single and modular structure and can be easily extended to longer transforms. A prototype of the 1-D 

IFHT processor has been implemented using a standard-cell design methodology and a 1.0-µm 

CMOS process on a 11.7 mm2 die. The maximum data rate is close to 60 MHz. 

An FPGA implementation of a processor for the 1-D IFHT programmable for N = 8 up to N = 

1024, with low latency data flow is presented by O. Martin et al. [172]. It enables on-line computing 

for both the normalized and the non-normalized IFHT to be performed, with very low nrmse. 
  

2.3.6 Hadamard Transform 
An algorithm of a simple systolic array processor for the HAT was presented by M. H. Lee et al. [37] 

that provides high pipelining rates. It is based on Hadamard coefficient generator, which makes the 

signs of the Hadamard matrix (HAM) elements and the execution of matrix vector multiplication. 

An architecture for the Fast Hadamard Transform, using distributed arithmetic techniques, 

was proposed by A. Amira et al. [99]. The associated design using both a distributed arithmetic ROM 

and Accumulator structure and a sparse matrix factorization technique are also described. The above 

architecture is implemented on a Xilinx FPGA board by A. Amira et al. [105]. 

The FPGA implementation of two architectures namely systolic architecture and distributed 

arithmetic techniques for the computation of fast Walsh-Hadamard transform is presented in [109] by 

A. Amira et al. The first approach uses the Baugh-Wooley multiplication algorithm whereas the 

second approach is based on both a distributed arithmetic ROM and accumulator structure, and a 

sparse matrix factorization technique. The second method exhibits better performances when 

compared to the first one. 

I. Amer et al. [139] presented a VLSI prototype for the 2 × 2 Hadamard transform that is 

applied to the DC coefficients of the four 4 × 4 blocks of each chroma component as described in the 

MPEG -4 Part 10 Advanced Video Coding (AVC) standard. The transform is computed using add 

operations only and the architecture satisfies the real-time constraints required by HDTV. 

A hardware unit for producing binary Orthogonal Variable Spreading Factor (OVSF), 

Hadamard and Walsh codes for WCDMA/CDMA2OOO systems was presented by T. Rintakoski et 

al. [138]. The generator uses a spreading factor, mode select, and the code index as the control input. 
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A fast algorithm for the sequency-ordered complex Hadamard transform (SCHAT) based on 

the decomposition method of decimation-in-sequency was proposed by G. Bi et al. [182]. To support 

high speed real time applications, a pipelined hardware structure is also proposed to deal with 

sequentially presented input/output data streams which requires only log2 N complex adder/subtracters 

and 2(N - 1) complex data stores for an –N point SCHT. 

Fully pipelined simple modular structures for the hardware realization of DHAT were 

proposed by P. H. Meher et al. [184]. Four different pipelined modular designs for transform length N 

= 4 were derived from the kernel matrix of HAT. It is shown further that the HAT of transform length 

N = 8 can be obtained from two 4-point HAT modules, and similarly, the HAT of transform length N 

= 16 can be obtained from four 4-point HAT modules. Long length transforms can be computed from 

these short length modules. 

2.4 Conclusion 
The literature reviewed here set the background to develop the main idea in the work reported.  The 

chapters to follow shall demonstrate this aspect. 



 

 

 
 

CHAPTER 3 

VISUAL REPRESENTATION AND COMPUTATION OF 2-D DFT  

 
“A Picture is worth a thousand words”. Hence for a long time, visual methods have been 

successfully applied to analyze data, in many application domains. Ordinary visualization of such 

data can lead to over crowded and cluttered displays and are therefore of limited use, especially 

when the data volume is large. Data abstraction can help to gain insight even into large data sets. 

Providing appropriate methods to facilitate analysis of data is a key issue. This is the point where 

analytical methods come into play. Integrating visual and analytical methods has become an 

increasingly important issue. The method adopted in this chapter is also an illustration of the 

usefulness of combining visual and analytical methods. The analytical method should i) 

communicate the fact that something interesting has been found, ii) emphasize interesting data 

among the rest of the data and iii) convey what makes the data interesting. When the data size is 

huge, the challenge of visualizing it in a comprehensible manner can be dealt with by analytical 

methods. 

In the modified 2-D DFT, explained in section 1.2.3.4, computation of the N2 DFT 

coefficients 
2,1 kkY involves M complex multiplications each. But for a particular (k1, k2), (1.6) 

involves computation of z for all values of (n1, n2) which is time consuming. A visual representation 

of N × N DFT was developed, in [88], in terms of 2 × 2 DFT. It represented ,1 2k kY  visually using a 

set of primitive symbols. The visual representation developed in [88] provided a relation between N 

× N point DFT and 2 × 2 DFT. 

 A visual representation based on 2 × 2 data on the other hand will give direct relationship 

between time domain data and the frequency domain representation in terms of pictures. These 

visuals are the representatives of data points involved in the computation of DFT coefficients. By 

analyzing the visual representation, we can extract lot of information to derive simple and efficient 

schemes for DFT computation. 
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3.1 Visual representation based on 2 × 2 DFT 
 

Let X be the 2 × 2 data matrix and Y be the corresponding 2 × 2 DFT matrix as shown. 

00 01 00 01

10 11 10 11

X X Y Y
X Y

X X Y Y
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 

Then the relationships between these two matrices [88] can be expressed by symbols as shown 

below. 

Y00 =  X00 + X01  +  X10 + X11 
 

(3.1) 

Y01 = (X00 + X10) - (X01 + X11) 

  
(3.2) 

Y10 = (X00 + X01) - (X10 + X11) 

  
(3.3) 

Y11 = (X00 + X11) - (X10 +X01) 

  
(3.4) 

By combination of (3.1), (3.2), (3.3) and (3.4) other relationships can be derived. The 36 primitive 

symbols and its Mnemonics based on 2 × 2 DFT are shown in fig. A.1. These primitive symbols 

were derived from the relation between 2 × 2 data and 2 × 2 DFT coefficients. The visual 

representation of 8 × 8 point DFT based on these primitive symbols is also shown in fig. A.2. The 

computation of p
kkY
2,1

 doesn’t require any multiplications. The frequency domain analysis of 2-D 

signals is also made easy using these visuals. 

3.2 Visual representation based on 2 × 2 data  
 
Visual representation of 2-D DFT coefficients can also be developed based on 2 × 2 data instead of 

2 × 2 DFT. Such visuals provide a direct relationship between the data and the DFT coefficients. 

These visuals can be used to compute the DFT coefficients rather than computing (1.6) and (1.7). 

The patterns in the visual representation can be analyzed, there by exploring different 

computational schemes for 2-D DFT.  

3.2.1 Primitive symbols  
The expression for the 2-D DFT computation was restructured in [88], and [140], by exploiting the 

periodicity and symmetry properties of twiddle factors, thereby reducing the computational 
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complexity from N2 complex multiplications for each DFT coefficient required in direct DFT to that 

of N/2 in the present approach.   

Time consuming computation in (1.6) is simplified by the visual representation developed 

in [88], [69] in terms of 2 × 2 DFT. The representation of N × N DFT using 2 × 2 data is obtained 

by replacing the primitive symbols corresponding to 2 × 2 DFT with the primitive symbol 

corresponding to data. This will help to compute the DFT coefficients, without computing (1.6) and 

(1.7), by using it as a look up table. The computation of p
kkY
2,1

using the visual representation 

involves only real additions. 

The 37 primitive symbols based on data are shown in fig. 3.1. In the primitive symbols “▫” 

and“▪” denote that the data from the respective position is to be added and subtracted respectively. 

The meaning of a few primitive symbols and the corresponding mnemonics used in the visual 

representation are given below: 

1. The symbol  called MPA  (Matrix Positive Above) indicates that the two data on the top (i.e. 

data on the (0, 0)th and (0, 1)th position) are positive and that on the bottom (i.e. on the (1, 0)th 

and (1, 1)th position) of the 2 x 2 data matrix are sign reversed for computing p
kkY
2,1

. 

2. The symbol  called DP (Diagonal Positive) indicates that the data on the (0, 0)th and (1, 1)th  

position are positive and the rest of the data in the 2 × 2 matrix are not involved in the 

computation.  

3. Symbol  named LAP (Left Above Positive) indicates that the data on the (0, 0)th  position of 

the 2 × 2 data matrix is taken with a positive sign and rest of the data are not considered. 

Similarly, RAP (right above positive), RBP (right below positive), LBP (left below positive) 

indicates consideration of data at positions (0, 1), (1, 1) and (1, 0) respectively. It is to be noted 

that in the visual representation a hollow square symbol represents single positive data point. 

 4. Symbol  named LAN (Left Above Negative) indicates that the data on the (0, 0)th  position of 

the 2 × 2 data matrix is taken with a Negative sign and rest of the data are not considered. 

Similarly, RAN (right above Negative), RBN (right below Negative), LBN (left below 

Negative) indicates consideration of data at positions (0, 1), (1, 1) and (1, 0) respectively. It is to 

be noted that in the visual representation a filled square symbol represents single negative data 

point. 

5. Symbol  named HAP (Horizontal above positive) indicates that the two data points on the 

upper row of the 2 × 2 data matrix i.e. at positions (0, 0) and (0, 1) are taken with a positive sign 

and the rest are not considered. Similar is the case for HBP (Horizontal below positive), VLP 
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(Vertical left positive) and VRP (Vertical right positive) each considering 2 data points with a 

positive sign. The precise data positions for HBP are (1, 0) and (1, 1), they are (0, 0) and (1, 0) 

for VLP and that for VRP are (0, 1) and  (1, 1). It is to be noted that in the visual representation 

a thin line symbol represents a group of 2 adjacent positive data points. 

 

6. Symbol  named HAN (Horizontal above negative) indicates that the two data points on the 

upper row of the 2 × 2 data matrix i.e. at positions (0, 0) and (0, 1) are taken with a negative sign 

and the rest are not considered. Similar is the case for HBN (Horizontal below negative), VLN 

(Vertical left negative) and VRN (Vertical right negative) each considering 2 data points with a 

positive sign. The precise data positions for HBN are (1, 0) and (1, 1), they are (0, 0) and (1, 0) 

for VLN and that for VRN are (0, 1) and  (1, 1). It is to be noted that in the visual representation 

a thick line symbol represents a group of 2 adjacent negative data points. 

7. Symbol  named DN (diagonal negative) indicates that the two data points on the diagonal of 

the 2 × 2 data matrix i.e. at positions (0, 0) and (1, 1) are taken with a negative sign and the rest 

are not considered. A thick diagonal line is shown in the visual representation. Similarly CN 

(cross-diagonal negative) considers points on the cross- diagonal i.e., at positions (0, 1) and (1, 

0). A thick cross-diagonal line shows it. 

8. Symbol  named MPL (Matrix Positive on the Left) indicates that the two data on the left (i.e. 

on the (0, 0)th and (1, 0)th   positions)  are taken with a positive sign  and the data on the right  

(i.e., on the (0, 1)th  and (1, 1)th   positions) of the 2 × 2 data matrix are taken with a negative 

sign for computing p
kkY
2,1

. The other similar symbol is MPA. 

9. The  symbol HAPR (horizontal above positive right) indicates that two data points are 

considered with right one i.e., (0, 1) with a positive sign and left one i.e., (0, 0) with a negative 

sign. It is shown in the visual representation as a rectangle, which is half filled from the left side 

denoting negative data point and is half empty from the right side denoting positive data point. 

Similar symbols are used for HAPL, HBPR, HBPL, VLPA, VRPA, VLPB, VRPB, DPA, DPB, 

CPA and CPB. 

10. The  symbol MP (matrix positive) indicates that all the four data points of a 2 × 2 matrix are 

considered with a positive sign. It is shown in the visual representation by a big square covering 

almost the whole block constructed with a thin line.  
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11. A blank block  denotes that none of the four data points are necessary for the DFT 

computation using p
kkY
2,1

. 

3.2.2 Visual representation 
The coefficient p

kkY
2,1

, for any (k1, k2) and 10 −≤≤ Mp  , is represented visually in terms of the 

primitive symbols in fig. 3.1. The visual representation of p
kkY
2,1

 will have MM ×  cells with a 

primitive symbol in each cell. For each time index ),( 21 nn , the value of Nknknz ))..(( 2211 +=  is 

determined. If pz = , the data is to be added, else if Mpz += , the data is to be subtracted and 

otherwise the data is to be neglected. The primitive symbol to be used in each cell can be selected 

from fig. 3.1, based on the number of data used from that cell and its sign. Thus each cell represents 

a mapping of 22×  data into primitive symbol based on the value of z in (1.7). E.g., for any even 

value of N, if 1 2( , ) (0, 0)k k =  then 0))(( 2211 =+ Nknkn  for all values of ),( 21 nn  in the MM × cells.  

Thus all the four data in each cell will be involved with plus sign if p = 0 and the primitive symbol 

will be  with mnemonic ‘MP’. The visual representation for k1 = k2 = 0 exists only for p = 0.  

Similarly, for k1 = 0 and k2 = M, z = 0 or M when n2 is even or odd respectively. Thus in the 

columns of even n2, the data is to be added and for odd values of 2n  the data is to be subtracted. 

Equivalently, all the cells will have the symbol  corresponding to the mnemonic ‘MPL’ for p = 0 

alone. Similarly we can construct the visual representation for any (k1, k2) corresponding to any 

even value of N. The fig. 3.2, 3.3 and 3.4 show the visual representation for N = 4, 6 and 8 

respectively.  

3.2.3 Analysis of the visual representation 

The visual representation of DFT is analyzed for N = 4 to 64. The representation shows specific 

pattern depending on 1) the appearance, 2) existence of p
kkY
2,1

for selected p based on (k1, k2) and 3) 

order N. 

3.2.3.1 Classification of DFT coefficients based on the appearance 

In fig. 3.2, 3.3, and 3.4, pY 0,0 , p
MY ,0 , p

MY 0, , and p
MMY ,  have representation for p = 0 only and each of 

them have identical cells. There are only 4 such real coefficients, for any even N, each of them can 

be represented by just one cell and is classified as group 1. 
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Fig. 3.1: Primitive symbols for visual representation of DFT coefficients using 2 × 2 data 

 
 

 
 

Fig. 3.2: Visual representation of 2-D DFT coefficients for N = 4 
 
 
 

 
 

Fig. 3.3: Visual representation of 2-D DFT coefficients for N = 6 
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Fig. 3.4: Visual representation of 2-D DFT coefficients for N = 8 



 48  Visual Representation and Computation of 2-D DFT Coefficients   

 
Fig. 3.4: Cont’d 

 

In fig. 3.3 and 3.4 where, N = 6 and 8 respectively, 0
0,1Y , 2

0,1Y , 0
0,2Y , 2

0,2Y  etc. show a regular 

structure and use a pair of primitive symbols, where as 1
0,1Y , 3

0,1Y , 3
0,2Y , 1

0,2Y  etc. also show a regular 

structure but use another pair. When N = 6, as in fig. 3.3, 0
0,1Y , 2

0,1Y , 2
0,2Y  etc. use a pair of primitive 

symbols where as 1
0,1Y , 3

0,1Y , 3
0,2Y  etc. use another pair. Each column of these coefficients is identical 
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to the other columns of the coefficients. In 0
1,0Y , 2

1,0Y , 2
2,0Y  etc. each row is identical to the other rows. 

This type of characteristics is seen in the coefficients in the 0th column, 0th row, Mth column and Mth 

row other than in group 1, i.e., coefficients 0,kY , MkY , , kY ,0 , kMY ,  where gcd(k, M) ≠ M.  There are 

4(N – 2) such coefficients, classified as group 2.  

The rest of the coefficients does not show any of the characteristics described above, but 

shows a specific pattern. E.g., 0
1,1Y  of N = 6 in fig. 3.3, each column can be obtained from the other 

by a circular shift. The pattern also changes systematically depending on the change in the value of 

k1, k2 and p of p
kkY
2,1
. E.g., in fig. 3.4 where N = 8, as p changes incrementally in )(

1,1
pY , the pattern 

shift right horizontally in the same number of increments in a circular fashion. Similarly in 0
1,1k

Y , as 

k1 changes incrementally, the pattern in each row shift left horizontally ‘n’ times, where ‘n’ is the 

row number of the data present in that 0
1,1k

Y . So also in 0

2,1 kY , as k2 changes incrementally, the pattern 

in each column shift up vertically  ‘n’ times, where ‘n’ is the column number. This is observed in 

N2 - 4(N - 1) coefficients, for any even N, classified as group 3.  

In brief, only one cell is enough to represent the coefficients in group 1 and one 

row/column for group 2 coefficients. In the case of group 3 coefficients, even though other 

rows/columns are not identical, they can be obtained by circular shift of one row/column. Again if 

the visual representation of p
kkY

21 ,  for p = 0 is available, the visual representation for other values of 

p (i.e. p = 1, 2, etc.) could be obtained by circular shift of the pattern. Hence the visual 

representation can be obtained by visual manipulation rather than doing the computation in (1.6) 

and (1.7), which will simplify the representation.  

3.2.3.2 Classification of DFT coefficients based on the existence of p
kkY

21 ,  

Fig. 3.2, 3.3, and 3.4, show that for certain DFT coefficients, p
kkY
2,1
 does not exist for all values of p. 

When N = 8, )(
2,0
pY , )(

0,2
pY , )(

2,4
pY , )(

4,6
pY  etc. have p = 0, and 2 only as shown in fig. 3.4. Here 

2),,gcd( 21 =Mkk , 2),gcd( =Mp  and 10 −≤≤ Mp , where 2 is a divisor of M [10]. Similarly 
when N = 12, )(

3,0
pY , )(

0,3
pY , )(

3,6
pY , )(

9,3
pY  etc. have p = 0, and 3 only, since 3 is a divisor of M. )(

4,4
pY , )(

8,0
pY , 

)(
4,8
pY  etc. have p= 0, 2, and 4 since 2),,gcd( 21 =Mkk , 2),gcd( =Mp  and 10 −≤≤ Mp . When 

both k1 and k2 are 0, )(
0,0
pY  exists for p = 0 only. So the existence of p

kkY
2,1
 depends on ‘dm’, where 

‘dm’ is the divisor of M, which is illustrated in the following theorem.  

Theorem 3.1 
 When ‘dm’ is a divisor of M and gcd(k1, k2, M) = dm, then p

kkY
2,1

exists for 0 ≤  p ≤ M-1, 

where gcd(p, M) = dm. 
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Proof 
From (1.6) & (1.7), for p

kkY
2,1

 to exist z  should be equal to p or p M+  for at least one (n1, n2), 

1 20 , 1n n N≤ ≤ − . Let dm  be a divisor of M, then M r
dm

= .  

Let 1 .k s dm=  and 2 .k t dm= , where 0 , 1Ns t
dm

≤ ≤ − . 

Then from (1.7),       1 2 1 2(( . . . . )) (((( . . )) (( )) ))N N N Nz n s dm n t dm n s n t dm= + = +                                  (3.5) 

For 0 ≤ 1 2( . . )n s n t+ ≤N - 1, (3.5) becomes  

0, , ((2. )) , ((3. )) ,....(( . )) ....((( ). )) ....N N N Nz dm dm dm dm r dm= α α +  

∴ (( . ))Nz q dm= , 0 1Nq
dm

≤ ≤ −                                                                              (3.6) 

i.e., z is an integral multiple of dm . 

Case 1: 1 2 0k k= =   

Then z = 0 for all values of n1 and n2. Hence ,1 2

p
k kY  exists for p = 0 only. 

Case 2: 1 2gcd( , , )k k M dm=   

a) .p dm= α , where 0 1M
dm

≤ α ≤ − . 

For .
,1 2

dm
k kY α  to exist z should be equal to α .dm or ( α  + r)dm. 

From (3.6), both α  and α + r falls within the range of q 

So .
,1 2

dm
k kY α  exist for .p dm= α , 0 1M

dm
≤ α ≤ −  and k1 = s.dm and k2 = t.dm , 0 , 1Ns t

dm
≤ ≤ −  i.e., when 

1 2gcd( , , )k k M dm= . 

b) .p dm≠ α , 0 1M
dm

≤ α ≤ −  

Since .p dm≠ α  and . .p M dm r dm+ ≠ α + , i.e., .p dm≠ α  and ( ).p M r dm+ ≠ α +  is not an 

integral multiple of dm. But, z should be an integral multiple of dm for ,1 2

p
k kY  to exist. 

Hence ,1 2

p
k kY  does not exist for .p dm≠ α , 0 1M

dm
≤ α ≤ −  and 1 2gcd( , , )k k M dm= . 

Case 3: 1 2gcd( , , ) .k k M dm= α  and p = dm. 

 α .dm is a divisor of M, 2 1M
dm

≤ α ≤ −  and 
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k1 = s. α .dm and k2 = t. α .dm , 0 . , . 1Ns t
dm

≤ α α ≤ − . Then replacing s and t in (3.5) with s. α  and 

t. α , z becomes  

1 2 1 2(( . . . . . . )) (((( . . )) (( . )) ))N N N Nz n s dm n t dm n s n t dm= α + α = + α  

Thus z is an integral multiple of α .dm.  But when p = dm, z should be equal to dm or (1 + r).dm for 

,1 2

p
k kY  to exist. For that α  should be 1 which contradict our initial assumption that α  is greater than 

1. Thus ,1 2

p
k kY  does not exist for p = dm when 1 2gcd( , , ) .k k M dm= α .  

  From the above, it can be seen that even though the number of real additions (ar) involved 

in the computation of each of the DFT coefficient is same, due to the non existence of certain ,1 2

p
k kY , 

the number of complex multiplications (mc) and the number of complex additions (ac) has been 

reduced. This reduction is proportional to the value of the divisors of M. The number of ,1 2

p
k kY  (np) 

required for DFT computation decreases as the value of the divisor, dm increases, where, 

dmMkk =),,gcd( 21 .  E.g., when N = 16, pY 1,1  has p = 0, 1, 2, 3, …, 7, pY 0,2  has p = 0, 2, 4 and 6, pY 8,4  

has p = 0 and 4 only and pY 8,8  has p = 0 only. It can be observed that when dm = 1, 2, 4 & 8 np = M, 

2
M , 

4
M  & 

8
M  respectively. Hence, mc = np  – 1 = ac. This is clear from table 3.1 for N = 16. Thus 

the number of complex multiplication for a DFT coefficient is M/dm - 1. 

Table 3.1: Influence of ‘dm’ when N = 16 

p
kkY

21, , dmMkk =),,gcd( 21 .  dm ar np mc ac  

1,0Y , 1,2Y , 2,3Y , etc. 1 255 8 7 7 

2,0Y , 2,2Y , 4,2Y , etc. 2 255 4 3 3 

4,0Y , 4,4Y , 8,4Y , etc. 4 255 2 1 1 

8,0Y , 8,8Y , 0,8Y , etc. 8 255 1 0 0 

 
3.2.3.3 Classification of visual representation based on N 

The visual representation shows specific properties depending on N and can be classified into four. 

(i) N/2 prime 

The visual representation of N = 6 is shown in fig. 3.3 where N/2 is prime. In fig. 3.3, )(
0,0
pY , )(

3,0
pY , 

)(
0,3
pY , and )(

3,3
pY  have p = 0 only, where as all other coefficients have p = 0, 1 and 2.  Here M = 3 is 

prime, hence dm = 1 and 3. When ‘dm = 3’, ,1 2

p
k kY  exists for p = 0 only.  Similarly when ‘dm = 1’ 
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,1 2

p
k kY  exists for all values of p, 10 −≤≤ Mp . The above characteristics can be seen whenever N/2 

is prime, since the divisors are 1 and M. 

(ii) ((N))4 = 2 and N/2 not prime 
The smallest positive integer in this category is 18 and the divisors ‘dm’ of M are 1, 3 and 9. When 

dm = 1, ,1 2

p
k kY exists for all 10 −≤≤ Mp  for a given (k1, k2) such that 1),,gcd( 21 =Mkk as seen in 

the visual representation. 

Similarly when 3),,gcd( 21 =Mkk , ,1 2

p
k kY exists for p = 0, 3, and 6 only and when 

9),,gcd( 21 =Mkk , ,1 2

p
k kY exists for p = 0 only. Here dm is odd, as M is odd and composite. Similar is 

the case when N = 30, 42, 50 etc. where N/2 is odd and composite. 

(iii) N power of 2 
The visual representation of N = 8 is shown in fig. 3.4 where N is a power of 2. When N = 8, the 

divisor ‘dm’ = 1, 2, and 4. When dm = 1, from the visual representations derived, ,1 2

p
k kY  exists for all 

10 −≤≤ Mp  for a given (k1, k2) such that 1),,gcd( 21 =Mkk . 

   Similarly, when 2),,gcd( 21 =Mkk , ,1 2

p
k kY exists for p = 0, & 2 and when 4),,gcd( 21 =Mkk , 

,1 2

p
k kY exists for p = 0 only. In this category dm is a power of 2. Same features can be seen when N = 

4, 16, 32, 64 etc. 

(iv) ((N))4 = 0 and N not a power of 2 
The smallest positive integer in this category is 12 and the divisors ‘dm’ of M are 1, 2, 3 and 6. 

From the visual representations derived, when dm = 1, ,1 2

p
k kY  exists for all (k1, k2) such that 

1),,gcd( 21 =Mkk , 10 −≤≤ Mp . Similarly, when 2),,gcd( 21 =Mkk , ,1 2

p
k kY exists for p = 0, 2 and 4; 

when 3),,gcd( 21 =Mkk , ,1 2

p
k kY exists for p = 0 and 3 only and when 6),,gcd( 21 =Mkk , ,1 2

p
k kY exists 

for p = 0 only.  ‘dm’, the divisors of M in this case are both even and odd. Similar is the case when 

N = 20, 24, 28 etc. where N/2 is even. 

3.2.4 Redundancy   
Redundancy in the visual representation can be noticed at three different levels. In section 3.2.3.1, it 

is inferred that only one cell is enough to represent the coefficients in group 1 and one row/column 

for group 2 and 3 coefficients. This is the redundancy available within the visual representation of 

,1 2

p
k kY and termed as first level of redundancy. 
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In section 3.2.3.1, it is also inferred that if the visual representation of ,1 2

p
k kY  for p = 0 is 

available; the visual representation for other values of p (i.e. p = 1, 2, etc) could be obtained by 

circular shift of the pattern. Hence the visual representation of ,1 2

p
k kY for any one value of p is enough 

to represent the DFT coefficient. This is the redundancy that can be observed within a DFT 

coefficient, termed as second level.  

Several similarities can be noticed in the visual representations of the 1st column 

coefficients and the last column coefficients when N = 8, where the index k2 is 1 and 7 respectively, 

which can be seen in fig. 3.4. The visual representation for 0

2,1 kkY  of 1st column coefficients ( 0
1,1Y , 0

1,2Y , 

0
1,3Y , etc.), from top to bottom are same as that of the corresponding coefficients in the last column, 

taken in the reverse order ( 0
7,7Y , 0

7,6Y , 0
7,5Y , etc.), except for the 0th row coefficients. E.g., the visual 

representation of 0
1,1Y  is same as that of 0

7,7Y .  0

2,1 kkY of 0th row coefficients of the above columns are 

same, i.e., the visual representation of 0
1,0Y  is same as that of 0

7,0Y . The representation for other values 

of p is also related.  E.g., the visual representation of 3
7,7Y  is the sign reversed form of 1

1,1Y . Several 

such similarities can be noticed between other coefficients also. The above similarities are 

predominant in the visual representations of higher orders.  E.g. when N = 12, the visual 

representations for 0
2,1Y , 0

10,11Y , 0
10,5Y  and 0

2,7Y  are similar. The frequency indices of 0
2,1Y  is N minus the 

corresponding indices of 0
10,11Y . The indices of 0

10,5Y  are 5 times that of 0
2,1Y . Similarly the visual 

representation of 5
10,11Y  and 1

2,7Y  is the sign reversed form of 1
2,1Y  and 5

10,5Y . Here (k1, k2) have the same 

relations as explained above. There is also a definite relationship between the values of p in such 

coefficients. Value of p in 5
10,11Y  is M minus the value of p in 1

2,1Y  and that of 5
10,5Y  is 5 times the value 

of p in 1
2,1Y . The above relations can be generalized and extended to other coefficients as shown 

below. The redundancy thus observed between p
kkY
2,1
 of different DFT coefficients is termed as third 

level of redundancy. 
*

* ( , )1 2( , )1 2

p p
k kk k

Y Y= − for p ≠ 0                                                          (3.7)                              

where *p  = ((M - p))M  and *
21 ),( kk  = (((N - k1))N , ((N - k2))N) 

'

' ' ,1 2,1 2

p p
k kk k

Y Y= −   if ((k.p))N  ≥ M  

         else         '

' ' ,1 2,1 2

p p
k kk k

Y Y=                                                                            (3.8)                              

where p’  = ((p.k))M, '
1k  = ((k.k1))N, '

2k  = ((k.k2))N
  and gcd( , ) 1k N = , Mk <<0 . 

                      ' * '( ) ( )
' ' * ' '( , ) ( , )1 2 1 2

p p

k k k k
Y Y= − .                                                                       (3.9) 

When p = 0, 
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                  * ' ' *( ) ( ) ( ) ( )
( , ) * ' ' ' ' *1 2 ( , ) ( , ) ( , )1 2 1 2 1 2

p p p p
k k k k k k k k

Y Y Y Y= = =  .                                                        (3.10) 

             Table 3.2 shows the indices for which the coefficients could be derived from one another 

for N = 20. In the table *
1k  = ((N - k1))N, *

2k  = ((N - k2))N and k = 3, 7 and 9. If ,1 2

p
k kY for all values 

of p of the DFT coefficient with index pair (1, 0) is available, then the DFT coefficients with index 

pairs as shown along the same row in the table 3.2 could be derived. There is lot of such 

redundancy in ,1 2

p
k kY . Due to the above redundancy, only one of the DFT coefficients from among 

them named ‘basic DFT coefficient’ need be calculated and other coefficients could be derived. 

Theorem 3.2 

 (( ))
(( )) ,(( ))1 2

M p M
N k N kN N

Y −

− −  could be derived from that of ,1 2

p
k kY with a sign reversal when p ≠ 0. When p = 

0, (( ))
(( )) ,(( ))1 2

M p M
N k N kN N

Y −

− −  = ,1 2

p
k kY . 

Proof  

In (1.7) let *
1k  = N - k1, *

2k  = N - k2 and *p  =  M – p. Then 

1 1 2 2(( ( ) ( ))) (( )) (( ))
2N N N

Nz n N k n N k M p or M p= − + − = − − +  

i.e. 1 1 2 2(( . . )) ( ) ( )Nz n k n k p M or p= + = +                                     (3.11) 
In (3.11) data is to be added when z p M= +  and subtracted when z p=  and hence the sign 
reversal. 

∴  *
*, * ,1 2 1 2

p p
k k k kY Y= −  

When p = 0, then from above, 
     0 0

*, * ,1 2 1 2k k k kY Y=                                                           (3.12) 
 

Theorem 3.3 

(( . ))
(( . )) ,(( . ))1 2

k p M
k k k kN N

Y  could be derived from ,1 2

p
k kY , with a sign reversal if (( . ))Nk p M≥ , else no sign 

reversal, where gcd( , ) 1k N = , 0 k M< < . When p = 0, (( . ))
(( . )) ,(( . ))1 2

k p M
k k k kN N

Y  = ,1 2

p
k kY . 

Proof  

In (1.7) let '
1k  = 1.kk  and '

2k  = 2.kk  then, 

 ' '
1 1 2 2 1 1 2 2(( . . )) (( (( . . )) ))N N Nz n k n k k n k n k= + = +  = (( . ))Nk p  or (( ( )))

2 N

Nk p +           (3.13) 

Case 1:  gcd( , ) 1k N =  

(3.13) becomes         1 1 2 2(( (( . . )) ))N Nz k n k n k= + = (( . ))Nk p  or (((( )) ))
2N N

Nkp +            (3.14) 

When (( . ))Nk p M≥ , say M + s, where 0 1s M≤ ≤ − , R.H.S of (3.14) becomes M + s or s. 

Therefore data is to be added when z = M + s and subtracted when z = s and hence the sign 
reversal. 
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Table 3.2: Index relation for N = 20 

k1, k2 k1*, k2* 3k1, 3k2 3k1*, 3k2* 7k1, 7k2 7k1*, 7k2* 9k1, 9k2 9k1*, 9k2*
1, 0 19, 0 3, 0 17, 0 7, 0 13, 0 9, 0 11, 0
0, 1 0, 19 0, 3 0, 17 0, 7 0, 13 0, 9 0, 11
1, 1 19, 19 3, 3 17, 17 7, 7 13, 13 9, 9 11, 11
2, 1 18, 19 6, 3 14, 17 14, 7 6, 13 18, 9 2, 11
3, 1 17, 19 9, 3 11, 17 1, 7 19, 13 7, 9 13, 11
4, 1 16, 19 12, 3 8, 17 8, 7 12, 13 16, 9 4, 11
5, 1 15, 19 15, 3 5, 17 15, 7 5, 13 5, 9 15, 11
6, 1 14, 19 18, 3 2, 17 2, 7 18, 13 14, 9 6, 11
7, 1 13, 19 1, 3 19, 17 9, 7 11, 13 3, 9 17, 11
8, 1 12, 19 4, 3 16, 17 16, 7 4, 13 12, 9 8, 11
9, 1 11, 19 7, 3 13, 17 3, 7 17, 13 1, 9 19, 11

10, 1 10, 19 10, 3 10, 17 10, 7 10, 13 10, 9 10, 11
11, 1 9, 19 13, 3 7, 17 17, 7 3, 13 19, 9 1, 11
12, 1 8, 19 16, 3 4, 17 4, 7 16, 13 8, 9 12, 11
13, 1 7, 19 19, 3 1, 17 11, 7 9, 13 17, 9 3, 11
14, 1 6, 19 2, 3 18, 17 18, 7 2, 13 6, 9 14, 11
15, 1 5, 19 5, 3 15, 17 5, 7 15, 13 15, 9 5, 11
16, 1 4, 19 8, 3 12, 17 12, 7 8, 13 4, 9 16, 11
17, 1 3, 19 11, 3 9, 17 19, 7 1, 13 13, 9 7, 11
18, 1 2, 19 14, 3 6, 17 6, 7 14, 13 2, 9 18, 11
19, 1 1, 19 17, 3 3, 17 13, 7 7, 13 11, 9 9, 11

1, 2 19, 18 3, 6 17, 14 7, 14 13, 6 9, 18 11, 2
3, 2 17, 18 9, 6 11, 14 1, 14 19, 6 7, 18 13, 2
5, 2 15, 18 15, 6 5, 14 15, 14 5, 6 5, 18 15, 2
7, 2 13, 18 1, 6 19, 14 9, 14 11, 6 3, 18 17, 2
9, 2 11, 18 7, 6 13, 14 3, 14 17, 6 1, 18 19, 2
1, 4 19, 16 3, 12 17, 8 7, 8 13, 12 9, 16 11, 4
3, 4 17, 16 9, 12 11, 8 1, 8 19, 12 7, 16 13, 4
5, 4 15, 16 15, 12 5, 8 15, 8 5, 12 5, 16 15, 4
7, 4 13, 16 1, 12 19, 8 9, 8 11, 12 3, 16 17, 4
9, 4 11, 16 7, 12 13, 8 3, 8 17, 12 1, 16 19, 4
1, 5 19, 15 3, 15 17, 5 7, 15 13, 5 9, 5 11, 15
2, 5 18, 15 6, 15 14, 5 14, 15 6, 5 18, 5 2, 15
3, 5 17, 15 9, 15 11, 5 1, 15 19, 5 7, 5 13, 15
4, 5 16, 15 12, 15 8, 5 8, 15 12, 5 16, 5 4, 15
1, 10 19, 10 3, 10 17, 10 7, 10 13, 10 9, 10 11, 10
2, 0 18, 0 6, 0 14, 0
4, 0 16, 0 12, 0 8, 0
0, 2 0, 18 0, 6 0, 14
2, 2 18, 18 6, 6 14, 14
4, 2 16, 18 12, 6 8, 14
8, 2 12, 18 4, 6 16, 14
6, 2 14, 18 18, 6 2, 14

10, 2 10, 18 10, 6 10, 14
12, 2 8, 18 16, 6 4, 14
14, 2 6, 18 2, 6 18, 14
16, 2 4, 18 8, 6 12, 14
18, 2 2, 18 14, 6 6, 14

0, 4 0, 16 0, 12 0, 8
2, 4 18, 16 6, 12 14, 8
4, 4 16, 16 12, 12 8, 8
6, 4 14, 16 18, 12 2, 8
8, 4 12, 16 4, 12 16, 8

10, 4 10, 16 10, 12 10, 8
12, 4 8, 16 16, 12 4, 8
14, 4 6, 16 2, 12 18, 8
16, 4 4, 16 8, 12 12, 8
18, 4 2, 16 14, 12 6, 8

2, 10 18, 10 6, 10 14, 10
4, 10 16, 10 12, 10 8, 10
5, 0 15, 0
0, 5 0, 15
5, 5 15, 15

10, 5 10, 15
15, 5 5, 15

5, 10 15, 10
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0, 0
10, 0

0, 10
10, 10

 

Case 2: gcd( , ) 1k N ≠  

In (11) let k = α .dm, where ‘dm’ is any divisor of M and 0 1M
dm

≤ α ≤ −  then, 

 1 1 2 2(((( . )) (( . . ))N Nz dm n k n k= α +                                                (3.15) 

z in (3.15), is always an integral multiple of ‘ dm ’ and since ‘ dm ’ is a divisor of M, ,1 2

p
k kY  exists only 

for gcd(p, M) = dm. But ,1 2

p
k kY  exists for all values of p, 0 ≤ p ≤ M - 1 and thus proved.  

 In the Table 3.2 where N = 20, dm = 1, 2, 5 and 10.  Each of the coefficients in the first 12 

rows, of the table 3.2, could derive 7 other coefficients in the same row, where gcd(k1, k2, M) = 1. In 

the next four rows, each of the coefficient could derive 3 other coefficients in the same row, where 

gcd(k1, k2, M) = 2; in the next three rows, each of the coefficient could derive 1 coefficient , where 

gcd(k1, k2, M) = 5 and in the next two rows, the coefficient could not derive any other coefficients , 

where gcd(k1, k2, M) = 10. Hence the number of DFT coefficients that could be derived by 

permutation over p depends on dm. When gcd(k1, k2, M) = dm, the number of coefficients that 

could be derived is given by 1)( −
dm
Nϕ  where, ϕ  is the Euler Totient function [62] as defined in 

B.8. Number of DFT coefficients, ‘nddm’, that could be derived from a particular basic DFT 

coefficient, where gcd(k1, k2, M) = dm for different N is shown in table 3.3. E.g., when N = 20, we 

need compute only 70 DFT coefficients out of 400, as in table 3.2. 

Table 3.3: nddm that could be derived from the basic DFT coefficients for different N 

1)( −=
dm
Nnddm ϕ , when gcd(k1, k2, M) = dm 

   dm  
 
 

 N 1 2 3 4 5 6 7 8 9 10 

4 1 0 - - - - - - - - 
6 1 - 0 - - - - - - - 
8 3 1 - 0 - - - - - - 

10 3 - - - 0 - - - - - 
12 3 1 1 - - 0 - - - - 
14 5 - - - - - 0 - - - 
16 7 3 - 1 - - - 0 - - 
18 5 - 1 - - - - - 0 - 
20 7 3 - - 1 - - - - 0 
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Table 3.3 shows that the number of coefficients that could be derived from the basic DFT 

coefficient decreases, as the value of dm increases for a particular N. This in turn increases ‘the 

number of basic DFT coefficients, nb’ for the N. The number of basic DFT coefficients also 

increases as the number of dm increases. Hence the number of basic DFT coefficients depends on 

N. ϕ (N/dm) is the redundancy factor for a particular basic DFT coefficient, since 1)( −
dm
Nϕ  

coefficients could be derived from any DFT coefficients whose gcd(k1, k2, M) = dm. 

Redundancy so far seen is in the visual representation of DFT coefficients within an N. On 

comparison of visual representation of different N, it is seen that the visual representation of lower 

orders are contained in that of higher orders. E.g., from fig. 3.2 and 3.4, it is seen that 2
2,2Y  of N = 8 

contains the visual representation of 1
1,1Y  of N = 4 and repeated 4 times. Similarly 2

4,4Y  of N = 12 

contains the visual representation of 1
2,2Y  of N = 6 and repeated 4 times. 1

1,1Y  of N = 4 is seen 

repeated 9 times in the visual representation of 3
3,3Y  of N = 12. This is illustrated with the following 

theorems. 

Theorem 3.4 

 p
kkY

2,1
 of N contains the visual representation of dm

p

dm
k

dm
kY

2,1
 of N/dm where gcd(k1, k2, M) = dm 

and repeated dm2 times. 

Proof 

Let gcd(k1, k2, M) = dm, '
11 .kdmk = , '

22 .kdmk =  '.pdmp =  and '.MdmM = . Then from (1.7), 

dmpkdmnkdmn N .))....(( ''
22

'
11 =+  or dmMp )( '' +  

i.e., dmpknkndm NN .))))..(((( ''
22

'
11 =+  or dmMp )( '' +  

Then from theorem B.4.1, 
''

22
'

11 ))..(( pknkn
dm
N =+  or '' Mp +      (Q gcd(dm, N) = dm). 

Theorem 3.5 

 pc
kckcY .

2.,1.  of N contains the visual representation of p
kkY

2,1
 of N/d where d = gcd(c, N). 

Proof 

 Let k1 =c.k1 and k2 =c.k2 in (1.7) then, 

((n1.c.k1 + n2.c.k2))N = c.p or c(p + M) 

i.e., ((c((n1.k1 + n2.k2))N ))N= c.p or c(p + M). 

Then from B.4.1, if d = gcd(c, N) 

((n1.k1 + n2.k2))N/d  = p or p + M. 



 58  Visual Representation and Computation of 2-D DFT Coefficients   

E.g., 6
6,6Y  of N = 20 contains the visual representation of 1

1,1Y  of N = 10 and repeated 4 times. 

It can be easily verified that the visual representation of N = 4 is contained in the visual 

representation of N = 8 as well as in N = 12. It can be inferred from theorem 3.6 that the visual 

representation of the DFT coefficient for an order N will contain the representation of all N/d such 

that d | N and 2 ||n N  but 2n |/  d. 

3.2.5 Calculation of number of basic DFT coefficients  
For every dm, the total number of DFT coefficients whose gcd(k1, k2, M) = dm could be calculated. 

As discussed in section 3.2.4, ϕ (N/dm) is the redundancy factor for a particular basic DFT 

coefficient. Hence the number of basic DFT coefficients whose gcd(k1, k2, M) = dm could be 

obtained by dividing the total number of DFT coefficients whose gcd(k1, k2, M) = dm by the 

redundancy factor. The number of basic DFT coefficients whose gcd(k1, k2, M) = dm is given by 

  nbdm = nptdm/ϕ (N/dm)                                                  (3.16) 
where nptdm is the total number of DFT coefficients whose gcd(k1, k2, M) = dm. 

 Summation of all “nbdm” over all divisors, dm of M will give the total number of basic DFT 

coefficients (nb) for any even N; i.e., 

nb = dm
dm

nb∑ =
( )

dm

dm

npt
N
dm

∑
ϕ

.                                                       (3.17) 

The total number of DFT coefficients (nptdm) whose gcd(k1, k2, M) = dm can be computed 

using Principle of Inclusion-Exclusion [2], as defined in B.5, is explained below. 

When gcd(k1, k2, M) = M, k1 and k2 can have either of the values 0 or M, i.e., N/M = 2 

values. From the definition of permutations, the number of permutations of 2 things, taken 

‘2’ at a time, when each of them can be repeated 2 times is given by 22 = 4; i.e., (N/M)2.  

Here the coefficients are (0, 0), (0, M), (M, 0) and (M, M). 

 Now assume that gcd(k1, k2, M) = M/2. Then both of the indices k1 and k2 can have 

the values 0, M/2, M and 3M/2, but cannot be 0 and M together, i.e., k1 and k2 have values 

except those for which gcd(k1, k2, M) = M. The number of permutations of 4 things, taken 2 

at a time, when each of them can be repeated 2 times is 42, i.e., (N/M/2)2. The above 

permutations include (0, 0), (0, M), (M, 0) and (M, M), i.e., the permutations for which 

gcd(k1, k2, M) = M, which has to be excluded. The exclusion is necessary since M and M/2 

have common multiples in the range 0 to N - 1. Therefore the number of DFT coefficients 

whose gcd(k1, k2, M) is M/2 = (N/M/2)2 – (N/M)2 = 42 – 22 =12. 
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i.e., the coefficients are (0, M/2), (0, 3M/2), (M/2, 0), (M/2, M/2), (M/2, M), (M/2, 3M/2), (M, M/2), 

(M, 3M/2), (3M/2, 0), (3M/2, M/2), (3M/2, M) and (3M/2, 3M/2). 

 In general, the total number of DFT coefficients, when gcd(k1, k2, M) = dm, is obtained by 

subtracting the number of permutations of indices whose gcd(k1, k2, M) = dmo, where gcd(dmo, dm) 

= dm and dmo > dm, from (N/dm)2.  Let nptdm is the number of permutations of (k1, k2) when gcd(k1, 

k2, M) = dm, then  

 nptdm = (N/dm)2 - dmodmo
npt∑  

This can be illustrated with an example. 

 When N = 24, M =12 and the divisors dm of M are 12, 6, 4, 3, 2, and 1. 

npt12 = (N/dm)2 = (24/12)2 =4 

npt6 = (N/dm)2 - npt12 = (24/6)2 - (24/12)2  =12 

npt4 = (N/dm)2 - npt12 = (24/4)2 - (24/12)2  = 32 

npt3 = (N/dm)2 - npt6 - npt12 = (N/3)2 – ((N/6)2 - npt12) - npt12 = (N/3)2 – (N/6)2 = 64 – 16 = 48 

npt2 = (N/dm)2 – npt4 - npt6 - npt12 = (N/2)2 – ((N/4)2 - npt12) – ((N/6)2 - npt12)  - npt12  

       = (N/2)2 – (N/4)2– (N/6)2 + (N/12)2 = 122 – 62 -42 + 22 = 96 

npt1 = (N/dm)2 – npt2 - npt3 - npt4 - npt6 - npt12  = (N/1)2 – (N/2)2 – (N/3)2 + (N/6)2 

                                        = 576 – 144 – 64 + 16 = 384 

 In the expression for npt12, npt6, npt4 and npt3, there is only exclusion of common indices, 

whereas in npt2,  (N/2)2 is the number of DFT coefficients whose indices k1 and k2 is even. This set 

include those coefficients for which gcd(k1, k2, M) = 4 and 6 which have to be excluded. (N/4)2 is 

the number of coefficients whose k1 and k2 are divisible by 4 and (N/6)2 is the number of 

coefficients whose k1 and k2 are divisible by 6. Both of them have common elements since 

0 and 12 are divisible by both 4 and 6. While excluding those coefficients whose gcd(k1, k2, 

M) = 4 and 6, the common elements are subtracted twice. Hence the intersection of the set 

of the coefficients for which gcd(k1, k2, M) = 4 and 6 has to be included, i.e., (N/12)2.  

Similarly, both inclusion and exclusion occurs in npt1 also.  

Since ϕ (N/12) = 1, ϕ (N/6) = 2, ϕ (N/4) = 2, ϕ (N/3) = 4, ϕ (N/2) = 4, and ϕ (N/1) = 8, the 

number of basic DFT coefficients whose gcd(k1, k2, M) = dm can be calculated using (3.16). 

nb12 = npt12/ϕ (N/12) = 4 

 Similarly, nb6 = 6, nb4 = 16, nb3 = 12, nb2 = 24, and nb1 = 48. 

From (3.17), total number of basic DFT coefficients  

nb = dm
dm

nb∑ = 4 + 6 + 16 + 12 + 24 + 48 = 110. 
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 The number of basic DFT coefficients (nb), for any even N, can be calculated using (3.17).  

The above results were verified with the visual representations also and found correct.  

Tables 3.4 & 3.5 show the number of basic DFT coefficients when N/2 is prime and when 

N is a power of 2 respectively. From the tables, it can be seen that the number of basic DFT 

coefficients is 2.N + 8 when N/2 is prime whereas when N is a power of 2, it is 3.N - 2. 
Table 3.4: nb when N/2 is prime 

N 6 10 14 22 26 34 38 46 

nb 20 28 36 52 60 76 84 100 

 
Table 3.5: nb when N is a power of 2 

N 4 8 16 32 64 128 

nb 10 22 46 94 190 382 

 
Fig. 3.5 shows the plot of the number of basic DFT coefficients required to be computed to 

obtain the entire coefficients for different N. In the plot, the overshoots are due to more number of 

dm for the corresponding N, w.r.t. the near by N’s. E.g., when N is any number like 12, 24, 36, 48 

and 60, which are having more number of divisors, the sharp overshoot can be noticed. 

    

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

N

N
um

be
r o

f b
as

ic
 D

FT
 c

oe
ffi

ci
en

ts

 
Fig. 3.5: nb for different N 
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3.2.6 Algorithm for computing the index of all basic DFT coefficients 

The nb basic DFT coefficients become the true representatives of the entire N2 DFT coefficients 

and they are to be identified. On analysis of the visual representation of DFT coefficients for N = 4 

to 64, as done in section 3.2.4, and from (3.10) it is observed that the basic DFT coefficients can be 

identified from p
kkY
2,1
 for p = 0 and that the same can be selected in three different ways namely (i) 

column wise, (ii) row wise, and (iii) quadrant wise. 
 

(i)  Column wise 

In this method, selection of basic DFT coefficients is done from each column starting for column 0, 

row 0. Each of the coefficients is verified to see whether it matches with the already selected basic 

DFT coefficients; if so discard it, else it is included as one of the basic DFT coefficients. Once 

column 0 is completed, column 1 is verified, followed by other columns till the entire N - 1 

columns were verified. Once the selection is completed, each of the DFT coefficients in the set of 

basic DFT coefficients is unique. 

(ii)  Row wise 

It uses the same method as that in the column wise method except for the fact that, here selection 

was done from each row starting from row 0. On verification of the selected basic DFT coefficients 

based on this method show that the same can be obtained by exchanging k1 and k2 of that of column 

wise selection. 

(iii)  Quadrant wise 

In this method, basic DFT coefficients are selected from one quadrant at a time starting from 

quadrant 1, followed by other quadrants. 

On analysis of the indices of the basic DFT coefficients obtained from the column wise 

method, following observations were significant: 

1. Basic DFT coefficients are selected from column numbers (implies k2) which are divisors 

mod N of N. E.g., when N = 12, basic DFT coefficients are selected from columns 1, 2, 3, 4, 

6 and 0.  

2. In columns 0 and M, the basic DFT coefficients selected have k1 which are divisors mod N 

of N. E.g., when N = 12, the frequency index k1, of basic DFT coefficients in column 0 and 

M, are 1, 2, 3, 4, 6 and 0. 

3. If the index k1 and k2 of the basic DFT coefficients in column 0 are interchanged, index of 

basic DFT coefficients in row 0 will be obtained. E.g., when N = 12, basic DFT coefficients 
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in column 0 are (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), and (6, 0) where as that of row 0 are (0, 

0), (0, 1), (0, 2), (0, 3), (0, 4) and (0, 6). 

4. In column number k2 = 2.dm where gcd(2.dm, N) = 2.dm and gcd(2.dm, M) = dm, the 

number of basic DFT coefficients and the corresponding frequency index k1 will be same as 

that of column number k2/2 = dm. E.g., when N = 12, the number of basic DFT coefficients 

and the corresponding frequency index k1 in column numbers ((N))N = 0 and M are same. 

Similarly the number of basic DFT coefficients and the corresponding frequency index k1 

in column numbers 4 and 2 are same. 

5. When N/2 is prime, apart from the basic DFT coefficients in column 0 and M, the entire 

DFT coefficients in column 1 and 2 are required to complete the set of basic DFT 

coefficients. All other columns are ignored. Since N is having only four divisors namely, 1, 

2, M, and N, there are four basic DFT coefficients each in column 0 and M, and N basic 

DFT coefficients each in column 1 and 2 resulting in a total of 2N + 8 basic DFT 

coefficients. 

6. When N is a power of 2, in each column where k2 = dm, select all DFT coefficients where 

gcd(k1, k2) = dm. E.g., when N =16, in column 4, (0, 4), (4, 4), (8, 4), and (12, 4),  are basic 

DFT coefficients. Then for each divisors ‘ddm’, of dm other than dm, select the first 

N/(2.dm) frequency index k1, where gcd(k1, ddm) = ddm. E.g., when N = 16, in column 4, 2 is 

a divisor of 4 and so select the first N/(2 × 4), i.e., 2 coefficients whose gcd(k1, 2) = 2 are 

(2, 4) and (6, 4). Similarly 1 is a divisor of 4 and so select the first two coefficients whose 

gcd(k1, 1) = 1, namely, (1, 4) and (3, 4).   

In columns where k2= ((2.dm))N, where gcd(2.dm, M) = dm and gcd(2.dm, N) = 

2.dm, the number of basic DFT coefficients and the frequency index k1 is same as that of 

column k2 = dm. E.g., when N = 16, there are five basic DFT coefficients namely, (0, 8), (1, 

8), (2, 8), (4, 8), and (8, 8) in column 8 and five basic DFT coefficients namely, (0, 0), (1, 

0), (2, 0), (4, 0), and (8, 0) in column ((16))16 = 0. 

7. However in general, in each column where k2 = dm, all the DFT coefficients from (0, dm) 

to (N/dm, dm) are included in the basic set of DFT coefficients. To find the basic DFT 

coefficients from the rest of the coefficients in that column, find all k which are co-prime to 

N, as defined in B.7, where k = 1 + q.N/dm where q is any positive integer.  Exclude all k1 

which are k. Select all coefficients whose frequency index k1 = ((k1.k))N and ((k1.k))N not 

equal to any of the k1 already selected in that column. E.g., when N = 12, in column k2 = 3, 

first select all DFT coefficients from (0, 3) to (4, 3). Now calculate all k = 1 + q.N/dm.  The 

value of k is 5. So exclude (5, 3). Now when k1 = 6, ((k1.k))N = 6, therefore (6, 3) is a basic 
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DFT coefficient. When k1 = 7, ((k1.k))N = 11 which is not k1, but is not any of the k1 already 

selected, so select (7, 3). Similarly we can find that (9, 3) is also a basic DFT coefficient, 

whereas (8, 3), (10, 3) and (11, 3) are not. 

The above analysis has been used to derive an algorithm to compute the index of basic DFT 

coefficients for any even N. 

1. Calculate the divisors ‘dm’ of M. 

2. For each column where k2 = dm 

i) Select all coefficients from (0,dm) to (((N/dm))N, dm) 

ii) Find all k = 1 + q.N/dm such that gcd(k, N) = 1 and k < N 

iii) For k1= N/dm + 1 to N - 1 

a. For every k, if k1 = k  exclude it and repeat step (a) for next k1 

b. Else calculate ((k.k1))N 

     If  k1 = ((k.k1))N select k1 and  

   repeat step (a) for next k1 

     Else if ((k1.k))N is equal to any of the k1 already selected, 

   then  discard k1 and repeat step (a) for next k1 ; 

 or else repeat step (b) with the next k.  

3. Find k2 = ((2.dm))N such that gcd(2.dm, M) = dm and gcd(2.dm, N) = 2.dm. 

4. For each column, where k2 = ((2.dm))N, calculated in step 3.,  

the basic DFT coefficients will have same k1 as that of k2 = dm.  

So copy k1 from k2 = dm to that of k2 = ((2dm))N. 

3.2.7 Patterns in basic DFT coefficients 

Visual representation of p
kkY
2,1
corresponding to the basic DFT coefficients has a definite pattern in 

the data involved in its computation. Fig. 3.6, 3.7, and 3.8 shows the visual representation of p
kkY
2,1
 

corresponding to the basic DFT coefficients for N = 4, 6, and 8 respectively. Figures show that, 

computation of 0
0,0Y  involves the sum of all data for any N. Similarly for the computation of 0

1,0Y of N 

= 4, 6 and 8, all data in the 0th row is involved with a plus sign and all data in the Mth row is 

involved with a minus sign. Here k1 is a divisor ‘dm’ of M for N = 4, 6 and 8. This can be 

generalized for any N as follows: 

For every k1 = dm, all the data in the rows .( 1)k k M
dm

− , 0 2 1k dm≤ ≤ −  are involved in the 

computation of 0
,0dmY . 
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Fig. 3.6: Visuals of p

kkY
2,1

corresponding to the basic DFT coefficients for N = 4 

 

 

 
Fig. 3.7: Visuals of p

kkY
2,1

corresponding to the basic DFT coefficients for N = 6 

 

 

 

 
Fig. 3.8: Visuals of p

kkY
2,1

corresponding to the basic DFT coefficients for N = 8 

 
For 0

2,0Y  of N = 6, all the data in the 0th row and Mth row are involved with a plus sign, 

whereas for N = 8, all data in the 0th row and Mth row involved with a plus sign and data in the 2nd 
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and (2 + M)th row involved with a minus sign. Here k1 = 2.dm for N = 6, whereas k1 = dm for N = 8. 

Therefore for 0
2,0Y  of N = 8, data of rows .( 1)k k M

dm
− , 0 2 1k dm≤ ≤ −  are involved. For 0

2,0Y  of N = 

6, since k1 = 2.dm, rows .k M
dm

, 0 2 1k dm≤ ≤ −  are involved. Thus for every k1 = 2.dm all the data 

in the rows .k M
dm

, 0 2 1k dm≤ ≤ − , are involved if gcd(k1, N) = 2.dm and gcd(k1, M) = dm, to obtain 

all 0
2. ,0dmY . 

 Visual representation of 0
0,1Y  of N = 4, 6, and 8 can be obtained by rotating the visual 

representation of respective 0
1,0Y  by 90o. It is equivalent to interchanging k1 and k2, i.e., for every k2 

= dm, all the data in the columns .( 1)k k M
dm

− , 0 2 1k dm≤ ≤ −  are involved to obtain all 0
0,dmY  and for 

every k2 = 2.dm all the data in the columns .k M
dm

, 0 2 1k dm≤ ≤ −  are involved if gcd(k2, N) = 2.dm 

and gcd(k2, M) = dm, to obtain all 0
0,2.dmY .  

 Now on analysis of visual representation of all 0
,1k dmY in a column, it is noticed that the data 

involved in the computations differ from one another, as there is circular shifts of the data rows. 

These circular shifts are in a specific pattern. E.g., when N = 8 in fig. 3.8, the data involved in the 

computation of 0
1,1Y  and 0

0,1Y  differ. Even though same data rows are involved in their computations, 

each data row in 0
1,1Y  is circularly shifted to the left k1 times its row number (i.e., left shift of data 

row 0 by 0, row 1 by 1 time, row 2 by 2 times etc.). Here k2 is a divisor of M. The data row 

involved in the computation depends on k1 and k2. E.g., when N = 8 in fig. 3.8, for the computation 

of 0
1,2Y , data in the rows 0, 2, 4, and 6 are involved whereas for 0

0,2Y  data in all the rows are involved. 

It can also be noticed that there is a circular shift left in the data rows involved in the computation 

of 0
1,2Y , i.e., left shift of data row 0 by 0 time, row 2 by 1 time, row 4 by 2 times and row 6 by 3 

times. When k2 = 2.dm, where gcd(k2, N) = 2.dm and gcd(k2, M) = dm, the number of shift differs. 

 There is a specific pattern change in p
kkY
2,1
within a basic DFT coefficient. E.g., in fig. 3.8, 

where N = 8, all the data in the 0th row are involved with a plus sign and all data in the Mth row are 

involved with a minus sign for the computation of 0
0,1Y . But for 1

1,0Y  all the data in the 1st row are 

involved with a plus sign and all data in the (1 +M)th row are involved with a minus sign, i.e., there 
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is a shift in the data rows involved in the computation when compared to 0
0,1Y . Similarly for the 

computation of 0
0,1Y  and 1

0,1Y , there is a shift in the data columns involved. 

 The above analysis has been used to derive an algorithm for the computation of p
kkY
2,1
.  

3.3 DFT computation using visual method 
In the modified 2-D DFT, the computational complexity for each DFT coefficient is reduced from 

N2 complex multiplications required in direct DFT to that of N/2.  In (1.5), p
kkY
2,1
is computed using a 

formula derived from the analysis of the visual representation as stated in section 3.2.7, rather than 

doing the computation in (1.6) and (1.7). Further by exploiting the redundancy present in p
kkY
2,1
of 

DFT coefficients as explained in section 3.2.4, p
kkY
2,1
 of only basic DFT coefficients are computed. 

By permuting p
kkY
2,1
 of basic DFT coefficients, over p as stated in theorem 3.3, the remaining DFT 

coefficients can be derived.  The steps for DFT computation using visual method is shown in fig. 

3.9 and the algorithm for important steps are as follows. 

 

 
 
 

Fig. 3.9: Flow chart depicting the computation of DFT using visual method 
 
1. Compute indices (k1, k2) of all the basic DFT coefficients and the no. of basic DFT 

(no_of_basicDFT) as in section 3.2.5. and 3.2.6. 

2.  Algorithm for computing ,1 2

p
k kY  of all the basic DFT coefficients 

Given N × N 

Compute the divisors ‘dm’ of M 

1. Identify the basic DFT coefficients 
and its count 

2. Compute ,1 2

p
k kY corresponding to the basic DFT 

coefficients

3. Compute the N/2 twiddle factors

4. Compute permutation factors for each dm and 
its count 

5. Compute the basic and derived DFT coefficients 
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For q = 1 to no_ of_basicDFT 

             If ((k2(q)))M  = 0 

               dm = k2(q)  

             else 

               dm = k2(q)/2 

             l = gcd(k1(q),dm), v = gcd(k1(q), k2(q),M), u = gcd(k1(q), k2(q),N) 

             For p = 0 to M - 1 in steps of v 

               compute particular solution (n1, n2) using Extended Euclidean algorithm             

               If ((n1. k1(q) +  n2. k2(q)))N  = p 

                 ng = 0 

               else  

                 ng = 1, ro_limit = N.l/dm - 1, col_limit = 2.dm - 1 

               For kr  = 0 to ro_limit  

               For kc = 0 to col_limit 

                 next_n1 = ((kr.dm/l + n1))N  

                If ((k2(q)))M  = 0 

                   next_n2 = ( -1)(kc + ng).((kc.M/dm - kr.k1(q)/l + n2))N  

                else 

                  next_n2 = (-1)(kr.u/v + ng). ((kc.M/dm + kr.k1(q).(N - 2.dm)/(4.l.dm) + n2 ))N                        

                   Y(k1(q),k2(q),p) = Y(k1(q),k2(q),p)+ x(next_n1, next_n2) 

3. Compute N/2 twiddle factors 

 For p = 0  to M - 1 

   w(p) = exp(-j.2.π .p)/N) 

4. Compute ϕ (N/dm) and the co-prime integers of every N/dm up to N/dm defined as 

coprime.Nbydm(r)  

5. Algorithm for computing all DFT coefficients using permutations and combinations of ,1 2

p
k kY  of 

basic DFT coefficients 

For q = 1 to no_ofbasicDFT 

  v = gcd(k1(q), k2(q),M) 

  For r = 1 to ϕ (N/dm) 

     kcp = coprime.Nbydm(r) 

     fk1 = ((kcp. k1(q)))N,  fk2 = ((kcp. k2(q)))N 

     For p = 0 to M - 1 in steps of v 
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       kpn = ((kcp.p))N, kpm = ((kcp.p))M 

       If (kpn < M) 

         Y(fk1, fk2) = Y(fk1, fk2) + Y(k1(q), k2(q),p).w(kpm) 

       else 

         Y(fk1, fk2) = Y(fk1, fk2) – Y(k1(q), k2(q),p).w(kpm) 

 

3.4 Conclusion 
The visual representation of DFT, in terms of 2 × 2 data for any even value of N, can be constructed 

and the same can be used for signal analysis. This representation is quite useful in applications that 

require only a selected few DFT coefficients. The analysis of visual representation shows specific 

pattern in the visual representation, depending on the appearance and hence can be used to derive 

efficient computational schemes. It is shown that the existence of p
kkY
2,1
depends on the divisors of M 

and that the number of complex multiplication is not exactly N/2, but less than that depending on 

the divisors. By exploiting the redundancy at various levels, the computational complexity can be 

reduced.   

The modified 2-D DFT representation enables 2-D signal representation and frequency 

domain analysis in terms of few DFT coefficients dependent on the size of the matrix N. A 

mathematical relation is developed for the number of basic DFT coefficients depending on N and its 

validity is verified for different values of N. When N is a power of 2, 3.N - 2 coefficients need be 

computed whereas if N/2 is prime, there will be only 2.N + 8 basic DFT coefficients. The number of 

basic DFT coefficients is higher for N, having more number of factors. The algorithm presented 

gives a procedure for computing the index values of the basic set of DFT coefficients. The 2-D 

DFT computation can be simplified using the basic DFT coefficients identified.  

The patterns in the basic DFT coefficients have been used to derive an algorithm for its 

computation. Computation of selected DFT coefficients is possible. The complex multiplication can 

further be reduced if the signal representation and analysis are done with the basic DFT coefficients 

alone. The complex multiplication can be avoided, if the signal is represented in terms of the MRT 

coefficients and then the computation requires only real addition. In such a case, the number of 

computation will be less, when N/2 is prime. 

 

 

 

 



 

 

 

 

CHAPTER 4 

PARALLEL DISTRIBUTED ARCHITECTURE FOR N × N DFT  

It is difficult to have significant improvement in the speed of conventional computers due to the 

physical limitation imposed by the speed of light.  Further improvement in speed, required for real 

time DSP applications, can be achieved by reducing the number of multiplications and/or by 

parallel processing.  New architectures can be evolved for high speed applications by exploiting 

parallelism inherent in algorithms, and by employing pipeline techniques.  This can be met by one-

to-one mapping of algorithm onto multiple processing elements.  The motivating factor is that the 

expected performance improvements in the VLSI technology will essentially come from the ability 

to fabricate a large number of transistors on a chip.  Only a minor contribution will come from 

increased circuit speed.  Hence, it is of importance to develop efficient methods for mapping DSP 

algorithms onto optimal architectures that efficiently utilizes the parallelism.  The performance of 

dedicated VLSI DSP circuits relies on underlying architectures and implementation styles.  Thus it 

is necessary to design not just a single architecture, but a family of architectures out of which an 

appropriate architecture can be selected for a specified application [94].  Another way of looking at 

it is to design new algorithms, which are possessed with concurrency, by keeping architecture and 

implementations in mind. 

Parallel distributed architecture for N × N point DFT computation where ((N))4 = 2 was 

developed in [71].  This was evolved from the analysis of the visual representation based on 2 × 2 

DFT. In most of the FFT computations in use, the size of N is limited to power of 2.  However, this 

limitation on N is not a natural choice for many of the applications.  Thus there is a strong rationale 

for developing an efficient, high performance, scalable architecture that is suitable for applications 

in need of DFT sizes that are not necessarily a power of 2 [111].  The parallel distributed 

architecture developed in [71] is required to be extended to any N to suit such applications.  A 

parallel distributed architecture for ((N))4 = 0 if developed, closely following the approach in [71], 

can be combined with that of ((N))4 = 2 to have a generalized architecture.   In this direction, to start 

with a small value of N where ((N))4 = 0, the design of an 8 × 8 point DFT is attempted first. 
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4.1 Development for 8 × 8 DFT based on 2 × 2 DFT  
In order to develop a parallel distributed architecture, for the computation of 8 × 8 point DFT, it is 

necessary to analyze the visual representation based on 2 × 2 DFT.  The fig. A.2 shows the visual 

representation of the DFT coefficients for N = 8.  Only a unique set of p
kkY
2,1
 need be computed from 

the entire set of p
kkY
2,1
 for N = 8, as in section 3.2.4.  Visual representation for 64 unique set of p

kkY
2,1
, 

corresponding to the 22 basic DFT coefficients, required to be computed is shown in fig. 4.1. 

 
Fig. 4.1: Visual representation of 64 unique set of p

kkY
2,1
 for N = 8 

 The grouping of DFT coefficients correspond to 8 × 8 point DFT as was done in [88] is 

shown in fig A.3.  The DFT coefficients are classified into three groups depending on the way the 

primitive symbols are present in them.  The circled coefficients (i.e., Y0,0, Y0,4, Y4,0, Y4,4)  represent 

group 1.  The group 1 coefficients depend on one DFT coefficient from each 2 × 2 cell.  The above 

group have real coefficients with visual representation only for p = 0 and have identical cells.  Thus 

the group 1 coefficients have the same property as that of ((N))4 = 2. 

The coefficients Y1,0, Y2,0, Y3,0, Y5,0, Y6,0 , Y7,0, Y0,1, Y0,2,  Y0,3, Y0,5, Y0,6, Y0,7, Y1,4, Y2,4,  Y3,4,  

Y5,4,  Y6,4,  Y7,4,  Y4,1,  Y4,2,  Y4,3,  Y4,5,  Y4,6,  Y4,7 that are between two dotted lines represent group 2.  

The group 2 coefficients also show a positional relation as shown in table 4.1.  In the table the 

group 2 coefficients in column 0 will depend on the two coefficients in the left of the cells, i.e., 

VLP, VLN for even p and VLPA, VLPB for odd p.  Similarly group 2 coefficients in column 4 will 

depend on the two coefficients in the right of the cells, i.e., VRP, VRN for even p and VRPA, 

VRPB for odd p.  In this group, the symbols in one row/column of cells are sufficient to represent 
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the complete coefficient.  The representation for different values of p can be derived by circularly 

shifting.   
Table 4.1: Mnemonics used to represent the DFT coefficients for N = 8 

Group DFT coefficients Even p Odd p 

Y0,0 LAP (p = 0 only) BLANK 

Y0,4 RAP (p = 0 only) BLANK 

Y4,0 LBP (p = 0 only) BLANK 

1 

Y4,4 RBP (p = 0 only) BLANK 

Column 0 VLP, VLN VLPA, VLPB 

Column 4 VRP, VRN VRPA, VRPB 

Row 0 HAP, HAN HAPL, HAPR 

2 

Row 4 HBP, HBN HBPL,HBPR 

Y1,1, Y3,3,  Y5,5, Y7,7 MP, MN, MPD, MPC DPA, DPB 

Y5,1, Y7,3, Y1,5, Y3,7 MP, MN, MPD, MPC CPA, CPB 

Y7,1, Y5,3, Y3,5, Y1,7 DP, DN MPL, MPR, MPA,MPB 

Y3,1, Y1,3, Y7,5, Y5,7 CP, CN MPL, MPR, MPA,MPB 

Y2,2, Y6,6 CP, CN  for p = 0 

DPA, DPB for p = 2 

BLANK 

3 

Y2,6, Y6,2 DP, DN  for p = 0 

CPA, CPB for p = 2 

BLANK 

 

The rest of the coefficients form the group 3.  They also show a specific pattern depending 

on the position of the frequency index.  In group 3 coefficients, even though other rows/columns 

are not identical, they can be obtained by circular shift of one row/column.  Table 4.1 also shows 

the Mnemonics for the visual representation of group 3 coefficients.  Thus, when N = 8, the 

pictorial representation corresponding to even p will use one set of primitive symbols and that for 

odd p will use another set of primitive symbols in groups 2 & 3.  The above analysis is used for the 

development of the parallel distributed architecture for the computation of 8 × 8 DFT. 

4.1.1 Hierarchical computation scheme 
The regular pattern present in the visual representation of the DFT coefficients was used to derive a 

hierarchical computation scheme [71] for the computation of N × N point DFT when ((N))4 = 2.  

The computation scheme for 8 × 8 point DFT, as far as possible should follow the above structure, 

since the aim is to develop a generalized architecture for N × N point DFT where N is any even 

integer.  The primitive symbols are computed first.  Different combinations of the primitive 

symbols and their circularly shifted versions are formed next to represent one row/column.  The 



 72  Parallel Distributed Architecture for N × N DFT    

third step is to combine the various row/column of symbols so that a set of the coefficients p
kkY
2,1
can 

be obtained for a selected set of (k1, k2).  The last step is to combine p
kkY
2,1
 in proper order, scaled by 

the twiddle factor to obtain the N2 DFT coefficients.  Similar operations are grouped together to 

enable parallel distributed computation, so that the speed of computation can be improved 

significantly. 

4.1.2 Development of Version I architecture  
The 22 DFT coefficients can be classified into three groups, as discussed in section 4.1, each 

depending on a separate set of primitive symbols.  In all the three groups of coefficients, a 

hierarchy of computation can be derived using the structure available in the visual representation.   

All the cells are identical in group 1 where as all the rows/columns are identical in group 2.  In the 

case of group 3 coefficients, even though other rows/columns are not identical, they can be 

obtained by circular shift of one row/column.  Also, many coefficients will have the same 

combination of primitive symbols with different circular shift depending on the frequency index.   

Thus the DFT coefficients can be obtained in a hierarchy of four levels.   In the first level the 

primitive symbols corresponding to all the 2 × 2 matrices are calculated.  A few primitive symbols 

are chosen to form a combination representing a row / column of symbols corresponding to a 

selected set of p
kkY
2,1
 for p = 0 and all such combinations are computed in the second level.   In the 

third level, proper combination of rows / columns of primitive symbols are chosen to obtain the 

selected set of p
kkY
2,1
, 0 ≤ p ≤ M - 1.   The output of the fourth level will be the complete set of DFT 

coefficients, derived from the weighted sum of few p
kkY
2,1
 and a set of pre-computed twiddle factor 

values.  

The block schematic of the model is given in fig. 4.2.  Layer L1 is similar to that used in 

the parallel distributed architecture for ((N))4 = 2.  In layer L1, all the cell-planes are of dimension 4 

× 4.  The cell-planes are named after the operations performed to generate them from the 

partitioned 2 × 2 data matrices.  In layer L2, the group L2G1 consists of 4 cell planes of dimension 

4 × 1and L2G2 with 4 planes of dimension 1 × 4.  Group L2G3 consists of three subgroups namely, 

L2G3.1, L2G3.2 and L2G3.3.  L2G3.1 consists of 4 planes of size 4 × 1; L2G3.2 has 4 planes of 

dimension 1 × 4 and L2G3.3 with 4 planes of size 4 × 2.  In layer L3, L3G1 consists of 4 cell 

planes of single cells.  Groups L3G2 and L3G3 have 2 and 4 numbers of subgroups respectively.  

L3G2 consists of two subgroups namely, L3G2.1 with 8 cell planes of single cells, and L3G2.2 

with 8 planes of dimension 2 × 1.  L3G3 consists of four subgroups namely, L3G3.1 and L3G3.2 

with 2 planes of size 2 × 2; L3G3.3 has 2 planes of dimension 2 × 1 and L3G3.4 with 4 planes of 
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size 2 × 2.  The outputs of layer L4 are the DFT coefficients that are grouped into three.  The 

outputs of group L4G1 are the real coefficients.  L4G2 and L4G3 respectively give 24 and 36 

complex coefficients.  Thus L4G1 has similar cells as in other layers whereas L4G2 and L4G3 have 

complex cells involving scalar multiplications of complex numbers.  

In the layer L1, primitive symbols VLP, VLPA, HAP and HAPL are used in L1G1; VRP, 

VRPA, HBP and HBPL are used in L1G2 and MP, MPL, MPA and MPD are used in L1G3.  

Corresponding to each primitive symbol, a plane is formed with the name of the plane indicating 

the primitive symbol.  Each plane in layer 1 is a square array of 4 × 4 cells.  Corresponding cells in 

each of these planes operate on the same 2 × 2 data matrix obtained from L0.  However the 

operations done on these differ and these planes are grouped together based on the type of 

operation.  In the first group of planes, L1G1, cell values are obtained as the sum of two particular 

elements of the 2 × 2 data matrix.  The corresponding cell values in the counterpart planes in L1G2 

are obtained from the same set of two elements in L1G1.  However the operation performed on 

them is subtraction.  Cell values of the planes in L1G3 are obtained from a single specific element 

of the partitioned 2 × 2 data matrices.  Once computations on the first layer are completed, the 

input layer L0 is no more required. 

The second layer, L2, also consists of three groups.  The planes in L2G1 are row vectors of 

dimension 4 with names indicating the input plane and the operation to be carried out.  The planes 

are RVLP, RVLPA, RVRP and RVRPA in which ‘R’ indicates a row sum.  RVLP indicates that 

each cell value in this plane is obtained from the sum of the cell values of the corresponding row of 

the plane VLP in L1G1.  RVLPA, RVRP and RVRPA are similarly obtained from the planes 

VLPA, VRP and VRPA.  The planes in the second group, L2G2, are CHAP, CHBP, CHAPL and 

CHBPL, each a column vector of dimension M.  Here ‘C’ indicates the column sum and planes are 

generated from HAP, HBP, HAPL and HBPL.  There are three subgroups in L2G3, each with 4 

planes.  The planes in subgroup L2G3.1 & L2G3.2 are row vectors & column vectors respectively 

of dimension M and L2G3.3 with dimension 4 × 2, with names indicating the input plane and the 

operation to be carried out.  E.g., the four planes of subgroup L2G3.3 are DMP, DMPL, DMPA and 

DMPD in which ‘D’ indicates a difference.  The (0, 0)th  cell of the plane DMP is obtained from the 

difference of MP00 and MP02. 

Layer L3 has three groups.   L3 is computed using planes from L2 and is hence 

independent of both L0 and L1.   L3G1 contains cell planes SRVLP, SRVLPA, SRVRP and 

SRVRPA each possessing a single cell.   Here the ‘S’ in the nomenclature indicates that the sum of 

the cell values in the respective cell planes from L2 is used to obtain the cell value in this group.    
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Fig. 4.2: Version I parallel distributed architecture for 8 × 8 point DFT computation 
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Hence to obtain SRVRP, the cell values of RVLP are to be summed.   Similarly SRVLPA, SRVRP 

and SRVRPA are obtained from RVLPA, RVRP and RVRPA respectively.   There are two 

subgroups in second group namely, L3G2.1 and L3G2.2.  L3G2.1 consists of 8 cell planes with one 

cell each.  The cell planes are RVLPP&M, RVLPAP&M, RVRPP&M, RVRPAP&M, CHAPP&M, 

CHAPLP&M, CHBPP&M and CHBPLP&M.  Cell values in RVLPP&M are obtained by addition 

or subtraction of four specific cells from the planes RVLP.  L3G2.2 consists of 8 planes with size 2 

× 1.  Cell values in RVLPM are obtained by subtracting two specific cells from the plane RVLP.  

In the group 2 a ‘P&M’ in the name of the plane indicates plus and minus and a ‘M’ indicates 

minus.  Group 3 consists of four subgroups namely, L3G3.1, L3G3.2, L3G3.3, and L3G3.4.  

L3G3.1 and L3G3.2 has 2 planes of size 2 × 2, L3G3.3 consists of 2 cell planes of dimension 2 × 1 

whereas L3G3.4 has 4 planes of size 2 × 2.  The cell values in the planes L3G3.1 and L3G3.3 are 

obtained by adding values of selected cells from L2G3.1.  The inputs for L3G3.2 are from L2G3.2 

whereas the inputs for L3G3.4 are from L2G3.3. 

Layer L4 gives the N2 DFT coefficients.  The planes in L4 are grouped into three.  Group 1 

has 4 planes with single cells in each, giving the real coefficients Y0,0, Y0,4, Y4,0 and  Y4,4.  Group 2 

consists of 24 cell planes with one cell in each plane.  The outputs from this group correspond to 

the coefficients from row 0, row M, column 0 and column M other than group 1 coefficients.  

Group 3 in this layer consists of 36 cell planes with one cell each.  The output from this group will 

be the DFT coefficients of group 3.  The cells in L4G2 and L4G3 involve scalar multiplication of 

complex coefficients, whereas the cells in all other layers and groups involve only real addition and 

subtraction.  Since the computations in a layer are dependent only on the cell planes of the previous 

layer, the similar calculations in a layer can be grouped in different ways. 

Fig. 4.3 shows the detailed schematic diagram of parallel distributed computation of 8 × 8 

point DFT.  In the fig, the dots in each rectangle represent the cells and the dimension of each 

plane, represented by rectangles with continuous line, can easily be identified.  Next section 

outlines the algorithm for the computation of each layer. 

 4.1.2.1 Algorithm 

Layer1 

For L1G1  

For 0 ≤  i, j < M = N/2 

VLP(i, j) = x(2.i, 2.j) + x(2.i, 2.j +1)            VLPA(i, j) = x(2.i + 1,2.j) + x(2.i +1,2.j +1) 

HAP(i, j) = x(2.i, 2.j)+ x(2.i +1,2.j)              HAPL(i, j) = x(2.i, 2.j+1) + x(2.i+1, 2.j+1)   



 76  Parallel Distributed Architecture for N × N DFT    

 

 

 
Fig. 4.3: Schematic diagram for version I architecture of 8 × 8 point DFT 
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For L1G2 

VRP(i, j) = x(2i, 2j) - x(2i, 2j +1)            VRPA(i, j) = x(2i + 1,2j) - x(2i +1,2j +1) 

HBP(i, j) = x(2i, 2j) - x(2i +1,2j)             HBPL(i, j) = x(2i, 2j+1) - x(2i+1, 2j+1) 

For  L1G3 

        MP(i, j)   = x(2i, 2j)                 MPL(i, j) = x(2i, 2j +1) 

       MPA(i, j) = x(2i +1,2j)           MPD(i, j) = x(2i +1, 2j +1) 

Layer 2 

For L2G1              

M 1
RVLP(i) VLP(i, j)

j 0

−
= ∑

=
,  0 ≤  i < M 

Similarly, the values of the arrays RVLPA, RVRP and RVRPA could be arrived at by replacing 

VLP with VLPA, VRP, and VRPA respectively in the above equation. 

For L2G2 

M 1
CHAP(i) HAP(j, i)

j 0

−
= ∑

=
,  0 ≤  i < M 

Similarly, the values of the arrays CHBP, CHAPL and CHBPL are obtained by replacing HAP with 

HBP, HAPL and HBPL respectively in the above equation. 

For L2G3.1 

                 
1

0
( ) ( 1) ( , )

M j

j
RMP i MP i j

−

=
= −∑ ,  0 ≤  i < M 

Similarly the values of the arrays RMPL, RMPA, RMPD are obtained by replacing MP with MPL, 

MPA, MPD respectively in the above equation.  

For L2G3.2 
1

0
( ) ( 1) ( , )

M j

j
CMP i MP j i

−

=
= −∑ ,  0 ≤  i < M 

Similarly the values of the arrays CMPL, CMPA, CMPD are obtained by replacing MP with MPL, 

MPA, MPD respectively in the above equation.  

For L2G3.3 

( , ) ( , (( )) ) ( ,(( 2 )) )M MDMP i j MP i j i MP i j i= + − + + , 0 ≤  i < M, 0 ≤  j< M/2 

Similarly DMPL, DMPA, DMPD are obtained by replacing MP with MPL, MPA, MPD 

respectively in the above equation. 
Layer 3 

i) For L3G1 
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1

0
( )

M

i
SRVLP RVLP i

−

=
= ∑  

 Similarly, the values of the cells SRVLP, SRVLPA, SRVRPA are derived by replacing 

RVLP with RVLPA, RVRP and RVRPA respectively in the above equation. 

ii) For L3G2.1 
M 1 i

i 0
RVLPP&M ( 1) RVLP(i)

−

=
= −∑  

  Similarly, RVLPAP&M, RVRPP&M, RVRPAP&M, CHAPP&M, CHAPLP&M, 

CHBPP&M and CHBPLP&M are derived by replacing RVLP with RVLPA, RVRP, 

RVRPA, CHAP, CHAPL, CHBP and CHBPL respectively in the above equation. 

iii) For L3G2.2 

)RVLPM(i) RVLP(i)-RVLP(i 2= + ,    0 ≤  i < M/2 

Similarly RVLPAM, CHAPM, CHAPLM, RVRPM, RVRPAM, CHBPM, CHBPLM  are 

obtained by replacing RVLP with RVLPA, CHAP, CHAPL, RVRP, RVRPA, CHBP, CHBPL 

respectively in the above equation. 

iv) For L3G3.1 

For 0 ≤  i, j < M/2 

RE( i,j) = (-1)i*j [RMP(i) + (-1)j  RMPL(i+1) – RMP((i+2))M + (-1)j+1  RMPL((i+3))M ] 

RO( i,j) = (-1)i*j [ (-1)j+1RMPD(i+j) +  RMPA(i+j+1) + (-1)j RMPD((i+j+2))M  -  RMPA((i+j+3))M ] 

v) For L3G3.2 

For 0 ≤  i, j < M/2 

CE( i,j) = CMP(i) + (-1)j+1  CMPA(i+1) – CMP(i+2) + (-1)j  CMPA((i+3))M  

CO( i,j) = CMPL(i) +(-1)j+1  CMPD(i+1) - CMPL(i+2)  - (-1)j CMPD((i+3))M  

vi) For L3G3.3 
M 1 i j 1

i 0
A(j) ( 1) [RMP(i) ( 1) RMPD(i)]

−
+

=
= − + −∑ ,         0 ≤ j < M/2 

Similarly B(j) is derived by replacing RMP & RMPD with RMPA & RMPL respectively in the 

above equation. 

vii) For L3G3.4 

For 0 ≤k, j < M/2 
M 1 i i k ((1 j))M/2

M/2)
i 0

D(j,k) ( 1) DMP(i,j) ( 1) DMPD(i,((j 1))
−

+ + +

=
= − + − +∑  
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M 1 i k k

i 0
E(j,k) ( 1) [DMPA(i,j) ( 1) DMPL(i,j)]

−
+

=
= − + −∑  

M 1 k 1

i 0
F(j,k) DMP(i,j) ( 1) DMPD(i,j)

−
+

=
= + −∑  

/2 )
M 1 j k 1

M
i 0

G(j,k) DMPL(i,j) ( 1) DMPA(i,((j+1))
−

+ +

=
= + −∑  

Layer 4 
i) For L4G1 

 Y0,0 = SRVLP + SRVLPA        Y4,0 = SRVLP - SRVLPA 

           Y0,4 = SRVRP + SRVRPA         Y4,4 = SRVRP - SRVRPA 

i) For  L4G2 

Y1,0 = RVLPM(0) + RVLPAM(0).W1 + RVLPM(1).W2 + RVLPAM(1).W3 

Y7,0 = RVLPM(0) - RVLPAM(1).W1 - RVLPM(1).W2 - RVLPAM(0).W3 

Y3,0 = RVLPM(0) + RVLPAM(1).W1 - RVLPM(1).W2 + RVLPAM(0).W3 

Y5,0 = RVLPM(0) - RVLPAM(0).W1 + RVLPM(1).W2 - RVLPAM(1).W3 

Y2,0 = RVLPP&M + RVLPAP&M.W2 Y6,0 = RVLPP&M - RVLPAP&M.W2  

Y1,4 = RVRPM(0) + RVRPAM(0).W1 + RVRPM(1).W2 + RVRPAM(1).W3 

Y7,4 = RVRPM(0) - RVRPAM(1).W1 - RVRPM(1).W2 - RVRPAM(0).W3 

Y3,4 = RVRPM(0) + RVRPAM(1).W1 - RVRPM(1).W2 + RVRPAM(0).W3 

Y5,4 = RVRPM(0) - RVRPAM(0).W1 + RVRPM(1).W2 - RVRPAM(1).W3 

Y2,4 = RVRPP&M + RVRPAP&M.W2 Y6,4 = RVRPP&M - RVRPAP&M.W2 

 Y0,1 = CHAPM(0) + CHAPLM(0).W1 + CHAPM(1).W2 + CHAPLM(1).W3 

Y0,7 = CHAPM(0) - CHAPLM(1).W1 - CHAPM(1).W2 - CHAPLM(0).W3 

Y0,3 = CHAPM(0) + CHAPLM(1).W1 - CHAPM(1).W2 + CHAPLM(0).W3 

Y0,5 = CHAPM(0) - CHAPLM(0).W1 + CHAPM(1).W2 - CHAPLM(1).W3 

Y0,2 = CHAPP&M + CHAPLP&M.W2 Y0,6 = CHAPP&M - CHAPLP&M.W2 

Y4,1 = CHBPM(0) + CHBPLM(0).W1 + CHBPM(1).W2 + CHBPLM(1).W3 

Y4,7 = CHBPM(0) - CHBPLM(1).W1 - CHBPM(1).W2 - CHBPLM(0).W3 

Y4,3 = CHBPM(0) + CHBPLM(1).W1 - CHBPM(1).W2 + CHBPLM(0).W3 

Y4,5 = CHBPM(0) - CHBPLM(0).W1 + CHBPM(1).W2 - CHBPLM(1).W3 

Y4,2 = CHBPP&M + CHBPLP&M.W2 Y4,6 = CHBPP&M - CHBPLP&M.W2 

i) For  L4G3 

Y1,1 = D(0,0) + E(0,0).W1 + D(1,0).W2 + E(1,0).W3  

Y7,7 = D(0,0) - E(1,0).W1 - D(1,0).W2 - E(0,0).W3 

Y3,3 = D(0,0) + E(1,0).W1 - D(1,0).W2 + E(0,0).W3 
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Y5,5 = D(0,0) - E(0,0).W1 + D(1,0).W2 - E(0,0).W3 

Y5,1 = D(0,1) + E(0,1).W1 + D(1,1).W2 + E(1,1).W3 

Y1,5 = D(0,1) - E(0,1).W1 + D(1,1).W2 - E(1,1).W3 

Y3,7 = D(0,1) - E(1,1).W1 - D(1,1).W2 - E(0,1).W3 

Y7,3 = D(0,1) + E(1,1).W1 - D(1,1).W2 + E(0,1).W3 

Y3,1 = F(0,0) + G(0,0).W1 + F(1,0).W2 + G(1,0).W3 

Y7,5 = F(0,0) - G(0,0).W1 + F(1,0).W2 -G(1,0).W3 

Y1,3 = F(0,0) + G(1,0).W1 - F(1,0).W2 + G(0,0).W3 

Y5,7 = F(0,0) - G(1,0).W1 - F(1,0).W2 - G(0,0).W3 

Y7,1 = F(0,1) + G(0,1).W1 + F(1,1).W2 + G(1,1).W3 

Y5,3 = F(0,1) + G(1,1).W1 - F(1,1).W2 + G(0,1).W3 

Y1,7 = F(0,1) - G(1,1).W1 - F(1,1).W2 - G(0,1).W3 

Y3,5 = F(0,1) - G(0,1).W1 + F(1,1).W2 - G(1,1).W3 

Y3,2 = RE(0,0) + RO(0,0).W1 - RE(1,0).W2 - RO(1,0).W3 

Y7,2 = RE(0,0) - RO(0,0).W1 - RE(1,0).W2 + RO(1,0).W3 

Y5,6 = RE(0,0) + RO(1,0).W1 + RE(1,0).W2 - RO(0,0).W3 

Y1,6 = RE(0,0)- RO(1,0).W1+ RE(1,0).W2 + RO(0,0).W3 

Y5,2 = RE(0,1) + RO(0,1).W1 - RE(1,1).W2 - RO(1,1).W3 

Y7,6 = RE(0,1) -RO(1,1).W1 + RE(1,1).W2 + RO(0,1).W3 

Y3,6 = RE(0,1) +RO(1,1).W1+ RE(1,1).W2 - RO(0,1).W3 

Y1,2 = RE(0,1) - RO(0,1).W1 - RE(1,1).W2 + RO(1,1).W3 

Y2,1 = CE(0,0) + CO(0,0).W1 + CE(1,0).W2 + CO(1,0).W3 

Y2,5 = CE(0,0) - CO(0,0).W1 + CE(1,0).W2 - CO(1,0).W3 

Y6,3 = CE(0,0) + CO(1,0).W1 - CE(1,0).W2 + CO(0,0).W3 

Y6,7 = CE(0,0) - CO(1,0).W1 - CE(1,0).W2 - CO(0,0).W3 

Y6,1 = CE(0,1) + CO(0,1).W1 + CE(1,1).W2 + CO(1,1).W3 

Y2,7 = CE(0,1) - CO(1,1).W1 - CE(1,1).W2 - CO(0,1).W3 

Y6,5 = CE(0,1) - CO(0,1).W1 + CE(1,1).W2 - CO(1,1).W3 

Y2,3 = CE(0,1) + CO(1,1).W1 - CE(1,1).W2 + CO(0,1).W3 

Y2,2 = A(0) + B(1).W2 Y6,6 = A(0) - B(1).W2 

Y2,6 = A(1) + B(0).W2 Y6,2 = A(1) - B(0).W2 

4.1.2.2 Sample computation 

For the data matrix [x] shown below, the computation of 8 × 8 point DFT is as follows 
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[ ]

1 2 3 2 1 0 2 1
0 3 1 3 2 1 1 1
1 2 3 0 0 2 1 3
3 1 0 2 0 1 1 3
0 2 3 1 2 1 2 1
1 2 0 1 3 1 0 1
1 1 2 2 0 0 2 2
2 2 0 0 1 3 1 2

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

L1G1 

VLP   VLPA   HAP   HAPL 

3 5 1 3
3 3 2 4
2 4 3 3
2 4 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

          

3 4 3 2
4 2 1 4
3 1 4 1
4 0 4 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

        

1 4 3 3
4 3 0 2
1 3 5 2
3 2 1 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

            

5 5 1 2
3 2 3 6
4 2 2 2
3 2 3 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

L1G2 

VRP   VRPA   HBP   HBPL 

1 1 1 3
1 3 2 2
2 2 1 1
0 0 0 0

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

    

3 2 1 0
2 2 1 2
1 1 2 1
0 0 2 1

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− −⎣ ⎦

        

1 2 1 1
2 3 0 0
1 3 1 2
1 2 1 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

          

1 1 1 0
1 2 1 0
0 0 0 0
1 2 3 0

− − −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

L1G3 

MP   MPL   MPA   MPD 

1 3 1 2
1 3 0 1
0 3 2 2
1 2 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

          

2 2 0 1
2 0 2 3
2 1 1 1
1 2 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

        

0 1 2 1
3 0 0 1
1 0 3 0
2 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

            

3 3 1 1
1 2 1 3
2 1 1 1
2 0 3 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

L2G1 

RVLP   RVLPA  RVRP   RVRPA 

12
12
12
10

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                           

12
11
9

11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                               

2
2
2
0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                      

4
3
1
3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦
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L2G2 

CHAP   CHAPL  CHBP   CHBPL 

[ ]9 12 9 10          [ ]15 11 9 14            [ ]3 10 3 4− −        [ ]1 1 3 0− − −  

L2G3.1 

          RMP   RMPL   RMPA   RMPD 

3
3
3
3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

                           

1
1
1
3

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

                               

0
2
4
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                      

0
3
1
3

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

L2G3.2 

CMP   CMPL   CMPA   CMPD 

[ ]1 1 3 1−          [ ]1 1 1 3− −            [ ]4 1 4 1− −        [ ]2 2 2 3− −  

L2G3.3 

    DMP   DMPL                DMPA  DMPD 

0 1
2 1
2 1
0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

           

2 1
3 0
1 0
0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

                               

2 0
1 3
2 0
1 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

         

2 2
1 0
1 0
2 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

L3G1 

                 SRVLP      SRVLPA  SRVRP            SRVRPA 

[ ]46                                [ ]43                               [ ]2                             [ ]1−  

L3G2.1 

RVLPP&M  RVLPAP&M  RVRPP&M  RVRPAP&M 

[ ]2                                [ ]1−                               [ ]6                             [ ]1  

CHAPP&M  CHAPLP&M  CHBPP&M  CHBPLP&M 

[ ]4−                                [ ]1−                               [ ]20−                             [ ]3−  

L3G2.2 

RVLPM  RVLPAM  RVRPM  RVRPAM 

[ ]0 2                            [ ]3 0                        [ ]0 2−                            [ ]3 0−  

CHAPM  CHAPLM  CHBPM  CHBPLM 

[ ]0 2                            [ ]6 3−                        [ ]0 6                            [ ]2 1−  
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L3G3.1                                                          L3G3.2 

       RE   RO   CE    CO 

4 4
2 2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

                
1 2

10 1
−⎡ ⎤

⎢ ⎥−⎣ ⎦
                     

6 2
8 8

− −⎡ ⎤
⎢ ⎥−⎣ ⎦

                         
3 7
8 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

L3G3.3 

  A          B 

[ ]1 1−                                                         [ ]2 2−  

L3G3.4 
         D             E   F    G         

3 3
0 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

                
4 4
2 2

⎡ ⎤
⎢ ⎥−⎣ ⎦

                     
2 6
1 1

⎡ ⎤
⎢ ⎥−⎣ ⎦

                         
0 4
2 2

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 
L4G1                         L4G2                                                       L4G3                         

2.1213 - 4.1213
2

2.1213 0.1213
2.1213 0.1213

2
2.1213 4.1213
2.1213 4.1213

6
2.1213 0.1213
2.1213 0.1213

89 6
3 2.1213 4.1213
9 6.364 4.

13

  j
  j

  j
  j

  j
  j
  j

  j
  j

        j
  j

        j
        j

+
− −
− +

−
+

− +
−

+
−

+⎡ ⎤
⎢ ⎥ − −⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

1213
4

6.364 0.1213
6.364 0.1213

4
6.364 4.1213

2.1213 6.7071
20 3

2.1213 5.2929
2.1213 5.2929

20 3
2.1213

        j
        j
        j

        j
        j

        j
        j

        j
        j

        j
     

− +
− −
− +

− −
+
−

− +
− +
− −

− −

1.5858 4.2426
13.7782 4.4645

0.5858 0.4142
7.2426 1.4142

2.9497 12.949

6.7071

        j
        j

        j
        j

        j

   j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥ − +
⎢ ⎥

−⎢ ⎥
⎢ ⎥ −⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

7
1.7574 0.4142
1.8787 1.2929

1 2
11.7782 8.364
6.1213 2.7071

1 2
3.7782 4.364

3.4142 2.4142
6.9497 3.0503
4.4142

        j
        j

        j
        j

        j
        j

        j
        j

        j
        j

+
− +

− −
+

− +
−

− −
−

− +
− −

1.2426 1.4142
1.7782 11.5355
10.2426 2.4142

4.2426
10.2426 2.4142
1.7782 11.5355
1.2426 1.4142

        j
        j
        j

        j
        j

        j

− +⎡ ⎤
⎢ ⎥ +⎢ ⎥
⎢ ⎥ −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎣ ⎦

4.4142 4.2426
6.9497 3.0503
3.4142 2.4142

3.7782 4.364
1 2

6.1213 2.7071
11.7782 8.364

1 2
1.8787 1.2929

1.7574 0

        j
        j

        j
        j

        j
        j

        j
        j

        j
       j  

− +
− −

+
− +

+
− −

−
− +

− −
− .4142

2.9497 12.9497
7.2426 1.4142
0.5858 0.4142

13.7782 4.4645
1.5858 4.2426

        j
        j
        j

        j
        j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥

+⎢ ⎥
⎢ ⎥+⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− +⎣ ⎦
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4.1.3 Version II architecture 
In the version I parallel distributed model developed in section 4.1.2.1, effort has been made to 

preserve many layers and planes of the architecture model for the computation of N × N point DFT 

[88] where ((N))4 = 2 so as to develop a generalized architecture for any even N.  E.g., layer 1 is 

exactly same in both the model.   In layer 2 cell-planes of group G1 and G2 are same in both the 

models, whereas the cell-planes of group 3 has been divided into three subgroups namely G3.1, 

G3.2 and G3.3 in 8 × 8 point DFT.  But in layer 3 only one group is common to both ((N))4 = 2 and 

8 × 8 point DFT, while all other groups are different.  On analysis of the version I architecture for 8 

× 8 point DFT computation, it can be seen that the number of computations in each cell-planes of 

different groups in a particular layer differ.  For example in layer 1, there is one addition in each 

cell of planes in group G1 and G2 whereas there is no computation in the cell-planes of group G3.  

Due to this the number of computations in the cell-planes of group G3 in layer 3 has increased.   In 

a computation scheme where the computation of each group of a particular layer is to be completed 

before the commencement of the computation in the subsequent layer, this will cause a bottleneck.  

Even though each group of a particular layer processes the output of the corresponding group in the 

previous layer, the above delay affects the total execution time.  On analysis of the version I 

architecture it is noticed that the computation accumulated in group 3 of layer 3 can be distributed 

to different layers, if the group 3 computations are modified.  

 In the version II architecture shown in fig 4.4, the number of computation in each cell-

plane of layer 1 and 2 are made equal.  In layer 3 however the number of computation in the cell-

plane of subgroup G3.2 is two more than the other planes.  In layer 4, the number of computations 

in each cell-plane of different groups depends on the number of p
kkY
2,1
 involved in the computation 

of the DFT coefficients.  E.g., there are no complex multiplications in L4G1, whereas in L4G2, 

computation of the DFT coefficient Y1,0 require three complex multiplications and Y2,0 require one 

complex multiplication.  In L4G3, computation of the DFT coefficient Y1,1 require three complex 

multiplications and Y2,2 require one complex multiplication.  So the variations in the number of 

computations in each cell-plane of groups L4G2 and L4G3 cannot be eliminated.  The algorithm for 

group 3 in all the layers of version II model is shown below. 

4.1.3.1 Algorithm 

The computation of group 1 and 2 in all the layers are same as that of version I architecture.  The 

computations of all the layers of group 3 are shown below.  

 



Parallel Distributed Architecture for N × N DFT 85 

 
Fig. 4.4: Version II parallel distributed architecture for 8 × 8 point DFT 
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Layer 1 
The input-output relation for each cell in L1 for group 3 is as follows. 

For L1G3.1 
            For    0 ≤ i < M 

 For    0 ≤ j < M/2 

SMP(i, j) = MP(i, j) + MP(i , j+2) = 
1

0
( , 2 )

k
MP i j k

=
+∑  = x(2i, 2 j) + x(2i , 2(j+2))  

          Similarly SMPL, SMPD and SMPA can be obtained by replacing MP with MPL, MPD and 

MPA or with the corresponding data in the 2 × 2 matrix. 

For L1G3.2 
 For    0 ≤ i < M 

 For    0 ≤ j < M/2 

DMP(i, j) = MP(i, j + i) – MP(i, ((j + 2 + i))M = 
1

0
( 1) ( ,(( 2 )) )M

k
MP i j i k

=
′− + +∑    

               = x(2i, ((2j + 2i))N) – x(2i, ((2(j + 2) + 2i))N) 

   Similarly DMPL, DMPD and DMPA can be obtained by replacing MP with MPL, MPD 

and MPA or with the corresponding data in the 2 × 2 matrix. 

Layer 2 

L2G3.1 
2RSMP(i) = 

/2 1 1

0 0
( 1) ( / 2, )

M
k j

j k
SMP i jxM k

−
+

= =
− +∑ ∑ ,         0 ≤ i < M/2 

 Similarly 2RSMPL, 2RSMPD and 2RSMPA can be obtained by replacing SMP with 

SMPL, SMPD and SMPA respectively. 

L2G3.2 
 

/2 1 /2 1

0 0
( , ) ( 1) (2 , )

M M l

k l
X o i SMP k i l

− −

= =
= − +∑ ∑ ,           0 ≤ i  ≤ M/2 

 Similarly X(1, i), X(2, i) and X(3, i) can be obtained by replacing SMP with SMPA, SMPD 

and SMPL respectively in the above equation. 

L2G3.3 

2CSMP(i) = 
/2 1

0
( 1) ( (( 2 ), ) ((2 2 ), ))

M jxi

j
DMP i j xjxi j DMP i j xjxi j

−

=
− + − − + + −∑ ,   0 ≤ i < M/2 

 Similarly 2CSMPL, 2CSMPD and 2CSMPA can be obtained by replacing DMP with 

DMPL, DMPD and DMPA respectively in the above equation. 
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L2G3.4 

SDMP(i) =  
1

0
( 1) ( , )

M j

j
DMP j i

−

=
−∑ ,        0 ≤ i < M/2 

 Similarly SDMPL, SDMPD and SDMPA can be obtained by replacing DMP with DMPL, 

DMPD and DMPA respectively in the above equation. 

L2G3.5 
1

0
(0, ) ( , )

M

k
Y i DMP k i

−

=
= ∑ ,          0 ≤ i  ≤ M/2 

 Similarly Y(1, i), Y(2, i) and Y(3, i) can be obtained by replacing DMP with DMPA, 

DMPD and DMPL respectively in the above equation. 

Layer 3 

L3G3.1 

RE(i,j) = /2( 1) (2 ( ) ( 1) 2 (((1 )) ))ixj i j
MRSMP i RSMPL i+− + − + ,       0 ≤ i, j < M/2 

RO(i,j) = 1
/2 /2( 1) 2 ((( )) ) ( 1) 2 ((( 1)) )j i j

M MRSMPD i j RSMPA i j+ +− + + − + + ,     0 ≤ i, j < M/2 

L3G3.2 

A(i, j) = 
/2 1 /2 1

0 0
( 1) (2 , )

M M l k kx j

k l
X k i l

− −
+ +

= =
− +∑ ∑ ,      0 ≤ i, j  ≤ M/2 - 1 

L3G3.3 

CE(i, j) = 1
/22 ( ) ( 1) 2 (( 1))j

MCSMP i CSMPA i++ − + ,       0 ≤ i, j < M/2 

CO(i, j) =  1
/22 ( ) ( 1) 2 (( 1))i j

MCSMPL i CSMPD i+ ++ − + ,       0 ≤ i, j < M/2 

L3G3.4 
1

/2( , ) ( ) ( 1) (( 1))i j
MD i j SDMP i SDMPD i+ += + − + ,     0 ≤ i, j  ≤ M/2 

( , ) ( 1) ( ( ) ( 1) ( )i ixj jE i j SDMPA i SDMPL i+= − + − ,          0 ≤ i, j  ≤ M/2 

L3G3.5 
/2 1 (1 )

0
( , ) ( 1) (2 , )

M j k

k
F i j Y k i

−
+

=
= −∑ ,                0 ≤ i, j ≤ M/2 

1
/2( , ) ( 1) ( (1,(( 1)) ( 1) (3, ))i ixj i j

MG i j Y i Y i+ + += − + + − ,               0 ≤ i, j ≤ M/2 

Layer 4 

i) For  L4G3 

Y1,1 = D(0,0) + E(0,0).W1 + D(1,0).W2 - E(1,0).W3 

Y7,7 = D(0,0) + E(1,0).W1 - D(1,0).W2 - E(0,0).W3 

Y3,3 = D(0,0) - E(1,0).W1 - D(1,0).W2 + E(0,0).W3 

Y5,5 = D(0,0) - E(0,0).W1 + D(1,0).W2 + E(0,0).W3 
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Y5,1 = D(0,1) - E(0,1).W1 + D(1,1).W2 - E(1,1).W3 

Y1,5 = D(0,1) + E(0,1).W1 + D(1,1).W2 + E(1,1).W3 

Y3,7 = D(0,1) + E(1,1).W1 - D(1,1).W2 + E(0,1).W3 

Y7,3 = D(0,1) - E(1,1).W1 - D(1,1).W2 - E(0,1).W3 

Y3,1 = F(0,0) - G(0,0).W1 + F(1,0).W2 - G(1,0).W3 

Y7,5 = F(0,0) + G(0,0).W1 + F(1,0).W2 +G(1,0).W3 

Y1,3 = F(0,0) - G(1,0).W1 - F(1,0).W2 - G(0,0).W3 

Y5,7 = F(0,0) + G(1,0).W1 - F(1,0).W2+ G(0,0).W3 

Y7,1 = F(0,1) + G(0,1).W1 + F(1,1).W2 -G(1,1).W3 

Y5,3 = F(0,1) - G(1,1).W1 - F(1,1).W2 + G(0,1).W3 

Y1,7 = F(0,1) + G(1,1).W1 - F(1,1).W2 - G(0,1).W3 

Y3,5 = F(0,1) - G(0,1).W1 + F(1,1).W2+G(1,1).W3 

Y3,2 = RE(0,0) + RO(0,0).W1 - RE(1,0).W2 - RO(1,0).W3 

Y7,2 = RE(0,0) - RO(0,0).W1 - RE(1,0).W2 + RO(1,0).W3 

Y5,6 = RE(0,0) + RO(1,0).W1 + RE(1,0).W2 - RO(0,0).W3 

Y1,6 = RE(0,0)- RO(1,0).W1+ RE(1,0).W2 + RO(0,0).W3 

Y5,2 = RE(0,1) + RO(0,1).W1 - RE(1,1).W2 - RO(1,1).W3 

Y7,6 = RE(0,1) -RO(1,1).W1 + RE(1,1).W2 + RO(0,1).W3 

Y3,6 = RE(0,1) +RO(1,1).W1+ RE(1,1).W2 - RO(0,1).W3 

Y1,2 = RE(0,1) - RO(0,1).W1 - RE(1,1).W2 + RO(1,1).W3 

Y2,1 = CE(0,1) + CO(0,1).W1 - CE(1,0).W2 - CO(1,1).W3 

Y2,5 = CE(0,1) - CO(0,1).W1 - CE(1,0).W2 + CO(1,1).W3 

Y6,3 = CE(0,1) - CO(1,1).W1 + CE(1,0).W2 + CO(0,1).W3 

Y6,7 = CE(0,1) + CO(1,1).W1 + CE(1,0).W2 - CO(0,1).W3 

Y6,1 = CE(0,0) + CO(0,0).W1- CE(1,1).W2 - CO(1,0).W3 

Y2,7 = CE(0,0) + CO(1,0).W1+ CE(1,1).W2 - CO(0,0).W3 

Y6,5 = CE(0,0) - CO(0,0).W1 - CE(1,1).W2 + CO(1,0).W3 

Y2,3 = CE(0,0) - CO(1,0).W1 + CE(1,1).W2 + CO(0,0).W3 

Y2,2 = A(0,0) + A(1,1).W2 Y6,6 = A(0,0) - A(1,1).W2 

Y2,6 = A(0,1) + A(1,0).W2 Y6,2 = A(0,1) - A(1,0).W2 
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4.1.4 Comparison of version I & II models with the model for ((N))4 = 2 
Version I and version II parallel distributed architecture for the computation of 8 × 8 point DFT are 

developed using the visual representation based on 2 × 2 DFT.  Since the aim is to develop a 

generalized architecture for N × N point DFT where N is any even integer, both the models are 

designed in the same way as that for ((N))4 = 2 [71].  E.g., the computation of group 1 coefficients 

in version I and II models are same as that of the model for ((N))4 = 2.  The computation for group 

2 coefficients in layer 1 and 2 are same in all the models.  Similarity ends there.  The computation 

for group 2 coefficients is different in layer 3 for the 8 × 8 point computation models, from that of 

computation of 2-D DFT for ((N))4 = 2.  Primitive symbol combinations for group 2 and 3 

coefficients differs for ((N))4 = 2 and N = 8.   Hence a generalized architecture based on the above 

model is not feasible. 

 
4.2 Development of M spacing based architecture for N × N DFT 
Analysis of visual representation of ,1 2

p
k kY  based on 2 × 2 data can be used to derive simple and 

efficient computational scheme as the representation shows a direct relationship between data and 

the frequency domain representation.  Analysis shows similarities in the representation for ,1 2
p

k kY  of 

several DFT coefficients as in section 3.2.4.  Due to the redundancy, only the basic DFT 

coefficients need be calculated and other coefficients could be derived.  Hence the analysis of 

visual representation can be confined to the p
kkY

2,1
 of basic DFT coefficients, since others are 

redundant.  

4.2.1 Patterns in p
kkY

2,1
 of basic DFT coefficients 

The computation of p
kkY

2,1
using the visual representation involves only real additions as is evident 

from fig. 3.6, 3.7 and 3.8.  The theorem 3.1 says that the existence of p
kkY

2,1
 depends on ‘dm’, where 

‘dm’ is the divisor of M.  But the number of data points involved in the computation of each of the 

DFT coefficient is same.  Table 4.2 shows the number of data points involved in the computation of 
p

kkY
2,1

for N = 4, 6 and 8 corresponding to each gcd(k1, k2, M).  From the table, for N = 4 and gcd(k1, 

k2, M) = 1, there are two p
kkY

2,1
 each having eight data points, i.e., sixteen data points have been 

equally distributed between the two p
kkY

2,1
, whereas for gcd(k1, k2, M) = 2, there is only one p

kkY
2,1

with 

sixteen data points involved in the computation.  When N = 6, there are three p
kkY

2,1
 each having 

twelve data points when gcd(k1, k2, M) = 1 and one p
kkY

2,1
 with thirty six  data points when gcd(k1, k2, 

M) = 3.  Similarly for N = 8, there are four p
kkY

2,1
 with sixteen data points each when gcd(k1, k2, M) = 
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1, two  p
kkY

2,1
 with  thirty two data points each when gcd(k1, k2, M) = 2 and one p

kkY
2,1

 with  sixteen 

data points each when gcd(k1, k2, M) = 4.  Similar pattern is observed in the visual representation of 

higher values of N.  Thus the number of data points involved in the computation of p
kkY

2,1
can be 

computed and can be generalized for any even N. 

Number of p
kkY

2,1
, when gcd(k1, k2, M) is dm, np = M/dm 

∴Number of data points involved in the computation of p
kkY

2,1
= N2/ np = 2.N.dm                 (4.1) 

 Since N is even, from (4.1), the number of data points in any p
kkY

2,1
will always be an integral 

multiple of four.  

 
Table 4.2: Number of data points involved in the computation of p

kkY
2,1

 for N = 4, 6 & 8 

N gcd(k1, k2, M) = dm Number of  p
kkY

2,1
 Number of data in each p

kkY
2,1

 
1 2 8 4 
2 1 16 
1 3 12 6 
3 1 36 
1 4 16 
2 2 32 

8 

4 1 64 
 

4.2.2 M spacing based data availability 
On analysis of the visual representation of p

kkY
2,1

, a pattern is seen present among the data involved  

in its computation and is illustrated in the following theorem.  

 
Theorem 4.1 

If a data at (n1, n2) is present in the visual representation of p
kkY

2,1
then the data at (n1, n2 + M), (n1 + 

M, n2) and (n1 + M, n2 + M) will also be present. 

Proof 

 Let us assume that there is a data at (n1, n2). 

Then from (1.6) and (1.7),  

((n1.k1 + n2.k2))N = p or p + M.                                           (4.2) 

a). Now for the data point which is M space apart from the above i.e., (n1, n2+M) is given by 

 ((n1.k1 + (n2 + M)k2))N = ((n1.k1 + n2.k2 + M.k2))N = ((((n1.k1 + n2.k2))N + M.k2))N  

= ((p + M.k2))N or ((p + M + M.k2))N                        (4.3) 
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There are two cases  
Case 1: k2 is even or 0 
           Let k2 = 2.t, then (4.3) becomes  

((p + M.2.t))N or ((p + M + M.2.t))N = p or p + M                              (4.4) 
Case 2: k2 is odd 
 Let k2 = 2.t + 1, then (4.3) becomes  

((p + M(2.t + 1)))N or ((p + M + M(2.t + 1)))N = p + M or p                          (4.5) 

 From (4.4) and (4.5) it can be inferred that if there is a data at (n1, n2) for p
kkY

2,1
, then there 

will always be a data at (n1, n2 + M). 

b) Now for the point (n1 + M, n2) which is also M space apart from (n1, n2) 
 (((n1 + M)k1 + n2.k2))N = ((n1.k1 + M.k1 + n2.k2))N = ((((n1.k1 + n2.k2))N + M.k1))N  

= ((p + M.k1))N or ((p + M + M.k1)N                         (4.6) 

There are two cases here: 

Case 1: k1 is even or 0 

           Let k1 = 2.s, then (4.6) becomes  

((p + M.2.s))N or ((p + M + M.2.s))N = p or p + M                            (4.7) 

Case 2: k1 is odd 
 Let k1 = 2.s + 1, then (4.6) becomes  

((p + M(2.s + 1)))N or ((p + M + M(2.s + 1)))N = p + M or p                   (4.8) 

 From (4.7) and (4.8) it is proved that if there is a data at (n1, n2) for a p
kkY

2,1
, then there will 

always be a data at (n1 + M, n2) also.  From (4.4) and (4.5), it follows that if there is a data at (n1 + 
M, n2), then there will always be data at (n1 + M, n2 + M).  Thus the theorem is proved.  

Section 4.2.1 shows that the number of data points in p
kkY

2,1
is always a multiple of four and 

theorem 4.1 proves that the four data points are available at a spacing of M data points.  In fig. 3.6, 

3.7, and 3.8, one of the four patterns shown in fig. 4.5 is seen repeated in p
kkY

2,1
.  In the fig. 4.5 “▫” 

and“▪” denote that the data from the respective position is to be added and subtracted respectively.  
Hence the data at the above four points can be clubbed together and computed.   The data is to be 
added or subtracted depends on whether k1 and k2 is even or odd as can be seen in the following 
theorem. 

 
Fig. 4.5: Patterns seen repeated in p

kkY
2,1
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Theorem 4.2 

One type of pattern ‘C’, ‘D’, ‘E’, or ’F’ and/or its sign reversed form in fig. 4.5 will be present in 

the visual representation of p
kkY

2,1
.  The type of the pattern depends on whether the frequency index 

k1 and/or k2 is even or odd. 

Proof 

Case 1: k1 and k2 even or 0 

Let the data at (n1, n2) is to be added in the computation of p
kkY

2,1
.  Then ((n1.k1 + n2.k2))N = p 

For data point (n1, n2+M), from (4.4), 

((n1.k1 + (n2 + M)k2))N = p 

For data point (n1 + M, n2), from (4.7), 

(((n1 + M)k1 +  n2.k2))N = p 

For data point (n1 + M, n2 + M), 

(((n1 + M)k1 + (n2 + M)k2))N = p. 

 Thus, it can be seen that if the data at (n1, n2) is to be added, then all the other three data at 

M spacing are also to be added in the computation. 

Similarly if (n1, n2) is to be subtracted, then 

((n1.k1 + n2.k2))N = p + M 

For data point (n1, n2 + M) from (4.4), 

((n1.k1 + (n2 + M)k2))N = p + M 

For data point (n1 + M, n2) from (4.7), 

(((n1 + M)k1 +  n2.k2))N = p + M 

For data point (n1 + M, n2 + M), 

(((n1 + M)k1 + (n2 + M)k2))N = p + M. 

 Hence the data at (n1, n2 + M), (n1 + M, n2) and (n1 + M, n2 + M) are to be subtracted, if the 

data at (n1, n2) is to be subtracted.  So the addition of the above four points can be defined as C(n1, 

n2) when k1 and k2 is either even or 0.  For a p
kkY

2,1
, depending on the position of (n1, n2), C(n1, n2) 

has to be added or subtracted in the computation of p
kkY

2,1
.  

Case 2: k1 and k2 odd 

 Let the data at (n1, n2) is to be added in the computation of p
kkY

2,1
.   Then  

((n1.k1 + n2.k2))N = p. 

For data point (n1, n2 + M) from (4.5), 

((n1.k1 + (n2 + M)k2))N = p + M. 

For data point (n1 + M, n2) from (4.8), 
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(((n1 + M)k1 + n2.k2))N = p+ M. 

For data point (n1 + M, n2 + M), 

(((n1 + M)k1 + (n2 + M)k2))N = p. 

 Thus, it can be seen that if (n1, n2) is to be added, then (n1, n2 + M), (n1 + M, n2) is to be 

subtracted and (n1 + M, n2 + M) is to be added in the computation. 

Similarly if (n1, n2) is to be subtracted, then 

((n1.k1 + n2.k2))N = p + M. 

For data point (n1, n2 + M) from (4.5), 

((n1.k1 + (n2 + M)k2))N = p. 

For data point (n1 + M, n2) from (4.8), 

(((n1 + M)k1 +  n2.k2))N = p. 

For data point (n1 + M, n2 + M),  

(((n1 + M)k1 + (n2 + M)k2))N = p + M. 

 i.e., if data at (n1, n2) is to be subtracted, then the data at (n1, n2 + M), (n1 + M, n2) are to be 

added and (n1 + M, n2 + M) is to be subtracted in the computation.  

 So if k1 and k2 are odd, then the data at (n1, n2) & (n1 + M, n2 + M) are to be added and that 

at (n1, n2 + M) & (n1 + M, n2) are to be subtracted or vice-versa.  So the addition of the above four 

points can be defined as F(n1, n2) when k1 and k2 are odd.  For a p
kkY

2,1
, depending on the position of 

(n1, n2), F(n1, n2) has to be added or subtracted in the computation of p
kkY

2,1
. 

 

Case 3: k1 even and k2 odd 

Let the data at (n1, n2) is to be added in the computation of p
kkY

2,1
. Then 

((n1.k1 + n2.k2))N  = p. 

For data point (n1, n2+M) from (4.5), 

((n1.k1 + (n2+M)k2))N = p + M. 

For data point (n1 + M, n2) from (4.7), 

(((n1 + M)k1 + n2.k2))N = p. 

For data point (n1 + M, n2 + M), 

(((n1 + M)k1 + (n2 + M)k2))N = p + M. 

 Thus, if the data at (n1, n2) is to be added, then that at (n1, n2 + M), (n1 + M, n2 + M) are to 

be subtracted and (n1 + M, n2) is to be added in the computation. 

Similarly if the data at (n1, n2) is to be subtracted, then 

((n1.k1 + n2.k2))N = p + M. 

For data point (n1, n2 + M) from (4.5), 
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((n1.k1 + (n2+M)k2))N  = p. 

For data point (n1 + M, n2) from (4.7), 

(((n1 + M)k1 +  n2.k2))N = p + M. 

For data point (n1+M, n2+M), 

(((n1 + M)k1 + (n2 + M)k2))N = p. 

 i.e., if data at (n1, n2) is to be subtracted, then those at (n1, n2 + M) & (n1 + M, n2 + M) are to 

be added and that at (n1 + M, n2) is to be subtracted in the computation.  

 So if k1 is even and k2 is odd, then the data at (n1, n2) & (n1 + M, n2) are to be added and (n1, 

n2 + M) & (n1 + M, n2 + M) are to be subtracted or vice-versa.  So the addition of the above four 

points can be defined as E(n1, n2) when k1 is even and k2 is odd. For a p
kkY

2,1
, depending on the 

position of (n1, n2), E(n1, n2) has to be added or subtracted in the computation of p
kkY

2,1
. 

 

Case 4: k1 odd and k2 even 

Let the data at (n1, n2) is to be added in the computation of ,1 2
p

k kY .   Then ((n1.k1 + n2.k2))N  = p. 

For data point (n1, n2 + M) from (4.4), 

((n1.k1 + (n2 + M)k2))N = p. 

For data point (n1 + M, n2) from (4.8), 

(((n1 + M)k1 + n2.k2))N = p + M. 

For data point (n1 + M, n2 + M), 

(((n1 + M)k1 + (n2 + M)k2))N = p + M. 

 Thus if the data at (n1, n2) is to be added, then those at (n1 + M, n2) & (n1 + M, n2 + M) are 

to be subtracted and that at (n1, n2 + M) is to be added in the computation. 

Similarly if the data at (n1, n2) is to be subtracted, then 

((n1.k1 + n2.k2))N = p + M. 

For data point (n1, n2 + M) from (4.4), 

((n1.k1 + (n2 + M)k2))N =  p + M. 

For data point (n1 + M, n2) from (4.8), 

(((n1 + M)k1 + n2.k2))N = p. 

For data point (n1 + M, n2 + M), 

(((n1 + M)k1 + (n2 + M)k2))N = p. 

 i.e., if the data at (n1, n2) is to be subtracted, then those at (n1 + M, n2) & (n1 + M, n2 + M) 

are to be added and that at (n1, n2 + M) is to be subtracted in the computation.  

 So if k1 is odd and k2 is even, then the data at (n1, n2) & (n1, n2 + M) are to be added and 
those at (n1 + M, n2) & (n1 + M, n2 + M) are to be subtracted or vice-versa.  So the addition of the 
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above four points can be defined as D(n1, n2) when k1 is even and k2 is odd. For a p
kkY

2,1
, depending 

on the position of (n1, n2), D(n1, n2) has to be added or subtracted in the computation of p
kkY

2,1
. 

4.2.3 Five layer architecture for 8 × 8 DFT  
The five layer M spacing based model is designed using a hierarchical structure in a layered 

architecture as shown in fig. 4.6.  It consists of a cascade connection of a number of modular 

structures preceded by an input layer L0.  L0 is a 2-D array of input data, x(i, j), 0 , 1i j N≤ ≤ − .  

There are five layers L1 to L5 other than the input layer.   

Redundancy in the computation of patterns C and D in fig. 4.5 can be noticed.  Similar 

redundancy is present in the computation of E and F.  Hence the four data at M spacing is computed 

as per the patterns shown in fig. 4.5 in two steps, as in layer 1 and 2 of fig. 4.6, so as to eliminate 

the redundancy.  In the first step, the sum and difference of data x(i, j) and x(i, j + M) are computed 

and stored in matrix A and B respectively, each of size 8 × 4.  In the second step, the sum and 

difference of A(i, j) and A(i + M, j) as well as that of B(i, j) and B(i + M, j) are computed resulting 

in the computation of the  patterns C, D, E, and F, each of size 4 × 4. 

 

 
 

Fig. 4.6: M spacing based five layer architecture for 8 × 8 DFT 

p
kkY

2,1
corresponding to those basic DFT coefficients with gcd(k1, k2, M) = 1 are completely 

computed in layer 3 and that of the remaining are completed only in Layer 4.  In layer 4, p
kkY

2,1
 of 
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the basic DFT coefficients corresponding to the indices (0, 0), (4, 0), (0, 4), (4, 4) and (2, 0), (2, 4), 

(4, 2), (2, 2), (6, 2), (0, 2) with gcd(k1, k2, M) = 4 and 2 respectively are computed completely.  

These p
kkY

2,1
 require additional computation due to the involvement of more number of data.  

Complete set of DFT coefficients are computed in layer 5 as per the steps 3, 4 and 5 given in the 

algorithm in section 3.3. 

 The algorithm for computation is as shown below. 
 
Layer 1 

 In layer 1, there are two groups A and B.  Algorithm for layer 1 is given below. 

For 0 ≤  i < N – 1,  0 ≤ j < M - 1 

( , ) ( , ) ( , )A i j x i j x i j M= + +   ( , ) ( , ) ( , )B i j x i j x i j M= − +  
Both A and B will be of size N × M. 

Layer 2 

 In layer 2 there are four groups C, D, E and F. Algorithm for layer 2 is given below.  

For 0 ≤ j < M - 1 

 ),(),(),( jMiAjiAjiC ++=   ),(),(),( jMiAjiAjiD +−=  

  ),(),(),( jMiBjiBjiE ++=   ),(),(),( jMiBjiBjiF +−=  

 C, D, E and F will be of size M × M. 

Layer3  

C group 

For 0 ≤ j < M - 1 
1

0
( ) ( , )

M

i
G j C j i

−

=
= ∑    

1

0
( ) ( 1) ( , )

M i

i
O j C j i

−

=
= −∑  

1

0
( ) ( , )

M

i
H j C i j

−

=
= ∑    

1

0
( ) ( 1) ( , )

M i

i
Q j C i j

−

=
= −∑  

1

0
( ) ( , (( ( 1))) )

M

M
i

R j C i j i M
−

=
= + −∑  

1

0
( ) ( ,(( .3( 1))) )

M

M
i

S j C i j i M
−

=
= + −∑  

D group 

For 0  ≤  j  < M - 1 

 
1

1,0
0

( , )
M

j

i
Y D j i

−

=
= ∑       

1

1,4
0
( 1) ( , )

M
j i

i
Y D j i

−

=
= −∑  

0
3,2 (0,0) (0,2) (2,1) (2,3)Y D D D D= − + −   1

3,2 (1,1) (1,3) (3,0) (3,2)Y D D D D= − + + −  

2
3,2 (0,1) (0,3) (2,0) (2,2)Y D D D D= − − +   3

3,2 (1,0) (1,2) (3,1) (3,3)Y D D D D= − + −  

0
1,2 (0,0) (0,2) (2,1) (2,3)Y D D D D= − − +   1

1,2 (1,0) (1,2) (3,1) (3,3)Y D D D D= − − +  
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2
1,2 (0,1) (0,3) (2,0) (2,2)Y D D D D= − + −   3

1,2 (1,1) (1,3) (3,0) (3,2)Y D D D D= − + −  

E group 

For 0 ≤ j < M - 1 

 
1

0,1
0

( , )
Mj

i
Y E i j

−

=
∑=       

1

4,1
0
( 1) ( , )

Mj i

i
Y E i j

−

=
∑= −  

0
6,1 (0,0) (1,2) (2,0) (3,2)Y E E E E= + − −   1

6,1 (0,1) (1,3) (2,1) (3,3)Y E E E E= + − −  

2
6,1 (0,2) (1,0) (2,2) (3,0)Y E E E E= − − +   3

6,1 (0,3) (1,1) (2,3) (3,1)Y E E E E= − − +  

0
2,1 (0,0) (1,2) (2,0) (3,2)Y E E E E= − − +   1

2,1 (0,1) (1,3) (2,1) (3,3)Y E E E E= − − +  

2
2,1 (0,2) (1,0) (2,2) (3,0)Y E E E E= + − −   3

2,1 (0,3) (1,1) (2,3) (3,1)Y E E E E= + − −  

F group 
0

1,1 (0,0) (1,3) (2,2) (3,1)Y F F F F= − − −   1
1,1 (0,1) (1,0) (2,3) (3,2)Y F F F F= + − −  

2
1,1 (0,2) (1,1) (2,0) (3,3)Y F F F F= + + −   3

1,1 (0,3) (1,2) (2,1) (3,0)Y F F F F= + + +  

0
3,1 (0,0) (1,1) (2,2) (2,3)Y F F F F= − + −   1

3,1 (0,1) (1,2) (2,3) (3,0)Y F F F F= − + +  

2
3,1 (0,2) (1,3) (2,0) (3,1)Y F F F F= − − +   3

3,1 (0,3) (1,0) (2,1) (3,2)Y F F F F= + − +  

0
5,1 (0,0) (1,3) (2,2) (3,1)Y F F F F= + − +   1

5,1 (0,1) (1,0) (2,3) (3,2)Y F F F F= − − +  

2
5,1 (0,2) (1,1) (2,0) (3,3)Y F F F F= − + +   3

5,1 (0,3) (1,2) (2,1) (3,0)Y F F F F= − + −  

0
7,1 (0,0) (1,1) (2,2) (3,3)Y F F F F= + + +   1

7,1 (0,1) (1,2) (2,3) (3,0)Y F F F F= + + −  

2
7,1 (0,2) (1,3) (2,0) (3,1)Y F F F F= + − −   3

7,1 (0,3) (1,0) (2,1) (3,2)Y F F F F= − − −  

Layer 4 
10

0,1
0

( )
M

i
Y G i

−

=
∑=      

10
4,0

0
( 1) ( )

M i

i
Y G i

−

=
∑= −  

10
0,4

0
( 1) ( )

M i

i
Y H i

−

=
∑= −     

10
4,4

0
( 1) ( )

M i

i
Y O i

−

=
∑= −  

0
2,0 (0) (2)Y G G= − , 2

2,0 (1) (3)Y G G= −   0
2,4 (0) (2)Y O O= − , 2

2,4 (1) (3)Y O O= −  

0
4,2 (0) (2)Y Q Q= − , 2

4,2 (1) (3)Y Q Q= −   0
0,2 (0) (2)Y H H= − , 2

0,2 (1) (3)Y H H= −  

0
2,2 (0) (2)Y R R= − , 2

2,2 (1) (3)Y R R= −   0
6,2 (0) (2)Y S S= − , 2

6,2 (1) (3)Y S S= −  

Layer 5 

The computations in layer 5 are same as that of the steps 3, 4 and 5 of the algorithm shown in 

section 3.3. 
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4.2.4 Four layer architecture for 8 × 8 DFT 
In the architecture shown in fig. 4.6, p

kkY
2,1

 corresponding to all basic DFT coefficients with gcd(k1, 

k2, M) = 1 are available at the output of layer 3.  The number of additions/subtractions in layer 3 is 

same for all groups, but that in layer 4 depends on gcd(k1, k2, M).  For a p
kkY

2,1
when gcd(k1, k2, M) = 

1, there is no computation in layer 4, whereas when gcd(k1, k2, M) = 2 and 4, the number of 

additions/subtractions is 1 and 3 respectively.  The number of computations is gcd(k1, k2, M) – 1 

and hence cannot be made equal.  Therefore layer 3 and 4 are combined in the four layer M spacing 

architecture as shown in fig. 4.7. The computation for layer 3 is given below, whereas the 

computations for layer 1, 2 & 4 remain same as that of layer 1, 2 & 5 respectively as in section 

4.2.3.  

 
Fig. 4.7: M spacing based four layer architecture for 8 × 8 DFT 

 
Layer 3 computations 

C group 
0
0,0Y  = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(0,1)+C(1,1)+C(2,1)+C(3,1)+C(0,2)+C(1,2)+C(2,2)+ C(3,2) 

+C(0,3)+C(1,3)+C(2,3)+C(3,3) 
0

4,0Y  = C(0,0)-C(1,0)+C(2,0)-C(3,0)+C(0,1)-C(1,1)+C(2,1)-C(3,1)+C(0,2)-C(1,2)+C(2,2)-C(3,2) 

+C(0,3)-C(1,3)+C(2,3)-C(3,3) 
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0
0,4Y  = C(0,0)+C(1,0)+C(2,0)+C(3,0)-C(0,1)-C(1,1)-C(2,1)-C(3,1)+C(0,2)+C(1,2)+C(2,2)+ C(3,2) -

C(0,3)-C(1,3)-C(2,3)-C(3,3) 
0

4,4Y  = C(0,0)-C(1,0)+C(2,0)-C(3,0)-C(0,1)+C(1,1)-C(2,1)+C(3,1)+C(0,2)-C(1,2)+C(2,2)-C(3,2)-

C(0,3)+C(1,3)-C(2,3)+C(3,3) 
0
0,2Y  = C(0,0)+C(0,2)-C(2,0)-C(2,2)+C(0,1)+C(0,3)-C(2,1)-C(2,3) 

2
0,2Y  = C(1,0)+C(1,2)-C(3,0)-C(3,2)+C(1,1)+C(1,3)-C(3,1)-C(3,3) 

0
2,0Y  = C(0,0)+C(2,0)+C(1,0)+C(3,0)-C(0,2)-C(2,2)-C(1,2)-C(3,2) 

2
2,0Y  = C(0,1)+C(2,1)+C(1,1)+C(3,1)-C(0,3)-C(2,3)-C(1,3)-C(3,3) 

0
2,4Y  = C(0,0)+C(0,2)+C(2,1)+C(2,3)-C(0,1)-C(0,3)-C(2,0)-C(2,2) 

2
2,4Y  = C(1,0)+C(1,2)+C(3,1)+C(3,3)-C(1,1)-C(1,3)-C(3,0)-C(3,2) 

0
4,2Y  = C(0,0)+C(2,0)+C(1,2)+C(3,2)-C(0,2)-C(2,2)-C(1,0)-C(3,0) 

2
4,2Y  = C(0,1)+C(2,1)+C(1,3)+C(3,3)-C(0,3)-C(2,3)-C(1,1)-C(3,1) 

0
6,2Y  = C(0,0)+C(1,1)+C(2,2)+C(3,3)-C(0,2)-C(1,3)-C(2,0)-C(3,1) 

2
6,2Y  = C(0,1)+C(1,2)+C(2,3)+C(3,0)-C(0,3)-C(1,0)-C(2,1)-C(3,2) 

0
2,2Y  = C(0,0)+C(2,2)-C(1,1)-C(3,3)-C(0,2)-C(2,0)+C(1,3)+C(3,1) 

2
2,2Y  = C(0,1)+C(2,3)-C(1,2)-C(3,0)-C(0,3)-C(2,1)+C(1,0)+C(3,2) 

D group 

0
0,1Y  = D(0,0)+D(0,1)+D(0,2)+D(0,3) 1

0,1Y  = D(1,0)+D(1,1)+D(1,2)+D(1,3) 

2
0,1Y  = D(2,0)+D(2,1)+D(2,2)+D(2,3) 3

0,1Y  = D(3,0)+D(3,1)+D(3,2)+D(3,3) 

0
2,1Y  = D(0,0)-D(0,2)-D(2,1)+D(2,3) 1

2,1Y  = D(1,0)-D(1,2)-D(3,1)+D(3,3) 

2
1,2Y  = D(0,1)-D(0,3)+D(2,0)-D(2,2) 3

1,2Y  = D(1,1)-D(1,3)+D(3,0)-D(3,2) 

0
3,2Y  = D(0,0)-D(0,2)+D(2,1)-D(2,3) 1

3,2Y  = -D(1,1)+D(1,3)+D(3,0)-D(3,2) 

2
3,2Y  = D(0,1)-D(0,3)-D(2,0)+D(2,2) 3

3,2Y  = D(1,0)-D(1,2)+D(3,1)-D(3,3) 

0
1,4Y  = D(0,0)-D(0,1)+D(0,2)-D(0,3) 1

1,4Y  = D(1,0)-D(1,1)+D(1,2)-D(1,3) 

2
1,4Y  = D(2,0)-D(2,1)+D(2,2)-D(2,3) 3

1,4Y  = D(3,0)-D(3,1)+D(3,2)-D(3,3) 
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E group 
0
1,0Y  = E(0,0)+E(1,0)+E(2,0)+E(3,0) 1

1,0Y  = E(0,1)+E(1,1)+E(2,1)+E(3,1) 

2
1,0Y  = E(0,2)+E(1,2)+E(2,2)+E(3,2) 3

1,0Y  = E(0,3)+E(1,3)+E(2,3)+E(3,3) 

0
1,2Y  = E(0,0)-E(1,2)-E(2,0)+E(3,2) 1

1,2Y  = E(0,1)-E(1,3)-E(2,1)+E(3,3) 

2
1,2Y  = E(0,2)+E(1,0)-E(2,2)-E(3,0) 3

1,2Y  = E(0,3)+E(1,1)-E(2,3)-E(3,1) 

0
1,4Y  = E(0,0)-E(1,0)+E(2,0)-E(3,0) 1

1,4Y  = E(0,1)-E(1,1)+E(2,1)-E(3,1) 

2
1,4Y  = E(0,2)-E(1,2)+E(2,2)-E(3,2) 3

4,1Y  = E(0,3)-E(1,3)+E(2,3)-E(3,3) 

0
6,1Y  = E(0,0)+E(1,2)-E(2,0)-E(3,2) 1

1,6Y  = E(0,1)+E(1,3)-E(2,1)-E(3,3) 

2
1,6Y  = E(0,2)-E(1,0)-E(2,2)+E(3,0) 3

1,6Y  = E(0,3)-E(1,1)-E(2,3)+E(3,1) 

F group 
0
1,1Y  = F(0,0)-F(1,3)-F(2,2)-F(3,1) 1

1,1Y  = F(0,1)+F(1,0)-F(2,3)-F(3,2) 

2
1,1Y  = F(0,2)+F(1,1)+F(2,0)-F(3,3) 3

1,1Y  = F(0,3)+F(1,2)+F(2,1)+F(3,0) 

0
1,3Y  = F(0,0)-F(1,1)+F(2,2)+F(3,3) 1

1,3Y  = F(0,1)-F(1,2)+F(2,3)+F(3,0) 

2
1,3Y  = F(0,2)-F(1,3)-F(2,0)+F(3,1) 3

1,3Y  = F(0,3)+F(1,0)-F(2,1)+F(3,2) 

0
1,5Y  = F(0,0)+F(1,3)-F(2,2)+F(3,1) 1

1,5Y  = F(0,1)-F(1,0)-F(2,3)+F(3,2) 

2
1,5Y  = F(0,2)-F(1,1)+F(2,0)+F(3,3) 3

1,5Y  = F(0,3)-F(1,2)+F(2,1)-F(3,0) 

0
7,1Y  = F(0,0)+F(1,1)+F(2,2)+F(3,3) 1

1,7Y  = F(0,1)+F(1,2)+F(2,3)-F(3,0) 

2
1,7Y  = F(0,2)+F(1,3)-F(2,0)-F(3,1) 3

1,7Y  = F(0,3)-F(1,0)-F(2,1)-F(3,2) 

4.2.4.1 Sample computation 

For the data matrix [x] shown below, the computation of 8 × 8 point DFT is as follows 

[ ]

1 2 3 2 1 0 2 1
0 3 1 3 2 1 1 1
1 2 3 0 0 2 1 3
3 1 0 2 0 1 1 3
0 2 3 1 2 1 2 1
1 2 0 1 3 1 0 1
1 1 2 2 0 0 2 2
2 2 0 0 1 3 1 2

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Layer 1 

A                                                                    B       

2 2 5 3
2 4 2 4
1 4 4 3
3 2 1 5
2 3 5 2
4 3 0 2
1 1 4 4
3 5 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                          

0 2 1 1
2 2 0 2
1 0 2 3
3 0 1 1
2 1 1 0
2 1 0 0
1 1 0 0
1 1 1 2

⎡ ⎤
−⎢ ⎥

⎢ ⎥−
⎢ ⎥− −
⎢ ⎥−
⎢ ⎥−
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

Layer 2 

C   D   E   F 

4 5 10 5
6 7 2 6
2 5 8 7
6 7 2 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

          

0 1 0 1
2 1 2 2
0 3 0 1
0 3 0 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

        

2 3 2 1
4 3 0 2
2 1 2 3
4 1 2 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− − −⎣ ⎦

            

2 1 0 1
0 1 0 2
0 1 2 3
2 1 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 

Layer 3 

C Group     D Group        E Group  F Group 
0 0 0 0

0,0 4,0 0,4 4,4Y Y Y Y⎡ ⎤⎣ ⎦      0 1 2 3
1,0 1,0 1,0 1,0Y Y Y Y⎡ ⎤⎣ ⎦      0 1 2 3

0,1 0,1 0,1 0,1Y Y Y Y⎡ ⎤⎣ ⎦         0 1 2 3
1,1 1,1 1,1 1,1Y Y Y Y⎡ ⎤⎣ ⎦  

[ ]89 3 9 13−             [ ]0 3 2 0              [ ]0 6 2 3−    [ ]3 4 0 2−  

0 2 0 2
2,0 2,0 0,2 0,2Y Y Y Y⎡ ⎤⎣ ⎦       0 1 2 3

1,2 1,2 1,2 1,2Y Y Y Y⎡ ⎤⎣ ⎦     0 1 2 3
2,1 2,1 2,1 2,1Y Y Y Y⎡ ⎤⎣ ⎦         0 1 2 3

3,1 3,1 3,1 3,1Y Y Y Y⎡ ⎤⎣ ⎦  

[ ]2 1 4 1− − −            [ ]4 2 2 1− − −          [ ]6 3 8 8− − −                [ ]2 0 1 2−  

0 2 0 2
2,4 2,4 4,2 4,2Y Y Y Y⎡ ⎤⎣ ⎦       0 1 2 3

3,2 3,2 3,2 3,2Y Y Y Y⎡ ⎤⎣ ⎦       0 1 2 3
4,1 4,1 4,1 4,1Y Y Y Y⎡ ⎤⎣ ⎦       0 1 2 3

5,1 5,1 5,1 5,1Y Y Y Y⎡ ⎤⎣ ⎦  

[ ]6 1 20 3− −            [ ]4 1 2 10− −     [ ]0 2 6 1−       [ ]3 4 0 2−  

0 2 0 2
2,2 2,2 6,2 6,2Y Y Y Y⎡ ⎤⎣ ⎦       0 1 2 3

1,4 1,4 1,4 1,4Y Y Y Y⎡ ⎤⎣ ⎦      0 1 2 3
6,1 6,1 6,1 6,1Y Y Y Y⎡ ⎤⎣ ⎦        0 1 2 3

7,1 7,1 7,1 7,1Y Y Y Y⎡ ⎤⎣ ⎦  

[ ]1 2 1 2−              [ ]0 3 2 0− −                [ ]2 7 8 0−     [ ]6 4 1 2−  

Layer 4 

89 6.364-j4.1213 -4+j -6.364-j0.1213 -9 -6.364+j0.1213 -4-j 6.364+j4.1213
2.1213-j4.1213 -1.5858-j4.2426 -1.8787+j1.2929 3.4142-j2.4142 -2.1213+j4.1213 -1.2426+j1.4142 -3.7782+j4.364 1.7574-j4142

2+j -13.7782+j4.4645 -1-j2 -6.9497+j3.0503 6-j 1.7782+j11.5355 1+j2 2.9497+j12.9497
-2.1213-j0.1213 0.5858-j0.4142 11.7782+j8.364 -4.4142-j4.2426 2.1213+j0.1213 10.2426-j2.4142 -6.1213-j2.7071 7.2426+j1.4142

3 2.1212-j6.7071 -20+j3 -2.1213+j5.2929 13 -2.1213-j5.2929 -20-j3 2.1213+j6.7071
-2.1213+j0.1213 7.2426-j1.4142 -6.1213+j2.7071 10.2426+j2.4142 2.1213-j0.1213 -4.4142+j4.2426 11.7782-j8.364 0.5858+j4142

2-j 2.9497-j12.9497 1-j2 1.7782-j11.5355 6+j -6.9497-j3.0503 -1+j2 -13.7782-4.4645
2.1213+j4.1213 1.7574+j0.4142 -3.7782-j4.364 -1.2426-j1.4142 -2.1213-j4.1213 3.4142+j2.4142 -1.8787-j1.2929 -1.5858+j4.2426

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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4.2.5 Proposed architecture for N × N DFT 
In the five layer architecture, Layer 3 and 4 consists of four groups C, D, E and F.  The number of 
computations for a p

kkY
2,1

 in layer 3 and 4 is M – 1 and dm – 1 respectively, i.e., the number of 

computations in layer 4 varies.  On analysis it is seen that p
kkY

2,1
 with different gcd(k1, k2, M) are 

evenly distributed between the four groups when ((N))4 = 2 and hence the computations are also 
evenly distributed in layer 4.  When ((N))4 = 0 and N not a power of 2, p

kkY
2,1

 with different gcd(k1, 

k2, M) are unevenly distributed between the four groups.  When N is a power of 2, p
kkY

2,1
 with gcd(k1, 

k2, M) = 1 which are completely computed in layer 3 are in group D, E and F, whereas the 
remaining are in group C.  Hence there is no computation block for group D, E and F in layer 4 
when N is a power of 2 , as in fig 4.6. This irregularity is rectified in four layer architecture by 
combining layer 3 and 4 as in section 4.2.4.  In the four layer architecture, when ((N))4 = 0, even 
though the number of computations in layer 3 is different for each group, the number of p

kkY
2,1

to be 

computed is same.  When  ((N))4 = 2, the number of computations in each group will also be same.  
Due to this advantage, further analysis is done only for four layer architecture. 

Four layer M spacing based architecture for the computation of 2-D DFT for N = 4, 6, 8, 10 
and 12 are developed.  Based on the analysis of these architectures, a generalized architecture is 
developed for any even N, as in fig 4.8.   

 

 
Fig. 4.8: Four layer architecture for N × N DFT 
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In layer 1, A and B are of dimension N × M.  C, D, E and F in layer 3 are of dimension M × 

M.  Layer 4 is of dimension N × N.  The computation of layer 1, 2 and 4 uses a common algorithm 

and the total size of each layer is N × N.  The size of layer 3 is N2 and N2  + 2.N + 4 when N is a 

power of 2 and N/2 prime respectively.  In general, the size of layer 3 can be computed as follows. 

Number of p
kkY

2,1
 in a basic DFT coefficient = M/dm 

∴ Total number of p
kkY

2,1
 in N = ∑

dm
dm dm

Mnb .  

Analysis of layer 3 for different sizes and coefficients are carried out in the following 

sections to develop a common algorithm for its computation for any even N.  

4.2.5.1 Number of additions for each p
kkY

2,1
in layer 3  

When the data at the above four points are clubbed together and considered as a single unit, then 

((n1.k1 + n2.k2))N = p or p + M                                          (4.9) 

((n1.k1 + (n2 + M)k2))N = p or p + M                                    (4.10) 

(((n1 + M)k1 + n2.k2))N = p or p + M                                     (4.11) 

(((n1 + M)k1 + (n2 + M)k2))N = p or p + M                              (4.12) 

Adding  (4.9 ), (4.10), (4.11) and (4.12) 

((n1.k1 + n2.k2))N + ((n1.k1 + (n2 + M)k2))N + (((n1 + M)k1 + n2.k2))N + (((n1 + M)k1 + (n2 + M)k2))N 

= 4p or 4(p + M) 

i.e., 4((n1.k1 + n2.k2))N = 4p or 4(p + M)                                     (4.13) 

Since N is even, from theorem B.4.1 (4.13) becomes,  

 ((n1.k1 + n2.k2))M = p or (p + M)                                      (4.14) 

As a special case, if ((N))4 = 0, from theorem B.4.1 (4.13) becomes, 

((n1.k1+n2.k2))M/2 = p or (p + M) 

From theorem B.4.2, the linear congruence equation (4.14) has solution if and only if dm | p where 

dm = gcd(k1, k2, M).  E.g., when N = 8 and gcd(k1, k2, M) = 2, then p
kkY

2,1
 exists only for p = 0 and 

2, whereas for gcd(k1, k2, M) = 1, p
kkY

2,1
 exists for 0 ≤ p ≤ M – 1, which supports theorem 3.1.  

If gcd(k1, M) = 1 or gcd(k2, M) = 1 then, from theorem B.4.3, (4.14) has exactly M solutions. E.g. 

when N = 8 2
1,1Y  has exactly four F terms in its expression, as in F group computations in layer 3 of 

section 4.2.4.  From theorem B.4.4,  (4.14) has exactly ‘dm.M’ incongruent solutions. E.g. when N 

= 8, 0
2,4Y  has eight C terms in its expression, as in C group computations in layer 3 of section 4.2.4.  
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Therefore the number of terms to be added in layer 3 ranges from M to M2 since dm varies from 1 

to M.  

4.2.5.2 Development of algorithm for layer 3 computation 

The expression for the computation of layer 3 is simplified, based on the relation between the terms 

in the expression for the p
kkY

2,1
, as shown below for N = 8. 

Computation in layer 3 for N = 8 

C group 
1 1

0
0,0

0 0
( , )

M M

i j
Y C i j

− −

= =
= ∑ ∑     

1 1
0

4,0
0 0

( 1) ( , )
M M

i

i j
Y C i j

− −

= =
= −∑ ∑  

1 1
0

0,4
0 0

( 1) ( , )
M M

j

i j
Y C i j

− −

= =
= −∑ ∑     

1 1
0

4,4
0 0

( 1) ( , )
M M

i j

i j
Y C i j

− −
+

= =
= −∑ ∑  

1 1

2,2
0 0

( 1) (2. , ), 0 2
M

l i

i j
Y C i l j l

−

= =
= − + ≤ ≤∑ ∑   

1 1

0,2
0 0

( 1) ( ,2. ), 0 2
M

l j

j i
Y C i j l l

−

= =
= − + ≤ ≤∑ ∑  

1 1

2,4
0 0

( 1) (2. , ) 0 2
M

l j i

i j
Y C i l j l

−
+

= =
= − + ≤ ≤∑ ∑  

For l = 0, 2 

For j = 0 to 1 

For i = 0 to M - 1 

 k1 = 4, k2 = 2, n1 = i, n2= j + l/2 

 If ((n1.k1 + n2.k2))N  ≥ M, temp = -C(i, 2.j + l/2) else temp = C(i, 2.j + l/2) 

 4,2
lY  = 4,2

lY  + temp 

(For the computation of 2,0Y  and 6,2Y  replace C(i, 2.j + l/2) with C(i, i + 2.j + l/2) in the above 

algorithm) 

D group 

For p = 0 to M - 1 

For i = 0 to M - 1 

 k1 = 1, k2 = 0, n1 = ((p + (M - k2)i))M, n2 = ((k1.i))M 

 If ((n1.k1 + n2.k2))N ≥ M 

  temp = - D(((p + (M - k2)i))M, ((k1.i))M)  

  Else temp= D(((p + (M - k2)i))M, ((k1.i))M) 

 1,0
pY  = 1,0

pY  + temp 

 (For the computation of 1,2
pY , 3,2

pY  and 1,4
pY  replace k1 and k2 with the corresponding values.) 

E group 

For p = 0 to M - 1 
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For i = 0 to M - 1 

 k1 = 0, k2 = 1, n1 = i, n2 = ((p + (M - k1)i))M 

 If ((n1.k1 + n2.k2))N ≥ M 

  temp = - E(i, ((p + (M - k1)i))M)  

  Else temp = E(i, ((p +(M - k1)i))M) 

 0,1
pY  = 0,1

pY  + temp 

 (For the computation of 2,1
pY , 4,1

pY  and 6,1
pY  replace k1 and k2 with the corresponding values.) 

F group 

For p = 0 to M - 1 

For i = 0 to M - 1 

 k1 = 1, k2 = 1, n1 = i, n2 = ((p+(M - k1)i))M 

 If ((n1.k1 + n2.k2))N ≥ M 

  temp = - F(i, ((p + (M - k1)i))M)  

  Else temp = F(i, ((p + (M - k1)i))M) 

 1,1
pY  = 1,1

pY  + temp 

 (For the computation of 3,1
pY , 5,1

pY  and 7,1
pY  replace k1 and k2 with the corresponding values.) 

From the algorithm described, it can be seen that the indices of the terms in the expression 

for p
kkY

2,1
 are related.  Hence, if the indices of one of the terms are available, others can be derived.  

To find the indices for one of the terms in p
kkY

2,1
, it is necessary to compute the particular solution 

(n1, n2) for (4.14).  The computation of particular solution is explained in the next section.  

Subsequently, the indices of the next term to be added/subtracted are computed.  Based on the 

analysis of equation /algorithms for the computation of layer 3 for N = 8, it is found that the relation 

between the index of the terms in the expression for p
kkY

2,1
 depends on k1 and k2.  Appendix C shows 

the computation of layer 3 for N = 4, 6, 10 and 12.  On analysis of those computations, it is found 

that the relation between index of the terms also depends on gcd(k1, k2, M), gcd(k2, N), gcd(k2, M) 

and N.  The general index relation between the terms, for any even N, is derived based on the above 

analysis.  The next term is to be added if ((n1.k1+n2.k2))N < M, or else subtract it. 

4.2.5.3 Particular solution 

It is necessary to find the particular solution (n1, n2) for the basic equation ((n1.k1+n2.k2))N = p or p 

+ M, i.e., to find the position of one of the data points of ,1 2

p
k kY  whose frequency indices are k1 and k2 
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and the phase index is p.  Since the four data points are clubbed together it is enough to find one 

particular solution for (4.14) in order to obtain the general solution. 

 The particular solution for (4.14) can be obtained by 1) Trial and error, 2) Using extended 

Euclidean algorithm 3) Combination of visual approach and other methods 4) Modified trial and 

error method. 

4.2.5.3.1 Trial and error method 

One of the most general methods of finding the particular solution of linear Diophantine equation 

[3] is by trial and error.  A Diophantine equation is one in which the solutions are required to be 

integers as stated in B.2.  Congruence mod N is an equivalence relation.  Hence, congruence has 

many of the same properties as ordinary equations.  The particular solution for (4.14), is to find one 

integer value for n1 and n2 for a given k1, k2 and p.  Since 0 ≤ n1, n2 ≤ M - 1, find n1 and n2 which 

satisfies (4.14) by trial and error.  Algorithm is as follows: 

1. Given k1, k2 and p  

         For n1 = 0, M - 1 

         For n2 = 0, M - 1 

           If ((n1.k1 + n2.k2))M = p  

            select n1 and n2 and return 

     else if ((n1.k1 + n2.k2))M = p + M  

            select n1 and n2 and return 

4.2.5.3.2 Using extended Euclidean algorithm 

The extended Euclidean algorithm as described in B.6 is an extension to the Euclidean algorithm to 

find the gcd of integers a and b: it also finds the integers s and t in the Bezout’s identity (see B.3), 

a.s + b.t = gcd(a, b). In (4.14) two cases arise depending upon the value of k1 and k2. 

case 1: gcd(k1, k2) = 1 

When gcd(k1, k2) = 1, (4.14) can be initially considered as if a linear Diophantine equation as shown 

below: 

n1.k1+n2.k2 = p 
By extended Euclidean algorithm find gcd(k1, k2)  and s and t such that  

k1.s +k2.t = gcd(k1, k2) 
Multiplying by p 

k1.s .p+k2.t.p = gcd(k1, k2).p. 
Divide it by gcd(k1, k2) 

1 2
1 2 1 2

. .. .
gcd( , ) gcd( , )

s p t pk k p
k k k k

+ =  
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Particular solutions are  

1
1 2

(( )) .(( ))
((gcd( , )))

M
M

M

s pn
k k

=  and 2
1 2

(( )) .(( ))
((gcd( , )))

M
M

M

t pn
k k

=  

case 2: gcd(k1, k2) ≠ 1 

When gcd(k1, k2) ≠ 1, (4.14) can be written as  

n1.k1+n2.k2 + M.q = p 

The above equation is the most general one. First, factor gcd(k1, k2) out of the first two terms: 

1 2
1 2 1 2

1 2 1 2

gcd( , ).( . . ) .
gcd( , ) gcd( , )

k kk k n n M q p
k k k k

+ + =  

Let 2
21

2
1

21

1 .
),gcd(

.
),gcd(

n
kk

kn
kk

kw += , then the above equation becomes  

1 2gcd( , ). .k k w M q p+ =  

This two variable equation is solvable using extended Euclidean algorithm. So find a particular 

solution for w and ignore q. Now find n1 and n2 from  

wn
kk

kn
kk

k
=+ 2

21

2
1

21

1 .
),gcd(

.
),gcd(

 

This is a two variable equation, which can be solved as in case 1. 

Algorithm to find the particular solution for n1.k1+n2.k2 + M.q = p is as follows: 

1. Given k1, k2, M and p 

 Find gcd(k1, k2) 

2. For the reduced equation 1 2gcd( , ). .k k w M q p+ =  apply extended Euclidean   algorithm 

to find gcd( gcd(k1, k2), M)  and s and t such that  

                   gcd(k1, k2).s +M.t = gcd( gcd(k1, k2), M) 

3. Calculate 
1 2

.
gcd(gcd( , ), )

s pw
k k M

=  

4. For the equation  2
21

2
1

21

1 .
),gcd(

.
),gcd(

n
kk

kn
kk

kw +=  apply extended Euclidean 

algorithm to find )
),gcd(

,
),gcd(

gcd(
21

2

21

1

kk
k

kk
k

 and u and v such that 

                     v
kk

ku
kk

k
kk

k
kk

k .
),gcd(

.
),gcd(

)
),gcd(

,
),gcd(

gcd(
21

2

21

1

21

2

21

1 +=  
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5. Calculate M

kk
k

kk
k

wun ))

),gcd(
,

),gcd(
gcd(

.((

21

2

21

1
1 =  and 

                              M

kk
k

kk
k

wvn ))

),gcd(
,

),gcd(
gcd(

.((

21

2

21

1
2 =  

The above algorithm can be illustrated with an example. Given k1 = 2, k2 = 6, and p = 4 for N = 20. 

((2.n1 + 6.n2 ))10 = 4. 

Then                                                     2.n1 + 6.n2 + 10.q = 4 for some q. 

Set 

21 .
)6,2gcd(

6.
)6,2gcd(

2 nnw +=
 

Then the above equation becomes, gcd(2, 6).w + 10.q = 4 

w + 5.q = 2. 

w = −3, q = 1, is a particular solution. Ignore q and substitute for ((w))10: 

21 .
)6,2gcd(

6.
)6,2gcd(

27 nn +=
 

n1 + 3.n2  = 7 

∴ n1 = 1 and n2 = 2 is a particular solution. 

4.2.5.3.3 Combination of visual approach and other methods 

By direct computation of particular solution for certain p
kkY

2,1
 based on the analysis of visual 

representation, as shown below, and the rest of the coefficients may be calculated by either of the 

above two methods: 

 Analysis of the visual representation has enabled to come out with the particular solution of 

certain p
kkY

2,1
 even without calculating the same.  E.g., whatever be the value of k1 and k2, if p = 0 

then n1 = 0 and n2 = 0 is a particular solution.  Similarly when k2 = 0, then n2 = 0, and n1 = p/k1 

provided ((p/k1))1 = 0 else n1 =(p +M)/k1.  Similarly when k1 = 0, then n1 = 0, and n2 = p/k2 provided 

((p/k2))1 = 0 else n2 =(p +M)/k2. 

4.2.5.3.4 Modified trial and error method 

On analysis of the visual representation of p
kkY

2,1
 for different values of N, it is found that either of n1 

or n2 has a maximum value of 2.  So trial and error method can be limited to checking those values 

only. This method takes the minimum time for obtaining particular solution for all p
kkY

2,1
.  The 

algorithm is described below: 
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1. Given k1, k2 and p 
2. if p = 0, then n1 = 0 and n2 = 0 
3. else if  k2 = 0, then n2 = 0, and n1 = p/k1 provided ((p/k1))1 = 0 else n1 =(p +M)/k1  
4. else if  k1 = 0, then n1 = 0 and n2 = p/k2 provided ((p/k2))1 = 0 else n2 =(p +M)/k2 
5. else if p/k1 is an integer, then n1 = p/k1 and n2 = 0 
6. else for i = 0 to M - 1 

 if (( (p – i.k1)/k2 ))1 = 0 
 n2 = (p – i.k1)/k2, n1 = i, return 
 else if (( (p + M-i.k1)/k2 ))1 = 0 
 n2 = (p + M – i.k1)/k2, n1 = i, return 
 else if (( (p – i.k2)/k1 ))1 = 0 
 n1 = (p – i.k2)/k1, n2 = i, return 
 else (( (p + M – i.k2)/k1 ))1 = 0 
 n1 = (p + M-i.k2)/k1, n2 = i, return  

7.  end 

4.2.5.3.5 Simulation results 
Three algorithms, developed to find the particular solution in the M spacing based 2-D DFT 

computational scheme namely, trial and error method, extended Euclidean and modified trial and 

error method are simulated using Matlab® 7.0.  Time of execution in seconds, on Intel® 

Pentium®4 CPU 1.5 GHZ, machine, for the three methods is shown in table 4.3 and plotted in fig. 

4.9.  Simulation results show that modified trial and error method performs better for N > 8. 

 
Fig. 4.9: Comparison of execution time when employing different particular solution 
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Table 4.3: Execution time of different methods for particular solution 
N Trial and Extended Euclidean Modified Trial and 
4 0 0.015 0
6 0.016 0.031 0.016
8 0.015 0.031 0.016

10 0.032 0.047 0.032
12 0.063 0.141 0.062
14 0.062 0.079 0.047
16 0.078 0.172 0.079
18 0.125 0.25 0.125
20 0.141 0.266 0.125
22 0.187 0.266 0.109
24 0.296 0.422 0.281
26 0.218 0.328 0.172
28 0.296 0.39 0.234
30 0.468 0.672 0.438
32 0.328 0.453 0.328
34 0.359 0.516 0.328
36 0.625 0.922 0.547
38 0.422 0.688 0.406
40 0.672 0.968 0.594
42 0.829 1.265 0.796
44 0.688 0.969 0.625
46 0.672 1.015 0.61
48 1.109 1.641 1.047
50 0.938 1.39 0.86
60 2.391 3.219 2.032
64 1.547 2.156 1.344
70 2.625 3.531 2.188
80 3.625 4.531 3.031
90 6.828 8.375 5.407

100 6.329 7.641 5.141
124 8.985 10.704 7.359
200 48.688 47.984 36.688
256 77.781 74.281 59.969
300 237.062 203.234 166.359 
400 400.203 325.719 280.828 
500 710.813 580.172 505.657 
512 628.344 520.031 460.969 

 

4.2.5.4 M spacing based algorithm for any even N 

An algorithm is developed based on the above analysis and the same is verified for different values 

of N for N = 4 to 300 and suitably modified so that the algorithm gives exact result for any even N.  

Algorithm for layer 1, 2 and 4 are same as in section 4.2.3.  Layer 3 computations give p
kkY

2,1
 of all 

the basic DFT coefficients.  Complete set of DFT coefficients are computed in layer 5 as per the 

steps 3, 4 and 5 given in the algorithm in section 3.3.  The important steps of M spacing algorithm 

for DFT computation are as follows. 
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1. Compute indices (k1, k2) of all the basic DFT coefficients and the no. of basic DFT 

(no_of_basicDFT) as in section 3.2.6 and 3.2.5. 

2. Algorithm for computing p
kkY

2,1
 of all the basic DFT coefficients 

 
Layer 1 and 2 

Layer 1 and 2 computations are same as in section 4.2.3. 

Layer 3 

(In layer 3, for every basic DFT coefficient, corresponding p
kkY

2,1
are computed) 

For q = 1 to no_ of_basicDFT 

compute dm = gcd(k1(q), k2(q), M), h = gcd(k1(q), M), v = gcd(k2(q), M), z = gcd(k2(q), N) 

 If  ((k1(q)))2  = 0      ---depending on the nature of (k1, k2) C, D, E or F block is selected for 

computation 

  if ((k2(q)))2  = 0 

   U = C 

  else U = E 

 elseif  ((k2(q)))2  = 0 

  U = D 

 else U = F   

 For p = 0 to M - 1 in steps of dm   
  compute particular solution (n1, n2) using modified trial and error algorithm as in section 4.2.5.3.4            

    For r = 0 to dm 

    For s = 0 to dm 

    For t = 0 to M/dm  - 1 

       next_n1 = ((n1+r.v/ dm+ k2(q).t))M   --computation for index of next element of U 

            If ((M))k2(q)  = 0   

         next_n2 = ((n2+r.((M- k1(q)))M/dm+s.M/v+(M- k1(q)).t))M  --index when k2|M 

       else 

         next_n2= ((n2+((r[N - z]. k1(q)/[2. z.dm]))M/ dm+ s.M/v + [M- k1(q)].t))M  --index when k2 |/ M 

      If ((next_n1.k1(q)+ next_n2.k2(q)))N ≥ M --testing for element to be added or subtracted 

       next_term = -U(next_n1, next_n2) 

      else 

       next_term = U(next_n1, next_n2) 

     Y(k1(q), k2(q), p)= Y(k1(q), k2(q), p)+ next_term  
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Layer 4 

The computations in layer 5 are same as that of the steps 3, 4 and 5 of the algorithm shown in 

section 3.3.  

 
4.3  Conclusion 
High speed of computation and reduced memory requirement were the salient features of the 

parallel distributed model developed in [88] to implement 2-D DFT for a particular order N such 

that ((N))4 = 2.  Version I and II parallel distributed architecture for the computation of 8 × 8 point 

DFT (developed by the analysis of the visual representation based on 2 × 2 DFT) are designed 

following the above model.  The aim was to develop a model for ((N))4 = 0 and then combine it 

with the one developed in [88] to form a generalized architecture for any even N.  But since the 

primitive symbol combinations for group 2 and 3 coefficients differ for ((N))4 = 2 and N = 8, the 

architecture developed also differs.  Hence a generalized architecture based on the above model is 

not feasible.  

Four layer and five layer M spacing based architectures developed by the analysis of visual 

representation of 2-D DFT based on 2 × 2 data, on the other hand, can be used to compute N × N 

DFT for any even N and is scalable.  Four layer architecture is more suitable for computation due to 

the irregularity in the structure of layer 4 of the five layer architecture.  Since the computations are 

evenly distributed between different groups, the architecture is highly efficient for N/2 prime.  

 

 

 
 



 

 

 

CHAPTER 5 

2-D UMRT 

In the parallel distributed architectures developed for the computation of 2-D DFT in chapter 4, 

there are only real additions involved till the penultimate layer. The number of complex 

multiplication for each coefficient in the last layer is N/2. Since only scaling by the twiddle factor is 

done, each complex multiplication is equivalent to two real multiplications. However multipliers 

are expensive components. They use large silicon area, consume more power and introduce long 

latencies into a circuit. In contrast, primitive operators such as adders, subtractors, and shifts are 

much cheaper in terms of power, area and delay. 

The complex multiplications can be avoided, if the signals can be represented in terms of 

the MRT coefficients [140] and then the only computation required will be the real additions as in 

(1.9). MRT, in the raw form contains significant redundancy. The analysis of the visual 

representation explained in section 3.2.4 shows that there are three levels of redundancy in the 

coefficients. In [167] it was shown that the UMRT coefficients are unique, numerically compact 

and require only the same memory as required for the original image, when the image size is a 

power of 2. The number of MRT coefficients remains after removing the third level of redundancy 

is N2 when N is a power of 2, as explained in section 3.2.4. But when N is not a power of 2, even 

after removing the third level of redundancy, the number of MRT coefficients remains is not N2. 

The visual representation is further analyzed to exploit a form of redundancy present between the 

MRT coefficients, namely derived redundancy [189], so as to obtain unique MRT with N2 

coefficients for any even N. Derived redundancy in 1-D was analyzed in [189]. 

 
5.1 Derived redundancy in MRT 
The number of MRT coefficients left after eliminating the redundancy, as explained above, is N2 

when N is a power of 2. The transformed coefficients thus occupy the same memory as required for 

the original image. When N is not a power of two, the number of MRT coefficients after removing 

the redundancy is more than N2. Hence the visual representation of MRT coefficients are analyzed 

to explore the derived redundancy present between the MRT coefficients. 
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5.1.1 Analysis of the MRT coefficients for N = 6 (N/2 prime) 
Fig. 5.1 shows that the visual representation of 2

2,0
0
2,0 &YY  are combined together along with the sign 

reversed form of 1
2,0Y , gives 0

0,0Y . So one of the MRT coefficients of 2,0Y  can be eliminated since the 

same can be derived from the other coefficients and 0
0,0Y . This type of redundancy present between 

the MRT coefficients is called derived redundancy. 

  + - =  
Fig. 5.1: Example 1 for derived redundancy for N = 6 

 Similarly, if the visual representation of 0 2
1,2 1,2&Y Y  are combined along with the sign 

reversed form of 1
1,2Y , it will result in the visual representation of 0

3,0Y  as in fig. 5.2. If the MRT 

coefficients of 3,2 5,2 1.0, ,Y Y Y  etc. are combined separately it will result in 3,0Y . Here the gcd(k1, k2, M) 

of 3,2 5,2 1.0, ,Y Y Y  etc. is 1 and that of 3,0Y  is M. On analysis of the basic DFT coefficients with gcd(k1, 

k2, M) = 1, it is found that one MRT coefficient each can be eliminated, as the same can be derived 

as shown above. When k1 & k2 are even, ,1 2

p
k kY  of such DFT coefficients can be combined to get 0

0,0Y , 

as shown in table 5.1. The table shows that when N = 6, the MRT coefficients are combined to form 
one of the group 1 coefficients depending on the nature of the frequency index (k1, k2). This can be 

noticed for higher orders of N, where N/2 is prime and has a general relation, ,
p

even evenY±∑  will yield 
0

0,0Y , ,
p

odd evenY±∑  will yield 0
,0MY , ,

p
even oddY±∑ will yield 0

0,MY  and ,
p

odd oddY±∑  will yield 0
,M MY  when N/2 is 

prime, as shown in table 5.2. 

+ - =  
Fig. 5.2: Example 2 for derived redundancy for N = 6 

Table 5.1: Index relation in derived redundancy - N = 6 
Combination of MRT coefficients Resulting MRT 

0 2 1
0,2 0,2 0,2Y Y Y+ −  0

0,0Y  
0 2 1

1,2 1,2 1,2Y Y Y+ −  0
3,0Y  

0 2 1
2,1 2,1 2,1Y Y Y+ −  0

0,3Y  
0 2 1

1,1 1,1 1,1Y Y Y+ −  0
3,3Y  

 
 For N = 6, as in table 5.3, the number of basic DFT coefficients (nb) is 20. These 20 basic 

DFT coefficients together have 52 MRT coefficients. 4 basic DFT coefficients, where dm = M, 

have one MRT coefficient (i.e., p = 0 only) each. One MRT coefficient each can be eliminated from 
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the remaining 16 basic DFT coefficients, where dm = 1. Then there will be 52 – 16 = 36 UMRT 

coefficients, as shown in table 5.3, which is nothing but N2. Similar features can be seen when N = 

10, 14, 22 etc. So when N/2 is prime, one MRT coefficient from each of the basic DFT coefficients, 

where gcd(k1, k2, M) = 1 can be eliminated so as to obtain UMRT with N2 coefficients. 
Table 5.2: Index relation in derived redundancy - N/2 prime 

Combination of MRT coefficients Resulting MRT 

,
p

even evenY±∑  0
0,0Y  

,
p

odd evenY±∑  0
,0MY  

,
p

even oddY±∑  0
0,MY  

,
p

odd oddY±∑  0
,M MY  

 

Table 5.3: Derived redundancy when N = 6 
dm nbdm Total no. of MRT 

Coefficients 

dmnb
dm
M

×  

 

No. of MRT 
coefficients 
that can be 
eliminated 
from each 

Total 
coefficients 
that can be 
eliminated 

No. of UMRT coefficients 

1 16 48 1 16 32 
M=3 4 4 0 0 4 
Total 20 52  16 36 

5.1.2 Analysis for N = 12 where ((N))4 = 0 and N not a power of 2 
In fig. 5.3, for N = 12, the visual representation of 0

1,0Y  and 4
1,0Y  are combined together along with the 

sign reversed form of 2
1,0Y , where gcd(k1, k2, M) = 1. The result of the combination is the visual 

representation of 0
3,0Y , where gcd(k1, k2, M) = 3. Similarly the combination of 1

1,0Y  and 5
1,0Y  along with 

the sign reversed 3
1,0Y  will yield 3

3,0Y . The combination of visual representation of MRT coefficients 

with odd p i.e., 1.0
oddY±∑ , will result in 3

3,0Y . Similarly the combination of MRT coefficients with 

even p i.e., 1.0
evenY±∑  will yield 0

3,0Y .  

+ - =  

+ - =  
Fig. 5.3: Example for derived redundancy for N = 12   



116 2-D UMRT   

The combination of MRT coefficients with even phase index will yield an MRT coefficient 

with even phase, as seen in the 1st row of the table 5.4. Similarly, as seen in the 2nd row of table 

5.4, the combination of MRT coefficients with odd phase index will yield an MRT coefficient with 

an odd phase index. In the third row of table 5.4, 2.0
evenY±∑  yield 0

6,0Y . Hence the combination of 

MRT coefficients with k1 & k2 even, will result in an MRT coefficient with k1 & k2 even. This can 

be noticed for different combinations of (k1, k2, p), as in table 5.5. These features can be seen for N 

= 20, 24, 28 etc. where ((N))4 = 0 and N not a power of 2. Thus the combination of MRT 

coefficients, as described above, will result in an MRT coefficient with the same index pattern in 

(k1, k2, p) as in the combination.  
Table 5.4: Example of index relation in derived redundancy - N = 12 

Combination of MRT coefficients Resulting MRT 
0 4 2

1,0 1,0 1,0Y Y Y+ −  0
3,0Y  

1 5 3
1,0 1,0 1,0Y Y Y+ −  3

3,0Y  
0 2 4

2,0 2,0 2,0Y Y Y+ −  0
6,0Y  

 
Table 5.5: Index relation in derived redundancy - N = 12 

Combination of MRT coefficients Resulting MRT 
dm = 1 

,
even

odd evenY±∑  

,
odd

odd evenY±∑  

dm = 3 
,

even
odd evenY±∑  

,
odd

odd evenY±∑  
 

,
even

even oddY±∑  

,
odd

even oddY±∑  

 
,

even
even oddY±∑  

,
odd

even oddY±∑  
 

,
even

odd oddY±∑  

,
odd

odd oddY±∑  

 
,

even
odd oddY±∑  

,
odd

odd oddY±∑  
dm = 2 

,
even

even evenY±∑  dm = M 
,

even
even evenY±∑  

 
  On analysis of the visual representation for N = 12, there are 4 basic DFT coefficients for 

gcd(k1, k2, M) = M = 6 with one MRT coefficient each, 6 basic DFT coefficients for gcd(k1, k2, M) 

= 3 with two MRT coefficient each , 16 basic DFT coefficients for gcd(k1, k2, M) = 2 with three 

MRT coefficients each  and 24 basic DFT coefficients for gcd(k1, k2, M) = 1 with six MRT 

coefficients each respectively as shown in table 5.6. Thus there are a total of 208 MRT coefficients 

for the 50 basic DFT coefficients for N = 12. One MRT coefficient each can be eliminated from the 

basic DFT coefficients having gcd(k1, k2, M) = 2 since the same can be derived from the other MRT 

coefficients of the respective basic DFT coefficient and the corresponding MRT coefficients having 

gcd(k1, k2, M) = M. Similarly the redundancy in the basic DFT coefficients with gcd(k1, k2, M) = 1 

in which two MRT coefficients can be eliminated as the same can be derived from the other MRT 

coefficients and the corresponding MRT coefficient having gcd(k1, k2, M) = 3. Since there are 16 
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and 24 basic DFT coefficients with gcd(k1, k2, M) = 2 and 1 respectively, a total of 16 × 1 + 24 × 2 

= 64 MRT coefficients are redundant and can be removed without any loss of information resulting 

in 208 – 64 = 144 = N2 MRT coefficients. 
Table 5.6: Derived redundancy for N = 12 

dm nbdm Total no. of MRT 
coefficients 

dmnb
dm
M

×  

No. of MRT 
coefficients 
that can be 
eliminated 
from each 

Total 
coefficients 
that can be 
eliminated 

No. of UMRT coefficients 

1 24 144 2 48 96 
2 16 48 1 16 32 
3 6 12 0 0 12 

M=6 4 4 0 0 4 
Total 50 208  64 144 

 

5.1.3 Analysis for N = 18 where ((N))4 = 2 and N/2 not prime 
There are 68 basic DFT coefficients for N = 18, of which 4, 16 and 48 correspond to gcd(k1, k2, M) 

= M, 3 and 1 respectively, with a total of 484, (i.e., 4 × 1 + 16 × 3 + 48 × 9), MRT coefficients. In 

fig. 5.4, the combination of visual representation of 0
1,0Y , 6

1,0Y  and the sign reversed 3
1,0Y  will result in 

0
3,0Y . Similar combinations can be observed as illustrated in table 5.7. Thus there is derived 

redundancy in MRT coefficients for N = 18 and they can be eliminated. 

+ - =  
 

+ -  =  
 

+ - =  
Fig. 5.4: Example for derived redundancy for N = 18 
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Table 5.7: Example of index relation in derived redundancy - N = 18 

Combination of MRT coefficients Resulting MRT 
0 6 3

1,0 1,0 1,0Y Y Y+ −  0
3,0Y  

1 7 4
1,0 1,0 1,0Y Y Y+ −  3

3,0Y  
2 8 5

1,0 1,0 1,0Y Y Y+ −  6
3,0Y  

0 6 3
6,0 6,0 6,0Y Y Y+ −  0

0,0Y  

 
In table 5.7, the combination of MRT coefficients when k1 & k2 are odd & even 

respectively, will result in an MRT coefficient where k1 & k2 are odd & even respectively. Similarly 

the visual representation of MRT coefficients, having k1 & k2 even, are combined, the frequency 

indices of the resulting MRT coefficient will also be even, as in the 4th row of table 5.7.  This can 

be noticed for different combinations of k1 and k2. Similar feature is seen for N = 30, 42 etc. The 

similarity in the pattern of phase index as noticed in ((N))4 = 0 and N not a power of 2 is not seen 

when N = 18. Table 5.8 shows the pattern of frequency index, for different values of gcd(k1, k2, M) 

= dm, when N = 18.  

As in the first three rows of table 5.7, one MRT coefficient each can be eliminated, without 

loss of information, since the same can be derived from the other coefficients. Three MRT 

coefficients can thus be eliminated. The MRT coefficients of all the basic DFT coefficients with 

gcd(k1, k2, M) = 1 can be combined, as shown in Table 5.8, to obtain the corresponding MRT 

coefficients having gcd(k1, k2, M) = 3. So a total of 48 × 3 = 144 MRT coefficients can thus be 

eliminated. 
Table 5.8: Index relation in derived redundancy - N = 18 

Combination of MRT coefficients Resulting MRT 
dm = 1 

,odd evenY±∑  

,even oddY±∑  

,odd oddY±∑  

,even evenY±∑  

dm = 3 
,odd evenY  

,even oddY  

,odd oddY  

,even evenY  
dm = 3 

,even evenY±∑  

,even oddY±∑  

,odd evenY±∑  

,odd oddY±∑  

dm = M 0
0,0Y  
0

0,MY  
0

,0MY  
0

,M MY  

 
 
 Similarly the combination of the visual representation of 0

6,0Y , 6
6,0Y  and the sign reversed 

3
6,0Y will yield 0

0,0Y  as in the 4th row of table 5.7. Thus the combination of the MRT coefficients where 

gcd(k1, k2, M) = 3 will result in the MRT coefficient where gcd(k1, k2, M) = M. One MRT 
coefficient can be eliminated from the basic DFT coefficients with gcd(k1, k2, M) = 3 and there are a 
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total of 16 such coefficients. Hence the number of MRT coefficients that can be eliminated from 
the basic DFT coefficients are 144 and 16 corresponding to gcd(k1, k2, M) = 1 and 3 respectively. 
Thus only N2 unique MRT coefficients are sufficient to represent the signal, as in table 5.9. The 
other MRT coefficients of the basic DFT coefficients can be reconstructed from the MRT 
coefficients, which are retained. 
 

Table 5.9: Derived redundancy when N = 18 

dm nbdm Total no. of MRT 
Coefficients 

dmnb
dm
M

×  

No. of MRT 
coefficients 
that can be 
eliminated 
from each 

Total 
coefficients 
that can be 
eliminated 

No. of UMRT 
coefficients 

1 48 432 3 144 288 
3 16 48 1 16 32 

M=9 4 4 0 0 4 
Total 68 484  160 324 

5.1.4 Analysis of MRT coefficients when N is a power of 2  
There are 22 basic DFT coefficients for N = 8, of which 4, 6 and 12 basic DFT coefficients 

correspond to gcd(k1, k2, M) = 4, 2 and 1 respectively with a total of 64, (i.e., 4 + 6 × 2 + 12 × 4), 

MRT coefficients. There are only N2 MRT coefficients for the basic DFT coefficients which is 

unique and hence no elimination of MRT coefficients is required in the case of N = 8, as in table 

5.10. Similar features can be noticed for N = 16, 32, 64 etc. Thus there is no derived redundancy in 

MRT coefficients when N is a power of 2. 
 

Table 5.10: Derived redundancy when N = 8 

dm nbdm Total no. of MRT 
coefficients 

dmnb
dm
M

×  

No. of MRT 
coefficients 
that can be 
eliminated 
from each 

Total 
coefficients 
that can be 
eliminated 

No. of UMRT 
coefficients 

1 12 48 0 0 48 
2 6 12 0 0 12 

M=4 4 4 0 0 4 
Total 22 64  0 64 

 

5.2 Computation of redundant MRT coefficients  
Analysis of derived redundancy has been done for different N, from 4 to 4620, selected suitably 

based on the peculiarity of its divisors and the results are summarized, for ((N))4 = 0 & N not a 

power of 2 and  ((N))4 = 2 & N/2 not prime, in tables 5.11 and 5.12 respectively. In the tables nr is 

the number of redundant MRT coefficients corresponding to each dm, due to the derived 

redundancy. When N/2 prime, one MRT coefficient from each of the basic DFT coefficients can be 

eliminated, when gcd(k1, k2, M) = 1, so as to obtain UMRT. There is no derived redundancy for N 

power of 2.   
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Table 5.11: nr corresponding to each dm for N, where ((N))4 = 0 & N not a power of 2. 
N  

dm 1 2      12 
nr 2 1      
dm 1 2      20 
nr 2 1      
dm 1 2 4     24 
nr 4 2 1     
dm 1 2      28 
nr 2 1      
dm 1 2 3 6    36 
nr 6 3 2 1    
dm 1 2 4     40 
nr 4 2 1     
dm 1 2      44 
nr 2 1      
dm 1 2 4 8    48 
nr 8 4 2 1    
dm 1 2      52 
nr 2 1      
dm 1 2 4     56 
nr 4 2 1     
dm 1 2 3 5 6 10  60 
nr 14 7 2 2 1 1  
dm 1 2 3 4 6 12  72 
nr 12 6 4 3 2 1  
dm 1 2 3 6 7 14  84 
nr 18 9 2 1 2 1  
dm 1 2 5 10    100 
nr 10 5 2 1    
dm 1 2 3 6 9 18  108 
nr 18 9 6 3 2 1  
dm 1 2 3 4 5 6 10 12 20120 
nr 28 14 4 7 4 2 2 1 1 
dm 1 2 3 6 11 22  132 
nr 26 13 2 1 1 1  
dm 1 2 3 4 6 8 12 24144 
nr 24 12 8 6 4 3 2 1 
dm 1 2 3 4 6 7 12 14 28168 
nr 36 18 4 9 2 4 1 2 1 
dm 1 2 3 5 6 9 10 15 18 30180 
nr 42 21 14 6 7 2 3 2 1 1
dm 1 2 4 5 10 20  200 
nr 20 10 5 4 2 1  
dm 1 2 3 4 6 9 12 18 36216 
nr 36 18 12 9 6 4 3 2 1 
dm 1 2 4 5 7 10 14 20 28280 
nr 44 22 11 4 4 2 2 1 1 
dm 1 2 3 4 6 7 8 12 14 2428 56 336 
nr 72 36 8 18 4 8 9 2 4 1 2 1 
dm 1 2 3 4 5 6 9 10 12 1518 20 30 36 60360 
nr 84 42 28 21 12 14 4 6 7 4 2 3 2 1 1 
dm 1 2 4 5 8 10 20 40400 
nr 40 20 10 8 5 4 2 1 
dm 1 2 3 5 7 6 10 14 15 2130 35 42 70420 
nr 114 57 22 18 14 11 9 7 2 2 1 2 1 1 
dm 1 2 3 5 6 10 11 15 22 3033 55 66 110660 
nr 170 85 30 26 15 13 14 2 7 1 2 2 1 1 
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dm 1 2 3 5 6 10 13 15 26 3039 65 78 130780 
nr 198 99 34 30 17 15 14 2 7 1 2 2 1 1 
dm 1 2 3 5 6 9 10 15 18 253045 50 75 90 150900 
nr 210 105 70 42 35 10 21 14 5 6 7 2 3 2 1 1 
dm 1 2 4 5 10 20 25 50 1001000
nr 100 50 25 20 10 5 4 2 1 
dm 1 2 5 7 10 11 14 22 35 5570 77 110 1541540
nr 290 145 34 30 17 22 15 11 2 2 1 2 1 1 
dm 1 2 3 4 5 6 9 10 12 151820 25 30 36 45 50 6075 90 100 150 1803001800
nr 420 210140 105 84 70 20 42 35 281021 12 14 5 4 6 7 4 2 3 2 1 1 
dm 1 2 3 5 6 7 10 11 14 15212230333542 55 66 7077105110154165 210231330 3854627704620
nr 1350675290 222145170 111114 85 34305717222615 18 11 1314 2 9 7 2 1 2 1 2 1 1 

 
 
 

Table 5.12: nr corresponding to each dm for N, where ((N))4 = 2 and N/2 not prime 

N  
dm 1 3      18 
nr 3 1      
dm 1 3 5     30 
nr 7 1 1     
dm 1 3 7     42 
nr 9 1 1     
dm 1 5      50 
nr 5 1      
dm 1 3 9     54 
nr 9 3 1     
dm 1 3 11     66 
nr 13 1 1     
dm 1 5 7     70 
nr 11 1 1     
dm 1 3 13     78 
nr 15 1 1     
dm 1 3 5 9 15   90 
nr 21 7 3 1 1   
dm 1 7      98 
nr 7 1      
dm 1 3 17     102 
nr 19 1 1     
dm 1 3 5 7 15 21 35 210 
nr 57 11 9 7 1 1 1 
dm 1 5 25     250 
nr 25 5 1     
dm 1 3 5 9 15 25 45 75 450 
nr 105 35 21 5 7 3 1 1 

  
  The total number of redundant MRT coefficients can be obtained from the table 5.11 and 

5.12 using the formula ∑
edm edm nrnb .  where dme = gcd(k1, k2, M) having redundant MRT coefficients. 

Table 5.13 shows the total number of MRT coefficients for the entire basic DFT coefficients, the 

number of MRT coefficients that can be derived and the percentage reduction for ((N))4 = 0 & N 

not a power of 2,  ((N))4 = 2 & N/2 not prime and N/2 prime. In the table, for N = 630, 1050, 1470, 

1890, 2310, 3990 and 4620, the percentage reduction is more than fifty percentage since the 

number of dm is more. Derived redundancy is only 2N + 4 for N/2 prime and hence the percentage 
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of reduction is low. Thus it can be inferred that in general, derived redundancy is high when the 

number of dm is more. However there is no derived redundancy for N power of 2, the reason for 

which is explained below. 
 Table 5.13: Reduction in computation due to derived redundancy 

((N))4 =0 & N not a power of 2 ((N))4 =0 & N/2 not prime N/2 prime 
N nmrtnb nr % reduction N nmrtnb nr % 

reduction
N nmrtnb 

(N2+2N+4) 
nr 

(2N+4)
% 

reduction
56 3648 512 14.03 18 484 160 33.06 6 52 16 30.77 
60 6448 2848 44.17 30 1612 712 44.17 34 1228 72 5.86 
72 7744 2560 33.06 42 2964 1200 40.49 62 3972 128 3.22 
84 11856 4800 40.49 50 3124 624 19.97 106 11452 216 1.89 
96 13312 4096 30.77 54 4372 1456 33.30 202 41212 408 0.99 

100 12496 2496 19.97 66 6916 2560 37.02 298 89404 600 0.67 
108 17488 5824 33.30 70 7068 2168 30.67 394 156028 792 0.51 
120 25792 11392 44.17 78 9516 3432 36.07 502 253012 1008 0.39 
132 27664 10240 37.02 90 15004 6904 46.01 586 344572 1176 0.34 
144 30976 10240 33.06 98 11204 1600 14.28 718 516964 1440 0.28 
168 47424 19200 40.49 102 15964 5560 34.83 818 670764 1640 0.24 
200 49984 9984 19.97 210 367536 191136 52.00 922 851932 1848 0.22 
216 69952 23296 33.30 250 78124 15624 19.99 1018 1038364 2040 0.20 
280 113088 34688 30.67 450 378004 175504 46.43 1142 1306452 2288 0.18 
336 189896 76800 40.44 494 278892 34856 12.49 1502 2259012 3008 0.13 
360 240064 11464 47.76 630 855228 458328 53.59 1574 2480628 3158 0.13 
400 199956 39936 19.97 858 1265628 529464 41.83 1642 2699452 3288 0.12 
660 857584 421984 49.21 1050 2314884 1212384 52.37 1706 2913852 3416 0.12 
780 1179984 571584 48.44 1470 4515212 2354312 52.14 1774 3150628 3552 0.11 
900 1512016 702016 46.43 1890 7725324 4153224 53.76 1814 3294228 3632 0.11 
1000 1249984 249984 19.99 2310 12220572 6884472 56.34 1858 3455884 3720 0.11 
1540 3760176 1388576 36.93 3718 16460612 2637088 16.02 1906 3636652 3816 0.10 
1800 6048064 2808064 46.43 3990 35007804 19087704 54.52  1994 3980028 3992 0.10 
4620 48882288 27537888 56.34 4598 24544020 3402416 13.86 4622 21372132 9248 0.04 

 
In the first row of table 5.11, for N = 12, the derived redundancy is noticed in the basic 

DFT coefficients where dm = 1 and 2 whereas derived Redundancy is not present when dm = 6 and 

3, i.e., when dm = M and M/2. Redundant MRT coefficients are not present when dm = 10 and 5, 

for N = 20, i.e., when dm = M and M/2, as seen in the 2nd row of table 5.11. Similar features are 

noticed for all N listed in table 5.11 and 5.12. It can be inferred that the derived redundancy in MRT 

coefficients is present in all the basic DFT coefficients except when gcd(k1, k2, M) falls in the series 

M, M/2, M/22…….M/2n - 1 where, 2 ||n N . For N power of 2, all dm falls in the above series and 

hence there is no derived redundancy. Redundancy present can be determined as follows: 

Number of MRT coefficients in a basic DFT coefficient, np = M/ gcd(k1, k2, M) = M/dm           (5.1) 

      (since gcd(k1, k2, M) = dm) 

Table 5.14 shows the number of basic DFT coefficients (nbdm) and the number of UMRT 

coefficients (nu) corresponding to each dm for N = 12, 20, 24 and 30. From the analysis of the 

table, the number of UMRT coefficient in a basic DFT coefficient is given by, 
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 nu = )
),,gcd(

(
21 Mkk

Nϕ  = )(
dm
Nϕ                                                  (5. 2) 

Then from (5.1) and (5.2), the number of redundant MRT coefficients in a basic DFT coefficient is 

given by 

 nr = M/dm - )(
dm
Nϕ .                                                                     (5. 3) 

From the analysis of table 5.11 & 5.12 and by trial and error, the total number of MRT 

coefficients that are redundant in all the basic DFT coefficients when gcd(k1, k2, M) = dm is given 

by 11

1 1
2 (( 1) ( ) )

n n
n i i i

i i i
i i

p p pβ − β βα +

= =
− − +∏ ∏  where pi is the odd prime divisors of M/dm, n is the number 

of odd prime divisors of N, α  is the power of 2 in the prime factorization of M/dm and iβ  is the 

power of odd prime divisors pi in the prime factorization of M/dm.  

From the table 5.14, it can be seen that the total number of UMRT coefficients is N2. This 

can be extended to any even value of N. From (5.2), total number of UMRT coefficients = 

. ( )dm
dm

Nnb
dm

ϕ∑  = N2. 

Table 5.14: nbdm  and nu for different N 

N  Total UMRT coefficients 
dm 1 2 3 6   

nbdm 24 16 6 4   
12 

nu 4 2 2 1   

 
144 

 
dm 1 2 5 10   

nbdm 36 24 6 4   
20 

nu 8 4 2 1   

 
400 

 
dm 1 2 3 4 6 12 

nbdm 48 24 12 16 6 4 
24 

nu 8 4 4 2 2 1 

 
576 

dm 1 3 5 15   
nbdm 96 24 16 4   

30 

nu 8 4 2 1   

 
900 

 
 
5.3 MRT coefficients in basic DFT coefficients for N, power of 2 
Let N = 2n, then dm(i) = 20, 21, 22,… 2n - 1 are the  n divisors of M.  

Total no. of basic DFT coefficients where gcd(k1, k2, M) = M is given by, nbM  = 4 

Total no. of ,1 2

p
k kY  where gcd(k1, k2, M) = M is given by, nmrtM = 4 

From table 5.15, total no. of basic DFT coefficients where gcd(k1, k2, M) = dm (except for dm = M), 

nbdm  = 3.M/dm                                                                     (5.4) 

From (5.1), no. of ,1 2

p
k kY  for a basic DFT coefficient where gcd(k1, k2, M) is dm, 

 np = M/dm                                                                             (5.5) 
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From (5.4 & 5.5), total no. of ,1 2

p
k kY  corresponding to the basic DFT coefficients where gcd(k1, k2, M) 

is dm (except for dm = M), 

   nmrtdm = 3.M2/dm2                                                                        (5.6) 

Total no. of ,1 2

p
k kY  = 4 + 

2
2 2

0
3. / ( )

n

i
M dm i

−

=
∑  = 4 + 

2
2

0
3. ( 1 )

n

i
dm n i

−

=
− −∑  

( ( ) / ( 1 )dm i M dm n i= − −Q ) 

E.g. when N = 8 = 23, dm(i) = 1, 2, and 4. 

Total no. of ,1 2

p
k kY  = 4 + 

3 2
2

0
3. (3 1 )

i
dm i

−

=
− −∑  = 4 + 3.42 +3.22 = 64 

So in general when N is a power of 2, the MRT coefficients of the basic DFT coefficients are 

unique and form the UMRT. 

Table 5.15: nb for each dm when N power of 2 

nbdm Total (3N-2)     dm 
 
 

 N 

1 2 4 8 16 32  

4 6 4 - - - - 10 
8 12 6 4 - - - 22 

16 24 12 6 4 - - 46 
32 48 24 12 6 4 - 94 
64 96 48 24 12 6 4 190 

 

5.4 Selection of UMRT coefficients 
Section 5.2 shows that there is no derived redundancy in MRT coefficients when gcd(k1, k2, M) falls 

in the series M, M/2, M/22,…….M/2n - 1 where, 2 ||n N . When N is a power of 2, all the coefficients 

fall within the above series i.e., gcd(k1, k2, M) of the basic DFT coefficients is either M, M/2, 

M/22,……or M/2n-1. It is also verified that, when N is a power of 2, for every dm, M/dm = 

ϕ (N/dm). So from (5.3), there is no derived redundancy when N is a power of 2. 

It was also seen in section 5.1 and 5.2 that the total number of UMRT coefficients is N2 for 

any even N. But the total number of MRT coefficients of the basic DFT coefficients is more than 

that due to the derived redundancy present, except when N is a power of 2. We have to select the 

MRT coefficients when N/2 prime, ((N))4 = 2 & N/2 not prime, and ((N))4 = 0 and N not a power of 

2 by discarding redundancy. When N is not a power of 2, there are MRT coefficients whose gcd(k1, 

k2, M) does not fall in the above series i.e., when M/dm ≠ ϕ (N/dm). The MRT coefficients of such 

basic DFT coefficients have to be selected so as to eliminate the redundant one. For each basic DFT 

coefficient, depending on gcd(k1, k2, M), the number of redundant MRT coefficients can be found, 

as in section 5.2. These redundant MRT coefficients can be removed in three ways: 1) from the 
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beginning 2) from the middle or 3) from the end. If there are ‘nr’ redundant MRT coefficients, then 

either the first ‘nr’ MRT coefficients, or the middle most ‘nr’ coefficients or the last ‘nr’ 

coefficients can be removed. If the first nr MRT coefficients are to be removed where gcd(k1, k2, 

M) = dm, then p = 0, dm, 2.dm, … (nr-1)dm are removed retaining the remaining MRT coefficients, 

i.e., p = nr.dm, (nr + 1)dm, (nr + 2)dm, …, M/dm - 1. E.g., when N = 24 and (k1, k2) = (2, 0) where 

dm = 2, then p = 0 and 2 can be removed retaining p = 4, 6, 8 and 10. 

5.5 Placement/Matrix representation of UMRT coefficients  
In [167], the positional details of 8 × 8 MRT matrix has been shown, which places the MRT 

coefficients corresponding to k2 = 0, M, 1 and 2 in that order from left to right in a 8 × 8 matrix. The 

above scheme even though places the MRT coefficients corresponding to a (k1, k2) in a row, a 

generalized placement is not possible. Here a new placement method of UMRT coefficients for an 

N × N matrix is proposed. 

The number of UMRT coefficients is N2. When N is a power of 2, the MRT coefficients of 
basic DFT coefficients form the UMRT. E.g. when N = 8, the MRT coefficients corresponding to 
the following (k1, k2) are unique: (0, 0), (1, 0), (2, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), 
(6, 1), (7, 1), (0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (6, 2), (0, 4), (1, 4), (2, 4) and (4, 4). In the 
placement scheme, the nonnegative integers (kcpn) co-prime to N/dm and less than N/dm are 
computed, where dm = gcd(k1, k2, M) is the divisor of M. Then the MRT coefficients corresponding 
to (k1, k2) are placed in (((k1.kcpn))N, ((k2.kcpn))N). E.g. when (k1, k2) = (0, 0), gcd(k1, k2, M) = 4 and 
kcp1 = 1. Hence p = 0 corresponding to (0, 0) is placed at (0, 0). When (k1, k2) = (1, 0), gcd(k1, k2, 
M) = 1 and kcpn = 1, 3, 5 and 7. Hence p = 0, 1, 2, and 3 are placed at location (1, 0), (3, 0), (5, 0), 
and (7, 0) respectively. When (k1, k2) = (2, 0), gcd(k1, k2, M) = 2 and kcpn = 1, and 3. Hence p = 0, 
and 2 are placed respectively at location (2, 0), and (6, 0). Placement of all the MRT coefficients for 
N = 8 is shown in fig. 5.5 in which entries ‘102’ indicates that the coefficient with index (k1, k2, p) 
= (1, 0, 2) is placed in that position of the 2-D array.  

000 010 020 011 040 012 022 013 
100 110 120 311 140 512 321 713 
200 210 220 611 240 212 622 613 
101 310 320 111 141 712 121 513 
400 410 420 411 440 412 422 413 
102 510 122 711 142 112 323 313 
202 610 620 211 242 612 222 213 
103 710 322 511 143 312 123 113 

 

Fig. 5.5: Placement details of 8 × 8 MRT 

The above scheme of placement can be extended to any even N. As a special case when N is a 

power of 2, the number of nonnegative integers co-prime to N/dm and less than N/dm, (i.e., 

ϕ (N/dm), where ϕ is the Euler Totient function) is M/dm. Therefore the nonnegative integers 

which are co-prime to N/dm and less than N/dm are the odd numbers from 1 to N/dm.  
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Number of unique MRT coefficients present in a basic DFT coefficient is equal to the 

redundancy factor of the corresponding basic DFT coefficient. The UMRT coefficients of a basic 

DFT coefficient are placed in the positions corresponding to the redundant DFT coefficients. 

Algorithm for placement of one of the MRT coefficient Y(k1, k2, p) is illustrated below. The 

placement scheme satisfies the linearity property. But it does not satisfy other matrix properties 

such as transpose etc. 

5.5.1 Algorithm for placement of a UMRT coefficient 
1. Given k1, k2, p and the MRT coefficient Y(k1, k2, p) 

2. Compute dm = gcd(k1, k2, M) 

3. Compute ϕ (N/dm) and the nonnegative integers co-prime to N/dm and less than N/dm 

defined as coprime.Nbydm(r) 

4. kcp = coprime.Nbydm(p/dm) 

5. Y(((k1.kcp))N, ((k2.kcp))N) = Y(k1, k2, p) 
 

5.6 Development of algorithms for the computation of 2-D UMRT  
In 2-D UMRT only unique MRT coefficients are present. Unique MRT coefficients are the ,1 2

p
k kY  of 

the basic DFT coefficients after removing those ,1 2

p
k kY  which can be derived. Hence UMRT can be 

computed using any of three methods described below. 

5.6.1 Three layer M spacing method 
The four layer M spacing method, for the computation of 2-D DFT described in section 4.2.5.4, can 

be suitably modified for computing UMRT. The computations in layer 4 are fully avoided. There is 

no need to compute the N/2 twiddle factors as required for the 2-D DFT computation. In layer 3, 

only unique MRT coefficients need be computed.  

The number of MRT coefficients to be eliminated for each dm has to be pre-computed 

using (5.3). These MRT coefficients can be derived from the unique MRT coefficients and hence 

need not be computed. For each divisor ‘dm’ of M, ϕ (N/dm) and the co-prime integers of every 

N/dm and upto N/dm has to be pre-computed, as discussed in section 5.5, for placement of the 

coefficients. Table 5.16 shows the number of UMRT coefficients required to be computed in each 

group C, D, E and F for different N. In the table Tnu is the total number of UMRT coefficients 

corresponding to all the basic DFT coefficients where gcd(k1, k2, M) = dm. It can be seen that the 

number of UMRT coefficients corresponding to C, D, E and F are same. Hence the number of 

UMRT coefficients is equally distributed between C, D, E and F. This inference is helpful in 

developing scalable architecture. But the number of computations in each group is not same for 
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((N))4 = 0. This is due to the uneven distribution of MRT coefficients with the same dm. The 

number of computation is evenly distributed between the four groups when ((N))4 = 2, since the 

MRT coefficients with the same dm is equally distributed between the four groups, as in table 5.16.  

Table 5.16: nu to be computed by each group for different N 

N  C (k1=even, k2=even) D (k1=odd, k2=even) E (k1=even, k2=odd) F (k1=odd, k2=odd) 
dm 2    Total 1    Total 1    Total 1    Total
nb 4    4 2    2 2    2 2    2 

4 

Tnu 4    4 4    4 4    4 4    4 
dm 3 1    3 1    3 1    3 1    
nb 1 4   5 1 4   5 1 4   5 1 4   5 

6 

Tnu 1 8   9 1 8   9 1 8   9 1 8   9 
dm 4 2    1     1     1     
nb 4 6   10 4    4 4    4 4    4 

8 

Tnu 4 12   16 16    16 16    16 16    16 
dm 5 1    5 1    5 1    5 1    
nb 1 6   7 1 6   7 1 6   7 1 6   7 

10 

Tnu 1 24   25 1 24   25 1 24   25 1 24   25 
dm 6 2    1 3    1 3    1 3    
nb 4 16   20 8 2   10 8 2   10 8 2   10 

12 

Tnu 4 32   36 32 4   36 32 4   36 32 4   36 
dm 7 1    7 1    7 1    7 1    
nb 1 8   9 1 8   9 1 8   9 1 8   9 

14 

Tnu 1 48   49 1 48   49 1 48   49 1 48   49 
dm 8 4 2   1     1     1     
nb 4 6 12  22 8    8 8    8 8    8 

16 

Tnu 4 12 48  64 64    64 64    64 64    64 
dm 9 1 3   9 1 3   9 1 3   9 1 3   
nb 1 12 4  17 1 12 4  17 1 12 4  17 1 12 4  17 

18 

Tnu 1 72 8  81 1 72 8  81 1 72 8  81 1 72 8  81 
dm 10 2    5 1    5 1    5 1    
nb 4 24   28 2 12   14 2 12   14 2 12   14 

20 

Tnu 4 96   100 4 96   100 4 96   100 4 96   100 
dm 11 1    11 1    11 1    11 1    
nb 1 12   13 1 12   13 1 12   13 1 12   13 

22 

Tnu 1 120   121 1 120   121 1 120   121 1 120   121 
dm 12 6 4 2  3 1    3 1    3 1    
nb 4 6 16 24 50 4 16   20 4 16   20 4 16   20 

24 

Tnu 4 12 32 96 144 16 128   144 16 128   144 16 128   144 
dm 14 2    7 1    7 1    7 1    
nb 4 32   36 2 16   18 2 16   18 2 16   18 

28 

Tnu 4 192   196 4 192   196 4 192   196 4 192   196 
dm 15 5 3 1  15 5 3 1  15 5 3 1  15 5 3 1  
nb 1 4 6 24 35 1 4 6 24 35 1 4 6 24 35 1 4 6 24 35 

30 

Tnu 1 8 24 192 225 1 8 24 192 225 1 8 24 192 225 1 8 24 192 225 
dm 16 8 4 2  1     1     1     
nb 4 6 12 24 46 16    16 16    16 16    16 

32 

Tnu 4 12 48 192 256 256    256 256    256 256    256 
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The fig. 5.6 shows the M spacing based parallel distributed architecture for the computation 

of N × N UMRT. The important steps of M spacing algorithm for UMRT computation are as 

follows. 

 

 
Fig. 5.6: M spacing parallel distributed architecture for N × N UMRT 

5.6.1.1 Algorithm 

1. Compute divisors of M = dm(i), number of divisors of M = no_of_divisors_of_M,  indices (k1, k2) 

of all the basic DFT coefficients and the no. of basic DFT = no_of_basicDFT as in section  3.2.5 

and 3.2.6. 

2. For each divisor of M, dm(i) calculated in step 1, compute ϕ (N/dm(i)), the co-prime integers of 

every N/dm(i) up to N/dm(i) and the number of MRT coefficients to be eliminated corresponding to 

each dm. 

    For i = 1 to no_of_divisors_of_M 

    Nbydm = N/dm(i), r = dm(i), s = 1 

      phy_ofNbydm(r) = 1, coprime(r, s) = 1, s = 2 

      For t = 2 to Nbydm 

       If gcd(t, Nbydm) = 1 

         coprime(r, s) = t, s = s + 1, phy_ofNbydm(r) = phy_ofNbydm(r) + 1 
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      MRT_eliminate(r) = M/r - phy_ofNbydm(r)  --number of redundant MRT coefficients for each 

dm are computed and stored 

3.  Algorithm for computing UMRT coefficients  

Layer 1 & 2 

Layer 1 & 2 are same as in section 4.2.3. 

Layer 3 

(Unique MRT coefficients corresponding to every basic DFT coefficients are computed in layer 3) 
For q = 1 to no_ of_basicDFT 
 Compute dm = gcd(k1(q), k2(q), M), h = gcd(k1(q), M), v = gcd(k2(q), M), z = gcd(k2(q), N) 

 If  ((k1(q)))2  = 0      ---depending on the nature of (k1, k2) C, D, E or F block is selected for 
computation 

  if ((k2(q)))2  = 0 
   U = C 
  else U = E 
 elseif  ((k2(q)))2  = 0 
  U = D 
 else U = F 
 For p = 0 to M - 1- MRT_eliminate(dm).dm in steps of dm ---redundant MRT coefficients are 

removed from the last 
  kcp = coprime (dm, p/dm + 1) 

  fk1 = ((kcp. k1(q)))N,  fk2 = ((kcp. k2(q)))N       --- placement of coefficients are computed here  
  compute particular solution (n1, n2) using modified trial and error algorithm as in section 4.2.5.3.4            

    For r = 0 to dm 
    For s = 0 to dm 
    For t = 0 to M/dm  - 1 
       next_n1 = ((n1 + r.v/ dm + k2(q).t))M       --computation for index of next element of U 

           If ((M))k2(q)  = 0 
         next_n2 = ((n2+r.((M - k1(q)))M/dm + s.M/v + (M - k1(q)).t))M   --index when k2|M 
       else 

         next_n2= ((n2+((r[N - z]. k1(q)/[2. z.dm]))M/ dm+ s.M/v + [M - k1(q)].t))M  --index when k2 |/ M  

       If ((next_n1.k1(q) + next_n2.k2(q)))N  ≥  M      --testing for element to be added or subtracted 
         next_term = -U(next_n1, next_n2) 
       else 
         next_term = U(next_n1, next_n2) 

       Y(fk1, fk2)= Y(fk1, fk2) + next_term 
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5.6.2 Visual method 
Visual method, as discussed in section 3.3, can be suitably modified to compute the UMRT 

coefficients. The modifications are similar to that done in the M spacing method. In the first step 

compute the divisors of M, number of divisors of M, indices of all the basic DFT coefficients and 

the number of basic DFT. In the second step compute the number of MRT coefficients to be 

eliminated for each dm, ϕ (N/dm), and the co-prime integers of every N/dm up to N/dm. In the final 

step compute the unique MRT coefficients using the visual method. 

5.6.3 Modified direct method for UMRT computation 
UMRT coefficients are computed using the modified DFT method using (1.6). The MRT 

coefficients that can be derived are not computed using the elimination algorithm discussed in the 

other two methods. The placement of unique MRT coefficients is also done using the algorithm 

developed in section 5.5.1. The important steps of the algorithm are as follows. 

1. Steps 1 and 2 are same as that of the algorithm in section 5.6.1.1 

2. UMRT coefficients corresponding to every basic DFT coefficients are computed next 

For q = 1 to no_ of_basicDFT 

 Compute dm = gcd(k1(q), k2(q), M)  

 For p = 0 to M - 1 - MRT_eliminate(dm).dm in steps of dm ---redundant MRT coefficients are 

removed from the last 

  kcp = coprime (dm, p/dm + 1) 

  fk1 = ((kcp. k1(q)))N,  fk2 = ((kcp. k2(q)))N  --- placement of coefficients are computed here 

  For n1 = 0 to N - 1 

   For n2 = 0 to N - 1 

    z = ((n1.k1 +n2.k2))N 

    If z = p 

     Y(fk1, fk2)= Y(fk1, fk2) + A(n1, n2) 

   elseif z = p + M 

    Y(fk1, fk2)= Y(fk1, fk2) - A(n1, n2) 

5.7 Conclusion 
The 2-D UMRT coefficients are unique and fit in the N × N memory space, for any even N. The 2-

D UMRT maps a 2-D array of real data in time/spatial domain into another 2-D array of real data in 

frequency domain using real additions only. Different algorithms are designed and developed for 

the computation of 2-D UMRT. The proposed placement scheme satisfies linearity property, but 

does not satisfy other matrix properties such as transpose.  



 

 

 

CHAPTER 6 

IMPLEMENTATION OF PARALLEL DISTRIBUTED ARCHITECTURE FOR THE 
COMPUTATION OF 2-D DFT & UMRT 

The algorithms developed in chapters 3, 4, and 5 are simulated in Matlab®. The algorithm 

developed in software provides maximum flexibility but lacks performance. To meet the tight 

throughput constraint of the real time processing, a very high speed, dedicated special purpose 

hardware processor is required. Nowadays, more complex DSP and image/video processing 

algorithms are implemented on single chip. Hardware implementations in ASICs were proposed to 

speed up the algorithm. But this is an inflexible solution and lacks cost efficiency. Another 

approach suitable for implementation is the use of reconfigurable hardware using FPGA. The 

performance of FPGA is quickly nearing that of ASICs.  
 

6.1 Matlab simulation 
 

6.1.1  2-D DFT 
The 2-D DFT computation, using visual method, M spacing method and modified DFT using basic 

DFT coefficients, is compared with three other methods viz. a viz., direct DFT, modified DFT and 

closed form DFT [189]. Direct DFT computation uses the basic 2-D DFT equation to compute the 

coefficients. Modified DFT computation is used to compute the DFT coefficients using (1.5) in the 

second method. In another method named as “Modified DFT using basic DFT coefficients”, p
kkY
2,1
of 

only basic DFT coefficients are computed using (1.6) and (1.7). Then the entire DFT coefficients 

are computed by the permutations over p as done in visual method in section 3.3. Visual method is 

also involved in the comparison. Closed form method [189] is used to compute the MRT of basic 

DFT coefficients and then the entire DFT coefficients are computed by the permutations over p as 

above.  Six methods described above are simulated using Matlab 7.0 on Intel® Pentium®4 CPU, 

1.5 GHZ, machine. The computation time of all the methods are shown in table 6.1 and plotted in 

fig. 6.1. The fig. shows that M spacing method performs better when compared to all other methods 

in terms of speed, for N > 16. However, modified DFT using basic DFT coefficients performs 

slightly better for small values of N. This is due to the overhead in computing the particular 

solution, in M spacing method, which is significant for small values of N.  
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Table 6.1: Execution time (in sec.) of 2-D DFT computational schemes for N 

Modified DFT 

N 
Direct 

DFT (s) 

Closed 
form 

DFT(s) 
Direct(s) 

using basic 
DFT(s) 

Visual 
DFT(s) 

M 
spacing 
DFT(s) 

4 0.016 0.016 0.008 0.007 0.015 0.016 
6 0.047 0.063 0.016 0.015 0.016 0.031 
8 0.157 0.063 0.031 0.015 0.031 0.031 
10 0.422   0.094 0.046 0.031 0.032 0.047 
12 0.844 0.234 0.109 0.063 0.078 0.078 
14 1.437 0.234 0.204 0.062 0.063 0.078 
16 2.469 0.282 0.36 0.078 0.093 0.094 
18 3.984 0.438 0.672 0.187 0.203 0.14 
20 6.125 0.484 0.984 0.219 0.234 0.188 
22 8.781 0.438 1.484 0.234 0.234 0.125 
24 12.672 0.797 2.235 0.375 0.312 0.312 
26 17.062 0.671 3.266 0.359 0.297 0.219 
28 23.265 0.813 4.422 0.468 0.422 0.297 
30 30.047 1.453 6.438 0.922 0.687 0.453 
32 39.578 1.031 8 0.719 0.500 0.328 
34 49.719 1.125 11.984 0.765 0.532 0.297 
36 62.172 1.937 13.407 1.391 1.000 0.578 
38 76.984 1.500 17.89 1.187 0.687 0.406 
40 96.156 2.047 20.766 1.594 1.063 0.625 
42 115.14 2.906 28.266 2.594 1.516 0.766 
44 141.55 2.203 33.406 1.985 1.172 0.578 
46 166.01 2.328 43.344 2.281 1.094 0.578 
48 200.09 3.609 48.453 3.297 2.016 1 
50 231.76 3.359 64.015 3.64 1.750 0.797 
60 486.97 7.453 145.16 10.016 4.781 1.985 
70 881.42 8.843 336.38 15.703 5.359 2.125 
80 1407.1 11.375 575.94 20.156 7.641 3.078 
90 2252 21.438 1131.6 52 15.297 5.438 

100 3435.1 20.047 1735.1 51.187 14.125 5.11 

 
Fig. 6.1: Comparison of execution time of different 2-D DFT computational schemes. 
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6.1.1.1 Computational complexity 

In the visual method, p
kkY
2,1
 of the basic 2-D DFT coefficients are computed either using the formula 

derived from the analysis of visual representation or by using the visual representation as a look up 
table rather than doing the computations in (1.6) & (1.7). These p

kkY
2,1
 can be used to compute all the 

DFT coefficients by permutation over p. When N is the size of the data matrix and is even, from 

(4.1) the number of real additions for a p
kkY
2,1
 = 1.2

−
M

dmN ,                                                         (6.1) 

where gcd(k1, k2, M) = dm. 

No. of real additions for a basic DFT coefficient = )1..(
2

−
M

dmN
dm
M .                                     (6.2) 

∴ total number of real additions (AR) required for the 2-D DFT computation is given by, 
2 .. ( 1)R dm

dm

M N dmA nb
dm M

= −∑  = ∑ −
dm

dm dm
MNnb )( 2 ,                                  (6.3) 

 where M = N/2 , & nbdm is the number of basic DFT coefficients for a given dm. 
Total number of complex multiplications for a basic DFT coefficient = M/dm – 1. 
Redundancy factor of a basic DFT coefficient = nddm + 1 = ϕ (N/dm),  

where nddm is  the number of DFT coefficients that can be derived from the basic DFT coefficients 
by permutation. 
Total number of complex multiplications (MC) is same as the total number of complex additions 
(AC) and is given by  

       ( 1)( 1)C C dm dm
dm

MM A nb nd
dm

= = + −∑  = ∑ −
dm

dm dm
M

dm
Nnb )1).((.ϕ ,                                   (6.4) 

Here one complex multiplication involves two real multiplications and no real additions since the 
data is real which is multiplied with the twiddle factor.  

Difference between the M spacing method and the visual method of 2-D DFT is in the 

computation of p
kkY
2,1
 and hence the number of complex multiplications and additions are same in 

both the cases, whereas the number of real additions differs. Total number of real additions (AR) 

required for the 2-D DFT computation using M spacing method is given by, 

AR = Number of additions in layer 1 + layer 2 + layer 3. 

Number of additions in layer 1 = 2.N.M = N2 

Number of additions in layer 2 = 4(M.M )= N2 
The number of additions in layer 3 can be calculated as follows: 

From (6.1), number of additions for a p
kkY
2,1
 in layer 3 = 1

.4
.2

−
M
dmN  = M.dm – 1.                 (6.5) 

Number of additions for a basic DFT coefficient in layer 3 = M/dm(M.dm-1).                  (6.6) 

Number of additions in layer 3 = ∑ −
dm

dm dm
MMnb ).( 2                    (6.7) 
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2 22. ( )R dm
dm

MA N nb M
dm

∴ = + −∑                   (6.8) 

  Table 6.2 shows the number of real multiplications (MR) and additions (AR) required for 2-
D DFT computation based on the visual approach and M spacing based method along with the 
number of computations required for the Direct 2-D DFT [130], row/column DFT [21], vector radix 
FFT [8] and row/column FFT [100] for different N. One complex multiplication in the above cases 
is equivalent to four real multiplications and two real additions.  Even though the number of 
computations for vector radix FFT and r/c FFT is less, they require that the size of the data matrix 
to be of powers of 2.  One must be willing to constrain oneself to sizes like 1024 & 2048 or zero 
pad one’s data to the next power of 2 and thereby lowering the algorithm’s efficiency. For many of 
the applications, this limitation on N cannot be tolerated. The visual approach and M spacing 
method, which might be less efficient in particular case, but provide much better coverage of 
allowed DFT size. Both methods allow the size of the data matrix to be any even N. So it is a trade 
off between flexibility and efficiency that make the visual approach and M spacing methods 
attractive. The results are also shown as a plot in fig. 6.2 and 6.3 as a logarithmic function of 
number of real multiplications and real additions respectively for different data size. The spike 
visible when N = 30 in the plot of visual/M spacing DFT, in fig. 6.2, is due to the fact that N = 32 is 
having more dm and hence requires low number of multiplications. The small spikes in the plot are 
also due to the same reason i.e., the next higher N is having more dm. The spike visible in the plots 
of visual and M spacing DFT in fig. 6.3 is for N having more number of divisors where the number 
of real additions is more. E.g., N = 60 is having more number of divisors when compared to N = 62. 
The spike is predominant in the plots of visual DFT. 
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Fig. 6.2: MR of different 2-D DFT computational scheme for N 
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Table 6.2: Comparison of computational complexity of 2-D DFT computation  
Direct DFT Row column DFT Vector radix FFT Row column FFT Visual DFT M space DFT 

N 
MR AR MR AR MR AR MR AR MR  AR MR  AR 

4 1024 896 512 512 96 96 128 192 24 168 24 80
6 5184 4752 1728 1728 128 796 128 328
8 16384 15360 4096 4096 576 576 768 1152 312 1656 312 728

10 40000 38000 8000 8000 768 3444 768 1544
12 82944 79488 13824 13824 1112 8104 1112 2992
14 153664 148176 21952 21952 2304 9132 2304 4232
16 262144 253952 32768 32768 3072 3072 4096 6144 3000 14520 3000 6200
18 419904 408240 46656 46656 4736 26284 4736 10408
20 640000 624000 64000 64000 5976 33480 5976 13280
22 937024 915728 85184 85184 9600 34236 9600 16328
24 1327104 1299456 110592 110592 9848 72376 9848 26008
26 1827904 1792752 140608 140608 16128 55956 16128 26888
28 2458624 2414720 175616 175616 17304 86952 17304 35600
30 3240000 3186000 216000 216000 49280 173668 49280 80968
32 4194304 4128768 262144 262144 15360 15360 20480 30720 26040 121272 26040 51128
34 5345344 5266736 314432 314432 36864 123492 36864 59912
36 6718464 6625152 373248 373248 35096 253480 35096 90832
38 8340544 8230800 438976 438976 51840 171612 51840 83528
40 10240000 10112000 512000 512000 50040 294456 50040 112856
42 12446784 12298608 592704 592704 63872 378428 63872 143816
44 14992384 14822016 681472 681472 70104 319656 70104 134768
46 17909824 17715152 778688 778688 92928 302316 92928 147848
48 21233664 21012480 884736 884736 83192 609784 83192 216952
50 25000000 24750000 1000000 1000000 115968 482844 115968 210344
52 29246464 28965248 1124864 1124864 116952 519624 116952 220832
54 34012224 33697296 1259712 1259712 139520 753340 139520 295528
56 39337984 38986752 1404928 1404928 142008 759288 142008 299864
58 45265984 44875760 1560896 1560896 188160 601812 188160 295688
60 51840000 51408000 1728000 1728000 162200 1415752 162200 477952
62 59105344 58628688 1906624 1906624 230400 733836 230400 360968
64 67108864 66584576 2097152 2097152 73728 73728 98304 147456 216504 990648 216504 415160
66 75898944 75323952 2299968 2299968 255488 1381132 255488 540424
68 85525504 84896640 2515456 2515456 264984 1138632 264984 488960
70 96040000 95354000 2744000 2744000 316416 1544148 316416 627848
72 107495424 106748928 2985984 2985984 285752 2216824 285752 773080
74 119946304 119135856 3241792 3241792 393984 1242612 393984 612872
76 133448704 132570752 3511808 3511808 371544 1578408 371544 680240
78 148060224 147111120 3796416 3796416 424832 2240516 424832 883784
80 163840000 162816000 4096000 4096000 412152 2465016 412152 932216
82 180848704 179745968 4410944 4410944 537600 1687236 537600 833288
84 199148544 197963136 4741632 4741632 457688 3621032 457688 1253744
86 218803264 217531152 5088448 5088448 620928 1944636 620928 960968
88 239878144 238515200 5451776 5451776 565752 2772024 565752 1126424
90 262440000 260982000 5832000 5832000 635264 4475860 635264 1635100
92 286557184 284999808 6229504 6229504 663192 2770344 663192 1200272
94 312299584 310638416 6644672 6644672 812544 2535372 812544 1254152
96 339738624 337969152 7077888 7077888 683768 5001976 683768 1771768
98 368947264 367064880 7529536 7529536 905472 3391308 905472 1537736

100 400000000 398000000 8000000 8000000 826776 4514280 826776 1759280
102 432972864 430850448 8489664 8489664 958592 4896148 958592 1951816
104 467943424 465693696 8998912 8998912 939768 4497336 939768 1842008
106 504990784 502608752 9528128 9528128 1168128 3628596 1168128 1797128
108 544195584 541676160 10077696 10077696 994136 7158568 994136 2545456
110 585640000 582978000 10648000 10648000 1254528 5642436 1254528 2363336
112 629407744 626597888 11239424 11239424 1158456 6337080 1158456 2467256
114 675584064 672620976 11852352 11852352 1342208 6780716 1342208 2712968
116 724255744 721133952 12487168 12487168 1337304 5494728 1337304 2393120
118 775511104 772225040 13144256 13144256 1614720 4998012 1614720 2477768
120 829440000 825984000 13824000 13824000 1302200 12364408 1302200 4077208
122 886133824 882502128 14526784 14526784 1785600 5521236 1785600 2737928
124 945685504 941872256 15252992 15252992 1635864 6694056 1635864 2919248
126 1008189504 1004188752 16003008 16003008 1782656 11471180 1782656 4215848
128 1073741824 1069547520 16777216 16777216 344064 344064 458752 688128 1764792 8007096 1764792 3345848
130 1142440000 1138046000 17576000 17576000 2081280 9156588 2081280 3866888
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Fig. 6.3: AR of different 2-D DFT computational scheme for N 

6.1.2 2-D UMRT 
The 2-D UMRT computation by three methods developed in section 5.6 namely, modified direct 
method, visual method and three layer M spacing based method are simulated using Matlab 7.0 on 
Intel® Pentium®4 CPU, 1.5 GHZ, machine. Table 6.3 shows the time taken (in seconds) for the 
computation of 2-D UMRT by the above schemes for different sizes of data matrix and fig. 6.4 
shows the corresponding plot. It is seen that for smaller values of N up to 12, the modified Direct 
UMRT method performs slightly better. This is due to the overheads in the computation of 
particular solution for each UMRT coefficient, which is significant. However for higher values of 
N, the M spacing based UMRT out performs the other methods in terms of speed. 
 

 
Fig. 6.4: Comparison of execution time for different 2-D UMRT computational schemes 
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Table 6.3: Execution time (in sec.) of 2-D UMRT computational schemes for N 
 

N 

Modified Direct 
UMRT 

(s) 

Visual 
UMRT 

(s) 

M spacing 
UMRT 

(s) 
4 0 0.016 0.016
6 0.15 0.016 0.015
8 0.015 0.016 0.016

10 0.016 0.031 0.031
12 0.016 0.031 0.062
14 0.031 0.047 0.031
16 0.047 0.062 0.047
18 0.079 0.109 0.078
20 0.11 0.125 0.094
22 0.125 0.172 0.078
24 0.218 0.25 0.204
26 0.219 0.235 0.172
28 0.36 0.313 0.219
30 0.469 0.406 0.203
32 0.469 0.344 0.265
34 0.657 0.36 0.188
36 0.829 0.641 0.375
38 1.032 0.562 0.297
40 1.156 0.781 0.422
42 1.5 0.89 0.468
44 1.672 0.891 0.391
46 2.016 0.829 0.438
48 2.204 1.344 0.656
50 2.797 1.266 0.562
60 5.438 2.594 1.078
70 10.453 3.406 1.219
80 15.547 5.516 2.047
90 27.438 7.89 2.688

100 39.828 10.203 3.297
128 92.812 20.391 6.062
200 602.063 87.937 23.578 
256 1455.297 169.25 42.484 
300 3186.578 333.343 86.36
400 9197.656 757.359 185.047 
500 23817.031 1324.5 321.625 

6.1.2.1 Computational complexity 

No complex operations are involved in 2-D UMRT computation. The number of real additions 
involved in the computation of 2-D UMRT can be calculated by subtracting the total number of real 
additions in layer 3 for the redundant MRT coefficients from that required for M spacing based 2-D DFT. 
From (6.5), number of real additions for the redundant MRT coefficients corresponding to the basic 

DFT coefficients in layer 3 = ∑ −
edm

eedm nrdmMnb ).1..( ,                                                                 (6.9)  

where dme is the gcd(k1, k2, M) when M/dm ≠ ϕ (N/dm). 

2 2
( ). ., 2. ( ) ( . 1)R UMRT dm dm eedm dme

Mi e A N nb M nb M dm nr
dm

= + − − −∑ ∑ .                      (6.10) 
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The number of complex multiplications is a significant component in the 2-D DFT 

computation using M spacing based method, as can be seen in Table 6.4. Fewer number of MRT 

coefficients are computed in UMRT, when N is not a power of 2, which reduces the number of real 

additions required. When N is a power of 2, the number of real additions required for 2-D DFT and 

UMRT are same, since same number of MRT coefficients need be computed. From the table, it can 

be observed that for 2-D DFT computation, N having more number of divisors is suitable as it 

require less number of complex operations, whereas for 2-D UMRT, N/2 prime is suitable. 

Table 6.4: Computational complexity of 2-D DFT & UMRT for M spacing method 
M spacing based method 

2-D DFT 2-D UMRT 
N MC AC AR AR 
4 12 12 56 56 
6 64 64 200 168 
8 156 156 416 416 

10 384 384 776 680 
12 556 556 1880 1464 
14 1152 1152 1928 1736 
16 1500 1500 3200 3200 
18 2368 2368 5672 4104 
20 2988 2988 7304 6200 
22 4800 4800 6728 6248 
24 4924 4924 16160 14304 
26 8064 8064 10760 10088 
28 8652 8652 18296 16184 
30 11200 11200 31688 20040 
32 13020 13020 25088 25088 
34 18432 18432 23048 21896 
36 17548 17548 55736 39096 
38 25920 25920 31688 24568 
40 25020 25020 62816 52640 
42 31936 31936 79944 52584 
44 35052 35052 64664 59576 
46 46464 46464 54920 52808 
48 41596 41596 133760 99456 
50 57984 57984 94376 77000 
52 58476 58476 103880 96824 
54 69760 69760 156008 106920 
56 71004 71004 157856 138656 
58 94080 94080 107528 104168 
60 81100 81100 315752 195000 
62 115200 115200 130568 126728 
64 108252 108252 198656 198656 

210 4033600 4033600 13887816 7413000 
660 111453100 111453100 495508616 276243000 
780 184461100 184461100 798561816 450972600 
1540 1505888076 1505888076 4856834024 3220124600 
4620 37685147500 37685147500 218507101512 106207193400 
4622 49348252800 49348252800 49433704328 49412341448 
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6.1.3 Parallel distributed architectures and other methods for 8 × 8 point DFT  
Three parallel distributed architectures and other methods for 2-D DFT computation are simulated 

in Matlab 7.4 and their time of execution for 8 × 8 point DFT, in AMD Athlon™ 64 processor 

running at 2.39 GHZ with a memory of 768 MB of RAM, is shown in table 6.5. As seen in section 

6.1.1, for small values of N, modified DFT perform slightly better when compared to Modified 

DFT using basic DFT, M spacing and visual methods. This is due to the overhead due to the 

requirement of computing indices of basic DFT coefficients. This overhead is negligible for higher 

values of N when compared to the computation gain obtained by the new algorithms. In M spacing 

based method and visual method there is additional overhead due to the computation of particular 

solution, which is significant for small values of N. In M spacing based method, it is required to 

classify the basic DFT coefficients based on frequency index. This also contribute to the 

computation time and is significant for small values of N. M spacing based method is simulated in 

three different ways, one using the general algorithm developed in section 4.2.5.4, second and third 

one by using equations developed in section 4.2.4 with and without calculating the indices of basic 

DFT coefficients respectively. Column no. 6 of table 6.5 shows the timing of M spacing method, 

where layer 3 is computed directly using equations without the requirement of computing the 

particular solutions and hence the improvement in timing. The timing of M spacing method in 

column 7 is obtained by computing layer 3 directly using equations and by using pre-computed 

values for the indices of basic DFT coefficients. The performance improvement is noticed as the 

software overhead reduces. The timing in column 7 is comparable with the simulation results of 

version I and II architectures. Among the parallel distributed architectures, version I performs 

slightly better than the other two. 
Table 6.5: Computation time for 8 × 8 point DFT by different methods  
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Version I 
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(8) 

Version II 
Architecture 

 
 
 
 
 

(9) 
40.25ms 6.893ms 12.123ms 14.417ms 24.215ms 6.995ms 6.733ms 6.544ms 6.569ms 
 

6.1.4 Parallel distributed architectures and other methods for 8 × 8 point UMRT 
Even though MRT computation [140] does not involve complex multiplications, redundancy is too 

high. In section 5.1 it is shown that UMRT coefficients can be obtained by removing all types of 

redundancy so that it require only the same memory as required for the original data. Table 6.6 
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shows the time of execution, in AMD Athlon™ 64 processor  running at 2.39 GHZ with a memory 

of 768 MB of RAM, for both non architecture methods and the architecture methods for the 

computation of 8 × 8 point UMRT. The discussion in section 6.1.3 holds true here also. Version I 

and II architectures perform better when compared to all other methods.  
 

Table 6.6: Computation time for 8 × 8 point UMRT by different methods  
 

Modified 
Direct method 

Visual 
method 

M spacing 
(using 

algorithm) 

M spacing 
(using 

equations) 

M spacing 
(using 

equations 
and without 
calculating 
Basic DFT 

coefficients) 

Version I Version II 

4.998ms 9.563ms 12.623ms 1.483ms 1.323ms 0.211ms 0.221ms 
 
6.2 FPGA implementation of the architectures for 2-D UMRT 
In the architecture models for the computation of 8 × 8 point DFT, UMRT coefficients are obtained 

at the output of the penultimate layer. All the three parallel distributed architectures are simulated 

and synthesized using Xilinx® 10.1 ISE where optimization selected is ‘balanced’ with a speed 

grade of -2. VHDL using behavioral modeling is used to describe the model. Target device selected 

is the Xilinx’s xc5vlx330-2-ff1760 of Virtex V family of FPGA. The device is so selected to have 

maximum number of I/O pins for fully parallel implementation of the architecture where all the 8 × 

8 data will be available in parallel at the input and the UMRT coefficients will be available in 

parallel at the output pins at the end of computation. Test benches are created and the results of 

computation are verified with the actual values and found to be exact. 

6.2.1 Fully parallel implementation of 2-D UMRT  
In the fully parallel implementation of 8 × 8 UMRT it is assumed that the data size is 7 bit and all 

the 8 × 8 data arrives at the input in parallel, as shown in fig. 6.5. The 64 UMRT coefficients, each 

of 8 bit size, are available in parallel at the output after computation. The massive parallelism 

available in FPGA is exploited. The implementation uses fully combinational logic.  
 

 

 
 

Fig. 6.5: Fully parallel 8 × 8 UMRT 
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The results of the synthesis of the three parallel distributed architectures are shown in table 6.7. It is 

noticed that the M spacing model performs slightly better when compared to the other two in terms 

of speed, where as it outperforms the other two in terms of the area. Moreover the version I and 

version II architectures are designed for N = 8 only and the algorithm cannot be extended to other 

values of N. The M spacing based architecture can be used for any even value of N. Table 6.7 also 

shows the synthesis results of 10  × 10 point UMRT. Two devices are required to implement the 

same due to the limitation in the maximum number of I/O buffers (1200) available in the target 

device selected. 
 

Table 6.7: Synthesis results of fully parallel version of 2-D UMRT  

8 × 8 UMRT 10 × 10 UMRT Performance factors 
Version I Version II M Spacing M spacing 

No. of 
adders/subtractors 

594 527 371 673 

Cell usage- BELs 12276 10544 8027 14436 
No. of SLICE LUTs 4584 4032 2920  
Max. combinational 

path delay 
10.848ns 10.848ns 10.618ns 25.211ns 

Logic delay 6.984ns 6.984ns 7.007ns 12.102ns 
Routing delay 3.864ns 3.864ns 3.611ns 13.109ns 

 

6.2.2 Different schemes of M spacing based architecture for 8 × 8 point UMRT  
DSP algorithms are used in various real time applications with different sampling rate 

requirements. The different sample rate and computation requirements necessitate different 

architecture considerations for implementation of DSP algorithms. Different schemes for M spacing 

based 8 × 8 point UMRT implemented in FPGA are illustrated below. 

6.2.2.1 Fully parallel implementation of four layer architecture 

In the M spacing based architecture synthesized in section 6.2.1, the number of computations in 

layer 3 is not same for all coefficients. The number of terms to be added, for UMRT coefficients in 

layer 3, when gcd(k1, k2, M) > 1 is gcd(k1, k2, M) times more than that required for the computation 

of UMRT coefficients with gcd(k1, k2, M) = 1. In order to make the number of computations of each 

UMRT coefficient in layer 3 the same, i.e., M - 1 additions, it is split into two as in section 4.2.3. 

The number of additions in the newly formed layer (i.e. layer 4) is gcd(k1, k2, M) -1. The number of 

computations in layer 4 is maximum for UMRT coefficients when gcd(k1, k2, M) = M and 

minimum when gcd(k1, k2, M) = 1. The synthesis results are as shown in table 6.8. Due to the 

increase in number of layers, both the hardware requirement and time of execution has increased 

when compared to the three layer architecture. But the model is quite suitable for pipelined 



142   Implementation of ParallelDistributed Architecture for the computaion of 2-D DFT & UMRT   

computation in which the computation of a new block of data starts before completing the 

computation of the previous data set. 
 

Table 6.8: Synthesis results of fully parallel, 3 & 4 layer M spacing 8 × 8 point UMRT  

Performance factors M Spacing 
(three layer) 

M spacing 
(four layer) 

No. of 
adders/subtractors 

371 393 

Cell usage- BELs 8027 8228 
No. of SLICE LUTs 2920 3047 
Max. combinational 

path delay 
10.618ns 11.073ns 

Logic delay 7.007ns 7.007ns 
Routing delay 3.611ns 4.066ns 

 

6.2.2.2 Semi parallel implementation 

In this type of implementation data are read in parallel. 8 × 8 UMRT coefficients are available in 

parallel at the output and the computation of first two layers is also done in parallel. But in layer 3 

all UMRT coefficients are computed concurrently, while computation of each UMRT coefficient is 

done sequentially. The table 6.9 shows synthesis result of the maximum combinational path delay 

(MCPD) in different scenarios. 
 

Table 6.9: MCPD for the computation of different combinations of UMRT coefficients 

Computation of UMRT coefficients involved Max. comb. path delay (ns) 
All N2 coefficients 18.645 

Coefficients when gcd(k1, k2, M) = 4 alone 18.590 
Coefficients when gcd(k1, k2, M) = 2 alone 13.285 
Coefficients when gcd(k1, k2, M) = 1 alone 10.215 
Coefficients when gcd(k1, k2, M) = 4 and 2 18.613 
Coefficients when gcd(k1, k2, M) = 2 and 1 13.432 

Coefficients when gcd(k1, k2, M) = 1 and UMRT(4, 2) & UMRT(4,6) 13.105 
Coefficients when gcd(k1, k2, M) = 1 and UMRT(0, 0) 14.929 
Coefficients when gcd(k1, k2, M) = 1 and UMRT(2, 0) 12.765 

 
In table 6.9, the UMRT coefficients when gcd(k1, k2, M) = 4 takes maximum time due to the M2 – 1 

computations required, while the computation of UMRT coefficients when  gcd(k1, k2, M) = 1 takes 

minimum time as there are only M – 1 computations for each UMRT coefficient. First two rows of 

the table 6.9 shows that apart from the logic delay, as the number of UMRT coefficients increases, 

routing delay also increases. 

6.2.2.3 Parallel distributed architecture with data in/out serially 

a) Single data in and single coefficient out  

 In this type of implementation data are read in serially one per clock cycle. This requires 64 

clock cycles. After all the data are available, the computations are done in parallel. The results of 
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the computations, i.e. the UMRT coefficients are send out one per clock cycle. The UMRT chip is 

shown in fig. 6.6 and the synthesis results are shown in table 6.10. The entire process requires 64 + 

64 = 128 clock cycles. 

 

 
Fig. 6.6: 8 × 8 UMRT chip with one data in (parallel implementation) 

 
b)  Two data in and single coefficient out 
 Two data at M spacing as in fig. 6.7 are read, during each clock cycle. The computations in 

parallel commence only after all the 8 × 8 data are available. The results are sent out serially one 

per clock cycle. Total number of clock cycles required for the entire operation is 32 + 64 = 96. The 

synthesis results are depicted in table 6.10. 

 

 
Fig. 6.7: 8 × 8 UMRT chip with two data in (parallel implementation) 

 
c) Four data in and single coefficient out 
 In fig. 6.8, four data at M spacing are read in one clock cycle. The number of clock cycle to 

read in all the data reduces to 16 at the expense of increase in the number of input pins. After all the 

data are available the computations are carried out in parallel and the results are sent out serially 

one per clock cycle. Total number of clock cycles required is 16 + 64 = 80. In the block diagram 

shown in fig. 6.9, the memory block is used to store the input data, which is a fully parallel one. 

The synthesis results are in table 6.10. 

 

 
Fig. 6.8: 8 × 8 UMRT chip with four data in (parallel implementation) 
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Fig. 6.9: Block diagram of the 8 × 8 UMRT chip with four data in 
 

 
Table 6.10: Synthesis results of fully parallel, three layer M spacing 8 × 8 point UMRT 

Performance factors Single Data in, single 
coefficient out 

Two Data in, single 
coefficient out 

Four Data in, single 
coefficient out 

Max. frequency 620.848 MHZ 510.347 MHZ 629.743 MHZ 
Cell usage: BELS 8317 8278 8260 

Flip flops 538 536 534 
IO Buffers 17 24 39 

Clock buffers 1 1 1 

6.2.2.4 Sequential implementation 

a) Four input serially and one result out sequentially 
In fig. 6.10, four data at M spacing are read in parallel per clock cycle and the computation 

of the pattern C, D, E and F corresponding to the above data are also done and stored in the 
registers. 16 clock cycles are required to read in the 8 × 8 data. After all the data are read in, the 
computation of UMRT is carried out. First UMRT coefficient is send out in the 17th clock cycle. 64 
UMRT coefficients are sent out sequentially which takes 64 clock cycles. 80 clock cycles are 
required for the entire results to be available. The maximum frequency of operation is 581.311 
MHZ. This frequency mainly depends on the maximum computational delay in any of the clock 
cycles. The maximum time of computation required for UMRT coefficients is when gcd(k1, k2, M) 
= 4 i.e., in the computation of UMRT(0, 0), UMRT(4, 0), UMRT(0, 4) and UMRT(4, 4) where 
there are 7 additions. The synthesis results are shown in table 6.11. This architecture requires that 
the data should be given in a definite order. 

 
 

Fig. 6.10: 8 × 8 UMRT chip with four Data in (sequential implementation) 
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b) Two input serially and one UMRT out sequentially 
In this scheme two data are read at a time in each clock cycle and the corresponding A and 

B values are computed, as in fig. 6.11. After reading all the data and computing A and B, the 

computation of C, D, E and F commences. One value each of C, D, E and F are computed per clock 

cycles and hence require 16 clock cycles to compute. In the 49th clock cycle first UMRT coefficient 

is computed and the result is sent out through the output pins. In the subsequent clock cycle, UMRT 

coefficients are computed and sent out sequentially. So the entire process requires 32 + 16 + 64 = 

112 clock cycles.  

 
 

Fig. 6.11: 8 × 8 UMRT chip with two Data in and single UMRT out serially 
 

Table 6.11: Synthesis results of 8 × 8 UMRT chips shown in fig. 6.10 and 6.11 
 

Performance factors Four Data in, single 
coefficient out 

Two Data in, single 
coefficient out 

Max. frequency 581.311 MHZ 631.532 MHZ 
Cell usage: BELS 2375 3725 

Flip flops 530 1044 
IO Buffers 39 25 

Clock buffers 16 16 
 

6.2.2 Comparison of different FPGA implementations 
FPGA implementation of version I, II and three layer M spacing based method for 8 × 8 UMRT 
computation, as in section 6.2.1, shows that the M spacing method is better in terms of time and 
space as it require less number of adders. 

Routing delay of 8 × 8 UMRT and 10 × 10 UMRT using M spacing architectures in section 
6.2.1 is 3.611ns and 13.109ns respectively. The increase in routing delay for 10 × 10 UMRT is due 
to the increase in hardware complexity as it requires an additional 302 adders. Moreover the 
generated hardware is a highly interconnected one as each output of layer 2 in fig. 5.6 is required 
for computing several UMRT coefficients. This also contributes to the routing delay. 

The cell usage of fully parallel implementation of 8 × 8 UMRT using four layer M spacing 
parallel distributed architecture in section 6.2.1 is 8027, whereas that of sequential implementation 
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with four data input, as in section 6.2.2.4, requires only 2375. The number of external I/O data pins 
required for the fully parallel version is 960 whereas that of the sequential one is 36. However, the 
sequential version requires data storage and there will be problems connected with clocks. The 
entire computation in fully parallel version takes only 10.618ns, whereas the sequential version 
require 80 clock cycles with a clock frequency of 581 MHZ. Hence the selection of either of the 
above architecture is a trade off between time and space. Both the time and space is high in the 
implementation developed in 6.2.2.2, since the input/output are sequential and the computations are 
in parallel. 
 

6.3 Conclusion 
The 2-D DFT/UMRT computation using M spacing based method performs better when compared 
to the existing methods as well as the other methods developed namely visual method and Modified 
direct method. Table 6.4 suggests that the M spacing based method is more suitable for 2-D DFT 
computation when N has more number of divisors, whereas 2-D UMRT computes faster for N/2 
prime. FPGA implementations of 8 × 8 UMRT using different methods show that the M spacing 
based method has the potential to be used for high speed real time applications. The different 
schemes implemented for M spacing based method show its flexibility in implementation to suit 
different applications. It is the trade off between time and space, which determines the selection of 
proper scheme for the application.  



 

 
 
 
 

CHAPTER 7 

DISCUSSIONS AND CONCLUSIONS 

 
Visual representation of 2-D DFT coefficients in terms of 2 × 2 data is presented in chapter 3 and 

the same is analyzed to develop an algorithm to compute 2-D DFT. 

 
7.1 Visual representation 

A visual representation of DFT coefficients based on 2 × 2 DFT was developed in [88] for ease of 

analysis of 2-D signals in the frequency domain. The DFT coefficients were represented visually 

using a set of primitive symbols derived from the relation between 2 × 2 data and 2 × 2 DFT 

coefficients.  This gives a visual representation of the relation between N × N point DFT and 2 × 2 

point DFTs. A visual representation based on 2 × 2 data, presented in chapter 3 on the other hand, 

gives a direct relationship between time domain data and the frequency domain representation in 

terms of visuals. These visuals are the representatives of data points involved in the computation of 

DFT coefficients. Thus the frequency domain analysis of 2-D signals using these visuals is possible 

without computing the DFT coefficients, there by reducing the computational requirement 

significantly. 

The important features of the visual representation based on 2 × 2 data are discussed below. 

7.1.1 The software 
The visual representation of 2-D DFT coefficients in terms of 2 × 2 data for any even value of N 

can be constructed using the software developed in VC++.  If the visual representation of a few 

selected DFT coefficients is only required, the software allows the user to indicate the desired 

frequency index and obtain the visual output.  Similarly if only a selected few p
kkY
2,1
 are required, by 

indicating the desired frequency and phase, the user will obtain the desired visual representation. 

7.1.2 Computation 
The visual representation is data independent and hence can be used as a lookup table to compute 

the DFT coefficient of any index ( 1k , 2k ).  The position and nature of the data involved in 
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computing ,1 2

p
k kY  of any DFT coefficient can be analyzed.  The patterns available in the selected few 

DFT coefficients can be analyzed easily and can be used to generate simple and efficient schemes 

for its computation. 

7.1.3 Exploitation of redundancy 
Redundancy in computation present at different levels has been analyzed using the visual 

representation, which enables to reduce the computational complexity.  E.g., p
kkY
2,1
 of many DFT 

coefficients are either same or sign reversed form of some other DFT coefficients.  Hence it is 

enough to compute p
kkY
2,1
 of one among such DFT coefficients named basic DFT coefficient and 

other coefficients could be derived. The fig. 3.5 shows that the number of basic DFT coefficient is 

high when the number of dm is more. It is more efficient when N/2 is prime, where nb is only 2N + 

8. 

Section 5.1 shows that, when N is not a power of 2, many p
kkY
2,1
of several DFT coefficients 

need not be computed due to derived redundancy. There is no derived redundancy when N is a 

power of 2. The derived redundancy is eliminated to obtain UMRT, which can be used as an 

alternate way of representing signals. From table 5.13, the derived redundancy is high when N has 

more number of divisors. The number of real additions is low when N/2 is prime as in table 6.4. 

Hence UMRT will be most efficient when N/2 is prime. 

In section 3.2.3.1, it is observed that one cell is enough to represent the coefficients in group 

1 and one row/column for group 2 and 3 coefficients.  Also deduced that the visual representation 

of p
kkY
2,1
 for p = 0 if available, the visual representation for other values of p could be obtained by 

circular shift of the pattern. Hence the visual representation of p
kkY
2,1
 for any one value of p is enough 

to represent the DFT coefficient. So flexibility in the visual representation scheme can be provided 

to effectively utilize the memory without affecting the speed. E.g., if there is memory constraint, 

storing of the visual representation can be done by eliminating the redundancy at all levels, so that 

at the time of retrieval, it can be derived by proper circular shift of the identical row/column.  Thus 

the visual representation of unique cells of the unique p
kkY
2,1
 need be stored and others could be 

derived. 

It is seen in section 3.2.4 that the visual representation of p
kkY
2,1
 corresponding to lower orders 

of N are contained in higher orders. The redundancy in visual representation of p
kkY
2,1
 between 

different N’s is illustrated using theorem 3.4 and 3.5. Thus it is enough to store the visual 
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representation of few higher orders of N so that the visual representation of all p
kkY
2,1
 of lower orders 

of N if required can be obtained by visual manipulation, using the relation stated in the theorems. 

7.2 Computation of 2-D DFT 
Theorem 3.1 shows that the existence of p

kkY
2,1
 depends on the divisors, dm, of M and that the 

number of complex multiplications for a DFT coefficient is not exactly N/2, but less than that 

depending on the divisors. The number of complex multiplications for a DFT coefficient is M/dm – 

1. Thus the number of complex multiplications is less for N  with more number of divisors. 

Due to the redundancy present among p
kkY
2,1
of several DFT coefficients, p

kkY
2,1
 of a basic set of 

DFT coefficients need be computed and others could be derived.  The mathematical relation 

developed in section 3.2.5 for the number of basic DFT coefficients show that, it is low when N/2 is 

prime and high when N is having more number of divisors.  The algorithm presented in section 

3.2.6 gives a procedure for computing the index values of the basic set of DFT coefficients.  The 2-

D DFT computation can be simplified using the basic DFT coefficients identified. 

The patterns in the basic DFT coefficients have been analyzed to derive an algorithm for its 

computation. Using the visual approach, entire 2-D DFT coefficients, for any even N, could be 

computed by permutation over p.  Computation of selected few DFT coefficients is also possible.  

The visual approach for 2-D DFT computation outperforms the conventional DFT computation, 

modified DFT and closed form method in terms of speed as seen in figure 6.1.  

 
7.3 Architecture 
Parallel Distributed architecture developed in [71] is suitable for 2-D DFT for a particular order N 

such that ((N))4 = 2. Using a similar approach, Version I and Version II parallel distributed 

architecture for the computation of 8 × 8 point DFT is developed based on the analysis of visual 

representation in terms of 2 × 2 DFT.  A parallel distributed approach is employed in which the 

computations are in terms of real additions.  There are 4 layers of computational units.  The last 

layer alone involves complex operations that too are scaling by the pre-computed twiddle factor 

values. The architecture has a highly parallel structure and can be employed, since most of the 

image processing applications use the standard 8 × 8 size. The architectures are developed as a step 

towards extending the model to implement 2-D DFT for ((N))4 = 0.  A generalized architecture can 

then be derived for an even N.  But the primitive symbols combination for group 2 and 3 

coefficients differs for ((N))4 = 2 and N = 8.  There is significant difference in the architecture 

developed with that of [71] and hence a generalized architecture based on the above approach is not 

feasible. 
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The analysis of visual representation based on 2 × 2 data lead to the development of M 

spaced architecture for 2-D DFT computation.  The model is capable of implementing 2-D DFT of 

any even N.  2-D DFT computation can be done for odd values of N using the M spacing method, 

by padding one row and column with zero to make it even. 

There are 4 layers of computational units in the M spacing based architecture.  The 

computations in the processing layers are in terms of real additions and hence the speed of 

operations is high.  Scaling by the twiddle factors in the last layer is the only complex operations 

involved in this architecture. Redundancy of computation at various levels has been eliminated. The 

number of complex multiplication and addition are same for version I, II and M spacing based 

architectures, for an 8 × 8 data matrix. However the number of real addition are 592, 504 and 416 

for version I, II and M spacing based 8 × 8 point DFT computation respectively.  

 
7.4 2-D UMRT 

The 2- D UMRT coefficients for any even N are unique, numerically compact and require only the 

same memory space as required for the original image.  If the signal can be represented in terms of 

2-D UMRT coefficients, then the only computation required will be the real additions. In versions I 

and II architectures shown in fig. 4.2 & 4.4, for the computation of 8 × 8 point DFT, UMRT 

coefficients are available at the output of layer 3, except for the group 1 coefficients. One real 

addition performed for the group 1 coefficients in the fourth layer has to be accommodated in the 

third layer.  So the layer 3 has to be modified slightly. The computations are in terms of real 

addition only.  So the speed of operation is high and memory requirement is low.  In the four layer 

M spacing based architecture shown in fig. 4.8, which compute the N × N point DFT, where N is 

even, MRT coefficients corresponding to the basic DFT coefficients are available at the output of 

layer 3.  For the computation of 2-D UMRT, the fourth layer can be fully avoided.  The third layer 

is modified in fig. 5.6 so that we need compute only UMRT coefficients rather than computing all 
p

kkY
2,1
 corresponding to the basic DFT coefficients. There is reduction in computation for layer 3, as 

shown in table 6.4.  Simulation results in MALAB®, section 6.1.2, shows that M spacing based 2-D 

UMRT is better in terms of speed when compared to the existing methods and the visual approach.   

 
7.5 FPGA implementation 

The three fully parallel distributed architecture for the computation of 8 × 8 point UMRT, namely 

version I, version II and M spacing method, are implemented in FPGA using Xilinx®.  The 

synthesized results show that the M spacing based architecture performs better when compared to 

the other two architectures in terms of area and speed. Moreover it is a generalized architecture. 
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FPGA can be reconfigured to compute 2-D UMRT for the data matrix of any even N.  Different 

schemes of M spacing based architectures synthesized in FPGA reveal that it can be modified to 

meet the different constraints such as area and speed. 

 
7.6 Suggestions for further work in the field 

7.6.1 Visual representation 
1. Visual representation of DFT coefficients can be made more interactive by incorporating the 

result of the analysis. E.g., the software may be modified to display the basic DFT coefficients, 

of a data matrix of size N, having a particular value of gcd(k1, k2, M). Thus by integrating the 

visual and analytical methods, only the relevant visuals need be handled for further analysis. 

2. The software can be modified to highlight the patterns or features available in the selected 

coefficients. E.g., in applications like texture analysis where a few DFT coefficients need be 

computed, the identification of similar patterns in such coefficients can be used to derive simple 

computational techniques for hardware implementation. 

3. Instead of using the primitive symbols based on 2 × 2 data, the data in an MRT coefficient can be 

represented using “▫” for data to be added and “▪” if the corresponding data is to be subtracted. 

Absence of a symbol indicates that the data in the corresponding position is not involved in the 

computation. This type of representation scheme if employed can be used to obtain the visual 

representation of a DFT/MRT coefficient from that of a known coefficient by visual 

manipulation. In cases where memory is a constraint, the visual representation of a selected few 

coefficients need be stored, in the form of one cell or one row/column of cells while that of the 

other coefficients, if required, can be obtained by visual manipulation. 

4. In section 3.2.4, it is shown that the visual representation of p
kkY
2,1
corresponding to lower orders is 

contained in higher orders. Similarly many of the visual representation of p
kkY
2,1
 of higher orders 

can be constructed using the visual representation of lower orders. Analysis of the visual 

representation of different N can be carried out to obtain all p
kkY
2,1
 of higher orders from lower 

orders by visual manipulation. This will enable to compute 2-D DFT of higher orders using the 

hardware, which compute lower orders. 

7.6.2 Algorithm 
1. 2-D signal representation using basic DFT coefficients is possible and hence can be used to form 

a variable length transform. The length of the transform is 2N + 8 for N/2 prime and 3N – 2 

when N is a power of 2. The properties of the variable length transform can be analyzed. 
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2. Algorithm for computing the inverse of the transform formed from the basic DFT coefficients 

can be developed. 

3. A suitable algorithm is to be developed which will compute 2-D DFT of higher ordes, if the 

visual representation of lower orders are available and vice-versa. 

4. 2-D IUMRT algorithm is to be developed. 

5. The placement scheme satisfies the linearity property. It does not satisfy the matrix properties 

such as transpose and hence the possibility of developing a suitable scheme for placement of 

UMRT coefficients can be explored. 

6. The possibility of obtaining a direct mapping between data and UMRT coefficients is to be 

explored. 

7. During the analysis of derived redundancy in section 5.1, ,1 2

p
k kY  of a DFT coefficient is combined 

to obtain ,1 2

p
k kY of some other DFT coefficient. Relation between the frequency indices of these 

DFT coefficients can be analyzed. 

7.6.3 Architecture 
1. Pipelined techniques can be incorporated in the architecture to improve performance. E.g., the 

number of computations for UMRT coefficients depends on gcd(k1, k2, M). In a fully parallel 

implementation, this is a bottle neck for coefficients with higher value of gcd(k1, k2, M). This 

can be minimized by employing parallel/pipeline technique. 

2. 8 × 8 point DFT computation using version I and II parallel distributed architecture can be 

implemented in FPGA.  

3. N × N DFT computation using four layer and five layer M spacing parallel distributed 

architectures can be implemented in FPGA. 

4. An architecture is to be developed which will compute 2-D DFT/UMRT of higher orders using 

that of lower orders and vice-versa. 

5. Parallel distributed architecture for the computation of 2-D IDFT/IUMRT can be developed. 

6. Parallel distributed architecture incorporating the duality property of 2-D UMRT/IUMRT is to be 

developed. 

7. A suitable scheme to reconfigure FPGA, multiple times during computation, for different size of 

the data matrix as per the application demands.



 

 
 

APPENDIX A 

VISUAL REPRESENTATION OF DFT COEFFICIENTS BASED ON 2 × 2 DFT 

A.1 Primitive symbols and its Mnemonics 
 

 
Fig. A.1: List of primitive symbols based on 2 × 2 DFT 

 
In order to understand picture in general the following rule may be applied: 

• A white rectangle implies that the DFT coefficient at that point is to be added. 
• A black rectangle implies that the DFT coefficient at that point is to be subtracted. 
• Thin lines indicate that the nodes involved are to be added. 
• Bold lines indicate that the nodes involved are to be subtracted. 

The meaning of a few primitive symbols and the corresponding mnemonics used in the visual 
representation are as below: 
1. Symbol named LAP (Left Above Positive) indicates that the DFT coefficients on the (0, 0)th  

position of the 2 × 2 DFT is taken with a positive sign and rest of the data are not considered. 
Similarly, RAP (right above positive), RBP (right below positive), LBP (left below positive) 
indicates consideration of DFT coefficients at positions (0, 1), (1, 1) and (1, 0) respectively. It is 
to be noted that in the visual representation a hollow square symbol represents single positive 
DFT point. 

2. Symbol named DP (diagonal positive) indicates that the two DFT coefficients on the diagonal of 
the 2 × 2 DFT matrix i.e. at position (0, 0) and (1, 1) are taken with a positive sign and the rest are 
not considered. A thin diagonal line is shown in the visual representation. Similarly CP (cross-
diagonal positive) considers DFT points on the cross- diagonal i.e. at position (0, 1) and (1, 0). A 
thin cross-diagonal line shows it. 
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A.2 Visual representation of 8 × 8 DFT based on 2 × 2 DFT 

 
Fig. A.2: Visual representation based on 2 × 2 DFT for N = 8 
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Fig. A.2: Visual representation of DFT coefficients for N = 8 (contd…) 

 

A.3 Matrix showing the grouping of DFT coefficients for N = 8 
 

  Y0,0 Y0,1 Y0,2 Y0,3 Y0,4 Y0,5      Y0,6  Y0,7  

  Y1,0 Y1,1 Y1,2 Y1,3 Y1,4 Y1,5 Y1,6  Y1,7 

           Y = Y2,0 Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 Y2,6 Y2,7 

  Y3,0 Y3,1 Y3,2 Y3,3 Y3,4 Y3,5 Y3,6 Y3,7 

  Y4,0 Y4,1 Y4,2 Y4,3 Y4,4 Y4,5 Y4,6 Y4,7 

  Y5,0 Y5,1 Y5,2 Y5,3 Y5,4 Y5,5 Y5,6 Y5,7 

  Y6,0 Y6,1 Y6,2 Y6,3 Y6,4 Y6,5 Y6,6 Y6,7 

  Y7,0 Y7,1 Y7,2 Y7,3 Y7,4 Y7,5 Y7,6 Y7,7 
 
 

Fig. A.3: Matrix showing the grouping of DFT coefficients for N = 8 
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APPENDIX B 

 
 

B.1 Greatest Common Divisor (gcd) 
Definition: Let , ,a b c∈Z. If 0a ≠  or 0,b ≠  gcd( , )a b  is defined to be the largest integer d such 

that d | a and d | b and is denoted as g( , )a b . 

gcd properties: 

1. If e | a  then –e | a.. 

2. If 0a ≠ , then the largest positive integer that divides a is .a  

3. ( ) ( )gcd , gcd , .a b a b=  

4. ( ) ( )gcd , gcd , .a b b a=  

5. If 0a ≠  or 0b ≠ , then  ( )gcd ,a b  exists and satisfies 

  ( ) { }0 gcd , min , .a b a b< ≤  

6. ( ) ( )gcd , , gcd(gcd , , ).a b c a b c=  

B.2 Linear Diophantine Equation 
Diophantine equations are equations that require integer solutions. The linear Diophantine 

equation a.x + b.y = c has a solution only if gcd( , )a b divides c. In that case, there are infinite 

number of solutions given by: x = x0 + (b / gcd( , )a b )t, y = y0 – (a / gcd( , )a b )t, where (x0,y0) is a 

solution, t∈Z. 

B.3 Bezout’s Lemma: 
For all integers a and b there exist integers s and t such that 

gcd( , )a b  = s.a + t.b 

B.4 Theorems on Linear Congruence  
Theorem B.4.1: 

If  a.c ≡  ((b.c))m and gcd(c, m) = g, then a ≡  ((b))m/g 
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Theorem B.4.2:  

The linear congruence a.x + b.y ≡  ((c))m has solutions if and only if g | c where g = 
gcd(a, b, m). 
Theorem B.4.3: 

If gcd(a, m) = 1 or gcd(b, m) = 1, then the linear congruence a.x + b.y ≡  ((c))m has 
exactly m incongruent solutions. 
Theorem B.4.4: 

The linear congruence a.x + b.y ≡  ((c))m has exactly gm incongruent solutions, where g = 
gcd(a, b, m), provided g | c. 

B.5 Principle of Inclusion Exclusion 
If A1, A2, …, An are finite set, then 

1
1

1 , :1 , , , :11
... ( 1) ...

n n
n

i i i j i j k n
i i j i j n i j k i j k ni

A A A A A A A A A−

= ≤ < ≤ ≤ < < ≤=
= − + − + −∑ ∑ ∑U I I I I I , 

where A  denotes the cardinality of the set A. 
   
B.6 Euclidean Algorithm, Extended Euclidean Algorithm. 
The Euclidean algorithm is used to determine the gcd of any two integers. 
Let ,a b∈Z be such that 0.a b≥ >  Set 0r a=  and 1r b= . Suppose that  

  

0 1 1 2 2 1

1 2 2 3 3 2

2 1 1 1

1

,0
,0

.....
,0

.
n n n n n n

n n n

r r q r r r
r r q r r r

r r q r r r
r r q

− − − −

−

= + ≤ <

= + ≤ <

= + ≤ <

=

 

Then, ( )gcd , na b r= =  (the last non-zero remainder). 

B.7 Co-prime integer. 
Definition: A co-prime integer of N is a positive integer less than or equal to a number N which 
is also relatively prime to N, where 1 is counted as being relatively prime to all numbers. 
B.8 Euler Totient Function. 
Definition: The Euler totient function ( )Nφ , also called  totient function, is defined as the 

number of positive integers less than N, that are co-prime to (i.e., do not contain any factor other 
than 1 in common with) N, where 1 is counted as being co-prime to all numbers. The totient 
function ( )Nϕ  can be simply defined as the number of co-prime integers of N. E.g., ( )24 8ϕ = . 

It is mathematically expressed as 

|

1( ) 1
r N

N N
r

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∏ϕ  
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Computation of layer 3 for N = 4, 6, 10 and 12. p

kkY
21 , /MRT coefficients of basic DFT coefficients 

are computed. 

C.1  Layer 3 computations for N = 4 
 

0
0,0Y  = C(0,0)+C(0,1)+C(1,0)+C(1,1)  0

0,2Y  = C(0,0)+C(0,1)-C(1,0)-C(1,1) 

0
2,0Y  = C(0,0)-C(0,1)+C(1,0)-C(1,1)  0

2,2Y  = C(0,0)-C(0,1)-C(1,0)+C(1,1) 

0
0,1Y  = D(0,0)+D(0,1)    1

0,1Y  = D(1,0)+D(1,1) 

0
2,1Y  = D(0,0)-D(0,1)    1

2,1Y  = D(1,0)-D(1,1) 

0
1,0Y  = E(0,0)+E(1,0)    1

1,0Y  = E(0,1)+E(1,1) 

0
1,2Y  = E(0,0)-E(1,0)    1

1,2Y  = E(0,1)-E(1,1) 

0
1,1Y  = F(0,0)-F(1,1)    1

1,1Y  = F(0,1)+F(1,0) 

0
1,3Y  = F(0,0)+F(1,1)    1

1,3Y  = F(0,1)-F(1,0) 

C.2  Layer 3 computations for N = 6 
 

0
0,0Y  = C(0,0)+C(0,1)+C(0,2)+C(1,0)+C(1,1)+C(1,2)+C(2,0)+C(2,1)+C(2,2) 

0
0,3Y  = D(0,0)+D(0,1)+D(0,2)-D(1,0)-D(1,1)-D(1,2)+D(2,0)+D(2,1)+D(2,2) 

0
3,0Y  = E(0,0)-E(0,1)+E(0,2)+E(1,0)-E(1,1)+E(1,2)+E(2,0)-E(2,1)+E(2,2) 

0
3,3Y  = F(0,0)-F(0,1)+F(0,2)-F(1,0)+F(1,1)-F(1,2)+F(2,0)-F(2,1)+F(2,2) 

 
0
0,1Y  = D(0,0)+D(0,1)+D(0,2)   1

0,1Y  = D(1,0)+D(1,1)+D(1,2) 

2
0,1Y  = D(2,0)+D(2,1)+D(2,2)   0

0,2Y  = C(0,0)+C(0,1)+C(0,2) 

1
0,2Y  = -C(2,0)-C(2,1)-C(2,2)   2

0,2Y  = C(1,0)+C(1,1)+C(1,2) 

0
1,0Y  = E(0,0)+E(1,0)+E(2,0)   1

1,0Y  = E(0,1)+E(1,1)+E(2,1) 

2
1,0Y  = E(0,2)+E(1,2)+E(2,2)   0

1,1Y  = F(0,0)-F(1,2)-F(2,1) 

1
1,1Y  = F(0,1)+F(1,0)-F92,2)   2

1,1Y  = F(0,2)+F(1,1)+F(2,0) 
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0
1,2Y  = E(0,0)-E(1,1)+E(2,2)   1

1,2Y  = E(0,1)-E(1,2)-E(2,0) 

2
1,2Y  = E(0,2)+E(1,0)-E(2,1)   0

1,3Y  = F(0,0)-F(1,0)+F(2,0) 

1
1,3Y  = F(0,1)-F(1,1)+F(2,1)   2

1,3Y  = F(0,2)-F(1,2)+F(2,2) 

0
1,4Y  = E(0,0)+E(1,2)-E(2,1)   1

1,4Y  = E(0,1)-E(1,0)-E(2,2) 

2
1,4Y  = E(0,2)-E(1,1)+E(2,0)   0

1,5Y  = F(0,0)+F(1,1)+F(2,2) 

1
1,5Y  = F(0,1)+F(1,2)-F(2,0)   2

1,5Y  = F(0,2)-F(1,0)-F(2,1) 

0
2,0Y  = C(0,0)+C(1,0)+C(2,0)   1

2,0Y  = -C(0,2)-C(1,2)-C(2,2) 

2
2,0Y  = C(0,1)+C(1,1)+C(2,1)   0

2,1Y  = D(0,0)-D(1,1)+D(2,2) 

1
2,1Y  = -D(0,2)+D(1,0)-D(2,1)   2

1,2Y  = D(0,1)-D(1,2)+D(2,0) 

0
2,2Y  = C(0,0)+C(1,2)+C(2,1)   1

2,2Y  = -C(0,2)-C(1,1)-C(2,0) 

2
2,2Y  = C(0,1)+C(1,0)+C(2,2)   0

2,3Y  = D(0,0)-D(1,0)+D(2,0) 

1
2,3Y  = -D(0,2)+D(1,2)-D(2,2)   2

2,3Y  = D(0,1)-D(1,1)+D(2,1) 

0
2,4Y  = C(0,0)+C(1,1)+C(2,2)   1

2,4Y  = -C(0,2)-C(1,0)-C(2,1) 

2
2,4Y  = C(0,1)+C(1,2)+C(2,0)   0

2,5Y  = D(0,0)-D(1,2)+D(2,1) 

1
2,5Y  = -D(0,2)+D(1,1)-D(2,0)   2

2,5Y  = D(0,1)-D(1,0)+D(2,2) 

0
3,1Y  = F(0,0)-F(0,1)+F(0,2)   1

3,1Y  = F(1,0)-F(1,1)+F(1,2) 

2
3,1Y  = F(2,0)-F(2,1)+F(2,2)   0

3,2Y  = E(0,0)-E(0,1)+E(0,2) 

1
3,2Y  = -E(2,0)+E(2,1)-E(2,2)   2

3,2Y  = E(1,0)-E(1,1)+E(1,2) 

C.3  Layer 3 computations for N = 10 
 

0
0,0Y  = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+C(2,0)+ 

C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(3,0)+C(3,1)+C(3,2)+C(3,3)+C(3,4)+C(4,0)+C(4,1)+C(4,

2)+ C(4,3)+C(4,4) 
0
0,5Y  = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4)-D(1,0)-D(1,1)-D(1,2)-D(1,3)-D(1,4) + D(2,0) + 

D(2,1) + D(2,2)+D(2,3)+D(2,4)-D(3,0)-D(3,1)-D(3,2)-D(3,3)-D(3,4) + D(4,0) + D(4,1) + 

D(4,2) + D(4,3) + D(4,4) 
0
5,0Y  = E(0,0)-E(0,1)+E(0,2)-E(0,3)+E(0,4)+E(1,0)-E(1,1)+E(1,2)-E(1,3)+E(1,4)+E(2,0)-E(2,1) 

+E(2,2)-E(2,3)+E(2,4)+E(3,0)-E(3,1)+E(3,2)-E(3,3)+E(3,4)+E(4,0)-E(4,1)+E(4,2)-

E(4,3)+E(4,4) 
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0
5,5Y  = F(0,0)-F(0,1)+F(0,2)-F(0,3)+F(0,4)-F(1,0)+F(1,1)-F(1,2)+F(1,3)-F(1,4)+F(2,0)-F(2,1) 

+F(2,2)-F(2,3)+F(2,4)-F(3,0)+F(3,1)-F(3,2)+F(3,3)-F(3,4)+F(4,0)-F(4,1)+F(4,2)-

F(4,3)+F(4,4) 
 

0
0,1Y  = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4) 1

0,1Y  = D(1,0)+D(1,1)+D(1,2)+D(1,3)+D(1,4) 

2
0,1Y  = D(2,0)+D(2,1)+D(2,2)+D(2,3)+D(2,4) 3

0,1Y  = D(3,0)+D(3,1)+D(3,2)+D(3,3)+D(3,4) 

4
0,1Y  = D(4,0)+D(4,1)+D(4,2)+D(4,3)+D(4,4) 0

0,2Y  = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4) 

1
0,2Y  = -C(3,0)-C(3,1)-C(3,2)-C(3,3)-C(3,4) 2

0,2Y  = C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4) 

3
0,2Y  = -C(4,0)-C(4,1)-C(4,2)-C(4,3)-C(4,4) 4

0,2Y  = C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4) 

0
1,0Y  = E(0,0)+E(1,0)+E(2,0)+E(3,0)+E(4,0) 1

1,0Y  = E(0,1)+E(1,1)+E(2,1)+E(3,1)+E(4,1) 

2
1,0Y  = E(0,2)+E(1,2)+E(2,2)+E(3,2)+E(4,2) 3

1,0Y  = E(0,3)+E(1,3)+E(2,3)+E(3,3)+E(4,3) 

4
1,0Y  = E(0,4)+E(1,4)+E(2,4)+E(3,4)+E(4,4) 0

1,1Y  = F(0,0)-F(1,4)-F(2,3)-F3,2)-F(4,1) 

1
1,1Y  = F(0,1)+F(1,0)-F(2,4)-F(3,3)-F(4,2)  2

1,1Y  = F(0,2)+F(1,1)+(2,0)-F(3,4)-F(4,3) 

3
1,1Y  = F(0,3)+F(1,2)+F(2,1)+F(3,0)-F(4,4) 4

1,1Y  = F(0,4)+F(1,3)+F(2,2)+F(3,1)+F(4,0) 

0
1,2Y  = E(0,0)-E(1,3)-E(2,1)+E(3,4)+E(4,2) 1

1,2Y  = E(0,1)-E(1,4)-E(2,2)-E(3,0)+E(4,3) 

2
1,2Y  = E(0,2)+E(1,0)-E(2,3)-E(3,1)+E(4,4) 3

1,2Y  = E(0,4)+E(1,2)+E(2,0)-E(3,3)-E(4,1) 

4
1,2Y  = E(0,4)+E(1,2)+E(2,0)-E(3,3)-E(4,1) 0

1,3Y  = F(0,0)-F(1,2)+F(2,4)+F(3,1)-F(4,3) 

1
1,3Y  = F(0,1)-F(1,3)-F(2,0)+F(3,2)-F(4,4)  2

1,3Y  = F(0,2)-F(1,4)-F(2,1)+F(3,3)+F(4,0) 

3
1,3Y  = F(0,3)+F(1,0)-F(2,2)+F(3,4)+F(4,1) 4

1,3Y  = F(0,4)+F(1,1)-F(2,3)-F(3,0)+F(4,2) 

0
1,4Y  = E(0,0)-E(1,1)+E(2,2)-E(3,3)+E(4,4) 1

1,4Y  = E(0,1)-E(1,2)+E(2,3)-E(3,4)-E(4,0) 

2
1,4Y  = E(0,2)-E(1,3)+E(2,4)+E(3,0)-E(4,1) 3

4,1Y  = E(0,3)-E(1,4)-E(2,0)+E(3,1)-E(4,2) 

4
1,4Y  = E(0,4)+E(1,0)-E(2,1)+E(3,2)-E(4,3) 0

1,5Y  = F(0,0)-F(1,0)+F(2,0)-F(3,0)+F(4,0) 

1
1,5Y  = F(0,1)-F(1,1)+F(2,1)-F(3,1)+F(4,1) 2

1,5Y  = F(0,2)-F(1,2)+F(2,2)-F(3,2)+F(4,2) 

3
1,5Y  = F(0,3)-F(1,3)+F(2,3)-F(3,3)+F(4,3) 4

1,5Y  = F(0,4)-F(1,4)+F(2,4)-F(3,4)+F(4,4) 

0
6,1Y  = E(0,0+E(1,4)-E(2,3)+E(3,2)-E(4,1) 1

1,6Y  = E(0,1)-E(1,0)-E(2,4)-E(3,3)+E(4,2) 

2
1,6Y  = E(0,2)-E(1,1)-E(2,0)+E(3,4)-E(4,3) 3

1,6Y  = E(0,3)-E(1,2)+E(2,1)-E(3,0)-E(4,4) 

4
1,6Y  = E(0,4)-E(1,3)+E(2,2)-E(3,1)+E(4,0) 0

7,1Y  = F(0,0)+F(1,3)-F(2,1)-F(3,4)+F(4,2) 

1
1,7Y  = F(0,1)+F(1,4)-F(2,2)+F(3,0)+F(4,3) 2

1,7Y  = F(0,2)-F(1,00-F(2,3)+F(3,1)+F(4,4) 
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3
1,7Y  = F(0,3)-F(1,1)-F(2,4)+F(3,2)-F(4,0)  4

1,7Y  = F(0,4)-F(1,2)+F(2,0)+F(3,3)-F(4,1) 

0
8,1Y  = E(0,0)+E(1,2)+E(2,4)-E(3,1)-E(4,3) 1

8,1Y  = E(0,1)+E(1,3)-E(2,0)-E(3,2)-E(4,4) 

2
8,1Y  = E(0,2)+E(1,4)-E(2,1)-E(3,3)+E(4,0) 3

8,1Y  = E(0,3)-E(1,0)-E(2,2)-E(3,4)+E(4,1) 

4
8,1Y  = E(0,4)-E(1,1)-E(2,3)+E(3,0)+E(4,2) 0

9,1Y  = F(0,0)+F(1,1)+F(2,2)+F(3,3)+F(4,4) 

1
9,1Y  = F(0,1)+F(1,2)+F(2,3)+F(3,4)-F(4,0) 2

9,1Y  = F(0,2)+F(1,3)+F(2,4)-F(3,0)-F(4,1) 

3
9,1Y  = F(0,3)+F(1,4)-F(2,0)-F(3,1)-F(4,2)  4

9,1Y  = F(0,4)-F(1,0)-F(2,1)-F(3,2)-F(4,3) 

0
2,0Y  = C(0,0)+ C(1,0)+C(2,0)+C(3,0)+C(4,0) 1

2,0Y  = -C(0,3)- C(1,3)-C(2,3)-C(3,3)-C(4,0) 

2
2,0Y  = C(0,1)+ C(1,1)+C(2,1)+C(3,1)+C(4,1) 3

0,2Y  = -C(0,4)- C(1,4)-C(2,4)-C(3,4)-C(4,4) 

4
0,2Y  = C(0,2)+ C(1,2)+C(2,2)+C(3,2)+C(4,2) 0

2,1Y  = D(0,0)-D(1,2)+D(2,4)-D(3,1)+D(4,3) 

1
2,1Y  = -D(0,3)+D(1,0)-D(2,2)+D(3,4)-D(4,1) 2

1,2Y  = D(0,1)-D(1,3)+D(2,0)-D(3,2)+D(4,4) 

3
1,2Y  = -D(0,4)+D(1,1)-D(2,3)+D(3,0)-D(4,2) 4

1,2Y  = D(0,2)-D(1,4)+D(2,1)-D(3,3)+D(4,0) 

0
2,2Y  = C(0,0)+C(1,4)+C(2,3)+C(3,2)+C(4,1) 1

2,2Y  = -C(0,3)-C(1,2)-C(2,1)-C(3,0)-C(4,4) 

2
2,2Y  = C(0,1)+C(1,0)+C(2,4)+C(3,3)+C(4,2) 3

2,2Y  = -C(0,4)-C(1,3)-C(2,2)-C(3,1)-C(4,0) 

4
2,2Y  = C(0,2)+C(1,1)+C(2,0)+C(3,4)+C(4,3) 0

3,2Y  = D(0,0)-D(1,1)+D(2,2)-D(3,3)+D(4,4)  

1
3,2Y  = -D(0,3)+D(1,4)-D(2,0)+D(3,1)-D(4,2) 2

3,2Y  = D(0,1)-D(1,2)+D(2,3)-D(3,4)+D(4,0) 

3
3,2Y  = -D(0,4)+D(1,0)-D(2,1)+D(3,2)-D(4,3) 4

3,2Y  = D(0,2)-D(1,3)+D(2,4)-D(3,0)+D(4,1) 

0
4,2Y  = C(0,0)+C(1,3)+C(2,1)+C(3,4)+C(4,2) 1

4,2Y  = -C(0,3)-C(1,1)-C(2,4)-C(3,2)-C(4,0) 

2
4,2Y  = C(0,1)+C(1,4)+C(2,2)+C(3,0)+C(4,3) 3

4,2Y  = -C(0,4)-C(1,2)-C(2,0)-C(3,3)-C(4,1) 

4
4,2Y  = C(0,2)+C(1,0)+C(2,3)+C(3,1)+C(4,4) 0

5,2Y  = D(0,0)-D(1,0)+D(2,0)-D(3,0)+D(4,0) 

1
5,2Y  = -D(0,3)+D(1,3)-D(2,3)+D(3,3)-D(4,3) 2

5,2Y  = D(0,1)-D(1,1)+D(2,1)-D(3,1)+D(4,1) 

3
5,2Y  = -D(0,4)+D(1,4)-D(2,4)+D(3,4)-D(4,4) 4

5,2Y  = D(0,2)-D(1,2)+D(2,2)-D(3,2)+D(4,2) 

0
6,2Y  = C(0,0)+C(1,2)+C(2,4)+C(3,1)+C(4,3) 1

6,2Y  = -C(0,3)-C(1,0)-C(2,2)-C(3,4)-C(4,1) 

2
6,2Y  = C(0,1)+C(1,3)+C(2,0)+C(3,2)+C(4,4) 3

6,2Y  = -C(0,4)-C(1,1)-C(2,3)-C(3,0)-C(4,2) 

4
6,2Y  = C(0,2)+C(1,4)+C(2,1)+C(3,3)+C(4,0) 0

7,2Y  = D(0,0)-D(1,4)+D(2,3)-D(3,2)+D(4,1) 

1
7,2Y  = -D(0,3)+D(1,2)-D(2,1)+D(3,0)-D(4,4) 2

7,2Y  = D(0,1)-D(1,0)+D(2,4)-D(3,3)+D(4,2) 

3
7,2Y  = -D(0,4)+D(1,3)-D(2,2)+D(3,1)-D(4,0) 4

7,2Y  = D(0,2)-D(1,1)+D(2,0)-D(3,4)+D(4,3) 

0
8,2Y  = C(0,0)+C(1,1)+C(2,2)+C(3,3)+C(4,4) 1

8,2Y  = -C(0,3)-C(1,4)-C(2,0)-C(3,1)-C(4,2) 

2
8,2Y  = C(0,1)+C(1,2)+C(2,3)+C(3,4)+C(4,0) 3

8,2Y  = -C(0,4)-C(1,0)-C(2,1)-C(3,2)-C(4,3) 
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4
8,2Y  = C(0,2)+C(1,3)+C(2,4)+C(3,0)+C(4,1) 0

9,2Y  = D(0,0)-D(1,3)+D(2,1)-D(3,4)+D(4,2) 

1
9,2Y  = -D(0,3)+D(1,1)-D(2,4)+D(3,2)-D(4,0) 2

9,2Y  = D(0,1)-D(1,4)+D(2,2)-D(3,0)+D(4,3) 

3
9,2Y  = -D(0,4)+D(1,2)-D(2,0)+D(3,3)-D(4,1) 4

9,2Y  = D(0,2)-D(1,0)+D(2,3)-D(3,1)+D(4,4) 

0
1,5Y  = F(0,0)+F(0,1)+F(0,2)+F(0,3)+F(0,4) 1

1,5Y  = F(1,0)+F(1,1)+F(1,2)+F(1,3)+F(1,4) 

2
1,5Y  = F(2,0)+F(2,1)+F(2,2)+F(2,3)+F(2,4) 3

1,5Y  = F(3,0)+F(3,1)+F(3,2)+F(3,3)+F(3,4) 

4
1,5Y  = F(4,0)+F(4,1)+F(4,2)+F(4,3)+F(4,4) 0

2,5Y  = E(0,0)-E(0,1)+E(0,2)-E(0,3)+E(0,4) 

1
2,5Y  = -E3,0)+E(3,1)-E(3,2)+E(3,3)-E(3,4) 2

2,5Y  = E(1,0)-E(1,1)+E(1,2)-E(1,3)+E(1,4) 

3
2,5Y  = -E(4,0)+E(4,1)-E(4,2)+E(4,3)-E(4,4) 4

2,5Y  = E(2,0)-E(2,1)+E(2,2)-E(2,3)+E(2,4) 

C.4  Layer 3 computations for N = 12 
 

0
0,0Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)+C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+ 

C(1,5)+C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(2,5)+C(3,0)+C(3,1)+C(3,2)+C(3,3)+C(3,

4)+C(3,5)+C(4,0)+C(4,1)+C(4,2)+C(4,3)+C(4,4)+C(4,5)+C(5,0)+C(5,1)+C(5,2)+C(5,3)+ 

C(5,4)+C(5,5) 
0

6,0Y  = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)-C(1,0)-C(1,1)-C(1,2)-C(1,3)-C(1,4)-C(1,5) 

+C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(2,5)-C(3,0)-C(3,1)-C(3,2)-C(3,3)-C(3,4)-C(3,5) 

+C(4,0)+C(4,1)+C(4,2)+C(4,3)+C(4,4)+C(4,5)-C(5,0)-C(5,1)-C(5,2)-C(5,3)-C(5,4)-C(5,5) 
0

0,6Y  = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(4,0)+C(5,0)-C(0,1)-C(1,1)-C(2,1)-C(3,1)-C(4,1)-

C(5,1)+C(0,2)+C(1,2)+C(2,2)+C(3,2)+C(4,2)+C(5,2)-C(0,3)-C(1,3)-C(2,3)-C(3,3)-C(4,3)-

C(5,3)+ C(0,4)+C(1,4)+C(2,4)+C(3,4)+C(4,4)+C(5,4) -C(0,5)-C(1,5)-C(2,5)-C(3,5)-

C(4,5)-C(5,5) 
0

6,6Y  = C(0,0)-C(0,1)+C(0,2)-C(0,3)+C(0,4)-C(0,5)+ C(1,0)-C(1,1)+C(1,2)-C(1,3)+C(1,4)-C(1,5)+ 

C(2,0)-C(2,1)+C(2,2)-C(2,3)+C(2,4)-C(2,5)+ C(3,0)-C(3,1)+C(3,2)-C(3,3)+C(3,4)-C(3,5)+ 

C(4,0)-C(4,1)+C(4,2)-C(4,3)+C(4,4)-C(4,5)+ C(5,0)-C(5,1)+C(5,2)-C(5,3)+C(5,4)-C(5,5) 
0
0,1Y  = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4)+D(0,5) 

1
0,1Y  = D(1,0)+D(1,1)+D(1,2)+D(1,3)+D(1,4)+D(1,5) 

2
0,1Y  = D(2,0)+D(2,1)+D(2,2)+D(2,3)+D(2,4)+D(2,5) 

3
0,1Y  = D(3,0)+D(3,1)+D(3,2)+D(3,3)+D(3,4)+D(3,5) 

4
0,1Y  = D(4,0)+D(4,1)+D(4,2)+D(4,3)+D(4,4)+D(4,5) 

5
1,0Y  = D(5,0)+D(5,1)+D(5,2)+D(5,3)+D(5,4)+D(5,5) 
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0
0,2Y = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)-C(2,0)-C(2,1)-C(2,2)-C(2,3)-C(2,4)-C(2,5) 

2
0,2Y = C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+C(1,5)-C(3,0)-C(3,1)-C(3,2)-C(3,3)-C(3,4)-C(3,5) 

4
0,2Y = C(2,0)+C(2,1)+C(2,2)+C(2,3)+C(2,4)+C(2,5)-C(4,0)-C(4,1)-C(4,2)-C(4,3)-C(4,4)-C(4,5) 

0
3,0Y  = D(0,0)+D(0,1)+D(0,2)+D(0,3)+D(0,4)+D(0,5)- D(2,0)-D(2,1)-D(2,2)-D(2,3)-D(2,4)-

D(2,5)+ D(4,0)+D(4,1)+D(4,2)+D(4,3)+D(4,4)+D(4,5) 
3

3,0Y  = D(1,0)+D(1,1)+D(1,2)+D(1,3)+D(1,4)+D(1,5)- D(3,0)-D(3,1)-D(3,2)-D(3,3)-D(3,4)-

D(3,5)+ D(5,0)+D(5,1)+D(5,2)+D(5,3)+D(5,4)+D(5,5) 
0

4,0Y  = C(0,0)+C(0,1)+C(0,2)+C(0,3)+C(0,4)+C(0,5)+C(3,0)+C(3,1)+C(3,2)+C(3,3)+C(3,4)+C(3,5) 

2
4,0Y  = -C(2,0)-C(2,1)-C(2,2)-C(2,3)-C(2,4)-C(2,5)- C(5,0)-C(5,1)-C(5,2)-C(5,3)-C(5,4)-C(5,5) 

4
4,0Y  = C(1,0)+C(1,1)+C(1,2)+C(1,3)+C(1,4)+C(1,5)+C(4,0)+C(4,1)+C(4,2)+C(4,3)+C(4,4)+C(4,5) 

0
1,0Y  = E(0,0)+E(1,0)+E(2,0)+E(3,0)+E(4,0)+E(5,0) 

1
1,0Y  = E(0,1)+E(1,1)+E(2,1)+E(3,1)+E(4,1)+E(5,1) 

2
1,0Y  = E(0,2)+E(1,2)+E(2,2)+E(3,2)+E(4,2)+E(5,2) 

3
1,0Y  = E(0,3)+E(1,3)+E(2,3)+E(3,3)+E(4,3)+E(5,3) 

4
1,0Y  = E(0,4)+E(1,4)+E(2,4)+E(3,4)+E(4,4)+E(5,4) 

5
0,1Y  = E(0,5)+E(1,5)+E(2,5)+E(3,5)+E(4,5)+E(5,5) 

0
1,1Y  = F(0,0)-F(1,5)-F(2,4)-F(3,3)-F(4,2)-F(5,1) 

1
1,1Y  = F(0,1)+F(1,0)-F(2,5)-F(3,4)-F(4,3)-F(5,2) 

2
1,1Y  = F(0,2)+F(1,1)+F(2,0)-F(3,5)-F(4,4)-F(5,3) 

3
1,1Y  = F(0,3)+F(1,2)+F(2,1)+F(3,0)-F(4,5)-F(5,4) 

4
1,1Y  = F(0,4)+F(1,3)+F(2,2)+F(3,1)+F(4,0)-F(5,5) 

5
1,1Y  = F(0,5)+F(1,4)+F(2,3)+F(3,2)+F(4,1)+F(5,0) 

0
1,2Y  = E(0,0)-E(1,4)-E(2,2)-E(3,0)+E(4,4)+E(5,2) 

1
1,2Y  = E(0,1)-E(1,5)-E(2,3)-E(3,1)+E(4,5)+E(5,3) 

2
1,2Y  = E(0,2)+E(1,0)-E(2,4)-E(3,2)-E(4,0)+E(5,4) 

3
1,2Y  = E(0,3)+E(1,1)-E(2,5)-E(3,3)-E(4,1)+E(5,5) 

4
1,2Y  = E(0,4)+E(1,2)+E(2,0)-E(3,4)-E(4,2)-E(5,0) 

5
2,1Y  = E(0,5)+E(1,3)+E(2,1)-E(3,5)-E(4,3)-E(5,1) 
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0
1,3Y  = F(0,0)-F(1,3)-F(2,0)+F(3,3)+F(4,0)-F(5,3) 

1
1,3Y  = F(0,1)-F(1,4)-F(2,1)+F(3,4)+F(4,1)-F(5,4) 

2
1,3Y  = F(0,2)-F(1,5)-F(2,2)+F(3,5)+F(4,2)-F(5,5) 

3
1,3Y  = F(0,3)+F(1,0)-F(2,3)-F(3,0)+F(4,3)+F(5,0) 

4
1,3Y  = F(0,4)+F(1,1)-F(2,4)-F(3,1)+F(4,4)+F(5,1) 

5
3,1Y  = F(0,5)+F(1,2)-F(2,5)-F(3,2)+F(4,5)+F(5,2) 

0
1,4Y  = E(0,0)-E(1,2)+E(2,4)+E(3,0)-E(4,2)+E(5,4) 

1
1,4Y  = E(0,1)-E(1,3)+E(2,5)+E(3,1)-E(4,3)+E(5,5) 

2
1,4Y  = E(0,2)-E(1,4)-E(2,0)+E(3,2)-E(4,4)-E(5,0) 

3
4,1Y  = E(0,3)-E(1,5)-E(2,1)+E(3,3)-E(4,5)-E(5,1) 

4
1,4Y  = E(0,4)+E(1,0)-E(2,2)+E(3,4)+E(4,0)-E(5,2) 

5
4,1Y  = E(0,5)+E(1,1)-E(2,3)+E(3,5)+E(4,1)-E(5,3) 

0
1,5Y  = F(0,0)-F(1,1)+F(2,2)-F(3,3)+F(4,4)-F(5,5) 

1
1,5Y  = F(0,1)-F(1,2)+F(2,3)-F(3,4)+F(4,5)+F(5,0) 

2
1,5Y  = F(0,2)-F(1,3)+F(2,4)-F(3,5)-F(4,0)+F(5,1) 

3
1,5Y  = F(0,3)-F(1,4)+F(2,5)+F(3,0)-F(4,1)+F(5,2) 

4
1,5Y  = F(0,4)-F(1,5)-F(2,0)+F(3,1)-F(4,2)+F(5,3) 

5
5,1Y  = F(0,5)+F(1,0)-F(2,1)+F(3,2)-F(4,3)+F(5,4) 

0
6,1Y  = E(0,0)-E(1,0)+E(2,0)-E(3,0)+E(4,0)-E(5,0) 

1
1,6Y  = -E(0,1)+E(1,1)-E(2,1)+E(3,1)-E(4,1)+E(5,1) 

2
1,6Y  = E(0,2)-E(1,2)+E(2,2)-E(3,2)+E(4,2)-E(5,2) 

3
1,6Y  = -E(0,3)+E(1,3)-E(2,3)+E(3,3)-E(4,3)+E(5,3) 

4
1,6Y  = E(0,4)-E(1,4)+E(2,4)-E(3,4)+E(4,4)-E(5,4) 

5
6,1Y  = -E(0,5)+E(1,5)-E(2,5)+E(3,5)-E(4,5)+E(5,5) 

0
7,1Y  = F(0,0)+F(1,5)-F(2,4)+F(3,3)-F(4,2)+F(5,1) 

1
1,7Y  = F(0,1)-F(1,0)-F(2,5)+F(3,4)-F(4,3)+F(5,2) 

2
1,7Y  = F(0,2)-F(1,1)+F(2,0)+F(3,5)-F(4,4)+F(5,3) 

3
1,7Y  = F(0,3)-F(1,2)+F(2,1)-F(3,0)-F(4,5)+F(5,4) 
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4
1,7Y  = F(0,4)-F(1,3)+F(2,2)-F(3,1)+F(4,0)+F(5,5) 

5
7,1Y  = F(0,5)-F(1,4)+F(2,3)-F(3,2)+F(4,1)-F(5,0) 

0
8,1Y  = E(0,0)+E(1,4)-E(2,2)+E(3,0)+E(4,4)-E(5,2) 

1
8,1Y  = E(0,1)+E(1,5)-E(2,3)+E(3,1)+E(4,5)-E(5,3) 

2
8,1Y  = E(0,2)-E(1,0)-E(2,4)+E(3,2)-E(4,0)-E(5,4) 

3
8,1Y  = E(0,3)-E(1,1)-E(2,5)+E(3,3)-E(4,1)-E(5,5) 

4
8,1Y  = E(0,4)-E(1,2)+E(2,0)+E(3,4)-E(4,2)+E(5,0) 

5
8,1Y  = E(0,5)-E(1,3)+E(2,1)+E(3,5)-E(4,3)+E(5,1) 

0
9,1Y  = F(0,0)+F(1,3)-F(2,0)-F(3,3)+F(4,0)+F(5,3) 

1
9,1Y  = F(0,1)+F(1,4)-F(2,1)-F(3,4)+F(4,1)+F(5,4) 

2
9,1Y  = F(0,2)+F(1,5)-F(2,2)-F(3,5)+F(4,2)+F(5,5) 

3
9,1Y  = F(0,3)-F(1,0)-F(2,3)+F(3,0)+F(4,3)-F(5,0) 

4
9,1Y  = F(0,4)-F(1,1)-F(2,4)+F(3,1)+F(4,4)-F(5,1) 

5
9,1Y  = F(0,5)-F(1,2)-F(2,5)+F(3,2)+F(4,5)-F(5,2) 

0
10,1Y  = E(0,0)+E(1,2)+E(2,4)-E(3,0)-E(4,2)-E(5,4) 

1
10,1Y  = E(0,1)+E(1,3)+E(2,5)-E(3,1)-E(4,3)-E(5,5) 

2
10,1Y  = E(0,2)+E(1,4)-E(2,0)-E(3,2)-E(4,4)+E(5,0) 

3
10,1Y  = E(0,3)+E(1,5)-E(2,1)-E(3,3)-E(4,5)+E(5,1) 

4
10,1Y  = E(0,4)-E(1,0)-E(2,2)-E(3,4)+E(4,0)+E(5,2) 

5
10,1Y  = E(0,5)-E(1,1)-E(2,3)-E(3,5)+E(4,1)+E(5,3) 

0
11,1Y  = F(0,0)+F(1,1)+F(2,2)+F(3,3)+F(4,4)+F(5,5) 

1
11,1Y  = F(0,1)+F(1,2)+F(2,3)+F(3,4)+F(4,5)-F(5,0) 

2
11,1Y  = F(0,2)+F(1,3)+F(2,4)+F(3,5)-F(4,0)-F(5,1) 

3
11,1Y  = F(0,3)+F(1,4)+F(2,5)-F(3,0)-F(4,1)-F(5,2) 

4
11,1Y  = F(0,4)+F(1,5)-F(2,0)-F(3,1)-F(4,2)-F(5,3) 

5
11,1Y  = F(0,5)-F(1,0)-F(2,1)-F(3,2)-F(4,3)-F(5,4) 

0
2,0Y  = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(4,0)+C(5,0)-C(0,3)-C(1,3)-C(2,3)-C(3,3)-C(4,3)-C(5,3) 

2
2,0Y = C(0,1)+C(1,1)+C(2,1)+C(3,1)+C(4,1)+C(5,1)-C(0,4)-C(1,4)-C(2,4)-C(3,4)-C(4,4)-C(5,4) 
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4
0,2Y  = C(0,2)+C(1,2)+C(2,2)+C(3,2)+C(4,2)+C(5,2) -C(0,5)-C(1,5)-C(2,5)-C(3,5)-C(4,5)-C(5,5) 

0
2,1Y  = D(0,0)-D(0,3)-D(2,2)+D(2,5)-D(4,1)+D(4,4) 

1
2,1Y = D(1,0)-D(1,3)-D(3,2)+D(3,5)-D(5,1)+D(5,4) 

2
1,2Y  = D(0,1)-D(0,4)+D(2,0)-D(2,3)-D(4,2)+D(4,5) 

3
1,2Y  = D(1,1)-D(1,4)+D(3,0)-D(3,3)-D(5,2)+D(5,5) 

4
1,2Y  = D(0,2)-D(0,5)+D(2,1)-D(2,4)+D(4,0)-D(4,3) 

5
1,2Y = D(1,2)-D(1,5)+D(3,1)-D(3,4)+D(5,0)-D(5,3) 

0
2,2Y = C(0,0)+C(1,5)+C(2,4)+C(3,3)+C(4,2)+C(5,1)-C(0,3)-C(1,2)-C(2,1)-C(3,0)-C(4,5)-C(5,4) 

2
2,2Y  = C(0,1)+C(1,0)+C(2,5)+C(3,4)+C(4,3)+C(5,2)-C(0,4)-C(1,3)-C(2,2)-C(3,1)-C(4,0)-C(5,5) 

4
2,2Y  = C(0,2)+C(1,1)+C(2,0)+C(3,5)+C(4,4)+C(5,3)-C(0,5)-C(1,4)-C(2,3)-C(3,2)-C(4,1)-C(5,0) 

0
3,2Y  = D(0,0)-D(0,3)-D(2,0)+D(2,3)+D(4,0)-D(4,3) 

1
3,2Y  = -D(1,2)+D(1,5)+D(3,2)-D(3,5)-D(5,2)+D(5,5) 

2
3,2Y  = D(0,1)-D(0,4)-D(2,1)+D(2,4)+D(4,1)-D(4,4) 

3
3,2Y  = D(1,0)-D(1,3)-D(3,0)+D(3,3)+D(5,0)_D(5,3) 

4
3,2Y  = D(0,2)-D(0,5)-D(2,2)+D(2,5)+D(4,2)-D(4,5) 

5
3,2Y  = D(1,1)-D(1,4)-D(3,1)+D(3,4)+D(5,1)-D(5,4) 

0
4,2Y  = C(0,0)+C(1,4)+C(2,2)+C(3,0)+C(4,4)+C(5,2)-C(0,3)-C(1,1)-C(2,5)-C(3,3)-C(4,1)-C(5,5) 

2
4,2Y  = C(0,1)+C(1,5)+C(2,3)+C(3,1)+C(4,5)+C(5,3)-C(0,4)-C(1,2)-C(2,0)-C(3,4)-C(4,2)-C(5,0) 

4
4,2Y  = C(0,2)+C(1,0)+C(2,4)+C(3,2)+C(4,0)+C(5,4)-C(0,5)-C(1,3)-C(2,1)-C(3,5)-C(4,3)-C(5,1) 

0
5,2Y = D(0,0)-D(0,3)+D(2,1)-D(2,4)+D(4,2)-D(4,5) 

1
5,2Y  = -D(1,1)+D(1,4)-D(3,2)+D(3,5)+D(5,0)-D(5,3) 

2
5,2Y  = D(0,1)-D(0,4)+D(2,2)-D(2,5)-D(4,0)+D(4,3) 

3
5,2Y  = -D(1,2)+D(1,5)+D(3,0)-D(3,3)+D(5,1)-D(5,4) 

4
5,2Y  = D(0,2)-D(0,5)-D(2,0)+D(2,3)-D(4,1)+D(4,4) 

5
5,2Y  = D(1,0)-D(1,3)+D(3,1)-D(3,4)+D(5,2)-D(5,5) 

0
6,2Y  = C(0,0)-C(1,0)+C(2,0)-C(3,0)+C(4,0)-C(5,0)-C(0,3)+C(1,3)-C(2,3)+C(3,3)-C(4,3)+C(5,3) 

2
6,2Y  = C(0,1)-C(1,1)+C(2,1)-C(3,1)+C(4,1)-C(5,1)-C(0,4)+C(1,4)-C(2,4)+C(3,4)-C(4,4)+C(5,4) 

4
6,2Y = C(0,2)-C(1,2)+C(2,2)-C(3,2)+C(4,2)-C(5,2)-C(0,5)+C(1,5)-C(2,5)+C(3,5)-C(4,5)+C(5,5) 
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0
8,2Y  = C(0,0)+C(1,2)+C(2,4)+C(3,0)+C(4,2)+C(5,4)-C(0,3)-C(1,5)-C(2,1)-C(3,3)-C(4,3)-C(5,1) 

2
8,2Y  = C(0,1)+C(1,3)+C(2,5)+C(3,1)+C(4,3)+C(5,5)-C(0,4)-C(1,0)-C(2,2)-C(3,4)-C(4,0)-C(5,2) 

4
8,2Y  = C(0,2)+C(1,4)+C(2,0)+C(3,2)+C(4,4)+C(5,0)-C(0,5)-C(1,1)-C(2,3)-C(3,5)-C(4,1)-C(5,3) 

0
10,2Y = C(0,0)+C(1,1)+C(2,2)+C(3,3)+C(4,4)+C(5,5)-C(0,3)-C(1,4)-C(2,5)-C(3,0)-C(4,1)-C(5,2) 

2
10,2Y  = C(0,1)+C(1,2)+C(2,3)+C(3,4)+C(4,5)+C(5,0)-C(0,4)-C(1,5)-C(2,0)-C(3,1)-C(4,2)-C(5,3) 

4
10,2Y = C(0,2)+C(1,3)+C(2,4)+C(3,5)+C(4,0)+C(5,1)-C(0,5)-C(1,0)-C(2,1)-C(3,2)-C(4,3)-C(5,4) 

0
0,3Y  = E(0,0)+E(1,0)+E(2,0)+E(3,0)+E(4,0)+E(5,0)-E(0,2)-E(1,2)-E(2,2)-E(3,2)-E(4,2)-E(5,2) + 

E(0,4)+E(1,4)+E(2,4)+E(3,4)+E(4,4)+E(5,4) 
3

0,3Y  = E(0,1)+E(1,1)+E(2,1)+E(3,1)+E(4,1)+E(5,1)-E(0,3)-E(1,3)-E(2,3)-E(3,3)-E(4,3)-E(5,3) + 

E(0,5)+E(1,5)+E(2,5)+E(3,5)+E(4,5)+E(5,5) 
0

1,3Y  = F(0,0)-F(0,2)+F(0,4)-F(3,1)+F(3,3)-F(3,5) 

1
1,3Y  = F(1,0)-F(1,2)+F(1,4)-F(4,1)+F(4,3)-F(4,5) 

2
1,3Y  = F(2,0)-F(2,2)+F(2,4)-F(5,1)+F(5,3)-F(5,5) 

3
1,3Y  = F(0,1)-F(0,3)+F(0,5)+F(3,0)-F(3,2)+F(3,4) 

4
1,3Y  = F(1,1)-F(1,3)+F(1,5)+F(4,0)-F(4,2)+F(4,4) 

5
1,3Y  = F(2,1)-F(2,3)+F(2,5)+F(5,0)-F(5,2)+F(5,4) 

0
2,3Y  = E(0,0)-E(0,2)+E(0,4)-E(3,0)+E(3,2)-E(3,4) 

1
2,3Y  = -E(2,1)+E(2,3)-E(2,5)+E(5,1)-E(5,3)+E(5,5) 

2
2,3Y  = E(1,0)-E(1,2)+E(1,4)-E(4,0)+E(4,2)-E(4,4) 

3
2,3Y  = E(0,1)-E(0,3)+E(0,5)-E(3,1)+E(3,3)-E(3,5) 

4
2,3Y  = E(2,0)-E(2,2)+E(2,4)-E(5,0)+E(5,2)-E(5,4) 

5
2,3Y  = E(1,1)-E(1,3)+E(1,5)-E(4,1)+E(4,3)-E(4,5) 

0
3,3Y  = F(0,0)-F(0,2)+F(0,4)-F(1,1)+F(1,3)-F(1,5)-(F(2,0)-F(2,2)+F(2,4)-F(3,1)+F(3,3)-

F(3,5))+F(4,0)-F(4,2)+F(4,4)-F(5,1)+F(5,3)-F(5,5) 
3

3,3Y  = F(0,1)-F(0,3)+F(0,5)+F(1,0)-F(1,2)+F(1,4)-(F(2,1)-F(2,3)+F(2,5)+F(3,0)-

F(3,2)+F(3,4))+F(4,1)-F(4,3)+F(4,5)+F(5,0)-F(5,2)+F(5,4) 
0

4,3Y  = E(0,0)-E(0,2)+E(0,4)+E(3,0)-E(3,2)+E(3,4) 

1
4,3Y  = -E(1,1)+E(1,3)-E(1,5)-E(4,1)+E(4,3)-E(4,5) 
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2
4,3Y  = -E(2,0)-E(2,2)-E(2,4)-E(5,0)+E(5,2)-E(5,4) 

3
4,3Y  = E(0,1)-E(0,3)+E(0,5)+E(3,1)-E(3,3)+E(3,5) 

4
4,3Y  = E(1,0)-E(1,2)+E(1,4)+E(4,0)-E(4,2)+E(4,4) 

5
4,3Y  = -E(2,1)+E(2,3)-E(2,5)-E(5,1)+E(5,3)-E(5,5) 

0
6,3Y  = E(0,0)-E(1,0)+E(2,0)-E(3,0)+E(4,0)-E(5,0)-(E(0,2)-E(1,2)+E(2,2)-E(3,2)+E(4,2)-E(5,2))+ 

E(0,4)-E(1,4)+E(2,4)-E(3,4)+E(4,4)-E(5,4) 
3

6,3Y  = E(0,1)-E(1,1)+E(2,1)-E(3,1)+E(4,1)-E(5,1)-(E(0,3)-E(1,3)+E(2,3)-E(3,3)+E(4,3)-E(5,3))+ 

E(0,5)-E(1,5)+E(2,5)-E(3,5)+E(4,5)-E(5,5) 
0

7,3Y  = F(0,0)-F(0,2)+F(0,4)+F(3,1)-F(3,3)+F(3,5) 

1
7,3Y  = -F(1,0)+F(1,2)-F(1,4)-F(4,1)+F(4,3)-F(4,5) 

2
7,3Y  = F(2,0)-F(2,2)+F(2,4)+F(5,1)-F(5,3)+F(5,5) 

3
7,3Y  = F(0,1)-F(0,3)+F(0,5)-F(3,0)+F(3,2)-F(3,4) 

4
7,3Y  = -F(1,1)+F(1,3)-F(1,5)+F(4,0)-F(4,2)+F(4,4) 

5
7,3Y  = F(2,1)-F(2,3)+F(2,5)-F(5,0)+F(5,2)-F(5,4) 

0
9,3Y  = F(0,0)-F(0,2)+F(0,4)+F(1,1)-F(1,3)+F(1,5)-(F(2,0)-F(2,2)+F(2,4)+F(3,1)-F(3,3)+F(3,5))+ 

F(4,0)-F(4,2)+F(4,4)+F(5,1)-F(5,3)+F(5,5) 
3

9,3Y  = F(0,1)-F(0,3)+F(0,5)-F(1,0)+F(1,2)-F(1,4)-(F(2,1)-F(2,3)+F(2,5)-F(3,0)+F(3,2)-F(3,4))+ 

F(4,1)-F(4,3)+F(4,5)-F(5,0)+F(5,2)-F(5,4) 
0

0,4Y  = C(0,0)+C(1,0)+C(2,0)+C(3,0)+C(4,0)+C(5,0)+C(0,3)+C(1,3)+C(2,3)+C(3,3)+C(4,3)+C(5,3) 

2
0,4Y  = -C(0,2)-C(1,2)-C(2,2)-C(3,2)-C(4,2)-C(5,2)-C(0,5)-C(1,5)-C(2,5)-C(3,5)-C(4,5)-C(5,5) 

4
0,4Y  = C(0,1)+C(1,1)+C(2,1)+C(3,1)+C(4,1)+C(5,1)+C(0,4)+C(1,4)+C(2,4)+C(3,4)+C(4,4)+C(5,4) 

0
1,4Y  = D(0,0)+D(0,3)-D(2,1)-D(2,4)+D(4,2)+D(4,5) 

1
1,4Y  = D(1,0)+D(1,3)-D(3,1)-D(3,4)+D(5,2)+D(5,5) 

2
1,4Y  = -D(0,2)-D(0,5)+D(2,0)+D(2,3)-D(4,1)-D(4,4) 

3
1,4Y  = -D(1,2)-D(1,5)+D(3,0)+D(3,3)-D(5,1)-D(5,4) 

4
1,4Y  = D(0,1)+D(0,4)-D(2,2)-D(2,5)+D(4,0)+D(4,3) 

5
1,4Y  = D(1,1)+D(1,4)-D(3,2)-D(3,5)+D(5,0)+D(5,3) 

0
2,4Y  = C(0,0)+C(0,3)+C(2,2)+C(2,5)+C(4,1)+C(4,4)-C(1,1)-C(1,4)-C(3,0)-C(3,3)-C(5,2)-C(5,5) 
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2
2,4Y  = -C(0,2)-C(0,5)-C(2,1)-C(2,4)-C(4,0)-C(4,3)+C(1,0)+C(1,3)+C(3,2)+C(3,5)+C(5,1)+C(5,4) 

4
2,4Y  = C(0,1)+C(0,4)+C(2,0)+C(2,3)+C(4,2)+C(4,5)-C(1,2)-C(1,5)-C(3,1)-C(3,4)-C(5,0)-C(5,3) 

0
3,4Y  = D(0,0)+D(0,3)-D(2,0)-D(2,3)+D(4,0)+D(4,3) 

1
3,4Y  = -D(1,1)-D(1,4)+D(3,1)+D(3,4)-D(5,1)-D(5,4) 

2
3,4Y  = -D(0,2)-D(0,5)+D(2,2)+D(2,5)-D(4,2)-D(4,5) 

3
3,4Y  = D(1,0)+D(1,3)-D(3,0)-D(3,3)+D(5,0)+D(5,3) 

4
3,4Y  = D(0,1)+D(0,4)-D(2,1)-D(2,4)+D(4,1)+D(4,4) 

5
3,4Y  = -D(1,2)-D(1,5)+D(3,2)+D(3,5)-D(5,2)-D(5,5) 

0
4,4Y  = C(0,0)+C(0,3)+C(2,1)+C(2,4)+C(4,2)+C(4,5)+C(1,2)+C(1,5)+C(3,0)+C(3,3)+C(5,1)+C(5,4) 

2
4,4Y  = -C(0,2)-C(0,5)-C(2,0)-C(2,3)-C(4,1)-C(4,4)-C(1,1)-C(1,4)-C(3,2)-C(3,5)-C(5,0)-C(5,3) 

4
4,4Y =C(0,1)+C(0,4)+C(2,2)+C(2,5)+C(4,0)+C(4,3)+C(1,0)+C(1,3)+C(3,1)+C(3,4)+C(5,2)+C(5,5) 

0
5,4Y  = D(0,0)+D(0,3)-D(2,2)-D(2,5)+D(4,1)+D(4,4) 

1
5,4Y  = D(1,2)+D(1,5)-D(3,1)-D(3,4)+D(5,0)+D(5,3) 

2
5,4Y  = -D(0,2)-D(0,5)+D(2,1)+D(2,4)-D(4,0)-D(4,3) 

3
5,4Y  = -D(1,1)-D(1,4)+D(3,0)+D(3,3)-D(5,2)-D(5,5) 

4
5,4Y  = D(0,1)+D(0,4)-D(2,0)-D(2,3)+D(4,2)+D(4,5) 

5
5,4Y  = D(1,0)+D(1,3)-D(3,2)-D(3,5)+D(5,1)+D(5,4) 

0
6,4Y  = C(0,0)-C(1,0)+C(2,0)-C(3,0)+C(4,0)-C(5,0)+C(0,3)-C(1,3)+C(2,3)-C(3,3)+C(4,3)-C(5,3) 

2
6,4Y  = -C(0,2)+C(1,2)-C(2,2)+C(3,2)-C(4,2)+C(5,2)-C(0,5)+C(1,5)-C(2,5)+C(3,5)-C(4,5)+C(5,5) 

4
6,4Y  = C(0,1)-C(1,1)+C(2,1)-C(3,1)+C(4,1)-C(5,1)+C(0,4)-C(1,4)+C(2,4)-C(3,4)+C(4,4)-C(5,4) 

0
8,4Y =C(0,0)+C(0,3)+C(2,2)+C(2,5)+C(4,1)+C(4,4)+C(1,1)+C(1,4)+C(3,0)+C(3,3)+C(5,2)+C(5,5) 

2
8,4Y  = -C(0,2)-C(0,5)-C(2,1)-C(2,4)-C(4,0)-C(4,3)-C(1,0)-C(1,3)-C(3,2)-C(3,5)-C(5,1)-C(5,4) 

4
8,4Y =C(0,1)+C(0,4)+C(2,0)+C(2,3)+C(4,2)+C(4,5)+C(1,2)+C(1,5)+C(3,1)+C(3,4)+C(5,0)+C(5,3) 

0
10,4Y  = C(0,0)+C(0,3)+C(2,1)+C(2,4)+C(4,2)+C(4,5)-C(1,2)-C(1,5)-C(3,0)-C(3,3)-C(5,1)-C(5,4) 

2
10,4Y  = -C(0,2)-C(0,5)-C(2,0)-C(2,3)-C(4,1)-C(4,4)+C(1,1)+C(1,4)+C(3,2)+C(3,5)+C(5,0)+C(5,3) 

4
10,4Y  = C(0,1)+C(0,4)+C(2,2)+C(2,5)+C(4,0)+C(4,3)-C(1,0)-C(1,3)-C(3,1)-C(3,4)-C(5,2)-C(5,5) 

0
1,6Y  = D(0,0)-D(0,1)+D(0,2)-D(0,3)+D(0,4)-D(0,5) 

1
1,6Y  = D(1,0)-D(1,1)+D(1,2)-D(1,3)+D(1,4)-D(1,5) 
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2
1,6Y  = D(2,0)-D(2,1)+D(2,2)-D(2,3)+D(2,4)-D(2,5) 

3
1,6Y  = D(3,0)-D(3,1)+D(3,2)-D(3,3)+D(3,4)-D(3,5) 

4
1,6Y  = D(4,0)-D(4,1)+D(4,2)-D(4,3)+D(4,4)-D(4,5) 

5
1,6Y  = D(5,0)-D(5,1)+D(5,2)-D(5,3)+D(5,4)-D(5,5) 

0
2,6Y  = C(0,0)-C(0,1)+C(0,2)-C(0,3)+C(0,4)-C(0,5)-(C(3,0)-C(3,1)+C(3,2)-C(3,3)+C(3,4)-C(3,5)) 

2
2,6Y  = C(1,0)-C(1,1)+C(1,2)-C(1,3)+C(1,4)-C(1,5)-(C(4,0)-C(4,1)+C(4,2)-C(4,3)+C(4,4)-C(4,5)) 

4
2,6Y  = C(2,0)-C(2,1)+C(2,2)-C(2,3)+C(2,4)-C(2,5)-(C(5,0)-C(5,1)+C(5,2)-C(5,3)+C(5,4)-C(5,5)) 

0
3,6Y  = D(0,0)-D(0,1)+D(0,2)-D(0,3)+D(0,4)-D(0,5)-(D(2,0)-D(2,1)+D(2,2)-

D(2,3)+D(2,4)-D(2,5)) + D(4,0)-D(4,1)+D(4,2)-D(4,3)+D(4,4)-D(4,5) 

3
3,6Y  = D(1,0)-D(1,1)+D(1,2)-D(1,3)+D(1,4)-D(1,5)-(D(3,0)-D(3,1)+D(3,2)-D(3,3)+D(3,4)-

D(3,5))+ D(5,0)-D(5,1)+D(5,2)-D(5,3)+D(5,4)-D(5,5) 
0

4,6Y  = C(0,0)-C(0,1)+C(0,2)-C(0,3)+C(0,4)-C(0,5)+ C(3,0)-C(3,1)+C(3,2)-C(3,3)+C(3,4)-C(3,5) 

2
4,6Y  = -(C(2,0)-C(2,1)+C(2,2)-C(2,3)+C(2,4)-C(2,5)+ C(5,0)-C(5,1)+C(5,2)-C(5,3)+C(5,4)-C(5,5)) 

4
4,6Y  = C(1,0)-C(1,1)+C(1,2)-C(1,3)+C(1,4)-C(1,5)+ C(4,0)-C(4,1)+C(4,2)-C(4,3)+C(4,4)-C(4,5) 
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