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ABSTRACT

The detection and classification of underwater targets has gained

considerable research interest due to its strategic as well as commercial

importance. As the operator assisted classification turns out to be

tedious and time consuming, there is a need and requirement for the

intelligent classifiers that could analyze the received noise and identify

the targets. The process of automated classification involves the

extraction of source specific features from the noise emanated from the

targets, followed by the application of a classification algorithm, based

on some form of pattern matching techniques.

The ocean, as a propagation medium, is full of interfering noise

sources which include biological, natural as well as man-made sources.

This makes the extraction of robust features for such classification a

challenging problem, as the signals emitted by the target are corrupted

by the ambient noise. There has been many feature extraction

techniques, which are primarily based on the second order power

spectral analysis. Such traditional techniques can fail to provide

acceptable confidence levels during classification, especially when there

are deviations from Gaussianity and linearity.

The proposed work envisages the implementation of an underwater

target classifier making use of the source specific features extracted using

Higher Order Spectral analysis, especially the Bispectrum. The higher

order spectrum (HOS) has many attractive properties which, if utilized

properly, can make it a potential candidate for the extraction of features

from the underwater noise signals. Different types of bispectral features

have been extracted from the target waveforms and a suitable feature

selection technique is applied to generate the feature vector.

xiii



Several classification frameworks have been implemented by the

combination of different feature selection criterion and classification

algorithms, viz., the k-Nearest Neighbour (k-NN), Artificial Neural

Network (ANN) and Support Vector Machines (SVM) and their

performances investigated.
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Chapter 1

Introduction

This chapter provides an introduction to the area of research and

starts with an overview of the sonars which are the primary means

for acquiring the target signals. Sonars play a key role in the

ocean research, helps in remotely detecting, locating and classifying

objects underwater. The chapter also touches upon active and passive

sonar systems as well as the various noise sources in the ocean and

their spectral characteristics. The need and requirement of a target

classifier for identifying the noise sources in the ocean along with

the underlying architecture and the principle of operation have been

discussed. Various techniques for feature extraction, feature selection

and different classification algorithms have also been briefly introduced,

together with an outline of the proposed work.
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Chapter 1. Introduction

1.1 Background

The oceans have always been a fascination and mystery to the

mankind. It has even frightened him to the extent that many old

civilizations practised worshipping it. The bewilderness, fear and

fascination slowly paved the way for inquisitiveness and exploration

and the trend increased as the oceans served as a source of rich

resources. The exploration became a necessity when oceans became a

pathway for commercial and military sea faring. A good navy became

essential for empire expansion plans and to secure own boundaries.

Consequently, the demand for newer vessels with improved capabilities

increased and the research in this area became indispensable.

With the advent of more and more ships and vessels, the question

who is around me or who is hiding there gained importance. Such a

knowledge is significant from strategic, social as well as commercial

viewpoints. Long back as 1490, Davinci had observed a way to detect

ships travelling at a distance by carefully listening the radiated sound

through a tube dipped in the ocean waters. Even though the works of

Isaac Newton and Rayleigh provided the mathematical analysis and

fundamental theories describing generation, propagation and reception

of sound in the 18th century itself, the first electrically driven

underwater transceiver was operational only in 1914, just before the

First World War. With the outset of the World War I, acoustic sensing

devices like SC tubes were developed to detect submarines and ships.

With World War II, the detection and identification of the type and

nature of the vessels became even more necessary and the studies in

this direction led to the development of the modern SONAR (Sound

Navigation and Ranging) systems.

2



Implementation of an Underwater Target Classifier using HOS Features

It has been found that the sound travels with less attenuation in

water compared to other forms of radiated energies like electromagnetic

waves, and the sonars utilise this property of sound for navigation and

ranging. Though, the process of detection of even remote targets is

relatively easy by listening to the target signals, the identification of

the corresponding sources remains elusive and specially trained

operators are generally employed for identifying the targets. Modern

high-speed digital electronics and the improvements in the fields of

signal processing have influenced the sonar design to incorporate

automated software-based algorithms to aid the sonar operators in the

process of such decision making. With the advent of research in the

field of Artificial Intelligence and Machine Learning, techniques for

automatic target classification have also been developed, that could

help the sonar operators in detecting and identifying various targets.

However, the variety and diversity of the targets along with the

variability and complexity of the ocean environment always posed

challenges to such attempts.

1.2 The Sonar

In general, the Sonar refer to the devices or methods that use

underwater sound propagation to explore the presence, position and

properties of objects in the sea. A basic block diagram of the Sonar

receiving system is as shown in Fig. 1.1, which depicts the sensor array,

data acquisition system, beam forming, detection processing and finally

the output display.

The sensor array converts the acoustic signals to electrical signals,

which is digitised by the use of a proper data acquisition system. Beam
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Data 
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Processing Display

Sensor
Array

Converts Accoustic Signals
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omni element data

Digitises data
for processing

Extracts signals from
noise / reverberation

Figure 1.1: Basic SONAR receiver block diagram

forming can be used for spatial filtering, to selectively receive the signals

from a particular direction. The received signals are processed for the

detection of any targets and are finally presented to the sonar operators

for decision making.

1.2.1 Types of Sonars

Generally, sonars are of two types, the passive sonar that listens to

the incoming sound and the active sonar that illuminates the ambience

with acoustic energy and observes the back scatterings. Active sonars

transmit the acoustic energy in the form of a pulse, often called a ping

and then listen for its reflection, or the echo. The transmission of acoustic

energy is achieved using projectors and the reception is carried out using

hydrophones and the received echoes form the basis for detection and

classification of the targets. With active sonars, one can measure the

distance and bearing of the targets, more easily and accurately.
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Passive sonars are listening sonars and just listen to the acoustic

signals radiated by the targets. There is only one way transmission, from

target to the sonar, and the sonar system comprises of only hydrophones

as transducers, for the reception of the radiated signals generated by the

targets. A typical passive sonar system has been illustrated in Fig. 1.2.

Unlike active sonars, no signals are sent out. The signals generated by

the target, after retrieving from the hydrophone array are analysed to

detect, classify and locate the target.

Figure 1.2: A Typical Passive Sonar System

The characteristics of the target of interest generally determine

whether to use active or passive sonar systems. Since, only listening for

the incoming signals generated by the targets is involved, the passive

sonar system has the advantage that it does not expose itself by

transmitting any form of energy and in this sense, it is more ideal for

target classification purposes compared to active sonars, especially for

strategic applications. Moreover, unlike active sonars, the passive

sonars does not interfere with the marine ecological balance with its
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high energy acoustic emissions. Although in World War II, active

sonars were mainly used, with the advent of more noisy submarines

and surface vessels, passive sonar became the preferred choice for early

detection and warning applications. This thesis deals with underwater

passive sonar target classification using Higher Order Spectral

Features.

1.2.2 Sonar Equations

The working of the sonar and its efficiency is determined by various

factors. The sonar equation takes into account the effects of such

factors of the medium, target and the sonar equipment and establishes

working relationships between them. The most common practical uses

of sonar equations include the design of the sonar system with the

required characteristics and the prediction of performance of the sonar

equipment of known or existing design.

The sonar equations are formed from the basic equality between the

desired (signal) and undesired (background) portions of the received

signal. For just detecting a target using sonars, one requires that:

SignalLevel = BackgroundLevel

This equality can be expanded in terms of the sonar parameters which

can be grouped into three sets depending on whether they are related to

the equipment, medium or the target.

• Equipment Related Parameters: Projector Source Level (SL), Self

Noise Level (NL), Receiving Directivity Index (DI) and Detection

Threshold (DT)
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• Medium Related Parameters: Transmission Loss (TL),

Reverberation Level (RL) and Ambient Noise Level (NL)

• Target Related Parameters: Target Strength (TS) and Target

Source Level (SL)

Consider a transducer producing a signal with a source level of SL

decibels at a unit distance. Let the radiated sound reaches a target of

target strength TS, and get reflected back so as to reach the radiating

transducer again. As the signal travels through the medium, let its

level be reduced by the transmission loss, TL and thus the echo level at

the hydrophone terminals becomes SL − 2TL + TS. If the transducer

has a directivity index of DI and if the background level is NL, the

relative noise power at the terminals of the hydrophone will be NL−DI.

Hence, at the hydrophone terminals, the signal-to-noise ratio (SNR) is

SL−2TL+TS−(NL−DI). The detection of the target will occur, when

this input SNR is above a certain detection threshold, DT , satisfying

certain probability criteria. Thus, if the target is present, just at the

point of detection, the SNR will be equal to the detection threshold, and

the active-sonar equation becomes

SL− 2TL+ TS − (NL−DI) = DT (1.1)

For a reverberation background, the term (NL−DI) is replaced by an

equivalent plane-wave reverberation level RL observed at the hydrophone

terminals. The active-sonar equation then becomes SL − 2TL + TS =

RL+DT .

In the passive case, the target itself produces the signal so that the

parameter target strength becomes irrelevant. As only one way

transmission is involved, the signal undergoes attenuation due to
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transmission loss only once. Thus, the passive sonar equation can be

obtained as:

SL− TL− (NL−DI) = DT (1.2)

1.3 Functions of Sonar

In the context of target recognition, the ultimate goal of the sonar

is to extract the relevant parameters of the radiated acoustic space-time

field, so that any or all of the functions viz., detection, localisation,

estimation and classification of the target can be achieved.

1.3.1 Detection

In sonar terminology, the term detection refers to the process of

determining the presence of a target in the noise background, by

analysing the received noise signals. Generally, the targets are detected

when the acoustic field generated by them produce localised peaks

which stand out against the relatively smooth background noise. The

decision of the presence of a source or target is made when the

measured signal statistics exceeds a certain predetermined threshold.

This decision making may be carried out either automatically, or by a

trained human operator.

1.3.2 Localisation

Upon detecting the target, the position of the targets can be

determined, in order to make some tactical decisions, and the process is

termed as localisation. Generally, localisation involves the estimation
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of range and bearing of the targets. The bearing of the target can be

deduced using beam forming technique, in the detection stage itself.

For passive sonars, the approximate range can be determined by time

delay estimates obtained from the received signals at spatially

separated points. However, active sonars employ echo ranging, in order

to achieve better accuracy. The localisation becomes difficult in the

case of manoeuvring targets and in such cases, techniques like Kalman

filtering can be applied to estimate the track of the target.

1.3.3 Estimation

The process of estimation involves the computation of statistics

used to facilitate target detection, classification and the determination

of relevant target parameters. One of the most widely used estimation

technique is the spectral estimation which is employed to determine the

tonal components in a received waveform, and may be used for both

the detection and classification functions. Some other commonly

estimated parameters include direction of arrival (DOA), direction of

departure (DOD) and the target strength.

1.3.4 Classification

One of the most notable objectives of a sonar system is to interpret

the information contained in the received signal in order to identify the

signal generating mechanism (also known as the target). The detection

and classification problems generally addressed by the sonar systems is

achieved by comparing the level of certain statistics, with the assumed

or estimated statistics where these statistics are related to the extracted

features of the received acoustic space time field. As an example, the
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information on the target dynamics can be used to identify a school of

fish from a freighter or submarine. Though the classification can be done

manually, it becomes a tedious task as the number of targets increases

which necessitates the use of automated systems.

1.4 Underwater Acoustic Propagation Effects

The detection, localisation and classification performance of sonar

depends on the propagation effects induced by the acoustic channel and

various environmental factors. For the active sonars, the performance is

also determined by the transmitting subsystems. In the case of passive

sonars, the nature and characteristics of the radiated noise can be a

factor that influences its performance. The following sections briefly

examine the channel effects and other factors that can influence the

sonar performance.

1.4.1 Channel Effects

1.4.1.1 Reverberation

When active sonar is used, the sound returned to the receiver

generally consists of returns from many other sources besides the target

of interest and constitute a dominant source of noise and is termed as

reverberation. The sources of reverberation include the surface, the

bottom, and the volume of water. The marine life, bubbles, and other

inhomogeneities in the water contribute to the volume reverberation.

The reverberation phenomenon in the ocean is analogically similar to

the scattering of light from the cars headlights in fog or mist. A
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high-intensity pencil beam will penetrate the fog and as the main

headlights are less directional will result in white-out, where the

returned reverberation dominates. Hence, to reduce the effect of

reverberation in the ocean, the active sonar needs to transmit in

narrow beams.

1.4.1.2 Doppler Effect

Doppler shift refers to the change in the received frequency when

there is a relative motion between the source and the receiver. This effect

can be an influencing factor in underwater noise propagation. When the

source and the receiver recede, the received frequency is decreased and

when they are nearing each other the apparent frequency increases. This

shift can be appreciable especially when the sonar and the source are on

the opposite course.

1.4.1.3 Multipath Rayleigh Fading

The underwater acoustic propagation channels are affected by the

multipath effects contributed by the ocean surface, ocean bottom,

reflectors along with scatterers having random heterogeneity. This

multipath effect results in the formation of additional sub-eigenpath

components which override the contribution of the dominant

component severely. The interaction of the acoustic signals travelling

along multiple paths can induce fluctuations in the received signal’s

amplitude and phase, a phenomenon known as multipath fading,

thereby affecting the SNR of the signal significantly.
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1.4.2 Environmental Factors

The propagation of the sound through the ocean water is also

affected by various environmental factors, which can in turn affect the

performance of the sonar operation. The speed of sound varies in water

with density which in turn depends on temperature, pressure, dissolved

molecules and salinity. Temperature of the ocean waters varies with

depth and for depth ranges between 100 and 300 feet, there is often the

formation of thermoclines which divides the warmer surface water layer

from the cold bottom waters. This will lead to inaccuracies in sonar

predictions as a sound originating on one side of the thermocline tends

to be bent or refracted off the thermocline.

In sonar, since the wave propagation speed is a time-varying function

of depth and range, with significant dependencies on geographic location

and season of the year, the estimations turn out to be cumbersome due to

complex refractive phenomenon, especially when the propagating energy

interacts with the sea surface or bottom. Motions of the water mass, sea

surface, sonar platforms and the targets lead to a wide variety of channel

dispersions in time, frequency and angle.

1.5 Noise Sources in the Ocean

The general background noise prevailing in the ocean due to the

collective contribution of all the oceanic noise sources is called the

ambient noise and is characterised by a broad frequency range. As

obvious, the level and nature of ambient noise is highly variable and

depends on a number of factors including the climate, wind speed,

presence of aquatic organisms, etc. As the ambient noise prevails as a

12



Implementation of an Underwater Target Classifier using HOS Features

backdrop for the signals of interest, it can considerably affect the

performance of the sonar, and in turn the underwater target classifier.

Noise sources in the ocean, which contribute to the ambient noise,

can be either natural or manmade (anthropogenic). Natural sources

include marine organisms that produce sound and natural processes such

as earthquakes, wind-driven waves, rainfall etc. Anthropogenic noise is

generated by a variety of human initiated activities, including shipping,

oil and gas exploration, military operations, etc. With the increase in

these activities, anthropogenic noises are becoming more pervasive and

more intense, increasing the overall level of oceanic ambient noise.

1.5.1 Natural Sources of Ambient Noise

The natural sources of ambient noise can be broadly classified into

the following categories:

• Biological sources

• Hydrodynamic sources

• Seismic sources

• Thermal agitations

• Cracking of ice

1.5.1.1 Biological Sources

Oceans contain the greatest diversity of life on Earth. Among

these, a large variety of marine organisms like crustaceans, mammals

and fishes contribute to the ambient noise backdrop. Noise from such

sources exhibits a wide frequency spectrum from 10 Hz to 100 kHz.

The individual sounds are repetitive and of short duration. The
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individual sounds may merge during choruses that result when a large

number of animals are calling, and can prevail substantially over a

region for a period of time.

1.5.1.2 Hydrodynamic Sources

There exists a wide variety of hydrodynamic processes in the ocean

which can be considered as noise sources, where the noises are being

generated due to various physical phenomena like movement of water

due to winds, tides, currents etc. Major hydrodynamic sources include

surface waves, turbulence, bubbles and water droplets. Surface waves

originate due to the wind action on the ocean surface and have a

dominant influence on the noise spectrum, especially towards the low

frequency region. Turbulence is caused by the movement of layers of

water streaming over each other with varying speeds and generally

occurs in regions near to coastal areas, straits and harbours. The noise

generated by turbulence can have a frequency range of 1 to 100 Hz.

The bubbles are yet another source of hydrodynamic noise and the

noise is generated during the generation, oscillation, joining and

splitting of bubbles. Water droplets can also generate noise as they

drop on to the sea surface. While the natural frequency of the noise

generated due to the bubbles is found to be inversely proportional to

the size of the bubbles, that generated due to the droplets depend on

the kinetic energy of the droplets.

1.5.1.3 Seismic Sources

Various tectonic as well as volcanic activities can also contribute

to the ambient noise in the sea. Seismic waves that result from such
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disturbances in the earths crust can propagate substantial amount of

energy to the sea even if the sources of such disturbances are far away

from the sea. The spectral characteristics of such noises depend on the

magnitude and range of the seismic activity, the propagation path, etc.

It has been observed that, in general, the spectral peaks due to the

seismic activities occur between 2 and 20 Hz, when the disturbances are

waterborne, and in some cases, it can go up to 100 Hz.

1.5.1.4 Thermal Agitations

The effects of thermal agitations of the medium itself can generate a

minimum noise level for that medium, even in the absence of any other

noise sources. The thermal agitations contribute a minimum ambient

noise level especially at the upper frequency limits, around 20 to 30

kHz, of the ambient noise data.

1.5.1.5 Cracking of Ice

Shifting and breaking of ice, along with the interaction of the pack

of ice and floes with air and water can contribute considerably towards

the ambient noise, especially in the polar regions. The noise originating

from these phenomenon exhibit seasonal variations and covers a wide

range of frequencies.

1.5.1.6 Other Sources

Other natural phenomena like precipitation and rain can also

contribute to the ambient noise. While precipitation generally

contributes to noise at a frequency above 500 Hz, heavy rains can raise
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the noise level about 30 dB in the 5 to 10 kHz range of the ambient

noise spectrum.

1.5.2 Manmade Sources of Ambient Noise

The major manmade noise sources include

• Shipping

• Oil and gas exploration

• Military operations

1.5.2.1 Shipping

At low frequencies, around 500 Hz, shipping is one of the major

noise sources in the ocean. Ship generated noise can be attributed to

machinery noise, propeller noise and hydrodynamic noise. The effective

detectable range for shipping noise can be as high as 1000 miles or even

more.

1.5.2.2 Oil and Gas Exploration

The oil and gas industry also contribute to ocean ambient noise

through operations related to exploration and production, such as pipe

laying, drilling and platform operations.

1.5.2.3 Military Operations

The R & D operations in naval forces across the world are ever

increasing and considerably contribute to short term changes in the

16



Implementation of an Underwater Target Classifier using HOS Features

ambient noise levels. Such noise generations which include explosions,

active sonars, test firing of weapons etc., can even disturb the ocean

environment significantly. High-frequency acoustic pulses emitted by

active sonars and their echoes can also contribute to ocean noise.

Submarines, explosives used in military tests or exercises and firing of

torpedoes can also be significant sources of undesirable noise.

1.6 Passive Sonar Underwater Target Classifier

Automatic Target Classifiers are such systems, where machine

learning has been employed to categorise the targets. Such systems

have been widely used in conjunction with radars due to the

advantages provided by the active RF ranging technology. However, in

underwater perspective, the application of automated target

classification systems has found to be even more challenging,

considering the complexity of the channel, the ambient environment

and the nature of targets.

Conventionally, the task of such passive sonar target classification is

carried out by human experts by analysing the audio visual

representations of the retrieved and processed signals. The operators

need the skill to identify the type and origin of the noises of interest.

However, as the number of signals presented to the operator increases,

the identification and classification also turn out to be difficult. There

can also be errors in interpreting the results due to the lack of

expertise. Together with the extreme alertness required for a prolonged

period, operators may feel fatigue and even boredom due to the

monotonous nature of the monitoring task, resulting in the decline of

detection performance. Due to these confounding factors, there is a
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growing need for automatic classification of underwater targets.

Underwater target classification systems have wide applications in

both strategic and commercial applications. Classifying and locating

military targets like submarines and torpedoes are of predominant

importance, in taking appropriate counter measures. Such classification

techniques can also be extended to identify commercially important

marine biological species.

Feature 
Extraction

Feature 
Extraction

Feature Selection/
Dimensionality 

Reduction

Classifier

Knowledge
base

Classified
Output

Signal

Figure 1.3: General block diagram of underwater target classifier

The general block diagram of an automated underwater target

classifier has been depicted in Fig. 1.3. The classifier is fed with the

pre-processed signals received from the passive sonar system. The

acoustic signals received from the sonar front-end are processed to

extract source specific classification clues, called features which may

further be processed to get an optimal subset and stored in a

knowledge base. During classification, the features derived from the

signals are compared with those stored in the knowledge base using

some pattern matching algorithms in order to find the closest match.
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1.6.1 Feature Extraction

Features are individual measurable parameters and generally

represent some distinctive aspect, quality or characteristics of a

phenomenon being observed. Such characteristics can be used to

identify the phenomenon and often a combination of different features

may be required to yield satisfactory results and this collection can be

represented as feature vector.

Since the features contain information that describes the unique

characteristics of an object to differentiate it from the others,

extracting informative, discriminating and independent features is an

important task that can considerably affect the efficiency and efficacy

of the classification process.

The extracted features should be informative and non-redundant so

as to facilitate subsequent learning and generalisation procedures for

classification. Feature selection algorithms select a subset from the

extracted features to concisely represent the targets without

redundancy. The elimination of trivial features ensures dimensionality

reduction, thereby reducing the processing, computational as well as

storage overheads. The relevant features of known targets identified

after the feature selection process, along with their corresponding

target labels, are generally compiled and stored as a knowledge base.

1.6.2 Classification Algorithms

Once a knowledge base is created, the features from the incoming

test signals are compared with the template features stored in the
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knowledge base to identify the targets. The term classification

algorithm generally refers to the mathematical or statistical function

that does such comparisons and maps the input data to a category.

There have been many classification algorithms developed so far and

they are broadly categorised into two, the unsupervised and supervised.

In unsupervised systems, such as the k-means clustering, the

system is presented with unlabelled training samples and the system

needs to find some hidden structure in the unlabelled data.

Unsupervised classification, at many instances, can be regarded as a

clustering problem which solely is based on the correlations in the

natural or latent patterns in the observed data. For a classifier, the

particular objective is to find the discriminative patterns that

effectively separate the individual classes. However, in a complex

environment such as the oceanic environment in which the target

signatures are dynamically affected by various complex factors, the

clustering techniques may not give well discriminative clusters as there

are no explicit mechanisms to drive the clustering algorithms to

produce independent clusters of individual targets.

Unlike the unsupervised classifiers, the supervised classifiers have a

training stage where the classifier is trained with labelled data, so that

the classifier knows the features corresponding to each of the targets.

The supervised learning algorithm will analyse the labelled training data

and produces an inferred function, such that it can generalise the training

data and hence it can correctly determine the class labels for the unseen

instances.

Examples of some of the supervised classifiers, which have been

used in this thesis include k-Nearest Neighbour (k-NN) Classifier,
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Artificial Neural Network (ANN) Classifier and Support Vector

Machines (SVMs).

1.7 The Proposed Work

As has already been discussed, feature extraction is one of the

important objectives of the sonar processing systems so as to interpret

and identify the received signals unambiguously. Traditionally, power

spectral analysis and its variants have been used as the technique for

feature extraction for such systems. However, being a linear method,

and most of the complex signals like underwater noise being generated

by nonlinear mechanisms, the use of power spectral analysis turned out

to be inadequate. Nonlinear methods may be used in such cases, in

order to gain a more complete understanding of the underlying signal

dynamics. This thesis, thus explores the feasibility of making use of the

Higher Order Spectral analysis, especially the bispectral analysis as a

feature extraction technique for the noise sources in the ocean.

The bispectrum, which is based on the third order cumulant

sequence of a signal, can play a key role in characterising the

nonlinearities of the underlying signal generating mechanisms,

especially those containing quadratic nonlinearities. Also, as

bispectrum and all higher order spectra for Gaussian process are

identically zero, it suppresses the effect of additive white Gaussian

noise, while preserving the magnitude and phase information of the

original signal, making it a suitable candidate for the feature

extraction.

As it is obvious, a robust feature vector should capture the most

21



Chapter 1. Introduction

invariant characteristics of the underlying signal, even in the presence

of noise as well as in situations where the signal undergoes arbitrary

scaling and translations, that are quite common in underwater acoustic

channels. As an attempt to achieve this, the work also explores the

possibilities of incorporating other higher order features like various

types of integrated bispectra, due to its attractive properties of low

dimensionality, scaling and translation invariance among others.

There have been many attempts to extract the acoustic features

leveraging the perceptual attributes of the human auditory system.

Many filter banks have been devised mimicking the auditory response

of the human ear to different spectral bands. Generally, cepstral

coefficients are derived from the spectrum of the signal after the

application of such filter banks and are used as the feature vector. This

work explores two such filter banks, namely the Mel and the

Gammatone filters and bispectral analysis has been applied to enhance

the cepstral coefficients derived using them.

Selection of an optimal and non-redundant subset of features is an

important step in handling the classification problem, as it can improve

the overall performance of the classifier. Various techniques for feature

selection and dimensionality reduction have also been explored. The

robustness of the generated feature vectors was validated using three

different classification algorithms namely, k-Nearest Neighbour, Neural

Networks and Support Vector Machines. It has been found that the

higher order feature set can yield acceptable classification accuracy and

can be used for underwater target classification. In summary, the main

contributions of the thesis include:

• Feature vector generation using Higher Order Spectral Analysis for
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complex underwater signals

• A novel HOS feature named Bispectral Gammatone Cepstral

Coefficients has been proposed and validated

• Realisation of an underwater target classifier using HOS features

1.8 Outline of the thesis

Remaining parts of the thesis, after this introductory chapter, has

been arranged as follows: The second chapter provides a comprehensive

review of literature related to the area of research. It covers a review of

the past works and basic theoretical concepts.

Third chapter covers the methodology adopted for the realisation of

the proposed underwater target classifier with HOS features. The fourth

chapter provides a detailed description of the Higher Order features and

their extraction techniques. A novel HOS feature based on Gammatone

filter bank has been proposed and detailed in this chapter.

The fifth chapter furnishes a comprehensive description of the

various classification techniques adopted in this thesis. The

performance achieved with various classification frameworks has also

been presented.

Finally, the sixth chapter gives an overview of the main

achievements of the work, proposes areas where future research can be

pursued and draws conclusions. This is followed by the list of

references and publications brought out as a part of this research work.
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1.9 Summary

The need and relevance of intelligent and automated underwater

target classifiers have been discussed in this chapter. The basics of

sonar, different types and functions of sonars, etc., have been discussed

along with the importance of feature extraction techniques from the

received sonar signals for the purpose of target classification. The

various components and functionalities associated with the target

classifiers have also been briefly described followed by a discussion of

the proposed work.
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Review of Past Work

A comprehensive review of literature related to the area of research has

been presented in this chapter. Various research works reported in the

areas of target specific feature extraction and classification have been

covered. Conventional feature extraction techniques including spectral

estimation and cepstral analysis together with the works and results

published in the area of Higher Order Spectral analysis have been

consolidated and presented. An in-depth coverage of various higher

order techniques like bispectrum, trispectrum, bicepstrum, etc., along

with their theoretical framework and applications are also highlighted

in this chapter. The works of various researchers on biologically inspired

feature extraction techniques have also been consolidated. Various

methodologies for feature selection and dimensionality reduction have

been reviewed along with different types of classifiers reported in the

open literature.
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2.1 Background

For decades, trained professionals are being employed for the

detection and classification of underwater targets by listening to the

sonar data. Development of intelligent systems for classifying the noise

sources, in order to assist the sonar operators is one of the hot topics in

the field of sonar signal processing. However, the complexity of the

underwater environment, makes the task of classification a challenging

problem.

The classification process, in general, can be decomposed into

estimation of features or signatures of the source from a set of received

signals by applying suitable feature extraction techniques, followed by

the application of a pattern recognition algorithm on to the estimated

source signatures in order to arrive at the class labels.

So far, a number of techniques have been developed and reported in

the open literature for extracting features from the emanated sound,

and majority of them centres around the classical power spectral

analysis. The spectral analysis and its variants like cepstral analysis

have gained considerable attention from the research community.

However, being a linear method, power spectral analysis cannot fully

characterise the nonlinear signal generating mechanisms. This, coupled

with the complex nature of the radiated noise signals, which actually

are composites of diverse sources, some of which are totally stochastic

and nonlinear, calls for the use of non-Gaussian and nonlinear feature

extraction techniques, like Higher Order Spectral analysis. The Higher

Order Spectrum (HOS) has many attractive properties which, if

utilised properly, can make it a potential candidate for the extraction
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of features from the underwater noise signals. Upon extracting the

features, only a relevant set of the features are selected and fed to a

classifier, for the purpose of classification. Thus, a review of existing

literatures which throws light on the properties and nature of the

underwater noise, various feature extraction techniques, HOS and its

applications and different types of classifiers as well as their working

principles have been carried out during the design and development of

the proposed classifier. The following sections briefly discuss the

outcomes of the literature survey.

The review paper by Gordon M. Wenz [1] explores the various aspects

of the four basic kinds of underwater noise namely, radiated noise, self-

noise, ambient noise and reverberation noise. The basic challenges of

research for each type of noise along with the objectives, areas of effort

and accomplishments have been explored. The review also addresses the

major problems related to noise, such as the noise measurements as well

as noise reduction and prevention techniques.

Pieng et al. describe the development of an ambient noise database

in the frequency range of 11 - 8300 Hz in [2] using the data collected

from the Singapore straits and the surrounding waters. The collected

data indicate the presence of high levels of noise due to shipping in the

frequency range below 1 kHz and snapping shrimp above 2 kHz. The

spectral features of the observed data are also compared with the spectral

curves reported in open literature.

A discussion of the trends and the effects of merchant shipping

across the world, considering the changes in number, size and

propulsion technology has been presented in [3]. The paper observes

that there has been an increase in world shipping that results in an
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increase in low-frequency ambient noise at an average rate of about 1/2

dB per year. In another work, Potter and Delory [4] have also studied

and confirmed the rise in the background noise due to shipping,

especially in the northern hemisphere.

The mechanism of generation of Very Low Frequency (VLF) ambient

ocean noise has been considered by Nichols in [5]. The trials carried out

for 40 days at three deep water sites suggest that the breaking waves are

likely to be a source of very low frequency (1 to 20Hz) ambient noise.

A discussion of the low-to-mid frequency (LMF) noise characteristics,

and the probable mechanisms of their generations have been discussed

in Carey [6], along with the effects of micro bubbles and the breaking of

waves.

The changes in ambient noise levels with wind speed, has been

analysed from the data obtained from moored buoy near Alaska, and is

reported in [7]. It has been found that the measured ambient noise

level at 900 Hz lies well below the Knudsen curve for a wind speed of

about 5 knot. The noise level gradually approaches the Knudsen curve

with an increase in the wind speed from 5-10 kn, and above 10 kn, the

measured ambient noise level matches the Knudsen curve.

In [8], Brocket et al. discusses the statistical analysis of ambient

acoustic noise for detecting the presence of non-linearity and

non-Gaussianity, based on bispectral analysis. It has been found that

when the time series is considered for the order of a minute, the

ambient noise generation, due to distant shipping and wind effects, can

be approximated as linear and Gaussian, but for shorter periods of the

order of seconds, it is fairly nonlinear and non-Gaussian. Another

statistical modelling attempt carried out by Michel Bouvet et al. [9],
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shows that the snapping shrimp noise appears to be non-stationary and

the background noise is very close to the Gaussian. The study carried

out by Webster in [10], also examines the non-Gaussian characteristics

of the ambient noise and finds that the performance of the signal

processing algorithms designed for Gaussian environment can degrade

considerably in a non-Gaussian environment.

2.2 Conventional Feature Sets

Robust features to represent the targets are one of the key

requirements for having a dependable target classification system that

can be relied upon in different environments. Features can be extracted

using time domain or frequency domain techniques. The acoustic

features have been well defined during the course of the years, the

prominent one being the frequency domain analysis, where the

frequency components are extracted and represented in various forms.

Features in time domain are usually quick and easy to implement,

as these features do not need any transformations. Various time

domain features such as short time energy, short time magnitude, zero

crossing rate, autocorrelation, slope sign changes as well as waveform

length have found applications in medical [11] and speech signal

processing [12], especially when low noise signals are involved.

The performance of the time domain analysis however degrades in

the presence of noise as well as when time varying parameters are

involved [13]. Therefore, time domain features are generally combined

with spectral features to yield better classification results [14,15].

The complex acoustic ambience of the ocean with several noise
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sources and dynamic channel effects makes the task of underwater

target classification extremely challenging. In such a scenario, most of

the target classifiers rely on frequency domain algorithms for feature

extraction [16,17].

2.2.1 Spectral Estimation

Marple, in [18] presents a summary of several spectral estimation

methods - both parametric and non-parametric. Though emphasis is

given to parametric time series modelling, non-parametric techniques like

classical spectral estimation, autoregressive, ARMA, Prony, Maximum

likelihood, Pisarenko and MUSIC are also discussed. Another tutorial

paper [19] by Kay and Marple also provide in-depth treatment of many

modern spectral estimation techniques.

In [20], Shin et al., present techniques to improve the detection

performance of passive emissions from quiet sources in littoral waters,

focusing on the full spectrum of the target signature. Various noise

emissions corrupted with ambient noise are analysed and the results

are discussed.

In [21], the acoustic line spectrum has been used for the detection

of torpedo. The spectrum generated by torpedo’s blade motion has

been analysed to enable its detection by a submarine sonar system.

Classification of marine vessels based on the features which are directly

extracted from the Power Spectral Density of their acoustic radiated

noise has been described in [22]. A bank of 71 files of real radiated ship

noise data has been used for the performance evaluation.

The authors, in [23], review various feature extraction techniques
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and classification algorithms related to the concept of music

information retrieval. A number of different spectral based features like

spectral centroid, spectral roll off etc., have been discussed. A

discussion on classifiers, feature combination and classifier fusion has

also been presented.

2.2.2 Miscellaneous

In [24], a chaotic feature set is proposed for classifying ships from

their radiated noise, by making use of the nonlinear regularities in the

emitted signals, using chaotic features. The results show that some

classes that cannot be classified well by using power spectra can be

satisfactorily classified using the proposed chaotic feature. Another

study on similar lines to augment existing feature extraction methods

has been carried out in [25], based on Fractal analysis. The proposed

method includes fractal Brownian motion (FBM) based analysis,

fractal dimension analysis along with wavelet analysis. Analysis on six

different classes of ships shows that the fractal approaches are effective

and can be used to augment traditional features like line and average

spectra.

Locke et al., in [26], present a short-time method based on the

fractional Fourier transform for detecting frequency modulated

narrow-band signals. Such methods can be used for detecting cetacean

vocalisations such as dolphin whistles. The proposed method also

overcomes some of the disadvantages of the existing fractional Fourier

analysis by applying appropriate correction factors.
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2.3 Biologically Inspired Feature Set

2.3.1 MFCC

In [27], Childers et al., present a tutorial review of the cepstrum

concepts focusing on data processing. The power, complex, and phase

cepstra are discussed and shown to be easily related to one another.

General problems associated with phase unwrapping, linear phase

components, spectrum notching, aliasing, oversampling and extending

the data sequence with zeroes are discussed. Concepts of the log

spectrum, complex cepstrum and the effects of various forms of

liftering the cepstrum are presented.

Molau et al. [28], present a method to compute the Mel-frequency

cepstral coefficients directly from the power spectrum of a speech signal.

The authors have observed that the omission of filter bank in signal

analysis does not affect the word error rate. It simplifies the front end of

the speech recognisers by merging subsequent signal analysis steps into a

single one and also avoids possible interpolation as well as discretisation

problems and results in compact implementation.

A technique incorporating power cepstrum and complex cepstrum

techniques for decomposing a composite signal of unknown multiple

wavelets overlapping in time has been presented in [29]. The proposed

technique makes use of the property of the power cepstrum for

efficiently recognising wavelet arrival times and amplitudes and the

property of the complex cepstrum in estimating the form of the basic

wavelet and its distorted echoes.

Underwater acoustic signal recognition using Mel-Frequency
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Cepstral Coefficients (MFCC) and Linear Predictive Coding derived

Cepstral Coefficients (LPCCC) have been discussed in [30]. The

features extracted frame by frame and using a Bag of Acoustic Words

(BoAW) have been considered in this study. Garcia et al. [31], present

the development of an automatic recognition system for infant cry

using acoustic characteristics obtained from the mel-frequency

cepstrum technique and a feed forward neural network. The objective

is to classify two types of infant cries, viz., the normal cry and the

pathological cry from deaf babies.

In [32], Molla and Hirose present a study on the effectiveness of

mel-frequency cepstrum coefficients (MFCCs) and some of their

statistical distribution properties such as skewness, kurtosis, standard

deviation etc., as the features for text dependent speaker identification.

The result shows that the first MFCC degrades the identification

competence as it contains more information about speech than the

speaker and the statistical distribution parameters enhance the

training speed of the neural network.

In [33], the authors discuss the use of Weighted Filter Bank

Analysis (WFBA) to increase the discriminating ability of

Mel-frequency cepstral coefficients (MFCCs). Two WFBA schemes

which differ in the computation of weighting functions, one based on a

fuzzy membership function and other based on log energy of each

critical band, have been investigated. The experiments for recognition

of continuous Mandarin telephone speech show that, by properly

adjusting the fuzzy factor, the WFBA scheme based on fuzzy

membership function has higher capability in enhancing the

discriminating ability of cepstral features.
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2.3.2 Gammatone Filter Bank

Performance of the Conventional speaker recognition systems

degrades under noisy conditions. Zhao et al. [34], examine Gammatone

Frequency Cepstral Coefficient (GFCC), which is based on an auditory

periphery model, and show that this feature captures speaker

characteristics and performs substantially better than conventional

speaker features under noisy conditions. Their findings indicate that

GFCC features out-perform conventional MFCC features under noisy

conditions.

In their recent work, Valero and Alias [35] have examined the

robustness of Gammatone Cepstral Coefficients (GTCC), for

non-speech audio classification. They have evaluated the performance

over two different corpora of 4 hours each, containing general sounds

and audio scenes, respectively. According to them, logarithmic energy

compaction in the GTCC computation process yields better

performance.

In [36], the author presents a technique which relies on the

Gammatone filter bank to a speaker recognition system. The

simulation studies over two datasets show that compared to the

standard Mel frequency cepstral coefficients and the perceptual linear

prediction analysis front ends, the proposed auditory based front-end

yielded higher recognition rate.

The work by Schluter et al. [37], investigate the performance of

Gammatone features on a large vocabulary speech recognition task.

Since the results were competitive, experiments were also carried out

by combining Gammatone features with a number of other
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state-of-the-art acoustic features and found that a relative performance

in word error rate improved by a factor of about 12% compared to the

best performing single feature system.

2.4 HOS Based Feature Sets

Although, traditionally, feature extraction techniques mostly rely on

power spectral analysis or its variants, there have been a surge of interest

in techniques based on Higher Order Spectral Analysis. This section

discusses some of the salient works reported in the field of HOS, along

with the concepts of moments and cumulants that form the basis for

higher order spectra.

The probability density function (PDF) of a random signal x(k) gives

an insight into the distribution of the amplitudes of x(k). The shape of

the PDF can be characterised by a set of measures called moments, which

can be defined in terms of the Moment Generating Function (MGF) [38].

Let w = [w1, w2, . . . , wn]T and x = [x(k), x(k+τ1), . . . , x(k+τn−1)]T .

Then, the MGF can be defined as [39]:

φ(w) = E[exp(jwTx)] (2.1)

Mathematically, mn(τ1, τ2, . . . .τn−1), the nth-order moment of x(k) can

be defined as the coefficients of Tylor’s expansion of the Moment

Generating Function. Equivalently, the nth-order moment, mn, can

also be defined as the expected value of the process x(n) multiplied by

(n− 1) lagged versions of itself [39]. Thus,
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m1 = E[x(k)]

m2 = E[x(k)x(k + τ)]

m3 = E[x(k)x(k + τ1)x(k + τ2)]

m4 = E[x(k)x(k + τ1)x(k + τ2)x(k + τ3)]

(2.2)

In general, the nth order moment is given by,

mn(τ1, τ2, · · · , τn−1) = E[x(k)x(k + τ1) · · ·x(k + τn−1)] (2.3)

The first moment, the mean, gives a measure of the location of the

PDF, while the second moment, the variance, gives a measure of the

spread of the PDF. The third and fourth order moments are called

skewness and kurtosis, which give a measure of the asymmetry and

sharpness of the PDF, respectively.

The Cumulant Generating Function (CGF) is defined as the natural

logarithm of MGF.

κ(w) = lnE[exp(jwTx)] (2.4)

and the coefficients of the Taylor’s expansion of the CGF are termed as

the cumulants [38].

From Eq. (2.1) and (2.4), it is clear that the moments and cumulants
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are closely related.

c1(τ) = m1(τ)

c2(τ) = m2(τ)− (m1)2

c3(τ1, τ2) = m3(τ1, τ2)−m1[m2(τ1) +m2(τ2) +m2(τ2 − τ1)] + 2(m1)3

c4(τ1, τ2, τ3) = m4(τ1, τ2, τ3)−m2(τ1)m2(τ3 − τ2)−m2(τ2)m2(τ3 − τ1)−

m2(τ3)m2(τ2 − τ1)−m1[m3(τ2 − τ1, τ3 − τ1)+

m3(τ2, τ3) +m3(τ1, τ2)] + (m1)2[m2(τ1) +m2(τ2) +m2(τ3)+

m2(τ3 − τ1) +m2(τ3 − τ2) +m2(τ2 − τ1)]− 6(m1)4

(2.5)

If x(k) is a zero mean process, m1(τ) = 0, then the second and

third order cumulants are identical to second and third order moments.

One of the notable features of the cumulants is that, for a Gaussian

process, all cumulants of order greater than two are identically zero and

this helps in distinguishing a non-Gaussian process from a Gaussian

one. Also, cumulants are symmetric in their arguments, that is one can

interchange the arguments of the cumulant without changing the value

of the cumulant. That is, cn(τ1, τ2, . . . , τn−1) = cn(τi1, τi2, . . . , τi(n−1))

where (i1, . . . , i(n− 1)) is a permutation of (i, . . . , n− 1). For example,

third order cumulants exhibit the following symmetries:

c3(τ1, τ2) = c3(τ2, τ1) = c3(−τ2, τ1 − τ2)

= c3(−τ1, τ2 − τ1) = c3(τ2 − τ1,−τ1)

= c3(τ1 − τ2,−τ2)

(2.6)

Detailed descriptions of the properties of the cumulants can be found

in [38,40].

The higher order spectra is defined in terms of higher order

37



Chapter 2. Review of Past Work

cumulant sequence. The nth order spectrum is defined to be the

(n − 1)-dimensional Fourier transform of the nth order cumulant

sequence. The bispectrum is obtained by taking the two dimensional

Fourier transform of the third order cumulant. The general motivations

behind the use of the bispectrum include deviations from normality,

phase estimation, and the detection and characterisation of nonlinear

mechanisms that generate the time series [40].

Bispectrum can be estimated using parametric and non-parametric

methods. In [41] a parametric method for bispectrum estimation of an

autoregressive (AR) model driven by non-Gaussian white noise is

presented. According to the authors, the parametric method would

provide bispectrum estimates of higher fidelity and resolution.

The authors, in [42], present a general approach for evaluating the

principal domain of the discrete bispectrum of a stationary, band

limited random signal. The basic statistical issues of testing for

non-zero bispectral structure are reviewed and a test has been

proposed which can be used to provide inferences about the joint

density of the signal with relevant prior knowledge.

Hinich et al. in [43], examine the ability of the bispectrum to detect

a non-Gaussian time series when that time series is corrupted by

non-Gaussian (or Gaussian) noise. The effect of detection performance

for the variation of different parameters such as sample size and

average SNR has been investigated and it has been found that the

bispectrum performs well compared to other energy detectors in

detecting non-Gaussian signals.

The bicoherence, which is a normalised form of bispectrum, has some

attractive properties. Bispectrum normalisation scheme suggested by
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Kim and Powers has been examined in [44]. The advantage of the Kim

and Powers method is that it produces a result guaranteed to be bounded

by zero and one, and may be easily interpretable as the fraction of signal

energy due to quadratic coupling. However, Hinich and Wolinsky, in this

paper show that wrong decisions can be obtained by blindly relying on

the Kim and Powers normalisation, as this normalisation depends on the

resolution bandwidth of the sample bispectrum.

A nonparametric bicoherence estimation technique which is resistant

to transient contamination has been suggested in [45]. The authors

suggest a stepwise outlier rejection algorithm based on the assumption

that the transients often have different probability distributions when

compared to the original signal.

Richardson and Hodgkiss in [46], discuss the estimation of the

bispectrum and bicoherence of underwater acoustic signals. It is

demonstrated how the bispectrum estimate can be used to detect

non-Gaussianity, nonlinearity and harmonic coupling. Actual data

taken from a freely drifting swallow float and also from an element of a

moored acoustic array are used for the analysis.

The bispectral analysis have also been utilised in fields like fault

detection of rotating machinery [47], characterisation of failure

mechanisms of the pipes for the oil industry [48], identification of

damages in corroded and non-corroded galvanized steels [49]. Apart

from these, it has also been found useful in music information

retrieval [50,51], and for analysing bio medical signals [39].

The work by McLaughlin et al. [52], describe the use of normalised

bispectrum to detect the presence of quadratic phase coupling arising

as a result of nonlinear mechanisms, for passive sonar data. Two
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techniques, one based on a segment and average approach and other

based on single record phase coupling detector have been analysed.

An algorithm for extracting features from radiated noise of

underwater targets using bispectrum has been presented in [53].

Features were extracted after bispectrum estimation on three target

signals and low-dimension feature vectors were obtained.

The extracted features were passed into the radial basis function

(RBF) neural network classifier. The results confirm the usability and

robustness of the proposed feature set.

In [54], the authors investigate the potential of the bispectrum as a

robust feature for speaker identification, in varying noise conditions. The

results were compared against cepstrum features. While the cepstrum

gave the best results using clean data, its performance falls off sharply

in varying conditions with cross-conditions being the most difficult for

the cepstrum. The bispectrum features from the principal region were

used for generating the feature set. By averaging and smoothing, the

bispectrum did very well for additive Gaussian noise.

The wavelet bispectrum and bicoherence, which provide the

instantaneous bi-amplitude and biphase information has been used to

form a set of 23 features for the nonlinear analysis of wheezes [55]. The

proposed feature set was evaluated on a dataset of wheezes, acquired

from adult patients with diagnosed asthma and Chronic Obstructive

Pulmonary Disease (COPD), and found to yield satisfactory results.

Most bispectrum based signal reconstruction techniques rely on

estimated values on the bispectral plane, which are not asymptotically

unbiased and perform poorly with high noise levels. Sundaramoorthy
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et al. [56], suggest two magnitude reconstruction approaches that use

bispectrum samples drawn only from regions, where the estimates are

asymptotically unbiased, in the bispectral plane. The performance of

the two proposed approaches, namely Closed-Form Approach and Least

Squares Approach (LSA), has been verified using simulation studies.

In [57], the authors present analytic performance evaluation of the

complex cepstrum and bicepstrum (i.e., cepstrum of the bispectrum)

methods. Explicit expressions of the bias and variance of cepstrum

parameters are derived.

The authors, in another work [58], have extensively evaluated the

analytic performance of the complex cepstrum, power cepstrum,

bicepstrum and power bicepstrum by providing approximate

expressions of the bias and variance of the cepstrum parameters due to

the presence of Gaussian noise with moderate signal-to-noise ratios.

Monte Carlo simulation results suggest that the improved performance

of the bicepstrum is a function of SNR, number of records and samples

per record.

In [59], the authors suggest a novel parametric estimation technique

for bicepstrum (cepstrum of the bispectrum) making use of both

second and third order statistics and have successfully applied it to

time delay estimation and nonminimum phase system identification.

The performance of this method is compared to that of the

second-order least-squares methods, for different noise conditions and

lengths of data and found to provide larger performance gain when the

noise sources are Gaussian and spatially correlated with unknown

correlation function.
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2.5 Feature Selection Techniques

Many algorithms and techniques have been devised for feature

selection, to find a subset of features that would maximise the

relevancy while minimising the redundancy. Feature selection

techniques can be broadly grouped into three, viz., wrapper, embedded

and filter approaches. The wrapper and embedded approaches are

classifier dependent, while the filter approach is classifier

independent [60].

Wrapper methods consider the subset selection as a search problem,

where different combinations are prepared and each candidate subset is

evaluated using the training/validation accuracy of a particular

classifier. However, this may lead to considerable computational

overheads, and may produce subsets that are overly specific to the

classifier used. Embedded approaches overcome this disadvantage of

wrapper approaches by incorporating the knowledge about the specific

structure of the classifier. Even though, this makes the embedded

approaches far less computationally intensive, the learning part and the

feature selection part become inseparable, making it more dependant

on the classifier model assumptions.

In contrast, the filter techniques assess the relevance of the features

by examining only the intrinsic properties of the data, independent of

the classification algorithm [61]. Filter methods define a heuristic scoring

criterion by evaluating the statistics of the data and use this score to

determine the relevance of the features. The filters have advantage in

terms of computational speed and can be easily scaled to very high-

dimensional datasets.
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Feature selection methods can also be divided as univariate or

multivariate [62]. Univariate methods use univariate statistics, where

each feature is considered separately ignoring the feature dependencies,

to rank the features. Multivariate feature selection methods employ

multivariate statistics for feature ranking and incorporate feature

dependencies to some degree and can preserve relevant features that

might be discarded by univariate methods.

2.5.1 Fisher Ratio

The Fisher Ratio is a well known univariate method, that comes

under the filter approach to rank the features. The Fisher Ratio depends

on the interclass difference and the intraclass spread or variance, and is

defined as the ratio of the interclass difference to the intraclass spread

[63]. Let the mean and variance of the lth feature of the classes Ci and

Cj are denoted by µi,l, µj,l, σ
2
i,l and σ2

j,l respectively. Then the Fisher

Ratio of the lth feature is defined as,

λi,j,l =
(µi,l − µj,l)2

(σ2
i,l + σ2

j,l)
(2.7)

This criterion measures the difference of two means normalised by the

sum of variances. The definition given in Eq. (2.7) is for a two class

problem. It can be further extended to multiclass problems, where there

are C classes. In such cases, the average class separability measure λl of

the lth feature [64] is given by,

λl =

∑C
i=1

∑C
j=1 λi,j,l

C(C − 1)
i 6= j (2.8)

A high value of λl indicates less intraclass spread and more interclass
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difference, and hence represents a strong discriminative feature. Feature

selection can be accomplished by retaining all the features having the λl

value above a predetermined threshold.

2.5.2 Joint Mutual Information

Joint Mutual Information (JMI) is a multivariate feature selection

algorithm and can be used to select a relevant and non redundant subset

of features from the raw feature set.

The Mutual Information MI [65] of two random variables X and Y ,

measures the amount of information shared by X and Y and can be

expressed as,

MI(X;Y ) = H(X)−H(X | Y) = H(Y )−H(Y | X) (2.9)

where H(X) is a measure of the a priori uncertainty of X and

H(X | Y) measures the conditional a posteriori uncertainty of X after

Y is observed. MI(X;Y ) quantify the reduction in the uncertainty of

X if Y has been observed. Thus, a large value of MI signifies high

correlation between the two variables and a zero value indicates that

the variables are independent.

The two advantages of MI that make it unique among the other

dependency measures include capacity to measure any kind of

relationship between the variables, as it makes no assumptions about

the nature of the relationship between the variables and its invariance

under space transformations such as translations, rotations, as well as

any transformation that preserve the order of the original elements of

the variables [66].
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The concept of mutual information can be easily expanded to include

more than two random variables to get the Joint Mutual Information

(JMI) between the variables (X1, X2, · · · , XN ) and Y as given by,

JMI(X1, X2, · · · , XN ;Y ) =

N∑
i=1

MI(Xi;Y | Xi−1, Xi−2, · · · , X1)

(2.10)

JMI provides a measure of the decrease in the uncertainty of Y , on the

basis of the information provided by the feature vector X1, , X2, · · · , XN .

Even though MI, as a feature selection criterion, selects subsets of the

informative features, the selected features can contain redundancy. In

real world applications, it can be expected that some of the features may

be dependent on each other, and in such cases, extending the concept of

MI, to Joint MI avoids the redundancy in the feature space and provides

an optimal subset that contains not only the most relevant but also the

least redundant features.

The Mutual Information (MI) measure is suitable for assessing the

“information content” of features in complex classification tasks, where

other methods based on linear relations (like the correlation) are prone

to mistakes. The applicability of the mutual information criterion to

evaluate a set of features and to select an informative subset from this

feature set has been investigated in [67]. An algorithm is proposed that

is based on a greedy selection of the features and ranking them according

to their MI with respect to the class discounted by a term that takes the

mutual dependencies into account. Also, some examples are presented

from different classification areas where the method is satisfactory.

In [68], Guyon presents a tutorial overview of variable selection and

feature selection algorithms and covers a wide range of aspects like
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feature construction, feature ranking, multivariate feature selection etc.

Subset selection methods including wrapper methods and embedded

methods are also introduced.

In [69], the authors illustrate the importance of feature selection

in combining features from different data models, and demonstrate the

potential difficulties in performing feature selection in small sample size

situations, due to the curse of dimensionality.

The authors in [70], investigates the selection of good features

based on mutual information criterion and a new method called

minimal-redundancy-maximal-relevance criterion (mRMR) has been

devised. A two-stage feature selection algorithm by combining the

mRMR and more sophisticated feature selectors has been proposed.

Extensive experimental comparison of the proposed algorithm has been

carried out with three different classifiers and four different data sets.

The results confirm that mRMR leads to promising improvements on

feature selection and classification accuracy.

2.6 Existing Classification Systems

The following sections briefly review the theory behind the working

of the 3 classifiers, namely the k-Nearest Neighbour, Artificial Neural

Networks and Support Vector Machines that have been used in this

thesis. Some of the applications of these classifiers that have been

reported in the open literature is discussed. A brief review of other

existing classification systems like Hidden Markov Model has also been

provided.
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2.6.1 k-Nearest Neighbour Classifier

The k-Nearest Neighbour (k-NN) technique is a simple and

intuitively appealing method for classification which works on the

premise that two instances are less similar if they are far apart in the

instance space, as defined by some distance function. Two nearly

situated instances are generally more similar and may belong to the

same class [71]. That is, the classification of unknown instances can be

achieved by relating them to the known instances based on some

distance or similarity function like the Euclidean distance. A

description of some of the popular similarity measures, which are being

widely used, have been discussed in [72].

Let each instance be represented with a feature vector with n

features. ie., each instance can be represented as a point in a n

dimensional space. Let there be M instances in the training set and di

be the distance computed between the unknown instance and the ith

instance, where i = 1, · · · ,M . The k-Nearest Neighbour classifier

selects k instances having smaller di values [73]. The classification rule

is to assign the unknown instance to the majority category label of the

selected k- nearest training instances. The best choice of k depends

upon the data and can be selected by various heuristic techniques and

usually chosen to be odd, so as to avoid any ties. A demonstration of

how the choice of k can affect the classifier performance is illustrated in

Fig. 2.1. When k = 3 the test instance represented by the star symbol

is labelled as circle, while a choice of k = 7, leads to its classification as

a triangle.

Though, a larger value of k generally reduce the effect of noise on
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For k = 3 For k = 7

Figure 2.1: How the choice of k can affect the classification

the classification, it does make boundaries between classes less distinct.

It can be shown that the k-Nearest Neighbour rule becomes the Bayes

optimal decision rule as k becomes infinity [74].

An application of the k-NN classifier for the detection and

classification vehicles from their acoustic signals has been described

in [75] using MFCC as feature set. The paper also compares the result

with a neural network classifier. EEG brainwave behaviour due to RF

exposure has been studied using k-NN classifier in [76]. k-NN is used

to classify the different groups for the exposure sessions and also to

prove that there are significant difference in the EEG signals due to the

RF radiation.

2.6.2 Neural Network Classifiers

An Artificial Neural Network is an information processing system

that have been developed as generalisations of mathematical models of

human cognition. The basic processing elements of ANN are called

artificial neurons, or simply the neurons which mimics, to a certain

extent, the behaviour of biological neurons in the brain. These neurons
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are interconnected to form a network as in the case of the biological

nervous system [77].

Each neuron receives signals from other neurons through weighted

and directed links. Typically, these connection weights that modulate

the effect of the associated input signals approximately model the effects

of the biological synapses. Each neuron is also characterised by a transfer

function that mimics the nonlinear characteristics exhibited by biological

neurons. The output yi of the ith neuron is generated [78], by computing

the weighted sum of its n input signals, xj , j = 1, 2, · · · , n and applying

the transfer function fi(·), as shown in Fig. 2.2.

 Σ

x1

x2

wi1

wi2

xn win

fi

θi

yi

Figure 2.2: Artificial Neuron

That is,

yi = fi

 n∑
j=1

wijxj − θi

 (2.11)

where, wij is the connection weight between nodes i and j and θi is the

threshold (or bias) of the node.

The architecture of ANN refers to the pattern of connection

between the neurons. ANNs can be viewed as weighted directed graphs

in which artificial neurons are nodes and directed edges with weights
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serve as the connections between the neurons [77]. ANNs can be

divided into feed-forward and recurrent classes based on the connection

pattern. In a recurrent network, there exists loops because of feedback

connections and loops are absent in the case of feed-forward networks.

In general, feed-forward networks produce only one set of response

values for a given input and the response is independent of the previous

network state. Thus feed-forward networks are static and memory-less,

compared to recurrent networks, which are dynamic systems.

Examples of feed-forward networks include single layer perceptron,

multi-layer perceptron (MLP) and Radial Basis Function Nets, where

as Kohonen self-organising maps (SOMs), Competitive and Hopfield

networks are examples of recurrent networks. Among these, MLPs are

one of the most common NN architecture used for classification tasks.

Typically, MLPs are feed forward nets with an input layer (consisting

of the input variables), zero or more hidden (intermediate) layers and an

output layer, as shown in Fig. 2.3.

Generally, the neurons in a layer share same characteristics like the

transfer functions. One can choose the number of neurons in each

layer, number of hidden layers and the transfer functions of each layer.

The complete network therefore represents a very complex set of

interdependencies which may incorporate any degree of nonlinearity,

allowing very general functions to be modelled in many areas including

pattern classification, pattern association, regression, clustering and

constrained optimisation.

The learning capability of an artificial neuron is achieved by

adjusting the connection weights iteratively in accordance with some

learning algorithm, so that the trained network can perform certain
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Input Layer Output Layer

Hidden Layer

Figure 2.3: Multilayer Perceptron Architecture

tasks. Learning in ANNs can roughly be divided into supervised, and

unsupervised. Supervised learning is based on direct comparison

between the actual output of an ANN and the desired output based on

some error function, such as the total mean square error, between the

actual and the desired outputs summed over all available data. The

connection weights are iteratively adjusted in order to minimise the

error, using a gradient descent-based optimisation algorithms such as

back propagation (BP) [78]. Unsupervised learning utilises the

correlations among the input data, and is used in situations where no

information on the correct output is available.

The design of an intelligent system for classifying marine vessels using

Probabilistic Neural Network (PNN), based on passive sonar listening

has been addressed in [79]. An Autoregressive model with appropriate
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order and coefficients has been developed for the acoustic radiated noise

of ships and has been used as the feature vector. The results of evaluating

the performance of the proposed system indicate that this method is

successful in classifying vessels into three separate classes - heavy ships,

medium ships, and boats.

The performance of ANN-based helicopter sound detection systems

has been evaluated in [80]. Linear Prediction Coefficients (LPCs) along

with other forms of the LPC parameters such as reflection coefficients,

cepstrum coefficients, and Line Spectral Pairs (LSPs) have been used

as feature vectors for the training and testing of the ANN detectors.

The analysis shows that the performance of the ANN detectors can be

improved if the wavelet transform is applied for de-noising the signal

prior to the feature extraction stage, or if the detection system is trained

using a combination of clean as well as noisy signals.

A neural network classifier for classifying underwater mines and

mine-like targets from the acoustic backscattered signals has been

proposed in [63]. The proposed subband-based classification system

consists of a feature extractor using wavelet packets in conjunction

with linear predictive coding (LPC), a feature selection scheme, and a

back propagation neural-network classifier.

In [81], the authors describe object recognition from underwater

images using a hierarchical neural tree system, in which each level is

composed by a neural-based classifier. Such neural tree architecture

has the advantage of not requiring any a priori information about the

network structure. Here the input image is divided into small regions

and a neural tree is used to classify each region into different object

classes.
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2.6.3 SVM Classifiers

Introduced in 1995 by Vladimir Vapnik and colleagues, the Support

Vector Machines [82] has become one of the most popular supervised

learning techniques which can be used for classification and regression

analysis. Initially developed for solving two-group classification

problems, it was later extended to handle multiclass scenarios.

The SVMs conceptually implements the idea that “if there exists two

input vectors that cannot be separated linearly, they can be separated by

non-linearly mapping them into a higher dimension feature space, where

a linear decision surface can be constructed.” This helps in separating

the data, which was otherwise inseparable [83].

Consider the two classes, indicated by circles and triangles in Fig.

2.4(a). Since the classes are linearly separable, there can be many lines

or hyperplanes [84], that can define a boundary that separates the two

classes as in Fig. 2.4(a). However, one can define a hyperplane that

maximises the distance between the hyperplane and the nearest data

point of each class and is termed as the optimal hyperplane. Thus, the

optimal hyperplane maximises the margin, as shown in Fig. 2.4(b).

Consider two linearly separable classes, with a set of training vectors

(x1, y1), · · · , (xl, yl), where xi ∈ R and yi ∈ {−1,+1}. A linear function

of the form

f(x) = wTx + b (2.12)

can be used to correctly separate the classes represented by the training
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Margin

Optimal Hyperplane

(a) (b)

Figure 2.4: Illustration of a simple linear classification scenario and
optimal hyperplane

vectors. ie., for every training vector xi,

f(xi) ≥ 0 for yi = +1

< 0 for yi = −1
(2.13)

Specifically, the two classes are separated by the hyperplane f(x) =

wTx+b = 0. However, there may exist, many such hyperplanes that can

separate the two classes and one needs to find out the optimal hyperplane

which maximises the separating margin between the classes. Solution to

this optimisation problem can be obtained by minimising the following

cost function [85]:

J(w) = 1
2 wTw = 1

2 ‖w‖
2 (2.14)

where the separability constraints are given by,

wTxi + b ≥ +1, for yi = +1

wTxi + b ≤ −1, for yi = −1
(2.15)
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Equation (2.15) can be written compactly as:

yi(w
Txi + b) ≥ 1; i = 1, 2, . . . , l (2.16)

In many cases, the classes may not be completely separable by the

hyperplanes, and in order to address this scenario, Cortes and

Vapnik [82] introduced the concept of slack variables ξi, that provides a

measure of the misclassification error. Using the slack variable, the

separability constraints in Eq. (2.16) can be relaxed as follows:

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0; i = 1, 2, . . . , l. (2.17)

Defining a penalty function, F (ξ) =
∑l

i=1 ξi, and a regularisation

parameter C, the cost function in Eq.(2.14) can be modified as:

J(w, ξ) = ‖w‖2 + CF (ξ) (2.18)

where C > 0 is a constant that sets the relative importance of maximising

the margin and minimising the amount of slack.

Figure 2.5: Nonlinear to Linear Mapping

The concept of linear SVM can be extended to handle nonlinear
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classification scenarios by a technique termed as kernel mapping [86]. In

the nonlinear case, the samples in the input space cannot be separated by

any linear hyperplanes as shown in Fig. 2.5. A nonlinear operator φ(·)

is applied to map the input pattern into a higher dimensional feature

space, where the classes are linearly separable. However, in practice,

the mapping function is not directly employed, instead a kernel function

K(·, ·) which implicitly defines φ(·) is made use of.

Consider the case of mapping an n-dimensional feature space into

an m-dimensional feature space, using the mapping function φ(·) such

that, x→ φ(x), x ∈ X, φ(x) ∈ H, where X is the original n-dimensional

feature space and H is the new m-dimension feature space. x is an

arbitrary vector in X and φ(x) the corresponding vector in H.

The kernel function K(x, y), for all x, y ∈ X can be defined as

K(x, y) = 〈φ(x), φ(y)〉, where 〈φ(x), φ(y)〉 denotes the inner product of

φ(x) and φ(y).

A number of kernels that can be used along with Support Vector

Machines have been proposed by various researchers. However the

choice of the kernel function highly depends on the nature of the data

and the parameters to be modelled. The most popular kernel functions

are: linear, polynomial and Radial Basis Function. A polynomial

kernel function helps to model the feature space up to the order of the

polynomial whereas a Radial Basis Function (RBF) allows to model

hyperspheres while the linear kernel allows only the modelling of

hyperplanes.

The RBF kernel function can be represented as [71],

K(x, y) = exp
(
−γ‖x− y‖2

)
(2.19)
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where the classifier parameter γ plays a major role in the performance

of the kernel, and can be adjusted optimally in order to yield better

classifier performance.

The concept of kernels as a way of generating nonlinear boundaries

has been discussed in [87]. Practical implementation of SVMs for real

life problems, including the effect of the SVM kernel parameters and

their effective selection have also been illustrated. A discussion on SVM

training algorithms and the use of SVMs for unbalanced data have also

been given. The accuracy of an SVM can severely degrade if the data

are not normalised, and as such, various normalisation techniques have

been reviewed and analysed.

An approach for automatically tuning the kernel parameters of an

SVM has been discussed in [88]. This proposed approach is based on

the possibility of computing the gradient of various bounds on the

generalisation error with respect to these parameters. Techniques are

also proposed for smoothing these bounds without affecting their

accuracy. These smoothed gradients allow the gradient descent to

search the kernel parameter space, improving the performance and

reducing the complexity of the solution, making it possible to design

highly complex and tunable kernels.

In [89], an improved grid-search algorithm is proposed that can

choose the optimal parameters for an SVM. The algorithm makes use

of a big variable step size to search for the parameter values in a large

range and optimal parameters are obtained. Then small steps are used

to search near the optimal parameters to fine tune the results. Analysis

shows that the improved grid-search algorithm can reduce the SVM

classifier’s computational complexity effectively and improve its
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performance as well as classification accuracy.

An analysis of classification algorithms of underwater targets from

the backscattered acoustic signals has been considered in [90]. Several

different classification algorithms Viz. K-nearest neighbour (K-NN),

neural networks, probabilistic neural networks (PNNs), Support Vector

Machines (SVMs), multivariate Gaussian classifier are tested and

benchmarked not only for their performance, but also to gain an

insight to the properties of the feature space using a wideband 80-kHz

acoustic backscattered data set. The performance of the PNN and

multivariate Gaussian were not as good as other classifiers and the

SVM classifier has shown to give good classification results.

The SVM classifier has been found to be used in a variety of

applications including the detection of micro-calcification clusters in

digital mammograms [85], text classifications [91] and content-based

image retrieval systems [92].

2.6.4 Other Important Classifiers

An expert system is a system that intends to act or behave generally

like a human expert. Expert systems are basically designed to solve very

complex and rigid problems not by following the procedure of a developer

as is the case in conventional programming but by reasoning about the

knowledge in the same manner as an expert does. In [93], the analysis

of the expert system attributes along with the general architecture is

discussed. The paper also describes the engineering processes in expert

system development and the possible techniques that can be applied to

expert system development.
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Lourens and Coetzer in [94], discuss the detection of the mechanical

features like propeller shaft speed, number of propeller blades and type

of propulsion by analysing the underwater acoustic noise. Classification

of the ships into different classes is carried out using a small expert

system. The development of an autonomous sonar classification expert

system for AUVs is investigated in [95] by Brutzman, et al. The use of

Geometric analysis techniques and an expert system for heuristic

reasoning has been examined in this paper. Classification of sonar

contacts is performed by comparing the attributes of detected objects

with predetermined attributes of known objects of interest.

Hidden Markov Models have been widely used for different

classification scenarios, especially for applications involving speech

processing. In [96], Rabiner presents an in-depth tutorial overview of

Hidden Markov Models and its applications. The paper discusses

Discrete Markov Models and its extension to Hidden Markov Models.

Basic elements of HMM are explained in great detail. Various types of

HMMs, comparison of HMMs and optimisation criteria are also

discussed. The paper concludes by discussing the implementation of a

real world speech recognition system using HMM.

Automatic frequency line tracking (FLT) is a crucial function for

sonar operators for detecting, classifying or tracking moving targets of

interest. In [97], the authors propose an automatic tracking technique

for a frequency line with HMM using Viterbi and Forward-Backward

algorithms. The notion of probabilistic integration of the spectral power

has also been applied to the classical hidden Markov model (HMM)

algorithms in order to achieve acceptable performance levels.

An integrated hybrid hidden Markov model and neural network
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(HMM/NN) classifier has been proposed in [98], for sonar signal

classification. In the proposed classifier, a left-to-right HMM module is

employed and the system has been validated using sonar biological

signals.

Fuzzy rule-based classifiers are a popular counterpart of fuzzy

control systems. There are numerous practical designs for such

classifiers, like neuro-fuzzy models, genetic algorithm based fuzzy

systems, etc. In [99], Kuncheva summarises the architectural as well as

theoretical aspects of fuzzy if-then classifiers in a view to understand

them better. A rigorous discussion about the fuzzy classification, exact

match of the classification boundaries and universal approximations

with fuzzy classifiers are discussed along with the equivalence between

fuzzy rule-based and non-fuzzy classifiers.

In [100], the authors present a fuzzy logic based system to detect

and classify a series of underwater acoustic transients. The proposed

classifier is based on the fuzzy logic theory which can incorporate

human knowledge into the process of inference. Two classes of real life

underwater acoustic transients have been used to evaluate the

performance of the proposed classifier.

Pal et al. [101], in their work, attempt to build a fuzzy version of

the multilayer perceptron using the gradient-descent back propagation

algorithm, by incorporating concepts from fuzzy sets at various stages.

The proposed fuzzy neural network model is capable of handling input

features presented in quantitative and also in linguistic form. The

effectiveness of the proposed model is demonstrated using a speech

recognition problem where the classes have ill-defined, fuzzy

boundaries. A comparison is made with the standard Bayes classifier
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and the conventional multilayer perceptron, and the performance of the

proposed model is found to be better.

2.7 Summary

This chapter presents a review of pertinent open literatures

available in the topic covered by the thesis. A detailed survey on the

higher order spectral analysis and their applicability in various

domains has been included. Various feature selection algorithms,

classification of targets using statistical and expert system classifiers,

Hidden Markov Model classifiers, Neural Network and Support Vector

Machine classifiers, etc. have been reviewed for their adaptability in

the proposed classifier design.
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Methodology

This chapter addresses the methodology adopted for the realisation of

the proposed target classifier, which primarily involves the extraction of

higher order feature vectors from the emanated target signals and the

feature selection procedures to identify an optimal feature subset. The

feature extraction steps mainly concentrate on Higher Order Spectral

analysis and involve bispectral and bicepstral analysis. A knowledge

base containing the target specific features has been developed from the

estimated feature set, and serves to provide the required classification

clues for the classifier. The classifier compares the features of the

unknown signal with the ones in the knowledge base and checks for

a suitable match, based on which the system performs the decision

making process.
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3.1 Background

The underwater ambient noise characteristics are highly complex and

varying. One of the reasons for this could be the richness in the number

and diversity of the noise generating sources. The biodiversity catered

by the ocean is remarkable and as such, many of the aquatic organisms

generate a variety of noises. These include the crackling sound of shrimps

to cetacean vocalisations. Many of the environmental phenomena like

the wind, waves, rain, precipitation, cracking of ice and even earthquakes

also contribute to the ambient noise. The biological and environmental

sources are generally grouped under natural noise sources.

Apart from these, considerable noise levels are being contributed by

human activity. Such noise include shipping noise, noise generated due to

exploration, military research activities, etc. The manmade noise levels

have been increasing considerably, and in many cases, it even reaches a

level that disturbs the natural ecology of the ocean itself.

Thus it is apparent that the underwater acoustic environment

presented to the sonar system comprises of a complex mixture of

noises, which include the biological noise combined with environmental

and manmade noises. Considering the large operational range of such

systems, the effective acoustic field will also encompass sources from a

variety of locations. Thus, the computation of various statistics for

interpreting the passive sonar signals for achieving target classification

becomes a challenging task.
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3.2 Model of the proposed Target classifier

A simplified block diagram of the proposed classifier is shown in

Fig. 3.1. The acoustic target signals are preprocessed and relevant

features are extracted from these signals. Techniques based on HOS

analysis are being used for the feature extraction. The feature

extraction is followed by dimensionality reduction. A knowledge base is

formed from the known target signatures and has been used to train

the classifier. During the testing phase, the classifier is presented with

the extracted and selected features of the unknown signal to predict

the class label. The following sections outline the extraction of higher

order features, the generation of the feature vector and the different

classification algorithms employed in this work.
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Figure 3.1: Block diagram of the proposed classifier
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3.3 Feature Extraction

Extraction of robust features from noisy acoustic signals emanating

from underwater noise sources is one of the challenging steps in the

process of classification. As has been outlined in chapter 2, Most of the

existing feature extraction techniques rely on the conventional power

spectral estimation methods and its variants. However, being a linear

method, the use of power spectral analysis may fail to provide

information pertaining to the deviations from linearity and Gaussianity

of stochastic processes, which is quite often the case in underwater

scenario. This calls for the use of alternative methods like higher order

spectral analysis, in order to gain a more complete understanding of

the underlying signal dynamics.

Defined in terms of higher order cumulants, the Higher Order

Spectra (HOS) or polyspectra, offers a novel set of techniques,

algorithms and methodologies for the study and analysis of signals,

especially those originating from nonlinear systems. The study of HOS

has been dominated by work on the third order polyspectra, or the

bispectrum and to some extent the fourth order polyspectra, also

known as the trispectrum. The motivations behind the use of HOS

analysis include its ability to suppress Gaussian noise, to reconstruct

the phase and the magnitude response of the signals or systems and to

detect and characterise nonlinear interactions [58]. Due to these

attractive properties, Higher Order Signal processing, especially the

bispectrum has been used in many applications, including pattern

recognition [102], biomedical signal processing [39], underwater signal

processing [53], etc.
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Since bispectrum, which is a higher order spectra of order three, is

identically zero for many noise processes, especially the Gaussian

process, it can be used to suppress the effect of additive white Gaussian

noise [40]. Bispectrum also allows the detection and characterisation of

second-order nonlinear interactions between frequency components,

known as the Quadratic Phase Coupling (QPC). Signal reconstruction

or system identification can also be achieved in bispectrum domain due

to its ability to preserve both magnitude and phase information, even

in the presence of additive Gaussian noise. Thus, the limitations of the

second order methods and the advantages of the higher order methods

motivate the use of higher order spectral analysis for feature

extraction. A consolidated view of the various higher order features

that have been combined to form the feature vector proposed in this

work is depicted in Fig. 3.2.

After framing and windowing of the source signal, bispectral and

bicepstral estimation have been carried out to extract different higher

order feature sets. The bispectral matrix resulting from the bispectral

estimation has been utilised to generate bicoherence, integrated

bispectra and biologically derived features. The bispectral matrix

contains information regarding the quadratic nonlinear interaction

between the frequency components of the source signal. However, it is

found that, the variance of the bispectrum at the bifrequency is

proportional to the product of the power of the signals [8] at these

frequencies.

The bicoherence, which is a normalised form of the bispectrum is

generally employed in order to make the bispectrum independent of the

energy content at the bifrequencies. The diagonal elements of the

bicoherence matrix which represent the self coupling components in the

67



Chapter 3. Methodology

Bispectral Estimation Bicepstral
Estimation

Bicoherence Integrated Bispectra

Signal

Framing & Windowing

Feature Vector

C
IB

R
IB

A
IB

B
G

TC
C

B
M

FC
C

B
ice

p
stra

l Fe
a
tu

re
s

B
ico

h
e
re

n
ce

 Fe
a
tu

re
s

Bispectral 
Reconstruction

Figure 3.2: Consolidated view of feature vector generation

signal, together with the anti-diagonal elements have been considered

for the feature vector generation.

The information in the two dimensional bispectral matrix can be

transformed into a one dimensional vector using different types of

integrated bispectra, namely the Axially Integrated Bispectra (AIB),

Radially Integrated Bispectra (RIB) and Circularly Integrated

Bispectra (CIB). Such integrated bispectra also possess some attractive

properties like translational and rotational invariance and have been
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included in the feature vector.

The human auditory system is excellent in processing and

perceiving acoustic signals and many attempts have been made to

model and mimic both its functional as well as structural properties,

over the past few decades. As a result, many perceptually motivated

filter banks have been derived by modelling the auditory response of

the human ear to different spectral bands with nonlinear spacing. Such

filter banks can be utilised in order to extract robust features from the

target signals. Two such conventional cepstral feature extraction

approaches, namely the Mel Filter Cepstral Coefficients (MFCC) and

Gammatone Cepstral Coefficients (GTCC) have been studied further,

for the purpose of deriving the Bispectral MFCC and Bispectral GTCC

and have been incorporated into the feature vector.

The bicepstrum has also proven to be useful in a number of

applications in different domains, varying from fault detection to the

analysis of power generation systems. The bicepstrum can be computed

by taking the logarithm of the bispectrum and inverse transforming the

log-spectrum. The definition of the cepstrum in terms of higher order

cumulants enables us to retrieve the cepstrum of the source wavelet

analytically, conserving the phase information. Hence, the bicepstral

coefficients have also been incorporated into the feature vector.

A detailed theoretical description and the extraction algorithms of

the proposed higher order features have been presented in Chapter 4.

The higher order feature vector thus generated has been optimised

using feature selection techniques to achieve efficient classification

performance.
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3.4 Feature Selection

Generally, for a robust classification framework, the features will be

extracted using different techniques such that the resultant feature

vector encompasses the various defining attributes of the targets. Some

of these features may be completely irrelevant or redundant and the

feature selection process eliminates such features and chooses an

optimal and relevant subset of features using some decision

criterion [65]. Formally, the problem of feature selection can be stated

as follows: given a set of D features, select a subset of m features that

leads to the smallest classification error. Thus, feature selection

removes irrelevant or redundant features and reduces the data

dimensionality.

In this work, two feature selection approaches namely Fishers

Criterion and Joint Mutual Information (JMI), which are detailed in

Chapter 2 have been employed.

3.5 Knowledge base Compilation

Feature extraction followed by feature selection lead to the formation

of the target feature vector which forms the input to the classifier. The

feature vectors of known signals thus formed are appropriately labelled

to create a knowledge base for the classifier.

The knowledge base used in the proposed classifier consists of HOS

features extracted from the signals of 30 different acoustic targets of

natural and anthropogenic origin. The natural sources include recordings

of biological sources like vocalisations of different types of whales, as
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well as recordings of environmental noises like rain and cracking of ice.

Recordings of noise emanating from manmade sources like ships and

boats have also been included in the knowledge base. Some of these

raw noise data for the compilation of the knowledge base have been

collected during the scheduled cruises off Cochin and off Mangalore.

Other recordings have been collected from various open source sound

databases available in the Internet.

3.6 Classifiers

The classifier compares the labelled signals in the knowledge base

against the feature vector of the unknown signal to perform the

decision making process. Three classifiers namely the k-Nearest

Neighbour (k-NN), Artificial Neural Networks (ANNs) and the Support

Vector Machine (SVM) Classifier have been employed and their

performance has been analysed in this thesis.

A k-Nearest Neighbour Classifier is a relatively simple yet efficient

classifier, where each sample is labelled according to the majority of its

k nearest neighbours, based on some form of distance measures. The

performance of the classifier using Euclidean, city block and correlation

distance measures have been analysed in this work. The value of k has

also been varied to analyse its effect on the classifier performance.

Artificial Neural Networks (ANNs) are inspired by the biological

nervous system and can be described as a properly weighted directed

graph, in which each node performs a transfer function [78]. The nodes

are generally organised in layers, and a typical ANN will have an input

layer, an output layer and one or more hidden layers in between them.
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In the training phase, the compiled knowledge base of the targets are

applied as input to the network and the network adjusts its weights for

capturing the feature values of the targets. The number of hidden

layers, the number of neurons in each layer and the transfer function of

the layers have been varied to obtain optimal classifier performance.

In many practical classification scenarios, the classes are

non-separable linearly, in the feature space. The Support Vector

Machine (SVM) Classifier relies on the fact that it is possible to

transform the data into a higher dimensional space where the classes

are linearly separable, by employing kernel functions [82]. For any

kernel, there will be some parameters that would effectively determine

the properties and efficiency of the classifier involved. The optimal

values of these parameters need to be determined using some kind of

model selection or parameter search, in order to ensure the best

possible performance of the classifier. In this thesis, an RBF Kernel

has been used and Cross-validation as well as Grid-search approaches

have been employed for identifying the optimal values for the kernel

parameters.

3.7 Summary

The methodology adopted for the development of an intelligent

target classifier has been discussed in this chapter. An overview of the

feature vector generation using various higher order features including

bicoherence, integrated bispectra and biologically derived feature sets

have been presented. The knowledge base formation for the proposed

target classifier is provided along with a description of the various

types of classifiers employed in this work.
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Higher Order Feature Sets

A common concern of feature extraction techniques is to obtain the

features that are fairly invariant to irrelevant aspects of the data,

as far as the classification is concerned. This chapter examines the

Higher Order Spectral analysis techniques like bispectral and bicepstral

analysis to obtain the robust feature vectors from the underwater noise

data. The bispectrum is a third-order spectrum that has a number

of properties which make it a valuable signal processing tool. This

chapter also describes the various integrated bispectra for estimating

the features from the noise data. Axial, radial and circular integration

in the bifrequency plane has been considered. Conventional techniques

like Mel Frequency Cepstral Coefficients and Gammatone Cepstral

Coefficients, which are biologically motivated, have also been considered

for the purpose of generating their bispectral counterparts.
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4.1 Background

One of the main objectives of signal processing is to extract the

relevant information from the obtained signal, that is generally

corrupted by noise. Such information, in the context of classification is

termed as the characteristic features and the process of feature

extraction involves the application of relevant techniques to generate a

set of parameters that can uniquely characterise the signal generating

mechanism. The techniques to be employed for this purpose depend on

the nature of the signal and the noise. For example, the noise and the

signal can be Gaussian or non-Gaussian, and the underlying generating

mechanism can be linear or nonlinear. Till recently, such analysis were

carried out by assuming and approximating the signals as Gaussian,

originating from linear processes. One of the reasons for such an

approximation is that almost all the classical signal analysis tools are

centered around the power spectral analysis, which is based on the

second order statistics that cannot characterise non-linearity and

non-Gaussianity. In power spectral estimation, the frequency

components of the signal under consideration along with their power

distribution is estimated and such an analysis is sufficient to fully

describe the Gaussian signals. However, many practical situations call

for the extraction of information regarding deviations from Gaussianity

and linearity, and in such circumstances, one may have to look for

techniques that can provide capabilities beyond the power spectral

analysis.

Recently, a lot of research is being carried out in higher order

statistics and as a result, analysis techniques with higher order spectra,

also known as polyspectra, which is defined in terms of higher order
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statistics, have been developed and are extensively used in places where

the second order statistics fail. The most commonly used higher order

tools are based on the third and fourth order cumulants, and are called

the bispectrum and trispectrum, respectively.

4.2 Higher Order Spectra or Polyspectra

Higher Order Spectra can be defined in terms of either cumulants

(cumulant spectra) or moments (moment spectra).

Assuming that the nth order cumulant sequence of a random signal

x(k), as defined in section 2.4, is absolutely summable, the nth order

cumulant spectrum of x(k), Sn(ω1, ω2, . . . , ωn−1) exists, and is defined

to be the (n−1)-dimensional Fourier transform of the nth order cumulant

sequence. In an analogous manner, the nth order moment spectrum is

defined as the (n−1)-dimensional Fourier transform of the corresponding

moment sequence.

In general, cumulant spectra is more widely used in processing

random signals when compared to moment spectra. This wide usability

of cumulant spectra can be attributed to the following properties that

the moment spectra do not share:

1. Additivity: The cumulants of the sum of two independent random

processes equals the sum of the cumulants of the process

2. Cumulant spectra of order > 2 are zero if the underlying process

in Gaussian

3. Cumulants quantify the degree of statistical dependence of time

series

4. Cumulants of higher-order white noise are multidimensional
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impulses and the corresponding cumulant spectra are flat.

Let cn(τ1, τ2, · · · , τn−1) be the nth order cumulant and is absolutely

summable. Then the general formula for the nth order (cumulant)

spectrum is given by

Sn(ω1, ω2, · · · , ωn−1) =
∞∑

τ1=−∞
· · ·

∞∑
τn−1=−∞

cn(τ1, τ2, · · · , τn−1)exp

[
−j

n−1∑
i=1

ωiτi

]
(4.1)

In general, Sn(ω1, ω2, · · · , ωn−1) is complex, and has both magnitude

and phase. The power spectrum, bispectrum and trispectrum are the

2nd Order Statistics

3rd Order Statistics

4th Order Statistics

nth Order Statistics

(Autocorrelation)

(Autobicorrelation)

(Autotricorrelation)

Signal x(t)

 Power Spectrum

Bispectrum

Trispectrum

nth Order Spectrum

Figure 4.1: Computation of Polyspectra

special cases of nth order cumulant spectra for n = 2, 3, 4 respectively.

Thus, using Eq. (4.1):

Power Spectrum (n = 2)

S2(ω) =

∞∑
τ=−∞

c2(τ)exp [−jωτ ] (4.2)
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Bispectrum (n = 3)

S3(ω1, ω2) = B(ω1, ω2) =

∞∑
τ1=−∞

∞∑
τ2=−∞

c3(τ1, τ2)exp [−j(ω1τ1 + ω2τ2)]

(4.3)

Trispectrum (n = 4)

S4(ω1, ω2, ω3) =

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

c4(τ1, τ2, τ3)exp[−j(ω1τ1+ω2τ2+ω3τ3)]

(4.4)

A diagram illustrating the computation of the polyspectra of different

orders is given in Fig. 4.1.

4.3 The Bispectrum

The bispectrum is defined as the two dimensional Fourier transform

of the third order cumulant. It is the second member in the family of

polyspectra, the first member being the power spectrum.

4.3.1 Principal Domain

From the symmetry of the third order cumulant as indicated in

Eq. (2.6), the (τ1 − τ2) plane can be divided into six regions. By

knowing the cumulants in any one of these regions, the cumulants in

the other five regions can be easily calculated. It follows from this

symmetry property of the third order cumulant that the third order

cumulant spectrum of the bispectrum is also sixfold symmetric. That
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is,

S3(ω1, ω2) = S3(ω2, ω1) = S∗3(−ω2,−ω1)

= S∗3(−ω1,−ω2) = S3(−ω1 − ω2, ω2)

= S3(ω1,−ω1 − ω2) = S3(−ω1 − ω2, ω1)

= S3(ω2,−ω1 − ω2)

(4.5)

Thus, by knowing the bispectrum in the triangular region as

illustrated in Fig. 4.2, the bispectrum of the other regions can be easily

computed [103]. This region represented by ω2 ≥ 0, ω2 ≥ ω1,

ω1 + ω2 ≤ π, is generally called the principal region or the

non-redundant region.

ω1

ω2

ω1 = ω2

ω1+ω2= π

ω2= π

ω2= -π

ω1= -π

ω1= π
ω1+ω2= -π

1

2

34

5

6

7

8
9 10

11

12

Figure 4.2: Illustration of symmetry in bispectral plane
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4.3.2 Properties

• Bispectrum B(ω1, ω2) is generally complex. That is it has both

magnitude and phase.

B(ω1, ω2) = |B(ω1, ω2)| exp(jφ(ω1, ω2)) (4.6)

• B(ω1, ω2) is doubly periodic with a period 2π

B(ω1, ω2) = B(ω1 + 2π, ω2 + 2π) (4.7)

• Bispectrum has 12 regions of symmetry as shown in Figure 4.2

• Gaussian Processes: For a stationary zero-mean Gaussian process

x(k), the third order cumulant sequence c3(τ1, τ2) = 0 for all

(τ1, τ2) and therefore its bispectrum B(ω1, ω2) is also identically

zero.

• Linear Phase Shifts: For a process x(k) let the power spectrum and

bispectrum be represented as Px(ω) and Bx(ω1, ω2). Let y(k) =

x(k−N) be a shifted version of x(k), where N is a constant integer

and has the power spectrum Py(ω) and bispectrum By(ω1, ω2).

Since the second and third-order moments suppress linear phase

information, we have, Px(ω) = Py(ω) and Bx(ω1, ω2) = By(ω1, ω2).

It may be noted that while the power spectrum suppresses all phase

information, the bispectrum does not.

4.3.3 Estimation

In digital signal processing, the computations require discrete or

sampled data and practically, the data available will be of finite length.
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Just as power spectrum estimation, the estimation of the bispectrum

from finite length data can be achieved either using the conventional

(non-parametric) methods or by the parametric methods. In

non-parametric method, there are two classes of estimators-direct and

indirect [40]. The direct class of estimators compute the bispectrum

directly from the data. The time domain data is first transformed into

the frequency domain by Fourier transform, and from this the

bispectrum is estimated. In the indirect method, cumulant sequence is

estimated first, from the time series, and then the 2D Fourier

transform is computed to estimate the bispectrum. It may be noted

that the conventional estimators make no assumptions about the model

of the process.

Parametric estimators are based on Auto Regressive (AR), Moving

Average (MA) or Auto Regressive Moving Average (ARMA) models.

These estimators assume an underlying model for the process under

consideration and the parameters of the corresponding model are

computed leading to the estimation of the bispectrum.

While the parametric techniques can provide better estimates of the

bispectrum when there is an understanding about the underlying model,

the conventional estimators have the advantages of simplicity and ease

of implementation. Also, the conventional estimators can provide good

estimates with sufficiently long data records.

4.3.3.1 Direct Method

For estimating the bispectrum using the direct method [40], consider

a series comprising of N samples, {x(1), x(2), . . . , x(N)}.
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• Divide the series into K segments or records, each of length M . Let

x
′
i(k), represent the i th record. i = 1, 2, . . . ,K and k = 1, . . . ,M .

• The mean µi of the i th segment is computed and subtracted from

each sample of that segment.

xi(k) = x
′
i(k)− µi (4.8)

• The M -point Discrete Fourier Transform, Xi(k) of each segment

is computed, i.e.,

Xi(k) =

M−1∑
n=0

xi(n)e−j
2π
M
nk, k = 0, 1, . . . ,M − 1, i = 1, 2, ..., k.

(4.9)

• The bispectrum of each segment is obtained as

Bi(k1, k2) =
1

M
Xi(k1)Xi(k2)X∗i (k1 + k2), i = 1, ...,K. (4.10)

• Finally, the bispectrum is computed as the mean of all Bi(k1, k2)

B(ω1, ω2) =
1

K

K∑
i=1

Bi(ω1, ω2), ωi =
2π

M
ki, i = 1, 2. (4.11)

It may be noted that the symmetry properties of the bispectrum can

be used to reduce the computational complexity. Bi(k1, k2) need to be

computed only in the triangular region 0 ≤ k2 ≤ k1, k1 +k2 < M/2, and

the values of other regions can be easily deduced from this.

A two-dimensional rectangular smoothing window of size

(M3 × M3) can be applied to the computed bispectrum, in order to
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reduce the variance of the estimate.

B̃i(k1, k2) =
1

M2
3

M3/2−1∑
n1=−M3/2

M3/2−1∑
n2=−M3/2

Bi(k1 + n1, k2 + n2) (4.12)

The final bandwidth of this bispectrum estimate is ∆ = M3/M ,

which is the spacing between frequency samples in the bispectrum

domain. For large N, the direct method produce asymptotically

unbiased and consistent bispectrum estimates, with real and imaginary

part variances, given by:

var
(
Re
[
B̂(ω1, ω2)

])
= var

(
Im
[
B̂(ω1, ω2)

])
= 1

∆2N
X(ω1)X(ω2)X(ω1 + ω2)

= M
KM2

3
X(ω1)X(ω2)X(ω1 + ω2)

(4.13)

From the above expressions, it is clear that the variance of the

bispectrum estimate can be reduced by increasing the number of

records or the size of the frequency smoothing window (M3).

4.3.3.2 Indirect Method

Consider a series comprising of N samples, {x(1), x(2), . . . , x(N)}.

• Divide the series into K segments or records, each of length M . Let

x
′
i(k), represent the i th record. i = 1, 2, . . . ,K and k = 1, . . . ,M .

• The mean µi of the i th segment is computed and subtracted from

each sample of that segment.

xi(k) = x
′
i(k)− µi (4.14)
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• Estimate the moments of each segment

mi
3(τ1, τ2) =

1

M

l2∑
l=l1

xi(l)xi(l + τ1)xi(l + τ2) (4.15)

where,

l1 = max(0,−τ1,−τ2), l2 = min(M − 1,M − 2)

|τ1| < L, |τ2| < L, i = 1, 2, · · ·K

Note that the third-order moments and cumulants are identical, as

each segment has zero mean: c3(τ1, τ2) = m3(τ1, τ2).

• Obtain the average cumulants as:

c3(τ1, τ2) =
1

K

K∑
i=1

mi
3(τ1, τ2) (4.16)

• Compute the third-order bispectrum estimate by taking the double

Fourier transform:

B(ω1, ω2) =

L∑
τ1=−L

L∑
τ2=−L

c3(τ1, τ2) exp−j(ω1τ1+ω2τ2) ω(τ1, τ2)

(4.17)

where L < M − 1. Also note that a two-dimensional window

ω(τ1, τ2) can be introduced to smooth out edge effects, as described

in the case of direct method.

4.3.4 Quadratic Phase Coupling

There are situations in which the interactions between two

harmonic components cause contribution to the power at their sum

and/or difference frequencies. As an illustration, consider two sinusoids
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x1(n) = cos(2πf1n + φ1) and x2(n) = cos(2πf2n + φ2) passed through

a nonlinear system, such that the output signal y(n) is

x1(n) + x2(n) + [x1(n) + x2(n)]2.

That is,

y(n) = cos(2πf1n+ φ1) + cos(2πf2n+ φ2)+

cos2(2πf1n+ φ1) + cos2(2πf2n+ φ2)+

2cos(2πf1n+ φ1)cos(2πf2n+ φ2)

(4.18)

Or,

y(n) = cos(2πf1n+ φ1) + cos(2πf2n+ φ2) + 1+

1

2
cos(4πf1n+ 2φ1) +

1

2
cos(4πf2n+ 2φ2)+

cos[2π(f1 + f2)n+ (φ1 + φ2)]+

cos(2π(f1 − f2)n+ (φ1 − φ2))

(4.19)

As given in the above equation, the output signal y(n) contains the

components with frequencies 2f1, 2f2, (f1 + f2) and (f1 − f2) along with

the original components f1 and f2. The component of y(n) also exhibits

certain phase relations as shown:

2f1 ←→ 2φ1

2f2 ←→ 2φ2

f1 + f2 ←→ φ1 + φ2

f1 − f2 ←→ φ1 − φ2

(4.20)

and such phase relationships arising out of quadratic non-linearity in

the signal generating mechanism is called the Quadratic Phase Coupling

(QPC) . It may be noted that, in situations where there is only frequency

84



Implementation of an Underwater Target Classifier using HOS Features

coupling and no phase coupling between the components, no QPC exists.

Consider two signals x1(k) and x2(k) such that,

x1(k) = cos(λ1k + θ1) + cos(λ2k + θ2) + cos(λ3k + θ′3)

x2(k) = cos(λ1k + θ1) + cos(λ2k + θ2) + cos(λ3k + θ3)
(4.21)

where λ3 = λ1+λ2, θ3 = θ1+θ2 and θ′3 6= θ1 + θ2. λ1, λ2, λ3 are said to be

harmonically related and θ1, θ2, θ3, θ
′
3 are independent random variables

uniformly distributed between [0, 2π]. λ3, in the case of x1(k), is an

independent harmonic component because θ′3 is an independent random-

phase variable. However, λ3 of x2(k) is a result of phase coupling between

λ1 and λ2. The autocorrelation sequences of the two signals are given

by

cx12 (τ1) = cx22 (τ1) =
1

2
{cos(λ1τ1) + cos(λ2τ2) + cos(λ3τ3)} (4.22)

Thus it is apparent that, {x1(k)} and {x2(k)} have identical power

spectra with peaks at λ1, λ2 and λ3 = λ1 + λ2. This is has been

illustrated in Fig. 4.3(a). The third order cumulants of the signals can

be obtained as

cx13 (τ1, τ2) = 0

cx13 (τ1, τ2) = 1
4 {cos(λ2τ1 + λ1τ2) + cos(λ3τ1 − λ1τ2)}

+cos(λ1τ1 + λ2τ2) + cos(λ3τ1 − λ2τ2)

+cos(λ1τ1 − λ3τ2) + cos(λ2τ1 − λ3τ2)

(4.23)

Thus, it is clear that the bispectrum of {x1(k)} is identically zero while

the bispectrum of {x2(k)} is not. The bispectrum of {x2(k)} exhibits

peak at (λ1, λ2) (if λ1 ≥ λ2), in the triangular region ω2 ≥ 0, ω1 ≥ ω2,

ω1 + ω2 ≤ π. This has been illustrated in Fig. 4.3(b)
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(a)  Power spectrum of x1(k) and x2(k)

zero

(b)  Magnitude Bispectrum of x1(k) and x2(k)

λ1 λ2 λ3 λ1 λ2 λ3

λ1

λ2

λ1

λ2

1

2

1

2

Figure 4.3: Illustration of Quadratic Phase Coupling

Thus, the power spectrum fails to discriminate {x1(k)} from

{x2(k)} as it suppresses phase relations of harmonic components.

However, the bispectrum does preserve quadratic phase relations and

therefore becomes useful for extracting them quantitatively.

4.3.5 Normalisation

In the case of bispectrum, it is found that, at the bifrequency (f1, f2),

the complex variance is proportional to the product of the power of the

signals at the frequencies f1, f2 and (f1 + f2) [44]. i.e.,

var[B(f1, f2)] ∝ P (f1)P (f2)P (f1 + f2) (4.24)
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(a) Signal amplified by 10 (b) Signal amplified by 100

Figure 4.4: Bispectral plots illustrating the energy dependency of
bispectrum

Fig. 4.4(a) and (b) shows the bispectral plots of a signal amplified by

a factor of 10 and 100 respectively.

It can be seen that as the amplitude of the signal gets increased, the

magnitude of the bispectral plots also get increased on a large scale.

Thus, in order to make the bispectrum independent of the energy

content at the bifrequencies, a normalised measure, referred to as the

bicoherence can be used. Bicoherence, which is a normalised form of the

bispectrum, can be defined as

bic(f1, f2) =
|B(f1, f2)|√

P (f1)P (f2)P (f1 + f2)
(4.25)

Since the bicoherence is independent of the energy or amplitude of the

signal, it can be used as a convenient test statistic for the detection of

non-Gaussian, non-linear and coupled processes. Fig. 4.5 shows the

contour and mesh plots of the bicoherence of a typical noise waveform.

The same signal has been amplified by a factor of 10 and 100 and the
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Figure 4.5: Bicoherence of a typical signal - The contour and mesh plot

corresponding bicoherence plots are presented in Fig. 4.6(a) and (b).

From the figures, it is clear that the bicoherence is independent of the

energy content or the amplitude of the signal.

4.4 Bispectral Analysis of Underwater Noise

Signals

A detailed analysis of the various noise sources present in the

marine environment using bispectrum has been carried out, from a

target classification perspective. The signals from various sources, both

of manmade as well as biological origin, have been analysed. The

target data waveforms have been segmented into records and the

bispectrum of the records are computed using direct method, as

outlined in the previous sections. In direct method, the FFT of the

target waveform is computed using a suitable FFT of length N .

Generally, the value of N is chosen to be a power of 2, such as 64, 128,

256 or 512. Figure 4.7 shows the mesh and contour plots of the
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(a) Signal amplified by 10 (b) Signal amplified by 100

Figure 4.6: Bicoherence plots of amplified signals

bispectrum of a typical signal, generated using different values of N .

The plots generated with N = 64, has much broader peaks, as seen

from the mesh plot, due to poor the frequency resolution. The plots

generated with 128 point FFT have moderate peaks and those generated

with 256 point FFT have narrow peaks. Thus, it may be desirable to use

an FFT size, as large as possible, since it would increase the frequency

resolution. This is illustrated in Fig. 4.7(c). However, increasing the

DFT size, can conflict with the requirement of having a large number

of segments K, as given in Eq. (4.13) which is an essential requirement

for obtaining reliable estimates with low variance and bias. Thus, this

thesis has chosen 128 point FFT, which strikes a balance in both the

resolution and number of records, to compute the bispectral matrix.

As has already been discussed, the bispectrum depends on the

amplitude of the signal under consideration. Thus, its normalised form,

the bicoherence, has been used for the analysis of the noise waveforms,
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(a) Bispectral Plot with 64-Point FFT

(b) Bispectral Plot with 128-Point FFT

(c) Bispectral Plot with 256-Point FFT

Figure 4.7: Bispectral plots of a target computed with different FFT bin
sizes
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for the detection of non-Gaussian, nonlinear and coupled processes.

The mesh and contour plots of the bicoherence computed for two

different targets, a ship and a whale, have been shown in Figs. 4.8 and

4.9.

Figure 4.8: Bicoherence plot for Ship

Figure 4.9: Bicoherence plot for Whale

These plots reveal the presence of many peaks which represents

Quadratic Phase Couplings (QPC) as described in section 4.3.4. A

peak corresponding to a bifrequency (f1, f2), reveals that QPC exists
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between the constituent frequency components f1 and f2 of the signal,

which generally arises due to the quadratic nonlinearity in the signal

generating mechanism. In order to remove the peaks due to less

important couplings, some thresholding can be applied. Figures 4.10

(a) and (b) respectively show the contour plot of the previous two

targets, filtering out the peaks which are less than 30% of the

maximum peak value.
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Figure 4.10: Contour plot of (a)Ship and (b)Whale after thresholding

4.5 Integrated Bispectra

Although the bispectra have all the advantages of

cumulants/polyspectra in feature extraction, their direct use has

certain implications. Being an N × N matrix, with N generally equal

to 128, the feature vector generated by the two-dimensional (2-D)

matrix can be huge, even after thresholding. This can consume both

computational power and time during the classification process, and

can also leads to overfitting during the training stage of the classifier.

Thus, in order to efficiently use bispectra as feature vectors for
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identification and classification problems, integrated bispectral

methods may be investigated [102], [104].

4.5.1 Axially Integrated Bispectrum (AIB)

The Axially Integrated Bispectrum (AIB) is obtained by integrating

the bispectra along paths parallel to the ω1 or ω2 axes in bifrequency

plane and thus retains the scale characteristics of the signal [105].

AIB(ω) = 1
2π

∫∞
−∞B(ω1, ω2)dω2

= 1
2π

∫∞
−∞B(ω1, ω2)dω1

(4.26)

Consider a zero mean stationary random process x(t) and let

B(ω1, ω2) be its bispectrum. Using Eq. (4.3), the third order cumulant

c3(τ1, τ2) can be expressed as,

c3(τ1, τ2) =
1

(2π)2

∫ π

−π

∫ π

−π
B(ω1, ω2)× exp{j(ω1τ1 + ω2τ2)}dω1dω2

(4.27)

Let ỹ(t) = x2(t)− E
{
x2(t)

}
. The cross correlation rỹx(τ1) between

ỹ(t) and x(t) is defined to be:

rỹx(τ1) = E {ỹ(t)x(t+ τ1)} = E
{
x2(t)x(t+ τ1)

}
= c3x(0, τ1) (4.28)

and its cross spectrum is given by:

Sỹx(ω) =

∞∑
−∞

c3x(0, τ1) exp {−jωτ1} (4.29)
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with

c3x(0, τ1) =
1

2π

∫ π

−π
Sỹx(ω) exp {−jωτ1} dω (4.30)

Comparing Eq. (4.27) and (4.30),

Sỹx(ω) =
1

2π

∫ π

−π
Bx(ω, ω2)dω2 =

1

2π

∫ π

−π
Bx(ω1, ω)dω1 (4.31)

Thus the axially integrated bispectrum is a function of a single

frequency variable, and can be considered as a cross spectrum between

the signal x(t) and its square [106].

Though the AIB contains less phase information when compared to

the bispectra, the estimation variance of the AIB is much less, equivalent

to that of power spectrum.

4.5.2 Radially Integrated Bispectrum (RIB)

Chandran and Elgar [102], first proposed the use of radially

integrated bispectra in pattern recognition and demonstrated its

applicability. The RIB is obtained by integrating the bispectrum along

radial lines passing through the origin in bifrequency space, as shown

in Fig. 4.11. The integrated bispectra can be defined as:

RIB(a) =

∫ 1/(1+a)

0+
B(f1, af1)df1 (4.32)

In the discrete domain, let the bispectrum B(k, l) be computed with an

N -point FFT, with 0 ≤ l ≤ k ≤ k + l ≤ (N/2 − 1). The integration in
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0 10.5

0.5

Figure 4.11: RIB Computation - Integrating the bispectrum along the
dashed line with slope=a.

Eq. (4.32) can be approximated by,

RIB(a) =

b(N
2
−1)/(1+a)c∑
k=1

B(k, ak) (4.33)

for 0 < a ≤ 1. The bispectrum is interpolated for this summation by

B(k, ak) = pB(k, dake) + (1− p)B(k, bakc) (4.34)

where p = ak − bakc, andbxc represents the largest integer contained in

x and dxe represents the smallest integer containing x.

4.5.3 Circularly Integrated Bispectrum (CIB)

As the name suggests, for the Circularly Integrated Bispectrum, the

integral paths are a set of concentric circles with the origin as the centre
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The CIB can be defined as [107]:

CIB(a) =

∫
Bp(a, θ)dθ (4.35)

where Bp(a, θ) is the polar representation of B(ω1, ω2) .

4.5.4 Feature Extraction using Integrated Bispectra

The Integrated Bispectra (IB) represent the two dimensional

bispectral matrix into a vector of one dimension. The bispectral matrix

is computed from the target waveforms and the matrix is integrated

axially, radially and circularly to get the respective integrated

bispectra. In the discrete domain, the integration has to be

approximated with summation.

The AIB is obtained by summing the values in each column of the

bispectral matrix. Since a 128 point DFT has been used for the

computation of the bispectrum, the AIB vector will contain 128 values.

RIB has been computed using the first quadrant of the bispectral

matrix. The point where ω1 = ω2 = 0 is considered to be the origin and

a line with a slope m = tan(θ) is assumed to pass over the bispectral

plane. All the values in the matrix through which the line passes is

summed up to get the RIB corresponding to that slope. In this case, θ

was varied from 0◦ to 90◦.

Considering the point ω1 = ω2 = 0 as the centre, the bispectral

values are summed over a circular path of radius r, to obtain the CIB

corresponding to that radius. In this work, CIB values for radius ranging

from 1 to 64, have been computed to generate the feature set, 64 being

the maximum number of values on either side of the center point of the
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128× 128 bispectral matrix.

The IBs for three targets namely pinniped, hump and a submarine

have been generated and plotted in Figs. 4.12, 4.13 and 4.14 respectively,

for illustrating the discriminative nature of these features for different

types of targets. Each plot shows the respective Integrated Bispectra

computed for 20 different records of that particular target.

The Axially Integrated Bispectra (AIB) shown in the top plots of

Figs. 4.12 through 4.14 have been obtained by summing all the frequency

components along the column of the bispectral matrix. Considering the

symmetry of the bispectral plots as described in section 4.3.2, these

plots are symmetric about the middle feature index and only half of the

values may be considered for the inclusion in the feature vector. Since

AIB represent the sum of the bispectral values corresponding to all the

bifrequency pairs (f1, f2), keeping f1 as constant, the height of the peak

in the AIB plot is indicative of the strength of the coupling where that

particular frequency is involved.

By integrating the bispectral matrix axially, radially and circularly,

AIB, RIB and CIB attempt to represent the information contained in

the bispectral matrix using a much reduced set of values. The interclass

variability of these features has been illustrated in Fig. 4.15, using the

averaged AIB, RIB and CIB computed from 20 different records each

of pinniped, humpback whale and submarine. Also, the averaged IBs

of three different boats, which are considered as different targets, but

from the same class/type have been plotted in Fig. 4.16. These plots

reveal the variabilities among the target feature values that can be used

to characterise these individual targets.
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Figure 4.12: Various Integrated Bispectra of Pinniped
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Figure 4.13: Various Integrated Bispectra of Hump
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Figure 4.14: Various Integrated Bispectra of a Submarine

100



Implementation of an Underwater Target Classifier using HOS Features

0 20 40 60 80 100 120 140
-0.1

0

0.1

0.2

0.3

0.4

Feature Components

V
al

ue

AIB

 

 

Pinniped

Hump
Submarine

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Feature Components

V
al

ue

RIB

 

 

Pinniped

Hump
Submarine

0 10 20 30 40 50 60 70
-0.1

0

0.1

0.2

0.3

0.4

Feature Components

V
al

ue

CIB

 

 

Pinniped

Hump
Submarine

Figure 4.15: Averaged Integrated Bispectra of Three Targets
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4.6 Homomorphic Transforms

Homomorphic transform literally means same structure. Signals

combined in a nonlinear way (multiplication, convolution, etc.), cannot

be separated by linear filtering. Homomorphic techniques attempt to

separate signals combined in a nonlinear way by transforming the

problem to a linear domain [108]. That is, the problem is converted to

the same structure as a linear system. Homomorphic decomposition

techniques like the cepstral analysis can be employed for feature

extraction by separating the convolved signal components and has been

widely used especially in acoustic signal processing.

4.6.1 Cepstrum

Cepstral analysis is designed to separate convolved signal components

by transforming the composite signal into a domain where components

are additive, using logarithmic transformation. The cepstrum is defined

as the inverse Fourier transform of the log magnitude Fourier spectrum

of the signal and is said to be in the quefrency domain, an anagram of

frequency [27].

Consider a composite signal s(t) generated by the convolution of the

two components, x(t) and y(t). By taking the Fourier transform, the

convolution in the time domain is transformed into multiplication in the

frequency domain. That is,

DFT [s(t)] = DFT [x(t)⊗ y(t)]

S(f) = X(f)× Y (f)
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Considering only the magnitude of the spectrum and taking the

logarithms,

ln |S(f)| = ln |X(f)|+ ln |Y (f)|

Thus, the nonlinear combination of the components in time has been

transformed into a linear combination of log-magnitude components in

the frequency domain. The components x(t) and y(t) can be separated

by applying the inverse Fourier transform, or equivalently the discrete

cosine transform for real signals. However, it should be noted that the

phase information from the original signal has been lost, as a result of

the magnitude operation on the complex spectra.

4.6.2 Bicepstrum

Bicepstrum is defined as the inverse 2D Z-transform of log bispectrum

[40]. ie,

bh(n,m) = Z−1
2 (log (S3(ω1, ω2)) (4.36)

Defining log (S3(ω1, ω2)) as Bh(ω1, ω2) and taking partial differentiation,

∂Bh(ω1, ω2)

∂ω1
=

1

S3(ω1, ω2)

∂S3(ω1, ω2)

∂ω1

Re-arranging,

S3(ω1, ω2)
∂Bh(ω1, ω2)

∂ω1
ω1 =

∂S3(ω1, ω2)

∂ω1
ω1 (4.37)

From Eq. (4.37) it can be shown that [40], the bicepstrum bh(n,m) and

the third order moment sequence m3(n,m) can be related by the linear
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convolution formula

−n·m3(n,m) = m3(n,m) ∗ (−mbh(n,m)) (4.38)

A method for computing the cepstrum coefficients that does not

require phase unwrapping can be derived from Eq. (4.38) based on

two-dimensional Fast Fourier Transform operations as:

n·bh(n,m) = F−1
2

{
F2(n·m3(n,m))

F2(m3(n,m))

}
(4.39)

where F2(∗) represents the 2-D Fourier transform.

The bicepstrum can be applied to deconvolve both deterministic and

stochastic signals. Bicepstrum contains phase information and it can

be applied to obtain the system impulse response and the inverse filter.

Another advantage of bicepstrum is that it less sensitive to the presence

of additive Gaussian noise [59], [109]

4.6.3 Estimation of Bicepstrum

The steps for bicepstral estimation can be summarised as:

1. Segment the waveform data into K frames or records of M samples

each.

2. Mean adjust each record by subtracting the mean and apply a

suitable window.

3. Estimate the third order moment sequence mi
3(n,m) for each

record using Eq. (4.15).
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4. Compute the average moment sequence.

m3(n,m) =
1

K

K∑
i=1

mi
3(n,m)

5. Compute the 2-D FFT of n·m3(n,m) and m3(n,m)

6. Compute the bicepstrum coefficients by applying inverse 2D

Fourier transform as in Eq. (4.39).

A block diagram illustrating the estimation procedures of the bicepstrum

is given in Fig. 4.17.

4.6.4 Bicepstral Features of Underwater Targets

The bicepstrum of the target waveforms were computed from their

third order cumulants (moments) as discussed in the previous section.

Figures 4.18 and 4.19 show the mesh and contour plots of the estimated

bicepstrum for two records of a boat noise. Plots of two more targets,

an onboard motor and a snapping shrimp have also been shown in Figs.

4.20 and 4.21.

4.7 Perceptually Motivated Higher Order

Features

Over the time, the physiology and engineering of the auditory system

has been a focus of intensive research and this knowledge has paved the

way for the creation of models, which at least to some extent, tries

to describe and mimic the human hearing mechanisms. Mathematical

and computational models are helpful to carry out quantitative as well
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Waveforms
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Order Moment

Compute the Average
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Figure 4.17: Computation of Bicepstrum
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Figure 4.18: Bicepstrum of a record of a Boat Waveform

Figure 4.19: Bicepstrum of another record of a Boat Waveform

as qualitative simulations of the original system and aids in providing

insights into the system. The development of such auditory models might

be used for several purposes, such as understanding the mechanisms of

sound perception, tracking the problems of hearing, etc.

4.7.1 Hearing Physiology

Basically, the peripheral auditory system has three main parts:
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Figure 4.20: Bicepstrum of a record of an onboard motor Waveform

Figure 4.21: Bicepstrum of another record of a Snapping Shrimp
Waveform

• The outer,

• Middle and

• Inner ear

The outer ear is the visible portion of the ear and includes the pinna

(auricle), the ear canal and the eardrum. The auricle is responsible for

the collection of sounds and directing it to the ear canal which acts as

a quarter-wavelength resonator and enhances spectral components to

which the human ear is more sensitive. The main component of the
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middle ear is the ossicle chain and is made of three tiny bones incus,

malleus and stapes. The primary function of the middle ear is to

efficiently transfer acoustic energy in air to fluidmembrane waves

located in the inner ear. The inner ear is located just behind the oval

window, which is connected to the stapes footplate and comprises of

the vestibular apparatus, the cochlea and the auditory nerve

terminations. The cochlea is regarded as having remarkable frequency

analysis capabilities and most of the perceptually motivated auditory

filter banks are designed modelling the properties of the cochlea.

4.7.1.1 The Cochlea as a Filter Bank

The cochlea is a fluid filled structure and is divided by two

membranes viz., the Reissner’s membrane and the basilar membrane.

The incident acoustic energy is propagated to the basilar membrane by

the pressure difference generated by the movements of the ossicle. The

membrane possesses some peculiar properties, as illustrated in

Fig. 4.22. At its basal end, the membrane is narrow and stiff and

responds best to high frequencies, while at its apical end it is wider and

more compliant, responding best to low frequencies [110]. This helps

the cochlea to separate the incoming vibrations into overlapping

frequency bands. Mechanical motion of the basilar membrane leads to

displacements of the inner hair cells, stereocilia which in turn stimulate

the generation of action potentials in the neurons of the auditory nerve.

These action potentials are propagated into the auditory brainstem.

The signal processing function of the basilar membrane and the

surrounding structures is to filter the incoming broadband sound.

There are approximately 3,000 hair cells which connect to the auditory
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Figure 4.22: Frequency response of the basilar membrane

nerve which acts as 3,000 narrowband channels [35]. Thus, in order to

reproduce the filtering characteristics of the auditory system, one has

to simulate a 3,000 channel filter bank, which is computationally

cumbersome. A usual methodology is to use a single filter bank

channel to approximate and model a local group of fibres. Thus, in an

auditory model, a single filter models a local group of fibres and the

auditory filter bank often consists of many such filters, whose centre

frequencies are distributed according to different frequency scales

characterising the auditory response of the cochlea.

4.7.1.2 Frequency Scales

Several perceptually motivated scales to approximate the

non-uniform tiling of the filters in the auditory filter banks have been

proposed, with the Bark, Mel and ERB scales being the most widely

used ones.

The Mel scale was a classical approach, to derive from psychoacoustic

experiments, a perceptual measure of pitch. It was based on how the
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subjects divided a series of simple tones into what sounded like equal

intervals. The Mel scale and the frequency f in Hertz is related by [28]

Mel(f) = 2595log10(1 + f/700) (4.40)

Thus, it can be shown that the Mel-frequency scale is linear below 1

kHz, and logarithmic at higher frequencies.

The Bark scale, based on the critical bandwidth, was designed as an

improvement on the Mel scale, which was based on the human perception

about equal pitch differences whereas the Bark scale was based on the

interaction of frequency and loudness [111]. For human ear, two pure

tones with frequencies very close together will sound no louder than a

single tone. However, if the spacing between the frequencies is increased,

at a certain point the two tones begin sounding louder to subjects, and

this point is called the critical bandwidth. The formula for the Bark

scale [112] is given by

Bark(f) = (26.81 ∗ f)/(1960 + f)− 0.53 (4.41)

The Equivalent Rectangular Bandwidth (ERB) of the auditory

filter is assumed to be closely related to the critical bandwidth, but is

more smoothly behaved than the Bark scale and is measured using the

notched-noise method [113]. The notch-noise method has often been

employed in the analysis of auditory frequency selectivity and involves

the determination of the detection threshold for a sinusoid, centred

around a spectral notch of a noise, as a function of the width of the

notch. The ERB scale ERBS(f), can be defined as the number of
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equivalent rectangular bandwidths below the given frequency f [113].

ERBS(f) = 21.4log10(0.00437f + 1) (4.42)

A plot illustrating the comparison of the three frequency scales is given

in Fig. 4.23.
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Figure 4.23: Comparison of Mel, Bark and ERB scales

4.7.2 Cepstral Analysis using Auditory Filter Banks

Cepstral analysis can detect repeated patterns in a spectrum, that

are difficult or impossible to observe in the various spectral analysis

techniques, making it useful for a wide variety of signal processing
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applications. The cepstral analysis can be further extended by the

application of various auditory filter banks during the computational

procedure, in order to warp the spectral bands according to the

perceptual scale of the human auditory system. Two of the most

popular types of auditory filter banks, the more traditional Mel filter

bank and the recently proposed Gammatone filter bank can be

employed to extract the corresponding cepstral coefficients namely the

Mel Frequency Cepstral Coefficients (MFCC) and Gammatone

Cepstral Coefficients (GTCC).

4.7.2.1 Mel Frequency Cepstral Coefficients

The Mel filter bank consists of a set of triangular shaped band-pass

filters, which are equidistant on the Mel scale as shown in Fig. 4.24. The

Mel filters have narrow bandwidth at low frequencies and get wider as

the frequency increases, in accordance with the Mel scale. The spectrum

0 500 1000 1500 2000 2500 3000
0

0.5

1

Frequency (Hz)

Figure 4.24: Mel scale filter bank

of the signal is transformed such that it is emphasised at Mel intervals

using the Mel filter bank. The cepstrum of this transformed spectrum

in turn yields Mel Frequency Cepstral Coefficients (MFCC).
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4.7.2.2 Gammatone Cepstral Coefficients

Gammatone filter banks are non-uniform overlapping bandpass

filters, similar to the Mel filter bank, which models the response of the

auditory system more closely. The impulse response of the filter can be

described as sinusoid, with an amplitude envelope modulated by a

gamma distribution function as illustrated in Fig. 4.25. It can be

described mathematically as [37]:

g(t) = Ktn−1e−2πBt cos(2πfct+ φ) (4.43)

where, K is the output gain, B is the duration of the impulse response,

n is the order of the filter and fc is the centre frequency of the filter.
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Figure 4.25: A Gammatone impulse response

Equation (4.43) provides a close approximation to

experimentally-derived auditory nerve fibre impulse responses, as

measured by de Boer and de Jongh using a reverse-correlation

technique [114].

Also, the fourth-order gammatone filter provides a good
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approximation to the ‘rounded-exponential’ models of human auditory

filter response. Hence, the gammatone filter is in good agreement with

the empirically derived perceptual estimates of the auditory frequency

selectivity. The distribution of the centre frequencies of the filters in
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Figure 4.26: A Typical Gammatone Filter Response

the gammatone filter bank follows the Equivalent Rectangular

Bandwidth (ERB) scale. Even though several physiologically

motivated formulas have been derived for the ERB scale, the model

suggested by Glasberg and Moore has been adopted in this

work, [35], [36] according to which,

ERB(fc) = 24.7(4.37fc/1000 + 1) (4.44)

where fc is the centre frequency. The bandwidth of each filter in the

Gammatone filter bank is determined according to the critical band (CB)

corresponding to its centre frequency. The bandwidth related factor B

has been computed using the equation suggested by Patterson [115] and
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the value of B is given by,

B = 1.019 ∗ 24.7(4.37fc/1000 + 1) (4.45)

The Gammatone Cepstral coefficients (GTCC) are computed by

applying the gammatone filter bank to the spectrum of the signal,

followed by the application of the logarithmic and Discrete Cosine

Transformations.

4.7.3 Cepstral Features from Bispectrum

MFCCs and GTCCs have been widely used in various feature

extraction scenarios due to its low computational complexity and fairly

acceptable performances [30, 31, 37, 116]. However, being derived from

the second order power spectrum, the performance of MFCC and

GTCC depend on the Signal to Noise Ratio (SNR) and hence the

performance generally degrades in the presence of noise [117,118].

Since the bispectrum suppress the additive white Gaussian noise,

while preserving the magnitude and phase information of the original

signal, it can be used to compute a clean estimate of the magnitude

spectrum of the noisy signal. Thus, it is intuitive to use the estimated

spectral magnitudes to compute the cepstral coefficients. The MFFC

extraction procedure can be extended to generate the Bispectral Mel

Frequency Cepstral Coefficients by employing the bispectrally

reconstructed spectral components [117]. This thesis also considers the

extension of the Gammatone Cepstral Coefficients to generate the

Bispectral Gammatone Cepstral coefficients (BGTCC) by employing

bispectrally reconstructed spectral components in the GTCC
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extraction procedure.

4.7.3.1 Bispectral Reconstruction of Signals

Consider the signal x(n) and its noise corrupted observation y(n),

such that y(n) = x(n) + w(n), where w(n) is additive coloured

stationary Gaussian noise. Using the fact that Gaussian processes have

identically zero bispectra, Bispectral Reconstruction attempts to filter

out the additive Gaussian noise from y(n) by first computing the

sample bispectrum and then estimating the magnitude and phase of

the Fourier transform of x(n). Many techniques have been proposed for

the recovery of Fourier amplitude from bispectra, such as recursive

reconstruction techniques, closed form approach and Least Squares

Approach [56]. This work concentrates on the Least Squares Approach

(LSA), as it takes only the bispectral values of the principal region.

This method also has the advantage that, it excludes the bispectral

values on the axis (ω2 = 0), as on the axis, the power spectrum of the

additive noise contributes to the asymptotic bias [56].

4.7.3.2 Least Squares Approach (LSA)

Consider the Bispectrum B(k, l) of a signal x(n) of length N . For

convenience, let N be a multiple of 4, so that both N/2 and N/4 are

integers. Then from the definition of bispectrum [119],

B(k, l) = X(k)X(l)X∗(k + l) (4.46)

where X(k) represents the DFT of the signal x(n). If we consider only

the Bispectral values at the principal region, then, k = 1, 2, ..., N/4 and
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l = k, k + 1, ..., N/2− k.

In order to express Eq. (4.46) as a linear combination, one may

rewrite the equation as:

B̃(k, l) = X̃(k) + X̃(l) + X̃(k + l) (4.47)

where,

X̃(k) = ln(|X(k)|) (4.48)

B̃(k, l) = ln(|B(k, l)|) (4.49)

Equation (4.47) may be represented in a matrix form as

B̃ = AX̃ (4.50)

Where,

B̃ = [B̃(1, 1), B̃(1, 2), B̃(1, N/2− 1), B̃(2, 2), B̃(2, 3) · · · B̃(N/4, N/4)]T

(4.51)

which is a vector of dimension N2/16, representing all bispectral points

in the principal domain, excluding the frequency axes.

X̃ = [X̃(1), X̃(2), · · · X̃(N/2)]T (4.52)

is an N/2 dimensional vector representing the DFT values. The

coefficient matrix A has a dimension of (N2/16) × (N/2) and is given
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by,

A =



2 1 0 0 · · · 0

1 0 0 0 · · · 0

1 0 1 1 · · · 0

· · · · · · · · · · · · · · · · · ·

0 2 0 1 · · · 0

· · · · · · · · · · · · · · · 1


(4.53)

Equation (4.50) represents a set of equations and the solution for X̃ can

be found out in a least square sense as,

X̃ = (ATA)−1AT B̃ (4.54)

Considering Eq. (4.48), we can recover the magnitudes of the DFTs as

|XLSA(k)| = exp(X̃(k)) (4.55)

where, k = 1, 2, ..., N/2

4.8 Bispectral MFCC

4.8.1 Computation of BMFCC

The Bispectral Mel Frequency Cepstral Coefficients (BMFCC) are

generated by first computing the bispectrum of the processed waveform

records using the direct method as outlined in Section 4.3.3.1. The

magnitude of the DFT, |XLSA[k]|, is then computed from the

Bispectral values using Least Squares Approach. The power spectrum

is then computed as:
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PLSA[k] = |XLSA[k]|2 (4.56)

For a Mel-frequency filter bank comprising of P filters with individual

transfer functions Hj [k], j = 1, 2, · · · , P , the energy mj in each band is

given by

mj =
N−1∑
k=0

|XLSA[k]|2.Hj [k]) (4.57)

The Bispectral Mel-frequency cepstrum is the discrete cosine

transform of the logarithm of the P filter outputs and is represented as

Ci =

√
2

N

P∑
j=1

log(mj) cos

(
πij

P

)
(4.58)

where Ci is the ith BMFCC coefficient.

The block diagram illustrating the steps of the BMFCC extraction

is given in Fig. 4.27.

4.8.2 BMFCC Features

The bispectrum of the processed waveform records are estimated

using the direct method and the magnitude of the DFT is computed

from the Bispectral values using Least Squares Approach, as elucidated

in Eq. (4.56). A mel-filter bank has been generated with 40 filters, with

the centre frequencies equally distributed on the Mel scale and has been

applied to the computed power spectrum, followed by log and discrete

cosine transformations to obtain the BMFC coefficients.
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Waveforms

DFT Reconstruction (LSA)

Mel-Filter Bank

Discrete Cosine Transform

BMFCC Features

Bispectrum Estimation

Figure 4.27: BMFCC Feature Extraction

Being a cepstral feature, the higher numbered BMFC coefficients

contain less characteristic information and most of the details occur

near the origin. Thus only 19 coefficients are considered for the feature

vector generation. The computed BMFCCs for some of the underwater

targets namely ship1, boat3, finwhale and whale1 are furnished in

Fig. 4.28. The plots contain 19 BMFCCs computed from each of the 20

different records of these targets. These plots illustrate the the

similarity in the extracted coefficients among the different records of

the same target. The variability of these coefficients across different
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targets has been illustrated in Fig. 4.29, using the averaged BMFC

coefficients computed from 20 records of each of these four targets.

Figure 4.30 presents the BMFC coefficients of three types of boats,

averaged over 20 records of each target. The plot shows the variability

of the feature set among different targets of the same class. It can be

seen that while the general trend of the plots is similar, there is

sufficient variation in the corresponding coefficient values among

different targets. The values of the corresponding BMFC coefficients

computed for the three different boats are also furnished in Table 4.1,

to reveal the variabilities in the feature values.

Table 4.1: BMFC Coefficients of Different Boats

Boat1 Boat2 Boat3

-0.7456 -0.8724 -0.7501

-0.1634 -0.3167 -0.3361

-0.2833 -0.0072 -0.1155

0.1004 0.0816 -0.1955

-0.1909 -0.0329 -0.0831

0.1494 0.1071 -0.0675

-0.0351 0.0725 0.1020

0.0791 0.1059 0.0122

0.0525 0.0838 0.1999

0.1280 0.0692 0.1133

0.0355 0.1072 0.1687

0.2238 0.1516 0.2280

0.1358 0.1382 0.1589

0.2122 0.0984 0.1805

0.0642 0.0839 0.1559

0.1416 0.0833 0.1096

0.0719 0.0444 0.1026

0.0121 0.0094 0.0199

0.0116 -0.0074 -0.0037
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Figure 4.28: BMFCC Plots of Four Underwater Targets
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Figure 4.29: Averaged BMFCC Plots of Four Underwater Targets
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Figure 4.30: Averaged BMFCC Plots of Different Boats
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4.9 Bispectral GTCC

4.9.1 Computation of BGTCC

A gammatone filter bank, with M channels has been implemented

using Eq. (4.43), with suitable filter order and bandwidth. The

magnitude of the Fourier components of the signal has been computed

from the bispectral estimate using Least Squares Approach, and the

power spectrum is generated.

The filter bank generated is applied to the spectrum of the signal,

emphasising the perceptually meaningful frequency components. The

filter output of the mth Gammatone filter, Xm has been computed using

the equation,

Xm =

N
2
−1∑

k=0

PLSA[k].Hm[k] (4.59)

where, PLSA[k] represents magnitude of the N -point frequency

spectrum and Hm[k] is the magnitude of the frequency response of the

mth Gammatone filter . Also, 1 ≤ m ≤M .

Now the ith Bispectral Gammatone Cepstral Coefficients has been

computed as,

BGTCCi =

√
2

M

M∑
m=1

log(Xm) cos

(
iπ

2M
(2m+ 1)

)
(4.60)

The algorithm for the computation of BGTCC is furnished below.
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Algorithm 1 Computation of BGTCC

1: procedure BGTCC

2: N← No. of Samples in a Record

3: R← Number of Records

4: Generate R Records of N samples

5: i← 1

6: loop:

7: Compute the bispectrum of i th Record

8: Extract Principal region of the bispectrum matrix

9: Compute the magnitudes of the DFT using LSA

10: Generate the Gammatone filter bank

11: Apply the filter bank to the computed DFT

12: Compute logarithm of the filter bank output

13: Perform DCT to generate the BGTCC

14: i← i + 1

15: if i <= R then

16: goto loop.

17: else

18: close;

4.9.2 BGTCC Features

The preprocessed noise data waveforms are segmented into records

and the bispectrum of each record is estimated using direct method, with

128 point DFT. From the bispectral estimate, the Fourier amplitudes

are reconstructed using the Least Squares Approach. A fourth order

Gammatone filter bank has been generated with 50 filters, with the

centre frequencies equally distributed on the ERB scale and the filter
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bank has been applied on to the computed DFT, followed by logarithmic

as well as discrete cosine transformations. The BGTC Coefficients are

computed using Eq. (4.60). The first coefficient has been discarded as in

the case of MFCC computation procedure. The remaining 19 coefficients

form the BGTCC feature set.

The BGTC Coefficients of the noise generated by typical manmade

noise sources and some marine species are illustrated in Fig. 4.31. The

manmade sources include ship noise and boat noise, while the

biological noise include that of a fin whale and whale1. Each plot has

19 BGTC Coefficients computed for 20 different records of a particular

target. Comparing this with the BMFCC plots in Fig. 4.28, it can be

observed that the BGTCC plots are little more bundled together,

indicating the similarity of the features with in a class. Thus the intra

class variance for the BGTCC can be considered less when compared

to BMFC coefficients.

The averaged BGTC coefficients of these four targets, over 20

records each, are plotted in figure Fig. 4.32 to illustrate the inter class

variabilities of the coefficient values. The averaged values of the

coefficients are also furnished in Table 4.2. Further, the BGTC

coefficients of boat1, boat2 and boat3, which are different targets of the

‘boat’ class, have been plotted in figure Fig. 4.33 and the corresponding

values are also furnished in Table 4.3. As can be seen from the table,

the coefficient values among different boats vary, even though they are

from the same class.
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Figure 4.31: BGTCC Plots of Four Underwater Targets
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Figure 4.32: Averaged BGTC Coefficients of 4 Different Targets

Table 4.2: BGTC Coefficients of 4 Different Targets

Ship1 Boat3 Finwhale Whale1

-0.9131 -0.9153 -0.7398 -0.2925

0.1356 0.0524 0.2209 0.6656

-0.0925 0.1730 -0.0836 -0.2860

-0.1696 0.0735 0.1844 -0.3555

0.1201 -0.1159 0.1546 0.3949

0.0694 0.1600 -0.4111 -0.1971

-0.0655 0.0059 0.2710 0.0687

0.0984 0.0461 0.1037 -0.1627

0.0337 -0.0141 -0.1994 0.0482

0.0976 -0.0098 0.0756 0.0146

0.0514 0.1362 0.0453 -0.1016

0.0160 -0.0842 0.0487 0.1117

0.0964 0.1703 0.0394 -0.0479

0.0679 0.0404 0.0768 0.0732

0.1153 0.0433 0.0147 -0.0172

0.0804 0.0851 0.0865 0.0469

0.0540 0.0443 -0.0072 0.0108

0.1063 0.0449 0.1133 -0.0110

0.0981 0.0639 0.0064 0.0370
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Figure 4.33: Averaged BGTC Coefficients of Different Boats

Table 4.3: BGTC Coefficients of Different Boats

Boat1 Boat2 Boat3

-0.8543 -0.9437 -0.9153

0.1958 0.0457 0.0524

-0.0862 0.1789 0.1730

-0.0175 0.1476 0.0735

0.1817 -0.0657 -0.1159

-0.1629 0.0074 0.1600

0.2033 0.0846 0.0059

-0.0903 0.0052 0.0461

0.0250 -0.0080 -0.0141

0.0975 0.0414 -0.0098

-0.0630 0.0386 0.1362

0.1505 0.0619 -0.0842

0.0044 0.0723 0.1703

0.1325 0.0331 0.0404

0.0224 0.0839 0.0433

0.0753 0.0596 0.0851

0.0855 0.0519 0.0443

0.0360 0.0515 0.0449

0.0643 0.0539 0.0639
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4.10 Summary

This chapter presents the techniques and procedures involved in

extracting the various target specific features required for the proposed

underwater target classifier. The chapter begins with an introduction

to the concepts of Higher Order Spectral analysis, mainly

concentrating on the bispectrum. The chapter presents bispectral

analysis and various forms of integrated bispectra and related feature

extraction techniques. This chapter also touches upon the concepts of

bicepstral analysis, which belongs to an area of homomorphic signal

processing. The Mel Frequency Cepstral Coefficients and Gammatone

Cepstral Coefficients, which are biologically inspired feature extraction

techniques have been considered and extended to the bispectral

scenario to derive the Bispectral MFCC and Bispectral GTCC.
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Chapter 5

The Target Classifier

This chapter describes the various classification schemes implemented

for identifying the noise sources in the ocean using the higher order

feature set extracted from the noise emissions of the targets of

interest. A description of the knowledge base used to evaluate the

performance of the classifiers is also included. The realisation of

k-Nearest Neighbour (k-NN), Artificial Neural Network (ANN) and

Support Vector Machine (SVM) classifiers is studied in detail. The

chapter also discusses the various steps involved in the implementation

of different classification frameworks, along with their performances.

Each classification framework is characterized by the feature selection

criterion and the classification algorithm.
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5.1 Background

It can be fairly assumed that the noise generated by a source carry

certain characteristic information of the source, and by employing

proper techniques, this information can be extracted, finally leading to

the classification of the noise source. In the case of an underwater

target classifier, the noise emanated from different sources are received

using the hydrophone arrays which are typically a part of the passive

sonar system. The received signals are further processed using suitable

feature extraction techniques for extracting the target specific features.

There have been many feature extraction techniques, which are

primarily based on the second-order spectral analysis. Such traditional

techniques can fail to provide acceptable confidence levels during

classifications, especially when there are deviations from Gaussianity

and linearity. Thus, there is a surge of interest in making use of the

concepts of Higher Order Spectral analysis. Once the features are

extracted, the latent information in the feature set needs to be

properly interpreted to identify the target and can be achieved by

making use of suitable pattern matching techniques.

This chapter discusses the implementation of the underwater target

classifier with the proposed higher-order feature set. k-Nearest

Neighbour (k-NN), Artificial Neural Network (ANN) and Support

Vector Machine (SVM) are the three techniques implemented to realise

the underwater classifier. Two feature selection algorithms, which can

select the appropriate features from the original feature set has been

used to aid better classification capability.

A supervised classification procedure can be divided into two phases,
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namely the training phase and validation or test phase. During the

training, the classifier is presented with the features already collected

and stored in the knowledge base, with their class labels. At this stage,

the classifier gets adapted itself and captures the information contained

in the features, so that it can classify the unknown signals presented

to it, during the validation phase. In the validation phase also, the

features are extracted from the test signal, processed and is finally fed

to the classifier, which will give the class label of the test signal based on

certain pattern matching criterion. The k-NN classifier slightly differs

from this concept, as there is no specific learning stage, but the test

signal is compared with the templates stored in the knowledge base at

the time of validation to get the class label.

5.2 Creation of the Knowledge Base

5.2.1 The Noise Sources

The knowledge base contains relevant parameters extracted from the

noise data of different types of targets of biological and anthropogenic

nature. The noise data collected from the different targets are processed,

and the characteristic features are extracted to create the knowledge

base. It is a well-known fact that, the robustness of the knowledge base is

one of the basic requirements for achieving good classifier performance.

A description of the targets and their characteristics that have been

used for the creation of knowledge base in this work is presented in the

following section. Some of the anthropogenic noises have been recorded

during scheduled cruises, while the other data have been downloaded

from open source repositories in the Internet..
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5.2.1.1 Anthropogenic sources

(a) Ship

The knowledge base contains features extracted from the noise

emanations of three ships. One of the ship recordings was carried out

during the cruise #321 of the Fishery Oceanographic Research Vessel

Sagar Sampada, in the south-eastern Indian Ocean. Recording from a

large commercial ship cruising at approximately 18 kilometres per hour

at a distance of about 3 km away from the hydrophone deployment site

was collected. Another recording collected from the same site was that

of an oil tanker having a speed of about 22 kilometres per hour.

Another two recordings of the ship noise were carried out along the

shipping channel, 5 km off-shore the Cochin transhipment terminal. The

hydrophones were deployed from a boat with its engine and echo sounder

turned off, to avoid the self-noise. The recordings constituted that of a

merchant vessel cruising at approximately 25 kilometres per hour, about

1.5 km away from the measurement location and that of a hopper dredger

spotted at a distance of about half a kilometre, moving past the recording

site at 11 kilometres per hour. Apart from these, the recording of a ship

Klaxon is also included in the knowledge base.

(b) Boats

Signals from 3 boats and an outboard motor were recorded. One of

the boat recordings was that of a ferry, a vessel that is used to carry

passengers, vehicles as well as cargo, across the Cochin backwaters.

Another noise recorded was that of a tugboat, which is a type of vessel

that manoeuvres other vessels by pushing or pulling them. As the

propellers of a typical tugboat are recessed to avoid the damage in case
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of grounding, they produce less near-surface sound compared to a ship,

due to its reduced cavitation noise. Trawling is a method of fishing

that involves pulling a fishing net through the water behind one or

more boats, and the boats used for this purpose are called trawlers.

The recording of a 120 HP trawler boat was carried out on its way

back to the shore.

Outboard Motors are one of the most common methods of

propelling small boats and watercrafts that are used in coastal areas.

The signal from a 50 HP outboard motor boat was recorded. The

recordings of the noise from a small Zodiac 35 HP engine has also been

included in the knowledge base. One can hear the engine starting,

going into the gears and the noise generated due to propulsion.

Underwater propeller cavitation noise is composed of tonal blade rate

noise and high-frequency broadband noise. The cavitation noise

generated by a motor-driven propulsion mechanism has also been

included in the knowledge base.

(c) Torpedo

Torpedoes are weapons designed with an explosive warhead, that

can be self-propelled underwater and explode on reaching a target. The

recording of the sound of a live torpedo shot obtained from the Internet is

also considered. After the firing, the closing sound of the hatch followed

by the sound of the propulsion through the water is recorded in the

signal. The propulsion sound is mainly due to the propellers, propulsion

machinery and cavitation at the nose. The duration of this propulsion

sound depends on the distance to the target. A large explosion can be

heard towards the end, that corresponds to the detonation

(d) Submarines
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Completely underwater submerged operations characterize

Submarines, one of the most high-tech vessels that can perform stealth

operations, reconnaissance and rescue missions. The design of the

submarines constitutes a cylindrical body with hemispherical ends and

with pressure hulls that are resistant to deep water pressure. There are

also ballast tanks, propeller and propulsion compartment, engine and

hydrodynamic control fins. There are several mechanisms for noise

radiation from the submarine which includes power plant equipment,

propellers, the vibration of the hull and flow noise (hydrodynamic

noise). The submarine noise available in the Internet has also been

included in the database.

Time series waveforms of two typical man-made targets viz., a boat

and a merchant vessel are depicted in Fig. 5.1.
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Figure 5.1: Typical noise signals of a boat and merchant vessel
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5.2.1.2 Natural sources

(a) Beluga whales

Beluga whales are highly vocal and rely on sound to communicate,

navigate, and locate breathing holes. They employ echolocation for

their navigation. Belugas are known as ‘canaries of the sea’ due to the

wide range of sound they produce which include sounds like clicks,

moos, whistles and clangs, which span a broad range of frequencies.

Social sounds, including calls, whistles and buzzes are also common.

The sounds recorded are mostly in the frequency range of 0.1 to 12

kHz.

(b) Toadfish

The toadfish, with its name derived due to the button-like

markings, is known for its vociferous night-time mating call. During

the summer mating season, the male toadfish vibrate the muscles of

their swim bladder to invite the females to their nests. These calls are

known as boatwhistles and may range between 250 to 650ms in

duration with a fundamental frequency of about 180 Hz. Males also

emit a single, short duration pulse or ‘grunt’ of short duration of about

100 ms, which are emitted almost exclusively during the boatwhistles of

a conspecific male which can jam the signal.

(c) Damselfish

Damselfishes are renowned marine chatterboxes and use their swim

bladders to produce sound. They generate ‘pops’ and ‘chirps’ during

courtship and also to exhibit aggression while defending their territory.

Males produce pulsed sounds during the courtship behaviour which are
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known as the signal jump, in which they rise in the water column and

then rapidly swim downward while producing a pulsed sound. Pops

contain only one or two pulses and are commonly made towards

heterospecifics than conspecifics. Aggressive chirps consist of 3 to 11

pulses and are usually made towards conspecifics. The pulse rate of

aggressive chirps has been found to be faster than signal jump sounds.

The number of pulses produced during the pops and chirps is

species-specific, with peak frequencies varying between 100 Hz to 4

kHz.

(d) Fin whale

The fin whale, the second largest mammal, reaching lengths upto

24 m produce high-intensity calls with a frequency range of 1528Hz.

The vocalisations of blue and fin whales are the lowest-frequency sounds

made by any animal. Each sound lasts one to two seconds, and various

sound combinations occur in patterned sequences lasting 7 to 15 minutes

each.

(e) Searobin

Sea robins, also known as gurnards are a family of bottom feeding

fish with armoured bony heads and two dorsal fins. Their pectoral fins

are fan-shaped, which, when swimming, open and close like a bird’s

wings in flight. They have a “drumming muscle” that makes sounds by

beating against the swim bladder. The sounds have a mean duration

of about 60 ms with a fundamental frequency of approximately 200 Hz

with harmonics at approximately 400 Hz and 600 Hz.

(f) Minke whale

The minke whale, the smallest of the baleen whales, is found

140



Implementation of an Underwater Target Classifier using HOS Features

globally in tropical, temperate, and polar waters. Their vocalisations

comprise of very low frequency, long wavelength repetitive pulses or

groans. Vocalizations of the Minke from the Great Barrier Reef area

are popularly known as “star wars call. They span a wide frequency

range (50 Hz to 9.4 kHz) and are composed of distinct and

stereotypically repeated units with both amplitude and

frequency-modulated components.

(g) Pinnipeds

Pinnipeds, commonly known as seals, have a natural amphibian

history resulting in some fascinating sensory capabilities. They emit

and receive sounds both in air and water. Pinnipeds produce

vocalisations in a variety of social contexts, notably reproduction and

aggression. The effective bandwidth of pinniped vocalisations ranges

from 10 Hz to 15 kHz.

(h) Scad Fish

Scad fish refers to any of several species of fishes in the family

Carangidae. Scad fishes have forked tails and reach lengths of about 25

to 30 cm. They produce sound by grinding of the pharyngeal teeth.

Enormous schools may collectively produce low-frequency

hydrodynamic sounds while swimming. Narrowband spectral analysis

of their echoes has revealed significant structures in the frequency

range from 200 Hz to 5 kHz.

(i) Grunt Fish

Grunt fish is a member of the family Haemulidae. They are usually

found along the shores in warm and tropical waters. They produce

pig-like grunts with their pharyngeal teeth using a process known as
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stridulation.

(j) Sculpin

The sculpin is a catadromous fish with no swim bladder. They have

a pair of sonic muscles that produce sounds by rapidly contracting the

muscles. The sound produced by sculpin is composed of a series of pulses

lasting for 40-60 ms, with the peak frequency at approximately 100 Hz.

(k) Croaker

The croaker is an important commercial fish, which “croak” by

vibrating their swim bladders with special sonic muscles as part of

their spawning or fright response. Compared to other Sciaenids, where

only the males possess sonic muscles, both the male and female

croakers have sonic muscles.

(l) Sperm whale

Sperm whales produce clicking and creaking sounds for

echolocation purposes. Clicking sounds are used to gather information

about acoustically reflective features, and creaking sounds are used

while foraging. They are mostly silent while on the surface. The clicks

of male sperm whale contain higher frequency components with energy

ranging up to 12 kHz and with distinctive peaks at 400 Hz and 2 kHz.

(m) Humpback Whale

Humpback whales are medium-sized baleen whales which have

shown to produce complex vocalisations. They produce structured

series of vocalisations, termed as ‘song’, as mating calls as well as

‘social sounds’ while on their low latitude wintering grounds. Songs are

repeated, continuous rhythmic sound patterns that can reach upto 30
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minutes duration. The overall frequency range of these songs has been

estimated to be 20-1900 Hz. They also produce unpatterned sounds

associated with their social and feeding behaviour. Certain

vocalisations also appear to be coordinated for organised feeding

activity which are found to span the frequency range 40 Hz 1250 Hz.

(n) Gray Whale

Gray whale is a type of baleen whale that migrates between feeding

and breeding grounds annually. The common sounds generated by the

gray whale are moans, clicks, knocks and metallic bonging sounds

occurring as pulses in quick succession with frequencies ranging from

20 Hz to 3 kHz.

(n) Snapping Shrimp

Snapping shrimps are found in shallow tropical and subtropical

waters wherever rock, coral or other materials on the bottom provides

interstices on which they can thrive. They produce sound by the

snapping of their claws. The sound produced by a shrimp colony can

be so loud that the sonars may miss other proximate targets.

(o) Other Sources

Rain falling on the ocean can be a source of underwater noise, which

can considerably increase the ambient noise levels. The knowledge base

also includes light rain recorded just below the surface. The sound is

mainly generated due to the impact of the raindrop hitting the ocean

surface combined with the sound that gets radiated from bubbles trapped

underwater during the splash. Another natural source incorporated into

the knowledge base is the sound generated during the cracking of ice.

The noise is generated when the ice cracks, when waves, icebergs or wind
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pushes against it.

Some of the typical target signals of biological origin have been

depicted in Fig. 5.2.
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Figure 5.2: Typical marine biological noise signals

5.2.2 Generation of the Feature Vector

For generating the feature vector, the noise data waveforms of

various targets are processed using the procedures of higher order

spectral analysis as described in the previous chapter. Each

preprocessed target waveform, sampled at 22.050 kHz, is segmented

into fixed size records, and each record is analysed to extract the

features using different procedures. The feature sets so obtained are
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concatenated to get the feature vector for that record. The feature

vectors of all the records of a particular target constitute the raw

Target Feature Vector.

In the underwater scenario, the dimensionality of the original

measurement space created by the observation vectors will be massive.

However, for each target/sources emitting acoustic radiation, there will

be certain associated attributes or characteristic features that are

unique to the individual class of targets. The feature selection

algorithms are designed to rank the features according to some criteria

and select the most relevant features from the feature sets to form an

optimal feature vector, which would be dimensionally smaller than the

original feature vector.

Based on the belief that there exist some low dimensional

qualitative or representative features in the measurement vector, which

characterise the nature of the actual target, the feature selection stage

tries to estimate this low-dimensional subspace to form the final Target

Feature Vector, which contains the most salient features with reduced

redundancy. The rest of the features are assumed to be trivial, often

considered as noise and are discarded, thereby reducing the

dimensionality of the measurement space and the computational

complexity, significantly.

Since each feature used as part of a classification procedure can

increase the cost and execution time of a recognition system, there is a

natural tendency to use smaller feature sets. At the same time, there is

a potentially opposing need to include a sufficient set of features to

achieve reliable recognition rates under difficult conditions. The

number of features selected by the feature selection stage has been
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varied and its effect on the classification accuracy has been analysed. It

is found that a final Target Feature Vector with 32 features could give

optimal performance. The variation of the success rates for a typical

SVM classifier with the number of features selected is as shown in

Fig. 5.3. The classification performance was poor with less number of

features and started increasing as the number of features increased,

reaching a maximum value when 32 features was considered, beyond

which the performance started declining.
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Figure 5.3: Variation of success rate with number of features

A flowchart illustrating the complete procedure for generating the

Target Feature Vector and creation of the knowledge base is furnished

in Fig. 5.4.

The final Target Feature Vector after the feature selection process

for all the targets, averaged over 20 records each, has been presented

in Fig. 5.5 through 5.7. The features being significantly different for

different underwater targets, can characterise the corresponding targets.
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Figure 5.5: Target Feature Vectors for Targets 1 to 10
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Figure 5.6: Target Feature Vectors for Targets 11 to 20
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Figure 5.7: Target Feature Vectors for Targets 21 to 30
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5.2.3 Implementation of the Prototype classifier

Upon completion of the feature selection procedures, the optimal

target feature subset obtained will serve as the knowledge base. The

target classifiers are trained and evaluated with the help of the resulting

knowledge base. The following sections describe the different classifiers,

their parameter selection and validation.

5.3 k-NN based Underwater Target Classifier

An underwater target classifier, which can identify the targets from

their noise emanations has been implemented using the k-Nearest

Neighbour algorithm.

An underwater target classifier, which can identify the targets from

their noise emanations has been implemented using the k-Nearest

Neighbour algorithm. The main advantage of k-NN is its simplicity,

and its highly intuitive nature makes it easy to understand and

implement. However, being an instance-based classifier, there is no

explicit training stage, and as a result, the distance of each query

instance to all training samples needs to be computed at the time of

classification, which increases the computation time, especially if the

training set is large. Also, the classification accuracy depends on the

choice of the distance measure and the value of the parameter k. The

effect of the value of k on classification is illustrated in Fig. 2.1.

The other parameter that needs to be optimally chosen is the

distance measure. While one of the commonly used distance measures

is the Euclidean distance, the use of other metrics such as city block or
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Manhattan, cosine, correlation distance, etc., are also in practice. If x

and y are the N dimensional feature vectors representing two

instances, then the Euclidean, city block and correlation distance

measures can be defined as:

Euclidean : de(x, y) =
√∑N

i=1(xi − yi)2

City block : dm(x, y) =
∑N

i=1 |xi − yi|

Correlation : dc(x, y) =
∑
xy−

∑
x
∑
y

N√
(
∑
x2−(

∑
x)2/N)(

∑
y2−(

∑
y)2/N)

The cosine metric is a similarity measure defined in terms of the cosine

of the angle between the two vectors x and y and is defined as,

cosine similarity = cos(θ) =
x · y
‖x‖ ‖y‖

The simulation was carried out to determine these parameters with

the available data in the knowledge base. The variation of the success

rates of the classifier with different values of k is depicted in Fig. 5.8. It

has been found that the classifier has optimal performance for a value

of k = 7. Similarly, by varying the distance functions, simulations were

carried out. It has been observed that for the k-NN classifier, the

Manhattan (city block) distance measure has a slight performance

advantage when compared to other distance measures, and the

outcome of this study is illustrated in Fig. 5.9.

The performance of the optimal k-NN based classifier has been

evaluated with noise waveforms of 30 underwater targets and the

success rate of classification of each target has been estimated. For

performance evaluation, the whole data set can be randomly

partitioned into test and training sets. The partitioning has been

carried out in such a way that the training set has 100 records of each
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Figure 5.8: Typical variation of success rates for the k -NN classifier for
different values of k

target. In the case of the k-NN classifier, the training set will

constitute the template vectors, against which the test vectors are

compared. The test set is used to evaluate the performance of the

classifier. The success rate for each target has been computed as the

percentage of the ratio of the correctly classified records to the total

number of records tested. The outcome of the performance results is

summarised in Table 5.1.

The table shows the success rates obtained for the individual targets

on the application of the Fisher and JMI algorithms. It is seen the

target damselfish exhibited the lowest success rate of 66.03% and 63.51%

respectively for Fisher and JMI feature selection. Average success rates

of 78.84% and 80.12% have been obtained respectively when the Fisher

and JMI feature selection criterion has been applied. The normalized

confusion matrix, rounded to 2 decimal points, obtained with the JMI

feature selection has been furnished in Fig. 5.10. The labels T1, T2, . . . ,

T30 represent the 30 different targets mentioned in Table 5.1, in the
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Figure 5.9: Variation of success rates for the k -NN classifier for different
distance functions

same order. As seen from the confusion matrix, the lowest success rate

corresponds to the target ‘damsel’, which has a probability of almost

11% to be misclassified as ‘beluga’.

5.4 ANN based Underwater Target Classifier

Design and implementation of Artificial Neural Network based

target classifier have been successful. As the ANN architecture has

many parameters, it is important that one has to find out a proper set

of network parameters for its optimum performance. The various

parameters that were analysed include the number of hidden layers and

the transfer functions for each layer. The number of neurons in the

hidden layers was also varied to get the optimal performance.

Simulation studies were carried out by varying the relevant parameters

to obtain an optimal combination, for making the classification process
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Table 5.1: Success Rates of Individual Targets for the k -NN Classifier

Targets
No. records used

for validation

Success Rate (%)

Fisher JMI

pinnipeds1 326 83.21 82.54

torpedo 325 81.93 81.65

engine 324 84.44 83.38

boat1 327 77.86 82.03

boat2 324 83.21 82.54

boat3 345 80.58 80.00

grunt 242 78.64 78.17

ship1 220 69.82 75.64

ship2 217 82.32 82.41

cavitate 500 78.65 82.79

damsel 320 66.03 63.51

motor1 341 81.03 82.79

ice1 451 77.36 74.99

ship3 251 81.54 76.47

finwhale 296 78.65 82.98

whale1 324 80.38 78.45

toadfish 184 79.84 78.29

searobin 271 69.91 75.14

minke 336 83.55 82.79

rain 362 73.13 81.42

sklaxon 165 79.61 82.79

submarine 232 82.76 82.08

beluga 411 79.61 81.39

scad 285 82.02 81.19

hump 462 75.58 79.21

tanker1 354 83.01 81.74

snap 326 76.85 82.03

sculpin 336 83.51 79.46

croaker 369 73.82 83.43

spermwhale 500 76.38 82.38

Average Success Rate 78.84 80.12
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Figure 5.10: The 30 × 30 confusion matrix for the k -NN classifier
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more efficient.

From the studies it has been observed that a network with two

hidden layers is found to yield satisfactory performance. As the

number of hidden layers is increased, the learning process is found to

become inefficient, resulting in unacceptable generalization of the

network. Simulations were carried out with linear, tan and log-sigmoid

transfer functions. Acceptable performance was observed, when the

log-sigmoid transfer function was used for all the layers in the network.

The simulation results for ANN based underwater target classifier is

as presented in Table 5.2 and shows the success rates for each target

with Fisher and JMI feature selection criterion. While the classifier

yielded, an average success rate of 83.30% with the JMI feature selection

technique, Fisher feature selection criterion resulted in only 81.93%. The

normalized confusion matrix corresponding to the JMI feature selection

scheme is depicted in Fig. 5.11.

5.5 SVM based Underwater Target Classifier

A Support Vector Machine classifier with an RBF kernel has been

implemented and trained with the feature vectors extracted using the

higher order spectral analysis. In line with the earlier classifier systems,

here also the Target Feature Vectors were partitioned randomly into test

and training sets, and for each target, 100 training records were used for

training the SVM classifier. The SVM classifier was trained with the

training set, and the performance validation was carried out with the

test set to obtain the success rates of each target. The procedure was

repeated ten times, with different randomly selected test sets, and the
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Table 5.2: Success Rates of Individual Targets for the ANN Classifier

Targets
No. records used

for validation

Success Rate (%)

Fisher JMI

pinnipeds1 326 84.28 85.60

torpedo 325 83.54 87.97

engine 324 84.14 86.08

boat1 327 79.36 85.01

boat2 324 84.65 83.19

boat3 345 84.29 85.10

grunt 242 80.14 80.48

ship1 220 81.91 77.87

ship2 217 83.30 85.35

cavitate 500 84.33 85.78

damsel 320 68.13 65.63

motor1 341 82.37 85.74

ice1 451 78.34 78.06

ship3 251 84.65 86.07

finwhale 296 84.41 86.02

whale1 324 81.41 81.11

toadfish 184 80.42 80.47

searobin 271 71.13 77.78

minke 336 84.05 85.67

rain 362 84.29 84.06

sklaxon 165 84.00 85.01

submarine 232 84.07 84.46

beluga 411 81.15 84.61

scad 285 82.68 83.68

hump 462 78.02 81.86

tanker1 354 83.87 84.78

snap 326 82.28 85.24

sculpin 336 84.77 84.89

croaker 369 84.08 86.05

spermwhale 500 83.73 85.35

Average Success Rate 81.93 83.30
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Figure 5.11: The 30 × 30 confusion matrix for the ANN classifier
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average success rates have been computed, in order get a statistically

reliable result. The success rates for each target has been computed as

the percentage of the ratio of the correctly classified records to the total

number of records tested.

The choice of the classifier parameter γ, can considerably affect the

classifier performance as discussed in section 2.6.3. Simulations are

carried out to estimate the optimal value of the classifier parameter γ,

using a method similar to the grid search algorithm [89]. The average

success rates of the SVM classifiers corresponding to different values of

γ have been determined, keeping all other conditions unchanged. The

obtained results depicting the variations of the success rates of the

classifier for different values of γ are shown in Fig. 5.12. It is found

that, for the HOS feature sets used, the maximum performance for the

classifier has been obtained when the value of γ = 0.1.
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Figure 5.12: Variation of the success rate for different values of γ for
SVM classifier

The success rates of each target, for the SVM classifier with an

optimal value of γ has been furnished in Table 5.3, which gives the

number of records used for validation and the corresponding success
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rates in percentage for the different classes of individual targets. The

success rates have been estimated by employing the two different

feature selection techniques, namely Fisher’s criterion and JMI. It can

be seen that the classifier performs with acceptable success rates for

the proposed HOS feature sets. An average success rate of 84.18% and

84.49% has been obtained with the Fisher criterion and JMI

respectively. It is observed that the average success rate obtained for

the JMI feature selection technique is slightly higher when compared to

that of the Fisher’s criterion.

The normalized confusion matrix corresponding to the JMI feature

selection scheme is as shown in Fig. 5.13. The classification accuracy of

each target, along with the false positives and false negatives are

displayed. As seen from the confusion matrix, the success rate

corresponding to the target ‘damsel’, which was low in the case of

k-NN and ANN classifiers, has been considerably improved in the case

of SVM classifier. T10 (‘cavitate’) with a score of 0.89 has the highest

probability of correct classification while the targets T11 (‘damsel’) and

T22 (‘submarine’) have the lowest probability score of about 0.77

correct classification.

5.5.1 System performance under noise conditions

Studies have been carried out for validating the classification

capability of the proposed system with HOS feature set, under

Gaussian as well as ambient noise conditions.

161



Chapter 5. The Target Classifier

Table 5.3: Success Rates of Individual Targets for the SVM Classifier

Targets
No. records used

for validation

Success Rate (%)

Fisher JMI

pinnipeds1 326 87.46 87.19

torpedo 325 84.88 83.91

engine 324 88.00 87.60

boat1 327 83.56 86.44

boat2 324 87.32 87.32

boat3 345 86.60 84.17

grunt 242 84.18 82.54

ship1 220 80.40 79.60

ship2 217 79.89 80.49

cavitate 500 88.00 89.11

damsel 320 75.21 76.53

motor1 341 81.80 81.29

ice1 451 83.80 82.34

ship3 251 84.32 84.15

finwhale 296 88.00 85.30

whale1 324 81.75 82.02

toadfish 184 79.39 85.78

searobin 271 77.12 86.02

minke 336 87.87 87.87

rain 362 86.30 84.96

sklaxon 165 87.79 87.76

submarine 232 77.38 77.38

beluga 411 81.58 83.07

scad 285 85.84 86.31

hump 462 82.10 82.19

tanker1 354 85.64 83.65

snap 326 87.60 86.56

sculpin 336 88.05 88.14

croaker 369 85.85 87.64

spermwhale 500 87.82 87.65

Average Success Rate 84.18 84.49
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Figure 5.13: The 30 × 30 confusion matrix for the SVM classifier
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5.5.1.1 Gaussian Noise

The SVM classifier trained with features extracted from normal

target signals was tested with target waveforms corrupted with

additive Gaussian noise for evaluation of the performance of the

system. Simulated white Gaussian noise was added to the signal

waveforms to simulate different SNRs and features were extracted from

these signals and applied to the classifier for testing. The average

success rates of the classifier for 20, 25 and 30 dB noise have been

estimated and is presented in Fig. 5.14. The plot shows the average

success rates for Fisher and JMI feature selection criterion, with

additive Gaussian noise.
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Figure 5.14: Average Success rates of the SVM classifier for the
validation set with added white Gaussian noise of 20, 25 and 30 dB

It has been found that, the classifier had an average success rates of

66.21%, 74.02% and 78.34% for JMI, while the success rates with the

Fisher feature selection criterion applied was found to be 64.77%, 71.81%
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and 77.69%, respectively under 20, 25 and 30 dB white Gaussian noise.

5.5.1.2 Additive Ambient Noise

The performance of the classifier has also been validated under

additive ambient noise conditions. A pre-recorded ambient noise data

has been added to each target signal in the time domain for validating

the effect of ambient noise. The added ambient noise data was

recorded during the cruise #321 of the Fishery Oceanographic

Research Vessel Sagar Sampada.

The SVM classifier trained with a clean feature set extracted from

the normal target records has been used for the evaluation. Feature set

extracted from the noise corrupted signals of each target was used in

the testing phase. With the validation set corrupted by ambient noise,

the classifier yielded an average success rate of 79.12% with the Fisher

criterion and 80.20% with JMI.

5.5.2 Rayleigh Fading Compensation

The interaction of signals travelling along different paths in the

underwater channel induces multi-path Rayleigh fading, and it affects

the SNR of the signal significantly. The received signals, thus require

fading compensation to ensure classification accuracy.

The probability density function of the Rayleigh distribution is

defined as

f(x : σ) =
( x
σ2

)
exp(− x2

2σ2
) (5.1)

for σ > 0 and x ∈ [0,∞). The mean and variance of a Rayleigh random
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variable can be expressed as µ(X) = σ
√

(π/s) and var(X) = 0.5(4 −

π)σ2.

The underwater signal before applying to the classifier, is applied to

the compensation system, which describe the Rayleigh fading

characteristics. Accordingly, a prototype compensation system as

described in [120] has been incorporated to the proposed underwater

target classifier for the estimation of Rayleigh fading effects, thereby

providing the required compensation. The mathematical model that

has been used for this purpose is the Clarke’s Model, expressed as:

g(t) =

√
2

N

N∑
n=1

exp[j(ωdt cosαn + φn)] (5.2)

where αn represents the direction of the incoming wave, φn is the initial

phase associated with the nth propagation path and ωd is the maximum

angular Doppler frequency occurring when αn = 0. This mathematical

model is assumed to provide a close approximation of the actual fading

effects.

The prototype compensation system consists of a Quadrature

Amplitude Modulation (QAM), transmission, demodulation and

compensation stages. A pilot signal is emitted along with the target

signal, and both get multiplied by the coefficients of the channel,

generated by Eq. (5.2), to introduce Rayleigh fading to the signals.

The use of pilot signal helps in providing Rayleigh fading

compensation. The receiver extracts the fading information of the

channel concerning the pilot signal, which in turn is used in estimating

fading channel coefficients. Interpolation techniques utilizing

transformations can be applied for channel estimation, thereby
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Table 5.4: Success Rates of SVM classifier under Rayleigh Fading

Training set Test set
Success Rate (%)

Fisher JMI

Without Rayleigh
Fading

Without Rayleigh
Fading

84.18 84.49

Without Rayleigh
Fading

With Rayleigh Fading,
non compensated

51.42 54.3

With Rayleigh Fading
With Rayleigh Fading,
non compensated

79.45 79.7

Without Rayleigh
Fading

With Rayleigh Fading,
but compensated

72.12 73.56

providing Rayleigh fading channel compensation to the affected signals.

Out of the various interpolation schemes available, the linear

interpolation scheme as suggested in [121], has been utilized in the

prototype compensation system. The success rates of the SVM

classifier under Rayleigh fading scenario have been presented in Table

5.4.

With JMI feature selection, the classifier yielded a success rate of

84.49%, without considering Rayleigh fading, while it was 84.18% for

the Fisher criterion. When the classifier was tested with a dataset

subjected to Rayleigh fading without channel compensation, the

success rate was considerably decreased to 54.3% and 51.42% of JMI

and Fisher respectively. When the channel compensation was applied

to the test set, a success rate of 73.56% and 72.12% have been obtained

respectively with JMI and Fisher criterion, even when the classifier was

trained with a clean dataset. On further analysis, it was also found

that when the classifier was trained with the dataset subjected to

Rayleigh fading, the success rate improved to 79.7% and 79.45%.
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5.6 Summary

Prototype classifier systems for classifying the underwater noise

sources using higher order spectral features extracted from the noise

emissions has been described. Various classification algorithms viz., the

k-Nearest Neighbour, Artificial Neural Networks and Support Vector

Machines have been considered for implementing the classifier. From

the performance validation studies, it has been seen that all the three

types of classifier systems are found to have comparable and acceptable

success rates within 80±5%, using the proposed higher order spectral

feature vectors with the application of Fisher and JMI feature selection

criterion. The performance of the higher order feature set was also

analysed with Gaussian and ambient noise as well as under Rayleigh

fading conditions.
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Conclusions

This thesis addresses one of the emerging topics in Sonar Signal

Processing, viz., the implementation of a target classifier for noise

sources in the ocean. The main challenge includes the diversities of

the noise sources and the variabilities of the ambient noise. In the

work reported in this thesis, target classifiers based on the Higher

Order Spectral feature sets have been studied. A number of Higher

Order Spectral features and classification schemes have been examined.

It has been shown that by optimally selecting the features, all the

three classifier frameworks, viz., the k-NN, ANN and SVM can give

acceptable levels of classification performance within 80±5%. This

chapter also presents the salient highlights of the work and the

inferences gathered along with the scope and directions for future

research work in this area.
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6.1 Salient Highlights of the Work

The classification of noise sources in the ocean has become one of

the main tasks in modern underwater acoustic signal processing. The

variability, diversity and abundance of such noise sources, together

with the composite nature of the general ambient noise background

make this task a complex one. The work reported in the thesis entitled

Implementation of an Underwater Target Classifier using Higher Order

Spectral Features addresses one of the emerging topics of digital signal

processing, viz., the Higher Order Spectral approach, for the analysis

and classification of the noise sources in the ocean. The following are

the salient highlights of the thesis.

6.1.1 Requirement for an Automated Intelligent Target

Classifier

The conventional human operated target classification systems

suffer from many disadvantages due to human errors and hence the

need and requirement for an intelligent and automated classifier has

been brought out in the thesis, considering the complex nature of the

ocean environment. The introductory chapter briefly discusses the

various functionalities and suggested methodology for the realization of

the proposed classifier along with a discussion of various noise sources

in the ocean. The use of higher order spectral analysis, especially the

bispectral analysis as a feature extraction technique and its advantages

have also been highlighted in this chapter.
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6.1.2 Compilation of the State-of-the-art Literature

The development of a target classifier involves the extraction of the

characteristic features of the noise sources, selection of the relevant

features and application of the classification algorithms. As a prelude

to the development of the classifier, a compilation and review of the

state-of-the-art literature has been carried out. A special emphasis has

been given to the higher order spectral analysis domain, which is an

emerging topic in the field of digital signal processing.

6.1.3 Classifier utilizing the HOS Features

A methodology for the realization of the underwater target classifier

has been proposed. HOS analysis of the signals emanating from the

various noise sources in the ocean has been carried out to extract various

feature sets. As the dimensionality of the resulting feature vector is high,

suitable feature selection algorithms are to be applied for selecting only a

minimal and non-redundant subset of the features. The optimal feature

subset so obtained has been used for the classification process, using

k-NN, ANN and SVM classifiers.

6.1.4 Feature Vector Generation using HOS Analysis

The robustness of the feature set is an important aspect in

determining the performance of the classifier. Various Higher Order

Spectral techniques have been adopted for the feature extraction. The

target feature vector includes bicoherence, bicepstral and various

integrated bispectral features. The procedures for the conventional
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perceptually motivated feature extraction techniques like MFCC have

been applied on to the bispectrum to generate the Bispectral MFCC

features. A set of new features called the Bispectral Gammatone

Cepstral Coefficients (BGTCC) have also been proposed, by applying

the conventional Gammatone Cepstral Coefficient extraction

procedures on to the bispectrum.

6.1.5 Implementation of Underwater Target Classifier

Once the feature vector has been extracted and the knowledge base

is created, the classifier needs to be trained with the knowledge base

and the parameters of the classifier need to be tuned to get an

acceptable classification performance. Different classifiers viz., the

k-Nearest Neighbour, Artificial Neural Network and the Support

Vector Machine have been studied and the classifier performances were

evaluated along with the Fisher and JMI feature selection criterion.

The various parameters of the classifier have been fine tuned in order

to get an acceptable performance validation results. The repeatability

of the results have been ascertained by using randomly selected test

records and the reproducibility of the results were found to be

acceptable within the limits of permissible errors.

6.2 Future Scope for Research

The work presented in this thesis has a significant role to play in

view of its practical applications in underwater classification scenario.

This work also provides substantial scope for further research towards

improving the overall system performance, especially considering the
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relatively unexplored Higher Order Spectral analysis domain. Some of

the suggested areas for future work in this area are enlisted below.

6.2.1 Hardware Implementation

The proposed classifier works on a simulated environment. The

algorithms can be implemented in high-end Digital Signal Processors,

and a hardware version of the classifier can be developed for the use in

real-time practical systems. However, development of such a system

needs huge investments as it requires costly hardware subsystem

components like the hydrophone arrays, receiving subsystem

electronics, pre-processing modules and decision making subsystems.

6.2.2 Collection of Field Data

As obvious, the performance of the classifier depends on the vastness

of the knowledge base, and in order to make the system more reliable and

robust, the knowledge base needs to be updated with the feature vectors

for all the classes and types of the targets under consideration. Thus, the

augmentation and updation of the knowledge base with more field data,

from the environment where the system is designated to operate, is an

important requirement. This also enables the validation of the classifier

performance with realistic field data. Also, there must be provisions for

real time feature learning by which the system can learn by itself the

new classes and types of the targets.
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6.2.3 Multiple Targets Scenario

The current scope of the work focuses the classification of a

prominent target, in the noise background. If multiple targets are

present, one may have to separate the signals of each individual targets

before the process of classification, using reliable source separation or

unmixing algorithms. This would enable the classifier to handle

multiple targets, which may be inevitable in some of the practical

scenarios.

6.2.4 Augmentation of Feature Vectors

The performance of the classifier can be improved by augmenting the

feature vector used, with other feature sets that can have some other

characteristics not represented by the existing feature sets. A possible

candidate for this from the HOS would be the trispectrum, which is based

on the fourth order statistics. However, as the spectral order increases,

the computational complexity and storage requirement also increases,

and the development of efficient algorithms to tackle such situations

is also an important area of further research. Incorporation of more

complex auditory models to extract perceptually motivated features may

also be worked up on.

6.3 Summary

In this chapter, an attempt has been made to bring out the salient

highlights of the work carried out for the implementation of an

underwater target classifier, using Higher Order Spectral features along
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with the general inferences gathered. A discussion on the scope and

directions for future research works in this area has also been

presented.

175





References

[1] G. M. Wenz, “Review of Underwater Acoustics Research: Noise,”
The Journal of the Acoustical Society of America, vol. 51, no. 3B,
pp. 1010–1024, 1972.

[2] T. Pieng, K. Beng, P. Venugopalan, M. Chitre, and J. Potter,
“Development of a shallow water ambient noise database,” in
Proceedings of the 2004 International Symposium on Underwater
Technology, pp. 169–173, IEEE, 2004.

[3] D. Ross, “Ship Sources of Ambient Noise,” IEEE Journal of
Oceanic Engineering, vol. 30, pp. 257–261, Apr. 2005.

[4] J. Potter and E. Delory, “Noise sources in the sea and the impact
for those who live there,” in Proceeding of the Conference on
Acoustics and Vibration Asia’98, 1998.

[5] R. H. Nichols, “Infrasonic ocean noise sources: Wind versus
waves,” The Journal of the Acoustical Society of America, vol. 82,
no. 4, pp. 1395–1402, 1987.

[6] W. Carey, “Oceanic low frequency ambient noise,” in OCEANS
2000 MTS/IEEE Conference and Exhibition. Conference
Proceedings, vol. 1, pp. 453–458, Ieee, 2000.

[7] D. Hollinberger and D. Bruder, “Ambient noise data logger buoy,”
IEEE Journal of Oceanic Engineering, vol. 15, no. 4, pp. 286–291,
1990.

[8] P. L. Brockett, M. J. Hinich, and G. Wilson, “Nonlinear and non-
Gaussian ocean noise,” The Journal of the Acoustical Society of
America, vol. 82, no. 4, pp. 1386–1394, 1987.

177



References

[9] M. Bouvet and S. C. Schwartz, “Underwater noises: Statistical
modeling, detection, and normalization,” The Journal of the
Acoustical Society of America, vol. 83, no. 3, pp. 1023–1033, 1988.

[10] R. Webster, “Ambient noise statistics,” IEEE Transactions on
Signal Processing, vol. 41, pp. 2249–2253, June 1993.

[11] P. Geethanjali, Y. K. Mohan, and J. Sen, “Time domain Feature
extraction and classification of EEG data for Brain Computer
Interface,” in 2012 9th International Conference on Fuzzy Systems
and Knowledge Discovery, no. FSKD 2012, pp. 1136–1139, IEEE,
may 2012.

[12] M. Jalil, F. A. Butt, and A. Malik, “Short-time energy,
magnitude, zero crossing rate and autocorrelation measurement
for discriminating voiced and unvoiced segments of speech signals,”
in 2013 The International Conference on Technological Advances
in Electrical, Electronics and Computer Engineering (TAEECE),
no. m, pp. 208–212, IEEE, may 2013.

[13] A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature
reduction and selection for EMG signal classification,” Expert
Systems with Applications, vol. 39, no. 8, pp. 7420–7431, 2012.

[14] G. Tzanetakis and P. Cook, “Musical genre classification of audio
signals,” IEEE Transactions on Speech and Audio Processing,
vol. 10, pp. 293–302, jul 2002.

[15] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental
Sound Recognition With TimeFrequency Audio Features,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 17,
pp. 1142–1158, aug 2009.

[16] a. Kundu, G. Chen, and C. Persons, “Transient sonar signal
classification using hidden Markov models and neural nets,” IEEE
Journal of Oceanic Engineering, vol. 19, no. 1, pp. 87–99, 1994.

[17] C. Kang, X. Zhang, A. Zhang, and H. Lin, “Underwater acoustic
targets classification using welch spectrum estimation and neural
networks,” in Advances in Neural Networks – ISNN 2004 (F.-L.
Yin, J. Wang, and C. Guo, eds.), (Berlin, Heidelberg), pp. 930–
935, Springer Berlin Heidelberg, 2004.

178



Implementation of an Underwater Target Classifier using HOS Features

[18] S. Marple, “A tutorial overview of modern spectral estimation,”
in International Conference on Acoustics, Speech, and Signal
Processing, pp. 2152–2157, IEEE, 1989.

[19] S. Kay and S. Marple, “Spectrum analysis–A modern perspective,”
Proceedings of the IEEE, vol. 69, no. 11, pp. 1380–1419, 1981.

[20] F. Shin and D. Kil, “Full spectrum signal processing,” in
Conference Proceedings. OCEANS ’95 MTS/IEEE, vol. 1, pp. 397–
403, IEEE, 1995.

[21] M. J. Hinich, “Detecting a Hidden Periodic Signal When its Period
is Unknown,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 30, no. 5, pp. 747–750, 1982.

[22] M. Farrokhrooz and M. Karimi, “Marine Vessels Acoustic
Radiated Noise Classification in Passive Sonar Using Probabilistic
Neural Network and Spectral Features,” Intelligent Automation &
Soft Computing, vol. 17, pp. 369–383, jan 2011.

[23] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “A Survey of Audio-
Based Music Classification and Annotation,” IEEE Transactions
on Multimedia, vol. 13, pp. 303–319, Apr. 2011.

[24] S. Yang and Z. Li, “Classification of ship-radiated signals via
chaotic features,” 2003.

[25] S. Yang, Z. Li, and X. Wang, “Ship recognition via its radiated
sound: The fractal based approaches,” The Journal of the
Acoustical Society of America, vol. 112, no. 1, pp. 172–177, 2002.

[26] J. Locke and P. R. White, “The performance of methods based
on the fractional Fourier transform for detecting marine mammal
vocalizations.,” The Journal of the Acoustical Society of America,
vol. 130, pp. 1974–84, Oct. 2011.

[27] D. Childers, D. Skinner, and R. Kemerait, “The cepstrum: A guide
to processing,” Proceedings of the IEEE, vol. 65, no. 10, pp. 1428–
1443, 1977.

[28] S. Molau, M. Pitz, R. Schluter, and H. Ney, “Computing Mel-
frequency cepstral coefficients on the power spectrum,” in 2001
IEEE International Conference on Acoustics, Speech, and Signal

179



References

Processing. Proceedings (Cat. No.01CH37221), vol. 1, pp. 73–76,
IEEE.

[29] R. Kemerait and D. Childers, “Signal detection and extraction by
cepstrum techniques,” IEEE Transactions on Information Theory,
vol. 18, pp. 745–759, Nov. 1972.

[30] M. Kucukbayrak, O. Gunes, and N. Arica, “Underwater Acoustic
Signal Recognition Methods,” Journal of Naval Science and
Engineering, vol. 5, no. 3, pp. 64–78, 2009.

[31] J. Garcia and C. Reyes Garcia, “Mel-frequency cepstrum
coefficients extraction from infant cry for classification of normal
and pathological cry with feed-forward neural networks,” in
Proceedings of the International Joint Conference on Neural
Networks, 2003., vol. 4, pp. 3140–3145, IEEE, 2003.

[32] M. Molla and K. Hirose, “On the effectiveness of MFCCs and
their statistical distribution properties in speaker identification,”
in 2004 IEEE Symposium on Virtual Environments, Human-
Computer Interfaces and Measurement Systems, 2004. (VCIMS).,
vol. 00, pp. 136–141, IEEE, 2004.

[33] W.-w. Hung, H.-c. Wang, and S. Member, “On the use of weighted
filter bank analysis for the derivation of robust MFCCs,” IEEE
Signal Processing Letters, vol. 8, pp. 70–73, Mar. 2001.

[34] X. Zhao, Y. Shao, and D. Wang, “CASA-Based Robust
Speaker Identification,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, pp. 1608–1616, July 2012.

[35] X. Valero and F. Alias, “Gammatone Cepstral Coefficients:
Biologically Inspired Features for Non-Speech Audio
Classification,” IEEE Transactions on Multimedia, vol. 14,
pp. 1684–1689, Dec. 2012.

[36] W. Abdulla, “Auditory based feature vectors for speech
recognition systems,” in Advances in Communications
and Software Technologies, pp. 231–236, N. E.Mastorakis
andV.V.Kluev,Eds. Greece:WSEAS Press, 2002.
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