
SECURITY	VULNERABILITY	IN	ON‐LINE	
APPLICATIONS:	ANALYSIS,	ANOMALY	

DETECTION	AND	PREVENTION	OF	ATTACK	
	

Thesis submitted to

Cochin University of Science and Technology
in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy
under the Faculty of Technology

by

Thresiamma	K.	George		
	

Under the guidance of

Dr. K. Poulose Jacob (Research Guide) Dr. Rekha K. James (Co-Guide)
Ex. Pro Vice Chancellor, Professor, Division of Electronics
Professor of Computer Science School of Engineering

Department	of	Computer	Science		
Cochin	University	of	Science	and	Technology	

Kochi	–	22	

July 2017

Security	Vulnerability	in	On‐Line	Applications:	Analysis,	Anomaly	
Detection	and	Prevention	of	Attack

Ph.D. Thesis under the Faculty of Technology

By

Thresiamma K. George
Research Scholar
Department of Computer Science
Cochin University of Science and Technology
Kochi, India 682022

Research Advisors

Dr. K. Poulose Jacob (Research Guide)
Ex. Pro Vice Chancellor,
Professor of Computer Science
Cochin University of Science and Technology
Cochin-682022

Dr. Rekha K. James (Co-Guide)
Professor, Division of Electronics
School of Engineering
Cochin University of Science and Technology
Cochin-682022

July 2017

COCHIN	UNIVERSITY	OF	SCIENCE	AND	TECHNOLOGY	
Kochi	–	682	022	

This is to certify that the thesis entitled “Security Vulnerability in

On-Line Applications: Analysis, Anomaly Detection and Prevention

of Attack” is an authentic record of research work carried out by

Mrs. Thresiamma K. George, under our supervision in the Department of

Computer Science, Cochin University of Science and Technology, and further

that no part thereof has been presented before for the award of any other

degree. All the relevant corrections and modifications suggested by the

audience during the presynopsis seminar and recommended by the doctoral

committee of the candidate have been incorporated in the thesis.

Dr. K. Poulose Jacob (Research Guide) Dr. Rekha K. James (Co-Guide)
Ex. Pro Vice Chancellor, Professor, Division of Electronics
Professor of Computer Science School of Engineering

Kochi - 22
21st July 2017

I hereby declare that the work presented in the thesis entitled Security

Vulnerability in On-Line Applications: Analysis, Anomaly Detection

and Prevention of Attack is based on the original research work carried

out by me under the supervision and guidance of Dr. K. Poulose Jacob,

Ex. Pro Vice Chancellor and Professor of Computer Science and Dr. Rekha

K. James, Professor of Electronics and communication for the award of the

degree of Doctor of Philosophy with Cochin University of Science and

Technology. I further declare that the content of this thesis in full or in parts

have not been submitted to any other University or Institute for the award of

any degree or diploma.

Kochi-22 Thresiamma K. George
21st July 2017 Reg. No: 3800

Dedicated to

My Family

i

The present study has been a process of Analysis, evaluation, model designing

and implementation, which has been a very challenging and reassuring academic
exercise. I am grateful to many people who supported me during the research work
and preparation of the thesis. First and foremost, I thank God Almighty for the
blessings showered upon me to complete this endeavor. I would like to express my
sincere gratitude to Dr. Poulose Jacob, Ex. Pro Vice Chancellor, Professor of
Computer Science, Cochin University of Science and Technology for his
encouragement and guidance throughout the research work. His insightful
comments; support and advice have been of immense benefit to me during the most
difficult time. I am grateful to my co-guide, Dr. Rekha K.James, Professor, Cochin
University of Science and Technology for being a source of support and
encouragement. Her sincerity, patience and supportive attitude enabled the
successful completion of this work. My sincere thanks are also to Dr. Santhosh
Kumar Head of the department of Computer Science, Cochin University of Science
and Technology for his support and guidance.

I would like to thank Dr. Sumam Mary Idicula, Dr. Sheena Mathew and all
faculty members of Computer Science Department, Librarian, office staff and all
research scholars of Department of Computer Science at Cochin University of
Science and Technology for providing the much needed help and support in
completing the research work. My sincere thanks are also due to all faculty members
at Higher College of Technology, Muscat for their timely help and support. I wish
to place on record of my sincere thanks to Dr. Vinu, Dr. Sherimon and Dr. Reshmy
for their cordiality, support and help. I am thankful to all my teachers at school and
colleges for making me what I am today.

Let me express my deepest gratitude to my husband Mr. Sunny Thomas for
his encouragement and special care during my hectic schedule and moral support
throughout the completion of this work. I specially mention my sons Ashish and

ii

Ashwin for their love, understanding, timely support and encouragement that
helped me to fulfill my dream. I also extend my gratitude to my parents, my in-laws,
my uncle Dr. K.S Mathew, my brothers and sisters for their encouragement, support
and blessings. I also thank my relatives and friends for the concern and support
they extended at various stages of my work.

Thresiamma K. George

iii

Security vulnerabilities are major threats in web applications which
lead to the loss of integrity, confidentiality, and availability of user data.
Malicious attacks on on-line applications frequently occur through these
vulnerable points and breach the security mechanisms of authentication,
authorization, and accountability. The existing techniques and strategies are
not sufficient enough to handle most of these vulnerabilities due to its
complex nature, and the lack of sophistication in the current input validation
techniques. In SQL injection attacks, an attacker attempts to use an
application code to access or corrupt database content and it commonly
affects database driven online applications. It is one of the most dangerous
vulnerabilities which usually occur when data provided by the user is
included directly on SQL statements without proper validation. SQL
injection attack takes advantage of the poorly coded web application and
exploits the sensitive and critical information from backend databases.

In this research work, an efficient Multi-Level Template based
Detection and Reconstruction model (MLT-DR) is designed and
implemented to detect SQL injection attacks and to reconstruct injected
queries. It is a hybrid model with an effective framework to parse and
analyse the query with maximum performance and precision. The proposed
model validates dynamic queries against the legal query pattern, before
redirecting it to the web server. In this approach, the malicious queries are
blocked and an alert message generated, if the injection is detected. Only the
benign query can access the data from the back-end database server. The
Standard Query Template Creator application (SQTC) created within this
framework is capable of creating a specific query structure for both legal
and injected queries, in the form of tokens. The proposed multilevel
template mapper algorithm, which is used in SQTC, describes the procedure
to map the injected query with the legal query, to detect the presence of an

iv

injected string. The proposed architecture does not demand any source code
modifications and performs detailed analysis at negligible computational
overheads without false positives or false negatives. The proposed approach
has a fully automated query assessment procedure to build a legal query
model and has a validation technique to match the dynamic user query with
the design template.

The reconstruction component of the hybrid model reconstructs the
queries from the authenticated user by eliminating the injected portion and
rebuilds the missing parts of the user query, based on request-id and the type
of injection. The model construction algorithm explains the procedure of
rejuvenating queries from authenticated users. To reduce the coding
complexity and improve the performance of the detection procedure, the
SQLI-Shield and SQLI-Rejuvenator package files are deployed.
Reconstruction procedures are also validated by using machine learning
technique.

MLT-DR is implemented using Java-based application software and
MySQL as a back-end database server. The crawler functionality
implemented in the web application identifies the hotspot or form field of
user input queries. The captured queries are parsed or split into different
tokens and stored in a template repository. Malicious queries are logged in
and documented for developing the anomaly pattern to have a stronger
detection model in the later stage of handling the zero-day vulnerability.

v

Acknowledgement ... i
Abstract .. iii
List of tables ... xi
List of figures ... xiii
Glossary .. xv
Abbreviations .. xvii
Notation ... xix

Chapter 1
INTRODUCTION... 01 - 14

1.1 Background ... 02
1.2 Motivation ... 07
1.3 Problem Statement .. 10
1.4 Research Objectives .. 11
1.5 Contributions of Research Work .. 12
1.6 Outline of the Thesis ... 13
1.7 Summary of the Chapter ... 14

Chapter 2
LITERATURE SURVEYON SECURITY VULNERABILITIES 15 - 41

2.1 Security Concerns in a Web Application .. 16
2.1.1 The Web Architecture .. 17
2.1.2 Data storage and Access Strategies on the Web 18

2.2 Literature Survey and Related Work .. 19
2.2.1 Common Security Threats and its Consequences 19
2.2.2 Classification of Security Threats and Attacks 20
2.2.3 Vulnerability Assessment Methodology 22
2.2.4 Major Tasks and Steps under Vulnerability Assessment 23

2.3 Application Level Security Vulnerability 25
2.3.1 Major classes of Application Level Vulnerabilities 26
2.3.2 Validation Controls .. 27
2.3.3 Sanitizing Strategies ... 29
2.3.4 Tools and Techniques Used in Vulnerability Analysis 30

2.4 Security Models Against Vulnerability Detection 32
2.5 Vulnerability Assessment Reported by Security Organizations 34

2.5.1 Kaspersky Lab B2B International .. 34
2.5.2 Web Application Security Consortium (WASC) 35
2.5.3 Open Web Application Security Project (OWASP) 36
2.5.4 Acunetix ... 37
2.5.5 IBM Security and Ponemon Research ... 37

vi

2.6 SQL Injection Attack- Most Dangerous Attack on Database
Layer ... 38

2.7 Summary of the Chapter ... 40

Chapter 3
THE MULTILEVEL TEMPLATE BASED DETECTION AND
RECONSTRUCTION (MLT-DR) FRAMEWORK 43 - 66

3.1 Introduction .. 44
3.2 Major Attack Categories of SQL Injection 44

3.2.1 Tautologies ... 44
3.2.2 Logically incorrect query/illegal Queries 45
3.2.3 Union Query ... 45
3.2.4 Piggy-Backed Queries .. 46
3.2.5 Alternate Encodings ... 46
3.2.6 Stored Procedure .. 46
3.2.7 Inference attack .. 47

3.3 Standard Queries and its Malicious Pattern 47
3.3.1 Attack category and Signature .. 51
3.3.2 Classification Strategy .. 52

3.4 The General Layout of the Proposed Architecture 52
3.5 The MLT-DR Framework .. 54

3.5.1 Proxy Server ... 57
3.5.2 Web Server ... 57
3.5.3 Database Server .. 58
3.5.4 The Detection Module (TbD) ... 59
3.5.5 The Reconstruction Module ... 59
3.5.6 Authentication Checking .. 60
3.5.7 Log of Denied Queries ... 60

3.6 Template Design Strategies ... 61
3.6.1 Strategies used for Storage and Retrieval 62
3.6.2 JavaScript object Notation Format (JSON) 62
3.6.3 JAR file to Retrieve and to Specify the Path Details 63

3.7 Summary of the Chapter ... 65

Chapter 4
THE MULTILEVEL TEMPLATE BASED DETECTION
FRAMEWORK (MLT-D) ... 67 - 96

4.1 The Multilevel Template Based Detection (MLT-D) Framework 68
4.1.1 The server Functionality ... 69
4.1.2 The Standard Query Template Creator Application (SQTC)........ 69

4.1.2.1 Model Creation Algorithm .. 69
4.1.3 The template Repository .. 71

vii

4.1.4 Token based Query Model Constructor and Parsing Procedure ... 72
4.1.4.1 Token Specification Strategies .. 73
4.1.4.2 Complex Query Evaluation ... 74
4.1.4.3 Query Evaluation Using Tree Structures 74
4.1.4.4 Design Specification for Injection Detection 75
4.1.4.5 General View of Query evaluation .. 76

4.1.5 The Mapper .. 81
4.1.5.1 Token-Mapper Algorithm ... 82

4.1.6 Validation and Detection .. 83
4.2 Strategies Used in Standard String Matching Algorithms 84

4.2.1 Boyer-Moore Algorithm .. 84
4.2.2 Hirschberg Algorithm .. 85
4.2.3 Morris-Pratt Algorithm .. 85

4.3 Experimental Result .. 86
4.3.1 Queries Tested with MLT-DR Framework 86
4.3.2 View of Template ID and Storage Format of SQL Query 92
4.3.3 Procedure to Detect and block SQL Injection Attack 93

4.4 Summary of the Chapter ... 96

Chapter 5
THE RECONSTRUCTION FRAMEWORK .. 97 -118

5.1 Significance of the Reconstruction Framework 98
5.2 Components of Reconstruction Framework 99

5.2.1 Server Functionality ... 99
5.2.2 Training Data.. 100
5.2.3 Back Propagated-Neural Network model 100

5.2.3.1 Multilayer Artificial Neural Network (ANN) for
Machine Learning .. 101

5.2.3.2 Major Steps in Back-Propagation Algorithm (BPA) 102
5.2.4 Template Store ... 103
5.2.5 Template Mapper ... 103
5.2.6 Template Translation .. 103
5.2.7 SQL Reconstruction ... 106
5.2.8 SQLIA Detection Engine ... 106

5.3 Regular Expression and Comparison for Pattern Matching
in SQL Statement ... 107

5.4 Model Construction Algorithm .. 113
5.4.1 Reconstruction Algorithm .. 114

5.5 Experimental Result of Reconstruction Procedure 116
5.6 Summary of the Chapter .. 117

viii

Chapter 6
PROTOTYPE IMPLEMENTATION OF MULTI LEVEL TEMPLATE
BASED DETECTION AND RECONSTRUCTION (MLT-DR)
FRAMEWORK .. 119 - 134

6.1 System Architecture of the Prototype, MLT-DR 120
6.2 MLT-DR Training Phase .. 120

6.2.1 Identification of Hot Spot/ form Field Entry in the Web Pages ... 121
6.2.2 Standard Query Template Creator (SQTC) 122

6.3 Learning Phase of Back Propagated Neural Network Learned
Model ... 127

6.4 Testing Phase of MLT-DR .. 128
6.4.1 Template Generator/Parser for User Input Query 129
6.4.2 The Model Mapper ... 129
6.4.3 SQL Injection Attack Detection Engine 130
6.4.4 Reconstruction Component .. 132

6.5 Summary of the Chapter .. 134

Chapter 7
PERFORMANCE EVALUATION OF MLT-DR FRAMEWORK ... 135 - 154

7.1 Testing Hypothesis .. 136
7.2 Data Set Used for Testing MLT-DR .. 137

7.2.1 Dataset I: Data Available from Cheat Sheets/ URL 137
7.2.2 The extract of Malicious Queries From URL 137
7.2.3 Dataset II: Standard Test Suite Provided by

Halfond and Orso ... 139
7.2.4 Dataset III: Customized School Connect System 141

7.3 Performance Measures of MLT-DR .. 142
7.3.1 Process Time Overhead .. 143
7.3.2 Efficiency of MLT-DR ... 143
7.3.3 Precision of MLT-DR .. 145
7.3.4 Effectiveness of MLT-DR .. 147

7.4 Type I & Type II Error .. 148
7.5 Receiver Operating Characteristic (ROC) Curve 149
7.6 Storage Overhead & Processing Time for Detection 150
7.7 Comparison of MLT-DR with Other Models 152
7.8 Summary of the Chapter .. 154

Chapter 8
CONCLUSION AND FUTURE WORK ... 155 - 162

8.1 Summary of the Research Work .. 155
8.2 Major Highlights of the Research Work .. 156

ix

8.3 Future Directions ... 159
8.4 Conclusion ... 161

References .. 163 - 180

Appendices .. 181 - 187

List of Publications ... 188 - 189

xi

Table 2.1 Application level vulnerability-classes and determining factors... 26
Table 3.1 Standard query vs. malicious query .. 48
Table 3.2 Attack category and signature ... 51
Table 4.1 Standard Query Template Creator Algorithm (SQTC) 70
Table 4.2 Summary of tokens and values assigned 81
Table 4.3 Token Mapper algorithm for SQL injection Detection

(SQLI-D) ... 82
Table 4.4 Legal queries Vs Injected queries tested in MLT-DR............... 86
Table 5.1 Symbols and description ... 104
Table 5.2 Metacharacters used in REGEX .. 108
Table 5.3 List of functions for string comparison 109
Table 5.4 Basic functions with SQL Regular expression 110
Table 5.5 Model constructors in MLT-DR ... 111
Table 5.6 Reconstruction Algorithm of Authenticated user

Queries (RaAuQ)... 115
Table 6.1 Legal queries and Injected queries chosen for BPNN learning .. 123
Table 6.2 Identified attack vectors and signatures 127
Table 6.3 Embedding a Template-ID in a SQLIA-Shield 129
Table 7.1 Data collected from the cheat sheet/URL 137
Table 7.2 Sample vulnerability report with MLT-D detection

status “Yes” ... 138
Table 7.3 The Identified application with hotspots 139
Table 7.4 Test result showing the effectiveness of MLT-DR 140
Table 7.5 SchoolEconnect with attack detection details 141
Table 7.6 Time overhead in SchoolEconnect application 144
Table 7.7 Analysis of false positives in General 146
Table 7.8 Analysis of false positives in SchoolEconnect

application ... 146
Table 7.9 Attack categories and detection rate in MLT-D 148
Table 7.10 Comparison of MLT-DR with other models 153

…..…..

xii

xiii

Figure 1.1 Holistic approach to security .. 02
Figure 1.2 Vulnerability by paradigm and severity 06
Figure 1.3 Percentage of various vulnerability classes as reported in

OWASP .. 08
Figure 2.1 Typical three tier web architecture ... 17
Figure 2.2 Major components involved in Assessment 23
Figure 2.3 Processing steps for Vulnerability assessment 24
Figure 2.4 Summary of percentage of attack against the attack

categories .. 35
Figure 2.5 Percentage of vulnerability reported by OWASP 36
Figure 2.6 Security risk Vs Spending ... 37
Figure 2.7 SQL injection attack on a web application 39
Figure 3.1 General layout of MLT-DR architecture 53
Figure 3.2 Architecture of MLT-DR framework 56
Figure 3.3 Query ID and corresponding JSON format 63
Figure 4.1 Multilevel template based Detection (MLT-D 68
Figure 4.2 Procedure for Query model constructor 74
Figure 4.3 User query evaluation using Tree structure 75
Figure 4.4 Query Evaluation procedure in the hybrid frame work 76
Figure 4.5 Query evaluation using tree structure 78
Figure 4.6 Independent query tokenizing procedure 90
Figure 4.7 Complex query tokenizing procedure 91
Figure 4.8 JSON format of the standard query .. 92
Figure 4.9 Template ID formats of tested queries 93
Figure 4.10 Evaluation procedure of a dynamic query 94
Figure 4.11 Complex query evaluation procedure with multiple levels 95
Figure 5.1 System architecture of the reconstruction Framework 99
Figure 5.2 BP-NN learning for SQL trained model 101
Figure 5.3 Multilayer representation of neural network 102
Figure 5.4 Status report of NNbR module with a reconstructed query ... 117
Figure 6.1 MLT-DR Prototype in Training phase 121

xiv

Figure 6.2 Injected query on the form field of login page 122
Figure 6.3 The unique template ID and template in JSON format 125
Figure 6.4 The generated unique ID for one of the identified web

application .. 126
Figure 6.5 MLT-DR Prototype in testing phase 128
Figure 6.6 Identified Query ID for mapping & JSON format 130
Figure 6.7 Evaluation result of the prototype tool TbD 132
Figure 6.8 Status report -Reconstruction procedure in MLT-DR

framework .. 133
Figure 7.1 Test result showing the effectiveness of MLT-DR 140
Figure 7.2 SchoolEconnect with attack detection details 142
Figure 7.3 Test result showing the efficiency of MLT-DR 144
Figure 7.4 Precision analysis in SchoolEconnect application 147
Figure 7.5 Type I & Type II error rate ... 149
Figure 7.6 Receiver Operating Characteristic (ROC) curve 149
Figure 7.7 Detection procedure and JSON storage format 150
Figure 7.8 First level Injection detection ... 151
Figure 7.9 SQL Rejuvenation status report ... 152

xv

Attack An attempt to destroy or compromise the system

Authentication Process or action of verifying the identity of a user or
process

Authorization Process of giving permission to do or have access

Benign Query Harmless or not injected query

Confidentiality Component of security pillar to keep track of the
privacy of information

Countermeasures An action taken to counteract a security threat

Crawler Program that systematically browses the World Wide
Web

Cyber crime Criminal activities carried out by means of Internet

Empirical Verifiable by observation and experience rather than
theoretical logic

Firewalls Part of computer network that is designed to block
unauthorized access while permitting outward
communication

Form field Form element used to collect user input

Hotspot A place of significant activity

Hybrid model Mix of different performance based model

Injection Forceful entry or access

Integrity Component of security pillar to keep track of the
accuracy of Information

Malicious code Any code that is intended to damage the system

Malware Software that is intended to damage or disable
computer system.

Mitigate Lessen the gravity of mistake

Non repudiation Assurance that someone cannot deny something

Parsing Analyze a text or string into logical Syntactic component

xvi

Prototype Model of the system generated

Proxy Server An intermediary server for request from client

Rejuvenate Query Reconstruct the malicious query

Sanitize To make it pure/without injection

Security Breach Breaking the security and compromising the system

Security Patch Security patch is intended to correct a vulnerability
or viral infection

Spamming Practice of sending unwanted email messages with
large quantity of commercial content

Tokens Single program element

Vulnerability Weakness in the system to allow the unauthorized
users to compromise the system

xvii

API Application Program Interface

ANN Artificial Neural Network

ASCII American Standard Code for Information Interchange

ASP Application Server page

B2B Business to Business

BPA Back-propagation algorithm

BP-NN Back Propagated Neural Network

CSRF Cross- Site Request Forgery

CVSS Common Vulnerability Scoring System

DAST Dynamic Application Security Testing tools

DB Database

DBMS Database Base Management System

DFS Depth First Search

DoS Denial of service attack

FTP File Transfer Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transmission Protocol

IDE Integrated Development Environment

IDS Intrusion Detection System

IIS Internet Information Service

JAR Java Archieve files

JDBC Java Database Connectivity

JSON Java Script Object Notation

LDAP Lightweight Directory Access Protocol

MLTD Multi-Level Template based Detection

MLT-DR Multi-Level Template based Detection and Reconstruction

xviii

NNbR Neural Network based Reconstruction

ODBC Open database Connectivity

OWASP Open Web Application Security Project

QUADP
REGEX

Query Anomaly Detection Process
Regular expression

R-Iq Reconstruction of Input query

ROC Receiver Operating Characteristic

RSS Rich Site Summary

SAST Static Application Security Testing

SQL Structured Query language

SQLIA Structured Query language Injection Attack

SQLI-R Structured Query language Rejuvenator

SQLIV SQL Injection Vulnerabilities

SQTC Standard Query Template Creator application

TbD Token based Detection

TCP Transmission Control Protocol

URL Uniform Resource locator

WASC Web application Security Consortium

XML eXtensible Markup Language

XSS Cross Site Scripting

x

xix

µ Micro Symbol (Mu), Index of actual learning pattern

µ = 1,…,P

 Unicode extended character, to calculate weighted sum of

input values

∆ Increment, a small positive or negative change in a function.

∑ N-ary Summation

𝜕 Unicode extended character, to check error function

Ƹ Latin small letter Ezh Reversed.

⊕ Exclusive OR Symbol to check the exact mapping of strings

О Big O (Landau symbol- Time space Complexity)

 Activation function

ƹ Sum-of-squares errors

Nm

Number of elements in layer m

wji

m
 Change of given weight for pattern µ

j Weighted sum of input values for element j in layer µ

wii
m

 Weight between element j in layer m and element I in layer m-1

ui
(m-1)

 Output of element I in layer m-1 for pattern µ

𝜕 Learning error for element j for pattern µ

 Proportion coefficient

…..…..

xx

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 1

CChhaapptteerr 11

INTRODUCTION

1.1 Background
1.2 Motivation
1.3 Problem Statement
1.4 Research Objectives
1.5 Contributions of Research Work
1.6 Outline of the Thesis
1.7 Summary of the Chapter

As web applications have become the primary sources of information dissemination

and most preferred way of delivering essential service to customers, it has also become

an attractive target for attackers. Security vulnerabilities are major threats in web

applications as successful attack through these vulnerable points leads to loss of

integrity, confidentiality and availability aspects of a security triangle. The existing

techniques and strategies are not sufficient enough to handle most of the vulnerabilities

due to the complex nature of vulnerability issues, and the current input validation

techniques still require more sophistication. Code injection attacks are one of the most

dangerous threats that exploit the application layer vulnerabilities, which top the list

due to lack of effective strategies existing for detecting and blocking injection attacks.

In recent past, most of the very high-profile organizations are also acknowledging the

breaches of their system with data theft, compromises on the database server

espionage and service interruptions due to lack of sufficient measures to protect web

applications. Most of the cyber-attacks are targeting on the application layer, and

there are possibilities of thousands of known vulnerabilities and hundreds of emerging

vulnerabilities which we need to tackle as and when it affects the business transactions.

The cost of cybercrime is very high, and the toll on the security team after the

significant security breach for investigation, analysis and to remediate the damage is

too expensive for an organization to bear. Authentication threats and Injection attacks

are the standard vulnerability/incidents even in the case of highly secured online

financial applications. It is a clear indication that the online applications need to be

much more secured and required to be monitored and analyzed closely from various

aspects of the security framework.

C
o

n
te

n
ts

Chapter 1

2 Faculty of Technology, Cochin University of Science and Technology

1.1 Background

Online applications are becoming more and more popular because of

its built-in infrastructure and support of diverse technologies, and we require

them for our routine activities. The nature of their feature-rich design and

their capability to collate process and disseminate information over the

internet makes them an attractive target for attack (Johari and Sharma,

2012). The vulnerability is the weakness that makes threats possible. The

vulnerability exists within web applications mostly because of poor design,

configuration mistakes, and inappropriate coding techniques. Vulnerability

scanners help to check vulnerabilities embedded in a web application by

testing invalid forms of input query (Aliero and Ghani, 2015).

Fig. 1.1 Holistic approach to security

The application server should be configured appropriately to obtain

secure network capabilities. A holistic approach to security (Huang and

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 3

Kuo, 2005; Microsoft application architecture guide) is required to build a

secure web application as shown in Figure 1.1. The diagram indicates that

the application layer security is one of the core concerns of the entire web

application security other than the Network and Host Security (Awang and

Manaf, 2015).

Most of the web applications, supported with backend database

servers are susceptible to security attacks (Artzi and Kiezun, 2008). With

the advent of web 2.0, the content handling, usability and interoperability of

a web application such as e-shopping, e-banking, internet messaging, web

communities, etc., have taken up a new phase. They achieved highest

possible sophistication to handle the user demands, but at the same pace, it

results in the growth of the attack incidents into a dangerous situation (Sahu

and Tomar, 2016). Vulnerabilities in online applications prompt malicious

users to get an unauthorized entry to compromise critical information stored

in the backend database of online applications. Modern web applications or

the electronic/digital services are critically affected by various security

issues (Alata and Akrout, 2013). Over the period of extensive research, the

world witnessed an increased trend of emerging cyber-threats and malware

targeting online applications and the traditional security measures adopted

by the organizations are not competent enough to deal with the upcoming

vulnerabilities and attack spectrum (Li, and Xue, 2014). Although numerous

protection strategies have been designed, developed and implemented with

the support of vulnerability analysis, detection and prevention mechanism,

still there are threats, attacks and compromises on the application layer of

security (Bau and Mitchell, 2010). SQL injection is one of the most

dangerous vulnerabilities that affect database driven online applications. It

Chapter 1

4 Faculty of Technology, Cochin University of Science and Technology

tops the list due to lack of effective strategies for detecting and blocking

injection attacks. By exploiting SQL injection vulnerability, an attacker

directly interacts with the database server and gain access to the

unauthorized data by compromising security (OWASP, 2010; Halfond and

William, 2008).

As per the report from the Open Web Application Security Project

(OWASP), it rates SQL injection attack as one of the top ten security

vulnerabilities targeting backend databases. By exploiting SQL injection

vulnerabilities, an attacker directly interacts with the database server and

gains unauthorized access to the data by compromising security. Even

though there are many methods and strategies developed against SQL

injection attack, yet the risk rate of SQL injection is increasing exponentially in

most of the online applications as there are fully automated injection tools

available with the talented hackers. In a susceptible application, an SQL

injection attack uses crooked input that changes the SQL query and establishes

an illegal connection to the database (Alfantookh and Abdulkader, 2004).

Monitoring, analyzing, detecting the vulnerabilities and preventing the

attacks should be a continuous process so that the severity of the compromises

or attempts on attacks can be mitigated. It must also provide a best possible

protection strategy by the security team and the system architects. Most of

the business organizations are having required protection mechanism

regarding firewalls and intrusion detection system as part of their security

infrastructure, but still many of the organizations are not having

comprehensive tools and practices in place for securing their applications

(Jovanovic, C. Kruegel 2006). Hence the hackers continue to attack the

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 5

application layer, and the application developers are focusing on the

sophisticated features of the application rather than removing the vulnerabilities.

Proactive and consistent risk management architecture can efficiently

prevent, detect and remediate vulnerabilities in the application layer. As per

the security report, it is not an ideal situation to keep track of thousands of

known vulnerabilities by a single tool or a human developer. The best coding

practices can be another solution to reduce vulnerabilities in the early stage. As

per the detailed report by various security organizations, the Static Application

Security Testing (SAST) tools can be an ideal choice to identify vulnerabilities

in early-stage development by efficiently determining the vulnerabilities in

each line of code. But it has an inherently higher false positive rate than the

Dynamic Application Security Testing tools (DAST). Most of the developers

prefer to compile their code and dynamically test it in a run-time environment

iteratively because some of the vulnerabilities will appear only in a run-time

environment, in this situation the DAST tools seems to be much more accurate

(Akrout and Nicomette, 2014). Appropriate Server Configuration and

necessary patches are important strategies for prevention, detection and

remediation of vulnerabilities (Borade and Deshpande, 2014).

The severity of vulnerabilities estimated by Common Vulnerability

Scoring System (CVSS) in 2015 states that it is essential to analyze the

security at all development stages and regularly during operational use. The

report of CVSS indicates that more than 63% of applications implemented

contain critical vulnerabilities and can lead to confidential data disclosure

and system compromise (Calvi and Vigan, 2016). As per the report of Web

Application Security Consortium (WASC) for the year 2016; most of the

modern web technologies support and solve organizational issues cost

Chapter 1

6 Faculty of Technology, Cochin University of Science and Technology

effectively. But well-equipped hacker’s attack to compromise servers is the

key issue in order to have perfect security (Li Xiaowei, and Yuan Xue,

2011). Acunetix report suggests that web application vulnerabilities are

increasingly pose serious threats to organization’s overall security hence it is

a fundamental requirement for an organization to make application level

security as the priority concern. As per the report of Acunetix web

application vulnerability security (2016), high-severity vulnerabilities are

increasing day by day and present in most of the websites. The near 45,000

sites and almost 5,700 network scans done for a year until March 2016

shows that nearly 55% of websites have one or more high severe

vulnerability such as XSS or SQL injection and 84% are susceptible to at

least one medium-severity- vulnerability such as CSRF. Almost 8% of the

network scanned contained a high security vulnerability. Figure 1.2 shows

the Acunetix’s reports on vulnerability by paradigm and severity.

Fig. 1.2 Vulnerability by paradigm and severity

45

19

84

50
55

16

82

15

0

10

20

30

40

50

60

70

80

90

Web-High

Severity

Network-High

Severity

Web-Medium

Severity

Network-medium

Severity

2015

2016

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 7

The following points summarize some of the major concerns in this

research study:

 Even though there are many prevention and protection techniques

developed and implemented against SQL Injection vulnerabilities,

code injection attacks and exploiting the confidential data by

breaking the authentication logic are common incidents even in the

highly secured financial applications.

 There are huge list of threats and attacks documented in the

recent past by various security consortiums such as OWASP,

WASC, and CVSS, but still the security professionals are giving

little attention to web application security.

 In most of the interactive web applications, security vulnerability

remains a major issue, and SQL injection still prevails as one of

the top-10 vulnerabilities and threat to the online web application

with a backend database.

Hence the analysis and development of an appropriate tool or

technique as a countermeasure against code injection vulnerability is a

major concern for a security person or a developer (Securosis, 2014). An

effective and efficient approach to handle code injection vulnerability and to

mitigate the denial of service attack (DoS) is yet to be developed (Bhoria

and Gharg, 2013).

1.2 Motivation

A less secure web application design may allow crafted injection and

malicious update on the backend database. This trend can cause lots of

Chapter 1

8 Faculty of Technology, Cochin University of Science and Technology

damages and thefts of trusted users’ sensitive data by unauthorized users. In

the worst case, the attacker may gain full control over the Web application

and ultimately destroy or damage the system. SQL Injection Vulnerabilities

(SQLIVs) are one of the open doors for hackers to explore. Hence, they

constitute a severe threat for Web application contents (Zhu, 2014; Web

Security Threat Classification, 2013). Figure 1.3 shows the percentage of

various vulnerability classes as reported in OWASP.

Fig. 1.3 Percentage of various vulnerability classes as reported in OWASP

Input validation is a major concern for application security. Almost 50

to 60 % of security vulnerabilities in 70 % of applications tested is due to

poor input validation. Improper Input Validation can result in significant

vulnerabilities in the web application, which can be exploited by attackers.

Detailed study and analysis of security vulnerability research indicate that

the key issues identified at the application layer of the web application are:

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 9

 Most of the available online applications with backend database

servers are vulnerable to SQL injection attacks.

 Existing solutions against SQL injection attacks have limitations

which in turn affect the performance and effectiveness of the

application.

 Defensive coding techniques suggested by researchers may not be

a complete solution as implementing strict defense coding is

expensive and time-consuming in complex systems.

 Most of the defensive coding strategies are labor intensive and

may only cover subsets of all possible attack patterns. We can

quickly detect critical threats due to SQL injection attacks through

dynamic web pages of online application with the implementation

of an effective vulnerability scanner.

 Most of the existing scanning tools are not sufficient enough to

handle the future security threats, and the scanning tools do not

support comprehensive analysis in purchased applications.

 The available tools and techniques require a series of validation

in coding practices which severely affect the performance, time

and space complexity.

Since this research work focuses on application layer vulnerability,

specifically on compromise or attack on the database server, we have

narrowed down our research on code injection vulnerabilities as the primary

area of research.

Chapter 1

10 Faculty of Technology, Cochin University of Science and Technology

1.3 Problem Statement

SQL injection attack on sensitive business applications can easily

create a root level attack on the database servers and the other connected

network by which there could be a destruction of security attributes such as

Confidentiality, Integrity and Availability. Identification of code injection

vulnerabilities in the legacy system is hard, and most of the SQLI prevention

approach results in false positives (Avireddy and Srinivas, 2012). Denial of

service attacks resulted from SQL Injection will decrease the system

availability. The existing tools for scanning, validating, protecting and

preventing injection attacks on web pages still need further expansion and

better strategies to adequately handle the highly automated malicious

attacks. Exploiting the code injection vulnerabilities to penetrate the

backend database server to steal or disclose the highly sensitive information

is one of the most dangerous attacks in a highly confidential web application.

The consequences of these types of attacks create an enormous impact on the

business applications (Xiaowei and Yuan, 2011; Weinberger and Joel, 2011).

Most of the existing SQL Injection-Detection and prevention approaches

undergo the following issues:

 They target only a subset of SQLI attack types. A few strategies

are developed to handle distinct categories of injections attacks

without false positives (Federico, Macro,2016).

 During the dynamic phase, SQLI validations and modification of

application code on the online applications are expensive on time

and space complexity and results in a bad performance of the web

application (Belk,2011).

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 11

 The denial of service attack arising out of the SQL Injection is

critical in most of the business applications. We must have a high

degree of importance to mitigate this type of attack (Seacord and

Martin, 2010).

By considering the issues mentioned above, the research problem

formulated is to design and implement an effective technique and strategies

for detecting and preventing SQL Injection attacks in online applications

with better performance, efficiency and reduced denial of service attacks.

1.4 Research Objectives

The objectives of this research are:

 To perform a detailed survey and analysis on existing techniques

for detecting SQL injection and counter measures of attacks on

web applications.

 To propose a robust hybrid model to detect SQL Injection and

prevent attack.

 To suggest multilevel template creator algorithm and template

matching algorithm for detection and prevention of SQLI attack.

 To propose an effective Model construction algorithm to

rejuvenate the malicious queries from authenticated user.

 To analyze the parameters such as efficiency, effectiveness and

precision for a secure web application design and Implementation.

 To propose a strategy or procedure to reduce complexity and

better performance of the query evaluation process.

 To develop and implement a prototype to validate the efficiency

and effectiveness of the template-based detection model.

Chapter 1

12 Faculty of Technology, Cochin University of Science and Technology

1.5 Contributions of Research Work

 The proposed MLT-DR is a hybrid model, designed to detect and

block SQL Injections without any false positives and with better system

availability (George and Jacob, 2018). This model blocks all malicious SQL

entries and only the benign query can access the data from the back-end

database server. This framework also has the provision to reconstruct the

queries from authenticated users at run time, which increases the system

availability. MLT-DR, uses an efficient query validation technique which

matches the statically generated legal query tokens against the parsed

dynamic query tokens. The query mapping and reconstruction procedure are

described by the proposed SQL Token Mapper and Model Construction

algorithms. A prototype has been designed and implemented using a Java-

based application program to test the performance and the effectiveness of

the model.

The major contributions are:

 A novel technique MLT-DR, Multi-Level Template based

Detection and Reconstruction to parse and analyse the query with

high precision rate.

 An effective Standard Query Template Creator application

(SQTC), to parse the legal query. If the parsed token has

malicious patterns, it can be blocked and stored in a template

repository, which can be used as countermeasures in future attack

patterns.

 Query reconstruction from authenticated users to increase the

system availability.

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 13

1.6 Outline of the Thesis

Chapter 1: This chapter introduces this research work which includes the

background, motivation, problem statement, objectives and

main contributions of this research work.

Chapter 2: This chapter provides a brief survey of web application

vulnerability with various works done in code injection

vulnerability and its countermeasures. The chapter also discusses

distinct categories of SQL injections attacks, prevention and

protection tools.

Chapter 3: This chapter presents the proposed SQL-Detection Hybrid

model, MLT-DR.

Chapter 4: This chapter explains the key features of SQL-detection,

algorithms for token parsing and analysis and procedure to

detect and prevent SQLIA.

Chapter 5: This chapter deals with the SQL Rejuvenator module to

reconstruct the query. It also explains the architecture of the

model, unique features, components and procedures.

Chapter 6: This chapter describes the Design Implementation of Prototype

MLT-DR with a customized online application and testing of

various categories of queries with appropriate screen shots.

Chapter 7: This chapter describes the performance evaluation of the

proposed model, MLT-DR. The detailed empirical analysis is

also carried out using sample queries collected from various

URLs and shared databases.

Chapter 1

14 Faculty of Technology, Cochin University of Science and Technology

Chapter 8: This chapter summarizes the research work by highlighting

various contributions made by the proposed model and its

significance while comparing it with the other existing models.

The chapter also discusses the future directions.

1.7 Summary of the Chapter

This chapter introduces the topic selected for the research work, the

security vulnerability in an online application, especially the code injection

vulnerabilities. We cover the basic concepts in this research procedure. The

chapter also introduces analysis, and implementation details by stating that

“as the popularity of web applications demand sophisticated user

interactions of the routine services, the sophistication of attacks is also

growing proportionally. And there is an immediate requirement for an

effective approach to preventing any exploits on sensitive information

through the vulnerable points”. The chapter explains the problem statement,

motivation, research objectives and the contributions of the proposed work.

We conclude the chapter by showing the layout of the entire documentation

of the research analysis and implementation details.

…..…..

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 15

CChhaapptteerr 22

LITERATURE SURVEY ON SECURITY
VULNERABILITIES

2.1 Security Concerns in a Web Application
2.2 Literature Survey and Related Work
2.3 Application Level Security Vulnerability
2.4 Security Models Against Vulnerability Detection
2.5 Vulnerability Assessment Reported by Security Organizations
2.6 SQL Injection Attack- Most Dangerous Attack on Database

Layer
2.7 Summary of the Chapter

Vulnerability analysis is a process that defines, detects and classifies security

vulnerabilities in a system, network or communication infrastructure. It also

suggests the countermeasures and the effectiveness of the implementation

techniques. The vulnerability exists within a web application if it does not provide

a proper validation process for the data entered by the user as input. In the global

scenario, the increased amount of dependability of the online application has given

way to a heavy traffic in the communication network and risk of security

vulnerability. As the popularity of the online and automated processes increases,

the chances of vulnerability also increase along with it. As part of the literature

survey on vulnerability assessment, we discuss the web architecture, scanning

tools, strategies and countermeasures to detect security vulnerabilities. Also, we

explain detailed research report on various vulnerabilities, assessment tools and

strategies suggested by various security consortiums. We have considered an in-

depth evaluation of web application vulnerabilities and the corresponding

countermeasures to detect and block the vulnerabilities in the similar fields carried

out by researchers. This chapter also summarizes the recent reviews and reports by

researchers and the security organizations with due importance given to

countermeasures against code injection vulnerability.

C
o

n
te

n
ts

Chapter 2

16 Faculty of Technology, Cochin University of Science and Technology

2.1 Security Concerns in a Web Application

Web application security is the process of securing confidential data

modification and disclosure of information from unauthorized access (Sahu

and Tomar, 2016). Security survey by researchers indicate that the security

implementation process mostly aims at full filling the confidentiality,

integrity, availability and non-repudiation aspects of the security principle

(DeMeo and Rocchetto, 2016). Attacks on the online applications have

tremendously increased over the years. Most of the web application attacks

exploit weak input validation as root vulnerability. Input validation is an

important task to protect against almost all of the significant vulnerabilities in

the websites. SQL injection vulnerabilities pose a severe threat to online

applications because it serves as an open the door to the hacker to explore and

eventually compromise the backend database (Maheswari and Anita, 2016).

Understanding the right validation approach and techniques for user input

filtering are the keys to a secure web application (Kumar and Pateriya, 2012).

The process of security analysis runs parallel with web application

development. The group of programmers and developers who are

responsible for code development is also responsible for the execution of

various strategies, post-risk analysis, mitigation and monitoring. In an online

application identifying the type of vulnerabilities present across a web

infrastructure is a critical step for providing overall security (Johari and

Sharma, 2012). Common issues of web application code vulnerability are

the wrong style of code writing and improper server configuration (Awang

and Manaf, 2015).Vulnerability scanning is an efficient way to find out the

application backdoor, malicious code and other potential threats in the

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 17

application. Vulnerability scanners aid in checking vulnerabilities embedded

in a web application and has the potential to test invalid forms of input

query (DeMeo and Rocchetto, 2016). Cybercriminals use exploits to known

vulnerabilities; however, the zero-day vulnerability (which is currently

unknown to the manufacturers) are the most dangerous; hackers are actively

searching popular programs for hidden security loopholes to create an

exploit in them (Zhang and Chen, 2010; Palsetia and Thilagam, 2016).

2.1.1 The Web Architecture

The three-tier web architectures as shown in Figure 2.1, consists of the

presentation layer with static or dynamically generated content rented by the

browser (front-end), the logic layer with dynamic content processing and

generation level application server (middleware) and the Data layer with

databases, comprising both data sets and the database management system

(back-end) (Li, and Xue, 2014; Bau and Mitchell, 2010). Here each layer

can potentially run on a different machine, follows the client- server

architecture principles and each tier should be independent.

Fig. 2.1 Typical three tier web architecture

Chapter 2

18 Faculty of Technology, Cochin University of Science and Technology

Major strengths of a web application are the factors such as ease of

access, maintenance and management of up to date information with faster

retrieval strategies (Johari and Sharma, 2012). Better format /structure of

information retrieval and storage strategies with a user-friendly system

across multiple platforms, reaching a broad audience with the concepts of

anytime anywhere are also considered as strengths of web applications. If

the resources highly automated with all sophisticated features are increasing,

there should be equal support and measures to implement the security

(Li Xiaowei, and Yuan Xue, 2011). In the latest implementation of a web

application, the browser support for updated versions of browser and screen

size have to be handled with due importance otherwise there will be

technical errors (Anderson and Lane, 2011). SPAM/ Spamming is an issue

in most of the applications with difficulty in reaching to the right group of

people (Shanmughaneethi and Swamynathan, 2009).

2.1.2 Data storage and Access Strategies on the Web

In web application environment, the size of the data determines the

data storage strategies. It can be locally available or placed as remote

accessing storage. The locally stored can be a file or local database by using

the available application such as Javascript apps or Indexed DB API's.

Remote storage of data could be on the cloud or any remote HTTP endpoint

that can serve JSON or XML data (Chen and Kalbarczyk, 2006). As

proposed by the researchers (Khari and Kumar, 2013; Akrout and Nicomette

et al., 2014), web application design and data storage and access strategies

should focus on several factors. They are application request processing

approaches and pattern, authentication mechanism and authorization process

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 19

with exception management, appropriate logging and navigation process,

web page rendering and session management (Akrout and Nicomette, 2014).

Data storage within a web application is one of the major concerns of

a security professional, as it required strict planning and efficient security

measure to ensure the confidentiality and integrity (Chen and Kalbarczyk,

2006). The commonly used remote and local options for an appropriate data

storage are web storage, indexed DB, SQLite, API, web services, web API

and skyDrive (Zhang and Agarwal, 2008).

2.2 Literature Survey and Related Work

This section highlights recent research works on various strategies to

protect web application, factors or components influencing the web security

vulnerability analysis, reasons and consequences of code injection attack

specifically the SQL injection detection and mitigation strategies. We also

considered the works related to string and pattern matching to find out the

injection detection and blocking of malicious queries (Su and Wasserman,

2006; Chen and Wu, 2010).

2.2.1 Common Security Threats and its Consequences

There are different classes of threats which can happen through the

security holes taking advantage of the security vulnerability (Calvi and

Vigan, 2016). As reported by WASC’s classification, the primary security

threats are occurring mainly due to one or more of the following reasons:

(Zhu, 2014; Web Security Threat Classification, 2013).

 Insufficient authentication without appropriate user credentials.

Chapter 2

20 Faculty of Technology, Cochin University of Science and Technology

 Insufficient authorization such as user privileges and permissions

not verified properly.

 Client side attack during the dynamic interaction of an application.

 Command execution on any website components.

 Information Leakage, the attack discovering the hidden features

of any information.

 Logical attacks that use different processes or strategies to get

access.

2.2.2 Classification of Security Threats and Attacks

Security threats could be with the intent of stealing confidential

information, causing intentional damage. So, the developer needs to take all

the precautions to secure the organization’s sensitive data by taking necessary

steps, or detect security measures or prevent all the security threats to the

website (Huang et al., 2004; Xiaowei and Yuan, 2011).

Privilege Elevation is a class of attack in which a hacker is a

legitimate user on a system uses his credential to increase his account

privileges to a higher level than it was assigned. Through this type of attack,

the hacker can gain privileges as high as root on a UNIX system where he

will be able to run code with superuser level of rights. The entire system can

be effectively compromised and take the advantages of the system (Livshits

and Lam, 2005; Konstantinos and Theodoros, 2008). SQL Injection takes

advantage of loopholes present in the implementation of web applications

that permits a hacker to break the system (Jose and Abirami, 2016). These

types of attacks are mainly due to lack of input validations. So, we have to

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 21

give appropriate care to input fields like text boxes, comments and executing

dynamic queries. It is one of the most common application layer attack

techniques used by most of the hackers, where the hacker inserts malicious

SQL statements into input field during a dynamic string execution. An attacker

can get critical information from the server database. Hence SQL injection

attacks are a very dangerous attack. URL Manipulation is the process of

manipulating the website URL query strings and capture of the relevant

information by hackers (Ali and Javed et al., 2009). Usually, URL manipulation

occurs when the application uses the HTTP GET method to pass information

between the client and the server. The application passes the information in

parameters in the query string. The tester can modify a parameter value in the

query string to check if the server accepts it(Halfond and Manolios, 2008).

Denial of Service is an explicit attempt to make a machine or network

resource unavailable to its legitimate users. A hacker can attack applications

in ways that render the application, and sometimes the entire system will

become unusable (Felmetsger and Viktoria, 2010). In Data Manipulation,

hacker changes data used by a website to gain some advantage or to

embarrass the site’s owners (Papagiannis and Pietzuch, 2011). Hackers will

often gain access to HTML pages and change them to be offensive. Identity

Spoofing is a technique where a hacker uses credentials of a legitimate user or

device to launch attacks against network hosts, steal data or bypass access

controls. Preventing this attack requires appropriate IT-infrastructure and

network-level mitigation strategies (Securosis: 2014). Cross-Site Scripting

(XSS) is a vulnerability usually happening in the online application. XSS

enables attackers to inject client-side script into web pages by other users and

trick a user into clicking on that URL (Martin and Lam, 2008). Once executed

Chapter 2

22 Faculty of Technology, Cochin University of Science and Technology

by the other user’s browser, this code could then perform actions such as

completely modifying the behavior of the website, stealing personal data, or

performing activities on behalf of the user (Johari and Pankaj, 2012).

To mitigate the classes mentioned above of vulnerability and

implement appropriate countermeasures most of the business organizations are

putting increased efforts to improve their website security by implementing

web vulnerability scanners, penetration testers to protect their sensitive data

and block all possible vulnerable points from exploitation (Skrupsky and

Bisht et al., 2013). Security professionals are continued to develop and

implement the sophisticated technologies to provide user-friendly interfaces

to its users with better security capabilities (Kndy and Pathan, 2012).

2.2.3 Vulnerability Assessment Methodology

Web application vulnerability analysis is a strategic process to analyze,

identify and classify the security holes in an application’s infrastructure

thereby forecasting the effectiveness of the countermeasures or the security

patches to be implemented (Krugel and Kirda, 2002; OWASP, 2012).

Vulnerability analysis also known as vulnerability assessment, is a process

that defines, identifies, and classifies the security vulnerabilities on the

computer system, communications infrastructure (Cova and Balzarotti, 2007).

Vulnerability analysis can also forecast the effectiveness of proposed

countermeasures and evaluate their actual effectiveness after they are put into

use (Avireddy and Srinivas, 2012). To perform a Vulnerability analysis, the

major focus should be on procedures such as:

 Classification of the resources with its significance to business

transaction

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 23

 Devising countermeasures to deal with probable threats

 Analysis of the consequences of attacks and a recovery mechanism.

To assess the vulnerability of an application, the following procedure

or processing cycle is to be completed (Wassermann and Su, 2007). It is

required to have a better understanding of the organization's infrastructure

and critical processes to get the benefits of the vulnerability assessment

(Lebeau and Franck et al., 2013). It is also needed to analyze the application,

scan the application to assess the vulnerability and then implement the

mitigation process (Lawal and Shakiru, 2016). Figure 2.2 displays the

essential components involved in the assessment cycle.

Fig. 2.2 Major components involved in Assessment

2.2.4 Major Tasks and Steps under Vulnerability Assessment

One of the major tasks to be completed in vulnerability assessment is

to identify and understand the business process including the terms of

compliance, customer privacy and competitors and specify the application

Chapter 2

24 Faculty of Technology, Cochin University of Science and Technology

as per the criticality and sensitivity (Xiaowei and Yuan, 2011; Weinberger

and Joel et al. 2011). The other main activities or tasks under vulnerability

assessment procedure are:

 Identify the data storage devices, servers, hardware devices,

network devices, hidden data sources and applications used for

securing the application.

 Understand the policies and strategies, and security measures are

already in place to protect the application

 Run the vulnerability scanning to understand its significance and

understand and evaluate the business risk from the initial phase of

vulnerability scanning result.

During the resource classification, we should assign the priority for

the resources, and identify the potential threats for each resource along with the

strategy to deal with the potential problem. An implementation plan to

minimize consequences can be devised based on the severity of the

vulnerability (Jovanovic and Kirda, 2006; Doupe and Vigna, 2010). Figure 2.3

shows the processing steps and the flow directions.

Fig. 2.3 Processing steps for Vulnerability assessment

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 25

2.3 Application Level Security Vulnerability

Application level security is the system flaw in an application that

could be exploited to compromise the security of an application (Hu et al.,

2006; Securosis, 2014; Xiaowei and Yuan, 2011). Here, the attacker uses a

tool or method to discover the vulnerability and compromise the server. As

reported by Veracode (an application security company), vulnerability is the

weakness in the application and is mainly due to the design flow or

implementation bug. Hackers with malicious intentions forcefully gain

access to sensitive information in the online application and compromise the

data stored on the server (Skrupsky and Bisht, 2013; MITRE, 2013). Web

application security aims to address and fulfil the four conditions of security,

also referred to as principles of security (Bau and Bursztein, 2010; Divya and

Deepak et al. 2016):

 Confidentiality: States that we should not expose the sensitive

data stored in the Web application under any circumstances.

 Integrity: States that the data contained in the Web application is

consistent and is not modified by an unauthorized user.

 Availability: States that the Web application should be accessible

to the legitimate user within a specified period depending on the

request.

 Nonrepudiation: States that the valid user cannot deny modifying

the data contained in the Web application and that the Web

application can prove its identity to the legitimate user.

Chapter 2

26 Faculty of Technology, Cochin University of Science and Technology

2.3.1 Major classes of Application Level Vulnerabilities

The vulnerability assessment can be concluded by conducting risk

analysis on data exposure based on the data requirement & criticality (Balduzzi

and Balzarotti, 2011). Suggesting appropriate countermeasures are also

considered as an important activity during this stage. As per the report

suggested by Gartner Security and Risk Management submit in June 2016,

Application layer protection is significant, and application layer protection is

completed only by focusing on the network layer protection (Halfond, William,

2008; Jovanovic, C. Kruegel, 2006). After classifying the vulnerability

occurrence of various components involved in accessing the web application,

focus of vulnerability assessment or analysis should be carried out by an

emphasis on the critical assets of the organization, classification of legitimate

users who may access the data and provide appropriate access privileges to

each user (Huang and Hang, 2004). Table 2.1 shows the classification of

application layer vulnerabilities and core factors determining the corresponding

classification (OWASP, 2010; Halfond and William, 2008).

Table 2.1 Application level vulnerability-classes and determining factors

Classes Determining factors

Application Specific

 Number of fields Vunerable

 Exposed classified Information

 Personal information

Server specific

 Maximum server load

 Evaluation

 Weak and hashed password

 Obsolete authentication mechanism

Network specific

 Number of Proxy

 Number of open ports

 Firewall / proxy rules

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 27

A successful attack on web application are happening through network

layer and protecting these layers is becoming very sophisticated with Denial

of service attack or Distributed DoS (which are very common by flooding

the server with an unwanted request). It is challenging to handle the

application layer vulnerability only by getting a perfect code or implement a

complete coding practice (Manmadhan and Manesh, 2012; Shuo and

Zbigniew et al., 2006). Protection through network layer is also critical.

Network layer signature for application layer attacks is very hard to develop.

We cannot predict it as most of the attacks are blindsided. Attackers use a

variety of automated tools or botnet to avoid detection, and the available

cyber security solutions are not adequate to handle the fine-grained

malicious activity that deviates from applications standard behavior (Kumar

and Pranaw, 2012).

2.3.2 Validation Controls

Protecting the web application by patching up the loop holes or

vulnerable points are an important task in the security vulnerability

assessment. Each web application requires adopting an appropriate validation

technique to perform this activity. The primary validation methods are

whitelist validation and blacklist validation (Jovanovic and Kruegel, 2006).

The whitelist validation process involves checking that the data is one of a

set of tightly constrained known good values. We should reject any data that

doesn’t match (Armando, 2012). During the validation, we should give

stage consideration to the following points such as:

 We should strongly type the data always

Chapter 2

28 Faculty of Technology, Cochin University of Science and Technology

 Data length should be checked, and fields length should be

minimized

 Data Range must be verified in case of numeric input

 Data should be unsigned unless required to be signed

In blacklist validation method data containing “known bad” character

and patterns are rejected (Livshits and Michael, 2006; Buchler and Pretschner,

2012). The one mentioned above is a dangerous strategy because the set of

possible bad data is potentially infinite. Adopting this strategy will have to

maintain the list of “known bad” characters and patterns forever, and you

will have incomplete protection(Calvi andVigan,2016; Huang and Hang,

2004). Improper Input Validation can result in significant vulnerabilities in

the web application, which can be exploited by attackers. Input validation

is a major concern for application security. Almost 50 to 60 % of security

vulnerabilities in 70 % of are due to weak input validation (Seacord and

Martin, 2010). The extensive use of digital devices in all areas of business,

especially on web application give way to the conditions for cyber

espionage programs and compromising the critical corporate data.

Corporates increasing falls victims of cyber-attack (Belk, M., et al., 2011;

Owasp 2010).

There many categories of validation control available as part of the

vulnerability assessment (Gerkis 2010). The Compare Validator Control,

compares a user's entry against a constant value, against the value of another

control (using a comparison operator such as less than, equal, or greater

than) or for a data type (Belk, 201). The Range Validator Control, checks

that a user's entry is between specified lower and upper boundaries, can

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 29

check ranges within pairs of numbers, alphabetic characters, and dates

(Gerkis, 2010). The Regular Expression Validator Control verifies that the

entry matches a pattern defined by a regular expression and also enables you

to check for predictable sequences of characters, such as those in e-mail

addresses, telephone numbers, postal codes (Jovanovic and Kruegel, 2006).

The Custom Validator control, usually checks the user's entry using

validation logic that you write yourself. It is a type of validation that enables

you to check for values derived at run time (Huang and Hang, 2004; Bertino

and Early, 2007).

2.3.3 Sanitizing Strategies

During this change the user input into an acceptable format instead of

accepting or rejecting the input (Khoury and Zavarsky, 2011). There are

many sanitizing procedures available depending on the requirements of the

application layer (Djuric, 2013). In Sanitize with the whitelist, any characters

which are not part of an approved list can be removed, encoded or replaced.

Sanitize with the blacklist is to eliminate or translate characters to make the

input “safe”. Like blacklists, whitelist approach also requires maintenance

(Akrout and Alata, 2014; Weinberger and Joel, 2011). As most fields have a

grammar, it is simpler, faster, and more secure to simply validate a single

correct positive test than to try to include complex and slow sanitization

routines for all current and future attacks. In Comment Sanitization, the

comments are the primary source of user input through text areas, JQuery

based comment validation plugin can be considered. This plugin checks the

syntax of the Author, email and text fields on the client side and reports

errors in the syntax to the user (Halfond and Choudhary, 2011).

Chapter 2

30 Faculty of Technology, Cochin University of Science and Technology

2.3.4 Tools and Techniques Used in Vulnerability Analysis

The most commonly used strategy to provide security or protect

information is to make use of an appropriate scanner to test the application

for any malicious entry (Seacord and Martin, 2010). Many scanning, and

evaluation tools and techniques are available to deal with vulnerability

assessment. It is not possible to suggest a single tool as a standard tool for

analyzing all the security vulnerabilities in online application amidst many

available tools (Jovanovic and Kruegel, 2006). But each tool has different

functionalities. Open source vulnerability assessment technology supports

business organization to have a cost effective way to scan application for

known vulnerabilities (Bangre and Jaiswal, 2012). It is customized and

conveniently bundled in security distribution. We use some of the tools as a

general assessment tool, and there are tools used only for specific scanning

on servers. If we find security holes as a result of vulnerability analysis, a

vulnerability disclosure may be required (Maheswari and Anita et al., 2016).

Injected code and critical threats through weak points within an online

application can be easily traceable or detected with the implementation of an

active vulnerability scanner (Rim, and Eric, 2014). Most of the scanning

tools are expensive and do not support comprehensive analysis in purchased

applications. It requires a series of changes in coding practices which would

take its toll on time and space complexity. HP WebInspect by Hewlett-

Packard is designed to perform a complete evaluation of the complete

applications security (Federico, Macro et al., 2016). It will check the

misconfiguration and precisely vulnerability on the application layer. A large

number of both commercial and open sources that scans the web application

to look for the known security vulnerability and have their strengths and

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 31

weaknesses (Divya and Deepak, 2016). Most of the online applications

give priorities on Security testing with an appropriate tool and

methodology. Making use of a suitable tool for protection is one of the

necessary procedures to provide better security of the online application

(Cheon and Lee, 2013). According to the Verizon 2014, Data Breach

Investigation Report, 35% of breaches they tracked in 2013 are due to web

application attacks, described as exploiting. By analyzing the vulnerability

assessment results of more than 30,000 websites under management with

WhiteHat Sentinel, the Organizations deploying these technologies can

have a closer look at, particularly risk-prone areas. The majority of the

available tools can detect vulnerabilities of the requested applications

before the deployment (Gould and Devanbu, 2004). Appropriate

simulation can be done by the scanners on a malicious activity by

attacking and probing and analyzing the unexpected result. Most of the

web scanners are a dynamic testing tool and language independent (Djuric,

2013; Shilpa and Priyadarshnini, 2016). As per the listing in OWASP,

frequently used, commercial and open source tools /scanners for

vulnerability assessment are: Samurai, Safe3, Websecurify, SQLMap, Burp

Suite, contrast, Gama Scan, Grabber, Hailstorm, N-Stealth, Proxy app,

QualySGuard, Securus, Sentinel, Vega, WebApp360, Web Scan Service,

Web security suite and Wikto. Most commonly used active commercial

scanners for assessment of security vulnerabilities(Federico and Macro,

2016; Djuric, 2013) are Web Inspect by HP, Rational AppScan by IBM,

McAfee Secure by McAfee, HailStorm pro by Cenzic, WVS by Acoustics

and NeXpose by Rapid7. A detailed description of the vulnerability

scanning and testing tool is given as appendix-1.

Chapter 2

32 Faculty of Technology, Cochin University of Science and Technology

Testing tools cannot cover the entire source code of the application,

due to dynamic testing approach (Web Application Security Scanner Evaluation

Criteria). Finding logical flaws such as the use of weak cryptographic

procedures and leakage of information is very difficult for a scanning tool

(Bishit and Venkatakrishnan, 2011; Weinberger and Joel, 2011). Most of the

free tools are weak against the competent and broad targeting attackers as

they are also aware of the free scanning tools. These tools are already

equipped with the shortcut for bypassing that type of scanning (Romil, 2012).

The scanning tools have a predefined list of attacks and do not generate the

attack details for the tested web application (Tajpour and Atefeh, 2010). Most

of the tools are limited in their understanding of the behavior of applications

because of the dynamic content. Since there are no standard measures to

know the strength or the effectiveness of the free tools, it is challenging to get

convinced with the stability of the tool (Doupe and Cova, 2010).

2.4 Security Models Against Vulnerability Detection

The SQLR and model suggests a randomized SQL detect and abort

queries which contain injected code (Avireddy and Srinivas, 2012). The

process is done by modifying a query by appending a random number to it

followed by placing a proxy server between the client’s web server and

application server, and the function of this proxy server would be to receive

the request and pass it on to the database server. If we embed the request

with SQLIA, it will not recognize the query and will end up with rejection.

In CANDID framework, it proposes a test set creation by extracting query

structures from every SQL query location in web application source code for

avoiding SQLIA and also suggests web app code changes (Bisht and Prithvi,

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 33

2012).The verification method concludes with the issuing of the actual

query if the test set matches. Authors in Web Application Vulnerability and

Error Scanner (WAVES)is adopting a software-engineering technique to

design a security assessment tool with some testing method such as black

box testing and behavior monitoring(Konstantinos and Theodoros, 2008). In

SQLCHECK, a runtime checking algorithm evaluates a real-world web

application with a real dynamic attack data as input (Johari and Pankaj,

2012.). It prevents SQL injection attacks without any false positives and

false negatives. AMNESIA (Analyzing Monitoring the SQL Injection

Attack), a popular model against SQL Injection attack, is a combination of

static analysis and dynamic analysis to analyze web application codes and

also to monitor dynamically generated queries (Halfond and William, 2005).

It is a query building model with all possible queries identified at the

hotspot. The runtime monitoring mechanism will reject or report the queries

that violate the model. Double-Guard, is a Java-based application, in this

research work, to avoid object duplication, lots of statistical analysis and

structure mapping is required (McClure and Russell, 2005). POSITIVE

TAINTING suggests identifying trusted data by considering trust marked

strings and performing syntax aware evaluation (Konstantinos and Theodoros,

2008). Tracking and taint marking should be accurate with a right level of

precision. SQL DOM creates class tables and methods for possible

operation. Database structure mapping will be done manually to avoid

object duplication (Prithvi and Madhusudan, 2007). Webssari approach has

a static analysis which uses an automated tool that works on certified inputs

(Boyd and Keromytis,2004; Sadeghian and Zamani, 2013). SQL Injection

protector for authentication (SQLIPA) technique uses hash value to get

Chapter 2

34 Faculty of Technology, Cochin University of Science and Technology

better validation mechanism by using a hash value (Ali and Javed, 2009;

Sahu and Tomar, 2016).

2.5 Vulnerability Assessment Reported by Security Organizations

Web security assessment is one of the most key areas to be focused on

to have a better security of the critical Information stored in the databases.

Incidents of Security attacks in an online application and its analysis to

mitigate the attack is reported and documented by various security

organizations are explained in this section. There are hundreds of

vulnerabilities existing in each web application based on its demand of

usage and sensitivity and confidentiality of information stored at the server

level (OWASP, 2014). Authentication vulnerability, Authorization

vulnerability, Code Injection vulnerability, Configuration vulnerability,

error handling vulnerability and Logging and auditing vulnerability are

some of the relevant categories of vulnerabilities listed by various security

consortiums.

2.5.1 Kaspersky Lab B2B International

As per the survey conducted by Kaspersky Lab B2B International, the

hackers attack more than 91 % of companies. And at least once in a year,

almost 9% are victims of targeted attack (Kaspersky Lab B2B, 2016).

Figure 2.4 shows the summary of the percentage of attack against the

vulnerability categories.

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 35

Fig. 2.4 Summary of percentage of attack against the attack categories

Kaspersky Lab B2B International reports also indicates that the top

listed application layer vulnerabilities are: SQL Injection, LDAP Injection,

Cross-site scripting, Cross-site Request Forgery and Insecure cryptographic

storage. Most of the vulnerabilities exist due to the lack of appropriate

validation on user input data, authentication mechanism, error handling

strategies and efficient configuration of servers or server handling

procedures.

2.5.2 Web Application Security Consortium (WASC)

As reported by (WASC TC v.2: Reports in the year 2015) (The

severity of vulnerabilities was estimated based on Common Vulnerability

Scoring System (CVSS) V.2) indicates that more than 63 % of an

application implemented contain critical vulnerabilities and it will lead to

sensitive data disclosure and system compromise. This report includes code

and configuration vulnerabilities. The percentage of vulnerability based on

0
10
20
30
40
50
60
70

Percentage of attack

% of attack

Chapter 2

36 Faculty of Technology, Cochin University of Science and Technology

the industry are Telecoms (23%), Manufacturing (20%), Mass media 17%,

IT (17%), Finance (13%) and government organization (10%). Based on

the program code used, it can be classified as Java (43%) and PHP (30%).

Based on Server category most common server was Nginx (34%), Microsoft

IIS (19%), Apache Tomcat (14%) and Weblogic(14%).

2.5.3 Open Web Application Security Project (OWASP)

Most of the web applications contain security vulnerability indicated

as almost 69% of Healthcare 70% of Retail and Hospitality, 76% of

Government, 68% of Technology and 65% of manufacturing, 58% of

Financial services affected by vulnerability or failure percentage of

an application. (OWASP, 2016 Report, Veracode Top 10 Initial risk

assessment). Figure 2.5 shows the percentage of the vulnerability reported by

OWASP.

Fig. 2.5 Percentage of vulnerability reported by OWASP

58
65 68

76
69 70

0

10

20

30

40

50

60

70

80

Application Vs % of Vunerability

% of Vunerability

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 37

2.5.4 Acunetix

(Acunetix, web application Vulnerability Report 2016) reveals that

most of the websites are with severe vulnerabilities and more than 45,000

websites and network scans done on from April 2015 to March 2016.

These statistics shows that almost 55% of web sites have one or more high-

severity vulnerabilities and growing 9 % more in the upcoming year. The

reports conclude by stating that 55 % web application scanned contained,

high-severity vulnerability such as XSS or SQL Injection. 84 % were

susceptible to a common vulnerability such as CSRF. % of all networks

examined contained high security vulnerability.

2.5.5 IBM Security and Ponemon Research

(IBM Security and Ponemon research, 2016) (Align spending with

risk): Indicates that majority of risks are happening at the application layer,

but spending is mainly focused on network and data layer. Figure 2.6

displays the security risk vs Spending %.

Fig. 2.6 Security risk Vs Spending

35

22 21

15

22

35

0

5

10

15

20

25

30

35

40

Application Layer Data layer Network layer

Risk and Spending %

Security Risk

Spending %

Chapter 2

38 Faculty of Technology, Cochin University of Science and Technology

Vulnerability reports generated by Federal Bureau of Investigation

(FBI) for the period between 2013 and 2014, reveal that the cybercrime is

estimated to have cost the global economy more than $445 billion and there

are more than 519 million financial records stolen by hackers in the US

alone. As the report by, JP Morgan on October 2, 2014, in one of the worst

incident, the data of approximately 76 million households and compromise

7 million small businesses. The Stolen data were said to include names,

addresses, phone numbers, and email addresses. The hacker accomplishes

this data breach through attacks against web applications used by the bank,

where the attackers leveraged on vulnerabilities found in the web

applications to gain access to the bank’s internal network.

2.6 SQL Injection Attack- Most Dangerous Attack on Database

Layer

SQL injection has become a popular website hacking tool because

almost all the site invites input from dynamic users, who are using web

forms to input data, web forms are vulnerable. Risk rate of successful SQL

Injection attack is directly linked to the nature and size of business and

duration, updates of patches on the application and the implemented security

measures (Halfond and William, 2006; Clark, 2009). In SQL Injection

Attacks, the crafted codes are directed to the database server, and these

codes compromise critical information. SQL Injection attacks may be

possible through cookies, server variables and second-order injection attacks

(Khan and Khan, 2013). We can categorize most of the SQL-Injection under

the first order and second order attacks, more specifically under the category

of Tautology, Union Queries, and Piggybacked queries, logically incorrect

queries, stored procedure, inferences and alternate encoding (Halfond and

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 39

William,2006; Joseph and Jevitha, 2016). Almost 24 million customers at

Amazon’s Zappos.com became a victim of SQL Injection attack in January

2012, and a few months later Yahoo voice was also hacked through. An

SQL Injection Attack (SQLIA) increasingly targets online applications. The

traditional security measures adopted by organizations are not sufficient

enough to deal with new vulnerabilities and their attack spectrum. As the

threat of SQL injection become more advanced, the need for developing a

defense against SQL injection is greater than the past. In the hands of a very

skilled hacker, a web application code weakness can reveal a root level access

to application servers by bypassing firewalls and endpoint defense (Kindy and

Pathan, 2011). Figure 2.7 shows an example of an SQL injection attack.

Fig. 2.7 SQL injection attack on a web application

We can consider most of the SQL-Injection under the category of

Tautology, Union queries, Piggybacked queries, Logically-incorrect queries,

Chapter 2

40 Faculty of Technology, Cochin University of Science and Technology

Stored procedures, Inferences and Alternate encoding (Halford and Orso,

2006; Johari and Pankaj, 2012).

In this attack, a hacker with an administrative privilege compromises

the entire database. It takes time to realize the SQL injection attack. Hackers

can delete the entire table, and a sophisticated SQL Inject attack can even

corrupt the large database and disrupt the backup copies. The consequence

of SQL Injection attacks such as authentication bypassing, information

discloses, compromised data integrity, compromised availability of data,

remote code execution and denial of service attack are considered as very

severe attack in the application layer. (Ali and Shahzad, 2009). SQL

Injection prevails as one of the top ten vulnerabilities and threats to online

businesses targeting backend databases. Most of the cases the business

organizations make it as a policy that the user input should never be trusted

and must always be sanitized before it is used in dynamic SQL statements

(Sadeghian and Ibrahim, 2013). It is observed that SQL injection appears

only in a small proportion of applications and are yet making a massive

impact on business organizations through data theft or compromising

database servers (Swathy and Jevithan, 2016).

2.7 Summary of the Chapter

This chapter gives a summarized view of the literature survey

conducted for the research study and analysis. Almost all the papers taken

for the study reiterates that the vulnerability analysis and patching up of

these security holes for providing protection of online web application is a

never-ending process, the developer and security professionals should come

out with innovative strategies to protect the sensitive resources from the

Literature Survey on Security Vulnerabilities

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 41

talented hackers with sophisticated attack tools. Identifying the vulnerability

and patching it up at the right time will give lots of benefits to the business

organization handling core security measures and will reduce the risk of

security compromise. There are hundreds of scanning and detection tools

available to mitigate injection vulnerabilities. If we use the open source web

vulnerability scanners during the software development then the earlier

detection of vulnerabilities, lower security assessment workloads performed

before application deployment and decreased handling cost by limiting

expensive licensing costs is possible. Just one identified automated tool

may not be able to determine all vulnerabilities in a web application, and

each one of the tools has its advantages and drawbacks, but some of these

identified tools are used as an effective technique to detect and block

vulnerabilities in the online applications. As per analysis and reports from

various security organizations, we can conclude that application level

security is one of the primary concern of web application developer and

security professional. Code injection vulnerabilities are the major loopholes

to be patched up by analyzing and detecting the vulnerable points. Hence

this research study will be focusing on the code injection vulnerabilities,

specifically the SQL injection vulnerabilities on a database server.

…..…..

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 43

CChhaapptteerr 33		

THE	MULTILEVEL	TEMPLATE	BASED	DETECTION	
AND	RECONSTRUCTION	(MLT‐DR)	FRAMEWORK		

3.1 Introduction
3.2 Major Attack Categories of SQL Injection
3.3 Standard Queries and its Malicious Pattern
3.4 The General Layout of the Proposed Architecture
3.5 The MLT-DR Framework
3.6 Template Design Strategies
3.7 Summary of the Chapter

Vulnerabilities in web application allow malicious users to get unrestricted access
to databases. The literature survey conducted (as explained in chapter 2) during
this research study indicates that SQL injection vulnerabilities are the most
dangerous threats to the database layer of the web application security. Using
these types of vulnerabilities, an attacker attempts to change the syntax and
semantics of legitimate SQL statements by inserting unintended keywords, symbols
or malicious codes on the SQL statements. SQL injection takes advantages of the
design flaws in poorly designed web applications to poison SQL statements and
bypasses the standard methods of accessing the database content. This chapter
mainly deals with the general architecture of Multi Level Template based
Detection and Reconstruction (MLT-DR) framework. The proposed multilevel
template based framework is a specially crafted vulnerability detection model. It is
working on multi-level token based design template, to detect the illegal queries
before they are executed on the database server.

C
on

te
nt

s

Chapter 3

44 Faculty of Technology, Cochin University of Science and Technology

3.1 Introduction

The MLT-DR hybrid framework is divided into two major modules.

We use the first module to detect and block the queries with the support of

the proxy server and a software crawler to analyze the application code to

make the legal query model and later map it with user input queries at the

run time. The second module of this hybrid framework proposes the

reconstruction of injected query, and it is developed and implemented

with the support of machine learning using back propagated Artificial

Neural Network algorithm. Reconstruction of the queries from the

authenticated users is carried out by using REGEX functions. Denial of

accessing the database by the authenticated users is mitigated with this

approach. Logged in malicious queries as indicated in the framework are

redirected for further analysis and support for identifying the new pattern

of malicious queries. The rest of the sections include the details about the

different components involved in the framework, SQL Injection attack

categories and pros and cons of attacks.

3.2 Major Attack Categories of SQL Injection

The SQL injection is classified into seven major attack categories

based on the injected code or string and procedure or pattern of injection

(Halfond and Orso, 2006; Johari and Pankaj,2012).

3.2.1 Tautologies

The hacker injects a code into a conditional statement to evaluate it as

true by which the malicious user can then bypass user authentication or

extract data from a database. For example, suppose that a malicious user

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 45

inputs the SQL statement as SELECT * FROM books WHERE ID=’1’ or

‘1=1’-‘AND password =’pass’; the comparison expression uses one or more

relational operators to compare the operands and always generate true

conditions. The targeted query may return all the rows in the book table.

The possible signature for this type of SQL injection attack are the string

terminator “’”, OR, =, LIKE and SELECT. It is a type of attack in which

hackers try to bypass authentication and extract data from database (Halfond

and Orso,2006).

3.2.2 Logically incorrect query/illegal queries

This type of attack is used to gather information about the back-end

database of a web application through error messages of type mismatch or

logical error, while the query gets rejected. For example, the injected query

on the given URL can be in the format: http://www.elearning/mct/?

id_user=123’. The debugging information shown in the rejected query will

reveal the database table information which can later be utilized to conduct

further attacks (Sadeghian and Ibrahim, 2013).

3.2.3 Union Query

These types of queries trick the database into returning the results

from database tables which are different from what was intended. For

example, an injected query can be of the format: SELECT * FROM users

WHERE userid=22 UNION SELECT item, results FROM reports. Here

the attacker joins injected queries to a safe legal query with a word UNION

and get details from different tables than the intended ones. Attackers

Chapter 3

46 Faculty of Technology, Cochin University of Science and Technology

mainly use this technique to bypass the authentication and extract data

(Halfond and Orso,2006).

3.2.4 Piggy-Backed Queries

Attacker tries to inject additional queries along with the original

queries, which are said to ‘piggy-back’ onto the original query hence the

database gets multiple queries for execution. For example, SELECT Login

ID FROM users ID WHERE login ID=’john’ and password=’’; DROP

TABLE users-‘AND ID=2345.After executing the first query, the database

encounters the query delimiters (;) and executes the second query (Khan and

Khan,2013).

3.2.5 Alternate Encodings

In these types of attacks, the char () function and ASCII /hexadecimal

encoding can be used. For example:SELECT accounts FROM users

WHERE login="” AND pin=0; exec (char (0x73687574646j776e)).

Hackers use this technique to avoid being identified by secure defensive

coding and automated prevention mechanisms by modifying the query using

alternate encoding such as ASCII or hexadecimal coding practices

(Avireddy and Srinivas, 2012).

3.2.6 Stored Procedure

In these attacks, hackers aim to perform privilege escalation, denial of

service and remote command execution using stored procedures through

user interface to back end servers. For example: UPDATE users SET

password='Nicky' WHERE id=’2’ UNION SHUTDOWN;--. The hackers

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 47

use a shutdown command with which the back-end database will be shutdown

(Halfond and William, 2006; Joseph and Jevitha, 2016).

3.2.7 Inference attack

It is a type of attack in which hackers aim to identify the injectable

parameters and extract data from databases. It can be further categorized

as: Blind SQL injection attack and Timing SQL injection attack. For

example the injected queries in the Timing SQL injection category can be

in the following format: SELECT name, password FROM user WHERE

id = 12 ; IF (LEN(SELECT TOP 1 column name from test DB.information_

schema.columns where table_name=' user ' and column _ name > 'user')=4)

WAITFOR DELAY '00:00:10'—in this example the hacker tries to work by

understanding the behavior of the back-end database by injecting an always

true statement and along with a “WAIT FOR” keyword (Maor and

Shulman, 2004).

3.3 Standard Queries and its Malicious Pattern

Table 3.2 shows the different malicious pattern of the standard and

injected queries which are attacking the database server (Halfond and

William, 2006; Joseph and Jevitha, 2016). Detailed description of the

legal and malicious queries is given in the appendix. Most of the queries

shown in the appendix is considered as test bed for MLT-DR framework.

Chapter 3

48 Faculty of Technology, Cochin University of Science and Technology

Table 3.1 Standard query vs Malicious query

Legal Query Injected Query
SELECT deductible FROM
policy as p WHERE
inputPolicy=$input11 OR
id=$input12

SELECT deductible FROM policy as p WHERE
inputPolicy=$input11 OR id=$input12 UNION

SELECT d.insuredname FROM dependents as d
WHERE inputPolicy=$input21 OR
id=$input22;

SELECT * FROM users
WHERE userid=22;

 SELECT * FROM users WHERE userid=22
UNION SELECT body,results FROM reports;

SELECT COUNT(*) FROM
reviews WHERE
review_author='MadBob';

SELECT COUNT(*) FROM reviews WHERE
review_author='MadBob' UNION SELECT
IF(SUBSTRING(USER(),
1,4)='root',SLEEP(5),1);

SELECT name,address
FROM customers WHERE
name like ‘%a%’;

SELECT name,address FROM customers
WHERE name like ‘%a%’union Select
NULL,LOAD_FILE('/etc/passwd')#

INSERT INTO users (id,
username, password)
VALUES (1, 'Jane', 'Eyre');

INSERT INTO users (id, username, password)
VALUES (1, 'Olivia' or (SELECT 1
FROM(SELECT count(*),concat((SELECT
(SELECT (SELECT
concat(0x7e,0x27,cast(users.username as
char),0x27,0x7e) FROM `newdb`.users LIMIT
0,1)) FROM information_schema.tables limit
0,1),floor(rand(0)*2))x FROM
information_schema.columns group by x)a) or '',
'Nervo');

INSERT INTO users
(username, password)
VALUES('jack','');

INSERT INTO users (username, password)
VALUES('jack',''); DROP TABLE users;

Table 3.1 continued….

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 49

SELECT * FROM customers
WHERE username = 'timmy'

SELECT * FROM customers WHERE username
= '\';SHUTDOWN;

UPDATE users SET
password='Nicky' WHERE
id=2 and username='Olivia';

UPDATE users SET password='Nicky' or
updatexml(1,concat(0x7e,(SELECT
concat_ws(':',id, username, password) FROM
newdb.users limit 0,1)),0) or'' WHERE id=2 and
username='Olivia'

DELETE FROM users
WHERE id=2;

DELETE FROM users WHERE id=2 or
updatexml(1,concat(0x7e,(version())),0) or'';

DELETE FROM users
WHERE id=2;

DELETE FROM users WHERE id=1 or
updatexml(0,concat(0x7e,(SELECT
concat_ws(':',id, username, password) FROM
users limit 0,1)),0) or '';

DELETE FROM users
WHERE id=2;

DELETE FROM tablename WHERE id ='x’;
Exec(char(0x73687574646f776e));--‘

DELETE FROM users
WHERE id=2;

DELETE FROM users WHERE id ='2' UNION
SELECT name, cast((mb_free) as varchar(10)),
1.0 FROM haxor;--

UPDATE users SET
password='Nicky' WHERE
id=2 and username='Olivia';

UPDATE users SET password='Nicky' WHERE
id=2 and username='Olivia';

DROP TABLE haxor;CREATE TABLE
haxor(line varchar(255) null); INSERT INTO
haxor EXEC master..xp_cmdshell 'dir /s c:\';--

UPDATE users SET
password='Nicky' WHERE
id=2 and username='Olivia';

UPDATE users SET password='Nicky' WHERE
id=2 and username='Olivia' UNION SELECT
line, '', 1.0 FROM haxor;--

INSERT INTO Favourites
(UserID, Friendly Name,
Criteria) VALUES(123, 'My
Attack','');

INSERT INTO Favourites (UserID, FriendlyName,
Criteria) VALUES(123, 'My Attack','''; DELETE
Orders;--')

Table 3.1 continued….

Chapter 3

50 Faculty of Technology, Cochin University of Science and Technology

SELECT * FROM Products
WHERE Product Name =
'abc';

SELECT * FROM Product WHERE ProductName
= ''; SHUTDOWN WITH NOWAIT;--

UPDATE users SET
password='Nicky' WHERE
id=2 and username='Olivia';

UPDATE users SET password='Nicky' WHERE
id=’2’ or username=’Oliva’--and username='’;

UPDATE users SET
password='Nicky' WHERE
id=2 and username='Olivia';

UPDATE users SET password='Nicky' WHERE
id=’2’ or ‘one’=’one’ /*;

DELETE * FROM users
WHERE id=’2’ AND
username=’abc’;

DELETE * FROM users WHERE id=’2’ AND
username=’’ OR ‘ab’=’a’+’b’ #;

DELETE * FROM users
WHERE id=’2’ AND
username=’abc’;

DELETE * FROM users WHERE id=’2’ AND
username=’’ OR ‘ab’=’a’||’b’ /*;

SELECT * FROM users
WHERE userid=22;

SELECT * FROM users WHERE userid=’’ OR
‘ab’=’a’’b’ /*;

INSERT INTO users
(username, password)
VALUES('jack','');

INSERT INTO users (username, password)
VALUES('jack','');SHUTDOWN--

DELETE FROM users
WHERE id=2;

DELETE FROM users WHERE id ='2’ UNION
CREATE TABLE haxor(name varchar(255),
mb_free int); INSERT INTO haxor EXEC
master..xp_fixeddrives;--

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 51

3.3.1 Attack category and Signature

The attack categories and their common attack signature are

summarized in Table 3.2 (Lee and Wong, 2002; Lebeau, Franck, 2013).

Table 3.2 Attack category and signature
Attack

Category Sample query & signature

Tautology SELECT * FROM user WHERE id=’1’ or ‘1=1’-‘AND
password=’1234’; “or 1=1”
‘,OR,=,like, select

Logically
incorrect
Query

URL:http://www.toolsmarket-al.com/veglat/?id_nav=2234 2)
Invalid conversion(CONVERTTYPE(TYPE)), incorrect login,
AND, ORDERBY

Union
Query:

SELECT Name, Phone FROM Users WHERE Id=$id. By injecting
the following Id value: $id =1 UNION ALL SELECT credit Card
Number, 1 FROM Credit sys Table
Union, union select

Piggy-
Backed
Queries:

SELECT Login_ID FROM users_ID WHERE login_ID=’john’ and
password=’’; DROPTABLE users-‘ AND ID=2345 ;
;

Stored
procedure

INSERT INTO users (username,password) VALUES('jack','');
SHUTDOWN;
SHUTDOWN, XP_cmdshell(), sp-execwebtask()

Blind
Injection

SELECT accounts FROM users WHERE id= '1111' and 1 =0 – AND
pass = AND pin=0 SELECT accounts FROM users WHERE login=
'doe' and 1 = 1 -- AND pass = AND pin=0
;,and,if else,waitfor

Alternate
Encodings:

SELECT accounts FROM users WHERE login=" AND pin=0; exec
(char (0x73687574646j776e)) This example use the char () function
and ASCII hexadecimal encoding.
 Exec(),char(),ASCII(),BIN(),HEX(),UNHEX(),BASE64(),DEC(),
ROT13()

Chapter 3

52 Faculty of Technology, Cochin University of Science and Technology

3.3.2 Classification Strategy

We can classify the SQL injection attacks into various categories

based on the exploitation techniques and/ or the injected parameter

embedded in the query (Narayan and Mohandas, 2011; Mohosina and

Zulkernine, 2012). If the attack category is known, then the identification

of parameters/strings used for injection is easier and faster. In most of the

cases the attacker uses the following functions or techniques to inject the

code into the SQL statement (Pietraszek and Berghe, 2005; Johari and

Pankaj,2012):

 Adding Boolean conditions on the SQL Query input.

 Inappropriate use of Union operators.

 Error based techniques / trying with logically wrong queries.

 Out of band techniques or using a different communication device to

access the database

 The time-delay in the query and perform further attacks or injections

based on the output.

3.4 The General Layout of the Proposed Architecture

The proposed Multi Level Template based Detection and Reconstruction

(MLT-DR) framework against SQL Injection attack, is a token based

detection and reconstruction approach to detect the illegal queries before

they are executed on the database server. In the proposed model, each user

input query will be parsed and analyzed using the multi-level template

based detection technique before the actual execution at the backend

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 53

database server (George and Jacob, 2016). The main objective of this

template based framework is to detect and block the SQL injection in web

applications without many computational overheads by preserving the

efficiency and effectiveness of the given web application.

Fig. 3.1 General layout of MLT-DR architecture

The proposed architecture does not demand any source code

modifications and can perform detailed analysis at negligible computational

overheads without false positives or false negatives. It is an effective

token-based model designed and implemented to detect and block SQL

Injection attacks by parsing and analyzing dynamic queries against the

intended query pattern given in the model. The most significant aspect of

this framework is that it prevents all forms of SQL injection attack type

and we can implement it in any web application irrespective of the size of

the application, type of transactions without much modification on the

existing web application.

 Most of the code injection detection approaches implemented

currently is based on primary areas of content filtering, penetration testing

and defensive coding methods (Ezumalai and Aghila,2009; Kindy and

Pathan, 2012). Some of the detection approaches encountered during the

survey are listed as follows:

Chapter 3

54 Faculty of Technology, Cochin University of Science and Technology

 Authentication schemes based on encryption techniques

 Intrusion detection system on networks

 Secure query processing strategies

 SQL injection and detection methods by removing the SQL query

attribute values

 Combinational methods for detecting the SQL injection attacks

 Analysis and monitoring for neutralizing SQL Injection attacks

Each method and strategy has its advantage and drawbacks

(Wagner and Soto, 2002; Haung and Tsai, 2003). Some of the detection

prevention techniques have one or more of the following weaknesses:

 Complex analysis and detection frame work

 Incomplete implementation strategies

 Intensive statical analysis on the application code

 Runtime overheads

 Time-space complexity

 False positives and false negatives

3.5 The MLT-DR Framework

The Multilevel Template based Detection and Reconstruction

framework (MLT-DR) is a hybrid model in which module-1 is a Template

based Detection (TbD), and module II is a Reconstruction framework. In the

proposed MLT-DR framework, the weakness mentioned above are taken

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 55

into consideration and could overcome all the issues noted above in the

back-end database server of a web application. MLT-DR framework

detects/prevents SQL-Injection attack under the categories of tautologies,

logically incorrect queries, union queries, piggy-backed queries, stored

procedures, timing attacks and another encoding. In this approach, the

template of the intended structure of the SQL statements produced by the

applications is parsed and stored statically. During the dynamic interactions,

these statically stored standard queries are mapped with the dynamic user

queries, if there is any violation detected, the dynamic input queries are

considered as the malicious queries and blocked for further database access.

The following lists the primary tasks or procedures in the SQL Injection

detection phase:

,

 Identify the SQL statements accurately in each web page

 Analyze the query for parsing

 Generate different tokens as per the template specification,

 Lexical analysis/ map the legal queries with the dynamic user

input queries

 Validate the token

 Generate appropriate detection result/status message

 Block the SQL query or give the privilege to access the database

based on the result

Chapter 3

56 Faculty of Technology, Cochin University of Science and Technology

Figure 3.2 Shows the details and components of the proposed framework.

Fig. 3.2 Architecture of MLT-DR framework

It accepts user requests through dynamic web pages and directs the

queries to a proxy server, and the proxy server then forwards the queries to

MLT-DR module to check for any SQL injections. If SQL injection is not

detected, the module redirects such benign queries to the web server and

allows them to access the DB Server. But if an injection is detected, such

malicious queries are blocked, and if the query is from an authenticated

user, we forward it to Reconstruction module for reconstruction using

REGEX function. Otherwise, the denied queries are logged in for further

malicious query pattern analysis. Reconstruction module receives the

malicious query and reconstructs it and forwards the benign (reconstructed

query) to the server which in turn allows the query to access the DB server.

The proposed framework provides better system availability thereby

reducing denial of services. We perform the Reconstruction of queries only

when the query is generated from an authenticated user. The following

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 57

subsections explain the components of proposed hybrid architecture and

strategies.

3.5.1 Proxy Server

In a networked environment, a proxy server acts as an intermediary

for accessing the resources from other servers. Most of the organizations are

using proxy servers to facilitate security and administrative control. We use

proxy servers for monitoring traffic for detecting malicious access or

ensuring user privacy. Based on the primary activity it performs, proxy

servers can be under the different category. Here, we use the proxy server as

an interface between the user browser and MLT-DR framework for

detecting the malicious query entered through the user browser and create

legal query model. The proxy server receives a query from user browser as

form fields and pass it to the anomaly detection framework to the validation

process and then to the evaluation engine. So that web server is getting only

benign queries and is directed to the database server. One of the primary

functions of the proxy server is to create a legal query model to block the

malicious entries and protect the database layer of the web application. It

can also be used to prevent DoS attack and network intrusion by enforcing

secure authentication and authorization strategies to block the malicious

entries (Wei and Kothari, 2006; Ntagwabira and Kang, 2010).

3.5.2 Web Server

Web servers are usually designed to serve HTTP content most suitable

for handling the static content that interprets user request and forward it to

the application server. They store, process and deliver web pages to clients.

Web servers are built for hosting and maintaining the website. Most of the

Chapter 3

58 Faculty of Technology, Cochin University of Science and Technology

web servers are having the features such as create one or more websites,

configure site/ directory security, create FTP sites and virtual directories,

configure /nominate custom error pages and specify default documents. In

our framework, the web server accepts the user input/SQL queries from the

client browser and validates it with the legal query templates from MLT-DR

framework, only the benign queries are diverted to get an actual database

access.

3.5.3 Database Server

The database server is dedicated to database storage and retrieval. It is

supported by a Database Management System (DBMS) and represented in a

client- server environment. A database server is also known as SQL engine.

Database server controls all database functions. A standard called Open

Database Connectivity (ODBC) provides an application programming

interface (API) which permits client-side programs to invoke DBMS at the

server side and sends back the result to the client program. Once the data is

stored in a database, any database application software can be used within

the database server. The user requests received through the HTTP and

dynamic web pages are executed here. Accessing data on a database server

is possible only through SQL statements validated with the support of the

proxy server. Database server handles all database access and control

functions and hides the DBMS functions from the client. In most of the

situations, the database server manages the recovery security services of the

DBMS and enforces the constraints specified within the DBMS. A high

level of management and security is required at database layer (Xie and

Aiken, 2006; Ali and Javed, 2009).

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 59

3.5.4 The Detection Module (TbD)

One of the primary objectives of this module is to detect and block

SQL-Injection attack. Only the benign query can access the data from the

back-end database server. In the training phase, the proxy server receives

the user queries, and with the support of a software crawler, it locates the

hotspots in the application. Then the similar queries are identified and

parsed to create Temp_ID and format. The template repository stores the

legal query tokens with a unique identity and a particular format. This

method uses an efficient query validation technique to match the statically

generated legal query tokens against the parsed dynamic query tokens at

runtime (Win & Htun, 2014). The major components and working details

are explained in Chapter 4 by considering each element.

3.5.5 The Reconstruction Module

Most of the current SQLIA detection and prevention approaches reject

the dynamic query if there is an’ Injection Attack’ in the given input query.

Rejecting the queries is directly and denying the authenticated users access

to the system and sometimes reduces system availability, especially in the

case of false positives. One of the primary objectives of the proposed model

is to reconstruct the queries by eliminating injections and rebuilding missing

portions of the user query. In this module, SQL queries are trained using an

Artificial Neural Network (ANN) and a trained model is stored in the

template repository or it can use the customized legal query model

developed in the training phase of the MLT-DR (Lebeau and Franck, 2013).

We learn the ideal query model for the seven identified attack categories

using the machine learning technique, for further process and reconstruction.

Chapter 3

60 Faculty of Technology, Cochin University of Science and Technology

The Neural Network-Reconstruction provides better user access to a web

application and reduces the denial of service attack by facilitating the

reconstruction option for the authenticated user query. This framework

facilitates reconstruction of all types of queries from authenticated users

based on the query structure and format that will be as required by the

underlying database. Chapter 5 discusses the detailed description and

evaluation procedures of reconstruction module.

3.5.6 Authentication Checking

Authentication is the process of verifying the identity of the user and

devices to resources or the web application itself, which will provide a trust

relationship for further access to the valuable resources. It also enables the

accountability of the user to link access to the particular identities (Prabakar

and Marimuthu, 2012). Most of the web application is having a strong

authentication mechanism (user-id and password verification) to check

whether the queries are from a valid user or the authentication credentials

are matching with the information stored in the database table. In this

research, the web applications use an authentication procedure to ensure that

a valid user has requested the query. If the query is from a rightly

authenticated user, it will be diverted back to the reconstruction module to

remove the injected part of the malicious user query and reconstruct the

query as per the requirement.

3.5.7 Log of Denied Queries

We use the query log as a record keeping system; it will be beneficial

for conducting a detailed analysis of the malicious pattern of a suspected

query. In the hybrid framework, if the query is detected as a malicious query

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 61

and identified it as, not from an authenticated user then it will not be

proceeded to query reconstruction framework. It will be logged in/blocked

for further process. All the blocked queries are documented or kept as a log

file, in a data structure server, which can be later utilized in a proxy server

to create a new model with the newly injected malicious pattern for analysis

and mapping procedure for a legal query.

3.6 Template Design Strategies

Designing appropriate template of a token by extracting it correctly

from the given SQL statement (or a multilevel analysis in the case of a

complex query) and retrieving it from the store for mapping is considered as

one of the primary tasks in this research. During the training phase of this

approach, all possible types of legal queries/SQL statements of the standard

web application are collected by using a web application crawler tool for the

vulnerability analysis, parsed using JSON parser, assigned a unique ID for

each query, and stored in the template repository. In the testing phase, the

dynamic queries are parsed and validated against legal query template stored

in the repository. If there is no match found between the injected and input

queries, then the queries executed through the dynamic web pages were

flagged as a malicious query and blocked from further execution at the

backend database server. We can implement this approach in any web

application irrespective of the type of database management system at the

application layer. Using this approach, we do the query evaluation and

mapping of queries without much computational overhead. One of the most

important strategies in a query validation phase is to identify the types of

channels/devices used for data access. The SQL-Injection categories are

Chapter 3

62 Faculty of Technology, Cochin University of Science and Technology

based on these channels and types of data access (Rawat and Raghuwanshi,

2012). The following categories list the channels:

 In band: Data retrieved using the same channel

 Out-of-band: Data retrieved using different channel

 Inferential or Blind attack: Reconstruct the information by analyzing

the database behavior.

3.6.1 Strategies used for Storage and Retrieval

The performance and speed of the web application are significant in

the current online business transaction. There should be appropriate

protocol, network speed and storage strategies to reduce the page download

time of an application. If there is a proper integration of all these technologies,

it can reduce the web generated traffic by 50 %.

3.6.2 JavaScript object Notation Format (JSON)

JavaScript Object Notation is a lightweight data-interchange format,

an accessible format for humans to read and write and very easy for a

machine to parse and generate. While interacting with the website, the JSON

feeds can be loaded asynchronously and much more quickly than XML/RSS.

It is considered as a universal data structure; almost all programming

languages support them in one form or another.

Usually the JSON is built on the following structures:

 A collection of name/value pairs, such as an object, structure,

dictionary, hash table, keyed list, or associative array.

 An ordered list of values, such as an array, vector, list, or

sequence.

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 63

The following Figure 3.3 shows the standard query template tested in

this research and the corresponding JSON format.

Fig. 3.3 Query ID and corresponding JSON format

There are various built-in functions and operators available in each

server application that will enable the application to parse the text, modify

the values and transform arrays of JSON object into a table format. Here the

queries are converted into JSON objects. It is very cost effective to store the

data in JSON format, and easy to access and extract values from JSON

format. There are various functions available in each application program to

evaluate, extract, validate and manage JSON format.

3.6.3 JAR file to Retrieve and to Specify the Path Details

Java ARchieve (JAR) is a file format based on the popular ZIP file

format. It is used for aggregating many files into one. The primary objective

of a JAR file is to download Java applets and their requisite components

such as class files, images and sounds into browser in a single HTTP

transaction, rather than opening it as an individual file. It is also considered

Chapter 3

64 Faculty of Technology, Cochin University of Science and Technology

as an effective achieve tool. If the application is using JAR format, it can

tremendously improve the speed with which an application can be loaded

onto the dynamic web page and start functioning. It also supports

compression to reduce the file size and improve download time. The special

features of the JAR files are:

 Achieve format that is cross platform

 Only format that handles audio, image files and class files.

 Backward-compatibility with the existing applet code.

 It is written in JAVA, an open standard, fully extendable.

 Most preferred way to bundle the Java applet.

Following are the details of one of the effective JAR files “SQLIAShield”

developed for handling several types of query template ID handling in

dynamic web pages.

The core of this functionality is a class called “SQLIAShield” which

can be instantiated with a parameterized constructor with parameter values

as standard query template path and an output folder path. A sample SQLIA

shield can be invoked using the following format/path specification:

SQLIAShield("D:\\SQLIAConfig\\Template\\st_fdb52977-8288-4a7f-

82e0-1b9c23e9a3d4.txt", "D:\\SQLIAConfig\\Output");

There is also an authentication function available with this type of file,

where individual entries in a JAR file can be digitally signed by the author

of the applet to keep track of the origin of the authentication.

The Multilevel Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 65

3.7 Summary of the Chapter

A multi-Level Template based SQL Injection detection and prevention

model which has an effective technique to validate SQL queries before it

reaches and is executed by the database server can be implemented on a

proxy server. It is a novel template based approach to detect and prevent the

SQLI attack categories such as Tautologies, Logically incorrect queries,

Union queries, Piggybacked queries, stored procedure, Timing and another

encoding. This frame work can be implemented either within a proxy server

or as an API. The parsing techniques used in the template creator application

is challenging to scale up the performance (with negligible false positive

and false negative rate) of the proposed model, and the template files stored

in the JSON format contribute equally in decreasing the storage overheads.

….. …..

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 67

CChhaapptteerr 44

THE MULTILEVEL TEMPLATE BASED
DETECTION FRAMEWORK (MLT-D)

4.1 The Multilevel Template Based Detection (MLT-D) Framework
4.2 Strategies Used in Standard String Matching Algorithms
4.3 Experimental Result
4.4 Summary of the Chapter

The template based detection framework is an effective framework for SQL

injection detection and is a malicious query blocking model. It is designed and

implemented by validating dynamic queries against the legal query pattern. In this

framework, the proxy server executes user queries and validates it before

redirecting it to the web server. It blocks malicious queries and generates an alert

message if the injection is detected. Only the benign query can access the data

from the back-end database server. Mostly, people design the web applications

with multiple pages with multiple data entry fields by the users, which can be the

hotspot for SQL injection attack. Frequently used Injection detection tools require

source code modification which is a tedious task and will affect the performance of

the underlying web application and the storage requirement is also high. The

proposed architecture does not demand any source code modifications and can

perform detailed analysis at negligible computational overheads without false

positives or false negatives. The time/space complexity of verification method is

also in proportional to the complexity of query under consideration. The proposed

approach has a fully automated query assessment procedure to build a legal query

model and has a validation technique to match the design template with the

dynamic user query.

C
o

n
te

n
ts

Chapter 4

68 Faculty of Technology, Cochin University of Science and Technology

4.1 The Multilevel Template Based Detection (MLT-D)

Framework

The Multilevel Template based detection framework (MLT-D) is

designed and implemented with the support of efficient query template

creator and validation strategies. In this detection and blocking model, we

analyze the schema or structure of all possible types of queries, validate and

then create templates and store it in the template repository, corresponding to

each SQL query. The proxy server deployed in this framework has the

provision of masking the location of the database server and permits only the

authenticated valid queries to access the web server (Panda and Ramani,

2013; Awang and Manaf, 2015). The major components of the Multilevel

Template based Detection (MLT-D) module are the parser, detection

technique and mapping procedure as shown in Figure 4.1.

Fig. 4.1 Multilevel template based Detection (MLT-D)

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 69

4.1.1 The server Functionality

The web server receives database requests from Query Anomaly

Detection Process (QUADP) and forwards it for the execution or accessing

the resources from the actual database server. A proxy server is used at the

training stage to identify the hot spots of code injection attack and

corresponding SQL statement to build the model for further validation. Only

benign queries can access the database server thus protecting the database

layer. The database server stores the business data that is critical to the online

business transaction; the database server has the responsibility of executing

and giving the actual result user queries (Khari and Kumar, 2013).

4.1.2 The Standard Query Template Creator Application (SQTC)

One of the most significant components in the template based

detection model is the Query Template Creator Application. The standard

query template creator module (SQTC) analyzes the web application using a

Java application based code analyzer kept at the proxy server, identifies and

collects the standard legal queries in the web application. The primary tasks

under the template creator component are to parse them into corresponding

smaller tokens. In most of the web applications, there are multiple SQL

requests (form fields) in each web page as the hotspot for malicious user

entries. A web crawler/spider can spot these fields. We split complex

queries into several independent queries by using a depth-first tree traversal

procedure, and each separate query is tokenized (Valeur and Giovanni,

2005; Sangkatsanee and Charnsripinyo, 2011).

4.1.2.1 Model Creation Algorithm

The identified dynamic queries are parsed or tokenized for further

template mapping process. Here the tokens are generated as per the template

Chapter 4

70 Faculty of Technology, Cochin University of Science and Technology

specification mentioned in the algorithm given below. We split each SQL

query into the predefined template such as query-type, used-tables, columns,

system-variables, global variables, functions, joins, special-symbols, operators,

comment symbols and keywords. There is a unique ID (Sq-Id) created for each

parsed query, and we store the query in JSON format in the template repository.

There can be multiple Sq-Ids in each web page, based on the underlying

application. The algorithm considers each independent query for validation and

creates a unique ID for the respective query (Vigna and Robertson, 2009). It

stores the query template in the template repository in JSON format.

Table 4.1 Standard Query Template Creator Algorithm (SQTC)

Standard Query Template Creator Algorithm (SQTC)

Input: web application URL, user credentials

Begin

Procedure SQTC(Sq,Tk)

Begin

Sq←Standard query

Tk ←Tokens generated from Sq

Tk[i] ← {query-type, used-tables, columns, system-variables, global-variables,

functions,

 joins, special-symbols, operators, comment-symbols and keywords}

 Begin

 Sq-Id← get(Sq-Id) from JSON parser for each query

 Do

 get new Sq-Id

 //till all the pages are checked and queries tokenized with a unique Sq-id

 for each Query

 Tl(Sq-Id)← Template for each Sq-Id // created by the parser

 Return

 While All ‘ Sq-Id’ is generated // End of web pages

 End Do

 End.

 End

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 71

In the algorithm mentioned above, the web crawler identifies the input

entry (the form entry field) by checking the user credentials entered and the

URL or the specified path to the given web application. For each assigned

form field, there is a corresponding SQL query. While splitting/parsing the

query, the algorithm generates tokens as per the predefined template

specification for each standard SQL statement. The tokens parsed are

grouped under any one of the following attribute specification such as

query-type, used-tables, columns, system-variables, global variables,

functions, joins, special-symbols, operators, comment symbols and

keywords. The attributes of the identified queries are grouped and assigned

a Tl (Sq-Id), which is unique for each query and store the corresponding

template details in JSON format. During parsing, if there is any extra field

in the complex queries other than the token-specification mentioned above,

then each additional field identified in the query is expanded as an added

column in the template specification to accommodate the fields. There can

be “n” additional columns created based on the input query type.

4.1.3 The template Repository

The template repository holds all possible legal query identities

(IDs), template (TI) of the underlying online applications and stored in

JSON format. The corresponding „ID „for each page is arranged and stored

in the repository in a unique format by using a jar/package file facility

available in the application for each web page. We store the legal query

models/templates in a template repository with a unique identity and a

specific JSON format.

Chapter 4

72 Faculty of Technology, Cochin University of Science and Technology

4.1.4 Token based Query Model Constructor and Parsing Procedure

We test SQL queries against injection detection by splitting them

initially into templates based on the number of Independent queries within

the full query and the number of tables used. In this research work, the

parsing techniques used split the query as per the template specification. The

tokens are generated as after a rigorous analysis of queries or SQL

statements from the underlying web applications for the analysis. Usually

during the parsing, the parser will check the SQL statement for the

following conditions of (Buehrer and Gregory, 2005):

 Incorrectly handled escape characters

 Incorrectly handled types

 Insecure Database Configuration

In the proposed approach, the SQL injection attacks are tested by

considering the seven different attack categories as:

 Tautologies

 Logically incorrect query/illegal queries

 Union Query

 Piggy-Backed Queries

 Alternate Encodings

 Stored Procedure

 Inference attack

 Details of each attack with examples are explained in the chapter 3.

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 73

4.1.4.1 Token Specification Strategies

The SQL query is split or parsed into some tokens for the further

validation process. We evaluate these tokens closely for malicious pattern or

entry. Each legal query is divided into many predefined tokens (Buehrer and

Gregory, 2005). The predefined tokens are generated based on query type,

used-tables, columns, system-variables, global variables, functions, joins,

special-symbols, operators, comment symbols and keywords, based on the

schema of the query.

In this proposed approach, the parsing technique has the following

advantages:

 Reduce the difficulty associated with the complex SQL statement.

 Provide cost effective and faster evaluation strategy.

 Support of an efficient procedure to validate tokens

To do the vulnerability analysis and to perform mapping of the legal

query token with the dynamic query tokens, one of the primary requirements

in this research is to parse the query into many distinct tokens based on the

structure of the query (Joshi and Geetha, 2014, Liu and Anyi, 2009). Here

any complex SQL query can be split into 12 distinct categories of tokens as

per the given SQL grammar, which can be done as per the availability of the

parser for each web application. We use the parsed token for further

evaluation. SQTC is a good option of the parser for the query (in Java based

application) and stores it in JSON format. Various categories of functions,

special characters, symbols, keywords, reserved words, etc., used for

analysis to generate appropriate tokens for the template specification

procedure is shown in Appendix.

Chapter 4

74 Faculty of Technology, Cochin University of Science and Technology

Fig. 4.2 Procedure for Query model constructor

Here the input query is parsed/split into small tokens as per the

parsing technique and tools provided by the application. Lexing or Lexical

analysis is a process of converting a sequence of characters into a

subsequence called tokens (Srivastav and Goel, 2013; Ruse and Michelle,

2010). Parsers and Lexical analyzers are software components for dealing

with the input of character sequences.

4.1.4.2 Complex Query Evaluation

One of the primary tasks of the lexical analyzer or parser is to split the

complex query into appropriate small tokens. If the query splitting or

tokenization cannot give an accurate result, then the evaluation process to

produce the mapping function does not produce the correct result. To have

an accurate splitting procedure for a complex query, the complex query is

split into some independent queries by following depth-first tree traversal

strategies. DFS starts at the root and goes down to the left most paths. DFS

forest is a collection of one or more DFS tree (Buehrer and Bruce, 2005;

Shrivastava and Soni, 2013).

4.1.4.3 Query Evaluation Using Tree Structures

We evaluate the user queries by considering the full query as a tree

where the subqueries are on the nodes in various levels of the tree structure

as shown in Figure 4.3. To break the query, we follow a tree traversal

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 75

procedure, where we consider the input query (injected/ intended) as a forest

of queries. If there is more than one independent query, we break into

subqueries and place the separate queries on each node of the „tree‟. Then

we parse the query into the specified template as per the logic of the given

SQL statement after traversing through each node.

Fig. 4.3 User query evaluation using Tree structure

The nodes in the second level are assigned for extracting the

subqueries in a complex query structure where the detection procedure is

carried out in two levels.

4.1.4.4 Design Specification for Injection Detection

Usually, a complex SQL query, with multiple subqueries is considered in

the form of forest (It is a collection of independent queries). Each independent

query is in a tree-like structure (Buehrer and Bruce, 2005). Each node in the

tree contains sub-queries. Forest of independent query is represented as,

F = [I1,I2,…,Ik] where I1,I2,…,Ik are independent queries.

Chapter 4

76 Faculty of Technology, Cochin University of Science and Technology

4.1.4.5 General View of Queryevaluation

User queries are complex queries and represented as the Forest of

trees (F(Q)). We can represent each subquery from q1 to qn. The matching

algorithm can then be invoked to check the template followed by analyzing

the list of characters in each unit/token of the given template specification.

If the evaluation result is „True‟ it is considered a legal query, else an alert

message stating that it is a „Malicious query‟ would be displayed. Figure 4.4

shows the detailed procedure to evaluate the query. The Input query is being

checked for several subqueries, tables, fields, etc.

Fig. 4.4 Query Evaluation procedure in the hybrid frame work

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 77

The evaluation procedure (tree structure) by using a simple SQL query

is explained below:

SELECT CustomerID, CustomerName, City, Street, housenum

FROM Customers

WHERE CustomerID IN

(SELECT a.CustomerID

FROM Customers AS a INNER JOIN

(SELECT Country, City, Street, houseno, count (*) AS cn

 FROM Customers

 GROUP BY Country, City, Street, housenum

 HAVING count (*) >1) AS b

 ON (a.Country = b.Country) AND

 (a.City = b.City) AND (a.Street = b.Street) AND (a.housenum =

b.housenum))

ORDER BY City, Street, housenum;

SELECT * FROM department WHERE deptno NOT IN(SELECT

deptno FROM emp);

This complex query can be split into independent subqueries as

explained below and shown in Figure 4.5.

Chapter 4

78 Faculty of Technology, Cochin University of Science and Technology

Fig. 4.5 Query evaluation using tree structure

The independent subqueries are numbered and described as shown below:

“SELECT CustomerID, CustomerName, City, Street, housenum FROM

Customers WHERE CustomerID IN” -------------------------------- (4.1)

Query (1) is checked for any injection. If it is a valid query , then child

nodes are checked. In this case, there are two child nodes. The first child

node [Query (2)] is considered next.

“SELECT a.CustomerID FROM Customers AS a INNER JOIN”--- (4.2)

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 79

This is a recursive process and it will be continued until the node has

no children. So the presence of a subquery is checked in Query(2).

“SELECT Country, City, Street, housenum, count(*) AS cn FROM

Customers GROUP BY Country, City, Street, housenum HAVING

count(*) > 1” --- (4.3)

Query (4.3) is a simple query, and has no children. Similarly all the

nodes in the tree are processed. This Dagger detection process is repeated

for all the trees in the forest.

The template creator module makes use of the Standard Query Template

Creator (SQTC) algorithm to parse the queries. The number of tokens

generated from each query depends on the complexity and structure of the

assigned query. Parsing/splitting of the token is performed only for the

independent query. The tokens identified are query-type, used-tables,

columns, system-variables, global variables, functions, joins, unique symbols,

operators, comment symbols and keywords. As per the complexity of the

query the number of columns increases or decreases. We perform a similar

procedure on each query (multiple queries are on each web page) for

generating a unique query identity and corresponding template format and the

constructed ID with the format is placed in the template repository. Dynamic

query parsing also follows the similar procedure performed for legal query

parsing. The dynamic user queries, received through the web server should

undergo the tokenizing/parsing process by the parser to have the token

mapping against the standard query tokens. The parsing technique used in this

approach can handle the tokenizing procedure by analyzing the grammar and

structure of the given SQL statements of the dynamic input query by the user.

Chapter 4

80 Faculty of Technology, Cochin University of Science and Technology

In most of the database applications, the first stage of SQL statement

processing is parsing, separating the pieces of SQL statement into a smaller

data structure, which can be processed further by another application. The

primary objective of parsing technique is syntax checking and optimization

process (Shahriar and Zulkernine, 2012).

If the SQL statements are appropriately parsed, the performance of the

query will be efficient. During the parsing procedure, we verify each SQL

statement for:

 Syntax

 Table and column definitions checked with the data dictionary

 Access permissions and privileges of user and object

 Locking strategies/security of the relevant object

 Optimal execution plan

All the legal queries identified in the application for model construction

and the dynamic queries accepted through the web pages are to undergo the

tokenizing procedure given below for further validation and template

mapping. During this phase, we parse each SQL query into many tokens as

per the designed template specification.

For example: Consider the query to be tokenized is: SELECT * FROM

Book reviews WHERE ID=‟5‟; as per the predefined token specification the

query is split into different tokens as shown in Table 4.2.

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 81

4.1.5 The Mapper

To check the validity, it maps the appropriate standard query from the

template repository against the dynamic query with the support of a

proposed SQL-Token mapper algorithm, which is shown in Table 4.3. The

mapping techniques are carried out on two distinct levels according to the

complexity (number of subqueries) of the dynamic queries in each web

application. If the match is „False‟ in any one of the tokens, the alert

message in the corresponding field will trigger, and the evaluation engine

will indicate „First level detection‟. Otherwise, it moves onto the next level

of detection, and the similar procedure and the evaluation engine will

display the result as “Second level detection”. Here the detection process is

done at multiple levels based on the complexity of the SQL query within the

web pages of the underlying application (Dharam, Ramya, 2012; Lebeau

and Franck, 2013).

Table 4.2 Summary of tokens and values assigned

Token specification Values assigned

Query type

Table

Number of Independent

queries

Keywords

Column values

System-variables,

global-variables

functions,

joins,

special-symbols,

operators,

comment-symbols

Select

Book review

1

from , where

„*‟, „ID‟,‟5‟.

Null

Null

Null

Null

„,‟

=

Null

Null

Chapter 4

82 Faculty of Technology, Cochin University of Science and Technology

4.1.5.1 Token-Mapper Algorithm

The token mapper algorithm in Table 4.3 shows the SQL Injection

detection procedure by mapping the tokens of dynamic query accepted

through the browser against the statically stored tokens of legal queries.

Table 4.3 Token Mapper algorithm for SQL injection Detection (SQLI-D)

SQL Token mapper Algorithm

Input: Legal query model, user input query, user credentials

Output: Detection result

procedure for SQL-Tokenmapper(Sq-Id, Dq-Id)

Begin

DetectionResult[sq-Id,Dq-Id] ← Boolean getMatch(List1,List2)

boolean getMatch(List1,List2) //To mapp Sq-Id with Dq-Id//

 Do while all the tokens are mapped

 Retrieve corresponding Sq-id & Dq-Id from Template Repository for maping

 List1 ← All tokens from DynamicQuery:Dq

 List2← All tokens from, StandardQuery:Sq

 If(LengthOfList1== LengthOfList2) Then

 For i= 1 to n

 Check

 If(List1[i]!=List2[i])

 Boolean getmatch()← False;//not matching//

 Else

 Boolen getmatch()← True//Exact match//

 End If

 Next i

 End If

 If (TL(Sq) ⊕ TL(Dq) == 0) ,

 there is an exact match

 set message as’ No injection detected in the token’

 else

exact match not found

 set message as ‘ injection detected in the token’

endif

 End Do

End

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 83

The mapping techniques are carried out on two distinct levels

according to the complexity (number of subqueries) of the queries in each

web application (Stuttard and Pinto, 2011). If the received dynamic query is

a simple one detection is possible within the first level, else in the case of a

complex query, detection will get into the procedure of the second level.

Each token is validated for Boolean match function of either 'True' or

'False'. If the length and content of each token are exactly same, that is the

Boolean match is “True”, the token is marked with “No injection detected”.

Otherwise, it is marked as “Injection detected” in each specified tokens. We

repeat this procedure for each token.

In the algorithm mentioned above, we validate the tokens of user input

query with the token of the legal query placed in the template repository.

While validating tokens of both queries, each character, pattern and length

of the user input query is compared with the tokens of the legal query stored

in JSON format from the repository. We generate the tokens as per the

predefined template specification for each standard SQL statement. If each

token of the input query and the legal query exactly matches(TL(Sq) ⊕

TL(Dq) == 0), then there is no injection in the query. Otherwise (TL(Sq) ⊕

TL(Dq) ≠ 0) there is injection detected. Sq is the standard/Legal query and

Dq is the Dynamic /user-Input query.

4.1.6 Validation and Detection

In this processing stage, we do validation of the dynamic queries

against the legal query model. The Query evaluation engine employed at

this component displays the alert message based on the detection procedure.

If there is an exact match found between the standard and the dynamic

Chapter 4

84 Faculty of Technology, Cochin University of Science and Technology

query, then the alert message would be displayed as “Injection not detected”

otherwise “Injection detected” message is displayed. The benign queries can

move further to access the database server. We log the detected „malicious

queries‟ for further evaluation and model construction at the later stage after

the authentication check and reconstruction guidelines. The „benign

queries‟, can pass through the web server to access information from the

database server.

4.2 Strategies Used in Standard String Matching Algorithms

There are many string comparison and matching algorithms available

to validate and compare the strings in the given template or token. These

algorithms are rated based on the factors such as complexity, speed/time and

storage space/pattern (Lebeauand Franck, 2013;Belk,2011). The proposed

SQTC and Detection & mapping algorithms are also evaluated based on

time-space complexity and accuracy of detection (Wang and Miner,2004).

4.2.1 Boyer-Moore Algorithm

It is one of the strong string matching algorithms (Buja and

Rahman,2014). It will scan the characters of the pattern from rightmost bit

to the left and have following features:

 Preprocessing phase in time and space complexity.

 Searching phase in time complexity

 There are 3n text character comparisons in the worst case of a

non-periodic pattern

 It has (n/m) best performance

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 85

If there is a mismatch or a complete match it uses shift functions such

as good suffix shift (matching shift) and bad character shift (Occurrence

shift). Good suffix shift function is stored in a table of size m+1, and bad

character shift function is stored in another table of size . Both tables can

be pre-computed in time before the searching phase. Searching

phase complexity is quadratic. While searching for in the

algorithm makes only O(n/m) comparisons, which is the best case for any

string matching algorithm.

4.2.2 Hirschberg Algorithm

Hirschberg algorithm takes time complexity as O(nm) in the

worst case, and space complexity is O(min(nm)) for two sequences.

F(i,j)= MAX{F(i-1,J-1) + s(xi-yi),F(I,j-1)+d,F(i-1,j)+d), this equation

describes the algorithm (Ezumalai and Aghila, 2009). As per the explanation

given, there are three paths in the scoring matrix for reaching a particular

position i, j as explained below:

 A diagonal move from position i-1 to j-1 with no gap penalties.

 A move from any position in column j to i, j with gap penalty

 A move from any position in row i to i, j with a gap penalty.

4.2.3 Morris-Pratt Algorithm

The design of the Morris –Pratt Algorithm follows the tight analysis of

Brute force algorithm. Here it is possible to improve the length of the shift

and consequently increase the speed of the search. It has the following

features:

Chapter 4

86 Faculty of Technology, Cochin University of Science and Technology

 It performs the comparison left to right

 Preprocessing phase in O(m) space and time complexity

 Searching phase in O(n+m) time complexity

 Performs at most 2n-1 information gathered during the scanning

of the text delay bound by m

This algorithm performs at most 2n-1 text character comparisons

during the searching phase (Oh and Kim, 2012).

4.3 Experimental Result

The collected queries of various attack categories are tested using the

deployed MLT-D framework. The following sections display the details

such as type of queries, both malicious and legal queries along with the

detection details and results.

4.3.1 Queries Tested with MLT-DR Framework

Following are the list of legal queries, and Injected queries tested in

the proposed model and detection field identified with the proposed template

creator application.

Table 4.4 Legal queries Vs Injected queries tested in MLT-DR

Legal Query Injected Query Detection

fields

SELECT name,address

FROM customers

WHERE name like

„%a%‟;

SELECT name,address FROM

customers WHERE name like

„%a%‟ union Select

NULL,LOAD_FILE('/etc/passwd')#

Operator,

Query Type,

Comment.

Table 4.4 continued….

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 87

INSERT INTO users

(id, username,

password) VALUES (1,

'Jane', 'Eyre');

INSERT INTO users (id, username,

password) VALUES (1, 'Olivia' or

(SELECT 1 FROM(SELECT

count(*),concat((SELECT

(SELECT (SELECT

concat(0x7e,0x27,cast(users.userna

me as char),0x27,0x7e) FROM

`newdb`.users LIMIT 0,1)) FROM

information_schema.tables limit

0,1),floor(rand(0)*2))x FROM

information_schema.columns group

by x)a) or '', 'Nervo');

Operator,

Query Type,

Tables, Fields,

Function.

INSERT INTO users

(username, password)

VALUES('jack','');

INSERT INTO users

(username,password)

VALUES('jack',''); DROP TABLE

users;

Query Type,

Number of

independent

Queries.

SELECT * FROM

customers WHERE

username = 'timmy'

SELECT * FROM customers

WHERE username =

'\';SHUTDOWN;

Number of

independent

Queries,

Special

characters.

UPDATE users SET

password='Nicky'

WHERE id=2 and

username='Olivia';

UPDATE users SET

password='Nicky' or

updatexml(1,concat(0x7e,(SELECT

concat_ws(':',id, username,

password) FROM newdb.users limit

0,1)),0) or'' WHERE id=2 and

username='Olivia'

Operator,

Function,

Special

Characters.

Table 4.4 continued….

Chapter 4

88 Faculty of Technology, Cochin University of Science and Technology

DELETE FROM users

WHERE id=2;

DELETE FROM users WHERE

id=2 or

updatexml(1,concat(0x7e,(version()

)),0) or'';

: Operator,

Function.

DELETE FROM users

WHERE id=2;

DELETE FROM users WHERE

id=1 or

updatexml(0,concat(0x7e,(SELECT

concat_ws(':',id, username,

password) FROM users limit

0,1)),0) or '';

Operator,

Function.

DELETE FROM users

WHERE id=2;

DELETE FROM tablename

WHERE id ='x‟;

Exec(char(0x73687574646f776e));--

Number of

independent

Queries,

Comment.

DELETE FROM users

WHERE id=2;

DELETE FROM users WHERE id

='2' UNION SELECT name,

cast((mb_free) as varchar(10)), 1.0

FROM haxor;--

Operator,

Comment,

Fields.

UPDATE users SET

password='Nicky'

WHERE id=2 and

username='Olivia';

UPDATE users SET

password='Nicky' WHERE id=2

and username='Olivia';

DROP TABLE haxor;CREATE

TABLE haxor(line varchar(255)

null); INSERT INTO haxor EXEC

master..xp_cmdshell 'dir /s c:\';--

Fields,

Number of

independent

Queries,

Query Types,

Comment.

UPDATE users SET

password='Nicky'

WHERE id=2 and

username='Olivia';

UPDATE users SET

password='Nicky' WHERE id=2

and username='Olivia' UNION

SELECT line, '', 1.0 FROM haxor;--

Fields,

Operator,

Query Types,

Comment.

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 89

INSERT INTO

Favourites (UserID,

FriendlyName, Criteria)

VALUES(123, 'My

Attack','');

INSERT INTO Favourites (UserID,

FriendlyName, Criteria)

VALUES(123, 'My Attack',''';

DELETE Orders;--')

Tables, Query

Types, Fields,

Comment.

SELECT * FROM

Products WHERE

ProductName = 'abc';

SELECT * FROM Product

WHERE ProductName = '';

SHUTDOWN WITH NOWAIT;--

Tables, Query

Types,

Comment.

UPDATE users SET

password='Nicky'

WHERE id=2 and

username='Olivia';

UPDATE users SET

password='Nicky' WHERE id=‟2‟

or username=‟Oliva‟--and

username='‟;

Operator,

Comment.

UPDATE users SET

password='Nicky'

WHERE id=2 and

username='Olivia';

UPDATE users SET

password='Nicky' WHERE id=‟2‟

or „one‟=‟one‟ /*;

Operator,

Comment.

DELETE * FROM

users WHERE id=‟2‟

AND username=‟abc‟;

DELETE * FROM users WHERE

id=‟2‟ AND username=‟‟ OR

„ab‟=‟a‟+‟b‟ #;

Comment,

Operator.

DELETE * FROM

users WHERE id=‟2‟

AND username=‟abc‟;

DELETE * FROM users WHERE

id=‟2‟ AND username=‟‟ OR

„ab‟=‟a‟||‟b‟ /*;

Comment,

Operator.

SELECT * FROM

users WHERE

userid=22;

SELECT * FROM users WHERE

userid=‟‟ OR „ab‟=‟a‟‟b‟ /*;

Operator,

Comment.

INSERT INTO users

(username,password)

VALUES('jack','');

INSERT INTO users

(username,password)

VALUES('jack','');SHUTDOWN--

Number of

independent

Queries.

Table 4.4 continued….

Chapter 4

90 Faculty of Technology, Cochin University of Science and Technology

DELETE FROM users

WHERE id=2;

DELETE FROM users WHERE id

='2‟ UNION CREATE TABLE

haxor(name varchar(255), mb_free

int); INSERT INTO haxor EXEC

master..xp_fixeddrives;--

Operator,

Comment,

Fields, Query

Types.

DELETE FROM users

WHERE id=2;

DELETE FROM users WHERE id

='2‟ UNION SHUTDOWN;--

Operator,

Comment.

SELECT uname,

password FROM users

WHERE id = 12

SELECT name, password FROM

user WHERE id = 12 UNION

SELECT distinct(db) FROM

mysql.db--

Query Type,

Fields,

Comment,

Operator.

The screen shot of tokenizing technique of a simple query is shown in

Fig.4.6.

Fig. 4.6 Independent (simple) query tokenizing procedure

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 91

Figure 4.7 shows the screen shot of tokenizing technique for a

complex query.

Fig. 4.7 Complex query tokenizing procedure

Chapter 4

92 Faculty of Technology, Cochin University of Science and Technology

4.3.2 View of Template ID and Storage Format of SQL Query

During the tokenizing process, each query is assigned to a unique ID

and stored in the template repository. Figure 4.8 displays the JSON format

corresponding to the legal query, “SELECT * FROM Book reviews WHERE

ID=‟5‟;” which is tested using the proposed frame work.

Fig. 4.8 JSON format of the standard query

There are hundreds of queries within each web application and in

each web page, there exists multiple complex queries with sub queries. A

screenshot of the template repository with the sample template ID created

using the MLT-DR framework is shown in Fig 4.9.

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 93

Fig. 4.9 Template ID format of tested queries.

4.3.3 Procedure to Detect and block SQL Injection Attack

At run time, during the user interaction with the database server

through dynamic web pages, the input user query is mapped with the

standard query from the template store. With the support of the Jar or

package file procedure, it is easy to locate and retrieve the Unique ID

corresponding to the standard query template file from the repository.

Identification and retrieval of the appropriate query identity from the

template store and the validation against the injected query are done

automatically as per the given procedure. In the template mapping phase, we

map the appropriate legal query-ID from the template store with the

dynamic query with the support of the template mapping process. If the

Boolean match is „False‟ in any one of the specification templates/ tokens

identified, the alert message in the corresponding field will trigger, and the

evaluation engine will indicate „First level detection‟.

Chapter 4

94 Faculty of Technology, Cochin University of Science and Technology

Fig. 4.10 Evaluation procedure of a dynamic query

In the case of a complex query, if the injection is not detected in the

first level, it will move onto the next level of detection, and the validation

procedure is repeated for the second level of detection. Figure 4.10 shows

The Multilevel Template Based Detection Framework (MLT-D)

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 95

the detection procedure. The figure shows the dynamic query accepted

through the browser, the template ID of the statically stored legal/standard

query, JSON format of the parsed query and the first level detection result of

the mapping /validation procedure.

Fig. 4.11 Complex query evaluation procedure with multiple levels

Chapter 4

96 Faculty of Technology, Cochin University of Science and Technology

If the query getting evaluated is a complex query, then the detection

procedure is performed on multiple levels. Since the following query does

not have any injection, the result in the second level shows that there is no

detection found on the second level, as shown in Figure 4.11.

4.4 Summary of the Chapter

In this chapter, we explain the SQL query tokenizing algorithm and

Query model creation algorithms with examples and screen shots. The

SQLIA detection procedure and model creations are implemented using

Java based application program. Implementation details indicate that SQL

injection is detected without any false positives or false negatives, with the

support of the template matching algorithm, Template creator algorithm.

Since ID and Query templates placed in the template repository is in JSON

format, accessing the query model will not have any storage overhead.

Validation of tokens and injection detection will be faster compared to the

other available techniques. The SQTC and Template mapper procedure of

the proposed technique deliver 100% accuracy and negligible storage

overhead.

…..…..

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 97

CChhaapptteerr 55

THE RECONSTRUCTION FRAMEWORK

5.1 Significance of the Reconstruction Framework

5.2 Components of Reconstruction Framework

5.3 Regular Expression and Comparison for Pattern Matching in SQL
Statement

5.4 Model Construction Algorithm

5.5 Experimental Result of Reconstruction Procedure

5.6 Summary of the Chapter

The reconstruction framework, introduced in this chapter facilitates the

reconstruction of queries from any authenticated users, by ensuring the structure of

queries and the underlying database server. The current SQLIA detection and

prevention approaches reject the dynamic query if there is any mismatch or

additional character found in the given input query. Rejecting the query is directly

denying the authenticated users access to the system, and it will reduce system

availability, especially in the case of false positives. One of the primary objectives

of the proposed reconstruction framework is to reconstruct the queries from the

authenticated user by eliminating the injected portion and rebuild the missing parts

of the user query, based on request-id and type of injection. This chapter also

explains a Back-propagated Neural Network trained (BPNN) query model learned

for the seven identified attack categories using the machine learning technique.

C
o

n
te

n
ts

Chapter 5

98 Faculty of Technology, Cochin University of Science and Technology

5.1 Significance of the Reconstruction Framework

Denial of Service attack and Distributed denial of service attacks are

quite common in a database supported web application. It is a type of attack

where the hacker attempts to prevent legitimate users from accessing the

service by sending an excessive message with invalid address or

configuration details causing the server for a long wait or closing the

connection (Burkhart and Plattner, 2010). This type of attack usually

prevents the authorized user to access the required resource and disrupt the

TCP session. There is no single solution to stop these types of attacks. Since

there are ample solutions available to detect and prevent the attack, care

should be taken to patch and configure database server at the precise

intervals and as per the critical requirement of the web application. In most

of the web applications, even if there is a simple mismatch of the entry

found by the protection mechanism or the scanning module, immediately

the query will be discarded or ignored by the application. There will not be

any further validation or no re-evaluation of queries are possible with the

user queries. Hence in the proposed framework reconstruction of queries are

carried out by comparing the BP-NN trained data model (SQTC also can be

recommended) against the dynamic query with the support of regular

expression and model construction algorithm. The neural network model of

the proposed framework includes machine learning approach and can get

appropriate trained data model for the legal queries for the underlying web

application to be tested with the dynamic user queries (Moradpoor, 2014).

Reconstruction of queries can also be done by using the query model

implemented during the detection framework, explained.

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 99

5.2 Components of Reconstruction Framework

In this framework, there is a provision of reconstructing malicious

queries from the authenticated user, to increase the availability of the web

application and reduces the denial of service attacks (Sahu and Tomar,

2016). Here the SQL queries are trained using a Back-Propagated Artificial

Neural Network (ANN) and this learned/trained model is stored in the

template repository. Figure 5.1 shows the system architecture of the

reconstruction framework.

Fig. 5.1 System architecture of the reconstruction Framework

5.2.1 Server Functionality

The web server accepts database requests from the user‟s browser and

directs it towards the Query anomaly detection and reconstruction module

for further validation and accessing the actual database server. The detection

of mismatch or injected portion and reconstruction of the query (if required)

are done within this module by an Application program Interface(API) and

Chapter 5

100 Faculty of Technology, Cochin University of Science and Technology

with the support of REGEX function. The database server has the

responsibility of executing and giving the accurate result of user queries.

The designed API is placed in between the web server and DB server. It will

validate the user queries and check for the source of authentication if the

correct credentials are found then it is permitted to access the actual server

for information access and retrieval. Only the authenticated valid queries or

benign queries are redirected to the database server for further access.

Chapter 3 explains the details of server functionality.

5.2.2 Training Data

The legal SQL queries were collected and stored, and we train these

queries by a Back-propagated Neural Network (BP-NN). The set of queries

consists of both malicious and legal queries statically collected from various

e-commerce applications and online transactions (Moosa, 2010).

5.2.3 Back Propagated-Neural Network model

The Back-Propagated Neural Network (BP-NN) model trains the

queries efficiently and gets the ideal model for further procedure specified

by the authenticated user. The trained model can be used to perform various

tasks such as pattern recognition and pattern association with the support of

“Back Propagation” algorithm (Moradpoor and Naghmeh, 2014). In this

approach, we are using pattern recognition task with the assistance of back

propagation algorithm to learn the ideal model of legal queries. BP-NN

comprises of the training phase and testing phase. Figure 5.2 shows the

representation of BP-NN learning for SQL trained model.

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 101

Fig. 5.2 BP-NN learning for SQL trained model

The input layer accepts SQL queries as „11 different tokens‟ (as

specified in the standard query template creator algorithm of TbD module).

From the collected queries, we use 75% in training phase, and 25% of

queries in the testing phase at the Neural Network (NN) with ten hidden

layers. The algorithm classifies the output from the NN model as either

„benign‟ or „malicious‟ query by using the back-propagation algorithm

(Moradpoor and Naghmeh, 2014).

5.2.3.1 Multilayer Artificial Neural Network (ANN) for Machine

Learning

An artificial neural network can learn through the training process to

acquire knowledge and make it available for later use. The artificial neural

networks are constructed from the basic building block of an artificial

neuron; it is identified with three layers of representation such as input

layer, hidden layer, and an output layer. It has a set of synaptic weights,

propagation function (Σ) and an activation function (φ) which takes the

output of the propagation function. During the processing stage, each input

is multiplied by their respective weighing factor (w (n)) and then the

modified inputs are fed into the propagation function (Haykin and

Chapter 5

102 Faculty of Technology, Cochin University of Science and Technology

Simon,2009). This function can produce several different values which are

forwarded further and sent into a transfer function which will turn it into a

real output value using the selected procedure. The transfer function also

can scale up the output or control its value. The propagation function (Σ)

includes sum, max, min, OR, AND, etc. The activation function (φ) is a

Hyperbolic tangent, Linear, Sigmoid, etc. Figure 5.3 shows the multilayer

representation of the neural network.

Fig. 5.3 Multilayer representation of neural network

5.2.3.2 Major Steps in Back-Propagation Algorithm (BPA)

ANN must distinguish pattern using the information given to the input

without external help. One of the best learning algorithms is Back-

propagation algorithm (BPA). It is a supervised learning algorithm for

multilayered feed-forward network (Haykin and Simon, 2009; Kieyzun and

Ernst, 2009). It is an ill-conditioned optimization problem which consists of

minimization of the sum of squares errors, denoted as least squares.

The major steps carried out to train SQL queries in ANN using back

propagation for each pattern in the learning set is as follows (Kubo and

Shimodaira, 1998; Moradpoor and Naghmeh, 2014):

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 103

Step1 : Input the learning vector as an input to the network.

Step 2: Evaluate the output value of each element for all layer

using the formula

 () (∑ ()

) (5.1)

Step3: Evaluate error value for the output layers with the support of

the formulae

 () = ()(). (5.2)

Step 4: Evaluate sum-of-squares errors ƹ from

ƹ

∑ ()

 ... (5.3)

Step 5: Perform the back – propagation of output layer error to the

elements of hidden layers by calculating their errors from

 () (∑ () ()

 (5.4)

Step 6: Update the weights of all elements between output and hidden layers

and then between all hidden layers moving towards the input layers.

Change of the weight can be obtained from

 () .. (5.5)

Repeat step 1 to step 6 until satisfactory minimum of complete error

function is achieved.

Chapter 5

104 Faculty of Technology, Cochin University of Science and Technology

 ∑

∑∑()

The symbols used in the above equation with its description are given in

Table5.1

Table 5.1 Symbols and description

Symbols Description

P Number of learning pattern

µ Index of actual learning pattern = 1,…,P

M Index of actual layers m= 1,…,M

N
m

 Number of elements in layer m

J Index of actual element j= 1,…,Nm

𝛗𝐣 Weighted sum of input values for element j in layer µ

𝒇 Activation function

𝒘𝒋𝒊
 Weight between element j in layer m and element I in

layer m-1

𝒖𝒊() Output of element I in layer m-1 for pattern µ

𝝏 Learning error for element j for pattern µ

𝒚𝒋 Expected network output value for element j for

pattern µ

𝒚𝒋 Actual network output value for element j for pattern µ

 µ 𝒘𝒋𝒊 Change of given weight for pattern µ

𝛈 Proportion coefficient

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 105

5.2.4 Template Store

The template store has BP-NN trained ideal model, which is available

for the API for further mapping and reconstruction of queries. We redirect

only the authenticated user queries for reconstruction and check these

queries against the legal queries trained and stored in the template store.

Chapter 4 deals with the details of template store.

5.2.5 Template Mapper

The Template mapper component retrieves the legal query from

template store. The API requires a model template against which we match

the dynamic query. In this proposed approach, we create a model file from

the training set, and we validate every user query against this model. The

template mapper component identifies and locates the model template. If the

mapper does not find the appropriate file, there will be incidents of false

positives and false negatives.

5.2.6 Template Translation

We translate the dynamic queries to specific pattern matching with

the model template storage format and template specification. With the

support of „REGEX pattern matching and model checking techniques‟,the

user query is translated into the similar format of BP-NN trained model

query template format for further validation and reconstruction in the later

stage (Mukkamala and Sung, 2002; Johari and Pankaj, 2012). The

SQLIAShield, a jar file, will speed up the performance by identifying and

specifying the path of SQL statement on each page of the web application.

Chapter 5

106 Faculty of Technology, Cochin University of Science and Technology

5.2.7 SQL Reconstruction

It is a process performed by the SQL-Reconstruction component, to

reconstruct dynamic queries from the authenticated user. During the query

reconstruction, the component extracts the complex query as independent

subqueries and evaluation is performed only on the separate subqueries. The

proposed procedure validates each dynamic query against the trained model

template, to detect injection and to reconstruct the required queries from the

authenticated user. Table 5.6 shows the reconstruction algorithm (RaAuQ).

Reconstruction process takes care of the special task of re-establishing lost

portions of the actual query and removing injected part of the query. Using

the proposed method, we achieve high accuracy of detection without much

loss of efficiency.

5.2.8 SQLIA Detection Engine

SQL Injection Attack (SQLIA) detection engine invokes the

matching process against the trained data model from the template

repository. The detection engine generates the status report, and it directs

the benign queries to the database server for further process. While

matching it with the trained model, if the engine identifies a malicious

entry in the incoming queries, and if the query is from an authenticated

user then the malicious query is redirected to the reconstruction module to

be reconstructed. The reconstructed query will be tested again with the

mapper and then to the SQL translation process for a further process

(Zhang and Hsu, 2011; Dharam and Sajjan, 2012). Instead of the Neural

network trained model, we can make use of the query model developed

using the web crawler and mapping procedures.

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 107

5.3 Regular Expression and Comparison for Pattern Matching

in SQL Statement

A regular expression is a powerful tool that gives a concise and

flexible way to identify strings of text based on patterns. It can search for

any string such as email, IP address or anything that has a pattern. It is

widely used in all programming languages to databases and uses its

syntax that can be interpreted by a regular expression processor. It is not

limited to the usual pattern such as „%‟ or „(-)‟ but includes more meta

characters to have a flexible pattern (Godefroid and Molnar, 2008; Das

and Bhattacharyya, 2010). We use regular expressions to search for

complex patterns, but it must be managed carefully. REGEXP handles

meta- characters and literals separately during the search function. The

primary task performed by the regular expression and pattern matching

are:

 Check whether the given sequence is matching with the given

pattern

 Replace the subsequence with the alternatives provided in the

specific pattern

 Check the occurrence and position of the subsequence in each

sequence.

Chapter 5

108 Faculty of Technology, Cochin University of Science and Technology

The meta-characters such as: +, ? , *{m}, \, ^, \n etc. identified are

used for searching the pattern. Table 5.2 displays the meta characters used

and REGEX format and its description.

Table 5.2 List of Metacharacters used in REGEX

Meta character used Description

^ Matches the position at the beginning of the string

[….] Matches specified character within the bracket

$ Matches the position at the end of the searched string

* Matches the preceding characters 0 or more times

{n} Matches n number of the preceding characters

[\t\r\n] Regular expression for line breaks

--[^\r\n]* Single line comments begins and continue the match

0 or more times until return character or new line

character found braking the match

/*[\w\W}*?(?=*/)*/ Multiple line comment REGEXP

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 109

Table 5.3 List of functions for string comparison

Type of Functions Sample functions

Numeric Functions ABS,ACOS,ASIN,EXP,LOG,MOD,POWER,ROUND,SQRT

Character Functions

Returning Character

Values

CHR, CONTACT,LOWER,NLS-INITCAP,NLS_UPPER

REGEXP-REPLACE, REGEXP_SUBSTR, REPLCE,

TRIM

NLS Character

Functions

NLS-CHARSET_DECL-

LEN,NLS_CHARSET_ID,NLS_CHAESET_NAME

Datetime Functions

ADD_MONTHS,CURRENT_DATE,CURRENT_TIMEST

AMP,DBTIMEZONE,EXTRACT,FROM-TZ, LAST_DAY,

NEW_TIME,LAST_DAY,NUMTODSINTERVAL,ROUND

General Comparison

Functions

GREATEST,LEAST

Conversion

Functions

ASCIISTR,BIN_TO-NUM,CAST,COMPOSE,CONVERT,

DECOMPOSE,RAWTOHEX,NUMTODINTERVAL,

ROWIDTONHEX, ROWIDTONCHAR,TO-

BINARY_FLOAT,

TO_YMINTERVAL UNISTR.

Large Object

Functions

BFILENAME, EMPTY_BLOB,EMPTY_CLOB

Collection Functions CARDINALITY, COLLECT, POWERMULTISET,

CARDINALITY, SET.

Encoding and

Decoding Functions

DECODE,DUMP,ORA-HARSH,VSIZE

NULL-Related

Functions

COALESCE,LENVL,NULLIF,NVL,NVL2

Aggregate Functions

AVG,COLLECT,CORR,COUNT,COVAR-

POP,FIRST,GROUP_ID,GROUP_ID,LAST,MAX,MEDIA

N,

MIN,PERCENTILE_CONT

Analytic Functions CORR,COUNT,LAG,LAST,LEAD,PERCENT_RANK,RO

W_NUMBER

Object Reference

Functions

DEREF,MAKE-REF,REF,REFTOHEX,VALUE

Chapter 5

110 Faculty of Technology, Cochin University of Science and Technology

Table 5.4 shows some of the basic string matching functions with

SQL Regular expression.

Table 5.4 Basic functions with SQL Regular expression

REGEXP Description

REGEXP_LIKE Searches a character column within a pattern.

Syntax:(source_string, pattern, match-parameters)

REWGEXP_REPLACE Searches a character column within a pattern and

replace the occurrence with the specified pattern.

Syntax: (Source, pattern[,replace[,position[,occurrence

[,match_parameter]]]])

REGEXP_INSTR Searches for an occurrence of a string in the pattern

Syntax: (Source, pattern[,starting at M[,the Nth

occurrence[,return_option[,match_parameter]]]]])

REGEXP_SUBSTR Return the substring, which matches the regular

expression.

Syntax: (Source, pattern [,position[,occurrence

[,match_parameter]]])

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 111

In Table 5.5, the model construction functions and descriptions with

MLT-DR are explained.

Table 5.5 Model constructors in MLT-DR

Constructor/Function Description

SQLRejuvenate(String

standardSqlString)

A constructor to initialize the standard SQL

string

SQLRejuvenate(String

standardSqlString, String[]

regularExpression)

A constructor to initialize the standard SQL

string and array of regular expressions for

inputs

SQLRejuvenate(File

trainingDataSetfile, String[]

regularExpression)

A constructor to initializes the standard SQL

string that is created from training data and

array of regular expressions for inputs.

detectSQLIA(String

inputSqlString)

A function which detects the SQL injection

and returns true if found

validateNoOfIndependentOrSub

Queries(String inputSqlString)

A function which checks the number of

independent or sub-queries. Returns true if no

injection is found.

validateQuerytype(String

inputSqlString)

A function which checks query type in the

order they appear.Returns true if no injection is

found

validateUsedTables(String

inputSqlString)

A function which checks used tables in the

order they appear.Returns true if no injection is

found

validateColumns(String

inputSqlString)

A function which checks columns in the order

they appear.Returns true if no injection found

validateSystemVariables(String

inputSqlString)

A function which checks system variables in

the order they appear. Returns true if no

injection is found

Table 5.5 continued….

Chapter 5

112 Faculty of Technology, Cochin University of Science and Technology

validateGlobalVariables(String

inputSqlString)

A function which checks global variable in the

order they appear. Returns true if no injection

is found

validateFunctions(String

inputSqlString)

A function which checks aggregate or built-in

SQL functions in the order they appear.

Returns true if no injection is found

validateJoins(String

inputSqlString)

A function which checks joins in the order

they appear.

Returns true if no injection is found

validateSpecialSymbols(String

inputSqlString)

A function which checks special symbols the

order they appear. Returns true if no injection

is found

validateOperators(String

inputSqlString)

A function, checks operators used in the order

they appear. Returns true if no injection is

found

validateCommentSymbols(Strin

g inputSqlString)

A function which checks comment symbols in

the order they appear. Returns true if no

injection is found.

validateKeywords(String

inputSqlString)

A function which checks keywords in the

order they appear. Returns true if no injection

is found.

setInputFields(String[]

regularExpression)

A function sets regular expression for each

input field in the order they appear.

validateAllInput(String

inputSqlString)

A function which checks input field values

with regular expressions. Returns true if all

inputs are valid.

DetectSQLIAWithReconstructi

on (String inputSqlString)

A function which detects SQL injection and

returns reconstructed query with valid input

values if any injection is found.

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 113

5.4 Model Construction Algorithm

Rejuvenation technique/procedure has the primary objective of

reconstructing the query as per the application requirement with the

support of a template matching and the model construction algorithm.

Most of the research works are focusing on the detection and prevention of

malicious queries only; there is not enough work on reconstruction

aspects. There are many tools and techniques available to block injected

queries, but none of the methods concentrate on the reconstruction of

queries from the authenticated users. In this work, there is a module with

an appropriate procedure, proposed for reconstructing the authenticated

user queries which will reduce the denial of service attacks and increase

the system availability for the authenticated user to access the backend

database server. The reconstructed queries are validated again by the

detection system, and only benign queries can access information from the

database server.

In SQL Rejuvenation technique each user query/SQL statement is

validated based on the Number of subqueries, Number of tables and

fields/keywords/tokens and classified them according to the criteria or

evaluation procedure of Token extractor or with the policies of Neural

network based trained query model. It can evaluate each input query by

mapping it against the specification template or with the trained data

implemented on the Application Program Interface (API).

Chapter 5

114 Faculty of Technology, Cochin University of Science and Technology

5.4.1 Reconstruction Algorithm

This framework facilitates reconstruction of queries from authenticated

users, irrespective of the underlying database. As a prerequisite of

reconstruction procedure, we validate each query with authentication

credentials of the user and, if it is from an authenticated user then the query

is labelled as” reconstruction required”. Then we redirect the query with

reconstruction-required labels to the reconstruction procedure. The

remaining queries with invalid authentication details can be logged in for

model implementation and pattern matching process in the training stage.

The Query Reconstruction module in the NNbR reconstructs the queries by

eliminating injections and also rebuilding missing portions, if any, and

removing injected part of the user query which will increase the system

availability. Table 5.6 shows the Reconstruction Algorithm of Authenticated

User Queries (RaAuQ). Here, if the algorithm detects the input query with

injection (additional character/string) and the query is raised from an

authenticated user, then it is diverted for reconstruction. Reconstruction

algorithm has the main objective of reconstructing the query with the

support of a template matching using a regular expression. In SQL

rejuvenation/reconstruction technique each user query/SQL statement is

validated based on the number of subqueries, number of tables and

fields/keywords/tokens and classified according to the criteria or evaluation

procedure of the policies of neural network based trained query model. It

can evaluate each input query by mapping it against the trained standard

query.

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 115

Table 5.6 Reconstruction Algorithm of Authenticated user Queries (RaAuQ)

Reconstruction Algorithm of Authenticated user Queries (RaAuQ)

Input: Malicious input token , SQTC(legal query token), Regex functions

Output: Reconstructed queries

Procedure Reconstruction(Iq,Sq)

Begin

Sq ← Standard query

Iq ← Input query

Regexp[] ← Regexp(Sq)

Sq- List[] ← Get query-spliter(Sq) // parser split Sq based on the input

field

Iq- List[] ← Get input-extractor(Iq, sq-list)

 For i = 1 to length(lq-List)

 If Sq- List[i] == Iq- List[i] // validate Iq with regular expression

 Valid-input[i] ← Iq- List[i]

 Else

 Valid-input[i] ← Null;

 Endif

 Next

 For i = 1to length(Sq-List-1)

 Rejuvenate-Iq = Sq-List[i] + Valid-Input[i];

 Next

End

Chapter 5

116 Faculty of Technology, Cochin University of Science and Technology

If the malicious user queries are detected at first level (Case I): then

we assign each valid token to a regular expression. Tokens of injected query

are matched with valid tokens of the model for detection of injected string

and assigned a null value or clear the content of the injected portion

(additional strings/ characters are removed). Then the token is considered as

the reconstructed token and is compared with the model token to recheck

and prove that the token of injected query and token from the model query

are equal and there are no more injected or additional field with the input

query, which is considered as the query without injected fields. If the input

query (complex queries) is required to undergo a multilevel detection

procedure (Case II): then invoke tree traversal algorithm to split the

complex query into independent queries. Invoke Reconstruction(R-Iq)

algorithm for each independent query. Repeat the procedure for each

independent query separately and perform reconstruction procedure.

5.5 Experimental Result of Reconstruction Procedure

We verify the authentication of the user credentials and the privileges

by the fully automated procedure implemented at the proxy server during

the training phase. The „Authentication ID‟, Username, Password, User

Type, User Status, etc. of each authenticated user are collected and stored. If

the query is originated from a user who is having appropriate authentication,

then the query will be sent to NNbR module, and the required rejuvenation

or reconstruction procedure is carried out. The report displays several

benign queries, dynamic (malicious) queries and its reconstructed queries.

For example, consider the dynamic query: -insert into login (Username,

Password, User_Type, User_Status) values („student2@mail.com‟; drop

The Reconstruction Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 117

table login - -,„Student2@123‟,‟Student‟,‟Active‟). Here “drop table login - -

“; is the injected portion of the query which has to be removed or replaced

with a null value. So, the reconstruction algorithm rejuvenates the malicious

query and converts it into a benign query. The status report in Figure 5.4

shows the empirical analysis of NNbR module, and the highlighted portion

„drop table login- -„ is the injected part.

Fig. 5.4 Status report of NNbR module with a reconstructed query

5.6 Summary of the Chapter

There are many tools and techniques available to block the queries,

but none of the techniques concentrate on the reconstruction of queries from

the authenticated users. In this proposed work there is strong model,

designed for reconstructing the authenticated user queries, supported with

authentication procedure which will reduce the denial of service attack and

increase the system availability for the authenticated user to access the

Chapter 5

118 Faculty of Technology, Cochin University of Science and Technology

backend database server. The suggested model is an ideal solution for query

reconstruction. The proposed reconstruction component will reconstruct the

query with the support of regular expression, rather than just rejecting the

query. In this approach, reconstructed queries are again diverted to the

detection module for comparison and are reconsidered it for further access

to the database server.

…..…..

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 119

CChhaapptteerr 66		

PROTOTYPE	IMPLEMENTATION	OF	MULTI	
LEVEL	TEMPLATE	BASED	DETECTION	AND	
RECONSTRUCTION	(MLT‐DR)	FRAMEWORK		

6.1 System Architecture of the Prototype, MLT-DR
6.2 MLT-DR Training Phase
6.3 Learning Phase of Back Propagated Neural Network Learned

Model
6.4 Testing Phase of MLT-DR
6.5 Summary of the Chapter

The proposed prototype multilevel template based Detection and
Reconstruction (MLT-DR), is developed and implemented using Java based
application software and MySQL as back-end database server. It is based
on the query model and requires access to the queries passed between the
server and databases. Web crawler functionality is implemented in the web
application, to identify the hot spot or form field identification of user input
Queries and to make a template model for the detection framework. The
captured queries are parsed or split into different tokens and stored in a
template repository like the data structure server. Malicious queries are
logged in and documented for developing the anomaly pattern to have stronger
detection model in the later stage for handling the zero-day vulnerability.

C
on

te
nt

s

Chapter 6

120 Faculty of Technology, Cochin University of Science and Technology

6.1 System Architecture of the Prototype, MLT-DR

The MLT-DR intercept the SQL queries before placing it to the web

server, with the intervention of the proxy server placed at the MLT-DR, and

it allows only benign queries through the web server. Figure 3.1 (Chapter 3)

shows the system architecture of the prototype.

6.2 MLT-DR Training Phase

In this phase, we learn the underlying web application for template

creation for the SQL query. It generates the pre-defined token formats at this

stage. The significant tasks under this stage is:

 Crawler to identify the hotspot or input field

 Standard query template creator (SQTC)

The MLT-DR accept Uniform Resource Locator (URL) of the web

application and user authentication credentials as input and generate many

tokens and a standard query template creator (SQTC) model for the template

matching. We use SQTC as the input for dynamic user query validation at

the run time or testing phase. Authentication details, URL for each web page

are intercepted or captured and analyzed by a proxy server during the

training phase. The SQTC create the Query model, which will be stored in

the repository and later used for dynamic query template mapping.

Figure 6.1 shows the model creation phase or the training phase.

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 121

Fig. 6.1 MLT-DR Prototype in training phase

6.2.1 Identification of Hot Spot/ form Field Entry in the Web Pages

A custom-made crawler is deployed /implemented to browse through

the underlying web application to identify the user entry/input field on each

web page. Each input field, which can be the vulnerable point, can be filled

with appropriate value and submitted. The crawler also keeps track of the

URL and authentication details of the HTTP request. The entire application

is crawled to record all the input entry fields in each web page without any

missing entry in the forms, especially the entry fields which are critically

vulnerable based on the type of data requested by that entry field. The

deployed web crawler can identify with much precision, all the hot spots or

the form entry fields required to be filled by the user on each web page.

With the support of the deployed crawler the following benefits can be

achieved: -

 Appropriate validation and constraint checking of each form/

input entry field

 Prioritize the security measures in the critical vulnerable points

within the web application

Chapter 6

122 Faculty of Technology, Cochin University of Science and Technology

For example, Figure 6.2 shows the HTTP request in the form field of login

page (an injected query).

Fig. 6.2 Injected query on the form field of login page

The corresponding SQL Query: SELECT * FROM administrators

WHERE username=Arun ” OR 1=1OR’1’=’1’ AND password =”;

The SQL queries identified during this phase are populated with valid

input entries and submitted to the application after appropriate analysis of

each web page without any missing entries, which increase the accuracy of

the Standard Query Template creator (SQTC) model and decrease the false

positives.

6.2.2 Standard Query Template Creator (SQTC)

We develop the Standard Query Template creator (SQTC) model by

parsing each query into various predefined tokens, and a unique query ID

and template is created and stored in the template repository (a database

structure server) in JSON format. Since we store the template in JSON

format, it will substantially decrease the storage overhead. The identified

query by the crawler with the support of the proxy server should be

tokenized as per the pre-defined tokens designed and developed by

analyzing the schema and grammar of the SQL statements.

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 123

The similar token specification is applicable for the queries submitted

to an Oracle server, MySQL and MS SQL server. In this approach, while

submitting the standard query, it is possible to select any one of the

databases mentioned above servers as there is no difference in SQL query

format in the databases mentioned above.

Table 6.1 lists some of the injected queries and query model learnt.

Table 6.1 Legal queries and Injected queries chosen for BPNN learning

Legal query Injected Query
INSERT INTO
accounts (username,
password,
mysignature)
VALUES ('data',
'data', 'data');

INSERT INTO accounts (username, password,
mysignature) VALUES ('data', 'data', 'data',’test’,(select
version()))-- -);

SELECT
ProductName,
QuantityPerUnit,
UnitPrice
FROM Products
WHERE
ProductName
LIKE'G%';

SELECT ProductName, QuantityPerUnit, UnitPrice
FROM Products WHERE ProductName LIKE'G%'
UNION SELECT UserName, Password, IsAdmin FROM
Users;--

DELETE FROM
users WHERE id=2;

DELETE FROM users WHERE id ='x’; CREATE
TABLE haxor(name varchar(255), mb_free int); INSERT
INTO haxor EXEC master..xp_fixeddrives;--

DELETE FROM
users WHERE id=2;

DELETE FROM users WHERE id ='2' UNION SELECT
name, cast((mb_free) as varchar(10)), 1.0 FROM haxor;--

UPDATE users SET
password='Nicky'
WHERE id=2 and
username='Olivia';

UPDATE users SET password='Nicky' WHERE id=2 and
username='Olivia';
DROP TABLE haxor;CREATE TABLE haxor(line
varchar(255) null); INSERT INTO haxor EXEC
master..xp_cmdshell 'dir /s c:\';--

Table 6.1 continued….

Chapter 6

124 Faculty of Technology, Cochin University of Science and Technology

UPDATE users SET
password='Nicky'
WHERE id=2 and
username='Olivia';

UPDATE users SET password='Nicky' WHERE id=2 and
username='Olivia' UNION SELECT line, '', 1.0 FROM
haxor;--

INSERT INTO
Favourites (UserID,
FriendlyName,
Criteria)
VALUES(123, 'My
Attack','');

INSERT INTO Favourites (UserID, FriendlyName,
Criteria) VALUES(123, 'My Attack','''; DELETE
Orders;--')

SELECT * FROM
Products WHERE
ProductName = 'abc';

SELECT * FROM Products WHERE ProductName = '';
DELETE Orders;--

SELECT * FROM
Products WHERE
ProductName = 'abc';

SELECT * FROM Product WHERE ProductName = '';
SHUTDOWN WITH NOWAIT;--

UPDATE users SET
password='Nicky'
WHERE id=2 and
username='Olivia';

UPDATE users SET password='Nicky' WHERE id=2 or
1=1 and username='Olivia’;

UPDATE users SET
password='Nicky'
WHERE id=2 and
username='Olivia';

UPDATE users SET password='Nicky' WHERE id=’’ or
1=1 -- username='’;

INSERT INTO users
(username,password)
VALUES('jack','');

INSERT INTO users (username,password)
VALUES('jack','123’,(UPDATE user SET
password=’123’ WHERE username=’abc’;--));

INSERT INTO users
(username,password)
VALUES('jack','');

INSERT INTO users (username,password)
VALUES('jack','123’,(Exec(char(0x73687574646f776e));-
-);

INSERT INTO users
(username,password)
VALUES('jack','');

INSERT INTO users (username,password)
VALUES('jack','123’,(INSERT INTO Login(id,pass)
VALUES (‘2’,’A12’);--);

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 125

For example the SQL query identified by the crawler to be tokenized is:

SELECT COUNT (*) from review where review_authors= ”madbob”;

The MLT-DR prototype split into the tokens as shown in the

following screenshot. Figure 6.3 shows the unique template ID and template

in JSON format.

Fig. 6.3 The unique template ID and template in JSON format

Chapter 6

126 Faculty of Technology, Cochin University of Science and Technology

Similarly, for all the input entries/SQL statements in the web

application are identified by crawling through the entire application and the

Unique ID for each query with the corresponding template format is

generated and stored in the database structure server/the template repository.

Figure 6.4 shows the generated unique ID for one of the identified web

application for testing.

Fig. 6.4 The generated unique ID for one of the identified web application

Algorithm for Query Template Creation (QTC) is supporting the

following major task of assigning ID ← get SQL_ query(), Templat

e(ID)←get JSON format(ID) and QTC← get-ID(). The query ID’s, which is

identified and listed corresponding to each web page is stored in the

template repository and used in the testing phase.

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 127

6.3 Learning Phase of Back Propagated Neural Network
Learned Model
The reconstruction module has two options for generating the standard

model. It can either make use of an SQTC application or a neural network

based trained query model. The learning phase of SQTC model is already

explained in the previous section. The learning phase of neural network

based model also takes all the form field in response to the actual user inputs

extracted by the crawler and set of SQL queries are collected from the URL

of each webpage. We use the generated list of attack signature as input for

the back propagated learning procedure. Each collected query is identified

with an attack signature. Table 6.2 shows some of the identified attack

vectors and signatures.

Table 6.2 Identified attack vectors and signatures

Vectors SQL injection attack signature

v0 ‘

v1 or

v2 =

v3 like

v4 select

v5 covert

v6 int

v7 char

v8 varchar
.. ...

v30 Rot13 ()

v31 *

Chapter 6

128 Faculty of Technology, Cochin University of Science and Technology

The Ideal Standard query model corresponding to each page of the

web application, which is learned using a back-propagated artificial neural

network (details are in Chapter 5) is parsed and stored in the template

repository. The legal SQL model is closely monitored to validate the

constraint used. The constraints are the Data type used the type of value it

can hold and the length of the token.

6.4 Testing Phase of MLT-DR

The testing phase of MLT-DR consists of the following major

components for detecting the SQL injection attack: -

 Template generator/parser for user input query

 The Model mapper

 SQL Injection Attack Detection Engine

 Reconstruction component

Fig. 6.5 MLT-DR Prototype in testing phase

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 129

6.4.1 Template Generator/Parser for User Input Query

In the testing phase of the MLT-DR framework, the template

generator or parser / split the user queries accepted through the web pages.

We perform splitting of the queries by invoking the template creator

procedure of Standard Query Template Creator (SQTC). The parser

generates the tokens for the user input query, and the generated/parsed

tokens are in the similar format of the standard query tokens. The query is

split into tokens by separating tokens such as Query type, Tables, Function,

Special symbol, Comment Operator, Columns, Joins, S/m variable, Global

variable, Keyword and Subquery (Buehrer and Sivilotti, 2005).

6.4.2 The Model Mapper

The primary task of the model mapper is to locate and retrieve the

valid unique ID and template of the SQL query from the template

repository, corresponding to the form field entry of the dynamic user

queries. We store the legal query model with unique ID and the templates

in the repository/ data structure server during the training phase. To have a

faster access and retrieval of the appropriate query and to have better

performance, we deploy an SQLIA-Shield (JAR file) with this framework.

For example, the SQLIA-Shield for accepting user input through the login

form can be specified by the path specification as shown in Table 6.3.

Table 6.3 Embedding a Template-ID in a SQLIA-Shield

SQLIAShield("D:\\SQLIAConfig\\Template\\st_fdb52977-8288-4a7f-82e0-

1b9c23e9a3d4.txt", "D:\\SQLIAConfig\\Output");

Chapter 6

130 Faculty of Technology, Cochin University of Science and Technology

There can be SQLIAShield/ JAR file for each page and each legal

query ID and, location/path can be specified as shown above on the login

page. We invoke a template mapper algorithm at this stage for mapping the

parsed dynamic user queries with the legal query model against Code

Injection attack. Figure 6.6 shows the identified standard and Input Query

ID for mapping & JSON format.

Fig. 6.6 Identified Query ID for mapping & JSON format

6.4.3 SQL Injection Attack Detection Engine

SQL injection attacks are detected by matching the parsed user input

query against the legal query model developed during the training phase.

Detection engine gives status message by displaying the exact token and

signature of the attack string. Each attack string is a clear indicator of the

type/category of attack (Nguyen and Evans, 2005). The MLT-DR

framework also makes use of a back-propagated Neural Network (BPNN)

for constructing the legal query model. The user input queries are also

matched against this BPN learnt model to detect the injection attack. If user

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 131

query input through the form field is not a complex query, then the detection

engine displays the message as first level detection. In the case of a complex

query, the detection engine has to repeat the procedure, and the detection is

possible in the second level. Figure 6.8 shows a sample evaluation result of

the prototype tool TbD. The dynamic query is chosen as SELECT name,

phone from customers where id = 1 UNION all select creditcardnumber,1

from creditcard table. The SQL Token mapper algorithm checks the match

between the dynamic query and the standard query. An exact match is found

on the token such as many Independent queries, System variable, Global

variables, Joins and Comment symbols. But there is no match on the tokens

such as Tables, Special symbols, Operators. So, the injection is detected and

is displayed as shown in Figure 6.7. Since the above dynamic query had no

sub-queries, the procedure is not repeated, and so it is a first level detection.

The detection process of complex queries with multiple sub-queries is

carried out by repeating the detection procedure for the second time, and

then the detection engine displays the result as “second level detection”

based on the validation requirement of the queries in the given application

(Mui and Frankl, 2010). Figure 6.7 shows the matched result by the

detection engine using Standard Query Template Creator (SQTC) for a

simple query of first level detection and mapping of user input query and the

Standard query template ID of the SQTC model.

Chapter 6

132 Faculty of Technology, Cochin University of Science and Technology

Fig. 6.7 Evaluation result of the prototype tool TbD

6.4.4 Reconstruction Component

In the proposed MLT-DR framework, reconstruction of queries are

carried out by comparing the user input queries with SQTC or BPNN learnt

legal model and later with the support of REGEX function. The identified

Prototype Implementation of Multi Level Template Based Detection and Reconstruction (MLT-DR) Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 133

malicious strings or substrings can be either eliminated or replaced. We

invoke the reconstruction procedure and the model construction

algorithm only when the HTTP request is re-confirmed that the malicious

query is from an authenticated /registered user (Muthuprasana and

Kothari, 2006). Figure 6.8 shows the status reports of the reconstruction

procedure with several benign queries, dynamic (malicious) queries and its

reconstructed queries. For example, consider the dynamic query: -insert into

login (Username, Password, User Type, and User Status) values

(‘student2@mail.com’; drop table login - -, ‘Student2@123’, ’Student’,

’Active’). Here “drop table login - -“; is the injected portion of the query

which has to be removed or replaced with a null value. So, the reconstruction

algorithm rejuvenates the malicious query and converts it into a benign

query (Stolcke and Omohundro, 1993; Shi and Lin, 2012).

Fig. 6.8 Status report - Reconstruction procedure in MLT-DR framework

Chapter 6

134 Faculty of Technology, Cochin University of Science and Technology

6.5 Summary of the Chapter

The implementation phase of the MLT-DR prototype has two primary

tasks of learning the system properly with required details and tests it with

an appropriate resource with user credentials. The prototype is implemented

using Java-based NetBeans IDE and MySQL as the backend server. The

empirical evaluation of the system shows that using this prototype, an

efficient detection and blocking of SQL injection attack is possible. This

chapter also explains the reconstruction of authenticated queries with the

support of REGEX functionality. The reconstruction functionality included

with this prototype increase the system availability and mitigates the Denial

of service attack at a certain level. The deployed SQLIA-shield (JAR file)

with appropriate path specification is beneficial for faster retrieval of

template ID, corresponding to each SQL statement. The deployed prototype

has better performance and reduced time-space complexity.

….. …..

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 135

CChhaapptteerr 77

PERFORMANCE EVALUATION OF
MLT-DR FRAMEWORK

7.1 Testing Hypothesis
7.2 Data Set Used for Testing MLT-DR
7.3 Performance Measures of MLT-DR
7.4 Type I & Type II Error
7.5 Receiver Operating Characteristic (ROC) Curve
7.6 Storage Overhead & Processing Time for Detection
7.7 Comparison of MLT-DR with Other Models
7.8 Summary of the Chapter

This chapter deals with various applications considered for evaluating the

prototype and, effectiveness of the proposed framework. The proposed multilevel

template based Detection and Reconstruction (MLT-DR) prototype is developed

and implemented using Java based application software and MySQL as back-end

database server. We deploy the Standard Query Template constructor (SQTC) in a

data structure server or the template repository. A Relational database server is

placed at the backend to capture and execute the queries in SQL schema. The

prototype is designed and developed for window based operating system. Since we

store the Query template in JSON format, it decreases the storage overhead and to

reduce the run time overhead. We assign an SQLIA-shield (JAR file) to each web

page with appropriate path specification for the corresponding SQL statement

given in the web application. Various attack categories of queries were analyzed to

get the feasible structure of the required learnt SQL model using Back-Propagated

Neural Network (BPNN). All types of SQL Injection attacks are effectively detected

and blocked by the implementation of MLT-DR. Apart from evaluating the

prototype with the various standard applications and Cheatsheet, a customized

school management application is exclusively developed to test the effectiveness

and efficiency of the MLT-DR prototype.

C
o

n
te

n
ts

Chapter 7

136 Faculty of Technology, Cochin University of Science and Technology

7.1 Testing Hypothesis

Performance evaluation of the prototype, MLT-DR is carried out by

justifying or answering the following research questions:

Q1: What is the percentage of attacks the proposed prototype is going to

handle?

Q2. What percentage of injected code bypasses the MLT-DR, detection

mechanism?

Q3. Does the prototype, impose any overhead on the underlying application?

 It should answer the following sub-questions:

Q3.1 If there is overhead incurred, what is the percentage of overhead?

Q3.2 Is the overhead imposed on the system negligible, while considering

the fact that the Protection/ Security of database server has the highest

priority than the delay involved in accessing the system?

Q4: Is there any occurrence of false positives or false negatives, while

testing the prototype with empirical dataset collected?

Q5: How do you prove that MLT-DR is an efficient approach to detect

and block code injection vulnerabilities as compared to the currently

available countermeasures against SQLIA?

The empirical analysis carried out on various test bed and the test

result of injection attacks shows that the proposed framework can justify all

the above research queries. This proves that MLT-DR is much better and an

effective approach in handling code injection security vulnerability as

compared with the currently available countermeasures against SQL

injection attacks. We evaluate the performance of the proposed model by

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 137

considering the factors such as process time overhead imposed on query

execution, efficiency, effectiveness and precision.

7.2 Data Set Used for Testing MLT-DR

We evaluate the MLT-DR prototype by using three different data sets

collected from several standard open test suites, known vulnerability testing

sites and cheat sheets/URL after conducting a detailed survey.

7.2.1 Dataset I: Data Available from Cheat Sheets/ URL

Table 7.1 shows the data collected from the cheat sheet/URL. The

table also represents the application details, number of attack requested

listed in the application and the details about the successful detection with

corresponding false positives.

Table 7.1 Data collected from the cheat sheet/URL

Cheat sheet/URL
Attack

Request

Successful

Detection

False

Positives

Schoolmate 26 26 0

Webchess 32 32 0

Faqforge 21 21 0

EVE 22 22 0

Geccbblite 32 32 0

http://groups.csail.mit.edu/pag/ardilla/ 48 48 0

http://pentestmonkey.net/cheat-

sheet/sql-injection/oracle-sql-injection-

cheat-sheet

35

35

0

7.2.2 The extract of Malicious Queries From URL

Table 7.2 shows the SQL injection attacks reported by various

applications’ URL. We test the listed queries with MLT-D frame work and

detection status indicates that the “injection attack detected successfully”.

http://groups.csail.mit.edu/pag/ardilla/
http://groups.csail.mit.edu/pag/ardilla/
http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet
http://pentestmonkey.net/cheat-sheet/sql-injection/oracle-sql-injection-cheat-sheet

Chapter 7

138 Faculty of Technology, Cochin University of Science and Technology

Table 7.2 Sample vulnerability report with MLT-D detection status “Yes”

Application(URL) Original Query Injected Query

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/SymSch

oolmate/index.php

select password from users

where username = "1"

select password from

users where username =

"junk" or 1=1 -- "

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/SymSch

oolmate/index.php

UPDATE courses SET aperc =

'', bperc = '', cperc = '', dperc =

'', fperc = '' WHERE courseid

= '1'

UPDATE courses SET

aperc = '', bperc = '', cperc

= '', dperc = '', fperc = ''

WHERE courseid = 'junk'

or 1=1 -- '

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/WebChe

ss_0.9.0/mainmenu.php

SELECT * FROM players

WHERE nick = '1' AND

password = ''

SELECT * FROM

players WHERE nick =

'junk' or 1=1 -- ' AND

password = ''

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/WebChe

ss_0.9.0/mainmenu.php

SELECT * FROM pieces

WHERE gameID = 1

SELECT * FROM pieces

WHERE gameID = 5 or

1=1 --

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/faqforge-

1.3.2/ index.php

SELECT * FROM Faq

WHERE context = '1'

SELECT * FROM Faq

WHERE context = 'junk'

or 1=1 -- '

home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/EVE/eve

active/edit.php

SELECT MemberID,

 Name, Division,

Date Joined, RankCorp,

Vacation, Comment,

 Deleted FROM

 MembersMain WHERE

 MemberID='1'

SELECT MemberID,

Name, Division,

DateJoined, RankCorp,

Vacation, Comment,

Deleted FROM Members

Main WHERE

 Member ID='junk' or

1=1 -'

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/geccBBli

te/leggi.php

SELECT * FROM

geccBB_forum WHERE id=1

SELECT * FROM

geccBB_forum WHERE

id=5 or 1=1 --

/home/jars/eclipse-

workspace/ardilla/experimen

ts/subjectPrograms/geccBBli

te/leggi.php

SELECT id,rispostadel FROM

geccBB_forum WHERE id=1

SELECT id,rispostadel

FROM geccBB_forum

WHERE id=5 or 1=1 --

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 139

7.2.3 Dataset II: Standard Test Suite Provided by Halfond and Orso

To evaluate the MLT-DR prototype, we identify the following

applications from the test suite provided by Halfond and Orso, a standard

test suite used for evaluating the prototype tool AMENSIA. We use a

relational database as the backend server for the below-mentioned

applications. Table 7.3 shows the identified application and number of

hotspots identified in each application.

Table 7.3 The Identified application with hotspots

Application Description # Hotspots

Book store Online book store 25

Events Event tracking system 12

Employee Directory Online Employee directory 10

Table 7.4 clearly indicates the number of forms identified in each

application and out of which how many forms are expected to be vulnerable

is also clearly indicated. The table also shows the detected vulnerable forms

along with false positive and false negative incidents. In each of the

identified web forms, there can be multiple hotspots which are susceptible.

Almost 25 form fields are vulnerable in Book store, 12 in Events application

and 10 in Employee directory application.

Chapter 7

140 Faculty of Technology, Cochin University of Science and Technology

Table 7.4 Test result showing the effectiveness of MLT-DR

Application #Forms
Expected

Vuln_forms

Detected

Vuln_forms

F_Positive

F_Negative

Book Store 25 21 20 1 1

Events 12 8 8 0 0

EmployeeDirectory 10 7 6 1 0

Vuln_forms: Vulnerable forms ; Positive: False positive; Negative: False

Negative

Fig.7.1 Test result showing the effectiveness of MLT-DR

The analysis from the above table shows that in Book store and

Employee directory applications, there is one of each vulnerable form,

which is not detected correctly and skipped by the web crawler application.

The expected vulnerable forms could not be identified correctly during the

training phase. Because of this inaccurate crawling functionality employed

in the application, the proxy server functionality at the MLT-DR prototype

25

12
10

21

8
7

20

8
6

1
0

1 1
0 0

0

5

10

15

20

25

30

Book Store Events Emp directory

Vulnerability report

Formentry Req

Expect_Vul

Detec_Vul

F_positive

F-Negative

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 141

could not block the malicious entry, and it bypasses or skips the model

checking and mapping procedure. Hence, there is an incidence of false

positives and false negatives. We can avoid such occurrences if the crawler

can identify the vulnerable forms with a better accuracy or with a perfect

detection procedure. By considering the above strategies, the detection rate

of the prototype on SQL Injection query is 95.66%, which is the best result

in comparison with other models.

7.2.4 Dataset III: Customized School Connect System

The School Econnect web application developed exclusively for

testing the prototype can handle the following sub-applications/ modules

such as E-learning portal for students, Employee directory for the teaching

and support staff, online resource management system and event planner for

the school activities. Table 7.5 shows the identified hotspots, expected

attacks, detected attacks and the corresponding false positive rates.

Table 7.5 School connect with attack detection details

Application Description
Hotspot

Identified

Expected

attack

Detected

attack

False

positives

E-portal E-learning portal 23 18 18 0

Emp-directory

Employee

management

14

10

9

1

Online-

Resource

Online Resource

27

22

22

0

Event-planner Management system

Event planning

system

18 12 11 0

Chapter 7

142 Faculty of Technology, Cochin University of Science and Technology

Fig. 7.2 SchoolEconnect with attack detection details

The above details reported in Table 7.5 indicate that there is only one

attack bypassed in the employee directory due to the inappropriate

authentication credentials registered and stored in the database server, which

has blocked the mapper functionality of the MLT-DR framework. Event

planner application has a drawback of handling the time and date function. We

can quickly rectify it, and with this patching up, 100% detection is possible.

7.3 Performance Measures of MLT-DR

We can assess the performance of the proposed model by considering

the time overhead or process delay imposed on the prototype at runtime.

JSON data at the database level is a valid technique to simplify the data

resource implementation cost such as configuration, table handling,

filtering, and dynamic query processing. JSON is a logic implementation

closer to the database level and simple data storage design. The factors such

as efficiency, effectiveness and precision are the base for the evaluation of

the proposed model.

23

14

27

18 18

10

22

12

18

9

22

11

0 1 0 0
0

5

10

15

20

25

30

E-portal Emp directory Online

Resource

Event planner

Detection details

Hot spots

Expect-attack

Detected-attack

F-positive

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 143

7.3.1 Process Time Overhead

The process time overhead is directly related to the rate at which each

web page gets loaded, the number of form fields on each page and the type

of database servers assigned for execution of queries. The performance

metrics measure the average CPU time spent for processing the query. Since

we use JSON format, the storage and retrieval of standard queries in the

MLT-DR model are easier and faster as compared to the other standard

models. The proposed model has a strategy for detecting the queries by

placing them in different attack categories and complexity levels. In most of

the cases the less complex queries can be identified in the first level but the

queries which are complex and require traversing technique to split it into a

smaller format, only need a little longer time for detection, which is the

second level of the procedure. In both cases of simple and complex query

analysis, the time taken for detection is a few seconds, and the

reconstruction of the queries are also carried out with a negligible delay in

response time. Hence the processing time and the overhead involved in

executing the query is negligible when comparing it with the response time

of a browser in accessing the web application.

7.3.2 Efficiency of MLT-DR

There is a secure and insecure version of the SchoolEconnect

application designed, deployed as part of this research work. To understand

the efficiency of the proposed framework we have empirically analyzed the

successful attacks detected as shown in Table 7.6. We test the queries

against the secure and insecure version of the same application designed and

deployed by using Java based application software. The performance

Chapter 7

144 Faculty of Technology, Cochin University of Science and Technology

penalty for the execution of the individual query with the proposed

techniques (secured version) is the processing overhead of the queries

received. The prototype is evaluated with the secured version and insecure

version of the SchoolEconnect application to analyze and identify the

process time overhead. In the secure version, the proxy server with MLT-

DR module is implemented to check and block the malicious or injected

queries, before it reaches to the backend server of the SchoolEconnect.

Table 7.6 Time overhead in SchoolEconnect application

Application
Successful

Detection

Avg. Time

Insecure

Version

Avg. Time

Secure

Version

Overhead

Time

in Sec.

E-portal 32 0.43 0.67 0.24

Emp-directory 63 0.32 0.57 0.25

Online-Resource 45 0.28 0.49 0.21

Event-planner 72 21 0.43 0.26

Fig. 7.3 Test result showing the efficiency of MLT-DR

0.43

0.32
0.28

0.21

0.67

0.57

0.49

0.43

0.24 0.25
0.21

0.26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4

Process time overhead

Avg.time/in-secure

model

Avg.time/ secure model

Overhead time in Sec

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 145

The insecure version of the SchoolEconnect application demonstrates

how the injected queries can bypass the authentication logic, but those

queries are detected and blocked for further execution with the secured

version. The time overhead incurred in query execution of the secure

SchoolEconnect application is 21 to 24 Seconds. It is negligible when

compared with the time taken for loading a page of a web application in the

browser or with the time taken for getting a response from a web

application. The standard response time to get an answer to the query is a

few seconds, which is not a significant overhead and we ignore it.

Therefore, the overhead incurred by deploying the secure MLT-DR is

negligible, and, we ignore the processing delay. The proposed architecture is

complimentary to many of the available models due to faster detection and

low overhead on storage. The model appropriately identifies all the tested

queries, and this proved that the proposed system is highly efficient.

7.3.3 Precision of MLT-DR

Precision measures the rate of false positives. The dataset of legal and

injected query tabulated during the initial stage of the research study, apart

from the dataset from the applications mentioned above are being tested to

understand the precision measure of MLT-DR model. The analysis in

Table 7.7 shows that out of 1655 queries tested, 451 queries belong to

malicious categories, and 1204 queries refer to legal queries. There are only

4 cases of false positives due to the inappropriate authentication credentials

on the test bed used and crawler functionality at the identification of form

entry fields at the training stage of MLT-DR. We patch this in the trial run.

Chapter 7

146 Faculty of Technology, Cochin University of Science and Technology

Table 7.7 Analysis of false positives in General

Identified/tested

Queries

Legal

Queries

Malicious

Queries

Successful

Detection

False

positives

Detection

%

1655 1204 451 1651 4 99.75

Table 7.8 shows the empirical analysis of MLT-DR using multiple

variations of the queries mentioned above tested with the SchoolEconnect

application.

Table 7.8 Analysis of false positives in SchoolEconnect application

Application Queries

Tested

Legal

Queries

(Successful)

Malicious

Queries

(Successful)

False

positives

Detection

rate

E-portal 123 100 23 1 99.18

Emp-

directory
114 80 34 0 100

Online-

Resource

127

90

37

2

98.42

Event-

planner

118 90 28 1 99.15

The above analysis implies that the average detection rate of modules

listed in the SchoolEconnect is 99.19 %, which is a highly recommended

evaluation result.

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 147

Fig.7.4 Precision analysis in SchoolEconnect application

7.3.4 Effectiveness of MLT-DR

We base the effectiveness of the proposed system on the number of

false negatives reported during the empirical analysis. From the collected

queries, 1655 queries were already tested with other techniques and proved

to be malicious queries. The empirical analysis using the proposed method

could also detect all the queries, reported as successful attacks. Data shown

in Table 7.9 indicates that more than 98% detection is possible based on the

occurrence of false negatives and false positives reported.

99.18

100

99.42

99.15

98.6

98.8

99

99.2

99.4

99.6

99.8

100

E-portal Emp-dir Online

Resource

event

planner

Detection rate

Detection rate

Chapter 7

148 Faculty of Technology, Cochin University of Science and Technology

Table 7.9 Attack categories and detection rate in MLT-D

Type of Queries

(Attack categories)

Malicious

queries

Detected

Queries

False

Negatives

False

Positive

Detection

%

Tautology 65 64 0 1 98.46

Union Queries 45 45 0 0 100

Piggy Backed

Queries

92 91 0 1 98.91

Logically Incorrect

Queries

56 56 0 0 100

Stored procedure 78 77 0 1 98.71

Inference 67 66 0 1 98.50

Alternate Code 48 48 0 0 100

The average detection rate from the above analysis is 99.23% which

shows that the effectiveness of the proposed system is rated as the best

approach to the SQL injection detection and blocking.

7.4 Type I & Type II Error

We test the proposed MLT-DR with 1204 legal queries and 451

malicious queries collected from an E-learning module and a Student

Management system (consisting of modules such as course advising,

registration, attendance and transcript management system) of a technical

college. This empirical analysis shown in Figure 7.5 indicates that the MLT-

DR prototype correctly detects all the queries tested with false positive rate

4%, and false negative rate 0%. The above analysis shows that the proposed

framework achieved 100% detection.

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 149

Fig. 7.5 Type I & Type II error rate

7.5 Receiver Operating Characteristic (ROC) Curve

The reconstruction module performs the reconstruction of queries

only if the query is from an authenticated user. The Receiver Operating

Characteristic curve (ROC) shown in Figure 7.6 indicates that the model is

achieving 100% result, which is plotted using the values taken from Emp-

directory application shown in Table 7.8. The Receiver Operating

Characteristic (ROC) curve is plotted between the true positive rate in Y

axis (Sensitivity) and the false positive rate in X axis (specificity). The

sensitivity is the probability that a test result will be positive when the

anomaly is present. The specificity is the probability that a test result will be

negative when the anomaly is not present. The Area Under Curve

(AUC=1.00) equal to 1 indicates that 100%detection rate is achieved in

Emp-directory application

Fig. 7.6 Receiver Operating Characteristic (ROC) curve

0

500

1000

1500

2000

Tested

queries

Successful

Legal

queries

Successful

malicious

queries

False

positive

rate %

False

Negative

rate %

1655
1204

451
4 0

Type I & II Errors

Series1

Chapter 7

150 Faculty of Technology, Cochin University of Science and Technology

7.6 Storage Overhead & Processing Time for Detection

Fig. 7.7 Detection procedure and JSON storage Format

Figure 7.7 shows the MLT-DR model which uses the Unique

Template ID and JSON specifications for validation of standard query with

user input query. Hence the storage and retrieval of standard queries in the

MLT-DR model are easier and faster as compared to the other standard

models explained in section 7.8. The proposed model has a strategy for

detecting the queries by placing them in distinct categories and complexity

levels. The following detection procedure shows that we can identify the

less complex queries on the first level.

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 151

Fig. 7.8 First level Injection detection

The queries which are complex and require traversing technique to

split it into a smaller format, only need a bit longer time for detection, which

is the second level of the procedure. In both cases of simple and complex

query analysis, the time taken for detection is few seconds as already

explained in the previous section. Figure 7.9 shows the status report of

Rejuvenation procedure.

Chapter 7

152 Faculty of Technology, Cochin University of Science and Technology

Fig. 7.9 SQL Rejuvenation status report

The report indicates that reconstruction of the queries is also carried

out in a few seconds with a negligible delay in response time. Hence the

memory (CPU time) and the overhead involved in processing the query is

negligible while comparing it with the response time of a browser in

accessing the web application.

7.7 Comparison of MLT-DR with Other Models

Based on the type of queries, we compared the proposed TbD-NNbR

prototype with other standard models such as AMNESIA, IDS, SQL-Check,

SQL guard, Tautology Checker, JDBC checker, and SQLDOM. The result

of the comparative study of TbD-NNbR with other standard techniques

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 153

indicates that most of the methods fail to detect SQL Injection

vulnerabilities under the category of stored procedure, whereas the proposed

framework can detect this attack efficiently as shown in Table 7.10 (George

and Jacob, 2018; Halfond and William, 2005; Johari and Pankaj, 2012). The

other significant features that differentiate the TbD-NNbR from the other

models are faster query processing, perfect detection and blocking of

malicious queries, less storage requirement, efficient handling of Time-

Space complexity(Bisht and Prithvi, 2012; Moradpoor, 2014).

Table 7.10 Comparison of MLT-DR with other models

Detection/

Prevention

method

Tautologies
Union

Queries

Illegal

Queries

Piggy-

back
Inference

Alternate

encoding

Stored

procedure

AMNESIA

IDS / / / / / / /

SQL Check

SQL Guard

Tautology

checker

JDBC Checker NA NA NA NA NA NA NA

SQL DOM

Proposed MLT-

DR

Legend: - Possible - Impossible / - Partially possible NA - Not applicable

Comparison of proposed model with the other prevention techniques shown

in the above table, indicates that MLT-DR can effectively handle all seven

basic SQL injections, but the other procedures, only partially detect the

attacks. The procedure mentioned in AMNESIA, has a strong static analysis

and prevention procedure which is carried out in most of the methods shown

in Table 7.10 (Halfond and William, 2005). Detection of attack on stored

procedures is very difficult to handle by any of the techniques mentioned,

except MLT-DR. The techniques focus on queries generated within the

application and extending these techniques to other data sets require

substantial effort and source code modification. The factors on which the

Chapter 7

154 Faculty of Technology, Cochin University of Science and Technology

detection techniques can be evaluated are based on the injection mechanism,

deployment requirement and the defensive coding practices. Many

prevention methods are based on some conservative analysis, and the major

drawbacks are the run time overhead, and the presence of false positives.

7.8 Summary of the Chapter

The proposed prototype MLT-DR, detect and prevent SQL Injections

effectively with negligible processing overhead. The Token parsing

techniques used in the template creator application, template files stored in

the JSON format and Jar files used in the template creator application

contribute equally in decreasing the storage overheads. The empirical

analysis that was carried out by using data from various shared applications

available online shows that 100% detection is possible with the proposed

framework. MLT-DR blocking the entire tested malicious query without any

false negatives indicates that the proposed techniques handle malicious

queries effectively. The SQLI-Reconstruction framework with the

backward-propagated neural network is a unique approach towards the

reconstruction of queries from authenticated users, which will increase the

application availability and decrease the Denial of Services for the

authenticated users. The empirical evaluation performed on “Secure

SchoolEConnect” (customized online application) indicates that the

proposed system has only the bare minimum overheads and Time space

complexity. The above mentioned empirical analysis of MLT-DR on

different data shows that the prototype is an efficient and effective approach

towards the detection of SQL Injection and it is blocking or preventing SQL

Injections effectively.

…..…..

Performance Evaluation of MLT-DR Framework

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 155

Conclusion and Future Work

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 155

CChhaapptteerr 88

CONCLUSION AND FUTURE WORK

8.1 Summary of the Research Work

8.2 Major Highlights of the Research Works

8.3 Future Directions

8.4 Conclusion

This Chapter summarizes the research work by highlighting various

contributions made by the proposed model and its significance while

comparing it with the other existing models. This chapter also discusses the

future directions.

8.1 Summary of the Research Work

The proposed Multi-Level Template based Detection and Reconstruction

(MLT-DR), is a hybrid model that makes use of a novel technique to detect

and block SQL Injection attacks. The essential tasks carried out by this

model include parsing and analyzing the legal and dynamic input queries.

Standard Query Template Creator (SQTC) procedure, the template mapper

algorithm and the model constructor algorithm are additional features that

are available with this hybrid model. In the Multilevel Detection framework

(MLT-D) of the proposed approach, we analyze all possible intended

queries from the given web application with the support of web crawler to

C
o

n
te

n
ts

Chapter 8

156 Faculty of Technology, Cochin University of Science and Technology

identify the hotspots, and legal queries are collected for further processing

of parsing and generating the templates. In this model, template specification

with a unique ID is established for each query and stored in the template

repository/Data structure server. Dynamic queries are analyzed and parsed

using the similar approach and matched against the corresponding template

ID of the legal query retrieved from the repository. In the absence of a

match between the intended queries and injected queries, the queries are

flagged as a malicious query and blocked from further execution at the

backend database server. In the Reconstruction framework, we reconstruct

the queries from authenticated users by using the regular expression. The

model reconstruction algorithm is the core component for rejuvenating

queries from authenticated users. The empirical analysis performed using

this hybrid model indicates that the proposed model is a novel approach that

can efficiently detect and block malicious input entries, irrespective of the

underlying database and application software. The proposed architecture

does not demand any source code modifications and can perform detailed

analysis at negligible computational overheads without false positives or

false negatives. MLT-DR prototype is developed using Java based

application software and has been implemented to validate the efficiency

and effectiveness of the template based detection model.

8.2 Major Highlights of the Research Works

The major highlights of the research work are:

 A detailed survey and analysis on existing techniques for

detecting SQL injection and counter measures of attacks on web

applications has been done.

Conclusion and Future Work

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 157

 Proposed an effective method of multilevel template creator

application to block the malicious injected query. The effective

framework Multi-Level Template based Detection and

reconstruction framework (MLT-DR) has been developed to

detect SQL Injections and to prevent attacks without false

positives with maximum possible efficiency. It consists of

several sub-tasks to validate SQL queries before it gets executed

by the database server. In the proposed approach, the user

requests received through dynamic web pages of a web server

are directed to the MLT-DR framework to detect the injection,

and it directs only benign queries to the database server.

The different modules in MLT-DR prototype implemented in the

proxy server to validate the SQL queries are: -

 Standard Query Template Creator: To identify and parse the

intended queries of the web application and to get the various

tokens/templates specification. The template creator module uses

the proposed Standard Query Template creator (SQTC) algorithm

to create the template.

 Template Repository: Stores all the intended queries assigned

with a unique ID. There can be multiple dynamic pages for each

web application. Each intended/legal query template is stored in

a template repository with a unique ID and in JSON Format.

 Template Mapper: To check the validity of the input query the

template mapper maps the appropriate intended query from the

template repository against the unique input query. Template

Chapter 8

158 Faculty of Technology, Cochin University of Science and Technology

mapper algorithm is proposed to perform the mapping operation.

Subsequently, the corresponding alert message is sent to the

evaluation engine.

 SQLI- Reconstruction within the API has feature-rich

constructors and string comparison strategies against the Regex

function and is also supported with a proposed template match

and model constructor algorithms to improve the availability

aspect of security pillar and to ensure better accuracy and

response time. The important features in the proposed approach

is the automatic creation of standard query templates from

training dataset, validation of user input against regular expression

patterns and reconstruction of injected queries from authenticated

users as needed.

 BPANN–Back-Propagated Artificial Neural Network for

training data set to create a learnt model for legal queries for the

web pages, it can be used as an alternative to the SQTC sub-

module, and we store it in JSON format.

 The Query Reconstruction: The Query Reconstruction module

reconstructs the queries by considering the available authentication

privileges, eliminating injections and also rebuilds missing

portions if any, and removes the injected part of the user query

by following the procedure of the Model Construction and

REGEX functions.

Conclusion and Future Work

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 159

 Proposed an effective algorithm for Parsing/Tokenizing the

query and Multilevel Template Mapper procedure for detection

and prevention of SQL Injection attack.

 Proposed an effective Model construction algorithm to

reconstruct the malicious queries from authenticated user.

 Proposed Jar files such as SQLI-Shield, SQLI-Rejuvenator JAR

to reduce complexity and better performance of the online

application.

 Developed and implemented a prototype to validate the

efficiency and effectiveness of the template-based detection

model.

A hybrid framework of MLT-DR is developed to detect/prevent SQL-

Injection attack categories such as tautologies, logically incorrect queries,

union queries, piggy-backed queries, stored procedures, timing attacks and

alternate encoding.

8.3 Future Directions

SQL Injection will decrease the system availability. The existing tools

for scanning, validating, protecting and preventing injection attacks on web

pages still need further expansion and better strategies to efficiently handle

the highly automated malicious attacks. Exploiting the code injection

vulnerabilities to penetrate the backend database server to steal or disclose

the highly sensitive information is one of the most dangerous attacks in a

highly confidential web application, and the consequences of these types of

attacks create a massive impact on the business applications. Most of the

Chapter 8

160 Faculty of Technology, Cochin University of Science and Technology

existing SQLI-Detection and prevention approaches undergo the following

issues: -

 They target only a subset of SQLI attack types. A few approaches

are developed to handle distinct categories of injections attacks

without false positives.

 During Dynamic phase, SQLI validations and modification of

application code on the online applications are expensive with

respect to time and space and results in deficient performance of the

web application.

 A root level SQL Injection attack on the database servers can lead to

destruction of Confidentiality, Integrity, Availability aspects of the

application.

 The denial of service attack resulting from the SQL Injection is

critical in most of the business applications, which should be

mitigated with high degree of importance.

Even though there are many existing technologies and strategies

available to detect and block the SQL injections, yet the SQL injection

attack is frequent and it is a major concern of security professionals. Most of

the available deployment strategies against injection attacks require

significant modification of source code and require additional infrastructure.

Hence still there is a requirement for an effective technique to handle the

Zero-day attack (to handle the upcoming vulnerability, yet to be identified)

with better performance and efficiency.

Conclusion and Future Work

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 161

The future directions of this research are to focus on the areas of code

injection attack, other than SQLIA (Vigna and Valeur, 2005; Calvi and

Vigano, 2016). The appropriate measure of importance should be given to

the injection happening on different database storage of XML databases and

storage handling. Injected queries identified during the validation or testing

phase of this research work are logged and reused for model re-construction

and patching in a later stage. The unknown string/injection pattern, which is

blocked during the detection stage, can be stored in a data structure server.

These malicious patterns can be learned and later used as an immediate

patch against zero-day attack. The query validation procedure adopted in

this research can be re-structured for validating emerging attack within the

source code (George and Jacob, 2018). The tokenizing procedure or the

statistical analysis used in this work can be extended to X-Query injection

attack and Parameter Tampering attack. NoSQL injection attack executes in

more complex areas of an application than the traditional SQL. In a

combination of SQL injection and Parameter tampering attacks, the injected

parameters contain malicious SQL/XML commands, which lead to a

SQL/Xpath injection. Although sufficient research work has been conducted

to find countermeasures to SQL Injection attacks, only limited work has

been carried out regarding Parameter Tampering attacks. With the

tremendous increase in XML Database by the web applications, XQuery/X-

path injections are also becoming a critical vulnerability (Medeiros and

Neves, 2016). In the future, this research can be extended to analyze the

application vulnerabilities in complex SQL exploitations, such as stored

XSS and broken session management.

Chapter 8

162 Faculty of Technology, Cochin University of Science and Technology

8.4 Conclusion
The major goal of this research work is to design and implement an

effective technique for detecting and preventing SQL Injection attacks in

online applications with better performance, higher efficiency and reduced

denial of service attacks. To achieve this goal, we implement the proposed

hybrid model MLT-DR with techniques to detect SQL Injections and prevent

attacks. The parsing method used in the query template creator application

was an unconventional approach to scale up the performance of the

proposed model. Template files stored in the JSON format contributed

equally to decrease the storage overheads. The empirical analysis that was

carried out by using data from variously shared insecure-sites showed that

almost 100% detection was possible irrespective of the backend database

servers with appropriate structure modification on the selected SQL query

for testing. The empirical evaluation performed on customized online

applications indicates that the proposed system could achieve the optimum

performance with negligible false positives and false negatives. We can use

the MLT-DR prototype as a scanning tool to detect and prevent SQL

Injection attacks in various web applications. Vulnerabilities in web

applications could be sanitized, mitigated or controlled by expanding this

research study towards various categories of code injection attacks. There

are instances where prepared statements, parameterized queries or stored

procedures can be used for web-user interactions instead of dynamic SQL

statements or form-field entry. Dynamic SQL queries and stored procedures

are two of the most important components in an SQL server. Stored

procedures are not vulnerable to SQL injection attacks, but it is not effective

if the query is complex and requires frequent modification. Parameterized

queries cannot be used with dynamic SQL, if a table or column name is

passed as parameter. If there is frequent change in table name, columns or

number of parameters in the query, dynamic SQL would be the better

choice. As dynamic SQL is a significant component which has a key

identity in the hierarchy of server security, there should be appropriate

measures to ensure the security of the SQL server, which uses dynamic

SQL.

…..…..

Conclusion and Future Work

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 163

…..…..

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 163

[1] Akrout, R., Alata, E., Kaaniche, M., & Nicomette, V. (2014). An

automated black box approach for web vulnerability identification

and attack scenario generation. Journal of the Brazilian Computer

Society, 20(1), 4.

[2] Ali, S., Shahzad, S. K., & Javed, H. (2009). Sqlipa: An authentication

mechanism against sql injection. European Journal of Scientific

Research, 38(4), 604-611.

[3] Aliero, M. S., Ghani, I., Zainudden, S., Khan, M. M., & Bello, M.

(2015). Review on SQL Injection Protection Methods and Tools. Jurnal

Teknologi, 77(13).

[4] Alata, E., Kaâniche, M., Nicomette, V., & Akrout, R. (2013, April). An

automated approach to generate web applications attack scenarios.

In Dependable Computing (LADC), 2013 Sixth Latin-American

Symposium on (pp. 78-85). IEEE.

[5] Alfantookh, Abdulkader A. (2004) "An automated universal server level

solution for SQL injection security flaw." Proceedings of the 2004

International Conference on Electrical, Electronic and Computer

Engineering (ICEEC'04).

[6] Anderson, B., Quist, D., & Lane, T. (2011). Detecting code injection attacks

in internet explorer. In Computer Software and Applications Conference

Workshops (COMPSACW), 2011 IEEE 35th Annual (pp. 90-95). IEEE.

[7] Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai,

A., & Erzse, G. (2012). The AVANTSSAR platform for the automated

validation of trust and security of service-oriented architectures.

In International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (pp. 267-282). Springer Berlin Heidelberg.

References

164 Faculty of Technology, Cochin University of Science and Technology

[8] Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., & Ernst,

M. D. (2008). Finding bugs in dynamic web applications. In Proceedings

of the 2008 international symposium on Software testing and

analysis (pp. 261-272). ACM

[9] Avireddy, S., Perumal, V., Gowraj, N., Kannan, R. S., Thinakaran, P.,

Ganapthi, S., & Prabhu, S. (2012). Random4: an application

specific randomized encryption algorithm to prevent SQL injection.

In Trust, Security and Privacy in Computing and Communications

(TrustCom), 2012 IEEE 11th International Conference on (pp. 1327-

1333). IEEE.

[10] Awang, N. F., & Manaf, A. A. (2015). Automated Security Testing

Framework for Detecting SQL Injection Vulnerability in Web

Application. In International Conference on Global Security, Safety,

and Sustainability (pp. 160-171). Springer International Publishing.

[11] Awang, N. F., Manaf, A. A., & Zainudin, W. S. (2014). A survey

on conducting vulnerability assessment in web-based application.

In International Conference on Advanced Machine Learning Technologies

and Applications (pp. 459-471). Springer International Publishing.

[12] Balduzzi, M., Gimenez, C. T., Balzarotti, D., & Kirda, E. (2011).

Automated Discovery of Parameter Pollution Vulnerabilities in Web

Applications. In NDSS.

[13] Bangre, S., & Jaiswal, A. (2012). SQL Injection Detection and

Prevention Using Input Filter Technique. International Journal of

Recent Technology and Engineering (IJRTE) ISSN, 2277-3878.

[14] Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (2010). State of the art:

Automated black-box web application vulnerability testing. In Security

and Privacy (SP), 2010 IEEE Symposium on (pp. 332-345). IEEE.

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 165

[15] Belk, M., Coles, M., Goldschmidt, C., Howard, M., Randolph, K.,

Saario, M., & Yonchev, Y. (2011). Fundamental Practices for Secure

Software Development. A Guide to the Most Effective Secure Development

Practices in Use Today, 8.

[16] Bertino, E., Kamra, A., & Early, J. P. (2007). Profiling database

application to detect sql injection attacks. In Performance, Computing,

and Communications Conference, 2007. IPCCC 2007. IEEE Internationa (pp.

449-458). IEEE

[17] Buehrer, G., Weide, B. W., & Sivilotti, P. A. (2005). Using parse tree

validation to prevent SQL injection attacks. In Proceedings of the 5th

international workshop on Software engineering and middleware (pp.

106-113). ACM.

[18] Bhoria, P., & Garg, K. (2013). Determining feature set of DOS

attacks. International Journal of Advanced Research in Computer

Science and Software Engineering, 3(5), 875-878

[19] Bisht, P., Madhusudan, P., & Venkatakrishnan, V. N. (2010). CANDID:

Dynamic candidate evaluations for automatic prevention of SQL

injection attacks. ACM Transactions on Information and System Security

(TISSEC), 13(2), 14.

[20] Bisht, P., Hinrichs, T., Skrupsky, N., & Venkatakrishnan, V. N. (2011).

WAPTEC: whitebox analysis of web applications for parameter tampering

exploit construction. In Proceedings of the 18th ACM conference on

Computer and communications security (pp. 575-586). ACM.

[21] Borade, M. R., & Deshpande, N. A. (2014). Web Services Based

SQL Injection Detection and Prevention System for Web

Applications. International Journal of Emerging Technology and

Advanced Engineering Website: www. ijetae. com (ISSN 2250-2459, ISO

9001: 2008 Certified Journal, Volume 4, Issue 10

References

166 Faculty of Technology, Cochin University of Science and Technology

[22] Bosworth, S., & Kabay, M. E. (Eds.). (2002). Computer security

handbook. John Wiley & Sons.

[23] Boyd, S. W., & Keromytis, A. D. (2004). SQLrand: Preventing SQL

injection attacks. In International Conference on Applied Cryptography

and Network Security (pp. 292-302). Springer Berlin Heidelberg

[24] Buehrer, G., Weide, B. W., & Sivilotti, P. A. (2005). Using parse tree

validation to prevent SQL injection attacks. In Proceedings of the 5th

international workshop on Software engineering and middleware (pp.

106-113). ACM.

[25] Büchler, M., Oudinet, J., & Pretschner, A. (2012). Semi-automatic

security testing of web applications from a secure model. In Software

Security and Reliability (SERE), 2012 IEEE Sixth International

Conference on (pp. 253-262). IEEE.

[26] Buja, G., Jalil, K. B. A., Ali, F. B. H. M., & Rahman, T. F. A. (2014).

Detection model for SQL injection attack: An approach for preventing a

web application from the SQL injection attack. In Computer

Applications and Industrial Electronics (ISCAIE), 2014 IEEE

Symposium on (pp. 60-64). IEEE.

[27] Burkhart, M., Schatzmann, D., Trammell, B., Boschi, E., & Plattner, B.

(2010). The role of network trace anonymization under attack. ACM

SIGCOMM Computer Communication Review, 40(1), 5-11.

[28] Calvi, A., & Viganò, L. (2016). An automated approach for testing the

security of web applications against chained attacks. In Proceedings of

the 31st Annual ACM Symposium on Applied Computing (pp. 2095-

2102). ACM.

[29] Chen, S., Xu, J., Kalbarczyk, Z., & Iyer, K. (2006). Security vulnerabilities:

From analysis to detection and masking techniques. Proceedings of the

IEEE, 94(2), 407-418.

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 167

[30] Chen, J. M., & Wu, C. L. (2010). An automated vulnerability scanner for

injection attack based on injection point. In Computer Symposium (ICS),

2010 International (pp. 113-118). IEEE

[31] Cheon, E. H., Huang, Z., & Lee, Y. S. (2013). Preventing SQL injection

attack based on machine learning. International Journal of Advancements in

Computing Technology, 5(9), 967-974

[32] Ciampa, A., Visaggio, C. A., & Di Penta, M. (2010). A heuristic-based

approach for detecting SQL-injection vulnerabilities in Web

applications. In Proceedings of the 2010 ICSE Workshop on Software

Engineering for Secure Systems (pp. 43-49). ACM.

[33] Clarke-Salt, J. (2009). SQL injection attacks and defense. Elsevier.

[34] Cova, M., Balzarotti, D., Felmetsger, V., & Vigna, G. (2007). Swaddler:

An approach for the anomaly-based detection of state violations in web

applications. In International Workshop on Recent Advances in Intrusion

Detection (pp. 63-86). Springer Berlin Heidelberg.

[35] Das, D., Sharma, U., & Bhattacharyya, D. K. (2010). An approach to

detection of SQL injection attack based on dynamic query

matching. International Journal of Computer Applications, 1(25), 28-34.

[36] De Meo, F., Rocchetto, M., & Viganò, L. (2016). Formal Analysis of

Vulnerabilities of Web Applications Based on SQL Injection.

In International Workshop on Security and Trust Management (pp. 179-

195). Springer International Publishing.

[37] Desmet, L., Verbaeten, P., Joosen, W., & Piessens, F. (2008). Provable

protection against web application vulnerabilities related to session data

dependencies. IEEE Transactions on Software Engineering, 34(1), 50-64.

[38] Dharam, R., & Shiva, S. G. (2012). Runtime monitoring technique to

handle tautology based SQL injection attacks. International Journal of

Cyber-Security and Digital Forensics (IJCSDF), 1(3), 189-203.

References

168 Faculty of Technology, Cochin University of Science and Technology

[39] Djuric, Z. (2013, September). A black-box testing tool for detecting SQL

injection vulnerabilities. In Informatics and Applications (ICIA), 2013

Second International Conference on (pp. 216-221). IEEE.

[40] Doupé, A., Cova, M., & Vigna, G. (2010). Why Johnny can’t pentest:

An analysis of black-box web vulnerability scanners. In International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (pp. 111-131). Springer Berlin Heidelberg.

[41] Ezumalai, R., & Aghila, G. (2009). Combinatorial approach for

preventing SQL injection attacks. In Advance Computing Conference,

2009. IACC 2009. IEEE International (pp. 1212-1217). IEEE.

[42] Felmetsger, V., Cavedon, L., Kruegel, C., & Vigna, G. (2010). Toward

automated detection of logic vulnerabilities in web applications.

In USENIX Security Symposium (Vol. 58).

[43] George, T. K., & Jacob, P. (2015) Analysis On Security Vulnerability In

On Line Application, Data Validation Strategies And Testing

Tools. System, 2, 3.

[44] George, T. K., & Jacob, P. (2016) A Proposed Architecture for Query

Anomaly Detection and Prevention against SQL Injection Attacks.

[45] George, T. K., James, R., & Jacob, P. (2016). Proposed Hybrid model to

detect and prevent SQL Injection. International Journal of Computer

Science and Information Security, 14(6), 441.

[46] Gould, C., Su, Z., & Devanbu, P. (2004). JDBC checker: A static

analysis tool for SQL/JDBC applications. In Proceedings of the 26th

International Conference on Software Engineering (pp. 697-698). IEEE

Computer Society.

[47] Godefroid, P., Levin, M. Y., & Molnar, D. A. (2008) Automated

Whitebox Fuzz Testing. In NDSS (Vol. 8, pp. 151-166).

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 169

[48] Halfond, W. G., Choudhary, S. R., & Orso, A. (2011). Improving

penetration testing through static and dynamic analysis. Software

Testing, Verification and Reliability, 21(3), 195-214.

[49] Halfond, W. G., & Orso, A. (2005). AMNESIA: analysis and monitoring

for NEutralizing SQL-injection attacks. In Proceedings of the

20th IEEE/ACM international Conference on Automated software

engineering (pp. 174-183). ACM.

[50] Halfond, W., Orso, A., & Manolios, P. (2008). WASP: Protecting Web

applications using positive tainting and syntax-aware evaluation. IEEE

Transactions on Software Engineering, 34(1), 65-81.

[51] Halfond, W. G., Viegas, J., & Orso, A. (2006). A classification of SQL-

injection attacks and countermeasures. In Proceedings of the IEEE

International Symposium on Secure Software Engineering (Vol. 1, pp.

13-15). IEEE

[52] Haykin, S. S., Haykin, S. S., Haykin, S. S., & Haykin, S. S.

(2009). Neural networks and learning machines (Vol. 3). Upper Saddle

River, NJ, USA:: Pearson.

[53] Huang, Y. W., Yu, F., Hang, C., Tsai, C. H., Lee, D. T., & Kuo, S. Y.

(2004). Securing web application code by static analysis and runtime

protection. In Proceedings of the 13th international conference on World

Wide Web (pp. 40-52). ACM.

[54] Huang, Y. W., Tsai, C. H., Lin, T. P., Huang, S. K., Lee, D. T., & Kuo,

S. Y. (2005). A testing framework for Web application security

assessment. Computer Networks, 48(5), 739-761.

[55] Huang, Y. W., Huang, S. K., Lin, T. P., & Tsai, C. H. (2003). Web

application security assessment by fault injection and behavior

monitoring. In Proceedings of the 12th international conference on

World Wide Web (pp. 148-159). ACM.

References

170 Faculty of Technology, Cochin University of Science and Technology

[56] Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J. W., Evans, D. &

Rowanhill, J. (2006). Secure and practical defense against code-injection

attacks using software dynamic translation. In Proceedings of the 2nd

international conference on Virtual execution environments (pp. 2-12).

ACM.

[57] Johari, R., & Sharma, P. (2012). A survey on web application

vulnerabilities (SQLIA, XSS) exploitation and security engine for SQL

injection. In Communication Systems and Network Technologies

(CSNT), 2012 International Conference on (pp. 453-458). IEEE.

[58] Jose, S., Priyadarshini, K., & Abirami, K. (2016). An Analysis of Black-

Box Web Application Vulnerability Scanners in SQLi Detection.

In Proceedings of the International Conference on Soft Computing

Systems (pp. 177-185). Springer India.

[59] Joseph, S., & Jevitha, K. P. (2016). Evaluating the Effectiveness of

Conventional Fixes for SQL Injection Vulnerability. In Proceedings of

3rd International Conference on Advanced Computing, Networking and

Informatics (pp. 417-426). Springer India.

[60] Joshi, A., & Geetha, V. (2014). SQL injection detection using machine

learning. In Control, Instrumentation, Communication and Computational

Technologies (ICCICCT), 2014 International Conference on (pp. 1111-

1115). IEEE

[61] Jovanovic, N., Kruegel, C., & Kirda, E. (2006). Precise alias analysis for

static detection of web application vulnerabilities. In Proceedings of the

2006 workshop on Programming languages and analysis for

security (pp. 27-36). ACM.

[62] Jovanovic, N., Kruegel, C., & Kirda, E. (2006). Pixy: A static analysis

tool for detecting web application vulnerabilities. In Security and

Privacy, 2006 IEEE Symposium on (pp. 6-pp). IEEE.

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 171

[63] Kemalis, K., & Tzouramanis, T. (2008). SQL-IDS: a specification-based

approach for SQL-injection detection. In Proceedings of the 2008 ACM

symposium on Applied computing (pp. 2153-2158). ACM.

[64] Khan, S. A., & Khan, R. A. (2013). Software security testing process:

phased approach. In Intelligent Interactive Technologies and

Multimedia (pp. 211-217). Springer Berlin Heidelberg.

[65] Khan, M. S., & Mahapatra, S. S. (2008). Service quality evaluation in

internet banking: an empirical study in India. International Journal of

Indian Culture and Business Management, 2(1), 30-46.

[66] Khari, M., & Kumar, N. (2013). User Authentication Method against

SQL Injection Attack.

[67] Khoury, N., Zavarsky, P., Lindskog, D., & Ruhl, R. (2011). Testing and

assessing web vulnerability scanners for persistent SQL injection

attacks. In Proceedings of the First International Workshop on Security

and Privacy Preserving in e-Societies (pp. 12-18). ACM.

[68] Kindy, D. A., & Pathan, A. S. K. (2011). A survey on SQL injection:

Vulnerabilities, attacks, and prevention techniques. In Consumer

Electronics (ISCE), 2011 IEEE 15th International Symposium on (pp.

468-471). IEEE.

[69] Kindy, D. A., & Pathan, A. S. K. (2012). A detailed survey on various

aspects of sql injection in web applications: Vulnerabilities, innovative

attacks, and remedies. arXiv preprint arXiv:1203.3324.

[70] Kieyzun, A., Guo, P. J., Jayaraman, K., & Ernst, M. D. (2009).

Automatic creation of SQL injection and cross-site scripting attacks.

In Software Engineering, 2009. ICSE 2009. IEEE 31st International

Conference on (pp. 199-209). IEEE.

References

172 Faculty of Technology, Cochin University of Science and Technology

[71] Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., & Takahama, Y.

(2007). Sania: Syntactic and semantic analysis for automated testing

against sql injection. In Computer Security Applications Conference,

2007. ACSAC 2007. Twenty-Third Annual (pp. 107-117). IEEE.

[72] Krügel, C., Toth, T., & Kirda, E. (2002). Service specific anomaly

detection for network intrusion detection. In Proceedings of the 2002

ACM symposium on Applied computing (pp. 201-208). ACM

[73] Kubo, T., Obuchi, M., Ohashi, G., & Shimodaira, Y. (1998). Image

processing system for direction detection of an object using neural

network. In Circuits and Systems, 1998. IEEE APCCAS 1998. The 1998

IEEE Asia-Pacific Conference on (pp. 571-574). IEEE.

[74] Kumar, P., & Pateriya, R. K. (2012). A survey on SQL injection attacks,

detection and prevention techniques. In Computing Communication &

Networking Technologies (ICCCNT), 2012 Third International

Conference on (pp. 1-5). IEEE.

[75] Lawal, M. A., Sultan, A. B. M., & Shakiru, A. O. (2016). Systematic

literature review on SQL injection attack. International Journal of Soft

Computing, 11(1), 26-35.

[76] Lebeau, F., Legeard, B., Peureux, F., & Vernotte, A. (2013). Model-

based vulnerability testing for web applications. In Software Testing,

Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth

International Conference on (pp. 445-452). IEEE.

[77] Lee, S. Y., Low, W. L., & Wong, P. Y. (2002). Learning fingerprints for

a database intrusion detection system. In European Symposium on

Research in Computer Security (pp. 264-279). Springer Berlin

Heidelberg.

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 173

[78] Liu, A., Yuan, Y., Wijesekera, D., & Stavrou, A. (2009). SQLProb: a

proxy-based architecture towards preventing SQL injection attacks.

In Proceedings of the 2009 ACM symposium on Applied Computing (pp.

2054-2061). ACM.

[79] Livshits, Benjamin, Michael Martin, and Monica S. Lam. (2006)

"SecuriFly: Runtime protection and recovery from Web application

vulnerabilities."

[80] Livshits, V. B., & Lam, M. S. (2005). Finding Security Vulnerabilities in

Java Applications with Static Analysis. In Usenix Security (Vol. 2013).

[81] Li, X., & Xue, Y. (2014). A survey on server-side approaches to

securing web applications. ACM Computing Surveys (CSUR), 46(4), 54.

[82] Li, X., & Xue, Y. (2011). BLOCK: a black-box approach for detection of

state violation attacks towards web applications. In Proceedings of the 27th

Annual Computer Security Applications Conference (pp. 247-256). ACM.

[83] Maheswari, K. G., & Anita, R. (2016). An Intelligent Detection System

for SQL Attacks on Web IDS in a Real-Time Application.

In Proceedings of the 3rd International Symposium on Big Data and

Cloud Computing Challenges (ISBCC–16’) (pp. 93-99). Springer

International Publishing.

[84] Manmadhan, S., & Manesh, T. (2012). A method of detecting sql

injection attack to secure web applications. International Journal of

Distributed and Parallel Systems, 3(6),

[85] Maor, O., & Shulman, A. (2004). Blind SQL Injection. Imperva.(Online)

http://www. imperva. com/resources/adc/blind_sql_server_injection. html.

[86] Martin, M., & Lam, M. S. (2008). Automatic generation of XSS and SQL

injection attacks with goal-directed model checking. In Proceedings of the

17th conference on Security symposium (pp. 31-43). USENIX Association

References

174 Faculty of Technology, Cochin University of Science and Technology

[87] Meucci, M., & Muller, A. (2014). The OWASP Testing Guide 4.0. Open

Web Application Security Project, 30.

[88] McClure, R. A., & Kruger, I. H. (2005). SQL DOM: compile time

checking of dynamic SQL statements. In Software Engineering, 2005.

ICSE 2005. Proceedings. 27th International Conference on (pp. 88-96).

IEEE.

[89] Mohosina, A., & Zulkernine, M. (2012). DESERVE: a framework for

detecting program security vulnerability exploitations. In Software

Security and Reliability (SERE), 2012 IEEE Sixth International

Conference on (pp. 98-107). IEEE.

[90] Moradpoor, N. (2014). Employing Neural Networks for the detection of

SQL injection attack. In Proceedings of the 7th International Conference

on Security of Information and Networks, September 9-11, Glasgow,

UK. ACM

[91] Moosa, A. (2010). Artificial neural network based web application

firewall for sql injection. World Academy of Science, Engineering &

Technology, 64(4), 12-21

[92] Mui, R., & Frankl, P. (2010). Preventing SQL injection through automatic

query sanitization with ASSIST. arXiv preprint arXiv:1009.3712.

[93] Mukkamala, S., Janoski, G., & Sung, A. (2002). Intrusion detection

using neural networks and support vector machines. In Neural Networks,

2002. IJCNN'02. Proceedings of the 2002 International Joint

Conference on (Vol. 2, pp. 1702-1707). IEEE

[94] Muthuprasanna, M., Wei, K., & Kothari, S. (2006). Eliminating SQL

injection attacks-A transparent defense mechanism. In Web Site

Evolution, 2006. WSE'06. Eighth IEEE International Symposium

on (pp. 22-32). IEEE

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 175

[95] Narayanan, S. N., Pais, A. R., & Mohandas, R. (2011). Detection and

Prevention of SQL Injection Attacks using Semantic Equivalence.

In Computer Networks and Intelligent Computing (pp. 103-112).

Springer Berlin Heidelberg.

[96] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., & Evans, D.

(2005). Automatically hardening web applications using precise

tainting. Security and Privacy in the Age of Ubiquitous Computing, 295-

307.

[97] Ntagwabira, L., & Kang, S. L. (2010). Use of Query Tokenization to

detect and prevent SQL Injection Attacks. In Computer Science and

Information Technology (ICCSIT), 2010 3rd IEEE International

Conference on (Vol. 2, pp. 438-440). IEEE.

[98] Panda, S., & Ramani, S. (2013). Protection of web application against

SQL injection attacks. International Journal of Modern Engineering

Research (IJMER) vol, 3

[99] Papagiannis, I., Migliavacca, M., & Pietzuch, P. (2011). PHP Aspis:

using partial taint tracking to protect against injection attacks. In 2nd

USENIX Conference on Web Application Development (p. 13).

[100] Parker, D. B. (2002). Toward a New Framework for Information

Security? Computer Security Handbook, Sixth Edition, 3-1.

[101] Palsetia, N., Deepa, G., Khan, F. A., Thilagam, P. S., & Pais, A. R.

(2016). Securing native XML database-driven web applications from

XQuery injection vulnerabilities. Journal of Systems and Software, 122,

93-109.

[102] Pietraszek, T., & Berghe, C. V. (2005). Defending against injection

attacks through context-sensitive string evaluation. In International

Workshop on Recent Advances in Intrusion Detection (pp. 124-145).

Springer Berlin Heidelberg

References

176 Faculty of Technology, Cochin University of Science and Technology

[103] Prabakar, M. A., Karthikeyan, M., & Marimuthu, K. (2013). An efficient

technique for preventing SQL injection attack using pattern matching

algorithm. In Emerging Trends in Computing, Communication and

Nanotechnology (ICE-CCN), 2013 International Conference on (pp.

503-506). IEEE.

[104] Rawat, R., & Raghuwanshi, S. (2012). SQL injection attack Detection

using SVM. International Journal of Computer Applications, 42(13), 1-4

[105] Ruse, M., Sarkar, T., & Basu, S. (2010). Analysis & detection of SQL

injection vulnerabilities via automatic test case generation of programs.

In Applications and the Internet (SAINT), 2010 10th IEEE/IPSJ

International Symposium on (pp. 31-37). IEEE.

[106] Sadeghian, A., Zamani, M., & Ibrahim, S. (2013). SQL injection is still

alive: a study on SQL injection signature evasion techniques.

In Informatics and Creative Multimedia (ICICM), 2013 International

Conference on (pp. 265-268). IEEE.

[107] Sadeghian, A., Zamani, M., & Manaf, A. A. (2013). A taxonomy of SQL

injection detection and prevention techniques. In Informatics and

Creative Multimedia (ICICM), 2013 International Conference on (pp.

53-56). IEEE.

[108] Sangkatsanee, P., Wattanapongsakorn, N., & Charnsripinyo, C. (2011).

Practical real-time intrusion detection using machine learning

approaches. Computer Communications, 34(18), 2227-2235

[109] Sahu, D. R., & Tomar, D. S. (2016). Analysis of Web Application Code

Vulnerabilities using Secure Coding Standards. Arabian Journal for

Science and Engineering, 1-11.

[110] Seacord, R. C. (2008). The CERT C secure coding standard. Pearson

Education.

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 177

[111] Securosis: (2014) Open source development and application security

survey analysis.

[112] Shahriar, H., & Zulkernine, M. (2012). Information-theoretic detection

of sql injection attacks. In High-Assurance Systems Engineering (HASE),

2012 IEEE 14th International Symposium on (pp. 40-47). IEEE

[113] Shanmughaneethi, S. V., Shyni, S. C. E., & Swamynathan, S. (2009).

SBSQLID: Securing web applications with service based SQL injection

detection. In Advances in Computing, Control, & Telecommunication

Technologies, 2009. ACT'09. International Conference on (pp. 702-704).

IEEE.

[114] Shaukat Ali, Azhar Rauf, Huma Javed (2009), SQLIPA: An

Authentication Mechanism against SQL Injection‟, European Journal of

Scientific Research, Vol.38 No.4, pp.604-611.

[115] Sheykhkanloo, N. M. (2014). Employing neural networks for the

detection of sql injection attack. In Proceedings of the 7th International

Conference on Security of Information and Networks (p. 318). ACM.

[116] Shi, C. C., Zhang, T., Yu, Y., & Lin, W. (2012). A new approach for

SQL-injection detection. Instrumentation, Measurement, Circuits and

Systems, 245-254

[117] Shrivastava, R., Bhattacharyji, J., & Soni, R. (2013). Sql Injection

Attacks In Database Using Web Service: Detection And Prevention–

Review. ASIAN JOURNAL OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY, 2(6).

[118] Singhal, D., & Padhmanabhan, V. (2009). A study on customer

perception towards internet banking: Identifying major contributing

factors. Journal of Nepalese business studies, 5(1), 101-111.

References

178 Faculty of Technology, Cochin University of Science and Technology

[119] Skrupsky, N., Bisht, P., Hinrichs, T., Venkatakrishnan, V. N., & Zuck,

L. (2013). TamperProof: a server-agnostic defense for parameter tampering

attacks on web applications. In Proceedings of the third ACM conference on

Data and application security and privacy (pp. 129-140). ACM.

[120] Su, Z., & Wassermann, G. (2006). The essence of command injection

attacks in web applications. In ACM SIGPLAN Notices (Vol. 41, No. 1,

pp. 372-382). ACM.

[121] Srivastav, A., Kumar, P., & Goel, R. (2013). Evaluation of Network

Intrusion Detection System using PCA and NBA. International Journal

of Advanced Research in Computer Engineering & Technology, 2(11),

2873-2881.

[122] Stuttard, D., & Pinto, M. (2011). The Web Application Hacker's

Handbook: Finding and Exploiting Security Flaws. John Wiley & Sons

[123] Stolcke, A., & Omohundro, S. (1993). Hidden Markov model induction

by Bayesian model merging. Advances in neural information processing

systems, 11-11.

[124] Tajpour, A., Heydari, M. Z., Masrom, M., & Ibrahim, S. (2010). SQL

injection detection and prevention tools assessment. In Computer

Science and Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on (Vol. 9, pp. 518-522). IEEE.

[125] Valeur, F., Mutz, D., & Vigna, G. (2005). A learning-based approach to

the detection of SQL attacks. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment (pp. 123-140).

Springer Berlin Heidelberg.

[126] Vigna, G., Valeur, F., Balzarotti, D., Robertson, W., Kruegel, C., &

Kirda, E. (2009). Reducing errors in the anomaly-based detection of

web-based attacks through the combined analysis of web requests and

SQL queries. Journal of Computer Security, 17(3), 305-329.

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 179

[127] Vulnerabilities, C. (2007). Exposures,“The Standard for Information

Security Vulnerability Names”. Common Vulnerabilities and Exposures:

The Standard for Information Security Vulnerability Names. url:

http://cve. mitre. org.

[128] Wagner, D., & Soto, P. (2002). Mimicry attacks on host-based intrusion

detection systems. In Proceedings of the 9th ACM Conference on

Computer and Communications Security (pp. 255-264). ACM

[129] Wang, Y., Wong, J., & Miner, A. (2004). Anomaly intrusion detection

using one class SVM. In Information Assurance Workshop, 2004.

Proceedings from the Fifth Annual IEEE SMC (pp. 358-364). IEEE.

[130] Web Security, Inc. The Weakest Link: Mitigating Web Application

Vulnerabilities. (2007) Retrieved fromhttp://www.webscurity.com

/pdfs/webapp_vuln_wp.pdf.

[131] Web Application Security Consortium. (2010). WASC threat

classification. Technical report, Jan. 2010. Version 2.00.

[132] Web Application Security Scanner Evaluation Criteria. (2009).

[133] Wei, K., Muthuprasanna, M., & Kothari, S. (2006). Preventing SQL

injection attacks in stored procedures. In Software Engineering

Conference, 2006. Australian (pp. 8-pp). IEEE.

[134] Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., & Song,

D. (2011). A systematic analysis of XSS sanitization in web application

frameworks. In European Symposium on Research in Computer

Security (pp. 150-171). Springer Berlin Heidelberg.

[135] Win, W. Y., & Htun, H. H. (2014). A Detection Method for SQL

Injection Attacks in Web Applications.

[136] Xie, Y., & Aiken, A. (2006). Static Detection of Security Vulnerabilities

in Scripting Languages. In USENIX Security (Vol. 6, pp. 179-192).

References

180 Faculty of Technology, Cochin University of Science and Technology

[137] Zhang, Q., Jones, C., & Agarwal, A. K. (2008). U.S. Patent Application

No. 12/037,211.

[138] Zhu, J., Xie, J., Lipford, H. R., & Chu, B. (2014). Supporting secure

programming in web applications through interactive static

analysis. Journal of advanced research, 5(4), 449-462.

[139] Zhang, L., Gu, Q., Peng, S., Chen, X., Zhao, H., & Chen, D. (2010). D-

WAV: A web application vulnerabilities detection tool using

Characteristics of Web Forms. In Software Engineering Advances

(ICSEA), 2010 Fifth International Conference on (pp. 501-507). IEEE.

[140] Zhang, K. X., Lin, C. J., Chen, S. J., Hwang, Y., Huang, H. L., & Hsu, F.

H. (2011). TransSQL: a translation and validation-based solution for

SQL-injection attacks. In Robot, Vision and Signal Processing (RVSP),

2011 First International Conference on (pp. 248-251). IEEE.

[141] George, T. K., Jacob, K. P., & James, R. K. (2018). Token based

Detection and Neural Network based Reconstruction framework against

code injection vulnerabilities. Journal of Information Security and

Applications, 41, 75-91.

[142] Uwagbole, S. O., Buchanan, W. J., & Fan, L. (2017, May). Applied

machine learning predictive analytics to SQL injection attack detection

and prevention. In Integrated Network and Service Management (IM),

2017 IFIP/IEEE Symposium on(pp. 1087-1090). IEEE.

[143] Medeiros, I., Neves, N., & Correia, M. (2016). Detecting and removing

web application vulnerabilities with static analysis and data

mining. IEEE Transactions on Reliability, 65(1), 54-69.

[144] Sheykhkanloo, N. M. (2015). A Pattern Recognition Neural Network

Model For Detection And Classification Of SQL Injection

Attacks. World Academy of Science, Engineering and Technology,

International Journal of Computer, Electrical, Automation, Control and

Information Engineering, 9(6), 1443-1453.

…..…..

References

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 181

Appendices

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 181

APPENDIX-1

Commonly used vulnerability analysis/scanning tools and its descriptions

Tool Description

IBM Rational AppScan:

It is a commercial tool to assess the vulnerability of a
website, especially the SQL injection assessment
functionality.

HPScrawlr

It is a free tool/scanner by HP, able to detect regular
and blind SQL Injection vulnerabilities

SQLiX

It is a Perl application code able to crawl website and
detect injection.

Paros Proxy:

It is a web assessment tool used for manually
manipulating web traffic. It is placed as a proxy and
checks the request made from the web browser before
directing it to the server.

SWAAT

An application analysis tool, to scan source code, it
uses regular expression string matching to identify
potentially dangerous functions and strings in the
code base

The Microsoft Source
Code Analyzer

It is for SQL Injection tool is a static code analysis
tool to find SQL injection vulnerabilities in Active
Server Pages (ASP) code.

CAT.NET It is a binary code analysis tool that helps you identify
common variants of certainprevailing vulnerabilities

Commercial Source Code
Analyzer (SCAs)

Commercial Source Code Analyzers (SCAs) are
designed to integrate within the development life
cycle of an application.

Ounce

The Ounce toolset is a collection of several
components. The Security Analyst component Parses
source code into what it calls a Common Intermediate
Security Language (CISL).

Appendices

182 Faculty of Technology, Cochin University of Science and Technology

Fortify Source Code
Analyzer

It is a Source Code Analyzer is a static analysis tool
that processes code and attempts to identify
vulnerabilities

Code Secure

Code Secure is available as an enterprise-level
appliance or as a hosted software service

OpenVAS:

One of the most advanced vulnerability scanner and
general vulnerability assessment tool, scans more
than 35,000 vulnerabilities.

Nexpose
Community:

Developed by Rapid7, scans almost 68,000
vulnerabilities and makes over 163,000 network
checks. It includes automatic vulnerability updates.

Metasploit
Framework

A penetration testing framework used to validate
vulnerabilities found by Nexpose for patching and
mitigation.

Retina CS
Community

A web based console that simplify and centralize the
vulnerability Management. It includes automated
vulnerability assessment for servers, workstations,
database web applications. It supports VMware
environment

Burp Suite Free Edition:

A software tool kit to carry out security testing of
web application.

Nikto

A web server scanner performs comprehensive tests
against webservers for multiple (more than 6,700
potentially dangerous files/programs) items. It also
checks for server configuration items.

Zed attack proxy
Clair

An integrated tool to find out web vulnerabilities, a
proxy tool. A specialized container vulnerability
analysis service, it extracts all required data to detect
known vulnerabilities

Moloch

A large scale IPv4 packet capturing, indexing and
database system, it works along with IDS. An
analysis tool to handle multiple gigabits/sec of traffic.

PowerFuzzer:

A highly automated open source tool capable of
identifying XSS, SQL, LDAP, XPATH and HTTP
500 statuses.

Appendices

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 183

APPENDIX-2

Check lists of functions used:
Type of Functions Sample functions

Numeric Functions ABS,ACOS,ASIN,EXP,LOG,MOD,POWER,ROUND,
SQRT

Character Functions
Returning Character
Values

CHR, CONTACT,LOWER,NLS-INITCAP,NLS_UPPER
REGEXP-REPLACE, REGEXP_SUBSTR, REPLCE,
TRIM

NLS Character
Functions

NLS-CHARSET_DECL-
LEN,NLS_CHARSET_ID,NLS_CHAESET_NAME

Datetime Functions ADD_MONTHS,CURRENT_DATE,CURRENT_TIMEST
AMP,DBTIMEZONE,EXTRACT,FROM-TZ, LAST_DAY,
EW_TIME,LAST_DAY, NUMTODSINTERVAL,ROUND.

General Comparison
Functions

GREATEST, LEAST

Conversion
Functions

ASCIISTR,BIN_TO-NUM,CAST,COMPOSE,CONVERT,
DECOMPOSE,RAWTOHEX,NUMTODINTERVAL,
ROWIDTONHEX, ROWIDTONCHAR,TO-
BINARY_FLOAT,
TO_YMINTERVAL UNISTR.

Large Object
Functions

BFILENAME, EMPTY_BLOB,EMPTY_CLOB

Collection Functions CARDINALITY, COLLECT, POWERMULTISET,
CARDINALITY, SET.

Encoding and
Decoding Functions

DECODE, DUMP,ORA-HARSH,VSIZE

NULL-Related
Functions

COALESCE,LENVL,NULLIF,NVL,NVL2

Aggregate Functions AVG,COLLECT,CORR,COUNT,COVAR-
POP,FIRST,GROUP_ID,GROUP_ID,LAST,MAX,MEDIA
N, MIN,PERCENTILE_CONT

Analytic Functions CORR,COUNT,LAG,LAST,LEAD,PERCENT_RANK,RO
W_NUMBER

Appendices

184 Faculty of Technology, Cochin University of Science and Technology

APPENDIX-3

Appendix - 3 Screen shots of Prototype MLT-DR

(i) Simple query template format

(ii) Complex query template format

Appendices

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 185

Appendices

186 Faculty of Technology, Cochin University of Science and Technology

Appendices

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 187

List of Publications

188 Faculty of Technology, Cochin University of Science and Technology

[1] Teresa K. George, K. Poulose Jacob, Rekha K. James, Proposed

Hybrid Model to Detect and Prevent SQL Injection, International

Journal of Computer Science and Information Security (IJCSIS),

Vol. 14 No.6, 2016.

[2] Teresa K. George, K. Poulose Jacob, A Proposed Architecture for

Query Anomaly Detection and Prevention against SQL Injection

Attacks, International Journal of Computer Applications, Vol. 137

No.7, 2016.

[3] Teresa K. George, K. Poulose Jacob, Rekha K. James, SQLI-Dagger,

a Multilevel Template based Algorithm to Detect and Prevent SQL,

Injection, International Journal of Computer Applications Vol. 143,

No.6, 2016.

[4] Teresa K. George, K. Poulose Jacob, Fraud detection and mitigation

in secure e-payment transaction, International Journal of Scientific &

Engineering Research, IJSER, Vol. 6, Issue 2, 2015.

[5] Teresa K. George, K. Poulose Jacob Analysis on Security Vulnerability

in Online Application, Data Validation strategies and Testing Tool,

International Journal of Advanced Research in Data Mining and Cloud

Computing, Vol. 3, Issue 3, 2015.

[6] Teresa K. George, E. Ben George, N. Balasubrahmanyam An

Innovative Fraud Detection Framework for Secure E-Transactions

using Big Data Analytics, European Journal of Scientific Research

Published in Vol.122. No.3, 2014.

[7] Teresa K. George, K. Poulose Jacob, Risk and Vulnerability analysis of

E-transactions in the Banking Industry with a specific reference on the

common malware type of attack, International Journal of Computer

Science and Information Security, IJCSIS, Vol. 12, No. 6, 2014.

Introduction

Security Vulnerability in On-Line Applications: Analysis, Anomaly Detection and Prevention of Attack 189

[8] Teresa K. George, K. Poulose Jacob, Security Patches Against the

Loopholes in Internet Banking, International Journal of Engineering

Research & Technology (IJERT) Vol. 3, Issue 5, 2014.

[9] Teresa K. George, K. Poulose Jacob, Infrastructure and Security

Concerns on Internet Banking in India, International Journal of

Advanced Research in Computer Science and Software Engineering

(IJARCSSE) Vol. 4, 2014.

[10] Teresa K. George, K. Poulose Jacob, Rekha K. James, Token based

Detection and Neural Network based Reconstruction framework

against code injection vulnerabilities. Journal of Information Security

and Applications (JISA) Vol. 41, 75-91, 2018.

…..…..

	Front pages
	ack
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendix
	Publication

