
Department of Computer Science
Faculty of Technology

Cochin University of Science and Technology
Kochi- 682022, INDIA

Ph.D. Thesis
Ph.D. Thesis Computer Science

 October 2017
Department of Computer Science

Faculty of Technology
Cochin University of Science and Technology

Kochi- 682022, INDIA

Jish
a
 P.A

b
ra

h
a
m

An Algorithmic approach for optimizing Page Fault
 to increase Processor Performance along with

 Thread-Level Speculation

A
n
 A

lg
o
rith

m
ic

 ap
p
ro

ach
 fo

r o
p
tim

izin
g
 P

ag
e
 F

au
lt to

 in
crease

P

ro
cesso

r P
erfo

rm
an

ce
 alo

n
g
 w

ith
 T

h
read

-L
ev

el S
p
e
cu

latio
n

Jisha P.Abraham

Under the guidance of

Prof.Sheena Mathew

An Algorithmic approach for optimizing Page Fault to
increase Processor Performance along with Thread-

Level Speculation

Thesis submitted to
Cochin University of Science and Technology

In partial fulfilments for the requirements of the degree of
Doctor of Philosophy

under the
Faculty of Technology

By

Jisha P. Abraham

Department of Computer Science
Cochin University of Science and Technology

Cochin 682022, Kerala, India

October 2017

An Algorithmic approach for optimizing Page Fault to
increase Processor Performance along with Thread-

Level Speculation

Ph.D. Thesis in the field of Computer Science

Author
Jisha P. Abraham
Associate Professor
Department of Computer Science & Engineering
Mar Athanasius College of Engineering
Kothamangalam – 686691, Kerala, India
Email: jishaanil@gmail.com

Research Advisor
Dr. Sheena Mathew
Professor
Division of Computer Science & Engineering
School of Engineering
Cochin University of Science & Technology
Cochin 682022, Kerala, India
Email: sheenamathew@cusat.ac.in

Department of Computer Science
Cochin University of Science and Technology
Cochin 682022, Kerala, India

October2017
Dr. Sheena Mathew
Professor
Division of Computer Science &Engineering
School of Engineering
Cochin University of Science & Technology

Cochin 682022, Kerala, India
Ph: +919446509508 Email: sheenamathew@cusat.ac.in

Certificate

Certified that the research work proposed in the thesis

entitled “An Algorithmic approach for optimizing Page Fault to

increase Processor Performance along with Thread-Level

Speculation” is based on the original work done by Mrs. Jisha P.

Abraham under my supervision and guidance at Department of

Computer Science, Cochin University of Science and Technology,

Kochi and has not been included in any other thesis submitted

previously for the award of any degree.

Kochi - 682 022 Dr. Sheena Mathew
 (Supervising guide)

Certificate

This is to certify that the relevant corrections and

modifications by the audience during the pre-synopsis presentation

and recomended by the Doctral Committee of the candidate have

been incorporated in the thesis entitled “An Algorithmic approach

for optimizing Page Fault to increase Processor Performance

along with Thread-Level Speculation” .

Kochi - 682 022 Dr. Sheena Mathew
 (Supervising guide)

Declaration

I hereby declare that the work presented in this thesis entitled

“An Algorithmic approach for optimizing Page Fault to increase

Processor Performance along with Thread-Level Speculation” is

based on the original research work done by me under the

supervision of Dr. Sheena Mathew, Professor, Division of Computer

Science & Engineeering, School of Engineering, Cochin University of

Science and Technology, Kochi and has not been included in any other

thesis submitted previously for the award of any degree.

Kochi - 682022 Jisha P.Abraham

Acknowledgements

While submitting this thesis report with a profound sense of gratitude, I would

avail this opportunity to thank those who have helped me generously in the

completion of this work. First and foremost, I am grateful to the God Almighty

for having been my lodestar throughout my life and showered all blessing upon

me.

It is my proud privilege to express sincere gratitude to my supervisor and

guide, Dr.Sheena Mathew for her inspiration, sustained encouragement, timely

advice, constructive criticisms and concrete suggestions in the course of this

dissertations.

I am much greatful to Dr.B.Kannan during the timely advice he had given to

me during tough times. Also my greatfulness to my students who helped me

with suggestions during the testing phase of my work. I also express my

sincere thanks to all my colleagues at Department of Computer Science &

Engineering, Mar Athanasius College of Engineering especially to Ani Sunny,

Jiso George and Siji Eldhose for their support they have extended to me for the

completion of this work.

Mere words would not suffice to express my gratitude to my parents, family

members and my childrens for their support and prayers. I express my

heartfelt gratitude to my beloved husband who was always my strength and

support, standing by me especially during various stages of the thesis.

Jisha P. Abraham

Abstract

The processor performance is highly dependent on the

delivery of the correct instruction or data at the appropriate instance.

If the data miss is occurring in the cache memory, the processor has to

spend more cycles for fetching data from the lower memory levels.

One of the methods used to reduce cache miss is instruction

prefetching , which in turn will increase the number of instructions

readily available for the processor. Instruction prefetching is a

technique used by the central processing unit to speed up the

execution of a program by reducing the wait states.

Bandwidth is the amount of data that can be transferred from

one memory component to the other. Prefetchers trade bandwidth

for latency. If the prefetched address is correct, more bandwidth is

required to reduce latency. Whereas if incorrect prediction is made,

the bandwidth is reduced and latency increased. Processor idle

condition during program execution also may lead to system

performance degradation. Current instruction cache prefetching

schemes have higher memory acces latencies. Data prefetching has

been used as one of the mechanism to reduce memory access

latencies. Even though a number of prefetching methods are

available, none of them proved to be accurate. To resolve the various

issues an elaborated study on the memory management module of

the various operating systems is done, which includes, Open VMS,

Microsoft windows, Unix-like operating systems (including Mac OS X,

i

Linux, Solaris) and z/OS are carried out.

Along with branch handling, system performance greatly

depends up on disk scheduling, page replacement algorithm, and

compiler level parallization. In case of multiprocessing environment

more than one process is going to access the disk at the same time.

Currently, Complete Fair Queuing (CFQ) based disk scheduling

techniques are used in various operating systems. In Complete Fair

Queuing the time slots are assigned to requested process ie, it works

in time domain. This time interval allowed for the disk access of each

application includes access latency which consequently reduces the

system throughput. In order to overcome the above problem a new

disk scheduler, Budget Fair Queuing (BFQ), is considered and which is

based on service domain instead of time domain. But the results

show that the application with smaller file size will lead to starvation,

ie they have to wait in the request queue, for a long time. To

overcome this problem an another method is suggested called BFQ+.

In this work, two new methods were suggested, first method

Modified Budget Fair Queuing Version1 (MBFQV1) and second

method Modified Budget Fair Queuing version2 (MBFQV2) . The

implementation is differ based on the how the budget allocation is

done for the schedilder. And the results shows that MBFQV2 is

giving a better result.

 A page replacement algorithm considers the limited

information about access to the pages provided by the hardware.

Least Recently Used (LRU) is the page replacement algorithm used in

ii

most operating systems. The number of times the page is referred is not

considered for replacement. A new algorithms is developed, Least Recently

Used and Least Frequently Used (LRU-LFU) which will give a better

performance than LRU page replacement method.

 Ensuring the availability of required pages in cache is one of the

major tasks of kernel in memory management. Any failure of kernel in this

functionality may lead to cache miss instead of cache hit. CaMMEBH is a

new algorithm developed on branch handling statements to reduce the fault

rate in memory. The property of locality of reference allows the system to

prefetch the pages from one memory level to the next one. CaMMEBH

designed to load all the probable destination pages into cache while loading

from main memory, so that maximum hit ratio is found when searching in

the cache itself.

 Today all operating systems are designed in a multithreaded

environment. But the compilers used are not considering this fact.

Here the loops which are executable in parallel are identified and they

are executed using various threads. On the other hand, automatic

parallelization offered by compilers only extracts parallelism from

loops and the compiler can assure that there is no risk of dependence

violation at runtime. Only a small fraction of loops falls into this

category, by leaving many potentially parallel loops unexploited.

Thread-Level Speculation (TLS) techniques allow the extract

parallelism from fragments of code that cannot be analyzed at

compile time. Automated Code Parallelizer using Open Multi-

Processing(OpenMP), which automates the insertion of compiler directives

iii

to facilitate parallel processing on shared memory machines with multiple

cores. It converts an input sequential program into a multi- threaded

program for multi-core shared memory architectures. This work focuses on

loops and speculatively parallelizes the different iterations of a loop while

taking care of data dependency between the different iterations. While

executing the various iterations the window size is varied and found the

optimal window size.

Different mechanisms for processor performance improvement are

introduced in this work. A combination of disk scheduling, page replacement,

branch handling and parallel programming are used to ensure better

processor performance under different situations. The result obtained from

these methods shows reduction in the fault rate along with reduced waiting

time.

iv

Contents

List of Figures xi

List of Tables xv

Abbrevations xvii

1 Introduction 1

1.1 General . 1

1.1.1 Layout of the Thesis 9

2 Disk Scheduling with Equivalent Bandwidth Sharing 11

2.1 Abstract . 11

2.2 Introduction to Disk Scheduling 12

2.3 Complete Fair Queuing 13

2.4 Budget Fair Queuing 15

2.4.1 Working of BFQ Scheduler 15

2.4.2 Implementation 18

2.4.3 Need to Modify BFQ 20

2.5 MBFQV1 . 22

2.6 MBFQV2 . 23

2.7 Performance Evaluation 25

v

CONTENTS

2.8 Conclusion . 34

3 Handling of Various Page Replacement Techniques 35

3.1 Abstract . 35

3.2 Page Handling . 36

3.3 Page Replacement Algorithms 39

3.3.1 First in First Out(FIFO) 40

3.3.2 Last in First Out (LIFO) 40

3.3.3 Least Frequently Used (LFU) 41

3.3.4 Most Frequently Used (MFU) 41

3.3.5 Least Recently Used (LRU) 41

3.3.6 Most Recently Used 42

3.3.7 Belady’s Optimal 42

3.4 Handling of Page Fault 42

3.5 Implementation of Various Page Replacement Methods 46

3.5.1 MRU . 47

3.5.2 LFU . 48

3.5.3 MFU . 48

3.5.4 LRU-LFU . 49

3.5.5 MRU-LFU . 49

3.5.6 LRU-MFU . 50

3.5.7 MRU-MFU . 50

3.6 Performance Analysis of Various Page Replacement Meth-
ods . 51

3.7 Conclusion . 61

4 CaMMEBH for Page Fault Reduction 63

4.1 Abstract . 63

vi

CONTENTS

4.2 Study Of Branch Handling 64

4.2.1 Software Prefetching. 65

4.2.1.1 Long Cache Lines 65

4.2.1.2 Lazy Prefetching 66

4.2.1.3 Adaptive Prefetching 67

4.2.2 Hardware Prefetching 69

4.2.2.1 Next-Line Prefetching 69

4.2.2.2 Target-Line Prefetching 70

4.2.2.3 Wrong-Path Instruction Prefetching . 71

4.2.2.4 Fetch Directed Instruction Prefetching 72

4.2.2.5 Branch Target Instruction Prefetching 74

4.3 Suggestion for Prefetching Techniques 75

4.4 Need of Branch Handling 77

4.5 What is CaMMEBH? 78

4.6 Implementation of CaMMEBH. 79

4.7 Analysis of CaMMEBH with Current System. 82

4.8 Conclusion . 88

5 Processor Performance Enhancement using MBFQV2,
LRU-LFU and CaMMEBH 89

5.1 Abstract . 89

5.2 Introduction . 90

5.3 Processor Performance Enhancement with Reduced Page
Fault . 92

5.4 Implementation of Various Phases 93

5.4.1 LINUX Kernal 93

5.4.2 Module Creation 94

5.4.3 Kernal Compilation 95

vii

CONTENTS

5.5 Performance Analysis 95

5.6 Conclusion . 105

6 Parallel Execution of Multiple Threads 107

6.1 Abstract . 107

6.2 Introduction . 108

6.3 Current Speculative Technique 110

6.4 Thread-Level Speculation 111

6.5 OpenMP Speculative Clause 113

6.5.1 Speculative Stores 115

6.5.2 Speculative Loads 116

6.5.3 Commit Operation 116

6.5.4 Scheduling Iterations under TLS 116

6.6 Speculative Engine . 117

6.6.1 Data Structures 117

6.7 Partial Commit Operation 119

6.8 Loop Transformation for Speculative Execution 120

6.9 Implementation and Analysis of Result 123

6.10 Conclusion . 130

7 Summary of Results, Conclusions and Future Works 131

7.1 Abstract . 131

7.2 MBFQV2 . 132

7.3 LRU-LFU . 132

7.4 CaMMEBH . 133

7.5 Performance Enhancement 133

7.6 TLS . 134

viii

CONTENTS

7.7 Research Conclusions 134

7.8 Future Work . 135

Published Work of the Author 137

References 139

ix

CONTENTS

x

List of Figures

2.1 BFQ system model . 16

2.2 Flow chart of BFQ . 21

2.3 Comparison between CFQ and BFQ 28

2.4 Comparison between CFQ and MBFQV1 29

2.5 Comparison between CFQ and MBFQV2 29

2.6 Time to transfer the files in various scheduling methods 30

2.7 Comparison between CFQ and BFQ 31

2.8 Comparison between CFQ and MBFQV1 32

2.9 Comparison between CFQ and MBFQV2 32

2.10 Transfer rate of files in various scheduling methods . . 33

2.11 Throughput . 34

3.1 Comparison of major fault in various page replacement
methods . 53

3.2 Comparison of minor fault in various page replacement
methods . 55

3.3 Confidence level plot for major fault 55

3.4 Confidence level plot for minor fault 56

3.5 Comparison of user time in various page replacement
methods . 57

xi

LIST OF FIGURES

3.6 Comparison of system time in various page replacement
methods . 58

3.7 Comparison of elapsed time in various page replacement
methods . 60

3.8 Comparison of execution time in various page replace-
ment methods . 61

4.1 Data structure of jump table 80

4.2 Modified data structure of jump table 81

4.3 New statements . 81

4.4 Comparison of major faults 84

4.5 Comparison of minor fault 85

4.6 Comparison of execution time 87

4.7 Comparison of waiting time 87

5.1 Comparison of major fault occured in various methods 97

5.2 Comparison of minor fault occured in various methods
with existing one . 99

5.3 Comparison of user time in various methods with exist-
ing one . 100

5.4 Comparison of system time in various methods with ex-
isting one . 101

5.5 Comparison of elapsed time in various methods with
existing method . 103

5.6 Comparison of excecution time in various methods with
existing method . 103

5.7 Comparison of waiting time in various methods with
existing method . 104

6.1 OpenMP speculative clause for ’for-loop’ 113

6.2 Example of for loop with speculative clause 114

6.3 Data structures of speculative library 118

xii

LIST OF FIGURES

6.4 Loop Transformation (a) Original code (b) Transformed
code using speculative engine 121

6.5 Execution time of program 1 having window size n+1
and 2n with different number of threads and cores. . . 127

6.6 Execution time of program 2 having window size n+1
and 2n with different number of threads and cores. . . 128

6.7 Execution time of program 3 having window size n+1
and 2n with different number of threads and cores. . . 128

6.8 Execution time of program 4 having window size n+1
and 2n with different number of threads and cores. . . 129

6.9 Execution time of program 5 having window size n+1
and 2n with different number of threads and cores. . . 129

xiii

LIST OF FIGURES

xiv

List of Tables

2.1 Specification of the testing environment 17

2.2 Time taken by various schedulers to transfer files . . . 28

2.3 File transfer speed of various schedulers 31

2.4 Throughput parameter 33

3.1 Specification of the testing environment 51

3.2 Details of major page fault in various page replacement
methods . 52

3.3 Details of minor page fault in various page replacement
methods . 54

3.4 Details of user time in various page replacement methods 56

3.5 Details of system time in various page replacement meth-
ods . 58

3.6 Details of average elapsed time in various page replace-
ment methods . 59

3.7 Details of execution time in various page replacement
methods . 59

4.1 Specification details of testing environment 82

4.2 Number of major faults 83

4.3 Number of minor faults 84

4.4 Details about the various time parameters in CaMMEBH
method . 85

xv

LIST OF TABLES

4.5 Details about the various time parameters in existing
method . 86

4.6 Details about the execution time and waiting time for
existing and CaMMEBH 88

5.1 Specification of the testing environment 95

5.2 Number of major faults occurred in various methods . 96

5.3 Number of minor faults occurred in various methods . 98

5.4 Comparison of user time in various methods with exist-
ing method . 100

5.5 Comparison of system time in various methods with ex-
isting method . 101

5.6 Comparison of elapsed time in various methods with
existing method . 102

5.7 Comparison of execution time in various methods with
existing method . 102

5.8 Comparison of waiting time in various methods with
existing method . 104

6.1 Specification of the testing environment 123

6.2 Execution time of program 1 with two different window
size, different number of cores and threads 124

6.3 Execution time of program 2 with two different window
size , different number of cores and threads 124

6.4 Execution time of program 3 with two different window
size, different number of cores and threads 124

6.5 Execution time of program 4 with two different window
size, different number of cores and threads 125

6.6 Execution time of program 5 with two different window
size, different number of cores and threads 125

xvi

Abbrevations

BFQ Budget Fair Queuing

BTB Branch Target Buffer

C-LOOK Circular Look

CaMMEBH Cache Memory Management with Efficient Branch
Handling

CFQ Complete Fair Queuing

CMPs Chip multiprocessors

CPF Cache Probe Filtering

FCFS First Come FirstServe

FDP Fetch Directed Prefetching

FIFO First in First Out

FTQ Fetch Target Queue

I-cache Instruction Cache

LFU Least Frequently Used

LIFO Last in First Out

LRU Least Recently Used

LRU-LFU Least Recently Used and Least Frequently Used

LRU-MFU Least Recently Used and Most Frequently Used

MBFQV1 Modified Budget Fair Queuing Version1

MBFQV2 Modified Budget Fair Queuing version2

xvii

ABBREVATIONS

MFU Most Frequently Used

MRU Most Recently Used

MRU-LFU Most Recently Used and Least Frequently Used

MRU-MFU Most Recently Used and Most Frequently Used

OpenMP Open Multiprocessing

PC Program Counter

TLS Thread-Level Speculation

xviii

1

Introduction

1.1 General

In the current world, it is almost impossible to imagine a life with-

out computers. They play many important roles in society, like to pro-

mote communication and interaction between users, provide a way to

shop, play games and have access to education etc., as well as provide

a convenient way to create and store valuable information along with

media and files. Various types of softwares are used for these activities.

Traditionally, software has been designed for sequential computation,

that is one instruction may be executed at a time. The major problem

of sequential computation is the increased response time due to the

long execution time. In most cases, serial programs run on modern

computers and ”waste” potential computing power. To overcome this

problem, the concept of parallel processing is introduced.

Nowaday the word ‘parallel processing’ is very commonly used.

It is used extensively even outside the realm of computer world. In

computer field [Computer Architecture and parallel processing, Kai

Hwang, Faye A Briggs, Tata McGraw-Hill] parallel processing is an effi-

1

1. INTRODUCTION

cient form of information processing which emphasizes the exploitation

of concurrent events in the computing process. Concurrency implies

parallelism, simultaneity and pipelining. The word Parallelism is not

only applicable to the multiprocessing environment, but to uniproces-

sor environment as well. In a uniprocessor environment parallelism

can be obtained through methods like multiplicity of functional units,

parallelism and pipelining within CPU, overlapped CPU and I/O op-

erations, use of hierarchical memory system, balancing of subsystem

bandwidths and multiprogramming and timesharing. Among these

the first five methods are related to hardware technology and the last

one is related to software technology. Almost all the modern operat-

ing systems are incorporated with multiprogramming, multiprocessing

and even multi threading capabilities.

Implementation of parallelism needs special hardware and software

support. As mentioned earlier hardware parallelism is defined by the

machine architecture and hardware multiplicity [Computer Architec-

ture A Quantitative Approach, 4th edition, John L Hennessy and

David A Patterson, Elsevier]. The level of hardware parallelism is

a trade-off between cost and performance. It depends on the perfor-

mance of the processor and resource utilization patterns of the multiple

parallely executed processes. Software parallelism relies on algorithm,

programming style and program design. Extent of software parallelism

can be identified by varying the program flow graph, that lists the se-

quence and flow of CPU operations in a program.

Under programmatic level,parallelism can be achieved at job or pro-

gram level, task or procedure level, inter-instruction or intra-instruction

level. The highest level of parallel processing is achieved through mul-

tiprogramming and multiprocessing where multiprogramming requires

a parallelly processable algorithm. Quality of parallel computing can

be expressed as a measure of granularity, the ratio of computation to

communication. It can be either coarse-grained, medium-grained or

fine-grained [http://www.cs. utexas.edu]. Coarse-grained category in-

cludes processes with relatively large amount of computational work

between communication events. Medium and fine-grained categories

2

1.1 General

includes process with medium and small amount of computational work

respectively. Multiprogramming provides coarse-grained parallelism.

The processor performance is highly dependent on the delivery of

the correct instruction or data at the appropriate instance. If the

requested data is missing (not available at the particular instance)

the searching of the missed data will be done based on the principle

of inclusion. Principle of inclusion states that [Computer System

Architecture, 3rd edition, Morris Mano, PHI] when ever a data miss

occurs, a search of the data takes place as per the memory hierarchy.

Memory at each level is a subset of its higher level. Data can be

transferred between various memory levels in a parallel manner. If the

data miss is occurring in the cache memory, the processor has to spend

more cycles for fetching data from the lower memory levels. One of the

methods used to reduce cache miss is instruction prefetching, which in

turn will increase the number of instructions readily available for the

processor. Branch target buffer of modern processors handle target

address of branches to fetch ahead an instruction stream for increasing

the performance of the processor [A.J. Smith,1982].

Instruction prefetching is a technique used by the central process-

ing unit to speed up the execution of a program by reducing the wait

states. Wait state is a delay experienced by a processor when ac-

cessing the external memory. When the instruction or data block is

actually needed, it can be fetched much more quickly from the cache

than other memories. Thus, prefetching reduces memory access la-

tency. It is a useful technique for addressing the memory wall is-

sue. Memory wall is the growing disparity of speed between CPU

and off-chip memory [http://istc-bigdata.org/index.php/memory-wall-

what-memory-wall/]. Main reason for this disparity is the limited com-

munication bandwidth beyond chip boundaries known as bandwidth

wall.

Generally programs are executed sequentially, so the instructions

are prefetched in program order. Whenever a non sequential execu-

tion comes, the prefetch may be part of a complex branch prediction

3

1. INTRODUCTION

algorithm, where the processor tries to anticipate the result of a cal-

culation and fetch the right instructions in advance. Most of the high-

performance processors use some type of prefetching techniques.

Though the processor speed has increased drastically over the years,

throughput of the processor has not increased proportionally. This lag

is due to unavailability of efficient mechanisms for proper delivery of

data to the processor. Branch predictors play a crucial role in achieving

effective performance in many modern pipelined microprocessor archi-

tecture [https://web.njit.edu/ rlopes/Mod5.3.pdf]. Commonly used

methods for branch predictions are software prefetching and hardware

prefetching. In software prefetching the compiler will insert a prefetch

code in the program. In this case since actual memory capacity is not

known to the compiler, it will lead to some harmful prefetches. In

hardware prefetching, instead of inserting the prefetch code, an addi-

tional hardware examines memory access sequences for common pat-

terns. Using the behaviour of the stored commonly accessed patterns,

address of the next instruction stream is generated by the prefetcher.

The guessed addresses are placed into the prefetch queue. If there

are no pending access requests, the request from the prefetch queue is

placed for access.

Bandwidth is the amount of data that can be transferred form one

memory component to the other. Prefetchers trade bandwidth for la-

tency. If the prefetched address is correct, more bandwidth is required

to reduce latency. Whereas if incorrect prediction is made, the band-

width is reduced and latency increased. Processor idle condition during

program execution also lead to system performance degradation. In a

pipelined system the time that is wasted with a branch misprediction is

equal to the number of stages in the pipeline, starting from fetch stage

to execution stage. All the prefetching methods concentrate only on

the fetching of the instruction for execution, and not on the overall

performance of the processor.

Current instruction cache prefetching schemes have higher memory

acces latencies. Data prefetching has been used as one of the mecha-

4

1.1 General

nisms to reduce memory access latencies. To be effective in practice,

prefetching requires accurate timing. This timing issue adversely af-

fects multi-processor systems. Study shows that timing and scheduling

of prefetch instructions [R. S. Chappell, et al., SSMT] is a critical issue

in software data prefetching and prefetched instructions must be issued

in a timely manner for them to be useful.

If a prefetch is issued too early, there is a chance that the prefetched

data will be replaced from the cache before it is referred by the pro-

cessor. It may also lead to replacement of other useful data from the

higher levels of the memory hierarchy. If the prefetch is issued too late,

the requested data may not arrive before the actual memory reference

is made, thereby introducing processor stall cycles. This may pre-empt

the current running sequence from the processor.

Design of an effective prefetching algorithm should consider mini-

mizing the prefetching overhead. This is a big challenge and it needs

more thought and effort. Even though a number of prefetching meth-

ods are available, none of them proved to be accurate. It is also ob-

served that in both hardware and software implementations of the

prefetching techniques, branch prediction and handling takes place

during runtime. A better idea would be to use this technique dur-

ing compile time instead of runtime. This can be done by introducing

a new branch prediction table created during the initial phase of com-

pilation.

Tokens identified during lexical analysis are classified into branch

and non branch codes. Branch prediction table contains entries for

each branch related tokens. The entry in the table are current address

and the branching address along with the token, which can be used for

handling the prefetching. Also the look ahead distance for branching

is considered for better utilisation of the available memory capacity as

in the case of memory management section.

Along with branch handling, system performance greatly depends

up on disk scheduling, page replacement algorithm, and compiler level

parallization. In case of multiprocessing environment more than one

5

1. INTRODUCTION

process is going to access the disk at the same time. Memory manage-

ment unit of the operating system can handle this situtation by using

a round robin scheduling. In this method the requests are queued as

per their order of arrival time and equal time slots are given to each

of the process. If the process is not able to complete the transfer with

in the time slot that process will undergo the pre-emption. Here the

scheduling of the process is done based on time domain which is also

known as Complete Fair Queuing (CFQ) [Paolo Valente and Fabio

Checconi, 2010]. The main problem of this method is low throughput.

Hence, the concept of scheduling based on service instead of time was

proposed. In this method a budget value is assigned to each of the

process. The budget stands for the number of sectors occupied for the

storage of that process. This type of scheduling is known as Budget

Fair Queuing (BFQ) [Paolo Valente and Fabio Checconi, 2010]. Here,

when the budget value is set high the throughput is low. By making

some changes on BFQ the throughput can be increased.

Page replacement algorithm decides which memory pages to be

swap out or write to disk, when a new page of memory needs to be

allocated. Paging happens when a page fault occurs and a free page

cannot be used to satisfy the allocation. If the page that is selected

for replacement and swapped out is referenced again, then it has to

be paged in which involves waiting for I/O completion. The quality

of the page replacement algorithm depends on lesser waiting time for

page-ins, then better the algorithm. A page replacement algorithm

considers the limited information about access to the pages provided

by the hardware. It tries to guess which pages should be replaced to

minimize the total number of page misses while balancing this with

the cost (primary storage and processor time) of the algorithm. Least

Recently Used (LRU) is the page replacement algorithm used in most

operating systems. This makes use of only time of usage of the page

for the replacement operation. Here an attempt is made to make use

of frequency of the usage of page along with the time for page replace-

ment.To resolve the various issues an elaborated study on the memory

management module of the various operating systems is done, which

includes, OpenVMS, Microsoft windows, Unix-like operating systems

6

1.1 General

(including Mac OS X, Linux, Solaris) and z/OS are carried out [M

G Sobell, A Practical Guide to solaris]. In case of windows operating

system’page fault’ is refered as ’hard fault’.

Today all operating systems are designed in a multithreaded envi-

ronment. But the compilers used are not considering this fact. Here

the loops which are executable in parallel are identified and they are

executed using various threads. On the other hand, automatic paral-

lelization offered by compilers only extracts parallelism from loops and

the compiler can assure that there is no risk of dependence violation at

runtime. Only a small fraction of loops falls into this category, by leav-

ing many potentially parallel loops unexploited. Thread-Level Spec-

ulation (TLS) [Cosmin E Oancea, Alan Mycroft, 2008], [Paraskevas

Yiapanis, Gavin Brown, Makel Lujan, 2016] techniques allow to ex-

tract parallelism from fragments of code that cannot be analyzed at

compile time.

Many technological advancements usually bring new hardware which

replaces the old ones and leading to the obsolete of the existing ones by

generating E-waste. This is one of the biggest environmental problems

that threaten the entire humanity. This work mainly focuses on how

to increase the processor performance (uniprocessor environment) with

out adding any extra hardware. Instead of introducing new hardware,

performance improvement by design modification of system software

is considered.

Different mechanisms for processor performance improvements are

introduced in this work. A combination of disk scheduling, page re-

placement, branch handling and parallel programming are used to en-

sure better processor performance under different situations.

In round robin scheduling only the arrival time of the processor

is considered for scheduling. BFQ is suggested as an improvement of

CFQ by Paolo Valente and Fabio Checconi [Paolo Valente and Fabio

Checconi, 2010], [Nandhini Sivasubramaniam, Palaniammal Senniap-

pan, 2014]. A new version of BFQ+ is implemented to overcome the

draw back of BFQ. Two revised versions of BFQ is proposed in this

7

1. INTRODUCTION

work to improve the throughput further. Among these one is similar

to BFQ+ [P. Valente, M. Andreolini, 2014].

The refinement of page replacement algorithm mainly concentrates

on modifying LRU algorithm by incorporating frequency of page ref-

erences along with the time of reference.

Prefetching module of the operating system is modified to fetch

pages corresponding to branch false condition also in addition to branch

true condition.

In parallel programming whenever a dependency between the vari-

ables are detected inside the loop statement then that loop will be

executed in the sequential order only. TLS is a method in which even

if the dependency is found between the variables inside the loop the

execution is done in parallel. TLS is used to introduce compiler level

parallelism. Performance was studied by varying the number of cores,

number of threads within the core as well as number of windows used

within the cores. The conditions that lead to higher performance were

then identified in this phase.

The experiments were done by editing the Linux kernel. Linux is

one of the most popular open source operating system. The Linux ker-

nel is a monolithic kernel, which means that the whole operating sys-

tem is on the RAM reserved as kernel space [https://www.inso.tuwien.

ac.at /uploads /media.pdf]. The kernel owns that space on the RAM

until the system is shutdown. In contrast to kernel space, there is user

space. User space is the space on the RAM that the user’s programs

own. The Linux kernel is also a pre-emptive multitasking kernel. This

means that the kernel will pause some tasks to ensure that every ap-

plication gets a chance to use the CPU. Portability is one of the best

features that make Linux popular. Portability is the ability for the ker-

nel to work on a wide variety of processors and systems that permits

the editing of the kernel as per our requirements.

Implementation of Linux kernel is a collection of modules. Each

module has specific actions to be performed. The entire kernel source

8

1.1 General

code is partitioned into a number of subsections which incorporates

millions of code lines. Kernel code area where all memory manage-

ment operations are performed is mm module. Both kernel space and

user space are taken into consideration while managing memory. The

page replacement policies, allocation and deallocation of cache memory

regions etc are handled in ‘mm module’.

TLS part of the work is done on OpenMP . OpenMp is compiler

directive based and it is portable and multi-platform which includes

Linux.

1.1.1 Layout of the Thesis

Chapter 1 points out the need for parallel processing in todays

world along with the various methods that can be adopted to reduce

the page fault rate inside the system.

Chapter 2 takes up the study on BFQ disk scheduler. Compara-

tive study is done with CFQ. The design of two new disk scheduling

methods such as MBFQV1 and MBFQV2 are also included.

Chapter 3 describes the study of four page replacement methods

and their implementations. A new set of replacement methods are

introduced and their performance evaluation has been carried out.

Chapter 4 illustrates the development of a new branch handling

method CaMMEBH and compares its performance with the existing

method.

Chapter 5 deals with the integration of MVBFQV2, LRU-LFU and

CaMMEBH. Comparative study is performed on each level of integra-

tion.

Chapter 6 explores the use of TLS method in parallel programming.

The performance evaluation is also done.

9

1. INTRODUCTION

Chapter 7 concludes by summarizing the results in the work and
the possible developments in future.

The performance evaluations of different algorithms are done on
various systems with different configuration. The result shown in the
thesis is taken from the system with the following configuration: In-
tel I core processor, 4 GB RAM, and a 700 GB IBM-DTLA- 307030
SATA IDE hard drive. Linux Operating System kernel 3.14.30. Paral-
lel programming is done using OpenMp in GCC compiler with version
4.6.2.

10

2

Disk Scheduling with

Equivalent Bandwidth

Sharing

2.1 Abstract

This chapter concentrates on the enhancement of data transfer speed

between the secondary memory and primary memory. Currently, Com-

plete Fair Queuing (CFQ) based disk scheduling techniques are used in

various operating systems. CFQ is a timestamp based scheduler, where

high throughput is obtained by just idling the disk for a short time in-

terval after the completion of each request. Applications such as file

copy or transfer, Web, DBMS or video streaming make use of syn-

chronous disk requests in order to access the data from the secondary

storage devices. In Complete Fair Queuing the time slots are assigned

to requested process ie, it works in time domain. This time interval

allowed for the disk access of each application includes access latency

which consequently reduces the system throughput. In order to over-

11

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

come the above problem a new disk scheduler, Budget Fair Queuing

(BFQ), is considered and which is based on service domain instead of

time domain. In BFQ a budget will be allotted to each process with a

maximum budget value. In order to study the performance variation,

the analysis of CFQ scheduler and the implementation and analysis

of BFQ scheduler were done and it was observed that performance of

BFQ scheduler is better. But the results show that the application with

smaller file size will lead to starvation, ie they have to wait in the

request queue, for a long time. To overcome this problem two new

methods were suggested. The first method Modified Budget Fair Queu-

ing Version1 (MBFQV1), the budget is calculated based on half of the

maximum budget of the number of requests present in the queue ini-

tially. In the second method Modified Budget Fair Queuing version2

(MBFQV2), the budget is modified each time, based on the average of

the budgets of the processes present in the request queue. The result of

MBFQV2 shows better performance compared to MBFQV1 and BFQ.

2.2 Introduction to Disk Scheduling

Disk scheduling is a method by which data is transferred from sec-

ondary memory to primary memory. Performance of the disk scheduler

depends on access time parameter. Access time is the average time re-

quired to search for a particular storage location in the memory to

access its contents. Access time consists of seek time and transfer

time. Seek time is the time required to position the read-write head

to a location where data is residing. Seek time is usually much longer

than the transfer time (time required to transfer data to or from the

device) [Computer System Architecture, 3rd edition, M. Morris Mano,

PHI]. Transfer rate is the number of characters or words that the device

can transfer per second after positioning the head to the beginning of

the record. In a multiprocessing environment, more than one process

may access the disk at the same time. Memory management unit of

the operating system can handle this situation by using a round robin

12

2.3 Complete Fair Queuing

scheduling method. In this method the requests are queued accord-

ing to their arrival time and equal time slots are given to each of the

process. If the process is not able to complete the transfer with in allot-

ted slot, it will undergo pre-emption. Complete Fair Queuing (CFQ)

[Paolo Valente and Fabio Checconi, 2010] is the scheduling method

used for this purpose. The low throughput is the main drawback of this

method. As a solution to this problem, a new approach is suggested by

Paolo Valente and Fabio Checconi [Paolo Valente and Fabio Checconi,

2010] in which scheduling is done based on service instead of arrival

time. In this method a budget value is assigned to each of the process.

The budget stands for the number of sectors occupied for the storage

of the given process. This type of scheduling is known as Budget Fair

Queuing (BFQ) [Paolo Valente and Fabio Checconi, 2010].

2.3 Complete Fair Queuing

The purpose of the scheduler is to schedule the processes which are

requesting for accessing the disk in the computer system. Most of the

applications, such as file transfer, Web, DBMS, Video on Demand or

Internet TV etc., need to transfer large amount of data to or from disk

devices. The time needed to serve a request will depend on the seek

time, rotational latencies, and the variation of the transfer rate. In

a multiprocessing environment multiple number of requests are gener-

ated inside the system and they are kept in a request queue. Request

queue is an internal queue inside the system to store the pending re-

quests for disk access by various applications. Majority of applications

usually issue synchronous [S.layer and P. Druschel, 2001] request. Syn-

chronous means one request or batch of requests at a time. When one

request is in service the other requests are blocked till the ongoing

process has been completed. This type of request or batch of requests

is called synchronous. In order to obtain effective utilisation of re-

sources, when multiple requests are activated, disk scheduler divides

the resource of disk I/O among the pending requests in the system.

13

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Pending requests are requests which are waiting in the request queue.

Pending requests are selected based on the current position of the disk

head, to reduce the access latency. When multiple requests arrive to

the system a timestamp is given to the processes based on the arrival

time. The dispatch of the request to the disk is done based on the

ascending order of timestamp. This is the basic working concept of

timestamp based schedulers.

Some processes can be initiated only when the previous process is

completed. The problem faced here is that due to the delay of arrival of

first process, the dispatching of the second process is delayed. Delayed

synchronous request may get higher timestamp only because of the

delayed invocation. If the preceding request is activated earlier they

may get better time stamp. Due to this higher time stamp it has to

wait longer time in the request queue getting dispatched to the disk.

It delays service and hence the completion of the request will delay the

arrival of the successive synchronous request of the same application,

and so on. Due to the delay in servicing of the request, scheduler may

force the application to issue requests at a deceptively lower rate. If this

occurs, the scheduler just fails to guarantee the reserved bandwidth or

the assigned request completion time to the application.

In addition to the above problem a minimum amount of time is

needed for an application to handle a completed request and to submit

the next synchronous request which will prevent the scheduler from

achieving a high disk throughput. This minimum amount of time, is

the time taken to read the data and locate the position of next set

of data to transfer. Until the next synchronous request is issued the

application will be deceptively idle. During such idle time, the disk

head may be moved away from the current position. Thus loosing

the chance of a close access for applications which are near to the

disk head, and that will result in increased rotational latency. Even

if all these problems are there CFQ [http://mirror.linux.org.au/pub/

linux.conf.au] is the most widely used disk scheduling technique in

current operating systems.

14

2.4 Budget Fair Queuing

2.4 Budget Fair Queuing

Budget Fair Queuing (BFQ) is a service based disk scheduling

method. It uses a proportional share disk scheduling algorithm, which

relies on the slice-by-slice service scheme of CFQ. In BFQ, budget is

assigned to each requested process. This budget is measured in terms

of number of sectors used by that process for storage. The disk is as-

signed to the active process until it has exhausted its assigned budget.

During that time no other process is allowed to access it. In CFQ, al-

lotment is done based on the duration of time slice but in case of BFQ

it based on the budget value. In CFQ the variation in the workload

as well as the number of requested processes, will affect the duration

of time slot given to active process. But in the case of BFQ, the disk

bandwidth can be distributed among processes without any distortion

due to workload variations or other factors, such as in and out move-

ment of the processes to the request queue. To overcome this problem

a new method called BFQ+ is introduced [P. Valente, M. Andreolini,

2014].

BFQ uses an internal scheduler (BFQ scheduler) to schedule tasks

according to their budgets. This BFQ scheduler is responsible for the

budget calculation and the assignment of the budget value to the var-

ious process that require less seek time, which boosts the throughput

compared to CFQ and guaranties low latency. The Figure 2.1 shows

the diagrammatic representation of BFQ scheduler.

2.4.1 Working of BFQ Scheduler

BFQ scheduler handles requests from application queue. The ap-

plication queue is the same as the request queue present inside the

computer system. When a request for a process is generated by the

processor, it is enqueued in the application queue or request queue.

BFQ scheduler will calculate the budget value of each of the process

present in the application queue and select the maximum value and

15

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Figure 2.1: BFQ system model

assign it as the budget (B max). The selection of the process is done

based on the first come first serve (FCFS) order and it gets exclusive

access to the disk. During the service of the process disk idling is

performed to wait for the arrival of synchronous requests only if these

requests are deemed sequential. The process will continue the access

from the disk until the budget value is reached or data transfer is com-

pleted. In BFQ the budget value will be fixed to B max always. Due

to this the job with small budget value has to wait for a long time in

the request queue. Even if BFQ starts the scheduling process based on

the arrival of the request later all enqueued request will be arranged

based on the Circular Look (C LOOK) [Operating system concepts,

5th edition, Abraham Silberschatz, Wiley], [Operating system Design

and implementation, A S Tanenbaum and A S Woodhull, PHI] disk

scheduling algorithm. C-LOOK is a disk scheduling algorithm used

to determine the order in which disk read and write requests are pro-

cessed. C-LOOK basically scans in only one direction. Either sweep

from inside to out, or outside to in within the disk surface. When the

disk head reaches the end, the head is moved all the way back to the

beginning. This actually takes advantage of the fact that many drives

can move the read write head at high speeds if it’s moving across a

large number of tracks , which will reduce the seek time. Caches (disk

16

2.4 Budget Fair Queuing

caching) are usually tuned to reduce disk access and achieve feasible

response times.

To guarantee a controllable maximum queuing time, the order in

which the requests are extracted from the queue of the active process

depends on a user-configurable TFIFO parameter [Paolo Valente and

Fabio Checconi, 2010], [http://www.lohninger.com/helpcsuite/how to

use fifos.htm]. TFIFO is the queuing time after which the queued

requests must be served in FIFO order. When the next request of the

i-th process is to be dispatched at time ‘t’ if ‘ai’(arrival time of i-th

application) + TFIFO>t holds for all the queued requests Rj. Once it

is dispatched the next request is chosen in C-LOOK order, otherwise

the oldest request is picked.

As the application work is in the service domain and not in the

time domain, they are scheduled by the BFQ scheduler as a function

of their budgets. Regardless of the time interval, workload and disk

physical parameter, BFQ guarantees to each application a minimum

possible delay, achievable by serving applications budget-by-budget. In

order to perform the analysis of CFQ with BFQ the implementation

is done on the various versions of Linux kernel and experimentally

evaluated its single disk performance with file transfer time, transfer

rate and throughtput with several system files and other application

programme.Table 2.1 will give specification of the testing environment.

Table 2.1: Specification of the testing environment

Specification

Processor:Intel i5
4 GB RAM
700 GB IBM-DTLA- 307030 SATA IDE hard drive.
Linux kernel 3.14

17

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

2.4.2 Implementation

The new disk scheduler is added to the kernal as a header file using

the #include “bfq.h”. The algorithm used for the implementation of

BFQ is given in ALGORITHM 2.1 :

ALGORITHM 2.1:-

Step 1: Input: Application index, request issued by the application

Step 1.1 Insert the request R in the request queue

addrequest(int i, request R)

appl = applications[i]; / / reference to the i-th applica-

tion

Step 1.2 Activate the timer for waiting time calculation

Step 2: Generate tree stucture for the storage of the request

Step 3: Generate weighted tree corresponding to the request tree

Step 3.1 Activate the sector calculation function

(budget calculation)

Step 3.2 Assign the corresponding budget to various requests

Step 4: Select the request for service

Step 4.1 Calculate the sector distance from the current

position to the request.

Step 4.2 Fix the budget value

Step 4.3 Dispatch the request requestdispatch()

Step 5: Activate data transfer function

step 6: Activate the timer function

Step 7: Check the status of the dispatch request

Step 7.1 If the request is servised completely

Step 7.1.1 The request should be removed from the application

queue

Step 7.1.2 The request should be removed from the tree

Step 7.1.3 The request should be removed from the weghted tree

Step 7.2 If it is not serviced completely

Step 7.2.1 Calculate the remaining budget value

Step 7.2.2 Store the information about how much is serviced

Step 8: Extract the next active application from queue

18

2.4 Budget Fair Queuing

Step 8.1 go to Step 4.3

All the request comes to the scheduler is stored in a tree sturuc-

ture using the function ‘static void bfq rq pos tree add(struct bfq data

*bfqd, struct bfq queue *bfqq)’. From this tree a weighted tree is

generated based on the budget value using the function ‘static void

bfq weights tree add(struct bfq data *bfqd, struct bfq entity *entity,

struct rb root *root)’. For the calculation of the weight paramerter

the size of the application and the number of sectors used are made

use of. With the help of budget allocation function the generation of

the weighted tree will be completed.

Once the requests are comming to the application queue the se-

lection of the request should be done using the function ‘static struct

request *bfq choose req (struct bfq data *bfqd, struct *rq1, struct re-

quest *rq2, sector t last)’ [www.akhilnarang/ kernal bullhead]. For

selection process the distance between current posion of the head and

the destination sector should be calculated using the function ‘static

inline sector-tbfq-dist-from(sector-tpos1, sector-tpos2)’. After the se-

lection of application calculated budget will be assigned. The selected

request should be dispatched using the function ‘static inline void

bfq schedule dispatch (struct bfq data *bfqd)’.

Once it is dispatched and serviced it should be removed using ’static

void bfq weights tree remove(struct bfq data *bfq, struct bfq entity

*entity, struct rb root *root)’ function. The request should be re-

moved from the all the locations such as the application queue and

from the tree sructures .

If the requested application is not serviced completely it should be

maintained inside the system for further service. At that time infor-

mation like, how much is serviced and how much remaining, should

be stored in the corresponding data structures. Along with this in-

formation the time function is also get activated for the calculation

of waiting time. For these purpose the function ‘static inline void

19

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

bfq bfqq save state(struct bfq queue *bfqq)’
is used.

The selection of the application is done based on TFIFO along
with this the result returned by the sector distance calculation func-
tion ‘static inline sector-tbfq-dist-from(sector-tpos1, sector-tpos2)’ is
also considered. Using this information the function ‘static bfq queue
* bfqq close(struct bfq data *bfqd, sector t *sector)’ selects the next
application. Using this function we are able to reduce the seek time
parameter, which reduces the waiting time.

The timing functions should be activated in all the required places
for the calculation of the various time parameters such as system time,
user time , and waiting time. Flow chart representation of Algorithm
2.1 is given in Figure 2.2.

2.4.3 Need to Modify BFQ

As mentioned earlier in BFQ the budget (B max) will be always set
as the maximum value of the budget in the request queue and kept it as
static value. Which will lead to the starvation of the smaller processes
which are waiting in the application queue. To overcome this problem
some modification is done on the above method and two new versions
are generated, Modified Budget Fair Queuing version1(MBFQV1) and
Modified Budget Fair Queuing version2(MBFQV2). In MBFQV1,
budget (B max) is reduced to half of the Maximum Budget. MBFQV1
is able to increase the average throughput when compared to BFQ. One
of the problems encountered with the MBFQV1 was that the calcula-
tion of B max was done only in the beginning. As a solution to this,
in MBFQV2, the value of the budget (B-max) is modified in real time,
as the average of the budget values, of the processes in the application
queue. When a process is completed or when ever a new entry is made
to the application queue, the new budget value is calculated with out
considering the budget value of the completed processes and taking
only currently active processes in the request queue.

20

2.4 Budget Fair Queuing

Input:request R
 Initialize B-max`

 Insert request to request
Queue; Set timer

 Calculate the budget for the new
request

budget
>

B-max

Assign B-max = budget

Select a request from request queue
by calculating sector distance from

current position and timer value

Fix budget value & dispatch
it

Budget = B-max

Service the request

Service
completed

Remove the request Recalculate the remaining
budget

stored back
budget

Select next
request

Yes

Yes

No

No

.

Figure 2.2: Flow chart of BFQ

21

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

2.5 MBFQV1

Performance of an operating system is measured in terms of re-

sponsiveness. Responsiveness means the number of applications that

are getting disk access within a time period. System will give more

importance for loading and execution of a program than copying data.

Here importance is given to improve the responsiveness of the system

further. The processes with a small budget value will improve the re-

sponsiveness of the system. But in case of BFQ the application with

small budget value will have to wait for long time. For small applica-

tions to complete quickly it is necessary to switch between the active

applications rapidly. Hence instead of keeping maximum budget value

as the B max it changed to half the value. By this the switching be-

tween the processes will take place speedily and the smaller process will

complete the transferring because it has only small budget. The size

of the application queue will be considered for B max fixing, when the

number of applications in the application queue is more than a speci-

fied value (set threshold value as 5). When the number of application

in the application queue is less than the threshold value, this method

does not give any improvement in performance. Different threshold

values were tested on the algorithm and it was observed that a better

performance is obtained with a threshold value of 5. If the number of

applications for disk access is more than the threshold value, B max

is reduced to half its value. Since the budget is reduced, the switching

between the active applications becomes faster. So more number of

applications can access the disk within less time which improves the

system responsiveness further. If number of application is less than 5

then changing B max will not affect the responsiveness of the system,

which is similar to BFQ. The implementation of MBFQV1 is done

similar to BFQ, the selection of the budget is changed. The algorithm

which is used for fixing the budget is shown in ALGORITHM 2.2.

22

2.6 MBFQV2

ALGORITHM 2.2

update maximum budget()

{
If(application queue length>5) //application queue length indicates the

number of requests currently waiting

in the request queue.

{
B max = max(Application.Budget)/2

//Setting the maximum budget value to its

half. }
else

{
B max =max(Application.Budget) //Setting Bmax to its default max

imum value }
}

The change in B max will be done only when the number of re-

quests is more than the threshold value. When the number of requests

gets increased the waiting time for requests also increases. So in order

to give access to more number of requests within a particular time pe-

riod the maximum budget value is reduced to half its value. Here small

files get disk access much faster which results in improving the respon-

siveness of the system. The results of experiments were satisfactory.

The system responsiveness was increased further after the reduction in

the maximum budget when the number of applications in the queue

becomes higher.

2.6 MBFQV2

In MBFQV1 once the B max is calculated which will be maintained

in the system for the entire scheduling process. To make B max allo-

cation in a dynamic form a new B max is calculated by considering all

the applications which are waiting in the request queue.

23

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Average budget of all the applications present in the application

queue is calculated each time and is set as the B max value. If the

average value is greater than the defaultmaxbudget then B-max is set

with defaultmaxbudget. This is done because if B-max is very large the

system is not able to maintain the basic feature of the multiprocess-

ing environment[Operating systems concepts, 4th edition, Abraham

Silberschatz, Wiley], [Operating system Design and Implementation,

Andrew S Tanenbaum, PHI]. Along with this, the problem which

we found in BFQ will occur here also. That is the applications with

small budget have to wait for long time period. Whenever a process

is completed, the budget calculation will be reactivated by removing

the serviced one from the application queue. Along with these steps

C-LOOK scheduling concepts are also considered for the scheduling

process, in order to reduce the rotational latency. The implementation

of MBFQV2 is done similar to MBFQV1 and BFQ. During the imple-

mentation of MBFQV2, consider the algorithm given in ALGORITHM

2.1, in Step 8.1 instead of going to Step 4.3, the go to statement should

be given to Step 4.1. Because the budget calculation should be done

on current application queue. The algorithm which is used for fixing

the budget is shown in ALGORITHM 2.3.

ALGORITHM2.3

defaultmaxbudget =16*1024

update maximum budget()

{
Budget =0

For(i=0.....maximum queue size)

{
Budget =Budget+Application.Budget

Application++

}
B max =Budget/queuesize //queuesize is the number application

currently in queue

If (B-max>defaultmaxbudget)

{

24

2.7 Performance Evaluation

B max =defaultmaxbudget

}

2.7 Performance Evaluation

The performance evaluation was done based on the existing system

with CFQ scheduler, then using BFQ scheduler, MBFQV1 scheduler

and MBFQV2 scheduler. Implementation was done on the various

Linux kernel versions. The experiment result shown below are obtained

when the above methods were implemented in Linux kernel 3.14, PC

equipped with an Intel i5 core processor, 4 GB RAM, and a 700 GB

IBM-DTLA- 307030 SATA IDE hard drive. The BFQ implementation

code was inserted into the kernel. After inserting the BFQ codes into

the kernel, the kernel was compiled with new configuration parameters.

To compare the performance evaluation of BFQ with CFQ, appli-

cations with varying file size were activated and the results were ob-

served. Transfer time, transfer rate and throughput were the various

parameters considered for this. As mentioned earlier the major prob-

lem that identified in this method was the waiting time, which leads to

the respons parameter. As a solution for this problem MBFQV1 and

MBFQV2 were implemented and the analysis was done.

MBFQV1 codes were inserted in to the kernel. And the same set

of applications were Specification of the testing environmentactivated

again to study about the performance. In MBFQV1, the allocation

of the process was done in round robin manner based on the budget

value. The pre-emption of the task will be based on the allocated bud-

get. Budget allocation will take place only once as in the case of BFQ.

Hence if application queue contains more number of applications with

less budget value, it may lead to an increase in the waiting time of

the shorter jobs. As a solution to this dynamic allocation of budget

25

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

was considered and implemented using MBFQV2. In the implementa-

tion of MBFQV2 the maximum budget is set as the average of all the

budgets based on the request at that time. In the case of MBFQV2

the budget allocation is completely based on the current working sce-

nario, dynamic assignment of the B max will take place. During the

completion of each task, allocation of the budget is redefined by the

calculation of budget once again and is fixed as B max. Due to this

waiting time of the various task gets reduced, which will reduce the

data transfer time of the various tasks. The process selection was done

based on round robin method but not based on the time slots. Pre-

emption process was activated based on the B max value which was

generated by the system.

Once the module was generated, Linux kernel was configured using

the commands:

sudo make menuconfig

sudo make oldconfig

then build and install the kernel by using the commands:

sudo make

sudo make modules

sudo make modules install

sudo make install

Module for BFQ, modified MBFQV1 and MBFQV2 schedulers were

installed and tested.

All these applications only issue synchronous requests on a Linux

system. The set of experiments were aimed at estimating the aggregate

throughput, transfer speed and time for transferring process for each

scheduler. Specification of the testing environment Table 2.2 shows

the comparison of the file transfer time of various disk schedulers with

respect to the various file sizes. When compared with the existing

CFQ scheduler, BFQ will consume less amount of time to complete the

scheduling and transferring of file. It shows that in CFQ the number

of pre-emption is high and which leads to increase in waiting time. In

case of BFQ the pre-emption is done based on the maximum budget

value. It may also increase the waiting time of the various process those

26

2.7 Performance Evaluation

are having less budget value, and hence it leads to the degradation of

the performance. In the case of MBFQV1 this problem is overcomed

by fixing the budget as the half of the maximum MBFQV1 also once

the B max is calculated which will be maintained in the system for

the entire scheduling process. To make B max allocation in a dynamic

form new B max is calculated by considering all the applications which

are waiting in the request queue. Average budget of all the applications

present in the appplication queue is calculated each time and is set as

B max of the entire task which are present in the request queue. Once

the scheduler starts the operation the newly arrived request budget

is not considered for the fixation of the B max, and the pre-emption

is handled with reference of the budget. In MBFQV1 the time taken

by the scheduler is almost in the same level as of the BFQ, with a

slight increase in certain cases. But MBFQV1 is not able to produce

a better performance when compared to the BFQ. This leads to the

implementation of MBFQV2, where B max value is varied based on the

working scenario. The budget allocation is always kept as a varying

parameter and the newly arrived request to the queue is also considered

for the B max fixation. Hence the shorter task will be able to complete

first and it leads to increase the response parameter. Experimental

result shows that MBFQV2 gives a better performance when compared

to BFQ and MBFQV1. Except in a file of size 2700MB, in all other

cases the time taken is less or same as that of BFQ. In the real stream

application the size of the request will always be in the medium range

and the result shows that if the request comes under the range then

the performance will be better.

Figure 2.3, Figure 2.4 and Figure 2.5 will give a comparison of the

BFQ, MBFQV1 and MBFQV2 with the existing CFQ method. In

order to make a comparison on the different methods with CFQ, a

diagramatic representation is shown in Figure 2.6.

Along with transferring time the transfer speed is also measured for

the evaluation. Because it depends on how fast the data is located in

the storage media. Table 2.2 shows the information about the trans-

ferring speed of the schedulers. Transfer rate is measured in Mega

27

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Table 2.2: Time taken by various schedulers to transfer files

File Size(MB) Time in Sec. for various scheduling methods
CFQ BFQ MBFQV1 MBFQV2

FILE1 2700 854.53 765.64 772.92 768.33
FILE2 1900 820.21 750.91 740.64 738.2
FILE3 1600 794.36 714.92 725.51 714.92
FILE4 1300 733.73 655.83 662.71 633.83
FILE5 995.5 655.24 577.47 578.67 510.49
FILE6 887.1 621.44 558.72 551.26 529.8
FILE7 735.7 552.23 491.58 489.01 481.01
FILE8 734.6 458.53 376.96 400.88 367.35
FILE9 729.7 548.58 489.58 487.06 472.09
FILE10 407.8 322.12 289.12 295.92 293.2
FILE11 6.3 4.74 4.52 3.81 4.61
FILE12 4.3 3.24 3.06 2.76 3.06
FILE13 3 2.46 2.37 1.95 2.37

Figure 2.3: Comparison between CFQ and BFQ

28

2.7 Performance Evaluation

Figure 2.4: Comparison between CFQ and MBFQV1

Figure 2.5: Comparison between CFQ and MBFQV2

29

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Bytes/Sec. It gives the comparison of the transfer rate of the various

scheduler. Figure 2.7, Figure 2.8 and Figure 2.9 show comparative

study of various schedulers with respect to CFQ. From the Table it

is clear that the transfer rate of the BFQ is higher than that of the

CFQ. After applying the MBFQV1 and MBFQV2 the variations in

the rate of transfer is also shown in the Table. The time taken for the

schedulers in Table 2.3 includes the waiting time of the process in the

requested queue along with the overhead of the pre-emption process.

Figure 2.6: Time to transfer the files in various scheduling meth-
ods

Hence MBFQV1 is not able to give a better result when compared

with BFQ. But in the case of MBFQV2 it is observed that except the

file of size 2700MB and smaller size files we are able to get a higher

transfer rate. As mentioned earlier size of real stream applications

will be normally in medium range and experiment results show that

the request comes under that range will give a better transfer rate as

shown in Figure 2.11.

Figure 2.10 shows the diagramatic form of Table 2.3, which will give

a comparative study of the various methods along with CFQ which is

existing in the current system.

30

2.7 Performance Evaluation

Table 2.3: File transfer speed of various schedulers

File Size(MB) File transfer speed(MB/Sec)
CFQ BFQ MBFQV1 MBFQV2

FILE1 2700 3.1596316 3.526461522 3.493246 3.5141
FILE2 1900 2.3164799 2.530263281 2.565349 2.5738
FILE3 1600 2.0142001 2.238012645 2.205345 2.238
FILE4 1300 1.7717689 1.982221002 1.961642 2.051
FILE5 995.5 1.5192906 1.723899077 1.720324 1.95
FILE6 887.1 1.427491 1.587736254 1.609223 1.6744
FILE7 735.7 1.3322348 1.496602791 1.504468 1.5294
FILE8 734.6 1.6020762 1.948747878 1.832469 1.9997
FILE9 729.7 1.3310107 1.490461212 1.498173 1.5456
FILE10 407.8 1.2659878 1.410486995 1.378075 1.4208
FILE11 6.3 1.3291139 1.39380531 1.653543 1.3925
FILE12 4.3 1.3271605 1.405228758 1.557971 1.45607
FILE13 3.3 1.3414634 1.392405063 1.692308 1.3924

Figure 2.7: Comparison between CFQ and BFQ

31

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Figure 2.8: Comparison between CFQ and MBFQV1

Figure 2.9: Comparison between CFQ and MBFQV2

32

2.7 Performance Evaluation

Figure 2.10: Transfer rate of files in various scheduling methods

Table 2.4: Throughput parameter

Throughput(MB/Sec)
CFQ BFQ MBFQV1 MBFQV2

1.67215 1.8559 1.8979 1.9029

The next parameter which can be used for the analysis is through-

put. Throughput means the number of jobs which are completed at

a particular time period. The results were promising, BFQ displayed

a substantial increase in throughput and responsiveness with low la-

tency for applications. The throughput difference between CFQ and

BFQ is more compared to BFQ and MBFQV1. Here the reduction in

throughput is due to the frequent switching between active applications

with the header movement. Hence MBFQV2 is considered and which

produced better result. The results obtained from the four schedulers

CFQ, BFQ, MBFQV1 and MBFQV2 were analysed and Shown in Fig-

ure 2.11. The results clearly indicate that MBFQV2 provides a high

throughput in almost all conditions as shown in the Table 2.4.

It is clear from Figure 2.11 that the throughput is maximum in

MBFQV2 compared to other schedulers. Hence it give a better perfor-

mance inside the system

33

2. DISK SCHEDULING WITH EQUIVALENT
BANDWIDTH SHARING

Figure 2.11: Throughput

2.8 Conclusion

This Chapter mainly deals with reduction of waiting time on var-
ious synchronous requests. Here instead of existing CFQ, BFQ and
modified versions of BFQ are considered. From the experimental re-
sults it is observed that MBFQV1 gives a better performance compared
to BFQ. Further better throughput is achieved using MBFQV2, where
each time new budget value is calculated based on the processes present
in the request queue.

34

3

Handling of Various Page

Replacement Techniques

3.1 Abstract

Virtual memory is a concept used in the memory management unit

of operating system. Even if the program is only partially available in

primary memory the modern operating system will permit the execu-

tion of the program. It provides an illusion to the user that a very large

memory is available and makes him free from the concern of large pro-

gram size. As technology grows, the cost of memory gets reduced and

its capacity gets increased. The primary memory size has increased

by multiple orders of magnitude. As the size becomes several gigabyte,

algorithms that are used for periodic check of each and every mem-

ory frame for the presence of data is practically difficult. Nowaday

the programming strategy is shifting from structured programming to

object oriented programming. Due to this, the locality of reference of

user software has weakened. Current page replacement methods are

based on the locality of reference concept, hence some new methods

need to be introduced for page replacement. This chapter mainly fo-

35

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

cused on the improvement of processor performance by modifying the

page replacement methods. To increase the processor performance, the

page faults should be decreased. In order to achieve this a number of

page replacement techniques such as LRU, MRU, LFU and MFU are

considered. Among the various page replacement methods, Beladys op-

timal page replacement is the best method [D Stephens, et al., 1999].

But to implement this, the remaining required pages should be known

in advance which is not practical at all the times. Modern operating

systems mainly make use of the Least Recently Used (LRU) page re-

placement method, where only the arrival time of the pages to the page

frame along with usage of the pages are considered. The number of

times the page is referred is not considered for replacement. In this

work both the time and the number of reference done on the page is

considered. By considering these two parameters, the new algorithms

is developed as Least Recently Used and Least Frequently Used (LRU-

LFU), which will give a better performance than LRU page replacement

method

3.2 Page Handling

Paging is a memory management technique where the memory is

divided into fixed size pages. Paging is used for faster access to data. If

a page is not available in the main memory, when the processor needs

it, the operating system copies pages from secondary storage device to

main memory. Paging allows the physical address space of a process

to be non-contiguous.

Page replacement algorithm decides which memory page is to be

swap out when a new page is to be allocated. Paging happens when a

page fault occurs and the available free page space cannot be used to

satisfy the allocation [Computer organization and architecture design-

ing for performance, 10th edition,William Stalling, Pearson, 2017], [A

practical Guide to solaris, M G Sobell]. When the page that was se-

lected for replacement is paged out and is to be referenced again then

36

3.2 Page Handling

it has to be paged in, and this involves waiting for I/O completion.

The quality of the page replacement algorithm is based on the time

spent for paging. Lesser the waiting time, better the algorithm. A page

replacement algorithm considers the limited information about access

to the pages provided by hardware, and tries to guess which pages

should be replaced to minimize the total number of page misses, while

balancing this with the costs (primary storage and processor time) of

the algorithm itself

Algorithms can be of online or offline in nature. An online algo-

rithm is a strategy which, at each point of time, decides what to do

based only on the past information and with out any knowledge about

the future. Where in offline a full information about the requirement

of the pages is available. An online algorithm A is presented with a

request sequence σ = σ(1) ;σ(2) ; ;σ(m). The algorithm A

has to serve each request online , i.e., without future requests. More

precisely, when serving request σ(t), 1≥ t ≥m , the algorithm does

not know any requests σ (t1) with t1> t [Susanne Albers, Germany].

Serving requests incurs cost, and the goal is to serve the entire request

sequences so that the total cost is as small as possible. Paging problem

is an example of the online problem. In paging problem, consider a

two-level memory system that consists of a small fast memory and a

large slow memory. Here, each request specifies a page in the memory

system. A request is served if the corresponding page is in the fast

memory. If a requested page is not in the fast memory, a page fault

occurs. Then a page must be moved from fast memory to slow memory

so that the requested page can be loaded into the vacated location. A

pageing algorithm specifies which page is to be evicted on fault. If the

algorithm is online, then the decision as to which page is to be evicted

must be made without the knowledge of any future requests. The cost

can be minimized if the total number of page faults incurred on the

request sequence is less. Performance of an online algorithm is done

using competitive analysis [D.D. Sleator and R.E. Tarjan, 1985]. In

competitive analysis, an online algorithm A is compared to an optimal

offline algorithm. An optimal offline algorithm knows the entire re-

quest sequence in advance and can serve it with minimum cost. Given

37

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

a request sequence σ , let C A (σ) denote the cost incurred by A and

let C OPT (σ) denote the cost paid by an optimal offline algorithm

OPT. The algorithm A is called c-competitive if there exists a constant

’a’ such that

C A (σ)<c .C OPT(σ)+ a

for all request sequences . Here we assume that A is a deterministic

online algorithm. The factor ’c’ is also called the competitive ratio of

A .

Marking algorithms is a general class of paging algorithms [M.Chari

kar, 2013]. The algorithm processes a request sequence in phases. At

the beginning of each phase, all the pages in the memory system are

unmarked. Whenever a page is requested, it is marked. On a fault, a

page is chosen uniformly at random from among the unmarked pages

(if there exists no unmark pages then unmark all pages) in fast memory,

and these pages are evicted. A phase ends when all pages in the fast

memory are marked and a page fault occurs. Then, all marks are

erased and a new phase is started.

If ALG is a marking algorithm [http://algo2.iti.kit.edu / vanstee /

courses / caching.pdf] with a cache of size ‘k’, and OPT is the optimal

algorithm with a cache of size ‘n’, where n≥k, then ALG is

k

k − n+ 1

-competitive. So every marking algorithm attains

k

k − n+ 1

the competitive ratio. The section 3.3 deals with the various page

replacement algorithms.

38

3.3 Page Replacement Algorithms

3.3 Page Replacement Algorithms

As per the definition of the virtual memory, it provides an illusion

to the user that a huge amount of primary memory is available to

the user. This illusion will allow us to execute a program even if it,

partially resides in main memory [Operating system a concept based

approch, D M Dhamdhere, Tata McGraw-Hill] . For the implemen-

tation of the virtual memory concept memory management module

of the operating system makes use of demand paging. Demand pag-

ing means, whenever a request is generated for a page, only at that

time the page will make an entry to the primary memory. Availabil-

ity of the data in the cache memory will depends on the availability

of the data in primary memory. The overall performance of the sys-

tem is affected by the choice of page replacement technique used in

virtual memory. Page replacement is one of the active research areas

where many techniques have been suggested by different researchers.

There are a number of page replacement methods available such as

First in First Out(FIFO), Last in First Out(LIFO), Least Frequently

Used(LFU), Most Frequently Used(MFU), Least Recently Used(LRU),

Most Recently Used(MRU) and Belady’s optimal method. All these

methods will make use of either the arrival time of the page to the

page frame or the number of times the page is referred by the proces-

sor for their implementation, which in turn referred as the time stamp

or the frequency stamp in further explanation [B Juurilink, 2004], [S

Khanjoueinejad, et al., 2007]. The Beladys optimal page replacement

method, cannot be implemented efficiently because the order of page

requirement (reference string) is not known in advance. LRU is one

of the most popularly used page replacement methods among various

operating systems [E J O’Nelill, et al., 1993]. Whenever a new page

is moving towards the higher memory level the first step is searching

for free space in the memory. If there is no free space available then

replacement activity should be initiated. For that identify a victim

page (page which is taken out from the memory). In LRU, selection

of victim page is done based on the page that has not been accessed

39

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

for a long period of time among the pages those are present in the cur-

rent memory. The selection of the victim page is done on the basis of

two conditions; the page that program does not need to access further

or the program is facing page faults because it is not able to access

the page. In LRU page replacement implementations the pages are

not discriminated and are treated equally [SongJianga and, Xiaodong

Zhangb, 2004]. In this work a combination of the concept of time

stamp and frequency stamp is used.In Combined the LRU and LFU

Policies(CRFP) method an adaptive replacement policy is used, which

is self-tuning and can switch between either LRU or LFU [Zhan-sheng

Li, Da-wei Liu, Hui-juan Bi, 2008] [N Dafre, D Kapgate,2014].

3.3.1 First in First Out(FIFO)

The simplest page-replacement algorithm is First in First Out algo-

rithm [Operating system, Willam Stallings, Pearson]. The FIFO page

replacement algorithm is a low-overhead algorithm that requires little

bookkeeping on the part of the operating system. As the name indi-

cates, the operating system keeps track of all the pages in memory in a

queue, with the most recent arrival at the back, and the oldest arrival

in front. When a page needs to be replaced, the page at the front of

the queue is selected.

3.3.2 Last in First Out (LIFO)

This algorithm works just opposite to the FIFO concept. It also

requires little bookkeeping on the part of the operating system. In this

method, operating system keeps track of all the pages in memory in a

queue, with the oldest arrival at the back, and the most recent arrival

in front. When a page needs to be replaced, the page at the front of

the queue is selected [Operating system a concept based approch, D

M Dhamdhere, Tata McGraw-Hill].

40

3.3 Page Replacement Algorithms

3.3.3 Least Frequently Used (LFU)

When ever a page is referred inside the system a counter is incre-

mented to count the number of times that page is referred. In this

method, the page with the smallest count is replaced. Here the as-

sumption is that an actively used page will have a large reference count

[Operating System concepts, 6th edition, Silberschatz, et al., Wiley].

But this will create a situation where if a page is used heavily during

the initial phase of the process, and is never used again, it will have

large count due to which it remains in memory even though it is no

longer needed. One solution to this problem is to reduce the count at

regular intervals.

3.3.4 Most Frequently Used (MFU)

This is based on the argument that the page with the smallest count

is more likely to be used in the future. By taking this in consideration

the page with maximum count will undergo the replacement. The

implementation of these algorithms are expensive [Operating System

concepts, 5th edition, Silberschatz, et al., Wiley].

3.3.5 Least Recently Used (LRU)

This method makes use of the time when the page is to be used.

If the recent past is an approximation of the near future, then replace

the page that has not been used for the longest period of time. LRU

replacement associates with each page, the time of the page’s last use.

When a page must be replaced, LRU chooses that page which has not

been used for the longest period of time. This strategy is the optimal

page replacement algorithm, looking backward in time, rather than

forward [Operating system a concept based approch, D M Dhamdhere,

Tata McGraw-Hill].

41

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

3.3.6 Most Recently Used

This method also makes use of the time when the page is used. If

the recent past as an approximation of the near future, then replace

the page that has been used for the longest period of time [Operating

system a concept based approch, D M Dhamdhere, Tata McGraw-Hill].

MRU replacement associate with each page the time of its first use.

When a page is to be replaced, MRU chooses that page which has been

used for the longest period of time.

3.3.7 Belady’s Optimal

An optimal page-replacement algorithm has the lowest page-fault

rate of all the algorithms. Replace the page that will not be used for

the longest period of time. Use of this page replacement algorithm

guarantees the lowest possible page fault rate for a fixed number of

frames. It is difficult to implement, because it requires future knowl-

edge of the reference pages. Hence it is used for comparitive studies

[Operating System concepts, 6th edition, Silberschatz, et al., Wiley].

In the above set of all algorithms except Belady’s optimal all others

are coming under online algorithms. All the online algorithms make use

of any one of the parameters either time or frequency for implementing

the page replacement policies [A Meyerson, 2004]. Here an attempt is

made to consider more than one parameter, time of usage along with

its frequency for the design of the new algorithms.

3.4 Handling of Page Fault

Whenever the processor requests for data, as per the principle of

inclusion, first the data will be checked in the registers and if there

42

3.4 Handling of Page Fault

is a miss then the request reaches the cache memory, after that pri-

mary memory area and finally to the secondary storage area. Inside

the system, data search always follows the memory hierarchy. When-

ever a miss condition arises the search will extend towards the lower

memory levels. To handle this miss condition, the data should make

a move towards the higher memory level from the lower one. Memory

management module of the operating system tries to handle the miss

condition by making the required page available in higher memory lev-

els or by terminating the program in case of an illegal access. This

miss condition is called as page fault in primary memory and as cache

miss in the case of cache memory. Fault handling is done in the same

way in both primary memory as well as cache memory.

Primary memory is divided into number of page frames and cache

is divided in to a number of cache lines. The technique mentioned here

is applicable to both secondary memory to primary memory transfer

and primary memory to cache memory. The only difference is that

whenever a fault occurs in primary memory, it is referred as major

fault and a fault occurred in cache is referred as minor fault. The

memory management unit is the one that detects the page fault in

the operating system [Operating system design and implementation,

Andrew S Tanenbaum and A S Woodhull, PHI]. If a minor fault is

detected inside the system it can be handled by the memory manage-

ment unit. If there is a major fault present, exception handler gets

activated. The software used for exception handling in case of page

fault is generally part of the operating system. Page fault is not an

error condition. Rather, it is a method used to increase the amount of

memory available in each level by the operating system.

Minor page fault is created when a process attempts to access a

portion of memory before it has been initialized. That is, a potential

source of memory latency is called a minor page fault [http://blog.

scoutapp.com/articles/ 2015/04/10]. When this occurs, the system

needs to perform some operations to fill the memory maps or other

management structures. The existence of a minor page fault depends

on system load and other factors, but they are usually short and have

43

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

a negligible impact. The fault which occurs in the cache memory will

come under this fault level.

Major fault occurs when the system has to synchronize memory

buffers with the disk, swap memory pages belonging to other pro-

cesses, or undertake any other Input or Output activity to free memory.

When the processor references a virtual memory address that doesn’t

have a physical page allocated to it, the reference to an empty page

causes the processor to execute a fault, and instructs the kernel code

to allocate a page and return, all of which increases latency dramat-

ically. [[http://blog.scoutapp.com/articles/ 2015/04/10], [Program-

ming Manual,Logix5000 Controllers Major, Minor, and I/O Faults]

This is the major fault that occurs in the primary memory level. Due

to this reason, major fault is more expensive than minor fault.

Major fault is the mechanism used by an operating system to in-

crease the amount of program memory available on demand. The

loading of the program from the disk to the memory is delayed by the

operating system until a page fault is generated. During page fault,

the requested page should make an entry to the corresponding memory

level to make it a page hit in the next request handling time. If there

is no free space available in the respective memory area, replacement

algorithms should be activated. In order to handle this problem the

page fault handler in the operating system needs to find a free space

in the memory to load the requested page. For that one of the cur-

rently existing page should be swapped out from memory (victim page)

to generate room for the incoming page [Operating system a concept

based approch, D M Dhamdhere, Tata McGraw-Hill]. There may be

some pages that are shared by various processes. If the handler select

such a page as the victim, the operating system needs to write out the

data in that page (write back policy) and mark that page as not loaded

in memory in its process page table. To mark the page as not available

the corresponding entry in the page table should be marked as invalid.

Whenever a page is loaded in memory the corresponding entry will be

done in the process page table which indicates that the page is loaded.

During each swapping process a number of updates have to be done

44

3.4 Handling of Page Fault

by the handler, only then the accessing of the data by the processor

can take place. Hence major fault and minor fault inside the system

play a big role in the evaluation of the performance of the system.

Along with the page fault the performance of a system can be

measured in terms of execution time of a program. The execution

time of a program is measured based on the following parameters user

time, system time and elapsed time. The user time is the time in ‘user

mode’ (outside the kernel) within the process by the operating system.

User time is the time spent for doing calculations. The system time

is the time spent by the kernel executing in system mode or kernel

mode or supervisor mode on behalf of the process. System time is how

much time the operating system spends responding to process requests.

Elapsed time is the time taken by the system in order to execute the

program including the pre-emption condition in a multiprogramming

environment. Elapsed time is the sum of user time, system time and

over all waiting time of the process.

These various parameters can be extracted from the system by us-

ing the system command, time./a.out in Linux. Sum of user time and

system time will give the actual processing time of the current process,

but the time taken by the machine will include the elapsed time param-

eter. Elapsed time depends on the type of process scheduling that is

implemented inside the system along with the pre-emption condition.

The change in the page replacement method doesn’t have much influ-

ence in the user time and system time. The page replacement mainly

affects the elapsed time. Here the pre-emption due to page fault will be

reflected in the result. Hence when the execution of a single process is

considered elapsed time doesn’t have much importance. But nowaday

all the operating systems are designed based on multiprocessing and

multithreading concept, hence the elapsed time becomes an important

parameter.

45

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

3.5 Implementation of Various Page Re-

placement Methods

In order to perform the analysis of various replacement methods the

module is implemented in Linux kernel version 3.13. Advanced version

of Least Recently Used (LRU) page replacement policy is made use in

Linux kernel version 3.13. The LRU algorithm is based on the assump-

tion that pages that are not used recently will not be needed frequently

in the immediate future. Such pages are therefore taken as the victim

page by the page replacement method for swap-out, when there is a

scarcity of memory. The fundamental principle used in LRU may be

simple but the implementation is difficult. The following sessions will

deal with the implementation of various replacement methods except

LRU because it is the page replacement method present in the exper-

imenting platform.

The implementations of various algorithms are done on Ubuntu

14.04. By modifying the current kernel of operating system the follow-

ing algorithms are implemented, MRU, LFU, MFU, LRU-LFU, MRU-

LFU, LRU-MFU and MRU-MFU. The page replacement section of

the memory management is done under the modules vmscan.c, swap.c

which comes under the mm types.h header file in Ubuntu.

Each physical page in the system has a struct page associated with

it to keep track of the reference of the page at the current time. There

is no way to track all the tasks those are using a page. ‘rmap’ struc-

ture can tell who is mapping the page at the current time. Here the

pages are arranged in circular queue which consist of a doubly linked

list that contains both prev and next pointers, prev points to the pre-

vious page and next points to the next page. The two variables in-

side the ‘struct page’ will give the information about the usage of the

pages. ‘atomic t count’ variable will return the number of count of

page and ‘atomic t mapcount’ variable shows when the page was re-

ferred. These two variables are made use for the implementation of

various algorithms. Current LRU implementation is done based on

46

3.5 Implementation of Various Page Replacement Methods

the time parameter, ‘atomic t mapcount’. If more than one page with

same count value is found prefetch schedular will select the page ac-

cording to FIFO.

When we make use of both the variables the frequency parameter

inside the page structure is assigned to ‘compound’ variable and then it

is left shifted by six bits, to make it a large value. This will be summed

up with time parameters. This compound variable associated to each

page is used for LRU-LFU, MRU-LFU, LRU-MFU and MRU-MFU

implementations. In these algorithms first the frequency parameter

is considered for selection of victim pages and if more than one page

has the same frequency value, then time parameter is used for the

selection. If both these parameters are same, the system follows the

existing method (LRU).

For implementing these codes corresponding ‘#define prefetch prev

lru page()’, ‘#define prefetchw prev lru page()’, ‘static unsigned long

isolate lru pages()’ functions are edited, which come under ‘vmscan.c’.

Function ‘void mark page accessed()’ should be modified, which comes

under swap.c. struct page and a number of functions which are part

of mm type.h, should be modified as per the requirement.

3.5.1 MRU

In this method time stamp is used. The selection of the victim

page is based on the assumption that the most recently used page is

not likely to be used in the future. The MRU algorithm is based on the

assumption that pages used recently will not be needed frequently in

the immediate future. In the existing system, for the implementation

of Least Recently Used algorithm, reference is made to each of the

pages with the help of a pointer.

47

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

3.5.2 LFU

Here instead of using time stamp the frequency parameter is used to

indicate how many times the pages residing in the respective memory

are referred. For the implementation of LFU a parameter frequency

is added as unsigned long data type to the struct page. This is used

as a counter or as a frequency parameter. Whenever a new page is

referenced the value of ‘freq’ variable is incremented. Whenever a

replacement has to be activated the function ‘isolate lru pages’, will

identify the victim page. The pages are sorted with the help of an

inbuilt sorting mechanism depending on the frequency parameter ‘freq’.

Merge sorting is the built in sorting method available inside the system

whenever a sorting operation is required. Victim page is selected with

smaller frequency value by taking the assumption that the pages which

are referred few number of times are not likely to be referred in recent

time. Once the victim page is identified it is replaced with the new

requested page.

3.5.3 MFU

In MFU, the frequency parameter is used as in the case of LFU. To

implement this, a parameter ‘freq’ is added as the unsigned long data

type to the struct page which is used as the counter or a frequency

parameter. Whenever a new page is referenced the value of ‘freq’ is

incremented. Whenever a replacement has to be activated the function

‘isolate lru pages’, will identify the victim page. The pages are sorted

with the help of an inbuilt merge sorting mechanism depending on the

frequency parameter ‘freq’. The page with maximum frequency value

will give room for the upcoming page. Here the assumption is that the

more frequently referred pages are not likely to be referred in recent

future.

48

3.5 Implementation of Various Page Replacement Methods

3.5.4 LRU-LFU

Instead of using one parameter, this method makes use of both the

time and frequency paramerters. The LRU-LFU, needs to consider

the existing parameter available in LRU along with new parameter for

frequency ‘freq’. For the implementation, another data field is used in

the struct page and is named as ‘compound’. ‘compound’ is used to

take care of the above combination in a well defined manner. Majority

of the operations are carried out in the function ‘mark page accessed’,

which adds a page to the list whenever the page is referred.

The time parameter is obtained by using the ‘function get monoton

ic boottime (*ptr)’ which is used in the function ‘mark page accessed’.

Initially the frequency ‘freq’ parameter inside the page structure is

incremented as it is assigned to compound and then it is left shifted

by six bits in order to increase the frequency parameter. Finally the

compound parameter will have the boot time along with the shifted

frequency parameter summed up. The ‘compound’ parameter is used

for the page replacement of pages which are least frequently used and

not recently accessed inside the system. Selection of victim page is

done based on the compound function by taking the assumption that

pages which are referred minimum number of times as well as which

are not referred for a long time period, are not referred further by the

system.

3.5.5 MRU-LFU

The MRU-LFU page replacement algorithm also the same ‘com-

pound’ variable. The operation that was performed in the ‘mark page

accessed’ function is changed to meet the new needs. The ‘compound’

parameter is used for the page replacement which are least frequently

and recently accessed inside the system. Selection of victim page is

done based on the ‘compound’ variable by taking the assumption that

pages which are referred minimum number of times as well as which

49

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

are referred in the recent time period is not referred further by the

system

3.5.6 LRU-MFU

As in the case of LRU LFU, here also ‘compound’ parameter such

as time stamp and frequency are used. The operation that was per-

formed in the ‘mark page accessed’ function is changed to meet the

new needs. The time parameter of the system is obtained using the

function ‘get monotonic boottime (*ptr)’, which is used in the func-

tion ‘mark page accessed’. The ‘compound’, parameter is initialized

with the ‘freq’ parameter which is incremented and left shifted six

times and summed to the boot time of the system. The selection of

the victim page is done by sorting the pages based on the ‘compound’

variable. The sorting used to identify the page that are referred max-

imum number of times as well as not referred for a long time period.

3.5.7 MRU-MFU

In MRU-MFU the pages are sorted inside the new function named

freq sort which sorts the ‘compound’ variable values associated with

each of the pages. The boot time of the system is obtained using

the function ‘get monotonic boottime (*ptr)’, which is used inside the

function, ‘mark page accessed’. Initially the ‘freq’ parameter inside

the page structure is incremented as is assigned to ‘compound’ and

then it is left shifted by six bits. Finally the ‘compound’ parameter

will have the summation of boot time and shifted frequency variable.

Selection of victim page is done based on the ‘compound’ variable by

taking the assumption that pages which are referred maximum number

of times and which are referred in a recent time period are not being

referred further by the system.

50

3.6 Performance Analysis of Various Page Replacement
Methods

3.6 Performance Analysis of Various Page

Replacement Methods

The analysis is done by comparing various algorithms. This is

done with the help of finding the page faults for different programs

of different sizes. For the analysis, various inbuilt programs as well

as user created programs are considered. The number of page fault

along with user time, system time, elapsed time and execution time

are considered. The page fault can be in terms of major fault or minor

fault. The time of execution of the program is measured in terms

of user time and system time.Table 3.1 will give specification of the

testing environment.

Table 3.1: Specification of the testing environment

Specification

Processor:Intel i5
4 GB RAM
700 GB IBM-DTLA- 307030 SATA IDE hard drive.
Linux kernel 3.14

Both the forward and backward loops should be considered when-

ever the discussion of replacement is considered. Different programs

with same file size are considered in order to analyse the effect of

backward and forward loop references and alsoto understand how the

changes are reflected in the fault rate and the execution time. For

final conclusion one programme from each category (small, medium

and large) are selected and are shown in Table 3.2, Table 3.3, Table

3.4, Table 3.5 and Table 3.6. In all the cases each program is executed

many number (minimum 15) of times and the average of each one is

taken and recorded in the Table. When the program is executed many

number of times it is noted that there is a small change in the value

due to the presence of the requested page in the respective memory

area.

51

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

Table 3.2: Details of major page fault in various page replace-
ment methods

Major page fault(average numbers)
FILE SIZE(KB) LRU MRU LFU MFU LRU-LFU LRU-MFU MRU-LFU MRU-MFU File selected

2.7 10.6 10.5 10.4 10.6 10.7 10.5 10.7 10.7 selected
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
26.8 0.4 0.3 0.4 0.5 0.6 0.5 0.3 0.5
36.4 0.4 0.5 0.5 0.3 0.2 0.4 0.5 0.3
59 8.7 23.4 9.9 3.4 3.6 2.9 2.6 3.1 selected
59 4.1 0.3 4.4 0.5 4.4 4.6 4 0.4
59 0.5 4.2 0.4 4.3 0.5 0.4 0.8 4.5
59 5.7 1.6 1.9 8.5 8.1 8.8 9.1 8.5

686.7 4.6 4.6 5.5 4.6 5.5 5.5 5.5 5.5 selected

LRU page replacement algorithm which is currently implemented

has been modified with MRU, LFU, MFU, LRU-LFU, MRU-LFU,

LRU-MFU and MRU-MFU. Table 3.2 and Table 3.3 shows the de-

tails of the page fault. From these Tables it is clear that there is some

difference in the value of the number of page faults in different methods

for both major and minor fault generated by the system. Even though

this difference is small, it makes a huge improvement in the overall

system performance, because the page replacement technique adapted

during the occurrence of a major fault or minor fault inside the system

triggering a lot of complicated procedures. Experimental results of

the above page replacement policies and their respective diagrams are

shown in Figure 3.1 and Figure 3.2. From the Table 3.2 and Table 3.3.

it is clear that there are some noise in the simulation result. Hence the

confidence level and confidence interval is calculated for these samples.

Graphical representation of these are given in Figure 3.3 and Figure

3.4 respectively. It is observed that except the file size 59KB all are

coming under the confidence interval. Actually 59KB file is taken as

special test case which is added with maximum number of forward and

backward branching. Hence it will give different fault rate.In both the

cases the confidence level is set as 95% and the confidence interval for

major fault is calculated as 4.18564 and 0.61436 and for minor fault

the confidence interval is calculated as 21364.4719 and 4234.1567.

52

3.6 Performance Analysis of Various Page Replacement
Methods

Figure 3.1: Comparison of major fault in various page replace-
ment methods

In Table 3.2 it can be seen that for large program size, especially

by using system program, the page fault number will be almost same

in case of MRU, MFU and LRU. But it is observed that for the user

program (medium size) the major page fault rate shoots up in the

case of MRU. In the case of LFU there is a slight increase in major

fault rate and due to this the performance is degraded when compared

with the LRU. In the case of combinations of the various methods the

results of LRU-MFU and MRU-LFU give almost the same result. LRU-

LFU performance slightly less than the above two methods in the user

program. In the case of MRU-MFU, it is observed that the number

of major page fault is reduced in the case of medium size program

when compared with the LFU-LRU and is much reduced with LRU

algorithm. And it is also observed that for medium size programs the

combination will always give a better performance. Even though we

are not able to make any far-reaching change in the number of major

fault, the number of processor cycles required for each major fault is

in the range of thousand of cycles [Computer systems a programmers

53

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

Table 3.3: Details of minor page fault in various page replace-
ment methods

Minor page fault (average numbers)
FILE SIZE(KB) LRU MRU LFU MFU LRU-LFU LRU-MFU MRU-LFU MRU-MFU File selected

2.7 24600.3 24583.4 22533.2 24611 23486.7 24165 24599.6 23516.9 selected
7.1 147.3 148.1 148 147.5 147.9 147.6 148.8 147.7
7.2 146.4 147.8 147.8 147.8 147.2 147.5 147.8 147.6
7.2 146.1 146.8 147.1 147.1 147.1 146.8 147.4 147.9
7.3 146.9 147.2 147.1 147.1 147.6 147.1 147.4 147.7
7.3 147 147.7 147.8 147.8 148.3 148.3 148.6 148.6
7.3 145.7 146.6 146.5 146.8 146.8 146.5 146.5 146.4
26.8 687.8 689.9 691.7 692.4 690 689.7 689.6 691.9
36.4 937.2 937 936.6 936.9 937.3 936.9 937 936.5
59 39216.6 39377.5 40813.5 36729.1 38217.3 37961 35205.5 39705.2 selected
59 32902.2 36491.6 31687.8 33033.2 33096.3 31724.1 37528.6 34899.8
59 37033.5 34356.5 38700.9 37462.2 37336 38838.1 32686.6 35858.3
59 38578.4 38847.3 35997 40167.1 38724.9 38573.2 41507.7 37269.6

686.7 5717.7 5786.6 5837.4 6077 5817 5844.9 5694.7 5774.2 selected

perspective, Randal E Bryant, David O Hallaron, Pearson Education].

Hence a small degradation in the major fault will improve the overall

system performance.

In Table 3.3 the analysis of the minor fault describes the fact that

for small user programs, even LRU, MRU and MRU-LFU shows the

same result, but the number of minor faults gets reduced in the case

of LFU, LRU-LFU and MRU-MFU. When the size of the program is

increased, the existing LRU gives better performance. In the case of

LRU-LFU and LRU-MFU the performance of the system is degraded

for large size programs. MRU-LFU is able to reduce the minor fault

for the small, medium and large size programs when compared to the

existing LRU method. The diagramatic representation of Table 3.3 is

given in Figure 3.2.

Table 3.4, Table 3.5 and Table 3.6 show the data regarding the

various time parameters, which are extracted from the system using

the system built-in command over a set of programs that are used for

the measurement of page faults. The analysis of this result will give

a clear idea about the relationship of the execution time and the page

fault number.

In Table 3.4 the analysis of the user time is given. It shows that the

existing LRU gives the better user time considering small, medium and

54

3.6 Performance Analysis of Various Page Replacement
Methods

Figure 3.2: Comparison of minor fault in various page replace-
ment methods

Figure 3.3: Confidence level plot for major fault

55

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

Figure 3.4: Confidence level plot for minor fault

Table 3.4: Details of user time in various page replacement
methods

Average User Time(Sec)
FILE SIZE(KB) LRU MRU LFU MFU LRU-LFU LRU-MFU MRU-LFU MRU-MFU File selected

2.7 2.211 2.017 2.001 1.906 2.147 2.785 2.512 2.35 selected
7.1 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.2 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
7.3 0 0 0 0 0 0 0 0
26.8 0.018 0.014 0.013 0.015 0.027 0.031 0.03 0.039
36.4 0.032 0.032 0.045 0.03 0.033 0.031 0.039 0.039
59 1.326 1.269 2.13 1.313 1.605 1.589 1.36 1.986 selected
59 1.36 1.779 1.639 1.439 1.759 1.539 2.378 1.746
59 1.456 1.109 1.928 1.627 1.782 1.947 1.124 1.577
59 1.338 1.347 1.214 1.595 1.543 1.708 1.951 1.575

686.7 1.693 2 0.648 5.714 2.776 3.082 2.004 2.989 selected

56

3.6 Performance Analysis of Various Page Replacement
Methods

large size programs. MFU is the one which consumes the maximum

user time when the size of the program increases. The time taken by

the LRU-LFU and MRU-MFU are almost the same and is closer to the

user time of LRU. The diagramatic representation of the above Table

is shown below in Figure 3.3.

Figure 3.5: Comparison of user time in various page replacement
methods

The analysis of system time is shown in the Table 3.4. All methods

except LRU consume less amount of system time for programs with

average and large size. It is noted that when the system commands

are executed inside the system, system time is almost zero in the case

when replacement is done with any method other than LRU. LRU-

LFU gives better performance while considering the small, medium

and large program compared to other methods. The diagramatic rep-

resentation of the above Table 3.4 is given in Figure 3.4. In elapsed

time calculation the system pre-emption condition is also considered

because the pre-emption condition may occur due to the unavailability

of the data. Hence this is also considered along with user time and

system time measurements for the evaluation. The actual execution

57

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

Table 3.5: Details of system time in various page replacement
methods

Average system time (Sec)
FILE SIZE(KB) LRU MRU LFU MFU LRU-LFU LRU-MFU MRU-LFU MRU-MFU File selected

2.7 2.718 2.388 2.112 2.433 2.059 2.617 2.313 2.26 selected
7.1 0.004 0.197 0.182 0.171 0.162 0.152 0.175 0.169
7.2 0 0.236 0.192 0.132 0.162 0.155 0.19 0.181
7.2 0.002 2.317 2.341 1.605 1.962 1.998 2.027 2.167
7.3 0 1.981 1.747 1.688 1.584 1.444 2.083 1.83
7.3 0.004 1.398 2.139 1.687 1.892 1.83 1.502 1.736
7.3 0 1.964 1.93 1.873 2.07 2.107 2.432 1.919
26.8 0.138 1.331 1.152 2.239 1.042 0.991 1.045 1.134
36.4 0.201 0.006 0.004 0.007 0.004 0.005 0 0
59 1.966 0 0 0 0.001 0 0 0 selected
59 1.473 0.001 0.003 0.002 0.002 0.001 0 0
59 1.628 0.001 0.002 0 0 0.001 0 0
59 1.764 0.003 0 0.006 0.003 0 0 0

686.7 0.968 0.001 0 0.002 0.003 0 0 0 selected

Figure 3.6: Comparison of system time in various page replace-
ment methods

58

3.6 Performance Analysis of Various Page Replacement
Methods

time can be taken by adding the user and system time, which can also

be considered for the analysis process. The real time calculation of the

elapsed time parameter should also get included. Hence the execution

time and waiting time are generated from Table 3.4, Table 3.5 and

Table 3.6.

Table 3.7 gives the details of execution time, which is generated

from the Table 3.4 and Table 3.5. The execution time is measured as

the time taken by the program in both user mode and system mode.

Table 3.6: Details of average elapsed time in various page re-
placement methods

Average elapsed time (Sec)
FILE SIZE(KB) LRU MRU LFU MFU LRU-LFU LRU-MFU MRU-LFU MRU-MFU File selected

2.7 2.718 2.388 2.112 2.433 2.059 2.617 2.313 2.26 selected
7.1 0.004 0.197 0.182 0.171 0.162 0.152 0.175 0.169
7.2 0 0.236 0.192 0.132 0.162 0.155 0.19 0.181
7.2 0.002 2.317 2.341 1.605 1.962 1.998 2.027 2.167
7.3 0 1.981 1.747 1.688 1.584 1.444 2.083 1.83
7.3 0.004 1.398 2.139 1.687 1.892 1.83 1.502 1.736
7.3 0 1.964 1.93 1.873 2.07 2.107 2.432 1.919
26.8 0.138 1.331 1.152 2.239 1.042 0.991 1.045 1.134
36.4 0.201 0.006 0.004 0.007 0.004 0.005 0 0
59 1.966 0 0 0 0.001 0 0 0 selected
59 1.473 0.001 0.003 0.002 0.002 0.001 0 0
59 1.628 0.001 0.002 0 0 0.001 0 0
59 1.764 0.003 0 0.006 0.003 0 0 0

686.7 0.968 0.001 0 0.002 0.003 0 0 0 selected

Table 3.7: Details of execution time in various page replacement
methods

Execution time (MB/Sec)
FILE SIZE(KB) LRU MRU LFU MFU LRU-LFU LRU-MFU MRU-LFU MRU-MFU File selected

2.7 4.929 4.405 4.113 4.339 4.206 5.402 4.825 4.617 selected
7.1 0.004 0.197 0.182 0.171 0.162 0.152 0.175 0.169
7.2 0 0.236 0.192 0.132 0.162 0.155 0.19 0.181
7.2 0.002 2.317 2.341 1.605 1.962 1.998 2.027 2.167
7.3 0 1.981 1.747 1.688 1.584 1.444 2.083 1.83
7.3 0.004 1.398 2.139 1.687 1.892 1.83 1.502 1.736
7.3 0 1.964 1.93 1.873 2.07 2.107 2.432 1.919
26.8 0.156 1.345 1.165 2.254 1.069 1.022 1.075 1.173
36.4 0.233 0.038 0.049 0.037 0.037 0.036 0.039 0.039
59 3.292 1.269 2.13 1.313 1.606 15.89 1.36 1.986 selected
59 2.833 1.78 1.642 1.441 1.761 1.54 2.378 1.746
59 3.084 1.11 1.93 1.627 1.782 1.948 1.124 1.577
59 3102 1.35 1.214 1.601 1.546 1.708 1.951 1.575

686.7 2.661 2.001 0.648 5.716 2.779 3.082 2.004 2.989 selected

59

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

Figure 3.7: Comparison of elapsed time in various page replace-
ment methods

The diagramatic representation of above Table 3.6 is given in Figure

3.5 and that gives a clear picture of the comparison of elapsed time.

The diagramatic representation of Table 3.7 is given in Figure 3.6

and that gives a clear picture of the comparison of actual execution

time. The execution time shown in Table 3.7 is generated directly from

Table 3.4 and Table 3.5.

To conclude the result analysis, the parameters major fault, minor

fault and elapsed time are considered . From the above Tables it is

observed that LRU-LFU gives a better value when compared to other

methods.

60

3.7 Conclusion

Figure 3.8: Comparison of execution time in various page re-
placement methods

3.7 Conclusion

It is observed that during the replacement of data from various
memory levels, using page replacement algorithm, if the frequency pa-
rameter is considered along with time stamp then the performance of
the system can be enhanced significantly. The execution time of a file
depends on the number of page faults which the system under goes.
Hence with a reduction in the page fault number inside, the execution
time can be reduced and the system performance can be increased.
Various existing LRU, MRU, LFU, MFU algorithms and combinations
of these methods are considered and found that LRU-LFU is the one
which reduces the major fault and minor fault compared to existing
LRU. Due to the reduction in major fault, minor fault and elapsed
time the performance of the system gets increased.

61

3. HANDLING OF VARIOUS PAGE REPLACEMENT
TECHNIQUES

62

4

CaMMEBH for Page Fault

Reduction

4.1 Abstract

This chapter deals with Cache Memory Management with Efficient

Branch Handling (CaMMEBH) and also discuss the reconfiguration

of Linux kernel to improve the system throughput. It aims to keep

most probable pages in the cache along with the recently accessed pages

through prefetching. Ensuring the availability of required pages in cache

is one of the major tasks of kernel in memory management. Any fail-

ure of kernel in this functionality may lead to cache miss instead of

cache hit. CaMMEBH focuses mainly on branch handling statements

to reduce the fault rate in memory. Kernel of an operating system is or-

ganized as different modules based on the functions. It can be modified

with required changes to reflect the need. Proper kernel modules can be

identified and updated so that hit ratio in the cache will be enhanced.

The property of locality of reference allows the system to prefetch the

pages from one memory level to the next one. CaMMEBH designed

to load all the probable destination pages into cache while loading from

63

4. CAMMEBH FOR PAGE FAULT REDUCTION

main memory, so that maximum hit ratio is found when searching in

the cache itself. Normally when a branch statement is encountered

in the program a prefetching action is activated only when the branch

condition is true and the branch addressed data containing block will

be moved to the cache area. While performing this, branch handler is

not activated if the branch condition is false. Here an attempt is made

to find the solution to this problem. CaMMEBH tries to maintain all

required pages in cache memory in both the conditions.

4.2 Study Of Branch Handling

The processor performance is highly dependent on the supply of

correct instruction at the proper time. If a data is missed out in the

process, the searching of the missed data will be done based on prin-

ciple of inclusion. Principle of inclusion states that [Computer System

Architecture, 3rd edition, M Morris Mano, Person] when ever a data

miss occurs it will search the data as per the memory hierarchy. Each

memory level i will be always a subset of its higher level i+1. Data will

be transferred between various memory levels in a parallel manner. If

the data miss occurs in the cache memory the procesinsor has to spend

many cycles for fetching the data from the lower memory levels. One

of the methods used to reduce cache miss while searching for the in-

struction is the instruction prefetching, which in turn will increase the

number of instructions to be supplied to the processor. Even modern

processors uses branch target buffer to predict the target address of

branches so that they can be fetched ahead of an instruction stream

and that will increase the concurrency and performance of the pro-

cessor [A.J. Smith, 1982], [N.Fukumoto, et al., 2008], [J.Gummaraju

and M.Franklin, 2000]. All the developments in these fields indicate

that in future the gap between processing speeds of processor and

data transfer speed of memory is likely to be increased. Branch pre-

dictor plays a critical role in achieving effective performance in many

64

4.2 Study Of Branch Handling

modern pipelined microprocessor architecture [Advanced computer or-

ganization Processor Architecture, Mattan Erez, 2000], [Marius Evers,

2000]. Commonly used methods for branch predictions are software

prefetching and hardware prefetching [Tien Fu Chen, Jean Loup Baer,

1994], [Bumyong Choi, Leo Porter, Dean M Tullsen, 2008]. In software

prefetching the compiler will insert a prefetch code in the program

[A.H.Badawy, et.al. 2004], [C.K Luk, T.C Mowry, 1996]. In this case

as the actual memory capacity is not known to the compiler, it may

lead to some harmful prefetches. In hardware prefetching, instead of

inserting prefetch code hardware monitors memory accesses by looking

for common patterns[D.Callahan, K.Kennedy, A.Porterfield, 1991], [S

Pintar and A Y Tango, 1996]. The guessed addresses are placed into

prefetch queue. Prefetchers trade bandwidth for latency, extra band-

width is used only when guessing incorrectly and latency reduced only

when guessing correctly. In addition to all this during the execution

of a program if the processor is waiting for the availability of the next

instruction then the performance of the system gets degraded due to

idle condition. In a pipelined system the time that is wasted in case of

branch misprediction is equal to the number of stages in the pipeline,

starting from fetch stage to execution stage [Advanced computer Ar-

chitecture, parallelism, scalability, programmability, 2nd edition, K

Hwang and N Jotwari, TMH]. All the prefetching methods give impor-

tance only in fetching the instruction for execution, not to the overall

performance of the processor [D Joseph and D Grunwald, 1999]. The

section 4.2.1 and section 4.2.2 describe about some branch prefetching

methods.

4.2.1 Software Prefetching.

4.2.1.1 Long Cache Lines

Among the various prefetching techniques, Long cache line is the

simplest form [A.J. Smith, 1982]. In this method the execution of

instruction is considered only in sequential order. In this cache miss

65

4. CAMMEBH FOR PAGE FAULT REDUCTION

delays can be reduced or eliminated by replacing the current instruc-

tions with new instructions that are going to be executed are moved

into the cache in advance. When ever the cache lines are moved in

to the cache, tag storage should be updated with an entry. In order

to reduce the space requirement of the tag storage, longer cache lines

are used. When the cache lines are longer the time taken to move it

to the cache is more thereby it increases the memory traffic, and they

contribute to cache pollution due to the larger replacement granular-

ity [A.J. Smith, 1982]. Structure of a standard program [Advanced

Computer Architecture, Lecture 5, Addison-Wesley, 2edition] shows

that among the instructions used around 56% of instructions are con-

ditional branching, 10% of instructions are unconditional and 8% of

the instructions come under the call return pattern. Due to branching

and call return pattern of execution the prefetching needs to undergo

non-sequential execution of the program in most cases.

4.2.1.2 Lazy Prefetching

There are certain communication patterns where prefetching is in-

applicable or insufficient, especially for producer-consumer patterns.

To handle producer-consumer patterns we can make use of Lazy prefetc

hing. Data transfer is initiated by the producer, which is a natural

style of communication. Concept of remote writes is made use by the

producer and it initiates the primitives which move data close to the

consumer as soon as the data become available and there by minimiz-

ing the latency at the consumers read [Aleksardar Milenkovic, Veljko

Milutinovic, 1998]. As in data prefetching concept, in lazy prefetching

also expected data is moved closer to the processor before it is actually

needed. Lazy prefetching makes use of the good properties of both

prefetching and remote write to solve the problem of misprediction of

the future. Since it is a software prefetching method the prefetched

instructions are inserted into the application code, either explicitly by

the programmer or automatically by the compiler. In lazy prefetching

consumer (processor) anticipates its future needs of instruction using

66

4.2 Study Of Branch Handling

ask instruction. The instruction code checks the data cache and if the

data is not present in the cache then a cache miss occurs and a request

to memory is initiated. A memory agent which is present in the mem-

ory accepts the request and checks the memory. If the data requested

by ‘ask’ instruction is a valid one in the memory then the agent sends

the requested block to the processor. If the data is not a valid copy

the producer have to produce the data from the next memory level

and supplied to the consumer, so that it initiates memory update op-

erations using write back instruction. The write back cycle forces the

memory agent to deliver the updated block to consumers according

to the information from special table [I.K. Chen, C.C. Lee and T.N.

Mudge, 1997].

4.2.1.3 Adaptive Prefetching

Timing and scheduling of prefetch instructions is a critical issue in

software data prefetching. If a prefetch is issued too early, there is a

chance that the prefetched data will be replaced from the cache before

its use or it may also lead to replacement of other useful data from

the higher levels of the memory hierarchy. If the prefetch is issued too

late, the requested data may not arrive before the actual memory refer-

ence, thereby introducing processor stall cycles. Adaptive prefetching,

is incompatible to conventional prefetching, it prefetches pages by ob-

serving the previous paging activity. It is a system in which the subset

of pages prefetched is not fixed. The pages are determined by running

algorithms which decide the subset of pages eligible for prefetching by

observing historical paging activity for a particular system and for a

particular user [Alaa R Alameldeen, David A wood, 2004]. Obviously

the pages prefetched in one system will be different from another sys-

tem, though both run the same operating system. It is because the

usage pattern of a user will be different from another and hence its

paging activity also differs. Most of the operating systems make use

of this adaptive prefetching concept and different vendors call it by

different names. In Linux operating system it is known by the names

67

4. CAMMEBH FOR PAGE FAULT REDUCTION

preload or prefetch or read ahead etc. The difference lies in the im-

plementation details like the data structure used for holding prefetch

data, number of pages to be prefetched, criteria for preloading random

access memory etc.

Even multiprocessor systems make use of adaptive prefetching.

Scheduling of prefetch instructions is the key for the success of any

software prefetching algorithm. In multiprocessor system the schedul-

ing is more critical task because the prefetched data is shared among

the various cores present in the processor. If there is a negative inter-

action among different processor cores it will generate large problem

inside the system. The latest versions of many architectures have chip

multiprocessors (CMPs) with a shared L2/L3 cache [D Kongetira, K

Aingraran, K olukotun Niagra, 2005], [Alaa R Alameldeen, David A

wood, 2007]. Like any other shared resources the cores present in

CMPs will compete for the cache also. In the context of CMPs with

shared on chip caches, existing compiler algorithms for scheduling soft-

ware prefetch instructions and static techniques to compute prefetch

distances may not be effective. The L2 cache itself is the last line

of defence in off-chip memory accesses, therefore achieving a high ac-

curacy of prefetches are of critical importance. Apart from useless

prefetches, the impact of harmful prefetches is also high in case of chip

multiprocessors with shared L2 cache. A prefetch is harmful if the

prefetched data replaces the data which are already in use by other

cores. The harmful prefetches can occur among the accesses made by

a single core, or by the access from multicores. The contribution of

harmful prefetches also increases with the increased number of cores.

Hence there is a direct correlation between the degradation in the ef-

fectiveness of prefetching and the increase in the fraction of harmful

prefetches. The harmful prefetch patterns change dramatically across

the different phases of program execution, and in the execution phases

of a given application, the total number of processor cores that are in-

volved in harmful prefetches is relatively small. Based on these obser-

vations, dynamic and adaptive complementary techniques to mitigate

the impact of harmful prefetches are proposed. In these techniques, if

the perfetch is found to be harmful it is suppressed and if it is found

68

4.2 Study Of Branch Handling

to occur frequently the rharmful prefetch data is blocked in the L2

cache itself [Sparsh Mittal, 2016], [Mahmut Kandemir, ISBN-978-3-

9810801]. These two techniques are very effective in mitigating the

impact of harmful prefetches.

4.2.2 Hardware Prefetching

4.2.2.1 Next-Line Prefetching

Next-line prefetching is another instruction prefetching technique

which comes under the hardware prefetching scheme. Next line prefetch-

ing tries to prefetch sequential cache lines before they are needed by

the CPUs fetch unit [I.K. Chen, C.C. Lee, T.N. Mudge, 1997]. Current

cache line is the one from which the processor is currently accessing

the instruction or data. The cache line which is followed sequentially

after t4.1he current cache line is refered as the next line. If the next

line is not resident in the cache, it will be perfected from some distance

into the current cache line which is accessed. This specified distance is

measured from the end of the current cache line and is called the fetch

ahead distance. Next-line prefetching predicts that execution will con-

tinue along the sequential path for conditional branches in the current

line.

In order to calculate the address of the next cache line a little

additional hardware is required. Unfortunately, next-line prefetching is

unlikely to reduce misses when execution proceeds with non-sequential

execution paths caused by conditional branches, jumps and subroutine

calls. In these cases, the next line guess will be incorrect except in

the case of short branches and the correct execution path will not be

prefetched. Performance of the scheme dependents upon the choice of

fetch ahead distance. If the fetch ahead distance is large, the prefetch

has to be initiated early and the next line is likely to be received from

memory in time for the CPU to access it. If the current instruction

is branch instruction, it may increase the fetch ahead distance. If

69

4. CAMMEBH FOR PAGE FAULT REDUCTION

the prefetch is useless, it will increase both memory traffic and cache

pollution. For the calculation of the wastage of processor cycle, fetch

ahead distance can be used. Run ahead Execution [O. Mutlu, J. Stark,

C. Wilkerson, Y. N. Patt, 2003] prefetches by speculatively executing

the application, but ignoring dependences on long latency misses. In

spite of these shortcomings, next-line prefetching has been shown to

be an effective strategy, sometimes reducing cache misses by 20-50%

[J. Pierce, 1995].

4.2.2.2 Target-Line Prefetching

The main draw back of next-line prefetching is the inability to cor-

rectly prefetch non-sequential cache lines, target-line prefetching over-

comes this problem. When instructions in the current line are being ex-

ecuted, the next cache line accessed might be the next sequential cache

line or it might be a line containing the target of a control instruction

found in the current line. Since unconditional jump and subroutine call

instructions have a fixed target and conditional branch instructions are

handled based on history of pervious execution for fetching the target

page [V.Srinivasan, E.S.Davidson, G.S.Tyson, 2004]. For this a good

heuristic function is used to prefetch on the previous behaviour of the

current line. Heuristic function will analyse the previous history and

prefetch the next line. Target-line prefetching uses a target prefetch

table maintained in hardware to supply the address of the next line

to prefetch when the current line is called for execution. The table

contains current line and successor line pairs. When an instruction ex-

ecution transfers from one cache line to another line, two things happen

in the prefetch table. The successor entry of the previous line is up-

dated to the address of the new current line. Also, a lookup is done in

the table to find the successor line of the new line. If a successor line

entry exists in the table and if that line does not currently reside in

the cache, the line has to be prefetched from memory. By using this

scheme, instruction cache misses will be avoided or at least their miss

70

4.2 Study Of Branch Handling

penalty will be reduced if the execution flow follows the path of the

previous execution.

4.2.2.3 Wrong-Path Instruction Prefetching

In this method, during the execution of instruction mispredicted

paths are actually reduced along with the number of cache misses oc-

curring during correct path execution [G. Reinman, T. Austin and

B. Calde, 1999], [J. Pierce and T.N. Mudge, 1996]. This suggests that

prefetching instruction cache lines down mispredicted paths might have

a positive result. It is a hybrid scheme which combines both target

and Next-line prefetching. The next line is prefetched whenever in-

structions are accessed inside the fetch ahead distance as described

earlier. The major difference with reference to target prefetching is

that no target line addresses are saved and no attempt is made to

prefetch only the correct execution path. Instead, the line contain-

ing the target of a conditional branch is prefetched immediately after

the branch instruction is recognized in the decode stage. Thus, both

paths of conditional branches are always prefetched: the fall-through

direction with next-line prefetching and the target path with target

prefetching. Unfortunately, as the target is computed at a later stage,

prefetching the target line when the branch is taken is unproductive.

In this case, if the target address is not in the cache, a fetch miss and

a prefetch request of the same line will be generated simultaneously.

Similarly, prefetching unconditional jump or subroutine call targets

is useless, since the target data has been always taken early and the

prefetch address would be produced too late. To reiterate, the tar-

get prefetching part of the algorithm can only perform a potentially

useful prefetch for a branch, which is not taken. This is why the algo-

rithm is called wrong-path prefetching. However, if execution returns

to the branch in the near future, and the branch is then taken, the

target line will probably reside in the cache because of the prefetch.

The hardware requirements for wrong-path prefetching are roughly

equivalent to what is required for next-line prefetching since the target

71

4. CAMMEBH FOR PAGE FAULT REDUCTION

prefetch addresses are generated by the existing decoder and no target

addresses are saved. The obvious advantage of wrong-path prefetching

over the hybrid algorithm is that there is a lower hardware cost. The

performance of wrong path prefetching might also compare favourably

with other schemes. Wrong-path prefetching can prefetch target paths,

which are to be executed unlike the table-based schemes that require a

first execution pass to create the cache line links. In addition, wrong-

path prefetching performs better than correct-path only when there

exist a large disparity between the CPU cycle time and the memory

speed. Wrong-path prefetching, prefetches lines down a path which is

not immediately taken thus it potentially has more time to prefetch the

line from a slow memory before the path is executed. The potential

advantages of wrong-path prefetching would not come without cost.

Prefetching down will add some lines into the cache that are never

accessed. This will increase both memory traffic and cache pollution.

For the algorithm to be successful, the benefits of prefetching must

overcome the added pollution misses. The extra traffic is not reduced,

but memory bandwidth which is viewed as a hardware resource is uti-

lized more effectively to reduce the performance degradation caused

by instruction cache misses.

4.2.2.4 Fetch Directed Instruction Prefetching

Modern high-performance processor [T. Alexander, G Kedem, 1996]

is composed of two processing engines: the front-end processor and the

execution core. The front-end processor is responsible for fetching and

preparing (e.g., de-coding, re-naming, etc.) instructions for execu-

tion. The execution core arranges the execution of instructions and

the retirement of their register and memory results to non-speculative

storage. Typically, these processing engines are connected by a buffer-

ing stage in some form, e.g., instruction fetch queues or reservation

stations. The front-end acts as a producer, which fills the connecting

buffers with instructions that are utilized by the execution core. This

producer/consumer relationship between the front-end and execution

72

4.2 Study Of Branch Handling

core creates a fundamental bottleneck in computing, i.e., execution

performance is strictly limited by fetch performance. Efficient instruc-

tion cache performance is critical in order to keep the execution core

satisfied. Instruction cache prefetching is an effective technique for

improving instruction fetch performance [Mahmut Kandemir, Yuanrui

zhang, Ozcan Ozturk, 2009].

A scalable front-end architecture is a mechanism to relieve the bot-

tleneck of the fetch end caused due to earlier fetch cycle and later

processing [Lawrence Spracklen, Yuan chou, Santhosh G Abraham,

2005]. One aspect of that architecture was to decouple the branch pre-

dictor from the instruction cache. The branch predictor produces fetch

blocks into a Fetch Target Queue (FTQ), where they are eventually

consumed by the instruction cache. This decoupling allows the branch

predictor to run ahead of the instruction fetch. This can be benefi-

cial when the instruction cache has a miss, or when the execution core

backs up. This second case can occur because of data cache misses

or long latency instructions in the pipeline. Fetch block addresses in

the FTQ are used to provide Fetch Directed Prefetching (FDP) for the

instruction cache, and to guide instruction prefetching. Future branch

prediction architectures may be able to hold more state than the in-

struction cache, especially multi-level branch predictors and those that

are able to predict large fetch blocks or traces. When a cache block is

evicted from the instruction cache, its corresponding entry in the FTB

is marked to make it invalid , which is similar to a branch target buffer,

but can predict larger fetch blocks. If a branch predicted FTB entry is

marked as being evicted, then prefetch the predicted fetch block using

the fetch directed prefetching architecture. Prefetching blocks that are

already contained in the instruction cache results in wasted bus band-

width. When the instruction cache has an idle port, the port can be

used to check whether or not a potential prefetch address is already

present in the cache. This technique is called Cache Probe Filtering

(CPF). If the address is found in the cache, the prefetch request can

be cancelled, thereby saving band width. If the address is not found

in the cache, then in the next cycle the block can be prefetched if the

cache bus is free. Cache probe filtering is only needed to access the

73

4. CAMMEBH FOR PAGE FAULT REDUCTION

instruction caches tag array. It is found to be beneficial to add an extra

port for CPF, which would only affect the timing of the tag access. An

instruction cache (port) may be idle and will be unused because of an

instruction cache miss due to insufficient predicted fetch blocks. If an

instruction cache miss occurs, then the fetch engine will stall until the

miss is resolved. When the instruction window becomes full because

of a slow instruction in the execution core, the instruction cache has

to stall since the fetch buffer is full. To use the idle cache ports to

perform cache probe filtering during a cache miss, the cache needs to

be lock up free.

4.2.2.5 Branch Target Instruction Prefetching

Branch target instruction prefetching is a hardware prefetching

technique. This method combines nextline prefetching along with the

prefetching of all control instruction targets regardless of the predicted

direction of conditional branches [Y. Zhang, S. Haga, R. Barua, 2002].

Unlike wrong-path instructions prefetching, the line containing the tar-

get of a conditional branch, jump and functional call are prefetched

immediately after the branch instruction is recognized by the prefetch

unit instead of decode stage, and stored in a separate buffer called

branch target buffer (BTB). Branch target buffers (BTB) have been

effectively used as a mechanism for branch and instruction fetch predic-

tion to increase the instruction fetch rate [D Kongetira, K Aingraran, K

olukotun Niagra, 2005]. Thus, both paths of conditional branches are

always prefetched. Unlike target line prefetching, there is no need to

maintain a target prefetch table. The main advantage of this method

is the reduction in cache pollution when wrong prefetch occurs with

a separate memory. Target instructions along with its address tag

will be stored in BTB. Prefetch unit will fetch cache line size instruc-

tions into BTB. If the processor accesses these BTB instructions, next

line prefetching unit prefetches next sequential instructions and stores

them in instruction cache (I-cache) if required. Whenever processor

executes branch instructions, for target addresses, first it will check

74

4.3 Suggestion for Prefetching Techniques

BTB, if it is not present then it will check in the I-cache. Either I-

cache or BTB will contain branch target address instructions. The

execution unit need not wait because of the unavailability of target

address of control instructions and the main memory. Therefore, a

better performance is expected. The prefetch unit indicates that when

a line is to be prefetched, it computes the lines address, and performs

a cache tag lookup to see if the line is resident in the cache. If the

line is not resident, prefetch is initiated and a memory request is then

sent to the non-blocking cache handler. The cache tag structure can

be accessed simultaneously by both the fetch and prefetch units. For

the next-line prefetching, the default fetch-ahead distance is 3/4 of the

line size [D Kongetira, K Aingraran, K olukotun Niagra, 2005]. For

wrong-path prefetching, a target prefetch is suggested during the cycle

in which a conditional branch is decoded [D Kongetira, K Aingraran,

K olukotun Niagra, 2005]. A single path execution stream can be spec-

ulatively exploited by branch prediction mechanism. Most efforts are

focused on improving the prediction accuracy or reducing the branch

execution penalty. The problem with branch prediction is the deeper

the speculation the less likely speculated path will be executed. Since

there is no execution at all on the wrong path, the machine may suffer

a large penalty on misprediction even with a high accurate prediction.

4.3 Suggestion for Prefetching Techniques

The survey report here clearly defines the applicability of instruc-

tion cache prefetching schemes in the current and next generation mi-

croprocessor designs, where memory latencies are likely to be longer.

However, a new prefetching algorithm is examined that was inspired

by previous studies about the effect of speculation down mispredicted

paths. Data prefetching has been used in the past as one of the mech-

anism to hide memory access latencies [Jeffery A Brown, Leo Porter,

Dean M Tullsen, 2011], [A.Stoutchini M, et.al, 2001], [G.H.Loh and D

S Henry, MIP-9702281]. But prefetching requires accurate timing, to

75

4. CAMMEBH FOR PAGE FAULT REDUCTION

be effective in practice. Inaccurate timing may adversely affect proces-

sor performance in the case of multiple processors; hence it is handled

with the help of adaptive prefetching method. The design of an ef-

fective prefetching algorithm will minimize the prefetching overhead.

Since it is a big challenge, it needs more thought and effort on it. Even

if a number of prefetching methods are available none of them is proved

to be miss free. Even more, it is observed that in both hardware and

software implementation of the prefetching techniques, branch predic-

tion and handling is taking place during runtime. Instead of applying

these at runtime, compilation procedure can be used for handling this.

During the initial step of compilation that is in lexical analysis phase

along with the symbol table creation, branching table can be generated

by observing the tokens which can be used for handling the prefetch-

ing. The look ahead distance for branching is also considered for better

utilisation of the available memory capacity as in the case of memory

management section.

To classify memory access behaviours in hardware [J. D. Collins, et

al., 2001] the branch access stream is matched against the behaviour

specific table in parallel. Study shows that timing and scheduling of

prefetch instructions [R. S. Chappell, et.al, SSMT] is a critical issue in

software data prefetching and prefetch instructions must be issued in

a timely manner for them to be useful. If a prefetch is issued too early,

there is a chance that the prefetched data will be replaced from the

cache before its use or it may also lead to replacement of other useful

data from the higher levels of the memory hierarchy. If the prefetch

is issued too late, the requested data may not arrive before the actual

memory reference is made, thereby introducing processor stall cycles.

Making use of this concept will pre-empt the current running sequence

from the processor.

76

4.4 Need of Branch Handling

4.4 Need of Branch Handling

During the occurrence of a branch condition the system takes steps

to prefetch the blocks corresponding to both true and false conditions

to the respective memory area with out adding any extra hardware.

Today, all the processors come in to the market with the basic

feature of pipelining [A.J. Smith, 1982]. The time required for moving

an instruction one step down the pipeline is a processor cycle. The

length of the processor cycle is determined by the time required for

the slowest pipe stage. If the stages are perfectly balanced, then the

time per instruction on the pipelined processor is calculated as given

in equation 4.1.

Timeperinstructiononunpipelinedmachine

Numberofpipelinestages
4.1

Pipelining yields a reduction in the average execution time per in-

struction. It is an implementation technique that exploits parallelism

among the instructions in the sequential instruction stream. Pipeline

overhead arises from the combination of pipeline register delay and

clock skew. The pipeline registers add setup time plus propagation de-

lay to the clock cycle. The major hurdle of pipelining is structural, data

and control hazards. Here more stress is given to control hazards, aris-

ing from the pipelining of branches and other instructions that changes

the program counter (PC). Control hazards can cause a greater per-

formance loss for pipeline than data hazards do. When branch (con-

ditional/unconditional) is executed, it may or may not change the PC

to some value other than its current value. The simplest scheme to

handle branches is to freeze or flush the pipeline, holding or detecting

any instructions until the branch destination is known.

Branching will destroy the entire parallelism achieved through pipe

lining in the system. If branching can be predicted early to some

extent it can overcome the delay. That is, the required instruction

77

4. CAMMEBH FOR PAGE FAULT REDUCTION

can be brought to the cache region early. Prefetching can be done

either with software or hardware. The most significant source of lost

performance is when the process is waiting for the availability of the

next instruction [Weifeng Zhang, Dean M Tullsen, Brad Calder, 2007],

[J Lu, H Chen, et al., 2003]. In both the cases it has to flush some

instruction out from the pipe. Whenever branching is encountered,

the system will go for a context switching and the pipe will be filled

with instruction for the next process. Here the problems which are

discussed were considered and comes up with a solution.

4.5 What is CaMMEBH?

CaMMEBH is a proposed software prefetcing technique which makes

use of the basic concept of both adaptive prefetching (software prefetch-

ing) and branch target prefetching (hardware prefetching). CaMMEBH

implemented and tested on Linux environment.

Programs interact with the hardware through kernel and kernel

maintains the operations of hardware. Linux is a type of monolithic

kernel in which all functional components have access to all internal

data structures and routines. The primary memory is partitioned into

kernel space and user space in this context. Kernel space is loaded

with code of kernel during boot time and the user space is loaded with

user programs. These user programs cannot access the kernel space

directly since it is purely dedicated to kernel. All operating system

services are provided through predefined functions called system calls.

Memory management is one of the main functionality of kernel. It

allows processes to safely access the system memory as they require it.

This memory includes cache, primary memory and secondary mem-

ory. Cache memory is used to hold frequently accessed data. Cache

management is achieved through system calls that provide access to

kernel functions. CaMMEBH will make necessary changes to the kernel

source code to reflect the increased system performance and efficiency

78

4.6 Implementation of CaMMEBH.

by reducing the page fault rate. It includes identification and modifica-

tion of existing kernel module to achieve the goal. CaMMEBH focuses

on prefetching of branch handling instructions.

CaMMEBH mainly focused on the conditional statements and the

looping constructs in which the execution flow changes from the se-

quential manner. When the execution flow changes from a sequential

manner, chance of increasing page fault in cache memory is more which

reduces the throughput of the system. CaMMEBH reduces page fault

in memory through prefetching, because it make use of the concept

of both adaptive and branch target prefetching. Its objective is, in

addition to the targeted instruction it also loads the next instruction

that follows a branch handling jump instruction onto memory while

executing the jump.

4.6 Implementation of CaMMEBH.

Implementation of CaMMEBH is done on Linux operating system.

Inside the system the branching and prefetching operations are handled

by the file ‘jump label.h’. All the branch instructions present inside

the program will be converted into CALL function. Kernel source code

contains so many data structures and functions related to the execution

of jump statements. A function call is also implemented through jump

statement [http://www.spinics.net/list/linux assembly/]. Assembly

language specifies the invocation of a function or procedure through

the statement CALL FUNCTION OFFSET. But it is actually treated

as JMP ADDR by the system. ADDR is the memory address where

the function is stored in the memory [https://www.autoitscript.com],

[https://github.com], [https: //en.wikipedia.org].

All the conditional and unconditional branch statements are spec-

ified as jmp instruction. There is a structure in the memory called

‘jump table’ whose entries correspond to each jump statement in the

program. It includes the fields like code, target and a key value. Code

79

4. CAMMEBH FOR PAGE FAULT REDUCTION

represents the address of the jump instruction. Target specifies the

target address of the jump, is the location to where the jump has to be

taken in order to continue execution. Key is the index to jump table.

There are various data structures used to hold the branching informa-

tion like source address, destination address, etc. These data structures

are used in various kernel functions to manage branch handling. One

of the major data structures related to branch handling is jump entry.

It includes the fields for code, target and key as in jump table. So

this data structure is used to make an entry in jump table as shown in

Figure 4.1.

Figure 4.1: Data structure of jump table

u32 is a data type used in C which is similar to the data type ‘int’

but u32 is used for explicitly sized data. CaMMEBH aims to load

the next executable instruction into the memory along with the cur-

rent instruction. The goal can be attained by modifying the structure

jump table and also the data structure jump entry. The structure has

to include an additional field to hold the address of the next instruction

as target2. The modified data structure is shown in Figure 4.2

Idea of prefetching is based on the concept of locality of reference;

the block which should be executed next is prefetched in to main mem-

ory from secondary memory. In Linux this is done with the help of

a function ‘mem cpy()’. This function is invoked in a routine called

80

4.6 Implementation of CaMMEBH.

Figure 4.2: Modified data structure of jump table

‘jump label transform ()’ which resides in the file arch/x86/kernel/jump

label.c. In Linux 3.13 normal program statements as follows:

memcpy(&code, ideal nops [NOP ATOMIC5], JUMP LABEL NOP

SIZE)

Two new statements as given in Figure 4.3 are added to function is

added to function ‘prefetch range()’ to reduce the page fault by loading

the next executable block also into the cache .

Figure 4.3: New statements

‘Prefetch range()’ is the function which loads the instructions in to

the cache memory. First line of code will point to the starting of the

memory area which is to be loaded to the higher level memory. The

structure element code.offset is set as the number of instructions to

be moved to the cache. Table 4.1 will give specification of the testing

environment.

81

4. CAMMEBH FOR PAGE FAULT REDUCTION

Table 4.1: Specification details of testing environment

Specification

Processor:Intel i5
4 GB RAM
700 GB IBM-DTLA- 307030 SATA IDE hard drive.
Linux kernel 3.14

4.7 Analysis of CaMMEBH with Current

System.

To analyse the performance of CaMMEBH a new module is imple-

mented for Linux kernel version 3.14 and checked for suitability and

efficiency. The experiments were aimed at measuring the page fault

occurrence in cache memory while running various programs with dif-

ferent sizes. The Linux version 3.14 is modified to reflect the changes

like reduction in major fault, minor fault and various time parameters

of each program. The results shows that there is a substantial de-

crease in the page fault rate after compiling the modified source code

in accordance with the branch handling policy.

The results obtained from CaMMEBH experiments are analysed by

making comparative study with the current system. For the analysis,

programs with varying sizes from small to large are executed using

both original source code and modified code and results were recorded.

Table 4.2 will give the details about the number of major faults. Table

4.3 contains the details about minor fault. Each of the programs is

executed minimum 15 times and the average is taken, the result is

rounded and recorded in the Tables.

In Table 4.2 it can be found that there is a notable change in the

number of major fault in system when modified version is implemented.

This change in major fault shows an improvement of the system. As

mentioned in chapter 3 whenever a major fault is occurring inside the

82

4.7 Analysis of CaMMEBH with Current System.

Table 4.2: Number of major faults

File Size Major Fault (Numbers)
Exsisting Method CaMMEBH

300KB 7 5
350KB 6 4
912KB 3 1
1.43MB 6 5

2MB 9 8
15MB 5 4
20MB 23 20
25MB 3 2
65MB 24 21
70MB 115 108
75MB 54 49
78MB 56 52

system, the processor have to spend 1000 of cycles in order to handle

it [Computer systems a programmers perspective, Randal E Bryant,

D OHallaron, Pearson]. By reducing the major fault the processor can

be free from such operations and it can perform some useful work in

a multiprocessing environment. Experimental results shown in Table

4.2 is diagramatically given in Figure 4.4.

Table 4.3 gives the details of minor fault occurring inside the sys-

tem when the modified version of the kernel is implemented. Results

show that CaMMEBH is able to reduce the number of minor fault

occurring inside the system. As mentioned earlier even though major

fault is more expensive than minor fault, minor fault will also play its

on roll in the performance of the processor. Thus change in minor fault

will also help to increase the processor performance. The diagramatic

representation of Table 4.3 is given in Figure 4.5.

Table 4.4 and Table 4.5 will give the details about the user time,

system time and elapsed time with respect to the various programs.

The results show that there is no markable change noted in the case

83

4. CAMMEBH FOR PAGE FAULT REDUCTION

Table 4.3: Number of minor faults

File Size Minor Fault (Numbers)
Exsisting Method CaMMEBH

300KB 6998 6960
350KB 2161 2042
912KB 5139 5116
1.43MB 5601 5510

2MB 240 238
15MB 240 238
20MB 239 238
25MB 239 237
65MB 27481 26457
70MB 36586 33724
75MB 35873 34456
78MB 36487 35343

Figure 4.4: Comparison of major faults

84

4.7 Analysis of CaMMEBH with Current System.

Figure 4.5: Comparison of minor fault

Table 4.4: Details about the various time parameters in CaM-
MEBH method

File Size CaMMEBH
USER TIME(Sec.) SYSTEM TIME(Sec.) ELAPSED TIME(Sec.)

300KB 0.22 0.041 0.461
350KB 0.57 0.042 1.172
912KB 0.48 0.042 0.992
1.43MB 0.2 0.041 0.441

2MB 0.57 0.043 1.173
15MB 0.19 0.042 0.422
20MB 0.44 0.042 0.912
25MB 0.36 0.041 0.761
65MB 0.57 0.043 1.183
70MB 1.02 0.041 2.091
75MB 0.48 0.043 1.003
78MB 0.56 0.041 1.161

85

4. CAMMEBH FOR PAGE FAULT REDUCTION

Table 4.5: Details about the various time parameters in existing
method

File Size Exsisting Method
USER TIME(Sec.) SYSTEM TIME(Sec.) ELAPSED TIME(Sec.)

300KB 0.22 0.041 0.461
350KB 0.57 0.042 1.172
912KB 0.48 0.042 0.992
1.43MB 0.2 0.041 0.441

2MB 0.57 0.043 1.173
15MB 0.19 0.042 0.422
20MB 0.44 0.042 0.912
25MB 0.36 0.041 0.761
65MB 0.57 0.043 1.183
70MB 1.02 0.041 2.091
75MB 0.48 0.043 1.003
78MB 0.56 0.041 1.161

of user time and a slight change is noted in the system time. Because
here the work is based on the branch handling which is not able make
any change in the user time. But it has some influence on the system
time. Here elapsed time is mainly influenced by fault rate.

From the above Tables the time taken to execute a program can be
calculated by adding the user time and system time. Elapsed time can
be used to find how long the process is under the waiting condition.
Here waiting can be calculated by subtracting the execution time from
the elapsed time. Table 4.6 gives the details about the execution time
and waiting time for the various processes. One of the reasons for
increase in waiting time is due to the pre-emption condition of the
process. The pre-emption condition can occur due to the presence
of pagefault. Hence by reducing the page fault the waiting time can
be reduced. By implementing CaMMEBH, pagefault rate is reduced
significantly as show in Figure 4.4 and Figure 4.5.

86

4.7 Analysis of CaMMEBH with Current System.

Figure 4.6: Comparison of execution time

Figure 4.7: Comparison of waiting time

87

4. CAMMEBH FOR PAGE FAULT REDUCTION

Table 4.6: Details about the execution time and waiting time
for existing and CaMMEBH

File Size Exsisting Method CaMMEBH
EXECUTION TIME(Sec.) WAITING TIME(Sec.) EXECUTIONTIME(Sec.) WAITING TIME(Sec.)

300KB 0.261 0.2 0.26 0.2
350KB 0.612 0.56 0.603 0.55
912KB 0.522 0.47 0.512 0.46
1.43MB 0.241 0.2 0.241 0.19

2MB 0.613 0.56 0.601 0.55
15MB 0.232 0.19 0.222 0.18
20MB 0.482 0.43 0.478 0.42
25MB 0.401 0.36 0.399 0.34
65MB 0.613 0.57 0.611 0.53
70MB 1.061 1.03 1.05 1.01
75MB 0.523 0.48 0.521 0.45
78MB 0.601 0.56 0.598 0.53

The diagramatic representation of Table 4.6 is given in Figure 4.6
and Figure 4.7. From the figures it is clear that by the introduction
of the CaMMEBH the total waiting time gets reduced for the various
processes.

4.8 Conclusion

By proper handling of the branches in the system the number of
page fault can be reduced. CaMMEBH is concentrated only in the
branching concept. The complete removal of the page fault is not
possible with CaMMEBH because it deals only with the branching
statements. There are a number of prefetching methods available and
none of the methods are completely fault free. Main reason behind this
is the size limit of the memory along with the demand paging concept.
In CaMMEBH the data structures and the kernel functions that deal
with the branch handling are edited to increase the hit ratio in the
cache memory and thereby reduces the page fault. The CaMMEBH
can be extended to prefetch the instructions other than the branch
handling instructions to enhance the efficiency of the system to a large
extend. Performance enhancement is done by relieving the processor
from the fault handling operations.

88

5

Processor Performance

Enhancement using

MBFQV2, LRU-LFU and

CaMMEBH

5.1 Abstract

Processor performance can be measured in terms of how much time

the processor spends on performing useful work. This chapter gives

a consolidated work of discussions in previous chapters. In chapter 2

it is discussed about how MBFQV2 improved the system performance

compared to CFQ. The current system makes use of the LRU page

replacement method which works based on the time stamp. Chapter 3

focuses about a new page replacement method LRU-LFU which makes

use of time and frequency parameter for scheduling process. It also

clearly shows how the system performance is improved using LRU-LFU.

A new method CaMMEBH is introduced in chapter 4 for handling the

89

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

branch instructions. Whenever branch statements come across both

true and false conditions, are handled effectively in CaMMEBH . Due

to this the page fault generated by branch statements are avoided. The

increase in processor performance is obtained by reducing the page fault

and there by reduces the elapsed time

5.2 Introduction

Disk scheduler is the one responsible for transfer of data from sec-

ondary to primary memory. It works based on the principle of round

robin scheduling where a time slice is given to each of the requests

which come to the scheduler list. The accessing is done based on the

queue data structure. Pre-emption process is activated inside the sys-

tem in order to maintain the CFQ concept so that each request gets

a fair allotment. The problem present in CFQ is that the arrival of a

synchronous request may be arbitrarily delayed by a scheduler by just

delaying the dispatching of the preceding request [Paolo Valente, Fabio

Checconi, 2010]. Only because of the delayed invocation the request

may get higher timestamp. Only because of higher time stamp the re-

quest has to wait in the request queue for a longer time period. Instead

of setting the time slot a new concept of bandwidth is introduced in

the BFQ. The size of the file is also considered by the scheduler. But

here also the allotment of slot is kept static and once the budget is

fixed it remains the same for the entire system operation. The B max

is also fixed as the maximum budget value. Due to this the request

with less budget value has to wait for a longer time period. These two

things are taken in consideration and modification is done on the BFQ

method and formed MBFQV2. The result in chapter 2 shows that

MBFQV2 gives a better result compared to BFQ. Hence in the kernel

the disk scheduler is replaced with new MBFQV2 scheduler.

Once the data is made available in the primary memory, the next

level of data movement is from primary to cache memory. Whenever

the data has to make a move to the next level before moving the data

90

5.2 Introduction

the availability of the space or room should be checked. Once the space

is available, only then the movement takes place. If there is no space

available then space should be created by replacing one of the exist-

ing pages called victim page. This is done by the page replacement

scheduler. The working of the scheduler can be done based on various

algorithms. LRU is the most commonly used replacement algorithm in

almost all the operating systems. All the page replacement algorithms

either take the arrival time of the page to the memory or how many

number of times the page is referred by the system inside the memory.

New replacement algorithm is suggested by modifying current LRU al-

gorithm where the time stamp is mixed with the concept of frequency

parameter. By making this modification, both major and minor page-

fault will get reduced and the performance of the system will increase.

In chapter 3 the results show how LRU LFU gives a better performance

than the LRU. Hence in the kernel the page replacement scheduler is

replaced with LRU LFU.

Another reason behind the page fault is the problem caused by the

branch handler. In the existing system the branch handler will give

preference to the true condition only. If the current method is modified

to a new concept CaMMEBH, then equal weightage is given to both

true and false branch conditions. It means an attempt is made to

combine the concept of adaptive prefetching and branch target buffer

prefetching. For this the existing data structure used by the handler

is modified by adding a new field to it and which handles the false

condition also. By this the handler will ensure that the pages which

are required by both true and false conditions should be present in the

cache memory.

91

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

5.3 Processor Performance Enhancement

with Reduced Page Fault

This chapter discusses about the improvement in overall system

performance by reducing the pagefault at different levels. The tech-

nique used for transferring data discussed under Chapter 2 is not only

applicable for secondary memory to primary memory, but it can be

used whenever the data has to be moved from one memory level to an-

other memory level. Similarly, the page replaement method discussed

under Chapter 3 is applicable for replacement of pages in primary

memory and the replacement of cachelines in order to give space for

the incoming new pages or cache blocks respectively. Once the mod-

ifiction is done on any of these methods, it not only reflects in one

memory level but also affects the other levels of memory management

module of the operating system. Hence an enhancement is obtained

not only in one memory level but also in other memory levels also.

As per Amdahl’s Law [Computer Architecture A Quantitative Ap-

proch, 4th edition, John L Hennessy, David A Patterson, Elsevier] the

speedup can be gained by using equation 5.1.

Speedup = performancleade for entire task using the enhancement when possible
performance for entire task without using the enhancement

- 5.1

Alternatively as in equation 5.2

Speedup = Execution time of entire taskwithout using the enhancement
Execution time of entire task using the enhancement when possible

5.2

Speedup tells how fast a task will run using the computer with the

enhancement as opposed to the original computer. In this work the

enhanement is done on various memory levels to reduce the pagefault

rate. The performance of the processor is measured in terms of CPU

time as shown in equation 5.3 and equation 5.4.

CPUtime = CPUclockcyclesforaprogramXclockcycletime 5.3

or

CPUtime = CPU clock cycles for a program
Clock rate

5.4

From this it is clear that the processr performance can be increased

92

5.4 Implementation of Various Phases

by reducing the CPU clock cycles for a program. While handling the

page fault condition the processor has to spend a lot of clock cycles.

In this work a reduction is made in the pagefault which will in turn

reduce the clock cycle used by the processor. As per the equation 5.3,

when the number of clock cycles gets reduced the CPU time also gets

reduced.

5.4 Implementation of Various Phases

Implementation of MBFQV2, LRU-LFU and CaMMEBH are al-

ready discussed in Chapter 2, Chapter 3 and Chapter 4 in detail. The

proposed system can be implemented through step by step procedures

of the above three methods. It includes the installation and compila-

tion of Linux 3.13 with modified program code.

5.4.1 LINUX Kernal

Linux kernel is implemented as a collection of modules. Each mod-

ule is dedicated to perform some specific function. The entire kernel

source code is partitioned into a number of subsections which incorpo-

rates millions of code lines [http://www.linux.org], [http://www.linux

howtos.org/].

Linux kernel supports a number of architectures and the archi-

tecture specific code of kernel is included in the arch module of source

code. Some of the architectures incorporated are alpha, ia64 etc. Mini-

mum 32 bit processor with or without MMU and gcc should be there for

implementation of these architectures [http://www.linuxjournal.com

/1052], [http://www. phoronix.com], [http://www.linuxjournal.com

/7105] . There are architectures which supports both 32 and 64 bit

processors. Various file systems are handled here by dividing the entire

‘fs’ module into subdirectories, one for each file system. The developer

93

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

code includes some files in common which controls the whole file sys-

tem. The file system module deals with the storage and management

of files in storage devices. Ext4 is one among the file systems handled

by Linux operating systems [UNIX concept and applications, 4th edi-

tion, S.Das, TMH], [Understanding Linux kernel source code deeply,

C.Lijun, Posts and Telecom Press, 2002]. It has scalability and relia-

bility supporting large 64bit file systems. Kernel code area is where all

memory management operations are performed in ‘mm’ module. Both

kernel space and user space are taken into considerations while man-

aging memory. The page replacement policies, allocation and deallo-

cation of cache memory regions etc are handled in ‘mm’ module [The

complete reference Linux, 2nd edition, Peterson, TMH], [Advanced

Linux Programming, Y Zong-de, et.al. Post and telecommunications

press, 2008].

5.4.2 Module Creation

Development of Linux kernel is achieved through creation of kernel

modules and loading it on demand. If any module functionality is not

applicable kernel will unload that module. Major advantage of kernel

capability improvement is by inserting new modules. Hence rebuilding

and recompiling of entire kernel is not needed, the newly included mod-

ule is compiled independently and is made as a part of existing kernel

[http://www.tldp.org], [www.kroah.com], [https://www.inso.tuwienac

.at/upload/], [www.makelinux .net/books/lkd2].

Care should be taken while writing code since whatever is in-

cluded in the kernel module will be executed only in available ker-

nel space. Compilation of the new module is done using a special file

called ‘makefile’. Once the creation of makefile is completed use the

make command to compile the new module [https://www.kernel.org],

[https:/en.wikipedia.org], [www. make linux.net].

94

5.5 Performance Analysis

5.4.3 Kernal Compilation

Kernel building involves creation, loading and installing of modules

and these steps are explained with the use of commands make, make

modules and make modules install respectively. Make command is the

one which does building or compiling of program. Loading of module

is achieved by the next command make modules. The installation is

performed by the command make modules install.Table 5.1 shows the

specification of the testing environment.

Table 5.1: Specification of the testing environment

Specification

Processor:Intel i5
4 GB RAM
700 GB IBM-DTLA- 307030 SATA IDE hard drive.
Linux kernel 3.14

5.5 Performance Analysis

Table 5.2and Table 5.3 show the details of change in major and

minor fault after appling the various methods. The work is mainly

concentrated in the improvement of system performance. For that

keep the processor free from fault handling by reducing the major and

minor fault rate.

Table 5.2 shows the details about the major fault in various meth-

ods. Here the various scenarios are taken for observation. In the first

case only the CaMMEBH is considered. Results show that the num-

ber of major faults get decreased compared to existing system. The

reason behind this is that there is no major fault generated inside the

program due to the branching statements. CaMMEBH is not able to

95

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

Table 5.2: Number of major faults occurred in various methods

File Size MAJOR FAULT(Number)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 7 5 5 4 3
350KB 6 4 3 3 2
912KB 3 1 1 1 1
1.43MB 6 5 4 4 4

2MB 9 8 6 5 3
15MB 5 4 4 4 3
20MB 23 20 20 19 16
25MB 3 2 2 2 1
65MB 24 21 21 20 18
70MB 115 108 100 98 95
75MB 54 49 50 50 47
78MB 56 52 51 50 48

reduce any major fault generation other than branching. To handle

the fault generation due to other condition, other methods should be

included along with CaMMEBH. Hence CaMMEBH is combined with

LRU LFU and the results are shown in Table 5.2. Number of major

fault is reduced in all the cases compared to existing system.

CaMMEBH is merged with MBFQV2 and the results are shown in

Table 5.2. in this case also the number of major fault is reducing in all

the cases. The reason behind this may be how fast the pages are made

available in the respective memory levels. If the corresponding page is

not available in the memory it should be taken from the lower memory

level. This depends on how fast the data can be moved from one level

to the other level. Even if the chance of occurrence of the fault is

detected and the page can’t be brought to the main memory then it

leads to the major fault. This condition is handled in this scenario.

Finally CaMMEBH is merged with both LRU LFU and MBFQV2,

the results are shown in Table 5.2. Here also in all the cases the major

fault gets reduced. Fault due to branching, improper page replace-

ment method and delay due to the waiting in the request queue for

transferring the page from secondary to primary are considered. Re-

sults show that there is a drastic change in the major fault number in

certain cases. On an average around 40% of reduction in major fault

is observed when compared with the existing system. But the major

fault can’t be completely removed from the system. The diagramatic

representation of Table 5.2 is given in Figure 5.1

96

5.5 Performance Analysis

Figure 5.1: Comparison of major fault occured in various meth-
ods

97

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

Table 5.3: Number of minor faults occurred in various methods

File Size MINOR FAULT(number)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 6998 6960 6583 6815 6557
350KB 2161 2042 1624 1635 1478
912KB 5139 5116 5110 5205 5104
1.43MB 5601 5510 5837 5680 5456

2MB 240 238 239 237 237
15MB 240 238 239 239 237
20MB 239 238 238 238 236
25MB 239 237 237 237 238
65MB 27481 26457 25783 25233 24346
70MB 36586 33724 33653 33862 33242
75MB 35873 34456 33686 34327 33456
78MB 36487 35343 34586 33726 34543

Table 5.3 gives the details about the minor fault. In this case also

the various methods are considered as in the case of major fault.

Here initially CaMMEBH alone considered. Results show that

the number of minor fault get decreased compared to existing system.

CaMMEBH is not able to reduce any minor fault generation other than

branching. To handle the page fault generation due to other conditions,

other methods should be included along with CaMMEBH. CaMMEBH

is combined with LRU-LFU and the results are shown in the Table 5.3.

Number of minor fault is reduced in all the cases compared to existing

system.

CaMMEBH is merged with MBFQV2, the results are shown in

Table 5.3 compared to the existing system. In this case also the number

of minor fault gets reduced in all the cases. The reason behind this

may be how fast the pages are made available in the respective memory

levels. If the corresponding page is not available in the memory, it

should be taken from the lower memory level. This depends on how

fast the data can be moved from one memory level to the other memory

level. Even if the chance of a fault occurrence is detected and the page

can not be brought to the cache memory it leads to the minor fault.

Such condition is handled in this scenario.

Finally CaMMEBH is merged with both LRU LFU and MBFQV2,

the results are shown in Table 5.3. Here also in all the cases the minor

fault is reduced. Faults due to branching, improper page replacement

98

5.5 Performance Analysis

method and delay due to the waiting in the request queue for transfer-

ring the page from primary to cache are considered. Results show that

there is a large variation in the minor fault number in certain cases.

On an average around 6% of reduction in minor fault is observed when

compared with the existing system. But the minor fault can not be

completely removed from the system. The diagramatic representation

of Table 5.3 is given in Figure 5.2.

In Table 5.4, Table 5.5, Table 5.6, Table 5.7 and Table 5.8 the

details about various time parameters with different file sizes are con-

sidered. The results show that even if the changes is made on the data

transfer method, page replacement method or the branch handler it

does not affect the user time or system time parameters significantly.

By the above methods the fault rate can be reduced along with a re-

duction in wasting time.

Figure 5.2: Comparison of minor fault occured in various meth-
ods with existing one

In Table 5.4 a slight reduction is observed while combining all

99

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

Table 5.4: Comparison of user time in various methods with
existing method

File Size USER TIME(Sec)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 60.22 0.22 0.22 0.22 0.21
350KB 0.57 0.56 0.56 0.55 0.55
912KB 0.48 0.47 0.47 0.47 0.46
1.43MB 0.2 0.2 0.21 0.21 0.2

2MB 0.57 0.56 0.56 0.55 0.55
15MB E0.19 0.18 0.17 0.17 0.17
20MB 0.44 0.44 0.43 0.43 0.43
25MB 0.36 0.36 0.37 0.37 0.35
65MB 0.57 0.57 0.56 0.55 0.55
70MB 1.02 1.02 1.15 1.02 1.02
75MB 0.48 0.48 0.48 0.48 0.46
78MB 0.56 0.56 0.55 0.54 0.54

the methods. The diagramatic representation of Table 5.4 is given in

Figure 5.3.

Figure 5.3: Comparison of user time in various methods with
existing one

Table 5.5 gives the details about the system time. A slight reduc-

tion is visible in the case of combining all the methods. The diagra-

matic representation of the Table 5.5 is given in Figure 5.4.

Table 5.6 gives the details about the elapsed time. The table shows

that elapsed time is reduced in all the cases. From the above Tables

100

5.5 Performance Analysis

Table 5.5: Comparison of system time in various methods with
existing method

File Size SYSTEM TIME(Sec)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 0.041 0.04 0.042 0.041 0.04
350KB 0.042 0.043 0.042 0.04 0.038
912KB 0.042 0.042 0.041 0.042 0.04
1.43MB 0.041 0.041 0.043 0.041 0.037

2MB 0.043 0.041 0.043 0.041 0.04
15MB 0.042 0.042 0.041 0.042 0.041
20MB 0.042 0.038 0.042 0.04 0.039
25MB 0.041 0.039 0.041 0.043 0.038
65MB 0.043 0.041 0.042 0.043 0.041
70MB 0.041 0.03 0.041 0.04 0.036
75MB 0.043 0.041 0.042 0.041 0.04
78MB 0.041 0.038 0.042 0.039 0.039

Figure 5.4: Comparison of system time in various methods with
existing one

101

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

Table 5.6: Comparison of elapsed time in various methods with
existing method

File Size ELAPSED TIME(Sec)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 0.461 0.462 0.482 0.45 0.43
350KB 1.172 1.153 1.192 1.141 0.92
912KB 0.992 0.972 0.991 0.972 0.942
1.43MB 0.441 0.431 0.453 0.423 0.41

2MB 1.173 1.151 1.173 1.121 0.966
15MB 0.422 0.402 0.411 0.401 0.401
20MB 0.912 0.898 0.902 0.898 0.891
25MB 0.761 0.739 0.771 0.737 0.722
65MB 1.183 1.141 1.182 1.139 1.028
70MB 2.091 2.06 2.221 2.06 1.93
75MB 1.003 0.971 1.002 0.969 0.903
78MB 1.161 1.128 1.152 1.126 0.992

Table 5.7: Comparison of execution time in various methods
with existing method

File Size EXECUTION TIME(Sec)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 0.261 0.26 0.262 0.261 0.25
350KB 0.612 0.603 0.602 0.59 0.588
912KB 0.522 0.512 0.511 0.512 0.5
1.43MB 0.241 0.241 0.253 0.251 0.237

2MB 0.613 0.601 0.603 0.591 0.59
15MB 0.232 0.222 0.211 0.212 0.211
20MB 0.482 0.478 0.472 0.47 0.469
25MB 0.401 0.399 0.411 0.413 0.388
65MB 0.613 0.611 0.602 0.593 0.591
70MB 1.061 1.05 1.191 1.06 1.056
75MB 0.523 0.521 0.522 0.521 0.5
78MB 0.601 0.598 0.592 0.579 0.579

it is already seen that user time and system time are not affected

significantly by these methods. But the change in elapsed time shows

that the waiting time is decreased inside the system for the various

processes.

From Table 5.4 and Table 5.5 the execution time of a program

can be obtained by adding the user time and system time. The details

about execution time are given in Table 5.7. It shows a slight reduction

in execution time using various methods.

Table 5.8 is obtained from the Table 5.6 and Table 5.7. Here

waiting time is calculated by subtracting the execution time from the

elapsed time.

As shown in Table 5.8, in all the cases waiting time is reduced and

102

5.5 Performance Analysis

Figure 5.5: Comparison of elapsed time in various methods with
existing method

Figure 5.6: Comparison of excecution time in various methods
with existing method

103

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

Table 5.8: Comparison of waiting time in various methods with
existing method

File Size WAITING TIME (Sec)
EXISTING CaMMEBH CaMMEBH+LRU-LFU CaMMEBH +MBFQV2 CaMMEBH+LRU-LFU+MBFQV2P

300KB 0.2 0.2 0.22 0.189 0.18
350KB 0.56 0.55 0.59 0.551 0.332
912KB 0.47 0.46 0.48 0.46 0.442
1.43MB 0.2 0.19 0.2 0.172 0.173

2MB 0.56 0.55 0.57 0.53 0.376
15MB 0.19 0.18 0.2 0.189 0.19
20MB 0.43 0.42 0.43 0.428 0.422
25MB 0.36 0.34 0.36 0.324 0.334
65MB 0.57 0.53 0.58 0.546 0.437
70MB 1.03 1.01 1.03 1 0.874
75MB 0.48 0.45 0.48 0.448 0.403
78MB 0.56 0.53 0.56 0.547 0.413

Figure 5.7: Comparison of waiting time in various methods with
existing method

104

5.6 Conclusion

there by the system performance is increased. The reduction in waiting
time is on an average around 16% of the existing system. Diagramatic
representation of Table 5.8 is shown in Figure 5.7.

Even if all the operating systems are designed with multi-threading
capability the compilers are not able to utilise this feature approappri-
taly. The execution will be done in sequential order only. This is the
reason why there is no change in the user time or in the system time
parameters. To increase the execution speed the facility of multithread
should be utilized in a proper way. Chapter 6 deals with this feature.

5.6 Conclusion

This chapter actually deals with the merging of the various meth-
ods discussed in Chapter 2, Chapter 3 and Chapter 4. The results show
that by incorporating these various methods in the different Linux ver-
sions, number of major and minor faults can be reduced. If the fault
rate is reduced the performance of the system gets increased by freeing
the processor for fault handing conditions. It also shows that CaM-
MEBH along with LRU LFU and MBFQV2 methods a reduction in
page fault rate and waiting time is noticed. Hence an improvement in
over all system performance is obtained.

105

5. PROCESSOR PERFORMANCE ENHANCEMENT
USING MBFQV2, LRU-LFU AND CAMMEBH

106

6

Parallel Execution of

Multiple Threads

6.1 Abstract

Nowaday the processors are multicores such as dual-core, quad-

core and octa-core processors. To get maximum utility of these cores,

parallel programs should be used. Currently existing applications are

sequential in nature and when run on multiple cores, utilizes only

one core. To increase the performance of application program, par-

allelization is an important technique to make efficient use of all the

cores. Manual parallelization requires huge effort, in terms of time

and money and hence there is a need for automatic code paralleliza-

tion. This chapter introduces Automated Code Parallelizer using Open

Multi-Processing(OpenMP), which automates the insertion of compiler

directives to facilitate parallel processing on shared memory machines

with multiple cores. It converts an input sequential program into a

multi-threaded program for multi-core shared memory architectures.

This work focuses on loops and speculatively parallelizes the different

iterations of a loop while taking care of data dependency between the

107

6. PARALLEL EXECUTION OF MULTIPLE THREADS

different iterations. While executing the various iterations the window

size is varied and found the optimal window size.

6.2 Introduction

The availability of multi-core architectures [V.Vidya, Priti Ranadive,

SudhakarSah, 2010] allow users not only to run several applications at

the same time, but also to run parallel code. However, the manual de-

velopment of parallel versions of existent sequential applications is an

extremely difficult task because it needs (a) an in-depth knowledge of

the problem to be solved (b) understanding of the underlying architec-

ture and (c) knowledge of the parallel programming model to be used

[Gao L, et al., 2013]. Many parallel languages and parallel extensions

to sequential languages have been proposed to exploit the capabilities

of modern multi-core systems. The most successful proposal in the

domain of shared memory system is OpenMP, a directive-based par-

allel extension to sequential languages such as FORTRAN, C or C++

that allows the parallelization of user-defined code regions. OpenMP

does not ensure correct execution of the code according to sequential

semantics, making the programmer responsible for such tasks. Possible

dependence violations that may occur between iterations during exe-

cution need to be addressed by the programmer [M.Gonzalez, J.Oliver,

et al., 2001].

On the other hand, automatic parallelization offered by compilers

only extract parallelism from loops when the compiler can assure that

there is no risk of a dependence violation at runtime [Jose Rodr’igez-

Rosa, Jose Oliver, et al., 2001], [P.P.Athavale, et.al. 2012]. Only a

small fraction of loops falls into this category, leaving many potentially

parallel loops unexploited [V.G.Vaidya and S Sah, 2012], [V.G.Vaidya

and S Sah, 2014],[M.Chandi, I Foster and K.Kenney, 1994].

Thread-Level Speculation (TLS) [Shengyue Wang, Xiaoru Dai, et

al. 2005] technique allow the extraction of parallelism from fragments

108

6.2 Introduction

of code that cannot be analyzed at compile time, namely, the com-

piler cannot ensure that the loop can be safely run in parallel. To

ensure that the code can be run in parallel, the programmer should

be able to classify all variables present in the code into two groups

as private variables and read-only shared variables. Private variables

are always written outside the loop and read-only shared variables

are only readable and can not be written anything in to the vari-

able during the iteration. Hence if all variables in a loop are ei-

ther private or read-only shared, then the loop can be safely paral-

lelized. If a single variable is found that does not fit in these two

categories, then it is identified that the loop is not parallelizable at

compile time itself. Under these situations, the loop can be executed

in parallel by software-based speculative parallelization. In specula-

tive execution, the loops are executed as if the iterations are indepen-

dent even if there are dependencies. TLS can deal with these situa-

tions in which dependence violations may occur, leading the parallel

loop to correctly analyse its execution [http://software.Intel.com/en-

us/articles/automatic-parallelization-with-intel-compilers/]. The main

problem with this technique is that the code needs to be manually

augmented in order to handle speculative execution and monitor the

possible dependences. Programmers have to specify the variables that

may lead to a dependence violation, as speculative variables.

OpenMP allows the user to mark variables as speculative, that en-

ables the automatic transformation of the code to support its execution

by TLS runtime library during compile time. The transformations pro-

posed in OpenMP are transparent to programmers, who do not need

to know anything about the TLS parallel model. Programmers only

have to classify variables depending on their accesses, letting the sys-

tem perform all the changes needed in the source code. To do so, a new

OpenMP clause ‘speculative’ is used to handle dependency violation.

A new clause for speculative is added in to OpenMP framework

implementation. This pass transforms the loop with the corresponding

OpenMP parallel directive, inserting the runtime TLS calls needed to

109

6. PARALLEL EXECUTION OF MULTIPLE THREADS

(a) distribute blocks of iterations among processors (b) perform specu-

lative loads and stores of speculative variables and (c) perform partial

commits of the correct results generated so far. The TLS runtime li-

brary used is based on the same design principles as the speculative

parallelization library [Cintra M, Llanos D.R, 2003].

6.3 Current Speculative Technique

Multi-core technologies have increased the performance of com-

puting systems during the last decade [V.Vadiya, S. Sah, P.Ranadive,

2010]. However, unlike previous advances in computer architecture, ex-

istent code cannot immediately take advantage of these architectural

improvements. To fully exploit multi-core capabilities programmers

should have an in-depth knowledge of both the application and the

underlying computer architecture [P.Marcuello, 2003], [C.Zilles and G

Sohi, 2001].

Due to the huge number of sequential programs already written for

many decades a new technique that automatically parallelizes them is

quite desirable. However, automatic parallelization techniques cur-

rently implemented in many commercial compilers are not able to par-

allelize most of the loops because of data dependencies.

OpenMP is a shared-memory Application Programming Interface

(API) whose features are based on prior efforts to facilitate shared-

memory parallel programming [www.openmp.org]. The appropriate

insertion of OpenMP features into a sequential program will allow

different applications to benefit from shared-memory parallel archi-

tecture. In practice, many applications have considerable parallelism

that can be exploited. However, OpenMP fails to parallelize execution

when there are data dependencies within the loops. Such loops require

speculative execution.

110

6.4 Thread-Level Speculation

Existing speculative techniques require manual intervention of ex-

pert programmers. These programmers firstly need to extract cer-

tain information about the source code that they want to parallelize.

Without automatic tools programmers have to manually extract the

information, such as variable usages within each loop or I/O functions

that complicate or even preclude the parallelization. They should also

determine whether it is worth parallelizing a loop or if the thread-

management overheads would be larger than the benefit of paralleliz-

ing. This information extraction is the first step to speculatively par-

allelize a source code. The second step is to add all the functions

and structures needed to handle the speculative execution. However,

manual parallelization task is usually tedious and mistakes are easily

committed [J Subholle, et al., PPOPP’93].

6.4 Thread-Level Speculation

Thread-Level Speculation aims to automatically extract loop and

task-level parallelism when a compile-time dependency analysis cannot

guarantee that a given sequential code is safely parallelizable. TLS op-

timistically assumes that the code can be executed in parallel, relying

on a runtime monitor to ensure that no dependence violations are pro-

duced. A dependency violation appears when a given thread generates

a data that has already been consumed by a successor in the original

sequential order. In this case, the results generated so far by the succes-

sor (called the offending thread) are not valid and should be discarded.

The original code is augmented with function calls that distribute iter-

ations among processors and monitor the use of all the variables that

may lead to a dependency violation. The commits to store the results

obtained by successful iterations should be in order. If a dependency

violation appears at runtime, the library functions stop the offending

threads and restart them in order to use the updated values and thus

preserve the sequential semantics.

111

6. PARALLEL EXECUTION OF MULTIPLE THREADS

Unfortunately, most loops have variables whose values might be

written in a particular iteration and later be read in a subsequent iter-

ation. Sequential semantics impose a total order for both operations,

and if these two operations are done out-of-order by different threads

a dependency violation occurs. The results generated by such threads

that consume the outdated value of such speculative variables should

be discarded with all the results generated by its successors [Aldea S,

Llanos D.R, Gonzlez-Escribano, 2012]. This is called a squash opera-

tion.

At compile time TLS requires that the original code be augmented

to perform speculative loads, speculative stores and in-order commits.

In addition, it also requires that the loop structure be rearranged in

order to follow the re-execution of squashed operations. The plug in

automatically performs all these changes required by the TLS runtime

library. The speculative clause triggers significant changes into the

code. Read and write operations to speculative variables are replaced

at compile time with function calls of ‘loading’ and ‘storing’ that han-

dle these operations. Read operations are changed for function calls

that obtain the most up-to-date value of the element being accessed.

Write operations are changed for function calls that write the data

in the version copy of the current processor. It also ensures that no

thread executing a subsequent iteration has already consumed an out-

dated value for this structure element called dependency violation. If

such a violation is detected, the offending thread and its successors are

stopped and restarted. The loop annotated with the speculative clause

is transformed into a loop with as many iterations as available threads.

At the beginning of the loop body, a scheduling method assigns the

block of iterations to be executed to the current thread. Once a thread

has finished the execution of the assigned chunk of iterations, a function

is called in order to verify the correct execution of iterations carried

out. If the execution was successful the version copy of the data is

committed to the main copy otherwise version data is discarded. Pro-

grammers just need to use the proposed OpenMP speculative clause

to point out which variables may lead to a dependency violation.

112

6.5 OpenMP Speculative Clause

6.5 OpenMP Speculative Clause

There are two different ways to handle the OpenMP for speculative

parallelization. First way is by the addition of a new directive, for ex-

ample pragma omp speculative. However, this option is more difficult

to implement because there are many OpenMP related components

that should be modified. It is preferable to use the second approach,

which is a proposal of a new clause for the OpenMP, pragma omp

speculative parallel loop, construct. This new clause would enable the

programmer to enumerate which variables should be updated specu-

latively. The definition of ‘pragma omp speculative’ clause point out

conflictive variables that may lead to a dependency violation is rather

useful. Because this clause is the first step to transform the code au-

tomatically and handle the dependencies easily.

Taking this into consideration, a new clause is proposed for Open

MP to provide support for speculative parallelization of ‘for’ loops.

The target of TLS systems considered are ‘for’ loops. Other loops can

be considered as well, but as long as their number of iterations cannot

be so easily predicted, the applicability of TLS solutions is limited in

these cases.

The new OpenMP clause is called speculative, and it needs to be

used as the clause of a parallel directive. This new clause is shown

in Figure 6.1, where ‘list’ contains variables that may lead to any de-

pendency violation. The parser identifies OpenMP directives and

Figure 6.1: OpenMP speculative clause for ’for-loop’

clauses, and emits the corresponding unified tree form, called generic

representation. Initially, the generic representation of the new clause

is created like other standard clauses. Then, the compiler is prepared

to recognize and parse the clause as part of the parallel loop construct.

113

6. PARALLEL EXECUTION OF MULTIPLE THREADS

When the new clause has been parsed the plug in detects the clause

and starts all the transformations needed on the code.

Programmers write OpenMP [Milovanovi M, Ferrer R, Unsal, et

al., 2008] programs as usual, but now with the capability of annotating

as speculative those variables that could lead to a dependency viola-

tion. With this method, programmers need not bother about handling

these violations. Now the speculative runtime system is responsible for

such task [Dang F.H, Yu H., Rauchwerger, 2002], [Xekalakis P, Ioan-

nou N, Cintra, 2009]. Once a programmer annotates each variable to

its type, a compiler plugs in augments the code to integrate the TLS

runtime library.

From the point of view of a programmer, the structure of a loop

being speculatively parallelized due to the proposed clause is not so dif-

ferent from a loop parallelized with regular OpenMP directives. Cur-

rent OpenMP parallel constructs force the programmer to explicitly

declare the variables used in the parallel region according to their role.

This can be an extremely hard and error-prone task if the loop has

more than a few dozen lines. It is possible that, if the programmer is

unsure about the use of a certain variable or structure, then simply

label them as speculative.

Figure 6.2: Example of for loop with speculative clause

114

6.5 OpenMP Speculative Clause

Figure 6.2 shows an example of the use of the proposed clause.

Variable ‘i’ is private, since it is the variable that controls the itera-

tions of the ‘for’ loop. Variables ‘x’ and ‘temp’ are private because they

are always written before being read in the context of iteration. And

finally, variable ‘a’ is speculative because accesses to this variable can

lead to dependency violations. During parallel execution a particular

iteration may read from a non-updated value leading to incorrect exe-

cution. A speculative management of ‘a’ allows the parallel execution

of this loop properly.

However, the use of the new clause forces the compiler plug in

to perform several changes into the source code. The clause points

out those variables which may lead to a dependency violation [Gao

L, Li, 2013]. The compiler has to rewrite part of the loop in order

to handle possible violations by ensuring the correct parallelization of

the loop. Under speculative execution each thread maintains a version

copy of the data structure that is accessed speculatively. At compile

time, the original code is augmented to perform speculative stores,

speculative loads and in-order commits. In addition, the loop structure

is rearranged in order to allow the re-execution of squashed iterations.

6.5.1 Speculative Stores

At compile time, all write operations to the data structure being

speculatively accessed should be replaced with calls to a speculative

store function. This function writes the datum in the version copy of

the current thread, and ensures that no thread executing a subsequent

iteration has already consumed an outdated value for this structure

element. If such a violation is detected, the offending thread and its

successors are stopped and restarted.

115

6. PARALLEL EXECUTION OF MULTIPLE THREADS

6.5.2 Speculative Loads

At compile time, all reads to the speculative data structure should

be replaced with calls to a function that performs a speculative load.

This function obtains the most up-to-date value of the element being

accessed. This operation is called forwarding. If a predecessor has

already defined or used that element then that value is forwarded. If

not, the function obtains the value from the reference copy of the data

structure.

6.5.3 Commit Operation

If no dependency violation arises during the execution of a given

thread, its changes to the speculative data structure should be com-

mitted to the reference copy of the data structure. Note that commits

should be done in order to ensure that the most up-to-date values are

stored. After performing the commit operation, a thread can receive

a new iteration or block of iterations to continue the parallel work.

6.5.4 Scheduling Iterations under TLS

Finally, the original loop to be speculatively parallelized should be

augmented with a scheduling method that assigns to each free thread

the following chunk of iterations to be executed. If a thread has suc-

cessfully finished a chunk then it will receive a brand new chunk not

yet executed. Otherwise, the scheduling method may assign the same

chunk whose execution had failed to the thread to improve locality and

cache reutilization.

116

6.6 Speculative Engine

6.6 Speculative Engine

Software speculative schemes should allocate some additional mem-

ory in order to hold the information related to speculative executions.

The use of this data is mandatory to enable recovery operations that

could arise in an optimistic execution. In this context, memory needed

could be allocated dynamically or statically and the use of an approach

instead of the other is a critical decision that directly influences the

overall memory used in a program.

6.6.1 Data Structures

The data structures needed by the speculative library are shown in

Figure 6.3 [Aldea, Sergio, Alvaro Estebanez, Diego R. Llanos, Arturo

Gonzalez-Escribano, 2014]. A matrix W having four window slots as

shown in Figure 6.3 implements a sliding window that manages the

runtime of the library. Each slot has the responsibility of manage-

ment of speculative execution of a particular set of iterations. The

slots assigned to the non-speculative and the most-speculative threads

are indicated by two variables, non-spec and most-spec. Each slot is

composed of two fields, STATE with the state of the execution being

carried out and a pointer to maintain the position of the speculative

variables used during the execution.

An example of the execution of a loop is also shown in Figure

6.3. The loop has been divided into three chunks of iterations, and it

will be executed in parallel using three threads. It is very important

to understand that there is no fixed association between threads and

slots. A thread is assigned with a new chunk of iterations and a slot

performs the operation [Estebanez A, Llanos D.R, Gonzalez-Escribano,

2014]. An order should be maintained among the threads and chunks

being executed.

117

6. PARALLEL EXECUTION OF MULTIPLE THREADS

 Non-spec window slot Most-spec window slot

 Sliding window

 Pointer to version copy

 Slot 1 Slot 2 Slot 3 Slot 4

&a 1 &a1 EXPLD

&b 4 &b1 MOD

Version copy data structures

Running Done Running Free

&b 4 &b3 MOD

&a 1 &a3 EXPLD

&c 8 &c2 ELUP

&b 4 &b2 EXPLD

&a 1 &a2 MOD

User - labeled
speculative variables

char a float b

double c

9 23.4

32.88

1 3

Pointer

to ref.

copy

Date

size

Pointer

to local

version

Version

state Pointer

to ref.

copy

Date

size

Pointer

to local

version

Version

state

Pointer

to ref.

copy

Data

size

Pointer

to local

version

Version

state

a1

9

b1

18.9
97

b2

18.997

c2

128.215

a2

7

a3

7

b3

25.8

STATE

Figure 6.3: Data structures of speculative library

Thread working under slot 1 is executing the non-speculative chunk

of iterations as indicated by its RUNNING state in Figure 6.3. The

next chunk has been already executed and its data has been left these

to commit after the non-spec chunk finishes as indicated by DONE

state. While the last one, the most-speculative chunk launched is also

in RUNNING state. In other words, the thread in charge of the second

chunk has already finished, while the non-spec and most-spec threads

are working. If more chunks were pending then the free thread would

be assigned with the following chunk by starting its execution in slot 4.

Slot 2 cannot be re-used yet, because commit operation of speculative

variables after the execution of chunk 2 are yet to be completed. When

the non-speculative thread working in slot1 finishes, it will commit its

results and then the results stored in all subsequent DONE slots, can

also be committed in order.

In addition to its STATE, each slot points to a data structure

that holds the version copies of the data being speculatively accessed.

Figure 6.3 represents a loop with three speculative variables. At a

118

6.7 Partial Commit Operation

given moment, the thread executing the non-speculative chunk has

speculatively accessed variables ‘a’ and ‘b’. Each row of the version

copy data structure keeps the information needed to manage access

to each speculative variable. The first column indicates the address

of the original variable, known as the reference copy. The second one

indicates the data size. The third one indicates the address of the

local copy of this variable associated to the window slot. Finally, the

fourth column indicates the state associated to this local copy. Once

accessed by a thread, the version copies of the speculative data can be

in three different states: Exposed Loaded, indicated as ’EXPLD’ shows

that the thread has forwarded its value from a predecessor or from the

main copy. The state Modified indicated as ’MOD’ shows that the

thread has written new values in to the variable. The state Exposed

Loaded and Updated indicated as ’ELUP’ states that the thread has

first forwarded the value to the variable and has later modified it.

Figure 6.3 represents a situation where the thread working in slot1

has performed a speculative load from variable ‘a’ and a speculative

store to variable ‘b’. Regarding ‘a’, the figure shows that the thread

working in slot 2 modified and forwarded its value to slot 3. With

respect to variable ‘b’, the information in the Figure 6.3 shows that ‘b’

has been overwritten by threads working in both slots 1 and slot 3.

6.7 Partial Commit Operation

The partial commit operation is exclusively carried out by the non-

speculative thread. Every time a thread should check if its data have

to be committed or discarded. It first checks whether the data has

to be squashed and if it is a non-speculative thread [Aldea, Sergio,

Alvaro Estebanez, et al. 2014]. If the thread is speculative, the state

of corresponding slot is left committed by the non-spec window.

In Figure 6.3 if the non-spec thread working in slot 1 is completed

then the state of the variable in the data structure should be scanned to

119

6. PARALLEL EXECUTION OF MULTIPLE THREADS

verify whether it is ELUP or MOD state. In our example, ‘b’ has been
modified in slot 1 version copy as ‘b1’ and hence ‘b’ in shared memory
should be updated with ‘b1’. After committing the version copy data
structure associated with slot 1, change the slot 1 state to ‘Free’ and
advances the non-spec window to slot 2. As long as slot 2 is marked
as ‘Done’, its data should be committed as well. In our example,
data stored in ‘c2’ and ‘a2’ should be committed to the user-defined
variables ‘a’ and ‘c’. After this, the state of slot 2 is also changed
to ’Free’ and the non-spec pointer is advanced. Thread working in
slot 3 is still running and when it finishes data ‘i’, ‘b3’ is copied to
user defined variable ‘b’. All these commit operations are carried out
with the help of auxiliary data structures that store list of elements in
‘ELUP’ or ‘MOD’ states only. Because of this unnecessarily traversing
through local copy can be avoided.

It is interesting to note that each thread writes data in its local
data structure version copy only and hence no critical sections are
required to protect them. It is important to see that thread in the
preceding slot should be completed before advancing to the next slot.

6.8 Loop Transformation for Speculative

Execution

Figure 6.4 briefly shows the transformation of a parallel for-loop
using speculative engine. This transformation is automatically carried
out by the compiler plug-in. The changes are briefly described below:

Lines 2-3: Define the additional internal variables

Line 4: omp get num threads() function is called to obtain the
number of available threads.

Line 5: A specbegin() function is called to initialize the execution
of the following parallel loop. If it is the first loop being parallelized,

120

6.8 Loop Transformation for Speculative Execution

Figure 6.4: Loop Transformation (a) Original code (b) Trans-
formed code using speculative engine

this function also initializes the runtime speculative library.

Line 6: All variables labelled as speculative are automatically

reclassified as shared. Besides this change Partial Commit Operation,

all reads and stores inside the loop body on that speculative variables

are replaced with calls to specload() and specstore() functions, in order

to keep sequential consistency as described.

Line 7: The original loop structure is replaced with a parallel

‘for’ loop with just ‘threads’ iterations. This launches the number of

desired threads.

Line 8: A while (true) loop ensures that each thread repeatedly

requires a chunk of iterations from the original loop to be processed.

If no chunks are left, a break statement is used to exit from then loop

and end of thread is reached (line 14).

Line 9: Inside the loop, each thread receives the index of the

first iteration of its assigned chunk and proceeds with the original loop

121

6. PARALLEL EXECUTION OF MULTIPLE THREADS

body.

Lines 10-12: The read of ‘b’ variable is replaced with a call to the

specload() function, that recovers the mo3st up-to-date value for this

variable. The value is stored in a private ‘temp’ location. Line 10 of

Figure 6.4(a) performs a write on ‘a’. This write is replaced with a call

to specstore() , that first stores the value in a local version copy and

then checks whether a successor has already consumed an outdated

value of ‘a’. If so, the offending thread and all of its successors are

squashed.

It is important to highlight that only the lines of the original loop

body that involve speculative variables are changed in this way and

the remaining code is left unchanged.

Line 13: Once the original loop body is completed, a call to com-

mit or discard data() checks whether the thread has been squashed

or not. If a squash operation is issued by a predecessor, local copies of

speculative data will be discarded. If the thread has not been squashed

and if it is a non-spec one then a partial commit will occur.

Line 14: After completing their tasks related to the current chunk,

all the threads check whether there are any pending chunks to be

executed. If there is no pending chunk then threads leave the while

loop.

When all threads have exited the while (true) loop, the end of

the parallel section has been reached. Hence all chunks of iterations

are successfully executed and their results have been committed to the

speculative variables.

122

6.9 Implementation and Analysis of Result

6.9 Implementation and Analysis of Re-

sult

The experiments were done to study the performance improve-
ment gained by the system on using speculative parallelization. Test
programs were executed on various environments and the execution
times were analyzed.Table 6.1 shows the specification of the testing
environment.

Table 6.1: Specification of the testing environment

Specification

Processor:4xIntel(R) core (TM)i5-2450M CPU@2.50GHz
Memory: 4GB of DDR3
700 GB IBM-DTLA- 307030 SATA IDE hard drive.
Operating system: OS Luna
GCC Version:4.6.2

All the flags are completely removed during compile time to get
error free code optimization so that the correct analysis of performance
can be obtained [GNU Project: GCC internals (2013)], [http://gcc.gnu.
org/ onlinedocs/ gccint/], [IBM: Thread-level speculative execution for
C/ C++. IBM XL C/C++ for Blue Gene, 2012]. For that use the
following commands.
$COMPILER -fplugin=$PLUGIN $PARAM $FLAGS -o $EXEC $
SOURCES $PLUGINDIR/speccode.o $PLUGINDIR/auxiliar func-
tions.o
In addition to this make some changes in the system specific flags as
follows:
COMPILERDIR=/usr/gcc-4.6.2/bin
COMPILER=$COMPILERDIR/gcc-4.6.2
specprag/Makefile
CFLAGS2 = -fopenmp $(THREADS FLAG) $(ITER FLAG) $(POIN
TER FLAG) $(BLOCK FLAG)

123

6. PARALLEL EXECUTION OF MULTIPLE THREADS

Table 6.2: Execution time of program 1 with two different win-
dow size, different number of cores and threads

Number of Cores 1 2 4
Threads window size n+1 window size 2n window size n +1 window size 2n window size n+1 window size 2n

1 5.22 5.21 5.22 5.22 5.24 5.35
2 5.79 8.56 5.76 5.86 5.71 5.84
4 10.54 9.31 10.23 7.44 3.11 3.06
8 13.82 12 13.6 7.1 5.97 4.95

Table 6.3: Execution time of program 2 with two different win-
dow size , different number of cores and threads

Number of Cores 1 2 4
Threads window size n+1 window size 2n window size n +1 window size 2n window size n+1 window size 2n

1 6.5 6.51 6.5 6.52 6.5 6.56
2 5.95 9.77 6 6.4 5.86 5.89
4 10.87 10.69 10.47 7.8 3.18 3.14
8 13.81 12.51 13.76 7.29 5.94 5.19

Modified GCC variable to a more generic value to facilitate execution:

GCC=/usr/gcc-4.6.2/bin/gcc-4.6.2 1specprag/user parameters.h

As specified earlier the window size will determine the number of

slots available for the threads. When the window size is changed, it

is observed that the optimal result is achieved while doubling the size

of threads. The test results are shown with two conditions. In first

condition the window is equal to thread plus1 [Aldea, Sergio, et al.,

2014] and in second condition the window size is double the number of

threads.

The experiments were conducted on single core, dual core and quad

core environments with one, two, four and eight threads per execution.

Table 6.2 to Table 6.6 show the execution time for different programs

under various environments.

Table 6.4: Execution time of program 3 with two different win-
dow size, different number of cores and threads

Number of Cores 1 2 4
Threads window size n+1 window size 2n window size n +1 window size 2n window size n+1 window size 2n

1 5.87 5.24 5.07 5.1 5.08 5.13
2 6 8.17 5.94 6 6 5.95
4 10.66 9.28 10.74 7.59 3.62 3.14
8 13.78 11.62 13.65 7.26 6.12 5.16

124

6.9 Implementation and Analysis of Result

Table 6.5: Execution time of program 4 with two different win-
dow size, different number of cores and threads

Number of Cores 1 2 4
Threads window size n+1 window size 2n window size n +1 window size 2n window size n+1 window size 2n

1 10.54 10.85 10.54 10.59 10.53 10.63
2 6.6 13.71 6.39 6.26 6.3 6.12
4 10.93 13 11.04 7.87 4.16 3.88
8 14.56 14.63 14.3 7.32 7.26 5.45

Table 6.6: Execution time of program 5 with two different win-
dow size, different number of cores and threads

Number of Cores 1 2 4
Threads window size n+1 window size 2n window size n +1 window size 2n window size n+1 window size 2n

1 15.18 15.2 15.17 15.25 15.14 15.31
2 14.11 19.6 14.03 13.96 13.83 13.78
4 22.25 18.75 22.11 13.96 7.69 7.67
8 23 18.78 22.91 13.79 12.95 8.05

Analysis of the Tables show that if the number of threads is equal

to one and even if the execution is done on a single core, dual core

or quad core processor the variation in execution time is negligible.

Hence if a single thread is executing it means that the execution is

done in sequential order only and hence no significance for multiple

cores. All the programs get minimum execution time when the number

of cores and number of threads are increased. It is also observed that

the maximum performance is obtained when the number of cores is

equal to the number of threads. From the above Tables it is seen

that maximum performance were obtained when the number of threads

is equal to 4 and the number of cores is equal to 4 which gives the

maximum performance. Even if the number of threads is changed to

8 the execution time is not decreased because the maximum number

of cores is 4 only. It shows that increasing the number of cores alone

does not improve the system performance. A better utilization of the

cores is required, that is parallel usage of the cores.

In the first condition the window size is limited to one more than

the number of threads. It was found that a higher performance is

achieved if the window size is doubled as shown in Figure 6.5, Figure

6.6, Figure 6.7, Figure 6.8 and Figure 6.9. Modern multiprocessing

systems have the mechanism to handle higher levels of speculation

due to the availability of multiple cores. The number of window size

125

6. PARALLEL EXECUTION OF MULTIPLE THREADS

was fixed as double the threads through trial and error and extensive

experimentation.

It is clear from the figures that speculative multi-threaded execu-

tion significantly improves the performance of the system. It can also

be seen that the performance of multi-core systems are at their best

when the number of threads is equal to the number of processing cores.

In dual core and quad core systems, two and four threaded executions

respectively take the least time for completion.

The improvement is highly evident for four threads. There is al-

ways a speculative overhead associated with parallel speculative exe-

cution. At times, the overhead overrules the improvement gained by

parallelization. This is the reason why two-threaded executions are

sometimes slower than single threaded execution in dual core systems,

as seen in Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8 and Figure

6.9. It can also be seen from the same diagram that as the number

of threads increases, the performance improvement due to speculative

parallelization dominates over the delays caused by speculative over-

head and thus completes the execution faster.

The performance improvement with the increase in the number of

threads is not linear. It can be seen from Table 6.2, Table 6.3, Table 6.4,

Table 6.5 and Table 6.6 that increase in the number of threads doesnt

reflect too much on the performance. Performance improvement is

higher when the tasks are CPU bounded. For other tasks like I/O

bounded the performance improvement will be minimal.

It is clear from Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8 and

Figure 6.9 that the execution speed increases in a non linear fashion as

the program size increases. This is due to the increase in the number

of loops with the increase in the file size. It is also observed that the

execution speed is the best when the number of cores is equal to the

number of threads.

The performance improves as the number of threads increases,

until the number of threads equals the number of cores. If the number

126

6.9 Implementation and Analysis of Result

of threads is further increased, the performance gradually decreases.
This is because when the number of threads is made higher than the
number of processing cores, then multiple threads are sharing the same
core. As a result, there occurs some context switching between threads
which, cost time.

Figure 6.5: Execution time of program 1 having window size
n+1 and 2n with different number of threads and cores.

127

6. PARALLEL EXECUTION OF MULTIPLE THREADS

Figure 6.6: Execution time of program 2 having window size
n+1 and 2n with different number of threads and cores.

Figure 6.7: Execution time of program 3 having window size
n+1 and 2n with different number of threads and cores.

128

6.9 Implementation and Analysis of Result

Figure 6.8: Execution time of program 4 having window size
n+1 and 2n with different number of threads and cores.

Figure 6.9: Execution time of program 5 having window size
n+1 and 2n with different number of threads and cores.

129

6. PARALLEL EXECUTION OF MULTIPLE THREADS

6.10 Conclusion

GCC Compiler for Thread-Level Speculation Using OpenMP is a
compile time system that automatically adds the code needed to han-
dle speculatively parallel execution of a loop. It uses a new OpenMP
clause to find those variables that may lead to a dependency viola-
tion. The plug in mechanism provided by GCC is used to support
the new OpenMP clause. By this method, programmers can point out
the speculative variables and need not know anything about the spec-
ulative parallelization model. For the generation of the parallel code
the programmer has to add only one line, instead of the significant
number of lines required by the manual parallelization. The system
performance will also depend on the relationship between the number
of threads and window size. The experiment results show that maxi-
mum performance is obtained when the window size is set as double the
number of threads and the number of threads is equal to the number
of cores.

130

7

Summary of Results,

Conclusions and Future

Works

7.1 Abstract

The summary of the results on the study of different disk schedul-

ing algorithms, various page replacement methods, branch handling

techniques and the conversion of sequential program to parallel pro-

gram are presented in this chapter. Also the performance evaluations

of novel algorithms BFQ, MBFQV1 and MBFQV2 for achieving bet-

ter data transferring speed between various memory levels are sum-

marized. Evaluation of various page replacement methods along with

the new LRU-LFU, MRU-LFU, LRU-MFU, MRU-MFU are done to

reduce page fault rate. New CaMMEBH algorithm was suggested for

branch handling during the perfetching process. All these algorithms

are compared with the current algorithms and alternate usages of the

new algorithms are suggested. Usage of multicore processor in sequen-

131

7. SUMMARY OF RESULTS, CONCLUSIONS AND
FUTURE WORKS

tial execution environment, and inefficient usage of recourses are also

discussed. For better utilization of the recourses, the method to convert

a sequential program to a parallel program is also suggested.

7.2 MBFQV2

When the disk receives multiple synchronous requests for the ac-

cessing of data, these requests are handled in such a way that it gives

maximum throughput. To achieve this instead of CFQ, BFQ and mod-

ified versions of BFQ are used. Implementation of BFQ gives a better

result while comparing with the current technique CFQ. Some of the

draw backs of BFQ are identified which leads to the modified versions

MBFQV1 and MBFQV2. It is found that MBFQV1 gives a better

performance when compared with the BFQ. MBFQV2 the new disk

scheduler combined with proper back-shifting of request timestamps

may allow a timestamp based disk scheduler to preserve both guar-

antees and a high throughput. In MBFQV2 it is observed that the

throughput and speed of data transfer were better compared to the

other schedulers for normal size applications.

7.3 LRU-LFU

It is observed that during the replacement of the data from var-

ious memory levels page replacement algorithms make use of either

frequency parameter or time parameter. In LRU-LFU both frequency

and time parameters are used. The performance of the system depends

on the number of page faults which the system undergoes. Hence by

reducing the page fault number during the page replacement process

the system performance can increase. Here MRU, LFU and MFU were

implemented and a comparative study was done with the existing LRU.

Along with these, the combination of all methods such as LRU-LFU,

132

7.4 CaMMEBH

MRU-LFU, LRU-MFU and MFU-MRU are done and a comparative

study is made with existing LRU. It is observed that, in the case of

LRU-LFU the major fault and minor fault were less compared to ex-

isting LRU. Due to the reduction in major fault and minor fault the

elapsed time is also reduced for LRU-LFU.

7.4 CaMMEBH

CaMMEBH is about reducing page fault by managing the branch

handling functions. While handling the conditional branch instruc-

tion the prefetch function will give importance to only one condition

in existing systems. But here branch handler will consider both the

conditions. For this the data structures and the kernel functions that

deal with branch handling are edited to increase the hit ratio in the

cache memory and thereby reducing the page fault. Implementation

of CaMMEBH is done and a comparison is done with the existing al-

gorithm for the parameters major fault, minor fault and elapsed time.

It is observed that CaMMEBH is able to give a better result when

compared with the existing method.

7.5 Performance Enhancement

Here all the techniques disused so far are consolidated such as

MBFQV2 along with some modified page replacement policies LRU-

LFU and CaMMEBH which reduces page fault, elapsed time and im-

proves the system performance significantly.

133

7. SUMMARY OF RESULTS, CONCLUSIONS AND
FUTURE WORKS

7.6 TLS

Thread-Level Speculation Using OpenMP is a compile-time system

that automatically adds the code needed to handle the speculative par-

allel execution of a loop and uses a new OpenMP clause to find those

variables that may lead to a dependence violation. The plug-in mecha-

nism provided by GCC is used to support the new OpenMP clause. By

this method, programmers can point out the speculative variables and

need not know anything about the speculative parallelization model.

For the generation of the parallel code the programmer has to add only

one line to identify the variable with dependency instead of significant

amount of lines required by the manual parallelization. The system

performance will also depends on the relationship between the number

of cores, number of threads and window size. The experiments show

that when the window size is doubled the overall performance of the

system gets increased. Implementaion of TLS is done with varying

window size, the numbers of cores and threads. The result obtained

shows that when the window size is double maximum performance is

obtained. The performance evaluation of the program is considered

using execution time .

7.7 Research Conclusions

The work includes an elaborated study on the memory manage-

ment modules of the Linux Operating Systems. Elaborated studies on

different branch prefetching methods are also done for reducing the

page fault. Different algorithms are implemented on each of the mem-

ory levels and improvements have been attained on these areas result-

ing in proposal of new algorithms. Performance studies were conducted

to assess the merits of the new algorithms. The data transfer method

CFQ is modified with a new service oriented scheme BFQ and the draw

back of BFQ is identified and modification is suggested as new algo-

rithms MBFQV1 and MBFQV2. Better throughput is achieved using

134

7.8 Future Work

MBFQV2, where each time new budget value is calculated based on the

processes present in the request queue. The page replacement methods

are then studied. The various methods are implemented by consider-

ing time and frequency parameters. The results show that LRU-LFU

will give a better performance when compared with the other meth-

ods. Branch handling conditions are addressed next. A new algorithm

CaMMEBH is developed to handle true and false conditions for branch

statements. In CaMMEBH the data structures and the kernel func-

tions that deal with the branch handling are edited to increase the

hit ratio in the cache memory and thereby reducing the page fault.

All the above methods are merged and results were observed. Result

shows that around 40% reduction in major fault, 6% reduction in minor

fault and 16% reduction in waiting time is obtained by these methods.

Parallel execution of the program is taken in to consideration as the

last phase. Experiments are done on OpenMP by varying the number

of cores, threads and window size and the results are observed. Sys-

tem performance can be sgnificantily improved by using all the cores

present in the processor with double window size.

Altogether the work aims to the enhancement of processor perfor-

mance and which contributes an efficient system. There is no need to

change the existing hardware which helps to reduce E-waste. Better

performance is obtained compared to existing system.

7.8 Future Work

Following are few suggestions for future work:

1.The CaMMEBH can be extended to prefetch the instructions other

than branch handling instructions to enhance the efficiency to a greater

extent.

2. Currently the Thread level speculation concept is implemented only

for the ‘for loop’. This speculation concept can be extended to other

135

7. SUMMARY OF RESULTS, CONCLUSIONS AND
FUTURE WORKS

types of loops by which a complete level of parallelism can be achieved
inside a multi-core system.

136

Published Work of the

Author

[1] Abraham, J.P. & Mathew, S. (2012). Study on branch han-

dling. National Conference on Emerging Trends in computing

Technology , 56 – 60.

[2] Abraham, J.P. & Mathew, S. (2013). An attempt to im-

prove the processor performance by proper memorymanagement

for branch handling. International journal of computer science,

engineering and application, 3, 81 – 88.

[3] Abraham, J.P. & Mathew, S. (2013). Cacheline override in

branch target buffer used in branch handling. International Jour-

nal of Emerging trends and Technology in Computer Science, 2,

62 – 65.

[4] Abraham, J.P. & Mathew, S. (2013). The effective way of

processor performance enhancement by proper branch handling.

Third international Conference on computer Science and infor-

mation Technology(CCSIT-2013) AIRCC , 451 – 457.

[5] Abraham, J.P. & Mathew, S. (2015). A novel approach

to improve the processor performance with page replacement

method. International Conference on information and communi-

cation Technology Published , 46, 1371 – 1376.

137

PUBLISHED WORK OF THE AUTHOR

[6] Abraham, J.P. & Mathew, S. (2016). High Through-
put disk scheduling with equivalent bandwidth sharing. IEEE -
Inernational conference on Innovations in Information, Embedded
and Communication Systems , 653 – 657.

[7] Abraham, J.P. & Mathew, S. (2016). A novel approach to
improve the system performance by proper scheduling in memory
management. Lecture Notes in Electrical Engineering , 394, 79 –
92.

[8] Abraham, J.P. & Mathew, S. (2016). Modified gcc compiler
pass for TLS by modifying the window size using Openmp. CSA-
2016 . 5Th international conference in computer science and ap-
plication, 205 – 212.

[9] Abraham, J.P. & Mathew, S. (2016). Software optimization
technique for the reduction page fault to increase the processor
performance. International Journal of Engineering and Technol-
ogy , 9, 1180 – 1186.

[10] Abraham, J.P. & Mathew, S. (2017). High Throughput
disk scheduling with equivalent bandwidth sharing. Indian Jour-
nal of Science And Tecnology(Journal extention of the confer-
ence),(Accepted).

138

References

[1] “Cache Memories,” ALAN JAY SMITH Computing Surveys,

vol. 14, no. 3, pp. 473 – 530, 1982.

[2] A. R. Alameldeen and Wood, “Interaction Between Compres-

sion and Prefetching in Chip Multiprocessors,” Proceedings of

the 2007 IEEE 13th International Symposium on High Perfor-

mance Computer Architecture, pp. 228 – 239, 2007.

[3] A. R. Alameldeen and D. A. Wood, “ Adaptive cache Compres-

sion for High-performance Processors.” In Proc. Of the 31st An-

nual International Symposium on Computer Architecture,, pp.

212 – 223, 2004.

[4] S. Albers, Competitive online Algorithms. Max-planck-institute

for informatik, Im stadlwald 66123, Germany.

[5] S. Aldea, D. R. Llanos, and A. González-Escribano, “Support

for thread-level speculation into OpenMP.” LNCS,Springer,

Heidelberg, 2012, vol. 7312, pp. 275 – 278.

[6] S. Aldea and A. Gonzalez-Escribano, “A New GCC Plugin-Based

Compiler Pass to Add Support for Thread-Level Speculation into

OpenMP.” Springer International Publishing,, 2014, pp. 234 –

245.

[7] T. Alexander and G. Kedem, “Distributed prefetch-buffer/cache

design for high performance memory systems,” Proceedings of

139

REFERENCES

the Second International Symposium on High-Performance Com-

puter Architecture,San Jose, CA, USA,, 1996.

[8] J. N. Amaral, A. Douillet, Stoutchinin, G. R. Gao, J. Dehnert,

and S. Jain, “Speculative Prefetching of Induction Pointers,” in

CC-10, 2001.

[9] P. P. Athavale, P. Ranadive, M. N. Babu, S. Sah, V. Vaidya, and

C. Rajguru, “Utomatic Sequential to Parallel Code Conversion:

The S 2 P Tool and Performance Analysis,” GSTF Journal on

Computing(JoC), 2012.

[10] A.-H. Badawy, A. Aggarwal, D. Yeung, and C.-W. Tsen, “The

Efficacy of Software Prefetching and Locality Optimizations on

Future Memory Systems,” The Journal of Instruction-Level Par-

allelism, vol. 6, no. ISSN - 1942 - 9525, 2004.

[11] J. A. Brown, L. Porter, and D. M. Tullsen, “Fast Thread Migra-

tion via Working Set Prediction,” In proceedings of the 17th In-

ternational Synposium on High Performance Computing (HPCA

2011), 2011.

[12] R. E. Bryant and D. O. Hallaron, Computer systems a program-

mers perspective. Pearson Education.

[13] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetch-

ing,” 4th Conference on Architectural Support of Programming

Languages & Operating Systems. New York, NY, USA: ACM.,

no. ISBN - 0 - 89791 - 380 - 9, pp. 40 – 52, 1991.

[14] M. Chandi, I. Foster, and K. Kenney, “Integrated Support for

task & Data parallelism,” The International Journal of High

Performance Computing application, 1994.

[15] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.

Patt, “Simultaneous subordinate microthreading (SSMT),” Pro-

ceedings of the 26th International Symposium on Computer Ar-

chitecture, no. ISSN - 1063 - 6897, pp. 186 – 195, 1999.

140

REFERENCES

[16] M. Charikar, “Advanced Algorithm Design: Marking Algo-

rithm,Lectured by,” Transcribed by Borislav Hristov, 2013.

[17] T.-F. Chen and J. L. Baer, “A performance study of Software and

Hardware Data Prefetching Schemes,” In Proc. Of the 21st An-

nual International Symposium on Computer Architecture, 1994.

[18] B. Choi, L. Porter, and D. M. Tullsen, “Accurate Branch Predic-

tion for Short Threads,” ASPLOS08 March 1-5, Seattle, Wash-

ington, USA.

[19] M. Cintra and D. R. Llanos, “Toward efficient and robust soft-

ware speculative parallelization on multiprocessors,” In: Pro-

ceedings of PPoPP, pp. 13 – 24, 2003.

[20] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,

D. Lavery, and J. P. Shen, “Speculative precomputation: Long-

range prefetching of delinquent loads,” 28th Annual International

Symposium on Computer Architecture , 2001,, no. ISSN - 1063 -

6897, pp. 14 – 25, 2001.

[21] N. Dafre and D. Kapgate, “Novel Cache Replacement Algo-

rithm,” International Journal Of Engineering And Computer

Science, vol. 3, no. 6, pp. 6260 – 6266, June - 2014.

[22] F. H. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD test:

Speculative parallelization of partially parallel loops,” In: Pro-

ceedings of 16th IPDPS, vol. 29, pp. 20 – 29, 2002.

[23] S. Das, UNIX concept and applications, 4th ed. Tata McGraw-

Hill.

[24] M. Dhamdhere, “Operating System A concept-based approch.”

[25] A. Douillet, Stoutchinin, J. N. Amaral, and G. R. Gao, “Specu-

lative Prefetching of Induction Pointers,” in CC-10, 2001.

141

REFERENCES

[26] M. Erez and M. Madhav, “Branch Prediction,”

IEE482:AdvancedComputer Organization, Stanford Univer-

sity, Lecture-3 Processor Architecture Stanford University,

2000.

[27] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, “New

Data Structures to Handle Speculative Parallelization at Run-

time,” In: Proceedings of HLPP 2014, vol. 2014, 2014.

[28] M. Evers, “Improving Branch Prediction by Understanding

Branch Behavior,” PhD thesis, University of Michigan,, 2000.

[29] N. Fukumoto, T. Mihrara, K. Inoue, and K. Murakami, “Ana-

lyzing the Impact of Data Prefetching on Chip MultiProcessors,”

[published in: Computer Systems Architecture Conference, 2008.

ACSAC 2008. 13th Asia-Pacific, IEEE Xplore: 16 September

2008, no. INSPEC - Accession - Number - 10220671, 2008.

[30] L. Gao and L. Li, “SEED: A statically greedy and dynamically

adaptive approach for speculative loop execution,” EEE Trans.

Comput, vol. 62, no. 5, pp. 1004 – 1016, 2013.

[31] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguade, J. Labarta,

and N. Navarro, “OpenMP extensions for thread groups and their

run-time support,” InProceedings of the Workshop on Languages

and Compilers for Parallel Computing, volume 2017 ofLNCS,

vol. 2017, pp. 324 – 338, 2001.

[32] J. Gummaraju and M. Franklin, “Branch prediction in multi-

threaded processors,” Proceedings 2000 International Conference

on Parallel Architectures and Compilation Techniques, no. ISSN

- 1089 - 795X, pp. 179 – 188, 2000.

[33] J. L. Hennessy and D. A. Patterson, Computer Architecture A

Quantitative Approach, 4th ed. Elsevier.

[34] K. Hwang and F. A. Briggs, Computer architecture and parallel

processing. Tata McGraw-Hill.

142

REFERENCES

[35] K. Hwang and N. Jotwari, Advanced computer Architecture, Par-

allelism,Scalability,Programmability, 2nd ed. McGraw-Hill.

[36] D. Joseph and D. Grunwald, “Prefetching using markov predic-

tors,” IEEE Transactions on Computers, vol. 48, no. 2, pp. 121

– 133, 1999.

[37] B. Juurlink, “Approximating the Optimal Replacement Algo-

rithm,” CF04 April 1416, 2004, Ischia, Italy.Copyright 2004

ACM 1-58113-741-9/04/0004, 2004.

[38] M. Kandemir, “Adaptive prefetching for sharedcache based chip

multiprocessors,” Proceedings of the Conference on Design, Au-

tomation and Test in Europe, no. ISBN - 978 - 3 - 9810801 - 5 -

5, pp. 773 – 778.

[39] S. Khajoueinejad, M. Sabeghi, and AzamSadeghzadeh, “A Fuzzy

Cache Replacement Policy and its Experimental Performance As-

sessment,” IEEE.12 February 2007, no. INSPEC - Accession -

Number - 9309205, 2007.

[40] C. Lijun, Understanding Linux kernel source code deeply. 2002

:Posts & Telecom Press, 2002.

[41] G. H. Loh and D. S. Henry, “Predicting Conditional Branches

With Fusion-Based Hybrid Predictors,” NSF Grant, no. MIP -

9702281.

[42] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew, and D.-

Y. Chen, “The Performance of Runtime Data Cache Prefetching

in a Dynamic Optimization System,” IEEE., 2003.

[43] C.-K. Luk and T. C. Mowry, “Compiler-based prefetching for

recursive data structures,” 7th Conference on Architectural Sup-

port of Programming Languages & Operating Systems. New York,

NY, USA: ACM, no. ISBN 0-89791-767-7, pp. 222 – 233, 1996.

[44] M. M. Mano, Computer System Architecture, 3rd ed. PEAR-

SON.

143

REFERENCES

[45] P. Marcuello, “Speculative Multithreaded Processors,” Ph.D

Thesis, Universital Politecnical de Catalunya, 2003.

[46] A. Meyerson, “Online algorithms for network design,” In: Pro-

ceedings of the Annual ACM Symposium on Parallelism in Algo-

rithms and Architectures, ACM16th Press, pp. 275 – 280, 2004.

[47] M. Milovanović, R. Ferrer, O. S. Unsal, A. Cristal, X. Martorell,

E. Ayguadé, J. Labarta, and M. Valero, “Transactional memory

and OpenMP,” In: Chapman, B., Zheng, W., Gao, G.R., Sato,

M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol.

4935, pp. 37 – 53, 2008.

[48] S. Mittal, “Survey of recent prefetching techniques for proces-

sor caches,” ACM COMPUTING SURVEY, vol. 49, no. issue2,

2016.

[49] C. E. Oancea and A. Mycroft, “Software thread-level specula-

tion: An optimistic library implementation,” Proceedings of 1st

international workshop on multicore software engineering-2008,

no. ISBN - 978 - 1 - 60558 - 031 - 9, pp. 23 – 32, 2008.

[50] E. J. O’Neill, P. E. O’Neill, and G. Weikum, “The LRU-K page

replacement Algoritham For Database Disk Buffering,” SIG-

MOD Washington,DC,USA 1993 ACM, 1993.

[51] M. A. P. Valente, “Improving Application Responsiveness with

the BFQ Disk I/O Scheduler,” Proceed- ings of the 5th Annual

International Systems and Storage Conference (SYSTOR 12).

ACM, New York, NY, USA, 2014.

[52] Peterson, The Complete reference Linux, 2nd ed. Tata McGraw-

Hill.

[53] J. Pierce and T. N. Mudge, “Wrong-path instruction prefetch-

ing,” In international Symposium on Microarchitecture, pp. 165

– 175, 1996.

144

REFERENCES

[54] S. Pintar and A. Y. Tango, “A hardware-based data prefetching
technique for superscalar processors,” In Proceedings of the 29th
Annual International Symposium on Microarchitecture, pp. 214
– 225, 1996.

[55] A. Sane, P. Ranadive, and S. Sah, “Data dependency analysis
using data write detection techniques,” ICSTE 2010, vol. Vol -
1, pp. VI – 9 – VI – 12, 2010.

[56] A. Silberschatz and Bear, Operating systems concepts, 5th ed.
New York :John Wiley Sons, Inc, 1999.

[57] A. Silberschatz and P. Bear, Operating systems concepts, 4th ed.
New York :John Wiley Sons, Inc, 1999.

[58] N. Sivasubramaniam and P. Senniappan, “Enhanced core state-
less Fair Queuing with Multiple Queue Priority Schedular,” [The
International Arab Journal of Information Technology- march 2,
vol. 11, no. 2, pp. 159 – 167, 2014.

[59] S.layer and Druschel, “Anticipatory scheduling:A Disk Schedul-
ing Framework to overcome Deceptive Idleness in syn-
chronousI/O,” Proc.18th ACM Symp. Operating systems Prin-
ciples, 2001.

[60] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list
update and paging rules,” Communication of the ACM, vol. 28,
no. ACM - 0001 - 0782 - 85 - 0200 - 0202, pp. 202 – 209, 1985.

[61] M. G. Sobell, A Practical Guide to Solaris.

[62] X. Z. SongJianga, “Token-ordered LRU:An effective pagereplace-
ment policy and its implementation in Linux systems,” Elsevier,
vol. 60, no. 1 - 4, pp. 5 – 29, 2004.

[63] W. Stallings, Operating Systems, 4th ed. Person education.

[64] D. Stephens, J. Bennett, and H. Zhang, “Implementing Schedul-
ing Algorithms in High speed Networks,” IEEE J.Selected Areas
Comm., vol. 17, no. 6, pp. 1145 – 1158, 1999.

145

REFERENCES

[65] J. Subholle, J. M. Slichnoth, d. R. O’Hallaron, and TomasGrose,
“Exploiting task and data parallelism,” ProceedingPPOPP ’93
Proceedings of the fourth ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pp. 13 – 22.

[66] A. S. Tanenbaum and A. S. Woodhull, Operating system Design
and Implementation. PHI.

[67] V, Srinivasan, E. S. Davidson, and G. S. Tyson, “Branch History
Guided Instruction Prefetching,” In proceedings of the 7 thInter-
national Conference High-Performance Computer Architecture,
2001. HPCA, no. INSPEC - Accession - Number - 6846686, 2001.

[68] V. Vaidya, S. Sah, and P. Ranadive, “Optimal Task Scheduler
For Multicore Processor,” ICSTE2010, vol. 1, pp. pp – VI – 1 –
VI – 4.

[69] V. G. Vaidya and S. Sah, “A Review of Parallelization Tools
and Introduction to Easypar,” International Journal of Com-
puter Applications, vol. 56, no. Issue - 12, pp. 30 – 34, 2012.

[70] V. G. Vaidya and S. Shah, “Dependency aware ahead of time
static scheduler for multicore,” IEEE/ACIS 13th International
Conference on Computer and Information Science (ICIS), no.
DOI - 10 - 1109 - ICIS - 2014 - 6912156Conference, 2014.

[71] P. Valente and F. Checconi, “High Throughput Disk Scheduling
With Fair Bandwidth Distribution,” IEEEtransactions on com-
puters, vol. 59, no. INSPEC - Accession - Number - 11446908,
pp. 1172 – 1186, 2010.

[72] S. Wang, X. Dai, K. S, and Y. A. Zhai, “Loop Selection for
Thread-Level Speculation,” International Workshop on Lan-
guages and Compilers for Parallel Computing LCPC 2005,LCNS,
vol. 4339, pp. 289 – 303, 2005.

[73] P. Xekalakis, N. Ioannou, and M. Cintra, “Combining thread
level speculation helper threads and runahead execution,” In:
Proceedings of ICS, vol. 2009, pp. 410 – 420, 2009.

146

REFERENCES

[74] P. Yiapanis, G. Brown, and M. Lujan, “Compiler-driven Software
Speculation for Tread-level Parallelism,” ACM Transaction on
Programming Languages and systems-2016, no. ISSN - 0164 -
0925 - EISSN - 1558 - 4593, 2016.

[75] H.-j. B. Zhan-sheng Li, Da-wei Liu, “CRFP: A Novel Adap-
tive Replacement Policy Combined the LRU and LFU Policies,”
Computer and Information Technology Workshops, 2008. CIT
Workshops 2008. IEEE 8th International Conference on, 2008.

[76] W. Zhang, D. M. Tullsen, and B. Calder, “Accelerating and
Adapting Precomputation Threads for Efficient Prefetching,” n
Proceedings of the 13th International Symposium on High Per-
formance Computer Architecture (HPCA 2007) IEEE, pp. 85 –
95, 2007.

[77] Y. Zhang, S. Haga, and R. Barua, “Execution history guided
prefetching,” In Proceedings of the 16thinternational conference
on Supercomputing,New York,USA, pp. 199 – 208, 2002.

[78] C. Zilles and G. Sohi, “Execution-based prediction using specu-
lative slices,” SIGARCH Computer Architecture News, 2001.

[79] Y. Zong-de and D. Y. chun andZHENG Qing-hua, Advanced
Linux Programming. The People’s Posts and Telecommunica-
tions Press, 2008.

[80] [Online]. Available: http://algo2.iti.kit.edu/vanstee/courses/
caching.pdf

[81] http://blog.scoutapp.com/articles/2015/04/10/
understandingpage-faults-and-memory-swap-in-outs-when.
-should-you-worry

[82] http://mirror.linux.org.au/pub/linux.conf.au/2007/video/
talks/123.pdf,2010

[83] http://software.intel.com/en-us/articles/
automatic-parallelization-with-intel-compilers/
,accessedOct2011

147

http://algo2.iti.kit.edu/vanstee/courses/caching.pdf
http://algo2.iti.kit.edu/vanstee/courses/caching.pdf
http://blog.scoutapp.com/articles/2015/04/10/understanding page -faults-and-memory-swap- in- outs- when.-should- you- worry
http://blog.scoutapp.com/articles/2015/04/10/understanding page -faults-and-memory-swap- in- outs- when.-should- you- worry
http://blog.scoutapp.com/articles/2015/04/10/understanding page -faults-and-memory-swap- in- outs- when.-should- you- worry
http://mirror.linux.org.au/pub/linux.conf.au/2007/video/talks/123.pdf,2010
http://mirror.linux.org.au/pub/linux.conf.au/2007/video/talks/123.pdf,2010
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/,accessed Oct 2011
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/,accessed Oct 2011
http://software.intel.com/en-us/articles/automatic-parallelization-with-intel-compilers/,accessed Oct 2011

REFERENCES

[84] http://www.cs.utexas.edu/users/mckinley/352/lectures/23.pdf

[85] http://www.linux.org/threads/the-linux-kernel-the-source-code.
4204/

[86] http://www.linuxhowtos.org/

[87] http://www.linuxjournal.com/article/1052

[88] http://www.lohninger.com/helpcsuite/how to use fifos.htm

[89] http://www.phoronix.com/scan.php?page=news item&px=
more-x86-asm-to-c-linux

[90] http://www.spinics.net/lists/linux-assembly/msg00293.html

[91] http://www.tldp.org/LDP/khg/HyperNews/get/syscall/
syscall86.html

[92] http://www.tutorialspoint.com/assembly programming/
assembly arithmetic instructions.htm

[93] https://en.wikipedia.org/wiki/Linux kernel

[94] https://github.com/torvalds/linux

[95] https://www.autoitscript.com/autoit3/docs/functions/Call.
htm

[96] https://www.inso.tuwien.ac.at/uploads/media/OSKP
MonoMicroExo.pdf

[97] https://www.kernel.org

[98] IBM:Thread-levelspeculativeexecutionforC/C++.IBMXLC/C+
+forBlueGene,Tech.report(2012)

[99] www.kroah.com/lkn/

[100] www.linuxjournal.com/article/7105

[101] www.makelinux.net/books/lkd2/

148

http://www.cs.utexas.edu/users/mckinley/352/lectures/23.pdf
http://www.linux.org/threads/the-linux-kernel-the-source-code.4204/
http://www.linux.org/threads/the-linux-kernel-the-source-code.4204/
http://www.linuxhowtos.org/
http://www.linuxjournal.com/article/1052
http://www.lohninger.com/helpcsuite/how_to_use_fifos.htm
http://www.phoronix.com/scan.php?page=news_item&px=more-x86-asm-to-c-linux
http://www.phoronix.com/scan.php?page=news_item&px=more-x86-asm-to-c-linux
http://www.spinics.net/lists/linux-assembly/msg00293.html
http://www.tldp.org/LDP/khg/HyperNews/get/syscall/syscall86.html
http://www.tldp.org/LDP/khg/HyperNews/get/syscall/syscall86.html
http://www.tutorialspoint.com/assembly_programming/assembly_arithmetic_instructions.htm
http://www.tutorialspoint.com/assembly_programming/assembly_arithmetic_instructions.htm
https://en.wikipedia.org/wiki/Linux_kernel
https://github.com/torvalds/linux
https://www.autoitscript.com/autoit3/docs/functions/Call.htm
https://www.autoitscript.com/autoit3/docs/functions/Call.htm
https://www.inso.tuwien.ac.at/uploads/media/OSKP_MonoMicroExo.pdf
https://www.inso.tuwien.ac.at/uploads/media/OSKP_MonoMicroExo.pdf
https://www.kernel.org
IBM: Thread-level speculative execution for C/C++. IBM XL C/C++ for Blue Gene, Tech. report (2012)
IBM: Thread-level speculative execution for C/C++. IBM XL C/C++ for Blue Gene, Tech. report (2012)
www.kroah.com/lkn/
www.linuxjournal.com/article/7105
www.makelinux.net/books/lkd2/

REFERENCES

[102] www.openmp.org

[103] www.akhilnarang/kernal bullheado

[104] http://web.njit.edu/rlopes/Mod5.3.pdf

[105] http://istc-bigdata.org/index.php/
memory-wall-what-memory-wall

[106] Programming Manual,Logix5000 Controllers Major, Minor, and
I/O Faults.

[107] “GNU Project: GCC internals (2013,” 2013 http://gcc.gnu.org/
onlinedocs/gccint/

149

www.openmp.org
www.akhilnarang/kernal_bullheado
http://web.njit.edu/rlopes/Mod5.3.pdf
http://istc-bigdata.org/index.php/memory-wall-what-memory-wall
http://istc-bigdata.org/index.php/memory-wall-what-memory-wall
http://gcc.gnu.org/onlinedocs/gccint/
http://gcc.gnu.org/onlinedocs/gccint/

	List of Figures
	List of Tables
	Abbrevations
	1 Introduction
	1.1 General
	1.1.1 Layout of the Thesis

	2 Disk Scheduling with Equivalent Bandwidth Sharing
	2.1 Abstract
	2.2 Introduction to Disk Scheduling
	2.3 Complete Fair Queuing
	2.4 Budget Fair Queuing
	2.4.1 Working of BFQ Scheduler
	2.4.2 Implementation
	2.4.3 Need to Modify BFQ

	2.5 MBFQV1
	2.6 MBFQV2
	2.7 Performance Evaluation
	2.8 Conclusion

	3 Handling of Various Page Replacement Techniques
	3.1 Abstract
	3.2 Page Handling
	3.3 Page Replacement Algorithms
	3.3.1 First in First Out(FIFO)
	3.3.2 Last in First Out (LIFO)
	3.3.3 Least Frequently Used (LFU)
	3.3.4 Most Frequently Used (MFU)
	3.3.5 Least Recently Used (LRU)
	3.3.6 Most Recently Used
	3.3.7 Belady's Optimal

	3.4 Handling of Page Fault
	3.5 Implementation of Various Page Replacement Methods
	3.5.1 MRU
	3.5.2 LFU
	3.5.3 MFU
	3.5.4 LRU-LFU
	3.5.5 MRU-LFU
	3.5.6 LRU-MFU
	3.5.7 MRU-MFU

	3.6 Performance Analysis of Various Page Replacement Methods
	3.7 Conclusion

	4 CaMMEBH for Page Fault Reduction
	4.1 Abstract
	4.2 Study Of Branch Handling
	4.2.1 Software Prefetching.
	4.2.1.1 Long Cache Lines
	4.2.1.2 Lazy Prefetching
	4.2.1.3 Adaptive Prefetching

	4.2.2 Hardware Prefetching
	4.2.2.1 Next-Line Prefetching
	4.2.2.2 Target-Line Prefetching
	4.2.2.3 Wrong-Path Instruction Prefetching
	4.2.2.4 Fetch Directed Instruction Prefetching
	4.2.2.5 Branch Target Instruction Prefetching

	4.3 Suggestion for Prefetching Techniques
	4.4 Need of Branch Handling
	4.5 What is CaMMEBH?
	4.6 Implementation of CaMMEBH.
	4.7 Analysis of CaMMEBH with Current System.
	4.8 Conclusion

	5 Processor Performance Enhancement using MBFQV2, LRU-LFU and CaMMEBH
	5.1 Abstract
	5.2 Introduction
	5.3 Processor Performance Enhancement with Reduced Page Fault
	5.4 Implementation of Various Phases
	5.4.1 LINUX Kernal
	5.4.2 Module Creation
	5.4.3 Kernal Compilation

	5.5 Performance Analysis
	5.6 Conclusion

	6 Parallel Execution of Multiple Threads
	6.1 Abstract
	6.2 Introduction
	6.3 Current Speculative Technique
	6.4 Thread-Level Speculation
	6.5 OpenMP Speculative Clause
	6.5.1 Speculative Stores
	6.5.2 Speculative Loads
	6.5.3 Commit Operation
	6.5.4 Scheduling Iterations under TLS

	6.6 Speculative Engine
	6.6.1 Data Structures

	6.7 Partial Commit Operation
	6.8 Loop Transformation for Speculative Execution
	6.9 Implementation and Analysis of Result
	6.10 Conclusion

	7 Summary of Results, Conclusions and Future Works
	7.1 Abstract
	7.2 MBFQV2
	7.3 LRU-LFU
	7.4 CaMMEBH
	7.5 Performance Enhancement
	7.6 TLS
	7.7 Research Conclusions

	7 Summary of Results, Conclusions and Future Works
	7.8 Future Work

	Published Work of the Author
	References

