Preface

Day by day, the world is witnessing significant advancements in the technologies and strategies used for manufacturing various devices. Even then, there is always an increasing demand for devices which can perform reliably at a faster pace in this era of advanced technologies and instrumentation. In the field of sensing, the need for newer methods and devices that can make life on earth more comfortable and easier is growing. This ever increasing demand, urges the researchers to look for better techniques and instruments in the field of sensing, especially for biochemical analysis.

The invention of optical fibers revolutionised the field of communication in the latter half of the last century. Data transfers at very high bit rates over extended distances were made possible by the use of optical fibers. Lately, optical fiber grating technologies have attracted much attention due to their numerous applications in the field of communication and fiber optic sensor systems. Optical fiber gratings are fabricated by inducing regions of periodically varying refractive indices within the fiber core. Numerous investigations established the sensing capabilities of optical fiber gratings, opening a wide market in the field of sensors. Temperature, strain, refractive index, bending, radiation dose etc. are some of the parameters that could be sensed using optical fiber gratings. Optical fiber grating based sensors are advantageous due to their smaller size, light weight, no electromagnetic interference, remote and distributed sensing capabilities, high sensitivity and large bandwidth operation. Clubbing the diverse sensing capabilities with its merits, fiber gratings are being deployed in numerous fields like structural health

monitoring, oil fields, nuclear plants, automobiles, environmental monitoring, biological and food processing laboratories etc.

Monitoring of chemical and biological species is becoming indispensable in many markets including industrial process control, energy production, health care, food industry, environment monitoring and antiterrorism. Accordingly, chemical and biological sensors which can perform reliably and accurately at a faster pace have attracted extraordinary interest in recent years. The research reports in recent years, clearly establish the potential of fiber optic grating sensors in the field of chemical and biological sensing compared with other sensors which are usually time consuming in operations and require not only high-cost equipment but also well trained personnel.

Towards the end of last century, investigations brought out the higher probability of occurrence of cardiovascular diseases in human beings having increased levels of cholesterol. Since then, researchers started to think loud about developing simpler cholesterol sensing schemes at lower cost and better sensitivities. The focus of this thesis is the design and development of optical fibre grating based sensors, mainly those with surrounding medium refractive index (SRI) sensitivities, for the measurement of cholesterol. Applications of long period gratings (LPGs), fiber Bragg gratings (FBGs) and tilted fiber Bragg gratings (TFBGs) as refractometers to measure the concentration of total cholesterol are presented in this thesis. A biopolymer which has an affinity to cholesterol namely chitosan, is coated as an overlay around the grating region in order to enhance the sensitivity of the sensor heads. Experimental results of the measurement of cholesterol using these gratings, with and without coatings, are also presented in this thesis.

The thesis has been organized into six chapters. Contents of each chapter are briefly described as under:

Chapter 1 presents the general description of various types of optical fiber sensing systems with an orientation to optical fiber grating devices. A brief report on various types of gratings used in the present experimental investigations is included. Photosensitivity in optical fibers and a generalised grating fabrication method is also discussed.

The chapter also provides a short description about cholesterol and the importance of its estimation. A brief summary of the existing detection methods and their demerits are also discussed in this chapter. Chitosan biopolymer with an affinity to cholesterol, used to enhance the sensitivity of the measurements under the present investigations, is also introduced.

An overview of the fundamental theory of fiber optic long period gratings is presented in **Chapter 2**. A review of literature on LPG based sensors is included. This chapter also introduces the sensing capabilities of long period gratings. The basic principle of operation of LPG based sensors is discussed, especially the refractive index sensing. A brief survey on LPG based sensors is also incorporated in this chapter. As a specific application, design and development of an LPG based sensor for the detection and estimation of total cholesterol is also presented in this chapter.

Chapter 3 starts with a survey of sensors based on LPGs with overlay coatings around the grating. A chitosan coated LPG sensor head

for cholesterol determination was fabricated by the method of dip coating. The results of the experimental investigations showing a sensitivity enhancement to that of the uncoated LPG sensor head, in the measurement of cholesterol concentration, is also presented.

The operating principle and sensitivity of fiber Bragg gratings to temperature and strain and its inertness to refractive index variations of external medium is covered in **Chapter 4**. A report on sensors based on FBGs and the need for the reduction of cladding diameter in order to induce RI sensitivity is presented. The method of chemical etching using HF, to fabricate thinned FBGs is discussed here. The etched FBG sensor head fabricated was used for the measurement of cholesterol and the results were analysed. To have better sensitivity in cholesterol measurements, a coating of chitosan was deposited over the thinned FBG. This coated sensor head was able to measure cholesterol with enhanced sensitivity, compared to the uncoated FBG sensor.

TFBGs have the advantage of intensity measurements with relatively higher sensitivities rather than wavelength interrogation. **Chapter 5** outlines the theory of operation of tilted FBGs. A survey of TFBG sensors is incorporated in this section. The use of low cost detectors makes the experiments and analysis simpler and easier. This chapter also provides the application of TFBGs with and without chitosan coating, for cholesterol measurement.

Chapter 6 summarizes the findings of the present investigations and discusses the scope for future research possibilities.

This thesis also includes a list of the papers accepted for publication during the course of this research work.

List of Publications

International Journals

- [1]. C Bobby Mathews, T M Libish, B Kaushalkumar, V Vivek, Radhakrishna Prabhu, and P Radhakrishnan, "A fiber optic biosensor for the detection of cholesterol levels based on chitosan coated long period grating", Optoelectronics Letters; Vol.12 (1), pp. 23-26 (2016).
- [2]. C Bobby Mathews, T M. Libish, J Linesh, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "A biosensor for the detection and estimation of cholesterol levels based on long period gratings", Sensors & Transducers, Vol. 149 (2), pp. 83-88 (2013).
- [3]. **C Bobby Mathews**, T M. Libish, and P Radhakrishnan, "Etched fiber Bragg grating sensor for the measurement of total cholesterol", (Communicated).
- [4]. T M Libish, M C Bobby, C L Linslal, S Mathew, C Pradeep, S Indu, P Biswas, S Bandyopadhyay, K Dasgupta, V P N Nampoori and P Radhakrishnan, "Etched and DNA coated fiber Bragg Grating sensing system for protein concentration measurement", Optoelectronics and Advanced Materials-Rapid Communications, Vol. 9 (11), pp. 1401-1405 (2015).
- [5]. T M Libish, M C Bobby, J Linesh, S Mathew, C Pradeep, V P N Nampoori, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "Detection of adulteration in virgin olive oil using a fiber optic long period grating based sensor", Laser Physics, Vol. 23 (4), pp. 045112 (2013).
- [6]. T M Libish, M C Bobby, J Linesh, S Mathew, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "The effect of annealing and temperature on transmission spectra of long period gratings written in hydrogen loaded standard single mode fiber", Optik - Int. Jn. for Light and Electron Optics, Vol. 124 (20), pp. 4345-4348 (2013).
- [7]. T M Libish, **M C Bobby**, J Linesh, S Mathew, C Pradeep, V P N Nampoori and P Radhakrishnan, "*Refractive index and temperature*

dependent displacements of resonant peaks of long period grating inscribed in hydrogen loaded SMF-28 fiber", Optoelectronics Letters, Vol. 8 (2), pp. 101-104 (2012).

- [8]. T M Libish, M C Bobby, J Linesh, V P N Nampoori and P Radhakrishnan, "Experimental analysis on the response of long period grating to refractive indices higher and lower than that of fiber cladding", Microwave and Optical Technology Letters, Vol. 54 (10), pp. 2356-2360 (2012).
- [9]. T M Libish, C B Mathews, J Linesh, P Biswas, S Bandyopadhyay, K Dasgupta, V P N Nampoori and P Radhakrishnan, "Comparison of thermal response of LPGs written in SMF-28 and B-Ge co doped photosensitive fiber", Fiber Optics and Photonics, pp.1-3 (2012).
- [10]. T M Libish, J Linesh, M C Bobby, B Nithyaja, S Mathew, C Pradeep and P Radhakrishnan, "Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber", Sensors & Transducers, Vol. 129 (6), pp. 142-148 (2011).
- [11]. T M Libish, M C Bobby, J Linesh, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "The effect of grating period on refractive index sensitivity of long period gratings written in hydrogen loaded smf-28 fiber", Journal of Optoelectronics and Advanced Materials, Vol. 13 (5), pp. 491-496 (2011).
- [12]. T M Libish, M C Bobby, J Linesh, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "Fiber optic sensor for the adulteration detection of edible oils", Optoelectronics and advanced Materials-Rapid Communications, Vol. 5, pp. 68-72 (2011).
- [13]. J Linesh, T M Libish, M C Bobby, P Radhakrishnan and V P N Nampoori, "Comparison of thermal and refractive index sensitivity of symmetric and antisymmetric modes of long period fiber gratings", AIP Conf. Proc., Vol. 1391, pp. 397-391 (2011).
- [14]. J Linesh, T M Libish, M C Bobby, P Radhakrishnan and V P N Nampoori "Periodically tapered LPFG for ethanol concentration detection in ethanol-gasoline blend", Sensors & Transducers, Vol. 125 (2), pp. 205-212 (2011).

International Conferences

- Bobby Mathews C, T M Libish, V Vivek, Mathew P Abraham and P Radhakrishnan, "Design and development of a cholesterol sensor based on the refractive index sensing of tilted fiber Bragg grating", Photonics 2016: Int. Conf. on Fiber Optics and Photonics, OSA, IIT Kanpur, India (2016).
- [2]. C Bobby Mathews, T M Libish, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "A chitosan coated fiber optic long period grating biosensor for the detection and estimation of cholesterol", Photonics 2014: Int. Conf. on Fiber Optics and Photonics, OSA, IIT Kharagpur, India (2014).
- [3]. Bobby Mathews C, T M Libish, J Linesh, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "A long period grating based biosensor for the detection and estimation of cholesterol", Photonics 2012: Int. Conf. on Fiber Optics and Photonics, OSA, IIT Madras, India (2012).
- [4]. B C Mathews, K Bhavsar, T Thevar, P Radhakrishnan and R Prabhu, "Preliminary investigations on materials/metal structures using laser induced breakdown spectroscopy for underwater structural health monitoring", Int. Conf. on Material Science and Technology, ICMST- 2016, Pala, Kerala, India (2016).
- [5]. Smithy V, Bobby Mathews C and P Radhakrishnan, "Fiber optic evanescent wave sensor for the measurement of curcumin", IEEE WRAP, Int. Workshop on Recent Advances in Photonics; IISc. Bangalore, India (2015).
- [6]. Smrithi V, Bobby Mathews C and P Radhakrishnan, "Fiber optic evanescent wave sensor for the measurement of yeast concentration", ISPAN-2015, Int. Symposium on Photonics Applications and Nanomaterials, Thiruvananthapuram, Kerala, India (2015).

- [7]. S Udoh, J Njuguna, R Prabhu, B Chirappuram and P Radhakrishnan "Preliminary investigation of temperature and pressure measurement system for down hole monitoring of oil wells using FBG/EPFI sensing technique", Society of Petroleum Engineers—Nigeria, Annual Int. Conf. and Exhibition, Lagos, Nigeria (2015).
- [8]. K Bhavsar, E Hourston, B Chirappuram, P Radhakrishnan and R Prabhu "Development of U-bend optical probe to detect heavy metal ions", Blue Photonics 2015 - 4th EOS Topical Meeting on Blue Photonics, Barcelona, Spain (2015).
- [9]. K Bhavsar, B Mathews, R Prabhu, P Pollard and P Radhakrishnan, "U-bend based fiber optic evanescent wave sensor to detect copper ions using dithizone", Photon14: IOP Int. Conf., Imperial College, London, (2014).
- [10]. T M Libish, J Linesh, Bobby Mathews, C Pradeep and P Radhakrishnan, "Fiber optic sensor for the adulteration detection of edible oils", Int. Conf. on Contemporary Trends in Optics and Optoelectronics, IIST Thiruvananthapuram, Kerala, India (2011).
- [11]. T M Libish, C Bobby Mathews, J Linesh, P Biswas, S Bandyopadhyay, K Dasgupta and P Radhakrishnan, "Response of hydrogen loaded long period grating attenuation bands during annealing process", Int. Conf. on Sensors and Related Networks (SENNET '12), VIT University, Vellore, India (2012).
- [12]. J Linesh, T M Libish, M C Bobby, P Radhakrishnan and V P N Nampoori, "Comparison of thermal and refractive index sensitivity of symmetric and antisymmetric modes of long period fiber gratings", Int. Conf. on Light (Optics '11), NIT Calicut, India (2011).

National Conferences

- Smrithi V, Bobby Mathews C and P Radhakrishnan, "Fiber optic evanescent wave sensors for the measurement of very low concentrations of yeast", NPSAW '16 - National Photonics Symposium and Workshop, CUSAT, Kerala, India (2016).
- J Linesh, V Bejoy, T M Libish, M C Bobby, P Radhakrishnan and V.
 P. N. Nampoori, "Fiber optic humidity sensor based on TiO₂ blended PVA coating", DAE-BRNS National Laser Symposium, (NLS-21), BARC Mumbai, India (2013).
- [3]. J Linesh, M C Bobby, T M Libish, P Radhakrishnan and V P N Nampoori, "Fiber optic alcometer using PVA/chitosan polymer blend", XXXVI OSI Symposium on Frontiers in Optics and Photonics (FOP11), , IIT Delhi, India (2011).

Contents

Chapter 1

Introduction to Fiber Optic Sensors, Cholesterol and Chitosan01 - 68		
1.1	Introduction	03
1.2	Fiber Optic Sensors-An Overview	05
	1.2.1 Fiber Optic Sensors: Classifications	
	1.2.1.1 Based on the Function of the Fiber	07
	1.2.1.2 Based on the Scheme of Modulation	08
	1.2.1.3 Based on the Principle of Operation	11
1.3	Optical Fiber Gratings	15
	1.3.1 Photosensitivity in Optical Fibers	15
	1.3.1.1 Enhancement of Photosensitivity in Optical Fibe	rs 17
	1.3.2 Fabrication of Optical Fiber Gratings	21
1.4	Cholesterol	
	1.4.1 Detection of Cholesterol	40
1.5	Chitosan	43
1.6	Summary	46
Refe	prences	47

Lon	g Period Grating: Basic Theory and its Application as a	
Cho	lesterol Sensor	69 - 104
2.1	Introduction	71
2.2	LPG for Sensing Applications	71
2.3	Long Period Grating – Basic Theory	73
	2.3.1 Mode Coupling in LPG	74
	2.3.2 Phase Matching Curve (PMC)	76
2.4	Principle of Operation of LPG Based Sensor	
	2.4.1 Strain Sensitivity of LPG	79
	2.4.2 Temperature Sensitivity of LPG	
	2.4.3 Sensitivity to Surrounding Medium Refractive Index.	
2.5	Cholesterol Sensor	
	2.5.1 LPG Fabrication	
	2.5.2 Experimental Setup	
	2.5.3 Materials and Methods	
	2.5.4 Results and Discussion	

	2.5.5 Conclusions	95
2.6	Summary	96
Refer	rences	97

Chapter 3

Fabrication of Chitosan Coated Long Period Grating Sensor 105 - 126			
3.1	Introduction	7	
3.2	Coated LPG for Sensing Applications 107	7	
3.3	3 Cholesterol Sensor		
	3.3.1 LPG Fabrication	0	
	3.3.2 Sensor Head Fabrication	С	
	3.3.3 Experimental Setup 113	3	
	3.3.4 Materials and Methods	3	
	3.3.5 Results and Discussion	3	
	3.3.6 Comparison with Uncoated LPG sensor	3	
	3.3.7 Conclusions	С	
3.4	Summary	0	
Refe	References		

Development of Etched Fiber Bragg Grating Sensor	127 - 168
4.1Introduction	129
4.2 FBG: Basic Principle of Operation	129
4.2.1 FBG: Reflected Bragg Wavelength	131
4.2.2 FBG: Mode Coupling	
4.3 FBG: Sensing Principle	
4.4 Sensitivities of FBG	
4.4.1 Strain Sensitivity	136
4.4.2 Temperature Sensitivity	
4.4.3 Cross Sensitivity to Strain and Temperature	
4.4.4 Refractive Index Sensitivity	139
4.5 Sensing Applications of FBG	139
4.5.1 Etched FBG for RI Sensing	
4.6 Development of Etched / Thinned FBG Sensor Head	141
4.6.1 Evolution of the Reflected Spectrum	
4.7 Cholesterol Sensor	147

4.7.1 Exper	imental Setup	
4.7.2 Mater	ials and Methods	
4.7.3 Result	ts and Discussion	
4.8 Chitosan Coate	ed Etched FBG for Sensing Cholesterol	
4.8.1 Senso	r Head Fabrication	
4.8.2 Exper	imental Setup	
4.8.3 Mater	ials and Methods	
4.8.4 Result	ts and Discussion	
4.9 Conclusions		
4.10Summary		
References15		

Tilted Fiber Bragg Grating Sensor
5.1 Introduction
5.2 TFBG: Basic principle of operation
5.2.1 TFBG: Mode coupling 174
5.2.2 TFBG: Reflected Bragg Wavelength 175
5.2.3 TFBG: Reflected Cladding Modes176
5.3 TFBG: Sensing Principle
5.4 Sensitivities of TFBGs179
5.4.1 Strain Sensitivity179
5.4.2 Temperature Sensitivity
5.4.3 Refractive Index Sensitivity
5.5 Sensing Applications of TFBG181
5.6 Cholesterol Sensor
5.6.1 TFBG Fabrication183
5.6.2 Experimental Setup 183
5.6.3 Materials and Methods 184
5.6.4 Results and Discussion
5.7 Chitosan Coated TFBG for Sensing Cholesterol
5.7.1 Sensor Head Fabrication
5.7.2 Experimental Setup 189
5.7.3 Materials and Methods 190
5.7.4 Results and Discussion
5.8 Conclusions
5.9 Summary
References197

Conclusions and scope for future study	
6.1 Summary	
6.2 Scope for Future Study	
References	

endix

List of Figures

Chapter 1: Introduction to Fiber Optic Sensors, Cholesterol

and Chitosan

Figure 1.1:	Illustration - FOS system	. 05
Figure 1.2:	Intrinsic and extrinsic fiber optic sensor systems	. 08
Figure 1.3:	Generalized grating fabrication setup using phase mask	. 25
Figure 1.4:	Phase mask assembly for optical fiber grating fabrication	. 25
Figure 1.5:	Amplitude mask assembly for optical fiber grating	
	fabrication	. 27
Figure 1.6:	Point-by-point method of optical fiber grating fabrication	. 29
Figure 1.7:	Generalized TFBG fabrication setups using phase mask	. 34
Figure 1.8:	Formation of fringe pattern - TFBG fabrication	. 35
Figure 1.9:	Molecular structure of cholesterol	. 36
Figure 1.10:	Molecular structure - (A) Chitin and (B) Chitosan	. 44

Chapter 2: Long Period Grating: Basic Theory and its

Application as a Cholesterol Sensor

E' 0.1		76
Figure 2.1:	Illustration - Mode coupling in long period grating	
Figure 2.2:	Typical LPG transmission spectrum	75
Figure 2.3:	Phase matching curve - SMF-28 fiber	76
Figure 2.4:	LPG Transmission spectra for different SRI conditions	84
Figure 2.5:	Experimental setup	87
Figure 2.6:	Transmission spectrum of LPG-1 fixed inside the	
	glass cell with air as the surrounding medium	89
Figure 27:	Transmission spectra of LPG-1 for different	
	concentrations of cholesterol dissolved in petroleum ether	90
Figure 2.8:	Transmission spectra of LPG-2 fixed in the cell with	
	air and coconut oil as the surrounding medium	91
Figure 2.9:	Transmission spectra of LP ₀₄ mode of LPG-2 for various	
-	concentrations of cholesterol dissolved in coconut oil	92
Figure 2.10:	Resonant wavelength (LP_{04}) peak positions as a	
-	function of different concentrations of cholesterol	93
Figure 2.11:	Transmittance at the resonant wavelength peak positions	
-	as a function of different concentrations of cholesterol	94

Chapter 3: Fabrication of Chitosan Coated Long Period

Grating Sensor

Figure 3.1:	Structure of chitosan coated LPG sensor head 109
Figure 3.2:	Dip coating setup 111
Figure 3.3:	SEM images of the chitosan coated sensor head112
Figure 3.4:	Transmission spectrum of bare LPG in air 114
Figure 3.5:	Transmission spectrum of LPG in air
	with and without coating114
Figure 3.6:	Transmission spectra of chitosan coated
	LPG sensor head for different concentrations of
	cholesterol dissolved in coconut oil115
Figure 3.7:	Resonant wavelength (LP ₀₅) peak positions as a
	function of different concentrations of cholesterol 117
Figure 3.8:	Transmittance of the resonant wavelength (LP ₀₅) peak
	positions as a function of
	different concentrations of cholesterol117
Chapter 4:	Development of Etched Fiber Bragg Grating
Figure 4.1:	Illustration - Light coupling in fiber Bragg grating
Figure 4.2:	Typical spectra of fiber Bragg grating
Figure 4.3:	FWHM of fiber Bragg grating
Figure 4.4:	Schematic sketch - Etched FBG 142
Figure 4.5:	Experimental setup - FBG etching 143
Figure 4.6:	Reference spectrum of the FBG at $t = 0$ minute
Figure 4.7:	Evolution of the spectra of the FBG for the first 61.5
C	minutes
Figure 4.8:	Evolution of the spectra of the FBG after 61 minutes 145
Figure 4.9:	Bragg wavelength shifts during etching - Summary 146
Figure 4.10:	Etched FBG cholesterol sensor - Experimental set up 147
Figure 4.11:	Reflected spectrum of etched FBG with air as the SRI 148
Figure 4.12:	Reflected spectra of etched FBG sensor head for various
	concentrations of cholesterol dissolved in coconut oil 149
Figure 4.13:	Schematic sketch - Chitosan coated etched FBG
	sensor head 151
Figure 4.14:	Reflected spectra of etched FBG sensor head in air
	before and after the coating 152

Figure 4.15:	Reflected spectra of chitosan coated
	etched FBG sensor head for various
	concentrations of cholesterol dissolved in coconut oil 153
Figure 4.16:	Reflected Bragg wavelength peak of the etched FBG
	sensor heads with and without chitosan coating 155
Figure 4.17:	Reflected Bragg intensity of the etched FBG
-	sensor heads with And without chitosan coating 156
Chapter 5:	Tilted Fiber Bragg Grating Sensor
Figure 5.1:	Illustration - Light coupling in Tilted FBG 173
Figure 5.2:	Typical transmission spectra of TFBG174
Figure 5.3:	Experimental set up - TFBG cholesterol sensor184
Figure 5.4:	Transmission spectrum of TFBG with air as the SRI 185
Figure 5.5:	Transmission spectra of the TFBG sensor head for various
	concentrations of cholesterol dissolved in coconut oil 186
Figure 5.6:	Transmitted power of the TFBG sensor head for various
-	concentrations of cholesterol dissolved in coconut oil 188
Figure 5.7:	Schematic sketch - TFBG sensor head
	with chitosan coating189
Figure 5.8:	Transmission spectrum of chitosan coated TFBG
-	with air as the SRI191
Figure 5.9:	Transmission spectra of the chitosan coated
	TFBG sensor head for various concentrations of
	cholesterol dissolved in coconut oil 192
Figure 5.10:	Transmitted power of the TFBG sensor heads for various
	concentrations of cholesterol dissolved in coconut oil 193

List of Tables

Table 1.1:	Properties of cholesterol	37
Table 1.2:	Cholesterol components in blood of adult human beings and their indications	39
T 11 0 1		0.7
Table 2.1:	Performance of LPG sensor heads for different solvents	95
Table 3.1:	Response of the chitosan coated LPG sensor head for	110
Table 3.2:	various concentrations of cholesterol Performance of LPG sensor heads	116
	with and without chitosan coating	118
Table 4.1:	Response of the chitosan coated etched FBG	
T-11- 4 0	sensor heads for various concentrations of cholesterol	154
Table 4.2:	Performance of FBG sensor heads with and without coating	156
TT 11 7 1		
Table 5.1:	Response of the TFBG sensor heads for various concentrations of cholesterol	194
Table 5.2:	Performance of TFBG sensor heads	
	with and without coating	196
Table 6.1:	Performance of grating sensor heads	• • •
	with and without coating	207

Abbreviations

CGCRI	:	Central Glass and Ceramics Research Institute
DNA	:	Deoxyribonucleic Acid
EDFA	:	Erbium Doped Fiber Amplifier
EFBG	:	Etched Fiber Bragg Grating
EWS	:	Evanescent Wave sensors
FBG	:	Fiber Bragg Grating
FOS	:	Fiber Optic Sensors
HDL	:	High Density Lipoprotein
HF	:	Hydrofluoric Acid
IgG	:	Immunoglobulin G
IPA	:	Iso Propyl Alcohol
LDL	:	Low Density Lipoprotein
LP	:	Linearly Polarized
LPG	:	Long Period Grating
MCVD	:	Modified Chemical Vapour Deposition
OSA	:	Optical Spectrum Analyzer
PMC	:	Phase Matching Curve
PVC	:	Poly Vinyl Chloride
RI	:	Refractive Index
SEM	:	Scanning Electron Microscope
SPP	:	Surface Plasmon Polariton
SPR	:	Surface Plasmon Resonance
SRI	:	Surrounding Refractive Index
TFBG	:	Tilted Fiber Bragg grating
TIR	:	Total Internal Reflection
UV	:	Ultra Violet

xviii