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ABSTRACT 

Keywords:  Combinational logic circuits;   Evolutionary Design; Genetic Algorithm; 

Synchronous Sequential Circuits. 

Due to the very high impact of digital electronics in everyday life, the design of 

digital circuits has gained a great significance. Thus, finding an optimised fully 

functional circuit with reduced cost is a challenge for the designer. As nature unveils 

several diverse and striking phenomena, it has become a great source of inspiration 

for solving hard and complex problems in computer applications and gave rise to 

several biologically inspired algorithms. This thesis focuses on developing automated 

techniques for the design of digital circuits using one of the biologically inspired 

algorithms, Genetic Algorithm (GA).  

The first phase of this research work concentrates on developing an evolutionary 

technique for the design of Combinational Logic Circuits (CLCs) using gates. A new 

faster 2 Dimensional (2D) chromosomal representation, its suitable 2D cross over and 2D 

mutation techniques have been proposed. In this work, gates such as AND, XOR, OR 

and WIRE are considered for the design. Once a 100% functional circuit is obtained, an 

additional fitness value is assigned for every WIRE used. This ensures minimum number 

of gates in the evolved circuit in subsequent generations. A comparison between the 

proposed method and the existing methods has been made and has been observed that the 

computation time can be reduced significantly using 2D representations. 

The second phase explores the design automation of CLCs using Universal Logic 

Modules (ULMs) such as 2-1 multiplexer (2-1 mux) / 2-1 Reed Muller ULM           

(2-1 RM ULM). The objective is to generate fully functional circuits with minimum 
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hardware using GA as the optimisation tool. Applying several modifications on 

Shannon’s / Davio decomposition techniques, two different methods referred to as 

Constant Input Method (CIM) and Variable Input Method (VIM) are proposed for the 

design of CLCs. In CIM, the inputs to the circuit are only 0s and 1s whereas in VIM, 

the inputs can be 0, 1, variables or their complements. The control signals are selected 

at random from among the variables, their complements or functions derived from the 

immediate preceding level, which is not allowed in Standard Implementation (SI) 

technique. The evolved circuits are synthesised on Xilinx FPGA Spartan3 (XC3S400) 

device. 

The third phase investigates into the design of Synchronous Sequential Circuits 

(SSCs) which involves two stages. i) to determine the optimal state assignment which 

leads to circuits with minimum hardware and ii) to design the corresponding 

combinational part to generate the required states for the flip flops and  to generate 

the output. A modified GA has been proposed for the state assignment with a view to 

minimise the circuit complexity and as a second stage, the combinational part of the 

FSM is evolved using the techniques proposed in this thesis. The combinational parts 

are implemented using gates or ULMs such as 2-1 mux / 2-1 RM ULM. Sequence 

detectors (Mealy machines) and counters (Moore machines) have been designed.  

All the above proposed techniques have been validated using benchmark functions 

and compared with the existing conventional techniques. It is observed that the 

proposed techniques are better than the methods available in the literature. 
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CHAPTER 1 

INTRODUCTION 

1.1   DIGITAL CIRCUITS 

The present technological period is referred to as the digital age due to the high 

prominent role of digital systems in our everyday life. Digital systems find applications 

in communication, business transactions, traffic control, spacecraft guidance, medical 

treatment, weather monitoring, the internet, and many other industrial and scientific 

enterprises. Due to the high impact of digital circuits in all of today‟s computers and 

devices, the cost of implementation of these circuits is an important design criterion. 

Thus, finding an optimised fully functional circuit is the major concern of a designer     

(Mano, 2002). Moreover, with the introduction of Very Large Scale Integration (VLSI) 

circuits, designers are facing the complex task of packing more functionality into a 

smaller area and creating a circuit that operates faster compared to the existing ones. So 

Design Automation (DA) techniques play a vital role in this intricate process of 

designing digital circuits (Ali, 2003). 

Digital systems may be combinational or sequential. A Combinational Logic Circuit 

(CLC) is an interconnection of logic gates. The output of a CLC at any time is 

determined by the present combination of inputs. Fig. 1.1 depicts the structure of a 

CLC. The function of a CLC can be specified in any of the following three ways.   

i) Boolean algebra - an algebraic expression that shows the operation of the 

circuit for a given set of inputs. 

 

ii) Truth Table (TT) – Defines the function by listing the output states in tabular 

form for each of the possible input combinations. 
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iii) Logic Diagram – Graphical representation of the circuit that shows the gates 

used and their connections. 

 

Fig. 1.1 Structure of a Combinational Logic Circuit 

All the mathematical operations in computers are performed by CLCs. The most 

common circuits used in computers are half adders, full adders, half subtractors, full 

subtractors, multiplexers, demultiplexers, decoders, encoders, etc. Sequential Logic 

Circuits (SLCs) are those whose outputs are a function of the present values of the 

inputs and the past values of the outputs. An SLC consists of i) a storage element to 

store the past output and ii) a combinational circuit to generate the next state. The 

inputs to the combinational part are the present inputs and the previous outputs fed back 

from the storage element. The binary information stored in the storage elements at any 

given time is defined as the state of the sequential circuit at that time. Fig. 1.2 shows the 

block diagram of an SLC.  

 

Fig. 1.2 Structure of a Sequential Logic Circuit 

SLCs are classified into Synchronous Sequential Circuits (SSCs) and Asynchronous 

Sequential Circuits (ASCs). SSCs depend on the external clock pulses for their state 
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transition, whereas no clock is required for the operation of ASCs. The operation of       

an ASC depends on the propagation delays for the state transitions. Virtually, all practical 

digital circuits are a combination of sequential and combinational logic. Considering the 

importance of digital electronics, extreme significance is to be given for its design and 

implementation. Conventional design techniques will be discussed in the subsequent 

section. 

1.2 CONVENTIONAL DESIGN TECHNIQUES 

1.2.1 Combinational Logic Circuits  

A CLC can be realised by using an interconnection of logic gates, or Universal Logic 

Modules (ULMs) such as multiplexers (muxes) or Reed Muller (RM) logic modules. The 

most popular methods of designing combinational circuits using gates are i) Karnaugh 

Map (K map) technique ii) Quine-McCluskey method and iii) algebraic reduction rules. 

K map is a diagram made up of squares, with each square representing one minterm of 

the function that is to be minimised. Since it is a visual method, it is not suitable for 

computer implementation. Though K maps are useful in minimising functions with up to 

six variables, the design of more than four variables is difficult.  

Quine-McCluskey method is suitable for any number of variables and can be easily 

programmed to run on a digital computer (Seda, 2008). Both the K map and Quine - 

McCluskey methods produce two level circuits. Additionally, with Quine-McCluskey 

technique, the CPU usage grows exponentially with the number of inputs. Furthermore, 

once the prime implicants have been found, the algorithm needs to find the minimal set 

cover, which is known to be an NP-complete problem. 
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Simplification by applying algebraic reduction rules is difficult for complex functions 

and is prone to errors. The reduced circuit depends on the selection and application of 

appropriate theorems / postulates during the minimisation process. There are no general 

set of rules to aid that selection. This method depends solely on the designer‟s knowledge. 

These conventional techniques do not support the use of gates such as NAND / NOR 

/ XNOR / XOR etc. and ULMs like multiplexers or RM blocks. On implementing 

circuits using these building blocks, the number of units can be reduced which in turn 

reduces the power and area. Since replication of the same element reduces the 

manufacturing cost, design using ULMs is a promising alternative in the design of 

combinational circuits. 

1.2.2   Sequential Circuits 

The most generalised model of an SSC includes inputs, outputs and internal states. SSCs 

are of two types namely, Moore model and Mealy model. They differ only in the way in 

which the outputs are generated. In mealy machine, the output is a function of both the 

present state and the inputs, whereas in Moore machine, the output depends on the 

present state only (Ercegovac, 1985). The two machines are commonly referred to as 

Finite State Machines (FSMs). The most common examples of Moore machines are 

counters, which are used in simple digital alarm clocks to computer memory pointers. 

Best example for Mealy machine is a sequence detector circuit which is useful in many 

real world applications.  

A sequential circuit needs a state table for its specifications, whereas a combinational 

circuit is completely specified by the truth table. The first step in the design of sequential 
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circuits is to obtain the Optimal State Assignment (OSA) so that the combinational part 

needs minimum circuitry. A State Transition Table (STT) is used to evaluate the 

functionality of the combinational part. The number of possible state assignment grows 

exponentially with the number of states and hence it is very difficult for assigning the 

states manually. Thus automated design plays a vital role in this. 

1.3 AUTOMATED DESIGN TECHNIQUES 

1.3.1 Importance 

In conventional design, the efficiency of a system depends on the ability of the designer 

and is limited to his acquired knowledge. Further, the design space is restricted and 

varies from designer to designer. Another major drawback in conventional design is 

that the quality of the circuit is affected by the designer‟s design habits, imagination, 

creative thinking and routine. These constraints can be eliminated in automated design 

techniques. The motivation behind automated design is to evolve more efficient circuits 

compared to conventional methods. Design automation leads to circuits with minimum 

number of gates, interconnections, delay and power. Evolutionary design is the popular 

automated technique for the design of digital circuits.  

1.3.2 Evolutionary Design   

Research on the evolution of electronic circuits has been started since early1990s. The 

research area in which evolutionary algorithms are applied in the domain of electronics is 

termed as Evolutionary Electronics (EE). Application of evolutionary algorithms for the 

design of reconfigurable electronic circuits is called as Evolvable Hardware (EHW).   
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The prominent advantage of using evolutionary algorithm for the design of digital circuits 

is that it allows automatic exploration of a much richer set of possibilities in the design 

space that are beyond the scope of conventional techniques (Stomeo, 2005). The main 

inspiration behind evolutionary electronics is the possibility of designing more efficient 

and simplified circuits compared to conventional methods.  

The two major approaches for the synthesis of CLCs using evolutionary algorithms are 

i) To obtain an optimised representation of the function using any 

evolutionary algorithm. E.g.; In Binary Decision Diagrams (BDD), the 

number of nodes required and hence the complexity of the function 

representation depends on the order selected for the decision variables. 

This variable ordering of BDD is done using an evolutionary algorithm 

(Murukawa et al. 1996; Higuchi et al. 1997; Thomson and Miller,  

1996). Once an optimised representation is obtained, design is done 

using the algebraic rules of the concerned algebra.  

 

ii) Evolvable hardware approach  

 The processes involved in EHW are 

a) Evaluation process 

b) Evolutionary process 

c) Evolutionary programming  

Evaluation can be performed at gate level or function level. In gate level evolution, gates 

are used for the evolutionary process whereas in function level approach, high level 

hardware functions rather than simple logic functions are used as the design elements. 

Evolutionary process in which the evolved circuits are built and tested in hardware is 

termed as intrinsic evolution, whereas extrinsic evolution is referred to as the 

implementation in software using simulations (Thompson et al. 1997; Ali, 2003).  
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Evolutionary programming involves the use of evolutionary algorithms like GA for 

the automated design of the circuits. It starts with a particular set of gates fixed by the 

designer. The required gates and their interconnections are chosen randomly and are 

allowed to evolve the target functionality. The algorithm decides whether a gate is 

used or not and how many times a particular gate is used. The synthesised circuit can 

consist of any set of logic gates. The only criterion is that the generated circuit has to 

meet the target functionality with minimum hardware.  

To be more specific, this approach mimics the nature based on the strategy of survival 

of the fittest. Each circuit to be designed is considered as an individual in the 

population represented by a chromosome. An initial population of solutions / circuits 

is generated randomly. Every individual is assessed to find whether they are fit or not. 

Fit individuals are selected and genetic operations such as crossover and mutation are 

applied to obtain a new population. This process is repeated until the fittest circuit 

(fully functional with minimum hardware) is obtained.  

1.3.3 Evolutionary Algorithms  

Evolutionary Algorithms (EAs) are search and optimisation techniques based on the 

principle of natural evolution. These algorithms have been found to be efficient in solving 

optimisation and search problems. They are unconstrained search techniques 

incorporating constraints into their fitness function (Gorai and Pal, 1990;  Almaini et al. 

1992; Miller and Thomson, 1998). With the introduction of reconfigurable devices, the 

evolvable hardware has gained attention since the last two decades. Any of the popular 

evolutionary algorithms like Genetic algorithm (GA), Ant Colony Optimisation 

techniques (ACO), Particle Swarm Optimisation (PSO) etc. can be used as a tool for the 

design of digital circuits.  
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Genetic Programming (GP) can be used as an alternative for GA. In GP, a set of 

functions F and a set of terminals T (constants and variables) are to be defined. Here, 

the chromosomes are represented as trees with ordered branches in which, the 

functions are treated as nodes and the terminals as leaves. For example, a set of 

functions F can be defined as {-, +, /, *} and T as {X, Y, Z}. It adopts the same 

genetic operators as in GA (Koza, 1999). 

Optimum / interesting results can be obtained with evolutionary techniques since the 

circuits have lesser number of design elements with unusual structure compared to 

conventional techniques. These circuits can be implemented either in hardware or 

simulated in software. GA is one of the most efficient evolutionary algorithms used for 

the evolution of digital circuits. It has shown a high degree of flexibility in dealing with 

problems that are complex and computationally hard. Coverage of the solution space is 

more complete and there is less chance for getting stuck at local minimum. It is this 

feature that makes GA an efficient tool for automated design. This algorithm has received 

considerable attention regarding its potential as an optimisation technique for complex 

problems (Ali, 2003). Hence GA has been chosen as the optimisation tool for this work. 

1.3.4 Genetic Algorithm (GA) 

Genetic Algorithms are search algorithms that are based on the principles of genetics and 

biological evolution introduced in early1970s by J. Holland. Due to the high potential as 

an optimisation technique, GA has been widely used in solving complex problems. The 

problem of implementing the design using GA can be thought of as being equivalent to 

designing a black box with user defined inputs and outputs as shown in Fig. 1.3.          
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The black box on presenting the input signals should produce the desired outputs. This 

black box is encoded into binary chromosomes (circuits) which are generated randomly. 

On applying genetic operators such as selection, crossover and mutation, new and better 

individuals are created (Soliman and Abbas, 2003; Coello et al. 2000a; Reis et al.       

2004). The process is repeated until 100 % functional circuits satisfying the 

corresponding truth table are obtained. Additional fitness is provided to ensure minimum 

number of components and levels so that the area, power, cost and delay can be reduced.         

Black Box
User Defined 

Inputs

User defined 

Outputs

Circuit to be evolved

 

Fig. 1.3 Block Diagram representing evolutionary design 

In GA, individuals from the initial population are selected for recombination based on 

survival of the fittest strategy. Some of the selection techniques include Roulette 

Wheel Selection technique (RWS), rank method, tournament selection etc. Using any 

of these techniques, the individuals with more fitness are selected and the weaker 

ones are discarded. This replicates nature in which fitter individuals have better 

chances for survival and go for crossover (Goldberg, 1989). RWS technique is 

adopted in this thesis. Here, each chromosome is given a proportion of the Roulette 

wheel based on its fitness value. The wheel is spun repeatedly to select the 

individuals. There is a higher probability for the fittest individuals to be selected 

multiple times, while unfit individuals have a least chance. 
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Crossover operation is a recombination process by which a portion of the individuals 

(parents) are exchanged and two new individuals are created. The newly created 

individual called offspring possesses the genetic properties of both the parents. The 

point of crossover is selected at random.  

Mutation is an unexpected change in the chromosome pattern in natural evaluation 

process. In GA, an individual is probabilistically selected from the population and a 

random gene is altered. Though mutation occurs rarely, it is a main driving force for 

evolution. The need for mutation is to provide new genes that were not present in the 

initial population or to replace the genes that were lost from the population during the 

selection process (Goldberg, 1989; Koza, 1999). This has the effect of increasing the 

search space and the chance of getting the global optimum solution rather than a local 

optimum. This may result in a weaker / stronger individual. If it is strong, it tends to 

survive and the stronger genes are passed on to the subsequent generations and the 

circuit evolves into an optimum one. Elitist selection assures the survival of the best 

individual by copying it directly in to the next generation. 

1.4 Automated Design of Digital Circuits using GA 

In the evolutionary design of digital circuits, as the circuits are generated at random, 

the final circuits evolved will be unique and completely different from the usual 

circuits. A fully functional design can be achieved either by using 

i) Gates alone 

ii) Gates and functional blocks like adders, subtractors etc. 

iii) ULMs alone 
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In the gate level design, any of the two / single input gates or WIRE can be used as 

design elements.  In this work, XOR, AND, OR and WIRE are chosen. 

Though the design using gates ensures optimal circuits, the number of components can 

still be reduced in function level design which involves a combination of gates and high 

level hardware functions. But, the selection of necessary functional blocks for a particular 

class of circuits is critical to obtain an optimal circuit and it completely depends upon the 

designer‟s capability. The designer should be well aware of the design constraints and 

should have a prior knowledge of the combinational circuit design and the functionality 

of each block used.   

In VLSI implementation, emphasis is to be given to reduce the manufacturing cost 

rather than reducing the number of components used (Aguirre et al. 2000). Generally 

the same unit is used repeatedly so as to get the desired functionality even though it 

leads to large number of gates. When implemented using ULMs alone,                   

100% functional circuits which are completely independent of the designer‟s expertise 

can be generated. As the replication of the same design element reduces the 

manufacturing cost of VLSI Implementation, this technique is an alternative for the 

design of CLCs (Aguirre et al. 1999; Aguirre et al. 2000; Gorai and Pal, 1990).  

The focus of this thesis is on CLCs using gates and CLCs using ULMs and the design 

of SSCs. 

1.4.1 CLCs using Gates 

As discussed earlier, any of the two / single input gates and wire can be used for the 

design. Till date, the design of CLC based on GA used linear chromosomal 

representations. To realise a function of n variables, it was assumed that the circuit had     
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n levels and each level had n gates (Louis, 1993). The chromosome was represented in 

the form of a string or one dimensional array in which any particular gene corresponds to 

a gate / input. All the genes were arranged in a linear fashion to perform the genetic 

operations (Coello et al. 2000a). Genetic operators such as selection, crossover and 

mutation were applied over this array. It was found to be difficult to decode or visualise 

the circuit corresponding to a long string of genes which involves more computational 

time. This limitation is being addressed in this thesis.  

1.4.2 CLCs Using ULMs 

ULMs such as 2-1 mux (binary mux) or 2-1 RM ULM (binary RM ULM) can be used 

as the basic building block for implementing any CLC in the form of a tree network. 

Tree network is a graph in which all the nodes are connected either directly or 

indirectly without forming any closed loop. These are most suitable for VLSI 

implementation because of the repeated use of a single design element with similar 

interconnections. Thus the advantage of using ULMs is that, it helps in the ease of 

design, fabrication and testing of digital circuits.  

Design Using Mux 

A multiplexer (mux) with n selection lines is a combinational circuit that selects data 

from 2
n 

input lines and directs it to a single output line. A binary multiplexer has        

2 input lines and one control line. They are of “active low” or “active high” denoted 

as Class A or Class B multiplexers as shown in Figs. 1.4 (a) and (b) respectively.      

In  Class A multiplexer, input labeled as „1‟ is directed to the output for a high value 

of control signal and the input which is labeled as „0‟ is directed to the output for a 
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low value of control signal (Aguirre and Coello, 2004). Logic for class B multiplexers 

is exactly opposite to that of class A multiplexers, where the input labeled as „0‟ is 

directed to the output for a high value of control signal. 

Either class A mux or class B mux or a combination of both can be used. In this work, 

Class A muxes have been used. The output of a class A mux is given by                

           where c    is the complement of c.     

F

C (control)

ba

0 1

F

ba

0 1C (control)

 

 

Fig. 1.4 Logic symbol of a 2-1 mux 

The conventional use of a multiplexer is to route data from one of the n sources to a 

common destination. Besides, it can be used for the realisation of combinational 

circuits. It is known that, any function can be realised by circuits that exclusively use 

binary multiplexers by applying Shannon's decomposition technique. The identity used 

for Shannon‟s implementation is                   where     is the complement      

of   .  
   (    )         the value of F for Aj = 0 ; and F′′ = F(Aj), is the value of F for   

Aj = 1. Thus, it reduces the original complex problem of order n into two simpler ones 

of order n-1. For E.g.; A four variable function when decomposed using an input variable 

reduces to two sub-functions of three variables. These two sub-functions can be further 

decomposed into two sub functions of two variables. Repeating the decomposition further 

with other variables allows the design problem to be reduced further and further to either 

literals or constants (Almaini et al. 1992; Aguirre and Coello, 2004).  

(b) Class B mux (a) Class A mux 
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For mapping a particular Boolean expansion into its corresponding circuit using 

binary multiplexers, the variable    in the equation, acts as the control signal of the 

mux at the j
th

 level. Hence any Boolean function is implemented by circuits with only 

0s and 1s as inputs and the number of modules needed is 2
n
-1. The number of levels 

or the depth of the array is n. The circuit for any three variable function can be 

realised using Standard Implementation (SI) with 7 units in 3 levels as shown            

in Fig. 1.5. The inputs to the first level can be 0 or 1. The inputs to the subsequent levels 

are the outputs of the preceding level. The control signals to all the units in a level are 

same and all the variables should be used as control signals. 

F(000)

F(001)

F(010)

F(011)

F(100)

F(101)

F(110)

F(111)

F(a,b,c)

c

c

c

c

b

b

a

0
1

0

1

1

0

0

0

0
1

1

1
0

1

 

Fig. 1.5 Standard Implementation for a three input function using 2-1 mux 

Design Using RM ULM 

Most of the researchers have concentrated on designing circuits using mux. For certain 

applications like arithmetic circuits, error detection circuits etc., which are XOR based, 

RM representation (AND- XOR logic) is advantageous. This is due to the fact that XOR 

based circuits are easier to test and requires lesser number of interconnections. 
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(Chaudhary and Chattopahyay, 2008). On the contrary, XOR gates are slow and require 

larger area in comparison to OR gates. But with the advancement of new technologies 

and with the advent of various FPGA devices, XOR / XNOR implementation of circuits 

have become easier. (Faraj, 2009a; Vijayakumari et al. 2015a; Vijayakumari et al.    

2015b). 

The logic symbol of a 2-1 RM ULM is shown in Fig. 1.6, whose output is given by 

    ⨁    

c

F

a b

0 1

 

Fig. 1.6. Logic symbol of a 2-1 RM ULM 

 Basic theorems involved in the design using RM ULM are 

                (1.1) 

                (1.2) 

               (1.3) 

The RM representations may be shorter with a reduced number of product terms 

leading to simpler circuits for certain applications like arithmetic operations, parity 

checkers etc. Logic functions that cannot be minimised well in Sum of Products 

(SOP) forms can often be implemented in the RM domain, leading to reduced size 

and power consumption (Al Jassani et al. 2010). Similar to Shannon‟s decomposition 
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technique for mux, Davio decomposition technique is used to reduce the functions in 

AND-XOR form into sub functions. Expressions in terms of sub functions make the 

implementation of Boolean functions simpler. Based on Davio decomposition 

technique, a hardware circuit for a function of n variables can be implemented using 

the identity, F = F′ (Aj)′  F′′′(Aj), where F′ and F′′′ are functions of n-1 variables. As 

in Shannon‟s theorem, applying decomposition repeatedly with each of the variable 

Aj allows the synthesis problem to be reduced further and further to either literals or 

constants (Vijyakumari et al. (2014)).  

In Standard Implementation (SI) technique using mux and RM ULM, units in the 

same level share the same variable as control signal. Furthermore, a variable assigned 

for a particular level as control signal in one level cannot be used as control signal for 

any other levels. Automated design technique looks into the possibilities of reducing 

the 2
n
-1 elements. 

1.4.3 Synchronous Sequential Circuits 

In SSCs, the output at any given time is a function of both present and past inputs. 

The behavior of an SSC can be represented by an FSM, which is a mathematical 

model of a sequential circuit with discrete inputs, discrete outputs and internal states. 

There are two types of FSM - Moore machine and Mealy machine as mentioned in 

Section 1.2.2. These machines can be realised using any flip flop along with suitable 

CLC. In CLC design, a truth table completely specifies the circuit, whereas in an SSC 

a state table specifies the circuit (Ercevoc, 1985). A unique binary code is to be 

assigned to each of the states of the FSM. If the number of states is n, then the 

number of state variables s is the smallest integer that is equal to or greater than 

|log2n|. Then the total number of possible states is equal to 2
s
. 
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The assignment process decides which of these 2
s
 codes must be assigned to any particular 

state in the FSM. The total number of possible encodings is given by (Ali, 2004) 

 (   )  
   

(    ) 
  (1.4) 

Hence, it is necessary to find the state assignment which results in circuits with 

minimum hardware. Finding a relationship between the states and bit strings which 

results in minimal cost is referred to as the problem of OSA. Hence an automated 

design technique which can find an OSA is important in the design of SSCs. Once an 

OSA is obtained, the State Transition Table (STT) can be prepared. Based on the 

STT, the combinational part of the SSC can be generated using gates or universal 

building blocks such as binary multiplexers / binary Reed Muller blocks as mentioned 

in previous section.  

1.5 TOOLS / PLATFORM 

The experiments on the design of digital circuits have been performed on Intel core i5 

processor with 2 GB RAM and 2.5 GHz frequency. MATLAB R2012a is used as the 

software tool. The computational time needed to evolve the circuits depends on the 

function to be implemented, size of the truth table and type of the fitness function used 

for optimisation. The circuits evolved using ULMs have been synthesised on FPGA 

Spartan 3 XC3S400 device using Xilinx ISE 14.2. 

1.6 BENCHMARK FUNCTIONS USED 

Benchmark functions are usually complex functions which are difficult to simplify 

using conventional reduction techniques. On mapping these functions into K map, 
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there will not be any two adjacent 1s to group together. Hence, K map / Quine -      

Mc Cluskey method cannot be applied for the simplification. Applying algebraic 

reduction techniques on these functions is very complicated and is prone to errors. 

Moreover, the designed circuit by algebraic reduction technique varies from designer 

to designer and hence it is not compared with the circuits by automated design. 

The benchmark functions used for the validation of the proposed methods in this 

thesis are listed in Table 1.1. 

Table 1.1 Benchmark functions used for validation of the proposed methods 

Sl No. Name  Function 

1. Majority 3 F (a, b, c)  =  Σ m (3, 5, 6, 7) 

2. 4 bit odd parity checker F (a, b, c, d)  =  Σ m (1, 2, 4, 7, 8, 11, 13, 14) 

3. xor5 F (a, b, c, d, e)  =  Σ m (1, 2, 4, 7, 8, 11, 13, 14, 

16, 19,  21, 22, 25, 26, 28, 31) 

4. 6one135 F (a, b, c, d, e, f) = Σ m (1, 2, 4, 7, 8, 11, 13, 14, 

16, 19,  21, 22, 25, 26, 28, 31, 

32, 35, 37,  38, 41, 42, 44, 47, 

49, 50, 52, 55, 56, 59, 61, 62) 

5. 6one0246 F(a, b, c, d, e, f)  =  Σ m (0, 3, 5, 6, 9, 10, 12, 15, 

17, 18, 20, 23, 24, 27, 29, 30, 

33, 34, 36, 39, 40, 43, 45, 46, 

48, 51, 53, 54, 57, 58, 60, 63) 

1.7 MOTIVATION 

In conventional design, the quality of the designed circuit depends on the designer‟s 

capability and it varies from designer to designer. Automated design techniques are 

algebra independent and the designer‟s expertise is not significant. Several heuristic 

algorithms like GA permits the utilisation of a large search space which humans cannot 
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exploit. It can freely explore the space of all possible circuits, thereby evolving circuits 

which prove to be 100% functional with minimum hardware. 

In the automated design of CLC using gates, the existing technique uses linear 

chromosomal representation and corresponding genetic operators such as crossover and 

mutation are applied. This involves more computational time which has to be reduced.  

In the design of CLC using ULMs, there are no specific reduction techniques available 

other than Shannon‟s / Davio decomposition techniques. The circuits designed by these 

techniques need a lot of hardware which involves more power consumption, area, delay 

and cost. Sophisticated electronic equipments like palmtop game / media consoles, laptop 

computers, cell phones etc. have got an increasing demand these days. Hence it is 

desirable to have the circuits with minimum hardware, area, power and delay.  

Thus, the motivation behind the study of automation of digital circuits is 

 need for developing automated techniques for optimal design 

 to address the issues regarding increase in computational time. 

1.8 OBJECTIVES 

The objectives of this thesis are to efficiently automate the design of  

 Combinational Logic Circuits using 

i) Gates  

ii) Binary ULMs   and 

 Synchronous Sequential Circuits. 
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1.9 CONTRIBUTIONS OF THE THESIS 

The contributions of this thesis towards the automation of digital circuits are 

 A new faster technique for the gate level design of CLCs which ensures 

minimum computational time 

 

 Two new GA based techniques for the design of CLCs using ULMs 

 GA based OSA technique for SSCs 

 Implementation of the combinational part of SSCs using gates / binary ULMs 

1.10 OUTLINE OF THE THESIS  

The proposed thesis is organised in 6 chapters. 

Chapter 2 deals with the review of research done in the area of evolutionary design of 

combinational and sequential circuits. 

Chapter 3 discusses the aspects of GA based design of combinational circuits using 

gates. A 2D representation of chromosomes and the corresponding 2D crossover and 

mutation technique for the design of combinational logic circuits is proposed. Gates 

such as XOR, AND, OR and WIRE are used to evolve the circuits. Circuits including 

benchmark functions with inputs up to 6 variables have been evolved. A comparison 

of the convergence time between the proposed technique and the conventional 

method has been made.  

Design of combinational circuits using universal building blocks such as binary mux 

and binary RM ULM is discussed in chapter 4. Two new GA based techniques are 

proposed and the evolved circuits are synthesised and implemented on Xilinx FPGA 

Spartan3 family. Results are validated using benchmark functions.  
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Chapter 5 covers the design of synchronous sequential circuits. A modified GA has been 

proposed to obtain the OSA which determines the circuit complexity of an SSC. Once 

OSA is done, the combinational part was optimised using i) gates and ii) universal 

building blocks such as 2-1 mux and 2-1 RM ULM. 

Chapter 6 contains concluding remarks, which review the major contributions of this 

work and its future scope. 

 



 



CHAPTER 2 

LITERATURE REVIEW 

This chapter explores the history and important milestones in the design automation of 

digital circuits. It discusses the need for investigations based on the efficiency of evolved 

circuits. Evolutionary algorithms are used to synthesise and optimise EHW. The need for 

evolutionary design is discussed and the research work done in this area is explored. 

2.1 EVOLUTIONARY DESIGN 

To minimise logical functions up to 6 variables, K-map is a very efficient graphical 

tool. Since this method is based on the visual recognition of adjacent cells, it is not 

suitable for automated processing with computers. Quine-McCluskey method can be 

used for any number of variables and is suitable for computer implementation. With 

this technique, the CPU usage grows exponentially with the number of inputs. 

Furthermore, once the prime implicants have been found, the algorithm needs to find 

the minimal set cover, which is known to be an NP-complete problem. Functions can 

be minimised by applying algebraic reduction techniques, but it is very difficult to 

optimise complex functions and is prone to errors. Thus there was an urgent need for 

computer oriented design for minimising the circuit.  

In 1990s the research on EHW started, the objective was to evolve a fully functional 

circuit from a randomly generated set of circuits with the help of evolutionary 

algorithms. Later on, attempts were made to reduce the complexity / number of gates 

needed to realise the circuits. The quality of the evolved circuits was estimated based 



24 

on the number of gates used for implementation. The principle of evolutionary design 

and its applications were well discussed in (Miller et al.  2000a; Miller et al. 2000b).  

Sekanina, (2009) reviewed the fundamental principles of evolutionary algorithms, 

pointed out the major drawbacks and came up with some applications of evolvable 

hardware. Haddow and Tyrrell, (2011) described in their work, the applications of 

evolvable hardware and the advantages of using them. The work mentioned that the 

major challenge to be addressed was scalability and the authors proposed various 

alternatives like divide and conquer, function level evolution etc. Though the paper 

discussed the above mentioned issues, no detailed study was reported to support this. 

Yan et  al.  (2011), investigated the application of cultural algorithms (an evolutionary 

algorithm in which the evolution adapts to their environment at a higher rate than 

biological evolution based on genetic inheritance alone) in the design of electronic 

circuits. No comparative study was made with other evolutionary algorithms. 

Theory of EHW can be applied to combinational as well as sequential circuits. A lot 

of work has been done in the area of design of combinational circuits compared to 

sequential circuits. 

2.2 DESIGN OF COMBINATIONAL CIRCUITS 

2.2.1 Design Using Gates 

Optimisation tools like GA, ACO technique, PSO technique etc. can be applied for 

the design of CLCs. GA is found to be more suitable for the design of digital circuits 

compared to the rest because of its inherent advantages as mentioned in Section 1.3.3. 

Most of the research work reported in literature concentrates on the design of CLCs 

using gates. 
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(Louis et al. 1993) is the earliest source that reports the use of GAs to design CLCs. The 

linear chromosomal representation introduced by Louis is still popular and is used by 

many researchers. In 1996, Koza et al.  proposed a genetic programming approach to 

design CLCs. His research was concentrated on the generation of fully functional circuits. 

Their focus was not on achieving optimal circuits. In all the above mentioned work, the 

chromosomes were represented in the form of a binary string. The size of the binary 

string increased exponentially with the number of inputs/outputs which leads to increase 

in computational time. Coello et al. (1996) presented a GA based approach in which, the 

individuals can be represented in any number system such as octal, decimal, hexadecimal 

etc. which was proved to be effective in larger circuits. Miller (1999) used evolutionary 

technique for designing a multiplier circuit for multiplying two three bit numbers. In 

(Kalganova, 2000a), the evolutionary design had been extended for the design of  

multiple valued logic. A three valued one bit adder was implemented and it was the first 

article to work on multiple valued logic. 

In (Coello et al. 2000a; Coello et al. 2000b; Coello et al. 2000c), an effort has been 

made on the design of CLCs to minimise the number of gates by introducing certain 

modifications in the conventional GA. Coello et al. (2000d) proposed the design of 

CLCs at gate level using ACO technique and compared with the results of GA based 

design. The authors reported that the results were similar to GA based design and much 

better than human based design with K-map and Boolean algebraic rules.          

Hounsell and Arslan  (2000) proposed GA for high performance arithmetic circuits and 

used macro blocks in addition to gates for the evolution of CLCs. The selection of this 

block is critical so as to evolve circuits with easily. Shanthi et al. (2002) discussed an 

evolutionary approach towards the design of CLCs in detail. This work demonstrated 
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three different levels in which fault tolerance can be supported in the evolutionary 

design of digital circuits. 

Reis et al. (2004) extended the technique proposed by Louis for designing CLCs 

using gates. The author could support this technique with circuits up to 4 variables. 

Slowik and Bialko (2008) discussed the state of the art, main problems, challenges and 

future trends of evolutionary algorithms for the design of combinational circuits. He 

pointed out the scalability issues in the case of circuits with large number of               

inputs / outputs. Since evolutionary design is based on generate and test model, as the 

number of inputs increases, the number of possible output combinations also increases. It 

explained the need for decomposing the desired circuits into several less complex sub 

circuits and to design each of them independently. Reis and Machado (2007) dealt with 

the implementation of logic circuits using the evolutionary algorithms like GA and PSO 

and Memetic Algorithm (MA). Gate level implementation was adopted for the design. 

Each algorithm was analysed based on the complexity of the CLC. Benchmark functions 

were not considered for validation in their work. A Genetic Programming approach for 

the design of Combinational logic circuits using gates was proposed in          

(Karakatic et al. 2013). The results obtained were compared with the conventional 

ones for functions up to four variables. 

Vassilev and Miller (2000) discussed the problem of scalability in detail and  

implemented a 3 bit multiplier in which sub circuits were used as building blocks. 

These sub circuits were evolved separately and found to be much faster reducing the 

scalability issues. It was reported that the selection of sub circuit was critical and the 
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designer should be well aware of the design rules. The disadvantage of this method is 

the increase in the number of gates as the number of sub circuits needed is more. 

In (Kalganova, 2000a), a function level approach for evolvable hardware is discussed 

where high level functions such as adders, multipliers, etc. are used as primitive 

functions instead of simple logic functions. The issue of scalability in evolutionary 

methods is discussed and an extrinsic EHW approach has been proposed for the 

design of a number of functions using gates. Liu et al. (2006) suggested a method to 

reduce the time of computation by applying a modified mutation technique. Sagar and 

Vathsal (2013) reported the design of combinational circuits based on three different 

evolutionary algorithms (GA, ACO and PSO) using gates. These approaches were 

compared with each other for the speed of convergence and quality of solution and 

GA was reported to be superior. 

In all the literature cited above design of CLC was done using logic gates and 

involves the scalability issues and increase in computational time. Computational 

time can be reduced by adopting different types of chromosomal representations. 

Circuits can be generated by replacing the gates by Universal building blocks such as 

multiplexers or Reed Muller Logic Blocks (Yau and Tang, 1970). Since only one type 

of design element is used, manufacturing cost can be reduced. It is established that 

any Boolean expression of n variables can be realised by using 2
n
-1 binary 

multiplexers (Aguirre et al. 1999). Several works have been done to reduce the 

number of units so as to reduce the cost, delay, power etc. 
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2.2.2 Design Using Multiplexers 

The use of multiplexers as ULMs for realising Boolean functions has attracted 

researchers since 1970s. Most of the works were concentrated on obtaining minimal 

circuits using linear programming, numerical methods, etc. (Yau and Tang, 1970). 

Multiplexer is a circuit which selects one out of many input lines. A 2-1 multiplexer 

(2-1 mux) is a circuit having 2 input signals, one select (control) signal and one 

output signal. Any of the input signals can be routed to the output based on the select 

signal. A brief introduction of multiplexers is given in Section 1.4.2.  

Pal (1986) formulated an algorithm based on ratio parameters for realising Boolean 

functions with a single multiplexer of minimum size. Ratio parameter is the ratio of 

number of ones to number of zeros in one column of the minterm table of the logic 

function.  As an extension of this work, circuits were implemented using a cascade 

network of multiplexers (Gorai and Pal 1990; Pal 1986). This method terminates if 

the function is not realisable in the cascade form and was not based on the 

evolutionary algorithm. Almaini et al. (1992) proposed a programmed algorithm for 

the synthesis of CLCs using a cascade or a combination of cascade and tree network 

of multiplexers. The algorithm attempted level by level optimisation by selecting the 

control signals which results in minimum number of continuing branches. The 

algorithm was not based on evolutionary principles.  

In (Aguirre et al. 1999 and 2000), a genetic programming approach has been made for 

the logic synthesis of Boolean functions using multiplexers. Simple functions were 

chosen for realisation. Later, in (Aguirre and Coello  2004) CLCs were synthesized 

with multiplexers using genetic programming and the results were superior compared 
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to SI technique. Analysis for design metrics such as area / delay was not performed. 

Even though the number of units required was less, the circuits were still not optimal.  

Synthesis of combinational circuits using multiplexers was dealt in (James et al. 2006). 

An optimisation algorithm was proposed for the realisation of Boolean functions using 

universal building block such as 2-1 multiplexer. This was not based on any 

evolutionary algorithm. Functions up to five variables were reported. Moreover, 

benchmark functions were not used for validation. In (Li et al. 2008) a controller was 

designed to generate select signals dynamically so that power consumption of the mux 

tree is minimised. As the controller itself consumes some power, the power required by 

the controller might be more than the power consumption of the circuit in the case of 

smaller circuits, which is a disadvantage.  

The other universal logic block, RM ULM has been widely used by researchers to 

overcome the scalability issues in the design using gates. The subsequent section gives 

a brief survey about the RM ULM in the realisation of digital circuits. 

2.2.3 Design Using RM ULM 

Research on synthesis and optimisation of logic circuits in RM domain based on XOR 

logic is still producing new and useful techniques (Faraj, 2009a and 2009b). The 

reasons for this include: AND / XOR or OR / XNOR logic requires fewer terms than 

Sum of products or Product of sums respectively (Al Jassani et al. 2010). Moreover, 

testing of XOR / XNOR based circuits is easy and efficient (Drechsler et al. 1999). 

Binary Decision Diagram (BDD) is a well- known technique for the optimisation of 

digital circuits. Decision Diagrams were first proposed by Akers et al. (1978) and 
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further modified by Bryant (1985). It is a graphical way of representing switching 

functions and provides an alternative optimisation technique (Yanagiya, 1995). The 

approach, although useful to test functional equivalence (generation of the same truth 

table) and other circuit properties, it does not fully minimise a circuit (Almaini and 

Zhuang, 1995a; Almaini et al. 1995b). In (Xia et al. 2003a and 2003b) a frame for 

power dissipation estimation was presented and an algorithm was proposed to select 

the polarity so as to minimise the power and area of circuits. 

Shahana et al. (2005), proposed an optimisation algorithm to implement logic 

functions using RM-ULMs. Functions up to four variables were considered and no 

benchmark functions were used for validation of results. Oh and Almaini (2007) dealt 

with the implementation of Boolean functions using 2Variable ROBDD technique. 

Boolean functions were implemented using RM ULMs and it was observed that the 

circuits could still be reduced. Based on the literature survey, it was observed that there 

is a scope for further reduction in hardware. 

Pradhan and Chattopadhyay  (2008) used GA to select the polarities of the variables of 

the AND-XOR network. The polarities are selected based on the optimisation of area, 

dynamic power and leakage power of the resulting circuit. Chaudhary and 

Chattopadhyay (2008) proposed a GA based scheme for implementation of Fixed 

Polarity Reed Muller (FPRM) functions using AND - OR / XOR with minimum area 

and power. No evolutionary technique was applied for implementation.  

Much research has been done on the evolutionary design of CLCs, but research on the 

synthesis of sequential circuits using EHW has started recently. Though a number of 
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authors have given valid contributions, its research is still in the infant stage                

(Al Jassani et al. 2011; Tao et al. 2013). 

2.3 DESIGN OF SEQUENTIAL CIRCUITS 

 EHW has been applied in various fields such as Digital and analog circuit design; 

Control and robotics; Communication systems; Pattern recognition; Prediction 

application etc. As EHW needs no knowledge of circuit design, it provides an excellent 

way for sequential circuit design. Size of the circuit and cost are the major issues in 

digital design. The focus of researchers was mainly towards reduction in the number of 

gates / design elements so as to minimise the on-chip area and cost (Ali et al. 2004). 

 An FSM is defined as a mathematical model of a system with discrete inputs, 

discrete outputs and a definite number of internal states. The states of a system 

determine its behavior on the application of subsequent inputs (Miller, 1999). 

Assigning binary codes for each of the states of the FSM is termed as state 

assignment.  

The complexity of the combinational component of an FSM depends very much on the 

state assignment and selection of memory elements. Finding the OSA is the most 

important optimisation problem in the automated design of sequential circuits since it 

has a key influence on the power, area, speed and testability of the circuit (Ali, 2003; 

Czerwiński and Kania, 2010). The problem of state assignment has been studied 

extensively by several researchers to aid in the design of complex sequential circuits. 

Mc-Cluskey and Unger (1959) derived a formula to find the number of state 

assignments possible for a given function. Stearns and Hartmanis (1961) and          
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Story et al. (1972) suggested several methods to arrive at an OSA but none of them 

were based on any evolutionary algorithm. De Micheli  et al. (1985) proposed a 

computer aided design tool for OSA.  

In (Hartmanis, 1961), state assignment was based on the technique of partition and 

decomposition and was limited to state machines having useful closed partitions 

compared to other machines. Amaral et al. (1995) used GA to obtain the state assignment 

of FSMs. But his method took quite a long time to converge. Almaini et al. (1995) used 

GA for the generation of OSA for a synchronous FSM and they could evolve results as 

good as MUSTANG.  

Ahmad and Dhodhi (2000) proposed a method to find the OSA which is based on 

Mean Field Annealing which combines the characteristic of simulated annealing and 

Hopfield neural network. They claimed to have superior results compared to NOVA 

and Mustang. Digalakis and Margaritis (2001) proposed a GA based technique for 

state assignment. A new selection mechanism was introduced and suitable cross over 

and mutation operators were proposed. Experimental results on the performance 

evaluation of some benchmark functions were discussed. 

Soliman and Abbas (2004) proposed a GA based approach for the design of a 3 bit up 

counter. Instead of evolving the combinational part and the memory elements 

separately, the entire SSC was evolved as a single unit. The authors reported only one 

experiment as validation. In (Al Jassani et al. 2011) a method based on MOGA to 

obtain the OSA was proposed. The ESPRESSO tool was used to optimise the 

combinational parts of the sequential circuits.  
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Usually the number of logic elements needed was considered as the design metric, but 

in the case of VLSI implementation, reducing the manufacturing cost is the major 

criterion rather than minimising the number of units (Sarrafzadeh and Wong, 1996).  

Soleimani et al. (2011a) and (2011b) dealt with the design and optimisation of 

synchronous sequential circuits. They used D Flip flops and the design was based on 

GA. It was reported that average generations could be reduced due the limited search 

space. In (Tao et al. 2013), evolutionary design of synchronous sequential circuits 

based on a module level three stage approach was proposed. GA was used to obtain the 

state assignment in the first stage and a number of circuits were evolved in the second 

stage using Genetic programming. In the final stage, complexity of circuit was reduced 

by re-evolution. Sequence detectors, modulo-n counters and other benchmark circuits 

were used to test the three-stage approach. 

In all the above work, the combinational part of FSM was realised using gates as the 

design element. The time of computation needed is more as the length of chromosome 

increases. As mentioned in the last paragraph of Section 2.2.1, computational time can 

be reduced by adopting different chromosomal representation and the corresponding 

genetic operators such as cross over and mutation. It was also observed that there is a 

need for an efficient method for evolving the OSA. 

2.4 SUMMARY  

In this chapter, a detailed review on various evolutionary design techniques of digital 

circuits has been done. Most of the research till date is on the design of combinational 

circuits, while the research on SSCs is still in the infant stage.  
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As far as CLCs are concerned, most of the works were concentrated on the design 

using gates. The computational time involved is more as the number of inputs / outputs 

of the function increases. Hence there is a need for reducing the computational time for 

which a new faster technique has been proposed in this thesis. 

With the advent of reconfigurable devices, design using universal building blocks has 

become necessary. The advantage of using ULMs for the design of CLCs is elaborated 

in Section1.4.2. With the introduction of VLSI circuits, it has become a tough task for 

the designer to pack more functionality on a chip of smaller area. Moreover, the delay 

associated with the circuit should be less to have a faster operation of the system. In this 

work, two new techniques have been proposed for the implementation of circuits using 

building blocks such as 2-1 mux and 2-1 RM ULM with GA as the optimisation tool, 

so as to evolve circuits with minimum area and delay.  

OSA is an important prerequisite for the design of FSMs. Earlier several tools were used 

to obtain the state assignments corresponding to minimum circuit complexity. Later on 

search algorithms have been introduced to obtain OSA which is responsible for having 

circuits with minimum hardware. The combinational part of FSM can be implemented 

using gates and ULMs. Implementation using ULMs is really an advantage as the 

replication of the same design element reduces the manufacturing cost. In this work, for 

gate based design, to have faster convergence the above mentioned method has been used 

and a new crossover technique has been proposed for the OSA. Moreover, the 

combinational part has been evolved using i) gates and ii) ULMs. 



CHAPTER 3 

COMBINATIONAL LOGIC CIRCUIT DESIGN 

USING GATES 

3.1 INTRODUCTION  

With the increasing need of high quality digital circuits in everyday life, new 

methodologies have to be introduced for its design. The  existing popular methods for 

the design of CLCs using gates include i) K map technique - a graphical representation 

of Boolean functions ii) Quine-McCluskey method - a tabular method and                   

iii) algebraic reduction rules as mentioned in Section 1.2.1. Design of electronic circuits 

is usually done by experienced designers having meticulous knowledge regarding the 

design rules and reduction techniques. But such methods entail limitations such as 

inexperience or lack of adequate knowledge which can affect the quality of the circuits 

designed. Another drawback of human-based approach is that the designer’s line of 

imagination and design habits reflects in the performance of the designed circuits. 

These constraints can be eliminated in automated design techniques. Evolutionary 

Design (ED) is the most popular automated design technique for digital circuits. It uses 

evolutionary algorithms (search algorithms) to realise functions that are not achievable 

by the conventional design techniques. 

Genetic Algorithm (GA), an efficient search technique based on the principle of 

genetics and natural selection, is used as the optimisation tool for evolving the circuits. 

The problem of implementing the design using GA can be considered as being 

equivalent to designing a black box with user defined inputs and outputs as shown in 
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Fig. 1.3 in chapter 1. The system should generate a digital circuit that satisfies the 

specified truth table with minimum number of gates in lesser time. This black box is 

encoded into chromosomes (circuits) which are generated randomly. On applying 

genetic operators such as selection, crossover and mutation, new and better individuals 

are created. The flow chart for the GA is shown in Fig. 3.1. 

GA for a particular problem should have the following components: 

1. A representation for potential solutions (encoding) 

 

2. An initial population of the potential solutions (Usually generated at random) 

 

3. An evaluation function to measure the fitness of individuals (rating of the 

solutions) 

 

4. Genetic operators that alter the composition of children (crossover and mutation) 

 

5. Suitable values of parameters of GA like size of population, probabilities of 

the genetic operators and number of generations. 

 

Fig. 3.1 Flow chart of GA 

Fitness    =    1    ?   

Generation of    
Initial Population   

Evaluate the    
fitness of each    
chromosome   

Decode the    
chromosome to  

the circuit    
structure   

User defined  
minterm 

Selection Process 

Mutation Process 

Crossover Process 

NO   

YES   



 

37 

The most important aspect of GA is the encoding of solutions. i.e., the problem of 

representing the circuits as chromosomes. It affects the population size and hence the 

convergence time of GA. 

3.2 CHROMOSOMAL REPRESENTATION (ENCODING) 

The chromosomal representation proposed by (Louis, 1993) is still popular and is 

generally used for the evolution of digital circuits. He used binary representation for 

the genes. Later on, Coello et al. (1996) suggested a GA based approach in which the 

chromosomes (individuals) can be represented in any number system such as octal, 

decimal, hexadecimal etc. which was proved to be effective in larger circuits. Till 

date chromosomes are represented in a linear fashion as a string of characters using 

any number system. A brief overview of the linear chromosomal representation is 

explained in next section. 

3.2.1 Linear (Conventional) Chromosomal Representation 

To realise a function of n variables, it was assumed (Coello et al. 2000b) that the 

circuit had n levels and each level had n gates as shown in Fig. 3.2, where, G11, G12 , 

…Gnn are the various two input gates generated at random. The inputs to the gates in 

the first column (first set of cells) were obtained from the truth table and all other 

gates receive their inputs from the previous level. The circuit was encoded into a 

string of genes where each gene corresponds to a gate and its corresponding inputs. 

For example, a three variable function can be represented using 9 genes                      

(3 gates / level) as shown in Fig. 3.3. If 2 bits were used to represent the type of     

gate / input, then the number of bits needed to represent a single gate would be 6 and 
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the length of chromosome would be 54, whereas for a six variable function it goes up 

to 216. If the number of bits used was 3, it would become 81 and 324 respectively. 

Thus, with linear chromosomal representation the chromosomal length increases 

proportional to the number of variables, which leads to increase in computational 

time which is one of the issues taken for investigation in this thesis. To address this 

issue, a 2D chromosomal representation is proposed. 

 

Fig. 3.2 Array of gates for the realisation of a CLC 

 

Fig. 3.3 Representation used for encoding of the circuit 

 

  
G 11 

G n 1 

G 1 n 

G nn 

Inputs 

Outputs 

  
a 11 a 13 a 12 a 21 a 23 a 22 a 31 a 33 a 32 

a 33 

gene 

Input  1 Input  2 Type of Gate 
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3.2.2   2D Chromosomal Representation (Encoding of the circuit) 

The author proposes an approach in which the circuit is retained as an array without 

converting it to linear form, provided suitable crossover and mutation techniques are 

formulated. Encoding of a three input circuit into its corresponding 2D chromosome 

is illustrated in this section. If m bits are used to represent the gates / inputs,              

an n input circuit is represented by an mn x mn matrix where the first column 

represents the inputs to the gates of first level, the second column represents any two 

input gate / wire in that level and the subsequent columns follow the same pattern. A 

three input circuit ‘A’ shown in Fig. 3.4 is encoded as shown in Table 3.1. 

A11 A12 A13 A14 A15 A16 

A21 A22 A23 A24 A25 A26 

A31 A32 A33 A34 A35 A36 

A41 A42 A43 A44 A45 A46 

A51 A52 A53 A54 A55 A56 

A61 A62 A63 A64 A65 A66 
 

Fig. 3.4 A three input circuit with three levels and three gates / level  

Table 3.1 Encoding of gates and corresponding inputs for 2D chromosomal 

representation 

Inputs Gates 

Inputs to gate1 A11 A21 Gate1 A12 A22: 

Level 1 Inputs to gate2 A31 A41 Gate2 A32 A42: 

Inputs to gate3 A51 A61 Gate3 A52 A62 

Inputs to gate 4 A13 A23 Gate4 A14A24 

Level 2 Inputs to gate 5 A33 A43 Gate5 A34 A44 

Inputs to gate 6 A53 A63 Gate6 A54 A64 

Inputs to gate 7 A15 A25 Gate7 A16 A26 

Level 3 Inputs to gate 8 A35 A45 Gate8 A36 A46 

Inputs to gate 9 A55 A65 Gate9 A56 A66 
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Usually the chromosomes are represented in binary. In this thesis, gates are 

represented in binary and inputs are represented by integers so as to obtain a square 

matrix for the chromosomal representation. The square representation is adopted to 

obtain better and easy visualisation of the circuit.  

As an example, consider two individuals (chromosomes) A and B generated 

randomly for a three input function as shown in Figs. 3.5 (a) and (b).  

 

0 0 0 1 0 1 

1 0 2 0 0 0 

2 0 1 0 1 0 

1 1 2 1 2 1 

2 1 2 0 2 1 

1 0 0 1 0 1 

 

0 0 0 1 1 1 

1 0 1 1 2 0 

1 1 1 0 0 1 

2 0 0 0 1 0 

0 0 2 1 2 1 

1 1 1 0 1 1 

 (a)   Individual A    (b)   Individual B 

Fig. 3.5 Randomly generated individuals 

The encoding of inputs and gates are shown as in Table 3.2.  

Table 3.2   Encoding of gates and the corresponding inputs 

 (a)   Encoding of inputs                            (b) Encoding of gates 

Inputs 

Assignment Corresponding Inputs 

0 a 

1 b 

2 c 

3 d 

4 e 

5 f 
 

Gates 

Binary 

code 

Corresponding          

gates 

00 XOR 

01 AND 

10 OR 

11 WIRE 
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 If the gate type is a WIRE, then its input is considered to be the top element of the 

chromosome corresponding to the input combination of that gate and if both the 

inputs of an AND / OR gate are same, then that gate is replaced by a WIRE.  

As per the above encoding, the corresponding circuits for individuals A and B 

are shown in Figs. 3.6 (a) and (b) respectively. 

 

(a) Circuit A 

 

(b) Circuit B 

Fig. 3.6 Chromosomes for a 3 input function generated randomly 

 

Level 1 Level 2 Level 3

a
b

b

b

c

Y1

Y2

Y3

c

 

a

b

b

c

a

b

Level 1 Level 2 Level 3

Y1

Y2

Y3
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For this 2D representation, suitable 2D crossover and mutation techniques are to be 

developed for the optimisation. 

3.3 OPTIMISATION USING GA 

The genetic operators such as selection, crossover and mutation have to be applied on 

the chromosomes for optimisation using GA. As mentioned in Section 1.3.4, using 

any selection technique, individuals with more fitness are selected for crossover and 

the weaker ones are discarded. RWS technique is used in this thesis. Crossover 

operation is the process by which some chromosomal patterns / genes are exchanged 

between two parents so as to create the offsprings for next generation. Mutation is an 

unexpected change in the chromosomal pattern which occurs rarely so as to evolve 

better individuals.  

Since 2D chromosomal representation has been proposed for the individuals, 2D 

crossover and mutation techniques are also developed. 

3.3.1 2D Crossover Technique  

2D crossover technique is illustrated in this section assuming that the possible solutions 

(circuits) are encoded in to an array of size 2n x 2n, where n is the number of variables 

involved in the function. Consider two parent individuals A and B. Parents A and B are 

three input circuits and the corresponding chromosomes are shown in Fig. 3.7. To 

perform the crossover operation, a portion of the chromosome of the parent individuals 

must be swapped. To achieve this, the region of crossover is to be identified. This can be 
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done using suitable mask matrices which when multiplied by the original matrix 

identifies the region to be swapped (Vijayakumari and Mythili, 2012).  

A11 A12 A13 A14 A15 A16 

A21 A22 A23 A24 A25 A26 

A31 A32 A33 A34 A35 A36 

A41 A42 A43 A44 A45 A46 

A51 A52 A53 A54 A55 A56 

A61 A62 A63 A64 A65 A66 
 

B11 B12 B13 B14 B15 B16 

B21 B22 B23 B24 B25 B26 

B31 B32 B33 B34 B35 B36 

B41 B42 B43 B44 B45 B46 

B51 B52 B53 B54 B55 B56 

B61 B62 B63 B64 B65 B66 
 

Fig. 3.7 Parents A and B selected for crossover 

To obtain the mask matrices, a set of 4 random numbers R1, R2, C1, C2 are generated 

where R1 and R2, C1 and C2 are numbers between ‘1’ and ‘2n’ and they specify the 

start and end rows / columns of a sub matrix in the parents respectively. The genes 

within this sub matrix will be swapped between the parents. The sub matrices to be 

swapped are shown in Fig. 3.8. (Corresponding to R1 = 2, R2 = 6, C1 =2 and C2 =5 

generated randomly). 

 

Fig. 3.8 Selection of sub matrices 

The complementary mask matrices M1 and M2 are generated using the following 

procedure. The rows and columns outside the sub matrix are filled with ‘1’s and the rows 

and columns inside the sub matrix are randomly filled with 1s and 0s as shown in Fig. 3.9. 

The mask matrices generated randomly for the parents A and B are shown in Fig. 3.9. 
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1 1 1 1 1 1 

1 0 1 1 0 1 

 1 0 0 1 0 1 

  1 1 0 0 1 1 

1 0 1 0 0 1 

1 0 0 1 1 1 
 

0 0 0 0 0 0 

0 1 0 0 1 0 

0 1 1 0 1 0 

0 0 1 1 0 0 

0 1 0 1 1 0 

0 1 1 0 0 0 
 

M1       M2 

Fig. 3.9 Mask matrices M1 and M2 

The offsprings can be obtained by multiplying the mask with the corresponding 

parents and adding suitably as given by equations 3.1 and 3.2. 

                                                       (3.1) 

                                             (3.2) 

After crossover, the corresponding offsprings obtained are shown in Fig. 3.10. 

A11 A12 A13 A14 A15 A16 

A21 A22 A23 A24 A25 A26 

A31 A32 A33 A34 A35 A36 

A41 A42 A43 A44 A45 A46 

 A51 A52 A53 A54 A55 A56 

A61 A62 A63 A64 A65 A66 
 

B11 B12 B13 B14 B15 B16 

B21 B22 B23 B24 B25 B26 

B31 B32 B33 B34 B35 B36 

B41 B42 B43 B44 B45 B46 

B51 B52 B53 B54 B55 B56 

B61 B62 B63 B64 B65 B66 
 

Fig. 3.10 Offsprings of parents A and B 

The offsprings of the parents A and B shown in Fig. 3.5 are C2D and D2D respectively and is 

shown in Fig. 3.11.The corresponding circuits for C2D and D2D are as shown in Fig. 3.12. 

0 0 0 1 0 1 

1 0 2 0 2 0 

2 1 1 0 0 0 

1 1 0 0 2 1 

0 0 2 1 2 1 

1 1 1 1 0 1 
 

0 0 0 1 1 1 

1 0 1 1 0 0 

1 0 1 0 1 1 

2 0 2 1 1 0 

0 1 2 0 2 1 

1 0 0 0 1 1 
 

Fig. 3.11 Offsprings (C2D and D2D) after 2D crossover 
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a

b

b

c

Y1

Y2

Y3

Level 1 Level 2 Level 3

 

 (a) Offspring C2D 

Y1

Y2

Y3

a

b

b

c

a

b
Level 1 Level 2 Level 3

 

(b) Offspring D2D 

Fig. 3.12 Offsprings (Circuits) for parents A and B after 2D crossover 

A comparison has been made on the offsprings generated for the same parents using 

the proposed 2D crossover and the existing linear crossover in the next section.  

Comparison between the proposed technique and the existing linear crossover 

The linear chromosomal representations for the same individuals A and B are 

shown in Fig. 3.13. 
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0100 0210 0010 2101 1201 1201 2110 2001 2011 A 

0100 0111 1210 1210 1000 0110 0101 2110 2111 B 

Fig. 3.13 Linear chromosomal representation of parents A and B 

If the crossover point is selected randomly as shown in Fig. 3.13, the offsprings Clinear 

and Dlinear after crossover are shown in Fig. 3.14.  

0100 0210 0010 2101 1201 0110 0101 2110 2111  C 

0100 0111 1210 1210 1000 1201 2110 2001 2011  D 

Fig. 3.14 Offsprings Clinear and Dlinear after linear crossover 

The circuits corresponding to the offsprings Clinear and Dlinear are shown in Fig. 3.15. 

 

(a) Offspring Clinear  

Y1

Y2

Y3

a

b

b

c

c

b

Level 1 Level 2 Level 3  

(b) Offspring Dlinear 

Fig. 3.15 Circuits corresponding to offsprings after linear crossover 
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From Fig. 3.12 and Fig. 3.15, it can be observed that in linear crossover, the changes 

occur only in the levels after the crossover point, whereas in 2 D crossover, since the 

sub matrices are swapped, changes can occur in any level either in connections / type 

of gates. Thus, generated offsprings can have many variations from their parents in 

2D crossover, which leads to faster convergence. 

After crossover, a small proportion of the offsprings thus evolved is allowed to undergo 

mutation so as to obtain better circuits. The procedure for mutation is discussed in the 

next section. 

3.3.2 2D Mutation 

 In mutation, a single bit in the chromosome is selected and it is altered. If it comes in 

any of the even columns, it is flipped from either 0 to 1 or from 1 to 0 so that gates 

are changed. For odd columns, that particular digit is set to a random number other 

than the one which is selected for mutation. This can be achieved by a single mask. 

To prepare the mask matrix, two random numbers R and C are generated to fix the 

row and column of the bit to be mutated. A mask matrix M is generated with all 

elements 0 except the selected bit and this mask operator is superposed over the 

offspring to be mutated. The selected bit is flipped and the rest are unaltered. 

Let the randomly generated numbers R and C be 1, 4. Then a mask matrix (M) is 

formed with all elements 0 except the element in first row and fourth column, M14 

which is set to 1. The mask matrix formed is shown in Fig. 3.16 (a).  Here, the 

presence of a ‘1’ in the mask matrix indicates a change in the characteristic of the 

offspring and a ‘0’ indicates no change. Thus it modifies the gate type / input 

Fig. 3.9(a) mutation mask 



 

48 

combinations, which implies that a completely new circuit can be generated. The 

offsprings before and after mutation are shown in Figs. 3.16 (b) and (c). 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 
 

1 0 0 1 0 1 

2 1 2 0 2 0 

2 1 1 0 0 0 

1 1 2 0 2 1 

0 0 2 1 1 1 

1 1 1 1 0 1 
 

1 0 0 0 0 1 

2 1 2 0 2 0 

2 1 1 0 0 0 

1 1 2 0 2 1 

0 0 2 1 1 1 

1 1 1 1 0 1 
 

(a) Mutation mask  (b) Offspring before 

mutation 

(c) Offspring after 

mutation 

Fig. 3.16 2D Mutation Process 

The new offsprings (circuits) before and after mutation are shown in Fig. 3.17. It can be 

observed that before mutation, the gate in the first row of second level was OR whereas 

after mutation it has been changed to an XOR gate. 

 

(a) Before mutation 

 

(b) After mutation 

Fig. 3.17 Offsprings before and after mutation 
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After crossover and mutation, the individuals have to be evaluated for fitness. This 

can be done with the help of formulating a suitable fitness function as discussed in the 

next section.    

3.3.3 Fitness Function 

The quality of the evolved circuits depends upon the strength of fitness function used. 

To ensure optimal / efficient circuits a fitness function with two parts has been 

proposed. This is done for two reasons. The first part (F1) is to achieve 100 % 

functional circuit which matches with the truth table and the second part (F2) is an 

additional fitness to minimise the number of gates used. i.e., when more wires appear 

in the generated circuit, this part of the fitness function increases. If both the inputs 

are same for AND / OR gates, then those gates are replaced by wires. 

Thus, the Fitness function                                     (3.3) 

       
  ∑           

   
   

 
                           (3.4) 

Where  N = Possible number of input combinations (2
n
) 

 O1 - Evolved output 

 O2 - Desired output 

                              
    

        (3.5) 

WIRE  - Number of wires in the circuit 

         n - Number of input variables 

 

   Fig. 3.9(a) Mask matrix (M) 
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3.3.4 GA Parameters 

The parameters chosen for the GA are a crossover rate of 0.7 and mutation rate 0.3%. 

A population size of 1000 was used to evolve complex functions also. The number of 

generations chosen was 200 for 2D technique and 500 for linear technique. Roulette 

Wheel Selection technique has been used for selecting the individuals for crossover.  

3.4 RESULTS 

Using this proposed 2D technique, circuits of 2 to 6 inputs with varying complexities 

have been evolved. Benchmark functions specified in Section 1.7 are used to validate 

the results. In addition to this, circuits have been evolved for some functions in the 

literature for comparison.  

On various runs, the number of generations needed for convergence varies. Hence the 

number of generations required is considered to be the average of all the runs. 

Computational time considered is the average of the convergence time required in all the 

runs. 

Benchmark Functions 

1. Majority3 

This is a benchmark function of 3 variables which produces an output one when the 

number of ‘1’s in the function is two or more. 
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The evolved circuit by the proposed method is shown in Fig. 3.18. The circuit needs only 

4 gates in 3 levels. Whereas with conventional design based on K map, 5 units embedded 

in 3 levels are needed. The average number of generations required is only 32 compared 

to 59 with linear (existing) chromosomal representation and genetic operations. 

a

c

a

c

b

F

 

Fig. 3.18 Circuit evolved for Majority3 using gates  

2. Four Bit odd parity checker  

This is a four input function which produces a high output for odd number of ‘1’s in 

the input combinations. The circuit evolved is shown in Fig. 3.19 with 3 gates in        

2 levels, where as conventional technique needs 22 units in 6 levels. 

a

b

d

F

c
 

Fig. 3.19 Four bit odd parity checker using gates 
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3. xor5 – A 5 bit XOR function  

With the use of XOR gates in automated design, the function can be realised easily 

with lesser number of gates. The evolved circuit shown in Fig. 3.20 needs only          

4 gates in 3 levels. The circuit was evolved in 75 generations. Its design using 

conventional techniques is very hard. 

 

Fig. 3.20 Circuit generated for xor5 using gates 

4. 6one135 – A 6 bit benchmark function which produces an output 1 when the 

number of 1’s in the input combinations are 1, 3 or 5. 

Though design using K map is possible for functions up to 6 variables, design of 

more than 4 variable functions is not easy. On mapping this function into K map, 

there are no two adjacent ones to group together. Hence it is not possible to minimise 

the function by conventional techniques. Reduction by applying algebraic rules is 

very complex. By the proposed technique, the circuit was evolved in lesser time with 

minimum number of gates.  

The circuit generated by evolution is shown in Fig. 3.21. The average number of 

generations needed is 85 compared to 150 with the existing technique. 

 

F

c

a

b

d

e
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Fig. 3.21 Circuit evolved for 6one135 using gates 

5. 6one0246    A 6 bit benchmark function which produces an output ‘1’ when the 

number of 1s in the input combinations is 0, 2, 4 or 6. 

The evolved circuit is shown in Fig. 3.22 with 6 gates in 4 levels in 90 generations 

and the computational time is 122.6345 sec, whereas with linear representation, the 

time was 239.362sec. 

 

Fig. 3.22 Circuit evolved for 6one0246 using gates 

Other Functions 

1. Four bit even parity checker 

2. Four bit binary to gray code converter 

3. Full adder 
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4. 2-1 mux 

5.  F (a, b, c) = Σ m (3, 5, 6) 

6. F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 

7. F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14) 

1. Four Bit even parity checker - The circuit evolved by the proposed method is 

shown in Fig. 3.23. It can be observed that the circuit requires only 4 gates compared 

to 27 gates in manual design. The number of generations required for convergence is 

72 compared to 130 in linear representation. 

 

Fig. 3.23 Realisation of Four bit even parity checker using gates 

2. Full Adder - It is a 3 input 2 output function  

Fig. 3.24 shows the evolved circuit for a full adder circuit which requires only five gates 

to realise the sum and carry outputs. It has been observed that the convergence speed of 

the full adder circuit using 2D technique is much more than the existing technique. The 

circuit is evolved within 20 generations using the proposed technique compared to 110 

generations in the existing linear technique. 

It has been mentioned in Section 1.2.1, that conventional techniques like Quine - 

McCluskey method and K map do not support the use of XOR / XNOR gates. On using 

XOR gates in automated design, the sum could be obtained in two levels with 2 gates and 

 a

b

c

d

c

F
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carry in three levels with 3 gates. The circuit for Full adder using 2 input gates is shown 

in Fig. 3.25 which uses 18 gates in 5 levels. 

 

Fig. 3.24 Circuit evolved for Full Adder using automated technique 
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Fig. 3.25 Circuit for Full adder using basic gates 
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3. 2-1 multiplexer - The evolved circuit of a 2-1 Multiplexer is shown in              

Fig. 3.26(a). Conventional technique which employs only basic gates needs 4 

gates in 3 levels as shown in Fig. 3.26(b). It is obvious that the circuit evolved by 

automated design is more expensive in terms of area and power by the use of 

XOR gates. In this thesis, the gates used are XOR, AND, OR and WIRE. This 

example has been cited here only to demonstrate the faster convergence of 2D 

crossover and mutation compared to existing linear crossover technique. The 

proposed technique requires only 40 generations while the existing technique 

requires 320 generations to evolve the desired functionality. Thus the computation 

time has been reduced significantly. 

c

a

b

F

a  

Fig. 3.26 (a) Circuit generated for 2-1 multiplexer by automated design 

 

a

c

b

c

F

 

Fig. 3.26 (b) Circuit for 2-1 multiplexer by conventional design 



 

57 

4. Four bit Binary to Gray code converter - a four input four output function 

which converts the binary code into its equivalent gray code. The circuit 

generated for the function is shown in Fig. 3.27 which uses only 3 gates. 

 

Fig. 3.27 Evolved circuit for a Four bit Binary to Gray code converter 

5. F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) - An example taken from (Slowik and 

Bialko, 2008). The authors used linear chromosomal representation and the circuit 

was realised in 4 gates. The generated circuit with the proposed technique is at par 

with the literature using 4 gates as shown in Fig. 3.28. 

 

Fig. 3.28 Circuit evolved for F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 

6. F (a b, c) = Σ m (3, 5, 6) - a function which produces a high output when the 

number of ‘1’s in the input combinations is two.  

The circuit generated for this function is shown in Fig. 3. 29. It requires only 4 gates, 

whereas conventional technique needs 11 gates for realising the function. 
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Fig. 3.29 Evolved circuit for F (a, b, c) = Σ m (3, 5, 6) 

7. F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14) - This is an example taken from      

(Coello, 2004) in which the automation was done using PSO and the circuit was 

evolved with 6 gates and no mention was made regarding the convergence time. With 

the proposed 2D technique too, it was realised with 6 gates as shown in Fig. 3.30.  

b

c

c

d

b

a

F

 

Fig. 3.30 Circuit of F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14)  

Table 3.3 shows a comparison of automated design with conventional design in terms 

of number of gates / levels used. Only a few of the evolved circuits have been 

considered for tabulation. It can be observed that there is a considerable saving in the 

number of gates and number of levels. Reduction in number of levels is a clear 

indication of reduced delay. 
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Table 3.3 Comparison between conventional and automated techniques in 

terms of number of gates / levels used 

Sl 

No. 
Function 

Conventional 

(gates/levels) 

Automated 

(gates/levels) 

1 Half adder 6/3 2/1 

2 Σ m (3, 5, 6) 11/5 4/3 

3 Σ m (1, 2, 4) 11/5 4/3 

4 Majority3 5/3 4/3 

5 Full adder 18/5 5/3 

6 2-1 multiplexer 4/3 3/3 

7 3 bit binary to gray code convertor 9/3 2/1 

8 3 bit odd parity checker 14/5 2/2 

9 4bit odd parity checker 27/6 3/3 

10 4 bit even parity 27/6 4/3 

11 4  bit binary to gray code convertor 13/3 3/1 

12 Σ m(4, 5, 6, 7, 8, 9, 10, 13) 10/5 4/3 

13 Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14) 19/5 6/3 

14 Σ m (0, 2, 3, 8, 9, 11, 12, 13, 14) 14/5 5/3 

15 xor5 60/7 4/3 

16 6one135 83/8 5/3 

17 6one0246 83/8 6/4 

From Table 3.3, it can be observed that the number of gates / levels is reduced significantly 

in automated design compared to the conventional design. Moreover, complex functions 

like xor5, 6one135, 6one0246 cannot be simplified by conventional techniques. 

Table 3.4 gives a comparison of the convergence time required for realising the 

benchmark functions using the proposed 2D technique and linear technique. The 

program was run on INTEL core i5 processor @ 2.5 GHz, 32 bit processor with         

2 GB RAM. It can be observed that the time needed to arrive at 100% functional and 
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optimal solution is reduced significantly with the proposed technique compared to 

linear crossover and mutation techniques. 

Table 3.4  Comparison of the proposed technique with the existing technique 

in terms of convergence time 

Sl No. Function 

Convergence 

time in sec 

(2D) 

Convergence 

time in sec 

(Linear) 

1 Majority3 5.3989 33.12621 

2 4bit odd parity checker 68.3177 154.7651 

3 xor5 122.230098 190.24014 

4 6one135 116.89353 201.49251 

5 6one0246 122.6345 239.36210 

From Table 3.4, it is obvious that the convergence time required to realise the 

functions with the proposed technique is reduced considerably. 

Fig. 3.31 shows the comparison between the two approaches in terms of the number 

of generations needed for the circuits to converge. It is evident that the proposed 2D 

technique evolves circuits in lesser number of generations compared to the existing 

linear technique. 

The functions used for the analysis are: 

 F1:  2 bit circuit (Half Adder) 

 F2:  majority3 

 F3:  4 bit Circuit (4 bit binary to gray code  converter) 

 F4:  xor5 

 F5:  6one135 

 F6:  6one0246 
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Fig. 3.31  Comparison of the proposed technique with the   existing technique in terms of 

number of generations  

From the above examples and discussions it can be concluded that the proposed 

technique is faster compared to the existing technique. The optimum circuits were 

always generated in less than 100 generations with the proposed technique. 

3.5 SUMMARY 

A new 2D representation for the design of CLCs is proposed. Suitable crossover and 

mutation techniques are developed for this 2D representation. The fittest circuit evolved 

is in the form of ‘1’s and ‘0’s in a matrix form so that decoding is made easy. Various 

circuits including benchmark functions with inputs up to 6 variables have been evolved. 

A comparison of the convergence time between the proposed technique and the 

conventional method has been made. In linear crossover, some of the levels may remain 

unaltered during crossover operation, whereas with the proposed 2D technique, since the 

sub matrices are swapped for crossover operation, variations from the parent circuits can 

occur at any level either in connections / type of gates. Thus, the convergence speed of 

GA has been significantly increased compared to the conventional method, which in turn 

reduces the computational time for evolving optimal circuits. 
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CHAPTER 4 

COMBINATIONAL LOGIC CIRCUIT DESIGN 

USING UNIVERSAL LOGIC MODULES 

4.1 INTRODUCTION 

Over the last few decades, several researches were carried out to automate the design 

of digital circuits using evolutionary algorithms. The main motivation behind this 

comes from the need to produce power efficient and cost effective optimal circuits. 

Since the use of integrated circuits in the areas of high performance computing, 

telecommunication, consumer electronics etc. are growing at a faster pace, a cost 

effective design is very significant. Evolutionary design helps to obtain an optimised 

circuit in terms of area / delay / power.  

One of the advantages of evolutionary design is the use of universal building blocks 

such as multiplexers / RM blocks as the basic design element. The repeated use of a 

single design element reduces the cost of VLSI implementation and hence the 

exclusive use of ULMs is recommended for the design. Earlier, the researchers 

focused on generating circuits using minimum number of gates. However, in VLSI 

design, reduction in manufacturing cost is more significant compared to the reduction 

in number of components used (Aguirre et al. 1999 and 2000). This is possible by 

replicating the same element so as to evolve fully functional circuits. 

In this chapter, design of CLCs based on the exclusive use of 2-1 mux / 2-1 RM ULM 

is discussed. The objective is to generate fully functional circuits with minimum 

hardware using suitable evolutionary algorithms. The quality of the evolved circuits 
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solely depends on the algorithm used for evolution. Being an efficient evolutionary 

algorithm, GA is used as the optimisation tool to evolve the circuits. 

4.2 METHODOLOGY 

Any Boolean expression can be implemented using ULMs such as multiplexers or 

RM ULMs. In this work, 2-1 mux / 2-1 RM ULM has been used for the realisation of 

Boolean functions. By SI technique, a function of n variables can be realised by a tree 

network using 2
n
-1 binary ULMs in n levels. The existing reduction techniques such 

as Shannon‟s / Davio decomposition technique do not help in arriving at an optimised 

circuit. Sub functions are useful for implementing a Boolean function. To implement 

a hardware circuit for a function of n variables, the following identities based on 

Shannon‟s decomposition and Davio decomposition techniques can be used. 

                           For 2-1 mux implementation    (4.1)  

    (  )
 
⨁         For 2-1 RM ULM implementation    (4.2) 

where F′, F′′ and F′′′ are functions of n-1 variables and       is the complement of     

Both identities are used to reduce the original design problem into two simpler 

problems (Wang, 2000). Applying such decomposition repeatedly with another     

variable Aj allows the problem under synthesis to be reduced further and further to 

either literals or constants as mentioned in Section 1.4.2. Fig. 1.5 in Section 1.4.2 shows 

the circuit realisation of a three variable function using binary multiplexers in SI. 
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The characteristic features of the tree network of ULMs in SI are: 

 All the units in the same level share the same control signal 

 A control signal selected in one level cannot be used in other levels 

 All the variables of the function should be used as control (select) signal  

 Only the variables of the function can be used as control signal 

 Inputs to the first level (bottom most) should be 0s or 1s 

 Regular / uniform interconnections 

Since the Shannon‟s / Davio decomposition is not helpful in reduction of hardware, 

an attempt has been made to evolve better circuits by making some alterations in the 

conventional tree network. GA is used for this purpose. Design of CLCs using binary 

multiplexers / RM ULMs is discussed in the subsequent sections. 

4.2.1 Binary Multiplexer (2-1 mux)  

The conventional use of multiplexer is to route data from one of the n sources to a 

common destination. Besides, it can be used for the realisation of combinational 

circuits. It is known that, any function can be realised by applying Shannon's 

decomposition technique that uses only binary multiplexers. The decomposition 

technique has been explained in Section 1.4.2.  

A multiplexer with n selection lines is a combinational circuit that selects data from 

2
n 

input lines and directs it to a single output line. A binary multiplexer has 2 input 

lines and one control line. They are of “active low” or “active high” denoted as    

class A or class B multiplexers as mentioned in Section 1.4.2. Only class A mux is 

used in this work and its logic symbol is shown in Fig. 4.1. 
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F

c(control)

ba

0 1

 

Fig. 4.1 Logic symbol of a Class A mux 

The output of class A mux is given by 

   [  ′         ]                                                             (4.3) 

where c′ is the complement of c. 

4.2.2 Binary RM ULM  

RM ULM is based on AND-XOR logic while mux is based on AND-OR logic. XOR 

gates are slow and require a large area when realised in comparison with OR gates. 

But with the advancement of new technologies and advent of various FPGA devices, 

XOR / XNOR implementation of circuits has become easy. 

The logic symbol of a  2-1 RM ULM is shown in Fig. 4. 2 whose output is given by, 

                                            ⨁                                                  (4.4) 

c

F

a b

0 1

 

Fig. 4.2 Logic symbol of a 2-1 RM ULM 
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Any Boolean function can be expressed in the form of Reed-Muller (RM) expression 

using AND and XOR operators. This representation has various advantages such as 

ease of complementing and testing. It requires lesser number of gates and 

interconnections in applications which involve XOR operations.  

Basic theorems involved in the design using RM ULM are 

  ⨁                                                                 (4.5)        

  ⨁                                                                                                        (4.6) 

             (4.7) 

   ⨁                                            (4.8) 

where X is any variable and X′ is its complement. 

This thesis aims at the design of circuits with minimum number of units and levels 

compared to SI which uses 2
n
-1 units in n levels. E.g., a three variable function needs 

seven units distributed in three levels with conventional method. An attempt has been 

made to reduce the number of units / levels by making certain modifications on the SI 

technique using GA. 

4.3 PROPOSED METHODS 

In this work, few modifications have been made on the well known Shannon‟s / 

Davio decomposition technique, so as to evolve better circuits with minimum 

hardware. The most important property of conventional design is that the units in the 

same level share the same control / select signal as discussed in the previous section. 

The proposed method allows any variable to be used as select signal to any unit in 
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any level. In addition to the use of variables as select signals, this method uses 

functions derived from previous level as select signal which is not permitted in SI. 

With this approach, circuits can be evolved with lesser number of modules and levels 

than standard implementation, thereby reducing the cost and complexity of the 

circuit.  

Two different GA based techniques have been proposed to obtain optimal circuits 

with binary ULMs. These techniques are referred to as Constant Input Method 

(CIM) and Variable Input Method (VIM) in this thesis and are discussed in the 

subsequent sections. 

4.3.1 Constant Input Method (CIM) 

As in Shannon‟s / Davio decomposition techniques, the inputs to the ULM units in 

the first level (where inputs are fed) are only constants, i.e., 0s and 1s. Inputs to the 

subsequent levels can include 0, 1, or outputs of immediate preceding level. In the 

case of control signals, Shannon‟s / Davio decomposition technique used fixed 

control signals for each level whereas the proposed method uses randomly generated 

control signals  and the circuits are evolved using GA.  

In CIM, the modifications made to the existing Shannon‟s / Davio decomposition 

technique are consolidated as follows. 

1. The control signals for all the units in a particular level need not be the same 

as they are selected at random using GA.  

 

2. The signal selected at one level can be used for other levels too. 
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3. The control signal need not be a variable, it can also be a function derived 

from the previous level. 

 

4. All the variables need not be used as control signal. 

Thus, the control signals for the ULMs can be variables of the Boolean function, their 

complements, or the outputs of units from the previous level. Using the above 

modifications, circuits can be evolved with lesser number of units / levels. 

The flow chart for the proposed method is shown in Fig. 4.3. The maximum number 

of levels required to realise a function of n variables is n and the number of units 

required is 2
n
-1. The number of units in a level is 2

n-l
, where l is counted from the 

level where data inputs are fed to the circuit. Incorporating the modifications 

suggested above, a random population is generated. The circuits are encoded into 

chromosomes which can accommodate the worst possibility of having the number of 

levels and number of units as in SI. Output of the n
th
 level unit is the final output of 

the circuit. It is evaluated for 100% fitness with minimum number of levels / units. 

The fitter individuals are allowed to undergo selection, crossover and mutation and 

the process is continued till optimal circuits are evolved. 

Once the circuits are evolved, the ULMs are checked for redundancies and are 

eliminated. For E.g., if multiple units have the same data inputs and the control 

signals in the same level, then one of them will be retained and the rest will be 

discarded.  Moreover, muxes with the same data inputs can be replaced by a wire. 

Hence the numbers of units are further reduced thereby reducing the power and area. 

The advantage of CIM is that the inputs to the tree are only constants. 
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Fig. 4.3 Flow chart for CIM 
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4.3.2 Variable Input Method (VIM)  

VIM is similar to the CIM except that the inputs to the units in first level can be      

0s, 1s, variables or their complements. With this added modification, the number of    

units / levels can be still reduced. GA is used to select both the inputs and the control 

signals for optimisation. 

4.4 IMPLEMENTATION OF GA 

In the case of design using gates, it was assumed that an n variable circuit had n levels 

and each level had n gates so that the chromosomal representation for the circuit was 

in the form of a square matrix and 2D crossover and mutation were applied over these 

square matrices. While in the case of a tree structure, the number of units in all the 

levels is not equal. The number of units in the i
th

 level of a tree is 2
n-i

 where the level 

is counted from bottom to top. E.g., for a three bit function, the number of units in the 

three levels is 4, 2 and 1 respectively. Due to the non-uniformity in the number of 

units in each level of the tree, 2D crossover technique cannot be used here. Hence 

linear crossover and mutation are adopted in this work. 

4.4.1 Chromosomal Representation for the Circuit 

The chromosomal representation of circuits using mux and RM ULM are similar. 

Hence the encoding of the tree network using RM ULM units in both the methods are 

discussed. The chromosome contains the information about the inputs and control 

signals for the ULM units.  
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Constant Input Method  

The encoding of the units are similar except for the first level.  Encoding of a single 

RM ULM in the first level is as follows. A three input function is considered as an 

example. As mentioned earlier, in CIM, the inputs to the first level are 0, or 1 and can 

be any one of the combinations - 0, 0; 0, 1; 1, 0; or 1, 1. To represent this, two bits are 

needed. The control signal can be variables or their complements. For a three input 

function, 6 possibilities are there and hence 3 bits are required to represent the control 

signal. Fig. 4.4 shows the typical representation of a chromosome for an RM unit in 

the first level (level where the inputs are fed) of the tree for a three variable circuit. 

The same is repeated for all the units in first level. 

X1 X2 X3 X4 X5 X6 

Fig. 4.4 Chromosomal representation of an RM ULM in the first level 

Here, X1 indicates the presence / absence of the unit, X2X3 represents the inputs to the 

unit, and the combination X4X5X6 corresponds to the control signal used. 

Table 4.1 shows the encoding of the above unit. Tables 4.1 (a) and (b) shows the 

encoding of the inputs and the control signal of that unit respectively.  
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Table 4.1 Encoding of a single RM ULM in the first level of a tree 

implemented in CIM 

 (a) Encoding of inputs                     (b) Encoding of control signals 

X Inputs 

  X2X3 

00 0, 0 

01 0, 1 

10 1, 0 

11 1, 1 
 

X 
Control 

signal 

X4X5X6 

000 a 

001 b 

010 c 

011    a′ * 

100 b′ 

101 c′ 

110 a 

111 b 
 

* ′ represents the complement 

For E.g., let the randomly generated chromosome be “101010”. Since the first bit (X1)     

is 1, it implies that an RM ULM exists in that position. The next two bits “01” indicate 

that the inputs are 0, 1 and the last three bits “010” imply that the control signal is “c”. 

The generated unit corresponding to this chromosome is shown in Fig. 4.5 and its     

output is c.   

c

F

0 1

0 1

 

Fig. 4.5 Unit evolved for the chromosome “101010” 

For the second level, in addition to 0s and 1s, the inputs can be outputs from the 

immediate preceding layer. Control signals can be variables, their complements or 

outputs from the preceding level. Hence encoding is to be made incorporating all 
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these possible combinations. Fig. 4.6 shows the chromosomal representation for a 

unit in second level. 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

Fig. 4.6 Chromosomal representation of an RM ULM in the second level 

As mentioned earlier, bit X1 is to indicate the presence of a unit, X2 to X7 represents 

the possible inputs and the last four bits X8 to X11 are used to represent the possible 

control signals. Similarly the other units in the tree can be encoded. 

Variable Input Method 

Here, in addition to 0, 1, the inputs can be variables or their complements and hence 

the number of bits required for encoding is more compared to CIM. Fig. 4.7 shows 

the chromosomal representation of an RM ULM in first level. Bit X1 indicates the 

presence of a unit as in CIM. Combination of bits X2 to X7 represents the possible 

input signals to the RM ULM at the first level which can be any of the possible 

combinations of input variables a, b, c, their complements, 1s or 0s. X8X9X10 

determines the control signal of the unit. 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Fig. 4.7  Chromosomal representation of an RM ULM in the first level of 

VIM  

For E.g., consider a string “1011100010”. Here the first bit X1 implies that an RM 

ULM exists at that position of the tree. The string “011100” corresponds to the input 

combination a' and b. The possible control signals in the first level are variables and 

their complements. In the above string, last 3 bits “010” implies that the control signal 
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is c. The unit corresponding to this string is shown in Fig. 4.8 whose output is given by 

a'   (b. c). 

c

F

a' b

0 1

 

Fig. 4.8 Unit evolved for the chromosome “1011100010” 

For the second level, in addition to the variables and their complements, 1s and 0s, 

the outputs of previous level can be given as inputs. As mentioned above, control 

signal can be any of the variables, their complements, or functions derived from the 

previous level. So encoding is to be done incorporating all the possible combinations 

of inputs and control signals. Coding is being done for all other units in a similar 

manner to make the complete chromosome for the entire circuit.  

Chromosomes are encoded in a similar fashion for circuits using multiplexers too.  

4.4.2 Optimisation Using GA 

Individuals (Chromosomes) are generated at random which holds the particulars 

regarding the presence of a unit, corresponding inputs, control signals and outputs as 

genes. To start the GA, an initial population of circuits (strings) is generated at random. 

Search is then carried out among this population and the genetic operations such as 

reproduction, crossover and mutation are carried out as explained in chapter 1. The total 

number of correct outputs in response to the corresponding inputs gives the measure of 

fitness. Successive generations of new strings are reproduced on the basis of their fitness.   
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In this work, RWS technique is used to select the strings for crossover. Single point 

crossover is performed. The mutation operation occurs rarely, usually 0.2% to 0.3% 

of the population undergo mutation which changes the characteristics of a given gene 

in the chromosome. The number of individuals in the initial population is fixed and is 

maintained across the generations until the GA converges. A suitable fitness function 

is formulated to help in the convergence of GA.  

4.4.3 Fitness Function 

The fitness function (F) used for evaluating the CLC evolved is assumed to consist of 

three parts F1, F2 and F3 and is given by 

                                                        (4.7) 

where F1 ensures 100% functionality of the circuit, F2 reduces the number of units and 

F3 ensures minimum number of levels. 

The proximity of the outputs of the evolved circuit to the desired outputs in the truth 

table is evaluated for each individual in the population and the fitness is calculated as  

                                      (
  ∑      ⨁     

 
   

  
)                                       (4.8)                                                                                                                                                                                        

where O1i is the evolved output corresponding to the i
th

 row, O2i is the corresponding 

desired output and N is the number of possible combinations of inputs.  (N = 2
n
)   

                                            
 

     
                                                            (4.9) 
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where count  is the no. of units in the generated circuit. 

                                       
 

     
                                                       (4.10) 

where level is the number of levels of the circuit. 

Based on F1, a fit circuit is evolved. Once a 100% fit circuit appears, extra fitness 

inversely proportional to the number of blocks and levels in the corresponding circuit 

referred to as F2 and F3 are added to the actual fitness. As mentioned in Section 4.3.1, 

at the end of the prescribed number of generations, idle units if any are eliminated 

from the best fit circuit, ensuring an optimal solution for the circuit. 

4.5 GA PARAMETERS 

The parameters selected for GA are single point crossover with a crossover rate of 0.7 

and mutation rate of 0.3 %. Population size of 20,000 is chosen so that even complex 

circuits can be evolved. For most of the functions, the number of generations was 

chosen as 100, and for complex functions, it was chosen as 500. The simulation was 

done in MATLAB R2012a. 

4.6 RESULTS 

The results on the design of CLCs are grouped into two categories i) using mux and 

ii) using RM ULM. In this work, design using ULMs have been limited to circuits 

with one output only. A comparison has been made between the SI technique and the 

proposed methods, CIM and VIM. The results are validated using benchmark 
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functions listed in Table 1.1 of chapter 1. Besides, circuits have been generated for 

several other functions available in the literature using the proposed techniques. 

4.6.1 Realisation of Circuits Using mux 

1. 6one135  

The circuits evolved with the proposed methods CIM and VIM are shown in                

Figs. 4.9 (a) and 4.9 (b) respectively. From the figures, it can be seen that the circuit 

needs 11 units in 6 levels with CIM and only 5 units in 5 levels with VIM compared 

to 63 units in 6 levels with SI technique. Thus there is a saving of 82.53% and 

92.06% respectively in the number of units compared to SI. The number of levels is 

also reduced in VIM so that the delay can be reduced. 

2. 6one0246  

The circuits evolved by the proposed methods CIM and VIM need 11 units / 6 levels 

and 5 units / 5 levels respectively as shown in Figs. 4.10 (a) and (b) respectively, 

whereas the same circuit needs 63 units / 6 levels in SI. 
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  (a) CIM                                               (b) VIM   

Fig. 4.9 Circuit generated for 6one135 using mux 

F

c

d

a

e

f

11 00

b

f

e

a

d

0

0

0

0

0

0

1

1 1

1

1

1

11

1

1

1

0

0

0

0

0 b

 

  (a) CIM          (b) VIM   

Fig. 4.10 Realisation of 6one0246 using mux 
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3. xor5 – 5 Bit XOR Operation 

It is very hard to realise XOR functions with more than four variables using mux 

(Aguirre et al. 2004). With the proposed techniques, it could be implemented with      

9 units in 5 levels for CIM and 4 units in 4 levels for VIM instead of 31 units          

and 5 levels with SI. Thus the reduction in number of units with the proposed 

techniques CIM and VIM are 71% and 87% respectively compared to SI. The 

evolved circuits are shown in Figs. 4.11 (a) and (b) respectively. 

 

d

b

1

0 1

0 1

0 1

a

c

e e

c

d

′

′

′

′a

F

 

 (a) CIM                                                                       (b) VIM 

Fig. 4.11 mux implementation of xor5 

4. Four Bit Odd Parity Checker  

The circuits generated are shown in Figs. 4.12 (a) and (b) for CIM and VIM 

respectively. For SI, the circuit needs 15 muxes in 4 levels. With the proposed 
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techniques CIM and VIM, the circuits needed 7 muxes in 4 levels and 3 muxes in 3 

levels respectively. Thus, the saving in number of units is 53.3% in CIM and 80% in 

VIM. In the literature (Aguirre and Coello, 2004), it has been mentioned that parity 

circuits with 4 or more variables are difficult to realise using multiplexers but it can 

be seen that with the proposed methods, it is relatively simpler.  
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       (a) CIM    (b) VIM  

Fig. 4.12 Circuit evolved for 4 bit odd parity checker using mux 

5. Majority 3  

Figs. 4.13 (a) and (b) shows its CIM and VIM implementations respectively with       

5 units in 3 levels and 3 units in 2 levels respectively. In SI, the circuit requires 7 units 

in 3 levels. 
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 (a) CIM                                   (b) VIM  

Fig. 4.13 Circuit generated for Majority 3 using mux 

Other Functions 

1. F =  X1X4 + X2X5 + X3X6 

 F= Σ m (9, 11, 13, 15, 18, 19, 22, 23, 25, 26, 27, 29, 30, 31, 36,  37, 38, 39, 41, 

43, 44, 45, 46, 47, 50, 51, 52,  53, 54, 55, 57, 58, 59, 60, 61, 62, 63) 

This is a complex function and is very hard to evolve. The circuits evolved using CIM 

and VIM are shown in Figs. 4.14 (a) and (b) respectively. The circuit required                

14 units / 6 levels in CIM and 10 units / 5 levels in VIM compared to 63 units / 6 levels   

in SI. 
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(a) CIM (b) VIM 

Fig. 4.14  mux implementation of the function F(X1, X2, X3, X4, X5, X6) =   

X1X4 + X2X5 + X3X6 

2. Three Bit Odd Parity Checker 

The circuit evolved with CIM needs 5 units and 3 levels which is at par with the method 

proposed in literature (Aguirre and Coello, 2004) as shown in Fig. 4.15 (a). The circuit 

evolved by VIM shown in Fig. 4.15 (b) has 2 units in 2 levels compared to 5 units           

in 3 levels in the literature and 7 units in 3 levels with the conventional technique. 
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Fig. 4.15 mux implementation of 3 bit odd parity checker 
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3. F (a, b, c) = Σ m (3, 5, 6) - a function which produces an output „1‟ when the 

number of „1‟s in the input combinations is two. 

With genetic programming, (Aguirre et al. 1999 and 2004) needed 6 units in 3 levels 

with 0s and 1s as inputs. The proposed technique, CIM needs 5 units / 3levels and VIM 

requires 3 units / 2 levels as shown in Figs. 4.16 (a) and (b) respectively. Thus, 

compared to the method proposed in (Aguirre et al. 1999)  there is a saving of 3 units 

and one level with VIM, and there is a saving of one unit in CIM. The implementation 

of the same circuit using standard technique is shown in Fig. 4.17 which requires          

7 units in 3 levels. 
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Fig. 4.16 Circuit generated for F (a, b, c) = Σ m (3, 5, 6) using mux 
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0 0 1

F (a, b, c) = Σ m (3, 5, 6) 
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bb

0 1 1 0
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Fig. 4.17 Circuit for F (a, b, c) = Σ m (3, 5, 6) using mux with SI technique 

Comparison between the proposed and existing methods 

Circuits evolved by the proposed methods CIM and VIM are compared with SI and 

methods available in the literature in terms of number of units / levels. Table 4.2 

shows the comparison of results between the conventional method and proposed 

methods in terms of units / levels. It is obvious that the number of units / levels 

needed is reduced significantly with the proposed methods. CIM involves only 0s and 

1s as inputs to the units in first level. Hence the number of input buses needed is less 

compared to VIM. Implementation of circuits by VIM needs lesser number of units 

and levels compared to CIM and SI. As the number of modules is less, cost, area and 

power consumption is reduced which ensures better performance. 
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Table 4.2  Comparison of the proposed techniques with the existing techniques in 

terms of number of units/levels in mux implementation 

Sl 

No. 
Function 

SI 

Units/ 

Levels 

Aguirre  

et al. 

(2004) 
Units/ 

Levels 

CIM 

Units/ 

Levels 

VIM 

Units/ 

Levels 

1 F=Σ m (3, 5 ,6) 7/3 6/3 5/3 3/2 

2 F=Σ m (1, 2, 4) 7/3 5/3 5/3 3/2 

3 Majority3  F=Σ m (3, 5, 6, 7) 7/3 - 5/3 3/2 

4 3bit odd parity 7/3 5/3 5/3 2/2 

5 F = Σ m (5, 6) 7/3  5/3 3/2 

6 F = Σ m (0, 2, 3 ,4, 6) 7/3 - 4/3 2/2 

7 F = Σ m (0, 2, 4, 6)  7/3  2/2 1/1 

8 4bit odd parity 15/4 - 7/4 3/3 

9 F = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 15/4  5/3 2/2 

10 F = Σ m (5, 6, 9, 10) 15/4 - 6/4 3/3 

11 F = Σ m (1, 2, 3, 5, 7, 8, 12) 15/4 - 7/4 4/4 

12 F = Σ m (13, 14) 15/4  6/3 3/2 

13 xor5 31/5 - 9/5 4/4 

14 F = Σ m (0, 4, 6, 7, 8, 12, 14, 15) 15/4  3/2 1/1 

15 
F = Σ m (0, 1, 9, 22, 23, 25, 30, 

31) 
31/5 - 10/5 6/4 

16 F = Σ m (9, 11, 25, 27, 29, 31) 31/5 - 7/5 5/5 

17 
F = Σ m (3, 7, 8, 15, 19, 23, 24, 

26, 27, 31) 
31/5 - 8/3 4/2 

18 

F = Σ m (0, 1, 2, 3, 16, 17, 18, 

19, 32, 33, 34,  35, 48, 49, 50, 

51, 60, 61, 62, 63) 

63/6 - 5/4 3/3 

19 6one 135 63/6 - 11/6 5/5 

20 6 one 0246 63/6 - 11/6 5/5 

21 F = X1X4 + X2X5 + X3X6  63/6 - 14/6 10/5 

The evolved circuits were synthesised on FPGA Spartan3 (device XC3S400) using 

Xilinx ISE 14.2 and hence the delay, device utilisation and power are estimated.      

Table 4.3 shows the delay associated with each circuit in standard implementation and 

the proposed techniques. The delay includes both the delay of logic units and the delay 
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caused by the RC component of the interconnecting wires. It can be observed that there 

is a considerable reduction in delay with VIM compared to the other two methods. 

Table 4.3 Comparison of delay in various methods of mux implementation 

Function SI CIM VIM 

 
No. of 

Levels 

Delay 

(nsec) 

No. of 

Levels 

Delay 

(nsec) 

No. of 

Levels 

Delay 

(nsec) 

Majority 3 3 8.138 3 7.760 2 6.305 

4 bit odd parity checker 4 9.215 4 7.760 3 6.816 

xor5 5 9.615 5 9.09 4 8.138 

6one135 6 10.22 6 9.357 5 8.943 

6one0246 6 10.22 6 9.412 5 8.943 

Table 4.4 shows the area in terms of device utilisation of the circuits generated by the 

proposed techniques and the circuits by conventional method. It can be seen that the 

number of Look-Up-Tables (LUTs) / slices / Input Output Blocks (IOBs) have been 

reduced considerably for the circuits with the proposed techniques. 

Table 4.4 Comparison of device utilisation in various methods of mux implementation 

Function Device utilization SI CIM VIM 

Majority 3  

No.of slices 1 1 1 

LUTs 2 1 1 

IOBs 6 6 4 

4 bit odd parity 

checker 

No.of slices 3 1 1 

LUTs 4 2 1 

IOBs 7 7 5 

Xor5 

No.of slices 3 1 1 

LUTs 4 2 2 

IOBs 8 8 6 

6one135 

No.of slices 3 2 1 

LUTs 5 3 2 

IOBs 9 9 7 

6one0246 

No.of slices 3 2 1 

LUTs 5 3 2 

IOBs 9 9 7 
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The power consumed by the circuits generated in CIM, VIM and Standard 

Implementation technique are shown in Table 4.5. It can be observed that the power 

consumption has been reduced in the proposed techniques even in FPGA 

implementation, which indicates that power reduction can be ensured in ASIC 

implementation. 

Table 4.5 Comparison of power consumption in various methods of mux implementation 

Function Power in mw 

 SI CIM VIM 

Majority3 0.149 0.147 0.141 

4 bit odd parity checker 0.153 0.147 0.143 

Xor5 0.154 0.151 0.149 

6one135 0.158 0.153 0.152 

6one0246 0.158 0.154 0.150 

4.6.2 Realisation of Circuits Using RM ULM 

The benchmark functions listed in Table 1.1 are used for the validation of the 

proposed techniques using RM ULM. 

1. 6one135- The circuit was realised using 6 units in 6 levels with CIM and 5 

units in 4 levels with VIM compared to 63 units in 6 levels with the 

conventional technique as shown in Figs. 4.18 (a) and (b) respectively. 
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    (a) CIM                             (b) VIM  

Fig. 4.18 Circuit evolved for 6one135 using RM ULM 

2. 6one0246 - The circuit needs only 8 units in 5 levels with CIM and 5 units in 5 

levels with VIM as shown in Fig. 4.19, whereas SI technique requires 63 units 

and 6 levels.  
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    (a)   CIM        (b) VIM  

Fig. 4.19 Realisation of 6one0246 using RM ULM 

3. xor5 - The circuit needs only 5 units in 5 levels with CIM, whereas with VIM 

the function could be realised with 4 units in 3 levels as shown in Fig. 4.20 (a) 

and (b) respectively. Fig. 4.20 (c) shows the RM realisation of xor5 by 

standard implementation technique which requires 31 units in 5 levels. Thus 

there is a saving of 26 units in CIM and 27 units in VIM respectively. Though 

the number of levels in CIM remains the same as in SI, VIM shows a 

reduction in one level. 
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(c) Standard implementation 

Fig. 4.20 RM implementation of xor5  
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4. 4 bit odd parity checker - The circuit generated (Fig.4.21 (a)) has only 3 

units in 2 levels in VIM as compared to 15 units and 4 levels in SI. With CIM, 

the circuit can be realised using 4 units and 4 levels, which is far better than 

SI. Thus on reducing the number of units, the cost, area and power can be 

reduced and on getting the number of levels reduced from 4 to 2, the delay 

involved is reduced. The same function using mux needs 3 units and 3 levels 

whereas its RM implementation accommodates the 3 units in 2 levels. Thus 

RM implementation is found to be better for XOR based operations. At the 

same time GA converges very fast with RM logic for parity checker circuits.   

    

  (a) CIM    (b) VIM  

Fig. 4.21   Evolved circuit for a Four bit odd parity checker using RM ULM 
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5. Majority3 –Fig. 4.22 shows the circuits evolved for this function using the 

proposed methods. It can be seen that the circuits require 5 units in 3 levels and    

3 units in 2 levels in CIM and VIM respectively.  
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 (a) CIM   (b) VIM  

Fig. 4.22 Circuit evolved for Majority3 using RM ULM 

Other functions 

1. 3 bit odd parity checker- The circuit evolved with CIM needs 3 units and     

3 levels, but with VIM, the circuit needs only 2 units in 2 levels as shown in    

Fig. 4.23. Thus in VIM, a saving of 5 units is achieved in comparison with the 

conventional method and a saving of 1 unit and 1 level in comparison             

with CIM. 
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 (a) CIM             (b) VIM  

Fig. 4.23 Three bit odd parity checker using RM ULM 

2. F (a, b, c) = ∑ m (1, 2, 4)  

Figs. 4.24 (a) and (b) shows the circuits evolved by CIM and VIM for the RM 

implementation of this function. 
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Fig. 4.24 Circuit generated for F (a, b, c) = ∑ m (1, 2, 4) using RM ULM 
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3. F (a, b, c, d ) = ∑ m (1, 2, 3, 5, 7, 8, 12)  

This is an example taken from (Oh and Almaini, 2007) based on 2VROBDD which 

required 6 units in 4 levels. But with the proposed techniques, the function could be 

implemented with lesser number of units / levels. With CIM, the circuit needs 6 units 

and 4 levels whereas with VIM, it needs only 4 units in 3 levels as shown in           

Figs. 4.25 (a) and (b) respectively. Thus there is a saving of 2 units and 1 level 

compared to the literature in VIM. 
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Fig. 4.25  RM implementation of   F (a, b, c, d) = Σ m (1, 2, 3, 5, 7, 8, 12) 

Table 4.6 shows a comparison of the proposed methods with SI technique in terms of 

number of units / levels. It is observed that the proposed methods, CIM and VIM use 

minimum hardware in lesser number of levels compared to SI. 
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Table 4.6 Comparison of the circuits evolved by various methods in terms 

of number of units / levels in RM implementation 

Sl. 

No. 
Function 

SI 

Units/ 

Levels 

CIM 

Units / 

Levels 

VIM 

Units / 

Levels 

1 F=Σ m (0, 1, 2, 4) 7/3 5/3 3/2 

2 F=Σ m (3, 5, 6) 7/3 4/4 3/3 

3 F=Σ m (1, 2, 4) 7/3 5/3 3/2 

4 Majority3  F = Σ m (3, 5, 6, 7) 7/3 5/3 3/2 

5 3bit odd parity 7/3 3/3 2/2 

6 F (a, b, c) =  Σ m (5, 6) 7/3 5/3 2/2 

7 F (a, b, c) = Σ m (0, 1, 2, 4, 6) 7/3 2/2 1/1 

8 4bit odd parity 15/4 4/4 3/2 

9 F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 15/4 6/4 3/3 

10 F (a, b, c, d)  = Σ m (5, 6, 9, 10) 15/4 4/3 3/2 

11 F(a, b, c, d) = Σ m (1, 2 ,3, 5, 7, 8, 12) 15/4 6/4 4/3 

12 F(a, b, c, d) = Σ m (13, 14) 15/4 5/3 3/2 

13 F(a, b, c, d) = Σ m (0, 4, 6, 7, 8, 12, 14, 15) 15/4 5/3 2/2 

14 xor5 31/5 5/5 4/3 

15 F (a, b, c, d, e) = Σ m  (0, 1, 9, 22, 23, 25, 

30, 31) 
31/5 10/5 6/4 

16  F (a, b, c, d, e) = Σ m (9, 11, 25, 27, 29, 31) 31/5 7/5 5/5 

17 6one 135 63/6 6/6 5/4 

18 6 one 0246 63/6 8/5 5/5 

19 F = X1X4 + X2X5 + X3X6  63/6 14/6 9/5 

 

The circuits generated by the proposed techniques are synthesised on FPGA Spartan3 

(device XC3S400) using Xilinx ISE 14.2 and hence the delay, device utilisation and 

power are estimated. Table 4.7 shows the delay associated with each circuit in 

standard implementation and the proposed techniques using RM realisation. It can be 

observed that there is a considerable reduction in delay with VIM compared to the 

other two methods. 
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Table 4.7 Delay in RM implementation by various methods 

Function SI CIM VIM 

 
No. of 

Levels 

Delay 

(nsec) 

No. of 

Levels 

Delay 

(nsec) 

No. of 

Levels 

Delay 

(nsec) 

Majority3 3 8.138 3 8.074 2 7.760 

4 bit odd parity 4 9.215 4 8.979 3 8.138 

Xor5 5 10.566 5 9.215 4 8.190 

6one135 6 10.443 6 9.893 5 9.09 

6one0246 6 10.443 6 9.103 5 8.943 

 

The area occupied by the circuits is compared by considering the number of LUTs, 

slices and IOBs utilised by each circuit. Table 4.8 shows the comparison of the device 

utilisation of the circuits in proposed techniques and in SI technique. It is obvious that 

the circuits generated by VIM occupy lesser area compared to the other two methods.  

Table 4.8 Device utilisation of various circuits in SI and proposed techniques. 

Function Device utilisation SI CIM VIM 

Majority3 

No.of slices 1 1 1 

LUTs 2 1 1 

IOBs 6 6 4 

4 bit odd parity 

checker 

No.of slices 3 1 1 

LUTs 6 2 1 

IOBs 7 7 6 

xor5 

No.of slices 4 1 1 

LUTs 7 2 1 

IOBs 8 8 7 

6one135 

No.of slices 4 1 1 

LUTs 7 2 2 

IOBs 9 9 8 

6one0246 

No.of slices 4 1 1 

LUTs 7 2 2 

IOBs 9 9 8 
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The power consumption of circuits generated by the proposed techniques are compared 

with the power consumed by circuits in SI and the results are tabulated as in Table 4.9. It 

can be observed that power consumption is less in the proposed techniques than the 

standard technique even in FPGA implementation. Hence power consumption will be 

less in circuits with the proposed techniques in ASIC implementation. 

Table 4.9  Comparison of Power consumption in various methods by RM 

implementation 

Function Power in mw 

 SI CIM VIM 

Majority3 0.151 0.148 0.147 

4 bit odd parity checker 0.150 0.146 0.116 

xor5 0.152 0.150 0.136 

6one135 0.153 0.152 0.142 

6one0246 0.154 0.153 0.151 

Comparison between the circuits generated using RM ULM and 2-1 mux 

A detailed analysis has been made on the performance of circuits evolved using the 

two ULMs (binary mux and binary RM ULM) by the proposed methods.                    

A comparison has been made on the power consumption, number of units and the 

number of levels required for the realisation of various functions. Table 4.10 shows 

the comparison of power consumption in various methods of circuit implementation. 

It can be observed that the power required has been reduced in both CIM and VIM 

compared to SI. For XOR based circuits, RM implementation in VIM has the least 

power requirement. For other circuits, mux implementation in VIM consumes least 

power.  
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Table 4.10 Power consumption in various methods of circuit implementation 

Function 
Power in SI 

(mw) 

Power in CIM 

(mw) 

Power in VIM 

(mw) 

 mux RM mux RM mux RM 

Majority3 0.149 0.151 0.147 0.148 0.141 0.147 

4 bit odd parity checker 0.153 0.150 0.147 0.146 0.143 0.116 

xor5 0.154 0.152 0.151 0.150 0.149 0.136 

6one135 0.158 0.153 0.153 0.152 0.152 0.142 

6one0246 0.158 0.154 0.154 0.153 0.150 0.151 

Fig. 4.26 shows a comparison between the circuits based on mux and RM ULM using 

CIM in terms of the number of units. The functions F1 to F4 are parity functions and 

it can be observed that RM based implementation involves lesser number of units for 

these functions. For the other functions, implementation using mux involves equal / 

lesser number of units. 

The functions used are: 

F1:  4 bit odd parity 

F2:  xor5 

F3:  6one135 

F4:  6one0246 

F5:  Majority3 

F6:  F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 

F7:  F (a, b, c, d, e) = Σ m (3, 7, 8, 15, 19, 23, 24, 26, 27, 31) 
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Fig. 4.26  Comparison of CIM in terms of number of units in mux and RM 

implementations  

Fig. 4.27 depicts the comparison of mux and RM implementations in VIM in terms of 

number of units. It can be seen that these methods perform equally good in both the 

implementations for XOR based circuits, while for other circuits, mux implementation is 

better if number of units required is to be minimum. 

 

Fig.4.27  Comparison of VIM in terms of number of units in mux and RM 

implementations 
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Fig. 4.28 illustrates a comparison on the number of levels for various circuits using 

mux / RM ULM in the proposed methods. It can be observed that in both the 

implementations, variable input method requires lesser number of levels. For parity based 

circuits, RM implementation in VIM uses lesser number of levels. For other circuits, 

number of levels with mux implementation is either less or equal to RM implementation. 

 

Fig. 4.28 Comparison of proposed methods in terms of number of levels 

To conclude, from Figs. 4.26, 4.27, and 4.28, it is observed that the number of       

units / levels required is minimum for XOR based circuits in VIM using RM ULM, 

whereas for other circuits, circuits with minimum hardware / levels are evolved for 

VIM using mux. 

4.7 SUMMARY 

Two simplified and efficient techniques referred to as CIM and VIM have been 

proposed for the design of combinational circuits which uses lesser number of units, 
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2-1 mux / 2-1 RM ULM uses GA as the optimisation tool. The evolved circuits were 

synthesised on FPGA Spartan 3 -XC3S400 device using Xilinx ISE 14.2. VHDL is 

used to describe the developed design. 

Functions up to 6 variables have been generated and detailed analysis of the evolved 

circuits for number of units, area and delay has been made. The results were compared 

with the methods available in the literature. Based on the analysis, it was found that the 

CIM is superior to SI technique. But VIM outperforms CIM also in terms of                

units / levels. It was observed that the VIM using RMULM evolves circuits with 

minimum hardware / delay for XOR based circuits and for other circuits, mux 

implementation is at par or better with reduced number of units / levels. The results are 

validated using benchmark functions. 

  



CHAPTER 5 

DESIGN OF SEQUENTIAL CIRCUITS 

5. 1   INTRODUCTION 

A lot of research has been done in the field of combinational circuits, while the design 

of sequential circuits is still in the toddler stage. Most real world electronic products use 

sequential circuits to send, receive, store, retrieve and process information stored in 

binary fashion. Hence there is a need for its optimised design. Sequential logic circuit 

(SLC) constitutes a combinational part and memory elements such as flip flops to store 

the states. SLCs can be classified into Synchronous (SSCs) and Asynchronous 

Sequential Circuits (ASCs) as mentioned in Section 1.1.  

This thesis focuses on the design of SSCs. A modified GA has been proposed to 

obtain the OSA. The complexity of the combinational part of SSC is determined by 

the state assignment and hence finding the best state assignment plays a major role in 

the design of sequential circuits so as to minimise the chip area and hence the cost. 

The behavior of an SSC can be represented by an FSM. It is a mathematical model of the 

sequential circuit with discrete inputs, discrete outputs, and internal states                     

(Ali et al.  2004). There are two types of FSM, namely Moore machine and Mealy 

machine. In Moore machine the output depends on the states alone where as in Mealy 

machine, the output depends on the inputs as well as the states (Mano, 2002) as shown in 

Figs. 5.1 and 5.2 respectively. The states of a system refer to the information of the past 

inputs which in turn determines the behavior of the system on the application of 
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subsequent inputs. The states are stored in the flip flops. The combinational part is used 

to produce the next state and the output of SSC. Therefore, an SSC consists of two 

combinational parts, viz., one to determine the next state and the other to determine the 

output of the system. The complexity of the circuit is completely determined by the 

number of logic gates involved in the combinational part. 

 

Fig. 5.1 Block diagram of Mealy machine 

 

Fig. 5.2 Block diagram of Moore machine 

In the case of CLCs, a truth table completely specifies the circuit, where as an SSC 

requires a STT or state transition diagram for specifying the circuit. 

5.2 STATE TRANSITION TABLE 

A state transition table or simply state table enumerates the time sequence of inputs, outputs 

and states of the flip flops. It consists of three sections namely the present state, next state 

and output. The STT can be prepared only if appropriate state assignment is done and from 
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the state table, the excitation table is generated corresponding to the type of flip flops 

chosen. Here D / T flip flops are used. The desired combinational circuits are evolved from 

the respective excitation tables by using the methods proposed in chapters 3 and 4. 

Thus, the first step in the design of SSCs is to obtain the OSA. 

5.3 STATE ASSIGNMENT 

In an FSM, each state is to be identified by a string of bits. Assigning a unique binary 

code to each of the states of the FSM is termed as state assignment. The process of 

obtaining a relationship between the states and the bit strings which result in minimal 

cost is referred to as the problem of OSA (Amaral et al. 1995). The design of OSA is 

crucial as it determines the complexity of the CLCs to be used. Once OSA is 

obtained, the corresponding STT is prepared.  

If the number of states is N, then the number of state variables s is the smallest integer 

that is equal to or greater than |log2N| and the total number of possible state is equal to 2
s
. 

The assignment process decides which of these 2
s
 states must be assigned to any 

particular state in the FSM. Total number of possible encodings is given by (Ali, 2003) 

 (   )  
   

(    ) 
   (5.1) 

Thus, for a circuit with 4 states, the possible number of encodings is 24. For a 5 state 

machine the number of encodings goes up to 6720. Since the number of possible state 

assignments grows enormously with the number of internal states, it is almost impossible 

to try all assignment manually in order to select the one which leads to the simplest logic 
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circuit. Use of evolutionary algorithms is a better alternative for the OSA of FSMs. Here 

a modified GA is used specifically to cater the needs of SSCs. 

5.4 MODIFIED GENETIC ALGORITHM  

Much research has been done in this area to get an OSA in FSMs. Prior to the use of 

GA, several algorithms such as NOVA, Mustang etc. were used to obtain the state 

assignment. In this work, GA is used to obtain the OSA with the help of Desired 

Adjacency Graph (DAG). DAG is an undirected, fully connected graph with states as 

its nodes. In an SSC implementation, the desirability of having two states adjacent to 

each other is determined by the strength of the arc connecting the two nodes. For an 

SSC to have minimum cost, the distance between the states that are strongly 

connected in the DAG is to be minimum.  

Thus the steps involved in the problem of state assignment are 

i) Obtain the weight of each arc of the DAG  

ii) Apply GA to find the minimum hamming distance between the strongly 

connected states to evolve the OSA. 

To determine the strength of a connection in DAG, the following heuristic rules are 

applied on the DAG (Amaral et al. (1995). 

State assignment should be done in such a way that 

 the distance between states that are in the same set of  successors should be 

minimum 

 

 the distance between states that are in the same set of predecessors of a given 

state with  a given input condition should be minimum 
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 the distance between the states that are in the same partition should be 

minimum 

A state Si is called a successor of state Sj if there is a transition from state Sj to Si. 

Similarly a state Si is said to be a predecessor of state Sj if there is a transition from 

state Si to Sj. States Si and Sj are said to be associated with each other if both of them 

are a successor of a given state, if both of them are in the set of predecessors of a state 

with a given input condition or if both of them are in the same partition of an output. 

Each output is said to partition the states of an FSM into subsets. The set of partitions 

of an output Zk is denoted by O (Zk). For Moore machines, output is given by Zk (Si). 

In Mealy machines, it is represented as Zk (Si, Ia) where Ia is an input condition 

represented in binary. Distance between two states Si and Sj is termed as the hamming 

distance and is denoted as D (Si, Sj). In an FSM with p input signals, there are c = 2
p
 

input conditions. 

The strength of the connection between state i and state j is denoted by       or 

      and is given by (Amaral et al. 1995).  

              ∑         

   

   

    ∑∑           

   

   

   

   

     ∑       

   

   

    (   )∑∑        

   

   

   

   

    (       )                                        (   ) 

Where c is the no. of input conditions, v is the number of output variables, s is the 

number of states, and  

    {
           (  )
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R1, R2, R3 and R4 are constant coefficients which are fixed on the significance of each 

individual rule.  

First term of Eq. (5.2) corresponds to the pair of states that are common successors to 

a particular state (rule1). The second term stands for the pair of states that are 

common predecessors to a particular state (rule 2). The third and fourth terms 

correspond to pairs of states that are in the same output partition for a given output 

(rule 3). The last term indicates transitions between two states. It is used when the 

relative position of each state is difficult to know from the previous terms. 

Since the DAG is an undirected and fully connected graph, the values of its 

connections can be represented by a symmetric square matrix. Here the coefficients 

of R are fixed as R1 = 3, R2 = 4, R3 = 2 and R4 = 1 (Comer, 1984). The SSC cost is 

lowered when the distance between two states with strong connections in the DAG is 

minimum. Thus, if DAGij is large, D (Si,Sk) should be small. For a given FSM 

specification and a state assignment, fitness of this specific assignment can be 

computed. The fitness function for this is given by: 
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        ∑ ∑ (    
   

   
       (     ))          (5.3) 

Where k is the number of bits used for the state codification. Eq. (5.3) can be expressed as 

        ∑∑( 

   

   

   

   

  )       ∑∑ (     )

   

   

   

   

                      (   ) 

Since DAGij is fixed for a given FSM formulation and k is a positive constant, the first sum 

results in a constant term. Thus fitness is maximum when the second term is 

minimum. i.e., when sum over i and j of the product D (Si, Sj) DAGij is minimum.  

5.4.1 Chromosomal Representation 

The list of states is represented as chromosomes. The length of the chromosomes is 

equal to the number of states used for the sequential machines.  As mentioned earlier, 

the number of bits s required to represent the states is equal to the smallest integer 

which is greater than or equal to          If there are 3 states, then number of bits 

required is 2. With these two bits, there can be four possible states. i.e., 0, 1, 2, 3. 

Here, the states (chromosomes) are represented as decimal integers. An initial 

population of integers is generated randomly without any duplication of integers in 

every chromosome. The function “randperm” in MATLAB 2012a is used to generate 

a shuffled decimal number assignment without any duplication of numbers. The 

individuals / chromosomes are selected for crossover by any selection procedure as 

mentioned in Section 1.4. In this work, RWS technique has been used. 
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5.4.2 Crossover 

In (Amaral et al. 1995), an individual was represented by a binary matrix with s rows 

and k columns where s is the number of states in the FSM and k is the number of bits 

used in the SSC. Crossover was done by randomly selecting columns from the parents 

in order to create the offspring. If k bits are used to represent the states, let l bits 

(columns) be preserved from parent 1 and the remaining k-l bits from parent 2. Here, 

2
k-l

 assignments can be identical in these l columns which are not permitted. 

It can be explained by considering an example shown in Table 5.1 with 6 states. If      

2 bits are preserved from parent1 (k = 3, l = 2) then, at most 2
k-l

 = 2
1 

= 2 combinations 

can be identical in the first two columns and the conflict has to be eliminated by 

selecting the appropriate bit from the two different combinations (1 or 0) for the third 

column. It can be observed that the offsprings S2 and S5 have the same attribution 

which is invalid. Hence the offsprings have to be checked for conflicts if any and 

proper modifications have to be made which makes the job cumbersome. 

Table 5.1 Example for illustrating the conflict during conventional crossover 

States Parent1 Parent 2 Offspring 

S0 001 000 000 

S1 000 011 001 

S2 010 100 010 

S3 101 010 100 

S4 110 001 111 

S5 011 110 010 

 

The checks for conflicts if any, and further corrections can be eliminated in the 

proposed modified crossover technique where the chance for getting the states invalid 

is eliminated. 
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Hence the states have to be checked for duplication, which consumes more 

computational time. To avoid duplication, a modified crossover technique is proposed 

which leads to modified GA. 

Consider two parents with five states selected for crossover as shown in Fig. 5.3. 

Before crossover, GA takes a copy of the parents and stores it in a temporary variable 

and a “Similarity Test” is performed. In this test, the first element of parent B is taken 

and compared with all elements of parent A. If that element is present in parent A, 

then the second element of parent B is compared with all elements of parent A. If 

there are no similar elements in parent A, the corresponding decimal values of the 

same row are interchanged. This process continues for all the elements in parent B. 

Now the parent A in the temporary variable becomes offspring C. The process is 

reversed by taking each element of parent A and comparing it with all elements of 

parent B in order to produce offspring D (Fig. 5.4). Thus the off springs are protected 

from duplication. 

 

Fig. 5.3  Swapping of individuals by comparing the elements of parent B with the 

elements of parent A 
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Fig. 5.4  Swapping of individuals by comparing the elements of parent A with the 

elements of parent B 

In the conventional mutation technique, any of the gene in a randomly selected 

individual is changed. Then there is a chance for two of the states to have the same 

assignment which is not permissible. Hence the conventional mutation process cannot 

be applied in this case. To create randomness in the offsprings, instead of changing a 

selected gene, the genes at two randomly selected positions of the selected offspring 

are interchanged. For E.g.; consider the offspring shown in Fig. 5.5 (a). If the two 

randomly selected positions of the individual are, 2
nd

 and 4
th

,
 
then the corresponding 

states are interchanged as in fig. 5.5 (b) so as to get the new offspring. 

 

a) Offspring before interchange of genes b) Offspring after  interchange of genes 
 

Fig. 5.5 Exchange of genes 
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The chromosome having the maximum fitness value is considered to be the OSA. 

Once OSA is obtained from GA, the STT is prepared. Using this STT, the 

corresponding excitation tables are generated and the circuits are evolved 

automatically. The combinational circuits have been realised using i) gates alone and 

ii) using 2-1 mux / 2-1 RM ULM. T / D flip flops are used as state registers. 

5.5. DESIGN OF THE COMBINATIONAL PART 

For the design of the combinational part using gates, the circuits are evolved using a 

new GA based technique as mentioned in Section 3.3. For faster implementation of 

GA, the chromosomes are represented in a bidirectional array (2D) and the suitable 

crossover and mutation techniques have been applied. With this technique, the CLCs 

for Moore and Mealy machines have been evolved. 

The exclusive use of 2-1mux / 2-1 RM ULM for the implementation of combinational 

part reduces the manufacturing cost due to the repeated use of the same design element. 

The circuits based on ULMs were evolved using the VIM proposed in Section 4.3. 

5.6 RESULTS  

Sequence detectors and modulo-n counters have been evolved, the combinational part 

of which has been realised using gates and ULMs. 

5.6.1 Implementation of Mealy Machines 

Sequence detectors are the best examples for Mealy machines. “011” sequence detector 

and “1010” sequence detector circuits have been evolved using the proposed techniques. 
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Example 1. “011” Sequence Detector - the circuit produces a logic high output 

whenever the sequence “011” is detected in the input stream.  

The state transition graph of “011” sequence detector is shown in Fig. 5.6. Since there 

are only 3 states, number of state variables required is the smallest integer greater 

than or equal to          , which is equal to 2. With two state variables, there can 

be four possible states 0, 1, 2, 3. GA evolves the OSA using 3 states out of the 

available 4 states based on the fitness function mentioned in Section 5.4. 

With the proposed GA technique, the OSA obtained is 0, 2, 1. With this assignment, 

STT is constructed as shown in Table 5.2. Using this STT, the necessary excitation 

table for the state register using T flip flop is generated as shown in Table 5.3 and the 

system automatically evolves the combinational circuit to obtain the inputs for next 

stage as well as the output of FSM. 

S0

S1S2

0/0

1/0

1/1
0/0

1/0

0/0

 

Fig. 5.6 State Transition Graph of “011” sequence detector  
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Table 5.2 State Transition Table for “011” sequence detector 

Present state Next State Output 

 X=0 X=1 X=0 X=1 

00 10 00 0 0 

10 10 01 0 0 

01 10 00 0 1 

Table 5.3 Excitation table for “011” sequence detector  

Present state Next state Output Desired inputs 

Qa Qb X Qa
*
 Qb

*
 Y Ta Tb 

0 0 0 1 0 0 1 0 

0 0 1 0 0 0 1 1 

0 1 0 1 0 0 1 1 

0 1 1 0 0 1 0 1 

1 0 0 1 0 0 0 0 

1 0 1 0 1 0 1 1 

1 1 0 0 0 0 1 1 

1 1 1 0 0 0 1 1 

 Qa*, Qb*- states of flip flops A and B after the application of clock pulse. 

The combinational part of the circuit is realised with gates using GA. 2D Crossover 

and mutation techniques have been used (method proposed in Section 3.3) for the 

implementation which reduces the computation time significantly. The circuit was 

evolved using 8 gates as shown in Fig. 5.7. The average number of generations 

required was 98 with a population size of 200 individuals. 

Ta Qa
Tb Qb

Qa

X

Qb

Qa

X

Qb

X

Y(Output)

CLK

′Qa

Qa

′Qa

 

Fig. 5.7 Circuit generated for “011” sequence detector using gates 
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The design of “011” sequence detector using 2-1 mux is shown in Fig. 5.8. Here, the 

circuits for Ta, Tb, and Y are evolved separately. To optimise the generated circuits, 

the algorithm checks for redundancies and are eliminated so that the generated 

circuits are optimal. The inputs to the state registers as well as the output of the FSM 

are implemented using 7 binary multiplexers. 

0 1

0 1 0 1

0 1

0 1

0 1

0 1

0 0
x x

0 0

X

1 0
0

CLK

Ta Qa
Tb Qb

Qb

Qb

Qb

Qb

Qa

Qa

Qa

Y (output)

 

Fig. 5.8 Implementation of “011” sequence detector using 2-1 mux 

The generated circuit for “011” sequence detector using RM ULM is shown in       

Fig. 5.9. It uses 6 binary Reed Muller blocks to realise the FSM. 

TbTa

CLK

0

1

X

X

Y (output)
Qa

Qb

Qa

Qa

Qa

Qb

Qb

Qb

1

0

0 1

0 1

0 10 1

0 1

′X

′
X

′X

′X

 

Fig. 5.9 Circuit evolved for “011” sequence detector using RM ULM 
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Example 2. “1010” sequence detector (overlapping) - the circuit raises the output to 

logic „1‟ whenever the sequence “1010” is detected in the input stream. 

This is an example taken from Ali et al. (2004), the state diagram for which is shown 

in Fig. 5.10. The OSA evolved is (0, 3, 1, 2). With this assignment, STT is prepared 

as shown in Table 5.4. The combinational circuits at the input of state register as well 

as the combinational circuit for the output are evolved as per the excitation table 

shown in Table 5.5.  

The CLCs have been evolved using i) gates ii) mux and iii) RM ULM and the 

corresponding circuits are shown in Figs. 5.11, 5.12 and 5.13 respectively. 

It can be observed from Fig. 5.11 that the CLC needs only 4 gates for generating the 

next state and output, compared to 5 gates in the literature (Ali et al. 2004). Here      

D flip flops have been used as state registers so as to have a comparison with the 

method in the above literature.   

From Figs. 5.11 and 5.12, it is seen that 4 mux and 4 RM units respectively are 

needed for the implementation of this FSM using the ULMs. 
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S3S3

S0

S1

S2
1/0

0/1

0/0

1/0

0/0

1/0

0/0

1/0

 

Fig. 5.10 State Transition Graph of “1010” sequence detector 

Table 5.4 State Table for “1010” sequence detector 

Present state Next State Output 

 X=0 X=1 X=0 X=1 

00 00 11 0 0 

11 01 11 0 0 

01 00 10 0 0 

10 01 11 1 0 

 

Table 5.5  Excitation table for “1010” sequence detector for the state             

assignment 0, 3, 1, 2 

Present state Next state Output 
Desired 

input 

Qa Qb X Qa
*
 Qb

*
 Y Da Db 

0 0 0 0 0 0 0 0 

0 0 1 1 1 0 1 1 

0 1 0 0 0 0 0 0 

0 1 1 1 0 0 1 0 

1 0 0 0 1 1 0 1 

1 0 1 1 1 0 1 1 

1 1 0 0 1 0 0 1 

1 1 1 1 1 0 1 1 
 



119 

X

CLK

Da Db

Qa

X

Y (Output)

Qb
Qa

Qb

Qa Qb

′′Qa

 

Fig. 5.11 Circuit for “1010” sequence detector using gates 

CLK

1

X

Da
Qa

Db Qb

0

Qb

Y (output)

0

10

10

10

10

′Qa Qb
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                                                 Fig. 5.12 Circuit for “1010” sequence detector using mux 

CLK

Da Qa
Db Qb

X

Y (output)

0

X

1 0

10

10

10

0 1′Qa
′Qb

′
X

 

Fig. 5.13 Circuit for “1010” sequence detector using RM ULM 
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From the results, it is obvious that the proposed technique evolves circuits with 

hardware which is better or as good as the results available in the literature. 

5.6.2 Implementation of Moore machines 

Counters such as mod 3, mod 6, and mod 8 have been generated as examples of Moore 

machines. This can be extended to any number of bits and for any counting pattern. 

Example 1. Mod 3 counter 

The excitation table corresponding to Mod 3 counter with the sequence 0, 1, 2 is 

shown in Table 5.6 and the CLC to generate the next state are evolved using this 

excitation table. The inputs to the flip flops Ta and Tb are functions of Qa and Qb and 

the circuit generated using gates is shown in Fig. 5.14. It can be seen that the CLC to 

generate the next state requires 2 gates. 

Table 5.6 Excitation table for mod 3 counter  

Present state Next state Desired inputs 

Qa Qb Qa* Qb* Ta Tb 

0 0 0 1 0 1 

0 1 1 0 1 1 

1 0 0 0 1 0 

1 1 0 0 1 1 

Ta Qa Ta Qb

Qa

Qb Qb

Qa Qb

CLK

′Qa ′Qb

′Qa

 

Fig. 5.14 Generated circuit for mod 3 counter using gates 
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The FSM using T flip flops and mux or RM ULM are shown in Fig. 5.15 and 5.16 

respectively. It can be observed that the circuits require 2 ULMs in both the cases. 

 

Fig. 5.15 Circuit for mod 3 Counter using mux 

Ta Qa
Tb Qb

CLK

Qa Qb

0

0Qa Qa

1 0 1

Qb ′Qb

0  

Fig. 5.16 mod 3 Counter using RM ULM 

 

CLK

0 1 Qa

Qb 1

0 1 Qa

1 Qb

Qa
Qb

Ta Qa Tb Qb
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Example 2. mod 6 counter  

Table 5.7 shows the excitation table corresponding to Mod 6 counter with the 

counting sequence 0, 1, 2, 3, 4, 5. The corresponding CLCs using gates and the 

ULMs are shown in Figs. 5.17, 5.18 and 5.19 respectively. 

Table 5.7   Excitation table for mod 6 counter 

Present State Next state Desired inputs 

Qa Qb Qc Qa* Qb* Qc* Ta Tb Tc 

0 0 0 0 0 1 0 0 1 

0 0 1 0 1 0 0 1 1 

0 1 0 0 1 1 0 0 1 

0 1 1 1 0 0 1 1 1 

1 0 0 1 0 1 0 0 1 

1 0 1 0 0 0 1 0 1 

1 1 0 1 0 0 0 1 0 

1 1 1 1 0 0 0 1 1 

From Fig. 5.17, it can be seen that the circuit is evolved using 7 gates. Since 2 D 

crossover technique has been adopted, the computational time is reduced. From     

Figs. 5.18 and 5.19, it can be seen that the circuit using mux needs 6 units whereas 

the circuit with RM ULM needs 8 units. 

Ta Tb Tc

CLK

Qc

Qa

Qb
Qc

Qc

Qc

Qb

QbQa

Qa

Qa

Qb

Qc

′Qb
′

Qa

Qb
′Qa

Qb
′

Qb
′ Qc

′ Qc
′

Qa
′ Qa

′

 

Fig. 5.17 mod 6 Counter using gates 
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Fig. 5.18 mod 6 Counter using mux 
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Fig. 5.19 Mod 6 Counter using RM ULM 

Example 3. Mod 8 Counter 

The excitation table for mod 8 counter is shown in Table 5.8 and the corresponding 

circuits using gates, mux and RM ULM are shown in Figs. 5.20, 5.21 and 5.22 

respectively. T flip flop has been used for the implementation.  
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Table 5.8 Excitation table for mod 8 counter 

Present state Next state Desired inputs 

Qa Qb Qc Qa* Qb* Qc* Ta Tb Tc 

0 0 0 0 0 1 0 0 1 

0 0 1 0 1 0 0 1 1 

0 1 0 0 1 1 0 0 1 

0 1 1 1 0 0 1 1 1 

1 0 0 1 0 1 0 0 1 

1 0 1 1 1 0 0 1 1 

1 1 0 1 1 1 0 0 1 

1 1 1 0 0 0 1 1 1 

 

Tc

1

CLK

     Tb

Qa Qb

QbTa Qa

Fig. 5.20 Circuit for mod 8 counter using gates 

‘1’

Qa Qb

CLK

Ta Qa Tb Qb

Qa Qc

Tc Qc

Qb

Qc

 

Fig. 5.21 Circuit for mod 8 counter using mux 



125 

CLK
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Fig. 5.22 Circuit for mod 8 counter using RM ULM 

5.7 SUMMARY 

This chapter explores the possibility of using GA for the design automation of SSCs. 

Conventional GA is not suitable for the state assignment in sequential circuits. Hence a 

modified GA has been proposed to obtain the OSA. The OSA determines the complexity 

of the combinational circuits required to generate states as well as the outputs. The CLCs 

are generated using i) gates and ii) ULMs such as 2-1 mux / 2-1 RM ULM as mentioned 

in chapters 3 and 4. The circuits based on ULMs were evolved using the VIM proposed 

in this thesis as this method produced more optimal circuits. 

Sequence detectors and modulo n counters were used to validate the proposed 

techniques. The OSA evolved in this work produced circuits better than those in the 

available literature.  

For the CLCs evolved using gates, a new technique proposed in this thesis helped to 

reduce the computational time involved. The circuits with the exclusive use of ULMs 

have the advantage that repeated use of a single design element reduces the 

manufacturing cost.  



 



CHAPTER 6 

CONCLUSION AND SCOPE FOR FURTHER WORK 

6.1 THESIS SUMMARY AND CONCLUSION 

In conventional design, the quality of the designed circuit depends solely on the 

designer’s capability and it varies from designer to designer. Evolutionary design as an 

alternative method for logic design has become more attractive because of its 

algebraindependent techniques for generating efficient circuits. The work presented in 

this thesis concentrates on developing automated techniques for the design of digital 

circuits using GA. Synthesis of both combinational and sequential logic circuits have 

been done. 

A CLC can be realised by using an interconnection of logic gates, or ULMs such as 

multiplexers or RM logic modules. The ability to realise logic functions using 2 input 

ULMs is of growing importance in the design of CLCs and hence only binary ULMs 

are used in this work. The functions have been implemented using        i) gates alone 

and ii) 2-1 mux  / 2-1 RM ULM. The synthesis of SSCs is done with   D / T flip flops 

and the combinational part is being automated using GA with  gates / ULMs as 

design elements. This automated approach for the generation of circuits has the added 

advantage of reduced dependency on the designer's knowledge and experience. 

In this thesis, a faster 2D technique using GA has been proposed for the design of 

CLCs using gates. A new 2D chromosomal representation and its suitable crossover 

and mutation techniques are developed. With this technique, since the chromosomes 

are represented as matrices, crossover operation involves swapping of sub matrices 
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instead of a portion of a linear array in the case of the existing method of crossover. 

Hence, in linear crossover some of the levels / gates may remain unaltered during 

crossover, whereas with the proposed approach, since the sub matrices are swapped 

for crossover operation, variations from the parent circuits can occur at any level 

either in connections / type of gates. Furthermore, 2D chromosomal representation 

offers better visualisation of the circuit. The quality of the evolved circuits is 

determined by the strength of the fitness function used. XOR, AND, OR gates and 

WIRE have been used for the design. The fitness function has been formulated in 

such a way that 100 % functional circuits are evolved with minimum hardware by 

assigning an additional fitness value for every WIRE used. The computational time 

involved in this technique has been compared with that of linear crossover and 

mutation and is found to be reduced considerably. Moreover, on comparing the 

number of units / levels with the conventional method, automated design generates 

circuits with lesser number of gates / levels. Benchmark functions have been used to 

validate the results. 

For the design of CLCs using binary ULMs, two new techniques referred to as Constant 

Input Method (CIM) and Variable Input Method (VIM) are proposed. These methods are 

based on the exclusive use of Universal Logic blocks such as 2-1 mux  / 2-1 RM ULM so 

as to produce fully functional circuits with minimum number of units, interconnections 

and levels. With SI technique, using Shannon’s / Davio decomposition method, a 

function of n variables can be realised using 2
n
-1 binary ULMs in n levels. In this thesis, 

an attempt has been made to reduce the number of units and / levels by suggesting certain 

modifications on these techniques.  
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The two techniques differ only in the inputs to the circuit. In CIM, the inputs to the 

circuit are only 0s and 1s whereas with VIM, the inputs can be 0, 1, variables or their 

complements. The control signals are selected at random from among the variables, 

their complements or functions derived from the immediate preceding level, whereas 

SI used fixed control signals for each level. Moreover, unlike SI technique, control 

signal selected at one level can be used for other levels too and all the variables need 

not be used as control signal in the proposed techniques. For CIM, only 0s and 1s are 

given as inputs so that no variable inputs are needed which is an added advantage. 

The proposed techniques have been validated using benchmark functions. The evolved 

circuits are synthesised using Xilinx ISE 14.2 on Spartan 3 device (XC3S400). 

Functions up to 6 variables have been implemented and detailed analysis of the evolved 

circuits for number of units / levels is made. The evolved circuits have been compared 

with SI and with the methods available in the literature. It was observed that circuits 

obtained by both the methods are more efficient than the conventional methods. In both 

mux and RM implementations, VIM produced circuits with minimum hardware / delay. 

For XOR based circuits, minimum hardware / delay were obtained for VIM using     

RM ULM.  

Design of Synchronous Sequential Circuits (SSCs) which involve memory/storage 

elements is also investigated in this thesis. Every SSC can be defined as a Finite State 

Machine and its design involves two stages. First stage involves the OSA which 

solely determines the complexity of the combinational part of SSCs. A modified GA 

has been proposed to obtain the OSA with a view to minimise the hardware. Second 

stage involves the design of combinational part to generate the next state and the 

output of the state machine.  
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The combinational part of SSC has been evolved using i) gates and ii) the binary 

ULMs such as 2-1 mux and 2-1 RM ULM. For the CLCs using gates, the technique 

proposed in this thesis helped to reduce the computational time involved. The circuits 

with the exclusive use of ULMs have the advantage that repeated use of a single 

design element reduces the cost of implementation. Moreover, the circuits evolved by 

the techniques presented in this thesis for the design using ULMs are more efficient 

compared to the conventional methods in terms of hardware / delay. Here, VIM 

mentioned in Section 4.3 has been used for the realisation of the combinational part. 

A few Moore and Mealy machines have been implemented using these techniques.       

D / T flip flops are used as state registers and XOR, AND, OR gates or WIRE are 

used for the gate level design of the combinational part. 

It has been observed that the OSA evolved in this work produced circuits better than 

or at least as comparable to those in the available literature.  

6.2 SCOPE FOR FURTHER WORK 

The present work used only four types of gates for the realisation of circuits. As a 

future expansion, more number of gates could be used so that still better circuits 

could be evolved. This thesis dealt with completely specified functions. Future 

enhancement is to extend the work to incompletely specified functions. In this work, 

circuits are evolved with the exclusive use of a single ULM. But it could be extended 

to design the circuits using a combination of mux and RM ULM. The methods 

presented in this work based on ULMs used functions derived from the immediate 

preceding level as control signals to the next level. One possible future extension is to 

use the functions derived from the lowest level onwards to be transferred to any level. 
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The number of units can still be reduced by eliminating the units having the same 

outputs in any of the levels. So an important future direction is to eliminate such 

modules. In this work, design of CLCs using ULMs is limited to single output 

functions and as a future work, it can be extended for multiple output functions.      

Another possible extension for this work is applying 2D crossover and mutation 

techniques for the design of CLCs using ULMs.  

In this thesis, design automation of SSCs has been made and it could be extended to 

the design of ASCs. As a future scope, GA can be applied effectively by modifying 

the fitness functions to obtain optimal circuits by inexact computing. Other             

biologically inspired algorithms may also be tried for the evolution of circuits. 
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