
TOWARDS THE DEVELOPMENT OF AUTOMATED

TECHNIQUES FOR THE DESIGN OF DIGITAL CIRCUITS

USING GENETIC ALGORITHM

A THESIS

Submitted by

VIJAYAKUMARI C. K

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DIVISION OF ELECTRONICS ENGINEERING

SCHOOL OF ENGINEERING

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY, KOCHI

SEPTEMBER 2016

CERTIFICATE

This is to certify that the thesis entitled TOWARDS THE DEVELOPMENT OF

AUTOMATED TECHNIQUES FOR THE DESIGN OF DIGITAL CIRCUITS

USING GENETIC ALGORITHM submitted by Vijayakumari C.K to the Cochin

University of Science and Technology, Kochi for the award of the degree of Doctor

of Philosophy is a bonafide record of research work carried out by her under our

supervision and guidance at the Division of Electronics Engineering, School of

Engineering, Cochin University of Science and Technology. The content of this

thesis, in full or in parts, have not been submitted to any other University or Institute

for the award of any degree or diploma.

Supervising Guide Co- Guide

Dr. Mythili P. Dr. Rekha K. James

Associate Professor Professor

Division of Electronics Division of Electronics

School of Engineering School of Engineering

Cochin University of Science and Cochin University of Science and

Technology Technology

Kochi-682 022 Kochi-682 022

Kochi: 682 022

Date: 09/09/2016

DECLARATION

I hereby declare that the work presented in this thesis entitled TOWARDS THE

DEVELOPMENT OF AUTOMATED TECHNIQUES FOR THE DESIGN OF

DIGITAL CIRCUITS USING GENETIC ALGORITHM is based on original

research work carried out by me under the supervision and guidance of Dr. Mythili. P,

Associate Professor, Division of Electronics Engineering, and Dr. Rekha K. James,

Professor, Division of Electronics Engineering, for the award of degree of Doctor of

Philosophy with Cochin University of Science and Technology. I further declare that the

contents of this thesis in full or in parts have not been submitted to any other University

or Institute for the award of any degree or diploma.

Kochi - 682 022 Vijayakumari C.K

Date :09/09/2016 Division of Electronics Engineering

i

ACKNOWLEDGEMENTS

At the outset, I would like to give special thanks to God Almighty for providing me

the opportunity, wisdom, health and knowledge for successful completion of this

research work.

I would like to express my profound gratitude to Dr. Mythili. P, Associate Professor,

Division of Electronics Engineering, School of Engineering, Cochin University of

Science and Technology, for her valuable guidance, timely advice, suggestions and

personal attention as supervising guide. She was always a source of constant

encouragement and motivation during the course of this research work. Heartfelt thanks

are due to her for all the inspiration and immense patience shown to me for pursuing

research.

My deepest gratitude and respect also goes to Dr. Rekha K. James, Professor,

Division of Electronics Engineering, School of Engineering, Cochin University of

Science and Technology, for her guidance, continuous encouragement and constant

support as co-guide. Her creative comments and suggestions from the initial

conception till the completion of this work are highly appreciated. I express my

sincere thanks to her for the support given to me during the course of research work.

I am very much indebted to Dr. Binu Paul, Head of the Division, School of Engg.,

CUSAT, for her support in pursuing the Ph. D programme in the department. I am

extremely thankful to Dr. S. Mridula, Professor, Division of Electronics Engg. for her

valuable comments, suggestions and encouragement as Doctoral committee member.

I wish to place on record my profound thanks to Dr. R. Gopika Kumari for giving

inspiration and suggestions during the interim presentations.

ii

My sincere thanks are due to the research scholars, Mr. Biju V. G, Mr. Anil Kumar C.V,

Mr. Anjith T. A, and Mrs. Rema N. R, Ria, Athira, Roshna and Saira Joseph, SOE,

CUSAT for their cooperation and support extended.

I am very much indebted to all Faculty and Staff members of Division of Electronics

Engineering, School of Engineering, CUSAT, Kochi for their support and

cooperation during the research work. The help rendered by the office staff of School

of Engineering, CUSAT in fulfilling all the procedural formalities, is gratefully

acknowledged.

I am extremely grateful to Dr. Nisha Kuruvilla and Dr. Deepa J., Associate Professors

at College of Engg. Chengannur, for the inspiration and timely advice during the

course of my research.

I am extremely thankful to all my colleagues, Head of EE department, and Principal

at R I T Kottayam for their constant support in fulfilling this work.

I would like to express my deep sense of gratitude to my friends Prof. Geetha Renjin,

Dr. Sathish Kumar, Dr. Reena Murali, Dr. Rajesh R, Prof. Pramela Kumari and

Prof. Saina Deepthi, for their continuous emotional support and motivation.

I am greatly indebted to all my near and dear ones for their deep love, care and patience

to move on with my research work. I am very much grateful to my husband

Dr. Predeep S. V, my son Mr. Gopikrishnan P. and daughter Miss. Sreelakshmi P. Nair

for their love, understanding, support and encouragement that helped me to fulfill my

dream.

Vijayakumari C K

iii

ABSTRACT

Keywords: Combinational logic circuits; Evolutionary Design; Genetic Algorithm;

Synchronous Sequential Circuits.

Due to the very high impact of digital electronics in everyday life, the design of

digital circuits has gained a great significance. Thus, finding an optimised fully

functional circuit with reduced cost is a challenge for the designer. As nature unveils

several diverse and striking phenomena, it has become a great source of inspiration

for solving hard and complex problems in computer applications and gave rise to

several biologically inspired algorithms. This thesis focuses on developing automated

techniques for the design of digital circuits using one of the biologically inspired

algorithms, Genetic Algorithm (GA).

The first phase of this research work concentrates on developing an evolutionary

technique for the design of Combinational Logic Circuits (CLCs) using gates. A new

faster 2 Dimensional (2D) chromosomal representation, its suitable 2D cross over and 2D

mutation techniques have been proposed. In this work, gates such as AND, XOR, OR

and WIRE are considered for the design. Once a 100% functional circuit is obtained, an

additional fitness value is assigned for every WIRE used. This ensures minimum number

of gates in the evolved circuit in subsequent generations. A comparison between the

proposed method and the existing methods has been made and has been observed that the

computation time can be reduced significantly using 2D representations.

The second phase explores the design automation of CLCs using Universal Logic

Modules (ULMs) such as 2-1 multiplexer (2-1 mux) / 2-1 Reed Muller ULM

(2-1 RM ULM). The objective is to generate fully functional circuits with minimum

iv

hardware using GA as the optimisation tool. Applying several modifications on

Shannon’s / Davio decomposition techniques, two different methods referred to as

Constant Input Method (CIM) and Variable Input Method (VIM) are proposed for the

design of CLCs. In CIM, the inputs to the circuit are only 0s and 1s whereas in VIM,

the inputs can be 0, 1, variables or their complements. The control signals are selected

at random from among the variables, their complements or functions derived from the

immediate preceding level, which is not allowed in Standard Implementation (SI)

technique. The evolved circuits are synthesised on Xilinx FPGA Spartan3 (XC3S400)

device.

The third phase investigates into the design of Synchronous Sequential Circuits

(SSCs) which involves two stages. i) to determine the optimal state assignment which

leads to circuits with minimum hardware and ii) to design the corresponding

combinational part to generate the required states for the flip flops and to generate

the output. A modified GA has been proposed for the state assignment with a view to

minimise the circuit complexity and as a second stage, the combinational part of the

FSM is evolved using the techniques proposed in this thesis. The combinational parts

are implemented using gates or ULMs such as 2-1 mux / 2-1 RM ULM. Sequence

detectors (Mealy machines) and counters (Moore machines) have been designed.

All the above proposed techniques have been validated using benchmark functions

and compared with the existing conventional techniques. It is observed that the

proposed techniques are better than the methods available in the literature.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. i

ABSTRACT .. iii

TABLE OF CONTENTS ... v

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

ABBREVIATIONS .. xvii

CHAPTER 1 INTRODUCTION ..1-21

1.1 Digital Circuits ... 1

1.2 Conventional Design Techniques .. 3

1.2.1 Combinational Logic Circuits ... 3

1.2.2 Sequential Circuits .. 4

1.3 Automated Design Techniques .. 5

1.3.1 Importance .. 5

1.3.2 Evolutionary Design ... 5

1.3.3 Evolutionary Algorithms .. 7

1.3.4 Genetic Algorithm (GA) ... 8

1.4 Automated Design of Digital

 Circuits using GA ... 10

1.4.1 CLCs using Gates ... 11

1.4.2 CLCs Using ULMs ... 12

1.4.3 Synchronous Sequential Circuits ... 16

1.5 Tools / Platform .. 17

1.6 Benchmark Functions Used ... 17

1.7 Motivation .. 18

1.8 Objectives ... 19

1.9 Contributions of the Thesis ... 20

1.10 Outline of the Thesis .. 20

CHAPTER 2 LITERATURE REVIEW..23-34

2.1 Evolutionary Design ... 23

2.2 Design of Combinational Circuits ... 24

2.2.1 Design Using Gates... 24

2.2.2 Design Using Multiplexers .. 28

2.2.3 Design Using RM ULM .. 29

2.3 Design of Sequential Circuits .. 31

2.4 Summary ... 33

CHAPTER 3 COMBINATIONAL LOGIC CIRCUIT DESIGN

USING GATES ... 35-61

3.1 Introduction .. .35

3.2 Chromosomal Representation

 (Encoding) .. 37

vi

3.2.1 Linear (Conventional) Chromosomal

 Representation .. 37

3.2.2 2D Chromosomal Representation

 (Encoding of the circuit) ... 39

3.3 Optimisation Using GA... 42

3.3.1 2D Crossover technique .. 42

3.3.2 2D Mutation.. 47

3.3.3 Fitness Function .. 49

3.3.4 GA Parameters .. 50

3.4 Results .. 50

3.5 Summary .. 61

CHAPTER 4 COMBINATIONAL LOGIC CIRCUIT DESIGN

USING UNIVERSAL LOGIC MODULES63-102

4.1 Introduction .. 63

4.2 Methodology ... 64

4.2.1 Binary Multiplexer (2-1 mux) .. 65

4.2.2 Binary RM ULM (2-1 RM ULM) ... 66

4.3 Proposed Methods... 67

4.3.1 Constant Input Method .. 68

4.3.2 Variable Input Method .. 71

4.4 Implementation of GA .. 71

4.4.1 Chromosomal Representation for the Circuit 71

4.4.2 Optimisation Using GA... 75

4.4.3 Fitness Function .. 76

4.5 GA Parameters .. 77

4.6 Results .. 77

4.6.1 Realisation of Circuits Using mux ... 78

4.6.2 Realisation of Circuits Using RM ULM .. 88

4.7 Summary .. 101

CHAPTER 5 DESIGN OF SEQUENTIAL CIRCUITS103-125

5. 1 Introduction .. 103

5.2 State Transition Table ... 104

5.3 State Assignment .. 105

5.4 Modified Genetic Algorithm .. 106

5.4.1 Chromosomal Representation ... 109

5.4.2 Crossover .. 110

5.5. Design of Combinational Part ... 113

5.6 Results .. 113

5.6.1 Implementation of Mealy Machines .. 113

5.6.2 Implementation of Moore machines .. 120

5.7 Summary .. 125

vii

CHAPTER 6 CONCLUSION AND SCOPE FOR FURTHER WORK127-131

6.1 Thesis Summary and Conclusion .. 127

6.2 Scope for further work .. 130

REFERENCES ..133-140

LIST OF PAPERS SUBMITTED ON THE BASIS OF THIS THESIS

CURRICULUM VITAE

viii

ix

LIST OF TABLES

Table Title Page

1.1 Benchmark functions used for validation of the

proposed methods ... 18

3.1 Encoding of gates and corresponding inputs in 2D

chromosomal representation .. 39

3.2 Encoding of gates and the corresponding inputs 40

3.3 Comparison between conventional and automated

techniques in terms of number of gates / levels used................ 59

3.4 Comparison of the proposed technique with the

existing technique in terms of convergence time 60

4.1 Encoding of a single RM ULM in the first level of a

tree implemented in CIM .. 73

4.2 Comparison of the proposed techniques with the

existing techniques in terms of number of

units /levels in mux implementation .. 86

4.3 Comparison of delay in various methods of mux

implementation ... 87

4.4 Comparison of device utilisation in various methods of

mux implementation .. 87

4.5 Comparison of power consumption in various methods

of mux implementation .. 88

4.6 Comparison of the circuits evolved by various

methods in terms of number of units / levels in RM

implementation ... 96

4.7 Delay in RM implementation by various methods 97

4.8 Device utilisation of various circuits in SI and

proposed techniques. ... 97

4.9 Comparison of Power consumption in various

methods by RM implementation ... 98

4.10 Power consumption in various methods of circuit

implementation ... 99

x

5.1 Example for illustrating the conflict during

conventional crossover .. 110

5.2 State Transition Table for “011” sequence detector 115

5.3 Excitation table for “011” sequence detector 115

5.4 State table for “1010” sequence detector 118

5.5 Excitation table for “1010” sequence detector for the

state assignment 0, 3, 1, 2.. 118

5.6 Excitation table for Mod 3 counter 120

5.7 Excitation table for Mod 6 counter .. 122

5.8 Excitation table for Mod 8 counter .. 124

xi

LIST OF FIGURES

Figure Title Page

1.1 Structure of a Combinational Logic Circuit 2

1.2 Structure of a Sequential Logic Circuit ... 2

1.3 Block Diagram representing evolutionary design 9

1.4 Logic symbol of a 2-1 mux .. 13

1.5 Standard Implementation for a three input function using

2-1 mux ... 14

1.6 Logic symbol of a 2-1 RM ULM ... 15

3.1 Flow chart of GA ... 36

3.2 Array of gates for the realisation of a CLC 38

3.3 Representation used for encoding of the circuit 38

3.4 A three input circuit with three levels and three gates / level 39

3.5 Randomly generated individuals .. 40

 (a) Individual A (b) Individual B

3.6 Chromosomes for a 3 input function generated randomly 41

 (a) Circuit A (b) Circuit B

3.7 Parents A and B selected for crossover ... 43

3.8 Selection of sub matrices.. 43

3.9 Mask matrices M1 and M2 ... 44

3.10 Offsprings of parents A and B .. 44

3.11 Offsprings (C2D and D2D) after 2D crossover 44

3.12 Offsprings (Circuits) for parents A and B after 2D crossover 45

 (a) Offspring C2D (b) Offspring D2D

3.13 Linear chromosomal representation of parents A and B 46

3.14 Offsprings Clinear and Dlinear after linear crossover 46

xii

3.15 Circuits corresponding to offsprings after linear crossover 46

 (a) Offspring Clinear (b) Offspring Dlinear

3.16 2D Mutation Process .. 48

3.17 Offsprings before and after mutation .. 48

 (a) Before mutation (b) After mutation

3.18 Circuit evolved for Majority 3 using gates 51

3.19 Four bit odd parity checker using gates .. 51

3.20 Circuit generated for xor5 using gates .. 52

3.21 Circuit evolved for 6one135 using gates ... 53

3.22 Circuit evolved for 6one0246 using gates 53

3.23 Realisation of Four bit even parity checker using gates 54

3.24 Circuit evolved for Full Adder using automated technique 55

3.25 Circuit for Full adder using basic gates... 55

3.26 (a) Circuit generated for 2-1 multiplexer by automated design

(b) Circuit for 2-1 multiplexer by conventional design 56

3.27 Evolved circuit for a Four bit Binary to Gray code converter 57

3.28 Circuit evolved for F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 57

3.29 Evolved circuit for F (a, b, c) = Σ m (3, 5, 6) 58

3.30 Circuit of F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14) 58

3.31 Comparison of the proposed technique with the existing

technique in terms of number of generations 61

4.1 Logic symbol of a Class A mux ... 66

4.2 Logic symbol of a 2-1 RM ULM .. 66

4.3 Flow chart for CIM .. 70

4.4 Chromosomal representation of an RM ULM in the first level 72

4.5 Unit evolved for the chromosome “101010” 73

4.6 Chromosomal representation of an RM ULM in the second

level ... 74

xiii

4.7 Chromosomal representation of an RM ULM in the first level

of VIM .. 74

4.8 Unit evolved for the chromosome “1011100010” 75

4.9 Circuit generated for 6one135 using mux 79

 (a) CIM (b) VIM

4.10 Realisation of 6one0246 using mux .. 79

 (a) CIM (b) VIM

4.11 Mux implementation of xor5 .. 80

 (a) CIM (b) VIM

4.12 Circuit evolved for 4 bit odd parity checker using mux 81

 (a) CIM (b) VIM

4.13 Circuit generated for Majority 3 using mux 82

 (a) CIM (b) VIM

4.14 mux implementation of the function F(X1, X2, X3, X4, X5, X6)

= X1X4 + X2X5 + X3X6 ... 83

 (a) CIM (b) VIM

4.15 mux implementation of 3 bit odd parity checker 83

 (a) CIM (b) VIM

4.16 Circuit generated for F (a, b, c) = Σ m (3, 5, 6) using mux 84

 (a) CIM (b) VIM

4.17 Circuit for F (a, b, c) = Σ m (3, 5, 6) using mux with SI

technique ... 85

4.18 Circuit evolved for 6one135 using RM ULM 89

 (a) CIM (b) VIM

4.19 Realisation of 6one0246 using RM ULM 90

 (a) CIM (b) VIM

4.20 RM implementation of xor5 .. 91

 (a) CIM (b) VIM (c) Standard implementation

4.21 Evolved circuit for a Four bit odd parity checker using

RM ULM ... 92

 (a) CIM (b) VIM

4.22 Circuit evolved for Majority3 using RM ULM 93

 (a) CIM (b) VIM

xiv

4.23 Three bit odd parity checker using RM ULM 94

 (a) CIM (b) VIM

4.24 Circuit generated for F (a, b, c) = ∑ m (1, 2, 4) using RM ULM 94

 (a) CIM (b) VIM

4.25 RM implementation of F (a, b, c, d) = Σ m (1, 2, 3, 5, 7, 8, 12) 95

 (a) CIM (b) VIM

4.26 Comparison of CIM in terms of number of units in mux and

RM implementations ... 100

4.27 Comparison of VIM in terms of number of units in mux and

RM implementations .. 100

4.28 Comparison of proposed methods in terms of number of levels 101

5.1 Block diagram of Mealy machine ... 104

5.2 Block diagram of Moore machine .. 104

5.3 Swapping of individuals by comparing the elements of

parent B with the elements of parent A ... 111

5.4 Swapping of individuals by comparing the elements of

parent A with the elements of parent B ... 112

5.5 Exchange of genes ... 112

5.6 State transition graph of “011” sequence detector 114

5.7 Circuit generated for “011” sequence detector using gates 115

5.8 Implementation of “011” sequence detector using 2-1 mux 116

5.9 Circuit evolved for “011” sequence detector using RM ULM 116

5.10 State transition graph of “1010” sequence detector 118

5.11 Circuit for “1010” sequence detector using gates.......................... 119

5.12 Circuit for “1010” sequence detector using mux 119

5.13 Circuit for “1010” sequence detector using RM ULM 119

5.14 Generated circuit for Mod 3 counter using gates........................... 120

5.15 Circuit for Mod 3 Counter using mux ... 121

5.16 Mod 3 Counter using RM ULM ... 121

xv

5.17 Mod 6 Counter using gates ... 122

5.18 Mod 6 Counter using mux .. 123

5.19 Mod 6 Counter using RM ULM ... 123

5.20 Circuit for Mod 8 counter using gates .. 124

5.21 Circuit for Mod 8 counter using mux ... 124

5.22 Circuit for Mod 8 counter using RM ULM 125

xvi

xvii

ABBREVIATIONS

2D 2 Dimensional

ACO Ant Colony Optimisation

ASC Asynchronous Sequential Circuit

BDD Binary Decision Diagram

CIM Constant Input Method

CLC Combinational Logic Circuit

DAG Desired Adjacency Graph

EA Evolutionary Algorithm

ED Evolutionary Design

EHW Evolvable Hardware

FPGA Field Programmable Gate Array

FSM Finite State Machine

GA Genetic Algorithm

GP Genetic Programming

K map Karnaugh map

MA Memetic Algorithm

mux Multiplexer

OBDD Ordered Binary Decision Diagram

OSA Optimum State Assignment

PSO Particle Swarm Optimisation

RAM Random Access Memory

RM Reed Muller

ROBDD Reduced Order Binary Decision Diagram

RWS Roulette Wheel Selection

SI Standard Implementation

SLC Sequential Logic Circuit

SSC Synchronous Sequential Circuit

STG State Transition Graph

STT State Transition Table

TT Truth table

ULM Universal Logic Module

VHDL Very high speed integrated circuit Hardware Description Language

VIM Variable Input Method

VLSI Very Large Scale Integration

xviii

CHAPTER 1

INTRODUCTION

1.1 DIGITAL CIRCUITS

The present technological period is referred to as the digital age due to the high

prominent role of digital systems in our everyday life. Digital systems find applications

in communication, business transactions, traffic control, spacecraft guidance, medical

treatment, weather monitoring, the internet, and many other industrial and scientific

enterprises. Due to the high impact of digital circuits in all of today‟s computers and

devices, the cost of implementation of these circuits is an important design criterion.

Thus, finding an optimised fully functional circuit is the major concern of a designer

(Mano, 2002). Moreover, with the introduction of Very Large Scale Integration (VLSI)

circuits, designers are facing the complex task of packing more functionality into a

smaller area and creating a circuit that operates faster compared to the existing ones. So

Design Automation (DA) techniques play a vital role in this intricate process of

designing digital circuits (Ali, 2003).

Digital systems may be combinational or sequential. A Combinational Logic Circuit

(CLC) is an interconnection of logic gates. The output of a CLC at any time is

determined by the present combination of inputs. Fig. 1.1 depicts the structure of a

CLC. The function of a CLC can be specified in any of the following three ways.

i) Boolean algebra - an algebraic expression that shows the operation of the

circuit for a given set of inputs.

ii) Truth Table (TT) – Defines the function by listing the output states in tabular

form for each of the possible input combinations.

2

iii) Logic Diagram – Graphical representation of the circuit that shows the gates

used and their connections.

Fig. 1.1 Structure of a Combinational Logic Circuit

All the mathematical operations in computers are performed by CLCs. The most

common circuits used in computers are half adders, full adders, half subtractors, full

subtractors, multiplexers, demultiplexers, decoders, encoders, etc. Sequential Logic

Circuits (SLCs) are those whose outputs are a function of the present values of the

inputs and the past values of the outputs. An SLC consists of i) a storage element to

store the past output and ii) a combinational circuit to generate the next state. The

inputs to the combinational part are the present inputs and the previous outputs fed back

from the storage element. The binary information stored in the storage elements at any

given time is defined as the state of the sequential circuit at that time. Fig. 1.2 shows the

block diagram of an SLC.

Fig. 1.2 Structure of a Sequential Logic Circuit

SLCs are classified into Synchronous Sequential Circuits (SSCs) and Asynchronous

Sequential Circuits (ASCs). SSCs depend on the external clock pulses for their state

3

transition, whereas no clock is required for the operation of ASCs. The operation of

an ASC depends on the propagation delays for the state transitions. Virtually, all practical

digital circuits are a combination of sequential and combinational logic. Considering the

importance of digital electronics, extreme significance is to be given for its design and

implementation. Conventional design techniques will be discussed in the subsequent

section.

1.2 CONVENTIONAL DESIGN TECHNIQUES

1.2.1 Combinational Logic Circuits

A CLC can be realised by using an interconnection of logic gates, or Universal Logic

Modules (ULMs) such as multiplexers (muxes) or Reed Muller (RM) logic modules. The

most popular methods of designing combinational circuits using gates are i) Karnaugh

Map (K map) technique ii) Quine-McCluskey method and iii) algebraic reduction rules.

K map is a diagram made up of squares, with each square representing one minterm of

the function that is to be minimised. Since it is a visual method, it is not suitable for

computer implementation. Though K maps are useful in minimising functions with up to

six variables, the design of more than four variables is difficult.

Quine-McCluskey method is suitable for any number of variables and can be easily

programmed to run on a digital computer (Seda, 2008). Both the K map and Quine -

McCluskey methods produce two level circuits. Additionally, with Quine-McCluskey

technique, the CPU usage grows exponentially with the number of inputs. Furthermore,

once the prime implicants have been found, the algorithm needs to find the minimal set

cover, which is known to be an NP-complete problem.

4

Simplification by applying algebraic reduction rules is difficult for complex functions

and is prone to errors. The reduced circuit depends on the selection and application of

appropriate theorems / postulates during the minimisation process. There are no general

set of rules to aid that selection. This method depends solely on the designer‟s knowledge.

These conventional techniques do not support the use of gates such as NAND / NOR

/ XNOR / XOR etc. and ULMs like multiplexers or RM blocks. On implementing

circuits using these building blocks, the number of units can be reduced which in turn

reduces the power and area. Since replication of the same element reduces the

manufacturing cost, design using ULMs is a promising alternative in the design of

combinational circuits.

1.2.2 Sequential Circuits

The most generalised model of an SSC includes inputs, outputs and internal states. SSCs

are of two types namely, Moore model and Mealy model. They differ only in the way in

which the outputs are generated. In mealy machine, the output is a function of both the

present state and the inputs, whereas in Moore machine, the output depends on the

present state only (Ercegovac, 1985). The two machines are commonly referred to as

Finite State Machines (FSMs). The most common examples of Moore machines are

counters, which are used in simple digital alarm clocks to computer memory pointers.

Best example for Mealy machine is a sequence detector circuit which is useful in many

real world applications.

A sequential circuit needs a state table for its specifications, whereas a combinational

circuit is completely specified by the truth table. The first step in the design of sequential

5

circuits is to obtain the Optimal State Assignment (OSA) so that the combinational part

needs minimum circuitry. A State Transition Table (STT) is used to evaluate the

functionality of the combinational part. The number of possible state assignment grows

exponentially with the number of states and hence it is very difficult for assigning the

states manually. Thus automated design plays a vital role in this.

1.3 AUTOMATED DESIGN TECHNIQUES

1.3.1 Importance

In conventional design, the efficiency of a system depends on the ability of the designer

and is limited to his acquired knowledge. Further, the design space is restricted and

varies from designer to designer. Another major drawback in conventional design is

that the quality of the circuit is affected by the designer‟s design habits, imagination,

creative thinking and routine. These constraints can be eliminated in automated design

techniques. The motivation behind automated design is to evolve more efficient circuits

compared to conventional methods. Design automation leads to circuits with minimum

number of gates, interconnections, delay and power. Evolutionary design is the popular

automated technique for the design of digital circuits.

1.3.2 Evolutionary Design

Research on the evolution of electronic circuits has been started since early1990s. The

research area in which evolutionary algorithms are applied in the domain of electronics is

termed as Evolutionary Electronics (EE). Application of evolutionary algorithms for the

design of reconfigurable electronic circuits is called as Evolvable Hardware (EHW).

6

The prominent advantage of using evolutionary algorithm for the design of digital circuits

is that it allows automatic exploration of a much richer set of possibilities in the design

space that are beyond the scope of conventional techniques (Stomeo, 2005). The main

inspiration behind evolutionary electronics is the possibility of designing more efficient

and simplified circuits compared to conventional methods.

The two major approaches for the synthesis of CLCs using evolutionary algorithms are

i) To obtain an optimised representation of the function using any

evolutionary algorithm. E.g.; In Binary Decision Diagrams (BDD), the

number of nodes required and hence the complexity of the function

representation depends on the order selected for the decision variables.

This variable ordering of BDD is done using an evolutionary algorithm

(Murukawa et al. 1996; Higuchi et al. 1997; Thomson and Miller,

1996). Once an optimised representation is obtained, design is done

using the algebraic rules of the concerned algebra.

ii) Evolvable hardware approach

 The processes involved in EHW are

a) Evaluation process

b) Evolutionary process

c) Evolutionary programming

Evaluation can be performed at gate level or function level. In gate level evolution, gates

are used for the evolutionary process whereas in function level approach, high level

hardware functions rather than simple logic functions are used as the design elements.

Evolutionary process in which the evolved circuits are built and tested in hardware is

termed as intrinsic evolution, whereas extrinsic evolution is referred to as the

implementation in software using simulations (Thompson et al. 1997; Ali, 2003).

7

Evolutionary programming involves the use of evolutionary algorithms like GA for

the automated design of the circuits. It starts with a particular set of gates fixed by the

designer. The required gates and their interconnections are chosen randomly and are

allowed to evolve the target functionality. The algorithm decides whether a gate is

used or not and how many times a particular gate is used. The synthesised circuit can

consist of any set of logic gates. The only criterion is that the generated circuit has to

meet the target functionality with minimum hardware.

To be more specific, this approach mimics the nature based on the strategy of survival

of the fittest. Each circuit to be designed is considered as an individual in the

population represented by a chromosome. An initial population of solutions / circuits

is generated randomly. Every individual is assessed to find whether they are fit or not.

Fit individuals are selected and genetic operations such as crossover and mutation are

applied to obtain a new population. This process is repeated until the fittest circuit

(fully functional with minimum hardware) is obtained.

1.3.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are search and optimisation techniques based on the

principle of natural evolution. These algorithms have been found to be efficient in solving

optimisation and search problems. They are unconstrained search techniques

incorporating constraints into their fitness function (Gorai and Pal, 1990; Almaini et al.

1992; Miller and Thomson, 1998). With the introduction of reconfigurable devices, the

evolvable hardware has gained attention since the last two decades. Any of the popular

evolutionary algorithms like Genetic algorithm (GA), Ant Colony Optimisation

techniques (ACO), Particle Swarm Optimisation (PSO) etc. can be used as a tool for the

design of digital circuits.

8

Genetic Programming (GP) can be used as an alternative for GA. In GP, a set of

functions F and a set of terminals T (constants and variables) are to be defined. Here,

the chromosomes are represented as trees with ordered branches in which, the

functions are treated as nodes and the terminals as leaves. For example, a set of

functions F can be defined as {-, +, /, *} and T as {X, Y, Z}. It adopts the same

genetic operators as in GA (Koza, 1999).

Optimum / interesting results can be obtained with evolutionary techniques since the

circuits have lesser number of design elements with unusual structure compared to

conventional techniques. These circuits can be implemented either in hardware or

simulated in software. GA is one of the most efficient evolutionary algorithms used for

the evolution of digital circuits. It has shown a high degree of flexibility in dealing with

problems that are complex and computationally hard. Coverage of the solution space is

more complete and there is less chance for getting stuck at local minimum. It is this

feature that makes GA an efficient tool for automated design. This algorithm has received

considerable attention regarding its potential as an optimisation technique for complex

problems (Ali, 2003). Hence GA has been chosen as the optimisation tool for this work.

1.3.4 Genetic Algorithm (GA)

Genetic Algorithms are search algorithms that are based on the principles of genetics and

biological evolution introduced in early1970s by J. Holland. Due to the high potential as

an optimisation technique, GA has been widely used in solving complex problems. The

problem of implementing the design using GA can be thought of as being equivalent to

designing a black box with user defined inputs and outputs as shown in Fig. 1.3.

9

The black box on presenting the input signals should produce the desired outputs. This

black box is encoded into binary chromosomes (circuits) which are generated randomly.

On applying genetic operators such as selection, crossover and mutation, new and better

individuals are created (Soliman and Abbas, 2003; Coello et al. 2000a; Reis et al.

2004). The process is repeated until 100 % functional circuits satisfying the

corresponding truth table are obtained. Additional fitness is provided to ensure minimum

number of components and levels so that the area, power, cost and delay can be reduced.

Black Box
User Defined

Inputs

User defined

Outputs

Circuit to be evolved

Fig. 1.3 Block Diagram representing evolutionary design

In GA, individuals from the initial population are selected for recombination based on

survival of the fittest strategy. Some of the selection techniques include Roulette

Wheel Selection technique (RWS), rank method, tournament selection etc. Using any

of these techniques, the individuals with more fitness are selected and the weaker

ones are discarded. This replicates nature in which fitter individuals have better

chances for survival and go for crossover (Goldberg, 1989). RWS technique is

adopted in this thesis. Here, each chromosome is given a proportion of the Roulette

wheel based on its fitness value. The wheel is spun repeatedly to select the

individuals. There is a higher probability for the fittest individuals to be selected

multiple times, while unfit individuals have a least chance.

10

Crossover operation is a recombination process by which a portion of the individuals

(parents) are exchanged and two new individuals are created. The newly created

individual called offspring possesses the genetic properties of both the parents. The

point of crossover is selected at random.

Mutation is an unexpected change in the chromosome pattern in natural evaluation

process. In GA, an individual is probabilistically selected from the population and a

random gene is altered. Though mutation occurs rarely, it is a main driving force for

evolution. The need for mutation is to provide new genes that were not present in the

initial population or to replace the genes that were lost from the population during the

selection process (Goldberg, 1989; Koza, 1999). This has the effect of increasing the

search space and the chance of getting the global optimum solution rather than a local

optimum. This may result in a weaker / stronger individual. If it is strong, it tends to

survive and the stronger genes are passed on to the subsequent generations and the

circuit evolves into an optimum one. Elitist selection assures the survival of the best

individual by copying it directly in to the next generation.

1.4 Automated Design of Digital Circuits using GA

In the evolutionary design of digital circuits, as the circuits are generated at random,

the final circuits evolved will be unique and completely different from the usual

circuits. A fully functional design can be achieved either by using

i) Gates alone

ii) Gates and functional blocks like adders, subtractors etc.

iii) ULMs alone

11

In the gate level design, any of the two / single input gates or WIRE can be used as

design elements. In this work, XOR, AND, OR and WIRE are chosen.

Though the design using gates ensures optimal circuits, the number of components can

still be reduced in function level design which involves a combination of gates and high

level hardware functions. But, the selection of necessary functional blocks for a particular

class of circuits is critical to obtain an optimal circuit and it completely depends upon the

designer‟s capability. The designer should be well aware of the design constraints and

should have a prior knowledge of the combinational circuit design and the functionality

of each block used.

In VLSI implementation, emphasis is to be given to reduce the manufacturing cost

rather than reducing the number of components used (Aguirre et al. 2000). Generally

the same unit is used repeatedly so as to get the desired functionality even though it

leads to large number of gates. When implemented using ULMs alone,

100% functional circuits which are completely independent of the designer‟s expertise

can be generated. As the replication of the same design element reduces the

manufacturing cost of VLSI Implementation, this technique is an alternative for the

design of CLCs (Aguirre et al. 1999; Aguirre et al. 2000; Gorai and Pal, 1990).

The focus of this thesis is on CLCs using gates and CLCs using ULMs and the design

of SSCs.

1.4.1 CLCs using Gates

As discussed earlier, any of the two / single input gates and wire can be used for the

design. Till date, the design of CLC based on GA used linear chromosomal

representations. To realise a function of n variables, it was assumed that the circuit had

12

n levels and each level had n gates (Louis, 1993). The chromosome was represented in

the form of a string or one dimensional array in which any particular gene corresponds to

a gate / input. All the genes were arranged in a linear fashion to perform the genetic

operations (Coello et al. 2000a). Genetic operators such as selection, crossover and

mutation were applied over this array. It was found to be difficult to decode or visualise

the circuit corresponding to a long string of genes which involves more computational

time. This limitation is being addressed in this thesis.

1.4.2 CLCs Using ULMs

ULMs such as 2-1 mux (binary mux) or 2-1 RM ULM (binary RM ULM) can be used

as the basic building block for implementing any CLC in the form of a tree network.

Tree network is a graph in which all the nodes are connected either directly or

indirectly without forming any closed loop. These are most suitable for VLSI

implementation because of the repeated use of a single design element with similar

interconnections. Thus the advantage of using ULMs is that, it helps in the ease of

design, fabrication and testing of digital circuits.

Design Using Mux

A multiplexer (mux) with n selection lines is a combinational circuit that selects data

from 2
n

input lines and directs it to a single output line. A binary multiplexer has

2 input lines and one control line. They are of “active low” or “active high” denoted

as Class A or Class B multiplexers as shown in Figs. 1.4 (a) and (b) respectively.

In Class A multiplexer, input labeled as „1‟ is directed to the output for a high value

of control signal and the input which is labeled as „0‟ is directed to the output for a

13

low value of control signal (Aguirre and Coello, 2004). Logic for class B multiplexers

is exactly opposite to that of class A multiplexers, where the input labeled as „0‟ is

directed to the output for a high value of control signal.

Either class A mux or class B mux or a combination of both can be used. In this work,

Class A muxes have been used. The output of a class A mux is given by

 where c is the complement of c.

F

C (control)

ba

0 1

F

ba

0 1C (control)

Fig. 1.4 Logic symbol of a 2-1 mux

The conventional use of a multiplexer is to route data from one of the n sources to a

common destination. Besides, it can be used for the realisation of combinational

circuits. It is known that, any function can be realised by circuits that exclusively use

binary multiplexers by applying Shannon's decomposition technique. The identity used

for Shannon‟s implementation is where is the complement

of .
 () the value of F for Aj = 0 ; and F′′ = F(Aj), is the value of F for

Aj = 1. Thus, it reduces the original complex problem of order n into two simpler ones

of order n-1. For E.g.; A four variable function when decomposed using an input variable

reduces to two sub-functions of three variables. These two sub-functions can be further

decomposed into two sub functions of two variables. Repeating the decomposition further

with other variables allows the design problem to be reduced further and further to either

literals or constants (Almaini et al. 1992; Aguirre and Coello, 2004).

(b) Class B mux (a) Class A mux

14

For mapping a particular Boolean expansion into its corresponding circuit using

binary multiplexers, the variable in the equation, acts as the control signal of the

mux at the j
th

 level. Hence any Boolean function is implemented by circuits with only

0s and 1s as inputs and the number of modules needed is 2
n
-1. The number of levels

or the depth of the array is n. The circuit for any three variable function can be

realised using Standard Implementation (SI) with 7 units in 3 levels as shown

in Fig. 1.5. The inputs to the first level can be 0 or 1. The inputs to the subsequent levels

are the outputs of the preceding level. The control signals to all the units in a level are

same and all the variables should be used as control signals.

F(000)

F(001)

F(010)

F(011)

F(100)

F(101)

F(110)

F(111)

F(a,b,c)

c

c

c

c

b

b

a

0
1

0

1

1

0

0

0

0
1

1

1
0

1

Fig. 1.5 Standard Implementation for a three input function using 2-1 mux

Design Using RM ULM

Most of the researchers have concentrated on designing circuits using mux. For certain

applications like arithmetic circuits, error detection circuits etc., which are XOR based,

RM representation (AND- XOR logic) is advantageous. This is due to the fact that XOR

based circuits are easier to test and requires lesser number of interconnections.

15

(Chaudhary and Chattopahyay, 2008). On the contrary, XOR gates are slow and require

larger area in comparison to OR gates. But with the advancement of new technologies

and with the advent of various FPGA devices, XOR / XNOR implementation of circuits

have become easier. (Faraj, 2009a; Vijayakumari et al. 2015a; Vijayakumari et al.

2015b).

The logic symbol of a 2-1 RM ULM is shown in Fig. 1.6, whose output is given by

 ⨁

c

F

a b

0 1

Fig. 1.6. Logic symbol of a 2-1 RM ULM

 Basic theorems involved in the design using RM ULM are

 (1.1)

 (1.2)

 (1.3)

The RM representations may be shorter with a reduced number of product terms

leading to simpler circuits for certain applications like arithmetic operations, parity

checkers etc. Logic functions that cannot be minimised well in Sum of Products

(SOP) forms can often be implemented in the RM domain, leading to reduced size

and power consumption (Al Jassani et al. 2010). Similar to Shannon‟s decomposition

16

technique for mux, Davio decomposition technique is used to reduce the functions in

AND-XOR form into sub functions. Expressions in terms of sub functions make the

implementation of Boolean functions simpler. Based on Davio decomposition

technique, a hardware circuit for a function of n variables can be implemented using

the identity, F = F′ (Aj)′ F′′′(Aj), where F′ and F′′′ are functions of n-1 variables. As

in Shannon‟s theorem, applying decomposition repeatedly with each of the variable

Aj allows the synthesis problem to be reduced further and further to either literals or

constants (Vijyakumari et al. (2014)).

In Standard Implementation (SI) technique using mux and RM ULM, units in the

same level share the same variable as control signal. Furthermore, a variable assigned

for a particular level as control signal in one level cannot be used as control signal for

any other levels. Automated design technique looks into the possibilities of reducing

the 2
n
-1 elements.

1.4.3 Synchronous Sequential Circuits

In SSCs, the output at any given time is a function of both present and past inputs.

The behavior of an SSC can be represented by an FSM, which is a mathematical

model of a sequential circuit with discrete inputs, discrete outputs and internal states.

There are two types of FSM - Moore machine and Mealy machine as mentioned in

Section 1.2.2. These machines can be realised using any flip flop along with suitable

CLC. In CLC design, a truth table completely specifies the circuit, whereas in an SSC

a state table specifies the circuit (Ercevoc, 1985). A unique binary code is to be

assigned to each of the states of the FSM. If the number of states is n, then the

number of state variables s is the smallest integer that is equal to or greater than

|log2n|. Then the total number of possible states is equal to 2
s
.

17

The assignment process decides which of these 2
s
 codes must be assigned to any particular

state in the FSM. The total number of possible encodings is given by (Ali, 2004)

 ()

()
 (1.4)

Hence, it is necessary to find the state assignment which results in circuits with

minimum hardware. Finding a relationship between the states and bit strings which

results in minimal cost is referred to as the problem of OSA. Hence an automated

design technique which can find an OSA is important in the design of SSCs. Once an

OSA is obtained, the State Transition Table (STT) can be prepared. Based on the

STT, the combinational part of the SSC can be generated using gates or universal

building blocks such as binary multiplexers / binary Reed Muller blocks as mentioned

in previous section.

1.5 TOOLS / PLATFORM

The experiments on the design of digital circuits have been performed on Intel core i5

processor with 2 GB RAM and 2.5 GHz frequency. MATLAB R2012a is used as the

software tool. The computational time needed to evolve the circuits depends on the

function to be implemented, size of the truth table and type of the fitness function used

for optimisation. The circuits evolved using ULMs have been synthesised on FPGA

Spartan 3 XC3S400 device using Xilinx ISE 14.2.

1.6 BENCHMARK FUNCTIONS USED

Benchmark functions are usually complex functions which are difficult to simplify

using conventional reduction techniques. On mapping these functions into K map,

18

there will not be any two adjacent 1s to group together. Hence, K map / Quine -

Mc Cluskey method cannot be applied for the simplification. Applying algebraic

reduction techniques on these functions is very complicated and is prone to errors.

Moreover, the designed circuit by algebraic reduction technique varies from designer

to designer and hence it is not compared with the circuits by automated design.

The benchmark functions used for the validation of the proposed methods in this

thesis are listed in Table 1.1.

Table 1.1 Benchmark functions used for validation of the proposed methods

Sl No. Name Function

1. Majority 3 F (a, b, c) = Σ m (3, 5, 6, 7)

2. 4 bit odd parity checker F (a, b, c, d) = Σ m (1, 2, 4, 7, 8, 11, 13, 14)

3. xor5 F (a, b, c, d, e) = Σ m (1, 2, 4, 7, 8, 11, 13, 14,

16, 19, 21, 22, 25, 26, 28, 31)

4. 6one135 F (a, b, c, d, e, f) = Σ m (1, 2, 4, 7, 8, 11, 13, 14,

16, 19, 21, 22, 25, 26, 28, 31,

32, 35, 37, 38, 41, 42, 44, 47,

49, 50, 52, 55, 56, 59, 61, 62)

5. 6one0246 F(a, b, c, d, e, f) = Σ m (0, 3, 5, 6, 9, 10, 12, 15,

17, 18, 20, 23, 24, 27, 29, 30,

33, 34, 36, 39, 40, 43, 45, 46,

48, 51, 53, 54, 57, 58, 60, 63)

1.7 MOTIVATION

In conventional design, the quality of the designed circuit depends on the designer‟s

capability and it varies from designer to designer. Automated design techniques are

algebra independent and the designer‟s expertise is not significant. Several heuristic

algorithms like GA permits the utilisation of a large search space which humans cannot

19

exploit. It can freely explore the space of all possible circuits, thereby evolving circuits

which prove to be 100% functional with minimum hardware.

In the automated design of CLC using gates, the existing technique uses linear

chromosomal representation and corresponding genetic operators such as crossover and

mutation are applied. This involves more computational time which has to be reduced.

In the design of CLC using ULMs, there are no specific reduction techniques available

other than Shannon‟s / Davio decomposition techniques. The circuits designed by these

techniques need a lot of hardware which involves more power consumption, area, delay

and cost. Sophisticated electronic equipments like palmtop game / media consoles, laptop

computers, cell phones etc. have got an increasing demand these days. Hence it is

desirable to have the circuits with minimum hardware, area, power and delay.

Thus, the motivation behind the study of automation of digital circuits is

 need for developing automated techniques for optimal design

 to address the issues regarding increase in computational time.

1.8 OBJECTIVES

The objectives of this thesis are to efficiently automate the design of

 Combinational Logic Circuits using

i) Gates

ii) Binary ULMs and

 Synchronous Sequential Circuits.

20

1.9 CONTRIBUTIONS OF THE THESIS

The contributions of this thesis towards the automation of digital circuits are

 A new faster technique for the gate level design of CLCs which ensures

minimum computational time

 Two new GA based techniques for the design of CLCs using ULMs

 GA based OSA technique for SSCs

 Implementation of the combinational part of SSCs using gates / binary ULMs

1.10 OUTLINE OF THE THESIS

The proposed thesis is organised in 6 chapters.

Chapter 2 deals with the review of research done in the area of evolutionary design of

combinational and sequential circuits.

Chapter 3 discusses the aspects of GA based design of combinational circuits using

gates. A 2D representation of chromosomes and the corresponding 2D crossover and

mutation technique for the design of combinational logic circuits is proposed. Gates

such as XOR, AND, OR and WIRE are used to evolve the circuits. Circuits including

benchmark functions with inputs up to 6 variables have been evolved. A comparison

of the convergence time between the proposed technique and the conventional

method has been made.

Design of combinational circuits using universal building blocks such as binary mux

and binary RM ULM is discussed in chapter 4. Two new GA based techniques are

proposed and the evolved circuits are synthesised and implemented on Xilinx FPGA

Spartan3 family. Results are validated using benchmark functions.

21

Chapter 5 covers the design of synchronous sequential circuits. A modified GA has been

proposed to obtain the OSA which determines the circuit complexity of an SSC. Once

OSA is done, the combinational part was optimised using i) gates and ii) universal

building blocks such as 2-1 mux and 2-1 RM ULM.

Chapter 6 contains concluding remarks, which review the major contributions of this

work and its future scope.

CHAPTER 2

LITERATURE REVIEW

This chapter explores the history and important milestones in the design automation of

digital circuits. It discusses the need for investigations based on the efficiency of evolved

circuits. Evolutionary algorithms are used to synthesise and optimise EHW. The need for

evolutionary design is discussed and the research work done in this area is explored.

2.1 EVOLUTIONARY DESIGN

To minimise logical functions up to 6 variables, K-map is a very efficient graphical

tool. Since this method is based on the visual recognition of adjacent cells, it is not

suitable for automated processing with computers. Quine-McCluskey method can be

used for any number of variables and is suitable for computer implementation. With

this technique, the CPU usage grows exponentially with the number of inputs.

Furthermore, once the prime implicants have been found, the algorithm needs to find

the minimal set cover, which is known to be an NP-complete problem. Functions can

be minimised by applying algebraic reduction techniques, but it is very difficult to

optimise complex functions and is prone to errors. Thus there was an urgent need for

computer oriented design for minimising the circuit.

In 1990s the research on EHW started, the objective was to evolve a fully functional

circuit from a randomly generated set of circuits with the help of evolutionary

algorithms. Later on, attempts were made to reduce the complexity / number of gates

needed to realise the circuits. The quality of the evolved circuits was estimated based

24

on the number of gates used for implementation. The principle of evolutionary design

and its applications were well discussed in (Miller et al. 2000a; Miller et al. 2000b).

Sekanina, (2009) reviewed the fundamental principles of evolutionary algorithms,

pointed out the major drawbacks and came up with some applications of evolvable

hardware. Haddow and Tyrrell, (2011) described in their work, the applications of

evolvable hardware and the advantages of using them. The work mentioned that the

major challenge to be addressed was scalability and the authors proposed various

alternatives like divide and conquer, function level evolution etc. Though the paper

discussed the above mentioned issues, no detailed study was reported to support this.

Yan et al. (2011), investigated the application of cultural algorithms (an evolutionary

algorithm in which the evolution adapts to their environment at a higher rate than

biological evolution based on genetic inheritance alone) in the design of electronic

circuits. No comparative study was made with other evolutionary algorithms.

Theory of EHW can be applied to combinational as well as sequential circuits. A lot

of work has been done in the area of design of combinational circuits compared to

sequential circuits.

2.2 DESIGN OF COMBINATIONAL CIRCUITS

2.2.1 Design Using Gates

Optimisation tools like GA, ACO technique, PSO technique etc. can be applied for

the design of CLCs. GA is found to be more suitable for the design of digital circuits

compared to the rest because of its inherent advantages as mentioned in Section 1.3.3.

Most of the research work reported in literature concentrates on the design of CLCs

using gates.

25

(Louis et al. 1993) is the earliest source that reports the use of GAs to design CLCs. The

linear chromosomal representation introduced by Louis is still popular and is used by

many researchers. In 1996, Koza et al. proposed a genetic programming approach to

design CLCs. His research was concentrated on the generation of fully functional circuits.

Their focus was not on achieving optimal circuits. In all the above mentioned work, the

chromosomes were represented in the form of a binary string. The size of the binary

string increased exponentially with the number of inputs/outputs which leads to increase

in computational time. Coello et al. (1996) presented a GA based approach in which, the

individuals can be represented in any number system such as octal, decimal, hexadecimal

etc. which was proved to be effective in larger circuits. Miller (1999) used evolutionary

technique for designing a multiplier circuit for multiplying two three bit numbers. In

(Kalganova, 2000a), the evolutionary design had been extended for the design of

multiple valued logic. A three valued one bit adder was implemented and it was the first

article to work on multiple valued logic.

In (Coello et al. 2000a; Coello et al. 2000b; Coello et al. 2000c), an effort has been

made on the design of CLCs to minimise the number of gates by introducing certain

modifications in the conventional GA. Coello et al. (2000d) proposed the design of

CLCs at gate level using ACO technique and compared with the results of GA based

design. The authors reported that the results were similar to GA based design and much

better than human based design with K-map and Boolean algebraic rules.

Hounsell and Arslan (2000) proposed GA for high performance arithmetic circuits and

used macro blocks in addition to gates for the evolution of CLCs. The selection of this

block is critical so as to evolve circuits with easily. Shanthi et al. (2002) discussed an

evolutionary approach towards the design of CLCs in detail. This work demonstrated

26

three different levels in which fault tolerance can be supported in the evolutionary

design of digital circuits.

Reis et al. (2004) extended the technique proposed by Louis for designing CLCs

using gates. The author could support this technique with circuits up to 4 variables.

Slowik and Bialko (2008) discussed the state of the art, main problems, challenges and

future trends of evolutionary algorithms for the design of combinational circuits. He

pointed out the scalability issues in the case of circuits with large number of

inputs / outputs. Since evolutionary design is based on generate and test model, as the

number of inputs increases, the number of possible output combinations also increases. It

explained the need for decomposing the desired circuits into several less complex sub

circuits and to design each of them independently. Reis and Machado (2007) dealt with

the implementation of logic circuits using the evolutionary algorithms like GA and PSO

and Memetic Algorithm (MA). Gate level implementation was adopted for the design.

Each algorithm was analysed based on the complexity of the CLC. Benchmark functions

were not considered for validation in their work. A Genetic Programming approach for

the design of Combinational logic circuits using gates was proposed in

(Karakatic et al. 2013). The results obtained were compared with the conventional

ones for functions up to four variables.

Vassilev and Miller (2000) discussed the problem of scalability in detail and

implemented a 3 bit multiplier in which sub circuits were used as building blocks.

These sub circuits were evolved separately and found to be much faster reducing the

scalability issues. It was reported that the selection of sub circuit was critical and the

27

designer should be well aware of the design rules. The disadvantage of this method is

the increase in the number of gates as the number of sub circuits needed is more.

In (Kalganova, 2000a), a function level approach for evolvable hardware is discussed

where high level functions such as adders, multipliers, etc. are used as primitive

functions instead of simple logic functions. The issue of scalability in evolutionary

methods is discussed and an extrinsic EHW approach has been proposed for the

design of a number of functions using gates. Liu et al. (2006) suggested a method to

reduce the time of computation by applying a modified mutation technique. Sagar and

Vathsal (2013) reported the design of combinational circuits based on three different

evolutionary algorithms (GA, ACO and PSO) using gates. These approaches were

compared with each other for the speed of convergence and quality of solution and

GA was reported to be superior.

In all the literature cited above design of CLC was done using logic gates and

involves the scalability issues and increase in computational time. Computational

time can be reduced by adopting different types of chromosomal representations.

Circuits can be generated by replacing the gates by Universal building blocks such as

multiplexers or Reed Muller Logic Blocks (Yau and Tang, 1970). Since only one type

of design element is used, manufacturing cost can be reduced. It is established that

any Boolean expression of n variables can be realised by using 2
n
-1 binary

multiplexers (Aguirre et al. 1999). Several works have been done to reduce the

number of units so as to reduce the cost, delay, power etc.

28

2.2.2 Design Using Multiplexers

The use of multiplexers as ULMs for realising Boolean functions has attracted

researchers since 1970s. Most of the works were concentrated on obtaining minimal

circuits using linear programming, numerical methods, etc. (Yau and Tang, 1970).

Multiplexer is a circuit which selects one out of many input lines. A 2-1 multiplexer

(2-1 mux) is a circuit having 2 input signals, one select (control) signal and one

output signal. Any of the input signals can be routed to the output based on the select

signal. A brief introduction of multiplexers is given in Section 1.4.2.

Pal (1986) formulated an algorithm based on ratio parameters for realising Boolean

functions with a single multiplexer of minimum size. Ratio parameter is the ratio of

number of ones to number of zeros in one column of the minterm table of the logic

function. As an extension of this work, circuits were implemented using a cascade

network of multiplexers (Gorai and Pal 1990; Pal 1986). This method terminates if

the function is not realisable in the cascade form and was not based on the

evolutionary algorithm. Almaini et al. (1992) proposed a programmed algorithm for

the synthesis of CLCs using a cascade or a combination of cascade and tree network

of multiplexers. The algorithm attempted level by level optimisation by selecting the

control signals which results in minimum number of continuing branches. The

algorithm was not based on evolutionary principles.

In (Aguirre et al. 1999 and 2000), a genetic programming approach has been made for

the logic synthesis of Boolean functions using multiplexers. Simple functions were

chosen for realisation. Later, in (Aguirre and Coello 2004) CLCs were synthesized

with multiplexers using genetic programming and the results were superior compared

29

to SI technique. Analysis for design metrics such as area / delay was not performed.

Even though the number of units required was less, the circuits were still not optimal.

Synthesis of combinational circuits using multiplexers was dealt in (James et al. 2006).

An optimisation algorithm was proposed for the realisation of Boolean functions using

universal building block such as 2-1 multiplexer. This was not based on any

evolutionary algorithm. Functions up to five variables were reported. Moreover,

benchmark functions were not used for validation. In (Li et al. 2008) a controller was

designed to generate select signals dynamically so that power consumption of the mux

tree is minimised. As the controller itself consumes some power, the power required by

the controller might be more than the power consumption of the circuit in the case of

smaller circuits, which is a disadvantage.

The other universal logic block, RM ULM has been widely used by researchers to

overcome the scalability issues in the design using gates. The subsequent section gives

a brief survey about the RM ULM in the realisation of digital circuits.

2.2.3 Design Using RM ULM

Research on synthesis and optimisation of logic circuits in RM domain based on XOR

logic is still producing new and useful techniques (Faraj, 2009a and 2009b). The

reasons for this include: AND / XOR or OR / XNOR logic requires fewer terms than

Sum of products or Product of sums respectively (Al Jassani et al. 2010). Moreover,

testing of XOR / XNOR based circuits is easy and efficient (Drechsler et al. 1999).

Binary Decision Diagram (BDD) is a well- known technique for the optimisation of

digital circuits. Decision Diagrams were first proposed by Akers et al. (1978) and

30

further modified by Bryant (1985). It is a graphical way of representing switching

functions and provides an alternative optimisation technique (Yanagiya, 1995). The

approach, although useful to test functional equivalence (generation of the same truth

table) and other circuit properties, it does not fully minimise a circuit (Almaini and

Zhuang, 1995a; Almaini et al. 1995b). In (Xia et al. 2003a and 2003b) a frame for

power dissipation estimation was presented and an algorithm was proposed to select

the polarity so as to minimise the power and area of circuits.

Shahana et al. (2005), proposed an optimisation algorithm to implement logic

functions using RM-ULMs. Functions up to four variables were considered and no

benchmark functions were used for validation of results. Oh and Almaini (2007) dealt

with the implementation of Boolean functions using 2Variable ROBDD technique.

Boolean functions were implemented using RM ULMs and it was observed that the

circuits could still be reduced. Based on the literature survey, it was observed that there

is a scope for further reduction in hardware.

Pradhan and Chattopadhyay (2008) used GA to select the polarities of the variables of

the AND-XOR network. The polarities are selected based on the optimisation of area,

dynamic power and leakage power of the resulting circuit. Chaudhary and

Chattopadhyay (2008) proposed a GA based scheme for implementation of Fixed

Polarity Reed Muller (FPRM) functions using AND - OR / XOR with minimum area

and power. No evolutionary technique was applied for implementation.

Much research has been done on the evolutionary design of CLCs, but research on the

synthesis of sequential circuits using EHW has started recently. Though a number of

31

authors have given valid contributions, its research is still in the infant stage

(Al Jassani et al. 2011; Tao et al. 2013).

2.3 DESIGN OF SEQUENTIAL CIRCUITS

 EHW has been applied in various fields such as Digital and analog circuit design;

Control and robotics; Communication systems; Pattern recognition; Prediction

application etc. As EHW needs no knowledge of circuit design, it provides an excellent

way for sequential circuit design. Size of the circuit and cost are the major issues in

digital design. The focus of researchers was mainly towards reduction in the number of

gates / design elements so as to minimise the on-chip area and cost (Ali et al. 2004).

 An FSM is defined as a mathematical model of a system with discrete inputs,

discrete outputs and a definite number of internal states. The states of a system

determine its behavior on the application of subsequent inputs (Miller, 1999).

Assigning binary codes for each of the states of the FSM is termed as state

assignment.

The complexity of the combinational component of an FSM depends very much on the

state assignment and selection of memory elements. Finding the OSA is the most

important optimisation problem in the automated design of sequential circuits since it

has a key influence on the power, area, speed and testability of the circuit (Ali, 2003;

Czerwiński and Kania, 2010). The problem of state assignment has been studied

extensively by several researchers to aid in the design of complex sequential circuits.

Mc-Cluskey and Unger (1959) derived a formula to find the number of state

assignments possible for a given function. Stearns and Hartmanis (1961) and

32

Story et al. (1972) suggested several methods to arrive at an OSA but none of them

were based on any evolutionary algorithm. De Micheli et al. (1985) proposed a

computer aided design tool for OSA.

In (Hartmanis, 1961), state assignment was based on the technique of partition and

decomposition and was limited to state machines having useful closed partitions

compared to other machines. Amaral et al. (1995) used GA to obtain the state assignment

of FSMs. But his method took quite a long time to converge. Almaini et al. (1995) used

GA for the generation of OSA for a synchronous FSM and they could evolve results as

good as MUSTANG.

Ahmad and Dhodhi (2000) proposed a method to find the OSA which is based on

Mean Field Annealing which combines the characteristic of simulated annealing and

Hopfield neural network. They claimed to have superior results compared to NOVA

and Mustang. Digalakis and Margaritis (2001) proposed a GA based technique for

state assignment. A new selection mechanism was introduced and suitable cross over

and mutation operators were proposed. Experimental results on the performance

evaluation of some benchmark functions were discussed.

Soliman and Abbas (2004) proposed a GA based approach for the design of a 3 bit up

counter. Instead of evolving the combinational part and the memory elements

separately, the entire SSC was evolved as a single unit. The authors reported only one

experiment as validation. In (Al Jassani et al. 2011) a method based on MOGA to

obtain the OSA was proposed. The ESPRESSO tool was used to optimise the

combinational parts of the sequential circuits.

33

Usually the number of logic elements needed was considered as the design metric, but

in the case of VLSI implementation, reducing the manufacturing cost is the major

criterion rather than minimising the number of units (Sarrafzadeh and Wong, 1996).

Soleimani et al. (2011a) and (2011b) dealt with the design and optimisation of

synchronous sequential circuits. They used D Flip flops and the design was based on

GA. It was reported that average generations could be reduced due the limited search

space. In (Tao et al. 2013), evolutionary design of synchronous sequential circuits

based on a module level three stage approach was proposed. GA was used to obtain the

state assignment in the first stage and a number of circuits were evolved in the second

stage using Genetic programming. In the final stage, complexity of circuit was reduced

by re-evolution. Sequence detectors, modulo-n counters and other benchmark circuits

were used to test the three-stage approach.

In all the above work, the combinational part of FSM was realised using gates as the

design element. The time of computation needed is more as the length of chromosome

increases. As mentioned in the last paragraph of Section 2.2.1, computational time can

be reduced by adopting different chromosomal representation and the corresponding

genetic operators such as cross over and mutation. It was also observed that there is a

need for an efficient method for evolving the OSA.

2.4 SUMMARY

In this chapter, a detailed review on various evolutionary design techniques of digital

circuits has been done. Most of the research till date is on the design of combinational

circuits, while the research on SSCs is still in the infant stage.

34

As far as CLCs are concerned, most of the works were concentrated on the design

using gates. The computational time involved is more as the number of inputs / outputs

of the function increases. Hence there is a need for reducing the computational time for

which a new faster technique has been proposed in this thesis.

With the advent of reconfigurable devices, design using universal building blocks has

become necessary. The advantage of using ULMs for the design of CLCs is elaborated

in Section1.4.2. With the introduction of VLSI circuits, it has become a tough task for

the designer to pack more functionality on a chip of smaller area. Moreover, the delay

associated with the circuit should be less to have a faster operation of the system. In this

work, two new techniques have been proposed for the implementation of circuits using

building blocks such as 2-1 mux and 2-1 RM ULM with GA as the optimisation tool,

so as to evolve circuits with minimum area and delay.

OSA is an important prerequisite for the design of FSMs. Earlier several tools were used

to obtain the state assignments corresponding to minimum circuit complexity. Later on

search algorithms have been introduced to obtain OSA which is responsible for having

circuits with minimum hardware. The combinational part of FSM can be implemented

using gates and ULMs. Implementation using ULMs is really an advantage as the

replication of the same design element reduces the manufacturing cost. In this work, for

gate based design, to have faster convergence the above mentioned method has been used

and a new crossover technique has been proposed for the OSA. Moreover, the

combinational part has been evolved using i) gates and ii) ULMs.

CHAPTER 3

COMBINATIONAL LOGIC CIRCUIT DESIGN

USING GATES

3.1 INTRODUCTION

With the increasing need of high quality digital circuits in everyday life, new

methodologies have to be introduced for its design. The existing popular methods for

the design of CLCs using gates include i) K map technique - a graphical representation

of Boolean functions ii) Quine-McCluskey method - a tabular method and

iii) algebraic reduction rules as mentioned in Section 1.2.1. Design of electronic circuits

is usually done by experienced designers having meticulous knowledge regarding the

design rules and reduction techniques. But such methods entail limitations such as

inexperience or lack of adequate knowledge which can affect the quality of the circuits

designed. Another drawback of human-based approach is that the designer’s line of

imagination and design habits reflects in the performance of the designed circuits.

These constraints can be eliminated in automated design techniques. Evolutionary

Design (ED) is the most popular automated design technique for digital circuits. It uses

evolutionary algorithms (search algorithms) to realise functions that are not achievable

by the conventional design techniques.

Genetic Algorithm (GA), an efficient search technique based on the principle of

genetics and natural selection, is used as the optimisation tool for evolving the circuits.

The problem of implementing the design using GA can be considered as being

equivalent to designing a black box with user defined inputs and outputs as shown in

36

Fig. 1.3 in chapter 1. The system should generate a digital circuit that satisfies the

specified truth table with minimum number of gates in lesser time. This black box is

encoded into chromosomes (circuits) which are generated randomly. On applying

genetic operators such as selection, crossover and mutation, new and better individuals

are created. The flow chart for the GA is shown in Fig. 3.1.

GA for a particular problem should have the following components:

1. A representation for potential solutions (encoding)

2. An initial population of the potential solutions (Usually generated at random)

3. An evaluation function to measure the fitness of individuals (rating of the

solutions)

4. Genetic operators that alter the composition of children (crossover and mutation)

5. Suitable values of parameters of GA like size of population, probabilities of

the genetic operators and number of generations.

Fig. 3.1 Flow chart of GA

Fitness = 1 ?

Generation of
Initial Population

Evaluate the
fitness of each
chromosome

Decode the
chromosome to

the circuit
structure

User defined
minterm

Selection Process

Mutation Process

Crossover Process

NO

YES

37

The most important aspect of GA is the encoding of solutions. i.e., the problem of

representing the circuits as chromosomes. It affects the population size and hence the

convergence time of GA.

3.2 CHROMOSOMAL REPRESENTATION (ENCODING)

The chromosomal representation proposed by (Louis, 1993) is still popular and is

generally used for the evolution of digital circuits. He used binary representation for

the genes. Later on, Coello et al. (1996) suggested a GA based approach in which the

chromosomes (individuals) can be represented in any number system such as octal,

decimal, hexadecimal etc. which was proved to be effective in larger circuits. Till

date chromosomes are represented in a linear fashion as a string of characters using

any number system. A brief overview of the linear chromosomal representation is

explained in next section.

3.2.1 Linear (Conventional) Chromosomal Representation

To realise a function of n variables, it was assumed (Coello et al. 2000b) that the

circuit had n levels and each level had n gates as shown in Fig. 3.2, where, G11, G12 ,

…Gnn are the various two input gates generated at random. The inputs to the gates in

the first column (first set of cells) were obtained from the truth table and all other

gates receive their inputs from the previous level. The circuit was encoded into a

string of genes where each gene corresponds to a gate and its corresponding inputs.

For example, a three variable function can be represented using 9 genes

(3 gates / level) as shown in Fig. 3.3. If 2 bits were used to represent the type of

gate / input, then the number of bits needed to represent a single gate would be 6 and

38

the length of chromosome would be 54, whereas for a six variable function it goes up

to 216. If the number of bits used was 3, it would become 81 and 324 respectively.

Thus, with linear chromosomal representation the chromosomal length increases

proportional to the number of variables, which leads to increase in computational

time which is one of the issues taken for investigation in this thesis. To address this

issue, a 2D chromosomal representation is proposed.

Fig. 3.2 Array of gates for the realisation of a CLC

Fig. 3.3 Representation used for encoding of the circuit

G 11

G n 1

G 1 n

G nn

Inputs

Outputs

a 11 a 13 a 12 a 21 a 23 a 22 a 31 a 33 a 32

a 33

gene

Input 1 Input 2 Type of Gate

39

3.2.2 2D Chromosomal Representation (Encoding of the circuit)

The author proposes an approach in which the circuit is retained as an array without

converting it to linear form, provided suitable crossover and mutation techniques are

formulated. Encoding of a three input circuit into its corresponding 2D chromosome

is illustrated in this section. If m bits are used to represent the gates / inputs,

an n input circuit is represented by an mn x mn matrix where the first column

represents the inputs to the gates of first level, the second column represents any two

input gate / wire in that level and the subsequent columns follow the same pattern. A

three input circuit ‘A’ shown in Fig. 3.4 is encoded as shown in Table 3.1.

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

Fig. 3.4 A three input circuit with three levels and three gates / level

Table 3.1 Encoding of gates and corresponding inputs for 2D chromosomal

representation

Inputs Gates

Inputs to gate1 A11 A21 Gate1 A12 A22:

Level 1 Inputs to gate2 A31 A41 Gate2 A32 A42:

Inputs to gate3 A51 A61 Gate3 A52 A62

Inputs to gate 4 A13 A23 Gate4 A14A24

Level 2 Inputs to gate 5 A33 A43 Gate5 A34 A44

Inputs to gate 6 A53 A63 Gate6 A54 A64

Inputs to gate 7 A15 A25 Gate7 A16 A26

Level 3 Inputs to gate 8 A35 A45 Gate8 A36 A46

Inputs to gate 9 A55 A65 Gate9 A56 A66

40

Usually the chromosomes are represented in binary. In this thesis, gates are

represented in binary and inputs are represented by integers so as to obtain a square

matrix for the chromosomal representation. The square representation is adopted to

obtain better and easy visualisation of the circuit.

As an example, consider two individuals (chromosomes) A and B generated

randomly for a three input function as shown in Figs. 3.5 (a) and (b).

0 0 0 1 0 1

1 0 2 0 0 0

2 0 1 0 1 0

1 1 2 1 2 1

2 1 2 0 2 1

1 0 0 1 0 1

0 0 0 1 1 1

1 0 1 1 2 0

1 1 1 0 0 1

2 0 0 0 1 0

0 0 2 1 2 1

1 1 1 0 1 1

 (a) Individual A (b) Individual B

Fig. 3.5 Randomly generated individuals

The encoding of inputs and gates are shown as in Table 3.2.

Table 3.2 Encoding of gates and the corresponding inputs

 (a) Encoding of inputs (b) Encoding of gates

Inputs

Assignment Corresponding Inputs

0 a

1 b

2 c

3 d

4 e

5 f

Gates

Binary

code

Corresponding

gates

00 XOR

01 AND

10 OR

11 WIRE

41

 If the gate type is a WIRE, then its input is considered to be the top element of the

chromosome corresponding to the input combination of that gate and if both the

inputs of an AND / OR gate are same, then that gate is replaced by a WIRE.

As per the above encoding, the corresponding circuits for individuals A and B

are shown in Figs. 3.6 (a) and (b) respectively.

(a) Circuit A

(b) Circuit B

Fig. 3.6 Chromosomes for a 3 input function generated randomly

Level 1 Level 2 Level 3

a
b

b

b

c

Y1

Y2

Y3

c

a

b

b

c

a

b

Level 1 Level 2 Level 3

Y1

Y2

Y3

42

For this 2D representation, suitable 2D crossover and mutation techniques are to be

developed for the optimisation.

3.3 OPTIMISATION USING GA

The genetic operators such as selection, crossover and mutation have to be applied on

the chromosomes for optimisation using GA. As mentioned in Section 1.3.4, using

any selection technique, individuals with more fitness are selected for crossover and

the weaker ones are discarded. RWS technique is used in this thesis. Crossover

operation is the process by which some chromosomal patterns / genes are exchanged

between two parents so as to create the offsprings for next generation. Mutation is an

unexpected change in the chromosomal pattern which occurs rarely so as to evolve

better individuals.

Since 2D chromosomal representation has been proposed for the individuals, 2D

crossover and mutation techniques are also developed.

3.3.1 2D Crossover Technique

2D crossover technique is illustrated in this section assuming that the possible solutions

(circuits) are encoded in to an array of size 2n x 2n, where n is the number of variables

involved in the function. Consider two parent individuals A and B. Parents A and B are

three input circuits and the corresponding chromosomes are shown in Fig. 3.7. To

perform the crossover operation, a portion of the chromosome of the parent individuals

must be swapped. To achieve this, the region of crossover is to be identified. This can be

43

done using suitable mask matrices which when multiplied by the original matrix

identifies the region to be swapped (Vijayakumari and Mythili, 2012).

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

B11 B12 B13 B14 B15 B16

B21 B22 B23 B24 B25 B26

B31 B32 B33 B34 B35 B36

B41 B42 B43 B44 B45 B46

B51 B52 B53 B54 B55 B56

B61 B62 B63 B64 B65 B66

Fig. 3.7 Parents A and B selected for crossover

To obtain the mask matrices, a set of 4 random numbers R1, R2, C1, C2 are generated

where R1 and R2, C1 and C2 are numbers between ‘1’ and ‘2n’ and they specify the

start and end rows / columns of a sub matrix in the parents respectively. The genes

within this sub matrix will be swapped between the parents. The sub matrices to be

swapped are shown in Fig. 3.8. (Corresponding to R1 = 2, R2 = 6, C1 =2 and C2 =5

generated randomly).

Fig. 3.8 Selection of sub matrices

The complementary mask matrices M1 and M2 are generated using the following

procedure. The rows and columns outside the sub matrix are filled with ‘1’s and the rows

and columns inside the sub matrix are randomly filled with 1s and 0s as shown in Fig. 3.9.

The mask matrices generated randomly for the parents A and B are shown in Fig. 3.9.

44

1 1 1 1 1 1

1 0 1 1 0 1

 1 0 0 1 0 1

 1 1 0 0 1 1

1 0 1 0 0 1

1 0 0 1 1 1

0 0 0 0 0 0

0 1 0 0 1 0

0 1 1 0 1 0

0 0 1 1 0 0

0 1 0 1 1 0

0 1 1 0 0 0

M1 M2

Fig. 3.9 Mask matrices M1 and M2

The offsprings can be obtained by multiplying the mask with the corresponding

parents and adding suitably as given by equations 3.1 and 3.2.

 (3.1)

 (3.2)

After crossover, the corresponding offsprings obtained are shown in Fig. 3.10.

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

 A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

B11 B12 B13 B14 B15 B16

B21 B22 B23 B24 B25 B26

B31 B32 B33 B34 B35 B36

B41 B42 B43 B44 B45 B46

B51 B52 B53 B54 B55 B56

B61 B62 B63 B64 B65 B66

Fig. 3.10 Offsprings of parents A and B

The offsprings of the parents A and B shown in Fig. 3.5 are C2D and D2D respectively and is

shown in Fig. 3.11.The corresponding circuits for C2D and D2D are as shown in Fig. 3.12.

0 0 0 1 0 1

1 0 2 0 2 0

2 1 1 0 0 0

1 1 0 0 2 1

0 0 2 1 2 1

1 1 1 1 0 1

0 0 0 1 1 1

1 0 1 1 0 0

1 0 1 0 1 1

2 0 2 1 1 0

0 1 2 0 2 1

1 0 0 0 1 1

Fig. 3.11 Offsprings (C2D and D2D) after 2D crossover

45

a

b

b

c

Y1

Y2

Y3

Level 1 Level 2 Level 3

 (a) Offspring C2D

Y1

Y2

Y3

a

b

b

c

a

b
Level 1 Level 2 Level 3

(b) Offspring D2D

Fig. 3.12 Offsprings (Circuits) for parents A and B after 2D crossover

A comparison has been made on the offsprings generated for the same parents using

the proposed 2D crossover and the existing linear crossover in the next section.

Comparison between the proposed technique and the existing linear crossover

The linear chromosomal representations for the same individuals A and B are

shown in Fig. 3.13.

46

0100 0210 0010 2101 1201 1201 2110 2001 2011 A

0100 0111 1210 1210 1000 0110 0101 2110 2111 B

Fig. 3.13 Linear chromosomal representation of parents A and B

If the crossover point is selected randomly as shown in Fig. 3.13, the offsprings Clinear

and Dlinear after crossover are shown in Fig. 3.14.

0100 0210 0010 2101 1201 0110 0101 2110 2111 C

0100 0111 1210 1210 1000 1201 2110 2001 2011 D

Fig. 3.14 Offsprings Clinear and Dlinear after linear crossover

The circuits corresponding to the offsprings Clinear and Dlinear are shown in Fig. 3.15.

(a) Offspring Clinear

Y1

Y2

Y3

a

b

b

c

c

b

Level 1 Level 2 Level 3

(b) Offspring Dlinear

Fig. 3.15 Circuits corresponding to offsprings after linear crossover

a
b

b
c

a
b

Y 1

Y 2

Y 3

Level 1 Level 2 Level 3

47

From Fig. 3.12 and Fig. 3.15, it can be observed that in linear crossover, the changes

occur only in the levels after the crossover point, whereas in 2 D crossover, since the

sub matrices are swapped, changes can occur in any level either in connections / type

of gates. Thus, generated offsprings can have many variations from their parents in

2D crossover, which leads to faster convergence.

After crossover, a small proportion of the offsprings thus evolved is allowed to undergo

mutation so as to obtain better circuits. The procedure for mutation is discussed in the

next section.

3.3.2 2D Mutation

 In mutation, a single bit in the chromosome is selected and it is altered. If it comes in

any of the even columns, it is flipped from either 0 to 1 or from 1 to 0 so that gates

are changed. For odd columns, that particular digit is set to a random number other

than the one which is selected for mutation. This can be achieved by a single mask.

To prepare the mask matrix, two random numbers R and C are generated to fix the

row and column of the bit to be mutated. A mask matrix M is generated with all

elements 0 except the selected bit and this mask operator is superposed over the

offspring to be mutated. The selected bit is flipped and the rest are unaltered.

Let the randomly generated numbers R and C be 1, 4. Then a mask matrix (M) is

formed with all elements 0 except the element in first row and fourth column, M14

which is set to 1. The mask matrix formed is shown in Fig. 3.16 (a). Here, the

presence of a ‘1’ in the mask matrix indicates a change in the characteristic of the

offspring and a ‘0’ indicates no change. Thus it modifies the gate type / input

Fig. 3.9(a) mutation mask

48

combinations, which implies that a completely new circuit can be generated. The

offsprings before and after mutation are shown in Figs. 3.16 (b) and (c).

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 1 0 1

2 1 2 0 2 0

2 1 1 0 0 0

1 1 2 0 2 1

0 0 2 1 1 1

1 1 1 1 0 1

1 0 0 0 0 1

2 1 2 0 2 0

2 1 1 0 0 0

1 1 2 0 2 1

0 0 2 1 1 1

1 1 1 1 0 1

(a) Mutation mask (b) Offspring before

mutation

(c) Offspring after

mutation

Fig. 3.16 2D Mutation Process

The new offsprings (circuits) before and after mutation are shown in Fig. 3.17. It can be

observed that before mutation, the gate in the first row of second level was OR whereas

after mutation it has been changed to an XOR gate.

(a) Before mutation

(b) After mutation

Fig. 3.17 Offsprings before and after mutation

 b

c

c

a

b

Y1

Y2

Y3

 b

c

c

a

b

Y1

Y2

Y3

49

After crossover and mutation, the individuals have to be evaluated for fitness. This

can be done with the help of formulating a suitable fitness function as discussed in the

next section.

3.3.3 Fitness Function

The quality of the evolved circuits depends upon the strength of fitness function used.

To ensure optimal / efficient circuits a fitness function with two parts has been

proposed. This is done for two reasons. The first part (F1) is to achieve 100 %

functional circuit which matches with the truth table and the second part (F2) is an

additional fitness to minimise the number of gates used. i.e., when more wires appear

in the generated circuit, this part of the fitness function increases. If both the inputs

are same for AND / OR gates, then those gates are replaced by wires.

Thus, the Fitness function (3.3)

 ∑

 (3.4)

Where N = Possible number of input combinations (2
n
)

 O1 - Evolved output

 O2 - Desired output

 (3.5)

WIRE - Number of wires in the circuit

 n - Number of input variables

 Fig. 3.9(a) Mask matrix (M)

50

3.3.4 GA Parameters

The parameters chosen for the GA are a crossover rate of 0.7 and mutation rate 0.3%.

A population size of 1000 was used to evolve complex functions also. The number of

generations chosen was 200 for 2D technique and 500 for linear technique. Roulette

Wheel Selection technique has been used for selecting the individuals for crossover.

3.4 RESULTS

Using this proposed 2D technique, circuits of 2 to 6 inputs with varying complexities

have been evolved. Benchmark functions specified in Section 1.7 are used to validate

the results. In addition to this, circuits have been evolved for some functions in the

literature for comparison.

On various runs, the number of generations needed for convergence varies. Hence the

number of generations required is considered to be the average of all the runs.

Computational time considered is the average of the convergence time required in all the

runs.

Benchmark Functions

1. Majority3

This is a benchmark function of 3 variables which produces an output one when the

number of ‘1’s in the function is two or more.

51

The evolved circuit by the proposed method is shown in Fig. 3.18. The circuit needs only

4 gates in 3 levels. Whereas with conventional design based on K map, 5 units embedded

in 3 levels are needed. The average number of generations required is only 32 compared

to 59 with linear (existing) chromosomal representation and genetic operations.

a

c

a

c

b

F

Fig. 3.18 Circuit evolved for Majority3 using gates

2. Four Bit odd parity checker

This is a four input function which produces a high output for odd number of ‘1’s in

the input combinations. The circuit evolved is shown in Fig. 3.19 with 3 gates in

2 levels, where as conventional technique needs 22 units in 6 levels.

a

b

d

F

c

Fig. 3.19 Four bit odd parity checker using gates

52

3. xor5 – A 5 bit XOR function

With the use of XOR gates in automated design, the function can be realised easily

with lesser number of gates. The evolved circuit shown in Fig. 3.20 needs only

4 gates in 3 levels. The circuit was evolved in 75 generations. Its design using

conventional techniques is very hard.

Fig. 3.20 Circuit generated for xor5 using gates

4. 6one135 – A 6 bit benchmark function which produces an output 1 when the

number of 1’s in the input combinations are 1, 3 or 5.

Though design using K map is possible for functions up to 6 variables, design of

more than 4 variable functions is not easy. On mapping this function into K map,

there are no two adjacent ones to group together. Hence it is not possible to minimise

the function by conventional techniques. Reduction by applying algebraic rules is

very complex. By the proposed technique, the circuit was evolved in lesser time with

minimum number of gates.

The circuit generated by evolution is shown in Fig. 3.21. The average number of

generations needed is 85 compared to 150 with the existing technique.

F

c

a

b

d

e

53

Fig. 3.21 Circuit evolved for 6one135 using gates

5. 6one0246 A 6 bit benchmark function which produces an output ‘1’ when the

number of 1s in the input combinations is 0, 2, 4 or 6.

The evolved circuit is shown in Fig. 3.22 with 6 gates in 4 levels in 90 generations

and the computational time is 122.6345 sec, whereas with linear representation, the

time was 239.362sec.

Fig. 3.22 Circuit evolved for 6one0246 using gates

Other Functions

1. Four bit even parity checker

2. Four bit binary to gray code converter

3. Full adder

 e

f

b

c

d

a

F

a

c

d

e

b

f

F

b

54

4. 2-1 mux

5. F (a, b, c) = Σ m (3, 5, 6)

6. F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13)

7. F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14)

1. Four Bit even parity checker - The circuit evolved by the proposed method is

shown in Fig. 3.23. It can be observed that the circuit requires only 4 gates compared

to 27 gates in manual design. The number of generations required for convergence is

72 compared to 130 in linear representation.

Fig. 3.23 Realisation of Four bit even parity checker using gates

2. Full Adder - It is a 3 input 2 output function

Fig. 3.24 shows the evolved circuit for a full adder circuit which requires only five gates

to realise the sum and carry outputs. It has been observed that the convergence speed of

the full adder circuit using 2D technique is much more than the existing technique. The

circuit is evolved within 20 generations using the proposed technique compared to 110

generations in the existing linear technique.

It has been mentioned in Section 1.2.1, that conventional techniques like Quine -

McCluskey method and K map do not support the use of XOR / XNOR gates. On using

XOR gates in automated design, the sum could be obtained in two levels with 2 gates and

 a

b

c

d

c

F

55

carry in three levels with 3 gates. The circuit for Full adder using 2 input gates is shown

in Fig. 3.25 which uses 18 gates in 5 levels.

Fig. 3.24 Circuit evolved for Full Adder using automated technique

aa

bb

cc

SS

CC

Fig. 3.25 Circuit for Full adder using basic gates

 a

b

c

b
a

Sum

Carry

56

3. 2-1 multiplexer - The evolved circuit of a 2-1 Multiplexer is shown in

Fig. 3.26(a). Conventional technique which employs only basic gates needs 4

gates in 3 levels as shown in Fig. 3.26(b). It is obvious that the circuit evolved by

automated design is more expensive in terms of area and power by the use of

XOR gates. In this thesis, the gates used are XOR, AND, OR and WIRE. This

example has been cited here only to demonstrate the faster convergence of 2D

crossover and mutation compared to existing linear crossover technique. The

proposed technique requires only 40 generations while the existing technique

requires 320 generations to evolve the desired functionality. Thus the computation

time has been reduced significantly.

c

a

b

F

a

Fig. 3.26 (a) Circuit generated for 2-1 multiplexer by automated design

a

c

b

c

F

Fig. 3.26 (b) Circuit for 2-1 multiplexer by conventional design

57

4. Four bit Binary to Gray code converter - a four input four output function

which converts the binary code into its equivalent gray code. The circuit

generated for the function is shown in Fig. 3.27 which uses only 3 gates.

Fig. 3.27 Evolved circuit for a Four bit Binary to Gray code converter

5. F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) - An example taken from (Slowik and

Bialko, 2008). The authors used linear chromosomal representation and the circuit

was realised in 4 gates. The generated circuit with the proposed technique is at par

with the literature using 4 gates as shown in Fig. 3.28.

Fig. 3.28 Circuit evolved for F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13)

6. F (a b, c) = Σ m (3, 5, 6) - a function which produces a high output when the

number of ‘1’s in the input combinations is two.

The circuit generated for this function is shown in Fig. 3. 29. It requires only 4 gates,

whereas conventional technique needs 11 gates for realising the function.

 B3

B2

B1

B0

G3

G2

G1

G0

d

a

b

c

a

F

58

Fig. 3.29 Evolved circuit for F (a, b, c) = Σ m (3, 5, 6)

7. F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14) - This is an example taken from

(Coello, 2004) in which the automation was done using PSO and the circuit was

evolved with 6 gates and no mention was made regarding the convergence time. With

the proposed 2D technique too, it was realised with 6 gates as shown in Fig. 3.30.

b

c

c

d

b

a

F

Fig. 3.30 Circuit of F (a, b, c, d) = Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14)

Table 3.3 shows a comparison of automated design with conventional design in terms

of number of gates / levels used. Only a few of the evolved circuits have been

considered for tabulation. It can be observed that there is a considerable saving in the

number of gates and number of levels. Reduction in number of levels is a clear

indication of reduced delay.

 b

c

a

b

c

F

59

Table 3.3 Comparison between conventional and automated techniques in

terms of number of gates / levels used

Sl

No.
Function

Conventional

(gates/levels)

Automated

(gates/levels)

1 Half adder 6/3 2/1

2 Σ m (3, 5, 6) 11/5 4/3

3 Σ m (1, 2, 4) 11/5 4/3

4 Majority3 5/3 4/3

5 Full adder 18/5 5/3

6 2-1 multiplexer 4/3 3/3

7 3 bit binary to gray code convertor 9/3 2/1

8 3 bit odd parity checker 14/5 2/2

9 4bit odd parity checker 27/6 3/3

10 4 bit even parity 27/6 4/3

11 4 bit binary to gray code convertor 13/3 3/1

12 Σ m(4, 5, 6, 7, 8, 9, 10, 13) 10/5 4/3

13 Σ m (1, 2, 4, 5, 7, 8, 10, 11, 13, 14) 19/5 6/3

14 Σ m (0, 2, 3, 8, 9, 11, 12, 13, 14) 14/5 5/3

15 xor5 60/7 4/3

16 6one135 83/8 5/3

17 6one0246 83/8 6/4

From Table 3.3, it can be observed that the number of gates / levels is reduced significantly

in automated design compared to the conventional design. Moreover, complex functions

like xor5, 6one135, 6one0246 cannot be simplified by conventional techniques.

Table 3.4 gives a comparison of the convergence time required for realising the

benchmark functions using the proposed 2D technique and linear technique. The

program was run on INTEL core i5 processor @ 2.5 GHz, 32 bit processor with

2 GB RAM. It can be observed that the time needed to arrive at 100% functional and

60

optimal solution is reduced significantly with the proposed technique compared to

linear crossover and mutation techniques.

Table 3.4 Comparison of the proposed technique with the existing technique

in terms of convergence time

Sl No. Function

Convergence

time in sec

(2D)

Convergence

time in sec

(Linear)

1 Majority3 5.3989 33.12621

2 4bit odd parity checker 68.3177 154.7651

3 xor5 122.230098 190.24014

4 6one135 116.89353 201.49251

5 6one0246 122.6345 239.36210

From Table 3.4, it is obvious that the convergence time required to realise the

functions with the proposed technique is reduced considerably.

Fig. 3.31 shows the comparison between the two approaches in terms of the number

of generations needed for the circuits to converge. It is evident that the proposed 2D

technique evolves circuits in lesser number of generations compared to the existing

linear technique.

The functions used for the analysis are:

 F1: 2 bit circuit (Half Adder)

 F2: majority3

 F3: 4 bit Circuit (4 bit binary to gray code converter)

 F4: xor5

 F5: 6one135

 F6: 6one0246

61

Fig. 3.31 Comparison of the proposed technique with the existing technique in terms of

number of generations

From the above examples and discussions it can be concluded that the proposed

technique is faster compared to the existing technique. The optimum circuits were

always generated in less than 100 generations with the proposed technique.

3.5 SUMMARY

A new 2D representation for the design of CLCs is proposed. Suitable crossover and

mutation techniques are developed for this 2D representation. The fittest circuit evolved

is in the form of ‘1’s and ‘0’s in a matrix form so that decoding is made easy. Various

circuits including benchmark functions with inputs up to 6 variables have been evolved.

A comparison of the convergence time between the proposed technique and the

conventional method has been made. In linear crossover, some of the levels may remain

unaltered during crossover operation, whereas with the proposed 2D technique, since the

sub matrices are swapped for crossover operation, variations from the parent circuits can

occur at any level either in connections / type of gates. Thus, the convergence speed of

GA has been significantly increased compared to the conventional method, which in turn

reduces the computational time for evolving optimal circuits.

0

20

40

60

80

100

120

140

160

180

F1 F2 F3 F4 F5 F6

N
o
.
o
f

G
en

er
at

io
n
s

Functions

Linear

2D

CHAPTER 4

COMBINATIONAL LOGIC CIRCUIT DESIGN

USING UNIVERSAL LOGIC MODULES

4.1 INTRODUCTION

Over the last few decades, several researches were carried out to automate the design

of digital circuits using evolutionary algorithms. The main motivation behind this

comes from the need to produce power efficient and cost effective optimal circuits.

Since the use of integrated circuits in the areas of high performance computing,

telecommunication, consumer electronics etc. are growing at a faster pace, a cost

effective design is very significant. Evolutionary design helps to obtain an optimised

circuit in terms of area / delay / power.

One of the advantages of evolutionary design is the use of universal building blocks

such as multiplexers / RM blocks as the basic design element. The repeated use of a

single design element reduces the cost of VLSI implementation and hence the

exclusive use of ULMs is recommended for the design. Earlier, the researchers

focused on generating circuits using minimum number of gates. However, in VLSI

design, reduction in manufacturing cost is more significant compared to the reduction

in number of components used (Aguirre et al. 1999 and 2000). This is possible by

replicating the same element so as to evolve fully functional circuits.

In this chapter, design of CLCs based on the exclusive use of 2-1 mux / 2-1 RM ULM

is discussed. The objective is to generate fully functional circuits with minimum

hardware using suitable evolutionary algorithms. The quality of the evolved circuits

64

solely depends on the algorithm used for evolution. Being an efficient evolutionary

algorithm, GA is used as the optimisation tool to evolve the circuits.

4.2 METHODOLOGY

Any Boolean expression can be implemented using ULMs such as multiplexers or

RM ULMs. In this work, 2-1 mux / 2-1 RM ULM has been used for the realisation of

Boolean functions. By SI technique, a function of n variables can be realised by a tree

network using 2
n
-1 binary ULMs in n levels. The existing reduction techniques such

as Shannon‟s / Davio decomposition technique do not help in arriving at an optimised

circuit. Sub functions are useful for implementing a Boolean function. To implement

a hardware circuit for a function of n variables, the following identities based on

Shannon‟s decomposition and Davio decomposition techniques can be used.

 For 2-1 mux implementation (4.1)

 ()

⨁ For 2-1 RM ULM implementation (4.2)

where F′, F′′ and F′′′ are functions of n-1 variables and is the complement of

Both identities are used to reduce the original design problem into two simpler

problems (Wang, 2000). Applying such decomposition repeatedly with another

variable Aj allows the problem under synthesis to be reduced further and further to

either literals or constants as mentioned in Section 1.4.2. Fig. 1.5 in Section 1.4.2 shows

the circuit realisation of a three variable function using binary multiplexers in SI.

65

The characteristic features of the tree network of ULMs in SI are:

 All the units in the same level share the same control signal

 A control signal selected in one level cannot be used in other levels

 All the variables of the function should be used as control (select) signal

 Only the variables of the function can be used as control signal

 Inputs to the first level (bottom most) should be 0s or 1s

 Regular / uniform interconnections

Since the Shannon‟s / Davio decomposition is not helpful in reduction of hardware,

an attempt has been made to evolve better circuits by making some alterations in the

conventional tree network. GA is used for this purpose. Design of CLCs using binary

multiplexers / RM ULMs is discussed in the subsequent sections.

4.2.1 Binary Multiplexer (2-1 mux)

The conventional use of multiplexer is to route data from one of the n sources to a

common destination. Besides, it can be used for the realisation of combinational

circuits. It is known that, any function can be realised by applying Shannon's

decomposition technique that uses only binary multiplexers. The decomposition

technique has been explained in Section 1.4.2.

A multiplexer with n selection lines is a combinational circuit that selects data from

2
n

input lines and directs it to a single output line. A binary multiplexer has 2 input

lines and one control line. They are of “active low” or “active high” denoted as

class A or class B multiplexers as mentioned in Section 1.4.2. Only class A mux is

used in this work and its logic symbol is shown in Fig. 4.1.

66

F

c(control)

ba

0 1

Fig. 4.1 Logic symbol of a Class A mux

The output of class A mux is given by

 [′] (4.3)

where c′ is the complement of c.

4.2.2 Binary RM ULM

RM ULM is based on AND-XOR logic while mux is based on AND-OR logic. XOR

gates are slow and require a large area when realised in comparison with OR gates.

But with the advancement of new technologies and advent of various FPGA devices,

XOR / XNOR implementation of circuits has become easy.

The logic symbol of a 2-1 RM ULM is shown in Fig. 4. 2 whose output is given by,

 ⨁ (4.4)

c

F

a b

0 1

Fig. 4.2 Logic symbol of a 2-1 RM ULM

67

Any Boolean function can be expressed in the form of Reed-Muller (RM) expression

using AND and XOR operators. This representation has various advantages such as

ease of complementing and testing. It requires lesser number of gates and

interconnections in applications which involve XOR operations.

Basic theorems involved in the design using RM ULM are

 ⨁ (4.5)

 ⨁ (4.6)

 (4.7)

 ⨁ (4.8)

where X is any variable and X′ is its complement.

This thesis aims at the design of circuits with minimum number of units and levels

compared to SI which uses 2
n
-1 units in n levels. E.g., a three variable function needs

seven units distributed in three levels with conventional method. An attempt has been

made to reduce the number of units / levels by making certain modifications on the SI

technique using GA.

4.3 PROPOSED METHODS

In this work, few modifications have been made on the well known Shannon‟s /

Davio decomposition technique, so as to evolve better circuits with minimum

hardware. The most important property of conventional design is that the units in the

same level share the same control / select signal as discussed in the previous section.

The proposed method allows any variable to be used as select signal to any unit in

68

any level. In addition to the use of variables as select signals, this method uses

functions derived from previous level as select signal which is not permitted in SI.

With this approach, circuits can be evolved with lesser number of modules and levels

than standard implementation, thereby reducing the cost and complexity of the

circuit.

Two different GA based techniques have been proposed to obtain optimal circuits

with binary ULMs. These techniques are referred to as Constant Input Method

(CIM) and Variable Input Method (VIM) in this thesis and are discussed in the

subsequent sections.

4.3.1 Constant Input Method (CIM)

As in Shannon‟s / Davio decomposition techniques, the inputs to the ULM units in

the first level (where inputs are fed) are only constants, i.e., 0s and 1s. Inputs to the

subsequent levels can include 0, 1, or outputs of immediate preceding level. In the

case of control signals, Shannon‟s / Davio decomposition technique used fixed

control signals for each level whereas the proposed method uses randomly generated

control signals and the circuits are evolved using GA.

In CIM, the modifications made to the existing Shannon‟s / Davio decomposition

technique are consolidated as follows.

1. The control signals for all the units in a particular level need not be the same

as they are selected at random using GA.

2. The signal selected at one level can be used for other levels too.

69

3. The control signal need not be a variable, it can also be a function derived

from the previous level.

4. All the variables need not be used as control signal.

Thus, the control signals for the ULMs can be variables of the Boolean function, their

complements, or the outputs of units from the previous level. Using the above

modifications, circuits can be evolved with lesser number of units / levels.

The flow chart for the proposed method is shown in Fig. 4.3. The maximum number

of levels required to realise a function of n variables is n and the number of units

required is 2
n
-1. The number of units in a level is 2

n-l
, where l is counted from the

level where data inputs are fed to the circuit. Incorporating the modifications

suggested above, a random population is generated. The circuits are encoded into

chromosomes which can accommodate the worst possibility of having the number of

levels and number of units as in SI. Output of the n
th
 level unit is the final output of

the circuit. It is evaluated for 100% fitness with minimum number of levels / units.

The fitter individuals are allowed to undergo selection, crossover and mutation and

the process is continued till optimal circuits are evolved.

Once the circuits are evolved, the ULMs are checked for redundancies and are

eliminated. For E.g., if multiple units have the same data inputs and the control

signals in the same level, then one of them will be retained and the rest will be

discarded. Moreover, muxes with the same data inputs can be replaced by a wire.

Hence the numbers of units are further reduced thereby reducing the power and area.

The advantage of CIM is that the inputs to the tree are only constants.

70

Yes

Yes

Gen=1; ind=1

A

Yes

No

No

No
Is fitness=1

Is Gen = Max

Gen

Input Truth Table

Evaluate the fitness of

Chromosome

Decode

User defined

minterm

Selection

Cross over

mutation

Gen = Gen+1

STOP

Is

l = n

Is

ind = maxind

Output of the circuit = output of

nth level

ind = ind+1

A

No

Yes

Compute the output of all the units

opl1,opl2……...

Inputs to 2n-lMuxes at first level – 0s,

1s

Control signal – variables / their

complements

l=1

Inputs to lth level2n-l muxes 0s, 1s or output of

preceding levels opl1,opl2...

Control signal – variables, their complements

or output of previous level

l=l+1

Compute the output of all the units

opl1,opl2….opl2
n-l

Compute max. no. of levels=n

Max. units in a level=2n-l

Input no. of variables - n

 l = level

Max. no. of generations - Maxgen

Max. no. of individuals - Max ind

Gen=1; ind=1

START

Fig. 4.3 Flow chart for CIM

71

4.3.2 Variable Input Method (VIM)

VIM is similar to the CIM except that the inputs to the units in first level can be

0s, 1s, variables or their complements. With this added modification, the number of

units / levels can be still reduced. GA is used to select both the inputs and the control

signals for optimisation.

4.4 IMPLEMENTATION OF GA

In the case of design using gates, it was assumed that an n variable circuit had n levels

and each level had n gates so that the chromosomal representation for the circuit was

in the form of a square matrix and 2D crossover and mutation were applied over these

square matrices. While in the case of a tree structure, the number of units in all the

levels is not equal. The number of units in the i
th

 level of a tree is 2
n-i

 where the level

is counted from bottom to top. E.g., for a three bit function, the number of units in the

three levels is 4, 2 and 1 respectively. Due to the non-uniformity in the number of

units in each level of the tree, 2D crossover technique cannot be used here. Hence

linear crossover and mutation are adopted in this work.

4.4.1 Chromosomal Representation for the Circuit

The chromosomal representation of circuits using mux and RM ULM are similar.

Hence the encoding of the tree network using RM ULM units in both the methods are

discussed. The chromosome contains the information about the inputs and control

signals for the ULM units.

72

Constant Input Method

The encoding of the units are similar except for the first level. Encoding of a single

RM ULM in the first level is as follows. A three input function is considered as an

example. As mentioned earlier, in CIM, the inputs to the first level are 0, or 1 and can

be any one of the combinations - 0, 0; 0, 1; 1, 0; or 1, 1. To represent this, two bits are

needed. The control signal can be variables or their complements. For a three input

function, 6 possibilities are there and hence 3 bits are required to represent the control

signal. Fig. 4.4 shows the typical representation of a chromosome for an RM unit in

the first level (level where the inputs are fed) of the tree for a three variable circuit.

The same is repeated for all the units in first level.

X1 X2 X3 X4 X5 X6

Fig. 4.4 Chromosomal representation of an RM ULM in the first level

Here, X1 indicates the presence / absence of the unit, X2X3 represents the inputs to the

unit, and the combination X4X5X6 corresponds to the control signal used.

Table 4.1 shows the encoding of the above unit. Tables 4.1 (a) and (b) shows the

encoding of the inputs and the control signal of that unit respectively.

73

Table 4.1 Encoding of a single RM ULM in the first level of a tree

implemented in CIM

 (a) Encoding of inputs (b) Encoding of control signals

X Inputs

 X2X3

00 0, 0

01 0, 1

10 1, 0

11 1, 1

X
Control

signal

X4X5X6

000 a

001 b

010 c

011 a′ *

100 b′

101 c′

110 a

111 b

* ′ represents the complement

For E.g., let the randomly generated chromosome be “101010”. Since the first bit (X1)

is 1, it implies that an RM ULM exists in that position. The next two bits “01” indicate

that the inputs are 0, 1 and the last three bits “010” imply that the control signal is “c”.

The generated unit corresponding to this chromosome is shown in Fig. 4.5 and its

output is c.

c

F

0 1

0 1

Fig. 4.5 Unit evolved for the chromosome “101010”

For the second level, in addition to 0s and 1s, the inputs can be outputs from the

immediate preceding layer. Control signals can be variables, their complements or

outputs from the preceding level. Hence encoding is to be made incorporating all

74

these possible combinations. Fig. 4.6 shows the chromosomal representation for a

unit in second level.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Fig. 4.6 Chromosomal representation of an RM ULM in the second level

As mentioned earlier, bit X1 is to indicate the presence of a unit, X2 to X7 represents

the possible inputs and the last four bits X8 to X11 are used to represent the possible

control signals. Similarly the other units in the tree can be encoded.

Variable Input Method

Here, in addition to 0, 1, the inputs can be variables or their complements and hence

the number of bits required for encoding is more compared to CIM. Fig. 4.7 shows

the chromosomal representation of an RM ULM in first level. Bit X1 indicates the

presence of a unit as in CIM. Combination of bits X2 to X7 represents the possible

input signals to the RM ULM at the first level which can be any of the possible

combinations of input variables a, b, c, their complements, 1s or 0s. X8X9X10

determines the control signal of the unit.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Fig. 4.7 Chromosomal representation of an RM ULM in the first level of

VIM

For E.g., consider a string “1011100010”. Here the first bit X1 implies that an RM

ULM exists at that position of the tree. The string “011100” corresponds to the input

combination a' and b. The possible control signals in the first level are variables and

their complements. In the above string, last 3 bits “010” implies that the control signal

75

is c. The unit corresponding to this string is shown in Fig. 4.8 whose output is given by

a' (b. c).

c

F

a' b

0 1

Fig. 4.8 Unit evolved for the chromosome “1011100010”

For the second level, in addition to the variables and their complements, 1s and 0s,

the outputs of previous level can be given as inputs. As mentioned above, control

signal can be any of the variables, their complements, or functions derived from the

previous level. So encoding is to be done incorporating all the possible combinations

of inputs and control signals. Coding is being done for all other units in a similar

manner to make the complete chromosome for the entire circuit.

Chromosomes are encoded in a similar fashion for circuits using multiplexers too.

4.4.2 Optimisation Using GA

Individuals (Chromosomes) are generated at random which holds the particulars

regarding the presence of a unit, corresponding inputs, control signals and outputs as

genes. To start the GA, an initial population of circuits (strings) is generated at random.

Search is then carried out among this population and the genetic operations such as

reproduction, crossover and mutation are carried out as explained in chapter 1. The total

number of correct outputs in response to the corresponding inputs gives the measure of

fitness. Successive generations of new strings are reproduced on the basis of their fitness.

76

In this work, RWS technique is used to select the strings for crossover. Single point

crossover is performed. The mutation operation occurs rarely, usually 0.2% to 0.3%

of the population undergo mutation which changes the characteristics of a given gene

in the chromosome. The number of individuals in the initial population is fixed and is

maintained across the generations until the GA converges. A suitable fitness function

is formulated to help in the convergence of GA.

4.4.3 Fitness Function

The fitness function (F) used for evaluating the CLC evolved is assumed to consist of

three parts F1, F2 and F3 and is given by

 (4.7)

where F1 ensures 100% functionality of the circuit, F2 reduces the number of units and

F3 ensures minimum number of levels.

The proximity of the outputs of the evolved circuit to the desired outputs in the truth

table is evaluated for each individual in the population and the fitness is calculated as

 (
 ∑ ⨁

) (4.8)

where O1i is the evolved output corresponding to the i
th

 row, O2i is the corresponding

desired output and N is the number of possible combinations of inputs. (N = 2
n
)

 (4.9)

77

where count is the no. of units in the generated circuit.

 (4.10)

where level is the number of levels of the circuit.

Based on F1, a fit circuit is evolved. Once a 100% fit circuit appears, extra fitness

inversely proportional to the number of blocks and levels in the corresponding circuit

referred to as F2 and F3 are added to the actual fitness. As mentioned in Section 4.3.1,

at the end of the prescribed number of generations, idle units if any are eliminated

from the best fit circuit, ensuring an optimal solution for the circuit.

4.5 GA PARAMETERS

The parameters selected for GA are single point crossover with a crossover rate of 0.7

and mutation rate of 0.3 %. Population size of 20,000 is chosen so that even complex

circuits can be evolved. For most of the functions, the number of generations was

chosen as 100, and for complex functions, it was chosen as 500. The simulation was

done in MATLAB R2012a.

4.6 RESULTS

The results on the design of CLCs are grouped into two categories i) using mux and

ii) using RM ULM. In this work, design using ULMs have been limited to circuits

with one output only. A comparison has been made between the SI technique and the

proposed methods, CIM and VIM. The results are validated using benchmark

78

functions listed in Table 1.1 of chapter 1. Besides, circuits have been generated for

several other functions available in the literature using the proposed techniques.

4.6.1 Realisation of Circuits Using mux

1. 6one135

The circuits evolved with the proposed methods CIM and VIM are shown in

Figs. 4.9 (a) and 4.9 (b) respectively. From the figures, it can be seen that the circuit

needs 11 units in 6 levels with CIM and only 5 units in 5 levels with VIM compared

to 63 units in 6 levels with SI technique. Thus there is a saving of 82.53% and

92.06% respectively in the number of units compared to SI. The number of levels is

also reduced in VIM so that the delay can be reduced.

2. 6one0246

The circuits evolved by the proposed methods CIM and VIM need 11 units / 6 levels

and 5 units / 5 levels respectively as shown in Figs. 4.10 (a) and (b) respectively,

whereas the same circuit needs 63 units / 6 levels in SI.

79

F

0 1

0 1

0 1

0 1

0 1

a

b

c

e

d

f

f

′a

c ′

′

′

′f

d

e

 (a) CIM (b) VIM

Fig. 4.9 Circuit generated for 6one135 using mux

F

c

d

a

e

f

11 00

b

f

e

a

d

0

0

0

0

0

0

1

1 1

1

1

1

11

1

1

1

0

0

0

0

0 b

 (a) CIM (b) VIM

Fig. 4.10 Realisation of 6one0246 using mux

 F

c

d

b

a

f

e

01 10

e

f

a

b

d

0

0

0

0

0

0

1

1 1

1

1

1

11

1

1

1

0

0

0

0

0

 F

0 1

0 1

0 1

0 1

0 1 a

b′

′

′e

f

d

c c

f

e

d

′

′

b

80

3. xor5 – 5 Bit XOR Operation

It is very hard to realise XOR functions with more than four variables using mux

(Aguirre et al. 2004). With the proposed techniques, it could be implemented with

9 units in 5 levels for CIM and 4 units in 4 levels for VIM instead of 31 units

and 5 levels with SI. Thus the reduction in number of units with the proposed

techniques CIM and VIM are 71% and 87% respectively compared to SI. The

evolved circuits are shown in Figs. 4.11 (a) and (b) respectively.

d

b

1

0 1

0 1

0 1

a

c

e e

c

d

′

′

′

′a

F

 (a) CIM (b) VIM

Fig. 4.11 mux implementation of xor5

4. Four Bit Odd Parity Checker

The circuits generated are shown in Figs. 4.12 (a) and (b) for CIM and VIM

respectively. For SI, the circuit needs 15 muxes in 4 levels. With the proposed

 F

e

b

d

a

cc

a

d

b

0

0

0

0

0

1

1 1

1

1

11

1

1

0

0

0

0

c

0 1 1 0

81

techniques CIM and VIM, the circuits needed 7 muxes in 4 levels and 3 muxes in 3

levels respectively. Thus, the saving in number of units is 53.3% in CIM and 80% in

VIM. In the literature (Aguirre and Coello, 2004), it has been mentioned that parity

circuits with 4 or more variables are difficult to realise using multiplexers but it can

be seen that with the proposed methods, it is relatively simpler.

a

F

a

b

′

′

′

c

d

1

0 1

0 1

c

d

0

 (a) CIM (b) VIM

Fig. 4.12 Circuit evolved for 4 bit odd parity checker using mux

5. Majority 3

Figs. 4.13 (a) and (b) shows its CIM and VIM implementations respectively with

5 units in 3 levels and 3 units in 2 levels respectively. In SI, the circuit requires 7 units

in 3 levels.

 F

d

c

b

a
a

b

c

0

0

0

0

1

1 1

1

11

1

0

0

0

0 1 1 0

82

F

c

a

0

0

1

1 10

0 1 0 1

b0

1

1 10 a

F

c0

0

1

1 10
b

a b a b

a

 (a) CIM (b) VIM

Fig. 4.13 Circuit generated for Majority 3 using mux

Other Functions

1. F = X1X4 + X2X5 + X3X6

 F= Σ m (9, 11, 13, 15, 18, 19, 22, 23, 25, 26, 27, 29, 30, 31, 36, 37, 38, 39, 41,

43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63)

This is a complex function and is very hard to evolve. The circuits evolved using CIM

and VIM are shown in Figs. 4.14 (a) and (b) respectively. The circuit required

14 units / 6 levels in CIM and 10 units / 5 levels in VIM compared to 63 units / 6 levels

in SI.

83

X3

X2

X6

1

X4

X2

a a

X1

0

X2

1

X4

0

0

X1

1

0 01 1

X1 X1

0

X2 X5

10

F

X50 1

0 1 0 1

0 1 0 1

0 10 1

0 10 1

0 1

0 1

0 1 0 1

0 1

(a) CIM (b) VIM

Fig. 4.14 mux implementation of the function F(X1, X2, X3, X4, X5, X6) =

X1X4 + X2X5 + X3X6

2. Three Bit Odd Parity Checker

The circuit evolved with CIM needs 5 units and 3 levels which is at par with the method

proposed in literature (Aguirre and Coello, 2004) as shown in Fig. 4.15 (a). The circuit

evolved by VIM shown in Fig. 4.15 (b) has 2 units in 2 levels compared to 5 units

in 3 levels in the literature and 7 units in 3 levels with the conventional technique.

a

b

F

1

0 1

c

0

′c

′a

(a) CIM (b) VIM

Fig. 4.15 mux implementation of 3 bit odd parity checker

 F

x3

x4x6

1

x5
x2

1 0

x2

x5

x2x4 01

x1

x2 x1 x5

0

x4

0 1

0 1

0 1 0 1

0 1
0 1

0 1 0 1 0 1

0 1

 F

c

b

a
a

b

0

0

0

1

1 1

11

0

0

0 1 01

0

84

3. F (a, b, c) = Σ m (3, 5, 6) - a function which produces an output „1‟ when the

number of „1‟s in the input combinations is two.

With genetic programming, (Aguirre et al. 1999 and 2004) needed 6 units in 3 levels

with 0s and 1s as inputs. The proposed technique, CIM needs 5 units / 3levels and VIM

requires 3 units / 2 levels as shown in Figs. 4.16 (a) and (b) respectively. Thus,

compared to the method proposed in (Aguirre et al. 1999) there is a saving of 3 units

and one level with VIM, and there is a saving of one unit in CIM. The implementation

of the same circuit using standard technique is shown in Fig. 4.17 which requires

7 units in 3 levels.

′

F

b

cc

0

0

1

1 10

0 a a a

 (a) CIM (b) VIM

Fig. 4.16 Circuit generated for F (a, b, c) = Σ m (3, 5, 6) using mux

0 1 01

F

b

c

aa

c

0

0

0

1

1 1

11

0

0

0

85

0 0 1

F (a, b, c) = Σ m (3, 5, 6)

a

bb

0 1 1 0

c c c c

0

0 1

0 1 0 1

0 1 1 0 1 0 10

Fig. 4.17 Circuit for F (a, b, c) = Σ m (3, 5, 6) using mux with SI technique

Comparison between the proposed and existing methods

Circuits evolved by the proposed methods CIM and VIM are compared with SI and

methods available in the literature in terms of number of units / levels. Table 4.2

shows the comparison of results between the conventional method and proposed

methods in terms of units / levels. It is obvious that the number of units / levels

needed is reduced significantly with the proposed methods. CIM involves only 0s and

1s as inputs to the units in first level. Hence the number of input buses needed is less

compared to VIM. Implementation of circuits by VIM needs lesser number of units

and levels compared to CIM and SI. As the number of modules is less, cost, area and

power consumption is reduced which ensures better performance.

86

Table 4.2 Comparison of the proposed techniques with the existing techniques in

terms of number of units/levels in mux implementation

Sl

No.
Function

SI

Units/

Levels

Aguirre

et al.

(2004)
Units/

Levels

CIM

Units/

Levels

VIM

Units/

Levels

1 F=Σ m (3, 5 ,6) 7/3 6/3 5/3 3/2

2 F=Σ m (1, 2, 4) 7/3 5/3 5/3 3/2

3 Majority3 F=Σ m (3, 5, 6, 7) 7/3 - 5/3 3/2

4 3bit odd parity 7/3 5/3 5/3 2/2

5 F = Σ m (5, 6) 7/3 5/3 3/2

6 F = Σ m (0, 2, 3 ,4, 6) 7/3 - 4/3 2/2

7 F = Σ m (0, 2, 4, 6) 7/3 2/2 1/1

8 4bit odd parity 15/4 - 7/4 3/3

9 F = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 15/4 5/3 2/2

10 F = Σ m (5, 6, 9, 10) 15/4 - 6/4 3/3

11 F = Σ m (1, 2, 3, 5, 7, 8, 12) 15/4 - 7/4 4/4

12 F = Σ m (13, 14) 15/4 6/3 3/2

13 xor5 31/5 - 9/5 4/4

14 F = Σ m (0, 4, 6, 7, 8, 12, 14, 15) 15/4 3/2 1/1

15
F = Σ m (0, 1, 9, 22, 23, 25, 30,

31)
31/5 - 10/5 6/4

16 F = Σ m (9, 11, 25, 27, 29, 31) 31/5 - 7/5 5/5

17
F = Σ m (3, 7, 8, 15, 19, 23, 24,

26, 27, 31)
31/5 - 8/3 4/2

18

F = Σ m (0, 1, 2, 3, 16, 17, 18,

19, 32, 33, 34, 35, 48, 49, 50,

51, 60, 61, 62, 63)

63/6 - 5/4 3/3

19 6one 135 63/6 - 11/6 5/5

20 6 one 0246 63/6 - 11/6 5/5

21 F = X1X4 + X2X5 + X3X6 63/6 - 14/6 10/5

The evolved circuits were synthesised on FPGA Spartan3 (device XC3S400) using

Xilinx ISE 14.2 and hence the delay, device utilisation and power are estimated.

Table 4.3 shows the delay associated with each circuit in standard implementation and

the proposed techniques. The delay includes both the delay of logic units and the delay

87

caused by the RC component of the interconnecting wires. It can be observed that there

is a considerable reduction in delay with VIM compared to the other two methods.

Table 4.3 Comparison of delay in various methods of mux implementation

Function SI CIM VIM

No. of

Levels

Delay

(nsec)

No. of

Levels

Delay

(nsec)

No. of

Levels

Delay

(nsec)

Majority 3 3 8.138 3 7.760 2 6.305

4 bit odd parity checker 4 9.215 4 7.760 3 6.816

xor5 5 9.615 5 9.09 4 8.138

6one135 6 10.22 6 9.357 5 8.943

6one0246 6 10.22 6 9.412 5 8.943

Table 4.4 shows the area in terms of device utilisation of the circuits generated by the

proposed techniques and the circuits by conventional method. It can be seen that the

number of Look-Up-Tables (LUTs) / slices / Input Output Blocks (IOBs) have been

reduced considerably for the circuits with the proposed techniques.

Table 4.4 Comparison of device utilisation in various methods of mux implementation

Function Device utilization SI CIM VIM

Majority 3

No.of slices 1 1 1

LUTs 2 1 1

IOBs 6 6 4

4 bit odd parity

checker

No.of slices 3 1 1

LUTs 4 2 1

IOBs 7 7 5

Xor5

No.of slices 3 1 1

LUTs 4 2 2

IOBs 8 8 6

6one135

No.of slices 3 2 1

LUTs 5 3 2

IOBs 9 9 7

6one0246

No.of slices 3 2 1

LUTs 5 3 2

IOBs 9 9 7

88

The power consumed by the circuits generated in CIM, VIM and Standard

Implementation technique are shown in Table 4.5. It can be observed that the power

consumption has been reduced in the proposed techniques even in FPGA

implementation, which indicates that power reduction can be ensured in ASIC

implementation.

Table 4.5 Comparison of power consumption in various methods of mux implementation

Function Power in mw

 SI CIM VIM

Majority3 0.149 0.147 0.141

4 bit odd parity checker 0.153 0.147 0.143

Xor5 0.154 0.151 0.149

6one135 0.158 0.153 0.152

6one0246 0.158 0.154 0.150

4.6.2 Realisation of Circuits Using RM ULM

The benchmark functions listed in Table 1.1 are used for the validation of the

proposed techniques using RM ULM.

1. 6one135- The circuit was realised using 6 units in 6 levels with CIM and 5

units in 4 levels with VIM compared to 63 units in 6 levels with the

conventional technique as shown in Figs. 4.18 (a) and (b) respectively.

89

′
10 0

f

′ d

′

c

a

′

b

′

1

1

10

0

0

0

1

c

F

1

1e

1 0 1

1

0

10

0

1

0

 (a) CIM (b) VIM

Fig. 4.18 Circuit evolved for 6one135 using RM ULM

2. 6one0246 - The circuit needs only 8 units in 5 levels with CIM and 5 units in 5

levels with VIM as shown in Fig. 4.19, whereas SI technique requires 63 units

and 6 levels.

C

d

b

e

f

a

0

1

1

1

1

1

1

F

 0 1

 1

 1

 1

 1

 1

 0

 0

 0

 0

 0

90

F

ad

1

d f

e f

b

1

1

0

11

1 1

1

′

1

1

1 0

1

1

1

1

0

00

0

0

0

0

1

e

a

a

f

d

e

b

F

′f

′d

′

c

1

1

1

10

0

0

0

10

 (a) CIM (b) VIM

Fig. 4.19 Realisation of 6one0246 using RM ULM

3. xor5 - The circuit needs only 5 units in 5 levels with CIM, whereas with VIM

the function could be realised with 4 units in 3 levels as shown in Fig. 4.20 (a)

and (b) respectively. Fig. 4.20 (c) shows the RM realisation of xor5 by

standard implementation technique which requires 31 units in 5 levels. Thus

there is a saving of 26 units in CIM and 27 units in VIM respectively. Though

the number of levels in CIM remains the same as in SI, VIM shows a

reduction in one level.

91

 (a) CIM (b) VIM

F

a

bb

cccc

d d d d d d d d

eeeeeeeeeeeeeeee

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 11 1

0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1111111

1 1
1

1 1

11
11

0 0 0000

0 0

0 110

0

0 1 10 1

0

1 1 1 1 1 1 1

0 1

(c) Standard implementation

Fig. 4.20 RM implementation of xor5

c

b

e

a

d

1

1

1

1

1

F

0

e

b

1

1

1

F

d

1a c

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

92

4. 4 bit odd parity checker - The circuit generated (Fig.4.21 (a)) has only 3

units in 2 levels in VIM as compared to 15 units and 4 levels in SI. With CIM,

the circuit can be realised using 4 units and 4 levels, which is far better than

SI. Thus on reducing the number of units, the cost, area and power can be

reduced and on getting the number of levels reduced from 4 to 2, the delay

involved is reduced. The same function using mux needs 3 units and 3 levels

whereas its RM implementation accommodates the 3 units in 2 levels. Thus

RM implementation is found to be better for XOR based operations. At the

same time GA converges very fast with RM logic for parity checker circuits.

 (a) CIM (b) VIM

Fig. 4.21 Evolved circuit for a Four bit odd parity checker using RM ULM

d

c

a

b

1

1

1

1

F

0

b

1

1

F

c

1a d

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

 F

a~d

1

d
f

e f

b

1

1

0

11

1 11

1

0

0 1 0 1

0 110

0 1 0 1

10

1

93

5. Majority3 –Fig. 4.22 shows the circuits evolved for this function using the

proposed methods. It can be seen that the circuits require 5 units in 3 levels and

3 units in 2 levels in CIM and VIM respectively.

0

1

0 1

1 0 1

F

b

ba

1

′b

0

0 1 0

1

1

c

1

0

1 1

1

0

0

0

F

c

1 b b

′ ′

′a

b a

1 1

10

0 0

 (a) CIM (b) VIM

Fig. 4.22 Circuit evolved for Majority3 using RM ULM

Other functions

1. 3 bit odd parity checker- The circuit evolved with CIM needs 3 units and

3 levels, but with VIM, the circuit needs only 2 units in 2 levels as shown in

Fig. 4.23. Thus in VIM, a saving of 5 units is achieved in comparison with the

conventional method and a saving of 1 unit and 1 level in comparison

with CIM.

94

a

b

c

F

′

′

b

c

10

0 1

 (a) CIM (b) VIM

Fig. 4.23 Three bit odd parity checker using RM ULM

2. F (a, b, c) = ∑ m (1, 2, 4)

Figs. 4.24 (a) and (b) shows the circuits evolved by CIM and VIM for the RM

implementation of this function.

a

c

F

ab

11 1

0

0

1 0 1

101

0 1

1
 ′

c

′ ′b
b

F

aa′ 1

10

10

0 1

a

0

0

1

1

(a) CIM (b) VIM

Fig. 4.24 Circuit generated for F (a, b, c) = ∑ m (1, 2, 4) using RM ULM

a

b

c

1

1

1

F

0

1 1 0 1

F

c

b

ba

1

0

~b

0 1

1010

0 1

1

1 1 0 1

F

c

b

ba

1

0

~b

0 1

1010

0 1

1

1 1 0 1

F

c

b

ba

1

0

~b

0 1

1010

0 1

1

1 1 0 1

F

c

b

ba

1

0

~b

0 1

1010

0 1

1

1 1 0 1

F

c

b

ba

1

0

~b

0 1

1010

0 1

1

1 1 0 1

F

c

b

ba

1

0

~b

0 1

1010

0 1

1

95

3. F (a, b, c, d) = ∑ m (1, 2, 3, 5, 7, 8, 12)

This is an example taken from (Oh and Almaini, 2007) based on 2VROBDD which

required 6 units in 4 levels. But with the proposed techniques, the function could be

implemented with lesser number of units / levels. With CIM, the circuit needs 6 units

and 4 levels whereas with VIM, it needs only 4 units in 3 levels as shown in

Figs. 4.25 (a) and (b) respectively. Thus there is a saving of 2 units and 1 level

compared to the literature in VIM.

c

1

b

11

c

d

1

1

a

b

10
10

10

00 11

10

1

0

b

1 1

00

0

1

0

′ ′

c

b

a a

c

d

1

F

b

0 1

1

0

0

(a) CIM (b) VIM

Fig. 4.25 RM implementation of F (a, b, c, d) = Σ m (1, 2, 3, 5, 7, 8, 12)

Table 4.6 shows a comparison of the proposed methods with SI technique in terms of

number of units / levels. It is observed that the proposed methods, CIM and VIM use

minimum hardware in lesser number of levels compared to SI.

96

Table 4.6 Comparison of the circuits evolved by various methods in terms

of number of units / levels in RM implementation

Sl.

No.
Function

SI

Units/

Levels

CIM

Units /

Levels

VIM

Units /

Levels

1 F=Σ m (0, 1, 2, 4) 7/3 5/3 3/2

2 F=Σ m (3, 5, 6) 7/3 4/4 3/3

3 F=Σ m (1, 2, 4) 7/3 5/3 3/2

4 Majority3 F = Σ m (3, 5, 6, 7) 7/3 5/3 3/2

5 3bit odd parity 7/3 3/3 2/2

6 F (a, b, c) = Σ m (5, 6) 7/3 5/3 2/2

7 F (a, b, c) = Σ m (0, 1, 2, 4, 6) 7/3 2/2 1/1

8 4bit odd parity 15/4 4/4 3/2

9 F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13) 15/4 6/4 3/3

10 F (a, b, c, d) = Σ m (5, 6, 9, 10) 15/4 4/3 3/2

11 F(a, b, c, d) = Σ m (1, 2 ,3, 5, 7, 8, 12) 15/4 6/4 4/3

12 F(a, b, c, d) = Σ m (13, 14) 15/4 5/3 3/2

13 F(a, b, c, d) = Σ m (0, 4, 6, 7, 8, 12, 14, 15) 15/4 5/3 2/2

14 xor5 31/5 5/5 4/3

15 F (a, b, c, d, e) = Σ m (0, 1, 9, 22, 23, 25,

30, 31)
31/5 10/5 6/4

16 F (a, b, c, d, e) = Σ m (9, 11, 25, 27, 29, 31) 31/5 7/5 5/5

17 6one 135 63/6 6/6 5/4

18 6 one 0246 63/6 8/5 5/5

19 F = X1X4 + X2X5 + X3X6 63/6 14/6 9/5

The circuits generated by the proposed techniques are synthesised on FPGA Spartan3

(device XC3S400) using Xilinx ISE 14.2 and hence the delay, device utilisation and

power are estimated. Table 4.7 shows the delay associated with each circuit in

standard implementation and the proposed techniques using RM realisation. It can be

observed that there is a considerable reduction in delay with VIM compared to the

other two methods.

97

Table 4.7 Delay in RM implementation by various methods

Function SI CIM VIM

No. of

Levels

Delay

(nsec)

No. of

Levels

Delay

(nsec)

No. of

Levels

Delay

(nsec)

Majority3 3 8.138 3 8.074 2 7.760

4 bit odd parity 4 9.215 4 8.979 3 8.138

Xor5 5 10.566 5 9.215 4 8.190

6one135 6 10.443 6 9.893 5 9.09

6one0246 6 10.443 6 9.103 5 8.943

The area occupied by the circuits is compared by considering the number of LUTs,

slices and IOBs utilised by each circuit. Table 4.8 shows the comparison of the device

utilisation of the circuits in proposed techniques and in SI technique. It is obvious that

the circuits generated by VIM occupy lesser area compared to the other two methods.

Table 4.8 Device utilisation of various circuits in SI and proposed techniques.

Function Device utilisation SI CIM VIM

Majority3

No.of slices 1 1 1

LUTs 2 1 1

IOBs 6 6 4

4 bit odd parity

checker

No.of slices 3 1 1

LUTs 6 2 1

IOBs 7 7 6

xor5

No.of slices 4 1 1

LUTs 7 2 1

IOBs 8 8 7

6one135

No.of slices 4 1 1

LUTs 7 2 2

IOBs 9 9 8

6one0246

No.of slices 4 1 1

LUTs 7 2 2

IOBs 9 9 8

98

The power consumption of circuits generated by the proposed techniques are compared

with the power consumed by circuits in SI and the results are tabulated as in Table 4.9. It

can be observed that power consumption is less in the proposed techniques than the

standard technique even in FPGA implementation. Hence power consumption will be

less in circuits with the proposed techniques in ASIC implementation.

Table 4.9 Comparison of Power consumption in various methods by RM

implementation

Function Power in mw

 SI CIM VIM

Majority3 0.151 0.148 0.147

4 bit odd parity checker 0.150 0.146 0.116

xor5 0.152 0.150 0.136

6one135 0.153 0.152 0.142

6one0246 0.154 0.153 0.151

Comparison between the circuits generated using RM ULM and 2-1 mux

A detailed analysis has been made on the performance of circuits evolved using the

two ULMs (binary mux and binary RM ULM) by the proposed methods.

A comparison has been made on the power consumption, number of units and the

number of levels required for the realisation of various functions. Table 4.10 shows

the comparison of power consumption in various methods of circuit implementation.

It can be observed that the power required has been reduced in both CIM and VIM

compared to SI. For XOR based circuits, RM implementation in VIM has the least

power requirement. For other circuits, mux implementation in VIM consumes least

power.

99

Table 4.10 Power consumption in various methods of circuit implementation

Function
Power in SI

(mw)

Power in CIM

(mw)

Power in VIM

(mw)

 mux RM mux RM mux RM

Majority3 0.149 0.151 0.147 0.148 0.141 0.147

4 bit odd parity checker 0.153 0.150 0.147 0.146 0.143 0.116

xor5 0.154 0.152 0.151 0.150 0.149 0.136

6one135 0.158 0.153 0.153 0.152 0.152 0.142

6one0246 0.158 0.154 0.154 0.153 0.150 0.151

Fig. 4.26 shows a comparison between the circuits based on mux and RM ULM using

CIM in terms of the number of units. The functions F1 to F4 are parity functions and

it can be observed that RM based implementation involves lesser number of units for

these functions. For the other functions, implementation using mux involves equal /

lesser number of units.

The functions used are:

F1: 4 bit odd parity

F2: xor5

F3: 6one135

F4: 6one0246

F5: Majority3

F6: F (a, b, c, d) = Σ m (4, 5, 6, 7, 8, 9, 10, 13)

F7: F (a, b, c, d, e) = Σ m (3, 7, 8, 15, 19, 23, 24, 26, 27, 31)

100

Fig. 4.26 Comparison of CIM in terms of number of units in mux and RM

implementations

Fig. 4.27 depicts the comparison of mux and RM implementations in VIM in terms of

number of units. It can be seen that these methods perform equally good in both the

implementations for XOR based circuits, while for other circuits, mux implementation is

better if number of units required is to be minimum.

Fig.4.27 Comparison of VIM in terms of number of units in mux and RM

implementations

0

2

4

6

8

10

12

14

F1 F2 F3 F4 F5 F6 F7

N
o

.o
f

u
n
it

s

Functions

mux

RM ULM

0

2

4

6

8

10

12

F1 F2 F3 F4 F5 F6 F7

N
o

.o
f

u
n
it

s

Functions

mux

RM

101

Fig. 4.28 illustrates a comparison on the number of levels for various circuits using

mux / RM ULM in the proposed methods. It can be observed that in both the

implementations, variable input method requires lesser number of levels. For parity based

circuits, RM implementation in VIM uses lesser number of levels. For other circuits,

number of levels with mux implementation is either less or equal to RM implementation.

Fig. 4.28 Comparison of proposed methods in terms of number of levels

To conclude, from Figs. 4.26, 4.27, and 4.28, it is observed that the number of

units / levels required is minimum for XOR based circuits in VIM using RM ULM,

whereas for other circuits, circuits with minimum hardware / levels are evolved for

VIM using mux.

4.7 SUMMARY

Two simplified and efficient techniques referred to as CIM and VIM have been

proposed for the design of combinational circuits which uses lesser number of units,

interconnections and levels. The design based on the Universal building blocks,

0

1

2

3

4

5

6

7

F1 F2 F3 F4 F5 F6 F7

N
o

.
o

f
L

ev
el

s

Functions

mux CIM

RM CIM

RM VIM

mux VIM

102

2-1 mux / 2-1 RM ULM uses GA as the optimisation tool. The evolved circuits were

synthesised on FPGA Spartan 3 -XC3S400 device using Xilinx ISE 14.2. VHDL is

used to describe the developed design.

Functions up to 6 variables have been generated and detailed analysis of the evolved

circuits for number of units, area and delay has been made. The results were compared

with the methods available in the literature. Based on the analysis, it was found that the

CIM is superior to SI technique. But VIM outperforms CIM also in terms of

units / levels. It was observed that the VIM using RMULM evolves circuits with

minimum hardware / delay for XOR based circuits and for other circuits, mux

implementation is at par or better with reduced number of units / levels. The results are

validated using benchmark functions.

CHAPTER 5

DESIGN OF SEQUENTIAL CIRCUITS

5. 1 INTRODUCTION

A lot of research has been done in the field of combinational circuits, while the design

of sequential circuits is still in the toddler stage. Most real world electronic products use

sequential circuits to send, receive, store, retrieve and process information stored in

binary fashion. Hence there is a need for its optimised design. Sequential logic circuit

(SLC) constitutes a combinational part and memory elements such as flip flops to store

the states. SLCs can be classified into Synchronous (SSCs) and Asynchronous

Sequential Circuits (ASCs) as mentioned in Section 1.1.

This thesis focuses on the design of SSCs. A modified GA has been proposed to

obtain the OSA. The complexity of the combinational part of SSC is determined by

the state assignment and hence finding the best state assignment plays a major role in

the design of sequential circuits so as to minimise the chip area and hence the cost.

The behavior of an SSC can be represented by an FSM. It is a mathematical model of the

sequential circuit with discrete inputs, discrete outputs, and internal states

(Ali et al. 2004). There are two types of FSM, namely Moore machine and Mealy

machine. In Moore machine the output depends on the states alone where as in Mealy

machine, the output depends on the inputs as well as the states (Mano, 2002) as shown in

Figs. 5.1 and 5.2 respectively. The states of a system refer to the information of the past

inputs which in turn determines the behavior of the system on the application of

104

subsequent inputs. The states are stored in the flip flops. The combinational part is used

to produce the next state and the output of SSC. Therefore, an SSC consists of two

combinational parts, viz., one to determine the next state and the other to determine the

output of the system. The complexity of the circuit is completely determined by the

number of logic gates involved in the combinational part.

Fig. 5.1 Block diagram of Mealy machine

Fig. 5.2 Block diagram of Moore machine

In the case of CLCs, a truth table completely specifies the circuit, where as an SSC

requires a STT or state transition diagram for specifying the circuit.

5.2 STATE TRANSITION TABLE

A state transition table or simply state table enumerates the time sequence of inputs, outputs

and states of the flip flops. It consists of three sections namely the present state, next state

and output. The STT can be prepared only if appropriate state assignment is done and from

Output
Input

Clock

State Register Output CLC Next state CLC

Output
Input

Clock

State Register Output CLC Next state CLC

105

the state table, the excitation table is generated corresponding to the type of flip flops

chosen. Here D / T flip flops are used. The desired combinational circuits are evolved from

the respective excitation tables by using the methods proposed in chapters 3 and 4.

Thus, the first step in the design of SSCs is to obtain the OSA.

5.3 STATE ASSIGNMENT

In an FSM, each state is to be identified by a string of bits. Assigning a unique binary

code to each of the states of the FSM is termed as state assignment. The process of

obtaining a relationship between the states and the bit strings which result in minimal

cost is referred to as the problem of OSA (Amaral et al. 1995). The design of OSA is

crucial as it determines the complexity of the CLCs to be used. Once OSA is

obtained, the corresponding STT is prepared.

If the number of states is N, then the number of state variables s is the smallest integer

that is equal to or greater than |log2N| and the total number of possible state is equal to 2
s
.

The assignment process decides which of these 2
s
 states must be assigned to any

particular state in the FSM. Total number of possible encodings is given by (Ali, 2003)

 ()

()
 (5.1)

Thus, for a circuit with 4 states, the possible number of encodings is 24. For a 5 state

machine the number of encodings goes up to 6720. Since the number of possible state

assignments grows enormously with the number of internal states, it is almost impossible

to try all assignment manually in order to select the one which leads to the simplest logic

106

circuit. Use of evolutionary algorithms is a better alternative for the OSA of FSMs. Here

a modified GA is used specifically to cater the needs of SSCs.

5.4 MODIFIED GENETIC ALGORITHM

Much research has been done in this area to get an OSA in FSMs. Prior to the use of

GA, several algorithms such as NOVA, Mustang etc. were used to obtain the state

assignment. In this work, GA is used to obtain the OSA with the help of Desired

Adjacency Graph (DAG). DAG is an undirected, fully connected graph with states as

its nodes. In an SSC implementation, the desirability of having two states adjacent to

each other is determined by the strength of the arc connecting the two nodes. For an

SSC to have minimum cost, the distance between the states that are strongly

connected in the DAG is to be minimum.

Thus the steps involved in the problem of state assignment are

i) Obtain the weight of each arc of the DAG

ii) Apply GA to find the minimum hamming distance between the strongly

connected states to evolve the OSA.

To determine the strength of a connection in DAG, the following heuristic rules are

applied on the DAG (Amaral et al. (1995).

State assignment should be done in such a way that

 the distance between states that are in the same set of successors should be

minimum

 the distance between states that are in the same set of predecessors of a given

state with a given input condition should be minimum

107

 the distance between the states that are in the same partition should be

minimum

A state Si is called a successor of state Sj if there is a transition from state Sj to Si.

Similarly a state Si is said to be a predecessor of state Sj if there is a transition from

state Si to Sj. States Si and Sj are said to be associated with each other if both of them

are a successor of a given state, if both of them are in the set of predecessors of a state

with a given input condition or if both of them are in the same partition of an output.

Each output is said to partition the states of an FSM into subsets. The set of partitions

of an output Zk is denoted by O (Zk). For Moore machines, output is given by Zk (Si).

In Mealy machines, it is represented as Zk (Si, Ia) where Ia is an input condition

represented in binary. Distance between two states Si and Sj is termed as the hamming

distance and is denoted as D (Si, Sj). In an FSM with p input signals, there are c = 2
p

input conditions.

The strength of the connection between state i and state j is denoted by or

 and is given by (Amaral et al. 1995).

 ∑

 ∑∑

 ∑

 ()∑∑

 () ()

Where c is the no. of input conditions, v is the number of output variables, s is the

number of states, and

 {
 ()

108

 {
 ()

 {
 () ()

 {

 {
 () ()

 {

R1, R2, R3 and R4 are constant coefficients which are fixed on the significance of each

individual rule.

First term of Eq. (5.2) corresponds to the pair of states that are common successors to

a particular state (rule1). The second term stands for the pair of states that are

common predecessors to a particular state (rule 2). The third and fourth terms

correspond to pairs of states that are in the same output partition for a given output

(rule 3). The last term indicates transitions between two states. It is used when the

relative position of each state is difficult to know from the previous terms.

Since the DAG is an undirected and fully connected graph, the values of its

connections can be represented by a symmetric square matrix. Here the coefficients

of R are fixed as R1 = 3, R2 = 4, R3 = 2 and R4 = 1 (Comer, 1984). The SSC cost is

lowered when the distance between two states with strong connections in the DAG is

minimum. Thus, if DAGij is large, D (Si,Sk) should be small. For a given FSM

specification and a state assignment, fitness of this specific assignment can be

computed. The fitness function for this is given by:

109

 ∑ ∑ (

 ()) (5.3)

Where k is the number of bits used for the state codification. Eq. (5.3) can be expressed as

 ∑∑(

) ∑∑ ()

 ()

Since DAGij is fixed for a given FSM formulation and k is a positive constant, the first sum

results in a constant term. Thus fitness is maximum when the second term is

minimum. i.e., when sum over i and j of the product D (Si, Sj) DAGij is minimum.

5.4.1 Chromosomal Representation

The list of states is represented as chromosomes. The length of the chromosomes is

equal to the number of states used for the sequential machines. As mentioned earlier,

the number of bits s required to represent the states is equal to the smallest integer

which is greater than or equal to If there are 3 states, then number of bits

required is 2. With these two bits, there can be four possible states. i.e., 0, 1, 2, 3.

Here, the states (chromosomes) are represented as decimal integers. An initial

population of integers is generated randomly without any duplication of integers in

every chromosome. The function “randperm” in MATLAB 2012a is used to generate

a shuffled decimal number assignment without any duplication of numbers. The

individuals / chromosomes are selected for crossover by any selection procedure as

mentioned in Section 1.4. In this work, RWS technique has been used.

110

5.4.2 Crossover

In (Amaral et al. 1995), an individual was represented by a binary matrix with s rows

and k columns where s is the number of states in the FSM and k is the number of bits

used in the SSC. Crossover was done by randomly selecting columns from the parents

in order to create the offspring. If k bits are used to represent the states, let l bits

(columns) be preserved from parent 1 and the remaining k-l bits from parent 2. Here,

2
k-l

 assignments can be identical in these l columns which are not permitted.

It can be explained by considering an example shown in Table 5.1 with 6 states. If

2 bits are preserved from parent1 (k = 3, l = 2) then, at most 2
k-l

 = 2
1

= 2 combinations

can be identical in the first two columns and the conflict has to be eliminated by

selecting the appropriate bit from the two different combinations (1 or 0) for the third

column. It can be observed that the offsprings S2 and S5 have the same attribution

which is invalid. Hence the offsprings have to be checked for conflicts if any and

proper modifications have to be made which makes the job cumbersome.

Table 5.1 Example for illustrating the conflict during conventional crossover

States Parent1 Parent 2 Offspring

S0 001 000 000

S1 000 011 001

S2 010 100 010

S3 101 010 100

S4 110 001 111

S5 011 110 010

The checks for conflicts if any, and further corrections can be eliminated in the

proposed modified crossover technique where the chance for getting the states invalid

is eliminated.

111

Hence the states have to be checked for duplication, which consumes more

computational time. To avoid duplication, a modified crossover technique is proposed

which leads to modified GA.

Consider two parents with five states selected for crossover as shown in Fig. 5.3.

Before crossover, GA takes a copy of the parents and stores it in a temporary variable

and a “Similarity Test” is performed. In this test, the first element of parent B is taken

and compared with all elements of parent A. If that element is present in parent A,

then the second element of parent B is compared with all elements of parent A. If

there are no similar elements in parent A, the corresponding decimal values of the

same row are interchanged. This process continues for all the elements in parent B.

Now the parent A in the temporary variable becomes offspring C. The process is

reversed by taking each element of parent A and comparing it with all elements of

parent B in order to produce offspring D (Fig. 5.4). Thus the off springs are protected

from duplication.

Fig. 5.3 Swapping of individuals by comparing the elements of parent B with the

elements of parent A

112

Fig. 5.4 Swapping of individuals by comparing the elements of parent A with the

elements of parent B

In the conventional mutation technique, any of the gene in a randomly selected

individual is changed. Then there is a chance for two of the states to have the same

assignment which is not permissible. Hence the conventional mutation process cannot

be applied in this case. To create randomness in the offsprings, instead of changing a

selected gene, the genes at two randomly selected positions of the selected offspring

are interchanged. For E.g.; consider the offspring shown in Fig. 5.5 (a). If the two

randomly selected positions of the individual are, 2
nd

 and 4
th

,

then the corresponding

states are interchanged as in fig. 5.5 (b) so as to get the new offspring.

a) Offspring before interchange of genes b) Offspring after interchange of genes

Fig. 5.5 Exchange of genes

113

The chromosome having the maximum fitness value is considered to be the OSA.

Once OSA is obtained from GA, the STT is prepared. Using this STT, the

corresponding excitation tables are generated and the circuits are evolved

automatically. The combinational circuits have been realised using i) gates alone and

ii) using 2-1 mux / 2-1 RM ULM. T / D flip flops are used as state registers.

5.5. DESIGN OF THE COMBINATIONAL PART

For the design of the combinational part using gates, the circuits are evolved using a

new GA based technique as mentioned in Section 3.3. For faster implementation of

GA, the chromosomes are represented in a bidirectional array (2D) and the suitable

crossover and mutation techniques have been applied. With this technique, the CLCs

for Moore and Mealy machines have been evolved.

The exclusive use of 2-1mux / 2-1 RM ULM for the implementation of combinational

part reduces the manufacturing cost due to the repeated use of the same design element.

The circuits based on ULMs were evolved using the VIM proposed in Section 4.3.

5.6 RESULTS

Sequence detectors and modulo-n counters have been evolved, the combinational part

of which has been realised using gates and ULMs.

5.6.1 Implementation of Mealy Machines

Sequence detectors are the best examples for Mealy machines. “011” sequence detector

and “1010” sequence detector circuits have been evolved using the proposed techniques.

114

Example 1. “011” Sequence Detector - the circuit produces a logic high output

whenever the sequence “011” is detected in the input stream.

The state transition graph of “011” sequence detector is shown in Fig. 5.6. Since there

are only 3 states, number of state variables required is the smallest integer greater

than or equal to , which is equal to 2. With two state variables, there can

be four possible states 0, 1, 2, 3. GA evolves the OSA using 3 states out of the

available 4 states based on the fitness function mentioned in Section 5.4.

With the proposed GA technique, the OSA obtained is 0, 2, 1. With this assignment,

STT is constructed as shown in Table 5.2. Using this STT, the necessary excitation

table for the state register using T flip flop is generated as shown in Table 5.3 and the

system automatically evolves the combinational circuit to obtain the inputs for next

stage as well as the output of FSM.

S0

S1S2

0/0

1/0

1/1
0/0

1/0

0/0

Fig. 5.6 State Transition Graph of “011” sequence detector

115

Table 5.2 State Transition Table for “011” sequence detector

Present state Next State Output

 X=0 X=1 X=0 X=1

00 10 00 0 0

10 10 01 0 0

01 10 00 0 1

Table 5.3 Excitation table for “011” sequence detector

Present state Next state Output Desired inputs

Qa Qb X Qa
*
 Qb

*
 Y Ta Tb

0 0 0 1 0 0 1 0

0 0 1 0 0 0 1 1

0 1 0 1 0 0 1 1

0 1 1 0 0 1 0 1

1 0 0 1 0 0 0 0

1 0 1 0 1 0 1 1

1 1 0 0 0 0 1 1

1 1 1 0 0 0 1 1

 Qa*, Qb*- states of flip flops A and B after the application of clock pulse.

The combinational part of the circuit is realised with gates using GA. 2D Crossover

and mutation techniques have been used (method proposed in Section 3.3) for the

implementation which reduces the computation time significantly. The circuit was

evolved using 8 gates as shown in Fig. 5.7. The average number of generations

required was 98 with a population size of 200 individuals.

Ta Qa
Tb Qb

Qa

X

Qb

Qa

X

Qb

X

Y(Output)

CLK

′Qa

Qa

′Qa

Fig. 5.7 Circuit generated for “011” sequence detector using gates

116

The design of “011” sequence detector using 2-1 mux is shown in Fig. 5.8. Here, the

circuits for Ta, Tb, and Y are evolved separately. To optimise the generated circuits,

the algorithm checks for redundancies and are eliminated so that the generated

circuits are optimal. The inputs to the state registers as well as the output of the FSM

are implemented using 7 binary multiplexers.

0 1

0 1 0 1

0 1

0 1

0 1

0 1

0 0
x x

0 0

X

1 0
0

CLK

Ta Qa
Tb Qb

Qb

Qb

Qb

Qb

Qa

Qa

Qa

Y (output)

Fig. 5.8 Implementation of “011” sequence detector using 2-1 mux

The generated circuit for “011” sequence detector using RM ULM is shown in

Fig. 5.9. It uses 6 binary Reed Muller blocks to realise the FSM.

TbTa

CLK

0

1

X

X

Y (output)
Qa

Qb

Qa

Qa

Qa

Qb

Qb

Qb

1

0

0 1

0 1

0 10 1

0 1

′X

′
X

′X

′X

Fig. 5.9 Circuit evolved for “011” sequence detector using RM ULM

117

Example 2. “1010” sequence detector (overlapping) - the circuit raises the output to

logic „1‟ whenever the sequence “1010” is detected in the input stream.

This is an example taken from Ali et al. (2004), the state diagram for which is shown

in Fig. 5.10. The OSA evolved is (0, 3, 1, 2). With this assignment, STT is prepared

as shown in Table 5.4. The combinational circuits at the input of state register as well

as the combinational circuit for the output are evolved as per the excitation table

shown in Table 5.5.

The CLCs have been evolved using i) gates ii) mux and iii) RM ULM and the

corresponding circuits are shown in Figs. 5.11, 5.12 and 5.13 respectively.

It can be observed from Fig. 5.11 that the CLC needs only 4 gates for generating the

next state and output, compared to 5 gates in the literature (Ali et al. 2004). Here

D flip flops have been used as state registers so as to have a comparison with the

method in the above literature.

From Figs. 5.11 and 5.12, it is seen that 4 mux and 4 RM units respectively are

needed for the implementation of this FSM using the ULMs.

118

S3S3

S0

S1

S2
1/0

0/1

0/0

1/0

0/0

1/0

0/0

1/0

Fig. 5.10 State Transition Graph of “1010” sequence detector

Table 5.4 State Table for “1010” sequence detector

Present state Next State Output

 X=0 X=1 X=0 X=1

00 00 11 0 0

11 01 11 0 0

01 00 10 0 0

10 01 11 1 0

Table 5.5 Excitation table for “1010” sequence detector for the state

assignment 0, 3, 1, 2

Present state Next state Output
Desired

input

Qa Qb X Qa
*
 Qb

*
 Y Da Db

0 0 0 0 0 0 0 0

0 0 1 1 1 0 1 1

0 1 0 0 0 0 0 0

0 1 1 1 0 0 1 0

1 0 0 0 1 1 0 1

1 0 1 1 1 0 1 1

1 1 0 0 1 0 0 1

1 1 1 1 1 0 1 1

119

X

CLK

Da Db

Qa

X

Y (Output)

Qb
Qa

Qb

Qa Qb

′′Qa

Fig. 5.11 Circuit for “1010” sequence detector using gates

CLK

1

X

Da
Qa

Db Qb

0

Qb

Y (output)

0

10

10

10

10

′Qa Qb
′

 Fig. 5.12 Circuit for “1010” sequence detector using mux

CLK

Da Qa
Db Qb

X

Y (output)

0

X

1 0

10

10

10

0 1′Qa
′Qb

′
X

Fig. 5.13 Circuit for “1010” sequence detector using RM ULM

120

From the results, it is obvious that the proposed technique evolves circuits with

hardware which is better or as good as the results available in the literature.

5.6.2 Implementation of Moore machines

Counters such as mod 3, mod 6, and mod 8 have been generated as examples of Moore

machines. This can be extended to any number of bits and for any counting pattern.

Example 1. Mod 3 counter

The excitation table corresponding to Mod 3 counter with the sequence 0, 1, 2 is

shown in Table 5.6 and the CLC to generate the next state are evolved using this

excitation table. The inputs to the flip flops Ta and Tb are functions of Qa and Qb and

the circuit generated using gates is shown in Fig. 5.14. It can be seen that the CLC to

generate the next state requires 2 gates.

Table 5.6 Excitation table for mod 3 counter

Present state Next state Desired inputs

Qa Qb Qa* Qb* Ta Tb

0 0 0 1 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 1 0 0 1 1

Ta Qa Ta Qb

Qa

Qb Qb

Qa Qb

CLK

′Qa ′Qb

′Qa

Fig. 5.14 Generated circuit for mod 3 counter using gates

121

The FSM using T flip flops and mux or RM ULM are shown in Fig. 5.15 and 5.16

respectively. It can be observed that the circuits require 2 ULMs in both the cases.

Fig. 5.15 Circuit for mod 3 Counter using mux

Ta Qa
Tb Qb

CLK

Qa Qb

0

0Qa Qa

1 0 1

Qb ′Qb

0

Fig. 5.16 mod 3 Counter using RM ULM

CLK

0 1 Qa

Qb 1

0 1 Qa

1 Qb

Qa
Qb

Ta Qa Tb Qb

122

Example 2. mod 6 counter

Table 5.7 shows the excitation table corresponding to Mod 6 counter with the

counting sequence 0, 1, 2, 3, 4, 5. The corresponding CLCs using gates and the

ULMs are shown in Figs. 5.17, 5.18 and 5.19 respectively.

Table 5.7 Excitation table for mod 6 counter

Present State Next state Desired inputs

Qa Qb Qc Qa* Qb* Qc* Ta Tb Tc

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 0 0 0 1 0 1

1 1 0 1 0 0 0 1 0

1 1 1 1 0 0 0 1 1

From Fig. 5.17, it can be seen that the circuit is evolved using 7 gates. Since 2 D

crossover technique has been adopted, the computational time is reduced. From

Figs. 5.18 and 5.19, it can be seen that the circuit using mux needs 6 units whereas

the circuit with RM ULM needs 8 units.

Ta Tb Tc

CLK

Qc

Qa

Qb
Qc

Qc

Qc

Qb

QbQa

Qa

Qa

Qb

Qc

′Qb
′

Qa

Qb
′Qa

Qb
′

Qb
′ Qc

′ Qc
′

Qa
′ Qa

′

Fig. 5.17 mod 6 Counter using gates

123

0 1

0 1

0 1

0 1

0
Qa

CLK

Ta Qa
Tb Qb

0 1

0 1

1

Tc Qc

0

QaQb

Qa Qc

Qc

Qb

Qa Qb Qc

0

Qc

Qa′ Qa′

Qa′
Qa′ Qb

′

Qb
′

′Qc

Fig. 5.18 mod 6 Counter using mux

CLK

TA

~QA

QA
Tb

~Qb

Qb Tc

~Qc

QcTa

~Qa

Qa

1

1

Qc

Qc

Qc

Qc

Qc

Qc

~Qc

Qb

Qb

Qb

Qb

Qa

Qa

Qa

Qa

Qa

Qa Qb Qc

1

10

0 1 0 1

0 1

0 1

10

10

10

Fig. 5.19 Mod 6 Counter using RM ULM

Example 3. Mod 8 Counter

The excitation table for mod 8 counter is shown in Table 5.8 and the corresponding

circuits using gates, mux and RM ULM are shown in Figs. 5.20, 5.21 and 5.22

respectively. T flip flop has been used for the implementation.

124

Table 5.8 Excitation table for mod 8 counter

Present state Next state Desired inputs

Qa Qb Qc Qa* Qb* Qc* Ta Tb Tc

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

Tc

1

CLK

 Tb

Qa Qb

QbTa Qa

Fig. 5.20 Circuit for mod 8 counter using gates

‘1’

Qa Qb

CLK

Ta Qa Tb Qb

Qa Qc

Tc Qc

Qb

Qc

Fig. 5.21 Circuit for mod 8 counter using mux

125

CLK

0

„1‟

Ta Qa
Tb Qb Tc Qc

Qc

Qa

Qc
QbQa

0 1

Fig. 5.22 Circuit for mod 8 counter using RM ULM

5.7 SUMMARY

This chapter explores the possibility of using GA for the design automation of SSCs.

Conventional GA is not suitable for the state assignment in sequential circuits. Hence a

modified GA has been proposed to obtain the OSA. The OSA determines the complexity

of the combinational circuits required to generate states as well as the outputs. The CLCs

are generated using i) gates and ii) ULMs such as 2-1 mux / 2-1 RM ULM as mentioned

in chapters 3 and 4. The circuits based on ULMs were evolved using the VIM proposed

in this thesis as this method produced more optimal circuits.

Sequence detectors and modulo n counters were used to validate the proposed

techniques. The OSA evolved in this work produced circuits better than those in the

available literature.

For the CLCs evolved using gates, a new technique proposed in this thesis helped to

reduce the computational time involved. The circuits with the exclusive use of ULMs

have the advantage that repeated use of a single design element reduces the

manufacturing cost.

CHAPTER 6

CONCLUSION AND SCOPE FOR FURTHER WORK

6.1 THESIS SUMMARY AND CONCLUSION

In conventional design, the quality of the designed circuit depends solely on the

designer’s capability and it varies from designer to designer. Evolutionary design as an

alternative method for logic design has become more attractive because of its

algebraindependent techniques for generating efficient circuits. The work presented in

this thesis concentrates on developing automated techniques for the design of digital

circuits using GA. Synthesis of both combinational and sequential logic circuits have

been done.

A CLC can be realised by using an interconnection of logic gates, or ULMs such as

multiplexers or RM logic modules. The ability to realise logic functions using 2 input

ULMs is of growing importance in the design of CLCs and hence only binary ULMs

are used in this work. The functions have been implemented using i) gates alone

and ii) 2-1 mux / 2-1 RM ULM. The synthesis of SSCs is done with D / T flip flops

and the combinational part is being automated using GA with gates / ULMs as

design elements. This automated approach for the generation of circuits has the added

advantage of reduced dependency on the designer's knowledge and experience.

In this thesis, a faster 2D technique using GA has been proposed for the design of

CLCs using gates. A new 2D chromosomal representation and its suitable crossover

and mutation techniques are developed. With this technique, since the chromosomes

are represented as matrices, crossover operation involves swapping of sub matrices

128

instead of a portion of a linear array in the case of the existing method of crossover.

Hence, in linear crossover some of the levels / gates may remain unaltered during

crossover, whereas with the proposed approach, since the sub matrices are swapped

for crossover operation, variations from the parent circuits can occur at any level

either in connections / type of gates. Furthermore, 2D chromosomal representation

offers better visualisation of the circuit. The quality of the evolved circuits is

determined by the strength of the fitness function used. XOR, AND, OR gates and

WIRE have been used for the design. The fitness function has been formulated in

such a way that 100 % functional circuits are evolved with minimum hardware by

assigning an additional fitness value for every WIRE used. The computational time

involved in this technique has been compared with that of linear crossover and

mutation and is found to be reduced considerably. Moreover, on comparing the

number of units / levels with the conventional method, automated design generates

circuits with lesser number of gates / levels. Benchmark functions have been used to

validate the results.

For the design of CLCs using binary ULMs, two new techniques referred to as Constant

Input Method (CIM) and Variable Input Method (VIM) are proposed. These methods are

based on the exclusive use of Universal Logic blocks such as 2-1 mux / 2-1 RM ULM so

as to produce fully functional circuits with minimum number of units, interconnections

and levels. With SI technique, using Shannon’s / Davio decomposition method, a

function of n variables can be realised using 2
n
-1 binary ULMs in n levels. In this thesis,

an attempt has been made to reduce the number of units and / levels by suggesting certain

modifications on these techniques.

129

The two techniques differ only in the inputs to the circuit. In CIM, the inputs to the

circuit are only 0s and 1s whereas with VIM, the inputs can be 0, 1, variables or their

complements. The control signals are selected at random from among the variables,

their complements or functions derived from the immediate preceding level, whereas

SI used fixed control signals for each level. Moreover, unlike SI technique, control

signal selected at one level can be used for other levels too and all the variables need

not be used as control signal in the proposed techniques. For CIM, only 0s and 1s are

given as inputs so that no variable inputs are needed which is an added advantage.

The proposed techniques have been validated using benchmark functions. The evolved

circuits are synthesised using Xilinx ISE 14.2 on Spartan 3 device (XC3S400).

Functions up to 6 variables have been implemented and detailed analysis of the evolved

circuits for number of units / levels is made. The evolved circuits have been compared

with SI and with the methods available in the literature. It was observed that circuits

obtained by both the methods are more efficient than the conventional methods. In both

mux and RM implementations, VIM produced circuits with minimum hardware / delay.

For XOR based circuits, minimum hardware / delay were obtained for VIM using

RM ULM.

Design of Synchronous Sequential Circuits (SSCs) which involve memory/storage

elements is also investigated in this thesis. Every SSC can be defined as a Finite State

Machine and its design involves two stages. First stage involves the OSA which

solely determines the complexity of the combinational part of SSCs. A modified GA

has been proposed to obtain the OSA with a view to minimise the hardware. Second

stage involves the design of combinational part to generate the next state and the

output of the state machine.

130

The combinational part of SSC has been evolved using i) gates and ii) the binary

ULMs such as 2-1 mux and 2-1 RM ULM. For the CLCs using gates, the technique

proposed in this thesis helped to reduce the computational time involved. The circuits

with the exclusive use of ULMs have the advantage that repeated use of a single

design element reduces the cost of implementation. Moreover, the circuits evolved by

the techniques presented in this thesis for the design using ULMs are more efficient

compared to the conventional methods in terms of hardware / delay. Here, VIM

mentioned in Section 4.3 has been used for the realisation of the combinational part.

A few Moore and Mealy machines have been implemented using these techniques.

D / T flip flops are used as state registers and XOR, AND, OR gates or WIRE are

used for the gate level design of the combinational part.

It has been observed that the OSA evolved in this work produced circuits better than

or at least as comparable to those in the available literature.

6.2 SCOPE FOR FURTHER WORK

The present work used only four types of gates for the realisation of circuits. As a

future expansion, more number of gates could be used so that still better circuits

could be evolved. This thesis dealt with completely specified functions. Future

enhancement is to extend the work to incompletely specified functions. In this work,

circuits are evolved with the exclusive use of a single ULM. But it could be extended

to design the circuits using a combination of mux and RM ULM. The methods

presented in this work based on ULMs used functions derived from the immediate

preceding level as control signals to the next level. One possible future extension is to

use the functions derived from the lowest level onwards to be transferred to any level.

131

The number of units can still be reduced by eliminating the units having the same

outputs in any of the levels. So an important future direction is to eliminate such

modules. In this work, design of CLCs using ULMs is limited to single output

functions and as a future work, it can be extended for multiple output functions.

Another possible extension for this work is applying 2D crossover and mutation

techniques for the design of CLCs using ULMs.

In this thesis, design automation of SSCs has been made and it could be extended to

the design of ASCs. As a future scope, GA can be applied effectively by modifying

the fitness functions to obtain optimal circuits by inexact computing. Other

biologically inspired algorithms may also be tried for the evolution of circuits.

REFERENCES

1. Aguirre, A.H., C.A.C. Coello, and B.P. Buckles (1999) A genetic

programming approach to logic function synthesis by means of multiplexers.
Proceedings of First NASA/DoD Workshop on Evolvable Hardware,

California, USA, July, 46-53. IEEE Computer Society Press.

2. Aguirre, A.H., B.P. Buckles, and C.A.C. Coello (2000). Gate-level

synthesis of Boolean functions using binary multiplexers and genetic
programming. Proceedings of Congress on Evolutionary Computation,

California, USA, July, 675-682. IEEE.

3. Aguirre, A.H., B.P. Buckles, and C.A.C. Coello (2002) Circuit Design

Using Genetic Programming: An Illustrative Study. Proceedings of 10th

NASA Symposium on VLSI Design, New Mexico, March, 4.1.1-4.1.9. IEEE.

4. Aguirre, A.H. and C.A.C. Coello (2004) Using genetic programming and
multiplexers for the synthesis of logic circuits. Engineering Optimization,

36(4), 491-511.

5. Ahmad, I. and M.K. Dhodhi (2000) State assignment of finite-state

machines. IEE Proceedings - Computers and Digital Techniques, 147(1), 15-22.

6. Akers, S.B. (1978) Binary decision diagrams. IEEE Transactions on

computers, 100(6), 509-516.

7. Al Jassani, B.A., N. Urquhart, and A.E.A. Almaini (2010) Manipulation

and optimization techniques for Boolean logic. IET Computers & Digital

Techniques, 4(3), 227-239.

8. Al Jassani, B.A., N. Urquhart, and A.E.A. Almaini (2011) State assignment
for sequential circuits using multi-objective genetic algorithm. IET Computers

& Digital Techniques, 5(4), 296-305.

9. Ali, B. (2003) Evolutionary algorithms for synthesis and optimization of

sequential logic circuits. PhD Thesis, Napier University Edinburgh.

10. Ali, B., A.E.A. Almaini, and T. Kalganova (2004) Evolutionary algorithms

and their use in the design of sequential logic circuits. Genetic Programming

and Evolvable Machines, 5(1), 11-29.

11. Almaini, A.E.A., J.F. Miller, and L. Xu (1992) Automated synthesis of
digital multiplexer networks. IEE Proceedings E-Computers and Digital

Techniques, 139(4), 329-334.

12. Almaini, A.E.A., J.F. Miller, P. Thomson, and S. Billina (1995a) State

assignment of finite state machines using a genetic algorithm. IEE

Proceedings-Computers and Digital Techniques, 142(4), 279-286.

134

13. Almaini, A.E.A., N. Zhuang, and F. Bourset (1995b) Minimization of

multi-output Reed-Muller binary decision diagrams using hybrid genetic
algorithm. Electronics Letters, 31(20), 1722-1723.

14. Almaini, A.E.A. and N. Zhuang (1995) Using genetic algorithms for the
variable ordering of Reed-Muller binary decision diagrams. Microelectronics

Journal, 26(5), 471-480.

15. Almaini, A.E.A. and N. Zhuang (1997). Variable ordering of BDDs for

multi-output boolean functions using evolutionary techniques. Proceedings of
Fourth IEEE-ICECS97, pp. 1239-1244.

16. Amaral, J.N., K. Tumer, and J. Ghosh (1995) Designing genetic algorithms
for the state assignment problem. IEEE Transactions on Systems, Man, and

Cybernetics, 25(4), 687-694.

17. Bryant, R.E. (1985) Symbolic manipulation of boolean functions using a

graphical representation. Proceedings of 22nd ACM/IEEE Design Automation

Conference, 688-694. IEEE Press.

18. Chaudhury, S. and S. Chattopadhyay (2008) Fixed polarity Reed-Muller

network synthesis and its application in AND-OR/XOR-based circuit

realization with area-power trade-off. IETE Journal of Research, 54(5), 353-

363.

19. Coello, C.A., A.D. Christiansen, and A.H. Aguirre (1996) Using genetic
algorithms to design combinational logic circuits. Intelligent Engineering

through Artificial Neural Networks, 6(0), 391-396.

20. Coello, C.A.C., A.D. Christiansen, and A.H. Aguirre (2000a) Towards

automated evolutionary design of combinational circuits. Computers &

Electrical Engineering, 27(1), 1-28.

21. Coello, C.A.C., A.D. Christiansen, and A.H. Aguirre (2000b) Use of

evolutionary techniques to automate the design of combinational circuits.

International Journal of Smart Engineering System Design, 2, 299-314.

22. Coello, C.A.C., A.H. Aguirre, and B.P. Buckles (2000c) Evolutionary

multi-objective design of combinational logic circuits. Proceedings of Second

NASA/DoD Workshop on Evolvable Hardware, California, USA,161-170.

IEEE Computer Society.

23. Coello, C.A.C., R.L.Z. Gutiérrez, B.M. García, and A.H. Aguirre (2002).

Automated design of combinational logic circuits using the ant
system. Engineering Optimization, 34(2), 109-127.

24. Comer, D. J. (1995) Digital logic and state machine design, Oxford

University Press, 1995

135

25. Czerwiński, R. and D. Kania (2010) Synthesis method of high speed finite

state machines. Bulletin of the Polish Academy of Sciences: Technical

Sciences, 58(4), 635-644.

26. De Micheli, G., R.K. Brayton, and A. Sangiovanni-Vincentelli (1985)
Optimal state assignment for finite state machines. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 4(3), 269-285.

27. Digalakis, J.G. and K.G. Margaritis (2001) On benchmarking functions for

genetic algorithms. International journal of computer mathematics, 77(4),

481-506.

28. Drechsler, R., H. Hengster, H. Schäfer, J. Hartmann, and B. Becker
(1999) Testability of 2-level AND/EXOR circuits. Journal of Electronic

Testing, 14(3), 219-225.

29. Ercegovac, M.D. and T. Lang Digital systems and hardware/firmware

algorithms. John Wiley & Sons, 1985.

30. Falkowski, B.J. and C.H. Chang (2000) Minimization of k-variable-mixed-

polarity Reed-Muller expansions. VLSI Design, 11(4), 311-320.

31. Faraj, K. (2009a) Fast coding for dual Reed-Muller expressions. Proceedings

of 6th WSEAS International conference on Engineering education, World

Scientific and Engineering Academy and Society, 212-219.

32. Faraj, K. (2009b) Synthesis of multi-level dual Reed-Muller expressions.

Proceedings of 1st WSEAS international conference on Nanotechnology,

Cambridge, UK. World Scientific and Engineering Academy and Society,

47-51.

33. Golberg, D.E. Genetic algorithms in search, optimization, and machine

learning, Addison Wesley, 1989.

34. Gorai, R.K. and A. Pal (1990) Automated synthesis of combinational
circuits by cascade networks of multiplexers. IEE Proceedings E-Computers

and Digital Techniques, 137(2), 164-170.

35. Haddow, P.C. and A.M. Tyrrell (2011) Challenges of evolvable hardware:

Past, present and the path to a promising future. Genetic Programming and

Evolvable Machines, 12(3), 183-215.

36. Hartmanis, J. (1961) On the state assignment problem for sequential
machines. I. IRE Transactions on Electronic computers, (2), 157-165.

37. Higuchi, T., M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami

(1997) Evolvable hardware at function level. Proceedings of IEEE 4
th

International Conference on Evolutionary Computation (CEC97), New

Jersey, USA, April, 187-192. IEEE.

136

38. Hounsell, B.I. and T. Arslan (2000) A novel genetic algorithm for the

automated design of performance driven digital circuits. Proceedings of
Congress on Evolutionary Computation, California, USA, July, 601-608.

IEEE.

39. James, R.K., T.K. Shahana, K.P. Jacob, and S. Sasi (2006) Delay-Reduced

Combinational Logic Synthesis using Multiplexers. ESA, 105-110.

40. Kalganova, T. and J. Miller (1999) Evolving more efficient digital circuits

by allowing circuit layout evolution and multi-objective fitness. Proceedings
of First NASA/DoD Workshop on Evolvable Hardware, Los Alamitos,

California, 54-63. IEEE Computer Society Press.

41. Kalganova, T.G. Evolvable hardware design of combinational logic circuits,

PhD Thesis, Napier University Edinburgh, Scotland, 2000.

42. Kalganova, T. (2000) An extrinsic function-level evolvable hardware

approach. Proceedings of European Conference on Genetic Programming

(EuroGP2000), Edinburg, UK, 60-75. Springer Berlin Heidelberg.

43. Karakatic, S., V. Podgorelec, and M. Hericko (2013) Optimization of
combinational logic circuits with genetic programming. Elektronika ir

Elektrotechnika, 19(7), 86-89.

44. Koza, J.R. Genetic programming III: Darwinian invention and problem

solving (Vol. 3). Morgan Kaufmann, 1999.

45. Li, N.S., J.D. Huang, and H.J. Huang (2008) Low power multiplexer tree

design using dynamic propagation path control. Proceedings of IEEE Asia

Pacific Conference on Circuits and Systems APCCS208, Nov-Dec, 838-841.

IEEE.

46. Liu, R., S.Y. Zeng, L. Ding, L. Kang, H. Li, Y. Chen, and Y. Han (2006)

An efficient multi-objective evolutionary algorithm for combinational circuit
design. Proceedings of First NASA/ESA Conference on Adaptive Hardware

and Systems (AHS'06), June, 215-221. IEEE.

47. Louis, S.J. Genetic algorithms as a computational tool for design. PhD thesis,

Department of Computer Science, Indiana University, Bloomington, USA, 1993.

48. Mano, M.M. Digital design, EBSCO, 2002.

49. McCluskey, E.J. and S.H. Unger (1959) A note on the number of internal
variable assignments for sequential switching circuits. IRE Transactions on

Electronic Computers, (4), 439-440.

50. Miller, J.F., P. Thomson, and T. Fogarty (1997) Designing electronic circuits

using evolutionary algorithms. Arithmetic circuits: A case study. Genetic

algorithms and evolution strategies in engineering and computer science, 8.

137

51. Miller, J.F. and P. Thomson (1998) Discovering novel digital circuits using

evolutionary techniques. In IEE Colloquium on Evolvable Hardware Systems

(Digest No. 1998/233), IET.

52. Miller, J.F. (1999) Evolution of digital filters using a gate array model.
In Workshops on Applications of Evolutionary Computation (pp. 17-30).

Springer Berlin Heidelberg.

53. Miller, J.F., D. Job, and V.K. Vassilev (2000a) Principles in the

evolutionary design of digital circuits—Part I. Genetic programming and

evolvable machines, 1(1-2), 7-35.

54. Miller, J.F., D. Job, and V.K. Vassilev (2000b) Principles in the

evolutionary design of digital circuits—Part II. Genetic programming and

evolvable machines, 1(3), 259-288.

55. Murakawa, M., S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and T.

Higuchi (1996) Hardware evolution at function level. Proceedings of
International Conference on Parallel Problem Solving from Nature

(PPSN1996), 62-72. Springer Berlin Heidelberg.

56. Oh, P. and A.E.A Almaini (2007) 2 variable Reed Muller binary decision

diagrams. Proceedings of 6th WSEAS International Conference on

Electronics, Hardware, Wireless and Optical Communications, Wisconsin,

USA, 197-202. World Scientific and Engineering Academy and Society.

57. Pal, A. (1986) An algorithm for optimal logic design using multiplexers.

IEEE transactions on computers, 100(8), 755-757.

58. Pradhan, S.N. and S. Chattopadhyay (2008) Two-level AND-XOR

networks synthesis with area-power trade-off. International Journal of

Computer Science and Network Security, 8(9), 365-375.

59. Reis, C., J.A.T. Machado, and J.B. Cunha (2004) Evolutionary design of
combinational logic circuits. JACIII, 8(5), 507-513.

60. Reis, C. and J.A.T. Machado (2007) Computational intelligence in circuit
synthesis. JACIII, 11(9), 1122-1127.

61. Sagar, K. and S. Vathsal (2013) Design of Combinational Circuits Using
Evolutionary Techniques, International Journal of Science and Modern

Engineering, 1(9), 47-51.

62. Sarrafzadeh, M. and C.K. Wong An introduction to VLSI physical design.

McGraw-Hill Higher Education, 1996.

63. Šeda, M. (2008) Heuristic Set-Covering-Based Post-processing for Improving

the Quine-McCluskey Method. International Journal of Computational

Intelligence, 4(2), 139-143.

138

64. Sekanina, L. (2009) Evolvable hardware: From applications to implications

for the theory of computation. Proceedings of International Conference on

Unconventional Computation, Portugal, 24-36. Springer Berlin Heidelberg.

65. Shahana, T.K., R.K. James, K.P. Jacob, and S. Sasi (2005) Automated

synthesis of delay-reduced Reed-Muller universal logic module networks.

In 2005 NORCHIP, 90-93. IEEE.

66. Shanthi, A.P., B. Vijayan, M. Rajendran, S. Veluswami, and R.

Parthasarathi (2002) Automatic GA Based Evolution of Fault Tolerant
Digital Circuits. Proceedings of 4th Asia–Pacific Conference on Simulated

Evolution and Learning (SEAL02), Singapore, 845-849.

67. Slowik, A. and M. Bialko (2008) Evolutionary design of combinational digital

circuits: State of the art, main problems, and future trends. Proceedings of 1st

International Conference on Information Technology (IT2008), May, 1-6. IEEE.

68. Soleimani, P., R. Sabbaghi-Nadooshan, S. Mirzakuchaki, and M. Bagheri
(2011a) Using genetic algorithm in the evolutionary design of sequential logic

circuits. arXiv preprint arXiv:1110.1038.

69. Soleimani, P., S. Mirzakuchaki, K. Mohammadi, and M. Bagheri (2011b)

A novel evolutionary design of sequential logic circuits by using genetic
algorithm. International Journal of Modeling and Optimization, 1(3), 231.

70. Soliman, A.T. and H.M. Abbas (2003) Combinational circuit design using
evolutionary algorithms. Proceedings of Canadian Conference on Electrical

and Computer Engineering (IEEE CCECE 2003), May, 1, 251-254. IEEE.

71. Soliman, A.T. and H.M. Abbas (2004). Synchronous sequential circuits

design using evolutionary algorithms. Proceedings of Canadian Conference

on Electrical and Computer Engineering, May, 4, 2013-2016. IEEE.

72. Stearns, R.E. and J. Hartmanis (1961) On the state assignment problem for
sequential machines II. IRE Transactions on Electronic Computers, (4), 593-

603.

73. Stomeo, E., T. Kalganova, C. Lambert, N. Lipnitsakya, and Y. Yatskevich

(2005) On evolution of relatively large combinational logic circuits. Proceedings
of NASA/DoD Conference on Evolvable Hardware (EH'05), July, 59-66. IEEE.

74. Story, J.R., H.J. Harrison, and E.A. Reinhard (1972) Optimum state
assignment for synchronous sequential circuits. IEEE Transactions on

Computers, 100(12), 1365-1373.

75. Tao, Y., J. Cao, Y. Zhang, J. Lin, and M. Li (2012) Using module-level

evolvable hardware approach in design of sequential logic circuits. Proceedings
of IEEE Congress on Evolutionary Computation, June, 1-8. IEEE.

139

76. Tao, Y., Y. Zhang, J. Cao, and Y. Huang (2013) A module-level three-stage

approach to the evolutionary design of sequential logic circuits. Genetic

Programming and Evolvable Machines, 14(2), 191-219.

77. Thompson, A. (1996) An evolved circuit, intrinsic in silicon, entwined with
physics. Proceedings of International Conference on Evolvable Systems, 390-

405. Springer Berlin Heidelberg.

78. Thomson, P. and J.F. Miller (1996) Symbolic method for simplifying AND-

EXOR representations of Boolean functions using a binary-decision technique
and a genetic algorithm. In IEE Proceedings-Computers and Digital

Techniques, 143(2), 151-155.

79. Umbarkar, A.J., M.S. Joshi, and P.D. Sheth (2015) Dual population genetic

algorithm for solving constrained optimization problems. International

Journal of Intelligent Systems and Applications, 7(2), 34.

80. Vassilev, V.K. and J.E. Miller (2000) Scalability problems of digital circuit
evolution evolvability and efficient designs. Proceedings of the Second

NASA/DoD Workshop on Evolvable Hardware, July, 55-64. IEEE.

81. Vijayakumari, C.K. and P. Mythili (2012) A faster 2D technique for the

design of combinational digital circuits using Genetic Algorithm. In

proceedings of International Conference on Power, Signals, Controls and

Computation (EPSCICON2012), Thrissur, India, Jan, 1-5. IEEE.

82. Vijayakumari, C.K., P. Mythili, R.K. James, and S.A. Kumar (2014)

Optimal design of combinational logic circuits using genetic algorithm and

Reed-Muller Universal Logic Modules. Proceedings of International

Conference on Embedded Systems (ICES2014), July, 1-6. IEEE.

83. Vijayakumari, C.K., P. Mythili, and R.K. James (2015a) A simplified

efficient technique for the design of combinational logic circuits. International

Journal of Intelligent Systems and Applications, 7(9), 42-48.

84. Vijayakumari, C.K., P. Mythili, R.K. James, and S.A. Kumar (2015b)

Genetic algorithm based design of combinational logic circuits using universal
logic modules. Procedia Computer Science, 46, 1246-1253.

85. Wang, L. Automated synthesis and optimization of multilevel logic circuits,

Doctoral dissertation, Napier University Edinburgh, UK, 2000.

86. Xia, Y., B. Ali, and A.E.A Almaini (2003a) Area and power optimization of

FPRM function based circuits. Proceedings of International Symposium

on Circuits and Systems (ISCAS2003), Bangkok Thailand, May, 5, 329. IEEE.

87. Xia, Y., X. Wu, and A.E.A. Almaini (2003b) Power minimization of FPRM

functions based on polarity conversion. Journal of Computer Science and

Technology, 18(3), 325-331.

140

88. Yan, X., Q. Wu, C. Hu, and Q. Liang (2011) Electronic circuits

optimization design based on cultural algorithms. Journal of Information

Processing and Management, 2(1), 49-56.

89. Yanagiya, M. (1995) Efficient genetic programming based on binary decision
diagrams. Proceedings of IEEE International Conference on Evolutionary

Computation, Nov-Dec, 1, 234. IEEE.

90. Yau, S.S. and C.K. Tang (1970) Universal logic modules and their

applications. IEEE Transactions on Computers, 100(2), 141-149.

LIST OF PAPERS

SUBMITTED ON THE BASIS OF THIS THESIS

I REFEREED JOURNALS

1. Vijayakumari, C.K., P. Mythili, and R.K. James (2015). A Simplified

Efficient Technique for the Design of Combinational Logic

Circuits. International Journal of Intelligent Systems and Applications, 7(9),

42-48.

2. Vijayakumari, C. K., R. K. James & P. Mythili (2016). A GA Based

Simple and Efficient Technique to Design Combinational Logic Circuits

Using Universal Logic Modules. Journal of Circuits, Systems and Computers,

25(07), 1650074(1-22).

II PRESENTATIONS IN CONFERENCES

1. Vijayakumari, C. K. and P. Mythili (2012). A faster 2D technique for the

design of combinational digital circuits using Genetic Algorithm. In

proceedings of International Conference on Power, Signals, Controls and

Computation (EPSCICON2012), Thrissur, India, Jan, 1-5. IEEE.

2. Vijayakumari, C. K., D. Lukose, P. Mythili, and R.K. James (2013). An

improved design of combinational digital circuits with multiplexers using

genetic algorithm. In Emerging Research Areas and 2013 International

Conference on Microelectronics, Communications and Renewable Energy

(AICERA/ICMiCR), 2013 Annual International Conference on, June, 1-5.

IEEE.

3. Vijayakumari C. K, P. Mythili, R. K. James (2013). A modified technique

for the optimal design of combinational digital circuits with multiplexers using

genetic algorithm, In IET Proc. of International Conference on Computational

Intelligence and Information Technology (CIIT 2013), 225 – 229.

4. Vijayakumari, C.K., P. Mythili, R.K. James, and S.A. Kumar (2014).

Optimal design of combinational logic circuits using genetic algorithm and

Reed-Muller Universal Logic Modules. Proceedings of International

Conference on Embedded Systems (ICES2014), July, 1-6. IEEE.

5. Vijayakumari, C.K., P. Mythili, R.K. James, and S.A. Kumar
(2015a). Genetic algorithm based design of combinational logic circuits using

universal logic modules. Procedia Computer Science, 46, 1246-1253.

6. Vijayakumari, C. K., Mythili, P., & K. J. Rekha (2015b). Genetic

Algorithm Based Design of Combinational Logic Circuits using Reed Muller
blocks. In Proceedings of the World Congress on Engineering . 1, 978-988.

CURRICULUM VITAE

1. NAME : Vijayakumari C. K

2. DATE OF BIRTH : 05 may 1963

3. EDUCATIONAL QUALIFICATIONS

1985 Bachelor of Technology (B. Tech)

Institution : T. K. M. College of Engineering,

 Kollam, Kerala

Specialization : Electrical Engineering

Class / Division obtained : First Class with Distinction

1987 Master of Technology (M. Tech)

Institution : College of Engineering,

 Thiruvanathapuram, Kerala

 Specialization : Electrical Machines

 Class / Division obtained : First Class with Distinction

Doctor of Philosophy (Ph. D)

 Institution : Cochin University of Science and

Technology, Kerala

 Registration Date : 20-09-2008

	First page-1----------- -
	First page_2
	1-chapter1
	2-CHAPTER 2
	3_Chapter 3
	4-chapter 4 --docx
	5-chapter 5_13_06_17
	6-CONCLUSION6_
	7-REFERENCES
	8-List of papers based on Thesis
	9-Curriculam

