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Chapter 1

Introduction

In the past two decades modelling and analysing of bivariate lifetime data have

brought a great interest and enthusiasm among researchers in the area of reliabil-

ity theory and survival analysis. Bivariate lifetime data includes a parallel clustered

data in which a system has more than one failure which are observed in parallel and

do not satisfy any ordered restriction, like the times to initial contraction of disease

of rats in the litter mates study (Mantel et al. (1977)), the time to deterioration level

or time to reaction of a treatment for pairs of lungs, kidneys, eyes or ears of humans

(Gross et al. (1971)), times to onset of blindness for the treated eye and the untreated

eye in a diabetic retionpathy study data (Huster et al. (1989)), the inception times of

defect and the additional times to failure of cable insulation specimens study (Stone

(1978)) or the lifetimes of two motors working in a parallel system (ReliaSoft (2003))

in a reliability context.

The present thesis focuses on developing some new bivariate models for such data

by taking into account particular features exhibited by the data. Broadly speaking,

two types of bivariate models have been focussed on - conditionally specified models

and load sharing models. First we propose a class of bivariate distributions with

specified transmuted conditional distributions. Univariate transmuted distributions

are based on a transmuted map (Shaw & Buckley (2009)) and was initially used for

introducing skewness to a symmetric baseline distribution. However, there is no spe-

cific requirement that the baseline distribution is symmetric and hence transmuted

1



1.1. Basic Concepts 2

distributions (Shuaib et al. (2016)) are of recent interest as a rich class of distributions

for modelling data. Conditionally specified models are apt to model casual failures

as in cable insulation specimens data (Stone (1978)) which describe the failure phe-

nomenon called electrical treeing. The observed data here consist of two variables

(Y1, Y2) where Y1 is the time to inception of a defect and Y2 is the subsequent addi-

tional time to specimen failure. This motivated us to propose bivariate distributions

with transmuted conditionals.

However when dependence between (Y1, Y2) is characterized in terms of the change

in stochastic behaviour of the surviving component, on failure of a component, it

becomes necessary to take into account this feature in modelling. These type of

models are popularly referred to as load share models. The bivariate exponential

distribution (Freund (1961)) is an apt model for such system when lifetimes are

exponential. Generalizations of these models form the topic of study in the later part

of the present Thesis.

Before embarking on these models we first recall few basic definitions and results

which will be used in the sequel. We also discuss a particular example of transmuted

distribution in detail which form the basis of developing bivariate models discussed

in later chapters.

1.1 Basic Concepts

Let (Y1, Y2) be random variables representing lifetimes, not necessarily independent.

Then the bivariate cumulative distribution function and survivor function for y1 ≥ 0

and y2 ≥ 0 are defined respectively as

F (y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2) (1.1)

and

S(y1, y2) = P (Y1 ≥ y1, Y2 ≥ y2). (1.2)



1.2. Bivariate Failure Rate 3

or equivalently

S(y1, y2) = 1− F (y1,∞)− F (∞, y2) + F (y1, y2), (1.3)

for continuous random variables (Y1, Y2), where the marginal distributions of Y1 and

Y2 are defined as F1(y1) = F (y1,∞) and F2(y2) = F (∞, y2). Similarly, we can define

the marginal survivor functions as S1(y1) = S(y1, 0) and S2(y2) = S(0, y2).

If the second order derivative exists then the corresponding bivariate probability

density function is defined by

f(y1, y2) =
∂2F (y1, y2)

∂y1∂y2

=
∂2S(y1, y2)

∂y1∂y2

, (1.4)

and the marginal densities are respectively,

f1(y1) =
dF (y1,∞)

dy1

=
−dS(y1, 0)

dy1

and

f2(y2) =
dF (∞, y2)

dy2

=
−dS(0, y2)

dy2

.

In rest of the discussions, we confine to absolutely continuous random variables

Y1, Y2 with distribution F (y1, y2) with support S xS = {(y1, y2)|yi ∈ S , i = 1, 2}
and S = (0,∞).

1.2 Bivariate Failure Rate

Basu (1971) defined the bivariate failure (hazard) rate to be

r(y1, y2) =
f(y1, y2)

S(y1, y2)
.

It is shown in Basu (1971) that, except for the case of independence, there does

not exist any absolutely continuous bivariate exponential distribution with constant

bivariate failure rate and marginal exponential distributions.
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Johnson & Kotz (1975) defined the hazard gradient as the vector,

(r1(y1, y2), r2(y1, y2))T = −F logS(y1, y2), (1.5)

where F =
(

∂
∂y1
, ∂
∂y2

)
, r1(y1, y2) is the hazard rate of the conditional distribution of

Y1 given {Y2 > y2} and r2(y1, y2) is the hazard rate of the conditional distribution of

Y2 given {Y1 > y1}, that is

r1(y1, y2) = rY1|Y2>y2(y1) = − ∂

∂y1

logS(y1, y2) =
1

S(y1, y2)

∫ ∞
y2

f(y1, v)dv, (1.6)

and

r2(y1, y2) = rY2|Y1>y1(y2) = − ∂

∂y2

logS(y1, y2) =
1

S(y1, y2)

∫ ∞
y1

f(u, y2)du. (1.7)

The most popular version of bivariate failure rate proposed by Cox (1972) in a vector

form for y = (y1, y2) is defined as

λ(y) = (λ(y), λ12(y1|y2), λ21(y2|y1)) , (1.8)

where,

λ(y) = λ10(y) + λ20(y), y1 = y2 = y,

λi0(y) = lim
∆y→0+

P (y ≤ Yi < y + ∆y|y ≤ Y1, y ≤ Y2)

∆y
, i = 1, 2, (1.9)

λ21(y2|y1) = lim
∆y2→0+

P (y2 ≤ Y2 < y2 + ∆y2|y2 ≤ Y2, Y1 = y1)

∆y2

, y1 < y2, (1.10)

and

λ12(y1|y2) = lim
∆y1→0+

P (y1 ≤ Y1 < y1 + ∆y1|y1 ≤ Y1, Y2 = y2)

∆y1

, y2 < y1. (1.11)

The appropriateness of using Cox failure rate for load sharing dependence which

we will discuss later is discussed in Singpurwalla (2006) and Jagathnath (2010) and

references cited therein.

Let X denote the lifetime of a component so that its reliability S(x) = P (X > x)
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and S ′(x) = −f(x). The univariate failure rate or hazard rate is defined as

r(x) = lim
∆x→0

P [x ≤ X < x+ ∆x|X > x]

∆x
. (1.12)

When f(.) is the probability density function of X, (1.12) can be equivalently written

as

r(x) =
f(x)

S(x)

=
d

dx
[− logS(x)] . (1.13)

Mean time to failure (MTTF):

The expected life or the mean time to failure (MTTF) of the component is given

by

E(X) =

∫ ∞
0

S(t)dt. (1.14)

1.3 Global Dependence Measures

A measure of dependence explains in a manner how closely the variables Y1 and

Y2 are related. Correlation is the global dependence measure which explains the

relationship between Y1 and Y2 when E(Y2|Y1) or E(Y1|Y2) are linearly independent.

If it is not linearly independent then we have to search for other nonparametric global

dependence measures which are commonly based on concordance and discordance.

Let (y1i, y2i) and (y1j, y2j), i 6= j = 1, 2, be called concordant if (y1i − y1j)(y2i −
y2j) > 0 and discordant if (y1i − y1j)(y2i − y2j) < 0. Geometrically, two distinct

points (y11, y21), (y12, y22) in the plane are said to be concordant, if the line segment

connecting them has positive slope and discordant if the line segment has negative

slope.

Two most popular and important measures of dependence based on the concor-

dance and discordance are Kendall’s tau and Spearman’s rho. These two dependence
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measures provide an alternative measure to the linear correlation coefficient for non-

normal distributions. The relationship between these two global dependence measures

is explained in Nelsen (2006) and Joe (1997). These two measures are explained in

Sections 1.3.1 and 1.3.2 respectively.

1.3.1 Kendall’s Tau

Kendall’s tau (τK) is defined as the probability of concordance minus the proability

of discordance. That is,

τK = P [(Y1i − Y1j)(Y2i − Y2j) > 0]− P [(Y1i − Y1j)(Y2i − Y2j) < 0]

= 4

∫
F (y1, y2)dF (y1, y2)− 1

= 4E[F (Y1, Y2)]− 1.

The range of possible values for τK is [−1, 1].

1.3.2 Spearman’s Rho

Spearman’s rho (ρS) is another global dependence measure, which is also defined

based on concordance and discordance. Let (Y11, Y12), (Y21, Y22), (Y31, Y32) be three

independent pairs of random variables with a common distribution function F . Then

ρS is defined to be proportional to the probability of concordance minus the proba-

bility of discordance for the two pairs (Y11, Y12) and (Y21, Y32), that is,

ρS = 3 {P [(Y11 − Y21)(Y12 − Y32) > 0]− P [(Y11 − Y21)(Y12 − Y32) < 0]}

= 12

∫ ∫
F1(y1)F2(y2)dF (y1, y2)− 3

= 12

∫ ∫
S(y1, y2)dF1(y1)dF2(y2)− 3.

The range of possible values for ρS is [−1, 1].
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1.3.3 Positive and Negative Quadrant Dependence

If the random variables Y1 and Y2 are said to be positively(negatively) quadrant

dependent (PQD(NQD)), if

P (Y1 > y1, Y2 > y2) ≥ (≤)P (Y1 > y1)P (Y2 > y2), for all y1 and y2,

or equivalently

P (Y1 ≤ y1, Y2 ≤ y2) ≥ (≤)P (Y1 ≤ y1)P (Y2 ≤ y2), for all y1 and y2 ∈ S .

Among the global dependence measures - total positivity of order 2 (TP2) or

reverse rule of order 2 (RR2) is considered to be a strong measure of dependence and

in the next section we recall this global measure.

1.3.4 Total Positivity of Order 2

The global dependence measures total positive of order 2 (TP2) functions and reverse

rule of order 2 (RR2) functions are defined as follows.

Definition 1.3.1. Let Y1 and Y2 have a joint probability density function f(., .). Then

f(y1, y2) is said to be totally positive (reverse order) of order 2 TP2 (RR2) if for all

y11 < y12, y21 < y22,

f(y11, y21)f(y12, y22)− f(y11, y22)f(y21, y12) ≥ 0 (≤ 0). (1.15)

These properties are the strongest of all dependence concepts existing in the lit-

erature. For other global dependence measures one can refer to Joe (1997).
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1.4 Local Measures of Dependence

The global dependence measures are defined from the moments of the distribution on

the whole plane and it can be zero when Y1 and Y2 are not independent. Therefore,

it is necessary to study the dependence locally. Holland & Wang (1987) defined a

local dependence measure, η(y1, y2) = ∂2

∂y1∂y2
log f(y1, y2) and established the relation

between local dependence function with TP2 and RR2 properties which is stated in

Theorem 1.4.1.

Theorem 1.4.1. Let f(y1, y2) be the joint probability density function of (Y1, Y2) with

support on a set S 2. Then f(y1, y2) is TP2 (RR2) if and only if η(y1, y2) > 0 (< 0).

1.4.1 Cross Ratio Function

In order to study the dependence between the random variables Y1 and Y2 we consider

the local dependence function. The cross ratio function (CRF) is a local dependence

function related to the hazards of events and was originally introduced by Clayton

(1978) and studied by Oakes (1989). It is the ratio of the hazard of Y1 given that

Y2 the second component failed at time y2 to the hazard of Y1 given that the second

component had not failed at time y2. It helps to quantify the association in bivariate

survival data. The two event times Y1 and Y2 are independent if C (y1, y2) = 1,

positively correlated if C (y1, y2) > 1, and negatively correlated if C (y1, y2) < 1

(Kalbfleisch & Prentice (2002)). The CRF at time point (y1, y2) is given by

C (y1, y2) =
S(y1, y2)S12(y1, y2)

S1(y1, y2)S2(y1, y2)
, (1.16)

where Sj(y1, y2) = ∂S(y1,y2)
∂yj

, j = 1, 2 and S12(y1, y2) = ∂2S(y1,y2)
∂y1∂y2

. It is a measure of

choice for assessing the time varying dependence.
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1.5 Some Methods of Constructing Bivariate Distributions

The construction, study and applications of bivariate distributions is one of the es-

sential areas of research in statistics, and it remains to be an active field of research.

Recently, several books have been published containing the theory about bivariate

non-normal distributions. Hutchinson & Lai (1990), Joe (1997), Arnold et al. (1999a),

Kotz & Nadarajah (2000), Kotz & Nadarajah (2004), Nelsen (2006) to mention a few.

In this section we discuss some methods for constructing bivariate distributions. For

comprehensive and more detailed reviews on methods for constructions of discrete

and continuous bivariate distributions one can refer to (Lai (2004), Lai (2006)) and

Sarabia & Gómez (2008).

Some of the popular methods which gained considerable attention and interest in

the recent literature and the methods used in the present thesis to construct few new

general class of bivariate distributions are chosen for our discussion. Note that these

are general methods not confined to non-negative random variables.

1.5.1 Marginal Transformation Method

The general description about the marginal transformation method is defined as fol-

lows. Let Y1 and Y2 be two continuous random variables with probability density

functions f1 and f2 respectively. Let F1 and F2 be their corresponding distribution

functions. If we start with a bivariate distribution F (y1, y2) (with density f(y1, y2))

and apply monotone transformations Y1 → Y ∗1 and Y2 → Y ∗2 . Now, the new distri-

bution F ∗(y∗1, y
∗
2) retains the same bivariate structure as the original F , with changes

in the marginals, that is, F1 becoming F ∗1 and F2 becoming F ∗2 . Some of the famil-

iar examples in the univariate situations are transforming the normal distribution so

that it becomes lognormal, transforming the exponential so that it becomes Weibull.

A well known set of distributions constructed through the marginal transformation

method is mainly contributed by Johnson (1949), who started with bivariate normal

and transformed Y1 and/or Y2 to lognormal, logit-normal, and sinh−1-normal. This

method popularly known as translation method. Kimeldorf & Sampson (1978) derived

a new bivariate distribution with desired marginals for a given bivariate cumulative
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distribution function F with marginal cumulative distribution functions F1 and F2 by

considering the cumulative distribution function F (F−1
1 (G1(y1)), F−1

2 (G2(y2))), where

F−1
i (t) = inf{x : Fi(x) ≥ t}, i = 1, 2, the baseline cumulative distribution G1(.) is

fixed and does not depend on y2, similarly, G2(.) is fixed and does not depend on

y1. Frêchet (1951) argued that every univariate distribution can be generalized in

many ways. He came up with the idea of boundary distributions for all bivariate

distributions with specified marginals.

1.5.2 Copula Method

For the past three decades there has been a great interest in the study of uniform

representation (also known as copulas) for constructing bivariate distributions. This is

the form the distribution takes when Y1 and Y2 are transformed so that each marginal

will have a uniform distribution over the range 0 to 1. For example, let us consider

F (y1, y2) = y1y2 [1 + θ(1− y1)(1− y2)] , (1.17)

for y1 and y2 between 0 and 1, with −1 ≤ θ ≤ 1. By setting y2 = 1, we see that the

distribution of Y1 is uniform, F1 = y1; similarly, setting y1 = 1, the distribution of Y2

becomes uniform, F2 = y2. The copula given in (1.17) is known as Farlie-Gumbel-

Morgenstern copula.

If we require to convert the marginals to be exponential, then let us consider

F1(y1) = 1− e−y1 and F2(y2) = 1− e−y2 . Now, replacing y1 as F1(y1) = 1− e−y1 and

y2 by F2(y2) = 1− e−y2 in (1.17), we get

F (y1, y2) =
(
1− e−y1

) (
1− e−y2

) [
1 + θe−(y1+y2)

]
, (1.18)

which is Gumbel bivariate exponential distribution (Gumbel (1960)). Subsequently

Gumbel (1961) also studied bivariate logistic distributions.

One can construct a bivariate distribution after determining the coupula C by

using, Sklar’s theorem given in (1.19).

F (y1, y2) = C (F1(y1), F2(y2)) . (1.19)
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Marshall & Olkin (1988) considered a general method for generating bivariate distri-

butions using the mixture

F (y1, y2) =

∫ ∫
K(F θ1

1 , F θ2
2 )dG(θ1, θ2), (1.20)

where K is a copula, G is a mixing distribution. Therefore, various choices of G and

K will lead to a variety of distributions with marginals as parameters. Note that F1

and F2 here are not the marginals of F . Joe (1993) studied the properties of a group

of copulas given by Marshall & Olkin (1988). For an extensive study on copulas one

can refer to Nelsen (2006).

1.5.3 Method of Mixing and Compounding

A simple and easy way of constructing a bivariate distribution is by the method of

mixing along with two distributions. Particularly, if F1 and F2 are two bivariate

distribution functions, then the new bivariate distribution is given by

F (y1, y2) = θF1(y1, y2) + (1− θ)F2(y1, y2), 0 ≤ θ ≤ 1. (1.21)

For exmaples one can refer to Fréchet (1960) and Mardia (1970).

1.5.4 Trivariate Reduction Method

The trivariate reduction or variables in common technique is another method for

constructing bivariate distributions. The basic idea is to create a pair of dependent

random variables from three or more random variables. The initial random variables

are assumed to be independent. The functions that connect initial variables are

generally elementary functions. The general definition is given by

Y1 = D1(EY1 , CY1Y2),

Y2 = D2(EY2 , C̃Y1Y2),
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where EY1 , EY2 represent two sets containing the specific variables of Y1, Y2 respec-

tively, (CY1Y2 , C̃Y1Y2) sets containing the common or latent variables and D1, D2 are

the functions that connect the initial variables. Vernic (1997), Vernic (2000) studied

bivariate generalized Poisson distribution. Olkin & Liu (2003) proposed the following

method for constructing bivariate beta distribution. Let Y1i ∼ G(ai, 1), i = 1, 2, 3,

three independent gamma variables with unit scale parameters, and define

Y1 =
Y11

Y11 + Y13

,

Y2 =
Y12

Y11 + Y13

.

The joint probability density function with correlated beta distributions B(a1, a3)

and B(a2, a3), 0 ≤ y1, y2 ≤ 1 is given by

f(y1, y2; a1, a2, a3) =
ya1−1

1 ya2−1
2 (1− y1)a1+a3−1(1− y2)a1+a2−1

B(a1, a2, a3)(1− y1y2)a1+a2+a3
,

where B(a1, a2, a3) =
∏3

i=1
Γai

Γ(
∑3
i=1 ai)

.

Fang et al. (1990) proposed bivariate t-distribution by defining the random vari-

ables

Y1 =
Y11√
Y13/n1

,

Y2 =
Y12√
Y13/n1

,

where Y11, Y12, Y13 are mutually independent random variables with distributions

Y11, Y12 ∼ N(0, 1) (standard normal) and Y13 ∼ χ2
n1

(χ2-distribution with n1 degrees

of freedom). Note that the marginal distributions are both student t-distribution

with n1 degrees of freedom.

Bivariate F distribution is proposed by Kotz et al. (2000) by considering the ran-

dom variables Y11, Y12 and Y13 be mutually independent chi-squared random variables

with degrees of freedom ni > 0, i = 1, 2, 3, respectively. The corresponding random
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variables are defined by

Y1 =
Y11/n1

Y13/n3

, Y2 =
Y12/n2

Y13/n3

.

The marginals Y1 ∼ Fn1,n3 and Y2 ∼ Fn2,n3 , which share the degrees of freedom on

the denominator.

1.5.5 Frailty Approach

The concept of frailty provides a convenient way to incorporate unobserved covariates

(random effect) and associations into models for survival data, where the random

effect has a multiplicative effect on the hazard function. For a univariate survival

data the frailty model may be formulated in the following manner.

Let X be a survival time with an absolute continuous distribution. A non-negative

random variable Z is called frailty or random effect (Vaupel et al. (1979)) if the

conditional hazard function given Z has the form:

r(x|Z) = Zr0(x), (1.22)

where r0(x) is the baseline hazard function. The conditional survival for this case is

given by

S(x|Z) = e−ZH(x), (1.23)

where H(x) =
∫ x

0
r0(t)dt is the cumulative baseline hazard. By taking expectation

the marginal survival function S(x) is obtained as

S(x) = E[S(x|Z)] = E[e−ZH(x)], (1.24)

(Hougaard (1984)). Alternatively, (1.24) can be written as

S(x) = L[H(x)], (1.25)

where L is the Laplace transform of the frailty distribution. Similarly, we can write
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the bivariate survival function conditional on Z as

S(y1, y2|Z) = exp [−ZH1(y1) +H2(y2)] , (1.26)

where Hi(yi) =
∫ yi

0
ri(t)dt, i = 1, 2 are the integrated hazards of Yi. Here Y1 and Y2

are conditionally independent. The unconditional bivariate survival function is given

as,

S(y1, y2) =

∫
z

e−Z{H1(y1)+H2(y2)}f(z)dz

= L [H1(y1) +H2(y2)] . (1.27)

When Y1 and Y2 are dependent, conditionally on Z, the bivariate survival function is

S(y1, y2|Z) = exp [−ZH(y1, y2)] , (1.28)

where H(y1, y2) is the bivariate integrated hazard of (Y1, Y2). The corresponding

unconditional bivariate survival function is

S(y1, y2) =

∫
z

e−ZH(y1,y2)f(z)dz

= L[H(y1, y2)], (1.29)

where L is the Laplace transform of the frailty distribution.

These models assume that the lifetimes are independent conditional on an unob-

served covariate or random effect called the “frailty”. There is considerable literature

on frailty models for lifetime of parallel systems, where it is usually assumed that the

failure of some components does not affect the failure rate of other operating units

(see for example Stefanescu & Turnbull (2012)). Clayton (1978) constructed bivari-

ate distributions with frailty to accommodate certain hereditary disease transmission

between parents and children. Lindley & Singpurwalla (1986) study the reliability of

two-component systems, where the lifetime of each component follows an exponential

baseline distribution shared by a gamma frailty. Hanagal (2011) constructed several

bivariate distributions incorporating shared frailty. Inference procedures for frailty

models is abundant in literature. We refer to Hougaard (1984) for details.
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In the present thesis, Chapter 3 contains a new class of bivariate distribution for

load sharing systems when there is dependence between the components induced by

some random effect. This model is constructed by applying the frailty approach.

1.5.6 Conditional Specification Method

Let (Y1, Y2) be a two dimensional random vector which is absolutely continuous with

respect to some product measure µ1×µ2 with support S (Y1) and S (Y2) respectively,

which can be finite, countable or uncountable. The distribution function correspond-

ing to Y1 is F1 and for Y2 is F2. Now, a conditionally specified bivariate distribution

is associated with two parametric families of distributions F1 = {F1(y1;θ) : θ ∈ Θ}
and F2 = {F2(y2; τ ) : τ ∈ T }. The joint distribution (Y1, Y2) is required to satisfy

the property that for each possible value of y2 of Y2, the conditional distribution of

(Y1|Y2 = y2) ∈ F1 with parameter θ is possibly dependent on y2. Also, the condi-

tional distribution of (Y2|Y1 = y1) ∈ F2 with parameter τ is possibly dependent on

y1. Then from the following compatibility theorem we have (Arnold et al. (1999a)),

Theorem 1.5.1. A joint density f(y1, y2), with f(y1;θ(y2)) and f(y2; τ (y1)) as its

conditional densities, will exist if only if

(i). Na = Nb, and

(ii). there exist functions u and v such that for all y1, y2 ∈ Na,

f(y1;θ(y2))

f(y2; τ (y1))
=
u(y1)

v(y2)
, (1.30)

where ∫
S (Y1)

u(y1)dµ1(y1) <∞,

Na = {(y1, y2) : f(y1;θ(y2)) > 0},

and

Nb = {(y1, y2) : f(y2; τ (y1)) > 0}.

Now we are interested in all possible bivariate distributions which have condition-
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als such that

fY1|Y2(y1|y2) = f(y1;θ(y2)), for all y1 ∈ S (Y1), y2 ∈ S (Y2), (1.31)

and

fY2|Y1(y2|y1) = f(y2; τ (y1)), for all y1 ∈ S (Y1), y2 ∈ S (Y2). (1.32)

For (1.31) and (1.32) to hold there must exist marginal distributions for Y1 and Y2

denoted by fY1(y1) and fY2(y2) such that

fY2(y2)f(y1; θ(y2)) = fY1(y1)f(y2; τ (y1)), for all y1 ∈ S (Y1), y2 ∈ S (Y2). (1.33)

Then the functional equation (1.33) is solved for θ(y2) and τ (y1) to obtain a unique

bivariate distribution with the specified conditionals. The solution of (1.33) depends

on f(y1; θ(y2)) and f(y2; τ (y1)). The different challenges in this is discussed in

Arnold et al. (1999a).

The pioneering work on construction of bivariate distributions using conditional

specifications was given in Patil (1965), where a bivariate power series distribution has

been constructed using power series conditional distributions. Besag (1974) discussed

conditional specifications in the spatial processes perspective. Castillo & Galambos

(1987) brought the importance of functional equations in the study of bivariate dis-

tributions with conditionals. Their focus was on normal conditionals. Arnold (1987)

studied the bivariate distribution with Pareto conditionals by following the work of

Castillo & Galambos (1987). (Arnold & Strauss (1988), Arnold & Strauss (1991))

studied exponential conditionals and also discussed conditionals in prescribed expo-

nential families. Arnold et al. (1999a) developed an algorithm for constructing a

bivariate distribution through conditional specification method. Recently, Pulcini

(2006) studied bivariate distribution with gamma conditionals.

In Chapter 2, we have investigated bivariate distributions when f(y1;θ(y2)) and

f(y2; τ (y1)) are transmuted distributions. Recently, studying about transmuted dis-

tributions, properties and its applications brought a great interest among the re-

searchers. However, most of the works are on univariate transmuted models. Our

main goal is to build a new class of bivariate transmuted distributions. Motivated by

this task, we initiated a study on a special univariate distribution called “Transmuted
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Exponentiated Frêchet distribution”. We also studied its properties and some useful

applications. The next section of this chapter is fully dedicated to the formulation,

properties and applications of this distribution. Some of the results are required for

the formulation of bivariate distribution with transmuted conditionals in Chapter 2.

1.6 Transmuted Distributions

The discussions in this section does not confine to lifetime distributions alone. Let

F (x) and G(x) be distribution functions with support S ′ ⊆ R, the real line. For

notations ease we also denote it as F and G sometimes by suppressing the arguments.

1.6.1 Introduction and Literature

A random variable X is said to have transmuted distribution (Shaw & Buckley (2009))

if its cumulative distribution is given by

F (x) = (1 + λ)G(x)− λG(x)2, |λ| ≤ 1, (1.34)

where G(x) is the cumulative distribution function of the baseline random variable.

Differentiation of (1.34) yields,

f(x) = g(x) [(1 + λ)− 2λG(x)] , (1.35)

where f(x) and g(x) are the corresponding probability density functions with cu-

mulative distribution functions F (x) and G(x) respectively. A transmuted random

variable X with cumulative distribution function given in (1.34) and probability den-

sity function given in (1.35) will be denoted by X ∼ TD(λ;G). Observe that at λ = 0

we have the distribution of the base line random variable.

∗Some of the results of this section are published in Journal of Statistical Application and
Probability (2014) 3(3), 379-394. (Elbatal et al. (2014))
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1.6.2 Transmutation Map

In this subsection we discuss the transmuted probability distribution. Let F and G

be the cumulative distribution functions, with a common support S ′. The general

rank transmutation as given by Shaw & Buckley (2009) is defined as

GS ′(u) = G(F−1(u)).

Note that the inverse cumulative distribution function, also known as quantile func-

tion, is defined as

F−1(u) = infx∈S ′{F (x) ≥ u} for u ∈ [0, 1].

The function GS ′(.) maps the unit interval I = [0, 1] into itself, and under suitable

assumptions are mutual inverses and they satisfy GS ′(0) = 0 and GS ′(1) = 1. A

quadratic rank transmutation map is defined as

GS ′(u) = u+ λu(1− u), |λ| ≤ 1, 0 ≤ u ≤ 1, (1.36)

from which it follows that the cumulative distribution functions satisfy the relation-

ship

F (x) = (1 + λ)G(x)− λG(x)2. (1.37)

When G(x) is absolutely continuous, differentiation of (1.37) yields,

f(x) = g(x)[(1 + λ)− 2λG(x)], (1.38)

where f(x) and g(x) are the corresponding probability density functions associated

with cumulative distribution functions F (x) and G(x) respectively. An extensive in-

formation about the quadratic rank transmutation map is given in Shaw & Buckley

(2009). Observe that at λ = 0 we have the distribution of the base random variable.

The following Lemma prove that the function f(x) given in (1.38) satisfies the prop-

erty of probability density function.

Lemma 1.6.1. The funtion f(.) given in (1.38) is a well defined probability density

function.
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Proof. Rewriting f(x) in (1.38) as f(x) = g(x)[(1− λ(2G(x)− 1))], we observe that

f(x) is non-negative. Also,∫
S ′

f(x)dx =

∫
S ′

(1 + λ)g(x)dx− 2λ

∫
S ′

g(x)dx

= 1 + λ− λ

= 1

�

Hence f(x) is a well defined probability density function. We call f(x) the trans-

muted probability density function with base line density g(x). Further properties of

this transmuted distribution is studied in Section 1.6.3.

Also many authors have worked with the generalization of some well-known dis-

tributions. Aryal & Tsokos (2009) defined the transmuted generalized extreme value

distribution and they studied some basic mathematical characteristics of transmuted

Gumbel probability distribution and it has been observed that the transmuted Gum-

bel can be used to model climate data. Also Aryal & Tsokos (2011) presented a new

generalization of Weibull distribution, called the transmuted Weibull distribution.

Recently, Aryal (2013) proposed and studied the various structural properties of

the transmuted Log-Logistic distribution. Khan & King (2013) introduced the trans-

muted modified Weibull distribution which extends recent development on trans-

muted Weibull distribution by Aryal & Tsokos (2011) and they also studied the

mathematical properties and maximum likelihood estimation of the unknown pa-

rameters. Subsequently, Elbatal & Aryal (2013) presented the transmuted additive

Weibull distribution. Also, Elbatal (2013) studied the transmuted modified inverse

Weibull distribution. Merovci (2013c) introduced the transmuted Rayleigh distri-

bution, transmuted generalized Rayleigh distribution (Merovci (2013a)), and trans-

muted Lindley distribution (Merovci (2013b)). Elbatal & Elgarhy (2013) studied the

transmuted Quasi Lindley distribution.

Here we make an attempt to establish a generalization for exponentiated Frêchet

distribution. Frêchet distribution was introduced by a French mathematician named
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Maurice Frêchet (1878-1973) who had identified before one possible limit distribu-

tion for the largest order statistic. The Frêchet distribution has been shown to be

useful for modelling and analysis of several extreme events ranging from accelerated

life testing to modelling earthquakes, floods, rain fall, sea currents and wind speeds.

Therefore Frêchet distribution is well suited to characterize random variables of large

features. Applications of the Frêchet distribution in various fields given in Harlow

(2002) showed that it is an important distribution for modelling the statistical be-

haviour of materials properties for a variety of engineering applications. Nadarajah

& Kotz (2008) discussed the sociological models based on Frêchet random variables.

Further, Zaharim et al. (2009) applied Frêchet for analyzing the wind speed data.

Mubarak (2012) studied the Frêchet progressive type-II censored data with binomial

removals. The Frêchet distribution is a special case of the generalized extreme value

distribution. This type-II extreme value distribution (Frêchet) case is equivalent to

taking the reciprocal of values from a standard Weibull distribution. The cumula-

tive distribution function and probability density function for Frêchet distribution are

given respectively by

F (x, θ, β) = e−( θx)
β

, x > 0, θ > 0, β > 0,

where the parameter β > 0 determines the shape of the distribution and θ > 0 is the

scale parameter and

f(x, θ, β) =
β

θ

(
θ

x

)β+1

e−( θx)
β

, x > 0, θ > 0, β > 0.

Recently, a new three-parameter distribution, named as Exponentiated Frêchet (EF)

distribution has been introduced by Nadarajah & Kotz (2003) as a generalization of

the standard Frêchet distribution. The exponentiated Frêchet distribution is consid-

ered to be one of the newest lifetime models. There are over fifty applications ranging

from accelerated life testing, earthquakes, floods, horse racing, rainfall, queues in su-

permarkets, sea currents, wind speeds and track race records (Kotz & Nadarajah

(2000)) etc. The cumulative distribution function of the exponentiated Frêchet dis-

tribution is given by

G(x, θ, β, α) = 1−
[
1− e−( θx)

β]α
, x > 0, θ > 0, α > 0, β > 0, (1.39)
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where α is shape parameter. The corresponding probability density function is given

by

g(x, θ, β, α) = αβθβx−(1+β) e
−( θx)

β [
1− e−( θx)

β]α−1

, x > 0, θ > 0, α > 0, β > 0.

(1.40)

In this section we present a new generalization of exponentiated Frêchet distribution

called the transmuted exponentiated Frêchet (TEF ) distribution. We will derive

the subject distribution using the quadratic rank transmutation map given in (1.36)

(Shaw & Buckley (2009)).

1.6.3 General Properties

In this section we study the properties of the transmuted distribution. Many char-

acteristics of the transmuted distribution function is assured by the behaviour of the

baseline distribution function. The next theorem shows the relationship between mo-

ments for the transmuted distribution once the baseline moments exist.

Theorem 1.6.1. Let Φ be a non-degenerate measurable function, and let X be a

random variable with transmuted distribution as in (1.34). If EF (Φ(X)) denotes the

expectation of Φ(X), then

EF (Φ(X)) = (1 + λ)EG(Φ(X))− 2λEG[Φ(X)G(X)]. (1.41)

Proof. From (1.38)

EF (Φ(X)) =

∫
Φ(x)[(1 + λ)g(x)− 2λg(x)G(x)]dx

= (1 + λ)EG(Φ(X))− 2λ

∫
Φ(x)g(x)G(x)dx

= (1 + λ)EG(Φ(X))− 2λEG[Φ(X)G(X)]

�

Corollary 1.6.1. If LG(t) denotes the Laplace transform of the base distribution G,
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then the Laplace transform of the transmuted distribution F is given by

LF (t) = (1 + λ)LG(t)− 2λEG[e−XtG(X)]; |t| < 1.

Corollary 1.6.2. If µr(F ) =
∫
xrf(x)dx then µr(F ) = (1+λ)µr(G)−2λEG[XrG(X)].

Theorem 1.6.2. For λ > 0,

(i). F is a convex distribution function implies that G is also a convex distribution

function.

(ii). Conversely, if G is a convex distribution then F is convex if and only if,

f(x) ≥ 2λg3(x)

g′(x)
, for all x ∈ S ,

where

g′(x) =
dg(x)

dx
.

Proof. Let F be a convex distribution function. Then by definition, for λ > 0,

f ′(x) > 0 which in turn implies

f(x) = g(x)[(1 + λ)− 2λG(x)]

f
′
(x) = (1 + λ)g′(x)− 2λg′(x)G(x)− 2λg2(x) > 0

⇔ g′(x)

g(x)
f(x) > 2λg2(x)

⇔ g′(x) > 2λ
g3(x)

f(x)

⇒ g′(x) > 0 for all x ∈ S .

Hence proving (i).

To prove (ii) observe that G is a convex distribution function implies g′(x) > 0

for all x ∈ S . Hence from (i) it follows that F is a convex distribution , then for

λ > 0,

f
′
(x) = (1 + λ)g′(x)− 2λg′(x)G(x)− 2λg2(x) > 0
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⇔ g′(x)

g(x)
f(x) > 2λg2(x)

⇔ f(x) ≥ 2λg3(x)

g′(x)
, for all x ∈ S .

Hence the result. �

Remark 1.6.1. This result holds only for distribution with finite range.

As a first observation note that (1.34) is a linear mixture of the cumulative dis-

tribution functions G(x) and G2(x). Note that G2(x) is the cumulative distribution

function of maximum of a sample of size two of a random variable with cumulative

distribution function G. In consequence, the moments of a transmuted distribution

can be expressed as a linear combination of the moments of the random variable with

cumulative distribution functions G and G2. Hence we have,

Theorem 1.6.3. Let X ′ ∼ G be a random variable with cumulative distribution

function G(·) and probability density function g(·). Then, if X ∼ TD(λ;G),

E(Xr) = (1 + λ)E(X ′r)− λE(X ′r2(2)), (1.42)

where X ′2(2) represent the maximum of two independent and identically distributed

independent copies of X ′.

Proof.

FX2(2)
(x) = G2(x)⇒ fX2(2)

(x) = 2G(x)g(x)

⇒ E(Xr
2(2)) =

∫
xrfX2(2)

(x)dx =

∫
xr2g(x)G(x)dx

From (1.35) we have

E(Xr) =

∫
xrf(x)dx

= (1 + λ)

∫
xrg(x)dx− λ

∫
xr2g(x)G(x)dx

= (1 + λ)E(X ′r)− λ(EX ′r2(2))

�
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Table 1.1: Cumulative distribution function, rth ordinary moments and rth mo-
ments of the maximum of a sample of size two

Distribution Cumulative distribution function E(X ′r) E(X ′r2(2))

Uniform F (x) = x, 0 ≤ x ≤ 1 1
r+1

2
r+2

Exponential F (x) = 1− e−βx, x ≥ 0 Γ(r+1)
βr

Γ(r+1)
βr

(2− 2−r)

Frêchet F (x) = e
−βα
xα , x ≥ 0 βrΓ(1− r

α
) 2

r
αβrΓ(1− r

α
)

Table 1.1 presents the cumulative distribution function, the rth ordinary moments

and the rth moments of the maximum of a sample of size two for a selection of random

variables. In this way, we can obtain the moments of the corresponding transmuted

distribution by linear combination of these moments using Formula (1.42).

The next few results study the ageing properties of the transmuted distribution

F (x) in relation to G(x). One of the characteristic in reliability analysis is the hazard

rate function. For an absolutely continuous general transmuted distribution it is

defined by

hTD =
f

1− F
=

(1 + λ)g(x)− 2λG(x)g(x)

1− (1 + λ)G(x) + λG(x)2
. (1.43)

The following results are now immediate.

Theorem 1.6.4. For λ < 0 (λ > 0) the transmuted distribution F (x) has an increas-

ing failure rate distribution (decreasing failure rate distribution) if and only if G(x)

is an increasing failure rate distribution (decreasing failure rate distribution).

Proof. From (1.43)

hTD = hG(x)

[
1 +

λḠ(x)

1− λG(x)

]
, (1.44)

where, hG(x) = g(x)

Ḡ(x)
and Ḡ(x) = 1−G(x).

The result follows by observing that
[
1 + λḠ(x)

1−λG(x)

]
is increasing whenever for λ ≤ 0.

For λ = 1, hTD = 2hG(x). Hence when λ < 0, hTD > hG(x) which implies that if

the baseline distribution G has an increasing failure rate distribution then F has a
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increasing failure rate distribution. Similarly, for λ > 0, hTD < hG(x), which implies

that if the baseline distribution G has a decreasing failure rate distribution then F

has a decreasing failure rate distribution.

Hence the result. �

Hence it is evident that in general the transmuted distribution functions do not

behave in a similar manner as the base distribution. Hence it is of interest to study the

transmuted distributions on specifying different baseline distributions. Motivated by

this we study a particular transmuted distribution by taking the baseline distribution

G(x) to be exponentiated Frêchet distribution in (1.37). This distribution is discussed

elaborately in rest of this chapter.

1.7 Transmuted Exponentiated Frêchet Distribution

In this section we introduce the transmuted exponentiated Frêchet (TEF ) distribu-

tion. Substituting (1.39) into (1.37) we have the cumulative distribution function of

transmuted exponentiated Frêchet (TEF ) distribution

FTEF (x, θ, β, α, λ) =

[
1−

(
1− e

−( θx)
β)α][

1 + λ

(
1− e

−( θx)
β)α]

, (1.45)

x > 0, θ > 0, α > 0, β > 0, |λ| ≤ 1, where λ is the transmuted parameter. The

corresponding probability density function is given by

fTEF (x, θ, β, α, λ) = αβθβx−(1+β) e
−( θx)

β

×(q(x))α−1

× [(1− λ) + 2λ (q(x))α] , x > 0, θ > 0, α > 0, β > 0, |λ| ≤ 1,

where, q(x) =

(
1− e

−( θx)
β
)
.

Now fTEF can be written as

fTEF (x, θ, β, α, λ) =(1− λ)αβθβx−(1+β) e
−( θx)

β

(q(x))α−1
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Figure 1.1: Probability density function of Transmuted Exponentiated Frêchet dis-
tribution for θ = 1 and different values of λ, α and β

.

+2λαβθβx−(1+β) e
−( θx)

β

(q(x))2α−1. (1.46)

It is observed that the transmuted exponentiated Frêchet distribution is an ex-

tended model to analyse data and it generalizes some of the widely used distributions.

For instance, when β = 1 it reduces to transmuted exponentiated inverted exponential

distribution as discussed in Elbatal (2014). The exponentiated Frêchet distribution

is clearly a special case for λ = 0.

When β = λ = 1 and α = 0.5 then the resulting distribution is an inverted

exponential distribution with parameter θ (see Abouammoh & Alshingiti (2009)).

Figure 1.1 illustrates some of the possible shapes of the probability density function of

a transmuted exponentiated Frêchet distribution for selected values of the parameters

α, β, λ and for θ = 1. Figure 1.2 explains the effect of varying λ for fixed values of

other parameters.
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Figure 1.2: Probability density function of Transmuted Exponentiated Frêchet dis-
tribution for θ = 1,α = 1 and β = 2 and different values of λ

.

1.7.1 Statistical Properties of the Transmuted Exponentiated Frêchet Dis-

tribution

This section is devoted to studying statistical properties of the TEF distribution,

more specifically quantile function, moments and moment generating function.

1.7.1.1 Quantile Function and Random Number Generation

Let X be a random variable with cumulative distribution function F , we can define

the quantile function Q(u) = inf {x : F (x) ≥ u} for u ∈ (0, 1). In particular, if F

is continuous and strictly increasing then we have Q(u) = F−1(u). We present a

method for simulating from the TEF distribution (1.45).

Theorem 1.7.1. The quantile of the TEF distribution is given by

Q(u) = F−1(u)

=θ

− ln

1−

(
(λ− 1) +

√
(λ+ 1)2 − 4λu

2λ

) 1
α


−1
β

. (1.47)

Let U be a uniform variate on the unit interval (0,1). Thus, by means of the inverse
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transformation method, the random variable X is given by

Xu = θ

− ln

1−

(
(λ− 1) +

√
(λ+ 1)2 − 4λu

2λ

) 1
α


−1
β

, 0 < u < 1. (1.48)

Proof. The quantile Xu of the TEF distribution is defined as

u = P (Xu ≤ xu) = F (xu), xu ≥ 0.

Using the cumulative distribution function of the TEF distribution we have

u = F (xu) = (1 + λ)

[
1−

(
1− e−( θx)

β)α]
− λ

[
1−

(
1− e−( θx)

β)α]2

, (1.49)

that is

λ

[
1−

(
1− e−( θx)

β)α]2

− (1 + λ)

[
1−

(
1− e−( θx)

β)α]
+ u = 0. (1.50)

Consider (1.50) as a quadratic equation in 1−
(

1− e−( θx)
β)α

as

∆ = 1 + (2− 4u)λ+ λ2, (1.51)

where ∆ is the discriminant of the quadratic equation. The quadratic equation given

in (1.50) has roots (1+λ)±
√

∆
2λ

. These roots exist if ∆ is positive.

Now, consider the following cases

• If λ = −1 then ∆ = 4u > 0, u > 0.

• If λ = 1 then ∆ = 4(1− u) > 0, u > 0.

• Otherwise for −1 < λ < 1, consider the roots of ∆, as a quadratic form in λ,

are

λ = (2u− 1)± 2
√
u2 − u.

Therefore, u2 − u < 0 for 0 < u < 1. So the only real roots could occur for u = 0 or

1.
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• If u = 0 then λ = −1, which contradicts the fact that −1 < λ < 1.

• If u = 1 then λ = 1, which again contradicts the fact that −1 < λ < 1.

Thus, there are no real roots of ∆ as a quadratic in λ. Therefore, ∆ has the same

sign in the range −1 ≤ λ ≤ 1, hence ∆ > 0.

Since ∆ ≥ 0, then

1−
(

1− e−( θx)
β)α

=
(1 + λ)−

√
∆

2λ(
1− e−( θx)

β)
=

(
1− (1 + λ)−

√
∆

2λ

) 1
α

e−( θx)
β

=

1−

(
1− (1 + λ)−

√
∆

2λ

) 1
α

 .

Finally, we obtain the quantile Xu of the TEF distribution as

Xu = θ

− ln

1−

(
(λ− 1) +

√
(λ+ 1)2 − 4λu

2λ

) 1
α


−1
β

, 0 < u < 1.

Hence the proof. �

1.7.1.2 Skewness and Kurtosis

The Skewness, of Bowley (Kenney (2013)) is defined by

SK =
Q0.75 − 2Q0.5 +Q0.25

Q0.75 −Q0.25

,

and Kurtosis (see Moors (1988)) based on octiles is defined by

Ku =
Q0.875 −Q0.625 −Q0.375 +Q0.125

Q0.75 −Q0.25

.
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where,

Q0.125 = θ

− ln

1−

(λ− 1) +
√

(λ+ 1)2 − λ
2

2λ


1
α



−1
β

,

Q0.25 = θ

− ln

1−

(
(λ− 1) +

√
(λ+ 1)2 − λ

2λ

) 1
α


−1
β

,

Q0.375 = θ

− ln

1−

(λ− 1) +
√

(λ+ 1)2 − 3λ
2

2λ


1
α



−1
β

,

Q0.5 = θ

− ln

1−

(
(λ− 1) +

√
(λ+ 1)2 − 2λ

2λ

) 1
α


−1
β

,

Q0.625 = θ

− ln

1−

(λ− 1) +
√

(λ+ 1)2 − 5λ
2

2λ


1
α



−1
β

,

Q0.75 = θ

− ln

1−

(
(λ− 1) +

√
(λ+ 1)2 − 3λ

2λ

) 1
α


−1
β

,

Q0.875 = θ

− ln

1−

(λ− 1) +
√

(λ+ 1)2 − 7λ
2

2λ


1
α



−1
β

.

1.7.1.3 Moments

Theorem 1.7.2. If X follows Transmuted Exponentiated Frechet (TEF (θ, β, α, λ)),

where θ > 0, α > 0, β > 0, |λ| ≤ 1, and λ is the transmuted parameter, then the rth

moment of X (µ′r) is given by the following
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µ′r =
∞∑
j=0

(−1)jθr(1 + j)−(1− r
β )Γ(1− r

β
) (1.52)[

(1− λ)

(
α− 1

j

)
+ 2λ

(
2α− 1

j

)]
.

Proof. Let X be a random variable with density function (1.46). The rth ordinary

moment of the TEF distribution is given by

µ′r = E(Xr) =

∞∫
0

xrf(x)dx,

µ′r =(1− λ)αβθβ
∞∫

0

xr−β−1 e
−( θx)

β [
1− e

−( θx)
β]α−1

dx

+ 2λαβθβ
∞∫

0

xr−β−1 e
−( θx)

β [
1− e

−( θx)
β]2α−1

dx. (1.53)

Setting [
1− e

−( θx)
β]α−1

=
∞∑
j=0

(−1)j

(
α− 1

j

)
e
−j( θx)

β

, (1.54)

and substituting from (1.54) into (1.53) we get

µ′r =(1− λ)
∞∑
j=0

(−1)j

(
α− 1

j

)
αβθβ

∞∫
0

xr−β−1 e
−(j+1)( θx)

β

dx

+ 2λ
∞∑
j=0

(−1)j

(
2α− 1

j

)
αβθβ

∞∫
0

xr−β−1 e
−(j+1)( θx)

β

dx. (1.55)

let (j + 1)
(
θ
x

)β
= t, we get
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µ′r =
∞∑
j=0

(−1)jθr(1 + j)−(1− r
β )Γ(1− r

β
)×K(j), (1.56)

where,

K(j) =

[
(1− λ)

(
α− 1

j

)
+ 2λ

(
2α− 1

j

)]
.

This completes the proof. �

Property 1.7.1. The moment equation given in (1.56) is a convergent series by

Alternating Series Test. Therefore all the moments exist for transmuted exponentiated

Frêchet distribution.

Proof. The moment equation in (1.56) can be written as

µ′r =
∞∑
j=0

(−1)jθr(1 + j)−(1− r
β )Γ(1− r

β
)(1− λ)

(
α− 1

j

)

+
∞∑
j=0

(−1)jθr(1 + j)−(1− r
β )Γ(1− r

β
)(2λ)

(
2α− 1

j

)
. (1.57)

Let

aj = (1 + j)−(1− r
β )

(
α− 1

j

)
and

lim
j−>∞

aj = lim
j−>∞

1

(1 + j)(1− r
β )

(α− 1)!

j!(α− j − 1)!
= 0.

Similarly, let

bj = (1 + j)−(1− r
β )

(
2α− 1

j

)
and

lim
j−>∞

bj = lim
j−>∞

1

(1 + j)(1− r
β )

(2α− 1)!

j!(2α− j − 1)!
= 0.
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For j = 0, aj = 1 and bj = 1. Now (1.57) can be rewritten as

µ′r = (1− λ)θrΓ(1− r

β
)
∞∑
j=1

(−1)jaj + 2λθrΓ(1− r

β
)
∞∑
j=1

(−1)jbj. (1.58)

Also, it is observed that aj > aj+1 and bj > bj+1. Thus by alternating series test

(1.57) is a convergent series. Hence the moments exist. �

1.7.1.4 Moment Generating Function

In this subsection we derived the moment generating function of TEF distribution.

Theorem 1.7.3. If X has TEF distribution, then the moment generating function

MX(t) has the following form.

MX(t) =
∞∑
r=0

∞∑
j=0

tr

r!
(−1)jθr(1 + j)−(1− r

β
)Γ(1− r

β
)×K(j), (1.59)

where,

K(j) =

[
(1− λ)

(
α− 1

j

)
+ 2λ

(
2α− 1

j

)]
.

Proof. We start with the well known definition of the moment generating function

given by

MX(t) =

∞∫
0

etxfTEF (x)dx

=
∞∑
r=0

tr

r!
xrfTEF (x)dx =

∞∑
r=0

tr

r!
µ′r

=
∞∑
r=0

∞∑
j=0

tr

r!
(−1)jθr(1 + j)−(1− r

β
)Γ(1− r

β
)

×

[
(1− λ)

(
α− 1

j

)
+ 2λ

(
2α− 1

j

)]
,

(1.60)
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which completes the proof. �

Property 1.7.2. The moment generating function in (1.59) is convergent.

Proof. The moment generating function in (1.59) can be written as
∑∞

r=1

∑∞
j=1(−1)jb(j, r),

where

b(j, r) =
tr

r!
(−1)jθr(1 + j)−(1− r

β
)Γ(1− r

β
)

×

[
(1− λ)

(
α− 1

j

)
+ 2λ

(
2α− 1

j

)]
,

and

lim
j,r−>∞

b(j, r) = 0.

Hence by double series test (1.59) is a convergent series. �

1.7.1.5 Distribution of the Order Statistics

In fact, the order statistics have many applications in reliability and life testing. The

order statistics arise in the study of reliability of a system. Let X1, X2, ..., Xn be a

simple random sample from TEF (θ, β, α, λ, x) with cumulative distribution function

and probability density function as in (1.45) and (1.46), respectively. Let X1(n) ≤
X2(n) ≤ ... ≤ Xn(n) denotes; the order statistics obtained from this sample. Note

that, in reliability literature, Xi(n) denotes; the lifetime of an (n− i+ 1)− out− of−
n system irrespective of whether they are iid or not. Then the probability density

function of Xi(n) , 1 ≤ i ≤ n is given by

fi(n)(x) =
1

β(i, n− i+ 1)
[F (x, τ )]i−1 [1− F (x, τ )]n−i f(x, τ ), (1.61)

where τ = (α, β, θ, λ). Also, the joint probability density function of Xi(n) and Xj(n),

1 ≤ i ≤ j ≤ n is given by

fi(j)(n)(xi, xj) =C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1

× [1− F (xj)]
n−j f(xi)f(xj), (1.62)
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where

C =
n!

(i− 1)!(j − i− 1)!(n− j)!

We defined the first order statistic X1(n) = Min(X1, X2, ..., Xn), the last order statistic

as Xn(n) = Max(X1, X2, ..., Xn) and the median is X(n+1)/2.

1.7.1.6 Distribution of Minimum, Maximum and Median

Let X1, X2, ..., Xn be independently identically distributed order random variables

from the transmuted Exponentiated Frêchet distribution having first, last and median

of the probability density function are given by the following

f1(n)(x) =n [1− F (x, τ )]n−1 f(x, τ )

=n
{

1−
[
1− hα(1)

] [
1 + λhα(1)

]}n−1

× αβθβx
−(1+β)
(1) (1− h(1))h

α−1
(1)

×
[
(1− λ) + 2λhα(1)

]
, (1.63)

fn(n)(x) =n
[
F (x(n), τ )

]n−1
f(x(n), τ )

=n
{[

1− hα(n)

] [
1 + λhα(n)

]}n−1

× αβθβx
−(1+β)
(n) (1− h(n))h

α−1
(n)

[
(1− λ) + 2λhα(n)

]
, (1.64)

and

fn+1
2

(n)(x̃) =
(2m+ 1)!

m!m!
(F (x̃))m(1− F (x̃))mf(x̃)

=
(2m+ 1)!

m!m!

{[
1− hα(m+1)

] [
1 + λhα(m+1)

]}m
×
{

1−
[
1− hα(m+1)

] [
1 + λhα(m+1)

]}m
× αβθβx

−(1+β)
(m+1) (1− h(m+1))h

α−1
(m+1)

×
[
(1− λ) + 2λhα(m+1)

]
, (1.65)

where h(s) =

(
1− e

−
(

θ
x(s)

)β)
and m = n+1

2
.



1.7. Transmuted Exponentiated Frêchet Distribution 36

Joint Distribution of the ith and jth Order Statistics

The joint distribution of the ith and jth order statistics from TEF distribution is

fi(j)(n)(xi, xj) =C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1

× [1− F (xj)]
n−j f(xi)f(xj)

=C
{[

1− hα(i)
] [

1 + λhα(i)
]}i−1

×
{[

1− hα(j)
] [

1 + λhα(j)
]
−
[
1− hα(i)

] [
1 + λhα(i)

]}j−i−1

×
{

1−
[
1− hα(j)

] [
1 + λhα(j)

]}n−j
×αβθβx−(1+β)

(i) (1− h(i))h
α−1
(i)

[
(1− λ) + 2λhα(i)

]
×αβθβx−(1+β)

(j) (1− h(j))h
α−1
(j)

[
(1− λ) + 2λhα(j)

]
, (1.66)

where

h(s) =

(
1− e

−
(

θ
x(s)

)β)
.

1.7.1.7 Reliability Characteristics

The reliability function or the survival function of the TEF distribution is defined as

S(x) =1− F (x)

=1−

[
1−

(
1− e

−( θx)
β)α][

1 + λ

(
1− e

−( θx)
β)α]

, |λ| ≤ 1, β > 0, α > 0.

(1.67)

For the TEF distribution the hazard function defined in (1.43) is given by

h(x) =
f(x)

S(x)

h(x) =
A(x; τ )×B(x; τ )

C(x; τ )
, (1.68)

where,

τ = (α, β, θ, λ),
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l Ø 1, a Ø 1,

b Ø 2

l Ø -0.5, a Ø 1, b Ø 0.5

l Ø -1, a Ø 1, b Ø 2

l Ø 0, a Ø 1, b Ø 1

h(x)

1 2 3 4 5

0.5

1.0

1.5

2.0

Figure 1.3: Hazard rate function of Transmuted Exponentiated Frêchet distribution
for θ = 1 and different values of λ, α and β

.

A(x; τ ) = αβθβx−(1+β)e−( θx)
β [

1− e−( θx)
β]α−1

,

B(x; τ ) =

[
(1− λ) + 2λ

(
1− e−( θx)

β)α]
,

and

C(x; τ ) = 1−
[
1−

(
1− e−( θx)

β)α]
[

1 + λ

(
1− e

−( θx)
β)α]

.

The transmuted exponentiated Frêchet distribution belongs to the class of distri-

butions that admits upside down bathtub curves. increasing and decreasing hazard

rate. In Figure 1.3, some choices of λ, β, α are given for which the TEF exhibits a

upside down bathtub (UBT) hazard rate. Conditions under which they are IFR and

DFR is discussed in the following theorems.

Theorem 1.7.4. If α = θ = λ = 1, then the failure rate is increasing if β < 0 and is

decreasing if β > 0.
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Figure 1.4: Hazard rate function of Transmuted Exponentiated Frêchet distribution
for α = β = 1

.

Proof. If α = θ = λ = 1 then

h(x) =
2β
(

1
x

)1+β(
e(

1
x)

β

− 1
) ,

which is increasing for β < 0 and is decreasing for β > 0.

�

Theorem 1.7.5. If β = α = 1 then the failure rate is monotonically decreasing for

both λ < 0 and λ > 0.

Proof. If β = α = 1 then we have (Figure 1.4)

h(x) =
θ

x2

 1(
e(

θ
x) − 1

) +
λ(

e(
θ
x) − λ

)
 .

It can be easily verified that h(x) is decreasing for both λ < 0 and λ > 0. Note that

h(0) =∞ and h(∞) = 0

(see Figure 1.4). �

The cumulative hazard function of the transmuted Exponentiated Frêchet distri-
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bution is denoted by H(x) and is defined as

H(x) =− ln

∣∣∣∣∣
[

1−

(
1− e

−( θx)
β)α][

1 + λ

(
1− e

−( θx)
β)α]∣∣∣∣∣ . (1.69)

Similar to the hazard rate function, we can also illustrate the behaviour of the cumu-

lative hazard rate function for different choices of parameters.

1.7.1.8 Estimation and Inference

In this section, we determine the maximum likelihood estimates (MLEs) of the pa-

rameters of the TEF distribution from complete samples only. Let X1, X2, ..., Xn be

a random sample of size n from TEF (θ, β, α, λ) and the log-likelihood is given by

` = n logα + n log β + nβ log θ − (1 + β)
n∑
i=1

log xi − θβ
n∑
i=1

x−βi

+ (α− 1)
n∑
i=1

log

[
1− e−

(
θ
xi

)β]
+

n∑
i=1

log

[
(1− λ) + 2λ

(
1− e−

(
θ
xi

)β)α]
. (1.70)

The log-likelihood can be maximized either directly or by solving the non-linear like-

lihood equations obtained by differentiating (1.70). The components of the score

vector are given by

∂`

∂θ
=
nβ

θ
− βθβ−1

n∑
i=1

x−βi + β(α− 1)
n∑
i=1

e
−
(
θ
xi

)β (
θ
xi

)β−1

xi

[
1− e−

(
θ
xi

)β]

+
n∑
i=1

2λβα

(
1− e−

(
θ
xi

)β)α−1

e
−
(
θ
xi

)β (
θ
xi

)β−1

xi

[
(1− λ) + 2λ

(
1− e−

(
θ
xi

)β)α] , (1.71)
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∂`

∂α
=
n

α
+

n∑
i=1

log

[
1− e−

(
θ
xi

)β]

+
n∑
i=1

2λ

(
1− e−

(
θ
xi

)β)α
log

(
1− e−

(
θ
xi

)β)
[
(1− λ) + 2λ

(
1− e−

(
θ
xi

)β)α] , (1.72)

∂`

∂β
=
n

β
+ n log θ −

n∑
i=1

log xi−
n∑
i=1

log

(
θ

xi

)(
θ

xi

)β

+(α− 1)
n∑
i=1

log
(
θ
xi

)
e
−
(
θ
xi

)β (
θ
xi

)β[
1− e−

(
θ
xi

)β]
+2λα

n∑
i=1

Q(xi)[
(1− λ) + 2λ

(
1− e−

(
θ
xi

)β)α] , (1.73)

where,

Q(xi) =

(
1− e−

(
θ
xi

)β)α−1

log

(
θ

xi

)
e
−
(
θ
xi

)β ( θ

xi

)β
,

and

∂`

∂λ
=

n∑
i=1

2

(
1− e−

(
θ
xi

)β)α
− 1[

(1− λ) + 2λ

(
1− e−

(
θ
xi

)β)α] = 0. (1.74)

We describe an effective profile likelihood approach for the model in (1.46) by

maximizing the likelihood. The log-likelihood equations are presented in (1.71) to

(1.74). The likelihood equations are very difficult to solve and it may be tedious to

obtain maximum likelihood estimators (MLE) by Newton-Raphson procedure. We

propose the following estimation method. Let λ̃ = (τ̃1, τ̃2) where τ̃1 = (α, θ), τ̃2 =

(λ, β). In the first stage, we estimate τ̃1 by maximizing the profile likelihood of

τ̃1 and once, an estimate of τ̃1 is obtained, the estimates of τ̃2 can be obtained by

substituting the estimates of τ̃1. This process is continued iteratively till all the
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estimates converge to yield the MLE ̂̃λ of λ̃. The computation is carried out using

“FindMaximum” function of Mathematica 10. Section 1.7.1.9 presents a detailed

simulation study to illustrate the estimation approach. Also, all the second order

derivatives exist. Thus we have the inverse dispersion matrix given by
θ̂

β̂

α̂

λ̂

 ∼ N




θ

β

α

λ

 ,


V̂θθ V̂θβ V̂θα V̂θλ

V̂βθ V̂ββ V̂βα V̂βλ

V̂αθ V̂αβ V̂αα V̂αλ

V̂λθ V̂λβ V̂λα V̂λλ


 . (1.75)

Under the conditions that are fulfilled for parameters in the interior of the parameter

space, but not on the boundary, the asymptotic distribution of the element of the 4 x

4 observed information matrix for the TEF distribution is
√
n(̂̃λ− λ̃) ∼ N4(0, V −1),

where V is the expected information matrix. Thus, the expected information matrix

is

V −1 = −E


Vθθ Vθβ Vθα Vθλ

Vββ Vβα Vβλ

Vαα Vαλ

Vλλ

 ,
where

Vλλ =
∂2`

∂λ2
=

n∑
i=1

(2 (q(xi))
α − 1)

2

(2λ (q(xi))
α − λ+ 1)

2 , (1.76)

Vαα =
∂2`

∂α2
=

n

α2
−

n∑
i=1

(
2λ (q(xi))

α log (q(xi))
2

2λ (q(xi))
α − λ+ 1

− 4λ2 (q(xi))
2α log (q(xi))

2

(2λ (q(xi))
α − λ+ 1)

2

)
,

(1.77)

Vθλ =
∂2`

∂θ∂λ

= −
n∑
i=1

2αβ (q(xi))
α−1e

−
(
θ
xi

)
β
(
θ
xi

)
β−1

2xiλ (q(xi))
α − λ+ 1


+

n∑
i=1

2αβλ (q(xi))
α−1 (2 (q(xi))

α − 1) e
−
(
θ
xi

)
β
(
θ
xi

)
β−1

xi (2λ (q(xi)) α − λ+ 1) 2

 ,

(1.78)
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where,

q(xi) =

(
1− e−

(
θ
xi

)β)
.

Similarly, we can find the other components as

Vθθ = ∂2`
∂θ2 , Vββ = ∂2`

∂β2 , Vαθ = ∂2`
∂α∂θ

, Vβλ = ∂2`
∂β∂λ

Vαβ = ∂2`
∂α∂β

, Vθβ = ∂2`
∂θ∂β

, Vαλ = ∂2`
∂α∂λ

,

By solving this inverse dispersion matrix these solutions will yield asymptotic variance

and covariances of these maximum likelihood (ML) estimators for λ̂, θ̂, α̂ and β̂. Using

(1.75), we approximate 100(1 − γ)% confidence intervals for λ, β, θ and α, and are

determined respectively as

θ̂ ± z γ
2

√
V̂θθ, β̂ ± z γ

2

√
V̂ββ, α̂± z γ

2

√
V̂αα and λ̂± z γ

2

√
V̂λλ,

where zγ is the upper 100γ the percentile of the standard normal distribution.

Simulation Study

We carried out a simulation study in order to evaluate the performance of the profile

likelihood estimation. Sample generation of (xi), i = 1, 2, . . . , n was carried out by

using the algorithm given in Section 1.7.1.1. We generated 1000 samples of sizes

n = 25, n = 75, and n = 150 with true values θ = 1.25, α = 0.75, β = 1.5, and

λ = 0.6. The MLEs were obtained using the procedure described in Section 1.7.1

and the average bias across the 1000 samples was computed. The average root mean

square error (RMSE) from the 1000 samples was calculated as

√
1
n

n∑
i=1

( ̂̃λi − λ̃i). The

approximate variance-covariance matrix of the MLEs was obtained as the inverse of

the observed information matrix as given in (1.75). The absolute biases, RMSEs and

coverage probabilities(C.P) for the confidence intervals are provided in Table 1.2. We

observed from the simulation study that the biases, RMSEs decrease and the coverage

probability improves as the sample size increases. We also observed that the rate of

convergence improved with increasing sample size. The graph 1.5 shows the stability

graph for parameter estimates after 15 iterations. The plots for the profile likelihood

estimates for different parameters support that there is a global maximum for each
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parameter (See ).

Table 1.2: Absolute Bias, RMSE and Coverage probability (C.P) of α, θ, β and λ
based on 1000 replications for transmuted exponentiated Frêchet distribution ob-
tained using maximum likelihood method

Parameters α θ β λ
True Values 1.0 1.25 1.5 0.6

n=25

Absolute Bias 0.0536 0.0412 0.0578 0.0183
RMSE 0.0040 0.0025 0.0049 0.0050

C.P 0.8962 0.8064 0.8596 0.8335

n=75

Absolute Bias 0.0452 0.0362 0.0358 0.0141
RMSE 0.0028 0.0020 0.0018 0.0032

C.P 0.9041 0.8785 0.8683 0.9078

n=150

Absolute Bias 0.0365 0.0133 0.0326 0.0130
RMSE 0.0019 0.0003 0.0015 0.0026

C.P 0.9421 0.9132 0.9013 0.9318

The plots for the profile likelihood estimates for different parameters support that

there is a global maximum for each parameter (See Figure 1.6).

1.8 Organisation of Thesis

In this chapter we discussed some of the basic concepts which are necessary for the

present thesis. Several methods of constructing bivariate distributions are presented.

Conditional specification method and frailty approach are of our special interest. In

order to satisfy our intension of developing a bivariate distributions with transmuted

conditionals an example of transmuted distributions, the transmuted exponentiated

Frêchet (TEF) distribution was studied in detail. These results formed the basis for

formulation of a general bivariate class in Chapter 2.

The profile likelihood method of estimation is used to estimate the parameters

involved. The reliability behaviour of the subject distribution is studied. A simula-
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Figure 1.5: The stability graph for the simulated parameters estimates of method
of maximum likelihood for transmuted exponentiated Frêchet distribution for 15
iterations

.

tion study is conducted to show the effectiveness of our estimation procedure. The

study also reveals that as the sample size increases the biases and RMSEs decreases

considerably.

We are hoping to show that the transmuted distributions are a rich class of dis-

tribution and is useful to give a more flexible model. It is also helpful in analysing

bivariate data. Accordingly, in Chapter 2 an attempt is made to introduce bivari-

ate transmuted distribution. We proposed a general class of bivariate transmuted

distribution with transmuted conditionals. We studied the general properties of this

model and provided examples with different baseline distributions. Profile likelihood

method has been used to estimate the parameters involved. A simulation study has

been conducted to show the appropriateness and the effectiveness of our estimation

procedure. Two data sets have been analysed which are already published in the

literature and showed the superiority of our model. It may be noted that results in

Chapter 2 are not restricted to lifetime data though the examples are restricted to

lifetime data sets.
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Figure 1.6: Plot for profile likelihood estimate (a) λ when (α = 1.05, θ = 1.29, β =
1.56) (b) θ when (α = 1.05, λ = 0.62, β = 1.56) (c) β when (α = 1.05, θ =
1.29, λ = 0.62)(d) α when (λ = 0.62, θ = 1.29, β = 1.56).

In the reliability and survival context, it is always important to study the depen-

dence structure between components. In particular, a load sharing effect. In a load

sharing system, the probability of failure of any component will depend on the work-

ing status of the other components (Kvam & Lu (2007)). There are many situations

in practice where the failure of a unit could redistribute the workload of the other

operating units in the system, thus potentially increasing the failure rate of the op-

erating units. The basic assumption in a two-component load sharing system is that

while the system can function even after one of the components has failed, the failure

of the component may put additional load on the surviving component and this af-

fects the functioning of the system due to stochastic changes in its residual lifetime.

In most situations, an increased load results in a higher component failure rate (Liu

(1998)). Examples of such systems include (a) a twin engine aircraft like Boeing’s

777 ( Singpurwalla (1995)), or (b) mechanical systems (“Reliability in Engineering

Design” (n.d.)), or (c) paired organs like eyes, kidneys or lungs (Daniels (1945)), to

mention a few.

Freund (1961) constructed a bivariate exponential distribution suitable for load

sharing framework. Recently, Asha et al. (2016) provided a general class of bivariate
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distribution to model load sharing systems.

Another flexible tool for modelling dependent times to failure is the “frailty

model”. Frailty models have been widely used to study dependent lifetimes in relia-

bility and survival analysis framework (Clayton (1978)) and Hougaard (1984)). These

models assume that the lifetimes are independent conditional on an unobserved co-

variate or random effect, called the “frailty”. There is considerable literature on frailty

models for lifetime of parallel systems, where it is usually assumed that the failure of

some components does not affect the failure rate of other operating units. Inference

procedures for frailty models is abundant in literature. We refer to Hougaard (2000)

for details.

However, there are many situations where it is physically meaningful to incor-

porate the dependence induced both by the frailty and the dependence due to load

sharing in studying lifetimes of a multi-component system.

Accordingly in Chapter 3, a general class of bivariate distributions for load sharing

models with frailty and covariates have been introduced. We study some general

properties and provide examples for the model. A general estimation procedure is

discussed and general method of generating bivariate samples has been explained.

The use of α- stable as frailty distribution was introduced by Hougaard (1986). More

references and applications for α- stable as frailty distribution are found in Hougaard

(2000), Singpurwalla (1995), Wassell et al. (1999), Ravishanker & Dey (2000).

In Chapter 4, a particular example assuming positive stable frailty and Weibull

baseline in the general model presented in Chapter 3 is studied. Profile likelihood

method is applied to estimate the unknown parameters and a simulation study is

conducted to show the effectiveness of our estimation procedure. Two data sets are

analysed, first one is the motor data (ReliaSoft (2003)) which has no covariates and

no censoring. Second one is the well analysed diabetic rrtinopathy study (DRS) data

(Huster et al. (1989)) with one covariate and censoring.

Sometimes in load share models there is a critical time or threshold time for change

in parameter. During this critical time the failure of a part in a system can trigger

the failure of successive parts. Such a failure may happen in many types of systems,

including power transmission, computer networking, finance, human bodily systems,
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bridges and so on. Modelling these type of failures involving in a system are known as

cascading models. These type of failures are referred to as cascading failures (Lindley

& Singpurwalla (2002)).

In chapter 5, we propose a general class of bivariate distribution for cascading

failures by extending the works of Lindley & Singpurwalla (2002), Swift (2008) and

Asha et al. (2016) using Cox total failure rate (Cox (1972)). We studied the model

extensively with a special example by considering exponential baseline. Method of

moments and L-moments have been used to estimate the unknown parameters. Sim-

ulation study was conducted to show the effectiveness of our estimation procedures

and provided evidences for the better performances of L-moments. A real life data

set been analysed to show our model applicability.

Finally, the present thesis concludes in Chapter 6 with a detailed discussion on

results and conclusions. Some of the possible future works are listed in this chap-

ter. We have proposed a new class of bivariate distribution for discrete load share

models. Examples for the proposed model are constructed by considering different

baseline distributions such as geometric, discrete Weibull, S distribution and Waring

distribution. General properties like the joint survival function, the marginal survival

function of the proposed model is presented. General estimation procedures are ex-

plained. We consider the simulation study and estimation of the unknown parameters

as immediate future work. The present thesis ends with some open problems which

will be taken up as future works.





Chapter 2

A Class of Bivariate Distributions with

Transmuted Conditionals

2.1 Introduction

As seen in Chapter 1, modelling with transmuted distributions has gained lot of

interest among the researchers and academicians in the past two decades. A lot of

focus has been given on the univariate transmuted distributions where it is treated as a

flexible model, which not only accommodates additional skewness in the data but also

is a rich class of distributions because of the additional parameter that it incorporates.

On the bivariate note, bivariate and multivariate generalizations of the transmuted

distributions have been proposed by Bourguignon et al. (2016). Other than this, not

much work is reported in this area. Motivated by this, we have made an attempt

to establish a new class of bivariate distributions with transmuted conditionals. The

construction of the proposed distribution is by method of conditional specification,

discussed in detail in Section 1.5.6.

The contents of this Chapter are the following. In Section 2.2 we obtain the most

general bivariate distribution with transmuted conditionals. In Section 2.3 we study

the basic properties of the model, including marginal and conditional distributions.

∗Some of the results of this Chapter are communicated for publication.
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The generation of the random samples, cross-moments, dependence measures of the

general model are discussed in Section 2.4. Five specific models namely transmuted

uniform conditionals, transmuted normal conditionals, transmuted exponential con-

ditionals, transmuted Weibull conditionals and transmuted exponentiated Frêchet

conditionals are discussed in Section 2.5. Estimation methodologies such as method

of moments and method of maximum likelihood are presented in Section 2.6. A sim-

ulation study is conducted in Section 2.7 for illustrating both method of moments

estimation and method of maximum likelihood estimation. In Section 2.8 we have

considered two well analysed data sets for our model application. The first one is the

cable insulation failure time data. It was originally published and studied by Stone

(1978) and further analysed by Lawless (2011). Recently, Pulcini (2006) analysed

this data set in the context of forewarning or primer event using bivariate distribu-

tion with gamma conditionals. Second, we considered a data set consisting of two

components parallel systems. This was originally published and analysed by Murthy

et al. (2004). Pulcini (2006) further analysed this data set in the context of forewarn-

ing or primer event using bivariate distribution with gamma conditionals. Both the

above data sets were analysed using our model and in comparison with the model

proposed by Pulcini (2006), it is established that our model is a better fit. Finally,

discussion and summary are presented in Section 2.9.

2.2 Bivariate Distributions with Transmuted Conditionals

In this section we present the bivariate distribution with transmuted conditionals.

Let (Y1, Y2) be an absolutely continuous bivariate random vector with distribution

function F (y1, y2) and support R2, where R, the real line. We want to consider all

possible joint distributions for (Y1, Y2) with the following properties:

• For each y2 the conditional distribution of Y1 given Y2 = y2 is distributed

according to (1.34), with parameter λ1(y2), which may depend on y2, where the

baseline cumulative distribution function G1(.) is fixed and does not depend on

y2.

• For each y1 the conditional distribution of Y2 given Y1 = y1 is distributed
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according to (1.34), with parameter λ2(y1), which may depend on y1, and the

baseline cumulative distribution function G2(.) is fixed and does not depend on

y1.

In consequence, we seek the most general random variable (Y1, Y2) such that the

conditional distributions admit the stochastic representation:

Y1|Y2 = y2 ∼ TD(λ1(y2);G1), (2.1)

Y2|Y1 = y1 ∼ TD(λ2(y1);G2), (2.2)

for y1 ∈ R and y2 ∈ R, where λ1(y2), λ2(y1), are unknown functions and Gi(.), i =

1, 2, are the baseline cumulative distribution functions. In the next theorem we obtain

the most general model satisfying (2.1) and (2.2).

Theorem 2.2.1. The most general bivariate joint probability density function with

conditional distributions (2.1) and (2.2) is given by,

f(y1, y2;λ) = k(λ) [1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)] g1(y1)g2(y2),

(2.3)

where, for λ = (λ10, λ01, λ11), for constants λ10, λ01, λ11 ∈ S ′, where S ′ ⊆ R such

that

λ1(y2) = − λ10 + 2λ11G2(y2)

1 + λ10 + 2(λ01 + λ11)G2(y2)
,

λ2(y1) = − λ01 + 2λ11G1(y1)

1 + λ01 + 2(λ10 + λ11)G1(y1)
,

and

k(λ) =
1

1 + λ10 + λ01 + λ11

, (2.4)

|λ10 + λ11| ≤ |1 + λ10 + λ01 + λ11|. (2.5)

Proof. From conditions (2.1) and (2.2) the conditional densities are given by,

fY1|Y2(y1|y2) = (1 + λ1(y2))g1(y1)− 2λ1(y2)g1(y1)G1(y1), (2.6)

fY2|Y1(y2|y1) = (1 + λ2(y1))g2(y2)− 2λ2(y1)g2(y2)G2(y2), (2.7)
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where λ1(y2) and λ2(y1) are unknown functions. Now, if we write the joint probability

density function as product of marginals fYi(yi), i = 1, 2, by conditional densities in

both senses, we obtain the functional equation from the fact that

fY1|Y2(y1|y2)fY2(y2) = fY2|Y1(y2|y1)fY1(y1),

as,

(1 + λ1(y2))g1(y1)fY2(y2)− 2λ1(y2)g1(y1)G1(y1)fY2(y2) =

(1 + λ2(y1))g2(y2)fY1(y1)− 2λ2(y1)g2(y2)G2(y2)fY1(y1), (2.8)

or

λ̃1(y2)g1(y1)fY2(y2)− 2λ1(y2)g1(y1)G1(y1)fY2(y2)

−
[
λ̃2(y1)g2(y2)fY1(y1)− 2λ2(y1)g2(y2)G2(y2)fY1(y1)

]
= 0, (2.9)

where λ̃1(y2) = 1 + λ1(y2), λ̃2(y1) = 1 + λ2(y1).

Observe that the functional equation (2.9) is of the form
∑4

k=1 pk(y1)qk(y2) = 0,

where,

p1(y1) = g1(y1), p2(y1) = g1(y1)G1(y1), p3(y1) = λ̃2(y1)fY1(y1), p4(y1) = λ2(y1)fY1(y1)

and

q1(y2) = λ̃1(y2)fY2(y2), q2(y2) = −2λ1(y2)fY2(y2),

q3(y2) = −g2(y2) and q4(y2) = 2g2(y2)G2(y2).

Hence from Theorem 1.3 in page 13 of Arnold et al. (1999b), solution for (2.9)

can be written in the form
g1(y1)

g1(y1)G1(y1)

λ̃2(y1)fY1(y1)

λ2(y1)fY1(y1)

 =


1 0

0 1

a11 a12

a21 a22


[

g1(y1)

g1(y1)G1(y1)

]
, (2.10)
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λ̃1(y2)fY2(y2)

−2λ1(y2)fY2(y2)

−g2(y2)

2g2(y2)G2(y2)

 =


b11 b12

b21 b22

−1 0

0 1


[

g2(y2)

2g2(y2)G2(y2)

]
, (2.11)

since the system of equations {g1(y1), g1(y1)G1(y1)} are mutually linearly indepen-

dent and again {g2(y2), g2(y2)G2(y2)} are mutually linearly independent. Then the

constants aij and bij, i = j = 1, 2 satisfy

[
1 0 a11 a21

0 1 a12 a22

]
×


b11 b12

b21 b22

−1 0

0 1

 = 0. (2.12)

Now, by solving the equation (2.12) we obtain the solution as b11 = a11, b12 = −a21,

b21 = a12 and b22 = −a22. Therefore we can rewrite the system of equations in (2.10)

and (2.11) as

λ̃2(y1)fY1(y1) = a11g1(y1) + a12g1(y1)G1(y1)

λ2(y1)fY1(y1) = a21g1(y1) + a22g1(y1)G1(y1)

λ̃1(y2)fY2(y2) = a11g2(y2)− 2a21g2(y2)G2(y2)

−2λ1(y2)fY2(y2) = a12g2(y2)− 2a22g2(y2)G2(y2). (2.13)

Now by taking the ratio of first two equations in (2.13) we get

λ̃2(y1)

λ2(y1)
=

1 + λ2(y1)

λ2(y1)
=
a11 + a12G1(y1)

a21 + a22G1(y1)
, (2.14)

which implies that

λ2(y1) =
a21 + a22G1(y1)

a11 − a21 + (a12 − a22)G1(y1)
. (2.15)

Substituting (2.15) into the second equation of (2.13) we get

fY1(y1) =
(a21 + a22G1(y1))g1(y1)

a21 + a22G1(y1)
× (a11 − a21 + (a12 − a22)G1(y1))
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= (a11 − a21 + (a12 − a22)G1(y1)) g1(y1). (2.16)

Similarly, by taking the ratio of the third and the fourth equation of (2.13) we get

λ̃1(y2)

λ1(y2)
=

1 + λ1(y2)

−2λ1(y2)
=
a11 − 2a21G2(y2)

a12 − 2a22G2(y2)
, (2.17)

which implies that

λ1(y2) =
−a12 + 2a22G2(y2)

2a11 + a12 + (4a21 − a22)G2(y2)
. (2.18)

Substituting (2.18) into the fourth equation of (2.13) we get

fY2(y2) =
a12 − 2a22G2(y2)g2(y2)

−2λ1(y2)

=
(a12 − 2a22G2(y2))g2(y2)

a12 − a22G2(y2)
× (2a11 + a12 + (4a21 − 2a22)G2(y2))

=

(
2a11 + a12

2
+ (2a21 − a22)G2(y2)

)
g2(y2). (2.19)

Now,

1 + λ2(y1) =
a11 + a12G1(y1)

a11 − a21 + (a12 − a22)G1(y1)
. (2.20)

Substituting (2.20) into (2.8) and using the fact that f(y1, y2) = fY1|Y2(y1|y2)fY2(y2),

we get

f(y1, y2) =

{
a11 + a12G1(y1)

a11 − a21 + (a12 − a22)G1(y1)
− 2a21 − 2a21G1(y1)

a11 − a21 + (a12 − a22)G1(y1)
G2(y2)

}
× g2(y2) (a11 − a21 + (a12 − a22)G1(y1)) g1(y1)

= [a11 + a12G1(y1)− 2a21G2(y2) + 2a22G1(y1)G2(y2)] g1(y1)g2(y2); a11 6= 0.

(2.21)

For a11 6= 0, dividing (2.21) by a11 throughout, we get

f(y1, y2) = a11

[
1 +

a12

a11

G1(y1)− 2a21

a11

G2(y2) +
2a22

a11

G1(y1)G2(y2)

]
g1(y1)g2(y2).

(2.22)
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By re-parametrising a12

a11
= 2λ10, −2a21

a11
= 2λ01, and 2a22

a11
= 4λ11 we get

f(y1, y2;λ) = k(λ) [1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)] g1(y1)g2(y2),

(2.23)

From
∫
y2

∫
y1
f(y1, y2;λ)dy1dy2 = 1, we obtain the value of the normalizing constant

k(λ), as follows,

k(λ)

∫
y2

∫
y1

[1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)] g1(y1)g2(y2)dy1dy2 = 1,

(2.24)

or equivalently,

= k(λ)

∫
y2

∫
y1

g1(y1)g2(y2)dy1dy2

+ 2λ10k(λ)

∫
y2

∫
y1

g1(y1)g2(y2)G1(y1)dy1dy2

+ 2λ01k(λ)

∫
y2

∫
y1

g1(y1)g2(y2)G2(y2)dy1dy2

+ 4λ11k(λ)

∫
y2

∫
y1

g1(y1)g2(y2)G1(y1)G2(y2)dy1dy2 = 1. (2.25)

Now by applying the fact that, 2
∫
x
g(x)G(x)dx = 1, in (2.25) we get

k(λ) [1 + λ10 + λ01 + λ11] = 1,

to obtain

k(λ) =
1

1 + λ10 + λ01 + λ11

. (2.26)

Now from (2.15) and (2.18) it follows that

λ1(y2) = − λ10 + 2λ11G2(y2)

1 + λ10 + 2(λ01 + λ11)G2(y2)
,

λ2(y1) = − λ01 + 2λ11G1(y1)

1 + λ01 + 2(λ10 + λ11)G1(y1)
.

To retrieve the condition on the parameters the marginal density function fY1(y1) is
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obtained as

fY1(y1) = k(λ)

∫
y2

[1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)] g1(y1)g2(y2)dy2

= k(λ)

∫
y2

g1(y1)g2(y2)dy2 + 2λ10k(λ)

∫
y2

g1(y1)G1(y1)g2(y2)dy2

+ 2λ01k(λ)

∫
y2

g1(y1)g2(y2)G2(y2)dy2 + 4λ11k(λ)

∫
y2

g1(y1)g2(y2)G1(y1)G2(y2)dy2.

Again, by applying the fact that 2
∫
x
g(x)G(x)dx = 1, we get

fY1(y1) = k(λ) [g1(y1) + 2λ10g1(y1)G1(y1) + 2λ01g1(y1) + 2λ11g1(y1)G1y1]

= k(λ)g1(y1) [1 + λ01 + 2λ10G1(y1) + 2λ11G1(y1)]

= k(λ) [1 + λ01 + 2(λ10 + λ11)G1(y1)] g1(y1). (2.27)

Hence the marginal density in (2.27) can be written as

fY1(y1) =

(
1− (λ10 + λ11)

(1 + λ01 + λ10 + λ11)

)
g1(y1)−

(
−2(λ10 + λ11)

1 + λ01 + λ10 + λ11

)
g1(y1)G1(y1).

(2.28)

Similarly, the marginal density fY2(y2) is obtained as

fY2(y2) =

(
1− (λ01 + λ11)

(1 + λ01 + λ10 + λ11)

)
g2(y2)−

(
−2(λ01 + λ11)

1 + λ01 + λ10 + λ11

)
g2(y2)G2(y2).

(2.29)

Once again note that marginal distributions fYi(yi), i = 1, 2 are transmuted with the

stochastic representation as,

Y1 ∼ TD

(
λ′1 =

−(λ10 + λ11)

1 + λ10 + λ01 + λ11

;G1

)
, (2.30)

and

Y2 ∼ TD

(
λ′2 =

−(λ01 + λ11)

1 + λ01 + λ10 + λ11

;G2

)
. (2.31)

It now follows from (2.30) and (2.31) that

|λ10 + λ11| ≤ |1 + λ10 + λ01 + λ11| (2.32)
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and

|λ01 + λ11| ≤ |1 + λ10 + λ01 + λ11|, (2.33)

there by establishing condition (2.5). �

Remark 2.2.1. A bivariate distribution with transmuted conditionals and joint prob-

ability density function (2.23) will be denoted by (Y1, Y2) ∼ BTC(λ;G1, G2).

2.3 General Properties

In this section we study the basic properties of the bivariate random variable with

joint probability density function (2.23).

Property 2.3.1. The marginal density of (Y1, Y2) with BTC(λ;G1, G2) is given by

fY1(y1) = k(λ) [1 + λ01 + 2(λ10 + λ11)G1(y1)] g1(y1),

and

fY2(y2) = k(λ) [1 + λ10 + 2(λ01 + λ11)G2(y2)] g2(y2).

Property 2.3.2. The conditional density of (Y1, Y2) with BTC(λ;G1, G2) is given

by

fY1|Y2(y1|y2) =

[
(1 + 2λ01G2(y2)) g1(y1)

1 + λ10 + 2(λ01 + λ11)G2(y2)
+

(2λ10 + 4λ11G2(y2))G1(y1)g1(y1)

1 + λ10 + 2(λ01 + λ11)G2(y2)

]
,

and

fY2|Y1(y2|y1) =

[
(1 + 2λ10G1(y1)) g2(y2)

1 + λ01 + 2(λ10 + λ11)G1(y1)
+

(2λ01 + 4λ11G1(y1))G2(y2)g2(y2)

1 + λ01 + 2(λ10 + λ11)G1(y1)

]
.

We verify that the conditional distribution of (2.23) with BTC(λ;G1, G2) are

transmuted. The conditional density of (2.23) for Y1|Y2 is obtained as

fY1|Y2(y1|y2) =
f(y1, y2;λ)

fY2(y2)
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=

[
(1 + 2λ01G2(y2)) g1(y1)

1 + λ10 + 2(λ01 + λ11)G2(y2)
+

(2λ10 + 4λ11G2(y2))G1(y1)g1(y1)

1 + λ10 + 2(λ01 + λ11)G2(y2)

]
.

(2.34)

The conditional density in (2.34) can be written in the form

fY1|Y2(y1|y2) =

(
1− λ10 + 2λ11G2(y2)

1 + λ10 + 2(λ01 + λ11)G2(y2)

)
g1(y1)

− 2

(
−(λ10 + 2λ11G2(y2))

1 + λ10 + 2(λ01 + λ11G2(y2))
g1(y1)G1(y1)

)
, (2.35)

and hence the conditional distribution of fY1|Y2(y1|y2) is transmuted with stochastic

representation as

Y1|Y2 = y2 ∼ TD (λ1(y2);G1) ,

where,

λ1(y2) = − λ10 + 2λ11G2(y2)

1 + λ10 + 2(λ01 + λ11)G2(y2)
.

and similarly the conditional density for Y2|Y1 can be written in the form

fY2|Y1(y2|y1) =

(
1− λ01 + 2λ11G1(y1)

1 + λ01 + 2(λ10 + λ11)G1(y1)

)
g2(y2)

− 2

(
−(λ01 + 2λ11G1(y1))

1 + λ01 + 2(λ10 + λ11G2(y2))
g2(y2)G2(y2)

)
, (2.36)

with stochastic representation as

Y2|Y1 = y1 ∼ TD (λ2(y1);G2) ,

where,

λ2(y1) = − λ01 + 2λ11G1(y1)

1 + λ01 + 2(λ10 + λ11)G1(y1)
. (2.37)

Property 2.3.3. The BTC(λ, G1, G2) reduces to the product of the marginals with

Y1 ∼ TD(− λ10

1+λ10
, G1) and Y2 ∼ TD(− λ01

1+λ01
, G2) if and only if λ11 = λ01λ10.

Proof. For the choice of λ11 = λ01λ10, (2.23) reduces to

f(y1, y2;λ) =
1

[1 + λ10 + λ01 + λ01λ10]
[1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ01λ10G1(y1)G2(y2)]
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× g1(y1)g2(y2)

=
1

(1 + λ10)(1 + λ01)
[(1 + 2λ10G1(y1))g1(y1)(1 + 2λ01G2(y2))g2(y2)]

=

(
(1 + 2λ10G1(y1))

(1 + λ10)

)
g1(y1)

(
(1 + 2λ01G2(y2))

(1 + λ01)

)
g2(y2).

This can be further factorised into the following form

f(y1, y2;λ) =

(
1

1 + λ10

+
2λ10

1 + λ10

G1(y1)

)
g1(y1)

(
1

1 + λ01

+
2λ01

1 + λ01

G2(y2)

)
g2(y2),

which is the case of independence with marginals Y1 ∼ TD(− λ10

1+λ10
, G1) and Y2 ∼

TD(− λ01

1+λ01
, G2).

Conversely, if (Y1, Y2) ∼ BTC(λ; G1, G2), and Y1 and Y2 are independent then

λi(yj) = ki; i 6= j = 1, 2.

where ki’s are some constant in S ′. Observe that λ1(y2) = k1 implies

G1(y2) [(λ10 + λ11)k1 − λ11] = λ01 − k1(1 + λ01), (2.38)

from which it follows that

k1 =
λ01

1 + λ01

.

Similarly, it is shown that

k2 =
λ10

1 + λ10

.

Substituting for k1 in (2.38) we have λ11 = λ10λ01, and hence the result. �
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2.4 Simulation

The generation of bivariate samples (y1i, y2i), i = 1, 2, ..., n from (2.3) is direct by

taking into account that,

Y1 ∼ TD (λ′1;G1) ,

Y2|Y1 = y1 ∼ TD (λ2(y1);G2) ,

where λ′1 and λ2(y1) are defined in (2.30) and (2.37), respectively.

Let

u1 = FY1(y1) = (1 + λ′1)G1(y1)− λ′1(G1(y1))2,

that is

λ′1(G1(y1))2 − (1 + λ′1)G1(y1) + u1 = 0. (2.39)

Consider (2.39) as a quadratic equation in G1(y1), then

∆1 = (1 + λ′1)2 − 4λ′1u1, (2.40)

where ∆1 is the discriminant of the quadratic equation. The quadratic equation in

(2.39) has roots
(1+λ′1)±

√
∆1

2λ′1
.

If we denote by QGi(u) the quantile function of Gi, i = 1, 2, then the real root is (see

Theorem 1.7.1 on page 27),

G1(y1) =

(
1

2λ′1

(
1 + λ′1 −

√
(1 + λ′1)2 − 4λ′1u1

))
y1 = QG1

(
1

2λ′1

(
1 + λ′1 −

√
(1 + λ′1)2 − 4λ′1u1

))
. (2.41)

Similarly,

u2 = FY2|Y1(y2|y1) = (1 + λ2(y1))G2(y2)− λ2(y1)(G2(y2))2,

that is

λ2(y1)(G2(y2))2 − (1 + λ2(y1))G2(y2) + u2 = 0. (2.42)
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Consider (2.42) as a quadratic equation in G2(y2), then

∆2 = (1 + λ2(y1))2 − 4λ2(y1)u2, (2.43)

where ∆2 is the discriminant of the quadratic equation. The quadratic equation in

(2.42) has roots (1+λ2(y1))±
√

∆2

2λ2(y1)
. Then the real root is (from Theorem 1.7.1 on page

27),

G2(y2) =

(
1

2λ2(y1)

(
1 + λ2(y1)−

√
(1 + λ2(y1))2 − 4λ2(y1)u2

))
y2 = QG2

(
1

2λ2(y1)

(
1 + λ2(y1)−

√
(1 + λ2(y1))2 − 4λ2(y1)u2

))
. (2.44)

Thus, from (2.41) and (2.44), a sample (y1, y2) from a bivariate transmuted conditional

distribution is obtained by

y1 = QG1

(
1

2λ′1

(
1 + λ′1 −

√
(1 + λ′1)2 − 4λ′1u1

))
,

y2 = QG2

(
1

2λ2(y1)

(
1 + λ2(y1)−

√
(1 + λ2(y1))2 − 4λ2(y1)u2

))
,

where ui, i = 1, 2 are independent and identically distributed random samples from

a uniform distribution in [0, 1].

2.4.1 Cross-Moments

Let X1i ∼ G1 and X2i ∼ G2, i = 1, 2 be two sets of random variables with cu-

mulative distribution functions G1 and G2 and probability density functions g1 and

g2 respectively. We denote the ordinary moments by µ′r(X) = E(Xr). Then, if

(Y1, Y2) ∼ BTC(λ;G1, G2), the cross-moments E(Y r1
1 Y r2

2 ) are given by,

E(Y r1
1 Y r2

2 ) =

∫
y2

∫
y1

yr11 y
r2
2 f(y1, y2)dy1dy2

=

∫
y2

∫
y1

yr11 y
r2
2 k(λ) [1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)]

× g1(y1)g2(y2)dy1dy2
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= k(λ)

∫
y2

∫
y1

yr11 y
r2
2 g1(y1)g2(y2)dy1dy2

+ 2λ10k(λ)

∫
y2

∫
y1

yr11 y
r2
2 g1(y1)g2(y2)G1(y1)dy1dy2

+ 2λ01k(λ)

∫
y2

∫
y1

yr11 y
r2
2 g1(y1)g2(y2)G2(y2)dy1dy2

+ 4λ11k(λ)

∫
y2

∫
y1

g1(y1)g2(y2)G1(y1)G2(y2)dy1dy2. (2.45)

Now by applying Theorem 1.6.3, page 23, we get E(Y r1
1 Y r2

2 ) as,

µ′r1(X1)µ′r2(X2) + λ10µ
′
r1

(X1(2))µ
′
r2

(X2) + λ01µ
′
r1

(X1)µ′r2(X2(2)) + λ11µ
′
r1

(X1(2))µ
′
r2

(X2(2))

1 + λ01 + λ10 + λ11

,

(2.46)

where X1(2) = Max{X11, X12}, X2(2) = Max{X21, X22}. Also, let (X11,X12) be two

independent and identically distributed independent copies of X1 and (X21,X22) be

two independent and identically distributed independent copies of X2.

2.4.2 Dependence Measures

In this section, we consider conditions under which BTC(λ, G1, G2) is TP2 and RR2.

Theorem 2.4.1. Let (Y1, Y2) ∼ BTC(λ;G1, G2) a bivariate distribution with trans-

muted conditionals and joint probability density function (2.3). Then,

• If λ11 > λ01λ10, fY1,Y2(y1, y2) is TP2,

• If λ11 < λ01λ10, fY1,Y2(y1, y2) is RR2.

Proof. From (2.3), we have

log f(y1, y2) = log k(λ) + log g1(y1) + log g2(y2)

+ log [1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11.G1(y1)G2(y2)]
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Now,

∂ log f(y1, y2)

∂y1

=
g′1(y1)

g1(y1)
+

2λ10g1(y1) + 4λ11g1(y1)G2(y2)

[1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)]
.

Next,

∂2 log f(y1, y2)

∂y1∂y2

=
4λ11g1(y1)g2(y2)− 4λ01λ10g1(y1)g2(y2)

[1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)]2
.

Hence, the local dependence function is given by,

η(y1, y2) =
4(λ11 − λ01λ10)g1(y1)g2(y2)

[1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)]2
. (2.47)

It is quite evident from (2.47) that the local dependence function η(y1, y2) ≥ 0 when

λ11 ≥ λ01λ10 and η(y1, y2) ≤ 0 when λ11 ≤ λ01λ10. Hence, from Theorem 1.4.1, page

8, we obtain the result. �

2.4.3 Bivariate Cumulative Distribution, Survival and Hazard Rate Func-

tions

The bivariate cumulative distribution function has a simple closed form and is given

by

F (y1, y2;λ) =
G1(y1)G2(y2) + λ01G1(y1)G2

2(y2) + λ10G2(y2)G2
1(y1) + λ11G

2
1(y1)G2

2(y2)

1 + λ01 + λ10 + λ11

.

(2.48)

Taking into account that S(y1, y2) = 1− FY1(y1)− FY2(y2) + F (y1, y2), the bivariate

survival function is given by,

S(y1, y2;λ) = 1− k(λ)
[
(1 + λ01)G1(y1) + (λ10 + λ11)G2

1(y1)
]

− k(λ)
[
(1 + λ10)G2(y2) + (λ01 + λ11)G2

2(y2)
]

+ k(λ)
[
G1(y1)G2(y2) (1 + λ01G2(y2)) + (λ10 + λ11G2(y2))G2(y2)G2

1(y1)
]
.

(2.49)
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The bivariate hazard rate function defined by Basu (1971) is obtained combining

(2.3) with (2.49) to get,

r(y1, y2) =
f(y1, y2)

S(y1, y2)

=
k(λ)G1(y1, y2;λ)

1− k(λ) [λ01(G2(y1, y2)) + λ10G3(y1, y2) + λ11G4(y1, y2) + G5(y1, y2)]
,

(2.50)

where,

G1(y1, y2;λ) = (1 + 2λ10G1(y1) + 2λ01G2(y2) + 4λ11G1(y1)G2(y2)) g1(y1)g2(y2),

G2(y1, y2) = G1(y1) +G2
2(y2)−G1(y1)G2

2(y2),

G3(y1, y2) = G2(y2) +G2
1(y1)−G2

1(y1)G2(y2),

G4(y1, y2) = G2
1(y1) +G2

2(y2)−G2
1(y1)G2

2(y2),

G5(y1, y2) = G1(y1) +G2(y2)−G1(y1)G2(y2).

If (Y1, Y2) ∼ BTC(λ;G1, G2), we have the Johnson & Kotz (1975) hazard gradient

in (1.6) and (1.7) as,

r1(y1, y2) = − [1 + λ01 + 2(λ10 + λ11)G1 +G2 + 2λ10G1G2 + λ01G
2
2 + 2λ11G1G

2
2] g1k(λ)

S(y1, y2)
,

(2.51)

and

r2(y1, y2) = − [1 + λ10 + 2(λ01 + λ11)G2 +G1 + 2λ01G1G2 + λ10G
2
1 + 2λ11G

2
1G2] g2k(λ)

S(y1, y2)
,

(2.52)

where we have omitted the arguments of the functions Gi(yi) and gi(yi), i = 1, 2.

The monotonicity of the conditional hazard rate of Y1 given Y2 > y2 can be ob-

tained by using the result, the conditional hazard rate is decreasing in y2 for every y1

(Shaked (1977)). Hence we have the following lemma.

Lemma 2.4.1. If f(y1, y2) is TP2 (RR2), the conditional hazard rate r1(y1, y2) of

Y1 given Y2 > y2 is decreasing (increasing) in y2.
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Proof. By using the above result and Theorem 2.4.1, if λ11 > λ01λ10(<), we conclude

that r1(y1, y2) is decreasing (increasing) in y2 and r2(y1, y2) is decreasing (increasing)

in y1. �

It is of interest to quantify the association between the failure times in bivariate

data through local dependence measure. If (Y1, Y2) ∼ BTC(λ;G1, G2), we have the

Clayton’s cross-ratio function Clayton (1978) in (1.16) as,

C (y1, y2) =
k(λ)S(y1, y2;λ)G1(y1, y2;λ)

S1(y1, y2;λ)S2(y1, y2;λ)
(2.53)

where,

S1(y1, y2;λ) = k(λ) {g1G2[(λ01 + 2λ11G2)G2]}

− k(λ) {(1 + λ01)g1 + 2G1g1[(λ10 + λ11)− (λ10 + λ11G2)G2]} ,

S2(y1, y2;λ) = k(λ) {g2G1[(λ10 + 2λ11G1)G1]}

− k(λ) {(1 + λ10)g2 + 2G2g2[(λ01 + λ11)− (λ01 + λ11G1)G1]} ,

where we have omitted the arguments of the functions Gi(yi) and gi(yi), i = 1, 2.

2.4.4 Concomitants of Order Statistics

Let (Y1i, Y2i), i = 1, 2, ..., n be n independent random variables from a bivariate dis-

tribution. If we arrange the Y1 variates in ascending order as Y1[1(n)]
≤ Y1[2(n)]

≤ ... ≤
Y1[n(n)]

, then the Y2 variates corresponding to these order statistics are denoted by

Y2[1(n)]
≤ Y2[2(n)]

≤ ... ≤ Y2[n(n)]
, and termed the concomitants of the order statistic.

In particular, for r = 1, 2, ..., n, we denote Y2[r(n)]
the concomitant of the rth order

statistic. The density function of the concomitant of the rth order statistics of the

first component, is given by (David & Nagaraja (2003)).

f[r(n)](y2) =

∫
y1

fY2|Y1(y2|y1)f[r(n)](y1)dy1, (2.54)

where f[r(n)](y1) is the probability density function of the rth order statistic of Y1 from

a sample of size n.
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Theorem 2.4.2. Let (Y1, Y2) ∼ BTC(λ;G1, G2) be a bivariate distribution with

transmuted conditionals and joint probability density function (2.3). Then, the dis-

tribution of the concomitant of the rth order statistic is again transmuted with distri-

bution,

Y2[r(n)]
∼ TD

(∫
y1

λ2(y1)f[r(n)](y1)dy1;G2

)
, (2.55)

where f[r(n)](y1) is the density function of the rth order statistic of Y1 from a sample

of size n.

Proof. The density function of the concomitant of the rth order statistic of the first

component is,

f[r(n)](y2) =

∫
y1

fY2|Y1(y2|y1)f[r(n)](y1)dy1,

and then substituting fY2|Y1(y2|y1) from its expression in (2.36) we get,

f[r(n)](y2) =

∫
y1

(
1− λ01 + 2λ11G1(y1)

1 + λ01 + 2(λ10 + λ11)G1(y1)

)
g2(y2)f[r(n)](y1)dy1

− 2

∫
y1

(
−(λ01 + 2λ11G1(y1))

1 + λ01 + 2(λ10 + λ11G2(y2))
g2(y2)G2(y2)

)
f[r(n)](y1)dy1

=

{(
1 +

∫
y1

λ2(y1)f[r(n)](y1)dy1

)
− 2

(∫
y1

λ2(y1)f[r(n)](y1)dy1

)
G2(y2)

}
g2(y2),

where,

λ2(y1) =

(
1− λ01 + 2λ11G1(y1)

1 + λ01 + 2(λ10 + λ11)G1(y1)

)
.

Hence, the rth order statistic Y2[r(n)]
is transmuted with stochastic representation as

Y2[r(n)]
∼ TD

(∫
λ2(y1)f[r(n)](y1)dy1;G2

)
. (2.56)

Thus we obtain (2.55). �
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2.5 Some Examples

In this section we consider some examples of bivariate distributions with transmuted

conditional distributions by considering specific baseline distributions for G(x).

2.5.1 Bivariate Distributions with Transmuted Uniform Conditionals

Let X be a transmuted uniform distribution with cumulative distribution function,

F (x;λ) = (1 + λ)x− λx2, 0 ≤ x ≤ 1, |λ| ≤ 1. (2.57)

Now, we are to consider the most general bivariate distribution with uniform condi-

tionals of the form (2.57).

Using Theorem 2.2.1 withGi(z) = z, i = 1, 2, the joint probability density function

in (2.3)) becomes,

f(y1, y2;λ) =
1 + 2λ10y1 + 2λ01y2 + 4λ11y1y2

1 + λ01 + λ10 + λ11

, 0 ≤ y1, y2 ≤ 1. (2.58)

The marginal distributions are again transmuted uniforms,

Y1 ∼ TD(λ′1; y1), Y2 ∼ TD(λ′2; y2),

where λ′i, i = 1, 2 are defined in (2.30) and (2.31).

Using formula (2.46) the cross moments E(Y r1
1 Y r2

2 ) are given by,{
1

(1 + r1)(1 + r2)
+

2λ10

(2 + r1)(1 + r2)
+

2λ01

(1 + r1)(2 + r2)
+

4λ11

(2 + r1)(2 + r2)

}
k(λ)

(2.59)

The covariance takes a simple expression and is given by,

Cov (Y1, Y2) =
λ11 − λ10λ01

36(1 + λ10 + λ01 + λ11)2
. (2.60)
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The local dependence function η(y1, y2) is obtained as

η(y1, y2) =
4(λ11 − λ10λ01)

[1 + 2λ10y1 + 2λ01y2 + 4λ11y1y2]2
. (2.61)

2.5.2 Bivariate Distributions with Transmuted Normal Conditionals

Let X be a transmuted normal random variable with probability density function ,

f(x;λ) = (1 + λ)φ(x)− 2λφ(x)Φ(x), |λ| ≤ 1. (2.62)

where φ(x) and Φ(x) denote respectively, the probability density function and the

cumulative distribution function of the standard normal distribution. In this case,

Gi(z) = Φ(z), i = 1, 2, and using (2.3) we obtain the joint probability density func-

tion,

f(y1, y2;λ) =
4φ(y1)φ(y2)(1 + 2λ10Φ(y1) + 2λ01Φ(y2) + 4λ11Φ(y1)Φ(y2)

1 + λ01 + λ10 + λ11

, (2.63)

where y1, y2 ∈ R.

The regression functions are non-linear. The conditional mathematical expecta-

tions are given by,

E(Y1|Y2 = y2) =
λ10 + 2λ11Φ(y2)√

π(1 + λ10 + 2(λ01 + λ11)Φ(y2))
, (2.64)

E(Y2|Y1 = y1) =
λ01 + 2λ11Φ(y1)√

π(1 + λ01 + 2(λ10 + λ11)Φ(y1))
. (2.65)

The local dependence function η(y1, y2) is obtained as

η(y1, y2) =
4(λ11 − λ10λ01)φ(y1)φ(y2)

[1 + 2λ10Φ(y1) + 2λ01Φ(y2) + 4λ11Φ(y1)Φ(y2)]2
. (2.66)
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2.5.3 Bivariate Distributions with Transmuted Exponential Conditionals

Now, let us consider the transmuted exponential distribution with probability density

function,

f(x;λ, β) = (1− λ)βe−βx + 2λβe−2βx, x ≥ 0, |λ| ≤ 1. (2.67)

In this case, Gi(z) = 1 − e−βiz, i = 1, 2. Then using (2.3) we obtain the joint

probability density function,

f(y1, y2;λ) =
[
1 + 2λ10(1− e−β1y1) + 2λ01(1− e−β2y2) + 4λ11(1− e−β1y1)(1− e−β2y2)

]
× k(λ)β1β2e

−β1y1−β2y2 . (2.68)

The marginal distributions are again transmuted exponentials,

Y1 ∼ TD(λ′1; 1− e−β1y1), Y2 ∼ TD(λ′2; 1− e−β2y2).

This cross-moments are given by,

E(Y r1
1 Y r2

2 ) = k(λ)
Γ(r1 + 1)Γ(r2 + 1)

βr11 β
r2
2

{1 + 2λ10cr1 + 2λ01cr2 + 4λ11cr1cr2} , (2.69)

where cr = 2− 2−r. The covariance takes the expression,

Cov(Y1, Y2) = k(λ)

(
1 + 3λ01 + 3λ10 + 9λ11

β1β2

)
− [k(λ)]2

β1β2

(1 + 3λ01 + 2λ10 + 6λ11) (1 + 2λ01 + 3λ10 + 6λ11) . (2.70)

A contour plot and plot for probability density function of bivariate transmuted dis-

tribution with exponential conditionals are shown in Figure 2.1 and Figure 2.2 re-

spectively.

The local dependence function is obtained as

η(y1, y2) =
4(λ11 − λ10λ01)β1β2e

−(β1y1+β2y2)

[1 + 2λ10(1− e−β1y1) + 2λ01(1− e−β2y2) + 4λ11(1− e−β1y1)(1− e−β2y2)]2

(2.71)
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2.5.4 Bivariate Distributions with Transmuted Weibull Conditionals

Now, let us consider the transmuted Weibull distribution with probability density

function,

f(x;λ, γ) = (1− λ)γxγ−1e−x
γ

+ 2λγxγ−1e−2xγ , x ≥ 0, |λ| ≤ 1. (2.72)

In this case, Gi(z) = 1 − e−z
γi , i = 1, 2. Then using (2.3) we obtain the joint

probability density function,

f(y1, y2;λ) =
[
1 + 2λ10

(
1− e−y

γ1
1

)
+ 2λ01

(
1− e−y

γ2
2

)
+ 4λ11

(
1− e−y

γ1
1

)(
1− e−y

γ2
2

)]
× k(λ)γ1y

γ1−1
1 e−y

γ1
1 γ2y

γ2−1
2 e−y

γ2
2 . (2.73)

The marginal distributions are again transmuted Weibull conditionals,

Y1 ∼ TD
(
λ′1; 1− e−y

γ1
1

)
, Y2 ∼ TD

(
λ′2; 1− e−y

γ2
2

)
.

The cross-moments E[Y r1
1 Y r2

2 ] are given by,

[
2

(
r1
γ1

+
r2
γ2

)
+ 2

r1
γ1 λ01

(
2
r2+γ2
γ2

)
+ 2

r2
γ2 λ10

(
2
r1+γ1
γ1

)
+ λ11

(
1− 2

r1+γ1
γ1 + 2

2+
r1
γ1

+
r2
γ2 − 2

r2+γ2
γ2

)]
×k(λ)Γ

(
r1 + γ1

γ1

)
Γ

(
r2 + γ2

γ2

)
2
−
(
r1
γ1

+
r2
γ2

)
.

(2.74)

The covariance between Y1 and Y2 is given by

Cov(Y1, Y2) = 2
− γ1+γ2

γ1γ2 k(λ)Γ

(
1 +

1

γ1

)
Γ

(
1 +

1

γ2

)[
λ11(1− 2

1+ 1
γ1 )− 2

1
γ1 λ01

]
− 2

− γ1+γ2
γ1γ2 [k(λ)]2

(
2

1
γ2 (1 + 2λ01 + λ10 + 2λ11)− λ01 − λ11

)
×
(

2
1
γ1 (1 + λ01 + 2λ10 + 2λ11)− λ10 − λ11

)
Γ

(
1 +

1

γ1

)
Γ

(
1 +

1

γ2

)
+ 2

− γ1+γ2
γ1γ2 k(λ)2

1
γ2

(
2

1
γ1 (1 + 2λ01 + 2λ10 + 4λ11)− λ10 − 2λ11

)
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× Γ

(
1 +

1

γ1

)
Γ

(
1 +

1

γ2

)
. (2.75)

A contour plot and plot for probability density function of bivariate transmuted distri-

bution with Weibull conditionals are shown in Figure 2.3 and Figure 2.4 respectively.
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Figure 2.1: Contour plots for joint probability density function of the bivariate dis-
tribution with transmuted exponential conditionals for different parameter values
with some sample points: (a) (λ10 = 1.3, λ01 = 1.2, λ11 = 1.5, β1 = 0.3, β2 = 0.3),
(b) (λ10 = 0.6, λ01 = 0.85, λ11 = 2.1, β1 = 1.2, β2 = 1.2).

The local dependence function is obtained as

η(y1, y2) =
4(λ11 − λ10λ01)γ1γ2y

γ1−1
1 yγ2−1

2 e−(y
γ1
1 +y

γ2
2 )[

1 + 2λ10

(
1− e−y

γ1
1

)
+ 2λ01

(
1− e−y

γ2
2

)
+ 4λ11

(
1− e−y

γ1
1

) (
1− e−y

γ2
2

)]2
(2.76)

2.5.5 Bivariate Distributions with Transmuted Exponentiated Frêchet Con-

ditionals

The univariate cumulative distribution function for the transmuted exponentiated

Frêchet distribution is given in (1.45) and its corresponding probability density func-
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Figure 2.2: Plots for joint probability density function of the bivariate distribution
with transmuted exponential conditionals for different parameter values: (a) (λ10 =
0.6, λ01 = 0.85, λ11 = 2.1, β1 = 1.2, β2 = 1.2), (b) (λ10 = 1.6, λ01 = 0.55, λ11 =
2.0, β1 = 0.7, β2 = 0.7).

tion is given in (1.46).

In this case,

Gi(z) = 1−
[
1− e−( θiz )

βi
]αi

, i = 1, 2.

Then using (2.3) we obtain the joint probability density function,

f(y1, y2;λ) = k(λ)q1(y1)q2(y2)

[
1 + 2λ10

(
1−

[
1− e−

(
θ1
y1

)β1
]α1
)]

+ k(λ)q1(y1)q2(y2)

[
1 + 2λ01

(
1−

[
1− e−

(
θ2
y2

)β2
]α2
)]

+ 4λ11k(λ)q1(y1)q2(y2)

(
1−

[
1− e−

(
θ1
y1

)β1
]α1
)(

1−
[
1− e−

(
θ2
y2

)β2
]α2
)
,

(2.77)

where

qi(yi) = αiβiθ
βi
i y
−(1+βi)
i e

−( θiyi )
βi [

1− e−
(
θi
yi

)βi]αi−1

, i = 1, 2.

The marginal distributions are again transmuted exponentiated Frêchet conditionals,

Y1 ∼ TD

(
λ′1; 1−

[
1− e−

(
θ1
y1

)β1
]α1
)
, Y2 ∼ TD

(
λ′2; 1−

[
1− e−

(
θ2
y2

)β2
]α2
)
.
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Figure 2.3: Contour plots for joint probability density function of the bivariate dis-
tribution with transmuted Weibull conditionals for different parameter values: (a)
(λ10 = 1.2, λ01 = 0.6, λ11 = 1.8, γ1 = 1.9, γ2 = 1.9), (b) (λ10 = 0.7, λ01 = 0.9, λ11 =
1.2, γ1 = 1.3, γ2 = 1.3).

2.6 Parameter Estimation

In this section we discuss the method of moments and method of maximum likelihood.

Let (Y1i, Y2i), (i = 1, 2, ..., n) be a random sample from a bivariate distribution with

transmuted conditionals as in (2.3). The unknown parameters involved here are

transmuted and baseline parameters. The method of moment is probably the oldest

method for constructing an estimator. The advantage of method of moment is that

it is quite easy to use. From the cross moments function we establish the basic

population moments such as means, variances and covariances then equating it to the

corresponding sample moments, we can obtain the estimates and the computation is

carried out by Mathematica 10. The parameters are estimated under the method of

maximum likelihood by differentiating the likelihood function with respect to each

parameter and equating it to zero and solving them simultaneously or by maximizing

the likelihood function with respect to the unknown parameters. These techniques

are discussed in Section 2.7 and Section 2.8.
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Figure 2.4: Plots for joint probbility density function of the bivariate transmuted
distribution with Weibull conditionals for different parameter values: (a) (λ10 =
0.6, λ01 = 0.85, λ11 = 2.1, γ1 = 1.2, γ2 = 1.2), (b) (λ10 = 1.6, λ01 = 0.55, λ11 =
2.0, γ1 = 1.6, γ2 = 1.6).

2.6.1 Moment Estimates

In this section we propose moment estimates. The parameters are estimated by

equating theoretical moment to sample moments, and by solving the moment equa-

tions in a exact way or numerically, once the sample means ȳ1 =
∑n
i=1 y1i

n
and ȳ2 =∑n

i=1 y2i

n
, variances S2

y1
=

∑n
i=1(y1i−ȳ1)2

n
and S2

y2
=

∑n
i=1(y2i−ȳ2)2

n
, and covariance S2

y1,y2
=∑n

i=1(y1i−ȳ1)2(y2i−ȳ2)2

n
are obtained.

2.6.1.1 Bivariate distributions with transmuted uniform conditionals

The cross moments for the bivariate distribution with transmuted uniform condition-

als is given in (2.59). By considering r1 = 1 and r2 = 0 in (2.59) we get,

E(Y1) =

{
1

2
+

2λ10

3
+
λ01

2
+

2λ11

3

}
k(λ).

If r1 = 0 and r2 = 1 in (2.59), we get

E(Y2) =

{
1

2
+
λ10

2
+

2λ01

3
+

2λ11

3

}
k(λ).
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If r1 = 1 and r2 = 1 in (2.59), we get

E(Y1Y2) =

{
1

4
+
λ10

3
+
λ01

3
+

4λ11

9

}
k(λ).

The corresponding sample moments are ȳ1 =
∑n
i=1 y1i

n
, ȳ2 =

∑n
i=1 y2i

n
and y1y2 =∑n

i=1 y1iy2i

n
. Now equating the population moments with the samples moments and

solving it analytically, we otain the moment estimates as,

λ∗01 =
3(2− 3ȳ1 + 6y1y2 − 4ȳ2)

2(−4 + 6ȳ1 − 9y1y2 + 6ȳ2)
, (2.78)

λ∗10 =
3(2− 4ȳ1 + 6y1y2 − 3ȳ2)

2(−4 + 6ȳ1 − 9y1y2 + 6ȳ2)
, (2.79)

λ∗11 =
3(−1 + 2ȳ1 − 4y1y2 + 2ȳ2)

2(−4 + 6ȳ1 − 9y1y2 + 6ȳ2)
. (2.80)

2.6.1.2 Bivariate distributions with transmuted normal conditionals

The general cross moment E[Y r1
1 Y r2

2 ] is given by

+∞∫
−∞

+∞∫
−∞

k[λ]yr11 y
r2
2 φ(y1)φ(y2) (1 + 2λ10Φ(y1) + 2λ01Φ(y2) + 4λ11Φ(y1)Φ(y2))dy1dy2,

where φ(.) and Φ(.) are respectively, the probability density function and the cumu-

lative distribution function of the standard normal distribution. In this case the cross

moments are functions of the Gauss hypergeometric function 2F1, and the moment

equations must be solved numerically.

2.6.1.3 Bivariate distributions with transmuted exponential conditionals

The cross moments for the bivariate distribution with transmuted exponential condi-

tionals is given in (2.69). By considering r1 = 1 and r2 = 0 in (2.69) we get,

E[Y1] =
k(λ)

β1

[1 + 3λ10 + 2λ01 + 6λ11] . (2.81)
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If r1 = 0 and r2 = 1 in (2.69) we get,

E[Y2] =
k(λ)

β2

[1 + 2λ10 + 3λ01 + 6λ11] . (2.82)

If r1 = 2 and r2 = 0 in (2.69) we get,

E[Y 2
1 ] =

k(λ)

β2
1

[
1 +

7

2
λ10 + 2λ01 + 7λ11

]
. (2.83)

If r1 = 0 and r2 = 2 in (2.69) we get,

E[Y 2
2 ] =

k(λ)

β2
2

[
1 + 2λ10 +

7

2
λ01 + 7λ11

]
. (2.84)

If r1 = 1 and r2 = 1 in (2.69) we get,

E[Y1Y2] =
k(λ)

β1β2

(1 + 3λ10 + 3λ01 + 9λ11) . (2.85)

V [Y1] = E[Y 2
1 ]− [E(Y1)]2

=
[k(λ)]2

β2
1

[
1 + 5λ10(2 + λ10) + 18λ11 + 6λ10λ11 − 8λ2

11 + λ01(2 + 6λ10 + 8λ11)
]
,

(2.86)

V [Y2] = E[Y 2
2 ]− [E(Y2)]2

=
[k(λ)]2

β2
2

[
1 + 5λ2

01 + 2λ11(9− 4λ11) + 2λ01(5 + 3λ10 + 3λ11) + λ10(2 + 8λ11)
]
,

(2.87)

and

Cov[Y1, Y2] = E[Y1Y2]− E[Y1]E[Y2]

= k(λ)

(
1 + 3λ01 + 3λ10 + 9λ11

β1β2

)
− [k(λ)]2

β1β2

(1 + 3λ01 + 2λ10 + 6λ11) (1 + 2λ01 + 3λ10 + 6λ11) . (2.88)
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Solving the equations from (2.81)-(2.88) for λ10, λ01, λ11, β1 and β2 by equating with

corresponding samples moments we obtain the moment estimates numerically.

2.6.1.4 Bivariate distributions with transmuted Weibull conditionals

The cross moments for the bivariate distribution with transmuted Weibull condition-

als is given in (2.74). By considering r1 = 1 and r2 = 0 in (2.74) we get,

E[Y1] = k(λ)Γ

(
1 + γ1

γ1

)
2
−1
γ1

×
[
2

1
γ1 + 2

1
γ1 λ01 + λ10

(
2

1+γ1
γ1 − 1

)
− λ11

(
1− 2

2+ 1
γ1 + 2

1+γ1
γ1

)]
. (2.89)

If r1 = 0 and r2 = 1 in (2.74) we get,

E[Y2] = k(λ)Γ

(
1 + γ2

γ2

)
2
−1
γ2

×
[
2

1
γ2 + 2

1
γ2 λ10 + λ01

(
2

1+γ2
γ2 − 1

)
− λ11

(
1− 2

2+ 1
γ2 + 2

1+γ2
γ2

)]
. (2.90)

If r1 = 2 and r2 = 0 in (2.74) we get,

E[Y 2
1 ] = k(λ)Γ

(
2 + γ1

γ1

)
2
−2
γ1

×
[
2

2
γ1 + 2

2
γ1 λ01 + λ10

(
2

2+γ1
γ1 − 1

)
− λ11

(
1− 2

2+ 2
γ1 + 2

2+γ1
γ1

)]
. (2.91)

If r1 = 0 and r2 = 2 in (2.74) we get,

E[Y 2
2 ] = k(λ)Γ

(
2 + γ2

γ2

)
2
−2
γ2

×
[
2

2
γ2 + 2

2
γ2 λ10 + λ01

(
2

2+γ2
γ2 − 1

)
− λ11

(
1− 2

2+ 2
γ2 + 2

2+γ2
γ2

)]
. (2.92)

If r1 = 1 and r2 = 1 in (2.74) we get,

E[Y1Y2] = 2
−
(

1
γ1

+ 1
γ2

)
k(λ)Γ

(
1 + γ1

γ1

)
Γ

(
1 + γ2

γ2

)
×
{

2
1
γ1

+ 1
γ2 + 2

1
γ1

(
2

1+γ2
γ2 − 1

)
λ01 + 2

1
γ2

(
2

1+γ1
γ1 − 1

)
λ10

}
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+
{
λ11

(
1− 2

1+γ1
γ1 + 2

2+ 1
γ1

+ 1
γ2 − 2

1+γ2
γ2

)}
× 2

−
(

1
γ1

+ 1
γ2

)
k(λ)Γ

(
1 + γ1

γ1

)
Γ

(
1 + γ2

γ2

)
. (2.93)

V [Y1] = E[Y 2
1 ]− (E[Y1])2

= −4
−1
γ1 [k(λ)]2Γ

(
1 +

1

γ1

)2 [
λ10 + λ11 − 2

1
γ1 (1 + λ01 + 2λ10 + 2λ11)

]2

+ 4
−1
γ1 k(λ)Γ

(
2 + γ1

γ1

)[
4

1
γ1 (1 + λ01 + 2λ10 + 2λ11)− λ10 + λ11

]
. (2.94)

V [Y2] = E[Y 2
2 ]− (E[Y2])2

= −4
−1
γ2 [k(λ)]2Γ

(
1 +

1

γ2

)2 [
λ01 + λ11 − 2

1
γ2 (1 + 2λ01 + λ10 + 2λ11)

]2

+ 4
−1
γ2 k(λ)Γ

(
2 + γ2

γ2

)[
4

1
γ2 (1 + 2λ01 + λ10 + 2λ11)− λ01 + λ11

]
. (2.95)

Cov(Y1, Y2) = E[Y1Y2]− E[Y1]E[Y2]

= 2
− γ1+γ2

γ1γ2 k(λ)Γ

(
1 +

1

γ1

)
Γ

(
1 +

1

γ2

)[
λ11(1− 2

1+ 1
γ1 )− 2

1
γ1 λ01

]
− 2

− γ1+γ2
γ1γ2 [k(λ)]2

(
2

1
γ2 (1 + 2λ01 + λ10 + 2λ11)− λ01 − λ11

)
×
(

2
1
γ1 (1 + λ01 + 2λ10 + 2λ11)− λ10 − λ11

)
Γ

(
1 +

1

γ1

)
Γ

(
1 +

1

γ2

)
+ 2

− γ1+γ2
γ1γ2 k(λ)2

1
γ2

(
2

1
γ1 (1 + 2λ01 + 2λ10 + 4λ11)− λ10 − 2λ11

)
× Γ

(
1 +

1

γ1

)
Γ

(
1 +

1

γ2

)
. (2.96)

Solving the equations from (2.89)-(2.96) for λ10, λ01, λ11, γ1 and γ2 and applying the

procedure explained in 2.6, we can obtain the moment estimates numerically. This

has been explained in Section 2.7 and 2.8 by a simulation study and some real time

applications.
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2.6.2 Method of Maximum Likelihood

In this section we derive the maximum likelihood estimator (MLE) of the parameters

of the BTC(λ;G1, G2) family defined in (2.3). Let (y1i, y2i), i = 1, 2, ..., n be a random

sample of size n from (2.3), where we assume that both baseline functions areG1(y1;λ)

and G2(y2;λ). The log-likelihood function for λ = (λ10, λ01, λ11) may be written,

`(λ) = n log k(λ) +
n∑
i=1

log g1(y1i)+
n∑
i=1

log g2(y2i)

+
n∑
i=1

log [1 + 2λ10G1(y1i) + 2λ01G2(y2i) + 4λ11G1(y1i)G2(y2i)].
(2.97)

The general log-likelihood equations are given as follows:

∂`(λ)

∂λ10

=
n∑
i=1

[
2G1(y1i)

1 + 2λ10G1(y1i) + 2λ01G2(y2i) + 4λ11G1(y1i)G2(y2i)

]
− nk(λ) = 0,

(2.98)

∂`(λ)

∂λ01

=
n∑
i=1

[
2G2(y2i)

1 + 2λ10G1(y1i) + 2λ01G2(y2i) + 4λ11G1(y1i)G2(y2i)

]
− nk(λ) = 0,

(2.99)

∂`(λ)

∂λ11

=
n∑
i=1

[
4G1(y1i)G2(y2i)

1 + 2λ10G1(y1i) + 2λ01G2(y2i) + 4λ11G1(y1i)G2(y2i)

]
− nk(λ) = 0.

(2.100)

2.6.2.1 Bivariate distributions with transmuted uniform conditionals

The log-likelihood equation for the model given in (2.58) is defined as follows:

`(λ) =
n∑
i=1

log [1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i] + n log k(λ) (2.101)

The log-likelihood can be maximized either directly or by solving the non-linear like-

lihood equations obtained by differentiating (2.101). The log-likelihood equations are
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given by

∂`(λ)

∂λ10

=
n∑
i=1

[
2y1i

1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i

]
− nk(λ), (2.102)

∂`(λ)

∂λ01

=
n∑
i=1

[
2y2i

1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i

]
− nk(λ), (2.103)

∂`(λ)

∂λ11

=
n∑
i=1

[
2y1iy2i

1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i

]
− nk(λ) = 0. (2.104)

We can find the estimates of the unknown parameters by maximum likelihood method

by setting the above non-linear equations (2.101) - (2.104) to zero and solve them

simultaneously. Therefore, we have to use mathematical software to get the MLE of

the unknown parameters. Also, all the second order derivatives exist. Thus we have

the inverse dispersion matrix is given by λ̂10

λ̂01

λ̂11

 ∼ N


 λ10

λ01

λ11

 ,

 V̂λ10λ10 V̂λ10λ01 V̂λ10λ11

V̂λ01λ10 V̂λ01λ01 V̂λ01λ11

V̂λ11λ10 V̂λ11λ01 V̂λ11λ11


 . (2.105)

Under the conditions that are fulfilled for parameters in the interior of the parameter

space, but not on the boundary, the asymptotic distribution of the element of the 3 x 3

observed information matrix for the bivariate distributions with transmuted uniform

conditionals is
√
n(λ̂−λ) ∼ N3(0, V −1), where V is the expected information matrix.

Thus, the inverse of the expected information matrix is

V −1 = −E

 Vλ10λ10 Vλ10λ01 Vλ10λ11

Vλ01λ01 Vλ01λ11

Vλ11λ11

 ,
where

Vλ10λ10 =
∂2`(λ)

∂λ2
10

= n [k(λ)]2 +
n∑
i=1

[
−4y2

1i

(1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i)
2

]
, (2.106)

Vλ01λ01 =
∂2`(λ)

∂λ2
01

= n [k(λ)]2 +
n∑
i=1

[
−4y2

2i

(1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i)
2

]
, (2.107)
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Vλ11λ11 =
∂2`(λ)

∂λ2
11

= n [k(λ)]2 +
n∑
i=1

[
−16y2

1iy
2
2i

(1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i)
2

]
, (2.108)

Vλ10λ01 =
∂2`(λ)

∂λ10∂λ01

= n [k(λ)]2+
n∑
i=1

[
−4y1iy2i

(1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i)
2

]
, (2.109)

Vλ10λ11 =
∂2`(λ)

∂λ10∂λ11

= n [k(λ)]2+
n∑
i=1

[
−8y2

1iy2i

(1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i)
2

]
, (2.110)

Vλ01λ11 =
∂2`(λ)

∂λ01∂λ11

= n [k(λ)]2+
n∑
i=1

[
−8y1iy

2
2i

(1 + 2λ10y1i + 2λ01y2i + 4λ11y1iy2i)
2

]
. (2.111)

By solving this inverse dispersion matrix these solutions will yield asymptotic vari-

ance and covariances of these ML estimators for λ̂10, λ̂01 and λ̂11. Using (2.105), we

approximate 100(1 − γ)% confidence intervals for λ10, λ01 and λ11 are determined

respectively as

λ̂10 ± z γ
2

√
V̂λ10λ10 , λ̂01 ± z γ

2

√
V̂λ01λ01 , and λ̂11 ± z γ

2

√
V̂λ11λ11 ,

where zγ is the upper 100γ the percentile of the standard normal distribution.

2.6.2.2 Bivariate distributions with transmuted normal conditionals

The log-likelihood equation for the model given in (2.63) is defined as follows:

`(λ) = n log 4 +
n∑
i=1

log φ(xi)+
n∑
i=1

log φ(yi) + n log k(λ)

+
n∑
i=1

log [1 + 2λ10Φ(xi) + 2λ01Φ(yi) + 4λ11Φ(xi)Φ(yi)] . (2.112)
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The log-likelihood can be maximized either directly or by solving the non-linear like-

lihood equations obtained by differentiating (2.112). The log-likelihood equations are

given by

∂`(λ)

∂λ10

=
n∑
i=1

[
2Φ(y1i)

1 + 2λ10Φ(y1i) + 2λ01Φ(y2i) + 4λ11Φ(y1i)Φ(y2i)

]
− nk(λ), (2.113)

∂`(λ)

∂λ01

=
n∑
i=1

[
2Φ(y2i)

1 + 2λ10Φ(y1i) + 2λ01Φ(y2i) + 4λ11Φ(y1i)Φ(y2i)

]
− nk(λ), (2.114)

∂`(λ)

∂λ11

=
n∑
i=1

[
4Φ(y1i)Φ(y2i)

1 + 2λ10Φ(y1i) + 2λ01Φ(y2i) + 4λ11Φ(y1i)Φ(y2i)

]
− nk(λ), (2.115)

Given the observed data, (y1i, y2i) , i = 1, 2, . . . , n, we wish to find the value of λ that

maximizes `(λ).

2.6.2.3 Bivariate distributions with transmuted Weibull conditionals

The log-likelihood equation for the model given in (2.3) with one-parameter Weibull

marginals is defined as follows:

`(λ) =
∑n

i=1
log
[
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

)]
+ n log γ1 + n log γ2 −

n∑
i=1

yγ1

1i −
n∑
i=1

yγ2

2i + n log k(λ), (2.116)

where λ = (τ1, τ2), being τ1 = (λ10, λ01, λ11) and τ2 = (γ1, γ2).

The log-likelihood can be maximized either directly or by solving the non-linear

likelihood equations obtained by differentiating (2.116). The components of the score

vector are given by

∂`(λ)

∂λ10

=
n∑
i=1

 2
(

1− e−y
γ1
1i

)
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

)
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− nk(λ), (2.117)

∂`(λ)

∂λ01

=
n∑
i=1

 2
(

1− e−y
γ2
2i

)
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

)


− nk(λ), (2.118)

∂`(λ)

∂λ11

=
n∑
i=1

 4
(

1− e−y
γ1
1i

)(
1− e−y

γ2
2i

)
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

)


− nk(λ), (2.119)

∂`(λ)

∂γ1

=
n

γ1

+
n∑
i=1

log y1i −
n∑
i=1

log[y1i][y1i]
γ1

+
n∑
i=1

 2λ10e
−yγ1

1i log[y1i][y1i]
γ1 + 4λ11e

−yγ1
1i log[y1i][y1i]

γ1

(
1− e−y

γ2
2i

)
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

)
,

(2.120)

∂`(λ)

∂γ2

=
n

γ2

+
n∑
i=1

log y2i −
n∑
i=1

log[y2i][y2i]
γ2

+
n∑
i=1

 2λ01e
−yγ2

2i log[y2i][y2i]
γ2 + 4λ11e

−yγ2
2i log[y2i][y2i]

γ2

(
1− e−y

γ1
1i

)
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

)
.

(2.121)

We can find the estimates of the unknown parameters by maximum likelihood method

by setting the above non-linear equations (2.117) - (2.121) to zero and solve them

simultaneously. Therefore, we have to use mathematical software to get the MLE of

the unknown parameters. Also, all the second order derivatives exist. Thus we have



2.6. Parameter Estimation 84

the inverse dispersion matrix is given by
λ̂10

λ̂01

λ̂11

γ̂1

γ̂2

 ∼ N




λ10

λ01

λ11

γ1

γ2

 ,


V̂λ10λ10 V̂λ10λ01 V̂λ10λ11 V̂λ10γ1 V̂λ10γ2

V̂λ01λ10 V̂λ01λ01 V̂λ01λ11 V̂λ01γ1 V̂λ01γ2

V̂λ11λ10 V̂λ11λ01 V̂λ11λ11 V̂λ11γ1 V̂λ11γ2

V̂γ1λ10 V̂γ1λ01 V̂γ1λ11 V̂γ1γ1 V̂γ1γ2

V̂γ2λ10 V̂γ2λ01 V̂γ2λ11 V̂γ2γ1 V̂γ2γ2



 ,
(2.122)

Under the conditions that are fulfilled for parameters in the interior of the parameter

space, but not on the boundary, the asymptotic distribution of the element of the 5 x

5 observed information matrix for the bivariate distributions with transmuted Weibull

conditionals is
√
n(λ̂−λ) ∼ N5(0, V −1), where V is the expected information matrix.

Thus, the inverse of the expected information matrix is

V −1 = −E


Vλ10λ10 Vλ10λ01 Vλ10λ11 Vλ10γ1 Vλ10γ2

Vλ01λ01 Vλ01λ11 Vλ01γ1 Vλ01γ2

Vλ11λ11 Vλ11γ1 Vλ11γ2

Vγ1γ1 Vγ1γ2

Vγ2γ2

 ,

where

Vλ10λ10 =
∂2`(λ)

∂λ2
10

=
n∑
i=1

 4
(

1− e−y
γ1
1i

)2

(
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

))2


+ n [k(λ)]2 , (2.123)

Vλ01λ01 =
∂2`(λ)

∂λ2
01

=
n∑
i=1

 4
(

1− e−y
γ2
2i

)2

(
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

))2


+ n [k(λ)]2 , (2.124)
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Vλ11λ11 =
∂2`(λ)

∂λ2
11

=
n∑
i=1

 16
(

1− e−y
γ1
1i

)2 (
1− e−y

γ2
2i

)2

(
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

))2


+ n [k(λ)]2 , (2.125)

Vγ1γ1 =
∂2`(λ)

∂γ2
1

=
n

γ2
1

+
n∑
i=1

log[y1i]
2yγ1

1i

+
n∑
i=1


(

2e−y
γ1
1i log(y1i)y

γ1

1i [λ10 + 2λ11(1− e−y
γ2
2i )]
)2

(
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i

))2


+

n∑
i=1


(

2e−y
γ1
1i log(y1i)

2yγ1

1i

)(
λ10(1− yγ1

1i ) + 2λ11(1− e−y
γ2
2i )(1− yγ1

1i )
)

(
1 + 2λ10

(
1− e−y

γ1
1i

)
+ 2λ01

(
1− e−y

γ2
2i

)
+ 4λ11

(
1− e−y

γ1
1i

)(
1− e−y

γ2
2i
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(2.126)

Vγ2γ2 =
∂2`(λ)

∂γ2
2

=
n

γ2
2

+
n∑
i=1

log[y2i]
2yγ2

2i

+
n∑
i=1
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2e−y
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2i log(y2i)y
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)(
1− e−y
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2i
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+

n∑
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2e−y
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2i log(y2i)
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2i

)(
λ01(1− yγ2
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1− e−y
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+ 4λ11
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)(
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(2.127)



2.6. Parameter Estimation 86

Similarly, we can find the other elements by using the following equations:

Vλ10λ01 = ∂2`(λ)
∂λ10∂λ01

, Vλ10λ11 = ∂2`(λ)
∂λ10∂λ11

, Vλ01λ11 = ∂2`(λ)
∂λ01∂λ11

, Vλ10γ1 = ∂2`(λ)
∂λ10∂γ1

,

Vλ10γ2 = ∂2`(λ)
∂λ10∂γ2

, Vλ01γ1 = ∂2`(λ)
∂λ01∂γ1

, Vλ01γ2 = ∂2`(λ)
∂λ01∂γ2

, Vλ11γ1 = ∂2`(λ)
∂λ11∂γ1

,

Vλ11γ2 = ∂2`(λ)
∂λ11∂γ2

, Vγ1γ2 = ∂2`(λ)
∂γ1∂γ2

.

By solving this inverse dispersion matrix these solutions will yield asymptotic variance

and covariances of these ML estimators for λ̂10, λ̂01, λ̂01, γ̂1 and γ̂2. Using (2.122), we

approximate 100(1 − γ)% confidence intervals for λ10, λ01, γ1 and γ2 are determined

respectively as

λ̂10±z γ
2

√
V̂λ10λ10 , λ̂01±z γ

2

√
V̂λ01λ01 , λ̂11±z γ

2

√
V̂λ11λ11 , β̂1±z γ

2

√
V̂γ1γ1 , and γ̂2±z γ

2

√
V̂γ2γ2 ,

where zγ is the upper 100γ the percentile of the standard normal distribution.

We describe an effective profile likelihood approach. The model in (2.68) and

(2.73) are with parameters τ1 and τ2 where τ1 is the vector transmuted parameters

and τ2 is the vector baseline parameters. Denote `(τ1, τ2) as the log-likelihood func-

tion. For each value of τ1, `1(τ1) is the maximum of the log-likelihood function over

the remaining parameters. The profile likelihood function for τ1 is

`1(τ1) = maxτ2`(τ1, τ2).

This maximization is done numerically and the procedure is explained as follows.

Let λ̃ = (τ̃1, τ̃2) where τ̃1 = (λ10, λ01, λ11), τ̃2 = (γ1, γ2) (for transmuted Weibull

conditionals). In the first stage, we estimate τ̃1 by maximizing the profile likelihood

of τ̃1 and once, an estimate of τ̃1 is obtained, the estimates of τ̃2 can be obtained

by substituting the estimates of τ̃1. We set the moment estimates as the initial

values. This process is continued iteratively till all the estimates converge to yield

the MLE ̂̃λ of λ̃. The computation is carried out using “FindMaximum” function

of Mathematica 10. Section 2.7 presents a detailed simulation study to illustrate the

estimation approach and Section 2.8 presents three illustrations using a real time data

sets.
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2.7 Simulation Study

We carried out a simulation study in order to evaluate the performance of the pro-

file likelihood estimation. For simplicity we considered the bivariate model with

transmuted Weibull conditionals given in (2.73). Sample generation of (y1i, y2i),

i = 1, 2, . . . , n was carried out by using the algorithm given in Section 2.4. We gen-

erated 1000 samples of sizes n = 25, n = 75, and n = 150 with λ10 = 0.8, λ01 = 0.9,

λ11 = 1.1, γ1 = 1.9, and γ2 = 1.9. The MLEs were obtained using the procedure

described in Section 2.6 and the average bias across the 1000 samples was computed.

The average root mean square error (RMSE) from the 1000 samples was calculated

as

√
1
n

n∑
i=1

( ̂̃λi − λ̃i). The approximate variance-covariance matrix of the MLEs was

obtained as the inverse of the observed information matrix. The biases, RMSEs are

provided in Tables 2.1. We observed from the simulation study that the biases and

RMSE’s decrease as the sample sizes increase. We also observed that the rate of con-

vergence improved with increasing sample size. The simulation study shows that, for

the given set of true parameter values, the Maximum Likelihood estimators perform

well comparing to the moment estimators. Figure 2.5 shows the stability graph of

simulated parameters estimates for 25 iterations for a single simulated sample.
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Figure 2.5: The stability graph for the simulated parameters for maximum likeli-
hood estimates of bivariate distributions with transmuted Weibull conditionals for
25 iterations.

2.8 Data Analysis

2.8.1 Data Set 1: Reliability Analysis of Cable Insulation Specimens

We demonstrate the application of Bivariate distributions with transmuted Weibull

conditionals for a reliability data. The reliability data set consists of relative failure of

20 epoxy electrical cable insulation specimens that worked under 55 kilovolts voltage

conditions constantly. The data was originally reported by Stone (1978). Lawless

(2011) described the failure phenomenon called electrical treeing. In this process there

is considered to be an inception or initiation period in which it looks as if nothing is

happening under the microscopic scanner, but after some point in time there appears

a tiny defect in the material and then onwards the defect grows and eventually causing

the failure of the insulation. The observed data consist of two variables - one is time

to inception of the defect Y1 (in minutes) and second is the subsequent additional

time to specimen failure Y2 (in minutes). Pulcini (2006) further analyzed the data

using a bivariate distribution with gamma conditionals in the context of forewarning
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or primer event and applied the maximum likelihood method. The data set has been

presented in Table 2.2

Table 2.2: Failure time data (in minutes) of cable insulation specimens

Specimen Inception Time(Y1) Additional Time(Y2)

1 228 30
2 106 8
3 246 66
4 700 72
5 473 25
6 155 7
7 414 30
8 1374 90
9 128 4
10 1227 39
11 254 46
12 435 85
13 1155 85
14 195 27
15 117 27
16 724 21
17 300 96

We estimated the parameters using the procedure explained in Section 2.6. The

computation is carried out using “FindMaximum” and “FindRoot” function of Math-

ematica 10. We compared this fitted model with the fitted bivariate distribution with

gamma conditionals proposed by Pulcini (2006). The estimates with S.E., 95% confi-

dence interval and AIC values are provided in Table 2.3. From the AIC values we infer

that bivariate distribution with transmuted Weibull conditionals is a better model for

fitting cable insulation specimen data. We fitted the marginals of the bivariate distri-

bution with transmuted Weibull conditionals and the Kolmogorov-Smirnov (K-S) test

revealed that both the marginals give good fits for cable insulation specimen data. For

the marginal, Y1, the K-S test statistic is 0.3713 and for the marginal, Y2, the value is

0.3768 and we accept the null-hypothesis that the model given in (2.73) fits well for

the cable insulation specimen data at 0.01 level of significance since D0.01,17 = 0.381.
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Table 2.3: Estimates for bivariate distributions with transmuted conditionals for
cable insulation specimens in data set 1

Model Estimates

BTC(λ, 1− e−z
γi
i ) λ̂10 λ̂01 λ̂11 γ̂1 γ̂2 AIC

Moment Estimate -0.4265 -0.4267 0.2043 0.0006 0.0005

ML Estimate 0.6547 0.9315 1.4369 1.0923 1.0783 90.28

S.E 0.3275 0.5828 0.4140 0.0430 0.0412

95% Lower CL 0.0128 -0.2108 0.6255 1.0080 0.9975

95% Upper CL 1.2966 2.0738 2.2483 1.1766 1.1591

Pulcini (2006) â b̂ p̂ ĉ d̂ AIC

Moment Estimate 1.470 0.0030 0.9993 3.419 0.1106

ML Estimate 1.680 0.0035 0.9992 1.982 0.0710 632.46

S.E 0.1281 0.0003 0.0001 0.1533 0.0074

95% Lower CL 1.0020 0.0019 0.9984 1.1730 0.0351

95% Upper CL 2.816 0.0063 0.9999 3.348 0.1437

2.8.2 Data Set 2: Reliability Analysis of Two-component Parallel Systems

The second example that we consider to show our model application is the data set

given in Murthy et al. (2004). The data set consists of 9 two-component systems

connected in parallel. Let Y1 be the failure time of component A and Y2 be the

failure time of component B. The data set is presented in Table 2.4. Pulcini (2006)

further analyzed the data set by considering bivariate distributions with Gamma

conditionals. We analyzed the data set using our model and estimated the parameters

by the procedure explained in Section 2.6. The computation is carried out using
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Table 2.4: Failure time data (in minutes) of two-component parallel systems

Specimen Component A (Y1) Component B (Y2)

1 77.2 156.6
2 74.3 108.0
3 9.6 12.4
4 251.6 108.0
5 134.9 84.1
6 115.7 51.2
7 195.7 289.8
8 42.2 59.1
9 27.8 35.5

“FindMaximum” and “FindRoot” function of Mathematica 10. We compared this

fitted model with the fitted bivariate distribution with gamma conditionals proposed

by Pulcini (2006). The estimates with S.E., 95% confidence interval and AIC values

are provided in Table 2.5. From the AIC values we infer that bivariate distribution

with transmuted Weibull conditionals is a better model for fitting two-component

parallel systems. We fitted the marginals of the bivariate distribution with transmuted

Weibull conditionals and the Kolmogorov-Smirnov (K-S) test revealed that both the

marginals give good fits for the two-component parallel systems. For the marginal,

Y1, the K-S test statistic is 0.5019 and for the marginal, Y2, the value is 0.5031 and

we accept the null-hypothesis that the model given in (2.73) fits well for the cable

insulation specimen data at 0.01 level of significance since D0.01,9 = 0.513.

2.9 Discussion and Summary

The model proposed in (2.3) is a general and a rich class of bivariate distributions

with transmuted conditionals. It is interesting to note that the marginals are also

transmuted. Profile likelihood method is applied for estimating the parameters in-

volved in the model. Simulation study reveals that maximum likelihood estimation

method should be preferred to method of moments in estimating the parameters.

From the data analysis it is observed that the bivariate distribution with trans-



2.9. Discussion and Summary 93

Table 2.5: Estimates for bivariate distributions with transmuted conditionals for
two-component parallel systems in data set 2

Model Estimates

BTC(λ, 1− e−z
γi
i ) λ̂10 λ̂01 λ̂11 γ̂1 γ̂2 AIC

Moment Estimate -0.3487 -0.3482 0.0223 0.0332 0.0301

ML Estimate 0.8922 0.8962 1.8530 0.1921 0.1928 263.12

S.E 0.6359 0.5753 0.4573 0.0125 0.0125

95% Lower CL -0.3542 -0.2314 0.9567 0.1676 0.1683

95% Upper CL 2.1386 2.0238 2.7493 0.2166 0.2173

Pulcini (2006) â b̂ p̂ ĉ d̂ AIC

Moment Estimate 2.088 0.0280 0.9922 6.599 0.239

ML Estimate 1.964 0.0264 0.9825 1.836 0.156 366.92

S.E 0.2863 0.0044 0.0025 0.266 0.039

95% Lower CL 0.956 0.0116 0.9703 0.898 0.045

95% Upper CL 4.032 0.0598 0.9948 3.753 0.538

muted Weibull conditionals is a better model comparing to bivariate distribution

with gamma conditionals (Pulcini (2006)). The claim is well supported by AIC. The

Kolmogorov-Smirnov test revealed that both the marginals for bivariate distribution

with transmuted Weibull conditionals fit well for the two data sets.

Remark 2.9.1. The data set in Example 2 consists of two-component systems con-

nected in parallel. The K-S test revealed that the data set fits well for our model

given in (2.73). When modelling with transmuted conditionals we have not taken into

consideration the different characteristics of the system, for example the dependence

structure between components. In particular, for Example 2 we could suspect a load
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sharing effect, where failure of one component affects the stochastic behaviour of the

surviving component. To check whether there is any load sharing effect on the sys-

tem, a nonparametric test procedure proposed by Deshpande et al. (2010) is performed.

Consider an appeal sample (Y1i, Y2i), i = 1, 2, ..., n.

Here the test statistic

U =
1(
n

2

) n∑
i,j=1,(i<j)

1

2
[h(Y1i, Y2j) + h(Y1j, Y2i)] =

(
1

36

)
33

2
,

and the value of the test statistic is

Z =
U − E(U)

σU
= −5.3364,

where,

E(U) =
3m− 1

2(2m− 1)
=

5

6
,

σ2
U =

4m(3m− 1) (−3m2 + 6m− 1) (m− 1)

3m− 2
+

4(3m− 1) (4m2 − 3m+ 1)

2m− 1

− 8m2(m+ 1)(3m− 1) (m2 − 6m+ 1)

2m− 1
+

4

3
(m− 1)2

+
4

3
(m+ 1)(m− 1)2 − 4(3m− 1)2

4(2m− 1)2
+

4m

3m− 2
=

2

45
,

where m is the number of components in the system. In the present context, we take

m = 2. Thus the null hypothesis that there is no load sharing effect is rejected at

5% significance level in favour of the alternative hypothesis indicating a load sharing

effect.

Hence it is imperative to take into account this feature of the system while mod-

elling its lifetime. Accordingly in the next chapter we model bivariate lifetimes ac-

commodating the dependence behaviours enjoyed by them. In particular we consider

the load sharing behaviour of the system. In the rest of the thesis we fully concentrate

on modelling of load sharing systems and its related areas.



Chapter 3

Modelling Load Share Data with Shared

Frailty

3.1 Introduction

In a load sharing system, the probability of failure of any component will depend on

the working status of the other components (Kvam & Lu (2007)). There are many

situations in practice where the failure of a unit could redistribute the workload of the

other operating units in the system, thus potentially increasing the failure rate of the

operating units. Load sharing was first discussed in stress-strength models for fibre

bundles (Daniels (1945))). Statistical models for studying times to failure in load

sharing systems are valuable in many application areas including biomedical studies,

manufacturing, material testing, software reliability, etc. These models characterize

and estimate the mechanism of load change after a component within the system

fails. In particular, the basic assumption in a two-component load sharing system is

that while the system can function even after one of the components has failed, the

failure of the component may put additional load on the surviving component and this

affects the functioning of the system due to stochastic changes in its residual lifetime.

In most situations, an increased load results in a higher component failure rate ( Liu

∗Some of the results of this chapter are published in Applied Stochastic Models in Business
and Industry. (Asha et al. (2017))
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(1998)). Examples of such systems include (a) a twin engine aircraft like Boeing’s

777 ( Singpurwalla (1995)), or (b) mechanical systems (“Reliability in Engineering

Design” (n.d.)), or (c) paired organs like eyes, kidneys or lungs (Daniels (1945)), to

mention a few.

Following the pioneering research on load sharing models by Daniels (1945), there

has been considerable research activity in this area; see the excellent review article

by Dewan & Naik-Nimbalkar (2010). Freund’s bivariate exponential distribution

Freund (1961) is an effective model for load sharing systems. In a two-component load

sharing system, suppose T1 and T2 are non-negative random variables representing

the lifetimes of two-components A and B respectively, when they are first put to

test. If component B fails before A does, i.e., if T2 < T1, the lifetime distribution

of A changes, and suppose we denote the failure time by T ∗1 . Eventually, the system

fails when component A also fails, and we observe the random bivariate failure times

(T ∗1 , T2) where T ∗1 > T2. On the other hand, if A fails before B so that T1 < T2,

the lifetime distribution of B changes and its failure time is denoted by T ∗2 , say.

The system fails when component B fails eventually, and one finally observes the

bivariate random variables (T1, T
∗
2 ). To set notation, if we denote the lifetimes of

the components A and B as the non-negative random variables (Y1, Y2), then one

observes Y1 = T ∗1 , Y2 = T2, if Y1 > Y2, and Y1 = T1, Y2 = T ∗2 , if Y1 < Y2.

Assume that T1 and T2 are independent and have exponential distributions with

respective failure rates θ1 and θ2, θi > 0, i = 1, 2. It is further assumed that T ∗1

and T ∗2 also have exponential distributions with respective failure rates θ′1 and θ′2,

θ′i > 0, i = 1, 2. The joint probability density function of (Y1, Y2) is (Freund (1961))

f(y1, y2) =

θ′1θ2e
−θ′1y1e−(θ1+θ2−θ′1)y2 ; y1 > y2

θ1θ
′
2e
−(θ1+θ2−θ′2)y1e−θ

′
2y2 ; y2 > y1, yi > 0, i = 1, 2.

(3.1)

An extension to a model with Weibull component lifetime distributions is discussed

in Lu (1989), Spurrier & Weier (1981) and Shaked (1984). In Asha et al. (2016)

generalization of (3.1) is proposed as follows. Let S(.) and r(.) respectively de-

note the baseline survival and hazard functions. They assumed that T1 and T2

are independently distributed with respective survival functions [S(.)]θ1 , θ1 > 0

and [S(.)]θ2 , θ2 > 0. Again, T ∗1 and T ∗2 are assumed to have survival functions
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[S(.)]θ
′
1 , θ′1 > 0 and [S(.)]θ

′
2 , θ′2 > 0, respectively. The joint probability density func-

tion of the failure times (Y1, Y2) under the generalized model is

f(y1, y2) =

θ′1θ2f(y1)f(y2)[S(y2)](θ1+θ2−θ′1−1)[S(y1)]θ
′
1−1; y1 > y2

θ1θ
′
2f(y1)f(y2)[S(y1)](θ1+θ2−θ′2−1)[S(y2)]θ

′
2−1; y2 > y1.

(3.2)

Note that these load sharing models take into consideration the dependence between

the failure times of the system components.

Model fitting and sophisticated techniques for inference of parameters of load

sharing models have been addressed in the recent literature. Hanagal (2011) discussed

inference for a modified Freund’s exponential distribution model. Kvam & Pena

(2005) discussed estimating load sharing models in a dynamic reliability systems

framework under an equal load share rule. Kim & Kvam (2004) derived methods

for statistical inference on load-share parameters based on the maximum likelihood

principle when the load share rule is unknown. Deshpande et al. (2010) described a

general semiparametric family of distributions for load share systems and proposed a

nonparametric test for the dependence between failure times.

As seen in 1.5.5 an alternate flexible tool for modelling dependent times to failure

is the “frailty model”. Frailty models have been widely used to study dependent

lifetimes in reliability and survival analysis framework (Wassell et al. (1995), Ma &

Krings (2008) and Hougaard (2000)).

There are many situations where it is physically meaningful to incorporate the

dependence induced both by the frailty and the dependence due to load sharing in

studying lifetimes of a multi-component system. For instance, often in reliability data,

the covariates are not measured or ignored. In such situations it is advantageous to

analyze the data by accommodating the frailty aspect to the model. Wassell et

al. (1995) advocated the use of frailty models to study the manufacturing effects on

respirator cartridges. Another work in this direction was given in the random hazards

model (Lu & Bhattacharyya (1990)) and more recently by Hanagal (2010). In this

chapter, we describe a generalized model framework for the bivariate load sharing

model with frailty and covariates. A re-parameterized model in Hanagal (2011) is a

special case of our model.
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The format of this chapter follows. In Section 3.2, we present the model formu-

lation for a generalized conditional model for load sharing with a frailty (random

effect) and observed covariates is presented. General properties of the model studied

extensively. We also derived the generalized unconditional model by integrating out

the frailty component. Section 3.3 derives a general cross-ratio function for the model

presented in Section 3.2 and we also studied the properties in detail. Section 3.4 dis-

cuss few examples for the general model by considering different frailty distributions

namely gamma distribution, power variance family of distributions and inverse Gaus-

sian distribution with Weibull baseline. Section 3.5 describes the bivariate hazard

gradient for general model proposed by Johnson & Kotz (1975) and Cox (1972). A

general description about the parameter estimation for the general model presented

in 3.2 is explained by maximizing the profile likelihood of the unknown parameters

with and without censoring are given in Section 3.6. A general simulation study has

been explained in 3.7. The chapter ends with a discussion summary in Section 3.8.

3.2 Generalized Bivariate Load Sharing Model with Frailty and

Covariates

This section describes the generalized bivariate load sharing model with frailty and

covariates. Section 3.2.1 derives the conditional model given the frailty and describes

some useful properties. Section 3.2.2 shows the unconditional model and discusses

several special cases.

3.2.1 Conditional Model Given Frailty

Let Z denote the random frailty effect associated with the two-component parallel

system in (3.2) and let X denote the vector of observed covariates. As mentioned in

Sections 1.1 and 1.2, S(.) and r(.) are respectively the baseline survival and hazard

functions. Let (Y1, Y2) denote the lifetime of the system. The random frailty is

assumed to have a multiplicative effect on the conditional failure rates as follows.

Following the notation in Cox (1972), for i = 1, 2, let λi0(yi) denote the failure rate
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of the ith component when both components are functioning at time yi, and for

i 6= j = 1, 2, let λij(yi|yj) denote the failure rate of the ith component given that the

jth component has failed at time yj:

λi0(y) = lim
∆y→0+

P (y ≤ Yi < y + ∆y|y ≤ Y1, y ≤ Y2)

∆y
, y1 = y2 = y

λij(yi|yj) = lim
∆yi→0+

P (yi ≤ Yi < yi + ∆yi|yi ≤ Yi, Yj = yj)

∆yi
, yj < yi.

(3.3)

Given X, and Z = z,

λ10(y|z,X) = zθ1r(y)eXβ, y1 = y2 = y > 0

λ20(y|z,X) = zθ2r(y)eXβ, y1 = y2 = y > 0

λ12(y1|y2, z,X) = zθ′1r(y1)eXβ, y1 > y2

λ21(y2|y1, z,X) = zθ′2r(y2)eXβ, y1 < y2. (3.4)

For more details on (3.3) we refer to Shaked & Shanthikumar (2015). Recalling

that S(y|z,X) = exp

[
−zeXβ

y∫
0

r(u)du

]
, the bivariate density function of (Y1, Y2)

conditioned on the frailty and observed covariates f((y1, y2)|z,X) follows from (3.3)

and (3.4), as (Cox (1972))

f(y1, y2|z,X) = exp

− y1∫
0

{λ10(u|z,X) + λ20(u|z,X)}du−
y2∫

y1 +0

λ21(u|y1, z,X)du


× λ10(y1 |z,X)λ21(y2 | y1, z,X)

= exp

−z(θ1 + θ2)eXβ
y1∫

0

r(u)du

 exp

− y2∫
0

zθ′2e
Xβr(u)du


× exp

 y1∫
0

zθ′2e
Xβr(u)du

 zθ1
f(y1)

S(y1)
eXβzθ′2

f(y2)

S(y2)
eXβ

= z2e2Xβθ1θ
′
2f(y1)f(y2)[S(y1)]ze

Xβ(θ1+θ2−θ′2)−1[S(y2)]ze
Xβθ′2−1 (3.5)

for y2 > y1.
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Equivalently,

f((y1, y2)|X, z) =
θ2

θ1 + θ2 − θ′1
d

dy1

[S(y1)]zθ
′
1e
Xβ d

dy2

[S(y2)]z(θ1+θ2−θ′1)eXβ . (3.6)

Similarly, for y2 < y1

f(y1, y2|z,X) = exp

− y2∫
0

{λ10(u|z,X) + λ20(u|z,X)}du−
y1∫

y2 +0

λ12(u|y2, z,X)du


× λ20(y2 |z,X)λ12(y1 | y2, z,X)

= exp

−z(θ1 + θ2)eXβ
y2∫

0

r(u)du

 exp

− y1∫
0

zθ′1e
Xβr(u)du


× exp

 y2∫
0

zθ′1e
Xβr(u)du

 zθ2
f(y2)

S(y2)
eXβzθ′1

f(y1)

S(y1)
eXβ

= z2e2Xβθ2θ
′
1f(y1)f(y2)[S(y2)]ze

Xβ(θ1+θ2−θ′1)−1[S(y1)]ze
Xβθ′1−1. (3.7)

Equivalently,

f(y1, y2|X, z) =
θ1

θ1 + θ2 − θ′2
d

dy2

[S(y2)]zθ
′
2e
Xβ d

dy1

[S(y1)]z(θ1+θ2−θ′2)eXβ , y2 > y1.

(3.8)

The general bivariate density for load share with frailty and observed covariates is

given by

f((y1, y2)|z,X) = z2e2Xβθ′iθjf(y1)f(y2)[S(yj)]
zeXβ(θ1+θ2−θ′i)−1[S(yi)]

zeXβθ′i−1, yi > yj.

(3.9)

for i 6= j = 1, 2.

The corresponding joint survival function conditional on X and Z is derived as

S(y1, y2|X, z) =

∫ ∞
y1

∫ ∞
y2

f(t1, t2|X, z)dt2dt1.
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For y1 ≥ y2

S(y1, y2|X, z) =

∫ ∞
y1

∫ t1

y2

f(t1 > t2)dt2dt1 +

∫ ∞
y1

∫ ∞
t1

f(t1 < t2)dt2dt1

=

∫ ∞
y1

[∫ t1

y2

θ2

θ1 + θ2 − θ′1
d

dt1
[S(t1)]zθ

′
1e
Xβ d

dt2
[S(t2)]z(θ1+θ2−θ′1)eXβdt2

]
dt1

+

∫ ∞
y1

[∫ ∞
t1

θ1

θ1 + θ2 − θ′2
d

dt2
[S(t2)]zθ

′
2e
Xβ d

dt1
[S(t1)]z(θ1+θ2−θ′2)eXβdt2

]
dt1

=
θ2[S(y1)]zθ

′
1e
Xβ

θ1 + θ2 − θ′1

[
[S(y2)]z(θ1+θ2−θ′1)eXβ − [S(y1)]z(θ1+θ2−θ′1)eXβ

]
+ [S(y1)]z(θ1+θ2)eXβ . (3.10)

Similarly, for y2 ≥ y1

S((y1, y2)|z,X) =
θ1[S(y2)]zθ

′
2e
Xβ

θ1 + θ2 − θ′2

[
[S(y1)]z(θ1+θ2−θ′2)eXβ − [S(y2)]z(θ1+θ2−θ′2)eXβ

]
+ [S(y2)]z(θ1+θ2)eXβ . (3.11)

In general, the bivariate survival function for load share with frailty and covariates is

given by

S(y1, y2|z,X) = [1−kij][S(yi)]
z(θ1+θ2)eXβ+kij

[
S(yi)

S(yj)

]zθ′ieXβ
[S(yj)]

z(θ1+θ2)eXβ ; yi ≥ yj

(3.12)

where, kij =
θj

θ1+θ2−θ′i
, when θ1 + θ2 6= θ′i, i 6= j = 1, 2.

Remark 3.2.1. When θ1 + θ2 = θ′i, for i 6= j = 1, 2, the joint survival function is

given by

S(y1, y2|z,X) = [S(yi)]
z(θ1+θ2)eXβ

[
1 + zeXβθj (log S(yj)− log S(yi))

]
; yi ≥ yj.

(3.13)

Property 3.2.1. The probability density function specified in (3.9) reduces to a model

with independent marginals whenever θi = θ′i, for i = 1, 2.
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This is straight forward by substituting θi = θ′i for i = 1, 2, in which case,

f(y1, y2|z,X) =
d[S(y1)]zθ1e

Xβ

dy1

× d[S(y2)]zθ2e
Xβ

dy2

.

Property 3.2.2. The marginal survival function of Yi, denoted as SYi(yi|z) is spec-

ified by S(y1, 0) = S(y1) and S(0, y2) = S(y2). In general, the marginal survival

function for load share with frailty and covariates is given by

SYi(yi|z) = [1− kij][S(yi)]
z(θ1+θ2)eXβ + kij [S(yi)]

zθ′ie
Xβ

; yi ≥ 0,

for θ1 + θ2 6= θ′i, i 6= j = 1, 2, and by

SYi(yi|z) = [S(yi)]
z(θ1+θ2)eXβ

[
1− zeXβθj (log S(yi))

]
;

for θ1 + θ2 = θ′i, i 6= j = 1, 2.

Property 3.2.3. The conditional survival function for load share with frailty and

covariates is given by

S(yi|yj) =

d
dyj
S(y1, y2|X, z)

d
dyj
S(Yi|X, z)

; for yi ≥ yj, i 6= j, = 1, 2.

The general conditional survival function for load share with frailty and covariates is

given by

S(yi|yj) =
θj [S(yi)]

zθ′ie
Xβ

[S(yj)]
zeXβ(θ1+θ2−θ′i−1)

(1− kij)(θ1 + θ2) [S(yj)]
zeXβ(θ1+θ2)−1 + kijθ′j [S(yj)]

zθ′je
Xβ−1 ; yi ≥ yj, i 6= j = 1, 2.

(3.14)

Property 3.2.4. The survival distribution of V = min (Y1, Y2) is the proportional

hazards model specified by

SV (v|z) = [S(v)]z(θ1+θ2)eXβ ; v ≥ 0.

Property 3.2.5. The survival distribution of W = Max(Y1, Y2) is the proportional
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hazards model specified by

P [Max(Y1, Y2) ≤ w] = P [Y1 ≤ w, Y2 ≤ w]

= 1− P [Y1 > w]− P [Y2 > w] + P [Y1 > w, Y2 > w] (3.15)

Then if W = Max(Y1, Y2)

SW (w|X) = 1−
2∑
i=1

SYi(w|X)− Lz(Ψ1(w)), w ≥ 0, (3.16)

where SYi(w|X) is

SYi(w|X) = [1− kij]Lz(Ψ1(w)) + kijLz(θ
′
iH(w)); w ≥ 0, i, j = 1, 2, i 6= j. (3.17)

for θ1 + θ2 6= θ′i, i = 1, 2 and

SYi(w|X) = Lz(Ψ1(w))−
[
eXβθ2 (log S(w))

∂

∂s
Lz(s)

]
s=(Ψ1(w))

. (3.18)

for θ1 + θ2 = θ′i.

Property 3.2.6. Without the observed covariates, (3.9) reduces to the model specified

by

f((y1, y2)|z) = z2θ′iθjf(y1)f(y2)[S(yj)]
z(θ1+θ2−θ′i)−1[S(yi)]

zθ′i−1; yi > yj, i 6= j = 1, 2.

(3.19)

Remark 3.2.2. When S(y) = e−y, model (3.19) reduces to the Freund’s bivariate

exponential model (Freund (1961)) for a given frailty Z with probability density func-

tion

f(y1, y2|z) = z2θ′iθje
−zθ′iyie−z(θ1+θ2−θ′i)yj ; yi > yj, i 6= j = 1, 2. (3.20)

Remark 3.2.3. When S(y) = e−y
γ
, γ > 0, the model reduces to the Weibull extension

of the Freund model (Lu (1989)) for a given frailty Z with probability density function

f(y1, y2|z) = z2θ′iθjγ
2yγ−1
i yγ−1

j e−zθ
′
iy
γ
i e−z(θ1+θ2−θ′i)y

γ
j ; yi > yj, i 6= j = 1, 2. (3.21)
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3.2.2 Unconditional Model

Let g(z) denote the density function of the unobserved frailty random variable Z,

and let Lz(s) denote its Laplace transform. Integrating out z in (3.12), and recall-

ing that S(yi|z,X) = e−zH(yi)e
Xβ

, and also observing that
∫
z

e−zH(yi)e
Xβ
g(z)dz =

Lz[H(yi)e
Xβ], where H(yi) is the cumulative hazard function of Yi, i = 1, 2, we get

the unconditional survival function for y2 ≥ y1, when θ1 + θ2 6= θ′i as

S(y1, y2|X) =

∫ ∞
z=0

S(y1, y2|z,X)g(z)dz

= [1− k21]

∫
z

e−zΨ1(y2)g(z)dz + k21

∫
z

e−zΨ21(y1,y2)g(z)dz

= [1− k21]Lz[Ψ1(y2)] + k21 {Lz[Ψ21(y1, y2)]} ,

where Ψ1(y2) = (θ1+θ2)H(y2)eXβ and Ψ21(y1, y2) = [θ′2H(y2) + (θ1 + θ2 − θ′2)H(y1)] eXβ.

When y1 ≥ y2, the unconditional joint survival function S(y1, y2|X) is given by

S(y1, y2|X) = [1− k12]Lz[Ψ1(y1)] + k12 {Lz[Ψ12(y1, y2)]}

where Ψ1(y1) = (θ1+θ2)H(y1)eXβ and Ψ12(y1, y2) = [θ′1H(y1) + (θ1 + θ2 − θ′1)H(y1)] eXβ.

In general we can write,

S(y1, y2|X) = [1− kij]Lz(Ψ1(yi)) + kijLz(Ψij(y1, y2)); yi ≥ yj, (3.22)

where Ψ1(yi) = (θ1 + θ2)H(yi)e
Xβ, Ψij(y1, y2) = [θ′iH(yi) + (θ1 + θ2 − θ′i)H(yj)]e

Xβ

and θ1 + θ2 6= θ′i, i 6= j = 1, 2.

Proceeding in the same manner for θ1 + θ2 = θ′i, i = 1, 2, we obtain the uncondi-

tional survival function for yi ≥ yj as

S(y1, y2|X) = Lz(Ψ1(yi)) +

eXβθ2 (log S(yj)− log S(yi))

 ∂

∂s
Lz(s)

∣∣∣∣∣
s=Ψ1(yi)

 .
(3.23)
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3.2.3 The Joint Density Function for the Unconditional Model

The joint density function corresponding to (3.22) is derived as

f(y1, y2|X) =
∂2S(y1, y2|X)

∂y1∂y2

.

For y1 > y2

f(y1, y2|X) =
∂2 {[1− k12]Lz(Ψ1(y1)) + k12Lz(Ψ12(y1, y2))}

∂y1∂y2

= θ′1θ2r(y1)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψ12(y1,y2)

. (3.24)

Similarly, for y2 > y1

f(y1, y2|X) =
∂2 {[1− k21]Lz(Ψ1(y2)) + k21Lz(Ψ21(y1, y2))}

∂y1∂y2

= θ′2θ1r(y1)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψ21(y1,y2)

. (3.25)

Proceeding in the same manner, the joint density function for θ1 + θ2 = θ′i is directly

derived from (3.23) as

f(y1, y2|X) =
∂2S(y1, y2|X)

∂y1∂y2

For y1 > y2

f(y1, y2|X) =

∂2

Lz(Ψ1(y1)) +

eXβθ2 (log S(y2)− log S(y1))

 ∂
∂s
Lz(s)

∣∣∣∣∣
s=Ψ1(y1)


∂y1∂y2

= θ′1θ2r(y1)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψ12(y1,y2)

. (3.26)
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Similarly, for y2 > y1

f(y1, y2|X) = θ′2θ1r(y1)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψ21(y1,y2)

. (3.27)

In general, the density corresponding to both (3.22) and (3.23) is

f(y1, y2|X) = θ′iθjr(y1)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψij(y1,y2)

; yi > yj, i 6= j = 1, 2.

(3.28)

Observing that Ψii(yi, yi) = Ψ1(yi), it can be directly seen that the survival function

of V = min(Y1, Y2) is

SV (v|X) = Lz(Ψ1(v)), v ≥ 0.

Also, the unconditional marginal survival function of Yi, for θ1 + θ2 6= θ′i has the form

SYi(yi|X) = [1− kij]Lz(Ψ1(yi)) + kijLz(θ
′
iH(yi)); yi ≥ 0, i 6= j = 1, 2.

For θ1 + θ2 = θ′i,

SYi(yi|X) = Lz(Ψ1(yi))−
[
eXβθ2 (log S(yi))

∂

∂s
Lz(s)

]
s=(Ψ1(yi))

.

Remark 3.2.4. Observe when θi = θ′i, i = 1, 2 the components are independent and

the unconditional model given in (3.22) becomes

S(y1, y2|X) = Lz
[
(H1(y1) +H2(y2)) eXβ

]
. (3.29)

3.3 The Cross Ratio Function

It is of interest to quantify the association between the failure times in bivariate

survival data. Clayton’s local cross-ratio function (CRF ) (Clayton (1978)) discussed

in 1.4.1 describes the time-varying dependence and is defined at (y1, y2) by

C (y1, y2) =
S(y1, y2|X)S12(y1, y2|X)

S1(y1, y2|X)S2(y1, y2|X)
,
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where Sj(y1, y2|X) = ∂S(y1,y2|X)
∂yj

, j = 1, 2 and S12(y1, y2|X) = ∂2S(y1,y2|X)
∂y1∂y2

. For the

unconditional bivariate survival functions in (3.22) and (3.23) the CRF ′s, are respec-

tively

C1(y1, y2) =

∂
∂yi

[
log ∂

∂s
Lz(Ψij(y1, y2)

]
∂
∂yi

[log {(1− kij)Lz(Ψ1(yi)) + kijLz(Ψij(y1, y2))}]
; yi > yj (3.30)

and

C2(y1, y2) =

∂
∂s

[
log ∂Lz(s)

∂s

]
s=Ψ1(yi)

∂
∂yi

Ψ1(yi)

∂
∂yi

log
[
Lz(Ψ1(yi)) +

(
eXβθ2(logS(yj)− logS(yi))

∂
∂s
Lz(s)

)
s=Ψ1(yi)

] .
(3.31)

The CRF in the absence of frailty obtained from (3.12) and (3.13) with z = 1 are

respectively

C L
1 (y1, y2) =

θ′i

[
1 +

kij [S(yi)]
eXβ(θ′i−1)[S(yj)]

eXβ(θ1+θ2−θ
′
i)

(1−kij)[S(yi)]e
Xβ(θ1+θ2−1)

]
(θ1 + θ2)

[
1 +

kij [S(yi)]
eXβ(θ′

i
−1)[S(yj)]

eXβ(θ1+θ2−θ′i)

(1−kij)[S(yi)]
eXβ(θ1+θ2−1)

] ; yi > yj (3.32)

and

C L
2 (y1, y2) =

1 + eXβθj(logS(yj)− logS(yi))
θi

θ1+θ2
+ eXβθj(logS(yj)− logS(yi))

; yi > yj, i 6= j = 1, 2. (3.33)

Remark 3.3.1. Observe that the CRF depends on (Y1, Y2) only through the distri-

bution of the frailty variable Z and baseline distribution S(yi).

Remark 3.3.2. The CRFs under the absence of observed covariates are obtained

by replacing eXβθi and eXβθ′i by θi and θ′i in (3.32) and (3.33) respectively. This is

because for C L
1 (y1, y2) and C L

2 (y1, y2), the effect of the observed covariates is multi-

plicative on the load sharing parameters thus retaining the dependence structure under

the presence of observed covariates.

It is of interest to investigate conditions under which the cross ratio function of

the models (3.22) and (3.23), indicates independence or positive dependence. This is

discussed below.
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Property 3.3.1. For θi = θ′i, i = 1, 2, C1(y1, y2) = 1 for all y1, y2 if and only if Z

is degenerate at 1.

Proof. That C1(y1, y2) = 1 for all y1, y2 when Z is degenerate at 1 follows directly

from (3.30). Conversely, let C1(y1, y2) = 1, then from (3.30) it follows that

∂Lz(Ψ1(yi))

∂yi
= Lz(Ψ1(yi))

which on solution provides Lz(s) = e−s. �

Property 3.3.2. For Z degenerate at 1 and θ1 + θ2 = θ′i, C2(y1, y2) = C L
2 (y1, y2) > 1

for all yi > yj; i 6= j = 1, 2.

Proof. The proof follows in a straight forward manner from (3.31) and (3.33). �

Property 3.3.3. C1(y1, y2) > (<) 1, according as

∂Lz(Ψij(y1, y2))

∂yi
> (<)(1− kij)Lz(Ψ1(yi)) + kijLz(Ψij(y1, y2)).

3.4 Examples

A family of generalized bivariate load sharing models with different frailty distribu-

tions is listed in Examples 3.4.1 - 3.4.3.

Example 3.4.1. Let the frailty random variable Z follow a one-parameter gamma

distribution with density function f(z) = ααzα−1e−αz

Γ(α)
, z > 0, α > 0 and Laplace trans-

form Lz(s) =
[
1 + s

α

]−α
, α > 0. Then, the load share Gamma frailty model is

f(y1, y2|X) = θ′iθjr(y1)r(y2)eXβ
(

1 + α

α

)
(3.34)

×
[
1 +

Ψij(y1, y2)

α

]−(α+2)

; yi > yj, i 6= j = 1, 2.
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Example 3.4.2. Let the frailty random variable Z belong to the power variance family

(PV F ) of distributions with density function

f(z) = eσz+
σ
α 1
z

∞∑
k=1

[(
zα

(ασα−1)

)k
k!Γ(−kα)

]
, z > 0,

= 0 therwise and kα > 0;

and Laplace transform Lz(s) = e−
σ{(1+ s

σ )α−1}
α . Then the load share PV F frailty model

is

f(y1, y2|X) = θ′iθjr(y1)r(y2)e2Xβ (1 + Ψij(y1, y2))(α−2) e
− σ
α

[(
1+

Ψij(y1,y2)

α

)α
−1

]
(3.35)

× [(1 + Ψij(y1, y2))α + (α− 1)] ; α > 0, yi > yj, i 6= j = 1, 2.

The positive stable distribution is a sub-class; of PV F distributions. In Chapter

4, we discuss this special case of Example 3.4.2 and its properties in detail.

Example 3.4.3. Let the frailty random variable Z follow the inverse Gaussian dis-

tribution with density function f(z) =
[

1
2πσ2

] 1
2 z
−3
2 e

−(z−1)2

2zσ2 ; z > 0, σ2 > 0 and Laplace

transform Lz(s) = exp

[
1−(1+2σ2s)

1
2

σ2

]
. Then the load share inverse Gaussian frailty

model is

f(y1, y2|X) = θ′iθjr(y1)r(y2)e2Xβ (3.36)

×
∂2

[
exp

(
1−(1+2σ2s)

1
2

σ2

)]
∂s

∣∣∣∣∣
s=Ψij(y1,y2)

; yi > yj, i 6= j = 1, 2.

3.5 Bivariate Hazard Gradient

Johnson & Kotz (1975) hazard gradient in (1.6) and (1.7) for the unconditional dis-

tribution in (3.22) is obtained as,

ri(y1, y2) = − ∂

∂yi
log {[1− kij]Lz(Ψ1(yi)) + kijLz(Ψij(y1, y2))} , i 6= j = 1, 2. (3.37)
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The Cox hazard gradient (3.3) for the unconditional distribution in (3.22) is derived

as

λi0(y) =
∂

∂y
[log Lz(Ψ1(y))] , i = 1, 2, and

λij(yi|yj) =
∂

∂yi

[
log

∂Lz(Ψij(y1, y2))

∂yj

]
; yi > yj, i 6= j = 1, 2. (3.38)

3.6 Parameter Estimation

In this section, we consider parameter estimation of the bivariate load sharing model

with frailty and covariates, where the lifetimes may be subject to censoring. Differ-

ent approaches have been proposed in the literature under different frailty assump-

tions. Klein et al. (1992) considered simultaneous estimation of parameters using

EM-algorithm in case of gamma frailties. Wang et al. (1995) applied EM-algorithm

for estimation in the positive stable frailty model with the frailties regarded as missing

data. Xue & Brookmeyer (1996) used EM algorithm for fitting bivariate log-normal

frailty model. Lam & Kuk (1997) advocated a unified marginal likelihood for param-

eter estimation in frailty models. Fine et al. (2003) established a simple estimation

procedure for the positive stable frailty model by considering both the conditional

and marginal hazards of the Cox form. Martinussen & Pipper (2005) proposed a

likelihood-based estimation procedure for the positive stable frailty model. Mallick

et al. (2008) developed Markov Chain Monte Carlo algorithms to facilitate Bayesian

inference to estimate the parameters involved in a bivariate positive stable frailty

model. Hanagal (2011) gave a general discussion on estimation of frailty models.

Let us suppose that there are n independent pairs of components or organs under

study, and the rth pair of the components have lifetimes (y1r, y2r). We use the following

notations for defining, n1 = number of observations for which y1r > y2r and n2 =

number of observations for which y1r < y2r. Now, we want to estimate the parameters

of the generalized model given in (3.28). The log-likelihood based on the sample of

size n is given by

`(τ̃) =

n1∑
r=1

log

[
∂H(y1r)

∂y1r

]
+

n1∑
r=1

log

[
∂H(y2r)

∂y2r

]
+

n2∑
i=1

log

[
∂H(y1r)

∂y1r

]
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+

n2∑
r=1

log

[
∂H(y2r)

∂y2r

]
+ n1 log(θ′1θ2) + n2 log(θ1θ

′
2) +

n∑
r=1

x̃rβ̃r

+

n1∑
r=1

∂2 [Lz[Ψ12(y1r, y2r)]]

∂y1r∂y2r

+

n2∑
r=1

∂2 [Lz[Ψ21(y1r, y2r)]]

∂y1r∂y2r

(3.39)

for yir ≥ yjr, i 6= j = 1, 2.

The proposed model given in (3.28) can also be extended when the observed data

has some censoring cases. Suppose we have n pairs of components or organs under

study, and the rth pair of the components have lifetimes (y1r, y2r) and a censoring

time (wr), then the lifetime associated with the rth pair of components is given by

(Y1r, Y2r) = (y1r, y2r) ; max (y1r, y2r) < wr

= (y1r, wr); y1r < wr < y2r

= (wr, y2r); y2r < wr < y1r

= (wr, wr); wr < min (y1r, y2r).

We use the following notations to define n1=number of observations for which y2r <

y1r < wr, n2 = number of observations for which y1r < y2r < wr, n3 = number

of observations for which y2r < wr < y1r, n4 = number of observations for which

y1r < wr < y2r and n5 = number of observations for which wr < min(y1r, y2r). We are

interested in estimating τ̃ = (θ1, θ2, θ
′
1, θ
′
2,α,β,γ), with α,β,γ denoting the frailty,

regression, and baseline parameters respectively. The likelihood function given the

data is
n1∏
r=1

f1r

n2∏
r=1

f2r

n3∏
r=1

f3r

n4∏
r=1

f4r

n5∏
r=1

S(wr, wr|X), (3.40)

where

f1r = k12
∂2Lz (Ψ12(y1r, y2r))

∂y1r∂y2r

; y2r < y1r < wr,

f2r = k21
∂2Lz (Ψ21(y1r, y2r))

∂y1r∂y2r

; y1r < y2r < wr,

f3r =

∫
y2

θ′iθjr(wr)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψij(wr,y2)

; y2r < wr < y1r,
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f4r =

∫
y1

θ′iθjr(y1)r(wr)e
2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψij(y1,wr)

; y1r < wr < y2r,

and S(wr, wr|X) is as defined in (3.22).

Given the observed data, y1, y2 and x, we wish to find the value of τ̃ , where τ is

a vector that contains parameters from load sharing, frailty, regression, and baseline

distributions that maximizes the log-likelihood `(τ̃ ). The likelihood equations for

(3.39) and (3.40) can be obtained by solving first order partial derivatives of the

likelihood and equating to zero. The likelihood equations are most likely non-linear in

nature and they are difficult to solve. It may be tedious to obtain maximum likelihood

estimators (MLEs) by Newton-Raphson procedure. From the reliability literature on

frailty we observe that the solutions do not converge for the specified sample sizes in

the Newton-Raphson procedure and the method of maximum likelihood (ML) fails

to estimate all the parameters simultaneously.

Hanagal (2011) advocates the best linear unbiased predictor (BLUP) method as

one of the estimation procedures to solve the likelihood equations derived from (3.39)

and (3.40). In this method the likelihood function can be written in the following

form:

h = logL(y1, y2,x,β, z) = logL1(y1, y2,x|β, z) + logL2(z)

= `1(y1, y2,x|β, z) + `2(z). (3.41)

The BLUP method is based on the maximization of the sum of the above two com-

ponents. The first component in (3.41) is the likelihood of failure times and observed

covariates and the second component is the likelihood of frailty model. One can re-

fer to McGilchrist & Aisbett (1991), McGilchrist (1993), McGilchrist (1994), Yau &

McGilchrist (1998), Noh et al. (2006) for the estimation of parameters using BLUP

method incorporating lognormal as frailty model. Hanagal (2011) also adopted the

two-stage ML method. This method is quite similar to the profile likelihood method.

This is possible when the Laplace transform of the choice of the frailty model sup-

ports the profiling method. In the first stage, estimate the parameters θ′1, θ′2, β,

frailty parameter and baseline parameter by ML method by considering θ1 and θ2
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known. In the second stage, estimate the parameters by ML method after substi-

tuting MLEs of the parameters obtained from the first stage. Then re-substitute

the estimates obtained from the first stage and estimate the parameters θ1 and θ2.

Continue this iterative procedure until the convergence meet in both stages. This

estimation method is an alternative one when closed form in MLEs is not possible

and iterative procedures fail to converge. For asymptotic properties one can refer to

Hanagal (2005).

3.7 Simulation Study

In this section, we established an algorithm to generate the samples (y1r, y2r), r =

1, 2, ..., n for the model in (3.28) and conducting a simulation study in order to eval-

uate the performance of our estimation procedure. For covariates X we assume to

follow Normal distribution with mean zero and standard deviation σ.

Therefore the conditional survival function for an individual or component for

given frailty Z = z and covariates X at time y1 > 0 and y2 > 0 is given by

S(y1, y2|z,X) = e−zH0(y1,y2)ε,

where ε = eXβ.

Sample generation of (y1r, y2r) is explained through the following procedure.

(a). Generate a random sample of size n from Uniform distribution [0, 1] and name

it as u.

(b). Generate a random sample of size n from Uniform distribution [0, 1] and name

it as v.

(c). Generate a random sample of size n from Uniform distribution [0, 1] and name

it as w.

(d). Generation of frailty random sample (z) of size n depends on the choice of frailty

model.
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(e). Generate X from N(0, σ).

(f). Compute ε = eXβ with regression coefficients β.

(g). If u ≤ θ1
θ1+θ2

, S0(y1|Z,X) = (1− v)
1
θ1 .

Therefore, (y1|Z,X) = S−1
0 ((1− v)

1
θ1 ), and

(y2|Z,X) = S−1
0 (S0(y1|Z,X)(1− w)

1
θ′2 ).

(h). If u > θ1
θ1+θ2

, S0(y2|Z,X) = ((1− v)
1
θ2 ), Therefore, (y2|X, z) = S−1

0 (1− v)
1
θ2 and

(y1|Z,X) = S−1
0 (S0(y2|Z,X)(1− w)

1
θ′1 ) (see Asha et al. (2016)).

The estimation procedure is explained in detail in Chapter 4.

3.8 Discussion and Summary

We have proposed a general load share model with frailty and covariates by using the

frailty approach discussed in 1.5.5. We studied the general properties of the general

model in (3.22). The local dependence measure, cross-ratio function is presented for

the general model and studied its properties. Some examples have been discussed by

considering different frailty distributions namely, gamma frailty, power variance fam-

ily and inverse Gaussian frailty distributions. Two popular bivariate hazard gradients

such as Johnson & Kotz (1975) and Cox (1972) have been discussed for the general

model. General estimation procedures for the model has been discussed. A general

algorithm for conducting simulation study for the proposed model is presented.

It is of interest to further investigate the class of distribution in (3.22). In the next

chapter we consider a particular example where in the baseline is bivariate Weibull

distribution and frailty is distributed as positive stable distribution.



Chapter 4

Load Share Positive Stable Frailty Model

with Covariates

4.1 Introduction

In this section we consider a particular example of the model in (3.28), with the

widely used Weibull baseline cumulative hazard, H(y) = yγ and the positive α-stable

frailty (Oakes (1989)) with probability density function and Laplace transform given

respectively by

f(z) = − 1

πz

∞∑
l=1

Γ(lα + 1)

l!

(
−z−α

)l
sin(lαπ); z > 0, 0 < α < 1, (4.1)

and

Lz(s) = E{e−sZ} = e−s
α

. (4.2)

For basic properties of the distribution given in (4.1), one can refer to Duchateau

& Janssen (2007). The reason behind choosing positive stable frailty over gamma

frailty or other frailty models is that from the survival analysis literature Shih (1998),

Glidden (1999), Fan et al. (2000) have observed that the gamma frailty specification

∗Some of the results of this chapter are published in Applied Stochastic Models in Business
and Industry. Asha et al. (2017)
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may not fit well. One important observation made by Hougaard (2000) is that the

positive stable model induces high early dependence whereas the most popular gamma

frailty model exhibits high late dependence. This property is well observed in familial

relationships of the ages of onset of diseases with etiologic heterogeneity, where genetic

cases occur early and long-term survivors are meekly correlated. The gamma frailty

model has predictive hazard ratios which are time invariant and may not be suitable

for modelling failures include genetic factors (Fine et al. (2003)). The rest of this

chapter is organised in the following manner. Model formulation is presented in

Section 4.2. Model properties are discussed in Section 4.3. Bivariate hazard gradient

in Section 4.4, Cross ratio function in Section 4.5 is discussed in detail. Section 4.6

deals with the parameter estimation and we employ the profile likelihood technique

to estimate the model parameters. A simulation study is conducted in Section 4.7

to show the efficiency of our estimation procedure. Two data sets are analysed in

data analysis Section in 4.8 and 4.9. Finally we discuss the results and draw some

conclusions in Section 4.10.

4.2 Model Formulation

Now, for y2 ≥ y1 and θ1 + θ2 6= θ′i the model (3.22) reduces to

S((y1, y2)|X) =

[
1− θ1

θ1 + θ2 − θ′2

]
e−[(θ1+θ2)yγ2 e

Xβ]α

+

[
θ1

θ1 + θ2 − θ′2

]
e−[(θ′2y

γ
2 +(θ1+θ2−θ′2)yγ1 )eXβ]α

= (1− k21)e−[ϕ1(y2)]α + k21e
−[ϕ21(y1,y2)]α . (4.3)

Similarly, for y1 ≥ y2

S((y1, y2)|X) =

[
1− θ2

θ1 + θ2 − θ′1

]
e−[(θ1+θ2)yγ1 e

Xβ]α

+

[
θ2

θ1 + θ2 − θ′1

]
e−[(θ′1y

γ
1 +(θ1+θ2−θ′1)yγ2 )eXβ]α

= (1− k12)e−[ϕ1(y1)]α + k12e
−[ϕ12(y1,y2)]α . (4.4)
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For yi ≥ yj and θ1 + θ2 6= θ′i, the joint survival function for load share positive stable

frailty model is given by

S(y1, y2|X) = (1− kij)e−[ϕ1(yi)]
α

+ kije
−[ϕij(y1,y2)]α . (4.5)

Proceeding in the same manner for yi > yj and θ1 +θ2 = θi, the joint survival function

given in (3.23) reduces to

S(y1, y2|X) = e−[ϕ1(yi)]
α

+ e−[Xβ]θ2(yγi − y
γ
j )

∂

∂ϕ1(yi)
e[ϕ1(yi)]

α

. (4.6)

The corresponding bivariate density function for yi > yj given in (4.5) and (4.6)

simplifies to

f(y1, y2|X) = θiθ
′
jαγ

2(y1y2)γ−1e2Xβ−[ϕij(y1,y2)]α

× [ϕij(y1, y2)]α−2(1 + α([ϕij(y1, y2)]α − 1)), (4.7)

where, ϕij(y1, y2) = eXβ
(
θ′iy

γ
i + (θ1 + θ2 − θ′i)y

γ
j

)
and ϕ1(yi) = eXβ(θ1 + θ2)yγi , i 6=

j = 1, 2. The plot of survival function in (4.5) is given in Figure 4.1.

4.3 Properties

Remark 4.3.1. Re-parameterize θ′1 = aθ1, θ
′
2 = bθ2; then the joint survival function

given in (4.5) is a generalization of the Weibull extension of the bivariate exponential

of Freund with positive stable frailty model (Hanagal (2011)) with covariates. Re-

parameterizing (4.5) without covariates reduces to the model in Hanagal (2011) and

is given by

S(y1, y2) =


θ2(1−b)e−[(θ1+θ2)y

γ
2 ]α+θ1e

−[(θ1+θ2(1−b))yγ1 +bθ2y
γ
2 ]α

θ1+θ2(1−b) ; y1 ≤ y2

θ1(1−a)e−[(θ1+θ2)y
γ
1 ]α+θ2e

−[(θ2+θ1(1−a))y
γ
2 +aθ1y

γ
1 ]α

θ2+θ1(1−a)
; y2 ≤ y1

(4.8)

Property 4.3.1. The survival distribution of V = min (Y1, Y2) is a Weibull distribu-
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Figure 4.1: Plot for the survival function in (4.5) with parameters α = 0.8, θ1 =
0.05, θ2 = 0.07, θ′1 = 0.09, θ′2 = 0.11, γ = 0.8 and β = 0.

tion:

SV (v|X) = e−[(θ1+θ2)αeαXβ]vγα , v > 0. (4.9)

Property 4.3.2. The marginal distributions SYi(.), i = 1, 2 of (4.6) are Weibull

mixtures for θ1 + θ2 6= θ′i given as

SYi(yi|X) = [1− kij]e−[(θ1+θ2)αyγαi eαXβ]

+ [kij]e
−[(θ′i)

αyγαi eαXβ], 0 < α < 1, yi > 0. (4.10)

and

SYi(yi|X) = e−[ϕ1(yi)]
α −

eXβθ2

(
logS(yi)

∂e−s
α

∂s

) ∣∣∣∣∣
s=eXβ(θ1+θ2)yγi


for θ1 + θ2 = θ′i, 0 < α < 1, yi > 0.
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4.4 Bivariate Hazard Gradient for Load Share Positive Stable

Frailty Model

Johnson & Kotz (1975) hazard gradient in (1.6) and (1.7) for the distribution in (4.5)

is obtained as,

ri(y1, y2) = − ∂

∂yi

[
log
(
(1− kij)e−[ϕ1(yi)]

α

+ kije
−[ϕij(y1,y2)]α

)]
; yi > yj, i 6= j = 1, 2.

(4.11)

Similarly, for (4.6) Johnson and Kotz hazard gradient is obtained as,

ri(y1, y2) = − ∂

∂yi

[
log

(
e−[ϕ1(yi)]

α

+ e−[Xβ]θ2(yγi − y
γ
j )

∂

∂ϕ1(yi)
e[ϕ1(yi)]

α

)]
; yi > yj,

(4.12)

i 6= j = 1, 2.

The Cox hazard gradient (3.3) for the distribution in (4.5), reduces to

λi0(y) =
αγθi (ϕ1(y)α

y(θ1 + θ2)
, i = 1, 2, y > 0

λij(yi|yj) =
yγ−1
i γθ′i[(1− α) + α(eXβϕji(y1, y2))α

ϕji(y1, y2)
; yi > yj, θ1 + θ2 > θ′i, i 6= j = 1, 2.

(4.13)

and

λij(yi|yj) =
θ1θ
′
2

θ2

r(yi)e
Xβ

 ∂

∂s
log

∂

∂s
Lz(s)

∣∣∣∣∣
s=Ψ1(yi)

 ; yi > yj, θ1+θ2 = θ′i, i 6= j = 1, 2.

(4.14)

Figure 4.2 shows a plot of the bivariate hazard gradient given in (4.13) for some choices

of parameter values. The following properties show that the monotone behavior of the

failure rates of components depends on (a) the baseline hazard parameters and the

frailty parameter when both components are functioning, and (b) only the baseline

hazard parameters when one component fails, if θ1 + θ2 > θ′i, i = 1, 2.

Property 4.4.1. The component failure rate λi0(y), i = 1, 2 is monotonically in-

creasing, constant, or decreasing at αγ > 1, αγ = 1 or αγ < 1.
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Figure 4.2: Plot for hazard gradients (a) λ12(y1|y2), (b) λ21(y2|y1) when θ1 = 0.5,
θ2 = 0.8, θ′1 = 0.9, θ′2 = 1.2, γ = 1.75, α = 0.8 and β = 0.

This is shown in Figure 4.3 for some choices of the parameter values.

Property 4.4.2. Under the condition θ1 + θ2 − θ′i > 0, the component failure rate

λij(yi|yj), i 6= j = 1, 2 is increasing whenever the baseline distribution has increasing

failure rate, or equivalently when γ > 1.

Proof. From (4.13), observe that

∂λij(yi|yj)
∂yi

=
[
(1− α) + αeαXβ (ϕji)

α] d

dyi

[
yγ−1
i γθ′i
ϕji

]
. (4.15)

It is straight forward to show that d
dyi

[
yγ−1
i γθ′i
ϕji

]
≥ 0 for γ > 1. Under the stated

conditions, every term in (4.15) is positive, which proves the assertion. �

4.5 The Cross Ratio Function for the Load Share Positive Stable

Frailty Model

The CRF corresponding to (4.5) is given by

C1(y1, y2) =
(1−α[(1−(ϕij(y1,y2))α])θ′ir(yi)e

Xβ
[
(1−kij)e−[ϕ1(yi)]

α
+kije

−[ϕij(y1,y2)]α
]

ϕij(y1,y2)[αr(yi)eXβ[(1−kij)[ϕ1(yi)]α]e−[ϕ1(yi)]
α

(θ1+θ2)+θj [(ϕij(y1,y2))αe−[ϕij(y1,y2)]α ]
,

(4.16)
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Figure 4.3: Plot for (a) λ10(y) when (α = 0.8, γ = 0.7), (b) λ10(y) when (α =
0.8, γ = 1.75), (c) λ10(y) when (α = 0.5, γ = 2.0) for θ1 = 0.5, θ2 = 0.7, θ′1 = 0.9,
θ′2 = 1.5 and β = 0.

and the CRF corresponding to (4.6) is given by

C2(y1, y2) =

∂
∂s

log
[
∂Lz(s)
∂s

] [
Lz(s)−

(
eXβθ2

[
logS(yj)− logS(yi)

∂Lz(s)
∂s

])]
(θ1 + θ2)r(yi)eXβ

[
∂Lz(s)
∂s
− θ2eXβ

∂2Lz(s)
∂s2

(logS(yj)− logS(yi))
]∣∣∣∣∣
s=Ψ1(yi)

.

(4.17)

The CRF given in (4.16) is plotted for situations with and without positive stable

frailty in Figure 4.4 for some choices of parameter values.

4.6 Parameter Estimation

In this section, we consider parameter estimation of the bivariate load share positive

stable frailty model and covariates, where the lifetimes may be subject to censoring.
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Figure 4.4: (a) CRF with positive stable frailty , (b) CRF without positive stable
frailty when θ1 = 0.7, θ2 = 0.9, θ′1 = 1.2, θ′2 = 1.5, γ = 0.7, α = 0.8 and β = 0.

Various approaches have been proposed in the literature for estimating the parame-

ters involving positive stable frailty model. Wang et al. (1995) applied EM-algorithm

for estimation in the positive stable frailty model with the frailties regarded as miss-

ing data. Fine et al. (2003) proposed a simple estimation procedure for a propor-

tional hazards regression model for clustered survival data in which the dependence

is generated by positive stable distribution. Martinussen & Pipper (2005) discussed

a likelihood based estimation procedure for the positive stable frailty model. Mallick

et al. (2008) developed Markov Chain Monte Carlo algorithms to facilitate Bayesian

inference to estimate the parameters involved in a bivariate positive stable frailty

model. Hanagal (2011) proposed two-stage ML method and BLUP method for bi-

variate Weibull extensions with positive stable frailty models.

Let τ = (θ1, θ2, θ
′
1, θ
′
2, α, β, γ). Suppose that there are n independent pairs of

components or organs under study, and the rth pair of the components have lifetimes

(y1r, y2r). Now, we want to estimate the parameters of the load share positive stable

frailty model given in (4.7). The log-likelihood based on the sample of size n is given

by

`(τ̃ ) = n1 log θ1 + n2 log θ′2 + n2 log θ′1 + n2 log θ2 + n log α + 2n log γ

+ (γ − 1)
n∑
r=1

(log y1r + log y2r) + (α− 2)

n1∑
r=1

log [ϕ12(y1r, y2r)]

+

n1∑
r=1

log [1 + α[ϕ12(y1r, y2r)]
α − 1]−

n1∑
r=1

[ϕ12(y1r, y2r)]
α −

n2∑
r=1

[ϕ21(y1r, y2r)]
α

+

n2∑
r=1

log [1 + α([ϕ21(y1r, y2r)]
α − 1)] + (α− 2)

n2∑
r=1

log [ϕ21(y1r, y2r)] , (4.18)
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for yir ≥ yjr, i 6= j = 1, 2. Given the observed data, y1r, y2r and xr, r = 1, 2, ..., n,

we find the value of τ that maximizes `(τ ). Analytical solution of the likelihood

equations and numerical maximization of the likelihood function are both extremely

cumbersome. We propose the following estimation method. Let τ = (τ1, τ2) where

τ1 = (θ1, θ2), τ2 = (θ′1, θ
′
2, α, β, γ). We set θi = n[

n∑
r=1

yir]
−1, i = 1, 2, to provide initial

values of τ1. Using “FindMaximum” function of Mathematica 10 we maximize the

(profile) likelihood of τ2 given the initial values of τ1. Next, these estimates of τ2

enable us to write the profile likelihood for the τ1 which we maximize. This process

is continued iteratively until all the estimates converge to yield the profile MLE τ̂ .

Hanagal (2011) showed that the two-stage MLE τ̂ has asymptotic properties similar

to that of the MLE.

4.7 Simulation Study

We carried out a simulation study in order to evaluate the performance of the profile

likelihood estimation. For simplicity we considered only a single covariate X1 which

follows a normal distribution with mean zero and variance 0.5. We assumed a Weibull

baseline distribution.

Sample generation of (y1r, y2r), r = 1, 2, ..., n was carried out by generating three

sets of random samples of size n from the uniform (0, 1) distribution; denote these

by u1, u2, and u3 respectively. We then generated a random sample of size n from a

positive stable distribution with density given in (4.1), by using the model

zr = E
(−(1−α)

α )
r (sin(ξr))

−1
α × sin(αξr)× sin[(1− α)ξr]

1−α
α (4.19)

(McKenzie (1982)). The covariate X1 was generated from N(0, σ2), with σ2 = 0.5.

The bivariate sample (y1r, y2r), r = 1, 2, ..., n for the distribution in (4.5) was gen-

erated by using the algorithm given in Asha et al. (2016). Thus, the samples are

generated as follows:

• if u1r ≤ θ1
θ1+θ2

, then (y1r|Z,X1) = S−1
0 ((1− u2r)

1
θ1 ), and

(y2r|Z,X1) = S−1
0 (S0(y1r|Z,X1)(1− u3r)

1
θ′2 ). For Weibull baseline
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y1r = [ −1
zrθ1ex1β

log(1− u2r)]
1
γ and y2r = [y1r + ( −1

zrθ′2e
x1β

log(1− u3r))
1
γ ].

• if u1r >
θ1

θ1+θ2
, then (y2r|Z,X1) = S−1

0 ((1− u2r)
1
θ2 ), and

(y1r|Z,X1) = S−1
0 (S0(y2|Z,X1)(1− u3r)

1
θ′1 ). For Weibull baseline

y2r = [ −1
zrθ2ex1β

log(1− u2r)]
1
γ and y1r = [y2r + ( −1

zrθ′1e
x1β

log(1− u3r))
1
γ ].

We generated 1000 samples of sizes n = 25 and n = 150 from S(y1, y2|z,X1)

in (4.5) with S(y) = e−y
γ
, α = 0.5, β = 0.5, γ = 0.7, θ1 = 0.3, θ2 = 0.5, θ′1 =

0.9 and θ′2 = 2.1. The profile MLE of τ = (θ1, θ2, θ
′
1, θ
′
2, α, β, γ) is obtained. The

average absolute bias across the 1000 samples was computed as 1
n

n∑
i=1

|(τ̂i − τi)|. The

average root mean square error (RMSE) from the 1000 samples was calculated as√
1
n

n∑
i=1

(τ̂i − τi)2.

The absolute biases, RMSEs are provided in Table 4.1. We observed from the

simulation study that the absolute biases and RMSE’s decrease as the sample sizes

increase. we also observed that the rate of convergence improved with increasing

sample size.

4.8 Data Set 1: Reliability of a System with Two Motors

We illustrate the load share model with frailty for a reliability data set which consists

of a parallel system with two motors. When both motors function, the load is shared

between them. If one of the motors fails, the entire load is then shifted to the surviv-

ing motor. The system fails when both motors fail. The data was originally published

and analysed in Relia Soft, Reliability Edge Home ReliaSoft (2003). Recently Sutar

& Naik-Nimbalkar (2014) analysed this data in a load sharing perspective using ac-

celerated failure time (AFT) models and showed that the data satisfies load sharing

properties. Table 4.2 shows the time to failure data for 18 such systems. This data set

has no observed covariates and no censoring. We analysed this data using our model

and showed that there is a dependence induced by frailty in the data apart from load

sharing dependence. We estimated the parameters using the procedure explained in

Section 4.6. The computation was carried out using “FindMaximum” function of
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Table 4.1: Absolute bias, RMSE for τ̃ = (θ1, θ2, θ
′
1, θ
′
2, α, β, γ) based on 1000 replica-

tions

Parameters True values Absolute bias RMSE

n=25

θ1 0.3 0.0639 0.0593
θ2 0.5 0.0593 0.0262
θ′1 0.9 0.0414 0.1104
θ′2 2.1 0.0817 0.1661
α 0.5 0.0708 0.0840
γ 0.7 0.0839 0.1162
β 0.5 0.0366 0.0643

n=150

θ1 0.3 0.0468 0.0402
θ2 0.5 0.0314 0.0105
θ′1 0.9 0.0265 0.0821
θ′2 2.1 0.0670 0.1507
α 0.5 0.0654 0.0661
γ 0.7 0.0632 0.0856
β 0.5 0.0311 0.0492

Mathematica 10. We fit and compare the following models. Model 1: Load share

positive stable frailty model, Model 2: Load share model (no frailty) and Model 3:

Positive stable frailty model (no load share). The estimates with S.E., the lower and

the upper limits (LCL and UCL) of the 95% confidence intervals and the Akaike

information criterion (AIC) values for each model are provided in Table 4.3. Model

1 had the smallest AIC and gave the best in-sample fit for the motor data providing

support for the existence of a frailty effect which contributes to the dependence apart

from the dependence between the components induced by load sharing. We fitted the

marginals of Model 1 given in (4.6) and the Kolmogorov-Smirnov (K-S) test revealed

that both the marginals gave good fit for motor data. For the marginal, Y1, the K-S

test statistic was 0.3405 and for the marginal, Y2, the value was 0.3612 and we accept

the null-hypothesis that the model given in (4.6) fits well for the motor data at 0.01

level of significance since D0.01,18 = 0.371.
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Table 4.2: Time to failure (in days) data set for two motors in a load sharing con-
figuration

System Time to failure for motor A (Y1) Time to failure for motor B (Y2) Event description

1 102 65 B Failed First
2 84 148 A Failed First
3 88 202 A Failed First
4 156 121 B Failed First
5 148 123 B Failed First
6 139 150 A Failed First
7 245 156 B Failed First
8 235 172 B Failed First
9 220 192 B Failed First
10 207 214 A Failed First
11 250 212 B Failed First
12 212 220 A Failed First
13 213 265 A Failed First
14 220 275 A Failed First
15 243 300 A Failed First
16 300 248 B Failed First
17 257 330 A Failed First
18 263 350 A Failed First

4.8.1 Cross Ratio Illustration with Motor Data

The cross ratio function for the best fitting model (Model 1) was given in (4.16). The

parameter estimates are θ̂1 = 0.021, θ̂2 = 0.051, θ̂′1 = 0.275, θ̂′2 = 0.299, γ̂ = 0.732,

α̂ = 0.642 with AIC value 480.5. The best fitting model with just load share ignoring

frailty (Model 2) is given by

f(y1, y2) = θ′iθjγ
2yγ−1
i yγ−1

j e−θ
′
iy
γ
i e−(θ1+θ2−θ′i)y

γ
j ; yi > yj, i 6= j = 1, 2. (4.20)

The parameter estimates are θ̂1 = 0.021, θ̂2 = 0.016, θ̂′1 = 0.218, θ̂′2 = 0.198, γ̂ =

0.822, with AIC value 494.9. The corresponding cross ratio function is given by

C (y1, y2) =
θi

{
θje

yγi (2(θ1+θ2)−θi′) − (θi
′ − θi)ey

γ
i (θ1+θ2)+yγj (θ1+θ2−θi′)

}
(θ1 + θ2)(θi − θi′)ey

γ
i (θ1+θ2)+yγj (θ1+θ2−θi′) + θi

′θjey
γ
i (2(θ1+θ2)−θi′)

. (4.21)

The cross ratio comparison for Model 1 and Model 2 is presented in Table 4.4. From

the results we observe that the Model 1 exhibits the dependence between Y1 and Y2
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more than two times for almost all the systems comparing to Model 2.

4.8.2 Model Selection Criteria

We are using AIC comparison for model selection. We also compared load share

Gamma frailty model given in (3.34) with AIC 532.9. To reconfirm our chosen model,

we propose a novel cross validation technique. Cross validation is a popular method

for model evaluation. Here, we evaluate the conditional survival probabilities for

three different models namely, load share positive stable frailty (Model 1), load share

without positive stable frailty (Model 2) and positive stable frailty model without

load sharing (Model 3). The model indicating least conditional survival probability

at the observed data point is deemed to have a better fit for the data.

The conditional survival function for load share frailty model in (5.12) is given

S(yi|yj) =
θj [S(yi)]

zθ′ie
Xβ

[S(yj)]
zeXβ(θ1+θ2−θ′i−1)

(1− kij)(θ1 + θ2) [S(yj)]
zeXβ(θ1+θ2)−1 + kijθ′j [S(yj)]

zθ′je
Xβ−1 ; yi ≥ yj,

(4.22)

i 6= j = 1, 2. When S(y) = e−y
γ

and the frailty random variable Z follows a positive

stable distribution (4.22) becomes

S(yi|yj) =
eXβ−[ϕij(y1,y2)]α+[ϕ1yi]

α+(θ′jy
γ
j e
Xβ)αyγj θj[ϕij(y1, y2)]α−1

kij
(
e[ϕ1yi]αθi

[
θ′jy

γ
j e
Xβ
]
α + e[ϕ1yi]α [ϕ1yi]αθ′j − θj

) ; yi ≥ yj, i 6= j = 1, 2.

(4.23)

The conditional survival function for load share without frailty model is given as

S(yi|yj) =
θj [S(yi)]

θ′ie
Xβ

[S(yj)]
eXβ(θ1+θ2−θ′i−1)

(1− kij)(θ1 + θ2) [S(yj)]
eXβ(θ1+θ2)−1 + kijθ′j [S(yj)]

θ′je
Xβ−1 ; yi ≥ yj, (4.24)

i 6= j = 1, 2. When S(y) = e−y
γ
, (4.24) becomes

S(yi|yj) =
θj(θ1 + θ2 − θ′j) exp

[
eXβ

(
yγj (θ′i + θ′j)− θ′iy

γ
i

)]
θiθ′j exp

[
(θ1 + θ2) eXβyγj

]
+ (θ1 + θ2) (θj − θ′j) exp

[
eXβθ′jy

γ
j

] . (4.25)

The conditional survival function for frailty without load share model in (3.29) with
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S(y) = e−y
γ

and the frailty random variable Z follows a positive stable distribution

is given as

S(yi|yj) = e−[(yγi +yγj )α−(yγi )α]y
−γ(α−1)
i (yγi + yγj )α−1; yi ≥ yj, i 6= j = 1, 2. (4.26)

In the leave-one-out cross-validation method, each training set is created by taking

all the units except one, the test set being the sample unit that is held out. Thus,

for n samples, we have n different training sets and n different test sets. This cross-

validation procedure is especially useful with small data sets. For each training set, the

estimated parameters are used to compute conditional survival probability of failure of

the second component of the hold-out unit given that the first component had failed.

The best model will correspond to the smallest conditional survival probability.

Table 4.5 presents a comparison between these three modes using the leave-one-

out cross-validation: Load share positive stable frailty model (Model 1), load share

without positive stable frailty model (Model 2), and positive stable frailty model

without load sharing (Model 3). Column 1 shows the failure times for the held-out

system. Columns 2-4 show the conditional survival probabilities from (4.23), (4.25)

and (4.26) respectively. From the results we observe that in fifteen out of eighteen

systems (83.33%) the load sharing with frailty model performs well. Figure enables

a good visual comparison of these conditional survival probabilities from the three

models and overwhelmingly supports the load share model with frailty.

4.9 Data Set 2: Diabetic Retinopathy Study Data

The second illustration is a well analysed Diabetic Retinopathy Study (DRS) data

(Huster et al. (1989)). This data concerns the time for onset of blindness of human

eyes. Though well studied this has not been analyzed incorporating both the load

sharing and frailty perspectives together so far. Diabetic retinopathy is a complication

associated with diabetes mellitus consisting of abnormalities in the micro vasculature

within the retina of the eye. The Diabetic Retinopathy Study (DRS) was began

in 1971 to study the effectiveness of laser photocougulation in delaying the onset of

blindness in patients with diabetic retinopathy. The study was mainly conducted for
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Figure 4.5: Comparison of conditional survival probabilities for the three models
with motor data.

patients affected with diabetic retinopathy in both eyes and visual acuity of 20
100

or

better in both eyes.

Each patient had one eye randomized to laser treatment and the other eye kept

without treatment for observation. The time to event for each eye was the time from

initiation of the treatment to the time when visual acuity dropped below 5
200

in two

consecutive visits referred as “blindness”. There is a built-in lag time of 6.5 months.

The visits were every 4 months. For data analysis purpose survival times are therefore

considered with the actual time to blindness in months, subtracted by the smallest

possible time-to-event, which was estimated as 6.5 months.

Huster et al. (1989) analysed the data set and indicated possible treatment effect in

delaying the onset of blindness since by ignoring censoring the sample mean survival

time for the treated eye is 38.87 months while the same for the untreated eye is

32.29 months. Huster et al. (1989) considered exponential and Weibull as possible

marginals distributions and showed Weibull marginals fit well for the data comparing

to exponential marginals. They also proved that there exists positive correlation

between failure times of the two eyes. Again, Sahu & Dey (2000) analyzed this data

and showed that the failure rate for the adult patients is higher than the failure rate
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for the juveniles, on average.

We further analyse the data using our model. We observe that when the un-

treated eye fails first the failure rate of the treated eye is increasing. Similarly when

the treated eye fails first the failure rate of the untreated eye is increasing. There

is a positive association induced by the frailty ‘genetic factor’ in time for onset of

blindness for treated eye and the untreated eye. The age covariate has an effect on

time to blindness. These measures further confirm the findings of Huster et al. (1989).

Though, this data has been analyzed by many authors but never been looked upon

in a load sharing perspective.

For our analysis we considered the complete data set presented in Huster et al.

(1989) except simultaneous failures (N = 181). In our model the basic assumption is

that initially for given frailty, the eyes have independent failure rates with dependency

arriving only at the time one of these two eyes fails. If the untreated eye fails first, we

investigate if the treated eye is disturbed. Similarly, when treated eye fails first, we

observe how the failure rate of the untreated eye alters. Also, we study the dependence

induced by the frailty. Our main interest here is to estimate the parameters τ =

(θ1, θ2, θ
′
1, θ
′
2, α, γ, β).

4.9.1 Likelihood Contributions

Let Y1 be the onset of blindness for the treated eye and Y2 be the onset of blindness for

the untreated eye. For each data point (y1r, y2r) (excluding simultaneous failues)one

of the following five censoring situations can happen:

(i). y1r < y2r; treated eye fails before untreated eye and eventually both of them

fail.

(ii). y1r > y2r; untreated eye fails before treated eye and eventually both of them

fail.

(iii). y1r ≤ wr < y2r; the untreated eye is censored at wr and the treated eye fails

before wr.



4.9. Data Set 2: Diabetic Retinopathy Study Data 131

(iv). y2r ≤ wr < y1r; the treated eye is censored at wr and the untreated eye fails

before wr.

(v). wr < Min(y1r, y2r); both eyes are censored at the same time.

The likelihood contributions for the model given in (4.6)are as follows:

f1r = k12
∂2Lz (Ψ12(y1r, y2r))

∂y1r∂y2r

; y2r < y1r < wr,

= θ1θ
′
2αγ

2(y1ry2r)
γ−1eαXβ−[ϕ21(y1r,y2r)]α [ϕ21(y1r, y2r)]

α−2

× (1 + (α[ϕ21((y1r, y2r)]
α − 1])) ; y1r < y2r ≤ wr, (4.27)

f2r = k21
∂2Lz (Ψ21(y1r, y2r))

∂y1r∂y2r

; y1r < y2r < wr,

= θ′1θ2αγ
2(y1ry2r)

γ−1eαXβ−[ϕ12(y1r,y2r)]α [ϕ12(y1r, y2r)]
α−2

× (1 + (α[ϕ12((y1r, y2r)]
α − 1])) ; y2r < y1r ≤ wr, (4.28)

f3r =

∫
y2

θ′iθjr(wr)r(y2)e2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψij(wr,y2)

= θ1αγ(y1r)
γ−1eXβ−[ϕ21(y1r,wr)]α × [ϕ21(y1r, wr)]

α−1; y1r ≤ wr < y2r, (4.29)

f4r =

∫
y1

θ′iθjr(y1)r(wr)e
2Xβ

[
∂2Lz(s)

∂s2

]
s=Ψij(y1,wr)

; y1r < wr < y2r,

= θ2αγ(y2r)
γ−1eXβ−[ϕ12(wr,y2r)]α [ϕ12(wr, y2r)]

α−1; y2r ≤ wr < y1r, (4.30)

and

S(wr, wr|X) = e−[(θ1+θ2)wγr e
Xβ]α . (4.31)
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4.9.2 Data Analysis

We have considered one covariate for the analysis, type of diabetes (1-Juvenile, 2-

Adult) and it is denoted by X1 with censoring. We analysed this data using our

model and showed that there is a dependence induced by frailty in the data apart

from load sharing dependence. We estimated the parameters using the procedure

explained in Section 4.6. The computation was carried out using “FindMaximum”

function of Mathematica 10. We fit and compare the following models. Model 1:

Load share positive stable frailty model, Model 2: Load share model (no frailty) and

Model 3: Positive stable frailty model (no load share). The estimates with S.E., the

lower and the upper limits (LCL and UCL) of the 95% confidence intervals and the

Akaike information criterion (AIC) values for each model are provided in Table 4.6.

From Table 4.6 we obtained the estimates as θ̂1 ' 0.1927, θ̂2 ' 0.3100, θ̂′1 ' 0.9366,

θ̂′2 ' 0.9937, γ̂ ' 0.3340, α̂ ' 0.1464 and β̂ ' 0.7286. From the analysis, we conclude

that when the untreated eye fails first, θ1 = 0.1927 increases to θ′1 = 0.9366. Similarly,

when the treated eye fails first, θ2 = 0.3100 increases to θ′2 = 0.9937. This from (3.4)

signifies that the failure rate of the surviving eye is increasing.

Model 1 had the smallest AIC and gave the best in-sample fit for the diabetic

retinopathy data providing support for the existence of a frailty effect which con-

tributes to the dependence apart from the dependence between the organs induced

by load sharing. The covariate ‘β = 0.7286 ' eβ=2.07’ times, indicates that the type

of diabetic shows a positive impact on the onset of blindness. Since the age covariate

has value 1 for juvenile and 2 for adult patients and β is positive, we can conclude that

the onset of blindness for adults is 2 times faster than that of the juvenile patients.

These findings append the findings of Huster et al. (1989), Hanagal & Sharma (2011)

and Sahu & Dey (2000).

The K-S test reveals that both the marginals fit well for the diabetic retinopathy

data. For the marginal Y1 the K-S test statistic value is 0.15 which is less than

D0.01,42 = 0.2403, therefore we accept the null hypothesis at 0.01 significance level

that the data follows the distribution in (4.7). Similarly, for the marginal Y2 the K-S

test statistic value is 0.1774 which is less than D0.01,82 = 0.1800. Therefore we accept

the null hypothesis at 0.01 significance level that the data follows the distribution in

(4.7).
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4.10 Discussion and Summary

We have proposed a load share model with frailty to explain the dependence among

bivariate failure times. On failure of one component, the surviving component may

have extra load which also increases the stress level until the failure of the second

component. For various choices of the failure time distributions, we proposed families

of bivariate distributions which include load sharing, frailty, and covariates in (3.28).

For various choices of the parameters θi, θ
′
i, i = 1, 2 and without frailty or covariates,

our model reduces to the models given by Freund (1961), Lu (1989), Asha et al.

(2016) and Hanagal (2011).

From the analysis of the data set 1 we observed that the frailty plays a significant

role in the dependence between failure times, apart from the load sharing dependence.

The cross ratio function showed that there is a positive association in the failure times

for motor A and motor B. The AIC also supports the load share positive stable frailty

model (Model 1). The K-S test revealed that both the marginals fit well under this

model.

From the cross validation we observed that in most of the cases (83.33%) the

load share frailty model gives least conditional survival probability thereby predicting

the failures of the second component more accurately than the other two models.

Notice that for motors representing the system IDs 12, 13 and 14, both the models

incorporating load share perform poorly compare to the positive stable frailty model.

We suspect that it is more likely that some external force had affected the three

consecutive motors in the systems mentioned. It is desirable to further investigate

the circumstances under which these motors were performed.

From the data analysis for data set 2 we observed that the frailty plays a significant

role in the dependence between failure times, apart from the load sharing dependence.

Also, we observed that the failure of the treated eye increases the failure rate of the

untreated eye. Similarly, the failure of the untreated eye increases the failure rate of

the treated eye. These findings append the findings of Huster et al. (1989), Sahu et

al. (1997) and Hanagal & Sharma (2011). The full model, that is, load share with

positive stable frailty model is the best fitted model and the AIC also supports this

claim. The K-S test revealed that both the marginals fit well under this model.
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As extensively discussed, in a load share system, failure of a component affects

the stochastic behaviour of the surviving components thereby increasing/decreasing

the failure rate. In many practical situations there is a critical time after which the

surviving components regain their original failure rate. This phenomenon is widely

seen in many types of systems, including power transmission, computer networking,

finance, human bodily systems, bridges and so on. We refer these type of failures

involving in a system as cascading failures and is discussed in Lindley & Singpurwalla

(2002). In the next chapter we attempt to model data sets from such a system.
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Table 4.3: Estimates for reliability models for the motor data

Model Parameter Estimates

θ̂1 θ̂2 θ̂′1 θ̂′2 γ̂ α̂ AIC

Model 1

Estimates 0.021 0.051 0.275 0.299 0.732 0.642 480.5

S.E 0.002 0.006 0.03 0.028 0.016 0.025

LCL 0.017 0.038 0.216 0.245 0.683 0.610

UCL 0.024 0.063 0.333 0.354 0.780 0.674

Model 2

Estimates 0.021 0.016 0.218 0.198 0.822 494.9

S.E 0.002 0.001 0.003 0.003 0.011

LCL 0.017 0.014 0.212 0.193 0.801

UCL 0.024 0.019 0.224 0.204 0.843

Model 3

Estimates 0.762 0.227 558

S.E 0.056 0.018

LCL 0.653 0.113

UCL 0.872 0.331
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Table 4.4: Cross ratio comparison for motor data

Y1 Y2 CR for Model 1 CR for Model 2 Ratio

102 65 4.96 1.73 2.85
156 121 5.77 1.80 3.21
148 123 6.71 1.83 3.66
245 156 4.21 1.70 2.48
235 172 4.88 1.76 2.78
220 192 7.03 1.85 3.79
250 212 6.30 1.83 3.43
300 248 5.70 1.81 3.14
84 148 4.02 1.67 2.41
88 202 3.55 1.58 2.24
139 150 6.30 1.89 3.34
207 214 6.64 1.91 3.47
212 220 6.56 1.91 3.43
213 265 4.79 1.79 2.67
220 275 4.75 1.79 2.65
243 300 4.76 1.79 2.65
257 330 4.53 1.77 2.56
263 350 4.36 1.75 2.49
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Table 4.5: Cross validation comparison for motor data

Deleted sample point Model 1 Model 2 Model 3

(101, 65) 0.1058 0.2034 0.3261
(156, 121) 0.1383 0.2857 0.3493
(148, 123) 0.1693 0.3220 0.3628
(245, 156) 0.0656 0.2026 0.3041
(235, 172) 0.0998 0.2581 0.3286
(220, 192) 0.1785 0.3504 0.3611
(250, 212) 0.1567 0.3332 0.3526
(300, 248) 0.1354 0.3188 0.3432
(84, 148) 0.1223 0.1620 0.5156
(88, 202) 0.0543 0.0910 0.5632
(139, 150) 0.4549 0.4702 0.4117
(207, 214) 0.5135 0.5162 0.3857
(212, 220) 0.5046 0.5119 0.3934
(213, 265) 0.2404 0.3446 0.3750
(220, 275) 0.2330 0.3411 0.3739
(243, 300) 0.2362 0.3504 0.3722
(257, 330) 0.1947 0.3215 0.3687
(263, 350) 0.1646 0.2974 0.3660
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Table 4.6: Estimates for survival models for the diabetic retinopathy study data

Model Parameter Estimates

θ̂1 θ̂2 θ̂′1 θ̂′2 γ̂ β̂ α̂ AIC

Model 1

Estimates 0.1927 0.3100 0.9366 0.9937 0.3340 0.7286 0.1464 1899.96

S.E 0.0073 0.0115 0.0493 0.0340 0.0045 0.0561 0.0015

LCL 0.1784 0.2957 0.8399 0.9270 0.3253 0.6187 0.1435

UCL 0.2070 0.3243 1.0333 1.0604 0.3427 0.8385 0.1493

Model 2

Estimates 0.7548 0.8297 0.9684 1.0081 0.4525 -1.7174 1952.388

S.E 0.0177 0.0096 0.0171 0.0222 0.0023 0.0093

LCL 0.7201 0.7950 0.9350 0.9646 0.4475 -1.6993

UCL 0.7895 0.8644 1.0018 1.0516 0.4575 -1.7355

Model 3

Estimates 0.3930 0.7517 0.4344 3053.8

S.E 0.0022 0.0021 0.0012

LCL 0.3889 0.7475 0.4323

UCL 0.3971 0.7559 0.4364



Chapter 5

Modelling Cascading Failure Data

5.1 Introduction

Cascading failures are failures where an initial failure alters the structure function

of the system which triggers a series of subsequent failures. These type of failures

are very common in electrical power grids (Chang & Wu (2011)), paired organs in

biological sciences (Gross et al. (1971)), computer networking (Epema et al. (1996)),

financial institutions and banks (Wheelock & Wilson (2000)), bridges (Komatsu &

Sakimoto (1977)) and sports (Kim & Kvam (2004)) to name a few.

Lindley & Singpurwalla (2002) discussed the concept of cascading failures within

the framework of reliability theory. They extended the Freund’s bivariate exponential

model to model cascading failures.

The Freund’s bivariate exponential model provides a suitable framework for de-

veloping models of cascading failures. We recall that in the Freund’s bivariate expo-

nential model the lifetimes of the two-components behave as if they are independent,

until one of the components fail, after which the remaining component suffers an

increased/decreased stress. These types of models are also referred popularly as load

sharing models. For more on load sharing models and its generalizations we refer

∗Some of the results of this Chapter are published in Communications in Statistics-Simulation
and Computation. Asha & Raja (2017)
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Figure 5.1: Failure rate of the second component to fail in an exponential cascade
model.

to Daniels (1945), Rosen (1964), Coleman (1958), Gross et al. (1971), Lynch (1999),

Singpurwalla (1995) Hollander & Peña (1995), Peña (2006), Kim & Kvam (2004),

McCool (2006), Deshpande et al. (2010) and see the references cited therein.

In Lindley & Singpurwalla (2002) the Freund’s model is modified such that the

change in the parameter of the surviving component reverts back to the original

value after a threshold time. Assuming that components are identically distributed

as exponential θ and the renewed parameter is θ′, then for a threshold time δ on failure

of the first component at time point t, the failure rate is as illustrated in Figure 5.1.

Generalization of the above model to cover monotone failure rate functions, multiple

components and random values of the threshold time δ is discussed in Swift (2008).

Instead of arbitrarily distributed lifetime we modify the model in Swift (2008) by

considering the components to have a proportional hazards model. The model formu-

lation is done by applying the Cox proportional hazard model discussed in Section 1.2

and is presented in Section 5.2. In Section 5.3 we discuss the exponential cascading
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failure model as a special case of the model in Section 5.2. This is shown to general-

ize the models of Lindley & Singpurwalla (2002) and Swift (2008). In Section 5.4 we

employ the method of L-moments and method of moments estimation to estimate the

parameters of the model. A simulation study has been discussed in Section 5.5. The

usefulness of our model is illustrated by considering a cricket data. Cascading failures

are common in the game of cricket. “Cascading of wickets” and “Cascading failure

of a team” are some of the phrases used by the experts to define sequence of batting

failures and sequence of losses by a particular team in a tournament respectively.

For our model we considered the time spent by two opening batters at the crease

and if one opener fails, how the failure rate of the other opening batsman changes is

explained through a data analysis. We analyse a data set from www.espncricinfo.com

ESPNCricinfo (2013) and is analyzed using this model in Section 5.6.

5.2 Model Formulation and Properties

We consider the system discussed in Section 3.1 with some modifications. Let T1 and

T2 be random variables representing the lifetimes of components A and B respectively

in a two-component parallel system when they are first put on a test. If component

B fails before A, or equivalently if T1 > T2, the lifetime distribution of A changes

up to a critical period δ. Let it be denoted by T ∗1 . After the time interval δ the

lifetime of A is governed by the original random variable T1. Finally the system fails

when component A fails. The same applies for B when A fails first with an analogous

explanation for T ∗2 .

In order to derive a general class of bivariate distributions, it is further assumed

here that T1 and T2 are independently distributed having survival functions of the

form [S(.)]θ1 and [S(.)]θ2 respectively. It is further assumed that T ∗1 and T ∗2 have

survival functions [S(.)]θ
′
1 and [S(.)]θ

′
2 respectively. If we denote the lifetimes of A

and B as Y1 and Y2, then the dependence between Y1 and Y2 is essentially such that

the failure of the component B changes the parameter of the life distribution of A

from θ1 to θ′1 up to a critical time δ > 0, while the failure of the component A,

changes the parameter of the life distribution of the component B from θ2 to θ′2 up to

a critical time δ > 0. This dependency, which is explained in (1.9),(1.10),(1.11) and
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(3.4) reflects in the failure rate behaviour of the component as follows. If r(.) denotes

the baseline failure rate corresponding to S(.), then

λ10(y) = θ1r(y), y ≥ 0

λ20(y) = θ2r(y), y ≥ 0

λ12(y1|y2) = θ′1r(y1), y2 < y1 < y2 + δ

λ12(y1|y2) = θ1r(y1), y1 ≥ y2 + δ

λ21(y2|y1) = θ′2r(y2), y1 < y2 < y1 + δ

λ21(y2|y1) = θ2r(y2), y2 ≥ y1 + δ (5.1)

where λ10(y), λ20(y), λ21(y2|y1), λ12(y1|y2) are failure rate functions (Cox (1972))

defined as

λi0(y) = lim
∆y→0+

P (y ≤ Yi < y + ∆y|y ≤ Y1, y ≤ Y2)

∆y
, i = 1, 2

λ21(y|u) = lim
∆y→0+

P (y ≤ Y2 < y + ∆y|y ≤ Y2, Y1 = u)

∆y
, u < y (5.2)

with a similar definition for λ12(y|u). In terms of (5.2) the bivariate probability

density function f(y1, y2) is given by (Cox (1972))

f(y1, y2) = exp

− y1−0∫
0

{λ10(u) + λ20(u)}du−
y2−0∫
y1 +0

λ21(u|y1)du


× λ10(y1)λ21(y2 | y1), y2 ≥ y1 . (5.3)

For y1 < y2 < y1 + δ, the underlying model is

f(y1, y2) = exp

[
−
∫ y1

0

[θ1r0(y) + θ2r0(y)]du+

∫ y2

y1

[θ′2r0(y2)]dy2

]
θ1r0(y1)θ′2r0(y2)

= exp

[
−(θ1 + θ2)

∫ y1

0

r0(y)du

]
exp

[
−
∫ y2

0

θ′2r0(y2)dy2

]
× exp

[∫ y1

0

θ′2r0(y − 2)du

]
θ1

f(y1)

S(y − 1)
θ′2
f(y2)

S(y2)

= [S(y1)]θ1+θ2 [S(y2)]θ
′
2 [S(y1)]−θ

′
2−1θ1θ

′
2f(y1)f(y2)[S(y2)]−1. (5.4)
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Therefore for y1 < y2 < y1 + δ

f(y1, y2) = θ1θ
′
2f(y1)f(y2)[S(y1)]θ1+θ2−θ′2−1[S(y2)]θ

′
2−1, y1 < y2 < y1 + δ. (5.5)

Now for y2 > y1 + δ, the bivariate probability density function f(y1, y2) becomes

f(y1, y2) = exp

− y1∫
0

{λ10(u) + λ20(u)}du−
y2∫
y1

λ21(u|y1)du

λ10(y1)λ21(y2 | y1), y2 ≥ y1

(5.6)

f(y1, y2) = exp

[
−(θ1 + θ2)

∫ y1

0

ro(y)dy

]
exp

[
−
∫ y1+δ

y1

θ′2r0(u)du−
∫ y2

y1+δ

θ2r0(u)du

]
× θ1f(y1)[S(y1)]−1θ2f(y2)[S(y2)]−1. (5.7)

Recalling that

S(y) = e
−
y∫
0

r0(u)du
,

f(y1, y2) = θ1θ2f(y1)f(y2)[S(y1)]θ1+θ2−θ′2−1[S(y2)]θ2−1[S(y1 + δ)]θ
′
2−θ2 , y2 > y1 + δ.

(5.8)

Similarly, we can write the bivariate density function f(y1, y2) for the region y2 <

y1 < y2 + δ as

f(y1, y2) = θ2θ
′
1f(y1)f(y2)[S(y2)]θ1+θ2−θ′1−1[S(y1)]θ

′
1−1, y2 < y1 < y2 + δ. (5.9)

And for the region y1 > y2 + δ the bivariate density function f(y1, y2) is given by

f(y1, y2) = θ1θ2f(y1)f(y2)[S(y2)]θ1+θ2−θ′1−1[S(y1)]θ1−1[S(y2 + δ)]θ
′
1−θ1 , y1 > y2 + δ.

(5.10)

Hence the model (5.1) is retrieved from equations (5.5), (5.8), (5.9) and (5.10). Hence

the joint probability function of (Y1, Y2) for the underlying model is derived as

f(y1, y2) =


θ2 θ

′
1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ

′
1−1, y2 < y1 < y2 +δ

θ1 θ2 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ1−1[S(y2 +δ)]θ
′
1− θ1 , y1 > y2 +δ

θ1 θ
′
2 f(y2)f(y1)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ

′
2−1, y1 < y2 < y1 +δ

θ1 θ2 f(y2)f(y1)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ2−1[S(y1 +δ)]θ
′
2− θ2 , y2 > y1 +δ

(5.11)
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5.2.1 Alternative Formulation

Alternatively, the model given in (5.11) can also be derived in conditional probability

approach. Now let us look at the joint probability density function of Y1 and Y2 for

y2 < y1 < y2 + δ,

f(y1, y2) = lim
dy1,dy2−>0

P [y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 + dy2]

dy1dy2

P [y1 ≤ T ∗1 ≤ y1 + dy1, y2 ≤ T2 ≤ y2 + dy2]

= P [y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2, T2 < T ∗1 < T2 + δ, y1 ≤ T ∗1 ≤ y1 + dy1]

= P [y2 ≤ Min(T1, T2) ≤ y2 + dy2]× P [T1 > T2|y2 ≤ Min(T1, T2) ≤ y2 + dy2]

× P [T2 < T ∗1 < T2 + δ|y2 ≤ Min(T1, T2 ≤ y2 + dy2, T1 > T2)]

× P [y1 < T ∗1 ≤ y1 + dy1|y2 ≤ Min(T1, T2 ≤ y2 + dy2, T1 > T2, T2 < T ∗1 < T2 + δ)].

Now

lim
dy2−>0

P [y2 ≤ Min(T1, T2) ≤ y2 + dy2]

dy2

= − d

dy2

[S(y2)]θ1+θ2 ,

P [T1 > T2|y2 ≤ Min(T1, T2) ≤ y2 + dy2] =
θ2

θ1 + θ2

,

P [T2 < T ∗1 < T2 + δ|y2 ≤ Min(T1, T2 ≤ y2 + dy2, T1 > T2)]

=
P [y2 < T ∗1 < y2 + δ]

P [T ∗1 > y2]
=
S(y2)]θ

′
1 − [S(y2 + δ)]θ

′
1

[S(y2)]θ
′
1

.

Since the event [y2 ≤ Min(T1, T2 ≤ y2 + dy2, T1 > T2)] is equivalent to [T ∗1 > y2] and

finally

P [y1 < T
∗
1 < y1 + dy1 | y2 ≤ Min(T1, T2 ≤ y2 + dy2, T1 > T2, T2 < T

∗
1 < T2 +δ)]

=
P [y1 < T ∗1 < y1 + dy1]

P [y2 < T ∗1 < y2 +δ]
=

−d[S(y1)]θ
′
1

dy1

[S(y2)]θ
′
1 − [S(y2 +δ)]θ

′
1
,

so that y2 < y1 < y2 + δ

f(y1, y2) =
θ2

θ1 + θ2

 d

dy2

[S(y2) ]θ1 + θ2 [S(y2)]θ
′
1 − [S(y2 +δ)]θ

′
1

[S(y2)]θ
′
1

d[S(y1)]θ
′
1

dy1

[S(y2)]θ
′
1 − [S(y2 +δ)]θ

′
1
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f(y1, y2) = θ2 θ
′
1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ

′
1−1.

This is the same expression we obtained in the earlier set up with Freund dependency

for y2 < y1,

f(y1, y2) = lim
dy1,dy2−>0

P [y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 + dy2]

dy1dy2

Now for y1 > y2 + δ it follows that

P [y1 ≤ Y1 ≤ y1 + dy1, y2 ≤ Y2 + dy2]

= P [y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2, T
∗
1 > T2 + δ, y1 ≤ T1 ≤ y1 + δ]

= P [y2 ≤ Min(T1, T2) ≤ y2 + dy2]× P [T1 > T2|y2 ≤ Min(T1, T2) ≤ y2 + dy2]

× P [T ∗1 > T2 + δ|y2 ≤ Min(T1, T2 ≤ y2 + dy2, T1 > T2)]

× P [y1 < T1 ≤ y1 + dy1|y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2, T
∗
1 > T2 + δ)].

Now

lim
dy2−>0

P [y2 ≤ Min(T1, T2) ≤ y2 + dy2]

dy2

= − d

dy2

[S(y2) ]θ1 + θ2

P [T1 > T2 | y2 ≤ Min(T1, T2) ≤ y2 + dy2] =
θ2

θ1 + θ2

P [T2 < T
∗
1 < T2 +δ| y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2]

Since the event [y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2] is equivalent to [T ∗1 > y2]

=
P [T ∗1 > y2 + δ]

P [T ∗1 > y2]
=
S[(y2 + δ)]θ

′
1

S[(y2)]θ
′
1

.

Finally, consider

P [y1 ≤ T1 ≤ y1 + dy1| y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2, T
∗
1 > T2 +δ].
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The event (y2 ≤ Min(T1, T2) ≤ y2 + dy2, T1 > T2, T
∗
1 > T2 +δ) is equivalent to T1 >

y2 + δ,

lim
dy1−>0

P [y1 ≤ T1 ≤ y1 + dy1|T1 > y2 +δ]

dy1

=
−d[S(y1)]θ1

dy1

[S(y2 +δ)]θ1

so that we have

f(y1, y2) =
d

dy2

[S(y2) ]θ1 + θ2 × θ2

θ1 + θ2

× [S(y2 +δ)]θ
′
1

[S(y2)]θ
′
1
×

d[S(y2)]θ1

dy1

[S(y2 +δ)]θ1
, y1 > y2 + δ

or

f(y1, y2) = θ2 θ1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ1−1[S(y2 +δ)]θ
′
1− θ1 , y1 > y2+δ �

Thus

f(y1, y2) =

{
θ2 θ

′
1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ

′
1−1, y2 < y1 < y2 +δ

θ2 θ1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ1−1[S(y2 +δ)]θ
′
1− θ1 , y1 > y2 +δ

Similarly for y1 < y2,

f(y1, y2) =

{
θ1 θ

′
2 f(y2)f(y1)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ

′
2−1, y1 < y2 < y1 +δ

θ1 θ2 f(y2)f(y1)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ2−1[S(y1 +δ)]θ
′
2− θ2 , y2 > y1 +δ

Thus we have

f(y1, y2) =


θ2 θ

′
1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ

′
1−1, y2 < y1 < y2 +δ

θ2 θ1 f(y2)f(y1)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ1−1[S(y2 +δ)]θ
′
1− θ1 , y1 > y2 +δ

θ1 θ
′
2 f(y2)f(y1)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ

′
2−1, y1 < y2 < y1 +δ

θ1 θ2 f(y2)f(y1)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ2−1[S(y1 +δ)]θ
′
2− θ2 , y2 > y1 +δ

Equivalently
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f(y1, y2) =
θ2

θ1 + θ2−θ′1
d[S(y1)]θ

′
1

dy1

d[S(y2)]θ1 + θ2− θ′1

dy2

, y2 < y1 < y2 +δ

=
θ2

θ1 + θ2−θ′1
d[S(y1)]θ1

dy1

d[S(y2)]θ1 + θ2− θ′1

dy2

[S(y2 +δ)]θ
′
1− θ1 , y1 > y2 +δ

=
θ1

θ1 + θ2−θ′2
d[S(y1)]θ1 + θ2− θ′2

dy1

d[S(y2)]θ
′
2

dy2

, y1 < y2 < y1 +δ

=
θ1

θ1 + θ2−θ′2
d[S(y1)]θ1 + θ2− θ′2

dy1

d[S(y2)]θ2

dy2

[S(y1 +δ)]θ
′
2− θ2 , y2 > y1 +δ.

5.2.2 Properties

Property 5.2.1. The probability density function specified in (5.11) reduces to a

model with independent marginals whenever either of the following holds.

1. θi = θ′i, i = 1, 2

2. δ = 0

Proof. This can be seen directly from (5.11) on substituting θi = θ′i, i = 1, 2, or

δ = 0. In both the cases

f(y1, y2) =
d[S(y1)]θ1

dy1

× d[S(y2)]θ2

dy2

�

Property 5.2.2. For δ =∞ the probability density function given in (5.11) reduces

to the model specified by (Asha et al. (2016))

f(y1, y2) =

{
θ2 θ

′
1 f(y1)f(y2)[S(y2)]θ1 + θ2− θ′1−1[S(y1)]θ

′
1−1, y1 > y2 > 0

θ1 θ
′
2 f(y1)f(y2)[S(y1)]θ1 + θ2− θ′2−1[S(y2)]θ

′
2−1, y2 > y1 > 0

(5.12)

Remark 5.2.1. When S(y) = e−y, the model (5.12) reduces to the Freund bivariate

exponential model (Freund (1961)). In this case the joint probability density function
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of (5.12) becomes

f(y1, y2) =

{
θ′1θ2e

−θ′1y1e−(θ1+θ2−θ′1)y2 , y1 > y2 > 0

θ1θ
′
2e
−(θ1+θ2−θ′2)y1e−θ

′
2y2 , y2 > y1 > 0

(5.13)

Remark 5.2.2. When S(y) = e−y
α
, α > 0, the model (5.12) reduces to Weibull

extensions of the Freund model (Lu (1989)). In this case the joint probability density

function of (5.12) becomes

f(y1, y2) =

{
θ′1θ2α

2yα−1
1 yα−1

2 e−θ
′
1y
α
1 e−(θ1+θ2−θ′1)yα2 , y1 > y2 > 0

θ1θ
′
2α

2yα−1
1 yα−1

2 e−(θ1+θ2−θ′2)yα1 e−θ
′
2y
α
2 , y2 > y1 > 0

(5.14)

The other examples are provided in Tables 5.1 - 5.2 .
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Property 5.2.3. For the probability density function defined in (5.11) P (Xi > X3−i) =
θi

θ1+θ2
, i = 1, 2.

Proof. For y1 > y2

∞∫
0

 ∞∫
y2

f(y1, y2)dy1

dy2 =

∞∫
0

y2+δ∫
y2

θ2

θ1 + θ2−θ′1
d[S(y1)]θ

′
1

dy1

d[S(y2)]θ1 + θ2− θ′1

dy2

dy1dy2

+

∞∫
0

∞∫
y2+δ

θ2

θ1 + θ2−θ′1
d[S(y1)]θ1

dy1

d[S(y2)]θ1 + θ2− θ′1

dy2

[S(y2 +δ)]θ
′
1− θ1dy1dy2. (5.15)

Now

∞∫
0

y2+δ∫
y2

θ2

θ1 + θ2−θ′1
d[S(y1)]θ

′
1

dy1

d[S(y2)]θ1 + θ2− θ′1

dy2

dy1dy2

=

∞∫
0

θ2

θ1 + θ2−θ′1
d[S(y2)]θ1 + θ2− θ′1

dy2

[[S(y2 +δ)]θ
′
1 − [S(y2)]θ

′
1 ]dy2

=
θ2

θ1 +θ2

+
θ2

θ1 + θ2−θ′1

∞∫
0

[S(y2 +δ)]θ
′
1
d[S(y2)]θ1 + θ2− θ′1

dy2

dy2. (5.16)

Also

∞∫
0

∞∫
y2+δ

θ2

θ1 + θ2−θ′1
d[S(y1)]θ1

dy1

d[S(y2)]θ1 + θ2− θ′1

dy2

[S(y2 +δ)]θ
′
1− θ1dy1dy2

= −
∞∫

0

θ2

θ1 + θ2−θ′1
d[S(y2)]θ1 + θ2− θ′1

dy2

[S(y2 +δ)]θ
′
1− θ1 [S(y2 +δ)]θ1dy2

= −
∞∫

0

θ2

θ1 + θ2−θ′1
d[S(y2)]θ1 + θ2− θ′1

dy2

[S(y2 +δ)]θ
′
1dy2. (5.17)
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From (5.16) and (5.17) it follows that

∞∫
0

 ∞∫
y2

f(y1, y2)dy1

dy2 =
θ2

θ1 +θ2

. (5.18)

Similarly we can prove that

∞∫
0

 ∞∫
y1

f(y1, y2)dy2

dy1 =
θ1

θ1 +θ2

. (5.19)

�

5.3 The Exponential Cascade Model

When S(y) = e−y in the model (5.11), it reduces to the exponential cascade model,

which is the main focus in the remaining of this chapter. The model is

f(y1, y2) =


θ2 θ

′
1 e
−(θ1 + θ2− θ′1)y2−θ′1 y1 , y2 < y1 < y2 + δ

θ2 θ1 e
− θ2 y2e− θ1 y1e−(θ′1− θ1)δ, y1 > y2 + δ

θ1 θ
′
2 e
−(θ1 + θ2− θ′2)y1−θ′2 y2 , y1 < y2 < y1 + δ

θ1 θ2 e
− θ1 y1e− θ2 y2e−(θ′2− θ2)δ, y2 > y1 + δ

(5.20)

Remark 5.3.1. When S(y) = e−y, θi = θ and θ′i = 2θ, for i = 1, 2, in the model

(5.11), then it reduces to the model specified by (Lindley & Singpurwalla (2002)).

f(y1, y2) =


2θ2e−2θy1 , y2 < y1 < y2 + δ

θ2e−θ(y1+y2+δ), y1 > y2 + δ

2θ2e−2θy2 , y1 < y2 < y1 + δ

θ2e−θ(y1+y2+δ), y2 > y1 + δ

(5.21)

Remark 5.3.2. When S(y) = e−y, θi = θ and θ′i = cθ, for i = 1, 2, in the model
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(5.11), then it reduces to the model specified by (Swift (2008)).

f(y1, y2) =


cθ2e−cθy1 , y2 < y1 < y2 + δ

θ2e−θ(y1+y2+δ), y1 > y2 + δ

cθ2e−cθy2 , y1 < y2 < y1 + δ

θ2e−θ(y1+y2+δ), y2 > y1 + δ

(5.22)

Theorem 5.3.1. The probability density function of the time to failure of the system

that is W = Max [Y1, Y2] with lifetime model specified by (5.20) is given by

fC(w) =
θ2 θ

′
1

θ1 +θ2− θ′1

[
e− θ

′
1 w − e−(θ1 + θ2)w

]
+

θ1 θ
′
2

θ1 +θ2− θ′2

[
e− θ

′
2 w − e−(θ1 + θ2)w

]
, w < δ

= θ1 e
−δ(θ′1− θ1)e− θ1 w

[
1− e− θ2(w−δ)]+

θ2 θ
′
1 e
− (θ1 + θ2)w

θ1 +θ2− θ′1

[
e−δ(θ

′
1− θ1− θ2) − 1

]
+ θ2 e

−(θ′2− θ2)δe− θ2 w
[
1− e− θ1(w−δ)]+

θ1 θ
′
2 e
− (θ1 + θ2)w

θ1 +θ2− θ′2

[
e−δ(θ

′
2− θ1− θ2) − 1

]
, w ≥ δ.

(5.23)

Proof. First let us consider for w < δ

fC1(w) =

w∫
0

f(y1, y2)dy2 +

w∫
0

f(y1, y2)dy1 =

w∫
0

f(w, y2)dy2 +

w∫
0

f(y1, w)dy1

fC1(w) =
θ2 θ

′
1

θ1 +θ2− θ′1

[
e− θ

′
1 w − e−(θ1 + θ2)w

]
+

θ1 θ
′
2

θ1 +θ2− θ′2

[
e− θ

′
2 w − e−(θ1 + θ2)w

]
.

(5.24)

Now let us consider for w > δ

fC2(w) =

w−δ∫
0

[θ1 θ2 e
− θ1 y1e− θ2 y2e−(θ′2− θ2)δ]dy1+

w∫
w−δ

[θ1 θ
′
2 e
−(θ1 + θ2− θ′2)y1−θ′2 y2 ]dy1

+

w−δ∫
0

[θ2 θ1 e
− θ2 y2e− θ1 y1e−(θ′1− θ1)δ]dy2+

w∫
w−δ

θ2 θ
′
1 e
−(θ1 + θ2− θ′1)y2−θ′1 y1 ]dy2

(5.25)
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fC2(w) = θ1 e
−(θ′1− θ1)δe− θ1 w

[
1− e− θ2(w−δ)]+

θ2 θ
′
1 e
− (θ1 + θ2)w

θ1 +θ2− θ′1

[
e(θ1 + θ2− θ′1)δ − 1

]
+
θ1 θ

′
2 e
− (θ1 + θ2)w

θ1 +θ2− θ′2

[
e(θ1 + θ2− θ′2)δ − 1

]
+ θ2 e

−(θ′2− θ2)δe− θ2 w
[
1− e− θ1(w−δ)] .

(5.26)

Therefore, the time to failure of the system with cascading failures at w is of the

form

fC(w) =
θ2 θ

′
1

θ1 +θ2− θ′1

[
e− θ

′
1 w − e−(θ1 + θ2)w

]
+

θ1 θ
′
2

θ1 +θ2− θ′2

[
e− θ

′
2 w − e−(θ1 + θ2)w

]
, w < δ

= θ1 e
−δ(θ′1− θ1)e− θ1 w

[
1− e− θ2(w−δ)]+

θ2 θ
′
1 e
− (θ1 + θ2)w

θ1 +θ2− θ′1

[
e−δ(θ

′
1− θ1− θ2) − 1

]
+ θ2 e

−(θ′2− θ2)δe− θ2 w
[
1− e− θ1(w−δ)]+

θ1 θ
′
2 e
− (θ1 + θ2)w

θ1 +θ2− θ′2

[
e−δ(θ

′
2− θ1− θ2) − 1

]
, w ≥ δ.

(5.27)

�

Corollary 5.3.1. For θi = θ and θ′i = 2θ for i = 1, 2

fC(w) = 4θ2we−2θw, w < δ

= 4θ2δe−2θw + 2θe−θ(w+δ) − 2θe−2θw, w ≥ δ (5.28)

(Lindley & Singpurwalla (2002)).

Theorem 5.3.2. The survival or reliability function is specified by

SC(w) =
θ1(θ1 + θ2 − θ′1)e−wθ

′
2 + θ2(θ1 + θ2 − θ′2)e−wθ

′
1

(θ1 + θ2 − θ′1)(θ1 + θ2 − θ′2)

+
(θ′2(θ′1 − θ1)− θ2θ

′
1)e−w(θ1+θ2)

(θ1 + θ2 − θ′1)(θ1 + θ2 − θ′2)
, w < δ

= e−wθ1+δ(θ1−θ′1) + e−wθ2+δ(θ2−θ′2) +
(θ′1 − θ1)e−w(θ1+θ2)+δ(θ1+θ2−θ′1)

θ1 + θ2 − θ′1

− (θ2θ
′
1 + θ′2(θ′1 − θ1))e−w(θ1+θ2)

(θ1 + θ2 − θ′1)(θ1 + θ2 − θ′2)
+

(θ′2 − θ2)e−w(θ1+θ2)+δ(θ1+θ2−θ′2)

θ1 + θ2 − θ′2
, w ≥ δ.

(5.29)
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Proof. Though, the calculation is cumbersome, it can be directly derived from the

result,

SC(w) =

δ∫
w

fC1(w)dw +

∞∫
δ

fC2(w)dw, w < δ

=

∞∫
w

fC2(w)dw, w ≥ δ. (5.30)

Now

SC1(w) =

∫ δ

w

(
(−e−w(θ1+θ2) + e−w θ

′
1)θ2θ

′
1

θ1 + θ2 − θ′1
+

(−e−w(θ1+θ2) + e−wθ
′
2)θ1θ

′
2

θ1 + θ2 − θ′2

)
dw

+

∫ ∞
δ

(
e−δ(θ

′
1−θ1)

[
e−wθ1 − e−wθ1−(w−δ)θ2

]
θ1

)
dw

+

∫ ∞
δ

(
e−δ(θ

′
2−θ2)

[
e−wθ2 − e−wθ2−(w−δ)θ1

]
θ2

)
dw

+

∫ ∞
δ

([
e−w(θ1+θ2)+δ(θ1+θ2−θ′1) − e−w(θ1+θ2)

]
θ2θ
′
1

θ1 + θ2 − θ′1

)
dw

+

∫ ∞
δ

([
e−w(θ1+θ2)+δ(θ1+θ2−θ′2) − e−w(θ1+θ2)

]
θ1θ
′
2

θ1 + θ2 − θ′2

)
dw (5.31)

and

SC2(w) =

∫ ∞
w

(
e−δ(θ

′
1−θ1)−wθ1

[
1− e−(w−δ)θ2

]
θ1 + e−δ(θ

′
2−θ2)−wθ2

[
1− e−(w−δ)θ1

]
θ2

)
dw

+

∫ ∞
w

([
e−w(θ1 + θ2) + δ(θ1 + θ2 − θ′1)− e−w(θ1+θ2)

]
θ2θ
′
1

θ1 + θ2 − θ′1

)
dw

+

∫ ∞
w

([
e−w(θ1+θ2)+δ(θ1+θ2−θ′2) − e−w(θ1+θ2)

]
θ1θ
′
2

θ1 + θ2 − θ′2

)
dw. (5.32)

Therefore, the reliability function at w is of the form

SC(w) =
θ1(θ1 + θ2 − θ′1)e−wθ

′
2 + θ2(θ1 + θ2 − θ′2)e−wθ

′
1

(θ1 + θ2 − θ′1)(θ1 + θ2 − θ′2)
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+
(θ′2(θ′1 − θ1)− θ2θ

′
1)e−w(θ1+θ2)

(θ1 + θ2 − θ′1)(θ1 + θ2 − θ′2)
, w < δ

= e−wθ1+δ(θ1−θ′1) + e−wθ2+δ(θ2−θ′2) +
(θ′1 − θ1)e−w(θ1+θ2)+δ(θ1+θ2−θ′1)

θ1 + θ2 − θ′1

− (θ2θ
′
1 + θ′2(θ′1 − θ1))e−w(θ1+θ2)

(θ1 + θ2 − θ′1)(θ1 + θ2 − θ′2)
+

(θ′2 − θ2)e−w(θ1+θ2)+δ(θ1+θ2−θ′2)

θ1 + θ2 − θ′2
, w ≥ δ

(5.33)

The equation (5.29) is now retrieved from (5.31) and (5.32). �

Property 5.3.1. The failure rate of (5.27) is given by

hC(w) =

{
A(w;τ )+B(w;τ )−C(w;τ )

D(w;τ )
, w < δ

E(w;τ )−F (w;τ )−G(w;τ )−H(w;τ )
I(w;τ )−J(w;τ )

, w ≥ δ
(5.34)

where τ = (θ1, θ2, θ
′
1, θ
′
2, δ),

A(w; τ ) = e(θ1 + θ2− θ′2)w[θ2 θ
′
1 (θ1 + θ2− θ′2)],

B(w; τ ) = e(θ1 + θ2− θ′1)w[θ1 θ
′
2(θ1 + θ2− θ′1)],

C(w; τ ) = [(θ1 + θ2)(θ2 θ
′
1 + θ

′
2(θ1− θ′1))]e(θ′1 + θ′2)w,

D(w; τ ) =

[
(θ1 + θ2− θ′2) θ2 e

(θ1 + θ2 + θ′2)w − (θ2 θ
′
1 + θ′2(θ1− θ′1))e(θ′1 + θ′2)w

+ (θ1 + θ2− θ′1)θ1 e
(θ1 + θ2− θ′1)w

]
,

E(w; τ ) = (θ1 + θ2− θ′2)(θ1 + θ2− θ′1)
[
θ1e
−w θ1−δ(θ′1− θ1) + θ2 e

−w θ2−δ(θ′2− θ2)
]
,

F (w; τ ) = [(θ1 + θ2− θ′2)(θ1 + θ2)(θ1− θ′1)] e−(θ1 + θ2)w−δ(θ′1− θ1− θ2),

G(w; τ ) = [(θ1 + θ2− θ′1) (θ1 + θ2) (θ2− θ
′
2)] e− (θ1 + θ2)w+(θ1 + θ2− θ′2)δ,

H(w; τ ) = [(θ1 + θ2)(θ2 θ
′
1 θ
′
2)(θ1− θ′1)] e− (θ1 + θ2)w,

I(w; τ ) = (θ1 + θ2− θ′2)(θ1 + θ2− θ′1)
[
θ1e
−w θ1−δ(θ′1− θ1) + θ2 e

−w θ2−δ(θ′2− θ2)
]
,

J(w; τ ) = (θ1− θ′1)e−w(θ1 + θ2)

[
[(θ1 + θ2− θ′2)e−δ(θ

′
1− θ1− θ2) − θ2 θ

′
1 θ
′
2]−

(θ1 + θ2− θ′1)(θ′2− θ2)e−δ(θ
′
2− θ1− θ2)

]
.

The probability density function, fC(w) starts at zero when w = 0, attains its

maximum as w moves close to 0.5, and then start decreasing towards zero as w ap-

proaches to∞ (see Figure 5.2). The hazard function, hC(w) increases to a maximum

and then remains constant as w approaches to ∞ (see Figure 5.4).
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Figure 5.2: Failure time density function for the cascading model when θ1 =
1.25, θ2 = 1.25, θ′1 = 2.0, θ′2 = 2.0 and δ = 0.25.

Figure 5.3: Survival function (when θ1 = 1.25, θ2 = 1.25, θ′1 = 2.0, θ′2 = 2.0, δ = 0.25)
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Figure 5.4: Hazard rate function (when θ1 = 1.25, θ2 = 1.25, θ′1 = 2.0, θ′2 = 2.0, δ =
0.25)

The mean time to system failure (MTTF) is defined by
∞∫
0

SC(w)dw. The resulted

MTTF is given by

MTTF =
θ1 θ2(θ1 θ

′
1 +(θ2 + θ′1) θ′2)− θ2

1 θ
′
1(θ2− θ′2)e−δ θ

′
2 − θ2

2 θ
′
2(θ1− θ′1)e−δ θ

′
1

θ1 θ2(θ1 + θ2) θ′1 θ
′
2

(5.35)

Remark 5.3.3. For θi = θ and θ′i = 2θ, i = 1, 2 the mean time to system failure is
1
θ

+ e−2δθ

2θ
as in Lindley & Singpurwalla (2002). When the critical time δ ↑ ∞, the

mean time to system failure is θ1 θ
′
1 +(θ2 + θ′1) θ′2

(θ1 + θ2) θ′1 θ
′
2

and when δ ↓ 0, the mean time to system

failure is θ2
1 + θ2

2 + θ1 θ2
θ1 θ2(θ1 + θ2)

. Now, for (θi = θ) and (θ′i = 2θ), for i = 1, 2 the mean time

to system failure would simplify into 1
θ

and 3
2θ

respectively. (Lindley & Singpurwalla

(2002)). Also, for (θi = θ) and (θ′i = cθ), for i = 1, 2 and δ ↓ 0 the mean time

to system failure would simplify into 3
2θ

as obtained in Swift (2008). Further, from

(5.35) it can be inferred that the cascading failure results in a greater mean time to

failure than the mean time to failure under Freund’s model whenever failure of one

component adversely affects the functioning of the surviving component in a two-unit

parallel redundant system.

Remark 5.3.4. When θ1 + θ2 = θ′i and θ1 + θ2 6= θ′3−i, for i = 1, 2, then it reduces to

the model with the survival or reliability function specified by

SC(w) =
e−w(θ1+θ2+θ′3−i)

(
θie

w(θ1+θ2) + ewθ
′
3−i(θ3−i(1 + w(θ1 + θ2 − θ′3−i)− θ′3−i)

)
(θ1 + θ2 − θ′3−i)

, w < δ
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= e−wθi−δθ3−i + e−wθ3−i+δ(θ3−i−θ
′
3−i) + e−w(θ1+θ2)

(
δθ3−i −

θi
θ1 + θ2 + θ′3−i

)
+

(θ′3−i − θ3−i)e
−w(θ1+θ2)+δ(θ1+θ2+θ′3−i)

θ1 + θ2 − θ′3−i
, w ≥ δ. (5.36)

Remark 5.3.5. When θ1 + θ2 = θ′i, for i = 1, 2, then it reduces to the model with the

survival or reliability function specified by

SC(w) = w(θ1 + θ2)e−w(θ1+θ2) + e−w(θ1+θ2);w < δ

= δ(θ1 + θ2)e−w(θ1+θ2) + e−(θ1w+θ2δ) + e−(θ1δ+θ2w) − e−w(θ1+θ2);w ≥ δ.

(5.37)

5.4 Estimation of the parameters

In quest of explaining the parameter estimation of the failure time distribution func-

tion in (5.27), classical procedures such as method of maximum likelihood and method

of least squares turn out to be cumbersome as the range of the random variables de-

pend on parameter of interest. Hence, we consider the technique of (i) method of

moments and (ii) method of L-moments. It is our primary interest to estimate the

change in failure rates and the threshold time δ. The method of moments technique

of parameter estimation is applied to the density in (5.27) to obtain the moment

equations. The first three moment equations are given as follows:

m1 =
θ1(θ′2− θ2)e−δ θ

′
2

θ′2 θ2(θ1 + θ2)
+
θ2(θ′1− θ1)e−δ θ

′
1

θ′1 θ1(θ1 + θ2)
+
θ1 θ

′
1 + θ′2(θ′1 + θ2)e−δ θ

′
2

θ′1 θ
′
2(θ1 + θ2)

, (5.38)

m2 =
2θ2(θ′1− θ1) [θ1(θ1 + θ2) + θ′1(θ2 + θ1(2 + δ(θ1 + θ2))] e−δ θ

′
1

θ2
1θ
′2
1 (θ1 + θ2)2

+
2θ1(θ′2− θ2) [θ1(θ2 + θ′2 +δ θ2 θ

′
2) + θ2(θ2 +2 θ′2 +δ θ2 θ

′
2)] e−δ θ

′
2

θ2
2(θ1 + θ2)2

+
2 [θ1(θ1 + θ2) θ′21 +(θ2(θ1 + θ2) + θ2 θ

′
1 + θ′21 ) θ′22 + θ1 θ

′2
1 θ
′
2)]

θ′21 θ
′2
2 (θ1 + θ2)2

, (5.39)
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m3 =

∞∫
0

w3 fC(w)dw. (5.40)

Alternatively, we could think of substituting the L-moments for the conventional

moments. The foundation of this approach is found in Hosking (1990). Basically,

L-moments are expectations of certain linear combinations of order statistics. They

can be defined for any random variable whose mean exists. The main advantage of

L-moments over conventional moments is that L-moments, being linear functions of

the data, suffer less from the effects of sampling variability: L-moments are more

robust than conventional moments to outliers in the data and enable more secure in-

ferences to be made from small samples about an underlying probability distribution.

L-moments sometimes yield more efficient parameter estimates than the maximum

likelihood estimates. If W1(n) ≤ W2(n) ≤ ... ≤ Wn(n) are the rank statistics of the

random sample of size n selected from the distribution W , then the rth L-moment of

the random variable W is defined as

λr = r−1

r−1∑
k=0

(−1)k

(
r − 1

k

)
EW(r−k)(r), r = 1, 2, 3, ... , (5.41)

where

(
0

0

)
= 1.

The expected value of the rank statistic is of the form

EWj(r) =
r!

(j − 1)!(r − j)!

∫
w[1− SC(w)]j−1[SC(w)]r−j(−dSC(w)) (5.42)

(David (1968)). The L-moments for the distribution in (5.27) are obtained by using

(5.42). Observe that the first L-moment is the E(W ). The first three L-moments are

given as follows:

λ1 =
θ1(θ′2− θ2)e−δ θ

′
2

θ′2 θ2(θ1 + θ2)
+
θ2(θ′1− θ1)e−δ θ

′
1

θ′1 θ1(θ1 + θ2)
+
θ1 θ

′
1 + θ′2(θ′1 + θ2)e−δ θ

′
2

θ′1 θ
′
2(θ1 + θ2)

(5.43)

λ2 =
θ1(θ′2− θ2)e−δ θ

′
2

θ′2 θ2(θ1 + θ2)
+
θ2(θ′1− θ1)e−δ θ

′
1

θ′1 θ1(θ1 + θ2)
+

θ2
1(θ2− θ′2) (θ1 + 2θ2− θ′2)e−2δ θ′2

2θ′2 θ2(θ1 + θ2) (θ1 +2 θ2) (θ1 + θ2− θ′2)
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+
θ2

2(θ1− θ′1) (2θ1 + θ2− θ′1)e−2δ θ′1

2θ′1 θ1(θ1 + θ2) (2θ1 + θ2) (θ1 + θ2− θ′1)

+
θ1(θ′2− θ2) [θ2 θ

′
1 + θ′2(θ1− θ′1)]e−δ(θ1 + θ2 + θ′2)

(θ1 + θ2)(θ1 +2 θ2) (θ1 + θ2− θ′1) (θ1 + θ2− θ′2) (θ1 + θ2 + θ′2)

+
θ2(θ′1− θ1) [θ2 θ

′
1 + θ′2(θ1− θ′1)]e−δ(θ1 + θ2 + θ′1)

(θ1 + θ2)(θ1 +2 θ2) (θ1 + θ2− θ′1) (θ1 + θ2− θ′2) (θ1 + θ2 + θ′2)

+
θ1 θ2

[
θ1(3 θ′21 + θ1

′θ′2 +2 θ′22 ) + θ2(2 θ′21 + θ1
′θ′2 +3 θ′22 )

]
2(θ1 + θ2) θ′1 θ

′
2 (θ1 + θ2 + θ′1) (θ1 + θ2 + θ′2) (θ′1 + θ′2)

+
(θ′1 + θ′2){θ3

1 θ
′
1 + θ′2(θ2 + θ′2)(θ2

2+θ2 θ
′
1 + θ′21 )+2 θ2(θ′21 + θ′22 )}+θ′1 θ1[(θ

′
1 + θ′2)2]{θ1 + θ′2}

2(θ1 + θ2) θ′1 θ
′
2 (θ1 + θ2 + θ′1) (θ1 + θ2 + θ′2) (θ′1 + θ′2)

+
θ1 θ2{4θ3

1+4θ3
2−(θ′1 + θ′2)[8θ2

2−3 θ′1 θ
′
2 + θ2(5θ′1 +4 θ′2)+8θ2

1+17 θ1 θ2− θ1(4θ′1 +5 θ′2)]+14θ2
1 θ2 +14θ2

2 θ1}e−δ(θ
′
1 + θ

′
2)

(θ1 + θ2)(2θ1 + θ2)(θ1 + 2θ2) (θ1 + θ2− θ′1) (θ1 + θ2− θ′2) (θ′1 + θ′2)
,

(5.44)

λ3 =
1

3
E[W3(3) − 2W2(3) +W1(3)]. (5.45)

The expression for the higher order are not presented here due to the complicated

expressions. They are obtained with the help of Mathematica Software.

Now we will assume that w1, w2, w3, ..., wn is a random sample and w1:n ≤ w2:n ≤
... ≤ wn:n is the ordered sample. The first three sample L-moment are obtained from

the equation below by substituting r = 1, 2, 3 respectively.

lr =

(
n

r

)−1∑
1≤i1

∑
<i2<...

...
∑
<ir≤n

r−1

r−1∑
k=0

(−1)k

(
r − 1

k

)
wir−k:n, r=1,2,...,n. (5.46)

Sample L-moments can be used similarly as the conventional sample moments because

they characterize basic properties of the sample distribution and estimate the corre-

sponding properties of the distribution from which the data sampled. They might be

also used to estimate the parameters of this distribution. For asymptotic properties

of L-moments one can refer to Hosking (1990).

This has been shown in the following simulation study. A comparison is made for

the estimates produced by both the method of moments and method of L-moments

and conclude that L-moments perform better.
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5.5 Simulation Study

Here a simulation study to determine the biases and Root Mean Squared Errors(RMSEs)

of the estimators discussed in previous section is presented. Our main interest here is

to estimate the parameters θ′1, θ
′
2 and δ. For θ1 = 1

125
and θ2 = 1

81
the model in (5.27)

reduces to the model given by

fC(w) =
θ′1
(
e− θ

′
1 w − e−0.02w

)
(1.65− 81 θ′1)

+
θ′2
(
e− θ

′
2 w − e−0.02w

)
(2.54− 125 θ′2)

, w < δ

=
θ′1 e

−0.02w[e−δ(θ
′
1−0.02) − 1]

(1.65− 81 θ′1)
+
θ′2 e

−0.02w[e−δ(θ
′
2−0.02) − 1]

(2.54− 125 θ′2)

+ 0.01e−δ θ
′
2−0.01(w−δ) [1− e−0.008(w−δ)]

+ 0.008e−δ θ
′
1−0.008(w−δ) [1− e−0.01(w−δ)] , w ≥ δ. (5.47)

We consider a simulate sample of sizes n = 50, 75 and 100 for different values of

the parameters. For each combination of the parameters and n, we performed 1000

replications of the simulation. The results are presented in Tables 5.3 - 5.4.

Examining from Tables 5.3 - 5.4, we observe that as the sample size increases,

biases and RMSE’s of θ̂′1, θ̂′2 and δ̂ decrease steadily. Furthermore, we wish to make

one more important observation is that the method of L-moments gives lesser biases

and RMSEs for the estimators θ̂′1, θ̂′2 and δ̂ for all the sample sizes comparing to the

moment method of estimation.

5.6 Some Applications

5.6.1 Cricket Data

In this section a sports data is analyzed. We consider the opening batters (consist of

two players) in a cricket team. The traditional role of openers in cricket, especially in

Test matches is to see off the new ball at the start of their team’s innings. This task

falls to both opening batters, both of whom should have good defensive technique

against the hard, swinging, and seaming new ball. According to the experts from
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Table 5.3: Absolute Bias, RMSE of θ̂′1, θ̂
′
2 and δ̂ based on 1000 Replications for

fC(u) obtained using method of L-moment and method of moments for θ′1 = 0.4,
θ′2 = 0.6, and δ = 5.

L-moments Method of moments

θ̂′1 θ̂′2 δ̂ θ̂′1 θ̂′2 δ̂

n=50

Absolute Bias 0.0820 0.0775 0.3887 0.0815 0.1595 0.6200

RMSE 0.1484 0.3217 2.2194 0.1529 0.3378 3.0319

n=75

Absolute Bias 0.0712 0.0694 0.3236 0.0749 0.1515 0.3763

RMSE 0.1454 0.3216 2.2134 0.1518 0.3358 2.9869

n=100

Absolute Bias 0.0633 0.0494 0.2609 0.0598 0.1506 0.2900

RMSE 0.1454 0.3205 2.1514 0.1502 0.3316 2.7138

this game, the first one hour is very crucial for the team batting and for the openers,

during this time the failure rate of the batters is very high. Once they sustain that

period, the ball becomes softer and less shiny as the innings progresses, making it

easier for the batting team and scoring runs become much easier.

Here, we consider that the system comprises of two opening batsmen who have

been playing together for India since 2001. Opener 1 has played so far 96 Innings.

Opener 2 has played so far 180 Innings. They together opened the Innings for In-

dia on 87 occasions. The last Innings was on December 2012. We randomly se-

lected 28 Innings score cards.The data is obtained from the official website of ESPN

Cricinfo(www.stats.espncricinfo.com) ESPNCricinfo (2013) and it is presented in Ta-

ble 4. We mainly focused on the average amount of time in which these two openers
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Table 5.4: Absolute Bias, RMSE of θ̂′1, θ̂
′
2 and δ̂ based on 1000 Replications for

fC(u) obtained using method of L-moment and method of moments for θ′1 = 0.5,
θ′2 = 0.7 and δ = 6.

L-moments Method of moments

θ̂′1 θ̂′2 δ̂ θ̂′1 θ̂′2 δ̂

n=50

Absolute Bias 0.1298 0.0793 0.7517 0.2155 0.1590 1.9336

RMSE 0.1334 0.2955 2.0523 0.1444 0.3425 3.7810

n=75

Absolute Bias 0.1187 0.0687 0.4365 0.1847 0.1500 1.8901

RMSE 0.1269 0.2830 1.9061 0.1439 0.3416 3.6734

n=100

Absolute Bias 0.1094 0.0572 0.2384 0.1200 0.1123 1.7979

RMSE 0.1243 0.2703 1.7815 0.1412 0.3377 3.4415

spent on the crease while they are batting. It is observed as 125 minutes and 81

minutes respectively. Here failure is considered as loosing one’s wicket. In our model

the basic assumption is that both these openers have independent failure rates. The

dependency comes only at the time one of these two openers fails. If opener 1 fails

first, we investigate if opener 2 is disturbed for a critical time period, δ (threshold

period) and once opener 2 sustains that critical period his failure rate will revert back

to normal. Similarly, when opener 2 fails first, the failure rate of the opener 1 will

increase for a critical time period δ and once opener 1 survives that period his failure

rate reverts back to normal. Our main interest here is to estimate the parameters

θ′1, θ
′
2 and δ, given that θ1 = 1

125
and θ2 = 1

81
. The density function in (5.27) now
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reduces into the form

fC(w) =
θ′1
(
e− θ

′
1 w − e−0.02w

)
(1.65− 81 θ′1)

+
θ′2
(
e− θ

′
2 w − e−0.02w

)
(2.54− 125 θ′2)

, w < δ

=
θ′1 e

−0.02w[e−δ(θ
′
1−0.02) − 1]

(1.65− 81 θ′1)
+
θ′2 e

−0.02w[e−δ(θ
′
2−0.02) − 1]

(2.54− 125 θ′2)

+ 0.01e−δ θ
′
2−0.01(w−δ) [1− e−0.008(w−δ)]

+ 0.008e−δ θ
′
1−0.008(w−δ) [1− e−0.01(w−δ)] , w ≥ δ (5.48)

Now, we estimate the parameters θ′1, θ
′
2, δ by using the method of L-moments and

applying Kolmogorov-Smirnov test to fit the cumulative distribution function of the

model fC(w) presented in (5.48).

Table 5.5: Time (In Minutes) spent on the crease for each innings by the two open-
ers

Innings Opener 1(Y1) Opener 2(Y2) Innings Opener 1(Y1) Opener 2(Y2)

1 13 16 2 25 13
3 23 73 4 23 86
5 70 60 6 17 6
7 82 91 8 9 7
9 43 11 10 62 41
11 23 74 12 48 55
13 115 96 14 183 219
15 24 65 16 39 23
17 42 77 18 77 74
19 25 22 20 63 64
21 52 81 22 79 64
23 65 47 24 28 35
25 14 2 26 21 40
27 17 57 28 83 52

* From Table 5.6, we accept the null hypothesis, that is the data presented in Table

4 fits well for Model 1, since the Kolmogorov-Smirnov test statistic, (D = 0.2301)

is less than the Kolmogorov-Smirnov table value (D28 = 0.2499), at α = 0.05 level

of significance. Therefore, we have considered Model 1 for our further data analysis.

From the L-moments we obtained the estimates as θ̂′1 ' 1
5
, θ̂′2 ' 1

11
, and δ̂ ' 26.1021.

From the analysis, we conclude that when opener 1 fails first, the failure rate of
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Table 5.6: Models with Kolmogorov-Smirnov test statistic values

Model K-S test statistic

Model 1 as in (5.33) 0.2301*
Model 2 as in (5.36) 0.2712
Model 3 as in (5.37) 0.9851

opener 2 increases approximately 1
11

times for the next 27 minutes; once he survives

that critical period (threshold period) his failure rate will revert back to its original

value. Similarly, when opener 2 fails first, the failure rate of opener 2 increases

approximately 1
4

times for the next 27 minutes; once he sustains that critical period

(threshold period) his failure rate will revert back to its original value.

To test whether the failure of opener 1 does not increase the load on opener 2,

against the alternative that the failure of opener 1 increases the load on opener 2,

similarly the failure of opener 2 does not increase the load on opener 1 against the

alternative that the failure of opener 2 increases the load on opener 1, we refer to the

likelihood ratio test in Asha et al. (2016). For our analysis we consider the model

given in (5.13). The test procedure is as follows:

H0 : θ1 = θ′1, θ2 = θ′2,

against the alternative

H1 : θ1 6= θ′1, θ2 6= θ′2.

The log-likelihood ratio

Λ =
`(λ)|H0

`(λ)|H1

,

where λ = (θ1, θ2, θ
′
1, θ
′
2). Since the log-likelihood ratio, Λ = 0.8316 < 1 we reject H0

in favour of H1: The failure of opener 1 increases the load on opener 2, similarly the

failure of opener 2 increases the load on opener 1. Hence, there is sufficient evidence

for the presence of load sharing effect in the cricket data.
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5.7 Conclusions

The model that we proposed in (5.11) incorporates changes in the performance of a

two-component system due to the failure of first or second component. For various

choices of distribution function, model (5.11) provides us with families of bivariate

distributions which include load sharing and cascading failures.

On failure of one component, the surviving component may have extra stress for a

specific period of time, during that time it may fail or it can sustain that period so that

its failure rate reverts back to normal. For the various choices of the parameters θi, θ
′
i

and δ, i = 1, 2 our model reduces into the existing models such as Freund (1961),

Lindley & Singpurwalla (2002), Swift (2008) and Asha et al. (2016). The method

of L-moments is an alternative approach since conventional methods of parameter

estimation like maximum likelihood is not conducive.

From the data analysis we estimated the ‘threshold time’ or ‘critical time’ for

Opener 1 when Opener 2 fails first or for opener 2 when opener 1 fails first is estimated

as 27 minutes. The approximated crucial time of half an hour after the failure of any

one of the openers is universally accepted by most of the pundits in the game of

cricket. From the likelihood ratio test we concluded that, the failure of opener 1

increases the load on opener 2, similarly the failure of opener 2 increases the load on

opener 1. Therefore, there is a presence of load sharing effect in the cricket data.





Chapter 6

Conclusions and Future Work

6.1 Overall Summary

In Chapter 1, we discussed some of the basic concepts related to the work in the

present Thesis. Some of the popular methods for constructing bivariate distributions

are reviewed. We introduced and studied extensively a new univariate distribution,

namely transmuted exponentiated Frêchet distribution. This study formed the basis

of introducing a general class of bivariate distribution with transmuted conditionals.

In Chapter 2, we proposed a new general class of bivariate distributions with

transmuted conditionals. We studied the general and the particular properties of

the proposed model. Examples for the general model are constructed by consider-

ing various baseline distributions such as uniform, normal, exponential, Weibull and

exponentiated Frêchet. Method of moments and profile likelihood approach were con-

sidered for estimating the parameters. A simulation study is conducted to show the

efficiency of our estimation procedures. Two well analysed data sets are considered

for model applicability and made comparison with the existing models in the litera-

ture. Finally we concluded that bivariate distribution with transmuted conditionals

performs better compared to the existing model in the literature.

In Chapter 3, a new general class of distributions for load sharing with frailty and

covariates was studied. It is shown that by considering different frailty distributions

169
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and re-parametrizing, the general model can reduce to some of the existing models in

the literature. Examples for the general model are constructed by considering various

frailty distributions such as gamma, inverse-Gaussian and positive stable. A general

estimation procedure for the proposed model is discussed and a general algorithm for

performing simulation study is also studied in detail.

In Chapter 4, a particular example of the general model proposed in Chapter 3 is

studied in detail. We have considered positive stable as frailty model and Weibull as

the baseline distribution. The properties which are discussed for the general model

in Chapter 3 are also discussed for the new model. The profile likelihood approach is

employed to estimate the unknown parameters. A simulation study is conducted to

show that the estimation procedure performs well for our model. Two well - analysed

data sets are considered for data analysis purposes and conclude that the load share

model with frailty and covariates performs well compared to the other competing

models which do not take into account load share or frailty.

In chapter 5, we proposed a general class of bivariate distribution for cascading

failures by extending the works of Lindley & Singpurwalla (2002), Swift (2008) and

Asha et al. (2016) using Cox total failure rate (Cox (1972)). We studied the model

extensively with a special example by considering exponential baseline. Method of

moments and L-moments have been used to estimate the unknown parameters. Sim-

ulation study was conducted to show the effectiveness of our estimation procedures

and provided evidences for the better performances of L-moments. A real life data

set has been analysed to show the applicability of our model. From the data analysis

the ‘threshold time’ or ‘critical time’ δ for Opener 1 when Opener 2 fails first or for

opener 2 when opener 1 fails first is estimated as 27 minutes. This crucial time is

universally accepted by the most of the experts in the game of cricket.

In Chapter 6, we discuss the results and conclusion of the present thesis, we list

some of our future research problems. One of the interesting problems is the discrete

analogues for bivariate distributions for load sharing models discussed in Chapter

3. We proposed a new class of bivariate distribution for discrete load share mod-

els. Examples for the proposed model is constructed by considering different baseline

distributions such as geometric, discrete Weibull, S distribution and Waring distri-

bution. General properties of the proposed model is discussed. General estimation
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procedure for the proposed model is presented.

As a result of this extensive research we put up with some possible open problems

which will be considered for future works. In Section 6.2 we discuss in detail about

some of our future research problems.

6.2 Work in Progress/Future Work

6.2.1 Discrete Bivariate Distributions for Load Sharing Models

In reliability literature, lifetime data has been analysed by variety of bivariate dis-

tributions. Most of the existing models deal with continuous failures rates. Discrete

failure rates quite often occur with situation where product life can best be described

through non-negative integer valued random variables. For instance lifetime of tyres

on a jet fighter is measured by the number of landings it has undergone, the life of a

ship is measured by the number of successful voyages it has made, life of a gas lighter

is measured by the number of shots, life of a weapon is measured by the number of

rounds fired, life of a switch is measured by the number of strokes, life of a motor is

measured by the number of complete rotations. Therefore it is important to develop

reliability theory for discrete descriptions like its continuous version.

In the existing literature few works have been done in the area of discrete bivari-

ate distributions; particularly, bivariate geometric models and their properties. The

bivariate geometric model proposed by Basu & Dhar (1995) is an analogue to the

bivariate distribution of Marshall & Olkin (1967). In an alternative approach Dhar

(1998) derived a bivariate geometric model which is a discrete analogue to Freund’s

model. Lee & Cha (2015) proposed two general methods namely, the minimisation

and the maximisation methods to generate new class of discrete bivariate distributions

and studied some special distributions namely bivariate Poisson, bivariate geometric,

bivariate negative binomial and bivariate binomial distributions. Achcar et al. (2016)

extended, Basu-Dhar bivariate geometric distribution in the presence of covariates

and censored data. They estimated the parameters using Bayesian approach. Re-

cently, Vahid & Kundu (2017) developed discrete bivariate generalized exponential
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distribution, whose marginals are discrete generalized exponential distribution and

applied EM -algorithm to estimate the unknown parameters.

In this section, we propose a general bivariate discrete load share model for two-

component parallel system. Both the components are assumed to have independent

failure rates and the dependence comes when one of the two-components fails. Model

formulation is presented. The general properties of the model are discussed. some of

the general estimation procedures are listed. Simulation study and data analysis are

aimed for immediate future works.

6.2.1.1 Model Formulation

Let (Y1, Y2) be a random vector with support in N+
2, where N+ = {1, 2, 3, ..., } and

N+
2 = {(Y1, Y2)|(y1, y2) ∈ N+}. The cumulative distribution function for the discrete

case is defined as F (x) = P [X ≤ x] and the corresponding survival function is defined

as S(x) = P [X ≥ x]. Denote the joint probability function for (Y1, Y2) by

p(y1, y2) = P [Y1 = y1, Y2 = y2], (y1, y2) ∈ N+
2. (6.1)

We assume that Y1 and Y2 are the discrete lifetimes of two-components, A and B.

The system considered here is same as the system in the formulation of model 3.2

except that the lifetimes are discrete and measured after every completed cycle of

time. Hence Y1 and Y2 are independent discrete random variables in N2 representing

the lifetimes of the components A and B. The discrete bivariate conditional hazard

rate function (Shaked et al. (1995)) of (Y1, Y2) is now

λ1(y) = θ1r(y)(1− θ2r(y)), y ∈ N+ (6.2)

λ2(y) = θ2r(y)(1− θ1r(y)), y ∈ N+ (6.3)

λ12(y) = θ1θ2r
2(y), y ∈ N+ (6.4)

λ1(y1|y2) = P [Y1 = y1|Y1 ≥ y1, Y2 = y2]; y1 > y2 = θ′1r(y), (y1, y2) ∈ N+
2, (6.5)

λ2(y2|y1) = P [Y2 = y2|Y1 = y1, Y2 ≥ y2]; y2 > y1 = θ′2r(y), (y1, y2) ∈ N+
2. (6.6)
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Clearly, bivariate conditional hazard rate functions given in (6.2)-(6.6) are determined

through p(y1, y2) (Shaked et al. (1995)).

For y1 < y2,

p(y1, y2) = P{Y1 = y1, Y2 = y2}

= P [Y1 ≥ y1, Y2 ≥ y2]P [Y1 = y1, Y2 > y1|Y1 ≥ y1, Y2 ≥ y1]

× P [Y2 ≥ y2|Y1 = y1, Y2 > y1]P [Y2 = y2|Y1 = y1, Y2 ≥ y2]; y1 < y2

and

p(y1, y2) = P [Y1 ≥ y1]P [Y2 ≥ y1]λ1(y1)

y2−1∏
i=y1+1

(1− λ2(i|y1))λ2(y2|y1), y1 < y2, (6.7)

p(y1, y2) =

y1∏
i=1

(1−θ1r(i))(1−θ2r(i))θ1r(y1)(1−θ2r(y1))

y2−1∏
i=y1+1

(1−θ′2r(i))θ′2r(y2), y1 < y2.

(6.8)

Thus for y1 < y2

p(y1, y2) = (1−θ2r(y2))y1−1(1−θ1r(y1))y1−1θ1r(y1)(1−θ2r(y1))

y2−1∏
i=y1+1

(1−θ′2r(i))θ′2r(y2)

(6.9)

Similarly, for y2 < y1

p(y1, y2) = (1−θ1r(y1))y2−1(1−θ2r(y2))y2−1θ2r(y2)(1−θ1r(y2))

y1−1∏
i=y2+1

(1−θ′1r(i))θ′1r(y1)

(6.10)

and

p(y, y) =

y−1∏
i=1

(1− θ1r(i))(1− θ2r(i))θ1r(i)θ2r(i), y1 = y2 (6.11)

The general joint density function is given by

p(y1, y2) = (1− θ2r(y2))y1−1(1− θ1r(y1))y1−1θ1r(y1)(1− θ2r(y1))

×
y2−1∏
i=y1+1

(1− θ′2r(i))θ′2r(y2); y1 < y2
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= (1− θ1r(y1))y2−1(1− θ2r(y2))y2−1θ2r(y2)(1− θ1r(y2))

×
y1−1∏
i=y2+1

(1− θ′1r(i))θ′1r(y1); y2 < y1

=

y−1∏
i=1

(1− θ1r(i))(1− θ2r(i))θ1r(i)θ2r(i), y1 = y2 = y (6.12)

6.2.1.2 Properties

In this we discuss the various distributional properties of general discrete bivariate

load share model given in (6.12).

Property 6.2.1. The joint survival function of (Y1, Y2) is given by

S(y1, y2) =

y2−1∑
i=y1

θ1r(i)(1− θ2r(i))×

[
y2−1∏
j=i+1

(1− θ′2r(j))

]

×

[
i−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]

+

[
y2−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
; y1 ≤ y2,

=

y1−1∑
i=y2

θ2r(i)(1− θ1r(i))×

[
y1−1∏
j=i+1

(1− θ′1r(j))

]
[
i−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]

+

[
y1−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
; y2 ≤ y1.

=

y−1∑
i=1

θ2r(i)(1− θ1r(i))×

[
y−1∏
j=i+1

(1− θ′1r(j))

]
[
i−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
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+

[
y−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
; y1 = y2 = y.

(6.13)

Proof.

S(y1, y2) = P [Y1 ≥ y1, Y2 ≥ y2]

For y1 ≤ y2

S(y1, y2) =

{
y2−1∑
i=1

λ1(i)

[
i−1∏
j=1

(1− λ∗(j))

][
y2−1∏
j=i+1

(1− λ2(j|i))

]}
+

y2−1∏
j=1

(1− λ∗(j)).

(6.14)

Now by substituting the conditional hazard rate function given in (6.1)-(6.6) we get

S(y1, y2) =

y2−1∑
i=y1

θ1r(i)(1− θ2r(i))×

[
y2−1∏
j=i+1

(1− θ′2r(j))

]

×

[
i−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]

+

[
y2−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
; y1 ≤ y2.

(6.15)

Similarly, for y2 ≤ y1

S(y1, y2) =

{
y1−1∑
i=1

λ2(i)

[
i−1∏
j=1

(1− λ∗(j))

][
y1−1∏
j=i+1

(1− λ1(j|i))

]}
+

y1−1∏
j=1

(1− λ∗(j)).

(6.16)

Again by substituting the conditional hazard rate function given in (6.1)-(6.6) we get

S(y1, y2) =

y1−1∑
i=y2

θ2r(i)(1− θ1r(i))×

[
y1−1∏
j=i+1

(1− θ′1r(j))

]

×

[
i−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
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+

[
y1−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
; y2 ≤ y1.

(6.17)

Finally for y1 = y2 = y

S(y1, y2) =

{
y−1∑
i=1

λ2(i)

[
i−1∏
j=1

(1− λ∗(j))

][
y−1∏
j=i+1

(1− λ1(j|i))

]}
+

y−1∏
j=1

(1− λ∗(j)).

(6.18)

From (6.1)-(6.6) we get

S(y1, y2) =

y−1∑
i=1

θ2r(i)(1− θ1r(i))×

[
y−1∏
j=i+1

(1− θ′1r(j))

]

×

[
i−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]

+

[
y−1∏
j=1

(1− θ1r(j)(1− θ2r(j))− θ2r(j)(1− θ1r(j))− θ1θ2r
2(j)

]
; y1 = y2 = y.

(6.19)

Thus we retrieve (6.13). �

Remark 6.2.1. When y1 = y2 = 1 it follows that S(1, 1) = 1.

Property 6.2.2. The marginal survival function of Yj is obtained as S(y1, 0) = S(y1)

and S(0, y2) = S(y2). In general the marginal survival functions for the model in

(6.12) is given by

S(yi) =

yj−1∑
ti=yi

∞∑
tj=yj

yi−1∏
k=1

(1− θir(k))(1− θjr(k))

yj−1∏
k=yi+1

(1− θ′jr(k))θ′j

+

yj−1∏
k=1

(1− θir(k))(1− θjr(k)); yi < yj, i = 1, 2, i 6= j. (6.20)

The marginal densities for the model in (6.12) is given by

f(yi) = −∂S(yi, yj)

∂yj
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= − ∂

∂yj

 tj−1∑
yi=ti

∞∑
yj=tj

ti−1∏
k=1

(1− θir(k))(1− θjr(k))

tj−1∏
k=ti+1

(1− θ′jr(k))θ′j


− ∂

∂yj

[
yj−1∏
k=1

(1− θir(k))(1− θjr(k))

]
; yi < yj, i = 1, 2, i 6= j. (6.21)

6.2.1.3 Some Examples

Example 6.2.1. Let the random variables Y1 and Y2 have independent geometric

distributions. Then the bivariate geometric load share model is given by

p(y1, y2) = (1− P1)y1−1(1− P2)y1−1P1(1− P2)(1− P ′2)y2−y1−1P ′2; y1 < y2

= (1− P1)y2−1(1− P2)y2−1P2(1− P1)(1− P ′1)y1−y2−1P ′1; y2 < y1

= (1− P1)y−1(1− P2)y−1P1P2; y1 = y2 = y (6.22)

where θ1P = P1, θ2P = P2, θ′1P = P ′1 and θ′2P = P ′2.

Example 6.2.2. Let the random variables Y1 and Y2 have independent discrete Weibull

distributions with r(y) = ( y
m

)α−1; 1 ≤ y ≤ m then the bivariate discrete Weibull load

share model is given by

p(y1, y2) =

t1−1∏
i=1

[
1− θ1

(
y(i)

m

)α−1
][

1− θ2

(
y(i)

m

)α−1
]
θ1

(y1

m

)α−1
[
1− θ2

(y1

m

)α−1
]

×
t2−1∏
i=t1+1

[
1− θ′2

(
y(i)

m

)α−1
]
θ′2

[(y2

m

)α−1
]

; y1 < y2

=

t2−1∏
i=1

[
1− θ1

(
y(i)

m

)α−1
][

1− θ2

(
y(i)

m

)α−1
]
θ2

(y2

m

)α−1
[
1− θ1

(y2

m

)α−1
]

×
t1−1∏
i=t2+1

[
1− θ′1

(
y(i)

m

)α−1
]
θ′1

[(y1

m

)α−1
]

; y2 < y1

=
t−1∏
i=1

[
1− θ1

(
y(i)

m

)α−1
][

1− θ2

(
y(i)

m

)α−1
]
θ1

(
y(i)

m

)α−1

θ2

(
y(i)

m

)α−1

; y1 = y2

(6.23)

Example 6.2.3. Let the random variables Y1 and Y2 have independent S distribution
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with r(y) = q(1 − πy), where y ∈ N+, 0 < q < 1, 0 < π < 1, then the bivariate

discrete S load share model is given by

p(y1, y2) =

t1−1∏
i=1

[
1− θ1q

(
1− πy(i)

)] [
1− θ2q

(
1− πy(i)

)]
θ1q (1− πy1) [1− θ2q (1− πy1)]

×
t2−1∏
i=t1+1

[
1− θ′2q

(
1− πy(i)

)]
θ′2q (1− πy2) ; y1 < y2

=

t2−1∏
i=1

[
1− θ2q

(
1− πy(i)

)] [
1− θ1q

(
1− πy(i)

)]
θ2q (1− πy2) [1− θ1q (1− πy2)]

×
t1−1∏
i=t2+1

[
1− θ′1q

(
1− πy(i)

)]
θ′1q (1− πy1) ; y2 < y1

=
t−1∏
i=1

[
1− θ1q

(
1− πy(i)

)] [
1− θ2q

(
1− πy(i)

)]
θ1θ2q

2
(
1− πy(i)

)2
; y1 = y2

(6.24)

Example 6.2.4. Let the random variables Y1 and Y2 follow independent simple dis-

crete DFR distribution with r(y) = c
y+1

; 0 ≤ c ≤ 1. Then the bivariate simple

discrete DFR load share model is given by

p(y1, y2) =

t1−1∏
i=1

[
1− θ1

(
c

y(i) + 1

)][
1− θ2

(
c

y(i) + 1

)]
θ1

(
c

y1 + 1

)

×
[
1− θ2

(
c

y1 + 1

)] t2−1∏
i=t1+1

[
1− θ′2

(
c

y(i) + 1

)]
θ′2

[(
c

y2 + 1

)]
; y1 < y2

=

t2−1∏
i=1

[
1− θ1

(
c

y(i) + 1

)][
1− θ2

(
c

y(i) + 1

)]
θ2

(
c

y2 + 1

)

×
[
1− θ1

(
c

y2 + 1

)] t1−1∏
i=t2+1

[
1− θ′1

(
c

y(i) + 1

)]
θ′1

[(
c

y1 + 1

)]
; y2 < y1

=
t−1∏
i=1

[
1− θ1

(
c

y(i) + 1

)][
1− θ2

(
c

y(i) + 1

)]
θ1

(
c

y(i) + 1

)
θ2

(
c

y(i) + 1

)
; y1 = y2

(6.25)

Example 6.2.5. Let the random variables Y1 and Y2 follow independent Waring

distribution with r(y) = 1
β+φy

; β > 1, 0 < φ < 1 then the discrete bivariate Waring
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load share model is given by

p(y1, y2) =

t1−1∏
i=1

[
1− θ1

(
1

β + φy(i)

)][
1− θ2

(
1

β + φy(i)

)]
θ1

(
1

β + φy1

)

×
[
1− θ2

(
1

β + φy1

)] t2−1∏
i=t1+1

[
1− θ′2

(
1

β + φy(i)

)]
θ′2

[(
1

β + φy2

)]
; y1 < y2

=

t2−1∏
i=1

[
1− θ1

(
1

β + φy(i)

)][
1− θ2

(
1

β + φy(i)

)]
θ2

(
1

β + φy2

)

×
[
1− θ1

(
1

β + φy2

)] t1−1∏
i=t2+1

[
1− θ′1

(
1

β + φy(i)

)]
θ′1

[(
1

β + φy1

)]
; y2 < y1

=
t−1∏
i=1

[
1− θ1

(
1

β + φy(i)

)][
1− θ2

(
1

β + φy(i)

)]
× θ1

(
1

β + φy(i)

)
θ2

(
1

β + φy(i)

)
; y1 = y2 = y (6.26)

6.2.1.4 Parameter Estimation

In this section we employ the method of maximum likelihood estimation to esti-

mate the unknown parameters of the model given in (6.12). Let us assume that

E = {(y11, y21), (y12, y22)..., (y1n, y2n)} is a bivariate sample of size n. n1=number of

observations for which y1i < y2i, n2 = number of observations for which y1i > y2i,

n3 = number of observations for which y1i = y2i = yi.

The general log-likelihood function for the model given in (6.12) can be written

as

`(λ) = (y1i − 1)

n1∑
i=1

log[1− θ2r(y2i)] + (y1i − 1)

n1∑
i=1

log[1− θ1r(y1i)] + θ1

n1∑
i=1

log[r(y1i)]

+

n1∑
i=1

log[1− θ2r(y1i)] +

n1∑
i=1

log[1− θ′2r(i)θ′2r(y2i)]

+ (y2i − 1)

n2∑
i=1

log[1− θ1r(y1i)] + (y2i − 1)

n2∑
i=1

log[1− θ2r(y2i)] + θ2

n2∑
i=1

log[r(y2i)]
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+

n2∑
i=1

log[1− θ1r(y2i)] +

n2∑
i=1

log[1− θ′1r(i)θ′1r(y1i)]

+

n3∑
i=1

log[1− θ1r(yi)] +

n3∑
i=1

log[1− θ2r(yi) +

n3∑
i=1

log(θ1r(yi)) +

n3∑
i=1

log(θ2r(yi))

(6.27)

where λ = (θ1, θ2, θ
′
1, θ
′
2). The MLEs of the unknown parameters can be obtained by

maximizing (6.27) with respect to the unknown parameters.

It further remains to investigate various properties enjoyed by (6.12). This will

be taken up as immediate future work.

6.2.2 Copula Approach to Bivariate Transmuted Distributions

In the present thesis we have constructed bivariate distributions with two methods

namely the conditional specification approach and frailty approach. These models can

also be constructed by other methods such as copula models especially the bivariate

distributions with transmuted conditionals model. Bayesian approach may be an

alternative estimation procedure can be performed.

6.2.3 Multivariate Load Share Models with Frailty

Multivariate extension for load share frailty models and Bayesian parametric ap-

proach is another possible future work. Note that extension of this model to higher

dimension is not straight forward and every additional dimension needs specific model

formulation.

6.2.4 Cascading Models with Random Critical Time

For the cascading model in Chapter 5, the critical time δ in the cascading failure

model can be considered as a random variable. By assigning a suitable distribution

for the random variable we can construct a new model which can be a further flexible
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and rich model to analyse cascading failures and the parameter estimation can be

performed through Bayesian Technique.

These further extensions and research works are presently in progress.
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