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Chapter 1

Introduction

1.1 Motivation

In an effort to understand the changing world around us, observations of one kind

or another are frequently made sequentially over time. For example, the daily max-

imum temperature is increasing every year, the price of gold fluctuates day by day,

the index of Bombay Stock Exchange fluctuates every now and then, etc. A record

of such observations made sequentially in time is referred to as time series. Sys-

tematic studies of such time series help us to uncover the dynamical law governing

its generation. However, a complete uncovering of the law may not be possible in

practice as only partial observations are available in most of the cases. The major

objectives of time series analysis are: (1) Understanding of the dynamic structure

of data generating mechanism. (2) Construction of empirical time series models

incorporating as much available background theory as possible, (3) Check if the

1
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model captures the important features of the observed data, (4) Predicting the

future behaviour of the series.

The data are generated either by controlled experiments or by the nature. In either

case the observations are subject to random errors, and they may be fluctuating

around a constant or time-varying level. One can view such data as a realization of

a more general stochastic process. That is, an observed time series can be viewed

as a realization of a discrete parameter stochastic process. To understand the data

generating mechanism, one has to use appropriate stochastic models, which link the

observations at different time points.

The analysis of time series in the classical set up, assumes that the series is a real-

ization of some Gaussian process and the value at a time point t is a linear function

of past observations. Linearity is the basic assumption in the theory and meth-

ods of classical time series analysis developed by Box and Jenkins (1970). This is

widely preferred, since most parameter estimation techniques can lead to analyti-

cally tractable solutions under this assumption. Moreover this Gaussian assumption

has been based on the central limit theorem and is valid for processes having finite

variance. Therefore processes having infinite variances cannot be modelled as Gaus-

sian. The studies on financial and econometric time series have established these

facts. The study of non-Gaussian time series is motivated mainly by two aspects.

First is that it gets stationary sequences having non-normal marginal random vari-

ables; second is to study the point processes generated by sequences of non-negative

dependent random variables. This includes the counting processes generated when

the sequence of times is Markovian, such as first order Autoregressive (AR(1)) se-

quence (cf, Gaver and Lewis (1980)). In view of this, a large number of non-linear
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and non-Gaussian time series models are introduces in the literature, see Tong

(1995). Our objective in this thesis is to study various aspects of financial time

series and develop some non-Gaussian time series to model non-negative variables

like volatility, durations, price etc. in finance.

1.2 Overview of non-Gaussian Time Series

The theory and methods for analysing time series in classical set-up is based on the

assumption that such series are realizations of linear Gaussian processes, cf. Box and

Jenkins (1976). However, we come across practical situations in which the observed

series are generated by non-Gaussian processes. In modelling such non-Gaussian

time series, the usual practice is to make suitable transformations to remove skew-

ness in the data and then fit a Gaussian model. But there are cases where the

assumption that the transformed data follows Gaussian distribution is unlikely to

be true (cf. Lawrance (1991)). For this reason, a number of non-Gaussian time

series models have been introduced in the literature during the last four decades.

For example, Lawrance and Kottegoda (1977) explain the need for using time se-

ries models having non-Gaussian marginal distributions for modelling river flow and

other hydrological time series data. In economic studies, Nelson and Granger (1979)

considered a set of 21 time series data of which only six were found to be Gaussian.

Time series models with Weibull marginal distribution for wind velocity (Brown

et al. (1984)), Laplace marginal distribution for image source modelling (Gibson

(1983)), Linnik marginal distribution for stock price return (Anderson and Arnold

(1993)) are some other examples.
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In the development of non-Gaussian time series models, it is observed that the

method of analysis depends on the type of marginal distribution. When we insist

a specific stationary marginal distribution for a model, its innovation distribution

takes a different form unlike in the Gaussian case. In particular, if we restrict the

variables to be non-negative, then for most of the standard distributions, the in-

novation random variable does not have a closed-form expression for its density,

which poses difficulties in the associated likelihood inference. For example, Gaver

and Lewis (1980) introduced an autoregressive model of order one (AR(1)) with

gamma marginal distribution to study the properties of point processes generated

by such sequences. Lawrance and Lewis, in a series of papers, discussed several

autoregressive moving average (ARMA) sequences with exponential and gamma

marginals; see Lawrance and Lewis (1985) and the references contained therein.

Properties of other Markov sequences with non-Gaussian marginals such as gamma

(Sim (1990), Adke and Balakrishna (1992)), inverse Gaussian (Abraham and Bal-

akrishna (1999)), Cauchy (Balakrishna and Nampoothiri (2003)), normal-Laplace

(Jose et al. (2008)), approximated beta distribution (Popović (2010), Popović et al.

(2010)), extreme value (Balakrishna and Shiji (2014a)) have also been discussed in

the literature.

The modelling of non-negative random variables play a major role in the study of

financial time series, where one has to model the evolution of conditional variances

known as stochastic volatility (see Tsay (2005)). During the last two decades, there

has been an increasing interest in modelling the dynamic evolution of the volatility

of high-frequency series of financial returns. The stochastic volatility(SV) models

have been widely used to model a changing variance of financial time series data.
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These models usually assume Gaussian distribution (Jacquier et al. (1994); Kim

et al. (1998)) for asset returns conditional on the latent volatility. However, em-

pirical studies show that the volatility of asset returns are not constant and the

returns are more peaked around the mean and have fatter tails than those implied

by the normal distributions. These empirical observations have led to the models

in which the volatility of returns follows non-Gaussian distributions. To account

for heavy tails observed in returns series, Harvey et al. (1994), Liesenfeld and Jung

(2000), Chib et al. (2002), Berg et al. (2004), Jacquier et al. (2004), Omori et al.

(2007), Asai (2008), Choy et al. (2008), Nakajima and Omori (2009), Asai and

McAleer (2011), Wang et al. (2011), Nakajima and Omori (2012) and Delatola and

Griffin (2013) assume that the conditional distribution of returns follow Student’s

t-distribution. The other studies used the Normal Inverse Gaussian distribution

(see Barndorff-Nielsen (1997) and Andersson (2001)), the Generalized Error Dis-

tribution (see Liesenfeld and Jung (2000)), and the Generalized-t distribution (see

Wang (2012) and Wang et al. (2013)) for incorporating the leptokurtic nature of

conditional distribution of returns. Bauwens et al. (2012) give a detailed discussion

on SV models with various distributional assumptions to account for non-normality

of data and time varying volatility simultaneously.

A more straight forward way is to use an AR(1) model for non-negative random

variables to generate the volatility sequence. The standard SV model in the liter-

ature assumes a Gaussian AR(1) model for generating the log-volatility sequence.

As an alternative to this normal-lognormal SV models, Abraham et al. (2006) pro-

posed a SV model in which the volatility sequence is generated by a gamma AR(1)

sequence of Gaver and Lewis (1980) and Balakrishna and Shiji (2014b) developed
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a SV model generated by first order Gumbel extreme value autoregressive process.

A relatively new area of research in the context of financial time series is the mod-

elling and analysis of time duration between consecutive events. The duration

between transactions in finance is important, for it may signal the arrival of new

information concerning the underlying asset. Engle and Russell (1998) use an idea

similar to that of the generalized autoregressive conditional heteroscedastic models

to propose an autoregressive conditional duration (ACD) model and show that the

model can successfully describe the evolution of time durations for (heavily traded)

stocks. A feature of Engle and Russell’s linear ACD specification with exponential

or Weibull errors is that the implied conditional hazard functions are restricted to be

either constant or increasing/decreasing. Zhang et al. (2001), Hamilton and Jorda

(2002) and Bauwens and Veredas (2004) questioned whether this assumption is an

adequate one. As an alternative to the Weibull distribution used in the original

ACD model, Lunde (1999) employs a formulation based on the generalized Gamma

distribution, while Grammig and Maurer (2000) and Hautsch (2001) utilize the Burr

and generalized F distributions respectively. Recently, Bauwens and Veredas (2004)

proposed the stochastic conditional duration model (SCD), in which the evolution

of the durations is assumed to be driven by a latent factor. The motivation for the

use of the latent variable is that it captures general unobservable information on the

market. A recent review of the literature on the ACD models and their applications

in finance can be found in Pacurar (2008).

The contents of this thesis are on various aspects of modelling and analysis of non-

Gaussian and non-negative time series in view of their applications in finance to

model stochastic volatility and conditional durations.
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1.3 Examples of Time Series

A time series is an ordered sequence of observations. Time series analysis deals

with statistical methods for analysing and modelling such ordered sequence of ob-

servations. Although the ordering is usually through time, particularly in terms of

some equally spaced time intervals, the ordering may also be taken through other

dimensions, such as space. Time series occur in a variety of fields such as agricul-

ture, business, finance, economics, engineering, medical studies etc. In this section,

we describe some examples of time series.

Before going into more formal analysis, it is useful to examine some real time series

data by plotting them against time. The first example is the monthly crude oil price

in dollars per barrel in Indian market, one of the widely discussed time series. The

data consists of 180 observations from April 2000 to March 2015. The time series

plot of the data is shown in Figure 1.1. It is obvious from the figure that the series

Figure 1.1: Monthly crude oil price from April 2000 to March 2015



Chapter 1. Introduction 8

is non-stationary because its mean is not constant through time. This is a typical

economic series where time series analysis could be used to formulate a model for

forecasting future values of the oil price.

Next, we consider annual rice production (in Million Tonnes) in India from 1950-51

to 2014-15. The data on rice production were obtained from Ministry of Agriculture,

Figure 1.2: Annual rice production in India from 1950-51 to 2014-15

Government of India. From the Figure 1.2 it is apparent that the data exhibit a

clear positive trend. A proper trend analysis and forecast of production of such an

important crop is significant to stabilize the price and ensure profits for the farmers.

Other examples include (1) Monthly index of industrial production, (2) the max-

imum temperature at a particular location on successive days, (3) electricity con-

sumption in a particular area for successive one-hour periods, (4) daily exchange

rate of a domestic currency with foreign currency, (5) weekly interest rates, and (6)

monthly price indices, etc.
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In the upcoming sections, we list some of the basic concepts which facilitate the

systematic development of the thesis.

1.4 Some Basic Concepts

We begin with basic definition of stochastic processes, stationary process, the auto-

correlation and partial autocorrelation functions etc. that are necessary for proper

understanding of time series models. We also give a simple introduction to linear

time series models and Box-Jenkins modelling techniques, which play a fundamental

role in time series analysis.

1.4.1 Stochastic Process

A stochastic process is a family of time indexed random variables X(ω, t), where

ω belongs to a sample space and t belongs to an index set. For a given ω, X(ω, t),

as a function of t, is called a sample function or realization. The population that

consists of all possible realizations is called the ensemble in stochastic processes.

Thus, a time series is a realization or a sample function from a certain stochastic

process. With proper understanding that a stochastic process, X(ω, t), is a set of

time indexed random variables defined on a sample space, we usually suppress the

variable ω and simply write X(ω, t) as X( t) or Xt. The mean function and variance

function of the process are defined as µt = E(Xt) and σ2
t = V ar(Xt) = E(Xt−µt)2.
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1.4.2 Stationary Processes

A time series {Xt} is said to be strictly stationary if the joint distribution of

(Xt1 , Xt2 , ..., Xtn) is identical to that of (Xt1+k, Xt2+k, ..., Xtn+k) for all t and k,

where n is an arbitrary positive integer and (t1, t2, ..., tn) is a collection of n in-

tegers. In other words, strict stationarity requires that the joint distribution of

(Xt1 , Xt2 , ..., Xtn) is invariant under time shift. This is very strong condition that

is hard to verify empirically. A weaker version of stationarity is often assumed.

A time series {Xt} is said to be weakly stationary if

(i) E(Xt) = µ, a constant,

(ii) V ar(Xt) <∞,

(iii) Cov(Xt, Xs) is a function of |t− s| only.

From the above definitions, it is clear that, if {Xt} is strictly stationary and its first

two moments are finite, then {Xt} is also weakly stationary. The converse is not

true in general. However, a Gaussian process is weakly stationary if and only if it

is strictly stationary.

1.4.3 Autocorrelation and Partial Autocorrelation Function

Let {Xt : t = 0, ±1, ±2, ...} be a stochastic process, the covariance between Xt and

Xt−k is known as the autocovariance function at lag k and is defined by

Cov (Xt, Xt−k) = E(Xt − E(Xt))(Xt−k − E(Xt−k)).
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Hence, the correlation coefficient between Xt and Xt−k, is called Autocorrelation

function (ACF) at lag k, and is given by

ρX(k) = Corr (Xt, Xt−k) =
Cov(Xt, Xt−k)√

V ar(Xt)
√
V ar(Xt−k)

, (1.1)

where V ar(.) is the variance function of the process.

For a strictly stationary process, since the distribution function is same for all t, the

mean function E(Xt) = E(Xt−k) = µ is a constant, provided E|Xt| <∞. Likewise,

if E(X2
t ) < ∞, then V ar(Xt) = V ar(Xt−k) = σ2 for all t and hence is also a

constant.

The Partial Autocorrelation Function (PACF) of a stationary process, {Xt}, de-

noted φk , k for k = 1, 2, ..., is defined by

φ1, 1 = Corr(X1, X0) = ρ1

and

φk, k = Corr(Xk − X̂k, X0 − X̂0), k ≥ 2,

where X̂k = l1Xk−1+l2Xk−2+· · ·+lk−1X1 is the linear predictor. Both (Xk, X̂k) and

(X0, X̂0) are correlated with {X1, X2, ..., Xk−1}. By stationarity, the PACF, is the

correlation betweenXt andXt−k obtained by fixing the effect ofXt−1, Xt−2, ..., Xt−(k−1).
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1.5 Linear Time Series Models

The most popular class of linear time series models are autoregressive moving av-

erage (ARMA) models, including purely autoregressive (AR) and purely moving

average (MA) models as special cases. ARMA models are frequently used to model

linear dynamic structures, to depict linear relationships among lagged variables,

and to serve as vehicles for linear forecasting. This section gives a brief overview of

linear time series models.

1.5.1 Autoregressive Models

A stochastic model that can be extremely useful in the representation of certain

practically occurring series is the autoregressive model. In this model, the current

value of the process is expressed as a finite, linear aggregate of previous values of the

process and a shock ηt. Let us denote the values of a process at equally spaced time

t, t− 1, t− 2, ... by Xt, Xt−1, Xt−2, ..., then Xt can be described by the following

expression:

Xt = ρ1Xt−1 + ρ2Xt−2 + ...+ ρpXt−p + ηt. (1.2)

Or equivalently ϕ(B)Xt = ηt with ϕ(B) = 1− ρ1B− ρ2B
2− · · ·− ρpBp, where B is

the back shift operator, defined by BXt = Xt−1, {ηt} is a sequence of uncorrelated

random variables with mean zero and constant variance, termed as innovations and

ϕ(B) is referred to as the characteristic polynomial associated with an AR(p) pro-

cess. As Xt is a linear function of its own past p values, the process {Xt} is referred

to as an Autoregressive process of order p (AR(p)). This is rather like a multiple
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regression model, but Xt is regressed not on independent variables but on past val-

ues of Xt; hence the prefix ‘auto’. The resulting AR(p) process is weakly stationary

if all the roots of the associated characteristic polynomial equation ϕ(B) = 0 lie

outside the unit circle.

For a stationary AR(p) processes, the autocorrelation function, ρX(k), can be found

by solving a set of difference equations called the Yule-Walker equations given by

(1− ρ1B − ρ2B
2 − · · · − ρpBp)ρX(k) = 0 , k > 0.

The plot of ACF of a stationary AR(p) model would then show a mixture of damping

sine and cosine patterns and exponential decays depending on the nature of its

characteristic roots.

The autoregressive model of order 1 (AR(1)) is important as it has several useful

features. It is defined by

Xt = ρXt−1 + ηt, (1.3)

where {ηt} is a white noise with mean 0 and variance σ2. The sequence {Xt}

is weakly stationary AR(1) process when |ρ| < 1. Under stationarity, we have

E(Xt) = 0, V ar(Xt) = σ2/(1− ρ2) and the autocorrelation function is given by

ρX(k) = ρk, k = 0, 1, 2, ....

This result says that the ACF of a weakly stationary AR(1) series decays expo-

nentially in k. If we assume that the innovation sequence {ηt} is independent and

identically distributed then the AR(1) sequence is Markovian.
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1.5.2 Moving Average Models

Another type of model of great practical importance in the representation of ob-

served time series is the finite moving average process. In this model, the observation

Xt at time t is expressed as a linear function of the present and past shocks. A

moving average model of order q (MA(q)) is defined by

Xt = ηt − θ1 ηt−1 − θ2 ηt−2 − ...− θq ηt−q. (1.4)

Or, Xt = Θ(B)ηt, where Θ(B) = 1− θ1B − θ2B
2 − ...− θqBq, is the characteristic

polynomial associated with the MA(q) model, where θi’s are constants, {ηt} is a

white noise sequence.

The definition implies that

E(Xt) = 0;V ar(Xt) = σ2

q∑
i=1

θ2
i

and the ACF is,

ρX(k) =


−θk+θ1θk+1+...+θq−kθq

1+θ21+θ22+...++θ2q
, k = 1, 2, ..., q

0, k > q
. (1.5)

Hence, for an MA(q) model, its ACF vanishes after lag q.

In particular an MA(1) model for {Xt} is defined by

Xt = ηt − θ ηt−1.
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So, Xt is a linear function of the present and immediately preceding shocks. The

MA(q) process will always be stationary as it is a finite linear combination of shocks,

but it is invertible if |θ| < 1. The unconditional variance is given by V ar(Xt) =

(1 + θ2)σ2.

The ACF of the MA(1) process is

ρX(k) =

 −θ/(1 + θ2), k = 1

0, k = 2, 3, ...
.

1.5.3 Autoregressive Moving Average Models

A natural extension of the pure autoregressive and pure moving average processes

is the mixed autoregressive moving average process. An ARMA model with p AR

terms and q MA terms is called an ARMA (p, q) model. The advantage of ARMA

process relative to AR and MA processes is that it gives rise to a more parsimonious

model with relatively few unknown parameters.

A mixed process of considerable practical importance is the first order autoregressive

moving average (ARMA(1, 1)) model.

Xt − ρXt−1 = ηt − θ ηt−1. (1.6)

The process is stationary if |ρ| < 1 and invertible if |θ| < 1. The mean, variance

and the autocorrelation function of the ARMA(1, 1) model are respectively given
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by

E(Xt) = 0, V ar(Xt) = E(X2
t )

and the ACF is

ρX(k) =


ρθ2−θ ρ2+ρ−θ

1+θ2−2θ ρ
, if k = 1

ρ .ρk−1, if k = 2, 3, ...
. (1.7)

Thus the autocorrelation function decays exponentially from the starting value ρ1,

which depends on θ as well as on ρ.

A more general model that encompasses AR(p) and MA(q) model is the autoregres-

sive moving average, or ARMA(p, q), model

Xt − ρ1Xt−1 − ρ2Xt−2 − ...− ρpXt−p = ηt − θ1 ηt−1 − θ2 ηt−2 − ...− θq ηt−q. (1.8)

The model is stationary if AR(p) component is stationary and invertible if MA(q)

component is so. One may refer Box et al. (1994) for detailed analysis of linear time

series models.

1.6 Box-Jenkins Modelling Techniques

This section examines the Box-Jenkins methodology for model building and dis-

cusses its possible contribution to post-sample forecasting accuracy. A three step

procedure is used to build a model. First a tentative model is identified through
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analysis of historical data. Second, the unknown parameters of the model are esti-

mated. Third, through residual analysis, diagnostic checks are performed to deter-

mine the adequacy of the model. We shall now discuss each of these steps in more

detail.

1.6.1 Model Identification

At this stage of time series modelling, the analysis intends to suggest a tentative

model to a time series by examining the time plot and the graphical representation

of each of the autocorrelation function and partial autocorrelation function. Such

plots could reveal certain properties of a time series like non-stationarity and outlier.

The sample correlogram and partial correlogram help us to determine the order of

the model. Autocorrelation function of an autoregressive process of order p tail

off and its partial autocorrelation function has a cut off after lag p. On the other

hand, the autocorrelation function of moving average process cuts off after lag q,

while its partial autocorrelation tails off after lag q. If both autocorrelation and

partial autocorrelation tail off, a mixed process is suggested. Furthermore, the

autocorrelation function for a mixed process, contains a p-th order AR component

and q-th order moving average component, and is a mixture of exponential and

damped sine waves after the first q − p lags. The PACF for a mixed process is

dominated by a mixture of exponential and damped sine waves after the first q− p

lags.
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1.6.2 Parameter Estimation

Estimating the model parameters is an important aspect of time series analysis.

There are several methods available in the literature for estimating the parame-

ters, (see Box et al. (1994)). All of them should produce very similar estimates,

but may be more or less efficient for any given model. The main approaches to

fitting Box–Jenkins models are non-linear least squares and maximum likelihood

estimation. The least squares estimator (LSE) of the parameter is obtained by

minimizing the sum of the squared residuals. For pure AR models, the LSE leads

to the linear Ordinary Least Squares (OLS) estimator. If moving average compo-

nents are present, the LSE becomes non-linear and has to be solved by numerical

methods. The maximum likelihood (ML) estimator maximizes the (exact or ap-

proximate) log-likelihood function associated with the specified model. To do so,

explicit distributional assumption for the innovations has to be made. Other meth-

ods for estimating model parameters are the method of moments (MM) and the

generalized method of moments (GMM), which are easy to compute but not very

efficient.

1.6.3 Diagnosis Methods

After estimating the parameters one has to test the model adequacy by checking

the validity of the assumptions imposed on the errors. This is the stage of diagnosis

check. Model diagnostic checking involves techniques like over fitting, residual plots,

and more importantly, checking that the residuals are approximately uncorrelated.

This makes good modelling sense, since in the time series analysis a good model
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should be able to describe the dependence structure of the data adequately, and one

important measure of dependence is the autocorrelation function. In other words, a

good time series model should be able to produce residuals that are approximately

uncorrelated, that is, residuals that are approximately white noise. Note that as

in the classical regression case complete independence among the residuals is im-

possible because of the estimation process. However, the autocorrelations of the

residuals should be close to being uncorrelated after taking into account the effect

of estimation. As shown in the seminal paper by Box and Pierce (1970), the asymp-

totic distribution of the residual autocorrelations plays a central role in checking out

this feature. From the asymptotic distribution of the residual autocorrelations we

can also derive tests for the individual residual autocorrelations and overall tests for

an entire group of residual autocorrelations assuming that the model is adequate.

These overall tests are often called portmanteau tests, reflecting perhaps that they

are in the tradition of the classical chi-square tests of Pearson. Nevertheless, port-

manteau tests remain useful as an overall benchmark assuming the same kind of role

as the classical chi-square tests. It can also be seen that like the classical chi-square

tests, portmanteau tests or their variants can be derived under a variety of situa-

tions. Portmanteau tests and the residual autocorrelations are easy to compute and

the rationale of using them is easy to understand. These considerations enhance

their usefulness in applications.

Model diagnostic checks are often used together with model selection criteria such

as the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC). These two approaches actually complement each other. Model diagnostic

checks can often suggest directions to improve the existing model while information
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criteria can be used in a more or less “automatic” way within the same family of

models. Through the exposition on diagnostic checking methods, it is hoped that

the practitioner should be able to grasp the relative merits of these models and how

these different models can be estimated.

1.6.4 Forecasting

One of the objectives of analysing time series is to forecast its future behaviour.

That is, based on the observations up to time t, we should be able to predict the

value of the variable at a future time point. The method of Minimum Mean Square

Error (MMSE) forecasting is widely used when the time series follows a linear model.

In this case an l-step ahead forecast at time t becomes the conditional expectation,

E(Xt+l|Xt, Xt−1, ...). In the present study of financial time series, our goal is to

forecast the volatility and we have to deal with non-linear models. Hence different

approaches are adopted for different models and we will describe them as and when

we need such methods.

1.7 Examples for Box-Jenkins Methodology

Example 1: This section illustrates the concepts and ideas just presented by work-

ing out a couple of examples. First, we take monthly crude oil price data as an ex-

ample. The data are plotted in Figure 1.1. In this case, the difference of order one

is sufficient to achieve stationarity in mean. The first differenced data are plotted

in Figure 1.3.
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Figure 1.3: Stationary series of monthly crude oil price from April 2000 to
March 2015

First we analyse the ACF and the PACF. They are plotted together with cor-

responding confidence intervals in Figure 1.4. The exponentially decaying ACF

suggests an AR model. As the sample PACF has a single significant spike at lag 1

indicates that the series is likely to be generated from an AR(1) process.

The least squares fit of this model is:

Xt = 0.4410
(0.0673)

Xt−1 + η̂t.

Next, we investigate the information criteria AIC and BIC to identify the orders

of the ARMA(p,q) model. We examine all models with 0 ≤ p, q ≤ 4. The AIC

and the BIC values are reported in Table 1.1. Both criteria reach a minimum at

(p, q) = (1, 0) (bold numbers) so that both criteria suggest an AR(1) model.



Chapter 1. Introduction 22

Figure 1.4: ACF and PACF plot for monthly crude oil price

Order
(p, q)

0 1 2 3 4

0 AIC 6.1444 6.1153 6.1061 6.1173
BIC 6.1622 6.1309 6.1495 6.1785

1 6.0961 6.1165 6.1297 6.1206 6.1365
6.1140 6.1423 6.1533 6.1821 6.1959

2 6.1118 6.1276 6.1257 6.1360 6.1216
6.1476 6.1714 6.1875 6.1957 6.2093

3 6.1282 6.1299 6.1194 6.1205 6.1251
6.1622 6.1719 6.1995 6.2286 6.2412

4 6.1227 6.1247 6.1287 6.1319 6.1255
6.1950 6.2051 6.2172 6.2085 6.2602

Table 1.1: AIC and BIC of fitted models for crude oil price data
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Figure 1.5: Plot of residuals and ACF of residuals for monthly crude oil price

The standardized residuals and ACF of residuals are plotted in Figure 1.5. They

show no sign of significant autocorrelations so that residual series are practically

white noise. We can examine this hypothesis formally by Ljung-Box test. The

Ljung-Box statistic for residual series is obtained as 0.2377 which is less than the

5% chi-square critical value 10.117 at degrees of freedom 20. Hence we conclude

that there is no significant dependence among the residuals. Thus the model seems

adequate for the data.

Example 2: Consider annual rice production data from Section 1.3. A time series

plot of the data is given in Figure 1.2. The process shows signs of non-stationarity

with changing mean. The series was transformed by taking the first difference

of natural logarithm of values to attain stationarity. The time series plot of the
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Figure 1.6: Stationary series of annual rice production in India from 1950-51
to 2014-15

transformed series is presented in Figure 1.6.

The plot of ACF and PACF are given in Figure 1.7. The ACF and PACF suggest

a MA(1) model for the transformed series.

Figure 1.7: ACF and PACF plot for annual rice production
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The MA(1) model has fitted representation:

Xt = − 0.7694
(0.0795)

ηt−1 + η̂t.

The next step in model fitting is diagnostics. This investigation includes the analysis

of the residuals as well as model comparisons. The standardized residuals and ACF

of residuals are plotted in Figure 1.8. Both the plots suggest that there is no

significant dependency in the residuals. The calculated value of Ljung-Box statistic

(2.1281) is less than the 5% chi-square critical value 10.117 at degrees of freedom

20, conclude no dependency in residual series.

Figure 1.8: Plot of residuals and ACF of residuals for annual rice production

Comparing values of AIC and BIC obtained by fitting the different p and q ranging

from 0 to 4 in Table 1.2, the AIC and BIC criteria both suggest a MA(1) model.

Thus we take the fitted MA(1) model as adequate.
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Order
(p, q)

0 1 2 3 4

0 AIC -1.9987 -1.6352 -1.6137 -1.5843
BIC -1.8250 -1.5677 -1.5125 -1.4494

1 -1.621 -1.6142 -1.9440 -1.8377 -1.8972
-1.587 -1.5462 -1.8420 -1.7016 -1.7271

2 -1.615 -1.9291 -1.9108 -1.8062 -1.8653
-1.546 -1.7961 -1.7736 -1.6346 -1.6595

3 -1.687 -1.6559 -1.8874 -1.8773 -1.9788
-1.583 -1.5175 -1.7144 -1.6697 -1.7365

4 -1.637 -1.6116 -1.7556 -1.7302 -1.8949
-1.498 -1.4371 -1.5461 -1.4858 -1.7156

Table 1.2: AIC and BIC for fitted models for rice production data

1.8 Outline of the Thesis

The linear time series models available in the literature are not adequate to model

the financial time series. So, new classes of models are introduced to deal with fi-

nancial time series. Chapter 2 mainly discusses the characteristics of financial time

series. The models for financial time series may be broadly classified as observation

driven and parameter driven models. In observation driven models, the conditional

variance is assumed to be a function of the past observations, which introduces the

heteroscedasticity in the model. The famous models such as Autoregressive Con-

ditional Heteroscedastic (ARCH) model of Engle (1982) and Generalized ARCH

(GARCH) model of Bollerslev (1986) are examples of these. While in the case of

parameter driven models, the conditional variances are generated by some latent

processes. The Stochastic Volatility model of Taylor (1986) is the example of pa-

rameter driven model. Then, we discuss financial duration concepts and duration
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models for modelling transaction durations in financial markets. We focus on Au-

toregressive Conditional Duration model proposed by Engle and Russell (1998) and

Stochastic Conditional Duration model proposed by Bauwens and Veredas (2004).

We summarize the properties of these models in Chapter 2. One of our objectives

in this study is to identify some non-Gaussian time series models and study their

suitability for modelling stochastic volatility and conditional durations in finance.

Birnbaum-Saunders (BS) distribution, introduced by Birnbaum and Saunders (1969b),

has received considerable attention in the recent years in the context of lifetime

modelling. Though the model has been promoted as a life time model, its shape

characteristics, tail properties and non-monotone hazard function all suggest that

the BS model can be used more generally for modelling non-negative random vari-

ables. We introduce a BS Autoregressive Moving Average sequence in Chapter 3,

with an idea to develop SV models induced by non-Gaussian volatility sequences.

A stationary sequence of random variables with BS marginal distribution is con-

structed using a Gaussian autoregressive moving average sequence. The parameters

of the model are then estimated by maximum likelihood method and the resulting

estimators are shown to be consistent and asymptotically normal. A simulation

study is carried out in order to assess the performance of the estimators. To il-

lustrate the application of the proposed model, we have analysed two sets of real

data - index of Coal production in Eight Core Industries and the number of Foreign

Tourist Arrivals in India.

In Chapter 4, we discuss the properties of Birnbaum-Saunders Stochastic Volatil-

ity model. The volatility sequences are generated by BS-AR(1) model discussed

in Chapter 3. We have employed the moment method and Efficient Importance
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Sampling(EIS) method to estimate the model parameters. Simulation studies are

carried out to assess the performance of the estimation method and the proposed

model is finally used to analyze Rupee/Dollar exchange rate and S&P 500 Opening

index data.

The traditional models based on Gaussian distribution are very often not supported

by real-life data because of long tails and asymmetry present in these data. Since the

class of asymmetric Laplace distributions can account for leptokurtic and skewed

data they are natural candidates to replace Gaussian models and processes. In

Chapter 5, we propose a stochastic volatility model generated by first order autore-

gressive process with asymmetric Laplace marginal distribution as an alternative

to normal-lognormal SV model. The model parameters are estimated using the

method of moments as the likelihood function is intractable. The simulation results

indicate that the estimators behave well when the sample size is large. The model

is used to analyze two sets of data and found that, it captures the stylized facts of

the financial time series.

The durations between market activities such as trades, quotes, etc. provide use-

ful information on the underlying assets while analyzing financial time series. In

Chapter 6 we present a brief review of models for such durations and also propose

some new conditional duration models based on inverse Gaussian distribution. The

non-monotonic nature of the failure rate of inverse Gaussian distribution makes it

suitable for modelling the conditional durations in financial time series. First, we

proposed an observation drive model – Autoregressive Conditional Duration model

based on the inverse Gaussian distribution. Second, a parameter driven model

called Stochastic Duration model with inverse Gaussian innovations is constructed.
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The model parameters are estimated by the method of maximum likelihood and

an EIS method respectively. A simulation experiment is conducted to check the

performance of the proposed estimators. Finally a real data analysis is provided to

illustrate the practical utility of the models.

Concluding remarks are given in Chapter 7 to summarize the most important con-

tributions of this thesis and some of the problems identified for future research.





Chapter 2

Models for Financial Time Series

2.1 Introduction

Financial time series are well known for their uncertainty, especially the irregularity

in the behaviour of certain financial indices such as stock prices, exchange or interest

rates, government bond prices, yield of treasury bills and so on, that are prone

to time dependent variability. Such variability, otherwise known as volatility can

generate very high frequency series of variables which are stochastic in nature, the

dynamics of which can best be described by means of stochastic models. As a result

of the added uncertainty, statistical theory and methods play an important role in

financial time series analysis.

There are two main objectives of investigating financial time series. First, it is

important to understand how prices behave. The variance of the time series is par-

ticularly relevant. Tomorrow’s price is uncertain and it must therefore be described

31
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by a probability distribution. This means that statistical methods are the natural

way to investigate prices. Usually one builds a model, which is a detailed descrip-

tion of how successive prices are determined. The second objective is to use our

knowledge of price behaviour to reduce risk or take better decisions. Time series

models may for instance be used for forecasting, option pricing and risk manage-

ment. This motivates more and more statisticians and econometricians to devote

themselves to the development of new (or refined) time series models and methods.

Many finance problems involve the arrival of events such as prices or trades in

irregular time intervals, a new direction of modelling is necessary to explain the

properties of such data. The durations between market activities such as trades,

quotes, etc. provide useful information on the underlying assets while analysing

financial time series. Hence it is important to model the dynamic behaviour of such

durations in finance.

The objective of this chapter is to understand various aspects of financial time

series and list some of the important financial time series models and their useful

characteristics. In the next section, we address some of the stylized facts of financial

time series which play important role in volatility modelling. Section 2.3 introduces

models for volatility and basic properties. In Section 2.4 we discuss about the

conditional duration models in finance.
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2.2 Stylized facts of Financial Time Series

Financial time series analysis is concerned with the theory and practice of asset

valuation over time. One of the objectives of analysing financial time series is to

model the volatility and forecast its future values. The volatility is measured in

terms of the conditional variance of the random variables involved. The condi-

tional variances in the case of financial time series are not constants. They may

be functions of some known or unknown factors. This leads to the introduction of

conditional heteroscedastic models for analysing financial time series. In financial

markets, the data on price Pt of an asset at time t is available at different time

points. However, in financial studies, the experts suggest that the series of returns

be used for analysis instead of the actual price series, see Tsay (2005). For a given

series of prices {Pt}, the corresponding series of returns is defined by

Rt =
Pt − Pt−1

Pt−1

=
Pt
Pt−1

− 1, t = 1, 2, . . . .

The advantages of using the return series are, 1) for an investor, the return series is

a scale free summary of the investment opportunity, 2) the return series are easier

to handle than the price series because of their attractive statistical properties.

Further consideration of the attractive statistical properties, suggested that, the

log-return series defined by rt = log (Pt/Pt−1) is more suitable for analysing the

stochastic nature of the market behaviour. Hence, we focus our attention on the

modelling and analysis of the log-return series in this thesis and we refer {rt =

log (Pt/Pt−1) , t = 1, 2, ...} as financial time series.
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Empirical studies on financial time series (See Mandebrot (1963) and Fama (1965))

show that the series {rt} defined above is characterized by the properties such as

1. Absence of autocorrelation in {rt}.

2. Significant serial correlation in {r2
t }.

3. The marginal distribution {rt} is heavy-tailed.

4. Conditional variance of rt given the past is not constant.

5. Volatility tends to form clusters, i.e., after a large (small) price change (pos-

itive or negative) a large (small) price change tends to occur. This attribute

is called volatility clustering.

To get an intuitive feel of these stylized facts, a typical example is shown in Figure

2.1, where Bombay Stock Exchange (BSE) opening index during July 02, 2007 to

May 13, 2016 is plotted.

Figure 2.1: Time series plot of BSE index and returns
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Right panel in Figure 2.1 plots the time series of returns of the indices under study.

Time series plot of indices are clearly non-stationary, however daily returns are

stationary.

Summary statistics for daily index returns rt are provided in Table 2.1. These

statistics are used in the discussion of some stylized facts related to the probability

density function of the return series.

Statistics BSE index

Observations 2185
Mean 0.0003
Median 0.0004
Maximum 0.1205
Minimum -0.1138
Std. Dev. 0.0166
Skewness -0.3853
Kurtosis 10.2901

Table 2.1: Summary statistics for BSE log-returns

As seen in Table 2.1, BSE index returns have excess kurtosis well above 3 indicates

leptokurtic and fat tails of returns. The ACF of returns and squared returns are

plotted in Figure 2.2. While the autocorrelation of returns are all close to zero,

autocorrelation of squared returns are positive and significantly larger than zero.

Since the autocorrelation is positive, it can be concluded, that small (positive or

negative) returns are followed by small returns and large returns follow large ones

again.

Figure 2.3 compares histogram of BSE index return with approximate normal den-

sity. It is clear from the figure that the empirical distribution of daily returns does
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Figure 2.2: ACF of returns and squared returns of BSE index

not resemble a Gaussian distribution. The peak around zero appears clearly, but

the thickness of the tails is more difficult to visualize.

Figure 2.3: Histogram of BSE index return and normal approximation
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2.3 Models for Volatility

The models described in the previous chapter are often very useful in modelling

time series in general. However, they have the assumption of constant error vari-

ance. As a result the conditional variance of the observation at any time given the

past will remain a constant, a situation referred to as homoscedasticity. This is con-

sidered to be unrealistic in many areas of economics and finance as the conditional

variances are non-constants. Therefore, two prominent classes of models have been

developed by researchers which capture the time-varying autocorrelated volatility

process: the autoregressive conditional heteroscedastic (ARCH) model, introduced

by Engle (1982), assumes that the conditional variances are some functions of the

squares of the past returns and are referred to as the observation driven models.

Another class of models to study the price changes is the SV models introduced by

Taylor (1986), where the conditional variance at time t is assumed to be a stochastic

process in terms of some latent variables, which are referred to as the parameter

driven models.

2.3.1 Autoregressive Conditional Heteroscedastic Models

The ARCH model introduced by Engle (1982) was a first attempt in econometrics

to capture volatility clustering in time series data. In particular, Engle (1982) used

conditional variance to characterize volatility and postulated a dynamic model for

conditional variance. We will discuss the properties and some generalizations of the

ARCH model in subsequent sections; for a comprehensive review of this class of
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models we refer to Bollerslev et al. (1992). ARCH models have been widely used

in financial time series analysis and particularly in analyzing the risk of holding an

asset, evaluating the price of an option, forecasting time-varying confidence intervals

and obtaining more efficient estimators under the existence of heteroscedasticity.

Specifically, an ARCH(p) model for {rt} is defined by

rt =
√
htεt , ht = α0 +

p∑
i=1

αi r
2
t−i, (2.1)

where {εt} is a sequence of independent and identically distributed random vari-

ables with mean zero and variance 1, α0 > 0, and αi ≥ 0 for i > 0. If {εt} has

standardized Gaussian distribution conditional on ht, rt follows normal with mean

0 and variance ht. The Gaussian assumption of εt is not critical. We can relax it

and allow for more heavy-tailed distributions, such as the Student’s t -distribution,

as is typically required in finance. Now we describe the properties of a first order

ARCH model in detail.

ARCH(1) model and properties:

The structure of the ARCH model implies that the conditional variance ht of rt,

evolves according to the most recent realizations of r2
t analogous to an AR(1) model.

Large past squared shocks imply a large conditional variance for rt. As a conse-

quence, rt tends to assume a large value which in turn implies that a large shock

tends to be followed by another large shock. To understand the ARCH models, let

us now take a closer look at the ARCH(1) model

rt =
√
ht εt , ht = α0 + α1 r

2
t−1, (2.2)
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where α0 > 0 and α1 ≥ 0.

1. The unconditional mean of rt is zero, since

E (rt) = E (E (rt|rt−1)) = E
(√

htE (εt)
)

= 0.

2. The conditional variance of rt is

E
(
r2
t |rt−1

)
= E

(
htε

2
t |rt−1

)
= htE

(
ε2
t |rt−1

)
= ht = α0 + α1 r

2
t−1.

3. The unconditional variance of rt is

V ar (rt) = E
(
r2
t

)
= E

(
E
(
r2
t |rt−1

))
= E

(
α0 + α1r

2
t−1

)
= α0 + α1E

(
r2
t−1

)
=

α0

1− α1

.

4. Assuming that the fourth moment of rt are finite, the Kurtosis K of rt, is

given by

K =
E (r4

t )

E (r2
t )

2 = 3
1− α2

1

1− 3α2
1

> 3,

provided α2
1 < 1/3.

The ARCH model with a conditionally normally distributed rt leads to heavy

tails in the unconditional distribution. In other words, the excess kurtosis of
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rt is positive and the tail of the distribution of rt is heavier than that of the

normal distribution.

5. The autocovariance of rt is defined by

Cov (rt, rt−k) = E (rt rt−k)− E (rt)E (rt−k)

= E (rt rt−k) = E
(√

ht
√
ht−k

)
E (εtεt−k) = 0.

Then the autocorrelation function of rt is zero. The ACF of {r2
t } is ρr2t (k) = αk1

and notice that ρr2t (k) ≥ 0 for all k, a result which is common to all linear

ARCH models.

Thus, the ARCH(1) process has a mean of zero, a constant unconditional variance,

and a time varying conditional variance. The {rt} is stationary process for which

0 ≤ α1 < 1 is satisfied, since the variance of rt must be positive. These prop-

erties continue to hold for general ARCH models, but the formulas become more

complicated for higher order ARCH models.

2.3.2 Generalized ARCH (GARCH) Models

The GARCH model is an extension of Engle’s work by Bollerslev (1986) that allows

the conditional variance to depend on the previous conditional variances and the

squares of previous returns. The possibility that estimated parameters in ARCH

model do not satisfy the stationarity condition increases with lag. Thus GARCH
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model is an alternative to ARCH model. The GARCH (p, q) is defined by

rt =
√
htεt , ht = α0 +

p∑
i=1

αi r
2
t−i +

q∑
j=1

βjht−j, (2.3)

where {εt} is a sequence of independent and identically distributed random variables

with mean 0 and variance 1; {εt} is assumed to be independent of {ht−i, i ≥ 1}.

α0, αi and βj are unknown parameters satisfying α0 > 0, αi ≥ 0, βj ≥ 0, and∑max(p,q)
i=1 (αi + βi) < 1. The constraint on αi + βi implies that the unconditional

variance of rt is finite, whereas its conditional variance ht evolves over time. As

before, εt is assumed to be a standard normal distribution.

GARCH (1,1) model and properties:

Let us now consider the GARCH (1,1) model, which is the most popular one for

modelling asset-return volatility. We represent this model as

rt =
√
htεt , ht = α0 + α1 r

2
t−1 + β1ht−1, (2.4)

where εt ∼ N (0, 1) and 0 ≤ α1, β1 < 1, α1 + β1 < 1.

1. The unconditional mean of rt is zero, since

E (rt) = E (E (rt|rt−1)) = E
(√

htE (εt)
)

= 0.
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2. The conditional variance of rt is

E (r2
t |rt−1) = E (htε

2
t |rt−1)

= htE (ε2
t |rt−1)

= ht = α0 + α1 r
2
t−1 + β1ht−1.

3. The unconditional variance of rt is

V ar (rt) = E (r2
t ) = E (E (r2

t |rt−1)) = E
(
α0 + α1 r

2
t−1 + β1ht−1

)
= α0 + α1E

(
r2
t−1

)
+ β1E (ht−1)

Under stationarity we get

V ar(rt) =
α0

1− (α1 + β1)
.

4. The Kurtosis of rt, K, is given by

K =
3
[
1− (α1 + β1)2]

1− (α1 + β1)2 − 2α2
1

> 3.

Consequently, similar to ARCH models, the tail of the marginal distribution

of GARCH(1,1) process is heavier than that of a normal distribution if 1 −

2α2
1 − (α1 + β1)2 > 0.

5. The ACF of {rt} is zero and the ACF of {r2
t } is given by

ρr2t (k) = (α1 + β1)k−1 α1 (1− α1β1 − β2
1)

1− 2α1β1 − β2
1

, k = 1, 2, ....
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2.3.3 Stochastic Volatility Models

This is a class of parameter driven model in which the volatility at time t is described

as a latent stochastic process, such as the one generated by an autoregressive model.

An appealing feature of the SV model is its close relationship to financial economic

theories. The univariate SV model proposed by Taylor (1986) is given by,

rt = εt exp (ht/2) , ht = α + ρht−1 + ηt ; |ρ| < 1, t = 1, 2, ..., (2.5)

where εt and ηt are two independent Gaussian white noises, with variances 1 and

σ2
η, respectively. Due to the Gaussianity of ηt, this model is called a log-normal SV

model. Its major properties are discussed in Taylor (1986, 1994).

As ηt is Gaussian, {ht} is a Gaussian autoregressive process. It will be (strictly and

covariance) stationary if |ρ| < 1 with:

µh = E (ht) =
α

1− ρ
,

σ2
h = V (ht) =

σ2
η

1− ρ2
.

As {εt} is always stationary, {rt} will be stationary if and only if {ht} is stationary,

rt being the product of two stationary process. All odd moments of rt vanish and

using the property of log-normal distribution, all the even moments of rt can be

obtained if ht is stationary. In particular the kurtosis is

K =
E (r4

t )

E (r2
t )

2 = 3 exp
(
σ2
h

)
≥ 3,
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which shows that the SV model has fatter tails than the corresponding normal

distribution. The dynamic properties of rt are easy to find. First, as {εt} is inde-

pendent and identically distributed, {rt} is a martingale difference and is a white

noise if |ρ| < 1. As ht is a Gaussian AR(1),

Cov
(
r2
t , r

2
t−k
)

= E
(
r2
t r

2
t−k
)
− E

(
r2
t

)
E
(
r2
t−k
)

= E (exp (ht + ht−k))− (E (exp (ht)))
2

= exp
(
2µh + σ2

h

) (
exp

(
σ2
hρ

k
)
− 1
)
,

and so

ρr2t (k) =
Cov

(
r2
t , r

2
t−k
)

V (r2
t )

=
exp

(
σ2
hρ

k
)
− 1

3 exp (σ2
h)− 1

' exp (σ2
h)− 1

3 exp (σ2
h)− 1

ρk.

Note that if ρ < 0, ρr2t (k) can be negative, unlike ARCH models. This resembles the

autocorrelation function of an ARMA(1,1) process. Thus the SV model behaves in

a manner similar to the GARCH(1,1) model. Finally, note that there is no need for

non-negativity constraints or for bounded kurtosis constraints on the coefficients.

This is a great advantage with respect to GARCH models. A review of the properties

of SV models may be found in Taylor (1994) and Tsay (2005).

Despite theoretical advantages, the SV models have not been popular as the ARCH

models in practical applications. The main reason is that the likelihood function for

the SV model is not easy to evaluate unlike in the case of ARCH models. A variety of

estimation procedures have been proposed to overcome this difficulty, including, for

example, the Generalized Method of Moments (GMM) used by Melino and Turnbull
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(1990), the Quasi Maximum Likelihood (QML) approach followed by Harvey et al.

(1994) and Ruiz (1994), the Efficient Method of Moments (EMM) applied by Gallant

et al. (1997), and Markov Chain Monte Carlo (MCMC) procedures used by Jacquier

et al. (1994) and Kim et al. (1998). For a survey of these estimation procedures, one

can refer Ghysels et al. (1996), Broto and Ruiz (2004) and Bauwens et al. (2012).

2.4 Models for Durations

The statistical analysis of sequence of durations between events is well studied in

the area of point processes which includes the renewal process as a special case. In

the analysis of financial time series the durations between market activities such

as trades, quotes, etc. provide important information on the underlying asset.

These durations are irregularly time-spaced and they form a sequence of random

variables. As a result, the number of financial transactions taken place in any

interval forms a point process called financial point process. For a specified asset,

longer durations indicate lack of trading activities, which in turn signify a period

of no new information. On the other hand arrival of new information often results

in heavy trading and hence leads to shorter durations. The dynamic behaviour of

durations thus contains useful information about market activities. Furthermore,

since financial markets typically take a period of time to uncover the effect of new

information, active trading is likely to persist for a period of time, resulting in

clusters of short durations. Consequently, durations might exhibit characteristics

similar to those of asset volatility, which is an important aspect of financial time

series. Such features may be captured in alternative ways through different dynamic
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models based on either duration or intensity representation of a point process. These

considerations motivated Engle and Russell (1998) to introduce a class of dynamic

models known as Autoregressive Conditional Duration models, described below.

2.4.1 Autoregressive Conditional Duration (ACD) Models

Let {Ti, i ≥ 0} be a sequence of times of occurrence of certain financial events and we

assume that 0 = T0 < T1 < T2 < .... Then the i th duration Xi, the interval between

the i-1 th and i th occurrence of the event is defined by Xi = Ti − Ti−1, i = 1, 2, ....

The basic ACD model of Engle and Russell (1998) expresses the seasonally adjusted

duration Xi in the form of a multiplicative error model as

Xi = ψi εi, (2.6)

where {εi} is a sequence of independent and identically distributed non-negative

random variables with unit mean. Here ψi is introduced as the conditional expec-

tation of the duration Xi given the information on the past durations. That is,

ψi = E(Xi|Fi−1), where Fi−1 = σ(X1, X2, ..., Xi−1) is the sigma field generated by

(X1, X2, ..., Xi−1). Engle and Russell (1998) defined the ACD (p, q) model specifying

ψi as

ψi = ω +

p∑
j=1

αjXi−j +

q∑
j=1

βjψi−j, (2.7)

where p and q are non-negative integers. The following conditions are imposed on

the parameters for the stationarity of the sequence:
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ω > 0, αj ≥ 0, βj ≥ 0,

p∑
j=1

αj +

q∑
j=1

βj < 1. (2.8)

Different classes of ACD models can be defined either by the choice of the functional

form of ψi or by the choice of the distribution for εi. For example, ACD models

with several standard distributions such as Exponential and Weibull (Engle and

Russell (1998)), Burr (Grammig and Maurer (2000)), etc. have been studied in

the literature, see Pacurar (2008) for a detailed survey. The equations (2.6) and

(2.7) define the dynamical structure of the standard ACD models, which can be

viewed as an observation driven model like GARCH model described in Section 2.3.

However, in the latter case the model was specified for the conditional variance of

the returns.

The standard ACD model has been extended in several ways, directed mainly to im-

proving the fitting of the stylized facts of financial durations. The strong similarity

between the ACD and GARCH models nurtured the rapid expansion of alternative

specifications of conditional durations. An equally important model for analysing

financial durations is a class of parameter driven model introduced by Bauwens and

Veredas (2004) known as Stochastic Conditional Duration model.

2.4.2 Stochastic Conditional Duration (SCD) Models

In this Section, we analyse a class of parametric models for durations, which are

referred to as SCD models proposed by Bauwens and Veredas (2004). In contrast to

the ACD model of Engle and Russell (1998), in which the conditional mean of the
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duration is modelled as a conditionally deterministic function of past information,

the SCD model treats the conditional mean of durations as a stochastic latent

process, with innovations to the process captured by an appropriate distribution

with positive support. As such, the contrast between the two specifications mimics

the contrast between the GARCH and SV frameworks for capturing the conditional

volatility of financial returns. In particular, as is the case with the SV model,

the SCD model presents a potentially more complex estimation problem than its

alternative, by augmenting the set of unknowns with a set of unobservable latent

factors.

An SCD model of order one is defined by

Xi = eψiεi, ψi = ω + β ψi−1 + ui , i = 1, 2, ..., (2.9)

where ui follows independent and identically distributed N (0, σ2) so that {ψi} de-

fines a Gaussian AR(1) sequence and εi is as defined in the case of (2.6). Unlike in

the case of ACD models, the analysis of SCD model is more complicated due to the

presence of latent variables, ψi, which are not observable. Economically, the latent

factor can be interpreted as information flow that cannot be observed directly but

drives the duration process. In this sense, the SCD model is the counterpart of the

SV model introduced by Taylor (1986).

A difficulty associated with SCD framework is the parameter estimation because no

explicit expression for the likelihood function of SCD model is directly available due

to the presence of latent structure in ψi . The evaluation of the likelihood function of

the SCD model requires computing an integral that has the dimension of the sample
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size. Bauwens and Galli (2009) developed ML estimation based on the efficient

importance sampling (EIS) method for computing such integral. Other methods,

that are less demanding in computing time, do not evaluate the exact likelihood

function. The easiest two techniques are quasi-maximum likelihood (QML) and

generalized method of moments (GMM). These techniques provide asymptotically

consistent estimators and previous research seems to indicate that the behaviour of

the QML estimator is better than the one of GMM in the context of the stochastic

volatility model; see Ruiz (1994) and Jacquier et al. (1994). Bauwens and Veredas

(2004) used QML based on the transformation of the model into a linear state space

representation and the application of the Kalman filter.





Chapter 3

Birnbaum-Saunders

Autoregressive Moving Average

Processes

3.1 Introduction

Most of the theory behind the analysis of time series is based on the assumption that

the innovation sequence which generates the process is normally distributed. If the

model for the time series is linear, as in the autoregressive moving average case, then

the assumed normality of the innovation implies that the marginal distribution of

the observed values will be normal as well. However time series in which observations

are non Gaussian nature are very common in many areas. The literature on non-

Gaussian time series deals with ARMA processes with several non-normal marginal

51
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distributions. When the support of these marginal distributions are restricted to be

non-negative, they are used to model the life time data. Let us consider a stationary

and invertible first order autoregressive moving average (ARMA(1,1)) model defined

by

Xt = ρXt−1 + θηt−1 + ηt, |ρ| < 1, |θ| < 1, t = 1, 2, ... , (3.1)

where {ηt} is a sequence of independent and identically distributed random variables

termed as innovations. It is assumed that Xt depends only on the present and the

past innovations.

Birnbaum-Saunders (BS) distribution, introduced by Birnbaum and Saunders (1969b),

has received considerable attention in the recent years in the context of lifetime mod-

elling This is due to its many attractive properties and its close relationship with the

normal distribution. These aspects make the BS distribution a natural and mean-

ingful alternative candidate to the normal model to accommodate positive skewness

and non-negative support in the data. Recently, much work has been carried out

on BS distribution while modelling non-negative lifetime data; see Kundu et al.

(2010) and the references therein for more details. In general, its applications are

not only limited to the mentioned area, but its use in business, economics, finance,

industry, insurance, inventory, quality control, and toxicology have also been con-

sidered, among others; see Jin and Kawczak (2003), Lio and Park (2008), Ahmed

et al. (2010), Bhatti (2010), Paula et al. (2012), Marchant et al. (2013) Leiva et al.

(2014a,b,c), Wanke and Leiva (2015) and Leiva et al. (2016). A recent text book by

Leiva (2016) gives an up to date survey on applications on BS distribution in several

areas. However, there is no development on a stationary sequence of BS random



Chapter 3. BS ARMA Models 53

variables with an observation at time t depending on its past values. In this chapter,

we construct an ARMA process with BS marginal distribution through a Gaussian

ARMA process with the primary aim of using it for modelling non-negative vari-

ables. The modelling of non-negative random variables play a major role in the

study of financial time series, where one has to model the evolution of conditional

variances known as stochastic volatility (see Tsay (2005)).

The rest of this chapter is organized as follows. Section 3.2 describes the elemen-

tary properties of the BS distribution. In Sections 3.3 to 3.5 we construct the

AR(1), MA(1) and ARMA(1,1) models with BS marginal distribution and study

their second-order properties. The maximum likelihood method of estimation and

its asymptotic properties are discussed in Sections 3.6 and 3.7. A simulation study is

carried out in Section 3.8, while Section 3.9 deals with a data analysis for illustrating

the results developed in the preceding sections.

3.2 Birnbaum-Saunders distribution

A random variable Y has a BS distribution if it can be expressed as

Y = β

[
α

2
X +

√(α
2
X
)2

+ 1

]2

, (3.2)

where X is a random variable following the standard normal distribution, i.e., X ∼

N (0, 1).
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The probability density function of Y is given by

fY (y;α, β) =
1

2αβ
√

2π

[(
β

y

)1/2

+

(
β

y

)3/2
]

exp

(
− 1

2α2

[
y

β
+
β

y
− 2

])
, y > 0;

(3.3)

here, α > 0 and β > 0 are the shape and scale parameters, respectively. Hereafter,

this distribution will be denoted by BS (α, β). The shape of the density function in

(3.3) is governed by the parameter α. It can be shown that fY (· ;α, β) is a unimodal

function and for fixed β, the mode is an increasing function of α. See Leiva (2016)

for details.

The transformation in (3.2) is very useful as it enables the determination of the

moments of Y through known results on expectations of functions of X. Using (3.2),

the mean, variance and the coefficients of skewness and kurtosis can be respectively

obtained as

E(Y ) = β

(
1 +

1

2
α2

)
, V ar(Y ) = (αβ)2

(
1 +

5

4
α2

)
,

γ =
16α2(11α2 + 6)

(5α2 + 4)3
, K = 3 +

6α2(93α2 + 41)

(5α2 + 4)2
. (3.4)

It is clear that both the mean and variance increase as α increases. The coefficient

of skewness, γ converges to zero as α → ∞, and so the shape of the probability

density function in (3.3) become symmetric as α→∞. Moreover, kurtosis K tends

to 3 (that of normal distribution) as α→∞. More details on BS distribution may

be found in Leiva (2016).
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3.3 BS-AR(1) Model

Let us consider a stationary process {Xt} given by

Xt = ρXt−1 + ηt, |ρ| < 1, t = 1, 2, ... , (3.5)

where X0 is a standard normal random variable independent of η1. Then {Xt}

is a stationary Gaussian AR(1) process with standard normal (N(0, 1)) marginal

distribution with probability density function

φX(x) =
1√
2π

exp{−x2/2},−∞ < x <∞. (3.6)

Then the distribution of the innovation ηt is N(0, 1 − ρ2) with probability density

function

φη(x) =
1√

2π(1− ρ2)
exp{−x2/2(1− ρ2)},−∞ < x <∞. (3.7)

Note that {Xt} defined by (3.5) is a stationary Markov sequence with one-step

transition density function of Xt at xt , given Xt−1 = xt−1 , as

φt|t−1(xt|xt−1) =
1√

2π(1− ρ2)
exp{−(xt − ρxt−1)2/2(1− ρ2)},−∞ < xt−1, xt <∞

= φη(xt − ρxt−1). (3.8)

The stationary bivariate density function of (Xt−1, Xt) is given by
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φ(xt−1, xt) = φη(xt − ρxt−1)φXt−1(xt−1)

= 1

2π
√

(1−ρ2)
exp{−(x2

t − 2ρxtxt−1 + x2
t−1)/2(1− ρ2)}

(3.9)

for −∞ < xt−1, xt <∞.

Let us denote the joint distribution function corresponding to (3.9) by

Φt−1,t(xt−1, xt) =

∫ xt

−∞

∫ xt−1

−∞
φ(u, v)dudv. (3.10)

Suppose {Xt} is a Gaussian AR(1) sequence generated by (3.5), and we define {Yt}

by

Yt = β

1

2
αXt +

√(
1

2
αXt

)2

+ 1

2

for t = 1, 2, ... (3.11)

Then, it is evident that Yt follows a BS(α, β) distribution for every t and {Yt} is

a stationary Markov sequence with BS marginal distribution. Consider the joint

distribution function of Yt−1 and Yt given by

Ft−1,t(yt−1, yt) = P (Yt−1 ≤ yt−1, Yt ≤ yt)

= Φt−1,t

(
1

α

{√
yt−1

β
−

√
β

yt−1

}
,

1

α

{√
yt
β
−

√
β

yt

})
, yt−1, yt > 0, (3.12)

where Φt−1,t(., .) is as defined in (3.10). This is indeed the same bivariate distribution

as given in Section 3 of Kundu et al. (2010) with α1 = α2 = α and β1 = β2 = β.

The probability density function corresponding to the distribution function (3.12)
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is given by

ft−1,t(yt−1, yt) = 1

2π
√

1−ρ2
1

4α2β2

((
β

yt−1

)1/2

+
(

β
yt−1

)3/2
)((

β
yt

)1/2

+
(
β
yt

)3/2
)

× exp

− 1
2(1−ρ2)


1
α2

[
yt−1

β
+ β

yt−1
− 2
]

+ 1
α2

[
yt
β

+ β
yt
− 2
]

− 2ρ
α2

[(√
yt−1

β
−
√

β
yt−1

)](√
yt
β
−
√

β
yt

)

 .

Note that this density function is symmetric in yt and yt−1 and so the Markov

sequence is time-reversible. The one-step transition density function of {Yt} is then

given by

ft|t−1(yt|yt−1) = 1

2αβ
√

2π
√

1−ρ2

((
β
yt

)1/2

+
(
β
yt

)3/2
)

× exp

{
− 1

2(1−ρ2)

[
1
α

(√
yt
β
−
√

β
yt

)
− ρ

α

(√
yt−1

β
−
√

β
yt−1

)]2
}
.

(3.13)

The mean, variance, skewness and kurtosis of Yt are respectively given by (3.4).

The autocorrelation function of a stationary sequence {Yt} is defined by ρY (k) =

Cov(Yt, Yt+k)/V ar(Yt). This can be computed by constructing the distribution of

(Y1, Y1+k) using that of (X1, X1+k). By model (3.5), it is easy to show that the ACF

of {Xt}, ρX(k) = ρk, k = 0, 1, 2, ....

For deriving the distribution of (X1, X1+k), we consider the characteristic function

of (Xt, Xt+k) and given by,

ψ(u1, u2) = E [exp {iu1Xt + iu2Xt+k}]

= E

[
exp

{
iu1Xt + iu2

(
ρkXt +

k∑
j=1

ρk−jηt+j

)}]
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= E
[
exp

{
i
(
u1 + u2ρ

k
)
Xt

}]
E

[
exp

{
iu2

(
k∑
j=1

ρk−jηt+j

)}]

= exp

{
−1

2

(
u1 + u2ρ

k
)2
}[

exp

{
−1

2
u2

2(1− ρ2)

}(
ρ2(k−1) + ρ2(k−2) + ...+ 1

)]
= exp

{
−1

2

(
u1 + u2ρ

k
)2
}

exp

{
−1

2
u2

2

(
1− ρ2k

)}
= exp

{
−1

2

(
u2

1 + u2
2 + 2u1u2ρ

k
)}

,

which is the characteristic function of bivariate normal distribution. Therefore, it

can be shown that

(X1, X1+k) ∼ N2

0,

 1 ρk

ρk 1


 k = 1, 2, ....

Autocorrelation function:

We now derive the ACF of {Yt} in terms of that of {Xt} by using the relation in

(3.11). Let us first compute the auto-covariance function of lag k given by

Cov(Yt, Yt+k) = E(YtYt+k)− E(Yt)E(Yt+k).

For this purpose, let us consider

E(YtYt+k) = E

β
αXt

2
+

√(
αXt

2

)2

+ 1

2

× β

αXt+k

2
+

√(
αXt+k

2

)2

+ 1

2




Chapter 3. BS ARMA Models 59

= β2E

1 +
α2X2

t

2
+
α2X2

t+k

2
+
α4X2

tX
2
t+k

4
+ αXt

√(
αXt

2

)2

+ 1

+ αXt+k

√(
αXt+k

2

)2

+ 1 +
1

2
α3XtX

2
t+k

√(
αXt

2

)2

+ 1

+
1

2
α3X2

tXt+k

√(
αXt+k

2

)2

+ 1 + α2XtXt+k

√(αXt

2

)2

+ 1

√(αXt+k

2

)2

+ 1

 .
Note that

E(X2
t ) = E(X2

t+k) = 1

E(X2
tX

2
t+k) = 1 + 2ρ2k

E

Xt

√(
αXt

2

)2

+ 1

 = E

Xt+k

√(
αXt+k

2

)2

+ 1


= E(odd function in Xt ) = 0

E

X2
tXt+k

√(
αXt+k

2

)2

+ 1

 = E

XtX
2
t+k

√(
αXt

2

)2

+ 1


= E(odd function in Xt ) = 0

Consequently, we have

E(YtYt+k) = β2

[
1 + α2 +

α4

4
(1 + 2ρ2k) + α2I1

]
, (3.14)
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where

I1 = E

XtXt+k

√(αXt

2

)2

+ 1

√(αXt+k

2

)2

+ 1


= E

[{
Xt +

1

23
α2X3

t +
∞∑
i=2

(−1)i−1 1 · 3 ... (2i− 3)

23i i!
α2iX2i+1

t

}
×
{
Xt+k +

1

23
α2X3

t+k +
∞∑
j=2

(−1)j−1 1 · 3 ... (2j − 3)

23j j!
α2jX2j+1

t

}]
.

For non-negative integers m and n, we have [see Kotz et al. (2000), pp 261]

E
(
X2m+1
t X2n+1

t+k

)
=

(2m+ 1)!(2n+ 1)!

2m+n

min(m,n)∑
i=0

(2ρX)2i+1

(m− i)! (n− i)! (2i+ 1)!
= am,n (say) .

Therefore,

I1 = a0,0 +
1

22
α2a0,1 +

1

26
α4a1,1 +

∞∑
i=2

(−1)i−1 1 · 3 ...(2i− 3)

23i−1 i!
α2ia0,i

+
∞∑
i=2

(−1)i−1 1 · 3 ...(2i− 3)

23i+2 i!
α2i+2a1,i +

∞∑
i=2

∞∑
j=2

(−1)i+j
1 · 3 ...(2i− 3)

23i i!
×1 · 3 ...(2j − 3)

23j j!
α2i+2jai,j

(3.15)

and so

Cov (Yt, Yt+k) = α2β2

(
α2ρ2k

2
+ I1

)
. (3.16)

The ACF of {Yt} is then readily obtained to be

ρY (k) =

(
α2ρ2k

2
+ I1

)/(
1 +

5

4
α2

)
, k = 1, 2, .... (3.17)
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The plots in Figure 3.1 compare the ACFs of the Gaussian AR(1) and the corre-

sponding BS Markov sequences for selected values of ρ and α.

Figure 3.1: ACF of the Gaussian AR(1) and the corresponding BS Markov
sequence

3.4 BS-MA(1) Model

In this section, we consider a BS model with a different kind of dynamics. Instead

of the AR(1) process considered in the previous section, dependence is incorporated

through a first order Moving Average process. Consider an invertible MA(1) model

with standard normal marginal distribution,

Xt = θηt−1 + ηt, |θ| < 1, t = 1, 2, ... . (3.18)
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Then the distribution of the innovation ηt is N(0, 1/(1+θ2)) with probability density

function

φη(x) =

√
1 + θ2

√
2π

exp
{
−(1 + θ2)x2/2

}
, −∞ < x <∞. (3.19)

Then the stationary multivariate density function of X1, X2, ..., XT is given by

φ(x1, x2, ..., xT ; Σ) =
1

(2π)
T
2 |Σ|

1
2

exp

{
−1

2
X ′Σ−1X

}
, (3.20)

where X = (x1, x2, ..., xT )
′

and Σ is the correlation matrix of X and given by

Σ =



1 ρ 0 0 . . . 0

ρ 1 ρ 0 . . . 0

...

0 0 0 . . . ρ 1


, ρ =

θ

1 + θ2
.

If we make the transformation (3.11) to {Xt} generated by (3.18), then it can be

easily seen that Yt ∼ BS (α, β) distribution for every t and {Yt} is an invertible

moving average process with BS marginal distribution. Then the joint density

function of Y1, Y2, ..., YT is given by

fY (y1, y2, ..., yT ) = φ

(
1

α

(√
y1

β
−

√
β

y1

)
, . . .,

1

α

(√
yT
β
−

√
β

yT

)
; Σ

)

×
T∏
n=1

1

2αβ

{(
β

yn

) 1
2

+

(
β

yn

) 3
2

}
(3.21)

for yt, yt−1, ..., y1 > 0 and φ( · ; Σ) is as defined in (3.20). This is indeed the same

Multivariate Birnbaum-Saunders distribution with Multivariate normal kernel as



Chapter 3. BS ARMA Models 63

given in Section 3 of Kundu et al. (2013) with αi = α and βi = β for i = 1, 2, .., p.

The Autocovariance function of BS-MA sequence is derived similar to that of BS-

AR case discussed in Section 3.3. From model (3.18), it is evident that the ACF of

{Xt}, ρX(k) = θ
1+θ2

, k = 1 and zero elsewhere.

Also, (X1, X2, ..., XT ) ∼ NT (0,Σ) with correlation matrix Σ.

We now derive the ACF of {Yt} in terms of that of {Xt} by using the relation in

(3.11). Then the autocovariace of {Yt} is obtained as

Cov (Yt, Yt+k) =

 α2β2I1, k = 1

0 , k > 1
(3.22)

and the ACF is obtained as

ρY (k) = I1

/(
1 +

5

4
α2

)
, for k = 1 (3.23)

and zero elsewhere, where I1 is same as the expression given by (3.15) with ρX

replaced by θ
1+θ2

in the expression for am,n.

The plots in Figure 3.2 compare the ACFs and PACFs of the Gaussian MA(1) and

the corresponding BS sequences for selected values of α and θ.
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Figure 3.2: ACF and PACF of the Gaussian MA(1) and the corresponding
BS-MA sequence.

3.5 BS-ARMA(1,1) Model

In this section we define a more flexible ARMA model with BS marginal distribution.

To begin with consider an invertible and stationary ARMA(1,1) model

Xt = ρXt−1 + θηt−1 + ηt, t = 1, 2, ..., (3.24)

such that the marginal distribution of {Xt} is standard normal. We assume that

|ρ| < 1 for stationarity, and |θ| < 1 for invertibility. Under these constraints the
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distribution of ηt is N(0, (1− ρ2)/(1 + θ2 + 2θρ)) with probability density function

φη(x) =

√
(1 + θ2 + 2θρ)
√

2π
√

1− ρ2
exp

{
−(1 + θ2 + 2θρ)x2/2(1− ρ2)

}
, −∞ < x <∞.

(3.25)

The stationary multivariate density function of X1, X2, ..., XT may be expressed as

φ(x1, x2, ..., xT ) =
1

(2π)
T
2 |Γ|

1
2

exp

{
−1

2
X ′Γ−1X

}
, (3.26)

where X = (x1, x2, ..., xT )
′

and Γ is the correlation matrix of X.

If we define Yt in terms of Xt using the transformation (3.11) for t = 1, 2, . . . then

{Yt} becomes a stationary sequence with finite dimensional distribution specified

by the joint density function of Y1, Y2, ..., YT for T = 1, 2, . . . as

fY (y1, y2, ..., yT ) = φ

(
1

α

(√
y1

β
−

√
β

y1

)
, . . .,

1

α

(√
yT
β
−

√
β

yT

)
; Γ

)

×
T∏
n=1

1

2αβ

{(
β

yn

) 1
2

+

(
β

yn

) 3
2

}
(3.27)

for y1, y2, ..., yT > 0 and φ( · ; Γ) is as defined in (3.26). We refer {Yt} as a BS-

ARMA(1,1) sequence. In fact (3.27) is the same Multivariate Birnbaum-Saunders

density with Multivariate normal kernel as given in Section 3 of Kundu et al. (2013)

with αi = α and βi = β for i = 1, 2, .., p.

The autocovariance function of BS-ARMA(1,1) sequence is derived similar to that

of BS-AR case discussed earlier. The ACF RX(k) of {Xt} defined by (3.24) can
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derived as,

RX(k) =


(θ+ρ)(1+ρθ)
(1+θ2+2ρθ)

, k = 1

ρ.RX(k − 1) , k ≥ 2

Also, (X1, X2, ..., XT ) ∼ NT (0,Γ) with correlation matrix

Γ =



1 R ρR ρ2R . . . ρT−2R

R 1 R ρ2R . . . ρT−3R

...

ρT−2R ρT−3R ρT−4R . . . R 1


,

where R = (θ+ρ)(1+ρθ)
(1+θ2+2ρθ)

.

Therefore, the autocovariance function of BS-ARMA (1,1) sequence is obtained as

Cov (Yt, Yt+k) = α2β2

[
α2

4

(
3ρ2k +

(1 + θ2)(1− ρ2k)

(1 + θ2 + 2θρ)
− 1

)
+ I1

]
, k = 1, 2, ...

(3.28)

and the ACF is obtained as

ρY (k) =

(
I1 +

α2

4

(
3ρ2k +

(1 + θ2)(1− ρ2k)

(1 + θ2 + 2θρ)
− 1

))/(
1 +

5

4
α2

)
, k = 1.2, ...

(3.29)

where I1 is same as the expression given by (3.15) with ρX replaced by RX in the

expression for am,n.

The plots in Figure 3.3 compare the ACFs and PACFs of the Gaussian ARMA(1,1)

and the corresponding BS sequences for selected values of α, ρ and θ. Figures

3.1-3.3 suggest that the properties of theoretical ACF and PACF of proposed BS

models are in line with the Gaussian ARMA models.
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Figure 3.3: ACF and PACF of the Gaussian ARMA(1,1) and the corresponding
BS-ARMA sequence
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3.6 Estimation of Parameters

The maximum likelihood (ML) estimators based on a random sample from the

BS distribution were discussed originally by Birnbaum and Saunders (1969a) and

their asymptotic distributions were obtained by Engelhardt et al. (1981). However,

while estimating the parameters we have to take care of the dependence structure

among the observations. When we have explicit density function for the innovation

random variables, the methods based on conditional likelihood function may be

preferable. Hence we propose the method of conditional likelihood for estimating the

BS-ARMA(1,1) model discussed earlier. Let the parameter vector to be estimated

be Θ = (α, β, ρ, θ). Let us begin with the case of an AR(1) model and estimate

Θ = (α, β, ρ).

3.6.1 BS-AR(1) Model

An advantage of AR(1) process is that, it is Markovian when the errors are inde-

pendent. For a Markov sequence with transition density function, the likelihood

function based on a realization (y1, y2, ..., yT ) conditional on y1 can be expresses as

L(Θ|y1, y2, ..., yT ) =
T∏
t=2

ft|t−1(yt|yt−1),

where ft|t−1(.) is the one step transition density given by (3.13). The parameter

vector to be estimated is Θ = (α, β, ρ). Then, the log-likelihood function (without
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the additive constant) of the BS Markov sequence is given by

logL = − (T − 1) log(αβ)−
(
T − 1

2

)
log
(
1− ρ2

)
+

T∑
t=2

log

[(
β

yt

) 1
2

+

(
β

yt

) 3
2

]

− 1

2α2 (1− ρ2)

T∑
t=2

[(√
yt
β
−

√
β

yt

)
− ρ

(√
yt−1

β
−

√
β

yt−1

)]2

(3.30)

The ML estimators of ρ and α are, respectively, given by

ρ̂ =

∑T
t=2 wtwt−1∑T
t=2 w

2
t−1

; α̂ =

√∑T
t=2 (wt − ρ̂wt−1)2

(T − 1) (1− ρ̂2)
, (3.31)

where

wt =

√
yt

β̂
−

√
β̂

yt
, wt−j =

√
yt−j

β̂
−

√
β̂

yt−j
.

The ML estimator β̂ of β can be obtained as a positive root of the equation

T∑
t=2

(
β − yt
β + yt

)
+

1

α2 (1− ρ2)

T∑
t=2

(wt − ρwt−1) (vt − ρvt−1) = 0, (3.32)

where vt =
√

yt
β

+
√

β
yt
and vt−j =

√
yt−j
β

+
√

β
yt−j

.

We may use Newton-Raphson algorithm to obtain β̂. Hence, by using numerical

algorithm, we can solve equations (3.31) and (3.32). This algorithm allow us to

have the joint iterative procedure:

ρ̂(m+1) =

∑T
t=2

(√
yt
β̂(m)
−
√

β̂(m)

yt

)(√
yt−1

β̂(m)
−
√

β̂(m)

yt−1

)
∑T

t=2

(√
yt−1

β̂(m)
−
√

β̂(m)

yt−1

)2 , m = 0, 1, 2, ...
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α̂(m+1) =

√√√√√√√
∑T

t=2

((√
yt
β̂(m)
−
√

β̂(m)

yt

)
− ρ̂(m)

(√
yt−1

β̂(m)
−
√

β̂(m)

yt−1

))2

(T − 1)
(

1− (ρ̂(m))
2
) ,

β̂(m+1) = β̂(m) −
f
(
β̂(m)

)
f ′
(
β̂(m)

) ,
where f (β) is as given in (3.32) and f ′ (β) is its first derivative with respect to β.

This iterative procedure needs starting values α̂(0), β̂(0) and ρ̂(0). Finding a proper

initial value become quite important in this case and this will be discussed later in

this section.

Next, we discuss the estimation of BS-MA(1) model.

3.6.2 BS-MA(1) Model

The parameter vector to be estimated is Θ = (α, β, θ). The conditional log-

likelihood function (without the additive constant) corresponding to the the BS-MA

sequence is given by

logL = −1

2
log |Σ| − 1

2
V ′Σ−1V − T logα− T log β +

T∑
t=1

log

{(
β

yt

) 1
2

+

(
β

yt

) 3
2

}
,

(3.33)

where

V ′ =

[
1

α

(√
y1

β
−

√
β

y1

)
, ...,

1

α

(√
yT
β
−

√
β

yT

)]
.
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Then the ML estimators of the unknown parameters can be obtained by maximizing

(3.33) with respect to the parameters α, β and Σ. We observe that

[(√
y1

β
−

√
β

y1

)
, ...,

(√
yT
β
−

√
β

yT

)]′
∼ N(0, DΣD′), (3.34)

where D is the diagonal matrix given by D = diag{α, α, ..., α}. Therefore, for given

β, the ML estimators of α and Σ become

α̂ =

 1

T

T∑
t=1

√yt

β̂
−

√
β̂

yt

2
1
2

; Σ̂ = PQP ′; (3.35)

here, P is a diagonal matrix given by P = diag {1/α̂, ..., 1/α̂} and the elements of

the matrix Q are given by

qij =


1 , i = j

1
T

∑T
i=2

(√
yi
β
−
√

β
yi

)(√
yi−1

β
−
√

β
yi−1

)
, |i− j| = 1

0 , |i− j| > 1

for i, j = 1, 2, ..., T .

Finally, the ML estimators of β can be obtained by maximizing the profile log-

likelihood function

l(α̂, β, Σ̂) = −1

2
log
∣∣∣Σ̂∣∣∣− 1

2
V ′Σ̂−1V −T log α̂−T log β+

T∑
t=1

log

{(
β

yt

) 1
2

+

(
β

yt

) 3
2

}
(3.36)

with respect to β by using Newton-Raphson numerical maximization algorithm. As

in the BS-AR(1) case, the ML estimates of Θ = (α, β, θ) can be obtained by a
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numerical iterative procedure.

3.6.3 BS-ARMA(1,1) Model

Let (y1, y2, ..., yT ) be a realization from the stationary and invertible BS-ARMA(1,1)

model. We propose to obtain the conditional ML estimator of Θ = (α, β, ρ, θ)

based on this realization. Based on the joint density function given in (3.27), log-

likelihood function (without the additive constant) corresponding to the the BS-

ARMA sequence is given by

logL = −1

2
log |Γ| − 1

2
V ′Γ−1V − T logα− T log β +

T∑
t=1

log

{(
β

yt

) 1
2

+

(
β

yt

) 3
2

}
,

(3.37)

where V ′ =
[

1
α

(√
y1
β
−
√

β
y1

)
, ..., 1

α

(√
yT
β
−
√

β
yT

)]
.

Then the ML estimators of the unknown parameters can be obtained by maximizing

(3.37) with respect to the parameters α, β and Γ. We observe that

[(√
y1

β
−

√
β

y1

)
, ...,

(√
yT
β
−

√
β

yT

)]′
∼ N(0, DΓD′), (3.38)

where D is the diagonal matrix given by D = diag{α, α, ..., α}. Therefore, for given

β, the ML estimators of α and Γ become

α̂ =

 1

T

T∑
t=1

√yt

β̂
−

√
β̂

yt

2
1
2

; Γ̂ = PGP ′ (3.39)
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here, P is a diagonal matrix given by P = diag {1/α̂, ..., 1/α̂} and the elements of

the matrix G are given by

gij =


1 , i = j

1
T

∑T
i=2

(√
yi
β
−
√

β
yi

)(√
yi−h
β
−
√

β
yi−h

)
, |i− j| ≥ 1, h = 1, 2, ..., (T − 1)

for i, j = 1, 2, ..., T .

Finally, the ML estimator of β can be obtained by maximizing the profile log-

likelihood function

l(α̂, β, Γ̂) = −1

2
log
∣∣∣Γ̂∣∣∣− 1

2
V ′Γ̂−1V −T log α̂−T log β+

T∑
t=1

log

{(
β

yt

) 1
2

+

(
β

yt

) 3
2

}
(3.40)

with respect to β by using Newton-Raphson numerical algorithm. For computing

ML estimates, initial values are required which we discuss next.

Determination of initial values:

Since ML estimators do not have closed-form expressions and need to be obtained by

solving non-linear equations, we propose the following modified moment estimators

for the unknown parameters by following the approach of Ng et al. (2003) and

Kundu et al. (2010). The modified moment estimators can be obtained by equating

the moments and inverse moments with the corresponding sample quantities. Let

(y1, y2, ..., yT ) be a realization from the stationary and invertible BS-ARMA(1,1)

model. The sample arithmetic and harmonic means are defined by

sa =
1

T

T∑
i=1

yi , sh =

[
1

T

T∑
i=1

y−1
i

]−1

.
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As a preliminary analysis, we obtain the modified moment estimators of α and β

α̃ =

{
2

[(
sa
sh

) 1
2

− 1

]} 1
2

, β̃ = (sash)
1
2 .

Then, the estimator of ρ is ρ̃ = r2/r1, where

rh =

∑T
i=1

(√
yi
β̃
−
√

β̃
yi

)(√
yi−h
β̃
−
√

β̃
yi−1

)
√∑T

i=1

(√
yi
β̃
−
√

β̃
yi

)2
√∑T

i=1

(√
yi−1

β̃
−
√

β̃
yi−h

)2
, h = 1, 2.

Finally, solve for θ̃ in

r1 =
(θ + ρ̃)(1 + ρ̃θ)

(1 + θ2 + 2ρ̃θ)
.

These estimators can be used effectively as the initial guess in the iterative procedure

for computing the ML estimators. The computations are illustrated in Section 3.8

3.7 Asymptotic Properties of the estimators for

BS-AR(1) Model

The BS-ARMA sequence {Yt} is generated by a non-linear model and establishing

the asymptotic properties of the ML estimators is a challenging problem. However,

when θ = 0, {Yt} becomes a stationary Markov sequence as discussed in Section

3.3. Billingsley (1961) has proved the consistency and asymptotic normality of a ML

estimator for Markov sequences under some regularity conditions which involve the
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second and third derivatives of the transition densities. As the likelihood function

in our case is differentiable with respect to parameters and all the moments of

BS-AR(1) sequence {Yt} are finite, the required regularity conditions hold here.

We state the following theorem, whose proof is similar to that of Theorem 2.1 of

Billingsley (1961).

Theorem 3.1. Let {Yt} be the stationary BS-AR(1) sequence defined in Section

3.3 and Θ̂ = (α̂, β̂, ρ̂) be the ML estimator of Θ = (α, β, ρ) obtained in Section 3.5.

Then as T →∞,
√
T
(

Θ̂−Θ
)

d→N3

(
0, I−1

)
. (3.41)

where, N3 (0, I−1) denotes the trivariate normal distribution with mean vector 0 and

covariance matrix I−1, and the matrix I is the Fisher information matrix.

The following computations are useful for evaluating the elements of the Fisher

information matrix. Recall that

Yt = β

αXt

2
+

√(
αXt

2

)2

+ 1

2

for t = 1, 2, ... ,

and so we can write

Xt =
1

α

(√
Yt
β
−
√
β

Yt

)
.

It can be easily shown that

E

[(√
Yt
β
−
√
β

Yt

)(√
Yt−1

β
−

√
β

Yt−1

)]
= α2ρ,
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E

(√
Yt
β
−
√
β

Yt

)2

= E

(√
Yt−1

β
−

√
β

Yt−1

)2

= α2.

Now, we derive the expression for E
(√

YtYt−1

)
and E

(
1√

YtYt−1

)
.

E
(√

YtYt−1

)
= E

β
αXt

2
+

√(
αXt

2

)2

+ 1

αXt−1

2
+

√(
αXt−1

2

)2

+ 1


= βE

α2XtXt−1

4
+
αXt

2

√(
αXt−1

2

)2

+ 1 +
αXt−1

2

√(
αXt

2

)2

+ 1

+

√(αXt

2

)2

+ 1

√(αXt−1

2

)2

+ 1


So, we have

E
(√

YtYt−1

)
= β

[
α2ρ

4
+ I2

]
,

where I2 = E

[(√(
αXt

2

)2
+ 1

)(√(
αXt−1

2

)2

+ 1

)]
.

Also, the joint distribution of (Yt−1, Yt) and
(

β2

Yt−1
, β

2

Yt

)
are same and so we have

E (YtYt−1) = E
(

β4

YtYt−1

)
and E

(√
YtYt−1

)
= E

(
β2√
YtYt−1

)
, readily implies

E

(
1√

YtYt−1

)
=

1

β

[
α2ρ

4
+ I2

]
.

where the expression of I2 is obtained similar to that of I1 in Section 3.3 and is

given by

I2 = 1 +
1

22
α2 +

1

26
α4
(
1 + 2ρ2

)
+

n∑
i=2

(−1)i−1 1 · 3 ...(2i− 3)

23i i!
α2i+2jb0,i



Chapter 3. BS ARMA Models 77

+
n∑
i=2

(−1)i−1 1 · 3 ...(2i− 3)

23i+3 i!
α4i+4b1,i

+
n∑
i=2

n∑
j=2

(−1)i+j
1 · 3 ...(2i− 3)

23i i!
× 1 · 3 ...(2j − 3)

23j j!
α2i+2jbi,j

and for integers m,n ,

bm,n = E
(
X2m
t X2n

t+h

)
=

(2m)!(2n)!

2m+n

min(m,n)∑
i=0

(
2ρh
)2i

(m− i)! (n− i)! (2i)!
.

We have, from (3.13),

log f = − logα− log β − 1

2
log
(
1− ρ2

)
+ log

[(
β

yt

) 1
2

+

(
β

yt

) 3
2

]

− 1

2 (1− ρ2)

[
1

α

(√
yt
β
−

√
β

yt

)
− ρ

α

(√
yt−1

β
−

√
β

yt−1

)]2

.

Then, the Fisher information matrix is I(θ) = ((Iij(θ))), where Iij(θ) = −E
(
∂2 log f
∂θi∂θj

)
and θ = (θ1, θ2, θ3) = (α, β, ρ) . We have obtained the exact expression of Iij(θ), for

i, j = 1, 2, 3, and these are obtained as follows:

I11 = −E
(
∂2 log f

∂α2

)
=

2

α2
I12 = I21 = −E

(
∂2 log f

∂α∂β

)
= 0,

I13 = I31 = −E
(
∂2 log f

∂α∂ρ

)
= − ρ

α (1− ρ2)
,

I22 = −E
(
∂2 log f

∂β2

)

=
1

β2

{
−1

2
+ ψ (α) +

1

α2 (1− ρ2)

[(
1 +

1

2
α2

)
− 2ρ

(
α2ρ

4
+ I2

)
+ ρ2

(
1 +

1

2
α2

)]}
,

where ψ (α) =
∫∞
−∞ (1 + g (αxt))

−2 φ (xt) dxt , g (u) = 1 + 1
2
u2 + u

(
1 + u2

4

) 1
2
,



Chapter 3. BS ARMA Models 78

and φ is the standard normal probability density function. Further, we also have

I23 = I32 = −E
(
∂2 log f
∂ρ∂β

)
= 0 and I33 = −E

(
∂2 log f
∂ρ2

)
= 1+ρ2

(1−ρ2)2
.

3.8 Simulation Study

In this section, we illustrate the performance of the proposed estimators using Monte

Carlo simulations. We present the following algorithm to generate {Yt} from BS-

ARMA(1,1) model:

Step 1: Set values for α, β, ρ and θ;

Step 2: Set η0 = x0 = 0;

Step 3: Generate a random sample {ηt} from η ∼ N (0, (1− ρ2)/(1 + θ2 + 2θρ)),

t = 1, 2, ...;

Step 4: Generate xt from Xt = ρXt−1 + θηt−1 + ηt, t = 1, 2, ...;

Step 5: Compute yt using the transformation Yt = β

[
1
2
αXt +

√(
1
2
αXt

)2
+ 1

]2

for

t = 1, 2, ...;

Step 6: Repeat Steps 1 to 5 to get a sample of required size.

We generated samples of sizes n =500 and 1000 from BS-AR, BS-MA and BS-

ARMA models, with α = 2, β = 1 and for different choices of ρ and θ. The ML

estimates were obtained based on the algorithm developed in Section 3.6 using mod-

ified moment estimates as the initial values. For each parameter combination, ML
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estimates were obtained and we then computed the average and the mean squared

errors (MSE) over 100 replications. The resulting estimates and the corresponding

MSEs (within parentheses) are reported in Tables 3.1-3.3.

n ρ α̂ β̂ ρ̂
500 0.90

0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9698(0.1304)
2.0082(0.1357)
2.0172(0.0896)
1.9914(0.0754)
1.9938(0.0531)
2.0057(0.0505)
2.0181(0.0796)
2.0014(0.0732)
2.0280(0.1046)

1.0254(0.0864)
1.0412(0.0676)
0.9998(0.0966)
1.0116(0.0690)
0.9974(0.0870)
1.0257(0.0593)
1.0055(0.0454)
0.9951(0.0296)
1.0009(0.0117)

0.8945(0.0190)
0.7033(0.0374)
0.4910(0.0495)
0.2412(0.0581)
-0.0065(0.0368)
-0.2527(0.0385)
-0.5046(0.0382)
-0.6978(0.0305)
-0.8994(0.0218)

1000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

2.0039(0.0968)
1.9982(0.0478)
2.0140(0.0491)
2.0108(0.0574)
2.0166(0.0427)
1.9918(0.0412)
1.9968(0.0688)
2.0060(0.0577)
2.0072(0.0767)

0.9980(0.0810)
1.0126(0.0513)
0.9961(0.0680)
1.0067(0.0550)
0.9972(0.0374)
1.0063(0.0345)
1.0088(0.0281)
0.9933(0.0151)
0.9979(0.0136)

0.9042(0.0146)
0.6978(0.0179)
0.4973(0.0226)
0.2420(0.0231)
0.0035(0.0290)
-0.2508(0.0281)
-0.4926(0.0336)
-0.6996(0.0195)
-0.8989(0.0151)

Table 3.1: The average estimates and the corresponding mean square error for
the MLEs of BS-AR(1), when α = 2, β = 1 and for different ρ’s

From the simulation results, it is clear that the performance of the ML estimates (in

terms of bias and MSE) do not seem to depend on ρ and θ, and depends only on the

sample size. We observe that the estimates are slightly biased for sample size n=500

and bias gets smaller when the sample size increases. Overall, the estimates behave

quite well and they become more accurate with increasing sample size, as one would

expect. Thus, we see that the method of conditional likelihood estimation yields
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n θ α̂ β̂ θ̂
500 0.90

0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9792(0.1052)
1.9876(0.0933)
1.9885(0.0706)
1.9811(0.0758)
2.0073(0.0701)
2.0011(0.0688)
1.9818(0.0783)
2.0592(0.0683)
1.9809(0.1015)

0.9859(0.0778)
0.9883(0.0698)
1.0853(0.0957)
1.0612(0.0482)
0.9941(0.0536)
0.9892(0.0367)
1.0182(0.0445)
0.9833(0.0452)
1.0892(0.1068)

0.8878(0.1946)
0.6766(0.1023)
0.4794(0.0537)
0.2235(0.0449)
-0.0077(0.0522)
-0.2354(0.0464)
-0.5257(0.0825)
-0.7165(0.0449)
-0.8736(0.3056)

1000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9812(0.0916)
1.9881(0.0850)
1.9910(0.0616)
1.9851(0.0651)
2.0021(0.0641)
1.9952(0.0610)
1.9901(0.0569)
2.0120(0.0581)
1.9932(0.0861)

0.9871(0.0700)
0.9899(0.0611)
1.0605(0.0811)
0.9912(0.0396)
0.9965(0.0521)
0.9912(0.0301)
1.0102(0.0395)
0.9895(0.0359)
1.0892(0.9102)

0.8900(0.1464)
0.6966(0.0927)
0.4897(0.0462)
0.2504(0.0411)
0.0019(0.0498)
-0.2470(0.0390)
-0.5121(0.0610)
-0.7022(0.0391)
-0.9063(0.2213)

Table 3.2: The average estimates and the corresponding mean square error for
the MLEs of BS-MA(1), when α = 2, β = 1 and for different θ’s

good estimates for the model parameters. The detailed computational algorithm is

given in Appendix A.

We also obtain the confidence interval for Θ = (α, β, ρ) and evaluated the coverage

probabilities based on the asymptotic distribution of the ML estimators of BS-

AR(1) model. Let Θ̂ = (θ̂1, θ̂2, θ̂3) = (α̂, β̂, ρ̂) be the ML estimators determined

as described earlier. For a given significance level τ , the 100(1 − τ)% asymptotic

confidence interval for θi is given by θ̂i ± Zτ/2 σθ̂i(1/
√
n), i = 1, 2, 3; where σθ̂i is

the ith diagonal element of the asymptotic dispersion matrix I−1 given in (3.41) with

the parameters replaced by the corresponding estimates; here, Zτ/2 is the upper τ/2

percentage point of the standard normal distribution.
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n (ρ, θ) α̂ β̂ ρ̂ θ̂
500 (0.90, 0.00)

(0.70, 0.25)
(0.50, 0.50)
(0.25, 0.70)
(0.00, 0.90)
(-0.25,-0.90)
(-0.50,-0.70)
(-0.70,-0.50)
(-0.90,-0.25)

1.9812(0.1432)
1.9892(0.1094)
1.9957(0.1036)
2.0080(0.1348)
2.0178(0.0661)
2.0320(0.1165)
2.0150(0.0671)
1.9878(0.1320)
1.9789(0.1365)

0.9877(0.1186)
1.0360(0.1126)
1.0090(0.0921)
1.1000(0.1272)
0.9866(0.1040)
1.0050(0.0770)
0.9896(0.0816)
1.0151(0.0737)
1.0223(0.0785)

0.8874(0.0465)
0.6982(0.0315)
0.4856(0.0546)
0.2457(0.0438)
0.0586(0.0342)
-0.2617(0.0846)
-0.5206(0.0498)
-0.6127(0.0612)
-0.8916(0.0561)

0.0195(0.0621)
0.2414(0.0590)
0.5284(0.1070)
0.6881(0.1257)
0.8803(0.1133)
-0.8817(0.1127)
-0.6887(0.1111)
-0.4869(0.0904)
-0.2412(0.0954)

1000 (0.90, 0.00)
(0.70, 0.25)
(0.50, 0.50)
(0.25, 0.70)
(0.00, 0.90)
(-0.25,-0.90)
(-0.50,-0.70)
(-0.70,-0.50)
(-0.90,-0.25)

1.9879(0.1314)
1.9910(0.1013)
1.9951(0.0966)
2.0282(0.1141)
2.0322(0.0624)
2.0623(0.0922)
2.0261(0.0533)
1.9919(0.1129)
1.9859(0.1096)

0.9912(0.1186)
1.0120(0.1126)
1.0112(0.0921)
1.0823(0.1272)
0.9897(0.1040)
1.0171(0.0770)
0.9961(0.0816)
1.0011(0.0737)
1.0009(0.0785)

0.9096(0.0400)
0.7011(0.0331)
0.4965(0.0467)
0.2520(0.0333)
0.0416(0.0311)
-0.2519(0.0789)
-0.5166(0.0415)
-0.6074(0.0546)
-0.8955(0.0575)

0.0144(0.0566)
0.2502(0.0414)
0.5190(0.0954)
0.6954(0.1214)
0.9054(0.1069)
-0.8962(0.0955)
-0.6900(0.0891)
-0.4958(0.0783)
-0.2516(0.0812)

Table 3.3: The average estimates and the corresponding mean square error for the MLEs of BS-ARMA(1,1), when
α = 2, β = 1 and for different (ρ, θ) values.



Chapter 3. BS ARMA Models 82

n ρ CP (α) CP (β) CP (ρ)
500 0.90

0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

0.940
0.933
0.931
0.954
0.955
0.921
0.934
0.947
0.948

0.945
0.964
0.961
0.964
0.950
0.968
0.974
0.984
0.980

0.936
0.937
0.929
0.965
0.940
0.953
0.947
0.944
0.922

1000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

0.956
0.960
0.963
0.955
0.976
0.982
0.984
0.986
0.980

0.971
0.984
0.960
0.973
0.966
0.955
0.984
0.966
0.993

0.964
0.975
0.973
0.988
0.965
0.968
0.972
0.980
0.981

Table 3.4: Estimated coverage probabilities (CP (.)) for selected values of α =
2, β = 1 and different values of ρ

We determined the 95% confidence intervals based on the simulated samples of

size n from the BS Markov sequences for specified values of the parameters. We

repeated this computation for 100 samples and then determined the proportion of

times these intervals contained the actual parameters. These proportions give us the

estimated coverage probabilities which are presented in Table 3.4. The entries in the

first column are the sample sizes and those in the second column are the specified

values of ρ. The values in the third, fourth and fifth columns are the estimated

coverage probabilities corresponding to the parameters α , β and ρ, respectively.

From the table it is observed that the performances of coverage probabilities are

quite satisfactory for large sample sizes.
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3.8.1 Performance Analysis of the Models

In this subsection, we analyze the performance of the proposed BS ARMA model

based on the Akaike Information Criteria (AIC), Root Mean Squared Error (RMSE)

and Mean Absolute Percentage Error (MAPE) for the simulated data. The RMSE

and MAPE are used to assess the forecasting ability of the model. This computa-

tion is particularly useful to observe the consequences of fitting a Gaussian ARMA

model when the data is actually from a BS-ARMA model. Towards this objec-

tive, we generated samples of sizes n =500 and 1000 from BS-ARMA(1,1) model,

with α = 2, β = 1 and for different choices of ρ and θ, and then fitted the BS-

ARMA(1,1) model vis-à-vis Gaussian ARMA(1,1) model using ML method. Then,

we compare the BS and Gaussian models on the basis of some information criterion

statistics particularly, the AIC, wherein the model with the smallest information

criterion value implies the model with the highest maximized log-likelihood and

hence the best fitting model. The Akaike information criterion values and the fore-

cast evaluation statistics using the simulated data for Gaussian ARMA(1,1) and

BS-ARMA(1,1) (in parentheses) models are given in Table 3.5. The AIC and the

log-likelihood values highlight the fact that the BS-ARMA model fits better the

data than Gaussian ARMA model. In order to check the forecast performance

of the model, the forecasts are compared against actual observations and we then

computed RMSE and MAPE for the BS and Gaussian models. These results are

summarized in Table 3.5. The BS-ARMA model gives lower RMSE and MAPE

(with in parentheses) values indicating better forecast capability.
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n (ρ, θ) AIC Log-like RMSE MAPE
(0.90, 0.00) 965.26 -479.63 0.2606 16.9690

(817.18) (-404.59) (0.2570) (7.1100)
(0.70, 0.25) 1145.10 -569.55 0.3121 31.8820

(517.14) (-254.57) (0.3085) (10.3685)
(0.50, 0.50) 1245.20 -619.60 0.3451 37.0936

(445.72) (-218.86) (0.3439) (12.5100)
(0.25, 0.70) 1224.48 -609.24 0.3376 41.4342

500 (406.14) (-199.07) (0.3291) (13.6194)
(0.00, 0.90) 1570.50 -782.25 0.4778 57.2870

(333.82) (-162.91) (0.4277) (14.4635)
(-0.25,-0.90) 1694.60 -844.30 0.5412 71.7563

(498.14) (-245.07) (0.3362) (10.4250)
(-0.50,-0.70) 1663.86 -828.93 0.5247 81.7054

(491.46) (-241.73) (0.3310) (11.5034)
(-0.70,-0.50) 1590.58 -792.29 0.4876 77.4590

(661.74) (-326.87) (0.3387) (8.1411)
(-0.90,-0.25) 1369.72 -681.86 0.3906 85.0058

(1079.74) (-535.87) (0.2130) (4.7527)
(0.90, 0.00) 1933.00 -963.50 0.2619 16.1836

(1690.80) (-841.40) (0.2599) (6.6095)
(0.70, 0.25) 2456.56 -1225.28 0.3404 25.6785

(1931.00) (-961.50) (0.3387) (10.9191)
(0.50, 0.50) 2288.32 -1141.16 0.3129 35.6167

(1800.50) (-896.25) (0.3097) (11.9672)
(0.25, 0.70) 2806.14 -1400.07 0.4054 50.9527

(2004.50) (-998.25) (0.3937) (13.2894)
1000 (0.00, 0.90) 2743.58 -1368.79 0.3930 54.9803

(1978.46) (-985.23) (0.3710) (14.1725)
(-0.25,-0.90) 2939.90 -1466.95 0.4336 62.4163

(1943.16) (-967.58) (0.3528) (12.0020)
(-0.50,-0.70) 3191.54 -1592.77 0.4917 75.5837

(1943.12) (-967.56) (0.3521) (9.6591)
(-0.70,-0.50) 2725.34 -1359.67 0.3894 53.4320

(1806.70) (-899.35) (0.2599) (8.2026)
(-0.90,-0.25) 2590.88 -1292.44 0.3640 70.1784

(1798.50) (-895.25) (0.2134) (4.8762)

Table 3.5: Forecast evaluation statistics for simulated data
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3.9 Data Analysis

To illustrate the application of the proposed models and the associated inferential

results, we analyse two monthly time series. The data sets used for this purpose

are: (1) the index of coal production in Eight Core Industries (Base: 2004-05=100)

obtained from the Office of Economic Adviser, Government of India, with the data

consisting of 129 observations from April 2004 to December 2014; (2) The number

of Foreign Tourist Arrivals in India obtained from Press Information Bureau, Gov-

ernment of India, with the data consisting of 154 observations from April 2002 to

January 2015.

The time series plots of actual data series are given in the left panel of Figure 3.4. As

we are interested in modelling a stationary non-negative series, we need to remove

the trend and seasonality present in the data. Here, we use the multiplicative

seasonal model to obtain seasonally adjusted data. A series is formed by dividing

the original data with residuals of the seasonal model and then analysed by BS

models. Let us denote the resulting series by {Yt}. Table 3.6 presents descriptive

Statistics Coal Index Tourist Ar-
rival

Mean 0.9998 0.9994
Median 0.9969 0.9974
Maximum 1.1021 1.2174
Minimum 0.7952 0.7943
Std. Dev. 0.0459 0.0644
Skewness 0.7169 0.2337
Kurtosis 5.4283 4.3317
Sample size 129 154

Table 3.6: Summary statistics for transformed data
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statistics for {Yt} and its time series plots are given in the right panel of Figure 3.4.

Figure 3.4: Time series plot of the actual series and adjusted series

Note that the kurtosis for both the series are greater than three, indicating that a

heavy-tailed distribution is more appropriate than the normal distribution.

The sample ACF and PACF of {Yt} are plotted in Figure 3.5, which suggest that the

coal index series may have an AR(1) structure and the Tourist Arrival series may

be a realization of ARMA(1,1) process. Next, we obtained the modified moment

estimates of the parameters of the proposed models for the above data sets and

obtained α̃=0.0411, β̃=0.9858, ρ̃=0.5821 for BS-AR(1), and α̃=0.0502, β̃=0.9917,

ρ̃=0.8861, θ̃=-0.4253 for BS-ARMA(1,1) models. We then estimated the parameters

of BS-AR(1) and BS-ARMA(1,1) models by the method of maximum likelihood
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Figure 3.5: ACF and PACF of seasonally adjusted and de-trended series

Coal Index α β ρ θ σ

BS-AR(1) 0.0469
(0.3015)

0.9990
(0.2261)

0.6031
(0.3368)

– –

Gaussian AR(1) – – 0.5856
(0.0326)

– 0.9994
(0.0419)

Tourist Arrival α β ρ θ σ

BS-ARMA(1,1) 0.0535
(0.3622)

1.0004
(0.3353)

0.9080
(0.1197)

0.4310
(0.2797)

–

Gaussian
ARMA(1,1)

– – 0.8819
(0.0455)

0.4211
(0.0568)

0.9968
(0.0658)

Table 3.7: Parameter Estimates using ML methods

detailed earlier in Section 3.6 and the obtained results are summarized in Table 3.7.

The standard errors of the ML estimates are given inside parentheses. In this case,

we see that the modified moment estimates are quite close to the ML estimates.
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Figure 3.6: Histograms of the data with superimposed BS density

In Figure 3.6, we superimpose the histogram of the {Yt} with the BS density curve

whose parameters are as given in Table 3.7 to check whether the series follows the

BS distribution. These histograms do show that there is a close agreement between

the observed and the fitted density functions.

Further, we also fitted Gaussian AR(1) for coal index and Gaussian ARMA(1,1)

model for tourist arrival data and the ML estimates are given in Table 3.7. To

perform the diagnostic checks on the residuals from the fitted models, the residuals

and their ACF are plotted in Figure 3.7. It is observed that the ACF of the resulting

residuals from fitted BS and Gaussian models are negligible.
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Figure 3.7: Time series and ACF plots of the residual series from fitted BS and
Gaussian models
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Coal Index AIC RMSE MAPE

BS-AR(1) 2.0362 0.0253 1.9885
Gaussian AR(1) 2.1235 0.0698 4.3077
Tourist Arrival AIC RMSE MAPE

BS-ARMA(1,1) 2.4595 0.0339 3.6453
Gaussian
ARMA(1,1)

2.5463 0.0766 4.5714

Table 3.8: Model evaluation statistics

We therefore compare the BS and Gaussian models on the basis of their AIC values.

The given AIC values in Table 3.8 highlight the fact that the proposed BS models

fit better for both data sets than the Gaussian time series models.

Next, we evaluate these models based on forecast performance. We performed the

out-sample forecast exercise for coal index and tourist arrival data using the BS

and Gaussian ARMA models. For coal index data, we first use the sample period

from April 2004 to June 2014 and evaluated one-step ahead forecast for the month

July 2014 using BS-AR(1) and Gaussian AR(1) model. Next, we use the sample

period April 2004 to July 2014 to predict coal index in August 2014. We repeat this

rolling forecast until we obtain six forecasted values. Similarly, we forecasted tourist

arrivals using BS-ARMA(1,1) and Gaussian ARMA(1,1) models for six months.

Table 3.8 shows the RMSE and MAPE of forecasts for the competing BS and

Gaussian ARMA models. The proposed BS-AR(1) and BS-ARMA(1,1) models

clearly outperform the Gaussian ARMA models based on both RMSE and MAPE.

The results of this chapter are reported in the paper Rahul et al. (2017a).



Chapter 4

Modelling Stochastic Volatility

using Birnbaum-Saunders Markov

Sequences

4.1 Introduction

The SV model introduced by Taylor (1986) is used to account for the well-documented

autoregressive behaviour in the volatility of financial time series. The literature in

this area mainly deals with the models with normal-lognormal distributions. An

exponentiated Gaussian autoregressive sequence provides a Markov dependent se-

quence of log-normal random variables to describe the conditional variances, see

Tsay (2005). Taylor (1994) suggested several alternative models to describe the

evolution of conditional variances while modelling stochastic volatilities. As quoted

91
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by Shephard (1996), volatility models provide an excellent testing ground for the

development of new non-linear and non-Gaussian time series techniques. A number

of autoregressive models are introduced for non-negative random variables in the

context of non-Gaussian time series modelling. In principle, one can very well use

these autoregressive models to describe the evolution of time-dependent volatilities.

In this chapter, we study the properties of Birnbaum-Saunders Stochastic Volatility

(BS-SV) model where the volatilities are generated by a stationary Markov sequence

with BS marginal distribution discussed in Section 3.3. The BS distribution received

great attention in recent years in the context of life time modelling. Different aspects

of BS model have been studied including estimation, regression, diagnostics and

applications by researchers. The BS distribution is typically applied to positive data

with varying degrees of asymmetry and kurtosis and can be used as an alternative to

the log-normal and log-skew-normal models. However, applications of this model for

modelling volatility in financial time series context have not received much attention.

Only the works by Jin and Kawczak (2003), Fox et al. (2008) and Bhatti (2010)

have indirectly considered the use of this distribution in finance. This chapter is

such an attempt to use the BS model in the context of financial time series to model

stochastic volatility.

Rest of this chapter is organized as follows. The construction of BS-SV model and

its second order properties are discussed in Section 4.2. In Section 4.3, we estimate

the unknown parameters of the model by Method of Moments (MM) and Efficient

Importance Sampling (EIS) method. Section 4.4 presents some numerical results

of the estimators via simulation. In Section 4.5, we apply our model to two daily

returns data.
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4.2 BS-SV Model and Properties

Let rt be the return at time t. Define the SV model

rt =
√
htεt,

ht = β

1

2
αXt +

√(
1

2
αXt

)2

+ 1

2

,

Xt = ρXt−1 + ηt ; |ρ| < 1, t = 1, 2, ..., (4.1)

with {Xt} be a stationary Gaussian AR(1) sequence with standard normal marginal

distribution. Where {εt} is a sequence of independent and identically distributed

standard normal random variables. We assume that the sequence {εt} is indepen-

dent of ht and ηt for every t. This is a stochastic volatility model for the return

series {rt} whose volatilities are generated by a stationary Markov sequence of BS

random variables with marginal probability density function

f (ht;α, β) =
1

2αβ
√

2π

[(
β

ht

)1/2

+

(
β

ht

)3/2
]

exp

(
− 1

2α2

[
ht
β

+
β

ht
− 2

])
, (4.2)

where ht > 0 , α, β > 0.

The rth row moment about origin zero of {ht} is given by Rieck (1999) as

E (hrt ) =
βr
[
Kr+ 1

2
(α−2) +Kr− 1

2
(α−2)

]
2K 1

2
(α−2)

,



Chapter 4. BS SV Model 94

where Kν(z) is the modified Bessel function of the third kind with ν representing

its order and z the coefficient of argument. That is,

Kν(z) =
1

2

∫ ∞
−∞

exp [−z cosh(t)− νt] dt.

Since the sequence {εt} follows standard normal distribution, the odd moments of

{rt} are zero and its even moments are given by

E
(
r2r
t

)
=
βr
[
Kr+ 1

2
(α−2) +Kr− 1

2
(α−2)

]
2K 1

2
(α−2)

r∏
j=1

(2j − 1), r = 1, 2, ....

Then V ar (rt) = β
(

1 + α2

2

)
and the kurtosis of rt becomes

K = 3 +
3
(
α2 + 5

4
α4
)(

1 + α2 + 1
4
α4
) > 3.

The structure of the model (4.1) implies that the ACF of {rt} is zero and that of

{r2
t } is significant. The variance of the squared return series is obtained as

V ar
(
r2
t

)
= β2

(
2 + 5α2 +

17

4
α4

)
.

Autocorrelation function:

Let us first compute the lag k autocovariance function of {r2
t } given by

Cov
(
r2
t , r

2
t−k
)

= E
(
r2
t r

2
t−k
)
− E

(
r2
t

)
E
(
r2
t−k
)
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= E
(
htε

2
tht−kε

2
t−k
)
− E (htε

2
t )E

(
ht−kε

2
t−k
)

= Cov (ht, ht−k) .

The expression for Cov(ht, ht−k) is derived in Chapter 3 and it is obtained as

Cov(r2
t , r

2
t−k) = β2

(
1

2
α4ρ2k + α2I1

)
. (4.3)

Hence the lag k autocorrelation of the squared sequence {r2
t } is

ρk
(
r2
t

)
=

(
1
2
α4ρ2k + α2I1

)(
2 + 5α2 + 17

4
α4
) , (4.4)

where I1 is the same expression given in (3.15) of Chapter 3.

Figure 4.1: The plot of kurtosis of return and the ACF of squared return
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The ACF is an exponentially decreasing function of the lags for different values of

the parameters, as can be seen in Figure 4.1. By choosing different values for α,

one can get a distribution with larger kurtosis as shown in Figure 4.1.

4.3 Estimation of Parameters

Estimation of parameters in SV model is difficult because no explicit expression

for the likelihood function of SV model is available. It is possible to express the

likelihood function as n-fold integrals, but to obtain estimates one may have to

use simulation techniques, like simulated maximum likelihood, method of simu-

lated moments or Markov Chain Monte Carlo (MCMC) techniques. Some of the

references for simulation-based maximum likelihood methods are Danielsson and

Richard (1993), Danielsson (1994), Shephard and Pitt (1997), Durbin and Koop-

man (1997), Kim et al. (1998), Sandmann and Koopman (1998), Liesenfeld and

Richard (2003, 2006), Richard and Zhang (2007). The other methods include the

Generalized Method of Moments (GMM) (Melino and Turnbull (1990)), Quasi Max-

imum Likelihood (QML) approach (Harvey et al. (1994) and Ruiz (1994)), Efficient

Method of Moments (EMM) (Gallant et al. (1997)). For an overview of such es-

timation methods of SV models, see Shephard (1996), Broto and Ruiz (2004) and

Tsay (2005). We use the GMM estimation proposed by Melino and Turnbull (1990)

and Efficient Importance Sampling (EIS) method by Richard and Zhang (2007) to

estimate the parameters.
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4.3.1 Parameter Estimation by Method of Moments

The moment estimators are not efficient in general. However, we have computed

the moment estimates of the parameters based on simulated samples and found that

they are slightly biased. Let (r1, r2, . . . , rT ) be a realization of length T from the

SV model (4.1), Θ = (α, β, ρ) be the parameter vector to be estimated. We use the

moments

E(r2
t ) = β

(
1 +

α2

2

)
, E(r4

t ) = 3β2

(
1 + 2α2 +

3

2
α4

)
,

E(r2
t r

2
t−1) = β2

(
1 + α2 +

α4

4
(1 + 2ρ2) + α2I1

)

to estimate the parameters.

If we define

f(rt, rt−1,Θ) =


r2
t − β

(
1 + α2

2

)
r4
t − 3β2

(
1 + 2α2 + 3

2
α4
)

r2
t r

2
t−1 − β2

(
1 + α2 + α4

4
(1 + 2ρ2) + α2I1

)
 , (4.5)

where I1 is given by (3.15), then the moment estimator may be obtained by solving

1

T

T∑
t=1

f(rt, rt−1,Θ) = 0.

The resulting moment equations for α, β and ρ are expressed as

Ȳ 2
2

Ȳ4

=

(
1 + α̂2

2

)2

3
(
1 + 2α̂2 + 3

2
α̂4
) ; β̂ =

Ȳ2(
1 + α̂2

2

)
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and

Ȳ22 = β̂

(
1 + α̂2 +

α̂4

4
(1 + 2ρ̂2) + α̂2Î1

)
,

where

Ȳ2 = (1/T )
T∑
t=1

r2
t , Ȳ22 = (1/T )

T∑
t=1

r2
t r

2
t−1, Ȳ4 = (1/T )

T∑
t=1

r4
t .

These equations have to be solved by numerical methods and are illustrated using

simulated samples in Section 4.4. The algorithm for computing I1 is given in Ap-

pendix B. In our further analysis, we will use these estimators as initial values for

iterative methods.

4.3.2 Parameter Estimation by Efficient Importance Sam-

pling

The likelihood-based inference requires elimination of latent variables, from the

likelihood function. Let R = (r1, r2, ..., rT ) be a vector of observations from the

model and H = (h1, h2, ..., hT ) be the vector of associated latent variables. If

we denote the joint density function of (R,H) by f(R,H; Θ), then the likelihood

function of the parameter vector Θ = (α, β, ρ) based on the observations is given

by

L(Θ;R) =

∫
f(R,H; Θ) dH =

∫∫
...

∫
f(r1, r2, ..., rT , h1, h2, ..., hT ) dh1dh2...dhT .

(4.6)
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So the maximum likelihood method of estimation involves the computation of the

likelihood function by evaluating this multiple integral and then maximizing the

resulting function with respect to the parameters. One of the common methods

used in such situations is to obtain the Monte Carlo (MC) estimates of the likelihood

function based on the observations simulated from the auxiliary variables. However,

such procedures lead to inefficient estimators. Richard and Zhang (2007) proposed

EIS to overcome this efficiency problem.

To obtain an MC estimate of L(Θ;R), we need to decompose the above joint density

function f(R,H; Θ) sequentially as

f(rt, ht; Θ) =
T∏
t=1

g(rt|ht)p(ht|ht−1). (4.7)

In our case, g(.) and p(.) are respectively given by

g(rt|ht) =
1√

2πht
exp

{
− r2

t

2ht

}
(4.8)

and

p(ht|ht−1) = 1

2αβ
√

2π
√

1−ρ2

((
β
ht

)1/2

+
(
β
ht

)3/2
)

× exp

{
− 1

2(1−ρ2)

[
1
α

(√
ht
β
−
√

β
ht

)
− ρ

α

(√
ht−1

β
−
√

β
ht−1

)]2
}
.

(4.9)

A natural MC estimate of the likelihood function is given by

L̂(Θ;R) =
1

S

S∑
j=1

[
T∏
t=1

g(rt|h̃(j)
t )

]
, (4.10)
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where h̃
(j)
t denotes a draw from the density p(ht|h(j)

t−1). This estimator is highly

inefficient since MC variance increases with the sample size.

The EIS procedure constructs a sequence of samplers that exploits the sample in-

formation on the {ht}as conveyed by {rt}. Let {m(ht|ht−1, at)}Tt=1 denote such a se-

quence of auxiliary samplers indexed by the auxiliary parameters {at = (a1,t, a2,t)}Tt=1.

For any given values of the auxiliary parameters, the likelihood function is rewritten

as

L(Θ;R) =

∫ [ T∏
t=1

f(rt, ht|rt−1, ht−1,Θ)

m(ht|ht−1, at)

T∏
t=1

m(ht|ht−1, at)

]
dh, (4.11)

and the corresponding importance sampling MC estimate of the likelihood is given

by

L̃(Θ;R) =
1

S

S∑
j=1

{
T∏
t=1

[
f(rt, h̃

(j)
t (at)|rt−1, h̃

(j)
t−1(at−1),Θ)

m(h̃
(j)
t (at)|h̃(j)

t−1(at−1), at)

]}
, (4.12)

where
{
h̃

(j)
t (at)

}T
t=1

are trajectories drawn from the auxiliary samplers.

The EIS aims at selecting values of the auxiliary parameters {at}Tt=1 which provide

a good match between the product in the numerator and that in the denominator

of (4.12) in order to minimize the MC sampling variance of L̃. This minimization

problem can be decomposed in to a sequence of sub-problems for each element t of

the sequence of observations, provided that the elements depending on the lagged

values ht−1 are transferred back to the (t − 1)th minimization sub-problem. More

precisely, if we decompose m(.|.) in the product of a function of ht and ht−1 and

one of ht−1 only, such that

m (ht|ht−1, at) =
k (ht, at)

χ (ht−1, at)
,
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where χ (ht−1, at) =
∫
k (ht, at) dht.

Now the EIS requires solving a back-recursive sequence of low-dimensional least-

squares problems of the form:

ât(Θ) = arg min
at

S∑
j=1

{
ln
[
f(rt, h̃

(j)
t |rt−1, h̃

(j)
t−1,Θ)χ(h̃

(j)
t , ât+1)

]
− ct − ln(k(h̃

(j)
t , at))

}2

,

(4.13)

where ct are unknown constants to be estimated jointly with at. If the density kernel

k (ht, at) is chosen within the exponential family of distributions, the EIS least-

squares problems become linear in at. Finally, the EIS estimate of the likelihood

function for a given value of Θ is obtained by substituting ât for at using the following

algorithm.

Step 1: Use the natural sampler m(ht|ht−1, at) to draw S trajectories of the latent

variable {h̃(j)
t }Tt=1 as in (4.10).

Step 2: The draws obtained in step 1 are used to solve for each t (in the order from

T to 1) the least squares problems described in (4.13), which takes the form

of the auxiliary linear regression:

−1
2

log ht − 1
2

log(2π)− r2t
2ht

+ lnχ(h̃
(j)
t , ât+1)

= a0,t + a1,th̃
(j)
t + a2,t(h̃

(j)
t )2 + υ

(j)
t , j = 1, 2, ..., S,

where υ
(j)
t is the error term.

Step 3: Use the estimated auxiliary parameters ât to obtain S trajectories
{
h̃

(j)
t (ât)

}T
t=1

from the auxiliary sampler m(ht|ht−1, ât).
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Step 4: Return to Step 2, this time using the draws obtained with the auxiliary

sampler. Steps 2, 3 and 4 are usually iterated a small number of times (from

3 to 5), until a reasonable convergence of the parameters ât is obtained.

Once the auxiliary trajectories have attained a reasonable degree of convergence,

the simulated samples can be plugged in formula (4.12) to obtain an EIS estimate

of the likelihood function. This procedure is embedded in a numerical maximiza-

tion algorithm that converges to a maximum of the likelihood function. The same

random numbers were also employed for each of the likelihood evaluations required

by the maximization algorithm. The number of draws used (S in Eq. (4.12)) for

all computations in this section is equal to 100. EIS-ML estimates are finally ob-

tained by maximizing L̃ (θ;X, a) with respect to θ. For detailed presentation of the

algorithm, see Appendix C.

4.4 Simulation Study

This section illustrates our estimation procedure using the simulated data from

BS-SV model. We conducted several repeated simulation experiments with differ-

ent ρ-values, by fixing α= 2 and β= 1. The trajectories of 500, 1000 and 3000

observations from a SV data generating process were simulated 100 times and the

EIS-ML estimates were obtained using moment estimates as initial values. The MM

estimates are presented in Table 4.1 and EIS-ML estimates are in Table 4.2 with

corresponding mean square error in parentheses.



Chapter 4. BS SV Model 103

n ρ α̂ β̂ ρ̂
500 0.90

0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

2.0989(0.6558)
1.9268(0.6563)
1.7638(0.6915)
1.9093(0.6732)
1.9115(0.6219)
1.9186(0.6654)
1.7834(0.7651)
1.9167(0.6754)
2.0862(0.6578)

1.3152(0.6268)
1.1559(0.4945)
1.2145(0.4897)
1.1194(0.4325)
1.2234(0.4203)
1.1245(0.4896)
1.1521(0.5123)
1.1656(0.4987)
1.2565(0.5051)

0.9450(0.6622)
0.7275(0.5952)
0.4847(0.4621)
0.2978(0.4433)
0.1234(0.3314)
-0.3051(0.4476)
-0.5689(0.6123)
-0.7934(0.5123)
-0.9562(0.6340)

1000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9367(0.6334)
1.9398(0.5892)
1.8873(0.4907)
1.9462(0.6234)
1.9346(0.6092)
1.9419(0.6571)
1.8995(0.7075)
1.9319(0.5767)
2.0510(0.5976)

1.1808(0.4872)
1.1672(0.4092)
1.1783(0.4367)
1.1098(0.4469)
1.1456(0.4064)
1.1273(0.4764)
1.1183(0.5082)
1.1519(0.4337)
1.1190(0.4278)

0.9312(0.6622)
0.7287(0.5952)
0.4769(0.4621)
0.2765(0.4433)
0.0997(0.3314)
-0.2876(0.4476)
-0.5561(0.6123)
-0.7409(0.5123)
-0.9420(0.6340)

3000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9545(0.6066)
1.9581(0.5906)
1.9256(0.4893)
1.9686(0.6024)
1.9382(0.6063)
1.9576(0.6327)
1.9124(0.6529)
1.9412(0.5672)
1.9610(0.5571)

1.0967(0.4562)
1.0877(0.4278)
1.1980(0.4084)
1.0835(0.5011)
1.1052(0.4178)
1.0728(0.4267)
1.0639(0.4271)
1.1092(0.4093)
1.1076(0.4124)

0.9267(0.5901)
0.7261(0.5783)
0.4729(0.4563)
0.2710(0.4419)
0.0884(0.3882)
-0.2765(0.4370)
-0.5394(0.5922)
-0.7337(0.5092)
-0.9374(0.5955)

Table 4.1: The average estimates and the corresponding mean square error for
the MMEs, when α=2, β=1 and for different ρ’s.
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n ρ α̂ β̂ ρ̂
500 0.90

0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9429(0.0776)
1.9501(0.0774)
1.9545(0.0873)
1.9513(0.0793)
1.9468(0.0808)
1.9420(0.0942)
1.9581(0.0915)
1.9400(0.0874)
1.9525(0.0727)

0.9493(0.1125)
0.9462(0.1277)
0.9420(0.1126)
0.9521(0.1161)
0.9520(0.1195)
0.9524(0.1026)
0.9480(0.0950)
0.9540(0.1043)
0.9559(0.0985)

0.8580(0.0576)
0.6590(0.0522)
0.4820(0.0614)
0.2160(0.0507)
-0.0440(0.0709)
-0.2820(0.0650)
-0.5640(0.0578)
-0.7240(0.0656)
-0.9355(0.0558)

1000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9626(0.0601)
1.9759(0.0662)
1.9812(0.0712)
1.9788(0.0608)
1.9821(0.0699)
1.9760(0.0671)
1.9789(0.0615)
1.9810(0.0711)
1.9729(0.0655)

0.9722(0.0815)
0.9729(0.0866)
0.9810(0.0796)
0.9789(0.0811)
0.9809(0.0785)
0.9755(0.0711)
0.9801(0.0762)
0.9882(0.0815)
0.9759(0.0795)

0.8850(0.0471)
0.6812(0.0403)
0.4901(0.0521)
0.2396(0.0488)
-0.0221(0.0532)
-0.2718(0.0519)
-0.5355(0.0477)
-0.7188(0.0452)
-0.9128(0.0410)

3000 0.90
0.70
0.50
0.25
0.00
-0.25
-0.50
-0.70
-0.90

1.9829(0.0521)
1.9876(0.0556)
1.9890(0.0579)
1.9835(0.0600)
1.9901(0.0628)
1.9859(0.0571)
1.9914(0.0550)
1.9945(0.0609)
1.9899(0.0533)

0.9923(0.0802)
0.9847(0.0716)
0.9907(0.0689)
0.9844(0.0709)
0.9879(0.0691)
0.9937(0.0669)
0.9965(0.0681)
0.9899(0.0679)
0.9902(0.0602)

0.8906(0.0424)
0.6890(0.0475)
0.4955(0.0545)
0.2431(0.0388)
-0.0560(0.0532)
-0.2517(0.0519)
-0.5188(0.0427)
-0.7054(0.0400)
-0.9059(0.0379)

Table 4.2: The average estimates and the corresponding mean square error for
the EIS-MLEs, when α=2, β=1 and for different ρ’s.
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From the above tables, we observe that the MM estimates are slightly biased.

When the sample size is large, the estimates perform reasonably well and there

is a marginal reduction in bias and root mean square errors. But EIS-ML method

provides estimates which are closer to the true parameter values and mean square

error of estimates are remarkably small.

4.5 Data Analysis

We apply the BS-SV model to analyse the daily returns for (1) the rate of exchange

on the Rupee/Dollar from July 25, 1998 to May 22, 2015 obtained from Database

on Indian Economy, Reserve Bank of India and (2) the opening index of Standard

and Poors 500 (S&P 500) from January 02, 2008 to May 22, 2015 obtained from

Yahoo Finance. The time series plots of these data are given in Figure 4.2.

Denoting the daily price index by pt, the returns are transformed into continuously

compounded rates centred around their sample mean:

rt = 100

[
ln

(
pt
pt−1

)
−
(

1

T

) T∑
t=1

ln

(
pt
pt−1

)]
, t = 1, 2, ..., T.

The left panel show the plots of actual data series and the continuously compounded

return series are on the right panels. The descriptive statistics of the return series

are reported in Table 4.3, where Q(20) and Q2(20) are the Ljung-Box statistic for

return and squared return series with lag 20. The corresponding χ2 table value at 5%

significance level is 10.117. Hence the test suggests that the return series is serially

uncorrelated whereas the squared return series has significant serial correlation. The
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Figure 4.2: Time series plot the data and the return

Statistic Dollar Ex-
change rate

S&P500
Opening
Index

Sample size 4051 1861
Minimum -3.0164 -9.1349
Maximum 4.0100 10.1193
Std. Dev. 0.4225 1.3496
Kurtosis 11.3384 12.7281
Q(20) 1.7088 1.4721
Q2(20) 87.1655 68.1816

Table 4.3: Descriptive statistics of the return series

kurtosis of the returns for all the series is greater than three which implies that the

distribution of the returns is leptokurtic in nature.
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Figure 4.3: ACF of the returns and the squared returns

From the ACF of the returns plotted in Figure 4.3, it is observed that serial correla-

tions in the return series are insignificant where as the ACF of the squared returns

in the bottom panel remains positive and decays very slowly.

In Table 4.4, we present the parameter estimates for both the return series. Once

the estimates of parameters are obtained, the next stage is the model diagnostic

checking. That is, we need to check whether the assumptions on the model (4.1) are

satisfied with respect to the data we have analysed. Note that the model (4.1) is in

terms of the volatilities ht, which are unobservable. This aspect makes the diagnosis

problem difficult. One of the methods suggested in such cases is to employ Kalman

filtering by rewriting the model (4.1) in the state-space form. For more details on

Kalman filtering method and associated theory, one can refer Jacquier et al. (1994)

and Tsay (2005). This method helps in estimating the unobservable volatility ht.
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Parameters Dollar Ex-
change rate

S&P 500
Opening
Index

α 2.9411 2.5030
β 0.1721 0.4404
ρ 0.9101 0.7942
Q∗(20) 0.6820 0.3428
Q2∗(20) 5.0400 1.1539

Table 4.4: Estimates of parameters and Ljung-Box statistic for residuals

The state space representation of the BS-SV model given in (4.1) can be written as

log(r2
t ) = −1.27 + log ht + νt, E(νt) = 0, V (νt) =

π2

2
(4.14)

and

ht = β

1

2
αXt +

√(
1

2
αXt

)2

+ 1

2

; Xt = ρXt−1 + ηt, t = 1, 2, ... ,

where ηt is normally distributed with mean zero and variance (1 − ρ2). If the dis-

tribution of νt is approximated by a normal distribution then the preceding system

(4.13) becomes a standard dynamic linear model, to which the Kalman filter can

be applied. Let X̄t|t−1 be the prediction of Xt based on the information available

at time t − 1 and Ωt|t−1 be the variance of the prediction. Here we are making an

assumption that update that uses the information at time t as X̄t|t and the variance

of the update as Ωt|t. The equations that recursively compute the predictions and

updating are given by

X̄t|t−1 = ρX̄t−1|t−1
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Ωt|t−1 = ρ2Ωt−1|t−1 + (1− ρ2)

and

X̄t|t = X̄t|t−1 +
Ωt|t−1

ft

[
log(y2

t ) + 1.27− log X̄t|t
]

Ωt|t = Ωt|t−1(1−
Ωt|t−1

ft
) ,

where ft = Ωt|t−1 + π2

2
.

Then the residuals are calculated by the equation ε̂t = rt h̄
−0.5
t and use this sequence

for the model diagnosis. The system is initialized at the unconditional values, Ω0 = 1

and X0 = 1. The parameters α, β and ρ in the above system are replaced by their

respective estimates which are given in Table 4.4. The correlograms of the residu-

als are given in Figure 4.4 below suggest that the model performs quite well. Yet,

Figure 4.4: ACF of the residuals

we have to check formally the serial correlations of the series {ε̂t} and {ε̂2
t}. The

Ljung-Box statistics for the residuals Q∗(20) and the squared residuals Q2∗(20) are
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calculated with lag 20 and are given in Table 4.4. From Table 4.4, the Ljung-Box

statistic for both the series is less than the 5% chi-square critical value 10.117 at

degrees of freedom 20. Hence we conclude that there is no significant dependence

among the residuals and squared residuals. In Figure 4.5 we superimpose the stan-

Figure 4.5: Histogram of residuals with superimposed standard normal density

dard normal density on the histogram of the residuals to check whether the series

follows standard normal distribution. The figure clearly shows that the standard

normal distribution is a good fit for the residuals in both cases. Hence, we conclude

that BS-SV model is adequate for above data sets.
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Asymmetric Laplace Stochastic

Volatility Model

5.1 Introduction

It is known that return distributions of financial time series data, such as stock and

foreign exchange returns, exhibit departure from the normality assumption as they

are often skewed and have heavier tails than the normal distribution. Data also

exhibit time varying volatility and volatility clustering over time. Accounting for

these characteristics of data is crucial to make appropriate decisions for risk man-

agement. These aspects motivated the researchers to develop two main classes of

models that capture the time-varying auto-correlated volatility process: the ARCH

model, introduced by Engle (1982) and the SV model, introduced by Taylor (1986).

In ARCH model, the time-varying variance is assumed to be a deterministic function

111
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of the lagged values of the squared errors. For a comprehensive survey on this model

and its various generalizations, such as Generalized ARCH (GARCH) by Bollerslev

(1986), see Shephard (1996) and Tsay (2005). In SV model, the volatility at time

t is assumed to be a stochastic process in terms of some latent variables.

The asymmetric Laplace(AL) distribution demonstrates flexibility in fitting data

with heavy tails and skewness, which make it a promising candidate for financial

data modelling. Kozubowski and Podgorski (2000) and Kotz et al. (2012) studied

many properties of asymmetric Laplace distributions. Jayakumar and Kuttykrish-

nan (2007) introduced a time series model using an asymmetric Laplace distribution

for modelling data from financial contexts. Jose and Thomas (2011) developed a first

order stationary autoregressive process with generalized Laplace marginal distribu-

tion. Although the theory and applications of asymmetric Laplace distributions is

well developed and there is considerable literature in recent years, their applica-

tions in modelling stochastic volatility in financial time series is not developed. We

consider SV model with log-volatility process have an asymmetric Laplace marginal

distribution, rather than the Gaussian distribution.

The next section briefly discusses the asymmetric Laplace distribution and its prop-

erties. The construction AL-SV model and its second order properties are described

in Section 5.3 and 5.4 of this chapter. We discussed the estimation procedure by

the method of moments in Section 5.5. The asymptotic properties of estimators

are established in Section 5.6. A simulation study is carried out in Section 5.7. In

Section 5.8, we present the results on data analysis using our model.
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5.2 Asymmetric Laplace distribution

A random variable X is said to have an asymmetric Laplace distribution with

parameters θ ∈ R, κ > 0 and σ ≥ 0 (AL(θ, κ, σ)) if its probability density function

is (cf: Kotz et al. (2012)):

f(x; θ, κ, σ) =

√
2

σ

κ

1 + κ2

 exp
(
−
√

2κ
σ
|x− θ|

)
, if x ≥ θ

exp
(
−
√

2
κσ
|x− θ|

)
, if x < θ

(5.1)

or, the distribution function of the X is the form

F (x; θ, κ, σ) =

 1− 1
1+κ2

exp
(
−
√

2κ
σ
|x− θ|

)
, if x ≥ θ

κ2

1+κ2
exp

(
−
√

2
κσ
|x− θ|

)
, if x < θ .

(5.2)

Hence the characteristic function of AL(θ, κ, σ) is obtained as

ψX(t) = E
(
eitX

)
=

eiθt

1 + 1
2
σ2t2 − i σ√

2

(
1
κ
− κ
)
t
. (5.3)

Using (5.3), the mean, variance and the coefficients of skewness and kurtosis can be

respectively obtained as

E(X) = θ +
σ√
2

(
1

κ
− κ
)
, V ar(X) =

σ2

2

(
1

κ2
+ κ2

)
,

γ = 2
1/κ3 − κ3

(1/κ2 + κ2)3/2
, K = 6− 12

(1/κ2 + κ2)2 .

The absolute value of γ is bounded by two, and as κ increases within the interval

(0,∞), then the corresponding value of γ decreases monotonically from 2 to -2.
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Similarly, the distribution is leptokurtic and K varies from 3 (the least value for

the symmetric Laplace distribution with κ = 1) to 6 (the greatest value attained

for the limiting exponential distribution when κ→ 0 (see Kotz et al. (2012)).

The asymmetric Laplace random variable X also admits the representation of the

form

X
d
= ρX + (1− ρ)θ +

σ√
2

(
1

κ
I1E1 − κI2E2

)
, ρ ∈ [0, 1], (5.4)

where I1, I2 are dependent Bernoulli random variables taking on values of either

zero or one with probabilities,

P (I1 = 0, I2 = 0) = ρ2, P (I1 = 1, I2 = 1) = 0,

P (I1 = 1, I2 = 0) = (1− ρ)

(
ρ+

1− ρ
1 + κ2

)
,

P (I1 = 0, I2 = 1) = (1− ρ)

(
ρ+

(1− ρ)κ2

1 + κ2

)
,

E1 and E2 are standard exponential variables, with all variables being mutually

independent.

As shown in Kotz et al. (2012), all asymmetric Laplace laws are self decomposable

for all values of the parameters. Gaver and Lewis (1980) proved that only self

decomposable distributions can be marginal distributions of a first order autore-

gressive process. Hence the asymmetric Laplace distribution can be the marginal

distribution of an AR(1) process. Various authors studied autoregressive models

with non-Gaussian marginal distribution extensively in recent years due to wide

applications of such models in socio-economic fields. Using the results in Jose and
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Thomas (2011), a first order autoregressive process with asymmetric Laplace dis-

tribution is constructed in the next section.

5.3 First order Asymmetric Laplace Autoregres-

sive Process

The first order asymmetric Laplace AR process is constituted by {ht, t ≥ 1}, where

ht satisfies the equation,

ht = ρht−1 + ηt ; ρ ∈ [0, 1), t > 0, (5.5)

where {ht} is a stationary Markov process with asymmetric Laplace marginal dis-

tribution with location parameter θ, shape parameter κ and scale parameter σ

(AL(θ, κ, σ)) and {ηt} is a independent and identically distributed random variables

independent of ht−τ for all τ ≥ 1. The basic problem is to find the distribution of

{ηt} such that {ht} has the asymmetric Laplace distribution AL(θ, κ, σ) as the sta-

tionary marginal distribution. The following theorem proved by Jose and Thomas

(2011) summarizes the result in this context.

Theorem 5.1. The stationary marginal distribution of {ht} in model (5.5) is asym-

metric Laplace marginal distribution with parameters θ, κ and σ iff the distribution

of ηt is specified as a convolution of the form ηt
d
=U + (I1E1 − I2E2) , as in (5.7)

provided η0
d
=h0.
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Proof. In terms of characteristic function the model in (5.5) can be rewritten as

ψh(t) = ψh(ρt)ψη(t).

Under stationarity assumption, ψη(t) = ψh(t)
ψh(ρt)

.

Substituting the characteristic function given by (5.3) we get,

ψη(t) =
eiθt

eiθρt

(
1 + i σκ√

2
ρt
)(

1− i σ√
2κ
ρt
)

(
1 + i σκ√

2
t
)(

1− i σ√
2κ
t
)

= eiθ(1−ρ)t

ρ+ (1− ρ)
1(

1 + i σκ√
2
t
)
ρ+ (1− ρ)

1(
1− i σ√

2κ
t
)
 . (5.6)

This implies that ηt has a convolution structure of the following form

ηt
d
=U + (I1E1 − I2E2) , (5.7)

where U is degenerate at θ(1− ρ). E1 and E2 are independent exponential random

variables with means σ/
√

2κ and σ κ/
√

2 respectively and (I1, I2) is such that

P (I1 = 0, I2 = 0) = ρ2, P (I1 = 1, I2 = 1) = (1− ρ)2 ,

P (I1 = 1, I2 = 0) = P (I1 = 0, I2 = 1) = ρ (1− ρ) .

Further (I1, I2) independent of E1 and E2.
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The converse part can be provided by the method of induction. We assume that

ht−1 follows AL(θ, κ, σ) with characteristic function (5.3).

ψht(t) = ψht−1(ρt)ψηt(t)

=

 eiθρt(
1 + i σκ√

2
ρt
)(

1− i σ√
2κ
ρt
)
eiθ(1−ρ)t

(
1 + i σκ√

2
ρt
)(

1− i σ√
2κ
ρt
)

(
1 + i σκ√

2
t
)(

1− i σ√
2κ
t
)


= eiθt

(
1

1 + i σκ√
2
t

)(
1

1− i σ√
2κ
t

)
,

which is same as the asymmetric Laplace characteristic function. This shows that

{ht} is strictly stationary with asymmetric Laplace marginals provided η0
d
=h0

which follows AL(θ, κ, σ). Hence the theorem.

The mean and variance of ηt are given by

E (ηt) = (1− ρ)
[
θ + σ√

2

(
1
κ
− κ
)]

and V ar (ηt) = (1− ρ2)
[
σ2

2

(
1
κ
− κ
)2

+ σ2
]
.

Hence the second order properties of the process {ht} are summarized below.

E (ht) = θ + σ√
2

(
1
κ
− κ
)

, V ar (ht) = σ2

2

(
1
κ2

+ κ2
)

and the ACF, ρk(ht) = ρk , k =

1, 2, ....

The regression of ht on ht−1 is given by

E (ht |ht−1 ) = ρht−1 + E (ηt |ht−1 )

= ρht−1 + (1− ρ)
[
θ + σ√

2

(
1
κ
− κ
)]

= g (Θ ;ht−1) , Θ = (θ, κ, σ)
′
.
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Next we discuss the construction of SV model generated by first order AL autore-

gressive process discussed in this section.

5.4 Asymmetric Laplace SV Model

Let {rt} be a sequence of returns on certain financial asset and the volatilities

are generated by a Markov sequence {exp(ht)} of non-negative random variables.

Define the SV model

rt = exp (ht/2) εt,

ht = ρht−1 + ηt, t = 1, 2, ..., 0 ≤ ρ < 1 (5.8)

where {εt} is a sequence of independent and identically distributed standard Laplace

random variables with mean zero and variance one. We assume that the sequence

{εt} is independent of ht and ηt for every t. Here we assume that for every t, the

volatility, ht is an asymmetric Laplace random variables. Since the sequence {εt}

follows standard Laplace distribution, the odd moments of rt are zero and its even

moments are given by

E
(
r2r
t

)
=

(2r)! erθ

2r
(

1− 1
2
r2σ2 − rσ√

2

(
1
κ
− κ
)) , r = 1, 2, .... (5.9)

Then

V ar (rt) =
eθ(

1− σ2

2
− σ√

2

(
1
κ
− κ
))

and the kurtosis of rt becomes
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K = 6

[
1− σ2

2
− σ√

2

(
1
κ
− κ
)]2

[
1− 2σ2 −

√
2σ
(

1
κ
− κ
)] . (5.10)

By choosing different values for σ and κ, one can get a distribution with larger

kurtosis as shown in Figure 5.1.

Figure 5.1: The plot of kurtosis of rt

The variance and covariance function of the squared return series are obtained as

V ar(r2
t ) = E(r4

t )−
(
E(r2

t )
)2

=

e2θ

{
6
[
1− σ2

2
− σ√

2

(
1
κ
− κ
)]2

−
[
1− 2σ2 −

√
2σ
(

1
κ
− κ
)]}

[
1− 2σ2 −

√
2σ
(

1
κ
− κ
)] [

1− σ2

2
− σ√

2

(
1
κ
− κ
)]2

Cov
(
r2
t , r

2
t−k
)

= E
(
r2
t r

2
t−k
)
− E

(
r2
t

)
E
(
r2
t−k
)
.
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For this purpose, we consider

E
(
r2
t r

2
t−k
)

= E
(
ehtε2

t e
ht−kε2

t−k
)

= E
(
ehteht−k

)
= E

(
e{ρkht−k+

∑k
i=1 ρ

k−iηt−(k−i)}eht−k
)

= E
(
e(1+ρk)ht−k

)
E
(
eρ
k−1ηt−(k−1)

)
E
(
eρ
k−2ηt−(k−2)

)
... E (eρηt−1)E (ηt)

= E
(
e(1+ρk)ht−k

) E
(
eht
)

E
(
eρkht−k

)
=

e2θ
[
1− 1

2
σ2ρ2k − σρk√

2

(
1
κ
− κ
)][

1− σ2(1+ρk)
2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρk)

] [
1− σ2

2
− σ√

2

(
1
κ
− κ
)]

and so

Cov
(
r2
t , r

2
t−k
)

=
e2θσ2ρk

[
1 + 1

2

(
1
κ
− κ
)2

+ σ2ρk

4
+ σ

2
√

2

(
1
κ
− κ
) (

1 + ρk
)][

1− σ2(1+ρk)
2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρk)

] [
1− σ2

2
− σ√

2

(
1
κ
− κ
)]2

.

Hence, the lag k autocorrelation of the squared sequence {r2
t } is

ρr2t (k) = C(σ, κ)×
σ2ρk

[
1 + 1

2

(
1
κ
− κ
)2

+ σ2ρk

4
+ σ

2
√

2

(
1
κ
− κ
) (

1 + ρk
)][

1− σ2(1+ρk)
2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρk)

] , (5.11)

where

C(σ, κ) =

[
1− 2σ2 −

√
2σ
(

1
κ
− κ
)]{

6
[
1− σ2

2
− σ√

2

(
1
κ
− κ
)]2

−
[
1− 2σ2 −

√
2σ
(

1
κ
− κ
)]} .
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The ACF is an exponentially decreasing function of the lags for different values of

the parameters, as can be seen in Figure 5.2.

Figure 5.2: The ACF of squared returns for different combinations of parame-
ters

5.5 Parameter Estimation

One of the difficulties with the statistical inference for SV models is that the likeli-

hood function involves the unobservable Markov dependent latent variables. These

variables have to be integrated out using multiple integrals and this complicates the

parameter estimation by the method of maximum likelihood. A number of methods
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are proposed for estimating the parameters of a SV model and a comprehensive sur-

vey may be seen in Tsay (2005). For the SV model described above, we adopt the

method of moments to estimate the parameters. Let (r1, r2, ..., rT ) be a realization

of length T from the AL-SV model (5.8) and Θ = ( θ, κ , σ, ρ)
′

be the parameter

vector to be estimated. We use the moments

E
(
r2
t

)
=

eθ[
1− σ2

2
− σ√

2

(
1
κ
− κ
)] ; E

(
r4
t

)
=

6 e2θ[
1− 2σ2 −

√
2σ
(

1
κ
− κ
)] ,

E
(
r6
t

)
=

90 e3θ[
1− 9

2
σ2 − 3√

2
σ
(

1
κ
− κ
)] ,

E
(
r2
t r

2
t−1

)
=

e2θ
[
1− σ2ρ2

2
− σρ√

2

(
1
κ
− κ
)][

1− σ2

2
− σ√

2

(
1
κ
− κ
)] [

1− σ2(1+ρ)2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρ)
]

to estimate the parameters.

We define

f (rt , rt−1, θ) =



r2
t − eθ[

1−σ2
2
− σ√

2
( 1
κ
−κ)

]
r4
t − 6 e2θ

[1−2σ2−
√

2σ( 1
κ
−κ)]

r6
t − 90 e3θ[

1− 9
2
σ2− 3√

2
σ( 1

κ
−κ)

]
r2
t r

2
t−1 −

e2θ
[
1−σ

2ρ2

2
− σρ√

2
( 1
κ
−κ)

]
[
1−σ2

2
− σ√

2
( 1
κ
−κ)

][
1−σ

2(1+ρ)2

2
− σ√

2
( 1
κ
−κ)(1+ρ)

]


(5.12)

=



r2
t − c1

r4
t − c2

r6
t − c3

r2
t r

2
t−1 − c4


, (Say).
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Then the moment estimator Θ̂ =
(
θ̂, κ̂ , σ̂, ρ̂

)′
of Θ may be obtained by solving

1
T

∑T
t=1 f (rt, rt−1,Θ) = 0. The resulting moment equations for Θ = ( θ, κ , σ, ρ)

′

are expressed as

σ̂2 =
2eθ̂Ȳ4 − 6e2θ̂Ȳ2 − Ȳ2Ȳ4

Ȳ2Ȳ4

,

Ȳ4 =
6 e2θ[

1− 2σ2 −
√

2σ
(

1
κ
− κ
)] ,

Ȳ6 =
90 e3θ[

1− 9
2
σ2 − 3√

2
σ
(

1
κ
− κ
)] ,

Ȳ22

Ȳ2

=
eθ
[
1− σ2ρ2

2
− σρ√

2

(
1
κ
− κ
)][

1− σ2(1+ρ)2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρ)
] ,

where Ȳ2 = (1/T )
∑T

t=1 r
2
t , Ȳ4 = (1/T )

∑T
t=1 r

4
t , Ȳ6 = (1/T )

∑T
t=1 r

6
t and Ȳ22 =

(1/T )
∑T

t=1 r
2
t r

2
t−1 . These equations have to be solved by numerical methods and

computational details are given in Appendix D.

5.6 Asymptotic Properties of Estimators

To prove that the moment estimators are consistent and asymptotically normal

(CAN), we refer to Hansen (1982) under the following assumptions. Hansen (1982)

proved results for GMM estimators. This theorem also valid for method of moment

estimators.

(i) {rt : −∞ < t <∞} is stationary and ergodic sequence.
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(ii) The parameter space Θ is an open subset of Rq that contains the true param-

eter υ0.

(iii) f (. , υ) and ∂f
∂υ

are Borel measurable for each υ ∈ Θ and ∂f(r, .)
∂υ

is continuous

on Θ for each r ∈ Rq.

(iv) ∂f1
∂υ

is first moment continuous at υ0, D = E
[
∂
∂υ
f (rt , υ0)

]
exists, is finite, and

has full rank.

(v) Let ωt = f (rt , υ0) , −∞ < t <∞ and

ϑj = E (ω0|ω−j, ω−j−1, ...)− E (ω0|ω−j−1, ω−j−2, ...) , j ≥ 0.

The assumptions are that E
(
ω0 , ω

′
0

)
exists and is finite, E (ω0 |ω−j, ω−j−1, ...) con-

verges in mean square to zero and
∑∞

j=0E
(
ϑ
′
jϑj
)1/2

is finite. Now we have the

following result, proved by Hansen (1982).

Theorem 5.2. Suppose that the sequence {rt : −∞ < t <∞} satisfies the assump-

tions (i) - (v). Then
{√

T
(

Θ̂−Θ
)
, T ≥ 1

}
converges in distribution to a normal

random vector with mean 0 and dispersion matrix
[
DS−1D

′]−1
, where D is as given

in (iv) and S =
∑∞

k=−∞ Γ
(k)

, Γ(k) = E
(
ωt ω

′

t−k
)
.

The sequence {rt} given in (5.8) is stationary, ergodic and has finite moments, due

the fact that {ht} holds these properties. Therefore, the regularity conditions listed

above hold good for our AL-SV model.
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For computing the elements of the asymptotic dispersion matrix, the following ob-

servations become useful.

m
(k)
2;2 = E

(
r2
t r

2
t−k
)

=
E
(
e(ρk+1)ht−k

)
E
(
eht
)

E
(
eρkht−k

) ;

m
(k)
2;4 = E

(
r2
t r

4
t−k
)

= 6
E
(
e(ρk+2)ht−k

)
E
(
eht
)

E
(
eρkht−k

) ;

m
(k)
2;6 = E

(
r2
t r

6
t−k
)

= 90
E
(
e(ρk+3)ht−k

)
E
(
eht
)

E
(
eρkht−k

) ;

m
(k)
2;2,2 = E

(
r2
t r

2
t−kr

2
t−k−1

)
=
E
(
e(ρk+1+ρ+1)ht−k−1

)
E
(
e(ρk+1)ht−k

)
E
(
eht
)

E
(
e(ρk+1+ρ)ht−k−1

)
E
(
eρkht−k

) ;

m
(k)
4;2 = E

(
r4
t r

2
t−k
)

= 6
E
(
e(2ρk+1)ht−k

)
E
(
e2ht
)

E
(
e2ρkht−k

) ;

m
(k)
4;4 = E

(
r4
t r

4
t−k
)

= 36
E
(
e(2ρk+2)ht−k

)
E
(
e2ht
)

E
(
e2ρkht−k

) ;

m
(k)
4;6 = E

(
r4
t r

6
t−k
)

= 540
E
(
e(2ρk+3)ht−k

)
E
(
e2ht
)

E
(
e2ρkht−k

) ;

m
(k)
4;2,2 = E

(
r4
t r

2
t−kr

2
t−k−1

)
= 6

E
(
e(2ρk+1+ρ+1)ht−k−1

)
E
(
e(2ρk+1)ht−k

)
E
(
e2ht
)

E
(
e(2ρk+1+ρ)ht−k−1

)
E
(
e2ρkht−k

) ;

m
(k)
6;2 = E

(
r6
t r

2
t−k
)

= 90
E
(
e(3ρk+1)ht−k

)
E
(
e3ht
)

E
(
e3ρkht−k

) ;

m
(k)
6;4 = E

(
r6
t r

4
t−k
)

= 540
E
(
e(3ρk+2)ht−k

)
E
(
e3ht
)

E
(
e3ρkht−k

) ;

m
(k)
6;2,2 = E

(
r6
t r

2
t−kr

2
t−k−1

)
= 90

E
(
e(3ρk+1+ρ+1)ht−k−1

)
E
(
e(3ρk+1)ht−k

)
E
(
e3ht
)

E
(
e(3ρk+1+ρ)ht−k−1

)
E
(
e3ρkht−k

) ;

m
(k)
2,2;2 = E

(
r2
t r

2
t−1r

2
t−k
)

=
E
(
e(ρk+ρk−1+1)ht−k

)
E
(
e(ρ+1)ht−1

)
E
(
eht
)

E
(
e(ρk+ρk−1)ht−k

)
E (eρht−1)

;
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m
(k)
2,2;4 = E

(
r2
t r

2
t−1r

4
t−k
)

= 6
E
(
e(ρk+ρk−1+2)ht−k

)
E
(
e(ρ+1)ht−1

)
E
(
eht
)

E
(
e(ρk+ρk−1)ht−k

)
E (eρht−1)

;

m
(k)
2,2;6 = E

(
r2
t r

2
t−1r

6
t−k
)

= 90
E
(
e(ρk+ρk−1+3)ht−k

)
E
(
e(ρ+1)ht−1

)
E
(
eht
)

E
(
e(ρk+ρk−1)ht−k

)
E (eρht−1)

;

m
(k)
2,2;2,2 = E

(
r2
t r

2
t−1r

2
t−kr

2
t−k−1

)
=

E
(
e(ρk+1+ρk+ρ+1)ht−k−1

)
E
(
e(ρk+ρk−1+1)ht−k

)
E
(
e(ρ+1)ht−1

)
E
(
eht
)

E
(
e(ρk+1+ρk+ρ)ht−k−1

)
E
(
e(ρk+ρk−1)ht−k

)
E (eρht−1)

;

where

E
(
erht
)

=
erθ

1− σ2r2

2
− σr√

2

(
1
κ
− κ
) .

Let Γ(k) =



γ
(k)
11 γ

(k)
12 γ

(k)
13 γ

(k)
14

γ
(k)
21 γ

(k)
22 γ

(k)
23 γ

(k)
24

γ
(k)
31 γ

(k)
32 γ

(k)
33 γ

(k)
34

γ
(k)
41 γ

(k)
42 γ

(k)
43 γ

(k)
44


, k = 0,±1,±2, ...

and Γ(k) = Γ(−k), k = 1, 2, ... . Then the 4 × 4 matrix S is given by S = Γ(0) +

2
∑∞

k=1 Γ(k).

When k = 0, the elements of Γ(0) = E
(
ωt ω

′
t

)
are obtained as

γ
(0)
11 = m

(0)
2;2 − c2

1,

γ
(0)
12 = γ

(0)
21 = m

(0)
2;4 − c1c2,

γ
(0)
13 = γ

(0)
31 = m

(0)
2;6 − c1c3,

γ
(0)
14 = γ

(0)
41 = m

(0)
2;2,2 − c1c4,
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γ
(0)
22 = m

(0)
4;4 − c2

2,

γ
(0)
23 = γ

(0)
32 = m

(0)
4;6 − c2c3,

γ
(0)
24 = γ

(0)
42 = m

(0)
4;2,2 − c2c4,

γ
(0)
33 = m

(0)
6;6 − c2

3,

γ
(0)
34 = γ

(0)
43 = m

(0)
6;2,2 − c3c4,

γ
(0)
44 = m

(0)
2,2;2,2 − c4,

where c1, c2, c3 and c4 as in (5.12).

Similarly, the following are the elements of Γ(k) for k = 1, 2, ...

γ
(k)
11 = m

(k)
2;2 − c2

1; γ
(k)
12 = m

(k)
2;4 − c1c2; γ

(k)
13 = m

(k)
2;6 = c1c3; γ

(k)
14 = m

(k)
2;2,2 − c1c4,

γ
(k)
21 = m

(k)
4;2 − c1c2; γ

(k)
22 = m

(k)
4;4 − c2

2; γ
(k)
23 = m

(k)
4;6 − c2c3; γ

(k)
24 = m

(k)
4;2,2 − c2c4,

γ
(k)
31 = m

(k)
6;2 − c1c3; γ

(k)
32 = m

(k)
6;4 − c2c3; γ

(k)
33 = m

(k)
6;6 − c2

3; γ
(k)
34 = m

(k)
6;2,2 − c3c4,

γ
(k)
41 = m

(k)
2,2;2 − c1c4; γ

(k)
42 = m

(k)
2,2;4 − c2c4; γ

(k)
43 = m

(k)
2,2;6 − c3c4; γ

(k)
44 = m

(k)
2,2;2,2 − c2

4,

The 4 × 4 matrix D is evaluated using the form D = E
(
d
dυ
f (rt, rt−1 , υ)

)
and its

elements are:

D11 = − eθ

1− σ2

2
− σ√

2

(
1
κ
− κ
)

D12 = − 12e2θ

1− 2σ2 −
√

2σ
(

1
κ
− κ
)

D13 = − 270e3θ

1− 9
2
σ2 − 3√

2
σ
(

1
κ
− κ
)
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D14 = −
2e2θ

[
1− σ2ρ2

2
− σρ√

2

(
1
κ
− κ
)][

1− σ2(1+ρ)2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρ)
] [

1− σ2

2
− σ√

2

(
1
κ
− κ
)] ,

D21 =
eθσ

(
1
κ2

+ 1
)

√
2
[
1− σ2

2
− σ√

2

(
1
κ
− κ
)]2 ,

D22 =
6
√

2e2θσ
(

1
κ2

+ 1
)[

1− 2σ2 −
√

2σ
(

1
κ
− κ
)]2 ,

D23 =
270e3θσ

(
1
κ2

+ 1
)

√
2
[
1− 9

2
σ2 − 3√

2
σ
(

1
κ
− κ
)]2 ,

D24 = −
σρe2θ√

2

(
1
κ2

+ 1
)

{d1 (σ, κ, ρ) d2 (σ, κ, ρ)}
,

+
e2θd3 (σ, κ, ρ)

{
d1 (σ, κ, ρ) σ√

2

(
1
κ2

+ 1
)

+ d2 (σ, κ, ρ) σ(1+ρ)√
2

(
1
κ2

+ 1
)}

{d1 (σ, κ, ρ) d2 (σ, κ, ρ)}2 ,

D31 =
eθ
[
σ + 1√

2

(
1
κ
− κ
)]

[
1− σ2

2
− σ√

2

(
1
κ
− κ
)]2 ,

D32 =
6e2θ

[
4σ +

√
2
(

1
κ
− κ
)][

1− 2σ2 −
√

2σ
(

1
κ
− κ
)]2 ,

D33 =
90e3θ

[
9σ + 3√

2

(
1
κ
− κ
)]

[
1− 9

2
σ2 − 3σ√

2

(
1
κ
− κ
)]2 ,

D34 = −
e2θ
[
σρ2 + ρ√

2

(
1
κ
− κ
)]

{d1 (σ, κ, ρ) d2 (σ, κ, ρ)}

+
e2θd3 (σ, κ, ρ)

{
d1 (σ, κ, ρ)

[
σ + 1√

2

(
1
κ
− κ
)]

+ d2 (σ, κ, ρ)
[
σ(1 + ρ)2 + 1√

2

(
1
κ
− κ
)

(1 + ρ)
]}

{d1 (σ, κ, ρ) d2 (σ, κ, ρ)}2 ,

D41 = D42 = D43 = 0,
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D44 = −
e2θ
[
−σ2ρ− σ√

2

(
1
κ
− κ
)]{[

1− σ2(1+ρ)2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρ)
] [

1− σ2

2
− σ√

2

(
1
κ
− κ
)]}

+
e2θ
[
1− σ2ρ2

2
− σρ√

2

(
1
κ
− κ
)] [[

1− σ2

2
− σ√

2

(
1
κ
− κ
)] [
−σ(1 + ρ)− σ√

2

(
1
κ
− κ
)]]

{[
1− σ2(1+ρ)2

2
− σ√

2

(
1
κ
− κ
)

(1 + ρ)
] [

1− σ2

2
− σ√

2

(
1
κ
− κ
)]}2 ,

where

d1 (σ, κ, ρ) =

[
1− σ2(1 + ρ)2

2
− σ√

2

(
1

κ
− κ
)

(1 + ρ)

]
;

d2 (σ, κ, ρ) =

[
1− σ2

2
− σ√

2

(
1

κ
− κ
)]

;

d3 (σ, κ, ρ) =

[
1− σ2ρ2

2
− σρ√

2

(
1

κ
− κ
)]

.

Hence the asymptotic dispersion matrix becomes 1
T

Σ , where

Σ =
[
DS−1D

′
]−1

.

5.7 Simulation Study

We carry out a simulation study to evaluate the performance of the proposed es-

timators with sample sizes 1000 and 3000. First, we generate a sample of size T

from AL Markov sequence specified in (5.5) using the innovation random variable

described in (5.7). Then simulate the sequence {rt} using (5.8) model. We use this

simulated sample to obtain the estimates of the parameters by solving the moment



Chapter 5. Asymmetric laplace SV model 130

equations given in the Section 5.5. For each specified value of parameter, we repeat

the experiment 1000 times for computing the estimates and then averaged them

over the repetitions. The average estimates and the corresponding RMSEs (within

parentheses) based on the simulated samples are reported in Table 5.1 and 5.2.

ρ σ ρ̂ σ̂ κ̂ θ̂
0.90 0.5 0.8650(0.1071) 0.4662(0.1835) 1.9626(0.1901) 0.9622(0.1715)
0.75 0.7112(0.1103) 0.4652(0.1752) 1.9659(0.2062) 0.9529(0.1866)
0.50 0.4701(0.1021) 0.4591(0.1854) 1.9512(0.2012) 0.9610(0.1696)
0.25 0.2296(0.1288) 0.4611(0.1752) 1.9588(0.2108) 0.9712(0.1811)
0.00 0.0421(0.1332) 0.4616(0.1899) 1.9521(0.2099) 0.9509(0.1885)
0.90 1.0 0.8710(0.1150) 0.9616(0.1899) 1.9550(0.2005) 0.9755(0.1785)
0.75 0.7132(0.1291) 0.9654(0.1821) 1.9688(0.2156) 0.9652(0.1755)
0.50 0.4735(0.1315) 0.9687(0.1921) 1.9569(0.2102) 0.9725(0.1792)
0.25 0.2345(0.1388) 0.9569(0.1825) 1.9491(0.2155) 0.9795(0.1804)
0.00 0.0302(0.1302) 0.9599(0.1847) 1.9545(0.2088) 0.9605(0.1808)
0.90 1.5 0.8720(0.1235) 1.4650(0.1665) 1.9478(0.2805) 0.9755(0.1865)
0.75 0.7129(0.1197) 1.4626(0.1769) 1.9560(0.2171) 0.9655(0.1711)
0.50 0.4713(0.1256) 1.4561(0.1864) 1.9589(0.2215) 0.9701(0.1865)
0.25 0.2360(0.1298) 1.4621(0.1902) 1.9510(0.2011) 0.9650(0.1715)
0.00 0.0592(0.1351) 1.4598(0.1892) 1.9529(0.2055) 0.9659(0.1895)

Table 5.1: The average estimates and the corresponding mean square error
of moment estimates based on sample of size n=1000, when κ=2, θ=1 and for

different values of ρ and σ

From the above tables, we observe that the estimates are slightly biased. When the

sample size is large, the estimators behave reasonably well and there is a significant

reduction in bias of the estimates. Hence we claim that the method of moment

estimation yields good estimates for the parameters involved.
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ρ σ ρ̂ σ̂ κ̂ θ̂
0.90 0.5 0.8835(0.1015) 0.4782(0.1566) 1.9784(0.1821) 0.9805(0.1645)
0.75 0.7321(0.1078) 0.4693(0.1589) 1.9677(0.1845) 0.9869(0.1689)
0.50 0.4788(0.1101) 0.4745(0.1610) 1.9609(0.1894) 0.9798(0.1599)
0.25 0.2387(0.1178) 0.4792(0.1638) 1.9704(0.1812) 0.9840(0.1649)
0.00 0.0301(0.1278) 0.4823(0.1702) 1.9833(0.1904) 0.9799(0.1633)
0.90 1.0 0.8802(0.1067) 0.9788(0.1678) 1.9677(0.1789) 0.9809(0.1701)
0.75 0.7387(0.1137) 0.9756(0.1572) 1.9745(0.1862) 0.9769(0.1566)
0.50 0.4805(0.1089) 0.9721(0.1606) 1.9782(0.1890) 0.9788(0.1629)
0.25 0.2380(0.1024) 0.9820(0.1635) 1.9692(0.1798) 0.9846(0.1634)
0.00 0.0278(0.1178) 0.9788(0.1649) 1.9722(0.1893) 0.9766(0.1589)
0.90 1.5 0.8817(0.1123) 1.4820(0.1559) 1.9655(0.1972) 0.9809(0.1630)
0.75 0.7355(0.1078) 1.4783(0.1587) 1.9684(0.1867) 0.9840(0.1572)
0.50 0.4811(0.1200) 1.4845(0.1588) 1.9730(0.1793) 0.9895(0.1635)
0.25 0.2380(0.1189) 1.4734(0.1649) 1.9738(0.1827) 0.9741(0.1585)
0.00 0.0455(0.1278) 1.4751(0.1611) 1.9746(0.1845) 0.9793(0.1644)

Table 5.2: The average estimates and the corresponding mean square error
of moment estimates based on sample of size n=3000, when κ=2, θ=1 and for

different values of ρ and σ

5.8 Data Analysis

To illustrate the application of the proposed model and the associated inferential

results, we analyse two sets of financial data. The data sets used for this purpose

are: (1) the daily exchange rate of Rupee/Pound Sterling, with the data consisting

of 2399 observations from January 02, 2007 to December 15, 2016 obtained from

Database on Indian Economy, Reserve Bank of India; (2) the daily average price

of crude oil futures (USD/1 Barrel) traded in Multi Commodity Exchange of India

Ltd (MCX), India with the data consisting of 1789 observations January 04, 2010

to December 16, 2016.
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The time series plots of these data are given in Figure 5.3. The left panel show the

plots of actual data series and the return series are on the right panels.

Figure 5.3: Time series plot of the original data and the returns

Table 5.3 summarizes the descriptive statistics of the return series, including the

mean, median, standard deviation, skewness, kurtosis and Jarque-Bera statistic.

The return series are slightly skewed and the kurtosis is well above three, indicating

that the return distribution is asymmetric and leptokurtic for both the series. The

Jarque-Bera statistic is calculated for the test of joint hypothesis of zero skewness

and excess kurtosis and statistic value clearly indicates the return data is non-

normal. Q(20) and Q2(20) are the Ljung-Box statistic for return and squared return

series with lag 20. The corresponding χ2 table value at 5% significance level is
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10.117. Hence the test suggests that the return series is serially uncorrelated whereas

the squared return series has significant serial correlation.

Statistic Exchange rate Crude oil fu-
tures

Sample Size 2398 1789
Mean 0.0001 -0.0002
Minimum -0.0655 -0.0867
Maximum 0.0374 0.1232
Std. Dev. 0.0071 0.0212
Skewness -0.6628 0.3535
Kurtosis 9.9279 5.8937
Q(20) 3.2262 0.0723
Q2(20) 11.7232 20.2069
Jarque-Bera 4971.2720 661.4428

Table 5.3: Summary statistics of return series

From the ACF of the returns plotted in Figure 5.4 (left panel), it is observed that

serial correlations in the return series are insignificant where as the ACF of the

squared returns in the right panel are significant and declines with increasing lags

very slowly. In Table 5.4, we present the parameter estimates for each of the return

series. The values of the ρ̂ in the Table suggest that there is a significant persistence

of volatility in the above data series.

Parameter Exchange
rate

Crude oil fu-
tures

θ̂ 0.0003 -0.1030
κ̂ 0.5122 0.4971
σ̂ 0.2177 0.1076
ρ̂ 0.7810 0.8620

Table 5.4: Parameter estimates using method of moments
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Figure 5.4: ACF of the returns and the squared returns

We now perform a diagnostic check of the model based on the residuals. For the

AL-SV model, once the estimates of the parameters are obtained, the unobservable

component {ht} is estimated using an approximate Kalman filtering (for details see

Jacquier et al. (1994). We define the residuals of the model as ε̂t = rt exp(−ĥt/2),

where ĥt is the estimator of ht provided by the Kalman filter at the MM estimate. If

the fitted model is adequate, then {ε̂t} should behave as an independent and identi-

cally distributed sequence of random variables with the assumed distribution. Since

the model assumes that the residuals are independent, any dependence on either

the residuals or their squares indicates misspecification of the model. In particular,

if the fitted model is adequate, both series should have no autocorrelations.

Figure 5.5 gives the sample autocorrelation of the residuals for the fitted AL-SV
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model. From the figures, the residuals appear to be random and their ACFs fail to

indicate any significant serial dependence. Further, we also checked the significance

Figure 5.5: ACF of the residuals

of ACF in the residues by computing the Ljung-Box statistic for the series {ε̂t} and

{ε̂2
t}, which are summarized in the Table 5.5. All these values are less than the

5% chi-square critical value 10.117 at degrees of freedom 19. Hence we conclude

that there is no significant serial dependence among the residuals and the squared

residuals.

Data Ljung-Box statistic
Residuals Squared Residuals

Exchange rate 2.4065 0.0506
Crude oil futures 0.8789 0.2328

Table 5.5: Ljung-Box Statistic for the residuals and squared residuals
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Thus the data analysis illustrates that the proposed model is capable of capturing

the stylized features of financial return series.

The results of this chapter are reported in Balakrishna and Rahul (2017b).



Chapter 6

Inverse Gaussian distribution for

Modelling Conditional Durations

in Finance

6.1 Introduction

In traditional time series analysis investigators are concerned with the sequence of

observations collected at equally spaced intervals. This was also our objective in the

last five Chapters of this thesis. That is, in this case, the time process is considered

as being non-stochastic. The general time series theory of Autoregressive Moving

Average (see Box and Jenkins (1976)) or some of its modifications (see Brockwell

and Davis (1991)) can be used in the modelling and forecasting of such situations.

Although many financial data may be treated as time series, the standard techniques

137
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of time series analysis cannot be employed here directly due to the rapid variation

of the time intervals. Since many finance problems involve the arrival of events

such as prices or trades in irregular time intervals, a new direction of modelling is

necessary to explain the properties of such data.

In order to model the time durations between two successive events, Engle and Rus-

sell (1998) introduced the ACD model. Similar to the GARCH model for volatil-

ity, the ACD model catches duration clustering and is widely used for calculating

expected duration. As mentioned by Hautsch (2012), the model can be directly

applied to any other positive valued (continuous) process, such as trading volumes

(Manganelli (2005)) , market depth, bid-ask spreads or the number of trades (if

they are sufficiently continuous). The basic idea is to (dynamically) parameterize

the conditional duration mean rather than the intensity function itself.

Our objective in this chapter is to propose some conditional duration models based

on inverse Gaussian distribution and study their properties. The motivation for

this approach is: (i) inverse Gaussian distribution is a member of the natural expo-

nential family of distributions and can be considered an alternative to exponential,

log-Normal, log-logistic, Frechet and Weibull distributions, among others. More-

over, the inverse Gaussian has a hazard function which is non-monotonic; (ii) it

is also likely to prove useful in statistical applications as a flexible and tractable

model for fitting duration data, right-skewed unimodal data; (iii) it is a flexible

closed form distribution that can be applied to model heavy-tailed processes (for

example, it has been applied in many applications in studies of life times, reaction

times, reliability and number of event occurrences in fields such as economics, and

agricultural science).
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Next section contains a brief review of the available ACD models in the literature.

In section 6.3 we introduce the IG-ACD model and discuss the properties of the

proposed model. The maximum likelihood method of estimation of IG-ACD model

is discussed in Section 6.4. Sections 6.5 generalize the IG-ACD model to extended

generalized inverse Gaussian (EGIG) ACD model and list the special cases of EGIG-

ACD model. Section 6.6 discusses IG- SCD model and its properties. Section 6.7

briefly illustrates the efficient importance sampling method for maximum likelihood

estimation of IG-SCD model and Section 6.8 contains the results of the simulation

study. Finally Section 6.9 deals with a data analysis for illustrating the methods

discussed in the previous Sections.

6.2 Review of ACD Models

Engle and Russell (1998) introduced the most popular ACD model that assumes

that the error term follows the standard exponential distribution. The simplest and

often very successful member of ACD family is the exponential ACD model. The

exponential ACD model denoted by EACD (1,1), may be presented as

Xi = ψiεi, ψi = ω + αXi−1 + βψi−1, (6.1)

where εi follows the standard exponential distribution. We haveE(εi) = 1, V ar(εi) =

1, and E(ε2
i ) = 2.
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Taking the expectation of the model, we obtain

E(Xi) = E(ψiεi) = E(ψi)E(εi) = E(ψi),

E(ψi) = ω + αE(Xi−1) + βE(ψi−1).

Under the weak stationarity assumption, E(Xi) = E(Xi−1), so that

E(Xi) = E(ψi) =
ω

1− α− β
= µx. (6.2)

Consequently, 0 ≤ α + β < 1 for a weakly stationary process {Xi}.

We have E(X2
i ) = 2E(ψ2

i ).

Again, under weak stationarity,

E(ψ2
i ) =

µ2
x[1− (α + β)2]

1− 2α2 − β2 − 2αβ
,

V ar(Xi) =
µ2
x[1− β2 − 2αβ]

1− 2α2 − β2 − 2αβ
. (6.3)

From these results, for the EACD(1,1) model to have a finite variance, we need

1 > 2α2 + β2 + 2αβ. Similar results can be obtained for the general EACD (p,q)

model, but the algebra involved becomes tedious. One may refer Engle and Russell

(1998) for details.

The EACD model has several nice features. For instance, it is simple in theory and

in ease of estimation. But the model also encounters some weaknesses. For example,

the use of the exponential distribution implies that the model has a constant hazard
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function. As stated in Tsay (2009) transaction duration in finance is inversely

related to trading intensity, which in turn depends on the arrival of new information,

making it hard to justify that the hazard function of duration is constant over time.

To overcome this weakness, alternative innovation distributions have been proposed

in the literature. Engle and Russell (1998) entertain the Weibull distribution for

εi. A feature of Engle and Russell’s linear ACD specification with exponential or

Weibull errors is that the implied conditional hazard functions are restricted to

being constant, increasing or decreasing. Zhang et al. (2001), Hamilton and Jorda

(2002) and Bauwens and Veredas (2004) questioned whether this assumption is an

adequate one. As an alternative to the Weibull distribution used in the original ACD

model, Lunde (1999) employs a formulation based on the generalized Gamma (GG)

distribution, while Grammig and Maurer (2000) and Hautsch (2001) utilize the

Burr and generalized F (GF) distributions respectively. Bhatti (2010) introduced

Birnbaum-Saunders ACD model as an alternative to the existing ACD models which

allow a unimodal hazard function. A recent review of the literature on the ACD

models and their applications to finance can be found in Pacurar (2008).

Now, let us describe the specification of the Weibul ACD, GG-ACD, Burr-ACD

and BS-ACD models. We begin with the WACD model. The Weibull probability

density function with shape parameter θ and scale parameter σ is given by

f (x; θ, σ) =
θ

σ

(x
σ

)θ−1

exp

[
−
(x
σ

)θ]
, x > 0; θ, σ > 0. (6.4)

The mean of a Weibull(θ, σ) random variable is E (X) = σ Γ (1 + θ−1). Applying

the change of variable εi = Xi/σ Γ (1 + θ−1) to (6.4); we obtain the unit mean
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Weibull probability density function

fε (εi) =
θ

Γ (1 + θ−1)−1

(
εi

Γ (1 + θ−1)−1

)θ−1

exp

[
−
(

εi

Γ (1 + θ−1)−1

)θ]
, εi > 0, θ > 0

(6.5)

A final transformation must be applied to obtain the distribution of Xi parametrised

in terms of the conditional mean ψi. Applying the transformation εi = Xi/ψi yields

the conditional probability density function

fXi|ψi (Xi) =
θ

ψi/Γ (1 + θ−1)

(
xi

ψi/Γ (1 + θ−1)

)θ−1

exp

[
−
(

xi
ψi/Γ (1 + θ−1)

)θ]
.

(6.6)

The specification of the ACD model is completed by specifying the dynamic struc-

ture for the conditional mean ψi.

Next we consider the construction of the GG-ACD model. The probability density

function of the GG distribution is very similar to the probability density function

of the Weibull distribution

f (x;κ, σ, θ) =
θ

σ Γ (κ)

(x
σ

)κθ−1

exp

[
−
(x
σ

)θ]
, x > 0; κ, σ, θ > 0, (6.7)

where Γ (κ) is the usual gamma function defined by

Γ (κ) =

∫ ∞
0

xκ−1 exp(−x) dx.

Following the same steps as we did for the WACD model, we apply the transforma-

tion εi = Xiφ(κ, θ)/σ where φ(κ, θ) = Γ(κ)/Γ(κ + θ−1) to the probability density
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function (6.7) to obtain the unit mean GG probability density function

fε (εi) =
θ

φ(κ, θ)Γ(κ)

(
εi

φ(κ, θ)

)θ−1

exp

[
−
(

εi
φ(κ, θ)

)θ]
. (6.8)

Applying the second transformation εi = Xi/ψi yields the conditional likelihood

function for Xi given ψi

fXi|ψi (Xi) =
θ

φ(κ, θ)ψi Γ(κ)

(
xi

φ(κ, θ)ψi

)θ−1

exp

[
−
(

xi
φ(κ, θ)ψi

)θ]
. (6.9)

Grammig and Maurer (2000) proposed a more flexible specification based on the

Burr distribution with probability density function

f
(
x; µ, κ, σ2

)
=

µκxκ−1

(1 + σ2µxκ)
1
σ2

+1
, x > 0 ; µ, κ, σ2 > 0. (6.10)

Lancaster (1992) shows that the Burr distribution can be derived as a Gamma

mixture of Weibull distributions. Exponential, Weibull and Log-Logistic are limiting

cases. Unlike Weibull and Exponential, the Burr distribution is less frequently used

in duration analysis.

Bhatti (2010) introduced BS-ACD model by specifying the time-varying model dy-

namics in terms of the conditional median duration, instead of the conditional mean

duration. The probability density function of the BS(κ, σ) distribution is given by

f (x; κ, σ) =
1

2κσ
√

2π

[(σ
x

) 1
2

+
(σ
x

) 3
2

]
exp

(
− 1

2κ2

[x
σ

+
σ

x
− 2
])

, x > 0 ; κ, σ > 0.

(6.11)
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The conditional probability density function of Xi given σi is given by

fXi|σi (Xi) =
1

2κσi
√

2π

[(
σi
xi

) 1
2

+

(
σi
xi

) 3
2

]
exp

(
− 1

2κ2

[
xi
σi

+
σi
xi
− 2

])
(6.12)

where σi is the time-varying conditional median duration.

The other classes of ACD models are defined by different choices of functional form

of conditional mean ψi. Bauwens et al. (2000) propose a logarithmic ACD (LACD)

model that allows the introduction of additional variables without sign restrictions

on their coefficients, as the LACD ensures the non-negativity of durations. Fer-

nandes and Grammig (2006) develop a family of augmented ACD (AACD) models

that encompasses the standard ACD model, the Log-ACD model and other ACD

models inspired by the GARCH literature. Some extended ACD models allow for

regime-dependence of the conditional mean function. Zhang et al. (2001) propose a

threshold ACD (TACD) model to allow the expected duration to depend nonlinearly

on past information variables. Unlike the TACD model, where the transition be-

tween states follows a jump process, Meitz and Teräsvirta (2006) introduce a smooth

transition ACD (STACD) model. Based on the strong persistence of the trading

duration, some long memory ACD models have been introduced. Based on the Ding

and Granger (1996) two-component model for volatility, Engle (2000) applies the

two-component model for duration. This allows for a slower decay autocorrelation

function compared to the corresponding standard model. Jasiak (1998) introduces

a fractionally integrated ACD (FIACD) model which is based on a fractionally inte-

grated process for the expected duration. The FIACD model is closely linked with

the fractionally integrated GARCH model proposed by Baillie et al. (1996). The
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FIACD model is not covariance stationary and implies infinite first and second un-

conditional moments of the duration. Karanasos (2001) provides an alternative long

memory ACD model which is analogous to the long-memory GARCH introduced

by Robinson and Henry (1999). Drost and Werker (2004) develop a semiparametric

ACD model that can relax the assumption of independently, identically distributed

innovations of the standard ACD model. Like the similarity between the ACD and

GARCH models, and based on the idea of SV model, Bauwens and Veredas (2004)

propose the stochastic conditional duration model for duration. The SCD model is

based on the assumption that the durations are generated by a dynamic stochastic

latent variable.

Many physical phenomena exhibit hazard functions that are non-monotonic. Gram-

mig and Maurer (2000) provide the motivation to deal with non-monotonic hazard

functions when modelling financial duration processes. In the following section

we propose a more flexible model for conditional durations based on the inverse

Gaussian distribution. One of the important distributions studied in the context

of modelling the sequence of durations is the inverse Gaussian distribution. For

example, Lancaster (1972) used this distribution to model the intervals between

events, such as duration of strikes. In the case of financial series, the sequences of

log-returns are assumed to be realizations of Brownian motion or Gaussian process.

It is well known that inverse Gaussian distribution arises as a fist passage time

distribution in any Gaussian process. Duration between events can be compared

with the life times of units in renewal/reliability related studies. The distributions

having non-monotonic failure rate are important in such studies and the inverse

Gaussian distribution possesses such a property (see Chhikara and Folks (1977)).
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6.3 Inverse Gaussian ACD Model

Now let us consider the construction of IG-ACD model. A random variable X is said

to have an inverse Gaussian distribution with parameters µ and λ and is denoted

by IG(µ, λ) if its probability density function is given by

f(x;µ, λ) =

√
λ

2πx3
exp

{
−λ(x− µ)2

2µ2x

}
, x > 0, (6.13)

where µ and λ are assumed to be positive. µ is the mean of the distribution and λ

is a shape parameter. This density is unimodal and skewed. The variance for the

distribution is µ3/λ, implying µ is not a location parameter in the usual sense.

Assuming that εi follows a unit mean IG distribution with probability density func-

tion

fε(εi) =

√
λ

2πε3
i

exp

{
−λ(εi − 1)2

2εi

}
, εi > 0, (6.14)

and IG-ACD (1,1) model can be written as

Xi = ψiεi, ψi = ω + αXi−1 + βψi−1. (6.15)

Conditional on Fi−1, the probability density function of Xi can be expressed as

f(xi|Fi−1) =
1

ψi
fεi

(
xi
ψi

)
=

√
λψi
2πx3

i

exp

{
−λψi(xi − ψi)

2

2ψ2
i xi

}
. (6.16)

That is, the conditional distribution of Xi given the past information is IG(ψi, λψi).
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6.3.1 Properties of IG-ACD Model

Conditional on (Xi−1, Xi−2, ..., ) the mean and variance ofXi are given byE(Xi|Fi−1) =

ψi and V ar(Xi|Fi−1) = ψ2
i V ar(εi) = ψ2

i /λ.

Further the model (6.15) implies that the unconditional mean and variance of the

stationary distribution of {Xi} can be respectively obtained as

µx ≡ E(Xi) = E(ψi) =
ω

1− α− β
, V ar(Xi) =

µ2
x(1− β2 − 2αβ)

λ
[
1−

(
1 + 1

λ

)
α2 − β2 − 2αβ

] .
Consequently, for weak stationarity of {Xi} we need the condition 0 ≤ α + β < 1.

Autocorrelation function:

The kth order auto-covariance function of Xi is defined as

γk = Cov(Xi, Xi−k) = Cov(ψi, Xi−k)

= Cov(ω + αXi−1 + βψi−1, Xi−k)

= αCov(Xi−1, Xi−k) + βCov(ψi−1, Xi−k)

γk = (α + β)γk−1 (6.17)

The first order auto-covariance function of Xi is

γ1 = Cov(Xi, Xi−1) = Cov(ψi, Xi−1)

= Cov(ω + αXi−1 + βψi−1, Xi−1)
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γ1 = αγ0 + β V ar (ψi−1)

where V ar (ψi−1) = α2µ2

1−2α2−β2−2αβ
.

Finally, kth order ACF of {Xi} is derived as

ρk = (α + β)ρk−1, k > 1 (6.18)

with

ρ1 =
α(1− β2 − αβ)

1− β2 − 2αβ
.

Forecasts from an IG-ACD model can be obtained using a procedure similar to that

of a GARCH model (cf, Pacurar (2008)).

Intensity function or Hazard function:

Let us denote by T the duration of stay in the state of interest and recall the

definition of the hazard function as the instantaneous rate of leaving the interval

between T = t and T = t+ ∆t, given that it stayed up to time t,

h(t) = lim
∆t→0

p(t ≤ T < t+ ∆t|T ≥ t)

∆t
.

Then the hazard function implied by the IG-ACD model may now be written as

h(xi) =

√
λψi
2πx3i

exp
{
−λψi(xi−ψi)2

2µ2xi

}
Φ
(√

λψi
xi

(
1− xi

ψi

))
− e2λΦ

(
−
√

λψi
xi

(
1 + xi

ψi

)) , xi > 0, (6.19)

where Φ(.) is the standard normal distribution function. The expression for h(xi) is
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rather complicated but it is not difficult to compute for any given values of param-

eters. Several typical hazard function curves are given in Figure 6.1. Inspection of

these curves reveals that the hazard function is non-monotonic for all µ and λ.

Figure 6.1: Hazard rate of inverse Gaussian distribution when µ = 1.

6.4 Estimation of IG-ACD Model

Let X = (X1, X2, ..., Xn)be a realization from an IG-ACD(1,1) model and the pa-

rameter vector to be estimated be Θ = (λ, ω, α, β). The likelihood function of Θ

based on X may be expressed as

L(Θ|X) = f(X1|Θ)
n∏
i=2

f(Xi|Fi−1; Θ), (6.20)
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where f(X1; Θ) is the density function of the initial random variable and it does

not have a closed form expression. Further its influence on the overall likelihood

function diminishes as the sample size n increases and hence we adopt the condi-

tional likelihood method by ignoring the term f(X1; Θ). Now using (6.16) in (6.20)

the conditional log-likelihood function is given by

logL =
n− 1

2
log λ+

1

2

n∑
i=2

logψi−
n− 1

2
log(2π)−3

2

n∑
i=2

logXi−
λ

2

n∑
i=2

ψi(Xi − ψi)2

ψ2
iXi

.

(6.21)

The ML estimator of λ is given by

λ̂ =

[
1

n− 1

n∑
i=2

ψi(Xi − ψi)2

ψ2
iXi

]−1

. (6.22)

We obtain the ML estimates of the remaining parameters (ω, α, β) by Newton-

Raphson iteration method. In order to develop this method let us denote Θ =

(ω, α, β) = (θ1, θ2, θ3).

Taking the first and second order partial derivative of (6.21) with respect to θj, we

get

L′(θj) =
∂ logL

∂θj
=

n∑
i=2

(
1

2ψi
− λ

Xi

+
λXi

2ψ2
i

+
λ

2Xi

)
∂ψi
∂θj

,

L′′(θj) =
∂2 logL

∂θ2
j

= −
n∑
i=2

(
1

2ψ2
i

+
λXi

ψ3
i

)(
∂ψi
∂θj

)2

, j = 1, 2, 3.

Now the iteration formula for estimating θj is given by

θ̂
(m+1)
j = θ̂

(m)
j −

L′
(
θ̂

(m)
j

)
L′′
(
θ̂

(m)
j

)
 , m = 1, 2, . . ., (6.23)
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where θ̂
(m)
j is the estimate of θj obtained at mth iteration. The computation of these

estimates based on a simulated sample is illustrated in Section 6.8.

In the next section, we extend the IG-ACD framework to a more flexible specification

based on the EGIG distribution. The major advantage of this distribution over the

exponential and Weibull distribution, the most common distributions utilized in

ACD models, is that these have non-monotonic hazard functions taking bathtub

shaped or inverted bathtub shaped forms. In some cases, there is more than one

turning point of the hazard rate for EGIG distribution. The shape properties of

EGIG hazard are derived in Gupta and Viles (2011).

6.5 Extended Generalized Inverse Gaussian ACD

Model

Now let us consider the construction of the EGIG-ACD model. The probability

density function of the EGIG distribution is given by

f(x; a, b, λ, δ) =
1

(2/δ) (b/a)λ/2δKλ
δ

(
2
√
ab
)xλ−1 exp

(
−axδ − bx−δ

)
, x > 0,

(6.24)

where Kν(z) is a modified Bessel function of the third kind with index ν and is

defined by

Kν(z) =
1

2

∫ ∞
0

xν−1 exp

{
−1

2
z(x+ x−1)

}
dx
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The domain of variation for the parameters is

λ ∈ R , (a, b, δ) ∈ Ωλ,

Where

Ωλ =


(a, b, δ) : a > 0, b ≥ 0, δ > 0 iff λ > 0

(a, b, δ) : a > 0, b > 0, δ > 0 iff λ = 0

(a, b, δ) : a ≥ 0, b > 0, δ > 0 iff λ < 0.

For more details on this distribution see Jørgensen (1982). This model includes as

special cases the generalized inverse Gaussian distribution for δ = 1, the inverse

Gaussian for δ = 1, λ = −1/2, and the generalized gamma distribution for λ >

0, b→ 0. Now it is straight forward that Exponential, Weibull, gamma distributions

are particular cases of generalized gamma distribution for λ = δ = 1, λ = δ and

δ = 1 respectively.

The mean of the EGIG random variable is

E(X) =

(√
b

a

)1/δ K(λ+1)/δ

(
2
√
ab
)

Kλ/δ

(
2
√
ab
) = ϕ, (say) .

Applying the change of variable εi = xi
ϕ

, we obtain the unit mean EGIG probability

density function

fε(εi) =
1(

2
δ

) (
bϕ−δ

aϕδ

)λ/2δ
Kλ

δ

(
2
√
aϕδbϕ−δ

)ελ−1
i e−(aϕδ)εδi−(bϕ−δ)ε−δi (6.25)
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Then the conditional probability density function of xi given ψi is

fXi|ψi(Xi) =

(2

δ

)b
(
ϕ
ψi

)−δ
a
(
ϕ
ψi

)δ

λ/2δ

Kλ
δ

2

√
a

(
ϕ

ψi

)δ
b

(
ϕ

ψi

)−δ

−1

× xλ−1
i e

−
[
a
(
ϕ
ψi

)δ]
xδi−

[
b
(
ϕ
ψi

)−δ]
x−δi
. (6.26)

That is conditional density of xi given ψi follows EGIG

(
a
(
ϕ
ψi

)δ
, b
(
ϕ
ψi

)−δ
, λ, δ

)
.

6.5.1 Special Cases

Accordingly, EGIG distribution includes as special or limiting cases many distri-

butions considered in econometrics and finance. This generalization consists of all

the standard ACD models including EACD, WACD, GG-ACD models and IG-ACD

model which we described in this chapter. For λ > 0 and b→ 0, EGIG-ACD model

reduces to the GG-ACD model proposed by Lunde (1999). The probability density

function of a generalized Gamma random variable is given by

f(x; a, λ, δ) =
δ

Γ
(
λ
δ

)aλδ xλ−1e−ax
δ

; x > 0.

Then the conditional density of xi given ψi of GG-ACD is given by

fXi|ψi(Xi) =
δ

Γ
(
λ
δ

) (a( ϕ
ψi

)δ)λ
δ

xλ−1
i e

−a
(
ϕ
ψi

)δ
xδi ; xi > 0. (6.27)



Chapter 6. IG Conditional Duration Models 154

The generalized gamma family of density functions nests the Weibull distribution

and exponential distribution. Both types of distributions have been already suc-

cessfully applied in ACD framework by Engle and Russell (1998). For λ = δ = 1, it

reduces to EACD model and for λ = δ, it reduces to WACD model. The problem

of a flat conditional intensity of EACD was already raised by Engle and Russel as

not having a good fit with some semiparametric estimate of the baseline hazard of

the data and they therefore propose to extend the EACD model by generalizing the

exponential density of the standardized durations to a Weibull density.

For δ = 1, λ = −1/2, the EGIG-ACD model reduces to IG-ACD model which we

have discussed in Section 6.3.

So far we have discussed about the inverse Gaussian ACD model for analysing the

financial transaction durations. Next section will discuss about inverse Gaussian

SCD model in which the durations are generated by a dynamic stochastic latent

variable.

6.6 Inverse Gaussian SCD Model and Properties

Recall the SCD model of order one which we discussed in Chapter 2 as

Xi = eψiεi, ψi = ω + β ψi−1 + ui, (6.28)

In this section we discuss the model (6.28) when εi follows a unit mean IG distri-

bution and {ui} is an independent and identically distributed sequence of N (0, σ2)
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random variables. From the definition of the model it follows that {ψi} is a Gaussian

sequence and hence {eψi} is a stationary log-normal Markov sequence. Now using

the property of log-normal distribution, all the moments of Xi can be computed.

In particular the mean and variance are respectively given by

E (Xi) = exp

{
ω

1− β
+

σ2

2 (1− β2)

}
, (6.29)

and

V ar (Xi) = exp

{
2ω

1− β
+

σ2

1− β2

}[(
1 +

1

λ

)
exp

(
σ2

1− β2

)
− 1

]
. (6.30)

Autocorrelation function:

The kth autocovariance function of Xi is defined as

γk = Cov (Xi, Xi−k)

= E (XiXi−k)− E (Xi)E (Xi−k)

Now we need to compute the expectation of XiXi−k, which is equal to

E (XiXi−k) = E
(
eψiεi e

ψi−kεi−k
)

= E
(
eψi+ψi−k

)
E (εiεi−k) .

From the autoregressive equation of ψi, we get

ψi + ψi−k = λi,k = 2ω + β λi−1,k + ui + ui−k
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which is a Gaussian ARMA(1, k) process (with restrictions in the MA polynomial).

Unconditionally,

eλi,k ∼ LN
(
µk, σ

2
k

)
,

where

µk =
2ω

1− β

σ2
k =

2σ2
(
1 + βk

)
1− β2

.

Hence

E (XiXi−k) = exp

{
2ω

1− β
+
σ2
(
1 + βk

)
1− β2

}
. (6.31)

Therefore, the lag k auto-covariance function of Xi is

γk = exp

{
2ω

1− β
+

σ2

1− β2

}[
exp

(
σ2βk

1− β2

)
− 1

]
. (6.32)

Finally, the kth order autocorrelation function of Xi is ρk = γk/γ0 and is given by

ρk =
exp

(
σ2βk

1−β2

)
− 1(

1 + 1
λ

){
exp

(
σ2

1−β2

)
− 1
} ≈ σ2βk/(1− β2)(

1 + 1
λ

){
exp

(
σ2

1−β2

)
− 1
} ≈ β ρk−1, (6.33)

The autocorrelation function ρk geometrically decreases at the rate β as the lag k

increases.

Hazard Function:

The hazard function h(.) implied by the IG-SCD model can be computed by the

formula

h (xi) =
f (xi)

1−
∫ xi

0
f (u) du

, (6.34)
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where

f (xi) =

√
λ

2πσ
√
x3
i

∫ ∞
0

1√
z

exp

{
−1

2

(
λz
(
xi
z
− 1
)2

xi
+

(log z − µ)2

σ2

)}
dz.

One way of estimating the hazard function is to replace the parameters in the above

expressions by their respective estimates. We do it for the simulated and the real

data in Sections 6.8 and 6.9.

6.7 Estimation of IG-SCD Model

A relatively new method for computing the integral needed for evaluating the like-

lihood function of models with latent variables relies on the efficient importance

sampling procedure, recently developed by Richard and Zhang (2007). This method

is an extension of the well known importance sampling technique and seems to be

particularly well suited for the computation of the multidimensional though rela-

tively well behaved integral needed for evaluation of the SCD likelihood. Given a

sequence X of n realizations of the process, with density g (X|ψ, θ1) indexed by the

parameter vector θ1, conditional on a vector ψ of a latent variables of the same

dimension as X, and given the density h (ψ|θ2) indexed by the parameter θ2, the

likelihood function of X can be written as:

L (θ;X) = L (θ1, θ2;X) =

∫
g (X|ψ, θ1) h (ψ|θ2) dψ. (6.35)
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Actually, the integrand in the previous equation is the joint density f (X,ψ|θ).

Given the assumptions we made, it can be sequentially decomposed as

f (X,ψ|θ) =
n∏
i=1

d (Xi, ψi|Xi−1, ψi−1, θ) =
n∏
i=1

p (Xi|ψi, θ1) q (ψi|ψi−1, θ2) , (6.36)

where p (Xi|ψi, θ1) is obtained from p (εi) (so that θ1 corresponds to the param-

eters of inverse Gaussian distribution), and q (ψi|ψi−1, θ2) is the Gaussian density

N (ω + β ψi−1, σ
2) (so that θ2 includes ω, β and σ2).

A natural Monte Carlo (MC) estimate of the likelihood function in (6.36) is given

by

L̃ (θ;x) =
1

S

S∑
j=1

[
n∏
i=1

p
(
Xi|ψ̃(j)

i , θ1

)]
, (6.37)

where ψ̃
(j)
i denotes a draw from the density q

(
ψi|ψji−1, θ2

)
. This approach bases

itself only on the information provided by the distributional assumptions of the

model and does not consider the information that comes from the observed sample.

It turns out that this estimator is highly inefficient since its sampling variance

rapidly increases with the sample size. In any practical case of a duration data

set, where the sample size n lies between 500 and 50000 observations, the Monte

Carlo sampling size S required to give precise enough estimates of L (θ;x) would

be too high to be affordable and it turns out that this estimator cannot be relied

on practically.

EIS tries to make use of the information provided by the observed data in order

to come to a reasonably fast and reliable numerical approximation. The principle

of EIS is to replace the model-based sampler
{
q
(
ψi|ψji−1, θ2

)}n
i=1

with an optimal
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auxiliary parametric importance sampler. Let {m (ψi|ψi−1, ai)}ni=1 be a sequence

of auxiliary samplers indexed by the set of auxiliary parameter vectors {ai}ni=1.

These densities can be defined as a parametric extension of the natural samplers{
q
(
ψi|ψji−1, θ2

)}n
i=1

. We rewrite the likelihood function as

L (θ;X) =

∫ [ n∏
i=1

d (Xi, ψi|Xi−1, ψi−1, θ)

m (ψi|ψi−1, ai)

n∏
i=1

m (ψi|ψi−1, ai)

]
dψ. (6.38)

Then, its corresponding IS-MC estimator is given by

L̃ (θ;X, a) =
1

S

S∑
j=1

 n∏
i=1

d
(
Xi, ψ̃

(j)
i (ai)|Xi−1, ψ̃

(j)
i−1(ai−1), θ

)
m
(
ψ̃

(j)
i (ai)|ψ̃(j)

i−1(ai−1), ai

)
 , (6.39)

where
{(
ψ̃

(j)
i (ai)

)}n
i=1

are trajectories drawn from the auxiliary samplers.

The optimality criterion for choosing the auxiliary samplers is the minimization of

the MC variance of (6.39). Relying on the factorized expression of the likelihood,

the MC variance minimization problem can be decomposed in a sequence of sub-

problems for each element i of the sequence of observations, provided that the

elements depending on the lagged values ψi−1 are transferred back to the (i − 1)th

minimization sub-problem. More precisely, if we decompose m in the product of a

function of ψi and ψi−1 and one of ψi−1only, such that

m (ψi|ψi−1, ai) =
k (ψi, ai)

χ (ψi−1, ai)
=

k (ψi, ai)∫
k (ψi, ai) dψi

,
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we can set up the following minimization problem:

âi(θ) = arg min
ai

S∑
j=1

{
ln
[
d(Xi, ψ̃

(j)
i |ψ̃

(j)
i−1, Xi−1, θ)χ(ψ̃

(j)
i , âi+1)

]
− ci − ln(k(ψ̃

(j)
i , ai))

}2

(6.40)

where ci is constant that must be estimated along with ai. If the density kernel

k(ψi, ai) belongs to the exponential family of distributions, the problem becomes

linear in ai, and this greatly improves the speed of the algorithm, as a least squares

formula can be employed instead of an iterative routine.

The estimated âi are then substituted in (6.39) to obtain the EIS estimate of the

likelihood. The EIS algorithm can be initialized by direct sampling, as in Eq.

(6.37), to obtain a first series of ψ̂
(j)
i and then iterated to allow the convergence

of the sequences of {ai}, which is usually obtained after 3–5 iterations. EIS-ML

estimates are finally obtained by maximizing L̃ (θ;X, a) with respect to θ. Here we

adopt a inverse Gaussian distribution for εi with parameter λ and a N(0, σ2) for ui,

we come up with the following expressions:

p (Xi|ψi−1, λ) =

√
λeψi

2πX3
i

exp

{
−λe

ψi(Xi − eψi)2

2(eψi)2Xi

}
(6.41)

and

q(ψi|ψi−1, θ2) =
1

σ
√

2π
exp

{
− 1

2σ2
(ψi − ω − βψi−1)2

}
. (6.42)

A convenient choice for the auxiliary sampler m(ψi, ai) is a parametric extension

of the natural sampler q(ψi|ψi−1, θ2), in order to obtain a good approximation of

the integrand without too heavy a cost in terms of analytical complexity. Following

Liesenfeld and Richard (2003), we can start by the following specification of the
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function k(ψi, ai):

k(ψi, ai) = q(ψi|ψi−1, θ2)ζ(ψi, ai), (6.43)

where ζ(ψi, ai) = exp{a1,iψi+a2,iψ
2
i } and ai = (a1,i a2,i ). This specification is rather

straightforward and has two advantages. Firstly, as q(ψi|ψi−1, θ2) is present in a mul-

tiplicative form, it cancels out in the objective function in (6.40), which becomes a

least squares problem with ln ζ(ψi, ai) that serves to approximate ln p(xi|ψi, θ1) +

ln χ(ψi, ai). Secondly, such a functional form for k leads to a distribution of the aux-

iliary sampler m(ψi, ai) that remains Gaussian, as stated in the following theorem,

whose proof is given in Bauwens and Galli (2009).

Theorem 6.1. If the functional form for q(ψi|ψi−1, θ2) and k(ψi, ai) are as in equa-

tions (6.42) and (6.43) respectively, then the auxiliary m(ψi|ψi−1, ai) = k(ψi,ai)
χ(ψi−1,ai)

is

Gaussian, with conditional mean and variance respectively given by:

µi = υ2
i

(
ω+βψi−1

σ2 + a1,i

)
and υ2

i = σ2

1−2σ2a2,i
,

and the function χ(ψi−1, ai) is given by

1√
1− 2σ2a2,i

exp

{
σ2

2(1− 2σ2a2,i)

(
ω + βψi−1

σ2
+ a1,i

)2

− 1

2

(
ω + βψi−1

σ

)2
}
.

(6.44)

By applying these results, it is possible to compute the likelihood function of the

IG-SCD model for a given value of θ, based upon the following steps:

Step 1: Use the natural sampler q(ψi|ψi−1, θ2) to draw S trajectories of the latent

variable {ψ̃(j)
i }ni=1 as in (6.37).
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Step 2: The draws obtained in step 1 are used to solve for each i (in the order from

n to 1) the least squares problems described in (6.40), which takes the form

of the auxiliary linear regression:

1

2
log λ− log(2π) +

1

2
log eψi − 3

2
logXi −

λeψi(Xi − eψi)2

2(eψi)2Xi

+ lnχ(ψ̃
(j)
i , âi+1)

= a0,i + a1,iψ̃
(j)
i + a2,i(ψ̃

(j)
i )2 + ε

(i)
i , j = 1, 2, ...S,

where ε
(i)
i is the error term, a0,i is the constant term, and χ(ψ̃

(j)
i , ât+1) is set

equal to 1 for i = n and defined by (6.44) for i < n. The reverse ordering

from n to 1 is due to the fact that for determining âi, âi+1 is required, see

(6.40).

Step 3: Use the estimated auxiliary parameters âi to obtain S trajectories {ψ̃(j)
i (âi)}Ni=1

from the auxiliary sampler m(ψi|ψi−1, âi), applying the result of Theorem.

Step 4: Return to step 2, this time using the draws obtained with the auxiliary

sampler. Steps 2, 3 and 4 are usually iterated a small number of times (from

3 to 5), until a reasonable convergence of the parameters âi is obtained.

Once the auxiliary trajectories have attained a reasonable degree of convergence,

the simulated samples can be plugged in formula (6.39) to obtain an EIS estimate of

the likelihood. This procedure is embedded in a numerical maximization algorithm

that converges to a maximum of the likelihood function. Throughout the EIS steps

described above and their iterations, we employed a single set of simulated random

numbers to obtain the draws from the auxiliary sampler. This technique, known as

common random numbers, is motivated in Richard and Zhang (2007). The same
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random numbers were also employed for each of the likelihood evaluations required

by the maximization algorithm. The number of draws used (S in Eq. (6.39)) for

all estimations in this article is equal to 100.

6.8 Simulation Study

A simulation study is carried out here in order to evaluate the performance of

the estimation methods proposed for ACD and SCD models with inverse Gaussian

innovations.

6.8.1 IG-ACD Model

For the IG-ACD (1,1) model (6.15), we performed the simulation experiment for

different sample sizes and for different values of (ω, α, β), fixing λ = 1. Based on

the simulated samples of size n= 1000, 2000, 3000 and 4000, we obtained the ML

estimates of λ, ω, α and β. We repeated this computation 100 times and took the

average value as the final estimate. These estimates are presented in Table 6.1 with

corresponding mean square error in the parentheses.

6.8.2 IG-SCD Model

In this sub-section, we carry out a simulation study to evaluate the performance of

the EIS-ML estimation method described in Section 6.7 for the IG-SCD model.
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n True Values
(λ, ω, α, β)

λ̂ ω̂ α̂ β̂

1000 (1.00,0.10,0.10,0.80)

(1.00,0.50,0.20,0.60)

(1.00,1.00,0.30,0.50)

(1.00,1.50,0.50,0.40)

(1.00,2.00,0.70,0.10)

1.0096
(0.0595)
1.0088
(0.0556)
1.0095
(0.0527)
1.0058
(0.0556)
1.0119
(0.0558)

0.1231
(0.0805)
0.5390
(0.1934)
1.0348
(0.3029)
1.5288
(0.3539)
2.0301
(0.2508)

0.0931
(0.0297)
0.1988
(0.0374)
0.2961
(0.0406)
0.4930
(0.0482)
0.6905
(0.0452)

0.7851
(0.0960)
0.5848
(0.0933)
0.4930
(0.0775)
0.4038
(0.0568)
0.0997
(0.0408)

2000 (1.00,0.10,0.10,0.80)

(1.00,0.50,0.20,0.60)

(1.00,1.00,0.30,0.50)

(1.00,1.50,0.50,0.40)

(1.00,2.00,0.70,0.10)

1.0046
(0.0411)
1.0040
(0.0389)
1.0084
(0.0390)
1.0044
(0.0388)
1.0030
(0.0414)

0.1085
(0.0723)
0.5223
(0.1566)
1.0160
(0.2266)
1.5169
(0.2553)
1.9837
(0.1694)

0.0988
(0.0223)
0.1982
(0.0226)
0.3018
(0.0271)
0.5001
(0.0323)
0.6982
(0.0355)

0.7896
(0.0918)
0.5924
(0.0733)
0.4928
(0.0581)
0.3973
(0.0353)
0.1018
(0.0292)

3000 (1.00,0.10,0.10,0.80)

(1.00,0.50,0.20,0.60)

(1.00,1.00,0.30,0.50)

(1.00,1.50,0.50,0.40)

(1.00,2.00,0.70,0.10)

0.9993
(0.0316)
1.0059
(0.0305)
1.0023
(0.0343)
1.0038
(0.0307)
1.0039
(0.0339)

0.1028
(0.0647)
0.5132
(0.1309)
1.0006
(0.1790)
1.5086
(0.2140)
2.0128
(0.1390)

0.0978
(0.0171)
0.1990
(0.0220)
0.2993
(0.0242)
0.5019
(0.0281)
0.6986
(0.0303)

0.7990
(0.0721)
0.5939
(0.0610)
0.5004
(0.0463)
0.3969
(0.0310)
0.0982
(0.0251)

4000 (1.00,0.10,0.10,0.80)

(1.00,0.50,0.20,0.60)

(1.00,1.00,0.30,0.50)

(1.00,1.50,0.50,0.40)

(1.00,2.00,0.70,0.10)

1.0011
(0.0290)
1.0032
(0.0272)
1.0038
(0.0273)
1.0024
(0.0274)
1.0003
(0.0289)

0.1066
(0.0627)
0.5150
(0.1170)
1.0091
(0.1427)
1.5090
(0.1819)
2.0099
(0.1218)

0.1006
(0.0162)
0.1995
(0.0177)
0.2987
(0.0193)
0.5018
(0.0225)
0.6997
(0.0270)

0.7934
(0.0701)
0.5925
(0.0525)
0.4981
(0.0373)
0.3986
(0.0230)
0.0987
(0.0205)

Table 6.1: The average ML estimates and the corresponding mean square error
for IG-ACD model
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n True values
(ω, β, σ, λ)

ω̂ β̂ σ̂ λ̂

1000 (0.00,0.80,0.50,2.00)

(0.00,0.70,0.30,1.50)

(0.00,0.50,0.20,1.00)

(0.00,0.30,0.05,0.50)

0.0089
(0.0502)
0.0088
(0.0346)
0.0079
(0.0382)
0.0040
(0.0484)

0.7814
(0.0567)
0.6633
(0.0597)
0.4755
(0.0793)
0.2977
(0.0802)

0.4982
(0.0571)
0.2951
(0.0660)
0.1850
(0.0805)
0.0650
(0.0816)

2.0151
(0.0585)
1.5175
(0.0752)
1.0164
(0.0756)
0.5132
(0.0603)

2000 (0.00,0.80,0.50,2.00)

(0.00,0.70,0.30,1.50)

(0.00,0.50,0.20,1.00)

(0.00,0.30,0.05,0.50)

0.0098
(0.0507)
0.0073
(0.0352)
0.0044
(0.0385)
0.0035
(0.0504)

0.7794
(0.0523)
0.6678
(0.0539)
0.4772
(0.0760)
0.3008
(0.0778)

0.5010
(0.0554)
0.2881
(0.0622)
0.1892
(0.0767)
0.0626
(0.0802)

2.0098
(0.0606)
1.4998
(0.0786)
1.0075
(0.0757)
0.5120
(0.0597)

3000 (0.00,0.80,0.50,2.00)

(0.00,0.70,0.30,1.50)

(0.00,0.50,0.20,1.00)

(0.00,0.30,0.05,0.50)

0.0118
(0.0498)
0.0065
(0.0348)
0.0052
(0.0389)
0.0021
(0.0468)

0.7860
(0.0505)
0.6749
(0.0540)
0.4834
(0.0744)
0.3100
(0.0819)

0.5100
(0.0565)
0.2974
(0.0649)
0.1830
(0.0780)
0.0695
(0.0817)

2.0133
(0.0602)
1.5006
(0.0811)
0.9962
(0.0783)
0.5147
(0.0562)

4000 (0.00,0.80,0.50,2.00)

(0.00,0.70,0.30,1.50)

(0.00,0.50,0.20,1.00)

(0.00,0.30,0.05,0.50)

0.0030
(0.0438)
0.0029
(0.0377)
0.0051
(0.0312)
0.0031
(0.0476)

0.7825
(0.0496)
0.6840
(0.0554)
0.4864
(0.0733)
0.3034
(0.0818)

0.4956
(0.0518)
0.2965
(0.0625)
0.1908
(0.0747)
0.0695
(0.0780)

2.0123
(0.0636)
1.5007
(0.0856)
0.9981
(0.0828)
0.5054
(0.0564)

Table 6.2: The average estimates and the corresponding mean square error for
the EIS ML estimates
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We conducted several repeated simulation experiments with different values of

(β, σ, λ), fixing ω = 0. The trajectories of 1000, 2000, 3000 and 4000 observa-

tions from a SCD data generating process were simulated 100 times and the model

parameters were estimated. These estimates are presented in Table 6.2 with corre-

sponding mean square error in parentheses.

From the table we can see that the EIS-ML method provides estimates which in

mean closer to the true parameter values and mean square error of estimates are

always remarkably small. The details of computation are given in Appendix E.

The above estimates can be used to evaluate the estimated hazard function through

the relation (6.34) to compare with the unconditional empirical hazard function. To

obtain the unconditional empirical hazard function we use the relation ĥ(t) = f̂(t)

1−F̂ (t)
,

where f̂(t) is the kernel based estimator of the marginal probability density function

of the IG-SCD sequence and F̂ (t) is the empirical distribution function obtained us-

ing the relation F̂ (t) =
∫ t

0
f̂(u) du. We have used formula f̂(t) = 1

n∆t

∑n
i=1 ξ

(
t−Ti
∆t

)
to compute the density estimate in which ξ(.) is the Epanechnikov kernel. See (Sil-

verman (1986),pp 11-13) for details. We computed ĥ(t) for the simulated series

of IG-SCD sequences for different parameter combinations and compared with the

estimated hazard function. Figure 6.2 gives one such graphical comparison, where

the dotted line and dashed line represents the unconditional hazard function of the

IG-SCD model for different parameter specifications ω = 0.10, β = 0.80, λ = 2.00

and its estimated values ω̂ = 0.1003, β̂ = 0.7895, λ̂ = 2.0145 respectively. The solid

line is the kernel based empirical hazard function of one of the simulated series.
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Figure 6.2: Unconditional hazard functions of IG-SCD model for simulated
data and its empirical hazard rate.

The figure clearly indicates that the empirical hazard function behaves similar to

the true as well as the simulation based estimated hazard function.

6.9 Data Analysis

In the present section we apply the inverse Gaussian duration models for analysing

the real data sets. We consider the data of intraday foreign exchange rates of

Australian Dollar vs Canadian Dollar and US Dollar vs Singapore Dollar for the

day 25th April, 2012 and 2nd May, 2012 respectively. The data sets are downloaded

from the website of Swiss Forex bank. This is the trade book data (tick-by-tick)

corresponding to exchange rate of different currencies traded in Swiss Forex bank.
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From the traded data, we took the trade entered time (HH:MM:SS) and find the

time duration between the consecutive trades in seconds. The zero durations are

excluded. There is a strong seasonality in the durations and we adjusted the data to

take care of this diurnal pattern of intraday durations using the method described

in Tsay (2005).

Let f(ti) be the mean value of the diurnal pattern at time ti. Then define

X∗i =
Xi

f(ti)
,

be the adjusted duration and Xi be the the observed duration ith and i− 1th trans-

actions. We construct f(ti) using two simple time functions.

Define

O(ti) =

 ti − 34200 if ti < 43200

0 otherwise,

and

C(ti) =

 57600− ti if ti ≥ 43200

0 otherwise,

where ti is the time of ith transaction measured in seconds from midnight and

34200, 43200 and 57600 denote, respectively, market opening, noon and market

closing times measured in seconds. Consider the multiple linear regression,

ln(Xi) = β0 + β1o(ti) + β2c(ti) + ei,
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Where o(ti) = O(ti)/10000 and c(ti) = C(ti)/10000. Let β̂i be the ordinary least

squares estimates of above linear regression. The residual is then given by

êi = ln(Xi)− β̂0 − β̂1o(ti)− β̂2c(ti).

Then f(ti) = exp{êi}. Using f(ti), we obtain the adjusted duration X∗i .

Figure 6.3 shows the time series plot of adjusted durations.

Figure 6.3: Time series plot of adjusted durations.

In Table 6.3 we report the summary statistics for the data sets, where Q(10) denotes

the Ljung-Box statistic of order 10.

The parameters estimated under IG-ACD(1,1) and IG-SCD models using the meth-

ods developed in Sections 6.4 and 6.7 respectively are summarized in Table 6.4.
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Statistics Australian Dollar vs
Canadian Dollar

US Dollar vs Singapore
Dollar

Sample Size
Minimum
Maximum
Mean
Median
Q(10)

2650
0.1765
31.9400
1.7290
1.0210
36.7616

6933
0.0546
175.50
4.5300
0.7748
70.2127

Table 6.3: Descriptive statistics for the data

Aus Dollar vs Can Dollar US Dollar vs Sing Dollar

Parameters IG-ACD IG-SCD IG-ACD IG-SCD
ω
α
β
σ
λ

1.4734
0.2520
0.1574
—
0.6019

0.1890
—
0.4102
0.4312
0.9011

0.4960
0.2527
0.2773
—
0.2819

0.2910
—
0.4507
0.6846
0.9801

Table 6.4: Parameter estimates for the data

We now perform a diagnostic check of the models based on the residuals. For

IG-ACD model, the standardized residual is defined as ε̂i = xi/ψ̂i. If the fitted

ACD model is adequate, then {ε̂i} should behave as an independent and identically

distributed sequence of random variables with the assumed distribution. Since the

model assumes that the residuals are independent; any dependence in either the

standardized residuals or their squares indicates misspecification of the model. In

particular, if the fitted model is adequate, both series {ε̂i} and {ε̂2
i } should have no

autocorrelations.

Regarding the IG-SCD model, once the estimates of the parameters are obtained,
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the unobservable component ψi is estimated using Kalman filtering. We define the

standardized residuals of the IG-SCD model as ε̂i = xi/e
ψ̂i , where ψ̂i is the estimator

of ψi provided by the Kalman filter at the SML estimate.

Figure 6.4 shows the time series plot of standardized innovations and Figure 6.5

gives the sample autocorrelation function of the standardized innovations for the

fitted IG-ACD(1,1) and IG-SCD models respectively. From the figures, the inno-

vations appear to be random and their ACFs fail to indicate any significant serial

dependence.

Figure 6.4: Time plot of standardized innovation series of IG-ACD(1,1) and
IG-SCD models.
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Figure 6.5: ACF of the standardized residual series of IG-ACD(1,1) and IG-
SCD models.

Figure 6.6 is the histogram of standardized residuals superimposed by the unit mean

inverse Gaussian density curve for IG-ACD(1,1) and IG-SCD models. The figures

show that the inverse Gaussian distribution is a good approximation for the stan-

dardized residuals. Yet, we have to check formally the serial correlations of the

series {ε̂i} and {ε̂2
i }. We adopt Ljung- Box statistics for checking the serial correla-

tions of these two series. The Ljung-Box statistics for the standardized innovations

(Q(.)) and for the squared innovations (Q∗(.)) are calculated and given in Table

6.5. The corresponding Chi-square table values are given in the parenthesis. From

the Table 6.5 Ljung-Box statistics for the standardized innovations and the squared

innovations are insignificant for both the data sets, so that the fitted models are

adequate in describing the dynamic dependence of the adjusted durations.
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Figure 6.6: Histogram of standardized residuals superimposed by inverse Gaus-
sian density for IG-ACD model and IG-SCD model.

Data Ljung-Box
statistic

IG-ACD IG-SCD

Aus Dollar vs
Can Dollar

Q(10)
Q(20)
Q∗(10)
Q∗(20)

0.0017(3.3250)
3.0725(10.117)
0.1124(3.3250)
1.3588(10.117)

0.0206(3.3250)
2.7180(10.117)
0.0906(3.3250)
0.6945(10.117)

US Dollar vs
Sing Dollar

Q(10)
Q(20)
Q∗(10)
Q∗(20)

0.0314(3.3250)
0.4805(10.117)
1.2544(3.3250)
0.0614(10.117)

1.5963(3.3250)
0.2446(10.117)
1.0017(3.3250)
0.1172(10.117)

Table 6.5: Ljung-Box Statistics for standardized residual series and its squared
process with lags 10 and 20.

Finally, we have demonstrated the significance of allowing non-monotonic hazard

functions for modelling the conditional durations in financial time series. In Figure

6.7, we have plotted the empirical hazard function of the data and compared it with

the unconditional hazard function of IG-SCD model plotted for SML estimates for
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the data. Thus the use of inverse Gaussian distribution is motivated by the fact

that it allows for a non-monotonic hazard function which has been found empirically

relevant.

Figure 6.7: Empirical and estimated hazard functios of adjusted durations of
exchange rates data.

A part of this chapter is published in Balakrishna and Rahul (2014).
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Conclusions and Future Research

The thesis has covered various aspects of modelling and analysis of stochastic volatil-

ity and conditional durations in finance. The main objective of analysing financial

time series is to model the volatility and forecast its future values. Time series

analysis based on Box and Jenkins methods are the most popular approaches when

the models are linear and errors are Gaussian. This is considered to be unrealistic

in many areas of economics and finance as the distribution of conditional variances

are non-Gaussian. As a result, several models have been introduced in the litera-

ture to study the behaviour of financial time series. One of the requirements for

suggesting new models for stochastic volatility is the existence of class of models

for generating non-negative sequences of dependent random variables for generating

volatilities. In this thesis, we mainly studied the properties of some non-Gaussian

time series models and examined their suitability for modelling stochastic volatility

and conditional durations in finance.

175
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With an idea to introduce SV models induced by non-Gaussian volatility sequences,

we have proposed a stationary sequence of non-negative random variables with

Birnbaum-Saunders marginal distributions. The properties of the model and its es-

timation procedures have been discussed, and a simulation study has been carried

out to evaluate the efficiency of the proposed estimation method. To illustrate the

application of the proposed model and the associated estimation method, we have

analysed two real data sets. The proposed model provides an additional choice

for analysing non-negative time series data. We could establish the asymptotic

properties of the estimators for BS-AR(1) model using its Markovian behaviour.

Establishing such properties for BS-ARMA models require the development of re-

lated theory for non-linear time series models. Construction of BS-ARMA models

of higher order and a study of their statistical properties will be of great interest

and we hope to consider this for our future work.

The BS distribution is typically applied to positive data with varying degrees of

asymmetry and kurtosis and can be used as an alternative to the log-normal and

log-skew-normal models. In the fourth chapter, we proposed a SV model generated

by first order BS Markov process as an alternative to normal-lognormal SV model.

The model parameters are estimated using the method of moments and efficient

importance sampling method as the likelihood function is intractable. A simulation

experiment is conducted to check the performance of the estimators. The model is

used to analyse two sets of data and found that it captures the stylized factors of

the financial time series. The problems related to model performance comparison

with the existing SV models in terms of in sample fit and out-of-sample forecasting

need a separate study. We plan to take this up as our future research.
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In Chapter 5, the asymmetric Laplace distribution is used for modelling financial

data, which exhibits asymmetry, sharp peaks and heavier tails than normal dis-

tribution. We proposed a stationary first order asymmetric Laplace autoregressive

model to generate log-volatilities instead of Gaussian AR(1) model. Then we con-

sidered stochastic volatility model when the marginal distribution of log-volatility

process have an asymmetric Laplace distribution, rather than the Gaussian distri-

bution usually employed. The properties of the AL-SV model and its estimation

procedures based on method of moments have been discussed along with a simu-

lation study to evaluate the efficiency of the proposed estimation method. In the

empirical study, we adopt AL-SV model to fit the daily returns of exchange rate

and future price data.The data analysis illustrates that the AL-SV model is able

to capture the skewness and excess kurtosis we observe in financial return series.

But we have to come up with more efficient method of estimation and diagnosis

procedures for effective use of this model. One practical approach in this context is

to develop Bayesian inference procedures. Numerical estimation methods such as

Gibbs sampler and Markov chain Monte Carlo procedures will be suitable here. The

model presented in this chapter can be extended to analyse multivariate time series.

The family of multivariate AL laws can be obtained as a limiting case of the gener-

alized hyperbolic distributions, introduced by Barndorff-Nielsen (1977) and seems

to be suitable for modelling heavy tailed asymmetric multivariate data. However,

the implementation of multivariate AL-SV model is not straight forward and work

is currently under progress in this direction.

Finally, we have proposed two conditional duration models based on inverse Gaus-

sian distribution and studied their properties. We proposed a new specification of
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the disturbance in the ACD and SCD model by assuming that the standardized

durations allow non-monotonic hazard function. The parameters of the IG-ACD

model are estimated by maximum likelihood method. A Monte Carlo based efficient

importance sampling method is proposed for estimating the parameters of IG-SCD

model. The simulation experiments show that the estimates and the resulting esti-

mates of the hazard function perform reasonably well. To illustrate the application

of the proposed models, we have analysed two data sets on trade durations of the

Australian Dollar/Canadian Dollar and US Dollar/Singapore Dollar exchange and

displayed that the proposed models provide a good fit. These results indicate that

the inverse Gaussian conditional duration models provide an additional choice for

analysing transaction durations in financial point process. Possible extensions to

the ACD/SCD models include the use of a wider range of distributional assump-

tions for conditional durations, in particular those that cater for non-monotonic

hazard function of conditional durations. It is important to relax the independent

and identically distributed assumption for the innovation, to model higher order

conditional moments, and to allow possible regime shifts in price durations.

We conclude this thesis with a note that we have several new problems. Some

of these problems can be solved under the Bayesian frame work. The problems

related to volatility forecasting and model selection are yet to be discussed. The

non-parametric and semi-parametric approaches are potential alternatives to the

already established parametric approaches to deal with financial time series. These

methods will work better when there are no closed form expressions for likelihood

functions. Even though we have focused on discrete time space in our studies so far,

the events such as changes in price, temperature, etc. take place continuously. So it
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is more appropriate to study such problems in continuous time space, which requires

the knowledge of stochastic calculus. We would like to tackle these important and

interesting, but challenging, problems in future research.





Appendix A

Matlab code for estimation of

parameters of BS-ARMA Model

ML Estimation (MATLAB Code)

---------------------------------------------

clear;

n1=600;

alpha=input(’Enter alpha: ’);

beta=input(’Enter beta: ’);

rho=input(’Enter rho: ’);

theta=input(’Enter theta: ’);

sig=(1-rho^2)/(1+theta*theta+2*theta*rho);

bhaa(50)=0;rhaa(50)=0;ahaa(50)=0;thaa(50)=0;

for z=1:50

181
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tic

ab=normrnd(0,sig,n1,1);

x1(n1)=0;

x1(1)=ab(1);

for t=2:n1

x1(t)=rho*x1(t-1)+theta*ab(t-1)+ab(t);

end

x=x1(101:n1);

y1=(alpha.*x)./2;

y=beta.*power((y1+sqrt(1+power(y1,2))),2);

n=length(y);

%------------------------%

s1=mean(y);r1=power(mean(1./y),-1);

aa=power((2*(power(s1/r1,0.5)-1)),0.5);

bb=power((s1*r1),0.5);

wt=sqrt(y./bb)-sqrt(bb./y);

tt1(10)=0;

tt1(1)=theta;

for i10=1:10

Rth(n)=0;

R1h(n)=0;

R2h(n)=0;

Rth(1)=wt(1);

for T6=2:n
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su8=0;su9=0;su10=0;su11=0;su12=0;

for k6=1:(T6-1)

su8=su8+(power(-tt1(i10),(k6-1))*wt(T6-k6));

su9=su9+(power(-tt1(i10),(k6-2))*(k6-1)*wt(T6-k6));

su10=su10+(power(-tt1(i10),(k6-1))*k6*wt(T6-k6));

su11=su11+(power(-tt1(i10),(k6-2))*k6*(k6-1)*wt(T6-k6));

su12=su12+(power(-tt1(i10),(k6-3))*(k6-2)*(k6-1)*wt(T6-k6));

end

Rth(T6)=wt(T6)-((rho+tt1(i10))*su8);

R1h(T6)=(rho*su9)-su10;

R2h(T6)=su11-rho*su12;

end

su13=0;su14=0;

for j6=2:n

su13=su13+(Rth(j6)*R1h(j6));

su14=su14+((Rth(j6)*R2h(j6))+power(R1h(j6),2));

end

fth=su13;

fdth=su14;

tt1(i10+1)=tt1(i10)-(fth/fdth);

if tt1(i10+1)-tt1(i10)<0.0001

tt=tt1(i10+1);

end

end
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Rr1(n)=0;

for T4=2:n

su16=0;

for k5=1:(T4-1)

su16=su16+(power(-tt,k5-1)*wt(T4-k5));

end

Rr1(T4)=su16;

end

su17=0;su18=0;

for j5=2:n

su17=su17+(wt(j5)*Rr1(j5));

su18=su18+power(Rr1(j5),2);

end

rr=(su17-tt*su18)/su18;

%-------------------------------------%

m=20;

bh(m)=0;th(m)=0;ah(m)=0;rh(m)=0;

bh(1)=bb;

th(1)=tt;

ah(1)=aa;

rh(1)=rr;

for r=1:m

%-----------beta--------------------%

b(10)=0;
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b(1)=bb;

for i=1:10

w=sqrt(y./b(i))-sqrt(b(i)./y);

v=sqrt(y./b(i))+sqrt(b(i)./y);

S(n)=0;

U(n)=0;

S(1)=v(1);

U(1)=w(1);

for T=2:n

sum1=0;

sum2=0;

for k=1:(T-1)

sum1=sum1+(power(-th(r),k-1)*w(T-k));

sum2=sum2+(power(-th(r),k-1)*v(T-k));

end

S(T)=w(T)-(rh(r)+th(r))*sum1;

U(T)=v(T)-(rh(r)+th(r))*sum2;

end

sum3=0;sum4=0;sum5=0;sum6=0;

for j=2:n

sum3=sum3+((b(i)-y(j))/(b(i)+y(j)));

sum4=sum4+(U(j)*S(j));

sum5=sum5+(y(j)/(power(b(i)+y(j),2)));

sum6=sum6+(power(U(j),2)+power(S(j),2));
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end

fbeta=sum3+(((1+th(r)*th(r)+2*th(r)*rh(r))/(ah(r)*ah(r)

*(1-rh(r)*rh(r))))*sum4);

fdbeta=2*sum5-(((1+th(r)*th(r)+2*th(r)*rh(r))/(2*b(i)

*ah(r)*ah(r)*(1-rh(r)*rh(r))))*sum6);

b(i+1)=b(i)-(fbeta/fdbeta);

if b(i+1)-b(i)<0.0001

bh1=b(i+1);

end

end

%--------------------------------%

t1(10)=0;

t1(1)=tt;

for i1=1:10

w1=sqrt(y./bh1)-sqrt(bh1./y);

Rt(n)=0;

R1(n)=0;

R2(n)=0;

Rt(1)=w1(1);

for T1=2:n

sum8=0;sum9=0;sum10=0;sum11=0;sum12=0;

for k1=1:(T1-1)

sum8=sum8+(power(-t1(i1),(k1-1))*w1(T1-k1));

sum9=sum9+(power(-t1(i1),(k1-2))*(k1-1)*w1(T1-k1));
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sum10=sum10+(power(-t1(i1),(k1-1))*k1*w1(T1-k1));

sum11=sum11+(power(-t1(i1),(k1-2))*k1*(k1-1)*w1(T1-k1));

sum12=sum12+(power(-t1(i1),(k1-3))*(k1-2)*(k1-1)*w1(T1-k1));

end

Rt(T1)=w1(T1)-((rh(r)+t1(i1))*sum8);

R1(T1)=(rh(r)*sum9)-sum10;

R2(T1)=sum11-rh(r)*sum12;

end

sum13=0;sum14=0;

for j1=2:n

sum13=sum13+(Rt(j1)*R1(j1));

sum14=sum14+((Rt(j1)*R2(j1))+power(R1(j1),2));

end

ftheta=sum13;

fdtheta=sum14;

t1(i1+1)=t1(i1)-(ftheta/fdtheta);

if t1(i1+1)-t1(i1)<0.0001

th1=t1(i1+1);

end

end

%---------------------------------%

w2=sqrt(y./bh1)-sqrt(bh1./y);

Rr(n)=0;

for T2=2:n



Appendix A 188

sum16=0;

for k2=1:(T2-1)

sum16=sum16+(power(-th1,k2-1)*w2(T2-k2));

end

Rr(T2)=sum16;

end

sum17=0;sum18=0;

for j2=2:n

sum17=sum17+(w2(j2)*Rr(j2));

sum18=sum18+power(Rr(j2),2);

end

rh1=(sum17-th1*sum18)/sum18;

%-----------------------------%

w3=sqrt(y./bh1)-sqrt(bh1./y);

Ra(n)=0;

for T3=2:n

sum19=0;

for k3=1:(T3-1)

sum19=sum19+(power(-th1,k3-1)*w3(T3-k3));

end

Ra(T3)=(w3(T3))-((rh1+th1)*sum19);

end

sum20=0;

for j3=2:n
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sum20=sum20+power(Ra(j3),2);

end

ah1=sqrt(((1+th1*th1+2*rh1*th1)/((n-1)*(1-rh1*rh1)))*sum20);

%-----------------------------%

ah(r+1)=ah1;

bh(r+1)=bh1;

th(r+1)=th1;

rh(r+1)=rh1;

if ah(r+1)-ah(r)<0.0001

ahh=ah(r+1);

end

if bh(r+1)-bh(r)<0.0001

bhh=bh(r+1);

end

if th(r+1)-th(r)<0.0001

thh=th(r+1);

end

if rh(r+1)-rh(r)<0.0001

rhh=rh(r+1);

end

end

ahaa(z)=ahh;

bhaa(z)=bhh;

thaa(z)=thh;
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rhaa(z)=rhh;

toc

end

ahat=mean(ahaa)

ahatvar=sqrt(var(ahaa))

bhat=mean(bhaa)

bhatvar=sqrt(var(bhaa))

rhat=mean(rhaa)

rhatvar=sqrt(var(rhaa))

that=mean(thaa)

thatvar=sqrt(var(thaa))

----------------------------------------------------------
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R code for computation of I1

f12=0

I1=0

acf=0

r=-0.8

a=2

x1=seq(-6,6,0.01)

n1=length(x1)

x2=seq(-6,6,0.01)

n2=length(x2)

R=20

acf=rep(1,R)

I1=rep(1,R)

for(h in 1:R)

{
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xr=(r^h)*x1

f12=rep(1,n1)

for(i in 1:n1)

{

f12[i]=0.01*sum(x2*sqrt((1+(0.5*a*x2)^2))*dnorm(x2,xr[i],1-r^(2*h)))

}

I1[h]=0.01*sum(x1*sqrt((1+(0.5*a*x1)^2))*dnorm(x1,0,1)*f12)

}

I1

-------------------------------------------------------------------------------



Appendix C

R code for estimation of

parameters of BS-SV Model

1. MM estimation(R Code)

---------------------------

T=600;

alpha=2;

beta=1;

rho=0.9;

sigma=sqrt(1-rho^2);

%--------------------------------------------------%

ala=c();bta=c();rha=c();

for(q in 1:50){

ui=rnorm(T,0,sigma);
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h1=c();

h1[1]=ui[1];

for(t in 2:T){

h1[t]=rho*h1[t-1]+ui[t];

}

h=h1[101:T]

n=length(T)

ab=rnorm(n,0,1);

y=beta*(((alpha*h)/2)+sqrt(1+((alpha*h)/2)^2))^2;

x=sqrt(y)*ab;

m2=mean(x[2:n]*x[2:n])

m4=mean(x[2:n]*x[2:n]*x[2:n]*x[2:n])

m22=mean(x[2:n]*x[2:n]*x[1:(n-1)]*x[1:(n-1)])

#########################

aa=c()

aa[1]=2

for(k in 1:10){

fa=(((1+(0.5*aa[k]*aa[k]))^2)/(3*(1+(2*aa[k]*aa[k])

+(1.5*aa[k]*aa[k]*aa[k]*aa[k]))))-((m2*m2)/m4)

fda=((6*aa[k]*(1+(2*aa[k]*aa[k])+(1.5*aa[k]*aa[k]*aa[k]*aa[k]))

*(1+(0.5*aa[k]*aa[k])))-(3*((1+(0.5*aa[k]*aa[k]))^2)*(4*aa[k]

+6*aa[k]^3)))/(9*(1+(2*aa[k]*aa[k])+(1.5*aa[k]*aa[k]

*aa[k]*aa[k]))^2)

aa[k+1]=aa[k]-(fa/fda)
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if (aa[k+1]-aa[k])>0.001 ahat=aa[k+1]

}

bhat=m2/(1+(0.5*ahat*ahat))

r=c()

r[1]=0.1

for(j in 1:10){

f12=0

a=ahat

x1=seq(-6,6,0.01)

n1=length(x1)

x2=seq(-6,6,0.01)

n2=length(x2)

xr=r[j]*x1

f12=rep(1,n1)

for(i in 1:n1)

{

f12[i]=0.01*sum(x2*sqrt((1+(0.5*a*x2)^2))

*dnorm(x2,xr[i],1-r[j]^(2)))

}

I1=0.01*sum(x1*sqrt((1+(0.5*a*x1)^2))*dnorm(x1,0,1)*f12)

while ((m22-((bhat*bhat)*(1+a*a+((1/4)*aa*aa*aa*aa*(1+(2*r[j]*r[j])))

+(aa*aa*I1))))>0.001) r=r+0.001

r[j+1]=r[j]

if ((r[j+1]-r[j])>0.001) rhat=r[j+1]
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}

ala[q]=ahat

bta[q]=bhat

rha[q]=rhat

}

mean(ala); sqrt(var(ala))

mean(bta); sqrt(var(bta))

mean(rha); sqrt(var(rha))

-------------------------------------------------
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2. EIS ML Estimation(MATLAB Code)

----------------------------

clear;

T=300;

N=100;

alpha=input(’enter alpha:’);

beta=input(’enter beta:’);

rho=input(’enter rho:’);

sigma=sqrt(1-power(rho,2));

rh=rho-0.1:0.001:rho+0.09;

ap=alpha-0.2:0.001:alpha+0.2;

bt=beta-0.2:0.001:beta+0.2;

%--------------------------------------------------%

ala(50)=0;bta(50)=0;rha1(50)=0;

for rahul1=1:50

tic

ui=normrnd(0,sigma,1,T);

sh(T)=0;

sh(1)=ui(1);

for k=2:T

sh(k)=rho*sh(k-1)+ui(k);

end

ab=normrnd(0,1,1,T);

yy=beta.*power(((alpha.*sh)/2)+sqrt(1+power(((alpha.*sh)/2),2)),2);
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x=sqrt(yy).*ab;

%--------------------initial values --------------------------------%

rt=mean(x.*x.*x.*x);

rt1=mean(x.*x);

rt2=rt/(rt1*rt1);

al1=0.1;

while rt2-rahul(al1)>0.001

al1=al1+0.0001;

end

be(1)=rt1/(1+((al1*al1)/2));

al(1)=al1;

c=autocorr(sh);

rh1(1)=c(2);

%---------------------------------------------------------------%

for n=1:10

%-------------------- rho ------------------------%

r1=length(rh);

L(r1)=0;

for r=1:r1

u=normrnd(0,1,T,N);

si(T,N)=0;

for j=1:N

si(1,j)=u(1,j);

for i=2:T
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sig=(1-power(rh(r),2));

mu=rh(r)*si(i-1,j);

si(i,j)=mu+sqrt(sig)*u(i,j);

end

end

for q=1:6

a1(T,2)=0;

ch(T,N)=0;

ch(T,:)=1;

for h=T:-1:1

y=-0.5*log(2*pi*be(n))-log(((al(n).*si(h,:)’)/2)

+sqrt(1+power(((al(n).*si(h,:)’)/2),2)))-0.5*((x(h)*x(h))

./( be(n).*power(((al(n).* si(h,:)’)/2)+sqrt(1+power(((al(n).*

si(h,:)’)/2),2)),2)))+(log(ch(h,:)))’;

y1=si(h,:)’;

p=polyfit(y1,y,2);

a1(h,:)=[p(2),p(1)];

if(h>1)

ch(h-1,:)=(1/sqrt(1-(2*(1-power(rh(r),2))*p(1))))

.*exp((((1-power(rh(r),2))/(2*(1-(2*(1-power(rh(r),2))

*p(1))))).*power(((rh(r)*si(h-1,:)’)./(1-power(rh(r),2)))

+p(2),2))-(0.5*power((rh(r)*si(h-1,:)’)./sqrt(1

-power(rh(r),2)),2)));

end
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end

s1(T,N)=0;

for l=1:N

s1(1,l)=u(1,l);

for k=2:T

sig1=(1-power(rh(r),2))/(1-(2*(1-power(rh(r),2))*a1(k,2)));

mu1=sig1*(((rh(r)*s1(k-1,l))/(1-power(rh(r),2)))+a1(k,1));

s1(k,l)=mu1+sqrt(sig1)*u(k,l);

end

end

si=s1;

a(:,:,q)=a1;

end

b=a(:,:,6);

z=s1;

p1(T,N)=0;

q1(T,N)=0;

m1(T,N)=0;

p1(1,:)=(1./(sqrt(2*pi*be(n)).*(((al(n).*z(1,:))/2)

+sqrt(1+power(((al(n).*z(1,:))/2),2))))).*exp(-0.5*((x(1)*x(1))

./(be(n).*power(((al(n).*z(1,:))/2)+sqrt(1+power(((al(n)

.*z(1,:))/2),2)),2))));

q1(1,:)=(1/(sqrt(1-power(rh(r),2))*sqrt(2*pi)))

.*(exp(-((1/(2*(1-power(rh(r),2))))
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.*power((z(1,:)-rh(r)*u(1,:)),2))));

m1(1,:)=((sqrt(1-(2*(1-power(rh(r),2))*b(1,2))))

/(sqrt(2*pi*(1-power(rh(r),2)))))

*exp(-(((1-(2*(1-power(rh(r),2))*b(1,2)))

/(2*(1-power(rh(r),2))))*power((z(1,:)

-(((1-power(rh(r),2))/(1-(2*(1-power(rh(r),2))

*b(1,2))))*(((rh(r)*u(1,:))/(1-power(rh(r),2)))+b(1,1)))),2)));

for w=2:T

p1(w,:)=(1./(sqrt(2*pi*be(n)).*(((al(n).*z(w,:))/2)

+sqrt(1+power(((al(n).*z(w,:))/2),2))))).*exp(-0.5

*((x(w)*x(w))./(be(n).*power(((al(n).*

z(w,:))/2)+sqrt(1+power(((al(n).*z(w,:))/2),2)),2))));

q1(w,:)=(1/(sqrt(1-power(rh(r),2))*sqrt(2*pi)))

.*(exp(-((1/(2*(1-power(rh(r),2)))).*power((z(w,:)

-rh(r)*z(w-1,:)),2))));

m1(w,:)=(sqrt(1-(2*(1-power(rh(r),2))*b(w,2)))

/(sqrt(2*pi*(1-power(rh(r),2)))))*exp(-(((1-(2

*(1-power(rh(r),2))*b(w,2)))/(2*(1-power(rh(r),2))))

*power((z(w,:)-(((1-power(rh(r),2))/(1-(2*(1

-power(rh(r),2))*b(w,2))))*(((rh(r)*z(w-1,:))/

(1-power(rh(r),2)))+b(w,1)))),2)));

end

d=(p1.*q1)./m1;

L(r)=sum(prod(d));
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end

Lr=max(L);

e=1;

while(Lr~=L(e))

e=e+1;

end

rhh=rh(e);

%----------------------------end estimation of rho--------------------%

%--------------------alpha------------------------%

r2=length(ap);

L1(r2)=0;

for rr=1:r2

u1=normrnd(0,1,T,N);

si1(T,N)=0;

for j=1:N

si1(1,j)=u1(1,j);

for i=2:T

sig2=(1-power(rhh,2));

mu2=rhh*si1(i-1,j);

si1(i,j)=mu2+sqrt(sig2)*u1(i,j);

end

end

for q=1:6

a2(T,2)=0;
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ch1(T,N)=0;

ch1(T,:)=1;

for h=T:-1:1

y2=-0.5*log(2*pi*be(n))-log(((ap(rr).*si1(h,:)’)/2)

+sqrt(1+power(((ap(rr).*si1(h,:)’)/2),2)))-0.5*((x(h)*x(h))

./( be(n).*power(((ap(rr).* si1(h,:)’)/2)+sqrt(1+power(((ap(rr).*

si1(h,:)’)/2),2)),2)))+(log(ch1(h,:)))’;

y3=si1(h,:)’;

pa=polyfit(y3,y2,2);

a2(h,:)=[pa(2),pa(1)];

if(h>1)

ch1(h-1,:)=(1/sqrt(1-(2*(1-power(rhh,2))*pa(1))))

.*exp((((1-power(rhh,2))/(2*(1-(2*(1-power(rhh,2))*pa(1)))))

.*power(((rhh*si1(h-1,:)’)./(1-power(rhh,2)))+pa(2),2))

-(0.5*power((rhh*si1(h-1,:)’)./sqrt(1-power(rhh,2)),2)));

end

end

s11(T,N)=0;

for l=1:N

s11(1,l)=u1(1,l);

for k=2:T

sig3=(1-power(rhh,2))/(1-(2*(1-power(rhh,2))*a2(k,2)));

mu3=sig3*(((rhh*s11(k-1,l))/(1-power(rhh,2)))+a2(k,1));

s11(k,l)=mu3+sqrt(sig3)*u1(k,l);
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end

end

si1=s11;

aa(:,:,q)=a2;

end

b1=aa(:,:,6);

z1=s11;

p2(T,N)=0;

q2(T,N)=0;

m2(T,N)=0;

p2(1,:)=(1./(sqrt(2*pi*be(n)).*(((ap(rr).*z1(1,:))/2)

+sqrt(1+power(((ap(rr).*z1(1,:))/2),2)))))

.*exp(-0.5*((x(1)*x(1))./(be(n).*power(((ap(rr).*

z1(1,:))/2)+sqrt(1+power(((ap(rr).*z1(1,:))/2),2)),2))));

q2(1,:)=(1/(sqrt(1-power(rhh,2))*sqrt(2*pi)))

.*(exp(-((1/(2*(1-power(rhh,2)))).*power((z1(1,:)

-rhh*u1(1,:)),2))));

m2(1,:)=((sqrt(1-(2*(1-power(rhh,2))*b1(1,2))))/

(sqrt(2*pi*(1-power(rhh,2)))))*exp(-(((1-(2*(1-power(rhh,2))

*b1(1,2)))/(2*(1-power(rhh,2))))*power((z1(1,:)

-(((1-power(rhh,2))/(1-(2*(1-power(rhh,2))*b1(1,2))))

*(((rhh*u1(1,:))/(1-power(rhh,2)))+b1(1,1)))),2)));

for w=2:T

p2(w,:)=(1./(sqrt(2*pi*be(n)).*(((ap(rr).*z1(w,:))/2)
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+sqrt(1+power(((ap(rr).*z1(w,:))/2),2))))).*exp(-0.5

*((x(w)*x(w))./(be(n).*power(((ap(rr).*

z1(w,:))/2)+sqrt(1+power(((ap(rr).*z1(w,:))/2),2)),2))));

q2(w,:)=(1/(sqrt(1-power(rhh,2))*sqrt(2*pi))).*(exp(-((1

/(2*(1-power(rhh,2)))).*power((z1(w,:)-rhh*z1(w-1,:)),2))));

m2(w,:)=(sqrt(1-(2*(1-power(rhh,2))*b1(w,2)))/

(sqrt(2*pi*(1-power(rhh,2)))))*exp(-(((1-(2*(1-power(rhh,2))

*b1(w,2)))/(2*(1-power(rhh,2))))*power((z1(w,:)

-(((1-power(rhh,2))/(1-(2*(1-power(rhh,2))*b1(w,2))))

*(((rhh*z1(w-1,:))/ (1-power(rhh,2)))+b1(w,1)))),2)));

end

d1=(p2.*q2)./m2;

L1(rr)=sum(prod(d1));

end

La=max(L1);

e1=1;

while(La~=L1(e1))

e1=e1+1;

end

ahh=ap(e1);

%----------------------------end estimation of alpha --------------------%

%-----------------------------------beta--------------------------%

r3=length(bt);

L2(r3)=0;
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for rr1=1:r3

u2=normrnd(0,1,T,N);

si2(T,N)=0;

for j=1:N

si2(1,j)=u2(1,j);

for i=2:T

sig4=(1-power(rhh,2));

mu4=rhh*si2(i-1,j);

si2(i,j)=mu4+sqrt(sig4)*u2(i,j);

end

end

for q=1:6

a3(T,2)=0;

ch2(T,N)=0;

ch2(T,:)=1;

for h=T:-1:1

y4=-0.5*log(2*pi*bt(rr1))-log(((ahh.*si2(h,:)’)/2)

+sqrt(1+power(((ahh.*si2(h,:)’)/2),2)))-0.5*((x(h)*x(h))

./( bt(rr1).*power(((ahh.* si2(h,:)’)/2)+sqrt(1+power(((ahh.*

si2(h,:)’)/2),2)),2)))+(log(ch2(h,:)))’;

y5=si2(h,:)’;

pb=polyfit(y5,y4,2);

a3(h,:)=[pb(2),pb(1)];

if(h>1)
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ch2(h-1,:)=(1/sqrt(1-(2*(1-power(rhh,2))*pb(1))))

.*exp((((1-power(rhh,2))/(2*(1-(2*(1-power(rhh,2))*pb(1)))))

.*power(((rhh*si2(h-1,:)’)./(1-power(rhh,2)))+pb(2),2))

-(0.5*power((rhh*si2(h-1,:)’)./sqrt(1-power(rhh,2)),2)));

end

end

s12(T,N)=0;

for l=1:N

s12(1,l)=u2(1,l);

for k=2:T

sig5=(1-power(rhh,2))/(1-(2*(1-power(rhh,2))*a3(k,2)));

mu5=sig5*(((rhh*s12(k-1,l))/(1-power(rhh,2)))+a3(k,1));

s12(k,l)=mu5+sqrt(sig5)*u2(k,l);

end

end

si2=s12;

aa1(:,:,q)=a3;

end

b2=aa1(:,:,6);

z2=s12;

p3(T,N)=0;

q3(T,N)=0;

m3(T,N)=0;

p3(1,:)=(1./(sqrt(2*pi*bt(rr1)).*(((ahh.*z2(1,:))/2)
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+sqrt(1+power(((ahh.*z2(1,:))/2),2))))).*exp(-0.5*((x(1)*x(1))

./(bt(rr1).*power(((ahh.*z2(1,:))/2)+sqrt(1+power(((ahh.*z2(1,:))

/2),2)),2))));

q3(1,:)=(1/(sqrt(1-power(rhh,2))*sqrt(2*pi))).*(exp(-((1/(2*

(1-power(rhh,2)))).*power((z2(1,:)-rhh*u2(1,:)),2))));

m3(1,:)=((sqrt(1-(2*(1-power(rhh,2))*b2(1,2))))/(sqrt(2*pi

*(1-power(rhh,2)))))*exp(-(((1-(2*(1-power(rhh,2))*b2(1,2)))

/(2*(1-power(rhh,2))))*power((z2(1,:)-(((1-power(rhh,2))

/(1-(2*(1-power(rhh,2))*b2(1,2))))*(((rhh*u2(1,:))

/(1-power(rhh,2)))+b2(1,1)))),2)));

for w=2:T

p3(w,:)=(1./(sqrt(2*pi*bt(rr1)).*(((ahh.*z2(w,:))/2)

+sqrt(1+power(((ahh.*z2(w,:))/2),2))))).*exp(-0.5

*((x(w)*x(w))./(bt(rr1).*power(((ahh.*z2(w,:))/2)

+sqrt(1+power(((ahh

.*z2(w,:))/2),2)),2))));

q3(w,:)=(1/(sqrt(1-power(rhh,2))*sqrt(2*pi)))

.*(exp(-((1/(2*(1-power(rhh,2)))).*power((z2(w,:)

-rhh*z2(w-1,:)),2))));

m3(w,:)=(sqrt(1-(2*(1-power(rhh,2))*b2(w,2)))/(sqrt(2*pi

*(1-power(rhh,2)))))*exp(-(((1-(2*(1-power(rhh,2))*b2(w,2)))

/(2*(1-power(rhh,2))))*power((z2(w,:)-(((1-power(rhh,2))

/(1-(2*(1-power(rhh,2))*b2(w,2))))*(((rhh*z2(w-1,:))/

(1-power(rhh,2)))+b2(w,1)))),2)));
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end

d2=(p3.*q3)./m3;

L2(rr1)=sum(prod(d2));

end

Lb=max(L2);

e2=1;

while(Lb~=L2(e2))

e2=e2+1;

end

bhh=bt(e2);

%----------------------------end estimation of beta ------------%

al(n+1)=ahh;

if al(n+1)-al(n)<0.001

aha=al(n+1);

end

be(n+1)=bhh;

if be(n+1)-be(n)<0.001

bha=be(n+1);

end

rh1(n+1)=rhh;

if rh1(n+1)-rh1(n)<0.001

rha=rh1(n+1);

end

end
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ala(rahul1)=aha;

bta(rahul1)=bha;

rha1(rahul1)=rha;

toc

end

est=[mean(ala) mean(bta) mean(rha1)]

stdrr=[sqrt(var(ala)) sqrt(var(bta)) sqrt(var(rha1))]

-------------------------------------------------------------
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R code for estimation of

parameters of AL-SV Model

MM Estimation (R Code)

-----------------------

n1=500

mu=2

sigma=2

theta=0.5

Rho=0.9

kappa=((sqrt((mu^2)+(2*sigma^2)))-mu)/(sigma*sqrt(2));

kkk=c();sss=c();rrr=c();

for(p in 1:50){

###############

211
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rahul.pdf=function(x,y,rho,K)

{

if(x==0 && y==0){prob=rho^2}

if(x==1 && y==1){prob=0}

if(x==0 && y==1){prob=(1-rho)*(rho+(1-rho)*K^2/(1+K^2))}

if(x==1 && y==0){prob=(1-rho)*(rho+(1-rho)/(1+K^2))}

return(prob)

}

sampleGen=function(n,rho,K)

{

s=data.frame(x=numeric(n),y=numeric(n))

i=0

c1=rahul.pdf(0,0,rho,K)

c2=rahul.pdf(0,1,rho,K)

c3=rahul.pdf(1,0,rho,K)

c4=rahul.pdf(1,1,rho,K)

while(i<n){

rnd=runif(1)

if(rnd<c1){

xval=0

yval=0

s[i,]=c(xval,yval)
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i=i+1

}

else if(rnd<c1+c2){

xval=0

yval=1

s[i,]=c(xval,yval)

i=i+1

}

else if(rnd<c1+c2+c3){

xval=1

yval=0

s[i,]=c(xval,yval)

i=i+1

}

else{

xval=1

yval=1

s[i,]=c(xval,yval)

i=i+1

}

}

return(s)

}
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d=sampleGen(n1,Rho,kappa)

delta1=d[1]

delta2=d[2]

w1=rexp(n1,1)

w2=rexp(n1,1)

eta1=((1-Rho)*theta)+((sigma/sqrt(2))*(((delta1*w1)/kappa)

-(kappa*delta2*w2)))

eta=eta1$x

h=c()

h[1]=eta[1]

for(t in 2:n1){

h[t]=Rho*h[t-1]+eta[t]

}

e1=rexp(n1,1)

e2=rexp(n1,1)

absl=(1/sqrt(2))*(e1-e2)

rt=(exp(h/2))*absl

m1=mean(rt[2:n1]*rt[2:n1])

m2=mean(rt[2:n1]*rt[2:n1]*rt[2:n1]*rt[2:n1])

m3=mean(rt[2:n1]*rt[2:n1]*rt[2:n1]*rt[2:n1]*rt[2:n1]*rt[2:n1])

m4=mean(rt[2:n1]*rt[2:n1]*rt[1:(n1-1)]*rt[1:(n1-1)])

########################

ka=c();sa=c()
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ka[1]=kappa

sa[1]=sigma

for(q in 1:10)

{

ss=c()

ss[1]=1

for(i in 1:10){

fs=(1/m1)-1+(0.5*ss[i]*ss[i])+((ss[i]/sqrt(2))*((1/ka[q])-ka[q]))

fds=ss[i]+((1/sqrt(2))*((1/ka[q])-ka[q]))

ss[i+1]=(ss[i]-(fs/fds))

if ((ss[i+1]-ss[i])<0.001) sighat1=ss[i+1]

}

kk=c()

kk[1]=1

for(j in 1:10){

fk=(6/m2)-1+(2*sighat1*sighat1)+(sqrt(2)*sighat1*((1/kk[j])-kk[j]))

fdk=-(sqrt(2)*sighat1*(1+(1/(kk[j]*kk[j]))))

kk[j+1]=(kk[j]-(fk/fdk))

if ((kk[j+1]-kk[j])<0.001) khat1=kk[j+1]

}

ka[q+1]=khat1

sa[q+1]=sighat1

if ((ka[q+1]-ka[q])<0.001) khat=ka[q+1]

if ((sa[q+1]-sa[q])<0.001) shat=sa[q+1]
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}

g1=(1-(0.5*shat*shat)+(0.5*shat*((1/khat)-khat)*sqrt(2)))

g2=(shat/sqrt(2))*((1/khat)-khat)

g3=shat*shat/2

rh=c()

rh[1]=0.5

for(i in 1:20){

f1=m3-((1-(g3*rh[i]*rh[i])+(g2*rh[i]))/(g1*(1-(g3*(1+rh[i])^2)

+(g2*(1+rh[i])))))

f2=-(1/(g1*(1-(g3*(1+rh[i])^2)+(g2*(1+rh[i])))^2))*(((1

-(g3*(1+rh[i])^2)+(g2*(1+rh[i])))*(g2-(shat*shat*rh[i])))

-((1-(g3*(rh[i])^2)+(g2*(rh[i])))*(g2-(shat*shat*(1+rh[i])))))

rh[i+1]=rh[i]-(f1/f2)

if ((rh[i+1]-rh[i])<0.001) rhat=rh[i+1]

}

kkk[p]=khat

sss[p]=shat

rrr[p]=rhat

}

mean(kkk); sqrt(var(kkk))

mean(sss); sqrt(var(sss))

mean(rrr); sqrt(var(rrr))

----------------------------------------------------------
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R code for estimation of

parameters of IG duration models

1. ML Estimation (R Code)

--------------------------

library(statmod)

l=1

o=2

a=0.7

b=0.1

n=4000

x=c();si=c();omhat=c();alhat=c();behat=c();lahat=c()

x[1]=0.5;si[1]=0.1

for(j in 1:100){

217
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abs=rinvgauss(n, 1, l)

alpha=c();beta=c();omega=c();lamda=c()

alpha[1]=a

beta[1]=b

omega[1]=o

lamda[1]=l

for(t in 2:n){

si[t]=o+a*x[t-1]+b*si[t-1]

x[t]=si[t]*abs[t]

}

m=10

for(k in 1:100){

om=c();

om[1]=0.2

for(i in 1:m){

L1=(0.5*sum(1/(om[i]+alpha[k]*x[1:n-1]+beta[k]*si[1:n-1])))

-((lamda[k]/2)*sum(((((om[i]+alpha[k]*x[1:n-1]+beta[k]

*si[1:n-1]))^2)-(x[2:n]^2))/((((om[i]+alpha[k]*x[1:n-1]

+beta[k]*si[1:n-1]))^2)*x[2:n])))

L2=-0.5*sum(1/((om[i]+alpha[k]*x[1:n-1]+beta[k]*si[1:n-1])^2))

-(lamda[k]*sum(x[2:n]/((om[i]+alpha[k]*x[1:n-1]

+beta[k]*si[1:n-1])^3)))

om[i+1]=om[i]-(L1/L2)

if(om[i+1]-om[i]<0.001) omg=om[i+1]
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}

omega[k+1]=omg

#alpha

al=c();

al[1]=0.2

for(i in 1:m){

L3=(0.5*sum(x[1:n-1]/(omg+al[i]*x[1:n-1]+beta[k]*si[1:n-1])))

-(lamda[k]/2)*sum(((((omg+al[i]*x[1:n-1]+beta[k]*si[1:n-1])^2)

-(x[2:n]^2))/(((omg+al[i]*x[1:n-1]+beta[k]*si[1:n-1])^2)

*x[2:n]))*x[1:n-1])

L4=-0.5*sum(((x[1:n-1])^2)/((omg+al[i]*x[1:n-1]+beta[k]*si[1:n-1])^2))

-(lamda[k]*sum((x[2:n]*(x[1:n-1]^2))/((omg+al[i]*x[1:n-1]

+beta[k]*si[1:n-1])^3)))

al[i+1]=al[i]-(L3/L4)

if(al[i+1]-al[i]<0.001) alp=al[i+1]

}

alpha[k+1]=alp

#beta

be=c();

be[1]=0.2

for(i in 1:m){

L5=(0.5*sum(si[1:n-1]/(omg+alp*x[1:n-1]+be[i]*si[1:n-1])))

-(lamda[k]/2)*sum(((((omg+alp*x[1:n-1]+be[i]*si[1:n-1])^2)

-(x[2:n]^2))/(((omg+alp*x[1:n-1]+be[i]*si[1:n-1])^2)
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*x[2:n]))*si[1:n-1])

L6=-0.5*sum(((si[1:n-1])^2)/((omg+alp*x[1:n-1]+be[i]

*si[1:n-1])^2))-(lamda[k]*sum((x[2:n]*(si[1:n-1]^2))

/((omg+alp*x[1:n-1]+be[i]*si[1:n-1])^3)))

be[i+1]=be[i]-(L5/L6)

if(be[i+1]-be[i]<0.001) bet=be[i+1]

}

beta[k+1]=bet

lamda[k+1]=n*(sum(((x[2:n]-(omg+alp*x[1:n-1]+bet*si[1:n-1]))^2)

/((omg+alp*x[1:n-1]+bet*si[1:n-1])*x[2:n])))^(-1)

if(omega[k+1]-omega[k]<0.001) omeg=omega[k+1]

if(alpha[k+1]-alpha[k]<0.001) alph=alpha[k+1]

if(beta[k+1]-beta[k]<0.001) beta1=beta[k+1]

if(lamda[k+1]-lamda[k]<0.001) lam=lamda[k+1]

}

omhat[j]=omeg

alhat[j]=alph

behat[j]=beta1

lahat[j]=lam

}

omegahat=mean(omhat)

varomeg=sqrt(var(omhat))

alphahat=mean(alhat)

varalph=sqrt(var(alhat))
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betahat=mean(behat)

varbet=sqrt(var(behat))

lamdahat=mean(lahat)

varlam=sqrt(var(lahat))

#omega

omegahat

varomeg

#alpha

alphahat

varalph

#beta

betahat

varbet

#lamda

lamdahat

varlam

---------------------------------------------------------
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2. EIS ML Estimation

---------------------

clear;

T=1000;

N=100;

omega=input(’enter omega:’);

beta=input(’enter beta:’);

sigma=input(’enter sigma:’);

lamda=input(’enter lamda:’);

om=-0.1:0.01:0.1;

bt=0.6:0.01:0.8;

sm=0.2:0.01:0.5;

lm=1.4:0.01:1.6;

sma(100)=0;lma(100)=0;oma(100)=0;bta(100)=0;

for rahul=1:100

tic

ui=normrnd(0,sigma,1,T);

sh(T)=0;

sh(1)=ui(1);

for k=2:T

sh(k)=omega+beta*sh(k-1)+ui(k);

end

ig=normrnd(0,1,1,T);

ab(T)=0;



Appendix E 223

for ra=1:T

ig1=ig(ra)*ig(ra);

ab1=1+(ig1/(2*lamda))-((1/(2*lamda))*sqrt((4*lamda*ig1)+(ig1*ig1)));

ig2=unifrnd(0,1,1,1);

ig3=1/(1+ab1);

if(ig2<=ig3)

ab(ra)=ab1;

else

ab(ra)=1/ab1;

end

end

x=exp(sh).*ab;

%--------------------sigma------------------------%

r1=length(sm);

L(r1)=0;

for r=1:r1

u=normrnd(0,sm(r),T,N);

si(T,N)=0;

for j=1:N

si(1,j)=u(1,j);

for i=2:T

sig=sm(r)*sm(r);

mu=omega+beta*si(i-1,j);

si(i,j)=mu+sqrt(sig)*u(i,j);
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end

end

for q=1:4

a1(T,2)=0;

ch(T,N)=0;

ch(T,:)=1;

for h=T:-1:1

y=(0.5*log(lamda))+0.5*(si(h,:)’)-0.5*log(2*pi)-1.5*log(x(h))

-((lamda*power((x(h)-exp(si(h,:)’)),2))./(2*exp(si(h,:)’)*x(h)))

+(log(ch(h,:)))’;

y1=si(h,:)’;

p=polyfit(y1,y,2);

a1(h,:)=[p(2),p(1)];

if(h>1)

ch(h-1,:)=(1/sqrt(1-(2*sm(r)*sm(r)*p(1)))).*exp((((sm(r)*sm(r))

/(2*(1-(2*sm(r)*sm(r)*p(1))))).*power(((omega+beta*si(h-1,:)’)

./(sm(r)*sm(r)))+p(2),2))-(0.5*power((omega+beta*si(h-1,:)’)

./sm(r),2)));

end

end

s1(T,N)=0;

for l=1:N

s1(1,l)=u(1,l);

for k=2:T
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sig1=(sm(r)*sm(r))/(1-(2*sm(r)*sm(r)*a1(k,2)));

mu1=sig1*((omega+beta*s1(k-1,l))+a1(k,1));

s1(k,l)=mu1+sqrt(sig1)*u(k,l);

end

end

si=s1;

a(:,:,q)=a1;

end

b=a(:,:,4);

z=s1;

p1(T,N)=0;

q1(T,N)=0;

m1(T,N)=0;

p1(1,:)=sqrt((lamda*exp(z(1,:)))/(2*pi*x(1)^3))

*exp(-((lamda*power((x(1)-exp(z(1,:))),2))

/(2*x(1)*exp(z(1,:)))));

q1(1,:)=(1/(sm(r)*sqrt(2*pi))).*(exp(-((1/(2*sm(r)*sm(r)))

.*power((z(1,:)-omega-beta*u(1,:)),2))));

m1(1,:)=(sqrt(1-(2*sm(r)*sm(r)*b(1,2)))/(sm(r)*sqrt(2*pi)))

*exp(-(((1-(2*sm(r)*sm(r)*b(1,2)))/(2*sm(r)*sm(r)))

*power((z(1,:)-(((sm(r)*sm(r))/(1-(2*sm(r)*sm(r)*b(1,2))))

*(((omega+beta*u(1,:))/(sm(r)*sm(r)))+b(1,1)))),2)));

for w=2:T

p1(w,:)=sqrt((lamda*exp(z(w,:)))/(2*pi*x(w)^3))
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*exp(-((lamda*power((x(w)-exp(z(w,:))),2))

/(2*x(w)*exp(z(w,:)))));

q1(w,:)=(1/(sm(r)*sqrt(2*pi))).*(exp(-((1/(2*sm(r)*sm(r)))

.*power((z(w,:)-omega-beta*z(w-1,:)),2))));

m1(w,:)=(sqrt(1-(2*sm(r)*sm(r)*b(w,2)))/(sm(r)*sqrt(2*pi)))

*exp(-(((1-(2*sm(r)*sm(r)*b(w,2)))/(2*sm(r)*sm(r)))

*power((z(w,:)-(((sm(r)*sm(r))/(1-(2*sm(r)*sm(r)*b(w,2))))

*(((omega+beta*z(w-1,:))/(sm(r)*sm(r)))+b(w,1)))),2)));

end

d=(p1.*q1)./m1;

L(r)=sum(prod(d));

end

Ls=max(L);

e=1;

while(Ls~=L(e))

e=e+1;

end

smh=sm(e);

%----------------------------end estimation of sigma--------------------%

%--------------------lamda------------------------%

r2=length(lm);

L1(r2)=0;

for rg=1:r2

u1=normrnd(0,smh,T,N);
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si1(T,N)=0;

for j=1:N

si1(1,j)=u1(1,j);

for i=2:T

sig2=smh*smh;

mu2=omega+beta*si1(i-1,j);

si1(i,j)=mu2+sqrt(sig2)*u1(i,j);

end

end

for q=1:4

a2(T,2)=0;

ch1(T,N)=0;

ch1(T,:)=1;

for h=T:-1:1

y2=(0.5*log(lm(rg)))+0.5*(si1(h,:)’)-0.5*log(2*pi)-1.5*log(x(h))

-((lm(rg)*power((x(h)-exp(si1(h,:)’)),2))./(2*exp(si1(h,:)’)*x(h)))

+(log(ch1(h,:)))’;

y3=si1(h,:)’;

pr=polyfit(y3,y2,2);

a2(h,:)=[pr(2),pr(1)];

if(h>1)

ch1(h-1,:)=(1/sqrt(1-(2*smh*smh*pr(1)))).*exp((((smh*smh)

/(2*(1-(2*smh*smh*pr(1))))).*power(((omega+beta*si1(h-1,:)’)

./(smh*smh))+pr(2),2))-(0.5
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*power((omega+beta*si1(h-1,:)’)./smh,2)));

end

end

s2(T,N)=0;

for l=1:N

s2(1,l)=u1(1,l);

for k=2:T

sig3=(smh*smh)/(1-(2*smh*smh*a2(k,2)));

mu3=sig3*((omega+beta*s2(k-1,l))+a2(k,1));

s2(k,l)=mu3+sqrt(sig3)*u1(k,l);

end

end

si1=s2;

aa(:,:,q)=a2;

end

b1=aa(:,:,4);

z1=s2;

p11(T,N)=0;

q11(T,N)=0;

m11(T,N)=0;

p11(1,:)=sqrt((lm(rg)*exp(z1(1,:)))/(2*pi*x(1)^3))

*exp(-((lm(rg)*power((x(1)-exp(z1(1,:))),2))

/(2*x(1)*exp(z1(1,:)))));

q11(1,:)=(1/(smh*sqrt(2*pi))).*(exp(-((1/(2*smh*smh))
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.*power((z1(1,:)-omega-beta*u1(1,:)),2))));

m11(1,:)=(sqrt(1-(2*smh*smh*b1(1,2)))/(smh*sqrt(2*pi)))

*exp(-(((1-(2*smh*smh*b1(1,2)))/(2*smh*smh))*power((z1(1,:)

-(((smh*smh)/(1-(2*smh*smh*b1(1,2))))*(((omega+beta*u1(1,:))

/(smh*smh))+b1(1,1)))),2)));

for w=2:T

p11(w,:)=sqrt((lm(rg)*exp(z1(w,:)))/(2*pi*x(w)^3))

*exp(-((lm(rg)*power((x(w)-exp(z1(w,:))),2))

/(2*x(w)*exp(z1(w,:)))));

q11(w,:)=(1/(smh*sqrt(2*pi))).*(exp(-((1/(2*smh*smh))

.*power((z1(w,:)-omega-beta*z1(w-1,:)),2))));

m11(w,:)=(sqrt(1-(2*smh*smh*b1(w,2)))/(smh*sqrt(2*pi)))

*exp(-(((1-(2*smh*smh*b1(w,2)))/(2*smh*smh))*power((z1(w,:)

-(((smh*smh)/(1-(2*smh*smh*b1(w,2))))*(((omega+beta*z1(w-1,:))

/(smh*smh))+b1(w,1)))),2)));

end

d1=(p11.*q11)./m11;

L1(rg)=sum(prod(d1));

end

Lg=max(L1);

e1=1;

while(Lg~=L1(e1))

e1=e1+1;

end
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lmh=lm(e1);

%--------------------------------end-----------------------------------%

%-------------------------omega-------------------------%

r3=length(om);

L2(r3)=0;

for ro=1:r3

u2=normrnd(0,smh,T,N);

si2(T,N)=0;

for j=1:N

si2(1,j)=u2(1,j);

for i=2:T

sig4=smh*smh;

mu4=om(ro)+beta*si2(i-1,j);

si2(i,j)=mu4+sqrt(sig4)*u2(i,j);

end

end

for q=1:4

a3(T,2)=0;

ch2(T,N)=0;

ch2(T,:)=1;

for h=T:-1:1

y4=(0.5*log(lmh))+0.5*(si2(h,:)’)-0.5*log(2*pi)-1.5*log(x(h))

-((lmh*power((x(h)-exp(si2(h,:)’)),2))./(2*exp(si2(h,:)’)*x(h)))

+(log(ch2(h,:)))’;
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y5=si2(h,:)’;

pr1=polyfit(y5,y4,2);

a3(h,:)=[pr1(2),pr1(1)];

if(h>1)

ch2(h-1,:)=(1/sqrt(1-(2*smh*smh*pr1(1)))).*exp((((smh*smh)

/(2*(1-(2*smh*smh*pr1(1))))).*power(((om(ro)+beta*si2(h-1,:)’)

./(smh*smh))+pr1(2),2))-(0.5*power((om(ro)

+beta*si2(h-1,:)’)./smh,2)));

end

end

s3(T,N)=0;

for l=1:N

s3(1,l)=u2(1,l);

for k=2:T

sig5=(smh*smh)/(1-(2*smh*smh*a3(k,2)));

mu5=sig5*((om(ro)+beta*s3(k-1,l))+a3(k,1));

s3(k,l)=mu5+sqrt(sig5)*u2(k,l);

end

end

si2=s3;

aa1(:,:,q)=a3;

end

b2=aa1(:,:,4);

z2=s3;
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p22(T,N)=0;

q22(T,N)=0;

m22(T,N)=0;

p22(1,:)=sqrt((lmh*exp(z2(1,:)))/(2*pi*x(1)^3))

*exp(-((lmh*power((x(1)-exp(z2(1,:))),2))

/(2*x(1)*exp(z2(1,:)))));

q22(1,:)=(1/(smh*sqrt(2*pi))).*(exp(-((1/(2*smh*smh)).*power((z2(1,:)

-om(ro)-beta*u2(1,:)),2))));

m22(1,:)=(sqrt(1-(2*smh*smh*b2(1,2)))/(smh*sqrt(2*pi)))

*exp(-(((1-(2*smh*smh*b2(1,2)))/(2*smh*smh))*power((z2(1,:)

-(((smh*smh)/(1-(2*smh*smh*b2(1,2))))*(((om(ro)

+beta*u2(1,:))/(smh*smh))+b2(1,1)))),2)));

for w=2:T

p22(w,:)=sqrt((lmh*exp(z2(w,:)))/(2*pi*x(w)^3))

*exp(-((lmh*power((x(w)-exp(z2(w,:))),2))

/(2*x(w)*exp(z2(w,:)))));

q22(w,:)=(1/(smh*sqrt(2*pi))).*(exp(-((1/(2*smh*smh))

.*power((z2(w,:)-om(ro)-beta*z2(w-1,:)),2))));

m22(w,:)=(sqrt(1-(2*smh*smh*b2(w,2)))/(smh*sqrt(2*pi)))

*exp(-(((1-(2*smh*smh*b2(w,2)))/(2*smh*smh))

*power((z2(w,:)-(((smh*smh)/(1-(2*smh*smh*b2(w,2))))

*(((om(ro)+beta*z2(w-1,:))/(smh*smh))+b2(w,1)))),2)));

end

d2=(p22.*q22)./m22;
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L2(ro)=sum(prod(d2));

end

Lo=max(L2);

e2=1;

while(Lo~=L2(e2))

e2=e2+1;

end

omh=om(e2);

%------------------------end----------------------------%

%--------------------------beta-------------------------%

r4=length(bt);

L3(r4)=0;

for rb=1:r4

u3=normrnd(0,smh,T,N);

si3(T,N)=0;

for j=1:N

si3(1,j)=u3(1,j);

for i=2:T

sig6=smh*smh;

mu6=omh+bt(rb)*si3(i-1,j);

si3(i,j)=mu6+sqrt(sig6)*u3(i,j);

end

end

for q=1:4



Appendix E 234

a4(T,2)=0;

ch3(T,N)=0;

ch3(T,:)=1;

for h=T:-1:1

y6=(0.5*log(lmh))+0.5*(si3(h,:)’)-0.5*log(2*pi)-1.5*log(x(h))

-((lmh*power((x(h)-exp(si3(h,:)’)),2))./(2*exp(si3(h,:)’)*x(h)))

+(log(ch3(h,:)))’;

y7=si3(h,:)’;

pr2=polyfit(y7,y6,2);

a4(h,:)=[pr2(2),pr2(1)];

if(h>1)

ch3(h-1,:)=(1/sqrt(1-(2*smh*smh*pr2(1)))).*exp((((smh*smh)/(2

*(1-(2*smh*smh*pr2(1))))).*power(((omh+bt(rb)*si3(h-1,:)’)

./(smh*smh))+pr2(2),2))-(0.5*power((omh

+bt(rb)*si3(h-1,:)’)./smh,2)));

end

end

s4(T,N)=0;

for l=1:N

s4(1,l)=u3(1,l);

for k=2:T

sig7=(smh*smh)/(1-(2*smh*smh*a4(k,2)));

mu7=sig7*((omh+bt(rb)*s4(k-1,l))+a4(k,1));

s4(k,l)=mu7+sqrt(sig7)*u3(k,l);
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end

end

si3=s4;

aa2(:,:,q)=a4;

end

b3=aa2(:,:,4);

z3=s4;

p33(T,N)=0;

q33(T,N)=0;

m33(T,N)=0;

p33(1,:)=sqrt((lmh*exp(z3(1,:)))/(2*pi*x(1)^3))*exp(-((lmh*power((x(1)

-exp(z3(1,:))),2))/(2*x(1)*exp(z3(1,:)))));

q33(1,:)=(1/(smh*sqrt(2*pi))).*(exp(-((1/(2*smh*smh)).*power((z3(1,:)

-omh-bt(rb)*u3(1,:)),2))));

m33(1,:)=(sqrt(1-(2*smh*smh*b3(1,2)))/(smh*sqrt(2*pi)))

*exp(-(((1-(2*smh*smh*b3(1,2)))/(2*smh*smh))*power((z3(1,:)

-(((smh*smh)/(1-(2*smh*smh*b3(1,2))))*(((omh+bt(rb)

*u3(1,:))/(smh*smh))+b3(1,1)))),2)));

for w=2:T

p33(w,:)=sqrt((lmh*exp(z3(w,:)))/(2*pi*x(w)^3))*exp(-((lmh*power((x(w)

-exp(z3(w,:))),2))/(2*x(w)*exp(z3(w,:)))));

q33(w,:)=(1/(smh*sqrt(2*pi))).*(exp(-((1/(2*smh*smh)).*power((z3(w,:)

-omh-bt(rb)*z3(w-1,:)),2))));

m33(w,:)=(sqrt(1-(2*smh*smh*b3(w,2)))/(smh*sqrt(2*pi)))
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*exp(-(((1-(2*smh*smh*b3(w,2)))/(2*smh*smh))

*power((z3(w,:)-(((smh*smh)/(1-(2*smh*smh*b3(w,2))))

*(((omh+bt(rb)*z3(w-1,:))/(smh*smh))+b3(w,1)))),2)));

end

d3=(p33.*q33)./m33;

L3(rb)=sum(prod(d3));

end

Lb=max(L3);

e3=1;

while(Lb~=L3(e3))

e3=e3+1;

end

bh=bt(e3);

sma(rahul)=smh;

lma(rahul)=lmh;

oma(rahul)=omh;

bta(rahul)=bh;

toc

end

est=[mean(oma) mean(bta) mean(sma) mean(lma)]

stvari=[sqrt(var(oma)) sqrt(var(bta)) sqrt(var(sma)) sqrt(var(lma))]

-----------------------------------------------------------------------
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