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PREFACE 

Electrochemical sensors represent a rapidly growing class of chemical 

sensors. In comparison with optical, mass sensitive and heat sensitive sensors, 

electrochemical sensors offer advantages such as experimental simplicity, selective 

response and lower cost. Combined with the prospect of simultaneous 

determination of two or more analytes, thereby eliminating complex separation 

steps involving large quantities of solvents, voltammetric sensors constitute the 

most promising candidate in green chemical analysis. The key element in 

voltammetric sensing is the working electrode which can be tailored for specific 

use by chemical modification with species having functional groups to its surface. 

Electrogeneration of polymer films on to the surface of electrodes are much useful 

in this regard.  

The thesis presents the development of electropolymer modified glassy 

carbon electrodes for the simultaneous determination of DNA bases guanine, 

adenine, thymine and cytosine along with uric acid, a DNA metabolite. Polymers 

with acidic functionalities were electrogenerated and deposited on to the electrode 

surface and used for the determination of DNA bases. Five different sensors were 

developed of which three were suitable for simultaneous determination. The 

success encountered with simultaneous determination of DNA bases was extended 

to develop a sensor for the simultaneous determination of xanthine and its 

derivatives, theophylline and caffeine. Investigation of the electrochemical 

behaviour of biological molecules are reported to be significant in understanding 

their biological redox behaviour. The kinetics of the electro-oxidation of these 

biological molecules has also been studied using two different voltammetric 

models. 

These results have been expounded through the nine chapters in the thesis 

entitiled ‘Electropolymer based sensors for DNA bases and xanthines and their 

electrokinetic studies’. 



Chapter 1 outlines the background of the present investigation with 

reference to voltammetric sensors, electropolymers and electropolymer modified 

electrodes. The various techniques employed in this work is described in detail.  A 

review of the literature found on the voltammetric determination of DNA bases is 

given in this chapter. 

Chapter 2 describes the fabrication procedure and characterisation of 

various electrodes used for the development of sensors. The experimental details 

involved in the development of the sensors is also described in this chapter. 

Chapter 3 deals with the development of poly(aspartic acid) modified 

glassy carbon electrode as a sensor for adenine. Optimisation of experimental 

parameters such as supporting electrolyte and number of cycles of polymerisation 

is explained. Interferences produced by possibly co-existing species is explained 

and application of the sensor for the determination of adenine in acid denatured 

DNA sample is accounted. Study of variation of peak parameters with scan rate is 

described and use of the information extracted from this study for the 

determination of kinetic parameters and mechanism of the reaction is 

demonstrated. Study of kinetics of electro-oxidation of DNA bases on the 

developed sensor is described. 

Chapter 4 illustrates progression of a poly(glutamic acid) modified glassy 

carbon electrode as a sensor for thymine. A description of optimisation of 

experimental parameters and influence of possibly co-existing species on the 

sensor performance is given. The determination of thymine in spiked synthetic 

serum and urine is illustrated. From the study of influence of pH and scan rate on 

the oxidation potential of thymine on poly(glutamic acid) modified glassy carbon 

electrode, the possible mechanism of the electro-oxidation is proposed. The 

kinetics of electro-oxidation of DNA bases on the poly(glutamic acid) modified 

glassy carbon electrode was studied and the results are discussed. 

Chapter 5 gives a description of poly(para toluene sulfonic acid) modified 

glassy carbon electrode being used for the simultaneous determination of the 



purine bases guanine and adenine along with its metabolite uric acid. The 

simultaneous determination of guanine, thymine and uric acid on the same sensor 

is also explored. Optimisation of experimental parameters, study of interferences 

produced by other species, variation of peak parameters with scan rate and 

chronoamperometric determination of diffusion coefficient are illustrated. 

Simultaneous determination of guanine and adenine in acid denatured DNA 

samples has been explained. Determination of rate constants for the electro-

oxidation of DNA bases on the poly(para toluene sulfonic acid) modified glassy 

carbon electrode is also explained. 

Chapter 6 details the simultaneous determination of guanine and adenine 

together with their metabolite uric acid on a poly(para amino benzene sulfonic 

acid) modified glassy carbon electrode. Calibration of the sensor for individual as 

well as simultaneous determination under the optimised experimental conditions 

has been explained. Successful application of the sensor for simultaneous 

determination of guanine and adenine in acid denatured DNA as well as 

simultaneous determination of guanine, adenine and uric acid in acid denatured 

DNA spiked with uric acid has been illustrated. From the information obtained 

from chronoamperometric measurements and linear sweep voltammetry at different 

scan rates, rate constant for electro-oxidation of each of the electro-oxidation 

process on poly(para amino benzene sulfonic acid) modified glassy carbon 

electrode has been calculated and presented in this chapter. 

In Chapter 7, the electrocatalytic resolution of guanine, adenine, cytosine 

and uric acid on a poly(4- amino-3-hydroxy-napthalene-1-sulfonic acid) modified 

glassy carbon electrode is presented. Optimisation of sensor performance, 

calibration, interferences and application of the sensor has been elaborated along 

with the kinetic studies of all the DNA bases. 

The success encountered with simultaneous determination of DNA bases 

was extended to develop a sensor for the simultaneous determination of xanthine 

and its derivatives, theophylline and caffeine. 



Chapter 8 is on the use of poly(para amino benzene sulfonic acid) 

modified glassy carbon electrode as a sensor for the simultaneous determination of 

xanthine, its methyl derivatives theophylline and caffeine. A brief review of the 

different sensors for the determination of xanthine, theophylline and caffeine based 

on modified carbon electrodes is presented. The calibration of the sensor for 

individual and simultaneous determination of these analytes under the optimised 

experimental conditions is explained. Study of interferences produced by possibly 

co-existing species has been explained in detail and the possibility of interference 

free simultaneous determination of xanthine, theophylline and caffeine along with 

uric acid, the oxidation product of xanthine is expounded. The utility of the sensor 

for determination of these analytes in real samples, tea bag, blended coffee powder 

and commercially available pharmaceutical formulation has been elaborated. The 

rate constants for electro-oxidation of xanthine, theophylline and caffeine on the 

developed sensor calculated from chronoamperometric and linear sweep 

voltammetric measurements have been listed in this chapter. 

In Chapter 9, the work presented in the thesis has been summarised and 

the general conclusions regarding the sensor performance and kinetics of electro-

oxidation of DNA bases on the developed sensors has been presented. The 

performance of the developed sensors for simultaneous determination is compared 

with other electropolymer modified electrodes reported in literature. 

The list of references cited in the thesis is compiled at the end of the thesis 

as a separate section.  
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The other purine base found in DNA is Gu or 2-amino-9H-purin-6(1H)-

one, having a molecular mass of 151.13. It was named after ‘guano’ the bird 

droppings which contain guanine in abundance. It is a main component of 

guanosine tri-phosphate which is very similar to ATP. Gu, being a DNA repair 

product, is an indicator of oxidative damage of DNA, by its levels in urine [39]. 

The pyrimidine nucleobase Thy was discovered by Albrecht Kossel 

in the early 1890s in calf thymus DNA after the removal of the purines [36]. 

Thy or 5-methylpyrimidine-2,4(1H,3H)-dione, has a molecular mass of 

126.12. In combination with deoxy ribose sugar, Thy forms thymidine 

which is the major component of thymidine tri phosphate (TTP) which is 

involved in cellular respiration. Photodimerisation of adjacent thymine 

molecules is the major reason for mutations in DNA [34]. Thy levels are 

elevated in body fluids like urine, serum and cerebrospinal fluid in case of 

dihydrothymine dehydrogenase deficiency [40]. 

The fourth nucleobase is Cyt or 4-aminopyrimidin-2(1H)-one. It had 

a molecular mass of 111.1 and was discovered along with Thy. Being an 

unstable molecule, it is the most common site for mutations in DNA and 

RNA. On deamination, it gets converted to uracil and on methylation 

followed by deamination gets converted to Thy [34].  The nucleotide of Cyt 

with deoxyribose sugar known as cytidine is a component of the cofactor 

cytidine tri phosphate CTP, which plays an important role in carbohydrate 

and lipid metabolism [41]. Cyt, in combination with arabinose sugar forms 

cytosine arabinoside which is a chemotherapy medication [42]. 

Initially it was believed that DNA was made up of equal quantities of 

the four nucleobases, the tetranucleotide hypothesis. Chargaff after careful 

study of the composition of bases in the DNA of various species, put forward 

that although the relative amount of the nucleobases varied with species, there 
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was a 1:1 correspondence between purines and pyrimidines. i.e., in all the 

species, the amount of Ad was equal to Thy and the amount of Gu was equal 

to Cyt within the margin of error [43]. The ratio [      ]
[      ]

 is known as 

dissymmetry ratio and is a characteristic of a particular species [44].  

 
Uric acid 

Uric acid (Ua) or 7,9-dihydro-1H-purine-2,6,8(3H)-trione, is the 
primary product of purine metabolism [45]. It is a purine derivative with 
molecular mass 168.1. Ua formed by the metabolism of purines is typically 
excreted through urine in the range 250 -750 mg dL-1[46].  In the range 4.1-
8.8 mg dL-1, Ua is one of the natural anti-oxidants present in blood [47]. 
Anomalous concentrations of Ua in body fluids occur in conditions of gout, 
hyperuricemia, cardiovascular abnormalities etc. [45]. 

The determination of DNA bases is very important for diagnosis of 
genetic diseases as well as for understanding the fundamental mechanisms 
involved in genetic coding [48]. In physiological fluids, Ua is generally 
found together with the purine nucleobases [49]. Among the various 
analytical methods available, voltammetry seems to be the most practical 
technique. DNA bases being electro-active, their sensitive, selective and 
rapid determination can be achieved with voltammetry. Voltammetry which 
requires only small volume of samples, offer the possibility of developing 
miniature sensors. The pioneering work on the electrochemical detection of 
nucleic acids by polarography had been carried out by E. Paleček [49a-49d] 
which inspired the development of numerous electrochemical nucleic acid 

sensors which have been reviewed by Paleček himself [49e-49i].  
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Future perspectives 

Sensors are the need of the hour in the present world as it finds 

applications in every field of life, be it quality control, medical diagnostics, 

environmental monitoring etc. Maybe that is the reason why it is one of the 

most active areas of research.  

The present work is part of an attempt to develop simple and viable 

sensors for clinical analysis. Electropolymer based sensors have been 

developed which gave reasonably good working ranges and detection limits. 

In future, electropolymers with different free functionalities can be studied 

for possible sensor applications. The performance of these sensors can be 

enhanced by using electropolymer composites as the modification rather 

than the electropolymer alone. Composites of electropolymers with 

nanoparticles, quantum dots, metal complexes, macrocycles etc. could give 

better performance as sensors. Further, commercialisation of the developed 

sensors can be made possible by attempting device fabrication incorporating 

the developed sensor in miniature form. 

Study of the kinetics of electro-oxidation processes can be of use in 

understanding the nuances of analyte-sensor interactions which can further 

help in developing better sensors. Combining the kinetic study with 

computational analysis, better understanding of the electrode processes can 

be achieved. Combining the principles of analytical chemistry, physical 

chemistry and computational chemistry there are chances of developing 

high performing sensors suitable for high throughput applications. 
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Supplementary Information 

In the thesis, the electrochemical impedance measurements have 

been carried out using two different probe solutions.  

For the characterisation of the modified electrode, the EIS 

measurements of the modified electrode were carried using the redox probe 

[Fe(CN)6]-3/-4 and compared with the EIS measurement on bare electrode. 

The change in the charge transfer resistance gives an idea about how 

effective the modification is for the electron transfer for the oxidation 

reaction,              .  

EIS measurements were also carried out on the bare and modified 

electrodes using the target analyte solution under the optimum experimental 

conditions. This gives information regarding how effective the modification 

is for the charge transfer for the respective electrode reaction taking place 

under the optimised experimental conditions.  

 

…… …… 
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♦ Qualified NET in Chemical Sciences (December 2002). 

♦ Qualified GATE with a percentile score of 89.14 (February 2003). 

Teaching Experience 

Institution Designation Period 
St. Paul’s College, Ernakulam Guest Lecturer June 2004– November 2004 

S. N. College, Cherthala Assistant Professor December 2004 – till date 

 
Membership in Professional Organisations 

 
• Life member: Swadeshi Science Movement (SSM) 

• Life member: Indian Society for Electroanalytical Chemists (ISEAC) 

• Life member: Centre for Environment Education and Technology (CEET) 

• Life member: Academy of Chemistry Teachers (ACT) 

 

DECLARATION 

I hereby declare that the above-mentioned details are true to the best of my knowledge and belief. 

 
 
 

Jesny S. 
 
Ernakulam 
16-11-2017 


	FIRST PAGES
	Binder3
	chapter 1--------
	chapter 2-------- - 
	chapter 3-------- -  - 
	chapter 4-------- -  -  - 
	chapter 5-------- -  -  -  - 
	chapter 6-------- - 
	chapter 7-------- -  - 
	chapter 8------- -  -  - 
	chapter 9-------- -  - 
	chapter 10-------- -  -  - 
	chapter 11-------- -  -  -  - 
	chapter 12-------- -  -  -  -  - 
	chapter 13-------- -  -  -  -  -  - 




