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PREFACE

Electrochemical sensors represent a rapidly growing class of chemical
sensors. In comparison with optical, mass sensitive and heat sensitive sensors,
electrochemical sensors offer advantages such as experimental simplicity, selective
response and lower cost. Combined with the prospect of simultaneous
determination of two or more analytes, thereby eliminating complex separation
steps involving large quantities of solvents, voltammetric sensors constitute the
most promising candidate in green chemical analysis. The key element in
voltammetric sensing is the working electrode which can be tailored for specific
use by chemical modification with species having functional groups to its surface.
Electrogeneration of polymer films on to the surface of electrodes are much useful

in this regard.

The thesis presents the development of electropolymer modified glassy
carbon electrodes for the simultaneous determination of DNA bases guanine,
adenine, thymine and cytosine along with uric acid, a DNA metabolite. Polymers
with acidic functionalities were electrogenerated and deposited on to the electrode
surface and used for the determination of DNA bases. Five different sensors were
developed of which three were suitable for simultaneous determination. The
success encountered with simultaneous determination of DNA bases was extended
to develop a sensor for the simultaneous determination of xanthine and its
derivatives, theophylline and caffeine. Investigation of the -electrochemical
behaviour of biological molecules are reported to be significant in understanding
their biological redox behaviour. The kinetics of the electro-oxidation of these
biological molecules has also been studied using two different voltammetric

models.

These results have been expounded through the nine chapters in the thesis
entitiled ‘Electropolymer based sensors for DNA bases and xanthines and their

electrokinetic studies’.



Chapter 1 outlines the background of the present investigation with
reference to voltammetric sensors, electropolymers and electropolymer modified
electrodes. The various techniques employed in this work is described in detail. A
review of the literature found on the voltammetric determination of DNA bases is

given in this chapter.

Chapter 2 describes the fabrication procedure and characterisation of
various electrodes used for the development of sensors. The experimental details

involved in the development of the sensors is also described in this chapter.

Chapter 3 deals with the development of poly(aspartic acid) modified
glassy carbon electrode as a sensor for adenine. Optimisation of experimental
parameters such as supporting electrolyte and number of cycles of polymerisation
is explained. Interferences produced by possibly co-existing species is explained
and application of the sensor for the determination of adenine in acid denatured
DNA sample is accounted. Study of variation of peak parameters with scan rate is
described and use of the information extracted from this study for the
determination of kinetic parameters and mechanism of the reaction is
demonstrated. Study of kinetics of electro-oxidation of DNA bases on the

developed sensor is described.

Chapter 4 illustrates progression of a poly(glutamic acid) modified glassy
carbon electrode as a sensor for thymine. A description of optimisation of
experimental parameters and influence of possibly co-existing species on the
sensor performance is given. The determination of thymine in spiked synthetic
serum and urine is illustrated. From the study of influence of pH and scan rate on
the oxidation potential of thymine on poly(glutamic acid) modified glassy carbon
electrode, the possible mechanism of the electro-oxidation is proposed. The
kinetics of electro-oxidation of DNA bases on the poly(glutamic acid) modified

glassy carbon electrode was studied and the results are discussed.

Chapter 5 gives a description of poly(para toluene sulfonic acid) modified

glassy carbon electrode being used for the simultaneous determination of the



purine bases guanine and adenine along with its metabolite uric acid. The
simultaneous determination of guanine, thymine and uric acid on the same sensor
is also explored. Optimisation of experimental parameters, study of interferences
produced by other species, variation of peak parameters with scan rate and
chronoamperometric determination of diffusion coefficient are illustrated.
Simultaneous determination of guanine and adenine in acid denatured DNA
samples has been explained. Determination of rate constants for the electro-
oxidation of DNA bases on the poly(para toluene sulfonic acid) modified glassy

carbon electrode is also explained.

Chapter 6 details the simultaneous determination of guanine and adenine
together with their metabolite uric acid on a poly(para amino benzene sulfonic
acid) modified glassy carbon electrode. Calibration of the sensor for individual as
well as simultaneous determination under the optimised experimental conditions
has been explained. Successful application of the sensor for simultaneous
determination of guanine and adenine in acid denatured DNA as well as
simultaneous determination of guanine, adenine and uric acid in acid denatured
DNA spiked with uric acid has been illustrated. From the information obtained
from chronoamperometric measurements and linear sweep voltammetry at different
scan rates, rate constant for electro-oxidation of each of the electro-oxidation
process on poly(para amino benzene sulfonic acid) modified glassy carbon

electrode has been calculated and presented in this chapter.

In Chapter 7, the electrocatalytic resolution of guanine, adenine, cytosine
and uric acid on a poly(4- amino-3-hydroxy-napthalene- 1-sulfonic acid) modified
glassy carbon electrode is presented. Optimisation of sensor performance,
calibration, interferences and application of the sensor has been elaborated along

with the kinetic studies of all the DNA bases.

The success encountered with simultaneous determination of DNA bases
was extended to develop a sensor for the simultaneous determination of xanthine

and its derivatives, theophylline and caffeine.



Chapter 8 is on the use of poly(para amino benzene sulfonic acid)
modified glassy carbon electrode as a sensor for the simultaneous determination of
xanthine, its methyl derivatives theophylline and caffeine. A brief review of the
different sensors for the determination of xanthine, theophylline and caffeine based
on modified carbon electrodes is presented. The calibration of the sensor for
individual and simultaneous determination of these analytes under the optimised
experimental conditions is explained. Study of interferences produced by possibly
co-existing species has been explained in detail and the possibility of interference
free simultaneous determination of xanthine, theophylline and caffeine along with
uric acid, the oxidation product of xanthine is expounded. The utility of the sensor
for determination of these analytes in real samples, tea bag, blended coffee powder
and commercially available pharmaceutical formulation has been elaborated. The
rate constants for electro-oxidation of xanthine, theophylline and caffeine on the
developed sensor calculated from chronoamperometric and linear sweep

voltammetric measurements have been listed in this chapter.

In Chapter 9, the work presented in the thesis has been summarised and
the general conclusions regarding the sensor performance and kinetics of electro-
oxidation of DNA bases on the developed sensors has been presented. The
performance of the developed sensors for simultaneous determination is compared

with other electropolymer modified electrodes reported in literature.

The list of references cited in the thesis is compiled at the end of the thesis

as a separate section.
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Chapter é'

Introduction

Chemical analysis is a fundamental requirement for all scientific studies and is
indispensable for doctors, farmers, pharmacists, geologists, technologists etc. to
name a few. This makes analytical chemistry as important as any branch of
chemistry, applied or theoretical. Analytical chemistry employs physical, chemical
and mathematical principles to obtain results, thus making it almost an
independent disciplinein its own right. At present the field has evolved much, from
the classical methods to instrumental methods. Among the instrumental methods,
electroanalytical methods are particularly significant. Electroanalysis is capable
of obtaining real-time information with minimum impact to the environment. It
can be considered as an analytical method which keeps in tune with the principles
of green chemistry. Electroanalysis can be carried out using electrodes made of
non-toxic materials and green solvents. As the sample volume required is very
small, the waste generation is greatly reduced. The versatile electroanalytical
detection system, with its high sensitivity and possibility of miniaturisation, can be
easily adapted into analytical microsystems.

1.1 Electroanalytical Chemistry

The use of electrochemical principles for the qualitative and
quantitative analysis of chemical species can be termed as electroanalytical
chemistry or electroanalysis and the experimental methods used for such
analyses, electroanalytical methods. Electroanalysis makes use of the
interplay between electrical quantities like current I, Potential V or charge Q
and chemical reactions for making inferences [1]. Electrochemistry which
converts chemical information into electrical signals which are detectable by

simple and cost-effective instrumentation [2] provides an attractive tool for
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the analytical chemist. In addition to quantitative and qualitative analysis,
electroanalytical methods can be used to obtain time-dependent information
on kinetics of reactions [3]. Electrochemical methods of analysis, in
comparison to other instrumental methods provide rapid, comparatively less
expensive, sensitive and selective characteristic information about molecules
and chemical systems along with qualitative and quantitative as well as
thermodynamic and kinetic data [4]. They also offer options for
miniaturisation, thus enabling real time analysis. Further, electrochemical
methods of analysis require the use of very small quantities of solvents and

reagents.

Based on the type of electrical signal used for quantitation,
electroanalytical methods can be either potentiostatic or controlled potential
methods or potentiometric or controlled current methods [1]. Potentiostatic
electroanalytic methods are conductometry, voltammetry, amperometry as
well as coulometry; whereas potentiometry and coulometric titrations are
controlled current methods. Electroanalytical methods require at least two
electrodes made of electrically conducting materials immersed in an
electrolytic solution forming an electrochemical cell. The electrode which
responds to the analyte is called the working or indicator electrode and the
other which maintains a constant potential is called the reference electrode.
Such a cell may be either electrolytic, consuming electrical energy to cause
an electrochemical reaction or galvanic, producing electrical energy from

electrochemical reaction.
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Conductometry
Potentiometry Voltammetry
.

Controlled
potential

Dynamic Coulometry

Coulometric
titration

Amperometry

Controlled current

Figure 1.1: Classification of electrochemical methods

In conductometry, an AC voltage is applied between two electrodes
immersed in a solution and the current developed is a measure of the
electrolytic conductivity of the solution. In voltammetry, current flowing
through a cell is measured as a function of the applied potential whereas in
amperometry, current is measured at a fixed potential. Coulometry involves
measuring the charge required for controlled potential electrolysis of the
analyte, quantitatively to another oxidation state. The measurement of
equilibrium potential of an indicator electrode against a reference electrode
at zero current conditions is carried out in potentiometry. Coulometric
titration also known as amperostatic coulometry involves maintaining a
constant current through the cell by means of an amperostat, until the signal

indicates completion of the reaction with the analyte [5].
1.2 Voltammetry

The term voltammetry was first used by Kolthoff in 1940, combining
the units of the electrical parameters measured, volt-ampere-metry [6]. The
term is used for all the methods in which the current flowing through an
electrochemical cell is measured as a function of the applied potential. In

voltammetry, current is measured under the condition of complete
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concentration polarisation, i.e., the rate of the electrochemical reaction of
the analyte is limited by the rate of mass transfer from the bulk solution to

the electrode surface.
1.2.1 Voltammetric Cell

A typical voltammetric cell consists of three electrodes; working
electrode, reference electrode and the counter electrode; dipping into an
electrolyte solution, completing a circuit. A potentiostat controls the applied
potential with minimum interference from ohmic drop and the current flowing
through the cell is monitored. The electrochemical reaction of interest takes
place at the working electrode, the potential of which is measured against the
reference electrode. To minimize the current flowing through the reference
electrode (thereby minimizing the polarisation of the reference electrode) and to
keep the distribution of applied potential between the working and reference
electrodes, the current is measured between the working electrode and a

counter electrode.

mV

HA

Current

Refl Work.| Aux. measurement

Figure 1.2: Representation of a three electrode voltammetric cell [5]

I||| Department of Applied Chemistry, Cochin University of Science and Technology



Introduction

1.2.2 Reference electrode

Reference electrode has a well-known and stable electrode potential
which does not vary with the composition of the analyte solution or on
application of an external potential. The standard hydrogen electrode is the
reference electrode whose potential is assumed to be zero. The potentials of
other reference electrodes like silver-silver chloride (Ag/AgCl) electrode,
calomel electrode and quinhydrone electrode are measured with respect to

the standard hydrogen electrode [7].
1.2.3 Counter or Auxiliary electrode

An electrochemical cell employing a three-electrode system makes
use of a counter or auxiliary electrode to measure the current flowing
through the cell. This is to avoid current passage through the reference
electrode which will alter its electrode potential. For an electrode to be used
as a counter electrode it should not dissolve in the medium of the cell and its
area should be larger than that of the working electrode to ensure that the
area of the electrode will not control the limiting current [7]. Platinum
wire/coil/thin foil or Titanium wire are most commonly used as counter

electrodes. Carbon rods are also used in molten salt media.
1.2.4 Working electrode or Indicator electrode

The electrode at which the electrochemical reaction of analyte takes
place is the working electrode. Ideally the working electrode should possess

the following characteristics [7],
e Electrochemical inertness over a broad potential window

e High overvoltage towards hydrogen and oxygen evolution

Electropolymer based sensors for DNA bases and xanthines and their electrokinetic studies ”l“



Chapter 1

e Low ohmic resistance
e Easy regeneration of the electrode surface
e Stable and non-toxic

The geometry of the working electrode is very important in
determining its utility in voltammetric analysis. Working electrodes may be
microelectrodes or ultramicroelectrodes, stationary or rotating, planar disk
or planar ring, screen printed strip or thin film chips. Depending on the
specific purpose any of these electrodes may be chosen as working electrode

for electrochemical measurements.
Generally working electrodes are of four major types [8],
1. Inert metal electrodes: Mercury, Gold, Platinum etc.

2. Inert carbon electrodes: Pyrolytic graphite, Carbon paste, Glassy

carbon, Diamond etc.
3. Reactive electrodes: Iron, Nickel, Copper etc.
4. Photo-excitable electrodes: Silicon, Titanium dioxide, Zinc oxide etc.

In the work presented in this thesis glassy carbon electrode is used as

the working electrode.
1.2.4.1 Glassy Carbon Electrode (GCE)

Glassy carbon, because of its exceptional mechanical and electrical
properties, chemical inertness to solvents, broad working potential window
and reproducible performance, is an attractive option as working electrode
material [1]. It is prepared from a pre-modelled phenol-formaldehyde resin
by subjecting it to a carefully controlled heating program. The structure of

glassy carbon involves thin, tangled ribbons of cross-linked graphite-like
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sheets. Before use, the glassy carbon electrode is subjected to surface pre-
treatment to create active sites and improve its analytical performance. The
pre-treatment involves polishing the surface to a mirror like finish using
alumina particles of 0.05 microns size followed by rinsing in de-ionised

water [1].
1.2.4.2 Chemically Modified Electrodes (CME)

The working electrodes described so far, in their native or bare form
were not always suitable to meet many electrochemical requirements [9].
Their performance was limited by high overpotentials, persistent surface
fouling, low sensitivity and selectivity. These factors drove the
electrochemists to modify the surface of conventional electrodes with
species which allowed them to tailor specific structural and electronic
properties on to the surface to suit their needs. The resulting electrodes are
called Chemically Modified Electrodes (CME). The IUPAC has defined
CME as “an electrode made of a conducting or semiconducting material that
1s coated with a selected monomolecular, multimolecular, ionic, or
polymeric film of a chemical modifier and that by means of faradaic
(charge-transfer) reactions or interfacial potential differences (no net charge
transfer) exhibits chemical, electrochemical, and/or optical properties of the
film” [10]. The functionalization of electrode surface with molecular
reagents find applications in energy conversion, electrochemical synthesis,

microelectronic devices etc.

Surface modification of an electrode can be achieved by adsorption,
chemical reaction or formation of a polymer layer [11]. Adsorption happens
when certain species discover the electrode surface more hospitable than the

bulk solution and hence gets attached to the surface spontaneously. For
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example, organic species, that have double bonds, are often hydrophobic
and chemically adsorb from aqueous solutions on to the surface of carbon or
platinum electrodes [12]. Certain organometallic complexes as well as
materials like carbon nanotubes (CNT), activated charcoal, carbon black,
chitosan etc. can be physisorbed on to solid electrode surfaces by coating a

non-aqueous solution of the material followed by solvent evaporation.

Chemical reaction can be carried out on the surface of the electrode
resulting in covalent attachment of the modifier on to the electrode surface.
Monolayers of alkanethiols can be attached on gold surfaces due to the
strong interaction between gold and sulfur [1]. Such monolayers are
commonly formed by immersing the gold electrode overnight in millimolar
ethanolic solutions of alkanethiol. Nanoparticles can be electrodeposited
onto the electrode surface thereby, altering the electrode properties

significantly.

A common approach for incorporating a modifier onto the electrode
surface has been coverage with an appropriate polymer film. Polymer
modified electrodes can be prepared either by casting a solution droplet
containing the dissolved polymer onto the surface and allowing the solvent
to evaporate or by dip or spin coatings. Electropolymerisation in the
presence of the dissolved monomer is another approach for fabricating
polymer modified electrode. Electropolymerisation allows control of the
film thickness and morphology, and is particularly useful to fabricate

miniaturized sensor surfaces [1].
1.2.5 Solvent and supporting electrolyte

Electrochemical measurements are carried out in a medium which

consists of a supporting electrolyte dissolved in a solvent. The solvent
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should not react chemically with the analyte or products and should be
electrochemically inactive over a broad potential window. Double distilled
water is the most widely used solvent in electrochemical cells. For
electrochemical measurements in non-aqueous medium, organic solvents
such as methanol, acetonitrile, dimethyl formamide or dimethyl sulfoxide

are also used. Such solvents should be purified and dried before use [1].

In potentiostatic experiments, a supporting electrolyte must be used
to eliminate electro-migration effects. The supporting electrolyte should also
be electrochemically inert in the potential window under investigation. It
should be in large excess concentration in comparison to the electroactive
species. Typically supporting electrolyte concentrations are in the range 0.1
M to 1.0 M. When water is used as the solvent, inorganic salts, mineral
acids or buffers are used as supporting electrolyte. Tetra alkyl ammonium

salts are used in organic medium [1].
1.3 Electrode Processes

The term ‘electrode processes’ encompasses all changes and
processes taking place at the surface of electrode or its vicinity while current
is flowing through the electrochemical cell. Electrode processes consist of
the electrode reaction and the mass transport processes [11]. The electrode
reaction involves the transfer of electron between an electrode and the
species in solution. It occurs via quantum mechanical tunnelling between
the electrode and analyte close to the electrode [13]; i.e., the electrode
reaction is a heterogeneous process. For the electrode reaction to take place,
the species should be transported to the electrode surface. The transport can

take place by any of the following processes.
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e Diffusion of electroactive species in response to the concentration

gradient.

e Convection of species in response to mechanical stirring of the

solution.

e Migration of electroactive species in response to the electrostatic

attraction with the electrode.

In voltammetric methods of analysis, conditions are so created in
solution that, mass transport by the migration and convection of species in
solution is prevented. This is achieved by the addition of a large excess of
an inert electrolyte called supporting electrolyte and keeping the solution
unstirred respectively. In such a case, the current developed is termed
diffusion controlled limiting current. That is, current flowing through the
cell is a function of concentration of the bulk solution, making possible

quantitative determination by measurement of current.

When a potential is initially applied between the electrodes, there is
an accumulation of oppositely charged species at the vicinity of the

electrode surface. The charged solution consists of two parts.

1. A compact inner layer where the potential decreases linearly with

distance from the electrode surface.

2. A diffuse or loosely bound outer layer where the potential decrease

is exponential.

This entire array of charged species and oriented dipoles at the

electrode-electrolyte interface is called electrical double layer [14].
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Figure 1.3: Electrical double layer and the variation of potential across it[14]

The current which is developed due to the charging of the electrical
double layer is called charging current or residual current. This is a non-
faradaic current. Faradaic current is that which arises from the redox
reactions at the working and counter electrodes and is proportional to the

concentration of the electroactive species in solution.
1.4 Voltammetric Techniques

Voltammetry finds application in a variety of fields such as inorganic
chemistry, physical chemistry, and biological studies for quantitative or
qualitative application as well as, for study of reaction mechanism,
properties of systems, kinetic studies, redox activity, thermodynamic
properties etc. Voltammetry offers a large number of techniques which can
be used for specific purposes. The most common voltammetric techniques

are described here.
e Polarography

e Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV)
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e Pulse Voltammetry — Normal Pulse Voltammetry (NPV), 