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1.        1                                                      

      IINNTTRROODDUUCCTTIIOONN  
 

 

A cell is the most vital unit of life. A lot of functions occur inside a 

cell leading to the intact generation and development of the cell. The 

biological macromolecules such as DNA, RNA, and proteins contribute to 

all these functions. Tremendous efforts have been and are being made to 

understand the protein complexities and to recognize different functions of 

proteins (Marcotte et al., 1999). In a living organism, the proteins links 

with nucleic acids and other proteins to execute diverse purposes. For a 

valid function, the protein interactions with other proteins or biomolecules 

must be qualified (Axelrod, 2001). Some unqualified alterations in proteins 

results in unwanted functions which ultimately leads to diseases. All these 

resulting diseases are directly or indirectly associated with proteins (Rossin 

et al., 2011). Environmental fluctuations, hereditary factors, lifestyle, etc 

causes mutation in proteins. Mutated proteins play a chief role in causing 

sickness (Wang et al., 2010].  

It is known fact that everyday a variety of diseases are affecting the 

human beings. Immunity related diseases, neurodegenerative diseases, 

cardiovascular diseases, Infectious diseases, cancers, etc are the chief kinds 

of disease in human body. With the increasing growth of diseases, the rate 

of experiments are also increasing for the discovery of drugs. For drug 

discovery, numerous combination of proteins are investigated to relate to 

the correct drug. When a drug reacts to the respective protein appropriately, 

the result is the expected cure to evade the disease. The rate of recovery 
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from a disease differs from disease to disease depending on various factors 

like age, lifestyle, complexity, immunity, etc. Among the huge list of 

diseases, cancer is one of the hazardous ailment as the recovery rate is low 

considering the probabilities of relapse. Many evidences confirm the fact 

that the abnormalities of cancer cells are commonly the consequence of 

mutations in protein- programming genes that regulate the division of cells. 

This in turn results in the uncontrolled activities of protein with other small 

molecules. The disease starts spreading when the cancer proteins link to 

other proteins in a cell.  

The protein networks, protein complex interaction and molecular 

complexes plays a vital role in drug discovery as the drug affects the 

normal protein also and there are chances of altering the biological system 

too (Sevimoglu and Arga, 2014). Another aspect of drug discovery is the 

protein identification. Drug discovery step can be initiated only after the 

identification of target protein (Hughes et al., 2011). For comparative 

investigations, the in vivo experimentations and their outcomes are stored in 

databanks and this also efficiently support the in silico researches. The in 

silico researches are economical, less time consuming and reliable when 

compared to the in vivo studies. Databases are qualified only when an 

appropriate analysis of these biological data are performed. This also helps 

in retrieving the hidden information in the data, which in turn leads to 

comprehend new inferences. The study of large-scale biological databases 

are supported by system biology or computational biology (Kroger and Bry, 

2003). The usage of databanks by employing diverse algorithms is one of 

the prime advantage of System biology. In the biological system, the 

computational information study of proteins and its interactions guides a 

researcher to disclose numerous unknown information. 
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A new approach termed as network biology was hosted for the 

depiction of biological organization constructed on mathematical graphs. In 

this graph, molecules are embodied as node and interactions are embodied 

as edges. A foremost benefit of graph theory is the study of large networks 

with mammoth information. The current investigation illustrates that graph-

theory is exceptionally implemented in large biological system exclusively 

with human interactome. In biological system, a diversity of interactions 

emerged such as momentary or constitutive protein-protein, RNA-RNA, 

protein-DNA, and protein-ligand interactions. The platform for 

computational analysis of molecular level interactome is provided by the 

PPI networks. 

Graph theory also helps in the forecast of hub proteins. The 

collaboration of proteins can be robust, feeble, steady, temporary or 

conditional (Hartwel et al., 1999). When the proteins do not interact, it 

results in the deprivation of biological functions. Protein interaction 

network contains extremely linked as well as poorly linked proteins. Most 

of the proteins associate with just a few number of proteins. Comparatively, 

a few proteins associate with a large number of other proteins. This form of 

expansively binding proteins are categorized as hub proteins (Jeong et al., 

2004). The elimination of a hub protein is considered as terrifying when 

coordinated with a non-hub protein. The hub proteins facilitate signaling of 

oncogenes. 

The physically non-linked proteins can be linked in many other 

ways too which can be derived by employing graph theory analysis. For 

example, structure linked, functionally linked, pathway linked, etc. Among 

them, pathway analysis is the major linking property. 
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Pathway analysis resulted to be the leading methodology to obtain 

knowledge of the primary biology of varied proteins and gene expression. 

It regulates complexity and has amplified the descriptive part. Currently, 

nearly all the bioinformatics researches pursue statistically significant 

pathways to authenticate one or the other computationally significant 

consequences or biological explanation. However generally accepted, the 

first generation pathway analysis methods that is, Over-Representation 

Analysis (ORA), decodes molecular computations from ingenious 

investigation and agree that pathways and genes are not reliant on each 

other. The second-generation methodologies like Functional Class Scoring 

(FCS) deciphers these limits. The methodologies based on Pathway 

Topology (PT) additionally improves the FCS methods by creating an 

allowance for the category and number of interactions amid genes. This is 

usually ignored by FCS. 

Other than these applications, there are uncertain explanation and 

technical challenges. The resolution data is fewer, inadequate provisional 

and cell-specific information, and insufficient elucidations restrict the 

enlargement of the next-generation approaches for pathway analysis. The 

ineffectiveness to follow the vital biological organization in examination 

confines the effectiveness of predominant procedures. However, in spite of 

these hurdles, as the volume and category of worthwhile explanations 

amplify, collective with methodological advances and research tactics that 

convey improved regulation for strategic anticipating for consequential 

biological investigations, the expediency of pathway analysis and resilience 

in the inferences are anticipated to magnify. 

The Gene Ontology or GO project at http://www.geneontology.org/ 

deals with strategic, terminologies and classifications that includes 
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abundant ranges of molecular and cellular biology. GO is spontaneously 

available for usage in the description of genes, products and sequences. A 

number of archetypal organism catalogues and genome elucidation sets 

utilizes the GO and add their set of interpretation to the GO reserve. The 

GO directory integrates the vocabularies and subsidized annotations. It 

affords comprehensive permission to access this data in copious formats. 

The associates of the GO Consortium persistently work jointly, consulting 

the external specialists as obligatory, to gain and acquaint the GO 

vocabularies. 

The GO Web resource also promotes access to prevalent 

certification about the GO project and acquaintances to solicitations that 

employ GO information for scrutiny of functional traits. 

The genomics era has witnessed assembling of immense sizes of 

biological information, conveyed by the broad propagation of biology-

focused sequences. Miscellaneous categories of information from varied 

means are followed in ways that is rational to the biologists to mark the 

outstanding consumption of biological databases and the information they 

encompass. The principal component of the integration task is the 

strengthening and usage of explanation standards like ontologies. 

Ontologies convey conceptualizations of information realms, which 

accelerates communication among researchers and the norm of domain 

information by computers for multifarious usages. 

The high-quality PPIs and relating information sets can be used in 

both large and small scale studies to devise a better perception of biological 

system. The phenomenal increase of the in vitro, in vivo and in silico 

experiments day by day have resulted in the immense growth of extensive 

information about proteins and its characterizations. The entire data mined 
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from these researches are stowed in an accredited location termed as 

database. There are countless biological databanks management scheme 

available to stock data associated to proteins (Mayer, 2009). The databases 

are assembled as structural and functional databases liable to the nature of 

the data. The information connected to protein structure such as secondary 

and tertiary structures are provided in structural database. For instance, 

SCOPE, PDB, etc. The information connected to the protein functions are 

stowed in the functional databases. For example, MINT, GO, HPRD, etc. 

Protein domains are engaged in investigations and also for structure-based 

drug design. The contemporary researches confirms key importance of PPI 

networks in disease-drug region such as cancer, neuro disorder, etc as an 

outcome of abnormal conduct of interactions amid various proteins.  

Graph theory also helps in the comparative analysis of human 

cancer and non-cancer protein complexes. A molecular level study is 

imperative in drug discovery to understand the tightly packed human 

interactome and how the protein-protein interaction complexes are linked. 

In this study, the main focus was on the usage of algorithms to 

extract hidden information from huge databases and the application of these 

information in the relevant areas.   

The following section portrays the areas emphasized for this 

investigation: 

• Integration of large-scale human protein interaction 

networks and analysis by using multilevel 

algorithms. 

• Identify how cancer proteins are physiologically and 

pathologically served in a tightly packed molecular 

protein complexes in a human interactome. 
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• Develop a tool to retrieve tightly packed molecular 

protein complexes present in a human interactome.
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OOBBJJEECCTTIIVVEESS  
The following are the objectives of this study: 

1. Identification of available human proteins from the 

public databases. 

2. Identification and mapping of human protein-protein 

interaction network (HPPIN). 

3. Identification of   cancer and non-cancer interactions 

in HPPIN.  

4. Identification of major cancer and non-cancer 

(CANC) complexes in the network. 

5. Validation of interacted complexes. 

6. Identification of the hubs from CANC complexes. 

7. Characterization of CANC complexes. 

8. Develop a tool for CANC complexes. 
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9.        2                                                                 

RREEVVIIEEWW  OOFF  LLIITTEERRAATTUURREE  
 

 

 

2.1 Rudimentary unit of life 

The most rudimentary unit of life is a cell. All living beings are 

composed of cells and forms the foundation for Cell Theory in biology. 

Prokaryotes and eukaryotes are the main two categories of cell. The 

prokaryotes are single-celled organisms and eukaryotes are extremely 

evolved multi-cellular organisms. All plants and animals are examples of 

eukaryotes. The prokaryotic cell lacks a nucleus and their DNA is 

encompassed in the same compartment similar to the cytoplasm. The 

eukaryotic cells are composed of membrane-bound parts where the specific 

metabolic activities occur. The nucleus houses the DNA of the eukaryotic 

cell and plays a significant role. Fig 2.1 depicts the components of a cell. 

 

Fig 2.1: Cell components 
 This image displays the various components inside a cell (Adapted from 

Biologycorner). 
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2.1.1 Proteins 

In a multicellular organism, the proteins are enormous and 

multifaceted molecules that perform numerous and critical roles. Proteins 

execute most of the task in a cell and are part of well-defined structural, 

regulation and functional aspects. Proteins are combination of 20 different 

types of amino acids. The specialty of a protein and the structure is 

determined by the sequence of amino acids. Different amino acids own 

dissimilar structures and chemical characteristic features. The amino acids 

with same charge tend to stay farther and with the opposite charge stays 

close to one another. The size of the amino acids also defines the 

configuration of a protein. Generally, a protein embraces a three-

dimensional structure based on the sequence of amino acids. Table 2.1 

portrays the functions of protein. 

Table 2.1: Functions of protein 

Function Description Example 

Antibody Protects the body from pathogens such 

as bacteria and viruses. 

Immunoglobin 

(Ig) 

Enzyme Acts as catalyst in complex biochemical 

reactions occurring in a cell. 

Protease 

Messenger Transmits signal to synchronize 

biological processes. 

Hormone 

Structural 

component 

Provides support and structure.  Actin 

Transport 

or storage 

Carries and binds atom and small 

molecules in a cell. 

Ferritin 
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Proteins showcase a chief character in cellular developments. 

Consequently, it is imperative to comprehend how they execute their 

functions. However, proteins do not work in isolation. They synchronize 

together or with other ligands to generate several biological developments 

in a ranked manner. Multiple proteins substantially bind with each other to 

formulate a stoichiometric established network. These protein complexes 

interact with one another to formulate functional units and pathways to 

execute almost all the cellular procedures. Though enormous quantities of 

proteomic information are existing, mining biological perceptions on 

proteins and protein complexes is a perplexing chore for the reason that the 

existing high throughput information are haphazard and unplanned. This 

leads to inadequately connect with the queried objective. 

2.1.2 Central dogma 

In molecular biology, one of the crucial mechanisms is the transfer 

of information from Deoxyribonucleic acid (DNA) to Ribonucleic acid 

(RNA) and then from RNA to proteins. This mechanism is widely known 

as the central dogma of molecular biology. Fig 2.2 depicts the central 

dogma of a cell: 

 

Fig 2.2: Central dogma of a cell 
In molecular biology, the central dogma depicts the flow of genetic information 

from DNA to RNA in a biological system (Adapted from Biology Genius). 
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DNA or the genes are composed of the genetic instructions, which 

are used in the growth and operation of all living beings. Transcription is 

the process where the information from DNA is transferred to RNA. 

Several copies of messenger RNAs (mRNA) are created. Fig 2.3 is a 

representation of the transcription process. 

 
Fig 2.3: Transcription 

 (Adapted from Department of Biology, 

Memorial University of Newfoundland)  
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After that mRNAs are converted into proteins through translation. 

The mRNAs have codons which has the required information encoded in 

nucleotide triplets and are translated into proteins. Fig 2.4 represents the 

translation process. 

 
Fig 2.4: Translation 

 (Adapted from SlideShare) 

 

2.1.3 Proteins as workforces 

Proteins are the dynamic elements of cells. The proteins govern and 

arbitrate many of the biological functions and execute a cell to work. One 

of the significant and distinctive features of proteins is their ability to bond 

with other molecules and perform multiple functions. Proteins perform a 

wide variety or almost all the functions in a human body. For instance, 
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construction of structural complexes, signaling between cells, production, 

repair and reproduction of DNA, etc. The following section portrays the 

four exceptional hierarchical orders of protein structures, which are pivotal 

to perform a task: 

• Primary structure: A linear sequence of amino acids. 

• Secondary structure: A frequently reiterating resident 

assemblies steadied by bonds of hydrogen. Common 

instances are the alpha helix, beta sheet and turns.  

• Tertiary structure: The three-dimensional assembly of the 

complete polypeptide chain, which performs protein 

function. 

• Quaternary structure: The combination of numerous 

molecules of protein or single complex of proteins. The 

complexes of proteins are the groundwork for various 

cellular procedures. In addition, these protein complexes 

combine with other complexes and construct diverse 

molecular machinery, which are essential for biological 

functions. Fig 2.5 depicts the different structures of proteins: 

 
Fig 2.5: Structures of protein 

 (Adapted from Protein Structure in Wikipedia) 
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2.2 Protein-Protein Interaction (PPI) 

Proteins interacts with biomolecules and other proteins to perform 

different functions in a living organism. When PPIs interact with other sets 

of PPIs, it leads to the development of protein complexes. All these 

complexes contribute to the formation of a protein interaction network 

(Ofran and Rost, 2003). In a macromolecular organization, the protein 

complexes are the central functional components. The widespread analysis 

of PPIs delivers a valuable basis for understanding the roles of protein that 

are mandatory for countless biological developments in living organisms 

(Phizicky and Fields, 1995). In addition, they also provide some useful 

hints on protein with unidentified function (Kemmeren et al., 2002). In 

system biology, the extensive PPI network is an essential context to study 

the multifaceted cellular processes and a precondition for precise 

prototypes. 

Extensive records of PPIs focusses to establish a framework for 

widespread prototypes of molecular procedures. Abundantly sequenced 

genomes aids currently as foundation for genetics. Similarly, whole maps 

of PPIs is anticipated to function as a compact source for a methodical 

modeling line of cellular procedures. Compared to the extremely 

prosperous mapping genome schemes, the advancement in enlightening 

interactomes are very slow, especially about the human interactome. It is 

only in recent times that there was a tremendous effort to advance in 

investigational and computational efforts to expand the systematic maps of 

human protein interactome. Though, these maps are assumed to offer an 

enhanced comprehension of human biology, cautious validation of these 

maps are necessary. This is due to the fact that the network extracting 

methods owns some strong points and flaws. This may give rise to 
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investigational prejudices and increased degree of false positives 

interactions.  

2.3 Generation of large-scale PPI 

There are incredible methodologies accessible today to identify the 

interaction between proteins. These methodologies are classified according 

to the type of investigation background as follows:  

• In vitro  

• In vivo 

• In silico 

2.3.1 In vitro  

The in vitro methods are implemented external to the living 

organism in a controlled environment. The following section portrays the 

various in vitro methods: 

2.3.1.1 Affinity purification coupled to mass spectrometry or 

AP-MS 

Proteins do not act in isolation. They usually arbitrate their 

biological roles by networking with other proteins (Charbonnier et al., 

2008). Several methodologies are developed to analyze the multiple aspects 

of PPI due to the prime impact of PPIs in biology (Meyerkord and Fu, 

2015). To understand the various functional aspects of protein like the 

affinity of proteins to bind or to understand the associated disease causing 

proteins we need a thorough knowledge of the interacting collaborates. 

However, there is no sufficient data to support this parameter. There are 

certain in vitro methodologies like Y2H to assess this. But, the comparison 

between in vitro and in vivo investigation results becomes a challenge. 

AP-MS is an exemplary approach to study the PPI mapping 

(Gingras et al., 2007). AP-MS is the confinement of biological material 
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through specific fortification with a ligand combined to a solid support. The 

ligands can be DNA, RNA, proteins, etc. In this technique, a protein to be 

tested is combined with a medium. Further, the protein combination is 

passed through the medium. The proteins that bind with the tester protein 

are reserved in the medium. The proteins that do not bind are redundant 

(Kemmeren et al., 2002). Fig 2.6 is a schematic representation of AP-MS. 

 

Fig 2.6: Schematic representation of AP-MS 

(Figure adapted from Lambert et al., 2013) 

 

2.3.1.2 Analytical centrifugation 

The analytical ultracentrifugation (AUC) method is a multipurpose 

and potent technique for the quantitative investigation of macromolecules 

in a medium. The chief application of AUC is to investigate the 
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macromolecules from a variety of solvents. Absorbance, interference and 

fluorescence are the three optical systems employed in AUC. These 

parameters helps to provide apt and specific sedimentation surveillance in 

real time. The velocity of sedimentation uses hydrodynamic theory to 

describe the macromolecular size, shape and interactions. One of the 

advantage is that these investigations are performed in free medium. Hence, 

the impediments due to matrices or surfaces interactions are nil. 

Consequently, the sample is processed for supplementary trials followed by 

AUC. AUC is employed to classify the purified protein interactions. Fig 2.7 

is a schematic representation of AUC. 

 
Fig 2.7: Schematic representation of AUC 

(Figure adapted from Freifelder (1983)) 
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2.3.1.4 Dynamic light scattering 

Light scattering and its numerous forms contribute to an intense 

analysis of macromolecular collaborations in a medium. It delivers a simple 

clue for the association or dissociation of complexes by calculating the 

nonconformities in the average molecular mass. This method is based on 

thermodynamics, and various quantitative analysis such as reaction rate 

parameters and stoichiometry. 

In the conventional methods, the investigations on light scattering to 

study protein interactions in a medium was vexing and rigorous. There was 

a requirement of large quantities of sample, which impeded the protein 

researchers. The modern technologies address these issues because of 

progress in instrumentation and procedures (Some and Kenrick, 2012). 

This also resulted in the usage of lower quantities of sample and simplified 

and automated investigations. Attri and Minton, 2005a, 2005b; Kameyama 

& Minton, 2006 were the pioneers applying these investigations to study 

the protein-protein interactions (Chu, 1974).  

Dynamic light scattering (DLS) is a one such automated method 

grounded on estimating the oscillations in the intensity of light 

disseminated from atoms in a medium without tormenting the structure 

(Zhu et al., 2001). This is the result of Brownian motion of the 

disseminating components. It is employed to govern the coefficients of 

dissemination and the particle’s dimensions in a medium quickly and 

precisely. DLS allows strong investigations even when placed in a 

microtiter plate in lower capacities with free surfaces. Fig 2.8 is a 

schematic representation of DLS. 
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Fig 2.8: Schematic representation of DLS 

(Figure adapted from Lewis et al., 2014)  

2.3.1.4 Fluorescence spectroscopy 

Numerous researches are conducted in the functional proteomics 

field to validate how the dimensions of a particular protein compound is 

mapped to a particular function and a particular cellular reaction. A number 

of methodologies are recommended to attain this objective, together with 

high-throughput determination of PPIs present in a proteome (Jameson et 

al., 2003). High-throughput investigation of PPIs is generally restricted to 

complexes of protein with dissociation coefficients of 105–1012 M. The 

bonding computation executed in living cells include lower than 104 

protein particles. Subsequently, the procedures employed to enumerate 

PPIs falls under this range of concentration. There are more than 30,000 

proteins in a living cell. Therefore, these methodologies must be qualified 
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to determine a specific protein interaction. Fluorescence spectroscopy is a 

method qualified for this requirement (Axelrod, 2003). The Fluorescence 

spectroscopy is generally employed to enumerate the interactions and 

subtleties of a single protein component present in living cells. Fig 2.9 is 

portrays the fluorescence spectroscopy: 

 
Fig 2.9: Fluorescence spectroscopy 

 

2.3.2 In vivo 

In vivo refers to experimentations performed inside a living being. 

Investigations on creatures and scientific trials are the two well-known 

forms of in vivo investigations. In vivo techniques can offer the protein 

interaction list. In this circumstance, only a miniscule portion of the 

potential complexes is compliant to lab investigation (Tarassov et al,. 

2008). Yeast two-hybrid screening is employed here to study the PPIs in 

vivo. 

2.3.2.1 Yeast two-hybrid screening or Y2H 

The complete set of genome sequences for innumerable mock-up 

organisms are available today. This astonishing development in the field of 
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genomics has led to novel methodologies in genetic investigation to 

accompany conservative genetics. Subsequently, advanced investigations 

have to be employed in proteomics to complement developed genetics 

(Uetz et al., 2000; Schwikowski et al., 2000; Ito et al., 2001; Giot et al., 2003; 

Li et al., 2004).. Enumerate procedures are established to illustrate proteins 

and their respective functions on a large scale (Fields and Song, 1989). Fig 

2.10 represents Y2H. 

 
Fig 2.10: Yeast two hybrid method 

(Figure adapted from BIOwiki) 
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One of the most widely employed procedure to investigate PPI is 

Yeast two-hybrid screening (Y2H). This procedure is successful to identify 

the PPIs on a large scale. The prime aspect of examination is the physical 

communications or binding among the proteins (Hishigaki et al., 2001). 

Y2H is based on the restructuring of an effectual transcription factor (TF) 

after the communication amid manifold proteins. This type of reformation 

befalls in genetically metamorphosed yeast strains, where a certain 

phenotype develops as an outcome of transcription of the reporter gene 

such as HIS3. This is established from the modification of colour in the 

yeast colonies bred on a medium without histidine and LacZ (Eisenberg et 

al., 2000). 

2.3.3 In silico  

In silico methods are implemented by employing computer 

simulation with mock-ups reminiscent of a real world or on a computer. 

The sequence and structure based approach is employed to investigate PPIs 

in silico. The in vivo methods and in vitro methods directed to the advance 

of extremely momentous tools to study PPIs. However, in silico ways and 

means substantiated to be of sophisticated accuracy, enhanced support of 

data-intensive exploration, precise replications through sophisticated 

models and supplementary adeptness. Fig 2.11 portrays the in silico 

environment. 
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Fig 2.11: In silico environment 

 

2.3.3.1 Structure-based prediction approaches 

The swift accretion of novel genes in the databases emphasizes on 

challenges of recognizing the governing DNA structures constructed on the 

sequence information. Most prognostic algorithms are grounded on 

manifold arrangements of recognized binding locations. The structural 

based approach is novel to scrutinize the protein-DNA network. The notion 

of structure-based approach is to forecast PPIs, in cases where two proteins 

have an analogous structure. For instance, if two proteins A and B interacts 

with each other, then there are chances of two other proteins A1 and B1, 
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which may be similar to A, and B. The resultant inference is that there are 

probabilities that A1 and B1 interacts with each other. The PDM database 

validates resources and tools to researches for fostering the structure of a 

probe protein.  

The sequence of transcription start points owns a chief character in 

gene expression control. They are predictable by controlling proteins which 

perform by governing the degree of transcription origination and binding as 

transcription activators or repressors. The recognition of such sequences from a 

particular gene is a challenge and is vital for comprehending its transcription at 

regulation level.  

2.3.3.2 Sequence-Based prediction approaches 

The requirement to transmute the mounting quantity of biological 

data into facts involved a number of disciplines. This is acquired by 

employing investigational and computational methodologies. This 

approach aims to decrypt the functional aspect of linkages and interfaces 

flanked by proteins (Sharan et al., 2007). The available computational 

methodologies for forecasting PPIs provide very less information compared 

to the information available for genomic sequences. Some of the aspects 

like biological function, gene expression and essentiality are moderately 

explored in a small number of living beings. 

An inference was arrived at that a distinctive modus operandi to 

detect PPIs in an interaction network based on the genome sequences 

favorably supports the forecast of interaction networks. The sequence-

based approach is grounded on the notion that an interface detected in one 

species can be used as an allusion for interaction in another species. 

Furthermore, orthologous-based approach and domain-pairs based 
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approach are the widely used categories of sequence-based prediction 

approaches. 

2.3.3.3 Orthologous-based approach 

The rapid progression of PPIs facts directed to the initiation of 

analysis of PPI network. In spite of progress in most advanced procedures, 

the information on various model organism’s interactomes are incomplete. 

Orthologous-based approach is beneficial to explore these interactomes. 

Orthologues are genes present in dissimilar species but originated 

from a mutual ancestor because of speciation (Lee et al., 2008). The notion 

behind the orthologous-based methodology is to transmission annotation 

from a functionally demarcated protein sequence to the target sequence 

grounded on the uniformity. This was accomplished by means of the 

pairwise indigenous sequence algorithm (Memisevic and Przulj, 2012).  

The extension of the entire orthologous sets facilitates the 

interpretation for innumerable eukaryotes. The same interpretation 

technique is also realistic to the forecast of inter-species interaction. 

2.3.3.4 Domain-pairs based approach 

The requirement to understand which protein is present in a 

particular organism and to decipher PPI are essential to comprehend the 

various biological processes at cellular level. As a result, the prediction of 

PPI networks was the objective for research in the field of proteomics. 

A domain is an exclusive organizational entity of protein that is not 

dependent on other entities. Protein domain take part in an significant role 

in the forecast of protein structural class, sub-cellular location of proteins, 

the type of protein membrane, the class and subclass of enzymes. 

Protein domains are used in researches and for structure-based drug 

designing (Memišević et al., 2013). Furthermore, domains are involved in 
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the PPI at intermolecular level and therefore, are rudimentary to PPI. It is 

manifested from manifold studies that domain-domain interactions (DDIs) 

from miscellaneous experimentations are stronger than their equivalent 

PPIs (Rivas et al., 2010).  

2.4 Graph theory 

A major challenge confronted by proteomics is the understanding of 

enormous number of PPIs. When the protein networks were investigated, it 

was found that the protein binding characteristic has the capability to 

provide valuable awareness about the internal mechanism of cells as well as 

deducing complex maladies. In computation biology, the graph theory 

shares a pivotal role after the cascade of PPI data from the recent 

investigations of PPI. The PPI network are represented as graphs on a 

general note. In this case, nodes and PPIs signify the proteins by edges. The 

networks are of varying length and fixed edges in general. Conversely, 

many of the contemporary PPI networks signify only binary bindings and 

are not directed. 

In system biology, one objective is to elucidate structural, 

functional and regulation of networks from the available resources. Graph 

theory is the focal point for this objective as it facilitates analysis of 

structural properties of PPI networks, which in turn is linked to the 

functional aspect. This approach leads to competent and actual planning of 

investigations as graph theory aids in theory generation by constructing 

predictive models. 

2.5 Interaction amid complexes 

A pathway generally contains a group of stoichiometric complexes 

that interact to accomplish a particular biological task. In this procedure, 

the complexes interact with one another to synchronize their activities for 
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varied causes. As a result of interaction, two complexes comes physically 

close to one other. This allows them to perform together on a substrate. In 

certain cases, one complex orients the substrate to generate some 

intermediate product and some other complex governs the intermediate 

product to deliver the final product. This two-step process is executed 

competently by interacting and staying in vicinity. Two complexes are also 

brought closer because of interaction, which in turn alters the other 

complex. The alteration either triggers or constrains the other complex by 

changing its 3-D alignment. 

The interactions occurs depending on the requirement for a 

particular biological job like environmental changes. Hence, they are 

momentary by nature. This momentary nature leads to trouble in detecting 

the complex-complex interactions. In addition, computational investigation 

of interactions amid complexes are inadequate due to the deficiency of an 

ample group of recognized complexes.  

It is evident from several investigations that interacting complexes 

are susceptible to share a common functional group. This is partially owing 

to the circumstance that complexes interact with one another in the similar 

pathway to attain a definite biological mission. Hence, as an alternative to 

forecast interactions amid complexes, trials can be carried out to forecast 

complexes belonging to the same pathway. Nevertheless, compared to the 

identification of complexes, the categorized information and superior 

evaluation of complexes in a common pathway are deficient. 

2.6 Protein- protein interaction network  

A protein interaction network is the consequence of infinite binary 

interactions. A miscellaneous network of proteins combined by interactions 

as edges represents a PPI network. The PPI network provides a 
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comprehensive outlook of cellular function and biological procedures (Kar 

et al., 2009). The forecast of the protein function is the paramount intent of 

the PPI network. The expansion of a reliable and stable PPI network is 

significant for offering an understanding at the elementary level of a 

sickness mechanism (Zhang, 2009). The PPI network can be employed as a 

definitive prototype for assimilation of data and investigation (Lin et al., 

2007). PPIs proved to be a prevailing source to investigate illness 

mechanisms, associated diseases, etc in many studies. The progression of a 

comprehensive data set of PPI network turns out to be a massive advantage 

to scholars. The accumulation of the entire identified PPIs for a particular 

cell or organism is designated as interactome. The interactome network 

functions as a mean to interpret the graph theory, which in turn supports 

understanding of manifold biological developments. There are few 

concerns in the availability of interactome data (Tuba and Kazim, 2014). 

The data inadequacy related to the PPI network prompts a danger to any 

disease genes investigation. 

 
Fig 2.12: Yeast PPI network 
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(Figure adapted from SlideShare). 

The quality of PPI networks must be high for the researches related 

to the biomedical field. Nevertheless, the existing extensive human PPI 

networks are relatively unsystematic and also speculated as false positives. 

Several assurance increasing patterns by means of omics were established 

to resolve this concern. Moreover, a small number of existing PPI networks 

deliver their particular assurance counting patterns. Incorporation of PPI 

maps with such assurance score aids the scholars to evaluate the excellence 

of interactions that exist in the databases. 

An actual concern is the biologically meaningful explanation of the 

PPI maps. Though improvements in contemporary genome-wide 

interactome schemes prompted a massive PPI information, this also leads 

to new challenges for scholars primarily owing to the complexity of 

interaction networks. In order to comprehend this complexity, it is essential 

to achieve meaningful data in the background of biological systems. This 

not only necessitates identification of the functional aspect of single 

proteins but also the biological procedures and somatic interactions in 

which they participate. To achieve this, the PPI networks are supposed to be 

integrated with other functional information to develop the extensive data. 

Earlier investigations portray that coupling PPI networks with pathway or 

expression information leads to illustrate prospective transformers of 

various diseases or biological developments. 

The resolution demands complete incorporation of the existing 

human interaction maps, executing enquiries at the network level, assessing 

information with high quality, updating the integrated database regularly, 

and integrating the PPI networks with additional genomic and functional 

information. 
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2.7 Human protein atlas 

The Human protein atlas is a massive store of the proteomic data 

position (Newberg et al., 2009). Highly-throughput automated tools are 

required to explain and categorize proteins and their functions across 

different cells as the database’s size makes progression (Uhlén et al., 2005). 

The classifiers are mentored to identify different patterns of proteins by 

including the mentored learning method. This approach is successful to 

analyze the subcellular patterns (Glory and Murphy, 2007). The 

contemporary researches prove that the categorization can be extracted to 

analyze patterns of proteomes (Chen et al., 2007). One of the exceptional 

characteristics of the Human Protein Atlas is the availability of proteins that 

is imaged in innumerable diverse cells and tissues. The addition of confocal 

microscopic images of various antibodies to the atlas is a considerable 

enhancement in recent times (Barbe et al., 2008). 

2.8 NCBI’s Reference Sequence 

NCBI’s reference sequence or NCBI RefSeq is a publically 

available databank associated with naturally existing protein sequences, 

RNA and DNA. The uniqueness of this databank is with respect to the 

huge, curated sequence databank demonstrating distinct but unambiguously 

allied records ranging from appropriate genomes to translation products at 

the multiple species level. Compared to similar other databases, NCBI’s 

RefSeq is preferred due to the non-redundant, comprehensively cross-

linked, and opulently explained records on proteins and nucleic acid (NCBI 

Handbook). 

2.9 Plasma Proteome Database  

In 2005, Plasma Proteome Database or PPD was coined as part of 

Human Proteome Organizations (HUPO). PPD led way in augmentation of 
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proteomics and aided in identifying numerous new plasma proteins. There 

was a vast amount of data accommodated in this regard and hence resulted 

in the enhancement of proteomics data in the PPD. The latest version has 

included the information on mass spectrometry-resultant information as 

well as data related to manifold reaction observing analyses after verifying 

through experiments. The plasma proteins are a key drive in the area of 

biomarkers. So, PPD has facilitated a batch-based inquiry labelled Plasma 

Proteome Explorer. This allows the users in comparing a proteins list with 

identified plasma proteins to evaluate originality of the database. In 

humans, PPD expedites researches by supporting as an all-inclusive plasma 

proteins reference, facilitate discovery of biomarkers and tasks related to 

translation. http://www.plasmaproteomedatabase.org/ provides more 

information on PPD. 

2.10 Human interactome 

The products of gene mediate their respective function inside 

intricate complexes of interrelated macromolecules. Investigations in 

prototypical entities propose that compound macromolecular systems own 

lively and topological features that replicate biological occurrences (Vidal 

et al., 2011). The interactome network is the comprehensive assortment of 

the entire PPIs that occurs inside a cell. Therefore, a complete 

understanding of relationship between genotype and phenotype in human 

beings requires explanations of how interactome networks are disturbed 

because of hereditary and somatic disease susceptibilities. In turn, this 

necessitate high quality and widespread proteome and genome-scale 

records of macromolecular interfaces such as PPIs, protein-nucleic acid 

interactions, etc. 
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In the initial researches, the human PPI interactome maps delivered 

network based elucidations for few of the genotype and phenotype 

associations. These implications persist as inadequate and of deficient 

feature to develop precise worldwide elucidations. Consequently, there is a 

necessity for empirically governed superior proteome-scale interactome 

reference records. 

The challenges are multifarious to produce a wide-ranging twofold 

reference PPI map. It is indeterminate to remark now whether such a wide-

ranging network can be mapped ever by the cooperative exertions of 

modest investigations. The forecasts using computational approaches of 

PPIs can generate data at proteome scale.  

 
Fig 2.13: Human protein-protein interactome with 22000 proteins 
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2.11 PPIs and diseases 

PPI is the result of association of two or more proteins with each 

other by countless ways. The PPIs provide a key to understand the 

biological processes that transpire within and among cells. The inference 

from various studies confirm the fact that biological processes are 

fundamentally interactions amid manifold proteins (Zhang et al., 2011). In 

addition, the PPI networks govern the course of data inside and amid all 

biological processes. 

The commotions in PPI networks leads to many diseases. It can be 

monogenic diseases like sickle cell anemia as a result of disruption of a 

specific biochemical pathway or a further complicated ailments like cancer, 

where numerous signaling pathways (Sam et al., 2007) are involved. On 

the contrary, the commotion of a group of PPI results in a specific ailment 

or the group of PPIs are shared between numerous networks and in turn to 

several diseases. There is a surplus of information available to infer the 

association of protein and ailments that are integrated to PPI databases. The 

major challenge is mapping the PPIs to the specific human ailments (Ideker 

& Sharan, 2008). 

The methodologies to support the high-precision forecasts that are 

useful to determine the effective prevention of ailments, analysis and 

diagnosis must be the objective of PPI related studies. The engendered 

substantiations must be investigated to govern their significance. 

2.12 Cancer 

A multicellular organism survives when its entire cells perform 

according to the instructions defined for cell development and replication. 

In some circumstances, a regular cell turn out to be rebellious, divide 

franticly, attack other cells, seizing sources, and ultimately slaying the host 
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body. Fig 2.14 depicts the difference between a normal call and a cancer 

cell. 

 

Fig 2.14: Normal and cancerous cell 

(Figure adapted from Viewyer). 
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In order to comprehend the reason behind the rebellious nature of a 

cell, it is essential to understand the regular process of cell development 

and replication. The researches performed cell biology, molecular biology, 

biochemistry unveiled the astoundingly meticulous data on molecules, and 

procedures that consents cell division, development, segregate, and execute 

indispensable roles. Such rudimentary information of cell biology steered 

the real-time detections of the process of cancer. There are specific 

molecules, which are responsible for the development of a cell by means of 

cell cycle and in turn control cell development. This comprehension of 

regular cell cycle procedures and the processes that are skewed decipher the 

respective mechanisms that elicit cancer. One of the major reasons 

prominent to the development of cancer is the irregularity in the cell cycle. 

Cancer encompasses minimum of 100 diverse maladies. However, the 

entire cancer cells own one common characteristic. The anomalous cells are 

identified to having disrupted multiplication of cells. To be precise, cancer 

are the result of alterations that leads the normal cells to procure anomalous 

functions. The alterations are the outcome of hereditary transmutations or 

are prompted by environmental aspects such as X-rays, UV light, tobacco 

products, viruses, and certain chemicals. Most of the proof recommends 

that most cancers are the outcome of various events or factors. In other 

words, maximum four to seven actions are typically the prerequisite for a 

regular cell to develop through a sequence of malicious phases to 

aggressive cancer. It requires years to lapse from the initial occurrence to 

the growth of cancer. The expansion of biological procedures aids in the 

initial phase analysis of plausible cancers even before the cancerous cells 

are observable. 
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Cancer is the result if a sequential molecular procedures that 

primarily vary the regular features of a normal cell. The regular governing 

system that averts overgrowth of cells and the foray of other tissues are 

incapacitated in cancer. The transformed cells multiply and develop with 

the aid of signals that generally impede cell development. Consequently, 

there is no requirement of dedicated signals to prompt development and 

multiplication of cells. These cells acquire new features, lower linkage of 

cells, and manufacture of novel enzymes, and alterations in structure of 

cells. The transmissible alterations permit the cell and its descendants to 

multiply and develop among regular cells that usually impede the 

progression of neighboring cells. Consequently, the cancerous cells 

proliferate and attack other normal cells. 

The anomalies of cancer cells are generally the outcome of 

transmutations in protein- programming genes that control division of cells. 

More genes are mutated over a period. The result of mutation of these 

genes is that the proteins, which usually repair DNA damages due to 

mutation. Subsequently, mutations proliferate in the cell and affects the 

normal functioning of cells and their progenies. Certain mutated cells 

perish but other variations leads to multiplication at rapid level of the 

abnormal compared to the regular cells. This superior progress labels most 

cancer cells with the functions restricted in the regular and vigorous cells. 

These cells are designated as benign if they reside in their original site and 

as malignant when they become hostile. In malignant types, the cancer cells 

frequently metastasize and propel cancer cells to distant locations in the 

body and leads to novel cancerous cells. 
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The proto-oncogenes encrypt the proteins that conduct a signal to 

the nucleus to kindle the division of cells in normal cells. The signalling 

proteins perform in a sequence of phases designates as signal transduction 

cascade or pathway. This flow comprises a membrane receptor for the 

molecular signal, intermediate proteins that mediate the signal across the 

cytoplasm, and transcription aspects in the nucleus that trigger division of 

cells in the genes. One protein triggers the next in every phase of the 

cascade. Nevertheless, some aspects or factors triggers more than one 

protein in the cell. Proto-oncogenes are a set of genes that lead normal cells 

to convert into cancerous cells because of mutation (Adamson, 1987; 

Weinstein and Joe, 2006). In proto-oncogenes, mutations are stereotypically 

prevailing in nature. The mutated variety of a proto-oncogene is designated 

as an oncogene. The oncogenes triggers the signaling pathway incessantly 

and the outcome is the augmented manufacture of factors stimulating 

expansion of cancerous cells. The proto-oncogenes program proteins that 

works to trigger division, impedes differentiation, and terminates death of 

cells. The entire procedure is significant for regular growth of human and 

for the preservation of organs and tissues. However, oncogenes usually 

demonstrate amplified manufacture of these proteins and leads to 

augmented division of cell, diminished differentiation of cell, and 

hindrance of cell demise.  In total, these phenotypes describe cancer cells. 

Therefore, oncogenes are presently a chief molecular objective for 

designing anti-cancer drugs. For instance, RAS is an oncogene that usually 

plays the role of a switch in the signaling pathway, that is, it switches on or 

off the signaling pathway. When a mutation occurs in in RAS, it switches 

on the signaling pathway interminable ensuing in an uninhibited growth of 

cells. It is evident from various studies that about 30 percent of cancers are 
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the upshot of mutation in RAS. For instance, lung, thyroid, pancreatic and 

colon carcinomas. 

There are innumerable aspects, which lead to the formation of 

oncogene. These aspects include the redisposition of genes in the 

chromosome that transfers the proto-oncogene to a new site, transformation 

of a proto-oncogene to an oncogene by transmutation of the proto-

oncogene, a proliferation in the quantity of normal proto-oncogene replicas 

or a virus induced in the DNA or approximately a proto-oncogene. The 

outcome of any of these aspects is a transformed form of the gene leading 

to cancer. Most of the oncogenes are prevailing mutations. A single replica 

of this gene is adequate for manifestation of the progress trait. The cells 

inheriting the mutant form of the protein acquires a new function that is not 

existent in cells with the regular gene.  

The proteins generated by tumor suppressor genes generally 

impedes growth of cells and prevents formation of tumorous cells. 

Transmutations in these genes produces cells that no longer displays 

irregular development and multiplication of cells. The tumor suppressor 

genes products perform in the cytoplasm, at the cell membrane, or in the 

nucleus. Mutations causes forfeiture of function and turns them to 

recessive. This implies that the attribute is not articulated unless the 

mutation of both the normal gene replicas.  

2.12.1 PPIs and cancer 

The manifestation of cancer genomics, focused treatments, and 

system oncology have ominously extended the background of PPI networks 

in cancer for healing detection. Widespread medical and biological research 

steered the prediction of protein interface hubs and nodes essential for the 

procurement and preservation of cancer features indispensable for 
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transformation of the cell (Garraway et al., 2013). This type of cancer 

facilitating PPIs are promising targets for healing. The PPI interfaces 

targeting as an anticancer stratagem has turned into a realism by means of 

progressions in technology related to detection and substantiation of PPI 

and PPI-targeting proxies in experimental backgrounds. The imminent 

research fixated at genomics-based PPI focused detection, categorization of 

PPI networks, PPI targeted biochemical library proposal, and use cases 

based on cancer affected infirm persons speed up the expansion of PPI 

grounded anticancer agents which helps in personalized medicines for 

future generation (Hennessy et al., 2005). Fig 2.15 depicts the PPIs and 

cancer association. 

 
Fig 2.15: PPIs and cancer association 

(Figure adapted from National cancer institute, 2013) 

2.13 Mounting curiosity in PPI targets 

PPI networks epitomize a vastly capable and challenging set of 

prospective targets for healing progressions (Wells and McClendon, 2007). 

In cancer, PPIs develop signaling hubs and nodes that conduct 

pathophysiological signals besides molecular interfaces to attain a cohesive 

biological harvest. This ultimately promotes origin of tumor, advancement 
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of tumor, incursion, and metastasis. As a result, trepidation of pathways by 

the PPI commotion perilous for cancer, propositions an innovative and 

operative stratagem for curbing the spread of cancerous signals. As 

oncology has advanced ominously advanced in recent period, the curiosity 

in PPI targeting as anticancer stratagems also augmented. 

2.14 PPI networking and cancerous signalling networks 

The generation of tumor cells are the result of diversity of 

ecological, epigenetic, and inherited factors that prompt the cancer 

instigating cells and the procurement of molecular and physical features. 

The features include circumvention of tumor suppressors and constant 

multiplying signaling allows the expansion and advancement of 

malignancy and are renowned as distinguished trademarks of malignant 

cells (Hanahan and Weinberg, 2011). These trademarks are responsible for 

a molecular agenda to comprehend factors related to cancer, associating 

signaling procedures to pathological aftermaths. A mixture of hereditary 

and epigenetic amendments using highly coordinated signaling complexes 

identifies the capacity of cancerous cells. It is notable that PPIs depicts the 

rudimentary entities inside such dynamic complexes. 

PPIs perform indispensable roles in associating complexes that 

transmit cancerous signals, permit the procurement of trademark 

characteristics of cancer, and extend assorted roles in motivating and 

upholding the development of cancerous cells on oncogenic prompt 

(Imielinski et al., 2012). PPIs initiates a series of reactions to endorse 

unrestrained cell division whether it is involving receptors with non-

regulated tumor factors or dimerization of receptor elicited by gene 

augmentation or transformations (Hennessy et al., 2005). The consequence 

of cancerous complex rescheduling is that few PPIs promotes distinctive 
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features of cancer and in contrast, other PPIs are imperative for multiple 

features of cancer. Consequently, the assumption is that the intervention of 

few grave PPIs can incapacitate manifold processes that cancerous cells 

depends on or endurance. Enormous number of PPIs are active in executing 

tumor generation by the ordinance of oncogenic complexes. Hence, these 

PPI networks signify productive base for the detection of anticancer 

treatments. Fig 2.16 depicts the properties of cancer signaling network. 

 
Fig 2.16: Properties of cancer signalling network 

(Figure adapted from Creixell et al., 2012) 
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There are immense prospects for targeting PPIs. There are 

prevailing authenticated PPIs which are dynamic focus for the development 

of therapeutic procedures. Furthermore, novel conceptions and capable 

PPIs are emerging for anticancer medicine development. 

The augmented information of cancer genomics and PPI arbitrated 

epigenetic procedures and interpretation of unambiguous cancer onco-

fusion proteins revealed an enormous quantity of novel PPIs that are allied 

with cancer pathology. Contemporary perception of the significances of 

several cancer treatments offers unexpected PPIs as possible cancer 

objectives to augment the efficiency of treatments. 

The Cancer Genome Atlas and The International Cancer Genome 

Consortium are large-scale genomics initiatives, which steered the 

discovery of surfeit genomic vacillations that initiate generation and 

progression of tumor (Vogelstein et al., 2013). Large-scale experiments 

were executed to investigate methodically the transformations in cancer to 

determine cancer-related PPI complex maps (Cancer Genome Atlas 

Research, N. 2008). These studies and the prophesied novel PPIs unveiled 

new PPIs that perform as most important navigators of cancer. Hence, they 

are the prospective objectives for therapeutic investigation (Zhang et al., 

2012). 

The cancer genomics authenticated not only the prominence of 

conventional trademarks of cancer but also unveiled new features that are 

complexly allied to cancer, such as RNA splicing and epigenetic 

dysregulation (Garraway et al., 2013). Novel opportunities are offered by 

modern developments in investigations delineating the support of 

dysregulated epigenetic mechanisms to cancer for PPI targeting. For 

example, the dysregulated histone acetylation and methylation are allied 
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with generation of tumor cells.  This alteration in turn instructs particular 

identification of altered histones by methyl lysine-coupling proteins and by 

acetyl lysine- coupling domains (Kelly et al., 2010). Cancer related 

transmutations in the RNA-splicing technology specifies the significance of 

PPIs in the regimenting RNA processing in cancer. 

PPIs are also imperative for the catalytic functions of many 

enzymes comprising epigenetic-    transforming enzymes susceptible to 

targets. Fusion proteins deals with cancer sensitive targets. Hence, there is a 

requirement of aiming at onco-fusion-protein explicit PPIs (Daigle et al., 

2011). 

2.15 PPIs and protein complexes 

PPIs frequently encompass multi-protein networks for hub proteins 

that arbitrate signaling of oncogenes. The major challenge lies in the 

discerning restriction of a specific PPI in the network for an anticipated 

healing effect. One more challenge is the investigational recognition of 

discerning agents. The identification of the particular modulators using 

advanced methodologies hasten the expansion of selective PPI inhibitors. 

One of the mounting prospect for target PPI in cancer is revamped 

PPIs in signaling networks of oncogenes initiated by therapeutic means. 

The therapeutic means prompted PPIs harvest novel cancer dependency and 

assist as novel objectives to win over the pharmacologically convinced 

medicine resistance. PPI variation is anticipated to own a significant role in 

forthcoming mechanism-based combination treatments. 

2.16 Hub proteins 

All the proteins interact with other proteins more or less. The 

interaction can be strong, weak, stable, momentary or provisional (Hartwell 

et al., 1999). There occurs a dearth of biological function if the proteins do 
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not interact. Protein interaction network encompasses highly connected a 

well as poorly connected proteins (Batada et al., 2006). Most proteins bind 

with just a fewer number of proteins. In contrast, a few proteins bind with a 

large number of other proteins. This type of comprehensively binding 

proteins are labelled as hub proteins (Jeong et al., 2000). The confiscation 

of a hub protein is deliberated as perilous when matched with a non-hub 

protein. This phenomenon is labelled as the centrality-lethality rule (Jeong 

et al., 2000). This rule is grounded on the architecture of the interaction 

network and is focal to decipher the network function. In a network, the 

centrality-lethality rule postulates that hub proteins incline to tally proteins 

that are vital and strong. There are investigations, which elucidate that hub 

proteins are physiologically significant, and evolution wise well-preserved 

compared non-hub proteins (Wuchty and Almaas, 2005). The degree of 

connectedness for hub proteins was delineated subjectively based on 

researcher’s prerequisite regardless of the exceptional topological and 

functional implications. Hub proteins display eight or more interactions on 

a common note. Recent several sovereign studies elucidated that hub 

proteins are allied to disease instigating genes, including cancer. 

The appropriate graph and superfluous graph are employed to 

exemplify the relationship of a node to the core graph to unravel the 

dilemma of distinguishing a protein system from the PPI networks. This 

technique enables the symbolization of tightly or loosely coupled node to a 

core graph. The Relevancy Judgment algorithm enables forecast of protein 

complexes from PPI networks. This algorithm also probes whether a node 

fits into a protein system by looking at the implication of core graph and 

nodes. The high-throughput accuracy of this algorithm is apparent from 

manifold investigations.  
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2.17 PPI databases 

An imperative concern for the interpretation of the functional 

association of the human genome is the mining of data about the 

development of a protein complex and the associated role of a related PPI 

network. A database based on biological system is the assortment of 

information that is systematized which makes the contents effortlessly 

controllable, reachable, and rationalised. The activities related to the 

construction of a database are assemblage of information, which is 

effortlessly retrieved, and providing the customer constantly obtainable 

(Peri et al., 2003). Currently, there are numerous databases available for 

information mining of these PPIs (Titz et al., 2004). The databases are 

categorized into the following (Rivas and Fontanillo (2010) : 

• Primary: Primary database gathers information on the 

existing PPIs, which are discovered based on laboratory, that 

is, In vivo and In vitro techniques. These include the 

nucleotide sequences and three-dimensional structures. 

• Secondary: Secondary database gathers data extracted from 

the analysis of primary data like the secondary structures 

and domain. 

• Prediction: Prediction database includes all the predicted 

PPIs based on numerous modus operandi. For instance, the 

bio-molecular interaction network database (BIND) is 

developed on an extensive system that allows an elaborate 

depiction of the approach. In BIND, the PPI data were 

measured experimentally and included links directing to the 

concluding substantiation from the literature (Bader et al., 

2001). 
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In the existing information about PPI data, the focal emphasis is on 

the binding partners of proteins or in other words binary protein 

interactions. The scarcity of information on how the proteins form 

complexes, the networking among the complexes or the interconnectivity 

of protein complexes cannot be suspended. Even though the number of 

databases pertaining to the PPI are more, the comparative study on such 

databases are moderately low. Consequently, the partially available 

information on the human interactome restricts the application of usability 

in system biology. Therefore, it is important to integrate the various data 

available to fill the ambiguities in the human interactome. Few resources 

are available to study this kind of integration but the explanation on the 

protein complexes is feeble.  

2.17.1 HPRD 

Human Protein Reference Database or HPRD is an entity database 

that assimilates a mammon of information pertinent to the roles of human 

proteins in well-being and ailment. Information concerning numerous PPIs, 

variations in post-translation, associations of enzyme and substrate, 

relations of ailment, manifestation of tissue, and localization of subcellular 

components were mined from the collected work for an essential set of 

human proteins. Most of the data was attained manually by researchers who 

read and construed available documentation in the course of elucidation 

procedure.  

HPRD owns a spontaneous enquiry network consenting apparent 

admittance to the entire characteristic of proteins. This is created by means 

of open source technologies and is liberally accessible at 

http://www.hprd.org to the scholarly community. This combined 
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bioinformatics platform is beneficial in labelling and extracting the huge 

amount of PPIs and variations. 

HPRD supplements other PPI databases as well. Thousands of 

proteins were interpreted comprising numerous PPIs. Several PubMed links 

were provided to various arenas that orient a customer to the pertinent 

principal literature. However, an accurately mistake-free and wide-ranging 

databank is not possible deprived of the participation of the biomedical 

community. A comment button is provided for each molecule that enables 

to collect responses from users. These annotations from a user permit to 

resolve any inaccuracies and to apprise available information regarding 

interpreted proteins other than the enduring exertions to augment and 

apprise the information. Fig 2.17 depicts the HPRD database. 

 
Fig 2.17: Schematic representation of HPRD database 

(Figure adapted from BIOINFORMATICS.FR) 
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The integration of the widely accessible microarray information into 

HPRD enables a gene-centric interpretation to govern whether the mRNA 

expression array of a particular gene is conveyed to be transformed by any 

available investigation. Microarray users benefit from this comprehensive 

explanation to categorize proteins in numerous means to produce new 

theories or to filter the possible aspirants convoluted in a biological 

procedure. This database is a valued reserve for the proteomic community 

as a consequence of mainstream amendments of post translation which has 

a static molecular mass that permits accurate pursuits of the protein 

database.  

2.17.2 IntAct 

IntAct delivers a toolkit and an open source database to store, 

present and investigate PPIs. The web network offers documented and 

graphical depictions of PPIs, and consents discovery of the interaction 

networks. A web amenity countenances undeviating computational 

admittance to recover interaction complexes in XML layout. IntAct 

comprises numerous twofold and multifaceted interactions introduced from 

the theories and assist in association with the Swiss-Prot team and makes 

use of severely meticulous vocabularies to safeguard data reliability. All 

IntAct software, information and meticulous terminologies are accessible at 

http://www.ebi.ac.uk/intact. 

Protein interactions deliver a valued reserve for the interpretation of 

cellular function, and PPI investigations to focus on the research for 

biomolecular components (Hermjakob et al., 2004). Investigational 

methodologies like Y2H or tandem affinity purification permits the 

production of enormous amounts of information on PPIs. However, 

basically most of the ventures improve their individual organizations to 
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store, represent and analyze PPI information. Other than the replication of 

effort, this outcomes in a great amount of inconsistency amid diverse PPI 

sets of data. IntAct delivers a widespread, open source databank and 

investigation scheme for PPIs, which are locally mounted and amended to 

the requirements of the indigenous association, thus dropping expansion 

time, and endorsing reliability of data sets interaction by the usage of the 

equivalent substructure and explanation system. 

The IntAct information prototype has the following three chief 

constituents:  

• Experiment: An experiment assembles a number of 

interactions. This is generally from one journal, and 

catalogues the investigational circumstances in which these 

interactions are engendered. An experiment contains only 

one interaction, or numerous interactions in the incident of 

comprehensive experiments. 

• Interactor: An interactor is a genetic object contributing to 

an interaction, which is generally a protein, but 

hypothetically also a sequence of DNA, or a trivial 

fragment.  

• Interaction: An interaction encompasses one or more 

interactors contributing to the interaction. The depiction of 

interactions is not restricted to twofold interactions or 

information on multi-protein interactions.  

Fig 2.18 depicts the IntAct database. 
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Fig 2.18: IntAct database 

(Figure adapted from European Bioinformatics Institute, 2014) 

IntAct presently delivers a modest search interface that pursuits the 

databank by IntAct accession number, by name, or by identifiers of external 

databases. For example GO. 

The data recovered are demonstrated in two views, that is, an 

experiment view and a binary view. The binary view demonstrates the 

entire identified interaction associates and the nominal documented 

explanation for a particular protein. This swiftly provide suggestions of 

probable useful roles for non-characterized proteins. The number of 

subsidiary investigation is designated for every pair of interactions, and a 

linkage permits interchanging to the research view, which displays a 

comprehensive view of all the experimentations associated to the particular 

twofold interaction. Both the views provide the entire terms from 

hyperlinked meticulous vocabularies, providing direct admittance to their 

delineations. In addition, both views permit the choice of particular proteins 

and their respective demonstration in the graphical view. This view shows 

proteins in the context of their local interaction networks. Only the local 

interface neighborhood up to a specified distance is revealed for lucidity. 



Chapter-2  

 

54 

 

Nonetheless, there is option to enlarge the network globally, or only around 

particular proteins of concern. Any of the demonstrated proteins can be 

designated as the novel center of the interaction network. A distinct section 

of the graphical view demonstrates all the GO terms which are interpreted 

to proteins in the exposed interaction network. The entire proteins which 

have the annotated GO term or any of its child terms are highlighted by 

nominating any of these GO terms. This feature offers a rapid technique to 

discover the functional background of proteins interactively. 

2.17.3 DIP 

The Database of Interacting Proteins (DIP; http://dip.doe-

mbi.ucla.edu ) is a databank that documents experimentally generated PPIs. 

This databank is envisioned to afford the community of scientists with a 

complete and cohesive tool for surfing and competently mining data about 

PPIs and interaction networks involved in various biological processes. 

Other than registering the details of PPIs, DIP is also beneficial for 

comprehending the functions of protein and PPI associations, investigating 

the characteristic properties of networks of PPIs, benchmarking forecasts of 

PPIs, and analyzing the progression of PPIs. 

DIP targets to assimilate the miscellaneous form of investigational 

data on networking proteins into a common and effortlessly retrieved 

databank. Countless scientific periodicals and documentations encompass 

biological data about PPIs. Even though these documentations are referred 

by the scientific communal day-to-day, recovering specific information 

from such reserves necessitates additional exertion compared to DIP. DIP 

syndicates data from manifold interpretations and investigational methods 

and also provides data on protein interacting networks. 
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The extraction and integration of the plethora of data about PPIs to 

a manageable milieu is the paramount intention of DIP. The databank of 

specific organisms such as EcoCyc for Escherichia coli, YPD (1) for yeast, 

and pathway databases like CNSB and KEGG, frequently encompass 

information data concerning the protein pathways and complexes. 

Similarly, DIP was found to complement the present database, and to 

consent researches to develop and complement the annotations of PPI of 

one organism with other organisms. 

The data on PPI was stored in the DIP as a single text file in its 

novel commencement (Marcotte et al., 1999). The DIP is now executed as 

an interpersonal database written in the SQL, explicitly mySQL (TcX 

Sweden) to tackle the growing capacity of data efficiently. SQL 

proficiently manages miscellaneous categories of information and permits 

fast cataloguing and investigation. The databank has the option to 

expediently extend as per the requirement, without shifting the content of 

the current database, by the addition of new tables and fields to the 

assembly of information. 

A table of protein information, table describing details of 

experiments detecting the PPIs and a table of PPIs are the three linked 

tables of DIP. 

2.17.6 MINT 

The Molecular INTeraction database (MINT) at 

http://mint.bio.uniroma2.it/mint/ targets the storage of data in an organized 

format. The priority is the data on molecular interactions (MIs) by mining 

investigational particulars from peer-reviewed journals which are 

published. Currently, the MINT group emphases the effort on physical 

PPIs. Computationally or genetically concluded PPIs are not involved in 
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the databank. MINT has endured an intense restructuring of the database 

structure and information model and has vividly augmented the quantity of 

stowed PPIs in the past four years. The novel variety of MINT is grounded 

on an entirely modernized database structure, which deals with better 

competent information investigation and scrutiny, and is categorized by 

records with a more affluent explanation. The number of physical PPIs rose 

to over 95 000 in the past few years. The complete database serves free 

access online in both collaborating and batch modes over an FTP server 

and web-based interfaces. In addition, MINT also includes a dataset of 

human PPIs concluded from experimentations with orthologue proteins in 

prototypical organisms branded as HomoMINT 

(http://mint.bio.uniroma2.it/mint/). 

Cells are multifaceted systems whose functioning is administered 

by a sophisticated network of molecular interactions (MIs) and has a 

pertinent subcategory are PPIs. Transcriptional regulation and signal 

transduction pathways and are the archetypal instances of biological 

procedures arbitrated by PPI. The MI database (MINT, 

http://mint.bio.uniroma2.it/mint/) was premeditated to assemble 

investigation substantiated PPIs in a binary or multifaceted demonstration.  

MINT promoted the IntAct interpersonal prototype in January 2006. 

IntAct is an open source databank particularly intended for the storing, 

presenting and examining the MIs. The schema is available at 

http://intact.sourceforge.net/uml/intactCore.gif. The key benefit of 

espousing the IntAct prototype is its capability to embody protein 

complexes and the other categories of molecules as interaction partakers. 

Also, the easiness with which novel characteristic features and toolkits for 

storing, representing and analysis of data are added. In addition, MINT is 
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also attuned with the entire tools and upgrades developed by the IntAct 

consortium. MINT is grounded on the open source PostgreSQL database 

management system found at http://www.postgresql.org. 

The entire data can be retrieved as Java objects using the IntAct API 

by means of OJB found at http://db.apache.org/ojb/ as the object-relational 

mapping tool. The web application is grounded on the Struts framework 

found at http://jakarta.apache.org/struts/ running on the Tomcat servlet 

container found at http://tomcat.apache.org/ and the Apache server at 

http://www.apache.org/. 

The latest web-based interface has provided the researches with lot 

of expansions and augmentations permitting a better proficient databank 

assessment. One of the notable feature is that the query can be grounded on 

gene or protein names, identifiers of external databases or UniProt 

keywords like PDB ((Berman et al., 2007), UniProtKB, SGD, Ensembl, 

Reactome, PubMed, etc. There is option to enquire about explicit species 

datasets like mammalian, viruses or Drosophila melanogaster. BLAST, a 

sequence similarity search can also be accomplished for the pursuit of 

proteins which are homologous to the enquiry protein. 

The inquiry results are shown in a table appearing in the left edge an 

outline of the protein highlights reported in Uni-Prot and, in the right edge, 

the rundown of the connection accomplices curated in MINT. The 

connections can be shown graphically by an upgraded variant of the 'MINT 

viewer', a Java applet resulting from the applet Graph (http://java.sun.com). 

The viewer speaks to the associations by lines (edges) and nodes 

(proteins), and allots the nodes a size corresponding to the protein's atomic 

weight and a shading which relies on upon the species. The diagram 

showed by the viewer can be extended and altered intelligently by moving 
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or erasing nodes. Proteins connected to OMIM are presently highlighted in 

red. Keeping in mind the end goal to ascribe an unwavering quality list to 

the reported collaborations, we have likewise doled out every cooperation a 

certainty level, in view of the test recognition strategy and test conditions. 

The aftereffects of the investigation performed in the MINT viewer can be 

caught in various arrangements prepared for export, that is, PSI2.5-XML, 

PSI1.0-XML, Osprey, or flatfile. 

MINT is currently supplemented by HomoMINT, a surmised 

human protein collaboration system where communications found in model 

living beings and gathered in MINT are mapped onto the relating human 

orthologues. Through the MINT website pages it is additionally 

conceivable to hunt the HomoMINT dataset down gathered associations. 

2.17.6 Gene ontology 

The Gene Ontology or GO project at http://www.geneontology.org/ 

offers planned, organized vocabularies and categorizations that includes 

numerous areas of molecular and cellular biology. GO is freely accessible 

for unrestricted usage in the explanation of genes, products and sequences. 

Several prototypical organism databanks and genome explanation sets uses 

the GO and add their explanation sets to the GO reserve. The GO databank 

assimilates the vocabularies and contributed annotations. It offers complete 

admittance to this data in numerous formats. The members of the GO 

Consortium recurrently work communally, including external specialists as 

required, to increase and apprise the GO vocabularies. 

The GO Web resource also offers admittance to widespread 

certification about the GO project and associates to solicitations that 

employ GO information for analysis of functional aspects. 
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The genomics era has witnessed the accretion of massive quantities 

of biological information, convoyed by the extensive propagation of 

biology-focused databanks. Diverse types of data from diverse resources 

are assimilated in ways that is logical to the biologists to mark the 

superlative usage of biological databases and the information they 

comprise. The foremost constituent of the integration work is the 

enlargement and usage of explanation criteria like ontologies. Ontologies 

deliver conceptualizations of information realms, which expedites 

communication among scholars and the usage of domain data by computers 

for manifold uses. 

2.17.6 UNIPROT ID 

The UniProt Consortium forms UniProt. This consortium is an 

association of the Swiss Institute of Bioinformatics (SIB), the European 

Bioinformatics Institute (EBI), and the Protein Information Resource (PIR). 

UniProt encompasses four constituents: 

• The UniProt Knowledgebase (UniProtKB): This is a 

proficient and opulent protein database consisting of two 

sections: 

o UniProtKB/Swiss-Prot: Encompasses superior, 

manually explained and essential protein sequence 

records. Manual explanation entails investigation, 

evaluation and assimilation of all existing sequences 

for a particular protein. Also, a comprehensive 

review of concomitant investigational and 

prophesied information. UniProt team collect 

biological data from various records and execute 

various computational examinations. This maintains 
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in a distinct record comprising the diverse protein 

products arising from a specific gene. The Protein 

and the respective families or groups are reviewed on 

a regular basis to match with the latest scientific 

discoveries. 

o UniProtKB/TrEMBL: Encompasses superior 

computationally investigated records augmented 

with programmed explanation and cataloguing.  

• UniProt Reference Clusters (UniRef): UniRef100, UniRef90 

and UniRef50 databases unify sequences spontaneously 

from different species. UniRef100 is grounded on the entire 

UniProtKB records. UniRef100 is created by grouping all 

these records based on identity of the sequence. UniRef90 

and UniRef50 are constructed from UniRef100 to offer 

records with reciprocal sequence identity with ≥ 90% or ≥ 

50% respectively. These databases are linked to the 

analogous UniProtKB records. In each cluster, the entire 

sequences are ranked to enable the choice of a typical 

sequence. 

• UniProt Archive (UniParc): Captures all the protein 

sequence data available in public. This is the reason why 

UniParc is the best ample widely reachable essential 

database of protein sequence. Redundant data are the result 

of the presence of a protein sequence information more than 

once in a given database. UniParc addresses this problem. 

This stores the information only once and allocates an 

exclusive UniParc identifier. 
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• UniProt Metagenomic and Environmental Sequences 

(UniMES): The sequences derived directly from the 

ecological samples are stored in UniMES. The derived 

information is subjected to further analysis after conjoining 

with InterPro. This is a cohesive resource for protein 

families, domains and functional sites. 

All the above-mentioned databases are augmented for different 

requirement. The UniProtKB/Swiss-Prot provides access to functional 

information of proteins. The UniProtKB contains the sequence of amino 

acid, name of the proteins, taxonomic data, etc.  

The UniRef databases deliver grouped sequences from UniProtKB 

and particular UniParc records to offer a comprehensive analysis of 

sequence at numerous tenacities. UniRef90 and UniRef50 extends 

reduction of database size by 40% and 65% respectively.  This provides a 

swift sequence searches. UniParc is the supreme publicly manageable 

essential protein sequence database, which provides link to all fundamental 

sources and varieties of these sequences. This helps to comprehend whether 

the queried sequence is already present in the public domain or any closest 

relative is present. UniMES is a storehouse explicitly designed for 

metagenomics and ecological information. 

There are different options to retrieve information from the UniProt 

database. Browsing allows browsing and investigating information from 

www.uniprot.org. Download the entire databases, that is, the UniProtKB, 

UniRef and UniMES databases from www.uniprot.org/downloads. The 

complete set of UniProt Knowledgebase releases are circulated on CD-

ROM.  
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2.18 Global characteristics of PPI complexes 

The local and global characteristics of a network can be investigated 

using various contemporary methodologies. The global properties offers a 

synopsis of a specified network. However, the convoluted modifications 

between the networks is not facilitated. In contrast, the local properties 

computes trivial, local forms or sub-structures termed as graphlets or 

motifs. The foremost benefit of investigating the local properties is 

apparent in case of networks with lacking node and edge groups. The cause 

is that the resident structures are almost complete compared to the biased 

global properties. 

2.18.1 Degree of centrality 

In modern bioinformatics, the most substantial challenge is to 

develop computation tools to comprehend and heal complex ailments. For 

instance, cancer. Manifold methodologies are employed so far to determine 

the candidate of cancer genes. It is evident from various investigations that 

PPIs are responsible for almost all the biological processes occurring a cell. 

Therefore, an algorithm based on graph centrality values of the human PPI 

network will be a highlight to identify genes causing cancer. The precise 

and accurate inference obtained from this algorithm can turn out to be an in 

effect prototype for detecting novel cancer protein. 

PPIs are ultimate to almost each cellular process. These proteins 

perform many roles including inactivating, altering the kinetic properties 

and formatting a novel interacting site of proteins. Numerous paramount 

milestones are marked in the past few decades to comprehend the PPIs and 

thus discovering more facts on the multifaceted biological system. Protein 

complexes executing a particular biological role regularly comprises of 

extremely linked protein modules. Investigations about these protein 
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modules portrays a vital part in comprehending the pathophysiological 

features of compound ailments like cancer. 

Cancer is the result of unrestrained development of anomalous cells 

in the body. Over 200 varieties of cancer is identified so far. About 9 

million cancer cases are detected every year. Over 4.5 million individuals 

expire from cancer each year globally. Initial finding of cancer increases 

the likelihoods of an efficacious cure and persistence to a superior extend. 

It is an exceptionally multifarious hereditary disorder and practically 5–

10% of humanoid genes subsidize the beginning of cancer. Only 1% is 

recognized so far. A methodical investigation of the proteins coding cancer 

genes in a PPI network aids to ascertain novel candidate genes. The 

algorithm generally emphases on certain graph centrality values of a PPI 

network. For instance, degree, shortest path distance between two proteins, 

betweenness centrality, clustering coefficient, etc.  

Generally, for the algorithm based studies, PPI data are accessed 

from public databases. The size of the PPI data are outsized. Hence, the 

data is composed randomly by selecting n cancer proteins and n non-cancer 

proteins from the PPI data. A subclass of interactions is engendered by 

choosing the entire interactions of the nominated proteins from available 

PPI data. The resulting data are embodied as an adjacency milieu and the 

measurement of innumerable graph centrality values are executed. The 

generation of ranks for all these proteins are carried out based on the 

centrality parameter. The final score of each protein is arrived from the 

discrete ranks of each protein. This procedure is iterated on mock-ups 

produced from another n cancer proteins and n non-cancer proteins. The 

final ranking is updated after every repetition. This procedure is iterated 

until the final score require no further update. In a graph, diverse centrality 
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values are proposed to determine the significance of a node. The nodes are 

arranged by computing five centrality processes.  

Fig 2.19 depicts the schematic representation of the procedure with 

respect to a single repetition. 

 
Fig 2.19: Schematic representation of the procedure with respect to a 

single repetition 

 

2.18.2 Clustering coefficient 

Various intricate data cliques own general depictions as networks. 

The briefing, associating, cataloguing and sculpting of these data sets 

across an extensive assortment of disciplines are imperative deeds 

occurring concurrently (Newman, 2003). Several amounts are calculated to 
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illustrate a network. For instance, the notions of path length, clustering 

coefficient, and degree proves to be tremendously beneficial. 

Watts and Strogatz (1998) devised the catchphrase small world 

network to designate the frequently stirring condition where a meagre 

network is vastly grouped, that is, resembling a common lattice and 

hitherto owns shorter path lengths like that of a random graph. Many 

complex networks are investigated and categorized as small worlds. 

Likewise, the well-known scale free characteristic of the degree distribution 

is acknowledged as an assurance for several real data groups (Barabasi and 

Albert, 1999; Newman, 2003). The scale free and small world properties 

are extensively investigated for unidirectional or binary networks.  

2.18.3 Neighbourhood connectivity 

The node connectivity depends on the number of its neighbors to 

which a particular protein is connected. The connectivity of a neighborhood 

node n is well defined as the average connectivity of all its neighbors 

(Maslov et al., 2002). The distribution of neighborhood connectivity offers 

the average of the connectivity of all neighborhood nodes with neighbors. 

Fig 2.20 depicts the distribution of neighborhood connectivity for a 

network. 

 
Fig 2.20: Distribution of neighbourhood connectivity for a network 

(Figure adapted from Network Analyzer online help) 
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In equivalence to the in- and out-degree, each node n in a focused 

network is mapped to an in- and out-connectivity. Therefore, in focused 

networks, the following types of neighborhood connectivity in a node is 

identified: 

• Only out: The average in-connectivity of all out-neighbors of n 

• Only in: The average out-connectivity of all in-neighbors of n 

• In and out: The average connectivity of all neighbors of n.  

Three neighborhood connectivity distributions, that is, only out, 

only in, and in/out are identified grounded on the three definitions 

mentioned above. The edges between highly connected and little connected 

nodes are dominant in the network if the neighborhood connectivity 

distribution is a diminishing function in k. 

2.18.4 Shortest path length 

In a large scale-free network, calculating the average shortest-path 

length requires abundant memory space and calculation time. Therefore, 

analogous calculation is applied. In a network, the shortest paths computes 

the length of the entire shortest paths from or to the vertices. The length of 

the shortest path between two nodes a and b is L(a,b). The shortest path 

length distribution gives the number of node pairs (a,b) with L(a,b) = k, 

where k = 1,2,…. 

The network diameter is depicted as the maximum length of 

shortest paths between two nodes. In case of a disconnected network, the 

diameter is depicted as the maximum of all the diameters of its linked 

constituents. 

The network diameter and the shortest path length dissemination 

indicates small-world properties of the analyzed network (Watts and 

Strogatz, 1998). 
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2.18.5 Pathway analysis        

The genome-wide connotation investigations are extensively 

employed for detecting mutual genetic variations that subsidize human 

multifaceted characters with the expansion of high-throughput genotyping 

expertise. Concentrating on the utmost substantial single-nucleotide 

polymorphisms (SNP), genome-wide connotation investigations after 

analysis of specific SNPs efficaciously identified numerous SNPs 

concomitant with compound human ailments (Manolio et al., 2009). 

On the other hand, in almost all the cases the recognized SNPs only 

mutually elucidate a trivial fragment of heritability. This leads to a 

challenge for identifying genetic variations with trivial or reasonable 

discrete reasons for human compound ailments. Furthermore, these 

procedures incline to own a petite reproducibility. Consequently, it results 

in a diminutive overlay among verdicts of diverse investigation sets 

examining the similar biological system. 

The contemporary research validates that assessing gene expression 

disparities associated to predefined group of interrelated genes or pathways 

frequently upsurges the arithmetical supremacy and harvests further strong 

upshots (Virtaneva et al., 2001). In recent times, quite a few pathway-based 

investigation procedures were suggested precisely for genome-wide 

connotation investigations (Wang et al., 2010).These approaches vary from 

each other in several facets. This includes the methodology to assess the 

statistical implication, requirement of individual-level SNP genotypes, 

computation of gene-level summary statistics, etc. The emphasis of 

investigation from specific SNPs to pathways steered the recognition of 

several eloquent pathways in biological system. 
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Pathway analysis has turn out to be the foremost selection for 

acquisition of awareness of the principal biology of diverse gene expression 

and proteins. It diminishes intricacy and has amplified illustrative 

supremacy. 

Nowadays, nearly all the bioinformatics investigations seek 

statistically substantial pathways to validate either computationally 

consequent outcomes or biological elucidation. Though broadly accepted, 

the first generation pathway analysis approaches that is, Over-

Representation Analysis (ORA), decouples molecular computations from 

well-designed investigation and accept that pathways and genes are not 

dependent on each other. The second-generation methodologies like 

Functional Class Scoring (FCS) resolves these precincts. The 

methodologies based on Pathway Topology (PT) further enhances the FCS 

methods by making an allowance for the type and number of interactions 

between genes. This is generally overlooked by FCS. 

Conversely, in spite of these exertions, there are unresolved 

explanation and procedural defies. The resolution data is less, incomplete 

conditional and cell-specific data, and inadequate explanations limit 

expansion of the next-generation methodologies for pathway analysis. The 

incompetence to assimilate the vibrant environment of a biological 

organization in investigation restricts the efficacy of prevailing techniques. 

Nevertheless, in spite of these steeplechases, as the amount and kind of 

useful observations upsurge, combined with technical developments and 

investigation approaches that deliver enhanced supervision for tactical 

forecasting for consequent biological experimentations, the usefulness of 

pathway analysis and buoyancy in the inferences are expected to expand.  
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2.19 PPI network topology analysis 

The other set of method available for investigating PPI networks is 

to appraise the network topology. This method is rarely employed to 

investigate the low-density networks or hub proteins. This method is 

mostly useful for high-density networks. In this case, the proteins might be 

important fraction of a proteome, or to investigate a specific function in a 

cell or a process. PPI network topology is usually demarcated by 

dimensions as follows: 

2.19.1 Node degree 

This represents the number of nodes that interact with a particular 

node. In other words, the degree or connectivity of a node is the total 

number of edges incident with a particular node. 

2.19.2 Degree distributions 

The rudimentary topological property of a protein is the degree or 

connectivity. The degree is referred to as the number of links or 

connections a particular protein has with respect to other proteins. The 

proteins with the higher degree are designated as hubs. They are obligatory 

for the endurance of a cell. The degree distribution proposes the number of 

interacting partners with respect to a selected protein. 

The degree of a protein node signifies the sum of the direct links of 

this node in a protein network. P(n) is the possibility that a node has P links 

in a group of proteins grounded on the dissemination. The number of links 

on a node specifies that the network firmness is comparatively high when 

compared to the lower number of links (Zhu et al., 2001).  

For example, in the network displayed by the figure, hypothetical 

node A has a degree of 4 (kA = 4). The average degree of nodes for the 
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whole network (<k>) is used as an index to describe the 'density' of a 

network.   

 
Fig 2.21: Degree distributions 

 

2.19.3 Correlations 

The real PPI networks are regarded as correlations in the degrees of 

a node. This is accomplished by the comparatively short paths between any 

two nodes. Also, by the manifestation of an enormous number of short 

cycles. 

2.20 Human cancer and non-cancer interaction 

A regular epithelial cell controls the discharge of autocrine and 

paracrine elements that inhibit abnormal development of adjacent cells 

paying way to vigorous expansion and standard metabolic rate. One factor 

accountable for the commencement of cancer is deliberated as the downfall 

of this homeostatic cell competitive system (Vogelstein et al., 2013). The 

cancer- suppressive microRNAs (miRNAs) are veiled by regular cells as 

anti-extensive signal units. The result of varied analysis at global level 

indicate that secretory tumor-suppressive miRNAs endorse as a demise 

signal in a cell competitive procedure.  
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2.20.1 cBio 

The framework of a genome sequence delivered by the project of 

human genome permits accurate mapping of variations in human genome 

to investigate their relationship with ailment and the respective effects on 

the functional aspect of genes. Somatic mutations and germ-line variations 

were recognized as imperative in cancer with respect to the portrayal of 

oncogenes and tumor suppressor genes some decades ago in terms of 

jeopardy, forecast, reaction and oncogenesis to therapy. The portal for 

cancer genomics cBio at http://cbioportal.org is publically available reserve 

for collaborative investigation of multidimensional cancer genomics 

information set. At present, 5000 tumor tester information is accessible 

from 20 malignancy investigations. The cBio portal ominously depresses 

the obstacles among compound genomic information and cancer scholars 

who require swift, spontaneous, and superior right of entry to profiles at 

molecular level and medical traits from comprehensive cancer genomics 

ventures and endows scholars to decode the available opulent information 

groups into biologic acumens and medical solicitations (Cancer Genome 

Atlas Research Network, 2008).  

All types of gene level data are stored and then joined with existing 

unknown medical facts like complete existence and aseptic survival 

intermissions. The information is systematized as a patient and gene 

function. The rudimentary notion of the portal is the perception of 

transformed genes. Explicitly, a gene is classified as transformed in a 

particular patient with respect to deletion, mutation, amplification, or the 

comparative expression of mRNA is lower than or superior than a user-

defined inception. The concept of transformed genes is an authoritative 

streamlining conception that empowers consumers to scrutinize compound 
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information groups and to improve the biologic assumptions concerning 

persistently transformed gene groups and pathways in a biologic system.  

A strategic distinguishing aspect of cBio is the comfort of use. All 

characteristics of cBio are thus accessible over a rationalized 4-step 

interface on web. In detail, the customers are channeled to select the 

following: 

• A study on concerned cancer. 

• More than one or just one profile of the genome. 

• A case study of the effected patient. 

• A concerned set of gene. 

Customers have the preference to calculate spontaneously the 

common exceptionality and co-existence among the entire gene duos. Also, 

the choice to accomplish cross-cancer enquiries by using a modest 2-step 

inquiry after selecting All Cancer Studies and entering the interested group 

of genes. Fig 2.22 depicts cBio cancer genomics portal. 
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Fig 2.22: cBio Cancer Genomics Portal 

A, the cBio Cancer Genomics Portal is an open platform for interactively 

exploring multidimensional cancer genomics data sets in the context of clinical 

data and biologic pathways. B, OncoPrint of RB pathway alterations in GBM. 

Genomic alterations of different members in the RB pathway are mutually 

exclusive. The OncoPrint provides an overview of genomic alterations (legend) in 

particular genes (rows) affecting particular individual samples (columns). C, 

mutation details for RB1. The predicted functional impact of the RB1 missense 
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mutations in GBM can be assessed through Mutation Assessor. This includes a 

predicted functional impact score, a multiple sequence alignment of different 

family members, and a 3-dimensional structure view, when available. D, 

correlation plot for CDK4. GBM samples with CDK4 amplification have markedly 

increased CDK4 mRNA expression. E, survival analysis. GBM cases with an RB 

pathway alteration have worse overall survival than cases without an RB pathway 

alteration. F, network view of the BRCA1/BRCA2 neighbourhood in serous 

ovarian cancer. BRCA1 and BRCA2 are seed genes (indicated with thick border), 

and all other genes are automatically identified as altered in ovarian cancer. 

Multidimensional genomic details are shown for BRCA2 and C11orf30/EMSY. 

Darker red indicates increased frequency of alteration (defined by mutation, copy 

number amplification, or homozygous deletion) in ovarian cancer. G, distribution 

of BRCA1 mutations in ovarian cancer across protein domains. The 2 hot spots 

(p.E23fs and p.Q1756fs) represent the common founder mutations 185delAG and 

5382insC frequently observed in BRCA1. (Figure adapted from Cancer Discovery, 

2012). 

2.20.2 Sanger  

Frederick Sanger established a technique to regulate the residue of 

amino acid situated on the N-terminal position of a polypeptide chain by 

with the chemical agent fluorodinitrobenzene. Initially, it was anticipated 

that this technique only delivers the sequences situated on the N-terminal. 

Sanger took the investigation further by employing fractional hydrolysis, 

numerous proteolytic enzymes, and primary variety of chromatography. In 

molecular biology, a lot of exhilaration resulted when Sanger revealed the 

technique to categorize proteins initially. The preliminary curiosity in 

Bioinformatics thrusted by the inevitability to construct databanks of the 

biological sequences. Sanger Institute Catalogue of Somatic Mutations in 

Cancer (COSMIC) is an enduring exertion supported by the Sanger 
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Institute to gather transmutation information from the systematic works 

(Forbes et al., 2005). As part of this literature, it comprises information on 

thousands of discrete transmutations over different genes from capacious 

samples.  

2.20.3 Cytoscape software 

Cytoscape is employed to visualize biological cascades and 

molecular interaction networks. In addition, to integrate these networks 

with interpretations, gene expression profiles, etc. Cytoscape was initially 

intended for biological research but now it serves as a common place for 

analysis of complex network and visualization. The fundamental 

dissemination of Cytoscape delivers an elementary group of features for 

integration, investigation and conception of data. The other surplus 

characteristic features are accessible as Apps, which are formerly 

designated as Plugins. The Apps are existing for investigates of molecular 

and complex profiling, novel designs, maintenance of supplementary file 

format, scripting, etc.   Anyone can develop by employing the Cytoscape 

open API. Almost, all the Apps are freely accessible from Cytoscape App 

Store. 

Cytoscape supports the following standard and annotation file 

formats: 

• Excel Workbook (.xls, .xlsx) 

• Delimited text 

• GraphML 

• PSI-MI Level 1 and 2.5 

• BioPAX 

• SBML 
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• Extensible graph markup and modelling language 

(XGMML) 

• Graph Markup Language (GML or .gml format) 

• Nested network format (NNF or .nnf format) 

• Simple interaction file (SIF or .sif format) 

It also supports the MS Excel™ Workbook and Delimited text files. 

There are options to import data files including the GO annotations or 

expression profiles extracted from other applications or programs. There is 

a provision to load and save random traits on nodes, edges, and networks. 

For instance, generate a group of confidence values for particular PPIs by 

adding a set of annotation terms for a query protein. 

2.20.3.1 Excel Workbook (.xls, .xlsx) and Delimited text 

Cytoscape has innate provision for Microsoft Excel files, that is, 

.xls, and .xlsx. In addition, the delimited text files. These files encompass 

tables with information on network and qualities related to edges. The 

customer has the rights to stipulate columns containing target nodes, source 

nodes, edge attributes and interaction types in the course of file import. 

Igraph at http://cneurocvs.rmki.kfki.hu/igraph/ is one of the network 

analysis tools, which has the ability to export graph as a modest text file. 

Cytoscape in turn has the ability to read these text files and build networks 

from that data.  

2.20.3.2 GraphML 

GraphML is a wide-ranging and simple to handle file format for 

graphs. It is centered on XML. The comprehensive group of documents in 

this format is accessible at http://graphml.graphdrawing.org/ 
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2.20.3.3 PSI-MI Level 1 and 2.5 

The PSI-MI format is an information altercation layout for PPIs. It 

is based on XML format and employed to designate PPI and the related 

data. PSI-MI XML format design is accessible at 

http://psidev.sourceforge.net/mi/xml/doc/user/ 

2.20.3.4 Biological Pathways eXchange (BioPAX) 

BioPAX is a Web Ontology Language or OWL document. This is 

aimed to exchange the information related to biological pathways. The 

comprehensive set of documents in this format is accessible at 

http://www.biopax.org/. 

2.20.3.5 Systems Biology Markup Language (SBML) 

The Systems Biology Markup Language or SBML is based on 

XML format and is employed to illustrate the biochemical networks. The 

SBML file format description is accessible at http://sbml.org/documents/. 

2.20.3.6 Extensible graph markup and modelling 

language (XGMML) 

Extensible graph markup and modelling language or XGMML is 

the XML advancement of GML. The GML delineates this file format. 

Other than the network data, XGMML comprises the aspects related to 

node, edge, and network. The XGMML file format design is accessible at 

http://cgi5.cs.rpi.edu/research/groups/pb/punin/public_html/XGMML/. 

The advantage of using XGMML compared to GML is that it 

provides the manipulability allied with all XML document kinds. If you are 

unsure about which format to select, choose XGMML. 

A java system property “cytoscape.xgmml.repair.bare.ampersands” 

must be set to "true" if you experience any trouble in reading older files. 
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2.20.3.7 Graph Markup Language (GML or .gml 

format) 

GML is an opulent graph format language compared to SIF. Several 

other visualization packages enhances this file format. The GML file 

format design is available at http://www.infosun.fmi.uni-

passau.de/Graphlet/GML/.  

2.20.3.8 Nested network format (NNF or .nnf format) 

The NNF format is the simplest format. Compared to SIF, NNF 

permits the discretionary consignment of single nested network for one 

node. It is impossible to specify any other qualities of a node. NNF 

supports only the following two line formats: 

• A node confined to a network: network node. 

• 2 nodes linked together in a network: network node1 

interaction node2. 

If a network name is observed as a node name formerly in any other 

columns, then the network is nested in the node with the same name. If a 

name is formerly demarcated as a network and later appears again as a node 

name, then the previously defined network is nested in the node with the 

same name. Conclusion is that, whenever a name is used in a network name 

and a node name, this infers that the network is nested in the node of the 

same name. 

2.20.3.9 Simple interaction file (SIF or .sif format) 

A simple interaction format is suitable for constructing a graph from 

a group of interactions. It also enables less effort to syndicate diverse 

interaction groups into a bigger network. Also, add novel interactions to a 

prevailing information set. The foremost drawback is that this format do 
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not comprise any data on the layout. This empowers Cytoscape to 

reproduce a novel layout of the network every time it is uploaded. 

 

2.21 Associated work 

A protein complex or module is well-defined as a group of proteins 

which are linked by single or multiple genetic or cellular interactions. Or 

modules can be labelled as a set of cellular constituents and their 

interactions contributes to a particular biological function (Hartwell et al., 

1999). Therefore, it is essential to recognize these complexes of PPIs to 

augment the existing knowledge of human PPI networks organization. 

Specially, this can lead to the comprehension of the functional aspect of an 

unknown protein, by relating it with the known protein function. Till now, 

several investigations were executed to detect the segmental association in 

numerous biological networks. 

PPIs are vital for the immense mainstream cellular procedures. This 

fundamental aspect has steered demanding investigations of extensive 

matchings of PPI networks. In preceding period, quite a few stratagems to 

label the humanoid interactome were projected and chased (Lehner and 

Fraser et al., 2004). These approaches can be allocated to literature-based, 

high-results yielding yeast-two-hybrid-based (Y2H), orthology-based, or 

mass spectrometry-based interaction maps type. All approaches have their 

own pros and cons. Nevertheless, the information on the consequential 

interaction maps are affected is not very distinct. Simultaneously, pioneer 

challenges in therapeutic and biological investigation to methodically use 

interaction information groups were carried out (Goh et al., 2007). Even 

though the consequences were encouraging, the fact cannot be repudiated 

that the amount of efficacious exertions to explore the PPI maps are 
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inadequate. An imperative motive for this state could be the mislaid 

assimilation of segregated maps. Evidently, it directed instantaneously 

initiate the confederation of previously detached interaction maps. On the 

other hand, there were many evidences to prove that dependability and 

excellence of miscellaneous PPI maps must be evaluated rigidly, 

particularly if their approaches of extraction were different. A judgement 

was hence appropriate as exertions in the direction of mutual tuning and 

apprising of presently detached PPI databases were as anticipated. 

Although such assimilation enables the information admittance for 

scholars, it also had chances of probable prejudices of the different 

mapping methods in distinct databanks. 

The study on relative evaluations of PPI maps were previously 

executed for S. cerevisiae concerning the overlay, exposure and 

dependability (Bader and Hogue, 2002). Mering et al., executed a relative 

investigation to assess the exactitude and to detect preconceptions, pros and 

cons of all the techniques employed for engendering yeast PPI information. 

Their investigation specified that existing PPI information are extremely 

conflicting, primarily owing to the incidence of vast false-positive 

frequency, and quite a few approaches had collection and recognition 

prejudices complementing the approaches. Bader et al., 2002 investigated 

that the diminutive overlay could be the result of a vast negative-discovery 

frequency or vast false-negative rate.  

A modest comparison of the outcomes from studies related to yeast-

human maps are ambiguous concerning the diverse fundamental mapping 

and biological methodologies. Hence, a methodical assessment of existing 

human PPIs maps is necessary to get an enhanced perception into the 

topological structure and functional configuration.  
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An ensuing delinquent of human PPI networks is their distribution 

over manifold sites. Researchers must execute recurring examinations in 

numerous databanks to explore ample data on human proteins of choice. 

These exertions are palpably timewasting as many enquiry set-ups and 

identifiers must be employed in diverse databanks. One of the chief 

restriction in existing PPI databank is the usage of single protein 

interactions at a time for querying. Conversely, contemporary system 

biology necessitates compound network-oriented exploration for PPIs of 

manifold proteins. 

Superior PPI networks are indispensable for the biomedical 

investigation (de Silva et al., 2006). But, the existing extensive human PPI 

networks are relatively inept (Chaurasia et al., 2006). Numerous assurance 

counting patterns were established to confront this difficulty (Li et al., 

2008). In addition, some of the existing PPI networks offer individual 

assurance notching patterns (Rual et al., 2005). Incorporation of PPI maps 

with these assurance notch helps researchers to evaluate the superiority of 

PPIs present in the databanks. 

Additional defies are the consistent apprises and augmentation of 

PPI databases. The data will increase unremittingly as the study on human 

interactome is still incomplete. Hence, it becomes vital to design a flexible 

architecture that constantly updates the existing interaction data, and also 

allows easy annexation of freshly exposed PPIs yet to be revealed. 

Concluding, nonetheless an imperative concern is the logical 

elucidation of PPI maps. As a result of the complexity of PPI networks, 

researchers face defies even though there were advances in new genome-

wide interactome projects. In order to comprehend the complexity, it is 

essential to understand the biological processes and physical interaction to 
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achieve eloquent data in the framework of physiological systems. PPI 

networks must be incorporated with other functional information to 

develop the extensive data from them. Earlier investigations also led to the 

incorporation of PPI networks with pathway or manifestation information 

which in turn directs to the categorization of biological processes or 

prospective ailment transformers (Oti et al., 2006). 

Current progresses in result-oriented methods allowing the 

complete investigations of PPI networks caused outsized, extremely linked 

networks. Nevertheless, these networks are just the stagnant depiction of 

the compound networks befalling inside the cell. This approach do not offer 

the prospect to investigate the intricacies and subtleties of pathways related 

to ailments (Barabasi and Oltvai, 2004). One way to identify the pertinent 

local networks and decode the functional complexes is to assimilate the PPI 

network with extra data such as localization, manifestation, or hereditary 

information (de Lichtenberg et al., 2005). Calvano and associates 

assimilated the transcription sketching information with the PPI networks 

to depict the endotoxin reactions in human blood leukocytes depending on 

time (Calvano et al., 2005). In recent times, Pujana et al., executed an 

analogous stratagem (Pujana et al., 2007). In humans, they joined the gene 

expression profiling with the functional proteomic and genomic data from 

numerous species to engender breast cancer allied network. Baranzini and 

co-workers incorporated the PPI maps with genome-wide single node 

polymorphism (SNP) markers information to identify the sub-networks 

associated with multiple sclerosis (Baranzini et al., 2009). 

The information on PPI are of unlimited prospect in the field of 

biomedical research. New developments using high-throughput techniques 

caused a swift accretion of the human PPI networks on a genome-wide 
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level globally. There are manifold challenges to overcome before these PPI 

networks turns out to be a keystone in therapeutic investigation. 

2.22 Existing challenges 

One of the intimidating responsibilities of proteomics is to register 

the whole PPI networks occurring inside a cell. Even though, the existence 

of manifold outsized genomic structures and developments in result 

yielding techniques provides a base to build PPI maps, the interactomes of 

several entities are unfinished. A key delinquent of existing methodologies 

is that they are not capable to depict interactions in an inclusive mode (Hart 

et al., 2006). In one contemporary study, the researchers appealed to 

generate an enhanced variety of the existing high-throughput techniques to 

recognize the yeast PPI network, designated as generation-2. Hitherto, the 

reportage of all the probable interactions in S. cerevisae reached 20% 

approximately (Yu et al., 2008). 

Analogous hitches are also present in human PPI. Modern 

investigations depicted that the existing human PPI maps are inadequate 

and extremely imperfect. For example, HPRD, a literature based databank 

for human PPI maps (Prasad et al., 2009) reports only around 5% of the 

entire interactome (Stumpf et al., 2008). 

Another grave concern is the quality of the existing PPI data. The 

information generated comprises increased frequency of negative false 

positive interactions, though a voluminous information set exists with 

respect to PPI as a result of manifold researches. In addition, these 

techniques also has many investigational prejudices concerning few types 

of proteins and cellular localizations. All these challenges stresses on the 

augmentation in high throughput techniques. The extent to which the 

interaction maps are inclined by the selection of mapping stratagem is 
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imprecise. Therefore, it is critical to evaluate and relate the eminence and 

dependability of the generated maps. The proportional investigation of PPI 

maps in lower eukaryotes displayed an unexpected deviation among diverse 

interaction maps (Mrowka et al., 2001). Human interaction maps are also 

not any exclusion. The evaluation is still deficient for human protein in 

spite of their anticipated prominence in the field of biomedical research. 

Therefore, grave assessment of the existing human PPI maps are obligatory 

concerning the technique elected to generate a protein network.
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3  3 

MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  
 

 

 

3.1 Development and mapping of human protein-protein 

interaction network (HPPIN) 

3.1.1 Assortment of human proteins 

The human proteins were collected from various reliable sources 

like NCBI literature survey, Uniprot database, Human protein atlas, and 

Plasma proteome database (Lane et al., 2011). All these databases employ 

standardized methods to identify proteins. The extracted proteins were 

assigned with a unique format to maintain consistency. The redundant 

proteins were removed from the dataset to align with noise removal. 

The protein integration was carried by manually coded programs 

and validated by inbuilt excel programs. The final data set named as 

Human Proteins (HP) was derived. 

All the extracted proteins were in dissimilar format as diverse 

databases use different formats based on their nomenclature standards. 

There were also a number of redundant and recurrent. A far reaching 

protein-driven ID mapping was executed to assign a unique ID to the 

proteins and to remove the redundant and recurrent. Table 3.1 displays the 

overview of human protein data sets used for the work execution. 
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Table 3.1: Overview of human protein data sets used for the work 

execution 

DATA SETS 

Uniprot 

Human Protein Atlas 

NCBI literature survey 

Plasma proteome database 

 

3.1.2 Assortment of PPI maps 

PPIs are essential for the massive mainstream of cellular 

progressions. This fundamental part steered this rigorous research of 

extensive mappings of PPINs. In preceding era, quite a few approaches to 

record the human interactome were anticipated and chased (Prasad et al., 

2009; Ewing et al., 2007; Stelzl et al., 2005; Rual et al., 2005; and Persico 

et al., 2005).  

Post the development of HP dataset, the primary binary PPIs were 

compared using HPRD, IntAct, DIP and MINT. Similar to the HP dataset 

extraction, human protein – protein interaction (HPPI) dataset extraction 

also had different format and standards in different databases. So, all the 

extracted PPIs were assigned a unique ID using ID mapping technology. 

Perl programme was developed to automatically change each protein with 

the specific Uniprot ID.  

The PPI maps are organized by proteins and interactions. So, 

evaluations can either be executed with respect to proteins or to PPIs. The 

pair-wise evaluation of PPI maps  in respect to proteins 

encompassed, common proteins within the two maps were recognized. This 

describes the overlap  where  are the collections 
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of proteins in map  or  correspondingly. Consequently, the overlap is 

standardized with regard to the quantity of proteins in  and  

(   ; ). The average of  and  is 

denoted as the relative protein intersection among  and . Table 3.2 

displays the overview of human protein interaction data sets used for the 

work execution. 

Table 3.2: Overview of human protein interaction data sets used for the 

work execution 

Protein interaction data sets 

HPRD 

IntAct 

DIP 

MINT 

 

All these methods of PPI intersection have a disadvantage. These 

processes evaluate coincidence of the pragmatic PPIs and lack information 

on missing interactions (Chaurasia et al., 2012). These unidentified 

interaction was validated by employing orthology-based approaches. The 

first orthology-based map was assembled from interactions predicted for 

human proteins (Lehner and Fraser, 2004). 

Noise data removal was also employed to remove the redundant, 

recurrent and self-interaction proteins as they lack any relevant biological 

function. After assigning the integrated datasets with Uniprot ID, the 

unique model of the human interactome named as HPPN was derived. 
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The human interactome was plotted as a network using Cytoscape. 

Cytoscape is a tool grounded on graph theory. Graph theory is 

fundamentally used to distinguish communities in a network. This aids in 

assuming the size, hierarchies and the shortest pathway in a system. Graph 

theory is named so as it can be represented graphically. The graphical 

representation makes it easy to understand the properties of the network. 

Every vertex is a node and the edges are interactions. Numerous 

topological evaluations like connectivity, cluster coefficient, degree- 

distribution, and hub proteins were calculated and matched to inspect the 

network characteristic features of each map. Self-interactions were omitted 

in the graph-theoretical examination to circumvent artefacts and all 

evaluations were accomplished based on the prevalent linked graph for 

every map. The consequence of the outcomes was measured by comparing 

the two related network replicas. First was arbitrary graphs with the similar 

number of nodes and PPIs, but lacking preservation of the degree 

distribution. Second, the arbitrary graphs with maintenance of number of 

nodes and PPIs and also the degree distribution. The second method was 

employed in this study. These graphs were created employing the unique 

networks and reiterated arbitrary exchange of PPIs. The edge among node 

 and  and between  and  is transformed to  

and  (Maslov and Sneppen, 2002). 

Human interactome network (HIN) was created by incorporating 

double protein interaction information from the HPPI dataset. 

Consequently, the proteins were represented as nodes and interactions were 

represented as edges. Fig 3.1 depicts the interactome development. 
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Fig 3.1: Flow chart for the interactome development 

(Figure adapted from Anto et al., 2014) 

3.2 Evaluation of cancer and non-cancer complexes in HIN 

After extracting the unique HIN, cancer and non-cancer protein 

interaction were distinguished from HIN by commissioning the CBIO and 

Sanger database. As in the case of extracting protein dataset and PPI data 

set, the noise data removal and ID mapping of the subsequent information 

sets were accomplished by means of custom-made Perl programs (Yildirim 

et al., 2007]. The unique model of human interactome highlighted with 

cancer interaction network (CIN) was derived. In a binary interaction, if 

any one or both partner belongs to the cancer network then it is inferred to 

undergo cancer interaction. Table 3.3 displays the overview of cancer 

protein data sets used for the work execution. 

 

Figure depicts the 

interaction of 4 protein 
databases followed by 

ID mapping and noise 
data removal. Final 

Human interactome was 
developed by using 

integrated datasets with 

Cytoscape software 

(s/w). 
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Table 3.3: Overview of cancer protein data sets used for the work 

execution 

Cancer data set 

Sanger 

cBio 

 

Fig 3.2 depicts the mapping of cancer proteins in HIN. 

 

Fig 3.2: Mapping of cancer proteins in HIN 

3.3 Mapping of major cancer and non-cancer (CANC) 

complexes in HIN 

The human interactome from all the above mentioned investigation 

were assessed using the Molecular Complex Detection (MCODE) (Anto 

and Nambisan, 2014), and connected component algorithm (CCA) (Anto 

and Nambisan, 2014), which gave path to the expansion of cancer and non-



 Materials and Methods  

 

91 

 

cancer complexes (CANC). CCA lists all its connected components of a 

disconnected network. The size or number of nodes of all the components 

are conveyed. The user can choose a particular connected component and 

can export the same as a distinct network in Cytoscape. This feature 

consents users to accomplish topological analysis on the prime connected 

component of a network. The network partitioning was observed by using 

CCA algorithm based on the similarity or distant values. The human 

interactome network compassing the cancer interactions was investigated 

using the CCA to remove all distracted interactions. The result was a highly 

connected human protein network in the human interactome.  

Further, the MCODE was used to identify highly interconnected sub 

network as molecular complexes. The MCODE algorithm is a renowned 

automatic technique to discover extremely interrelated subgraphs 

as clusters or molecular complexes in a large PPI network. The selected 

complexes based on the MCODE value was then taken to analyze the 

protein interactions causing cancer.  

MCODE instead uses a vertex-weighting scheme based on the 

clustering coefficient, Ci, which measures 'cliquishness' of the 

neighborhood of a vertex. Ci = 2n/ki(ki-1) where ki is the vertex size of the 

neighborhood of vertex i and n is the number of edges in the neighborhood 

(the immediate neighborhood density of v not including v). A clique is 

defined as a maximally connected graph. There is no standard graph theory 

definition of density, but definitions are normally based on the connectivity 

level of a graph. Density of a graph, G = (V,E), with number of vertices, 

|V|, and number of edges, |E|, is defined here as |E|; divided by the 

theoretical maximum number of edges possible for the graph, |E|max. For a 

graph with loops (an edge connecting back to its originating vertex), |E|max 
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= |V| (|V|+1)/2 and for a graph with no loops, |E|max = |V| (|V|-1)/2. So, 

density of G, DG = |E|/|E|max and is thus a real number ranging from 0.0 to 

1.0. 

The extremely unified and biologically important areas in a network 

is recognized using MCODE. The human interactome from both the 

analysis were evaluated using the CCA and MCODE algorithms (Anto and 

Nambisan, 2014), which culminated in the development of cancer and non-

cancer complexes (CANC). Fig 3.3 depicts the CANC complexes in HIN. 

 

Figure 3.3: Flow chart for the CANC complexes in HIN 

3.4 Validation of MCODE complexes 

Gene Ontology was used for the validation of MCODE output.  The 

data resulting from the GO was then passed through the statistical analysis 

for further validation.  



 Materials and Methods  

 

93 

 

3.4.1 Gene ontology analysis 

GO was utilized to examine the useful conformation and 

consistency of PPI maps because currently it delivers the utmost complete 

efficient annotation for humanoid genetic composition (Ashburner et al., 

2000). GO comprises gene annotations concerning biological process (BP), 

molecular function (MF), and cellular component (CC) by employing a 

well-defined hierarchical ontology. Fig 3.4 depicts the validation of 

MCODE complexes with GO annotation. 

 

Fig 3.4: Validation of MCODE complexes with GO annotation 

3.4.2 Hyper geometric distribution  

Hyper geometric distribution assessment was employed to define 

the statistical implication which is specific to GO category that are over 

presented in a map. It will be ambiguous if you count just the proteins that 

share a common interpretation because the primary allocation of genes is 

not homogeneous. Therefore, P-values are employed to compute the 

statistical and biological implication of a collection of proteins (Asur et al., 

2007).  
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In the below equation, the size of the protein cluster is represented 

as n and m are the proteins sharing a specific interpretation. There are  

proteins in the database with  proteins having same interpretation. The 

probability of  or more proteins out of  proteins associated with the 

equivalent GO is: 

 

The proteins with lower P-values validates that the proteins are not 

grouped randomly and biologically significant compared to the proteins 

with higher . There is a cut-off parameter employed to discern the 

relevant cluster of proteins from the irrelevant proteins. The protein cluster 

is irrelevant, if the  is greater than the cut-off parameter. 

The clustering score to compute the entire protein cluster is as 

represented by the below mentioned equation: 

Clustering score = 1-  

 In the above mentioned equation,  and  denote the number of 

relevant and irrelevant protein clusters, and  denotes the lowest P-

value of the relevant protein cluster represented by . Therefore, each 

protein cluster is linked with one clustering score for all the three 

ontologies. 

Link among the PPI maps and GO annotation was scrutinized based 

on the likeness of GO terms allocated to interacting proteins (Jansen et al., 

2003). The comparison of GO terms was computed by measuring their 

common path lengths contained by the GO tree. Analogous GO terms are 

anticipated to possess vast common paths. Arbitrary graphs of preserved 
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degree distribution were created to assess the implication. The 

dissemination acquired for the novel network was successively compared to 

the arbitrary networks acquired and computed log odds.  

3.5 Hubs in the MCODE complex 

Former investigation based on graph theory displayed that hubs, 

that is, nodes of high degree are mostly of critical prominence for scale-free 

network assembly (Albert et al., 2000). The hubs are specified by 

extremely connected proteins in such PPI network. This has led to the 

inference that proteins rich with interaction are vital for accurate operation 

of cellular networks. First, it was examined whether hubs incline to be 

allocated to unambiguous functions, processes or locations using GO 

annotations to understand the prospective part played by hubs in human 

PPI networks. If the number of interaction was contained by the top 20% 

when compared to the analogous network, those Proteins was demarcated 

as hubs. Common inclinations were detected for orthology- and literature-

derived networks.  

There are two natural measures of difference of composition of 

nodes of a certain type (here, essential proteins) between two sets of nodes 

(here, hubs and non-hubs). One well known measure is the P-value for the 

Kolmogorov-Smirnov test for difference in distributions. If e1 is the 

fraction of essential proteins in the hub set and e2 is the fraction of essential 

proteins among non-hubs, then the Kolmogorov-Smirnov test is a test for 

inequality between distributions p1 ≡ { e1, 1−e1} and p2 ≡ { e2, 1−e2}. 

The measures are plotted in fig 3.5 as a function of number of high degree 

nodes included in the hub set. 
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Fig 3.5: Hub in a network 

3.6 Characterization of CANC complexes 

The global and local topological properties of CANC complexes 

like degree distribution, assortativity, betweenness of centrality, clustering 

coefficient, shortest path length and pathway analysis were studied to 

validate the characteristics of hubs CANC complexes. The role of each 

node in a group of protein was evaluated. 

3.6.1 Degree distribution 

The degree of a protein node denoted the count of the direct links of 

this node in a protein network. is the probability that a node has   

links in the set of proteins based on the distribution. The number of links on 

a node indicated that the network stability is relatively high compared to 

the lower number of links (Albert et al., 2000).  

For example, in the network shown in the fig 2.6, hypothetical node 

A has a degree of 8 (kA5 = 8). The average degree of nodes for the whole 

network (<k>) is used as an index to describe the 'density' of a network.  
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Fig 3.6: Degree distribution of node A5 =8 

3.6.2 Betweenness of centrality 

The betweenness of a node is the count of shortest paths between all 

probable pairs of nodes in the network that pass through the node. 

Betweenness computed the ways in which signals passed through the 

interaction network (Albert et al., 2000). From the below diagram 

betweenness(b) calculated as follows. 

Cb(n) = ∑s≠n≠t (σst (n) / σst), 

where s and t are nodes in the network different  from n, σst denotes 

the number of shortest paths from s to t, and σst (n) is the number of 

shortest paths from s to t that n lies on. Fig 3.7 depicts the betweenness for 

b. 
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Fig 3.7: Betweenness for b 

 

Cb(b) = ((σac(b) / σac) + (σad(b) / σad) + (σae(b) / σae) + (σcd(b) 

/ σcd) + (σce(b) / σce) + (σde(b) / σde)) / 6 = ((1 / 1) + (1 / 1) + (2 / 2) + (1 / 

2) + 0 + 0) / 6 = 3.5 / 6 ≈ 0.583 

3.6.3 Clustering coefficient 

The clustering coefficient is a ratio .  is the number of edges 

between the neighbors of a network and  is the maximum number of 

edges existing between the neighbors of a network. The clustering 

coefficient of a node is always a number flanked by  and . The network 

clustering coefficient was inferred as the average of the clustering 

coefficients for all nodes in the network. If the clustering coefficient is zero, 

then the nodes are supposed to have less than two neighbors. 
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Cn = 2en/(kn(kn-1)), where kn is the number of neighbors 

of n and en is the number of connected pairs between all neighbors of n. 

 

Fig 3.8: Clustering coefficient for b 

 

In fig 3.8, there is one triangle that passes through node b (the 

triangle bcd). The maximum number of triangles that could pass 

through b is three (in this case, the pairs (a, c) and (a, d) would be 

connected additionally). This yields a clustering coefficient of Cb = 1 / 3. 

3.6.4 Shortest path length 

There are many alternative paths for a pair of nodes in the network. 

The path with the nominal number of links indicated the shortest path. The 

number of links transitory through in the shortest path indicated the 

shortest-path distance. The shortest length of the path provided the count of 

node pairs in a network. The fig 3.9 depicts the shortest path distance 

between nodes F to node H. 
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Fig 3.9: Shortest-path distance between nodes F to node H 

 

=5 

 

3.6.5 Pathway analysis 

The pathway analysis contributes to data integration like the 

integration of diverse biological data. The datasets was integrated to the 

KEGG database using the self-programmed Perl programs. KEGG is the 

Kyoto Encyclopedia of Genes and Genomes. KEGG is a database reserve 

for comprehending high-level rationales and applicability of the biological 

system like the large-scale molecular datasets produced by genome 

sequencing and other high-throughput experiments. This integration 

culminated in deducing the pathway information of the PPIs and the 
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ranking of the pathway using HGM. Pathway analysis led to the 

identification of the linking cancer pathway in predicted complexes. The 

phenotype classification divulges the protein participants in major cancer 

disease. Fig 3.10 depicts the work flow of pathway analysis. 

 

Fig 3.10: Work flow of pathway analysis 

3.7 CancerNet  

CancerNet tool was developed to retrieve fundamental information 

about proteins such as interaction, chemical component, etc. This tool 

works in coordination with other databases such as Uniprot as well as 

MCODE dataset. CancerNet is a web-based tool. The front end uses Perl 

and PHP, the backend uses mysql and is developed in the background of 

Ubuntu operating system. The data captured from the tightly packed human 

protein complex is integrated to the tool. A user just has to enter the name 

of the protein, Uniprot id, and gene number. CancerNet retrieves all 

relevant information from the protein symbol to interacting partner. The 

query passes through the perl-cgi. The query is processed using the SQL 

language and the required information is fetched from the database. No 

data is retrieved if the required information is not stored in the database. 

Fig 3.11 represents the CancerNet tool. 
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Figure 3.11: CancerNet execution with external datasets
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                                4                      4             

RREESSUULLTTSS  
 

 

4.1 Development and mapping of human protein-protein 

interaction network (HPPIN) 

4.1.1 Assortment of human proteins 

The very first step to detect the participation of cancer proteins in 

major complexes was to identify all the available human proteins from 

legitimate databases. 20199, 10579, 10546, and 3695 proteins were 

integrated from Uniprot, NCBI Reference sequence, Plasma proteome and 

human protein atlas respectively. 

A total of 45019 proteins were identified. It was inferred from the 

comparative study that only 3422 protein were common in the four 

database used for this investigation and 32119 protein were recurrent. The 

Uniprot database predominantly subsidized 9432 unique proteins.  

Table 4.1 portrays the assortment of proteins from Uniprot, NCBI 

Reference sequence, Plasma proteome and Human protein atlas. 
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Table 4.1: Assortment of human protein from various databases 

Data base Proteins 

Uniprot 20199  

NCBI Refseq 10579 

Plasma proteome  10546 

Human protein atlas 3695 

     

Total Common Redundant Unique 

45019 3422 32119 10078 

 

In the initial stage, all the proteins possessed the database format. A 

manually coded Perl program was employed for altering the formats, 

integration, and identification of common proteins as well as unique 

protein. The extracted datasets was labelled as Human Protein (HP). Fig 4.1 

portrays the identification of human proteins from various databases. 

 

Fig 4.1: Identification of human proteins 

Red circle indicates Uniprot database with 20199 proteins, green indicates human 

protein atlas with 3695 proteins, blue circle indicates NCBI refseq database with 

10579 proteins and black circle indicates plasma proteome database with 10546  

proteins. 3422 are the common proteins among the four databases. 
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4.1.2 Assortment of PPI maps 

 To develop the human interactome 41327, 19404, 8412, and 10807 

binary protein interaction data proteins were integrated from the HPRD, 

IntAct, MINT, and DIP databases respectively. The databases or the 

datasets used in the investigation followed different standards and formats 

for the naming of PPIs owned. So, in order to maintain consistency in 

naming convention, the resultant PPIs were assigned a unique ID using 

personalized Perl programs. 

A total of 422 self-interaction and 3456 duplicate interactions were 

removed from the final 76072 data set and was labelled as Human Protein-

Protein Interactions (HPPIs). Fig 4.2 portrays the mapping of HP and PPI 

respectively. 

. 

Fig 4.2: Identification of PPI maps 

This image indicates the mapping of HP proteins in PPI using Perl 

programs. 
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Table 4.2a: Assortment of PPIs 

Data base Human Protein-Protein Interactions 

HPRD 41327 

IntAct 19404 

DIP 8412  

MINT 10807 

Total 79950 

 

Table 4.2b: Percentage of PPIs 

 HPRD IntAct DIP MINT 

HPRD  21% 2% 21% 

IntAct 42%  1% 37% 

DIP 73% 34%  33% 

MINT 66% 59% 2%  

 

Table 4.2c: Total interactions 

Total Self-interaction 

 

Redundant Unique 

79,950 422 3456 76072 

 

4.1.3 Mapping HP to PPI 

A HP dataset and HPPI dataset was developed from the 

investigation. These datasets were mapped with each other. For mapping, 

each protein from the HP datasets was mapped to the HPPI dataset based 

on the analogous interaction.  From a total of 10078 proteins, only 9951 

proteins were inferred for interactions in the HPPI data set. 127 proteins 

interactions were missing. The residual 127 protein interactions were 

detected by employing the orthology-based approach. At the end of 

mapping, a total of 10078 proteins and its 58674 interactions were 

recognized. The dataset developed from this investigation was labelled as 
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Human Interactome (HIN). Fig 4.3 portrays the graphical view and analysis 

of HIN. 

 

Fig 4.3: Graphical representation of human interactome 

The circle indicates proteins and the links indicates the interaction. The 

proteins at the top corner and bottom of the image are the detached proteins and 

its interactions in the human interactome. 

 

The entire extracted human binary protein interactions from this 

investigation was loaded into a highly authenticated tool Cytoscape 3.0.0 to 

visualize biological pathways and molecular interaction networks. These 

networks were integrated with gene expression profiles, other state data and 

annotations by means of Cytoscape. The exceptional tool Network analyzer 

was employed for the analysis of HIN. Fig 4.4 portrays the representation 

of an analysis of clustering coefficient using network analyzer. 
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Fig 4.4: Analysis of clustering coefficient using network 

analyser 

The left side of the image indicates the human interactome and on the right side is 

its statistical analysis of clustering coefficient, which is low. 

 

Table 4.3 illustrates the statistics derived using a network analyzer. 

 

Table 4.3: Analysis derived from Network Analyzer 

Global characteristics Values 

Clustering Coefficient 0.135 

Isolated network 87 

Network diameter 15 

Network radius 1 

Network centralization 0.038 

Shortest path 977233374(96%) 

Path length 4.054 

Average number of neighbors 11.644 

Number of nodes 10078 

Network density 0.001 

Network heterogeneity  2.052 

Isolated node 0 

Number of self-loops 0 

Run Time 6167.672(sec) 
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It was inferred that the isolated nodes are zero in the extracted HIN, 

which signifies the fact that all the nodes are linked to binary interaction. 

Also, all the nodes are linked pairwise. The number of connected network 

represents the connectivity of human interactome network. Only 87 

interactions are isolated from the identified 58674 interaction, which 

indicates stronger connectivity. In the HIN, 96% of shortest path was also 

identified. The average shortest path between two nodes in the interactome 

is 4.054. The largest distance between two nodes in the interactome is 15 

which is termed as the network diameter. The derived HIN is disconnected. 

Hence, the diameter can also be described as the maximum node 

eccentricity which is 15. The average connectivity of a node in the network 

is 11.644 nodes. The network density value between 0 and 1 implies how 

densely the network is populated within the edge since self-loop and 

duplicated edges are ignored in the derived HIN and demonstrates the value 

as 0.001. 

 
Fig 4.5: Path length analysis 

The path length of human interactome is less. 
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The clustering coefficient of the vertex indicates the intensity of the 

neighborhood of a vertex. The clustering coefficient of the entire network is 

the average of the clustering coefficients of the vertices. The clustering 

coefficient of node is always between 0 and 1. The clustering coefficient 

obtained was 0.135 as the result of this investigation. 

The developed HIN demonstrates an acceptable correlation with the 

node’s degree distribution.  Above 55% nodes indicated more than 11 

interactions. The nodes degree distribution correlates well with the low 

power. Fig 4.6 portrays the degree distribution. 

 

 

Fig 4.6: Degree Distribution 

The nodes degree distribution correlates well with the low power. 

4.2 Evaluation of Cancer and Non-Cancer Complexes in HIN 

Cancer proteins were collected from valid and curated database 

specifically CBio and Sanger. 13944 and 3165 cancer proteins were 
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mapped in HIN. The different dataset possessed different format for the 

cancer proteins. So, in order to preserve the uniformity in naming 

convention, the resultant cancer proteins were assigned a unique ID by 

means of personalized Perl programs. The cancer dataset obtained was 

labelled as Cancer Proteins (CP). 

Table 4.4 demonstrates the analysis inferred from the integration of 

cancer proteins from CBio and Sanger databases. 

Table 4.4: Analysis by integration of cancer proteins 

Database No of proteins Duplicated 

 

Unique 

 

3146 

 
Sanger 13944 10798 

CBio 3165 19 

 

The CP dataset was mapped against the HIN dataset to reconstruct 

cancer interactions in human interactome.  Fig 4.7 portrays the MCODE 

clusters. 

 

Fig 4.7: MCODE clusters 

Each circle indicates proteins clusters. Blue color indicates interaction 

and red color indicates proteins. The right side of the image displays the number 

of edges and nodes. 
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Fig 4.8: Representation of cancer interaction 

All the cancer protein covered belong to the largest network in the 

interactome. The proteins highlighted in yellow color represents the cancer proteins. 

 

4.2.1 Connected Component Algorithm 

The largest component from HIN was extracted by employing the 

Connected Component Algorithm (CCA). This algorithm mainly plays a 

pivotal role in detaching all the unconnected network from the largest 

network. 

The reconstructed CCA network possess 9886 proteins and its 

58568 interactions. Table 4.5 illustrates the implications from a CCA 

network. 
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Table 4.5: CCA network 

Clustering Coefficient 0.138 

 

Isolated network 1 

Network diameter 15 

Network radius 8 

Network centralisation 0.039 

Shortest path 977231104(100%) 

Path length 4.054 

Average number of neighbours 11.849 

Number of nodes 9886 

Network density 0.001 

Network heterogeneity  2.032 

Isolated node 0 

Number of self-loops 0 

Run Time 6287(sec) 

 

From the implications of CCA network, it was understood that, if 

the isolated node are zero then all the nodes are linked to binary interaction. 

All the nodes are linked pairwise. The number of connected network 

represents the connectivity of the CCA network along with 58568 

interaction. The only one network isolated is the CCA network. This result 

indicates that the stronger connectivity. 100% shortest path is included in 

the largest network. The average shortest path between two nodes in the 

CCA network is 4.054 which is same as the HIN. The network diameter is 

15 and is same as HIN. The derived HIN is disconnected. So, the diameter 

can also be described as the maximum node eccentricity which is 15. The 

average connectivity of a node in the network is 11.849 nodes which is also 

equivalent to the HIN. The network density value lies in between 0 and 1, 

which in turn implies the density of a populated network with edge as the 

self-loop and duplicated edges are ignored in the derived CCA network and 

demonstrates the value 0.001. Fig 4.9 portrays a CCA network. More 
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information on result can be retrieved from 

http://www.bioteccancernet.cusat.ac.in/cca. 

 

Fig 4.9: CCA network 

This the cytoscape view of highest network in a human interactome. 

 

Fig 4.10 portrays the betweenness centrality. The betweenness 

centrality of a node reflects the amount of control that this node exerts over 

the interactions in the network. The measure of betweenness centrality 

favors the node with dense sub network. Fig 4.10 illustrates that the value 

for all the nodes, betweenness centrality lies between 0 and 1. 
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Fig 4.10: Betweenness centrality 

In betweenness centrality, the value for all the nodes, betweenness 

centrality lies between 0 and 1. 

Clustering coefficient of vertex indicates the intensity of the 

neighborhood of a vertex. The clustering coefficient of the entire network is 

the average of the clustering coefficients of the vertices. The clustering 

coefficient of node always lies in between 0 and 1. The value obtained is 

0.138 for clustering coefficient which is very close to human interactome. 

Clustering coefficient, betweenness centrality and node distribution 

displays the highest connectivity of CCA network, which includes most of 

the cancer proteins. The study of major domain from the CCA network is 

imperative since the proteins are tightly connected in CCA. Fig 4.11 

portrays the clustering coefficient. 
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Fig 4.11: Clustering coefficient 

Clustering coefficient, betweenness centrality and node distribution 

displays the highest connectivity of CCA network, which includes most of the 

cancer proteins. 
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4.2.2 Molecular complex detection method 

Molecular complex detection method (MCODE) identified clusters 

in the CCA network. MCODE algorithm discovered highly connected 

biological modules from huge protein network. High-scoring clusters have 

a high density value. MCODE derived totally 121 highly connected 

modules from the CCA network. The further analysis considered only 99 

MCODE clusters as the density score value is >2. More information on 

result can be retrieved from http://www.bioteccancernet.cusat.ac.in/mcode. 

In the derived dataset, the rank 1 modules own the highest number 

of protein as well as interactions such as 205 and 10356 respectively. This 

data is present in only one module. In contrast, the least number of protein 

3 and interaction 3 contains 38 number of modules. 121 protein domains 

were unique.  99 complexes having total 1141 unique proteins were 

selected and the total interactions was measured to be 14340. 
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Table 4.6: Cluster and density score 

Cluster Density Score No: proteins No: Interactions 

1 101.529 205 10356 

2 32.395 77 1231 

3 29.448 30 427 

4 22 22 231 

5 19 19 171 

6 19 19 171 

7 14.1 21 141 

8 13 13 78 

9 12.923 14 84 

10 9.846 14 64 

11 8.5 9 34 

12 8.25 25 99 

13 8.1 41 162 

14 8 8 28 

15 7 7 21 

16 6.933 16 52 

17 6 6 15 

18 5.6 6 14 

19 5 5 10 

20 5 5 10 

21 5 5 10 

22 5 5 10 

23 5 5 10 

24 4.809 48 113 

25 4.5 5 9 

26 4.5 5 9 

27 4.296 28 58 

28 4.25 9 17 

29 4 4 6 

30 4 5 8 

31 4 4 6 

32 4 4 6 

33 4 4 6 

34 4 4 6 

35 4 4 6 

36 4 4 6 
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37 4 4 6 

38 4 4 6 

39 4 4 6 

40 3.933 91 177 

41 3.917 25 47 

42 3.714 8 13 

43 3.58 82 145 

44 3.375 17 27 

45 3.333 4 5 

46 3.333 4 5 

47 3.333 4 5 

48 3.333 4 5 

49 3.333 4 5 

50 3.333 4 5 

51 3.333 4 5 

52 3.333 4 5 

53 3.333 4 5 

54 3.333 4 5 

55 3.333 4 5 

56 3.333 4 5 

57 3.333 4 5 

58 3.333 7 10 

59 3.176 18 27 

60 3 5 6 

61 3 3 3 

62 3 3 3 

63 3 3 3 

64 3 3 3 

65 3 3 3 

66 3 3 3 

67 3 3 3 

68 3 3 3 

69 3 3 3 

70 3 3 3 

71 3 3 3 

72 3 3 3 

73 3 3 3 

74 3 3 3 

75 3 3 3 
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76 3 3 3 

77 3 3 3 

78 3 3 3 

79 3 3 3 

80 3 3 3 

81 3 3 3 

82 3 3 3 

83 3 3 3 

84 3 3 3 

85 3 3 3 

86 3 3 3 

87 3 3 3 

88 3 3 3 

89 3 3 3 

90 3 3 3 

91 3 3 3 

92 3 3 3 

93 3 3 3 

94 3 3 3 

95 3 3 3 

96 3 3 3 

97 3 3 3 

98 3 3 3 

99 3 5 6 

100 2.958 72 105 

101 2.952 43 62 

102 2.857 8 10 

103 2.8 6 7 

104 2.762 22 29 

105 2.75 9 11 

106 2.739 93 126 

107 2.733 31 41 

108 2.692 27 35 

109 2.667 7 8 

110 2.667 4 4 

111 2.667 4 4 

112 2.667 4 4 

113 2.667 4 4 

114 2.667 4 4 
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115 2.667 4 4 

116 2.667 4 4 

117 2.667 4 4 

118 2.667 4 4 

119 2.5 5 5 

120 2.424 34 40 

121 2.4 16 18 

 

Table 4.7 illustrates the total number of modules, the number of 

protein and the number of interactions present in that module. 

Table 4.7: Proteins and interactions 

 No. of modules No. of proteins No. of interactions 

Modules 121 1550 14873 

Selected 

modules 

99 1141 14340 

 

4.3 Validation of complexes 

In order to validate the complexes, the preliminary gene ontology 

analysis was executed and the resultant data was further assessed using the 

statistical analysis. 1141 proteins was used for GO analysis and also used 

for the classification of proteins. For the validation, 99 clusters were 

divided into three categories such as clusters having only normal proteins 

and its normal interaction, clusters having only cancer proteins and its 

cancer interaction, and finally clusters having both cancer and non-cancer 

proteins and its cancer and non-cancer interaction.  

Table 4.8 and Fig 4.12 portrays the protein distribution. The data 

from the table confirms that the exceptionally tightly connected protein 

modules displays the over expression of cancer proteins. 
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Table 4.8: Proteins distributions 

 No. of 

modules 

No. of 

proteins 

No. of cancer 

interactions 

No. of 

normal 

proteins 

Modules 121 1550 873 677 

Selected 

modules 

99 1141 785 356 

 

 

Fig 4.12: Distribution chart for MCODE complexes 

(62 represents the cancer and normal protein clusters. 32 represents the 

normal protein clusters and 5 represents the cancerous protein clusters.) 

 

The GO analysis of the protein networks were executed by utilizing 

the GO database. Hyper geometric exact test was employed to extract the 

information pertaining to the biological function enriched genes. The entire 

set of genes were subjected to the simultaneous test for multiple GO 

categories such as biological process (BP), molecular function (MF), 
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cellular component (CC), and p-values were calculated for each proteins 

present in the cluster. The outcome was GO annotations of 1550 proteins 

including the MCODE proteins and the corresponding p-values. A total of 

121 modules were subjected to GO analysis and one of the module is 

explained in table 4.9a and b. Fig 4.13 portrays the validation of modules. 

More information on result can be retrieved from 

http://www.bioteccancernet.cusat.ac.in/go. 

These results indicate that the strategy of permitting proteins to fit 

into different clusters appears to be effective for grouping multi-functional 

proteins into manifold functional groups. This also helps to align the 

biologically relevant modules with the corresponding different protein 

functions. In the cluster, p-value of all the proteins are further exploited to 

recognize the p-value of the cluster. 
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Table 4.9a: GO interpretation of one module 

List of proteins from one module 
RPL18 HNRPK RPL17 RPL19 RPL14 HNRPF RPL13 U2AF2

 RPL15 HNRPD HNRPR RPLP2 HNRPM HNRPL

 SFRS6 SFRS7 SFRS4 SFRS5 DHX38 RBM8A

 EIF1AX RPLP0 HNRPU SFRS9 RPLP1 RPL26L1

 U2AF1 FAU RPL10 RPL11 LSM2 RPL12 PTBP1 EIF2S3

 SFRS1 SFRS3 SFRS2 PCF11 RPS18 RPS19 HEAB RPS16 RPS17

 EIF2S1 RPS14 EIF2S2 RPS15 RPS12 RPS13 RPS10

 RPS11 FUS NHP2L1 RPS25 RPS26 RPS27 RPS28 RPS29

 CDC40 RPS20 RPS21 HNRPH2 HNRPH1 SFRS11

 RPS23 RPS24 DHX9 RPSA RPS9 RPS6 RPS5 WBSCR1

 RPS8 RPS7 RPL18A EIF3S10 EIF3S12 YBX1

 RPL41 EIF4A2 EIF4A1 RPL3L RPS4Y1 EEF1G

 THOC4 EEF1D POLR2H POLR2G

 POLR2F POLR2E POLR2L POLR2K

 POLR2J POLR2I RPL27A RPL35 RPL36 RPL37

 RPL38          POLR2D SF3B5 RPL39 SF3B4 POLR2C

 POLR2B SF3B3 SF3B2 POLR2A SF3B1 RPL30 RPL32

 RPL31 CD2BP2 RPL34  SNRP70 RPL26 RPL27

 RPL24 ETF1 SF3A2 SF3A1 RPL28 RPL29 SF3A3 PAPOLA

 RPL23 RPL22 RPL21 PHF5A HNRPA2B1 TXNL4A

 NCBP2 NCBP1 RPL36A EIF3S1

 SNRPD3 SMC1L1 EIF5 ASCC3L1 EIF5B

 SNRPD1 RBM5 SNRPD2 DDX23 DNAJC8

 EIF3S7 EIF3S6 EIF3S9 EIF3S8 EIF3S3

 EIF3S2 RPS27A EIF3S5 EIF3S4

 PABPN1 SNRPA1 RPL35A EFTUD2

 MAGOH EEF2 HNRPA3 HNRPA1 HNRPA0

 SNRPB SNRPA SNRPF SNRPE UBA52

 SNRPG EEF1B2 SNRPB2 RPL7 RPL6 RPL9

 RPL8 RPL3 RPL5 RPL7A RPL4 RPL10A

 EEF1A1 CSTF2 RPL23A RBMX EIF4B EIF4E

 GTF2F1 GTF2F2 RPL37A CSTF1 RPS2 RPS3

 RPS3A PCBP1 PCBP2 RPS4X PRPF4 PRPF6 EIF4G1

 CPSF3 CPSF2 CPSF1 RPS15A HNRPC RPL13A 
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Table 4.9b: GO interpretation of one module 

GO-ID p-value Description 

6412 1.08E-24 Translation 

10467 9.44E-19 gene expression 

34645 3.70E-17 

cellular macromolecule 

biosynthetic process 

9059 4.34E-17 

macromolecule 

biosynthetic process 

44267 5.30E-16 

cellular protein metabolic 

process 

19538 3.44E-15 protein metabolic process 

22613 4.08E-15 

ribonucleoprotein 

complex biogenesis 

42254 5.49E-15 ribosome biogenesis 

44249 1.60E-13 

cellular biosynthetic 

process 

9058 2.67E-13 biosynthetic process 

44260 2.14E-11 

cellular macromolecule 

metabolic process 

43170 5.42E-11 

macromolecule metabolic 

process 

44085 1.32E-09 

cellular component 

biogenesis 

70925 2.79E-09 organelle assembly 

44237 5.97E-09 cellular metabolic process 

42255 7.18E-09 ribosome assembly 

6417 1.46E-08 regulation of translation 

10608 3.05E-08 

posttranscriptional 

regulation of gene 

expression 

8152 3.68E-08 metabolic process 

44238 4.32E-08 

primary metabolic 

process 

22618 4.50E-08 

ribonucleoprotein 

complex assembly 

32268 4.75E-08 

regulation of cellular 

protein metabolic process 

51029 2.44E-07 rRNA transport 

6407 2.44E-07 rRNA export from 
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nucleus 

51246 6.75E-07 

regulation of protein 

metabolic process 

6364 1.88E-05 rRNA processing 

6405 2.52E-05 RNA export from nucleus 

16072 2.57E-05 rRNA metabolic process 

50658 7.02E-05 RNA transport 

51236 7.02E-05 

establishment of RNA 

localization 

50657 7.73E-05 nucleic acid transport 

51168 1.22E-04 nuclear export 

34622 1.35E-04 

cellular macromolecular 

complex assembly 

6450 1.47E-04 

regulation of translational 

fidelity 

6403 1.57E-04 RNA localization 

9987 1.83E-04 cellular process 

15931 2.09E-04 

nucleobase, nucleoside, 

nucleotide and nucleic 

acid transport 

34470 2.43E-04 ncRNA processing 

51169 2.93E-04 nuclear transport 

6913 2.93E-04 

nucleocytoplasmic 

transport 

6396 3.00E-04 RNA processing 

42257 3.60E-04 

ribosomal subunit 

assembly 

34621 3.98E-04 

cellular macromolecular 

complex subunit 

organization 

6448 4.23E-04 

regulation of translational 

elongation 

65003 7.55E-04 

macromolecular complex 

assembly 

34660 7.68E-04 ncRNA metabolic process 

42273 1.29E-03 

ribosomal large subunit 

biogenesis 

43933 1.39E-03 

macromolecular complex 

subunit organization 
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27 1.79E-03 

ribosomal large subunit 

assembly 

22607 2.39E-03 

cellular component 

assembly 

462 2.60E-03 

maturation of SSU-rRNA 

from tricistronic rRNA 

transcript (SSU-rRNA, 

5.8S rRNA, LSU-rRNA) 

30490 3.26E-03 maturation of SSU-rRNA 

10468 5.68E-03 

regulation of gene 

expression 

50686 6.28E-03 

negative regulation of 

mRNA processing 

33119 6.28E-03 

negative regulation of 

RNA splicing 

48025 6.28E-03 

negative regulation of 

nuclear mRNA splicing, 

via spliceosome 

465 6.28E-03 

exonucleolytic trimming 

to generate mature 5'-end 

of 5.8S rRNA from 

tricistronic rRNA 

transcript (SSU-rRNA, 

5.8S rRNA, LSU-rRNA) 

10556 6.46E-03 

regulation of 

macromolecule 

biosynthetic process 

470 6.80E-03 maturation of LSU-rRNA 

463 6.80E-03 

maturation of LSU-rRNA 

from tricistronic rRNA 

transcript (SSU-rRNA, 

5.8S rRNA, LSU-rRNA) 

31326 7.53E-03 

regulation of cellular 

biosynthetic process 

9889 7.87E-03 

regulation of biosynthetic 

process 

16070 1.16E-02 RNA metabolic process 

 



Chapter-4 

 

128 

 

 

Fig 4.13: Validation of modules 

In 99 clusters, 95 clusters are valid. In 95 clusters, 24 normal protein 

clusters are valid, 5 are with cancer cluster and 58 has both cancer and normal 

clusters. 

Table 4.10 displays p-value of 99 clusters. A cut-off of 0.08 was 

used. If the p-value of a cluster is below the cut-off, it is considered to be 

insignificant. 94.34% accuracy was attained in this validation. All these 

four clusters share cancerous and non-cancerous interaction groups. The 

statistical analysis also estimated 95 modules to be biologically relevant. 
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Table 4.10: Cluster p-value 

Cluster p-value 

1 
0.005 

2 
0.046 

3 
0.072 

4 
0.012 

5 
0.028 

6 
0.059 

7 
0.002 

8 
0.0025 

9 
0.0095 

10 
0.0071 

11 
0.053 

12 
0.024 

13 
0.068 

14 
0.073 

15 
0.005 

16 
0.0049 

17 
0.0082 

18 
0.0083 

19 
0.0094 

20 
0.0045 

21 
0.049 

22 
0.031 

23 
0.072 

24 
0.019 
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25 
0.031 

26 
0.047 

27 
0.033 

28 
0.067 

29 
0.079 

30 
0.0084 

31 
0.0049 

32 
0.0073 

33 
0.0016 

34 
0.0067 

35 
0.0078 

36 
0.002 

37 
0.0085 

38 
0.077 

39 
0.019 

40 
0.036 

41 
0.041 

42 
0.053 

43 
0.044 

44 
0.0085 

45 
0.0069 

46 
0.0018 

47 
0.025 

48 
0.029 

49 
0.0083 

50 
0.0094 
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51 
0.0083 

52 
0.0018 

53 
0.0073 

54 
0.0093 

55 
0.038 

56 
0.043 

57 
0.038 

58 
0.0019 

59 
0.0064 

60 
0.0078 

61 
0.053 

62 
0.075 

63 
0.063 

64 
0.0016 

65 
0.086 

66 
0.940 

67 
0.0081 

68 
0.051 

69 
0.0021 

70 
0.075 

71 
0.0033 

72 
0.032 

73 
0.0391 

74 
0.0037 

75 
0.00931 

76 
0.913 
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77 
0.0183 

78 
0.0037 

79 
0.0910 

80 
0.0291 

81 
0.0837 

82 
0.8910 

83 
0.0061 

84 
0.0031 

85 
0.0090 

86 
0.0029 

87 
0.0083 

88 
0.0071 

89 
0.061 

90 
0.039 

91 
0.0097 

92 
0.039 

93 
0.870 

94 
0.0086 

95 
0.0019 

96 
0.0042 

97 
0.016 

98 
0.0014 

99 
0.0082 
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4.3.1 Grouping of proteins based on the GO annotations 

The complex proteins are clustered based on GO annotations like 

molecular function, cellular component, and biological process. According 

to the inference from cellular component, 686 out of 1141 proteins were 

nuclear proteins. Many of the proteins were part of the chromatin and 

located at the centromere region of a chromosome. Others were part of the 

histone acetyltransferase or deacetylase complexes or replication fork, 

cytosol, etc.  

 

Fig 4.14 Cellular component 

In the graph, orange color indicates the normal proteins and red color 

indicates the cancer proteins. The left hand side depicts the cellular component 

and right hand side indicates the number of proteins. 
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In a total of 686 proteins, 234 proteins represent proteins involved 

in cancer. In cellular component, nuclear lamina contains 8 proteins, which 

is the lowest. Fig 4.14 portrays the distribution of cellular component. 

In the biological process, 324 proteins from 1141 proteins belong to 

nucleic acid metabolic processes and 143 proteins represented proteins 

involved in cancer. Many other proteins were related to mitosis (nuclear 

envelope disassembly, sister chromatid cohesion, spindle localization or 

cytokinesis), cell cycle regulation (cell cycle progression, cell cycle phase 

transition, cell cycle checkpoint, regulation of  mitotic cell cycle, cell cycle 

DNA replication) and mRNA transport, histone acetylation, etc. Fig 4.15 

portrays the distribution of BP.  

 

Fig 4.15 Biological processes 

In the graph, red color indicates the cancer proteins and green color 

indicates the normal proteins. The left hand side depicts the biological processes 

and right hand side indicates the number of proteins. 
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Finally, the molecular functions of majority complex protein were 

investigated and concluded that 101 proteins out of the 267 DNA binding 

proteins were cancer proteins. 89 proteins out of the 175 RNA binding 

proteins were cancer proteins. Fig 4.16 portrays the molecular function. 

 

Fig 4.16 Molecular function 

In the graph, blue color indicates the normal proteins and red color 

indicates the cancer proteins. The left hand side depicts the molecular function 

and right hand side indicates the number of proteins. 

4.4 Characterisation 

4.4.1 Degree distribution 

 Degree distribution of the networks has the prospect to explain the 

counter behavior like overlapping and clustering. All the cancerous Protein 

interaction networks (PINs) possess some of the higher degree selective 

nodes conflicting to the non-cancerous PINs. Surveillance of this 

observation leads to a logical proposal that few of the giant nodes originate 
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in cancer PINs possessing a massive degree distribution and results in 

arbitrarily discrete nodes.  

 In the cluster, many links are found in majority of the nodes. In 

them, certain nodes display more number of links. This kind of 

observations are found in numerous investigations in the field of biological 

networks. The current investigation demonstrates that an assimilated 

protein cluster contains assorted links with scale-free network. The average 

degree of the 785 cancer proteins was 38.72. The average degree of 356 

non-cancerous proteins was 23.13. This suggests that the average degree of 

cancerous proteins are ominously higher compared to the non-cancerous 

proteins. Therefore, cancer encoded proteins has the tendency to interact 

intensely with other proteins and have comparatively better connectivity in 

the entire network. Fig 4.17 portrays the more detailed view of the degree 

characteristics.  

 

Fig 4.17 Degree distribution 

In the graph, purple color indicates the normal proteins and red color 

indicates the cancer proteins. The left hand side indicates the number of proteins 

and right hand side indicates the degree. 
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The cancer proteins inclined to slant towards the higher degree 

compared to the non-cancerous proteins. The value was calculated as 38.72 

for degree centrality of cancer protein by employing test statistics. The 

value for normal protein was calculated as 23.13. Hence, it can be 

concluded that the degree of cancerous protein is higher than the non-

cancerous protein. 

4.4.2 Hub proteins  

Remarkably, the cancerous proteins in a human interactome 

exhibited greater connectivity and were inclined to be hub proteins 

compared to the normal proteins. This observation reflects that the 

cancerous genes play imperative role in a human interactome. 

The highly connected nodes are generally demarcated as hubs. 

Presently, description of hubs is an uncertain concern in the study of 

biological network. A cutoff, that is, degree >10 was employed to delineate 

hubs in this study. According to this cutoff, 250 (81.1%) of the cancer 

proteins were categorized as hubs. This number is considerably greater than 

the normal proteins 6.1%. These interpretations specified that the cancerous 

proteins are more probable to be network hubs compared to the essential or 

control proteins. Table 4.11 lists few of the major hubs. More information 

on result can be retrieved from http://www.bioteccancernet.cusat.ac.in/hub.  

Table 4.11: Major hubs 

List of major hubs 

AR 

ATM 

BRCA1 

BRCA2 
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CDH1 

GARS 

HEXB 

KRAS 

LMNA 

MSH2 

PTK3CA 

TP53 

MADTL1 

RAD54L 

VAPB 

CHEK2 

BSCL2 

BRIP1 

 

4.4.3 Betweenness centrality 

Betweenness centrality was the next factor calculated for this study. 

The number of shortest paths transient through the node is the betweenness 

centrality of a node. Or in other words it embodies the significance of a 

node in the network. In a biological network, this calculation reveals the 

degree of signals that possess paths across the node. 

The average value for betweenness was generated as 761 and 141.3 

for cancer and non-cancerous proteins respectively. Fig 4.18 portrays the 

ratio of cancer and non-cancerous proteins for numerous values of 

betweenness. The figure supports the fact that the value of betweenness for 

cancer proteins is greater compared to the non-cancerous proteins. 
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Fig 4.18 Betweenness centrality 

In the graph, purple color indicates the normal proteins and red color 

indicates the cancer proteins. The left hand side displays the number of proteins 

and right hand side indicates the betweenness centrality. 

All the 785 cancer proteins displayed the value of betweenness to be 

higher than zero. The average value of betweenness for the cancer proteins 

is 8.73 × 104, which is considerably higher compared to the essential 

proteins, that is, 4.96 × 104.  

4.4.4 Clustering coefficient 

The ratio between the number of neighboring edges present and the 

number of possible neighbors is the clustering coefficient. This 

measurement aids in understanding how good a node is connected to its 

direct interactors. The higher density of a network connection is indicated 

by a node’s higher clustering coefficient. It was observed that the value of 

clustering coefficients for around 785 cancerous proteins was within the 

range of 0-0.3. Remarkably, the normal proteins displayed higher 
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proportion when the value for the clustering coefficient was 0 or >0.9 and 

cancerous proteins displayed the lowest proportion. Generally, the 

neighbors of cancerous proteins connected with each other in a lower rate 

compared to the non-cancerous proteins. It was evident from many other 

investigations that the average clustering coefficient of cancerous proteins 

are lower compared to the normal proteins. Fig 4.19 portrays the clustering 

coefficient of cancer and normal proteins. 

 

Fig 4.19: Clustering coefficient 

In the graph, green color indicates the normal proteins and red color 

indicates the cancer proteins. The left hand side indicates the number of proteins 

and right hand side indicates the clustering coefficient. 

4.4.5  Shortest path length 

The shortest path length from one node to other nodes in a network 

was also considered for this investigation. The average value derived for 

cancer protein was 4.11 and normal proteins 5.67 respectively. This makes 

it evident that the path from cancer proteins to other proteins is shorter 

compared to normal proteins to other proteins. This comparison specifies 

that the competence of cancer proteins interacting with each other could be 

greater than the normal proteins in the human protein interaction network. 
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Fig 4.20: Shortest path length of cancer and normal proteins 

In the graph, the red color indicates the cancer proteins and blue color 

indicates the normal proteins. The right hand side indicates the number of proteins 

and left hand side indicates the shortest path length. 
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Fig 4.20 displays the ratio of cancer and normal proteins for shortest 

path distances. The figure substantiates that the shortest path distance of 

cancer proteins is much shorter than that of normal proteins. 

4.4.6 Pathway analysis  

All the proteins present in each of the 99 clusters were identified. 

All the identified protein was further added to the KEGG database in order 

to detect its pathway. This pathway offers effective and valid information 

to find out the phenotype classification as well as the linking pathway. 

1141 cluster proteins are unique and there is no physical interaction among 

the clusters.  But, the clusters are linked with cancer pathway as portrayed 

in fig 4.21.  

 

Fig 4.21: Cancer pathway 

(62 represents the cancer and normal protein clusters. 32 represents the 

normal protein clusters and 5 represents the cancerous protein clusters.) 

  

It is observed that, among all the identified pathway cancer pathway 

owns more protein from complexes. Fig 4.22 portrays the major l1 linking 

pathway. The highest number of cluster protein is observed in prostate 
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linking pathway. The cluster proteins are not connected with the cancer 

proteins physically but they are extremely connected with the cancer 

linking pathway. 

  

Fig 4.22: Linking pathway 

The phenotype cataloguing was done for the cluster proteins by 

employing KEGG (BRITE). The key category of cancer was recognized 

using the data from web as well as literature survey (McLendon et al., 

2008). A total of 12 chief cancer causing proteins were recognized from the 

cluster against the cancer. Table 4.12 displays the CANC complexes listing 

12 major cancer causing proteins. 
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Table 4.12: CANC complexes 

Cancer Participants  from CANC complexes  

Brest Cancer 58 

Ovarian 52 

Prostate  49 

Leukemia 47 

Pancreatic  41 

Lymphoma 35 

Glioma 34 

Skin 28 

Lung  28 

Stomach 25 

Thyroid 23 

Brain 19 

 

4.5 CancerNet tool 

 

CancerNet tool is web based and works with sql data base of size 2 GB. 

The front end uses Perl and PHP, the backend uses mysql and the operating 

system used is Ubuntu. The data captured from the tightly packed human 

protein complex (HPC) is integrated to the tool. CancerNet retrieves all 

relevant information from the protein symbol to interacting partner. The 
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query passes through the perl-cgi. The query is processed using the SQL 

language and the required information is fetched from the tightly packed 

HPC database.  

 
 

Fig 4.23: Login page of CancerNet 

1 highlighted in the image indicates the server name to access the tool and 2 highlighted in 

the image indicates the fields to enter the login credentials. 

 



Chapter-4 

 

146 

 

 
Fig 4.24: Homepage of the CancerNet tool 

1 indicates the list of entry, 2 indicates the query field and 3 indicates the 

download option 

The user can select any one of the following four different types of 

entries: 

1. Entry 

2. Entry_name 

3. Protein_names 

4. Gene_names 

The entry is actually the uniprot ID which is unique and is used as 

the primary key in the data base. Entry_name is the organism combined 

with the uniport ID. After selecting the type of entry, the user can search 

for the required protein by entering the details in the query field. User is 

directed to the output page after submitting the query. Download is a 

beneficial feature, which is added to the tool to download the analyzed 

human interactome, CCA Network, and MCODE.  

The default web pages of the CancerNet tool is mentioned in 

Appendix II section. Fig 4.25 displays the category and entry fields in the 

tool. 
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4.5.1 Query using the CancerNet tool 

 
Fig 4.25: Query field 

After selecting the “Protein_names” in the “Select Column” field, 

the user has to enter the name of the required protein. For example, in the 

fig 4.25, the user has entered Receptor tyrosine-protein kinase erbB-

2protein.  

Fig 4.26 displays the output page after entering the protein name. 

This includes information about the gene ontology and pathway of the 

queried protein. The gene ontology covers information such as biological 

process, molecular function, cellular component and Kegg pathway of that 

protein. In addition, the preliminary information such as the number of 

interacting partner, gene origin, and related diseases of the protein is also 

displayed. 
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Fig 4.26: Output page 
1 and 2 indicates the information fileds which works after clicking the appropriate 

field. For example, information related to Biological process is revealed after 

clicking the Biological process tab.  3 and 4 indicates the preliminary information 

which is displayed by default, that is, the number of genes and its functions as 

well as the proteins and its interacting partner.  
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Fig 4.27: On click information: Catalytic activity, Cofactor, and 

involvement of disease. 

 

The figure displays the information about the gene such as catalytic 

activity, cofactor and the related disease. Catalytic activity and cofactor of a 

gene helps in understanding the interaction of proteins. Also, the 

information on the associated disease is retrieved. 
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Fig 4.28: Gene ontology annotation of Gene ERBB2 

Biological process, cellular component and molecular function are the three 

annotations covered in the CancerNet tool. The blue highlights indicates the gene 

annotation ID. 
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Fig 4.29: List of pathways associated with KEEG 

For example, list of ERBB involved pathways. When the user clicks a particular 

pathways, it displays the respective graphical representation. 

 

The figure lists the associated pathways of the queried protein. One 

protein can participate in multiple pathways. The researcher can select the 

desired pathway from the list of pathways displayed. After selecting the 

interested pathway, the detailed schematic representation of the protein 

pathway is retrieved along with other proteins which participate in that 

pathway. 
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                                 5             

    DDIISSCCUUSSSSIIOONN            

 

In this study, a novel methodology is proposed to identify cancer 

and non-cancerous protein complexes in human interactome. This main 

focus is to display an exceptional platform for investigating the currently 

existing human interactome and its respective modules. Also, to assimilate 

the data of protein interactions into various prominent databases and study 

the tightly packed protein complexes. The further analysis demonstrates the 

discrepancies in topological properties of cancer and non-cancer proteins.  

The results of this study demonstrated that investigation of the interactions 

leads to significantly better predictions about the cancer proteins. Finally, a 

one-stop solution was introduced to retrieve major cancer and non-

cancerous complexes. 

5.1 Human interactome created from 79,950 human protein 

interaction using 4 databases: NCBI reference sequence, 

Human atlas, Plasma proteome database and Uniprot 

In this study, a total of 4 databases were utilized to study the human 

interactome. This was accomplished by employing a strategical approach. 

In the investigations allied to protein interactions, Bader et al., 

(2004), Jansen et al., (2003) and Lin et al., (2003) advocated that the non-

predicted data can be integrated to a prevailing database in an administered 

learning context. Jaimovich et al., (2006) recommended the alternatives of 

Markov networks to scrutinize the information on protein interaction. Deng 

et al., 2004; Letovsky and Kasif, 2003, and Leone and Pagnani, 2005 

predicted that the interaction network can be extracted and used it for other 
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tasks to predict the functions of protein, topological properties, malignancy 

due to proteins, in grouping the interacting co-expressed proteins (Segal et 

al., 2003), etc.  It was remarkable that the overlap inferred from the diverse 

methodologies was very minute necessitating that the data extracted from 

the different high-throughput investigation must be manipulated with 

extreme care (Bader and Hogue 2002; Schachter 2002; von Mering et al., 

2002).  

All these methodologies employs a cataloguing algorithm to 

assimilate assorted biological datasets. A classifier or the person who 

distinguishes non-interacting pairs is educated to differentiate among 

positive or constructive instances of accurately interacting pairs of proteins 

from the negative instances. Each pair of protein is encrypted as a feature 

vector where the features embody a specific data source concerned with 

either PPIs, domain configurations, associated mRNA expressions, or proof 

extracted from investigational techniques. In the current investigation, 

10078 unique proteins were mined from the comparative study of protein 

data from four prominent databases.  

The most challenging and perplexing task is to attain computational 

replicas for the PPI mechanism. Gray et al., (2003) revealed from their 

investigation that other computational approaches for determining PPI 

spots are categorized into two groups. The first is the docking method that 

attempts to map two protein structures to discover the paramount locations 

on both the structures. These methodologies are pragmatic only to the 

unraveled structures of protein and are currently prevailing merely for a 

smaller number of proteins. Li et al., (2003), Kim et al., (2006), and Marti-

Renom et al., (2007) advocated the use of other techniques if the proteins 

lacked any homology with solved structures of protein. The other method 
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was the local sequence interaction prediction method. This method 

typically employs an algorithm to identify interacting sites. In the above 

researches, a single method was assigned to study a particular trait of the 

protein. In the current investigation, data from multiple methodologies were 

employed to study the specific trait of a protein. 

The human proteome is more complex because of the larger number 

of proteins, post-translational amendments, their splice isoforms, and 

mechanisms of kinetic protocols when compared to yeast. While almost all 

the preceding investigations were concentrated on the relative assessment 

of PPI network in yeast. A broad assessments of human PPI maps using 

multiple data integration was deficient. A straightforward hypothesis of the 

outcomes of the yeast maps to human maps could be deceptive concerning 

the diverse primary biology and methodologies towards mapping. 

Consequently, a methodical assessment of presently accessible human PPI 

maps is merited to achieve an enhanced insight into the functional 

configuration and topological assembly. Based on this, a relative 

examination of existing human PPI maps was accomplished in this effort. 

Rhodes et al., (2005) applied a stratagem by employing the sum of 

probability ratio scores policy to envisage human protein interaction. This 

probability ratio scores are resultant of the homologous PPI. 

The initial endeavor was implemented around 2005 to scrutinize 

large-scale assimilative mapping of human interactome (Stetzl et al., 2005). 

A protein matrix containing 4500 baits and 5600 preys in a yeast two 

hybrid system was used to portion together the interactome. Rual et al., 

(2005) executed an analogous yeast-two hybrid investigation and 

substantiated with association of other biological traits and co-affinity 
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purification, confirming more than 300 connections to 100 ailment-related 

proteins. 

In computational biology, the worth of human interactome depends 

on the data collection. Kim et al., 2014 and Wilhelm et al., 2014 used a few 

databanks to extract and interpret human PPIs with agreeable publication 

records. The outcome was 14000 discrete interrelating pairs of protein. The 

data was consolidated directly from binary databank reserve. In the 

framework of a network, Walhout and Vidal (2001) understood that the 

proteins and their respective binding partners provide a stronger perception 

about the cell functions. More than 10000 direct and exclusive PPIs were 

annotated in HPRD. This data was derivative of innumerable discrete 

small-scale experiments printed in literature. 

In the current investigation, 10078 proteins and their corresponding 

58674 protein interactions were identified by employing four conspicuous 

databases. In the above researches, the study on human interactome was 

initiated by integrating the interaction database directly to yield the 

interactome. But, interactions from the protein-level and protein to PPI 

mapping was employed in this study. Consequently, it was possible to 

identify 127 missing interactions. Some of the scholars affirmed the fact 

that the interactome can be plotted soon by taking benefit of the 

introduction of reference proteome maps. 

According to National Physical Laboratory (NPLI), Technical 

bulletin, (1987) PPIs are considered as the ultimate to vitally all cellular 

procedures. The PPIs own enormous substantial functions like devastating 

a protein, ensuring the creation of a novel binding location, transforming 

the precision of a protein for its substrate, or fluctuating the dynamic 

features of proteins. The preceding eras manifested numerous major 
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milestones to recognize PPIs and by this means exploring more details 

about these complicated biological systems.  

Feldman et al., (2008), Bauer-Mehren et al., (2011) and Taylor et 

al., (2009) revealed from their studies that PPI networks have been 

exploited to achieve acumen into the ailment-related mechanisms, to 

ascertain new network-based biomarkers, and to regulate the targets of 

drug. Chatr-aryanmontri et al., (2008) interpreted that the vigilant 

elucidation of PPI information from multiple databanks delivers 

biologically relevant implications. 

5.2 3146 cancer protein interactions identified from human 

interactome 

Walhout and Vidal (2001) confirmed from their study that proteins 

do not perform as remote entities often but are usually part of a greater 

protein complexes inside a cell. Any proteomic analysis owns an essential 

trait of interpretation of interacting proteins, the interactome, and in 

plotting the analogous binding locations. Based on this result, in the current 

analysis the human interactome was subjected to the identification of 

protein complexes. 

Bader and Hogue, (2003) and Spirin and Mirny, (2003) also 

ascertained from their investigation that, the modules in PPI networks 

discloses both the necessity for removal of indiscreet procedures in addition 

to the compact interaction among proteins to execute explicit functions. 

Rives and Galitski, (2003) and Spirin and Mirny, (2003) assimilated a set of 

interaction network to identify the compactly linked modules of interacting 

proteins. This culminated in identifying informative modules from 

interactome. 
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Jain et al., (2005) and Jain et al., (2012) confirmed from their 

investigation that the protein complexes which perform explicit biological 

functions are often found to encompass extremely allied protein modules. 

The investigations on these protein modules owns a fundamental role in 

understanding the pathophysiological characteristic properties of intricate 

ailments such as cancer. 

Spirin and Mirny, (2003) also projected that the affiliated sub-

network possess 783 proteins and 644 respective interactions with the 

largest connected component (LCC) in the alignment encompassing 318 

proteins and 318 interactions. 

In one LCC, remarkably 44% of the nodes, demonstrating 284 

proteins, were linked (p<1×10−16, permutation test), signifying that though 

the proteins are engaged in incongruent roles, most of them are linked by 

PPIs. Several biological types are epitomized in the LCC of the interactome 

comprising of signaling of stress, repairing of DNA, transport of vesicle, 

modification of chromatin, in addition the metabolism of proteins, RNA 

and lipids. Almost all the functional groups embodied in yeast are also 

epitomized in the human network and the network is extremely modular. 

Nikolaus et al., (2014) experimented on the murine and human 

proteolytic networks and projected that most of the proteins are connected 

and very few are in not connected components. Therefore, when both the 

networks are compared, the LCC, that is the major cluster of nodes directly 

or indirectly linked comprises the enormous mainstream of these proteins. 

The numbers are derived as 1377 of 1393 (99%) in murine and 1183 of 

1230 (96%) in human. In the current investigation, 9886 nodes and 58568 

interactions were found in the connected component network. Compared to 

the study conducted by Nikolaus, in the current investigation, 9886 nodes 
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and the respective 58568 interactions were identified in a connected 

component network. The average connectivity of a node in the network is 

11.849 as the number of proteins and their interactions are high in the 

current preliminary set under study.  

The complexes encompassing manifold PPI partners performs many 

cellular functions. One of the essential units in PPI networks are the 

molecular complexes and predicting them is one of the utmost tasks in the 

investigation of PPI networks. Ho et al., (2002), Mering et al., (2002), and 

Gavin et al., (2006) found that the high-output investigational 

methodologies employed to regulate the complexes of protein sets 

complexes on a proteome-wide scale usually undergo problems with false 

negative rates and high false positive. Therefore, innumerous 

computational efforts were made hitherto to categorize associated 

functional modules or complexes. Amau et al., (2005), Adams et al., 

(2006), and Chu W et al., (2006) proposed that the non-administered graph 

clustering approach was employed to identify the automatic complex or to 

detect the related functional module in majority of the hitherto 

methodologies and Aittokallio et al., (2006) also attempted to ascertain 

likewise or compactly connected subgraphs of clusters or nodes. 

Numerous studies tried to fragment the PPI graph into separate 

extremely connected complexes or clusters. King et al., (2004) segregated 

the nodes of a specified graph into discrete clusters, grounded on their 

contiguous interactions, by employing a local search algorithm based on 

cost. Dunn et al., (2005) divided the network into complexes by eliminating 

the edges with the maximum centralities. The process of edge-removal 

repeatedly revalidated betweenness till a stable number of edges were 

eliminated. 
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Spirin and Mirny (2003) found in a preceding study conducted on 

yeast that in an interaction network, the extremely interrelated augmented 

groups did not develop fortuitously. 

The complexes or the compactly connected areas in a network are 

derived similarly to finding clusters. Md Altaf-Ul-Amin et al., (2006) 

displayed and scrutinized few complexes of proteins generated by the 

projected algorithm from an archetypal PPI networks of yeast and E.coli. 

The approach of King et al., (2004) was initiated by combining a 

maiden haphazard clustering and repeatedly passing one node from a 

cluster to other cluster in an arbitrary manner to increase the cost of 

clustering. The clusters are filtered grounded on the cluster size, 

compactness and functional homogeneousness after generating the clusters 

bearing in mind the standards of the recognized biological groups. 

Becker et al., (2012) found that the algorithms like OCG having the 

capability to group proteins into manifold graph modules permits the 

recognition of multifunctional proteins. Hartwell et al., (1999) confirmed 

that these modules are similar to the functional components of the network 

and comprises clusters of extremely connected proteins engaged in the 

equivalent cellular function. 

The fact is noteworthy that such preventive delineation of modules 

directs to an augmented strength of the identified components concerning 

the false positive interactions. Spirin and Mirny (2003) proposed that when 

an extensive proportion of PPIs are eliminated, the recognized components 

still create extremely connected groups. 

Palla et al., (2005) and Jonsson et al., (2006) found that the 

identification of PPIs which occurs inside similar cellular processes were 

executed hitherto by clustering methods. According to Jeong et al., (2001) 
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and Gunsalus et al., (2005), this can be validated from the fact that the 

protein subnetworks engaged in a demarcated cellular process is profoundly 

interrelated by direct PPIs compared to the ones anticipated fortuitously. 

Wuchty and Almaas (2005) arrived at the conclusion that though 

connectivity provides a hint of one protein’s prominence, the cataloguing of 

topological role of highly connected proteins grounded on their locality is 

also probable. In a real network, it is not necessary that all the subgraphs 

are equally substantial or significant. Motifs are considered to be the 

subgraphs that befall more frequently in a specified network compared to 

only the anticipated fortuitously. In a lot of previous investigations 

executed by Yeger-Lotem et al., (2004)], the presence of simple motifs of 

building network in PPI graphs and transcription regulation networks were 

postulated. Shen-Orr et al., (2002) and Milo et al., (2002) recently 

confirmed that there are quite a lot of effectual tools designed to enable the 

recognition of motifs. Many complex networks exhibit firm dogmas of 

structural design. Aittokallio et al., (2006) network motifs is very 

constructive to the researchers as they aid them to recognize the 

rudimentary structural features of an explicit network. In the yeast protein 

interaction network, there is an elevated amount of evolutionary 

preservation of network motifs. In a network of miscellaneous species, the 

confluence evolution to the equivalent motif categories was also witnessed 

in the transcription-regulatory network. Barabasi et al., (2004) confirmed 

that all these interpretations has an incredible relevance to the biological 

studies. 
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5.3 Connected component and molecular detection method 

finds 99 major protein complexes in human interactome 

In the current investigation, the result shows stronger connectivity. 

100% shortest path is included in the connected component network. The 

average shortest path between two nodes in the CCA network is 4.054. The 

network diameter is 15 and the average connectivity of a node in the 

network is 11.849 nodes which displays stronger connectivity of each node 

in the CCA network. Involvement of rich complexes in CCA network was 

recognized based on the current investigation, when compared to similar 

investigations. 

In the investigation by Gavin et al., (2002), fresh data extracted 

from 588 biochemical purifications were epitomized by applying the spoke 

model to retrieve 3,225 conjectural PPIs amid 1,363 proteins as input to 

MCODE. Gavin et al., (2002) reported a list of 232 manually interpreted 

complexes of protein based on the unique refinement data. As part of a 

larger complex, this data was filtered to eliminate five identified 

complexes. Each of these complex encompassed single proteins. Also, six 

complexes encompassing two or three proteins which are existing in the 

data set. In a set of complexes, a filtered set of 221 complexes was 

generated to evaluate MCODE though few of these complexes displayed 

substantial overlap with other complexes. 

The study of Gavin et al., (2002) postulated the competence of 

MCODE to recognize vital complexes from the connected interaction 

network.  In the current study also, MCODE was employed to identify 

clusters in the CCA network. 121 highly linked biological modules from 

massive CCA protein network was identified by employing the MCODE 

algorithm. The high-scoring clusters exhibit high density value. 121 
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complexes encompassing 1550 unique proteins were selected and 14873 

interactions were derived. 

There were a lot of methodologies permitting cluster overlap as few 

proteins are part of functional components or manifold complexes. Bader et 

al., (2003) attempted to identify compactly connected areas in a large PPI 

network by employing vertex weights to embody indigenous neighborhood 

density with the MCODE method. 

Brohee and van Helden (2006) did a relative validation for PPI 

networks of four clustering algorithms, that is, Super Paramagnetic 

Clustering (SPC), Markov Clustering (MCL), Restricted Neighborhood 

Search Clustering (RNSC), and Molecular Complex Detection (MCODE). 

They concluded that RNSC, MCL, and MCODE were stronger for the 

graph amendments compared to the other two algorithms.  

In the current analysis, 99 MCODE clusters were considered having 

a density score value >2. A total of 99 complexes having total 1141 unique 

proteins were selected and the total interactions was derived as 14340. 

Franke et al., (2006), Masseroli et al., (2005) and Van Driel et al., 

(2005) lately witnessed the advent of assimilative procedures to recognize 

plausible genes of maladies in the interludes of linkage concomitant to the 

sickness based on the assimilation of information like the information on 

expression and Gene Ontology categories. 

A hint on the disparity in evolutionary traits of cancer and non-

cancer proteins can be retrieved from the detection of a variance in the 

number of collaboration associates among the two groups. Fraser et al., 

(2002),  Eisenberg and Levanon, (2003), and Wuchty, (2004) undeniably 

confirmed that the age of proteins or genes and rate of evolution was the 

topic of numerous scientific publications and also showcased growing 
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proof for an association among the number of collaborations and age of 

proteins. Jordan et al., (2003) was doubtful with this association and 

published about that in a latest publication. According to Saeed and Deane 

(2006), a correlation exists, even though it is reliant on the 

comprehensiveness and eminence of the database under investigation. All 

these results conclude that cancerous proteins, which causes detrimental 

transformation of functions could be older compared to the non-cancerous 

proteins. 

Jeong et al., (2001) indicated that, in yeast the extremely connected 

proteins are the ones which have phenotypical significance, and grave on 

the survival aspect of an organism. Saidet et al., (2004) described from 

their investigation that the toxicity-controlling proteins demonstrate a vast 

amount of interactions. In cancer proteins, the augmented connectivity 

recommends that they execute a significant role in a protein network. 

In recent times, more biological milieu for the PPI networks were 

incorporated by a lot of imperative researches by expanding or mining PPI 

graphs into explicit supersets or subsets. Goh et al., (2007) illustrated the 

‘human disease network’ which encompassed the maladies and ailment 

genes concomitant by identified disease-gene binding. This network 

discovered a common genetic origin of many ailments by exploring all 

known phenotype and disease-gene bindings in just one graph hypothetical 

background. 

In a PPI network, Radivojac et al., (2008) attempted to detect 

disease–gene linkages by encrypting all the genes grounded on the 

dispersal of shortest path lengths to each genes supplementary with 

ailments or owning acknowledged functional interpretations. 
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In the current analysis, 4 clusters encompassing only cancer 

proteins, 32 clusters encompassing only normal proteins and 62 clusters 

encompassing both cancer and non-cancer proteins were grouped. We 

identified 1141 proteins in 99 clusters. In them, 785 proteins are cancerous 

and 356 were normal proteins. This study indicated the involvement of 

diseases in selected clusters which is in alignment with the study done by 

Jeong. 

Jonsson and Bates (2006) proposed that an open debate is ongoing 

about the differentiation of genes existing in precarious aliments like 

Cancer based on their location in a PPI network and characteristic 

properties. The main example is the centralities and better connectivity of 

the cancerous genes when compared to the normal genes. It is observed that 

the number of proteins the cancer proteins interact with is explicitly higher 

and also contribute in central hubs compared to the peripheral ones, 

reflecting their participation and better centrality in networks which 

contributes to the backbone of a proteome. 

5.4 Topological property differences exist between cancer and 

normal proteins 

Jeong et al., (2001) confirmed from their analysis that the 

identification of network characteristics like degree distribution, 

connectedness, etc common across multiple PPI networks was the novel 

comparative investigations of PPI networks. It was hypothesized from this 

study that a scale-free topology is followed in most of the PPI networks. A 

Power-law distribution, f(d) ∼ cd_, is followed by the degree distribution 

f(d) of the nodes in these networks. f(d) is represented as the nodes 

frequency with d as degree. Similar investigations postulated the significant 
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roles conveyed by the high-degree hub proteins in a PPI network. Almost 

all the paths are directed through such hub-proteins in a PPI network. 

Aittokallio et al., (2006) postulated from his investigation that if the 

degree distributions of a complete network and arbitrarily experimented 

subnets disclose the identical family with respect to probability 

distributions, then the chances to generalize from subnets to the properties 

of a whole network is possible. Barabasi et al., (1999) postulated that the 

real-world networks possess short average path lengths and degree 

distributions. 

Jeong (2001) studied the degree distribution of proteins at network 

level and derived a high value for cancer proteins. In the current 

investigation, the study was at the protein complex level and also derived a 

high value of degree distribution for cancer proteins compared to the non-

cancerous proteins. Also, the properties like shortest path length and 

clustering coefficient was analyzed. It was concluded that the cancer 

proteins displayed lesser shortest-path distance and clustering coefficient. 

Samanta and Liang, (2003) in their earlier study in the PPI network 

of yeast illustrated that the function of proteins partaking an abnormally 

vast neighboring proteins as it is possible to forecast functional links 

among proteins. The algorithm used to extract the high-throughput PPI data 

are not sensitive to false positives or noises, which serves as the advantage.  

Kim et al., (2006) differentiated PPIs by utilizing the atomic-

resolution information from the 3D structure of proteins. Lage et al., (2007) 

also recommended a structural measure to investigate the segmented PPI 

hubs and offered acumen about the evolutionary rate of these hub proteins. 

Lage also produced a phenome-interactome network by assimilating 

interactions of human proteins which are quality-monitored with an 
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authenticated and phenotype similarity score derived computationally. 

Consequently, it was possible to identify the formerly anonymous 

complexes probable to be connected with ailment. Linding et al., (2007) 

developed a methodology on similar lines known as NetworKIN. 

During the initial investigation of Jeong et al., (2001) and Han et 

al., (2004), they discovered that the hub proteins were probable to be 

programmed for indispensable genes in a PPI network. Instead of studying 

the protein’s pairwise interaction, the study at complex level should be 

focused for a better comprehension of a protein network and its essentiality. 

Hart et al., (2007) of late accomplished a similar investigation and 

substantiated that indispensable proteins are intense in some of the 

complexes, which is also ubiquitous in anticipated complexes. 

Guerrero et al., (2008), Milenković and Pržulj (2008) demonstrated 

from few illustrations that proteins owning analogous topological vicinities 

display similar biological features. Jonsson and Bates (2006) concluded 

from their investigation that cancerous genes display inordinate centralities 

and connectivity equaled to the non-cancerous genes. However, Goh et al., 

(2007) proposed that the affiliation among ailment genes and the respective 

network degrees require a better and vigilant contemplation because most 

of the sickness induced genes lack the inclination to program for hub 

proteins. 

In the current investigation, cancer proteins displayed higher degree 

distribution. Kim, Lage and Jeong identified the high degree nodes as hub 

proteins which has the tendency to cause cancer. In the current 

investigation, high degree was noticed in cancer proteins and the further 

analysis led to the conclusion that hub proteins are cancerous. 
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Hua Li (2010) enhanced the forecasting system by creating a novel 

algorithm and methodologies. This algorithm was employed on a human 

PPI network to create a genome-wide well-designed interpretation. This 

algorithm sided to calculate and lower the impact of hub proteins on 

perceiving functionally linked proteins. In the human PPI network, the 

interpretations of GO and KEGG was used as a self-governing and 

impartial standards to assess the algorithm introduced by Hua Li. Hua Li 

highlighted that his study enriched the complete excellence of functional 

implications for human proteins. 

In the current investigation, 1141 proteins from the complexes were 

identified and were added to the KEGG database in order to detect its 

pathway. 521 KEGG pathways were derived. Hua Li did not extend his 

pathway analysis in the field of cancer network. But, few linking pathways 

were observed on the current investigation. Majority of the linking 

pathways were associated with cancer pathway. In the cancer pathway, the 

participation of proteins from the complexes were considerably higher 

compared to the normal pathway. This study was further extended to carry 

out the phenotype classification of cancer using KEGG (Brite) and we 

concluded that Breast cancer was more dominant compared to other cancer 

types. 

Hua Li further assigned 466 KEGG pathway interpretations to 274 

proteins and 123 GO interpretations to 114 proteins. Finally, Hua Li was 

able to group 1729 proteins according to their functional relations and 

executed pathway analysis to further classify numerous subclusters 

extremely augmented in definite signaling pathways. 

In the current study, 1141 proteins were added to the GO analysis. It 

was found that most of the proteins were located at the nucleus component. 
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234 proteins were linked to cancer. In the cellular component, 234 proteins 

from 686 represented cancer. In the biological process, 143 proteins 

exhibited cancer from 324 proteins. In molecular function, 101 proteins 

from the 267 DNA binding proteins were cancer proteins. 89 proteins from 

the 175 RNA binding proteins were cancer proteins. The number of 

proteins used for GO and KEGG analysis was higher compared to Hua Li 

because the datasets retrieved from the proposed method is greater. 

5.5 CancerNet tool developed for protein and its related 

information 

The number of human PPI databases are increasing day by day but their 

application to medical and biological field are restricted because of the 

dissimilar information (Yildirim et al., 2007; Goh et al., 2007; Ideker and 

Sharan, 2008 and Braun et al., 2008). 

A common platform with direct access is necessary to access the PPI data. 

Hence, CancerNet was developed to provide a one stop solution to retrieve 

information on human interactome using one assimilated platform. In 

CancerNet, not only the interacting partner but also 15 other information 

like catalytic activity, type of disease, cofactor, biological process, 

molecular function, cellular component, KEGG pathway, name of the 

related gene, name of the protein, function of the protein, uniprotID, name 

of the organism, MCODE data, CCA data, and human interactome is 

displayed. In CancerNet, the KEGG pathway information is displayed in 

the same window and not in the KEGG website. In HIN, noise removal is 

supported which served as an advantage to the scholars to retrieve accurate 

data.
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            SSUUMMMMAARRYY  
 

The wide-ranging replica of molecular processes are reinforced by 

large-scale maps of protein interactions. Likewise, an organized 

demonstrating methodology of cellular processes are based on entirely 

sequenced genomes supporting currently as a requirement for complete 

maps of PPIs. The advancement in revealing interactome was slower in 

comparison to the extremely efficiency of mapping genome projects, 

particularly for the human interactome. In recent times, there is a mounting 

number of both computational and experimental exertions to improve the 

systematic maps of human interactome. In experimental and computational 

approaches, both have their own pros and cons. Hence, vigilant validation 

of these maps are obligatory to circumvent prejudices in experimental 

approaches and elevated rate of false positive interactions in discrete maps. 

This study displays an exceptional scaffold for investigating and 

assimilating the currently existing human proteins and its integration 

databases. Also, other methods result in the prediction of tightly packed 

protein complexes. The further analysis demonstrates the disparities in 

topological properties of cancer and non-cancer proteins. 

The diverse information of human protein from various databases 

such as Uniprot, NCBI Refsq, Plasma proteome and human protein atlas 

are integrated into a single database in a single format since different 

databases follow different access number. A total of 9432 unique proteins 

were recognized. The key intention of this study was to recognize all the 

existing binary interaction among the 9432 unique proteins. The 
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assimilated human protein database such as HPRD, IntAct, MINT, and DIP 

was scrutinized against the integrated human PPI database to procure a 

human interactome prototype. These interactions were derivative of either 

Y2H-assays, literature reviews or deduced on the foundation of 

homologous interactions in other living organisms. The investigation 

displayed that the existing maps have just a trivial, but a substantial 

overlay. However, the majority of proteins interaction can be found in 

multiple databases. The omitted protein interactions in cohesive databases 

were recognized by using orthologous based quest. The databanks or the 

datasets used in the research possessed diverse criterions and formats for 

the nomenclature of PPIs owned. So, to retain the uniformity in 

nomenclature standards, the subsequent PPIs were apportioned a unique ID 

by employing personalized Perl programs. Finally, 76072 interaction data 

was identified and entitled as Human Protein-Protein Interactions (HPPIs). 

 Cytoscape was used to investigate after plotting the human 

interactions as a network. The statistical study displayed that the 

engendered interactome was robust as 95% proteins are associated and 

lacked self-interaction.  Therefore, the proteins were epitomized as nodes 

and interactions as edges.  

The integration of the contemporary human PPI networks are 

favorable as they share complementary information. Nevertheless, the 

assimilation of information from assorted reserves is a tedious task because 

the data was fundamentally engendered by employing innumerable 

investigational circumstances by applying diverse identifiers. Also, this 

information or data is stored normally in dissimilar formats. Consequently, 

it was obligatory to carry out a vigilant investigation of existing challenges 

present in the human PPI data and also the steps employed for the 
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efficacious integration. To overcome these defies, a database was designed 

and implemented for integrating human PPI networks from various 

resources. This assimilated framework was designated as Human Protein-

Protein Interactions (HPPIs). HPPIs in 76072 interactions and more than 

10078 unique proteins were collected from twelve major PPI sources. 

HPPIs offers numerous dimensions such as GO, partner, annotation, and 

pathway for the quality valuation of all the interacting pairs.   

Connected component method was employed to investigate the 

human interactome network for removing all the distracted interactions. 

The outcome was an extremely connected human protein network in the 

human interactome. The highly connected human protein network strongly 

adhered to all the network property as human interactome. The 

reconstructed CCA network owned 9886 proteins and its 58568 

interactions. The integrated human cancer protein database was then 

investigated in the highly connected human protein network to retrieve 

cancer and non-cancer interactions. 

Cancer proteins were collected from the exceedingly legitimate and 

curated database explicitly CBio and Sanger to map cancer proteins in 

HPPIs. As demarcated earlier, the unique 3146 cancer protein dataset 

obtained was entitled as Cancer Proteins (CP). The CP dataset was mapped 

against the HPPIs dataset to reconstruct cancer interactions in human 

interactome. This result infers that stronger connectivity. 100% shortest 

path is included in the largest network. The average shortest path between 

two nodes in the CCA network is 4.054 which is same as the HPPIs. 

Molecular complex detection method (MCODE) identified highly 

connected modules in the CCA network. MCODE algorithm discovered 

highly connected biological modules from huge protein network. High-
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scoring clusters have a high density value. MCODE derived totally 121 

highly connected modules from the CCA network. The further analysis 

considered only 99 MCODE clusters as the density score value is >2. The 

selected complexes based on the MCODE density value was then subjected 

to the validation process. 

The statistical investigation revealed 94.34% exactitude. Among 

them, only four clusters were plotted which was lower than the cut off 

value. All these four clusters share cancerous and non-cancerous interaction 

groups. The statistical analysis also estimated 94 modules to be biologically 

relevant. The clusters were categorized as cancerous protein cluster and 

non-cancerous protein cluster from a total of 6232462 clusters respectively. 

The studies conducted with the help of Gene ontology revealed that 

most of the cancerous and non-cancerous proteins from the cluster proteins 

are positioned within the nucleus component. One of the important 

biological process of the cluster protein is the metabolism of nucleic acid. 

The molecular function is a major aspect of the GO analysis and it 

demonstrated that this major function of complex protein is pertaining to 

the areas like DNA binding and RNA binding. It was found after the 

molecular function analysis that 101 proteins from the 267 DNA binding 

proteins were cancer proteins. 89 proteins from the 175 RNA binding 

proteins were cancer proteins. This result emphasizes on the significance of 

GO analysis information in drug discovery (Müller and Brown, 2012).  

When the four topological measurements are considered, it is 

evident that the cancer proteins possess unfavorably diverse topological 

properties compared to the non-cancerous proteins. Cancer proteins incline 

to possess shorter shortest-path distance, greater connectivity and 

betweenness, and frailer clustering coefficient compared to the non-
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cancerous proteins. It was also observed that the recessive cancerous 

proteins possessed robust network features compared to the dominant 

cancerous proteins. These analysis also supported the fact that the global 

topological properties of cancer and non-cancerous proteins in a human 

interactome were similar to the highly compactly packed protein complex. 

 The nodes with considerably higher number of acquaintances in the 

network are entitled as hub nodes. In a whole network, these hub nodes are 

vital in the information flow exchange. 250 hub cancer proteins and 138 

normal proteins were identified respectively by employing degree 

distribution, which in turn confirmed the amelioration of hub proteins in a 

cluster. 

 The pathway level information was also integrated in this study. 

Since, proteins are unique in cluster, the information on linking cluster is 

crucial. One of the major linking property is the pathway analysis. From the 

comparative analysis, it was reported that the highest number of cluster 

proteins are present in prostate cancer. The cluster proteins are not 

connected with the cancer proteins physically but they are extremely 

connected with the cancer linking pathway. 

 The phenotype classification using the KEGG (BRITE) revealed 

that perilous diseases like breast cancer, ovarian cancer and prostate cancer 

displayed the highest number of proteins accumulated from cluster. 

CancerNet is a web-based tool, which encompasses the entire data 

about the human interactome. CancerNet is comparatively a user friendly 

web-interface for the scholars because it provides a single platform to 

extract data about the human interactome. In uniprot database, the user 

switch between windows to access the data but CancerNet furnishes all the 

information in one window.   
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                                  7             7                   

CCOONNCCLLUUSSIIOONN 

 

Many researchers were able to initially identify the potential of 

network biology in many research areas. The advancement and innovation 

in experimental modus operandi and computational approaches will endure 

to augment the exposure and sensitivity of PPI networks. A focus on 

interactomics exclusively in its application to research on cancer will be on 

the assortment of dissimilar categories of networks. This includes 

transcriptional monitoring, PPI and metabolic networks to empower the 

conception of detailed molecular replicas of dangerous diseases such as 

neurodegenerative ailments and oncogenesis. Additionally, the assimilation 

of interactions networks with the magnificent sets of data engendered by 

persistent disease-related sequencing, microarray, or imaging tasks are 

expected to deliver us with molecular records of exceptional facts for the 

human related to health and sickness. Consequently, network biology 

assures considerable contribution to an enhanced insight of the intricacy of 

disease and in due course to its antidote. 

The following are the major findings in this study: 

• Human interactome created from 79,950 human protein interaction 

using 4 databases: NCBI reference sequence, Human atlas, Plasma 

proteome database and Uniprot. 

• 3146 cancer protein interactions identified from human interactome. 

• Connected component and molecular detection method finds 99 major 

protein complexes in human interactome. 
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• Topological property differences exist between cancer and normal 

proteins. 

• CancerNet tool developed for protein and its related information. 

In this investigation, the approach is based on the multi-step 

interaction network sifting phases, in which PPI data was assimilated with 

expression information from healthy and diseased person by employing 

numerous phases. This methodology efficiently predicted several well-

known and unique gene disease transformers. This technique is very 

scalable, and also has the advantage of extending the investigation to other 

human maladies, as long as the required information is present. On the 

other hand, this integration necessitates manual gathering of information 

and stacks of programming efforts for the execution of such type of 

investigation. Consequently, the imminent target of CancerNet would be to 

afford such a facility within the CancerNet framework, to systematize the 

process of discovering the disease modifiers and scrutinizing them in 

combination with disease-relevant biological information. Specifically, a 

user can upload their own expression data to screen the examined network 

for a specific disorder or disease, and this screened network can then be 

assimilated further with other biological pathways or functional aspects.  

CancerNet is an extremely user-friendly tool. Lot of validations were done 

and it was confirmed that this tool is a one stop solution to investigate 

normal and cancer protein interactions. GO analysis displays most of the 

proteins from CANC complex existent in the nucleus. Drugs designed 

against nucleus protein are the very vital. For example, Dengue and HIV 

virus are the main proteins, which attack the nucleus and results in lethal 

consequences for human body. CancerNet is an accolade to the researchers 

working on cancer investigation to scrutinize definite cancer stimulated 
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protein networks, networking properties supplementing drug discovery, 

biological function of diverse proteins, interacting cohorts of specific 

proteins and its networks, etc. The characteristic features like assortativity, 

clustering co-efficient, degree distribution, betweenness of centrality, 

pathway analysis, and shortest path length resulted in the ratification of 

presence of hub CANC complex in human bodies. This recommended 

system can also be applied for other entities of biological concern.  

The study of protein interaction is a major milestone and can be 

extended to modern technology such as Clustered Regularly Interspaced 

Short Palindromic Repeats (CRISPR). The result of CRISPR completely 

depends on the interaction of Cas9 and Guide RNA or gRNA. This study 

can help us to identify similar interacting complexes like Cas9. 
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AAPPPPEENNDDIIXX  II  
 

Design and Implementation 

As the amount of data on protein interactions is growing rapidly, 

there is ongoing demand for integrated platforms with a high degree of 

flexibility. Such platforms should not be only easily accessible but also be 

consistently updated. Data should be accurately integrated from different 

sources and queries should be processed in minimal time. The structure of 

the platform should be extensible to new data without changing its data 

structure. Thus, a careful design and implementation of the system and the 

selection of computational approaches to assemble heterogeneous data 

sources are crucial. Traditional computational approaches like object-

oriented software and relational databases can be cumbersome and time-

consuming. Typically, persisting data objects from SQL tables with a 

Hypertext Preprocessor or Personal Home Page (PHP) connection and 

prepared SQL statements may be easy for simple objects. 

 

Integration of data 

Data integration from multiple resources results in many concerns. 

As many databases are involved, the retrieved data had different structures 

and patterns. The main challenge was to align them to a common pattern 

and assign a unique identifier. When this is executed manually, it becomes 

cumbersome task because of the huge data. It is impossible to change the 

structure of the data from all the database at a time. So, Perl programs were 

employed to automate this task.  

The other concern was the presence of lot of duplicated data. This 

also was resolved by the use of automated Perl programs. Similarly, the 
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self-interacting protein information was fixed by using automated Perl 

programs. 

Transfer of database from local to global server 

The total size of the database used for CancerNet tool is 2 GB. 

Usually, phpmyadmin is used for installation and update of database. But, 

the allowed capacity to upload is 20 MB. So, the inbuilt configurations 

were customized to resolve this issue.  

Before  converting SQL files and uploading in the MySQL 

database, the spreadsheet were first converted to  .csv and then to SQL file 

which was tedious task owing to the huge number of files.
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AAPPPPEENNDDIIXX  IIII  
 

Tool related challenges 

Generally, list of pathways are not accessible in any other website 

other than the KEGG website. Only the accession number is displayed and 

when the accession number is clicked, it directs to the particular website. 

But, using PHP graph module was used to rectify this problem. It is 

possible to parse the variable to KEGG web server and it aids in fetching 

all the pathways in the CancerNet webpage avoiding visit to other websites. 

The same procedure is used to display the KEGG pathway in the graphical 

display. 

As mentioned in the section 5.5, out of the 16 information the data 

related to KEGG is retrieved real-time and is not stored on the database. 

 
Figure 1: Homepage 

This is the homepage of the CancerNet tool. 
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  Figure 2: Information tabs  

This image displays the various information furnished by the CancerNet tool. 

 

Related links 

The link to the homepage of CancerNet is 

http://bioteccancernet.cusat.ac.in/. The username is admin and the 

password is admin123. 

 

The following is the list of related links: 

Data Link 
Human interactome http://bioteccancernet.cusat.ac.in/hin 

CCA network http://bioteccancernet.cusat.ac.in/cca 

MCODE http://bioteccancernet.cusat.ac.in/mcode 

Hub proteins http://bioteccancernet.cusat.ac.in/hub 

Cancer proteins http://bioteccancernet.cusat.ac.in/cancer 

Cancer phenotype http://bioteccancernet.cusat.ac.in/phenotype 

Pathways http://bioteccancernet.cusat.ac.in/pathways  
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