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Preface

This dissertation deals with the development of secret sharing schemes

with several extended capabilities and also their applications. We have

considered schemes with single and multi secret sharing. Schemes

developed are also having extended capabilities like verifiability cheating

detection and cheater identification. Simple schemes based on number

theory and XOR operations are developed which are useful for several

applications. Elliptic curve and pairing based multi secret sharing schemes

are developed which are more secure. Threshold and Generalized access

structure is realized. Two prominent applications are considered in which

secret sharing based solutions provides a better alternative compared with

cryptographic techniques. E-voting using Secure Multiparty Computation

and CTS (Cheque Truncation System) using secret image sharing

techniques are the two applications developed.

Security is a big challenge in the recent scenario where all of us connected

to a public network and the data are usually stored on large servers of

service provider instead of in the owner’s machine. Any body can steal

important data of an organization which is available in a public place.

Even the service provider itself is not trustable in many situations. But

business organization need to protect data from disclosure. One way to

i



protect secret information is by using conventional encryption. But what

happens when the encrypted information is corrupted or when the secret

key is lost. This means that there is only security but there is no

reliability. Secret sharing address this problem and finds solutions for

both security and reliability. Instead of storing the valuable data in a

single place, it is distributed and stored at several places. When the need

arises they can be reconstructed from the distributed shares with fault

tolerance.

The original motivation of secret sharing was to safeguard cryptographic

keys from loss. The loss of a cryptographic key is equivalent to data loss as

we cannot retrieve the original data back with out the encryption key. It is

desirable to create backup copies of important keys but greater the number

of copies made greater the risk. Secret sharing provides an efficient solution

to this problem by protecting important information being lost, modified,

destroyed or getting into wrong hands.

The idea of secret sharing is to start with a secret and divide it into

pieces called shares or shadows, which are distributed amongst users such

that the pooled shares of designated subsets of users allow reconstruction

of the original secret.

A particularly interesting class of secret sharing schemes is threshold

scheme for which the designated sets consist of all set of t or more

participants. Such schemes are called t out of n threshold schemes or

simply (t, n) schemes, where n is the total number of participants.

Another class in which any authorized subset of participants can collate

and access the secret data are called generalized secret sharing schemes.

A secret sharing scheme may be served as a shared control scheme if

shares from two or more users are required to enable a critical action such

as opening a bank vaults, launching a nuclear missile etc. Reduced trust

is the reason behind this as we want to distribute the trust among many

users. This enhances availability and confidentiality. Secret sharing schemes



are found numerous applications when shared control is required such as

sharing a key to open a secret (key escrow/key back up). A major drawback

of public key cryptography is the dominance of a certain authority, therefore

we wish to allow several authorities to participate in the creation of keys,

distributing them, signing them etc. Based on this several cryptographic

protocols have come up such as shared signature, threshold encryption,

threshold decryption etc.

Real-world applications require more capabilities than threshold

schemes can offer. We may wish to have a more complicated list of

authorized coalitions than just the subset with t or more participants. In

this situation more generalized schemes are introduced. In these schemes

secret can be retrieved when the authorized set of participants as

mentioned in the access structure collate together. It is noted that the

secret sharing schemes are not secure. An untrusted dealer may send

invalid shares or the participant may send wrong shares during the

reconstruction phase. Verifiability, cheater detection and identification are

the major requirement in any secure secret sharing scheme. The capability

to retrieve several secrets when the authorized set of participant collate is

an added advantage and has got several real life applications. These

schemes are called multi secret sharing scheme. Major contribution of this

thesis is in the development of secret sharing schemes with these extended

capabilities having threshold and generalized access structure.

The use of Elliptic curve in cryptography have made a significant

advancement and provides more security with less computational power.

There is not much work done in the area of secret sharing, where elliptic

curve can be effectively utilized. We explore the fundamentals of elliptic

curve and then an important construct called Bilinear pairing, which can

be effectively utilized to build secret sharing schemes with several

extended capabilities.



Secret sharing schemes are highly versatile cryptographic primitives

and are employed in vast range of real world applications which include

secure storage of electronic data, electronic voting, online auctions, secure

multiparty computation, generalized oblivious transfer, broadcast

encryption, visual cryptography etc. We have considered secret sharing

based secure multi party computation for e-voting and secret image

sharing method to develop two important applications in this area.

In brief, our work in this thesis has made significant advancement in

the state-of-the-art research on multi secret sharing. There is only a little

contribution in the literature mentioning the use of elliptic curve and

pairing in secret sharing. Thus our work has made a significant

contribution to the field of multi secret sharing using elliptic curve and

pairing. The applications developed are also provide a better alternatives

compared with the existing schemes which are based on computationally

complex cryptographic techniques.
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Chapter 1

Introduction

Secret sharing schemes are developed as a technique to safe guard

cryptographic keys. Later it has found several useful applications in the

various cryptographic protocols. The widespread use of cloud computing

makes the distributed storage at remote cloud servers. The secure storage

and distribution of data on third party servers pose serious threat when

the service provider itself is not trustable. Encryption decryption makes

large amount of computational overhead and also complicated key

management. Multiple encryptions are the major issue when we want to

share a document with several users. The secret sharing based key

management and access policies help to keep document secure by

encrypting according to a policy defined using user attributes. This is a

very prominent applications used now a days in Cipher text Policy

Attributed Based Encryptions (CPABE) over cloud. Another research

area where the secret sharing schemes have found useful applications is

secret image sharing. Secure storage and transmission of confidential

images like medical images can be done with out using encryptions by

secret sharing technique. Secure multi party computations where secret

sharing technique and homomorphism of secret sharing plays a major

1



Chapter 1. Introduction

role. Oblivious transfer, secure key distribution, implementation of

effective access control mechanism, threshold encryption decryption,

threshold signature generation, broadcast encryption are all major areas

where the secret sharing schemes are used as the basic building blocks.

This dissertation deals with development of efficient secret sharing

schemes having several extended capabilities. These schemes are based on

number theoretic concepts, XOR operations and elliptic curves. They are

simple and can be easily implemented. These schemes can be used

efficiently in several application scenarios. Multi secret sharing with

verifiability, cheating detection and cheater identification are the major

extended capabilities achieved. Both threshold and generalized access

structure based secret sharing schemes are considered. We have done an

investigation on the use of elliptic curve and pairing for the construction

of secure secret sharing schemes and developed generalized and threshold

multi secret sharing schemes based on them. Two prominent applications

are also developed using the secret sharing techniques.

In this chapter we start with the motivation and the problem

definition. The basic secret sharing schemes are reviewed then, which

helps in understanding the core concept and developments in this area of

study. We then emphasize on major contributions of the thesis. Lastly, we

describe the chapter wise organization of this thesis.

1.1 Motivation

Liu in [136] considers a combinatorial problem. There are eleven scientists

working on a secret project. They want to enforce more security and

avoids individual trust by keeping the secret documents of the project in a

cabinet so that the cabinet can be opened if and only if six or more of the

scientists are present. Two questions arise from this problem are, what is

the minimum number of locks which are needed and minimum number of

2



1.1. Motivation

keys each scientist must carry for achieving security. He stated that since

for every group of five scientist there must be a dedicated lock which they

cannot open. It results in
(

11
5

)
=462 locks. A scientist has to combine with

five other to open a lock. There are
(

10
5

)
=252 ways of choosing five

scientist out of ten, which shows the minimum number of keys each

scientist must carry. It is noted that even for this small problem, the

solution requires large number of locks and keys which is not feasible.

So the motivation behind the development of secret sharing scheme is

to share a secret among n participants in such a way that t or more of them

(where t 6 n) can join together to retrieve the secret. Shamir and Blakley

in 1979 independently suggested non mechanical solutions to this problem.

Shamir’s scheme is based on polynomial interpolation, where as Blakley’s

scheme is based on geometry. Shamir’s scheme is perfect and ideal, where

as Blakley’s scheme is not so. In Shamir scheme each participant has to

keep only one share which is of same size as the secret (ideal) and also less

that t participant cannot deduce any information about the secret (perfect).

These schemes are called (t, n) threshold schemes.

The motivation was to safeguard cryptographic keys. The security of

the secret key used in cryptography were very important. The key kept in

a single location is highly unreliable since a single misfortune may make

the information inaccessible. Computer breakdown, sabotage, sudden

death of a person knowing the secret etc may leads to this situation. An

obvious solution is to store the keys at multiple locations. But this makes

the situation even worst and provides lot of opportunities for hackers. The

secret sharing based solution provided a perfect key management where

less than t pieces of information doesn’t give any information about the

secret. Even if n− t shares are corrupted, the secret key can be recovered.

This provides both secrecy and reliability.

Other than security and reliability there is a trade off between safety and

convenience in using several applications. For example, a company wants to
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digitally sign all its documents. If all the executives are given the companies

signature it is convenient, but the signature may be misused. The solution is

to distribute the keys in such a way that only when certain specified number

of participant collate, they can sign a document. This provides more safety.

So when the participants of conflicting interest have to collate and also they

are mutually suspicious, the secret sharing schemes are the ideal solution.

We can also give more power to individuals by giving more shares. There

are several critical applications where collective controls are needed rather

than individual control such as opening a bank vault, launching a missile

etc.

Another reason for the study and development of secret sharing schemes

is the reduced trust. Key escrow system of US government are broken and

misused. Secret sharing based solution provides a secure way to distribute

the secret key among the authorities and the key is reconstructed based

on a court order. The security of the outsourced data is also critical, when

the service provider itself is untrusted. The distributed storage using secret

sharing based mechanism helps to avoid the single point of failure. The

access control policies can also be established using secret sharing based key

distribution. Cipher-text Policy Attribute Based Encryption( CPABE) is a

way to encrypt documents according to a policy described using an access

structure. The access structure is specified by using the attributes of the

user. The key is then shared according to the access structure using secret

sharing technique. If the user key attributes matches with the encryption

policy, he will be able to decrypt the encrypted document.

Key agreement among the parties are also important when the shared

data need to be accessed by several people. Broadcast encryption, where

an encrypted document can only be decrypted by certain set of

participant is widely used in digital broadcast. Secret sharing provides an

efficient solution for the same. Secure multi party computation is another

motive. Several parties jointly compute certain functions with out
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revealing ones own secret. Secret sharing based solutions are very effective

in implementing the secure computation among parties using participants

share. E-voting is a special case of secure multi-party computation. Secret

sharing based e-voting schemes are less complicated and computationally

efficient compared with the homomorphic encryption schemes used for

e-voting. Another interesting and widely used application is the use of

secure storage and transmission of confidential images. Secret image

sharing based technique provides efficient solution compared with the

conventional image encryption.

1.2 Review of Secret Sharing Schemes

A secret sharing scheme is a method of protecting a secret among a set of

participants in such a way that only certain specified subset of participants

can reconstruct the secret. The secret sharing scheme is initialized by a

trusted Dealer by making shares of information related to the secret called

shares or shadows. The shares are then send securely to each participants.

Authorized subset of participants (defined by the access structure) can

collaborate and reconstruct the secret by pooling of their shares. So the

secret sharing process mainly consist of two stages Share Distribution and

Secret Reconstruction.

In Share Distribution, there is a trusted Dealer (D) who generates the

shares of the secret and sends it securely to the participants. The secret is

then destroyed.

In Secret Reconstruction, the participants belong to a qualified set can

pool their shares and reconstruct the secret. We can also consider the case

where the participants belonging to a qualified set submit their shares to

a trusted combiner. The combiner then compute the secret and send it to

the participants.
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The access structure specifies the qualified sets of participant, who can

retrieve the secret. Secret sharing scheme partitions the set of all

participants into two. Those who are able to retrieve the secret called

authorized sets and those who are unable to recover the secret called

unauthorized sets. Most of the schemes consider the access structure with

monotone property. This intuitively means that if a group can recover the

secret, so can a larger group. In the case of an unauthorized group, if a

group cannot recover the secret, neither can a smaller group. That is

given a subset of participants which form an authorized set then any

super set of this set will also be an authorized set.

The following are the two fundamental requirements of any secret sharing

scheme.

• Recoverability: Authorized subset of participants should be able to

recover the secret by pooling their secret shares.

• Privacy: Unauthorized subset of participants should not learn any

information about the secret by combining their shares.

Development of secret sharing scheme started as a solution to the

problem of safeguarding cryptographic keys. The cryptographic keys are

very important in security. The encrypted data cannot be retrieved back

if the key is lost. The storage of key at a particular location makes the key

to be tampered or hacked by an intruder. There is a single point of

failure. Secret sharing provides a robust key management scheme that is

secure and reliable. The secret key is secured by distributing it among n

participants and t or more of the participants can recover it by pooling

the shares. Thus the authorized set is any subset of participants

containing more than t members. This scheme is denoted as (t, n)

threshold scheme. An attacker has to destroy at least n − t + 1 pieces or

the security breaches need exposure of t pieces. Knowledge of less than t

pieces will not reveal any information about the secret.
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Definition 1.2.1. Let t, n be positive integers with t 6 n. A (t, n)-

threshold secret sharing scheme is a method of sharing secret K among a

set of n participants in such a way that any t participants can compute the

value of K, but no group of less than t participant can get any information

about K.

Threshold secret sharing schemes were introduced independently by

Shamir [190] and Blackley [24] and since then much work has been put

into the investigation of such schemes. Linear construction were most

efficient and widely used. A threshold secret sharing scheme is called

perfect, if less than t shares give no information about the secret. Shamir’s

scheme is perfect while Blakley’s scheme is non perfect. Both the

Blakley’s and the Shamir’s constructions realize t-out-of-n shared secret

schemes. However, their constructions are fundamentally different.

Polynomial based constructions are used by Shamir where as Vector space

constructions are used by Blackley in their seminal paper.

McEliece and Sarwate [144] made an observation that Shamir’s scheme

is closely related to Reed-Solomon codes [177]. The error correcting

capability of this code can be translated into desirable secret sharing

properties. Karnin et al [117] realize threshold schemes using linear codes.

Massey [143] introduced the concept of minimal code words and provided

that the access structure of a secret sharing scheme based on a [n, k]

linear code is determined by the minimal codewords of the dual code.

Number theoretic concepts are also introduced for threshold secret

sharing scheme. The Mingotee scheme [146] is based on modulo

arithmetic and Chinese Remainder Theorem (CRT). A special sequence of

integers called Mingotte sequence is used here. The shares are generated

using this sequence. The secret is reconstructed by solving the set of

congruence equation using CRT. The Mingotte’s scheme is not perfect. A
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perfect scheme based on CRT is proposed by Asmuth and Bloom [2].

They also uses a special sequence of pairwise co-prime positive integers.

Kothari [123] gave a generalized threshold scheme. A secret is

represented by a scalar and a linear variety is chosen to conceal the secret.

A linear function known to all trustees is chosen and is fixed in the

beginning, which is used to reveal the secret from the linear variety. The n

shadows are hyperplanes containing the liner variety. Moreover the

hyperplanes are chosen to satisfy the condition that the intersection of

less than t of them results in a linear variety, which projects uniformly

over the scalar field by the linear function used for revealing the secret.

Thus as more shadows are known more information is revealed about the

linear variety used to keep the secret, however no information is revealed

until the threshold number of shadows are known. He had shown that

Blakley’s scheme and Karnin’s scheme are equivalent and provided

algorithms to convert one scheme to another. He also stated that the

schemes are all specialization of generalized linear threshold scheme.

Brickell [34] also give a generalized notion of Shamir and Blackley’s

schemes using vector spaces.

Researchers have investigated (t, n) threshold secret sharing

extensively. Threshold schemes that can handle more complex access

structures have been described by Simmons [199] like weighted threshold

schemes, hierarchical scheme, compartment secret sharing etc. They were

found a wide range of useful applications. Threshold schemes are also

developed based on orthogonal arrays [60], graph decompositions [27],

matrix projection [5] etc. Sreekumar et al [201] in 2009, developed

threshold schemes using POB ( Permutation Ordered Binary ) system

based on Visual cryptography.

Shamir [190] discussed the case of sharing a secret between the

executives of a company such that the secret can be recovered by any

three executives, or by any executive and any vice-president, or by the
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president alone. This is an example of hierarchical secret sharing scheme.

The Shamir’s solution for this case is based on an ordinary (3, n)

threshold secret sharing scheme. Thus, the president receives three shares,

each vice-president receives two shares and finally every executive receives

a single share. The above idea leads to the so-called weighted (or multiple

shares based) threshold secret sharing schemes. In these schemes, the

shares are pairwise disjoint sets provided by an ordinary threshold secret

sharing scheme. Benaloh and Leichter have proven in [15] that there are

access structures that can not be realized using such scheme.

A more general construction is based on, which subset of participants

can reconstruct the secret and which subset cannot. Realizing the secret

sharing schemes for an arbitrary access structure is considered by Ito et al

[107]. It is based on Shamir’s scheme. The idea is to distribute shares to

each authorized set of participants using multiple assignment scheme,

where more than one share is assigned to a participant, if he belongs to

more than one minimal authorized subset. Efficient schemes realizing the

arbitrary access structure is developed by several authors later. Vector

space construction [35], combinatorial design [128], linear block codes [20],

matroids [26] and cumulative arrays [107] are the most suggested

construction for generalized secret sharing schemes.

Brickell and Davenport [36] developed generalized secret sharing

scheme based on Matroid theory. Simmons had done considerable research

in secret sharing schemes based on geometry technique [199]. But the

implementation of these schemes are not efficient. Generalized schemes

based on Chinese Remainder Theorem and determinants are developed by

Iftene [103] [105].

A major problem with secret sharing based on generalized access

structure is that, the size of the share is exponential in the number of

parties in the access structure. So we have to minimize the information,

different users hold as their share.
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Secret sharing schemes have been studied in an information-theoretic

security model where the security is independent of the computing

capabilities of an adversary. This can however be relaxed and some

schemes have been defined for computationally secure models where the

schemes relies on the difficulty of mathematical problem. The

information-theoretic security model permits a notion of perfect privacy.

In perfect secret sharing scheme, unauthorized sets do not learn any

information about the secret via their shares.

The efficiency of the secret sharing scheme is measured with information

rate. The information rate of a secret sharing scheme is the ratio of the size

of the secret with the size of the largest share. Most of the perfect secret

sharing scheme for general monotone access structures are linear secret

sharing schemes. In linear secret sharing scheme the secret is computed

as a linear combination of any set of shares. Perfect schemes for which

information contained in the share equal to information contained in the

key are called ideal. Ideal schemes do not exist for all monotone access

structures.

Traditional secret sharing model does not consider the malicious

behavior of the Dealer or the Participants. The traditional model assumes

that there is a Trusted Dealer and Honest Participants completely

following the protocol. A passive adversary is considered who can capture

shares, but shares are not corrupted. But in the real time scenario both

the Dealer and the participants may misbehave. The Dealer may give

inconsistent shares to the participants, from which they will not be able

to reconstruct a secret. The participant may also cheat by giving wrong

shares during the reconstruction. In this attack only the malicious

participant will be able to learn the correct secret where as others will get

wrong secret value.

Verifiable secret sharing (VSS) schemes [53] address the malicious

behavior of the Dealer. The protocol allows the participant to verify that
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consistent dealing is performed by the Dealer. The share holders can

convince that the shares are t consistent, meaning that every subset of t

shares out of n defines the same secret. There are two types of verifiable

secret sharing protocols. Interactive proof and Non Interactive proof.

These protocols allows shares to be verified without revealing the shares.

Benaloh proposed the interactive verifiable secret sharing scheme based

on secret sharing homomorphism [17] [18]. Non interactive schemes are

proposed by Feldman [71] and Pedersen [167]. In this scheme, the share

holders will not communicate with other share holders or with the Dealer.

The Dealer sends extra information to each participant during the

distribution of shares and each participant can verify the consistency of

his share with this extra information. The scheme makes use of

homomorphic encryption property. Verifiable Secret Sharing have found

applications in secure multi party computation and e-voting [14] [176].

Stadler [203] proposed a Publicly Verifiable Secret Sharing (PVSS)

scheme. In this not only the participant but everybody is able to verify

that the shares have been correctly distributed. The scheme can be used

with threshold or more general monotone access structure. It is based on

ElGamal’s cryptosystem [68]. Different proposals are made with

applications in e-voting and key-escrow system [31] [74] [186]. An

information theoretic secure PVSS is proposed in [208]. The use of Elliptic

Curve and Pairing for PVSS is proposed in [220].

Cheating in secret sharing is a major security issue. The participant

may give wrong shares during the reconstruction phase and hence all other

participants except the cheater will get wrong secret. We need mechanism

to determine whether cheating occurred or not. If cheating occurred, the

protocol should not proceed further. There are also constructions which

can identify, who is the cheater. This adds more complexity compared with

cheating detection schemes. Cheating detection and cheater identification is

a major security requirement in secret sharing protocol, which adds more
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reliability. One straightforward solution to the problem of cheating is to

have the distributor of shares sign each share with an unforgeable signature.

This is the technique used by Rabin [174] when he used the Shamir’s scheme

to solve the problem of agreement among distributed process that might

cheat. Tompa and Woll [213] mentioned cheating in Shamir’s scheme and

proposed a cheating detection scheme. Several proposals have been made

to detect cheaters in threshold secret sharing schemes [37] [44] [135] [159].

Code based secret sharing provides a solution for cheating detection

and cheater identification, proposed by McElice and Sarwate [144] in

1981. The scheme can detect cheating or even identify the invalid shares

and recover the correct secret by requiring more than minimum number of

shares needed to determine the secret. Brickell and Stinson [37] proposed

a modified version of the Blackley’s construction in which honest

participants are able to identify cheaters. Number of shares and also the

size of the shares is an issue in the modified scheme. The scheme is having

the cheating detection and cheater identification capabilities. A

generalized secret sharing sharing scheme with cheater detection and

identification is proposed by Lin [134]. It is computationally secure and

each participant holds only a single shadow. C. Wu and T. S. Wu [219]

proposed a method to detect and identify cheaters. Arithmetic coding and

one way hash functions are used to deterministically detect cheating and

identify the cheaters no matter how many cheaters are involved in the

secret reconstruction. Cheater detection and identification in CRT based

schemes especially Mingotte and Asmuth-Bloom is proposed by Pasailua

et al [165]. A t cheater identifier for (t, n) Shamir threshold scheme based

on orthogonal arrays and error correcting codes are proposed by

Kurosawa et al [127]. An optimal and easy scheme with smaller share size

based on Kurosawa’s scheme is proposed by Obana [156]. Harn and Lin

[91] developed a scheme in 2009. They assumed that there are more than

t participants are there in the secret reconstruction. Since there are more
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than t shares (i.e., it only requires t shares) for reconstructing the secret,

the redundant shares can be used for cheater detection and identification

some flaws of this is reported by Ghodosi [78].

Secret Sharing schemes having the property that, the correct secret can

still be recovered even if some of the submitted shares are invalid are called

robust secret sharing schemes. Additional information is needed to achieve

robustness. Schemes which can detect or identify cheaters are not robust.

Robust secret sharing schemes are based on error correcting codes. Rogaway

and Bellare [179] studied this within a number of different models.

Another type of approach was proposed by Pieprzyk and Zhang [225]

by introducing the concept of cheating immune secret sharing scheme. In

this, submission of corrupted shares will not give any advantage to the

cheaters over the honest participants in the recovery of original secret.

The advantage of cheating immune scheme is that it does not require

extra information on the shares or additional shares during

reconstruction. They considered binary shares and boolean functions.

Two notions were proposed. t-cheating immune, where an adversary who

submits t incorrect shares gains no advantage and a more general strictly

t-cheating immune where an adversary who submit up to t incorrect

shares gains no advantage. Properties and constraints of cheating immune

scheme is mentioned in [58] by Stinson et al. A necessary condition for a

secret sharing system to be cheating immune is specified in [33]. The

known constructions for cheating immune system is for only (n, n)

schemes. It is an active research topic now to construct cheating immune

secret sharing schemes for more general structures. A cheating immune

secret sharing scheme for a (t, n) threshold scheme is proposed using

codes and cumulative arrays by Cruz and Wang [62].

Secret sharing schemes assumes long lived shares. This will help

attackers gaining knowledge about shares and eventually obtain the

information about threshold number of shares and hence able to recover
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the secret. There is also chance that the shares may be corrupted or lost

due to hardware failure. One way to provide security against perceptual

leakage was to periodically refresh the shares in such a way that any

information learned by the adversary about individual shares becomes

obsolete after the shares are renewed. These schemes are called proactive

secret sharing schemes. In proactive secret sharing, the shares are

modified in such a way that the old shares or the old shares combined

with new shares which is less than the given threshold will not give any

information about the secret. Proactive security for secret sharing was

first suggested by Ostrovski and Yung in [158] in 1991. The basic robust

model is proposed by Herzberg [97]. Jarecki [112] come up with two

methods of proactive secret sharing using VSS scheme. Mobile Proactive

Secret Sharing (MPSS) is proposed by Schultz et al [189]. This provides

mobility i.e., the shares of the secret hold by a group of nodes can change

at each re-sharing, which is necessary in a long-lived system. Bai et al [5]

proposed a proactive secret sharing scheme based on matrix projection

method.

There are several situations in which more than one secret is to be

shared among participants. As an example consider the following

situation, described by Simmon [199]. There is a missile battery and not

all of the missiles have the same launch enable code. We have to devise a

scheme which will allow any selected subset of users to enable different

launch code. The problem is to devise a scheme which will allow any one,

or any selected subset of the launch enable codes to be activated in this

scheme. This problem could be trivially solved by realizing different secret

sharing schemes, one for each of the launch enable codes. But this

solution is clearly unacceptable since each participant should remember

too much information. What is really needed is an algorithm such that

the same pieces of private information could be used to recover different

secrets. One common drawback of all secret sharing scheme is that they
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are one-time schemes. That is once a qualified group of participants

reconstructs the secret K by pooling their shares, both the secret K and

all the shares become known to everyone and there is no further secret. In

other words, the share kept by each participant can be used to reconstruct

only one secret. So schemes are needed where same share can be used for

obtaining multiple secrets.

Secret sharing schemes where several secrets are shared are called

multi secret sharing schemes. In multi secret sharing scheme, participants

only needs to keep a single share. Many secrets are shared independently

with out refreshing the shadows. The Dealer uses a public bulletin board

for publishing the public information needed for reconstructing the secret.

The participants uses pseudo shares, which is computed from the original

share and the public information for the reconstruction of multiple

secrets. Reconstruction of a secret thus will not reveal any information

about the secret share and also remaining secrets that have not been

reconstructed. There are multistage secret sharing scheme where multiple

secrets are revealed stage by stage with each secret revealed in one stage.

In single stage secret sharing scheme all the shared secrets are revealed in

single stage of the protocol. Karnin, Greene and Hellman [117] in 1983

mentioned the multiple secret sharing scheme where threshold number of

users can reconstruct multiple secrets at the same time. Franklin et al

[72], in 1992 used a technique in which the polynomial-based single secret

sharing is replaced with a scheme where multiple secrets are kept hidden

in a single polynomial. Both the schemes are not perfect. They are also

one time threshold schemes. That is, the shares cannot be reused. Once

the secret is reconstructed, both the secret and all the shares become

known to everyone.

Multi secret sharing schemes are further classified according to the

access structure i.e., threshold or generalized multi secret sharing [28]

[110]. In 1994, He and Dawson [93] proposed the general implementation
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of multistage secret sharing. The proposed scheme allows many secrets to

be shared in such a way that all secrets can be reconstructed separately.

This needs a public bulletin board, where public values are posted. In

1995 Harn [89] shows an alternative implementation of multi stage secret

sharing which requires less public values. There are lot of constructions

for the threshold multi secret sharing scheme. In 2000, Chien et al [52]

proposed a (t, n) multi-secret sharing scheme based on the systematic

block codes. In order to reduce the complexity of the secret

reconstruction, Yang et al [221] proposed an alternative scheme based on

Shamir’s secret sharing in 2004 (YCH scheme). But there are more public

values required in Yang’s scheme than in Chien’s scheme. Motivated by

these concerns, a new (t, n) multi-secret sharing scheme is proposed by

Pang and Wang [161] in 2004. The scheme is as easy as Yang’s scheme in

the secret reconstruction and requires the same number of public values

as Chie’s scheme. Chao-Wen Chan et al [45] proposed a multi-secret

sharing scheme, which is based on CRT (Chinese Remainder Theorem)

and polynomial. Verifiability in multi secret sharing is applied in [61] [193]

[227]. Hash function based multi-secret sharing are proposed recently by

Javier Herranz et al [95] and Jun Shao [192] in 2014.

The Elliptic curve cryptography was introduced by Koblitz [121] and

Miller [147]. Elliptic curves were found numerous applications in

cryptography [147]. Developed as a public key crypto system, it is found

more secure with small key size compared with other public key crypto

system. Elliptic Curve Discrete Logarithm Problem (ECDLP) is much

harder compared with the Discrete Logarithm Problem (DLP). So the

computational cost can be reduced while maintaining the same level of

security with small key size. In 1993 Meneze’s et al [145] introduced

pairing. Pairing is introduced to show an attack on elliptic curve discrete

logarithm problem and later found useful applications. Pairing on elliptic

curve have found useful applications in identity based encryption,
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threshold cryptography and signature schemes, multi party key exchange

etc [67]. The use of elliptic curve and pairing have found applications in

secret sharing schemes very recently. Several schemes based on threshold

and generalized access structure is proposed and they have found useful

applications.

Pairing can be used to introduce verifiability and cheating detection in

secret sharing scheme with more security. Chen Wei et al [218] in 2007

proposed a dynamic threshold secret sharing scheme based on bilinear

maps. A threshold multi secret sharing scheme based on elliptic curve

discrete logarithm is proposed by Runhua Shi et al [194] in 2007. Sharing

multiple secrets which are represented as points on elliptic curve using self

pairing[133] is proposed by Liu et al [137] in 2008. In Wang’s et al scheme,

the number of secrets must be less than or equal to the threshold and also

more public values must be changed when the secret need to be updated.

Eslami et al [69] in 2010 proposed a modified scheme which avoids these

problems. Several publicly verifiable secret sharing schemes are proposed

based on pairing, but most of them are single secret sharing schemes [212]

[220] [223]. An efficient One Stage Multi Secret Sharing(OSMSS) is

proposed recently in 2014 by Fatemi et al [70]. Elliptic curves are also

used for the construction of Generalized secret sharing schemes with

monotone access structure. Cheating detection is incorporated in this

scheme using Bilinear pairing [100] [226].

Simmons [199], Stinson [204] and Beimel [10] had done excellent

reviews of secret sharing schemes and their terminologies. In this thesis

we provide an explication of threshold secret sharing schemes and

generalized secret sharing scheme constructions. Multi secret sharing

based on generalized monotone access structure is also explored. We also

consider the adversary model and explored the extended capabilities to

handle the malicious participants or Dealer. We have described only two

important applications of secret sharing schemes here. E-voting based on
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Secure Multi-party Computation and Cheque Truncation System (CTS)

based on secret image sharing technique. But there are many such areas

where secret sharing schemes can be effectively utilized like authenticated

group key transfer protocol [92], broadcast encryption [19], visual

cryptography, distributed computing etc [14] [21] [48] [55] [63] [85] [153]

[152] [191] [209]. Elliptic curve pairing and their applications are reviewed

by Dutta et al [67].

1.3 Preliminaries

In this section we give some definitions and notations associated with secret

sharing schemes.

In secret sharing, the secret is divided among n participants in such a

way that only designated subset of participants can recover the secret. But

any subset of participants which is not a designated set cannot recover the

secret.

Let P = {Pi|i = 1, 2, . . . , n} be the set of participants. The secret be K.

The set of all secret is represented by K. The set of all shares S1, S2, . . . , Sn

is represented by S.

A set of participants who can recover the secret is called an access

structure or authorized set and a set of participants which is not an

authorized set is called an unauthorized set or forbidden set. So the power

set of P, 2P can be partitioned into two classes.

1. The class of authorized sets A(Γ) is called the access structure.

2. The class of unauthorized sets Ac(Γc) = 2P \ A.

We assume that P,K,S are all finite sets and there is a probability

distribution on K and S. We use H(K) and H(S) to denote the entropy of

K and S respectively.
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In a secret sharing scheme there is a special participant called Dealer

D /∈ P, who is trusted by everyone. In order to set up a secret sharing

scheme, the Dealer chooses a secret K ∈ K and distribute privately the

shares S1, S2, . . . , Sn to the participants.

In secret reconstruction phase, participants of an access set pool their

shares together and recover the secret. Alternatively participants could

give their shares to a combiner to perform the computation for them.

Thus a secret sharing scheme for the access structure A is the collection

of two algorithms:

Distribution Algorithm: This algorithm has to be run in a secure

environment by a trustworthy party. The algorithm uses the function

f : K × P −→ 2S

which for a given secret K ∈ K and a participant Pi ∈ P, assigns a set of

shares from the set S that is f(K,Pi) = Si ⊆ S for i = 1, . . . , n.

Recovery Algorithm: This algorithm has to be executed collectively by

cooperating participants. We can consider the combiner as a process

embedded in a tamper proof module and all participants have access to it.

Also the combiner outputs the result via secure channels to cooperating

participants. The combiner applies the function

g : St −→ K

to calculate the secret. For any authorized set of participants

g(S1, . . . , St) = K, if P1, . . . , Pt ⊆ A. If the group of participant belongs to

an unauthorized set, the combiner fails to compute the secret.

A secret sharing scheme is called perfect, if for all sets B, B ⊂ P and

B /∈ A, if participants in B pool their shares together they cannot reduce

their uncertainty about S. That is, H(K) = H(K|SB), where SB denote
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the collection of shares of the participants in B. It is known that for a

perfect secret sharing scheme H(Si) > H(K).

An access structure A1 is minimal if A2 ⊂ A1 and A2 ∈ A implies that

A2 = A1. Only monotone access structure is considered for the construction

of the scheme in which A1 ∈ A and A1 ⊂ A2 implies A2 ∈ A. The collection

of minimal access sets uniquely determines the access structure. The access

structure A in terms of minimal access structure is represented by Amin.

For an access structure A, the family of unauthorized sets Ac = 2P \A
has the property that given an unauthorized set B ∈ Ac then any subset

C ⊂ B is also an unauthorized set. An immediate consequence of this

property is that for any access structure A, the set of unauthorized sets

can be uniquely determined by its maximal set. We use Acmax to denote the

representation of Ac in terms of maximal set.

For all B ∈ A, if |B| > t, then the access structure corresponds to a

(t, n) threshold scheme.

Information Rate

The size of the share is very important in secret sharing scheme. In Shamir’s

scheme the share size is same as the secret size. However in generalized

scheme the share size is larger than the secret size. The practical relevance

of this issue is that the security of any system tend to degrade as the amount

of information that must be kept secret. Secondly if the shares given to the

participants are too long then the memory requirement will be more and

also the share distribution algorithm become in efficient. Therefore it is

important to derive significant upper and lower bound on the information

rate of secret sharing scheme. Several authors have mentioned about the

information rate of a secret sharing scheme as a parameter for efficiency.

Karnin, Greene and Hellman [117] have introduced the notion of entropy
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in secret sharing. They stated that to recover the secret from t shares

H(K|S1, S2, . . . , St) = 0

and the condition for perfect secrecy is that t−1 shares provides absolutely

no information about the secret K is achieved by

H(K|S1, S2, . . . , St−1) = H(K)

He also proved that perfect threshold secret sharing should satisfy the

condition that

H(Si) > H(K), i = 1, 2, . . . , n

Their approach was limited to threshold schemes. Capocelli et al [43]

extended the scheme for generalized scheme and obtained some bounds on

the size of shares.

Brickell [34] defined the information rate as ρ = log|S|
log|K| , where K is the

set of possible secrets and S is the set of possible shares. He called the

secret sharing scheme as ideal, if it is perfect and has information rate

ρ = 1. Simmons also defined a related notion in [198]. Stinson came up

with a good definition [204]. The generalized secret sharing scheme with

distribution rule is used as a model to measure the efficiency of the secret

sharing scheme by information rate.

Let

Si = {f(Pi) : f ∈ (F)}, 1 6 i 6 n

Si is the set of possible shares that Pi might receive. The secret key K comes

from a finite set K. If we use binary encoding then K can be represented

as a bit string of length log2 | K |. In a similar way, a share given to

a participant Pi can be represented by a bit string of length log2 | Si |.
Intuitively Pi receives log2 | Si | bits of information in his share. But the
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information content of the secret is log2 | K | bits. The information rate for

Pi is the ratio

ρi =
log2 | K |
log2 | Si |

The information rate of the scheme is defined as

ρ = min{ρi : 1 6 i 6 n}

High information rate is the desirable property. It is noted that for

perfect secret sharing scheme ρ 6 1. ρ = 1 is the optimal situation and

such schemes are referred as ideal schemes.

Definition 1.3.1. Information rate for a particular user is the bit size

ratio (size of the shared secret)/(size of the user’s share). The information

rate for a secret sharing scheme itself is the minimum such rate over all

users.

Remark 1.3.1. In any perfect secret sharing scheme

(size of the share) > (size of the secret). Consequently, all perfect secret

sharing scheme must have information rate 6 1.

In the rest of this chapter, we will briefly describe the early constructions

of simple threshold secret sharing schemes.

1.4 Unanimous Consent Control Scheme

In this scheme the secret K ∈ Zm is divided among n users (m > n+1), all

of whom are required in order to recover the secret K. Karnin, Greene and

Hellman [117] have proposed this very simple unanimous consent scheme.

1. The Dealer generates n−1 independent random numbers S1, . . . , Sn−1

as shares from Zm, where 0 6 Si 6 m− 1, 1 6 i 6 n− 1.
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2. The participants P1 through Pn−1 are given shares Si, while Pn is

given Sn = K −
∑n−1

i=1 Si (mod m).

3. The secret K is recovered by combining all the shares as

K =
n∑
i=1

Si (mod m)

.

The scheme can be easily generalized to any group. If K = {0, 1}l, bit-

wise XOR defines the group operation. Both the secret and shares are of

l bits in this case. This scheme is perfect. It is important to design more

efficient unanimous consent schemes because they are the building blocks

of the generalized secret sharing schemes. Sreekumar et al [202] proposed

an efficient (n, n) scheme based on a number system called Permutation

Ordered Binary (POB) number system.

Remark 1.4.1. The individual key component in a split control

scheme should be full-length. This provides greater security than

partitioning a b bit secret K into n pieces of b
n bits each.

1.5 Threshold Secret Sharing Schemes

The problem with secret splitting is that all n participants must

collaborate to recover the secret. If one share is lost then it is impossible

to recover the secret. There are application scenarios where controlled

access is necessary. For example in a bank three tellers are employed to

open a vault. Combination of any two or all three can open the vault but

a single person is not allowed to do so. These problems can be solved by

means of threshold secret sharing schemes.
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Definition 1.5.1. A (t, n) threshold scheme (1 < t 6 n) is a method by

which a trusted party called Dealer compute secret shares Si, 1 6 i 6 n from

a secret K and securely distribute among a finite set P of n participants

in such a way that any t participants or more can compute the value of K.

But no group of less than t participants can do so.

The example mentioned above is a (2, 3) threshold secret sharing

scheme. The unanimous consent control is a (n, n) threshold scheme.

These threshold schemes help to achieve both availability and

confidentiality.

Availability: greater than or equal to t parties can recover the secret K.

Confidentiality: less than t parties have no information about the secret

K.

Definition 1.5.2. A (t, n) threshold secret sharing scheme is perfect,

if t− 1 or fewer shares give no information about the secret.

Shamir [190] and Blakley [24] proposed their threshold secret sharing

primitives independently in 1979. Shamir’s scheme is based on Lagrange

interpolating polynomials where as the latter is based on vector subspaces

and projective geometry. Karnin et al [117] approach can be viewed as a

deterministic version of Blakley’s scheme and includes Shamir’s method as

a special case. The Shamir’s scheme is perfect where as Blakley’s scheme is

not so efficient and also not perfect. Mignotte [146] developed a threshold

scheme based on a special sequence of numbers called Mingotte sequence

and Chinese Remainder Theorem. The scheme is not perfect. Asmuth and

Bloom [2] also developed a schemes based on Mingotte’s scheme. It is a

perfect threshold scheme and also having less computational complexity

than Shamir’s scheme.
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1.5.1 Shamir’s Threshold Secret Sharing Scheme

Shamir [190] has proposed a scheme based on Lagrange interpolating

polynomials. For a (t, n) threshold scheme, D pick a random t − 1 degree

polynomial q(x) = a0 + a1x + . . . + at−1x
t−1 in which a0 is the secret

K ∈ Fp and ai ∈ Fp, where p > n + 1 is a prime. Dealer then generate n

shares S1 = q(1), . . . , Si = q(i), . . . , Sn = q(n) and securely distribute

them to the participants. Given any subset t of these Si values ( together

with their identifying indices ), we can find the coefficients of q(x) by

interpolation and then evaluate K = q(0). Knowledge of just t− 1 of these

values on the other hand does not suffice in order to calculate K.

Let

q(x) = a0 + a1x+ . . .+ at−1x
t−1 , where a0 = K.

The n shadows are computed by evaluating q(x) at n different values

x1, . . . , xn, and xi 6= 0 for any i

Si = q(xi) , 1 6 i 6 n

Each point (xi, Si) is a point on the curve defined by the polynomial. The

values x1, . . . , xn need not be secret and could be user identifiers or simply

the numbers through 1, . . . , n. Because t points uniquely determine the

polynomial q(x) of degree t − 1, the secret K can be constructed from t

shadows. If P is the set of participants and A ⊆ P such that |A| > t then

q(x) can be constructed using the Lagrange interpolation formula with t

shares of the participants:

q(x) =

t∑
j=1

Sij · ∏
16k6t,k 6=j

x− xik
xij − xik


Since K = q(0) there is no need for generating the polynomial. So we can
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rewrite the formula as

K = q(0) =

t∑
j=1

Sij · ∏
16k6t,k 6=j

xik
xik − xij


if

bj =
∏

16k6t,k 6=j

xik
xik − xij

Then

K =
t∑

j=1

(Sij · bj)

Hence the secret can be computed as a linear combination of t shares. If

we choose x′is as 1, . . . , n then the computation become very simple.

A linear algebraic way of interpreting this is, given t points of q(x), the

following system of equations can be generated.

K + a1x1 + a2x
2
1+ . . .+ at−1x

t−1
1 = S1

K + a1x2 + a2x
2
2+ . . .+ at−1x

t−1
2 = S2

...
...

K + a1xt + a2x
2
t+ . . .+ at−1x

t−1
t = St

The above system has t linear equations and t unknowns

K, a1, a2, . . . , at−1. We can rewrite the equations as

A.


K
a1
...

at−1

 =


S1

S2
...
St


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where the coefficient matrix A is a Vandermonde matrix

A =


1 x1 x2

1 · · · xt−1
1

1 x2 x2
2 · · · xt−1

2
...

...
...

...

1 xt x2
t · · · xt−1

t


It is noted that the matrix A is square having rank t so the determinant is

non zero and is

det(A) =
∏

16i,j6t

(xj − xi)

The system of equations has a unique solution for K, a1, . . . , at−1 and hence

we can recover K.

It is noted that less than t participant cannot get any information about

the secret, because they cannot rule out any of the possibilities for the secret

in Fp.

Example 1.5.1. Let us consider a (3, 5) threshold scheme.

q(x) = 2x2 + 3x+ 5 over the field Z11. The secret K = 5. The shares are

q(1) = S1 = 10, q(2) = S2 = 8, q(3) = S3 = 10, q(4) = S4 = 5, q(5) = S5 = 4.

Participants P1, P2, P4 can pool their shares and retrieve the secret using

the Lagrange Interpolation as:

10 ∗ 2

2− 1
∗ 4

4− 1
+ 8 ∗ 1

1− 2
∗ 4

4− 2
+ 5 ∗ 1

1− 4
∗ 2

2− 4
= 5 (mod 11)

The arithmetic used is modular. The set of integers modulo a prime

number p forms a field in which interpolation is possible. The prime p is

chosen which is bigger than both K and n. The coefficients a1, . . . , at−1

in q(x) are randomly chosen from a uniform distribution over the integers

0, . . . , p−1 and the shares S1, . . . , Sn are computed modulo p. If the number

K is large, it is advisable to break it into shorter block of bits for easy

arithmetic. Efficient O(nlog2n) algorithms for polynomial evaluation and
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interpolation are discussed in [1] and [66].

Some of the useful properties of Shamir’s (t, n) threshold scheme are:

• The size of the share Si does not exceed the size of the secret K.

• When t is fixed, shares can be dynamically added.

• It is easy to change the shares without changing the original secret

K-all we need is a new polynomial q(x) with the same free term.

• We can get a hierarchical scheme, where the number of shares given

to each user is proportional to the user’s importance.

• The scheme is perfect and ideal.

1.5.2 Blakley’s Threshold Scheme

The Blakley’s scheme is based on geometry and has gained much attention

for the development of secret sharing schemes. In Balkley’s scheme [24], the

secret is an element of the vector space Ftq. The shares are any n distinct

(t− 1) dimensional hyperplanes that contain the secret. The t dimensional

hyperplane is a set of the form

{(x1, . . . , xt) ∈ Ftq|α1x1 + · · ·+ αtxt = β}

where α1, . . . , αt and β are arbitrary elements of the field Fq.
To realize a (t, n) threshold scheme, the secret is represented as a point

P in the projective t dimensional plane Ftq. There are (qt − 1)/(q − 1)

hyperplanes that contain P . The Dealer randomly select a hyperplane and

distribute it as a share to the participant. It is noted that t hyperplane

will intersect at P and fewer than t hyperplanes will intersect only in some

subspace containing P . Thus fewer than t participants are able to recover

the subspace, but cannot figure out the secret correctly.
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S1

S2

Sn

S3

K

Figure 1.1: Blackley’s scheme for threshold t=2

The scheme is not perfect because the coalition of more participants

will get partial information of the subspace containing the secret and they

have a better chance of guessing the secret. The scheme is improved by

Simmons [199] to make it perfect using an affine space instead of projective

spaces.

The secret can be obtained by intersecting any t shares. A (2, n) scheme

is shown in the Figure 1.1. It is not so efficient compared with Shamir’s

scheme. The scheme is also not perfect because participants get partial

information about the hyperplane where the secret lies.

1.5.3 Karnin-Greene-Hellman Scheme(KGH)

KGH [117] scheme is based on vectors. n + 1 column vectors

A0, A1, A2, . . . , An of size t are chosen such that any t of them have full

rank. If B is a row vector of size t, then the secret K = BA0. The shares

are generated as Si = BAi, 1 6 i 6 n. If any t of the n shadows are known

then B can be determined and the secret K is obtained evaluating BA0.

If less than t shadows are known then B cannot be determined and hence

the secret cannot be revealed.
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Karnin et al showed that Shamir’s and Blakley’s schemes are special

cases of their threshold scheme. The scheme can also be extended to protect

more than one secret. They addressed the problem of deliberate tampering

of the shares by trustees which can be identified by using one way function

[64].

1.5.4 Brickell’s Scheme

Brickell [34] also give a generalized notion of Shamir and Blackleys schemes.

The basic secret sharing scheme mentioned is as follows.

The secret is an element in some finite field GF(q). The Dealer chooses

a vector a = (a0, . . . , at) for some t, where each aj ∈ GF(q) and a0 is the

secret. Denote the participants by Pi, for 1 6 i 6 n. For each Pi, the Dealer

will pick a t−dimensional vector vi over GF(q). All of the vectors vi, for

1 6 i 6 n will be made public. The share that the Dealer gives to Pi will

be Si = vi · a. Let ei denote the ith t− dimensional unit coordinate vector

( i.e., e1 = (1, 0, . . . , 0)).

Proposition 1.1. Let P = {Pi1, Pi2 . . . Pik} be a set of participants

• The participants in P can determine the secret if the subspace

< vi1, . . . , vik > contains e1.

• The participants in P receive no information about the secret if the

subspace < vi1, . . . , vik > does not contain e1.

Theorem 1.5.1. Linear combination of k vectors can retrieve the

secret, if it spans e1.

Proof. Let M be the matrix with rows vi1, . . . , vik and s = (si1, . . . , sik).

Let w be the vector such that w ·M = e1. Then w ·M · a = a0. Hence

w · s = a0.
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They also shown similar techniques for multilevel and compartmental

threshold schemes.

1.5.5 Genaralized Linear Threshold Scheme

Kothari [123] gave a generalized threshold scheme. A secret is represented

by a scalar and a linear variety is chosen to conceal the secret. A linear

functional known to all trustees is chosen and is fixed in the beginning,

which is used to reveal the secret from the linear variety. The n shadows

are hyperplanes containing the liner variety. Moreover the hyperplanes are

chosen to satisfy the condition that the intersection of less than t of them

results in a linear variety which projects uniformly over the scalar field by

the linear functional used for revealing the secret. The number t is called the

threshold. Thus as more shadows are known, more information is revealed

about the linear variety used to keep the secret. However no information is

revealed until the threshold number of shadows are known.

He had shown that Blakley’s scheme and Karin’s scheme are

equivalent and provided algorithms to convert one scheme to another. He

also stated that the schemes are all specialization of generalized linear

threshold scheme. The generalized linear threshold scheme allows linear

variety of positive dimension to conceal the secret. This fact is utilized in

constructing a hierarchical threshold scheme. The hierarchical threshold

scheme uses a chain of linear varieties to keep a secret and allows multiple

thresholds for hierarchy of trustees.

Remark 1.5.1. The schemes mentioned in sections 1.5.1 to 1.5.5 are

called Linear Threshold schemes because they employee common

principles from linear algebra and the secret is represented as a linear

combination of shares.
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1.5.6 Mingotte’s Scheme

The Mingotee scheme [146] is based on modulo arithmetic and Chinese

Remainder Theorem (CRT) [65]. A special sequence of integers called

Mingotte sequence is used here.

Definition 1.5.3. Let n be an integer n > 2 , and 2 6 k 6 n.A

(k, n) Mingotte sequence is a sequence of pairwise coprime positive integers

p1 < p2 < · · · < pn such that
∏k−2
i=0 pn−i <

∏k
i=1 pi

Given a Mingotte sequence the (k, n) scheme works as follows

• The secret K is chosen as a random integer such that β < K < α,

where α =
∏k
i=1 pi and β =

∏k−2
i=0 pn−i.

• The n shares are generated as Si = K (mod pi),(1 6 i 6 n).

• Given k distinct shares S1, S2, . . . , Sk, the secret K is recovered

using the CRT, as a unique solution modulo p1 . . . pk of the system

of congruences. 
x ≡ Si1 (mod pi1)

...

x ≡ Sik (mod pik)

Mingotte’s scheme is not perfect, but it can lead to small shares. This

scheme is extended by Iftene [105] by introducing the generalized Mingotte

sequences whose elements are not necessarily pairwise coprime.

1.5.7 Asmuth-Bloom Scheme

This scheme is proposed by Asmuth and Bloom [2]. It also uses a special

sequence of pairwise coprime positive integers p0 < p1 < · · · < pn such that

p0 ·
k−2∏
i=0

pn−i <
k∏
i=1

pi
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Given a publicly known Asumuth-Bloom sequence, the scheme works as

follows:

• The secret K is chosen as a random integer from Zp0 .

• The n shares are generated as Si = K + r · p0 (mod pi), for all (1 6

i 6 n) where r is an arbitrary integer such that K + r · p0 ∈ Zp1···pk .

• Given k distinct shares S1, S2, . . . , Sk, the secret K is recovered

using S0 (mod p0), where S0 is the unique solution of the system of

congruences using CRT.
x ≡ si1 (mod pi1)

...

x ≡ sik (mod pik)

The scheme is not perfect. The probabilities of the shares of k − 1

participants with respect to two different keys are not the same, but

asymptotically equal. A larger value of p0 will eventually leads to smaller

difference between these two probabilities. This difference approaches zero

when p0 grows to infinity. Goldreich, Ron and Sudan [84] have proposed

choosing p0, p1, . . . , pn as prime numbers of the same size. Quisquater

Preneel and Vandewalle [173] have proven that by choosing p0, p1, . . . , pn

as consecutive primes asymptotically perfect and ideal schemes can be

obtained.

1.6 Extended Threshold Schemes

1.6.1 Weighted Threshold Secret Sharing Scheme

Consider the situation in a company where three executives can recover a

secret or by an executive and a vice president, or by the president alone.
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Shamir’s [190] solution is by using a (3, n) threshold scheme. The idea is

to give more shares to more important persons. Thus the president receive

three shares, each vice president receives two shares and executive receive

only one share. Any three shares can be combined to retrieve the secret.

Weighted Threshold schemes are generalization of this scenario where

each user is assigned a positive weight and the secret can be reconstructed

if and only if the sum of the weights of the participants is greater than or

equal to a fixed threshold.

Definition 1.6.1. Let n > 2, w = (w1, . . . , wn) be a sequence of

positive integers, and t is a positive integer such that 2 6 t 6
∑n

i=1wi,

where wi are the weights and t is the threshold of the scheme. The secret

sharing scheme having the access structure

A = {A ∈ P ({1, 2, . . . , n})|
∑
i∈A

wi > t}

is referred to us the (w, t, n) weighted threshold secret sharing scheme.

Shamir’s idea was to use a (t, n) threshold scheme where each

participant is assigned weight 1. Information rate of threshold schemes

corresponds to specific access structure is given by Morillo et al [149].

Beimel et al [12] characterize the weighted threshold access structure that

are ideal. Monotone circuit for monotone weighted threshold is also

mentioned in [13]. Chinese Remainder Theorem is used by Iftene [106] for

the construction of weighted threshold scheme.

Remark 1.6.1. (t, n) Threshold secret sharing scheme is nothing else

than (w, t, n) weighted threshold secret sharing scheme with

w1 = w2 = · · · = wn = 1.
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Benaloh and Leichter proved [15] that there are monotone access

structures that are not weighted threshold.

1.6.2 Hierarchical Secret Sharing Schemes

In case of hierarchical ( or multilevel ) secret sharing, the set of users are

partitioned into some levels l1, l2, . . . , lm depending on their hierarchy with

l1 at the highest level and lm at the lowest level. A level threshold tj is

assigned to the jth level, for all 1 6 j 6 m. We can naturally assume that

t1 6 t2 6 · · · 6 tm. There is a level called initialization level. The secret

can be recovered if and only if the number of participants from this level

or higher levels is greater than or equal to the initialization level threshold.

Definition 1.6.2. Let L = {l1, l2, . . . , lm} be a partition of

{1, 2, . . . , n} and T = (t1, t2, . . . , tn) is the sequence of level thresholds,

where 1 6 tj 6| lj |, for all 1 6 j 6 m and t1 < t2 < · · · < tm. Then the

(l, t) multilevel access structure is given by

A = {A ∈ P ({1, 2, . . . , n}) | (∃j ∈ {1, . . . ,m})(| A ∩ ∪ji=1li |> tj)}

Multilevel level secret sharing scheme has been considered for the first

time by Simmons [199] and then by Brickell [34]. Brickell proved that there

exist ideal schemes for the multilevel access structure. Ghodosi et al [79]

proposed an ideal scheme based on the extension of threshold scheme.

1.6.3 Compartmented Schemes

In this scheme the users are partitioned into compartments c1, c2, . . . , cm.

Besides a global threshold t, each compartment is assigned a threshold tj .

The secret can be recovered if and only if the number of participants from

any compartment is greater than or equal to the corresponding

compartment threshold tj and the total number of participants is greater

than or equal to the global threshold t.
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Definition 1.6.3. Let C = {c1, c2, . . . , cm} be a partition and

T = (t1, t2, . . . , tm) is the compartmental threshold, where 1 6 tj 6 |cj | for

all 1 6 j 6 m and a global threshold t such that,
∑m

j=1 tj 6 t 6 n. The

(C, T, t) compartment access structure is

A = {A ∈ P ({1, 2, . . . , n}) | (|A| > t) ∧ (∀j ∈ {1, . . . ,m})(| A ∩ Cj |> tj)}

Simmons [198] proposed compartmented scheme using geometry

techniques. Brickell [36] and Ghodosi et al [79] suggested ideal schemes for

the compartmented access structure. Tassa and Dyn [210] introduced a

new class of access structure called compartmented access structures with

lower bounds. Iftene [105] suggested a compartmented scheme based on

Chinese Remainder Theorem.

1.7 Error Correcting Codes and Secret Sharing

McEliece and Sarwate [144] made an observation that Shamir’s scheme is

closely related to Reed-Solomon codes [141]. The error correcting capability

of this code can be translated into desirable secret sharing properties. Reed

and Solomon [177] introduced a code having the following property. An m

bit message is coded as n bits and is transmitted. If one transmits n bits,

the additional n−m bits are redundant and allow one to recover the original

message in the event that noise corrupts the signal during transmission and

causes some bits of the code to be in error. A multiple-error correcting code

of order s consists of a code which maps m-tuples of zeros and ones into

n-tuples of zeros and ones, where m and n both depend on s. A decoding

procedure which recovers the message completely, assuming no more than

s errors occur during transmission in the vector of n bits.
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Let (α1, α2, . . . , αr−1) be a fixed list of the non zero elements in a

finite field F with r elements. In one form of Reed-Solomon coding an

information word a = (a0, a1, . . . , ak−1), ai ∈ F is encoded into code word

D = (D1, D2, . . . , Dr−1), where Di =
∑k−1

j=0 ajα
j
i . The secret is

a0 = −
∑r−1

i=1 Di, while the pieces of the secret are Di’s.

If given h shares but t of these are in error. Then by applying errors

and erasures decoding algorithm, it is possible to recover D and a provided

that h− 2t > k. This shows that if t pieces have been tampered, the secret

can still be accessed by legitimate users provided that at least k + t valid

pieces are available. In the case of a (k, n) threshold scheme, the opponent

must tamper b(n− k)/2c pieces to ensure that the secret is inaccessible.

Karnin et a [117] realize threshold schemes using linear codes. Massey

[143] introduced the concept of minimal code words and provided that the

access structure of a secret sharing scheme based on a [n, k] linear code is

determined by the minimal codewords of the dual code.

The approach to construct a general scheme based on linear code is as

follows. Choose an [n + 1, t, d] code C. Let K ∈ Fq denote the secret and

G = (g0, g1, . . . , gn) be the generator matrix of code C. If

P = {P1, P2, . . . , Pn} be the set of participants, then Linear Secret

Sharing can be constructed using the Error Correcting Code as follows.

• G is known publicly to every one.

• To share a secret K, the dealer randomly select a vector

v = (v0, v1, . . . , vt−1)

such that K = v.g0.

• Each participant Pi receives a share Si = v.gi, for i = 1, . . . , n.

37



Chapter 1. Introduction

It is noted that the shares of the participants Pi1, Pi2, . . . , Pil can

reconstruct the secret K, if g0 can be represented as a linear combination

of gi1, gi2, . . . , gil.i.e.,g0 = a1gi1 + . . .+ algil. We have

K = v.g0 = v.

l∑
j=1

ajgij =

l∑
j=1

aj v.gij =

l∑
j=1

ajsij

Let

Γ = {A : A ⊂ P, g0 is the linear combination of gi corresponds to Pi ∈ A}

Then it is noted that Γ is a monotone increasing collection of subset of

P.

Remark 1.7.1. For any q-ary [n + 1, t, d] code C, a LSS (Linear

Secret Sharing Scheme) realizing a monotone access structure can be

constructed. An [n + 1, t, d]-MDS (Maximum Distance Separable) code

can be used to construct a (t, n) threshold scheme. Reed-Solomon code is

an example which can be used to construct a (t, n) threshold scheme

similar to Shamir’s scheme.

1.8 Quasi-Perfect Secret Sharing Scheme

In a perfect secret sharing scheme, the size of the share is at least the size

of the of secret i.e. Si > K. Quasi-Perfect secret sharing schemes are one in

which the size of the shares can be smaller than that of the secret. These

schemes are called Ramp schemes, introduced by Blakley and Meadows

[25].

Let A ⊆ 2P be an access structure, which is monotone decreasing, if for

any A ∈ A and B ⊆ A, then B ∈ A.
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Definition 1.8.1. Let Γ,A ⊆ 2P be monotone increasing and

monotone decreasing access structure respectively such that Γ ∩A = Ø. A

quasi-perfect secret sharing scheme with access structure Γ and adversary

structure A having the following properties

(i) H(K|SA) = H(K) for any A ∈ A.

(ii) H(K|SI) = 0 for any I ∈ Γ.

(iii) 0 6 H(K|SB) 6 H(K) for any B ∈ 2P \ (A ∪ Γ).

The scheme is non-perfect, if there exist B ∈ 2P \ (A ∪ Γ) such that

0 < H(K|SB) < H(K)

It is noted that any perfect secret sharing scheme realizing the access

structure Γ is quasi perfect with a monotonically decreasing access structure

A. The ramp scheme is an example of this.

Definition 1.8.2. A (d, t, n) ramp scheme is a quasi-perfect secret

sharing scheme realizing a monotone increasing access structure Γ and a

monotone decreasing access structure A such that

A = {A ⊆ P : |A| 6 d}

Γ = {I ⊆ P : |I| > t}

We represent A and Γ as Ad,n , Γt,n respectively.

1.9 Thesis contribution

Security is a major challenge in the digital storage and transmission of

data. Secret sharing protocols provides solutions to several security

problems including secure key management, distributed access control,
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secure distributed storage and transmission and secure multi party

computation. The major contribution of this dissertation is in the

development of secret sharing protocol and also exploring the use of its in

typical application areas. This section is devoted to mention various

contributions made by us in the area of secret sharing.

• We started with the development of simple schemes which are

application oriented. There are several application areas where (2, 3)

or (2, 4) threshold secret sharing schemes are widely used. Simple

and efficient secret sharing schemes using number theory and XOR

operations are developed for sharing data and images. Development

of the algorithms and their analysis is one major development in the

area of study. XOR based schemes are simple and easy to use

compared with Shamir’s scheme. The use of these scheme in the

area of distributed data storage and secret image sharing are also

explored.

• A specially designed number system called POB ( Permutation

Ordered Binary ) system developed by Sreekumar et al [201] is

studied. They have suggested only the threshold secret sharing

schemes using POB and we extended its use to build secret sharing

scheme realizing more general access structures. Cumulative arrays

are used along with POB to build the scheme. The scheme is not

ideal but it is memory efficient when the storage become a

constraint.

• Major contribution of the dissertation is in the development of secret

sharing schemes with extended capabilities. We have considered multi

secret sharing scheme as an extension with added capabilities like

verifiability, cheating detection, cheater identification, dynamism etc.

A detailed study of the existing mutli secret sharing scheme is done.
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Analyzed their drawbacks and complexities. We then developed a

multi secret sharing with general access structure. Cheating detection

and cheater identification is also incorporated to make it more robust.

• The use elliptic curve in secret sharing is a growing research area.

We investigated the use of Elliptic curve and pairing in designing

secure and reliable secret sharing schemes. We have developed two

schemes in this direction. A threshold multi secret scheme using

elliptic curve and self pairing and also a multi secret sharing scheme

with general access structure using bilinear pairing. These scheme

are less complex and easy to implement compared with the existing

proposals for multi secret sharing scheme using elliptic curve. The

proposed schemes also having several additional capabilities and

also having less public parameters.

• We have considered two application areas of secret sharing in this

thesis. Multi party computation with application to E-voting and

secret image sharing with application to Cheque Truncation System

(CTS). The additive homomorphic property of Shamir’s scheme

along with encoding and decoding of votes is the key component.

The vote tallying along with the votes gained by each contesting

candidate can be obtained. Cheque Truncation System (CTS) or

Image-based Clearing System (ICS), in India is a project

undertaken by the Reserve Bank of India (RBI) in 2008 for faster

clearing of cheques. We propose a scheme based on secret image

sharing as a replacement of the existing scheme by RBI. The

proposed schemes avoids the complicated encryption decryption

process and key management in the existing scheme.
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13. Divya G. Nair, Binu V. P, G. Santhosh Kumar,“An Improved

E-Voting Scheme using Secret Sharing based Secure Multi-Party

Computation”, Eighth International Conference on Computer

Communication Networks (ICCN 2014), Banglore, Elsevier, ISBN

:9789351072539,P-17.

14. S. R. Sreela, Binu V. P, G. Santhosh Kumar,“Establishing Security
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1.10 Organization of the Thesis

The work aims to develop secret sharing schemes with several capabilities

to ensure security and trust. Two application areas are also mentioned.

We have taken care to provide a good account of literature survey and the

theoretical background of the topic of study.

The Thesis is organized into 11 chapters. In Chapter 1, we give a brief

introduction, survey of secret sharing schemes, preliminaries, review of

threshold secret sharing scheme and also the Thesis contribution and

organization. This provides a basic introduction to the reader about the

topic secret sharing and also the thesis contribution and its organization.

In Chapter 2, we present Generalized Secret Sharing Schemes. Review

of secret sharing schemes realizing the general access structure is given.

This helps to understand about the monotone access structure and secret

sharing schemes to realize the generalized access structure. It has got wide

applications.

In Chapter 3, several extended capabilities of the secret sharing

schemes are mentioned. Verifiability, Cheating detection, Cheater

identification etc are the major concern. Knowing about these helps in

developing more reliable and secure secret sharing schemes.
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In Chapter 4, we present some simple and efficient secret sharing

schemes. These scheme are based on simple XOR and number theoretic

operations. They have found useful applications in secret image sharing

and distributed data storage in cloud. Threshold (2, 3) and (2, 4) schemes

are mentioned with algorithms for secret sharing and secret retrieval.

In Chapter 5, a new generalized secret sharing scheme using cumulative

array and POB ( Permutation Ordered Binary ) system is mentioned. The

POB system have great potential for efficient secret sharing constructions

and are based on XOR operation. Algorithm for (n, n) secret sharing using

POB is given. This scheme is then combined with cumulative arrays to

construct more general access structure based secret sharing schemes.

In Chapter 6, multi secret sharing schemes are mentioned. Multi secret

sharing with generalized access structures are explored in detail and a new

multi secret sharing scheme with general access structure is proposed. The

scheme is simple and easy to implement.

In Chapter 7, Elliptic curve and Pairing is discussed. This chapter

gives a basic introduction about the Elliptic curve and Pairing for the

reader. We explored the use of elliptic curve and pairing in developing

secret sharing schemes. The use of Elliptic curve and Pairing helps to

develop secret sharing schemes with more security and also with various

extended capabilities.

In Chapter 8, we present a multi secret sharing scheme having

extended capabilities with general access structure based on Elliptic curve

and Bilinear pairing. Verifiability, cheating detection and cheater

identification is done by using pairing. This scheme outperforms several

existing scheme based on elliptic curve and pairing.

In Chapter 9, threshold multi secret sharing using Elliptic curve and

Self Pairing are explored. An implementation of the scheme using SAGE

and Python is done. The Python modules developed are useful in building

cryptographic applications using secret sharing schemes.
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In Chapter 10, we present applications based on secret sharing schemes

developed in chapter 4 and also Shamir’s scheme. We make use of the

additive homomorphism in Shamir’s secret sharing scheme to implement

a secure and efficient E-voting scheme with capability to count individual

votes of each contesting candidate. We also present a modified and easy to

implement Cheque Truncation System ( CTS ) using simple secret image

sharing technique.

In Chapter 11, we present the summary of major proposals. There are

several application areas where the secret sharing schemes can be effectively

utilized. We also mention future directions in this regard.
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Generalized Secret Sharing

2.1 Introduction

In the previous chapter, we mentioned that in a (t, n) threshold secret

sharing scheme any t of the n participants should be able to determine

the secret. A more general situation is to specify exactly which subsets

of participants should be able to determine the secret and which subset

should not. In this chapter we give the secret sharing constructions based

on generalized access structure.

Shamir [190] discussed the case of sharing a secret between the

executives of a company such that the secret can be recovered by any

three executives, or by any executive and any vice-president, or by the

president alone. This is an example of hierarchical secret sharing scheme.

Shamir’s solution for this case is based on an ordinary (3, n) threshold

secret sharing scheme. Thus the president receives three shares, each

vice-president receives two shares and finally every executive receives a

single share.

The above idea leads to the so-called weighted ( or multiple shares

based ) threshold secret sharing schemes. In these schemes, the shares are
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pairwise disjoint sets of shares provided by an ordinary threshold secret

sharing scheme. Benaloh and Leichter have proven in [15] that there are

access structures that cannot be realized using such scheme. The theorem

and proof with an example stated by them is given below.

Theorem 2.1.1. There exist monotone access structure for which

there is no threshold scheme exists.

Proof. Consider the access structure A defined by the formula

Amin = {AB,CD} and assume that a threshold scheme is to be used to

divide a secret value K among A,B,C, and D such that only those

subsets of A,B,C,D which are in A can reconstruct K.

Let a, b, c and d respectively denote the weight (number of shares) held

by each of A,B,C and D. Since A together with B can compute the secret,

it must be the case that a + b > t, where t is the value of the threshold.

Similarly, since C and D can together compute the secret, it is also true

that c+d > t. Now assume without loss of generality that a > b and c > d.

(If this is not the case, the variables can be renamed). Since a+ b > t and

a > b, a+ a > a+ b > t. So a > t/2. Similarly c > t/2. Therefore a+ c > t.

Thus A together with C can reconstruct the secret value K. This violates

the assumption of the access structure.

Definition 2.1.2. A perfect secret sharing scheme realizing general

access structure Γ and sharing a key K among a set of participant P satisfy

the following properties

1. If an authorized set of participant P ∈ P pool their shares, then they

can determine the secret K.

2. If an unauthorized set of participant U ∈ P pool their shares, then

they can determine nothing about the secret K.
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Several researchers address this problem and introduced secret sharing

schemes realizing the general access structure. We give some of the

important constructions of secret sharing schemes with general access

structure in this chapter.

2.2 Ito, Saito and Nishizeki’s construction

Ito, Saito and Nishizeki [107] proposed a secret sharing scheme realizing

the general access structure in 1987. The description of the scheme is as

follows.

Let K be the secret and S1, . . . , Sn are the shadows or shares. Each share

Si is distributed to participants Pi (i 6 i 6 n) in such a way that

• if P ′ = Pi1, . . . , Pil ⊂ P is a qualified subset of persons, then K can

be reconstructed from their shadows Si1, . . . , Sil and

• if P ′ = Pi1, . . . , Pil ⊂ P is not a qualified subset, then K cannot be

reconstructed from their shadows Si1, . . . , Sil.

The family of all the qualified subset is called the access structure of the

scheme.

Definition 2.2.1. Let P be the set of participants, then the subset

A ⊆ 2P contains authorized subsets of participants who can reconstruct

the secret is called the access structure of the secret sharing scheme.

If P ′ is a qualified subset, then any subset P ′′ with P ′ ⊂ P ′′ must be

so. Thus if A ⊂ 2P is an access structure of a scheme, then A satisfies

B ⊂ A and B ⊂ C ⊂ P imply C ∈ A. This intuitively means that if a

group can recover the secret, so can a larger group. This property of access

structure is called monotone property. Benaloh and Leichter called such

access structures monotone access structure in [15].

49



Chapter 2. Generalized Secret Sharing

The family of minimum sets in A is denoted by Amin or A0

Amin = {A ∈ A|(∀B ∈ A \A)(¬(B ⊆ A))}

The minimum authorized subsets of A is denoted by Amin and is called the

basis of A. Since A consist of all subsets of P that are supersets of a subset

in Amin, we say that A is the closure of Amin(A0).

A = {C ⊆ P : B ⊆ C,B ∈ A0}

A = closure(A0)

Example 2.2.1. Let P = {P1, P2, P3, P4}
and Amin = {{P1, P2}, {P3, P4}} then A = {{P1, P2}, {P1, P2, P3},
{P1, P2, P4}, {P1, P2, P3, P4}, {P3, P4}, {P1, P3, P4}, {P2, P3, P4}}

Remark 2.2.1. In the case of threshold (t, n) scheme the basis consist

of all subsets of exactly t elements. We also use the notation Γ to represent

an access structure and Γ0 to represent the minimal access structure.

Given the general monotone access structure A, the scheme is realized

by assigning several shadows of a (k, n) threshold scheme to each person.

Shamir’s scheme can be used where each authorized set of participants

are given sufficient number of shares so that they can retrieve the secret

by combining their shares. The multiple assignment scheme realizing the

general access structure follows.

Multiple Assignment Scheme[107]

1. Choose two integers k,m and a prime power q such that k 6 m < q

and let F = GF (q).

2. Choose a1, . . . , ak−2 in F and ak−1 ∈ F − {0} randomly.

3. Let f(x) = d + a1x + a2x
2 + · · · + ak−1x

k−1. ( d is the data to be

distributed or shared )
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4. Choose distinct elements x1, . . . , xm ∈ F − {0}, let

dj = f(xj) (1 6 j 6 m), and let S = {(x1, d1), . . . , (xm, dm)}.

5. Choose Si ⊂ S (1 6 i 6 n), and assign Si to Pi for each

i, 1 6 i 6 n = |P|.

Let P be the set of participants and S be the set of shares then the

assignment of shares Si to Pi is considered as a function g : P −→ 2S such

that g(Pi) = Si. The multiple assignment scheme has the following access

structure.

A =

Q ⊂ P :

∣∣∣∣∣∣
⋃
p∈Q

∣∣∣∣∣∣ > k


A simple scheme mentioned by Beimel [10] in which the secret K ∈ {0, 1}
and let A be any monotone access structure. The Dealer distribute the

shares of the secret independently for each authorized set B ∈ A, where

B = {Pi1, . . . , Pil}.

• The Dealer chooses l − 1 random bits r1, . . . , rl−1.

• compute rl = K ⊕ r1 ⊕ r2 ⊕ · · · ⊕ rl−1 and

• Dealer distributes share rj to Pij .

For each set B ∈ A, the random bits are chosen independently and each set

in A can reconstruct the secret by computing the exclusive-or of the bits

given to the set. The unauthorized set cannot do so.

The disadvantage with multiple share assignment scheme is that the

share size depends on the number of authorized set that contain Pj . A

simple optimization is to share the secret K only for minimal authorized

sets. Still this scheme is inefficient for access structures in which the

number of minimal set is big ( Eg:(n/2, n) scheme ). The share size grows

exponentially in this case.
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2.3 The Monotone Formula Construction

Benaloh and Leichter [15] developed a secret sharing scheme for an access

structure based on monotone formula. This generalizes the multiple

assignment scheme of Ito, Saito and Nishizeki [107]. The idea is to

translate the monotone access structure into a monotone formula. Each

variable in the formula is associated with a trustee in P and the value of

the formula is true if and only if the set of variables which are true

corresponds to a subset of P which is in the access structure. This

formula is then used as a template to describe how a secret is to be

divided into shares.

The monotone function contains only AND and OR operator. In order

to distribute secret K into shares such that P1 OR P2 can reconstruct K. In

this case P1 and P2 can simply both be given values K. If P1 AND P2 need

to reconstruct secret then P1 can be given value K1 and P2 can be given

value K2 such that K = K1 + K2 (mod m), (0 6 K 6 m), K1 is chosen

randomly from Zm, K2 is (K−K1) (mod m). More exactly for a monotone

authorized access structure A of size n, they defined the set FA as the set

of formula on a set of variables {v1, v2, . . . , vn} such that for every F ∈ FA,
the interpretation of F with respect to an assignation of the variables is

true if and only if the variables having the value true correspond to a set

A ∈ A. They have shown that an access structure can be represented as a

formula which contains only ∧ operators and ∨ operators by splitting the

secret across these operators.

Thus we can inductively define the shares of a secret K with respect to

a formula F as follows:

Shares(K,F) =


(K, i), if F = vi, 1 6 i 6 n;⋃k
i=1 Shares(K,Fi), if F = F1 ∨ · · · ∨ Fk;⋃k
i=1 Shares(Si, Fi), if F = F1 ∧ · · · ∧ Fk,
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For the case F = F1 ∧ F2 ∧ · · · ∧ Fk, we can use any (k, k)-threshold secret

sharing scheme for deriving some shares S1, . . . , Sk corresponding to the

secret K.

Remark 2.3.1. We can build a monotone circuit that recognizes the

access structure corresponds to the formula and then build the secret

sharing scheme from the description of the circuit. This is called

monotone circuit construction. Let C be a monotone boolean circuit then

the monotone circuit construction yield a perfect secret sharing scheme

realizing the access structure A(C)

Example 2.3.1. Consider the access structure

Amin = {{P1, P2, P4}, {P1, P3, P4}, {P2, P3}}, the Boolean formula

corresponds to Amin is

Amin = (P1 ∧ P2 ∧ P4) ∨ (P1 ∧ P3 ∧ P4) ∨ (P2 ∧ P3)

Let K is the secret to be shared. The value K is given to the three input

wires of the final OR gate. The expression P1 ∧ P2 ∧ P4 is implemented by

giving the three shares to the input of the AND gate using a threshold

(3, 3) scheme. The three input wires are assigned values a1, a2,K−a1−a2,

all arithmetic is done in Zm. In a similar way, the three input corresponds

to P1 ∧P3 ∧P4 are assigned values b1, b2,K− b1− b2. Finally the two input

wires corresponding to P2 ∧ P3 are assigned values c1,K − c1. The Figure

2.1 shows the schematic diagram of the monotone circuit constructed [204].

The shares received by the four participants are

P1 ←− (a1, b1)

P2 ←− (a2, c1)

P3 ←− (b2,K − c1)

P4 ←− (K − a1 − a2,K − b1 − b2)
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It is noted that each of the subsets {P1, P2, P4}, {P1, P3, P4} and {P2, P3}
can compute the secret K. Any unauthorized subset cannot compute K,

either because some necessary piece of random information is missing, or

because all the shares possessed by the subset are random.

We can obtain a different scheme realizing the same access structure by

rewriting the formula in conjunctive normal form. This corresponds to the

original construction of Ito et al [107]. The conjunctive normal form is

(P1 ∨ P2) ∧ (P1 ∨ P3) ∧ (P2 ∨ P3) ∧ (P2 ∨ P4) ∧ (P3 ∨ P4)

The following shares are distributed in this case to each participant.

P1 ←− (a1, a2)

P2 ←− (a1, a3, a4)

P3 ←− (a2, a3,K − a1 − a2 − a3 − a4)

P4 ←− (a4,K − a1 − a2 − a3 − a4)

Remark 2.3.2. If C is a monotone boolean circuit, then a perfect

secret sharing scheme realizing the access structure A(C) can be built.

2.4 Vector Space Construction

In this section, we will consider an ideal scheme for general access structure

know as vector space construction. Brickell [36] developed this technique

using vector spaces.

LetA is an access structure and (Zp)d denote the vector space of all d-tuples

over Zp, where p is prime and d > 2. Suppose there is a function

φ : P −→ (Zp)d

which satisfies the property

(1, 0, . . . , 0) ∈< φ(Pi) : Pi ∈ B >⇔ B ∈ A (2.1)
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∧
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K − c1

K − b1 − b2

b2 b1

Figure 2.1: Monotone Circuit Construction

This means that the vector (1, 0, . . . , 0) can be represented as a linear

combination ( modulo p ) of vectors in the set {φ(Pi) : Pi ∈ B} only if B

is an authorized subset. If we have {φ(P1), φ(P2), . . . , φ(Pn)} satisfying

the above property then the Dealer(D) can give φ(Pi) to Pi. These vectors

can also be made public.

Suppose D wants to share a key k ∈ Zp, then he create a vector

ā = (k, a2, . . . , an)

where a2, . . . , an are chosen independently at random from Zp. D then

compute the shares as

yi = ā · φ(Pi), 1 6 i 6 n
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D then give yi to Pi. An ideal secret sharing scheme is constructed in the

following way. For every vector ā = (a1, a2, . . . , ad) ∈ (Zp)d, a distribution

rule fā ∈ Fā is defined , where

fā(x) = ā · φ(x)

for every x ∈ P , “.” is the inner product modulo p operation. The key is

given by

k = a1 = ā · (1, 0, . . . , 0)

If B is an authorized subset then the participants in B can compute k.

Since

(1, 0, . . . , 0) ∈ 〈φ(Pi) : Pi ∈ B〉

we can write

(1, 0, . . . , 0) =
∑
i:Pi∈B

ci · φ(Pi) ci ∈ Zp

ā · (1, 0, . . . , 0) = ā ·
∑
i:Pi∈B

ci · φ(Pi)

k =
∑
i:Pi∈B

ci(ā · φ(Pi))

k =
∑
i:Pi∈B

ci · yi

This shows that participants in B can compute the secret k by linear

combination of the shares that they hold.

Example 2.4.1. [204] Consider an access structure having the basis

Amin = {{P1, P2, P3}, {P1, P4}}
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Let d = 3 and define the vectors φ(Pi) as follows

φ(P1) = (0, 1, 0)

φ(P2) = (1, 0, 1)

φ(P3) = (0, 1,−1)

φ(P4) = (1, 1, 0)

These equations satisfy the property in 2.1.

φ(P4)− φ(P1) = (1, 0, 0)

φ(P2) + φ(P3)− φ(P1) = (1, 0, 0)

Hence

(1, 0, 0) ∈ 〈φ(P1), φ(P2), φ(P3)〉

and

(1, 0, 0) ∈ 〈φ(P1), φ(P4)〉

This shows that the authorized subset will span (1, 0, 0). Now consider an

unauthorized subset P2, P3, P4. Suppose that

(1, 0, 0) ∈ 〈φ(P2), φ(P3), φ(P4)〉

(1, 0, 0) = c2φ(P2) + c3φ(P3) + c4φ(P4)

where c2, c3, c4 ∈ Zp. This is equivalent to set of equations

c2 + c4 = 1

c3 + c4 = 0

c2 − c3 = 0

It is noted these set of equations doesn’t have any solutions. This is true

for any other unauthorized subsets as well.
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Suppose that p = 127 then if k = 99, a2 = 55, a3 = 38. Then the four shares

as follows

y1 = 55

y2 = 10

y3 = 17, and

y4 = 27

Suppose P1, P2, P3 wants to compute the secret then it is noted that

(1, 0, 0) = φ(P2) + φ(P3)− φ(P1)

and Hence

k = 1 · y2 + 1 · y3 − 1 · y1 (mod 127)

k = 10 + 17− 55 (mod 127) = 99

Remark 2.4.1. It is noted that Shamir’s (t,n) Threshold Scheme

is a special case of the vector space construction where d = t and

φ(Pi) = {1, x, x2, . . . , xt−1}, where xi is the x coordinate given to Pi.

2.5 General Model using Distribution Rules

This model is similar to that of Brickell’s scheme [38]. In this model, a

secret sharing scheme is represented as a special set ( F ) of distribution

rules. The distribution rule is a set of function

f : P ∪D −→ K ∪ S

which satisfies the conditions f(D) ∈ K and f(pi) ∈ S, where K-is the

Key set, S-share set, P-participant set, f(D) is the secret key being

shared and f(Pi) is the share given to Pi.
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If F is a set of distribution rules and k ∈ K, then the distribution rule

corresponds to f(D) = k is

Fk = {f ∈ F : f(D) = k}

If k ∈ K is the value of the secret that Dealer(D) wishes to share, then

D will choose a random distribution rule f ∈ Fk and use it to distribute

shares. The set of distribution rules are public knowledge.

The following is an example from [204], where n = 6, K = {0, 1} and

S = {0, 1, 2}. The distribution rules are given in table 2.1 and the basis for

the access structure is

Amin = {{P1, P2}, {P2, P3}, {P3, P4}, {P4, P5}, {P5, P6}, {P6, P1}}

For example if P1, P2 receive the shares 1, 1, they know that the distribution

D p1 p2 p3 p4 p5 p6

f1 0 0 0 1 1 2 2

f2 0 0 0 2 2 1 1

f3 0 1 1 2 2 0 0

f4 0 1 1 0 0 2 2

f5 0 2 2 0 0 1 1

f6 0 2 2 1 1 0 0

f7 1 0 1 1 2 2 0

f8 1 0 2 2 1 1 0

f9 1 1 2 2 0 0 1

f10 1 1 0 0 2 2 1

f11 1 2 0 0 1 1 2

f12 1 2 1 1 0 0 2

Table 2.1: Distribution rules
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function is either f3 or f4. But f3(D) = f4(D) = 0. Knowledge of one share

restrict possible distribution rules to four out of 12. However two of these

four rules correspond to the secret being 0 and the other two correspond

to the secret being 1. If any unauthorized subset, for example {P1, P4}
pool their shares, they will get two possible rules but they corresponds to

different values of the secret.

2.6 Monotone Span Program

Brickell’s vector space construction [36] always result in efficient general

access structure based secret sharing scheme, in which the participant

gets one share. However, it is not possible to build vector space based

constructions for every general access structure. To combat this,

Monotone Span Programs (MSP) [116] can be used to build Linear Secret

Sharing Schemes (LSSS) for an arbitrary access structure. A secret

sharing scheme is said to be linear, if the Dealer and the participants use

only linear operations to compute the shares and the secret. Span

programs are linear algebraic model of computation. It is noted that each

monotone span program give rise to a linear secret sharing scheme.

Beimel proposed this scheme and also defined a lower bound for the share

size [9] [11].

Definition 2.6.1. A secret sharing scheme over set of participant P

is said to be linear over Zp if

• The shares of each participant is a vector in Zp.

• There exist a matrix A ∈ Z l×np with row labels ρ(i) ∈ P,∀i ∈ [l]

The shares of secret k are computed as A.v, where

v = (k, r2, . . . , rn), k ∈ Zp and r2, . . . , rn ∈R Zp.
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2.6. Monotone Span Program

Definition 2.6.2. A monotone span program M is a quadruple

(F,M, ε, ρ), where

• F is a field.

• M is a m× d matrix.M ∈ Fm×d with d 6 m.

• ρ : {1, . . . ,m} → {1, . . . , n}.

• ε = (1, 0, . . . , 0) ∈ Fd called target vector or object vector.

• ρ labels each row i of M for the participant pρ(i) ∈ P .

• A monotone span programM is said to compute an access structure

A if

G ∈ A ⇔ ε ∈ span(MG)

A span program in which the labels of rows are only positive integers

is called monotone span program. Monotone span program compute

monotone functions. The size of M is the number of rows in M . The

following is a simple example of secret sharing using MSP.

Example 2.6.1. Let M = (F17,M, ε, ρ), where

M =


1 1 1

1 2 4

1 3 9

1 4 16


P1 = ρ(3), P2 = ρ(1) = ρ(2), P3 = ρ(4)

Let B = {P1, P2} is an authorized access set and C = {P1, P3} is an

unauthorized access set.So

MB =

1 1 1

1 2 4

1 3 9

 MC =

(
1 3 9

1 4 16

)
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It is noted that

(3 14 1).MB = ε i.e., span(MB) = ε⇒ B ∈ A

But

span(MC) /∈ ε⇒ C /∈ A.

2.7 Cumulative Secret Sharing Scheme

Cumulative secret sharing schemes are used to realize arbitrary access

structure in the secret sharing scheme. Cumulative schemes were first

introduced by Ito et al [107] and then used by several authors to construct

a general scheme for arbitrary access structures.

The scheme is based on multiple share assignment. A cumulative

boolean array [80] based on unauthorized access structure of the secret

sharing scheme is used to distribute multiple shares to each participant.

When the authorized set of participants collate, they will be able to

retrieve the secret. Unauthorized set of participants cannot retrieve any

useful information about the secret. The scheme is also perfect.

Cumulative scheme of Ito et al [107] uses Shamir threshold [190]

scheme where as Blakley’s scheme is used by Jackson et al in [109]. A

simple scheme using cumulative array and Karnin-Greene-Hellman

threshold scheme [117] proposed by Ghodosi et al [80]. More details about

cumulative secret sharing scheme is mentioned in Chapter 5.

Simmons [199] proposed cumulative map, Jackson [109] proposed a

notion of cumulative array. Ghodosi et al [80] introduced simpler and

more efficient scheme and also introduced capabilities to detect cheaters.

Generalized cumulative arrays in secret sharing is introduced by Long

[139].
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2.8 Concluding Remarks

In this Chapter we have considered secret sharing scheme realizing the

general access structure. The share size is a major concern in the design of

generalized secret sharing scheme. The share size grows exponentially in

many cases. The generalized secret sharing scheme have found

applications recently in cloud based data storage. Attribute based

encryptions are gaining more attention. The general strategy is,

encryptions are done based on a boolean formula consist of attributes of

the user. Secret sharing schemes are used to distribute keys according to a

tree structure corresponds to the boolean formula. A particular user will

be able to decrypt the data only if his attributes matches with the

encrypted attributes. It is noted that general access structure can be

converted into a boolean formula in Disjunctive Normal Form. Monotone

circuit and Monotone span program can be used to realize a LSSS for any

monotone access structure.
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Chapter 3

Extended Capabilities

3.1 Introduction

In this chapter, we explore the extended capabilities to be considered for

the development of secret sharing schemes. Most of the secret sharing

constructions assume that the Dealer is a trusted entity and the shares

distributed are consistent. But an untrusted Dealer may send invalid

shares and the secret reconstructed will be inconsistent. Verifiable Secret

Sharing (VSS) address this issue. In this, the participant can verify the

validity of the shares. A Publicly Verifiable Secret Sharing (PVSS) allows

not only the participant but any one will be able to check the validity of

the shares send by the Dealer. There are also dealer free secret sharing

scheme to avoid the assumption of a trusted Dealer. Another requirement

is that, the scheme must be able to identify the cheaters. The participant

may submit wrong shares during the reconstruction phase and all other

participants except the cheater will get wrong secret. So secret sharing

schemes designed should have the capability to detect and identify the

cheaters. Robust secret sharing and cheating immune secret sharing

schemes ensures that cheater will not get any advantage in the
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reconstruction protocol. When a secret share is compromised, it will affect

the security of the secret over the life time of the secret. Proactive

methods will update the secret shares periodically so that even if the

attacker has a share, it will be invalid after some time. The following

sections of the chapter will discuss about the extended capabilities in

detail.

3.2 Verifiable Secret Sharing

In a secret sharing scheme the Dealer is assumed to be reliable. However a

misbehaving Dealer may send inconsistent shares to the participants. To

prevent such malicious behavior of the Dealer, protocols need to be

implemented which allows the participant to verify the consistency of the

shares. Verifiable Secret Sharing (VSS) is to convince shareholders that

their shares are consistent. In Shamir’s (t, n) threshold scheme, the

participants can verify that their shares are t-consistent. This means

that every subset of t shares out of n, if used to interpolate a polynomial

will get a unique polynomial of degree t− 1.

Definition 3.2.1. Set of n shares S1, S2, . . . , Sn is t consistent, if every

subset of t of the n shares defines the same secret. The problem of verifiable

secret sharing is to convince shareholders that their shares (collectively) are

t consistent.

The concept of Verifiable Secret Sharing (VSS) was first introduced in

1985 by Benny Chor, Shafi Goldwasser, Silvio Micali and Baruch

Awerbuch [53]. Application of secret sharing homomorphism to verifiable

secret sharing is addressed by Benaloh [17]. There are two versions of

verifiable secret sharing protocols, interactive proofs and non

interactive proofs. Chor et al and Benaloh schemes are interactive,
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which need several rounds of interaction between users and Dealer.

Feldman [71] has proposed a non interactive scheme. Both the scheme

achieve verifiability in the Shamir’s threshold scheme. Verifiable secret

sharing and multi party protocols are addressed by Rabin et al [176].

Pedersen [167] proposed a non-interactive and information theoretic

secure verifiable variant of Shamir’s threshold scheme. There have been

two different approaches to achieve VSS by a CRT-based secret sharing

scheme. Qiong et al [172] proposed VSS scheme based on Asmuth-Bloom

secret sharing. Their approach is similar to the VSS of Pedersen [167]

based on Shamir’s secret sharing scheme. The second one, proposed by

Iftene [104] obtains a VSS scheme from Mignotte’s scheme [146] which is

another CRT-based secret sharing scheme similar to Asmuth-Bloom. Both

the scheme are not secure against attacks. Kaya et al [118] proposed a

more secure scheme based on CRT. They also proposed a Joint Random

Secret Sharing (JRSS) protocol, which enable a group of users to jointly

generate and share a secret, where a trusted Dealer is not available. A

verifiable secret sharing scheme based on Azimuth-Bloom without making

a computational assumption is proposed by Harn et al [90].

3.2.1 Interactive Proof-Benaloh

In Shamir’s scheme, the shares S1, S2, . . . , Sn are t-consistent if and only if

the interpolation of the points (1, S1), (2, S2), . . . , (n, Sn) yields a

polynomial of degree at most d = t − 1. It is also true that if the sum of

two polynomials is of degree at most d, then either both are of degree at

most d or both are of degree greater than d. A polynomial P , given by its

encrypted values at n distinct points is of degree at most d. The following

is an outline of the interactive proof

1. Encryption of the values of the points that describe P are released

by the prover.
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2. Encryption of many (say 100) additional random polynomials again

of degree at most d are also released by the prover.

3. A random subset of the random polynomials is designated by the

verifier(s).

4. The polynomials in the chosen subset are decrypted by the prover.

They must all be of degree at most d.

5. Each remaining random polynomial is added to P . Each of these sum

polynomials is decrypted by the prover. They must also all be degree

of at most d.

The encryption of the values of each point must be probabilistic and should

satisfy the homomorphism property so that sum of the two values can be

developed directly from the encryption of the two values. It is not hard to

see that a set of random polynomials of degree at most d together with a

set of sums of P and other random polynomials of degree at most d gives

no useful information about P other than its bounded degree d.

There are few drawbacks to interactive proofs

• The interactive proof asserts proof only to the participants of this

protocol at the time it is held. The proof have no meaning for the

person who is not online and does not participate in the random

selections.

• These proofs are not valid to a third party and hence cannot have a

legal proof in court.

• Communication complexity is exponential.
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3.2.2 Non Interactive Schemes

In the Non-interactive proof scheme, only the Dealer is allowed to send

messages. The share holders cannot send any information with each other.

The share holders are also not allowed to talk with the Dealer when

verifying a share. The basic technique in Non-interactive scheme is that

the Dealer sends extra information to each participant during the

distribution of shares and each participant can verify whether his share is

consistent with this extra information. The additional requirement is that

the encryption algorithm E should have the homomorphic property both

with respect to addition and multiplication. That is

E(x + y) = E(x) + E(y) and E(x ∗ y) = E(x) ∗ E(y). Diffie-Hellman

encryption algorithm satisfies this property. This scheme is secure only for

computationally bounded adversaries. It leaks some information about

the secret.

Feldman’s Scheme

The protocol proposed by Feldman [71] is as follows:

• First a cyclic group G of prime order p along with a generator g of

G is chosen publicly as a system parameter. The group G must be

chosen such that computing discrete logarithms is hard in this group

(Typically one takes a subgroup of Zq
∗, where q is a prime such that

q divides p− 1).

• The Dealer generates a random polynomial q(x) of degree t− 1,

q(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1 , where a0 is set as secret S.

• The Dealer distribute shares to each participant q(1), q(2), . . . , q(n).

In addition the Dealer also publishes the encryption of t coefficients

E(a0), E(a1), . . . , E(an) to make the shares verifiable.
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c0 = E(a0) = ga0

c1 = E(a1) = ga1

...

ct−1 = E(at−1) = gat−1

• user i can verify the shares by testing

c0.c
i
1.c

i2

2 · · · ci
t−1

t−1 =
t−1∏
j=0

cj
ij =

t−1∏
j=0

gaj i
j

= g
∑t−1
j=0 aji

j

= gq(i)

Example 3.2.1. Let q(x) = 5 + 2x + 1x2 + 2x3, secret

S = a0 = 5, a1 = 2, a2 = 1, a3 = 2, n = 7. The shares are

q(1) = 10, q(2) = 29, . . . , q(7) = 754. The encryption of the coefficients are

E(a0) = g5 (mod p), E(a1) = g2 (mod p), E(a2) = g1 (mod p),

E(a3) = g2 (mod p). Suitable p must be chosen. User 2 verifies the share

by checking

E(q(2)) = g29 (mod p) is equal to

E(a0 + (a1 × 21) + (a2 × 22) + (a3 × 23)) = g5+4+4+16 = g29 (mod p)

Benaloh’s scheme [17] relied on the existence of mutually trusted

entity. In Feldman’s scheme [71] this entity is avoided by letting the

Dealer publish probabilistic encryptions of the polynomial used to

compute the shares. The homomorphism property of the encryption

scheme make verification of the shares possible. This scheme is quite

efficient, but after the distribution of the shares with verification

capability, the privacy of the secret depends on the computational

assumptions such as the intractability of computing discrete logarithms. If

g is the generator of the group then gS is known where S is the secret.
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Pedersen [167] in 1992 developed a scheme which is unconditionally secure

in which he removes the assumption that gS is known. However in this

scheme the Dealer can succeed in distributing incorrect shares, if he can

solve the discrete logarithm problem. The scheme is constructed by

combining Shamir’s scheme with a commitment scheme, which is

unconditionally secure for the committer and furthermore allows

commitment to many bits simultaneously. Pedersen’s scheme is mentioned

below.

Pedersen’s Scheme

Let p and q denote large primes such that q divides p− 1, Gq is the unique

subgroup of Z∗p of order q, and g is the generator of Gq. If an element a ∈ Z∗p
is in Gq since

a ∈ Gq ⇔ aq = 1

Any element b 6= 1 in Gq generates the group. The discrete logarithm of

a ∈ Gq with respect to the base b is defined and it is denoted logb(a).

The commitment scheme proposed is as follows:

Let g and h be elements of Gq such that nobody knows logg(h). These

elements can either be chosen by a trusted center, when the system is

initialized or by some of the participants using coin-flipping protocol. The

committer commits himself to an S ∈ Zq by choosing t ∈ Zq at random

and computing

E(S, t) = gSht

E(S, t) reveals no information about S and the committer cannot open the

commitment to S as S
′ 6= S unless he can find logg(h).

1. Dealer(D) publishes a commitment to S : E0 = E(S, t) for a randomly

choosen t ∈ Zq.
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2. D chooses F ∈ Zq[x] of degree at most k− 1 satisfying F (0) = S and

computes Si = F (i), for i = 1, . . . , n.

Let F (x) = S + F1x+ · · ·+ Fk−1x
k−1. D chooses G1, . . . , Gk−1 ∈ Zq

at random and uses Gi when committing to Fi, for i = 1, . . . , k − 1.

D broadcasts Ei = E(Fi, Gi), for i = 1, . . . , k − 1.

3. Let G(x) = t+G1x+· · ·+Gk−1x
k−1 and let ti = G(i), for i = 1, . . . , n.

Then D sends (Si, ti) secretly to participants Pi, for i = 1, 2, . . . , n.

When Pi has received his share (Si, ti), he verifies that

E(Si, ti) =
k−1∏
j

Eij
j

This scheme also have the advantage that it is easy to derive a

verifiable sharing for a linear combination of some secrets. For example let

S
′

and S
′′

are the two secrets that have been shared. If (S
′
i , t
′
i) and

(S
′′
i , t

′′
i ) be Pi’s share of S

′
and S

′′
respectively and let (E

′
0, E

′
1, . . . , E

′
k−1)

and (E
′′
0 , E

′′
1 , . . . , E

′′
k−1) be the broadcasted messages when the two secrets

were shared.

Each Pi can compute (E0, E1, . . . , Ek−1) corresponds to a verifiable

distribution of S = S
′
+ S

′′
mod q as

Ej = E
′
jE
′′
j , for j = 0, 1, . . . , k − 1

Furthermore Pi’s secret share (Si, ti) of S is given by

Si = S
′
i + S

′′
i (mod q)

ti = t
′
i + t

′′
i (mod q)

If both (S
′
i , t
′
i) and (S

′′
i , t

′′
i ) are correct shares satisfying the equation

E(Si, ti) =
∏k−1
j Eij

j
then (Si, ti) is also a correct share of Si. That is

gSihti = E0E
i
1 · · ·Ei

k−1

k−1
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If S is computed as S = aS
′

(mod q) for some a ∈ Z∗q , then Pi can compute

his share (Si, ti) and (E0, E1, . . . , Ek−1) as follows:

Ej = Eaj , for j = 0, 1, . . . , k − 1

Si = aS
′
i (mod q)

ti = at
′
i (mod q)

It is noted that any k share holders who have accepted their shares of

S
′

and S
′′

can find a pair (S, t) such that

gSht = E0

Fewer than k persons have no information about S, if S
′

and S
′′

are

distributed correctly.

3.3 Publicly Verifiable Secret Sharing

Stadler [203] has introduced the notion of Publicly Verifiable Secret

Sharing (PVSS) schemes in 1996. The proposed PVSS schemes can also

be used with general (monotone) access structures. Both schemes are

based on ElGamal’s cryptosystem [68]. In PVSS scheme not only the

participants but everybody can verify that the shares are correctly

distributed. Apart from the applications for ordinary VSS, PVSS can be

used for new escrow-cryptosystems and for the realization of digital

payment systems with revocable anonymity.

A VSS scheme is a secret sharing scheme with an additional interactive

algorithm Verify which allows the participants to verify the validity of their

shares:

∃u ∀A ∈ A : (∀i ∈ A : Verify(Si) = 1) =⇒ Recover({Si|i ∈ A}) = u

and u = S, if the Dealer was honest. This shows that all group of

participants recover the same value if their shares are valid and this
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unique value is the secret if the Dealer was honest. In the non interactive

scheme the algorithm Verify does not require the interaction between the

participants. But even with a non-interactive VSS scheme, the

participants can verify the validity of only their own shares. But they

cannot know whether other participants have also received valid shares.

This problem can be solved with publicly verifiable secret sharing

(PVSS). In a PVSS scheme a public encryption function Ei is assigned to

each participant Pi, such that only he knows the corresponding

decryption function Di. The Dealer now uses the public encryption

functions to distribute the shares

Si = E(si) i = 1, 2, . . . , n.

The shares can be verified with the PubVerify algorithm with the property

that

∃u ∀A ∈ 2{1,2,...,n} : (PubVerify({Si|i ∈ A}) = 1) =⇒

Recover({Di(Si)|i ∈ A}) = u

and u = S, if the Dealer was honest. If the set of encrypted shares is good

according to PubVerify then the honest participants can decrypt them and

recover the secret.

Fujisaki and Okamato [74] presents a practical and provably secure

PVSS scheme which is O(|S|) times more efficient than Stadler’s PVSS

schemes where |S| denotes the size of the secret. It can be incorporated

into various cryptosystems based on the factoring and the discrete

logarithm to transform them into Publicly Verifiable Key Escrow (PVKE)

systems. In addition, those key escrow cryptosystems can be easily

modified into the Verifiable Partial Key Escrow (VPKE) systems with the

property of delayed recovery. Schoenmakers [186] extended this idea, such

that the shareholders can provide a proof of correctness for each share
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released in the reconstruction process. His approach is much simpler than

Stadler’s and the followed Fujisaki-Okamoto’s scheme, but is only

computationally secure. An information theoretic secure PVSS is

proposed by Tang et al [208].

In 2005, Ruiz and Villar [181] proposed a new PVSS scheme that has

a higher level of secrecy called indistinguishability (IND) of secrets based

on the decisional composite residuosity assumption. In 2009, Heidarvand

and Villar [94] gave two new secure definitions of publicly verifiable secret

sharing, which capture the notion of indistinguishable shares of secret.

Then they proposed a non-interactive PVSS scheme against the attacks of

indistinguishability of secrets in the standard model based on the

Decisional Bilinear Square (DBS) assumption, which is a natural variant

of the standard Decisional Bilinear Diffie-Hellman (DBDH) assumption.

In 2010, Jhanwar [113] proposed a PVSS scheme whose level of security is

called semantic security based on the (t, n)-multi-sequence of exponents

Diffie-Hellman problem. In 2011, Wu and Tseng [220] proposed a pairing

based PVSS scheme. For deducing the computational cost, they used the

batch verification technique. They also showed that their scheme is a

secure PVSS scheme under the bilinear Diffie-Hellman (BDH) assumption

in the random oracle model. In fact, semantic security does not guarantee

any level of secrecy, if an adversary mounts an active attack. Therefore it

is very important to design a PVSS scheme against Adaptively Chosen

Secret Attacks (CSA) in the standard model. In 2013 Jia et al [114]

proposed a PVSS scheme based on the Chinese Remainder Theorem.

Berry Schoenmakers Scheme

In this, the shares distributed by the Dealer can be verified by any one

involved and at the same time anybody can verify the shares released by

the participant during the reconstruction. Participants not only release the

shares but also provides a proof of the correctness of the shares released. The
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security of the scheme is based on decisional Diffie-Hellman assumption.

This scheme is much simpler than the schemes proposed by Stadler [203]

and Fujisaki [74].

One of the important aspect to be considered is that PVSS doesn’t

need a private channel between the Dealer and the participants. All

communication is done through authenticated public channel using public

key encryption. Hence the secret is only hidden computationally. The

protocol proceeds in three stages

Initialization

In this step each participant Pi registers with a public key, to be used

in the public encryption method Ei. The actual participants

P1, P2, . . . , Pn involved in the secret sharing scheme are the subset of the

registered participants.

Share Distribution

The share distribution protocol consist of two steps.

1. Distribution of shares: The shares si corresponds to the secret s is

generated by the Dealer first. The Dealer then publish encrypted

shares Ei(si) corresponds to each participant Pi. The Dealer also

publish PROOFD to ensure that Ei encrypt the share si. This also

make a commitment and the participant can ensure that the

reconstruction protocol will result in the same secret s.

2. Verification of shares: Any one knowing the public key of the

encryption method Ei can verify the shares. For each participant Pi

a non interactive verification algorithm can be run on PROOFD to

verify that Ei(si) is a correct encryption of a share for Pi.
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Secret Reconstruction

The protocol consist of two steps

1. Decryption of shares: The participant decrypt the shares si from

Ei(si). These participants then release share si and also a string

PROOFPi that shows that the released share is correct.

2. The shares of the authorized set of participants are then pooled to

reconstruct the secret. The participant are considered as cheaters

based on PROOFPi

Let us consider a (t, n) threshold secret sharing scheme. The scheme

can also be applied to any monotone access structure for which linear

secret sharing scheme exist. Let Gq denote a group of large prime order

q.g and G are independently generated generators of the group. The

discrete logarithm problem is hard in this group. The Dealer select a

random value s from Zq and then distribute the shares of the secret

S = Gs. A protocol proposed by Chaum and Pederson [49] is used to

prove that logh1(g1) = logh2(g2), where h1 = gα1 and h2 = gα2 , for

generators g1, g2, h1, h2 ∈ Gq. Let DLEQ(g1, g2, h1, h2) denote this

protocol. The protocol is as follows

1. The prover will choose a w randomly from Zq and send

a1 = gw1 , a2 = gw2 to the verifier.

2. The verifier will send a challenge c chosen randomly from Zq to the

prover.

3. The prover send a response r = w − αc back.

4. The verifier checks that a1 = gr1h
c
1 and a2 = gr2h

c
2.
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In the Initialization phase, the participant select a private key xi ∈R Z∗q
and registers yi = Gxi as public key.

For the distribution of shares among the participants P1, P2, . . . , Pn, the

Dealer picks a polynomial p(x) of degree t− 1.

p(x) =
t−1∑
i=0

aix
i

where a0 is set with the secret value. The Dealer keeps this polynomial

secret and publish the commitments Cj = gaj , for 0 6 j 6 t − 1. The

Dealer also publishes the encrypted shares Yi = y
p(i)
i , for 1 6 i 6 n and

Xi =
∏t−1
j=0C

ij
j . The consistency of the shares can be proved by using

Xi = gpi , Yi = ypii

and using the DLEQ(g,Xi, yi, Yi). The challenge c for the protocol is

computed by applying a cryptographic hash of Xi, Yi, a1i, a2i, 1 6 i 6 n.

In the verification phase, the verifier computes Xi =
∏t−1
j=0C

ij
j using Cj

values. Using yi, Xi, Yi, ri and c, the verifier computes a1i, a2i as follows.

a1i = griXc
i a2i = yrii Y

c
i

and checks the hash value of Xi, Yi, a1i, a2i matches with c.

In the reconstruction phase, each participant can find the share Si by

computing Y
1/xi
i . They publish Si along with the proof of validity. It is

accomplished by DLEQ(G, yi, Si, Yi), where yi = Gα and Yi = Sαi . The

secret value S = Gs is computed by

t∏
i=1

Sλii =
t∏
i=1

(Gp(i))λi = G
∑t
i=1p(i)λi = Gp(0) = Gs

where λi =
∏
j 6=i

j
j−i is the Lagrange coefficient.

It is noted that the participant does not have to use the private key

xi in the secret reconstruction, consequently the participant Pi can use its
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key xi in several round of PVSS. The scheme is also homomorphic. The

combined encrypted shares Yi1Yi2 can be used to obtain Gs1 .Gs2 . So the

secret retrieved will be s = Gs1+s2 . Compared to Stadler’s scheme which

takes O(k2n) time, where k is a security parameter, this scheme takes only

O(kn) time, which is asymptotically optimal. The security of the scheme

depends on breaking the Diffie-Hellman assumption.

3.4 Cheater Detection and Identification

Researchers have considered the problem of guarding against the presence

of cheaters in threshold schemes. It is conceivable that any subset of the

participants may attempt to cheat, to deceive any of the other participants

by lying about the shadows they possess. There is also the possibility that

the person distributing the shadows (the Dealer) may attempt to cheat. The

Dealer might distribute an inconsistent set of shadows, so that the secret

cannot be determined correctly or different subsets of participants would

calculate different keys from the shadows they possess. If the cheating is

done without the knowledge or cooperation of any of the participants, we

refer to this form of cheating as disruption. However, if this cheating is done

in cooperation with one or more of the participants, we call it collusion.

A threshold scheme is said to be unconditionally secure (against

cheating), if the probability of successful cheating is limited to a specified

probability even if the cheaters are assumed to have infinite

computational resources. Under the assumption that the Dealer is honest,

several constructions have been given for threshold schemes that are

unconditionally secure against cheating.

The general assumptions made in secret sharing scheme is that the

Dealer and the combiner are honest but participants can cheat by

submitting corrupted shares during the reconstruction. Code based secret

sharing provides a solution for this, proposed by McElice and Sarwate
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[144] in 1981. The scheme can detect cheating or even identify the invalid

shares and recover the correct secret by requiring more than minimum

number of shares needed to determine the secret. Suppose that in a (t, n)

threshold scheme there are s > t shares and v of which are invalid. If

s− v > t, then cheating can be detected. If s− 2v > t, then invalid shares

can be identified and corrected.

The construction of Simmons [197] is more general in that it can be

applied to most existing threshold schemes. This method detects cheating

only if at least t + 1 participants exchange their shadows. Define a set S

of at least t shadows to be consistent, if all t-subsets of S determine the

same key. Then a key is accepted as authentic only if there is a consistent

subset of at least t + 1 shadows that determine it. If t + e participants

exchange shadows and there are at most e− 1 cheaters among them, then

they possess a consistent subset of at least t + 1 shadows. Unfortunately,

the only known method to determine the existence of a consistent set of

t+ 1 shadows is an exhaustive search. One straightforward solution to the

problem of cheating is to have the distributor of shares sign each share Si

with an unforgeable signature. This is the technique used by Rabin [174]

when he used the Shamir’s scheme to solve the problem of agreement among

distributed process that might cheat.

Tompa and Wall [213] showed that the Shamir’s scheme is not secure

against cheating. A participant can cheat in reconstruction phase by

submitting a wrong share and later he can obtain the correct value of the

secret, but all other coalescing participants will get wrong secret. They

propose modifications to the Shamir’s scheme which allow detection of

cheaters with high probability and also prevent the cheater from

obtaining the original secret. The following are the advantage of this

scheme compared with the signature based scheme.

1. The security of all currently known signature schemes depend on

the intractability of factorization and one way function. The scheme
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proposed is secure even if the conspirators have unlimited

computational resources.

2. The scheme is similar to Shamir’s scheme thus avoiding the

complications of implementing an additional signature scheme.

Suppose P1 ∈ P is a cheater, he can perform the following steps, such

that only he can derive the secret and fool others in a (t, n) threshold

Shamir’s scheme.

• Construct a polynomial ∆(x) of degree at most t − 1, such that

∆(0) = −1 and ∆(2) = ∆(3) = · · · = ∆(k) = 0.

• Submit s1 + ∆(1) as the pooled shadow

If all the other participants present the true shadows, the reconstructed (t−
1) degree polynomial will be q(x) + ∆(x). Hence all the honest participant

obtain the false secret q(0) + ∆(0) = q(0) − 1. While the cheater P1 can

obtain the true secret by adding 1 to the computed result because he knows

∆(0).

The following is the modified Shamir’s scheme by Tompa and Wall so that

the probability of undetected cheating is less than ε, for any ε > 0.

1. Choose a prime p > max((s− 1)(t− 1)/ε+ k, n).

2. Choose a1, a2, . . . , ak−1 in Zp randomly, uniformly and independently.

3. Let q(x) = D + a1x+ a2x
2 + · · ·+ ak−1x

k−1.

4. Choose (x1, x2, . . . , xn) uniformly and randomly among all

permutations of n distinct elements from 1, 2, . . . , p− 1. Let

Di = (xi, di), where di = q(xi).
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The key difference between this and Shamir’s scheme occurs in step 4.

Suppose participants P1, P2, . . . , Pk−1 fabricate values

(x
′
1, d

′
1), (x

′
2, d

′
2), . . . , (x

′
k−1, d

′
k−1) and send to participant Pk. The

participant Pk will reconstruct the incorrect secret D
′

only if

qD(xk) = q(xk) and D
′ 6= D. Thus for each polynomial q

′
D(x) with

D
′ 6= D, the probability that q

′
D(xk) = q(xk) is at most (k − 1)/(p − k).

There are s − 1 legal but incorrect shares, so the fabricated values yield

s − 1 corresponding polynomials. Any one of these polynomials would

deceive participants Pk with probability at most (k − 1)/(p− k). Thus the

probability of deceiving participant Pk is at most

(s − 1)(k − 1)/(p − k) < ε. Even though cheaters can be detected with

high probability, they obtain the secret but other participant gain no

information about the secret. A solution to this is to use a dummy value,

say s, that is never used as a value of the real secret. The true secret D is

now encoded as a sequence D1, D2, . . . , Di, where Di = D for some

randomly chosen i and Dj = s for all j 6= i. Each element of this sequence

is then divided into shares. When k participants agree to pool their

shares, they reconstruct D1, D2, . . . one at a time until some Di 6= s is

obtained. If Di is not legal then cheating has occurred.

In summary the Dealer specifies a subset K0 of the set of possible keys

K. A key will be accepted as authentic only if it is an element of K0. If a

set of t participants calculate the key to be an element of K /∈ K0, then

they realize that one of them is cheating. The probability of successful

cheating is at most 1 − t|K0|/|K|, even if participants conspire to cheat

another participant. Even though participants can detect when cheating

has occurred, they cannot determine who is cheating.

Rabin and Ben-or [176] developed a scheme based on Shamir’s threshold

scheme in which the honest participants are able to identify cheaters. In

this scheme every participant in P receives extra information along with his

share over a finite field to guard against cheating. Indeed, each participant
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Pi in P receives his share di and n−1 random elements vij , for j = 1, . . . , n

and j 6= i. Moreover each participant Pj in P − Pi receives n − 1 pairs

(wji, zji), for i = 1, . . . , n and i 6= j, where wji 6= 0 is a random element

and zji is calculate as zji = di + vijwji. When the participant Pi wants to

let Pj knows his share, he returns the pair (di, vij). Then Pj can calculate

di + vijwji, and he accepts di only if the result is zji. The probability that

the coalition of n− 1 participants cheat successfully the remaining honest

participant is 1− (1− 1
|S|−1)n−k+1 6 n−k+1

|S|−1 . Where S is the set of secrets.

Brickell and Stinson [37] proposed a modified version of the Blckley’s

construction [24] in which honest participants are able to identify cheaters.

Brickell and Stinson considered a somewhat different scenario from Tompa

and Woll. There is a honest participant and the remaining n−1 participants

form a coalition in order to deceive him. If s is the correct secret, some k−1

participants of the n− 1 cheaters could return forged shares in an attempt

to force the n-th honest one to reconstruct a secret s
′ 6= s. If the honest

participant can identify the false shares, he asks the remaining participants

for another share. Then the n − 1 cheaters can return forged shares until

at most n − k + 1 participants are identified as cheaters. In Brickell and

Stinson’s construction even if there is only one honest participant and the

remaining n − 1 participant form a coalition in order to deceive him is
n−k+1
|S|−1 , where S is the set of secrets. The information given to participants

is less in Brickell and Stinson’s scheme compared with the Rabin and Ben-

Or’s scheme but the Brickell and Stinson’s scheme is not perfect and is

not computationally efficient, if n and k are large. Conversely Rabin and

Ben-Or’s scheme is perfect and can be implemented in polynomial time.

A generalized secret sharing sharing scheme with cheater detection and

identification is proposed by Lin [134]. It is computationally secure and

each participant holds only one single shadow. Any honest participant in

this scheme can detect and identify who is cheating even when all of the
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other participants corrupt together. An extended algorithm is also proposed

to protect the secret from the dishonest participant.

A t cheater identifier for (k, n) Shamir’s Threshold scheme based on

orthogonal arrays and error correcting codes are proposed by Kurosawa

et al [127]. An optimal and easy scheme with smaller share size based on

Kurosawa’s scheme is proposed by Obana [156].

Carpentieri [44] present a perfect and unconditionally secure (k, n)

threshold secret sharing scheme having the same properties of Rabin and

Ben-Or’s scheme. But the information given to each participant is smaller

in this scheme. Let GF (q) be a finite field with q elements, where q is a

prime power such that q > n. Assume that the secret S is chosen in the

finite field GF (q) by a special participant called the Dealer. The Dealer is

denoted by D and assume D /∈ P . The construction is based on Shamir’s

threshold secret sharing scheme. When D wants to share the secret S

among the participants in P, he gives a k-dimensional vector

d̄i ≡ (di,0, . . . , di,k−1), where k 6 n, over GF (q) as a share to participant

Pi, for i = 1, . . . , n. The Dealer chooses the shares as follows. Let

a1, . . . , ak−1 be elements chosen uniformly at random in GF (q) and

unknown to all the participants. Let α1, . . . , αn be distinct and non-null

elements in GF (q) known by all the participants. If q(x) is the polynomial

S + a1x + a2x
2 + · · · + ak−1x

k−1, then di,0 = q(αi) and di,1, . . . , di,k−1 are

elements chosen uniformly at random in GF (q), for i = 1, . . . , n. To guard

against cheating, D distributes extra information to the participants along

with their shares. The extra information consists of n− 1 pairs of elements

in GF (q) for each participant Pj in P. Let gj,i be non null elements chosen

uniformly at random in GF (q), for i = 1, . . . , n and i 6= j. D calculates

bj,i = gj,idi,0 + αjdi,1 + · · ·+ αk−1
j di,k−1 and then, he gives the participant

Pj the pair (gj,i, bj,i), for i = 1, . . . , n and i 6= j. When the participants Pi

return his share d̄i, Pj can check the authenticity of d̄i by verifying that it

is a solution vector of the equation gj,iy0 + αjy1 + · · · + αk−1
j yk−1 = bj,i,
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where y0, . . . , yk−1 are the unknowns, gj,i, αj , . . . , α
k−1
j are the coefficients

and bj,i is the constant for i = 1, . . . , n and i 6= j.

T.C.Wu and T.S.Wu [219] proposed a method to detect and identify

cheaters. Arithmetic coding and one way hash functions are used to

deterministically detect cheating and identify the cheaters no matter how

many cheaters are involved in the secret reconstruction. Cheater detection

and identification in CRT based schemes especially Mingotte and

Asmuth-Bloom is proposed by Pasailua et al [165].

Harn and Lin [91] developed a scheme in 2009. They assumed that there

are more than t participants are there in the secret reconstruction. Since

there are more than t shares, it only requires t shares for reconstructing

the secret. The redundant shares can be used for cheater detection and

identification. Some flaws of this is reported by Ghodosi [78].

3.5 Robust Secret Sharing

Secret sharing schemes having the property that the correct secret can still

be recovered even if some of the shares are invalid are called robust secret

sharing scheme. Code based secret sharing scheme can be robust. Some

secret sharing schemes have the capability to detect and identify cheating.

But they are not necessarily robust. To achieve robustness, the shares in

the schemes should contain additional information so that the shares can

be checked for correctness. Rogaway and Bellare [179] studied this within

a number of different models.

A (k, n) threshold scheme that can identify r < k/2 cheaters can be

used to create an almost robust (k, n) threshold scheme that allows

honest participants to obtain the secret under certain circumstances. If

the secret s = k1 ⊕ k2, then by giving each participant one share in a

(k, n) threshold scheme that can identify r cheaters with secret k1, and

one share in (k − r, n) scheme that can identify r cheaters with secret k2.
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During the reconstruction, participants submit their first shares and they

are checked for the presence of cheaters. If the cheaters are identified, the

recovery is aborted. If no cheaters are noted in the first stage, participant

submit their second share. Even if r cheaters are identified k − r honest

participants can still recover k2. The secret is then computed using k1 and

k2.

3.6 Cheating Immune Secret Sharing

In the attack mentioned by Tompa et al [213], the cheater will gain the

knowledge of the secret, but all other honest participant will get an invalid

secret. The approach in cheating immune system is to prevent the cheater

from knowing the secret. So the adversary does not have a personal gain

rather than disrupting the recovery of the original secret. Honest

participants are willing to sacrifice recovery of the secret if an adversary

corrupts shares, so long as the adversary does not have an advantage over

the honest participants with respect to the recovery of genuine secret.

Cheating immune secret sharing schemes were first proposed by

Zhang, Xian-Mo and Pieprzyk [225]. They considered binary shares and

boolean functions. Two notions were proposed. t-cheating immune, where

an adversary who submits t incorrect shares gains no advantage and a

more general construction strictly t-cheating immune, where an adversary

who submit up to t incorrect shares gains no advantage. Properties and

constraints of cheating immune scheme is mentioned in [58] by Stinson et

al. A necessary condition for a secret sharing system to be cheating

immune is specified in [33]. The known constructions for cheating immune

system is for only (n, n) schemes. It is an active research topic to

construct cheating immune secret sharing schemes for more general

structures. A cheating immune secret sharing scheme for a (t, n) threshold
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scheme is proposed using codes and cumulative arrays by Cruz and Wang

[62].

3.7 Proactive Secret Sharing

The Secret Sharing scheme assumes long-lived shares. In a (t, n) threshold

scheme an adversary can corrupt n − t + 1 shares in order to destroy the

secret information. The adversary have entire life time of the shares to

mount these attack. The solution to these problem is to periodically renew

the shares without changing the secret in such a way that any information

learned by the adversary about individual shares becomes obsolete after

the shares are renewed. Similarly to avoid the gradual destruction of the

information by corruption of shares, it is necessary to periodically recover

lost or corrupted shares without compromising the secrecy of the recovered

shares.

Proactive security for secret sharing was first suggested by Ostrovski

and Yung in [158] in 1991, where they presented among other things, a

proactive polynomial secret sharing scheme. The scheme uses the verifiable

secret sharing scheme of [176]. Proactive security refers to security and

availability in the presence of a mobile adversary. Herzberg et al [97] further

specialized this notion to robust secret sharing schemes and gave a detailed

and efficient proactive secret sharing scheme in 1995. Robust means that in

any time period, the shareholders can reconstruct the secret value correctly.

In Herzberg et al [97] proactive approach, the lifetime of the secret is

divided into periods of time (e.g., a day, one week, etc.). At the beginning of

each time period the share holders engage in an interactive update protocol,

after which they hold completely new shares of the same secret. Previous

shares become obsolete and should be safely erased. As a consequence, in

the case of a (k, n) proactive threshold scheme, the adversary trying to learn

the secret is required to compromise k locations during a single time period,
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as opposed to incrementally compromising k locations over the entire secret

life-time.

Thus the goal of the pro-active security scheme is to prevent the

adversary from learning the secret or from destroying it. In particular any

group of t non-faulty shareholders should be able to reconstruct the secret

whenever it is necessary. The term pro-active refers to the fact that it’s

not necessary for a breach of security to occur before secrets are refreshed,

the refreshment is done periodically (and hence pro-actively).

The core properties of pro-active secret sharing

1. Renewal of existing shares without changing the secret. The shares

that are exposed previously will not damage the secret and become

useless.

2. Recovery of lost or corrupted shares without compromising the

secrecy of the shares. i.e., reconstruction of lost or corrupted shares.

Pro-active Model Requirements

1. An adversary can reveal at most t−1 shares in any time period, where

t − 1 < n/2. This guarantees the existence of t honest shareholders

at any given time. This time period should be synchronized with the

share-renewal protocol.

2. Authenticated broadcast channel and an authenticated secret

communication channels between any two participants.

3. Synchronization: the servers (shareholders) can access a common

global clock so that the protocol can be applied in a certain time

period.

4. Shares can be erased: every honest server (shareholder) can erase its

shares in a manner that no attacker can gain access to erased data.
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3.7.1 Basic model of Proactive Secret Sharing

This scheme is proposed by Herzberg [97]. Consider a (t, n) threshold

scheme by Shamir, where a polynomial f(x) of degree t − 1 is used to

distribute shares f(i) to each participant. In this protocol the shares are

renewed without the Dealer’s involvement. The share holders will agree

upon a new polynomial with the same secret K without revealing the old

secret. The assumption made in this protocol is that the old shares are all

valid and the participants are honest. After the initialization, at the

beginning of each time period, all honest shareholders perform a share

renewal protocol as follows.

1. Each i’th share holder i ∈ {1, . . . , n} randomly pick t − 1 numbers

from the finite field and define a polynomial pi(x) of degree t−1 with

pi(0) = 0.

2. Each i’th share holder distributes the share’s of pi(x) using verifiable

secret sharing among the share holders.

3. Each share holder computes his new share by adding his old shares

to the sum of the n new shares.i.e.,

h(i) = f(i) +

n∑
j=1

pj(i)

4. Each i’th share holder erases his old share f(i).

This protocol solves the problem against passive adversary who may try

to learn the shares and obtain the secret. The active adversary how ever

can cause the destruction of the secret by dealing inconsistent shares or by

choosing a polynomial pi(x) with pi(0) 6= 0. Therefore verifiability feature

is added to the basic protocol to make sure that the shares are consistent.

Feldman’s [71] verifiable secret sharing scheme can be used.
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Detection of corrupted share is another important thing to consider.

Participating share holders must make sure that shares of other share

holders have not been corrupted or lost. The corrupted shares must be

restored, if necessary. An adversary could cause the loss of the secret by

destroying n− t+ 1 shares otherwise. The shares may be corrupted due to

disk crash or some hardware failure, which cause the server to be down.

The way to know that the share is modified by hacker or some other

means is to save some fingerprint for each share that is common to all

shareholders. The shareholders can periodically compare shares (using

secure broadcast). The basic technique used to reconstruct the lost or

corrupted share is to send sufficient information to the share holder r, who

lost his share. These information can be used to recover the corrupted

share without dealer’s involvement. The following is the algorithm

1. Each i’th shareholder i ∈ {1, . . . , r− 1, r+ 1, . . . , n} randomly choose

a polynomial pi(x) of degree t− 1 where pi(r) = 0 and pi(0) 6= 0.

2. Each i’th share holder distributes shares pi(1), . . . , pi(n) using VSS

among share holders (except for the r’th share holder).

3. Each i’th share holder (except r) receives

p1(i), . . . , pr−1, pr+1(i), . . . , pn(i) and calculate his new share and

send it encrypted to r.

h(i) = f(i) +
r−1∑
j=1

pj(i) +
n∑

k=r+1

pk(i)

4. The r’th share holder decrypts these shares and interpolate them to

recover h(r) = f(r).

This protocol is secure only against an adversary that eavesdrops on t− 1

or less shareholders, but cannot change their behavior.
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Jarecki [112] also come up with two methods of proactive secret

sharing in 1995. One using Feldman’s [71] verifiable secret sharing scheme

and the other one using Pedersen’s scheme [167]. Stinson and Wei [205]

introduced a new verifiable secret sharing scheme and then a proactive

scheme is developed using this. A combinatorial structure is introduced

which makes the scheme more efficient. Cachin et al [41] introduced

proactive crypto systems in asynchronous networks and presents an

efficient protocol for refreshing the shares of a secret key for discrete

logarithm-based sharing. Nikov et al [155] mentioned how to apply

general access structure to proactive secret sharing.

Mobile Proactive Secret Sharing (MPSS) is proposed by [189]. MPSS is

a new way to do proactive secret sharing in asynchronous networks. MPSS

provides mobility. The group of nodes holding the shares of the secret can

change at each resharing, which is essential in a long-lived system. MPSS

additionally allows the number of tolerated faulty shareholders to change

when the secret is moved, so that the system can tolerate more (or fewer)

corruptions. This allows reconfiguration on the fly to accommodate changes

in the environment.

Bai et al [5] proposed a proactive secret sharing scheme based on

matrix projection method. An adaptive proactive secret sharing scheme is

proposed by Wang [217]. In some environment, it needs to change not

only the number of participants n but also the threshold value t. An

adaptive proactive secret sharing is to refresh the shares as t and n

change.

3.8 Concluding Remarks

In this chapter we have considered some of the extended capabilities of

secret sharing schemes. We have done a survey on various additional

properties and also explored the constructions, which are efficient and
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easy to implement. Verifiable secret sharing is an important construct,

when the participant wants to check whether the shares issued by the

Dealer are consistent. PVSS allows not only the participant but any one

can verify the consistency of the shares.

Cheater detection and identification is a major issue. It is noted that

Shamir’s scheme is not cheater resistant. A misbehaving participant may

submit an invalid share during the reconstruction phase. This will result in,

all genuine participant may receive wrong secret, where as only the cheater

will obtain the correct secret. Secret sharing mechanism have to address this

problem. We have considered several methods to detect cheating in secret

sharing scheme. Not only the detection of cheating is important in secret

sharing but also identification of the cheaters. So in general some desirable

properties of secret sharing schemes are public verification of shares for

ensuring the consistency and also the cheating detection and identification

of cheaters.

The proactive secret sharing schemes prevents the perceptual leakage

of the share information. The modification of shares in proper interval will

make the intruder to gain no information about the secret even though he

had a valuable share hacked over time. Robustness allow the secret to be

reconstructed even if there is an invalid share submitted by a dishonest

participant. Cheating immune system prevents the dishonest participant

to recover the original secret after submitting a wrong share during the

reconstruction phase.

In general, developing a good secret sharing scheme aims at

incorporating these desirable features efficiently in the scheme. We have

incorporated verifiability, cheating detection and identification in the

proposed secret sharing schemes in the later chapters. Another important

capability to be considered is the multi secret sharing, which is discussed

in Chapter 6.
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Chapter 4

Simple and Efficient Secret

Sharing Schemes

4.1 Introduction

Secret sharing is a new alternative for outsourcing data in a secure way. It

avoids the need for time consuming encryption decryption process and

also the complexity involved in key management. The data must also be

protected from untrusted cloud service providers. Secret sharing based

solution provides secure information dispersal by making shares of the

original data and distribute them among different servers. Data from the

threshold number of servers can be used to reconstruct the original data.

It is often impractical to distribute data among large number of servers.

We have to achieve a trade off between security and efficiency. An optimal

choice is to use a (2, 3) or (2, 4) threshold secret sharing scheme, where

the data are distributed as shares among three or four servers and shares

Some results of this chapter are included in the following paper.

Binu V P, Sreekumar A : “Simple and Efficient Secret Sharing Schemes for Sharing Data

and Image.” arXiv preprint arXiv:1502.07475 (2015).
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from any two can be used to construct the original data. This provides

both security, reliability and efficiency. We propose some efficient and easy

to implement secret sharing schemes in this regard based on number

theory and bitwise XOR. These schemes are also suitable for secure

sharing of images. Secret image sharing based on Shamir’s schemes are

lossy and involves complicated Lagrange interpolation. So the proposed

scheme can also be effectively utilized for lossless sharing of secret images.

Confidentiality, reliability and efficiency are the major concerns in

secure storage of data. The idea of secret sharing for the information

dispersal is suggested by Krawczyk et al [124] in 1994. He proposed a

computationally secure secret sharing scheme for the distributed storage

using Rabin’s [175] information dispersal algorithm and Shamir’s secret

sharing scheme. However the data is encrypted using a symmetric key

encryption and the shares of the key are distributed along with the data

shares. The share size is less than the secret in this case compromising the

information theoretic security. Abhishek Parak et al [163] in 2010

proposed a space efficient secret sharing scheme for the implicit data

security. They incorporated k − 1 secrets in n shares and any k shares can

be used to reconstruct the original secret. A recursive construction using

Shamir’s scheme is applied in which computational overhead is more.

Recursive methods of secret sharing is also mentioned in [82] [162].

Computational secret sharing schemes are proposed for the space

efficiency in [8] [179] [214].

Secret sharing based solution provides information theoretical security

on confidentiality with out encryption and hence avoid the complexities

associated with encryption and key management. It also provides the

guarantee on availability of data. Perfect secret sharing needs large

amount of computational overhead. We propose specially designed secret

sharing schemes using XOR and number theoretic technique to reduce the

computation overhead. Unanimous consent schemes are easy to implement
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using XOR. But the implementation of a general (t, n) threshold scheme

is difficult. Wang et al [215] proposed a scheme based on boolean

operation which is used for secret image sharing in 2007. Kurihara et al

[125] [126] proposed a (3, n) and a generalized (t, n) secret sharing scheme

based on simple XOR operations. Efficient and ideal threshold scheme

based on XOR is proposed by Lv et al [140] in 2010. Secret sharing using

number theoretic schemes are also developed based on Chinese Reminder

Theorem (CRT) [2] [105] [146]. They are not widely used because of the

computational complexity. The proposed scheme make use of simple

number theoretic concept and the extended Euclid’s algorithm [129].

4.2 Proposed Secret Sharing Schemes

The proposed system suggests a method of storing and retrieving private

data in a secure and effective manner. The private data include personal

information, sensitive information or unique identification etc. The data

storage may be a public information storage such as cloud storage server.

We propose number theoretic and XOR based scheme for efficient

implementation of secret sharing schemes. It can be used for secure

storage and retrieval of secret information. Since it does not involve any

encryption, the PKI needed for key management can be avoided. Section

4.2.1 contains the detailed description of the secret sharing algorithm

using number theoretic concept. Section 4.2.2 explains the XOR based

schemes. The algorithms mentioned below are designed to share a file one

byte at a time. The scheme can be used to share both textual data and

images.
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4.2.1 Schemes Based On Number Theory

In this section, the proposed secret sharing schemes which are based on

number theoretic concepts are explained in detail. Two threshold secret

sharing schemes of order (2, 3) and (2, 4) are proposed. The Algorithm

4.1 is the (2, 3) secret sharing scheme. The retrieval algorithms depends on

which shares are used for the reconstruction and are given in Algorithms 4.2,

4.3, 4.4. A (2, 4) secret sharing scheme is mentioned in Algorithm 4.5. The

secret revealing algorithms corresponds to different combination of shares

are given in Algorithms 4.6, 4.7, 4.8, 4.10 and 4.11. These algorithms use

simple number theory concept. In order to find the inverse of a number,

extended Euclid’s algorithm [39] can be used. The share generation and

the secret revealing can be done with a complexity of O(n), where n is the

number of bytes to share. Table lookup can be used for faster performance.
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Algorithm 4.1: (2, 3) Secret Sharing: Number Theory

Input: Input file S to share.
Output: Three Shares S1, S2, S3 of same size as the original file.

1 Choose a field Zp where p = 257.
2 while not at end of the input file do

/* read a byte or pixel */

3 s=read byte(S)
4 if s == 0 then
5 s = 256
6 end

/* find cube root of s */

7 a = s171 (mod p)

8 r=random(257) /* r is a random number between 1-256 */

/* generate s1 ,the share1 pixel */

9 s1 = r × a (mod p)
10 if s1 == 256 then
11 s1 = 0
12 end

/* generate s2,the share2 pixel */

13 s2 = r2 × a (mod p)
14 if s2 == 256 then
15 s2 = 0
16 end

/* generate s3, the share3 pixel */

17 s3 = r4 × a (mod p)
18 if s3 == 256 then
19 s3 = 0
20 end

21 end
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Algorithm 4.2: (2, 3) Secret Revealing:Number Theory S1S2

Input: Shares S1 and S2

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S1 */

3 s1=read byte(S1)

/* read a byte or pixel from S2 */

4 s2=read byte(S2)

5 if s1 == 0 then
6 s1 = 256
7 end
8 if s2 == 0 then
9 s2 = 256

10 end

11 a = s2
1 × s

−1
2 (mod p)

12 s = a3 (mod p)

/* s is the secret data byte or pixel */

13 if s == 256 then
14 s = 0
15 end

16 end
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Algorithm 4.3: (2, 3) Secret Revealing:Number Theory S1S3

Input: Shares S1 and S3

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S1 */

3 s1=read byte(S1)

/* read a byte or pixel from S3 */

4 s3=read byte(S3)
5 if s1 == 0 then
6 s1 = 256
7 end
8 if s3 == 0 then
9 s3 = 256

10 end

11 s = s4
1 × s

−1
3 (mod p)

/* s is the secret data byte or pixel */

12 if s == 256 then
13 s = 0
14 end

15 end
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Algorithm 4.4: (2, 3) Secret Revealing:Number Theory S2S3

Input: Shares S2 and S3

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S2 */

3 s2=read byte(S2)

/* read a byte or pixel from S3 */

4 s3=read byte(S3)
5 if s2 == 0 then
6 s2 = 256
7 end
8 if s3 == 0 then
9 s3 = 256

10 end

11 a = s2
2 × s

−1
3 (mod p)

/* s is the secret data byte or pixel */

12 s = a3 (mod p)
13 if s == 256 then
14 s = 0
15 end

16 end
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Algorithm 4.5: (2, 4) Secret Sharing:Number Theory

Input: Input file S to share.
Output: Four Shares S1, S2, S3, S4 of same size as the original file.

1 Choose a field Zp where p = 257.
2 while not at end of the input file do

3 s=read byte(S) /* read a byte or pixel */

4 if s == 0 then
5 s = 256
6 end

7 r=random(257) /* r is a random number between 1-256 */

/* s1 is the share1 pixel */

8 s1 = r
9 if s1 == 256 then

10 s1 = 0
11 end

/* s2 is the share2 pixel */

12 s2 = r × s (mod p)
13 if s2 == 256 then
14 s2 = 0
15 end

/* s3 is the share3 pixel */

16 s3 = r2 × s (mod p)
17 if s3 == 256 then
18 s3 = 0
19 end

/* s4 is the share4 pixel */

20 s4 = r3 × s (mod p)
21 if s4 == 256 then
22 s4 = 0
23 end

24 end
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Algorithm 4.6: (2, 4) Secret Revealing:Number Theory S1S2

Input: Shares S1 and S2

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S1 */

3 s1=read byte(S1)

/* read a byte or pixel from S2 */

4 s2=read byte(S2)

5 if s1 == 0 then
6 s1 = 256
7 end
8 if s2 == 0 then
9 s2 = 256

10 end

11 s = s−1
1 × s2 (mod p)

12 if s == 256 then
13 s = 0
14 end

15 end
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Algorithm 4.7: (2, 4) Secret Revealing:Number Theory S1S3

Input: Shares S1 and S3

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S1 */

3 s1=read byte(S1)

/* read a byte or pixel from S3 */

4 s3=read byte(S3)

5 if s1 == 0 then
6 s1 = 256
7 end
8 if s3 == 0 then
9 s3 = 256

10 end
11 s = (s2

1)−1 × s3 (mod p)
12 if s == 256 then
13 s = 0
14 end

15 end
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Algorithm 4.8: (2, 4) Secret Revealing:Number Theory S1S4

Input: Shares S1 and S4

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S1 */

3 s1=read byte(S1)

/* read a byte or pixel from S4 */

4 s4=read byte(S4)

5 if s1 == 0 then
6 s1 = 256
7 end

8 if s4 == 0 then
9 s4 = 256

10 end

11 s = (s3
1)−1 × s4 (mod p)

/* s is the secret byte or pixel */

12 if s == 256 then
13 s = 0
14 end

15 end
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Algorithm 4.9: (2, 3) Secret Revealing:Number Theory S2S3

Input: Shares S2 and S3

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.
2 while not at end of the input files do

3 s2=read byte(S2) /* read a byte or pixel from S2 */

4 s3=read byte(S3) /* read a byte or pixel from S3 */

5 if s2 == 0 then
6 s2 = 256
7 end
8 if s3 == 0 then
9 s3 = 256

10 end

11 s = s2
2 × s

−1
3 (mod p)

12 if s == 256 then
13 s = 0
14 end

15 end
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Algorithm 4.10: (2, 4) Secret Revealing:Number Theory S2S4

Input: Shares S2 and S4

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.

2 while not at end of the input files do

/* read a byte or pixel from S2 */

3 s2=read byte(S2)

/* read a byte or pixel from S4 */

4 s4=read byte(S4)

5 if s2 == 0 then
6 s2 = 256
7 end
8 if s4 == 0 then
9 s4 = 256

10 end

11 s = sqrt(s3
2 × s

−1
4 (mod p))

/* s is the secret byte or pixel */

12 if s == 256 then
13 s = 0
14 end

15 end
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Algorithm 4.11: (2, 4) Secret Revealing:Number Theory S3S4

Input: Shares S3 and S4

Output: The original secret file S which is shared

1 Choose a field Zp where p = 257.
2 while not at end of the input files do

3 s3=read byte(S3) /* read a byte or pixel from S3 */

4 s4=read byte(S4) /* read a byte or pixel from S4 */

5 if s3 == 0 then
6 s3 = 256
7 end
8 if s4 == 0 then
9 s4 = 256

10 end
11 s = s3

3 × (s2
4)−1 (mod p)

12 if s == 256 then
13 s = 0
14 end

15 end

4.2.2 Schemes based on XOR

An (n, n) scheme using XOR can easily be setup by creating n − 1

random shares of same size as the secret and the nth share as the XOR of

these n − 1 shares and the secret k. The secret can be revealed by simply

XOR ing of all these shares. In this, we propose two schemes based on

XOR. An ideal (2, 3) scheme where the size of the share is same as that of

the secret is mentioned in Algorithm 4.16 and a non ideal scheme which is

also not perfect is mentioned in Algorithm 4.12. In this the size of the

share is reduced to half. The scheme can be used when the storage

become a constraint. The secret sharing and revealing can be done in time

O(n), where n is the number of bytes to share. The secret reconstruction

corresponds to different combination of shares in the non ideal scheme are
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mentioned in Algorithms 4.13, 4.14 and 4.15. The ideal schemes are

mentioned in Algorithms 4.17, 4.18 and 4.19.

Algorithm 4.12: (2, 3) XOR secret sharing-non ideal

Input: Secret file S to share.
Output: Three shares S1, S2 and S3 of half the size of S.

1 while not at end of the input files do

2 s=read byte(S) /* read a byte or pixel from S */

3 bs=binary(s) /* bs is the binary representation of s */

/* odd bits of bs taken as share1 data nibble s1 */

4 s1=odd bits(bs)

/* even bits of bs taken as share2 data nibble s2 */

5 s2=even bits(bs)

/* share3 nibble is formed by xoring s1 and s2 */

6 s3 = s1 ⊕ s2

7 end

Algorithm 4.13: (2, 3) XOR secret revealing S1S2-non ideal

Input: Share S1 and S2

Output: The original secret file S which is shared.

1 while not at end of the input files do

2 s1=read byte(S1) /* read a byte or pixel from S1 */

3 s2=read byte(S2) /* read a byte or pixel from S2 */

4 s = intermix(s1, s2) /* intermix the bits of s1 and s2 to

construct the secret byte */

5 end
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Algorithm 4.14: (2, 3) XOR secret revealing S1S3-non ideal

Input: Share S1 and S3

Output: The original secret file S which is shared.

1 while not at end of the input files do

2 s1=read byte(S1) /* read a byte or pixel from S1 */

3 s3=read byte(S3) /* read a byte or pixel from S3 */

4 s2 = s1 ⊕ s3

/* intermix the bits of s1 and s2 to construct the

secret byte */

5 s = intermix(s1, s2)

6 end

Algorithm 4.15: (2, 3) XOR secret revealing S2S3-non ideal

Input: Share S2 and S3

Output: The original secret file S which is shared.

1 while not at end of the input files do

2 s2=read byte(S2) /* read a byte or pixel from S2 */

3 s3=read byte(S3) /* read a byte or pixel from S3 */

4 s1 = s2 ⊕ s3

5 s = intermix(s1, s2) /* intermix the bits of s1 and s2 to

construct the secret byte */

6 end
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Algorithm 4.16: (2, 3) XOR Ideal Secret Sharing

Input: Input file S to share.
Output: Three Shares SH1, SH2, SH3 of same size as the original

file.

1 while not at end of the input file do

2 s=read byte(S) /* read a byte or pixel */

3 r=random(257) /* r is a random number between 0-256 */

4 s1, s2=split two(s) /* split s into 2 nibbles */

5 r1, r2=split two(r) /* split r into 2 nibbles */

6 s0 = 0000 /* a dummy variable initialized to zero */

7 sh1 = s0⊕ r1||s2 ⊕ r2

/* sh1 is the share1 pixel and ’||’ is concatenation

operation */

8 sh2 = s1 ⊕ r1||s0 ⊕ r2

/* sh2 is the share2 pixel and ’||’ is concatenation

operation */

9 sh3 = s2 ⊕ r1||s1 ⊕ r2

/* sh3 is the share3 pixel and ’||’ is concatenation

operation */

10 end
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Algorithm 4.17: (2, 3) XOR Ideal Secret Recovery SH1, SH2

Input: Shares SH1 and SH2

Output: Original secret S that is shared

1 while not at end of the input files do

2 sh1=read byte(SH1) /* read a byte or pixel */

3 sh2=read byte(SH2)

4 x1, y1=split two(sh1) /* split a byte into 2 nibbles */

5 x2, y2=split two(sh2)
6 s1 = x1 ⊕ x2

7 s2 = y1 ⊕ y2

8 s = s1||s2

9 end

Algorithm 4.18: XOR Ideal Secret Recovery SH1, SH3

Input: Shares SH1 and SH3

Output: Original secret S that is shared

1 while not at end of the input files do

2 sh1=read byte(SH1) /* read a byte or pixel */

3 sh3=read byte(SH3)

4 x1, y1=split two(sh1) /* split a byte into 2 nibbles */

5 x3, y3=split two(sh3)
6 s2 = x1 ⊕ x3

7 s1 = y1 ⊕ y3 ⊕ s2

8 s = s1||s2

9 end
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Algorithm 4.19: (2, 3) XOR Ideal Secret Recovery SH2, SH3

Input: Shares SH2 and SH3

Output: Original secret S that is shared

1 while not at end of the input files do

2 sh2=read byte(SH2) /* read a byte or pixel */

3 sh3=read byte(SH3)

4 x2, y2=split two(sh2)/* split a byte into 2 nibbles */

5 x3, y3=split two(sh3)
6 s1 = y2 ⊕ y3

7 s2 = x2 ⊕ x3 ⊕ s1

8 s = s1||s2

9 end

4.3 Conclusion

The confidentiality, availability and performance requirement of storage

system is addressed in this chapter. Secret sharing based solutions provides

information theoretic security and also provides trust and reliability. We

developed simple XOR and number theory based schemes which are easy

to implement. This will greatly improve the performance of the system. The

storage requirement can also be reduced if we use scheme where the share

size is only half the size of the original secret. The schemes mentioned in

this chapter are simple and easy to implement when sharing data with third

party servers. A (2, 3) or (2, 4) threshold secret sharing schemes are the best

choices. The cost factor can also be reduced by using the non ideal XOR

based scheme, where the share size is reduced to half but the information

theoretic security is compromised. A secret vector which indicates the share

number that each server stores can be kept secret. A simple substitution

or transposition cipher can also be used as a preprocessing step before
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sharing the file for additional security. The use of these schemes can be

further explored in other areas where the threshold required is as specified

in the algorithm. We have used this schemes for efficient sharing of secret

images also.
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Chapter 5

POB and Generalized Secret

Sharing

5.1 Introduction

In the previous chapters we have seen the secret sharing schemes having

threshold and generalized access structures. This chapter explores the

construction of an efficient secret sharing scheme realizing the general

access structure. An efficient (n, n) threshold secret sharing scheme is

proposed by Sreekumar et al in [202] using a specially designed number

system called Permutation Ordered Binary (POB) number system. We

are combining this scheme with the concept of cumulative arrays

proposed by Ito et al in [107], to build secret sharing scheme with more

generalized access structure.

In this chapter we give a brief introduction about general access

Some results of this chapter are included in the following paper.

Binu V P, Sreekumar A : ”Generalized Secret Sharing using Permutation Ordered Binary

System”,Sapience’14 - International Conference on Security and Authentication ISBN:

978-93-83459-32-2
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structure based secret sharing schemes, more specifically cumulative

arrays are dealt in detail. The POB construction and (n, n) secret sharing

using POB is explained next. The chapter ends with the algorithm of the

proposed secret sharing scheme using POB and cumulative arrays.

There exist several monotone access structure for which there is no

threshold scheme possible. Benaloh and Leichter had proven in [15] that,

there are access structures that cannot be realized using threshold scheme.

So secret sharing based on arbitrary monotone increasing access structure

was a challenge. Several researchers address this problem and introduced

secret sharing schemes realizing the general access structure. The most

efficient and easy to implement scheme was Ito, Saito, Nishizeki’s [107]

construction. It is based on Shamir’s scheme. The idea is to distribute

shares to each authorized set of participants using multiple assignment

scheme where more than one share is assigned to a participant if he belongs

to more than one minimal authorized subset.

The disadvantage with multiple share assignment scheme is that the

share size depends on the number of authorized set that contain Pj . A

simple optimization is to share the secret S only for minimal authorized

sets. Still this scheme is inefficient. Benaloh and Leichter [15] developed a

secret sharing scheme for an access structure based on monotone formula.

This generalizes the multiple assignment scheme of Ito, Saito and

Nishizeki [107]. The idea is to translate the monotone access structure

into a monotone formula. Each variable in the formula is associated with

a trustee in P and the value of the formula is true if and only if the set of

variables which are true corresponds to a subset of P which is in the

access structure. This formula is then used as a template to describe how

a secret is to be divided into shares.

Brickell [36] developed some ideal schemes for general access structure

based secret sharing using vector spaces. Stinson [204] introduced a

monotone circuit construction based on monotone formula and also the
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construction based on public distribution rules. Benaloh’s scheme was

generalized by Karchmer and Wigderson [116]. They showed that if an

access structure can be described by a small Monotone Span Program

(MSP), then it has an efficient Linear Secret Sharing Scheme (LSSS). The

proposed generalized secret sharing scheme make use of cumulative arrays

for the generalized secret sharing which is given in the next section.

5.2 Cumulative Secret Sharing Scheme

Cumulative secret sharing schemes provide a secret sharing capability using

an arbitrary access structure. Cumulative schemes were first introduced by

Ito et al [107] and then used by several authors to construct a general

scheme for arbitrary access structures. Simmons [199] proposed cumulative

map, Jackson [109] proposed the notion of cumulative array. Ghodosi et al

[80] introduced simple and more efficient scheme. The scheme also having

the capabilities to detect cheaters. Generalized cumulative arrays in secret

sharing is introduced by Long [139].

Definition 5.2.1. Let A be a monotone authorized access structure

on a set of participants P. A cumulative scheme for the access structure A
is map α : P −→ 2S , where S is some set such that for any A ⊆ P ,⋃

Pi∈A
α(Pi) = S

The scheme is represented using |P| × |S| array M = [mij ], where row

i of the matrix M is indexed by pi ∈ P and column j of the matrix M is

indexed by an element sj ∈ S, such that mij = 1 if and only if Pi is given

sj , otherwise mij = 0.

Definition 5.2.2. Let A be an access structure over the set of

participants P = {P1 . . . , Pn} and Amin = {A1, . . . ,Al} is the set of all
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minimal set of A. Then the incident array of A is a l × n Boolean

matrix IA = [aij ] defined by,

aij =

1 if Pj ∈ Ai
0 if Pj /∈ Ai

for 1 6 j 6 n and 1 6 i 6 l

Definition 5.2.3. Let Acmax = {B1, . . . , Bm} be the set of all maximal

unauthorized sets. The cumulative array CA for A is an n ×m matrix

CA = [bij ], where each row of the matrix is indexed by a participant Pi ∈ P
and each column is indexed by a maximal unauthorized set Bj ∈ Acmax, such

that the entries bij satisfy the following:

bij =

0 if Pi ∈ Bj
1 if Pi /∈ Bj

for 1 6 i 6 n and 1 6 j 6 m.

It is noted that following theorem is true and proved in [80].

Theorem 5.2.1. If αi is the ith row of the cumulative array CA , then

αi1 + · · ·+ αit =
−→
1 if and only if {Pi1, . . . , Pit} ∈ A

cumulative scheme of [107] and [46] uses Shamir’s threshold [190]

scheme, where as Blakley’s scheme is used in [200] and [109]. A simple

scheme using cumulative array and Karnin-Greene-Hellman threshold

scheme [117], proposed by Ghodosi et al [80] is given below.

The Scheme

Let Amin = A1 + · · · + A` be a monotone access structure over the set of

participants P = P1, . . . , Pn. Let Acmax = B1 + · · · + Bm be the set of
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maximal unauthorized subsets. The share distribution and reconstruction

phases are given below.

Share Distribution Phase

1. The dealer D constructs the n×m cumulative array CA = [bij ], where

n is the number of participants and m is the cardinality of Acmax.

2. D used Karnin-Greene-Hellman (m,m) threshold scheme [117] to

generate m shares Sj , 1 6 j 6 m.

3. D gives shares Sj privately to participant Pi if and only if bij = 1.

Secret Reconstruction Phase

1. The secret can be recovered by every set of participants in the access

structure using the modular addition over Zq.

Example 5.2.1. Let n = 4 and Amin = {{1, 2}, {3, 4}}. In this case,

we obtain that Acmax = {{1, 3}, {1, 4}, {2, 3}, {2, 4}} and m = 4.

The cumulative array for the access structure A is,

CA =


0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0

 .
The Dealer then construct a (4, 4) threshold scheme and generate four

shares s1, s2, s3, s4 such that the secret S = s1 + s2 + s3 + s4. The share

s1 is then assigned to P2 and P4. The share s2 is then given to P2 and

P3. The share s3 is given to P1 and P4. Finally the share s4 is given to P1

and P3. Let S1, S2, S3 and S4 be the shares of each participant P1, P2, P3

119



Chapter 5. POB and Generalized Secret Sharing

and P4 respectively. Then S1 = {s3, s4}, S2 = {s1, s2}, S3 = {s2, s4} and

S4 = {s1, s3}. it is noted that participant P1 and P2 can together have all

the 4 shares to reconstruct the secret S. Same is the case for the participant

P3 and P4. This shows that only the authorized set of participants can

obtain the shared secret S. The scheme is also perfect.

5.3 Permutation Ordered Binary(POB) System

The POB system is developed by Sreekumar et al [202] for the efficient

distributed storage and retrieval of secret data using secret sharing

technique. The share generation and reconstruction involves simple XOR

operations. The share generation algorithm is linear and depends on the

size of the secret. The shares generated are 1 bit less than the secret, but

still provides the same level of security and hence a reduction in storage

space can be achieved. The POB system can be used to implement an

(n, n) threshold secret sharing scheme very efficiently. In this section we

will give a brief introduction about the POB system construction and the

(n, n) secret sharing scheme using POB. More details about the POB

system can be found in [201].

5.3.1 POB system construction

The POB number system is very special in which all the numbers in the

range 0, . . . ,

(
n
r

)
− 1, are represented by a binary string

B = bn−1bn−2 . . . b0, of length n and having exactly r 1s and is

represented as POB(n, r), where n and r are positive integers and n > r.

Each POB number B is associated with a value V (B) and is computed

as a sum of the positional values of each bit bj in the number. The positional

values of each bit is computed as
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bj .

(
j
pj

)
, where, pj =

j∑
i=0

bi ,

and the value V (B) represented by the POB-number B is,

V (B) =
n−1∑
j=0

bj .

(
j
pj

)
(5.1)

The POB representation is unique and it can be proved that, since

exactly

(
n
r

)
such binary strings exist, each number will have a distinct

representation. Each POB number represented using binary POB(n, r) will

have a unique value V (B) computed as per equation 5.1. The POB number

is denoted by the suffix ’p’, in order to distinguish it from a binary number.

Example 5.3.1. POB(9, 4) = 100101010p be a POB number having

9 bits and 4 ones. Its value V (B) is computed as follows

V (B) =

(
8

4

)
+

(
5

3

)
+

(
3

2

)
+

(
1

1

)
V (B) = 70 + 10 + 3 + 1 = 84

There exist efficient algorithm to convert POB value into

corresponding POB number. The following algorithm will generate the

POB number from the given POB value.
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Algorithm 5.1: Convert POB value to POB number

Input: n, r and V (B)-The value of the POB number B
Output: The POB(n, r) number B = bn−1bn−2 . . . b0 corresponds to

the value V (B)

1 let j = n and temp = V (B)
2 for k = r down to 1 do
3 repeat
4 j = j − 1

5 p =

(
j
k

)
if temp > p then
temp = temp− p
bj = 1

else
bj = 0

end if
6 until bj == 1;

7 end

The POB number system developed have great potential for secret

sharing. Each POB number is considered as a balanced string which

contains same number of ones and zeros. These balanced strings are useful

for sharing images where each pixel will have uniform code as share. The

POB system can be used to develop an (n, n) secret sharing scheme very

efficiently, which is explored in the next section.
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5.3.2 (n, n) secret sharing scheme using POB

It is noted that efficient (n, n) schemes are the building blocks of secret

sharing schemes having more generalized monotone access structure. There

are several proposals for generalized access structure based secret sharing

using (n, n) threshold secret sharing scheme. Karnin et al [117] developed

an unanimous consent scheme which is used in the Benaloh’s and Leichter

scheme [15]. Ito et al [107] used Shamir’s (n, n) threshold scheme. POB

system can be used for developing an efficient (n, n) scheme which is secure

and reliable. The scheme is perfect and also the POB numbers are balanced

strings. They always contains same number of ones and zeros.

The secret sharing algorithm takes a secret of size 8 bits and expands

it to 9 bits by adding an extra bit at random position r. Algorithm 5.3

explains this procedure. The secret sharing scheme uses POB(9, 4)

scheme and produces POB numbers of size 9 bits with 4 ones in it. The

value V (B) corresponds to each POB number B is computed and is used

as the share value, which is only 7 bits in size. The details of share

generation is given in the Algorithm 5.2. The secret reconstruction

technique is mentioned in Algorithm 5.4. The input POB values are

converted to POB numbers using the Algorithm 5.1. The original secret

K can be easily reconstructed using simple XOR operation and also the

extra bit at position r can be easily removed. This random location is

computed based on one of the POB number selected i.e., A2. The random

location r is computed as, r =
⌈
V (A2)+1

14

⌉
. The POB value V (A2) will

have value in the range [1..125]. So r will take values in the range [1..9].
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Algorithm 5.2: (n, n) Secret Sharing using POB

Input: A single byte string K = K1K2K3 . . .K8.
Output: n shares S1, S2, . . . , Sn of length 7 bits each

1 Choose n− 2, POB(9, 4)-numbers randomly Ai, 2 6 i 6 n− 1.

2 Let r =
⌈
V (A2)+1

14

⌉
/* The input string K is expanded to 9 bits by inserting

an extra bit at position r using expand algorithm. */

3 T = expand(K)
4 Let W = T ⊕A2 ⊕A3 ⊕ . . .⊕An−1

/* Compute the bits of A1 using W */

5 noOfOne = 0
6 for i = 1 to 9 do

if Wi == 1 then
noOfOne = noOfOne+ 1
if noOfOne is odd then
A1[i] = 1

else
A1[i] = 0

end if
end if

7 end
8 Randomly assign the remaining null bits of A1 to 0 or 1

/* Finally A1 consists of four 1s and five 0s */

9 An = W ⊕A1

/* generate the n shares */

10 for i = 1 to n do
11 Si = V (Ai).
12 end
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Algorithm 5.3: expand algorithm

Input: binary string of 8 bits-K
Output: string of 9 bits-T

1 Compute the binary string T = T1T2 . . . T9

2 for i=0 to 8 do
3

Ti =


Ki, if i < r
Ki−1, if i > r
0, if i = r and K is even parity
1, if i = r and K is odd parity

4 end
5 return T

Algorithm 5.4: (n, n) POB secret recovery

Input: n shares S1, S2, . . . ,Sn of length 7 bits each.
Output: The secret K = K1K2K3 . . .K8.

1 Let A1, A2, . . . An be the POB-numbers corresponding to the shares
S1, S2, . . . , Sn respectively.

2 r =
⌈
S2+1

14

⌉
3 Compute T = A1 ⊕A2 ⊕A3 ⊕ . . .⊕An
4 Let T = T1T2 . . . T9

5 for i= 1 to 8 do
if i > r then
j = i+ 1

else
j = i

end if

Ki = Tj
6 end
7 The recovered secret is K = K1K2K3 . . .K8
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Example 5.3.2. Let us consider a (4, 4) threshold secret sharing

scheme. The secret to be shared is K = 10110110.

Randomly choose two POB(9, 4) numbers {A2, A3}.

A2 = 101100010 and

A3 = 010101001

Let the random number r =
⌈
V (A2)+1

14

⌉
=
⌈

102
14

⌉
= 8.

The secret K is expanded to 9 bits string T as per the Algorithm 5.3

T = 101101110

W = T ⊕A2 ⊕A3

W = 10110111⊕ 101100010⊕ 010101001

W = 010100101

Now we will compute A1 using the step 6 of the Algorithm 5.2

A1 = ∗1 ∗ 0 ∗ ∗1 ∗ 0

randomly fill rest of the bits so that there will be 4 ones and 5 zeros

A1 = 110010100

Now we will compute A4

A4 = W ⊕A1

A4 = 010100101⊕ 110010100 = 100110001
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The shares are V (A1), V (A2), V (A3) and V (A4)

S1 = 113 = 1110001

S2 = 101 = 1100101

S3 = 48 = 0110000

S4 = 86 = 1010110

Secret Recovery

The secret can be recovered by using simple XOR operation. From the

shares, the POB value can be found which is then converted into POB

numbers using the Algorithm 5.1.

Compute

T = A1 ⊕A2 ⊕A3 ⊕A4

T = 110010100⊕ 101100010⊕ 010101001⊕ 100110001

T = 101101110

Deleting the 8th bit, we get secret as

K = 10110110

5.4 Proposed Generalized Secret Sharing Scheme

The proposed scheme make use of (n, n) scheme using POB and

cumulative arrays to efficiently share a secret according to a generalized

access structure. The detailed algorithm for secret sharing according to

the generalized access structure is given in 5.5. The secret reconstruction

is mentioned in the Algorithm 5.6.
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Algorithm 5.5: Generalized Secret Sharing using POB

Input: Access structure corresponds to a secret sharing scheme.
Output: Shares for each participants corresponds to the given

access structure.

1 Find the maximal unauthorized set Acmax corresponds to the given
access structure.

2 The dealer D, constructs the n×m cumulative array CA = [bij ],
where n is the number of participants and m is the cardinality of
Acmax.

3 D uses (m,m) POB scheme to generate m shares Sj , 1 6 j 6 m.
4 D gives shares Sj privately to participant Pi if and only if bij = 1.

Algorithm 5.6: Secret Reconstruction using POB

Input: Shares corresponds to the participants.
Output: Shared secret corresponds to the authorized set or error.

1 From the shares generate the POB number.
2 The secret can be reconstructed by XORing the shares corresponds

to an authorized set of participant.
3 For an unauthorized set the algorithm gives an error else the shared

secret Kis returned.

One of the issue with general access structure based secret sharing

scheme is the number of shares each participant has to maintain. The

storage become a major constraint here. For every eight bytes of secret

one byte of storage requirement is saved by using the POB number

system based threshold secret sharing. The secret reconstruction needs

only simple XOR operation. The operations performed in the POB, that

is bit expansion, conversion of POB number to POB value and vice versa
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can be performed in time proportional to number of bytes in the secret

values. This makes the scheme more suitable for cumulative array based

generalized secret sharing compared with Benaloh’s and Leichter scheme

[15] and Ito et al [107] scheme.

5.5 Concluding Remarks

In this chapter we have considered a secret sharing scheme realizing the

general access structure. The share size is a major concern in the design

of generalized secret sharing scheme. The share size grows exponentially in

many cases. We have proposed a scheme with cumulative arrays and a (n, n)

threshold scheme using POB. The POB system has a great potential for

secret sharing. The representation is unique and also efficient. In the POB

based threshold scheme the share size is small and also the secret generation

and reconstruction can be easily done by simple XOR operation. An 8 bit

secret can be shared with a share of 7 bit size. The scheme is not ideal

but the probability of guessing the share reduces as the size of the secret

to be shared increases. For sharing a key of size 64 bits only 56 bits are

used. Combining this with the cumulative array scheme is a good choice for

secret sharing based on generalized access structure. There is a possibility

of 126 shares corresponds to a single byte secret. Thus the probability of

guessing the share is 1/126. As the size of the secret grows, this probability

reduces. For a k byte secret the probability reduces to (1/126)k.
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Chapter 6

Multi Secret Sharing

6.1 Introduction

There are several situations in which more than one secret is to be shared

among participants. As an example, consider the following situation

described by Simmon [199]. There is a missile battery and not all of the

missiles have the same launch enable code. We have to devise a scheme

which will allow any selected subset of users to enable different launch

code. The problem is to devise a scheme which will allow any one or any

selected subset of the launch enable codes to be activated in this scheme.

This problem could be trivially solved by realizing different secret sharing

schemes, one for each of the launch enable codes. But this solution is

clearly unacceptable since each participant should remember too much

information. What is really needed is an algorithm such that the same

pieces of private information could be used to recover different secrets.

Some results of this chapter are included in the following paper.

Binu V P, Sreekumar A : “An Epitome of Multi Secret Sharing Schemes for

General Access Structure.”, International Journal of Information Processing, 8(2), 13-

28, 2014.ISSN : 0973-8215.
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One common drawback of secret sharing scheme is that they are all one-

time schemes. That is once a qualified group of participants reconstructs

the secret K by pooling their shares, both the secret K and all the shares

become known to everyone and there is no further secret. In other words,

the share kept by each participant can be used to reconstruct only one

secret.

Karnin, Greene and Hellman [117] in 1983 mentioned the multiple secret

sharing scheme where threshold number of users can reconstruct multiple

secrets at the same time. Alternatively the scheme can be used to share a

large secret by splitting it into smaller shares. Franklin et al [72] in 1992

used a technique in which the polynomial-based single secret sharing is

replaced with a scheme, where multiple secrets are kept hidden in a single

polynomial. They also considered the case of dependent secrets in which

the amount of information distributed to any participant is less than the

information distributed with independent schemes. Both the schemes are

not perfect. They are also one time threshold schemes. That is, the shares

cannot be reused.

Blundo et al [28] in 1993 considered the case in which m secrets are

shared among participants in a single access structure Γ in such a way

that any qualified set of participants can reconstruct the secret. But any

unqualified set of participants knowing the value of number of secrets might

determine some ( possibly no ) information on other secrets. Jackson et al

[110] in 1994 considered the situation in which there is a secret Sk associated

with each subset of k participants and Sk can be reconstructed by any

group of t participants in k (t 6 k). That is each subset of k participants

is associated with a secret which is protected by a (t, k)-threshold access

structure. These schemes are called multi-secret threshold schemes. They

came up with a combinatorial model and optimum threshold multi secret

sharing scheme. Information theoretic model similar to threshold scheme is
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also proposed for multi-secret sharing. They have generalized and classified

the multi-secret sharing scheme based on the following facts.

• Should all the secrets be available for potential reconstruction during

the lifetime of the scheme or should the access of secrets be further

controlled by enabling the reconstruction of a particular secret only

after extra information has been broadcast to the participants.

• Whether the scheme can be used just once to enable the secrets or

should the scheme be designed to enable multiple use.

• If the scheme is used more than once then the reconstructed secret

or shares of the participants is known to all other participants or it

is known to only the authorized set.

• The access structure is generalized or threshold in nature.

In 1994 He and Dawson [93] proposed the general implementation of

multistage secret sharing. The proposed scheme allows many secrets to be

shared in such a way that all secrets can be reconstructed separately. The

implementation uses Shamir’s threshold scheme and assumes the existence

of a one way function which is hard to invert. The public shift technique is

used here. A t−1 degree polynomial f(x) is constructed first as in Shamir’s

scheme. The public shift values are di = zi − yi, where zi = f(xi). The yi’s

are the secret shares of the participant. These yi’s are then send to the

participants secretly. For sharing the next secret h(yi) is used, where h is

the one way function. The secrets are reconstructed in particular order,

stage by stage and also this scheme needs kn public values corresponds to

the k secrets. The advantage is that each participant has to keep only one

secret element and is of the same size as any shared secret.

In 1995 Harn [89] shows an alternative implementation of multi stage

secret sharing which requires only k(n − t) public values. The
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implementation become very attractive especially when the threshold

value t is very close to the number of participants n. In this scheme an

(n − 1) degree polynomial f(x) is evaluated at (n − t) points and are

made public. Any set of t participants can combine their shares with the

(n − t) public shares to interpolate the degree (n − 1) polynomial.

Multiple secrets are shared with the help of one way function as in He and

Dawson scheme.

The desirable properties of a particular scheme depends on both the

requirements of the application and also the implementation. Several

multi secret threshold schemes and schemes based on general access

structure are developed by the research community. In this chapter we

only explore some of the important constructions of multi-secret sharing

scheme using general access structure. We then propose a multi secret

sharing scheme realizing the general access structure, which is based on

Shamir’s scheme and hardness of discrete logarithm problem. The scheme

is simple and easy to implement. The proposed scheme has many

practical applications in situations where the participants set, access rules

or the secret itself change frequently. When new participants are included

or participants leave, there is no need of issuing new shares. Such

situation often arise in key management, escrowed system etc.

6.2 Cachin’s Scheme

A computationally secure secret sharing scheme with general access

structure, where all shares are as short as the secret is proposed by

Christian Cachin [40] in 1995. The scheme also provides capability to

share multiple secrets and to dynamically add participants on-line

without having to redistribute new shares secretly to the current

participants. These capabilities are achieved by storing additional

authentic information in a publicly accessible place, which is called a
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noticeboard or bulletin board. This information can be broadcast to the

participants over a public channel. The protocol gains its security from

any one-way function. The construction has the following properties.

• All shares must be transmitted and stored secretly once for every

participants and are as short as the secret.

• Multiple secret can be shared with different access structure requiring

only one share per participant for all secrets.

• Provides the ability for the dealer to change the secret after the shares

have been distributed.

• The Dealer can distribute the shares on-line. When a new

participant is added and the access structure is changed, already

distributed shares remain valid. Shares must be secretly send to the

new participants and the publicly readable information has to be

changed.

Let the secret K be an element of finite Abelian Group G =< G,+ >. The

basic protocol to share a single secret is as follows.

1. The Dealer randomly chooses n elements S1, S2, . . . , Sn from G

according to the uniform distribution and send them secretly to the

participants over a secret channel.

2. For each minimal qualified subset X ∈ Γ0, the Dealer computes

TX = K − f(
∑

x:Px∈X
SX)

and publishes T = {TX |X ∈ Γ0} on the bulletin board.

In order to recover the secret K, a qualified set of participants Y proceeds

as follows.
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1. The members of Y agree on a minimal qualified subset X⊆Y .

2. The members of X add their shares together to get VX =
∑

x:Px∈X SX

and apply the one-way function f to the result.

3. They fetch TX from the bulletin board and compute K = TX+f(VX).

The shares of the participants in X are used in the computation to

recover the secret K. For the basic scheme where only one secret is

shared, the shares do not have to be kept secret during this computation.

However for sharing multiple secrets the shares and the result of their

addition have to be kept secret.

In order to share multiple secrets K1,K2, . . . ,Kh with different access

structures Γ1,Γ2, . . . ,Γh among the same set of participants P, the Dealer

has to distribute the private shares Si only once but prepares

T 1, T 2, . . . , T h for each secret. The single secret sharing scheme cannot be

applied directly for multi secret sharing because it is not secure. If a

group of participants X qualified to recover both K1 and K2 then any

group Y ∈ Γ1 can obtain K2 as

K2 = T 2
X + T 1

Y + f(VY )− T 1
X

To remedy this deficiency, the function f is replaced by a family F = fh

of one-way functions so that different one-way functions are employed for

different secrets. The following protocol is used to share m secrets.

1. The Dealer randomly chooses n elements S1, S2, . . . , Sn from G and

send them securely to the participants as shares.

2. For each secretKh to share ( with h = 1, . . . ,m ) and for each minimal

qualified subset X ∈ Γh0 , the Dealer computes

T hX = Kh − fh(
∑

x:Px∈X
Sx)
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and publishes T h = {T hX |X ∈ Γh0} on the bulletin board.

In order ro recover some secret Kh, a set of participants Y ∈ Γh proceeds

as follows.

1. The members of Y agree on a minimal qualified subset X⊆Y .

2. The members of X add their shares together to get VX =
∑

x:Px∈X SX

and apply the one-way function fh to the result.

3. They fetch T hX from the bulletin board and compute Kh = T hX +

fh(VX).

The scheme does not demand a particular order for the reconstruction of

the secrets as in He and Dawson scheme. The required family of functions

F can be easily be obtained from f by setting fh(x) = f(h + x), when

h is represented suitably in G. Because different one-way function fh is

used for each secret, it is computationally secure. But the shares have to

be protected from the eyes of other participants during the reconstruction.

Otherwise these participants could subsequently recover other secrets they

are not allowed to know. Therefore the computation of fh(VX) should be

done with out revealing the secret shares.

In many situations, the participant of a secret sharing scheme do not

remain the same during the entire life-time of the secret. The access

structure may also change. In this scheme, it is assumed that the changes

to the access structure are monotone, that is participants are only added

and qualified subsets remain qualified. The scheme is not suitable for

access structures which are non-monotonic. Removing participants is also

an issue which is not addressed. In multi-secret sharing, the shares must

be kept hidden to carry out the computation. Cachin suggest that

computations involved in recovering K could be hidden from the

participants using a distributed evaluation protocol proposed by
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Goldreich et al [83]. For access to a predetermined number of secrets in

fixed order, a variant of one-time user authentication protocol of Lamport

[130] could be used.

6.3 Pinch’s Scheme

The Cachin’s scheme does not allow shares to be reused after the secret has

been reconstructed. A distributed computation sub protocol is proposed

using one way function. But it allows the secret to be reconstructed in a

specified order. Pinch [169] in 1996 proposed a modified algorithm based on

the intractability of the Diffie-Hellman problem in which arbitrary number

of secrets can be reconstructed without having to redistribute new shares.

Let M be a multiplicative group in which the Diffie-Hellman problem

is intractable. That is given elements g, gx and gy in M , it is

computationally infeasible to obtain gxy. This is called Computational

Diffie Hellman Problem. This implies the intractability of the discrete

logarithm problem. If the discrete logarithm problem can be solved then

the Diffie-Hellman problem can also be solved. Suppose f : M =⇒ G is a

one-way function, where G be the additive group modulo some prime p

and M be the multiplicative group to the same modulus, which will be

cyclic of order q. The protocol proceeds as follows:

1. The Dealer randomly chooses secret shares Si, as integers coprime

to q, for each participant Pi and send them through a secure

channel. Alternatively Diffie-Hellman key exchange can be used

using the group M to securely exchange Si.

2. For each minimal trusted set X ∈ Γ, the Dealer randomly chooses gX

to be a generator of M and computes

TX = K − f
(
g
∏
x∈X Sx

X

)
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and publish (gX , TX) on the notice board.

In order to recover the secret K, a minimal trusted set X = P1, . . . , Pt, of

participants comes together and follow the protocol mentioned below.

1. Member P1 reads gX from the notice board and computes gS1
X and

passes the result to P2.

2. Each subsequent member Pi, for 1 < i < t, receives g
S1···Si−1

X and

raises this value to the power Si to form

VX = g
∏t
i=1 Si

X = g
∏
x∈X Sx

X

3. On behalf of the group X, the member Pt reads TX from the notice

board and can now reconstruct K as K = TX + f(VX).

If there are multiple secrets Ki to share, it is now possible to use the

same one way function f , provided that each entry on the notice board

has a fresh value of g attached. There is a variant proposal which avoids

the necessity for the first participant to reveal gS1 at the first step. The

participant P1 generates a random r (mod q) and passes the result of grS1

to P2. The participant Pt will pass grS1···St
X back to P1. P1 can find w such

that rw ≡ 1 (mod q) and raises grS1···Sn
X to the power w to form

VX = g
∏t
i=1 Si

X = g
∏
x∈X Sx

X

Ghodosi et al [77] showed that Pinch’s scheme is vulnerable to cheating

and they modified the scheme to include cheating prevention technique. In

Pinch’s scheme a dishonest participant Pi ∈ X may contribute a fake share

S
′
i = αSi, where α is a random integer modulo q. Since every participant of

an authorized set has access to the final result g
S1,··· ,S′i,··· ,St
X , the participant

Pi can calculate the value(
g
S1,··· ,S′i,··· ,St
X

)α−1

= gS1,··· ,Si,··· ,St
X = g

∏
x∈X Sx

X = VX
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and hence obtain the correct secret, where as the other participants will

get an invalid secret.

The cheating can be detected by publishing gVXX corresponds to the

every authorized set X in the initialization step by the Dealer. Every

participants x ∈ X can verify whether gVXX = g
V ′X
X , where V ′X is the

reconstructed value. However this cannot prevent cheating or cheaters can

be identified. The cheating can be prevented by publishing extra

information on the notice board. Let C =
∑

x∈X g
Sx
x . For each authorized

set X, the Dealer also publishes CX = gCX . At the reconstruction phase,

every participant Pi ∈ X computes gSix and broadcasts it to all

participants in the set X. Thus every participant can computes C and

verifies CX = gCX . If the verification fails, then the protocol stops. If there

exist a group of collaborating cheaters, they can cheat in the first stage.

Yeun et al [222] proposed a modified version of the Pinch’s protocol which

identifies all cheaters regardless of their number, improving on previous

results by Pinch and Ghodosi et al.

6.4 RJH and CCH scheme

An efficient computationally secure on-line secret sharing scheme is

proposed by Re-Junn Hwang and Chin-Chen Chang [101] in 1998. In this

each participant hold a single secret which is as short as the shared secret.

They are selected by the participants itself, so a secure channel is not

required between the Dealer and the participants. Participants can be

added or deleted and secrets can be renewed with out modifying the

secret share of the participants. The shares of the participants is kept

hidden and hence can be used to recover multi secrets. The scheme is

multi use unlike the one time use multi secret sharing scheme.

In Cachin’s and Pinch’s schemes, the Dealer has to store the shadow

of each participant to maintain the on-line property. The Dealer storing

140



6.4. RJH and CCH scheme

the shares is an undesirable property in secret sharing scheme. This

scheme avoids the problem and provides great capabilities for many

applications. The scheme has four phases:initialization phase, construction

phase, recovery phase and reconstruction/renew phase.

Assume that there are n participants P1, P2, . . . , Pn, sharing a secret K

with the monotone access structure Γ = {γ1, γ2, . . . , γt}. In the initialization

phase the Dealer select two strong primes p, q and publishes N on the public

bulletin, where N is the multiplication of p and q. The Dealer also chooses

another integer g from the interval [N1/2, N ] and another prime Q which is

larger than N and publishes them. Each participant can select an integer

Si in the interval [2, N ] and computes Ui = gSi (mod N). Each participant

keeps Si secret and send the pseudo share Ui and the identifier IDi to the

Dealer. If certain different participant select same shadow, the Dealer asks

for new shadows or alternatively the Dealer can select the shares and send

to the participants securely. But this need a secure channel. Finally Dealer

publishes (IDi, Ui) of each participant Pi in the public bulletin.

In the construction phase the Dealer computes and publishes some

information for each qualified subset in access structure Γ. The

participants of any qualified subset γj can cooperate to recover the shared

secret K by using these information and the values generated from their

shadows in the recovery phase. The public information corresponds to

each qualified set is generated as follows.

• Randomly select an integer S0 from the interval [2, N ] such that S0

is relatively prime to p− 1 and q − 1.

• Compute U0 = gS0 (mod N) and U0 6= Ui for all i = 1, 2, . . . , n.

• Generate an integer h such that S0 × h ≡ 1 (mod φ(N)).

• Publish U0 and h on the public bulletin.
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• For each minimal qualified subset γj = Pj1, Pj2, . . . , Pjd of Γ0, the

Dealer computes public information Tj as follows.

• Compute

Hj = K ⊕ (US0
j1 mod N)⊕ (US0

j2 mod N) ⊕, . . . ,⊕(US0
jd mod N).

• Use d+1 points

(0, Hj), (IDj1, (U
S0
j1 mod N)), . . . , (IDjd, (U

S0
jd mod N)) to construct

a polynomial f(X) of degree d.

f(x) = Hj ×
d∏

k=1

(X − IDjk)/(−IDjk)+

d∑
l=1

[(PS0
jl mod N)× (X/IDjl)×

d∏
k=1
k 6=l

(X − IDjk)/(IDjl − IDjk)] (mod Q)

where d is the number of participants in qualified subset γj .

• Compute and publish Tj = f(1) on the public bulletin.

In the recovery phase participants of any qualified subset can cooperate

to recover the shared secret K as follows.

• Each participant gets (U0, h,N) from the public bulletin.

• Each participant Pij , computes and provides Sji
′

= U
Sji
0 (mod N),

where Sji
′

is the pseudo share of Pji. If S
′h
ji (mod N) = Uji, then

S
′
ji is the true shadow else it is false and the participant Pji is the

cheater.
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• Get Tj from the public bulletin and use d+ 1 points

(1, Tj), (IDj1, S
′
j1), . . . , (IDjd, S

′
jd) for Lagrange interpolation to

reconstruct the degree ‘d ’ polynomial f(X):

f(X) = Tj ×
d∏

k=1

(X − IDjk)/(1− IDjk)+

d∑
l=1

[(S
′
jl × (X − 1/IDjl − 1)×

d∏
k=1
k 6=l

(X − IDjk)/(IDjl − IDjk)] (mod Q)

• Compute Hj = f(0) and recover the secret

K = Hj ⊕ S
′
j1 ⊕ S

′
j2 ⊕ · · · ⊕ S

′
jd.

When new participants join the group, the access structure changes.

The Dealer then performs the construction phase and publish the new

public information. The older participants share remain the same. When

the participants dis-enrolled, the corresponding minimal qualified subset

should be deleted from the access structure. The shared secret should be

renewed for security consideration. Public information must be changed in

this case, but the rest of the authorized participants still hold the same

shadows. Changing the shared secret can also be done by modifying the

public values but the same shadows can be reused.

Adding a new subset can also be done easily. If the new qualified

subset contains an old minimal qualified subset in the access structure,

then nothing needs to be done. If the new access subset is a minimal

qualified subset of some old set, the old ones shall be deleted from the

access structure and the public information is updated according to the

new access structure. Canceling a qualified subset needs the shared secret

to be renewed. The public information corresponds to the rest of the
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qualified subset must be modified. The public information corresponds to

the canceled subset is of no use and is removed. It is noted that the

Dealer does not need to collect the shadows of all the participants to

reconstruct the secret sharing scheme again.

To share multiple secrets K1,K2, . . . ,Kn with the access structure

Γ1,Γ2, . . . ,Γn, each participant holds only one share Si for these n secrets.

For each shared secret Ki the Dealer select a unique Si0 and publishes the

corresponding hi, U0i. The Dealer also generate and publishes the

information Tij for each qualified subset γij in minimal access structure

Γi. The participants of each qualified subset γij in Γi can cooperate to

recover the shared secret Ki by performing the recovery phase.

6.5 Sun’s Scheme

In Pinch’s scheme high computation overhead is involved and also

sequential reconstruction is used in the recovery phase. In 1999 Sun [207]

proposed a scheme having the advantages of lower computation overhead

and parallel reconstruction in the secret recovery phase. The security of

the scheme is only based on one-way function not on any other intractable

problem.

Let f be a one way function with both domain and range G. The

following protocol is used to share m secrets K [h] with access structures

Γ[h] for h = 1, . . . ,m.

1. The Dealer randomly chooses n secret shares Si, . . . , Sn and send

them to the participants through a secret channel.

2. For every shared secret K [h] and for every minimal qualified subset

X ∈ Γ
[h]
0 , the Dealer randomly chooses R

[h]
X in G and computes

T
[h]
X = K [h] −

∑
x:Px∈X

f(R
[h]
X + Sx)
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and publishes H [h] = {(R[h]
X , T

[h]
X )|X ∈ Γ

[h]
0 } on the notice board.

In order to recover the secret K [h], a set of participants Y ∈ Γ[h] proceeds

as follows

1. The members of Y agree on a minimal qualified subset X ⊆ Y , where

X = {P1, . . . , Pt}.

2. Each member Pi reads R
[h]
X from the notice board and computes

f(R
[h]
X + Si) and send the result to Pt, who is designated as secret

re-constructor.

3. Pt receives f(R
[h]
X + Si), for 1 6 i 6 t− 1 and reconstructs the secret

K [h] = T
[h]
X +

∑t
i=1 f(R

[h]
X + Si).

Once the secret is reconstructed, it become public. f(R
[h]
X + Si) is unique

for every secret and every authorized set. Most of the implementations of

one way functions are based on permutations, substitution and XOR

operation. Therefore the computation is much faster than the

exponentiation. The step 2 of the reconstruction phase can proceed

parallely, where as in Pinch’s scheme the construction is sequential.

Cheating can be detected by putting additional information f(K [h]) on

the notice board for every shared secret. Any one can verify the

correctness of the computed secret. The scheme can also detect cheaters

by putting additional information C
[h]
X,i = f(f(R

[h]
X + Si)) for every secret

Kh, every authorized set X and for every participant Pi. The scheme is

dynamic. Participants or new access structure can be added by

distributing shares to the new participants and update public information

on the notice board. The previously distributed shares remain valid.

When some participants or some access structures need to be deleted, the

shared secret should be renewed. The Dealer only need to update the

information on bulletin board.
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6.6 Adhikari’s Scheme

An efficient, renewable, multi use, multi-secret sharing scheme for general

access structure is proposed by Angsuman Das and Avishek Adhikari [59] in

2010. The scheme is based on one way hash function and is computationally

more efficient. Both the combiner and the participants can also verify the

correctness of the information exchanged among themselves in this. The

scheme consist of three phases. The Dealer phase, pseudo-share generation

phase and the combiner’s phase.

Let P = {P1, P2, . . . , Pn} be the set of participants and S1, S2, . . . , Sk

be the k secrets to be shared by a trusted Dealer. Each secret is of size q

bits. ΓSi = {Ai1, Ai2, . . . , Ait} be the access structure corresponds to the

secret Si and Ail is the l’th qualified subset of the access structure of the

i’th secret Si

In the dealing phase, the Dealer D chooses a collision resistant one-

way hash function H, which takes as argument a binary string of arbitrary

length and produces an output a binary string of fixed length q, where q is

the length of each secret. The Dealer also choose randomly xα, the shares

of size q and send to the participants through a secure channel.

In the pseudo share generation phase, a pseudo share corresponds to

each secret and for each authorized set is generated from the participants

secret share in the following way

Sij = Si
⊕ ⊕

α:Pα∈Aij

H(xα ‖ il ‖ jm)


where il represent the l bit representation of the number of secret. i.e.,

l = blog2kc+1 and m = blog2tc+1, t is the maximum size of an authorized

subset among the access structures corresponds to different secrets. The

Dealer then publishes the values Sij , H(Si), H
2(xα ‖ il ‖ jm).
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In the combining phase, the participants of an authorized subset Aij of

ΓSi submit the pseudo share H(xα ‖ il ‖ jm). The pseudo share is then

XOR with Sij to get the secret Si by the combiner.

Si = Sij
⊕ ⊕

α:Pα∈Aij

H(xα ‖ il ‖ jm)


The combiner can verify the pseudo share given by the participant by

checking it with the public value H2(xα ‖ il ‖ jm). The participants can

check whether the combiner is giving them back the correct secret Si by

verifying it with the public value H(Si).

Adhikari and Roy [180] also proposed a similar scheme with

polynomial interpolation. In this scheme, for each authorized subset in the

access structure corresponds to a secret, a polynomial of degree m − 1 is

created with the constant term as the secret Si, where m is the number of

participants in the authorized subset.

fSiq (x) = Si + d
iq
1 x+ d

iq
2 x

2 + . . .+ d
iq
miq−1x

miq−1

For each participant P
iq
b ∈ A

Si
q in ΓSi , the Dealer compute pseudo share

U
iq
Pb

= h(x
P
iq
b

) ‖ il ‖ qm, where xi is the secret share of the participant and

i = 1, . . . , k; q = 1, . . . , l; b = 1, . . . ,m. The Dealer also computes B
iq
Pb

=

fSiq (ID
iq
b ). Finally the shift values are computed and published corresponds

to each secret and each authorized subset M
iq
Pb

= B
iq
Pb
− U iqPb .

In the reconstruction phase, the pseudo shares of authorized set of

participant can be added with the public information to obtain

B
iq
Pb

= fSiq (ID
iq
b ) = M

iq
Pb

+ U
iq
Pb

. The secret can be reconstructed by

interpolation using these m values.

Si =
∑

b∈{1,2,...,miq}

B
iq
Pb

∏
r∈{1,2,...,miq}r 6=b

−ID
P
iq
r

ID
P
iq
b

− ID
P
iq
r
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It is noted that the computational complexity is more in this case, compared

with the previous scheme.

6.7 An Efficient Multi Secret Sharing with

General Access Structure

The scheme is based on Shamir and the hardness of the Discrete

Logarithm Problem (DLP). The participant has to keep only a single

share for sharing multiple secret. The shares are generated by the

participants and send it to the Dealer. Hence there is no need for a secure

channel between the Dealer and the participant. The pseudo shares are

send to the Dealer and it is difficult to get the shares from the pseudo

shares because of the complexity of the discrete logarithm problem.

Shared secret, participants set and the access structures can be changed

dynamically without updating participants secret share. The degree of the

polynomial used in Shamir’s scheme is only one, so the computational

complexity is also less.

The proposed secret sharing have three phases.

1. Initialization

2. Secret Sharing

3. Secret Reconstruction

These phases are explained in detail.
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6.7.1 Initialization Phase

Let P = P1, P2, . . . , Pn be the set of participants. K1,K2, . . . ,Kk be the

set of secrets to be shared according to the access structure Γ1,Γ2, . . . ,Γk,

where Γi = {γi1, γi2, . . . , γit} is the access structure corresponds to the

secret Ki.

• Select two large prime p and q and let n = p× q.

• Select an integer g from [
√
n, n] such that g 6= p or g 6= q and is a

generator.

• Choose another prime m larger than n. The Dealer publishes g, n,m

on the public bulletin.

• Each participant randomly select an integer si from [2, n] as secret

share and compute psi = gsi (mod n).

• The pseudo shares psi are send to the Dealer, who will then publish

them in the public bulletin board.

6.7.2 Secret Sharing

In this phase, the Dealer will share the secrets corresponds to each access

structure by publishing the values in the bulletin board, which is used by

the participants to later reconstruct the secret.

• Dealer randomly select an integer s0i from [2, n] such that s0i is

relatively prime to φ(n) and compute ps0i = gs0i (mod n)

corresponds to each secret Ki.

• Find h0i such that s0i × h0i ≡ 1 (mod φ(n)).
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• Select an integer a from [1,m − 1] and construct a polynomial

fi(x) = Ki + a× x (mod m).

• Select t distinct random integers from di1, di2, . . . , dit from [1,m− 1]

to denote the t qualified sets in Γi.

• Compute fi(1) and for each subset γij = {P1j , P2j , . . . , Plj} compute

Hij = fi(dij)
⊕

pss0i1 (mod n)
⊕

pss0i2 (mod n)
⊕

. . .⊕
pss0il (mod n)

• The Dealer then publish

ps0i, h0i, fi(1), Hi1, Hi2, . . . ,Hit, di1, di2, . . . , dit

corresponds to each secret Ki and the access structure Γi.

• The Dealer also publishes F (Ki, dij) corresponds to each secret and

each authorized access set which can be used by the participant for

verification after the secret recovery, where F is a two variable one

way function.

6.7.3 Secret Reconstruction

The participants from any authorized subset (Γi) can reconstruct the secret

Ki as follows.

• If γij = {P1ij , P2ij , . . . , Plij} want to reconstruct Ki, each participant

compute xkij = ps0ski , k = 1, . . . , l. These values are then delivered to

the designated combiner.

• The combiner computes

fi(dij)′ = Hij

⊕
x1ij

⊕
x2ij

⊕
. . .
⊕

xlij
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Using fi(1), fi(dij)′ and dij ’s, he can reconstruct the polynomial and

hence recover the secret.

fi(x) = fi(1)× (x− dij)
1− dij

+ fi(dij)′ ×
(x− 1)

dij − 1

=
x× fi(1)− dij × fi(1)− x× f(dij)′+ f(dij)′

1− dij

• The shared secret Ki = fi(0).

• Each participant of the authorized set can exchange xij with other

participants in the group and each member can compute the secret

individually. This doesn’t need a specified combiner and it also avoids

the transmission of secret from the combiner to the participants.

• Each participant can verify the given xij by the other participants

and also the recovered secret by using the public values.

6.7.4 Analysis and Discussions

In the proposed scheme, the degree of the used Lagrange polynomial f(x)

is only 1 and we can construct f(x) very easily. The other operation is

just XOR operation which can also be computed very efficiently. Each

participant select his share and compute the pseudo share

psi = gsi (mod q). This avoids the computational quantity of the Dealer.

This also avoids the need for a secure channel.

The proposed scheme does not need special verification algorithm to

check whether each participant cheats or not. In the secret reconstruction

phase, the combiner can check whether xi is a true share by checking

xh0i
i = psi (mod m). That is xh0i

i = (ps0i)
si)h0i = (gs0ih0i)si = gsi = psi

(mod m). Each participant can verify the secret after recovery by

computing the two variable one way function F (Ki, dij) and compare the

result with the public value.
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Table 6.1: Comparison of multi secret sharing schemes

Properties
Cachin

[40]
Pinch
[169]

RJH CCH
[101]

Sun
[207]

Adhikari
[59]

Roy
[180]

Proposed
Scheme

share size same
as secret

Yes Yes Yes Yes Yes Yes Yes

use of one way
function

Yes Yes No Yes Yes Yes Yes

use of discrete
logarithm

No Yes Yes No No No Yes

use of
interpolation

No No Yes No No Yes Yes

shares remain
secret during
reconstruction

No Yes Yes Yes Yes Yes Yes

dealer knows
the share

Yes Yes No Yes Yes Yes No

shares can be
reused

No Yes Yes Yes Yes Yes Yes

dynamic No Yes Yes Yes Yes Yes Yes
verifiability No No Yes Yes Yes Yes Yes

In the reconstruction phase, each participant Pij in γij only provides

a public value xij and he does not have to reveal the secret share si. It is

difficult to get the secret share from the public value xij and psi, because the

discrete logarithm problem is hard to solve. The scheme is computationally

secure. The shares can be reused and hence the scheme is a multi use

scheme. The polynomial f(x) can be reconstructed only if two points are

known. The point (1, f(1)) is known publicly but the second point can

be obtained only by the authorized set of participants using their private

shares.

The important property of the proposed scheme is that the shared

secret, the participant set and the access structure can be changed
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dynamically without updating any participant’s secret shadow. In order

to update the secret, the Dealer need to create a new polynomial f(x)

and update f(1). If a new qualified set is to be added then Ht+1 and dt+1

need to be added. New participant can be added accordingly. The public

information corresponds to each modified authorized set must be

recomputed and the old information must be updated in the public

bulletin. Deleting a participant or deleting the authorized set containing

the participant needs, deleting the public information corresponding to

the access set. However for security reasons the secret also need to be

updated. The scheme has following important properties.

1. The scheme can share multiple secrets, each with a specified access

structure.

2. The participant has to hold only a single share in order to share

multiple secrets.

3. The size of the share is as short as the secret.

4. Participants select their secret shares and the Dealer need not know

the shares of the participants. This avoids the need of a secure

channel.

5. The scheme is multi use i.e., the participants can reuse the shares

after a secret is recovered.

6. Each participant can verify the shares provided by the others in the

recovery phase.

7. The Dealer can modify the secret or add new secret with out

modifying the participants secret shadow.

8. After the secret is recovered, the participants can verify the validity

of the recovered secret.
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9. The access structures can be dynamically modified. Only the public

values need to be modified in this case also.

The table 6.1 summarize and compares the important properties of

existing schemes and the proposed scheme.

6.8 Concluding Remarks

In this chapter we give a brief summary of the important constructions

for multi-secret sharing having threshold and generalized access

structures.We explore more on multi secret sharing realizing general

access structure. The important technique used for the constructions are

based on one way functions, discrete logarithm problem and Shamir’s

secret sharing technique. The schemes based on discrete logarithm

problem and hash functions provide only computational security because

the security depends on the computational complexity of these problems.

But for many of the cryptographic application with polynomial time

bounded adversary, the computational security is sufficient. For

maintaining the unconditional security, large number of shares must be

kept by the participant. The number of shares that must be kept is

proportional to the number of secret to be shared.

The public values in the bulletin board of each scheme is proportional

to the number of authorized subset in an access structure corresponds to

each key. There will be at least one public value corresponds to each

authorized subset in the access structure corresponds to a key. There are

also additional public parameters used for the security of the scheme. The

computational complexity depends on the complexity of the one way

function used or the modular exponentiation. But these operations can be

efficiently done in polynomial time. The most commonly used one way

functions like LFSR, MD5, SHA are all based on simple XOR,
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permutation and substitution operation. So these schemes can be

implemented in polynomial time. Modular exponentiation is time

consuming with large exponent but efficient algorithm exist for the fast

computation. The share generation and reconstruction in the Shamir’s

scheme, which uses polynomial interpolation can also be implemented

efficiently.

All the scheme mentioned assumes that the Dealer is a trusted person.

Cheating detection mechanisms are also proposed in some schemes with

the help of additional public parameters. The combiner can verify the

share submitted by the participants and the participant can also check

the reconstructed secret. However the security is computational. If the

computational problem is solved, the secret can be revealed by an

adversary. The mathematical model, security notions and computational

security for multi-secret sharing is proposed by Javier Herranz et al

[95] [96] in 2013.

The major concern in the multi-secret sharing is the large number of

public values and the computational complexity. Only computational

security can be achieved in all the schemes mentioned, where security

depends on the security of some computationally hard problem.

Multi-secret sharing schemes have found numerous application in

implementing authentication mechanisms, resource management in cloud,

multi policy distributed signatures, multi policy distributed decryption

etc.

In this chapter, we also give an efficient construction of a multi secret

sharing scheme with generalized access structure. The scheme is multi use

and hence the shares can be reused by the participants. The participant

select their secret shadows and the secret can be reconstructed by any

participant in the authorized subset. No secure channel is required because

the secrets or the secret shares are never send through the channel. The

scheme is also verifiable because each participant can verify the shares of the
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other participants during the reconstruction phase and also the participants

can verify the reconstructed secret. The shared secret, access structure or

the participants set can be dynamically modified with out modifying the

participants secret shadow. The scheme is also computationally efficient

and can be implemented easily.
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Chapter 7

Elliptic Curve and Pairing

7.1 Introduction

Over the past few decades Elliptic curve have found useful applications.

The curve offers rich and insightful structure, especially those defined over

a finite field. These curves are suitable for wide variety of applications in

cryptography. There is not much work done in the area of secret sharing,

where elliptic curve can be effectively utilized. In this chapter we explore

the fundamentals of elliptic curve and then an important construct called

Bilinear pairing, which can be effectively utilized to build secret sharing

schemes with several extended capabilities. Our aim in this section is to

summarize just enough of the basic theory of elliptic curve needed for secret

sharing applications. The readers may refer to books and survey articles to

learn the theory of elliptic curve in detail [23] [88] [119] [121] [147] [195]

[196]. Elliptic curve pairing and their applications are reviewed by Dutta

et al [67].

157



Chapter 7. Elliptic Curve and Pairing

7.2 Elliptic Curves

An elliptic curve is the set of solutions to an equation of the form

Y 2 = X3 +AX +B

Equations of this type are called Weierstrass equations after the

mathematician who studied them extensively. Two elliptic curves E1 and

E2 defined by the equations

E1 : Y 2 = X3 − 3X + 3 and E2 : Y 2 = X3 − 6X + 3

The plot of these curves are given in 7.1 and 7.2.

Figure 7.1: Elliptic Curve E1

Figure 7.2: Elliptic Curve E2
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An amazing feature of elliptic curve is that, we can take two points on

an elliptic curve and add them to produce a third point in a natural way.

The addition operation is visualized geometrically. If we connect two points

P and Q on the curve with a line L, it will intersect the curve at a third

point R. The reflection R′ of it will be the sum P+Q. The Figure 7.3 shows

elliptic curve point addition geometrically. If we add the point P = (a, b)

to its reflexion about the X-axis P ′ = (a,−b), the line L through these two

points will be a vertical line x = a and this line will intersect the curve at

two points. There is no third point of intersection. The solution for this is

to consider a point O that does not exist in the XY-plane, but we assume

that it lies on every vertical line. So

P + P ′ = O

.

It is also noted that, if we add the point P to O, we get back to P .i.e.,

P +O = P

.

So O acts like zero for elliptic curve addition, which is the identity

element in elliptic curve additive group.
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Figure 7.3: Elliptic Curve Point Addition

Definition 7.2.1. An elliptic curve E is the set of solutions to a

Weierstrass equation

E : Y 2 = X3 +AX +B

with an extra point O. The constant A and B must satisfy

4A3 + 27B2 6= 0

The addition law on E is defined in the following way. Let P and Q

be two points on E and let L be the line connecting P and Q. If P = Q

then L is a tangent to E at P . The intersection of E and L consist of three

points P,Q,R, counted with appropriate multiplicities and the assumption
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that O lies on every vertical line. If R = (a, b) , then the sum of P and Q

denoted by P +Q, is the reflection R′ = (a,−b) of R across X-axis.

If P = (a, b), then −P = (a,−b), which is the reflected point. Repeated

addition is represented as multiplication of a point by an integer. i.e.;

[k]P = P + P + P + · · ·+ P︸ ︷︷ ︸
k points

Similarly

[−k]P = −P − P − P − · · · − P︸ ︷︷ ︸
k points

The quantity ∆E = 4A3 + 27B2 is called the discriminant of E. When

∆E 6= 0, the cubic polynomial X3 + AX + B does not have any repeated

roots or we say that the curve E is smooth. i.e., E can be factored as

X3 +AX +B = (X − a1)(X − a2)(X − a3)

where a1, a2, a3 are distinct.

Theorem 7.2.1. Let E be an elliptic curve. Then the addition law on

E has the following properties.

1. P +O = O + P = P for all P ∈ E. ( Identity )

2. P + (−P ) = O for all P ∈ E. ( Inverse )

3. (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E. ( Associative)

4. P +Q = Q+ P for all P,Q ∈ E. (Commutative)

It is noted that, the addition law makes the points of E into an abelian

group. The proof of these laws can be found in [131] [195].

We can find explicit formulas for easy addition and subtraction of points

on an elliptic curve.
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Theorem 7.2.2. Let E be an elliptic curve

E : Y 2 = X3 +AX +B

and suppose we want to add two distinct points P1 = (x1, y1) and

P2 = (x2, y2). Let the line connecting P1 and P2 to be

L : Y = λX + C

The slope and y intercept of the line is given by

λ =


y2−y1
x2−x1 , if P1 6= P2.

3x21+A
2y1

, if P1 = P2.

C = y1 − λx1.

and let

x3 = λ2 − x1 − x2. and y3 = λ(x1 − x3)− y1.

Then P1 + P2 = (x3, y3)

• if P1 = O, then P1 + P2 = P2.

• if P2 = O, then P1 + P2 = P1.

• if x1 = x2 and y1 = −y2, then P1 + P2 = O.

Proof. The line L intersect the curve in three points. Let P3 = (x3, y
′
3)

be the third zero of L. Now substitute Y = λX +C into the equation of E

to obtain

(λX + C)2 = X3 +AX +B

Expanding this will give

f(X) = X3 − λ2X2 + (A− 2Cλ)X +B − C2 = 0
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x1, x2, x3 must be the roots of this equation, since they are the x co-

ordinates of P1, P2 and P3, which satisfy both the equation of the elliptic

curve and L = 0. Thus f(X) : (X − x1)(X − x2)(X − x3). Comparing the

coefficients of the X2 terms gives x1+x2+x3 = λ2. Hence x3 = λ2−x1−x2.

We can write y′3 = λx3 +C. So y′3 = λx3 + y1 − λx1. By taking the inverse

of y′3, i.e., −y′3, we will obtain y3 = λ(x1 − x3)− y1.

7.3 Elliptic Curves Over Finite Fields

Elliptic curves whose points have coordinates in a finite field Fp are the

best candidates for cryptography. We can define an elliptic curve over Fp
by the equation

E : Y 2 = X3 +AX +B

where A,B ∈ Fp with 4A3 + 27B2 6= 0 and p > 3. We then look for points

(x, y) ∈ Fp satisfying the elliptic curve equation. i.e.,

E(Fp) = {(x, y) : x, y ∈ Fp which satisfy y2 = x3 +Ax+B} ∪ {O}

.

Example 7.3.1. Let us consider an elliptic curve

E : Y 2 = X3 + 3X + 8 over the field F13.

The points on this curve can be found out by putting in all possible

values of X and then check whether Y is quadratic residue or not.

Corresponding to each X value, there will be two possible values for Y . So

there can be a maximum of 2p+ 1 points on the curve including O. In the

example given, E(F13) consist of nine points.

E(F13) = {O, (1, 5), (1, 8), (2, 3), (2, 10), (9, 6), (9, 7), (12, 2), (12, 11)}

.
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The theory of geometry developed for the field R can be used for Fp
using the algebraic geometry. If P = (x1, y1) and Q = (x2, y2) are the two

points then the sum R = P +Q = (x3, y3), can be obtained by applying the

formulas mentioned in addition theorem 7.2.2. The division operation can

be done by finding the inverse of the number in the field. All operations are

done in Fp.

Theorem 7.3.1. [99] Let E be an elliptic curve over Fp and let P and

Q be points on E(Fp).

(a) The elliptic curve addition algorithm applied to P and Q yields a point

R = P +Q in E(Fp).

(b) The addition law on E(Fp) satisfies all the properties listed in the

theorem 7.2.1. It is noted that the addition law makes E(Fp) into a

finite group.

The congruence X3 + AX + B ≡ 0 (mod p) is quadratic residue 50%

of the time or else it is a non residue or 0 ( happens only once). Hasse’s

theorem provides a bound on the number of points on an elliptic curve.

Theorem 7.3.2. (Hasse) Let N be the number of points in an elliptic

curve ( #E(Fp)) defined over Fp. Then

N − (p+ 1) 6 tp with tp satisfying |tp| 6 2
√
p

The quantity tp is called the trace of Frobenius for E(Fp). Hasse’s

theorem gives a bound for number of points on the elliptic curve. However

it will not provide a method for calculating the number of points. The

method of substituting each value for X and checking X3 + AX + B is a

square or not against a table take O(p) time, so is very inefficient. An

algorithm developed by Schoof [188] can be used to find #E(Fp) in

O((logp)6) time. Elkies and Atkin improved this algorithm later and is
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known as SEA algorithm [187] [188]. Satoh [185] developed a reasonably

efficient algorithm for counting points on curve in the field of form pe,

where p is a small prime and e is moderately large.

7.4 Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem (ECDLP) is computationally

harder than the Discrete Logarithm Problem (DLP) in F∗p. Let E(Fp) be

an elliptic curve defined over Fp. Given two points Q and P , the attacker

has to find out n such that Q = nP . i.e., the attacker has to find out how

many times P must be added to itself in order to get Q.

Q = P + P + P + · · ·+ P︸ ︷︷ ︸
n additions on E

= nP

Definition 7.4.1. Let E be an elliptic curve over the finite field Fp and

let P and Q be the points in the E(Fp). Then the Elliptic Curve Discrete

Logarithm Problem (ECDLP) is the problem of finding an integer n such

that Q = nP . The integer n is represented as

n = logP (Q)

We refer n, the elliptic curve logarithm of Q with respect to P .

There are situations, where n is not defined i.e., Q is not a multiple of P .

But in the cryptographic applications, we choose P and compute Q = nP .

So n = logP (Q) always exist. If s is the order of P such that sP = O. The

value of n will be in Z/sZ. The ECDL satisfies

logP (Q1 +Q2) = logP (Q1) + logP (Q2)

.
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7.5 Hardness of ECDLP

The collision algorithms take approximately
√
N steps in order to find a

collision among N objects. But they require creation of one or more lists of

size approximately
√
N . The baby step-giant step algorithm is a collision

algorithm that is used to solve the discrete logarithm problem for the field

Fp in
√
p time. The index calculus method solves the DLP in FP much

more rapidly. But for elliptic curve groups, collision algorithm is the fastest

known method. There is no index calculus algorithm known for ECDLP

and indeed, there are no general algorithms known that solve ECDLP in

less than O(p) steps. This is the reason elliptic curves groups are found

useful at present.

In order to solve the ECDLP, the attacker can build two lists of points

by randomly choosing integers a1, a2, . . . , ar and b1, b2, . . . , br between 1

and p.

List− 1 : a1P, a2P, a3P, . . . , arP

List− 2 : b1P +Q, b2P +Q, b3P +Q, . . . , brP +Q

As soon as a collision or match is found between two lists then ECDLP

can be solved. If some aiP = bjP +Q, then Q = (ai− bj)P , which provides

the solution. If r is larger than
√
p i.e.; r ≈ 3

√
p, then there is a very good

chance of collision. The collision algorithm usually requires a lot of storage

for the two lists. Pollard’s ρ method can be used for storage-free collision

algorithm with the same running time.

There are some primes p for which the DLP in Fp is comparatively easy.

For example if p−1 is a product of small primes, then the Pohling-Hellman

algorithm [170] gives a quick solution to DLP in Fp∗. In a similar way,

there are some elliptic curve and some primes for which ECDLP in E(Fp)
is comparatively easy. These curves must be avoided while building secure

crypto systems.
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7.6 Computing nP , Double and Add Algorithm

In cryptographic application, we need to compute nP . If n is large then

computing nP by P, 2P, 3P, 4P, . . . , nP is not practical. The most efficient

way to compute nP is similar to computing ge using square and multiply

algorithm. Since the operation on elliptic curve involves point addition, we

call it as square and add. The underlying technique is as follows.

First write n in binary form

n = n0 + n1.2 + n2.2
2 + n3.2

3 + · · ·+ nr.2
r with n0, n1, . . . , nr ∈ {0, 1}

Algorithm 7.1: Double and Add Algorithm for Elliptic Curve.

Input: Point P ∈ E(Fp) and n > 1

Output: The new point R = nP ∈ E(Fp)

1 Set Q = P and R = O
2 while n > 0 do

3 if n ≡ 1( mod 2) set R = R+Q

4 set Q = 2Q and bn = n/2c
5 end

6 Return the point R, which equals nP .

Next we compute

Q0 = P, Q1 = 2Q0, Q2 = 2Q1, . . . , Qr = 2Qr−1

Each Qi is twice the previous Qi−1

Qi = 2iP

Computing each Qi needs a doubling and a total of r doubling. Finally the

computation of nP needs additional r additions also.

nP = n0Q0 + n1Q1 + n2Q2 + · · ·+ nrQr
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If we consider a point addition as a point operation in E(Fp). Then

computing nP needs 2r point operations in E(Fp). Since n > 2r, the

computation takes not more than 2log2(n) point operation to compute

nP . The double and add algorithm is given in Algorithm 7.1.

7.7 Elliptic Curve Over Fpk

The binary is the most suitable language for computers. Using an elliptic

curve modulo 2 is the preferred one. But it is noted that E(F2) contains

at most five points, so E(F2) is not suitable for the security applications.

Field containing 2k elements is a preferred choice. It is noted that for every

prime power pk, there exist a field Fpk with pk elements. We can consider

an elliptic curve whose Weierstrass equation has coefficients in a field Fpk ,

and then consider the points having coordinates in Fpk . Hasse’s theorem is

applicable in this more generalized settings also.

Theorem 7.7.1. (Hasse). Let E be an elliptic curve over Fpk . Then

#E(Fpk) = pk + 1− tpk with tpk satisfying |tpk | 6 2pk/2

This shows that elliptic curve over F2k is a suitable choice for

cryptographic application. But the discriminant ∆ = −16(4A3 + 27B2) is

always zero. The solution is to use a more generalized Weierstrass

equations to define the elliptic curve.

Definition 7.7.1. An Elliptic curve E is the set of solutions to a

generalized Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

together with the point O. The coefficients a1, a2, . . . , a6 should satisfy

∆ 6= 0, to ensure that the curve is non singular. ∆ is defined as
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∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

where

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

The addition law can be applied here also. But the reflection map

(x, y)→ (x,−y) is replaced by

(x, y)→ (x,−y − a1x− a3)

If P1 = (x1, y1) and P2 = (x2, y2) are the two points with P1 6= ±P2.

Then the sum P3 = (x3, y3), where

x3 = λ2 + a1λ− a2 − x1 − x2 with λ =
y2 − y1

x2 − x1

If P1 = P2 then the x coordinates of P3 is

x3 =
x4 − b4x2 − 2b6x− b8
4x3 + b2x2 + 4b4x+ b6

There are lot of computational advantage when working with elliptic

curves defined over F2k . For security reasons k should be prime. If k is

composite then for j|k, there exist a subfield Fpj , which can be used to

speed up computations by compromising security. The use of an elliptic

curve in F2, with coordinates of the points chosen from F2k allows to use

Frobenius map instead of doubling map, which provides significant gain in

efficiency.
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Definition 7.7.2. The Frobenius map τ is the map from the field Fpk
to itself defined by the rule

τ : Fpk → Fpk , α→ αp

It is noted that the Forbenius map preserves addition and

multiplication.

τ(α+ β) = τ(α) + τ(β)

and

τ(α.β) = τ(α).τ(β)

The multiplication rule is straight forward

τ(α.β) = (α.β)p = αp.βp = τ(α).τ(β)

For p = 2 the addition law is easy

τ(α+ β) = (α+ β)2 = α2 + 2.α.β + β2 = α2 + β2 = τ(α) + τ(β)

Let P = (x, y) ∈ E(F2k) be a point on E, with coordinates in some larger

field F2k . The Forbenius map is defined by applying τ to each coordinate.

τ(P ) = (τ(x), τ(y)) ∈ E(F2k)

If P and Q are the elements of E(F2k) ,then

τ(P +Q) = τ(P ) + τ(Q)

This shows that Forbenius map is a group homomorphism of E(F2k)

to itself. The computation of nP mentioned in section 7.6 needs

approximately log n doubling and 1
2 log n additions. A refinement which

uses negative powers of 2 reduces the time to approximately logn
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doubling and 1
3 log n additions. In both the cases, the number of doubling

remains log n. Kolbitz suggested an idea to replace doubling map with the

Forbenius map. This lead to large saving in time because the computation

of τ(P ) takes comparatively less time than computing 2P .

7.8 Points of Finite Order on Elliptic Curves

The points of finite order on an elliptic curve are called torsion points. They

play a major role in forming the elliptic curve groups.

Definition 7.8.1. Let m > 1 be an integer. A point P ∈ E satisfying

mP = O is called point of order m in the group E. The set of points of

order m is denoted by

E[m] = {P ∈ E : [m]P = O}

These points are called points of finite order or torsion points.

It is noted that E[m] forms an additive subgroup of E. If the coordinates

of points are chosen from a particular field K. Then we will represent it

as E(K)[m]. If we add two points P and Q in E[m] then P +Q is also in

E[m]. Similarly −P is also in E[m]. The group of points of order m has

a simple structure if the coordinates of the points are chosen from a large

field.

Proposition 7.1. Let m > 1 be an integer.

(a) Let E be an elliptic curve over Q or R or C. Then

E(C)[m] ∼= Z/mZ× Z/mZ

is a product of two cyclic group of order m.
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(b) Let E be an elliptic curve over Fp, and if p does not divide m. Then

there exist a value for k such that

E(Fpjk)[m] ∼= Z/mZ× Z/mZ, for all j > 1

Remark 7.8.1. If l is prime and K is any field. Then

E(K)[l] = Z/lZ× Z/lZ

even if m is not prime

E(K)[m] = Z/mZ× Z/mZ

We have to consider E[m] as a 2-dimensional vector space over the field

having basis P1, P2. Every point P in E[m] can be represented as a linear

combination of P1 and P2. i.e., P = aP1 + bP2, for a unique choice of

coefficients a, b ∈ Z/mZ. Finding a and b given P1, P2 and P is as hard as

ECDLP.

7.9 Rational Functions and Divisors on Elliptic

Curves

Rational functions on an elliptic curve is related to its zeros and poles.

Consider a rational function of a single variable. A rational function is a

ratio of polynomials.

f(X) =
a0 + a1X + a2X

2 + · · ·+ anX
n

b0 + b1X + b2X2 + · · ·+ bnXn

The polynomial can be factored completely if we allow complex

numbers. So the rational function f(X) can be factored as

f(X) =
a(X − α1)e1(X − α2)e2 · · · (X − αr)er
b(X − β1)d1(X − β2)d2 · · · (X − βs)ds
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The numbers α1, α2, . . . , αr are called zeros of f(X) and the numbers

β1, β2, . . . , βs are called the poles of f(X). The exponents e1, e2, . . . , er are

the associated multiplicities of zeros and the exponents d1, d2, . . . , ds are

the associated multiplicities of poles. We can keep track of the zeros and

poles of f(X) and their multiplicities by defining the divisor of f(X), which

is the formal sum.

div(f(X)) = e1[α1] + e2[α2] + · · ·+ er[αr]− d1[β1]− d2[β2]− · · · − dr[βr]

In a similar fashion, if E is an elliptic curve

E : Y 2 = X3 +AX +B

and if f(X,Y ) is a rational function of two variables, then there are points

on E where the numerator of f vanishes and also there are points where

the denominator of f vanishes. That is f has zeros and poles on E. We can

assign multiplicities to the zeros and poles, so f has a divisor.

div(f) =
∑
P∈E

np[P ]

The coefficients nP are integers and only finitely many of the nP are

non zero, so div(f) is a finite sum.

Example 7.9.1. Suppose E defined by the cubic equation factors as

X3 +AX +B = (X − α1)(X − α2)(X − α3)

Then the points P1 = (α1, 0), P2 = (α2, 0) and P3 = (α3, 0) are points of

order 2. i.e., 2P1 = 2P2 = 2P3 = O. The divisor of Y is equal to

div(Y ) = [P1] + [P2] + [P3]− 3[O]
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In general , we can define divisor on E to be any formal sum

D =
∑
P∈E

nP [P ] with nP ∈ Z and nP = 0 for all but finetely many P

The degree of a divisor is the sum of its coefficients

Deg(D) =
∑
P∈E

nP

The sum of the divisor is

Sum(D) =
∑
P∈E

nPP

The following theorem says which divisors are divisors of functions and

to what extent the divisor of a function determines the function.

Theorem 7.9.1. [99] Let E be an elliptic curve

1. Let f and f ′ be rational functions on E. If div(f)=div(f ′), then there

is a non zero constant c such that f = cf ′

2. Let D =
∑

P∈E nP [P ] be a divisor on E. Then D is the divisor of a

rational function on E, if and only if

Deg(D) = 0 and Sum(D) = O

In particular, if a rational function on E has no zeros or no poles, then it

is a constant.

It is noted that, if P ∈ E[m] is a point of order m. Then m[P ] = O, so

the divisor

m[P ]−m[O]

satisfies the conditions of the above theorem. Hence there is a rational

function fP (X,Y ) on E satisfying

div(fP ) = m[P ]−m[O]

174



7.10. Bilinear Pairing on Elliptic Curve

Example 7.9.2. Consider the case when m = 2. The points of order

2 has Y coordinate 0. If P = (α, 0) ∈ E[2], then the function fP = X − α
satisfies

div(X − α) = 2[P ]− 2[O]

7.10 Bilinear Pairing on Elliptic Curve

Bilinear Pairing on elliptic curve is an important construct which provides

solution to several security problems. There are lot of examples of bilinear

pairing in linear algebra. The dot product is a bilinear pairing on the vector

space Rn. The pairing takes two vectors v and w from Rn and return a

number.

β(v, w) = v.w = v1w1 + v2w2 + · · ·+ vnwn

It is linear in the sense that for any vectors v1, v2, w1, w2 and any real

numbers a1, a2, b1, b2, it satisfies the relation

β(a1v1 + a2v2, w) = a1β(v1, w) + a2β(v2, w)

β(v, b1w1 + b2w2) = b1β(v, w1) + b2β(v, w2)

Another bilinear pairing is the determinant map on R2. Thus if v = (v1, v2)

and w = (w1, w2), then

δ(v, w) = det

(
v1 v2

w1 w2

)
= v1w2 − v2w1

is a bilinear map. The determinant map is alternating, which means that,

if we switch the vectors, the value changes sign. This also implies that

δ(v, v) = 0.

δ(v, w) = −δ(w, v)
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The bilinear pairing on elliptic curve is similar to this. They take two

points on an elliptic curve as input and gives as output a number. It satisfies

the bilinear property also

β(a1P1 + a2P2, Q) = a1β(P1, Q).a2β(P2, Q)

β(Q, b1P1 + b2P2) = b1β(Q,P1).b2β(Q,P2)

where P1, P2 and Q are the points on elliptic curve and a1, a2, b1, b2 are

the elements of the field selected.

Bilinear pairing on elliptic curve have number of important

cryptographic applications in practice. Most of these applications need

finite fields of prime power order Fpk .

7.11 The Weil Pairing

The Weil pairing (em) takes as input a pair of points P,Q ∈ E[m] and gives

as output an mth root of unity. i.e., em(P,Q)m = 1. The bilinearity of the

Weil pairing is represented by the equations

em(P1 + P2, Q) = em(P1, Q)em(P2, Q)

em(P,Q1 +Q2) = em(P,Q1)em(P,Q2)

Definition 7.11.1. Let P,Q be points of order m in E i.e.,

P,Q ∈ E[m]. Let fP and fQ be rational functions on E satisfying

div(fP ) = m[P ]−m[O] and div(fQ) = m[Q]−m[O]

The Weil Pairing of P and Q is the quantity

em(P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)
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where S is any point in E and S /∈ {O, P,−Q,P − Q}. This ensures

that em(P,Q) is always defined and is non zero. The value of em(P,Q) does

not depend on the choice of fP , fQ and S

The Weil pairing has many useful properties and are useful for number

of cryptographic applications.

Theorem 7.11.2.

1. The Weil pairing will return a value which is the mth root of unity

em(P,Q)m = 1 for all P,Q ∈ E[m]

2. The Weil pairing will satisfy the bilinear property. i.e., for all

P, P1, P2, Q,Q1, Q2 ∈ E[m]

em(P1 + P2, Q) = em(P1, Q)em(P2, Q)

em(P,Q1 +Q2) = em(P,Q1)em(P,Q2)

3. The Weil pairing is alternating, which means that

em(P,Q) = em(Q,P )−1 and em(P, P ) = 1 for all P,Q ∈ E[m]

4. The Weil pairing is non degenerate, which means that

em(P,Q) = 1 for all Q ∈ E[m], then P = O

If we allow coordinates of points in a sufficiently large field, then E[m] is

like a 2-dimensional vector space over the field Z/mZ. If we choose P1, P2 ∈
E[m] be the basis, then any point P can be written as a linear combination

of these basis

P = aPP1 + bPP2 for unique aP , bP ∈ Z/mZ

The glory of Weil pairing is that it can be computed very efficiently

without expressing P and Q in term of the basis for E[m]. Expressing a

point in terms of the basis is complicated than solving ECDLP.
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7.12 Miller Algorithm to Compute Weil Pairing

Victor Miller [148] developed an algorithm using double-and-add method

to efficiently compute the Weil Pairing. The key idea is to rapidly evaluate

certain functions with specified divisors.

Theorem 7.12.1. Let E be an elliptic curve and P = (xP , yP ), Q =

(xQ, yQ) are the non zero points on the curve.

(a) Let λ be the slope of the line connecting P and Q. If P = Q, it is the

slope of the tangent at P . If the line is vertical λ =∞. A function gP,Q

on E is defined as follows:

gP,Q =


y−yp−λ(x−xP )
x+xP+xQ−λ2 if λ 6=∞,

x− xP if λ =∞.

Then

div(gP,Q) = [P ] + [Q]− [P +Q]− [O]

(b) Miller’s Algorithm.

Let m > 1 and write the binary expansion of m as

m = m0 +m12 +m222 + . . .+mn−12n−1

with mi ∈ {0, 1} and mn−1 6= 0. The algorithm returns a function fP

whose divisor satisfies

div(fP ) = m[P ]− [mP ]− (m− 1)[O]
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Algorithm 7.2: Miller’s Algorithm

Input: An Elliptic Curve point P of order m

Output: A function fP with div(fP ) = m[P ]−m[O]

1 Set T = P and f = 1

2 for i = n− 2 : 0 do

3 Set f = f2.gT,T

4 Set T = 2T

5 if mi = 1 then

6 set f = f.gT,P

7 set T = T + P

8 end

9 end

10 Return the value f

Proof. a) Let y = λx + v be the line through P and Q or the tangent

line at P if P = Q. The line intersect E at the three points P,Q and

−(P +Q), so

div(y − λx− v) = [P ] + [Q] + [−P −Q]− 3[O]

vertical lines intersect E at points and their negatives, so

div(x− xP+Q) = [P +Q] + [−P −Q]− 2[O]

It is noted that

gP,Q =
y − λx− v
x− xP+Q

(7.1)

has the divisor

[P ] + [Q]− [P +Q]− [O]

According to the Addition theorem xP+Q = λ2 − xP − xQ. Let

yP = λxP + v so v = yP − λxP . Replacing the values of v and xP+Q in

179



Chapter 7. Elliptic Curve and Pairing

equation 7.1 will result

gP,Q =
y − λx− yP + λxP
x− λ2 + xP + xQ

gP,Q =
y − yP − λ(x− xP )

x+ xP + xQ − λ2

If λ =∞, then P +Q = O, so gP+Q have divisor [P ] + [−P ]− 2[O].

b) The Millers algorithm is similar to double-and-add algorithm. The

function gT,T in step 3 and gT,P in step 6 have divisors

div(gT,T ) = 2[T ]− [2T ]− [O] and div(gT,P ) = [T ] + [P ]− [T + P ]− [O]

Using induction on this relation, it can be proved that fP is a function

with divisor m[P ]−m[O]

Let P ∈ E[m], then the Miller algorithm can be used to compute a

function fP with divisor m[P ]−m[O]. If R is any point on E, then we can

compute fP (R) by evaluating the functions gT,T (R) and gT,P (R) during

the execution of the algorithm. It is noted that for computing Weil pairing,

we have to evaluate the function at each of the specified point in the given

formula

em(P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)

One can compute fP (Q + S) and fP (S) simultaneously for efficiency,

and similarly for fQ(P − S) and fQ(−S). Further savings in computations

are available using the Tate pairing, which is a variant of the Weil pairing

that we discuss next.
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7.13 The Tate Pairing

The Weil pairing on elliptic curve is defined over any field. For elliptic

curves over finite fields there is another efficient pairing is defined called

Tate pairing. It is computationally more efficient than Weil pairing.

Definition 7.13.1. Let E be an elliptic curve over Fq and let l be a

prime. If P and Q are the two points on E(Fq) such that P ∈ E(Fq)[l] and

Q ∈ E(Fq). Choose a rational function fP on E with

div(fP ) = l[P ]− l[O]

Then the Tate pairing of P and Q is the quantity

τ(P,Q) =
fP (Q+ S)

fP (S)
∈ F∗q

where S is any point in E(Fq) such that fP (Q+S) and fP (S) are defined

and is non zero. If q ≡ 1 (mod l), then the modified Tate pairing of P and

Q to be

τ̂(P,Q) = τ(P,Q)(q−1/l) =

(
fP (Q+ S)

fP (S)

)(q−1/l)

∈ F∗q

Theorem 7.13.2. Let E be an elliptic curve over Fq and l be a prime

such that

q ≡ 1 (mod l) and E(Fq)[l] ∼= Z/lZ

Then the modified Tate pairing gives a well-defined map

τ̂ : E(Fq)[l]× E(Fq)[l]→ F∗q
The Tate pairing satisfies the following properties:

Bilinearity

τ̂(P1 + P2, Q) = τ̂(P1, Q)τ̂(P2, Q) and

τ̂(P,Q1 +Q2) = τ̂(P,Q1)τ̂(P,Q2)
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Nondegeneracy

τ̂(P, P ) is a primitive lth root of unity for all nonzero P ∈ E(Fq)[l]

( if x is the primitive lth root of unity, then xl = 1)

Miller’s algorithm can be used to compute the function fP and the Tate

pairing efficiently. An efficient implementation of Tate pairing is given in

[76].

7.14 MOV Algorithm

The Menezes, Okamoto and Vanstone (MOV) algorithm [145] reduces the

ECDLP in E(Fp) to DLP problem in F∗
pk

. Let E be an elliptic curve over

Fp, and let m > 1 be an integer such that p - m. The curve has m2 points

of order m, but their coordinates may lie in a larger field. We can define

the term embedding degree as follows.

Definition 7.14.1. Let E be an elliptic curve over Fp and let m > 1

be an integer with p - m. The embedding degree of E with respect to m is

the smallest value of k such that

E(Fpk)[m] ∼= Z/mZ× Z/mZ

If m is a large prime, then the embedding degree have following

characterization, which is suitable for cryptographic applications.

Proposition 7.2. Let E be an elliptic curve over Fp and let l 6= p be

a prime. If E(Fp) contains a point of order l, then the embedding degree of

E with respect to l is given by:

(i) The embedding degree of E is 1.(This cannot happen if l >
√
p+ 1).

(ii) If p ≡ 1 (mod l), then the embedding degree is l.
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(iii) If p 6≡ 1 (mod l), then the embedding degree is the smallest value of

k > 2 such that

pk ≡ 1 (mod l)

The significance of the embedding degree k is that, Weil pairing can be

used to embed ECDLP in E(Fp) into the DLP in the field Fpk .

Let E be an elliptic curve over Fp. If l >
√
p + 1 be a large prime.

Let k be the embedding degree and the DLP in F∗
pk

is solvable. Then if

P,Q ∈ E(Fp) such that Q = nP , the MOV algorithm can be used to solve

ECDLP and find n.

Algorithm 7.3: MOV Algorithm

Input: Elliptic Curve points P and Q such that Q = nP .
Output: The sultion of ECDLP i.e., n.

1 Compute the number of points N = #E(Fpk).

2 Choose a random point T ∈ E(Fpk) and T /∈ E(Fp).
3 Compute T ′ = (N/l)T . If T ′ = O, go back to step 2, else T ′ is a

point of order l and proceed to the next step 4.
4 Compute the Weil pairing values

α = el(P, T
′) ∈ F∗pk and β = el(Q,T

′) ∈ F∗pk

Solve the DLP for α and β in F∗
pk

, i.e., find an exponent n such
that β = αn

5 Since Q = nP , the ECDLP is also solved.
6 Return n.

Remark 7.14.1. There exist polynomial time algorithm to compute

the number of points, if k is not so large. The Weil pairing computation in

step 4 can be done quite efficiency using Miller’s algorithm in time

proportional to log(pk). The DLP can be solved using the index calculus

method which is a sub exponential algorithm and is considerably faster

than the collision algorithms such as Pollard’s ρ method.
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The point T ′ constructed is independent of P and they form a basis of

E[l] ∼= Z/lZ× Z/lZ

el(P, T
′) is the non trivial lth root of unity in F∗

pk
. The linearity of Weil

pairing implies that

el(P, T
′) = el(nP, T

′) = el(P, T
′)n = el(Q,T

′)

So n solves the ECDLP for P and Q.

The practicality of MOV algorithm depends on the size of k. If k is

large, say k > (ln p)2, then the MOV algorithm is completely infeasible.

However there are certain special curves whose embedding degree is small.

An important class of such curves satisfying the property that

#E(Fp) = p+ 1

These curves are called super singular curves [75]. They have the embedding

degree k = 2 and in any case k 6 6.

For example the curve E : y2 = x3 + x is super singular for any prime

p ≡ 3 (mod 4) and it has an embedding degree 2 for any l >
√
p+1. Solving

ECDLP in E(Fp) is no harder than solving DLP in F∗p2 . This means that,

it is a poor choice for the applications in cryptography.

There exist another class of elliptic curves over Fp called anomalous.

They have the property #E(Fp) = p. There exist fast linear time algorithm

to solve ECDLP on these curves [184]. So the use of these curves must also

be avoided.

The ECDLP is also easy in elliptic curves defined over F2m , when m is

composite. The idea is to transfer the ECDLP in F2m to an hyperelliptic

curve over a smaller field F2k , where k divides m.
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7.15 Modified Weil Pairing and Distortion Maps

In cryptographic application, we want to evaluate em(P, P ) or em(aP, bP ).

But the Weil pairing is alternating, which means that em(P, P ) = 1, for all

P . So the direct use of Weil pairing is not useful. Let P1 = aP and P2 = bP .

em(P1, P2) = em(aP, bP ) = em(P, P )ab = 1ab = 1

One way to get around this is to use an elliptic curve that has a map

φ : E −→ E, with the property that P and φ(P ) are independent in E[m].

Hence we can evaluate

em(P1, P2) = em(P1, φ(P2)) = em(aP, bφ(P )) = em(P, φ(P ))ab

For cryptographic application, we choose m to be prime.

Definition 7.15.1. Let E be an elliptic curve and l > 3 be prime. Let

P ∈ E[l] be a point of order l and let φ : E → E be a map from E to itself.

Then the map φ is called l distortion map, if it has the following properties.

(i) φ(nP ) = nφ(P ) for all n > 1.

(ii) The pairing el(P, φ(P )) is a primitive lth root of unity. i.e.,

el(P, φ(P ))r = 1 if and only if l|r.

The modified Weil pairing is defined in the following way.

Definition 7.15.2. Let E be an elliptic curve. Let P ∈ E[l] and let

φ be an l distortion map for P . The modified Weil pairing êl on E[l] is

defined by

êl(Q,Q
′) = el(Q,φ(Q′))
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For cryptographic applications, the Weil pairing is evaluated at points

that are multiple of P . The important property of modified Weil pairing is

its non degeneracy. If Q and Q′ are the multiples of P , then

êl(Q,Q
′) = 1 if and only if Q = O or Q′ = O

Example 7.15.1. Lets choose an elliptic curve E : y2 = x3 + x over

the field Fp with p ≡ 3 (mod 4).

Let α ∈ Fp2 satisfying α2 = −1. The map is defined by

φ(x, y) = (−x, αy) and φ(O) = O

Let l > 3 be a prime and there exist a non zero point P ∈ E(Fp)[l]. Then

φ is a l distortion map for P

êl(P, P ) = el(P, φ(P ))

is the primitive lth root of unity. Since φ(P ) in E(Fp2), it is a self map.

The map φ respect the addition law on E.

φ(P1 + P2) = φ(P1) + φ(P2) for all P1, P2 ∈ E(Fp2)

In particular φ(nP ) = nφ(P ) for all n > 1.

7.16 Concluding Remarks

In this section we explored just enough theory of elliptic curve and

pairing. These are the building blocks of several secret sharing

constructions based on elliptic curve. The secret sharing schemes with

enhanced capabilities can be build using elliptic curve and bilinear

pairing. Several advantages are also achieved by the use of elliptic curves

for building secret sharing techniques. Share verification, cheater

identification and cheater detection are the major achievements with less
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computational complexity. Cheater detection and identification can be

easily achieved with pairing based techniques. The hardness of ECDLP

helps in maintaining the security of shares when building multi secret

sharing techniques. The security it offers is comparatively high.
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Chapter 8

Generalized Multi-secret

Sharing based on Elliptic

Curve and Pairing

8.1 Introduction

Use of elliptic curve and pairing in secret sharing is gaining more

importance. The use of elliptic curve helps to improve the security and

also the computational complexity is reduced. In this chapter we propose

a multi secret sharing scheme with monotone generalized access structure.

The scheme makes use of Shamir’s scheme and Elliptic Curve pairing for

the implementation. The shares are chosen by the participant itself, so the

consistency of the shares are ensured in this scheme. The participant

shares remain secret during the reconstruction phase and this provides

Some results of this chapter are included in the following paper.

Binu V. P., Sreekumar A.,“Secure and Efficient Secret Sharing Scheme with

General Access Structures based on Elliptic Curve and Pairing”, Wireless Personal

Communications-Springer, ISSN: 0929-6212.DOI 10.1007/s11277-016-3619-8.
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multi use facility where same share can be used for the reconstruction of

multiple secrets. The shared secret, access structure or the participant set

can be modified without updating the secret shadow of each participant.

This provides dynamism and adds more flexibility to the scheme. The

combiner can also verify the shares of the other participants during the

reconstruction phase in order to identify the cheaters. The cheating

detection and cheater identification is done by using bilinear pairing. This

scheme is simple and easy to implement compared with other generalized

multi secret sharing scheme with extended capabilities using pairing.The

important properties of this proposed scheme are

• Generalized access structure.

• Multi secret sharing.

• Multi use, where each participant has to keep only a single share and

can be reused.

• Dynamic, participant or access structure can be modified.

• No secure channel is required.

• Cheater Identification facility.

• Consistency of the shares can be verified.

The use of elliptic curve and pairing have found applications in secret

sharing schemes very recently. Several schemes based on threshold and

generalized secret sharing is proposed and they have found useful

applications. Pairing can be used to introduce verifiability and cheating

detection in secret sharing scheme with more security. Chen Wei et al

[218] in 2007 proposed a dynamic threshold secret sharing scheme based

on bilinear maps. A threshold multi secret sharing scheme based on

elliptic curve discrete logarithm is proposed by Runhua Shi et al [194] in
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2007. Sharing multiple secrets which are represented as points on elliptic

curve using self pairing [133] is proposed by Liu et al [137] in 2008. Wang

et al [216] proposed a verifiable threshold multi secret sharing scheme in

2009. In Wang’s et al scheme, the number of secrets must be less than or

equal to the threshold and also more public values must be changed when

the secret need to be updated. Eslami et al [69] in 2010 proposed a

modified scheme which avoids these problems. Several publicly verifiable

secret sharing schemes are proposed based on pairing. But most of them

are single secret sharing schemes [212] [220] [223]. An efficient One Stage

Multi Secret Sharing(OSMSS) is proposed recently in 2014 by Fatemi et

al [70]. Generalized secret sharing with monotone access structure is also

proposed using Elliptic Curve and Bilinear Pairing with capability to

detect cheating [100] [226].

8.2 Pairing and Secret Sharing

Pairing on elliptic curves have a number of important cryptographic

applications. While first used for cryptanalysis, pairings have since been

used to construct many cryptographic systems for which no other efficient

implementation is known, such as identity based encryption, attribute

based encryption [67] etc. The mapping allows development of new

cryptographic schemes based on the reduction of one problem in one

group to a different, usually easier problem in the other group. The first

group is usually called GAP Diffie-Hellman Group, where the Decisional

Diffie Hellman problem (DDHP) [29] is easy. But the Computational

Diffie Hellman (CDHP) problem remains hard.

Let G be a cyclic additive group generated by P whose order is prime

q. For all a, b, c ∈ Z∗q . The CDHP is, given P, aP, bP , compute abP . DDHP

is defined as, given P, aP, bP, cP , decide whether c = ab in Z∗q .
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The important pairing based construct is the bilinear pairing. A

mapping from (G1 =< P >,+) to (G2, .), two groups of the same prime

order q and the DLP is hard in both the groups is called Bilinear Maps, if

the following conditions are satisfied.

1. Bilinearity: ∀P,Q ∈ G1,∀a, b ∈ Z∗q

e(aP, bQ) = e(P,Q)ab

2. Non-Degeneracy: If everything maps to the identity, that’s

obviously not interesting

∀P ∈ G1, P 6= 0⇒< e(P, P ) >= G2 (e(P, P ) generates G2)

In other words:

P 6= 0⇒ e(P, P ) 6= 1

3. Computability: e is efficiently computable. i.e., there is a

polynomial time algorithm to compute e(P,Q) ∈ G2, for all

P,Q ∈ G1.

We can find G1 and G2 where these properties hold. The Weil and Tate

pairings prove the existence of such constructions [7] [30]. These pairing

have found numerous cryptographic applications [115]. Typically, G1 is an

elliptic curve group and G2 is a finite field.

8.3 Proposed Secret Sharing Scheme

The proposed scheme makes use of Shamir’s scheme and also Elliptic

Curve Pairing for the implementation. The scheme can be used to share

multiple secrets with out changing the participant share. The process of

sharing a single secret is mentioned below. The scheme can be extended
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to share multiple secrets K1,K2, . . . ,Km. Let P1, P2, . . . , Pm be the set of

participants involved. A monotone access structure with minimal qualified

set A0 = {A1,A2, . . . ,At} is considered. The scheme also uses a public

notice board where every user have the access, but only the Dealer can

write or modify the data. The participant select their shares and are kept

secret. The problem with Dealer sending inconsistent shares can thus be

avoided. The scheme is also multi use i.e., the same share can be used for

sharing several secret. The dynamic nature of the scheme allows the

participants set or the access structure to be changed without changing

the existing participant’s share. This adds more flexibility to the scheme.

The use of Elliptic Curve makes the scheme more robust and secure.

The Secret Sharing Scheme consist of four important phases.

1. Initialization.

2. Share generation.

3. Secret Distribution.

4. Verification and Secret Reconstruction.

8.3.1 Initialization

The initialization phase need to be executed only once for a particular secret

sharing scheme. It is assumed that the Dealer is a trusted authority and

there are n authenticated participants P1, P2, . . . , Pn. In the initialization

phase some public parameters are posted on the public bulletin called notice

board which can be accessed by every participant.

1. The Dealer( D ) chooses an elliptic curve E over GF (q), where q = pr

and p is a large prime such that DLP and ECDLP in GF(q) is hard.

Let G1 and G2 be two cyclic group of order q for some large prime p.

G1 is an additive group of points of an elliptic curve over Fp and G2
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is multiplicative sub group of an extension of finite field F∗p2 . Elliptic

curve pairing can be used to map elements from group G1 to G2.

Modified Weil pairing ( ê ) is used for the implementation.

2. D chooses a generator G of G1 and also defines a hash function H

which maps H : G1 7−→ {0, 1}l, where l is the bit length of the field.

3. D then publish {E,G1, G2, q, ê, G,H} in the notice board.

8.3.2 Share Generation

In this phase shares of secrets are generated. The shares are not generated

by the Dealer instead they are selected by the participants and send to the

Dealer. Dealer will verify the shares and assign the shares corresponds to

each participants and publish them in the public notice board.

1. Each participant Pi select a random number Xi ∈ Z∗q and compute

Yi = XiG. The participant will keep Xi secret and send Yi to the

Dealer.

The Dealer needs to ensure that these Yi’s are distinct to make sure

that each participant is using different shares. If Yi = Yj for some

Pi 6= Pj , then the Dealer will ask for new share. It is noted that

only the pseudo shares are send to the Dealer. An intruder or the

Dealer cannot obtain any information about the secret share because

ECDLP in the field is hard to solve.

2. The Dealer then publish the pseudo shares (pi, Yi) corresponds to

each participants, where pi ∈ Zq∗ is the public identity corresponds

to each participant P1, P2, . . . , Pn chosen randomly.
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8.3.3 Secret Distribution

In this phase the Dealer will share the secret by publishing informations on a

public notice board corresponds to the secret to be shared. Each participant

can make use of these public values. These public information together with

the secret share of each participant can be used for the retrieval of shared

secret. Sharing of a single secret value is mentioned here. The same steps

can be followed to share multiple secrets.

1. Let K be the secret to be shared. Dealer will set up a polynomial

f(x) of degree 1.

i.e., f(x) = K + bx, where b ∈ Zq∗.

2. For each minimal qualified subset inA0, an integer a1, a2, . . . , at ∈ Zq∗

is chosen to represent the t qualified subsets.

3. Choose a random number X0 ∈ Zq∗ and compute Y0 = X0G also

Y ′i = X0Yi, for i = 1, 2, . . . , n.

4. Compute f(1) and for each qualified subset Aj = {P1j , P2j , . . . , Pdj}
in A0, compute

Aj = f(aj)⊕H(Y ′1j)⊕H(Y ′2j)⊕ · · · ⊕H(Y ′dj), 1 6 j 6 t.

5. Publish Y0, f(1), (a1, A1), (a2, A2), . . . , (at, At) on the public bulletin.

8.3.4 Verification and Secret Reconstruction

The participants in each qualified subset Aj = {P1j , P2j , . . . , Pdj} ,

1 6 j 6 t can reconstruct the secret using the secret share and also the

public values in the bulletin board. Each user contribute his pseudo share

for the reconstruction of secret. The pseudo share is computed from his

secret share and the public informations. The designated combiner can

also identify the cheaters during the reconstruction phase using pairing.
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1. Each participant Pij in the qualified subset Aj get the public

information Y0 from the bulletin board and computes Y ′ij = Y0Xij ,

using the secret share Xij . The participant then delivers Y ′ij to the

designated combiner.

2. Combiner checks ê(G, Y ′ij) = ê(Y0, Yij). If it is not true then the share

send by the participant Pij is invalid and corrective measures have to

be taken in this case.

3. Once all the valid shares are received, the combiner can retrieve

f(aj) = Aj ⊕H(Y ′1j)⊕H(Y ′2j)⊕ · · · ⊕H(Y ′dj).

4. Using f(1) and f(aj), the polynomial can be reconstructed using

Lagrange Interpolation [120].

f(x) = f(1).
x− aj
1− aj

+ f(aj).
x− 1

aj − 1
(8.1)

5. The shared secret K is f(0).

8.4 Security Analysis

One of the major requirement of a secret sharing scheme is the secure

distribution of the shares to the participants by the Dealer. An untrustable

Dealer may send inconsistent shares to the participant. The verifiable secret

sharing ensures that the shares are consistent i.e., the authorized set of

shares when combined will generate the same secret. Here the secret shares

are chosen by the participant itself and send to the Dealer during the share

generation. The pseudo shares are also used during the reconstruction. So

the Dealer or any other participant does not have any idea about the secret

share chosen by the participant. Combiner can also verify the shares send

by the participants using this pseudo shares. Finding Xi from Yi or finding

X0 from Y0 is hard as solving the ECDLP. Hence the security of the secret
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share depends on the hardness of solving ECDLP. It is noted that there is

no efficient algorithm exist for solving the ECDLP. The birthday paradox

method can be used to solve ECDLP which is having a running time of

O(n), where n is the order of the group. This attack can be broken by

choosing a field of size at least 160 bits. In order to overcome the attack of

the sub exponential algorithm used for solving discrete logarithm problem,

we need a field of at least 1024 bit size. This shows that elliptic curve

group provides more security with less number of bits. Thus the use of

elliptic curve field instead of finite field results in savings of both time and

space.

Cheating detection and Cheater identification is a major security

requirement. It is done very efficiently using elliptic curve pairing. An

efficient algorithm is proposed by Victor Miller [148] for computing the

Weil pairing, which is having polynomial time complexity.

Theorem 8.4.1. The probability that the participant distribute

invalid shares during the reconstruction is negligible.

proof. The designated combiner can verify the shares send by the

participants by checking ê(G, Y ′ij) = ê(Y0, Yij). If there is a mismatch, the

participant is a cheater and we are able to detect and identify the cheater.

From the properties of bilinear pairing

ê(G, Y ′ij) = ê(Y0, Yij)

ê(G, Y0Xij) = ê(GX0, GXij)

ê(G, Y0Xij) = ê(GX0, GXij)

ê(G,GX0Xij) = ê(GX0, GXij)

ê(G,G)X0Xij = ê(G,G)X0Xij

If this equation doesn’t hold then the participant is a cheater.
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During the reconstruction phase each participant submit Y ′ij = XijY0.

The participant does not have to disclose his secret share Xij . An attacker

has to solve the ECDLP to find the secret share from the pseudo share

which is computationally hard. The secret share can be reused with out

compromising the security of the scheme. This provides more flexibility

unlike other secret sharing schemes.

The list of participants in the authorized access structure can only

reconstruct the secret. This is achieved with Shamir’s secret sharing

scheme. It is noted that Shamir’s scheme provides information theoretic

security. The security does not depends on the assumptions about any

hard mathematical problem. The polynomial used in the scheme is having

only degree one which makes the scheme computationally efficient. In

order to reconstruct the degree one polynomial, two points are necessary.

f(1) is published in the bulletin board. The other value f(aj) can only be

computed by the list of authorized participant in each authorized

subset(Aj) mentioned in the minimal qualified set (A0). The participants

not mentioned in the authorized subset cannot obtain f(aj) and hence

cannot reconstruct the polynomial. No information about the secret f(0)

is thus revealed. Lagrange Interpolation can be done efficiently in

O(nlog2n) time. However the reconstruction of the degree 1 polynomial

from two points (1, f(1)) and (aj , f(aj)) can be done with four

multiplication and an inverse computation. The addition and subtraction

does not cost much.

The scheme can be easily extended to share multiple secrets. The

Dealer has to construct polynomials of degree 1 corresponds to each secret

K1,K2, . . . ,Km to be shared. The Dealer then publish f(1)i, Y0i and

Aji, 1 6 i 6 m corresponds to each secret along with other public

parameters. It is noted that only public parameters need to be added to

share more secrets. However participant shares remain same for the multi

secret sharing.
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The proposed scheme is dynamic in nature. When the Dealer wants to

share a new secret, he just modify the public parameters. The participant

does not need to alter their secret shadows. When a participant wants to

change his secret shadow in case of leakage, he can do so. He will send the

pseudo share to the Dealer after choosing a new secret share. The Dealer

then modify the public parameters accordingly. This process does not affect

the secret share of other participants. When a new participant joins the

system and the access structure changes, then only the public parameters

need to be changed. Other participants need not renew their secret shadows

unlike other secret sharing schemes.

The verifiability is implicit in the scheme. Since the secret shadows are

chosen by the participant itself, an adversary or the Dealer have no idea

about the secret shadows. This also provides multi use capability where

same shadows can be used for the sharing and reconstruction of several

secrets.

It is noted that there is no secret communication exist between the

Dealer and the participants. So the scheme avoids the need of a secure

channel. The scheme is also efficient because of the low computational

cost. Let us define the following terms to represent the time taken for

each operation.

TECM − The time taken for computing nX, where n is a scalar and

X is an elliptic curve point.

TP − The time taken for Pairing.

TH − The time taken for executing the Hash function H.

TL − Time for polynomial reconstruction.

n− Total number of participants.

d−Number of participants in each qualified access set.
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In the system initialization phase, each entity including the

participants and the Dealer has to compute a public share from his secret

share. This needs (n + 1) point multiplication. The cost is (n + 1)TECM .

Also the hash function has to be computed for each d participants set in

the access structure. This need a computational cost of dTH . The cost of

XOR and the polynomial evaluation does not cost much. So the total

computational cost in the initialization and the secret distribution phase

is O((n + 1)TECM + dTH). During the verification and secret

reconstruction phase, each participant has to do a point multiplication.

The combiner has to do two pairing operation for verification. The hash

operations has to be done for each participant share involved in the secret

reconstruction. The final secret is obtained by Lagrange Interpolation. It

is noted that the polynomial used is of degree one. So the interpolation

doesn’t take too much computational cost. The computational cost

involved in XOR operations is also negligible. Thus the total

computational cost involved in the secret reconstruction and verification

phase is dTECM + 2TP + dTH + TL. It is noted that the overall

computational cost depends mainly on the point multiplication by a

constant. If X is an elliptic curve point then nX can be done efficiently

by double-and-add method. Suppose n = 2k − 1 then in the worst case it

needs 2k point operations i.e., k additions and k multiplications. If we use

ternary expansion then computing nX never requires more than 3
2k + 1

point operations i.e., k + 1 doubling and 1
2k additions.

8.5 Concluding Remarks

We have proposed a novel generalized multi secret sharing scheme based

on elliptic curve and bilinear pairing in this chapter. The scheme is

computationally efficient and provides more security. The scheme is multi

use and dynamic in nature. Participants can be added, the access
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structure can be changed or more secrets can be shared with out changing

participants shadow. The shares are chosen by the participant itself. It

avoids the verifiability problem and also the need for a secure channel.

The pairing helps to identify the cheating and also to detect the cheaters.

Unlike other multi secret sharing scheme, it is simple and easy to

implement. The number of public parameters are also less. When a

participant leaves the system, the access structure changes. We have to

remove the participant entry from all the sets where the participant

belongs and then modify the public parameters according to the new

access structure. We have also done a detailed analysis of the proposed

algorithm and mentioned the complexities involved in terms of the

complexity of the elliptic curve point operations, pairing, time taken for

hash function and Lagrange interpolation. One disadvantage with this

scheme is that it cannot reconstruct the shared multiple secrets

simultaneously.
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Chapter 9

Threshold Multi-secret

Sharing using Elliptic Curve

and Pairing

9.1 Introduction

Elliptic curve and pairing are good candidates for developing secret

sharing schemes with several extended capabilities. In the previous

chapter we had seen a generalized scheme based on ECDLP and bilinear

pairing. In this chapter we propose a threshold multi secret sharing

scheme, where more than one secret can be shared according to the

specified threshold access structure. The scheme make use of elliptic curve

bilinear pairing and self pairing. Verification of share by the participants,

shares consistency checking, detection and identification of cheaters are

the extended capabilities achieved. Unlike the multi stage secret sharing

scheme, all the shared secrets are retrieved in a single stage here. The

participants can be added very easily. The scheme is efficient and the

number of public values are also less compared with the existing threshold
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multi secret sharing scheme based on the elliptic curve. The Dealer can

modify the secret or add additional secret by changing the public

parameters of the scheme. This is the first proposal of a threshold multi

secret sharing scheme with extended capabilities using self pairing.

Elliptic curves were found numerous applications in cryptography

[147]. Developed as a public key crypto system, it has found more secure

with small key size compared with other public key crypto system.

Elliptic Curve Discrete Logarithm Problem (ECDLP) is much harder

compared with the Discrete Logarithm Problem(DLP). So the

computational cost can be reduced while maintaining the same level of

security with small key size. In 1993 Meneze’s et al [145] introduced

pairing. Pairing is introduced to show an attack on elliptic curve discrete

logarithm problem and later found useful applications. Pairing on elliptic

curve have found useful applications in key exchange, identity based

encryption etc [67]. The use of elliptic curve and pairing have found

applications in secret sharing schemes very recently. Several schemes

based on threshold and generalized secret sharing is proposed and they

have found useful applications. Pairing can be used to introduce

verifiability in secret sharing scheme with more security.

Chen Wei et al [218] in 2007 proposed a dynamic threshold secret

sharing scheme based on bilinear maps. Each participant holds a

permanent private key. The threshold is realized by adjusting the number

of linear equations. The scheme also having cheating detection capability.

But it is a single secret sharing scheme. A threshold multi secret sharing

scheme based on elliptic curve discrete logarithm is proposed by Runhua

Shi et al [194] in 2007. A fast multi-scalar multiplication scheme is also

introduced. Sharing multiple secrets which are represented as points on

elliptic curve using self pairing is proposed by Liu et al [137] in 2008. The

proposed scheme is based on Liu et al scheme. Chen’s scheme is modified

to share multiple secrets by S. J. Wang et al [216] in 2009. In Wang’s et al
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scheme, number of secrets must be less than or equal to the threshold and

also more public values must be changed when the secret need to be

updated. Eslami et al [69] in 2010 proposed a modified scheme which

avoids these problems.

Several publicly verifiable secret sharing schemes are proposed based on

pairing. But most of them are single secret sharing schemes. A practical

publicly verifiable secret sharing scheme based on pairing is proposed by

Youliang Tian et al [212] in 2008. A pairing based publicly verifiable secret

sharing is introduced by Wu and Tseng [220] in 2011. An efficient verifiable

secret sharing scheme is proposed by Jie Zhang et al [223]. Tian et al [211]

proposed a distributed publicly verifiable secret sharing scheme. An efficient

One Stage Multi Secret Sharing(OSMSS) is proposed recently in 2014 by

Fatemi et al [70]. The scheme makes use of bilinear pairing. The number of

public values are reduced and the scheme is more efficient compared with

the previous schemes.

9.2 Elliptic Curve and Self Pairing

A self pairing and its applications are proposed by Lee [133] in 2004. The

pairing which map e : G×G =⇒ G is called self pairing.

Let K be a field with characteristic zero or a prime p and E = E(K̄)

be an elliptic curve over K̄, where K̄ is an algebraic closure of K. Consider

the set of all torsion points of order l that is lP = O. These points forms

a subgroup EK [l] of E(K) where l 6= 0. E[l] can be represented as a direct

sum of two cyclic groups. E[l] ∼= Zl ⊕ Zl. That is any point in E[l] can be

represented as a linear combination of two generating pair G and H of E[l].

Consider the points P = r1G + s1H and Q = r2G + s2H in E[l], where

r1, r2, s1 and s2 are integers in [0, l − 1]. We can define pairing for some

fixed integers, α, β ∈ [0, l − 1], in the following way

eα,β : E[l]× E[l] =⇒ E[l]
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eα,β : (r1s2 − r2s1)(αG+ βH)

When α, β are zero eα,β is trivial. This case is not considered.

Proposition 9.1. The pairing eα,β : E[l] × E[l] → E[l] will satisfy

following properties

(i) Identity: For all A ∈ E[l], eα,β(A,A) = O

(ii) Bilinearity: For all A,B,C ∈ E[l]

eα,β(A+B,C) = eα,β(A,C) + eα,β(B,C)

eα,β(A,B + C) = eα,β(A,B) + eα,β(A,C)

(iii) Anti-symmetry: For all A,B ∈ E[l], eα,β(A,B) = −eα,β(B,A)

(iv) Non-degeneracy: If A ∈ E[l], eα,β(A,O) = O. Moreover if

eα,β(A,B) = O, for all B ∈ E[l] then A = O.

9.3 Liu et al Scheme

Liu et al [137] proposed a point sharing method in elliptic curve using self

pairing. In this scheme multiple secrets K1,K2, . . . ,Km are shared, which

is represented as points on the Elliptic curve. The scheme consist of four

main steps.

1. Initialization.

2. Share Distribution.

3. Secret Sharing.

4. Secret Reconstruction.
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The initialization and share distribution phase need to be done only

once for a particular (t, n) threshold secret sharing scheme, where t is the

threshold. Secret can be dynamically changed or more secret can be added

with out modifying the participants secret share. This is achieved with a

public notice board, where every user have the access but only the Dealer

can modify the data.

9.3.1 Initialization

It is assumed that the Dealer is a trusted authority and the participants

U1, U2, . . . , Un are honest. In the initialization phase some public

parameters are posted on the public bulletin called notice board which

can be accessed by every participant.

1. The Dealer (D) chooses an elliptic curve E over GF (q), q = pr, where

p is a large prime such that DLP and ECDLP in GF(q) is hard. D

then choose E[l] ⊆ E(GF (qk)), a torsion subgroup of large prime

order l.

2. D chooses a generating pair {G,H} ∈ E[l] , α and β, which are used

for pairing. Dealer then compute W = αG+ βH.

3. D then publish {E, q, l, k,W} in the notice board.

9.3.2 Share Distribution

In this phase, shares needed to reconstruct the secret are distributed to n

participants and any t of them can reconstruct the secret. These shares are

independent of the secret to be distributed.
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1. D generate a matrix A of size n× t as:

A =


1 1 1 . . . 1
1 2 22 . . . 2t−1

1 3 32 . . . 3t−1

...
...

...
...

...
1 n n2 . . . nt−1


2. D randomly choose t pairs of numbers ai′, bi′ ∈ [1, l − 1], 1 6 i 6 t

and computes

(a1, a2, . . . , an)T = A.(a1′, a2′, . . . , at′)T

(b1, b2, . . . , bn)T = A.(b1′, b2′, . . . , bt′)T

3. D sends Pj = {aj , bj} as a secret share to each user Uj , 1 6 j 6 n

through a secure channel.

9.3.3 Secret Sharing

After distributing the secret shares, the Dealer will share multi-secret by

publishing informations on a public notice board corresponding to each

secret to be shared. Each participant can make use of these public values.

These public information together with the secret share of each participant

can be used for the retrieval of shared secrets. The number of secrets m

must be less than or equal to the threshold t for the scheme to work.

1. The secrets to be shared i.e.; K1,K2, . . . ,Km is mapped into m points

on the Elliptic curve M1,M2, . . . ,Mm.

2. D chooses {ci, di} ∈ [0, l−1] randomly and computes Qi = ciG+diH

and Ri = eα,β(Qi, Pi′) +Mi, for all 1 6 i 6 m.

3. D then publish {ci, di, Ri},1 6 i 6 m, on the public bulletin.
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9.3.4 Secret Reconstruction

Let t users U1, U2, . . . , Ut wants to reconstruct m secrets. Each user

contribute his pseudo share for the reconstruction of secret. The pseudo

share is computed from his secret share and the public informations.

For each secret Ki from 1 to m and for each user Uj from 1 to t

1. Each Uj download the pair {ci, di} from the public bulletin and

compute pseudo share Sij = eα,β(Qi, Pj), where Pj = ajG + bjH

and Qi = ciG+ diH, 1 6 i 6 t and 1 6 j 6 t.

2. Each user Uj multi-casts the pseudo share Sij to other t − 1

participants.

3. Each user then computes Ti =
∑t

k=1 ykSij , where

yk =
∏t
j=1,j 6=k(k − j)−1.

4. Each user can download the point Ri from the public bulletin and

recovers Mi = Ri − Ti.

9.4 Proposed Multi-secret Sharing Scheme

The major difficulties with Liu’s scheme is that the secrets are

represented as points on the elliptic curve. The mapping of secret to the

elliptic curve point is very difficult. The number of secrets that can be

shared also depends on the threshold t. We cannot share more than t

secrets. The Dealer is assumed to be a trusted authority. There is no

provision for the verification of the shares distributed by the Dealer and

also the participants cannot verify the shares distributed by the other

participant during the reconstruction. The proposed scheme overcome

these difficulties. We make use of self pairing and bilinear pairing for the

efficient construction of the scheme.
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The proposed scheme is a threshold multi secret sharing scheme where

any number of secrets can be shared and threshold number of users can

reconstruct the multi secrets. The multi secrets can be reconstructed in

single stage unlike the multi stage secret sharing scheme where the secrets

are reconstructed stage by stage. Each user can verify the shares during

the secret share distribution phase by the Dealer. The participants can also

verify the shares send by other participants during the reconstruction phase

to identify the cheaters.

The proposed scheme consist of the following three phases

1. Initialization and Secret Sharing.

2. Secret Reconstruction.

3. Verification.

9.4.1 Initialization and Secret sharing

In the initialization phase some public parameters are posted on the public

bulletin called notice board which can be accessed by every participant.

Let U1, U2 . . . Un be the n users involved in the secret sharing phase and let

K1,K2, . . . ,Km be the m secrets to be shared.

1. The Dealer(D) chooses an Elliptic curve E over GF (q), where q = pr

and p is a large prime such that DLP and ECDLP in GF(q) is hard.

D then choose E[l] ⊆ E(GF (qk)), a torsion subgroup of large prime

order l.

2. D chooses a generating pair {G,H} ∈ E[l], α and β, which are used

for pairing and then compute W = αG+ βH.

3. D then publish {E, q, l, k,G,H,W} in the notice board.

4. A secret point P0 is chosen where P0 = a0G+ b0H.
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5. The Dealer then construct a polynomial of degree t− 1 .

f(x) = a0 + a1x
1 + a2x

2 + · · ·+ at−2x
t−2 + b0x

t−1

where a0 and b0 corresponds to the point P0 and the other coefficient

values are chosen from Zl∗.

6. D compute shares Si = f(xi) (mod l) and send the shares

Pi = (xi, Si) secretly to the users Ui, for i = 1, . . . , n.

7. The Dealer also publishes the values c, d corresponds to a point

Q = cG+ dH and the verification point Vi = eα,β(Pi, Q) for

i = 1, . . . , n corresponds to each share and also V0 = eα,β(P0, Q).

8. Publish the recovery code Ri = Ki − e(P0, iP0) for i = 1, . . . ,m

corresponds to each secret that is to be shared.

9.4.2 Secret Reconstruction

1. When the threshold number of users want to reconstruct the secret,

they pool the shares and reconstruct the polynomial f(x) using

Lagrange Interpolation.

f(x) =
t∑

j=1

Sj
∏

16i6t,i 6=j

x− xi
xj − xi

2. From the reconstructed polynomial, a0 and b0 can be obtained and

hence P0 can be obtained.

3. Using the published recovery codes, the m secrets can be recovered

by

Ki = Ri + e(P0, iP0)

for i = 1, . . . ,m.
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9.4.3 Verification

Each user can verify the shares using the share verification point Vi.

1. Each user compute vi = eα,β(Pi, Q) using his share and the public

value Q

2. If the computed value vi = Vi, the share send by the Dealer is valid.

The validity of the shares send by each user can be verified by using

the same technique mentioned above during the reconstruction stage. The

consistency of the shares are also verified by checking V0. The polynomial

is reconstructed after all the shares are pooled. Using a0, b0 and the

generator G,H, the value of P0 can be obtained. The participant can

verify the consistency of the shares by checking V0 = v0, where

v0 = eα,β(P0, Q) and V0 is the corresponding published value.

9.5 Security Analysis

One of the major requirement of the secret sharing scheme is the consistency

of the shares.

Theorem 9.5.1. The probability that the Dealer distribute

inconsistent shares to the participant is negligible.

proof. The coefficients of the polynomial f(x) are chosen by the Dealer.

The values of xi are chosen randomly and are send along with the evaluated

polynomial value to the participant as shares. However the Dealer cannot

send invalid shares to the participants because the share (xi, Si) can be

verified by each participant using self pairing with the public value Q. The

consistency of the shares can also be verified by checking eα,β(P0, Q) = V0.

If the shares are inconsistent then the computed value will not match with

V0.
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Theorem 9.5.2. The probability that the participant distribute

invalid shares during the reconstruction is negligible.

proof. Each participant can verify the shares send by the other

participants by checking eα,β(Pi, Q) = Vi. If there is a mismatch, the

participant is a cheater and we are able to detect and identify the cheater.

Theorem 9.5.3. Adversary cannot derive any information about the

secret from the public values.

proof. The polynomial f(x) is of degree t − 1, so less than t

participant cannot derive any useful information about the secret by

pooling their shares. The verification code V i = eα,β(Pi, Q) cannot reveal

any info about the share Pi. The point Vi is a linear combination of the

generator (G,H) and the coefficients can be any value from the field Z∗l .
The public values Ri also cannot give any information about the shared

secret. The non degeneracy of pairing ensures that e(P0, P0) is a primitive

lth root of unity for all non zero P0 ∈ E(Fq)[l].

Theorem 9.5.4. Finding P0 is as difficult as guessing the secret.

proof. The security of the system depends on finding P0 and is again

depends on a0 and b0. These values can be retrieved only by reconstructing

the t−1 degree polynomial by the t users involved in secret reconstruction.

The shares have the same size as these parameters and are elements of

the same field. This provides information theoretical security. Less than t

participant cannot derive any useful information because of the security

of Shamir’s scheme. Hence the adversary can only guess the values. The

probability is 1/l. When l is large this probability is very less. Finding P0

without knowing a0 and b0 is again like trying all linear combinations of

the generators G and H, which is again a more complex process. Without
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knowing P0 finding the secret from the public parameter Ri is as complex

as guessing the secret.

9.6 Experimental Results

SAGE and Python were used for implementing the scheme. A simple

example showing sharing of two secrets K1,K2 according to (2, 3)

threshold scheme is mentioned here. We considered field with smaller

prime power for easy understanding.

9.6.1 Initialization

1. Elliptic Curve defined by E : y2 = x3 + 4.x over Finite Field in i of

size 476 is chosen for secret sharing. The order of E is

10779422976(28.34.72.1032). Additive Abelian group isomorphic to

Z/103824 + Z/103824 is embedded in Abelian group of points on

the curve.

2. The Dealer D chooses a torsion subgroup E[103] ⊆ E(GF (476)). Two

randomly chosen generator pairs G,H of E[103] are

G = (19i5 + 38i4 + 26i3 + 28i2 + 45i+ 6 :

20i5 + 18i4 + 12i3 + 32i2 + 12i+ 43 : 1)

H = (5i5 + 8i4 + 41i3 + 46i2 + 39i+ 34 :

32i5 + 7i4 + 18i3 + 34i2 + 8i+ 32 : 1)

Let α = 51, β = 35 , compute W = αG+ βH

W = (25i5 + 3i4 + 11i3 + 15i2 + 39i+ 19 :

40i5 + 41i4 + 9i3 + 44i2 + 22i+ 1 : 1)
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3. E : y2 = x3 + 4x, q = 476, l = 103, k = 1, α = 51, β = 35,W =

(25i5 +3i4 +11i3 +15i2 +39i+19 : 40i5 +41i4 +9i3 +44i2 +22i+1 : 1)

are made public.

9.6.2 Share Distribution

1. The matrix A for a (2, 3) scheme is of size 3× 2

A =

 1 1
1 2
1 3


2. Dealer chooses two pairs of random numbers from [1, 102]

a1′ = 11, a2′ = 25, b1′ = 15, b2′ = 33 and compute

A× [a1′, a2′] = [36, 61, 86] = [a1, a2, a3]

A× [b1′, b2′] = [48, 81, 114] = [b1, b2, b3]

3. The three users U1, U2, U3 will get shares

P1 = (36, 48), P2 = (61, 81), P3 = (86, 114).

9.6.3 Secret Sharing

1. We consider two secrets K1 and K2 to be shared. These secrets are

mapped into elliptic curve points M1 and M2.

M1 = (19i5 + 38i4 + 26i3 + 28i2 + 45i+ 6 :

20i5 + 18i4 + 12i3 + 32i2 + 12i+ 43 : 1)

M2 = (5i5 + 8i4 + 41i3 + 46i2 + 39i+ 34 :

32i5 + 7i4 + 18i3 + 34i2 + 8i+ 32 : 1)
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2. In order to share the two secrets, D chooses two random pairs of

numbers (c1, d1), (c2, d2) ∈ [0, l − 1] and compute Qi = ciG + diH

for the two secrets. Dealer computes pairing Ri = eα,β(Qi, Pi′) + Mi

corresponds to each secret, where Pi′ = ai′G+ bi′H.

Let c1 = 15, d1 = 11, c2 = 23, d2 = 39 and a1′ = 11, b1′ = 15, a2′ =

25, b2′ = 33.

R1 = e51,35(Q1, P1′)

R1 = (c1b1′ − d1a1′)(αG+ βH) +M1

R1 = (15.15− 11.11)W +M1

R1 = (i5 + 27i4 + 5i3 + 7i2 + 35i+ 38 :

21i5 + 44i4 + 28i3 + 15i2 + 9i+ 16 : 1)

R2 = e51,35(Q2, P2′)

R2 = (c2b2′ − d2a2′)(αG+ βH) +M2

R2 = (23.33− 25.39).W +M2

R2 = (33i5 + 43i4 + 20i3 + 17i2 + 39i+ 33 :

45i5 + 5i4 + 43i3 + 24i2 + 41i+ 38 : 1)
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3. Publish

{c1, d1, R1} = {15, 11, (i5 + 27i4 + 5i3 + 7i2

+35i+ 38 :

21i5 + 44i4 + 28i3 + 15i2

+9i+ 16 : 1)}

{c2, d2, R2} = {23, 39, (33i5 + 43i4 + 20i3 + 17i2

+39i+ 33 :

45i5 + 5i4 + 43i3 + 24i2 +

41i+ 38 : 1)}

9.6.4 Secret Reconstruction

Assume that participants P1 and P2 want to reconstruct the secrets K1,K2.

1. Each participant compute his share contribution for the

reconstruction of each secret as

Sij = eα,β(Qi, Pi)
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S11 = e51,35(Q1, P1)

S11 = (c1.b1 − d1.a1).W

S11 = (15.48− 11.36).W

S11 = (8i5 + 5i4 + 2i3 + 29i2 + 13i+ 7 :

4i5 + 29i4 + 44i3 + 43i2 + 6i+ 20 : 1)

S12 = e51,35(Q1, P2)

S12 = (15.81− 11.61).W

S12 = (37i5 + 28i4 + 31i3 + 15i2 + 40i+ 44 :

38i5 + 5i4 + 3i3 + 39i2 + 26i+ 8 : 1)

S21 = (5i5 + 36i4 + 31i3 + 34i2 + 5i+ 38 :

5i5 + 22i4 + 13i3 + 4i2 + 39i+ 17 : 1)

S22 = (25i5 + 3i4 + 11.i3 + 15i2 + 39i+ 19 :

7i5 + 6i4 + 38i3 + 3i2 + 25i+ 46 : 1)

2. The shares generated are then multi-casted.

3. The inverse of the matrix A is

(
2 −1
−1 1

)
. Each user then compute
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ykSij .

T1 = 2S11 − 1S12

T1 = (25i5 + 3i4 + 11i3 + 15i2 + 39i+ 19 :

40i5 + 41i4 + 9i3 + 44i2 + 22i+ 1 : 1)

T2 = −1S21 + 1S22

T2 = (29i5 + 43i4 + 19i3 + 20i2 + 36i+ 25 :

45i5 + 9i4 + 29i3 + 15i2 + 9i+ 31 : 1)

4. Each participant can download Ri from the public bulletin and

reconstruct Mi = Ri − Ti.

M1 = R1 − T1

M1 = (19i5 + 38i4 + 26i3 + 28i2 + 45i+ 6 :

20i5 + 18i4 + 12i3 + 32i2 + 12i+ 43 : 1)

M2 = R2 − T2

M2 = (5i5 + 8i4 + 41i3 + 46i2 + 39i+ 34 :

32i5 + 7i4 + 18i3 + 34i2 + 8i+ 32 : 1)

From M1, M2, K1 and K2 can be obtained.

The comparison of various schemes which uses elliptic curve and

bilinear pairing is studied and is shown in Table 9.1. We considered recent

proposal of only the threshold multi secret sharing schemes based on

elliptic curve and pairing. Lets consider a (t, n) threshold multi secret

sharing scheme which can share m secrets. It is found that in Liu’s [137]
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Table 9.1: comparison of various schemes using elliptic curve and pairing

Scheme Liu [137] Chen [218] Wang [216] Eslami [69] Proposed
single
secret(ss)
/multi
secret(ms)

ms ss ms ms ms

secrets t 1 t m +n m > n
public
parameters

5 + 3m 8 +n-t 8+2n 8+n+m-t 7+n+m

single stage Yes Yes Yes Yes Yes
verifiability No Yes Yes Yes Yes
cheater
detection

No Yes No Yes Yes

cheater
identification

No Yes No Yes Yes

and Wang’s [216] scheme, the number of secret that can be shared is

proportional to t. So these schemes are not suitable for sharing more than

t secrets. Wangs scheme is a modification of Chen’s single secret sharing

scheme. Eslami again modified the Wang’s scheme. The advantage of our

proposed scheme is that, large number of secret can be shared and also

the public values used are less. Most of the schemes mentioned in the

literature having the share verification property. But they use discrete

logarithm problem. This verification code can reveal information about

the secret if discrete logarithm problem is tractable. Hence the security of

the shared secret also depends on the hardness of the DLP problem. This

is avoided in our scheme. The verification code does not reveal any

information about the secret and is more secure compared with the

existing scheme.
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9.7 Concluding Remarks

In this chapter, we have proposed a novel threshold multi-secret sharing

scheme based on elliptic curve and bilinear pairing. Most of the schemes

proposed in the literature use bilinear pairing for verification of shares,

cheater detection and identification. We have used the method of point

sharing and verification using self pairing. A non degenerate Tate pairing

or modified Weil pairing can be used to share multiple secrets. The

number of public parameters are greatly reduced and the security does

not depend on the hard computational problem. The verification

mechanism can prevent users from cheating. The consistency of the shares

can be verified by the participants which avoids the need of a trusted

Dealer. The proposed scheme is the first threshold multi secret sharing

scheme based on self pairing with the extended capabilities of share

verification and cheater identification. The use of elliptic curve and self

pairing can be further explored to develop secret sharing schemes with

more generalized access structures.
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Chapter 10

Secret Sharing Applications

10.1 Introduction

Secret sharing have found several useful applications. Originally started as

a solution to safeguard secret keys, it has found numerous applications in

various security protocols. In this chapter we describe two such

applications developed based on the secret sharing schemes. E-voting

using secret sharing based Secure Multi-party Computation (SMC) and

CTS (Cheque Truncation System) based on secret image sharing. Apart

from this, there are several application areas where secret sharing can be

effectively utilized. Secret sharing schemes have found numerous

applications in designing several cryptographic protocols. Threshold

cryptography [63], access control [153], secure multi-party computation

[14] [48] [55], authenticated group key transfer protocol [92], broadcast

Some results of this chapter are included in the following paper.

Divya G. Nair, Binu V. P, G. Santhosh Kumar, “An Improved E-Voting Scheme

using Secret Sharing based Secure Multi-Party Computation ”, Eighth International

Conference on Computer Communication Networks (ICCN 2014), Banglore, Elsevier,

ISBN :9789351072539,P-17
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encryption [19], attribute based encryption [21] [85], generalized oblivious

transfer [191] [209], visual cryptography [152] etc. The secret sharing

scheme can also be used for the secure distributed storage of data with

out encryption. This adds trust and reliability. We have developed a

simple application based on the scheme mentioned in Chapter 4 for the

distributed data storage [151]. It is not included in the thesis because it is

in the development stage. We are exploring more on this area in our

future endeavor.

10.2 Secret Sharing Homomorphism and Secure

E-voting

10.2.1 Introduction

Secure E-voting is a challenging protocol. Several approaches to e-voting,

based on homomorphic crypto systems, mix-nets, blind signatures etc are

proposed in the literature. But most of them need complicated

homomorphic encryption which involves complicated encryption

decryption process and key management which is not efficient. In this

chapter we propose a secure and efficient E-voting scheme based on secret

sharing homomorphism. Here E-voting is viewed as a special case of multi

party computation, where several voters jointly compute the result

without revealing his vote. Secret sharing schemes are good alternative for

secure multi party computation. They are computationally efficient and

secure compared with the cryptographic techniques. It is the first

proposal, which makes use of the additive homomorphic property of the

Shamir’s secret sharing scheme and the encoding-decoding of votes to

obtain the individual votes obtained by each candidates apart from the

election result. We have achieved integrity and privacy while keeping the

efficiency of the system.
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10.2.2 E-voting

Voting is a distributed decision making process involving several people.

Each participant called the voter casts a vote and the computations are

performed on the vote casts by different voters to select the preferred

candidate. Voting can be modeled as a secure multi party computation

system because multiple parties submit input and obtain the result

without knowing any details of other users input.

The process involved in traditional election is quite tedious, time and

resource consuming. To overcome these difficulties E-voting system is

introduced. The evolving new technologies made E-voting practical. But

the research in this direction has to go a long way. The reliability and

security are the major challenges. E-voting provides a lot of benefits

compared with traditional voting. It avoids the requirement of

geographical proximity of users. The cost can be greatly reduced because

the resources can be reused. The use of E-voting must satisfy the security

requirements such as authentication, voter privacy, confidentiality,

integrity, etc. The security flaws make E-voting vulnerable than

traditional system.

The first electronic election scheme was proposed by David Chaum

[50] in 1981. Electronic voting systems catering to different requirements

have been widely implemented and used. There have been several studies

on using computer technologies to improve elections. In 1987 Benaloh [18]

presents an election scheme based upon secret sharing and the prime

residuosity assumption. Boyd et al [32] in 1990 proposed multiple key

cipher without a trapdoor function and presents a voting scheme as an

application of said cipher. Iverson and Kenneth [108] in 1992 made

proposals for application of secret sharing technique and zero knowledge

technique in secure election. Fujioka et al [73] suggested a practical secret

voting scheme for large scale elections in 1993. In this voting scheme,

voting is managed by an administrator who registers and authenticates
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voters and a counter who tallies votes. Gritzalis et al [86] [87] mentioned

the requirements of a secure E-voting system.

Confidentiality, Authenticity, Integrity and Verifiability are the major

security requirements in E-voting scenario. Confidentiality ensures that

nobody knows whom the voter is voted. Authentication is an important

process where each voter must be identified as a person he claims to be

and he should not be allowed to vote again. Integrity of the votes are also

important. The system should ensure that the votes are valid and any

modification must be detected. Verifiability means any one can verify at

later time that the voting is properly performed or his vote was properly

registered and has been taken into account in the final tally [73].

The are several proposal for efficient secret ballot elections based on

mix-nets [111] [164] [183], homomorphic encryption [16] [18] [54] [56] [73]

[157] [182] and blind signatures [224]. There are different methods

addressing the security and reliability of the E-voting scheme. Most of the

approaches are based on cryptography. The major objective is to protect

the voters identity from the vote. Secure E-voting using Blind Signature is

proposed in [102]. RSA [178] and Blind signatures are the major

cryptographic algorithms involved [42] [47]. Homomorphic encryption

techniques are used in several implementations [168]. E-voting scheme

proposals using verifiable secret sharing schemes are also given in [16] [18].

Several modifications and use of homomorphic encryption and verifiable

secret shuffle are mentioned in [98] [132] [154]. Malkhi et al [142] in 2003

gave constructions without cryptographic technique which uses secret

sharing homomorphism. Iftene [105] in 2007 proposed a general secret

sharing scheme for E-voting using Chinese Remainder Theorem. Pailliar’s

crypto system and its application to voting is proposed by Damagaard et

al [57] in 2010. Discrete logarithm problem and secret sharing are used by

Chen et al [51] in 2014. Scheme with enhanced confidentiality and privacy

is suggested by Pan et al [160] in 2014.
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Secret sharing and many variations of its form an important primitive

in several security protocols and applications. In the proposed method we

make use of Shamir’s [190] secret sharing techniques and its additive

homomorphism property for efficient implementation of E-voting and vote

tallying. This avoids the complicated encryption decryption process and

key management. Details of Shamir’s secret sharing schemes are given in

Chapter 1. The shares in this scheme are information theoretically secure

and provides no information about the secret key. The scheme is also

ideal.

Properties of polynomials give Shamir’s scheme a (+,+) homomorphic

property. The secret domain and the share domain is same (integers

modulo p). There are other schemes [3] [123] also having (+,+)

homomorphism property. We consider Shamir’s scheme for the ease of

implementation and also it is information theoretically secure. The

homomorphism also provides verifiable secret sharing. It is very important

in secure multi party computation. The first proposal of verifiable secret

sharing was done by Chor et al [53]. In secret sharing not only the

participant but also the Dealer may be malicious. So the participant must

be able to verify whether the shares are consistent. A set of n shares is t

consistent if every subset of t of the n shares defines the same secret.

Publicly verifiable secret sharing scheme’s are introduced by Stadler in

1996 [203]. Schoenmakers [186] in 1999 proposed a publicly verifiable

secret sharing scheme (PVSS) with applications to E-voting. The scheme

is better than the schemes mentioned in [54] [56]. The issue of

homomorphic secret sharing for PVSS is also discussed. An efficient PVSS

is needed for the secure implementation of E-voting.

10.2.3 Secret Sharing Homomorphism

Secret sharing homomorphism is introduced by Benaloh in 1987 [17]. It

is noted that Shamir’s scheme is additive homomorphic. He stated that
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any t of the n agents can determine the super secret and no conspiracy of

fewer than t agents can gain any information at all about any of the sub

secrets. That is the sum of the shares of different sub secret when added up

and then interpolate according to the threshold mentioned to obtain the

master secret which is the sum of the sub secrets. He also mentioned the

importance of secret sharing homomorphism to E-voting.

Shamir’s secret sharing scheme has the (+,+) homomorphism

property. For example, assume there are two secrets K1, K2 and are

shared using polynomials g(X) and f(X). If we add the shares

h(i) = g(i) + f(i), 1 6 i 6 n, then each of these h(i) can be treated as the

shares corresponds to the secret K1 + K2. The polynomial

h(X) = g(X) + f(X) and h(0) = K1 +K2. Additive homomorphism of

Shamir’s secret sharing can be used to build an e-voting scheme. But each

voter choose 1 or 0 (vote or no vote). The shares are send to n tellers.

Any t of them can collaborate to retrieve the result back.

In case of PVSS, two operations are defined. One on the shares ⊕ and

the other operation ⊗ on the encrypted shares such that for all participants

Ei(si)⊗ Ei(s′i) = E(si ⊕ s′i)

. If the underlying secret sharing scheme is homomorphic then by decrypting

the combined encrypted shares, the recovered secret will be equal to si⊕s′i.

10.2.4 Proposed Scheme

The proposed system is a modification of the existing electronic voting

scheme’s used in India. Currently electronic voting machines are used in

polling booth. These machines are costly and also not reliable. We propose

an alternative solution for this using an online system which uses secret

sharing homomorphism. This add trust and reliability to the existing voting

scheme by incorporating secret sharing based techniques. The secrecy of
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vote is an important issue. This needs to be addressed with ultimate care.

In the current Electronic Voting System (EVS), when a vote is casted, the

corresponding candidate data base entry is updated and it can be easily

tracked. But in the proposed scheme, it is difficult to track the vote because

the shares of the votes are added and updated in all the servers. We also

add trust to the existing scheme by maintaining more than one server to

keep the voting details. We are not considering on-line verification of the

authenticity of the voter as in general e-voting scheme. Here we assume

that the polling officers in each polling booth has to do it manually using

the electoral role. The major components of the proposed e-voting schemes

are

1. Voting Terminal

2. Share Generation

3. Collection Centers

4. Result Computation

We have considered the user authentication process which is done

manually. The voting takes place in a Polling station. A voter is allowed

to vote after his identity is verified. A polling station may contain many

voting terminals. The user interface shows a voting panel which contains

the list of all contesting candidates and their party symbols. Voting panel

is setup and managed by the Chief Election Officer.

The share generation module is responsible for receiving the vote casted

by each voter and make shares of it according to the threshold secret sharing

scheme. The shares are generated according to the vote casted for each

candidates. Each candidate vote is represented as an encoded binary code.

So when a vote is casted, the shares of the decimal value corresponds to

the encoded binary vote of each candidate is generated using the Shamir’s

229



Chapter 10. Secret Sharing Applications

secret sharing scheme. The number of bits in the encoded binary code

corresponds to each candidate vote depends on the number of contesting

candidates and also total number of voters.

Let us assume that there are m contesting candidates C1, C2, . . . , Cm

and n voters V1, V2, . . . , Vn. Then the binary encoding of the vote

corresponds to each candidate will consist of (blog2nc+ 1)×m number of

bits. Here we consider the fact that all voters may vote for the same

candidate. So the number of bits required for the representation of votes

for each candidate is equal to the number of bits required to represent the

total number of voters which is blog2nc+ 1.

The encoding of the vote corresponds to each contesting candidate is

explained below with an example. Let us consider that there are three

candidates and seven voters. So the total number of bits of each encoded

vote will be nine. The bit pattern corresponds to the vote of each

candidate is obtained by setting the corresponding bit Ci to 1 in the code

00C300C200C1 and other bits Ci to 0. For example the code corresponds

to the vote of candidate C3 is 001000000(64). So depending on the vote

casted, it is encoded into a decimal code of 1, 8 or 64 respectively. This

bit wise encoding helps in computing the total votes obtained by each

candidate using the additive homomorphism.

The encoded vote is then shared using Shamir’s threshold secret

sharing scheme. The shares are then send to different Collection

Centres(CC). The Collection Centres are responsible for receiving and

summing up the shares corresponds to each vote casted. We can set up

the threshold and also set number of collection centers required. If there

are p collection centers CC1, CC2, . . . , CCp and a threshold t 6 p is set so

that we can get back the result from any t collection centers. This

provides trust and reliability. Based on the number of collection centers

and threshold set up, Shamir’s scheme can be used for a threshold (t, p)

secret sharing. A t − 1 degree polynomial Q(x) is constructed with
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constant term representing the encoded vote value in decimal. The other

coefficients are chosen randomly from the field Zq, where q is a prime

larger than the encoded vote values and the number of participants. The

shares are generated by evaluating the polynomial Q(x) at p different

values x1, x2, . . . , xp. These x1, x2, . . . , xp values represent different

collection centers known only to the Chief Election Officer and are kept

secret. These shares are then send securely to the p collection centers.

Any t of them can be used for result evaluation and verification. The

shares look totally random and the collection centres have no idea

regarding which secret (vote) share it is. i.e., no information about the

vote casted is obtained from the share value. The share size is also same

as the secret size and hence it provides information theoretical security.

Once all the collection centres receives the vote share, the voting terminal

is intimated to receive the next vote or it is the confirmation that the vote

is registered properly.

The collection centers are responsible for summing up the shares they

receive for vote tallying. Here the shares are always valid. They are

generated automatically from the terminal program embedded. So there is

no need to check the consistency of the shares received by the collection

centres. But proper measures must be taken for the secure and error free

communication between the voting terminal and collection centres.

Collection centres behave as group of authorized parties. In a real time

voting scenario, a single machine can act as a collection centre by

maintaining database which contains collection of shares. However in this

case the collection centre must be trusted. We can maintain a hierarchy of

collection centres for collecting vote shares according to the geographical

location which compute the local sum of shares. The local sum is then

send to the top level collection centres which further add the sums of

shares received from local collection centres. A separate communication

module can be incorporated for the efficient and secure communication of

231



Chapter 10. Secret Sharing Applications

shares. The collection centres can also keep the shares received from each

polling booth or polling booths belong to the same area as a separate

entity for the computation of region wise voting details. The strategy for

share maintenance, number of collection centres etc can be determined

based on the requirement. The implementation issues also depend on the

hierarchal structure used.

The Result Computation module is responsible for computing and

declaring the final result. The final result can be obtained using Lagrange

Interpolation using the sum of shares stored on collection centres. If there

are p collection centres and a (t, p) threshold secret secret sharing scheme

is used, then the share sum from any t collection centres can be used for

computing the final result. These t shares can be used to get back a t − 1

degree polynomial Q(x) and the encoded result will be Q(0). The result is

then decoded by converting Q(0) into binary and then separating the bits

corresponds to each candidates. The decimal equivalent of the separated

bits represent the total vote obtained by each candidate. Based on this,

the election result can be announced with votes secured by each

contesting candidate.

It is noted that the result computation cannot be performed by a

collection centre. They will just keep the share sum and a hash is

computed, which is then signed by using the private keys of the collection

centre. During the result computation, it can be verified for the integrity

and authenticity. The result declaration module, is managed by higher

officials and only they know the different x values used for each collection

centre during the share generation. Any t of this x values and the

corresponding share sum, which is the y values, the polynomial

interpolation can be done. The result computation can be done with

different combination of the share sum from t different collection centres

which adds reliability. The trust is maintained by the Shamir’s scheme

because less than t collection centres cannot get any information about
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the final result. At least t collection centres have to collate to get back the

result.

10.2.5 E-voting Algorithms

The following algorithm only includes the core functionality required.

Additional functionalities can be added depending on the implementation

requirement. Suitable hash algorithm and signature algorithm must be

chosen for maintaining the integrity and authenticity. When the voting is

finished, the hash of final share sum of each collection centre SCCj can be

computed using SHA(Secure Hash Algorithm) [171] and is then digitally

signed by the previously issued private keys of the collection centre. The

election official can verify this for integrity and authenticity. The E-voting

algorithm and Result computation are given in Algorithm 10.1 and

Algorithm 10.2.

10.2.6 E-voting Example

Let us assume that three people Alice, Bob and Charles are contesting in an

election and there are seven voters. So the maximum vote each contestant

can get is seven. Three bits are hence required for the representation of votes

gained by each candidate and a total of nine bits for the representation of

encoded votes corresponds to three candidates.

Let m = 3, n = 7, V = 9 bits.

A sample voting scenario is given below where six voters made the vote out

of seven.
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Algorithm 10.1: E-Voting

Input: Vote casted by the voters
Output: Sum of the shares of the votes at each CC

1 Let m denote the number of candidates and n denote number of
voters.

2 Set V equals (blog2nc+ 1)×m bits for encoding the votes.
3 Choose an appropriate field Zq.
4 for each vote i = 1 : n do
5 enc vote = bin decimal(set bit (V ))

/* V is set according to the vote casted */

/* enc vote is the encoded vote in decimal */

6 Pick t− 1 random numbers a1, a2, a3, . . . , at−1 from Zq
7 Construct the polynomial
8 Q(x)=enc vote +a1x+ a2x

2 + · · ·+ at−1x
t−1

9 for j = 1 : p do
10 Generate share Vij = Q(j)

/* where Vij is the jth share of ith vote */

11 Send the share Vij to Cthj collection centre

12 through a secure communication channel

13 end
14 for each Collection Centre j = 1 : p do
15 Sum of shares SCCj = SCCj + Vij
16 end

17 end

The votes are encoded as shown in Table 10.1 corresponds to each

contesting candidate. Let us choose a field Z257. We have considered a

(2, 3) secret sharing scheme, where sum of the shares from any two

collection centre can be used to reconstruct the secret result. Every time a

vote is casted, a random polynomial Q(x) of degree 1 are constructed

with constant term as the encoded vote and the other coefficient are

chosen randomly from Z257. Generate the three shares CC1, CC2 and CC3

with xi’s as 1, 2 and 3 respectively. It is noted that the shares are random
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Algorithm 10.2: Result Computation

Input: Share sum of the votes from collection centres

Output: Votes obtained by each candidate

1 for each randomly chosen t Collection Centre j = 1 : t do

2 retrieve SCCj

3 end

4 Interpolate using SCCj and corresponding xi values to obtain the

polynomial Q(x)

5 Obtain the secret value Q(0).

6 Decode Q(0) and obtain the binary representation.

7 Each (blog2nc+ 1) bits will represent each candidates vote.

8 Publish the final results i.e., votes obtained by each candidates

based on the encoded values.

irrespective of the encoded vote. So the collection centre cannot derive

any information about the secret from the shares they receive. The

collection centre also compute the share sum SCCj from the shares they

receive. Table 10.2 shows the random polynomials constructed, the

corresponding shares generated and also the share sum in the sample run

of the algorithm corresponds to (2, 3) secret sharing scheme.

The election result can be computed from the sum of shares SCCj

maintained by each collection centre using Lagrange interpolation. The

polynomial Q(x) can be obtained using any two shares in the example

using the Lagrange Interpolation formula as follows.

Q(x) = SCC1.
(x− x2)

(x1 − x2)
+ SCC2.

(x− x1)

(x2 − x1)

The final result depends on Q(0) which is easily obtained by

Q(0) = SCC1.
(x2)

(x2 − x1)
+ SCC2.

(x1)

(x1 − x2)
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Table 10.1: Example E-voting

Vote Alice Bob Charles
Encoding Vote

Binary Decimal

1 � 001000000 64

2 � 000001000 8

3 � 000001000 8

4 � 001000000 64

5 � 000000001 1

6 � 001000000 64

Table 10.2: Vote Sharing

Vote enc vote q(x)
Shares

CC1 CC2 CC3

1 64 233x+64 40 16 249

2 8 157x+8 165 65 222

3 8 78x+8 86 164 242

4 64 255x+64 62 60 58

5 1 217x+1 218 178 138

6 64 124.x+64 188 55 179

share sum SCCj 245 24 60

Computation of results using different combination of shares

SCC1 : SCC2, SCC1 : SCC3 and SCC2 : SCC3 are shown in equation

10.1,10.2 and 10.3. The operations are carried out in Z257. It is noted that

the reconstructed values are consistent.

Q(0) = 245. 2
2−1 + 24. 1

1−2 = 209 (10.1)

Q(0) = 245. 3
3−1 + 60. 1

1−3 = 209 (10.2)

Q(0) = 24. 3
3−2 + 60. 2

2−3 = 209 (10.3)

The final result can be obtained by decoding the reconstructed result
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209 into binary. It is noted that 3 bits will represent vote secured by each

candidate.

decoded vote : 011, 010, 001

The result can be published based on the decoded vote values which is

shown in Table 10.3.

Table 10.3: E-voting Result

Candidate Votes Secured

Alice 3

Bob 2

Charles 1

10.2.7 Implementation

We have done a preliminary implementation of this scheme using Java. The

architecture of the developed system is shown in Figure 10.1. The proposed

system focus on the generation of secret shares, secure distribution of shares

and secure computation of votes obtained for each candidate. The detailed

architecture is shown in Figure 10.2. Polling Station provides the interface

for voting purpose. A polling station may contain many voting machines.

It has a voting panel which contains the list of all candidates and their

party symbols. Voting panel is loaded with this candidates information

from a setup file which is managed by the Chief Election Commissioner. The

vote casted by a voter is given to share generator module, which contains

the encoding and Shamir share generator module. The Encoding module

will encode the vote using the bitwise encoding algorithm as explained

before. Share Generator uses Shamir’s secret sharing scheme for generating

shares of the encoded vote. The number of shares generated is based on

number of collection centres. This provides both security and trust which
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is implemented using Shamir’s (t, n) threshold scheme in which any t shares

of total n shares can be used for reconstructing the original vote casted.

The shares generated in the share generator module is sent to the

collection centres through the Communication Server which manages the

communication and coordination among all the other modules. This

module handles Voting Machine Manager, Communication Manager and a

Collection Centre Manager. Chief Election Commissioner module is

working in an administrative role, which manages the other modules. The

Voting Machine Handler manages a set up file containing the list of

candidates and their party symbols. Any modification made in the set up

file will be reflected in the voting panel interface. The Collection Centre

Handler manages the collection centres. For reconstructing the sum of

votes for each candidate, t collection centres need to be selected randomly

based on (t, n) threshold scheme. Collection Centre Handler randomly

selects any of the t collection centres during the reconstruction phase.

Authentication of Collection centres is also managed by Collection Centre

Handler. The Result Analyzer computes and declare the result using the

share sum obtained from different collection centre.

Collection Centre(CC) manages all the shares and provides a local

database for holding the shares. Usually a group of authorized parties

behave as collection centres. Each collection centre will be having a local

database which receives one share for every vote casted. Number of

collection centres (n) depend on the number of shares generated for each

vote, which in turn depends on the chosen threshold (t, n) scheme. Each

collection centre CCi gets ith shares of all the votes. From the share of a

vote casted, the collection centre cannot derive any useful information

regarding the vote casted. The Computation Agent performs summation

of all the shares it received in its local database and it is used as a partial

sum in the multi party computation. When the Collection Centers are

selected for the final result computation, the partial sum is passed to
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Collection Center Handler module in the Chief Election Commissioner

module. The Result Analyzer compute the result by reconstructing the

encoded secret using Lagrange Interpolation. The decoding algorithm is

performed then, which will reveal the individual sum of votes of each

contesting candidate.

Figure 10.1: E-voting: System Architecture

Results based on 5 voters, 3 candidates and 5 collection centres are

considered. The shares generated based on Shamir’s (3, 5) scheme are shown

Table 10.4. CC1, CC2 and CC3 are chosen for the computation of the result.

The values of share sum SCC1, SCC2, SCC3 obtained are 768, 1771 and

3284 respectively. The Result Analyzer uses these values for interpolation.

The polynomial obtained is 275 + 238x1 + 255x2. The constant term 275

represent the sum of votes. Decoding of this will result in 0001 0001 0011.

Each 4 bit represent the individual votes obtained by candidates.
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Figure 10.2: Detailed Architecture

Table 10.4: Voting System: Share Generation

Voters CC1 CC2 CC3 CC4 CC5

Voter1 (1,91) (2,269) (3,535) (4,889) (5,1331)

Voter2 (1,327) (2,498) (3,769) (4,1140) (5,1611)

Voter3 (1,70) (2,251) (3,544) (4,949) (5,1466)

Voter4 (1,113) (2,278) (3,511) (4,812) (5,1181)

Voter5 (1,167) (2,475) (3,925) (4,1517) (5,2251)

10.2.8 Analysis and Discussions

Security in on-line election is a challenging task. Authenticating the voter

is a major challenge along with the privacy of the vote. We have considered

manual authentication and proposed a modification to the existing voting
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scheme which uses electronic voting machine. The voting machines are not

reliable and also in certain situations more than one voting machine needs

to be connected when the number of candidates are more. The proposed

scheme is cost effective and also reliable.

It is noted that the proposed algorithm mentioned is simple and

effective and provides privacy to the vote casted. The shares are generated

by constructing a random polynomial and the share size is same as the

encoded vote. The collection centres have no idea about how the votes are

encoded, how many bits are used for encoding, which bits represents a

particular candidate votes etc. The collection centres will receive a

random value from the field Zq from which no information about the

secret vote can be obtained. The coalition of t untrusted collection centres

can obtain the result. But they doesn’t have any knowledge about the

number of collection centres, the threshold used and also what is the x

values assigned to each collection centre. In the example we have

considered 1, 2 and 3 for simplicity, however different x values can be used

and are kept secret.

Shamir’s secret sharing scheme is information theoretically secure. It

is perfect in the sense that no information can be obtained from less than

the threshold number of participants. This adds trust to the existing

E-voting scheme because the computation of the result need participation

of t collection centres. The computation of the shares and the

reconstruction of the final result using the share sum can be done using

polynomial evaluation and interpolation. Efficient O(n.log2n) algorithms

for polynomial evaluation and interpolation are mentioned in [1] [138].

Simple quadratic algorithms are sufficient because the number of shares

generated is not too large.

The encoding and decoding of the votes can also be done easily. The

codes for each candidates and also the number of bits required to

represent the votes depends on the number of voters and number of
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contesting candidates. These setups are done by the election officials prior

to the election process. The decoding of votes is a simple binary

conversion which can also be done easily. The integrity of the share sum

maintained by each centre is achieved by implementing a digital signature

scheme. This can also be efficiently implemented using any digital

signature scheme [4].

The algorithm is computationally efficient and the complexity involved

depends on the share generation during the voting and the

communication with the Collection Centres. The number of shares are

usually small and hence the share generation using polynomial evaluation

is simple. The secure communication between the voting terminal and the

collection centre is more challenging. Separate communication module can

be incorporated to do it efficiently. The collection centre must also be

capable of handling requests from large number of voting terminals.

Region wise collection centres can be incorporated to balance the load

and update the top level collection centre data in a periodic manner. The

result analysis needs the polynomial interpolation but is done only once

and it doesn’t add much complexity to the performance of the system.

In traditional elections most ideal security goals such as democracy,

privacy, accuracy, fairness and verifiability are assured to a certain level

given physical and administrative premises. The task of meeting the

security goals is quite difficult in online elections. Another controversial

pair of security properties in E-voting schemes are privacy and eligibility.

It is difficult in online elections to unequivocally identify and check the

credentials of a voter, while at the same time protecting the privacy of

his/her vote. Computerized voting will never be used for general elections

unless there is a protocol that both maintains individual privacy and

prevents cheating.

A good voting system should satisfy number of generic voting

principle. The authentication mechanism should ensure that only eligible
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persons can vote and should not allow any one to vote more than once.

The proposed method satisfies the fundamental requirement of a secure

voting protocol. No one can determine for whom anyone else voted. Even

the authorities will not be able to determine this because the information

is not stored anywhere. For each vote casted the shares are send to all the

collection centres and the partial sum is updated. The shares generated

using Shamir’s scheme is information theoretically secure and no

information about the vote casted is obtained from the shares. The

consistency of the result obtained can be verified with t different set of

shares.

10.2.9 Concluding Remarks

The E-voting scheme using Shamir’s secret sharing homomorphism and

encoding and decoding of votes is the first proposal which helps to obtain

not only the election result but also the votes gained by each candidate. The

use of secret sharing homomorphism for E-voting was suggested by several

authors however true or false voting mechanism is mentioned. The proposed

algorithm generalize the use of secret sharing homomorphism to E-voting

which provides secrecy, computational efficiency, trust and reliability. The

system does not also leave any trace of the vote made by a voter.

The strong requirement of the scheme mentioned here is a secure channel

for sending shares. The shares can be send through different channels to

different collection centres. The intruder have to get access to t different

channels for breaking the security of the scheme. For additional security,

the shares can also be encrypted by using the public keys of the collection

centre. There are several homomorphic encryptions which support this or

ordinary encryption decryption can be used.

The system works efficiently for a moderate election with less number

of voters. If the number of voters and candidates are more, the encoded

vote will have a large value and the system has to chose a field of large
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size. This will result in large share size, which will results in too much

communication overhead. This can be avoided by breaking the encoded

vote into smaller code and makes shares of it. However the complexity

involved in the implementation will increase.

We have done a preliminary implementation of the scheme using Java

[150]. Additional modules are incorporated as per the requirement.

Another feature that can be incorporated is the implementation of digital

signature scheme, which ensures integrity and authenticity of the shares.

Verifiable secret sharing techniques can also be incorporated which

ensures the consistency of the shares. However it slow down the system

performance. We are looking for a more sophisticated implementation

guaranteeing authentication using mobile phones and OTP (One Time

Password) for all the users using adhar details. Instead of voting terminals

every one can vote using the registered mobile phones which is our future

plan. The research is still challenging in the cryptographic community to

design more powerful and secure e-voting schemes.

10.3 Cheque Truncation System

10.3.1 Introduction

Cheque Truncation System (CTS) is an automatic cheque clearance

system implemented by RBI. CTS uses cheque image instead of the

physical cheque itself for cheque clearance. This will reduce the turn

around time for cheque clearance drastically. This approach holds back

the physical movement of cheque from presenting bank to the drawee

bank. In CTS, digital image of the cheque is protected using standard

Some results of this section are included in the following paper.

S. R. Sreela,Binu V. P,G. Santhosh Kumar,“Establishing Security in Cheque Truncation

System using Secret Image Sharing”, Eighth International Conference on Computer

Communication Networks (ICCN 2014), Banglore, Elsevier,ISBN :9789351072539,P-29
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public key and symmetric key encryptions like RSA, triple DES etc. This

involves a lot of computation overhead and key management. The security

also depends on the hard mathematical problem and is only

computationally secure. Information theoretically secure, secret image

sharing techniques can be used in the CTS for the secure and efficient

processing of cheque image. In this section, we present two simple and

efficient secret image sharing schemes and a CTS based on these

algorithms. In the proposed scheme, the presenting bank is acting as the

dealer and the participants are the customer and the drawee bank. The

dealer should generate the shares of cheque and distributes it to customer

and drawee bank. The validity of the shares are important during the

reconstruction process. The proposed scheme also suggests a method for

cheating detection which identify any invalid shares submitted by the

customers, using the hashing technique. The experimental results shows

that the proposed scheme is efficient and secure compared with the

existing schemes.

Cheques represent a significant segment of payment instruments in

India. Cheque Truncation System (CTS) or ICS (Image Based Clearing

System) in India is a project undertaken by Reserve Bank of India (RBI)

for faster clearing of cheques. CTS is basically an online image-based

cheque clearing system where cheque images and Magnetic Ink Character

Recognition (MICR) data are captured at the collecting bank branch and

transmitted electronically. Manual clearing of cheque needs human

intervention and is a time consuming task. Cheque truncation [6] involves

stopping the flow of the physical cheques issued by a drawer to the drawee

branch. An electronic image of the cheque is sent to the drawee branch

along with the relevant information like the MICR fields, date of

presentation, presenting banks etc. The point of truncation is left to the

discretion of the presenting bank. Thus Cheque truncation would

eliminate the need to move the physical instruments across branches and
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hence result in effective reduction in the time required for payment of

cheques, the associated cost of transit and delays in processing etc. This

will speed up the process of collection or realization of cheques and thus

reduce the turn around time.

The system offers following benefits to the bank and customers. Banks

can expect multiple benefits through the implementation of CTS like faster

clearing cycle, better reconciliation/verification process. Besides it reduces

operational risk by securing the transmission route. Reduction of manual

tasks leads to reduction of errors. Customer satisfaction will be enhanced

due to the reduced turn around time. Real-time tracking and visibility of

the cheques, less fraudulent cases with secured transfer of images to the

RBI are other possible benefits that banks may derive from this solution.

For customer’s CTS / ICS substantially reduces the time taken to clear

the cheques as well as increases operational efficiency by cutting down on

overheads involved in the physical cheque clearing process. In addition, it

also offers better reconciliation and fraud prevention.

The use of the Public Key Infrastructure (PKI) ensures data

authenticity, integrity and non-repudiation. This adds strength to the

entire system. The presenting bank is required to affix digital signature on

the images and data from the point of truncation itself. The image and

data are secured using the PKI through out the entire cycle covering

capture system, which include the presenting bank, the clearing house and

the drawee bank. This system needs a lot of computation and overhead in

key management is high. The proposed scheme avoids this by

incorporating secret sharing based techniques. Two efficient schemes are

proposed which are computationally secure and efficient. The secret

sharing based schemes avoids the complicated encryption decryption

process and also the overhead in key management. A cheating detection

scheme is also proposed which avoids the use of invalid shares during the

246



10.3. Cheque Truncation System

reconstruction.

10.3.2 Related Work

CTS system is implemented by RBI to reduce the complexity of cheque

processing. CTS system is implemented in India in 2010. Grid based CTS

is implemented in Chennai, Delhi, Kolkata etc. Different security schemes

are also applied in cheque processing. Pasupathinathan et al [166] describes

privacy enhanced electronic cheque system in 2005. In 2011, Rigel Gjomemo

et al [81] explains the digital cheque forgery attack on CTS. Kota et al [122]

explains the method for detecting tampered cheque images in CTS using

Difference Expansion based Watermarking in 2014.

The secret image sharing schemes are based on visual cryptography,

number theory, information hiding theory, error diffusion technique,

boolean operation etc. Most of the schemes in the literature have

complicated operations involved in share generation and reconstruction.

These schemes having pixel expansion and are also lossy. In the proposed

application we are considering (2, 3) secret image sharing schemes which

can be easily implemented and also having less computational complexity.

Binu et al [22] proposed efficient (2, 3) secret sharing schemes which uses

XOR based operation. These schemes are used here for the construction

of CTS.

10.3.3 CTS Architecture

The process flow of CTS is explained below. In CTS, the presenting bank (or

its branch) captures the data on the MICR band and the images of a cheque

using their capture system comprising of a scanner, core banking or other

application. Images and data should meet the specifications and standards

prescribed for data and images. The architecture of CTS is explained in
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Figure 10.3.

Figure 10.3: CTS Architecture

To ensure security, end-to-end Public Key Infrastructure (PKI) has

been implemented in CTS for protecting data and image. The presenting

bank sends the data and captured images duly signed and encrypted to

the Clearing House (the central processing location) for onward

transmission to the paying bank (destination or drawee bank). For the

purpose of participation, the presenting and drawee banks are provided

with an interface/gateway called the Clearing House Interface (CHI) that

enables them to connect and transmit data and images in a secure and

safe manner to the Clearing House (CH). The CTS uses public key

infrastructure (PKI) like digital signature and encryption for protecting

cheque images and data. The standards defined for PKI are hash

algorithm SHA-1, padding algorithm, RSA asymmetric encryption with

1024 bit key length, Triple DES symmetric encryption with 168 bit key

length and Certificates in X.509v3 format. Cheque image is protected
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using encryption techniques. These techniques need a lot of computation

and complicated key management.

10.3.4 Proposed System

The architecture of the proposed system is given in Figure 10.4. The

system architecture describes how secret image sharing scheme is applied

in the CTS. In this architecture, the Dealer should be the Clearing House

Interface (CHI). The participants are presenting bank, clearing house

(CH) and drawee bank.

In order to reduce the computation and usage of keys, cheque image

can be protected using secret image sharing technique. In the proposed

system, two secret image sharing methods are proposed for protecting

cheque images. Cheating occurs, if any one of the participant do

malpractice on the share. Cheating detection is a major requirement in

critical applications. Cheating detection and identification scheme based

on number theory and hash function is incorporated in the scheme.

Threshold (2, 3) secret sharing scheme is used for implementing security

in CTS. Presenting bank captures cheque MICR data and images using

specially designed scanners. The CHI generates the shares and distribute

them to the presenting bank, clearing house and drawee bank. Customer

should use the share to get the information of the processing cheque through

online. Drawee bank should reconstruct the cheque image using the share

from the CH and share from CHI of presenting bank. Drawee bank cannot

reconstruct the cheque image using its own share. It is noted that only

shares are communicated through different channels in one clearing cycle.

To implement security in CTS any one of the secret image sharing scheme

mentioned can be used.

The important steps involved in the proposed CTS using secret image

sharing are as follows:
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Figure 10.4: System Architecture

• Customer submits the cheque to the presenting bank and the capture

system captures the MICR data and image of cheque.

• Send the data and image to the presenting Clearing House

Interface(CHI). Presenting CHI provide security to the cheque

image using (2, 3) secret image sharing scheme.

• Send first share of the cheque image(SC1) to the presenting bank.

This share is used for authentication and for viewing the details of

cheque processing.

• Send second share of the cheque image (SC2) to the Clearing House.

• The Clearing House send data and one share of the cheque image

(SC2) to the drawee bank (paying bank).

• The drawee bank request another share of the cheque image from the

presenting bank through receiving CHI.
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• The presenting bank submit third share (SC3) to the drawee bank

through CHI.

• The paying bank reconstructs the cheque image using shares SC2 and

SC3.

• Bank process the cheque using image processing algorithm.

• Send data and shares to the presenting bank through CH for further

processing.

10.3.5 Partition Scheme

A simple and efficient (2, 3) scheme can be implemented based on this

technique. In this scheme, three shares are created and the original image

is reconstructed using at least two shares. Less than two shares will not

give any information about the secret image. The share images are created

by dividing pixel into four bits. In this scheme, the share size is reduced to

half i.e., each share image pixel is only 4 bits. Share generation is explained

in Algorithm 10.3. Recovery algorithm is explained in Algorithm 10.4. The

original secret image is reconstructed by using any two shares from three

shares.

Consider an image matrix as
157 160 190 130
89 255 224 192
10 220 255 224
64 128 192 255


Let the secret image pixel is 190. Its binary representation is 10111110.

The share1 pixel (sc1=6(0110)) is created using even bits. The share2

pixel (sc2=15 (1111)) is created using odd bits. The share3 pixel

(sc3=9(1001)) is created by XORing sc1 and sc2. The partition scheme is

applied on the above image S. The three shares SC1, SC2 and SC3

251



Chapter 10. Secret Sharing Applications

obtained are as follows:

SC1 =


7 0 6 0
13 15 8 8
0 14 15 8
8 0 8 15



SC2 =


10 12 15 9
2 15 12 8
3 10 15 12
0 8 8 15



SC3 =


13 12 9 9
15 0 4 0
3 4 0 4
8 8 0 0


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Algorithm 10.3: Share generation-Partition

Input: Secret grayscale image S of sixe M ×N
Output: Share images SC1, SC2, SC3

1 for each pixel S(i, j) ∈ {S(i, j)|1 6 i 6M, 1 6 j 6 N} do
2 Pixelvalue, pv = S(i, j), pv is the binary array containing the

pixel intensity binary representation. Create share1 pixel
SC1(i, j) using even bits of S(i, j) pixel

SC1(i, j) =
3∑

k=0

(pv(2k)× 2k)

3 Create share2 pixel SC2(i, j) using odd bits of S(i, j) pixel

SC2(i, j) =
3∑

k=0

(pv(2k + 1)× 2k)

4 Create share3 SC3(i, j) pixel by XORing SC1(i, j) and SC2(i, j)

SC3(i, j, k) = SC1(i, j)⊕ SC2(i, j)

5 end
6 Output shares SC1, SC2 and SC3.
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Algorithm 10.4: Recovery algorithm-Partition

Input: Share images SC1, SC2, SC3

Output: Reconstructed Secret image S from different shares

/* Reconstruction of secret image from SC1 and SC2 */

1 for each pixel values in SC1 and SC2 do
2 S(i, j) is obtained by intermixing bits of SC1(i, j) and SC2(i, j)

in even and odd positions respectively.
3 end
4 Output image S.

/* Reconstruction of secret image from SC1 and SC3 */

5 for each pixel values in SC1 and SC3 do
6 b = SC1(i, j)⊕ SC3(i, j).
7 S(i, j) is obtained by intermixing bits of SC1(i, j) and b in even

and odd positions respectively.
8 end
9 Output image S.

/* Reconstruction of secret image from SC2 and SC3 */

10 for each pixel values in SC2 and SC3 do
11 b = SC2(i, j)⊕ SC3(i, j).
12 S(i, j) is obtained by intermixing bits of b and SC2(i, j) in even

and odd positions respectively.
13 end
14 Output image S.

˜

In this scheme, the size of the share is half the size of the original image.

The number of bits for representing a pixel in each share is only 4 bits. If

the M ×N secret gray scale image has a size of 8×M ×N bits, then the

size of the share is only 4×M ×N bits. So the storage space of the share

is reduced. The quality of the reconstructed image is same as the original

image. In this scheme, there is no pixel expansion and also it is a lossless

scheme.

254



10.3. Cheque Truncation System

10.3.6 XOR Based Scheme

This method use simple XOR and concatenation operation of secret

image pixel with random numbers for creating shares. The scheme is ideal

unlike the partition scheme. The share size is same as the secret size. This

scheme is simple and easy to implement. The share generation algorithm

is explained in Algorithm 10.5. Algorithms 10.6, 10.7, 10.8 describe the

reconstruction of the secret image from different combination of shares.

Algorithm 10.5: Share generation-XOR Scheme

Input: MXN Secret gray scale image S.
Output: Share images SC1, SC2, SC3.

1 for each pixel in S do

2 Let s be the pixel of the secret image S and r be a random
number in 0-255.

3 s is split into s1 and s2 and r is split into r1 and r2.

4 Share1 pixel is created by concatenating s2 ⊕ r2 and r1

sc1 = (s2 ⊕ r2)||r1

5 Share2 pixel is created by concatenating s1 ⊕ r1 and r2

sc2 = (s1 ⊕ r1)||r2

6 Share3 pixel is created by concatenating s2 ⊕ r1 and s1 ⊕ r2

sc3 = (s2 ⊕ r1)||(s1 ⊕ r2)

7 end

8 Output three shares share1(SC1), share2(SC2), share3(SC3).
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Algorithm 10.6: Reconstruction using share1 and share2

Input: Share images SC1, SC2.
Output: Reconstructed Secret image S.

/* Original image is reconstructed from SC1 and SC2 by

the following algorithm. */

1 for each pixel sc1 and sc2 in SC1 and SC2 do
2 The share1 pixel sc1 is divided into two equal parts sc11 and sc12.
3 The share2 pixel sc2 is divided into two equal parts sc21 and sc22.

/* The second part of the original image pixel s2 is

reconstructed by XOR-ing first part of the share1

pixel sc11 and second part of the share2 pixel sc22.

*/

4

s2 = sc11 ⊕ sc22

/* The first part of the original image pixel s1 is

reconstructed by XOR-ing second part of the share1

pixel sc12 and first part of the share2 pixel sc21.

*/

5

s1 = sc12 ⊕ sc21

/* The original image pixel s is obtained by

concatenating s1 and s2. */

6

s = s1||s2

7 end
8 Output secret image S.
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Algorithm 10.7: Reconstruction using share1 and share3

Input: Share images SC1, SC3.
Output: Reconstructed Secret image S.

/* Original image is reconstructed from SC1 and SC3 by

the following algorithm. */

1 for each pixel sc1 and sc3 in SC1 and SC3 do
2 The share1 pixel is divided into two equal parts sc11 and sc12.
3 The share3 pixel is divided into two equal parts sc31 and sc32.

/* The second part of the original image pixel s2

is obtained by XOR-ing second part of the share1

pixel sc12 and first part of the share3 pixel sc31.

*/

4

s2 = sc12 ⊕ sc31

5

b = sc11 ⊕ sc32

/* The first part of the original image pixel s1 is

obtained by */

6 s1 = b⊕ s2

/* Secret image pixel s is reconstructed by

concatenating s1 and s2 */

7

s = s1||s2

8 end
9 Output the secret image S
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Algorithm 10.8: Reconstruction using share2 and share3

Input: Share images SC2, SC3.
Output: Reconstructed Secret image S.

/* Original image is reconstructed from share2 and share3

by applying following steps. */

1 for each pixel sc2 and sc3 in SC2 and SC3 do
2 The share2 pixel is divided into two equal parts sc21 and sc22.
3 The share3 pixel is divided into two equal parts sc31 and sc32.

/* The first part of the original image pixel s1 is

obtained by XOR-ing second part of the share2 pixel

sc22 and second part of the share3 pixel sc32 */

4

s1 = sc22 ⊕ sc32

5

b = sc21 ⊕ sc31

/* The second part of the original image is

obtained by */

6 s2 = b⊕ s1

/* Secret image pixel s is reconstructed by combining

s1 and s2. */

7

s = s1||s2

8 end
9 Output secret image S
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10.3.7 Cheating detection using Hash function

A threshold scheme for secret sharing can protect a secret with high

reliability and flexibility. These advantages can be achieved only when all

the participants are honest. i.e., all the participants willing to pool their

shadows shall always present the true ones. Cheating detection is an

important issue in the secret sharing scheme. However cheater

identification is more effective than cheating detection in realistic

applications. If some dishonest participants exist, the other honest

participants will obtain a false secret, while the cheaters may individually

obtain the true secret. The use of one-way hash function along with

arithmetic coding helps to design cheating detection techniques. The

proposed method can be used to deterministically detect cheating and

identify the cheaters, no matter how many cheaters are involved in the

secret reconstruction.

Two important theorems used in cheating detection using hash function

are as follows. Let ai be the random shares of the secret data and p be the

randomly generated prime number.

Theorem 10.3.1. [219]: Let T =
∑n

i=1 aip
i−1, where 0 6 ai < p. Then⌊

T

pj−1

⌋
(mod p) = aj (10.4)

Extended from the previous theorem, we have the following result.

Theorem 10.3.2. [219]: Let T =
∑n

i=1 aip
2(i−1)) +

∑n−1
i=1 cp

2i−1, where

−p < ai < p and 1 6 c < p. Then⌊
T

p2(j−1)

⌋
(mod p) = aj (mod p) (10.5)

Combining this result with secret image sharing scheme, cheating

detection and cheater identification is incorporated. Cheating detection
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and cheater identification is explained in Algorithm 10.9.

Algorithm 10.9: Cheating detection and identification using hash

function
Input: Shares of the secret.
Output: Display the cheater details.

1 Dealer generates the shares for cheque image using secret image
sharing algorithm. He also generates public parameters T and p as
in the following steps.

2 Choose a one-way function h(.) and a prime number p such that
h(.) < p.

3 Generates hash value of share image using hash function.

4 Compute T =
∑n

i=1 h(SCi)p
2(i−1) +

∑n−1
i=1 cp

2i−1 where c is a
positive constant randomly chosen over GF (p).

5 Publish T and p.
6 Dealer distributes shadow SCi to participants Ui, for i = 1, 2, . . . , n.

/* In the receiver side, cheating detection and cheater

identification can easily be achieved by applying the

following procedure. */

7 Participants Uj present their shadows SC ′j .

8 Compute T ′ =
∑

Uj
h(SC ′j)p

2(i−1). For each Uj ∈ G, check⌊
T − T ′

p2(j−1)

⌋
(mod p)

?
= 0

9 If the equation holds, participant Uj is honest otherwise Uj is a
cheater.

The hash value of the share image is generated using the content of

the image. In the secret image sharing, any simple change in the share is

treated as a cheating. Any change in the image is reflected in the hash

value of image. We use the hash generation method using content of the

image. The cheque processing needs lot of image processing algorithm for

the on-line manipulation. The application build can replace the existing
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(a) cheque image

(b) Share1 (c) Share2 (d) Share3

(e) Reconstructed

cheque image

Figure 10.5: Result of XOR based scheme

CTS system of RBI. We are exploring more details of this implementation

in the future enhancement.

10.3.8 Experimental Results

The CTS system is implemented in Java. The running time of the

algorithms depends on the size of the image. Sharing and reconstruction

of a pixel value will take constant time. Thus the running time is in the

order of image size. The experimental result obtained for XOR based

scheme using the 500 × 225 gray scale cheque image is shown in Figure

10.5. The reconstructed image has the same quality as original image.

This algorithm is also useful for color images. In this case, the algorithm

have to be applied on each channel (Red, Blue and Green) separately.

The mean square error (MSE) is used to measure the difference between

original (I) and recovered image(I ′) of size M×N and is calculated by using

261



Chapter 10. Secret Sharing Applications

the equation

MSE =
1

MN

∑
i=1,M

∑
j=1,N

(I ′(i, j)− I(i, j))2

The MSE between original and recovered image is 0.

In the cheating detection phase, the hash value of the share images are

calculated in the sender side. In the receiver the value of T ′ is computed.

If the remainder is zero, the cheating does not occur in the shares of the

cheque image. If the cheating does not occur in the shares, the cheque image

is reconstructed from the shares. Otherwise the drawee bank request for the

correct shares from the participants.

10.3.9 Conclusions

Cheque Truncation System accelerates the process of collection of cheques

resulting in better service to customers, reduces the scope for

clearing-related frauds or loss of instruments in transit, lowers the cost of

collection of cheques and removes reconciliation related and logistics

related problems. This will add a lot of benefits to the cheque clearance

system. In this chapter, two secret image sharing schemes are proposed

for providing security to the cheque image in the CTS. The proposed

partition scheme is simple and efficient but it is not ideal. It can be used

in low storage device where memory become a constraint. The share size

is only half of the original image and it is a lossless scheme. XOR scheme

have the properties such as no pixel expansion and it is also a lossless

scheme. The scheme is also ideal and can be implemented very easily.

The experimental result shows that the proposed system provides

better security and efficiency in Cheque Truncation System. The

operations involved are simple XOR and it also avoids the complicated

encryption decryption operations which are time consuming. The secret

image sharing scheme doesn’t need any key management and the integrity
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of the shares are maintained with simple hash function. The shares are

also verified with the help of public parameters. We are looking forward

for improved cheque processing using advanced image processing

technique which helps in automatic cheque processing. The operational

efficiency, speed, accuracy, security, integrity and authentication are the

major design objectives.
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Chapter 11

Summary and Future

Directions

In this chapter, we summarize our contribution in this thesis, draw several

useful inferences and suggest several problems for future investigations.

11.1 Brief Summary

Secret sharing technique is an active area of research from 1979 after

Shamir and Blackley came up independently with the idea of threshold

scheme. The area is really vast and the mathematical foundation is really

fascinating. The secret sharing have found several useful applications in

modern cryptology. Stinson et al [206] maintains a bibliography of the

important contributions in this area.

We have done a detailed review of the threshold and generalized secret

sharing schemes. This helps in the thorough understanding of the existing

schemes and their drawbacks. Development of application specific schemes

are our major objective. Simple and efficient schemes are developed using

number theoretic techniques and XOR operation. The (2, 3) and (2, 4)
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threshold schemes are suitable for the distributed data storage. Space

efficient and ideal schemes are considered and the application areas of

these schemes are also explored. Secret sharing schemes corresponds to a

generalized monotone increasing access structure is explored. We have

used the cumulative array for secret sharing scheme with general access

structure. An efficient (n, n) threshold secret sharing scheme using POB is

then combined with cumulative array for the implementation of

generalized access structure based secret sharing. This scheme is space

efficient and also simple XOR operation can be used to reconstruct the

secret. Extended capabilities of the secret sharing schemes are then

studied and evaluated. Verifiability, cheating detection and cheater

identification are the major capabilities analyzed. Several existing schemes

are analyzed in this regard. We have included these capabilities in the

proposed secret sharing schemes.

Development of multi secret sharing schemes is another major

achievement in this dissertation. There are several existing multi secret

sharing schemes realizing the threshold and generalized access structure.

We have done a detailed investigation and comparative study of the

existing multi secret sharing scheme realizing the general access structure.

A scheme with general access structure is then developed to share multi

secret having the capability to detect cheaters. The scheme is simple and

easy to implement. The scheme is analyzed for security and is found

strong for sharing multi secrets.

We investigated the use of elliptic curve and pairing in multi secret

sharing. The basis of elliptic curve and pairing is studied in depth and

then we looked into the secret sharing schemes based on them. There are

not much proposals for multi secret sharing based on elliptic curve. We

have developed two schemes for multi secret sharing based on elliptic

curve and pairing. One scheme is based on point sharing technique and

self pairing. This scheme realize a threshold access structure. Share
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verification, cheating detection and cheater identification is also

incorporated. We have also done an implementation of the above scheme

using SAGE and Python for validating it. Another scheme we have

developed is based on elliptic curve and bilinear pairing for realizing the

general access structure. In this the secret shares are chosen by the

participant itself and are kept secret. Hence the same share can be used to

reconstruct different secrets and it is a multi use scheme. During the

reconstruction phase the combiner can also check the validity of the

shares. Pairing technique is used for cheating detection and identification

of the cheaters. The scheme is easy to implement compared with other

general access structure based multi secret sharing scheme using elliptic

curve and pairing.

Finally we have given a theoretical frame work and also the

implementation of two prominent applications of secret sharing. These

applications are in preliminary stages and under revision to include more

sophisticated features. Secret sharing homomorphism and their

application to e-voting is suggested by different authors. However a

coding scheme by which the vote gained by each contesting candidate can

be efficiently obtained using the proposed scheme. The scheme is very

simple and easy to implement. Another application called CTS ( Cheque

Truncation System) in which the simple secret sharing schemes developed

based on number theory and XOR operations are incorporated for the

efficient implementation, which replaces the existing encryption based

implementation of CTS by RBI.

The following are the summary of the major contributions

• Development of simple and easy to implement scheme based on

number theory and XOR operations. These schemes are suitable for

distributed data storage and secret image sharing.

• Development of a generalized secret sharing scheme using POB.
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• Study of multi secret sharing schemes and extended capabilities that

can be incorporated to build secure secret sharing schemes.

• Development of a multi secret sharing scheme with general access

structure, which is easy to implement and also having cheating

detection and cheater identification capability. Discrete logarithm

problem and Shamir’s scheme are the building blocks.

• Investigation of elliptic curve and pairing in the development of secure

secret sharing schemes.

• Developed a general access structure based multi secret sharing

scheme using elliptic curve and bilinear pairing.

• Developed a threshold multi secret sharing scheme using elliptic curve

and self pairing. Implementation of the scheme is done using SAGE

and Python.

• An e-voting application is developed with each contesting candidate

votes are easily obtained by using simple encoding and decoding of

votes and secret sharing homomorphism.

• Development of a Cheque Truncation System using simple and easy

to implement secret sharing schemes using XOR operations.

11.2 Future Directions

There are several open problems still exist in the area of secret sharing. In

this section we provide some future enhancement in purview of the thesis

viewpoint and also some future directions that are beyond this work’s

viewpoint.
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• It is always better to develop more efficient secret sharing scheme

which can be applied in a particular application area. We have

developed simple and easy to implement (2, 3) and (2, 4) threshold

schemes using number theory and also using XOR operations. XOR

based schemes are gaining more attention because the shares can be

generated and reconstructed with simple XOR operation. A simple

and perfect (t, n) threshold scheme using XOR is still a challenge.

• POB system is used for the development of threshold scheme. We

have used the (n, n) POB scheme for the generalized secret sharing

using cumulative arrays. The efficiency of POB system can be further

explored in the area of secret image sharing and secure distribution

of data.

• The coding theory is a good choice for the development of robust

secret sharing schemes. There are codes with specific property,

which can be used for the development of threshold as well as

generalized secret sharing schemes. Robust schemes can be

developed using coding theory techniques.

• Multi secret sharing is gaining more importance when the data are

outsourced in cloud storage. Users want to access different

documents, which are encrypted with different keys using the same

secret key. Most of the multi secret sharing scheme uses a public

notice board. Multi secret sharing with each participant holds only a

single share and also less number of public parameters are the major

design criteria. Additional capabilities can also be considered.

• The use of elliptic curve and pairing is not much explored in the area

of multi secret sharing. It is found that pairing based constructions

provides more security and validity. There is an opportunity to find
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more secure and reliable multi secret sharing schemes using elliptic

curve and pairing.

• We have developed a threshold multi secret sharing scheme using

self pairing. The use of elliptic curve and self pairing can be further

explored to develop secret sharing schemes with more generalized

access structure.

• SAGE provides extensive support for handling elliptic curve

functions. Security application development using Python and

SAGE is a good choice. More application or packages can be

designed and built using these open source tools.

• There are several application areas, where the secret sharing

technique can be applied. We have considered secret image sharing

and secure multi party computation. Broadcast encryption,

attribute based encryption, access control, generalized oblivious

transfer etc are some of the new areas where secret sharing

techniques are used.

• We have considered only manual verification of the identity of the

voter, which needs to be automated in a secure way in the e-voting

scheme developed.

• In the CTS system developed, the entire cheque processing can be

automated which needs hand written character recognition and digit

reorganization etc. The application developed is in preliminary stage,

which needs further enhancement.
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List of Notations

A ⊆ B A is a subset of B.

A ⊂ B A is a subset of B and A 6= B.

∪ The set union.

∩ The set intersection.

\ The set difference.

P(A) The power set of A.

Ā The compliment os set with respect to a superset.

|X| The cardinality of the set.

∅ The empty set.

× The Cartesian product.

Xn X ×X × · · · ×X
Z The set of integers.

N The set of natural numbers.

R The field of real numbers.

Q The field of rational numbers.

C The field of complex numbers.

Fp The finite filed Z/pZ.

GFq The Galois field of order q, where q is a prime power.
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gcd Greatest common divisor

(a1, . . . , an) The greatest common divisors of the integers a1, . . . , an.

[a1, . . . , an] The least common multiple of integers a1, . . . , an.

Zm The set {0, 1, . . . ,m− 1}, for some m > 1.

Z∗m The set {a ∈ Zm | (a,m) = 1}
Z/mZ The ring of integers modulo m.

(Z/mZ)∗ The group of units in Z/mZ.

b | a b divides a.

b - a b does not divide a.

a mod b The remainder of the integer division of a by b.

n! n factorial 1× 2× · · · × n
a ≡ b( mod m) a and b are congruent modulo m.

a−1 mod n Multiplicative inverse of a modulo m for some a ∈ Z∗m
φ(n) Euler’s totient function.

|n| The bit length of n

⊕ The XOR operation.

ord(m) The order of an element.

g The generator of the group.

gx Exponent of g in a group.

O(n) The time complexity of an algorithm,

logba The discrete logarithm of a to the base b.

Fdp Finite field with pd elements.(
n
r

)
Combinatorial symbol n choose r.(

a
p

)
The Legendre symbol of a modulo p.

Pr Probability function.

Pr(F |E) Conditional probability of F on E.

H(X) The entropy of the random variable X.

H(X|Y ) The conditional entropy of the random variable X given Y .

ek(P ) Encryption based on key k.

dk(C) Decryption based on key k.
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H Hash function.

⊕ Addition on elliptic curve points.

O Point at infinity on elliptic curve.

4E Discriminant of the elliptic curve E.

E(Fp) Points of the elliptic curve with coordinates in Fp.
logP (Q) The elliptic curve discrete logarithm of Q with respect to P .

E[m] Points of order m on elliptic curve.

D Divisor on elliptic curve

deg(D) Degree of the divisor D.

Sum(D) Sum of points in the divisor.

Div(C) group of divisors of curve C.

em The Weil pairing on an elliptic curve.

τ(P,Q) Tate pairing on an elliptic curve.

τ̂(P,Q) Modified Tate pairing on elliptic curve.

êm Modified Weil pairing on elliptic curve.

n Number of participants in secret sharing

t Threshold defined in secret sharing.

P The set of all participants.

K The space of keys.

M The space of messages.

S The space of shares.

Pi, Ui The participant or user i.

Si Share assigned to user i.

K The secret.

D, D The Dealer.

A Authorized access structure.

Γ Authorized access structure.

Amin,Γ− Minimal authorized access structure.

Ā, Γ̄ Unauthorized access structure.

Āmax, Γ̄+ Maximal unauthorized access structure.
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List of Publications Related

to This Thesis

Part of the work presented in this thesis has been

published/communicated to journals

1. Binu V. P., and A. Sreekumar.“Lossless secret Image Sharing

Scheme.”, International Journal of Computational Intelligence and

Information Security.Vol-4, No-4, P-42-48, April 2013, ISSN:

1837-7823.

2. Binu V. P., and A. Sreekumar. “An Epitome of Multi Secret Sharing

Schemes for General Access Structure.”, International Journal of

Information Processing, 8(2), 13-28, 2014, ISSN : 0973-8215

3. Binu V. P., and A. Sreekumar.“Efficient Multi Secret Sharing with

Generalized Access Structures.”, International Journal of Computer

Applications 07/2014; 90(12). DOI:10.5120/15769-4446.

4. Binu V. P., and A. Sreekumar. “Simple and Efficient Secret Sharing

Schemes for Sharing Data and Image.”, International Journal of
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Computer Science and Information Technologies, Vol. 6 (1), 2015,

404-409.ISSN:0975-9646.

5. Sreela S. R.,G. Santhosh Kumar, Binu V. P. “Secret Image Sharing

Based Cheque Truncation System with Cheating Detection.”

International Journal of Information Processing, 8(4), 56-67, 2014,

ISSN : 0973-8215

6. Binu V. P.,Divya G Nair, Sreekumar A.“Secret Sharing

Homomorphism and Secure E-voting”, International Journal of

Applied Engineering Research ISSN 0973-4562 Volume 10, Number

22 (2015) pp 42934-42941

7. Binu V. P.,Sreekumar A.,“Threshold Multi Secret Sharing Using

Elliptic Curve and Pairing”, International Journal of Information

Processing, 9(4), 100-112, 2015, ISSN : 0973-8215

8. Binu V. P.,Sreekumar A.,“Secure and Efficient Secret Sharing Scheme

with General Access Structures based on Elliptic Curve and Pairing”,

Wireless Personal Communications-Springer, ISSN: 0929-6212. DOI

10.1007/s11277-016-3619-8. ( Accepted For Publication )

Part of the work include in the thesis has been presented in

various National/International conferences

1. Binu V. P,Sreekumar A,“An improved Lossless Secret Image

Sharing Scheme”. National conference in “Security

Monitoring”(NCSM-2013) on 15th & 16th February 2013,Amruta

School of Arts & Science,Cochin, Kerala, India

http://asaskochi.com/news/wordpress/?p=458 ( Best Paper

Award)
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2. Binu V. P, Sreekumar A,“Generalized Secret Sharing using

Permutation Ordered Binary System”, Sapience’14 - International

Conference on Security and Authentication , 27th to 28th March

2014, Sree Narayana Gurukulam College,Ernakulam, Kerala, India

ISBN: 978-93-83459-32-2,

http://conference.bonfring.org/conferenceproceedings.php?id=1486

3. Binu V.P.,“Secret Sharing and Applications”,(presented as an

invited talk),National Seminar on Algebra and Number

Theory(NSANT-2014), Pavanatma College,Iduki,Kerala,India

http://www.mathematicspavanatma.org/sites/default/files/Abstract.pdf

4. Nair D.G., Binu V.P., Kumar, G.S., “An Effective Private Data

Storage and Retrieval System Using Secret Sharing Scheme Based

on Secure Multi-party Computation”, International Conference on

Data Science & Engineering (ICDSE), 2014 , pp.210,214, 26-28 Aug.

2014 doi: 10.1109/ICDSE.2014.6974639.IEEEXpolre.

5. Divya G. Nair,Binu V. P,G. Santhosh Kumar,“An Improved

E-Voting Scheme using Secret Sharing based Secure Multi-Party

Computation”, Eighth International Conference on Computer

Communication Networks (ICCN 2014), Banglore, Elsevier,ISBN

:9789351072539,P-17

6. S. R. Sreela,Binu V. P, G. Santhosh Kumar,“Establishing Security

in Cheque Truncation System using Secret Image Sharing”, Eighth

International Conference on Computer Communication Networks

(ICCN 2014), Banglore, Elsevier,ISBN :9789351072539,P-29
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applications for multi-secret sharing schemes, Designs, Codes and

Cryptography (2013), 1–24.

289



BIBLIOGRAPHY

[96] Javier Herranz, Alexandre Ruiz, and Germán Sáez, Sharing many
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Weighted threshold secret sharing schemes, Information Processing

Letters 70 (1999), no. 5, 211–216.

[150] Divya G Nair, VP Binu, and G Santhosh Kumar, An improved

e-voting scheme using secret sharing based secure multi-party

computation, arXiv preprint arXiv:1502.07469 (2015).

[151] Divya G Nair, VP Binu, and G Sathish Kumar, An effective private

data storage and retrieval system using secret sharing scheme based

on secure multi-party computation, Data Science & Engineering

(ICDSE), 2014 International Conference on, IEEE, 2014, pp. 210–

214.

[152] Moni Naor and Adi Shamir, Visual cryptography, Advances in

CryptologyEUROCRYPT’94, Springer, 1995, pp. 1–12.

[153] Moni Naor and Avishai Wool, Access control and signatures via

quorum secret sharing, Parallel and Distributed Systems, IEEE

Transactions on 9 (1998), no. 9, 909–922.

[154] C Andrew Neff, A verifiable secret shuffle and its application to e-

voting, Proceedings of the 8th ACM conference on Computer and

Communications Security, ACM, 2001, pp. 116–125.

[155] Ventzislav Nikov, Svetla Nikova, Bart Preneel, Joos Vandewalle,

et al., Applying general access structure to proactive secret sharing

schemes., IACR Cryptology ePrint Archive 2002 (2002), 141.

[156] Satoshi Obana, Almost optimum t-cheater identifiable secret sharing

schemes, Advances in Cryptology–EUROCRYPT 2011, Springer,

2011, pp. 284–302.

296



BIBLIOGRAPHY

[157] Tatsuaki Okamoto, Receipt-free electronic voting schemes for large

scale elections, Security Protocols, Springer, 1998, pp. 25–35.

[158] Rafail Ostrovsky and Moti Yung, How to withstand mobile virus

attacks, Proceedings of the tenth annual ACM symposium on

Principles of distributed computing, ACM, 1991, pp. 51–59.
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