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ABSTRACT 

The gigantic and radical developments in the field of Science and Technology and the 

associated improvements in the living standards of people demand to protect data to 

evade stealing of confidential information in applications, such as forensic, 

government, commercial, health-care, traveling and immigration, etc. Therefore, it is 

necessary to have an accurate and secure automatic identification and personal 

verification system. Biometrics has the potential to turn out to be the main automatic 

personal identification.    

 Fingerprints are the most widely used biometrics capable of identifying 

individuals because of their high immutability, acceptability and uniqueness. 

Fingerprints form a specific class of images having distinct characteristics which can 

differentiate them from other types of images.  

 Massive secondary storage devices that are needed to store fingerprint 

database are of great concern in fingerprint image processing. To  reduce  the  rising  

demand  on  storage  space,  efficient  image compression  techniques  are  required. 

Wavelet based image coders are the state of art in image compression. The Federal 

Bureau of Investigation (FBI) fingerprint compression standard uses the cdf 9/7 

classical wavelet filters. The filter coefficients used for wavelet transformation of the 

specific class of images like fingerprints can be optimized using evolutionary 

algorithms, resulting in better compression performance. The wavelet lifting scheme 

is an effective technique to represent classical wavelets with lesser number of 

coefficients. So, wavelet lifting filter coefficients can be optimized at a faster rate by 

using evolutionary techniques, which can then be used for performing compression in 

a lesser time.  

 Fingerprint classification takes a key role in any fingerprint identification 

system as it considerably decreases the time taken in identifying an individual.  The 

database for searching an individual can be narrowed down by performing gender 

classification, as it calls for searching either a female or male database alone. This can 



 

 

reduce the time required for searching an individual in a huge database. Discrete 

Wavelet Transform (DWT), Singular Value Decomposition (SVD) and Principal 

Component Analysis (PCA) techniques can be employed to derive feature vectors 

from fingerprints for gender classification using Neural Network (NN) classifiers. 

Again, by employing evolutionary techniques, the feature vectors formed by wavelet 

lifting coefficients and other parameters of the classifiers can be optimized for more 

accurate and faster gender classification. 

 Thus, the major contribution of this research include the development of :    

 A novel fast and efficient algorithm for the compression of fingerprint images 

using wavelet lifting coefficients optimized by employing Genetic         

Algorithm (GA) - 

(i) under quantization condition of transform coefficients. (It is a dual-

objective problem that requires the maximization of both Peak Signal to 

Noise Ratio and Compression Ratio simultaneously. Here, the transform 

coefficients are subjected to uniform scalar quantization). 

(ii) under thresholding condition of transform coefficients. (It is a single-

objective problem with a fixed Compression Ratio that requires the 

maximization of Peak Signal to Noise Ratio alone. Here, the largest 1/16 

transform coefficients are retained and the remaining values are discarded). 

 A new algorithm for identifying gender more accurately and at a faster rate from 

fingerprints by employing - 

(i) GA optimized wavelet lifting coefficients and neural networks using lesser 

number of DWT, SVD and PCA transform components.  

(ii)  a multilevel decision based hybrid gender classifier derived from the above 

individual classifiers. 

 Performances of the compression algorithms were evaluated using the 

metrics, Peak Signal to Noise Ratio (PSNR) and Compression Ratio (CR). The 

fingerprint images for optimizing and evaluating the compression algorithms were 

taken from the fingerprint database DB1_B of FBI’s Fingerprint Validation 



 

 

Competition (FVC) 2000. Other fingerprint databases used in FVC 2000,  FVC 2002, 

FVC 2004, NIST fingerprint images  and the set collected using NITGEN USB 

Fingkey Hamster (HFDU 01) were employed for testing the algorithm.  

 Performances of the gender classification systems were measured in 

classification accuracy and the algorithms were evaluated on the fingerprint data set 

collected using NITGEN USB Fingkey Hamster (HFDU 01) fingerprint scanner.  

 The outcome of the research work shows that the proposed algorithms are 

highly useful in those forensic, government, commercial, health-care and traveling 

and immigration applications, where effective storage of fingerprint database and 

gender classification for ease of personal identification are very much required. 
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Chapter 1 

 
 
 

1 Introduction 

 

Image compression plays a major role in the effective storage of fingerprint images in 

digital archives and their efficient transmission through communication channels. 

Fingerprint is one of the most common biometric traits used for personal 

identification. Image processing techniques can be employed on fingerprint images to 

identify the gender of a person. A brief introduction to the research is presented in 

this chapter. Fundamentals of fingerprint biometrics, fingerprint image compression 

and image compression using the state-of-the-art Wavelet Transform (WT) technique 

are discussed. Basic ideas of gender classification system using fingerprints are also 

highlighted. This chapter gives the objective and motivation behind the proposed 

research work. The main contributions of the present research and organization of 

the thesis are also highlighted. 
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1.1 Biometrics 

The science of identifying or verifying a person by measuring the distinctive 

physiological and behavioral characteristics is known as biometrics. The popular 

biometric technologies that have been in use rely on the physiological characteristics 

such as face, fingerprint, hand geometry, hand, vein, iris, retinal pattern, facial 

thermogram, etc. and the behavioral characteristics such as signature, voiceprint, etc. 

(Nanavati, Thieme & Nanavati, 2002; Jain, Ross & Prabhakar, 2004). The biometric 

technologies can check an individual‟s identity by automating the process of using a 

physiological or behavioral characteristic. It is very much associated with issues 

related to information security as well as criminology. Commercial, government and 

forensic applications such as medical, banking and finance, security, law and order, 

immigration control, communications, access control, etc. exemplify the areas on 

which the contemporary biometric use mainly focuses on.  

1.1.1 Fingerprint Biometrics 

Fingerprints are impressions made by the ridges, whorls and valleys patterns on the 

surface of a person‟s fingertip. They form at about 7 months of fetus development. 

Any physiological or behavioral trait of a person can qualify as a biometric identifier 

if it meets the requirements such as (Maltoni, Maio, Jain & Prabhakar, 2009), 

 Universality: each human being should have a biometric trait. 

 Uniqueness: the biometric traits should be different from person to person. 

 Permanence: biometric trait should not change over time. 

 Collectability: ease of measurement of biometric trait. 

The other desirable properties of biometric traits are: 

 Performance: accuracy, speed, resource requirements, and robustness of the 

technology used. 

 Acceptability: degree of user‟s willingness to accept the biometric 

technology.  

 Circumvention: ease of avoiding fraudulent methods in the biometric system. 
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 The fingerprint possesses a good balance among all the desirable 

requirements. Every person has fingers and hence fingerprints. They are unique and 

permanent. The availability of accurate live scan fingerprint scanners with affordable 

cost price facilitates the collection of high quality fingerprint images. Each and every 

biometric technology is noted for its special features and it is used in specific 

applications. A comparison of various biometric traits is provided in Table 1.1. Note 

that among all biometric traits, fingerprints provide the most reliable personal 

identification systems (Shoniregun & Crosier, 2008). 

Table 1.1   Comparison of biometric traits. 

Biometric trait 
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Face H L M H L H H 

Fingerprint M H H M H M M 

Hand geometry M M M H M M M 

Hand/finger vein M M M M M M L 

Iris H H H M H L L 

Signature L L L H L H H 

Voice M L L M L H H 

           H=high, M=medium, L=low.  

 The fingerprint pattern shows various types of features as shown in        

Figures 1.1 and 1.2. The global features (level 1 or Galton level features) are ridge 

line flow pattern and singular points (called loop and delta). The ridge lines enfold 

these singular points.  The ridge endings and ridge bifurcations, called minutiae are 

the local ridge characteristics that make the local features (level 2 features).  A ridge 

ending is the point at which a ridge ends abruptly. At a ridge bifurcation the ridge 

diverges into branch ridges. The intra-ridge details including shape, curvature, width, 

edge contours of ridges, sweat pores, etc. are the fine level features (level 3 features). 
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 The width of ridge varies from 100 μm to 300 μm. Ridges and valleys form 

interleaved pattern with  ridge/valley cycle period about 500 μm. A detailed  view  of  

 

Figure 1.2    A section of fingerprint image marked with ridge lines (black lines), valley (white 

lines), minutiae (black circles), and sweat pores (blank circles) on a single ridge line 

(Courtesy: Maltoni et al., 2009). 

 

minutiae 

sweat  

pores 

ridge 

valley 

 

 

 

Figure 1.1   Fingerprint patterns: (a) left loop, (b) right loop, (c) whorl, (d) arch, and  (e) 

tented arch.  Squares and triangles represent loop-type and delta-type singular points 

respectively (Courtesy: Maltoni et al., 2009). 

(e) 

(a) (b) (c) 

(d) 
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the different minutiae types showing discontinuity of ridges can be had from       

Figure 1.3.  The uniqueness and other desirable properties qualify the fingerprint as a 

good biometric trait for classification and indexing. 

 

Figure 1.3    Common minutiae types (Courtesy: Maltoni et al.,2009). 

 

 Separate studies have been made by several researchers among various 

populations in different countries to know about the differences in male and female 

fingerprints. Difference in fingerprint features has been reported by the researchers 

from different parts of the world.  Significant variations have been noted in ridge 

counts and ridge densities among male and female. The women have higher number 

of fingerprint ridges and ridge densities than the men.   

1.1.1.1 A Brief History of Fingerprints 

Fingerprints, the oldest and the most commonly used biometric trait, are the 

impressions of the friction ridges on the surfaces of the hand. In most of the 

applications the basic interest lies in the ridges above the end joints on the front of the 

fingers. Fingerprints have been used as personal marks or signatures for identifying 

people in several parts of the world for many years.  

 In July 1858  Sir William Herschel, a British Administrator in Hooghly 

District of Bengal in India, collected fingerprints in Bengal to check people‟s identity 

while signing contracts.  Dr. Henry Faulds, a missionary doctor in Japan published an 

article on fingerprints in „Nature’ in 1880.  He demonstrated that latent or partial 

fingerprints present at a crime scene can be matched with a persona to support a 

„criminal investigation‟. In 1892 Juan Vucetich, an Argentine Police Officer, initiated 
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the first fingerprint files based on Galton pattern types and successfully identified a 

criminal. Sir Francis Galton, a British Anthropologist, published his book Finger 

Prints in 1892, which declared the permanence and uniqueness of fingerprints for the 

first time. "Galton‟s Details", the unique characteristics of fingerprints identified by 

Galton, had become known as minutiae. A criminal case in Bengal in 1898 is 

believed to be the foremost case wherein fingerprint proof was used to secure a 

conviction. In 1901 Sir Edward Henry, the Inspector General of Police in Bengal, 

India, developed the fingerprint classification system for the first time and it was 

documented in his book, Classification and Uses of Finger Prints.  Henry‟s 

classification system was based on three fingerprint classes: loop, arch, and whorl. 

The use of this system quickly spread throughout the world. Alphonse Bertillon, in 

1902 solved the first murder in Europe with the use of fingerprint evidence alone. In 

1902, Dr. Henry P. de Forest of the New York Civil Service Commission bagged the 

credit for the first systematic usage of the fingerprints in U.S.   By 1903, the 

Fingerprint Bureau had been started at the State Bureau of Prisons in New York. In 

October 1904, Inspector Ferrier and Major M. W. McClaughry began the U.S. 

Government‟s fingerprint collection by recording fingerprints of all inmates in a 

prison. In 1905, latent fingerprints (latent fingerprints are marks, formed by sweat and 

oil on the skin's surface left at a crime scene that may not be straight away visible to 

the bare eye) were adopted for use in a British criminal case for the first time. 

 FBI set up its fingerprint identification division in 1924 with a database of 

810,000 fingerprint cards. In 1980s, an Automated Fingerprint Identification System 

(AFIS) based exclusively on the computerized extraction of minutiae was developed. 

The FBI introduced its national Integrated Automated Fingerprint Identification 

System (IAFIS) in 1999, which was responsible for the mandatory standard for the 

interchange of fingerprint images and the Image Quality specification (IQS) for live-

scans, card scanners, monitors and printers. Today fingerprint biometric system has 

become one among the most commonly used personal identification systems in many 

diverse applications throughout the world (Woodward, Orlans & Higgins, 2003; 

Holder, Robinson, Laub & National Institute of Justice (U.S.), 2011). 
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1.2 Image Compression 

Image compression is one of the most essential and useful technologies in the area of 

digital image processing. The aim of image compression is to gain the best possible 

image quality at an allotted storage facility. It is needed for easy archiving and faster 

transmission of images over band-limited communication channels. Fingerprint 

image compression finds a significant role in some vital areas like forensic, medical 

applications, law enforcement and border security. 

 A gray scale image can be represented by way of a 2-D light intensity 

function f (x,y), where x and y are spatial coordinates. The brightness or value of the 

gray level at a point (x,y) is the value of  f  at that point in the image. A digital image 

is a matrix and each element in this matrix is called a picture element or pixel. Rows 

and columns of the digital image matrix are represented by x and y respectively, that 

are used to locate a pixel in the image with a value indicating the gray level or 

brightness of that pixel.  A digital image of size L x M is typically represented as in 

equation (1.1). An 8-bit gray scale digital image has 256 (i.e., 2
8
) intensity levels 

ranging from 0 to 255. 

 (   )  [

 (   )

 (   )

 (   )

 (   )
  

 (     )

  
 (     )

 
 

 (     )

 (     )
  
 

  
 (       )

]                 (   ) 

 Digital image compression techniques (Gonzalez & Woods, 2008; Jain, 1989; 

Castleman, 1996; Chanda & Majumder, 2000) exploit the data redundancy present in 

image data. In general, removal of redundant information results in image 

compression. From the mathematical point of view, image compression is considered 

as transformation of the 2-D pixel array into a statistically uncorrelated data set. The 

three types of data redundancies identified in image intensity matrix are: 

1) Coding Redundancy:  The 8-bit codes representing the intensity values may 

be more than what is required to represent them. 
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2) Spatial and Temporal Redundancy: Neighbouring pixels may be similar to 

or dependent on each other causing spatial correlation and hence redundancy. 

3) Irrelevant Information: Some of the information contained in the intensity 

arrays may be unnoticed by human vision. In some other cases there may be 

information irrelevant to the expected use of the image.  

 Reduction or elimination of any one or more of these redundancies achieves 

image compression. 

 Compression algorithms can be classified into two broad categories: lossless 

algorithm and lossy algorithm. Lossless compression algorithm permits exact 

reproduction of the original data and provides low compression ratios. For instance, 

text compression should be lossless since a small information loss can result in unlike 

statements with completely different meanings. Astronomical imaging for galaxies 

and stars, medical imaging, etc. are a few examples in which lossless compression 

finds wide applications. Some of the main techniques used in lossless compression are 

the Run Length Encoding and variable length coding like Huffman coding, Arithmetic 

coding, etc. 

 In lossy or irreversible compression algorithm some information is lost. As 

an example, in common image compression applications, the exact reconstruction of 

the original image is not needed. The amount of information loss depends upon the 

quality required for the compressed image. There are many lossy compression 

techniques available in literature that provides high quality compressed images at 

high compression ratios.  In fact, the fundamental difference among the lossless and 

lossy compression schemes is the presence or absence of quantizer units.  

 Fractal compression and transform coding are the popular lossy compression 

methods. Fractal image compression scheme gives high Compression Ratio (CR) with 

good quality, particularly in images having high degree of self-similarity. However, 

the fractal scheme suffers from two serious problems. The first drawback is that the 

encoding is computationally complex and hence slow. The second issue is that unlike 

transform methods, the size of encoded data grows very large during perfect 

reconstruction of certain images. For example, a regular pattern such as alternating 
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white and black blocks are poorly coded as it actually takes more space in its 

compressed form than its raw form (Fisher, 1995). 

 In transformation coding, spatial image pixel values are converted into a 

transform domain (frequency domain) to get transform coefficients. These 

coefficients possess an important property called energy compaction property, which 

forms the basis for accomplishing compression. By this property the energy of the 

original data concentrates in a few significant transform coefficients. Discarding the 

insignificant coefficients leads to image compression. Several transform techniques 

such as discrete Fourier, Karhonen-Loeve, Walsh-Hadamard, discrete cosine, and the 

state-of-the-art wavelets have been used for image coding.  

1.2.1 Measures of Performance of Image Compression Algorithms 

Performance of image compression algorithms can be measured in several ways. The 

quantity of compression achieved, compression speed and closeness of the qualities 

of the reconstructed image to the original input image are the important criteria for 

evaluating the performance of a compression algorithm. 

1.2.1.1 Compression Ratio (CR) 

CR is defined as the ratio of the size of the original image to the size of the 

compressed image (Khalid, 2006). The image is represented as a stream of bits. So, 

CR is expressed as, 

   
                                    

                                      
                      (   ) 

This ratio shows the amount of image compression achieved. CR is inversely 

proportional to the picture quality of the compressed image.  In general, the quality of 

the compressed image becomes poorer as CR increases. So, there should be a 

compromise between CR and picture quality while compressing images. 

 For an image having height M  and width N  in pixels, the CR is given as,  
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                                                          (   ) 

where,  B  is the number of bits  required to represent one pixel and     is the number 

of  bits in the compressed image. 

 An equivalent measure of compression performance is the compressed bit-

rate or simply bit rate, expressed as  

 

       
  

   
                                                                   (   ) 

where,      is the bit rate in bits per sample (bps) or bits per pixel (bpp).  The major 

objective of image compression is to get the compressed image with best image 

quality at a specified bit rate. 

 For example, consider a gray scale image of size 512 x 512 pixels. For storing 

this image 512 x 512 or 262,144 bytes, taking one byte for each pixel, are needed. Let 

the compressed image takes 32,768 bytes. Then the CR is 8:1 and the bit rate is 1 

bpp.  Another way of representing compression performance is as a percentage. The 

percentage of compression can be calculated by using the expression:  

                             (  – (                   ))      (   )      

In this example the percentage compression is calculated as 87.5% (i.e., the savings in 

the storage requirement is 87.5%), which means that the compressed image takes 

only 12.5% of the size of the original image. 

1.2.1.2 Compression Speed (CS) 

CS tells how fast the compression and decompression of the image is performed. A 

higher compression speed means that the time taken for compression and 

decompression is lesser. It is dependent on the particular compression algorithm, 

image type and efficiency of the hardware used for compression. 

1.2.1.3 Root Mean Square Error (RMSE) 

Mean Square Error  (MSE)  measures  the  average  of  the  square  error  between the 



12 

 

original and the compressed image. The square root of MSE is termed as RMSE. The 

expression for RMSE of gray scale image is given as, 

     √
 

   
∑ ∑[ (   )   ̃(   )]

 
   

   

   

   

                         (   ) 

where,  (   ) and  ̃(   ) represent a pixel at location (   )  of the original and the 

reconstructed image respectively with size M x N. For a good quality reconstructed 

image the RMSE is low. 

1.2.1.4 Peak Signal to Noise Ratio (PSNR) 

PSNR represents the ratio of maximum possible power of a signal and the power of 

the distorted signal corrupted by noise. PSNR in dB is given as, 

            

    

    
                                               (   ) 

where,      stands for the maximum pixel intensity value. For a two level image 

      
is 1.  For a gray scale image with peak level pixel value of 255, the PSNR is, 

            

   

    
                                                 (   ) 

For good-quality reconstructed image, the PSNR is high.  For lossy image 

compression, typical values of  the PSNR range from 30 to 50 dB. PSNR above       

40 dB are generally taken as very good and those under 20 dB are generally not       

acceptable (Bull, 2014).  

1.2.1.5 Structural Similarity (SSIM)  

SSIM index is a recently proposed method for image quality assessment based on 

human visual perception. It is an approach for measuring the similarity between two 

images. The SSIM is intended to improve on conventional metric such as PSNR and 

MSE. SSIM considers degradation of the image as perceived change in its structural 

http://en.wikipedia.org/wiki/Lossy_compression


13 

 

(a) 

Forward 

DWT 

Input 

image 
Quantizer 

Symbol 

encoder 

Compressed 

image 

(b) 

Inverse 

DWT 

Decompressed 

image 

Symbol 

decoder 

Compressed 

image 

information. The SSIM index is usually computed on windows x and y of sizes 8 x 8 

pixels of the image (Wang, Bovik, Sheikh & Simoncelli, 2004). 

    (   )  
(         )(       )

(  
    

    )(  
    

    )
                              (   ) 

where,    and    are the averages of x and y ,   
  and   

  are their variances and     

is their covariance.     (   ) and   (   )  are variables with k1=0.01 and 

k2=0.03. L  is the dynamic range of the pixel-values (equal to 255 for gray scale 

images). SSIM index value ranges between -1 and 1. For two identical images the 

value of  SSIM  is 1. 

1.3  Image Compression using Wavelet Transforms 

Wavelet based image coders are the state of art in image compression. It is a 

transform coding technique where WT of the image is modified. A reversible, linear 

transform such as WT is used to map the image into a set of transform coefficients, 

which are then quantized and coded to minimize inter-coefficient and coding 

redundancies. Figure 1.4 shows a typical WT based image compression system. 

 The encoder at the transmitting side de-correlates the input image pixels by 

performing   the   forward  transform  operation.  The  quantization  is  an  irreversible 

 

 

 

 

 

operation that coarsely quantizes the transform coefficients. Finally, the quantized 

coefficients are coded using a symbol encoder (usually a variable length coder) to get 

Figure 1.4   A typical transform based image compression system: (a) encoder, (b) decoder.

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Dynamic_range
https://en.wikipedia.org/wiki/Average


14 

 

the compressed image data. The decoder at the receiving end performs the reverse 

sequence of operations (except quantization, which cannot be reversed exactly) to 

output the decompressed image. The DWT is usually performed by subband coding 

technique, which converts the original image to horizontal, vertical and diagonal 

decomposition coefficients. A detailed discussion on DWT and subband coding is 

presented in chapter 3. 

1.3.1 Quantization 

Quantization is the main part of lossy compression schemes (Khalid,2006). It is a 

many-to-one mapping as it substitutes a group of data values with a single 

representative value. In lossy image compression, the quantization process converts 

the continuous range of intensity values of the input image data into a finite and 

smaller set of values to achieve compression. The quantization is a noninvertible 

process. The compression scheme is said to be lossy since the original input image 

cannot be reconstructed exactly after quantization.   The system which performs 

quantization of data is known as a quantizer. The  error or loss introduced by 

quantization is called quantization error, quantization noise or quantization distortion, 

which is due to the difference between the original input  image data and quantized 

data output. It is evident that a good quantizer approximates the original input image 

with minimum loss. In image compression applications the quantization is usually 

performed on the transform domain of images.  

1.3.1.1 Scalar Quantization (SQ) 

In SQ, the set of inputs and outputs are scalars and such quantizers are known as 

scalar quantizers. There exist two mappings in a quantizer, the encoder mapping and 

the decoder mapping. The encoder partitions the range of input data values into 

certain intervals and different codewords are associated with different intervals.  The 

range of input values that come within a particular interval is encoded by the 

codeword corresponding to that interval. Thus there will be a finite, smaller set of 

data values that represent the original data. After quantization these codewords only 

be known, from which the exact data value cannot be recovered since the codeword 

http://en.wikipedia.org/wiki/Round-off_error
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represents only the interval containing the data value. This causes the quantization to 

be an irreversible process. 

 As explained, the quantizer uses a succession of quantization indices to 

approximate the input two dimensional image data samples (Taubman & Marcellin, 

2002).  The quantization process is denoted as, 

 ,     -   ( )                                                       (    ) 

where,  ( ) represents the quantization mapping of the input sample  ,     -  and  

 ,     -, the corresponding quantization index. Obviously, the count of quantization 

indices will be lesser than the count of input samples and hence  ( )  causes 

distortion at its output. So, the exact input data is irretrievable. However, a reverse 

mapping,    ( )  can be used to de-quantize the quantized data samples to get back 

an approximated input data as     ( ( )). 

 In SQ, each quantization index  ,     - corresponds to an interval on the real 

line represented by input sample  ,     -, which is indicated by 

 ,     -                     ,     -                                      (    ) 

where,    are disjoint intervals on the real line. At the reconstruction side, the de-

quantizer  map the quantization index,  ,     -, to certain  value in the corresponding 

interval,  ̃,     -. Figure 1.5 shows the mapping of input data samples to 8 discrete 

values of quantization indices. 

 Figure 1.6 shows the encoder mapping for a 3-bit quantizer having eight 

reconstruction levels. Here, each reconstruction level is represented by a 3-bit 

number. The input data values in the range from 1a  to 2a  
are assigned 001, the 

codeword of the quantized value corresponding to that range. Similarly the input data 

values  in the range from 2a to 3a  
are assigned 010, the codeword related to that 

range,  and  so  on.   As  a  result,  all  the  input  data  values  will  be  represented by 
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Figure 1.6    Encoder mapping for a 3-bit quantizer. 
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codewords corresponding to the respective intervals to which the input data belong. 

The inputs falling in the range of values less than 1a  will be assigned the codeword 

000 and that falling in the range of values above 7a will be assigned the codeword 

111 (Zeng, Yu & Lin, 2006). The scalar quantizers are broadly classified into uniform 

and non-uniform quantizers.  

1.3.1.2 Uniform Scalar Quantization 

In the uniform SQ technique all intervals are of constant size. The system which 

performs uniform SQ is called a uniform scalar quantizer. In this, the input data 

intervals and the quantization levels are separated evenly. Usually, the centre points 

of the intervals correspond to their respective reconstruction levels. It is due to this 

constant spacing the uniform scalar quantizer is said to have constant step size .  In 

fact, Figure 1.6 and Table 1.2 represent  the encoder and decoder mapping, 

respectively, for a 3-bit uniform scalar quantizer. 

 
x[l1,l2] 

  

I1 I3 I4 I5 I6 I7 I8 I2 

 

q[l1,l2] = 4 

Figure 1.5   Scalar quantizer with eight discrete output levels. 
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 The input-output mapping of a typical uniform scalar quantizer is shown in 

Figure 1.7.  Here, the input range (-0.5, 0.5) is represented by the output quantized 

value 0.0 (i.e., the mid-point of the input range), (0.5,1.5) by 1.0 and (-1.5,-0.5) by      

-1.0 and so on.  

 

 

 

 

 

 

 

 

 

1.3.1.3 Non-uniform Scalar Quantization 

A non-uniform scalar quantizer is a system that performs SQ at non- uniform 

intervals. The particular use of non-uniform scalar quantization is in quantizing the 

input data, which are distributed in non-uniform fashion. In the input regions of high 

probability, a better approximation of input can be done. This is accomplished by 

using smaller intervals Ij or smaller quantization step size in such regions, so as to 

reduce the quantization error. The regions with lower probabilities are given worse 

approximations by employing larger quantization step sizes. Thus, the average 

quantization error is reduced. 

1.4 Fingerprint Image Compression 

The familiar lossless compression techniques were inadequate as it typically provided 

a CR = 2:1 on gray scale fingerprint images. The famous Joint Photographic Experts 

Figure 1.7   The input-output mapping of a typical uniform scalar quantizer. 
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Group (JPEG) compression technique using Discrete Cosine Transform (DCT) was 

also not preferred since, at the FBI target compression ratio or at higher compression 

ratios it produced blocking artifacts caused by the independent compression of image 

blocks formed by 8 x 8 pixels. Hence, among the various compression techniques 

proposed, Wavelet Scalar Quantization (WSQ) technique has been adopted as a 

standard by the FBI. In WSQ, the fingerprint image is decomposed into a number of 

spatial frequency subbands by using cdf 9/7 biorthogonal wavelet. It can compress 

fingerprint images at CRs of 10 to 25. As higher CRs caused undesirable degradation 

of the fingerprint image, a typical factor of 10 to 15 seems to be most suitable. The 

well-known JPEG 2000 compression also is based on WT using cdf 9/7 wavelet for 

its lossy compression. 

1.4.1 Need for Fingerprint Image Compression 

The FBI‟s IAFIS is a national fingerprint and criminal history system of USA which 

provides automated fingerprint storage and search capabilities. 

 In any AFIS catering forensic and non-forensic applications, the size of the 

fingerprint database is huge. With a database of more than 810,000 fingerprint cards, 

the FBI set up its fingerprint identification division in 1924. Since then the fingerprint 

recognition in forensics is expanding fast, and the FBI fingerprint databases have 

been growing so large. The database now contains more than 200 million fingerprints 

and is expanding at the rate of 30,000 to 50,000 new cards per day. It was estimated 

that the FBI fingerprint card archive containing over 200 million fingerprints, takes 

up an acre of filing cabinets in the J. Edgar Hoover building in Washington, DC. 

Digital archiving of fingerprint cards is a solution. However the size of the digital 

archive is also becoming too large.  For example, digital representation of an image 

of size 768 x 768 pixels at 256 gray levels digitized at 500 dpi took 589,824 bytes and 

approximately 10 megabytes were required to encode one fingerprint card. Thus, 200 

million fingerprints required the huge storage facility of 2,000 terabytes.  

 The long delay involved in transmitting fingerprint images over band-limited 

communication channels was also a problem. Over a 9600 baud communication 
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channel almost 3 hours was needed for transmitting only one image. These problems 

created urgent necessity of an effective technique for compressing fingerprint images. 

1.5 Gender Classification 

Visual information has a major role in the interaction of human beings.  While 

looking at someone‟s face we also try to get other information about the person, such 

as gender, age and the present mood through expressions. Gender classification is 

important, as there is vital dependence on the notion of right gender in many social 

dealings. It is a simple job for human beings, but a difficult one for computers. 

Automated gender classification is a field of remarkable importance in                

human-computer interaction. It offers several applications in basic and applied 

research areas. Security, law enforcement, study on demography, man-machine 

interaction, medical, education and telecommunication name a few application areas 

of gender recognition or classification. Needless to say, only a few works in gender 

classification have been reported so far (Rai & Khanna, 2012).  

1.5.1 Gender Classification using Fingerprints 

There exist several features of the human body that can be used to estimate sex 

difference in humans (Brown, Hines, Fane & Breedlove, 2002). There are lots of 

biometric techniques available nowadays, using biometric traits and other 

characteristics of human such as face, fingerprint, gait, body, length ratios of pairs of 

fingers on each hand and toes on each foot, etc., which can be used for gender 

classification (McFadden & Shubel, 2002; Ng, Tay & Goi, 2012). Since fingerprints 

are distinctive and not forged, they are widely accepted well preferred biometric 

features and have become very well accepted in personal identification and 

verification applications. It has been reported by several researchers from different 

parts across the world that there is significant difference in fingerprint features such 

as ridge counts and ridge densities among male and female. These features can be 

made use of for performing the gender classification. Figure 1.8 shows the block 

diagram of a basic gender classification system using fingerprints. 



20 

 

 The basic gender classification system consists of feature extraction and 

classifier blocks.  The feature extraction block extracts features of reduced size that 

are useful for gender classification. In the training phase the classifier is trained using 

the training set of fingerprints whose gender is already known. In the testing phase 

the trained classifier classifies the testing fingerprint images based on their features to 

get the final decision as either male or female (Rai &  Khanna, 2012). 

 

 

 

 

 

 

1.6 Objective of the Research 

The objective of this research work is: 

 To develop algorithms to optimize wavelet coefficients at a faster rate for 

fingerprint image compression.    

 To develop algorithms for optimizing wavelet lifting coefficients for 

fingerprint image compression to obtain maximum PSNR between the input 

and the compressed output images. 

 To develop algorithms to optimize wavelet coefficients and the initial seed 

values of the classifier networks for gender classification. 

 To classify fingerprints into male and female categories using the optimized 

wavelet coefficients and the initial seed values. 

Cdf 9/7 biorthogonal wavelet based techniques are employed in the present works. 

Feed forward Back Propagation Neural Network (BPNN) is used for gender 

classification. 

Fingerprint 

images 

Feature 

extraction 
Classifier Testing 

phase 
Decision 

(Gender) 

 
Train 

Classifier 

model Training 

phase 

Fingerprint 

images 

Feature 

extraction 

Figure 1.8   Block diagram of a basic gender classification system using fingerprints. 
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1.7 Motivation 

In any AFIS used in Government   and commercial applications for forensic and non-

forensic purposes, the quantity of fingerprints in the database is day by day becoming 

large and large. Also, the original images impose large delay during their 

transmission over band-limited communication channels. To reduce the storage space 

required to keep the digital fingerprint archive and to avoid long delays in 

communication channels better compression schemes are required.  Even though the-

state-of-the-art wavelet based compression scheme basically provides good 

compression performance, there is a need for improving the techniques to get even 

better results. 

 As the fingerprint images form a specific class of images having specific 

patterns, the wavelet coefficients can be optimized for better compression. A few 

researchers evolved optimized wavelet coefficients from cdf 9/7 classical wavelets 

(the one used in FBI fingerprint compression standards) to get improved results, 

compromising the hefty computational complexity and hence long time delay. The 

delay is mainly due to the time taken to evolve coefficients similar to classical 

wavelet coefficients that are more in number.  The size and number of the fingerprint 

images in the training database also cause problems. Therefore, lifting wavelet 

scheme representing classical wavelets with lesser number of coefficients and 

optimized training image sets can be used for obtaining faster evolution of optimized 

coefficients for better fingerprint image compression. 

 Gender classification is a very helpful preprocessing step in personal 

identification and verification. Gender classification using fingerprint features is an 

active research area. WT coefficients, Singular Value Decomposition (SVD) and 

Principal Component Analysis (PCA) components with BPNN classifiers have been 

used by researchers giving better classification of male and female genders. These 

conventional classification techniques, mostly employed feature vectors comprised of 

the complete set of WT coefficients, SVD and PCA components in the classifiers are 

causing very slow classification speed.  
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 However, the classification accuracy can be further improved by employing 

optimized wavelet coefficients and initial seed values of Neural Network (NN) 

classifiers. The classification speed can also be improved by using feature vectors of 

reduced size. 

1.8 Contribution of the Thesis 

The main contributions of this research include the development of- 

 A novel fast and efficient algorithm for the compression of fingerprint images 

using wavelet lifting coefficients optimized by employing Genetic Algorithm 

(GA), 

(i)  under condition such that the transform coefficients are subjected to 

uniform SQ. This is a dual-objective GA optimization problem that 

requires the simultaneous maximization of both PSNR and CR. 

(ii)  under condition such that the largest 1/16 transform coefficients are 

retained and the remaining are discarded. This is a single-objective GA 

optimization problem that requires the maximization of PSNR alone. 

   A new algorithm for identifying gender more accurately and at a faster rate 

from fingerprints by employing  

(i)  GA optimized wavelet lifting coefficients and NNs using lesser number 

of DWT, SVD and PCA transform components.  

(ii)   multilevel decision based hybrid gender classifier derived from the 

above individual classifiers. 

1.9 Organization of the Thesis 

 Chapter 2 summarizes the literature survey for the fingerprint image 

compression, wavelet based fingerprint image compression, gender classification and 

fingerprint based gender classification.  

 Chapter 3 is dedicated to the description of WT, optimization tools and 

classification   tools   used   in  this  research  work.   The  fundamental  concepts  and 



23 

 

mathematical background are detailed here.  

 Chapter 4 describes a multi-objective approach for fingerprint compression 

using GA optimized wavelet coefficients and quantization.  The time taken for 

evolving optimized classical wavelet coefficients (cdf 9/7) is too large. So, to ensure 

faster evolution the equivalent wavelet Lifting Scheme (LS) is employed. Wavelet 

optimization techniques for single-level and three-level DWT based fingerprint image 

compression are discussed.  

 Chapter 5 deals with a single-objective approach for optimizing wavelet filter 

coefficients for fingerprint image compression using GA employing a single training 

image for single-level to four-level transforms. An optimum training fingerprint 

image set is developed which enables faster GA evolution as well as higher PSNR for 

the compressed image at various CRs. In addition, the performance of the proposed 

compression system with degraded and noisy fingerprint images is discussed.  

 Chapter 6 presents a fingerprint based gender classification system using GA. 

The chapter begins with developing individual gender classification systems using 

optimized numbers of SVD and PCA components and DWT coefficients of 

fingerprints as feature vectors. Further development of the system by combining the 

individual classifiers to build a hybrid system and its performance are presented in 

this chapter. 

 Chapter 7 provides the summary and conclusions based on the present work. 

A brief description on the future scope and possibility of the continuation of the 

present work are included in this chapter.  
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Chapter 2 

 

3 Literature Survey 

   

 

 
 

Many fingerprint image compression techniques have been studied, experimented and 

presented by a number of researchers. Several works have been carried out in the 

area of fingerprint image compression using WTs. Automated gender classification 

system is an active research topic for several years and fingerprint based gender 

classification is a promising one.  This chapter provides a detailed survey of the 

published literature for setting up an innovative foundation to begin the work on 

evolutionary approach for fingerprint image compression and fingerprint based 

gender classification using DWT. A few literatures pertaining to both fingerprint 

image compression and gender classification using conventional methods are 

reviewed. The summary of the findings in the literatures connected to the works 

carried out in this thesis and the inspiration to prefer the proposed methodologies are 

also discussed. 
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2.1 Introduction 

Image compression (Rabbani & Jones, 1991; Shi & Sun, 2000) has been a topic of 

great interest in digital image processing. It turns out to be more and more important 

for reducing the data redundancy to cut down storage space and transmission 

bandwidth. Several research papers with different compression algorithms employing 

techniques like DCT, Discrete Wavelet Transform (DWT), fractals, etc. (Topiwala, 

1998; Welstead, 1999; Fisher, 1995; Watson, 1994) have been devoted to this.  

Wavelet compression is one of the most effective methods and it has been used for 

fingerprint image compression also.  

2.2 General Survey of Fingerprint Image Compression 

Erçal, Gokmen and Ersoy (1999) proposed a fingerprint image compression scheme 

based on the hybrid model of image. The scheme used various processing steps such 

as enhancement, binarization and thinning to encode fingerprint images. The ridge 

skeleton was coded by using differential chain codes. The ridge and valley skeletons 

were encoded using DCT. The algorithm offered high CRs like 63:l when applied on 

various fingerprint images. The algorithm has the advantages that the direct 

extraction of the original features like end and bifurcation points from the compressed 

image even at high CR could be possible. The reconstruction process involved many 

iterations and it became the shortcoming of their approach. 

 Ferreira and Figueiredo (2006) used Independent Component Analysis (ICA) 

to realize compression schemes adapted to the data-dependent nature of the ICA 

bases obtained from training images.  The ICA bases were applied to specific image 

classes such as faces and fingerprints. They found that ICA was effective for learning 

a coder for a specific image class. For fingerprint images, the scheme performed close 

to the coder developed by the FBI. 

 A coding technique for fingerprint compression based on Contourlet 

transform and Self-Organizing Feature Map Vector Quantization (SOFM-VQ) was 

presented by Veerakumar, Esakkirajan, Sudhakar and Murugan (2007). They claimed 

that a better image reconstruction was possible with less number of bits by using 

http://dl.acm.org/author_page.cfm?id=81100549951&coll=DL&dl=ACM&trk=0&cfid=491554740&cftoken=93956275
http://dl.acm.org/author_page.cfm?id=81100035043&coll=DL&dl=ACM&trk=0&cfid=491554740&cftoken=93956275
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Contourlet transform and SOFM-VQ. Their results revealed the fact that SOFM-VQ 

is suitable for low bit rate image coding. The reconstructed image quality (i.e., PSNR) 

was comparable with that of WSQ and JPEG2000 only at high bit rates. In their work, 

selection of weight matrix, learning rate and the number of iterations have important 

part in influencing the reconstructed image quality. 

 Shahid, Dupont and Baskurt (2009) introduced a novel technique to 

transform the image in which basis functions trained by ICA were used. The image 

was transformed to the ICA domain using a greedy algorithm called Matching Pursuit 

(MP) followed by quantization and multistage entropy coding. For fingerprint image, 

the system outperformed JPEG and WSQ and gave results comparable to JPEG2000 

with lesser complexity.  

 Perumal and Ramaswamy (2009) proposed a novel fingerprint compression 

scheme utilizing the Bezier curve and claimed considerable reduction in memory 

requirement for storing fingerprints, compromising some accuracy. At first, the ridges 

were extracted along with the associated coordinate values and then the control points 

were obtained for all the ridges by viewing each ridge as a Bezier curve and stored. 

Using Bezier curves the fingerprint image could be reconstructed from the stored 

control points. The proposed scheme offered better compression at the expense of 

accuracy. 

 Zhou, Guo and Wu (2010) proposed a matrix optimization model for 

fingerprint compression and reconstruction based on Two Dimensional Ridgelet Non-

negative Matrix Factorization (TDR-NMF). The method could provide a good PSNR. 

 A progressive fingerprint image compression using ridge detection was 

proposed by Lakshmi, Chandulal and Patro (2012). The image was decomposed into 

a primary component containing the ridges and bifurcations and a secondary 

component containing the textures and the features. The proposed method gave a   

CR = 50:1. 

 A  fingerprint  compression  algorithm   based  on  sparse  representation  was 
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introduced by Shao, Wu, Yong, Liuand Guo (2014). The given fingerprint was sliced  

into small patches. An overcomplete dictionary obtained from a set of fingerprint 

patches enabled them to represent as a sparse linear combination of dictionary atoms. 

The algorithm showed higher complexities as a result of the block by block 

processing steps involved. 

 Apart from the various techniques presented by the various researchers in 

their papers, the traditional wavelet algorithms are currently used in state of the art 

signal processing systems including image compression. Wavelet compression 

scheme provides significant enhancements in picture quality of the compressed 

images at higher CRs. For the past few years, a number of potent and sophisticated 

image compression algorithms using WTs have been developed and realized.  Owing 

to the many advantages, wavelet based compression algorithms are still employed in 

the current image compression including fingerprint compression standards. For 

example, the FBI wavelet scalar quantization gray scale fingerprint image 

compression specification (version 3.1) sets the latest standard for the exchange of 

fingerprint images in law enforcement and other biometric communities.  WSQ 

(Bradley, Brislawn & Hopper, 1993; Criminal Justice Information Services, 1997) is 

the standard for exchanging 8 bit, 500 ppi fingerprint images (Planetbiometrics, n.d.). 

Moreover, “Profile for 1000 ppi Fingerprint Compression” is a standard published by 

FBI for compressing and formatting 1000 ppi fingerprint and palm images. This 

involves the use of the general purpose standards like JPEG2000 (Aware Biometric 

Software, n.d.; Orandi et al., 2014).  All these standards use wavelet based 

compression algorithm.  

  The Unique Identification Authority of India (UIDAI) set up by the 

Government of India for issuing Unique Identification (UID) numbers to the residents 

in the country also recommended JPEG2000 or WSQ based on WT coders as the 

fingerprint compression standard. They preferred these standards on account of their 

wide acceptance and also considering the past experiences of the US and Europe with 

biometrics (UIDAI Committee on Biometrics, 2009).   
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 Thus, being the technique used in the globally accepted latest standard for the 

compression of fingerprint images, this study mainly concentrated in WT based 

fingerprint image compression and its scope for further improvement in the quality of 

compressed image. 

2.3 Wavelet Based Fingerprint Image Compression 

Li and Kuo (1995) proposed an embedded wavelet packet coding algorithm for 

fingerprint image compression. As claimed by the authors the proposed method 

offered  1 dB PSNR gain compared to  FBI WSQ standard, and 2 to 3 dB PSNR gain 

above the JPEG standard for fingerprint image compression. The preprocessing and             

post-processing techniques for embedded coding at lower bit rates were a problem 

under consideration. 

 Sherlock and Monro (1996) presented optimized biorthogonal and 

orthonormal wavelets for compression of fingerprint images using Embedded Zero-

Tree Wavelet  (EZW) compression scheme. The optimization was performed by  

simulated annealing over the wavelet filter coefficients. RMSE between original and 

reconstructed images was used as the cost function to be minimized. Compared with 

classical wavelets and wavelets optimized using general images, linear phase 

biorthogonal wavelets optimized for fingerprint image compression offered 

significant enhancement in fidelity.  

 Kasaei, Deriche and Boash (2002) proposed a compression algorithm for 

fingerprint images using wavelet packets and lattice vector quantization. The model 

was based on the generalized Gaussian distribution. The proposed algorithm was 

developed to improve the rate-distortion function by adapting to the characteristics of 

the subimages. It was reported that the proposed algorithm offered compressed 

images of higher quality for identical bit rates compared to the other available 

algorithms. The higher computational cost of wavelet packet is a drawback. 

 Gornale, Humbe, Manza and Kale (2008) applied wavelet packet transform 

based on Haar, Daubechies (db1) and Symlet (sym2) on fingerprint images. They 

applied three-level transforms on noisy and noiseless fingerprint images of size      
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374 x 388. On analyzing the results on the basis of retain energy and number of zeros 

present in the compressed image it was observed that higher CR was achieved for 

noiseless fingerprint image compared to noisy images for all the transforms. But, the 

computational requirement is higher in wavelet packet transform. Selection of an 

optimal threshold value to get better compression with minimum loss to images is 

difficult. 

 Funk, Arnold, Busch and Munde (2005) evaluated the effect of JPEG, 

JPEG2000 and WSQ compression algorithms on the performance of fingerprint 

recognition algorithms. The effect of the JPEG algorithm on fingerprint recognition 

was comparable to that of JPEG2000 and WSQ, above a CR of 0.056. For higher CRs 

WSQ and JPEG2000 were better. 

 A fingerprint compression scheme to obtain improved quality and higher CR 

via multiwavelet transform was proposed by Sudhakar and Jayaraman (2008). 

Embedded coding of multiwavelet coefficients was performed through Set 

Partitioning In Hierarchical Trees (SPIHT) algorithm. They pointed out that 

multiwavelets provide better PSNR as they have the properties such as orthogonality, 

symmetry, short support and higher approximation order for better in compression 

performance, which the scalar wavelets do not meet altogether. However, 

multiwavelets have some disadvantages: preprocessing and post-processing 

operations are required for the discrete multiwavelet transform. Also, the theory turns 

out to be more complicated (Keinert, 2003). 

 In the paper published by Gornale, Manza, Humbea and Kale (2007) it was 

reported that they applied Daubechies, Symlet and Coiflet wavelet transforms through 

different orders at 1 to 5 transform levels on the fingerprint images. It was found that 

the Coiflet4 (4th order) wavelet filter was more fit for lossy fingerprint image 

compression. However, Coiflets have a major shortcoming: they have a much wider 

support. The support with N vanishing moments is 6N - 1 for Coiflets compared to   

2N - 1 for orthonormal wavelets. Compared to Coiflets the filter coefficients of 

biothogonal bases are easier to compute and give perfect symmetric wavelets too 

(Kobayashi, 1998). 
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 Kampfer, Stogner and Uhl (2007) used five different general purpose image 

compression algorithms including three transform based algorithms: JPEG, 

JPEG2000, SPIHT, and two codebook-based schemes: Fractal image compression,  

Predictive Residual Vector Quantization (PRVQ – a special type of vector 

quantization). They reported that JPEG2000 and SPIHT (both wavelet based 

algorithms) clearly outperformed the remaining compression algorithms. But SPIHT 

coding is vulnerable to bit corruption, because a one bit error can cause significant 

image distortion depending on its location. Accurate bit synchronization is required, 

because  loss in a bit during transmission can cause complete misinterpretation of the         

data (Santhi & Banu,2010). 

 Sung and Hsin (2007) proposed a hybrid Set Partitioning In Hierarchical 

Trees Embedded Block Coding (SPIHT-EBC) algorithm using the linear phase 

biorthogonal wavelet with 9/7-coefficient filter. The compression rate (bpp) and 

PSNR offered by  the proposed algorithm were compared with that of the SPIHT and 

Embedded Block Coding with Optimized Truncation (EBCOT) algorithms. For 

fingerprint image it was noted that SPIHT-EBC without entropy coding was 

marginally preferable to SPIHT with entropy coding and SPIHT-EBC with entropy 

coding can provide further improvement compared with SPIHT and EBCOT. 

 A fingerprint compression algorithm called Wavelet Based Contourlet 

Transform (WBCT), which was based on WT and Directional Filter Banks (DFBs) 

was proposed by Zhao and Wang (2009). The DFBs were implemented using 

maximally flat filters and the scheme reduced frequency scrambling. Classes of 

WBCT coefficients were formed by a quadtree sorting procedure. It was reported that 

the proposed encoding algorithm offered improved performance over SPIHT. 

 A lossy fingerprint compression using wavelet and optimal re-quantization 

methodology was proposed by Muhsen, Dababneh and Nsour (2011). The technique 

employed 9/7 WT and the transformed coefficients were subjected to optimal re-

quantization using re-quantization codebook. However, there could be additional 

computational cost due to the codebook generation. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Song%20Zhao.QT.&searchWithin=p_Author_Ids:37657583100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiao-Fei%20Wang.QT.&searchWithin=p_Author_Ids:38190697100&newsearch=true
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 Shakhakarmi (2012) performed multiscale analysis of fingerprint image 

compression using DCT, Fast Fourier Transform (FFT) and different wavelets. It was 

confirmed that the multiscale analysis at fourth level offered a better result for 

wavelet based compression system compared to FFT and DCT based systems. 

 Islam, Bulbul and Shanta (2012) employed Coiflet-type wavelets and wavelet 

packets for better compression of fingerprint image at three-level decomposition.       

They used 8-bit gray scale fingerprint image of size 480 × 400 as test image. They 

reported that the Coiflet 5 was much better than other Coiflet-type wavelets for 

wavelet based as well as wavelet packet based fingerprint image compression. For the 

wavelet packet transform there was improvement in the percentage of Retain Energy 

(RE) and percentage of Number of Zeros (NZ), showing better results for wavelet 

packet transform. However wavelet packet transform is computationally complex 

than WT. 

 From a review of different wavelet based fingerprint image compression 

algorithms, Emmanuel, Mu‟azu, Sani and Garba (2014) observed that most of the 

prevailing techniques need codebooks or lookup tables, the generation of which 

causes extra computational complexity for implementation. They concluded that 

compared to the standard  cdf 9/7 wavelet, biorthogonal coiflet wavelets can  achieve 

superior performance in terms of better rate-distortion, better quality and lower 

computational complexity.  They used fingerprint database of the National Institute of 

Standards and Technology (NIST), USA for experimentation and obtained better 

PSNR values at CR = 20:1. However, coiflets have a wider support. 

 Optimization of wavelet coefficients using Evolutionary Algorithms (EA) has 

been a significant approach in image compression. Several researchers have evolved 

wavelet coefficients using GA.  

 Moore, Marshall and Balster (2005) established an adaptive filtering 

methodology for the reconstruction of image with reduced MSE, which was 

previously forward transformed.  They evolved classical wavelet coefficients similar 

to Daub4 and 2/6 (TS) wavelet coefficients for standard photographic image 

compression using a single training image and GA under quantization. Initial 
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population for GA was formed by randomly mutated copies of the coefficients of the 

selected classical wavelet. Reduction in MSE for single-level transformation with 

quantization step size, q = 64 and q = 32 was reported. The coefficients evolved for 

inverse DWT using a single training image performed well on other images from the 

test set. However, the work considered only reconstruction filters. 

 Grasemann and Mikkulainen (2005) employed the coevolutionary algorithm 

and properties of lifting by which specialized wavelets were evolved for fingerprint 

image compression. Coefficients taken randomly from a Gaussian distribution were 

used for initial population. Fingerprints from the first set of FVC2000 fingerprint 

database containing 80 black and white images of size 300 x 300 pixels, at 500 dpi 

resolution were used for training and testing. It was shown that the evolved wavelets 

consistently outperformed the classical wavelet used by FBI and that evolving 

wavelets adapted to specific classes of images could improve the compression 

performance of an image coder. Each individual had been evaluated 10 times on 

average. For a population size of 150 for each of the seven parallel sub-populations, it 

performed 1500 evaluations in each of the 500 generations in a run. The approach 

was highly time-consuming. The algorithm took 60 hours on a 3 GHz Xeon 

Processor. An average PSNR improvement of 0.75 dB was reported. 

 Peterson, Lamont and Moore (2006) expanded the previous approaches and 

reported that though MSE (or PSNR) is computationally a little faster than Universal 

Quality Index (UQI) and both perform well as fitness measure for GA evolution.  

SSIM measure was not qualified as an appropriate fitness measure for the 

optimization of image reconstruction filter. They evolved classical coefficients from 

random values obtained from the Daub4 wavelet for “fruits” image with q = 64. They 

explored the standard and local genetic search operators, and evolved coefficients that 

excelled the classical DWT for image reconstruction under quantization. They 

considered only reconstruction filters and that too at one and three MRA levels.  

 Babb, Moore and Marshall (2007) optimized wavelet coefficients for 

compression and reconstruction of images under quantization. They worked on Arctic 

Regional Supercomputer Center (ARSC) platforms to meet the huge computational 
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requirement and used 512 x 512 pixel “zelda.bmp” image for training purpose. 

Without any increase in the compressed file size the algorithm could achieve      

1.126 dB improvement in PSNR at single-level decomposition, and more than 0.50 

dB on average at three-level MRA compared to Daubechies-4 (D4) wavelet.  

 Babb (2007) described the evolution of wavelet coefficients for optimized 

transforms for fingerprint compression and reconstruction, surpassing the cdf 9/7 

DWT. The initial population of GA for four-level MRA transform was built with 

randomly mutated copies of 9/7 wavelet coefficients. An individual chromosome in 

GA for four-level transform was represented by a total of 128 floating point values, 

with 16 forward and 16 inverse coefficients for each level. As a commonly used 

technique the first 1/16 transform values were retained and the rest were set to 0. The 

best transform produced 0.76 dB improvement in average PSNR over 80 fingerprint 

images. The experiments were done in ARSC supercomputer.  

 Babb and Moore (2007) reported that the cdf 9/7 wavelet coefficients 

optimized for four-level MRA transforms at one threshold level (or for one CR) 

performed well for a range of threshold levels (or for various CRs). According to 

them, the flexibility of the evolved transforms established them as the best fingerprint 

standard. While performing the GA evolution, the highest 6.25% (or 1/16) transform 

coefficients were retained (so that the CR = 16:1)  and the remaining transform 

coefficients were set to zero.  GA population at each generation was formed by 240 to 

800 individual chromosomes each consisting of 128 floating numbers with initial 

population consisting of one exact copy of the cdf 9/7 wavelet coefficients and the 

remaining individuals were mutated copies of it. The training image consisted of four 

representative images from the fingerprint database. The GA used stochastic uniform 

selection operator, single-point heuristic crossover and elitism was set to 2. The 

number of generations in GA exceeded 15000. They used supercomputer for running 

the algorithm. There was an average PSNR improvement of 0.76 dB. The optimized 

coefficients offered improvements in average PSNR at other threshold levels also (for 

example, 0.794 dB at an approximate CR = 19:1). 
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 An EA known as Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) was used by Babb, Moore and Peterson (2009a) for finding real-valued 

coefficients for matched forward and inverse transforms that outperformed the cdf 9/7 

wavelet for satellite image compression and reconstruction under conditions subject 

to quantization error. For fingerprint compression at single-level MRA, compared to 

the cdf 9/7 wavelet, the optimized coefficients caused an average PSNR improvement 

by 3.00 dB at 64:1 quantization, allowing 4.36% increment in the average 

Information Entropy (IE). However, the increase in the number of coevolved real-

valued coefficients with the number of multiresolution levels results in an exponential 

raise in the dimensionality of the problem. Babb, Moore and Peterson (2009b) 

evolved coefficients for three-level MRA which offered 0.54 dB average PSNR 

improvement in comparison to cdf 9/7 wavelet. 

 To improve image compression in embedded systems Salvador, Moreno, 

Riesgo and Sekanina (2011) presented a bioinspired, EA for optimizing WTs. The 

search algorithm was an easy version of an Evolution Strategy (ES), employing fixed 

point arithmetic. The optimization was done for two-level decomposition with single 

evolving population, one set of coefficients for all MRA levels and all high pass 

coefficients discarded. The average improvement in PSNR for two-level transform 

offered by the algorithm was 1.57 dB. 

2.4 Gender Classification 

Sex is the primary information that distinguishes between individuals. There are 

several features that discriminate male and female. Gender classification has 

important applications in areas where male-female recognition is significant. As an 

example, once a suspect‟s sex is known it can limit its search among enrolled 

suspects to reduce decision time and get better recognition performance. Gender 

identification and classification has been extensively researched in literature. 

Researchers have attempted to do male-female classification using other 

discriminating information from face, hand, finger, voice, human gait, shape, etc.     
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A general survey of various human features other than fingerprint has been made and 

presented below. 

 Majority of the work has been done utilizing features collected from frontal 

face images. A multi-view gender classification method using both shape and texture 

information of facial image was presented by  Lian and Lu (2006). For classification, 

Support Vector Machines (SVM) method was employed. An appearance based 

approach using features extracted from facial images by Gabor filter banks was used 

by Rahman, Chowdhury and Bashar (2013) to discriminate men and women. They 

also employed SVM classifier.  A frontal face image based method was proposed by 

Nazir, Ishtiaq, Batool, Jaffar and  Mirza (2010). DCT based feature extraction and   

K-Nearest Neighbor (KNN) classifier were employed. Shobeirinejad and Gao (2010) 

presented a derivative based technique called Interlaced Derivative Patterns (IDP) to 

extract facial features for gender classification. According to the authors the proposed 

method is more fast and accurate than Local Binary Patterns (LBP), and Local 

Derivative Patterns (LDP) techniques. Ravi and Wilson (2010) presented a gender 

classification strategy employing linear SVM classifier in color images under non-

uniform background using facial image.  Chen and Ross (2011) established the 

possibility of realizing gender from face images acquired in the near-infrared and 

thermal spectra. As stated by them Local Binary Pattern Histogram (LBPH) features 

together with discriminative classifiers provide a reasonable amount of gender 

classification accuracy. Li, Lian and Lu (2012) proposed a gender classification 

framework, which operates on features from facial components:  forehead, eyes, nose, 

mouth and chin and also from hair and clothing. For each of these features separate 

SVM classifier with probabilistic output was used. According to the authors, their 

proposed framework improved classification accuracy, even at the presence of noise, 

occlusions, and changes in illumination. The work suffered from the problem of the 

dependence of hair feature on complex backgrounds and also the computation time 

for hair feature extraction was high. Perez, Tapia, Estevez and Held (2012) reported a 

gender classification method using features of frontal face images. It employed 

feature selection based on mutual information and fusion of features extracted from 

intensity, shape, texture, and from three different spatial scales. Basha and Jahangeer 

http://link.springer.com/search?facet-author=%22Bao-Liang+Lu%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ross,%20A..QT.&searchWithin=p_Author_Ids:37271231600&newsearch=true
http://link.springer.com/search?facet-author=%22Hui-Cheng+Lian%22
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cunjian%20Chen.QT.&searchWithin=p_Author_Ids:38241010100&newsearch=true
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(2012) used Continuous Wavelet Transforms (CWT) for selection of features from 

face images. Classification was performed using SVM with linear kernel. Shan 

(2012)   investigated gender recognition on real-life faces using the database, the 

Labeled Faces in the Wild.  He used LBPs to describe faces, Adaboost to select the 

discriminative LBPs features and obtained the performance of 94.81% by applying 

SVM. An approach for designing a fuzzy decision making system from shape and 

texture of face images for male and female classification was made by Moallem and 

Mousavi (2013). In addition to face shape features, Zernik moments which is 

considered as the probability of being male face image were also used to improve the 

result. They got 85.05% classification rate on the FERET face database. Jaswante, 

Khan and  Gour (2013) used the geometric features of face, i.e., distance between 

eyebrow to eye, eyebrow to nose top, nose top to mouth, eye to mouth, left eye to 

right eye, width of nose and width of mouth. The features were fed to BPNN for 

classification. Maximum accuracy obtained was 98.40%. A gender classification 

technique employing a machine learning technique called decision trees was 

presented by Khan, Qureshi and Riaz (2013). The gender classification was 

performed based on frontal facial images. They could correctly classify gender with 

97.33% accuracy. 

 Alrashed and Berbar (2013) proposed a gender classification system using 

features extracted from the eye and eyebrow region. 2D WT, Gray Level Co-

occurrence Matrix (GLCM) and DCT techniques were used to extract  features for an 

SVM classifier. They reported accuracy rate of 99.49% on gender recognition using 

2D WT, 98.49% using GLCM and 99.62% with DCT on Faces94 database.  

 Pitch and formants extracted from speech samples and their combination 

were used by Kumar, Jakhanwal, Bhowmick and Chandra (2011) for gender 

determination. Based on three features such as energy entropy, short time energy and 

zero crossing rates from speech signal and using fuzzy logic and NN, a classifier to 

identify the gender of the speaker was proposed by Meena, Subramaniam and 

Gomathy (2013). DCT based features of both lip appearance and lip dynamics during 
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speech were used by Stewart, Pass and Zhang (2013) to discriminate gender. Lip 

appearance and dynamics were modeled by Gaussian mixture.  

 Yoo, Hwang and Nixon (2005) utilized human gait data and employed an 

SVM classifier  for gender classification. Human gaits in image sequences were used 

by Shan, Gong and  McOwan (2007) for gender classification. For improved 

performance gait and face features were used by them. Lu, Wang and Huang (2012) 

in their paper proposed a system to recognize gender from human gaits collected in 

an uncontrolled manner in which people could walk freely with time varying walking 

direction.  

 Mozaffari, Behravan and Akbari (2010) established a gender classification 

algorithm using combination of appearance based and geometric based features of a 

single frontal image per person. For better classification accuracy two appearance 

based features; DCT, LBP and one Geometric-based feature, i.e., Geometrical 

Distance Feature (GDF) were used. Based on the majority rule the gender was 

determined.  

 Wu and Yuan (2014) presented male-female classification technique based 

on geometry features of palm image. A Polynomial Smooth Support Vector Machine 

(PSSVM) was used for classification purpose. On a database of 180 palm images 

collected from 30 persons, their gender classification algorithm offered classification 

rate over 85%. Bansal, Agarwal and Sharma (2014) proposed an algorithm for 

predicting gender using iris images. Feature vector was created from the statistical 

and texture features of iris image using wavelets. Using SVM, they achieved a gender 

classification accuracy of 85.68%. 

 The gender classification schemes with the existing techniques which use 

other biometric traits such as face iris, hand shape, speech etc. have restricted use for 

crime investigation. Fingerprint analysis has a key role in convicting the person 

responsible for a crime.  
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2.5 Fingerprint Based Gender Classification 

Fingerprint evidence is unquestionably the most dependable and legitimate proof till 

date in the court of law throughout the world. Gender classification from fingerprints 

is noteworthy move in forensic applications in order to shortlist the suspects in 

identifying a criminal. Extensive research works have been conducted in the field of 

fingerprint identification and classification (Maltoni & Jain, 2004). Recently a few 

researchers have addressed the use of fingerprint for gender recognition and 

classification.  

 Studies have been made by several researchers in different parts of the world 

to see whether any significant differences in the fingerprint features of male and 

female. According to Acree‟s (1999) study, Caucasian and African American women 

tend to have a significantly higher ridge density than their men. The results of the 

study of Gungadin (2007) shown that within the population of Indian origin, females 

have significantly greater number of ridges than males. Rastogi and Pillai (2010) 

observed that there is an association between distribution of fingerprint patterns and 

gender. Their study was carried out among medical students of Kasturba Medical 

College, Mangalore, India. Nayak et al. (2010a)  in their study on population of 

Indian origin viewed that the mean ridge count is more in female than in male.     

Nayak et al. (2010b) made similar observation on populations of Chinese and 

Malaysian origins. Singh‟s (2012) studies realized significant differences in 

epidermal ridge density between males and females in two Northern Indian 

populations of Chandigarh Region (Khatri and Bania), confirming higher mean ridge 

density for females compared to males. Agnihotri, Jowaheer and Allock (2012) 

conducted study on 200 healthy medical students (100 men and 100 women) in the 

Indo-Mauritian population in the Department of Forensic Medicine, SSR Medical 

College, Mauritius. They observed that the maximum mean ridge density over all 

fingers in male falls below the minimum mean ridge density over all fingers in 

female. The studies performed by Dhungana and Sahu (2013) revealed significant 

mean difference in the finger loop ridge counts between males and females from 

Utterpradesh in India. According to them, a ridge count of < 13 ridges/25 mm
2
 is 

http://www.researchgate.net/researcher/39076601_Vinod_C_Nayak/
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more likely to be of male origin and that of > 14 ridges/25 mm
2
 is likely to be of 

female origin.    From the fingerprint features of Egyptian population, Eshak, Zaher, 

Hasan and Ewis (2013) recognized that females have more ridge count and higher 

ridge density. All these findings encourage the effort of gender classification based on 

fingerprint features as in this present work. 

 Badawi, Mahfouz, Tadross and Jantz (2006) used Fuzzy-C Means (FCM), 

Linear Discriminant Analysis (LDA) and NN classifiers for gender classification. NN 

classifier based on feature vectors such as ridge count, Ridge Thickness to Valley 

Thickness Ratio (RTVTR), white lines count, ridge count asymmetry and pattern type 

concordance with a fingerprint database of 10 fingerprint images of 1100 males and 

1100 females was used. They got 80.39%, 86.5%, and 88.5% correct classification 

using FCM, LDA, and NN, respectively.  

 Verma and Agarwal (2009) combined the fingerprint features such as ridge 

width, ridge density and RTVTR to implement gender classification algorithm using 

SVM classifier. As a preprocessing step, the images were normalized to standardize 

intensity values. The database contained fingerprints of 200 males and 200 females. 

They could achieve 53% correct classification for ridge density, 59.5% for RTVTR 

and 68% for ridge width and a combined classification accuracy of 88%. 

 Purohit, Imam and Beg (2011) presented an efficient and simple method 

showing the usefulness of PCA in recognizing gender from fingerprints. They 

evaluated eigen matrix from the test fingerprints to recognize the gender. As observed 

by them, gender recognition systems give better results as the size of the database is 

increased. 

 Gnanasivam and Muttan (2012) used frequency domain feature vectors 

formed by 19 DWT subband energies from all the subbands of six-level DWT and 

spatial domain feature vectors formed by 260 SVD components of fingerprints. The 

system was experimented with an internal database of 1980 male and 1590 female 

fingerprints. A KNN classifier was employed. They achieved 91.67% and 84.69% 

classification accuracy for male and female persons respectively. The overall 

classification accuracy was reported as 88.28%.   
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 Omidiora, Ojo, Yekini and Tubi (2012) performed gender classification 

based on RTVTR and ridge count in fingerprints. The database contained 10 

fingerprint images for 100 males and 100 females. They attained 80% classification 

using BPNN classifier. 

 The work done by Kaur, Mazumdar and Bhonsle (2012) employed feature 

vectors from FFT, DCT and Power Spectral Density (PSD) operations on 

fingerprints. An internal fingerprint database of 110 males and 110 females was used. 

The frequency domain calculations were compared with predetermined manual 

analysis threshold and gender was judged. As reported, 79.07% male and 90% female 

were correctly classified. 

 Chand and Sarangi (2013) employed frequency domain feature vectors 

comprising of 19 DWT  subband energy from  six-level DWT and spatial domain 

feature vectors comprising of 512 SVD components to classify male-female from a 

fingerprint database of 50 males and 50 females. Both the SVD and DWT outputs 

were combined to shape the final feature vector. They achieved more than 80% 

correct classification using KNN classifier.  

 Gornale, Geetha andKruthi (2013)  proposed an algorithm for  fingerprint 

based  gender identification by using combined features like FFT, eccentricity and 

major axis length of fingerprint image. The database was composed of good quality 

left thumb impressions of 450 male samples and 550 female samples. Optimal 

threshold values were set for each feature type. Their experiment resulted in 

producing accurate decision of 80% of male and 78% of female. 

 Tom and Arulkumaran (2013) employed a frequency domain technique and 

pattern recognition technique such as 2D DWT and PCA to classify gender from 

fingerprints. The database contained 547 individual fingerprints of males and 

females. The fingerprints were preprocessed by resizing to 512 x 512 pixels size and 

enhanced. The DWT feature vectors were formed by 19 subband energies from all the 

six-level DWT. The PCA feature vectors composed of 512 principal components. 

Feature vectors made up of 531 components formed by combining DWT and PCA 

feature vectors were used for classification of 200 males and 200 females. The 
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classification was performed using minimum distance classifier and obtained 70% 

overall classification. 

2.6 Present Issues and Remedies 

Based on the detailed study of the published works, it is realized that wavelets have 

stimulated a big deal of importance in fingerprint image compression. The           

well-known and widely accepted FBI fingerprint standard WSQ, and the general 

image compression standard JPEG 2000 use the cdf 9/7 (bior 4.4) biorthogonal 

wavelet for lossy compression.  The classical cdf 9/7 wavelet is composed of sixteen 

coefficients for forward transform and another sixteen for inverse transform and the 

conventional WT techniques used in applications including fingerprint compression 

employ frequency domain approach.  In frequency domain, convolution method is 

used for finding WT coefficients. More number of wavelet coefficients consumes 

more time in transforming the image into wavelet domain. The convolution operation 

itself is time consuming as it contains large number of addition and multiplication 

arithmetic operations. By reducing the number of arithmetic operations, particularly 

the multiplication operations can lead to perform wavelet transformation faster.  

 The main requirement of an image compression system is to reduce the size 

of the compressed image as much as possible without compromising the image 

quality. In other words, a good image compression system is one which gives 

compressed images with maximum quality at any particular CR. Quality of the 

compressed image is usually measured in terms of PSNR. As seen in the literature 

survey, several research works employing various techniques have been done to 

realize fingerprint image compression systems that could offer better PSNR values. 

Optimization of classical wavelets for better fingerprint image compression is a 

noteworthy approach in this direction. Recently many research works have been done 

by using evolutionary algorithms for optimizing wavelet coefficients. Promising 

results using GA for evolving optimized classical wavelet coefficients for fingerprint 

image compression have been reported. Since the classical wavelet filter length is 

large the computational complexity is also large, which in turn takes tens of hours for 
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GA evolution. So, to meet the huge computational requirements researchers have 

been forced to use supercomputers.  

 Thus, the issues related to the huge amount of computational requirements 

involved in GA evolution for optimizing cdf 9/7 wavelet coefficients for fingerprint 

image compression to get best quality (with best PSNR) compressed image still 

remains unsolved. It is a problem open to all the researchers working in the area of 

fingerprint image compression. So, the first phase of this thesis work attempts to 

solve the problem by employing many novel techniques that will be dealt with in the 

subsequent chapters. 

 The literature survey of gender classification based on fingerprint images 

reveals that there is scope for further improvement in the classification system. 

Though many classification systems reviewed offer satisfactory classification 

accuracy, the issues related to the speed of the classifier and its performance still 

remain to be attended to as the previous works need further improvements in both 

aspects and there is scope for the same. For example, NN classifiers employing 

components of transforms like DWT, SVD, PCA, etc. as feature vectors to produce 

outputs with reasonable accuracy consume large amount of time owing to the use of 

full set of transform components. Also, the initial seed value for the NN changes 

randomly for different runs of the algorithm causing inconsistent and non-optimal 

solutions. This gives room for further investigation to device new improved 

techniques to realize better fingerprint based gender classification systems. Thus, the 

second phase of this thesis work proceeds in such a way intending to optimize the  

cdf 9/7 wavelets and the initial seed values of feed forward BPNN classifiers and also 

to use minimum numbers of components in feature vectors for faster gender 

classification with better classification accuracy. 

 



 

 

Chapter 3 

 

Image Compression and Gender 

Classification: Materials and Tools 

 

 

In digital image processing it is required to handle a large quantity of data. Large 

storage space is required to store the image data for future use. Similarly image data 

transmission needs wide channel bandwidth. Image compression techniques are 

usually employed to reduce the above requirements.  Automated gender classification 

is a major research area. Gender classification using fingerprints is a useful 

preprocessing step for easy search of an individual in many forensic and non-forensic 

applications. WT is the state-of-the-art technique used in image processing including 

image compression and feature extraction for gender classification. SVD and PCA 

are also very much accepted as feature extraction tools. So, this chapter presents the 

concepts of WT, SVD and PCA along with the popular NN that are used in this thesis 

work for image compression and gender classification. 
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3.1 Wavelet  Transforms (WT) 

WT (Meyer, 1992; Chui, 1992; Daubechies, 1992) or wavelet analysis is an area of 

applied mathematics, which has been found to be best suited for analyzing signals of 

aperiodic, intermittent, noisy or transient nature.  It was developed to overcome the 

shortcomings of the Fourier Transform (FT) (Bochner & Chandrasekharan, 1949). In 

signal analysis, it is often desirable to know the strength of each frequency 

component in the signal as well as the time at which the frequency components occur. 

This is called time-frequency localization. As far as stationary signals (signals whose 

statistical properties are invariant over time) are concerned the FT provides 

information about both time and frequency, since the frequency content of such 

signals do not change in time. In this case, it is meaningless to know the time of 

occurrence of frequency components since all frequency components present at all 

times. However, most practical signals like speech, biomedical measurement, 

communications etc. are extremely non-stationary. The major problem with Fourier 

transform is that it is not suitable for analyzing  non-stationary signals as it provides 

only frequency information, but no time information.  

 The Short Time Fourier Transform (STFT) or Windowed Fourier Transform 

(WFT) was developed then with non-stationary signal analysis in mind. In STFT, the 

signal is sliced into small portions so that these portions can be assumed to be 

stationary. Such small portions are selected by multiplying the signal with a small 

window function „w‟ and then FT of that portion (assumed to be stationary) is 

computed. The STFT is obtained from the FT of all such portions formed by moving 

the window function along the entire signal duration. The problem with STFT is that 

it gives a fixed resolution at all times due to its fixed window function, irrespective of 

the frequency components in the signal. Usually high frequency signals are of short 

duration whereas low frequency signals lasts for more time. So, the efficient analysis 

of such signals demanded for a transform giving variable resolution at different times 

for different frequencies.  

 The limitation of STFT has been overcome by WT. The following section 

gives some basic ideas about wavelets and WT. 

http://en.wikipedia.org/wiki/K._S._Chandrasekharan
http://en.wikipedia.org/wiki/Salomon_Bochner
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3.1.1 Wavelets 

A wavelet is a “small wave” with its energy confined to a finite duration to provide a 

means for the analysis of transient, non-stationary or time-varying events (Young, 

1993; Rao & Bopadikar, 1998).  In finding WT of a signal, the wavelets act as the 

basis functions. Then, like any other transform, WT of the signal is obtained by 

computing its inner product with the wavelets. The following detailed discussions on 

wavelets and WT have reference to the research papers and text books (Mallat, 

1989a; Vetterli & Herley, 1992; Daubechies, 1992; Kaiser, 1994; Sheng, 1996; 

Burrus, Gopinath & Guo, 1998) and similar materials. There are varieties of wavelets 

that can be used for analyzing the signal depending upon the type of the applications. 

3.1.2 Properties of Wavelets 

Wavelet behaves like a window function similar to that in STFT (Goswami & Chan, 

1999). A real or complex-value continuous-time function   ( )  qualifies as a wavelet 

if it satisfies the following conditions. 

The function integrates to zero:  

∫  ( )                                                             (   )

 

  

 

 

which indicates that the function is oscillatory. 

The function is square integrable:  
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which indicates that the function has finite energy. 

It satisfies the admissibility condition: 
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the condition to be satisfied for finding the inverse WT. Here,       is called the 

admissibility constant whose value depends on the chosen wavelet (Addison, 2002). 

 The function   ( )   is called a mother wavelet. The mother wavelet acts as a 

prototype for generating the other window functions used for transforming the other 

segments of the signal. It is the main function from which the other functions 

(windows) with different region of support that are employed in the transformation 

procedure are derived.  The different wavelet basis functions or windows are 

generated by performing two operations, viz. translation and scaling.  

 The term translation relates to the location of the window, as it shifts the 

window along the signal to locate different segments and hence captures the time 

information. The term scale relates to the support in time of the window. The mother 

wavelet is scaled down (contraction) or scaled up (expansion) to capture the high 

frequency or low frequency information of the signal. From the single mother wavelet 

function   ( )  a family of functions could be derived, that form the basis functions 

corresponding to the particular   ( )  represented as: 

    ( )   
 

√ 
  (

   

 
)                                              (   ) 

where b is the translation parameter and a, the scale parameter. 

 The scale parameter a is defined as  |          ⁄ |.  Scaling either dilates 

(expands) or compresses (contracts) a signal. Large scales (low frequencies) dilate the 

signal to give global information buried in the signal, while small scales (high 

frequencies) contract the signal to offer detailed information about the                  

signal (Graps, 1995; Polikar, 1996). 

3.1.3 Continuous Wavelet Transform (CWT) 

CWT is a powerful mathematical tool, equipped for giving both time and frequency 

information of the signal simultaneously. It provides especially the time-frequency 

representation of non-stationary and fast transient signals. For a square integrable 

function  f(t), the CWT with respect to a wavelet   ( )  is given as, 
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where  * stands for complex conjugation. 

 The term   √| |⁄   is the normalizing factor maintaining the same energy for 

all wavelet basis functions obtained by the scaling and translation of the mother 

wavelet. The CWT of a function is essentially a collection of inner products of the 

function with the translated (shifted) and scaled (dilated) wavelet      ( )  for all a  

and b. The CWT can be interpreted as a set of Linear Time Invariant (LTI) filters 

whose impulse responses are dilations of the mother wavelet reflected about the time 

axis. The scale and frequency are inversely proportional. So the CWT provides better 

frequency resolution (but poorer time resolution) at low frequencies and better time 

resolution (but poorer frequency resolution) at high frequencies of the signal. This is 

what required as naturally the time period of low frequency signal is larger and that of 

high frequency signal is smaller.  

 The inverse CWT exists if the mother wavelet satisfies the admissibility 

condition given in equation (3.3). 

Then the inverse CWT is mathematically represented as, 
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3.1.4 Wavelet Families 

Wavelets are classified as orthogonal and biorthogonal wavelets according to the type 

of basis functions they use. The orthogonal wavelets use orthogonal bases and 

biorthogonal wavelets employ biorthogonal bases. In each class, there is a variety of 

wavelet families, the qualities of their elements depend upon the length of the support 

of the mother wavelet, the number of vanishing moments, symmetry, regularity, etc.  
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3.1.4.1 Support of the Mother Wavelet 

Length of the support of the mother wavelet quantifies the width of the wavelet 

function, which obviously differ for different wavelet families. For example, daub„N‟ 

(N represents the order of the wavelet filter) has a support equal to 2N - 1. Wavelets 

having small support (narrow) such as the daub2 (support = 3) are able to be 

computed quickly. However, the small support in time implies a very large width in 

frequency. On the other hand, the wavelets with large support (wide) like daub20 

(support = 39) have very large width in time and the frequency resolution is higher. 

3.1.4.2 Vanishing Moments 

The vanishing moment is a criterion on how a wavelet decays toward infinity. A 

wavelet   ( )  has m vanishing moments if, 

∫   

 

  

 ( )                                                          (   ) 

The number of vanishing moments measures the oscillation of a wavelet and the 

interval where it takes values significantly different from zero evaluates its 

localization. The wavelets should have higher vanishing moments. A wavelet with 

more vanishing moments has better capacity of compression of the basis. If a wavelet 

with m number of vanishing moments is used to   analyze a polynomial with a degree 

less than  m, then all detail coefficients will be zero, which give good compression. 

With more number of vanishing moments the wavelets turn out to be smoother or 

more regular and more complex functions can be represented with a sparser set of 

wavelet coefficients (Michel, Yves, Oppenheim & Poggi, 2007; Chun-Lin, 2010).  

3.1.4.3 Symmetry of the Wavelet 

Symmetric or anti-symmetric wavelets lead to filters with linear phase, a desired 

parameter ensuring that the transformed output signal is not distorted.  Daubechies 

has shown that, except for the Haar wavelet, there exist no orthogonal compactly 

supported wavelet which is either symmetric or anti-symmetric (Daubechies, 1998). 
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3.1.4.4 Regularity of the Wavelet 

The regularity provides an approximate measure of the number of times a function 

can be differentiated at any given point.  Regularity of a wavelet function gives a 

measure of its smoothness. Higher regularity gives a smoother wavelet.  The 

regularity of wavelets is closely related to the number of vanishing moments. The 

more the number of vanishing moments, the smoother the wavelet is. For example, 

the Haar wavelet has only the “zeroth” vanishing moment and hence its wavelet 

function is discontinuous. The regularity property is usually applied to the wavelets 

so as to have the  wavelet transform coefficients to decrease fast with diminishing 

values of the scale, a. So, it is desirable to have wavelets which possess higher 

regularity. 

 Examples of wavelet families include Daubechies, Symmlet, Meyer, Morlet, 

Haar, Coiflet,  Cohen  daubechies  feauveau  (cdf),  etc.  Each  wavelet family  

contains sub-families of wavelets discerned by the number of wavelet coefficients 

and the properties discussed above (Mallat, 1999; Stolojescu, Railean, Moga &     

Isar, 2010). 

3.1.4.5 Orthogonal Wavelets 

Orthogonal expansion is an important tool for analyzing a signal. In orthogonal 

decomposition of a signal, the computation of the coefficients of expansion which 

represent the magnitudes of the decomposed basis function components is done in a 

simple and efficient manner.   Thus, by using orthogonal wavelets as basis functions 

it is straightforward to transform, decompose or analyze the signal by computing the 

inner product of the signal with each basis function. Also, WT obtained using 

orthogonal wavelet basis functions is energy preserving.  

 The Haar wavelet is an example of orthogonal wavelet, which was proposed 

in 1909 by Alfréd Haar. It qualifies as the simplest wavelet and has the shortest 

support among all wavelets. The Haar wavelet is not a good choice for approximating 

smooth signals as it is non-continuous and has only one vanishing moment. However, 

http://en.wikipedia.org/wiki/Alfr%C3%A9d_Haar
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this property makes it useful for the analysis of abrupt changes or time localized 

information in the signal. 

 Daubechies, Coiflet, Symmlet etc. are examples of other wavelet families 

which belong to the orthogonal class. The Daubechies wavelets discovered by Ingrid 

Daubechies is a family of orthonormal and compactly supported wavelet functions 

having the highest regularity for a given support length. Symmlets is a family of 

nearly symmetric wavelets proposed by Daubechies. Their construction is similar to 

that of Daubechies wavelets and properties other than symmetry are similar for both 

wavelet families. Coiflets represent another family of orthogonal wavelets developed 

by Daubechies, as requested by Ronald Coifman, to have vanishing moments for both 

wavelet and scaling functions. This wavelet is more symmetric than the Daubechies 

wavelets.    

3.1.4.6 Biorthogonal Wavelets 

As far as orthogonal wavelets are concerned, the analysis and synthesis wavelet 

functions are the same with same vanishing moments. In contrast, the biorthogonal 

wavelets have different analysis and synthesis wavelet functions and the m vanishing 

moments correspond to synthesis wavelet only. In biorthogonal case, construction of 

symmetric wavelets is possible allowing the linear phase property, which is required 

for distortion-less signal reconstruction. Thus, it permits more degree of freedom in 

design compared to orthogonal wavelet.  In fact, orthogonal wavelets constitute a 

special class of biorthogonal wavelets. Reverse biorthogonal wavelet family, which is 

derived from the biorthogonal wavelet family, also falls in the class of biorthogonal 

wavelets. 

3.1.5 Multiresolution Analysis 

Multiresolution Analysis (MRA) is a technique by which a signal can be analyzed at 

different frequencies with different resolutions. Mallat in his work in 1989 described 

the wavelet approach to multiresolution decompositions. He explained that by 

decomposing a function into a wavelet orthonormal basis, the variation in information 

among the approximations of a function at different resolutions could be computed 
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(Mallat, 1989b). WT is capable of performing multiresolution signal analysis with the 

varying scale factor, a.  The fundamental technique of MRA is that of successive 

approximation of the signal by adding detail information to the current coarse 

approximation signal to get a subsequent finer approximation signal.  

 An MRA of the space    ( )  of finite energy signals   ( )  is a chain of 

nested closed subspaces  *  +   ,  represented as 

                            ( )                       (   )  

The intersection of the subspaces reduces to {0} and their union is dense in   ( ). 

All the subspaces can be derived from the fundamental space   (for i = 0) by 

contracting ( i < 0) or expanding or dilating ( i > 0). That is,  

 ( )          (  )                                                      (   ) 

Let    be the orthogonal compliment of   in     and this is represented in 

mathematical form as,  

                

                             

  

                                                                                                  (    ) 

This shows that the    space holds the detail information required to go from    

space to        space. Thus, in MRA technique, a signal with higher resolution can be 

obtained by adding a sum of details to the signal with lower resolution. Apart from 

the wavelet function,    a second function called the scaling or dilation function,    is 

also associated with the MRA. The wavelet function,    spans the detailed or wavelet 

space    and the scaling function,    spans the coarse or approximation space   .  

 To make the idea more clear, assume   ( )   be an approximation of the 

function   ( )  corresponding to   . The    ( )  is actually the weighted sum of 

scaling function and its translates at scale = 0. Now, a finer approximation    ( )  of  

 ( )   can be obtained by adding the details corresponding to   . The detail or 
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wavelet space    is the weighted sum of wavelet function and its translates at that 

scale, obtained by projecting  ( )  to   . This technique is iterated so as to 

successively approximate the signal at finer and finer scales by adding weighted sum 

of wavelets corresponding to each scale (Rioul & Vetterli, 1991; Michel et al., 2007).  

3.1.6 Discrete Wavelet Transform 

The CWT contains a large amount of redundant information when analyzing a signal 

and hence takes a substantial amount of computation time and resources. 

Alternatively, the DWT offers considerable reduction in the computation while 

eliminating the redundancy and providing adequate information needed for analysis 

and synthesis of the signal. This facilitates easier implementation of the DWT. 

 The DWT uses wavelets with discretized scale and translation parameters. 

Usually scale and translation parameters are chosen based on powers of 2 called 

dyadic scales and translation, such as      and        , where                

represent discrete scale and translation parameters respectively (Soman &         

Ramachandran, 2006).  Then the DWT coefficients of a signal x(n) are obtained as, 

  (    )   
 

 ∑ ( )

 

      
( )                                      (    ) 

  (    )   
 

 ∑ ( )

 

     
( )                                        (    ) 

where     . The input   ( ),     and    (scaling and wavelet functions respectively) 

are discrete variable functions. 

3.1.7 Subband Coding 

Subband coding is a method in which the channels of a filter bank are employed for 

coding signals. It is a multiresolution signal processing approach that was originated 

from speech compression application. In subband coding scheme the signals are 

considered in spectral bands for analysis as well as compression purposes. In fact, 

besides providing means for deriving wavelet bases, the multiresolution approach 
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finds very much importance in conceptualizing problems connected to wavelet and 

subband decompositions of signals.  

 Subband coding works on the fundamental concept of successive 

approximation.   A signal is decomposed to coarse and detail approximations. The 

detail part is the difference between the original signal and the coarse approximation. 

Typically, the coarse approximation is a lowpass filtered, subsampled (downsampled) 

version of the original signal whereas the detail is a highpass, subsampled version. 

The procedure can be repeated on the coarse signal. The original signal is 

reconstructed from the coarse and the detail signals simply by adding them together. 

This approach carries out a multiresolution analysis identical to the wavelet 

decomposition of the signal (Vetterli & Kovacevic, 1995).  

 In DWT or subband coding, the signal   ( )  is passed through a succession 

of low pass and high pass filters to analyze the low frequencies and high frequencies 

respectively. The two sets of basis functions in DWT namely, the scaling functions 

and wavelet functions are associated with lowpass (h) and highpass (g) filters, 

respectively. The filtering processes change the resolution (a measure of the amount 

of detail information) of the signal and the downsampling and upsampling (used in 

reconstruction phase) operations change the scale.   

 In the analysis or decomposition phase, the signal   ( )  is filtered  by a half 

band lowpass filter with impulse response  ̃( ) . It filters out all frequency 

components that are above half of the highest frequency in the signal and thus the 

resolution of the resulting coarse (lowpass) signal is half that of   ( ). Half the 

number of samples in the filtered output signal is redundant; hence they are removed 

by downsampling by two, causing an increase in the scale by two. The whole 

operation results in half the time resolution and double the frequency resolution. The 

same process is done with a highpass filter   ̃( )  (replacing the lowpass filter) to 

separate the high frequency components. The synthesis (reconstruction) process 

performs the inverse operation of the analysis process. 
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 A schematic diagram of the subband algorithm is shown in Figure 3.1, in 

which   ̃( )  and   ̃( )  represent the lowpass and highpass analysis filters,   while 

 ( ) and   ( )  represent the lowpass and highpass synthesis filters, respectively.  

The reconstructed signal is represented by    ( ). 

 

 

 

 

 

 

 

 

 The subband coding technique for realizing DWT is slow. A method called 

„lifting scheme‟ can be used to perform faster implementation of the DWT. 

3.2 Wavelet Lifting Scheme 

The traditional wavelets, which are translates and dilates of one mother function, are 

often referred to as the first generation wavelets. Lifting scheme (Sweldens, 1996; 

Sweldens & Schröder 1996; Sweldens, 1997; Daubechies & Sweldens, 1998) is a 

new tool to construct the so called second generation wavelets. The traditional 

methods of constructing wavelet bases employ FT to achieve the time-frequency 

localization. In contrast to the traditional methods, which is done in frequency 

domain, LS can be used to design wavelets in spatial domain.  

            There are several advantages of LS in employing for the construction of 

wavelets. Transformation of signals of an arbitrary size with proper treatment of the 

boundaries is possible with transforms employing wavelet lifting. LS permits faster 

implementation of the WT, thereby making the computational time optimal. Fully in-

Analysis Section Synthesis Section 

 x(n) 

 
 

 
 

 

 

 

 

xo(n) 

Figure 3.1   Schematic diagram of the subband algorithm to realize analysis and synthesis 

sections of the DWT. 
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place computation of the WT, without any auxiliary memory to store the interim 

results, can be done.   Since the LS works on the spatial domain, it is suitable for 

those interested in applications rather than complex mathematical expressions. The 

inverse WT for signal reconstruction can easily be computed by undoing the steps 

performed in the forward transform.  

 The LS begins with a traditional wavelet filter set and the properties of the 

corresponding WT are improved (lifted) using lifting steps. The lifting steps are of 

two types: the primal lifting step and the dual lifting step.  Several such lifting steps 

are cascaded in alternate order to achieve desired properties of a WT (Soman & 

Ramachandran, 2006). Daubechies and Swelden (1998) further proved that any 

orthogonal and biorthogonal wavelet decompositions can  be made  into  lifting steps  

by factorizing  the associated polyphase matrix. 

3.2.1 Basic Ideas of LS 

Let  a and b be two adjacent  samples of a sequence. Now, a and b can be replaced by 

their average s and difference  d  by performing a simple transformation: 

  
   

 
                                                           (    ) 

                                                                 (    ) 

For well correlated samples a and b, the difference d  is small and hence require only 

fewer bits for its representation.  From  s and d,  the original samples a and b can 

simply be regained as,   

    
 

 
                                                            (    ) 

    
 

 
                                                            (    )

 

To generalize this, assume a signal    of length    with sample values      : 

   {     |      }                                               (    ) 

The average and difference transform of each sample pair          and             

are obtained as, 
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                                                   (    ) 

                                                                        (    ) 

Thus,     is split into an average (coarse) signal        and a difference (detail) signal 

     with samples represented as         and           respectively, both having 

length     . Now, the original signal    can easily be reconstructed by merging      

and      . 

The above operation can be iterated on the coarse signal       to get a coarser signal 

     and a detail signal     , both having length of      samples. This can be 

performed  n  number of times till no more samples remain. This is a simple example 

of the Haar case (Sweldens & Schröder,1996; Soman & Ramachandran, 2006). 

Figures 3.2 and 3.3 show the structure of the forward and inverse WTs. 

 

Figure 3.2   Structure of the forward WT (lifting). 

 

Figure 3.3   Structure of the inverse WT (lifting). 

3.2.2 The Lifting Steps 

The construction of a typical WT via lifting involves three steps: split, predict and 

update. 
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3.2.2.1 Split 

This is the first step in lifting, by which the signal is split into two disjoint sets of 

samples such as the one containing even indexed samples     and the other containing 

odd indexed samples      . Obviously, the length of each set of samples will be half 

that of the original signal. The splitting into sets of even and odd samples is called the 

Lazy wavelet transform. The split operator is:  

(              )       (  )                                         (    ) 

3.2.2.2 Predict 

Being closely correlated sets of samples, if one of the sets (e.g., the odd) is known, 

the other (i.e., even) can be predicted by using a predictor operator, say P. In the 

simple LS (i.e., Haar case), the odd samples are predicted from the difference (or 

detail) of the neighbouring even samples as shown below. 

                                                                        (    ) 

In general, 

             (       )                                   (    ) 

3.2.2.3 Update 

The running average of the even j-1 samples (i,e., coarser signal)  will be different 

from that of the original samples. The update step preserves the same average value 

for both coarser and original signals by replacing the even j-1 samples with smoothed 

sj-1 values with the help of an update operator, U such that, 

              (    )                                        (    ) 

In the case of Haar , U = 1/2  and therefore        

                                                                      (    ) 

3.2.3 Inverse Lifting Transform 

Reversing the order of the operations and flipping the signs give the inverse 

transform, as below. 
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Inverse Update: 

              (    )                                              (    ) 

 In the case of Haar,     

                                                                     (    ) 

Inverse Predict: 

             (       )                                       (    ) 

 In the case of Haar,       

                                                                            (    )

  

Merge: 

        (              )                                        (    ) 

Figure 3.4 shows the forward and inverse transform using LS. 

 

Figure 3.4  (a) Forward, and (b) inverse transform using LS. The outputs        is the coarse 

and      , the  detail signal. 

3.3 Optimization 

Optimization is the process used for finding better solution to a problem. It adjusts the 

inputs of a problem or a process to get the maximum or minimum output as per the 

requirement. 

 In Merriam-Webster dictionary, a subsidiary of Encyclopaedia Britannica 

Inc., optimization is defined as “an act, process, or methodology of making 

something (as a design, system, or decision) as fully perfect, functional, or effective 

as possible; specifically :  the mathematical procedures (as finding the maximum of a 

(a)  (b)  

http://en.wikipedia.org/wiki/Encyclop%C3%A6dia_Britannica,_Inc.
http://en.wikipedia.org/wiki/Encyclop%C3%A6dia_Britannica,_Inc.
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function) involved in this”. Usually, the mathematical procedures involved can be 

either finding the maximum or minimum of the process or function. 

 Optimization tries to vary initial inputs to a process to gain improvement in 

the result. The inputs are represented by variables and the function or process is 

termed as the fitness function. In optimization terminology the fitness function is also 

known as objective function or cost function. The output of the process is called the 

fitness or cost. For a problem having only one input variable, the optimization is one-

dimensional. Multidimensional optimization involves two or more variables. 

Optimization becomes more complex when the number of variables or dimensions is 

increased. The main operation in a minimum-seeking optimization algorithm is 

searching the cost surface for the minimum cost, where the cost surface is formed by 

all possible values of the function. In general, a cost surface is characterized by 

several peaks and valleys. The deepest valley corresponds to the minimum cost or the 

global minimum and the other valleys represent local minima. Similarly, the highest 

peak corresponds to the maximum cost or the global maximum and the other peaks 

represent local maxima.  

 Optimization involves certain kind of searching for the best solution from 

among the set of all feasible solutions. Various non-classical algorithms can be used 

in optimization problems that could not be solved by the classical procedures. These 

non-classical algorithms are broadly classified into deterministic and stochastic 

searches. Deterministic search algorithms use techniques like steepest gradient 

methods.  Stochastic search algorithms employ random variables. Both these 

algorithms employ a transition rule to have better reliability or possibility to get near 

optimum results.  The different kinds of transition rules result in different 

optimization algorithms (Rajasekaran & Vijayalakshmi, 2012). 

3.3.1 Natural Optimization Algorithms (NOA) 

The conventional optimization algorithms like Gradient-Based Local Optimization 

Method, Stochastic Hill Climbing etc. show the possibility to get stuck in certain 

local optimum points in the space of all feasible solutions. Therefore, these 



63 

 

algorithms cannot guarantee „best‟ or „near best‟ solution. There are many 

optimization algorithms that models natural processes. The popular algorithms that 

come under this category are (Randy & Sue, 2004) Ant Colony Optimization (ACO), 

Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic 

Programming (GP), Evolutionary Strategies (ES), Genetic Algorithm (GA), etc. 

Ant Colony Optimization (Dorigo & Gambardella, 1997) provides an optimal 

solution for the search tasks using the social behavior of real ant colonies. Real ants 

can find shortest path between a source of food and their colony even in the absence 

of any visual indications. If any obstruction is found in the current path they can find 

a new shortest path, which means that they can adjust with the variations in the 

surrounding situations. ACO mimics this behavior where a number of software agents 

called artificial ants construct solutions to the optimization problem (Sivanandan & 

Deepa, 2008). 

Simulated Annealing (Kirkpatrick, Gelatt & Vecchi, 1983) mimics the physical 

cooling phenomenon which results in the formation of crystals in solids. In the 

process of annealing, when a substance is heated beyond its melting point and slowly 

cooled thereafter produce the crystalline structure. This exemplifies the natural 

process of finding an optimal structure or solution.  

Particle Swarm Optimization (Eberhart & Kennedy, 1995) is a stochastic 

optimization technique. The idea behind the algorithm was taken from the social 

behaviour of animals like bird flocking, fish schooling or swarm of insects. For 

example, the swarm of insects can rapidly follow the insect which finds a suitable 

way to proceed for food, shelter etc. In PSO, each particle in the swarm possesses 

some ability to perform independent exploration of the search space. 

Genetic Programming (Koza, 1992; Willis, Hiden, Marenbach, McKay & Montague, 

1997) is a technique used for the automatic creation of computer programs. The GP 

technique can be used to build computers which perform what one needs, without 

telling them how to perform the same. It is similar to GA, but the input variables are 

formed by the programming constructs and the output is a measure of the 

performance of the program in attaining its objectives.   
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Evolutionary Strategies (Rechenberg, 1973)  are well-known techniques in the field 

of evolutionary computation, employing the theory of natural genetics and natural 

selection  as in GA and GP. The (μ + λ) evolution strategy and (μ,λ) evolution 

strategy make a few examples of ES. 

Genetic Algorithm (Holland, 1975)  is the most popular evolutionary computation 

technique.  GA is a general search algorithm based on natural genetics and natural 

selection rules. In this thesis work, GA is employed as the searching algorithm for 

optimizing wavelet coefficients and seed values in neural network for image 

processing applications such as image compression and gender classification.  

 The following section introduces the concept of GA and various terms 

associated with GA in detail.  

3.3.2 Genetic Algorithm (GA) 

Since early 1960s, the researchers got interested in imitating the natural evolution 

process in species to solve difficult optimization problems. An EA is an iterative and 

stochastic method that simulates the natural evolutionary process of human being. EA 

can do better than the conventional optimization techniques while dealing with 

complex real-world optimization problems (Back,1996). EA works on a population of 

individuals. GA (Coley, 1999; Goldberg, 2004; Randy & Sue, 2004; Sivanandan & 

Deepa, 2008; Rajasekharan & Vijayalakshmi, 2012) is perhaps the most popular 

method that belongs to the EAs.  

 According to Goldberg (2004), “Genetic Algorithms are rich-rich in 

applications across a large and growing number of disciplines”. The popular 

applications of GA include sequence scheduling, signal processing, vehicle routing 

and scheduling, evolving computer programs, engineering design, machine learning, 

robotic route planning and many others.  Prof. John Holland of   Michigan University 

brought the idea of GA in 1960‟s. The concept of GA was later developed by him and 

published in his book written in 1975 (Holland, 1975).   

 According to Rajasekharan and Vijayalakshmi (2012), “Genetic Algorithms 

are good at taking larger, potentially huge, search spaces and navigating them looking 

http://www.worldcat.org/search?q=au%3AHolland%2C+John+H.&qt=hot_author
http://www.worldcat.org/search?q=au%3AHolland%2C+John+H.&qt=hot_author


65 

 

for optimal combinations of things and solutions which we might not find in a life 

time”. Conventional optimization techniques have a single point approach, whereas 

GA uses a multi-point approach with a population of solutions at a time. Thus, in GA 

simultaneous searching in a wide search space is possible and the possibility to get 

stuck in local minima (or false valley) is reduced. There are several other important 

things that make GA different from the conventional algorithms. GA uses a coding of 

the parameter set and not the parameters themselves. They use objective function 

rather than any auxiliary information. They employ probabilistic transition rules in 

contrast to deterministic rules. 

3.3.2.1 Biological Background of GA 

The theory of GA is directly related to natural evolution. This section discusses the 

relation between the GA operations and the terms in natural evolution (Goldberg, 

2004; Rajasekharan & Vijayalakshmi, 2012). 

Chromosomes 

Every living organism consists of cells. Each cell contains a set of chromosomes. All 

the genetic information is stored in the chromosomes. Chromosomes are strings of 

Deoxyribonucleic Acid (DNA) that behaves as a model representation for the 

complete organism. The chromosomes are composed of genes, which code the 

individual‟s characteristics. There is one gene for one characteristic; for example, 

colour of the eyes. The various possibilities of the genes for a particular characteristic 

are termed as allele. The possible alleles in this particular example of eyes colour can 

be black, brown, blue, etc.  Thus, one gene can have different alleles. Each gene holds 

its specific location in the chromosome called locus. The arrangements of one or 

more chromosomes shape the overall genetic information needed for the creation and 

functioning of some organism. The complete genetic package for an individual is 

called the genotype. The interaction of the genotype with environment results in the 

formation of the organism called the phenotype. Figure 3.5 summarizes the 

correspondence between biological and GA terminology. 
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Biological term Genetic algorithm term 

Chromosomes Strings (often binary) 

Genes Features 

Alleles Feature values 

Locus A particular (bit) position on string 

Genotype Encoded string ( or structure) 

Phenotype Parameter set (or decoded structure) 

Figure 3.5   Correspondence between biological and GA terminology 

Search Space 

For a particular problem, the set of all feasible solutions is called its search space. 

Each point in the search space corresponds to one possible solution and each possible 

solution is characterized by its fitness value, depending upon the problem under 

consideration. GA searches the search space for the best solution represented by a 

point in that space. The best solution means either minimum or maximum depending 

upon the definition of that particular problem. At the starting point of the search one 

knows only a few points in the search space. In the ongoing process of seeking the 

best solution, GA generates other points which represent other possible solutions.  

Population 

In GA terminology, a group of individuals or chromosomes being evaluated for 

fitness value is called a population. The size of the population is dependent on the 

complexity of the problem at hand. Usually the population is initialized randomly.  

For binary GA having binary coded chromosomes it is common to set the initial bits 

to a random zero or one. Initialization of population with chromosomes 

corresponding to good solutions that are already known is also common. 

Gene Encoding  

In GA, individual genes are represented as codes. Gene encoding can be done using 

bits, numbers, trees, arrays, lists or any other objects, depending on the problem.  The 

most popular approach of encoding uses binary string.  Holland (1975) mainly used 

binary strings in his works. Figure 3.6 shows an example of binary coded 

chromosomes in a population of four individuals (chromosomes) where a binary 
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string of 8 bits represents each chromosome. Each bit (gene) in the string 

(chromosome) typifies some characteristics of the solution. Obviously, depending 

upon the problem, one may use other options like vector of integers or real numbers 

for encoding.  Here, each number represents a single parameter of the function. 

Population 

Chromosome 1    1  0  1  1  0  0  1  0 

Chromosome 2    1  1  0  1  0  1  0  1 

Chromosome 3    0  0  1  1  0  1  1  0 

Chromosome 4    1  0  0  1  1  0  1  0 

Figure 3.6   Example of binary coded chromosomes in a population. 

3.3.2.2 Operators of GA 

In contrast to the conventional optimization methods, the GA begins by creating an 

initial set of random individuals or random solutions called initial population. An 

individual representing a solution to the particular problem is called a chromosome. A 

chromosome is formed by a string of symbols called genes. The consecutive 

iterations of the GA are called generations. In each generation, the fitness of each 

individual is evaluated to find the best individual.  The subsequent generations are 

formed by creating new individuals called offspring.  

 The three main operators used in simple GA are reproduction, crossover and 

mutation. They are also called inheritance operators. 

Reproduction 

Reproduction is an operation by which individual strings are created based on their 

objective function or fitness values. According to the Darwin‟s theory of evolution 

and survival of the fittest, the strings in the current generation with higher fitness 

values have higher probability to offer better individuals in the subsequent 

generation. So, such strings are copied to form one or more offspring in the mating 

pool to form the subsequent generation.  Reproduction operator is sometimes called 

the selection operator.  
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Selection 

Selection is the process of picking two or more parent chromosomes from the 

population according to their evaluation function for mating (reproduction) in 

creating the next generation. The selection process aims at reproducing more copies 

of individuals with higher fitness values to create new offspring for the next 

generation. Generally, selection shrinks the search region within the population by 

removing poor solutions. Roulette wheel, tournament, Boltzmann etc. are a few 

examples of methods for selecting chromosome from parents.  

Roulette Wheel Selection: Roulette wheel selection is one among the common GA 

selection methods. In this approach, the probability of selection from the mating pool 

is proportional to the fitness of individuals. That is, an individual parent with higher 

fitness holds higher probability to be selected.  

 Proportional selection is called roulette wheel selection as its mechanism is 

reminiscent of the working of a roulette wheel (Andina & Pham, 2007). In this 

analogy, the entire population corresponds to a roulette wheel and the size of an 

individual‟s slot in the wheel is proportional to its fitness. In the selection operation, 

the roulette wheel is spun randomly to choose an individual for the subsequent 

generation.  Then, the individuals with higher fitness values have larger slots in the 

wheel to possess higher chances to be selected.  A typical roulette wheel selection for 

reproduction is shown in Figure 3.7. In this example, chromosome 1 has 10% of the 

total fitness while chromosome 2 has 25% of the total fitness. Obviously, 

chromosome 2 has greater probability of selection compared to chromosome 1. 

 

 

10% 
25% 

35% 

30% Chromosome 1

Chromosome 2

Chromosome 3

Chromosome 4

Figure 3.7   Roulette wheel selection for a population of four individuals. 
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Roulette wheel selection method is implemented as follows: 

1.  Sum  the  fitness  of  all  individuals  in  the population.  Let  this  be TF (Total 

Fitness). 

2.   Select a random number r between 0 and TF. 

3.  Add the fitness of the individuals one by one till the sum becomes equal to or 

greater than r. The individual whose fitness value causes the sum above or equal 

to r is selected.  

4.  The above steps are repeated N times, N being the number of individuals in the 

population. 

Crossover (Recombination): Crossover is a recombination operator that permits 

individual solutions to exchange information by mimicking what is done by natural 

organism during sexual reproduction. It produces two fresh individuals (children or 

offspring) from two individuals (parents) chosen from the current population through 

selection (reproduction) process. Reproduction produces replicas of better individuals 

in the new population. It is not responsible for creating new individuals.  Better (new) 

individuals (offspring) are created by crossover operator from the existing individuals 

in the mating pool. 

 Single point crossover is the simplest crossover operation. It is the one 

usually used by the conventional GA. A crossover point is chosen randomly along the 

length of the mated parent individuals and they are cut one time at corresponding 

points. The sections formed in the two parents by the cutting operation are swapped 

to form two children (offspring). Better children can be created if proper crossover 

point is selected. An illustration of single point crossover is given in Figure 3.8, 

where the crossover point is denoted by the symbol „|‟. 

Before crossover 
Parent 1    1  0  1 | 1  0  0  1  0 

Parent 2    1  1  0 | 1  0  1  0  1 

After crossover 
Child 1    1  0  1 |  1  0  1  0  1 

Child 2   1  1  0 | 1  0  0  1  0 

Figure 3.8   Illustration of single point crossover.  
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Mutation: A mutation operator prevents irreversible loss of genetic diversity in the 

population by recovering the lost materials. It establishes new genetic structures in 

the population by altering some individual bits in the strings at random.  In mutation, 

bit values are reversed (flipped) within the individual strings according to a given 

rate. Mutation helps the GA to get out of the trap of local minima and thus prevent 

premature convergence of the algorithm. It forces the GA to explore new search 

areas. As already discussed, crossover utilizes the current population to create better 

strings, but mutation facilitates exploration of the complete search space.  

Elitism: Selection of strings based on their proportional fitness does not ensure the 

selection of even the fittest one. Thus the best fit individual obtained so far cannot be 

copied to the new population. It is quite natural to see that search speed can be 

significantly enhanced by keeping the best (elite) individual among generations. 

Guaranteeing the transmission of the elite individual from one generation to the next 

is termed as elitism. An additional requirement is that the elite member(s) copied 

should not become altered by crossover or mutation.  In elitist selection the best 

individual (or a few best individuals) is propagated to the new population, ensuring 

that the quality of the population is not degraded in the next generation. 

3.3.2.3 Parameters of GA 

There are certain control parameters that are carefully chosen for the effective 

working of GA. The choice of parameters can have considerable effect on the 

performance of the GA. The parameter values are dependent on the particular 

optimization problem at hand. The parameters of a simple GA include the                

(i) population size (ii) crossover rate (iii) mutation rate and (iv) convergence criteria. 

Population Size (Psize): As mentioned in the previous sections, Psize  represents the 

number of individuals in a population. Usually, Psize depends on the problem‟s 

complexity. The effectiveness of GA in finding global optimum greatly depends on 

the Psize. If the Psize  is small, only a small portion of search space is explored since the 

chance to carryout crossover is less. On the other side, a large population has higher 

computational cost and memory requirements and eventually the GA slows down. In 
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fact, it is undesirable to increase the population beyond certain limit determined by 

the particular problem because it will not provide a faster solution compared to 

populations with moderate sizes. Typical population size in the simple GA ranges 

from few tens to thousands. 

Crossover Rate (Pc): Pc determines the number of pairs of chromosomes to be 

crossed in each generation. It is computed as the ratio of the number of chromosome 

pairs to be crossed to the Psize . With a higher  Pc   a large area of the search space can 

be explored. However, it takes more computational time for the exploration of the 

parts of search space where the solutions are not so promising. On the other hand, a 

low  Pc   causes reduction in the speed of convergence of GA. Typical value of  Pc   in 

the simple GA for a  Psize  of 30 to 200  ranges from 0.5 to 1 (Rajasekharan & 

Vijayalakshmi, 2012). 

Mutation Rate (Pm): Pm is defined as the percentage of the total number of bits 

mutated in the population. Too high mutation rate may cause the children lose their 

similarity to the parents, thus it is unable to learn from the previous search 

information. If the rate is very low, many useful changes in bit states of strings will 

not be tried out. Typical range of values of Pm is from 0.001 to 0.5 (Rajasekharan & 

Vijayalakshmi, 2012).  

Convergence: There is no clear cut rule for the convergence criteria in GA. In one 

approach, it can be presumed that the GA met convergence when a particular 

percentage of individuals in the population turned out to become the same. According 

to another observation, the convergence can be attained when the average fitness of 

the population comes very near to the best individual‟s fitness. Then there will be 

little variation between the average and the best individual‟s fitness. The necessary 

condition for convergence in GA in terms of schemata is discussed in           

Goldberg‟s (2004)   book on GA.  

 A self-explanatory flowchart of simple GA (Randy & Sue, 2004) is shown in 

Figure 3.9. GA approach for optimization is helpful and efficient for search in large, 

less understood or complex search spaces. It is also suitable when mathematical 
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analysis of the problem is unavailable and also with problems having limited domain 

knowledge. 
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Figure 3.9    Flowchart of simple GA. 
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3.4 Feature Extraction 

In the proposed  work of gender classification, the popular tools such as WT, SVD 

and PCA are employed for feature extraction.  

3.4.1 Wavelet Transform 

Wavelets appear to be effective for feature extraction from signals. The DWT 

coefficients of the fingerprint images are used to reveal features related to the 

different gender classes. A detailed description on wavelets and WTs has been 

already given in section 3.1. 

3.4.2 Singular Value Decomposition (SVD) 

SVD (Strang, 1988; Ientilucci, 2003; Garcia, 2006; Fieguth, 2011; Baker, 2013) is a 

popular method that can be used to decompose (or factorize) a matrix into a number 

of component matrices.  By SVD method, correlated variables are transformed into a 

set of uncorrelated ones to give better idea about the correlations among the input 

data. It identifies and organizes the dimensions along which data points hold the most 

variation. Then, by using fewer dimensions a better approximation of the original 

data can be obtained. Thus, the SVD can reduce a high dimensional, highly variable 

data set to a lower dimensional space, revealing the substructure of the data more 

evidently and organizing it starting from most variation to the least. By ignoring the 

variation under a specific threshold, data reduction is achieved.  Hence, the SVD can 

be viewed as a data reduction technique. In the course of dimensionality reduction, 

SVD makes similar items to become more similar to each other and the dissimilar 

items more dissimilar. 

 SVD makes use of a theorem from linear algebra, according to which a 

matrix X of dimension     can be decomposed into the product of an     

orthogonal matrix U, an     diagonal matrix D, and the transpose of an     

orthogonal matrix V.  Mathematically this is expressed as: 

                                                                   (    ) 
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where      ,      . The eigenvectors of    and    are known as the “left" 

singular vectors (U) and the “right” singular vectors (V), respectively. The expression 

    is known as the SVD of X. It can be constructed by keeping the nonzero 

eigenvalues. 

 The square roots of eigenvalues from U or V arranged in descending order 

form the diagonal elements of D, i.e.,the diagonal elements    to    obey the relation: 

                                                      (    )  

The σ ‟s give the singular values of X, and hence the SVD. For any matrix X, the 

sequence of singular values are unique. If the singular values are all different, then the 

sequence of singular vectors is also unique. 

3.4.3 Principal Component Analysis (PCA) 

PCA (Jolliffe, 1986; Madsen, Hansen & Winther, 2004; Strang, 2009) is a standard 

mathematical tool which finds application in areas like image analysis, pattern 

recognition, feature extraction, data compression, etc. It is also known as Karhunen-

Loeve transform (Rao & Yip, 2001), a very useful tool for dimensionality reduction 

of multivariate data. PCA transforms a matrix of correlated variables to a new 

coordinate system that contains uncorrelated variables of lesser size with greater 

meaning and without loss of information. These uncorrelated variables are the 

principal components. They are orthogonal and are ordered in terms of the variability 

they have. The first principal component has the maximum amount of variability and 

each of the following orthogonal components comprises as much of the residual 

variability as possible. For a data set with already uncorrelated variables, PCA is of 

no significance (Semmlow, 2004). 

 Basically, the PCA transforms a set of data samples   *          + into 

another set   *          + with most of the information content stored in the first 

few dimensions, which enables the PCA to reduce the dimension of the data set 

without much loss in information. The PCA transformation relies on the assumption 

that high information corresponds to high variance. The  matrix  operation  represents 
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                                                                   (    ) 

a transformation, by which a set of input dimensions Y can be reduced to a single 

dimension Z.  The matrix A is chosen such that Z, known as the first principal 

component, bears the maximum variance possible for the given data set. Thus, the 

first principal component is an axis in the direction of the largest variance, which 

minimizes the sum of squares distance between the data points and their projections 

on the axis. Now, to find A it is required to calculate the sample covariance matrix C 

first. The covariance matrix is given by 

  
 

   
∑(    ̅) 
 

   

(    ̅)                                     (    ) 

where y is the sample mean vector.  Further, the eigenvalues of the covariance  matrix 

C for the input data set are computed and then the eigenvectors related to the m 

largest eigenvalues of C characterize m-dimensional space with uncorrelated features. 

The eigenvectors are ranked based on the quantity of variation in the input data that 

they correspond to. These eigenvectors act as the principal components. Generally, 

the first few principal components correspond to most of the variations in the data set 

so that there is a possibility of discarding the insignificant ones (Novakovic &  

Rankov, 2011). 

3.5 Classification 

In a classification problem the first and the most significant step is feature extraction. 

The next step is the actual classification, where the features extracted are assigned to 

the individual classes. In our problem of gender classification, the features extracted 

from the fingerprint images (i.e., the input data to be classified) are assigned to either 

male or female classes. Being a widely used practice, NN classifiers are used for 

gender classification work, proposed in this thesis. A theoretical understanding of 

NNs is provided in the following sections. 
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3.5.1 Neural Network (NN) 

NN (Michie, Spiegelhalter & Taylor, 1994; Bishop, 1995; Rojas, 1996) is a 

mechanism that is embedded in many disciplines like neurosciences, mathematics, 

physics, computer science, engineering, etc.  They can learn from input data with or 

without a teacher; the key property which makes them important in applications like 

classification, modeling, time series analysis, pattern recognition, signal processing, 

control, etc. (Haykin, 1999). Inspired from the functioning of human brains, they 

include new processing models that make use of features from the brain‟s physiology. 

NNs are more accurately known as Artificial Neural Networks (ANN) or Artificial 

Neural Systems (ANS). The power of ANN technique lies in its ability to find its own 

solution to particular problems provided only examples of the desired behaviour of 

the problem are known (Freeman & Skapura, 1991). 

 Human brain contains biological neurons (nerve cells) as basic units, who get 

nerve impulses from other neurons via a host of short branched tree like fine 

structures called dendrites, which act as input channels. The output channels are 

provided to the neurons by nerve fibers called axons that carry away information in 

the form of spikes of electrical activity to other neurons. The axon is connected with 

the dendritic associated to another neuron with specialized structure known as 

synapse or synaptic junction and it is assumed that synapse can impose excitation or 

inhibition on the connected neuron. The synapse is characterized by its own weight or 

strength. If the weight associated is positive then the synapse is excitatory and if it is 

negative the synapse is inhibitory. The neuron, on getting an adequately large 

excitatory input compared to its inhibitory input sends an impulse of electrical 

activity to its axon. The influence of one neuron on other changes as learning takes 

place due to change in the effectiveness of the synapses. 

 ANNs are based on the parallel structural design of the human brain and can 

imitate certain processing skills of the brain. It acquires knowledge through a learning 

process. Similar to the brain, the NNs are also composed of processing units (artificial 

neurons) or Processing Elements (PE) and connections linking them. The acquired 

knowledge is stored by the interneuron connection strengths called synaptic weights. 
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The values stored in these weights enable these networks to have the ability to learn, 

memorize, and create relationships between data. Since the NNs learn by examples, 

they can be trained using examples of a problem that are already known and the 

knowledge gained by such training can be efficiently employed for solving unknown 

instances of the problem. This attribute provides NNs very attractive in application 

areas where the knowledge about the problem to be solved is inadequate, but data for 

training the network are on hand.   

3.5.1.1 Fundamental Concepts of NN 

ANNs are parallel distributed models with a set of key distinguishing aspects: 

 a set of processing units; 

 an activation state for each unit, which is equivalent to its output; 

 connections between the units defined by a weight wij which resolves the 

effect that the signal of unit i  has on unit j; 

 the effective input of the unit from its external inputs is determined by a 

propagation rule; 

 an activation function decides the new activation level based on the effective 

input and the present activation; 

 an external input for each unit, which is also known as bias or offset; 

 a learning rule that provides a method for information gathering; 

 An operating environment for the system supplying input signals and, if 

needed, error signals. 

Example of a simple ANN is shown in Figure 3.10. 

3.5.1.2 Processing Unit 

The information processing unit is fundamental to the functioning of a NN. An ANN 

consists of a group of simple processing units that communicate signals to each  other  

through  a  large  number  of  weighted  connections.  ANN  is  able  to do parallel 

processing, as it can carry out computation cycles of many units concurrently.  The 

processing unit, also known as neuron or node processes  the  input received from the  
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neighbouring units or external sources to produce the output signal, which is 

transported to other units. Another job performed by the processing unit is the 

adjustment of the weights. Neural systems are composed of three types of units: 

 the Input Units to accept  signals from external sources of the network; 

 the Output Units that function as the ANN endpoints  to send data outside the 

net;  

 the Hidden Units where the input and output signals are internal to the 

network.  

A processing unit i can have inputs x1, x2, …, xn, and  one output zi. Input 

signal can be external or internally produced, i.e., the output of another unit or its own 

output. 

3.5.1.3 Summation Function 

For the input vector X and corresponding weights W with a set of n components 

represented as   *          + and   *          + respectively, the product 

of each input    and its corresponding weight   , j=1,..,n  are added up to produce the 

cumulative weighted combination    as, 

∑  

wi1 x1 

Inputs 
Synaptic 

weights 

Summing 

junction 

ai 

Threshold, θi 

Output 

zi 

wi2 x2 

wi3 x3 

win xn 

Figure 3.10   Example of a simple ANN. 
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Depending upon the chosen network architecture there can be more complex 

summation functions that combine the inputs and weights in many other ways.  

3.5.1.4 Activation Function 

The summed output ai is applied to an activation function or transfer function or 

squashing function, φ
 
to produce the output signal zi. It transforms the summed 

output to a value that is limited within a range.  Typical value ranges between 0 and 1 

or -1 and 1. The activated value of  zi  can function as input to neighbouring neurons 

or as output of the network. 

 The threshold value, θi for the neuron iis the magnitude offset which provides 

the baseline input to the neuron in the dearth of other inputs. In fact, neurons 

normally produce an output only when their total input goes beyond a threshold 

value.  Thus the total input to a neuron i is given by the weighted sum of the 

individual outputs from the connected units plus a threshold or bias, θi  as (Prasad and 

Prasanna, 2008) 

   ∑   

 

   

                                                        (    ) 

Some cases use more complex rules for combining inputs.  

 The Sigmoid functions (the plots of which are S-shaped) (Fausett, 1994) have 

particular advantage for use in backpropagation networks because of the easy 

relationship of the function with its derivative at a point, which reduces the 

computational load for training. It is given by,  

 ( )  
 

      
                                                       (    ) 

The parameter σ determines the steepness of the S-shaped curve. This function often 

finds application in neural networks whose desired output values range between         

0 and 1.  

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Laurene+V.+Fausett%22&source=gbs_metadata_r&cad=2
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3.5.2 NN Architectures 

There are many types of NNs, classified based on their learning mechanisms. 

Feedforward and Recurrent networks are two fundamental classes (Kröse & Smagt, 

1996; Rajasekaran & Vijayalakshmi, 2012). 

3.5.2.1 Single Layer Feedforward Network 

This class of network has only two layers: the input layer and the output layer. In a 

feedforward network there are no feedback connections from output units to input 

units and obviously the input to output data flow is feedforward. 

3.5.2.2 Multilayer Feedforward Network 

Besides the input and output layers this network has one or more intermediate layers 

known as hidden layers, which perform intermediary computations before passing the 

input to the output layer. The hidden layer has the computational units called hidden 

neurons or hidden units (yk). The weights on the connections between input layer to 

hidden layer is called input-hidden layer weights (vij), whereas that between the 

hidden layer to output layer is called hidden-output layer weights (wjk). A multilayer 

feedforward network with a configuration having m input units (xj), n1 and n2 units 

respectively in the first and second hidden layers and o output units (zkl) is 

represented as m - n1 - n2 - o. A multilayer feedforward network having a 

configuration m - n- o  is shown in Figure 3.11. 

 

 

 

 

 

 

vij x1 

xm 

x2 

z1 

z0 

z2 

yn 

y1 

wjk 

Hidden layer Input layer Output layer 

Figure 3.11   A multilayer feedforward network with single hidden layer. 
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3.5.2.3 Recurrent Network 

This network is similar to feedforward network with at least one feedback connection. 

There can be self-feedback connections with the output of a unit fed backs into it to 

become an input. 

3.5.3 Neural Network Learning Techniques 

Learning or training is a process in which the synapses weights are adjusted so that 

the network learns the relationship between the inputs and targets (i.e., the desired 

output values). Supervised and unsupervised methods are the most popular categories 

of learning techniques that are being used to find the optimum values for the weights.  

3.5.3.1 Supervised Learning 

The inputs and the expected outputs are given to the network for its training. In 

Supervised learning, it is assumed that the learning process is done under the 

supervision of a teacher. An error signal is derived from the difference between the 

actual output and the expected output, which helps in finding the optimum weights. 

Figure  3.12  shows a model of the supervised learning (Hajek, 2005).   
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Figure 3.12   Supervised learning model. 
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3.5.3.2 Unsupervised Learning (Self-Organized Learning) 

In this class of learning there is no feedback from the environment. There is no 

teacher  to  supervise  the  learning  process,  or  there  are  no  specific samples of the 

function to be trained by the network. By discovering and tuning with the structural 

features in the input patterns, the network does self-learning. 

3.5.4 Backpropagation Networks 

Backpropagation (BP) is the most common method used for training multilayer 

feedforward networks having differentiable activation functions. BP (more 

accurately, Error BP as it is based on error-correction learning rule) algorithm is 

powerful and efficient in solving difficult problems by training them in a supervised 

approach. This method was popularized by Rumelhart, Hinton & Williams (1986). 

Ever since its introduction it has been one of the most studied and utilized algorithms 

for NNs training and the network using this technique is called a BPNN. 

 The learning process in most networks is based on an appropriate error 

function, which is to be minimized with regard to the weights and offset values. For a 

network with differential activation functions, the derivative of the error with regard 

to the weights and offset values can easily be found out. By employing the gradient 

descent or other optimization methods and using these derivatives the weights that 

minimize the error can be determined. During the learning process the error function 

propagates in backward direction through the network and hence the name “error 

backpropagation”. 

3.6 Chapter Summary 

The main objective of this chapter is to introduce the fundamental theoretical 

concepts of the materials and tools involved in image compression and gender 

classification algorithms. The state-of-the-art WT that forms the core of fingerprint 

image compression and also feature extraction for gender classification were 

presented in this chapter. The concepts of MRA, subband coding, wavelet LS (which 

allows faster implementation of WT) were explained. 
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 GA, being the technique used for the optimization of wavelet coefficients and 

the initial seeds of the classifiers are well discussed. Apart from WT, the other 

methods such as SVD and PCA used for feature extraction are explored.  The chapter 

finally provides an insight into the well-known NNs as the classifier used for gender 

classification in this work. 
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Chapter 4 

 
 

4 Fingerprint Image Compression using GA 

Optimized Wavelet Lifting Coefficients under 

Quantization:  A Multi-Objective Approach 

 

 

This  chapter  presents  the  GA evolution  of  optimized  coefficients from the cdf 9/7  

wavelet  for  fingerprint image  compression and reconstruction in the context of 

quantization, exploiting the specific characteristics of fingerprint images. Instead of 

using cdf 9/7 classical wavelet, its equivalent lifting coefficients are evolved more 

rapidly using GA. The Fingerprint compression under quantization conditions is a 

dual-objective problem. It requires the maximization of PSNR  and minimization of 

file size (or maximization of CR) simultaneously. Image IE gives a precise calculation 

of the compressed file size. Since the computation of IE is very fast when compared to 

file size calculation, instead of minimizing the file size, the IE is minimized in this 

work. Thus the computational complexity of fitness evaluation during GA evolution is 

reduced to a greater extent. 

 The first few sections of this chapter explain the concepts of cdf 9/7 wavelet 

LS, its implementation,  general idea of optimization of wavelet coefficients,  basic 

concepts of IE, Multi-Objective Optimization (MOO), etc.  The succeeding section 

provides a detailed discussion on optimizing wavelet under quantization for single- 

level and three-level DWT. 
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4.1  Introduction 

In fingerprints, the ridges appear smoothly organized in a parallel form except in 

some regions having different shapes distinguished by curvature, ridge terminations, 

etc.  These regions are known as singularities or singular regions, which are generally 

classified into categories such as loop, delta, and whorl. Based on singularity, almost 

all fingerprints occupy one of the categories with (i) arch having no singularity       

(ii) tented arch and loop having one core and one delta and (iii) whorl and double 

loop having  two cores and two deltas (Wei, 2008). The orientation fields (i.e., the 

ridge flow) of fingerprints have specific characteristics that can distinguish them from 

other kinds of images (Yoon& Jain,2013). Orientation field for arch, tented arch, left 

loop, right loop, whorl and double loop type fingerprints are shown Figure 4.1. Figure 

4.2 shows the plot when the same program is run on other types of images  like 

natural and  texture images. From this, it is confirmed that the fingerprints form a 

specific class of images having distinct characteristics.  

 

 

Figure 4.1   Orientation field for (a) arch, (b) tented arch, (c) left loop, (d) right  loop,           

(e) whorl and (f) double loop type fingerprints. 

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.2   Orientation field for (a) natural images (b) texture images. 

 For easy archiving of fingerprint images and to overcome the long delay 

involved in transmitting them over band limited communication channels, the FBI 

fingerprint identification division has adopted WSQ as standard for Fingerprint Image 

Compression (FIC) (Maltoni et al., 2009). Wavelet based image compression 

(Daubechies, 1992; Lewis & Knowles, 1992; Suresh, Sudha & Sukanesh, 2009) is 

very promising, since it examines the image signal at different resolutions. DWT 

(Daubechies, 1992) decomposes the original image to horizontal, vertical and 

diagonal components. Biorthogonal wavelet (Taubman & Marcellin, 2002) has both 

symmetry and compact support. Many wavelets and techniques have been reported in 

literature till date (Mallat, 1989a; Daubechies, 1992; Shapiro, 1993; Sweldens, 1996; 

Said & Pearlman, 1996; Mallat, 1999). The hand-designed classical cdf 9/7 

biorthogonal wavelet introduced in 1992 by Cohen, Daubechies, and Feauveau (cdf) 

(Cohen, Daubechies & Feauveau, 1992) is used by the FBI fingerprint compression 

(a) 

(b) 
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standard (Bradley et al.,1993; Babb, 2007). The classical cdf 9/7 (or Bior 4.4) wavelet 

is represented by four sets of coefficients as shown below.  

Lo_D = [0.03783, -0.02385, -0.11062, 0.37740, 0.85270, 0.37740, -0.11062, 

       -0.02385, 0.03783]  

Hi_D = [0.06454, -0.04069, -0.41809, 0.78849, -0.41809, -0.04069, 0.06454]  

Lo_R = [-0.06454, -0.04069, 0.41809, 0.78849, 0.41809, -0.04069, -0.06454]  

Hi_R =  [0.03783, 0.02385, -0.11062, -0.37740, 0.85270,-0.37740, -0.11062,         

0.02385, 0.03783] 

 Here, Lo_D is the low pass decomposition (analysis) filter coefficients, 

Hi_D, the high pass decomposition (analysis) filter coefficients, Lo_R, the low pass 

reconstruction (synthesis) filter coefficients and Hi_R is the high  pass  reconstruction 

(synthesis) filter coefficients. In fact, the cdf 9/7 classical wavelet is represented by 

16 coefficients of Lo_D and Hi_D filter sets.  The other filter coefficients sets,  Lo_R 

and Hi_R can be derived from these filter coefficients. 

 PSNR, RMSE and CR (Annadurai & Shanmughalakshmi, 2007) are the 

measures of image compression performance used in this work. 

4.2  Cdf 9/7 Wavelet LS  

The classical Wavelet or Subband transform employed for image compression makes 

use of two decomposition (analysis) filters: a low pass filter ( h
~

) and a  high pass 

filter ( g~ ). These filters decompose the image into low and high frequency data 

respectively, and subsampling by two is performed subsequently to get the final 

transformed data.  In the reconstruction phase, the transformed data is first upsampled 

by two, followed by filtering using two reconstruction (synthesis) filters: a low pass   

(h) and a  high pass (g)  filter. The upsampling and filtering operations finally provide 

the reconstructed image.  
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Figure 4.3   DWT (or subband transform): (a) the forward (decomposition) transform, (b) the 

inverse (reconstruction) transform. 

 Figure 4.3 shows the decomposition and reconstruction structures of the 

DWT. Here       is the original image data, whereas     and     are the low pass 

filtered (approximation) coefficients and high pass filtered (detail) coefficients 

respectively.  

 

 

 

 

 

 In the case of classical  cdf 9/7,  the low-pass forward and inverse transform  

filters are: 
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 As mentioned earlier, to produce every pair of subband samples using 

classical cdf 9/7 wavelet,  16 multiplications are needed. This may be cut down to 9 

multiplications if the symmetry property of the filter coefficients is taken into 

consideration. But, the computational complexity in implementing classical cdf 9/7 

WT is still high (Taubman & Marcellin, 2002). 

4.2.1 Implementation of  Cdf 9/7 Wavelet LS 

LS (Sweldens, 1996; Daubechies & Sweldens, 1998) is an efficient way to represent 

hand-designed classical wavelets with fewer coefficients. This was done by 
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factorizing the polyphase matrix of the wavelet into elementary matrices. LS has 

particular significance in image compression applications. Many factorizations of cdf 

9/7 wavelet do exist.  The symmetric LS is used in this work. In symmetric LS, the 

cdf 9/7 wavelet is represented by just four coefficients.  Using LS and lesser number 

of lifting filter coefficients, the speed with which the image decomposition or 

reconstruction is performed increases considerably.  The four lifting coefficients that 

represent the cdf 9/7 wavelet are as given below: 

α =  − 1.586134342060 

β =  − 0.052980118573 

 γ =    0.882911075531 

              δ =     0.443506852044               (4.3) 

with scale factors       and      
 ⁄  where    = 1.149 604398860. The filters for 

cdf 9/7 wavelet LS  implementation are: 

 

 

      (4.4) 

 The symmetric factorization of cdf 9/7 wavelet leads to the forward 

(decomposition) implementation as shown in Figure 4.4. The inverse (reconstruction)  
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      Figure 4.4   Implementation of Cdf 9/7 LS forward transform. 
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implementation is shown in Figure 4.5 (Barua, Kotteri, Bell & Carletta, 2004; 

Taubman & Marcellin, 2002; Daubechies & Sweldens, 1998).  

 

The lifting steps of cdf 9/7 (with symmetric factorization) with the input data „x‟ are: 
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 Now, it can be seen that, to produce every pair of subband samples using     

cdf 9/7 wavelet symmetric LS only 4 multiplications are enough. Thus, the 

computational complexity is reduced to a great extent, which in turn increases the 

speed of the image decomposition and reconstruction.  
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   Figure 4.5   Implementation of Cdf 9/7 LS inverse transform. 
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4.3  Optimization of   Wavelet   Coefficients   under      

 Quantization 

Works done by a number of researchers to evolve wavelet coefficients for image 

compression under conditions subject to quantization have been reported over the 

past few years. In almost all these works, wavelet coefficients similar to classical 

wavelets, were evolved using GA. They evolved classical wavelet coefficients for 

image compression using single photographic and satellite images for training.  SQ 

with step sizes, q = 64 and 32 were used in their works. Improvements in PSNR were 

reported for single-level transform and three-level transform with single set of 

coefficients and different sets of coefficients for each level.  One of the major issues 

with these works is the computational complexity as the classical wavelets are 

comprised of large number of coefficients.  As the number of coefficients to be 

optimized becomes more, the time taken for the evolution of the coefficients becomes 

larger.  Due to the computational complexity, the researchers used computers with 

higher specifications supporting high speed operations in their works. For example, 

Babb et al. (2007) executed their algorithm on ARSC platforms for evolving wavelet 

coefficients for image compression.   

4.3.1 Optimization of Wavelet Coefficients 

Quantization is the procedure where each of the sampled values of signals is mapped 

against a lesser range of possible values. By quantization the entire data range is 

divided into equal intervals of length q, known as quantization interval or 

quantization step size. For example, a quantization step of 16:1 maps an 8-bit signal 

to a 4-bit binary value. Quantization trims down the precision of each sampled value, 

but allows more compression on the signal. It causes distortion in images 

reconstructed by wavelets. This distortion increases in proportion to increase in 

quantization step size.  

 Under quantization, quality of the reconstructed image is maintained 

precisely to a large extent by causing less compression. That is, for higher quality of 

the reconstructed image, the file size may be higher. This issue is addressed by 
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incorporating file size into the fitness function for GA evolution. So, image 

compression and reconstruction under quantization requires the minimization of MSE 

(or maximization of PSNR) and file size simultaneously. But, the file size calculation 

is time-consuming. As the population size increases the GA evolution of wavelet 

coefficients takes more time due the calculation of file size corresponding to each 

candidate wavelet in the population.  

 The CR depends on the information content of the image. The 

compressibility of image and its information content are inversely proportional to 

each other (Fidler, Skaleric & Likar, 2006). Image IE is a good estimate of the 

amount of information content available in the image (Khalid, 2006). So, IE gives a 

precise calculation of the size of the compressed file. Larger compressed files have 

higher values of IE. Computation of IE is very fast compared to file size calculation. 

Thus the computational complexity of fitness evaluation during GA evolution could 

be reduced to a greater extent. This idea has been successfully utilized by Babb et al. 

(2007) in their work evolving transforms for image compression and reconstruction 

under quantization using classical cdf 9/7 wavelet. 

4.3.2 Information and Entropy 

Entropy of the data is the average information content per symbol of the source 

(Acharya & Tsai, 2005). The concept of entropy was formalized in the original work 

of Shannon (1948). The entropy is a measure of the average number of bits needed to 

represent the source output.  It also puts a lower bound on the average number of bits 

needed to code the output. The entropy H(Y) of a discrete random variable Y having k 

values with probabilities     is defined as 

 ( )   ∑  

 

   

                                                      (   ) 

 For a gray scale image, Pj  contains its histogram counts. For maximum 

entropy, the image data has maximum information content and hence further 

compression is not possible without loss of information. Thus, as the entropy reaches 

its maximum, the image data redundancy approaches to zero.  
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4.3.3 Multi-Objective Optimization (MOO) 

The present work aims at the optimization of cdf 9/7 wavelet coefficients for 

maximum PSNR value and minimum file size. As discussed in section 4.3.1, in order 

to minimize the time taken for file size calculation, IE value is computed. So, PSNR 

and IE qualify as the cost functions for GA evolution of wavelet coefficients. It is 

obvious that the multi-objectives, PSNR and IE are conflicting. It is not possible to 

improve PSNR objective, without making the IE objective worse or vice versa. In 

MOO there are a number of optimal solutions with respect to all solutions. Each 

solution is not a single point in the fitness landscape, but with a one dimensional 

vector for each objective (Coley, 1999). 

4.3.4 Pareto Optimal Solutions 

The set of optimal solutions in a MOO is known as Pareto optimal solutions or non-

dominated solutions. Pareto optimal front or Pareto Front (PF) is the set of points that 

bounds the bottom area of feasible of solutions. PF depicts the tradeoff among PSNR 

(or MSE) and IE and hence the file size in the solution space of evolved transform 

coefficients. 

 GA is an effective tool for solving problems involving MOO. With the use of 

GA the optimization is known as evolutionary MOO or genetic MOO (Sivanandan & 

Deepa, 2008). GA works on a whole population of solutions rather than a single 

solution. It performs multi-directional global searches for solutions. From one 

generation to the next generation, it retains a population of prospective solutions. 

Populations with finer sets of potential solutions would be maintained in subsequent 

generations, which help in the formation of Pareto optimal solutions.  Thus, it is 

straightforward to explore the Pareto optimal set of solutions using GA. A solution is 

Pareto optimal when it is dominated by no other solutions.  

4.3.5 Pareto Optimal Front or Pareto Front (PF) 

An MOO problem has a set of solutions. The idea of Pareto optimality states that the 

solutions corresponding to the multiple objective functions cannot be improved all at 
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the same time. In MOOs the components of the vector produced by evaluating the set 

of solutions make compromise in objective space.  

 Pareto concepts and associated terms are explained by Fonseca and Fleming 

(1995)  and Coello, Lamont and  Veldhuizen (2007) as follows: 

 An MOO solution minimizes the components              of a vector 

function  ( ) where x is an m-dimensional decision vector variable from a universe  

S. Here,   

 ( )  (  ( )      ( ))                                          (   ) 

 Now, a solution    is said to be Pareto-optimal if and only if                 

there is no      for which    (  )  (  ( 
 )      (  )) dominates                                

   ( )  (  ( )      ( ))  (represented as     ). 

 The family of all Pareto-optimal decision vectors is known as Pareto-    

optimal (P), admissible, or efficient set of the MOO. Collection of the related set of 

objective vectors forms the non-dominated set, which is known as PF. From the PF a 

single compromise solution is chosen according to certain preference criteria. In an 

MOO problem dealing with minimizing functions, the minima will lie in the 

boundary of the design area.   

4.4  Methodology 

4.4.1 Structure of the GA for Optimizing Wavelet under Quantization 

The algorithm for MOO of wavelet under quantization for fingerprint image 

compression is given below. 

Algorithm: 

Step 1:   Initialize value of maximum generation, Gmax. 

Step 2:   Set the current generation as G1=1. 

Step 3:   Initialize population of [α, β, γ, δ], the lifting coefficients as             

Step 4:   Obtain the standard training images             
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Step 5: Do wavelet decomposition of           with           to get wavelet       

transforms,            

Step 6: Do 64:1 quantization on           to get quantized transforms,  

           

Step7: Do 64:1 de-quantization on            to get quantized transforms, 

  
    

      
   

Step 8: Using            do wavelet reconstruction of the images from 

  
    

      
   to get    

    
      

     

Step 9:   Compare             with   
    

      
  to get fitness values (PSNR & IE) as 

           and              

Step 10:  Check for the condition, current generation > Gmax. 

Step 11: If no, obtain a new population of lifting coefficients from the fitness values   

using GA and repeat Steps 5 to 10. 

Step 12:  Else, optimum coefficients = best set of coefficients in the population. 

Step 13:  Stop. 

 Figure 4.6  shows the structure of the GA for optimizing wavelet lifting 

coefficients under conditions subject to quantization. Step size, q for quantization  as  

well  as de-quantization is  selected  as  64.  The  symmetric  lifting scheme of cdf 9/7 

wavelet requires the optimization of only four coefficients and hence it ensures faster 

evolution of the coefficients. 

 The wavelet decomposition block transforms the training images into the 

wavelet domain using the initial population of chromosomes comprised of randomly 

mutated copies of lifting coefficient sets. The transformed coefficients of the training 

images are subjected to uniform SQ to achieve compression. The wavelet  

coefficients  used  for  decomposition  are utilized for reconstruction as well. The 

quantization is undone using scalar de-quantization operation. Quality of the 

reconstructed image/s is measured in terms of PSNR and IE. Both the PSNR and IE 

provide the fitness functions of the multi-objective GA optimization. The associated 

chromosomes are ranked according to their fitness. Then, only the best are selected to 

continue for  reproduction.  Crossover  and  mutation operations are performed on the 
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selected chromosomes to produce new set of chromosomes. The above operations are 

repeated for several generations with the new populations to obtain a Pareto optimal 

set of solutions to the optimization problem. The wavelet optimization is performed 

for single-level and three-level wavelet decompositions.  

4.4.1.1 GA Parameters 

Each set of 4 lifting coefficients is represented by a 68 bit binary chromosome. Each 

coefficient has a length of 17 bits, out of which the first bit represents sign and the 

other 16 bits represent the coefficient value. The Psize  for GA evolution is fixed as 

250 and the number of generations is 1000. The algorithm uses single point 

crossover. Crossover rate, Pc = 0.7 and mutation rate, Pm = 0.0075. The other 

parameters are kept as the default values.  

4.4.1.2 Image Database for Training and Testing 

Fingerprint images from the image set B of the DB1 database in Fingerprint 

Verification Competition (FVC) 2000 database (Fingerprint Verification 

Competition, 2000) is used for training and testing in this work.  The image set B 

contains 80 fingerprint images. Each image has a size 300 x 300 pixels and a 

Figure 4.6   Structure of the GA for optimizing wavelet lifting coefficients under quantization. 
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resolution of 500 dpi. Images from NIST fingerprint database having 605 x 589 pixels 

size are also used for testing. Typical fingerprint images from these image sets are 

shown in Figure 4.7. 

      

Figure 4.7   Typical fingerprint images (a) DB1_B of FVC2000 (300 x 300 pixels), (b) NIST 

(605 x 589 pixels). 

 

4.5  Results and Discussion 

4.5.1 Wavelet Optimization for Single-Level MRA with Single Training 

Image 

With a single training image 101_1.tif of database DB1_B of FVC 2000 and choosing 

quantization step size, q = 64, the optimized coefficients evolved for single-level 

MRA offered improvements in PSNR and percentage IE compared to classical cdf 

9/7 wavelet. The optimized coefficients evolved are given below in Table 4.1.  

 Figure 4.8 shows the 101_1.tif image reconstructed  using the classical as 

well  as  the optimized wavelets. The improvements in average PSNR over 80 

fingerprint images of DB1_B database using the same optimized coefficients for 

various quantization levels  are  shown  in   Table  4.2.   For   q = 128   and   64   the  

average  PSNR   using optimized wavelet is far better than that obtained with 

classical wavelet. For     q = 32, increase in percentage IE is too large (i.e., 1.3672%). 

Hence the value of PSNR  (i.e., 0.852 dB) improvement is  not  realistic.  It  has  been  

(a) (b) 
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observed  that this is due to the use of a single representative image for training and 

more realistic results can be obtained using multiple training images. 

Table 4.1  Optimized coefficients evolved for the multi-objective problem (with q = 64,    

single-level decomposition, single training image). 

Optimized lifting coefficients 

Notation Value 

α - 0.055197483503182 

β    0.578897678639738 

γ - 0.219117379643640 

δ    0.209552907878616 

 

     

Figure 4.8  101_1.tif image reconstructed (with single-level, single training image, q = 64)   

using (a) classical (PSNR = 28.7516 dB, IE = 0.8114) , and (b) optimized                 

(PSNR = 31.9427 dB, IE = 0.8117) wavelets. 

Table 4.2  Improvement in average PSNR and % IE (with q = 64, single-level decomposition, 

single training image). 

Test 

Image 
q Level 

Classical Optimized % Incr- 

ease in 

IE  

PSNR 

Impro-

vement PSNR IE PSNR IE 

DB1_B 

(80 

Images) 

128 1 22.1387 0.8113 27.6912 0.8113 0 5.5525 

64 1 28.7063 0.8113 32.0038 0.8116 0.0370 3.2975 

32 1 33.9074 0.8119 34.7598 0.8230 1.3672 0.8524 

(a) (b) 
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4.5.2 Wavelet Optimization for Single-Level MRA with Four Training 

Images 

The optimized coefficients evolved for single-level DWT with q = 64 and four 

training images  (i.e., 101_1.tif,  102_1.tif,  103_1.tif  and  104_1.tif)  are  listed  in  

Table 4.3. 

Table 4.3  Optimized coefficients evolved for the multi-objective problem (with q = 64,      

single-level MRA, four training images). 

 

 

Average improvements in PSNR using optimized coefficients for single-level MRA 

with four training images and q = 64 are shown in Table 4.4. With four images in the 

training set, the algorithm provided better results. The 101_1.tif image reconstructed 

using the classical and the optimized wavelets are shown in Figure 4.9.  

 It can be observed from Table 4.4 that for  q = 128  and  64  the average 

PSNR using  optimized  WTs  the  classical  wavelet  and  the result is better when 

compared to the single training image case. As in the previous case when q = 32, 

there is little improvement in PSNR. Babb et al. (2009a) reported that at 64:1 

quantization, the evolved transform reduced the average PSNR in reconstructed 

fingerprints by 3.00 dB in comparison to cdf 9/7, allowing 4.36% increase in the 

average   IE  of  compressed  images.  In  this  work,  the  evolved  transform  reduced  

the average PSNR by 3.4058 dB in comparison to the classical cdf 9/7 wavelet, while 

the percentage increase in the average IE of compressed images is only 0.0315%, 

which is close to zero. This result is much better than the previous results. The 

evolved coefficients tender improvements in PSNR for quantization levels 128 and 32 

too. The PSNRs offered by coefficients evolved at q = 64 are poor at quantization 

levels below 32. 

Optimized lifting coefficients 

Notation Value 

α - 0.094490422 

β    0.668710181 

γ - 0.194919819 

δ - 0.327635548 
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Figure 4.9  101_1.tif image reconstructed (with single-level, four training   images, q = 64) 

using (a) classical (PSNR = 28.7516 dB, IE = 0.8114) , and (b) optimized                  

(PSNR = 32.0488 dB,    IE = 0.8116) wavelets. 

Table 4.4  Improvement in average PSNR and % IE  (with q = 64, single-level decomposition, 

four training images). 

Test 

Image 
q Level 

Classical Optimized % Incr-

ease in 

IE 

PSNR 

Impro-

vement 
PSNR IE PSNR IE 

DB1_B  

(80 

Images) 

128 1 22.1387 0.8113 27.9735 0.8113 0 5.8348 

64 1 28.7063 0.8113 32.1121 0.8116 0.0315 3.4058 

32 1 33.9074 0.8119 34.8361 0.8214 1.1701 0.9287 

 

 Figure 4.10 shows the error images obtained by taking the difference between 

the original fingerprint and the resultant image, after compression and reconstruction 

by the classical 9/7 wavelet and the optimized coefficients for single-level under        

q = 64. It compares and discloses the extent to which the evolved transform surpasses 

the classical wavelet. The error images were built from the absolute value of the 

difference among the grey-scale intensity value of each pixel from the original and 

the reconstructed images, making all values less than 10 to zero to have an easier 

view of the differences. The evolved coefficients are unacceptable as they provide 

unsatisfactory results for higher-level MRAs, for example, PSNR and IE obtained for  

three-level MRA are 30.94 dB and 0.3582 respectively. So, in the subsequent work, it 

has been attempted to optimize wavelets for three-level MRA. 

(a) (b) 
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Figure 4.10  Error images showing the difference between the original fingerprint and the 

resultant image after compression and reconstruction for single-level,  q = 64 by              

(a) classical 9/7 wavelet  and (b) optimized  coefficients. 

4.5.3 Wavelet Optimization for Three-Level MRA 

In this work, lifting coefficients of cdf 9/7 wavelet was optimized for three-level  

MRA using multiple numbers of training images. The GA evolved coefficients are 

shown in Table 4.5. The average PSNR improvement for fingerprints for three-level  

transform, reported in the previous work (Babb et al., 2009b), is less than 0.54 dB.   

In the proposed work with three training images, an average PSNR improvement of    

2.0810 dB was obtained along with 23.6152% increment in IE compared to the 

classical wavelet.  This  large  value  of  IE  means  that  the  images  compressed  by  

Table 4.5  Optimized coefficients evolved for the multi-objective problem  (with q = 64,   

three-level MRA, three training images). 

Optimized lifting coefficients 

Notation Value 

α - 0.792932335 

β - 0.635398005 

γ   0.167903023 

δ   1.479168923 

optimized wavelet are of larger size and hence the CR provided by the optimized 

wavelet is poorer when compared to the classical wavelet. This makes the comparison 

between the optimized and classical wavelets difficult. In order to have a fair 

(a) (b) 
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comparison a Pareto optimal front was constructed from PSNR and percentage IE 

values. 

 Figure 4.11 shows the PF obtained for three-level MRA with three fingerprint 

images subject to quantization step size, q = 64. Table 4.6 shows the results 

corresponding to two best solutions (points) in the Pareto front. The first solution 

corresponds to 0.81 dB improvement in PSNR at the expense of a small increment of 

0.1% in IE (i.e., by compromising CR).  The second solution corresponds to decrease 

  

 

 

 

 

 

 

 

Table 4.6   Improvement in average PSNR over 80 fingerprint images. 

Image set q Level 

PSNR (dB) % 

increase 

in IE 

PSNR (dB) 

Impro-

vement 
Classical Evolved 

DB1_B 

(80 

Images) 

64 3 
31.48 32.29  0.1 0.81 

31.48 32.25 - 0.19 0.77 

 

in IE by 0.19%, giving better CR and improvement of 0.77 dB in PSNR. This 

confirms that the oiptimized coefficients perform better than the classical wavelet. 

 Table 4.7 shows the coefficients evolved corresponding to 0.77 dB PSNR 

improvement that has been mentioned in Table 4.6.  Figure 4.12 shows the fingerprint 

Figure 4.11   Pareto optimal front for average PSNR for three-level transform subject to q = 64. 
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image 101_1.tif after three-level transform, quantized with a quantization step size,          

q = 64, de-quantized, and reconstructed by classical cdf 9/7 wavelet and evolved 

coefficients.   

Table 4.7  Optimized coefficients evolved for the multi-objective problem (with q = 64,    

three-level MRA, three training images) corresponding to the results in Table 4.6. 

Optimized lifting coefficients 

Notation Value 

α - 0.649805356 

β - 0.633952891 

γ   0.106524991 

δ   1.261697919 

 

 

 

 

 

 

 Table 4.8  shows  the  improvement  in  average  PSNR  using the optimized 

coefficients for various quantization levels. Even with reduced percentage IE and 

hence reduced file size, the evolved coefficients outperformed the classical wavelet 

for various quantization levels. No improvement in PSNR was seen below 

quantization level 32. 

 Figure 4.13 shows the difference between the original fingerprint and the 

corresponding image after compression and reconstruction by the classical 9/7 

wavelet and the evolved coefficients for three-level transform under q = 64.  

(a) (b) 

Figure 4.12  101_1.tif image reconstructed (with three-level MRA, three training   images,     

q = 64) using (a) classical (PSNR = 31.6369 dB, IE = 0.2082) , and (b) optimized            

(PSNR = 32.1426 dB, IE = 0.2150) coefficients. 
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Table 4.8  Improvement in average PSNR over 80 fingerprint images using coefficients 

evolved  for three-level transform with three fingerprint images subject to quantization       

size = 64. 

Test 

Image 
q Level 

Classical Optimized % Incr- 

ease in      

IE  

PSNR 

Impro-

vement 
PSNR IE PSNR IE 

DB1_B  

(80 

Images) 

128 3 27.8499 0.1659 29.0125 0.1555 - 6.2688 1.1626 

64 3 31.4812 0.2058 32.2530 0.2054 - 0.1944 0.7718 

32 3 35.1451 0.2753 35.2948 0.2709 - 1.5983 0.1497 

 

 

 

 

  

 

 

 Emmanuel et al. (2014) explained techniques that used a fingerprint test suit 

of 30 images from NIST database, giving an average PSNR of 27.36 dB, whereas the 

optimized wavelets in the present work offered a better average PSNR of 27.4 dB. 

Table 4.9 shows the comparison of PSNRs at CR = 20:1 for NIST database. 

Comparison of the results with the previous works is shown in Table 4.10. 

4.6  Chapter Summary 

The orientation field of fingerprints has specific characteristics that differentiate       

the fingerprint images from other kinds of images such as  natural,  texture,  

photographic and other types of images. So, the fingerprint images can be treated as a 

specific  class of images having distinct characteristics. This chapter dealt             

with a GA based  evolution  method  developed  for  optimizing  the  cdf 9/7  wavelet 

Figure 4.13  Difference between the original fingerprint and the resultant image after 

compression and reconstruction for three-level transform under q = 64 by                       

(a) classical 9/7 wavelet, and (b) evolved coefficients. 

     
(a) (b) 
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Table 4.9   PSNR values obtained for CR = 20:1. 

Source Images 

Size of 

original 

image 

Size of 

quantized 

image 

PSNR (dB) 

Emmanuel et al. 

(2014) 

Proposed 

method 

Cmp00001.pgm 356360 17818 22.9 22.96 

Cmp00002.pgm 638991 31949 29.1 28.53 

Cmp00003.pgm 638991 31949 32.9 34.33 

Cmp00004.pgm 612895 30645 33.3 33.47 

Cmp00005.pgm 638991 31949 35.5 34.03 

Cmp00006.pgm 638991 31949 28 27.45 

Cmp00007.pgm 347725 17386 25.6 25.17 

Cmp00008.pgm 600015 30001 28.8 29.58 

Cmp00009.pgm 347151 17358 25.1 25.99 

Cmp00010.pgm 197265 9863 25.4 26.33 

Cmp00011.pgm 440253 22012 25.4 25.41 

Cmp00012.pgm 369471 18473 24.9 25.03 

Cmp00013.pgm 350904 17545 24.9 26.58 

Cmp00014.pgm 269363 13468 25.7 27.75 

Cmp00015.pgm 292135 14606 30.4 32.53 

Cmp00016.pgm 504843 25242 31.7 31.83 

Cmp00017.pgm 347001 17350 26 26.55 

a001.pgm 1520081 76004 27.1 26.62 

a002.pgm 1460729 73036 25.5 24.95 

a018.pgm 1534580 76729 30.1 29.44 

a039.pgm 458175 22908 24.9 24.37 

a070.pgm 1605297 80264 26.5 26.03 

a076.pgm 612848 30642 27.6 27.1 

a089.pgm 1574914 78745 24.1 23.38 

a107.pgm 1862081 93104 27.1 26.73 

a129.pgm 365777 18288 27.1 26.61 

a165.pgm 387047 19352 26.3 25.92 

b124.pgm 1510456 75522 25.5 25.06 

b157.pgm 1572731 78636 26.3 25.68 

b186.pgm 371349 18567 27.1 26.57 

Average  PSNR 27.36 27.40 

 

coefficients for fingerprint compression and reconstruction in the context of 

quantization. The GA based technique utilizes the specific characteristics of 

fingerprint images that make them belong to a particular class. The techniques used in 
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Table 4.10   Comparison of the results with the previous works (test image: fingerprints). 

Reference 
Evolutionary 

Algorithm 
Conditions 

Training 

Image 

MSE 

reduction % 

PSNR 

improve-

ment (dB) 

Aldridge, 

et. al 

(2010) 

GA 

Single-level 

MRA 64:1 

Quantizn. 

Fingerprint 

images 
12.36 - 

Proposed 

work  
GA  

Single-level 

MRA 64:1 

Quantizn. 

Fingerprint 

images 
21.12 1.02 

Babb, et. 

al (2009b) 
CMA-ES 

Three-level 

MRA 64:1 

Quantizn. 

Satellite 

images 
- 0.54 

Proposed 

work 
GA 

Three-level 

MRA 64:1 

Quantizn. 

Fingerprint 

images 
- 0.77 

 

the previous works in literature for optimizing wavelet coefficients for image 

compression in the context of quantization were computationally complex and hence 

slow. The amount of time consumption in evolving coefficients, similar to symmetric 

lifting coefficients of cdf 9/7 wavelet, was reduced and the optimum values of 

coefficients were obtained. 

 Image compression and reconstruction under quantization necessitates the 

simultaneous minimization of MSE (or maximization of PSNR) and file size. It has 

been established that the image IE provides a precise calculation of the size of the 

compressed file. Since the computation of IE is very fast when compared to file size 

calculation, the MOO algorithm employs two conflicting objectives, PSNR and IE. 

The optimization demands high PSNR with low IE value for the compressed image. 

 In the work proposed in this chapter, initially the process of wavelet 

optimization was done for a single-level DWT with a single training image and a 

quantization step size, q = 64. An average PSNR improvement of 3.2975 dB (with 

only 0.0370% increment in IE) over the 80 fingerprint images in the DB1_B of FVC 

2000 database was obtained, which is better than that offered by the previous work. 

Secondly, four training images were used with single-level transform and q = 64. The 

results (3.4058 dB PSNR and 0.0315% IE increments) are much promising as the 
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optimized coefficients gave better performance than the one using single training 

image. Finally, optimization was done for three-level MRA that outperformed the 

previous work, offering 0.7718 dB PSNR increment with 0.1944% decrease in IE. 

These optimized wavelets offered a better average PSNR over Coiflet wavelet based 

compression, employing NIST fingerprint database. 
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Chapter 5 

 
 

5 Optimization of Wavelet Filter Coefficients 

for Fingerprint Image Compression using 

GA: A Single-Objective Approach 

 

 

In the dual-objective problem discussed in the previous chapter the PSNR and the IE 

were conflicting, i.e., when the PSNR was improved, the IE also increased.  An exact 

measure of the improvement in the PSNR could be obtained only if the IE can be kept 

unchanged.  So, the proposed work in this chapter concentrates on evolving 

optimized coefficients from the lifting coefficients of cdf 9/7 wavelet at CR = 16:1 

using PSNR as the single-objective of GA. Optimized coefficients are evolved for 

various levels of MRA using single and multiple training images.  In addition, 

techniques have been presented for the optimization of wavelet lifting coefficients for 

faster and better fingerprint image compression. Generally, full-size images are 

being used for evolving wavelet coefficients, which is time consuming. To overcome 

this, in this work, wavelets are optimized with resized, cropped, resized-average and 

cropped-average images to give better PSNR at various CRs.  It is shown that there is 

improvement in PSNR even in the case of degraded as well as noisy fingerprint 

images. The technique also gives better PSNR for various bit rates with SPIHT coder. 

The coefficients optimized with single-objective approach give better average PSNR 

and IE even under quantization conditions as discussed in the previous chapter. 

These coefficients perform well with other fingerprint databases as well.   
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5.1  Introduction 

The dual-objective approach to optimize wavelet coefficients for fingerprint image 

compression under quantization provided a set of solutions. The task intended was to 

improve the PSNR of the compressed image along with reduction in IE or at least 

keeping a constant IE to maintain a constant CR. PSNR and IE are two conflicting 

objectives, i.e., when the PSNR was improved the IE (a measure of file size) was also 

increased. In this MOO problem, keeping IE constant was a difficult task. So, due to 

the conflicting nature of the two measures a compromise between them should be 

agreed upon. An exact measure of the improvement in PSNR could be possible only 

if the file size and hence IE is kept unchanged or the CR is maintained to a constant 

value. As a result, the exact evaluation and understanding on the change in the image 

quality after compression is difficult in the dual-objective approach described in the 

previous chapter. 

 The CR of the compressed image can be held constant (i.e., k:1) by 

employing a common technique in wavelet based image processing by retaining the 

largest 1/k transformed image coefficients and making the remaining values zero. 

This technique has been used by a few researchers in their related works (Grasemann 

& Mikkulainen, 2005; Babb, 2007). Another advantage of employing this technique 

is that by retaining only a small fraction of transformed coefficients, the 

computational complexity in evolving optimized wavelet coefficients could be 

reduced considerably. 

 For general compression purposes, the coefficients optimized for single-level 

through four-level MRAs using single training images are not suitable. This problem 

can be tackled by using multiple training images in GA evolution. The complexity of 

the EA is another issue of great concern. Due to the huge amount of computational 

complexity involved, Babb (2007) used even supercomputers for evolving optimized 

coefficients for fingerprint image compression. The size of the training images can do 

something in this context. Generally, full-size multiple images are being used for 

evolving wavelet coefficients, which is time consuming. To overcome this, in this 
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work, wavelet coefficient optimization has been tried with resized, cropped, resized-

average and cropped-average images and compared. 

5.2  Methodology 

In this work the largest 6.25% (i.e., 1/k
th
, where k = 16) of the transformed image 

coefficients are retained and the remaining values are set to zero to have a CR = 16:1. 

This provides the possibility for maximum comparability of the test results with the 

results of other published works where 16:1 ratio has been used. The structure of the 

GA for optimizing wavelet by this technique is similar to the structure presented in 

chapter 4 with a few modifications. 

5.2.1 The Single-Objective GA Structure for Optimizing Wavelet 

The algorithm for single-objective optimization of wavelet coefficients for fingerprint 

image compression is given below. 

Algorithm: 

Step 1: Initialize value of maximum generation, Gmax. 

Step 2: Set the current generation as G1=1. 

Step 3: Initialize population of [α, β, γ, δ], the lifting coefficients as             

Step 4: Obtain the standard training images             

Step 5: Do wavelet decomposition of           with           to get wavelet 

transforms,            

Step 6: Discard smallest 93.75% of          coefficients to get thresholded 

transforms,            

Step 7: Using            do wavelet reconstruction of the images from   

         to get    
    

      
     

Step 8: Compare             with   
    

      
  to get fitness values (PSNR) as 

          . 

Step 9:   Check for the condition, current generation > Gmax. 

Step 10: If no, obtain a new population of lifting coefficients from the fitness values      

              using GA and repeat Steps 5 to 9. 
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Step 11: Else, optimum coefficients = best set of coefficients in the population. 

Step 12: Stop 

 The block diagram of a single-objective GA structure that uses only the 

largest 6.25% of the image transform samples for optimizing cdf 9/7 wavelet 

coefficients for fingerprint image compression is shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

  

 As in the case of dual-objective optimization problem discussed in the earlier 

chapter, the wavelet decomposition block decomposes the training images into 

transform coefficients using the initial population of chromosomes generated by 

randomly mutating the copies of cdf 9/7 lifting coefficients. Generating initial 

population in this way enables the GA to search around the solution space containing 

the original lifting coefficients so that early convergence of the search process is 

possible. In the first generation of GA, the input image is decomposed using each 

coefficient in the initial population, giving same number of transform coefficients as 

Optimum 

coeffs. 

Wavelet 

Decom-

postion 

Initial 

Population of 

wavelet 

coefficients 

(binary) 

Largest 

6.25% of 

Transform 

Coeffs. 

Wavelet 

Reconst-

ruction 

 

Fitness 

evaluat-

ion 

Current 

gen > max 

gen? 

Selection 

(RWS) 

Cross over 

(single 

point) 

Mut- 

ation 

New 

popu-

lation 

Yes 

No 

  Training 

images 

Figure 5.1  Block diagram of the single-objective GA for optimizing cdf9/7 lifting 

coefficients for fingerprint image compression. 
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that of the original image. In the next stage, 6.25% of the most significant transform 

coefficients are retained and the remaining coefficients are set to zero.  For this, 

firstly, the transform coefficients are ordered according to their significance (i.e., 

magnitude) in descending fashion. Then the first 6.25% of the ordered transform 

coefficients are kept as such and the rest are discarded. Finally, the retained transform 

coefficients are placed in their original positions. Then,  in  the  resultant  transformed 

image the retained significant transform coefficients occupy their original place with 

zero valued coefficients elsewhere. This operation is known as “thresholding” in the 

literature (Aldridge, Babb, Moore  & Peterson,  2010). 

 In the next stage, the transformed image after thresholding, is subjected to 

wavelet reconstruction, using the same lifting coefficients that were used for the 

decomposition. The PSNR, being the performance measure of compression, is 

evaluated next and this forms the fitness function for GA evolution. The GA 

operators, such as selection, crossover, mutation and elitism are applied on the initial 

population of the chromosomes that represent the lifting coefficients and based on the 

fitness function a new and better population of chromosomes is created. This new 

population of chromosomes is used in the next generation of GA. The whole process 

is repeated till the current generation becomes equal to the maximum generation, 

whose value is set to a particular value depending upon the specific optimization 

problem at hand.  

 In the single-objective optimization problem described here, both single and 

multilevel WTs with single and multiple training images using the optimized lifting 

coefficients in each case are carried out and their performance is compared with that 

of the corresponding classical wavelets. The algorithm is run several times to get the 

best results in each case. 

5.2.1.1 GA Parameters 

As in the case of the dual-objective optimization, the algorithm proposed in this 

chapter also uses binary GA, parameters such as Pc = 0.7, Pm = 0.0075, roulette wheel 

selection, single-point crossover and the same chromosome structure already 
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discussed in chapter 4. Psize and number of generations vary for different works 

described in the coming sections. 

5.2.1.2 Fingerprint Database 

For training purpose, fingerprint images from the database DB1_B of FVC 2000 are 

used. There are 80 images each having a size of 300 x 300 pixels. The images from 

this database are used for testing too. Fingerprint images from databases DB2_B (80 

images of size: 364 x 256 pixels), DB3_B (80 images of size: 478 x 448  pixels), 

DB4_B (80 images of size: 320 x 240 pixels) and  images collected using NITGEN 

USB Fingkey Hamster (HFDU 01) fingerprint scanner (200 images of size: 292 x 248 

pixels) also are used for testing purpose. 

5.3  Results and Discussion 

5.3.1 Optimization for Single-Level MRA using Single Training Image 

Optimized wavelet coefficients from cdf 9/7 lifting filter coefficients for single-level 

MRA and a single training image for fingerprint image compression are evolved 

using GA. As mentioned earlier, the CR is fixed at 16:1, which means out of 90000 

transform coefficients 84375 coefficients of less significance are discarded and the 

remaining 5625 transform coefficients retained. The image 101_1.tif  (300 x 300 

pixels) of DB1_B database is used for evolving the coefficients. Psize and number of 

generations are chosen as 50 and 200 respectively. Table 5.1 shows the optimized 

values of the coefficients obtained after many runs of the algorithm.  

Table 5.1  Optimized coefficients evolved using a single training image  for single-level 

transform. 

Optimized lifting coefficients 

Notation Value 

α - 0.3436 

β - 1.9621 

γ   0.4935 

δ - 1.1299 
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 The average PSNR improvements over 80 images of DB1_B database for 

different levels of MRA at CR = 16:1 are given in Table 5.2, which show that the 

optimized coefficients, evolved using single-level transform, degrade PSNRs when 

used for higher level transforms. Therefore, these optimized coefficients cannot be 

used in general. Moreover, the PSNR with classical wavelet coefficients for five 

levels is less than or equal to that for four levels. So, transformation up to four levels 

is sufficient. 

Table 5.2  The average PSNR over 80 images of DB1_B database for different levels of 

transform at CR = 16:1 (using coefficients evolved by single-level transform). 

Test image Level 
PSNR (dB) PSNR 

improvement 

(dB) Classical Evolved 

DB1_B (80 

images of 

size: 300 x 
300 pixels)  

1   3.8266    6.7749 2.9483 

4 35.9119 - 30.6301 Nil 

5 35.8677 - 37.9602 Nil 

 

 Figure 5.2  provides a visual comparison of  the  difference between the 

original fingerprint and the resultant image after compression and reconstruction for 

single-level with CR = 6:1 using  classical 9/7 wavelet and optimized coefficients . It 

shows that the error in the reconstructed image is less with optimized coefficients. 

 

 

 

 

 

 

 

 

Figure 5.2  Difference between the original fingerprint and the resultant image after 

compression and reconstruction for single-level (with CR = 6:1)                                                                      

(a) classical  9/7  wavelet, and (b) optimized coefficients. 

(a) (b) 
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5.3.2 Optimization for Two-Level MRA using Single Training Image 

It has been noted that for proper convergence of the algorithm at higher MRA levels, 

the Psize and the number of generations should be increased. Psize and number of 

generations are taken as 100 and 500 respectively. The values of the optimized 

coefficients obtained after many runs of the algorithm are shown in Table 5.3. 

Table 5.3  Optimized coefficients evolved using a single training image for two-level MRA. 

Optimized lifting coefficients 

Notation Value 

α - 1.724539933 

β - 0.113406781 

γ    0.787377544 

δ    0.705374310 

The average PSNR over 80 images of DB1_B database for different levels of 

transform depicted in Table 5.4  reveals that the optimized coefficients, evolved using 

two-level transform, provide improved PSNRs, compared to single-level coefficients 

when used for higher level transforms. However, as there is no improvement for 

single-level, the coefficients are generally not acceptable. 

Table 5.4  The average PSNR over 80 images of DB1_B database for different levels of 

transform at CR = 16:1 (using coefficients evolved by two-level transform). 

Image database level 
PSNR (dB) 

 
Classical Evolved Improvement 

DB1_B (80 

images of size: 

300 x 300 pixels) 

1  3.8266  3.6499 Nil 

4 35.9119 36.4414 0.5295 

The reconstructed images after two-level transform are shown in Figure 5.3. 

The error images, showing the difference between the original fingerprint and the 

resultant image after compression and reconstruction for two-level using classical 

wavelet and optimized coefficients, vide Figure 5.4, prove that the optimized 

coefficients reconstruct the image with less error than the classical wavelet. 
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5.3.3 Optimization for Three-Level MRA using Single Training Image 

Since three-level transform is used in this experiment, it requires a large population 

size and generations to ensure proper convergence of the algorithm. Psize and number 

of generations are chosen as 150 and 800 respectively. After several runs of the 

algorithm, the values of the optimized coefficients obtained are shown in Table 5.5. 

Table 5.6 depicts the average PSNR over 80 images of DB1_B database for other 

levels of transforms. It tells that the optimized coefficients evolved using three-level 

transforms provide better PSNRs compared to two-level coefficients when used for 

higher level transforms. But, the PSNR obtained with optimized coefficients for   

single-level MRA is still below that obtained with classical wavelet. So, the 

optimized coefficients are generally not acceptable. 

Figure 5.3  Reconstructed images after two-level transforms using (a) classical PSNR                  

= 16.9083 dB) (b) optimized coefficients (PSNR = 33.7334 dB), at CR = 16:1. 

Figure 5.4   Error image  for two-level transform (with CR = 6:1)  using  (a) classical 9/7 

wavelet, and (b) optimized coefficients. 
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Table 5.5  Optimized coefficients evolved using a single training image for three-level      

transform. 

Optimized lifting coefficients 

Notation Value 

α    - 1.561326944792020 

β  - 0.101870784630879 

γ    0.741142002624592 

δ    0.641163365581225 

 

Table 5.6  The average PSNR over 80 images of DB1_B database for different levels of 

transform at CR = 16:1 (using coefficients evolved by three-level transform). 

Test Image level 
PSNR (dB) 

 
Classical Evolved Improvement 

DB1_B (80 images 

of size: 300 x 300 

pixels) 

1 3.8266 3.7968 Nil 

4 35.9119 36.7001 0.7882 

Figure 5.5 shows the reconstructed images after three-level transform. The 

error images for compression with three-level transform  using classical wavelet and 

optimized coefficients shown in Figure 5.6 verify that the optimized coefficients 

reconstruct the image with better PSNR than the classical wavelet. 

 

 

 

 

 

 

 

         
(a) Classical, 

CR=16:1, PSNR=35.6781 dB 

(b)   Evolved, 

CR=16:1, PSNR=36.7027 dB 

Figure 5.5   Reconstructed images after three-level transforms using (a) classical                      

(b) optimized coefficients, at CR = 16:1. 



122 

 

                     
(a) 

 

 

 

 

 

 

5.3.4 Optimization for Four-Level MRA using Single Training Image 

Psize and number of generations used in the optimization for four-level MRA are 150 

and 1000 respectively. Table 5.7 depicts the values of the optimized coefficients 

obtained. The average PSNR over 80 images of DB1_B database for other levels of 

transforms are depicted in Table 5.8.  It says that the optimized coefficients, evolved 

for four-level MRA, offer better PSNRs compared to four-level coefficients. 

However, still it exhibit degradation in PSNR for single-level. Figure 5.7 shows the 

compressed images reconstructed after four-level transform. Figure 5.8 displays the 

corresponding error images using classical wavelet and optimized coefficients. 

Table 5.7  Optimized coefficients evolved using a single training image for four-level MRA. 

Optimized lifting coefficients 

Notation Value 

α - 1.69194616534928 

β - 0.08127079073458 

γ     0.859309671315653 

δ     0.593218787194433 

 All the experiments previously discussed in this chapter use single image for 

training the GA. The coefficients evolved for four-level transform provide the best 

average  PSNR  for  the  reconstructed  images  in  the  database.  The  same   evolved  

Figure 5.6   Error image  for three-level transform (with CR = 6:1)  using  (a) classical 9/7 

wavelet, and (b) optimized coefficients. 

(b) 
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(a) Classical, 

CR = 16:1, PSNR = 35.9082 dB 

(b) Evolved,                                 

CR = 16:1, PSNR = 36.9561 dB 

  

(a) (b) 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

coefficients exhibit degradation in PSNR for single-level. This means that the above 

optimized coefficients are poorer than classical wavelets, at least for single-level 

transform. So, they cannot have a general acceptance in compressing fingerprint 

images.  

5.4  Optimization for Four-Level MRA using Multiple 

 Training Images 

5.4.1 Parameters 

In order to have a fair comparison, the parameters used in the previous works are 

used in this work too. The group of 4 lifting coefficients is represented by a 68 bit 

Figure 5.7   Reconstructed images after four-level transforms using (a) classical                                  

(b) optimized coefficients, at CR = 16:1 

Figure 5.8    Error image for four-level transform (with CR = 6:1)  using  (a) classical 9/7 

wavelet, and (b) optimized coefficients. 
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binary chromosome with each coefficient having a length of 17 bits, out of which the 

first bit represents sign and the other 16 bits for the coefficient value. The initial GA 

population is created by randomly mutated copies of the symmetrical lifting 

coefficients of cdf 9/7 wavelet.  The Psize for GA evolution is fixed as 250 and the 

number of generations is 1000. Roulette wheel selection, single point crossover with 

crossover rate Pc = 0.7, mutation rate Pm = 0.0075 and elitism = 1 are used in the 

algorithm.  

5.4.2 Development of an Optimum Training Image Set 

The training image data set is derived from the image set B of the DB1 dataset in 

FVC2000 gray scale fingerprint database.  Each image has a size 300 x 300 pixels and 

a resolution of 500 dpi. A typical fingerprint image was shown in Figure 4.7(a) of 

chapter 4.  In the earlier work (Grasemann & Mikkulainen,2005; Babb, 2007) training 

image set was comprised of four numbers of full size (300 x 300 pixels) 

representative fingerprint images. In the proposed work, to start with, a Training 

Image Set (TIS) with only one image of full size (300 x 300 pixels) was used for GA 

evolution. Images were added in the image data set one by one up to 10. Average 

improvement in PSNR (dB) over hand-designed classical wavelet (Villasenor, Belzer 

& Lia,1995; Davis & Nosratinia,1999) for various numbers of training images were 

observed and plotted in Figure 5.9. A maximum improvement of 1.012 dB in average 

PSNR  above  the  hand-designed  classical  cdf 9/7  wavelet over  the  80  fingerprint  

 

 

 

 

 

 Figure 5.9  Improvement in PSNR (dB) over classical wavelet for                                       

various nos. of training images. 
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images in the database was obtained. The training set was comprised of 5 full size 

fingerprint images (TIS_300).  The algorithm was able to evolve the coefficients in 

11.29 hours on an Intel Xeon 3.00 GHz Processor with 6 GB memory. With one 

image in the training set, it took 2.26 hours for evolution.  With  10 images,  the  time 

taken was 23.03 hrs.  For 2 to 4 and 6 to 8 numbers of training images, improvement 

in average PSNR was slightly less. For 1, 9 and 10 numbers of training images, 

improvement in average PSNR was even less. The optimized coefficients for 

TIS_300 are shown in Table 5.8. Plot of   PSNR for classical wavelet and coefficients 

evolved from the training set TIS_300 for CR = 16:1 is shown in Figure 5.10. For all 

the  80 images  in  the  database,  the  performance  of  the evolved wavelet was much  

Table 5.8  Optimized coefficients evolved for TIS_300. 

Optimized lifting coefficients 

Notation Value 

α - 1.99801629688406 

β - 0.04632709738456 

γ   1.17267372661519 

δ     0.488906521805475 

 

. 

 

 

 

 

 

 
Figure 5.10   PSNR for hand-designed wavelet and wavelet coeffs. evolved from five full size 

(300 x 300 pixels) fingerprint images for CR = 16:1. 
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better than that of the hand-designed classical wavelet. It shows a maximum PSNR 

improvement of 1.599 dB  for the image 101_7.tif  and minimum of 0.681 dB for the 

image 106_5.tif. Table 5.9 shows the average PSNR over 80 images of DB1_B 

database for different levels of transform at CR = 16:1 (using coefficients evolved for 

TS_300, four-level MRA). The PSNR for single-level has become better than that 

obtained using classical wavelet.  

Table 5.9  The average PSNR over 80 images of DB1_B database for different levels of 

transform at CR = 16:1 (using coefficients evolved  for TS_300, four-level MRA). 

Test Image level 
PSNR (dB) 

 
Classical Evolved Improvement 

DB1_B (80 images 

of size: 300 x 300 

pixels) 

1  3.8266  3.8974  0.0708  

4 35.9119 36.9239  1.0120  

 

 To further study the effects of the training image sets on the speed and quality 

of coefficients, the fingerprint images were modified to build different training image 

sets. Coefficients were evolved using each set and the corresponding PSNR and 

computational speed were observed. In this work, four training image sets comprising 

of various numbers of fingerprint images with different sizes, resolution etc. were 

derived as described below. 

 Figure 5.11   shows the convergence plot of a typical GA evolution of lifting 

coefficients. As shown, by generation around 700 the algorithm converges to the 

maximum value of the fitness function (i.e., PSNR). So, the optimum lifting 

coefficients can be obtained within a lesser number of generations than we used. 

5.4.3 Training Image Set 1 (TIS1) 

As mentioned earlier, maximum average PSNR was obtained with the training set 

comprising of 5 full size fingerprint images (TIS_300). So, this image data set 

consists of five images with their size reduced by cropping at the centre.  The cropped 
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training image sets TIS1_256, TIS1_128, TIS1_64, TIS1_32 of sizes 256 x 256,      

128 x 128, 64 x 64, 32 x 32 pixels respectiveley were used for evolution. Figure 5.12 

represents a cropped image of size 128 x 128 pixels (TIS1_128). 

 

 

5.4.4 Training Image Set 2 (TIS2) 

Similar to TIS1, five images are present in this image set as well. Here, the image 

data sets TIS2_256, TIS2_128, TIS2_64, and TIS2_32 were derived by resizing the 

five individual images to 256 x 256, 128 x 128, 64 x 64, 32 x 32 pixels sizes 

respectively. Figure 5.13 depicts a resized image of size 128 x 128 pixels                    

(TIS2_128). In this way the whole fingerprint image is considered. 

 

 

 

Figure 5.11   Convergence plot of a typical GA evolution of lifting coefficients. 

Figure 5.12   A cropped fingerprint image of size 128 x 128 pixels ( TIS1_128). 

Figure 5.13   A resized fingerprint image of size 128 x 128 pixels (TIS2_128). 
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5.4.5 Training Image Set 3 (TIS3) 

This set contains only one image which is obtained by averaging the component 

images. To begin with, average of two images was used for GA evolution. 

Subsequently, images were appended in the data set one by one up to 10. Maximum 

PSNR was obtained from the average of 4 images.  So, TIS3_256, TIS3_128, 

TIS3_64, TIS3_32 were derived by averaging four component images cropped to  

256 x 256,  128 x 128,  64 x 64,  32 x 32 pixel sizes respectively.   TIS3 with the 

average of 4 full size images and that of 4 images cropped to a size of 128 x 128 

pixels (TIS3_128) are shown in Figure 5.14. 

 

 

 

 

 

5.4.6 Training Image Set 4 (TIS4) 

Similar to TIS3, only one image is present in this image set too.  Training 

image sets, TIS4_256, TIS4_128, TIS4_64, and TIS4_32 were obtained from the 

average of four individual images resized to 256 x 256, 128 x 128, 64 x 64, 32 x 32 

pixel sizes respectively. Figure 5.15 represents the average of four resized images of 

size 128 x 128 pixels (TIS4_128). 

 

 

    

Figure 5.14   Average of 4 fingerprint images (a) full size (300 x 300 pixels)                                    

(b) cropped to  128 x 128 pixels (TIS3_128). 

Figure 5.15   Average of 4 resized fingerprint images of size 128x128 pixels (TIS4_128). 
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 It was observed that evolved coefficients yielded reduced PSNR compared to 

the classical wavelets when resized / cropped images with sizes below 32 x 32 were 

used. 

 The training image sets TIS1 to TIS4 were applied to the EA. The algorithm 

was run several times. The optimum lifting coefficients evolved were employed for 

finding the average improvement in PSNR for CR = 16:1 over 80 fingerprint images 

in the database. These coefficients were used to compute the average improvement in 

PSNR for other CRs too. Besides this, the performances of the coefficients on 

degraded images were also studied. To perform this, the quality of the input image 

was degraded to various amounts by setting certain percentages of lower pixel values 

to zero. Percentage degradation was calculated as,  

            
                          

                   
                            (   ) 

The evolved wavelet coefficients were used with SPIHT (Said & Pearlman, 1996; Set 

Partitioning In Hierarchical Trees, n.d.) algorithm without arithmetic coder to observe 

their performance. In addition to the above, the performance of these coefficients was 

tested on other fingerprint image databases too. 

5.4.7 Results and Discussion 

5.4.7.1 Improvement in PSNR for Various Training Image Sets 

The different data sets TIS1, TIS2, TIS3 and TIS4 with suitable number of images to 

give Maximum PSNR were constructed as mentioned in the previous section. They 

were used to evolve optimum wavelet lifting coefficients giving maximum PSNR    

for CR = 16:1. These  evolved  coefficients  were employed to find the average 

improvement in PSNR over 80 fingerprint images. The results are compared with the 

result of the image set TIS_300 which contains full size images for validation 

purposes.  Figure 5.16 shows the average improvement in PSNR for each image size 

in all the above image data sets. As illustrated in the figure, performance of TIS1 & 

TIS3 with cropped images is better than the TIS2 & TIS4 with resized images. It can 
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also be seen that TIS3_256 with cropped average images performs better compared to 

other image sets except TIS_300. The average PSNR improvement of 1.012 dB 

corresponding to TIS_300 is shown as a single point in Figure 5.16. PSNR 

improvement of 1.009 dB was achieved from TIS3_256.  The evolution   took   only 

1.692 hours. So, at the expense of just 0.003 dB (a negligibly small value), 81.35% 

improvement in the speed of evolution could be achieved. The evolution time and 

PSNR are better than the previous results. The  optimized  coefficients  for  TIS3_256  

 

 

 

 

 

 

 

are shown in Table 5.10. Plot of average evolution time taken with image sets TIS1 to 

TIS4 is shown in Figure 5.17.  It is obvious that the images with reduced size caused 

faster evolution of wavelets with little compromise in PSNR improvement. 

Table 5.10  Optimized coefficients evolved for TIS3_256. 

Optimized lifting coefficients 

Notation Value 

α - 1.97521897030549 

β - 0.05389568773461 

γ      1.119418927579580 

δ      0.539170506912442 

 

Figure 5.16   Comparison of average PSNR improvement for TIS1, TIS2, TIS3 and TIS4. 
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 For example, TIS1_64 took just 1.014 hours yielding 0.956 dB improvement 

in PSNR. Compared to TIS_300 improvement in PSNR differed by just 0.056 dB, 

which is too small. But, the speed of evolution was increased by 91.02%. In the case 

of averaged images, TIS3_32 & TIS4_32 surpassed TIS3_64 & TIS4_64 respectively 

with better PSNR and 39.51% increase in speed of evolution. Compared to the 

existing technique, TIS3_32 offered 98.7% increase in evolution speed only at the 

expense of 0.043 dB PSNR.  

 Among all these training image sets, the best PSNR improvements of     

1.012 dB and 1.009 dB were tendered by TIS_300 and TIS3_256 respectively. So, the 

rest of this paper concentrates on the results related to these TISs.  The original 

fingerprint image 101_1.tif and the reconstructed images corresponding to           

hand-designed classical cdf 9/7   wavelet, lifting coefficients evolved from TIS1_300 

and the lifting coefficients evolved from TIS3_256 are shown in Figure 5.18.   

5.4.7.2 Improvement in PSNR for Various Databases and CRs 

The evolved wavelet coefficients exhibit improvement in PSNR for other CRs as 

well.  Figure 5.19 compares the PSNRs of the evolved and hand-designed wavelets 

for various CRs. For all values of CRs, the evolved wavelets yielded better PSNR  

Figure 5.17   Plot of average evolution time vs. training image size. 
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(a) (b) 

(c) (d) 

 

over the classical wavelet. The wavelets evolved from the above two different 

training image sets (TIS_300 & TIS3_256)   provided   almost identical PSNRs.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.18   101_1.tif fingerprint image (a) original, reconstructed image using (b) classical 

wavelet (PSNR = 35.908 dB) (c) evolved coefficients from TIS_300 (PSNR = 37.062 dB)        

(d) evolved coefficients from TIS3_256 (PSNR = 37.069 dB). 

Figure 5.19  Plot of average PSNRs (dB) for classical wavelet, wavelet                                

optimized from TIS_300 and wavelet evolved from TIS3_256. 
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5.4.7.3 PSNRs of Degraded Images 

Figure 5.20 illustrates the comparison of average PSNRs of degraded images for     

CR = 10:1, computed from hand-designed wavelet and wavelet evolved from 

TIS3_256. Here, quality of the input images were degraded to various amounts by 

setting certain percentages of lower pixel values to zero. Percentage degradation was 

calculated using eqn. (6.1). 

 

 

 

 

 

 

 

 As shown in Figure 5.20, the PSNR corresponding to the classical wavelet 

was better than the   evolved    PSNR  for lower values of   degradation. The evolved 

PSNR became better beyond 46% of degradation. For lower CRs, evolved 

coefficients started to surpass the classical coefficients at higher degradation values. 

For example, with CR = 5:1, the evolved PSNR crossed the classical PSNR at 80% of 

degradation. For CRs above 20:1 evolved coefficients outperformed the classical 

wavelets for all degradation values. The results were similar in the case of lifting 

coefficients evolved from TIS_300. Figure 5.21 shows the 101_1.tif image with 15% 

degradation (i.e., 15% of lower pixel values were set to zero). The images 

reconstructed using classical as well as evolved coefficients for CR = 20:1 are also 

shown. The PSNR of the degraded image owing to evolved wavelets was slightly 

better. 

Figure 5.20   Comparison of average PSNRs of degraded images for CR = 10:1,            

computed from hand-designed wavelet and wavelet optimized from TIS3_256. 
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5.4.7.4 PSNR Improvement with SPIHT Coding 

There was reasonable improvement in PSNR when evolved coefficients were used 

with SPIHT (Said & Pearlman, 1996; Set Partitioning In Hierarchical Trees, n.d.) 

algorithm without arithmetic coder. Figure 5.22 compares the average PSNR with 

SPIHT coder for various bits/pixel (bit rate) values for classical and optimized 

coefficients. It can be seen that the coefficients evolved from TIS3_256 outperformed 

the classical wavelet for all bit rates. The coefficients evolved from TIS_300 also 

confirmed the results. 

5.4.7.5 Comparison of Histogram Differences 

Direct visual inspection of the images would not probably give sufficient information 

for a fair judgment. Figure 5.23 compares the efficiency of the evolved wavelets in 

fingerprint image compression. Here the absolute difference between histogram 

values of 101_1.tif image and the images reconstructed  with  hand-designed classical 

            

           

(a) (b) 

(c) (d) 

Figure 5.21  101_1.tif image (a) 15% degraded, Reconstructed with (b) classical wavelet 

(PSNR = 22.982 dB) (c) optimized coefficients from TIS_300 (PSNR = 23.088 dB)               

(d) optimized coefficients from TIS3_256 (PSNR = 23.056 dB). 
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wavelet, wavelet optimized from TIS_300 and wavelet optimized from TIS3_256 are 

plotted. As illustrated in the figure, histogram differences of the images reconstructed 

from optimized wavelets are much less than that of the image reconstructed from 

hand-designed classical wavelet. It can also be seen that the minimum absolute 

histogram difference is offered  by the wavelet  optimized from TIS3_256  and hence 

it performs   better than that optimized from TIS_300. 

 

 

 

 

 

 

 

Figure 5.22   Comparison of average PSNR between classical and wavelet                        

optimized from TIS3_256 used in SIPHT algorithm for various bit rates. 

 

Figure 5.23   Absolute difference between histogram values of 101_1.tif image                              

and  the images reconstructed with classical wavelet, wavelet optimized                                           

fromTIS_300  and  wavelet optimized  from TIS3_256. 
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5.4.7.6 Improvement in PSNR under Quantization 

The coefficients optimized for thresholding conditions (i.e., single-objective problem) 

for the database DB1_B of FVC 2000 were used for compression of fingerprint 

images  under  quantization  conditions  (dual-objective  problem). They gave better 

average PSNR and better average IE for the database DB1_B of FVC 2000. Except in 

few cases there were improvements in average PSNR and IE for other fingerprint 

databases too. The results are tabulated in Table 5.11. 

Table 5.11  Increment in PSNR obtained under quantization using                                        

16:1 MRA (thresholding) coefficients evolved for TIS3_256. 

Image database q 
Classical Evolved 

PSNR (dB) IE PSNR (dB) IE 

DB1_B (80 images 

of size: 300 x 300 

pixels)  

128 28.0399 0.0981 28.4921 0.0794 

64 31.4906 0.1533 31.8614 0.1337 

32 35.1382 0.2379 35.3617 0.2102 

DB2_B (80 images 

of size: 364 x 256  

pixels) 

128 21.1692 0.2436 21.1825 0.2303 

64 25.0482 0.4532 24.8630 0.4473 

32 29.7082 0.6741 29.5714 0.6905 

DB3_B (80 images 

of size: 478 x 448  

pixels) 

128 23.8897 0.1805 24.0275 0.1663 

64 27.1759 0.2946 27.2332 0.2784 

32 30.9675 0.4673 30.9448 0.4740 

DB4_B (80 images 

of size: 320 x 240 

pixels) 

128 24.6726 0.1804 24.8423 0.1701 

64 28.5051 0.2622 28.7175 0.2694 

32 32.6717 0.3883 32.7363 0.4017 

5.4.7.7 Improvement in PSNR of Noisy Images 

Figure 5.24 illustrates the comparison of average PSNRs of noisy images for          

CR = 16:1, computed from classical and evolved coefficients for TIS3_256. Here, 

Gaussian white noise with mean 0 and variance 0.05 was added to the image. The 

noisy image (101_1.tif) and the images reconstructed with classical and evolved 

coefficients are shown in Figure 5.25. The PSNRs of the noisy image owing to 

evolved  coefficients  were  better  for higher CRs.  For lower CRs PSNR values were  
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almost equal. Figure 5.26 shows the comparison of PSNRs of noisy variants of 

101_1.tif  for  different  variances,  at CR=16:1.  For  low  variances  the  PSNR  with 

Figure 5.24   Comparison of average PSNRs of noisy images in DB1_B for various CRs. 

Figure 5.25   (a) Noisy 101_1.tif  ( GWN,  μ = 0, s = 0.05)  reconstructed image using                                

(b) classical wavelet (21.30 dB), optimum coefficients using (c) TIS_300                                                          

(21.3927 dB) (d) TIS3_256  (21.3947 dB), for CR = 16:1. 
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evolved coefficients is better than that with classical wavelets and for higher 

variances the values are almost same. 

 

 

 

 

 

 

 

 

 

5.4.7.8 Improvement in SSIM 

The optimized coefficients offered significant improvements in SSIM between the 

original and compressed fingerprint images. Table 5.12 shows the comparison of 

average SSIM computed for DB1_B of FVC 2000 for various CRs in respect of the 

classical as well as optimized coefficients. 

Table 5.12  Comparison of average SSIM index for various CRs in respect                               

of the classical and the coefficients evolved for TIS3_256. 

Image database CR 
Structural similarity index Measure (SSIM) 

Classical Evolved Improvement 

DB1_B (80 images 

of size: 300 x 300 

pixels) 

5 0.9778 0.9809 0.0031 

16 0.914 0.93 0.016 

20 0.8893 0.9102 0.0209 

25 0.8592 0.8857 0.0265 

30 0.8301 0.8623 0.0322 

35 0.8017 0.84 0.0383 

40 0.7748 0.8187 0.0439 

Figure 5.26   Comparison of PSNRs of noisy variants of  

     101_1.tif for different variances, at CR = 16:1. 
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5.4.7.9 PSNR improvement for other Fingerprint Databases 

The coefficients evolved for the database DB1_B of FVC 2000 were applied to the 

other fingerprint databases of FVC 2000 (Fingerprint Verification Competition, 

2000), FVC 2002 (Fingerprint Verification Competition, 2002), FVC 2004 

(Fingerprint Verification Competition, 2004) and the database formed by the images 

collected using NITGEN USB Fingkey Hamster (HFDU 01) fingerprint scanner.  

Even though the images in these databases were of different sizes and clarity, except 

in few cases they gave better average PSNR. There were improvements in average 

PSNR except for the databases DB3_B (300 x 300 pixels) of FVC 2002 and DB1_B 

(480 x 460 pixels) of FVC 2004. Table 5.13 shows the optimization results showing 

the PSNRs obtained using coefficients for TIS3_256 for various fingerprint databases 

and CRs. Average PSNR improvement for DB1_B with CR=16:1 is 1.009 dB, which 

is better than that reported by Grasemann, et. al (2005) and Babb (2007), i.e., 0.75dB 

and 0.76 dB respectively. Comparison of the results with that of the  previous works 

is shown in Table 5.14. 

5.5 Chapter Summary 

PSNR and IE are the two objectives in the dual-objective problem to optimize 

wavelet coefficients for fingerprint image compression under quantization. Due to 

their contradictory nature, the desirable increase in PSNR causes simultaneous 

increase in the IE (a measure of file size). However, by keeping the IE or the CR at a 

constant value, an exact measure of the improvement in PSNR could be obtained. 

Then, the dual-objective problem becomes a single-objective problem with PSNR as 

the objective to be maximized. So, the proposed works in this chapter focused on 

evolving optimized coefficients from the lifting coefficients of cdf 9/7 wavelet at   

CR = 16:1 (by retaining the largest 6.25% of the transformed image coefficients and 

the remaining values were set to zero) using GA. Optimized coefficients were 

evolved for various levels of MRA of wavelet image compression using single and 

multiple fingerprint training images. The improvements in average PSNRs offered by 
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the optimized coefficients over the whole fingerprints in various databases were 

noted.   

 For general compression purposes the coefficients optimized for single-level 

through four-level MRAs using single training images are not apt. This issue was 

circumvented by using multiple training images in GA evolution.  

Table 5.13  The boost in average PSNR at various CRs in respect of different             

fingerprint databases (using optimized coeffs. for TIS3_256). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image database CR 

PSNR (dB) PSNR 

improve-

ment (dB) 
Classical Evolved 

DB1_B (80 images 

of size: 300 x 300 

pixels)  

20:1 34.5664 35.6175  1.05 

16:1 35.9119 36.9209  1.01 

10:1 38.6388 39.5017  0.86 

6:1 41.4887 42.1655  0.68 

DB2_B (80 images 

of size: 364 x 256  

pixels) 

20:1 21.1166 21.3728  0.26 

16:1 21.8476  22.0404  0.19 

10:1 23.6800 23.7061  0.03 

6:1 26.3782 26.1275  -0.25 

DB3_B (80 images 

of size: 478 x 448  

pixels) 

20:1 25.2746  25.6300 0.36 

16:1 26.2925 26.6325 0.34 

10:1 28.6065 28.9067 0.30 

6:1    31.563  31.7937 0.23 

DB4_B (80 images 

of size: 320 x 240 

pixels) 

20:1 26.7049  27.0662 0.36 

16:1 28.2197 28.5433 0.32 

10:1 31.6747 31.9262 0.25 

6:1    36.191  36.1148 -0.08 

200 images from 

NITGEN‟s 

scanner           

(size: 292 x 248 

pixels) 

20:1 21.8988 22.4699 0.57 

16:1 23.1583 23.6961 0.54 

10:1  25.9721  26.4263 0.45 

6:1 29.3423 29.5751 0.23 
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Table 5.14   Comparison of the results with that of the  previous works                                

(training and test   images: fingerprints). 

Reference Conditions 
PSNR improve-

ment (dB) 

Grasemann, 

et. al (2005) 

4 level MRA 

16:1 Thresholding 
0.75 

Babb (2007) 
4 level MRA 

16:1 Thresholding 
0.76 

Proposed work 
4 level MRA 

16:1 Thresholding 
1.009 

 

 Usually, full size images are being used for evolving wavelet coefficients. 

This  evolution  process  is  too  slow.  To  speed  up  this, in this work, wavelets were 

evolved with different image sets like resized, cropped, resized-average and cropped-

average images. Comparing the PSNRs offered by the evolved wavelets, it was found 

that the cropped images outperformed the resized images and is at par with the results 

reported so far. Wavelet lifting coefficients, evolved from an average of four           

256 x 256 centre cropped images, took less than 1/5
th
 the evolution time reported in 

literature. Besides increasing the computational speed by 81.35%, the evolved 

coefficients offered 1.009 dB improvements in average PSNR over 80 fingerprint 

images in the database.  At the cost of very small amount of PSNR, additional 

reduction in evolution time could be achieved.  The evolved wavelet coefficients 

exhibited improvement in PSNR for other compression ratios too. For higher 

compression ratios, evolved coefficients outperformed the classical wavelets in 

compressing degraded images. There was reasonable improvement in PSNR when 

evolved coefficients were used with SPIHT  algorithm. The coefficients optimized for 

thresholding conditions (i.e., single-objective problem) gave better average PSNR 

and better average IE under quantization conditions (dual-objective problem) for the 

database DB1_B and for most of the other databases of FVC 2000. The optimized 

coefficients offered improvement in SSIM of the compressed images. Except in few 

cases, the coefficients evolved for the database DB1_B of FVC 2000 offered better 

average PSNR when applied to the other fingerprint databases of different sizes and 
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clarity. Image compression can be further improved by using application specific 

optimized wavelets for medical, satellite, and digital photography applications. One 

of the factors which improve the performance of the evolved wavelet is a properly 

designed training data set. Therefore, techniques can be developed to design an 

optimum training data set, which improves the compression performance. 

 



 

 

Chapter 6 

 
 

6 A Fingerprint Based Hybrid Gender 

Classification System using Genetic Algorithm 

 

 

In this chapter, a multilevel hybrid approach which gives better accuracy for gender 

classification is presented. The first level uses DWT, SVD and PCA techniques to 

derive three independent sets of feature vectors for simultaneous gender 

classification by three independent neural networks. Optimum coefficients similar to 

cdf9/7 DWT lifting coefficients and optimum values of initial seeds for the classifiers 

are evolved using GA, for obtaining better feature vectors. Use of lifting coefficients 

causes faster evolution. In the second stage, the output is derived by decision 

formulated based on the outputs of the individual classifiers. With a database 

consisting of left thumb impressions of 100 males and 100 females, an overall success 

rate of 93.94% and an average improvement of 5.24% accuracy over the existing 

classifiers are achieved. It is observed that the use of feature vectors having lesser 

number of elements can enhance the speed of operation of the classifier as well. 

 

 

 

 

 



144 

 

  



145 

 

6.1  Introduction 

Fingerprints are the traces of impressions made by the tiny ridge formations or 

patterns seen on the fingertips. Permanence and individuality are the fundamental 

characteristics of fingerprints. The invariance and distinctiveness of fingerprints 

enable them as the tool for criminal identification. The forensics and law enforcement 

agencies across the world use AFIS. Many non-forensic applications find use of 

fingerprint technology for recognition of individuals because of national security 

issues, financial and identity cheatings. So, the scientific evidence behind fingerprint 

individuality makes it very useful in forensic and non-forensic applications. 

Fingerprint classification is a system that group fingerprints to one among the several 

predefined categories. Gender classification using fingerprint is a noteworthy step in 

forensic science, medical and anthropological studies to search an individual easily. 

By performing gender classification, the database for searching an individual can be 

narrowed as it requires searching either a female or male database alone. By this, to a 

great extent, it can facilitate reduction in time searching an individual in a huge 

database. Once an individual is identified as female or male, then some appropriate 

biometric characteristic can be employed for more specific classifications. 

 Studies made by several researchers in different parts of the world among 

various populations across different countries revealed that women have more ridges 

than men. Their observations encourage the efforts of gender classification based on 

fingerprint features as in this present work. In recent times, several research works 

have been done in the area of male-female gender classification using fingerprints. 

 In the proposed algorithm, attention is given to both the classification speed 

as well as the classification accuracy. Classification speed is improved by employing 

lesser number of feature components obtained from DWT, SVD and PCA. As 

mentioned in the earlier chapters, use of symmetrical lifting coefficients of cdf 9/7 

wavelets results in faster computation of transform coefficients. This provides further 

improvement in classification speed. Optimizing wavelet coefficients and seed values 

of classifiers for gender classification using GA provides better classification 

accuracy. 
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6.2  Methodology 

The gender classification is done by using a multilevel technique. The first level 

employs three different classifier modules using DWT, SVD and PCA transform 

techniques, to obtain three independent sets of fingerprint feature vectors. To speed 

up the classification process using DWT, wavelet LS is employed. SVD and PCA are 

powerful tools commonly used for multivariate data analysis (Semmlow, 2004), data 

representation by a lesser number of variables, and finding patterns in data. In gender 

classification system, the input fingerprint is preprocessed first and then the feature 

vector is extracted. The outputs of the feature extractors are fed to the classifiers to 

identify the gender. Optimum values of DWT coefficients and initial seeds for the 

three classifiers are evolved using GA, for better classification. The second level 

employs a decision module, which decides the resultant gender with better accuracy, 

based on the outputs of the individual classifiers. Block diagram of the resulting 

classifier is shown in Figure 6.1. The proposed algorithm is implemented in 

MATLAB installed in an Intel Xeon 3.00 GHz processor with 6 GB memory. 

 

 

 

 

 

 

 

6.2.1 Database 

The fingerprint databases used for compression, which were presented in earlier 

chapters, are not suitable for gender classification as they bear no gender information. 

Moreover, standard fingerprint databases suitable for gender classification were not 
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PCAfeature  
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Figure 6.1   Block diagram of decision based gender classifier. 
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available in literature as well as from other sources. So, a database of fingerprints of 

size 248 (width) by 292 (height) pixels collected using NITGEN USB Fingkey 

Hamster (HFDU 01) fingerprint scanner was used. This database consists of 

fingerprints of left thumb of 200 persons (100 males and 100 females). Two-third of 

each category of fingerprints are used for training and the remaining one-third, for 

testing purpose. A typical fingerprint in the database is shown in Figure 6.2. 

 

Figure 6.2   Typical fingerprint image from NITGEN USB Fingkey Hamster (HFDU 01). 

6.2.2 Feature Extraction 

The fingerprints are subjected to transformations such as DWT, SVD and PCA to 

extract features required at the classifiers‟ inputs. Prior to performing the 

transformations, the fingerprint images were preprocessed to have the standard image 

size of 256 × 256 pixels. Here, the top and bottom boundary regions of each image 

were cropped to reduce its height to 256 pixels. Zero padding was done at the other 

boundary regions to increase the image width to 256 pixels. 

6.2.2.1 DWT Based Feature Extraction 

WT is an effective tool in image processing and computer vision applications (Zhang, 

Zhang & Ge, 2004). The effectiveness of the DWT technique for the gender 

classification using fingerprint has been established by researchers who have 

successfully used wavelet features for applications such as fingerprint recognition and 

identification, gender identification, etc. In this work, LS of cdf 9/7 biorthogonal 

wavelet has been used. For faster computation of DWT coefficients for feature 

extraction and also for faster evolution of wavelet coefficients optimized for better 

feature extraction, symmetric LS (Daubechies & Sweldens, 1998; Taubman & 
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Marcellin, 2002) with only four coefficients has been used in this work. Refinement 

of the general purpose lifting filter coefficients using GA could be used to obtain 

optimum filter coefficients adapted to fingerprint feature extraction. 

 A single-level WT decomposes an image into four subband images known as 

Low-Low (LL), Low-High (LH), High-Low (HL) and High-High (HH) (Gnanasivam 

& Muttan, 2012). The energy in the decomposed image is mainly concentrated in the 

LL subband. Hence, the higher levels of decompositions were done only on the 

corresponding LL subband. An „n‟ level DWT results in „3n + 1‟ subbands. In the 

proposed work, three levels of decomposition were done, which provided ten 

subbands. Using equation (6.1), energy of each subband was determined. 
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Here,   (   )represent the pixel values of the n
th
 subband and the pixels are indexed 

by k, l.  M is the width of the subband and N represents its height. Each image was 

decomposed into ten subbands. Corresponding to each subband there is one energy 

value. So, for each image, the DWT based feature was a ten element vector formed by 

the ten energy values corresponding to the ten subbands. 

6.2.2.2 SVD and PCA Based Feature Extraction 

SVD technique (Baker, 2013; Fieguth, 2011) transforms correlated variables into a 

set of uncorrelated ones that show the correlations among the input data in a better 

way. It recognizes and arranges the dimensions along which data points have the 

most variation. Then, a better approximation of the original data using fewer 

dimensions can be obtained. In the course of dimensionality reduction, SVD makes 

similar items to become more similar to each other and the dissimilar items more 

dissimilar. The singular values were stored in descending order to form the feature 

vector. The size of the feature vector for an input image of size 256 × 256 pixels       

is 1 × 256. 

 PCA is a mathematical method extensively used in investigative data 

analysis, signal processing, etc. (Jeong, Ziemkiewicz, Ribarsky & Chang, 2009). 
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Many researchers have used PCA technique for applications like face recognition 

(Turk & Pentland, 1991), motion analysis and synthesis (Safonova, Hodgins & 

Pollard, 2004), clustering (Koren & Carmel, 2003), dimension reduction (Huang, 

Ward & Rundensteiner, 2005; Theodoridis, Pikrakis, Koutroumbas & Cavouras, 

2010), and especially the areas requiring the classification of the high-dimensional 

data  (Prasad & Prasanna, 2008; Jolliffe, 1986), etc. It has been particularly used for 

gender classification by several researchers (Tom & Arulkumaran, 2013; Purohit et. 

al., 2011). Block diagram of fingerprint feature extractor is shown in Figure 6.3. 

 

 

 

  

 

 

6.2.3 Gender Classification 

In the present research work, BPNN (Haykin, 1999) model has been trained and 

tested for the male and female fingerprint images. The algorithm helped to increase 

the performance of the system and to decrease the convergence time for the training 

of the network. The training stage of a DWT/SVD/PCA based gender classification 

system optimized using GA is shown in Figure 6.4. 

 In the DWT based classifier, samples of training fingerprint images were 

subjected to three-level DWT to obtain ten subbands. For each image, energy of all 

subbands were calculated and arranged in such a way to form feature vector of length 

ten. These feature vectors were fed as input to the BPNN for training the classifier. 

Performance of the classifier could be improved by providing better training to the 

NN. This was done by optimizing the wavelet filter coefficients for decomposing the 

image  into  subbands  having  enhanced  energy features to offer  better classification 
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Figure 6.3   Block diagram of DWT/SVD/PCA based fingerprint feature extractor. 
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rate. The optimization was done by using GA. Error rate or accuracy is the term 

usually used for measuring the performance of a fingerprint classification system 

(Maltoni et al., 2009). Here, accuracy has been used as fitness function for the GA 

evolution. 

           
                                    

                            
                (   ) 

                                                                        (   ) 

where, Accuracy and Error rate are in percent. 

 It has been observed that due to randomization of initial seed value, the NN 

gives different classification rates in different runs of the algorithm. However, in the 

proposed algorithm, an optimum seed value has been evolved using GA. Both 

optimum coefficients and optimum seed value have been evolved for maximum 

accuracy by running the algorithm till the end of the maximum number of 

generations. The proposed algorithm employs binary GA based optimization. 
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Figure 6.4    Training stage of a DWT/SVD/PCA and GA based gender classification system. 
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Accuracy of the classifier has been employed as the fitness function for GA 

evolution. 

 The initial population of wavelet coefficients was created by randomly 

mutated copies of the symmetrical lifting coefficients of cdf 9/7 wavelet. A random 

population was used as the initial population of seed value to the NN. Each wavelet 

coefficient was represented by 17 bits. The first bit characterizes the sign and the 

remaining 16 bits correspond to the coefficient value. The seed value was represented 

by 18 bits. The Psize for GA evolution was fixed as 30 and the number of generations, 

50. The algorithm employed roulette wheel selection. The crossover was „single 

point‟. Rate of crossover was Pc = 0.7, rate of mutation Pm= 0.0075 and elitism was 1. 

 SVD and PCA based gender classifiers are similar to the wavelet based 

classifier. Here, instead of the WT block, an SVD or PCA block was used. So, there 

was no need for optimizing the wavelet coefficients. However, the initial seed for the 

NN classifier was optimized using GA. In the training stage, samples of training 

fingerprint images were decomposed using SVD or PCA and feature vectors were 

formed. As in the previous case, the initial seed value of the NN, represented by 18 

bits, was generated randomly. In both cases, the GA parameters were the same and 

accuracy of classification computed using equation (6.3) worked as fitness function 

for GA evolution. 

 The testing stage of a DWT/SVD/PCA and GA based gender classification 

system is shown in Figure 6.5. In this stage, for the DWT based system, the input 

fingerprint with unknown gender is subjected to three-level DWT using the optimized 

wavelet coefficients. Energies of the subbands were calculated to form the feature 

vector. The feature vector was fed to the trained NN with seed value optimized for 

maximum accuracy. For the SVD or PCA based system the SVD or PCA components 

make the corresponding feature vectors. The trained NN with initial seed value 

optimized using GA for maximum accuracy provided more accurate gender 

information. 
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6.2.4 Decision Based Gender Classifier 

It has been observed that the outputs of the three classifiers described above are not 

unique. For certain input fingerprints, the classifiers outputs might be different. To be 

specific, for a particular fingerprint, some classifier(s) gave correct output and the 

other(s) gave incorrect output. This gave scope for further improvement in 

classification accuracy, which could be achieved by making decisions based on the 

outputs of the individual classifiers. Figure 6.6 shows a three variable truth table and 

Karnaugh map constructed to implement the decision box for the improved classifier. 

Here, the Boolean input variables D, S and P are actually the output of the DWT, 

SVD and PCA based classifiers respectively forming the inputs to the decision box. 

„0‟ represents male gender and „1‟ represents female gender. Figure 6.7 shows the 

decision box with the simplified Product-Of-Sums (POS) output expressions for 

gender determination. 

6.3  Results and Discussion 

6.3.1 DWT Based NN Classifier 

In  DWT based   gender  classifier,   fingerprint   images  were  decomposed  into  ten 

subbands using three levels of DWT. Both the wavelet lifting filter coefficients for 

DWT  and  the  initial  seed  value  for  NN  were  optimized using GA evolution. The  

Figure 6.5   Testing stage of a DWT/SVD/PCA and GA based gender classification system. 
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evolved coefficients are: 

0.920987579,  0.1857966857,  − 0.6954557939,  0.4403515732. 

Inputs  Output 

D (DWT) S (SVD) P (PCA)  Y 

0 0 0  0 

0 0 1  0 

0 1 0  0 

0 1 1  1 

1 0 0  0 

1 0 1  1 

1 1 0  1 

1 1 1  1 

 

 SD  SD  SD  SD  

P  0 0 1 0 

P  1 1 1 1 

 
Figure 6.6  (a) Truth table and (b) Karnaugh map for decision-making to implement the 

improved classifier. 
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 The initial seed has been evolved as 214,960. Confusion matrix for the 

classical DWT based NN classifier and for the GA optimized NN classifier is shown 

in Table 6.1. Having done several trials, the overall accuracy of the classifier without 

optimization has been found to be 75.76%. With optimized coefficients and seed 

value, 90.91% of male and 81.82% of female genders have been   correctly classified. 

The overall classification accuracy has been 86.36%  showing an improvement         

of 10.6% over the classical DWT based classifier. Researchers in their earlier works 

on DWT based gender classification used six-level DWT decomposition giving 19 

subbands. With 19 subbands the NN took 1.56 seconds. Time taken for NN 

classification in the proposed work, with DWT feature vector having 10 components 

obtained from three DWT levels, was 1.41 seconds only. There is 9.6% improvement 

in the speed with which the classification is done. 

Table 6.1   Confusion matrix for DWT based NN classifier. 

Actual/ 

estimated 
Total 

Classical DWT-based NN  

classifier 

 

 GA optimized DWT-based NN  

classifier 

 Male Female Accuracy %  Male Female Accuracy % 

Males 33 28 5 84.84  30 3 90.91 

Females 33 11 22 66.67  6 27 81.82 

Total 66 39 27 75.76  36 30 86.36 

 Figure 6.8 shows the plot of overall classification accuracy for various 

numbers of female and male fingerprint samples computed with the evolved lifting 

coefficients and initial seed value given above. The number of female and male 

fingerprint samples has been successively increased in steps and the overall 

classification accuracy has been computed using lifting coefficients without GA 

optimization and using lifting coefficients and initial seed value after GA 

optimization, in each case. As shown in the figure, in all cases, the classification 

accuracy is far better with GA optimized lifting coefficient and seed value. 

6.3.2 SVD Based NN Classifier 

Table 6.2 shows the confusion matrix for the SVD based NN classifier without GA 

optimization and with GA optimization. The overall accuracy of the classifier without 



155 

 

70

72

74

76

78

80

82

84

86

88

40

50

60

70

80

40
50

60
70

80

%
 C

o
rr

e
c
t 
c
la

s
s
ifi

ca
tio

n

N
o. o

f f
em

ale
 fi

ngerp
rin

ts

No. of male fingerprints
 

 

Table 6.2    Confusion matrix for the SVD based NN classifier. 

Actual/ 

estimated 
Total 

SVD-based NN classifier 

 

 GA optimized SVD-based NN  

classifier 

 Male Female Accuracy %  Male Female Accuracy % 

Males 33 25 8 75.75  26 7 78.79 

Females 33 12 21 63.64  7 26 78.79 

Total 66 37 29 69.69  33 33 78.79 

 

optimization has been obtained as 69.69%. With an optimized initial seed value of 

251596, there is 9.1% improvement in classification accuracy, which gives an overall 

accuracy of 78.79%. The individual accuracy in classifying male and female is also 

78.79%. In the previous works using SVD, the feature vectors were made up of all 

the 256 SVD components and the NN classifier took 55.8 seconds. In the present 

work the feature vectors have been formed by the first 12 significant SVD 

Figure 6.8   % classification accuracy of DWT based NN classifier for                                  

various numbers of female and male fingerprint samples. 

% Correct classfn. – GA optimized 

% Correct classfn. – Conventional 
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components, as it gave the best result. This, in turn, reduced the time required for 

classification to 1.43 seconds, resulting 97.44% enhancement in speed. 

 The overall classification accuracy of conventional and GA optimized     

SVD based NN classifier using the optimized seed value of 251,596 for various 

numbers of female and male fingerprint samples is plotted in Figure 6.9. It is seen 

that the classification accuracy is superior along with GA optimized SVD based NN 

classifier. 

 

 

 

 

 

 

 

 

6.3.3 PCA Based NN Classifier 

Confusion matrix for the PCA based NN classifier without GA optimization and with 

GA optimization is shown in Table 6.3. The overall accuracy of the classifier without 

optimization is 77.27%. An optimized initial seed value of 144,322 gave overall 

classification accuracy of 83.33%. The overall classification accuracy has been 

improved by 7.8%. The classification accuracy for male is 84.85%, while that of 

female is 81.82%. In the case of PCA also, the previous works used feature vectors 

made up of 256 PCA components and the  NN classifier  took  97.17 seconds.  In  the  

Figure 6.9   % classification accuracy of SVD based NN classifier for                                

various numbers of female and male fingerprint samples. 
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Table 6.3    Confusion matrix for the PCA based NN classifier. 

Actual/ 

estimated 
Total 

PCA-based NN classifier 

 

 GA optimized PCA-based NN  

classifier 

 Male Female Accuracy %  Male Female Accuracy % 

Males 33 23 10 69.69  28 5 84.85 

Females 33 5 28 84.85  6 27 81.82 

Total 66 28 38 77.27  34 32 83.83 

 

current work, the feature vectors have been formed by the first PCA component, since 

it provided the best output. Consequently, the time required for classification has 

been cut down to 1.29 seconds, causing 98.7% enhancement in speed. 

 The overall classification accuracy of conventional and GA optimized    PCA 

based NN classifier using the optimized seed value of 144,322 for various numbers of 

female and male fingerprint samples is plotted in Figure 6.10. A few instances are 

noticed where for higher numbers of female and male fingerprint samples the 

classification accuracy with conventional PCA based NN classifier become equal or 

sometimes better than GA optimized PCA based NN classifier. However, in most 

cases the classification accuracy is higher with GA optimized PCA based NN 

classifier. 

6.3.4 Decision Based Hybrid NN Classifier 

Confusion matrix for the decision based hybrid gender classifier is shown in       

Table 6.4.  The overall accuracy of the classifier is 93.94%.   Male genders have been 

classified with an accuracy of 90.91% and females, with accuracy 96.97%. The     

best overall gender classification accuracy reported in  literature  (Marasco,  Lugini & 

Table 6.4  Confusion matrix for the decision based improved gender classifier. 

Actual/estimated Males Females Total Accuracy % 

Males 30 3 33 90.91 

Females 1 32 33 96.97 

Total 31 35 66 93.94 

  Note:  Best overall accuracy as reported in literature (Marasco et al. 2014): 88.7% 
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Cukic, 2014) was 88.7%. So, the proposed method offers 5.24% improvement in 

gender classification accuracy, over the previous result. Comparison of the results 

with the previous works is shown in Table 6.5. 

 Table 6.6 compares the speed of classifiers based on the different techniques 

explained above. The overall improvement in classification speed of GA optimized 

decision based hybrid classifier is 97.33% above that of the decision based combined 

conventional classifier. 

6.4  Chapter Summary 

A multilevel approach for better classification of male and female gender from 

fingerprint images was presented in this chapter. In the first level, DWT, SVD and 

PCA transform based feature vectors were used as inputs to three independent BPNN 

classifiers  for  simultaneous  gender  classification.  In  the  DWT  based system, GA 

Figure 6.10   % classification accuracy of PCA based NN classifier for                               

various numbers of female and male fingerprint samples. 



159 

 

Table 6.5   Comparison of the results with the previous works on gender classification. 

Reference Classifier 
Feature vector 

components 
Fingerprint database 

Best 

Accuracy 

% 

Badawi, et. al 

(2006) 

FCM, LDA 

and NN 

Ridge count, 

RTVTR, white 

lines count, ridge 

count asymmetry 

10 fingerprint images 

of 1100 males and 

1100 females 

88.5 

Verma & 

Agarwal (2009) 
SVM 

ridge width, ridge 

density, RTVTR 

200 male samples and 

200 female samples 
88 

Gnanasivam & 

Muttan (2012) 

K-nearest 

neighbour 
DWT, SVD 

1980 male samples 

and 1590 female 

samples 

88.28 

Omidiora, et. al 

(2012) 
NN 

RTVTR, Ridge 

Count 

10 fingerprint images 

of 100 males and 100 

females 

80 

Kaur, et. al 

(2012) 
- FFT, DCT, PSD 

110 male samples and 

110 female samples 
84.54 

Gornale, et. al 

(2013) 
- 

FFT, Eccentricity, 

Major Axis 

Length 

450 male samples and 

550 female samples 
79 

Tom & 

Arulkumaran 

(2013) 

Minimum 

distance 
DWT, PCA 

200 male samples and 

200 female samples 
70 

Proposed 

method 
NN DWT, SVD, PCA 

100 male samples and 

100 female samples 
93.94 

* The authors used their own internal database, since no standard database was available. 

Table 6.6   Comparison of time taken for classification  (seconds). 

Classifier type 
Using conventional 

method 

Using GA  

optimization 

  %  improvement  

          in speed  

DWT alone 1.56 1.41 9.60 

SVD alone 55.80 1.43 97.44 

PCA alone 97.17 1.29 98.70 

Decision-based 154.53 4.13 97.33 

 

optimized cdf 9/7 wavelet lifting coefficients were used to decompose the fingerprint 

images into subbands. The NN employed GA optimized initial seed value and lesser 

number of subbands. The use of lifting coefficients and lesser number of subbands 

increased the speed of the classifier. Compared to the conventional method, the 

overall classification rate of the GA optimized DWT based gender classifier got 
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enhanced by 10.6%. The proposed SVD and PCA based systems having optimized 

initial seed values used merely the first twelve SVD components and the first PCA 

component respectively. Besides the hike in the speed of the classifiers, there were 

9.1% and 7.8% improvements in classification accuracy compared to the 

conventional gender classifiers based on SVD and PCA respectively. Moreover, the 

use of the optimized lifting coefficients and the initial seed values produced better 

classification accuracy on a large number of additional fingerprint samples. 

 Since the outputs of the three classifiers were not unique, the next level of the 

system combined these outputs to take a better decision on gender. This decision-

based improved hybrid gender classifier provided overall accuracy of 93.94%, which 

is 5.24% above the best result, reported in literature. The improvement in 

classification speed of GA optimized decision based hybrid classifier is 97.33% 

above that of the decision based conventional classifier. The proposed techniques can 

also be extended to classify the male and female genders to different age groups. 

  



 

 

Chapter 7 

 

7 Conclusion and Scope for Further Work 

 

 

 

 

 

This chapter presents the main conclusions of this research work and the scope for 

further work. 
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7.1 Introduction 

It is well established that substantial improvement in picture quality at different CRs 

can be achieved due to better energy compaction property of WTs. By designing 

suitable wavelets, this property can be enhanced. In this work basic cdf9/7 wavelet 

has been modified and optimized using GA to maximize the energy compaction 

property of the wavelet to get better picture quality (i.e., PSNR).  Evolution time is 

proportional to the size and the number of images in the training set. It is clearly seen 

that the difference between the evolution time taken with 5 images and the average of 

4 cropped images increases with the size of the images and hence the evolution using 

4 cropped (256 x 256) and averaged images is faster. Similarly, the use of lifting 

coefficients and lesser number of DWT subbands increase the speed of the DWT 

based classifier. Speed of the SVD and PCA based classifiers‟ is also high due to the 

optimization of the number of SVD and PCA components. By using GA optimized 

wavelet coefficients and initial seed values, the classification accuracy also increases. 

7.2 Fingerprint Image Compression by Optimized Wavelet 

Coefficients 

Wavelet based image compression is very promising, since it examines the image 

signal at different resolutions. DWT decomposes the original image to horizontal, 

vertical and diagonal components. Biorthogonal wavelet has both symmetry and 

compact support. Many wavelets and techniques have been reported in literature till 

date. The hand-designed classical cdf 9/7 biorthogonal wavelet (or Bior 4.4) 

introduced in 1992 by Cohen, Daubechies, and Feauveau (cdf) is used by the FBI 

fingerprint compression standard. This wavelet employs four sets of coefficients, that 

are denoted as Lo_D,  Hi_D, Lo_R and Hi_R. In fact, the cdf 9/7 classical wavelet 

can be represented by 16 coefficients of Lo_D and Hi_D filter sets.  The other filter 

coefficient sets Lo_R and Hi_R can be derived from these filter coefficients. 

 The orientation field of fingerprints has specific characteristics that discern 

the fingerprint images from other kinds of images. So, the fingerprint images make a 

specific class of images possessing distinct characteristics. A few researchers 
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exploited this property of fingerprints and evolved optimized wavelet coefficients for 

fingerprint image compression. Most of their works employed coefficients optimized 

from the classical cdf 9/7 wavelet using GA. 

 The optimization of classical cdf 9/7 wavelet coefficients is computationally 

complex as it requires 16 multiplications to transform every pair of subband samples. 

Due to the large computational complexity and hence the large evolution time 

involved, the researchers were strained to use even supercomputers for evolving 

optimized wavelet coefficients. However, the amount of time consumption can be 

reduced by employing LS of cdf 9/7 wavelet in which the equivalent symmetric 

lifting structure has just four lifting coefficients. So, in this work coefficients similar 

to symmetric lifting coefficients of cdf 9/7 wavelet were evolved to find the optimum 

coefficient values for fingerprint image compression under conditions subject to 

quantization.  

 Image compression and reconstruction under quantization necessitates the 

simultaneous minimization of MSE (or maximization of PSNR) and file size. So, it is 

an MOO problem. The image IE provides a precise calculation of the size of the 

compressed file and the computation of IE is very fast compared to file size 

calculation. Since PSNR and IE are two conflicting objectives, the optimization 

demands high PSNR with low IE value for the compressed image. 

 The work started with the wavelet optimization for a single-level DWT with a 

single training image and a quantization step size q = 64, using binary GA. The 

resultant PSNR obtained for the training image as well as the average PSNR over the 

80 fingerprint images in the DB1_B of FVC 2000 database using the optimized 

coefficients are far better than that offered by the corresponding classical wavelet. 

Seeking for better results, in the next part of the work four training images were used 

with single-level transform and q = 64. The results were much promising as the 

optimized coefficients gave better performance than that given by a single training 

image. The subsequent work optimized coefficients for three-level transform and as 

expected, the results of the proposed work outperformed the previous results in 

literature. 
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 Due to the contradictory nature of PSNR and IE, the desirable increase in 

PSNR causes simultaneous increase in the IE (a measure of file size). However, by 

keeping the IE or the compression ratio at a constant value the dual-objective problem 

can be converted into a single-objective problem and an accurate measure of the 

improvements in PSNR can be performed. So, the next proposed algorithm used 

PSNR as a single-objective of GA. Fixing CR = 16:1 takes only 1/16 (or 6.25%) 

numbers of most significant transform coefficients for reconstruction. This helps to 

reduce the computational complexity by reducing the GA evolution time. 

 Both single and multilevel WTs with single training image using the 

optimized lifting coefficients in each case were accomplished and the resulting 

PSNRs were compared with that of the corresponding classical wavelets. Several runs 

of the algorithm were performed to get the best results in each case.  

 Optimizations of coefficients for single-level to four-level compression using 

single training images (i.e., 101_1.tif of size 300 x 300 from DB1_B fingerprint 

database of   FVC 2000) were performed. To ensure proper convergence in higher 

levels of MRA, the algorithm requires higher numbers of generations and population 

sizes.  

 The optimized coefficients offered better PSNRs when used for compressing 

images of certain other databases and also for certain other CRs (other than 16:1) too. 

The amount of PSNR improvement was the highest with the coefficients optimized 

for four-level MRA. Furthermore, with classical wavelet coefficients, there were no 

additional improvements in PSNR for five levels or above MRA compared to four 

levels. So, the maximum level of compression used for evolving coefficients was 

limited to four levels. 

 It was found that the coefficients optimized for higher levels of MRA 

performed better. The coefficients optimized for single-level showed an adverse 

effect on higher levels of compressions as they caused severe degradation of average 

PSNRs at these levels. The optimized coefficients, corresponding to other 

compression levels, (i.e., two-level to four-level) was found to be unsuitable for 

single-level compression as they resulted in degrading the average PSNR at that level. 
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This indicates that the coefficients optimized for single-level through four-level  

compressions are not appropriate for general compression purposes. This issue was 

circumvented by using multiple training images in GA evolution. 

 So, the next work presents techniques for faster evolution of wavelet 

coefficients optimized for better compression and reconstruction of fingerprint 

images.  

 Usually, full size images are being used for evolving wavelet coefficients. 

This evolution process is too slow. To speed up this, wavelets were optimized with 

different image sets like resized, cropped, resized-average and cropped-average 

images. Comparing the PSNRs offered by the optimized wavelets, it was found that 

the cropped images outperformed the resized images and is at par with the results 

reported so far. Wavelet lifting coefficients optimized from an average of four       

256 x 256 centre-cropped images took less than 1/5
th
 the evolution time reported in 

literature. Besides increasing the computational speed by 81.35%, the optimized 

coefficients offered 1.009 dB improvements in average PSNR over 80 fingerprint 

images in the database.  At the cost of a very small amount of PSNR, additional 

reduction in evolution time could be achieved. Except in few cases, the coefficients 

evolved for the database DB1_B of FVC 2000 offered better average PSNR when 

applied to the other fingerprint databases of different sizes and clarity. The evolved 

coefficients exhibited improvement in PSNR for other CRs too. For higher CRs, they 

outperformed the classical wavelets in compressing degraded images. There was 

reasonable improvement in PSNR when evolved coefficients were used with SPIHT 

algorithm. The coefficients optimized for thresholding conditions (i.e., single-

objective problem) gave better average PSNR and better average IE under 

quantization conditions (i.e., dual-objective problem) for the database DB1_B and for 

most of the other fingerprint databases in FVC 2000. The optimized coefficients 

offered improvement in SSIM of the compressed images.  
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7.3  Gender Classification System using Genetic Algorithm 

Apart from the fingerprint image compression, male/female gender classification is 

another promising area where optimization using genetic algorithm finds significant 

applications. Proceeding in this direction presents a multilevel approach for better 

classification of male and female gender from fingerprint images. In the first level, 

DWT, SVD and PCA transform based feature vectors were used as inputs to three 

independent BPNN classifiers for simultaneous gender classification. In the DWT 

based system, GA optimized cdf 9/7 wavelet lifting coefficients were used to 

decompose the fingerprint images into subbands. The NN employed GA optimized 

initial seed value and features derived from lesser number of subbands. Use of lifting 

coefficients and lesser number of subbands increased the speed of the classifier. 

Compared to the conventional method, the overall classification rate of the GA 

optimized DWT based gender classifier got enhanced by 10.6%. The proposed SVD 

and PCA based systems having optimized initial seed values used merely a few SVD 

and PCA components. Besides the hike in the speed of the classifiers, there were 

9.1% and 7.8% improvements in classification accuracy compared to the 

conventional gender classifiers based on SVD and PCA respectively. Moreover, use 

of the optimized lifting coefficients and initial seed values produced better 

classification accuracy on a large number of additional fingerprint samples. 

 Since the outputs of the three classifiers were not unique, the next level of the 

system combined these outputs to take a better decision on gender. This          

decision based improved hybrid gender classifier provided overall accuracy of 

93.94%, which is 5.24% above the best result, reported in literature. The 

improvement in classification speed of GA optimized decision based hybrid classifier 

was 97.33% above that of the decision based conventional classifier.  

7.4  Scope for Further Work 

In the proposed work, a faster algorithm for evolving optimized lifting coefficients 

from cdf 9/7 wavelet using GA to provide better performance on fingerprint image 

compression was presented. This work can be extended to evolve application-specific 
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optimized wavelets for medical, satellite, and digital photography applications. One 

of the factors which improve the performance of the evolved wavelet is a properly 

designed training data set. Therefore, techniques can be developed to design an 

optimum training data set, which improves the compression performance.  

 Regarding the gender classification problem, it will be very much useful if 

one could identify the age of the persons in addition to their gender information. The 

individuality of fingerprints in different age group can be exploited in forensic and 

non-forensic applications such as criminal identification, security problems, financial 

and identity misleading, etc. As such, the proposed gender classification techniques 

can be extended to classify the male and female genders to different age groups. By 

doing this, the database for searching a person can be further narrowed as it requires 

searching either a female or male database of a particular age group alone. This, in 

turn, can reduce the time for searching an individual in a large database. Thus, after a 

person is identified as female or male, more specific classifications can be done based 

on different age groups so that the search time for the particular person in the huge 

database can be reduced to a great extent. 
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