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ABSTRACT

Spectrum scarcity is a major issue in an era of ever increasing usage of wireless com-

munication systems. A part of this spectrum scarcity can be attributed to the inefficient

spectrum usage among the licensed users. Cognitive radio (CR) is proposed as a solu-

tion to the problem of inefficient usage of spectrum. As CR can coexist with the existing

licensed primary users, efficient protocols are required for spectrum sensing and allo-

cation of unused spectrum among the secondary users. As can be seen in contemporary

literature, for CR to be efficacious a spectrum sensing methodology that overcomes

challenges such as fading, shadowing and hidden node problems are inevitable and it is

here that cooperative spectrum sensing has a major role to play.

This thesis has initially proposed decision fusion approaches for distributed spec-

trum sensing. An adaptive weighted combining approach with antenna selection and

multiple region encoding has been evolved through various stages of refinement on fu-

sion rules viz. fuzzy rule, SNR rule and intelligent rule. The performance of the rule

at various stages and over various parameters are carried out and the performance is

compared with other prominent fusion rules in the literature.

In the following sections, a decision fusion approach for external sensing is pro-

posed. ‘Cellular automata’ has been employed here for developing fusion rules that

performs decision fusion as well as to obtain the coverage area of Primary users (PU).

Analysis and performance comparison of this approach is carried out and presented.

A comprehensive, prediction based spectrum sensing approach is also proposed to

improve the throughput of the system. It consists of a predictor that takes the ‘present’

and ‘prior’ information to predict the probability of any channel to be idle. Predictor

can generate a rank list of suitable channels for future spectrum sensing. CR will sense

only those channels with higher ranking and the final decision will be made with the

help of suitable fusion rules. Detailed analysis was carried out and the performance is

compared with similar predictors available in literature.

In order to analyse the proposed prediction scheme on real data, a spectrum occu-
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pancy measurement was then carried out and the analysis of measured data has been

presented. On analysing the spectrum holes, it can be inferred that CRs with different

complexity can exist for different types of spectrum holes. In other words, a low end CR

device can work in slowly varying spectrum holes and a high end device with multiple

protocols can adapt to any type of spectrum holes.

KEYWORDS: Cognitive radio; Spectrum sensing; Cooperative spectrum sens-

ing; Distributed sensing; External sensing; Prediction based spec-

trum sensing; Decision fusion; Spectrum occupancy; Cellular au-

tomata; Bayesian inference; Antenna selection; Energy detection;

Rayleigh fading.
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CHAPTER 1

INTRODUCTION

Wireless communications has emerged as one of the largest sectors of the telecom-

munications industry evolving from a niche business in the last decade to one of the

most promising areas for growth in the 21st century (Rappaport et al., 2002). The in-

creasing demand for wireless communication in consumer electronic applications and

personal high-data-rate networks indicate a promising commercial potential. Through-

put, reliability, service quality and the ever-present availability of wireless services are

more and more demanded. The number of devices based on multiple wireless stan-

dards and technologies will therefore substantially grow in the future. Not only excit-

ing progress but also new problems will be created with these increasingly widespread

wireless communications (Berlemann and Mangold, 2009). Today, availability of spec-

trum is limited as it is restricted by a radio regulatory regime that emerged over the last

one hundred years. Open access to most of the radio spectrum is only permitted with

very low transmission powers, in a so-called underlay sharing approach such as ultra

wide band (UWB) (Berlemann and Mangold, 2009). Unlicensed spectrum is a small

fraction of the entire radio spectrum. Measurement campaigns in various parts of the

world have supported the observation that static spectrum access leads to some portions

of the spectrum to be overcrowded while some other portions to be underutilised (Patil

et al., 2011a). Dynamic spectrum access is proposed as a solution to improve the spec-

trum utilisation. Dynamic spectrum access refers to the time-varying, flexible usage of

parts of the radio spectrum subject to regulatory and technical restrictions. Implemen-

tation of cognitive capabilities on a software-defined radio will be capable of tapping

the potential of dynamic spectrum access (Berlemann and Mangold, 2009).

The term ‘Cognitive Radio’ was initially proposed by Mitolla (Mitola and Maguire,

1999) as “A radio that employs model based reasoning to achieve a specified level of

competence in radio-related domains”. Simon Haykin (Haykin, 2005) defines a cog-

nitive radio as “An intelligent wireless communication system that is aware of its sur-

rounding environment (i.e., outside world) and uses the methodology of understanding-

by-building to learn from the environment and adapt its internal states to statistical



variations in the incoming radio frequency (RF) stimuli by making the corresponding

changes in certain operating parameters (e.g., transmit-power, carrier frequency, and

modulation strategy) in real-time, with two primary objectives in mind: 1. Highly reli-

able communications whenever and wherever needed 2. Efficient utilisation of the radio

spectrum”.

1.1 Motivation

Since most of the spectrum is allocated to various PUs, upcoming services may have

to utilise the already allocated spectrum along with unlicensed spectrum in a dynamic

manner. Licensed spectrum will be available only when the PU is not occupying the

channel. A user that tries to access the spectrum opportunistically is called as secondary

user (SU). CRs are the devices employed by an SU. The opportunity in spectrum space

is called as spectrum hole (SH). CRs will have to monitor the vacancy in spectrum occu-

pancy across frequency, time, geographical space, code and phase. This is possible only

with the help of proper spectrum sensing approaches. Spectrum sensing is the ability

to measure, sense and be aware of the parameters related to the radio channel char-

acteristics, availability of spectrum and transmit power, interference and noise, radio’s

operating environment, user requirements and applications, available networks (infras-

tructures) and nodes, local policies and other operating restrictions. It is done across

Frequency, Time, Geographical Space, Code and Phase (Yucek and Arslan, 2009). A

CR is considered as a flexible device that dynamically access the spectrum. The first

requirement of a CR is to sense the spectrum hole in the spectrum space. In the case

of single node sensing, inaccuracies in detection can be caused by propagation effects

such as fading (either fast fading due to multi-path effects, or slow fading due to prop-

agation path blockage or shadowing) and shadowing. Another problem is that of the

hidden terminal; this is being defined as an undetectable terminal that will suffer as the

result of any interference from the cognitive system.

Cooperative spectrum sensing is proposed in literatures as a solution to issues that

arise in spectrum sensing due to noise, fading, shadowing and hidden terminals (Yucek

and Arslan, 2009; Harrold et al., 2008). Here the neighbouring CR nodes collaborate to

make a more accurate decision on the spectrum opportunity. Each CR node makes their
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own spectrum sensing and the result is shared among its neighbours. Final decision will

be made by each CR by using suitable fusion rules. All the nodes in the field undergo

random shadowing and fading. Hence the coverage area of a PU may have random

variations at the boundaries. Also some of the PU may be mobile in nature and hence

the position of the PU need not be fixed always. That means the CR nodes and their

neighbours need not be under the coverage area of a PU always. There will be random

variations in scenario. A decision fusion rule needs to accommodate such changes so

that the cooperative decision will be correct. A CR device has to sense a large range of

spectrum to find the proper spectrum hole. It can reduce the spectrum sensing task if

it can predict the probability of occupancy of a channel by a PU. Those channels with

higher probability of occupancy may be omitted from spectrum sensing task. This will

improve the throughput of the system. It is always helpful for a CR to have the general

knowledge about the spectrum occupancy status in its geographical area. This informa-

tion can be used as a prior for prediction purposes. This dissertation proposes schemes

that help to improve the throughput of the cognitive radio network (CRN) through ef-

ficient decision fusion approaches for various network scenarios and prediction based

spectrum sensing approaches. In this thesis, we focus more on to distributed sensing

and external sensing schemes under cooperative sensing. We have proposed an adap-

tive weighted combining (AWC) rule for decision fusion under distributed sensing. It

is able to adapt to the changes in scenarios occurred due to a CRs position in the field

with respect to primary transmitters. It has been evolved through various stages of mod-

ifications and analysis. This rule out performs other rules such as soft optimum linear

combining (SOLC) and fuzzy based approaches. We have also proposed a cellular au-

tomata (CA) rule for external sensing scenario where an external entity aggregate the

sensing results of wireless sensor nodes (WSN) deployed in the field. This entity also

aims at forming the coverage area of a PU within a large area.

Since prediction based spectrum sensing will reduce the spectrum sensing efforts to

a large extent, we have proposed a spectrum prediction approach using Bayesian Infer-

ence. It uses recent sensing results along with history of the spectrum occupancy (prior)

to make the prediction. In order to obtain real data as spectrum occupancy history,

we have also conducted a spectrum measurement over the frequency range 50 MHz -

4.4 GHz and its utilisation is analysed. Low computation complexity of proposed fu-

sion rules, prediction approaches and properties of CA and its massive parallelism of
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information processing, will make these approaches a favourite choice for low power

VLSI implementation of Decision fusion blocks in their respective sensing scenarios of

cognitive radio.

1.2 Author’s Contributions

This thesis commences with an overview of the related research in the field of spec-

trum sensing for cognitive radio and discusses the relevance of this research in the light

of the cited previous research works. The primary technical contribution of this thesis

is in developing and analysing fusion rules for decision fusion in CSS, particularly in

the network categories such as distributed sensing and external sensing. The research

then progresses to suggest a comprehensive CSS framework which is based on pre-

diction based sensing. A Bayesian inference approach for spectrum-hole prediction is

also proposed and analysed. A spectrum occupancy measurement and analysis is then

carried out to validate the performance of the Bayesian predictor on real data. This is

followed by few suggestions for future work. The main contributions and the papers on

which these are based are listed below. [‘C’ represents International conferences and

‘J’ represents lists in International Journals]

C1. Jaison Jacob, Babita R. Jose, J. Mathew, “A Fuzzy Approach to Decision Fu-

sion in Cognitive Radio” International Conference on Information and Communication

Technologies (ICICT 2014), CUSAT , Kochi. India. December 2014. pp. 425-431.

Author’s contribution: A fuzzy rule for decision fusion is proposed for distributed

sensing under cooperative sensing. As signal-to-noise ratio (SNR) of the CR is a key

parameter that reflects the strength of the signal, SNR and signal strengths of the neigh-

bours are used as the inputs of the fusion rule. Testing and analysis of this rule was

carried out using energy detection under Rayleigh fading channel. The effectiveness of

the proposed rule was compared with classical fusion rules such as ‘AND’ & ‘OR’ rules.

Comparison of both Probability of detection (Pd) and Probability of false alarm (Pf ) vis-

a-vis SNR was carried out. The ‘time consumed’ for a decision fusion was reckoned

as the computational overhead for this rule. Even though the detection performance

was very good, time consumption of fuzzy rule was quite high. The author formulated

appropriate theory, did the simulations, wrote the manuscript and presented the findings
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and inferences in the conference (C1).

C2. Jaison Jacob, Babita R. Jose, “Performance Evaluation of a Cooperative Spec-

trum Sensing Algorithm for Cognitive Radio ” Proceedings of International Workshop

on Embedded Computing & Communication Systems (IWECC-11), Kochi, December

2011, pp. 18-22.

Author’s contribution: Fuzzy rule is quite time consuming and to overcome this

limitation, we propose a new fusion rule for distributed sensing (under cooperative sens-

ing) based on weighted combining methodology. Apart from SNR, self-weighting fac-

tor and positive weighting factor were also included in the weighted combining. The

performance of the rule was analysed under shadowing using the ‘path loss’ model.

Various scenarios of channel conditions such as rural, urban and dense urban were con-

sidered for the analysis. Effect on the ‘probability of detection’ on account of each

of the likely dependencies viz. the number of sharing nodes, varying environmental

parameters, self-weighting factor, positive weighting factor, receiver density etc. were

analysed. Best possible weighting factors that gave the right decision was then assessed

and estimated. The author formulated appropriate theory, did the simulations, wrote the

manuscript and presented in a conference (C2).

J1. Jaison Jacob, Babita R Jose, J. Mathew, “Fusion Rule for Cooperative Spec-

trum Sensing in Cognitive Radio” Journal of Circuits, Systems & Signal Processing

(CSSP), Springer , on line: Dec. 2015, Print: September 2016, Vol. 35, Issue 9,

pp. 3418 - 3430, (Indexed in Science Citation Index Expanded (SCIE), Impact factor

1.178).

Author’s contribution: In literature, it was widely considered that all the CRs are

located within the coverage area of a PU under consideration. However, it was felt that

decision fusion at the boundaries of the coverage area of a PU also needs to be reck-

oned. Therefore, a new scenario was considered for analysis and an AWC approach

was proposed to handle such a scenario. Here the weights would be adapted based on

the location of the CRs with respect to the Primary Transmitter. A fusion rule that con-

siders the location of the nodes with respect to a PU was proposed here. Performance

of this rule (named as ‘Intelligent rule’) was analysed using energy detection model

under Rayleigh fading as well as path loss model under shadowing. Its performance

was also compared with other rules. The author formulated appropriate theory, did the
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simulations, wrote the manuscript and published in a journal (J1).

J2. Jaison Jacob, Babita R Jose, J. Mathew, “An Antenna Selection Scheme with

MRE and AWC for Decision Fusion in Cognitive Radio ”, Transactions on Emerging

Telecommunications Technologies (ETT), John Wiley & Sons Ltd, 2017. (Indexed in

Science Citation Index Expanded (SCIE), Impact Factor: 1.295).

Author’s contribution: In order to make the decision rule more efficacious, the

adaptive weighted combining approach was enriched with an antenna selection ap-

proach (with multiple regions encoding scheme). The performance of this rule was

then contrasted with other optimal rules and HDC rules in related literature. Four plots

were analysed, viz. Pf versus Pd, Pf versus Pm, Pd versus ‘N’ (N - no. of neighbouring

nodes) and computational complexity. On analysing the result of spectrum sensing, this

enriched approach was observed to have given a better performance compared to the

other rules. The author formulated appropriate theory, did the simulations, wrote the

manuscript and published in a journal (J2).

C3. Jaison Jacob, Babita R. Jose, “Cellular Automata Approach for Spectrum

Sensing in Energy Efficient Sensor Network Aided Cognitive Radio”, Proceedings

of International Conference on Eco-friendly Computing and Communication Systems

(ICECCS-2012), Kochi, August 2012 , pp. 54-61

J3. Jaison Jacob, Babita R. Jose, J. Mathew, “ Cellular Automata Approach for a

Low Power Fusion Center to Evaluate Spectrum Status and Coverage Area in Cognitive

Radios”, Journal of Low Power Electronics, October, 2013; Volume 9, Issue 3, pp. 332-

339, American Scientific Publishers, (Impact factor 0.485).

Author’s contribution: In external sensing, an external agent performs the sens-

ing and broadcasts the channel occupancy information of PUs to SUs. Sensors deployed

in the field perform sensing and transfer the information to the central server and de-

cision is taken at the server. These papers have proposed CA based approaches for

decision fusion. CA is a discrete model used in wide variety of applications. CA based

architectures have already proved its utility in the low power and high speed VLSI

designs. Proposed CA schemes are able to form the coverage area of a PU through de-

cision fusion. It was analysed using path loss model and its performance was compared

with fuzzy based methods and weighted combining methods. Performance on coverage
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area formation, probability of detection (Pd), false alarm rate and computational cost

were analysed. Proposed approaches were performing well in comparison with other

methods. The author formulated appropriate theory, did the simulations, and wrote

the manuscript. The concise version is presented in the conference (C3) and extended

version is published in the journal (J3).

C4. Jaison Jacob, Babita R Jose, J. Mathew, “Spectrum Prediction in Cognitive

Radio Networks: A Bayesian Approach”, 8th International Conference on Next Gener-

ation Mobile Apps, Services and Technologies (NGMAST-2014), Oxford, UK, Septem-

ber 2014, pp. 203-208.

J4. Jaison Jacob, Babita R Jose, J. Mathew, “Bayesian Analysis of spectrum occu-

pancy prediction in Cognitive Radio”, Int. Journal, Smart Science, May 2016, Volume

4, Issue 2, pp. 52-61 Taylor & Francis publication. (Indexed in the Emerging Sources

Citation Index.)

Author’s contribution: In order to save sensing time, a spectrum sensing approach

that rules out certain channels from the sensing exercise and reckons some other chan-

nels in the sensing exercise is proposed. Such an exclusion or inclusion of channels

from the scope viz. skipping a channel from sensing if there is a higher probability

for a channel to be busy and looking out for channels with less chance of being busy

is based on empirical evidence and observed trends. Following such an approach, if

spectrum sensing is limited to only those channels which are having higher probability

of being idle, CR can save lot of time in sensing activity and more time can be spent

on utilising that channel. In this thesis, a prediction based spectrum sensing approach

for CR systems is proposed to improve the throughput of the system. It consists of a

predictor that takes the ‘present’ and ‘prior’ information to predict the probability of

any channel to be idle. Predictor can generate a rank list of suitable channels for future

spectrum sensing. Two approaches based on Bayesian inference are proposed to predict

the future probability. Analysis of the predicted probability by both the methods were

carried out. Channel ranking was formed based on these methods and they were com-

pared with other prediction approaches such as EWMA, HMM and Neural Network.

On analysis it was found that the amount of data required under ‘prior’ and ‘present’

was relatively low for the Bayesian approaches. These analysis and comparisons were

done on both synthetic as well as real data. Real data was obtained through spectrum
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measurement. The author formulated appropriate theory, did the simulations, and wrote

the manuscript. The concise version was presented in the conference (C4) and extended

version was published in the journal (J4).

C5. Jaison Jacob, Babita R Jose, “Spectrum Occupancy Measurement and Analy-

sis in Kochi-India from a Cognitive Radio Perspective”, 6th International Symposium

on Embedded computing & system Design (ISED), December 2016, Patna.

Author’s contribution: In order to analyse the performance of the predictors, a

spectrum occupancy measurement in the 50 MHz to 4400 MHz range was carried out

and its analysis was also done. Spectrum hole patterns from the spectrum occupancy

measurement were used for analysing the predictors. Analysis on spectrum occupancy,

hourly utilisation, received energy levels etc. were carried out. On analysing the spec-

trum occupancy, it was found that Global System for Mobile (GSM) downlink channels

were heavily utilised and others were lightly utilised. On analysing the spectrum holes,

it could be inferred that CRs with different complexity could work in different types

of spectrum holes. It could also be inferred that high end devices with multiple proto-

cols could adapt to any types of spectrum holes with ease. At the same time, there is

a possibility that a low end CR device specific to the type of spectrum hole can exist

and perform. The author prepared the measurement set up, did the data collection and

analysis, wrote the manuscript and submitted in a conference (C5).

1.3 Thesis Outline

Chapter 1 presents the introduction, motivation and author’s contribution.

Chapter 2 illustrates the background concepts related to this thesis. Present alloca-

tion and usage of radio spectrum today and a probable usage pattern of tomorrow are

discussed. Cognitive Radio is presented as a potential device that can handle the fu-

ture spectrum usage in an opportunistic manner. Spectrum sensing aspects and several

methods used in this context are discussed. Spectrum sensing challenges and possi-

ble solutions under various scenarios are reviewed. Relevance of this thesis under the

background mentioned is presented.

In Chapter 3, fusion rules for decision fusion in a distributed sensing scenario is pro-

8



posed and analysed. A fuzzy rule is proposed initially and on observing its weakness,

an SNR based weighted combining approach is proposed and analysed. A realistic sce-

nario is suggested and an adaptive weighted combining is proposed as a modification to

SNR rule to suit this scenario. Its performance has been analysed. In order to improve

its performance further, an antenna selection with multiple region encoding is proposed

and its performance is compared with optimal fusion rules in the literature.

In Chapter 4, a CA based fusion rule is proposed for an external sensing scenario,

where an external agency take care of the spectrum sensing task and share the result

with the CRs in the field. It will also provide the coverage area of a PU. Its performance

is analysed and compared with other fusion rules as well. Considering the properties

of CA and its massive parallelism of information processing will make it a favourite

choice for low power VLSI implementation of Decision fusion blocks for an external

sensing scenario in cognitive radio.

Chapter 5 proposed a general frame work for prediction based spectrum sensing

strategy for throughput enhancement in a CR system. A Bayesian approach is proposed

for predicting the probability of a channel being idle during the next time slot so that

a ranking of channels can be formed. This information will help the CRs to prioritize

channels for spectrum sensing according to the rank of the channels. Its performance

was analysed using artificial as well as real data. In order to analyse the performance of

the predictors with real data a spectrum measurement was carried out and the analysis

of spectrum occupancy and spectrum hole are presented here

Chapter 6 summarizes the work presented in this thesis.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

In future, mobile terminals will be able to communicate with various heterogeneous

systems that are different by means of algorithms used to implement baseband process-

ing and channel coding (ITU-R, 2008). As the number of wireless devices, innovative

services, and mobile users continues to grow, more and more spectrum resources will

be needed to guarantee desired quality of service (QoS) (ITU-R, 1994). In order to

overcome the problem of spectrum scarcity and to support all the incoming services,

the communication terminals need to be intelligent enough to grab the spectrum op-

portunities. Current research is investigating different techniques of using a new type

of radio to reuse locally unused spectrum so as to increase the total system capacity.

The research also aims to develop efficient algorithms to maximize the QoS for the

secondary (unlicensed) users while at the same time minimizing the interference to the

primary (licensed) users. Cognitive radios have been proposed as a means to imple-

ment efficient reuse of licensed spectrum. However, there are many challenges across

all layers of a cognitive radio system design, right from its application to its implemen-

tation (Hayar et al., 2007). A review of existing activities carried out in this direction is

presented in the following sections.

2.2 Radio Spectrum Today and Tomorrow

Radio spectrum is a public resource used for a wide variety of services. Utilising radio

spectrum usually means emitting electromagnetic radiation at radio frequencies (be-

tween 30 kHz and 300 GHz). Regulating radio spectrum is of great significance as

it is needed for economic, societal and technological reasons (Berlemann and Man-

gold, 2009). Spectrum regulation will ensure smooth usage of the spectrum without

any interference to the users. New frequencies need to be allocated for new services.



Video streaming over wireless networks is convincing for many applications, ranging

from home entertainment to surveillance to search-and-rescue operations. Though the

demand for such services is growing day by day, there is no growth in the available

spectrum. On analysing the usage of the allocated spectrum, it is observed that a large

portion of the frequency channels are having very limited usage. At the same time, a

few channels are heavily utilised.

Dynamic spectrum access and spectrum sharing are tools that provide regulators

with the flexibility needed in order to achieve a more efficient spectrum usage. Sec-

ondary users operate with a lower regulatory priority and have to defer to primary users

by vacating spectrum immediately when primary users need the radio resources. Spec-

trum usage rights can be transferred in different ways such as lease, sale, etc. The right

to access spectrum at a certain future point of time for a predefined duration can be

transferred for a pre-agreed price. Underlay and overlay spectrum sharing are the two

approaches proposed for spectrum sharing. Once the regulatory constraints are met,

there is a need for a radio that adapts to the situation and work like a secondary user.

Cognitive radio is proposed as a solution for this. It is a software defined radio with

cognitive capabilities.

2.3 Cognitive Radio

The need for higher data rates is increasing as a result of the transition from voice-only

communications to multimedia type applications. Given the limitations of the natu-

ral frequency spectrum, it becomes obvious that the current static frequency allocation

schemes can not accommodate the requirements of an increasing number of higher data

rate devices. As a result, innovative techniques that can offer new ways of exploiting the

available spectrum are needed. Cognitive radio appears to be a potent solution to this

spectral congestion problem as it ensures opportunistic usage of the frequency bands

that are not heavily occupied by licensed users (Yucek and Arslan, 2009; Gao et al.,

2010). CR is formally defined by the FCC (FCC, 2002) as a radio that can change its

transmitter parameters based on interaction with its environment. The ultimate objec-

tive of cognitive radio is to obtain the best available spectrum through cognitive capa-

bility and reconfigurability. Tasks required for adaptive operation are spectrum sensing,
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Figure 2.1: Cognitive cycle

spectrum analysis and spectrum decision (Haykin, 2005; Mitola, 2000; Akyildiz et al.,

2006).

One of the most important components of the cognitive radio concept is the ability

to measure, sense, learn, and be aware of the parameters related to the radio chan-

nel characteristics, availability of spectrum and power, radio’s operating environment,

user requirements and applications, available networks (infrastructures) and nodes, lo-

cal policies and other operating restrictions (Yucek and Arslan, 2009).

A basic cognitive cycle comprising of spectrum sensing, spectrum analysis and

spectrum decision making is shown in Fig. 2.1. In cognitive radio terminology, pri-

mary users can be defined as the users who have higher priority or legacy rights on the

usage of a specific part of the spectrum. On the other hand, secondary users which have

lower priority, exploit this spectrum in such a way that they do not cause interference

to primary users. Therefore, secondary users need to have cognitive radio capabilities

such as sensing the spectrum reliably to check whether it is being used by a primary user

and to change the radio parameters to exploit the unused part of the spectrum (Yucek

and Arslan, 2009).

2.4 Spectrum Sensing

Spectrum sensing is the ability to measure, sense and be aware of the parameters re-

lated to the radio channel characteristics, availability of spectrum and transmit power,
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interference and noise, radio’s operating environment, user requirements and applica-

tions, available networks (infrastructures) and nodes, local policies and other operating

restrictions. It is done across frequency, time, geographical space, code and phase.

Figure 2.2: Conceptual example of opportunistic spectrum utilisation

The first requirement of a CR is to sense the spectrum hole in the spectrum space.

A spectrum hole or white space is shown in Fig. 2.2. In short, the goal of spectrum

sensing is to decide between two hypotheses H0 and H1

Y (t) =

n(t).....H0(SpectrumHole)

h× s(t).......H1(Occupied)

 (2.1)

where Y(t) is the complex signal received by the cognitive radio device, s(t) is the trans-

mitted signal of the primary user, n(t) is the additive white Gaussian noise (AWGN),

and ‘h’ is the complex gain of the ideal channel.

The biggest challenge related to spectrum sensing is to develop sensing techniques

that are able to detect very weak primary user signals while at the same time being suf-

ficiently fast and low cost to implement (Kang et al., 2008; Zhang et al., 2009; Hoang

et al., 2010). Various sensing methods proposed for spectrum sensing are based on

Energy Detector, Cyclostationarity, Radio Identification, Waveform, and Matched Fil-

tering (Yucek and Arslan, 2009). A study on the performance of energy detection algo-

rithms for spectrum sensing in cognitive radio is presented in (Eerla, 2011). Analysis

of probability of false alarm versus probability of detection, and SNR versus probabil-

ity of detection are carried out. The performance of dynamic threshold on spectrum

detection techniques (matched filter detection, energy detection) in cognitive radio sys-

tems are also analysed. It concludes that the detection performance can be improved
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by using dynamic threshold based spectrum detection algorithm in cognitive radio sys-

tems. Energy detection based on fixed threshold are sensitive to noise uncertainty. A

fractional change in average noise power causes decrease in the performance quickly.

When compared to a fixed threshold approach, dynamic threshold will improve the

spectrum sensing performance. Matched filter is also not sensitive to noise uncertainty.

Detectors that rely on a specific structure of sample covariance matrix are presented

by (Zeng and Liang, 2009b; Axell et al., 2012). Properties of the covariance matrix are

also exploited for detection by (Zeng and Liang, 2009b) and (Zeng and Liang, 2009a),

without knowing the structure. Some communication signals, for example when the sig-

nal is received by multiple antennas (Bianchi et al., 2011; Wang et al., 2010; Taherpour

et al., 2010), impart a specific known structure to the covariance matrix. This property

is exploited here for spectrum sensing. Detection without any knowledge of the trans-

mitted signal is usually referred to as blind detection. Blind detectors are commonly

based on information theoretic criteria, such as Akaike’s information criterion (AIC) or

the minimum description length (MDL) (Wax and Kailath, 1985; Wang and Tao, 2010;

Chiani and Win, 2010; Haddad et al., 2007). If the spectral properties of the signal

to be detected are known, and the signal has otherwise no usable features that can be

efficiently exploited, then spectrum estimation techniques like filter bank based detec-

tors may be preferable (Haykin, 2005; Haykin et al., 2009; Farhang-Boroujeny, 2008;

Thomson, 1982). Wide band spectrum sensing is addressed with multi band sensing

methods (Hossain and Champagne, 2011; Quan et al., 2009; Fan et al., 2011) and com-

pressive sensing methods (Tian and Giannakis, 2007; Tian, 2008; Wang et al., 2009;

Zeng et al., 2011). likelihood ratio test (LRT) is proposed by (Kay, 1998).

The energy detection (ED) based approach is the most common way of spectrum

sensing in high SNR conditions since it does not require any priori knowledge of pri-

mary signals and has much lower computational and implementation complexity (Zeng

and Liang, 2009b; Axell et al., 2012; Zeng and Liang, 2009a; Bianchi et al., 2011; Wang

et al., 2010; Taherpour et al., 2010; Wax and Kailath, 1985; Wang and Tao, 2010; Chi-

ani and Win, 2010; Haddad et al., 2007; Haykin et al., 2009; Farhang-Boroujeny, 2008).

However, energy detection requires perfect knowledge of noise power. Wrong estima-

tion of the noise power leads to ‘SNR wall’ and high probability of false alarm (Cabric

et al., 2006; Sahai and Cabric, 2005; Sonnenschein and Fishman, 1992; Tandra and

Sahai, 2005; Shellhammer and Tandra, 2006). Due to noise uncertainty, the estimated
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noise power could be inaccurate. Hence sensitivity to noise uncertainty is the main

drawback of energy detection method. Furthermore, while energy detection is optimal

for detecting independent and identically distributed (iid) signal (Kay, 1998), it is not

optimal for detecting correlated signal, which is the case for most practical applica-

tions. LRT is proved to be optimal, but in practice, it has some difficulty in implemen-

tation (Zeng and Liang, 2009b). It needs exact channel information and distribution of

PU’s signal and noise. Obtaining channel information and distribution of signal and

noise, before the detection process is difficult. MF-based method requires accurate syn-

chronization and perfect knowledge of the channel responses from the primary user to

the receiver (Cabric et al., 2006; Chen et al., 2007). Otherwise its performance will

be reduced dramatically. It can be made possible only with the cooperation of the pri-

mary users. Cyclostationary detection method needs to know the cyclic frequencies of

the primary users, which may not be realistic for many of the spectrum reuse applica-

tions. Furthermore, this method demands excessive analog to digital converter (ADC)

requirement and signal processing capabilities (Sahai and Cabric, 2005).

2.4.1 Spectrum Sensing Challenges

Figure 2.3: Shadowing and hidden terminal problem

In the case of single node sensing, inaccuracies in detection can be caused by propa-

gation effects such as fading (either fast fading due to multi path effects, or slow fading

due to propagation path blockage or shadowing). Another problem is that of the hidden

terminal; this is defined as an undetectable terminal that will suffer as the result of any
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interference from the cognitive system. Fig. 2.3 shows that CR1 is under shadowing as

it is blocked by a building. CR2 is located outside the coverage area of the PU. CR1

and CR2 will sense that the PU is absent and if they start communication, it is going to

interfere with Primary Receiver. In other words PURX is a hidden terminal for CR2.

2.4.2 Cooperative Spectrum Sensing

Cooperative spectrum sensing (CSS) is proposed as a solution to overcome the chal-

lenges of spectrum sensing. In this case, CRs will share their sensing result and a final

decision will be taken after combining the collected information using suitable fusion

rule. Activities under cooperative sensing are classified into three categories (Yucek

and Arslan, 2009).

1. Centralized sensing:-A central unit collects sensing information from cognitive
devices, identifies the available spectrum, and broadcasts this information to other
cognitive radios or directly controls the cognitive radio traffic.

2. Distributed sensing:-Cognitive nodes share information among each other but
they make their own decisions as to which part of the spectrum they can use.

3. External sensing:- An external agent performs the sensing and broadcasts the
channel occupancy information to cognitive radios.

Centralized sensing is similar to the existing mobile communication systems and

hence the infrastructure requirement is high. We have focused on distributed sensing

and external sensing.

2.4.3 CSS in Distributed Sensing

Cooperative sensing assumes importance because of the fading and shadowing expe-

rienced by the CRs. Distributed sensing helps the CRs to form ad hoc local networks

anywhere at any time based on the need. In CSS, CRs will share their sensing result and

a final decision will be made after combining the collected information using a suitable

fusion rule. Process of making a decision by applying a fusion rule on the collected

independent decisions is called decision fusion.

Observations of a single CR are not always trustworthy because single node sensing

usually gets affected with channel conditions such as noise, fading and shadowing.
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Figure 2.4: General scenario in distributed sensing

Hidden terminals may also get affected with secondary networks if the sensing is wrong.

Such a situation can be overcome with cooperative spectrum sensing (Yucek and Arslan,

2009; Ejaz et al., 2013). In cooperative sensing, each node shares its sensing result with

its neighbours as shown in Fig. 2.4 and a final decision is made by the fusion node after

decision fusion. Generally all CRs perform decision fusion similar to the three fusion

nodes, as shown in Fig. 2.4. In order to reduce the sensing overhead, cluster based

approaches are also proposed in literatures.

Neighbours’ data can be fused using either hard decision combining or soft decision

combining. ‘K-out-of-M’, ‘AND’ and ‘OR’ fusion rules are rules under hard decision

combining. Weighted combining approach is also seen in literature. When the number

of sharing nodes are large, soft decision combining is used. Maximum ratio combining

(MRC), square law combining (SLC) and selection combining (SC) are some of the

soft data fusion schemes proposed in literature (Han et al., 2010a; Simon and Alouini,

2005; Sun, 2011). A weighted combining rule is proposed by (Harrold et al., 2008)

for decision fusion. It also considers the history of spectrum occupancy status for the

decision fusion. Magnitude of the weights used in this case would be inversely propor-

tional to the distance between a node and its neighbours. Analysis about the impact of

weights on the decision fusion is also presented. A fuzzy approach that collects 2-bit
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decision (which indicates the linguistic variable as ‘low’, ‘medium’, or ‘high’) from its

neighbours, to make a cooperative decision is presented in (Matinmikko et al., 2009).

Another fuzzy approach that collects received power from its neighbours for decision

fusion is also seen in the literature (Taghavi et al., 2011). Here the fuzzyfication of

the received power is done during fusion. (Kyperountas et al., 2010) has presented a

soft linear combining along with soft optimal linear combining. A method based on a

deflection criterion, named as linear-quadratic (LQ) fusion strategy is proposed by (Un-

nikrishnan and Veeravalli, 2008). Correlation between the nodes is considered here for

fusion.

Existence of a large number of cognitive networks is highly probable in the fu-

ture communication systems. However, the CSS mechanism generates a large amount

of traffic overhead since each SU needs to transmit its own decision. Therefore col-

laboration of users needs to be refined and optimised (Arshad et al., 2010; Ghasemi

and Sousa, 2007). An energy efficient transmission scheme is proposed by (Xia et al.,

2009). Clustering technique is adopted to save energy consumed in reporting results

and exchanging information. All cognitive nodes are separated into a few clusters and

report local decisions to cluster heads to make cluster decisions through some data fu-

sion method. Cluster decisions are forwarded to the common receiver to decide whether

the spectrum of interest is idle or not. Simulation results demonstrate that the proposed

method shows significant energy saving from 35% to 95% compared with the conven-

tional scheme. Unlike each node do the distributed sensing in (Harrold et al., 2008) only

the cluster head is performing the distributed sensing. An analysis of power consump-

tion, power consumption ratio and the delay performances are compared with respect

to cluster size.

In order to decrease the average number of bits required for transmission, a cen-

soring approach with quantization is presented in (Sun et al., 2007). In quantized data

fusion, received energy level is classified into various bands and hard combining is per-

formed. (Ma et al., 2008) proposed an optimal soft combining and its performance is

compared with softened 2-bit hard combining and quantized data fusion. A genetic al-

gorithm based weighted optimization strategy is proposed by (Arshad et al., 2010) for

soft decision combining.

A theorem to reveal the optimum threshold for general data fusion rules(DFR) is

18



given by (Han et al., 2010b). Then three novel DFRs and related three algorithms are

proposed to efficiently obtain the optimum decision threshold for different objectives.

It is shown through simulations that the proposed DFRs have improved the perfor-

mance of the system. Following rules named min-false-alarm-probability (MFP) rule,

min-miss-detection-probability (MMP) rule and auto-balance (AB) rule are defined and

analysis of various parameters are being carried out to obtain optimum decision thresh-

old. The final numerical results confirm the evident improvement on related optimiza-

tion objective by proposed DFRs.

Multiple antennas based spectrum sensing approaches are proposed by (Taherpour

et al., 2010; Singh et al., 2012) and these approaches showed that by using multiple an-

tennas at the CRs, it is possible to significantly improve reliability of spectrum sensing

with extremely low interference levels to the PU and very low (much less than 0 dB)

signal-to-noise ratio of the PU-CR link. A multiple antennas assisted blind spectrum

sensing method is proposed by (Shen et al., 2012), that does not need any information

of primary user and the noise power.

Double threshold methods in energy detector to perform spectrum sensing are pre-

sented in (J. Zhu and Zhang, 2008; Bagwari and Tomar, 2014; Jiang et al., 2013). Its

analysis were done in AWGN channel and has shown significant improvement in detec-

tion performance. All the above approaches assume that these nodes are located within

the coverage area of the PU. A realistic scenario may have nodes located outside the

coverage area also.

2.4.4 CSS in External Sensing

Another technique for obtaining spectrum information is external sensing. In external

sensing, an external agent performs the sensing and broadcasts the channel occupancy

information to SUs (Yucek and Arslan, 2009). Spectrum sensing mechanism is de-

ployed in the field to sense the spectrum continuously and the results are communicated

to a CN that processes the information and makes a decision on the spectrum holes.

This system will help to have relatively simple and low power design for CR termi-

nals with an extended battery life. In external sensing, a central controller manages

the spectrum sensing through its sensor network. Various types of spectrum sensing
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schemes are reported in (Yucek and Arslan, 2009). In (Visotsky et al., 2005), sensing

results are combined in a central node for detecting TV channels. Hard and soft infor-

mation combining methods are used for reducing the probability of missed opportunity.

In (Lundén et al., 2007), users send a quantized version of their local decisions to cen-

tral unit (fusion center). Then, a likelihood ratio test over the received local decisions is

applied. Bandwidth requirement for reporting will be high in the case of a large num-

ber of users. In order to reduce the sharing bandwidth, local observations of cognitive

radios are quantized to one bit (hard decision) in (Sun et al., 2007). Architecture with

sensor network is proposed by (Cordeiro et al., 2005b). In (Harrold et al., 2008), deci-

sion is formed based on the result of a weighted summation of the neighbouring node’s

results. It includes several weighting factors such as weighting according to distance

to neighbouring nodes, increased influence of positive results and increased influence

of a node’s own result. It considers the results of previous time instants also. Analysis

of this is done with respect to the number of neighbouring nodes considered and the

weights assigned to neighbour’s results.

This thesis has proposed a CA based approach for decision fusion in external sens-

ing. Application of CA in decision fusion is seldom found in the literature, but it is used

in a variety of applications. Theory of cellular automata with regular configuration and

its application is discussed in (Cattell et al., 1999). Application of CA in image pro-

cessing is demonstrated in (Rosin, 2006). Its application into VLSI implementation is

discussed in (Corno et al., 2000; Chuanwu and Libin, 2005; Bhattacharjee et al., 1996;

Tsalides et al., 1991). VLSI implementation of a test pattern generator based on CA

is proposed in (Corno et al., 2000) and it yields 34% reduction in power consumption

without affecting the fault coverage. Pseudo-random sequence generators using cellu-

lar automata and LFSR are implemented on a CPLD and its performance is compared

in (Chuanwu and Libin, 2005; Tsalides et al., 1991). It has shown that the locality of

signal path of cellular automata contributes higher speed than the LFSR. VLSI archi-

tecture for cellular automata based parallel data compression is given in (Bhattacharjee

et al., 1996). The experimental results confirm its superiority in terms of compression

ratio over UNIX Compress and GZIP packages.

In literature (Yucek and Arslan, 2009; Harrold et al., 2008; Han et al., 2010a), it

is seen that the fusion rules employed for decision fusion in external sensing are same

as that of distributed spectrum sensing. However the spectrum holes in a geographical

20



area is not assessed for analysis. Coverage area of a PU is an important factor when we

consider a heterogeneous system with a larger geographical area. This thesis has made

an attempt to obtain coverage area and spectrum holes in both time and geographical

space in an external sensing scenario.

2.4.5 Prediction-based Spectrum Sensing

Various methods are proposed in the literature to sense the spectrum hole. A CR user

develops a spectrum pool consisting of all the spectrum holes in a range of frequencies

and chooses the optimum one for its future usage. Channel capacity can be increased

using proper spectrum sharing policy. CR users are supposed to operate within very

small time slots for both spectrum sensing and for communicating with other users.

Spectrum sensing, spectrum decision and spectrum sharing will lead to considerable

time delays. If it takes more time for these activities then the time available for data

communication will be less and the throughput of the system will also come down.

Spectrum prediction will be an alternate approach to save sensing time. If there is a

higher probability for the channel to be busy, CR can skip that channel for sensing pur-

pose. It can look for channels with less chance of being busy for spectrum sensing.

Prediction methods are used to predict the usage behaviour of a frequency-band based

on channel usage patterns of PU so that a CR can decide whether or not to move to

another frequency band. Spectrum prediction in CR networks is a challenging problem

that involves several sub topics such as channel status prediction, PU activity predic-

tion, radio environment prediction and transmission rate prediction (Xing et al., 2013).

Prediction-based spectrum sensing, (Akbar and Tranter, 2007) prediction-based spec-

trum decision, and prediction-based spectrum mobility (Tumuluru et al., 2012) have

been presented in the literature. Several prediction methods also have been proposed

in literature. Predicting the duration of spectrum holes of PU using hidden Markov

model (HMM) is proposed in (Tumuluru et al., 2012). The authors have assumed that

the channel state occupancy of primary users are to be Poisson distributed and based on

the prediction, a CR can continue to use a channel or can be relinquished. A linear filter

model followed by a sigmoid transform is used by (Jianli et al., 2011) for spectrum pre-

diction where spectrum occupancy is characterized as binary time series. The authors

have considered two types of spectrum occupancy schemes, viz. deterministic and non-
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deterministic. These models have been used to provide predicted information to SU’s

‘next-step decision’. Multilayer perceptron (MLP) based approaches for spectrum pre-

diction are presented in (Chen et al., 2011; Griffiths et al., 2008). The parameters of

the MLP predictor are updated using back propagation (BP) algorithm. Exponential

weighted moving average (EWMA) approach is proposed in (Shi et al., 2008). Here

it uses the previous status of spectrum occupancy to predict the probability of the next

state. A modified HMM method for channel state prediction is proposed in (Akbar and

Tranter, 2007) and its performance is compared with 1-NN approach. Implementation

of hidden Markov model (HMM) spectrum prediction algorithm is presented in (Black

et al., 2012) with some analysis. Beta distribution is considered by (Marshall, 2008)

to represent the channel occupancy pattern of PU and it is validated by (Ghosh et al.,

2010).

Spectrum Occupancy Analysis

Prior information on the spectrum occupancy status is a very useful data for prediction

based-spectrum sensing. Also a proper understanding of current spectrum usage can

be extremely useful, not only to the research community in order to develop spectrum

usage models, but also to policy makers in order to define adequate Dynamic Spectrum

Access (DSA) policies for improving the exploitation of the currently underutilised

spectral resources (Martian et al., 2010b). In order to determine the spectrum utilisation,

several spectrum measurement campaigns covering wide frequency ranges as well as

some specific licensed bands have already been performed in many countries under

diverse locations and scenarios (Martian et al., 2010b; López-Benítez and Casadevall,

2010; McHenry et al., 2006; Wellens et al., 2007; Islam et al., 2008; Martian et al.,

2010a; Patil et al., 2011b; Jayavalan et al., 2014; Marţian et al., 2010; Naik et al.,

2014; López Benítez and Casadevall Palacio, 2010). Analysis of spectrum occupancy

in various dimensions is also being carried out. Measurements of the radio environment

can provide valuable insights into current spectrum usage. This information will be very

useful for dynamic allocation of frequencies for future communication systems. Prior

knowledge on the usage pattern of PU will help to develop spectrum usage models

and more efficient CR techniques. Accuracy of usage pattern is a concern when the

PU signal level is weak. Choice of suitable thresholds for energy detection is also an
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important task. It is seen in (Martian et al., 2010a) that measured occupancy varies with

the threshold used. It is also observed that the average noise floor in a frequency band

is varying with time. It is also seen that average noise level is varying with frequency

as it moves from one end to the other end of the spectrum.

2.5 Spectrum Analysis and Decision Making

Objective of spectrum analysis is to find out the optimal communication protocol and

changing frequency or channel, based on the situation of several factors in the external

and internal radio environment. It is also called as channel estimation. It analyses the

radio environment such as radio frequency spectrum usage by neighbouring devices,

user behaviour and network state. Spectrum analysis will help to take proper spectrum

decision so that resource utilisation of the CR system becomes optimum. Spectrum

decision making aims at reconfiguring the protocol and channel, in order to adapt to

changing environment. A CR will have to adjust the output power or transmission

parameters (such as modulation formats, variable symbol rates, and different channel

coding schemes) and characteristics. It is expected that CR will have multiple antennas

for interference reduction, capacity increase and range extension.

(Subramanian and Rimal, 2011) have proposed resource allocation algorithms for

CR and have carried out its performance comparisons. These algorithms attempt to

maximize the total throughput of the CR system (secondary users) subject to the total

power constraint of the CR system and tolerable interference from and to the licensed

band (primary users). It was assumed that a base station is serving as both primary and

secondary user. Keeping the interference threshold constant, impact of average data rate

on the total power requirement was analysed. They have observed that average data rate

increased with the increase in CR power till the power constraint is maintained, after

which it ceased to increase and became constant. Keeping the power constant, impact

of average data rate on the interference threshold was also analysed. They have further

observed that the data rate increases with the increasing threshold because there was still

some room for interference to occur. Particle swarm optimization (PSO) algorithm and

genetic algorithm (GA) were implemented for resource allocation and its comparisons

were carried out. It has been concluded that PSO algorithm is best suited for dynamic
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resource allocation in cognitive radio systems where the resources are allocated in a

dynamic environment within the given constraints of power and interference in a very

optimal manner.

Another resource allocation work that tries to optimize bit rate, power efficiency and

spectrum usage is proposed by (Venkata, 2011). He has proposed a two-step scheme

with low computational complexity, in which sub-carrier and power allocation are op-

timized separately. Simulation results show that when performing channel estimation

with a larger number of training symbols, the sum capacity is largely increased. The

system performance will degrade when the transmitter has only the partial channel state

information (CSI). In order to maintain the system performance, an appropriate trans-

mission schedule based on partial CSI is needed. However, the optimal resource allo-

cation in multi user orthogonal frequency division multiplexing (MU-OFDM) systems

based on partial CSI is still an open issue. The effects of partial CSI on the resource

allocation problem in MU-OFDM based cognitive radio systems is analysed. Based

on obtained partial CSI at the transmitter, the average BER should satisfy the given

BER target during transmission. As the function of average BER is too complex, a

Nakagami- distribution is used to approximate the original function. A simple func-

tion, which is closer to the original function, is then derived. The resource allocation

problem in MU-OFDM based cognitive radio systems is computationally complex. In

order to make the problem tractable, a simple sub-carriers allocation (SA) algorithm is

applied for sub-carrier allocation. Then memetic algorithm is applied to solve the bits

allocation problem. Simulation shows that partial CSI has great impact on the wireless

transmission. In addition, due to user diversity, the total bit rate decreases when the data

rate requirements become less uniform.

Game theory based resource allocation algorithm is proposed by (Leshem et al.,

2012). They use the well known game theoretic Gale-Shapley stable marriage theorem

from game theory as a basis for spectrum allocation in cognitive radio networks. They

also provide tight lower and upper bounds on both the stable allocation and the optimal

allocation performance. A novel opportunistic multichannel medium access control

technique that achieves stable allocation within a single CSMA contention window is

also proposed. In order to overcome practical implementation issues, they have also

proposed new algorithms which have lower implementation complexity.
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A method to predict the data rate in cognitive radio system is proposed by (Hire-

math, 2010). Capability of radio configuration is indirectly estimated here. Future of

wireless communications will be characterized by highly varying environments with

multiple available radio access technologies exhibiting diverse features. Therefore in

such an unfamiliar landscape, cognitive radio systems are expected to play an excep-

tional role by adding an inherent ability to perceive, think, decide, learn and adapt to

the changing environmental conditions. In order to behave as an intelligent radio, CR

needs learning techniques based on artificial intelligence techniques. (Hiremath, 2010)

has proposed an adaptive neuro-fuzzy inference Systems (ANFIS) learning technique in

channel estimation stage of cognitive radio to predict data rate of particular radio con-

figuration. By predicting data rate of particular radio configuration, proposed ANFIS

based technique can facilitate the cognitive terminal in making its decision regarding the

configuration in which it should operate (selecting the best among a set of candidates).

Capacity of a partially cognitive radio is represented with a mathematical model

by (Chung et al., 2012). In this setup, the transmitter of the cognitive radio has only

a portion of legitimate user’s message. As the extent of cognition reduces, the chan-

nel becomes a conventional interference channel. As the extent of cognition increases,

the channel resembles an interference channel with degraded message sets. Thus, the

partially cognitive radio model lies in between these two extremes and encompasses

both as special cases. For the general discrete memoryless interference channel (IFC)

setting, an outer bound for the capacity region and achievable rate region under as-

sumptions of ‘weak’ interference is obtained. An outer bound on the capacity region of

a Gaussian partially cognitive radio channel is also obtained. An achievable region is

obtained by combining Han-Kobayashi coding strategy and dirty paper coding for the

Gaussian channel.

A robust, distributed power control algorithm designed with low implementation

complexity for CR networks through reinforcement learning is proposed by (Zhou et al.,

2012). It does not require the interference channel and power strategy information

among CR users (and from CR users to PUs). A design of algorithms for rendezvous

without using any centralized controller or common control channel (CCC) is proposed

by (Liu et al., 2012). A two step (hybrid) scheduling method is proposed by (Li and

Nosratinia, 2012) that pre-select a set of secondary users based on their interference on

the primary, and from among them selects the user(s) that yield the highest secondary

25



throughput.

2.6 CRN Security

There are two types of architectures in CRN, centralized and distributed. And there

are two types of access behaviours, cooperative and non-cooperative. The centralized

and cooperative types are more vulnerable. In the cooperative approach, attacking one

node and taking control of that node will impact the network because it will send spoof

packets to other nodes. In centralized approach, if the attacker can manipulate the com-

mon control channel, then this makes the whole network under control of the attacker.

On the other hand, in distributed and non-cooperative approaches, effect of attacking a

node will not propagate to other nodes (Saifan, 2010).

Security threats that raise from the use of cognitive technology is described by

(Fragkiadakis et al., 2013). They fall into two categories. First category represents

threats to PUs and cognitive users. Malicious cognitive users can cause severe denial of

service (DoS) attacks in primary networks through interference. The second category

of security threats are those related to CRNs and the respective attacks against them.

Primary user emulation attacks (PUEA), spectrum sensing data falsification (SSDF) at-

tacks, CCC attack, beacon falsification (BF) attacks, cross layer attacks and software

defined radio (SDR) attacks are the various types of possible attacks listed. There are

also many proposals described to overcome these threats. But there is opportunity to

contribute more in this area to prevent possible threats. Counter measures for Most

Active Band attack is proposed by (Hu et al., 2012).

Anti-jamming defence for a cognitive radio network with multiple available chan-

nels is investigated in (Wu et al., 2012), by modelling the interaction between a sec-

ondary user and attackers as anti-jamming games and studying the optimal strategy and

the equilibrium of the games. In the scenario where both the secondary user and at-

tackers are equipped with a single radio and access only one channel at any time, the

secondary user pro-actively hops between channels as a defence strategy. It is shown

that the Markov decision process (MDP)-based hopping is a good approximation to the

game equilibrium. Moreover, in order to gain knowledge about the adversaries, learning

schemes are proposed for the secondary user, based on maximum likelihood estimation
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and Q-learning. Extending the anti-jamming problem to the scenario where the multi-

radio secondary user can access multiple channels simultaneously, they have redefined

the game with randomized power allocation as the defence strategy. The defence strat-

egy obtained from the Nash equilibrium is optimal in the sense that it minimizes the

worst-case damage caused by attackers.

A spectrum pricing strategy for CRN is proposed in (Kasbekar and Sarkar, 2012),

where multiple primary and secondary users in a region and primaries can lease out

their unused bandwidth to SUs in exchange for a fee. This gives rise to price com-

petition among the primaries, wherein each primary tries to attract SUs by setting a

lower price for its bandwidth than the other PUs. They have analysed price competition

among multiple primaries in a CRN in the presence of spatial reuse in the symmetric

setting in which each primary has unused bandwidth with the same probability. It is

proved that there exists a unique symmetric Nash equilibrium (NE) in this case, and

have characterized this symmetric NE as a solution of a set of non-linear equations. It

is assumed that each primary knows the statistical distribution governing the bandwidth

availabilities of other primaries and the number of SUs at each node. Characterization

of the NE when primaries have imperfect knowledge of the above distributions, and

seeking to enhance their knowledge using learning strategies, remains open. Finally,

they have only characterized the NE strategies in a one-shot game. Primaries may play

this game repeatedly and may use their experience from previous slots and a learning

algorithm to choose their strategy in the current slot. An investigation into whether the

symmetric NE for the one-shot game constitutes a steady-state outcome of some natural

learning algorithms in such a setting is an interesting direction for future research.

Application of WSN for spectrum sensing in CR is proposed by (Akan et al., 2009).

Application of wireless sensor network is also proposed by (Gao et al., 2010). In

traditional spectrum sensing schemes, SUs are responsible for the spectrum sensing

which could be very time and resource consuming. It leads to a great deal of ineffi-

ciency in spectrum usage and introduces many practical challenges. To tackle these

challenges and leverage the spectrum opportunity more efficiently, a new system that

provides a spectrum sensing service for SUs using dedicated wireless spectrum sensor

networks (WSSNs) is proposed here. They have studied the sensing channel assignment

for spectrum sensing using WSSNs in CRNs and formulated the problem as the sensing

effectiveness maximization problem (SEMP) and proved that SEMP is NP-complete.
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Based on the key factors influencing the performance for single channel sensing, sens-

ing channel assignment for spectrum sensing (SCAS) algorithm is proposed. Evaluation

results show that for both the scenarios of given deployments and manual deployment,

SCAS is able to sense more channels. The improvement on the sensing effectiveness

is up to 300% comparing to other simple alternatives. This demonstrates that SCAS

hits a better trade-off between the sensed channel number and the accumulated sensing

effectiveness that can be achieved. The assumption made in the formulation may not

always be valid in reality. A more practical channel utilisation situation in a large scaled

field may be considered. Also a more comprehensive model for describing the actual

usage of a PU channel may be included.

2.7 Relevance of Proposed Work

Cooperative spectrum sensing has been widely accepted as the solution to overcome

false sensing due to fading, shadowing etc. Many fusion rules are proposed in the liter-

ature for decision fusion under cooperative sensing. The network scenario considered

in all the cases, assumes that all the CRs are under the coverage area of a PU for the

channel under consideration. Probability of detection and false alarm rate are also de-

fined for such a scenario. It is also noted that location of the nodes (either a fusion node

or a neighbour node) with respect to the PU is not given much attention. It is felt that

knowledge about the coverage area of a PU can have significant contribution in mak-

ing a right decision. i.e., distance between Tx and Rx also needs to be considered for

decision making. Aggregating the neighbours result need not guarantee right decision

every time under CSS. Location of the fusion node and its neighbours with respect to

PU also needs to be considered in setting proper weightage to individual results. Given

the need for a cost effective system, two categories of CSS viz. distributed sensing and

external sensing are given importance in this work.

Under this situation, we have proposed a scenario that faithfully represents a realis-

tic network under distributed sensing and proposed a decision fusion approach that will

adapt according to the situation and carry out more accurate decision fusion. This ap-

proach is evolved through various stages of modification and analysis. Its performance

is compared with optimal rules available in the literature and presented in chapter 3. As
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far as decision fusion is considered, process involved in centralized sensing and external

sensing is similar and difference is present only in its administration. In fact coverage

area of all the PUs in the field with respect to time have to be available at the server

so that this information can be shared with CRs in the field. We have proposed and

analysed a cellular automata approach for decision fusion under external sensing, that

gives a realistic picture about the coverage area of a PU. It is presented in chapter 4.

Prediction based spectrum sensing is available in the literature as a new development.

History of spectrum occupancy pattern of PUs are used here to predict the best available

channels for the next time slot, so that spectrum sensing can be limited to only few chan-

nels. This will improve the throughput of the network. We have proposed a Bayesian

approach for spectrum prediction and its performance is analysed with the real data ob-

tained from the spectrum measurement carried out in this regard. Along with Bayesian

predictor, an analysis of spectrum occupancy for a range of 50 MHz-4.2 GHz is also

presented in chapter 5.

2.8 Chapter Summary

In this chapter, we have presented an overview of the related research in the field of

spectrum sensing for cognitive radio. Scarcity in electromagnetic spectrum is high-

lighted by stating the present licensing policy of the spectrum and the spectrum allo-

cation for various applications. Since the utilisation of spectrum is very less, dynamic

reuse of the spectrum is proposed as the spectrum strategy for tomorrow. Cognitive

radio is introduced as the potential device that can perform this dynamic usage of the

spectrum. Spectrum sensing is an important task in this regard and CSS is proposed

as one of the best methods to obtain the right sensing. Decision fusion is a task to be

carried out to finalize the presence of a PU. Previous works in the area of fusion rules

and prediction based spectrum sensing are also analysed. Finally the relevance of our

proposed work in the light of previous research works is presented.

29



CHAPTER 3

DECISION FUSION IN DISTRIBUTED SENSING

3.1 Introduction

Dynamic spectrum sharing by primary and secondary users will be an essential compo-

nent of any spectrum usage policy, in order to provide new services and technologies

in a wireless communication scenario. This is relevant because at present, most of the

available spectrum is licensed to primary users. Considering the spectrum utilisation at

various frequency bands, there appears to be an opportunity to reuse the unused spec-

trum for future uses. Current research is investigating different techniques of using

cognitive radio to reuse locally unused spectrum so as to increase the total system ca-

pacity. Various methods are proposed in the literature to sense the spectrum occupancy

status of PUs. The biggest challenge related to spectrum sensing is in developing sens-

ing techniques which are able to detect very weak primary user signals while being

sufficiently fast and low in cost to implement.

Considering the signals at low SNR and the channel conditions it is felt that Fuzzy

approaches may give a reasonable decision fusion under CSS. From the literature (Mat-

inmikko et al., 2009; Taghavi et al., 2011), it is seen that fuzzy approaches tend to give

a better detection level at low SNR. Since SNR of the CR is a key parameter that re-

flects the strength of the signal, a Fuzzy rule for decision fusion (with SNR and signal

strengths of the neighbours as the inputs) was proposed and analysed in Section 3.2. On

analysing the performance of this rule, it was found that even though the probability of

detection was very good, computational time is much high. This may not be desirable

in CR systems as it may reduce the throughput of the system.

Another option is a weighted combining approach with SNR as one of the key com-

ponent and this is analysed in Section 3.3. The performance of the rule was also anal-

ysed under various scenarios of channel conditions. While dealing with the scenarios,

it was felt that the decision fusion at the boundaries of the coverage area of a PU also

needed to be analysed. Hence a new scenario was considered for analysis with an



adaptive weighted combining approach. The analysis and observations are presented in

Section 3.4.

In order to further improve the performance of the system an antenna selection

approach with multiple region encoding scheme for SU reporting is included along

with the adaptive weighted combining and presented in Section 3.5. Its performance is

also analysed and compared with other optimal rules available in the literature.

3.2 A Fuzzy Approach to Decision Fusion under CSS

3.2.1 System Model

In this work, it is considered that a CR network consists of one PU and a large number

of CRs in the field. It is assumed that the PU operates only on a particular channel and

the CR terminals are trying to find out the spectrum holes in that channel. Each node

performs spectrum sensing and the received signal energy level is shared among its

neighbours. With the help of suitable fusion rule, final decision is made after decision

fusion. Proposed fusion rule (Fuzzy approach) is given in Section 3.2.2.

It is assumed that data from PU is BPSK modulated and transmitted over a channel

where it gets affected by white Gaussian noise and Rayleigh fading. CR terminals act

as the receiver that checks the presence of PU’s signal in the specified band. Energy

detection method (Nallagonda et al., 2012) is used to detect the received signal at the

receiver end and is shown in Fig. 3.1. It is a non-coherent detection method that detects

the primary signal based on the sensed energy. Due to its simplicity and no necessity

of prior knowledge about PU, energy detection has become the most popular sensing

technique.

Figure 3.1: Energy detector

In order to measure the energy of the received signal, the output of band pass filter

with bandwidth ‘W’ is squared and integrated over the observation interval ‘T’. Finally

the output of the integrator is compared with a threshold to detect whether the primary
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or licensed user is present or not. It can also be computed in frequency domain by

averaging bins of a fast Fourier transform (FFT). In this, the processing gain is propor-

tional to FFT size ‘N’ and the averaging time ‘T’. Increase in the size of FFT improves

the frequency resolution which is helpful in detecting narrow band signals. Likewise

a decrease in averaging time will improve the SNR by reducing the noise power. It

estimates the presence of the signal by comparing the energy received with a known

threshold derived from the statistics of the noise.

3.2.2 Proposed Fuzzy Rule

Spectrum sensing part in CR systems identifies the presence of the PU. A geographical

area consisting of a single PU and a random number of CR terminals are considered

here. It is assumed that all the CR terminals are within the coverage area of the PU. In

CSS, each CR consider its neighbours data also for making a final decision.

Here in the first phase, depending on the received energy at each node CRs make an

individual decision on the spectrum status as ‘Low’, ‘Medium’ or ‘High’. In the second

phase it performs CSS by taking these individual decisions from its neighbours. Fuzzy

logic is used for decision fusion. Main highlight of this method is that it considers

the SNR of the decision making node also in the decision making process. Each CR

terminal periodically observes the power of the received PU signal and records the

SNR at the respective instants as well. For a CR to make a final decision about the

status of the PU, it considers its own data of power & SNR and power from two of

its nearest neighbours. Thus a total of four inputs are considered for decision making.

Model of a fuzzy fusion center is shown in Fig. 3.2, where CR1 corresponds to decision

making node and CR2 and CR3 are its neighbours. For fuzzification of power and SNR,

three membership functions are defined for each inputs. Membership functions that are

widely used in the literature are considered here. The membership functions represent

three levels viz. ‘Low’, ‘Medium’ and ‘High’ and are as shown in Fig. 3.3. These levels

were set after analysing the range of the received signal parameters, from the channel

model considered for simulation, after numerous trials.

However, the output is a binary parameter which denotes the presence of the PU by

‘1’ and the absence of the PU by ‘0’. The fuzzy rule base contains ‘IF-THEN’ clauses
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Figure 3.2: Fuzzy fusion center

which are designed in such a way that the priority of node’s own decision gets priority

based on its SNR value. For example, if the CR terminal detects high power and high

SNR, then the output is ‘1’ regardless of the data on power that has been collected from

the neighbours. The rule base is defined for all the possible combination of inputs. With

four inputs and three possible levels for each input, there are 81 possible combinations.

A part of the rule base is shown in Table 3.1.

Figure 3.3: Membership function [SNR]

Table 3.1: Fuzzy rule base

Power CR-1 SNR CR-1 Power CR-2 Power CR-3 Output
Low Low Low Low No
Low Low Medium High No

Medium Low Medium Low No
Medium High High High Yes

High Medium Medium Medium Yes
High High High High Yes
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3.2.3 Results and Discussion

The proposed Fuzzy rule is evaluated by a simulation done in Matlab. It is considered

that a PU located at the center of an area under consideration and 25-50 CR terminals

are positioned randomly around the PU. One of the CR terminals is selected randomly

and the power and SNR of that CR terminal are recorded. The powers received by the

neighbouring two CR terminals which lie nearest to the selected terminal are fetched

by the selected CR. The four parameters, power and SNR of CR1, power of CR2 and

power of CR3 are the input parameters for the fuzzy based decision making stage. For

simulation, similar SNR is considered for all the nodes which are located nearby. Here

each node will calculate the energy of the received signal and based on the two threshold

values it decides on the output as ‘Low’, ‘Medium’, or ‘High’. This information is

passed on to neighbouring nodes as two bit information. Each node will take the result

of two neighbouring nodes, own decision and SNR to make final decision. Performance

of this proposed decision fusion method (named as Fuzzy-SNR) is evaluated at various

SNR values and it is compared with ‘OR’- rule, ‘AND’- rule and single node decision.

False detection refers to the situation in which the spectrum is free (PU is not using the

spectrum) but the decision made by the system indicates that the spectrum is in use by

the PU. The probability of false detection was computed by running the program 100

times and counting the number of times the PU was falsely detected when it was not

using the spectrum. In order to use ‘AND rule’ and ‘OR rule’ the two bit decision is

converted into single bit decision by setting ‘Low’ as not sensed and others as sensed.

Performance comparison on probability of false detection is shown in Fig. 3.4.

The probability of false detection was observed for SNR values between -25 dB

and 10 dB, and the fuzzy based system returned the probability of false detection as

almost 0 in the given range of SNRs, which is ideal. It is found that at lower SNRs also,

this proposed method gives a good result. Above results are obtained based on fixed

threshold pairs for all the cases. Change in thresholds might give a change in the result.

These threshold values were chosen based on the average range of energy level received

at the receiver.

Successful detection refers to the situation in which the spectrum is being used

by the PU and the decision made by the CR is correct, indicating that the spectrum

is in use by the PU. The probability of detection was computed in the same way as
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Figure 3.4: Probability of false detection

Figure 3.5: Probability of detection

that of probability of false detection and the same thresholds were used. Performance

comparison is presented in Fig. 3.5. Even though the detection rate depends on the

Rayleigh channel parameters used and the filtering process, relative performance of

fuzzy based method is giving a better detection rate.

In both the cases the performance of our proposed fuzzy based approach is better.

Conversion of two bit decision to one bit decision for the implementation of ‘AND rule’

and ‘OR rule’ are supposed to help either probability of false detection or probability of

detection. And it is seen that the proposed fuzzy based approach is giving a better result

compared to other cases. This is because of the fuzzy nature in the decision making that

gives a favourable outcome. Effect of SNR has also contributed in giving a better result.
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Figure 3.6: Time taken to perform decision fusion. [Machine spec: Intel(R) Core (TM)
2 Duo CPU, T7250 @ 2.00 GHz, 777 MHz,1.95 GB RAM]

Overall performance can be even improved with the choice of an optimum threshold.

A comparison on the time taken for data fusion is analysed in Fig. 3.6. It shows that

the performance of fuzzy rule consumes more time compared to other rules. This is

because of the size of the rule base, which is to be evaluated for taking a decision.

3.2.4 Section Summary

A modified fuzzy approach is proposed for decision making in cooperative sensing. It

has been simulated under AWGN channel with Rayleigh fading. BPSK modulated bit

stream is transmitted through the channel and at the receiver energy detector is used

to sense the status of the spectrum. SNR of the receiver is included here in making

a decision fusion at the CR. It was found that the performance of the proposed fuzzy

based approach is giving a better performance compared to other methods considered.

However, the system has its disadvantages. Due to its wide range of possibilities the

computation time for a fuzzy decision is high compared to other systems. Furthermore,

increase in number of inputs will increase the number of rule base exponentially, which

is a cumbersome task to the system designer. In order to use this for cognitive radio

applications, fast approaches need to be developed. Inclusion of other inputs such as

distance between sharing nodes will help this rule to perform even better in all scenarios.
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3.3 SNR Based Rule for Decision Fusion

It was observed that proposed Fuzzy-SNR approach was relatively doing well, from

the point of view of probability of detection. But the computational complexity was

high. Better throughput can be achieved only if the spectrum sensing time is small.

To overcome the limitation of the Fuzzy-SNR rule, a weighted combining approach is

proposed and analysed in this section. The performance of the rule was analysed under

shadowing using the ‘path loss’ model. Various scenarios of channel conditions such as

rural, urban and dense urban were considered for the analysis. Effect on ‘the probability

of detection’ on account of each of the likely dependencies viz. the number of sharing

nodes, varying environmental parameters, self-weighting factor, positive weighting fac-

tor, receiver density etc. were analysed. Best possible weighting factors that gave the

right decision were then assessed and estimated.

3.3.1 System Model

In this section a CR network consisting of ‘M’ primary users and ‘N’ CR users are

considered. It is assumed that one licensed frequency channel is allocated to each pri-

mary user. It is also assumed that there are M orthogonal frequency channels and cross

channel interference is negligible. Each CR user knows the total number of frequency

channels in the network and communicate each other periodically. The interference to

a primary user by a CR user occurs only when the CR user transmits over the channel

that is being used by that primary user. A simulation set up based on path loss model is

considered to analyse the effect of single node sensing and distributed sensing at chan-

nel conditions such as rural, urban and dense urban. All the estimations are based on

the practical link budget design using path loss model presented by (Rappaport et al.,

1996). The model was designed for simulation of primary signal transmitters, and CR

receivers within a 2-dimensional square spatial area with Cartesian co-ordinates. The

number of transmitters and receivers are also variable. Typical values used were 5

transmitters, 100 receivers, within an area of 1 - 4 sq. km.

Propagation path loss according to distance from the transmitter was defined ac-
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cording to the equation 3.1 as given by (Harrold et al., 2008).

PLdB = 10nlog10d+ 20log10

(
4π

λ

)
+XdB (3.1)

where PL (dB) = Path loss in dB, n = Path loss exponent, d = Distance from trans-

mitter in meters, λ = Wavelength of transmitted signal in meters, X (dB) = Shadowing

factor. Thus the received power Pr (in dBW) at a receiver at a distance ‘d’ meters from

a transmitter with transmit power Pt (in dBW) will be

Pr(dBW ) = Pt(dBW ) − PL(dB) +Gr(dBi) (3.2)

where Gr represents the receiver antenna gain (typically 2 dBi was used). This

value of received power for each receiver is used in the sensing calculations. A suitable

value for ‘n’, the path loss exponent, was required for various types of environment.

In realistic scenarios this value will vary according to the following Table 3.2 as given

in (Rappaport et al., 1996).

Table 3.2: Typical values of Path loss exponent used for simulation

Environment type Value of Path loss exponent
Free Space LOS ( rural) 2

Urban 2.5 - 3.5
Dense Urban 3.5 - 5

The parameter ‘X’ in equation 3.1 is a factor which models the shadow fading ef-

fects. It is implemented as a log-normal random variable as shadow fading has been

proven to exhibit a log-normal distribution due to the differences in the density of ob-

jects blocking the line of sight path between receivers at different locations. The log-

normal distribution describes the random shadowing effects which occur over a large

number of measured locations which have the same T-R separation (Rappaport et al.,

1996). The value of ‘X’ depends on its standard deviation ‘σ’ (quoted in dB, since ‘X’

is log-normal in distribution), which typically varies between 6 - 10 dB across different

environments according to (Harrold et al., 2008; Algans et al., 2002) as given in the

Table 3.3.

We have considered the standard broadcasting systems such as VHF TV and FM

Radio, and mobile communication systems (GSM) used in India. The parameters of the
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Table 3.3: Typical values of σ for different environments

Environment type Shadowing standard deviation
Suburban 6 dB

Urban Microcell(d < 1 km) 8 dB
Urban Macrocell(d > 1 km) 10 dB

main primary systems used in the simulations are given in the following Table 3.4

Table 3.4: Main primary systems simulated

System System Type Tx. Power Frequency BW
1 Analog TV (PAL) DD National 40 dBW 203.25 MHz 7 MHz
2 Analog TV (PAL) DD News 40 dBW 217.25 MHz 7 MHz
3 GSM -900 Band Cell 10 dBW 935.20 MHZ 200 kHz
4 FM Radio Kochi - A 38 dBW 102.30 MHz 200 kHz
5 FM Radio Kochi - B 40 dBW 107.50 MHz 200 kHz

Model Verification

Fig. 3.7 is an example of calculated received power vs distance from an analog TV

transmitter (according to equation 3.2), in order to verify the path loss parameters of

equation 3.1 with n = 4.5, σ = 10 dB, Gr = 2 dBi. The random fluctuations are due

to the log-normal shadowing effects, and the overall regression in received power with

increased distance is due to the path loss, the slope of which is determined by the path

loss exponent. This can also be compared with experimentally gathered path loss data

as in (Rappaport et al., 1996).

3.3.2 Spectrum Sensing Strategy

Single Node Sensing

The basic sensing function at each receiver was implemented by setting a decision

threshold in decibels relative to the noise floor. Each receiver will calculate the received

power at the specific time steps and if the calculated power is greater than the noise

floor, which is related to the bandwidth of the channel, then the channel is considered

as sensed. Noise floor is calculated as N(dB)=10log10(kTB)+NF, where k-Boltzmann

constant, T-Temperature (Kelvin), B-Bandwidth (Hz), NF-Receiver Noise Figure(dB).

39



Figure 3.7: Calculated received power vs distance from an analog TV transmitter

Distributed Sensing

Here the decision is made based on the single node sensing information collected from

various cognitive receivers. A limit is set on the number of neighbouring nodes to share

information with. The effect of varying the number of neighbouring nodes is explored

in the different environments. Each node will broadcast its current set of results ( single

node sensing data and the SNR ) within its group which is based on the distance between

each receivers. Individual nodes will use these data and their own data to determine the

existence of the primary user. A weighting factor is applied to each neighbouring nodes

according to the SNR level at each node. All the data are given a specific weightage

based on its relevance. A majority polling system is used to determine the likelihood of

a primary user. The final sensing algorithm can be represented as in equation 3.3.

Y =
n=N∑
n=1

QnSn +XW (3.3)

where N - Number of neighbouring nodes considered, Qn - Sensing result from neigh-

bouring node ‘n’ received as 1 or -1, Sn = snr*positive weight [Weighting factor ac-

cording to the SNR of neighbouring node ‘n’ and the positive weight], X - Node’s own

result, W-Weighting applied to the nodes own result, Y - Final result, where a positive
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value indicates that a signal has been detected, and a negative value indicates that no

signal has been found. Since SNR is used to form the weight vector, it is expected that

false results will get a reduced weight.

3.3.3 Results and Discussion

In this section, the performance of the proposed distributed spectrum sensing strategy

is analysed through Matlab simulation. Five primary systems were considered for sim-

ulation. The number of CR users considered is 100. For the sake of simplicity, all

transmitters are located at the center point. Receivers are located with a random distri-

bution within an area of 1 - 4 sq.km. It is assumed that each receiver moves in a random

direction to a specific distance at each time instance.

Effects of Environmental Changes on Probability of Detection

A distribution of 100 receivers in an area of 4 sq. km. was considered in each case. The

results were obtained for various environmental parameters as defined, in Table 3.5

Table 3.5: Scenarios defined to simulate
effects of varying Environmental parameters

Scenario n (PLE) σ (dB)
Rural 2 6
Urban 3 8

Dense Urban 4 10

Single node sensing result shown in Fig. 3.8 indicates 100% detection in the ru-

ral environment. It can be said that this will be true in real scenarios also since the

shadowing effect will be less in a rural environment.

In the case of urban environment only FM channels are sensed properly. This is

because the noise floor of FM channels are less compared to TV channels. Low trans-

mission power of GSM transmitter also contributed to its low detection rate.

In a dense urban environment, 100% accuracy is not obtained in any of the primary

systems. It is clear that path loss, shadowing and noise level are contributing to the

poor sensing in this environment. Benefit of CSS under distributed sensing can be seen

in Fig. 3.9. Improved detection rate could be observed in all systems and across all
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Figure 3.8: Single node sensing result

Figure 3.9: Distributed sensing result

environments. It can be concluded that the proposed distributed sensing method is a

reliable technique for detection of most types of primary users. In order to improve

reliable detection for low power PU’s, the density of CR terminals within the PU’s

transmission range needs to be analysed.

Effects of Increasing Number of Sharing Nodes

It seems logical to assume that increase in the number of neighbouring nodes considered

for decision fusion would offer improvements in probability of detection. 100 receivers

within a coverage area of 2 sq. km. under dense urban environment were considered

for simulation. The effect of number of sharing nodes is demonstrated in Fig. 3.10.

Increasing the number of sharing nodes offers increased performance in all cases

with 100% reliability with 16 sharing nodes for 4 out of the 5 cases. Improvements can
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Figure 3.10: Effect of increasing the number of sharing nodes

be seen in the GSM cell also. It is true that TV and FM channels have enough power to

provide sufficient coverage in the area considered. But in the case of GSM, the power is

not sufficient to cover larger area. It is also found that in the case of high power primary

systems, less number of sharing nodes are required for a better result. It is desirable

that in case of low power primary systems, more number of nodes may be used to get a

better result. It is understood that as the number of sharing nodes increases, processing

time will also get increased.

There is a chance that one CR user may be located outside the coverage area and its

neighbours located within the coverage area. The effect of neighbours may generate a

false positive for the node located outside the coverage area and vice versa. Such a case

is considered in the next section.

Effect of Increasing the Self Weighting Factor

An area of 2 sq. km. is considered here. It is seen that in the case of low power GSM

cell, distributed sensing helps a lot to improve the detection rate. As the self weighting

factor increases, it is seen that detection rate decreases with increase in self weight.

Detection rate of the low power GSM cell with increase in self weight is shown in the

Fig. 3.11. It is clear that in distributed sensing, the results of the neighbouring nodes

also need to be given its due weightage. In this simulation, weight for a neighbour’s

positive result was kept a value just above ‘1’ . Since the area considered is small, all
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Figure 3.11: Effect of increasing the self weighting factor

the users are in the coverage region. So the increase in self weight may lead to reduction

in detection rate.

If the decision making CR is outside the coverage region of a PU and some of its

neighbours are within the coverage area, then reduced self weight may lead to a false

positive detection for that CR. CRs located outside the coverage area of a particular PU

have the opportunity to communicate among themselves without affecting that PU.

Effect of Increasing Receiver Density

An area of 4 sq. km. is considered here. A dense urban scenario is considered to

observe the effect of receiver density on the probability of detection. A low power

primary transmitter GSM and a high power TV broadcast transmitter are considered.

Fig. 3.12 shows that in the case of low power transmitter, there is an improvement in

the probability of detection initially and as the receiver density increases above 100,

the improvement is marginal. As per Fig. 3.13 the detection rate for a high power

transmitter has no impact on the number of CR terminals within a 4 sq. km.

Effect of Increasing Positive Weighting Factor

Positive weighting factor is an additional weight that is given only to neighbour’s posi-

tive results during decision fusion. Impact of positive weighting factor on the probabil-

ity of detection is explored in a dense urban scenario for a high power TV transmitter
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Figure 3.12: Effect of increasing the receiver density for a low power GSM transmitter

Figure 3.13: Effect of increasing the receiver density for a high power TV transmitter
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Figure 3.14: Effect of increasing positive weighting factor

and shown in Fig. 3.14. It is observed that detection rate is improved with positive

weighting factor.

But this will be true only if the transmitter has sufficient power to cover the area

under consideration. In the case of low power transmitters whose coverage area is

small, this may lead to false positives. That is, the neighbour’s result will force a false

positive decision on a CR which is located outside the coverage area of a low power

transmitter.

3.3.4 Section Summary

In this section, analysis of a cooperative spectrum sensing algorithm based on weighted

combining proposed for cognitive radio has been carried out. Each CR performs deci-

sion fusion after collecting ‘SNR’ and individual decision from its neighbours. Path loss

and shadowing have been considered while modelling the channel. It was found that

false negatives were increasing as the analysis was moved from rural to dense urban en-

vironment. These inaccuracies could be minimized through the proposed CSS strategy.

Effect on ‘the probability of detection’ on account of each of the likely dependencies

viz. the number of sharing nodes, varying environmental parameters, self-weighting

factor, positive weighting factor, receiver density etc. were analysed.
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It has been found through simulation across various environments (rural, urban and

dense urban) that the proposed method is highly effective in minimizing interference to

the primary systems by sensing the presence of primary users properly. It was found that

a high degree of detection probability could be obtained for the TV and FM broadcast

systems than for GSM systems under the same environmental parameters, largely due

to the higher transmission powers involved in broadcast networks. The values assigned

to the weighting factors will also affect the probability of detection within the PU’s

coverage area. There is a scope to further optimize the weight vectors for a better

result.

3.4 Adaptive Weighted Combining for CSS under Dis-

tributed Sensing

It was seen in Section 3.3 that proposed SNR rule, based on weighted combining was

giving improvement in the probability of detection under CSS. In this section an attempt

is made to modify this rule to make it suitable for all the scenarios that may arise for

a CR network. Both the proposed approaches described in Sections 3.2 and 3.3 were

analysed, on the assumption that all the CRs are located within the coverage area of

a PU under consideration. However, it was felt that decision fusion at the boundaries

of the coverage area of a PU also needs to be reckoned. Therefore, a new scenario is

considered for analysis and an adaptive weighted combining approach is proposed to

handle such a scenario. Here the weights would be adapted based on the location of the

CRs with respect to the Primary Transmitter. A fusion rule that considers the location

of the nodes with respect to a PU is proposed here. In this section, the performance

of this rule, named as ‘Intelligent rule’ is analysed using energy detection model under

Rayleigh fading as well as path loss model under shadowing. Its performance is also

compared with other rules.

3.4.1 System Model

Consider a CR network consisting of ‘M’ primary transmitters with respective primary

receivers and ‘N’, CR users in the field. Each PU is allocated specific channels for
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Figure 3.15: Scenario-1: Fusion node is located at the boundary of PU’s coverage area

communication. During the absence of PUs, CRs can communicate among themselves

over the above channels. The CRs have to relinquish the channels as soon as the PU

starts its transmission. Any interference to PU from CR is not tolerated. Time division

approach is followed here and CRs are required to sense the presence of a PU at the

beginning of each time slot. If the PU is absent, CR will occupy the channel for the

remaining period of the time slot. Duration of the time slot is decided in such a way that

the channel state will be constant during the slot. In other words, the PU will not start

its transmission at the middle of the time slot. Spectrum sensing is an important task to

be performed in such a way that all the nodes should have the right decision. In a real

situation channel conditions for each CR nodes will be independent. They may undergo

independent fading and shadowing. It is hard to detect signals of low SNR for desired

performance. Missed detection will prompt the CR to start communication with other

CRs. Improper spectrum sensing will cause interference to primary users. Cooperative

spectrum sensing is proposed as a solution to overcome this issue. It is expected that

various nodes in a terrain may experience random fading and shadowing. If nearby

nodes share their sensing result with others, each node can make a final decision on the

spectrum status by aggregating the results from a group of neighbouring nodes using a

suitable fusion rule. This will ensure proper spectrum sensing and low interference to

primary users.

Scenarios as shown in the Fig. 3.15 & 3.16 are considered here for analysis. All CRs
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Figure 3.16: Scenario-2: Fusion node is located just outside the boundary of PU’s cov-
erage area

are not located under the coverage area of PU-1 or PU-2. Some are outside the coverage

area of both PU-1& PU-2. In this work only one PU and many CRs are considered for

proper analysis of the scenario. Hence each CR node will perform the spectrum sens-

ing and a one bit decision on the sensed result will be shared to neighbours. The term

PU will include both primary transmitter and receiver. In duplex networks, primary

receivers will transmit in another channel with respect to transmitter and in the case of

simplex networks like TV etc., emitted features like leakage power from the Local os-

cillator of the receiver etc., may also be sensed (Zou and Chigan, 2011). The coverage

area of a PU need not be perfect circle in practical situations. According to (Goldsmith,

2005) contours of a constant received power from a transmitter form an amoeba-like

shape, due to the random shadowing variations about the path loss. A distributed sens-

ing scenario is considered here, where each node will get the sensing result from the

neighbours and fusion of data is done at each node. In Fig. 3.15 small circle with black

filling is considered as the node who does the fusion (hereafter it will be called fusion

node) and the smaller red filled circles represent neighbours whose results are used for

decision fusion. This is applicable for each CR. Based on the position of the node and

its neighbours each decision fusion needs to be correct. In Fig. 3.15 fusion node is lo-

cated within the boundary of PU-1 and some of its nearest neighbours are located inside

the coverage area and some are located outside the coverage area. In Fig. 3.16 fusion

node is located outside the coverage area. Normally CRs in the field may not under-

49



stand whether it is outside or inside the coverage area, when it is closer to the boundary,

as its spectrum sensing may vary with time due to random shadowing and fading. If

a neighbour node is located outside the coverage area of the PU then there is a chance

that this Fusion Node (FN) also may be closer to the boundary. Hence inputs from all

directions are necessary to make a suitable decision. In both scenarios the neighbours

are located at all the directions. Here the fusion rule needs to be intelligent enough to

make a right decision.

In the literature, such a scenario is not given much importance. In most of the analysis

of fusion rules, both fusion node and the neighbours are considered to be within the

coverage area of a PU. Also the SNR considered for all the nodes at a time instant is

same. And all the parameters associated with detection, false alarm rate etc. are defined

under the assumption that all nodes are within the coverage area of a PU. In a real sce-

nario all the CRs in the field are expected to undergo independent fading. The spatial

location from the PU also will be different.

An attempt is made to model the scenario with CRs having independent conditions with

respect to its spatial location, fading, SNR and mobility. In this section an intelligent

fusion rule is proposed as a modification to the fusion rule presented in Section 3.3. Its

performance is analysed under the scenarios shown in Fig. 3.15 & 3.16.

Performance of the proposed fusion rule is analysed with the simulation setup pre-

pared according to the energy detection approach in (Digham et al., 2007) as well as the

practical link budget design using path loss models given in (Rappaport et al., 2002).

Decision Fusion in Cooperative sensing

Cooperative sensing has become important because of the fading and shadowing expe-

rienced by the CRs. A fusion rule is already proposed in equation 3.3 for cooperative

spectrum sensing, which uses SNR at the node as the weighting factor along with a self

weight. In order to improve the performance of fusion rules under the scenarios shown

in Fig. 3.15 & Fig. 3.16, a modification is proposed to equation 3.3 by including the

feature of location awareness. It is stated as follows.

Y =
n=N∑
n=1

RnQnSn +RsXW (3.4)
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whereRn is the weight factor according to the location of the node, Rs is the weight

for the fusion node. The fusion node can choose the values of Rn&Rs intelligently,

based on its own location with respect to a PU and its neighbours location with respect

to itself. It is assumed that the nodes are having the location awareness and they share

the details of their location, SNR at each instant and single node sensing result to the

neighbours. It is also assumed that the nodes have clear knowledge of where exactly the

PU is located. Hence a fusion node can infer three cases about its own location, based

on the distance measure. Case-1: Within the coverage area, Case-2: Outside the cov-

erage area, Case-3: Within or outside the coverage area. But in practice, the coverage

area is not constant and rather varies with fading etc. Hence fusion rule for decision

fusion must have provision to accommodate the dynamic changes in the coverage area.

Neighbours also will be considered in two groups. Nodes closer to PU than FN are in

group-I (G1) and others are in group-II (G2). Fusion node can choose the weights Rn

and Rs according to following equations 3.5, 3.6 & 3.7. For Case-1 and Case-2

Rni =

 1 + ∆1, Li ∈ G1

1−∆2, Li ∈ G2

 (3.5)

Rs = 1 + ∆1 (3.6)

where Rni is the Rn for the ith neighbouring node, Li is the location of the ith node,

Rs is the self weight for the FN and ∆1,∆2 ∈ [0− 1].

For Case-3, Rs = 1 and Rn can be chosen as

Rni = 1 + ∆1 (3.7)

Presence of Rn and Rs in equation 3.4 will help to reduce the unwanted influence

of neighbours to make a decision which may false negative or false positive and this

will help this rule to perform better than SNR rule. If the knowledge about location of

the PU is not available, these nodes can infer a reasonable estimate of the location of

the PU, based on the periodic data it collects from its neighbours. Location inference

is not dealt here. The performance of the proposed decision fusion approach is com-

pared with ‘majority rule’ and two variants of fuzzy approaches. In majority rule, if
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the single node result from majority of the nodes under consideration are true then the

fusion nodes decision is ‘Yes’, otherwise it will be ‘No’. In the fuzzy approach, pro-

posed in (Matinmikko et al., 2009) a two bit fuzzy decision represents the range of the

received power which is communicated to fusion node and decision fusion is carried

out. According to (Taghavi et al., 2011), the nodes transmit the received power to the

fusion node to make a decision. Fuzzification of data is done during the fusion process.

3.4.2 Analysis under AWGN and Rayleigh Fading

In this section, simulation setup to analyse the performance of the fusion rule under the

scenario shown in Fig. 3.15 is discussed. Energy detection mechanism is employed here

to simulate the environment. An AWGN channel with Rayleigh fading is considered for

the environment. According to (Digham et al., 2007) the received BP waveform at an

SU can be represented as

r(t) =

 Re[hSLP (t) + nLP (t)] expj2Πfct, ...H1

Re[nLP (t)] expj2Πfct, .....................H0

 (3.8)

where r(t) is the received signal, h corresponds to gain of the slow varying fading

channel, fc is the carrier frequency, H0 and H1 and refer to the two hypotheses of signal

presence and signal absence, respectively. SLP is an equivalent LP representation of

the unknown signal and nLP an equivalent LP AWGN process with a zero mean and a

known flat power spectral density (PSD). At the receiver this signal is pre-filtered by

an ideal BP filter and its output is squared and integrated over a time interval ‘T’ to

produce a measure of energy of the received waveform. The output of the integrator

denoted by ‘y’ acts as a test statistic to test the two hypotheses H0 and H1. For AWGN

channels, the local false alarm probability and detection probability are given as

Pf =
Γ(N

2
, λ

2σ2 )

Γ(N
2

)
(3.9)

Pd = QN
2

(

√
aγ

σ2
,

√
λ

σ2
) (3.10)
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where N is the number of samples, σ2 is the variance of ‘y’, λ is the threshold for

energy detection, Γ(., .)is the incomplete gamma function and QN/2(., .) is the gener-

alized Marcum Q-function. According to (Arshad et al., 2010), when the SU is in a

fading channel, the channel gain hi for an ith user is varying due to the fading and P i
d

becomes conditional probability dependent on instantaneous SNR γi. Average proba-

bility of detection can be obtained by averaging instantaneous P i
d over fading statistics.

As expected, P i
f is independent of γi and remains static. In this simulation, threshold

for energy detection is calculated from Pf in the equation 3.9. Verification of these

models is already there in the literature. This work aims to form a simulation setup

that truly represents the scenario shown in Fig. 3.15 and to find out the probability of

detection under various probabilities of false alarm.

In this setup the channel is modelled by considering one PU and 7 SUs randomly

located on the same plane and where transmitted signal from the PU reaches the SUs

through independent path. This means that each SU will undergo independent fading

and SNR. It is also assumed that increase in distance between PU and SU will lead to

decrease in SNR at receivers. Normally in literature, verification of this type of models

is done by keeping the SNR constant. Out of 7 SUs considered for simulation, one

is fusion node and the others are neighbours. As shown in Fig. 3.15, neighbours are

categorized into two groups. One group is located closer to PU than the fusion node

and the second group is located farther from this fusion node with respect to PU. The

weight Rn has to be high for group-I and small for group-II. This has to be reversed

when the fusion node is located just outside the boundary of the coverage area. Since

the nodes are smart enough to have location awareness, they can also vary the weights

while adapting to the situation. Fig. 3.17 shows that when all the nodes are having high

SNR there is no need for a cooperative decision making. Fig. 3.18 shows that at lower

SNR, the probability of detection is coming down and the majority rule for decision

making is performing very poor while the SNR rule and Intelligent rules are giving a

slightly better performance. But it is sure that above case, considered for Fig. 3.17 is

far from reality.

In order to match with the scenario in Fig. 3.15, a random SNR value between -

5 dB to +1 dB is chosen for fusion node, -5 dB to 10 dB and -15 dB to -3 dB for

group-I and group-II respectively. Through iteration under various values of probability
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Figure 3.17: Pf vs Pd plot when all nodes with equal SNR for all nodes ( SNR=5 dB)

Figure 3.18: Pf vs Pd plot when all nodes with equal SNR for all nodes ( SNR=-5 dB)
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Figure 3.19: Pf vs Pd plot when the number of nodes within group-I- fusion node -
group-II follows a pattern 5-1-1

of false alarm rate, probability of detection is calculated and displayed in Fig. 3.19 to

3.22. Since random SNR and fading is considered in each case, single node result has

variations from figure to figure. In all the four cases, the performance of three fusion

rules are compared with respect to single node result. It is seen from Fig. 3.19 to 3.22

that performance of the majority rule is getting deteriorated with increase in the number

of neighbours in group-II. ‘AND’ rule and ‘OR’ rule are not considered here, as it may

give extreme results. But it can be considered, when all the nodes are considered to

be well within the coverage area of a PU. Here it is considered that the fusion node is

relatively within the coverage area and the neighbours are located within and outside

the boundary of the coverage area. Always there is some amount of fuzziness present,

regarding the boundary of PU’s coverage area.

Performance of ‘SNR rule’ and its modification ‘Intelligent rule’ is compared in

Fig. 3.19 to 3.22. ‘SNR rule’ is giving very good detection rate compared to ‘Majority

rule’. This is because SNR is included in the fusion rule for decision fusion. It is seen

that as the number of nodes in group-II increases, ‘Intelligent rule’ is more effective.

This is attributed to the adaptive weights used in that rule. The weight is chosen in
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Figure 3.20: Pf vs Pd plot when the number of nodes within group-I- fusion node -
group-II follows a pattern 3-1-3

Figure 3.21: Pf vs Pd plot when the number of nodes within group-I- fusion node -
group-II follows a pattern 2-1-4
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Figure 3.22: Pf vs Pd plot when the number of nodes within group-I- fusion node -
group-II follows a pattern 1-1-5

such a way that if the fusion node is closer to PU, the weights for group-I will be larger

than group-II. This will ensure that false negatives will be reduced. As the fusion node

moves away from a PU, the weight for group-I decreases and that of group-II increases.

This will reduce the false positives. It shows that ‘Intelligent rule’ approach will work

well for a realistic scenario as it is adaptively adjusted to the need of the fusion node.

3.4.3 Analysis under Shadowing

In order to analyse the fusion rule under shadowing, a different approach as per the

practical link budget design using path loss model in (Rappaport et al., 1996) is used.

Propagation path loss according to distance from the transmitter is defined according

to the equation 3.1 as mentioned in (Harrold et al., 2008). The received power Pr (in

dBW) of a receiver at a distance d meters from a transmitter with transmit power Pt (in

dBW) is calculated according to equation 3.2

A binary hypothesis model for transmitter detection, i.e., the model of signals re-
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ceived by the SU, is defined as

Pr =

 Pn , in case of H0

Ps + Pn , in case of H1

 (3.11)

where Pn is the noise power and Ps is the signal power, H0 indicates only noise and

H1 indicates the presence of PU. Dense urban scenario with path loss exponent n=4.5

and shadowing standard deviation 10 dB is considered for simulation. PU is located

at the center and the CR nodes are located around it. Received power of each node is

calculated based on the equation 3.2. And this received power is compared with noise

power (noise floor) to make a decision on ‘sensed’ or ‘not sensed ’. Once this individual

decision is made, final decision is achieved with the help of fusion rules. This model is

used to get more clarity on the boundary of a PU. The model is designed for simulation

of primary signal transmitter and CR receivers within a 2-dimensional square spatial

area with Cartesian co-ordinates. Fig. 3.23 shows the arrangement in the field with PU

at the center as black dot and the CRs are located around it. CRs with ‘sensed’ status are

marked as ‘•’ in blue colour and CRs with ‘Not sensed’ status are marked as ‘◦’ in red

colour. Fig. 3.23 shows the single node sensing result as per equation 3.2 and Fig. 3.24

is an example of a result after cooperative sensing where ‘Intelligent rule’ is used for

decision fusion. A black circle is the calculated coverage area of the PU by considering

the transmission power of the PU, noise floor and the average shadowing. In reality

the coverage area will fluctuate around this black circle as mentioned in (Goldsmith,

2005). Coverage area is expected to fluctuate between the inner fade range shown by

inner circle and the outer fade range shown by the outer circle.

Under such a situation, probability of detection, rate of false alarm and rate of false

positive are to be defined with respect to the coverage area of the PU. Coverage area of

the PU need not be a definite area always. It will be varying due to random shadowing.

The region inside the inner fade range is where all nodes should sense the PU and

the region outside the outer fade range is where none of the nodes should sense the

PU. In the region between inner and outer fade range, nodes may get a ‘sensed’ or

a ‘not sensed’ status. Hence for this setup, we have defined the detection rate as the

percentage detection within the average fading region. False alarm rate is defined as the

percentage ‘not sensed’ within the average fade region and false positive is defined as

the percentage ‘sensed’ outside the outer fade range.
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Figure 3.23: Single node sensing

Figure 3.24: Cooperative sensing
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Figure 3.25: Performance comparison of Intelligent fusion rule with SNR rule and
Fuzzy rules on detection rate

Comparison is made between the proposed Intelligent rule with SNR rule in Sec-

tion 3.3 and fuzzy based rules (named as Fuzzy1 and Fuzzy2) proposed in literature.

The rule proposed by (Taghavi et al., 2011) is named as Fuzzy1 and in this approach,

the CRs transmit the received power to the neighbours for decision fusion. Fuzzifica-

tion of data is done during the fusion process. The rule proposed by (Matinmikko et al.,

2009) is named as Fuzzy2 and in this approach, a two bit decision from a CR that in-

dicates the linguistic variable as low, medium and high, is transmitted to its neighbours

for decision fusion. These fuzzy inputs are given to a fuzzy controller and a decision is

made according to the fuzzy rule base available in the node.

We have considered a mobile tower with 935 MHz and 10 dB power as the PU.

Shadowing environment is simulated and the received power is compared with the noise

power to make a single node spectrum sensing. We have considered a 10 km x 10 km

area for this set up and the Fig. 3.25 gives the comparison of single node performance

and cooperative sensing. It shows that the detection rate is very good for all the rules

except Fuzzy2. Number of CRs in the field does not have much impact on the detection

rate. Fig. 3.26 gives the false negative performance. False alarm rate is high for Fuzzy2

and it is very less for ‘Intelligent’ approach. Fuzzy1 and SNR approaches are giving
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Figure 3.26: Performance comparison of Intelligent fusion rule with SNR rule and
Fuzzy rules on false negative

Figure 3.27: Performance comparison of Intelligent fusion rule with SNR rule and
Fuzzy rules on false positive
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Figure 3.28: Time consumed by various rules for decision fusion. [Machine spec: In-
tel(R) Core(TM)2 Duo CPU, T7250 @ 2.00 GHz, 777 MHz,1.95 GB
RAM]

medium performance. When it comes to false positive case Fuzzy1 is having the worst

performance. It is seen in Fig. 3.27 that there is slight increase in the number of false

positives with increase in the number of CRs in the field. False positive performance

of ‘Intelligent’ rule approach is almost zero. This is because of the adaptive weight

pattern that can be used for decision fusion. Computational complexity is measured

by calculating the time consumed by the fusion rules to make decision for 500 CR

terminals. Fig. 3.28 shows that ‘SNR’ rule is having the least computational time and

the ‘Intelligent’ rule has consumed slightly more time. This is because of the additional

multiplication due to the region weight added with SNR rule. Fuzzy based approaches

are consuming significantly more time compared to SNR based rules.

3.4.4 Section Summary

In this section, a realistic network scenario is proposed for CRs, where the fusion node

is located at the boundary of a PU’s coverage area. An adaptive weighted combining ap-

proach as a modification to ‘SNR rule’ in Section 3.3 is also proposed. Performance of

these fusion rules were analysed under two simulation setup that models the scenarios in
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Fig. 3.15 & Fig. 3.16 meaningfully. Analysis of these rules were carried out in Rayleigh

fading and shadowing under two separate channel models respectively. Performance of

the proposed rules are compared with ‘Majority’ rule, Fuzzy1 rule and Fuzzy2 rule. Cri-

teria such as detection rate, false negative, false positive and computational complexity

are considered for comparison. It is found that the proposed ‘Intelligent’ rule is having

a better performance under the scenario considered. This rule can be optimized further

with adaptable and optimized weights.

3.5 Antenna Selection with MRE and AWC for Decision

Fusion

It was seen in Section 3.4 that proposed ‘Intelligent rule’ is performing well in the

realistic scenarios considered for analysis. In this section, an attempt is made to further

improve the performance of the spectrum sensing scheme by modifying the single node

reporting strategy and the ‘Intelligent rule’. Main contribution of this section is that an

antenna selection scheme with multiple region encoding for single node reporting and

an adaptive weighted combining fusion rule for fusion node are proposed. Its analysis is

carried out in a realistic scenario and its performance is compared with other prominent

approaches in the literature.

3.5.1 System Model

In this model, a CR network consisting of ‘N’ primary users and ‘M’ Cognitive users

where the CRs utilise the same spectrum allocated to PUs whenever the spectrum is

unused by any PU. It is also considered that the secondary network is performing CSS

at specified time slots. Cognitive radio network under CSS (distributed sensing) has to

sense a portion of the spectrum of bandwidth ‘W’ in order to detect the existence of

the PU. It is assumed that each CR is equipped with an energy detector and is able to

perform local spectrum sensing independently. In CSS, every SU performs spectrum

sensing and a local decision on the presence of a PU is made. All SUs in the network

share its soft (local measurement) or hard (1-bit) decision with its neighbours. In dis-

tributed sensing, each SU behaves as a fusion center (FC) and a final decision is taken.
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Figure 3.29: Timing sequence for a practical implementation of CSS

In a cluster based network, SUs share its individual decision with a common receiver

in the cluster called FC and the FC makes the final decision and shares it within the

cluster. In both cases, fusion center has to collect its neighbours’ decision and a final

decision will be taken after decision fusion.

Cooperative sensing can be practically carried out in sequence as shown in Fig.3.29.

It is assumed that one licensed frequency channel is allocated to each primary user

and control channels are available for the CRs to share its decision with the fusion

center. Also the cross channel interference is considered to be negligible. CSS and

data transmission are carried out in cycles of equal time slots. Duration of the time slot

is fixed in such a way that interference to a PU will be negligible even if the PU has

arrived at the middle of the time slot. At the beginning of each time slot all the CRs will

be silent for a duration ‘ts’, so that only the signals from PU will be present. During

‘ts’, spectrum sensing is also carried out by each CR. During ‘tsh’ , individual sensing

result from each node is shared among its neighbours. ‘Decision fusion’ is performed

during ‘tdf ’ and remaining time within a slot is allocated for data transmission by the

concerned CRs. This process will be repeated in every time slot.

It is also considered that PUs and CRs are randomly placed in the field in such a

way that coverage area of the PUs will not overlap. Fig. 3.30 shows that some CRs are

located totally outside the coverage area of PUs. In a practical situation where shad-

owing is present, the coverage area is not a perfect circle. It will form an amoeba-like

shape due to the random shadowing variations about the path loss (Goldsmith, 2005).

Black circle in Fig. 3.30 performs decision fusion (fusion node) and red circles are its

neighbours. Single node sensing results from FN and its neighbours are fused to make

a final decision. Every node in the field performs decision fusion by considering results
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Figure 3.30: Distribution of CRs in the field considered for this work

from its neighbours. For some nodes, all of its neighbours are within the coverage area

of a PU, but in some cases some of its neighbours are located outside the coverage area

as in Fig. 3.30. Decision fusion should be correct in both the conditions. Our focus is

to improve decision fusion in the second case where wrong influence of the neighbours

needs to be limited. In this discussion, a CR terminal is referred with following terms,

such as nodes, neighbour nodes, fusion nodes, CR nodes etc. based on their functional-

ity. In other words, all such terms are the synonyms for a CR terminal. It is assumed that

all the CRs are equipped with multiple antennas and location awareness mechanisms.

For the scenario in Fig. 3.30, fusion rule should be able to identify such a situation and

priority of the neighbours needs to be adjusted. It is assumed that each node is aware

about its position in the field and shares this information with its neighbours. This will

help each node to prioritize neighbours’ result during decision fusion.

In literature, in most of the cases, fusion rules are proposed and analysed under a

scenario where all the CRs are within the coverage area of a PU and the SNR is uniform

for all nodes. Parameters such as detection rate, false alarm rate etc. are also defined

and evaluated for the same scenario. A realistic scenario may look similar to that of

Fig. 3.30 where spatial location of CR nodes with respect to PU will be different for all

the CRs.

The proposed model can also be practically implemented in line with IEEE 802.22,

cognitive wireless regional area networks (WRAN) standard, where the system specifies

a fixed point-to-multi-point (PMP) wireless air interface similar to cellular system. In

WRAN, the base station (BS) controls the medium access in its cell and transmits in
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the downstream direction to the various customer premise equipments (CPE), which

respond back to the BS in the upstream direction. In order to ensure proper incumbent

protection, BS also manages a unique feature of ‘distributed sensing’, where the BS

and CPEs perform spectrum sensing during the quiet periods and are consolidated at

the BS. Quiet periods are derived with respect to the packet structure (IEEE-802.22,

2011; Cordeiro et al., 2005a).

Proposed system model can be easily fitted in cognitive WRAN. Spectrum sensing

(fast sensing) carried out by BS and CPE during the quiet period is similar to single node

detection by each CR in the proposed system. BS performs consolidation of the sensed

data from all CPEs, and it is equivalent to the activity of fusion node in the proposed

system. Hence BS can easily use the AWC rule to make a final decision on the spectrum

occupancy status. CPEs can make use of the proposed SU reporting process for sensing

as well as to report the result to BS.

If the BS has to manage a scenario as proposed in Fig. 3.30, where some of its

cluster members are outside the coverage area of a PU, decision for those members can

be obtained by suitable selection of neighbouring nodes and suitable choice of adaptive

weight factor according to the location of those nodes.

The spectrum sensing problem can be considered as a binary hypothesis testing

problem with two possible hypothesis H0 and H1 (Arshad et al., 2010). An AWGN

channel with Rayleigh fading is considered for the environment. Received BP wave-

form at an SU is represented according to (Digham et al., 2007) as equation 3.8

Received signal is filtered and the energy is calculated by squaring it and integrating

it over a time interval ‘T’. The output of the integrator acts as the test statistic ‘y’ . It

is assumed that the noise at each sample is Gaussian with zero mean and unit variance

and is independent of the primary signal under H1 and the instantaneous SNR varies

from observation period to period. The received energy is calculated according to (Ma

et al., 2008) as

y =
N∑
t=1

|x(t)|2 (3.12)

For an AWGN channel, probability of false alarm and probability of detection are
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given as in equation 3.9 and equation 3.10.

In this simulation, threshold for energy detection is calculated from Pf in the equa-

tion 3.9. Probability of detection under a Rayleigh fading channel is given by (Digham

et al., 2007) as

Pd,Ray = e−
λ

2σ2

N
2
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(3.13)

In this section, a CR terminal is variously referred to as nodes, neighbour nodes,

fusion nodes, fusion center, CR nodes etc., based on its functionality. All these terms

are synonymous to a CR terminal. It is considered that all the CRs are equipped with

multiple antennas and location awareness mechanisms. It is considered that all the

nodes are experiencing Rayleigh fading. The proposed system for cooperative sensing

has two parts. An antenna selection with multiple region encoding is performed at each

SU as part of single node sensing and an adaptive weighted combining is performed

during the fusion process. Details are given in the following sections.

3.5.2 SU Reporting Process

In this section, an antenna selection scheme with multiple region encoding is proposed.

Modified version of antenna selection approach in (Wang et al., 2011) and double

threshold approach in (J. Zhu and Zhang, 2008) are combined here to model the single

node reporting scheme for the SU. Proposed scheme for single node reporting is given

in Fig. 3.31. It is assumed that secondary user employs ‘K’ antennas and one RF chain.

Assume that each SU will have a sensing duration of ‘T’ and ‘N’ samples will be col-

lected during ‘T’. Time is divided into mini slots of T/K duration and at each mini slot,

N1= N/K samples from each antenna will be collected sequentially to form ‘N’ samples.

This is done to get the benefit of antenna diversity. Energy ‘y’ of these ‘N’ samples are

calculated and sent to the encoding block. This antenna diversity scheme will improve

the probability of detection Pd,AD at each node. It can be obtained from (Liang et al.,
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Figure 3.31: Antenna selection scheme with multiple region encoding

2008) as

Pd,AD = Q(
1

β
(Q−1(Pf )− γ

√
N1

K∑
i=1

gi|hi|2)) (3.14)

where β = Q(
√

1 + 2γ
K

∑K
i=1 |hi|2), Q(.) is the complementary distribution func-

tion of the standard Gaussian, gi ≥ 0 is the weighting factor associated with the ith

mini slot and hi’s are zero-mean, unit variance complex Gaussian random variables that

represents channel coefficients. Here the first threshold ‘λ’ for the energy detection

is calculated in the usual way based on a specific Pf fixed for a system. Pd depends

on the instantaneous SNR of the SU. Under a fading channel, the Pd will be different

from that of an AWGN channel. The distribution of received energy in this case will be

the same. Second threshold ‘λ0’ is calculated based on the parameter defined as ∆ =

P{λ0 < y < λ|H0 }. From equation 3.9, it can be written as

∆ =
Γ(N

2
, λ0

2σ2 )

Γ(N
2

)
−

Γ(N
2
, λ

2σ2 )

Γ(N
2

)
(3.15)

By setting the value of ‘∆’, length of the region ∆λ = λ − λ0 can be varied. In

this system ‘∆λ’ is divided into multiple regions of equal size referred as R1, R2, ...Rn

as shown in Fig. 3.31. This will help the node to assign suitable codes to the received

energy. Encoding of the result is as follows.
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If the received energy ‘y’ is in the H0 region or at the H1 region, then the node

will assign ‘-1’ or ‘+1’ respectively to the decision. If the energy ‘y’ falls in the region

R1 to Rn, a fractional value between -1 and 1 is awarded in such a way that −1 <

R1 < R2 < ... < Rn < 1. For example, if ‘∆λ-region’ is divided into two regions,

there will be a total of four regions named H0, R1, R2 and H1 and -1,-0.5,+0.5,+1 will

be their respective weights. Depending on the strength of the signal any value from

-1,-0.5, +0.5, +1 will be sent out as the single node’s result. The SU is supposed to

transmit this value as the sensing result to its neighbours. During decision fusion, this

value is combined with suitable fusion rules and final decision is made. Considering

the transmission overhead in sending the single node sensing values, each region can

be encoded with an ‘n-bit’ decision, where n= [1,2...]. This includes the ‘H1’ region

and ‘H0’ region. Depending on the number of regions available, ‘n’ can take a suitable

value. During fusion, proper value can be included in place of the corresponding code.

In our simulation, we have considered a 3-bit encoding to represent these regions.

3.5.3 Decision Fusion

Single node sensing may lead to false decision especially when the SNR level is low.

Noise level in the channel, shadowing and fading can cause low SNR. Another chal-

lenge in spectrum sensing is hidden node problem. These problems can be overcome

with cooperative spectrum sensing (Harrold et al., 2008). Researches show that CSS

is able to give a very good performance under fading and shadowing. Here all the

nodes will do spectrum sensing and share its decision or the measured energy to its

neighbours. Every node will make a final decision by fusing these information (Kyper-

ountas et al., 2010). In order to improve the detection probability at lower SNRs, an

adaptive weighted combining is proposed below. Performance comparison of the pro-

posed combination of SU reporting and fusion rule with other fusion rules is given in

Section 3.5.4.

Adaptive Weighted Combining (AWC)

To overcome the effect of fading and shadowing cooperative spectrum sensing needs

to be carried out. In order to get a reliable performance over the scenario shown in
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Fig. 3.30 intelligent rule in equation 3.4 is modified and given in equation 3.16 . It

is assumed that each SU is having the location awareness and it is communicated to

the neighbours also. Each node is expected to send details about location, experienced

SNR and node’s own sensing result to its neighbours. Each node will collect details of

N neighbours and this will be combined with node’s own weight. The proposed AWC

rule is stated as follows.

YAWC =
n=N∑
n=1

RnγnQn +RsγsWsQs (3.16)

where Rn is the adaptive weight factor according to the location of the node, ‘γn’

- SNR at the node, Qn- single node decision value generated at SU reporting process,

Rs is the adaptive weight for the fusion node, ‘γs’- SNR at the fusion node, Qs- single

node decision value of fusion node and Ws - Self weight for the fusion node. Decision

of a spectrum hole is taken as

YAWC

H1

>

<

H0

0 (3.17)

The fusion node will choose the values of Rn, Rs according to its own location with

respect to a PU and its neighbour’s location with respect to itself. Nodes which are

closer to PU than fusion node will have Rn = 1+∆1 and others will have Rn = 1−∆2

where ∆1,∆2 ∈ [0− 1]. It is assumed that locations of the PUs are known to the CRs.

Otherwise, nodes can infer it by following the signal strength of its neighbours. Ws

is used to give a higher weightage to node’s own decision when it aggregate the data.

It will also help to reduce the wrong influence from the neighbours. ‘SNR’ is used

along with all the decisions to ensure that false positives are reduced. If the single node

result is broadcast in the encoded format as mentioned in the previous section, proper

decoding will be done at the fusion node before fusion process. Proposed approach

is compared with other prominent fusion rules in the literature. A brief description of

other rules used for comparison is also presented below.
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Soft Optimal Linear Combining (SOLC)

Soft optimal linear combining is presented in (Kyperountas et al., 2010). Energy of each

node is weighted combined here and compared against a threshold to make a decision.

With soft linear combining, the test statistic at the fusion center corresponds to

yf =
M∑
I=1

wiui = wTu (3.18)

where w = [w1, w2, ...wM ]T is the weight vector and u = [u1, u2, ...uM ]T is the

energy from ‘M’ neighbouring nodes with ‘N’ samples with standard deviation of noise

‘σ’ and SNR at the receiver ‘γ’. Since yf is a sum of Gaussian distributions, then it also

follows a Gaussian distribution. Test to determine whether a primary is present or not

is:

yf =

H1

>

<

H0

λf (3.19)

Threshold (λf ) can be calculated from the Pfa of the fusion center as

λf = Q−1(Pfa)
√
V ar {yf/H0}+ E {yf/H0} (3.20)

Weight vector can be calculated as

w = sign(gTw1)w1 (3.21)

Where

w1 =
L−1/2
H1

L−T/2H1
g

||L−1/2
H1

L−T/2H1
g||

(3.22)

V ar {yf/H0} = wTLH0w (3.23)
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E {yf/H0} = sTH0
w (3.24)

sTH0
= [σ2

1, σ
2
2, ....σ

2
M ]T (3.25)

LH0 = 2diag(sH0)/N (3.26)

LH1 = 2diag(σ4
1(1 + 2γ1), σ4

2(1 + 2γ2)....σ4
M(1 + 2γM))/N (3.27)

g = [σ2
1γ1, σ

2
2γ2, ....σ

2
MγM ]T (3.28)

Soft equal weight linear combining (SEWLC) employs straightforward averaging

of the received soft decision statistics. The test statistic at the fusion center for equal

weight combining corresponds to equation 3.18 with w = [1, 1, ...1]T .

3.5.4 Results and Discussion

Simulation framework is formed in MATLAB tool, to model the proposed scenario, in-

cluding propagation channel, received signal from the PU and CSS. It is considered that

CRN is formed by locating a large number of CRs in a 2D plane, with a PU located at

the center of it. The primary signal is considered to be deterministic and BPSK (binary

phase-shift-keying) modulated. Noise is real Gaussian with mean ‘0’ and variance ‘1’.

Rayleigh fading channel with slow fading is considered in the simulation. Transmitted

signal from the PU reaches the SUs through independent path. That means, received

signal at each CR undergoes independent fading and SNR. Focus in our proposed sce-

nario is the nodes that are located near the boundary of PU’s coverage area. This is

modelled by assigning appropriate SNRs within a range of +5 dB to -25 dB to the

nodes. One PU, one fusion node and six neighbour nodes (7 CRs in total) were con-

sidered for most of the performance evaluation. In some cases, up to eight neighbours

were considered. Energy detection model is used for performing the spectrum sensing.

During CSS each CR performs individual spectrum sensing as per SU reporting pro-

cess and the CR that functions as fusion node performs decision fusion with the help
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of AWC rule. This has been repeated over 10000 times at each case and average of the

evaluation is presented.

As receiver operating characteristics (ROC) curve illustrates the performance of a

binary classifier system, simulation framework is validated by plotting ROC curves (plots

of Pd versus Pf and Pm = 1 - Pd versus Pf ) of local spectrum sensing using both the-

oretical results as well as Monte Carlo simulations. The performance of the proposed

approach and the related works were also compared using ROC curve.

As low computational overhead can ensure fast spectrum sensing which is the key in

improving the throughput of the secondary network, the parameters that influence the

time were thoroughly analysed. These include factors such as number of neighbours

included for decision fusion, complexity of fusion rule, time consumed for decision

fusion etc.

In order to represent the scenario mentioned in Fig. 3.30, it has been assumed that an

SU considered as the fusion node, is located near to the boundary of the coverage area

of a PU and that its neighbours are located around it. CRs are positioned in such a way

that some are closer to PU than the FN and are called group-I (G1) where as those node

that are away from PU with respect to FN are called group-II (G2). A realistic scenario

is formed by assigning random SNR values from a range-1 (R1) to G1, range-2 (R2) to

FN and range-3 (R3) to G2, such that SNR of R1 >R2 >R3 . These ranges would be

overlapping each other at its boundaries.

Evaluation of our proposed approach is carried out in the following section. Since

other fusion rules are compatible for single threshold scheme, the same single threshold

scheme is used for the evaluation of other fusion rules.

Comparison with Prominent Fusion rules in the Literature

Generally, probability of detection depends on the SNR and fading conditions of the FN

and the neighbouring nodes. Location of each node with respect to PU and with the FN

has significant impact on the Pd. As per the scenario considered, FN is located near to

the boundary of the PU’s coverage area. It means some of its neighbours may be located

outside the coverage area of the PU. A fusion rule should be in such a way that false

influence from the neighbours needs to be avoided. Adaptive weight assignment (‘Rs’
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Figure 3.32: Pf vs Pd plot of proposed AWC, SOLC (Kyperountas et al., 2010),
SEWLC (Kyperountas et al., 2010), AND, OR and VOTING fusion rules
under Rayleigh fading with ∆ = 0.4 and unbalanced (Majority of nodes in
G2) case with SNR dB [-4 -5 -7 -18 -16 -19 -20]

Figure 3.33: Pf vs Pm plot of proposed AWC, SOLC (Kyperountas et al., 2010),
SEWLC (Kyperountas et al., 2010), AND, OR and VOTING fusion rules
under Rayleigh fading with ∆ = 0.4 and unbalanced (Majority of nodes in
G2) case with SNR dB [-4 -5 -7 -18 -16 -19 -20]
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according to the location of neighbours) by the FN under AWC fusion rule will cater

the above issue.

Comparison of proposed approach with Soft Optimized Linear Combining, Soft

Equal Weight Linear Combining, Voting rule, AND-rule and OR-rule is presented in

Fig. 3.32 and Fig. 3.33. This performance is obtained for ∆ =0.4, No. of antennas M

= 4, and a neighbour concentration G1-FN-G2 = 2-1-4. It is plotted as the average of

10000 iterations with SNR (dB) of each node fixed at SNR (dB) = [-4 -5 -7 -18 -16 -19

-20] respectively during simulation. These parameters are chosen to faithfully represent

the scenario mentioned in Fig. 3.30

It is seen from the Pd-Pf plot in Fig. 3.32 that the detection rate of the proposed

approach is nearly 10% better with respect to SOLC (best among the five) at Pf = 0.01

and gradually becomes equal at Pf = 0.15 and it maintains it as Pf goes up. This is

achieved by reducing the influence of Group-II nodes through adaptive weight assign-

ment. As the Pf increases, all rules will reach to Pd = 1. It was seen in our simulations

that this rule performs better at low average SNRs. At higher SNRs, its performance

is equal to other rules. Even though the probability of detection of ‘OR’ rule is quite

high, it is known that its false alarm rate is also high at low SNR values, which is an

unwanted quality. Fig. 3.33 gives the probability of missed detection. It is seen that

when Pf < 0.2, proposed approach is giving the least missed detection and after that,

SOLC is giving the least value but closer to AWC. At lower values of Pf , the number

of nodes falling in the ‘∆λ region’ may be more and as the Pf increases, the number

of nodes in this region will become less. Hence the effect of region encoding is getting

reduced as Pf increases. This may be the reason for the proposed rule performing well

at lower Pf .

Relative performance of fusion rules with single node sensing needs to be consid-

ered for performance evaluation. Detection performance depends on the channel condi-

tions of all the nodes. At higher SNRs, the performance of all fusion rules will be very

good. But as the SNR comes down, detection rate also gets affected and only a good

fusion rule will be able to maintain respectable detection levels.

Probability of detection as a function of number of nodes (N) is presented in Fig. 3.34.

A balanced case (ie, no of neighbours in G1 and G2 are equal) is considered for uni-

formity. Average SNR level considered here is slightly greater than that of Fig. 3.32.
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Figure 3.34: Probability of detection of proposed AWC, SOLC (Kyperountas et al.,
2010), SEWC (Kyperountas et al., 2010) and VOTING (2 - out of - N)
as a function of the number of users at Pf = 0.1 and balanced (Equal num-
ber of nodes in G1 and G2)

Figure 3.35: Average time consumed by all rules to make a decision vs No. of nodes
(N). [Machine spec: Intel(R) Core(TM)2 Duo CPU, T7250 @ 2.00 GHz,
777 MHz,1.95 GB RAM]
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When there are equal number of nodes in G1 and G2, average SNR is high and hence

there is a steady increase in the Pd with increase in ‘N’. At lower Pf , AWC is giving

high Pd and at higher Pf , SOLC (Kyperountas et al., 2010) is coming closer to AWC.

At N = 7 these rules are giving reasonably good Pd. Low performance of voting rule

at N=3 indicates that voting rule needs more neighbours for giving a better result under

the scenario considered.

Fig. 3.35 compares the computational complexity of the fusion rules as a function

of number of nodes involved in the decision fusion. Computational complexity of these

approaches were compared as the time consumed in making a decision and it was found

that proposed approach consumed only 20% of the time than that of SOLC approach. It

can be seen that voting rule has got the lowest time consumption as it has very limited

computation requirements. AWC has reasonably low computational requirements as

it has 2N+3 multiplications followed with N additions and one comparison for an ‘N’

neighbour scenario. Since each antenna is sampled for a time slot within the time

duration allocated for sensing, computational complexity for energy detection is similar

to that of a single antenna system. SOLC marks the highest computational complexity.

In the case of SOLC, it has to calculate the weight vector and the threshold for each

decision fusion.

Impact of ‘∆’ on the Probability of Detection

The value of ‘∆’ plays a significant role in the detection performance of the fusion node.

It can take values greater than zero. When it is zero, it is similar to a single threshold

system with AWC fusion rule. Pf vs Pd plot of AWC rule for various values of ‘∆ ’ is

shown in Fig. 3.36. It is seen that detection rate is improving with increase in the value

of ‘ ∆ ’. As ‘ ∆ ’ comes down, the detection performance is coming closer to a single

threshold system.

Impact of Number of Users on the Probability of Detection

Importance of the number of nodes in cooperative spectrum sensing is a key factor to

be considered. Usually increase in number of users considered for decision fusion will

increase the detection probability. But it will increase the computational overhead and
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Figure 3.36: Pf vs Pd plot under various values of ∆ for cooperative sensing with pro-
posed scheme in a Rayleigh fading channel.

Figure 3.37: Probability of detection as a function of the number of users in a bal-
anced (Equal number of nodes in G1 and G2) case, at various values of
Pf
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also be a threat to strict time constraints in spectrum sensing. Fig. 3.37 evaluates the

detection performance of AWC fusion rule as a function of the number of cooperating

users for decision fusion, for system targets Pf of 0.01, 0.05 and 0.1. It can be seen that

detection rate increases with N, and at N=7 it is giving a better performance for Pf =

0.05.

3.5.5 Section Summary

This section has considered a scenario that poses challenges to cooperative sensing.

An antenna selection scheme with multiple region encoding for single node detection

and an adaptive weighted combining fusion rule for fusion node were also proposed to

manage this scenario. Its performance is analysed under Rayleigh fading channel and

it is found effective at the scenario highlighted above. Performance of this approach

is compared with fusion rules such as voting rule, SOLC and SELC that are presented

in (Kyperountas et al., 2010). On analysing various parameters associated with these

rules, it is found that AWC is giving a better performance in all respects. A possi-

ble extension of this work is to optimize the regional weights to further fine tune its

performance.

3.6 Chapter Summary

In this chapter, an effective decision fusion approach for distributed sensing is evolved

through various stages of analysis and modifications. A fuzzy based approach was pro-

posed initially and its analysis was carried out using energy detection under Rayleigh

fading channel. Its performance was compared with classical fusion rules such as

‘AND’ & ‘OR’ rules. Analysis of Pf and Pd with respect to SNR and ‘time consumed’

for a decision fusion were carried out. Even though the detection performance was very

good, time consumption of fuzzy rule was quite high.

For quick decision making, a weighted combining approach with SNR as its key

component was proposed and its analysis was carried out using path loss model under

shadowing. In both the above cases, the assumption was that all the CRs are located

within the coverage area of PU under consideration. A realistic scenario with CRs at the
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boundaries of PUs is suggested and the SNR-rule is modified to adapt to the situation. It

is named as ‘Intelligent rule’ and its performance was analysed using energy detection

model under Rayleigh fading as well as path loss model under shadowing.

In order to improve its performance further, antenna section scheme and multiple

region encoding for SU reporting are added to the ‘Intelligent rule’. Its performance

is compared with other optimal rules and fuzzy rules in the literature. Analysis on Pf

versus Pd, Pf versus Pm, Pd versus ‘N’ (no. of neighbouring nodes) and computational

complexity were carried out. On analysing the various parameters associated with this

evolved approach, it is found that it is giving a better performance in all respects.
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CHAPTER 4

DECISION FUSION IN EXTERNAL SENSING

4.1 Introduction

Efficient spectrum sensing is an important requirement for the success of the cognitive

radio system. In an external sensing scenario, an external agent performs the sens-

ing and broadcasts the channel occupancy information of Primary Users to Secondary

Users. Cellular automata (CA) is a discrete model used to develop wide variety of ap-

plications. CA based architectures have already proved its utility in the low power and

high speed VLSI designs.

In this section, a novel data fusion approach based on CA is proposed for external

sensing where wireless sensors are deployed in the field to form the spectrum sensing

network. Individual sensing result from the sensors are sent to the central node (CN)

for performing the decision fusion. Final decision on spectrum occupancy status will

be shared with CRs on demand.

Proposed approach is evaluated for its ability to form the coverage area of PU, prob-

ability of detection, false alarm rate and computational cost. Its performance is also

compared with fuzzy based methods and a weighted combining method.

4.2 System Model

We consider a scenario where an external agency is providing the spectrum hole infor-

mation to the SUs. The external agency obtains this information through the wireless

sensors deployed in the field. We assume that low power sensors with low installation

cost are deployed in the field and necessary networks and protocols to transfer all the

sensed data to a CN are available. After processing the data, CN will have the infor-

mation about the channel occupancy status and coverage region of a particular PU. We

also assume that these sensors will undergo fading and random shadowing and for this



Figure 4.1: Cell coverage area

reason, the sensor output may not be correct always. A simulation set up was formed

in Matlab to model and evaluate the system. It is considered that the sensors are ar-

ranged in a 2-D grid within an area of 100 sq. km. And the transmitter is located at

the center. Transmit power is chosen in such a way that sensors will be present within

and outside the coverage area of the transmitter. All the sensing results are transferred

to a central node through the network. At the CN these data are processed with the

proposed method to obtain spectrum occupancy status and coverage area. Now this can

be broadcast or can be provided on demand.

Our estimations are based on the practical link budget design using path loss model

(Rappaport et al., 2002). The cell coverage area in a cellular system is defined as the

expected percentage of locations within a cell where the received power at these loca-

tions is above a given minimum. The transmit power at the base station is designed for

an average received power Pr at the cell boundary. However multi-path and shadowing

will cause some locations within the cell to have received power below Prmin, and oth-

ers will have received power exceeding Prmin (Goldsmith, 2005). This is illustrated in

Fig. 4.1. Propagation path loss according to distance from the transmitter was defined

according to the equation 3.1 as mentioned in (Harrold et al., 2008) and the received

power Pr (in dBW) of receiver at a distance ‘d’ meters from a transmitter with transmit
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power Pt (in dBW) was estimated based on equation 3.2

As a dense urban scenario has been considered, the values of path loss exponent ‘n’

and ‘σ’ are considered as 4.5 and 10 respectively (Harrold et al., 2008). It is chosen

because of the reason that difference in the performance of various approaches will

be observable only in dense urban scenario. In this dense urban scenario, sensors are

stationary at the ground level and moving objects (vehicles etc.) around it are causing

random shadowing.

4.3 Decision Fusion

In the case of external sensing, the CN should have clear information about the spec-

trum holes in the time-frequency space as well as geographical space. Spectrum hole

in the time-frequency space can be obtained through simple fusion rules at the central

node. Since we consider smaller transmit power and larger area for spectrum sensing,

there will also be spectrum holes in the geographical space. Data fusion process at the

central node should have the capability to obtain the presence of PU and the coverage

area of each PU. It is expected that same channels will be used by different PUs at dif-

ferent geographical spaces. In this section, a CA-based approach for decision fusion is

proposed and is expected to give a better result with less computation. Two rules based

on the popular neighbourhood used in CA are proposed and its performance is com-

pared with data fusion rules proposed in (Harrold et al., 2008; Matinmikko et al., 2009;

Taghavi et al., 2011). All the above five rules are implemented and its performance is

compared. Brief description on all the above rules are given in the following section.

4.3.1 Overview of CA

A cellular automaton consists of a regular lattice of cells. Each cell takes on ‘k’ possible

values, and is updated in discrete time steps according to a rule ‘ f ’ that depends on

the value of the cell in some neighbourhood around it. There are several possible lat-

tices and neighbourhood structures for two-dimensional cellular automata (Packard and

Wolfram, 1985). The value a(i,j) of a cell at position (i, j) in a two-dimensional cellular

automata with a rule that depends only on nearest neighbours thus evolves according to
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equation 4.1

at+1
i,j = f [ati,j + ati,j+1 + ati,j−1 + ati+1,j + ati−1,j] (4.1)

The function ‘fi,j’ is called the cell rule for cell ‘ai,j’. The transition function ‘f’ is

linear if and only if each of the ‘fi,j’ are linear (Cattell et al., 1999). The identical rule

contained in each cell is essentially a finite state machine, usually specified in the form

of a rule table with an entry for every possible neighbourhood configuration of states.

In this system, each sensor deployed in the field is considered as a cell in the cellular

space and the single node result of each sensor is considered as a set of cellular states.

In a sensor network, the sensing result of each node at a particular time instant will be

transferred to CN and processing is done there to establish the presence and coverage

area of a PU. Single node result available at CN will form a 2-D grid and the state of

each cell will update its state with respect to the states of its neighbours, based on the

cell rule. This rule can be applied repeatedly until there is no change in the cell states. It

may be also applied repeatedly for certain number of times. Different rules may also be

applied over it in a serial order. Popular neighbourhoods used in 2-dimensional CA are

Moore neighbourhood and Von Neumann neighbourhood. Rules are devised for these

neighbourhoods and are given below.

4.3.2 Proposed CA-based rules for Decision Fusion

In this scenario, the spectrum decision by the nodes are assigned state ‘1’ for sensed and

state ‘0’ for not sensed. States are represented in white for state ‘1’ and in black for state

‘0’. Eight neighbours are considered for Moore neighbourhood and four neighbours

are considered for Von Neumann neighbourhood. Each node’s result will change to any

one of the state, based on the state of the neighbours. The rule is represented here as a

pattern with white and black cells. Rule consists of a specific number of patterns and

if the state of a cell and its neighbours matches with the pattern, the central cell will

change its state to the specific state as represented in the rule. Since eight neighbours

are present, there can be 29 combinations possible. The rule is defined in such a way

that for certain combinations, the central node will change its state to white or black

and for certain other rules it will not change its state.
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For CRN with external sensing, sensors deployed in the filed form a 2-D grid and

result from the sensors are collected at the server. When this data is represented with

respect to their position in the field, it will form a 2-D CA with two possible sates.

Each cell in the CA will change its state to ‘sensed’ or ‘not sensed’ with respect to

the transition rule. It was found that CA performs well in image processing. This has

motivated us to propose two rules for external sensing, as given below.

Rule set 1 : CA1 [based on Moore-neighbourhood]

Some of the rules (patterns) for the decision making are given below. The central pixel

will go to its state ‘1’ if each cell and its neighbourhood are same as the mask. Here

white indicates state ‘1’ (sensed) and black indicates the state ‘0’ (not sensed). This

can be applied repeatedly until no further change happens to the cellular space or to

a specific number of times. Moore’s neighbourhood based rules are given in Fig. 4.2.

Here the transition of the central cell will be based on the eight neighbouring cells.

Figure 4.2: Rule set 1

This rule can also be stated as follows:-R1 → Live (sensed) cell stays alive (sensed)

if 3 or more of its neighbours are alive, else it changes the state. Dead (not sensed) cell

will come to life if 4 or more of its neighbours are alive, else it stays in the same state.

Rule set 2 : CA2 [based on Von-neighbourhood]

Von Neumann neighbourhood based rules are given in Fig. 4.3. Four adjacent neigh-

bours are considered for the transition of the central cell. In the case of all the patterns

shown here, the central pixel will remain in its state or otherwise it will change its state.

Figure 4.3: Rule set 2

This rule can also be stated as follows:-R2 → Live (sensed) cell stays alive if 2 or
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more of its neighbours are alive, else it changes its state. Dead (not sensed) cell will

come to life if 2 or more of its neighbours are alive, else it will stay in the same state.

4.3.3 Fuzzy based Information Combining

Fuzzy based approaches for distributed sensing is proposed in (Matinmikko et al., 2009;

Taghavi et al., 2011). In fuzzy logic, each input can be labelled by a linguistic term,

where a linguistic term is a word such as ’low’, ’medium’, ’high’ etc. so that, the input

is defined as a linguistic variable. Each linguistic variable is associated with a term set

T(x), which is the set of names of linguistic values of x. Each element in T(x) is a fuzzy

set. A fuzzy set F in a universe of discourse U is characterized by a membership function

µF which takes values in the interval [0,1]: µF :U→[0,1]. According to (Matinmikko

et al., 2009) two bit decision is transmitted to the CN for decision making. It indicates

the linguistic variable as low, medium and high. These fuzzy inputs are given to a

fuzzy controller and a decision is made according to the fuzzy rule base available in the

central node. This method is named as Fuzzy2 for future reference. It is implemented

in (Matinmikko et al., 2009) as a two input case with a rule base of size eight. In

other words, a node will consider two of its neighbour’s inputs to make a decision.

We have extended this to 4 neighbours with a rule base of 95. It is implemented on

the external sensing scenario and its performance is then evaluated. In (Taghavi et al.,

2011) the nodes transmit the received power to the central node to make a decision.

This method is named as Fuzzy1 for future reference. The range of received power

varies with respect to transmit power, the distance of the node from the transmitter and

the level of fading. Membership functions are formed within this range with respect to

the threshold of detection. We have implemented this as a 4 neighbour case with a rule

base of 95. Further increase in the number of neighbours will increase the size of the

rule base.

4.3.4 Distributed Detection Algorithm

A distributed detection algorithm (DDA) is proposed by (Harrold et al., 2008) to com-

bine the neighbouring node’s result to make a cooperative decision. This decision al-

gorithm can be represented by equation 4.2. Here it performs a weighted combining of
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the neighbour’s results. Weight is decided according to the neighbour’s distance from

the centre node. It also considers the results in the previous time steps and assigns

a self weight to the node’s own result. Above rule is applied in this external sensing

context with a single time step and its performance is compared with the proposed CA

based fusion methods. We have considered 8 neighbours for the implementation of this

algorithm.

Q = [X1..XN ][D1..DN ]′ + [Y1..YM ][T1..TM ]′ + SZ (4.2)

where ‘XN ’ is the sensing results from neighbouring node, ‘DN ’ is the weight ac-

cording to the distance, ‘YM ’ is the result from ‘M’ time steps, ‘TM ’ is the weight

according to previous time steps, ‘S’ is the self weight and ‘Z’ is the node’s own result.

4.4 Results and Discussion

In this section, we evaluate the performance of the proposed CA based approach and

the methods proposed in (Harrold et al., 2008; Matinmikko et al., 2009; Taghavi et al.,

2011). We do the comparison using the performance measures such as coverage area

that can be formed, probability of detection, percentage of false positive, percentage

of false negative and the time taken for computation. We have considered the standard

mobile communication systems (GSM 900 MHz band) used in India. Wireless sensors

are considered to be installed in a 2-D grid within an area of 100 sq. km. as shown in the

Fig. 4.4. Sensors with positive results (sensed) are marked ‘•’ and those with negative

results are marked as ‘◦’. Irrespective of the location of the transmitter, sensing will

take place and the coverage area will be formed with respect to the transmitter. We have

chosen the area, the location of the transmitter and transmit power in such a way that

the area under consideration will have sensors located within and outside the coverage

area of the transmitter.
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4.4.1 Coverage Area

Coverage area is the region where the received power from a PU will be above the noise

floor. Fig. 4.4 to Fig. 4.9 show the single node result and the results after data fusion

based on the various algorithms mentioned. The central circle in Fig. 4.4 indicates the

calculated coverage area based on path loss and average shadowing. The other two

circles are named as the outer fade boundary and the inner fade boundary. In other

words, due to random shadowing, the coverage area may fluctuate about the central

circle between this interval. It was calculated from equation 3.2 by choosing appropriate

values for standard deviation σ (quoted in dB) of the shadowing. Typically σ varies

between 6 - 10 dB across different environments.

Figure 4.4: Coverage area formed by single node result

Fig. 4.4 shows that, in the single node result, some nodes located even outside the

outer fade region give the status ‘sensed’ and some nodes located within the inner fade

region give the spectrum status as ‘not sensed’. Also there is no indication about the

coverage area of the transmitter. This is because of the multipath fading and shadowing

occurring in the terrain. After applying the decision fusion rules (DFR) it is seen that the

nodes with status ‘sensed’ is concentrated towards the transmitter at the centre. It is ob-

served in the Fig. 4.5 that the result obtained through the proposed CA1 algorithm is in
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Figure 4.5: Coverage area formed by proposed CA1

line with the expectation in (Goldsmith, 2005). All the ‘sensed’ nodes are located closer

to the transmitter and it forms an amoeba like shape around the transmitter. Even in a

scenario where the transmitter is moving, this DFR is expected to give a clear boundary

of the PU at each instant. This is mainly because of the locality of cellular automata

interactions. Choice of suitable rule will make the single node result to converge into a

reasonable PU boundary. It is seen from Fig. 4.6 to Fig. 4.9 that even though the area

is reduced, the proposed CA2 also gives better coverage area information compared to

algorithms (Harrold et al., 2008; Matinmikko et al., 2009; Taghavi et al., 2011). All

the non CA fusion rules are not able to provide a reasonable coverage region which is

very important in the case of external sensing or centralized sensing. It is clear that

CA1 performs better than CA2 because of the higher number of neighbours considered

in CA1

4.4.2 False Negative

In this analysis, negative sensing result of the sensors which are located inside the av-

erage coverage region is considered as false negative. Percentage error is calculated as
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Figure 4.6: Coverage area formed by proposed CA2

Figure 4.7: Coverage area formed by Fuzzy1
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Figure 4.8: Coverage area formed by Fuzzy2

Figure 4.9: Coverage area formed by DDA
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the ratio of the false negative and the total number of sensors located inside the average

coverage region. Analysis on the percentage error versus number of receivers is shown

in Fig. 4.10. It has been assessed by taking the average of 100 readings in each sensor

density. It is seen that the percentage of false negative is almost zero for the CA1 DFR.

This is because of the locality of cellular automata interactions with more neighbours. It

is also seen that sensor density doesn’t have much impact on the false negatives. How-

ever a higher concentration will always give better resolution of the coverage area. CA2

DFR is giving the highest false negative compared to other rules and this may be due to

the small size of the neighbourhood. Others are giving less than 5% false negatives.

Figure 4.10: False negative performance

4.4.3 False Positive

In this analysis, positive sensing result of the sensors which are located outside the outer

fade region is considered as false positive. Percentage error is calculated as the ratio of

the false positive and the total number of sensors located outside the outer coverage

region. It is seen from Fig. 4.11 that the percentage of false positive is almost zero for

the CA based DFRs. CA2 has got the least value of false positive. And the number of

sensors needed to give acceptable result is around 3 to 4 per sq. km. All the other DFRs
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give a higher percentage of false positives and sensor density doesn’t have much impact

on the false positives. Fuzzy based methods are giving the lowest level of performance.

And the Fuzzy1 gives a poor performance than single node result. DDA gives a better

show than the fuzzy methods.

Figure 4.11: False positive performance

On analysing the false positives and false negatives, it is seen that DFRs with low

false negatives are having high false positives and vice versa. Only in the case of CA1

false alarm rate is relatively low.

4.4.4 Detection Rate

The detection rate of each algorithm is compared in Fig. 4.12. In this case, the power

level of the transmitter is chosen in such a way that all the nodes under consideration

will come under the coverage area of the transmitter. It was found that at all sensor

densities the single node result was around 60%. In this case also, the CA1 is giving

the best performance at all sensor densities. This is possible because of the locality of

cellular automata interactions and its complex global properties. Fuzzy1 is positioned

just below CA1 and the Fuzzy2 gives the lowest performance. DDA has obtained a
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detection rate above 95% and CA2 has a detection rate around 92%. The dip in the

detection rate with increase in sensor density may be due to the random nature of the

shadowing.

Figure 4.12: Detection rate of all the algorithms at various sensor density

4.4.5 Computational Complexity

A comparison of the time taken by each algorithm for a specific number of sensors

under consideration is given in Fig. 4.13. A total of 100 sensors are considered for

computing the coverage area of a PU. Time taken by each algorithm when it runs in

Matlab is considered for comparison. For an N x N grid, the amount of calculations

involved to obtain the above result is as follows. CA1 can be implemented with 32N2

additions and 4N2 comparisons. DDA needs 9N2 multiplications, 8N2 additions and

4N2 comparisons. And CA2 takes only 16N2 additions and 4N2 comparisons. It shows

that the computational complexity is very less for CA based approaches and the fuzzy

based approach needs more time to complete the calculation. It clearly indicates that the

energy requirement at the CN is relatively less if CA1 rule is employed for information

fusion.
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Figure 4.13: Time consumed to perform decision fusion. [Machine spec: Intel(R)
Core(TM)2 Duo CPU, T7250 @ 2.00 GHz, 777 MHz,1.95 GB RAM]

4.4.6 Low power VLSI Implementation

Now it is clear from the Matlab simulation that CA based DFR is giving the best per-

formance in all the parameters considered for performance evaluation of various DFRs.

Cellular automata has the characteristic of simplicity of basic components, locality of

cellular automata interactions, massive parallelism of information processing and also

exhibits complex global properties. These ensure that cellular automata have higher

speed and more potential applications in building VLSI blocks for decision fusion in

external sensing scenario. Considering the VLSI implementation of CA based archi-

tectures in (Corno et al., 2000; Chuanwu and Libin, 2005; Bhattacharjee et al., 1996)

and its advantages of lower power consumption and higher speed, CA1 DFR can be a

potential candidate for low power VLSI design of DFR for cognitive radio.

4.5 Chapter Summary

In this section, an external sensing scenario using wireless sensor networks for cognitive

radio is considered. As there will not be any limit on the expected number of SUs in the

field, it is better to have the overheads such as spectrum sensing, information combining

and decision making on the availability of PUs, taken off from the SUs and given to an

external agency. Hence there will be large savings in energy at the SU end. Hence the

battery of such mobile SUs may get a longer life. We have proposed two rules under CA
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based approach and its performance is then evaluated with available distributed sensing

algorithms such as DDA (Harrold et al., 2008), Fuzzy2 (Matinmikko et al., 2009) and

Fuzzy1 (Taghavi et al., 2011). Performance evaluation of all the algorithms is carried

out. Coverage area of a transmitter is an important aspect when a CN monitors a larger

area. CA based approaches are giving a realistic coverage area. CA1 is exceptionally

well in forming the coverage area. From all the other algorithms it was very difficult to

derive a proper coverage area. False alarm rate of CA1 is very low compared to other

algorithms. Probability of detection is very high for CA1 algorithm. It is also proved

that CA based approach is the most computationally efficient algorithm among the five

and hence it is energy efficient. The properties of CA and its massive parallelism of

information processing will make it a favourite choice for low power VLSI implemen-

tation of decision fusion blocks for an external sensing scenario in cognitive radio. This

approach may also be extended to distributed sensing where the nodes are randomly

distributed.
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CHAPTER 5

PREDICTION-BASED SPECTRUM SENSING

5.1 Introduction

Spectrum prediction will be an alternate approach to save sensing time. If there is a

higher probability for the channel to be busy, CR can skip that channel from sensing

purpose. It can look for channels with less chance of being busy for spectrum sensing.

Prediction methods are used to predict the usage behaviour of a frequency band based

on channel usage patterns of PU so that a CR can decide whether or not to move to an-

other frequency band. Spectrum prediction in cognitive radio networks is a challenging

problem that involves several sub topics such as channel status prediction, PU activity

prediction, radio environment prediction and transmission rate prediction (Xing et al.,

2013). Prediction based spectrum sensing (Chen et al., 2011), prediction based spec-

trum decision and prediction based spectrum mobility (Akbar and Tranter, 2007) have

been presented in the literature.

In this chapter, a comprehensive prediction-based spectrum sensing framework for

cooperative sensing is proposed. This includes spectrum prediction, spectrum sensing

and decision fusion as the building blocks. This chapter further proposes two spectrum

prediction approaches using Bayesian Inference that predict the probability of a chan-

nel’s next state (busy/idle). Further analysis is done to study the impact of various pa-

rameters associated with them. This channel prediction will help to select suitable chan-

nels for spectrum sensing, from a rank list prepared based on the probability of channel

being idle. It is seen that channel ranking using Bayesian approaches closely follow

actual ranking. Proposed approaches are compared for their prediction performance

and the computational complexity with other approaches based on EWMA, HMM and

Neural Network which are already available in the literature.

In order to validate the proposed prediction-based spectrum sensing using real data,

a spectrum occupancy measurement is carried out. Spectrum hole pattern obtained

through this process is used to compare the performance of this approach with other



prediction approaches. Analysis of spectrum occupancy for selected bands of electro-

magnetic spectrum is also presented in this chapter.

5.2 Proposed Spectrum Sensing Model

In line with IEEE 802.22 cognitive wireless regional area networks (WRAN) standard,

we have proposed a sensing scheme in Chapter 3 for distributed sensing. (Pei et al.,

2011) had also suggested an optimal sensing strategy for CRN that focuses on en-

ergy efficient design of sequential channel sensing. It gives emphasis to sensing-access

strategies and the sensing order. Sensing strategy also specifies when to start and stop

the transmission. Power level for transmission is specified by the access strategy and

sensing order specifies the sequence of channel sensing. Their objective is to design

the sensing-access strategies together with the sensing order to maximize the energy

efficiency of the sequential channel sensing process. They have estimated the optimum

sensing time duration for energy efficient sensing. Their approaches could also reduce

the computational complexity in channel search.

In order to reduce the computational complexity further, we have proposed a ranking

scheme for channel search. Prediction based spectrum sensing for channel search is

employed so that the CR needs to sense only the highly ranked channels. This will

save time in channel search and hence saves energy. The proposed spectrum sensing

model is presented in Fig. 5.1. Here each CR is expected to have a rough idea about

the percentage occupancy of each channels. This is made possible by consulting with

the spectrum occupancy measurement, already carried out by other sources. Spectrum

occupancy measurement block is shown with dotted lines to convey that it is not a part

of the CR. This will act as a prior information for the predictor block. Predictor will

combine the recent information and ‘prior’ to predict the probability of occupancy of

the channel in the coming time slot. Channels with higher probability of being idle

are ranked and only those channels with higher ranking are considered for spectrum

sensing. Since only potential channels are considered for spectrum sensing, there will

be considerable saving in time. After single node sensing, final decision is taken by

fusing the node’s own result with neighbour’s results. Fusion rule plays an important

role in making right decision. The control unit with its cognitive capability can choose
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Figure 5.1: Proposed prediction-based spectrum sensing model for cooperative sensing

the various modalities of each block.

5.3 Spectrum Prediction through Bayesian Inference

This section explores the possibility of employing Bayesian inference in prediction

based spectrum sensing. Prediction based spectrum sensing needs a fast predictor to

work within the specified time constrains and at the same time, it has to be reliable.

Bayesian predictors consider present and prior information to make a prediction and it

can also be fast. Two fast approaches based on Bayesian inference are proposed here

to predict the probability of a channel state (busy/Idle) in the coming instant. These ap-

proaches were analysed and its performance is compared with similar prediction meth-

ods based on statistical approach, Neural Network and Hidden Markov model. Major

contribution of this work is its low computational complexity and its adaptability to real

scenario.

5.3.1 System Model

Here the trend of the spectrum occupancy of each channel is assumed to be available to

the CR as a record and it is called as ‘prior’. It is obtained through spectrum measure-

ment by an external system. Spectrum measurement block is shown with dotted lines
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Figure 5.2: System model for opportunistic utilisation of spectral holes used in this sec-
tion

to convey that the measurement is done outside the CR. A spectrum prediction unit can

combine the prior and recent observations to predict the probability of the next state of

a channel to be Idle/busy. This information will allow the CR to have a channel ranking

so that the CR needs to perform spectrum sensing only to selected channels. Channels

which are predicted to have higher probability to be busy can be omitted. Cooperative

spectrum sensing can be performed later to arrive at the list of vacant channels. Rest of

the section is given more focus to spectrum prediction approaches and their analysis.

We have considered that a PU operates on a specific frequency band and each chan-

nel is occupied by various primary users. Time is divided into different slots of specific

duration and it is assumed that the channel is stable within the time slot; i.e., a channel

state is constant for one slot and if a PU is not detected during the initial period of the

slot, an SU can use the time slot for the remaining duration of the slot without causing

any interference to the PU. Typically, the duration of the time slot is one millisecond or

smaller. Spectrum occupancy status of PUs is represented as ‘present’ or ‘absent’ in a

specific time slot. Grey boxes in Fig. 5.2 represent the absence of a PU and magenta

boxes represent the presence of a PU in the respective time slots. Spectrum sensing is

an important task to be performed by each SU to sense its opportunity to use vacant

slots.

It is required to perform spectrum sensing in the initial period of the time slot fol-
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lowed with data transmission or reception. Spectrum prediction will help to skip some

channels from spectrum sensing. Spectrum predictor takes the status of ‘N’ previous

time slots into account and tries to predict the next state. The cyan block in Fig. 5.2

represents the time slot to be predicted by the CR by utilising the spectrum occupancy

status in the previous time slots. It is assumed that the spectrum sensing by the CR

terminals are correct. Proposed spectrum prediction approach based on Bayesian infer-

ence and a brief description about some of the prominent prediction approaches from

the literature are discussed in the following section.

5.3.2 Bayesian Model for Spectrum Prediction

Bayesian Inference is an approach of inference where Bayes’ rule is used to update

the probability distribution of a hypothesis when additional evidence data is learned.

In cognitive radio networks, a CR user can compute a probability distribution (also

known as prior) of a system parameter θ, such as the spectrum occupancy status of a

PU, denoted by P(θ), from the observations made and subjective assessment. Through

spectrum sensing, some data X = [x1, x2,...xN ] are observed for ‘N’ time slots. Then,

a likelihood function of parameter θ, is calculated by CR user, denoted by L(θ), as

the probability of the observed data given that parameter. After acquiring the prior

probability distribution and the likelihood function, Bayesian inference can be used to

derive the posterior probability distribution of the system parameter θ conditioned on

the data X = [x1,x2,...xN ]; (Xing et al., 2013). Bayes’ rule is given as

P (θ/X) = P (X/θ).P (θ)/P (X) (5.1)

The posterior probability is proportional to the product of the prior probability

and another term P(X/θ), the probability of the data given the parameter, commonly

known as the likelihood. Likelihoods are the critical bridge from priors to posteri-

ors, re-weighting each parameter by how well it predicts the observed data. Different

choices of the prior P(θ), will lead to different inferences about the value of θ. The

posterior distribution over θ contains more information than a single point estimate.

It indicates not just which values of θ are probable, but also how much uncertainty is

there about those values. However, there are two methods that are commonly used to
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obtain a point estimate from a posterior distribution. The first method is ‘Maximum

A Posteriori’ (MAP) estimation: choosing the value of θ that maximizes the posterior

probability. The second method is computing the posterior mean of the quantity which

is a weighted average of all possible values of the quantity, where the weights are given

by the posterior distribution. System scenario is formulated to match with Bayesian

problem and is presented as approach 1. In approach 2, posterior mean is employed to

predict the probability of a ‘busy’ next state. In the following discussion, term ‘history’

is used to represent the prior information. This is the average occupancy of the channel

in the past. And ‘recent observation’ is used to estimate the Likelihood.

Approach 1

According to Bayes’ rule, the posterior probability is proportional to the product of

the prior probability and the likelihood. In this approach, the prior is the probability

of channel occupancy by a PU in a particular channel based on large data observed

already. Likelihood function is the probability of busy next state given a busy previous

state. This is calculated from the data observed recently. Posterior probability is the

probability of a busy next state (to be sensed) given a previous busy state. The prior is

calculated by observing the spectrum occupancy status of PU for ‘M1’ previous time

slots. Let ‘Sp’ be the number of busy slots and ‘Np’ be the number of idle slots from

the spectrum occupancy status of the PU. Prior probability of the channel being busy is

given by

P (S) = Sp/M1 (5.2)

Hence the prior probability of channel being idle is,

P (N) = 1− P (S) (5.3)

where ‘S’ stands for ‘sensed state’ or ‘busy state’ of a PU within a time slot and ‘N’

stands for a ‘Not sensed state’ or ‘Idle state ’. Let ‘X’ be the recently obtained result

with ‘M2’ observations such that M1 >> M2 and ‘Sr’ is the number of cases where

both next and previous states are busy. And ‘Nr’ is the number of cases where both next
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and the previous states are idle. Let P(C/S) be the probability of previous state being

busy given the next state is also busy, P(D/S) be the probability of previous state being

idle given the next state is busy, P(C/N) be the probability of previous state being busy,

given the next state is idle, and P(D/N) be the probability of previous state being idle,

given the next state is also idle. Now the probability of the next state to be busy, given

the previous state is also busy can be calculated as

P (S/C) = P (C/S).P (S)/P (C) (5.4)

where

P (C) = P (C/S)P (S) + P (C/N).P (N) (5.5)

And the probability of next state to be busy, given the previous state is idle can be

calculated as

P (S/D) = P (D/S).P (S)/P (D) (5.6)

where

P (D) = P (D/S)P (S) + P (D/N).P (N) (5.7)

This approach is implemented as case-I and its variants are also implemented as

case-II and case-III. Differences between three cases are given below.

Case - I: Next state is predicted by looking only at the present state and the previous

statistics. In this case if you want to process N cases, you need to have N+1 obser-

vations. Here the calculations are as mentioned above. Here the present state may be

either ‘S’ or ‘N’

Case - II: A state is predicted considering the two previous states and statistics of

the observed duration. In this case N + 1th state is predicted by considering the pattern

of N − 1th and N th states and the previous statistics. Hence the present states may be

having any one combination from ‘SS’, ‘SN’, ‘NS’, ‘NN’ .

Case -III : A state is predicted considering three previous states and statistics of the

observed duration. In this case N + 1th state is predicted by considering the pattern of

N − 2th, N − 1th and N th states and the previous statistics. Here the present states will

have eight combinations ‘SSS’, ‘SSN’, ‘SNS’, ...‘NNN’ .
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Approach 2

Let us consider that the spectrum sensing by a CR in specific number of time slots fol-

low a binary pattern represented as ‘sensed(S)’ and ‘not sensed(N)’. It is assumed that

sensing result in each time slot is arrived independently from a Bernoulli distribution

with parameter θ. It may looks like SSNNNNSSNSSSSN... . By looking into the recent

sensed results, the probability of a busy(‘S’) state in the next time slot is to be predicted.

The belief about the arrival of PU is called ‘prior’, which is formed based on the his-

tory of its arrival pattern. It is considered that this sequence forms a beta distribution.

Let X be the observed result with Sp and Np as the number of ‘sensed’ or ‘not sensed’

respectively, from the history considered. Similarly Sr and Nr are the details about the

recently observed results. Using a beta prior with the Bernoulli likelihood, posterior

distribution can be obtained based on (Griffiths et al., 2008) as

P (Θ/X) =
(Sp+Np+ Sr +Nr + 1)!

(Sp+ Sr)!(Np+Nr)!
ΘSp+Sr(1−Θ)(Np+Nr) (5.8)

which is a Beta (Sp+Sr+1, Np+Nr+1) distribution. A point estimate of θ from this

distribution is obtained through the MAP estimate of θ is given as

θ̂ =
Sp+ Sr

Sp+ Sr +Np+Nr
(5.9)

and the posterior mean of the distribution is calculated as

θ̄ =
Sp+ Sr + 1

Sp+ Sr +Np+Nr + 1
(5.10)

Probability of the channel being busy can be estimated from equations 5.9 or 5.10.

There will be slight difference between the two results. In a practical situation, a CR

is expected to have the prior probability about a PUs arrival based on the history and

this will be updated regularly. Likelihood of the data can be calculated from the recent

observations. In practical cases, Np and Sp need not be available in certain cases and

it may be available as only a prior probability. Since denominator of equation 5.1 nor-

malizes the posterior probability, posterior probability can be calculated as the product

of prior and likelihood.
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5.3.3 EWMA-based Prediction Approach

Exponential weighted moving average (EWMA)-based approach is presented by (Shi

et al., 2008). The authors have considered channel occupying probability π(t) as Wiener

process, which has the following two properties (Hull, 2006). The change of π(t) during

a small period of time ∆t is

∆π = ε
√

∆t (5.11)

where ∆(t) can be defined as the prediction interval, and ε follows standardized

normal distribution ( a normal distribution with mean ‘0’ and standard deviation ‘1’).

The value of ∆π for any two different prediction interval ∆t are independent. Hence,

the mean and standard deviation of ∆π is 0 and ∆t respectively. In a prediction time

interval ∆t, the change ∆π in the value of π(t) can be defined as

∆π = µ∆t+ εσ
√

∆t (5.12)

where ε is a variable which follows standardized normal distribution. Thus ∆π has

a normal distribution with mean and standard deviation µ∆t and σ
√

∆t , respectively. µ

and σ are known as the expected drift rate and the standard deviation rate of ∆π (Hull,

2006). Drift rate can be calculated by equation 5.13 and the estimator µ̂ of µ and σ̂ of

σ are given by equations 5.14 and 5.15

µ(t) = π(t)− π(t− 1) (5.13)

µ̂ =
π(t)− π(t−m)

m
(5.14)

σ̂ = (1− λ)
m−1∑
i=0

λi(µ(t− i)− µ̂ (5.15)
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5.3.4 Neural Network Approach for Spectrum Prediction

In line with the neural network presented in (Tumuluru et al., 2012; Jianli et al., 2011),

we have implemented a neural network predictor, for comparing its computational com-

plexity and prediction performance with the proposed Bayesian approaches. A mul-

tilayer perceptron (MLP) network consisting of an input layer and two hidden lay-

ers (each with 15 neurons) was implemented. The output layer consists of a single

neuron. The network has ‘N’ inputs and one output. The parameters of the MLP pre-

dictor are updated using the back propagation (BP) algorithm. Spectrum sensing results

are applied to the network as a binary sequence. For training the network, a sequence

of ‘N’ inputs, say xn, xn−1, xn−2, xn−3, ...xn−(N−1) are applied and xn+1 is supplied as

the desired response. This way the training is carried out with sufficient number of

sequences and later it is used for prediction.

5.3.5 Discrete Time Hidden Markov Model

An HMM based approach is presented in (Akbar and Tranter, 2007) for spectrum pre-

diction in cognitive radio. The sequence of spectrum states is modelled through the use

of a two-state Markov chain with the spectrum in either state St = 1 or St = 0. A Markov

chain has the property that the probability of future states is dependent only on the past

‘m’ states where ‘m’ is the order of the Markov chain. The parameters of the HMM are

updated using the Baum-Welch algorithm. This algorithm uses the observed sequence

of spectrum states to infer the underlying HMM transmission matrix. Assuming perfect

sensing for the CR, the case of the emission matrix is not considered. This method is

also implemented for comparing its computational complexity and prediction rate with

proposed Bayesian approaches.

5.3.6 Results and Discussion

In this section, performance analysis of the proposed Bayesian approaches is carried out

first and its performance is compared with other methods mentioned above. Evaluation

of the proposed approaches is carried out by a simulation done in Matlab. For the

analysis of predictors different data distributions have to be used. Beta distribution has
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the flexibility to form various types of distributions by changing its parameters. Hence

binary data with Beta(α, β) distribution is used to represent spectrum occupancy pattern

of a PU. Both prior and recent observations are extracted from same distribution and

based on this data, probability of the next state is predicted using the methods presented

above. Also the effect of various parameters on the predicted probability is analysed.

Figure 5.3: Channel time slots and its Bayesian model parameters

As shown in Fig. 5.3, consecutive blocks of data for prior and observation are se-

lected and the probability of next busy state is predicted. For simulation, the number of

time slots considered for prior should be large. In a practical situation, a CR will only

have the estimate of the prior.

(a) (b)

Figure 5.4: Predicted probability of 15 channels (a) Actual (b) Bayesian-1

In order to reduce the computational complexity, the quantity of data considered as

recent observation needs to be small. The cyan block shown in Fig. 5.3 as prediction

is of one time slot duration and its probability needs to be predicted. Comparison of

predicted probability is dealt first. A comparison of prediction by Bayesian approaches

and EWMA approach for 15 channels are given in Fig. 5.4 and Fig. 5.5. Probability

of ‘next state to be idle’ is calculated here. Actual probability is calculated from the

known data. It can be seen that prediction by Bayesian approaches are very close to

actual probability. Relative difference in the predicted probability between channels are
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(a) (b)

Figure 5.5: Predicted probability of 15 channels (a) Bayesian-2 (b) EWMA

almost closer to actual values. Number of recent observations ‘N’ considered for this

prediction is 12. All the 15 channels were drawn from different beta distributions.

Next the prediction over 25-50 consecutive time slots for various approaches are

presented. In order to predict consecutive time slots, specific size of the prior and

observation blocks are moved forward for ‘n’ number of times over the time slots and

the predicted values are plotted in Fig. 5.6 and Fig. 5.7. In practice, each SU will have

the recent observations and a subjective estimate of PUs arrival rate. From this a node

will infer the probability of the next busy state.

Fig. 5.6 shows the comparison of predicted probability of three cases of Bayesian-1

approach with the actual probability. This observation is arrived at with data distribution

of β(0.5, 0.5) and observation block size of 30. Three cases of Bayesian-1 approach are

showing similarity among themselves and their magnitudes are increasing as it moves

from case 1 to 3. It is seen that the Bayesian estimate is moving around the actual prob-

ability. It was observed in our trials that as the size of the observation block increases,

variation of Bayesian estimate from the actual has become smaller and smaller. Since

uniform data distribution is considered, actual probability in this context is around 0.5.

Case-1 is showing more similarity with actual probability than other cases. On ob-

serving the direction of transition with respect to previous step at each time instance

in the graph, evidence of correlation can be established between actual and Bayesian

approaches.

Comparison of Bayesian-2 approach is shown in Fig. 5.7. In this case β(2,1) dis-

tribution is used for analysis. EWMA approach is also compared here with Bayesian-2

approach. It is found that both Bayesian and EWMA patterns try to follow the actual
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Figure 5.6: Comparison of predicted probabilities for three cases of Bayesian-1 and
actual

Figure 5.7: Comparison of predicted probabilities of Bayesian-2 and actual
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Figure 5.8: Predicted Probability under varying prior size and observation block size
for Bayesian-1 approach for ‘sensed’ state

probability pattern. Considering the magnitude of the predicted value at each time slots,

EWMA looks closer to actual than Bayesian-2. But it can be seen that, this difference is

in the average value of the plot. On observing the transition pattern, Bayesian approach

follows the actual transition pattern with one time slot delay and the EWMA follows the

actual pattern with two time slot delay. Hence it can be considered that Bayesian-2’s

output is closer to the actual probability. It shows that Bayesian approach is a better

choice for spectrum prediction in cognitive radio.

In all the Bayesian cases, there is a possibility to vary the number of data considered

for prior and number of data considered for observation. In the next part, the effect of

prior size and observation block size on the prediction value is analysed. A typical case

with known next state and its respective prediction by various methods are shown below.

Two cases of next state ( ‘sensed’ and ‘not sensed’) with their respective prediction are

shown in Fig. 5.8 to 5.13.

Here the aim is to find the minimal size of the prior block and observation block for

a reliable prediction. In all these cases, scale used for x-axis is 1:5 and that of y axis is

1:10. Fig. 5.8 & 5.9 shows that Bayesian-1(case-1 is considered) is giving a stable result

with a block size of around 10 and that of prior is around 100. Generally larger block
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Figure 5.9: Predicted probability under varying prior size and observation block size
for Bayesian-1 approach for ‘not sensed’ state

Figure 5.10: Predicted probability under varying prior size and observation block size
for Bayesian-2 approach for ‘sensed’ state
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Figure 5.11: Predicted probability under varying prior size and observation block size
for Bayesian-2 approach for ‘not sensed’ state

Figure 5.12: Predicted Probability under varying observation block size for EWMA ap-
proach for ‘sensed’ state

112



Figure 5.13: Predicted probability under varying observation block size for EWMA ap-
proach for ‘not sensed’ state

size for a prior will give a stable result. Fig. 5.8 & 5.9 shows that Bayesian-2 approach

require slightly more block size as that of Bayesian-1. Slightly larger block size for

prior is also required here. In Fig. 5.12 & 5.13 EWMA approach is analysed only on

the block size under consideration and it is repeated more times to make it similar to

other approaches. It is found that EWMA needs more data to get a stable prediction.

All the above analyses were carried out with the help of different data generated

under various beta distributions. In order to match with a real situation, we have per-

formed spectrum occupancy measurement of GSM-900 band using NI-USRP. 24 hours

measurement of spectrum occupancy in each time slot, per channel is obtained. Dura-

tion of time slot was around 1 sec. The ‘ON’, ‘OFF’ status of PU in each time slot is

represented with ‘1s’ and ‘0s ’. This data of nine channels are used for comparing the

performance of proposed Bayesian approaches with other methods.

Channel ranking, based on the probability of the channel being idle, is used to com-

pare the performance of proposed Bayesian method with approaches based on EWMA,

HMM and Neural Network. All the methods tries to rank the channels after observing

spectrum occupancy status of ‘N’ recent time slots. They also use an estimate of prior

data for the ranking. This estimate is taken only once and it may be updated later, but
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Figure 5.14: The channel ranking based on prediction of the probability of channel be-
ing idle for an observation size N=20

Figure 5.15: The channel ranking based on prediction of the probability of channel be-
ing idle for an observation size N=10
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not on a regular basis. ‘N’ recent observations will be considered regularly to prepare

the ranking. This is to reduce the time consumption. Channel ranking carried out by all

the methods are shown in Fig. 5.14 and 5.15. X-axis in each subplot is the channel num-

ber and the Y-axis gives the predicted estimate. The estimate with higher value is the

best channel with higher probability of being idle. N=20 is used for Fig. 5.14 and N=10

is used for Fig. 5.15. Actual ranking is obtained from the data used for simulation.

When N=20, ranking by Bayesian-1 is almost closer to actual ranking. Estimates by

Bayesian-2, EWMA and HMM are giving similar pattern, but slight deviation from the

actual pattern. Even though they use ’prior’, it seems the effect of recent observation is

dominant in the estimate. Ranking pattern by neural net is giving more deviation from

the actual. When N =10, neural net is showing a closer relation with actual case than

the previous case. But ranking pattern by other methods are showing deviation from

the actual pattern. This is because of the insufficient size of the ‘N’. During experiment

it was seen that N>15 was giving a good result for Bayesian-1 and as ‘N’ increases

Bayesian-2, EWMA and HMM were giving a closer estimate to the actual case.

Figure 5.16: Time consumed by all the approaches for one state prediction. [Machine
spec: Intel(R) Core(TM)2 Duo CPU, T7250 @ 2.00 GHz, 777 MHz, 1.95
GB RAM]

Analysis of computational complexity is carried out and the result is shown in

Fig. 5.16. These approaches were run on an Intel core-2 Duo CPU with 2 GHz clock

and the time elapsed for each method is tabulated and compared. In the case of NN

and HMM approach, training time is not considered for comparison. Fig. 5.16 clearly

shows that Bayesian approaches are less expensive in terms of computational cost. Con-

sidering the time required for spectrum sensing and time available for data transmission

within a specific slot as in Fig. 5.3, a successful prediction is going to improve the
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throughput of the system. Low prediction time and higher detection rate of Bayesian

approaches can make it a useful candidate for cognitive radio system.

5.3.7 Section Summary

Spectrum prediction is a very useful task that improves the efficiency of spectrum sens-

ing and it will lead to increase in the throughput of the CR system. In this section,

we proposed some Bayesian approaches for spectrum prediction and their analysis is

carried out. This predicted probability can be used to rank the channels so that chan-

nels with lower rank can be skipped from spectrum sensing. Performance of proposed

methods are carried out on generated data as well as on real data obtained through

spectrum measurement. Its performance is compared with existing approaches such as

EWMA (Shi et al., 2008), Neural Network (Jianli et al., 2011), HMM (Akbar and Tran-

ter, 2007). Considering the prediction performance and computational cost, Bayesian

approaches are giving a better performance and it is found that they are the promising

approaches to improve the throughput of the system.

5.4 Spectrum Occupancy Measurement and Analysis

In the context of cognitive radio, spectrum occupancy estimate of a geographical region

is very important to establish strategies to utilise the unoccupied spectrum. Most of

the spectrum occupancy measurement performed till date are based on measurements

in outdoor high points. In this work, spectrum occupancy is measured using an in-

door setup. Here the focus is to find the utilisation of the licensed spectrum in the

region, Kochi, India. Spectrum holes in the frequency domain is presented through the

overview of the spectrum occupancy over the range 50 MHz - 4400 MHz. Spectrum

hole in the frequency - time domain is presented through detailed measurement at fre-

quencies where activity is noticed. Average duty cycle of specific channels and specific

bands are presented. Analysis shows that CRs with different complexity can work at

different types of spectrum holes. That means, a high end device with multiple proto-

cols can adapt to any type of spectrum holes and always there is a possibility that a low

end CR device specific to the type of spectrum hole can also exist.
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5.4.1 Measurement Setup and Methodology

Measurements were conducted at Rajagiri School of Engineering and Technology (RSET),

Kochi, Kerala, India. The indoor measurements were performed inside the laboratory

located on the top floor of the building where exists excellent signal strength for all

the transmitters located nearby. The district headquarters and major towers of TV, FM

and Mobile towers are located near to the measurement location. NI USRP with Lab

view platform was used for the measurement setup. The sensing setup consisted of

NI-USRP-2920 and NI-USRP-2922 with omni directional antenna that performed the

measurement and a computer loaded with LabVIEW that recorded the data along with

its time and frequency information to perform further analysis. Detailed analysis is

presented in Section 5.4.3

5.4.2 Occupancy Metrics

General metrics used in this work for the spectrum occupancy measure is as mentioned

in (López Benítez and Casadevall Palacio, 2010). Power Spectral Density (PSD) sam-

ples collected by the PSD block of USRP over a time span ‘T’ and along a frequency

span ‘F’ is represented by a matrix P of NT by NF size

P = P [ti, fj] (5.16)

where each matrix element P(ti, fj) represents the PSD sample captured at time instant

ti (i = 1, 2, .. , NT ) and frequency point fj (j = 1, 2, .. , NF ). Energy detection is used

to detect the PU. Here the received signal energy is compared to a predefined decision

threshold ‘λ’ chosen adaptively with respect to noise floor. If the signal energy is greater

than the threshold, PU is said to be present. Otherwise, the measured frequency channel

is said to be idle. Following this principle, a binary spectral occupancy matrix E[ti, fj]

is defined, where each element E(ti, fj )∈ [0, 1] is computed as

E(ti, fj) =

 0,M(ti, fj) < λj

1,M(ti, fj) ≥ λj

 (5.17)

Average usage or average duty cycle Dj of a frequency fj is calculated as the aver-
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age of the ith column of E.

Dj =
1

NT

i=NT∑
i=1

E(ti, fj) (5.18)

Average duty cycle of a band of frequencies is computed by averaging the duty cycle

Dj of all the NF frequency points measured within the band:

D =
1

NF

j=NF∑
j=1

D(j) (5.19)

5.4.3 Spectrum Occupancy Analysis

This section presents the activity in the spectrum space ranging from 50 MHz to 4400

MHz. Initially an overview of spectrum occupancy over the entire range based on

measurements taken for around 128 instances at a stretch is presented. This is followed

by detailed measurement of 24 hours duration over specific bands, where more activity

is observed. This work focuses on FM radio band, VHF TV band, GSM-900 band,

GSM-1800 band, 3G and Wi-Fi. It is observed that spectrum occupancy is seen in

certain other frequency bands also.Samples are taken at 1 second interval. Threshold

was set 6 dBm above the average noise floor. It was verified through conducting trials

over unoccupied channels that, this threshold was giving a probability of false alarm,

Pf ≤ 0.1. It was observed that average energy level of the noise shows slight variation

with respect to frequency bands. And in some bands like FM, the signal level is so

strong that even a higher threshold also will give a correct result. But in the case of

GSM, both weak and strong signals are present. The measurement setup was configured

to give spectrum occupancy details of 10 MHz at a time. These results were combined

to obtain PSD plots for all the bands. Average duty cycle of each channel and the

respective band are calculated according to equations 5.18 and 5.19. Since GSM and

FM channels are of 200 kHz band width, during detailed measurement each frequency

band was divided into 200 kHz channels and the average occupancy of various bands

were calculated. Fig. 5.17 gives an overview of the spectrum occupancy in 50 MHz to

200 MHz band. Some activity is seen in 50 MHz-75 MHz band followed with activity

in the FM band. No activity except some spikes are visible in the 110 MHz - 200 MHz
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Figure 5.17: Spectrum activity in the 50 MHz - 200 MHz

Figure 5.18: Spectrum activity in the VHF TV and GSM-900 band

frequency range. All the FM radio channels in Kochi, viz. 91.9 MHz, 93.5 MHz, 94.3

MHz, 102.3 MHz, 107.5 MHz etc. and other channels clearly appear in the plot.

Spectrum occupancy in the VHF TV band and GSM-900 bands are shown in Fig. 5.18.

Transmission of TV channels from Kochi such as DD-National (224.25 MHz) and DD-

News (210.26 MHz) are clearly captured. For GSM-900, an extended frequency band

from 880 MHz - 980 MHz is shown in the figure. This has been included to show the

spectrum occupancy in the nearby frequencies of GSM uplink and downlink. GSM-900

band appears to be heavily used. No activity is found in frequency band between 980

MHz to 1700 MHz, and hence it is not shown. Spectrum activity between 490 MHz -

870 MHz is presented in Fig. 5.19. Some activity is seen in 715 MHz - 725 MHz and

790 MHz - 810 MHz band. As per the spectrum allocation table, some portion is allo-
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Figure 5.19: Spectrum activity in the 490 MHz - 870 MHz band

Figure 5.20: Spectrum activity in the GSM-1800 band

cated to UHF TV and some are not allocated, whereas some are for mobile applications

including CDMA.

Fig. 5.20 shows the spectrum occupancy within 1710 MHz - 1890 MHz. GSM-1800

band is located within this range. Only limited activity is visible in the uplink whereas

relatively more activity is seen in the downlink. This could be because the measure-

ment setup is located at one side of the mobile tower. All the downlink signals from the

tower are available at the measurement setup and the signals from the mobile phones

located away from the tower do not give significant signal strength at the measurement

setup. While monitoring the real time measurement, some patterns similar to chan-

nel occupancy were observed along with the noise floor though with feeble amplitude.

Such signals may not get recorded as channel occupancy of a user. Fig. 5.21 gives the
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Figure 5.21: Spectrum activity in the 3G and WiFi band

Figure 5.22: PDF of received energy for GSM-900 downlink

spectrum activity in the 3G band and Wi-Fi band. 3G uplink is seen in 1900 MHz and

downlink in 2100 MHz band. More activity is seen in 2100 MHz band. This is also

because of the presence of the tower near to the measurement location. Activity was

also observed on the entire range of the Wi-Fi band (2400 MHz - 2500 MHz).

Histogram of the PSD of the received signal at various bands are displayed in

Fig. 5.22 to Fig. 5.29. The distribution of PSDs throughout 24 hours for each 200

kHz band is presented here. It gives the Probability Density Function (PDF) of the re-

ceived energy for a band of frequencies at the receiver. This was obtained from around

10000 samples collected over 24 hours. At a time 10 MHz band was observed. Each

band was divided into 50 channels of 200 kHz each. Necessary offsetting in the re-
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Figure 5.23: PDF of received energy for GSM-900 uplink

Figure 5.24: PDF of received energy for GSM-1800 downlink

ceived data was done to receive a complete channel. This is done to avoid the guard

bands allocated in FM and GSM bands. Since FM and GSM use 200 kHz channels, our

measurement setup is configured like that. Same setup is used for other bands also. A

histogram of received energy levels of a particular channel over the range of -155 dBm

to -85 dBm is plotted here. 10 MHz band details from GSM-900 downlink, GSM-900

uplink, GSM-1800 downlink, GSM-1800 uplink, FM, VHF-TV, 3G and Wi-Fi are pre-

sented in Fig. 5.22 to Fig. 5.29. It is obvious that more the usage, more the energy in the

high energy bins. It is clear that the TV signals are having highest energy followed by

the FM stations. This is of course due to the high power transmitters at TV stations. It is

also seen that GSM 900 downlink is giving stronger signals at the receiver. Compared

to downlink signals, uplink signals are weak as these are originated from the mobile
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Figure 5.25: PDF of received energy for GSM-1800 uplink

Figure 5.26: PDF of received energy for FM band

phones located within the cell boundary. The received energy of the GSM-900 down-

link appears to be stronger and GSM-1800 uplink is found to be the weakest among

GSM signals.

In order to calculate the average duty cycle of a channel, 24 hours measurement

was conducted on each channel. Spectrum utilisation of all the channels in the FM

band(88 MHz - 108 MHz), GSM uplink band(880 MHz - 915 MHz) and GSM downlink

band(935 MHz - 960 MHz) were carried out as per equation 5.18 and presented in

Fig. 5.30. In the FM band, only nine channels have significant usage and the average

duty cycle of the band is only 8.6%. This is because only nine channels may have

operation license in this region. Most of these primary users, utilise the channel 100%,

while for others the utilisation is almost 80%. It is observed that these FM stations
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Figure 5.27: PDF of received energy for VHF TV band

Figure 5.28: PDF of received energy for 3G downlink

Figure 5.29: PDF of received energy for Wi-Fi
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were switched off for a specific duration. Sub-plots 2 and 3 of Fig. 5.30 show the

channel utilisation of GSM-900 band. It is seen that GSM-900 downlink channels are

heavily utilised. Almost 61 percent utilisation is observed for this band. The uplink

band is observed with only 17 percentage utilisation. Significant gap is observed in the

utilisation of uplink and downlink channels. This is because of the presence of GSM

tower closer to the measurement setup than the mobile phones. Uplink channel is used

by the mobile phones and the mobile concentration near to the measurement setup are

likely to be less.

Channel utilisation of GSM-1800 band is provided in Fig. 5.31. Here all the chan-

nels in this band were observed and the average duty cycle was plotted. As usual,

GSM-1800 downlink is showing higher utilisation than its uplink channel. This may

be due to the same reason as that of GSM-900 band. Comparing the two GSM bands,

GSM-900 is heavily utilised than GSM-1800 band. Hence spectrum opportunity is

more with GSM-1800. Only in the above three bands, analysis is done for the entire

channels in a band. In all other bands, we have conducted similar analysis on specific

10 MHz regions over the respective bands. Based on this, spectrum usage pattern of all

the services over 24 hours duration is presented here. Hourly usage pattern of GSM-900

band is presented in Fig. 5.32. Two 10 MHz ranges are analysed here. It is observed

that certain channels are used round the clock. This may include control channels. Cer-

tain channels have a random usage with less usage between 12 am - 5 am. This may

be because of less active users during that time. Hourly usage pattern of GSM-1800

band is presented in Fig. 5.33. Some channels are steadily used and some have random

usage with minimum usage during 12 am - 5 am. It is observed that some channels have

heavy usage between 2 am - 8 am and a few channels are less utilised between 1 pm-

4 pm. And some channels are not at all used. Hourly usage of a VHF TV channel is

presented in Fig. 5.34. It is very clear that it has a steady usage throughout its operation

with no transmission between 12 am - 5 am. Some activity is visible in a small band in

subplot-1 of Fig. 5.34. It may be an activity of a third party. Two Video channels along

with its audio carrier is clearly visible in the subplots. In this case, the spectrum hole is

very clear. But there is some space visible between video signals and audio carrier that

cannot be used while the transmission is on. In VHF TV, this channel is vacant between

12 am - 5 am. In the case of FM channels some channels were used round the clock

and a few channels were switched off for a specific period. Hourly usage pattern of 3G
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Figure 5.30: Channel utilisation in FM band and GSM-900 band

Figure 5.31: Channel utilisation in GSM-1800 band
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service and Wi-Fi is presented in Fig. 5.35. A sample 10 MHz range is considered here

from this band where activity is seen. In 3G and Wi-Fi, channel band width is more

than 10 MHz and this analysis will give only an indication about this band’s nature.

For Wi-Fi in 2410 MHz - 2420 MHz, the usage is less than 50 during the peak hours

8.30 am - 4.30 pm and the usage is near to zero during other timings. This is because

of the higher usage during working hours of the institution. For 3G service the usage

pattern looks constant throughout the time with slight deviation with respect to time.

This may be due to the data usage with optimized routing.

Spectrum hole pattern of 50 GSM downlink channels over 200 time slots are shown

in Fig. 5.36. Spectrum hole is represented with white colour and spectrum occupancy is

indicated by black colour. From the cognitive radio perspective, availability of spectrum

holes and its pattern is important for the planning of CR systems. It is seen that some

channels are heavily used and some channels are totally free. On analysing the hourly

usage, it was observed that some spectrum hole patterns have time dependency and

some are random. That is, a large number of channels follow various types of utilisation

patterns. On analysing the spectrum holes, it was seen that a lot of spectrum holes are

available in geographical space. That is, out of 50 MHz - 4.4 GHz, spectrum occupancy

is seen in very low percentage of the spectrum space. It may be because of the under

utilisation of the band by the PU and also because some bands are unallocated in this

specific region.

Spectrum utilisation in various bands is presented in Fig. 5.37. Spectrum occupancy

is calculated as per equation 5.19. In the case of FM, GSM-900, GSM-1800 and Wi-Fi,

spectrum occupancy is calculated with 24 hours data. And in other cases, the spectrum

occupancy is calculated with a few samples in the time scale and all the samples in the

frequency range. On observing the spectrum utilisation and spectrum holes in space,

frequency and time, it is felt that a Cognitive radio can utilise the spectrum more effi-

ciently. Also there can be CRs of various complexities. That means, at certain spectrum

holes, CRs with lighter complexity can work effectively. These nodes need not have

stringent time constraints in spectrum sensing and effective communication. But for

spectrum holes which are agile in its occurrence, a CR with complex algorithms and

strict time constraints is required. Hence it gives out an opportunity that a stable CR

device can work in various modes according to the environment. Such an opportunity
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Figure 5.32: Channel utilisation of GSM-900 band over 24 hours

Figure 5.33: Channel utilisation of GSM-1800 band over 24 hours.

Figure 5.34: Channel utilisation VHF TV band over 24 hours.
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Figure 5.35: Channel utilisation of 3G and Wi-Fi over 24 hours.

Figure 5.36: Spectrum hole pattern in GSM band
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Figure 5.37: Overall spectrum utilisation

will help the device to be more energy efficient in its operation.

5.4.4 Section Summary

Scarcity of electromagnetic spectrum has led us to think about dynamically utilising

this scarce resource. The utilisation of licensed spectrum is found to be very poor at

certain bands. It also varies with the geographical location. This has opened spectrum

opportunity in frequency, time and space. In this work spectrum occupancy pattern of

Kochi city (Kerala, India) was measured and its analysis is presented. NI-USRP-2920,

2922 with LABVIEW has been used to build the measurement setup. Spectrum activity

within the range of 50 MHz to 4400 MHz is outlined and the average utilisation of the

spectrum at specific band is also estimated and presented.

5.5 Chapter Summary

If the spectrum sensing is limited to only those channels which are having higher prob-

ability of being idle, CR can save lot of time in sensing activity and more time can be
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spent on utilising that channel. In this chapter, a prediction based spectrum sensing ap-

proach for CR systems is proposed to improve the throughput of the system. It consists

of a predictor that takes the ‘present’ and ‘prior’ information to predict the probability

of any channel to be idle. Predictor can generate a rank list of suitable channels for

future spectrum sensing. Two approaches based on Bayesian inference are proposed

here to predict the future probability. Analysis of the predicted probability by both the

methods are carried out. Channel ranking is formed based on these methods and they

are compared with other prediction approaches such as EWMA, HMM and Neural Net-

works. On analysis it is found that amount of data required under ‘prior’ and ‘present’

is relatively less for Bayesian approaches. These analysis and comparisons were done

on both synthetic as well as real data. Real data was obtained through spectrum mea-

surement.

In order to analyse the performance of the predictors a spectrum occupancy mea-

surement and analysis was carried out and presented in this chapter. Obtained spectrum

hole details were used for analysing the predictors. On analysing the measured data

it was found that GSM downlink channels are heavily utilised and others are lightly

utilised. Analysis of spectrum occupancy, hourly utilisation, received energy levels

etc., were carried out. On analysing the spectrum holes, it can be inferred that CRs with

different complexity can work at different types of spectrum holes. That means a high

end device with multiple protocols can adapt to any types of spectrum holes and always

there is a possibility that a low end CR device specific to the type of spectrum hole can

also exist.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This chapter sums up the objective, highlights of the major contributions and results of

the research work carried out. Followed by few suggestions for future work.

6.1 Summary of the Thesis

In the upcoming era of dynamic spectrum allocation, CR needs to be fully operational.

A major task of CR is to find the vacant channels in the spectral space and that too

with proper precision. This thesis aims at providing solutions to challenges faced in

the spectrum sensing domain. The thesis has started with an overview of the related

research in the field of spectrum sensing for cognitive radio. Scarcity in electromagnetic

spectrum and the ramifications thereof are highlighted in the context of the present

spectrum licensing policy and the spectrum allocation for various applications. As the

utilisation of spectrum is very low, dynamic reuse of the spectrum is proposed as the

spectrum strategy for tomorrow. Cognitive radio is introduced as the potential device

that can perform this dynamic usage of the spectrum. Spectrum sensing is an important

task in this regard and CSS is proposed as one of the best method to obtain the right

sensing. Decision fusion based on fusion rules is a task to be carried out to finalize the

presence of a PU. Therefore, previous work in the area of fusion rules and prediction

based spectrum sensing are analysed. The relevance of the proposed work, in light of

previous research work in this area is also presented.

This thesis initially proposes decision fusion approaches for distributed spectrum

sensing and external sensing. This is followed by a comprehensive prediction based

spectrum sensing approach that can improve the throughput of the system.

An effective decision fusion approach for distributed sensing is evolved through

various stages of analysis and modifications. Initially, a fuzzy based approach (named

as Fuzzy-SNR) was proposed and an analysis thereof was carried out using energy



detection under Rayleigh fading channel. Its performance was compared with classical

fusion rules such as ‘AND’ & ‘OR’ rules. Analysis of Pf and Pd with respect to SNR

and ‘time consumed’ for a decision fusion were then carried out. Even though the

detection performance was very good, time consumption of fuzzy-SNR rule was noted

to be quite high. For a fast decision making, a weighted combining approach with

SNR as its key component was therefore proposed and analysed using path loss model

under shadowing. For the above cases, the assumption was that all the CRs are located

within the coverage area of a PU under consideration. A realistic scenario with CRs

located at the boundary of PUs is suggested and the SNR-rule is modified to adapt to the

situation. It is named as ‘Intelligent rule’ and its performance was analysed using energy

detection model under Rayleigh fading as well as path loss model under shadowing. In

order to improve its performance further, antenna selection scheme with multiple region

encoding for SU reporting was added to the ‘Intelligent rule’. Its performance was

compared with other optimal rules and fuzzy rules from the literature. Analysis of Pf

versus Pd, Pf versus Pm, Pd versus ‘N’ (no. of neighbouring nodes) and computational

complexity were carried out. On analysing various parameters associated with this

evolved approach, it is found that this approach is giving a better performance in all

respects.

For the external sensing scenario (which uses wireless sensor networks for spectrum

sensing and a centralized node that aggregate the sensor results to form the final deci-

sion), CA based approach is proposed for decision fusion and to form the coverage area

of PUs. This approach will reduce the task of CR and hence the battery of such mo-

bile SUs may get a longer life. Two fusion rules named ‘CA1’ and ‘CA2’ are proposed

under CA scheme and its performance is compared with available distributed sensing

algorithms such as DDA (Harrold et al., 2008), Fuzzy2 (Matinmikko et al., 2009) and

Fuzzy1 (Taghavi et al., 2011). Performance comparison of all the algorithms were car-

ried out. Coverage area of a transmitter is an important aspect when a CN monitors a

large area. CA based approaches are giving a realistic coverage area. ‘CA1’ perform

exceptionally well in forming the coverage area. With all the other algorithms, it was

very difficult to derive a proper coverage area. False alarm rate of ‘CA1’ is very low

compared to other algorithms. Probability of detection is very high for ‘CA1’ algorithm.

It is also proved that CA based approach is the most computationally efficient algorithm

among the five and hence it is energy efficient. Considering the properties of CA and
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its massive parallelism of information processing, CA will be a favourite choice for low

power VLSI implementation of decision fusion blocks for an external sensing scenario

in cognitive radio.

If the spectrum sensing is limited to only those channels which are having higher

probability of being idle, CR can save a lot of time in sensing activity and resultantly

more time can be spent on utilising that channel. A prediction based spectrum sensing

approach for CR systems is also proposed to improve the throughput of the system.

It consists of a predictor that takes the ‘present’ and ‘prior’ information to predict the

probability of any channel to be idle. Predictor can generate a rank list of suitable

channels for future spectrum sensing. Two approaches based on Bayesian inference are

proposed here to predict the future probability. Analysis on the predicted probability

by both the methods are carried out. Channel ranking is formed based on these meth-

ods and they are compared with other prediction approaches such as EWMA, HMM

and Neural Network. On analysis it was found that the amount of data required un-

der ‘prior’ and ‘present’ is relatively less for Bayesian approaches. These analysis and

comparisons were done on both synthetic as well as real data. Real data was obtained

through spectrum measurement.

In order to analyse the performance of the predictors a spectrum occupancy mea-

surement and its analysis was carried out and presented. Obtained spectrum hole details

were used for analysing the predictors. On analysing the measured data it was found

that GSM downlink channels are heavily utilised and others are lightly utilised. Anal-

ysis of spectrum occupancy, hourly utilisation, received energy levels etc. were carried

out. On analysing the spectrum holes, it can be inferred that CRs with different com-

plexity can work at different types of spectrum holes. In other words, a low end CR

device can work in slowly varying spectrum holes and a high end device with multiple

protocols can adapt to any types of spectrum holes.

6.2 Future Work

For decision fusion in the distributed sensing scenario, proposed fuzzy approach in this

thesis, has considered all the possible rules for its decision making. It has led to high

computational complexity. Since the detection rate is a promising factor, the possibility
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of reducing the computational complexity can be explored by restricting the number of

rules or by any faster implementation approach. There is a scope in further optimising

the membership functions and fuzzy rules.

In the proposed adapted weighted combining for decision fusion, weights for vari-

ous components were finalized based on various trials carried out with respect to spe-

cific scenarios. These weights can be optimized with the help of optimization algo-

rithms.

For decision fusion in the external sensing scenario, CA based fusion rules are pro-

posed in the thesis. These rules were developed based on heuristic approaches. Based

on the number of neighbours considered and the state of each neighbours, a large num-

ber of rules or its combinations are possible in CA. Possibility of finding better rules

from the large rule base can be explored with the help of evolutionary algorithms such

as Genetic Algorithm.

Since CA based structure are suitable for low power VLSI integration, implemen-

tation of this approach as a low power VLSI core can be explored. This approach may

also be extended to distributed sensing where the nodes are randomly distributed.

Outdoor propagation models were considered for the analysis of all the above fusion

rules. CR devices are expected to be present in numerous scenarios and to operate in

various frequency bands, indoor propagation models and other channel models may

also be tried out for the analysis.

For the prediction based spectrum sensing presented in this thesis, Bayesian infer-

ence is considered for proposing the predictor. In order to further improve the perfor-

mance, possibility of modelling this scenario using recursive Bayesian approach can be

explored.

All the approaches considered in this thesis were analysed with the help of Matlab

simulations. Physical verification of all the approaches can be carried out by setting up

a network with the help of a software defined radio platform.
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