
PROGRAM SLICING TECHNIQUES FOR SOFTWARE TESTING 

 
Thesis Submitted to  

Cochin University of Science and Technology  

In partial fulfilment of the requirement 

for the award of the degree of  

Doctor of Philosophy  

Under 

Faculty of Technology 

 
By 

Anupama Surendran 
Reg. No: 3807 

 
 

Under the Supervision of 
 Dr.Philip Samuel    Dr. K. Poulose Jacob  
 Supervisor     Co-Supervisor 

 

 
DEPARTMENT OF COMPUTER SCIENCE 

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY 

KOCHI - 682 022, KERALA, INDIA 

January 2016 



Program Slicing Techniques for Software Testing 

 

Ph.D. Thesis   

 
Author: 
Anupama Surendran 
Reg No. 3807 
Department of Computer Science 
Cochin University of Science and Technology 
Kochi - 682 022, Kerala, India 
anupama.deepak@gmail.com 
 

Supervisor 
Dr. Philip Samuel 
Associate Professor in Information Technology Division, SOE 
Cochin University of Science and Technology 
Kochi - 682 022, Kerala, India 
philips@cusat.ac.in 
 

Co-Supervisor 
Dr. K. Poulose Jacob 
Pro–Vice–Chancellor 
Professor in Computer Science 
Cochin University of Science and Technology 
Kochi - 682 022, Kerala, India 
kpj@cusat.ac.in 
 

 

January 2016 
  



 

 

 

 
This is to certify that the work presented in this thesis entitled “Program Slicing 

Techniques for Software Testing” submitted to Cochin University of Science and Technology, 

in partial fulfilment of the requirement for the award of the degree of Doctor of Philosophy is 

a bonafide record of research work done by Ms.Anupama Surendran in the Department of 

Computer Science, Cochin University of Science and Technology, under my supervision and  

co-supervision by Dr. K. Poulose Jacob, Pro-Vice-Chancellor, Cochin University of Science 

and Technology. All the relevant suggestions and modifications suggested by the audience 

during the pre-synopsis seminar and recommended  by the Doctoral Committee of the candidate  

have  been incorporated in the thesis. The work presented in this thesis has not been included 

in any other thesis submitted previously for the award of any other degree(s). 

 
 
 
Kochi   Dr. Philip Samuel 
January 2016   (Supervisor) 
 Associate Professor  
 Information Technology Division, SOE 
 Cochin University of Science and Technology 
 Kochi – 682 022                        
 

 

 



 

  



 

 

 

 

This is to certify that the work presented in this thesis entitled “Program Slicing 

Techniques in Software Testing” submitted to Cochin University of Science and 

Technology, in partial fulfilment of the requirement  for the award of the degree of Doctor 

of Philosophy is a bonafide record of research work done by Ms. Anupama Surendran in 

the Department of Computer Science, Cochin University of Science and Technology, under 

the supervision and guidance of Dr. Philip Samuel and myself, and the work has not been 

included in any other thesis submitted previously for the award of any degree. 

 

 

Kochi   Dr. K. Poulose Jacob 
January 2016                               (Co-Supervisor) 
 Pro-Vice-Chancellor 
 Professor in Computer Science 
 Cochin University of Science and Technology 
 Kochi – 682 022                      

 

 



  



 

 

 

I hereby declare that the work presented in this thesis entitled “Program Slicing 

Techniques for Software Testing” submitted to Cochin University of Science and 

Technology, in partial fulfilment of the requirement for the award of the degree of Doctor 

of Philosophy under the Faculty of Technology is a record of original and independent 

research work done by me under the supervision and guidance of Dr. Philip Samuel, 

Associate Professor, Information Technology Division, SOE, Cochin University of Science 

and Technology and under the co-supervision of Dr. K. Poulose Jacob, Pro-Vice-Chancellor, 

Cochin University of Science and Technology. The results presented in this thesis have not 

been included in any other thesis submitted previously for the award of any degree. 

 

 

 

 

Kochi        Anupama Surendran 

January 2016  

 



  



 

Working on this thesis was a wonderful experience and I am indebted to many 

people for making this period an unforgettable experience. First of all, I am deeply 

grateful to my supervisor Dr. Philip Samuel, Associate Professor, Information Technology 

Division, SOE Cochin University of Science and Technology for giving me an opportunity 

to work with him as a research scholar. I am very much thankful to him for supporting me 

and encouraging me to come forward with thoughtful ideas. As a guide, his willingness to 

discuss and suggest solutions for all the difficulties which I faced during research period 

and his positive vision and selfless attitude towards my academic development helped me 

to finish my research work. 

I am grateful to Dr. K. Poulose Jacob, my co-supervisor and Pro-Vice-Chancellor 

of Cochin University of Science and Technology, for being a source of support and 

encouragement. His sincerity, and supportive attitude enabled the successful completion of 

this work.  

My sincere thanks are also due to Dr. Sumam Mary Idicula, Head of the 

Department of Computer Science, Cochin university of Science and Technology for her 

support and guidance.  

I would like to thank Dr.G. Santhosh Kumar, Assistant Professor, Department of 

Computer Science  for his valuable suggestions and support. I would also like to thank Mr. 

Muralidharan, Assistant Professor , Department of Computer Science.  I would like to thank 

Mr Joe Joseph - Librarian, Mr. Renjith, Mr. Shibu and Ms. Manju- technical staff members,  

Ms. Santhi- Section officer,  Ms.Girija- Office staff and all the faculty members and office 

staff of Department of Computer Science,  Cochin university of Science and Technology  for 

providing the much needed help and support in completing the research work.   



I would like to extend my sincere thanks to my friends Ms. Preetha Teresa Joy, 

Ms. Sonia Sunny, Ms. Daleesha Vishwanathan, Ms. Vimina and all the research scholars 

of my department for their cordiality, support and help.  

My sincere thanks are also due to Dr. V.P. Nampoothiri,  Ms Priyamvada, Dr. K. V. 

Pramod, Dr. David Peter, Dr. Varghese Paul, Dr. Shelby Joseph and Dr. Binsu Kovoor for 

their advice and help.   

I have no words to express my gratitude to my ever-loving husband Dr. Deepak 

R. Nair for allowing me to pursue my research and for his constant encouragement and 

understanding,  which brought this work to frutition. Put simply, he understands me more 

than anyone and I thank him for making me more than what I am. 

My sincere thanks to my little daughter Niharika who adjusted a lot despite of 

my proper attention and care. I extend my gratitude to my parents Dr. K. Surendran and 

Dr.C. Sreelatha for their support and blessings. I also extend my gratitude to my father-

in-law  Dr. R. Ravindran Nair and a special thanks to my mother-in-law Prof. K. R. 

Sethulakshmi for taking care of my little daughter without any complaints. Inspite of 

having to adjust her schedule, she never compromised on the care which she gave for my 

daughter.I also thank my relatives and  friends  for the concern and support they extended 

at various stages of my study. 

Above all, I thank God Almighty for his abundant blessings. 

 

Anupama Surendran 

 

 

 

 



Abstract 
In this century, computers have become an inseparable part of human life. Human 

beings entrust them with day-to-day activities and as well as highly sensitive data such as 

credit card information. Therefore, it is highly essential to ensure the proper working of the 

software before it is handed over to the users. Simple errors in the software may cause billions 

of dollar loss or even cause harm to human life. Therefore, the software needs to be dependable 

and reliable. Software testing is one of the most important methods to assure an error free 

software. This thesis work is centered on software testing.  

    One of the major concerns in today’s practical software testing is the size of the 

source code which the testers have to deal with. Simple and effective testing methods that can 

handle the issue of source code length are highly essential. As the length of the program 

increases, testing activities like test case generation and test execution becomes more 

complicated. From the literature review it was evident that most of the existing methods for 

software testing did not address the problem of source code size during testing. Considering 

these scenarios, the work presented in this thesis  tries to handle these challenges  in practical 

software testing so as to make testing easier. With this aim, we have proposed a forward 

slicing based framework which helps to identify the statements of relevance in a software.  

Program slicing is used in several fields like program comprehension, debugging, software 

maintenance, program cohesion, refactoring and reverse engineering. Anyhow, the works that 

explicitly demonstrate how program slicing may be applied in software testing is extremely 

rare. In this thesis, we have clearly demonstrated how to perform software testing and trace 

dependencies in the source code  using forward slicing. A formal representation of forward 

slicing is also presented in this work. As an extension to our forward slicing framework, we 

have also introduced the concept of partitioned forward slices and partial slices which helps 

the testers to focus on statements of interest. Partitioned forward slices helps to handle the 

large size of forward slices whereas partial slices identifies statements of interest with respect 

to output variables.  The research finding finally concludes that, software testing approaches 

should incorporate slicing methods to make testing more effective and easier. 

 



 

  



 
 List of Tables   
 List of Figures  
 Abbreviations  

1.  Introduction ---------------------------------------------------------------- 1  
 1.1.  Overview ----------------------------------------------------------------------- 1 
 1.2.  Motivation--------------------------------------------------------------------- 2 
 1.3.  Research Problem ------------------------------------------------------------- 3 
 1.4.  Research Objectives ----------------------------------------------------------- 4 
 1.5.  Methodology ------------------------------------------------------------------- 4 
 1.6.  Outline of the Thesis---------------------------------------------------------- 7 
 1.7.  Summary of the Chapter ----------------------------------------------------- 8 

2.  Literature Review ---------------------------------------------------------- 9 
 2.1.  Introduction  ------------------------------------------------------------------ 9 
 2.2.  Literature Review Stages --------------------------------------------------- 10 
 2.3.  Review of Recent Trends in Software Testing --------------------------- 10 
  2.3.1 Inferences from Review of Lliterature on RrecentTrends in 

Software Ttesting-------------------------------------------------- 16 
 2.4.  Review of Genetic Algorithm (GA) based Testing  ---------------------- 17 
  2.4.1.  Brief Overview of Genetic algorithm --------------------------- 18 
  2.4.2.  GA based Testing-Review Stages -------------------------------- 20 
  2.4.3.  Discussion on GA based Testing Review ----------------------- 32 
  2.4.4.  An Illustration of using GA in Software Testing  ------------ 47 
  2.4.5.  Inferences from the Review on GA Based Software Testing --- 52 
 2.5.  Slicing Based Approaches --------------------------------------------------- 53 
  2.5.1.  Applications of Slicing -------------------------------------------- 58 
  2.5.2.  Inferences from the Review on Slicing Based Approaches --- 59 
 2.6. Summary of the Chapter ------------------------------------------------------- 59 

3.  Software Testing using Forward Slicing -------------------------------- 61 
 3.1.  Introduction ------------------------------------------------------------------ 61 
 3.2.  Background ------------------------------------------------------------------- 62 
  3.2.1.  Program Slicing ---------------------------------------------------- 63 
   3.2.1.1.  Static Slice ----------------------------------------------------------64 



   3.2.1.2.  Dynamic Slice ------------------------------------------------------64 
   3.2.1.3.  Backward Slice ----------------------------------------------------65  
   3.2.1.4.  Forward Slice ------------------------------------------------------66 

  3.2.2.  Terms & Definitions Related to Program Slice ---------------- 67 
 3.3.  Significance of using Forward Slicing in Software Testing------------ 68 
 3.4.  Architecture of Forward Slicing based Testing  ------------------------- 70 
  3.4.1.  Input Program selector -------------------------------------------- 71 
  3.4.2.  Forward Slicer ----------------------------------------------------- 71 
   3.4.2.1.  Slicing Criterion ---------------------------------------------------71 
   3.4.2.2. Linked Dependency Method for Identifying Dependencies ----72 
    3.4.2.2.1.  Steps in Linked Dependency Method --------------- 72 

    3.4.2.2.2.  Explanation of Linked Dependency Method Steps -- 73 
    3.4.2.2.3. Illustration of Identifying Dependencies using 

Linked Dependency Method ------------------------- 75 

   3.4.2.3.  Forward Slicing Algorithm--------------------------------------77 
    3.4.2.3.1. Algorithm Explanation  -------------------------------- 80 

  3.4.3.  Data Generator ---------------------------------------------------- 81 
   3.4.3.1.  Slice Analyzer ------------------------------------------------------81 
   3.4.3.2.  Selector --------------------------------------------------------------82 
   3.4.3.3.  Test Data Generator ----------------------------------------------82 
    3.4.3.3.1. Random Method of Test Data Generation --------- 83 

    3.4.3.3.2. Gauss Elimination Method of  Test Data Generation --- 83 

 3.5.  Illustration of Test Data Generation using FST ------------------------ 86 
 3.6.  Proof of Correctness and Formalised Representation of Forward 

Slicing Algorithm ------------------------------------------------------------ 89 
 3.7.  Summary of the Chapter ---------------------------------------------------- 99 
4.  Partitioned Forward Slices------------------------------------------------- 101 
 4.1.  Introduction ---------------------------------------------------------------- 101 
 4.2.  Motivation------------------------------------------------------------------ 101 
 4.3.  Terms & Definitions Related to Partitioned Forward Slice --------- 102 
  4.3.1.  Partition Point Properties -------------------------------------- 103 
 4.4.  Partitioned Forward Slicing Algorithm & Explanation ------------- 104 
  4.4.1.  Extended Linked Dependency Method  ---------------------- 108 
 4.5.  Illustration of Partitioned Forward Slicing --------------------------- 110 



  4.5.1 Proof of Correctness of Partitioned Forward Slicing Algorithm 112 
 4.6.  Suitability of Partitioned Forward Slices ------------------------------ 113 
  4.6.1.  Suitability of Partitioned Forward Slices in Testing ------- 113 
  4.6.2.  Suitability of Partitioned Forward Slices in Maintenance 114 
  4.6.3. Suitability of Partitioned Forward Slices in Program 

Comprehension --------------------------------------------------- 115 
 4.7.  Summary of the Chapter -------------------------------------------------- 117 

5.  Partial Slices in Program Testing--------------------------------------- 119 
 5.1.  Introduction ---------------------------------------------------------------- 119 
 5.2.  Motivation------------------------------------------------------------------ 120 
 5.3.  Terms & Definitions Related to Partial Slice-------------------------- 121 
 5.4.  Program Points Set-up  --------------------------------------------------- 121 
 5.5.  Architecture of Partial Slicer  -------------------------------------------- 123 
  5.5.1.  Identifying Dependencies using Partial Linked Method  -- 124 
  5.5.2.  Partial Slicing Algorithm & Explanation-------------------- 126 
  5.5.3.  Illustration of Partial Slicing ---------------------------------- 129 
  5.5.4. Proof of Correctness of Partial Slicing Algorithm ----------- 133 
 5.6.  Comparison & Performance Evaluation of Partial Slices and Static 

Slices ------------------------------------------------------------------------- 134 
  5.6.1.  Test Subjects ------------------------------------------------------ 135 
  5.6.2.  Test Set-up -------------------------------------------------------- 136 
 5.7.  Inference from the Comparison and Evaluation of Partial Slices 

and Static Slices ------------------------------------------------------------ 140 
 5.8.  Suitability of Partial Slices  ---------------------------------------------- 140 
  5.8.1.  Using Partial Slices for Software Reuse --------------------- 140 
  5.8.2.  Using Partial Slices for Program Comprehension ----------- 143 
 5.9.  Summary of the Chapter -------------------------------------------------- 144 

6.  Comparison and Performance Evaluation ----------------------------- 145 
 6.1.  Introduction ---------------------------------------------------------------- 145 
 6.2.  Comparison of Forward Slicing based Testing with Related Testing 

Approaches ------------------------------------------------------------------ 146 
 6.3.  Experimental Evaluation & Comparison   ----------------------------- 150 
  6.3.1.  Comparison and Evaluation using Statistical Method ----- 151 



   6.3.1.1.  Test Subjects------------------------------------------------------ 151 
   6.3.1.2.  Test Set-up -------------------------------------------------------- 152 
   6.3.1.3.  Stage 1- Comparing Forward Slicing based Testing 

and GA based Testing ------------------------------------------ 155 
   6.3.1.4.  Stage 2- Comparing Forward Slicing based Testing 

and Random testing -------------------------------------------- 157 
   6.3.1.5.  Summary from Statistical Comparison---------------------- 160 

  6.3.2.  Metric based Comparison and Evaluation  ------------------- 160 
   6.3.2.1  Software Testing Technique Metrics ------------------------ 160 
    6.3.2.2  Slicing Metrics --------------------------------------------------- 165 

 6.4.  Inferences from the Comparison and Evaluation of Related Methods -- 168 
  6.4.1. Main Inferences made from the Comparison of Different 

Testing Approaches  --------------------------------------------- 168 
  6.4.2.  Inferences from Experimental Evaluation & Comparison ---170 
 6.5.  Summary of the Chapter -------------------------------------------------- 176 
7. Conclusion and Future Research Direction -------------------------------- 177 
 7.1.  Introduction ---------------------------------------------------------------- 177 
 7.2.  Summary of Achievements ------------------------------------------------ 177 
 7.3.  Main Contributions ------------------------------------------------------- 181 
 7.4.  Future Directions  --------------------------------------------------------- 183 
 7.5.  Conclusion ------------------------------------------------------------------ 183 
References ----------------------------------------------------------------------- 185 
List of Publications from the Thesis --------------------------------------------- 203 
Appendix ------------------------------------------------------------------------ 207 

 
  



 
Table 2.1.  Research questions --------------------------------------------------------------- 20 
Table 2.2.  Keywords used for selecting GA based works from various 

source repositories ---------------------------------------------------------------- 21 
Table 2.3.  Selected category of works ------------------------------------------------------ 22 
Table 2.4.  Works not included -------------------------------------------------------------- 22 
Table 2.5.  Quality assessment form -------------------------------------------------------- 22 
Table 2.6.  Data extraction form   ---------------------------------------------------------- 23 
Table 2.7.  GA works selected for review -------------------------------------------------- 24 
Table 2.8.  Works using variations of GA ------------------------------------------------- 29 
Table 2.9.  Limitation & Factors to be resolved in future------------------------------- 30 
Table 2.10.  Observations on works using GA variation for software testing  ------------ 32 
Table 2.11.  Population representation for structural testing ---------------------------- 34 
Table 2.12. Fitness function design issues & suggested solution  ----------------------- 39 
Table 2.13.  Structural testing: Number of works using different types of 

selection in Table 2.7 ------------------------------------------------------------ 41 
Table 2.14.  Parameter setting used in GA based testing---------------------------------- 49 
Table 2.15.  Paths to be handled in GA based testing ------------------------------------- 49 
Table 2.16.  Korel’s branch distance function  ---------------------------------------------- 49 
Table 2.17.  Test data generation steps of F(I)= total credit -10------------------------- 50 
Table 2.18  Test data generation steps of F(II) = subject credit-4 ---------------------- 51 
Table 3.1.  Example of static slice  ---------------------------------------------------------- 64 
Table 3. 2.  Example of dynamic slice ------------------------------------------------------- 65 
Table 3.3.  Example of backward slice ----------------------------------------------------- 66 
Table 3.4.  Example of forward slice ------------------------------------------------------- 66 
Table 5.1.  Partial Slices -------------------------------------------------------------------- 132 
Table 5.2.  Subject programs --------------------------------------------------------------- 135 
Table 5.3.  Test subject & the result of applying various testing methods on 

test subjects ---------------------------------------------------------------------- 136 
Table 5.4.  Response for Q1 and Q2 (For static slicing and partial slicing) --------- 138 
Table 5.5.  Ranked response of static slicing and partial slicing ---------------------- 138 
Table 6.1.  Recent works on software testing ------------------------------------------- 146 
Table 6.2.  Comparison of different software testing approaches--------------------- 149  
Table 6.3.  Subject programs --------------------------------------------------------------- 151 



Table 6.4.  Test subject & the result of applying various testing methods 
on test subjects ----------------------------------------------------------------- 152 

Table 6.5.  Test subject & the result of applying various testing methods 
on test subjects ----------------------------------------------------------------- 153 

Table 6.6. Response for GA based Testing & FST ------------------------------------- 155 
Table 6.7. Ranked response for GA based Testing & FST ---------------------------- 156 
Table 6.8.  Response for Random method based Testing & FST --------------------- 157 
Table 6.9.  Ranked responses for random method based testing and 

forward slicing based testing   ----------------------------------------------- 158 
Table 6.10.  TCG values---------------------------------------------------------------------- 162 
Table 6.11.  UC values ----------------------------------------------------------------------- 164 
Table 6.12.  Test subject specification------------------------------------------------------ 166 
Table 6.13.  Tightness value ----------------------------------------------------------------- 166 
Table 6.14.  Coverage value ----------------------------------------------------------------- 167 
 

  



 
Figure 1.1. Stages of research work -------------------------------------------------------- 5 
Figure 2.1.  Stages of the review ----------------------------------------------------------- 10 
Figure 2.2.   Rate of publications and research works in search based 

software testing during the Period 1975 to 2015 ------------------------- 15 
Figure 2.3.  GA basic steps ------------------------------------------------------------------ 18 
Figure 2.4.  Research direction suggested from the observations on works 

using GA variation ---------------------------------------------------------- 33 
Figure 2.5.  Research direction suggested from the observations in population 

representation in GA based software testing-------------------------------- 35 
Figure 2.6.  Factors affecting and affected by fitness function design --------------- 38 
Figure 2.7.  Fitness function design steps------------------------------------------------- 40 
Figure 2.8.  Suggested research directions in parameter settings ----------------------- 43 
Figure 2.9.  Suggested research directions in convergence criteria --------------------- 45 
Figure 2.10. Sample lines of code ----------------------------------------------------------- 47 
Figure 2.11.  Test data generation steps ---------------------------------------------------- 48 
Figure 3.1.  Architecture of Forward Slicing based Testing (FST) -------------------- 70 
Figure 3.2 Sample segment of program code--------------------------------------------- 75 
Figure 3.3.  CFG of sample code in figure 3.2 -------------------------------------------- 76 
Figure 3.4.  Forward slice for the slicing criterion (4, n) -------------------------------- 77 
Figure 3.5.  Steps in slice analyser --------------------------------------------------------- 81 
Figure 3.6.  Functions of selector ---------------------------------------------------------- 82  
Figure 3.7. Test data generator ------------------------------------------------------------ 83 
Figure 3.8.  Partial class diagram of brokerage system ---------------------------------- 86 
Figure 3.9.   Sample code segment ---------------------------------------------------------- 87 
Figure 4.1  Sample CFG ------------------------------------------------------------------ 109 
Figure 4.2.  Sample code segment -------------------------------------------------------- 110 
Figure 4.3.  Partitioned forward Slices -------------------------------------------------- 111 
Figure 4.4.  Partitioned forward slices in testing -------------------------------------- 114 
Figure 4.5.  Partitioned forward slices in maintenance ------------------------------- 115 
Figure 4.6.  Partitioned forward slices in program comprehension ------------------ 116 
Figure 5.1.   Guidelines for setting up program points --------------------------------- 122 
Figure 5.2  Architecture of partial slicer------------------------------------------------ 123 
Figure 5.3. Sample CFG ------------------------------------------------------------------ 125 



Figure 5.4.  Partial class diagram of payroll software -------------------------------- 129 
Figure 5.5.  Sample program statements ------------------------------------------------ 130 
Figure 5.6  Scale corresponding to difficulty levels ----------------------------------- 137 
Figure 5.7.  Using partial slices for program reuse------------------------------------- 142 
Figure 5.8.  Partial slices in program comprehension ---------------------------------- 143 
Figure 6.1.  Question outcome and scale ------------------------------------------------ 154 
Figure 6.2.  Test case generation metric ------------------------------------------------- 162 
Figure 6.3.  The merits of slicing based test data generation ------------------------- 169 
 Figure 6.4.  Identification of errors ------------------------------------------------------ 172 
Figure 6.5.  Dependency level------------------------------------------------------------- 173 
Figure 6.6.  Testing productivity graph ------------------------------------------------- 175 
 

  



 
 

GA -  Genetic Algorithm 

PSO -  Particle Swarm Optimization 

FST -  Forward Slicing based Testing 

RAND -  Random Method 

LOC -  Lines of Code 
 

  



 



Introduction 

Department of Computer Science 1 

  

 

1.1 Overview  

Software has become an unavoidable part of human life [11]. We do not 
want the software to fail, as the repercussions that can occur in the event of a 
software malfunction can be huge, which may include loss of time, money and 
even life [106]. All these can be prevented by ensuring the quality of the software. 
In practice, software testing still remains as the primary choice for assessing the 
quality of the software as it can assess the validity and reliability of the software 
[85]. Through software testing, we can establish that a particular software 
contains errors. The main concern of software testers is the practical difficulties 
faced during the execution of testing activities [87]. During source code testing, 
size of the source code is one such major concern of software testers. As the 
number of statements in the software increases, the software becomes more 
complex [80]. Major testing activities like test case generation and test execution 
also need high attention in such situations [31]. Performing exhaustive testing 
may  not be possible in such scenarios, as it takes an impractical amount of time 
and effort to check all combinations of input and output [36]. A clear 
understanding of the relevant statements in a program will be helpful while 



Chapter 1  

2               Cochin University of Science and Technology 

generating test input from the program code. In other words, using some simple 
and effective methods which can handle the size of the source code in a software 
will decrease the effort required for software testing. Therefore, the research work 
presented in this thesis tries to handle the challenging issue of source code size in 
practical structural testing so as to make testing simple and effective. 

1.2 Motivation 

Modern man cannot imagine a life without software. As software has 
pervaded every aspect of human life, ensuring their reliability and correctness 
needs utmost importance. This confers a cardinal role for software testing in 
software development [19]. Looking at the current trend in software testing, 
black box approaches are mostly used in industry [19]. Though the black box 
approach assures some level of reliability for a software, it cannot be 
compared with the quality of test result given by structural testing [11]. 
Though structural testing ensures reliability of the source code, the reluctance 
to use structural testing in practical software testing is due to the limited time, 
resources and large number of lines of code (LOC) which the testers have to 
handle during testing [65]. Unrestricted size of source code is a major issue 
during source code testing as this affects the scalability, consistency and 
integrity of software systems. Several testing methods when applied to small 
software systems may perform up to the user’s expectations. The same testing 
methods when applied to large software systems may not give the expected 
result because of the inability to handle the voluminous code present in the 
software. Therefore, testing methods should be able to scale effectively to 
handle the large size of software [25]. Consistency of software systems is also 
dependent on the size of the source code [36]. The software may not work 
when some additional functionalities or constraints are added to the existing 
software.  In other words, the original software may not be able to handle such 
newly added constraints and this affects the consistency of the whole system. 



Introduction 

Department of Computer Science 3 

If the tester is able to get an idea of the program statements which may get 
affected by the newly added constraints, it may be possible to minimize such 
inconsistencies. As an increase in source code size makes it difficult to trace 
the program statements which are affected by a particular variable or test case, 
the software inconsistency issue gets worsened if not handled with utmost 
care. Similarly, integrity of software systems is also affected by the size of the 
software [36]. In software testing, in order to check whether the software 
satisfies a condition, it is also necessary to see all the dependent statements of 
the specified condition. Then only the integrity of the whole system may be 
ensured. Therefore, we can conclude that, testing methods which are unable to 
handle unrestricted source code size may not be scalable, consistent and stable.         

Another problem during source code testing is that, an input value may 
not be responsible for the execution of every statement present in the program 
[53, 86]. Checking every bit of program code to find such executed or 
dependent statements is not at all practical in today’s software applications, as 
this only leads to an increase in cost during software development [53]. Instead, 
identifying the dependent statements in the software and analysing how these 
statements affect the software helps to trace out the errors in a program. 

Most of the testing work reported in literature does not address the 
issue of managing the size of the source code [2, 3, 43, 46, 59, 67, 97, 98, 99, 
100, 101, 104]. Thus the main motivation behind this thesis work is to 
introduce an effective method which can handle the problem of source code 
size during structural testing. This can in turn ensure that the software is 
scalable, consistent and manageable. 

1.3 Research Problem  

Having given an idea of practical difficulties in software testing and the 
advancement of software usage in day to day life, it is high time to develop a 
simple and effective approach which helps software testers to deal with the 



Chapter 1  

4               Cochin University of Science and Technology 

problem of source code length and identification of statements of interest during 
software testing [65, 77]. Therefore, the research problem formulated in this work 
is:  To develop an effective method for source code based software testing that 
can handle the size of source code.  

1.4 Research Objectives 

In order to achieve the research goal stated above, some other factors 
are also considered. Initially, the shortcomings of some of the current software 
testing methods to handle source code size in testing are analysed. Our work 
also addresses, several other difficulties related to the source code testing like 
identifying relevant statements in the program code, tracking dependency in 
the program and the program statements affecting the output. Hence, the final 
objectives of this thesis work are:- 

• To develop methods that can handle source code size during structural 
testing 

• Identify statements of interest with respect to input variables in 
software testing 

• Identify dependency in the program 

• Tracking changes related to output 

1.5 Methodology 

The methodology adopted in this thesis work for achieving the research 
objectives stated in section 1.4 is represented in Figure 1.1. The research work 
presented in this thesis is carried out in five stages which are aimed to reduce the 
difficulties faced during software testing. For achieving this, the existing trend in 
software testing was reviewed and studied. After studying the existing trends in 
software testing, the shortcomings of various software testing approaches were 
studied.  



Introduction 

Department of Computer Science 5 

 
Figure 1.1 Stages of research work 



Chapter 1  

6               Cochin University of Science and Technology 

A detailed literature survey on software testing techniques was 

conducted inorder to find a solution to the practical difficulties faced during 

software testing. These two works were included in the first stage of the 

research. In the second stage of the research, Genetic Algorithm (GA) based 

software testing was experimented. Several practical difficulties were 

encountered when GA was used for software testing. The literature survey also 

gave supporting evidence on the shortcomings of GA based testing.  One of 

the main issues which the reported testing methods were incapable of handling 

was the size of the source code. Alternate methods which were able to handle 

issue of source code size were also identified in the second stage of the work.   

A program slicing based testing approach was introduced in the third 

stage of this thesis work which was capable of handling the issue of source 

code size. Testing using forward slicing was developed to handle the source 

code size and to identify the statements of interest during testing. A formalized 

representation of slicing algorithm was presented in the same stage. How to 

generate test data from forward slices was also demonstrated in the third stage 

of the thesis work.  In stage four, an extension to forward slicing based testing 

is given. Here, the concept of partitioned forward slicing was introduced to 

handle the large size of forward slice. Apart from partitioned forward slice, the 

concept of partial slice was also introduced in stage four to trace the changes 

related to output variables.  In the fifth stage of this thesis work, the forward 

slicing based testing was compared with related testing methods. In this thesis, 

forward slicing based testing is compared with GA based testing and Random 

method. In the experimental evaluation, a statistical method and a metric based 

method were used for comparison of forward slicing based testing with related 

methods. The evaluation result shows that forward slicing based testing 

outperforms GA and Random method.   



Introduction 

Department of Computer Science 7 

1.6 Outline of the Thesis 

The complete outline of the research reported in this thesis consists of 7 

chapters.  In this outline section, a brief description of the contents in each 

chapter is provided. 

Chapter 1:   This chapter provides an introduction to this research work which 

includes an introduction to software testing, motivation, research 

problem, research objectives and methodology used in this work.  

Chapter 2:  This chapter provides a critical survey of reported software testing 

approaches. Using GA for software testing is also demonstrated in 

this chapter. The practical difficulties encountered during GA 

based testing are also highlighted. 

Chapter 3:  This chapter proposed and demonstrated how to apply the 

concept of forward slicing in software testing. The relevance of 

using slicing in testing is explained and test data generation 

from slices using various methods is also described in this 

chapter. Formal representation of the forward slicing algorithm 

is introduced and explained in this chapter. 

Chapter 4:  The concept of partitioned forward slices is introduced in this 

chapter. Partitioned forward slices were introduced to make 

slices focused when the size of forward slice was large. 

Suitability of partitioned forward slices in different applications 

is also discussed in this chapter.  

Chapter 5:  This chapter introduced the concept of partial slices. The idea of 

partial slices was introduced to handle changes related to 

output. The potential use of partial slices in different 

applications is also provided in this chapter. 



Chapter 1  

8               Cochin University of Science and Technology 

Chapter 6: A summary of the comparison with related work and performance 

evaluation of forward slicing based testing with GA based 

software testing and Random method is described in this chapter.  

Chapter 7: This chapter concludes the thesis. The contributions of our 

work are highlighted. It also discusses the future directions for 

extending the research work.  

References & the list of publications of the author are listed after Chapter 7  

1.7 Summary of the Chapter 

The introduction, motivation, research problem and objectives of this 

research work are explained in this chapter. The chapter concludes by giving 

an overview of the methodology used for carrying out this research work. An 

outline of the succeeding chapters is also presented. 

……. ……. 

 

 

 



Literature Review 

Department of Computer Science 9 

 

2.1 Introduction  

This chapter gives a review of the literature related to the work 

presented in this thesis. The review is conducted in three stages. The first stage 

gives a literature review of the recent trends in software testing methods. The 

shortcomings of different testing techniques are studied thereafter. As 

discussed in the previous chapter, the main objective of this thesis work is to 

design an effective method for handling the source code size during source 

code testing. Following the current trend in software testing from various 

literature sources, we found that metaheuristic techniques, especially Genetic 

Algorithm (GA) based techniques is one of the most researched areas in 

software testing. Therefore, in addition to the review of some relevant testing 

techniques, a detailed review of Genetic Algorithm based software testing is 

carried out in the second stage of this work. Certain inferences based on the 

review are also provided. From the review outcome, it can be noticed that GA 

based software testing has several shortcomings in practical testing. In the 

third stage, some solutions are explored for overcoming the shortcomings of 

testing methods described in stage two. As a solution, a program slicing based 

testing was introduced in this thesis, with the aim of satisfying the goal of this 



Chapter 2  

10     Cochin University of Science and Technology 

thesis work. Therefore, a review of program slicing approaches is given in the 

third stage of this work. 

2.2 Literature Review Stages 

The literature review conducted in this work consists of three stages. 

Figure 2.1 gives the review stages. In the first stage, a review of the recent 

trends in software testing techniques is provided. Based on the inference from 

the first stage, a review of GA based testing was carried out in the second 

stage. Inferences made from stage one and two pointed to some shortcomings 

in the current testing scenario. Therefore a program slicing based testing was 

proposed in this thesis work and a review on program slicing is done in stage 

three. Finally the inferences on program slicing based testing are discussed.  

 
Figure 2.1 Stages of the review 

2.3 Review of Recent Trends in Software Testing 

Software has an irreplaceable role in our day to day life and this makes 

software testing a vital cog in the wheel [85, 106]. Even though software 

testing has evolved tremendously, it still remains both time consuming and 

personnel dependent. Almost 50% of the cost and time of the software 

development is taken up by testing [11, 80]. To a great extent, automating the 

process of software testing could reduce the total cost, time and effort incurred 

during software testing. The main intention of software testing is to check for 

 
Review of recent 

trends in software 
testing & Identify the 
widely used testing 

approach 

 
Review of GA 
based testing, 
Analyse the 

shortcomings. 

Review of Program slicing 
(Proposed program slicing based 
testing approach to handle the 

practical difficulties experienced 
in other software testing 

techniques) 



Literature Review 

Department of Computer Science 11 

the presence of errors in the software, but a complete testing is many times 

impractical. To handle the challenges associated with software testing, some 

strategies are adopted. Black-box testing and white-box testing are the two 

main strategies of testing. 

In Black box testing, the source code of the program is not considered 

[43]. Only the program functionality is considered in black-box testing. In 

black-box testing, inorder to ensure that the program is fully error free, the 

program should be checked with all possible inputs. This is impractical, as this 

takes a lot of time and money.  In white-box testing, the source code of the 

program is considered. It is also known as structural testing. In structural testing, 

the fault is revealed by executing the program with selected input and by 

evaluating the correctness of the program behaviour against the expected ones. 

In white-box testing, the program paths are executed with test cases. It is not 

possible to execute all the program paths during white-box testing because the 

number of paths will be astronomically high [87, 88]. Moreover the program 

may have missing paths which cannot be identified during path execution. This 

implies that exhaustive testing is not possible in white-box testing also. One of 

the most important and difficult tasks in software testing is test data generation. 

A test case consists of a test data, a set of statements on which the data is 

applied and the corresponding output [80]. In order to find the test data, the 

program should be executed with all combinations of input from the program 

input domain.  As already mentioned, this type of exhaustive testing is almost 

impossible as it takes an impractical amount of time and effort. Therefore, 

several methodologies of test data generation exist in black-box and white-box 

testing. Statement coverage, Decision coverage, Condition coverage and 

Decision-condition coverage are the methodologies used for generating test data 

in white-box testing. Equivalence partitioning, Boundary value analysis, Cause-



Chapter 2  

12     Cochin University of Science and Technology 

effect graphing and Error guessing are the methodologies used in black-box 

testing [98, 106]. In white-box testing, each and every statement must be 

executed at least once for fulfilling statement coverage criterion. If any 

statement is missing from the program, it may not be detected in statement 

coverage criterion.  Therefore, a stronger criterion called decision coverage is 

considered. Decision coverage is also known as branch coverage. In decision 

coverage, test data is generated to cover each branch. A stronger criterion called 

condition coverage exists to satisfy each condition in the branch. In equivalence 

partition, the input domain is partitioned into a number of finite equivalent 

classes. In equivalence partitioning, there are mainly two steps. First step is 

identifying the equivalence classes and the second step is identifying the test 

cases. Boundary value analysis is almost similar to equivalence partition. In 

boundary value analysis, the elements are selected from the edges of the 

equivalent class rather than selecting from inside the class. This means that 

boundary value analysis concentrates on and around the edges of the 

equivalence partitions. One of the main disadvantages of equivalence partition 

and boundary value analysis is that, the combination of inputs is not checked in 

these methods. In cause effect method, there will be a cause effect directed 

graph. There will be a set of causes which is mapped to a set of effects. The 

causes are considered as input to the program and the effects as output. In the 

cause effect directed graph, nodes on the left side of the graph represent the 

cause and the nodes on the right side represent the effect. The causes may be 

connected by intermediate AND or OR operator. Another methodology used in 

black box testing is error guessing. This is an intuitive method. No specific rules 

are used to guess the errors.  

In addition to black-box and white-box testing, some other types of 

testing techniques are widely used. Random search is one of the basic and 



Literature Review 

Department of Computer Science 13 

simplest methods used for finding test data [8, 104]. The program statements 

are executed using randomly generated input values. Though this is one of the 

simplest methods, random search cannot guarantee success every time. 

Therefore, more guaranteed approaches like path oriented approach are 

considered [13, 31, 32, 40, 83, 90, 101, 125, 126, 129, 130, 132]. In this 

approach, the problem of test data generation is considered as a ‘path’ 

problem. The path for which test data is to be generated is selected 

automatically [101]. This path in turn leads to the destination. If the selected 

path doesn’t lead to the target path, then another path is considered. This 

process is continued until the target path is found out or until the required test 

data is found or until the time specified for data generation is over. Symbolic 

execution and execution-oriented test data generation is used to generate test 

data in path oriented approach [13, 35, 98, 131, 133]. In symbolic execution, 

there will be a set of constraints and these constraints must be satisfied for 

traversing the paths in path–oriented approach. Symbolic execution faces 

difficulties when the program is very complex and long.  In execution oriented 

approach, the actual execution of the program occurs. This is a goal oriented 

approach where the process of finding input is represented as a set of sub goals 

[7, 37, 93, 101]. Here the program is executed with the randomly generated 

input. For the generated input, the program execution flow is traced. As the 

program execution progresses, the search procedure decides whether the 

execution should proceed or whether an alternate branch is to be considered as 

the current path may not lead to the goal. If an undesirable execution at a 

branch occurs, then a real valued function is associated with the branch. A 

function minimization search algorithm is used to find new input, which may 

alter the program execution flow at the current branch. This process is 

continued until the target node or goal is obtained. In path oriented approach, 



Chapter 2  

14     Cochin University of Science and Technology 

the main problem occurs when non-executable paths are explored which 

causes a loss in computation effort [71, 108] 

Another method used for test data generation is the chaining approach [41, 

101, 102]. This method may be considered as an extension of path oriented 

approach. In chaining approach, dataflow analysis is used for generating test data. 

The program statements are represented as nodes. The edges represent the 

interconnection between the nodes. An input value is randomly generated and the 

program is executed with this input. If the execution of the program with the 

generated input leads to a branch which does not lead to the target node, then a 

real valued function is associated with this node. A function minimization search 

algorithm is applied to find new input value. The new input alters the program 

execution flow at the current node. Here the execution flow is altered inorder to 

find suitable input value. Chaining method also faces difficulties as the program 

size and complexity increases. Metaheuristic search techniques offer great support 

in such situations and this may be used for structural, functional and non-

functional testing [4, 38, 63, 91, 98, 99, 115]. In metaheuristic techniques, the test 

data generation problem is amenable to symbolic execution. A fitness function is 

designed for this purpose and a set of manipulations and operators are applied to 

optimize this fitness function. Hill-climbing, simulated annealing, genetic 

algorithms, and swarm-Intelligence techniques are some of the commonly used 

metaheuristic search techniques for test data generation. 

Among the metaheuristic search techniques, hill-climbing is one of the 

simplest methods. In hill-climbing, an initial solution is chosen randomly [63]. 

Then the current solution is compared with the neighbours. The new solution 

is considered if the new solution is better than the current. The main 

disadvantage of this method is that the solution may get stuck in local maxima. 

Therefore, hill-climbing is considered as a local search method. Simulated 



Literature Review 

Department of Computer Science 15 

annealing gives better result compared to hill-climbing. Single space 

exploration is used in simulated annealing [98]. Therefore, it is considered as a 

local search method. In simulated annealing also, the solution may get stuck in 

local maxima. Genetic algorithm is an adaptive global search method based on 

the principle of evolution. In genetic algorithm, the chances of getting stuck in 

local maxima are less compared to hill-climbing and simulated annealing. 

Particle swarm optimization (PSO) is a global search method [72]. Search 

space exploration is more efficient in genetic algorithm and particle swarm 

optimization compared to simulated annealing. The main advantage of using 

PSO compared to genetic algorithm is that PSO is easier to implement and 

have a fewer parameters to adjust compared to GA. Compared to GA, even 

though PSO can quickly find the most appropriate area in the solution for a 

problem, PSO faces difficulty to find the best solution [72]. 

In the past few years search based software testing, especially evolutionary 

algorithm based testing  (GA), has gained immense popularity [2, 3, 29, 72, 99]. 

 
Figure 2.2  Rate of publications and research works in search based software 

testing during the period 1975 to 2015 

 

0

20

40

60

80

100

75 77 79 81 83 85 87 89 91 93 95 97 99 2001200320052007200920112014

Re
se

ar
ch

W
or

ks
  

Years 

Graph showing the rate of publication and research work in 
search based(eg. Evolutionary algorithms) software testing 



Chapter 2  

16     Cochin University of Science and Technology 

A graph is shown in Figure 2.2, which shows an increase in rate of 

publications and research works in search based software testing during the 

period 1975 to 2015 [99]. Among evolutionary algorithms, genetic algorithm 

based software testing has received a wide interest from researchers due to its 

ability to handle complex problems where an exact solution doesn’t exist [99]. 

Even though genetic algorithm based testing has made a great impact on 

academic research, only very little attention has been given to understand the 

complexities of using genetic algorithms in practical software testing. 

Therefore, an in-depth review of GA based software testing is given in the 

section 2. 2. 2 

2.3.1  Inferences from Review of Literature on Recent Trends in Software 

Testing 

Based on the review of literature on recent trends in software testing, 

some inferences are drawn. These inferences are given below. 

• Though white box testing is more reliable compared to black box 

testing, black box is mostly used in practical testing. This is due to the 

practical difficulties experienced in white box testing such as length of 

source code which is to be handled during testing.  

• Random approach of program testing is one of the simplest methods of 

software testing 

• In path oriented approaches, as the length of the path increases, the 

testing becomes difficult 

• In symbolic execution, as the program length increases, testing 

becomes difficult  

• Software testing based on metaheuristic techniques are widely used  



Literature Review 

Department of Computer Science 17 

• Metaheuristic techniques such as hill-climbing and simulated 

annealing uses only single-space exploration and therefore they may 

get stuck in local optima 

• Among the metaheuristic techniques, GA is one of the widely used 

techniques in software testing and has less chance of getting stuck in 

local optima 

• Though PSO uses global search method, it is difficult to find the best 

solution in PSO 

Having got an idea of the recent trends in software testing, the next 

section deals with an extensive review of GA based testing approach.  

2.4 Review of Genetic Algorithm (GA) based Testing  

Based on the review of literature on recent trends in software testing, it 
is evident that genetic algorithm based testing is one of the most extensively 
research areas in structural testing during the last decade [3, 99].  Therefore, in 
this section of the review, we have tried to highlight the challenges involved in 
genetic algorithm based approaches for using it as a practical tool in software 
testing. The main reason for choosing this is because of the usage of genetic 
algorithms in software testing without addressing the practical difficulties in 
genetic algorithm based testing. Since the testing literature is flooded with GA 
based approaches, we have conducted a detailed examination of GA based 
testing literature. The details of this study and its inferences are given below. 

We can see that none of these works have adopted any general operator 
setting for testing purpose. This inherent non-deterministic nature of the 
genetic operators makes program testing a demanding task. The strength of 
using genetic algorithm mainly depends on setting the genetic parameters to 
their appropriate values which in turn depends on the problem to be solved 
[18, 38, 138]. This itself is a major challenge faced by testers. We have 
mentioned some of these challenges and have also pointed out the factors that 



Chapter 2  

18     Cochin University of Science and Technology 

are still not considered by the researchers during GA based software testing. 
Making an unbiased review like this may help to solve the issues in genetic 
algorithm based software testing and at the same time help future researchers 
to explore the untouched research areas in GA based software testing.  Before 
going into the details of GA based testing, a brief overview of Genetic 
Algorithm is given below in section 2.2.3.1. 

2.4.1 Brief Overview of Genetic Algorithm 

Genetic Algorithm is a type of evolutionary algorithm and is 
considered as one of the best of all evolutionary algorithms [58]. It is a type of 
meta heuristic search technique developed by John Holland and works on 
Darwin’s principle of survival of the fittest [74]. The basic steps of genetic 
algorithm are given in figure 2.3. 

 
Figure 2.3 GA basic steps 

procedure Genetic Algorithm 
begin 
  GET THE (Initial Population); 
  CALCULATE THE FITNESS FUNCTION 
(Initial Population) 
 loop 
    SELECT THE FINAL POPULATION  
     FOR CROSSOVER 
     (Parent   population) 
     PERFORM CROSSOVER ON THE PARENT 
     (Parent population, child)  
     APPLY MUTATION (Child) 
     CALCULATE FITNESS (Child) 
     GET THE NEXT GENERATION  
     (Parent population, Child) 

         Stop the process when  
         TERMINATION CRITERA  

 exit loop 
end 



Literature Review 

Department of Computer Science 19 

Genetic algorithm uses the technique of natural genetics, representing a 

computer model of biological evolution. Genetic algorithms have the ability to 

solve a variety of optimization and search problems. Several testing techniques 

use genetic algorithms believing that testing may be carried out in a better way 

using the natural evolutionary process present in them.  

Genetic algorithm identifies an optimal solution for a problem by 

applying natural evolutionary techniques to a group of possible solutions 

referred to as “population” [57, 124, 129]. After each generation, a new 

generation is formed which is better than the previous generation. In figure 

2.3, it can be noticed that the series of steps involved in genetic algorithm are 

population initialization, selection, crossover, mutation and termination [48]. 

A string of digits called chromosomes are present and each individual of the 

string is called a gene. Each individual in the population has a fitness value 

which decides the quality and performance of that individual. Greater the 

fitness value, better will be the problem solving capacity of an individual 

[104]. Collection of chromosomes makes up a population. The initial 

population is created randomly and the fitness of the individuals in the 

population is calculated. This information is used to select the best candidates 

for forming the next generation parents. After selecting parents of the 

successive generation, the next step is to combine these candidates to form the 

offspring. Crossover operation is used to perform this step. Crossover enables 

the selection of good features from parents to form the offspring. Mutation is 

applied to the offspring to create better quality individuals. Mutation is defined 

as the process of altering the genes in the chromosome. A new generation is 

chosen from the offspring based on the fitness of the individuals. These 

individuals are considered as parents of the next generation. This cycle is 

repeated until a global solution for the problem is obtained.  



Chapter 2  

20     Cochin University of Science and Technology 

2.4.2 GA based Testing-Review Stages 

Inorder to perform an impartial review of GA based testing, a research 

question (RQ) is framed which is given below: 

RQ: “Can GA based software testing evolve as an attractive technique in 

software testing industry? If so, what are issues to be sorted out in GA based 

testing?” 

In order to answer the question RQ, we have to consider several factors 

which improve the quality of GA based software testing. Therefore, we have 

refined this question into six research questions RQ1, RQ2, RQ3, RQ4, RQ5 

AND RQ6 which are given below in Table 2.1. These research questions (RQ) 

helps to emphasize the strengths and significance of GA based testing review.   

Table 2.1 Research Questions 

 

……. ……. 

 

 

 

 

 

 

  

RQ1: In spite of the large volume of works in genetic algorithm based 

testing, why have some works considered variations of genetic 

algorithms? 

RQ2: What is the effect of population representation and size in software 

testing? 

RQ3: Is there any common method to design fitness function during 

software testing? 

RQ4: What is the general strategy adopted in operator selection and 

parameter setting during software testing? 

RQ5:  What is the significance of computing time and convergence in GA 

based testing? 

RQ6:  What is the role of coverage in GA based testing? 



Literature Review 

Department of Computer Science 21 

Research question RQ1 is expected to find out the works which use 

variations of GA in test data generation and is aimed at finding whether the 

variation of GA proves to be better than GA for test data generation. RQ2 is 

expected to find out the population settings used in software testing and their 

impact on the final outcome during testing. RQ3 analyses the different 

methods used for designing the fitness function. RQ4 analyses the operator 

and parameter setting used for software testing and the impact caused by the 

same during testing. RQ5 stresses the significance of computing time and 

convergence and RQ6 highlights the role of coverage in GA based testing. The 

‘Keyword selection criteria’ for source selection from the source repository 

(Transactions, Journals, Conferences, Books) is given below in table 2.2 

 
Table 2.2 Keywords used for selecting GA based works from various source repositories 

 
 

Using the keyword selection criteria given in table 2.2, we selected 

nearly 31 papers which clearly fall within our review scope. The category of 

works selected and works not considered in this review are given below in 

table 2.3 & 2.4:- 

  

Genetic algorithm 

AND 

Software 

AND 

(Test Data OR Test Case) 

AND 

(Generate OR Find OR Get) 



Chapter 2  

22     Cochin University of Science and Technology 

 Table 2.3 Selected category of works                   Table 2.4 Works not included 

 

 

 

 

 

 

 

 

 

 

 
 

The category of selected works given in table 2.3 defines the condition 

for the selection of works on GA based testing whereas the category of works 

in table 2.4 defines under what condition the works are excluded [82]. After 

defining the inclusion and exclusion criteria, in order to assess the quality of 

the selected works in literature, a quality assessment check was made in this 

review [112]. A quality assessment form was used which is given in table 2.5.  

Table 2.5 Quality assessment form 

Quality Factors Description Outcome/Result 
of quality factors 

Q1 Is the aim of the work clearly defined? Yes/No/Average 
Q2 Whether the method is clearly explained? Yes/No/Average 
Q3 Whether the outcome/result of the method clearly explained? Yes/No/Average 
Q4 Whether the limitations of the work/method specified? Yes/No/Average 
Q5 Does the study contribute to our review? Yes/No/Average 

 

Works considered for review 

• Using GA for software test data 

generation 

• Using GA for software test case 

generation 

• Using GA for Path testing  

• GA based structural testing 

(mainly considered works in 

which coverage criteria is set as 

branch, statement, dataflow and 

control flow) 

• Study effect of GA parameter 

settings during testing 

• Study effect of GA operator 

settings during testing 

Works which are not selected  

• Using GA for hardware testing, 

circuit testing etc.  

• Using GA for test data 

augmentation 

• Using GA for software test case 

minimization, test case 

prioritization, augmentation, 

regeneration etc. 

• Using GA for Mutation, 

temporal, service oriented etc.  

• Black box/Model based testing 

using GA, Mutation,  



Literature Review 

Department of Computer Science 23 

There were several factors in the quality assessment form. In table 2.5., 

there were 5 factors (Q1 to Q5). Each factor is given a score can have either a 

value of 0, 1 or 0.5 which corresponds to ‘No’, ‘Yes’ or ‘Average’. Each work 

was analysed and a score was assigned for each of these factors [112]. For all 

the works included in the study, the values got for each of these factors were 

noted and the total value was calculated. If the total value was below a certain 

limit, such works were not considered. 

After assessing the quality of the works considered in this review, the 

required data was extracted from each work according to the data extraction 

form criteria given in table 2.6. The extracted data is supposed to contain all 

relevant information inorder to answer the research question.  The entries of 

our data extraction form are given in table 2.6.  Each work that is selected for 

the review is verified and the entries mentioned in the data extraction form are 

noted for each work. The works selected after the quality assessment check is 

listed here in table 7. All the values corresponding to the entries in the data 

extraction form were noted.  

Table 2.6 Data extraction form 

 

Data Extraction form Entries 

• Work Identifier (Author) 
• Title of the work 
• Description of the work 
• Reference of the work 
• Works using variations of GA for testing 
• Population, selection, crossover &mutation operator 
• Parameter settings 
• Fitness function design 
• Coverage criteria 
• Future research directions 
• Whether the observations from the works address the research question? 



Chapter 2  

24     Cochin University of Science and Technology 

 

Ta
bl

e 
2.

7 
 G

A 
 w

or
ks

 se
le

ct
ed

 fo
r r

ev
ie

w
 



Literature Review 

Department of Computer Science 25 

 



Chapter 2  

26     Cochin University of Science and Technology 

 



Literature Review 

Department of Computer Science 27 

 
 



Chapter 2  

28     Cochin University of Science and Technology 

  



Literature Review 

Department of Computer Science 29 

In table 2.7, using the data extraction form entry criteria, works are listed 
[2, 5, 6, 14, 21, 26, 28, 29, 47, 49, 50, 59, 79, 83, 89, 95, 96, 97, 100, 104, 105, 
113, 114, 116, 117, 123, 126, 136, 139, 140, 141].  Fields like the author and year 
of work, type of testing, purpose, population representation, population size & 
generation, type of selection, crossover operator & rate, type of mutation & rate, 
fitness function and coverage are given in table 2.7. These works are analyzed 
during the review process. The next step was to consider the factors in data 
extraction form entries which were not included in table 2.7. Table 2. 8 give a list 
of works which use some variation of GA for software testing. Table 2.8 includes 
the works formed based on the data extraction form criteria which is not included 
in table 2.7. 

Table 2.8 Works on variations of GA 

Work GA VARIATION RESULT 

Xue-ying et al. [2005] New type of GA called GeA for reducing cost 
associated with test suit reduction GeA is better than ordinary GA 

Latiu, G. I. [2012] New approach based on simulated annealing 
for path testing 

Simulated annealing based approach is 
better than GA based approach 

Malburg, J.et al. [2011] Hybrid method which combines GA based and 
constrained test data generation approach 

Hybrid method proved to have better 
performance 

Khor, S. et al. [2004] Used concept analysis along with GA for 
structural test data generation 

Concept analysis with GA is better than 
simple GA 

Wegner, J. et al. [2001] 
Applied GA and multi-population GA for 
structural testing of real-world embedded 
software systems 

Proved multi-population to be better 
than simple GA  

 Fraser, G.et al. [2013 & 2014] 

Extended the GA based Evosuite tool to a  
memetic algorithm based approach to 
improve the performance of GA during test 
data generation 

Proved that memetic algorithm based GA 
approach gives better branch coverage 
than GA 

Galeotti, J. P.et al. [2014] 
Integrating DSE(dynamic symbolic execution) 
approach with GA based Evosuite tool  for test 
data generation of programs 

Gives better code coverage than GA 

Mao, C. et al.[2013] 
Used variation of GA called Quantum inspired 
GA (QIGA) for test data generation to improve 
program coverage 

As the search space is enlarged, the new 
QIGA avoid local optimal solution 
compared to GA 

 Liu, D.   et al. [2013] Used a modified GA 
Modified approach gives higher test data 
efficiency and avoids premature 
convergence compared to GA. 

Lin, P. et al. [2012] Used adaptive GA for test case generation Adaptive GA gives better performance 
compared to simple GA 



Chapter 2  

30     Cochin University of Science and Technology 

List of works using variation of GA given in table 2.8 are used to check 

whether GA based testing or works using variation of GA performs better[49, 

50, 56, 83, 89, 92, 95, 96, 97, 136, 140]. In table 2.9, given below, the 

limitations and future research directions of the works considered in table 2.7 

are given.  This factor is also an element of the data extraction form.  

Table 2.9 Limitation & Factors to be resolved in future 

Work Limitations   & Factors to be resolved in future 
Xue-ying et al. [2005] - Effect of different operators and parameter  setting may be studied 

-Optimal/Best parameter setting may be found by conducting more experiments 
- Dependency between different test cases may be discussed and the effect of applying metaheuristic 
on the same 

 Xiao, J. et al. [2010] -Operator and Parameter  setting may be studied in detail 
- The side effects of fixing the bugs may be discussed. In other words, solving the dependency issue 
between the bugs 

Latiu, G. I. [2012]  - To find  the reason why GA based method is less competing  than  PSO and SA 
- Study parameter settings 

Ahmed, M. A et al. [2008] - How to identify target paths, Handle source code size 
- Study the dependency  issue between multiple paths during testing 
- Study operator and parameter settings 

 Pachure, A.et al. [2013] - How to identify target paths,  Handle source code size 
- Study the dependency  issue between multiple paths during testing 
- Study operator and parameter settings 

Roper, M. et al. [1995]  -Solving dependency issues 
- Operator and Parameter setting variations 

Jones, B. et al. [1996] - Scalability of the approach,  Handle source code size 
-Solving dependency issues 
- Operator and Parameter setting variations 

Pargas, R. P. et al. [1999]  - The authors claim that their approach is scalable.  Experiments are needed to prove their claim( 
Handle source code size) 
-Covering full dependency in the program using a program dependence graph instead of control flow 
graph 
- Operator and Parameter setting variations 

Michael, C. C. et al. [2001]  -Method to identify the predicates should be found out 
-Methods to prioritize branches during testing 
-Solving the dependency issues in the program 
-Operator and Parameter setting variations 
-Handle source code size 
-As the tool is developed for C program, extend the tool for other languages 

 Sofokleous, A. A. et al. [2008] - The authors claim that their approach is scalable. Experiments are needed to prove their claim 
-Covering full dependency in the program using a program dependence graph instead of control flow graph 
- Operator and Parameter setting variations 
- Handle source code size   



Literature Review 

Department of Computer Science 31 

Chen, C. et al.  [ 2009] -Solving dependency issues and finding rules for setting parameters and measures needed to improve 
fitness function 

Bernadt, D. J. et al. [2004]  - May study operator setting variations 
Khor, S. et al. [2004] Even though, the authors claim that their approach does not use any flow graph, they have also 

mentioned that it is difficult to cover nested predicates using their approach. This issue is to be solved 
in the future. 

Cao, Y. et al.  [2009]. -Automatic selection of path from control flow graph 
-Study the influence of different type of operators and parameter setting  

Malburg, J.[2011] -Methods to improve the coverage using different options of fitness function 
Zhang, W. et al.  [2007] -Full automation 

-Finding Suitable value of  Subpopulation size 
 Fraser, G.et al. [2012] -Study different settings for parameters and operators during test suite generation 

- Study the effect of seeding for other search based techniques 
Arcuri, A. et al.  [2011] -May extend the work to different languages 
Bueno M. P. et al. [2000] - Study operator and parameter settings 

- Better methods to solve  random variations 
Wegner, J. et al. [2002] -Assumes that the target is already given 

-Multipath coverage not discussed 
-Study the dependency  issue in the program  when using multiple subpopulation 
  during   testing 
- Study operator and parameter settings 
-Handle source code size 

Miller, J. et al. [2006] -Handle complex data structures like arrays, improve scalability and improve path coverage 
-Study operator and parameter settings 

McMinn, P.  [2013] -May conduct study on various types of systems to study the impact of crossover, so that the method 
may be generalized 

 Fraser, G.et al.  [2012] -Methods to handle collateral coverage of individuals (A the overhead increases when collateral 
coverage is considered) 
-Study the effects of different coverage 
-Test the approach using other type of algorithms like simulated annealing in addition to genetic 
algorithms 

Gong, D. et al. [2011] -Full automation of the approach 
-As the initial population is split-up into subpopulation, assigning correct size to the subpopulation 
remains an issue 
-Study operator and parameter settings  

Pocatilu, P. et al. [2013] -Fitness function improvement 
-Compare the performance with other genetic algorithm based test data generation methods 

Mao, C. et al.[2013] -Fitness function improvement 
-Improve coverage of the method, Handle source code size 

 Liu, D.   et al. [2013] -Improve time efficiency (Parameter tuning & parameter selection) 
Suresh, Y. et al.[2013] -Improve path coverage,  Handle source code size 

-Handle complex program 
Arcuri, A. et al. [2013] -Study the effect of parameter tuning to different kind of problems [As parameter tuning may/may not 

result in worse result compared to the result obtained without parameter tuning] 
 Fraser, G.et al. [2013 & 2014] - Find optimal parameter configurations as the result of the suggested work depends on the class on 

which test data generation is applied      



Chapter 2  

32     Cochin University of Science and Technology 

From table 2.9. given above, by analysing the factors to be resolved in 

future in GA based testing, an idea of practical difficulties related to using GA 

in practical software testing is highlighted. Unless these issues are handled, 

using GA in software testing will be of little use. 

2.4.3 Discussion on GA based Testing Review 

In this section, we have made a structured ordering of some of the most 

relevant observations of the works referred in GA based testing in table 2.7.  

This is done with the intent of answering the research questions (RQ1 to RQ6) 

related GA based testing which is given in section 2.2.3.2.  Each research 

question (RQ) is discussed in this section. Finally, some inferences are made 

by referring the works on GA based software testing. 

RQ1. In spite of the large volume of works in genetic algorithm based testing, 

why have some works considered variations of genetic algorithms? 

Even when a group of researchers claim that GA is best for software 

testing, we can see that a lot of works have used several variations of GA for 

software testing. This is evident from the list of works given in table 2.8. Most 

of these works shows that variations of genetic algorithm perform better 

compared to simple GA. 

Table 2.10 Observations on works using GA variation for software testing  

Number of works 
using GA variation for 
test data generation 

Number of works in 
which variation of GA 
is proved to be better 

than GA 

Number of works 
in which GA is 
proved to be 

better 

Comments 

9 9 NIL 

Since variation of GA is proved to be 
better than GA in all works, it’s high 

time to assess which variant is best in 
software testing 

 



Literature Review 

Department of Computer Science 33 

Table 2.10 gives the observations on works using variation of GA for 

software testing. Form the list of observations given in table 2.10 and data 

collected from various works, we can see that, till now the researchers are not 

able to conclude which type of GA or what variation of GA is best for various 

software testing strategies. From the list of works which uses GA variation for 

software testing, we can recommend that the researchers should try to focus 

research in the direction which is represented in Figure 2.4. 

 
Figure 2.4  Research direction suggested from the observations on works using GA 

variation 

From figure 2.4, we can infer that, depending on the system under test 

or problem, the type of GA or the variation of GA used also differs. This is 

one of the areas which future researchers should concentrate upon. They 

should clearly elucidate which type of GA or what variation of GA is 

universally applicable to a particular category of problems during software 

testing. For example, a researcher should be able to identify or get a clear idea 

of what type of GA or GA along with some method or any variation of GA 

gives the best result for a particular category of problem. Little works have 

shown interest in this issue till date. This may be due to wide possibilities or 

variations of GA which may be applied during software testing. We 

 

Problem Specification Testing Strategy 

Solution using  GA 

Solution using variation of GA 

 

Compare results 

 

Identify the best method  
for a particular category of 

problem 
 

Performance 
Time 

Cost 

Accuracy 



Chapter 2  

34     Cochin University of Science and Technology 

recommend that, trying to perform such an in-depth study will clear the air 

regarding the use of GA in software testing to a great extent.  The main 

benefits of the suggested research direction are:-  

• Programmers will be confident about the type of GA/GA combined 

with any other method/GA variation,  that  may be apt for a particular 

category of problem 

• Unnecessary effort and time spent to find variants of GA in software 

testing may be reduced. 

RQ2. What is the effect of population representation and size in software testing? 

After the discussion on RQ1, the second research question RQ2 on GA 

based testing is addressed in this section. We have seen different types of 

population representation and different population sizes and the number of 

generations used in software testing from the table 2.7. Some observations 

from table 2.7 are given below in Table 2.11. 

 
Table 2.11 Population representation for structural testing 

Number of works using different Population representation for Structural testing 
Binary Base 10 Character Array of bits Integer Real Sbyte Qbit 

8 1 1 2 1 2 1 1 
 

In table 2.11, the different types of population representation used in the 

works listed in table 2.7 are given. From the list of observations on population 

representation in table 2.11, we can recommend that the researchers should try to 

focus research in the direction which is represented in Figure 2.5.  
 

  



Literature Review 

Department of Computer Science 35 

 
Figure 2.5 Research direction suggested from the observations in population 

representation in GA based software testing 

From figure 2.5, it can be seen that, during GA based testing, for a 

given problem specification, it is suggested to find the most suitable type of 

population representation, size and generation. In most of the works which use 

GA for software testing, it has been mentioned that they have chosen a 

particular type of representation for population by referring previous works, 

whereas in some works it is mentioned that they have chosen a particular 

representation randomly. Only a very few works have given a clear 

explanation of choosing a particular type of population representation for the 

system under test. For example, Fraser, G.et al. have claimed that, seeding 

strongly influences the efficiency of search based test data generation and they 

have used seeding to improve the process of population initialization [47].  

Similar is the case with population size and the number of generations. In such 

scenarios, if the researchers are able to get a picture of the different types of 

population representation and the approximate size of population according to 

the type or category of software testing, the issues related to the size and 

representation of the population may be solved. For example, if a study is 

 

 

Testing 

Strategy 

 

Problem 
Specification/type 

Type 1 

Type 2 

Type 3 

Type n 

Possible population 
representation, size, 

generations 

Possible population 
representation, size, 

generations 

Possible population 
representation, size, 

generations 

Possible population 
representation, size, 

generations 

Decide/Find the 
best type of 
population 

representation, 
size & 

generations for 
a particular 
category of 

problem 

Guide to population 

issues in GA based 

testing 



Chapter 2  

36     Cochin University of Science and Technology 

conducted to finalize the most suitable type of population representation for 

structural testing of a particular category of problem, software testers may not 

have any confusion in population representation. Instead of adopting a 

particular type of population representation, size and generations by referring 

previous literatures, researchers should try to find a general or the most 

suitable type of population representation, optimal value of size and number of 

generations for a particular category of problem during various testing 

strategies. Researchers have not explored this direction yet. Instead, they have 

randomly selected a particular type of population representation, size and 

generation and proceeded directly to the test data generation process. Testing 

should be done using different population settings and the best population 

setting should be reported. This in turn may resolve the uncertainties 

prevailing in population settings during GA based testing. The main benefit of 

following such a methodology is that:- 

• Problems related to population representation, size and generation in 

GA based software testing may be resolved to a great extent if general 

guidelines are formed for population issues. 

• Researchers will be confident on the method selected if the base values 

are set according to some general guidelines 

RQ3. Is there any common method to design fitness function during software 

testing? 

In the previous paragraph, the research question RQ2 is addressed and 

the some research directions are suggested for setting population. In this 

section, research question RQ3 is addressed. In RQ3, the issues related to 

fitness function design during software testing are handled.  



Literature Review 

Department of Computer Science 37 

Fitness function is one of the core aspects of GA based testing. The result 

of GA based testing depends on fitness function.  Design of fitness function 

differs according to the type of testing, purpose or coverage and the method 

used for designing the fitness function. Before using GA for structural testing, 

tester should have an idea about how to design fitness and the factors to be 

considered for designing fitness function. This is because, many factors such as 

program dependency and path selection affects the process of fitness function 

design. After designing the fitness function, parameters are tuned to get the 

expected result.  Response time of the system is also in turn dependent on 

parameter tuning. Therefore, setting up general guidelines for fitness function 

design in GA based testing minimizes the issues related to parameter settings in 

GA. From table 2.7, it can be seen that several approaches are taken for 

designing the fitness function according to the coverage criteria. One of the 

most important factors to be considered during fitness function design is the 

program dependency consideration. In most of the genetic algorithm based 

software testing, program dependency is not correctly followed [69, 70, 72, 98]. 

An evidence of this fact may be drawn from the table 2.9. In table 2.9, the future 

scope of the referred works in this review are listed and it can be noticed that 

most of the works have mentioned about solving dependency related issues in 

their future work. Solving dependency related issues in turn depends on the path 

identification [10]. It is also evident that, most of the works have reported path 

identification problem as their future research perspective. If there is no 

automated method to identify the potential paths during fitness function design, 

all the statements in the program should be analyzed to identify the relevant 

statements. In GA based software testing, only a very few research works have 

addressed the problem of potential path identification [73, 142]. 



Chapter 2  

38     Cochin University of Science and Technology 

Even though fitness function design varies according to the system 

under test, general guidelines for designing the fitness function based on the 

testing strategy or system under test or the factors to be considered during 

fitness function design may be established by the researchers. Though very 

few works have mentioned about such possibilities, this problem is yet to be 

discussed in depth. In future, if such a study is accomplished, it will go a long 

way in making use of GA based software testing applicable to all types of 

system, irrespective of whether the system is large or small. Unfortunately, 

little attempt is made for such a study, whereas, most of the effort is spent on 

designing newer fitness function for testing. Figure 2.6 given below, gives the 

prime reason for considering the design fitness of function as the most 

important factor in GA based software testing.  
 

 
Figure 2.6 Factors affecting and affected by fitness function design 

Figure 2.6 summarize the steps to be taken while designing the fitness 

function during GA based testing.  In figure 2.6, it can be noticed that path 

coverage and dependency should be considered while designing the fitness 

 

Fitness function design 

Dependency & path coverage Path selection strategy 
 

Parameter tuning for fitness 
function optimization 

 

Response time/ 
Optimization time 

Optimization of Fitness 
function 

End Result 



Literature Review 

Department of Computer Science 39 

function. The end result will be dependent on the optimised value of fitness 

function. The value of fitness function will be dependent on some factors like 

parameter settings, parameter tuning, response time etc.  Therefore, designing 

the fitness function in GA based testing needs great care.   In table 2.12, some 

of the main issues to be considered during fitness function design are given.  
 

Table 2.12 Fitness function design issues & suggested solution  

Issues in fitness function design Suggested solutions 
Trace the potential paths/relevant paths for designing fitness function Use methods to attain maximum 

coverage, identify potential paths 

and trace dependency while 

designing fitness function 

Trace all possible dependencies in the program so that test data 

generation using GA may be applied in all practical situations. 

Try to attain maximum coverage during test data generation 

 

From table 2.12, it can be noticed that tracing dependency in a 

program, identifying relevant paths in a program and attaining maximum 

coverage for a program are some of the main issues to be considered during 

fitness function design. The suggested solution given in table 12 points that, 

some good strategy  should be used inorder to attain maximum coverage, 

identify potential paths and trace dependency so that the optimal result may be 

obtained during program testing.  Therefore, it is suggested that, the future 

researchers should give more emphasis on finding general methods for fitness 

function design according to the category of problem specification. The main 

steps to be followed during fitness function design in GA based software 

testing are given in figure 2.7.  

 

 



Chapter 2  

40     Cochin University of Science and Technology 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Fitness function design 

In figure 2.7, the general strategy for designing fitness function for a 

given problem specification is listed. If such a strategy is used for designing 

fitness function, GA based testing may be used for testing different type of 

systems such as critical applications, small type applications, real time systems 

etc.  The main advantage of using such a general strategy for fitness function 

design is given below. 

• One of the main issues of using GA for practical testing may be solved 

by alleviating the difficulties faced during the design process of fitness 

function 

RQ4. What is the general strategy adopted in operator selection and parameter 

settings during software testing? 

Step 1. Specify the purpose of testing 
Step 2.  Identify the testing category 
Step 3. Analyze the system under test or  
the type of system (Critical, Application,  
Small, Medium, Real time) 
Step 4. Identify the methods available  
to design fitness function for each type of  
system 
Step 5. Consider the factors affecting the  
design of fitness function for a system  
under test  
     -Identification of relevant paths 
     -Maximum coverage to generate 
       possible test data values  
     -Cover all possible dependencies in  
       the program 
     -Optimal parameter setting during  
       fitness function design 
     -Time required to optimize the fitness  
       function 
Step 6. Design fitness function according  
to the category of problem specification 



Literature Review 

Department of Computer Science 41 

Finding an optimal value of parameters is one of the most important 

issues in GA based testing which haven’t received much attention till now.  In 

table 2.7, the operators used and the parameter settings used in various works 

are shown.  From table 2.7 it can be noticed that, even though several works 

which explain different types of operators and their relevance in different 

contexts exist, use of these operators in specific context still remains 

unexploited. Table 2.13 shows an evidence of this factor.  

Table 2.13  Structural testing: Number of works using different types of selection 
in Table 2.7 

Types of Selection No: of works using different 
types of Selection 

Tournament  4 

Roulette wheel 8 

Ratio 1 

Binary tournament 1 

Random selection 6 

Rank based selection 8 

Gambling Roulette wheel   1 

In table 2.13, the number of works which use different type of selection 

is given.  Similar is the case with other operators such as crossover, mutation 

etc. It can be noticed that in most of the works, the operators and parameters are 

set randomly or they have used specific operators and parameter settings by 

referring to some similar works in their field.  Few works by researchers like 

Fraser, G.  et al. and McMinn, P. have considered such a possibility of studying 

the parameter setting during GA based software testing [5, 6, 45]. Even these 

researchers claim that more studies are required to reach a concrete conclusion.  

In GA based testing, even after testing a program using the best available 

genetic operators and parameters, a better solution or the same solution can be 

obtained even if we use less competing methods of crossover, selection and 



Chapter 2  

42     Cochin University of Science and Technology 

mutation for solving the same problem. This shows the uncertain nature of 

genetic algorithms [22]. Most of the works given in table 2. 7 have mentioned 

about this risk. Another issue involved in parameter settings is the time taken for 

optimizing the fitness function. Fitness function optimization is a heuristic 

process and the optimization time and effort varies according to the nature of the 

problem [2, 14, 58, 93, 94]. Therefore, the exact time required for testing a 

program cannot be accurately predicted [3]. The time varies as the parameter 

settings are changed. 

Another factor which has a major role in parameter tuning is the 

‘search budget’ [5]. As budget plays a critical role in software testing, 

parameter tuning should be a factor of the budget. From table 2.9 we can see 

that most of the works have reported operator selection and parameter tuning 

as their future enhancement. It is surprising that little attempts were made on 

how to overcome the issues in operator and parameter settings. One reason for 

this could be the difficulties in carrying out and designing such a study. Using 

GA based testing, even though a problem may be solved in less time, the field 

is still dormant to decide the best possible combination of parameter settings 

suitable for a given problem. Given a problem specification, although it may 

not be possible to find the exact value for all parameters, we suggest that the 

researchers should look into the future issues in parameter settings which are 

given in figure 2.8. 



Literature Review 

Department of Computer Science 43 

 
Figure 2.8 Suggested research directions in parameter settings 

In figure 2.8 we can see that, after identifying the properties of the 

system under test, the next step is the design of fitness function. After finding 

the fitness function, the next step is to find the optimal value of parameters 

needed to optimize the function. For this, we have to analyze the outcome of 

applying basic and advanced operators during software testing. Finally, the 

best possible operator and parameter settings for a given category of problem 

may be found out. After finding the optimal parameter settings, the relation 

between fitness function optimization and time taken for optimization, as well 

as the relation between fitness function optimization and search budget may be 

identified. A very few works have even suggested such a possibility [5, 6, 24, 

45, 111]. Advantages of the above mentioned suggestions are:- 

 

 

 

Testing strategy & 
Problem under test 

Apply basic operators & 
parameter settings for 

optimization 

Design Fitness Function 

Apply advanced/variants 
of operators & 

parameter settings   for 
optimization 

 

Compare the 
values 

Select the 
optimal value 

Cost Constraints 

Time required for 
optimization 

Finalize the best value of 
operator settings for a given 

system under test 
 

Compare the values got from 
advanced operators & basic 

operators 

Result 



Chapter 2  

44     Cochin University of Science and Technology 

• General guidelines for setting the parameters according to the problem 

• Time & effort spent in parameter tuning may be minimized 

• Solves the ambiguities in setting parameters during GA based testing    

RQ5. What is the significance of computing time and convergence in GA based 

testing? 

In RQ5, the importance of computing time and convergence in GA 

based testing is discussed. Finding the convergence criteria and computing 

time is an important step in GA based testing. Convergence defines the point 

at which the fitness function reaches an optimal solution [74]. In GA based 

software testing, the execution proceeds until the fitness function converges. 

Execution stops when the solution converges to a designated point. 

Sometimes, the fitness function may not converge and in such situations it is 

difficult to find test data. In such cases an optimal value of test data is 

considered. In GA based software testing, sometimes the solution converges in 

a fewer number of generations or after a large number of generations or may 

not converge itself.  In such situations, inorder to avoid infinite number of 

executions and to finalize the optimal value of fitness function, stopping 

criterion must be predefined. Most common stopping criterion is the ‘number 

of generations’ required to find the test data during software testing. This is a 

trial and error procedure. Sometimes the target paths are infeasible and the 

search for test data to cover such paths never succeeds. In such situations the 

optimal value of test data obtained for a specified number of generations are 

considered. Generations decide the number of runs or the number of times the 

whole genetic cycle may be repeated to obtain the required solution. In table 2. 

7, the values of generations used in various works are given. As it is not 

possible to repeat the whole process indefinitely, a stopping criterion should 



Literature Review 

Department of Computer Science 45 

be defined. In other words, the stopping criterion decides the cause of 

algorithm termination. Genetic algorithm terminates when the required result 

is obtained or for a specific number of generations or when there is no 

improvement in the fitness value which is the best in a specified time interval. 

Usually in GA, as the number of generation increases, the end result also 

improves, which in turn causes an increase in execution time of the whole 

process. Therefore generation is a critical factor in GA based testing. 

Computing time is an important factor which influences the process of 

test data generation in GA based software testing [58]. Computing time is the 

time taken by the fitness function to reach an optimal solution or the time 

taken for convergence. Usually in GA based testing as time increases, the 

quality of solution obtained also increases. But it cannot be assured to get a 

better solution in all situations. The execution may continue infinitely without 

converging to a solution.   Therefore, in GA based testing, it is better to set the 

convergence criteria as a certain number of generations instead of a fixed time. 

In figure 2.9, the suggested research directions in convergence criteria are 

given.  

 
Figure 2.9 Suggested research directions in convergence criteria 

In figure 2.9, it can be noticed that, if the program tester gets an idea 

about the number of generations in which the fitness function convergence 

occurs for a given class of problem, unnecessary time wastage can be reduced. 

 
Problem Specification 

Time Conservation 

Convergence criteria Fitness Function 



Chapter 2  

46     Cochin University of Science and Technology 

Unnecessary program execution may be avoided with the hope of getting 

better result in the successive generations. Advantages of suggested research 

focus are:- 

• Avoid unnecessary computation  

• Save computation time 

RQ6. What is the role of coverage in GA based testing? 

Coverage is one of the important aspects of GA based testing. Various 

coverage criteria used in different works are given in table 2.7. The test data 

obtained should cause the execution of statements, branches or paths in the 

program. During program testing, the main aim is to attain maximum coverage 

so that the test data generated executes all the constraints present in the 

program.  In some scenarios, the test data generated will not cover the 

infeasible paths present in the program. Unnecessary effort is wasted in 

exploring such infeasible paths. Therefore, in some programs, a control flow 

coverage criterion is considered.  Control flow coverage is based on the 

control flow of the program. Control flow coverage may not give relation 

between statements in a program. Attaining a complete coverage of the 

program will be difficult in such situation. Therefore, data flow coverage 

criteria is used in some works [42]. In data flow coverage, data dependence 

analysis is used to identify the relation between the statements and paths 

which lead to solution. Based on the coverage criterion, the fitness function is 

designed which leads to solution. Therefore coverage plays an important role 

in GA based software testing. 

For a given type of problem, we should try to find out the best coverage 

criteria. For simple problems, statement or branch coverage will be sufficient. 

For large and complicated problems, data flow coverage may be appropriate. 



Literature Review 

Department of Computer Science 47 

Researchers should try to find out the appropriate coverage criteria according 

to the type of problem. After finding the best type of coverage for a particular 

class of problems, general guidelines to be followed for designing the fitness 

function are to be devised. Advantages of suggested research focus are:- 

• If the tester is having an idea of the type of coverage to be used for a 

particular class of problem, unnecessary effort spent in exploring the 

unfeasible paths may be prevented 

• Simplifies the fitness function design process 

2.4.4 An Illustration of using GA in Software Testing  

In the previous section, the issues in GA based software testing and 

their suggested solution is studied. After reviewing various works on GA 

based testing, an illustration of GA based testing using the work mentioned by 

Michael et al. [104] is given below.  This was carried out inorder to an 

experience of practical difficulties related to GA based software testing. The 

end result of the experimental work gives supporting evidence for the 

literature study on GA based testing.  

Consider the lines of source code given below in figure 2.10.  Here, the 

goal is to find test data which satisfies the criterion subject grade=“A.  

 
 

 

Figure 2.10 Lines of code 

After defining the lines of code, the test data generation using GA is 

carried out. Steps to be followed for generation test data are given below in 

figure 2.11. 

if (total credit >10) 
{ 

if  (subject credit>4) 
subject grade=“A”; 

} 



Chapter 2  

48     Cochin University of Science and Technology 

 

 

 

 

 

 

 

 

 
Figure 2.11 Test data generation steps 

In figure 2.11, the main steps to be followed during test data generation 

are given. Inorder to satisfy the condition (subject credit>4), the condition 

(total credit >10) should be satisfied initially. The two paths are given in table 

2.15. In test data generation, the initial population was generated randomly. 

After generating the initial population, the fitness of the individual was 

calculated based on fitness function. The fitness function was designed based 

on Korel’s branch distance function [85, 104]. If the initial population did not 

satisfy the goal, new population was generated from the existing population 

using crossover and mutation operators. The new population generated is 

checked to verify whether it satisfies the required criteria. If the new 

population satisfies the goal, the process is stopped. Otherwise, the next 

individual is generated from the existing individual using genetic operations. 

This process is continued until the goal is found out.  Table 2.14 gives the 

parameter settings used in GA based testing. 

 

Problem: – Find Test Data to satisfy subject grade =“A” using GA  

1. Satisfy the condition (subject credit>4) 

2. To satisfy condition (subject credit>4) we have to satisfy the criteria 

(total credit >10) 

3. Generate the initial population 

4. Calculate fitness 

5. Create new population from existing  

        -Crossover 

        -Mutation 

6. Check whether the new population satisfies the goal 

7. Continue the process until relevant test data is found 



Literature Review 

Department of Computer Science 49 

Table 2.14 Parameter settings used in GA based testing 

GA Parameters  Value  

Population size  3  

Fitness function  Branch distance function  

Representation  Binary, Length=4  

Selection  Fitness based  

Crossover  Single  

Mutation  1 bit  

Termination criteria  Until Condition satisfied  

From table 2.14, we can see that the population size is set as 3, fitness 
function is Korel’s branch distance function, crossover is single bit, mutation 
is one bit and the population is represented as binary and the length of the 
individual is taken as four. 

Table 2.15 Paths to be handled in GA based testing 

Path 1 Path II  

(total credit >10) (subject credit>4) 

F(I)= total credit -10  F(II) = subject credit-4 

Table 2.15 given above describes the two paths (total credit >10) and 
(subject credit>4) which are to be satisfied during testing. The paths are 
represented as expressions (total credit -10) and (subject credit-4) respectively 
using branch distance function.  

Table 2.16 Korel’s branch distance function 

     Branch Predicate    Branch Distance Functions 
a=b f(K)=-abs(a-b) 
a≠b f(K)=abs(a-b) 
a>b f(K)=a-b 
a≥b f(K)=a-b 
a<b f(K)=b-a 
a≤b f(K)=b-a 

K1∧K2 f(K)=min(f(K1),f(K2)) 
K1∨K2 f(K)=f(K1)+f(K2) 



Chapter 2  

50     Cochin University of Science and Technology 

The fitness function used for GA based testing is designed based on the 

Korel’s branch distance function given in table 2.16 given above. For each 

type of branch predicate, the respective branch distance functions are given in 

table 2.16.  In table 2.17 and 2.18, the test data generation steps related to the 

expression F(I)= total credit -10 and  F(II) = subject credit-4 are given In table 

2.17, the initial population is generated is 8, 4, 2. Since the initial population 

does not satisfy the goal, genetic operations are applied to generate the next 

generation of population. The next generation population satisfies the goal by 

generating the test data value of 13 which satisfies the path (total credit -10). 

Therefore the process is terminated.  
Table 2.17 Test data generation steps of F(I)= total credit -10 

F(I)= total credit -10 8 , 4, 2  

Initial random population  8 , 4, 2 

F(1)=8-10  -2  

F(I)=4-10  -6  

F(I)=2-10  -8  

Crossover (single point)  1  0  00 (8)  -   1100 

0  1  00 (4)  -   0000  

Offspring  110  0  

Mutation (one bit)  1101 (13)  

Path I- (total credit >10) 13 > 10  

Test Data  13  

 

  



Literature Review 

Department of Computer Science 51 

Table 2.18 Test data generation steps of F(II) = subject credit-4 

F (II)= subject credit - 4  2, 3, 4 

Initial random population  2, 3, 4  

F(I1)=2- 4  -2  

F(II)=3-4  -1  

F(II)=4-4  0  

Crossover (single point)  01 0  0  - 0110 
00 1 1  - 0001  

Offspring  0110  

Mutation (one bit)  0111  

Path II (subject credit >4) 6>4  

Test Data  6  

 

In table 2.18, the initial population is generated is 2, 3, 4. Since the 

initial population does not satisfy the goal, genetic operations are applied to 

generate the next generation of population. The next generation population 

satisfies the goal by generating the test data value of 6 which satisfies the path 

(subject credit-4). Therefore the process is terminated.  

Practical difficulties experienced are given below:- 

• How to identify relevant paths? 

• Limit the functionality to only what we need 

• How to check dependency? 

OR 

• How a change in a statement affects other program parts? 

 

 



Chapter 2  

52     Cochin University of Science and Technology 

2.4.5. Inferences from the Review on GA based Software Testing 

Some inferences are made based on the GA based review conducted in 

the above section. From the review it can be inferred that:- 

• The main shortcomings reported in GA based testing literature is that, it 

does not handle source code size and it is difficult to identify the relevant 

paths and identify dependencies during testing.  

• One of the main issues of using GA in software testing is the design of 

fitness function.  Designing a wrong or misleading fitness function will 

not cause convergence of the fitness function. This in turn hinders the 

process of test data generation. 

• There should be some general guidelines for setting the parameters. 

Though it may not be possible to set universal guidelines for all problems 

in GA based testing, efforts should be made to set rules for parameter 

setting at least for a particular type of problem. 

• Though the quality of the solution obtained improves with the increase in 

time, it cannot be guaranteed to obtain an optimal solution in the specified 

time interval. 

• Implementing GA based testing after considering all the conditions 

mentioned above is practically difficult. In other words, solving the 

problems mentioned in RQ1, RQ2, RQ3, RQ4, RQ5 and RQ6 may make 

GA based testing as one of the strongest methods in software industry. If 

the researchers are able to find a solution for the future issues mentioned 

in RQ1, RQ2, RQ3, RQ4, RQ5 and RQ6,  the uncertainties which exist in 

using GA based methods in practical software testing may be eliminated.  

 



Literature Review 

Department of Computer Science 53 

From the above inferences it can be noticed that one of the main issues 

in GA based testing is to identify the relevant paths. On the other side, there is 

no method to handle source code size during program testing. This is a major 

problem in structural testing, as it is impossible to test all the lines in a source 

code which contains a large number of LOC (Lines of Code). Again, as the 

statements of interest could not be handled by GA based testing, identifying 

dependencies was another main issue. Apart from this, GA based software 

testing also has many other shortcomings such as fitness function design issue, 

parameter setting, uncertain convergence time etc.  In order to handle the 

issues of source code size, identifying dependencies and identifying relevant 

statements, we introduce the concept of using program slicing in testing. 

2.5 Slicing based Approaches  

In the previous section, we noticed that the main difficulty to be 

addressed in most of the other testing techniques is the source code size [53, 

65]. GA based testing, which is one of the most widely used techniques during 

the last decade also faces the same issue [73]. This may be inferred from the 

detailed review conduced in the previous section. If the tester is able to 

concentrate only on the needed statements or statements of interest during 

program testing, then testing would have made easier and effective. The same 

idea was put forward by Mark Weiser in 1979 [137]. Weiser noticed that 

programmers concentrate only on the statements of interest during program 

testing and this process is known as program slicing. He stated that the whole 

program is divided or sliced into a number of small segments so that 

programmers can concentrate only on relevant statements during program 

testing. This makes program testing easier. As originally defined by Weiser, a 

“program slice consists of those statements which are (potentially) related to 



Chapter 2  

54     Cochin University of Science and Technology 

the values computed at some program point or variable referred to as slicing 

criterion [136]. 

As slicing can handle the issue of source code size, the practical 

problems experienced during GA based testing can be easily handled by 

slicing based testing. Though slicing is used in many applications like fields 

like program comprehension, debugging, software maintenance, program 

cohesion, refactoring and reverse engineering [15, 16, 36, 51, 65, 81, 84, 88], 

works which explicitly use slicing for handling source code size during 

structural testing is almost nil. Taking into consideration these facts, a slicing 

based approach is introduced for software testing in this thesis.  

We have explained some main types of slices in this section. For 

example, a static slice gives program statements which can influence the given 

variable at a particular point known as slicing criterion. The original definition 

of slicing given by Weiser is that of a static slice [137]. The concept of 

dynamic slice was given by Korel & Laski [86]. Dynamic slice consists of 

program statements which can influence the specified variable at a particular 

point for a particular execution or input. This together is known as slicing 

criterion. Since dynamic slices traces the changes related to a particular 

variable, it is very useful during debugging [87]. A program can be traversed 

either in the forward or back ward direction. If a program is traversed in the 

backward direction, the set of statements that affect the slicing criterion are 

identified. This type of slicing is known as backward slicing. The original slice 

introduced by Weiser was static backward slices [128]. Traversing a program 

in the forward direction gives forward slices. In forward slice, the set of 

statements which are influenced by the slicing criterion are identified [12]. 

Forward slices are very useful in identifying the statements affected by a 

variable & they are very useful to identify the initialization errors [64].  



Literature Review 

Department of Computer Science 55 

Chopping is another variation of slicing. It was introduced by Jackson 

and Rollins [76]. Chopping can be considered as a generalization of both 

forward and backward slicing. In chopping two sets of variables called source 

and sink are present. Chopping helps to identify the statements affected by the 

source, which in turn affect sink. They are most useful in identifying the 

transmit effects of variables on program statements. Another type of slice is 

called relevant slice [78]. This may be considered as a superset of dynamic 

slice. In a dynamic slice, the statements which affect the slicing criterion are 

identified whereas in a relevant slice, all the program statements which could 

have affected the slicing criterion are identified. This type of slice is useful in 

maintenance and debugging. Another type of slice is Hybrid slice [78, 122]. In 

hybrid slice, the features of both static and dynamic slice are included. Hybrid 

slice was introduced with an aim of increasing the precision of static slice 

without increasing the computational cost associated with dynamic slice. 

Hybrid slice is very useful for debugging.  

Intra procedural slicing gives slices within a procedure [137]. It gives the 

statements of interest which affect the variables at a particular statement. Intra 

procedural slicing is used in debugging, comprehension, maintenance, 

differencing etc. Inter procedural slicing was put forward by Horwitz et al. for 

performing slicing across multi procedures [75].  A System Dependence Graph 

was introduced to perform intra procedural slicing.  Object oriented slicing was 

introduced by Larsen et al. to handle the object oriented features during slicing. 

In such scenarios, the system dependence graph was extended to a class 

dependence graph [122]. Aspect oriented slicing was introduced by Zhao to 

slice aspect oriented programs. An aspect oriented system graph was 

constructed to slice such programs. The concept of Quasi- Static slicing was 

introduced by Venkatesh is used in applications in which a group of program 



Chapter 2  

56     Cochin University of Science and Technology 

inputs are fixed and the remaining input is unknown. This is useful in debugging 

and program comprehension [122]. Call-mark slicing was introduced by 

Nishimatsu et al. This type of slice was introduced with the aim of reducing the 

cost associated with the construction of dynamic slice [53]. A compromise 

between static and dynamic slice is established. This type of slice is smaller than 

static and less expensive than dynamic. Dependence- Cache slicing was 

introduced by Takada et al. [122]. The PDG containing dynamic information 

was pruned by this type of slicing. The concept of database slicing was 

introduced by Sivagurunathan [122]. It is used for slicing databases so that the 

database operations are correctly accounted. Proposition-based slicing was 

introduced by Dwyer and Hatcliff [36]. This type of slicing was defined to 

reduce the finite-state transition system used in verification techniques such as 

model checking.  Here, model checking is done with respect to linear temporal 

logic. 

The concept of incremental slicing was introduced by Orso et al. [109].   

This type of slicing allows the user to focus on a particular type of data 

dependence. This feature is very useful during program comprehension so that 

the user can ignore the weak data dependences and concentrate on strong data 

dependences. Almost similar idea is used in thin slicing. This was introduced by 

Sridharan et al. in 2007. In a thin slice, control and base pointer flow 

dependences are ignored. Only those statements related by producer flow 

dependence are included in a thin slice. This type of slicing is useful in 

debugging and program comprehension. The concept of decomposition slicing 

was introduced by Gallagher et al. [54]. This is mainly used in software 

maintenance to trace all the computations on a given variable. The 

decomposition slicing criterion consists only of a single variable. The concept of 

amorphous slicing was put forward by Harman et al. [132]. This is a semantic 



Literature Review 

Department of Computer Science 57 

preserving slice. Amorphous slices are constructed using some program 

transformation. This simplifies the program and preserves the semantics of the 

program with respect to the slicing criterion. This type of slicing is used in 

program comprehension. The concept of abstract slicing was introduced by 

Hong et al [122]. Abstract slicing extends the concept of static sling by 

incorporating predicates and constraints that are processed with an abstract 

interpretation and model checking based technique. Abstract slicing determines 

under which variable values do the statements affect or are affected by the 

slicing criterion. The concept of path slicing was introduced by Jhala et al. 

[122]. Path slicing gives the statements which can possibly influence the 

reachability of a given statement in a given execution path. Path slicing is used 

to find program statements which are not executed in a given path. This slicing 

is mainly used in program comprehension. The concept of conditioned slicing 

was introduced by Ning et al. [128]. Conditioned slices gives program 

statements which can influence the variables at a given statement for the initial 

states which satisfy the given condition. Conditioned slices are useful in 

debugging, software reuse, ripple effect analysis, understanding legacy code and 

program comprehension. The concept of backward conditioning slicing was 

defined by Fox et al. [52]. Backward conditioning gives the program statements 

which can influence the given variables at a given point when the conditions at 

the given statements are satisfied. The concept of pre/post conditioned slicing 

was put forward by Harman et al. [68]. This is a generalized form of 

conditioned slicing which combines forward and backward conditions. Here the 

forward conditions are called pre conditions and backward conditions are called 

post conditions. This is mainly used in program comprehension, re use and 

verification. Barrier slicing concept was introduced by Jens Krinke [122]. In this 

type of slicing, the programmer can specify the part of program that is to be 



Chapter 2  

58     Cochin University of Science and Technology 

traversed during the construction of slices. Simultaneous Slicing was introduced 

by Hall. This can be considered as a generalization of program slicing. Here a 

set of slicing criteria is considered and the slices are computed with respect to a 

set of different points rather than the set of inputs. Interface slicing was 

introduced by Beck and Eichmann [122]. In Interface slicing, the module’s 

functionality is extracted using slicing. Interface slicing is done to find the 

dependences between the components and global variables rather than between 

statements. Interface slicing is useful in reverse engineering and code reuse. 

Program Dicing was introduced by Lyle et al.for debugging purpose [128]. It is 

computed by removing those statements of a static slice of a variable that 

appears to be correctly computed from the static slice of an incorrectly valued 

variable. Stop-list slicing was introduced by Gallagher et al. [122]. In stop-list 

slicing, slicing is performed with respect to the variables on which the 

programmer is not interested. This type of slicing is mainly used in debugging.   

2.5.1 Applications of Slicing 

In the above section, an overview of various types of slices is given. This 

section explains the some of the important applications of slicing. Debugging is 

one of the important applications of slicing. It was Mark Weiser who suggested 

that program slicing may be used for debugging.  Weiser suggested that during 

debugging, programmers ignore the parts of the program that cannot influence the 

bug [137]. Software maintenance is one other important application of slicing. 

Slicing may be used to find the changes associated with a variable during 

maintenance. Slicing may be also used for function extraction and restructuring. 

Extractable functions are identified by slicing. After extracting the functions, they 

can be restructured unto independent functions using slicing. These restructured 

functions may be used in refactoring [55]. Another important application of 

slicing is program differencing. Slicing may be used to find the difference 



Literature Review 

Department of Computer Science 59 

between two versions of the program. Another main application of slicing is 

program testing. Even though some works have mentioned the use of slicing in 

testing [9, 16, 62, 65, 119, 120], works that explicitly demonstrate how program 

slicing may be applied in software testing is extremely rare to the best of our 

knowledge. In these works, R. Gupta, et al., D. Binkley and Bates et al.  have 

illustrated the use of slicing in regression testing [9, 16, 62].  Harman et al.  have 

used the concept of robustness slice in testing [65]. In robustness slice based 

testing, the original program is transformed into a meaning preserving form and 

after that slicing is applied to the transformed program. Samuel et al. have 

illustrated how slicing may be applied for designing test cases from UML 

diagrams [119,120]. Considering these facts, we have introduced and 

demonstrated the significance of applying slicing in program testing to handle the 

one of the relevant issues of source code size. 

2.5.2 Inferences from the Review of Slicing based Approaches 

Based on the review of literature on program slicing, we have made 

some inferences which are given below. 

• Slicing may be used to handle the issue of source code size during 

structural testing 

• In source code testing, almost no works on testing using slicing   

2.6 Summary of the Chapter 

In this chapter, a review of literature on software testing techniques is 

performed.  The review is carried out in three stages. In the first stage, a 

review of recent trends in software testing techniques was carried out. 

Evidence from literature showed that search based software testing techniques 

is one of the widely used and researched areas during the last decade. In search 

based techniques, GA based software testing is mostly used in software 

testing. Based on this inference, a review of literature on GA based techniques 



Chapter 2  

60     Cochin University of Science and Technology 

was carried out in the second stage. Based on the review of GA based works in 

software testing, some inferences were drawn. The main issues observed 

during GA based testing were:- 

• GA based testing was not capable of handling source code length 
during structural testing 

• There were no general guidelines for parameter setting in GA based 
testing. This greatly affected the end result in GA based testing  

• GA based testing could not handle program dependencies completely 
In order to handle these issues, some other possibilities were 

researched. Finally, a program slicing based testing was proposed to handle 
the practical issues during program testing. A review of literature was made on 
program slicing techniques and the applications of program slicing. From the 
review it was noticed that, program slicing may be used for software testing as 
it can handle the difficulties faced during practical software testing. Finally, 
some inferences were made based on the literature review on program slicing 
which are given below:- 

• Slicing may be used in program testing 
• Works which explicitly utilize the potential of program slicing 

techniques in testing are rare 
• Slicing identifies the statements of interest  
• Identifying statements of interest is very useful in software testing,  as 

it helps the program tester to ignore irrelevant statements during 
program testing 
Finally, based on the inferences from literature review, it may be 

concluded that program slicing based testing can tackle the difficulties faced 
during practical software testing in a better way compared to GA based testing 
approaches.   

……. ……. 



Software Testing Using Forward Slicing 

Department of Computer Science 61 

 

3.1 Introduction 

This chapter introduces a novel concept of using forward slicing in 

software testing. The main intention of using forward slicing in testing was to 

handle the issue of source code size during software testing. The architecture, 

implementation and demonstration of forward slicing based testing (FST) 

discussed in this chapter help to understand the significance of using forward 

slicing in testing. The architecture of FST gives an overview of the components 

used in FST. In the implementation details, it is described how to identify 

forward slices form the source code. For achieving this, a linked dependency 

method is used. In the linked dependency method, a forward slicing algorithm is 

applied to identify the dependency in the source program. In addition, this 

chapter also discusses how to generate test data from forward slices using a 

Gauss Elimination approach. A formal representation of the forward slicing 

algorithm is also introduced in this chapter. Representation of forward slicing 

algorithm is used for the correctness proof of the slicing algorithm and the 

formal representation may be used as a foundation for developing verification 

methods in several other applications.  



Chapter 3  

62     Cochin University of Science and Technology 

3.2 Background 

“Divide each difficulty into as many parts as is feasible and necessary to 

resolve it”-René Descartes. We may be familiar with this divide and conquer 

strategy of problem solving.  The same strategy can be adopted in practical 

software testing.  By software testing what we intend to accomplish is to make 

sure that the actual result of the software after execution, matches its expected 

result without any error. Testing is a time consuming and labour intensive 

activity and consumes almost 50% of the development cost [11, 66, 87, 106, 

119]. Among the various stages of software testing such as planning, designing 

and execution, the major challenge is the design of effective test cases [85]. In 

practical structural testing, testers have to face several challenges during the 

whole testing process [87]. Unrestricted size of source code is one such major 

issue as this affects the scalability, consistency and integrity of software 

systems. During such scenarios in structural testing, using the divide and 

conquer strategy, the given problem may be divided into manageable number of 

sub problems [109]. This accounts due to the concept of program slicing 

introduced by Weiser in 1979 in his Ph.D. thesis [137]. Although research of 

nearly 25 years has established program debugging, maintenance and 

reengineering as some of the vital applications of program slicing, the potential 

of using slicing in software testing has not been fully exploited till now [67, 86, 

122]. Further, the works that demonstrate the use of slicing in testing are rarely 

reported.  

To a great extent, use of slicing helps to solve the unresolved issues in 

software testing such as managing source code size, identifying dependency, 

prioritizing test cases etc. [87]. For example, programs for commercial 

applications usually contain several modules. Slicing provides a way to identify 

the relevant information, so that the programmer may not have to go through the 



Software Testing Using Forward Slicing 

Department of Computer Science 63 

details of the whole source program during the testing phase and the error 

related to the variable of interest may be identified easily. For example, if errors 

are associated with a private variable which is declared in a class, the probability 

of existence of more errors will be greater in that particular class compared to 

the other classes in the program. Program statements which are directly or 

indirectly dependent on the defective variable may have a greater chance of 

carrying errors [109]. That means that, the probability of existence of additional 

defects in a software component is proportional to the number of defects already 

detected in that component [19]. Using slicing in such scenarios gives all the 

suspicious statements in a program, with respect to the slicing criterion specified 

for suspicious variables. Therefore in software testing, as slicing identifies the 

dependency between program statements, the root cause of errors may be 

identified easily. As we have introduced the concept of using forward slicing in 

software testing, some general terms and definitions related to program slicing is 

given in the next section.  

3.2.1 Program Slicing 

The idea of program slicing was put forward by Mark Weiser in his 

Ph.D. thesis in 1979 [137]. According to Weiser, “a slice consists of those 

program statements which are potentially related to the values computed at 

some program points or variable referred to as slicing criterion which is denoted 

as C=(S, V)”. Here ‘S’ is the program statement and ‘V’ is the variable of 

interest. Program slicing can be divided into various types. Based on slicing 

criteria, the two main types are static and dynamic slice [86], while based on 

direction of slicing the two main types are forward and backward slice [128] 

 

 



Chapter 3  

64     Cochin University of Science and Technology 

3.2.1.1 Static Slice 

In static slice, only static information is available [137]. The original 

definition of slicing, put forward by Weiser is static. In static slice, no specific 

execution sequence is considered. Static slice works for any possible input 

value. A static slicing criteria and it is represented as C= (x, y) where x is the 

statement present in a given program and y is the subset of variables present in 

the program. An example program is given in table 3.1, where the static slice 

criterion is given as <11, a>. The result will be the set of statements <4, 5, 6, 

8, 9>.  

Table 3.1 Static slice 
Program Statements Static slice for criterion <11, a> 
1 main() 

2 { 

3 inta,b; 

4 cin>> b; 

5 a = 0; 

6 while (b <= 10) 

7 { 

8 a=a+b; 

9 ++ b; 

10} 

11 cout<< a; 

12 cout<< b; 

13 } 

4 cin>> b; 

5 a = 0; 

6 while (b <= 10) 

8 a=a+b; 

9 ++ b; 

 

 

3.2.1.2 Dynamic Slice 

The concept of dynamic slice was put forward by Korel and Laski [86]. As 

static slices contain all possible executions, it may be difficult to trace the errors. 

In order to overcome this, the concept of dynamic slices was introduced. Dynamic 



Software Testing Using Forward Slicing 

Department of Computer Science 65 

slices contain program statements that affect slicing criterion only for a particular 

input execution. The dynamic slicing criterion is defined as C= (x, y, i). Here ‘x’ 

is the statement in the program, ‘y’ is the subset of variables in the program and 

‘i’ is the input value. A sample program to be sliced is given below in table 3. 2. 

The variable with respect to which slicing is to be done is p, slicing point is the 

end of the program and input given is n=0. 

Table 3.2 Dynamic slice 
Program Statements Dynamic Slicing Criterion :-( 10, p, n=0,) 
1 scanf("%d",&n); 

2 s=0; 

3 p=0; 

4 while (n>0) 

5 { 

6 s=s+n; 

7 p=p*n; 

8 n=n−1; 

9 } 

10 printf ("%d%d", p, s); 

p=0 

 

3.2.1.3 Backward Slice 

During the program slicing, program traversal may be made either in 

the forward or backward direction [64]. In backward slicing, the program is 

traversed in the backward direction. Backward slice consist all the statements 

which affect the slicing criterion. The original definition of slicing, put 

forward by Weiser is of static backward slicer. Backward slicing criteria is 

defined as C= (x, y) [17]. Here ‘x’ is the statement number and ‘y’ is the slice 

variable. Consider the sample program given in table 3. 3. The backward 

slicing criterion is given as C= (12, i). All the program statements which affect 

the value of the variable ’i’ in statement number 12 is displayed. 

 



Chapter 3  

66     Cochin University of Science and Technology 

Table 3.3 Backward slice 
Program Statements Backward slicing criterion C= (12, i) 
1 main( ) 
2 { 
3   int i, result; 
4   result = 0; 
5   i = 1; 
6   while(i <= 10) 
7          { 
8 result = result + 1; 
9 ++ i; 
10         } 
11 cout<< result; 
12 cout<< i; 
13 } 

i = 1; 
while(i <= 10) 
++ i; 
 

 

3.2.1.4 Forward Slice 

The idea of forward slicing was put forward by Bergertti& Carre [12, 

64]. In forward slice, the program is traversed in the forward direction. 

Forward slice gives all the program statements which are affected by the 

slicing criterion. Forward slicing criteria are defined as C= (x, y). Here ‘x’ is 

the statement number and ‘y’ is the slice variable. Consider the sample 

program in table 3. 4. The forward slicing criteria is given as C= (3, mark1). 

The slice consists of all the statements in the program which is affected by 

declaring the variable ‘mark1’ in statement number 3. 

Table 3.4 Forward slice 
Program Statements Forward slicing criteria C= (3, mark1) 
1main ( ) 
2 { 
3 int mark1, mark2, result; 
4   result = 0; 
5    mark1=40; 
6    mark2=35; 
7    result = mark1    + mark2; 
8    cout<< result; 
9 } 

mark1=40; 
result = mark1 + mark2; 
cout<< result; 
 

 



Software Testing Using Forward Slicing 

Department of Computer Science 67 

3.2.2 Terms & Definitions Related to Program Slice 

In this section, some terms and definitions which form the cornerstones 

of slicing algorithms are explained.  

Directed Graph (G) - A directed graph ‘G’ is represented as G= (N, E) where 

‘N’ represents the nodes and ‘E’ represent the edges. In a directed graph, if (a, 

b) represent the edges of the graph ‘G’, then ‘a’ is called the predecessor ‘b’ 

and ‘b’ is the successor of ‘a’ 

Control Flow Graph (CFG) - A control flow graph of a program is represented 

as C= (N, E). Here ‘N’ represents the nodes of the graph which corresponds to 

the statements in the program and ‘E’ represents the edges connecting the 

nodes. In a CFG, the Start node represents path from start node to all other 

nodes in the graph and the Exit/Stop node- path from all the other nodes to the 

stop node 

Dominance- In a CFG, if ‘a’ and ‘b’ are two nodes, then ‘a’ dominates ‘b’ if 

and only if, every path from the start node to ‘b’ pass through ‘a’. ‘b’ post 

dominates ‘a’ if and only if every path from ‘a’ to ‘stop’ node pass through 

‘b’. 

Def- Use pairs-A def-use (du) pair associates a point in a program where a 

value produced with a point where it is used 

Definition: where a variable get a value 

Use: extraction of a value from a variable 

Data Dependence (DD) - In a CFG, a node ‘n’ is said to be data dependent on 

a node ‘m’ if the variable ‘v’ of the program is:- 

• Defined on node ‘m’    

• If the node ‘n’ uses variable ‘v’ 



Chapter 3  

68     Cochin University of Science and Technology 

• There exists a directed path from ‘m’ to ‘n’ and there is no intervening 

definition of ‘v’ 

Control Dependence (CD) - If ‘a’ and ‘b’ are the nodes in a CFG of a program 

‘P’, then node ‘b’ is control dependent on node ‘a’ if 

• ‘a’ is a test node 

• There exists a directed path ‘Q’ from ‘a’ to ‘b’ such that, there is no 

jump dependence between the internal nodes 

• ‘b’ does not post dominate ‘a’  

Direct Dependence- CFG nodes which use slicing variables are directly 

dependent on slicing variables 

Indirect Dependence- CFG nodes using slice variables which are used by other 

nodes are indirectly dependent on slicing variables 

Having got an idea of the important terms and definitions related to 

program slicing, the concept of applying forward slicing in testing is explained 

in the next section. 

3.3 Significance of using Forward Slicing in Software Testing 

In this thesis, we introduce the use of forward slicing in testing. We 

have specifically used forward slicing due to a number of reasons. The main 

objective of this thesis is to handle the source code size. In addition, 

identifying the relevant statements, generating test data from slices and 

identifying dependency in the program are the other objectives of this work.  

Static slices give the statements affecting the slicing criterion. Therefore, using 

static slicing may not help to fulfill the goal of identifying relevant statements 

so as to generate test data from the statements. Using forward slicing in testing 

has several plus points compared to static and dynamic slicing. 



Software Testing Using Forward Slicing 

Department of Computer Science 69 

Dynamic slicing on the other hand has some features which are in favor 

of software testing, but it has certain disadvantages which make it inappropriate 

in certain situations. Applying dynamic slicing to the whole program may result 

in an increase in computational overhead compared to static slicing approach 

[87]. Another major hurdle with the use of dynamic slicing is that, the input 

value or test data which is to be specified in the slicing criteria. If the 

programmer is totally unaware of the system, then deciding the input parameter 

value in dynamic slicing criterion may be a challenging task. In most of the 

works which use dynamic slicing, the input parameter in slicing criterion is 

assumed by the user. This may not be an issue in applications which uses slicing 

for purposes other than testing. In testing, initializing the input in dynamic 

slicing criterion is by itself a quasi-test data generation process which has not 

received much attention till now. Using backward slicing in testing will give the 

statements affecting the slicing criterion. Therefore using backward slicing will 

also cause the same problem as static slicing.   

Our work identifies the affected or changed segments of the program 

code using forward slicing and identifies the statements in the slices which are 

in the form linear expression. Such expressions are finally solved using Gauss 

Elimination method for generating test data [27]. If some expressions are in 

non-linear form, random method is used for generating test data in such 

expressions.  

Finally the work given in this chapter aims to:-  

• Demonstrate how to tap the potential of forward slicing for solving 

practical issues in software testing  

• Introduce and highlight the significance of test data generation using  

forward slicing based Gauss Elimination  



Chapter 3  

70     Cochin University of Science and Technology 

• Present new basis for forward slicing algorithm using linked 

dependency method  

• Introduce a formalized representation for forward slicing which may be 

used to design verification tools for large software systems and safety 

critical systems  

• Discuss the merits of using slicing methods 

3.4 Architecture of Forward Slicing based Testing (FST) 

In this section, the architecture of FST and the various functions are 

described. The detailed architecture of FST is given in figure 3.1. 

 
Figure 3.1 Architecture of Forward Slicing based Testing (FST) 

FORWARD SLICER 

 

 

 

 

 

 

Program 
Input Program 

Selector 

Slices  

Dependency  
 

 

Slice 
Analyser 

Selector 

Slicing 
Criterion 

 

Test Data 
Generator Test Data

Dependency 
Analyser 

 

Slices 

 

  DATA GENERATOR 



Software Testing Using Forward Slicing 

Department of Computer Science 71 

There are mainly three units in FST. They are:- 

• Input Program Selector- Selects input or program on which testing is to 

be performed 

• Forward Slicer- Performs slicing based on the forward slicing 

algorithm. Sets slicing criterion and finds dependency in the program 

using linked dependency method 

• Data Generator- Generates test data from slices using Gauss 

Elimination or Random method. Slice analyser present in the data 

generator unit checks the slices to verify whether they are in linear 

form or not 

We have implemented a prototype tool using the FST architecture given above 

in figure 3.1. 

3.4.1 Input Program selector 

Program selector enables the selection of the program. The program 

selector does not perform any further operations. The selected program is given as 

input to the forward slicer. The slicer performs the remaining functions related to 

slicing. 

3.4.2 Forward Slicer 

Forward slicer is the most important unit of FST. Forward slicer 

performs some of the most important functions like deciding the slicing 

criterion, analysing the dependency by linked dependency method and 

performing forward slicing according to the slicing algorithm. Each function 

of the forward slicer is explained in detail as given below. 

3.4.2.1 Slicing Criterion 

Setting up the slicing criterion is the first function performed by forward 

slicer. After selecting the program by the program selector, the program is given 



Chapter 3  

72     Cochin University of Science and Technology 

to the forward slicing unit. For setting up the slicing criterion, two factors are to 

be considered. First one is the statement number and the second one is the slicing 

variable. We have used forward slicing in software testing with the aim of 

reducing the source code size and to identify the relevant statements in the 

program. Therefore, inorder to identify the relevant statements in the program and 

to use these statements for generating test data, slicing should be performed with 

respect to the input variables in the program. The slicing variable is generally 

considered as the variables declared at the starting point of the program. We have 

considered the parameter statement number in the slicing criterion as the input 

variable declaration point in the program. The slicing criterion finally is set up as 

C= (n, V), where ‘n’ represents the statement number (initial point of variable 

declaration) and ‘V’ is the slicing variable.  

3.4.2.2 Linked Dependency Method for Identifying Dependencies 

After setting the slicing criterion, the first step is to identify the 

dependencies in the selected program. The dependency is tracked using a 

linked dependency method. In a linked dependency method, both control and 

data dependencies are followed. The main steps in a linked dependency 

method are given below. 

3.4.2.2.1 Steps in Linked Dependency Method 

Step 1:  Construct the control flow graph (CFG) of the selected program 

Step 2:  Identify the control flow information from the control flow graph 

Step 3:  Identify all def-use pairs at each node 

Step 4:  Identify data flow information in the program using def-use pairs 

Step 5:  Use the def-use pair at each node to identify the data dependence 

Step 6:  Mark the slicing criterion C=(n, V) in the CFG 

 (‘n’ is generally taken as the variable definition point ) 



Software Testing Using Forward Slicing 

Department of Computer Science 73 

Step 7:  Identify all the nodes occurring after n which uses slicing variable 

(Direct dependence) 

Step 8:  Identify the nodes having indirect dependence 

 -Nodes using slice variables which are used by other nodes 

Step 9:  Continue the process until the end of the program is reached 

Step 10: Combining all the direct and indirect dependence nodes gives the 

forward slice for the given slicing criterion 

3.4.2.2.2 Explanation of Linked Dependency Method Steps 

Step 1: Construct the control flow graph (CFG) of the selected program 

This is the first step in linked dependency method. For the selected 

program the CFG is constructed. Each node in the CFG corresponds to the 

program statements of the selected program (In the successive sections, nodes 

of the CFG may be interchangely used with program statements) 

Step 2: Identify the control flow information from the control flow graph 

After constructing the CFG for the selected program, the next step is to 

mark the control flow information of each node in the CFG. Identifying the 

control flow information is very crucial as it is essential in identifying the 

control dependencies as well as direct and indirect dependencies of a node.  

Step 3: Identify all def-use pairs at each node 

After identifying the control flow information at each node, the next 

step is to identify the def-use pairs at each node (which corresponds to 

program statements). In def-use pair, the variables in each node and their 

usage in the successive nodes are noted.  

Step 4: Identify data flow information in the program using def-use pairs 

Data-flow information is identified using the def-use pair. If a variable 

is defined in a node and if a successive node in the program uses that 



Chapter 3  

74     Cochin University of Science and Technology 

particular variable, then there exists a data flow between these nodes. Data 

flow information is essential in marking the data dependencies in the program.  

Step 5: Use the def-use pair at each node to identify the data dependence 

After identifying the def-use pair at each node in the CFG and marking 

the data flow information in the CFG, the next step is to identify the data 

dependence between the nodes in the CFG.  The data flow information is used 

to identify the data dependence present in the program. 

Step 6: Mark the slicing criterion C= (n, V) in the CFG 

After identifying the control and data dependences in the program, the 

node which defines the slicing criterion is marked.  

Step 7: Identify all the nodes occurring after n which uses slicing variable 

After marking the slicing criterion node, the next step in linked 

dependency method is to mark all the nodes which are affected by the slicing 

criterion. For fulfilling this control dependence and data dependence 

information is utilised. All the nodes in the CFG which are directly control 

dependent and data dependent on the defined slicing criteria are marked. These 

nodes or statements in the program are having a direct dependence on the 

slicing variable. 

Step 8: Identify the nodes having indirect dependence 

After identifying the nodes which are directly dependent on the slicing 

variable, the nodes/statements in the program which are indirectly dependent 

are marked. The nodes which use the variable values in the directly dependent 

nodes are indirectly dependent on the slicing criterion. These indirectly 

dependent nodes are also affected by the slicing variable.  

 

 



Software Testing Using Forward Slicing 

Department of Computer Science 75 

Step 9: Continue the process until the end of the program is reached 

Marking the directly dependent and indirectly dependent nodes are 

continued until all the nodes in the CFG are covered 

Step 10: Combining all the direct and indirect dependence nodes gives the 

forward slice for the given slicing criterion 

All the directly and indirectly marked nodes are combined together. 

Finally, these nodes together form the forward slice for a given slicing 

criterion 

3.4.2.2.3. Illustration of Identifying Dependencies using Linked Dependency Method 

We saw the detailed steps of identifying dependencies in the above 

section. In this section, an illustration of identifying dependencies using linked 

dependency method is described. 

Consider the sample segment of program code given below in figure 

3.2. How dependencies are identified using the linked dependency method is 

explained in the successive section 

 

 

 

 

 

 

 
 
 
 

Figure 3.2 Sample segment of program code 

1.  main ( )  
 2.  {  
 3.     int n, i, s, p,  
 4.     cin>> n;  
 5.     i= 1;  
 6.     s=0;  
 7.     p=1;  
 8.     while (i<n)  
 9.       {  
 10.         s=s+i;  
 11.         p=p*i;  
 12.         i=i+1;  
 13.     }  
 14.    cout<< s;  
 15.   cout<< p;  
 16.  } 



Chapter 3  

76     Cochin University of Science and Technology 

The dependency graph of sample segment of program code is given in 

figure 3.3 and the description of the graph is as follows:-  

 
Figure 3.3 CFG of sample code in figure 3.2 

 
 
 
                                              Node 3 
                   
 
 
                                             Node 4 
 
 
                                 Node    5, 6, 7       
 
 
 
                                      Node 8 
 
 
 
                   Node 10 
 
                        Node 11 
 
 
                       Node 12 
  
 
                                                                                                             Node 14 
 
 
                                                                                                            Node 15 
 
 
 
 
 
 
                               Represents control flow 
 
                               
                                         
                              Represent direct dependence 
 
                               

                                Represents indirect dependence 

 

int n, i, s, p 

cin>> n 

s=s+i 

p=p*i 

end 

while (i<n) 

cout<< p 

i=1, s=0, p=1 

 cout<< s 

  i=i+1 

Start 



Software Testing Using Forward Slicing 

Department of Computer Science 77 

In the CFG given in figure 3.3, the node shaded is set as slicing 

criterion. The variable ‘n’ present in the node 4 ‘cin>> n’ is the slicing 

variable. This means that the statements which are affected by the variable ‘n’ 

in node 4 are to be identified. From the figure 3.3, it is evident that node 8 

‘while (i<n)’ uses the slicing variable ‘n’. Therefore node 8 is directly 

dependent on node 4. Nodes 10, 11 and node 12 are control dependent on node 

8. Therefore, node 10, and node 12 is also affected by the slicing variable. 

Node 12 affects node 8. Finally node 14 uses the variable value in node 10 and 

node 15 uses the variable value in node 11. Therefore, node14 and node 15 is 

indirectly dependent on slicing variable ‘n’. By combining all the marked 

nodes, the forward slice for the node is obtained. Using the forward slicing 

algorithm, the marked nodes are verified and finally the forward slices are 

recorded. The forward slice for the node ‘cin>> n’ or for the slicing criterion 

C=(4, n) is given below in figure 3.4. 

 

 

 

 

 

Figure 3.4 Forward slice for the slicing criterion (4, n) 

3.4.2.3 Forward Slicing Algorithm 

The direct and indirect dependencies are identified using the control 

flow and data flow information present in the program.  Finally, forward 

slicing algorithm is applied after obtaining the control and data flow 

information to get the forward slices.  The forward slice obtained for the node 

 8.   while (i<n)  

 10.  s=s+i;  

 11.  p=p*i;  

 12.  i=i+1;  

 14.  cout<< s;  

 15.  cout<< p;  



Chapter 3  

78     Cochin University of Science and Technology 

‘cin>> n’ for the slicing criterion C= (4, n) in the figure is given above in 

figure 3.  

Initially, we provide some of the terms and definitions used in forward 

slicing algorithm. 

Definition (Forward slicing criteria)- The program statements that are 

affected by the value of a particular variable (V) at a particular point (n) are given 

by performing forward slicing with the specified slicing criterion C= (n, V).  

n- Statement 

L- List where the slice variables are stored  

F- Forward Slice  

V- Slice variable  

LHS -Left side 

RHS -Right side 

IN- Input Statement  

OUT-Output Statement  

I- Initialization Statement 

EXPR- Expression  

COND- Conditional Statement 

VAR (L) - Slice variable ‘V’ stored in list ‘L’  

RHS (EXPR) - Denotes the right side of the expression 

LHS (EXPR) - Denotes the left side of the expression  

VAR (RHS (EXPR)) - Denotes variables in the right side of the expression  

VAR (LHS (EXPR)) - Denote the variables in the left side of the expression 

FORWARD SLICING ALGORITHM   
Input: - Program to be sliced (P)    
              Output: - Forward Slices (F)   
begin 
1. while p ≠ Ø, source program not empty    
// Given n as the statement number and V as the slicing variable   



Software Testing Using Forward Slicing 

Department of Computer Science 79 

2. get C= (n, V)     
3. while (n ≠ 0 && n < EOP)   //EOP is the end of program  
{    
4. Store ‘V’ in ‘L’ // Slicing variable ‘V’ stored in list ‘L’    
5. if ( VAR (L) Є n)// Check whether slice variable ‘V’ stored in list ‘L’ is present 
in statement ‘n’   
 
     {   
5.1. if ( V Є (OUT))   
       F= F U n //Store n, initially F will be null and include the statement n as a 
slice   
5.2. else if (V Є (EXPR))   )   
       {   
 5.2.1. if ((V) Є RHS (EXPR))   
            {  
               F=F U n           // Store n  
 
               VAR (L) = VAR (L) U VAR (LHS (EXPR))   
             }  
5.2.2. else 
do not  include the statement as a  slice   
          } 
5.3. else if (V Є (COND) )   
        {   
5.3.1. if ((V) Є LHS (COND) OR (V) Є RHS (COND))   
           {  
               F= F U n //Store n      
               F= F U Loop body statements // Include all statements inside the 
conditional loop in F      
            }   
5.3.2. else 
do not  include the statement as a  slice   
       }  
5.4. else if (V Є (IN)) 
        F= F U n // include statement as a slice   
5.5. else if (V Є RHS (D)) 
        F= F U n // include statement as a slice   
      }   
6. else 
    n= n + 1   
7. Repeat steps 5…6 until all the program statements are covered or till the EOP 
is reached   
End 



Chapter 3  

80     Cochin University of Science and Technology 

3.4.2.3.1 Algorithm Explanation  

Initially in forward slicing, after selecting the program and the list of 

variables, slicing is performed to identify the relevant statements in the selected 

program with respect to the slicing criterion. In forward slicing, analysis is done in 

a top-down manner. Initially, user selects the program and the slicing criterion is 

set. The slicing criteria can be either set by the user or set automatically for all the 

input variables. Slicing criterion contains the variable and statement number. 

Here, we have to check for the program statements that are affected by the value 

of a particular variable at a particular point. Slice variable ‘V’ is stored in a list ‘L’ 

and the program statement number is denoted by ‘n’. The process starts from the 

(nth) line till the end of the program is reached. In the (nth) line, it is checked 

whether the variable ‘V’ is present or not. If the variable ‘V’ is not present, then 

(n+1) th line is checked. If the variable ‘V’ is present in the (n) th line, a series of 

steps are to be performed. If ‘V’ is present in an expression, it is checked whether 

‘V’ is present in the right side or left side of the expression. If ‘V’ is in the right 

side of the expression that statement is considered as a slice and all the variables 

in the left side of the expression are also added to the list. If ‘V’ is in the left side, 

then that statement is also included as a slice. While checking the next line, we 

have to check not only for ‘V’, but also all the dependent variables present in the 

list. This is because; the other variables added to the list are the dependent 

variables of ‘V’. Similarly, it is checked whether the slice variable is an element 

of conditional statement, declaration statement, input statement and output 

statement. If these conditions are true, the statements are considered as a slice. 

The statements inside the conditional body loop are also included as slice because 

the executions of these statements are dependent on the conditional clause. The 

process is repeated unit the end of the program is reached and the result will be 

the forward slice for the corresponding slicing criterion. 



Software Testing Using Forward Slicing 

Department of Computer Science 81 

3.4.3 Data Generator 

This unit of FST generated test data. There are three subunits in data 

generator. They are slice analyser, selector and test data generator. The 

detailed explanations of each unit are given below.  

3.4.3.1 Slice Analyzer 

The slice analyser checks the slices obtained from the forward slicing 

unit. Sometimes the forward slices generated by the slicer may be in the form 

of linear equation.  In some other situations, the forward slices may be in some 

linear expressions which are easily convertible into linear equations. In some 

scenarios, the slices may not be expressed in a linear form and they remain as 

ordinary expressions. The slice analyser analyses the forward slices obtained 

and converts all the possible forward slices into linear equations, so as to 

enable test data generation easily. The main steps followed by slice analyser 

for converting the possible forward slices into linear equalities are given below 

in figure 3.5 

Step 1. Get the slices from the forward slicer 
Step 2. Analyse the slices 
Step 3. Check whether the slices are already in the form of linear equations or  
whether they can be expressed as conditional expression in the form 
‘(EXPRa op EXPRb)’ where, 
 

 -‘EXPR’ is the conditional expression  
  -‘op’ is the relation operator 
-(EXPRa - EXPRb) or (EXPRb op EXPRa) 
Step 4. Convert the possible forward slices into (EXPRa op EXPRb) 

Figure 3.5 Steps in Slice Analyser 

Form the figure 3.5, it can be noticed that the slices/expression which 

are already in the form of linear equation are untouched. Other slices which 

may be expressed as linear equations are converted to linear equation the 

remaining slices are retained as such without any change. 



Chapter 3  

82     Cochin University of Science and Technology 

3.4.3.2 Selector 

After converting the possible forward slices into linear equations, the 

selector classifies the slices into two categories. The figure 3.6, given below 

explains the function of selector in detail. 

 
Figure 3.6 Functions of Selector 

From the figure 3.6 given above, it can be noticed that the selector 

classifies the slices as linear equations and non-linear expressions. These 

expressions/forward slices are given to the test data generator. Classifying the 

forward slices into two categories helps to make test data generation easier.  

3.4.3.3 Test Data Generator 

After categorising the forward slices into two categories, the test data is 

generated using the test data generator. The two categories of forward slices 

are given to the test data generator. Test data is generated using two methods. 

The first method is Random method of test data generation and the second 

method is Gauss Elimination method of test data generation. The figure 

3.7.given below shows the steps involved in test data generation. 

 

 
Slice Analyser 

 
Selector 

Non-linear 
Expressions 

Linear Equations 

Test Data 
Generator 



Software Testing Using Forward Slicing 

Department of Computer Science 83 

 
Figure 3.7 Test Data Generator 

From the figure 3.7 given above, a random method is used to generate 

test data from non-linear equation and a Gauss elimination method is used to 

generate test data from linear expression. 

3.4.3.3.1 Random Method of Test Data Generation 

Slices which are in the form of non-linear expression are given to the 

Random Test Data Generators. Random values of test data are obtained using 

this method. Here, more than a single iteration may be required to obtain the 

required test data values.  

3.4.3.3.2 Gauss Elimination Method of Test Data Generation 

We have used a Gauss Elimination approach for test data generation for 

slices that are represented as linear equations due to the reasons given below:-. 

• Almost all of the real world problems may be expressed as mathematical 

models which may contain linear equations 

• Value of one variable in the slice/expression may decide the outcome 

of the other expressions in the program 

Use of forward slicing based Gauss Elimination approach for 

generating test data in such large software systems can handle these core 

issues in a fine manner as:- 

 

 

Test Data Generator 

Non-linear 
Expressions 

 

Linear Expressions 

 

Random method of 
Test Data Generation 

Gauss Elimination 
method of Test Data 

Generation 

 
Test Data 



Chapter 3  

84     Cochin University of Science and Technology 

1. The changes made in the system due to modification in input condition 

may be easily handled using forward slicing 

2. The dependency related problems during testing may be relieved using 

slicing 

3. Finding the test data values for a number of linear equations may be 

solved using Gauss Elimination method.  

Among the solutions available for solving linear equation, we have 

specifically chosen Gauss- Elimination approach due to its relative advantages 

over other linear equation solving methods. Though linear equation solving 

methods such as Graphical method, Cramer’s rule, Algebraic elimination are 

simple, they can handle only a small number of equations. Gauss Seidel method 

can handle more than a thousand number of equations. Though the number of 

equations that can be handled and the error propagation is easy in Gauss Seidel, 

it takes more time for convergence in some scenarios. Gauss Elimination can 

handle an average number of equations and the solution may be easily derived. 

In Gauss Jordan method, deriving solution to linear equations is more difficult 

compared to Gauss elimination. From these facts, we can see that using Gauss 

Elimination approach, the solution may be obtained easily and it can easily 

handle an average number of equations. The main two stages in Gauss- 

Elimination method are given below. 

Stage 1. Forward Elimination of Unknowns 

This is the first stage in Gauss Elimination. There will be ‘n’ equation 

and ‘n’ unknowns initially. They are represented as follows:- 

11313212111 ... bxaxaxaxa nn =++++  

22323222121 ... bxaxaxaxa nn =++++  

nnnnnnn bxaxaxaxa =++++ ...332211  



Software Testing Using Forward Slicing 

Department of Computer Science 85 

After getting the n equation and n unknowns, the following steps are 

performed. 

• x1    is eliminated from all rows below the first row.  

• The first equation is selected as the pivot equation to eliminate x1.   

• To eliminate x1in the second equation, one divides the first equation by  

(hence called the   pivot element) and then multiplies it by   a21  .    This 

is the same as multiplying the first equation bya21/a11to give  

1
11

21
1

11

21
212

11

21
121 ... b

a
axa

a
axa

a
axa nn =+++  

Subtract the above equation from the second equation to get  

1
11

21
21

11

21
2212

11

21
22 ... b

a
abxa

a
aaxa

a
aa nnn −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−  

At the end of n-1 steps of forward elimination, we get a set of equations 

that look like 

 

After obtaining the set of equations as mentioned above, back substitution 

is applied. 

 

++ 212111 xaxa 11313 ... bxaxa nn =++  
            22323222 ... bxaxaxa nn ′=′++′+′  
                        33333 ... bxaxa nn ′′=′′++′′  
                                  .             . 
                                  .             . 
                                  .             . 
                                        ( ) ( )11 −− = n

nn
n

nn bxa



Chapter 3  

86     Cochin University of Science and Technology 

Stage 2. Back Substitution 

Back substitution hence can be represented for all equations by the formula 

 
and 

 

This gives the value of unknowns in the linear equations.  

3.5 Illustration of Test Data Generation using FST 

For illustration of test data using FST, we have considered a brokerage 

application.  Before testing, the programmer should try to get maximum 

information of the brokerage system. The partial class diagram is shown in 

figure 3.8 .Even though it may not be possible to get the minutest detail of 

each and every module’s function, an overall purpose of each module may be 

identified by extracting the main rules using forward slicing from the system.  

 

Figure 3.8 Partial Class Diagram of Brokerage System 

( ) ( )

( )1
1

11

−
+=

−− ∑−
= i

ii

n

ij
j

i
ij

i
i

i a

xab
x      for 1,,2,1 …−−= nni  

)1(

)1(

−

−

= n
nn

n
n

n a
b

x  

 

Qualitative 
modelling 

Trade order 
execution 

Identification of 
stocks / sectors 

Client enrol 
system 

Option contract 
execution 

Option 
evaluation 

Brokerage 



Software Testing Using Forward Slicing 

Department of Computer Science 87 

The partial class diagram brokerage system given in figure 3.8. mainly 

consists of three main modules. They are as follows:- 

• Qualitative modeling in financial market  

• Trade order execution system 

• Identification of stocks/sectors based on financial parameters 

There are several subsections in each module. For illustration, we have 

considered only a particular subsection of the third module of the brokerage 

system. The third module deals with the identification of stocks. A sample 

segment of program code from the third module is given below. It is illustrated 

how to generate test data from slices from the sample code given below in 

figure 3.9. 

 

 

 

 

 

 

 

 

 

Figure 3.9 Sample Code Segment 

In code segment given above in figure 3.9, forward slicing based Gauss 

Elimination approach is applied to generated test data for the variable 

‘amount’. The steps followed for test data generation are given below:- 

1. view sharevalue ( ) 
2. { 
3. int company; 
4. float x1, x2, x3, amount; 
5. cin>>company; 
6. (if company==1) 
7. { 
8. x1  +   x2  + 2x3 = 8 ;                   
9. -x1  -  2x2  + 3x3  = 1;  
10. 3x1  - 7 x2 +  4x3 = 10; 
11. } 
12. amount =x1+x2+x3; 
13. if (amount >50) 
14. { 
15. cout<< “Loss in investment”; 
16. } 



Chapter 3  

88     Cochin University of Science and Technology 

Step 1. Get the sample code segment and  

Step 2. Set the forward slicing criterion C= (5, company) 

Step 3. Perform forward slicing to identify all the statements affected by the 

forward slicing criterion C= (5, company) 

Step 4. Forward slices obtained:- 

1. (if company==1) 
2. { 
3. x1  +   x2  + 2x3 = 8 ;                   
4. -x1  -  2x2  + 3x3  = 1;  
5. 3x1  - 7 x2 +  4x3 = 10; 
6. } 
7. amount =x1+x2+x3; 
8. if (amount >50) 
9. { 
10. cout<< “Loss in investment”; 
11. } 

Step 5.Check the forward slices to verify whether slices are present in the form 

of linear equations or whether the slices can be converted into linear 

form 

The following statements in the forward slice are in the form of linear 

equations 

12. x1  +   x2  + 2x3 = 8 ;                   

13. -x1  -  2x2  + 3x3  = 1;  

14. 3x1  - 7 x2 +  4x3 = 10; 

Step 6. Solve the forward slices in the form of linear equations by Gauss 

Elimination method 

Step 7. Test data values obtained is: - x1 = 3, x2 = 1, x3 = 2 

Step 8. Substitute the value of x1, x2 and x3 in statement 7 ‘amount 

=x1+x2+x3’. 

Step 9. Test data value for amount=6 

Step 10. Terminate the process 



Software Testing Using Forward Slicing 

Department of Computer Science 89 

It can be noticed that the test data is obtained easily using FST. This is 

because, the statements of interest are easily identified from the program code 

by forward slicing. The forward slices (statements) are then verified and test 

data is generated from forward slices using Gauss Elimination method. The 

main point to be noted here is that, test data generation is easier as well as 

effective compared to other testing approaches. There is no need to worry 

about the hurdles of source code size, unwanted checking of program 

statements as well as identifying the dependency in the program. All these 

facts point toward the strength of our approach. A formal representation of 

forward slicing algorithm is given below in section 3.6. inorder to affirm the 

strength of our approach. 

3.6  Proof of Correctness and Formalised Representation of Forward 

Slicing Algorithm 

In this section of the thesis, we have presented a formalized 

representation of the forward slicing algorithm. The formalized representation of 

the forward slicing algorithm is presented as propositions based on First order 

predicate logic and Hoare Logic is used to prove these propositions [44]. The 

main benefit of such a representation is that, the slicing algorithm will have a 

strong mathematical basis and moreover, the formalized representation may be 

used as a foundation for developing testing methods in different type of systems 

[17, 134]. 

The program code most contains specifications where there will be a 

pre-condition and post-condition. A pre-condition defines the condition that 

must be satisfied before the specification is executed and post-condition 

specifies the condition satisfied after the execution of precondition [44, 68]. 

We have represented these conditions in our slicing algorithm as propositions 



Chapter 3  

90     Cochin University of Science and Technology 

using first order predicate logic. For proving the propositions, each proposition 

is in turn represented in terms of Hoare Logic rules such as while, if-else etc., 

where the left-hand side (LHS) of the representation gives the hypothesis and 

right-hand side (RHS) gives the conclusion. In Hoare logic, for each statement 

which is supposed to get executed, there will be a pre-condition and post-

condition [44].  The pre-condition is assumed to be true before the statement 

executes and the post condition is assumed to be true after the statement 

executes. Some of the terms used in the propositions and descriptions are 

given below:- 

n- Procedure Statement/Program statement 
L- List where the slice variables are stored  
F- Forward Slice  
V- Slice variable  
LHS -Left side 
RHS -Right side 
EOP – represents end of the program 
IN- Input Statement  
OUT-Output Statement  
D- Declaration Statement  
I- Initialization Statement 
EXPR- Expression  
COND- Conditional Statement 
p- Source program 
C: = (n, V) – Represents the slicing criterion, where ‘n’ is the procedure statement 
and ‘V’ represents the   slice variable 
VAR (L) - Variables in list ‘L’ 
V Є OUT- Represents that the slice variable is an element of the output statement 
V Є IN- Represents that the slice variable is an element of the input statement 

The propositions (1 to 6) which correspond to forward slicing 

algorithm are represented as follows:- 

Proposition 1.∃p C (p) → (∀p (p ≠ø) → ∃p C (p))    

The above proposition says that, a slicing condition may be set for all 

programs/procedures that are not empty. 



Software Testing Using Forward Slicing 

Department of Computer Science 91 

Proof of Proposition 1:- Proposition 1 is represented in terms of Hoare logic as 

follows. LHS of the representation gives the hypothesis and RHS gives the 

conclusion. 

{p ∧ (p≠ø)} C :=( n, V) {p} → {p} while (p≠ø) do C :=( n, V) {p ∧ ¬ (p≠ø)} 

Steps:- 

Step 1:  {p} - By Precondition [Invariant assumed to be true] 

Step 2:  {p ∧ (p≠ø)} → C :=( n, V) 

Step 2  is rewritten as (p≠ø) → C :=( n, V) - By Tautology [If a 

procedure/program is empty, then slicing criterion cannot be 

determined] 

Step 3:  {p ∧ ¬ (p≠ø)} → Termination - By Post condition [Follows from 

Step 2, as slicing is not possible if the procedure is empty] 

 Thus the correctness of Proposition1 is proved. 

Proposition 2.∀n ((n≠0) ∧ (n < EOP)) → STORE (V, L) 

Proposition 2 follows from proposition 1 and may be divided into 

Proposition 2A and Proposition 2B for simplification 

Proposition 2a.∀n (n≠0) →STORE (V, L) 

Proposition 2B.∀n (n < EOP) → STORE (V, L) 

Proof of Proposition 2a:-∀n (n≠0) →STORE (V, L) 

Proposition 2A says, for any statement present in a program, the slice 

variable ‘V’ is stored in ‘L’.  

Proposition 2A is represented as follows where the LHS of the 

representation gives the hypothesis and RHS gives the conclusion. 



Chapter 3  

92     Cochin University of Science and Technology 

{L: = V ∧ (VAR (L) Є n)} Check n { n:= n+1}, { L := V ∧ ¬  (VAR( L) Є 

n )} Skip n { n:= n+1} →{ L := V} if  (VAR( L) Є n ) then Check n else 

Skip n { n:= n+1} 

Here,  

Steps:- 

Step 1: {L: = V}  

Step 2: {L: = V ∧ (VAR (L) Є n)} → Check n - By Tautology 

Therefore, V ∧ (VAR (L) Є n 

Step 3: {L: = V ∧ ¬  (VAR (L) Є n)} 

Therefore, ¬  (VAR( L) Є n ) → skip n -  By Tautology[ If the slicing 

variable stored in ‘L’ is not present in statement ‘n’, then that line of the 

program is not considered] 

Step4: {n: = n+1} - By Post condition [Execution of both the ‘if’ and ‘else’ 

part of the logic is followed by the same post condition. Slicing proceeds to 

the next statement of the procedure after the execution of step 2 and step 3] 

Proof of Proposition 2B:-∀n (n < EOP)] → STORE (V, L)) 

Proposition 2B says, for any non-null procedure with slicing a specified 

slicing criterion ‘C’, the slice variable ‘V’ or identifier is stored in the list ‘L’ 

Given the precondition as slicing criterion ‘C’, the parameters in the slicing 

criteria are verified to check whether they are valid or not. If the parameters 

are valid, the slice variable ‘V’ is stored in list ‘L’. The post – condition 

falls true when the statement specified in the slicing criterion is either zero 

or if the end of the procedure is reached. This is because, in forward slicing 

the statements affected by slicing criteria are identified and end of the 



Software Testing Using Forward Slicing 

Department of Computer Science 93 

procedure/program (n= EOP) indicates no statements will be affected by 

slicing criteria. Proposition 2B is represented as follows:-   

{C :=( n, V) ∧ n < EOP)} L: = V {C} →{C :=( n, V)} while (n < EOP) do 

L: = V {C :=( n, V) ∧ ¬ (n < EOP)} 

Steps:- 

Step 1:  {C :=( n, V)} - By Precondition [Obtained from proposition 1 and 

this step is strengthened by the description given for proposition 1] 

Step 2:  {C :=( n, V) ∧ n < EOP)} → L: = V - By Tautology [For a non-

null program, with the statement of interest less than the end of the 

program, slice variable ‘V’ is stored in list ‘L’. If the statement of 

interest is the end of the program, then there is no meaning in 

performing forward slicing] 

Step 3:  {C :=( n, V) ∧ ¬ (n < EOP)} → Termination - By Post condition 

[By tautology, follows from step 2] 

Since the post-condition terminates the whole process, the correctness 

of proposition 2B is proved. 

Proposition 3.∀n [(V Є OUT) → SLICE (V, n)] 

Proposition 3 may be rewritten as (V Є OUT) → ∀n SLICE (V, n) 

Proposition 3 follows from proposition 2A. Proposition 3 means that, if 

a slice variable ‘V’ is present in any of the procedure statement and if that 

statement is an output statement, then the statement may be considered as a 

forward slice of the criterion C:= (n, V) 

 

 



Chapter 3  

94     Cochin University of Science and Technology 

Proof of Proposition 3:- Proposition 3 is represented as follows:-  

{(VAR (L) Є n) ∧ (V Є OUT)} F: = F ∪ n {n: = n+ 1}, {(VAR (L) Є n) ∧ 

¬ (V Є OUT)} F: = F; {n: = n+ 1} → {(VAR (L) Є n)} if (V Є OUT) then 

F: = F ∪ n; else F: = F; {n: = n+ 1} 

Steps:- 

Step 1:  {(VAR (L) Є n)} – By Precondition [Follows from proposition 2A 

and pre-strengthened by the description of proposition 2A] 

Step 2:  {VAR (L) Є n) ∧ (V Є OUT)} → F: = F ∪ n - By Tautology [Slice 

is updated if variable ‘V’ is an element of the output statement] 

Step 3:  {VAR (L) Є n) ∧ ¬ (V Є OUT)} → F: = F - By Tautology [Slice 

unaltered if the slice variable ‘V’ is not an element of output 

statement] 

Step 4:  {n: = n+ 1} - Post condition [Execution of both the ‘if’ and ‘else’ 

part of the logic is followed by the same post condition. Slicing 

proceeds or the next statement of the procedure is considered after 

the execution of step 3 and step 4 as per if-else rule of Hoare logic] 

Therefore the correctness of the proposition 3 is proved 

Proposition 4.∀EXPR (V Є RHS (EXPR)) → SLICE ((RHS (EXPR) ∧ LHS 

(EXPR)) 

Proposition 4 follows from proposition 2A. Proposition 4 says that, if a 

slice variable ‘V’ is present in any of the procedure statement and if that 

statement is an expression, then the statement may be considered as a forward 

slice of the criterion C:= (n, V), provided the slice variable is present in the 

right hand side of the expression. The slice thus includes the left hand side and 

right hand side of the expression. 



Software Testing Using Forward Slicing 

Department of Computer Science 95 

Proof of Proposition 4:- Proposition 4 is represented as follows:- 

{((VAR (L) Є n) ∧ (V Є EXPR)) ∧ (V Є RHS (EXPR))} F: =F ∪ n; VAR 

(L): = VAR (L) ∪ VAR (LHS (EXPR)); {n: = n+1} {((VAR (L) Є n) ∧ (V 

Є EXPR)) ∧ ¬  (V Є RHS (EXPR))} F: =F; {n: = n+1} 

→ {(VAR (L) Є n) ∧ (V Є EXPR)} if (V Є RHS (EXPR))   F: =F ∪ n; 

VAR (L): = VAR (L) ∪ VAR (LHS (EXPR)); else F: =F; {n: = n+1}, 

{(VAR (L) Є n) ∧ ¬ (V Є EXPR)} Skip n; {n: = n+1} 

Steps:- 

Step1:  {(VAR (L) Є n)} – By Pre-condition [Follows from proposition 

2A and pre-strengthened by the description of proposition 2A] 

Step 2:  V Є EXPR - Mid-condition 1 [Assumed from Step 1] 

Step 3:  (V Є RHS (EXPR) - Mid-condition 2 [Assumed from Step 2] 

Step 4:  ((VAR (L) Є n) ∧ Mid-condition 1 → Mid-condition 2[Assumed 

from Step 3] 

       Step 4 may be rewritten as {((VAR (L) Є n) ∧ (V Є EXPR)) ∧ (V 

Є RHS (EXPR))} 

{((VAR (L) Є n) ∧ (V Є EXPR)) ∧ (V Є RHS (EXPR))} → F: =F ∪ n - By Tautology [Expression which contains slice variable at 

the right side of the expression is considered as a slice 

Step 5:  {((VAR (L) Є n) ∧ (V Є EXPR)) ∧ (V Є RHS (EXPR))} → VAR 

(L): = VAR (L) ∪ VAR (LHS (EXPR)) - Derived from Step 4. 

[Variables in the left side of the expression are also added to the 

list as these variables are dependent on the slice variable present 

right side of the expression] 



Chapter 3  

96     Cochin University of Science and Technology 

Step 6:  {((VAR (L) Є n) ∧ (V Є EXPR)) ∧ ¬  (V Є RHS (EXPR))} → F: 

=F - From tautology and due to other possibilities like conditional 

expressions and initializations] 

Step 7:  {n: = n+1} - Post-condition [Execution of Step 4, Step 5 and Step 

6 are followed by the same post-condition. Slicing proceeds to the 

next statement of the procedure if the conditions in these steps are 

not satisfied]  

Therefore the correctness of Proposition 4 is proved. 

Proposition 5.∀COND (V Є COND) → SLICE ((COND, LOOP STMTS)) 

Proposition 5 follows from proposition 2A. Proposition 5 says that, if a 

slice variable ‘V’ is present in any of the procedure statement and if that 

statement is a conditional expression, then the statement may be considered as 

a forward slice of the criterion C: = (n, V), provided where the slice variable is 

present in the conditional expression. The slice thus includes all the statements 

inside the conditional loop and the conditional clause, as the execution of the 

statements inside the conditional loop depends on the conditional clause. This 

is unavoidable as forward slice is a variant of static slice 

Proposition 5 is derived from Proposition 5A and 5B 

Proposition 5A.∀COND (V Є COND) → (∀COND ((V Є LHS (COND)) 

∧ (V Є RHS (COND)) 

Proposition 5B. (∀COND ((V Є LHS (COND)) ∧ (V Є RHS (COND)) → 

SLICE (COND, LOOP STMTS) 

Proof of Proposition 5:- Proposition 5 is represented as follows. LHS of the 

representation gives the hypothesis and RHS gives the conclusion 



Software Testing Using Forward Slicing 

Department of Computer Science 97 

{(VAR (L) Є n) ∧ (V Є COND)} F: =F ∪ n ∪ LOOP STMTS; VAR (L): = 

VAR (L) ∪ VAR (LOOP STMTS)); {n: = n+1}, {(VAR (L) Є n) ∧ ¬ (V Є 

COND)} F: =F; {n: = n+1} → {(VAR (L) Є n)} if (V Є COND) then F: =F ∪ n ∪ LOOP STMTS; else F: =F; {n: = n+1} 

Steps:- 

Step 1:  {(VAR (L) Є n)} - Pre-condition [Follows from proposition 3 and 

pre-strengthened by the description of proposition 3] 

Step 2:  {(VAR (L) Є n) ∧ (V Є COND)} → F: =F ∪ n ∪ LOOP STMTS 

Step 3 : {(VAR (L) Є n) ∧ (V Є COND)} → VAR (L): = VAR (L) ∪ VAR 

(LOOP STMTS)) - Derived from Step 2[F: =F ∪ n ∪ LOOP 

STMTS means that all the statements inside the conditional clause 

will be affected by the conditional predicate. If any of these 

variables are used outside this particular conditional loop, that 

statement is also indirectly dependent on the conditional predicate] 

Step 4:  {(VAR (L) Є n) ∧ ¬ (V Є COND)} → F: =F - From tautology and 

due to other possibilities like proposition 4 and 8] 

Step 5:  {n: = n+1} - Post-condition [Execution of Step 2, Step 4 are 

followed by the same post-condition. Slicing proceeds to the next 

statement of the procedure if the conditions in these steps are not 

satisfied]  

Therefore the correctness of Proposition 5 is proved. 

Proposition 6.∀n [(V Є IN/I) → SLICE (V, n)] 

Proposition 6 may be rewritten (V Є IN/I) → ∀n SLICE (V, n) 

Here IN represents the input statement and I represents the initialization 



Chapter 3  

98     Cochin University of Science and Technology 

Proposition 6 follows from proposition 2A. Proposition 6 says that, if a 

slice variable ‘V’ is present in any of the procedure statement and if that 

statement is an input statement or an initialization statement, then the 

statement may be considered as a forward slice of the criterion C:= (n, V) 

Proof of Proposition 6:- Proposition 6 is proved in the same way as 

Proposition 3.  It is represented as follows:- 

{(VAR (L) Є n) ∧ (V Є IN)} F: = F ∪ n {n: = n+ 1}, {(VAR (L) Є n) ∧ ¬ 

(V Є IN} F: = F; {n: = n+ 1} → {(VAR (L) Є n)} if (V Є IN) then F: = F ∪ 

n; else F: = F; {n: = n+ 1} 

Steps:- 

Step 1:  {(VAR (L) Є n)} - Precondition [Follows from proposition 3 and 

pre-strengthened by the description of proposition 3] 

Step 2:  {VAR (L) Є n) ∧ (V Є IN)} → F: = F ∪ n - By Tautology [Slice is 

update if variable ‘V’ is an element of the input statement] 

Step 3:  {VAR (L) Є n) ∧ ¬ (V Є IN)} → F: = F - By Tautology [Slice 

unaltered if the slice variable ‘V’ is not an element of input 

statement] 

Step 4:  {n: = n+ 1} - Post condition [Execution of both the ‘if’ and ‘else’ 

part of the logic is followed by the same post condition. Slicing 

proceeds or the next statement of the procedure is considered after 

the execution of step 3 and step 4] 

Therefore the correctness of the proposition 6 is proved 

This formalized representation of the forward slicing algorithm may be 

modified according to the purpose of testing. This makes it applicable in all type 

of systems irrespective of the application for which the system is developed. 



Software Testing Using Forward Slicing 

Department of Computer Science 99 

A detailed evaluation and comparison of FST with related testing 

approaches is given in chapter 6. 

3.7 Summary of the Chapter 

Several methods are used to improve the test case generation and 

recently many works suggested the use of evolutionary algorithms like genetic 

algorithms for test case generation in spite of their inherent uncertain nature. 

Already the supporting evidence for this fact is drawn from literature review 

given in chapter 2. Therefore, we have put forth a forward slicing based Gauss 

Elimination method for test data generation in this work. Using slicing in our 

work identifies statements of interest which makes test data generation more 

direct. A major hurdle in most of the software testing approaches is the inability 

to handle voluminous code present in the program. Since our work uses forward 

slicing which identifies statements of interest, test data generation is made more 

effective by handling the size of the source code. To be more specific, we use a 

divide and conquer approach in testing using slicing. As test data generation is a 

process of generating test values for variables of interest, our method, which 

generates test data based on variable of interest will be more focused compared 

to the other approaches. Also, the FST introduced in this chapter considers 

dependency in the program which has a lead role in identifying effective test 

data. These dependent statements help to trace errors during software testing. 

This makes our method robust and unique. To conclude, as the fault may be 

located within the slice itself, debugging is also made easier with our FST 

method. This additional strength of forward slicing based testing makes it more 

suitable in practical software testing industry.  To conclude, the main highlights 

of this chapter are:- 

 



Chapter 3  

100     Cochin University of Science and Technology 

• Introduced forward slicing based software testing approach 

• Introduced the concept of linked dependency method to identify 

dependencies in the program 

• Presented a forward slicing algorithm based on data flow and control 

flow information for performing forward slicing 

• Demonstrated how to generate test data from forward slices using 

Gauss Elimination method 

• Presented a formal representation of forward slicing algorithm and  

proved the correctness of slicing algorithm 

……. ……. 



Partitioned Forward Slices 

Department of Computer Science 101 

 

4.1 Introduction 

In this chapter, we have introduced the concept of partitioned forward 

slices. Sometimes the number of statements in the forward slice will be so large 

that, they may not be that effective in software testing. The smaller the slice 

size, the better it is. Partitioned forward slices were introduced as an extension 

to forward slicing based testing (FST), when the size of forward slice is large. 

Reducing the size of forward slice is effective when the slice need to be focused 

closely, so as to find some critical errors. In addition to pointing out the need for 

partitioned forward slices, we have introduced a partitioned forward slicing 

algorithm and have illustrated the effectiveness of partitioned forward slicing.   

4.2 Motivation 

In this work, we have proposed a partitioned forward slicing. Identifying 

the potential impact of a variable on the source code is very essential during 

software testing. This allows the testers to identify the program statements by 

their relevance and enables the tester to identify the program statements affected 

by a particular variable. This helps to simplify testing during software 



Chapter 4  

102     Cochin University of Science and Technology 

development [110]. We already saw in chapter 3 how forward slices are utilised 

to achieve the above mentioned task in software testing. This enables to handle 

the issue of source code size and identify statements by relevance during testing. 

In some scenarios, the programmer who developed the source code may not be 

responsible for testing the software [127]. While testing such software, lack of 

proper documentation of the source code makes it difficult for the programmers 

to understand the source code. Understanding the target program code is 

inevitable, as the programmer may not be able to make any modification in the 

program without understanding the source code [55]. This needs an in-depth 

understanding of the software system. Though using forward slicing in such 

scenarios may lessen the burden, sometimes the number of statements in the 

forward slice or the size of the forward slice obtained may be very large. In such 

situations, the slice will be of little use as the size of the slice is large and there 

may not be any proper documentation.  The major factor which hinders the use 

of slicing in practical software testing is the size of the slice. Therefore, 

partitioned forward slices address this problem, so that they may be utilized for 

practical software testing when the size of forward slice is big. To summarize, 

the main motivation behind this work are given below:- 

• Handle the large size of forward slice 

• Identification of statements by relevance in a source code by 

identifying the statements affected by the input variable 

4.3 Terms & Definitions Related to Partitioned Forward Slice 

In this section some terms and definitions related to partitioned forward 

slicing are explained. 

 

 



Partitioned Forward Slices 

Department of Computer Science 103 

Definition 1- (Partitioned forward slices) 

Partitioned forward slices are formed by performing forward slicing up 

to a specified partition point. The slices formed in this manner will be smaller 

than the forward slices and it will be easy to critically analyze these slices. 

Definition 2- (Partitioned forward slicing criteria) 

The condition with respect to which partitioned forward slicing is 

performed. It is denoted as C= (n, V, (Pi)). This means that the statements 

which are affected by the variable ‘V’ at statement ‘n’ are to be identified. The 

partition point (Pi) specifies the point up to which the program is to be checked 

or the forward slicing is be performed. 

Definition 3 - (Partition point) 

Partition point specifies the program statement number up to which 

forward slicing is to be performed. 

4.3.1 Partition Point Properties 

As partition point is a critical factor in partitioned forward slicing 

criterion, setting partition points correctly deserves prime importance. The 

partition point may be set be the tester and this gives them a ‘dynamic’ nature. 

Increasing the number of partition points beyond a certain limit may make the 

whole process meaningless. For example, while testing a program having ‘n’ 

statements, if the number of partition points is also declared as ‘n’, then there 

will be no difference in the difficulty experienced by the tester.  This will be 

equivalent to checking the whole program line by line. Instead, if the tester is 

able to view the statements in the slice as a set of related statements which are 

executed under some condition, then it will be easy to identify the errors as 

well as to trace the dependent statements which may be affected by the 



Chapter 4  

104     Cochin University of Science and Technology 

execution of conditional clauses in the program. Therefore, as a general 

standard the partition points are set up according to the following criteria. 

• A program with ‘n’ statements is allowed to have not more than ‘n/2’ 

partition points. 

• Set up partition points at the conditional loops 

• Set up partition points at the class /function level 

Viewing the statements in the slice as a set of conditions and their 

possible outcomes helps to get an idea of the program and this makes it easy 

for the programmer to identify the errors. The value of several variables in the 

program may change when the conditional loops are executed. Therefore 

setting the partition points at the beginning of conditional loops may help to 

track the errors in the output. Another option to set the partition points is to 

identify the classes or functions in the program and then set the point at each 

class or function level. This gives the possible errors associated with each 

class and function. 

4.4 Partitioned Forward Slicing Algorithm & Explanation 

In this section, an algorithm for partitioned forward slicing is introduced. 

Some terms and definitions related to partitioned forward slicing is given below.  

n-Program Statement 

L- List where the slice variables are stored  

PFS- Partitioned forward slice  

pi- partition points 

V- Slice variable  

C: = (V, pi) – Represents the slicing criterion, ‘V’ represents the   slice 

variable and pi  represents partition points 



Partitioned Forward Slices 

Department of Computer Science 105 

LHS -Left side 

RHS -Right side 

IN- Input Statement  

OUT-Output Statement  

I- Initialization Statement 

D-Declaration statement 

EOP- End of program 

EXPR- Expression  

COND- Conditional Statement 

VAR (L) - Slice variable ‘V’ stored in list ‘L’  

RHS (EXPR) - Denotes the right side of the expression 

LHS (EXPR) - Denotes the left side of the expression  

VAR (RHS (EXPR)) - Denotes variables in the right side of the expression  

VAR (LHS (EXPR)) - Denote the variables in the left side of the expression 

Input: - Program to be sliced (P)    
Output: - Partitioned forward slices (PFS)   
begin 
1. while p ≠ Ø, source program not empty    
// Given V as the slicing variable   
2. get C= (V, pi)     
3. for (pi=1; pi<pn; pi++) 
{    
4. Store ‘V’ in ‘L’ // Slicing variable ‘V’ stored in list ‘L’    
5. if (VAR (L) Є n)// Check whether slice variable ‘V’ stored in list ‘L’ is 
present in statement ‘n’   
     {   
5.1. if (V Є (OUT))   
PFSi= PFSiU n //Store n, initially PFS will be null and include the 
statement n as a slice   
5.2. else if (V Є (EXPR))   )   



Chapter 4  

106     Cochin University of Science and Technology 

       {   
 5.2.1. if ((V) Є RHS (EXPR))   
            {  
PFSi=PFSi U n           // Store n  
                          VAR (L) = VAR (L) U VAR (LHS (EXPR))   
5.2.2. else 
do not include the statement as a slice   
 

             }  
          } 
5.3. else if (V Є (COND))   
        {   
5.3.1. if ((V) Є LHS (COND) OR (V) Є RHS (COND))   
           {  
PFSi= PFSi U n //Store n      
PFSi= PFSi U Loop body statements // Include all statements inside the 
conditional loop in PFSi 
            }   
5.3.2. else 
do not include the statement as a slice   
       }  
5.4. else if (V Є (IN)) 
PFSi= PFSiU n // include statement as a slice   
5.5. else if (V Є LHS (D)) 
PFSi= PFSi U n // include statement as a slice   
      }   
6. else 
    n= n + 1   
7. Repeat steps 3…7 until all partition points are covered or until EOP is 
reached 
} 
8. PFS=PFSi //where PFSi= PFS1 U PFS2 U PFS3 U….PFSn where 
PFS1…PFSn corresponds to partitioned forward slices for the specified 
partition points p1, p2 …pn 
End 



Partitioned Forward Slices 

Department of Computer Science 107 

In the partitioned forward slicing algorithm given above, initially, the 

slicing criterion is set.  Slicing criterion contains the variable and partition 

points. By default, the variable position is taken as the initial definition point.  

Here, we have to check for the program statements that are affected by the 

slicing criterion. Initially, the slice variable ‘V’ is stored in list ‘L’. The process 

starts from the (nth) line till the end of the program is reached. Here, (nth) line 

represents the program statement after variable definition.  In the (nth) line, it is 

checked whether the variable ‘V’ is present or not. If the variable ‘V’ is not 

present, then (n+1) th line is checked. If the variable ‘V’ is present in the (n) th 

line, a series of steps are to be performed. If ‘V’ is present in an expression, it is 

checked whether ‘V’ is present on the right side or left side of the expression. If 

‘V’ is on the right side of the expression that statement is considered as a slice 

and the entire variables in the left side of the expression are also added to the 

list. If ‘V’ is on the left side, then that statement is not included as a slice. While 

checking the next line, we have to check not only for ‘V’, but also all the 

dependent variables present in the list. This is because; the other variables added 

to the list are the dependent variables of ‘V’. Similarly, it is checked whether the 

slice variable is an element of conditional statement, declaration statement, input 

statement and output statement. If these conditions are true, the statements are 

considered as a slice. The statements inside the conditional body loop are also 

included as slice because the executions of these statements are dependent on 

the conditional clause. The process is repeated until the entire partition points in 

the slicing criteria are covered. The control and data dependent statements of the 

partition point are stored as a separate list. These may be considered as the 

partitioned forward slices for the specified criteria. 

 

  



Chapter 4  

108     Cochin University of Science and Technology 

4.4.1 Extended Linked Dependency Method  

The dependencies in partitioned forward slicing are found out by 

extending the linked dependency method which we already saw in chapter 3. 

The terms related to the extended linked dependency method is same as that 

mentioned in chapter 3.  Extended linked dependency method is formed by 

extending the linked dependency method by inserting partition points in the 

linked dependency method. The main steps to be followed in extended linked 

dependency method are given below:-  

Step 1:  Select the source program and construct CFG of the program. The 

control flow information is noted for the program 

Step 2: Identify all def-use pairs at each node 

Step 3:  Identify data flow information in the program using def-use pairs 

Step 4:  Use the def-use pair at each node to identify the data dependence 

Step 5:  Get slicing criterion C= (n, V, pi) (n is the statement where the input 

variable is present, V is the slice variable with respect to which 

slicing is to performed and pi is the partition point) 

Step 6:  Identify all the nodes occurring after n which are affected by the 

slicing variable V up to pi 

Step 7:  Continue until all partition points are covered 

Step 9:  Combining all the marked nodes gives partitioned forward slices for 

the given slicing criterion 

 

 

 



Partitioned Forward Slices 

Department of Computer Science 109 

 

 

 

 

 

 

Dataflow 

Control flow 

Figure 4.1 Sample CFG 

Consider the CFG given in figure 4.1. If the partial slicing criterion is 

given as C= (5, V, (2)), given program point as ‘node 2’ (shaded node in the 

CFG),  partial slice with respect to variable ‘V’ at statement 5 is to be obtained. 

We can see that node 5 is data dependent on node 3 and node 4. Node 4 is 

control dependent on node 2. Here, program point is marked at node 2. 

Therefore, all the control and data dependent nodes of node 2 are stored as a 

separate list. Node 2 is data dependent on node 1 and node 3, whereas node 4 is 

control dependent on node 2. All these together may be considered as one of the 

partial slices for the slicing criterion specified above 

The partial slices obtained are:- 

P1 – (4, 3, 2) 

P2- (1, 3, 4)  

Here P2 contains the control and dependent statements of node 2 which 

is defined as program point.  

An illustration of partial slicing is given in section 4.5. 

Start 

3 1 

4 

5 

2 



Chapter 4  

110     Cochin University of Science and Technology 

4.5 Illustration of Partitioned Forward Slicing 

We have used a sample code segment of the brokerage software 

mentioned in chapter 3 for illustrating the working of partitioned forward 

slicing. We have selected the code segment from the class ‘Qualitative 

modeling in financial market’. The sample code segment is given below in 

figure 4.2:- 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Sample code segment 

In the sample program segment given above in figure 4.2, the formula 

for calculating option value using Black Scholes formula [143 ] is given. Here 

the tester aims to separate formulas for call option and put option [143]. 

Therefore partitioned forward slicing is applied.  The partitioned forward slicing 

criterion is given as (4, d1, (10, 14)).  The partition point is given as (10, 14). 

1. public double BlackScholes(char CallOption, double S, double X, double T, 

double r, double v) 

2. { 

3.       double d1, d2; 

4.       d1=(Math.log(S/X)+(r+v*v/2)*T)/(v*Math.sqrt(T)); 

5.       d2=d1-v*Math.sqrt(T); 

6.  if (CallOption=='c') 

7.      { 

8.       returnS*CNPD(d1)-X*Math.exp(-r*T)*CNPD(d2); 

9        .} 

10. else 

11. { 

12       return X*Math.exp(-r*T)*CNPD(-d2)-   S*CNPD(- d1); 

13.} 

14.} 



Partitioned Forward Slices 

Department of Computer Science 111 

This means that all the statements up to partition point ‘10’ which are affected 

by the variable ‘d1’ in the 4th statement are identified and after that all the 

statements from 9 to 14 which are affected by the variable ‘d1’ in the 4th 

statement are identified . The result will be the set of statements (5, 8, 12) which 

is given below in in figure 4.3. The partitioned slices are named as P1 and P2. 

 

P1 

 

 

P2 

 

 

Figure 4.3 Partitioned forward slices for the criterion (4, d1, (10, 14)) 

The partitioned forward slices given in the above figure 4.3 may prove 

to be very relevant during program testing. The Partitioned forward slices P1 

and P2 helps to analyze the slices closely and identifies the errors related to 

the execution of conditional statements. By examining P1 and P2, we can 

notice that statement 8 is dependent on statement 5 and statement 12 is 

dependent on statement 5. This means P1 affects P2 as well as P1 is self-

dependent.  Applying forward slicing in the above scenario will not give two 

separate slices. Only a single slice will be obtained. Testers should go through 

the statements in slice to locate errors related to conditional clause execution 

and such similar ones. Moreover, it will be difficult to identify dependencies 

in the program code when the size of the forward slice is large. 

 

5. d2=d1-v*Math.sqrt(T); 

8. returnS*CNPD(d1)-X*Math.exp(-r*T)*CNPD(d2) 

 

12. return X*Math.exp(-r*T)*CNPD(-d2)-S*CNPD(-d1) 



Chapter 4  

112     Cochin University of Science and Technology 

4.5.1 Proof of Correctness of Partitioned Forward Slicing Algorithm 

In this section, we have given a summary of proof of correctness of 

partitioned forward slicing algorithm. The formalized representation of the 

partitioned forward slicing algorithm is presented as propositions based on First 

order predicate logic. Some of the terms used in the propositions and 

descriptions are given below:- 

n-Program Statement 

L- List where the slice variables are stored  

PFS- Partitioned forward slice  

pi- partition points 

V- Slice variable  

C: = (V, pi) – Represents the slicing criterion, ‘V’ represents the   slice 

variable and pi represents partition points 

LHS -Left side 

RHS -Right side 

IN- Input Statement  

OUT-Output Statement  

I- Initialization Statement 

D-Declaration statement 

EOP- End of program 

EXPR- Expression  

COND- Conditional Statement 

VAR (L) - Slice variable ‘V’ stored in list ‘L’  

RHS (EXPR) - Denotes the right side of the expression 



Partitioned Forward Slices 

Department of Computer Science 113 

LHS (EXPR) - Denotes the left side of the expression  

VAR (RHS (EXPR)) - Denotes variables in the right side of the expression  

VAR (LHS (EXPR)) - Denotes the variables in the left side of the expression 

The propositions (1 to 6) which correspond to partitioned forward 

slicing algorithm are represented as follows:- 

Proposition 1.∃p C (p) → (∀p (p ≠ø) → ∃p C (p))    

Proposition 2.∀n (pi=1) ∧ (pi<pn) → STORE (V, L) 

 Proposition 2a.∀n (pi=1) →STORE (V, L) 

 Proposition 2B.∀n (pi<pn) → STORE (V, L) 

Proposition 3.∀n [(V Є OUT) → PFS (V, n)] 

Proposition 4.∀EXPR (V Є RHS (EXPR)) → PFS ((RHS (EXPR) ∧ LHS (EXPR)) 

Proposition 5.∀COND (V Є COND) → PFS ((COND, LOOP STMTS)) 

Proposition 6.∀n [(V Є IN/I) → PFS (V, n)] 

4.6 Suitability of Partitioned Forward Slices 

This section discusses the suggestions on the suitability of partitioned 

forward slices in some other applications. Getting a picture of the suitability of 

the slices in various other applications may help to apply the concepts 

introduced in this thesis to other stages of software development. 

4.6.1 Suitability of Partitioned Forward Slices in Testing 

We have already seen the benefits of using partitioned forward slices in 

testing in the previous sections. Figure 4.4 given below also describes the 

various steps involved in testing.  



Chapter 4  

114     Cochin University of Science and Technology 

 
Figure 4.4 Partitioned forward slices in testing 

In the figure 4.4 given above, statements of relevance may be identified 

using partitioned forward slices and these slices help to identify dependencies 

and also help to identify errors in the program. All these help to simplify 

testing.  

4.6.2 Suitability of Partitioned Forward Slices in Maintenance 

Retrieving the statements of interest using partitioned forward slicing 

during maintenance has several advantages. Partitioned forward slices are also 

used to simplify regression testing process. Regression testing consists of re-

testing the program parts which are affected by the modification of an original 

tested program [54, 55]. The figure 4.5 given below shows the significance of 

partitioned forward slices in maintenance.   

 
Partitioned 

forward 
slices 

Identification 
of 

statements 
by relevance 

Identify 
dependencies in 

the program 

 Identify 
errors in the 

program 

 
Simplify 
testing 



Partitioned Forward Slices 

Department of Computer Science 115 

 
Figure 4.5 Partitioned forward slices in maintenance 

From the figure 4.5 given above, we can see that the statements 

affected by modification are easily identified from the slices and designing test 

cases for the new condition becomes easier using partitioned forward slices. 

4.6.3 Suitability of Partitioned Forward Slices in Program Comprehension 

Partitioned forward slice may be used during program comprehension. 

Program comprehension is defined as the process of understanding the source 

code [15]. The comprehended program may be used during program 

maintenance, reuse, redesign etc. Unless the programmers have detailed 

knowledge about the program, they will not be able to make changes in the source 

code. A program developer who is new to the field may find it difficult to 

understand the purpose of the code by checking the whole source program [30, 

36]. In other words, reducing the amount of source code to be verified ceases the 

process of program understanding. Manually creating such type of source code 



Chapter 4  

116     Cochin University of Science and Technology 

segments is very tedious.  In such scenarios, partitioned forward slice slicing may 

be used. A diagrammatic representation of how partitioned forward slicing is used 

for program comprehension is given below in figure 4.6. 

 
Figure 4.6 Partitioned forward slices in program comprehension 

During program comprehension, there will be several questions related 

to the behavior of the program. These questions give some clue regarding the 

program execution. Sometimes the questions raised may be wrong. From the 

figure 4.6 given above, set of program statements as well as the static 

information regarding the program code may be retrieved from the partitioned 

forward slice slices which in turn may be used to get answer or some idea of 

these questions. After this, by tracing the control and data flow dependencies 



Partitioned Forward Slices 

Department of Computer Science 117 

of the partitioned forward slice, the programmer may gain a better idea of the 

programs. This simplifies the program comprehension process.  

4.7 Summary of the Chapter 

This chapter introduces the novel concept of partitioned forward slices. 

This type of slice was introduced as a remedy to handle the issue of forward 

slice size. When the number of statements in the forward slice is large or when 

there is a critical need to focus on the forward slices, partitioned forward slice 

may be used. We have presented an algorithm and an illustration of partitioned 

forward slice.  We have also suggested some other applications where the 

concept of partitioned forward slices may be applied. To conclude, partitioned 

forward slices help to:- 

• Handle the large number of statements in the forward slice 

• Enable an in depth analysis of forward slice statements 

• Make program testing easier 

……. ……. 



 



Partial Slices in Program Testing 

Department of Computer Science 119 

 

5.1 Introduction 

In this chapter of this thesis, we have introduced the concept of partial 

slice. This type of slice was introduced with the aim of identifying the changes 

related to output variables.  In chapter three and chapter four, the concepts of 

forward slicing and partitioned forward slicing were used to identify the 

statements affected by input variable. In contrast, partial slices give the 

statements in a program which affect the output variable. This feature of partial 

slices is very helpful to find errors during testing. The need for partial slices, the 

architecture of partial slices and the details of partial implementation is 

discussed in the successive sections of this chapter. Finally, a comparison and 

performance evaluation of partial slices with static slices is also carried out.  For 

performance evaluation, we have used a Mann-Whitney U test. Apart from 

testing, suitability of partial slices in different application is also discussed in 

this chapter. The chapter concludes by listing the summary of findings made in 

this chapter. 



Chapter 5  

120     Cochin University of Science and Technology 

5.2 Motivation 

The generation of different forms of slices was the result of the application 

of program slicing in source code analysis and manipulation [128]. We already 

saw that, slicing may be used in many applications like program comprehension, 

testing, debugging and maintenance as it helps to simplify some of the program 

features [55, 109, 110, 118]. When using slicing in program testing, the number of 

statements to be analysed in the slice is a key factor in determining the usefulness 

of a testing tool [65]. In several cases, it can be noticed that static slices contain a 

large number of program statements. Due to this increased size of the static slice, 

they are of little use in many practical applications especially during program 

testing. Therefore, the concept of partial is introduced in this chapter with the 

intention to reduce the difficulties faced during program testing. Unlike static 

slices, issues regarding lengthy source code and dependency tracing is easily 

handled using partial slices. In partial slices, in addition to the static slicing 

criterion, the user has to provide the program point. Program point specifies the 

program statement up to which the static slicing is to be performed. The partial 

slices produced in this manner combines both static and program point 

information. Also, the number of statements present in the partial slices will be 

lesser than static slice. In slicing, smaller the slice, the better it is. Partial slices 

facilitate an easy analysis of the slices by reducing the number of statements to be 

checked in the slice. This property makes them more appropriate in identifying 

the errors associated with unit testing, especially condition execution, predicate 

execution and procedures. The main highlights of this chapter are:- 

• Introduced the concept of partial slice 
• Partial slicing algorithm is explained 
• Performed comparison and performance evaluation of partial slices 

with static slices using Mann-Whitney U test  
• Mentioned the suitability of partial slices in some other applications 



Partial Slices in Program Testing 

Department of Computer Science 121 

5.3 Terms & Definitions Related to Partial Slice 

In this section, some terms and definitions related to partial slice are 

explained.  

Definition 1 (Partial slice) – A partial slice is formed by performing static 

slicing up to a specific point mentioned in the program 

Definition 2 (Partial slicing criterion) – The condition with respect to which 

partial slicing is performed 

C= (n, V, (Pi, Pj, Pk….Pn) 

 -   Where ‘C’ is the partial slicing criterion 

 -  ‘n’ is the statement number 

 -   V is the subset of variable in the program 

 - Pi, Pj, Pk….Pn known as program points and they specify the limit up to 

which static slicing is performed 

The partial slicing criterion is defined as C= (n, V, Pi). This means that 

the statements which affect the variable ‘V’ at statement ‘n’ are to be 

identified. The program point ‘Pi’ (where i=1, 2, 3… n) specifies the program 

statement or point up to which the program is to be sliced. The process is 

continued until all program points are covered. Slices formed at each program 

point are combined together to form the partial slice of a variable.  

5.4 Program Points Set-up  

As the program point is a critical factor in partial slicing criterion, 

setting up of program points deserves prime importance. The program point 

may be set be the tester and this gives them a ‘dynamic’ nature.  

Increasing the number of program points beyond a certain limit may 

make the whole process meaningless. For example, while testing a program 



Chapter 5  

122     Cochin University of Science and Technology 

having ‘n’ statements, if the number of program points is also declared as ‘n’, 

then there will be no difference in the difficulty experienced by the tester.  

This will be equivalent to checking the whole program line by line. Instead, if 

the tester is able to view the statements in the slice as a set of related 

statements which are executed under some condition, then it will be easy to 

identify the errors as well as to trace the dependent statements which may be 

affected by the execution of conditional clauses in the program.  

 

Figure 5.1 Guidelines for setting up program points 

The guidelines for setting up program points are shown in figure 5.1 

given above. Therefore, as a general standard, the program points are set up 

according to the following criteria. 

• A program with ‘n’ statements is allowed to have not more than ‘n/2’ 

program points. 

• Setup program points at the conditional loops 

• Setup program points in the class /function level 

Viewing the statements in the slice as a set of conditions and their 

possible outcomes helps to get an idea of the program and this makes it easy 

for the programmer to identify the errors. The value of several variables in the 

 
 

INCREASE IN THE  

NUMBER OF  

PROGRAM POINTS 

 

INCREASE IN  

THE NUMBER OF 

PARTIAL SLICES  

 

ENABLES 

 MORE CRITICAL 

VIEW OF SLICES  

 
INCREASES IN THE 

NUMBER OF  

SLICES TO BE VERIFIED 
Number of Program points cannot 

be as same as the number of 

program statements 



Partial Slices in Program Testing 

Department of Computer Science 123 

program may change when the conditional loops are executed. Therefore, 

setting the program points at the beginning of conditional loops may help to 

track the errors in the output. Another option to set the program points is to 

identify the classes or functions in the program and then set the point at each 

class or function level. This gives the possible errors associated with each 

class and function.  

5.5 Architecture of Partial Slicer  

In this section the architecture of the partial slicer is explained. The 

architecture of partial slicer is given below in figure 5.2.  The main components of 

the of the partial slicer are the program selector and the partial slicing unit  

 

Figure 5.2 Architecture of partial slicer 

The input program selector unit has the facility to select the source 

program. After selecting the source program, the partial slicing criterion is set 

by the partial slicing unit.  Dependencies are identified from the program using 

the partial linked method. Finally, partial slicing algorithm identifies the slices 

from the CFG. The detailed description of partial slicing algorithm and partial 

linked method is given in the successive section. 

Input Program 
Selector 

Partial Slicing 
Criterion 

Dependency 
Analyser 

 

Partial Slices

Partial   Slicing Unit

Slicing 
Algorithm 



Chapter 5  

124     Cochin University of Science and Technology 

5.5.1 Identifying Dependencies using Partial Linked Method  

In a partial slice, we are using a partial linked method to identify the 

dependencies and the slicing algorithm given in section 5.5.2 is applied to the 

CFG.  The terminologies and notations related to partial linked graph are 

already given in section of chapter 3. In a partial linked method, we are 

considering both control and data dependencies of the program. The steps 

followed in partial linked method are given below:- 

Step 1:  Construct the control flow graph of the source program and analyse 

the control flow in the program 

Step 2:  Identify all def-use pairs at each node 

Step 3:  Identify data flow information in the program using def-use pairs 

Step 4:  Use the def-use pair at each node to identify the data dependence 

Step 5:  Get slicing criterion C= (n, V, pi), where ‘n’ is the statement where 

the output variable is present and ‘pi’ is the   program point) 

Step 6:  Identify all the nodes occurring before ‘n’, which affect slicing 

variable ‘V’ up to pi 

Step 7:  Continue until all program points are covered 

Step 9:  Combining all the nodes marked in the CFG gives the partial slice for 

the specified slicing criterion 



Partial Slices in Program Testing 

Department of Computer Science 125 

 
Dataflow 

Control flow 

Figure 5.3 Sample CFG 

Consider the CFG given in figure 5.3 If the partial slicing criterion is 

given as C= (5, V, (2)), given program point as ‘node 2’ (shaded node in the 

CFG), partial slice with respect to variable ‘V’ at statement 5 is to be obtained. 

We can see that node 5 is data dependent on node 3 and node 4. Node 4 is 

control dependent on node 2. Here, program point is marked at node 2. 

Therefore, all the control and data dependent nodes of node 2 are stored as a 

separate list. Node 2 is data dependent on node 1 and node 3, whereas node 4 

is control dependent on node 2. All these together may be considered as one of 

the partial slices for the slicing criterion specified above. 

The partial slices obtained are:- 

P1- (4, 3, 2) 

P2- (1, 3, 4)  

Here P2 contains the control and dependent statements of node 2 which 

is defined as program point.  

An illustration of partial slicing is given in section 5.5.3. 

 

 

 Start 

3 1 

4 

5 

2 



Chapter 5  

126     Cochin University of Science and Technology 

5.5.2 Partial Slicing Algorithm & Explanation 

We saw how the dependencies are identified using partial linked 

method in section 5.5.1. In this section, partial slicing algorithm is explained. 

After identifying the dependencies, partial slicing algorithm is applied to the 

CFG to identify the partial slices. Some of the terms used in the algorithm are 

given below:- 

n- Statement 

L- List where the slice variables are stored  

S- Partial Slice  

pi- program points 

V- Slice variable  

LHS -Left side 

RHS -Right side 

IN- Input Statement  

OUT-Output Statement  

I- Initialization Statement 

D-Declaration statement 

SOP- Start of program 

EXPR- Expression  

COND- Conditional Statement 

VAR (L) - Slice variable ‘V’ stored in the list ‘ L’  

RHS (EXPR) - Denotes the right side of the expression 

LHS (EXPR) - Denotes the left side of the expression  

VAR (RHS (EXPR)) - Denotes variables on the right side of the expression  

VAR (LHS (EXPR)) - Denote the variables on the left side of the expression 

 

 



Partial Slices in Program Testing 

Department of Computer Science 127 

PARTIAL SLICING ALGORITHM   
Input: - Program to be sliced (P)    
Output: - Partial Slices (S)   
begin    
1. while p ≠ Ø, source program not empty    
// Given n as the statement number and V as the slicing variable   
2. get C= (n, V, pi)     
3. for (pi=n; pi<p1; pi --) 
{    
4. Store ‘V’ in ‘L’ // Slicing variable ‘V’ stored in the list ‘ L’    
5. if (VAR (L) Є n)// Check whether slice variable ‘V’ stored in list ‘L’ is present in statement 
‘n’   
     {   
5.1. if (V Є (OUT))   
       S= Si U n //Store n, initially S will be null and include the statement n as a slice   
5.2. else if (V Є (EXPR))   )   
       {   
 5.2.1. if ((V) Є RHS (EXPR))   
            {  
                           do not include the statement as a slice   
 

5.2.2. else    
              S=Si U n           // Store n  
 
               VAR (L) = VAR (L) U VAR (RHS (EXPR))   
             }  
 

          } 
5.3. else if (V Є (COND))   
        {   
5.3.1. if ((V) Є LHS (COND) OR (V) Є RHS (COND))   
           {  
               S= Si U n //Store n      
               S= Si U Loop body statements // Include all statements inside the conditional loop in S      
            }   
5.3.2. else    
            do not include the statement as a slice   
       }  
5.4. else if (V Є (IN)) 
        S= Si U n // include statement as a slice   
5.5. else if (V Є LHS (D)) 
        S= Si U n // include statement as a slice   
      }   
6. else   
    n= n - 1   
7. S=Si //where Si= S1 U S2 U S3 U…. Sn where S1… Sn corresponds to partial slices for the 
specified program points 
} 
8. Repeat steps 3…7 until all program points are covered or until SOP is reached 
End 



Chapter 5  

128     Cochin University of Science and Technology 

In partial slicing, after selecting the program by the program selector, the 

slicing criterion is set by the partial slicing unit. Slicing criterion contains the 

variable the statement number and the program points. Here, we have to check for 

the program statements that affect the value of a particular slicing variable at a 

particular point. Consider slice variable ‘V’ stored in a list ‘L’ and the program 

statement number denoted by ‘n’. The process starts from the (nth) line till the start 

of the program is reached. In the (nth) line, it is checked whether the variable ‘V’ 

is present or not. If the variable ‘V’ is not present, then (n-1) th line is checked. If 

the variable ‘V’ is present in the (n) th line, a series of steps are to be performed. If 

‘V’ is present in an expression, it is checked whether ‘V’ is present in the right 

side or left side of the expression. If ‘V’ is on the left side of the expression that 

statement is considered as a slice and all the variables in the right side of the 

expression are also added to the list. If ‘V’ is on the right side, then that statement 

is not included as a slice. While checking the preceding line, we have to check not 

only for ‘V’, but also all the dependent variables present in the list. This is 

because; the other variables added to the list are the dependent variables of ‘V’. 

Similarly, it is checked whether the slice variable is an element of conditional 

statement, declaration statement, input statement and output statement. If these 

conditions are true, the statements are considered as a slice. The statements inside 

the conditional body loop are also included as slice because the executions of 

these statements are dependent on the conditional clause. The process is repeated 

until the entire program points in the slicing criterion are covered. The control and 

data dependent statements of the program point are stored as a separate list. These 

may be considered as the partial slices for the specified criteria. 

 



Partial Slices in Program Testing 

Department of Computer Science 129 

5.5.3 Illustration of Partial Slicing 

An illustration of partial slicing is given in this section to demonstrate 

how the slices are identified from the program. For illustration purpose, we 

have applied partial slicing method to payroll processing software. The payroll 

software consists of several modules. Some of the modules are company 

details, employee information, employee salary, etc. Here we have considered 

the employee salary module. Given below is the partial class diagram of 

payroll software. The partial class diagram of payroll is given below in figure 

5.4.  We have illustrated how partial slicing is performed on the ‘Officer’ 

class. The ‘Officer’ is a subclass of ‘Employee Salary’. 

 

 
Figure 5.4 Partial class diagram of payroll software 

From the ‘Officer’ class, we have considered a set of program 

statements and have illustrated how partial slicing works on the selected class. 

In figure 5.5, some program statements from the ‘Officer’ class is displayed. 

Let us initialize the partial slicing criterion as C= (15, total, (11, 1)) for the 

sample program statements in figure3.  

  

  

Employee Salary 

 

Executive 
 

Officer 



Chapter 5  

130     Cochin University of Science and Technology 

1. if (basic < 20000) 
2. { 
3. rent=1700; 
4. da = basic*93 / 100; 
5.} 
6. else 
7. { 
8. rent = basic*12 / 100; 
9. da = basic*85/100; 
10.} 
11. total = basic+rent+da; 
12. allowance= total +5000; 
13. finalsalary= allowance + 1000; 
14. System.out.println ("Final salary" +finalsalary); 
15. System.out.println ("total salary" + total); 

Figure 5.5 Sample program statements 

The first parameter is the statement number, second one is the slice 

variable and the third one is the program points. Here we have declared only 

two program points. Initially the 15th line is checked. No element is present in 

15th statement affects the value of the variable ‘total’ in statement 15. The next 

step is to decrement the statement number. Now statement number ‘n’ is 14. The 

14th line prints the value of ‘finalsalary’ and it is not dependent on the statement 

15. Now decrement ‘n’ and ‘n’ becomes 13. Statement 13 is ‘finalsalary= 

allowance + 100’. Here the ‘fianlsalary’ value is calculated. The slice variable 

‘total’ is not present in this line also. Therefore, this line will not affect the value 

of ‘total’ in statement 15. Again decrement ‘n’ and now ‘n’ is 12. In the 12th 

line it can be seen that the variable ‘total’ is present. The next step is to check 

whether the slice variable is present in the right side or left side of the 

expression. Here the slice variable ‘total’ is present in the right side of the 

expression. Therefore the slice variable ‘total’ is not affected by the 12th line 



Partial Slices in Program Testing 

Department of Computer Science 131 

too. Now decrement the statement number. The statement number becomes 11. 

Here the first program point is declared. In the 11th line the slice variable ‘total’ 

is present. Again, check whether ‘total’ is present on the right side or on left side 

of the expression. Here the variable ‘total’ is present on the left side of the 

expression ‘total = basic + rent + da’. This indicates that the variable ‘total’ is 

the sum of ‘basic’, ‘rent’ and ‘da’. By analyzing closely is can be noticed that 

the value of the variable ‘total’ obtained in statement 11 is used  in statement 15. 

In other words statement 15 is data dependent on statement 11. Therefore, this 

statement is considered as a partial slice. Since the program point is declared in 

the 11thstatement, all the control and dependent nodes of statement 11 are stored 

as a separate list.  In statement 11, the variables on right side of the expression 

are ‘basic’, ‘rent’ and ‘da’. This shows that any line containing these variables 

will also affect the value of ‘total’ in statement 15. This is due to the 

dependency which exists in the program. Therefore, from the 10th statement, we 

have to check not only for the variable ‘total’, but also for the variables ‘basic’, 

‘rent’ and ‘da’. This is also indicated in the algorithm. It is given that the List 

‘L’ should be updated as VAR (L) = VAR (L) U VAR (RHS (EXPR)). This 

means that the list containing the slice variable is now having the variables 

‘basic’, ‘rent’ and ‘da’ in addition to ‘total’. As we have obtained the first partial 

slice, the partial slicing process is to be resumed to obtain the other slices 

present in the program. From the slicing criteria, we can see that the program 

point is set at statement 11. Now the process starts from 10th statement. After 

that the statements 9 and 8 are checked.  Statement 9 and 8 gives the value of 

the variables ‘rent’ and ‘da’ when the condition (basic<20000) is false. 

Statement 9 includes the variable ‘da’ which is present in the list ‘L’. Slice 

variable ‘total’ is dependent on ‘da’ and in statement 9 ‘da’ is present on the 

right side of the expression. Therefore, this is also included in the partial slice. 



Chapter 5  

132     Cochin University of Science and Technology 

The left side of statement 9 contains the variable ‘basic’. This is already present 

in the list ‘L’. Therefore, there is no need to update the list again. Similarly, 

statement 8 gives the value of ‘rent’. Variable ‘rent’ is present in list ‘L’. 

Therefore, this statement is also considered as a partial slice. Statements 8 and 9 

are control dependent on statement 1. Therefore, statement 1 is also included as 

a slice. The execution will stop when the next program point is encountered. 

The statements 3 and 4 give the value of ‘rent’ and ‘da’ when the condition 

(basic<20000) is true. The slice variable ‘total’ is dependent on ‘rent’ and ‘da’. 

Therefore, these statements will also be included in the partial slice. According to 

the logic of the algorithm, these variables are present in the left side of the 

expression and these are included in the partial slice. The process terminates when 

all the program points are covered. The partial slices are given in table 5.1. 

Table 5.1 Partial Slices 

P1 total = basic+rent+da 
P2 if (basic < 20000) 

{ 
rent=1700; 
da = basic*93 / 100; 
} 
else 
{ 
rent = basic*12 / 100; 
da = basic*85/100; 
} 

 

The partial slices given in the table 5.1 may prove to be very relevant 

during program testing. The partial slice ‘P2’, gives an idea of the conditional 

statements in the program code. Errors related to the execution of these 

conditional statements may be easily identified from the partial slice P2. By 

examining P1 and P2, we can notice that P1 is dependent on P2. This means that 

the errors related to condition execution will affect several other statements in 

the program.   



Partial Slices in Program Testing 

Department of Computer Science 133 

Applying static slicing in the above scenario will not give two separate 

slices. Only a single slice will be obtained. Testers should go through the 

statements in slice to locate errors related to conditional clause execution and 

such similar ones. Moreover, it will be difficult to identify dependencies in the 

program code. This may not be a problem in a small program with small static 

slices. In large programs with several lines in the static slice, partial slices are 

very helpful.  

5.5.4 Proof of Correctness of Partial Slicing Algorithm 

In this section, we have given a summary of proof of correctness of 

partial slicing algorithm. The formalized representation of the partial slicing 

algorithm is presented as propositions based on First order predicate logic. 

Some of the terms used in the propositions and descriptions are given below:- 

n- Statement 

L- List where the slice variables are stored  

S- Partial Slice  

pi- program points 

V- Slice variable  

C= (n, V, pi)- slicing criterion     

LHS -Left side 

RHS -Right side 

IN- Input Statement  

OUT-Output Statement  

I- Initialization Statement 

D-Declaration statement 



Chapter 5  

134     Cochin University of Science and Technology 

SOP- Start of program 

EXPR- Expression  

COND- Conditional Statement 

VAR (L) - Slice variable ‘V’ stored in the list ‘ L’  

RHS (EXPR) - Denotes the right side of the expression 

LHS (EXPR) - Denotes the left side of the expression  

VAR (RHS (EXPR)) - Denotes variables on the right side of the expression  

VAR (LHS (EXPR)) - Denotes the variables on the left side of the expression 

The propositions (1 to 6) which correspond to partial slicing algorithm 

are represented as follows:- 

Proposition 1.∃p C (p) → (∀p (p ≠ø) → ∃p C (p))    

Proposition 2.∀n (pi=n) ∧ (pi >p1) → STORE (V, L) 

Proposition 2a.∀n (pi=n) →STORE (V, L) 

Proposition 2B.∀n (pi > p1) → STORE (V, L) 

Proposition 3.∀n [(V Є OUT) → S (V, n)] 

Proposition 4.∀EXPR (V Є RHS (EXPR)) → S ((RHS (EXPR) ∧ LHS (EXPR)) 

Proposition 5.∀COND (V Є COND) → S ((COND, LOOP STMTS)) 

Proposition 6.∀n [(V Є IN/I) → S (V, n)] 

5.6 Comparison & Performance Evaluation of Partial Slices and 

Static Slices 

In this section, we have compared the performance of partial slices with 

static slices. A Mann-Whitney U test is used to compare the performance of the 



Partial Slices in Program Testing 

Department of Computer Science 135 

two types of slices [33]. A research question (RQ) is framed and the comparison 

and performance evaluation result addressed this question. RQ is defined as 

follows:- 

RQ. Why partial slices are considered to be more useful in testing compared 

to static slices? 

Inorder to address RQ, a NULL hypothesis (H0) was formulated. The 

research question (RQ) is proved /disproved based on the outcome the null 

hypothesis. The null hypothesis (H0) is given below:- 

H0: It does not make any difference in performing testing using static slices 

and testing using partial slices 

For addressing H0, some test subject/programs were considered. The 

details of test subjects and test set-up is given in the successive sections 

5.6.1 Test Subjects 

Some sample programs were considered and partial slicing and static 

slicing was applied to the sample program.  The specifications of the program 

are given below in table 5.2:- 

Table 5.2 Test subjects (Sample programs) 

Test 
Subject Description of the program LOC Number of variables 

in the test subject 
P1 A C program to find the value of y in the function y (x, n) 22 3 

P2 A C program to calculate the commission for a sales representative  21 2 

P3 A C program for deciding grades for the marks obtained 18 1 

P4 A C program to calculate the bank operations  121 7 

P5 A C program to find the grade of steel  35 3 

P6 A C program to find the option values in online trading system 117 6 

P7 A C program to generate Fibonacci series 20 4 

P8 A C program to find the sum of the given series 16 5 

P9 A C program to find biggest of three numbers 18 4 

P10 A C program to find electricity charges 22 5 



Chapter 5  

136     Cochin University of Science and Technology 

5.6.2 Test Set-up 

Among the test subject programs, static slicing was applied to subject 

programs P1 to P5 and partial slicing for P6 to P10. The total number of 

significant statements to be considered during testing the subjects is recorded 

for each method. The result is given in table 5.3.  Since there are two test 

conditions and two groups of test subjects and since the data is measured on an 

ordinal scale, a Mann-Whitney U test is used to evaluate the results obtained 

from the two methods [33]. Finally, the Null-hypothesis is validated based on 

the result got from the test.  

Table 5.3 Test subject & the result of applying various testing methods on test subjects 

Test 
Subject 

Total 
LOC 

Number of 
statements to 

be considered in 
static slicing 
based testing 

Test 
Subject Total LOC 

Number of 
program points 

defined in 
partial slicing 

criteria 

Number of 
statements to be 

considered in 
partial slice 

based testing 
P1 22 10 P6 117 3 (19, 17, 10) 
P2 21 10 P7 20 1 (5, 3) 
P3 18 6 P8 16 1 (5, 3) 
P4 121 59 P9 18 1 (6, 3) 
P5 35 11 P10 22 1 (2,4) 

In table 5.3 we can see that, for test subjects P1 to P5 static slicing is 

applied and for test subjects P6 to P10 partial slicing methods is applied. The 

number of program statements to be considered during program testing for each 

type of testing (static slicing and partial slicing) is noted. The number of program 

points defined in the partial slicing criteria is also given in the table. The last 

column in table 5 represents the total number of statements present in the partial 

slices. For example, for P10, the number of statements present in partial slice is 

(2, 4). Here two sets of program statements are obtained in the partial slice. Here 

the first field ‘2’denotes the number of statements in one section of the partial 

slice and the second field ‘4’ denotes the number of statements in the second 



Partial Slices in Program Testing 

Department of Computer Science 137 

section of the partial slice.  Though the total number of program statements 

obtained in static slice and partial slice may be same, partial slice enables to get a 

closer view of program by inserting program points in the program. This is done 

by reducing the number of statements to be examined in a slice.  

Based on the observations from table 5.3, a questionnaire was prepared. 

There were 2 questions Q1 and Q2, which is given below.  

Q1. What is the difficulty caused due the size of slice in program testing?  

Q2. What is the problem caused due to the size of slice in tracing dependency 

in program testing? 

All the test subjects (P1 to P10) addressed this questionnaire and the 

outcome was recorded for subject programs P1 to P5 for static slicing and for 

subject programs P6 to P10 for partial slices. This means that program P1 to P5 

was checked with static slicing approach and programs P6 to P10 was checked 

with partial slicing approach. A qualitative rating for the questions was assigned 

based on the evidence collected from static slicing and partial slicing. Each 

question had a possible response. By data coding, the outcome of the questions 

was rated based on a scale of 0-5. The outcome and the corresponding scale are 

given below in figure 5.6. Based on the testing outcome given in table 5.4, the 

response was noted for each type of testing.  

 
  0-Nil/No difficulty 

  1-Negligible 

  2-Low difficulty 

  3-Average difficulty 

  4-High difficulty 

  5- Extreme difficulty 

Figure 5.6 Scale corresponding to Difficulty Levels 



Chapter 5  

138     Cochin University of Science and Technology 

Table 5.4 gives the observations of using static slices in testing and the 

result of using partial slices in testing.       

Table 5.4 Response for Q1 and Q2 (For static slicing and partial slicing) 

Test 
Subject 

Static 
slicing- 

Response 
for Q1 

Static 
slicing- 

Response 
for Q2 

Static 
slicing- Sum 

of the 
Responses 

for Q1& Q2 

Test 
Subject 

Partial 
slicing- 

Response for 
Q1 

Partial 
slicing- 

Response for 
Q2 

Partial  
slicing- Sum 

of the 
Responses 

for Q1 & Q2 
P1 3 3 6 P6 0 1 1 

P2 4 3 7 P7 0 1 1 

P3 3 4 7 P8 0 1 1 

P4 5 5 10 P9 1 1 2 

P5 4 5 9 P10 0 1 1 

In table 5.4 given above, the data entered in the columns ‘Static slicing- 

Response for Q1 & Static slicing- Response for Q2’ gives the response for 

applying static slicing on test subjects P1 to P5 for questions Q1 and Q2. The 

response is recorded in 0-5 scale as already mentioned. The columns ‘Partial 

slicing- Response for Q1 & Partial slicing- Response for Q2’ gives the response 

for applying partial slicing on test subjects P6 to P10 for questions Q1 and Q2. 

Finally, the sum of the ‘Static slicing- Response for Q1 & Static slicing- 

Response for Q2 and Partial slicing- Response for Q1 & Partial slicing- 

Response for Q2’ is found out. 

Table 5.5 Ranked response for Q1 and Q2 (For static slicing and partial slicing) 
 

Test 
Subject 

Static 
slicing- Sum 

of the 
Responses 
for Q1& Q2 

Rank of 
the 

response 

Actual 
Rank of 
Static 
Slicing 

Test 
Subject 

Partial  
slicing- 

Sum of the 
Responses 
for Q1 & 

Q2 

Rank of 
the 

response 

Actual 
Rank of 
Partial 
Slicing 

P1 6 6 6 P6 2 4 4.5 
P2 7 7 7.5 P7 1 1 2 
P3 7 8 7.5 P8 1 2 2 
P4 10 10 10 P9 2 5 4.5 
P5 9 9 9 P10 1 3 2 
  Total 40   Total 15 



Partial Slices in Program Testing 

Department of Computer Science 139 

In table 5.5, the sum of response of static slicing and partial slicing are 

noted and ranked. Ranks having tied score are given average value of ranks. 

Finally the actual ranks are noted. A Mann Whitney U test is applied for 

evaluating the ranks obtained. In Mann- Whitney U test, the U value is given as: 

U= n1n2 + nx (nx+ 1)/2 - Tx 

Here n1 and n2 are the participants in each group and Tx is the largest of 

rank total and nx is the number of participants in the group having largest rank 

total 

In our example, n1= 5and n2 = 5, Tx=40 and  nx=5 

Therefore  U= 5 * 5 + 5(5+1)/2 – 40  

 U=25+15-40 

 U=0 
The next step is to find the critical value of U from the Mann-Whitney 

U test table of critical values. From the table at 5% significance level for a two 

tailed test, the critical value of U for n1=5 and for n2=5 is 2. 

Therefore U=2 (from Mann Whitney U table at 5% significance level) 

 To be statically significant, the obtained U value should be less than 

the critical value of U.  

In our case, 0 < 2. Therefore, the null hypothesis (H0) is rejected. This 

indicates that there exists a significant difference in performing testing using 

static slices and testing using partial slices. 

Inference: - Due to the ability to focus on slices, partial slices are more useful 

in testing compared to static slices 

 



Chapter 5  

140     Cochin University of Science and Technology 

5.7 Inference from the Comparison and Evaluation of Partial Slices 

and Static Slices 

In this section we have given some inferences on partial slices and 

static slices based on the comparison and evaluation carried out. These 

inferences highlight the significance of using partial slicing compared to static 

slicing. The inference made are listed below  

• Both static slices and partial slices give all possible execution 

• Static slices may be large and it may not be helpful in testing due to 

large slice size and difficulty in identifying dependencies between the 

statements in the program 

• As the number of statements in the static slice is more compared to 

partial, error identification is difficult compared to partial slice. 

• Partial slices are smaller than static slices with respect to a particular 

program point. This is useful in testing, as the slices are confined and 

dependencies in the program easy to identify compared to static slices. 

• Partial slices help to identify errors related to conditional loop execution. 

From the above inferences it is evident that, partial slices are more 

useful compared to static slices from the testing point of view. 

5.8 Suitability of Partial Slices   

Apart from testing, partial slicing may be used in many other 

applications. We have suggested the possibility of using partial slicing in two 

other applications other than testing. 

5.8.1 Using Partial Slices for Software Reuse 

Partial slices may be utilized during software reuse.  Software reuse is 

the process of using existing software components rather than building from 



Partial Slices in Program Testing 

Department of Computer Science 141 

the scratch [30]. Source code is one of most important reusable components of 

software [84].  The idea of code clones is derived from reuse idea. A code 

clone can be defined as a set of program statements which may be contiguous 

or non-contiguous and which repeat in several other parts of the same program 

or in different parts of the same program or in different files of the same 

application program [118]. Even though code reuse saves time and manual 

effort, some researchers claim that software code clone increases the software 

maintenance cost [84]. For example, if a programmer makes any slight 

modification in a code clone, and if the same change is not made in the other 

code clones present in the program, it may cause inconsistency [76]. Utilizing 

the positive aspects of code clones in an appropriate way can result in marked 

changes in the field of software testing industry. Many of our day to day 

computer applications take advantage of the code reuse property. The main 

reason behind this code reuse mentality is to make the software development 

process easier. For example, while making a newer version of the operating 

system, developers are not writing the program code from the scratch, rather 

they try to concentrate only on the new functions which are to be integrated 

into the new version. The main point to be noted here is that the code 

developers can concentrate on developing the new features of the software 

rather than putting effort on the old problems repeatedly [55].  

A diagrammatic representation of how our method is used for program 

reuse is given below in figure 5. 7:- 



Chapter 5  

142     Cochin University of Science and Technology 

 
Figure 5.7 Using Partial slices for program reuse 

From the figure 5.7 given above, it can be noticed that the partial slices 

are formed according to the slicing criteria. The partial slices may be formed for 

certain condition execution. These conditions, based on which partial slices are 

formed, may be used to search the database of reusable program statements or 

code clones. The same process may be performed using theorem proving. Using 

partial slicing is easier, compared to using theorem proving, as an empty slice is 

returned if no suitable reusable statements are found. In another method the 

control flow graphs (CFG) of the partial slices are checked for structural 

similarity. If the CFG of partial slices is structurally similar, then the next step is 

to check for node content similarity. If the node contents are also same, then it 

can be concluded that the partial slices present in the program code are code 

clones. These code clones may be used during the testing, maintenance etc.  

 

 Source program ----------------------------------------

-----------Partial Slices-------------

--------------------- 

------------------------------------

------------------------------------

 
Convert repeated group of code 

segments to procedures 

Partial Slicing 

 
Detect similar segments of code from partial slices 

by similarity in dependence graph 

 
Program 

 

Call these procedures 

when same code 

segments are required 



Partial Slices in Program Testing 

Department of Computer Science 143 

5.8.2 Using Partial Slices for Program Comprehension 

Partial slices may be used during program comprehension. Program 
comprehension is defined as the process of understanding the source code [15, 
30]. The comprehended program may be used during program maintenance, 
reuse, redesign, etc. [36]. A diagrammatic representation of how our method is 
used for program comprehension is given below in figure 5.8. :- 

 
Figure 5.8 Partial slices in program comprehension 

Unless the programmers have detailed knowledge about the program, 
they will not be able to make changes in the source code. A program developer 
who is new to the field may find it difficult to understand the purpose of the 
code by checking the whole source program [118]. In other words, reducing 
the amount of source code eases the process of program understanding. 
Manually creating such type of source code segments is very tedious.  In such 
scenarios partial slicing may be used. During program comprehension, there 
will be several questions related to the behavior of the program. These 
questions, give some clue regarding the program execution. Sometimes the 
questions raised may be wrong also. From the figure 5.8 given above, a set of 
program statements as well as the static information regarding the program 
code may be retrieved from the partial slices which in turn may be used to get 

Partial Slicing Partial Slices Conditional Predicates   
&Execution of Statements

Comprehended 
Program 

Source Program 



Chapter 5  

144     Cochin University of Science and Technology 

answers or some idea of these questions. After this, by tracing the control and 
data flow dependencies of the partial slices, the programmer may gain a better 
idea of the programs. This simplifies the program comprehension process.  

5.9 Summary of the Chapter 

In this chapter we have introduced the concept of partial slices inorder to 
track the changes related to output. Using static slicing to track the changes 
related to the output gives all possible executions related to the output. This 
inturn helps to identify the errors in a program easily.  In many situations, it can 
be noticed that there will be no significant reduction in the number of statements 
in static slice compared to the original program. In such situation, using slicing 
to identify changes related to output will be difficult. As a solution, we proposed 
a new approach named partial slicing, which can handle the issues with the 
lengthy source code and program dependency to identify changes related to 
output variable. An algorithm for performing partial slicing is also presented in 
this chapter. Finally a comparison and performance evaluation of static slicing 
and partial slicing is carried out. The evaluation result shows that, the number of 
statements in a partial slice is less than the corresponding static slice. This 
feature of partial slices makes them an excellent aid in testing and identifying 
changes related to output, especially in locating errors related to conditional 
loops and procedures. The suitability of partial slices in some other applications 
is also mentioned in this chapter. To conclude: 

• Partial slices help to track changes related to output variables 

• Partial slices help to get a focused view of the slices 

• Partial slices help to identify errors related to conditional loops and 
procedures 

• Disadvantages related to static slices may be solved up to a certain 
extent using partial slices 

……. …….  



Comparison and Performance Evaluation 

Department of Computer Science 145 

 

6.1 Introduction 

In this chapter, we have provided a comparison with related work and 

performance evaluation of forward slicing based testing.  Evaluation and 

comparison of our method with existing techniques provides an idea of the 

strength of our approach and stress the need for using the proposed method in 

software testing.  

The comparison is done in two stages. Initially, we have done a 

qualitative comparison of forward slicing based testing with existing software 

testing approaches. From this comparison some intuitive inferences are made. 

In the next stage, we have conducted some experimental evaluations. We have 

used Mann-Whitney U statistical test for performance evaluation of forward 

slicing based testing with related testing approaches [33]. In addition, we have 

also evaluated our testing method using some metrics. Software testing 

technique metrics such as test case generation metric, user control metric and 

slicing metrics such as coverage and tightness are used to evaluate our method 

with related testing approaches [103, 110, 137]. 

 



Chapter 6  

146     Cochin University of Science and Technology 

6.2 Comparison of Forward Slicing based Testing with Related Testing 

Approaches 

This is the first stage of comparison of forward slicing based testing 

with exiting testing techniques. The inferences made from the comparison 

highlights the significance of using slicing in software testing.  

Table 6.1 Recent works on software testing 

Type of Testing Works 

Total number 
of works in a 

particular 
testing 

category 
Random testing Michael, C. C. et al. [2001], Gouraud, S. D. et al.[2001], Liu, X. et al. [2005] 3 

Path oriented testing Bernard, B. et al. [2006],  Mohammad, A. et al. [2006], Leonard, G. et al. 
[2006],  Tran Sy, N. et al. [2001], Khor S. et al.  [2004], Claudia, M. E. et al. 
[2003],  Nashat, M. et al. [2004],  Tran Sy, N. et al. [2003], Visvanathan, S. 
et al. [2002],  Edvardsson, J. et al. [2001], Siqueira M. P. et al. [2000], 
Taylor B. J. et al. [2000], Lin, C. et al.    [2001], McMinn, P. et al.[2006] 

14 

Goal oriented testing Lin, C. et al.    [2001], McMinn, P. et al. [2006], Diaz, E. et al.  [2003], 
Baresel, A. et al. [2004] 

4 

Chaining method McMinn, P et al. [2006],  Ferguson , R. et al.[1996], McMinn, P et al. [2002]  3 

Metaheuristic approach Xue-ying et al. [2005],  Xiao, J. et al. [2010], Latiu, G. I. [2012] , Ahmed, M. 
A et al. [2008],  Pachure, A.et al. [2013], Roper, M. et al. [1995] , Jones, B. 
et al. [1996], Pargas, R. P. et al. [1999] , Michael, C. C. et al. [2001],  
Sofokleous, A. A. et al. [2008], Chen, C. et al.[2009] , Bernadt, D. J. et al. 
[2004] et al. [2004], Khor, S. et al. [2004], Cao, Y. et al.  [2009], Malburg, 
J.[2011], Zhang, W. et al.  [2007], Fraser, G.et al. [2012], Arcuri, A. et. al 
[2011], Bueno, P. M. S. et al. [2000], Wegner, J. et al. [2002], Miller, J. et al. 
[2006], McMinn, P.  [2013], Fraser, G.et al.  [2012], Gong, D. et al. [2011], 
Pocatilu, P. et al. [2013], Mao, C. et al.[2013], Liu, D.   et al. [2013], Suresh, 
Y. et al.[2013], Arcuri, A. et al. [2013], Fraser, G.et al. [2013 & 2014] 

30 

We have considered some of the recent works (during the last decade) in 

software testing which are listed in table 6.1. Different categories of work such 

as random testing, path oriented testing, goal oriented testing, metaheuristic 

testing and chaining method are considered.   

For comparison, we have considered mostly works on software test case 

generation.  From the table 6.1, it is clear that a lot of research works are done 



Comparison and Performance Evaluation 

Department of Computer Science 147 

using heuristic algorithm [2, 5, 6, 14, 21, 26, 28, 29, 47, 49, 50, 59, 79, 83, 89, 

95, 96, 97, 100, 104, 105, 113, 114, 116, 117, 123, 126, 136, 139, 140, 141]. We 

can notice that, among the works which use heuristic algorithms for software 

testing, a majority of the works have used evolutionary algorithms like GA or 

some hybrid approaches using evolutionary algorithms. The nature of each of 

these works shows that, in spite the inherent uncertainty in heuristic algorithms, 

they are widely used in test data research [95]. Another interesting fact is that, 

the works related to heuristic algorithm do not use any universal objective 

function or parameter setting during test data generation. Almost all the works 

have made use of their own fitness function and parameter setting for test case 

generation. The inferences from literature survey in chapter 2 support this fact. 

In the case of using genetic algorithms for test case generation, even 

though using an optimal fitness function or parameter setting may alleviate the 

problems faced during test case generation, the real issues related to the domain 

size of the problem has been addressed by only a few researchers [73]. 

Similarly, using other methods of testing like random, path oriented and goal 

oriented methods have several problems and a summary of these problems are 

given in table 2.Using random methods for test case generation may not give 

successful test cases and it requires several numbers of iterations, whereas 

heuristic methods may give some approximate test case values. The main 

problem with heuristic algorithms, like GA, is that test case value varies 

according to the factors such as population initialization, fitness function design, 

crossover, selection and rate of mutation. According to the problem’s nature, 

genetic algorithm parameters and factors need to be adjusted. This shows the 

inherent uncertain nature of heuristic algorithms. While trying to optimize the 

fitness function, sometimes the function gets modified to such an extent that, the 

entire solution may deviate from the expected result [61].    



Chapter 6  

148     Cochin University of Science and Technology 

    In path oriented approach, the problem of test data generation is 

considered as a ‘path’ problem. The path for which test data is to be generated 

may be selected automatically [101]. This path in turn leads to the destination. If 

the selected path doesn’t lead to the target path, then another path is considered. 

This process is continued until the target path is found, until the required test 

data is found or until the time specified for data generation is over. Symbolic 

execution and execution-oriented test data generation is used to generate test 

data in path oriented approach. In execution oriented approach, the actual 

execution of the program occurs. This is a goal oriented approach where the 

process of finding input is represented as a set of sub goals. Here the program is 

executed with the randomly generated input. For the generated input, the 

program execution flow is traced. As the program execution progresses, the 

search procedure decides whether the execution should proceed or whether an 

alternate branch is to be considered as the current path may not lead to the goal. 

This process is continued until the target node or goal is obtained. In path 

oriented approach, the main problem occurs when non-executable paths are 

explored which causes a loss in computation effort [72]. Goal oriented strategy 

may have difficulty in prioritizing the goals during testing. 

Another method used for test data generation is the chaining approach 

[41, 101, 102]. This method may be considered as an extension of path oriented 

approach. In chaining approach, dataflow analysis is used for generating test 

data. An input value is randomly generated and the program is executed with 

this input. If the execution of the program with the generated input leads to a 

branch which does not lead to the target node, then a real valued function is 

associated with this node. Function minimization search algorithm is applied to 

find new input value. Chaining method also faces difficulties as the program 

size and complexity increases. Slicing based testing offers great support in such 



Comparison and Performance Evaluation 

Department of Computer Science 149 

situations and this may be used for software testing. The comparison of various 

testing methods is given in table 6. 2. 

Table 6.2 Comparison of Different Software Testing Approaches 

METHOD ISSUES ADVANTAGES 
Random testing -Poor code coverage 

-More iteration for generating test data values 

-Require to combine with other test data generation methods 

to get appropriate test data values 

-Simple 

Path oriented testing -Selection of paths remains a major issue especially when the 

size of the program is large 

-No universal method suggested to handle path selection 

problem 

-Simple(provided path 

selection is properly 

handled) 

 

Goal oriented testing  -Priority of setting goals should be identified correctly 

-Dependencies may not be correctly followed during goal 

analysis 

-No issues like path 

selection  

Metaheuristics based testing 

(GENETIC ALGORITHM) 

-Designing correct fitness function 

-Wrong fitness function may deviate the entire aim of the 

problem 

-No general rule for setting genetic parameters 

-Uncertainty in solution as the parameter setting varied 

-Uncertainty in response time prediction  

-Dependency may not be followed correctly in all instances 

-Approximate value of 

test data obtained 

during test data 

generation 

Chaining approach based 

testing  

-Statements of interest not identified  

-Becomes complex as the size of the program increases  

-Test data values based 

on the real execution of  

the program 

In table 6.2, the pros and cons of various software testing approaches 

are given. From the table 6.2, it is evident that source code size, dependency 

identification and identification of statements of interest are some of the 

common issues related to all testing approaches. 

 

 



Chapter 6  

150     Cochin University of Science and Technology 

6.3 Experimental Evaluation & Comparison   

An experimental evaluation and comparison with GA based method and 

Random method is given in this section of this thesis. Forward slicing based 

testing is compared with Genetic algorithm (GA) based testing and random 

testing.  Random method of software testing is considered for comparison with 

forward slicing based testing because it is considered as the benchmark for 

comparing testing techniques [8, 104].  GA based method for software testing is 

one of the most extensively used software testing techniques during the last 

decade [2]. Little works are done inorder to evaluate the effectiveness of GA in 

practical testing.  Therefore, we have compared forward slicing based method 

with GA based testing also. A tool RAND was developed for random testing [8] 

for comparison with forward slicing based method in this thesis. Similarly, a GA 

based method for software testing was also used in this thesis [104]. The details of 

this method are given in Chapter 2. Finally, forward slicing based testing is 

compared with random method (RAND) of testing and GA based method of 

testing.  

A research question (RQ) was formulated and this question was 

answered by the experimental study. The question is given below:- 

RQ. How effective is forward slicing based software testing compared to 

random testing and GA based testing? 

In order to answer RQ, comparison and evaluation are done based on 

the following criteria:- 

• Statistical method of comparison and evaluation  

• Metric based comparison and evaluation 

 



Comparison and Performance Evaluation 

Department of Computer Science 151 

6.3.1 Comparison and Evaluation using Statistical Method 

In order to address research question RQ, the null hypothesis and 

alternate hypothesis were formulated as given below:- 

H0: There is no difference in the effectiveness of forward slicing based testing 

compared to GA based testing and random testing. 

HA: Forward slicing based testing is more effective compared to GA based 

testing and random testing. 

6.3.1.1 Test Subjects 

Some sample programs were considered. Forward slicing based testing, 

random testing and GA based testing were applied to the same sample 

program for testing the programs. The specifications of the program are given 

below in table 6.3:- 

Table 6.3 Subject programs 

Test 
Subject Description of the program LOC Number of variable in 

the test subject 
P1 A C program to find the value of y in the function y (x, n) 22 3 

P2 A C program to calculate the commission for a sales representative  21 2 

P3 A C program for deciding grades for the marks obtained 18 1 

P4 A C program to calculate the bank operations  121 7 

P5 A C program to find the grade of steel  35 3 

P6 A C program to find the option values in online trading system 117 6 

P7 A C program to generate Fibonacci series 20 4 

P8 A C program to find the sum of the given series 16 5 

P9 A C program to find biggest of three numbers 18 4 

P10 A C program to find electricity charges 22 5 

For the sample programs given in table 6. 3, the total number of lines of 

code (LOC) and the number of variables is noted. The details of applying testing 

techniques to the subject programs in explained in the next (Test Set-up) section. 



Chapter 6  

152     Cochin University of Science and Technology 

6.3.1.2 Test Set-up 

In order to handle the null hypothesis H0, evaluation was carried out in 

two stages. In the first stages, test subjects P1 to P5 was tested with GA based 

testing and test subjects P6 to P10 was tested with forward slicing based 

method and the results were noted. In the second stage, test subjects P1 to P5 

was tested with random method and the test subjects P6 to P10 was tested with 

forward slicing based method. In stage 1 and stage 2 we can see that there are 

two there are two test conditions and two group of test subjects. Therefore, a 

Mann-Whitney U test is used to evaluate the results of evaluation [33]. The 

result of stage 1 and stage 2 are given below in table 6.4 and table 6.5 

Table 6.4  Test subjects& the result of applying GA based testing method and 

forward slicing based testing on test subjects 

Test Subject Total LOC 

Number of 
statements to 
be considered 
in GA based 

testing 

Test Subject Total LOC 

Number of 
statements to 
be considered 

in forward 
slicing based 

testing 
P1 22 22 P6 117 114 

P2 21 21 P7 20 27 

P3 18 18 P8 16 23 

P4 121 121 P9 18 22 

P5 35 35 P10 22 10 

In table 6.4 we can see that, for test subjects P1 to P5 the total LOC in 

the program and the number of statements to be considered when GA based 

testing is used is given and for test subjects P6 to P10, the total number of 

LOC in the program and the number of statements to be considered when 

applying forward slicing based testing are listed. 

 



Comparison and Performance Evaluation 

Department of Computer Science 153 

Table 6.5 Test subject & the result of applying random method& forward slicing 

on test subjects 

Test 
Subject 

Total 
LOC 

Number of 
statements to be 

considered in Random 
method of testing 

Test Subject Total LOC 

Number of statements 
to be considered in 

forward slicing based 
testing 

P1 22 22 P6 117 114 
P2 21 21 P7 20 27 
P3 18 18 P8 16 23 
P4 121 121 P9 18 22 
P5 35 35 P10 22 10 

In table 6.5 we can see that,  for test subjects P1 to P5 the total LOC in 

the program and the number of statements to be considered when random based 

testing is used and for test subjects P6 to P10, the total number of LOC in the 

program and the number of statements to be considered when applying forward 

slicing based testing are listed. A questionnaire was prepared based on the 

research problem and the research objective.  The questionnaire was validated 

by first giving it to two subject experts and establishing face validity. Next, a 

pilot study was done among fellow researchers. After that the questionnaire 

was finalised. There were 3 questions Q1, Q2 and Q3 in the questionnaire 

which is given below.  

Q1. What is the difficulty faced due to the source code size in software testing?  

Q2. What is the problem faced due to the difficulty in identifying relevant 

statements in a program during software testing?  

Q3. What is the problem caused due to the difficulty in tracing dependency in 

software testing? 

In our study, the 10 test subjects (P1 to P10) were randomly assigned to 
10 independent testers. These 10 subject programs were divided into two 
groups in such a way that, these two groups were comparable in terms of lines 
of code and program difficulty level. Programs P1 toP5 were first tested using 
GA and Random method and programs P6 to P10 were tested using FST. The 



Chapter 6  

154     Cochin University of Science and Technology 

results were analysed and compared. We then repeated the process by testing 
P1 to P5 with FST and P6 to P10 with GA and Random method. The results 
obtained were same as earlier and hence not included in the thesis. 

In stage 1 of the evaluation, all the test subjects (P1 to P10) addressed 
this questionnaire and the outcome was recorded for subject programs P1 to 
P5 for GA based testing and for subject programs P6 to P10 for forward 
slicing based testing. This means that program P1 to P5 was checked with GA 
based approach and programs P6 to P10 was checked with forward slicing 
based testing approach. Similarly in stage 2 also all the test subjects (P1 to 
P10) addressed this questionnaire and the outcome was recorded for subject 
programs P1 to P5 for random method of  testing and for subject programs P6 
to P10 for forward slicing based testing. This means that program P1 to P5 
was checked with random method of testing approach and programs P6 to P10 
was checked with forward slicing based testing approach in the second stage. 

In both the stages 1 & 2, a qualitative rating for the questions was 
assigned based on the evidence collected from GA based testing, forward slicing 
based testing and random method of testing. Each question had a possible 
response. By data coding, the outcome of the questions was rated based on a 
scale of 0-5 [60]. The outcome and the corresponding scale are given below in 
figure 6.1. Based on the testing outcome given in table 6.4 and table 6.5, the 
response was noted for each type of testing in stage 1 and stage 2.  

0-Nil/No difficulty 
1-Negligible 
2-Low difficulty 
3-Average difficulty 
4-High difficulty 
5- Extreme difficulty 

Figure 6.1 Question outcome and corresponding scale 



Comparison and Performance Evaluation 

Department of Computer Science 155 

6.3.1.3 Stage 1- Comparing Forward Slicing based Testing and GA based Testing 

In this stage, forward slicing based testing is compared with GA based 

testing.  

Table 6.6 Response for GA based Testing & FST 

Test 
Subject 

GA based 
testing-

Response 
for Q1 

GA based 
testing-

Response 
for Q2 

GA based 
testing-

Response 
for Q3 

GA based 
testing-

Total/Sum of 
responses  

(Q1+Q2+Q3) 

Test 
Subject 

Forward 
slicing 
based 

testing- 
Response 

for Q1 

Forward 
slicing 
based 

testing- 
Response 

for Q2 

Forward 
slicing 
based 

testing- 
Response 

for Q3 

Forward 
slicing based 

testing- 
Total/Sum of 

responses 
(Q1+Q2+Q3) 

P1 4 5 4 13 P6 1 1 2 4 
P2 4 4 4 12 P7 1 1 1 3 
P3 4 5 4 13 P8 0 1 1 2 
P4 5 5 5 15 P9 0 1 1 2 
P5 4 5 4 13 P10 0 1 1 2 

In the table 6.6 given above, the columns ‘GA based testing-Response 

for Q1, GA based testing-Response for Q2 and GA based testing-Response for 

Q3’ gives the response for question Q1, Q2 and Q3 for test subjects P1 to P5 

when applying GA base testing and the column ‘GA based testing-Sum/Total 

of responses (Q1+Q2+Q3)’ gives the added value of Q1, Q2 and Q3.  

Similarly, the columns ‘Forward slicing based testing- Response for Q1, 

Forward slicing based testing- Response for Q2 and Forward slicing based 

testing- Response for Q3’gives the response for question Q1, Q2 and Q3 for 

test subjects P6 to P10 when applying forward slicing based testing and the 

column ‘Forward slicing based testing- Sum/Total of responses (Q1+Q2+Q3)’ 

gives the added value of Q1, Q2 and Q3. 

To perform the evaluation of GA based testing and forward slicing based 

testing, a Mann-Whitney U test is used. Inorder to calculate the U statistic, the 

next step is to rank the sum of the responses. The table 6.7 gives rank for sum of 

responses for GA based testing and forward slicing based testing.   

  



Chapter 6  

156     Cochin University of Science and Technology 

Table 6.7 Ranked response for GA based Testing & FST 

Test 
Subject 

GA based 
testing-Sum 
of responses  
(Q1+Q2+Q3) 

Rank of 
the 

response 

Actual 
Rank of 

GA based 
testing 

Test Subject 

Forward  
slicing- Sum 

of the 
Responses 

for Q1,Q2 & 
Q3 

Rank of the 
response 

Actual Rank 
of forward 

slicing 
based 
testing 

P1 13 7 8 P6 4 5 5 

P2 12 6 6 P7 3 4 4 

P3 13 8 8 P8 2 1 2 

P4 15 10 10 P9 2 2 2 

P5 13 9 8 P10 2 3 2 

  Total 40   Total 15 

In table 6.7 we can see that, ranks having tied score are given average 

value of ranks. Finally the actual ranks are noted. A Mann Whitney U test is 

applied for evaluating the ranks obtained. In Mann- Whitney U test, the U 

value is given as: 

 U= n1n2 + nx (nx+ 1)/2 - Tx 

Here n1 and n2 are the participants in each group and Tx is the largest of 

rank total and nx is the number of participants in the group having largest rank 

total 

In our example,  n1 =  5and n2 = 5, Tx=40 and  nx=5 

Therefore  U =  5 * 5 + 5(5+1)/2 – 40  

 U = 25+15-40 

 U = 0 

The next step is to find the critical value of U from the Mann-Whitney 

U test table of critical values (given in appendix). From the table at 5% 

significance level for a two tailed test, the critical value of U for n1=5 and for 

n2=5 is 2. 



Comparison and Performance Evaluation 

Department of Computer Science 157 

Therefore U=2 (from Mann Whitney U table at 5% significance level) 

 To be statically significant, the obtained U value should be less than 

the critical value of U.  

In our case 0 < 2, which indicates that the difference we found during the 

testing of software with GA based method and using forward slicing based 

testing is unlikely to occur by chance. Testing the software with GA based 

method and with a forward slicing based method makes a significant difference. 

Therefore stage 1 of Null Hypothesis (H0) is rejected, which proves 

that forward slicing based testing is more useful in the testing process 

Inference: - Forward slicing framework is more useful in testing compared to 

GA based testing method 

6.3.1.4 Stage 2- Comparing Forward Slicing based Testing and Random testing 

In this stage, forward slicing based testing is compared with random 

method of testing.  

Table 6.8 Response for Random method based Testing & FST 

Test 
Subject 

Random 
method  
based 

testing-
Response 

for Q1 

Random 
method 
based 

testing-
Response 

for Q2 

Random 
method 
based 

testing-
Response 

for Q3 

Random 
method 
based 

testing-Sum 
of responses  
(Q1+Q2+Q3) 

Test 
Subject 

Forward 
slicing 
based 

testing- 
Response 

for Q1 

Forward 
slicing 
based 

testing- 
Response 

for Q2 

Forward 
slicing 
based 

testing- 
Response 

for Q3 

Forward 
slicing based 
testing- Sum 
of responses 
(Q1+Q2+Q3) 

P1 4 5 5 14 P6 1 1 2 4 

P2 4 5 5 14 P7 1 1 1 3 

P3 4 5 5 14 P8 0 1 1 2 

P4 5 5 5 15 P9 0 1 1 2 

P5 4 4 4 13 P10 0 1 1 2 

In the table 6.8 given above, the columns ‘Random method based 

testing-Response for Q1, Random method based testing-Response for Q2 and 

Random method based testing-Response for Q3’ gives the response for question 



Chapter 6  

158     Cochin University of Science and Technology 

Q1, Q2 and Q3 for test subjects P1 to P5 when applying random method of 

testing and the column ‘Random based testing-Sum of responses (Q1+Q2+Q3)’ 

gives the added value of Q1, Q2 and Q3.  Similarly, the columns ‘Forward 

slicing based testing- Response for Q1, Forward slicing based testing- Response 

for Q2 and Forward slicing based testing- Response for Q3’gives the response 

for question Q1, Q2 and Q3 for test subjects P6 to P10 when applying forward 

slicing based testing and the column ‘Forward slicing based testing- Sum of 

responses (Q1+Q2+Q3)’ gives the added value of Q1, Q2 and Q3. 

In order to perform the evaluation of random method based testing and 

forward slicing based testing, a Mann-Whitney U test is used. Inorder to 

calculate the U statistic, the next step is to rank the sum of the responses. The 

table 6.9 gives rank for sum of responses for random method based testing and 

forward slicing based testing.   

Table 6.9  Ranked responses for random method based testing and forward 
slicing based testing   

Test 
Subject 

Random 
method  
based 

testing-Sum 
of responses  
(Q1+Q2+Q3) 

Rank of 
the 

response 

Actual 
Rank of 
Random 
method 
based 
testing 

Test Subject 

Forward   
slicing- Sum 

of the 
Responses 
for Q1, Q2 

& Q3 

Rank of the 
response 

Actual Rank 
of forward 

slicing 
based 
testing 

P1 14 8 8.5 P6 4 5 5 

P2 14 9 8.5 P7 3 4 4 

P3 13 7 6.5 P8 2 1 2 

P4 15 10 10 P9 2 2 2 

P5 13 6 6.5 P10 2 3 2 

  Total 40   Total 15 

In table 6.9 we can see that, ranks having tied score are given average 

value of ranks. Finally the actual ranks are noted. A Mann Whitney U test is 

applied for evaluating the ranks obtained. In Mann- Whitney U test, the U 

value is given as: 



Comparison and Performance Evaluation 

Department of Computer Science 159 

 U= n1n2 + nx (nx+ 1)/2 - Tx 

Here n1 and n2 are the participants in each group and Tx is the largest of 

rank total and nx is the number of participants in the group having largest rank 

total 

In our example,  n1 =  5and n2 = 5, Tx=40 and  nx=5 

Therefore  U =  5 * 5 + 5(5+1)/2 – 40  

 U = 25+15-40 

 U = 0 

The next step is to find the critical value of U from the Mann-Whitney 

U test table of critical values. From the table (given in appendix), at 5% 

significance level for a two tailed test, the critical value of U for n1=5 and for 

n2=5 is 2. 

Therefore U=2 (from Mann Whitney U table at 5% significance level) 

To be statically significant, the obtained U value should be less than the 

critical value of U.  

In our case 0 < 2, which indicates that the difference we found during the 

testing of software with random method and using forward slicing based testing is 

unlikely to occur by chance. Testing the software with random method and with a 

forward slicing based method makes a significant difference. 

Therefore stage 2 of Null Hypothesis (H0) is rejected, which proves 

that forward slicing based testing is more useful in the testing process 

Inference: - Forward slicing framework is more useful in testing compared to 

random method based testing  

 



Chapter 6  

160     Cochin University of Science and Technology 

6.3.1.5 Summary from Statistical Comparison 

In the previous sections, forward slicing based testing is compared with 

GA based testing and random method. Some subject programs were considered 

for comparison and these subject programs were tested with forward slicing 

based testing, GA based testing and random method of testing.  A Mann 

Whitney U test was used to compare the end result. Finally, from the end result, 

it can be noticed that forward slicing based testing is more useful compared to 

GA based testing and random testing. The research question RQ is thus 

addressed by statistical comparison and evaluation of testing methods. 

6.3.2 Metric based Comparison and Evaluation  

In the previous section a statistical comparison of testing approaches is 

done. In this section a metric based comparison of testing approaches is 

performed. All the test subjects given in table 6.3 are evaluated using two 

categories of metrics. The first category is a software testing technique metric 

[103] and the second category is a slicing based metric [137]. The software 

testing technique metrics are noted for each test subject corresponding to 

forward slicing based testing, random testing and GA based testing. 

6.3.2.1 Software Testing Technique Metrics 

The software testing technique metrics used for evaluating forward 

slicing based testing, random testing and GA based testing are given below. 

1. Test case generation metric 

2. User control metric 

1. Test Case Generation (TCG) Metric  

It is defined as the ability to generate and readily modify the test cases. 

Test case generation is expressed as the sum of Automated test case generation 

(ATG) and Test case reuse functionality (TRF) [103]. Therefore, TCG= 

ATG+TRF 



Comparison and Performance Evaluation 

Department of Computer Science 161 

Here, ATG and TRF are defined by various scale levels. In ATG, the 

following scale value denotes that the following functionalities are possible in 

the testing tool. 

10 - Generation of test cases may be automated fully  

8 - Tool is provided with user friendly interface 

6 - The parameters which are present in the tool are named and 

defined properly 

4 - The possible values of various parameters are provided to the 

user and is easily understandable 

2 - Tester provides the tool with parameter name, type and range of 

values 

0 - Tester must generate test cases by hand 

Similarly, TRF is also denoted by a scale of possible values which are 

given below. 

10 -  Ability to modify test cases and save the modified test cases in an 

easy and understandable manner 

8 -  Test cases may be modified and saved as new test cases 

6 -  Test cases may be modified, but cannot be saved as new test 

cases in a user friendly manner 

4 - Test cases may be modified, but cannot be saved as new test cases 

2 -  Limited modification of test cases possible 

0 - Test cases cannot be modified 

The TCG value obtained for subject programs (P1 to P10) using 

forward slicing based testing, random testing and GA based testing are given 

below in the table 6.10.  

 



Chapter 6  

162     Cochin University of Science and Technology 

Table 6.10 TCG values 

Factors 
Testing with Forward 

slicing (Test subjects – P1 
to P10) 

Testing with Random method 
(Test subjects – P1 to P10) 

Testing with GA 
(Test subjects – P1 to 

P10) 
ATG 8 2 6 
TRF 10 4 4 
TCG 18 6 10 

From the above table 6.10, we can see that the value of TCG is 18 using 

forward slicing, 6 using random method and 10 using GA based method. When 

using a forward slicing framework we can see that the values of ATG is 8 and 

TRF is 10 respectively. As there is some level of manual intervention, the value 

of ATG is 8. Using forward slicing, the statements of interest with respect to the 

variables present in a program may be easily identified. This also gives us a 

picture of the dependency present in the program. This information may be used 

to design test cases for the program. As we have the dependency information, 

the test cases generated may be modified and reused. Therefore, TRF is 10 here. 

With ATG and TRF value as 8 and 10, we have TCG as 18.  

 
Figure 6.2 Test case generation metric   

0

2

4

6

8

10

12

2 4 6 8 10

TR
F 

ATG 

RAND

GA

FS



Comparison and Performance Evaluation 

Department of Computer Science 163 

In figure 6.2, test case generation metric (TCG) is plotted. From the 

graph, it can be noticed that, while testing with random method, the tester 

generates test cases randomly and therefore the chance of success may vary 

which makes ATG value as 2. As the statement of interest cannot be 

identified, it is difficult to trace the dependency present in the module. 

Therefore test case reuse and design is also very difficult. The tester has to 

design, modify and record the test cases manually. This gives TRF value 4. 

While testing with GA, parameters which are present in the tool are 

named and defined properly and therefore ATG value is taken as 6. As the 

statement of interest cannot be identified, it is difficult to trace the dependency 

present in the module. Therefore, test case reuse and design is also very 

difficult. The tester has to design, modify and record the test cases manually. 

This gives TRF value 4. 

From the above given values of TCG in table 6.5, it is evident that 

using forward slicing  is beneficial in testing compared to random testing and 

GA based testing. 

2. User Control (UC) Metric 

In this thesis, forward slicing framework is evaluated using UC metric 

too.  The UC value depends on the tester [103]. If the tester is able to have an 

expansive control over tool operations and if the tester is able to perform 

testing with respect to the area of interest, then the UC value will be high. This 

means that, a tester can choose the program parts which need to be critically 

tested. This feature is very attractive when a part of source code needs to be 

tested alone without retesting the whole source code. We defined two factors 

in the experimental study based on which the value of UC is calculated which 

are given below:- 



Chapter 6  

164     Cochin University of Science and Technology 

1. Module to be tested 

2. Identify the statement of interest in the module. 

Each of these factors can take either a value of 1 or 0, where 1 indicates 

a possibility and 0 indicates an unlikely situation. Ten independent testers who 

were involved in the comparison study of different methods used in our work 

gave values for UC metric. The averages of the value allocated by them are 

given in table 6.11. Here RM, GA and FST get a UC value of 1 for factor 1(as 

the tester has the freedom of selecting the module to be tested). For factor 2, 

RM and GA get a value of 0 (as the tester cannot identify the statements of 

interest), while FST gets a value of 1(as the tester can identify statements of 

interest during testing). 

Table: 6.11 UC values 

Factors Testing using 
Random method Testing using GA Testing with 

Forward slicing 
1 1 1 1 
2 0 0 1 

Total Value 1 1 2 

From the table 6.11 given above, we can see that the sum/total value of 

UC factors one and two are UC=1 during testing with random method and GA 

and UC=2 in testing with forward slicing framework. This is because during 

testing with random method and GA based testing, the statements of interest 

cannot be identified which causes the value of factor 2 as 0 and in testing with 

the framework the value of factor 2 is 1, which means that the statements of 

interest may be found.  

3. Summary from Software Testing Technique Metrics 

Comparison and evaluation using software testing tool metrics TCG 

and UC indicate that forward slicing framework is more useful in testing 

process compared to random method and GA based testing.  



Comparison and Performance Evaluation 

Department of Computer Science 165 

6.3.2.2 Slicing Metrics  

In this thesis, forward slicing based method is compared with random 

method and GA based method using some slicing metrics also. The slice based 

cohesion metrics namely tightness and coverage were used for evaluation and 

comparison of testing methods. The main reasons for using slicing metrics 

were:-  

• Slice based metric provides a unique view of the program compared to 

ordinary metric.  

• Slicing metrics used to quantify the changes in the source code 

• Value of the slicing metrics may be used as a reference for future 

during program maintenance 

1. Tightness Metric 

The tightness of a program/module is defined as the number of 

statements in every slice [110, 137]. It is denoted as given below: 

Tightness=|Sint|/ length (M) 

Where Sint is the statements present in all the slices and length (M) is 

the length of the module present in the program. It can have a maximum value 

of 1. The value of tightness also indicates the level of dependency present in 

the module. A module with no statements in the slice will have a tightness 

value equal to 0. Having the tightness value as 0 is of little use during testing 

as it gives no information about the statements of interest. The statement of 

interest is helpful in finding the dependency between the statements during 

testing. This information will be helpful during test case generation and the 

test cases may be easily modified and reused. If the value of tightness is 0, it 

indicates that the dependency between the statements in a program is nil. In 

such situations the test cases designed for one condition may not be used for 



Chapter 6  

166     Cochin University of Science and Technology 

the other and vice versa. Separate test cases need to be found for each and 

every condition. The test subject specifications and the value of slicing metrics 

‘tightness’ noted for subject programs P7, P3 and P5 are given below in table 

6.12. and table 6.13 respectively. 

Table 6.12 Test subject specification 

Test subject 
(programs) 

Total 
LOC 

Number of 
variables 

Statements 
of interest 

with respect 
to variable1 

Statements 
of interest 

with respect 
to variable 2 

Statements of 
interest with 

respect to 
variable 3 

Statements of 
interest with 

respect to 
variable 4 

Sint 

P7 20 4 6 8 8 5 5 

P3 18 1 9 - - - 9 

P5 35 3 16 15 13 - 13 

In table 6.12, the result of applying forward slicing with respect to the 

variables present in the concerned programs for subject programs P7, P3 & P5 

given in table 6.3 is given. The values in table 6.12 are used to calculate the 

tightness value of P7, P3 and P5 which is given in table 6.13.  

Table 6.13 Tightness value 

Test subject 
(programs) 

Forward slicing 
based testing 

Random method of 
testing GA based testing 

P7 0.37 0 0 
P3 0.5 0 0 
P5 0.25 0 0 

From the table 6. 13 given above, it is clear that testing using random 

method and GA will have a tighter value of 0. Having the tightness value 0 

gives no indication about the dependency present in the program. If the tester in 

able to get an idea regarding the dependency in the program, it will be helpful 

during testing, as it gives an indication of the probability of the chance of 

occurrence of errors in a program. Using forward slicing for testing gives the 

tightness value as 0.37, 0.5 and 0.25 respectively for programs P7, P3 and P5.  

Here, as Sint increases, the value of tightness increases which means that the 

number of dependent statements in the program increases. In such conditions 



Comparison and Performance Evaluation 

Department of Computer Science 167 

the tester should be more cautious in designing test cases as there is more 

chance of occurrence of errors. Therefore, using forward slicing in testing gives 

an indication of the level of difficulty needed during program testing. 

2. Coverage Metric 

Coverage (C) compares the length of the slices to the length of the 

entire module [137]. It is denoted as given below: 

 ( )nV
ii=1

i

1C= SL  / length M
V ∑  

Here Vi is subset of Vn where Vn is the set of variables present in the 

module and SLi gives the slice corresponding to Vi.  

The test subject specifications and the value of slicing metrics ‘coverage’ 

noted for subject programs  P7, P3 and P5  are given below in table 6.14. 

Table 6.14 Coverage value 

Test subject 
(programs) 

Forward slicing 
based testing 

Random method of 
testing GA based testing 

P7 0.33 0 0 

P3 .5 0 0 

P5 .41 0 0 

From the table 6.14 given above, it is clear that testing with random 

method and GA will have a coverage value of zero. Having the coverage value 

zero gives no indication about the dependency present in the program. If the 

tester in able to get an idea regarding the dependency in the program, it will be 

helpful during testing, as it gives an indication of the probability of the chance 

of occurrence of errors in a program.  



Chapter 6  

168     Cochin University of Science and Technology 

Using forward slicing for testing gives the coverage value as 0.33, 0.5 

and 0.41 respectively for programs P7, P3 and P5.  In forward slicing based 

testing, coverage gives the statements of interest with respect to all the 

variables in a module. This gives an overview of dependent statements in a 

module. This inturn will be helpful for the programmer, as it gives an idea of 

the level of difficulty associated with each module during program testing. 

Therefore, using forward slicing in testing is more beneficial compared to 

random testing and GA based testing. 

3. Summary from Slicing Metric based Comparison 

Evaluation and comparison of testing techniques using slicing metrics 

coverage and tightness indicate that, using forward slicing in testing is 

beneficial compared to testing using random method and GA based testing. 

6.4  Inferences from the Comparison and Evaluation of Related 

Methods 

In this section, we have mentioned the overall inferences made from 

the comparison of related methods 

6.4.1  Main Inferences made from the Comparison of Different Testing 

Approaches  

We have compared forward slicing based testing with some related testing 

techniques in section 6.2. Some inferences are made based on the comparison are 

already given in table 6.2. In order to handle these issues related to other testing 

approaches, a slicing based approach is introduced in thesis.  



Comparison and Performance Evaluation 

Department of Computer Science 169 

Slicing based testing approaches have clear advantages over other testing 

techniques which are highlighted in figure 6.3. Using the slicing based 

framework for testing minimizes the problems associated with other testing 

methods. The crux of using our slicing based test case generation framework is:- 

 
Fig 6.3 The Merits of Slicing based Test Data Generation 

• Slicing identifies statements of interest which makes test data 

generation more effective and direct by handling the complexity of the 

size of the source code 

• No confusion in selecting the paths as the process is based on slicing 

criterion, which is considerably easier to set, compared to path selection 

strategy 

• Slicing considers dependency in the program which plays a crucial role 

in finding effective test cases 

• No problem of uncertainty as in the case of heuristic approaches 

• As test data generation itself is a process of generating test values for 

variables, applying slicing in such a scenario is better as our slicing 

also works on the basis of the variable of interest. 

• Debugging is easier as we can locate the fault in the slice itself. 

 
 Code coverage 

Path selection 

Optimization 
problem 

Uncertainty 

Random 

Path oriented 

Heuristic 

Goal oriented Issues Solution 

Slicing 
based 

Software 
Testing 

Chaining 
Dependency 

problem 



Chapter 6  

170     Cochin University of Science and Technology 

6.4.2. Inferences from Experimental Evaluation & Comparison 

 We can make some inferences based on the experimental evaluations 

made using statistical and metric based comparison given in the previous 

sections of this chapter.  In the statistical evaluation using Mann-Whitney U test, 

we found that forward slicing based testing is more effective compared to 

random method of testing and GA based testing. In metric based comparison, 

we have used software testing metrics such as ATG and UC metric. Evaluation 

with both these metrics proved FST as better compared to GA based testing and 

random method of testing. In slicing metric based comparison, FST was 

compared with GA based testing approach and random method using slicing 

metrics ‘tightness’ and ‘coverage’. In this evaluation also it was proved that, 

using forward slicing in testing is beneficial compared to testing using random 

method and GA based testing. Finally, based on these experimental evaluations 

we have made some inference on program factors like domain reduction, 

program dependency and number of errors which are detailed below. These 

inferences help to answer the research question RQ. 

1. Domain Reduction: - Effect of using GA based testing approach, random 

approach and forward slicing based approach on domain reduction during 

software testing is described below. 

During software testing using genetic algorithms and random testing, one 

of the main issues which affect the overall performance of the system is the 

domain size. Here the domain size refers to the variables present in the program 

[73]. For example, the variables for which the test cases are to be produced may 

reside inside a nested loop. In order to traverse the inner loops, the outer loops 

should be covered initially. Coverage of unrelated branches to reach the 



Comparison and Performance Evaluation 

Department of Computer Science 171 

destination branch involves several irrelevant paths and irrelevant variables. 

Finding appropriate values for such variables which are totally unrelated to the 

target do not make any improvement in testing, rather this causes delay in the 

testing process. Similarly, in GA based testing, improving or redesigning the 

fitness function according to the order of priority of the paths to be traversed did 

not make any significant improvement in the overall performance of the system. 

This is because redesigning the fitness function in genetic algorithm to improve 

the objective function value did not remove the irrelevant variables from the 

function. In otherwords, using GA in testing did not give statements of interest 

during software testing. This in turn makes testing more complicated. In random 

testing also, there was no reduction in the number of program statements to be 

considered for testing. This is evident from table 6. 4. On the other hand, 

forward slicing based testing concentrated on statements of interest and only 

variables of interest are considered. Therefore, there is no issue of considering 

unnecessary variables during software testing. This in turn makes the testing 

process more focused. The graph plotted in figure 6.4. gives an idea of the 

number of errors identified by forward slicing based testing, random testing and 

GA based testing. In the graph given in figure 6.4, it can be noticed that forward 

slicing based testing identifies more number of errors compared to random 

method and GA based testing. This is due to the fact that, for a given time 

duration, the number of relevant statements identified by forward slicing based 

testing is more compared to random method and GA based testing approach. 

This feature of forward slicing based testing is very much helpful during testing 

of large programs.  



Chapter 6  

172     Cochin University of Science and Technology 

 
Figure 6.4 Identification of errors 

2. Program Dependency: - Effect of using GA based testing approach, random 

approach and forward slicing based testing approach on program dependency 

during software testing is as follows. 

Considering program dependencies is one of the major issues in software 

testing [9].  As the value of one variable may be dependent on other variables, 

software testing using forward slicing has a clear advantage over genetic 

algorithm based testing and random testing. In most of the works on genetic 

algorithm based software testing, program dependency is not correctly followed. 

Usually, in random testing and genetic algorithm based program testing, all the 

statements in the program are analysed initially to identify the relevant statements 

or else we have to get the list of statements that will have a potential role in 

software testing. From the testing point of view, checking the whole program line 

by line is an unnecessary waste of effort. Instead, if we are able to find the 

program statements which help in program testing, such as those that assist in 

finding the test case values during testing, the whole testing effort will be reduced 

considerably. In addition, testing can be made more methodical. Identifying the 

relevant statements which contribute to program testing and analysing those 

0
1
2
3
4
5
6
7
8
9

5 10 15 20

ER
RO

RS
 

NUMBER OF RELEVANT STATEMENTS 

FS

GA

RAND



Comparison and Performance Evaluation 

Department of Computer Science 173 

statements can give the dependence relation present in the program. Using 

dependencies in the program helps to trace out the errors in a program. These are 

fulfilled in slicing based testing approach. As we already discussed in domain 

reduction, in GA based testing, redesigning the fitness function for traversing the 

target branches may cover some dependency features. This is not sufficient during 

software testing because the generation of test cases for a particular specification 

may require an exact picture of dependent variable values. This issue is not 

addressed in genetic algorithm based approach. Similarly in random testing also, 

the dependencies are not identified correctly. Using slicing based software testing 

approach, we can get a clear view of variable dependencies as well as the relevant 

variables from statements of interest, so that these variables in turn may be 

utilized for test case generation of some remaining branches in the program. 

 
Figure 6.5 Dependency Level 

The graph plotted in figure 6.5. gives an idea of the number of 

dependent statements identified by forward slicing based testing, random 

testing and GA based testing. In the graph given in figure 6.5, it can be noticed 

that forward slicing based testing identifies more number of dependent 

statements compared to random method and GA based testing. This is due to 

0
2
4
6
8

10
12
14
16
18
20

5 10 15 20

De
pe

nd
en

t s
ta

te
m

en
ts

 

Number of statements in the program 

FS

GA

RAND



Chapter 6  

174     Cochin University of Science and Technology 

the fact that, in a given time interval, the number of relevant statement 

identified by forward slicing based testing is more compared to random 

method and GA based testing approach. This feature of forward slicing based 

testing is very much helpful during testing of large programs as the dependent 

statements in the program gives an indication of the factors to be considered 

during program testing. Having a clear view of dependency will help the tester 

to implement changes in the source code and at the same time help to identify 

the dependent statements which are affected by the modification. 

3. Number of errors: - Effect of using GA based testing approach, Random 

approach and forward slicing based testing approach on the number of errors 

found during testing is as follows. 

We have done an analysis of the number of program statements which 

have a significant role in program testing identified by program slicing based 

testing, random method and GA based testing in table 6. 4. We have considered 

the statements in the program as a metric for analysing the testing approaches. 

For a given program, forward slicing covers more number of program 

statements with respect to the variables of interest compared to genetic 

algorithm in the same time span. As the probability of error distribution in a 

program is uniform throughout the code, an increase in the number of 

executable statements with respect to a particular program variable increases the 

chance of discovering the number of faults related to that variable [80]. This 

means that, rather than concentrating on a particular area for a long time to 

attain high coverage for that particular branch or program code, program slicing 

tries to analyze more number of potential statements in a given program 

compared to random method and GA based testing approach. Here the main 

principle is to identify possible program statements due to which program 

malfunctioning is caused, in minimal time. This re-affirms the fact that program 



Comparison and Performance Evaluation 

Department of Computer Science 175 

slicing based testing can be more effective in software testing compared to 

random method and GA based software testing. 

An assessment of testing productivity obtained in random method, 

genetic algorithm and forward slicing based testing approaches is given in 

figure 6.6. The graph shows that, when program testing is done using forward 

slicing based approach, there will be high testing productivity and when 

program testing is implemented using genetic algorithms and random method 

the testing productivity will be low. Some of the terms related to the graph in 

figure 6.6 are given below:- 

 
Figure 6.6 Testing productivity graph 

1. Relevant branch indicates the statements of a program which may play 

a critical role in program testing. 

2. Testing productivity indicates the measure of the number of relevant 

statements that can be covered in a specific time interval 

3. High testing productivity means that more errors can be detected with 

less ‘effort’, while low testing productivity means that the number of 

relevant statements covered in a specific time interval will be very few  

0
2
4
6
8

10
12
14
16
18
20

S1 S2 S3 S4

NU
M

BE
R 

OF
 R

EL
EV

AN
T 

ST
AT

EM
EN

TS
 

PROGRAM EXECUTION STAGES 

GA

FS

RAND



Chapter 6  

176     Cochin University of Science and Technology 

From the graph given in figure 6.6, it is evident that forward slicing 

based testing has high testing productivity compared to random and GA based 

testing. This means that as the number of relevant statements identified by 

forward slicing is more, the number of errors found using forward slicing 

based testing is more compared to random method and GA based testing. 

Therefore, forward slicing based testing is more beneficial that random 

method and GA based testing. 

From the inferences made from domain reduction, program dependency 

and number of errors in a program, it is evident that forward slicing based 

software testing is more effective in software testing compared to random 

testing and GA based testing. Slicing based testing approaches are very 

essential when the source code of the program is a concern for testers.  

Therefore, it can be concluded that the inferences made from the 

comparison of related testing techniques give satisfactory explanations for 

research question RQ 

6.5 Summary of the Chapter 

This chapter discusses the comparison and performance evaluation of 

forward slicing based testing with related testing approaches. In addition to a 

general comparison with related testing approaches, forward slicing based 

testing is compared with random method of testing and GA based testing. A 

statistical method and metric based comparison is used for comparing forward 

slicing based testing with random method and GA based testing. Finally, the 

inferences made from the comparison shows that forward slicing based testing 

is more effective in software testing compared to random approach of software 

testing and GA based testing.  

……. ……. 



Conclusion and Future Research Direction 

Department of Computer Science 177 

 

7.1 Introduction  

Though the software quality has gained so much importance during the 

last decade, the discipline of software testing, especially source code based 

testing still remains a challenging one. In today’s world, it has become almost 

impractical to think of a world without software. Improper working of software 

may result in huge damage, loss of money or even threat to life. Thus, active 

research work is progressing in the area of software testing to discover efficient 

methods for source code based testing.  In this thesis work, an effective method 

is introduced and demonstrated for handling the source code size during 

software testing. Therefore, this work addresses a relevant issue in software 

testing.   

7.2 Summary of Achievements 

As mentioned in the above section, inorder to ensure proper working of 

software, several software testing techniques were developed [8, 11, 80]. In 

most of the testing methods, the issue of source code size was not addressed 

[2, 3, 43, 46, 59, 67, 97, 98, 99, 100, 101, 104]. Considering these facts, the 

main objective of this thesis was put forward- To develop an effective method 

for source code based software testing that can handle the size of source code. 



Chapter 7  

178     Cochin University of Science and Technology 

In addition, this thesis work has provided some extensions to the proposed 

method of source code handling. The original objectives were as follows:- 

• To handle source code size during structural testing 

• Identify statements of interest with respect to input variables in 

software testing 

• Identify the dependency in the program 

• Tracking changes related to output 

The first objective was addressed by introducing the concept of forward 

slicing for software testing. The forward slicing method for software testing 

was introduced with this aim in chapter 3. In forward slicing, the program 

statements affected by a particular variable were identified by the slicing 

criterion. The main intention of using forward slicing is to concentrate only on 

statements of interest without bothering about the whole source code. Forward 

slicing was done based on the slicing criterion. An algorithm for performing 

forward slicing was introduced and the algorithm uses a linked dependency 

method based on data flow equations to identify dependency in the program. 

Finally, from linked dependent statements, the forward slices are identified. 

This part of the thesis helped to fulfill the first objective of handling source 

code size during program testing. Inorder to establish the  strength of using 

forward slicing in software testing, the comparison and performance 

evaluation of forward slicing based testing with some existing software testing 

methods was performed. Further, we have given a formal representation of 

forward slicing method and proved the correctness of slicing algorithm using 

Hoare Logic. Forward slicing based testing was compared with genetic 

algorithm based testing and random testing. Comparison and experimental 

evaluation with these methods showed that forward slicing based software 



Conclusion and Future Research Direction 

Department of Computer Science 179 

testing outperformed random and GA based testing methods. Therefore, the 

descriptions related to forward slicing based testing and the supporting 

evidence given by the comparison of forward slicing based testing with 

existing software testing methods assert that the forward slicing based testing 

can effectively handle source code size during software testing. To the best of 

our knowledge, no other works reported in literature have used the concept of 

forward slicing to handle the issue of source code size during structural 

testing. Therefore, in all aspects the first objective is achieved.  

The forward slices thus obtained may be used for generating test data. 

Generating test data from the slices is described in detail in the latter half of 

chapter 3. Thus the second objective of the thesis is also tackled.  The forward 

slices identified may or may not contribute in software testing. The statements 

which are useful in software testing are considered as relevant.  The statements 

of interest identified from the program code may or may not be in the form of 

linear expressions. Test data are generated from the statements which are in the 

form of linear equations using Gauss Elimination. Some relevant statements 

which are in non-linear form may be converted to linear equations and test data 

is generated using Gauss Elimination. For other relevant statements, test data are 

generated using Random method. Therefore, identifying the relevant statements 

with respect to input variable is very essential, so that test data generation can be 

made easier. This part of the thesis fulfilled the second objective. Formal 

representation for forward slicing is also provided in this work. 

The literature review presented in chapter 2 of this thesis, also give 

supporting evidence to fulfill the first two objectives. In genetic algorithm 

based program testing, factors like fitness function, population initialization, 

response time prediction and parameter settings impact the quality of the 

solution obtained from testing. There is no general rule which implies the 



Chapter 7  

180     Cochin University of Science and Technology 

usage of a specific type of the above mentioned factors and parameters during 

the software testing process. Moreover, in reported GA based software testing 

approaches, methods to handle source code size are not reported. When using 

GA based method for software testing, all the statements in the program have 

to be considered. As the statement of interest is not identified in reported GA 

based testing approaches, generating test data will be more difficult compared 

to slicing based testing approach. As shown in chapter 6, testing approaches 

that do not address the issue of source code size and dependency are highly 

uncertain and impractical in the software industry. From the above given facts, 

we can conclude that the first and second objective of this thesis is fulfilled. 

A linked dependency method was introduced in this work to find the 

dependency in the program. Using the linked dependency method all the direct 

and indirect dependencies related to the variables of interest are identified. In 

forward slicing based testing, the linked dependency method is used to find 

dependent statements with respect to an input variable. The concept of 

partitioned forward slices was introduced in chapter 4, in order to handle the 

large size of slices.  Here the linked dependency method is used to find the 

dependency in the program and also to find the dependency between different 

slices present in the program. Therefore, the third objective is tackled in chapter 

3 and chapter 4 and these chapters also make a novel contribution to the source 

code based testing field.  

A new concept of partial slice was introduced in chapter 5 which helps 

to identify the changes related to the output variables and to focus on the 

statements of interest during software testing.  In partial slices also, the 

dependency between the program statements is traced using a linked 

dependency method. A comparison of forward slicing based testing with 

related methods is done in chapter 6 in order to prove the effectiveness of the 



Conclusion and Future Research Direction 

Department of Computer Science 181 

forward slicing based testing. Comparison and experimental evaluation based 

on statistical approach and metric based approach was used in this thesis work. 

In all the comparisons forward slicing based testing outperformed Random 

method and GA based testing. Thus, all the research objectives mentioned in 

this thesis work are achieved.  

7.3 Main Contributions 

Finally the main contributions of this thesis are:- 

1. Developed a novel forward slicing based approach for  source code 

based software testing that can handle the size of source code 

Most of the testing techniques used in structural testing could not handle 

the issue of source code size during software testing. For programs with 

a large number of LOC, it is almost impractical to perform software 

testing by checking all the statements of the program. In such scenarios, 

the forward slicing based testing developed in this thesis which is 

capable of handling the source code size is very much helpful.  

2. Introduced and demonstrated how to identify  the statements of 

interest during software testing  using forward slicing  

During software testing, rather than concentrating on each and every 

statement and attain coverage for a particular section of source code, it 

is always better to identify maximum number of errors in minimum 

time. This is possible only if the tester is able to identify the statements 

of interest from the source code, so that the statements identified may 

be checked for correctness. The forward slicing introduced in this 

thesis helps to identify statements of interest so that the tester need not 

spend effort on checking unnecessary statements.  



Chapter 7  

182     Cochin University of Science and Technology 

3. Demonstrated how to generate test data from forward slices using 

Gauss Elimination &random method 

Generating test data occupies a main role in software testing. Using 

random method for generating test data from slices has the advantage 

of being easy and simple. Using Gauss Elimination method for 

generating test data from forward slices which are in the form of linear 

equation has the advantage of giving accurate test data values.  

4. Introduced a novel concept named partitioned forward slices in order 

to handle the size of forward slices. 

Forward slicing makes testing easier and effective by reducing the 

source code size and by identifying the statements of interest. 

Sometimes as the number of statements in the slice increases, the effect 

of using slicing in testing gets nullified. In such scenarios, the concept 

of partitioned forward slice may be used. Partitioned forward slices 

helps to reduce the slice size so that the tester can focus on slices more 

deeply during testing. This property of partitioned forward slices 

makes them very effective during testing.  

5. Introduced the concept of partial slices to track the changes related 

to output 

If a program output gets a wrong value, the best way to identify the 

cause of error is to trace the program statements which cause the error. 

In such scenarios, partial slices are used. In partial slices, rather than 

listing together all the program statements which affects the output, the 

programmer is able to focus separately on statements using the partial 

slicing criterion. This property of partial slices is very helpful during 

testing to identify changes related to output. 



Conclusion and Future Research Direction 

Department of Computer Science 183 

7.4 Future Directions  

In this research work, we have introduced and designed a framework 

for software testing using forward slicing. Our main emphasis was on source 

code reduction and we were able to satisfy this goal with a good level of 

satisfaction. However, there is a scope for further research in this field and 

some of the future prospects are listed below:- 

• Extending the work for fault localization and debugging: In spite of 

the promising results obtained by the forward slicing framework, 

bridging the gap between research and practical testing remains an 

open issue for slicing based testing tools. This may be done by 

extending the forward slicing framework for other fault localization 

issues like debugging and bug detection 

• Extending the work for different programming languages: The 

work presented in this thesis is compatible with languages like C, C++. 

The work may be extended so that the forward slicing method for 

software testing may able to handle other programming languages also. 

• Extending the work for handling dynamic errors: This works 

concentrates on identifying static errors associated with a program. 

This work can be extended to handle dynamic errors so that runtime 

errors may be identified easily.  

7.5 Conclusion 

The main goal of this research is to find effective methods to handle 

source code size during structural testing. From the literature study it was clear 

that, in the present condition using existing methods for practical software 

testing is very difficult, as most of the testing work does not discuss methods to 



Chapter 7  

184     Cochin University of Science and Technology 

handle the size of source code. Therefore, we have proposed a forward slicing 

method where the tester can identify the statements of interest without 

concentrating on unnecessary program statements. In this thesis, it is clearly 

demonstrated how to generate test data from forward slices using Gauss 

Elimination and random method. In order to handle the large size of forward 

slices during testing, we have introduced a novel concept of partitioned forward 

slices. For tracking the changes related to output, the concept of partial slices 

was also introduced in this work. The work introduced and developed in this 

thesis is intended for intraclass structural testing. This work may be enhanced by 

extending the forward slicing method to incorporate interclass features like 

inheritance and polymorphism. The research finding finally concludes that, 

software testing methods should incorporate slicing concept to make testing 

more effective and easier. 

……. ……. 



References 

Department of Computer Science 185 

 

 

1. Agarwal, H., Demillo, R. A.  and Spafford, E.H. Debugging with 

Dynamic Slicing and Backtracking, Software Practice and 

Experience, 23,  pp. 589-616, 1993 

2. Ahmed, M. A and I. Hermadi, I. GA-based multiple paths test data 

generator, Computer & Operations Research, 35, pp. 3107-3127, 2008 

3. Ali, S., Briand, L. C.,  Hemmati, H. and Panesar-Walawege, R. K. A 

Systematic Review of the Application and Empirical Investigation 

of Search-Based Test Case Generation, IEEE Transactions on 

Software Engineering, 99,  2009. 

4. Ali, S., Iqbal, M. Z., Arcuri, A. and Briand, L. A Search-based OCL 

Constraint Solver for Model-based Test Data Generation, In the  

Proceedings of the 11th International Conference on Quality 

Software, pp. 41-50, 2011 

5. Arcuri, A. and Fraser, G. On parameter tuning in search based software 

engineering,  In the  Proceedings of  SSBSE, pp. 33-47, 2011 

6. Arcuri, A. and Fraser, G. Parameter tuning or default values? An 

empirical investigation in search-based software engineering, 

Empirical Software Engineering, 18 (3), pp. 594-623, 2013 

7. Baresel, A., Harman, M., Binkley, D. and Korel, B. Evolutionary 

Testing in the Presence of Loop–Assigned Flags: A Testability 

Transformation Approach, In the  Proceedings of the International 

Symposium on Software Testing and Analysis, 29(4), pp. 108-118, 

2004 



References  

186     Cochin University of Science and Technology 

8. Basili, V. and Selby, R., Comparing the effectiveness of software 

testing strategies,  IEEE Transactions Software Engineering, (12), 

pp. 1278–1296, 1987 

9. Bates, S. and Horwitz, S. Incremental Program Testing using Program 

Dependence Graphs,  In the  Proceedings of  the 20th ACM Symposium 

on Principles of Programming Languages, pp.384-396, 1993 

10. Beer, A. and Mohacsi, S. Efficient Test Data Generation for 

Variables with Complex Dependencies,  In the Proceedings of the 

International Conference on Software Testing, pp. 3-11, 2008 

11. Beizer, B. Software Testing Techniques, Second Edition, 

International Thomson Computer Press, ISBN 1-85032-880-3, 1990 

12. Bergeretti, J and Carre, B. Information-flow and Data-flow analysis 

of While-programs. ACM Transactions on Programming Language 

& Systems, 7 (1), pp. 37-61, 1985 

13. Bernard, B., Arnaud, G. and Claude, M.  Symbolic Execution of 

Floating-point Computations,  Software Testing Verification and 

Reliability, 16, pp. 97-121, 2006 

14. Berndt, D. J., and Watkins, A., Investigating the Performance of 

Genetic Algorithm-Based Software Test Case Generation, In the  

Proceedings of HASE, 2004 

15. T. J. Biggerstaff, Design recovery for maintenance and reuse, 

Computer, 22 (7), pp. 36-49, 1989 

16. Binkely, D. The Application of Program Slicing to Regression Testing,  

Technical Report,  Loyola College in Maryland, pp. 1-24, 1998 



References 

Department of Computer Science 187 

17. Binkely, D., Danicic, S., Gimothy, T., Harman, M. Kiss, A. and 

Korel, B.A Formalization of the Relationship between forms of 

Program Slicing,  Science of Computer Programming,62(3), pp. 228-

252, 2006 

18. Binkley, D., Harman, M. and Lakhotia, K. FlagRemover: A Testability 

Transformation for Transforming Loop Assigned Flag, ACM 

Transactions on Software Engineering and Methodology, 2 (3),  pp. 

110-146, 2009. 

19. Black, R. Pragmatic Software Testing: Become an Effective & 

Efficient Test Professional. John Wiley& Sons Publishers, 2007 

20. Blanco, R., Tuya, J. and Diaz, A. B. Automated Test Data Generation 

using a Scatter Search Approach. Information and Software 

Technology, 51(4), pp. 708-720, 2009 

21. Bueno, M. P. and Jino, M. Identification of Potentially Infeasible 

Program Paths by Monitoring the Search for Test Data. In the 

Proceedings of 15th Internationalconference on Automated Software 

Engineering, pp.  209-218 

22. Bueno, M. P. and Jino, S.  Automatic Test Data Generation for 

Program Paths Using Genetic Algorithms. International Journal of 

Software Engineering and Knowledge Engineering, 12(6), pp. 691-

709, 2002 

23. Bueno, M. P., Jino, M. and Wong, E. Diversity Oriented Test Data 

Generation using Metaheuristic Search Techniques, Information 

Sciences, 2011 

 



References  

188     Cochin University of Science and Technology 

24. Campos, J., Arcuri, A., Fraser, G. and Abreu, R. Continuous Test 

Generation: Enhancing Continuous Integration with Automated Test 

Generation,  In the  Proceedings of Automated Software Engineering 

(ASE), 2014 

25. Canfora, G., Cimitile, A. and De Lucia, A. Conditioned Program 

Slicing. Information and Software Technology, 40(11), pp. 595–607, 

1998 

26. Cao, Y., Hu, C. and Li, L. An Approach to Generate Software Test 

Data for a Specific Path Automatically with Genetic Algorithm, In 

the  Proceedings of  ICRMS, Chengdu, pp. 888-892, 2009 

27. Chapra, S. and Canale, R. Numerical methods for Engineers, Sixth 

Edition, McGraw-Hill Education ,ISBN-13: 978-0073401065  

28. Chen, C., X.  Xu, X. , Y. Chen, Y.,  X. Li, X. and D. Guo, D. A New 

Method of Test Data Generation for Branch Coverage in Software 

Testing Based on EPDG and Genetic Algorithm, In the  Proceedings of  

the ASID, pp. 307-310, 2009 

29. Chen, Y. and Zhong, Y.Automatic Path-oriented Test Data Generation 

Using a Multi-population Genetic Algorithm,  In the Proceedings of 

the Fourth International Conference on Natural Computation, pp. 566-

570, 2008 

30. Chikofsky, E. J and Cross II, J. H.  Reverse Engineering and Design 

Recovery: A Taxonomy, IEEE Software, 7(1), 1990. 

31. Christophe. M.  ATGen: Automatic Test Data Generation using 

Constraint Logic Programming and Symbolic Execution,  Software 

Testing, Verification and Reliability, 11, pp. pp. 81- 96, 2001   



References 

Department of Computer Science 189 

32. Claudia, E. M. F. P. and Regina, V.S. Selection and Evaluation of 

Test Data Based on Genetic Programming,  Software Quality 

Journal, 11, pp. 167-186, 2003 

33. Corder, G.W., Foreman, D.I. Nonparametric Statistics: A Step-by-

Step Approach, Wiley. ISBN 978-1118840313, 2014 

34. Cui, H., Chen, L., Zhu, B. and Kuang, H. An Efficient Automated Test 

Data Generation Method,  In the Proceedings of the International 

Conference on Measuring Technology and Mechatronics Automation, 

1, pp. 453- 456, 2010 

35. Demilli, R. A. and Offutt, A. J. Constraint-Based Automatic Test 

Data Generation,  IEEE Transactions on Software Engineering, 

17(9), pp. 900-910, 1991 

36. De Lucia, A. 2001. Program Slicing: Methods and Applications,  In 

the Proceedings of the 1st IEEE Workshop on Source code Analysis 

and Manipulation, pp. 142-149 

37. Diaz, E., Tuya, J.  and Blanco, R. Automated Software Testing 

Using a Metaheuristic Technique Based on Tabu Search, In the 

Proceedings of the 18th IEEE International Conference on 

Automated Software Engineering, pp. 310-313, 2003 

38. Diaz, E., Tuya, J., Blanco, R. and Dolado, J. J. A Tabu Search 

Algorithm for Structural Software Testing,  Computers & Operations 

Research, 35(10), pp. 3052-3072, 2008 

39. Doungsa-ard, C., Daha, K., Hossai, A., and  Suwannasart, T.  Test 

Data Generation from UML State Machine Diagrams using Gas, In 

Proceedings of International Conference on Software Engineering 

Advances, 2002 



References  

190     Cochin University of Science and Technology 

40. Edvardsson, J and Kamkar, M. Analysis of the Constraint Solver in 

UNA Based Test Data Generation,  In the Proceedings  of the 9th 

European software engineering conference held jointly with 9th ACM 

SIGSOFT international symposium on Foundations of software 

engineering, 26(5), pp. 237-245, 2003 

41. Ferguson, R. and B. Korel, B. The Chaining approach for Software 

Test Data Generation, ACM Transactions on Software Engineering 

and Methodology, 5(1),  pp. 63-86, 1996 

42. Ferrante, J., Ottenstein, K. and Warren, J. The Program Dependence 

Graph and its Use in Optimization, ACM Transactions on 

Programming Languages & Systems, 9(3)pp. 319-349, 1987 

43. Fischer, M., Generating Test Data for Black-Box Testing using Genetic 

Algorithms, In the  Proceedings of 17th ETFA , pp. 1-6, 2012 

44. Floyd, R. W.  Assigning Meanings to Programs. In the Proceedings 

of the American Mathematical Society Symposia on Applied 

Mathematics, 19, 19-31, 1967 

45. Fraser, G. and Arcuri, A. It is not the length that matters, it is how you 

control it,  In the  Proceedings of  the IEEE International Conference 

on Software Testing, Verification and Validation, pp. 150-159, 2011 

46. Fraser, G. and Arcuri, A. EvoSuite: Automatic Test Suite Generation 

for Object-Oriented Software, In the  Proceedings of  ESEC/FSE, , pp. 

416-419, 2011 

47. Fraser, G. and Arcuri, A., The Seed is Strong: Seeding Strategies in 

Search-Based Software Testing,  In the  Proceedings of  ICST, pp.121-

130, 2012 



References 

Department of Computer Science 191 

48. Fraser, G.and A. Arcuri, A. Whole test suite generation, IEEE 

Transactions on Software Engineering, 39(2), pp. 276 - 291, 2013   

49. Fraser, G.,  Arcuri, A. and McMinn,  P. Test Suite Generation with 

Memetic Algorithms, In the  Proceedings of  GECCO, 2013 

50. Fraser, G., Arcuri, A. and McMinn, P. A Memetic Algorithm for 

whole test suite generation, Journal of Systems and Software, DOI: 

10.1016/j.jss.2014.05.032, 2014 

51. Fox, C., Danicic, S., Harman, M., and Hierons, R. M. ConSIT: a 

fully automated conditioned program slicer. Software Practice and 

Experience, 34, pp. 15–46, 2004 

52. Fox, C., Harman, M., Hierons, R. M., and Danicic, s. Backward 

Conditioning: A New Program Specialisation Technique and its 

Application to Program Comprehension. In the Proceedings of the 9th 

IEEE International Workshop on Program Comprehension,  pp. 89–

97, 2001 

53. Gallagher, K. B. and Binkley, D. Program Slicing, In the 

Proceedings of Frontier of Software Maintenance, pp. 58-67, 2008  

54. Gallagher, K. B. and Lyle, J. R. Using Program Slicing in Software 

Maintenance,  IEEE Transactions on Software Engineering, 17(8), 

pp. 751–761, 1991 

55. Gallagher, K. B. Using Program Slicing in Software Maintenance. 

Ph.D. Thesis, University of Maryland Baltimore County, 1990 

56. Galeotti, J. P.,   Fraser, G. and Arcuri, A. Extending a Search-Based 

Test Generator with Adaptive Dynamic Symbolic Execution, In the  

Proceedings of ISSTA, 2014 



References  

192     Cochin University of Science and Technology 

57. Girgis, M. R. Automatic test data generation for data flow testing 

using a genetic algorithm, Journal of Universal Computer Science, 

11(5),  pp. 898-915, 2005 

58. Goldberg, D. E. Genetic Algorithms in Search, Optimization and 

Machine Learning. Addison Wesley, 1989 

59. Gong, D., Zhang, W. And Yao, X. Evolutionary Generation of Test 

Data for Many Paths Coverage based on Grouping,  Journal of 

Systems and Software, 84(12),  pp. 2222-2233, 2011 

60. Gouraud, S.D., Denise, A., Gandel, M.C. and B. Marre, B.  A New 

Way of Automating Statistical Testing Methods,  In the Proceedings 

of 15th International conference on Automated Software 

Engineering, pp. 5-12, 2001 

61. Graham-Rowe, D. Radio Emerges from the Electronic Soup,  New 

Scientist, 175,  2002 

62. Gupta, R., Harrold, M.J., and Soffa, M. L. An Approach to 

Regression Testing using Slicing,  In the Proceedings of the IEEE 

Conference on Software Maintenance, pp. 299-308, 1992 

63. Harman, M. The Current State and Future of Search based Software 

Engineering, In the  Proceedings of  FOSE, pp. 342-357, 2007  

64. Harman, M. and Binkley, D. Forward Slices are Smaller than 

Backward Slices, In the Proceedings of the fifth International 

Workshop on Source code Analysis and Manipulation, pp. 15-24, 2005 

65. Harman, M. and  Danicic, S. Using Slicing to Simplify Testing. In 

the Proceedings of Eurostar, 1994 



References 

Department of Computer Science 193 

66. Harman, M. and Danicic, S. A New Algorithm for Slicing 

Unstructured Programs. Journal of Software Maintenance and 

Evolution,10(6), pp.  415–441, 1998 

67. Harman, M., Lakhotia, A and Binkley,D. Theory and Algorithms 

for Slicing Unstructured Programs, Journal of Information and 

Software Technology, 48(7),  pp. 549-565, 2006. 

68. Harman, M., Hierons, R. M., Fox, C., Danicic, S. and Howroyd, J. 

Pre/post Cconditioned Slicing, In the Proceedings of the International 

Conference on Software Maintenance, pp. 138-147, 2001 

69. Harman, M., Hu, L., Zhang, X. and Munro M.  Side-effect Removal 

Transformation. In the Proceedings of the 9th IEEE International 

Workshop on Program Comprehension, Toronto, Canada, pp. 310-

319, 2001 

70. Harman, M., Hu, L., Hierons, R., Baresel, A. and Sthamer, H.  

Improving Evolutionary Testing by Flag Removal,In Proceedings of 

the Genetic and Evolutionary Computation Conference, New York, 

USA, 1359-1366, 2002 

71. Harman, M., Mansouri, S.A. and Zhang, Y. Search-Based Software 

Engineering: Trends, Techniques and Applications, ACM Computing 

Surveys, 45(1), pp. 1-66, 2012  

72. Harman, M. and McMinn, P. A Theoretical and Empirical Study of 

Search based Testing: Local, global and hybrid search,  IEEE 

Transactions on Software Engineering, 36(2),  pp. 226-247, 2010 

73. Harman, M., McMinn, P.  and Wegener, J. The Impact of Input 

Domain Reduction on Search Based Test Data Generation, In the 

Proceedings of  .ESEC/FSE, pp. 155-164, 2007 



References  

194     Cochin University of Science and Technology 

74. Holland, J., H. Adaptation in Natural and Artificial Systems, 

University of Michigan Press, Ann Arbor, 1975 

75. Horwitz, S., Reps, T. and Binkley, D. Interprocedural Slicing using 

Dependence Graphs, SIGPLAN Notices, 23(7), pp. 35-46, 1988 

76. Jackson, D. and Rollins, E. J.  A new model for program dependences 

using reverse engineering, In the Proceedings of  FSE, pp.2-10, 1994 

77. Jayaram, B. and Govindarajan, K. Intensional Algorithmic Debugging, 

Technical Reports, Computer Science & Engineering, University of 

Buffalo 

78. Jeffery, D.  and Gupta, R. Test Case Prioritization Using Relevant 

Slices,  In the Proceeding of COMPSAC, 1, pp. 411-420, 2006 

79. Jones, B.F., Sthamer, H. H. and Eyres, D. E. Automatic Structural 

Testing Using Genetic Algorithms,  Software Engineering Research 

Journal, pp. 299-306, 1996 

80. Jorgensen, P.C. Software Testing: A Craftsman’s Approach. 

Auerbach Publications(Taylor and Francis group), 2008 

81. Juergens, E., Deissenboeck, F. and B. Hummel. B. Clone detection 

beyond copy & paste, In the Proceedings of  IWSC, 2009 

82. Kitchenham, B. A. Guidelines for Performing Systematic Literature 

Reviews in Software Engineering, Technical Report EBSE- 2007-

01, 2007 

83. Khor S. and Grogono P. Using a Genetic Algorithm and Formal 

Concept Analysis to Generate Branch Coverage Test Data 

Automatically, In theProceedings of the 19th International 

Conferenceon Automated Software Engineering, 2004 



References 

Department of Computer Science 195 

84. J. Krinke. Is cloned code more stable than non-cloned code? In the 

Proceedings of  the Workshop on Source Code Analysis and 

Manipulation, pp. 57-66,  2008 

85. Korel, B. Automated Software Test Data  Generation, IEEE 

Transactions on Software Engineering, 16(8), pp. 870-879, 1990 

86. Korel, B. and Laski, J.  Dynamic Program Slicing,  Information 

Processing Letters, 293,  pp. 155-163, 1988 

87. Korel, B. and Rilling, J. Program Slicing in Understanding of Large 

Programs, In the Proceedings of the 6th International Workshop on 

Program Comprehension, pp. 145-152, 1998 

88. Komondoor, R. and Horwitz, S. Semantics-preserving Procedure 

Extraction,  In the Proceedings of the 27th ACM SIGPLAN-SIGACT 

Symposium on Principles of Programming Languages,  pp. 155-

169, 2000 

89. Latiu, G. I.,  Cret, O. A. and Vacariu, L. Automatic Test Data 

Generation for Software Path Testing using Evolutionary Algorithms, 

In the Proceedings of  the Third International Conference on Emerging 

Intelligent Data and Web Technologies, pp.1-8, 2012 

90. Leonard, G., Jefferson, O.A.  And Anthony, C. Integration Testing 

of Object Oriented Components using Finite State Machines, 

Software Testing, Verification andReliability, 16, pp. 215-266, 2006 

91. Li, J.,  Baob, W.,  Zhaoa, Y., Maa, Z. and Donga, H. Evolutionary 

generation of unique input/output sequences for class behavioral 

testing, Computers and Mathematics with Applications, 57, pp. 

1800-1807, 2009 



References  

196     Cochin University of Science and Technology 

92. Lin, P., Bao, X. L., Shu, Z. Y., Wang, X. J. and Liu, J. M. Test case 

generation based on adaptive genetic algorithm,  In the Proceedings 

of  the International Conference on Quality, Reliability, Risk, 

Maintenance, and Safety Engineering, pp. 863-866, 2012. 

93. Lin, C. and Yeh, P. Automatic Test Data Generation for Path 

Testing using Gas. Information Sciences, 131, pp. 47-64, 2001 

94. Liu, X., Liu, H., Wang, B., Chen, P. and Cai, X. A Unified Fitness 

Function Calculation Rule for Flag Conditions to Improve 

Evolutionary Testing,  In the Proceedings of the 20th IEEE/ACM 

international Conference on Automated softwareengineering, pp.337-

341, 2005 

95. Liu, D., Wang, X. and Wang, J. Automatic test case generation 

based on genetic algorithm, Journal of Theoretical and Applied 

Information Technology, 48(1),  pp. 411-416, 2013 

96. Malburg, J.and Fraser, G. Combining Search based and Constraint-

based Testing, In the Proceedings of  IEEE ASE, pp. 436-439, 2011 

97. Mao, C. and Yu, X. Test data generation for software testing based 

on quantum-inspired genetic algorithm, International Journal of 

Computational Intelligence and Applications, 12(1),  2013 

98. McMinn, P. Search-based Software Test Data Generation: A Survey. 

Journal of Software Testing Verification and Reliability, 14(2), pp. 

105-156, 2004 

99. McMinn, P. Search-Based Software Testing: Past, Present and Future, 

In the Proceedings of  the 4th  International Conference on Software 

Testing, Verification and Validation Workshops, pp. 153-163, 2011  



References 

Department of Computer Science 197 

100. McMinn, P. An identification of program factors that impact crossover 

performance in evolutionary test input generation for the branch 

coverage of C programs, Information and Software Technology, 55, pp. 

153-172, 2013 

101. McMinn, P., Harman, M., Binkley, D. and Tonella, P. The Species 

per Path Approach to Search-based Test Data Generation, In the 

Proceedings of the International Symposium on Software Testing 

and Analysis (ISSTA 06),  pp. 13-24, 2006 

102. McMinn, P. and M. Holcombe.  Evolutionary Testing Using an 

Extended Chaining Approach, Evolutionary Computation, 14(1), pp. 

41-64, 2006.  

103. Michael, J. B.,  Bossuyt, B. J  and  Snyder, B. B. Metrics for 

Measuring the Effectiveness of Software-Testing Tools, In the 

Proceedings of the 13 th International Symposium on Software 

Reliability Engineering (ISSRE’02), 2002 

104. Michael, C. C., McGraw, G. E. and Schatz M. A. Generating 

Software Test Data by Evolution. IEEE Transactions on Software 

Engineering, 27(12), pp. 1085-1110, 2001  

105. Miller, J., Reformat, M. and Zhang, H. Automatic test data generation 

using genetic algorithm and program dependence graphs, Information 

and Software Technology, 48,  pp. 586-605, 2006 

106. Myers, G. J. The Art of Software Testing, Wiley, New York, 1979 

107. Nashat, M. and Miran, S. Data Generation for Path Testing,  Software 

Quality Journal, 12, pp. 121-136, 2004 



References  

198     Cochin University of Science and Technology 

108. Ngo, N. M. and Tan K. B. H. Heuristics-based Infeasible Path 

Detection for Dynamic Test Data Generation,  Information and 

Software Technology, 50(8), pp. 641-655.  

109. Orso, A., Sinha, S., and Harrold, M. Incremental Slicing based on 

Data-dependence types, In Proceedings of the IEEE International 

Conference on Software Maintenance (ICSM’01), pp. 158-167, 2001 

110. Ott, L. M. and Bieman, J. M. Program Slices as an Abstraction for 

Cohesion Measurement,  Information and Software Technology-

Special issue on Program Slicing, 40, pp.691−700, 1998 

111. Outt, A.J., Jin, Z. and Pan, J. The Dynamic Domain Reduction 

approach to Test Data Generation, Software Practice and Experience, 

29(2), pp.  167-193. 

112. Oxman, A. D.  Systematic Reviews: Checklists for Review Articles,  

BMJ,  309(6955), pp. 648-651, 1994 

113. Pachauri, A. and Gursaran, Software Test Data Generation using 

Path Prefix Strategy and Genetic Algorithm,  In the  Proceedings of  

the International Conference on Science and Engineering, pp. 131-

140, 2011 

114. Pargas, R. P, Harrold, M. J. and Peck, R. R.Test Data Generation 

Using Genetic Algorithms, Journal of Software Testing, 

Verifications, and Reliability, 9, pp. 263-282, 1999 

115. Pei, M., Goodman, E. D, Gao, Z. and Zhong, K.Automated Software 

Test Data Generation Using A Genetic Algorithm, Technical Report , 

GARAGe of Michigan State University, 1994 



References 

Department of Computer Science 199 

116. Pocatilu, P. and I. Ivan. A Genetic algorithm based system for 

Automatic control of Test Data Generation,  Studies in informatics 

and Control, 22(2), pp. 219-226, 2013  

117. Roper, M., Maclean, I., Brooks, A., Miller, J. And Wood, M.Genetic 

Algorithms and the Automatic Generation of Test Data. Technical 

report RR/95/195[EFoCS-19-95], Department of Computer Science, 

University of Strathclyde, 1995 

118. C. K. Roy and J. R. Cordy. A survey on software clone detection 

research, Technical Report 541, Queen’s University at Kingston, 

2007. 

119. Samuel, P. And Mall, R. Slicing based Test Case Generation from 

UML Activity Diagrams, ACM SIGSOFT Software Engineering 

notices, 34(6), pp. 1-14, 2009 

120. Samuel, P. and Mall, R. A Novel Test Case Design Technique 

Using Dynamic Slicing of UML Sequence Diagrams, e-Informatica,  

2(1), pp. 71-92, 2008 

121. Sharma, N., Pasala, A. and Kommineni, R.Generation of Character 

Test Input Data using GA for Functional Testing, In the  Proceedings 

of  APSEC-SATA workshop, pp. 87-94, 2012 

122. J. Silva, A Vocabulary of Program Slicing-Based Techniques, ACM 

Computing Surveys, 44 (3), 2012 

123. Sofokleous, A. A. and Andreou, A. S. Automatic, evolutionary test 

data generation for dynamic software testing, The Journal of Systems 

and Software,  81, pp. 1883-1898, 2008 



References  

200     Cochin University of Science and Technology 

124. Srinivas, M.Genetic Algorithms: A Survey, Journal Computer, 27, 

pp. 17-26, 1994. 

125. Sthamer, H. H.Automatic generation of Software Test Data using 

Genetic Algorithms, Ph.D. Thesis, University of Glamorgan, Great 

Britain, 1996 

126. Suresh, Y. and Rath, S. K. A genetic algorithm based approach for test 

data generation in basis path testing, International Journal of Soft 

Computing and Software Engineering [JSCSE], Special Issue:In the  

Proceedings of the International Conference on Soft Computing and 

Software Engineering, 3(3), 2013  

127. Taylor, B.J. And Cukic, B. Evaluation of Regressive Methods for 

Automated Generation of Test Trajectories, In the Proceedings of 

11th International Symposium on Software Reliability Engineering, 

pp.97-109, 2000 

128. Tip, F.A Survey of Program Slicing Techniques, Journal of 

Programming Languages, 3 (3),  pp. 121-189, 1995 

129. Tracey, N.A Search-Based Automated Test Data Generation 

Framework for Safety Critical Software. Ph. D. thesis, University of 

York, 2000 

130. Tran Sy, N. and Deville.Automatic Test Data Generation for Programs 

with Integer and Float Variables, In the Proceedings of the 16th 

International Conference on AutomatedSoftware Engineering, pp. 3-

21, 2001 

 



References 

Department of Computer Science 201 

131. Tran Sy, N. and Deville, Y.Consistency Techniques for Interprocedural 

Test Data Generation,  In the Proceeding of the 9th European software 

engineering conference heldjointly with 11th ACM SIGSOFT 

international symposium on Foundations of softwareengineering, 

28(5), pp. 108-117, 2003 

132. Venkatesh, G. A. The Semantic approach to Program Slicing,  In the 

Proceedings of the ACM SIGPLAN Conference on Programming 

Language Design and Implementation. ACM Press, pp. 107-119, 1991 

133. Visvanathan, S and Gupta, N.Generating Test Data for Functions 

with Pointer Inputs, In theProceedings of the 17th IEEE International 

Conference on AutomatedSoftware Engineering, pp. 149-160, 2002 

134. Ward, M.Program Slicing via fermaT transformations, In the  

Proceedings of the 26th International Computer Software and 

Applications Conference, Prolonging Software Life: Development 

and Redevelopment,IEEE Computer Society, pp. 357-362, 2002 

135. Watkins, A.A Tool for the Automatic Generation of Test Data using 

Genetic Algorithms, In Proceedings of the fourth Software Quality 

Conference, pp.300-309, 1995 

136. Wegener, J., Baresel, A. and Sthamer, H.Evolutionary Test 

Environment for Automatic Structural Testing,  Journal of Information 

and Software Technology, 43, pp. 841-854, 2001 

137. Weiser, M. Program Slicing. IEEE Transactions on Software 

Engineering, 10(4),  pp. 352-357, 1984 

 



References  

202     Cochin University of Science and Technology 

138. Xanthakis, S., Ellis, C., Skourlas, C., Le Gall, A., Kastiskas, S. and 

Karapoulios, K. Application of Genetic Algorithms to Software 

Testing, In the Proceedings of the 5th International Conference on 

Software Engineering and its Applications, France, pp. 625-636, 1992  

139. Xiao, J. and Afzal, W. Search-based resource scheduling for bug 

fixing tasks, In the  Proceedings of  2nd SSBSE, pp. 133-14, 2010 

140. Xue-ying MA Bin-kui SHENG Zhen-feng HE and Cheng-qing YE. 

A Genetic Algorithm for Test-Suite Reduction,  In the  Proceedings 

of ICSMC, pp. 133-139, 2005 

141. Zhang, W., Gong, D., Yao, X. and Zhang, Y. Evolutionary generation 

of test data for many paths coverage, In the  Proceedings of Chinese 

Control and Decision Conference, pp. 230-235, 2007 

142. Zhang, Y., Harman, M. and Mansouri, A.  SBSE repository, CREST 

Centre, UCL 

143. Zhao, Y. R and Data Mining -- Examples and Case Studies, Academic 

Press, Elsevier, ISBN: 978-0-123-96963-7, 2012 

……. ……. 



List of Publications 

Department of Computer Science 203 

 

International Conferences 

1. Anupama Surendran, Philip Samuel, Fault Localization using Forward 

Slicing Spectrum, ACM conference on Research in Adaptive & 

Convergent Systems RACS '13, Montreal, QC, Canada, pp. 397-398, 

OCT 2013 

2. Anupama Surendran, Philip Samuel, Extracting Business Rules using a 

Partitioned Slicing Approach, 14th IEEE/ACIS International 

Conference on Software Engineering & Artificial Intelligence, (SNPD), 

Honolulu, Hawaii, USA, pp. 336-341, JULY 2013 

3. Anupama Surendran, Philip Samuel,  Partial Slices in Program Testing, 

35th Annual IEEE Software Engineering Workshop (SEW), Heraclion, 

Crete, Greece, pp.82-89, OCT. 2012 

4. Anupama Surendran, Philip Samuel, Slicing based Reverse 

Engineering of Business Applications, 12th IEEE International 

Conference on Intelligent Systems Design and Applications (ISDA), 

Kochi, Kerala, pp. 673 – 679, NOV 2012 

5. Anupama Surendran, Philip Samuel, Poulose Jacob, Code clones in 

Program Test Sequence Identification,IEEE World Congress on 

Information and Communication Technologies (WICT), Mumbai, pp. 

1050 – 1055, DEC  2011 

 



List of Publications 

204     Cochin University of Science and Technology 

6. Philip Samuel, Anupama Surendran, Forward Slicing Algorithm based 

Test Data Generation, 3rd IEEE International Conference on 

Computer Science and Information Technology (ICCSIT), China, pp. 

270 – 274,JULY 2010 

7. Anupama Surendran, Philip Samuel, An Evolutionary Multi- population 

approach for Test Data Generation, IEEE World Congress on Nature & 

Biologically Inspired Computing, Coimbatore, pp. 1451 – 1456, DEC 

2009 

International Journals 
 

1. Anupama Surendran, Philip Samuel, Evolution or revolution: the critical 

need in genetic algorithm based testing, Artificial Intelligence Review, 

Springer Verlag, doi:10.1007/s10462-016-9504-8, ISSN: 0269-2821 

(Print) 1573-7462 (Online),27 August 2016 

2. Anupama Surendran, Philip Samuel, An Overview of Recent Trends in 

Software Testing, Global Journal of Computer Science and Technology: 

C -Software & Data Engineering, 14(8), Version 1.0, Global Journals Inc. 

(USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350, pp.7-27, 2014 

3. Anupama Surendran, Philip Samuel, Poulose Jacob, Code Clones in 

Program Test Sequence Identification, International Journal of 

Computer Information Systems and Industrial Management 

Applications,5, pp. 564-570, 2013 

4. Anupama Surendran, Philip Samuel, Test Data Generation Using Single 

Population Genetic Algorithm, International Journal of Recent Trends 

in Engineering and Technology,3(2),  pp. 119-121, MAY 2010 



List of Publications 

Department of Computer Science 205 

5. Anupama Surendran, Philip Samuel,Forward Slicing based Novel Test 

Case Generation Framework (under review in Journal of Software 

Engineering Research & Development, Springer Verlag) 

Edited Book Chapter 

1. Knowledge-Based Processes in Software Development (Chapter 4-

Knowledge Based Code Clone Approach in Embedded and Real-Time 

Systems),IGI    Global Publishers, JUNE 2013 

……. ……. 



 



References 

Department of Computer Science 207 

 

 

  



Appendix 

208     Cochin University of Science and Technology 

 

 

……. ……. 


	First page------ -
	CHAPTER 1------
	CHAPTER 2------ -
	CHAPTER 3------ - -
	CHAPTER 4------ - - -
	CHAPTER 5----- - - - -
	CHAPTER 6----- - - - - - -
	CHAPTER 7----- - - - - -
	CHAPTER 8----- - - - - - -
	CHAPTER 9----- - - - - - - -
	CHAPTER 10----- - - - - - - - -

