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Electrocardiogram gives the information regarding the health of 
the patients by monitoring the bioelectric potentials generated by the 
sinoatrial node in the heart. These signals can be collected by using 
electrodes suitably placed on the body of a patient. The normal human 
ECG lie in the frequency range of 0.05-100 Hz and the most useful 
information is contained in the range of 0.5-45 Hz. Even though a large 
amount of work has already been done in the field of ECG classification, 
no classification system has made an attempt in identifying the isolated 
abnormalities which pose a silent threat to patients.  

An adaptive filtering technique for denoising the ECG which is 
based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square 
(SD-LMS) algorithm is proposed. This algorithm gave an average 
signal to noise ratio improvement of 10.75 dB for baseline wander and 
24.26 dB for power line interference. It is seen that the step size ‘µ’ 
optimized with GA helps in obtaining better SNR value without causing 
any damage to the information content in the ECG.  

A new wavelet for automatic classification of arrhythmias 
from electrocardiogram is proposed. This new wavelet is formed as a 
sum of shifted Gaussians so that it resembles a normal ECG. This shape 
has been chosen with the aim of extracting maximum information from 
the ECG under analysis. The classification performance was studied 
using the most commonly used database, the MIT-BIH Arrhythmia 
database. The shifted and summed Gaussian wavelet was then 
optimized using GA. The optimum wavelet for classification was 
obtained after several runs of the GA algorithm. The ECG class 
labeling was done according to the Association for the Advancement of 
Medical Instrumentation (AAMI). The wavelet scales corresponding to 



the different frequency levels giving maximum classification 
performance were identified by selecting finer scales. Probabilistic 
Neural Network classifier was used for classification purpose. The 
proposed classification system offered better results than that reported 
in literature by giving an overall sensitivity of 97.01% for Normal beats, 
75.20% for Supraventricular beats and 93.06% for Ventricular beats. 
As mentioned above this technique could exclusively identify some of 
the isolated abnormalities present in the patient records. 

The major contribution of this research includes the 

 Development of a new wavelet for ECG classification 
purposes. 

 Identification of isolated abnormalities which pose a threat to 
patients. 

 Design of a less complex adaptive filter that could be 
implemented on hardware targets such as portable ECG 
monitors. 
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This chapter introduces the background of Electrocardiogram (ECG). 

The working of the heart can be analyzed by monitoring the ECG of a 

patient. The commonly used methods for recording the ECG waveform are 

explained briefly. The different types of ECG waveforms usually 

encountered are presented. Further the different types of noises such as 

baseline wander, power line interference and muscle noise, which are 

encountered while recording ECG are described. Finally the basic idea of 

a general ECG classification system is discussed. 
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1.1 Electrocardiogram  

Since its intervention in 1903 by Willem Einthoven, ECG 

has become an important tool in diagnosing the condition of a person. 

Various techniques for the analysis have been introduced till date 

which includes techniques from understanding the heart rate of the 

patient to complex systems that maps the exact conditions of the heart 

and the associated organs. 

For continuous monitoring as well as Holter monitoring, several 

techniques have been designed and implemented by different people. 

These techniques were further developed into specific instruments that 

provide clinical monitoring for both the patient and doctor, that support 

the diagnosis in real time. It also helps in improving mortality rates for 

people especially who live in rural areas.  

Since enormous data has been generated and recorded in the 

process of continuous ECG monitoring, much care should be given to the 

analysis, particularly when we are looking for diseases that do not 

manifest often. Such isolated abnormalities in ECG do pose a threat to a 

patient. The isolated abnormalities if detected at an earlier stage could be 

helpful for the patient. 

1.1.1 Physiological background of ECG 

The fundamental concepts of Electrocardiographic signal and  

its origin are presented in this section. The different types of cardiac 

arrhythmias such as auricular and ventricular ectopic heart beats, 

branch blocks, fusion beats etc., based on the Association for the 
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Advancement of Medical Instrumentation (AAMI) standard are 

discussed. 

1.1.2 Electrocardiographic signals 

Electrocardiography is a discipline of medicine that is concerned 

with the electrical activity of the heart. An electrocardiographic signal 

originating from the sinoatrial node (SA) can completely describe the 

functioning of the heart. These signals are usually captured by means of 

surface electrodes placed on the body of the patient.  

The heart is divided into four main chambers as shown in   

Figure 1.1. The two upper chambers are called the left and right atria 

and the two lower chambers are called the left and right ventricles. 

The atria and ventricles work together, alternately contracting and 

relaxing to pump blood through the heart. The electrical system of the 

heart is the power source that makes this possible. Figure 1.2 depicts 

the conduction system of the heart. The heartbeat is triggered by 

electrical impulses that travel down a special pathway through the 

heart. The impulse starts in a small bundle of specialized cells located 

in the right atrium, called the SA node. It is also known as the heart’s 

natural pacemaker. The electrical activity spreads through the walls of 

the atria and causes them to contract. This forces blood into the 

ventricles. The SA node sets the rate and rhythm of the heartbeat. The 

atrioventricular (AV) node is a cluster of cells in the center of the 

heart between the atria and ventricles, and it slows the electrical 

signal before it enters the ventricles. This delay gives the atria time to 

contract before the ventricles do. His-Purkinje network is a pathway 
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of fibers that sends the impulse to the muscular walls of the ventricles 

and causes them to contract. This forces blood out of the heart to the 

lungs and body. The electrical triggering cycle repeats that make the 

heart to beat again and again (Catalano, 2002). 

 

 

Figure 1.1:  Structure of the heart 
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Figure 1.2: Conduction system of the heart 

A normal ECG is illustrated in the Figure 1.3. The main part of 

the ECG contains a P wave, QRS complex, and T wave. The P wave 

indicates atrial depolarization. The QRS complex consists of a Q wave, 

 

Figure 1.3: A normal ECG Signal 
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R wave and S wave. The QRS complex represents the combined 

activity of ventricular depolarization and atrial repolarization. The        

T wave comes after the QRS complex and indicates ventricular 

repolarization (Catalano, 2002). Amplitude of P wave is usually less 

than 3 mV with duration between 0.06 to 0.1 seconds. The PR interval 

is from 0.12 to 0.2 seconds. The QRS complex which follows the         

P wave has duration between 0.08 to 0.12 seconds. The duration of the    

Q wave is less than 0.03 seconds. QT interval is less than 50% of the 

preceding RR interval. From the end of the QRS complex to the start of 

the T wave is the ST segment with a slight curve at proximal T wave. 

The T wave is asymmetric and slightly rounded.  

1.2 ECG lead system 

The standard 12 lead ECG system utilizes at least five electrodes: 

one for each limb, plus a floating electrode on the chest wall. The 

system is divided into three lead systems: standard limb leads, 

augmented leads, and precordial leads. 

1.2.1 Standard limb leads 

The limb leads are formed by keeping electrodes on the right and 

left wrists, arms and ankles. The direction of flow of electrical current 

in the limb leads lies in the frontal plane; a flat plane parallel to the 

chest. The direct path between two electrodes or between two electrodes or 

between an electrode and a reference point is called the axis of that lead 

(Lewis K., 2010).  
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The recording positions of bipolar leads I, II & III are shown in 

Figure 1.4 (J. Malmivuo, 1995).  

 

 

Figure 1.4: Standard limb leads 

 

In lead I, the recording is done with Left Arm (LA) as the positive 

electrode and the Right Arm (RA) as the negative electrode. Lead I 

records electrical activity from left to right across the chest, giving a 

view of left lateral wall of the heart. In lead II the negative electrode is 

on the RA, and the positive electrode is on the Left Leg (LL). Lead II 

provides the view of the inferior surface of the heart. The waveform in 

lead II will be either diphasic or predominantly negative. In lead III the 

positive electrode is on the LL and the negative electrode is on the LA. 

This lead provides a view of right inferior surface of the heart. Lead III 

is usually positive deflection.  

Lead III 

Left arm Right arm 

Left leg 

Lead II 
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1.2.2 Other ECG lead systems 

The augmented limb leads (Unipolar)-aVL, aVR, aVF  

The signals from the limb electrodes can be combined to give 

further views of the heart called the augmented leads. One of the limb 

electrodes serve as positive electrode. The negative electrode is virtual, 

being the average of the signals from the remaining two limb 

electrodes. The augmented leads are known as unipolar leads    

(Acharya UR, 2007).  

The precordial leads (Unipolar) Leads V1-V6 

There are six electrodes V1 to V6 giving rise to six views of the 

heart signals across the front of the chest. The views fall across the 

transverse plane. The positive electrode is the chest electrode. The 

negative electrode is a virtual electrode commonly called the Wilson 

central terminal. This virtual electrode is realized by electrically 

averaging the signal from the three electrodes LA, RA and LL. These 

six leads known as precordial leads are unipolar. 

All the six unipolar chest leads view the heart from different 

angles.  Together with the limb leads a total of 12 views are usually 

used for diagnosis resulting in the 12 lead ECG standard. These leads 

usually monitor the left side of the heart. If monitoring to the right side 

of the heart is needed, leads are place on the right side of the heart on 

the chest designated from   V1R – V2R (Acharya UR, 2007). 

In addition, to these leads there are other leads which can be used 

for monitoring the ECG of patients. One of them is the ‘modified chest 
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leads’. These leads give a view of the heart similar to the chest leads, 

but uses bipolar leads. Here the positive electrode is placed on the chest 

and the negative electrode at a location that approximates the electrical 

axis of the heart. 

Another lead system used for recording is the ‘Modified Limb 

Lead’ (MLL). ECG can be recorded with the RA electrode placed in 

the 3rd right intercostal space slightly to the left of the mid-clavicular 

line, the LA electrode placed in the 5th right intercostal space slightly to 

the right of the mid-clavicular line and the LL electrode placed in the 

5th right intercostal space on the mid-clavicular line. Modified limb lead II 

recording from MIT-BIH Arrhythmia database is used for the analysis 

in this work. 

1.3 Cardiac Arrhythmias 

Arrhythmia is a disturbance of the heart’s usual rhythm. It is also 

known as cardiac dysrhythmia. Arrhythmias happen when the electrical 

signals that the heart uses to beat do not start in the right place or move 

across the heart properly. In general, the arrhythmias can be divided 

into two groups. The first one is the ventricular arrhythmia which is life 

threatening and can sometimes be fatal. The second group includes 

supraventricular or atrial arrhythmias. The proposed work relates to the 

arrhythmias in the second group. In accordance with the AAMI 

standard, the heart beats are classified as Normal labeled heartbeats 

(termed as N), Supraventricular ectopic beat (Sv), Ventricular ectopic 

beat (V), Fusion beat (F) and unknown beat class (Q). The MIT-BIH 
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arrhythmia is the most commonly used database to evaluate the 

performance of algorithms by most of the researchers (Mariano 

Llamedo, march 2011). The records in this database are sampled at a 

rate of 360 samples/sec. The different types of arrhythmias in this 

database are grouped into the AAMI type as given in Table 1.1. 

Table 1.1: Arrhythmias analyzed according to AAMI standard 

AAMI 
heartbeat 

type 

Description of 
arrhythmia Type of MIT-BIH heartbeat Class 

V Ventricular 
ectopic beat 

Premature Ventricular contraction 
(PVC), Ventricular Escape beat 
(VE) 

III 

F Fusion beat 
Fusion of ventricular and normal 
beats, Fusion of paced and normal 
beats 

Q Unknown beat Paced, Not classified beats - 

Sv Supraventricular 
ectopic beat 

Atrial Premature beat (AP), 
Aberrated Atrial Premature beat 
(aAP), Nodal Premature beat(NP), 
Supraventricular Premature beat (SP) 

II 

N Any beat not in 
the Sv, V, F, Q 

Normal, Left Bundle Branch Block 
beats, Right Bundle Branch Block 
beats, Atrial Escape beats, Nodal 
Escape beats 

I 

It is seen that AP, aAP, NP and SP beats are grouped under 

Supraventricular (Sv) type (Class II). Similarly PVC, VE comes in 

Ventricular (V) type. Since the fusion beats (F) are marginally represented 

in the database, a modification to the AAMI recommendation suggested 

by Mariano Llamedo (2011) was adopted for classification purpose. It 
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consists of merging the ventricular and fusion types. The V and F types 

were together named as Class III. All other beats which were not in Sv, V 

and F type are grouped under N type, except Q type which was discarded 

since its number is very less and it represents only the paced and 

unclassified beats. The types of Arrhythmia in each group are described 

below. 

1.3.1 Normal labeled heart beats (N) 

As per the recommendations of AAMI this group contains the 

normal, bundle branch block, atrial escape and nodal escape beats. 

Normal ECG: The normal ECG shown in Figure 1.5 is a scalar 

representation that shows deflections resulting from cardiac activity as 

changes in the magnitude of voltage and polarity over time. It 

comprises the P wave, QRS complex and T and U waves. 

Left Bundle Branch Block (LBBB): Blockage of conduction in the left 

bundle branch prior to its bifurcation, results primarily in delayed 

depolarization of the left ventricle. In LBBB, the septum depolarizes 

from right to left, since its depolarization now is initiated by the right 

bundle branch. In this condition, activation of the left ventricle is 

delayed, which causes the left ventricle to contract later than the right 

ventricle. Though LBBB is prominently characterized by using chest 

leads with a QRS interval slightly greater than 0.12 seconds, other leads 

also show significant variation. Unlike Right bundle branch block, 

LBBB always gives a sign of organic heart disease, e.g. ischemia, 

cardiomyopathy, conduction tissue disease, hyper tension heart disease, 
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infiltration (Saul G. Myerson, 2009). A sample of the LBBB taken 

from lead II is shown in Figure 1.6. 
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Figure 1.5: Normal ECG signal 
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Figure 1.6: ECG signal with LBBB 
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Right Bundle Branch Block (RBBB): Septal depolarization results in a 

small R wave in chest lead V1. Left ventricular depolarization results in 

S wave. Right ventricular depolarization produces a second R wave. 

The delayed depolarization of the right ventricle causes an increased 

width of the QRS complex to at least 0.12 seconds. Hence, RBBB is 

characterized in chest leads with a QRS complex slightly greater than 

0.12 seconds. A corresponding change does occur in lead II which is 

plotted in Figure 1.7. 

Atrial escape beat (AE): As shown in Figure 1.8, AE is a cardiac 

dysrhythmia occurring when sustained suppression of sinus impulse 

formation causes other SA node to act as cardiac pacemakers  

(Sandra Atwood, 2011). 
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Figure 1.7:  ECG signal with RBBB 
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Figure 1.8: ECG signal with AE 

Nodal escape beat: These ECG cycles are produced when the normal 

pattern of atrial depolarization does not occur. Failure of the SA node 

to initiate an impulse or blockage of SA node impulse in the atrial 

conduction system produces a pulse in the cardiac cycle. The first 

backup pacemaker in the cardiac conduction system is the AV junction. 

All escape beats come late in the cardiac cycle. When the normal 

pacemaker of the heart doesn’t produce an impulse, the escape or 

backup pacemaker protects the heart from stopping completely. This 

may occur after normal beats or premature beats or even after an 

isolated beat. They are recognizable by the location and shape of the    

P-wave and is given in Figure 1.9 (Catalano, 2002). 
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Figure 1.9: ECG signal with nodal escape beat 

1.3.2 Supraventricular ectopic beats (SV) 

As per the recommendations of AAMI this group consists of 

atrial premature beat, aberrated atrial premature beat, nodal premature 

beat and supraventricular premature beat.  

Atrial premature beat (APB): Atrial premature contractions are 

produced when a single irritable area of the atria discharges an impulse 

before the next regular SA node is able to discharge. This early 

discharge interrupts the regularity of the underlying rhythm with 

premature ectopic beats. Since these impulses arise from the atria, the 

ectopic beat has an abnormally shaped P-wave before the QRS complex. 

Figure 1.10 shows a typical APB (Catalano, 2002). 
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Aberrated atrial premature beat: Aberration is conduction of the 

supraventricular impulse to the ventricles in a markedly different 

manner from the usual conduction. Any type of supraventricular 

rhythm may show aberrancy. The ECG shown in Figure 1.11 is 

conducted aberrantly and is due to an APB. One of the reasons for an 

aberrated atrial premature beat is that cardiac cycle before the beat 

preceding the APB is a long cycle. Aberration occurs when heart rate 

increases (Ziad Issa, 2012). 
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Figure 1.10: ECG signal with APB 

Nodal premature beat: A premature nodal contraction shown in 

Figure 1.12 occurs when a single irritable area in the AV junction 

discharges an impulse before the next regular SA node impulse is due 

to be delivered. 
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Figure 1.11: ECG signal with aberrated atrial premature beat 
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Figure 1.12: ECG signal with nodal premature beat 
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Supraventricular premature beats: Supraventricular premature beats 

represent premature activation of the atria from a location other than 

the sinus node and can originate from the atria or AV node. As shown 

in Figure 1.13 they have narrow QRS complex. 
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  Figure 1.13: ECG signal with supraventricular premature beat 

1.3.3 Ventricular ectopic beat (V) 

As per the recommendations of AAMI, this group includes 

Premature Ventricular Contraction and ventricular escape beat. 

Premature Ventricular Contraction (PVC): This type of ECG occurs 

as a result of increased automatism of the ventricular muscles, i.e. An 

ectopic focus somewhere in the ventricles discharge and causes early 

or premature contraction of the ventricles. Since the premature 

discharge of the focus originates in the ventricles and the impulse is 
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not usually conducted back to the atria, the QRS complex of the PVC 

is not preceded by the P wave as given in Figure 1.14 (Viljoen, 1989). 
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Figure 1.14:  ECG signal with PVC 

 

Ventricular escape beat: Ventricular escape beat occur when there is a 

failure of the higher pacemaker sites to initiate impulses. As a result, 

some area in the ventricular conduction system becomes the pacemaker 

site by default. Complete AV blocks and SA node blocks may also 

cause ventricular escape beats to occur. The same condition can also 

produce ventricular escape rhythm as shown in Figure 1.15 (Catalano, 

2002).  
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Figure 1.15: ECG signal with ventricular escape beat 

1.3.4 Fusion beats (F) 

As per the recommendations of AAMI, the fusion of ventricular 

and normal beats and fusion of paced and normal beats comes under 

this group. Fusion heartbeats occur when either the atria or the 

ventricles are activated by simultaneously invading impulses and can 

be measured in the P wave or the QRS complex of the ECG       

(Henry Marriott, 2000). Ventricular fusion beats occur when a normal 

impulse from the sinus node has depolarized the atria and is beginning 

to depolarize the ventricles, at the same time an irritable ventricular 

focus also initiates an impulse. The two impulses collide in their travel 

to depolarize the ventricles. The result is a beat that usually has a sinus 

P wave in front of it but looks neither like the normal beat nor the PVC 

as given in Figure 1.16. 
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Figure 1.16: ECG signal with fusion of ventricular and normal beats 

1.3.5 Unknown heart beats (Q) 

Unknown or unclassified heartbeats (Type Q) corresponds to 

heartbeats that do not contain any significant information, mainly due 

to some external conditions such as electrode disconnection, saturation 

of acquisition system, artifacts,  or heartbeats originated by pacemakers 

fixed in the body of a patient.  

It is necessary to isolate these kinds of heartbeats from the 

training space in order to obtain a satisfactory diagnosis.  The number 

of beats of these types are relatively low in the database. A sample of 

this type of ECG is shown in Figure 1.17. 
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Figure 1.17: Unknown ECG signal 

1.4 Noise in ECG Signal 

ECG signals are always more likely to be affected by noise 

(Adam Gacek, 2011). The different types of noise that affect ECG are 

Power line Interference (PLI), Baseline Wander (BLW), electrode 

motion artifacts and electrical potential due to muscular contraction. 

Noise reduction methods focus mainly on the signal, after having been 

filtered. The ECG should not lose its characteristics such as 

morphology and duration. This is a complex task since some bands of 

noise frequencies falls in the frequency range of ECG. 

1.4.1 Power line interferences 

PLI contains 50/60 Hz pickup because of improper grounding of 

the recording system. It is indicated as an impulse or spike at 50/60 Hz, 
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and will appear as additional spikes at integral multiples of the 

fundamental frequency. The amplitude of the noise is usually 50% of 

peak-to-peak ECG signal amplitude. A 50 Hz notch filter is generally 

used to remove the PLI. Figure 1.18 shows an ECG waveform 

corrupted with 50 Hz PLI. 
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Figure 1.18: ECG signal corrupted with PLI 

1.4.2 Baseline wander 

BW may be caused in chest-lead ECG signals with large 

movement of the chest due to cough or breathing, or when an arm or 

leg is moved in the case of limb-lead ECG acquisition. Baseline drift 

can sometimes cause variations in temperature and bias in the 

amplifiers. Its frequency range generally falls below 0.5 Hz. To remove 

baseline drift a high pass filter with cut-off frequency 0.5 Hz is usually 

used. A sample wave is given in Figure 1.19. 
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Figure 1.19: ECG signal with baseline wander 

1.4.3 Electrode motion artifacts 

Motion artifact is the noise introduced to the ECG that results 

from motion of the ECG electrode. Specifically, electrode movement 

causes deformations of the skin around the electrode site, which in turn 

cause changes in the electrical characteristics of the skin around the 

electrode.  

Motion artifact can produce large amplitude signals in the ECG 

and can resemble the P, QRS, and T waveforms of the ECG. Motion 

artifact is prevalent during ambulatory monitoring and treadmill stress 

testing. As shown in Figure 1.20, it can generate larger amplitude 

signal in ECG waveform. An adaptive filter can be used to remove the 

interference of motion artifacts.  
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Figure 1.20: Electrode motion artifact 

1.4.4 Muscle contraction 

Generally muscle contraction is produced due to muscle 

electrical activity. The signals resulting from muscle contraction is 

assumed to be transient bursts of zero-mean band-limited Gaussian 

noise. Electromyogram (EMG) interferences generate rapid fluctuation 

which is faster than ECG wave. As shown in Figure 1.21 The 

frequency spectrum of the EMG signal collected with commonly 

used sensors ranges from 0 to 400 Hz (Carlo J. De Luca, 2010). 
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Figure 1.21: Muscle artifact 

1.5 General ECG classification system 

The ECG signal can be used as a reliable indicator of heart 

diseases. Usually in Holter monitors when the recording of ECG signal 

is complete usually after 24 or 48 hours, the physician need to perform 

the signal analysis. Since it would be extremely time consuming to go 

through a long ECG signal, an automatic analysis process may be 

required which determines different types of heart beats, rhythms etc.  

A general ECG classification system shown in Figure 1.22 may 

include three stages, viz data acquisition and signal processing, feature 

extraction, and an ECG classifier. The goal of data acquisition is to capture 

the ECG signal and encode in a form suitable for computer processing. 

At this stage, care should be given to make sure that no information     
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is lost. The aim of signal conditioning is to eliminate or reduce 

unnecessary components such as noise from the ECG. Often, this is 

done by using suitable filters.  
 

 

Figure 1.22: Block diagram of ECG classification system 

The next stage of the classification system is the feature 

extraction stage which includes identifying and measuring a small 

number of parameters or features that best characterize the information 

of interest in an ECG signal. The features generated can be used as 

input to a suitable classifier which can effectively identify the different 

types of ECG signals. Logical processing and pattern recognition, using 

rule-based expert systems, fuzzy logic algorithms, probabilistic fuzzy 

logic algorithms or Bayesian analysis, cluster analysis, artificial neural 

networks, and others techniques may be used to derive conclusions, 

interpretation and diagnosis. 

1.6 Chapter summary 

ECG signals are pseudo periodic, non-stationary in nature and 

whose behaviour may change with time. The proper processing of ECG 

signal and its correct detection is very important since it determines the 

condition of the heart. Noises present in ECG signal may lead to 
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improper diagnosis. To avoid this, a good filtering mechanism is 

needed for proper ECG diagnosis. As seen from Figure 1.22, the ECG 

classification system could be implemented by acquiring the data, 

filtering it for noise, extracting the features and performing the 

classification using a suitable classifier which is explained in the 

following chapters.  

In chapter 2, a comprehensive up to date literature review was 

performed on the available noise removal and ECG classification 

techniques. ECG filtering as well as classification methods used by 

different authors are examined. It was observed that for better 

classification accuracy an ECG with high signal-to-noise ratio and low 

distortion is needed. Further it was observed that adequate importance 

was not given for the isolated abnormalities present in the ECG. These 

findings are consolidated in this chapter. 

In chapter 3, an introduction to the database selected for the ECG 

classification (MIT-BIH arrhythmia from Physionet) is described. The 

filtering method employed for the removal of Baseline Wander (BLW) 

and PLI is explained. An adaptive filtering technique for the removal of 

BLW and PLI which is based on GA is proposed. The proposed GA 

tuned Sign-Data Least Mean Square (SD-LMS) algorithm is 

implemented. The algorithm was applied to the records from the 

selected database for removing the BLW and 60Hz PLI. The proposed 

algorithm gave better signal to noise ratio. 
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Chapter 4 details the design and development of a new           

wavelet proposed for ECG classification. The new wavelet is checked 

for the admissibility conditions. The scales corresponding to the 

different classes were identified. The designed unoptimized wavelet 

was evaluated for ECG classification. Results obtained was observed to 

be better than the existing results reported in literature.  

In chapter 5, the proposed wavelet is fine-tuned by GA to further 

improve classification performance. The optimum wavelet for 

classification was obtained after several runs of the GA algorithm. 

Sensitivity and positive predictivity were used to evaluate the 

performance of the classifier. Results indicate that the classification 

accuracy increased substantially. 

In chapter 6, an attempt to still improve the classification accuracy 

by exploring it at finer scales was made. The scales corresponding to 

maximum classification accuracy for each class was identified. It was 

observed that the optimized wavelet selected at finer scales could 

effectively differentiate the frequencies in each class. Good time-

frequency resolution of the new wavelet transform has helped to 

successfully differentiate the different types of ECG efficiently. 

Chapter 7 gives the conclusion and contribution of this research 

work. It also suggests the scope for further work. 

…..….. 



 



Literature Survey 

31 

 

Chapter 2 

LITERATURE SURVEY 
 

2.1 Review of filtering methods 
2.2 Review of ECG classification methods 
2.3   Present issues and remedies 
2.4 Objective of the thesis  

 

 

This chapter explores the earlier works done for noise removal and ECG 

classification. Based on the exhaustive literature survey the limitation of 

the existing methods and the general objective of this thesis are presented. 
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2.1 Review of filtering methods 
Several methods have been proposed to work out for the removal 

of BLW. Filtering techniques reported includes linear filters like Finite 

Impulse Response (FIR) filter and Infinite Impulse Response (IIR) 

filters, nonlinear filters, polynomial interpolation and wavelet filters. 

Nitish V. Thakor (1991) used a simple adaptive filtering technique for 

the removal of BLW, but it lacks a suitable reference signal. Y. Sun 

(2002), used a Modified Morphological Filtering (MMF) technique 

for signal conditioning in order to accomplish baseline correction and 

noise suppression with minimum signal distortion. MMF performs well 

in terms of the filtering characteristics, but its application may result in 

waveform distortion. By applying Kalman filters (MA Mneimneh, 2006) 

BLW noise can be effectively removed, but the Signal-to-Noise Ratio 

(SNR) is relatively low.  

Mohammad Zia Ur Rahman (2010) used a normalized Sign-Sign 

Least Mean Square (SS-LMS) algorithm for the removal of BLW.              

Even though the method is less computationally complex, the SNR 

improvement and the waveform shape are inadequate. He has compared 

the performance of several signed Least Mean Square (LMS) based 

adaptive filters with the conventional adaptive LMS algorithm for the 

elimination of PLI, BLW, muscle and motion artifacts. Linear filters 

designed by Johnson (2010) and Seema Rani (2011) are used to remove 

BLW but their fixed cut off frequency may result in a loss of 

information from the ECG signal. Weituo Hao (2011) introduced a 

nonlinear mean-median filter that preserves the outline of the BLW. It 
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avoids distortion caused by the median filter. The reported values are 

comparatively lower. 

Inaki Romero (2011) proposed a system approach to motion 

artifact reduction in ambulatory recordings, including: selection of 

electrode configuration, algorithms for motion artifact filtering, custom 

analog front-ends and integration in wearable electrode patches. Two 

algorithm methods were tested. The first method applies Independent 

Component Analysis (ICA) for de-noising multi-lead ECG recordings. 

The second method was an adaptive filter that uses skin/electrode 

impedance as the measurement of noise. Also, a wireless patch was 

presented, which records 3-lead ECG, 1-lead electrode tissue impedance 

and 3D-acceleration, thus providing the necessary data to test and 

implement motion artifact algorithms. Results obtained showed that 

ICA achieves some amount of noise reduction.  

P. Mithun (2011) proposed a denoising technique for suppressing 

EMG noise and motion artifact in ambulatory ECG. EMG noise was 

reduced by thresholding the wavelet coefficients using an improved 

thresholding function combining the features of hard and soft 

thresholding. Motion artifact is reduced by limiting the wavelet 

coefficients. Thresholds for both the denoising steps are estimated 

using the statistics of the noisy signal. Denoising of simulated noisy 

ECG signals resulted in an average SNR improvement of 11.4 dB. It 

significantly improved R-peak detection, but lacks a common database 

for comparison. The reconstructed signal quality measured in terms of 

R peak detection alone. 
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Fakroul Ridzuan Hashim (2012) reported a new wavelet based 

Motion Artifact noise removal system . It comprises of two stages. In 

the first stage wavelet denoising techniques with several threshold 

methods were employed. In the second stage a combination of a high 

and low frequency filters is used in order to reduce motion artifact 

noise. Even though good results have been obtained in terms of SNR, 

no parameter to measure the quality of the reconstructed signal have 

been discussed. 

Hassan (2014) has described a type of multiple sub-adaptive filters 

that can remove Power Line Interference from Electrocardiogram. A 

three sub-adaptive filter of order 30 gave an MSE value of 1.12x10-6 

and SNR of 20.4 db while removing PLI from ECG. 

2.2 Review of ECG classification methods  

Automatic classification of ECG have been reported by many 

investigators. The classification system used inputs like ECG wave 

interval features (Yeap T.H., 1990 and Hu Y.H., 1993), ECG 

morphology features, frequency based features (Senhadji L., 1995) and 

Karhunen-Loeve expansion of ECG morphology (Hu Y.H., 1997). 

AI-Fahoum (1999) developed a classifier using wavelet 

transforms for extracting features and then used a radial basis function 

neural network to classify the arrhythmia. Six energy descriptors are 

derived from the wavelet coefficients over a single-beat interval from 

the ECG signal. Nine different continuous and discrete wavelet 

transforms are considered for obtaining the feature vector. By utilizing 
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the Daubechies wavelet transform, an overall classification of 97.5% 

was obtained. The dataset used for classification consisted of only 159 

ECG cycles. 

Dingfei Ge (2002) developed a simpler autoregressive(AR) 

modeling technique to classify normal sinus rhythm and various cardiac 

arrhythmias including atrial premature contraction, premature ventricular 

contraction, supraventricular tachycardia, ventricular tachycardia and 

ventricular fibrillation. The AR coefficients were computed using Burg's 

algorithm and were classified using a generalized linear model (GLM) 

based algorithm in various stages. The technique achieved an average 

sensitivity of 96.78% for the six classes of ECG beats but the classification 

was performed on a selective database that contained only 856 ECG 

cycles. 

Mohamed I. Owis (2002) presented a study of the nonlinear 

dynamics of ECG signals for arrhythmia characterization. The 

correlation dimension and largest Lyapunov exponent were used to 

model the chaotic nature of five different classes of ECG signals. The 

model parameters were evaluated for a large number of real ECG 

signals within each class and the results were reported. The algorithm 

presented allows automatic calculation of the features. It is seen that it 

is useful in ECG arrhythmia detection, but discrimination between 

different arrhythmia types was difficult using such features. The 

techniques were implemented and applied to ECG signals from the 

MIT-BIH Arrhythmia Database. The data used was composed of five 

different types of ECG records but each type was represented by only 
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64 independent signals for the design set and another 32 signals for the 

test with each signal 3 sec. long. 

Philip de Chazal (2004) described a method for automatic 

processing of ECG for the classification of the heart beat into five 

classes based on the recommendations of AAMI EC57:1998 standard. 

The classifier used feature sets based on ECG morphology, heart beat 

intervals and RR intervals. They obtained a sensitivity of 75.9% for the 

supraventricular ectopic beat and 77.7% for ventricular ectopic beat. 

Omer T. Inan (2006) proposed a neural network based classifier 

and achieved good classification accuracy for larger data sets. They had 

combined wavelet-transformed ECG waves with timing information for 

the feature set used for classification. In order to demonstrate robustness, 

the author has chosen 40 files for the first experiment in which 22 were 

completely foreign to the classifier. The ECG cycles used for training  

the neural network were selected from the remaining 18 files. The 

classification accuracy obtained after using 93281 ECG cycles also 

included ECG cycles that were used to train the neural network.  

Abdelhamid Daamouchea (2011) has proposed a Discrete Wavelet 

Transform (DWT) optimization approach for ECG classification. Particle 

Swarm Optimization technique and Support Vector Machine were used 

for classification. Apart from the wavelet features, a few temporal 

features were also included in the feature set which means the classifier 

is not fully dependent on the optimized wavelet features. The overall 

accuracy obtained was 88.84%. 
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Mariano Llamedo (2011) described a simple classifier based on 

ECG feature models selected to improve generalization capability. 

They used both interval and morphological features in their model. For 

classification purpose interval based features from RR sequence and 

wavelet based features were used and they have reported a sensitivity 

of 95% for normal beats, 61% for Supraventricular beats and 75% for 

ventricular beats.  

Roshan Joy Martis (2012 June, 2012 October, 2013 March) have 

automatically classified normal, RBBB, LBBB, atrial premature 

contraction and PVC. They used the features from the principal 

components of segmented ECG beats, DWT coefficients, DCT 

coefficients and bispectrum of the ECG for classification purpose. These 

approaches were independently classified using feed forward Neural 

Network and Least Square-Support Vector Machine. Using 34,989 

ECG beats from MIT-BIH database they obtained an average 

accuracy of 93.48%, average sensitivity and specificity of 99.27% and 

98.31% respectively with Least Square-Support Vector Machine (LS-

SVM) having Radial Basis Function (RBF) as kernel.  

Roshan Joy Martis (2013 August, 2013 September) proposed two 

methods for ECG characterization of which the first work included the 

time based methods like linear prediction, Principal Component 

Analysis (PCA), Linear Discriminant Analysis (LDA), Independent 

Component Analysis (ICA) and Discrete Wavelet Transform(DWT) for 

dimensionality reduction. These dimensionality reduced features were 

fed to the support vector machine, neural network and PNN classifiers 
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for automated diagnosis. They attained an average sensitivity, specificity, 

PPV and accuracy of 99.97%, 99.83%, 99.21% and 99.28% respectively.  

In the other work two approaches, one using cumulant features of 

segmented ECG and other using cumulants of DWT coefficients were 

used for the classifier. Classification was done using a three layered 

neural network and obtained an average accuracy of 94.52%, sensitivity 

of 98.61% and specificity of 98.41%. TE author has used a 10-fold 

cross validation technique for training and testing of classifier, ie., the 

entire data set is sub-sampled into 10 sets each having same distribution 

of samples for each class, which gives higher percentage of 

classification. 

Karpagachelvi (2014) used an Extreme Learning Machine 

(ELM) classifier which works by searching for the best value of the 

parameters that tune its discriminant function, and upstream by 

looking for the best subset of features that feed the classifier. The 

ECG data from the Physionet arrhythmia database is used to classify 

five kinds of abnormal waveforms and normal beats. In particular, the 

sensitivity of the ELM classifier was tested and that was compared with 

SVM combined with two classifiers, namely the KNN classifier and the 

Radical Bias Function (RBF) neural network classifier, with respect to 

the dimensionality and the number of available training beats. A total 

of the morphology and temporal features used for the classifier 

equals 303 for each beat. With 40416 test beats the overall and 

average accuracies obtained were only 89.74% and 89.78% 

respectively. 
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Morita (2015) has done a study to analyze the discrepancy of 

interpretation by physicians from different specialties and a computer-

generated ECG reading in regard to a T Wave Inversion (TWI) in lead 

aVL.  In this multidisciplinary prospective study, a single ECG with 

isolated TWI in lead aVL that was interpreted by the computer as 

normal, was given to all participants to interpret in writing. The 

readings by all physicians were compared by level of education and by 

specialty to one another and to the computer interpretation. A total of 

191 physicians participated in the study. Of the 191 physicians 48 

(25.1%) identified and 143 (74.9%) did not identify the isolated TWI in 

lead aVL.  

Eskola MJ (2007) described a case of isolated temporary 

occlusion of the major side branches of the Right Coronary Artery  

(RCA) during percutaneous coronary intervention, recognized by 

angiography findings and typical ECG changes. Isolated right 

ventricular infarction (RVI) is a rare event. The electrocardiographic 

(ECG) pattern of RVI, ST-elevation in lead V4R and in anterior chest 

leads V1-3 is similar to that of a proximal occlusion of a small, non-

dominant RCA. The ECG changes may be misinterpreted as signs of 

infarction of the anterior wall. This paper demonstrates how one 

might avoid wrong decisions even in the catheterization laboratory by 

putting attention to the anatomical interpretation of the ECG. 
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2.3   Present issues and remedies 

Based on the detailed study of the published works, it is seen that 

ECG detection and classification is given much importance in the field 

of biomedical signal processing. The first stage of ECG classification is 

acquiring the signal and pre-processing it for the removal of noise. The 

commonly seen noises in ECG are baseline wander, power line 

interference and muscle noise.  

Filtering techniques reported includes linear filters like FIR            

filter and IIR filters, nonlinear filters, polynomial interpolation and 

wavelet filters. A modified morphological technique used for signal 

conditioning performs well in terms of the filtering characteristics, but 

its application may result in waveform distortion. BLW noise could be 

removed effectively by applying Kalman filters, but it was seen that the 

Signal-to-Noise Ratio was relatively low. A less computationally 

complex method using signed LMS for the removal of the different 

noises was reported. The method used signed LMS methods that gave 

good results but SNR improvement and the waveform shape were 

inadequate.  

ECG classification is one of the important areas where a vast 

amount of work is still going on. The different classification techniques 

implemented uses interval features, morphological features as well as 

frequency based features. Some of the features include heart beat & RR 

intervals, wavelet based features, principal components of segmented 

ECG beats, DCT coefficients, bispectrum of the ECG, cumulant 
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features of segmented ECG & DWT coefficients. The different 

classification methods employed includes NN, SVM, RBF, ELM 

classifiers etc. Even though different classification methods were used 

it is seen that even though the results obtained are acceptable, it needs 

an improvement.  

It is seen that in some of the works the authors have obtained 

high percentage of sensitivity, specificity and positive predictive value. 

They have used reconstructed databases for classification and the 

classification was performed by using a ten-fold cross validation scheme. 

In this scheme the dataset for testing and training was built by dividing 

the entire ECG cycles in the selected database into ten sets each having 

similar proportion of samples. Nine sets were used for training and the 

remaining one set used for testing. The training and testing process was 

repeated for all the ten sets. The average of the ten performance 

measures was taken as the final value which gave high levels of 

accuracy. 

The main requirement of ECG classification is a reliable database 

that could provide enough ECG records and valid descriptions on the 

different cycles for proper validation. Even though many databases are 

available including the Physionet, it is seen that many of the researchers do 

not use such standard databases.  

On observing a few case studies on isolated ECG abnormalities, 

it is seen that there is a discrepancy of interpretation of these cycles 

by physicians in many situations. It is observed that none of the works 
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related to ECG classification have given importance in this area. 

Hence there is a need for sucessfully identifying the isolated 

abnormalities. 

The following are some of the drawbacks found based on the 

literature survey. 

(i) A few techniques for ECG noise removal that could be used for       

ambulatory monitoring does exist, still a simple and efficient 

method that could be implemented on a portable ECG monitor 

need to be introduced. 

(ii) Even though the classification results obtained were acceptable, 

an improvement in classification accuracy is desired. 

(iii) No attempt has been reported in the literature for identifying 

the isolated abnormalities, which pose a silent threat to 

patients. 

(iv) Not all of the methods have chosen a standard classification 

scheme of arrhythmia such as AAMI EC57:1998 standard. 

2.4 Objective of the thesis 

The objective of this work includes; 

(i) Design of a less complex adaptive filter that could be 

implemented on hardware targets such as portable ECG 

monitors. 
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(ii) Design and optimization of a new wavelet for ECG 

classification with better classification accuracy. 

(iii) Identification of isolated abnormalities which pose a threat 
to patients. 

 

…..….. 
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Chapter 3 

DATA ACQUISITION AND ECG NOISE REMOVAL 
 

3.1  ECG Database 
3.2   ECG noise removal 
3.3   Adaptive filtering algorithms 
3.4   Proposed Adaptive Filter using GA tuned SD-LMS algorithm. 
3.5   Results and Discussion 
 

 

 
 

 In this chapter the reasons for selecting a particular ECG database and 

the need for noise removal are discussed. Further a method for effectively 

reducing noise has been proposed. The proposed method has been 

verified, tested and the results are analysed. 
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3.1  ECG Database 
3.1.1 PhysioNet 

PhysioNet is a website that offers free web access to large 

collections of recorded physiologic signals and related open-source 

software. PhysioNet is intended to develop interaction among investigators 

from many different disciplines. The worldwide community of PhysioNet 

users includes basic scientists, mathematicians, clinicians, educators, 

engineers and students working in biomedical sciences and related 

areas. One of the main components of the PhysioNet is the PhysioBank 

which is a large and growing archive of well-characterized digital 

recordings of physiologic signals and related data for use by the 

biomedical research community. PhysioBank currently includes 

databases of multi-parameter cardiopulmonary, neural, and other 

biomedical signals from healthy subjects and patients with a variety of 

conditions with major public health implications, including sudden 

cardiac death, congestive heart failure, epilepsy, gait disorders, sleep 

apnea, and aging (PhysioNet, 2015). 

Nearly 27 ECG databases are present in the server out of which 

some of the prominent ones are  

 ANSI/AAMI EC13 Test Waveforms 

 European ST-T Database 

 Long-Term ST Database 

 MIT-BIH Arrhythmia Database  

 MIT-BIH Noise Stress Test Database 
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 BIDMC Congestive Heart Failure Database 

 ECG-ID Database 

 Post-Ictal Heart Rate Oscillations in Partial Epilepsy 

 QT Database 

 Smart Health for Assessing the Risk of Events via ECG 

 Abdominal and Direct Fetal ECG Database. 

 AF Termination Challenge Database 

 Creighton University Ventricular Tachyarrhythmia Database 

 Electrocardiographic Imaging of Myocardial Infarction 

 Intracardiac Atrial Fibrillation Database 

 Long-Term AF Database. 

 MIT-BIH Atrial Fibrillation Database 

 MIT-BIH ECG Compression Test Database 

 MIT-BIH Long-Term Database 

 MIT-BIH Malignant Ventricular Arrhythmia Database 

 MIT-BIH ST Change Database. 

 MIT-BIH Supraventricular Arrhythmia Database 

 Non-Invasive Fetal Electrocardiogram Database 

 PAF Prediction Challenge Database 

 St. Petersburg Institute of Cardiological Technics 12-lead 

Arrhythmia Database 

 Sudden Cardiac Death Holter Database 

 T-Wave Alternans Challenge Database 
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 As shown in Figure 1.22, the first stage of ECG classification 

system is acquiring ECG data and preprocessing it for noise removal. 

ECG databases selected for analysis were the MIT-BIH Noise Stress 

Test database and MIT-BIH Arrhythmia database.  

3.1.2 MIT-BIH Noise Stress Test database 

The MIT-BIH Noise Stress Test database includes different ECG 

waveforms and artifact that an arrhythmia detector might encounter in 

routine clinical use. It includes twelve, ½ hour ECG recordings and       

three, ½ hour recordings of noise typically encountered in ambulatory 

ECG recordings (A.L. Goldberger, 2000). The BLW used for the 

validation of the proposed SD-LMS filter was taken from this database.  

3.1.3 MIT-BIH Arrhythmia Database Directory 

The source of the ECGs included in the MIT-BIH Arrhythmia 

Database is a set of over 4000 long-term Holter recordings that were 

obtained by the Beth Israel Hospital Arrhythmia Laboratory between 

1975 and 1979 (Moody R. M., 1997). Approximately 60% of these 

recordings were obtained from inpatients. The database contains 48 

records labelled from 100 to 124 and 200 to 234 which includes a 

variety of rare but clinically important phenomena that would not be 

well-represented by a small random sample of Holter recordings. The 

phenomena included were complex ventricular, junctional, and 

supraventricular arrhythmias and conduction abnormalities. The records 

in the database belonged to 25 men aged between 32 and 89 years, and 

22 women aged between 23 and 89 years. The wavelet optimization and 
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ECG classification were performed using this database. Each of these 

record is almost 30 minutes long. 

3.1.3.1 Digitization 

The analog outputs of the ECG recorder were filtered to limit 

analog-to-digital converter saturation and for anti-aliasing, using a pass 

band from 0.1 to 100 Hz relative to real time, well beyond the lowest 

and highest frequencies recoverable from the recordings. The band 

pass-filtered signals were digitized at 360 Hz per signal relative to real 

time. The ADCs were unipolar, with 11-bit resolution over a ±5 mV 

range. The digitized file is stored in the WFDB signal file formats 

(Moody G. B., 2014). For each database record, a header file specifies 

the names of the associated signal files and their attributes like record 

name, number of signals, sampling frequency etc. 

3.1.3.2 Annotations 

The PhysioBank databases include validated annotations for each 

recording that point to specific locations within a recording and describe 

events at those locations. The standard set of annotation codes was 

originally defined for ECGs, and includes both beat annotations and 

non-beat annotations. These annotations were validated by qualified 

cardiologists. In addition to these annotations, ECG rhythms, signal 

quality labels and comments are also made available. The symbols used 

in the annotations are given in Table 3.1. The ECG records used for 

training and testing and the number of cycles corresponding to various 

diseases are shown in Table 3.2 and 3.3  (Moody R. M., 1997). 
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In this work the implementation of the filtering and classification 

algorithms was done in MATLAB R2009a. Corresponding to each 

patient record there is an ECG data file, an annotation file and a header 

file giving details of the patient. These files are not readable by 

MATLAB. It could be converted to the required format by using 

functions available in WFDB directory which operates in Cygwin 

environment. 

Table 3.1: Symbols used in the annotations 

Normal labelled 
beats 

N  Normal Beat 

L Left Bundle Branch Block beat 

R Right Bundle branch block beat 

e Atrial escape beat 

J Nodal (junctional) escape beat 

Supraventricular 
ectopic beats 

A Atrial Premature beat 

a Aberrated atrial premature beat 

j Nodal (junctional) premature beat 

S Supraventricular premature beat 

Ventricular ectopic 
beats 

V Premature ventricular contraction 

E Ventricular escape beat 

Fusion beats 
F Fusion of ventricular and normal beat 

f Fusion of paced and normal beat 

Unknown beats 
P Paced rhythm 

Q Unclassified beat 

Ignored 
! Ventricular flutter wave 

p Recording tape pause interval 
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Table 3.2: Types of beat in the training set 

R
ec

or
d Type of beat 

N L R A a J S V F ! e j E P f p Q 

101 1860   3             2 

106 1507       520          

108 1739   4    17 2   1     11 

109  2492      38 2         

112 2537   2              

114 1820   10  2  43 4         

115 1953                 

116 2302   1    109          

118   2166 96    16         10 

119 1543       444          

122 2476                 

124   1531 2  29  47 5   5      

201 1625   30 97 1  198 2   10     37 

203 2529    2   444 1        4 

205 2571   3    71 11         

207  1457 86 107    105  472   105     

208 1586      2 992 373        2 

209 2621   383    1          

215 3195   3    164 1         

220 1954   94    
 

         

223 2029   72 1   473 14  16       

230 2255   
 

   1          
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Table 3.3: Types of beat in the testing set 

R
ec

or
d Type of beat 

N L R A a J S V F ! e j E P f p Q 

100 2239   33    1          

103 2082   2              

105 2526       41         5 

111  2123      1          

113 1789    6             

117 1534   1              

121 1861   1    1          

123 1515       3          

200 1743   30    826 2         

202 2061   36 19   19 1         

210 2423    22   194 10    1     

212 923  1825               

213 2641 -  25 3   220 362        
 

214 - 2003  
 

   256 1        2 

219 2082   7    64 1       133  

221 2031   
 

   396          

222 2062   208  1  
 

   212      

228 1688   3    362          

231 314  1254 1    2        2  

232 -  397 1382    
 

   1      

233 2230  
 

7    831 11         

234 2700     50  3 
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3.1.4 WFDB library 

Wave Form Data Base (WFDB) library is a portable set of 

functions for reading and writing files in the formats used in PhysioBank 

(Moody G. B., 2014). This software package was originally developed by 

Massachusetts Institute of Technology (MIT) for viewing, analyzing, 

and creating recordings of physiologic signals. It uses package header 

files to specify the format and attributes of signal files. The ECG 

patient records from MIT-BIH arrhythmia database were converted 

to ‘.mat’ and its annotations into ‘.txt’ format using the subroutines in 

this library. 

3.1.5 Cygwin 

Cygwin is a collection of tools that provide a Linux look and feel 

environment for Windows. Building the WFDB Software Package 

using Cygwin assures that WFDB applications will behave on         

MS-Windows as much as possible like they do on other platforms. 

(Moody G. B.). It is possible to launch Windows applications from the 

Cygwin environment, as well as to use Cygwin tools and applications 

within the Windows operating context. The subroutines in WFDB 

library were run in the Cygwin environment.  

3.2 ECG noise removal 

ECG signal processing is a huge challenge since the actual signal 

is measured in a noisy environment. As explained in section 1.4 the 

main sources of noise are PLI, BLW, electrode motion artifacts and 

electrical potential due to muscular contraction. BLW is a low 
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frequency component present in the ECG. This may be due to various 

reasons like offset voltages in the electrodes, respiration activity, 

patient movement and loose electrodes during recording. Baseline 

noises occur in the frequency range of 0.05 to 0.5 Hz. while the 

50/60Hz PLI may be due to improper grounding of the ECG recording 

device. The different types of filters commonly used for ECG noise 

removal include linear filters like finite impulse response filter and 

infinite impulse response filters, nonlinear filters, wavelet filters and 

adaptive filtering techniques. 

3.3   Adaptive filtering algorithms 

Adaptive Filters (AF) work on the principle of minimizing an error 

function, generally the mean squared difference, between the filter output 

signal and a target signal. These filters are advantageous because they do 

not require a prior knowledge of signal as in the case of fixed filters. An 

AF learns statistics of the input source and tracks them if they vary 

slowly. AF can thus be used efficiently for estimation and identification 

of non-stationary signals like ECG. LMS algorithm and Recursive Least 

Squares algorithm (RLS) and their variants can be used to solve this 

problem (Rangayyan, 2004). Compared to RLS algorithms, the LMS 

algorithms do not involve any matrix operations and hence require fewer 

computational resources and memory. The implementation of the LMS 

algorithms is easier than the RLS algorithms. To further reduce the 

amount of computation, signed LMS can be used, especially when the 

input data rate is high. These filters perform well when it is meant to be 

implemented on an embedded system.  
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3.3.1 LMS algorithm 

Figure 3.1 shows a block diagram of the system identification 

model. The unknown system is modeled by an FIR filter with adjustable 

coefficients. Both the unknown time-variant system and FIR filter 

model were excited by an input sequence ����. The adaptive FIR filter 

output ���� was compared with the unknown system output ���� to 

produce an estimation error ����. The estimation error represents the 

difference between the unknown system output and the model 

(estimated) output. The estimation error ���� was then used as the 

input to an adaptive control algorithm which corrected the individual 

tap weights of the filter. This process was repeated through several 

iterations until the estimation error ���� becomes sufficiently small in 

some statistical sense. The resultant FIR filter response now represents 

that of the previously unknown system. 

 

 

Figure 3.1: Adaptive filter 

3.3.2 Sign LMS 

Some adaptive filter applications require implementation of 

adaptive filter algorithms on hardware targets, such as digital signal 

Linear Filter 

Adaptive 
Filter 

 �   
u(n) y(n) e(n) 

d(n) 
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processing devices, FPGA targets, and application-specific integrated 

circuits. These targets require a simplified version of the standard LMS 

algorithm. The signum function, as defined by the following equation, 

can simplify the standard LMS algorithm. 
 

������ � �
    1;      � � 0
   0;      � � 0
�1;      � � 0

 ..........................................  (3.1) 

Applying the signum function to the standard LMS algorithm leads to 

three types of sign LMS algorithms (Haykin, 2009). 

3.3.2.1 Sign-error LMS algorithm 

The signum function is applied to the error signal ����. This 

algorithm updates the coefficients of an adaptive filter using the following 

equation   

��� � 1� � ���� � �. ���������. ����  ................. (3.2) 

Here when ���� is zero, this algorithm does not involve any 

multiplication operations. When ���� is not zero, this algorithm 

involves only one multiplication operation (Haykin, 2009). 

3.3.2.2 Sign-sign LMS algorithm 

The signum function is applied to both ����  and ����. This 

algorithm updates the coefficients of an adaptive filter using the 

following equation  

��� � 1� � ���� � �. ���������. ���� ����� ....... (3.3) 
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When either ���� or  ���� is zero, this algorithm does not involve 

multiplication operations. When neither ���� or ���� is zero, this 

algorithm involves only one multiplication operation. 

3.3.2.3 Sign-data LMS algorithm 

In the Sign-data LMS algorithm (SD-LMS) the signum function 

is applied to the input signal vector ����. This algorithm updates the 

coefficients of an adaptive filter using the following equation  

��� � 1� � ���� � �. ����. ���� �����  ................ (3.4) 

When ���� is zero, this algorithm does not involve multiplication 

operations. When ���� is not zero, this algorithm involves only one 

multiplication operation (Haykin, 2009).  

In Equations 3.2 through 3.4 the vector � contains the weights 

applied to the filter coefficients and vector � containing the input 

data. ���� is the error at time � which has to be minimized. The 

constant  μ is a step size, which controls the amount of gradient 

information used to update each filter coefficient (Simon Haykin, 

2003). The step size directly affects how quickly the filter will 

converge towards the reference input. If  μ is very small, then the 

coefficient will change only a small amount on each update, and the 

filter may converge very slowly. With a larger step size more gradient 

information may be included in each update and the filter may 

converge quickly, but if the step size is very large, the coefficients 

may change too quickly and the filter may diverge. So choosing a 

correct value of step size is important. 
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3.4  Proposed Adaptive Filter using GA tuned SD-LMS 
algorithm 

This section explains an adaptive filtering technique for denoising 

the ECG which is based on GA tuned SD-LMS algorithm. This 

technique minimizes the mean-squared error between the primary input, 

which is a noisy ECG, and a reference input which can be either noise 

that is correlated in some way with the noise in the primary input or a 

signal that is correlated with ECG, in the primary input. Noise in ECG is 

used as the reference signal in this work. The block diagram of the 

proposed method used for noise removal is shown in Figure 3.2.  
 
 

 
Figure 3.2: Block diagram of the proposed ECG noise removal Filter. 

The SD-LMS algorithm used here requires two datasets, one the 

primary input ���� which is the ECG corrupted with BLW/PLI/any 

other noise. Here ���� was obtained by adding the noise with ECG 

record of MIT BIH Arrhythmia database. Four thousand samples from 

each record were selected. The BLW noise used to corrupt the ECG 

was taken from MIT-BIH NSTDB database (Goldberger AL, 2000) and 

SD-LMS algorithm 

MIT/BIH 
Database Adaptive Filter w(n) 

Filter length - 5 

Low Pass Filter 

 ∑ 

y(n) 

u(n) 
e(n) 

GA adapted µ 

d(n) 
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the PLI used to corrupt the ECG was an artificial sine wave generated 

with a frequency of 60 Hz, amplitude of 1mV and a sampling frequency 

of 360 Hz. 

The reference input containing noise signal ���� was obtained by 

filtering the noisy ECG with a Kalman filter (Filtering & Processing 

Tools, 2000).  

In the figure, ���� is the error signal and ���� the weights 

applied to the filter coefficients. The filter length was set to 5. The step 

size ′μ′ was optimized with GA. Since GA combines survival of the 

fittest among chromosomes with structured and randomized information 

(Mitchell, 1998), it has the ability to identify the optimum value of step 

size. Reproduction, Crossover and Mutation are the basic operators in 

GA which helps in the convergence of the solution. Improvement in 

SNR was taken as the fitness function. The number of generations was 

chosen as 500 and population size 50. The initial values of µ’s were 

randomly set in the range of 0.0001 to 0.1.  Roulette wheel selection 

technique was used. Elite count was set as 2 and cross over fraction 0.8. 

Scales and shrink are two important parameters for mutation function.  

Scale controls the standard deviation of the mutation at the first 

generation and shrink controls the rate at which the average amount of 

mutation decreases. The scale and shrink parameters decide the standard 

deviation of the Gaussian distribution used in the mutation function. 

Record 105 was used for training. Theoretically to ensure a good 

convergence rate and stability, μ should be within the practical bounds 

as given by Equation 3.5. 
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0 � � � �
������� ������ ������

  .................................... (3.5) 
 

where N is the number of samples in the signal. It is ensured that the 

optimized value of  µ satisfies this condition.  

In order to evaluate the performance of the filter few ECG 

records were selected from MIT/BIH Arrhythmia database (Moody R. 

M., 1997). This record was corrupted with real BLW noise from MIT-

BIH NSTDB database (Goldberger AL, 2000) and an artificial PLI. It 

gave an average SNR improvement of 10.75 dB for BLW and    

24.26 dB for PLI which is better than the reported results (Weituo 

Hao (2011), Mohammad Zia Ur Rahman (2009), Y. Sun (2002) and 

Hassan (2014)). 

3.5   Results and Discussion 

The proposed filter was implemented in Matlab. The first five 

records from the MIT-BIH Arrhythmia database were added with BLW 

noise and PLI noise. These ECG records with noise were given as input 

to the proposed filter.  

3.5.1 ECG with BLW 

The optimum value of µ obtained for the SD-LMS algorithm was 

0.00563 in the case of BLW noise. The SNR was calculated using 

equation (3.5). 

��� � 10���`�� ���

��
�  ............................................... (3.5) 

where �� and �� denotes the power of the signal and noise respectively.  
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Figure 3.3 shows the plot of a few cycles from record 100 & 105. 

BLW noise taken from MIT-BIH NSTDB database is shown in 

Figure 3.4. These signals were added to give the corrupted ECG as 

shown in Figure 3.5. 
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     Figure 3.3a: ECG Record 100 from MIT-BIH database 

 
Figure 3.3b:  ECG Record 105 from MIT-BIH database 
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Figure 3.4: BLW from MIT-BIH-NSTDB 
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     Figure 3.5a: ECG Record 100 corrupted with BLW 
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Figure 3.5b: ECG Record 105 corrupted with BLW 

 Table 3.4 shows the SNR improvement and the correlation 

coefficient obtained for BLW removal on five records from MIT-BIH 

Arrhythmia database. The average SNR improvement obtained is 

10.75 dB. The SD-LMS filtered ECG is shown in Figure 3.6. 

Table 3.4: SNR improvement and correlation coefficient for BLW 

Record SNR before 
filtering (dB) 

SNR after 
filtering 

(dB) 

SNR 
improvement 

(dB) 

Correlation 
coefficient  

100 0.8218 11.2061 10.3843 0.9626 
105 2.5370 15.4090 12.8719 0.9863 
108 1.1365 11.2618 10.1253 0.9651 

203 2.3729 13.5545 11.1816 0.9791 

228 3.6689 12.8811 9.2122 0.9768 
Average 2.10742 12.8625 10.7551 0.9739 
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Figure 3.6a: New SD-LMS filtered ECG (Record 100) 
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Figure 3.6b: New SD-LMS filtered ECG (Record 105) 
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Comparing the results with that obtained by Mohammad Zia Ur 

Rahman (2009) the results are better. Figure 3.7 shows a comparison 

between ECG noise removal using the proposed algorithm and Kalman 

filtering algorithm. From the Table 3.4 and Figure 3.3 through 3.7, it 

can be seen that the proposed algorithm removes BLW more 

efficiently. The disturbances arising in the output of Kalman filter is 

reduced in SD-LMS filtered output. Correlation coefficient gives a 

measure of the closeness of the filtered output to the original ECG. 

From Table 3.4 it is seen that the values close to 1 suggest that there 

is a positive linear relationship between the original and filtered 

ECG signals.  
 

 
Figure 3.7:  Comparison of results obtained for the removal of BLW 

using Kalman filter and the new SD-LMS algorithm 
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3.5.2 ECG with PLI 

For the removal of PLI the value of µ in the SD-LMS algorithm 

set was 0.008564. This value was obtained after optimization. An 

artificially generated sine wave was used as the reference input. This 

was added with ECG to get the corrupted signal. SNR and correlation 

coefficients were computed for the first five records of the database and 

is shown in Table 3.5. An average SNR improvement of 24.26 dB is 

achieved which is better than the previously reported results 

(Mohammad Zia Ur Rahman 2010, Hassan 2014). Figure 3.8 shows the 

first few cycles from  record 105 added with PLI and Figure 3.9 gives 

the filtered output. ECG with PLI and Figure 3.9 gives the filtered 

output. The peridogram power spectral density estimate with and 

without PLI is shown in Figure 3.10 and 3.11. It can be seen from 

Figure 3.11 that the peak corresponding to the 60 Hz has been removed. 

From these plots it is evident that PLI can also be eliminated 

successfully. 
 

Table 3.5: SNR improvement and correlation coefficient for PLI 

Record 
SNR before 

filtering 
(dB) 

SNR after 
filtering 

(dB) 

SNR 
improvement 

(dB) 

Correlation 
coefficient  

100 15.4858 40.4888 25.0030 1.0000 

105 8.1129 31.8853 23.7724 0.9997 

108 14.9415 38.6769 23.7354 0.9999 

203 8.6042 31.9102 23.3060 0.9997 

228 13.0096 38.4940 25.4844 0.9999 

Average 12.0308 36.2910 24.2602 0.9998 
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Figure 3.8: ECG corrupted with 60 Hz PLI 

 
Figure 3.9: ECG filtered for PLI with the proposed SD-LMS filter 
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Figure 3.10: Peridogram PSD of ECG with 60 Hz interference 

 
Figure 3.11: Peridogram PSD of PLI filtered ECG 

Frequency (Hertz) 

Po
w

er
/fr

eq
ue

nc
y 

(d
B

/ra
d/

sa
m

pl
e)

 

Frequency (Hertz) 

Po
w

er
/fr

eq
ue

nc
y 

(d
B

/ra
d/

sa
m

pl
e)

 



Data Acquisition and ECG Noise Removal 

69 

3.6 Chapter summary 

In this chapter, an adaptive filter that use the GA tuned SD-LMS 

algorithm for the removal of BLW and PLI from ECG signals is 

proposed. The adaptive filter requires a reference input that is 

uncorrelated with the signal of interest, but closely correlated with the 

interference or noise in some manner. The reference signal generated by 

Kalman filter, was highly correlated with the noise in the ECG and 

hence yielded a good result. It is seen that the step size ‘µ’ optimized 

with GA helps in obtaining a better SNR value.  

In order to access the impact of introducing the filtering 

technique the following measures were taken: (i) The value of 

correlation coefficient was calculated and it was found to be near to ‘1’ 

which indicates a close resemblance of the filtered ECG signal with the 

original ECG signal. (ii) The classification of the complete database 

was done using original as well as filtered ECG records and it was 

noted that percentage accuracy was better with filtered ECG signal. 

These results showed that the useful information in the ECG were 

preserved even after the application of the algorithm.  

 

…..….. 
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Chapter 4 

DEVELOPMENT OF A NEW WAVELET FOR ECG 
CLASSIFICATION 

 

4.1 Introduction 
4.2 Wavelet Transforms 
4.3 Neural networks 
4.4 Basic component of the new wavelet 
4.5 Design of the Wavelet 
4.6 Training and testing data set selection 
4.7  Performance analysis indices 
4.8 Initialization of scale and features 
4.9 Classification of ECG 
4.10  Results and discussion 
 

 
 
 

 
This chapter explains the construction of the proposed mother wavelet 

which is achieved by shifting and summing up five different Gaussians 

functions corresponding to the different peaks of the ECG. Before 

proceeding into the design, an introduction to wavelet transforms, 

neural networks, basic components used for wavelet design, selection 

of training & testing dataset and feature extraction is given. The 

performance of the wavelet was evaluated by classifying the ECG 

records using features generated with the new wavelet. The results 

obtained are presented. 

Co
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4.1 Introduction 

Wavelet transforms have become a renowned tool for ECG 

characterization and many of the works in ECG signal processing have 

adopted this technique to perform ECG analysis. In this chapter a new 

Continuous Wavelet Transform (CWT) is designed for ECG 

classification. The classification was performed with features generated 

with the new wavelet by a Probabilistic Neural Network (PNN). The 

recommendations of the AAMI for class labeling and results presentation 

was followed. The use of the new CWT provides better overall 

classification sensitivity and positive predictivity for normal beats (Class 

I), supraventricular beats (Class II) and ventricular beats (Class III) 

including isolated abnormalities. 

4.2 Wavelet Transforms 

Wavelets are purposefully crafted to have specific properties that 

make them useful for signal processing. They are a mathematical 

function that splits up data into temporal and frequency components 

simultaneously, hence giving a time-frequency representation of the 

signal with a resolution matched to its scale. They perform well in 

analyzing physical situations where the signal contains discontinuities 

and sharp sudden changes. Wavelets can be used as an exciting              

new method for solving problems in engineering including wave 

propagation, data compression, signal processing, image processing, 

pattern recognition and computer graphics. Wavelets can be combined, 

using a "shift, multiply and sum" technique called convolution, with 

portions of an unknown signal to extract information from the unknown 
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signal.   As the wavelet decompose data without gaps or overlap, the 

decomposition process is mathematically reversible. Thus, sets of 

complementary wavelets are useful in wavelet based compression/ 

decompression algorithms where it is desirable to recover the original 

information with minimal loss. 

Continuous wavelet transform 

The CWT is computed separately for different segments of the 

time-domain signal. In CWT, the analyzing function is a wavelet 

usually denoted by ‘�’. It compares the signal to shifted and 

compressed or stretched versions of a wavelet. Stretching or 

compressing a function is usually referred to as dilation or scaling. By 

comparing the signal to the wavelet at various scales and positions, we 

obtain a function of two variables (K.P. Soman, 2005).  

Starting from the mother wavelet , � a family of ��,� of daughter 

wavelets can be simply obtained by scaling and translating �. 

��,� � �
�|�|

� ����
�

� , �, � ∈ �, � � 0,  .......................... (4.1) 

where s is a scaling or dilation factor that controls the width of the 

wavelet and τ is the translation parameter controlling the location of the 

wavelet. Scaling a wavelet simply means stretching it �|�| � 1� or 

compressing it �|�| � 1�, while translation is simply shifting its 

position in time. Given a time series ���� ∈ �����, its CWT with 

respect to wavelet � is a function of two variables, is given as  

��;���, �� � � ���� �
�|�|

�∗ ����
�

� ����
��   ..................... (4.2) 
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The position of the wavelet in time domain is given by τ, while its 

position in frequency domain is given by s. The translation and dilation 

operations applied to the mother wavelet are performed to calculate the 

wavelet transformed coefficients, which represent the correlation 

between the wavelet and a localized section of the signal. The wavelet 

transformed coefficients are calculated for each wavelet segment, 

which gives time-scale function relating the wavelets correlation to the 

signal. The absolute values of Wavelet Transformed Coefficients 

(WTC) are used to form the feature vector for the classifier. 

Admissibility Criterion 

While using a transform to get a better understanding into the 

properties of a signal, it should be ensured that the signal can be 

perfectly reconstructed from its form of representation. For the wavelet 

transform the condition that must be met in order to ensure perfect 

reconstruction is 

�� �  �
�������

|�|
�

�  �� �  ∞  ........................................ (4.3) 

This condition is known as the admissibility condition for the wavelet 

����, where Ψ��� is the Fourier transform of the mother wavelet ���� 

(Mertins, 1999). The inverse wavelet transform can exist only if the 

admissibility condition is met. This condition ensures that Ψ���goes to 

zero quickly as � → 0. To guarantee that �� � ∞, we must see that 

Ψ�0� � 0, which is equivalent to 

� ������ � 0��
�� . ........................................................ (4.4) 
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A secondary condition imposed on wavelet function is unit energy 

(K.P. Soman, 2005).  

� |����|��� � 1��
�� .   ................................................... (4.5) 

Inverse CWT 

If the condition �� � �∞, called wavelet admissibility condition 

is satisfied and the wavelet � is real, it is possible to reconstruct ���� 

using the formula  

���� � �
� � �� ����, ����,��������

�� � ��
��

�
�  .................... (4.6) 

It can be seen that no information is lost if we restrict the 

computation of the transform only to positive values of scaling 

parameter ‘s’. 

4.2.1 Scale 

Like the concept of frequency, scale ‘s’ is another useful property 

of signals. A term ‘scale factor’ can be defined in order to see how 

much stretching or shrinking of the wavelet has taken place. The scale 

factor is inherently positive quantity, s>0. The smaller the scale factor, 

the more "compressed" the wavelet. Conversely, the larger the scale, 

the more “stretched” the wavelet. 

It is seen that there is a relationship between scale and frequency. 

Higher scales correspond to the most "stretched" wavelets. The more 

stretched the wavelet, the longer the portion of the signal with which it 

is being compared, and therefore the coarser the signal features 
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measured by the wavelet coefficients. Wavelet analysis allows the use 

of long time intervals where you want more precise low-frequency 

information, and shorter regions where you want high-frequency 

information. Few wavelets that have been used for ECG classification 

are Daubechies, Biorthogonal and Mexican hat wavelet. 

4.3 Neural networks 

Artificial Neural Networks (ANNs) are relatively crude electronic 

models based on the neural structure of the brain. The brain learns from 

practice. Artificial neural networks try to replicate the functioning of 

human brain. The brain stores information as patterns. Some of these 

patterns are very complicated. ANN also stores information as patterns, 

utilizes these patterns, and then solves the problem, which do not utilize 

traditional programming but involves the creation and training of 

massively parallel networks to solve specific problems. 

4.3.1 Structure of ANN 

An artificial neural network (ANN) is a computational model 

based on the structure and functions of biological neural networks. As 

the information flows through the network the structure of the neural 

network changes or learns. Figure 4.1 shows a simple structure of an 

ANN having three stages input, summation and transfer function.  The 

first stage is to multiply each of the inputs that enter into the network 

by their respective weighting factor ����. These modified inputs are 

then fed into the summing function, which usually sums these products, 

which are propagated forward. 
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Figure 4.1: Structure of ANN 

The output of the summing function is then sent into a transfer 

function, which turns this number into a real output (0 or 1, -1 or +1 etc.). 

The transfer function for neural networks must be differential and 

therefore continuous to enable correcting error. Derivative of the 

transfer function is required for computation of local gradient. 

One such example of a suitable transfer function is the sigmoid 

function given in Equation 4.7 which is the most common forms of 

transfer function.  

���� � �
������    ........................................................ (4.7) 
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Because of the easy relationship of the function with its derivative 

at a point, it reduces the computational load for training and is defined as a 

strictly increasing function. Mathematically its derivative is always 

positive. It exhibits a graceful balance between linear and nonlinear 

behavior. 

4.3.2 Neural Network as ECG classifier  

Studies have shown that the neural network systems perform well 

for detection and recognition of abnormal ECG (Silipo R., 1998), (Roshan 

Joy Martis, 2013 September). The use of neural systems in ECG signal 

analysis offers several advantages over conventional techniques. The 

neural network can perform the necessary transformations and the 

clustering operations automatically and simultaneously. They are able to 

recognize complex and nonlinear groups of data. Three commonly used 

techniques of neural network are Back Propagation (BP), Self Organising 

Maps (SOM) and Radial Basis Function (RBF). RBF function produce 

more specific, accurate and sensitive results for classification of cardiac 

health state as compared to BP and SOM (N. Kannathal, 2007). There are 

two variants of radial basis networks, Generalized Regression Neural 

Networks (GRNN) and Probabilistic Neural Networks (PNN) 

(Wasserman, 1993). PNN is used for ECG classification in this work.  

4.3.3 Probabilistic Neural Network 

PNN is chosen since ECG classification is difficult to be solved 

using ordinary rule based programming and are much faster and more 

accurate than multilayer perceptron networks. For the network used 

shown in Figure 4.2, the first layer input weights are set to the transpose 
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of the matrix formed from the training pairs whose size is � � �. When 

an input is presented the first layer computes euclidean distances from 

the input vector to the training input vectors and produces a vector whose 

elements indicate how close the input is to a training input. These 

elements are multiplied, element by element, by the bias and sent to the 

RBF (S.N. Sivanandam, 2006).  The second layer weights are set to the 

matrix of target vectors (size:� � �). Each vector has a ‘one’ only in the 

row associated with that particular class of input, and ‘zeros’ elsewhere. 

The second layer after multiplication of the target vector by the output of 

the first layer, sums these contributions for each class of inputs to 

produce its net output, a vector of probabilities. Finally, a competitive 

transfer function on the output of the second layer picks the maximum of 

these probabilities and produces a '1' for correct class and a '0' for the 

other classes  (S.N. Sivanandam 2006), (Wasserman 1993). 
 
 

 
Figure 4.2: Schematic of the PNN 
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Thus, the network has classified the input vector into a specific ‘one of � 

classes’ because that class had the maximum probability of being 

correct. 

The PNN needs a single spread value for probabilistic density 

function estimation. If the value of spread is near to zero, the network 

acts as a nearest neighbor classifier. As spread becomes larger, the 

designed network takes into account several nearby design vectors. 

Jackknifing technique was used to test and find the best performing 

value of spread (Wolter, 2007). In this test each sample from training 

set was removed and checked whether PNN classifies that sample 

correctly. This was repeated for every sample in the training set. The 

number of correct classifications over the entire process is a measure of 

the performance for that value of spread. The optimum value for spread 

is 0.5. This was checked by using a simple GA program that gave the 

same value of spread for this classifier.  

4.4 Basic component of the new wavelet 

The Gaussian function has been used as the basic unit to construct 

the raw wavelet. As shown in Figure 4.3 it has a characteristic symmetric 

"bell curve" shape. In one dimension, the Gaussian function is 

the probability density function of the normal distribution (Lifshits, 

1995) given by 

���� �  �
�√��

�������� �����⁄    ..................................... (4.8) 

which are sometimes called the frequency curve.  
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Figure 4.3: Gaussian function 

The parameter µ is the position of the centre of the peak and σ the 

standard deviation sometimes called the Gaussian RMS width which 

controls the width of the bell. Gaussian functions are widely used in 

statistics where they describe the normal distributions and its tails drop 

toward zero very rapidly, much faster when compared with other common 

functions such as decaying exponentials or �
�
. In signal processing they 

serve to define Gaussian filters and in image processing two-dimensional 

Gaussians are used for Gaussian blurs. They are also used in mathematics 

to solve heat equations and diffusion equations. 

4.5 Design of the Wavelet 

A new custom made mother wavelet was constructed using 

summing up Gaussian functions mentioned in the preceding section in 

such a way that its shape was almost similar to that of a normal ECG.   

A Gaussian is used for the construction of the wavelet because it is 

symmetric around its mean, gains its maximum value at the mean and 
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goes very fast to zero, similar to an ECG peak. The amplitude and 

duration of the PQRST complex (5 peaks) of the normal ECG were taken 

as reference for constructing the wavelet.  

The custom made mother wavelet was constructed by shifting and 

summing up five different Gaussians corresponding to the five peaks of 

the ECG, which can be called as the ‘Shifted and Summed Gaussian 

Wavelet’ (SSG-Wavelet). The equation corresponding to this                     

SSG-Wavelet is given by Equation 4.9. 

���� � � � � � � � � � �.  ....................................... (4.9) 

where ���� � SSG-Wavelet. 
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Here ��, ��, ��, �� and �� are the standard deviation of each Gaussian 

under consideration. Since σ and peak are inversely proportional, the 

lower peaks were approximated by higher values of σ and higher 

peaks were approximated by lower values of σ. The corresponding 

five values of σ chosen for each Gaussian wave P, Q, R, S and T where 

�� � 1, �� � �0.4, �� � 0.25, �� � �0.2 and �� � 1 respectively. 

The value of mean(µ) value which are responsible for the position of 

Gaussian were chosen as -5,-1,0 1 & 5 for the P, Q, R, S, T waves. 

The negative sign for �� and �� indicates that the amplitude 

corresponding to Q & S are negative. The U wave was not taken into 

consideration, since this wave is small in amplitude and appears often 

only as a slight undulation. Each separately designed Gaussian 

functions are added to get an approximate version of the signal closer 

to ECG which has been considered as the raw mother wavelet.  The 

effective support of the wavelet was set as [-8,+8] on a 1024-pint 

regular grid. The raw mother wavelet was then normalized by dividing 

it with the standard deviation of the third Gaussian component σ�. An 

averaging operation is also performed to make sure that the wavelet 

satisfied the admissibility conditions. The initial values of mean and 

variance and their relative separations of the Gaussians were selected in 

such a way that the new wavelet mimics a normal ECG cycle. The plot 

of the normalised SSG-wavelet and typical ECG wave is shown in 

Figure 4.4 & 4.5 to indicate the similarity between them. 
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              Figure 4.4: Normalized SSG-Wavelet  

 

   
      Figure 4.5: One cycle of normal ECG 

This wavelet was tested for admissibility conditions. The Fourier 

spectrum Ψ��� for this wavelet is shown in Figure 4.6. From the figure 

it can be seen that it has no frequency component at � � 0 and it 

exhibits band pass characteristics. 
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Figure 4.6: Fourier spectrum for the SSG-wavelet 

4.6 Training and testing data set selection 

MIT-BIH-AR database (Moody R. M., 1997) has been used for 

training and testing purposes.  Entire database consisting of 97072 

cycles is divided into two sets, one for training & optimization (Set 1) 

and other for testing (Set 2) purpose, each having 22 records as given 

in Table 4.1 (a-d). Training set was formed by selecting just 250 cycles 

randomly from the 22 records in Set 1. It was ensured that almost equal 

importance was given to the different abnormalities including the isolated 

ones. The remaining ECG beats in Set 1 were used to optimize the wavelet 

in chapter five. ECG cycles in Set 2 consisting of 22 records having 49629 

cycles were used for validation purpose (testing). 
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Table 4.1: Training and Testing datasets 

a. Beats from Class I 

ECG type N LBBB RBBB AE NE 

PNN Training (Set 1) 30 22 22 22 22 

Wavelet optimization (Set 1) 38051 3927 3761 16 10 

Testing  (Set 2) 36368 4126 3476 - 51 

 
b. Beats from Class II 

ECG type AP aAP NP, Sv 

PNN Training (Set 1) 22 22 22 

Wavelet optimization (Set 1) 788 78 26 

Testing  (Set 2) 1736 50 213 

 
c. Beats from Class III 

ECG Type PVC VE fVN, fPN 

PNN Training (Set 1) 22 22 22 

Wavelet optimization (Set 1) 3660 83 393 

Testing (Set 2) 3220 1 388 
 

 

d. Total beats for testing and training  
 Class I Class II Class III Total 

PNN Training  (Set 1) 118 66 66 250 

Wavelet optimization (Set 1) 42165 892 4136 47193 

Testing (Set 2) 44021 1999 3609 49629 
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4.7  Performance analysis indices 

The performance in recognition and classification by the PNN 

was evaluated by means of the following performance indices. They are 

sensitivity and positive predictive value (N. Kannathal, 2007) 

Sensitivity indicates the rate of true positive events for a 

diagnostic class and is given as 

Sensitivity � ������ �� ���������� �������� ������
����� ������ �� ���� �������� ������ 

   ............... 4.11 

Positive Predictive Value (PPV) is the rate of true positive events 

among all the classified events in a diagnostic class and is given by 

PPV �  ������ �� ���������� ���� �������� ������
����� ������ �� ���������� �������� ������ 

  ............... 4.12 

4.8 Initialization of scale and features 

4.8.1 Selection of scale 

The frequencies present in ECG fall in the range of 0-100 Hz. 

The three classes of ECG cycles i.e. normal, supraventricular and 

ventricular, lie in different frequency bands. In order to get good 

classification, the frequency or its corresponding wavelet scale for each 

class needs to be identified.  

The PNN classifier mentioned in section 4.3.3 was trained using 

wavelet transformed (features) coefficients of 250 ECG cycles from the 

training set 1 at an arbitrary scale (200 WTC for each cycle). The scale 

was assumed to be the same for all the classes.  
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Using the remaining records in set 1 classification was performed 

at various scales using the PNN classifier, into one of the three classes. 

The scale that gave the maximum sensitivity corresponding to each 

class were identified. PNN was then trained with features corresponding 

to these new scales. The classification was again performed using the 

55821 cycles in Set 1. The training and classification is repeated            

until maximum classification for each class was identified and the 

corresponding scales were found to be 20 for class I, 6 for class II and 

45 for class III. 

4.8.2 Selection of optimum features 

A study on the effect of the number of WTC coefficients used for 

classification of PNN was performed. It was observed that PNN can 

perform well when the selected feature vector used for training and 

testing purpose are optimum. This was done by fixing the scales for 

each class as described above. The number of WTC coefficients for 

PNN was varied and the sensitivity was observed in each case.      

Table 4.2 shows how the sensitivity of each class varied while 

changing number of wavelet coefficients as features. It was seen that 

the maximum average sensitivity was obtained with 86 features. The 

PNN was then trained using 250 ECG cycles from set 1 using these 86 

features. This network was fixed for further classification in subsequent 

chapters. 
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Table 4.2: Selection of WTC as feature vectors 

Pattern adopted 
in selecting the 

WTC 

No. of 
WTC as 
feature 
vectors 

% Sensitivity 

Class I Class II Class 
III 

Average 
sensitivity 

All WTC 200 92.06 83.40 88.90 88.12 

Every third WTC 
discarded 

125 91.90 85.34 89.05 
88.76 

Alternate WTC 
selected 

100 91.76 86.22 90.68 
89.55 

Alternate WTC 
after discarding 
seven WTC from 
either sides 

86 92.06 86.92 92.79 90.59 

Every third WTC 
selected 

66 91.78 88.34 90.85 90.32 

Every fourth 
WTC selected 

50 91.45 88.12 89.80 89.79 

 

4.9 Classification of ECG 

ECG records in Set 2 consisting of 49629 cycles were used for 

testing purpose. Steps involved in the process for classification is given 

in the Figure 4.7. From each record, one complete cycle is taken out 

and it is preprocessed for the removal of noise (PLI & BLW). By 

performing the CWT operation using the new SSG-Wavelet, optimal 

WTC vectors were extracted for the identified scales from the different 

classes.  
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Figure 4.7: Steps involved in the classification process of the ECG records 

Classification for each scale was performed using PNN Classifier. The 

results were validated by using the available annotations. Sensitivity 

and positive predictivity for each cycle as well for each class were 

calculated. 

  

Preprocessed ECG 
cycles (Set 2)  

CWT using  
SSG-Wavelet 

Feature vector 
 (scale 20/scale 6/ 

scale 45) 

PNN Classifier 

Class I Class II Class III 
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4.10  Results and discussion 

The results of classification obtained using PNN classifier with 

optimal number of WTC features for selected scales are given in 

Table 4.3. The percentage of classification is obtained in terms of 

percentage sensitivity and percentage positive predictivity. The 

average sensitivity obtained for class I, class II & class III are found 

to be 96.13%, 73.25% & 90.13% and the positive predictivity are 

found to be 91.77%, 59.63% & 81.88% respectively.  Comparing 

these results with that obtained by Mariano Llamedo (2011) it is seen 

that percentage sensitivity in all the classes are better while positive 

predictivity in class II and class III seems to be less.  The average 

sensitivity obtained for all the three classes is 88.68% and positive 

predictivity is 79.83%. The overall improvement in sensitivity is 

6.82%. Almost all the isolated abnormalities in the Set 2 records as 

mentioned in Table 3.3 were identified.  From the above results, it can 

be seen that the new SSG-Wavelet can be used for classifying ECG 

cycles into normal beats (Class I), supraventricular beats (Class II) and 

ventricular beats   (Class III) effectively. 
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Table 4.3: Classification using the SSG-wavelet 
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100 100 98 18 46 100 100 73 82 
103 100 100 100 40 - - 100 70 
105 99 99 - - 90 45 95 72 
111 100 100 - - 100 1 100 51 
113 100 100 100 75 - - 100 88 
117 100 100 100 2 - - 100 51 
121 100 100 100 6 100 50 100 52 
123 100 100 - - 100 100 100 100 
200 89 75 33 53 79 100 67 76 
202 97 97 35 73 90 56 74 75 
210 100 94 64 82 77 90 80 89 
212 100 100 - - - - 100 100 
213 71 85 75 88 83 80 71 85 
214 98 93 - - 77 93 88 93 
219 99 97 100 70 89 97 96 88 
221 100 98 - - 65 100 83 99 
222 100 91 47 92 - - 74 92 
228 71 77 100 60 99 99 90 79 
231 100 100 100 1 100 100 100 67 
232 100 22 92 99 - - 96 61 
233 91 94 86 67 93 99 90 87 
234 100 99 22 100 100 100 74 100 

Average 96.13 91.77 73.25 59.63 90.13 81.88 88.68 79.83 
* isolated abnormalities are highlighted. 
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4.11 Chapter summary 

A novel SSG-Wavelet has been proposed in this chapter. On 

observing the results it is seen that percentage sensitivity obtained were 

better than that reported in the literature. This shows that the wavelet 

whose shape is similar to that of normal ECG is a promising non-

invasive tool in identifying the time-frequency components in the 

signal. Performance of the SSG-wavelet can be enhanced by optimizing 

the σ values with a suitable technique while the admissibility condition 

is met, is explained in the next chapter. 
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Chapter 5 

SSG-WAVELET OPTIMIZATION APPROACH FOR 
BETTER CLASSIFICATION 

 

5.1 Introduction 
5.2  Genetic Algorithm 
5.3 Optimizing the proposed SSG-Wavelet 
5.4 Results and discussion 

 

A technique for optimizing the SSG-Wavelet for better ECG 

classification using GA is proposed in this chapter. The optimum 

wavelet for classification was obtained after several runs of the GA 

algorithm. Sensitivity and positive predictivity were used to evaluate 

the performance of the classifier. This chapter is made up of two main 

sections. The first section discusses the basics of GA used for 

optimization. The second part deals with the methodology employed in 

achieving the optimized wavelet and the results obtained. 
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5.1 Introduction 

Optimization is an important tool in making decisions and in 

analyzing physical systems. In mathematical terms, an optimization 

problem means finding the best solution from among the set of all 

feasible solutions. The first step in the optimization process is 

constructing an appropriate model by identifying and expressing the 

objectives, variables and constraints in mathematical terms. Objective 

is a quantitative measure of the performance of the system that we want 

to minimize or maximize, variables are the components of the system 

for which we want to find optimum values and constraints are the 

functions that describe the relationships among the variables and that 

define the tolerance values for the variables (Mitchell, 1998). In the 

following sections a method for optimizing the SSG-Wavelet is 

explained. GA is used as the optimization tool. 

5.2  Genetic Algorithm 

Genetic Algorithms are the heuristic search and optimization 

techniques that has its roots in the principles of genetics. GAs have 

been used widely as a tool in computer programming and artificial 

intelligence, optimization, neural network training and many other 

areas. GA can do better than conventional optimization techniques 

while dealing with complex real-world optimization problems. 

Conventional optimization techniques have a single point approach 

(Goldberg, 1989), whereas GA uses a multi-point approach with a 

population of solutions at a time. A population of individuals is 

maintained within search space for a GA, each representing a possible 
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answer to a given problem. Each individual is coded as a finite length 

vector of components, or variables, in terms of some alphabet, usually 

the binary alphabet. Each bit in this string can represent some 

characteristic of the solution. To continue the genetic analogy these 

individuals are equated to chromosomes and the variables are similar to 

genes. Thus a chromosome (our solution) is composed of several genes 

(variables). There are many other ways of encoding. This depends 

mainly on the problem to be solved (S. Rajashekaran, 2013).  

Search Space 

The space of all feasible solutions is called a search space. Each 

and every point in the search space represents one possible solution. So 

each possible solution can be obtained by its fitness value, depending 

on the problem definition. Using GA we look for the best solution, 

among a number of possible solutions in a search space. The best 

solution means either a minimum or maximum depending on the 

definition of that particular problem (S.N. Sivanandam, 2006). 

Population 

A population is a collection of individuals being tested, the 

phenotype parameters define the individuals and some information about 

the search space. The important aspects of population used in GA are 

initial population generation and population size. The population size 

depends on the complexity of the problem. The first population should 

have a gene pool as large as possible in order to be able to explore the 

full search space. Usually the population is finalized randomly. 
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Gene encoding 

Before a GA can be put to work on any problem, a method is 

need to encode the potential solutions to that problem. In GA individual 

genes are represented as codes. Gene encoding can be done using bits, 

numbers, arrays, or any other object which usually depends on the 

problem. Table below shows an example of chromosomes in a population 

of five individuals (chromosomes), where a real number represents each 

chromosome. In this work the σ values’ corresponding to each Gaussian 

function used in the design of the new wavelet forms a chromosome and 

is shown below. 

Chromosome  ���������� 

 

Operators in GA 

GA begins by creating an initial set of random solutions called as 

initial population. An individual representing a solution to a particular 

problem is called a chromosome. A chromosome is formed by a string 

of symbols which is called as genes. The consecutive iterations of the 

GA are called generations. In each generations, the fitness of each 

individual is evaluated to find best individual or solution. The 

subsequent generations are formed by creating new individuals called 

off spring. Selection, crossover and mutation are three main operators 

used in GA.  
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Selection 

During each successive generation, a proportion of the existing 

population is selected to raise a new generation. Individual solutions 

are selected through a fitness process, where the right solutions are 

typically more likely to be selected. Certain selection methods rate the 

fitness of each solution and select the best solutions. Other methods 

rate only a random sample of the population, as this process may be 

very time-consuming. Most functions are stochastic and designed so 

that a small proportion of less fit solutions are selected. This helps to 

keep the diversity of the population large, preventing premature 

convergence on poor solutions. Popular and well learnt selection 

methods include roulette wheel selection and tournament selection. 

Roulette wheel selection used in this work. The fitness for each 

input is first calculated and then it is represented on the roulette wheel 

in terms of percentages. The size of an individual’s slot in the wheel 

is proportional to its fitness. In a search space of ‘N’ number of 

chromosomes, we spin the roulette wheel. Chromosome with bigger 

fitness has the probability of being selected more times (D Andina, 2009). 

Crossover 

The crossover operator selects genes from parent chromosomes 

and generates a new offspring. This recombination operator permits 

individual solutions to exchange information like what is done while 

organisms reproduce. The simplest way to do this is to choose 

randomly some crossover point. A new solution is obtained by copying 
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everything before this point from a first parent and then everything after a 

crossover point from the second parent. This is called single point 

crossover and is the simplest crossover operation (S. Rajashekaran, 2013). 

Mutation 

After a crossover is performed, mutation takes place. This is to 

prevent falling all solutions in population into a local optimum of 

solved problem (S. Rajashekaran, 2013). Mutation changes randomly 

the new offspring. Mutation helps the GA to prevent premature 

convergence of the algorithm. It helps GA to explore new search areas. 

Elitism 

Search speed can be significantly enhanced by keeping the best 

(elite) individual among generations. Making sure the transmission of 

the elite individual from one generation to the next is termed as elitism. 

The elite member copied should not be altered by crossover or mutation 

Initialization 

Initially many individual solutions are randomly generated to form 

an initial population. The population size depends on the nature of the 

problem, but typically contains several hundreds or thousands of possible 

solutions. Traditionally, the population is generated randomly, covering 

the entire range of possible solutions or the so called search space. 

Parameters of GA 

For the effective working of GA certain parameters need to be 

chosen, since they have considerable effects on its performance. The 
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value of these parameters depends on the optimization problem. The 

parameters of simple GA include, population size, crossover rate, 

mutation rate and convergence criteria. 

Population Size 

Population size represents the number of individuals in a 

population and its size depends on the problem complexity.  If the 

population size is small only narrow search regions will be explored, on 

the other hand a large population size has more computational complexity. 

So effectiveness of GA in finding the optimum solution greatly depends 

upon population size. 

Crossover rate 

It determines the number of pairs of chromosome to be crossed in 

each generation. It is defined as the ratio of the number of chromosome 

pairs to be crossed to the population size (S. Rajashekaran, 2013). With 

the higher value for the crossover rate a large area of search space can be 

explored, with the expense of large computational time. While low cross 

over rate causes reduction in the speed for convergence of solution. 

Mutation rate 

Mutation rate is defined as the percentage of the total number of 

bits mutated in the population. If the mutation rate goes above a 

particular value the offspring lose their similarities with the parents, 

which make them unable to learn from the previous search information. 

Too low mutation causes many useful changes in bit states of strings to 

be tried out. 
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Convergence 

The computational time complexity of finding a global optimal 

solution is judged through analyzing a Genetic Algorithm’s convergence 

rate. It can be presumed that GA met convergence when a particular 

percentage of individuals in the population turned out to become the 

same or when the average fitness of the population comes very near to 

the best individual’s fitness. Then there will be little variation between 

the average and the best individual fitness (Goldberg, 1989). 

5.2.1 Algorithm of the basic GA  

          Implementation of the genetic algorithm can be explained as follows 

i)  [Start] Generate random population of ‘n’ chromosomes 

(suitable solutions for the problem)  

ii)  [Fitness] Evaluate the fitness ‘F(x)’ of each chromosome ‘x’ 

in the population  

iii)  [New population] Create a new population by repeating 

following steps until it reaches population size.  

(a)  [Selection] Select two parent chromosomes from a 

population according to their fitness. It is seen that the 

better is the fitness, the bigger is the chance to be selected.  

(b)  [Crossover] After choosing a crossover probability, 

perform crossover operation on the parents to form an 

new offspring. If no crossover was performed, offspring 

is an exact copy of parents. 
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(c)  [Mutation] After choosing a mutation probability, 

mutate new offspring at every position in chromosome. 

(d)  [Accepting] Place the new offspring in a new population. 

iv)  [Replace] Use new generated population to run the algorithm 

again. 

v)  [Test] If the number of populations or improvement of the 

best solution is not satisfied, Go to step ii  

vi)  [Solution] Return the best solution. 

Parameters used in GA 

As mentioned above there are certain parameters that need to be 

selected for effective working of GA. Proper selection of these 

parameters will have an effect on its performance. The following GA 

parameters were used. 

1. Fitness function ‘F’ based on classification accuracy is formed 
to evaluate the wavelets as given in Equation (5.1). 

F �   �
���������  �����������  

 .................................................... (5.1) 

2. Population size represents the number of individual in a 

population. Typical population size (n) chosen was 100. 

The initial population was formed using the chromosome 

formed with the �  values used in the design of the new 

wavelet. A sample set of chromosomes is shown below. 



Chapter 5 

104 

Chromosomes ��  ��  ��  ��  �� 
Chromosome 1 1 -0.4 0.25 -0.2 1 
Chromosome 2 0.45 0.5 -3 0.6 -4 
Chromosome 3 0.33 4 3.5 -0.7 1 

-      
Chromosome 100 -5 -42 0.87 0.43 -0.9 

3. Crossover rate represents the number of chromosomes to be to be 
crossed in each generation. The crossover rate selected was 0.8 

4. Elitism which is the keeping the best individual from one 
generation to next was set as 2.  

5. The reproduction operator chosen was Roulette wheel. 

5.3 Optimizing the proposed SSG-Wavelet 

Mean and standard deviation of the SSG-wavelet could be 

considered for optimization. Since the pulse width of the different 

waves in ECG, changes with the different arrhythmia, standard 

deviation was considered for optimization. The optimal SSG-Wavelet 

was obtained from the raw wavelet by optimizing the standard 

deviation values ‘σ’ of each Gaussian under consideration. The 

optimization procedure is shown in Figure 5.1. As mentioned in the 

section 4.5 we initialize the chromosome values and perform the 

extraction of WTC coefficients for the identified scales. Using these 

features, ECG cycles are classified with the trained PNN network. 

Percentage sensitivity is used as a measure of fitness function and it is 

calculated considering the three classes of ECG signals. If this 

calculated value is less than desired fitness function, a new set of values 

for the σ is evolved to generate a new population by crossover, mutation 
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and selection process. If the desired classification accuracy is met, GA 

will stop the iteration process and return the optimum values for the 

given constraints.   
 

 

 
Figure 5.1: Method of generating the optimized wavelet for 

ECG classification using GA 
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The optimal SSG-wavelet is derived from the basic one using GA 

by repeated evolution until satisfactory classification is achieved.  

ECG records in set-1 was selected for this purpose after filtering. 

Adaptive filtering technique for denoising the ECG based on GA tuned 

SD-LMS algorithm was used. Each cycle from the records is extracted 

after identifying the R-wave using the annotations available at the 

database. Absolute values of WTC were obtained with the identified scales 

for the different ECG cycles using the SSG-Wavelet. Classification based 

on three different scales was performed using PNN classifier that was 

obtained during the training process. The corresponding classification 

accuracies were obtained. Based on the classification accuracy a new 

generation of wavelets were obtained by cross over and mutation.  This 

process continues until an optimized SSG wavelet is obtained. The 

optimized values of � that gave the highest fitness values were found to be 

�� � 6.0414, �� � 14.9955,   �� � 23.1669,  �� � 5.9103, �� � 1.1767. 

These values when applied in Equations 4.9 and 4.10 yielded the 

optimized SSG-Wavelet given in Figure 5.2.  

Optimized SSG-Wavelet was further checked for all the 

properties of a traditional continuous wavelet (Paul S, 2002) including 

the admissibility conditions Equation 4.4 and 4.5. These conditions 

ensures that Ψ��� goes to zero quickly as � → 0 and wavelet function 

has unit energy. The corresponding frequency spectrum |Ψ���| of 

this optimized wavelet is shown in Figure 5.3. It can be observed that 

it satisfies the necessary conditions. 
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            Figure 5.2: Optimized SSG-Wavelet 

           
 

 
Figure 5.3: Fourier spectrum for the optimized SSG-wavelet 

5.4 Results and discussion 

Classification was performed for each cycle of the ECG records 

in set 2 using the classifier given in Figure 4.7. The percentage sensitivity 

and positive predictivity were evaluated using Equations 4.11 and 4.12 

given in section 4.7. 
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The system performance is evaluated by means of two performance 

indices, classification sensitivity and positive predictivity. The results 

are given in Table 5.1. From the table, it is seen that the proposed 

system yields promising values. The average values of sensitivity 

obtained for class I is 96.88%, for class II it is 74.56% and for class III 

it is 92.92%. Similarly, the average value of positive predictivity 

obtained for class I, class II and class III are 91.96%, 73.08% and 

83.05% respectively. The overall sensitivity is 90.37% and positive 

predictivity 83.39% and all the isolated abnormalities in the Set 2, 

except one cycle from record 233 are identified correctly.  

Comparing the results with that obtained in chapter 4, it is seen 

that after optimizing the wavelet there is an improvement in percentage 

sensitivity by 0.75% for class I, 1.31% for class II and 2.79% for class III. 

The improvement in percentage positive predictive value by 0.19% for 

class I, 13.45% for class II and 1.17% for class III.  

It may be noted that a fairly good result was obtained by performing 

classification using the SSG-wavelet that is similar to normal ECG. So, it 

cannot be completely ruled out that a typical QRS complex cannot act as a 

good model for classification.  The optimized SSG-wavelet could identify 

the isolated abnormalities effectively. Although isolated abnormalities 

contribute only a small percentage of the total number of cycles, they are 

important since failure to diagnose these conditions with subsequent 

inappropriate management may have fatal consequences. Hence even 

though there is only a small percentage of increase in sensitivity and 

positive predictivity, it was also due to the isolated abnormalities. The 
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classification performance enhanced in terms of sensitivity and positive 

predictivity. 

Table 5.1: Classification using the optimized wavelet 

Record 

Class I Class II Class III Average 
Percentage sensitivity
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100 100 100 18 18 100 100 73 73 
103 100 100 100 100 - - 100 100 
105 99 99 - - 90 90 95 95 
111 100 100 - - 100 100 100 100 
113 100 100 100 100 - - 100 100 
117 100 98 100 100 - - 100 99 
121 100 100 100 100 100 100 100 100 
123 100 100 - - 100 100 100 100 
200 89 90 33 47 79 93 67 76 
202 97 95 35 35 90 90 74 73 
210 100 100 64 64 77 77 80 80 
212 100 100 - - - 100 100 
213 71 71 75 75 83 83 71 76 
214 98 98 - - 77 77 88 88 
219 99 99 100 100 89 89 96 96 
221 100 99 - - 65 98 83 99 
222 100 100 47 57 - - 74 78 
228 71 95 100 100 99 95 90 97 
231 100 100 100 100 100 100 100 100 
232 100 100 92 90 - - 96 95 
233 91 91 86 86 93 93 90 90 
234 100 99 22 22 100 100 74 74 

Average 96.13 96.88 73.25 74.56 90.13 93.06 88.68 90.37 
 

While performing a comparative description between the some of 

the existing wavelets like Coiflets, Daubechies and Symlets it is seen 

that the optimized SSG-wavelet is also compactly supported i.e. 

localized in space, are smooth i.e. they decay towards high frequencies, 
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and have vanishing moments i.e. decay towards low frequencies. In 

order to have a comparison with these wavelets, a classification was 

performed using coif1, db1 and sym2 wavelets using the same 

database. The scales corresponding to the different ECG classes were 

selected in each case and classification performed. The results are given 

in Table 5.2 - 5.4.  On comparing the results, it is seen that the 

optimized SSG-wavelet gave a better result.  

Table 5.2: Classification using the Coiflet wavelet (coif1)  

 Class I Class II Class III Average 
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100 100 98 6 18 100 25 69 47 
103 100 100 50 25 - - 75 62 
105 94 100 - - 61 30 78 65 
111 100 100 - - 0 0 50 50 
113 100 100 100 75 - - 100 87 
117 83 99 100 2 - - 91 50 
121 100 100 100 6 100 11 100 39 
123 100 97 - - 33 100 67 99 
200 90 67 20 40 80 100 63 69 
202 95 96 35 73 90 47 73 72 
210 93 89 45 77 26 89 55 85 
212 100 100 - - - - 100 100 
213 63 90 75 88 83 80 74 86 
214 98 92 - - 77 92 88 92 
219 99 89 100 70 89 97 96 85 
221 77 97 - - 98 100 88 99 
222 100 91 57 94 - - 78 92 
228 95 78 100 60 95 99 97 79 
231 91 100 100 1 100 100 97 67 
232 64 16 83 98 - - 74 57 
233 78 75 86 67 93 99 86 80 
234 83 98 22 100 100 100 68 99 

Average 91.01 89.54 67.40 55.82 76.71 72.99 80.24 75.52 
* Scales selected: 37 for Class I, 12 for Class II and 81 for class III (sampling rate 360 Hz) 
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Table 5.3: Classification using the Daubechies wavelets (db1) 

 Class I Class II Class III Average 
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100 99 98 91 37 100 100 97 78 
103 98 100 100 2 - - 99 51 
105 97 99 - - 90 45 94 72 
111 100 100 - - 0 0 50 50 
113 100 100 100 100 - - 100 100 
117 100 100 100 100 - - 100 100 
121 100 100 100 0 100 50 100 50 
123 100 100 - - 100 100 100 100 
200 82 62 37 12 96 100 72 58 
202 97 97 29 6 90 56 72 53 
210 95 91 68 7 75 89 79 62 
212 100 100 - - - - 100 100 
213 71 76 68 95 83 59 74 77 
214 89 90 - - 77 93 83 92 
219 99 97 100 2 31 91 77 63 
221 99 96 - - 98 100 99 98 
222 98 92 27 20 - - 63 56 
228 89 76 100 4 95 99 95 60 
231 93 100 0 0 100 67 64 56 
232 100 24 65 100 - - 82 62 
233 89 88 86 30 96 100 90 73 
234 99 98 32 67 100 100 77 88 

Average 95.19 90.18 68.91 36.32 83.23 78.00 84.82 72.62 
* Scales selected: 46 for Class I, 14 for Class II and 101 for class III (sampling rate 
360 Hz) 
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Table 5.4: Classification using the Symlets (sym2) 

 
Class I Class II Class III Average 
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100 100 98 36 63 100 100 79 87 
103 98 100 100 40 - - 99 70 
105 97 99 - - 88 38 93 69 
111 100 100 - - 0 0 50 50 
113 98 100 67 67 - - 82 83 
117 97 100 100 2 - - 99 51 
121 100 100 100 6 100 50 100 52 
123 100 100 - - 100 100 100 100 
200 89 70 33 59 94 100 72 76 
202 95 96 35 73 90 67 73 79 
210 100 89 36 73 96 88 77 84 
212 99 100 - - - - 99 100 
213 71 91 75 88 75 78 73 85 
214 98 92 - - 93 94 96 93 
219 94 97 100 70 97 97 97 88 
221 99 98 - - 96 100 98 99 
222 100 89 50 96 - - 75 93 
228 83 79 100 60 98 99 94 79 
231 100 100 100 3 100 100 100 68 
232 100 21 86 98 - - 93 60 
233 90 91 86 67 100 100 92 86 
234 99 98 22 100 100 100 74 99 

Average 95.74 91.33 70.39 60.25 89.10 81.92 86.97 79.57 
* Scales selected: 31 for Class I, 10 for Class II and 68 for class III (sampling rate 
360 Hz) 
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5.5  Chapter summary 

The new optimized SSG-wavelet has shown to be effective in 

classifying ECG signals. The optimized wavelet satisfied the properties 

of CWT including the admissibility conditions. There was much 

improvement in sensitivity and positive predictivity especially in the 

case of class II and class III as seen in the results. Further improvement 

in classification accuracy can be obtained by identifying finer scales 

corresponding to the different classes of ECG. This is carried out in the 

next chapter. 

 

 

…..….. 
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Chapter6 

IMPROVED CLASSIFICATION AT                                 
FINER WAVELET SCALES 

 
 

6.1 Scale/frequency refinement  
6.2   Results and Discussions 
6.3 Performance comparison of the optimized wavelet 
6.4   Isolated abnormalities 
6.5  Chapter summary 
 

 

This chapter proposes an approach for improved classification of ECG 

at finer wavelet scales. The need for identification of finer scales has 

been explained. Finer wavelet scales were selected and the scale at 

which maximum classification obtained for each class was identified. 

The results were compared with that obtained by Mariano Llamedo 

(2011). It is seen that the good time-frequency resolution of the new 

wavelet transform could differentiate the different types of ECG beats. 

Apart from these results, the detection of isolated abnormalities in the 

database and identification of the time/frequency interval of the QRS 

wave, corresponding to the three classes of ECG is also discussed. 
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6.1 Scale/frequency refinement  

In the previous chapter it was seen that the maximum 

classification sensitivity had improved by optimizing the wavelet. It has 

to be noted that the wavelet scales considered for classification were 

integer values. With the fact that even a very small improvement to the 

reliability of the algorithm may be helpful to patients, further 

investigations were made into the scales used for classification. 

From chapter 4, it is known that the classification accuracy varies 

for different classes when classified under different scales of the 

wavelet. To completely exploit this property of wavelet, classification 

were performed at more refined scales. The scales were varied in 

smaller step sizes and the corresponding classification accuracies were 

observed. The optimum step size was obtained as 0.125 based on 

improvement in classification accuracy. Further reducing the step size 

had no effect on the results. The frequency corresponding to a 

particular scale can be calculated using Equation 6.1. 

�� �
��
�.�

    ...................................................................... (6.1) 

where Fa is the pseudo-frequency in Hz corresponding to any scale a,  Fc 

is the center frequency of the wavelet in Hz and � is the sampling period.  

6.2   Results and Discussions 

Performing classification using the optimized SSG-Wavelet gave 

a sensitivity of 96.88% for class I, 74.56% for class II and 92.92% for 

class III as mentioned in chapter 5. The scales at which maximum 
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classification was attained were 20, 6, 45 for class I, class II and class 

III  respectively. To examine the variation of sensitivity at finer levels, 

the absolute WTC were obtained for scales with step size of 0.125 

between 19 and 21 for class I, between 5 and 7 for class II and between 

44 and 46 for class III. Classification was performed at all these scales 

and the corresponding sensitivities were tabulated for three classes.  

Class I 

Table 6.1 shows the variation of classification sensitivity to finer 

scales for class I.  

Table 6.1: Scale vs sensitivity (Class I) 

Class I 
Scale Frequency (Hz) % Sensitivity 

19.000 8.29 96.85937 
19.125 8.24 96.85474 
19.250 8.18 96.85482 
19.375 8.13 96.85482 
19.500 8.08 96.85937 
19.625 8.03 96.90028 
19.750 7.97 96.86846 
19.875 7.92 96.87982 
20.000 7.88 96.88357 
20.125 7.83 96.87755 
20.250 7.78 97.01811 
20.375 7.73 96.91541 
20.500 7.68 96.85255 
20.625 7.64 96.85937 
20.750 7.59 96.86164 
20.875 7.54 96.86164 
21.000 7.50 96.86392 
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Figure 6.1 shows the plot of scale vs sensitivity obtained by 

varying the scale in the range of 18 to 20 in steps of 0.125. 
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Figure 6.1: Scale vs sensitivity (class I) 

From the table and the figure it can be seen that the sensitivity 

almost increased gradually and reached a maximum value of 97.02% at a 

scale of 20.250 and thereafter it falls rapidly to gain a classification 

accuracy of 96.87%. Hence it can be seen that even though a better 

classification is possible in and around scale 20, the best classification 

occurs at 20.25. This scale corresponds to frequency of 7.78 Hz.  
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Class II 

Table 6.2 shows the variation of classification sensitivity to finer 

scales for class II and Figure 6.2 shows the plot of scale vs sensitivity, 

obtained by varying the scale in the range of 5 to 7 in steps of 0.125.  

 

Table 6.2: Scale vs sensitivity (Class II) 

Class II 
Scale Frequency (Hz) % Sensitivity 
5.000 31.50 74.15294 
5.125 30.73 74.15897 
5.250 30.00 74.15897 
5.375 29.30 74.15897 
5.500 28.64 74.15124 
5.625 28.00 74.16719 
5.750 27.39 74.16504 
5.875 26.81 74.16481 
6.000 26.25 74.55976 
6.125 25.71 75.20750 
6.250 25.20 75.20012 
6.375 24.71 74.12672 
6.500 24.23 73.93596 
6.625 23.77 73.80034 
6.750 23.33 73.89751 
6.875 22.91 73.81451 
7.000 22.50 73.87118 
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Figure 6.2: Scale vs sensitivity (class II) 

From the table and the figure it can be seen that the sensitivity 

seems to be same at the initial scales and it increased to maximum value 

of 75.2075% at a scale 6.125. Again increasing the scale value the 

percentage sensitivity falls rapidly to lower values. Hence it can be seen 

that better classification is possible at a scale 6.125 which corresponds to 

frequency of 25.71 Hz.  

Class III 

Table 6.3 shows the variation of classification sensitivity to finer 

scales for class III. Figure 6.3 shows the plot of scale vs sensitivity 

obtained by varying the scale in the range of 44 to 46 in steps of 0.125. 
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Table 6.3: Scale vs sensitivity (Class III) 

Class III 

Scale Frequency % Sensitivity 

44.000 3.58 90.82571 

44.125 3.57 91.68468 

44.250 3.56 92.18343 

44.375 3.55 92.79302 

44.500 3.54 92.68218 

44.625 3.53 92.79302 

44.750 3.52 92.84843 

44.825 3.51 92.89652 

45.000 3.50 93.06857 

45.125 3.49 92.69897 

45.250 3.48 92.18952 

45.375 3.47 92.18298 

45.500 3.46 92.41774 

45.625 3.45 92.95822 

45.750 3.44 92.69913 

45.875 3.43 92.66068 

46.000 3.42 92.88131 
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Figure 6.3: Scale vs sensitivity (class III) 

From the table and the figure it can be observed that the sensitivity 

remains almost constant for the selected finer scales. The peak sensitivity 

of 93.06% was observed at a scale of 45. This scale corresponds to 

frequency of 3.50 Hz.  

6.2.1 Results using optimized SSG wavelet at optimum scales 

The classification of ECG into one of the three classes for each of 

the record in set II of MIT-BIH Arrhythmia database was performed 

using the newly identified scales (i.e. Class I – scale 20.250, Class II – 

scale 6.125 and Class III – Scale 45). The block diagram of the 

classifier is shown in the Figure 6.4.  After extracting each cycle, 

absolute WTC were obtained with the new scales for the different ECG 

cycles using the SSG-Wavelet. Classification was performed using 
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PNN Classifier. The results were validated by using the annotations. 

Sensitivity and positive predictivity for each record as well for each 

class were calculated. 

 

 

Figure 6.4: ECG classifier at finer scales 

Percentage sensitivity obtained before and after refinement is 

given in Table 6.4. It is seen that there is an improvement in sensitivity 

by 0.13% for class I, 0.64% for class II and 0.14% for class III. 
  

Preprocessed ECG 
cycles (Set-II)  

CWT using optimized  
SSG-Wavelet 

Feature vector 
 (scale 20.25/        

scale 6.125/scale 45) 

PNN Classifier 

Class I Class II Class III 
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Table 6.4: Classification at finer scales  
Class I Class II Class III Average 

Percentage sensitivity obtained 

Record 
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100 100 100 18 18 100 100 73 73 
103 100 100 100 100 -  - 100 100 
105 99 99 - -  90 90 95 95 
111 100 100 - -  100 100 100 100 
113 100 100 100 100 -  - 100 100 
117 98 100 100 100 -  - 99 100 
121 100 100 100 100 100 100 100 100 
123 100 100 -  - 100 100 100 100 
200 90 91 47 47 93 93 76 77 
202 95 97 35 35 90 90 73 74 
210 100 100 64 64 77 77 80 80 
212 100 100 -  -   - 100 100 
213 71 71 75 75 83 83 76 76 
214 98 98 -  - 77 79 88 88 
219 99 99 100 100 89 89 96 96 
221 99 100 -  - 98 98 99 99 
222 100 100 57 57 -  - 78 78 
228 95 95 100 100 95 95 97 97 
231 100 100 100 100 100 100 100 100 
232 100 100 90 92 -  - 95 96 
233 91 91 86 86 93 95 90 90 
234 99 100 22 22 100 100 74 74 

Average 96.88 97.01 74.56 75.20 92.92 93.06 90.37 90.54 

From the table, improvements are seen in records 117, 200, 202, 

221 and 234 for class I. For class II classification of record 232 has 
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improved and for class III records 214 and 233 show improvements. 

The plots of WTC samples of ECG cycles belonging to different 

classes for a few records of ECG (231, 234, 100) are shown in    

Figures 6.5-6.7. These records were chosen since they had all the three 

different classes (I, II & III) of beats in them. Their nature at three 

different scales can be observed from the figures. 

Figure 6.5 shows the WTC obtained from normal ECG cycles at 

scale 20.25. Figure 6.6 depicts the WTC obtained for Class II. The 

cycles selected from record 231 and 100 were atrial premature beats, 

whereas that selected from record 234 was a nodal premature beat, all 

belonging to the same class. The scale selected was 6.125. Class III 

cycles shown in Figure 6.7 contains WTC of ventricular premature 

beats from different patient records. The scale selected was 45. 

 
Figure 6.5:  WTC for one cycle centered around the QRS complex   

(Class I) at scale 20.25 
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Figure 6.6: WTC for one cycle centered around the QRS complex   

(Class II) at scale 6.125 

 

 
Figure 6.7:  WTC for one cycle centered around the QRS complex    

(Class III) at scale 45 
 

Interestingly as seen in the figures, the plots in the same class do 

overlap and show similar characteristics.  
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6.3 Performance comparison of the optimized wavelet  

Table 6.5 shown below gives the overall consolidated performance 

comparison of the optimized SSG-Wavelet in terms of Sensitivity and 

Positive Predictivity for both the proposed method and by Mariano 

Llamedo (2011). The proposed method used CWT based features while 

Mariano Llamedo (2011) have used features from the RR series, as 

well as features computed from the ECG samples and different scales 

of the wavelet transform. They used a floating feature selection 

algorithm to obtain the best performing and generalizing models in the 

training and validation sets for different search configurations. In both 

methods, a total of 49629 beats from MIT-BIH Arrhythmia was used 

during the testing phase. It is seen that sensitivity of a few records have 

improved further. The overall sensitivity obtained was 97.01% for class 

I, 75.20% for class II and 93.06% for class III. The positive predictivity 

attained was 92.16% for class I, 73.93% for class II and 83.05% for 

class III. 

The positive predictivity is low in some cases which mean that there 

are a few false detections, However the overall response is good since 

none of the actual diseased cycles are missed. 
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6.4   Isolated abnormalities 

As seen in the literature survey isolated PVC, isolated 

supraventricular beats, sudden prolongation of P-P interval, isolated 

APB, isolated LVNC are some of the isolated abnormalities commonly 

seen. Table 6.6 shows the records which had isolated abnormalities in 

the MIT-BIH Arrhythmia database (Set 2) and their corresponding 

abnormality. PVC and APB are the prominent isolated abnormalities, 

while abberated atrial premature beat is also present in record 113.  

Table 6.7 shows the record number and their details corresponding 

to isolated abnormalities alone. It can be seen that all isolated 

abnormalities except from record 233 were identified successfully. Hence 

this new wavelet can be used as an efficient tool to successfully detect all 

abnormalities including isolated ones which were the major drawback till 

date. 

Table 6.6: Types of isolated abnormalities in Set - 2 

Record name Type of abnormality No. of cycles 
100 Premature Ventricular beats 1 
103 Atrial Premature beats 2 
111 Premature Ventricular beats 1 
113 Abberated Atrial premature beats 6 
117 Atrial premature beats 1 
121 Atrial Premature beats 1 
121 Premature Ventricular beats 1 
123 Premature Ventricular beats 3 
228 Atrial Premature beats 3 
231 Atrial Premature beats 1 
231 Premature Ventricular beats 2 
234 Premature Ventricular beats 3 
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Table 6.7: Detection of isolated abnormalities in the proposed method as 
compared to (Mariano Llamedo, March 2011)*  

Record 

No. of beats  in 
each class 

Class I 
% 

sensitivity 

Class II 
% 

sensitivity 

Class III 
% 

sensitivity 
Total 

I II III 
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 *  

Pr
op

os
ed

 

R
ef

 *  

100 2235 33 1 100 100 18 70 100 100 73 90 
103 2079 2 0 100 99 100 0 - - 100 50 
111 2120 0 1 100 99 - - 100 100 100 100 
113 1785 6 0 100 99 100 100 - - 100 100 
117 1531 1 0 100 100 100 100 - - 100 100 
121 1858 1 1 100 99 100 100 100 100 100 100 
123 1512 0 3 100 100 - - 100 0 100 50 
219 2080 7 65 99 86 100 0 89 82 96 56 
228 1685 3 362 95 100 100 33 95 93 97 75 
231 1565 1 2 100 98 100 0 100 50 100 49 
233 2227 7 841 91 100 86 71 93 83 90 85 
234 2697 50 3 100 100 22 72 100 100 74 91 

 

6.5  Chapter summary 

The classification results show that the proposed method can be 

used to distinguish different arrhythmias in the ECG records. The 

classification results achieved is comparable to the published results on 

the classification of cardiac arrhythmias.  

Abdelhamid Daamouchea (2011) has proposed a DWT 

optimization approach for ECG classification and obtained the overall 

classification accuracy of 89.74%. Karpagachelvi (2014) using an 

ELM classifier attained an overall accuracy of 89.74%. Mariano 
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Llamedo (2011) has described a simple classifier based on ECG feature 

models that used both interval and morphological features for 

classification. They have reported a sensitivity of 95% for normal 

beats, 61% for Supraventricular beats and 75% for ventricular beats. 

Some of the authors in their study use only less number of ECG cycles 

for classification, while others have used reconstructed databases 

(Roshan Joy Martis (2013b,2013c)). 

Maximum sensitivity observed were 97.01% for class I, 73.20% 

for class II and 97.06% for class III. As shown in Table 6.1 the 

maximum percentage of sensitivity for class I was obtained at a scale of 

20.250 which corresponds to a frequency of 7.78 Hz. This frequency 

corresponds to the duration of normal QRS wave (Chugh, 2012), 

(David Gray, 2000), (K. George Mathew, 2008). The maximum 

sensitivity in class II was observed at a scale of 6.125 which 

corresponds to a frequency of 25.71 Hz as seen in Table 6.2.  A 

Supraventricular ectopic beat usually has a narrow QRS complex with 

duration less than 0.12 seconds (Chugh, 2012), (David Gray, 2000),  

(K. George Mathew, 2008). The optimized wavelet could group these 

beats with a frequency greater than that of normal beats into class II. A 

ventricular ectopic beat (class III) occurs as a result of the impulse 

generating other than in the SA node, such as atrium or AV junction. 

This may be characterized by a QRS complex having duration more 

than 0.12 seconds (Chugh, 2012) (David Gray, 2000) (K. George 

Mathew, 2008). The maximum sensitivity for class III occurred at a 

scale of 45 which corresponds to a frequency of 3.50 Hz as given in 
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Table 6.3. Thus these beats with time durations greater than that of 

normal beats (> 0.12 seconds) were correctly identified.  

It is seen that sensitivity as well as positive predictivity has 

further improved at the finer scales. The proposed method uses CWT 

coeffcient based features and PNN clssifier for Arrhytmia detection. It 

is seen that sensitivity as well as positive predictivity has further 

improved at the finer scales. Tabulated results show that there is an 

improvement in percentage sensitivity and percentage positive 

predictive values than that was obtained in the previous chapter. 

Comparing results, it is seen that there is an improvement in all the 

classes, except positive predictive valve of class III as compared with 

that of Mariano Llamedo (2011). The proposed wavelet efficiently 

detected all the abnormalities which were difficult to be detected. The 

overall sensitivity obtained was 97.01% for   class I, 75.20% for class II 

and 93.06% for class III. 

Automatic detection and classification of arrhythmias in ECG 

plays an important role in diagnosis and treatment of critically ill 

patients. In fact even the very small improvement obtained while 

selecting the finer scales will add to the dependability of this algorithm.  

 

…..….. 
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Chapter7 

CONCLUSION 
 

 

The main conclusion and contribution of this research work as well as 

scope for further work is presented in this chapter. 
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Wavelet transform techniques are extensively used in ECG signal 

processing. The ECG records are first denoised by using the proposed 

GA tuned SD-LMS algorithm. An optimized wavelet transform 

(SSG-Wavelet) along with a PNN classifier, which effectively detects 

the different classes of ECG signal including isolated abnormalities is 

proposed. The classification at finer scales ensured the identification of 

precise frequency bands corresponding to each class.  

A thorough review of the most frequent methods used in wavelet 

design, noise removal and ECG classification was performed. The 

following limitations were noted. 

i) An efficient filtering technique for ECG noise removal that 

could be used for ambulatory monitoring proposed by different 

authors had limitations. 

ii) Even though the classification results obtained were acceptable, 

a better ECG sorting methodology does not exist in the 

literature. 

iii) No attempt has been given in the literature in identifying the 

isolated abnormalities, which pose a silent threat to patients. 

iv) Standard classification scheme of arrhythmia such as 

ANSI/AAMI EC57:1998 standard were not followed by 

many researchers. 

a) ECG noise removal 

Based on the findings, a new algorithm for denoising ECG was 

implemented which is capable to deal with strong noise in ECG data. 
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An adaptive filtering technique for denoising the ECG which is based 

on GA tuned Sign-Data Least Mean Square (SD-LMS) algorithm was 

implemented. The proposed algorithm gave an average signal to noise 

ratio improvement of 10.75 dB for baseline wander and 24.26 dB for 

power line interference. It is seen that the step size ‘µ’ optimized with 

GA helps in obtaining better SNR value. The results showed that the 

useful information in the ECG was not altered by the application of the 

algorithm.  

b) ECG classification 

A new continuous wavelet transform was proposed for efficient 

ECG classification. It was then optimized using genetic algorithm. It is 

seen that the optimized wavelet does not have the shape of the initial 

wavelet constructed using Gaussians. The optimized wavelet has only 

two peaks. Even though optimizing has encountered in a change in the 

shape of the wavelet, it was checked and seen that it satisfied all the 

properties of a traditional wavelet. In chapter 5 (Fig 5.3) it is seen that 

|Ψ���| goes to zero as � → 0 and has unit energy. The features 

extracted by this wavelet were used to classify ECG signals. The newly 

designed and optimized wavelet gave better classification results too. 

While comparing with the results reported in the literature, there is good 

improvement in percentage sensitivity and percentage positive 

predictivity. Most of the isolated abnormalities were detected by the new 

wavelet. The ANSI/AAMI EC57:1998 standard was followed. On 

performing classification using MIT-BIH arrhythmia database a 

sensitivity of 97.01% was obtained for class I, 75.20% for class II and 
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93.06% for class III. The positive predictivity obtained is 92.16% for 

class I, 73.93% for class II and 83.03% for class III. Comparing to the 

work done by Mariano Ilamedo (2011) it is seen that there is an 

improvement of sensitivity by 2% for class I, 14% for class II and 18% 

for class III. The percentage improvement in positive predictivity for 

class I is 9% and class II is 1%. For class III there is a slight decrease in 

the positive predictive value. 

The classification methodology could sort out almost all the 

isolated abnormalities in the ECG records. Classification was performed 

on the complete ECG record rather than partial or reconstructed data. 

Many referred papers have used reconstructed databases which have 

given them good results while this method has taken into account the 

ECG records without any modification. 

The major contribution of this research include 

• Design and development of a new continuous wavelet transform 

for effective ECG arrhythmia detection. The wavelet is formed 

as a sum of shifted Gaussian functions. 

• Optimization of the new wavelet using Genetic algorithm for 

better classification accuracy. 

• Enhancing the accuracy by performing classification using 

features obtained at finer wavelet scales. 

• Detection of the isolated abnormalities like PVC, AP and aAP 

beats in class II and class III patient records. 
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• Development of an adaptive filter using SD-LMS technique to 

be used with a continuous ECG monitoring machines such as 

Holter monitors. 

This classification scheme could be used effectively in ambulatory 

monitoring and mass ECG screening. While this thesis has demonstrated 

how the optimized wavelet can be used for ECG classification, many 

opportunities for extending the scope of this thesis remain. 

It is shown that wavelets could be optimized for ECG classification. 

The optimized wavelet could identify the three classes of ECG. But in 

actual case each class contains different subclasses of ECG. For e.g. 

Class I contains ECG cycles with LBBB, RBBB, AE, NE in addition to 

the normal beats. Similar is the case with class II and class III. 

Identification of diseases in each of the sub-classes could be achieved 

by further optimizing the wavelets considering these classes.  

Since the pulse width of different waves in ECG, changes with 

different diseases, standard deviation of the Gaussians was first 

considered for optimization. As a future direction, it may be thought of 

optimizing the mean as well as standard deviation using multi-objective 

optimization techniques in order to obtain a more perfect wavelet for 

classification. 

Currently during optimization and in calculating the fitness 

function, all three classes of ECG were considered together. It would 

be more beneficial if all the three classes were considered separately, 
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and wavelets corresponding to each of the scales were optimized 

seperately.  

The optimized wavelet works well with MIT-BIH Arrhythmia 

database as explained. But it need to be validated on a real-time 

database. Implementing a real-time analyzer with a ‘self-adaptive 

wavelet’ that optimizes itself whenever a new isolated abnormality is 

detected would aid in future studies. 

 

…..….. 
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