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Preface

Black hole’s response to external perturbations will carry signif-

icant information about these exotic objects. Its response, shortly

after the initial ‘kick’, is known to be ruled by the damped oscillation

of the perturbating field, called quasinormal modes(QNMs), followed

by the tails of decay and is the characteristic of the background black

hole spacetime.

In the last three decades, several shortcomings came out in the

Einstein’s General Theory of Relativity(GTR). Such issues come, es-

pecially, from observational cosmology and quantum field theory. In

the first case, for example, the observed accelerated expansion of the

universe and the hypothesized mysterious dark energy still lack a sat-

isfactory explanation. Secondly, GTR is a classical theory which does

not work as a fundamental theory, when one wants to achieve a full

quantum description of gravity. Due to these facts modification to

GTR or alternative theories for gravity have been considered. Two

potential approaches towards these problems are the quintessence

model for dark energy and Hořava-Lifshitz (HL) gravity. Quintessence

is a dynamical model of dark energy which is often realized by scalar

field mechanism. HL gravity is the recently proposed theory of grav-

ity, which is renormalizable in power counting arguments. The two

models are considered as a potential candidate in explaining these

issues.

In this thesis, the signature of these new theories are probed on

the evolution of field perturbations on the black hole spacetimes in

the theory.

Chapter 1 gives a general introduction to black holes and its

perturbation formalism. Various concepts in the area covered by the

thesis are also elucidated in this chapter.

xiii
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Chapter 2 describes the evolution of massive, charged scalar field

perturbations around a Reissner-Nördstrom black hole surrounded

by a static and spherically symmetric quintessence. The complex

frequencies of the normal modes associated with the evolution are

evaluated using third order WKB approximation approach. The in-

fluences of quintessence on the QNMs are studied. The dependence of

QNMs on the charge of the black bole, mass and charge of perturbing

scalar field and the quintessential parameters are also clarified.

Chapter 3 comprises the evolution of massless scalar, electro-

magnetic and gravitational fields around spherically symmetric black

hole whose asymptotes are defined by the quintessence, with spe-

cial interest on the late-time behavior. The complete evolution pro-

file is obtained through numerical methods for different values of

quintessence state parameter and compare the results with case in the

absence of quintessence. We examine how the different multipoles of

perturbation for different spin fields evolve with time. Possible rea-

sons for the different behavior of late-time tails are discussed.

Chapter 4 examines the evolution of Dirac field around a Schwar-

zschild black hole surrounded by quintessence. Detailed numerical

simulations are done to analyze the nature of field on different sur-

faces of constant radius.

Chapter 5 is dedicated to the study of the evolution of mass-

less fields around the black hole geometry in the HL gravity. From a

knowledge of the evolution of scalar, electromagnetic and Dirac per-

turbations around black holes, we try to distinguish the the nature of

the HL theory from that of GTR. QNM and tail phases are studied

using the numerical integration and the WKB approximation method.

Chapter 6 concerns the study of the evolution of massive scalar

field in the spacetime geometry of black hole in HL gravity by numer-
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ical analysis. Different regimes of the late-time evolution are studied

in detail.

Chapter 7 summarizes the substantial findings of the works pre-

sented in the thesis and suggests future scopes of the works that can

be undertaken.

Notations and conventions

Throughout the thesis we have chosen the natural unit systems with

c = 1 = G. Signature of spacetime metric: (−,+,+,+). Semicolon

after a vector or tensor stand for its covariant derivative. Prime over

any quantity denotes derivative of that quantity w.r.t the radial co-

ordinate and dot represents the time derivative. Indices µ, ν, a and b

generally run over 0, 1, 2, 3. The letter c is used in this thesis for the

normalization factor of quintessence.
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ity”, Nijo Varghese and V. C. Kuriakose, VIIth International

Conference on Gravitation and Cosmology(ICGC), Goa, India(2011).

3. “Late-time evolution of massive fields around black hole sur-

rounded by quintessence”, Nijo Varghese and V. C. Kuri-

akose, International Conference on Modern Perspectives of Cos-

mology and Gravitation(COSGRAV), Kolkatta, India (2012).

Other publications to which author has contributed:

1. “Absorption cross-section of Reissner-Nördstrom and Schwarzs-
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1
Introduction

One of the greatest creations of speculative science is the Einstein’s

General Theory of Relativity. Its first solution-a black hole- is hap-

pened to be more strange and mysterious. The words of JohnWheeler,

the coiner and popularizer of the name ‘black hole’, expresses this en-

chantment.

“Of all the entities I have encountered in my life in physics, none

approaches the black hole in fascination. And none, I think, is a

more important constituent of this universe we call home. The black

hole epitomizes the revolution wrought by general relativity. It pushes

to the extreme-and therefore tests to the limit-the features of general

relativity (the dynamics of curved spacetime) that set it apart from

special relativity (the physics of static, “flat”spacetime) and the earlier

mechanics of Newton. Spacetime curvature. Geometry as part of

physics. Gravitational radiation. All of these things become, with

black holes, not tiny corrections to older physics, but the essence of

newer physics.”

–John Archibald Wheeler

Let me introduce black holes through the words of Kip Thorne[1],

“...black hole: a hole in space with a definite edge into which any-

thing can fall and out of which nothing can escape, a hole with a

gravitational force so strong that even light is caught and held in its

1
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grip, a hole that curves space and warps time........ well-tested laws

of physics predict firmly that black holes exist. In our galaxy alone

there may be millions, but their darkness hides them from view. As-

tronomers have great difficulty finding them.”

–Kip S. Thorne

It is this weird nature made the black hole deeply entrenched in

human imagination and one of the most studied objects in science.

1.1 From “dark stars” to “black holes”

The first scientific ideas on regions of gravity so strong that light can-

not escape, were kicked to the late 1780s. Combining Newtons theory

of gravitation with his corpuscular theory of light, John Mitchell, a

British natural philosopher, presented the idea of ‘dark stars ’at the

Royal Society, London. He argued that if a star is compact enough,

the escape velocity on its surface may be greater than the velocity

of light corpuscles, and the star becomes invisible. Later in 1797,

mathematician Laplace promoted the same idea and he wrote on his

book,

“It is therefore possible that the greatest luminous bodies in the

Universe are on this very account invisible.”

–Pierre-Simon Laplace

But the general acceptance of wave theory of light in the begining

of 19th century forced him to drop out the notion of dark stars.

The modern understanding of black holes begins when Karl Schwa-

rzschild derived an exact solution for Einstein’s field equation in 1916,

almost immediately after Einstein formulated his relativistic theory

of gravity.
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His solution showed that if the mass of the compact object con-

fined with in a critical circumference, the space will be strongly curved

and the flow of time at the star’s surface will be infinitely dilated. A

star as small as a critical circumference, called Schwarzschild radius,

must appear completely dark. This did not seem at all reasonable to

physicists and astrophysicists of 1920s or even as late as the 1960s.

Even Eddington, a relativity expert of his time and Einstein himself

opposed the ‘Schwarzschild singularity’theory.

But several discoveries in the 1930s made them recognized as re-

alistic objects. Among them three major developments were,

• Chandrasekhar’s 1931 proof that there is an upper limit on the

mass of white dwarfs (M ≤ 1.4M�)

• Chadwick’s 1932 discovery of the neutron and the subsequent

idea – due to Baade and Zwicky – that entire stars made up of

these particles may exist. Such neutron stars would be limited

to a mass less than something like 3M�.

• the seminal work on gravitational collapse by Oppenheimer and

Snyder from 1939, that provided the first demonstration of how

the implosion of a star forms a black hole[2].

Eventhough these findings confirmed that the black holes are the-

oretically possible, it had to wait until 1970, for the first observation

evidence for the actual existence of black holes in the Universe. It

came from the detection of Cygnus X-1, one of the strongest X-ray

sources we can detect from Earth. It is widely believed that the

Cygnus X-1 is a binary black hole system with a companion smaller

than Earth but with a mass greater than that of a neutron star.

Presently we have many black hole candidates, with stronger evi-

dences due to the advanced optical, X-ray and radio telescopes. It is



4 Introduction

now strongly suspect that almost all galaxies contain gigantic black

holes in their centers, millions or even billions of times more massive

than the Sun. Our own galaxy, Milky Way is expected to harbor a

supermassive black hole, known as Sagittarius A*, at the center[3].

Several gravitational wave operators are now actively searching for

the signal coming from black holes and may make it possible to di-

rectly observe them in the near future.

1.2 Characteristics of black hole

Eventhough black holes possess a complex mysterious nature, they

have a perfect mathematical description. The mathematically defined

black hole is the picture of simplicity as Chandrasekher wrote in his

monograph[4],

“The black holes of nature are the most perfect macroscopic objects

there are in the Universe: the only elements in their construction

are our concepts of space and time. And since the general theory of

relativity provides only a single unique family of solutions for their

descriptions, they are the simplest objects as well.”

–S. Chandrasekher

As we mentioned already, the Schwarzschild solution is the first

solution of Einstein’s field equation, represents spacetime outside a

spherically symmetric massive object. The line element, which de-

scribes such a geometry is given as,

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

(1.1)
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An important property of this solution is that it is independent

of the temporal, t coordinate and depends only on r and that it is

determined by only a single parameter, M , its mass. Far from the

center of gravity(r → ∞) the spacetime dissolve to the flat Minkowski

spacetime,

ds2 = ηµνdx
µdxν = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2). (1.2)

One can notice from Eq.(1.1) that the gravity of the massive ob-

ject not only curves the space around it but warp the time near its

premises. One can visualize the Schwarzschild spacetime in the em-

bedded diagram shown in Figure 1.1 and observe the following points.

Figure 1.1: Embedded diagram of Schwarzschild black hole.
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The solution is singular at two values of the radial coordinate,

r = re = 2M and r = 0. The first one is a coordinate singularity that

can be transformed away by choosing suitable coordinates systems.

The second one is the actual gravitational singularity marked by an

infinite curvature. The radial distance, re is called the Schwarzschild

radius and it marks a boundary called the event horizon of the black

hole, which is a causality barrier through which anything can go inside

but nothing can come out.

Schwarzschild black hole is the simplest case, with only one param-

eter determines its geometry, its mass. A theorem known as ‘no-hair

theorem’ [5] limits the other properties of a black hole reaching to an

external observer. According to this theorem a black hole formed

by the gravitational collapse of a charged rotating star, will rapidly

relax to the stationary state, characterized by only three quantities,

its mass, charge and angular momentum(MQJ). Any other hair,

will disappear after the collapsing body settles down to its stationary

configuration(Section 1.4.2). Consequently there are four varieties of

black holes in GTR,

Black hole Signatures

Schwarzschild M

Reissner-Nördstrom(RN) M and Q

Kerr M and J

Kerr-Newmann M, Q and J

I summarizes this section with the words of Wheeler,

“[The black hole] teaches us that space can be crumpled like a piece

of paper into an infinitesimal dot, that time can be extinguished like

a blown-out flame, and that the laws of physics that we regard as

‘sacred’, as immutable, are anything but.”

–John Archibald Wheeler
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1.3 Linear perturbations of black hole

The concept and formulation of black hole perturbation theory dates

back to 50’s and was first introduced by Regge and Wheeler in their

seminal paper [6]. Their intention was to study the stability of the

equilibrium configuration of black hole represented by the Schwarzschild

spacetime. The relevance of the stability problem was of two kind.

Firstly the notion of black holes were not widely accepted at that

time. Unless these objects formed by the gravitational collapse are

proved to survive the perturbations, that can be expected in the col-

lapse, one cannot treat them as the final state of the massive stars.

Secondly, being solutions of Einstein’s equation does not ensure the

stability of the black holes.

Since Einstein’s equations is highly nonlinear in metric tensor, it

is very difficult to analyze the generic perturbation around black hole

spacetime. So Regge and Wheeler confined their study in to a lin-

earized level. They investigated the question of stability up to terms

of the first order in the departure from sphericity. This approximation

leads to linear equations and it is possible to decompose the given dis-

turbances in to normal modes using tensor spherical harmonics. Now

if the complex frequiencies of these modes have negative imaginary

parts, then one can conclude that the black hole is stable and un-

stable if the imaginary parts are positive. We briefly explain the the

Regge-Wheeler equation describing the black hole perturbation.
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1.3.1 Gravitational perturbations

The spherically symmetric uncharged stationary background space-

time is described by,

ds2 = ḡµνdx
µdxν (1.3)

= −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

Consider small perturbations, hµν in background spacetime, ḡµν

with |hµν |/|ḡµν | � 1, such that the total metric can be taken as the

sum of unperturbed background metric and the perturbation,

gµν = ḡµν + hµν . (1.4)

Now we want to construct the Einstein equation for this perturbed

system up to the linearized level. So in the calculation we only keep

quantities up to first order in hµν , at each step. Rising and lowering

of indices are done using the background metric. For example,

hµν = ḡµαḡβνhαβ. (1.5)

Variation of Ricci tensor can be found from the expression[80]

δRµν = −δΓβ
µν;β + δΓβ

µβ;ν , (1.6)

where the variation of affine connections is,

δΓα
βγ =

1

2
gαν(hβν;γ + hγν;β − hβγ;ν), (1.7)

Einstein field equation for the perturbated system is,

δGµν(g) = −8πδTµν , (1.8)
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where Gµν(g) is the Einstein tensor computed from the total metric

gµν+hµν . Since we are considering perturbations in the Schwarzschild

exterior, which is empty, the field equation reduced to,

Rµν(g) = 0, (1.9)

where Rµν(g) is the Ricci tensor computed from the total metric

gµν + hµν . Since we assume that the perturbation is small, taking

terms up to linear in hµν , above equation can be expanded as,

Rµν(ḡ) + δRµν(h) = 0, (1.10)

where Rµν(ḡ) is the Ricci tensor computed from the unperturbed

metric ḡµν which we know will vanish and the equation becomes,

δRµν(h) = 0. (1.11)

With the expressions Eqs.(1.6) and (1.7) in hand one can com-

pute the perturbation equation, Eq.(1.11). Making use of the spher-

ical symmetry of the background, we can decouple the angular part

of the perturbation equation and obtain an equation depending on

the radial and time variables. Any arbitrary perturbations can be

decomposed in to normal modes and for any given value of the angu-

lar momentum `, associated with these modes, there are two classes

of perturbations. Even (−1)` and odd (−1)`+1 parity perturbations.

Here we proceed considering the axial perturbation case since the two

were shown to have a similar QNM spectra. The canonical form of

odd wave perturbations in Regge-Wheeler gauge[6] is,
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hµν =

0 0 0 h0(r)

0 0 0 h1(r)

0 0 0 0

h0(r) h1(r) 0 0

sinθ
∂

∂θ
P`(cosθ)e

−iωt.

(1.12)

Substituting Eq.(1.12) in Eq.(1.11) we can separate the angular

and radial parts of the equation and we get the following radial equa-

tions by equating δRθφ, δRrφ and δRtφ to zero, respectively as[7],

iωh0(
1− 2M

r

) + d

dr

[(
1− 2M

r

)
h1

]
= 0, (1.13)

iω(
1− 2M

r

) (dh0
dr

− 2h0
r

)
+ h1

[
`(`+ 1)

r2
− ω2(

1− 2M
r

) − 2

r2

]
= 0,

(1.14)

(
1− 2M

r

)[
1

2

d2h0
dr2

+ iω

(
1

2

dh1
dr

+
h1
r

)]
+h0

[
2M

r3
− `(`+ 1)

2r2

]
= 0. (1.15)

Defining ψ(t, r) =
(
1− 2M

r

)
h1

r the above equations can be com-

bined to get a second order equation, after eliminating h0(r).

d2ψ`

dr2∗
+
(
ω2 − Veff

)
ψ` = 0 (1.16)

were we have employed the radial tortoise coordinate, defines as

r∗ = r + 2Mln
(

r
2M − 1

)
, such that it pushes the event horizon, 2M

all the way to −∞. As,

r −→ +∞, r∗ −→ +∞,

r −→ 2M, r∗ −→ −∞. (1.17)
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The effective potential, Veff appearing in Eq.(1.16), usually called

the Regge-Wheeler potential, is given by,

Veff =

(
1− 2M

r

)(
`(`+ 1)

r2
− 6M

r3

)
. (1.18)

The effective potential plotted in Figure 1.2. The potential is

positive real everywhere and has a maximum just outside the event

horizon at r ' 3.3M . The asymptotic structure of the potential shows

an inverse-square fall off as r∗ → +∞ and vanishes exponentially as

r∗ → −∞. Modes with larger multipoles will experience a higher

potential barrier.
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Figure 1.2: The Regge-Wheeler potential for different multipoles of
perturbation. Curves from bottom to top are for l = 2, 3, 4 and 5.

Perturbations with even parity, can also be reduced to obtain a

second order equation of the form, Eq.(1.16), but with a more com-

plicated form for the potential, called the Zerilli potential[8]. But it

looks very similar to the Regge-Wheeler potential, shown in Figure

1.2 and has nearly identical properties[4].
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Now the study of stability is reduced to finding the solutions of

the differential equation, Eq.(1.16). With the time dependence of

perturbation as e−iωt, if the perturbation equation allows solutions

having positive imaginary part for frequency, then the perturbations

will grow exponentially in time and leads to an unstable configu-

ration. If the frequiencies have positive imaginary parts, then the

perturbations will decay in time and finally settle to the equilibrium

configuration. A satisfactory explanation to this problem was first

provided by Vishveshwara[9]. By examining the asymptotic behavior

of the solutions in Kruskal coordinates, he proved that the perturba-

tions with imaginary frequency are physically unacceptable and hence

that the Schwarzschild metric is stable. A rigorous proof was given

later by Kay and Wald[10].

1.3.2 Perturbations by classical wave fields

When a nearly spherical star collapses through its gravitational ra-

dius, non spherical perturbations can be expected in its electromag-

netic and various other spin fields coupled to sources in the stars,

along with the gravitational disturbances. One can also study the

perturbation of these fields in curved spacetime, using the field the-

ory.

If the fields are assumed to be week, the slight deformation in the

background black hole spacetime, caused by the energy-momentum

tensor of the field, can be neglected. The general approach to solving

these problems is as follows. The field is expanded in spherical har-

monics, scalar harmonics for scalar field(s = 0), vector harmonics for

electromagnetic field(s = 1) and tensor harmonics for gravitational

field(s = 2). Each spherical harmonics represented by the multipole

number, ` can evolve separately satisfying an equation of the form
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Eq.(1.16), with an effective potential characteristic of the field under

consideration. For massless integer spin fields, in the Schwarzschild

background spacetime, we can write[11](A detailed derivation for var-

ious field perturbations are presented in the coming chapters),

V =

(
1− 2M

r

)(
`(`+ 1)

r2
+ σ

2M

r3

)
(1.19)

where σ depends on the spin, s of the perturbing field as, σ = 1−s2

and is given by,

σ =


+1 scalar field

0 electromagnetic field

−3 odd gravitational perturbation.

(1.20)

The fermionic field(s = 1/2) has a different form for potential[12],

even though it has similar shape as shown in Figure 1.2.

V± =
|k|
(
1− 2M

r

)1/2
r2

[
|k|
(
1− 2M

r

)1/2

± M

r
∓
(
1− 2M

r

)]
.

(1.21)

The particular shape of the potential and Eq.(1.16) suggest many

similarities with the standard scattering problem in the quantum me-

chanics. The underlying physical problem is the scattering of waves

by one dimensional potential barrier[4]. So, once the potential is

obtained, one can use the standard analyzing tools in the quantum

theory, with appropriate boundary conditions, associated with the

the black hole spacetime.

1.4 Time evolution of perturbation

Even though the initial intention of the formulation perturbation

equation was to address the stability problem, later it was widely
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used for the study of various dynamical processes involving black

hole, from the realization that the perturbation method is adequate

to describe various interaction of black hole with its surroundings.

All these disturbances can be described by the perturbation equation

provided the perturbation is very small and the particular behavior

of potential appearing in all these problems suggests the similarity

with the one dimensional scattering problem in standard quantum

mechanics.

It was Vishveshwara[13] who made the first attempt to apply the

principles of the standard quantum theory to the scattering problem

of gravitational waves by the black holes. His motivation as he later

remembered[14] was “how do you observe a solitary black hole? To

me the answer seemed obvious. It had to be through scattering of

radiation, provided the black hole left its fingerprint on the scattered

wave.”

The striking feature that he observed, in his classical scattering

experiment was, in his own words[14], “So, I started pelting the black

hole with Gaussian wave packets. If the wave packet was spatially

wide, the scattered one was affected very little. It was like a big wave

washing over a small pebble. But when the Gaussian became sharper,

maxima and minima started emerging, finally leveling off to a set pat-

tern when the width of the Gaussian became comparable to or less than

the size of the black hole. The final outcome was a very characteristic

decaying mode, to be christened later as the quasinormal mode. The

whole experiment was extraordinarily exciting.

The remarkable thing about the discovery of the scattering exper-

iment was that the resulted wave pattern is completely independent

of the initial shape of the scattering waveform. This can be shown

by numerical integration of the time dependent form of Eq.(1.16),
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with out assuming the harmonic time dependence. Figure 1.3 demon-

strates this feature, where we have plotted the outcome of scattering

of gravitational wave packets by the Schwarzschild spacetime.
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Figure 1.3: Simulations showing the temporal evolution of the l = 2
mode of gravitational perturbation around Schwarzschild black hole
with different initial shapes for the perturbing wave packet.

In the first set of simulations we sent a Gaussian wave packet
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and the scattered waveform is shown in linear scale and the absolute

value of the wavefuncion in logarithmic scales, to visualize the weak

waveform at late times. In the second set we use a square wave

packet and the scattered waveform is analyzed. The remarkable thing

that can be read from the simulations is that after a transient phase,

where the waveforms show the trails of the particular shape of the

perturbing waveform, there comes different phases of evolution for

which the waveforms are identical for the both cases.

For any generic perturbation, an observer at a fixed distance out-

side the black hole can easily distinguish the following stages of the

wave evolution:

1. a transient stage formed by direct emission from the source of

perturbation,

2. the stage comprised by the damped characteristic oscillations-

the quasinormal modes,

3. late-time the so called ‘tail’decay stage dominates.

Figure 1.4 shows these phases of evolution. The observer first

records the original waveform from the perturbing source, then the

exponentially decaying oscillating phase. Finally the QNMs are sup-

pressed by the tails of waves. As we already mentioned, the last two

stages are completely independent of the initial shape of the perturb-

ing agent, but depends entirely on the background spacetime under

consideration.
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1.4.1 QNMs of black holes

The asymptotic form of the effective potentials, V (r∗ → ±∞) → 0,

suggests that the solution behaves as plane waves near the boundaries,

r∗ → ±∞,

ψ ∼

{
Aine

−iωr∗ − Aoute
iωr∗ as r∗ → +∞,

Bine
−iωr∗ as r∗ → −∞,

(1.22)

where we have to impose purely ingoing boundary condition at the

black hole event horizon r∗ → −∞, means waves entering in to the

black hole and obviously nothing can come out. QNMs are the mani-

festation of the resonance oscillations of the black hole spacetime itself

and it dominates the soon after the initial transient stage. During this

stage of evolution we require a purely outgoing boundary condition

at r∗ → +∞. This means the incoming waves already passed and

there is no other waves coming from ∞ to disturb the system and

we set Ain = 0 in Eq.(1.22). While applying this boundary condition

in to Eq.(1.16), one can obtain a discrete set of solutions, the QNMs

having the time dependence, e−iωqt with complex frequencies called

the quasinormal(QN) frequencies.

ωq = ωR + iωI (1.23)

The real part of the QN frequency, ωR corresponds to the actual

oscillation frequency and the absolute value of the imaginary part,

|ωI | represents the rate at which each mode damps or grows. If the

black hole is stable against the perturbations, it should have negative

imaginary part for the QN frequencies, so that the perturbations will

damp exponentially and the black hole can come to its equilibrium

configuration. In this case part of the energy of the perturbations

is carried away to infinity in the form gravitational radiations and
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another part goes in to the black hole through the event horizon. In

this sense these modes are not normal but ’quasinormal’.

It was Chandrasekhar and Detweiler who first computed the quasi-

normal frequencies of the Schwarzschild black hole and explored their

properties[15].

Why QNMs are important?

QNMs emerged in the quest of understanding the stability of black

holes. Even though one can not judge the stability completely, the

existence of QNMs with ωI < 0 can at least ensures that the pertur-

bations will decay with time and the BH is stable for that multipole

order of perturbation. This is because the QNMs do not form a com-

plete set and consequently, a general perturbation cannot be written

as a combination of these modes[16].

The present interests in studying the QNMs can broadly classified

in to two, astrophysical and theoretical.

(i) Astrophysical interests

The QNMs dominate the radiation from most dynamical process that

involve a black hole. This ranges from the formation of black hole

in a gravitational collapse to the collision of black holes: no matter

how we kick a black hole, its response will be dominated by QNMs

at intermediate time. If the new generation gravitational wave de-

tectors manage to detect a gravitational wave signal from a black

hole, the dominated contribution to such a signal will be the funda-

mental QNMs. The fundamental QN frequency for the quadrupole

mode(` = 2) in Schwarzschild spacetime is given by,

Mω = 0.37367− 0.08896i. (1.24)

Converting to physical units, the frequency and damping time are
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given by,

ν = 2π5142(MωR)
M�
M

Hz ≈ 12
M�
M

kHz,

τ =
1

2π5142(MωI)

M

M�
s ≈ 0.347

M

M�
ms. (1.25)

The band width of ground based gravitational interferometer like

Virgo and LIGO comes in the range about 10 − 40Hz, up to few

kHz. If the signal are sufficiently strong these detectors can detect

the signals emitted by an oscillating black hole with mass in the range,

10M� .M . 103M�. (1.26)

The expected band width of the space based interferometer, LISA

is 10−4Hz to 10−1Hz, and this can detect the signal from black holes

with mass range,

105M� .M . 108M�. (1.27)

It is worthwhile to mention that the predicted black hole at the

center of our galaxy, Sagittarius A∗ have a massM ' 4.31×106M�[3].

Although these studies refer to very idealized situations, they have

been very useful because they showed that quasi-normal modes can

be excited, and because they provided a first understanding of the

mechanisms underlying the mode excitation. However, astrophysi-

cal phenomena are much more complicated, and only recently ma-

jor advances in numerical techniques allowed the modeling of more

realistic processes involving black holes. Black hole coalescence is

probably the most violent process occurring in the Universe (after

the big bang), and it is expected to be the most powerful source of

gravitational waves to be detected by interferometric detectors Virgo

and LIGO. Once we succeeded in recording these signals, one can

easily deduce the parameters of the black hole in the precess, from
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the fact that these signals in QNM stage depend only on the black

hole parameters[17].

(ii) Theoretical interests

The extreme gravity of the black holes makes them the popular test-

ing ground for the ideas of quantum gravity as the Hydrogen atom

for the quantum mechanics. Consequently interpretations of their os-

cillations are also have a major role in understanding various puzzles

in fundamental physics.

There are attempts to interpret the black area spectrum using the

highly damped quasinormal modes. In 1974 Bekenstein proposed a

heuristic argument to quantize black hole that the horizon area of

a black hole is an adiabatic invariant, and therefore he conjectured

that the black hole should have a discrete eigenvalue spectrum[18].

Later Hod concluded that the quantization condition of the black hole

surface area should be of the form[19],

An = nγl2p; n = 1, 2, ... (1.28)

where l2p is the Plank’s length and γ is an undefined dimensionless

constant. He further made use of the results of Nollert[20] that the

highly damped QNMs of Schwarzschild black hole is independent of

the multipole index and spin of field and is the characteristics of the

black hole itself,

Mω = 0.0437123− i

4
(n+

1

2
) +O[(n+ 1)−1/2], (1.29)

and made the crucial observation that the real part of the this

QNM exactly agrees with the expression ln3/8π. Identifying ωR as

the ”transition frequency”, he calculated the change ∆A in the area

corresponds to a change, ∆M in mass,

∆M = ~ωR =
~ln3
8πM

(1.30)
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Since the area, A of Schwarzschild black hole, A = 16πM2, Hod

concluded that the ∆A = 4ln3l2p and identified the factor appearing

in Eq.(1.28) as γ = 4ln3[19]. Statistical physics arguments also sug-

gests that γ = 4lnk, k being a constant. These findings trigger a

wealth of research on the QNM spectrum of various black holes. But

the attempts to interpret the QNMs of Kerr black hole is still not

succeeded.

Apart from their role in the quantization of black hole area, study

of QNMs find significance in the correspondence between the anti-de

Sitter(black hole solution with negative cosmological constant) space-

time and the Conformal Field Theory(CFT)[21]. The interpretation

is that the decay of QNMs of black hole in AdS corresponds to relax-

ing of thermal state in CFT, to its equilibrium. Exact QNMs of AdS

black holes[153] are usful for these studies.

For these reasons QNMs of black hole were extensively investi-

gated in the past, for great variety of black hole spacetimes and for

different types of field perturbations. Two excellent reviews on the

topic are wrote in 90’s[22, 23]. Recent reviews on the topic are avail-

able in [24–26].

1.4.2 Late-time tails

As we have already seen, the QNM stage in the evolution of pertur-

bation around black holes lasts only for a limited period of time and

is not the asymptotic behavior. At late times, the perturbations do

not cut off sharply but decays as the ’tails’ of perturbation. This

observation was first made by Price[11], while studying the dynamics

of nonspherical gravitational collapse. His original motivation was

to see how does an imploding star with tiny mountains on its sur-

face results in a perfectly spherical black hole. The answer he found
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was, as now known as Price’s theorem: “Whatever can be radiated

is radiated.” It means the protrusions or any perturbations on the

surface of the collapsing star will be converted in to ripples in the

spacetime(gravitational radiation) once the horizon is formed, will get

radiated away and makes the hole with a perfectly spherical shape[1].

Price showed that at late times of the formation a black hole

described by the Schwarzschild spacetime, any multipoles with ` ≥ s,

called the radiative multipole, of a field perturbation with spin, s, die

out with a power-law tails,

ψ ∼ t−(2`+p+1), (1.31)

where p = 1, if a static `-pole field is present outside the star, prior

to the onset of collapse and if there is no field initially outside the

star, but an `-pole perturbation develops during the collapse process,

then p = 2. Figure 1.5 demonstrates the numerical simulation of this

feature for the later case.

Modes with ` < s do not evolve with time. These represent the

conserved quantities and they are nonradiative. For gravitational

perturbation, s = 2, a perturbation with l = 0 describes the change in

the black hole mass and ` = 1 describes an increment of small angular

momentum. In the case of electromagnetic perturbation(s = 1), the

` = 0 mode represents the radially pointing electric field lines.

Later, in[27] a detailed analytical analysis supported by numeri-

cal results of massless fields around Schwarzschild and RN black hole

showed that power-law tails are also present on null infinity where

they decay as u−(`+p) and on future event horizon as v−(2`+p+1).

Studies on the rotating black holes also suggest that the power-law

tails holds for non-spherical black holes also[28–30]. Numerical anal-

ysis of fully non-linear dynamics of the fields, also indicates the same

power-law decay pattern[31, 32].
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Figure 1.5: Late-time decay of gravitational perturbations around
Schwarzschild spacetimes. Absolute value of wave amplitude, |ψ| is
plotted against time in logarithmic scales. A straight line in log-log
plot corresponds to a power-law decay in time. At late times the
perturbations decay as, ψ ∼ t−7, t−9 and t−11, for ` = 2, 3 and 4
multipoles of perturbations.

The late-time tails are due to the backscattering of the primary

wave from the effective potential at great distances(asymptotic cur-

vature). By a systematic study of various potentials Ching et al.[33]

and later by Hod[34] had shown that the Schwarzschild case with a

power-law tail is exceptional among the class of the potentials having

a logarithmic spatial dependence and the the inverse power-law decay

is a property of asymptotically flat spacetimes.

Why late-time tails are significant?

Price’s theorem explains the mechanism of the working of ’no-hair

theorem’ which predicts that any “hair”other than mass, charge and

angular momentum, will disappear after a collapsing body settles
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down to its stationary state. The physical mechanism responsible for

the vanishing of these hairs is the radiative tails. For this reason the

study of late-time tails are intriguing on its own.

Ching’s[33] study revealed that depending on the spatial asymp-

totic, the late-time decay is not necessarily a power law in time.

and that different behaviors should be expected in black-hole space-

times that have different asymptotic properties. This is indeed the

case. The existence of an exponentially decaying tails contrasting

the power-law tails in asymptotically flat situation, was reported for

spacetime with a non vanishing cosmological constant[35, 36].

The study of late-time tails has crucial relevance to the exploration

of the internal structure of black holes. For black holes with more than

one horizon, for example a charged black hole(which have a inner

Cauchy horizon), the radiation that goes through the event horizon

will eventually be blue shifted by an arbitrary large amount at the

inner horizon[37]. The mass function of the black hole diverges at

the Cauchy horizon called mass inflation and this effect is expected

to preserve the causality. One of the key ingredient which determines

the strength of the mass-inflation singularity at the Cauchy horizon

inside charged and rotating black holes is radiative decay along outer

horizon[38]. The knowledge of radiative tails on the event horizon

provides the input for the internal wave evolution of such problem.

1.5 An overview to the thesis

1.5.1 Motivations

Black holes are the testing ground for many of our understandings

about gravity, since they are the centers of extreme gravity. Since we

can’t expect any electromagnetic signals coming from a black hole, the
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of the response of black holes to the external perturbations outside its

event horizon is the best way to get information from these objects.

As we have explained in the previous sections, these responses are

dominated by the QNMs and late-time tails of the perturbations.

Besides some relation to the perturbative field, the relaxation process

reflects a characteristic of the background geometry.

On the other hand several shortcomings of Einstein’s GTR were

pointed in the past and there are several modifications to the GTR

have been proposed motivated from observational evidences and other

fundamental issues in the theory. Black hole perturbation in two such

modified theories is the subject of study of this thesis.

The first one is the quintessence model put forward to explain

the observed accelerated expansion of our Universe[49–51]. Second

modification is a proposed model theory of renormalizable gravity

called Hořava-Lifshitz gravity[52–54]. The evolution of field and the

spectra of QNMs may be different in these theories of gravity and

would help us to distinguish these theories.

1.5.2 Methods used

One can study the time evolution of perturbation once the solution

of Eq.(1.16) is obtained. But the complex nature of effective po-

tential precludes the exact solution in most cases. Several methods

were introduced to tackle the evolution equation. These ranges from

the direct numerical integration of the time-independent perturba-

tion equation to various analytical approximations like Pöschl-Teller

potential approximation, WKB techniques. The method of contin-

ued fractions and Horowitz-Hubeny method give accurate values of

QNMs.

We use two effective methods for our studies, the WKB technique
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and characteristic integration method.

• WKB method is a semi-analytic method originally developed by

Schutz and Will[55], modifying the standard WKB technique to

get QNMs for the lowest order. They made use of the barrier

shape of the effective potential. The two WKB solutions were

matched across both turning points simultaneously and obtain

a formula for QNMs. Later Iyer and Will[56] carried this ap-

proach to third WKB order and Konoplya[57] to sixth order

to get more and more accurate results and is found to be ac-

curate for low lying modes. Comparing with other numerical

methods, WKB method gives result with a relative error 0.5%,

for lower frequency modes[58] and can be used to explore the

QNM behavior of black holes efficiently, without going to the

complicated numerical methods. This method is explained in

Chapter 2.

• The most direct approach to study the evolution of perturba-

tion is the numerical integration of the time-dependent pertur-

bation equation and obtain directly the wave form. An effective

method was developed in[27], after recasting the wave equation,

in the null coordinates and using the finite difference scheme.

This approach gives the complete evolution profile with promi-

nent frequencies of the QNM stage and the late-time behavior.

This method is described in Chapter 3.

We take the mass of the hole, M equal to unity for the numerical

calculations unless otherwise mentioned and measure other quantities

like charge of the black hole and mass and charge of fields etc., in

terms of black hole mass.
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1.5.3 Outline

The evolution of field perturbations in black hole spacetimes in the

modified theories of gravity is the subject of study of the present

thesis. The signature of new theories on the evolution of fields on the

black hole spacetimes is probed. The entire work presented in the

thesis is divided in to five chapters and a final concluding chapter.

In the following three chapters we describes the investigations on

the black holes in a quintessence filled Universe. Chapter 2 comprise

the evolution of massive charged scalar field perturbations around a

Reissner-Nördstrom black hole surrounded quintessence. The QNMs

are evaluated and its behavior is analyzed for various parameters in-

volved in the problem. Chapter 3 contains the study of the late-time

evolution of massless integer spin fields around Schwarzschild black

hole surrounded by quintessence. The complete evolution profile is

obtained through numerical method and the late-time decay is stud-

ied in detail. Chapter 4 examines the late-time behavior of Dirac

field around Schwarzschild black hole encircled by quintessence.

Next two chapters describes our attempts to distinguish the Hořava-

Lifshitz gravity from standard GTR, from the knowledge of the evolu-

tion of field around spherically symmetric black hole in these theories.

This part is split up in to two chapters. Chapter 5 is dedicated to

the study of the evolution of massless field perturbations in the space-

time geometry black hole in the HL gravity. The QNM and late-time

phase of evolution is obtained and compared with the results in GTR.

Chapter 6 concerns the study of the evolution of massive scalar field

in the spacetime geometry of black hole in HL gravity by numerical

analysis.

Chapter 7 presents the overall conclusion of the works described

in the thesis and in the light of this, future scops are discussed.
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2.1 Introduction

2.1.1 The expanding Universe

During 1920s, Alexander Friedmann showed that the Einstein’s

equation admits a solution with an expanding Universe. Initially

Albert Einstein declined this notion because, like most of the 20th

century physicists, he believed in the concept of a static Universe

and five years earlier he had published a static model of the Uni-

verse. Later, Einstein admitted his mistake and conceded that his

field equations do allow the possibility of an expanding universe.

In 1929, Edwin Hubble, who was analyzing the spectra of light

coming from distant galaxies, made the remarkable discovery which

completely revolutionized astronomy. He noticed that the spectra

coming from most of the galaxies are shifted towards the red region

indicating that they are moving away from us. By cataloging the dis-

tances to these galaxies Hubble formed what we now know as “Hub-

ble’s Law”: the residing velocity of the distant galaxy is proportional

to its distance from us and thus he concluded that the universe is

29
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surrounded by quintessence

expanding. These discoveries made the building block of the modern

Big Bang theory.

Later in 1980, the cosmic inflation model of the universe was pro-

posed by Alan Guth to overcome some of the enigma of the Big Bang

cosmologies. The model predicts a flat Universe and the total energy

density of the Universe is equal to the critical density, the energy

density required for the universe to be spatially flat. Observations

point towards a spatially flat Universe and the prediction of inflation

theory is consistent with current measurements of CMB anisotropy

by the WMAP spacecraft. But current calculations suggest the to-

tal matter density of the Universe only amounts to about one third

of the required critical density indicating the presence of a missing

component.

In 1998, two groups of scientists, the High-z Team headed by

Schmidt and Riess[59] and the Supernova Cosmology Project by Perl-

mutter[60] independently made another path breaking discovery in

modern cosmology. Analyzing the type Ia supernovae (SNe Ia) at

high redshifts, they reached the conclusion that the expansion of the

universe is now accelerating rather than holding steady or deceler-

ating. The discovery of cosmic acceleration opens a deep mystery

because the two known constituents of the universe, ordinary mat-

ter and radiation will gravitationally attract each other and therefore

should lead to a slowing down of the expansion. Since the expansion

is speeding up we are forced to believe that there is some mysterious

form of energy density called dark energy permeating all around the

universe which pushes the galaxies each other against their gravita-

tional attraction, thus causing the expansion of the Universe to speed

up. At present we hardly know what exactly this dark energy is, how

it originates or how it works.
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The field equation describing the dynamics of the Universe can

take the form of an equation for the second time derivative of the

expansion factor,
ä

a
= −4π

3

∑
i

(ρi + 3pi). (2.1)

Both the energy and the pressure govern the dynamics of the Uni-

verse and the algebraic combination,
∑

i(ρi+3pi) contributed by the

gravitational effect of various components determines the expansion

rate. It is customary to define the parameter representing each com-

ponent of the mass-energy, by the ratio of their pressure to density,

known as equation of state(EOS), εi = pi/ρi. For ordinary gas, εi is

positive, ordinary matter εi = 0 and for radiation εi = 1/3. Each

component contributes an amount −4πρi(1 + 3εi) to the expansion

factor ä/a. Since the energy density, ρi is a positive quantity, it re-

quires a component with sufficient negative pressure(εi drops below

-1/3) for a positive value of ä/a. Thus ark energy requires a negative

pressure to drive the acceleration of the Universe. We can take this

to be the defining property of dark energy.

2.1.2 The Cosmological constant

The simplest and oldest candidate for dark energy is the cosmological

constant, Λ, which was first introduced by Einstein for the purpose of

constructing a static model of the Universe. When he applied GTR

to cosmology Einstein could not get a stationary solution to the field

equations. So he modified the original field equations by adding a

positive constant term to the field equations and adjusted the value

of the constant so that the gravitational attraction of matter would

exactly counterbalanced by this term. Later, he regretfully dropped

this idea knowing the findings of Hubble.
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However, observations including the discovery of cosmic accelera-

tion and measurements of the CMBR have brought the cosmological

constant back in to the picture. If the cosmological constant had a

slightly larger value than Einstein proposed for getting a static solu-

tion, its repulsion would exceed the attraction of matter, and induces

cosmic acceleration. Cosmological constant has ε precisely equal to

-1. It has the same value everywhere in space for all time, and is

chemically inert. Even though the model with cosmological constant

(ΛCDM) provides a reasonably good match to the observations, there

are some fundamental issues.

The cosmological constant, Λ was later identified to be mathemat-

ically equivalent to the vacuum energy, an energy inherent to empty

space itself. The principle of quantum field theory allows the quan-

tum fluctuation in empty space and the resulting zero-point energy

for empty space. An estimate of the total vacuum energy produced by

all known fields predicts the vacuum energy density ρcalΛ ≈ 1076GeV 4.

But this predicts a huge amount-123 orders of magnitude more than

than the present observed value ρobsΛ ≈ 10−47GeV 4. This is called the

cosmological constant problem[61, 62] and a fundamental solution to

this problem has not yet been found.

So it requires some cancellation mechanism which zeros out most

of the vacuum energy. One proposal is that there may be some secret

symmetry in fundamental physics results in a cancellation of large

effects. But it is hard to conceive why the mechanism only cancels

to 120 decimal places instead of making the cosmological constant

exactly zero. To explain the amount of dark energy today, the value of

the cosmological constant would have to be fine tuned at the creation

of the universe to have the proper value.
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2.1.3 Quintessence models

Fortunately, vacuum energy is not the only way to generate cosmic ac-

celeration. Alternatively, dark energy may be a transient phenomenon

and the realm of possibilities goes under the rubric of quintessence[49–

51]. The word quintessence stands for ‘fifth element ’in the ancient and

in medieval philosophy, earth, air, fire and water being the other four

components that constitute the Universe, according to their imagi-

nation. It seems adequate to give this name to the contribution to

the overall mass-energy content of the Universe, in addition to the

previously known baryons, leptons, photons and dark matter.

Unlike Λ, which has the same value everywhere in space for all

time, quintessence is dynamical, which can interact with matter, vary

with space and evolve in time. For quintessence, ε has no fixed value,

but it must be ≤ −1/3, for a repulsive nature. Quintessence gener-

ates the required repulsive force from the energy resulting from the

potential energy of a dynamical field, a mechanism similar to the in-

flationary cosmology theory, in which the inflation field drives the

expansion in the early Universe. But the repulsive force excreted by

quintessence is much weaker than the inflation. Quintessence may

take many forms. The simplest model for quintessence is the energy

density associated with a scalar field, φ slowly rolling down in a po-

tential V (φ). The energy density for a homogeneous scalar field is a

sum of kinetic, and potential energies and pressure is the difference

of the two,

ρ =
1

2
φ̇2 + V (φ); p =

1

2
φ̇2 − V (φ). (2.2)

The kinetic term has positive pressure and the potential term

has negative pressure and the total pressure can be negative if the

field rolls slowly enough that the kinetic energy density is less than
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the potential energy density. To realize the cosmic acceleration the

equation of state,

εφ ≡ p

ρ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
, (2.3)

must be less than −1/3. Quintessence is characterized by its equa-

tion of state, −1/3 ≥ ε > −1. The smaller the value of ε, the greater

its acceleration effect. Quintessence with ε near -1 may be the closest

reasonable approximation. Since the value of ε differs from that of

vacuum energy, quintessence produces a different rate of cosmic accel-

eration. Even though these dynamical dark energy candidates lack a

concrete motivation from fundamental physics, quintessence hypoth-

esis is found to be fit with many of the current observations. More

precise measurements of supernovae over a longer span of distances

and imprint on the CMB anisotropy and mass power spectrum may

separate the two cases in future.

2.2 Quintessence and black holes

The exact solution for the Einstein’s equations for a static spherically

symmetric charged black hole surrounded by the quintessential matter

under the condition of additivity and linearity in energy momentum

tensor is obtained by Kiselev[63]. The general metric of spherically

symmetric static gravitational fields is given by,

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2). (2.4)

Now the Einstein’s equation for this spacetime have the form,
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2T t
t = −e−λ

(
1

r2
− λ′

r

)
+

1

r2
, (2.5)

2T r
r = −e−λ

(
1

r2
+
ν′

r

)
+

1

r2
, (2.6)

2T θ
θ = 2Tφ

φ = −1

2
e−λ

(
ν ′′ +

ν′2

2
+
ν ′ − λ′

r
− ν ′λ′

2

)
, (2.7)

where prime denotes differentiation with respect to r. The principle

of linearity and additivity defines as,

T t
t = T r

r ⇒ λ+ ν = 0. (2.8)

Under this condition, the energy momentum tensor for the quintess-

ence is given by,

T t
t = T r

r = ρq,

T θ
θ = 2Tφ

φ = −1

2
ρq(3ε+ 1), (2.9)

where ε is the quintessence EOS which is connected to the density

as,

ρ =
−c
2

3ε

r3(1−ε)
. (2.10)

Since the density of energy to be positive for quintessence, ρ > 0

and ε to be negative, we demand that the normalization factor c ≥ 0.

Defining λ = −ln(1 + f), we get an equation for f as,

(3ε+ 1)f + 3(1 + ε)rf ′ + r2f ′′ = 0, (2.11)

with the solutions of the form, f = 1− rg
r − c

r3ε+1 , c and rg being nor-

malization factors. Thus the general form of spherically symmetric

charged solutions for Einstein’s equation describing black hole with

energy momentum tensor satisfies the additivity and linearity condi-

tion, so that the metric is given by,
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ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (2.12)

with,

f(r) =

(
1− 2M

r
+
Q2

r2
− c

r3ε+1

)
, dΩ2 = (dθ2 + sin2 θdφ2),

(2.13)

M and Q can be identified as the mass and the charge of the black

hole respectively. In the limit c = 0, the metric reduces to the pure

RN spacetime.

The studies on QNMs of black holes were started in the presence of

quintessence, after the spacetime for a black hole with quintessential

matter were derived by Kiselev. Earlier works considered the simplest

case, the Schwarzschild black hole surrounded by quintessence [64–68]

and obtained the QNMs by WKB method.

But one can expect a charged black hole, formed when the mat-

ter which collapses to form a black hole have a net charge and a

charged perturbations will develop outside the collapsing star. And

if quintessence exists everywhere in the universe, it will surely distort

the spacetime around black holes. So it is interesting to see how the

perturbations of RN black hole behave in the presence of quintessence.

In this work we are addressing this question by considering massive

charged scalar field perturbations.

2.3 Scalar field around charged black hole

surrounded by quintessence

2.3.1 Evolution of scalar perturbations

Now we consider massive charged scalar filed perturbations around

the charged black hole spacetime given by Eq.(2.12). The scalar per-
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turbations can be described by the Klein-Gordon(KG) equation[37,

72],

Φ;µνg
µν − ieAµg

µν(2Φ;ν − ieAνΦ)− ieAµ;νg
µνΦ = m2Φ, (2.14)

where Aµ is the electromagnetic potential and e and m are the

charge and mass of the scalar field. In a spherically symmetric space-

time specified by Eq.(2.12), the KG equation can be simplified to,

1

f(r)
∂2tΦ− 1

r2
(
r2f(r)∂2r + 2rf(r)∂r + r2∂rf(r)∂r

)
Φ+(

− 1

r2sinθ

(
sinθ∂2θ + cosθ∂θ

)
− 1

r2sin2θ
∂2φ

)
Φ−(

2ieAtg
tt∂t − e2A2

t g
tt
)
Φ = 0. (2.15)

Expanding the charged scalar field in scalar spherical harmonics,

Φ =
1

r

∑
l,m

ηlm(t, r)Y m
l (θ, φ), (2.16)

the wave equation can be reduced to an equation for the scalar

function, ηlm(t, r) for each multipole moment:

∂2t η

rf(r)
+
`(`+ 1)

r3
− 2ieAt∂tη

rf(r)
− e2A2

t

f(r)
− ∂rf(r)

r2
−f(r)r∂2rη = 0, (2.17)

where the centrifugal term comes from the action of the angular

momentum operator on the spherical harmonics,

−
(
∂2θ + cotθ∂θ + 1/sin2θ∂2φ

)
Y m
l (θ, φ) = ~L2Y m

l (θ, φ) (2.18)

= `(`+ 1)Y m
l (θ, φ).

Now using the coordinate transformation defined by,
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dr∗ =
dr

f(r)
, (2.19)

we can rewrite the perturbation equation as,

∂2t η−2ieAt∂tη−∂2r∗η+f(r)
[
l(l + 1)

r2
+
∂rf(r)

r
+m2

]
η−e2A2

t η = 0.

(2.20)

The time component of the electromagnetic potential, At = C−Q
r ,

with C being a constant and to avoid this physically unimportant

quantity, we define,

η = eieCtψ, (2.21)

The auxiliary field, ψ assumes to have a harmonic time depen-

dence e−iωt. Now the radial perturbation equation can be written

as,

∂2ψ

∂r2∗
+Θψ = 0, (2.22)

where Θ = ω2 − V 2, V being the effective scattering potential,

arises from the curvature of the spacetime, is given by,

V = f(r)

(
l(l + 1)

r2
+

2M

r3
− 2Q2

r4
+
c(3ε+ 1)

r3ε+3
+m2

)
+
2eQω

r
−e2Q

2

r2
.

(2.23)

It can be noticed that the effective potential depends not only on

the parameters, M,Q, ` and e but also on the frequency of perturba-

tion, ω. This will make it difficult to evaluate the quasinormal mode

frequencies using the WKB approximation. Figure2.1 shows the gen-

eral behavior of the potential. It can be observed that the height

of the potential barrier decreases if quintessence is present and the

asymptotic value, V (r → ∞) increases with mass of the field.
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Figure 2.1: Effective potential for different field masses for l = 3, Q =
0.1, e = 0, ε = −1 and c = 0.01 along with the the Schwarzschild
case(c = 0).

2.3.2 Quasinormal modes of perturbations

The third order WKB approximation method can be used to de-

termine the complex normal mode frequencies of black hole. This

method gives a simple condition which can be used to get the dis-

crete, complex frequencies of the normal modes,

iΘ0√
2Θ

′′

0

− Λ(n)− Ω(n) = n+
1

2
, (2.24)

where n is the mode number, Λ and Ω are second and third order

WKB correction terms,

Λ =
1

(−2Θ
′′

0)
1/2

[
1

8

(
Θ

(4)
0

Θ
′′

0

)(
1

4
+ α2

)
−
(
Θ

′′′

0

Θ
′′

0

)2 (
7 + 60α2

)
288

]
,

(2.25)
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Ω =
1

(−2Θ
′′

0)

{
5

6912

(
Θ

′′′

0

Θ
′′

0

)4 (
77 + 188α2

)
− 1

384

(
Θ

′′′2
0 Θ

(4)

0

Θ
′′3
0

)
(
51 + 100α2

)
+

1

2304

(
Θ

(4)
0

Θ
′′

0

)2 (
67 + 68α2

)
+

1

288

(
Θ

′′′

0 Θ
(5)

0

Θ
′′2
0

)
(
19 + 28α2

)
+

1

288

(
Θ

(6)

0

Θ
′′

0

)(
5 + 4α2

)}
, (2.26)

α = n+
1

2
, n =

{
0, 1, 2, ..................Re(E) > 0

−1,−2,−3, ..........Re(E) < 0
(2.27)

where,

Θ
(n)
0 =

dnΘ

drn∗

∣∣∣∣
r∗=r∗(r0)

, (2.28)

denotes the nth derivatives of Θ evaluated at r0, the value of r at

which V attains maximum. Here a complexity arises from the fact

that the potential V is a function of frequency ω. This makes difficult

to calculate the numerical value of r0. We make use of the procedure

suggested by Konoplya[73] to find r0 by fixing all the parameters other

than ω, on which V depends and then find the value of r at which

V attains maximum as a numerical function of ω. Substituting this

value of r0, we have found the values of real and imaginary parts of

ω which satisfies the condition (2.24) by numerical methods.

It is a general experience that the quasinormal frequencies with

lower mode number will decay slowly and are relevant to the descrip-

tion of fields around the black hole. So we consider frequencies of

low lying modes for our study. For a charged black hole the relative

error of third order WKB method is of the order of 10−2 for l = 3,

n = 0 mode[74]. We put the normalization factor, c = 0.01, so that
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the deviation of frequencies from the pure RN case can be clearly

understood and is much larger than the relative WKB error. In what

follows we examine the behavior of QNMs.

First, we analyze the dependence of QNMs on the charge of the

black hole, Q, in the presence of quintessence. Figures2.2 and 2.3

shows the real and imaginary parts of ω as a function of Q for fixed

l = 3, n = 0, e = 0.1,m = 0.1 and for different values of ε. The case

with absence of quintessence is also plotted. The plot shows that

the quasinormal frequencies for scalar field in a charged black hole

is influenced by quintessence. The magnitudes of real and imaginary

parts of ω is lower in the presence of quintessential field. This im-

plies that due to the presence of quintessence, the quasinormal mode

frequencies for scalar field in RN black hole damps more slowly. In

the presence of quintessence, Re(ω) increases monotonically with the

increase in Q while the magnitude of Im(ω) first decreases, falling to

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Q

R
e(

ω
)

c = 0

ε = −1/3

ε = −2/3
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Figure 2.2: Re(ω) as a function of Q for l = 3, n = 0, e = 0.1,m = 0.1
and for different values of ε with c = 0.01. The dotted line represents
the no quintessence case(c=0).
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Figure 2.3: Im(ω) as a function of Q for l = 3, n = 0, e = 0.1,m = 0.1
and for different values of ε with c = 0.01. The dotted line represents
the no quintessence case(c=0).

a minimum around Q = 0.8 and thereafter increases sharply. If we

discard quintessence (c = 0) the results coincide with those obtained

in [75, 76].

Figure2.4 shows the explicit dependence of Re(ω) and Im(ω) with

quintessential parameters c and ε for fixed l = 3, n = 0, e = 0, Q = 0.5

andm = 0.1. For a fixed c, as the value of ε increases, Re(ω) increases

while the magnitude of Im(ω) increases meaning damping is less for

lower values of ε. As the normalization factor c increases, Re(ω)

decreases and magnitude of Im(ω) decreases. In Figure2.5 Re(ω)

and Im(ω) are plotted as functions of e with l = 3, n = 0,m = 0.1 for

Q = 0.1, 0.3 and different values of ε. Dotted line represents absence

of quintessence(c=0). The variation is almost linear. In the presence

of quintessence, the magnitudes of Re(ω) and Im(ω) increase with e,

as in the no quintessence case (c = 0), but with lower values of Re(ω)

and |Im(ω)|. A neutral field decays slower than a charged field.



Quasinormal modes of perturbations 43

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

ε

R
e(

ω
)

c = 0.005
c = 0.01
c = 0.015

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3
−0.1

−0.095

−0.09

−0.085

−0.08

−0.075

ε

Im
(ω

)

c = 0.005
c = 0.01
c = 0.015

Figure 2.4: Variation of Re(ω) and Im(ω) with quintessence param-
eters ε and c, for l = 3, n = 0, e = 0, Q = 0.5 and m = 0.1

Finally, we study the role of mass of scalar field on quasinormal

frequencies. For low-lying QNMs, to occur tunneling, ω2 must be

smaller than the peak value of the potential V (r = rmax) and the

energies of the field are always larger than m2[12]. This means that

there is a maximum value for mass, mmax beyond which quasinormal

modes will not exist. The value of mmax can be calculated from the
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Figure 2.5: Variation of Re(ω) and Im(ω) with e, for l = 3, n =
0,m = 0.1, Q = 0.1, 0.3 and different values of ε. Dotted curve is for
c = 0.

condition for the existence of quasinormal modes,

V (rmax,ω = mmax) = (mmax)
2 (2.29)

These values of mmax obtained for different values of ε are tab-

ulated in Table2.1. In the presence of quintessence, mmax decreases

because quintessence lowers the height of the potential barrier as we

have seen in Figure2.1 and when ε = −1, it has the lowest value.

WKB approximation gives less accurate results as the mass of the

field increases but we can use this method to obtain the qualitative

dependence of QNMs on field mass. The dependence of QNMs on

mass of scalar field is plotted in Figures2.6 and 2.7. Re(ω) increases
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c ε mmax

0 – 0.88516
0.01 -1/3 0.86762
0.01 -2/3 0.81848
0.01 -1 0.67582

Table 2.1: The limit of mass of scalar field, mmax for the existence of
quasinormal frequencies with l = 3, e = 0, Q = 0.1

with increase in mass, while |Im(ω)| decreases, which indicates that

QNMs of massive fields damp slowly. This behavior is in agrement

with numerical results obtained in [75].

But QNMs behave abnormally near mmax. This is due to the

fact that for larger values of field mass, the potential looses its bar-

rier shape by broadening the potential peak as shown in Figure2.1

and WKB method gives less accurate results. Lower modes show

less abnormality showing that WKB method is more accurate for

fundamental modes. An interesting feature, we noticed is that this

abnormal behavior is lower in the presence of quintessence and when

the quintessential parameter ε = −1, we can get a satisfactory curve

because of the peak of effective potential broadens much less in the

presence of quintessence comparing with the normal case(c=0) as

understood from Figure2.1 and quintessence helps to retain barrier

shape and give more accurate results at larger mass range.
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Figure 2.6: Variation of Re(ω) with m, for l = 3, e = 0, Q =
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Figure 2.7: Variation of Im(ω) with m, for l = 3, e = 0, Q = 0.1, n =
0, 1, 2 and different values of ε. Dotted curve is for the Schwarzschild
case.
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2.4 Conclusion

The studies on the perturbations of black holes in accelerated ex-

panding Universe with quintessence model for dark energy are pre-

sented in this chapter. Massive charged scalar field perturbations are

considered around the charged black hole immersed in quintessence

and WKB approximation method are used to evaluate the associated

QNMs. The results show that quintessence influences the QNMs of

charged black hole. It shows a decrease in the oscillation frequency

and slowing up in the damping of QNMs in the quintessence present

case than the asymptotically flat spacetime case. The behavior of

QNMs vary as the equation of state for the quintessence changes.

The damping are less for lower values of ε. The dependence of QNMs

on other parameters such as charge of black hole Q, charge and mass

of scalar field is similar to that obtained in quintessence less case, but

with lower oscillation frequency and higher damping time. The effect

of quintessence is to retain the barrier shape of effective potential

for larger field masses and thus to reduce the abnormal behavior of

QNMs evaluated using WKB method at these mass ranges.



3
Late-time tails of

Schwarzschild black hole
surrounded by quintessence

3.1 Introduction

Presently we have a clear picture about the late-time behavior of

the radiating fields around black holes with asymptotically flat space-

time, during the process of gravitational collapse. All the radiative

multipole (` ≥ s) of any field with spin s, will completely radiated

away during the late stage of collapse with a power-law fall off of

the field t−(2`+p+1) at late times[11]. The non-radiatable multipoles

(` < s) of the collapsing star are happened to be the only three non

vanishing hairs of the subsequently formed black hole and the mech-

anism responsible for the relaxing to this final asymptotic state is the

late-time decay. The study of the radiative tails of perturbations at

late times plays a crucial role in the exploration of the internal struc-

ture of black holes[77]. The knowledge of late-time radiative tails

serve as initial data for studies of the interior of the black hole and

plays a major role in the analysis of the stability of inner Cauchy

horizon.

The late-time tails in black hole spacetimes are understood as a

49
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result of particular form of the effective potential far away from the

black hole. The tails are generated by the scattering of the waves off

by the effective potential at great distances. By a systematic study

of various potentials Ching et al.[33] and later by Hod[34] had shown

that the inverse power-law decay is a property of asymptotically flat

spacetimes and that different behaviors should be expected in black-

hole spacetimes that have different asymptotic properties.

The evolution of fields propagating on spacetime with a non van-

ishing cosmological constant was addressed in[35] and suggested that

an exponential decay of the tails replaces the power-law behavior

observed in asymptotically flat spacetimes. The first detailed numer-

ical investigation in to the late-time behavior of fields propagating

in black hole in de Sitter spacetimes were performed by Brady et

al.[36, 78]. They have studied, in some detail, the behavior of a mass-

less, minimally coupled scalar field propagating on spherically sym-

metric spacetimes with a positive cosmological constant and demon-

strated the existence of exponentially decaying tails at late times. The

evolution of electromagnetic and gravitational perturbations propa-

gating on black holes with de Sitter backgrounds were studied in[81].

Spherically symmetric black hole solutions[63] were obtained in

quintessence model of dark energy and many authors[64–71] consid-

ered the evolution of various fields around black holes surrounded by

quintessence. All these studies are based on the calculation of the

QNMs using the third order WKB approximation method while the

late-time behavior remained unexplored till now. In fact the late-time

decay is determined by the asymptotic curvature of the spactime, so

it is interesting to see how the fields evolve in a spacetime in which

the asymptotic structure is modified by the quintessence field.
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3.2 Fields around black hole surrounded

by Quintessence

To explore the late-time behavior of field perturbations in a black

hole spacetime in the presence of quintessence, we here consider the

static, spherically symmetric, uncharged black hole surrounded by the

quintessential matter. The relevant metric is obtained in[63],

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (3.1)

where,

f(r) =

(
1− 2M

r
− c

r3ε+1

)
, (3.2)

and ε is the quintessential state parameter and c, the normaliza-

tion factor. It is difficult to analyze the evolution of perturbations

around the above metric for arbitrary values of the parameter ε. For

our study we take three special cases of the quintessence parameter,

ε = −1/3,−2/3,−1 and the Schwarzschild case(c = 0), so that the

calculations become viable.

Case1 ε = −1/3 : the black hole event horizon is located at

re1 = 2M/(1− c), corresponding to zero of the function, f(r) and the

tortoise coordinate can be defined as,

r∗ = r + re1ln(r − re1). (3.3)

Case2 ε = −2/3 : here, in addition to the black hole event horizon

at r = re2 the spacetime possesses a cosmological horizon at r = rc2,

with re2 < rc2. In terms of these horizons we can write f(r) as,

f(r) =
c

r
(r − re2)(rc2 − r). (3.4)
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The surface gravity associated with the horizons at r = ri, is

defined by

κi =
1

2
|df/dr|r=ri , (3.5)

and we get,

κe2 =
c(rc2 − re2)

2re2
, κc2 =

c(re2 − rc2)

2rc2
. (3.6)

These quantities allow us to write,

1

f
=

1

2κe2(r − re2)
+

1

2κc2(r − rc2)
. (3.7)

Now we can get an expression for the tortoise coordinate, r∗ =∫
f−1dr as,

r∗ =
1

2κe2
ln

∣∣∣∣ rre2 − 1

∣∣∣∣+ 1

2κc2
ln

∣∣∣∣1− r

re2

∣∣∣∣ . (3.8)

Case3 ε = −1: this is the extreme case of quintessence, the

Schwarzschild-de Sitter(SdS) spacetime. The roots of the polynomial

equation, f(r) = 0 corresponding to the the event horizon at r = re3,

the cosmological horizon at r = rc3 and a negative root at r = r0 =

−(re3 + rc3), with r0 < re3 < rc3.

We can recast the function f(r) as,

f(r) =
c

r
(r − re3)(rc3 − r)(r − r0). (3.9)

The surface gravity associated with the horizons are given by,

κe3 =
c(rc3 − re3)(re3 − r0)

2re3
,

κc3 =
c(rc3 − re3)(rc3 − r0)

2rc3
, (3.10)

κ0 =
c(re3 − r0)(rc3 − r0)

2(−r0)
.
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Writing f(r)−1 as,

1

f
=

1

2κe3(r − re3)
+

1

2κc3(rc3 − r)
+

1

2κ0(r − r0)
, (3.11)

we can define the tortoise relation in terms of the horizons and the

corresponding surface gravity as[78],

r∗ =
1

2κe3
ln

∣∣∣∣ rre3 − 1

∣∣∣∣− 1

2κc3
ln

∣∣∣∣1− r

rc3

∣∣∣∣+ 1

2κ0
ln

∣∣∣∣ rr0 − 1

∣∣∣∣ . (3.12)

3.3 Evolution of fields

3.3.1 Scalar perturbations

The evolution of massless scalar field Φ is governed by the Klein-

Gordon equation (Eq.2.14 with m = e = 0),

�Φ =
1√
−g

∂µ(
√
−ggµν∂ν)Φ = 0, (3.13)

Using the scalar spherical harmonics(Eq.2.16), the radial part of

the perturbation equations (Eq.3.13) can be decoupled from their

angular parts and reduced to the form,(
− ∂2

∂t2
+

∂2

∂r2∗

)
ψ`(t, r) = −V`(r)ψ`(t, r), (3.14)

with the effective potential,

VSC = f(r)

(
`(`+ 1)

r2
+

2M

r3
+
c(3ε+ 1)

r3ε+3

)
. (3.15)

3.3.2 Electromagnetic perturbations

The evolution of the electromagnetic(EM) field is described by the

Maxwell’s equation,
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Fµν
;ν = 0, with Fµν = Aν,µ − Aµ,ν , (3.16)

where Aµ is the electromagnetic vector potential. Since the back-

ground is spherically symmetric, the vector potential Aµ can be rep-

resented as 4-dimensional vector spherical harmonics[79],

Aµ(t, r, θ, φ) =
∑
`,m




0

0
a`m(t,r)
sin θ ∂φY`m

−a`m(t, r) sin θ∂θY`m

+


f `m(t, r)Y`m

h`m(t, r)Y`m

k`m(t, r)∂θY`m

k`m(t, r)∂θY`m


 .

(3.17)

The parity of first term in the vector harmonics is (−1)`+1 (mag-

netic) and that of the second term is (−1)` (electric). For odd parity,

the components of electromagnetic tensor F θν are obtained as,

F θt =
cosecθ

r2f

∂a

∂t

∂Y`m
∂φ

, (3.18)

F θr =
−cosecθf

r2
∂a

∂r

∂Y`m
∂φ

, F θθ = 0, (3.19)

F θφ =
−cosecθ

r4

(
1

sin2θ

∂2Y`m
∂φ2

+
1

sinθ

∂

∂θ

(
sinθ

∂Y`m
∂θ

))
a

=
cosecθ

r4
`(`+ 1)Y`ma. (3.20)

The covariant derivative of electromagnetic tensor, F θν
;ν are ob-

tained as,

F θt
;t =

−cosecθ
2r2f

(
ff ′

∂a

∂r
− 2

∂2a

∂t2

)
∂Y`m
∂φ

, (3.21)
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F θr
;r =

−cosecθ
2r3

(
rf ′

∂a

∂r
− 2f

(
∂a

∂r
− r

∂2a

∂r2

))
∂Y`m
∂φ

, (3.22)

F θθ
;θ = 0, F θφ

;φ =
cosecθ

r4

(
`(`+ 1)a− rf

∂a

∂r

)
∂Y`m
∂φ

. (3.23)

Now the Maxwell’s equation becomes,

F θν
;ν = 0 ⇒

[
`(`+ 1)f − r2

(
∂

∂r
f2

∂

∂r
− ∂2

∂t2

)]
a`m(t, r) = 0 (3.24)

Other equations obtained from Eq.(3.16) are equivalent to the

above equation. Using the tortoise coordinate defined by dr∗ = 1
f dr

the above equation can be reduced in to Eq.(3.14), with,

VEM = f(r)

(
`(`+ 1)

r2

)
, (3.25)

where the wave function, ψ` = a`m. The even parity wave also sat-

isfy the above equation with the wave function having the functional

dependence, ψ` =
r2

`(`+1)

(
h`m,t − f `m,r

)
.

3.3.3 Gravitational perturbations

Equation governing the gravitational perturbation(GR) is,

Rµν(g + h) = 0, (3.26)

where Rµν(g + h) is the Ricci tensor computed from the total

metric gµν + hµν . Here the variation on right hand side of Einstein’s

equation, Eq.(1.8) is taken to be zero since we are considering three

special cases of quintessence state parameter and assuming it to be
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fixed, at least for the interval of time that we have considered here

for the evolution of perturbation.

Any arbitrary perturbations can be decomposed into normal modes,

since the background we are considering is spherically symmetric. For

any given value of the angular momentum `, associated with these

modes, there are two classes of perturbations. Even, (−1)` and odd,

(−1)`+1 parity perturbations. Here we are considering only the axial

perturbation for our study. The two were shown to have a similar

QNM spectra and late-time behavior in de Sitter spacetime[81]. The

canonical form of odd wave perturbations in Regge-Wheeler gauge[6],

keeping the time dependence, can be written as,

hµν =

0 0 0 h0(r)

0 0 0 h1(r)

0 0 0 0

h0(r) h1(r) 0 0

sinθ
∂

∂θ
P`(cosθ)Q(t). (3.27)

Following the calculations described in Section 1.3.1, we get the

radial equations,
h0
f

dQ

dt
− d (fh1)

dr
Q = 0, (3.28)

1

f

dQ

dt

(
2h0
r

− dh0
dr

)
+ h1

{
`(`+ 1)

rr
+

1

f

d2Q

dr2
− 2

r2
− 6cε

r3ε+3

}
Q = 0.

(3.29)

Eqs.(3.28) and (3.29) comes from δRθφ = 0 and δRrφ = 0, respec-

tively.

Defining ψ(t, r) =
fh1(r)

r Q(t) and employing the tortoise coordi-

nate, the above two equations can be combined to get a second order

equation, Eq.(3.14) after eliminating h0(r). The effective potential of

the system is,
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VGR = f(r)

(
`(`+ 1)

r2
− 6M

r3
− c(3ε+ 3)

r3ε+3

)
. (3.30)

Now we analyze the nature of the effective potentials. Figures

3.1 and 3.2 show the potentials experienced by the scalar, EM and

GR fields. To clearly see the behavior of the potential between the

horizons, we choose the value of the parameter c = 10−5 for ε = −1

case and a larger value of c = 10−2/2 for ε = −2/3 case, so that we

can bring down the separation between the horizons.
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ε = −1/3

Figure 3.1: Plot of effective potentials for ε = −1/3 with c = 10−2/2.
Set of curves form bottom to top is for ` = 0, 1, 2 and 3 modes. The
scalar(solid curves), EM(dashed) and GR(dotted) fields are drawn.

For ε = −1/3(Figure 3.1), the effective potential of scalar field is

positive definite for r∗ ∈ [−∞,+∞] and have a potential barrier near

the event horizon but vanish asymptotically as r∗ → ±∞. But for

smaller values of the quintessence parameter, ε = −2/3 and -1(Figure

3.2), after a barrier nature near the event horizon, the potentials with
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` = 0 mode of scalar field, vanish at some r∗ = r0∗ and there after

form a negative well in the range r0∗ < r∗ < +∞.
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Figure 3.2: Plot of effective potentials for ε = −2/3 with c = 10−2/2
and ε = −1 with c = 10−5. In each plot set of curves from bot-
tom to top is for ` = 0, 1, 2 and 3 modes. The scalar(solid curves),
EM(dashed) and GR(dotted) fields are drawn. At large distances, GR
potential is merged with the scalar case for ε = −2/3 and with EM
case for ε = −1. The potential is scaled as V ∗ = V (re − r)2(`+ 1/2),
to enhance the nature at large r.
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3.4 Numerical integration and results

The complex nature of the potentials makes it difficult to obtain the

exact solutions of Eq.(3.14) and we have to tackle the problem by

numerical methods. An efficient method to study the evolution of field

were developed in[27], after recasting the wave equation, Eq.(3.14),

in the null coordinates, u = t− r∗ and v = t+ r∗ as,

−4
∂2

∂u∂v
ψ(u, v) = V (u, v)ψ(u, v). (3.31)

To discretize the wave equation we replace the derivatives with

the finite differences,

∂ψ

∂u
(ui, vj) →

ψ(ui +4u, vj)− ψ(ui, vj)

4u
,

∂ψ

∂v
(ui, vj) →

ψ(ui, vj +4v)− ψ(ui, vj)

4v
. (3.32)

Denoting the wavefunction on the uniformly spaced grid points of

the null rectangle(Figure 3.3), as ψN , ψW , ψE and ψS with an overall

grid scale factor of4u = 4v = h, we use the following finite difference

scheme for Eq.3.31,

ψN = ψW + ψE − ψS − h2

8
V (P )(ψW + ψE) +O(h4), (3.33)

where the potential is evaluated on the centroid P, ((uS +uW )/2,

(uS + uE)/2).

To perform the numerical integration on an uniformly spaced grid,

we have to specify the initial conditions. Since the late-time behavior

of the wave function is found to be insensitive to the initial data, we

set null data on u axis and a Gaussian profile on v axis,

ψ(u, v = 0) = 0, ψ(u = 0, v) = Ae−
(v−v0)

2

2σ2 . (3.34)
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Figure 3.3: The null grid for the numerical integration.

In all our calculations in this chapter, we set the initial Gaussian

distribution with width, σ = 3 centered at v0 = 10. Due to the

linearity of the equation one has the freedom to choose the ampli-

tude of the initial wave A = 1. To proceed the integration on the

above numerical scheme one has to find the value of the potential at

r(r∗) = r((v − u)/2) at each step. Employing the Newton-Raphson

method one can invert Eqs.(3.3), (3.8) and (3.12) and get r(r∗) for

the characteristic integration.

Figure 3.4 shows typical evolution profile of scalar field in a black

hole surrounded by quintessence, in comparison with that in the pure

Schwarzschild spacetime. We observe that the evolution shows de-

viations from the Schwarzschild case, after initial transient phase.

The damped single frequency oscillation(QNM) phase and the late-
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time tail of decay in the final phase shows the characteristics of the

quintessence. We analyze each phase in detail.
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Figure 3.4: Log-log graph of the evolution of scalar field in a
quintessence filled black hole spacetime with quintessence parame-
ters ε = −1/3,−2/3,−1 and c = 10−2/2, in comparison with that in
the pure Schwarzschild(Schw) spacetime. The case of ` = 0 mode is
shown in the top panel and ` = 1 on the bottom panel.
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3.4.1 Quasinormal modes

QNMs of various field perturbations around black hole surrounded

by quintessence were evaluated in [64–71] using third order WKB

method. The typical nature of QNM phase can be seen in Figure 3.5,

where we have shown the evolution profiles of the different fields in a

quintessence surrounded black hole for ` = 2, in comparison with the

corresponding mode in the pure Schwarzschild black hole. On the left

panel the decay of scalar field is shown for ε = −2/3 and −1 along

with the Schwarzschild case.
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Figure 3.5: Semi-log graph of the QNM phase of evolution for the
` = 2 modes of various fields. The plot on the left is for scalar
field where the curves from bottom to top is for the Schwarzschild,
ε = −2/3 and -1 cases, respectively. On the right, EM and GR
fields are shown where bottom curve in each sub plot represents the
Schwarzschild case and the other ones are for ε = −2/3. We take
c = 102/2 for these plots. All the three fields damp more slowly in
the presence of quintessence.

It can be seen that the decay of the fields in the QNM phase is

slower in the presence of quintessence than in the pure Schwarzschild

cases. Also the damping is lower for smaller values of ε. This re-

sult is not in agreement with the results presented in [64], where
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they obtained that a massless scalar field damps more rapidly due to

quintessence. Electromagnetic and gravitational field perturbations

also show similar behavior as that of scalar field, in the QNM phase.

So we have shown the ε = −2/3 case only in the plots. These results

are in agreement with the observations made in [65–67], using the

WKB method.

3.4.2 Late-time tails

The QNM phase is followed by the regime of late-time tails of field

decay. We find that the nature of late-time tails are sensitive to the

parameters of quintessence, the angular momentum index and also

the type of field perturbations under consideration. Below we discuss

the different cases in detail.

` = 0 mode

Scalar field perturbations can have the ` = 0 mode, while EM and

GR fields can only have modes with ` ≥ 1 and ` ≥ 2 respectively.

From Figure 3.4, which is a log-log plot, it can be seen that for the

` = 0 mode, scalar field with ε = −1/3 case of quintessence has the

form of a power-law tail, with slightly slower decay rate than the

corresponding Schwarzschild tail.

The peculiar shape of potentials for ε = −2/3 and -1(Figure 3.2)

reflects in the late-time tails, that the fields settle to a residual con-

stant value, rather than decaying to zero. We have evaluated the field,

φ = ψ/r on the surface of constant r(at r∗ = 10), the cosmological

horizon(approximated by the null surface v = vmax) and the black

hole event horizon(approximated by the null surface u = umax). In

the asymptotic late times, field settles to the same constant value φ0,

on all these surfaces, as shown in Figure 3.6. It was first observed



64
Late-time tails of Schwarzschild black hole surrounded by

quintessence

in[36], for scalar field in the SdS spacetime and they have shown that

at late times,

φ |`=0' φ0 + φ1(r)e
−2kc3t. (3.35)
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Figure 3.6: The decay of ` = 0 mode of scalar field with quintessence
parameters ε = −2/3 with c = 10−2/2, and ε = −1 with 10−5.
The fields are evaluated on the constant surface r∗ = 10(dotted
curves), black hole event horizon(dashed curves) and cosmological
horizon(solid curves).

Figure 3.7 demonstrates the ` = 0 mode of scalar field for different

values of c. The smaller the value of c, the later the field descends to

the constant value, φ0. The dependence of φ0, on the parameter c is

shown in Figure 3.8. We observe that the asymptotic value of field

scales as ψ0 ∼ c0.995, when ε = −1 as found in[36] and as ψ0 ∼ c1.873,

when ε = −2/3.
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Figure 3.7: The decay of ` = 0 mode of scalar field with quintessence
parameters ε = −2/3 with c = 10−1/2, 10−2, 10−2/2 and 10−3, and
ε = −1 with c = 10−2/2, 10−3, 10−4, 10−5, 10−6 and 10−7.
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Figure 3.8: The asymptotic value of scalar field, φ0 versus c, in log-
arithmic scale. A linear fit(dotted lines) gives the slopes 1.873, for
ε = −2/3 and 0.995, for ε = −1.
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` > 0 modes

Now we report the results obtained for the decay of ` > 0 modes of

field perturbations. Figure 3.9 demonstrates the evolution of scalar,

EM and GR fields around a black hole surrounded by quintessence

with ε = −1/3, along with pure Schwarzschild case. The fields, ψ are

evaluated on the surface r∗ = 10. A straight line in such a plot shows

a power-law tail. The late-time tails follow the power-law decay for

ε = −1/3, but with a smaller decay rate, than the Schwarzschild case

of, ψ ∼ t−(2`+3). For the quintessence case with c = 10−2/2, we get

ψ ∼ t−(2`+2.7).
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Figure 3.9: Log-log plot of the evolution of fields for ε = −1/3, with
c = 10−2/2. On the left, the decay of scalar field is shown in com-
parison with the Schwarzschild case. Curves from top to bottom is
for ` = 0, 1, 2, 3 and 4. The decay has a lower power-law constant,
t−(2`+2.7) for quintessence case. The ` = 3 mode of different fields is
shown on the right. All the field has an identical tail of decay for
ε = −1/3.
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As the value of the quintessence parameter decreases to ε = −2/3

and to -1, though in the intermediate time the fields follow the power-

law decay, in the asymptotic late-time it deviates from the power-law

form. Figure 3.10 is a semi-log plot of the decay of scalar, EM and

GR perturbations for the ε = −2/3 case with c = 10−2/2. A straight

line in such a plot corresponds to an exponential decay. We can see

from the plot that for ` > 0, the intermediate time power-law form of

decay is replaced by an exponential decay of field, in the asymptotic

late-time. In particular, in the asymptotic late times, the decay can

be fitted in the forms,

ψ ∼ e−pkc2`t, for Scalar and GR,

ψ ∼ e−kc2(`+1)t, for EM, (3.36)

where p is some constant, for the plots shown in Figure 3.10 with

c = 10−2/2 we get p = 1.089. The evolution of field for the ε = −1

case is plotted in Figure 3.11, in semi-log scale, where we have chosen

c = 10−5, in order to see the decay for large `. All the ` > 0 modes

at late-time relax as an exponential tail, according to the form,

ψ ∼ e−kc3`t, for Scalar,

ψ ∼ e−kc3(`+1)t, for EM and GR. (3.37)

The late-time tails are generated by the scattering of the waves

by the potential at great distances. By a systematic study of various

potentials Ching et al.[33] and later by Hod[34] had given the fol-

lowing heuristic picture. The late-time tails reported by an observer

at r∗ are caused by the waves that are scattered by the potential,

V (r′∗) at the point r′∗ � r∗ and at late times, ψ ∝ V (r′∗) ' V (t/2).
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Figure 3.10: Semi-log plot of the decay of scalar, EM and GR per-
turbations for ε = −2/3 with c = 10−2/2. GR has an identical decay
pattern as that of scalar field.
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Figure 3.11: Semi-log plot of the decay of scalar, EM and GR pertur-
bations for ε = −1 with c = 10−5. The gravitational perturbations
are merged with the EM profiles



Conclusion 69

Their studies showed that the inverse power-law decay is a property

of asymptotically flat spacetimes, and that different behaviors should

be expected in black-hole spacetimes that have different asymptotic

properties. The results that we obtained can be explained as fol-

lows. For ε = −1/3, all the fields have inverse power nature of the

effective potentials as that in asymptotically flat spacetime and lead

to inverse power-law decay of fields at late times. When ε = −2/3

and -1 the potentials exponentially drop off in the asymptotic region,

V (r∗) ∼ e−kcr∗ and one can expect an exponential tail of the forms

Eq.(3.36) and (3.37) at late times.

3.5 Conclusion

This chapter investigates the late-time behavior of various field per-

turbations in the geometry of black hole residing in an universe ex-

panding with acceleration, adopting the quintessence model of dark

energy. Massless scalar, EM and GR perturbations are considered

around a spherically symmetric uncharged black hole with the asymp-

totes determined by the quintessence.

The evolution picture obtained confirms that in the QNM stage,

all the fields decay slowly due to the presence of quintessence. At

late times, QNMs are suppressed by the tail form of field decay. As

the value of the quintessential parameter ε, decreases, the late-time

decay of ` = 0 mode of scalar field gives up the power-law form of

decay, relaxing to a constant residual field. This asymptotic values

of the field is determined by the value of the parameter ε and c. For

the behavior of ` = 0 mode when ε = −2/3 and -1, there is no

analogue case in black holes with flat space. This can be understood

as a consequence of cosmological no-hair theorem[35]. Comparing
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the situation in SdS spacetime with the scattering inside the charged

black hole it was argued that a constant mode can be transmitted

to both black hole and cosmological horizons. However the constant

solution carries no stress-energy.

For large values of ε, the ` > s modes of scalar, EM and GR

perturbations, still show a power-law decay, having a slower decay

rate than the corresponding Schwarzschild case. As the value of ε

decreases, the power-law decay gives way to an exponential decay.

The results for the SdS black hole spacetime, the extreme case of

quintessence, are consistent with the previous studies[36, 78, 81].



4
Dirac field around

Schwarzschild black hole
surrounded by quintessence

4.1 Introduction

According to the black hole “no-hair theorem” a black hole formed

by the gravitational collapse of a charged rotating star, will rapidly re-

lax to a stationary state, characterized by three quantities, its mass,

charge and angular momentum. Any other hair, will disappear af-

ter the collapsing body settles down to its stationary configuration.

Later counterexamples of this theorem were presented obtaining solu-

tions for black holes with various hairs. Among them are black holes

dressed with Yang-Mills, Proca-type Yang-Mills, and Skyrme fields

in various combinations with Higgs fields[90–92]. Some, but not all,

of these black holes are unstable. The manner and rate with which

the hair of the black hole decays is thus an important question. All

known black-hole no-hair theorems were extended to spacetimes en-

dowed with a positive cosmological constant[89]. Specifically, they

proved that static spherical black holes with positive cosmological

constant cannot support scalar fields in convex potentials and Proca-

massive vector fields in the region between the black hole and the

71
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cosmic horizon.

Most of the studies on the late-time decay are devoted to integer

spin fields. There are only few studies on the fermionic tails. The

problem of the late-time behavior of massive Dirac fields in black

hole with asymptotically flat spacetime was studied in [84–86]. The

intermediate and late-time behavior of massive Dirac field in the static

spherically general black hole spacetime is studied in [87]. The late-

time behavior of a massive Dirac field in the background of dilaton

black hole solutions is investigated in [88]. It is revealed that for black

hole in flat spacetimes, the long-lived oscillatory tail of Dirac field,

observed at timelike infinity decays as t−5/6.

The evolution of fields propagating in de Sitter spacetime were ad-

dressed in[35, 36, 78, 81] and they have demonstrated the existence of

exponentially decaying tails at late times contrasting the power-law

tails in asymptotically flat situation. QNMs of SdS black holes have

been calculated for fields of different spin, including the Dirac field, us-

ing the sixth-order WKB and Pöschl-Teller approximation[93]. Since

the spherically symmetric black hole solutions[63] were obtained in

quintessence model of dark energy, there are studies [68, 70] on evo-

lution of Dirac field around black holes surrounded by quintessence.

These attempts are based on the calculation of the QNMs using the

third order WKB approximation method while the late-time behav-

ior of Dirac perturbations remained unknown. In fact, the late-time

decay is determined by the asymptotic curvature of the spactime, so

it is interesting to see how Dirac field evolves in a spacetime in which

the asymptotic structure is determined by the quintessence field and

our study fills this gap.

The rest of the chapter is organized as follows. In Section 4.2 the

master wave equation for Dirac field perturbations around black hole



Perturbations of Dirac field 73

surrounded by quintessence is derived. The results are discussed in

Section 4.3. The major conclusion is given in Section 4.4.

4.2 Perturbations of Dirac field

The Dirac equation for a massless field in spacetime gµν , specified by

Eq.(3.1) can be written as[94]

iγaeµa(∂µ + Γµ)Ψ = 0, (4.1)

where γa are the Dirac matrices,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3, (4.2)

σi being Pauli matrices. eµa is the tetrad defined by the metric

gµυ,

gµυ = ηabe
a
µe

b
υ. (4.3)

with ηab = diag(−1, 1, 1, 1) being the Minkowski metric. Γµ is the

spin connections defined by,

Γµ =
1

8

[
γa, γb

]
eυaebυ;µ. (4.4)

Choosing the tetrad to be,

eµa =


f−1/2 0 0 0

0 f1/2 sin θ cosφ cos θ cosφ
r

csc θ sinφ
r

0 f1/2 sin θ sinφ cos θ sinφ
r

csc θ cosφ
r

0 f1/2 cos θ sin θ
r 0

 , (4.5)
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The spin connections defined by Eq.(4.4) are,

Γt =
1

4
∂r (rf) γ

0γ̃; γ̃ = (sin θ cosφγ1+sin θ sinφγ2+cos θγ3), (4.6)

Γr = 0, Γθ =
1

2

(
1− f1/2

)(
γ3γ1 cosφ+ γ3γ2 sinφ

)
, (4.7)

Γϕ =
1

2

(
f1/2 − 1

)(
γ1γ2 sin θ + γ1γ3 cos θ sinφ− γ2γ3 cos θ cosφ

)
sin θ.

(4.8)

Now the second term in Eq.(4.1) can be reduced to get,

γaeµaΓµ = γ̃

(
(r2f)′

4r2f1/2
+
f1/2

2r
− 1

r

)
(4.9)

Substituting these in Eq.(4.1) results in the following form for the

Dirac equation,

iγ0

f1/2
∂Ψ

∂t
+
iγ̃f1/4

r

∂

∂r

(
rf1/4Ψ

)
− iγ̃

r

(
~Σ.~L+ 1

)
Ψ = 0, (4.10)

where ~L is the standard angular momentum operator with com-

ponents,

L1 = isinφ∂θ + icotθcosφ∂φ,

L2 = −icosφ∂θ + icotθsinφ∂φ,

L3 = −i∂φ, (4.11)

and in the Dirac representation,

~Σ =

(
~σ 0

0 ~σ

)
. (4.12)
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For the separation of variables, we write the wave function as,

Ψ =
1

rf1/4
Φ, (4.13)

where,

Φ(t, r, θ, φ) =

(
iG(±)(t, r)ϕ

(±)
jm (θ, φ)

F (±)(t, r)ϕ
(∓)
jm (θ, φ)

)
, (4.14)

with the angular parts of the wave function given by,

ϕ
(±)
jm =

 √
l+1/2±m

2l+1 Y
m−1/2
l

−
√

l+1/2−m
2l+1 Y

m+1/2
l

 , (4.15)

for j = l ± 1
2 , and we define,

k(±) =

{
−
(
j + 1

2

)
, j = l + 1

2 ,(
j + 1

2

)
, j = l − 1

2 .
, (4.16)

where k (−) and k (+) are negative and positive integers respec-

tively. The angular functions ϕ
(±)
jm satisfy the eigen equations

kϕ
(±)
jm = ±

(
j +

1

2

)
ϕ
(±)
jm and σ̃ϕ

(±)
jm = ϕ

(∓)
jm , (4.17)

where k =~Σ.~L + 1 and σ̃ = sin θ cosφ1 + sin θ sinφγ2 + cos θγ3.

Then the coupled radial equations can be simplified to,

f
∂

∂r

(
F (±)

G(±)

)
− (j + 1/2)f1/2

r

(
F (±)

−G(±)

)
= − ∂

∂t

(
−G(±)

F (±)

)
,

(4.18)

and moving to the tortoise coordinate, r∗ we can write,
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∂

∂r∗

(
F (±)

G(±)

)
+W(±)

(
−F (±)

G(±)

)
= − ∂

∂t

(
−G(±)

F (±)

)
, (4.19)

where,

W(±) =
f1/2k(±)

r
. (4.20)

The equations for F (±) and G(±) can be decoupled to get,(
− ∂2

∂r2∗
+ V(±)1

)
F = −∂

2F

∂t2
, (4.21)

(
− ∂2

∂r2∗
+ V(±)2

)
G = −∂

2G

∂t2
. (4.22)

where

V(±)1,2 = ±
dW(±)

dr∗
+W 2

(±), (4.23)

Here the (+) case is for k being a positive integer with, k =

j + 1
2 and j = ` + 1

2 , and the case with negative integer values for

k is represented by (−), with k = −(j + 1
2) and j = ` − 1

2 . The

Dirac potentials appearing in Eq.(4.21) and (4.23) are shown to yield

the same spectrum of quasinormal mode frequencies[95]. So here we

consider V1, denoting with the subscript D, and combining the (+)

and (−) cases we can write the explicit form for the potential,

VD =
|k|

√
f

r2

[
|k|
√
f +

r

2

∂f

∂r
− f

]
. (4.24)

For ε = −1/3, the effective potential is positive definite with r∗ ∈
[−∞,+∞] and have a potential barrier near the event horizon but

vanishes asymptotically as r∗ → ±∞. As the parameter ε decreases

below -1/3, a cosmological horizon is created by the quintessence.

Figure 4.1 shows effective potential of the Dirac fields, with ε = −1
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Figure 4.1: Plot of effective potentials experienced by the Dirac field
for quintessence parameters ε = −2/3 with c = 10−2/2 and ε = −1
with c = 10−5. Curves form bottom to top is for ` = 0, 1, 2 and
3 modes. The potential is scaled as V ∗ = V (re − r)2(` + 1/2), to
enhance the nature at large r. Potentials has a negative dip near CH

and -2/3. In this case, after a barrier nature near the event horizon,

the effective potential for all modes, vanishes at some r∗ = r0∗ and

there after form a negative well in the range r0∗ < r∗ < +∞. This

behavior of Dirac field is in contrast with other fields. For scalar field

even if the ` = 0 mode shows the negative dip in the potential, all

other higher modes have a positive value for the potential between

the horizons (Figure 3.2).
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4.3 Numerical integration and results

After recasting the wave equations, Eq.(4.21) and (4.22), in the null

coordinates, u = t− r∗ and v = t+ r∗ as,

−4
∂2

∂u∂v
Ψ(u, v) = V (u, v)Ψ(u, v), (4.25)

we perform the numerical integration using the method described

in Section 3.4. We scale the field as, φ = ψ/r. The evolution of field

is monitored on different surfaces viz.,

1. cosmological horizon(CH), approximated by the null surface,

v = vmax,

2. the black hole event horizon(EH), approximated by the null

surface, u = umax,

3. different surfaces of fixed radius, r∗ = K, approaching future

timelike infinity.

Figure 4.2 shows the evolution profile of the Dirac field around the

black hole in a quintessence filled universe along with that in the pure

Schwarzschild spacetime. We observe that the evolution of Dirac field

shows deviations from the Schwarzschild case, after initial transient

phase. The QNM phase and the late-time tail of decay in the final

phase show the characteristics of the quintessence and the spin of

the field. The fields decay slowly in the QNM phase, if quintessence

is present as it was shown in[68, 93], using the WKB method. The

QNM phase is followed by the regime of late-time tails of field decay.

It is well known that, at late times, the Dirac field perturbations has a

power-law decay in the Schwarzschild spacetime and is represented by

the straight curves in a log-log plot. We find that the nature of late-

time tails of Dirac field is sensitive to the parameters of quintessence.
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A. ε = −1/3

For quintessence with EOS, ε ≥ −1/3, there is only one zero for the

function, f(r) in Eq.(3.2) and that corresponds to the event hori-

zon of the black hole. It can be observed from Figure 4.2 that for

quintessence with EOS, ε = −1/3, the decay of Dirac field also shows

a power-law tail, but with slightly slower decay rate than the corre-

sponding Schwarzschild tails. For c = 10−2/2, we get φ ∼ t−(2`+2.7),

a slower decay rate than the φ ∼ t−(2`+3) of the pure Schwarzschild

case. This can be expected since the effective potential for ε = −1/3

case has almost the same profile as that of the Schwarzschild space-

time.

B. ε < −1/3

As the EOS lowers from -1/3, a cosmological horizon will be created

by the quintessence and for Dirac field a negative dip appears in the

potential appears. For ε = −2/3 and −1, all the ` modes of Dirac

field relaxes to a constant residual field, at asymptotic late times.

This behavior is contrary to other fields, where all the ` > 0 modes

are found to be decaying exponentially. Even if the monopole of

the scalar field is observed to settle down to a constant asymptotic

value, all the higher modes were found to be exponentially decaying.

The nature of Dirac field is little surprising and it strengthens the

dependence of the unusual dip in the potential and the relaxation of

the field to the constant value, although a detailed investigation on

this is required. Figure 4.3 shows the evolution profile of the Dirac

field for ε = −2/3 and −1, and different multiploles. We can fit the

decay form as,

φ |`' φ0 |` +φ1(r)e−2kct. (4.26)
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Figure 4.2: Log-log graph of the evolution of Dirac field in a
quintessence filled black hole spacetime with c = 10−2/2, in com-
parison with that in the pure Schwarzschild spacetime, evaluated at
r∗ = 10. ` = 0(top) and ` = 1(bottom) modes for ε = −1/3,−2/3
and -1.
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Figure 4.3: Evolution of Dirac field on the surface of fixed radius
r∗ = 10. Solid curves are the ε = −2/3 case with c = 10−2/2 and
ε = −1 case with c = 10−5, is represented by the dashed curves.
In each case, curves from top to bottom is for ` = 0, 1, 2, 3 and 4,
respectively

The dependence of the asymptotic residual field, φ0, on the pa-

rameter c, is shown in Figure 4.4, on a logarithmic scale. The field

is evaluated on the event horizon. For ε = −1, a least square fit for

ln|φ0| = m1 ln(c)+c1, gives the slops, m1 = 0.973, 1.933, 2.942, 3.915

and 4.921 for ` = 0, 1, 2, 3 and 4, respectively. For ε = −2/3, we get

the slops m1 = 1.768, 3.630, 5.559, 7.330 and 9.625, for ` = 0, 1, 2, 3

and 4, respectively. These results suggest that,

φ0 ∼ c(`+1), for ε = −1,

φ0 ∼ c1.782(`+1), for ε = −2/3. (4.27)
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Figure 4.4: The asymptotic value of the Dirac field along EH, φ0,
versus c, in logarithmic scale. Dotted lines represents a linear fit for
each modes. Curves from top to bottom is for ` = 0, 1, 2, 3 and 4.

To confirm that the behavior of Dirac field is not an artifact of the

particular location, we monitor the evolution of the field on different

null surfaces of constant radius and on the event and cosmological

horizons. Figures 4.5 and 4.6 show the decay of ` = 2 mode of

Dirac field on the black hole event horizon, cosmological horizon and

three surfaces of fixed radius, r∗ = 10, 100 and 300. The constant

asymptotic value of the Dirac field, φ0, varies from the black hole

event horizon to the cosmological horizon. The φ0 has a lowest value

on the EH, increases as radial position goes farther and farther, and

has the highest value on the CH.
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Figure 4.5: The decay of ` = 2 mode of Dirac field with quintessence
parameters ε = −2/3 with c = 10−2/2 on different surfaces. Solid
curves represents the field on EH(bottom) and CH(top). Dotted
curves from bottom to top corresponds to the field on surfaces at
r∗ = 10, 100 and 300.

Price’s original work demonstrates that there can be no static

solution to the scalar wave equation that are well behaved at infinity

and black hole EH. Even though the ` = 0 mode of the scalar field in

the SdS spacetime is observed to settle down to a constant asymptotic

value, it relaxes to the same constant value on all the surfaces(Figure

3.6). It can be argued that the constant field does not carry any stress

energy tensor and it is equivalent to vanishing of the hair. But the

behavior of Dirac field is rather intriguing since the all ` modes of the

field have non zero value at late times and it varies with the position.
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Figure 4.6: The decay of ` = 2 mode of Dirac field with quintessence
parameters ε = −1 with c = 10−5 on different surfaces. Solid curves
represents the field on EH(bottom) and CH(top). Dotted curves from
bottom to top corresponds to the field on surfaces at r∗ = 10, 100
and 300.

4.4 Conclusion

The evolution of Dirac field perturbation in the spacetime of a black

hole immersed in a quintessence filed, is investigated in this chapter.

The quintessence EOS, ε plays a dramatic role in the late-time de-

cay of the Dirac field. For ε = −1/3 the late-time decay follows a

power-law form, but with a lower decay rate than the corresponding

Schwarzschild case. As the value of the quintessential parameter ε,

decreases, the CH forms and a negative dip appears in the effective

potential near the CH. For ε = −2/3 and -1, the Dirac field do not

decay to zero, but relaxes to a constant residual field, at late times.

These asymptotic values of the field is determined by the values of
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the parameter ε and c. This behavior of Dirac field seems to be odd

comparing with the scalar, EM and GR perturbations, where the all

the ` > 0 modes of the field decay exponentially. The asymptotic

value of the Dirac field varies on different surfaces. It has the lowest

value on the black hole EH and increase as the radial distance increase

and maximizes on the CH. This behavior may indicate the presence

of a fermionic hair even though a detailed numerical and analytical

studies are required to confirm this result.
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Massless field perturbations

around a black hole in
Hořava-Lifshitz gravity

5.1 Gravity and quantization

Gravity, one among all the known four fundamental interactions,

is well described by Einstein’s General Theory of Relativity at the

classical level. The predictions of GTR were tested with high degree

of accuracy and successfully passed various classical tests in the weak

gravitational field limit.

Most of the everyday physics can work well with GTR, with out a

detailed understanding of quantum gravity. But it becomes annoying

when one fails to combine the two fundamental theories in physics-

Quantum mechanics and GTR- at extream situations like the one at

the time of the Big-bang, black hole singularities etc., where both

theories come in to play. The classical spacetime continuum concept

breaks down at these regimes.

GTR is a classical theory based on the concept of geometry of

spacetime. For all other theories the spacetime is an arena where

the events can take place but in GTR spacetime itself is a physical

entity of the theory. On the other hand electromagnetism, weak and
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strong nuclear interactions are well described by standard model of

quantum field theory. The consistent implementation of the gravita-

tional interaction into the quantum framework is considered to be an

outstanding problem in fundamental physics.

5.1.1 General Relativity and renormalizability

One of the major open challenges facing theoretical physics today is

to accommodate general relativity in the framework of quantum field

theory. The main problem one encounters is the non-renormalizablity

of gravity at the perturbative level. GTR is plagued with its noto-

rious ultraviolet divergence[96]. Electromagnetism, weak and strong

nuclear interactions are well described by renormalizable quantum

theories, viz., quantum electrodynamics and quantum chromodynam-

ics, respectively. GTR fails the usual tests of renormalizability while

checked using the precise covariant rules for calculating Feynman dia-

grams in quantum theory of gravitation. The attempts of unification

of all the four forces are waiting till we know how to tackle the UV

divergence of gravity.

A heuristic picture of the problem can be visualized by a simple

dimensional analysis. For a field theory, the integral for a Feynman

diagram of order N will behave like,
∫
pA−Nddp, where A counts the

processes under consideration and is independent of N and d is the di-

mension of the coupling constant [mass]d. Now if d < 0, at sufficiently

large orders, the integral diverges. For Newton’s constant(GN ), the

coupling constant of gravity, d = −2. This implies that the quantum

field theory of gravity have ultraviolet divergence everywhere. For

graviton, the propagator scales with the four-momentum, kµ as,

G(ω, k) =
1

k2
, (5.1)
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where k2 = ω2 − k2. Each loop in the Feynman diagram con-

tributes an integral,
∫
dωd3k ∝ k4, resulting to a total contribution

from the combination of one loop and one internal propagator,

k4k−2 = k2 → ∞, as k → ∞ (5.2)

To bring the divergence of the higher loop orders under control, it

is necessary to introduce infinitely many number of counter terms in

curvature. One way to improve the UV behavior is to add relativistic

higher-derivative curvature terms to the Lagrangian. For instance, an

addition of a quadratic term, R2 will change the graviton propagator

as,

1

k2
+

1

k2
GNk

4 1

k2
+

1

k2
GNk

4 1

k2
GNk

4 1

k2
+ ..... =

1

k2 −GNk4
(5.3)

Now the propagator at high energies is scaled as 1
k4 and the total

contribution from one loop and one internal propagator now is

k4k−2 = k0 → finite, as k → ∞ (5.4)

This cures the problem of the UV divergence but at the same time

brings new issues. This can be immediately understood if we rewrite

the propagator as,

1

k2 −GNk4
=

1

k2
− 1

k2 − 1/GN
(5.5)

The first term on the right had side represents the massless gravi-

ton while the second is a ghost term which also causes the unitary

violation.

It is the higher order time derivatives that we introduced actually

makes the problem rather than the space derivatives. This observa-

tion immediately points to a possible resolution. One can think of
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Hořava-Lifshitz gravity

introducing higher order spatial derivatives by omitting the higher

order time derivatives. The former should improve the UV behavior

of the propagator as we have already seen, whereas the latter guar-

antees the absence of ghosts, but at the cost of giving up the Lorentz

invariance as a fundamental symmetry of the theory.

5.1.2 Hořava-Lifshitz theory of gravity

In 2009 Petr Hořava proposed a new theory[52–54] based on the idea

that the time and space may have different dynamical scaling in the

UV limit. This was inspired from the Lifshitz model of scalar field

theory in condensed matter physics, introduced to explain quantum

critical phenomena. Hence the theory is now dubbed as “Hořava-

Lifshitz”theory. This arguments paved a new step in achieving a

renormalizable theory for gravity. In the following we briefly review

the main contents of the theory.

According to the theory, space and time follow anisotropic scaling,

x→ bx, t→ bzt, (5.6)

with the degree of anisotropy characterized by the “dynamical

critical exponent”, z ≥ 1. In the IR limit, z = 1 and the Lorentz

invariance is “accidentally restored”. It is assumed that the Lorentz

symmetry should appear as an emergent symmetry at IR scale, but

can be fundamentally absent at high energies.

The action for Hořava-Lifshitz gravity (with z = 3) is given by,
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SHL =

∫
dtd3x

√
gN

{
2

κ2
(KijK

ij − λK2)− κ2

2W 4
CijC

ij

+
κ2µ

2W 2
εijkR

(3)
i` 5j R

(3)`
k − κ2µ2

8
R

(3)
ij R

(3)ij

+
κ2µ2

8(1− 3λ)

(
1− 4λ

4
(R(3))2 + ΛWR

(3) − 3Λ2
W

)}
,(5.7)

where the extrinsic curvature, Kij and the Cotton tensor, Cij are

given by,

Kij =
1

2N
(ġij −∇iNj −∇jNi) , (5.8)

Cij = εikl∇k

(
R

(3)j
l − 1

4
R(3)δjl

)
, (5.9)

and κ, λ,W are dimensionless coupling constants whereas µ,ΛW

have the mass dimensions [µ] = 1, [ΛW ] = 2. Now the modified

graviton propagator in the theory has the form,

1

ω2 − c2k2 −G(k2)z
. (5.10)

At high energies, the propagator is dominated by the anisotropic

term 1/ω2 − G(k2)z and for z > 1, this modification improves the

short-distance behavior. The c2k2 term becomes important only at

lower energies. Using these ideas he formulated a theory of gravity

which would be powercounting renormalizable in 3 + 1 dimensions. It

assumes a Lifshitz-like anisotropic scaling between space and time at

short distances, with z = 3 and thus breaking the Lorentz invariance.

While in the IR limit it flows to z = 1, retrieving the Einstein’s GTR.

In this limit, the action in Eq.5.7 becomes,
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S =

∫
dtd3x

√
gN

{
2

κ2
(
KijK

ij − λK2
)
+

κ2µ2

8(1− 3λ)

(
ΛWR− 3Λ2

W

)}
(5.11)

If we identify the speed of light c and Newtons constant G and Λ

as,

c2 =
κ2µ4

2
, GN =

κ2

32πc
, Λ =

3

2
ΛW , λ = 1, (5.12)

the action reduced to the standard Einstein-Hilbert action,

SEH =
1

16πGN

∫
d4x

√
−gN

[(
KijK

ij −K2
)
+R− 2Λ

]
=

1

16πGN

∫
d4x
√

−g(4)
(
R(4) − 2Λ

)
. (5.13)

The HL theory is regarded as a potential candidate of the UV com-

pletion of gravity and has received a growing interest. Even though

the theory has the remarkable features, there are some open issues

regarding Hořava-Lifshitz gravity. Firstly, the realization of renormal-

izability relay on power counting arguments. Even though this is a

strong indication for UV completeness, a more rigorous conformation

of renormalizability beyond power counting is still lacking. Secondly,

the coupling of matter to gravity have not been fully clarified yet.

The discussions on the consequences of theory in the fundamental

and application level are still going on. A detailed review of the topic

is given in [97–99]. As a new theory, it is interesting to investigate its

various aspects in parallel.



Black holes in HL gravity 93

5.2 Black holes in HL gravity

The HL theory has the same Newtonian and post Newtonian correc-

tions as those of GTR. So systems of strong gravity, like black holes,

are needed to get observable deviation from the standard GTR. Vari-

ous black hole solutions are found in HL theory[100–119]. The IR vac-

uum of pure HL gravity is found to be anti-de Sitter[100, 101]. Even

though HL gravity could recover GTR in IR at the action level for a

particular value of the parameter λ = 1, there found a significant dif-

ference between these black hole solutions and the usual Schwarzschild

AdS solution. The asymptotic fall-off of the metric for these black

hole solutions is much slower than that of usual Schwarzschild AdS

black holes in GTR.

Meanwhile Kehagias and Sfetsos[120](KS) could find a black hole

solution in asymptotically flat Mankowski spacetimes by applying de-

formation in HL theory by adding a term proportional to the Ricci

scalar of three-geometry, µ4R(3) to the action in Eq.5.7 while the cos-

mological constant ΛW → 0. This will not alter the UV properties

of the theory but it does the IR ones leading to Mankowski vacuum

analogous to Schwarzschild spacetime in GTR.

Consider the metric ansatz for a static, spherically symmetric

spacetime,

ds2 = −N(r)2dt2 + f(r)−1dr2 + r2dΩ2. (5.14)

Substituting this ansatz into Eq.5.7, the Lagrangian after angular

integration can be reduced to,

L =
k2µ2

8(1− 3λ)

N√
f

(
(2λ− 1)

(f − 1)2

r2
− 2λ

f − 1

r
f ′

+
λ− 1

2
f ′2 − 2ω

(
1− f − rf ′

))
, (5.15)
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where ω = 8µ2/(3λ − 1)κ2. The equations of motion can be

obtained by varying the functions f and N ,

(2λ−1)
(f − 1)2

r2
−2λ

f − 1

r
f ′+

λ− 1

2
f ′2−2ω(1−f−rf ′) = 0, (5.16)(

log
N√
f

)′(
(λ− 1)f ′ − 2λ

f − 1

r
+ 2ωr

)
+(λ−1)

(
f ′′ − 2(f − 1)

r2

)
.

(5.17)

For λ = 1, one gets the KS solution with asymptotic flat space-

time,

N(r)2 = f(r) =
2(r2 − 2Mr + α)

r2 + 2α+
√
r4 + 8αMr

, (5.18)

where α = 1/2ω and M is the integration constant reduced to

mass. The event horizons of the black hole are at,

r± =M ±
√
M2 − α. (5.19)

When α = 0 the solution reduces to the Schwarzschild spacetime case.

Various aspects of KS black hole were explored in the past[121–

133]. The dynamical evolution of scalar field in Hořava black hole

spacetimes is studied using Horowitz-Hubeny approach[134]. The

spectrum of entropy/area is discussed from the viewpoint of QNMs of

scalar field in HL gravity[135, 136]. QNMs of various fields around KS

black hole spacetime were calculated using WKB method[137–140].

It is interesting to see how various other field perturbations decay in

KS black hole spacetime. In what follows, we present the study of the

evolution of various massless field perturbations in the KS black hole

spacetime and probe the signature of the new theory by comparing

with the results in the standard GTR.
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5.3 Massless fields around KS black hole

The evolution of massless neutral scalar field Φ, electromagnetic field

Aµ and massless Dirac field ψ in the spacetime gµν , specified by

Eq.(5.14) are governed by the Klein-Gordon(Eq.(2.14) with m = 0

and e = 0), Maxwell’s(Section 3.3.2) and the Dirac equations(Section

4.2) respectively,

1√
−g

∂µ(
√
−ggµν∂ν)Φ = 0, (5.20)

Fµν
;ν = 0, with Fµν = Aν,µ − Aµ,ν , (5.21)

[γaeµa(∂µ + Γµ)]ψ = 0. (5.22)

The radial part of the above perturbation equations can be de-

coupled from their angular parts and can be reduced to the form,(
− ∂2

∂t2
+

∂2

∂r2∗

)
ψ`(t, r) = −V (r)ψ`(t, r) = 0, (5.23)

where r∗ is the tortoise coordinate and the effective potentials,

V (r) for different fields are given by,

VS = f(r)

(
`(`+ 1)

r2
+

1

r

∂f(r)

∂r

)
, ` = 0, 1, 2, ..., (5.24)

VEM = f(r)

(
`(`+ 1)

r2

)
, ` = 1, 2, 3, ..., (5.25)

VD± =

√
f |k|
r2

(
|k|
√
f ± r

2

∂f

∂r
∓ f(r)

)
, |k| = 1, 2, 3, ....(5.26)

here k is positive or negative nonzero integer related to the total

orbital angular momentum by ` = |k + 1
2 | −

1
2 and VD+ and VD− are
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the super symmetric partners and give same spectra. So we choose

VD+ for our study and omit the subscript.

The effective potential experienced by scalar field in the spacetime

of KS black hole is plotted in Figure 5.1. We can observe that the

KS spacetime creates a higher potential barrier for the field than

the Schwarzschild spacetime. Also the height of the potential barrier

increases with the increase in the value of the parameter α. But at

large distances, the potentials in the two cases coincide. The same is

the case for the electromagnetic and Dirac fields.

0 4 8 12 16
0

0.04

0.08

0.12

r

V
(r

)

 

 

α = 0
α = 0.5
α = 1

Figure 5.1: Effective potential faced by the ` = 1 mode of scalar field
around the KS spacetime for different values of α.

To get the time evolution picture of the field we write the pertur-

bation equations, Eq.(5.23) in terms of the null coordinates u = t−r∗

and v = t+ r∗ as,

−4
∂2

∂u∂v
ψ(u, v) = V (u, v)ψ(u, v), (5.27)



Evolution of massless scalar field 97

and integrate this equation numerically using the finite difference

scheme described in Section 3.4, We set initial conditions, ψ(u, v =

0) = 0 and a Gaussian profile ψ(u = 0, v) = exp
[
− (v−vc)

2

2σ2

]
, having

width σ = 3, centered at vc = 10.

The computationally expensive part in the numerical integration

is to evaluate the potential at r(r∗) = r((v − u)/2) on each grid

points. The complexity of the function, f(r) given in Eq.5.18 made it

very difficult to find an expression for the tortoise coordinate, defined

by dr∗ = 1
f dr. So we use the Runge-Kutta method to numerically

integrate the equation for the tortoise coordinate and find the values

of r(r∗) at each step by cubic spline interpolation as suggested in [141].

Once the integration is completed the wave function Ψ is extracted

on the surface of constant r, and plotted as a function of time.

5.3.1 Evolution of massless scalar field

The typical behavior of time evolution of a massless scalar field is

shown in Figure 5.2. The top panel of the plot shows how the generic

behavior of wave function, the initial outburst, quasinormal oscilla-

tions, and power-law decay, in HL theory is differed from that in pure

Schwarzschild spacetime, taking the case of the ` = 1 mode. We can

see that the QNM phase extends for a longer time in HL theory. The

late-time tail starts at a later time t ≈ 257 for KS black hole with

α = 0.8 whereas it is at t ≈ 198 for the Schwarzschild case. It is also

clear from the figure that the oscillation frequency and the damping

time have a higher values in HL theory.
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Figure 5.2: Evolution of scalar field with ` = 1 mode. On the top,
the field around KS black hole with α = 0.8(top curve) and the
Schwarzschild black hole(bottom curve) are shown. The plot on the
bottom shows the QNM region of the field evolution for different val-
ues of α. Curves from bottom to top is for α = 0, 0.4, 0.8 and 1,
respectively.
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The graph on the bottom panel of Figure 5.2 describes the de-

pendence of QNM region on the value of the HL parameter, α. The

oscillation frequency increases with the increase in the value of α,

whereas the it shows a slower damping for higher values of α.

After the QNM stage the massless field dies off as an inverse power

of time. Figure 5.3 illustrates this nature, where the plot on the top

panel shows the late-time behavior of the wave function for different

values of α, with multipole index ` = 1. It is clear from the figure that

the late-time behavior of massless field follows a power-law decay, and

is independent of the value of the HL parameter α. The tail phase is

identical to the Schwarzschild black hole spacetime case. To further

confirm this we have studied the field evolution for different multipole

indices for a fixed value of α = 0.5. The plot on the bottom panel of

the Figure 5.3 illustrates the results obtained. The field falls off as

Ψ ∼ t−3.06, t−5.08, t−7.07 and t−9.08 for ` = 0, 1, 2 and 3 respectively,

suggesting the power-law form Ψ ∼ t−(2`+3). This is the same decay

pattern that was found for the Schwarzschild spacetime[11].

Thus, it becomes evident that the QNM phase is the significant

differing phase in the time evolution of scalar field around the KS

black hole when one compares with the evolution in Schwarzschild

black hole. So we further concentrate on the quantitative study of

the QNM phase. The exact values of the QNM frequencies can be

calculated from the numerically integrated data by nonlinear χ2 fit-

ting. We also use the WBK method described in Section 2.3.2 to

evaluate the QNMs. The QNMs calculated from the numerically in-

tegrated data are given in Tables 5.1 and 5.2. It can be read from

the table that the oscillation frequency of QNMs increase with the

increase of the value of α, while the damping of the field decreases.
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Hořava-Lifshitz gravity

5.6 6 6.4

−22

−20

−18

−16

ln(t)

ln
|Ψ

|

 

 

α = 0
α = 0.4
α = 0.8
α = 1

3 4 5 6

−40

−30

−20

−10

0

ln(t)

ln
|Ψ

|

t−9.08

t−7.07

t−5.08

t−3.08

Figure 5.3: Late-time decay of scalar field around KS black hole for
` = 1 mode. The plot on the top is the ` = 1 mode of field, for
different values of α. On the bottom, the field with α = 0.5 for
different angular momentum. Curves from top to bottom is for the
` = 0, 1, 2 and 3, respectively.



Evolution of electromagnetic field 101

WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.29111 -0.09800 0.29224 -0.09758
0.2 0.29564 -0.09424 0.29750 -0.09418
0.4 0.30071 -0.09008 0.30154 -0.09027
0.5 0.30345 -0.08777 0.30474 -0.08817
0.6 0.30636 -0.08526 0.30850 -0.08564
0.8 0.31260 -0.07937 0.31416 -0.07979
1 0.31918 -0.07162 0.32057 -0.07247

Table 5.1: QNM frequencies of massless scalar field for various val-
ues of α with ` = 1, evaluated using WKB method and numerical
integration data.

WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.48321 -0.09681 0.48332 -0.09676
0.2 0.49085 -0.09351 0.49087 -0.09356
0.4 0.49942 -0.08969 0.49911 -0.08981
0.5 0.50412 -0.08752 0.50266 -0.08767
0.6 0.50915 -0.08511 0.50831 -0.08527
0.8 0.52039 -0.07926 0.52029 -0.07947
1 0.53356 -0.07108 0.53272 -0.07138

Table 5.2: QNM frequencies of massless scalar field for various val-
ues of α with ` = 2, evaluated using WKB method and numerical
integration data.

5.3.2 Evolution of electromagnetic field

To study the evolution of electromagnetic field in HL black hole space-

time we numerically integrate the perturbation equation Eq.(5.23)

with effective potential Eq.(5.25) using the time domain method. In

Figure 5.4(top) the time evolution of the electromagnetic field, Ψ(t, r),

evaluated at the fixed radius r∗ = 10 is plotted in comparison with the
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corresponding Schwarzschild case. We can see that the time length

of the QNM phase of electromagnetic field increases in HL theory.
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Figure 5.4: Evolution of ` = 1 mode of electromagnetic field.
(top panel)Field around KS black hole with α = 0.8(top curve) and
the Schwarzschild black hole(bottom curve). (bottom panel)QNM re-
gion of the time evolution of field for different values of α. Curves
from bottom to top is for α = 0, 0.4, 0.8 and 1, respectively.
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The late-time tail starts at t ≈ 300 for KS black hole with α = 0.8

whereas it is at t ≈ 230 for the Schwarzschild case. The oscillation

frequency of QNMs of electromagnetic field have higher values in HL

theory and observed a lower than in the Schwarzschild case. The

variation of oscillatory region of Ψ(t, r) with the parameter α is shown

in Figure 5.4(bottom). The oscillation frequency increases with α and

shows a slower damping for higher values of α.

Figure 5.5(top) shows the late-time behavior of wave function for

different values of α, with multipole index ` = 1. We find that the

late-time behavior of electromagnetic field is independent of α and fol-

lows the behavior of the Schwarzschild case with Ψ ∼ t−5.1. In Figure

5.5(bottom) field evolution for different multipole index is shown with

α = 0.5. The field falls off as Ψ ∼ t−5.08, t−7.09 and t−9.09 for ` = 1, 2

and 3 respectively. The perturbation dies off at late-time as t−(2`+3)

as in the case of Schwarzschild case.

We have seen that quasinormal ringing phase is dominated form

of decay in the evolution of perturbations after the initial transient

phase. The QNMs calculated from the numerically integrated data

are given in Tables 5.3 and 5.4. We can find a good agreement with

the earlier obtained results, using the WKB method[140]. The table

shows that the QNM frequency electromagnetic field increase with

the increase of the value of α, meantime the damping of the field

reduces.
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Figure 5.5: Late-time decay of electromagnetic field, (top) for different
values of α with ` = 1. The Field decay as an inverse power of time
with t−5.08, for all values of α. (bottom)Decay of field with different
multipole order ` with α = 0.5. The field decay as t−5.08, t−7.09 and
t−9.09 for ` = 1, 2 and 3, respectively.
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WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.24587 -0.09311 0.24401 -0.09051
0.2 0.25152 -0.08942 0.25225 -0.08706
0.4 0.25796 -0.08530 0.25733 -0.08447
0.5 0.26151 -0.08299 0.26383 -0.08135
0.6 0.26532 -0.08047 0.26575 -0.08009
0.8 0.27375 -0.07435 0.27771 -0.07454
1 0.28308 -0.06569 0.28478 -0.06581

Table 5.3: QNM frequencies of electromagnetic field for various val-
ues of α with ` = 1, evaluated using WKB method and numerical
integration data.

WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.45713 -0.09506 0.45088 -0.09471
0.2 0.46531 -0.09179 0.46239 -0.09117
0.4 0.47453 -0.08799 0.47153 -0.08711
0.5 0.47961 -0.08582 0.47835 -0.08502
0.6 0.48507 -0.08339 0.48332 -0.08183
0.8 0.49736 -0.07743 0.49756 -0.07439
1 0.51197 -0.06887 0.52823 -0.06897

Table 5.4: QNM frequencies of electromagnetic field for various val-
ues of α with ` = 2, evaluated using WKB method and numerical
integration data.

5.3.3 Evolution of massless Dirac field

Now we present the study of the evolution of Dirac field in HL black

hole spacetime. The perturbation equation Eq.(5.27) with the ef-

fective potential Eq.(5.26), is numerically integrated using the time

domain method. Figure 5.6(top) displays the time evolution of the

Dirac wave function, Ψ(t, r) at a fixed radius r∗ = 10, for k = 2.



106
Massless field perturbations around a black hole in
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The deviation of generic time dependence of wave function in the HL

theory from pure Schwarzschild spacetime is clear in the plot. QNM

region lasts for a longer time in HL theory.
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Figure 5.6: Time evolution of Dirac field with k = 2, (left)around
KS black hole with α = 0.8(top curve) and the Schwarzschild black
case (bottom curve). (bottom)QNM region of the time evolution of
Dirac field for different values of α = 0.5. Curves from bottom to top
is for α = 0, 0.4, 0.8 and 1, respectively.



Evolution of massless Dirac field 107

The late-time tail starts at t ≈ 310 for α = 0.8 whereas it is at

t ≈ 240 for the Schwarzschild case. Also the oscillation frequency and

the damping time have a higher values in HL theory. The variation of

oscillatory region of Ψ(t, r) with the parameter α is shown in Figure

5.6(bottom). The oscillation frequency increases with α and shows a

slower damping for higher values of α.

Figure 5.7(top) shows the late-time behavior Dirac field for dif-

ferent values of α, with k = 2. The late-time behavior is indepen-

dent of α and field decays in the inverse power of time as t−5.08.

In Figure 5.7(bottom), field evolution for different multipole indices

are shown with α = 0.5. The perturbation dies off at late-time as

Ψ ∼ t−3.08, t−5.08 and t−7.09 for k = 1, 2 and 3 respectively.

The quasinormal ringing phase of the perturbation can be seen

clearly in these figures. The calculated values of QNMs from the time

domain data are given in Tables 5.5 and 5.6. We can find a good

agreement of the values obtained previously [139] using the WKB

scheme. Results show that the oscillation frequency and the damping

time increase with α.

WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.17645 -0.10011 0.17830 -0.10744
0.2 0.18187 -0.09614 0.17952 -0.09481
0.4 0.18709 -0.09167 0.18756 -0.09312
0.5 0.18963 -0.08916 0.19040 -0.09249
0.6 0.19212 -0.08639 0.19333 -0.09172
0.8 0.19681 -0.07981 0.19635 -0.07572
1 0.20053 -0.07113 0.200101 -0.06939

Table 5.5: QNM frequencies of Dirac field for various values of α
with k = 1(` = 0), evaluated using WKB method and numerical
integration data.
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Figure 5.7: Late-time decay of Dirac field, (top)for different values of
α with k = 2. The field decay as an inverse power law of time with
t−5.08 for all values of α. (bottom)Decay of Dirac field for different k
with α = 0.5. The field decay as t−3.08, t−5.08 and t−7.09 for k = 1, 2
and 3 respectively.

Finally, we compare the time evolution of different fields in HL

gravity. In Figure 5.8 massless scalar, Dirac and electromagnetic

fields are plotted for α = 0.5. The only difference between evolution

of these three fields is in the QNM phase whereas the late-time tails

follow the same decay pattern with same power law exponent. Figure
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WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.37863 -0.09654 0.37348 -0.08850
0.2 0.38489 -0.09317 0.38126 -0.09488
0.4 0.39195 -0.08932 0.38935 -0.09014
0.5 0.39583 -0.08712 0.39126 -0.08816
0.6 0.39998 -0.08468 0.39153 -0.08388
0.8 0.40920 -0.07869 0.40337 -0.07758
1 0.41978 -0.07021 0.41415 -0.07239

Table 5.6: QNM frequencies of Dirac field for various values of α
with k = 2(` = 1), evaluated using WKB method and numerical
integration data.

5.9 shows the variation of real and imaginary part of QNMs with α.

All the three fields show the same dependence on the parameter α.
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Figure 5.8: Evolution of ` = 1 mode of massless scalar, Dirac and
electromagnetic fields around KS black hole with α = 0.5.
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Figure 5.9: QNMs of massless scalar, Dirac and electromagnetic fields
as a function of α, with ` = 1.

5.4 Conclusion

This chapter describes the study which probes the signature of the

Hořava-Lifshitz gravity, on the temporal evolution of different spin

fields around the black hole spacetimes. The evolution of electromag-

netic, massless scalar and Dirac perturbations around the asymptot-

ically flat, spherically symmetric KS black hole solution are studied.

We find a considerable deviation in the nature of field evolution in HL

theory from that in the Schwarzschild spacetime. Comparing with the

Schwarzschild case, the QNM phase of evolution prolongs to a longer

time in HL theory before the power-law tail decay begins. In the

QNM phase, the field is found to be oscillate with larger frequency

in HL theory but it decays more slowly than the Schwarzschild case.

The late-time decay of field, regardless of the spin, is found to be in-

dependent the HL parameter α, and follows the same power-law tail

behavior as in the case of Schwarzschild black hole.
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6.1 Introduction

It is well understood in standard GR that massive field perturba-

tions in the vicinity of black holes behave differently from the massless

ones. A study on the propagation of massive scalar perturbations in

Schwarzschild and Kerr spacetimes, using third order WKB approx-

imation revealed that the QNMs of massive fields decay more slowly

than massless ones[144]. Similar observation was made in the study of

massive charged scalar field in a RN black hole spacetime exploiting

WKB method[145]. These attempts are restricted to small values of

the field mass due to the limitations arised from the validity of WKB

approximation. A detailed investigation on the behavior of QNMs on

the field mass is presented in[76]. They solved the QNMs using con-

tinued fraction method and showed that there may have modes with

arbitrary long life, called the quasi-resonant modes, for specific values

of the field mass. It has been proven in [146] that the quasi-resonant

modes, which are arbitrary long living (purely real) modes, can exist

only if the effective potential is not zero at least at one of the bound-
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aries of the R-region. The QNMs of massive scalar and Dirac fields

are further investigated in [75].

Late-time tail phase of massive fields also reported to have a differ-

ent behavior in the black hole spacetimes of GR. In contrast with the

massless fields, where the field at late-time dies off as Ψ ∼ t−(2`+3),

massive fields have an oscillatory inverse power-law behavior. At in-

termediate late times, Mm � mt � 1/(mM)2, massive field with

mass m, decay as Ψ ∼ t−(`+3/2)sin(mt) [142]. But it was shown

analytically that in the asymptotic late times (mt � 1/(mM)2)

another pattern of oscillatory tail of the form Ψ ∼ t−(5/6)sin(mt)

dominates[143] and it was numerically verified for various spacetimes

and fields[87, 147–149].

All these studies argued that late-time relaxation does not have

any relation to the spacetime parameters. Inspired from the hints that

QNMs show dependence on spacetime parameter in three dimensional

AdS[150] and de Sitter[151] spacetimes, a detailed numerical study of

relaxation process in RN spacetime was done in [152]. They showed

that for Mm � 1 relaxation depends only on the field parameters,

but when Mm � 1 spacetime parameters affect the relaxation and

found that for a Schwarzschild black hole bigger the black hole mass

is, the faster the perturbation decays.

In the light of these fascinating results, it deserves a close analysis

of massive field evolution in HL theory. Most of the previous studies

on the field evolution around black holes in HL theory has so far been

restricted to the massless fields. Eventhough the QNMs of massive

scalar field is discussed in [136], they are mostly concerned on the

thermodynamic aspects of the KS black hole and a clear picture of

the evolution is not clear in their study. This chapter investigates the

modifications of different stages of evolution of a massive scalar field
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around black hole in HL theory. The rest of the chapter is organized

as follows. In Section 6.2 we derive the master wave equation for

massive scalar field around KS black hole and analyze the effective

potential. The results of the numerical simulations for massive field

perturbation is presented in Section 6.3 and Section 6.4 comprises the

conclusion.

6.2 Massive scalar field around KS black

hole

To study the properties of massive field we take the simplest case,

massive scalar field with mass,m around the KS black hole spacetime.

The scalar field evolves according to the Klein-Gordon equation,

1√
−g

∂µ(
√
−ggµν∂ν)Φ−m2Φ = 0, (6.1)

where gµν is the metric defined in Eq. (5.14). Resolving the field

into scalar spherical harmonics, and employing the tortoise coordi-

nate, the above equation can be reduced to the form(Section 2.3.1),(
− ∂2

∂t2
+

∂2

∂r2∗

)
Ψ`(t, r) = −V (r)Ψ`(t, r) = 0, (6.2)

with the effective potential V (r) is given by,

V (r) = f(r)

(
`(`+ 1)

r2
+

1

r

∂f(r)

∂r
+m2

)
. (6.3)

The behavior of the effective potential V (r), is plotted in Figure

6.1. The dependence of the potential with the parameter α is plotted

in Figure 6.1(a), for massless and massive(m = 0.3) fields. For a given

mass, as the parameter α increases, the peak of the potential increases

where as the asymptotic region of potential is largely unaffected by the
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HL parameter. It is clear from Figure 6.1(b) that as the mass of the

field increases the hight of the potential increases and its asymptotic

value raises as m2. The barrier nature of potential will be spoiled for

high masses of the field.
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Figure 6.1: Profiles of effective potential, V (r) for ` = 2 mode. (a)
V (r) for α = 0.2(solid) and α = 0.8(dotted). (b) V (r) with different
field masses for α = 0.4.
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To study the evolution of the field we perform the numerical inte-

gration on an uniformly spaced grid by setting the initial conditions

ψ(u, v = 0) = 0 and a Gaussian profile on Ψ(u = 0, v) as the initial

values. To evaluate the potential at r(r∗) = r((v−u)/2) on each step,

we numerically integrate the equation for the tortoise coordinate us-

ing the Runge-Kutta method[141] and by cubic spline interpolation,

obtained r(r∗) at each step.

6.3 Evolution of massive field

Now we describe the findings on the massive field evolution in the

spacetime of KS black hole and compare the results with the existing

results in standard GR. Here in the first series of simulations we set

the mass of the black hole, M = 1 and choose the the field mass, m

such that Mm ≤ 1.

6.3.1 Quasinormal modes

For the study the QNMs of the massive field, we set the initial Gaus-

sian profile with width, σ = 3 centered at v0 = 10. In Figure 6.2

the wave function for massive scalar field(m = 0.1) is plotted in com-

parison with the corresponding Schwarzschild case for ` = 2. After

the prompt response in the beginning, the quasinormal ringing starts.

From the plot one can note two significant difference between the two

cases. Firstly the QNM phase has a lower damping rate in HL theory,

than in the standard GR. Secondly, in HL theory the ringdown phase

last for a longer time. Figure 6.3 shows the variation of QNMs with

the field mass, m for α = 0.4. As the mass of the field increases the

QNM phase shrinks in time.
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Figure 6.2: Time evolution of the ` = 2 mode of the massive scalar
field(m = 0.1) in KS spacetime with α = 0.8(top curve) in compar-
ison with the corresponding case in Schwarzschild spacetime(bottom
curve)
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Figure 6.3: Time evolution of the ` = 2 mode of the massive scalar
field with different masses for α = 0.4. Curves from bottom to top is
for m = 0.01, 0.05, 0.1 and 0.2.



Quasinormal modes 117

To see the effects of the HL parameter, α and field mass, m in

QNM phase, we calculate the exact values of QNMs from the numer-

ically integrated data in the time domain, by a nonlinear χ2 fitting.

We also use the third order WKB method to obtain the results. The

WKB method is found to be accurate for low lying modes and can be

used to explore the QNM behavior of black holes for field with low

masses. The calculated values are given in Table 6.1 and Table 6.2.

The following points can easily be observed from the tables. QNMs

of massive field in HL theory have a higher oscillation frequencyRe(ω)

and a lower damping rate, |Im(ω)| than the Schwarzschild case. Also

the Re(ω) and |Im(ω)| found to be decreasing with the increase of

the HL parameter, α. WKB method gives verse results for higher

field masses since the barrier nature of potential gets spoiled at these

mass ranges. This justifies the discrepancies in the QNMs evaluated

by time domain and WKB methods at high field mass given in Table

6.2.

WKB Time domain
α Re(ω) Im(ω) Re(ω) Im(ω)
0 0.48637 -0.09572 0.48552 -0.09573
0.2 0.49388 -0.09253 0.49377 -0.09256
0.4 0.50231 -0.08884 0.50159 -0.08888
0.6 0.51188 -0.08438 0.51142 -0.08437
0.8 0.52293 -0.07868 0.52143 -0.07893
1 0.53587 -0.07069 0.53569 -0.07106

Table 6.1: Fundamental(n = 0) QNM frequencies of massive(m =
0.1) scalar field for ` = 2, calculated using WKB method and numer-
ical integration data.
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WKB Time domain
m Re(ω) Im(ω) Re(ω) Im(ω)
0 0.49942 -0.08969 0.49886 -0.08951
0.02 0.49953 -0.08966 0.49979 -0.08969
0.05 0.50014 -0.08948 0.49839 -0.08948
0.07 0.50083 -0.08928 0.50156 -0.08922
0.1 0.50231 -0.08883 0.50159 -0.08875
0.2 0.51101 -0.08622 0.51083 -0.08701
0.3 0.52571 -0.08169 0.52737 -0.08029
0.4 0.54665 -0.07501 0.53933 -0.06758
0.5 0.57423 -0.06568 0.54165 -0.05451

Table 6.2: QNM frequencies afor different mass of the scalar field m.
QNMs calculated using WKB method and numerical integration data
(` = 2 and α = 0.4).

6.3.2 Late-time decay of massive field

The QNM phase is followed by a phase of late-time tail behavior of

the field decay. In the light of the previous results obtained for the

massive field decay in the standard GR, we monitor the decay of field

for a longer period of time. We observe following behavior for the

field decay in different regimes, in HL theory.

A. Intermediate late-time decay

First we look at the late-time tails in intermediate range, Mm �
mt � (mM)2. The decay of field along black hole outer horizon

H+(approximated by the null surface umax = 0.5 × 104) and future

time like infinity i+ (approximated on fixed radius r∗ = 50M) are

evaluated with the initial field profile parameters v0 = 50 and σ2 = 2.

The result for α = 0.4 with m = 0.01 and ` = 0 is shown in Figure

6.4.
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Figure 6.4: Decay of massive field with m = 0.01, along outer horizon
H+(top curve) and future time like infinity i+ (bottom curve). The
amplitude of field decay as power law with exponent −1.49 and period
of oscillation T = 314.8.

After the QNM phase the amplitude of the oscillatory field decays

as a power law with exponent -1.49 along I+ and H+ with a period

of oscillation T = 314.8. We have analyzed for different values of HL

parameter α and found that the tail behavior is almost independent

of α and the decay is identical to the Schwarzschild case according to

the form,

Ψ ∼ t−(`+3/2)sin(mt). (6.4)

This can be expected since the late-time tail is originated by the

backscattering by the effective potential in the asymptotic region and

as it is clear from Figure 6.1, that the parameter α has no effect on

this asymptotic region of the potential but can only change its shape

near the peek.
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Figure 6.5: Decay of massive field withm = 0.01 along i+ for different
`. The field dies off as power-law with exponents −1.49,−2.5,−3.51
and −4.51 for ` = 0, 1, 2, and 3 respectively. The period of oscillation
T = 314.7± 0.03.

The field decay for different multipole indices is plotted in Fig-

ure 6.5 with m = 0.01. The decaying tail is found to have a pe-

riod of oscillations T = 314.7 ± 0.03 and the power-law exponents

−1.49,−2.5,−3.51 and −4.51 for ` = 0, 1, 2, and 3 respectively. An

excellent agreement with the decay rate of the form t−(`+3/2) can be

seen. We find that the frequency and damping rate of the oscillatory

tails are independent of the parameter α and follow the Schwarzschild

case. Thus we confirmed that Eq. (6.4) will be the form of the in-

termediate late-time behavior of massive field decay in HL theory

also.



Late-time decay of massive field 121

B. Asymptotic late-time decay

In the asymptotic late-time, mt� 1/(Mm)2, the decay of field does

not follow pattern given by Eq. (6.4). Another pattern of oscil-

latory tail dominates in the asymptotic late times. This can be

seen from Figure 6.6, where the maxima of oscillations are shown

for α = 0.4, ` = 0 and m = 0.02, 0.05, 0.07. The deviation from

straight line with slop −1.5 is visible in the asymptotic late-time.

When mt� 1/(Mm)2 smaller the Mm the later the asymptotic tail

starts. In Figure 6.7 asymptotic region is shown for m = 1 and ` = 0

and 2. We find that the asymptotic tail is independent of the multi-

pole order and follows the Ψ ∼ t−5/6sin(mt) form as in the standard

GR. We have analyzed the asymptotic tail for different values of α

and find that this regime is also independent of the HL parameter α.
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Figure 6.6: Late-time behavior of field for α = 0.4. The maxima of
oscillation of the wavefunction are plotted for ` = 0. Graphs from
bottom to top is for m = 0.02, 0.05 and 0.07, respectively. The solid
line has a slop −1.5.
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Hořava-Lifshitz gravity

−5

−4

−3

ln
|Ψ

|

6 6.5 7 7.5

−5

−4

−3

ln(t)

ln
|Ψ

|

Figure 6.7: Asymptotic regime of field decay is shown for ` = 0(top)
and ` = 2(bottom), with m = 1 and α = 0.4. The straight lines have
a slop −5/6.

Now we study the role of the black hole parameter on the decay

of field for Mm � 1. The numerical results for different black hole

mass with field mass m = 0.01 are shown in Figure 6.8. The field

falls off with power law exponents −1.458,−1.459 and and −1.462 for

M = 0.5, 1 and 1.5, respectively and we can conclude that, apart from

the possible numerical error, the decay rate is independent of black

hole mass for Mm � 1. We are not going for the Mm � 1 case of

computationally expensive part of study. ForMm� 1 range we have

good reasons to believe that the relaxation will show similar results

of the Schwarzschild case as shown in[152], since we have already

shown that the parameter α has no effect on the asymptotic region of

the potential and the late-time relaxation is independent of the HL

parameter.
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Figure 6.8: Decay of field with different black hole mass for m = 0.01,
α = 0.4 and ` = 0. ForM = 0.5, 1 and 1.5(curves from top to bottom)
the decay rates of field are −1.458,−1.459 and −1.462 respectively.

6.4 Conclusion

In view of the intriguing behavior of massive fields in the standard

GR, the evolution of massive scalar field is studied in the KS black

hole spacetime in HL theory. Significant differences between the be-

havior of massive field in KS spacetime and the Schwarzschild space-

time are observed only for the ringdown phase. The evolution profile

and the exact estimation of QNMs from the numerical integration es-

tablishes that the QNMs involved in the evolution of massive field in

HL theory have a higher oscillation frequency but damps more slowly

than in the Schwarzschild spacetime case. As the field mass increases

the QNM phase squeezes to a smaller time interval. However the late-

time evolution of massive field fails to show any distinction from the

Schwarzschild case. Since the HL parameter, α has no effect on the
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asymptotic region of the potential the late-time relaxation is found

to be independent of the HL parameter. A th0rough investigation of

the latetime behavior in different time regimes confirmed that in the

intermediate range the field decays as t−(`+3/2)sin(mt), but in the

asymptotic late-time the decay is dominated by t−5/6sin(mt) tail as

in the case of Schwarzschild spacetime case.



7
Summary and Conclusion

The response of black holes to external perturbations are studied in

two physically pertinent, modified theories of gravity,

• a model for accelerating Universe, the quintessence model and

• a model for quantum gravity, the Hořava-Lifshitz gravity.

The aim is to know whether one can find some distinguishable

features of the new theories from the evolution of various field per-

turbations in their black hole spacetimes. The time evolution is stud-

ied using WKB approximation and numerical integration. The major

results are summarized below.

Field evolution in quintessence model

Comparing with the results in pure Schwarzschild spacetime we ob-

serve the following deviations in the behavior of QNMs in the quintess-

ence case.

Field Oscillation(ωR) Damping(|ωI |)

Scalar, EM,

GR & Dirac decreases decreases

The late-time behavior also shows the signature of quintessence.

A dependence, for late-time tails, on the spin of the perturbing field

125
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also emerges in the presence of quintessence. The late-time behavior

obtained for various spin field perturbations are summarized below.

Field Mode Schw ε = −1/3 −2/3 −1

Scalar ` = 0 power-law power-law no decay no decay

` > 0 ” ” exponential exponential

EM ` ≥ 1 ” ” exponential exponential

GP ` ≥ 2 ” ” exponential exponential

Dirac ` ≥ 0 ” ” no decay no decay

Eventhough the scalar monopole does not decay at late times for

lower values of quintessence EOS, it can be considered as a constant

mode with the same constant value between the black hole EH and

CH. The nature of Dirac field for lower ε is intriguing. It relaxes to a

constant value at late-times, but it varies on different surfaces. It has

the lowest value on the EH, increases as the radial distance increases

and maximizes on the CH. This behavior may indicate the presence

of a fermionic hair of the black hole in de Sitter like spacetimes.

Field evolution in HL gravity

We noticed the following deviations in the behavior of QNMs of

the KS black hole spacetime in HL gravity in comparison with the

Schwarzschild spacetime case.

Field Oscillation(ωR) Damping(|ωI |)

Massive scalar,

EM & Dirac increases decreases
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The late-time behavior fails to show any distinction from the Schwarzs-

child case and can be summarized as given below.

Field Intermediate Asymptotic

Massless(Scalar,

EM & Dirac)

power-law ∼ t−(2`+3) power-law ∼ t−(2`+3)

Massive(Scalar) oscillatory power-law

∼ t−(`+3/2)sin(mt)

oscillatory power-law

∼ t−5/6sin(mt)

Both models cast their own signature QNMs of their black hole

spacetimes. But the late-time tails show deviation only in the quintess-

ence model. One can in principle, distinguish these theories once they

are captured by the future gravitational wave detectors.

Towards future

In view of above results, we can point some interesting problems that

can be addressed in the future.

• The studies of late-time tails of charged or rotating black holes

will be of special interest. The knowledge of late-time behavior

in a black hole with de Sitter like asymptotes is helpful for the

better understanding of their interiors. The non decaying na-

ture of Dirac field and the possible connection with the negative

well in the potential deserve a close analysis.

• The perturbative study of the gravitational field itself, in HL

gravity is still not addressed. This will be a tedious task since

one has to find the linearized gravitational equation in HL the-

ory, but it will be an important problem in understanding the

theory.
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