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Abstract

Digital Image Processing is a rapidly evolving field with growing ap-
plications in Science and Engineering. It involves changing the na-
ture of an image in order to either improve its pictorial information
for human interpretation or render it more suitable for autonomous
machine perception. One of the major areas of image processing
for human vision applications is image enhancement. The principal
goal of image enhancement is to improve visual quality of an im-
age, typically by taking advantage of the response of human visual
system.

Image enhancement methods are carried out usually in the pixel
domain. Transform domain methods can often provide another way
to interpret and understand image contents. A suitable transform,
thus selected, should have less computational complexity. Sequency
ordered arrangement of unique MRT (Mapped Real Transform)
coefficients can give rise to an integer-to-integer transform, named
Sequency based unique MRT (SMRT), suitable for image processing
applications. The development of the SMRT from UMRT (Unique
MRT), forward & inverse SMRT algorithms and the basis functions
are introduced. A few properties of the SMRT are explored and its
scope in lossless text compression is presented.

The capability of SMRT in image enhancement is considered next.
Linear and nonlinear algorithms based on global and block level
processing are investigated. The theory of fuzzy logic offers an ex-
tensive mathematical framework to capture the uncertainties asso-
ciated with human cognitive processes. So the advantages of fuzzy
techniques are also examined in developing image enhancement al-
gorithms.

Traditionally, quality of an image has been evaluated by humans.



This method, though reliable, is time consuming and impractical
for real-world applications that involve the use of computers for
image quality assessment. So, it is important that identification of
objective quality assessment metrics, that can automatically mea-
sure image quality, are to be obtained. Analysis of existing and
proposed metrics for measurement of image quality with respect
to brightness, sharpness, contrast and their combination has been
carried out in this work.

The important contributions of this work are listed below.

• Two dimensional Sequency ordered transform called SMRT
and its inverse for a data size that is a power of 2.

• Development of Image Quality Assessment (IQA) metrics in
the pixel domain and SMRT domain for measuring enhance-
ment of images.

• Analysis of existing and proposed metrics to measure bright-
ness, contrast, sharpness and their combination for general
and medical images.

• Linear and nonlinear global image enhancement techniques
in the SMRT domain for general, mammogram, fingerprint
images and scanned text documents.

• Fuzzy intensification operator based and fuzzy rule based
block level enhancement methods in the SMRT domain.

• Scope of SMRT for text compression is explored.
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Chapter 1
Introduction

1.1 Introduction

“A picture is worth a thousand words” is a familiar proverb referring
to the notion that a complex idea can be conveyed with just an
image. Trillions of images, rich in information, are stored and used
for different purposes in real life every day. Humans can process
large amount of visual information very quickly and can identify &
classify objects easily.

Images can be acquired from many sources viz. cameras, scanners,
scientific instruments, satellites etc. and can be either gray-scale or
colour images. Gray-scale digital image, x, is a discrete 2-D rect-
angular array of N1 rows and N2 columns. Each element of this
array is called a picture element or pixel and there are N1N2 pixels
in an image. Each pixel contains information and in many tradi-
tional image processing systems, the pixel values are represented
by 8-bits that can range from 0 (black) to 255 (white). Spatial
resolution is the smallest discernible detail in an image and higher
the resolution, the closer the digital image to the physical world.
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By convention, x(0, 0) is considered to be on the top left corner of
the image and x(N1 − 1, N2 − 1) to be on the bottom right corner.

The gray-scale brightness of each pixel represents the information
associated with that point in an image. Colour of a pixel at each
position is specified quantitatively for colour images. Each pixel
is represented as a combination of brightness levels of primary
colours red, green and blue in RGB colour space. Using the 8-bit
monochrome standard, corresponding colour image would have 24-
bits per pixel. Other colour image representations are HSI (hue,
saturation, intensity), YCbCr (Y is the luminance and Cb, Cr
are the blue-difference, red-difference chrominance components),
CMYK (cyan, magenta, yellow and black) etc.

Histogram of an image, commonly used in image characterization,
is defined as a vector that contains the count of the number of pixels
in the image at each gray level. It gives many useful information
such as brightness, contrast etc. of the image and is the basis for
numerous spatial domain image processing techniques.

1.2 Digital Image Processing

Digital image processing (DIP) and analysis is a field that con-
tinues to experience rapid growth, with applications ranging from
areas such as space exploration to the entertainment industry. It
involves changing the nature of an image in order to either improve
its pictorial information for human interpretation or render it more
suitable for autonomous machine perception.

Digital image processing can be divided into two primary applica-
tion areas based on the ultimate receiver of the visual information:
machine vision applications and human vision applications, with
image analysis being a key component in the development and de-
ployment of both [1]. In machine vision applications, the processed
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images are for use by a computer while in human vision applica-
tions, the output images are for human handling.

1.2.1 Machine Vision Applications

Image processing for machine vision applications involves the ex-
amination of the image data for a specific application. It requires
the use of tools such as image segmentation, feature extraction,
pattern classification etc.

Image segmentation is one of the first steps in finding higher level
objects from raw image data. Feature extraction is the process of
acquiring higher level information, such as shape or colour infor-
mation and may require the use of image transforms to find spatial
frequency information. Pattern classification is the act of taking
this higher level information and identifying objects within the im-
age.

1.2.2 Human Vision Applications

Human vision applications of DIP involve human beings to exam-
ine the images under study. Major topics within the field of image
processing for human vision applications include image restoration,
enhancement and compression. In order to restore, enhance or com-
press images in a meaningful way, the images are to be examined
first and the relationship of raw image data to the human visual
perception is to be understood.

Learning how the Human Visual System (HVS) perceives images is
important to understand how an image looks better. Most impor-
tant aspects of HVS are spatial frequency resolution and adaptation
to a wide range of brightness levels. Visual perception depends not
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only on the individual objects, but also on the background and how
the objects are arranged.

Restoration methods attempt to model the image distortion and
reverse this degradation, whereas enhancement methods use knowl-
edge of the human visual system’s response to improve the image
visually. Image compression involves reducing the massive amount
of data needed to represent an image. This is done by eliminating
data that are visually unnecessary and by taking advantage of the
redundancy that is inherent to most images.

1.2.3 Image Processing Applications

The field of DIP has experienced continuous and significant expan-
sion in recent years and useful in many different disciplines cov-
ering medicine through remote sensing. The advances and wide
availability of image processing hardware have further enhanced
the usefulness of image processing. A few applications [2] are listed
below.

1. Medicine

• Inspection and interpretation of images obtained from
various imaging modalities.

• Locating objects of interest.

• Taking the measurements of the extracted objects like
tumours, kidney stones etc.

• Transmission of medical images in compressed format
for telemedicine applications.

2. Communication

• Secure image and video transmission.

• Steganography and digital watermarking.
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• Image and video compression standards for faster com-
munication.

3. Industry

• Automatic inspection of items on a production line.

• Inspection of fruit and vegetables distinguishing good
and fresh products from old.

4. Law enforcement

• Fingerprint analysis.

• Sharpening of high speed camera images.

• Forensic and investigative science.

5. Biometrics

• Face, fingerprint, iris, vein pattern, signature etc. for
personal identification and recognition.

• Biometric access control systems, providing strong secu-
rity at entrances.

6. Digital Inpainting

• Art conservation.

• Restoration of photographs, films and painting.

7. Remote sensing

• Extracting information regarding natural resources, such
as agricultural, hydrological, mineral, forest, geological
resources etc.

• Satellite Imaging: land-cover classification, oil slick de-
tection, extraction of vegetation indicators.

• Multi and hyper-spectral imaging: data reduction, galaxy
detection, agricultural and environmental mapping.
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• Change detection: glacier development, devastated zone
mapping after a disaster.

Thus DIP has an enormous range of applications in every area of
science and technology. These techniques can be carried out either
in spatial domain or transform domain. The term spatial domain
refers to the image plane itself and is based on direct manipulation
of pixels in an image. To perform transform based image pro-
cessing, a suitable transform may be employed depending on the
application.

1.3 Image Transforms

A transform is simply another term for a mathematical mapping
process that maps data into a different mathematical space. It can
be utilized to extract properties, features etc. from images.

Image Transforms are uniquely characterized by their basis func-
tions or basis images. Transforming an image data into another
domain is equivalent to projecting the image onto the basis func-
tions. The basis functions are typically sinusoidal or rectangular.
Some of the commonly used transforms for frequency domain anal-
ysis are provided.

1.3.1 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is the most widely used sinu-
soidal transform for 1-D spectral analysis and finds applications in
analysis and design of discrete time signals and systems. It converts
real data values to complex form [3].

The 2-D DFT, Y (k1, k2), of an image {x(n1, n2), 0 ≤ n1, n2 ≤
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N − 1}, is expressed as

Y (k1, k2) =

N−1∑
n1=0

N−1∑
n2=0

x(n1, n2).W
(n1k1+n2k2)
N , 0 ≤ k1, k2 ≤ N − 1 (1.1)

where WN = e
−j2π
N , is the twiddle factor.

Computation of 2-D DFT, for an N×N data, requires N4 complex
multiplications and N3(N − 1) complex additions. Fast Fourier
Transform (FFT) is a popular algorithm for the efficient compu-
tation of DFT. Row-column FFT decomposition and vector-radix
FFT algorithms reduce complex multiplications fromN4 toN2log2N
and 3

4
N2log2N respectively [4], [5], [6].

Inverse DFT is defined by

x(n1, n2) =
1

N2

N−1∑
k1=0

N−1∑
k2=0

Y (k1, k2).W
−(n1k1+n2k2)
N , 0 ≤ n1, n2 ≤ N − 1

(1.2)

Here both scaling constants are placed in the inverse equation.
Some prefer to use scaling constants equally in the forward and
inverse transform relations.

Even though DFT possesses many desirable properties, it has some
drawbacks. The computations are complex and it does not provide
efficient energy compaction as other transforms. DFT is not popu-
lar for image processing applications since it converts integer data
values to complex coefficients.

1.3.2 Discrete Sine and Cosine Transforms

Discrete trigonometric transforms such as Discrete Cosine Trans-
form (DCT) and Discrete Sine Transform (DST), similar to DFT,
represent data as sum of trigonometric terms (cosine or sine) with
different frequencies and amplitudes [7].
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Forward 2-D DCT of N ×N data, {x(n1, n2), 0 ≤ n1, n2 ≤ N − 1},
is expressed as

Y (k1, k2) = α(k1)α(k2)
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)cos
( (2n1 + 1)πk1

2N

)
cos
( (2n2 + 1)πk2

2N

)
(1.3)

0 ≤ k1, k2 ≤ N − 1.

where α(k) =


√

1
N

if k = 0√
2
N

if k 6= 0

DCT basis images are shown in Appendix A.1. While DCT makes
use of cosine functions, DST makes use of sine functions and DFT
uses both cosine and sine functions, in the form of complex expo-
nentials to represent each data.

DCT was earlier used as JPEG standard for still image compression
and is popular for its energy compaction capability. It concentrates
most of the energy into a small number of low frequency transform
coefficients for highly correlated data. In practical implementa-
tions, the floating point DCT and its inverse are usually evaluated
with finite precision and may lead to accuracy mismatch.

1.3.3 Rectangular Transforms

Some transforms use square or rectangular basis functions with
peaks of ±1. Examples of such transforms are Walsh-Hadamard
Transform (WHT) [8], [9], Haar Transform (HT) [10] and they
possess significant computational advantages over the previously
considered transforms. WHT is a simple, non-sinusoidal, orthog-
onal transform, whose basis functions have only two values, ±1
(Appendix A.2). It is computationally fast and possesses energy
compaction property.
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2-D WHT of an image {x(n1, n2), 0 ≤ n1, n2 ≤ N − 1}, is defined
as

Y (k1, k2) =
1

N

N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)(−1)
∑log2N−1

i=0 bi(n1)bi(k1)+bi(n2)bi(k2)

(1.4)

0 ≤ k1, k2 ≤ N − 1.
bi(z) is the i

th bit in the binary representation of z and N is a power
of 2. Here, the transformation matrix can be generated recursively
by the Kronecker product operation as

H2N =

[
HN HN

HN −HN

]

HT is useful for real-time implementation of signal and image pro-
cessing applications. The values of Haar basis functions are ±1 and
0. They are the precise and shifted copies of each other and this
property makes them popular in wavelets. It has the lowest compu-
tational cost among the above discrete orthogonal transforms, but
has poor energy compaction.

1.3.4 Karhunen-Loeve Transform

Karhunen-Loeve Transform (KLT) [11] is the optimal transform
in terms of decorrelation and energy compaction. It depends on
the second order statistics of the data and its basis vectors are the
eigenvectors of the image covariance matrix. Despite its optimal
performance in terms of energy compaction, it is not popular since
the transformation kernel is image-dependent and hence fast com-
putational algorithms and architectures are not available.
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1.3.5 Wavelet Transform

In the past few years, researchers in applied mathematics and signal
processing have developed powerful wavelet methods [12] for the
multi-scale representation and analysis of signals. This tool differs
from the traditional transforms by the way in which they localize
the information in the time-frequency plane. In particular, they are
capable of trading one type of resolution for the other, which makes
them especially suitable for analysis of non-stationary signals.

A 1-D Wavelet Transform (WT) of a signal {x(n), 0 ≤ n ≤ N −1},
is defined as

Wa,b =

∫ ∞

−∞
x(n)

1√
(|a|)

Ψ∗(
t− b

a
)dt (1.5)

where a, b are real constants, * denotes complex conjugation and
Ψ(t) is the mother wavelet.

Wavelet basis functions are shifted and expanded versions of them-
selves [13], [14]. The number of decomposition levels increases with
the information packing ability at the expense of computational
complexity. It outperforms DCT in terms of compression and qual-
ity. JPEG 2000 is a wavelet-based image compression standard.
Main drawback of wavelet transforms is their inability to capture
geometric regularity along singularities of the surface because of
their isotropic support.

1.3.6 Directional Transforms

Discontinuity curves present in the images are highly anisotropic
and they are characterized by geometrical coherence. These fea-
tures are not properly captured by the standard WT that uses
isotropic basis functions and fail to represent edges and contours ef-
fectively. On the other hand, anisotropic wavelets such as steerable
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wavelets, wedgelets, beamlets, bandlets [15], ridgelets, curvelets
[16], contourlets [17], surfacelets, platelets etc. are capable to over-
come this insufficiency. The main advantages of these directional
transforms lie in the fact that they possess all the advantages of
classical wavelets, that is space localization and scalabilty, but ad-
ditionally these transforms have strong directional character. As
they are capable of capturing geometric regularity of images they
are used in many image processing applications. Contourlets have
less clear directional features than curvelets, which lead to artifacts
in denoising and compression. Medical imaging field also finds some
applications using contourlets [18], [19] and curvelets [20], [21].

Recently, shearlets [22] [23] [24], a new representation scheme based
on frame elements have been introduced and yield6+5 nearly op-
timal approximation properties. This representation is based on a
simple and rigorous mathematical framework and provides a more
flexible theoretical tool for the geometric representation of multidi-
mensional data. As a result, the shearlet approach can be associ-
ated to multiresolution analysis and leads to a unified treatment of
both the continuous and discrete world.

Directionlet [25], [26] transform, has integer lattice-based anisotropic
basis functions and retains separable filtering [27], [28], [29].

1.3.7 Mapped Real Transform

Eventhough DFT is popular in 1-D signal processing with the ad-
vent of FFT algorithm, 2-D DFT is not popular in the image pro-
cessing applications due to its computational complexity. The FFT
algorithm performs DFT computation in the complex domain and
is multiplication intensive. In [30], Gopikakumari modified the 2-D
DFT computation in terms of real additions by grouping the 2-D
data projected on to twiddle factor planes and utilizing the sym-
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metry & periodicity properties of the twiddle factor as

Y (k1, k2) =
M−1∑
p=0

Y
(p)
k1,k2

W p
N (1.6)

where the scaling factor, Y
(p)
k1,k2

, associated with twiddle factor was
expressed as

Y
(p)
k1,k2

=
∑

∀(n1,n2)|z=p

x(n1, n2) −
∑

∀(n1,n2)|z=p+M

x(n1, n2) (1.7)

for 0 ≤ k1, k2 ≤ N − 1 and 0 ≤ p ≤M − 1.
Here, k1, k2 are frequency indices and p is the phase index. The
parameters, z and M are defined as z = ((n1k1 + n2k2))N and
M = N/2. This approach enables DFT computation organized
using parallel distributed computing in four stages involving only
real addition except at the final stage of computation.

The properties of the DFT coefficients in terms of Y
(p)
k1,k2

were stud-
ied and understood that the frequency domain analysis of 2-D sig-
nals can be carried out without doing even single complex opera-
tion. The scaling factors, Y

(p)
k1,k2

, associated with W p
N contain the

frequency and phase components of DFT and later developed as an
integer-to-integer transform, namely Mapped Real Transform (orig-
inally M-dimensional Real Transform) [31], [32]. Equation (1.7)
maps N ×N data into M matrices of size N ×N , in the transform
domain, using real additions only.

Inverse MRT [31] is defined as

x(n1, n2) =
1

N2

M−1∑
p=0

X(p)
n1,n2

, 0 ≤ n1, n2 ≤ N − 1 (1.8)

where

X(p)
n1,n2

=
∑

∀(k1,k2)|z=p

Y
(p)
k1,k2

−
∑

∀(k1,k2)|z=p+M

Y
(p)
k1,k2

(1.9)
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and z = ((n1.k1 + n2.k2))N .

Instead of putting scaling constants equally in the forward and in-
verse transform relations, both scaling constants are kept in the
inverse relation and this makes MRT an integer-to-integer trans-
form.

1.3.8 Unique Mapped Real Transform

MRT of an N×N data matrix in the raw form will have MN2 coef-
ficients and is highly redundant. The N2 unique MRT coefficients,
corresponding to 3N − 2 basic DFT coefficients [33], are scattered
in M matrices and are to be packed in an N ×N matrix. A pack-
ing technique, named Unique MRT (UMRT), was presented in [33]
by placing unique coefficients from the matrices corresponding to
p = 1 to M − 1 in the places of the redundant coefficients that are
removed from the matrix corresponding to p = 0. The coefficients
corresponding to (k1, k2) are placed at (((k1.q))N , ((k2.q))N) where
q is a non-negative integer, co-prime to N

dm
and less than N

dm
where

dm = gcd(k1, k2,M). Table 1.1 shows the index pattern (k1, k2, p)
of the unique MRT coefficients arranged in the form of an N × N
matrix corresponding to UMRT representation for N = 8. The dis-
advantage of this transform is that the different phase terms corre-
sponding to a particular (k1, k2) are scattered in the matrix. But in
many applications, the coefficients corresponding to different phase
terms of a particular frequency are to be accessed simultaneously.
The above distribution of phase terms will become a bottleneck in
such type of applications.

The image transforms are used in image processing and analysis
to provide information regarding the rate at which the gray lev-
els change within an image ie. the spatial frequency or sequency.
These transforms find applications in many areas of science and
engineering, including digital image enhancement.
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Table 1.1: Placement of UMRT coefficients for N=8

0,0,0 0,1,0 0,2,0 0,1,1 0,4,0 0,1,2 0,2,2 0,1,3
1,0,0 1,1,0 1,2,0 3,1,1 1,4,0 5,1,2 3,2,1 7,1,3
2,0,0 2,1,0 2,2,0 6,1,1 2,4,0 2,1,2 6,2,2 6,1,3
1,0,1 3,1,0 3,2,0 1,1,1 1,4,1 7,1,2 1,2,1 5,1,3
4,0,0 4,1,0 4,2,0 4,1,1 4,4,0 4,1,2 4,2,2 4,1,3
1,0,2 5,1,0 1,2,2 7,1,1 1,4,2 1,1,2 3,2,3 3,1,3
2,0,2 6,1,0 6,2,0 2,1,1 2,4,2 6,1,2 2,2,2 2,1,3
1,0,3 7,1,0 3,2,2 5,1,1 1,4,3 3,1,2 1,2,3 1,1,3

1.4 Image Enhancement

Image enhancement is usually a preprocessing step in many image
processing applications. Its aim is to accentuate relevant image
features that are difficult to visualize under normal viewing con-
ditions and thereby facilitating more accurate image analysis [34].
The enhancement process does not increase the inherent informa-
tion content in the image but emphasizes certain specified image
characteristics.

Various reasons for poor image quality may be due to poor illumi-
nation, lack of dynamic range in image sensor or wrong setting of
lens aperture at the time of image acquisition. Visual appearance
of an image can be significantly improved by brightness variation,
contrast stretching, edge sharpening and/or noise reduction.

Brightness is the general intensity of pixels in an image. The im-
age is darker when the histogram is confined to a small portion
towards the lower end of gray level values and is brighter when the
histogram falls to the higher end. It can be varied by changing the
image mean without changing histogram shape. Contrast can be
determined from its dynamic range, defined as the difference be-
tween highest and lowest intensity level present in the image. Con-
trast enhancement stretches the histogram to perceive more details,
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normally not visible. Images are to be sharp, clear and detailed to
make it look better. This can be achieved by enhancing the edges
of the image by making it appear sharper. Removing noise from
the image also improves the visual quality of the image.

Image restoration is an area that also deals with improving the
appearance of an image. However unlike enhancement, which is
subjective, image restoration is objective, in the sense that restora-
tion attempts to recover an image that has been degraded by using
a priori knowledge about degradation process. It refers to removal
or minimization of known degradations in an image.

Many image enhancement techniques have been proposed in the
past and they fall into two broad categories : spatial domain and
transform domain methods. Spatial domain techniques are proce-
dures that operate directly on the pixels in an image while transform
domain techniques modify the transform coefficients [34]. Transfor-
mation from spatial domain to frequency domain can often permit
more useful visualization of the data. Some enhancement algo-
rithms use both spatial and frequency domain techniques.

Different image enhancement techniques include point operations,
mask operations and global operations. Point operations modify
each pixel according to some equation that is not dependent on
other pixel values and in mask operations each pixel is modified
according to the values in a small neighbourhood. Here, image is
divided into blocks and intensity transformation is applied on each
block according to the mask. Global operations consider all the pixel
values for intensity transformation and the visual quality of low
contrast image can be improved globally. All the above techniques
can be used for spatial domain methods. Mask operations and
global operations are used for transform domain methods also.
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1.4.1 Spatial and Transform based Image En-
hancement

Majority of the existing techniques have focused on the enhance-
ment of images in the spatial domain. Histogram processing is
the most common and simple spatial domain image enhancement
technique. It is usually done by way of histogram stretching, equal-
ization or matching. Histogram equalization employs a monotonic,
nonlinear mapping that re-assigns the intensity values of pixels in
the input image and produces an image with uniform histogram.
Histogram stretching spreads the histogram to a larger range by
applying a piecewise linear function while histogram matching pro-
duces an image with prespecified histogram.

Filtering with spatial masks can be used to highlight fine details,
sharpen edges and remove small details. Mean/average filters are
used for blurring and noise reduction. Median filters are popular for
removing salt-and-pepper noise. First and second order derivative
based filters, Gradient and Laplacian, are used for edge extraction
and sharpening.

In transform domain techniques, transform of the image is com-
puted first. The transform coefficients are then manipulated ap-
propriately and inverse transform is found to obtain the enhanced
image [35, 36, 37, 38]. Converting an image into transform domain
offers additional capabilities that are very powerful, but requires
some new way to interpret data. Images are being represented
in the compressed format [35] using image transforms for efficient
storage and transmission. Hence, it has become imperative to in-
vestigate compressed domain enhancement techniques to eliminate
the computational overheads. If all the image processing tasks are
performed in the same transform domain, processing will be com-
putationally efficient.
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1.4.2 Linear and Nonlinear Image Enhancement

Linear techniques continue to play an important role in image en-
hancement because they are inherently simple to implement. Such
techniques modify all pixels uniformly and the gray levels in the his-
togram get apart equally. Entire histogram range can be utilized
for maximum contrast.

Recently, nonlinear image enhancement techniques have emerged
as intensive research topics since HVS includes some nonlinear ef-
fects that need to be considered in order to develop effective im-
age enhancement algorithms. Therefore nonlinear methods may be
suitable to comply with the nonlinear characteristics of the HVS.
Here, a nonlinear transformation relation exists between input and
outputs.

Nonlinear image enhancement can be done in the transform domain
using nonlinear mapping functions. Transform coefficients can be
modified nonlinearly to compress/expand the bright/dark areas in
images. Most popular transform based enhancement technique is
alpha-rooting [39]. Other nonlinear mapping functions used for
image processing applications are twicing function, programmable-
S-function, function proposed by Lee etc. (Appendix B).

Another class of nonlinear image enhancement techniques that has
obtained great popularity in the last two decades is fuzzy based
techniques.

Fuzzy Image Enhancement

Fuzzy techniques are nonlinear and knowledge based. They can
process imperfect data if this imperfection originates from vague-
ness and ambiguity rather than randomness. In the real world,
almost everything is uncertain and therefore a fuzzy rule based sys-
tem is expected to achieve better performance than a crisp rule
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based system in dealing with fuzzy data.

An image ’x’ of sizeN1×N2 with L gray levels, r = 0, 1, 2, · · · , L−1,
can be defined as an array of fuzzy singletons (fuzzy sets with only
one supporting point) indicating the membership value of each pixel
regarding some predefined image property viz. brightness, contrast,
sharpness etc. [40].

x =

N1−1⋃
n1=0

N2−1⋃
n2=0

(µ/r)n1,n2 , with µ ∈ [0, 1] for any (n1, n2)

(1.10)

where (µ/r)n1,n2 is the membership function of the (n1, n2)
th pixel

with gray level r.

The purpose behind this approach is to model the gray level inten-
sities of a digital image by single fuzzy set, describing the linguistic
concept of brightness levels. If a gray level has a membership value
less than 0.5 to the brightness levels set, it is more likely to be dark
than bright and in the opposite case it is more likely to be bright
than dark.

Fuzzy image enhancement consists of three steps: fuzzification φ,
modification τ on membership values and defuzzification ψ. The
important step of fuzzy image enhancement is the τ where the
membership values are modified using appropriate fuzzy techniques.
The output y of the system for input x is given by the processing
chain

y = ψ(τ (φ(x))). (1.11)

The main difference with other methodologies in image enhance-
ment is that input data x (gray levels, transform coefficients etc.)
will be processed in the membership plane where one can use the
great diversity of fuzzy logic and fuzzy set theory to modify the
membership values. The new membership values are re-transformed
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to the gray level plane or transform plane to generate enhanced im-
age.

Fuzzy tools used to adjust image contrast in the spatial domain are
fuzzy minimization, equalization using fuzzy expected value, hy-
perbolization, λ-enhancement, rule based approach, fuzzy relations
etc.[40]. Fuzzy minimization and fuzzy rule based techniques are
used here for contrast enhancement in the transform domain.

Fuzziness Minimization Approach: This is probably the first
approach to image enhancement and is also known in the literature
as contrast intensification (INT) operator. The main idea is to
minimize the amount of fuzziness. Contrast of the image can be
increased by darkening the gray levels in the lower luminance range
and brightening the ones in the upper luminance range using the
nonlinear INT operator given by

INT(µ(x)) =

{
2(µ(x))2, 0 ≤ µ(x) ≤ 0.5

1− 2(1− µ(x))2, 0.5 < µ(x) ≤ 1
(1.12)

A plot of this function is shown in Appendix B.5.

Fuzzy Rule Based Approach: Fuzzy rules efficiently process
data by mimicking human decision making. They typically include
a group of antecedent clauses that define conditions and a conse-
quent clause that defines the corresponding action. Thus a fuzzy
rule based system is formed by a set of rules that represent the
knowledge base of the system and an appropriate inference mech-
anism that numerically processes the knowledge base to yield the
result.

A typical fuzzy rule based algorithm has the following steps [40]
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• Initialization of the parameters of the system (number of in-
put and output membership functions, their shapes, locations
etc.)

• Fuzzification of gray levels

• Inference procedure evaluating appropriate rules

• Defuzzification of the outputs

Several variants of fuzzy systems are available; among them, the
most widely used are the Mamdani fuzzy inference systems (char-
acterized by the presence of fuzzy sets over the input and output
data spaces) and the Takagi-Sugeno fuzzy inference systems (input
data space is described by fuzzy sets, but the output data space is
characterized by singleton sets). Of the two, Takagi-Sugeno fuzzy
systems are appealing for their simple forms and simplicity in com-
putational requirements.

1.4.3 Colour Image Enhancement

Colour is a sensation created in response to excitation of our visual
system by light, which is an electromagnetic radiation. More specif-
ically, colour is the perceptual result of light in the region of 400
nm to 700 nm visible region of electromagnetic spectrum. Colour
can be specified by a tri-component vector and the set of all colours
forms a vector space or colour space.

Humans interpret a colour, based on its intensity (I), hue (H) and
saturation (S) [41]. Luminance (Y) is the radiant power weighted
by a spectral sensitivity function that is a characteristic of human
vision. Nonlinear perceptual response to luminance is called in-
tensity. Hue is a colour attribute associated with the dominant
wavelength in a mixture of light waves. Saturation refers to the rel-
ative purity or the amount of white light mixed with a hue. Hue and
saturation together describe chrominance. The perception of colour
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is basically determined by luminance and chrominance. Common
colour spaces are RGB, HSI, YCbCr, CMYK etc.

1.4.4 Applications

Image enhancement has potential applications in many areas of
science and engineering. A few areas are listed below.

Medical Image Enhancement

Medical imaging has been undergoing a revolution in the past two
decades with the advent of faster, more accurate and less invasive
devices. It helps doctors to see interior portions of the body for easy
diagnosis. Medical images contain values that are proportional to
the absorption characteristics of tissues. Accurate interpretation
may become difficult when the distinction between normal and ab-
normal tissue is subtle. In such cases, enhancement improves the
quality of the image and facilitates easy diagnosis.

Most important clinically established medical imaging modalities
are X-ray radiography, Computed Tomography (CT), Ultrasound
Scan, Magnetic Resonance Imaging (MRI), Single Photon Emission
Computed Tomography (SPECT), Positron Emission Tomography
(PET), Electrical Impedance Tomography (EIT) etc.

Fingerprint Enhancement

A fingerprint is a pattern of ridges and furrows on the surface of
a fingertip. The fingerprint of an individual is unique and remains
unchanged over a lifetime. The minutiae, which are the local dis-
continuities in the ridge flow pattern, provide the features that are
used for identification. Details such as the type, orientation, and
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location of minutiae are taken into account when performing minu-
tiae extraction.

Fingerprint identification is one of the most important biometric
technologies which has drawn a substantial amount of attention
recently [42]. It is commonly employed in forensic science to sup-
port criminal investigations, biometric systems such as civilian and
commercial identification devices etc. A critical step in automatic
fingerprint matching is to automatically and reliably extract minu-
tiae from input fingerprint images.

Fingerprint images are rarely of perfect quality. They may be de-
graded and corrupted with elements of noise due to many factors
including variations in skin and impression conditions. This degra-
dation can result in a significant number of spurious minutiae being
created and genuine minutiae being ignored. However, the per-
formance of a minutiae extraction algorithm relies heavily on the
quality of the input fingerprint images. In order to ensure that the
performance of an automatic fingerprint identification/verification
system will be robust with respect to the quality of input fingerprint
images, it is essential to incorporate a fingerprint enhancement al-
gorithm in the minutiae extraction module as a preprocessing step.

The enhancement may be useful for the following cases

• Connect broken ridges (generally produced by dry fingerprint
or cuts, creases, bruises)

• Eliminate noises between the ridges

• Improve the ridge contrast

Other areas where enhancement acts as a pivotal role are in image
analysis of archaeological research, recovery of paintings, underwa-
ter study, remote sensing etc.

Image enhancement methods are used to make images look bet-
ter. Enhancement technique suitable for one application may not
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be suitable for other applications. Expertise and problem domain
knowledge are required for the development of image enhancement
methods. Success of image enhancement algorithm lies in the eyes
of the beholder. Suitable enhancement metrics will also help in
assessing the quality of enhancement.

1.5 Image Quality Metrics

Image enhancement is basically a preprocessing step that improves
the quality of the image by controlling parameters such as bright-
ness, contrast and sharpness. Even though a number of image
enhancement techniques are available, development of an Image
Quality Assessment (IQA) metric [43], suitable for all types of im-
ages, is still a challenging area and newer metrics are being thought
of every day [44], [45]. IQA techniques can be categorized into sub-
jective assessment, involving humans to evaluate the image quality,
and objective assessment that measures the image quality automat-
ically.

Objective quality criteria is used to ascertain the goodness of the
image enhancement result quantitatively. The human observer,
however, may not perceive these results as good because his judg-
ment is subjective. This distinction between objectivity and sub-
jectivity is the major problem in the human-machine interaction.
Another difficulty is the fact that different people judge image qual-
ity differently and is primarily due to human subjectivity.

1.5.1 Subjective Assessment

Subjective IQA is a reliable method since human beings are the
ultimate users in most image processing applications. Recommen-
dations of the International Telecommunication Union (ITU) [46]
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can be applied to compare the performance of different enhance-
ment algorithms. The observer judges the image quality using a
scale from 1 to 5 where 1 is bad, 2 poor, 3 fair, 4 good and 5 ex-
cellent. Finally, Mean Opinion Score (MOS) is calculated as the
average of the opinion scores thus obtained.

But medical image enhancement applications, this method requires
the service of experts and is a time-consuming process. Hence it is
not suitable for real time applications. Also, for small changes in
the image, this evaluation is difficult.

1.5.2 Objective Assessment

The goal of objective quality evaluation is to obtain a quantitative
measure which gives the quality of the image in a manner consis-
tent with human perception and subjective analysis should match
with objective assessment values. According to the availability of a
reference image, IQA metrics are classified as Full-Reference (FR),
No or Blind-Reference (BR) and Reduced-Reference (RR) image
quality metrics [43].

A distortionless reference image of perfect quality is used, in FR
method, to evaluate the quality of the modified image. Typically,
this comparison involves measuring the distance between the two
signals in a perceptually meaningful manner. Such methods are
excellent for assessing the transmission and compression noise, but
may not work for enhancement, since good quality enhanced image
is not known a priori.

In BR method, quality is assessed without using any reference im-
age whereas in RR method, the reference image is not fully avail-
able and some features based on statistical or texture properties
extracted are employed.

Many IQA metrics, both FR and BR, have been proposed over the
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past few decades (Appendix C). Each one has its own advantages
and disadvantages in terms of accuracy, computational speed and
application considered.

The suitability of these metrics for measurement of image bright-
ness, contrast and sharpness are not known. Hence, it is evident
that an analysis of the existing metrics for IQA is very important
and there is enough scope for developing better metrics suitable for
enhancement in the pixel and transform domains.

1.6 Motivation

Medical image enhancement has been a key area of research nowa-
days. Author had a personal experience of a medical case where the
patient had to wait for a day to undergo surgery in a very serious
condition due to the lack of image clarity. So proper enhancement
of medical images could save life in such situations. This is the first
motivation for selecting medical image enhancement as the topic of
research.

Often medical images suffer from different types of noises, artifacts
and inhomogeneities due to diverse reasons and hinder the image
understanding process. Discussions with doctors and medical tech-
nicians revealed that built-in enhancement techniques and proper
initial settings of the machine can help in providing good images
due to the advancement in technology. Radiologists are now fac-
ing great difficulty in proper interpretation of mammograms. Early
detection of breast cancer is important and mammography is the
primary imaging modality for detection and diagnosis of breast le-
sions; hence a decision was taken to carry out enhancement of mam-
mogram images from the medical image category.

Images are usually represented in the transform domain in the com-
pressed format for efficient storage and transmission. Also, most
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of the image processing tasks such as segmentation, feature extrac-
tion etc. are carried out in the transform domain. If all the image
processing tasks are performed in the same transform domain, pro-
cessing will be computationally efficient and real time processing of
images is possible.

An integer-to-integer transform entitled MRT was developed by
the former researchers of the research group and it is modified to
UMRT to remove redundancy. Such an arrangement of the unique
coefficients causes distribution of different phase terms associated
with a particular frequency. The visual representation of the unique
MRT coefficients shows specific pattern of sign changes. Hence it
is useful to explore this change of signs in deriving a placement of
the unique MRT coefficients in an N ×N matrix form with better
computational benefits.

The conventional documentation system is now changing to elec-
tronic media. Digitization of old public records, such as documents,
manuscripts, drawings, title deeds, office proceedings etc. that date
decades back, is a real challenge to many organizations. The eas-
iest way to digitize old documents is to scan or photograph and
store. But scanning process often makes unwanted background
noises, shades etc. and removal of such disturbances is very im-
portant. So there is a strong requirement that these documents are
to be enhanced using simple enhancement techniques.

Evaluation of images after enhancement is very important to find
the efficiency of the enhancement technique objectively. Many met-
rics are available for image quality assessment. But the literature
shows that none of these assessment techniques are suitable for
quantifying enhancement for different classes of images. So, an
analysis of existing metrics to assess images after enhancement and
an investigation for newer metrics are also issues of concern.

The above set of problems motivated the author to explore the
possibilities of various techniques proposed in the present research
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work.

1.7 Organization of Thesis

The thesis is organized in seven chapters as

Chapter 1 is an introduction to DIP techniques, image transforms,
image enhancement and IQA metrics. Basic concepts of digital
images, image processing for human vision and computer vision
applications are discussed. A brief description about the need of
image transforms and various image transforms in literature are
explained. Purpose of enhancement, different techniques employed
for enhancement of images are also covered. Subjective and objec-
tive IQA techniques, the metrics available in the literature etc. are
discussed. The chapter ends by explaining the motivation behind
the thesis and its organization.

Chapter 2 presents a literature survey on relevant topics connected
with DIP, image enhancement, image transforms, IQA metrics.
Various spatial and transform domain, linear and nonlinear, global
and block processing image enhancement techniques are reviewed.

Chapter 3 focuses on the development of a computationally simple
N x N transform called, SMRT for N a power of 2. Visual represen-
tation, sequencies of unique MRT coefficients, basis images, algo-
rithms for forward and inverse SMRT are also explained. Mapping
relations are derived to convert between MRT and SMRT. Direct
mapping relation for sequency domain representation of N×N data
for N a power of 2 is also developed. Properties of SMRT represen-
tation relevant to image processing applications, especially image
enhancement, are explored.

Chapter 4 explains image enhancement quality metrics. Pixel
based & SMRT based full-reference and blind-reference IQA are
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developed. The methodology for analysis of these metrics for vari-
ations in brightness, contrast, sharpness and a combination of the
three are explained. Simulation results, analysis and identification
of useful metrics for the above variations are presented. Validation
of the results is also carried out.

Chapter 5 concentrates on two global enhancement techniques
in SMRT domain. These techniques employ linear and nonlinear
scaling of the SMRT coefficients to adjust the contrast and bright-
ness separately and are applied to general & mammogram images
with relevant quantitative assessment and comparison with exist-
ing methods. Fingerprint and scanned text documents are also en-
hanced using linear scaling of SMRT coefficients. The enhancement
of colour images is also considered.

Chapter 6 focuses on fuzzy image enhancement techniques using
block level SMRT. Fuzzy intensification operator and fuzzy rule
based techniques are used for enhancement. The algorithms are
applied to general & mammogram images, assessed quantitatively
and the results are compared. A new method that combines the lin-
ear and fuzzy rule based methods is also employed. Finally, MOSs
of all proposed methods are provided for subjective evaluation and
comparison.

Chapter 7 depicts the summary and conclusion of the research
work. Important research contributions and scope for future work
in this area are also presented.
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Chapter 2
Literature Survey

2.1 Introduction

A literature survey on DIP, Image transforms, Image enhancement
techniques and IQA metrics will be helpful in grasping the history
and advancements in these areas.

2.2 Digital Image Processing

Digital image processing was first used in newspaper industry, when
pictures were first sent by submarine cable between London and
New York. Introduction of Bartlane cable picture transmission sys-
tem in the early 1920s reduced the time required to transport a pic-
ture across the Atlantic from more than a week to less than three
hours. Pictures were coded using specialized printing equipment
for cable transmission and reconstructed them at the receiving end
[34].
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Some of the initial problems in improving the visual quality of early
digital pictures were related to the selection of printing procedures
and the distribution of intensity levels. The early Bartlane systems
were capable of coding images in five distinct levels of gray. This
capability was increased to 15 levels in 1929. Improvements in
processing methods for transmitted digital pictures continued and
it took the combined advents of large-scale digital computers and
space program to bring into focus the potential of image processing
concepts.

The history of DIP is intimately tied to the development of digi-
tal computers. In fact, digital images require so much storage and
computational power that progress in the field of DIP has been de-
pendent on the development of digital computers and of supporting
technologies that include data storage, display etc. Work on using
computer techniques for improving images from a space probe be-
gan at the Jet Propulsion Laboratory (Pasadena, California) in
1964 when pictures of the moon transmitted by Ranger 7 were pro-
cessed by a computer to correct various types of image distortion
inherent in the on-board television camera. From 1960s until the
present, the field of image processing has grown vigorously.

2.3 Image Transforms

The pioneering work of Joseph Fourier in developing the theory of
Fourier Series, in 1807, has opened a way to spectral analysis of
signals. DFT and the introduction of an efficient FFT algorithm,
for its computation, have given an advancement in the field of signal
processing [47]. Later, many variations of FFT and its efficient
parallel implementations were also developed.

In 1923, Joseph L. Walsh published a paper in which he described a
complete system of orthogonal functions on the unit interval which
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take on only two values +1 or -1. These functions, later known as
Walsh functions [48], exhibited many properties that are compara-
ble with complex exponentials associated with Fourier Series and
Fourier Transforms. Since the introduction of FFT in 1967, much
attention has been focussed on Walsh functions because of the in-
creased processing speed associated with algorithms involving these
functions. A similar orthogonal transform matrix containing ±1,
but with different order of sequency, is due to Hadamard [49], [50]
and called Hadamard Transform or Walsh-Hadamard Transform.
Another orthogonal transform, called Haar Transform, is derived
from the Haar matrix [51], [52] whose elements are either -1, 0 or
+1 multiplied by

√
2.

DCT, developed by Ahmed et al. [7], has found wide application in
transform image coding. It is the foundation of the JPEG standard
for still image coding and the MPEG standard for the coding of
moving images.

DST was introduced by Jain [11] as a fast algorithmic substitute
for the KL transform of a Markov process and has shown that
cosine and sine transforms are interrelated in that they diagonalize
a family of tridiagonal matrices.

Major advancement in the field of wavelet theory was attributed to
Jean Morlet who developed and implemented the technique of scal-
ing and shifting of the analysis window function in analysing acous-
tic echoes while working for an oil company in the mid 1970s [53].
Theoretical formation of the WT was first proposed only after Jean
Morlet teamed up with Alex Grossmann to work out the idea that
a signal could be transformed into the form of a wavelet and then
transformed back into its original form without any information
loss [54]. In 1987, wavelets were first shown to be the foundation
of a powerful new approach to signal processing and analysis called
multiresolution theory [55]. Heil & Walnut [56] described continu-
ous and discrete wavelets, DeVore & Lucier [57] described wavelets
from an approximation theory point of view, Rioul & Vetterli [58]
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looked at wavelets from a signal point of view, Strichartz [59] fo-
cused on the construction of wavelets and Strang [60] compared
wavelets with Fourier techniques.

Contourlet Transform is an efficient, directional, multiresolution
image representation. It was developed by Do and Vetterli [61] in
2001 and later modified in [17], [62]. It is a true two-dimensional
non-separable transform that can capture the intrinsic geometrical
structure of an image. It has better performance in representing the
salient features of the image such as edges, lines, curves and con-
tours than wavelet transform because of its anisotropy and direc-
tionality property. It uses fewer coefficients than wavelet transform
to represent smooth curves.

Gopikakumari, in [30], modified 2-D DFT computation through
a new perspective that 2x2 DFT computation involves only real
arithmetic and hence found a relationship between the elements
of N × N DFT and the elements of the matrix made up of 2 ×
2 submatrices of the N × N data matrix, for any even N . She
also presented a visual representation of the 2-D DFT coefficients
and evolved a parallel distributed architecture for the same. The
architecture involves 4 layers of which all except the fourth layer
involve only real additions. The model was implemented using four
different kinds of parallelism depending upon the requirements of
speed and complexity.

Rajesh et al. [31], [63] continued the work of Gopikakumari and
developed a new transform, named MRT by eliminating the fourth
layer of the parallel distributed architecture thereby converted into
an integer-to-integer transform. MRT allows to do the frequency
domain analysis of 2-D signals without any complex operations.
The transform coefficients showed redundancies and Unique MRT
was suggested to remove redundancies [32]. These coefficients are
numerically compact, unique and require only the same memory
space as required for the original image. He used unique MRT
coefficients to effectively to compress images.
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Bhadran et al., in [64], presented a new visualization technique for
the computation of 2-D DFT in terms of 2 x 2 data and its analy-
sis. Since the visual representation gave direct relationship between
spatial domain data and the frequency domain representation in
terms of pictures, signal analysis was made simple. Various types
of redundancies present in the visual representation were explored.

Bhadran [33] presented computation of basic set of DFT coefficients
and the corresponding indices. An algorithm was also developed to
find out the basic set of 2-D DFT coefficients for any matrix size
even. He proposed a new algorithm for the placement of Unique
MRT coefficients called UMRT. The hardware implementation re-
ported in [30] was modified to compute UMRT. Preetha et al. [65]
developed a computationally fast algorithm to compute forward
and inverse UMRT.

Meenakshy [66] showed how MRT can be used for obtaining a new
set of features useful for texture analysis. Experiments performed
on Brodatz texture images indicated that these features can be used
for texture classification. She developed a computer aided design
system to predict the fragmentation of renal stones based on texture
analysis of CT images using MRT.

Anish et al. [67], [68] developed optimized quadtree partitioning
of images and an adaptive block size transform coder for image
compression using MRT.

The present work involves modification to the placement of unique
coefficients in MRT computation by exploiting sequency informa-
tion from the visual representation of the MRT coefficients and its
application is being explored in image enhancement.
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2.4 Image Enhancement

Many spatial-domain and transform-domain image enhancement
techniques have been proposed in the literature.

2.4.1 Spatial-domain Techniques

Several preprocessing techniques for enhancing selected features
and removing irrelevant data are described and compared by Hall et
al. in [69]. These techniques included linearization of gray level dis-
tribution, digital spatial filtering, contrast enhancement and image
subtraction.

Hummel [70] developed theory of histogram modification of con-
tinuous real-valued pictures. He has shown that the transforma-
tion of image histogram to a desired histogram is unique under
the constraint that the transformation function be monotonically
increasing.

Histogram Equalization is a very popular spatial-domain technique
[34]. Improvement in contrast can be achieved by stretching the
dynamic range of image histogram based on the probability distri-
bution of the image gray levels. It is commonly employed because
of its simplicity and comparatively better performance on almost
all types of images.

Trahanias et al. [71], proposed a method to extend HE for gray
level image enhancement to colour images. A method of direct 3-D
HE resulted in a uniform histogram of the RGB values.

Despite its popularity, HE is not always very suitable for consumer
electronics applications because of the undesirable artifacts. It
changes the mean brightness of the input image significantly and
makes some of the uniform regions of the output image saturated
with very bright or dark intensities.
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Adaptive Histogram Equalization (AHE) has been recognized as a
good method of contrast enhancement in block level image process-
ing. The main advantage of AHE was that it can provide better
contrast in local areas due to the block processing whereas tradi-
tional HE method uses entire image at once.

Sherrier & Johnson [72] calculated histograms locally and then
modified according to both the mean pixel value of that region as
well as certain characteristics of the cumulative distribution func-
tion. This method suffered from over-enhancement of noise in rel-
atively homogeneous regions and reduced speed.

Pizer & Amburn [73] proposed modifications to AHE to reduce the
above limitations. They used three approaches: interpolated AHE
to increase the speed of computation, weighted AHE to improve
the quality and clipped AHE to overcome over-enhancement.

T.L. Ji et al. [74] presented a novel adaptive algorithm that tai-
lored the required amount of contrast enhancement based on the
local contrast of the image and the observers Just Noticeable Differ-
ence (JND). This algorithm always produced adequate contrast in
the output image and resulted in almost no ringing artifacts even
around sharp transition regions. Limitation of this method was
that it does not take the mean brightness of an image into account.

Many variations of HE have been developed to preserve the mean
brightness of the image for consumer electronics applications. The
fundamental enhancement needed in most of the images is an in-
crease in contrast. Some of the HE techniques developed to pre-
serve the mean brightness are Brightness preserving Bi-Histogram
Equalization (BBHE) [75], Multi-Peak HE with Brightness Pre-
serving (MPHEBP) [76], Dualistic Sub-Image Histogram Equaliza-
tion (DSIHE) [77], Recursive Mean-Separate HE (RMSHE) [78]
[79], Minimum Mean Brightness Error Bi-Histogram Equalization
(MMBEBHE) [80], Recursive Sub-Image Histogram Equalization
(RSIHE) [81], Dynamic Histogram Equalization (DHE) [82], Bright-
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ness Preserving Dynamic Histogram Equalization (BPDHE) [83],
Recursively Separated and Weighted HE (RSWHE) [84], Image De-
pendent Brightness Preserving Histogram Equalization(IDBPHE)
[85], Brightness Preserving Weight Clustering Histogram Equaliza-
tion (BPWCHE) [86], Histogram Modified Contrast Limited Adap-
tive Histogram Equalization (HM-CLAHE) [87] etc.

Debashis and Sankar [88] proposed automatic exact histogram spec-
ification for contrast enhancement. The desired histogram was ob-
tained by subjecting the image histogram to a modification process
that increases the overall discriminability among samples in the his-
togram and then maximizing a measure that represents increase in
information entropy and decrease in average image ambiguity.

A fuzzy version of BPDHE was introduced by Sarrafzadeh et al. [89]
to improve the crispness of the interval and the number of pixels
in that interval. This algorithm solved problems associated with
BPDHE such as the contouring effect and the loss of information
in regions of detail information.

Filtering is an essential part of image contrast enhancement. The
process consists of moving a filter mask from point to point in an
image. At each point, the response to the filter at that point is cal-
culated using a predefined relationship. Several filtering techniques
have been reported over the years for various applications. In image
processing problems, non-linear filtering techniques are preferred
as they can cope with the non-linearities of the image formation
model and also take into account the non-linear nature of the HVS.
Thus, the filters having good edge and image detail preservation
properties are highly desirable for image filtering. Several filtering
approaches were already analyzed by many of the researchers which
include Harmonic Mean Filter, Geometric Mean Filter, Max Filter,
Contra Harmonic Filter, High Boost Filter, Average Filter, Stan-
dard Deviation filter, Trace Median Filter, Variance Filter, Correla-
tion Filter, Midpoint Filter and Unsharp Filter under the categories
of Low pass Filter, High Pass Filter and Image Scaling Filters [34].
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These filters are more suitable to remove artificial noises like salt
& pepper noise and Gaussian noises.

Thangavel et al. in [90] had proposed a filtering scheme based
on statistical methods for the removal of speckle noise which is
commonly found in the ultrasound medical images.

Unsharp Masking (UM) is a very common technique for contrast
enhancement of digital images. Even though the Classic Linear
Unsharp Masking (CLUM) technique [34] is simple and works well
in many applications, it suffers from two drawbacks. i) The presence
of the linear highpass filter makes the system extremely sensitive to
noise. ii) It enhances high-contrast areas much more than the areas
with low and medium contrast levels. Eventually, the resulting
image observed is extremely artificial.

Various approaches based on the use of nonlinear operators had
been suggested for reducing the noise sensitivity of the linear UM
technique. A local mean-weighted adaptive high pass filter was
proposed by Mitra & Li, in [91]. This method enhanced the details
of the image uniformly, but simultaneously enhanced the noise.
Consequently, the perceived noise in the output image was smaller
than that for linear UM schemes, but the visual appearance was
not good.

Polesel et al. [92] presented a new method for UM for contrast
enhancement of images. The approach employed an adaptive filter
that controlled the contribution of the sharpening path in such a
way that contrast enhancement occurs in high detail areas and little
or no image sharpening occurs in smooth areas.

In [93] Panetta et al. introduced nonlinear UM (NLUM) for mam-
mogram enhancement. It offered flexibility 1) to embed different
types of filters into the nonlinear filtering operator; 2) to choose dif-
ferent linear or non-linear operations for the fusion processes that
combines the enhanced filtered portion of the mammogram with
the original mammogram and 3) to allow the NLUM parameter
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selection to be performed manually or by using a quantitative en-
hancement measure to obtain the optimal enhancement parameters.

Xiurong [94] developed an adaptive unsharp mask algorithm for
contrast enhancement of medical images. The objective of the
adaptive filter was to emphasize the medium-contrast details in the
input image more than large-contrast details such as abrupt edges
so as to avoid overshoot effects in the output image. The objective
was that it controls the contribution of the sharpening path in such
a way that contrast enhancement occurs in high detail areas and
little or no image sharpening occurs in smooth areas.

Fuzzy techniques were now used widely for image enhancement.
The theory of fuzzy set was first introduced by Zadeh [95]. Fuzzy
set theory is a useful tool for handling uncertainty associated with
vagueness and imprecision and has been successfully applied to
image processing and pattern recognition areas. Image process-
ing bears some fuzziness in nature due to the following factors:
(a)information loss while mapping 3-D objects into 2-D images;
(b)ambiguity and vagueness in definitions such as edges, bound-
aries, regions, features etc. and (c)fuzzy nature of contrast in an
image. It has been widely applied to nonlinear signal processing to
handle inherent fuzziness in tasks such as image enhancement.

Pal and King [96] adopted a fuzzy contrast intensification operator
to modify the membership function, achieving an efficient enhance-
ment result. In [97], they used smoothing method with fuzzy set to
enhance images. They applied contrast intensification operations
on pixels to modify their membership values. Both of the above
methods are indirect contrast enhancement approaches.

Li and Yang [98] suggested an image enhancement approach, based
on a fuzzy relaxation algorithm in which different orders of fuzzy
membership functions and different statistics were used to improve
the enhancement speed and quality respectively. In the image en-
hancement process using a fuzzy relaxation algorithm, pixel values
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will change through iterations. If the algorithm is convergent, the
pixel values will approach to some predefined constant after a cer-
tain number of iterations. But through a mathematical analysis it
was found that the convergence cannot be guaranteed.

To solve the convergent problem, Zhou and Can suggested a method
[99] for choosing appropriate values of the parameters in the trans-
formation function to guarantee the expected convergence property
for image enhancement. As another way of resolving the problem,
they [100] have developed a new fuzzy relaxation algorithm with
good convergence.

Chen and Xu [101] used fuzzy entropy principle and fuzzy set theory
to map an image from space domain to fuzzy domain by a mem-
bership function, and then applied adaptive, direct, fuzzy contrast
enhancement algorithm to enhance contrast.

Hasikin & Isa, in [102], proposed a fuzzy grayscale enhancement
technique for low contrast image. This technique was proposed by
maximizing fuzzy measures contained in the image. The member-
ship function was then modified to enhance the image by using
power-law transformation and saturation operator.

Chaira, in [103], presented a novel medical image enhancement us-
ing intuitionistic fuzzy set theory. An intuitionistic fuzzy set takes
into account more (two) uncertainties as compared to fuzzy set that
considers only one uncertainty in the form of membership function.

2.4.2 Transform-domain Techniques

Transform domain techniques consist of transforming images into
frequency domain, modifying the coefficients and transforming back
to the spatial domain representation. Some of the commonly used
transforms for image enhancement are Discrete Cosine Transform,
Wavelet Transform, Contourlet Transform etc.
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One of the earliest transform domain techniques is alpha-rooting
method [104], [105], [106] where the magnitude of DFT coefficients
of the original image is raised to a power alpha, while the phase
part is kept unchanged.

However, this method suffered from two drawbacks. The ampli-
fication went to infinity as the value of transform coefficients ap-
proaches zero resulting in increased low-level noise energy. The
second problem was the artifacts that are correlated with certain
edges in the image resulted in many spurious edges.

A simple mapping function that removes the problems associated
with alpha-rooting was the twicing function [39]. Higher degree
polynomial mapping, obtained by recursive usage of twicing func-
tion, can be used for getting increased amplification ratio for lower
magnitudes. This function was later modified by Amore et al. [107]
by introducing a parameter, β. The output showed an emphasis
on the high-frequency content of the image without changing the
phase of the transform coefficients, resulting in an overall contrast
enhancement. This enhancement, however, can sometimes result in
overall graying, tonal changes and ugly artifacts.

A simple, easily manoeuvarable, flexible, programmable-S-function
was proposed by De [108] taking into account the perceptual pro-
cessing capabilities of HVS. Threshold points and slope can be
adjusted properly for stretching and compressing transform coef-
ficients by varying the values of p1, p2, m and n. The function
expands both low and high amplitude coefficients while compresses
mid values. A similarly varying function with one parameter, γ,
was proposed by Lee [109] .

Homomorphic Filtering is sometimes used for image enhancement
[34]. It simultaneously normalizes the brightness across an image
and increases the contrast. Homomorphic Filtering is usually used
to remove multiplicative noise. Illumination and reflectance are not
separable, but their approximate locations in the frequency domain
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may be found. Since illumination and reflectance are combined
multiplicatively, the components are made additive by taking the
logarithm of the image intensity, so that these combine linearly in
the frequency domain. Illumination variations can be thought of
as a multiplicative noise, and can be reduced by filtering in the
logarithmic domain.

Tang [110] proposed a method where the image is filtered by manip-
ulating DCT coefficients according to a contrast measure. Mukher-
jee & Mitra, in [111], proposed enhancement in the block DCT
domain. Local background illumination was adjusted by modifying
DC coefficient of each block using twicing function. He preserved
local contrast by multiplying block DCT by a constant.

Retinex theory was first proposed by Edwin Land in 1963. He pre-
sented the Retinex theory for colour vision in [112]. According to
him, image is composed of two parts namely the incident light and
the reflectance of the object. Retinex theory intends to explain
how the HVS extracts reliable information from the world despite
of changes of illumination. The algorithm based on Retinex theory
can improve colour constancy, compress dynamic range and en-
hance contrast and it is used widely in recent years. Lee, in [109],
suggested a method for dynamic range compression and contrast
enhancement using retinex theory.

Multi Scale Retinex algorithm (MSR) by Jobson et al. [113] is based
on their previous work on Single Scale Retinex (SSR) [114]. The
SSR algorithm is a simple implementation of the Retinex that was
developed especially for more practical image processing. Their
work was inspired by Land’s most recent version of the Retinex
where he described a centre/surround operator to replace the ran-
dom walk computation. This operator is similar to the difference of
Gaussian function which is commonly used in natural vision science
to model perceptual processes. Thus, as Land used a 1/r2 function
for the operator, Jobson et al. used a Gaussian surround. They
noticed that the method will produce better results by using three
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scales for the Gaussian function.

The Retinex processing still had problems with images having re-
gional and global gray-world violations, i.e., spatially averaged rel-
ative spectral reflectance is not equal in three colour spectral bands
of the image. This was a consequence of processing an image by
each channel independently and was shown as desaturation in the
image.

Nielsen [115] presented an overview of time-frequency analysis and
introduced wavelet & wavelet packets. There are many image en-
hancement methods based on wavelet transform. Lu et al. [116]
presented a simple and effective method for image contrast enhance-
ment based on the multi-scale edge representation of images using
wavelets. The contrast of an image can be enhanced simply by
stretching or upscaling the multi-scale gradient maxima of the im-
age. This method offered flexibility to selectively enhance features
of different sizes and ability to control noise magnification.

Yang and Hansell, in [117], presented a novel approach to the en-
hancement of feature differences between normal and diseased lung
parenchyma so that reliable visual assessment can be made. The
method relied on a hybrid structural filtering technique which re-
moves pulmonary vessels appearing in the CT cross-sectional im-
ages without affecting intrinsic subtle intensity details of the lung
parenchyma. In order to restore possible structural distortions in-
troduced by the hybrid filter, a feature localization process based on
wavelet reconstruction of feature extrema was used. After contrast
enhancement, the resultant images were used to delineate region
borders of the diseased areas and quantification was made with
regard to the extent of the disease.

Fang and Qi [118] introduced a wavelet based method of image en-
hancement using soft threshold. The Discrete Wavelet Transform
(DWT) decomposed an image into a set of different scale smaller
images. Then detail coefficients were modified based on the soft-
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thresholding filter, prior to obtaining the inverse transform. The
results indicate that the method can effectively enhance image de-
tails, preserve image edges and improve the visual quality of image.

In contourlet transform, the Laplacian pyramid [119] was first used
to capture the point discontinuities; it was then followed by a direc-
tional filter bank [120] to link point discontinuities into linear struc-
tures. The overall result was an image expansion using elementary
images like contour segments, called contourlet transform, which
was implemented by a pyramidal directional filter bank [61]. The
Laplacian Pyramid (LP) was used to decompose an image into a
number of radial subbands, and the directional filter banks (DFB)
decompose each LP detail sub-band into a number of directional
subbands.

Sung Kon et al. [121] proposed a new algorithm for image enhance-
ment including highpass filtering, lowpass filtering and edge en-
hancement in the block DCT domain. They proposed the blocking
artifacts reduction technique as well as the optimal image enhance-
ment technique using both frequency filtering and spatial filtering
method.

A new method for contrast enhancement based on the curvelet
transform was presented in [122]. The curvelet transform represents
edges better than wavelets, and is therefore well-suited for multi-
scale edge enhancement. The authors compared this approach with
enhancement based on the wavelet transform, and the MSR. The
findings were that curvelet based enhancement out-performed other
enhancement methods on noisy images, but on noiseless or near
noiseless images, curvelet based enhancement was not better than
wavelet based enhancement.

Nezhadarya & Shamsollahi, in [123], proposed a new simple en-
hancement function and applied to coefficients in contourlet space.
The directionality capability of this transform, resulted in better
edge representation and enhancement in 2-D images. Aiping Jiang
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et.al., in their paper [124], used contourlet transform for medical
image denoising and enhancement.

Fuzzy techniques were also used in the transform domain for image
enhancement. They have been applied for medical image process-
ing since main challenge of medical image enhancement is to solve
conflicts between noise resistance and detail sharpening. A multi-
scale enhancement method based on fuzzy logic (MEMBFL) was
presented by Ping, in [125]. The proposed method prevented noise
increasing during the sharpening of the image details. With this
method, the original image was filtered by the hybrid low pass filter
which was designed according to local context of the image in order
to remove the impulse noise and no-impulse noise. Then the filtered
image was decomposed into several band pass images. Each pixel in
band pass image was adaptively assigned a different enhancement
factor by evaluating the local feature. The processed band pass
images can be composed into an enhanced image by the process
opposite to the decomposition process.

Popa et al. [126] developed fuzzy image enhancement in the com-
pressed domain, without full decompression. They [127] proposed
fuzzy rule based algorithm in the compressed JPEG images and
used threshold comparison in the block level to determine whether
the fuzzy enhancement is to be carried out in compressed domain or
decompressed domain. They, in [128], proposed a similar algorithm
based on fuzzy contrast intensification operator.

An infrared image enhancement algorithm based on Non-Subsampled
Contourlet Transform(NSCT) and adaptive threshold is proposed
by Hong et al. [129]. At first, coefficients in different scales and
different directions were obtained by image decomposition using
the non-subsampled contourlet transform. Then, filter thresholds
and enhancement functions were adaptively estimated according to
the transform coefficients. Finally, image enhancement was imple-
mented by reconstruction of these enhanced coefficients.
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Hema and Bhavani [130] proposed a method to make the super- res-
olution of a high-resolution image from a sequence of low-resolution
frames containing non-stationary objects. Mussarat Yasmin et al.
[131] provided a short overview of different methods presented in
the prospect of brain image enhancement.

Hasikin & Isa [132] developed fuzzy image enhancement for low con-
trast and non-uniform illumination images. A new fuzzy intensity
measure was proposed to distinguish between the dark and bright
regions. This measure was computed by considering the average
intensity and deviation of the intensity distribution of the image.
The input image was enhanced using a power-law transformation.

Leijun & Ting, in [133], proposed a modified fuzzy-shrink image
enhancement algorithm in the NSCT domain and fuzzy domain.
The algorithm had optimal denoising effect and the processed image
was close to the original image on visual effects.

Evaluation of images after enhancement is important for assessing
the quality of the image enhancement technique objectively. A
literature survey of the IQA metrics will help in identifying suitable
metrics for enhancement applications.

2.5 Image Quality Metrics

Evaluating the image perceptual quality is a fundamental problem
in image processing and various metrics had been proposed for IQA.
They can be used as a feedback tool, to monitor visual quality,
to optimize parameters, algorithms etc. or to benchmark image
processing applications.

Natural way to measure image quality is to solicit human opinion
and is known as subjective quality assessment method. Standard-
ized procedures for subjective IQA are described in the ITU Rec-
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ommendation [46] and MOS is regarded as the best method. Here,
the perception of quality is influenced by many factors such as con-
text, lighting, degree of interaction, psychological factors etc. Such
evaluations are time-consuming, cumbersome, expensive to conduct
and not feasible in most practical applications. Thus there is a need
to develop efficient objective IQA methods. Most of the objective
methods for IQA [43] can be defined as either FR, BR or RR as
discussed in section 1.5.

2.5.1 Full-Reference Metrics

There are basically two classes of FR IQA metrics, conventional
IQA and HVS based IQA.

A simple and widely used conventional FR fidelity measure is the
Peak Signal-to-Noise Ratio (PSNR), or the corresponding distortion
metric, the Mean-Squared Error (MSE) [134] that directly mea-
sures the pixel-by-pixel differences between the images. Other con-
ventional metrics are Mean Absolute Error (MAE) [135], a simple
measure of average error; Absolute Mean Brightness Error (AMBE)
[136], used to preserve image brightness and gives absolute value
of the difference in mean of the enhanced image and the reference
image; Signal-to-Noise Ratio (SNR) [137], [138], ratio of the av-
erage signal power to average noise power and Contrast-to-Noise
Ratio (CNR) [139], ratio of signal intensity differences between two
regions scaled to image noise. These are attractive metrics due
to their simplicity, physical significance and mathematical conve-
nience to measure the loss of image quality, but not well matched
to perceive visual quality.

Recently, a great deal of efforts has been made for development of
IQA metrics that take advantage of the known characteristics of
HVS. Aim of the HVS-based IQA is to evaluate how strong the dis-
torted information is perceived by HVS, according to characteristics
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and cognitive mechanism of the HVS. A number of IQA metrics,
based on HVS, has been proposed to evaluate the perceptual qual-
ity. Weighted Signal-to-Noise ratio (WSNR) [140] was defined in
the same way as SNR and is the ratio of average weighted sig-
nal power to average weighted noise power, where the weights are
derived from the Contrast Sensitivity Function (CSF). Distortion
Measure (DM) and Noise Quality Measure (NQM) [141] are used
to quantify the impact of frequency distortion and noise injection
on the HVS.

Wang & Bovik, in [142], proposed Universal Quality Index (UQI)
approach that does not depend on the images being tested, the
viewing conditions or the individual observers and can successfully
measure image similarity across distortion types.

Natural image signals are highly structured exhibiting strong de-
pendencies between spatially proximate pixels. They carry impor-
tant information about the structure of the objects in the visual
scene. HVS is highly adapted to extraction of structural informa-
tion from the visual field. Consequently a measure of the loss of
structural information can also be regarded as a good measure of
the perceived distortion. Wang et.al.[143] introduced SSIM (Struc-
tural SIMilarity), an image quality assessment method based on
a structural similarity (SSIM) index. It computed mean, variance
and covariance of small patches inside a frame and combined the
measurements into a distortion map. Mean SSIM (MSSIM) index,
extracted structural information from an image and can provide a
good approximation of perceived image quality.

Sheikh et al.[144] introduced information theory into image fidelity
measurement and proposed a visual Information Fidelity Criterion
(IFC) for IQA by using natural scene statistics models. Later,
he extended IFC to Visual Information Fidelity (VIF) [145] that
quantifies Shannon information shared between distorted image and
the modified image. Visual Information Fidelity in Pixel domain
(VIFP) was derived from a quantification of two mutual information
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quantities: the mutual information between input and output of
the HVS channel when no distortion is present and the mutual
information between input of the distortion channel and output of
the HVS channel for the test image [146].

Chandler, in [147], proposed a wavelet-based Visual Signal-to-Noise
Ratio (VSNR) which operates by using both low-level and mid-level
properties of HVS and quantifies the visual fidelity of enhanced im-
ages based on psychophysical findings. A Feature SIMilarity met-
ric (FSIM) by Zhang[148] , based on Riesz-transform (RFSIM),
can extract low level image features efficiently. Feature SIMilarity
(FSIM) metric index proposed by Zhang [149] employed two fea-
tures to compute the local similarity map, the phase congruency
and the gradient magnitude. They played complementary roles in
characterizing the image local quality.

2.5.2 Blind-Reference Metrics

There are other applications where a reference image is not avail-
able, but quality assessment is desirable. Conversely, the BR meth-
ods provide an estimate of quality without any knowledge of the
original reference image.

A number of BR metrics are available in literature and a few that
are used frequently are mentioned here. EME (measure of enhance-
ment) and EMEE (measure of enhancement by entropy) have been
developed by Agaian et al. [150],[151],[152]. These metrics were
improved as AME and AMEE, based on Michelson contrast law
[153]. Later, Panetta et al. developed logAME and logAMEE [154]
for better assessment of images and introduced a Second Deriva-
tive like MEasurement (SDME) [2], [93]. This measure is shown
to have better performance than other measures in evaluating the
image visual quality. All these metrics divide an image into blocks
and calculate the average value of the measured results of all blocks.
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2.5.3 Statistical Feature Metrics

A feature is a characteristic that can capture visual properties of
an image either globally for the entire image or locally for regions.
Visual characteristics of homogeneous regions of real-world images
are often identified as texture. Since an image is made up of pixels,
texture can be defined as an entity consisting of mutually related
pixels or group of pixels and thus leading to visual quality of images.

An image can be described by means of first order statistics of
gray values of the pixels inside a neighbourhood. Examples of such
features extracted from the image histogram are mean, standard
deviation (SD), entropy etc.

Statistical and texture properties can be utilized for measuring im-
age quality. Haralick, in [155], investigated the importance of sta-
tistical & structural approaches for micro & macro textures and
proposed second order features based on Gray Level Co-occurrence
Matrix (GLCM). He also defined a set of 14 measures of texture
features that are useful in texture recognition and classification.
Some of the second order statistical features are entropy, contrast,
homogeneity, energy and correlation of the gray level pixels [156].

Entropy is used to measure the content of an image, with higher
value indicating richness of details. Contrast returns a measure
of the intensity difference between a pixel and its neighbour over
the whole image. Homogeneity measures the similarity of gray-
scale levels across the image. Thus, larger the changes in the gray-
scale, the higher the GLCM contrast and lower the homogeneity.
GLCM energy measures the overall probability of having distinctive
gray-scale patterns in image. Correlation returns a measure of how
correlated a pixel is to its neighbour over the whole image and it
measures the joint probability of occurrence of the specified pixel
pairs.

From the literature surveyed, it is observed that enhancement us-
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ing transform domain techniques were not explored much and the
potential of transform domain fuzzy techniques in image enhance-
ment has not been exploited much. As a result, transform based
enhancement techniques are given emphasis in this work.
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Chapter 3
Sequency Based MRT

3.1 Introduction

Feasibility of transform based image processing techniques is inves-
tigated nowadays with the advent of newer and efficient transforms.
Processing with the transform of an image, instead of the image it-
self, may give more insight into properties of the image. Transform
domain representation can be used for efficient storage and trans-
mission by making use of its sparsity and energy compaction prop-
erty. It can efficiently capture the spatial variations such as smooth,
moderate, sharp etc. and these variations are appropriately refined
or polished in transform based image processing.

Visual representation of unique MRT coefficients for N ×N data is
explored to develop a new transform named Sequency based MRT
(SMRT) and its inverse when N is a power of 2. The coefficients are
arranged in the order of sequencies along row, column and diago-
nal directions. The basis functions of SMRT are developed and the
algorithms to find forward and inverse SMRT through MRT compu-
tation are presented. Direct computation of SMRT, its properties
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and applications are also examined.

3.2 Development of 2-D SMRT fromMRT

Proper arrangement of the N2 unique MRT coefficients in an N×N
matrix is very important for the development of MRT as an efficient
transform. The relationship between the unique MRT coefficients
and the data can be represented visually using ’+’ symbol to indi-
cate addition of data at that position, ’−’ symbol for subtraction
and blank to indicate no involvement of data. A thorough investi-
gation of visual representation of unique MRT coefficients will be
helpful in proper placement of coefficients.

3.2.1 Visual Representation

Visual representation (VR) of the MRT coefficients were derived in
terms of 2× 2 DFT in [30], 2× 2 data in [33] and each data in [32].
VR of UMRT coefficients in terms of each data, represented as ’+’,
’−’ or blank for N = 4 was presented in [65]. A similar VR of
UMRT coefficients for N = 8 is shown in Fig. 3.1. The ’+’, ’−’ and
blank symbols in the VR indicate that the data in the respective
position is to be added, subtracted and masked/ignored to get the
corresponding UMRT coefficient. The digits in the number below
the VR of each Y

(p)
k1,k2

, in Fig. 3.1, represent k1, k2 and p values
respectively.

Analysis of visual patterns of unique MRT coefficients in Fig. 3.1
shows that the orientation in which data elements are combined and
the number of data elements involved in the computation of each of
these coefficients are different. Computation of Y

(0)
0,0 , Y

(0)
0,4 , Y

(0)
4,0 , Y

(0)
4,4

involves all data elements and are placed in the first and fifth po-
sitions of the first and fifth rows respectively of the UMRT ma-
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Fig. 3.1: Visual representation of UMRT for N=8 (Each box of +, −
and blank symbols represent VR of a particular Y

(p)
k1,k2

with the digits
below the box representing k1, k2, p respectively).

trix. Y
(0)
0,0 adds all data elements. Y

(0)
0,4 , Y

(0)
4,0 and Y

(0)
4,4 combine
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data elements along column, row and diagonal directions. Y
(p)
0,1

consider column-wise data separated by 4 and the columns get
shifted by one, as the value of p increases. Y

(p)
0,2 deal column-wise

data separated by 2. In UMRT, these coefficients are placed in
the first row in the order Y

(0)
0,0 , Y

(0)
0,1 , Y

(0)
0,2 , Y

(1)
0,1 , Y

(0)
0,4 , Y

(2)
0,1 , Y

(2)
0,2 , Y

(3)
0,1 .

Similarly, Y
(p)
1,0 , Y

(p)
2,0 and Y

(p)
4,0 for different p’s deal data elements

row-wise and in UMRT, these occupy remaining positions of first
column [33]. Similarly all other UMRT coefficients, Y

(p)
k1,k2

are placed
as in Fig. 3.1.

Visual patterns of each coefficient show that the number of ’+’ and
’−’ symbol pairs are constant for each row and column. Hence, a
parameter called sequency, c, can be defined in terms of the number
of ’+’ and ’−’ symbol pairs present in one spatial direction. This
is analogous to frequency in Fourier representation. Various visual
patterns and the corresponding sequencies in one spatial direction
can be illustrated with the help of Fig. 3.2. Here, the number of
’+’ and ’−’ symbol pairs is 1 for Fig. 3.2 (a) & (b), 2 for (c) and 4
for (d).

Fig. 3.2: Sequencies for N=8 (a),(b) c=1 (c) c=2 (d) c=4
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Table 3.1 lists the unique MRT coefficients and the corresponding
sequencies for N = 8. Let (c1, c2) denote the row-wise and column-
wise sequencies of the unique MRT coefficients. Row-wise and
column-wise sequencies for Y

(p)
0,0 are (c1, c2) = (0,0). The sequencies

of Y
(p)
0,1 , Y

(p)
0,2 , Y

(p)
0,4 are (0,1), (0,2), (0,4) respectively. The frequency

indices k1, k2 of Y
(p)
0,1 , Y

(p)
0,2 and Y

(p)
0,4 are related to Y

(p)
1,0 , Y

(p)
2,0 and Y

(p)
4,0

as interchange of k1 and k2 and similar interchange is present in se-
quencies also. The sequencies of coefficients [Y

(p)
1,1 , Y

(p)
3,1 , Y

(p)
5,1 , Y

(p)
7,1 ],

[Y
(p)
1,2 , Y

(p)
3,2 ] and Y

(p)
1,4 are (1,1), (1,2) and (1,4). Similarly, the groups

[Y
(p)
2,1 , Y

(p)
6,1 ], [Y

(p)
2,2 , Y

(p)
6,2 ], Y

(p)
2,4 have sequencies (2,1), (2,2), (2,4) re-

spectively as in Table 3.1. Also, Y
(p)
4,1 , Y

(p)
4,2 , Y

(p)
4,4 have sequencies

(4,1), (4,2), (4,4) respectively.

A similar analysis performed on the VR of the unique MRT co-
efficients for higher values of N that are power of 2 shows that
the sequencies along column, row and diagonal directions vary as
0, 20, 21, 22, ..., M . The UMRT placement has no sequency ordering
and an arrangement of the unique MRT coefficients according to
sequency is an option for placement. Thus the unique MRT coeffi-
cients corresponding to N = 8 can be rearranged in the increasing
order of sequency along row, coloum and diagonal directions. A
new sequency ordered placement, for N a power of 2, can be con-
sidered where the unique MRT coefficients are arranged in the order
of sequencies.

3.2.2 Sequency-Ordered Placement

Unique MRT coefficients can be grouped, based on row-column
sequencies, into groups (i, j), where ’i’ and ’j’ indicate row and
column-wise groupings.

Placement of the 64 unique MRT coefficients corresponding to N=8
is discussed below. Coefficient having zero sequency in both direc-
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Table 3.1: Sequencies of unique MRT coefficients

Sequency
unique MRT coefficients row-wise column-wise

(c1) (c2)

Y
(p)
0,0 , (p = 0) 0 0

Y
(p)
0,1 , (p = 0, 1, 2, 3) 0 1

Y
(p)
0,2 , (p = 0, 2) 0 2

Y
(p)
0,4 , (p = 0) 0 4

Y
(p)
1,0 , (p = 0, 1, 2, 3) 1 0

Y
(p)
2,0 , (p = 0, 2) 2 0

Y
(p)
4,0 , (p = 0) 4 0

Y
(p)
1,1 , Y

(p)
3,1 , Y

(p)
5,1 , Y

(p)
7,1 , (p = 0, 1, 2, 3) 1 1

Y
(p)
1,2 , Y

(p)
3,2 , (p = 0, 1, 2, 3) 1 2

Y
(p)
1,4 , (p = 0, 1, 2, 3) 1 4

Y
(p)
2,1 , Y

(p)
6,1 , (p = 0, 1, 2, 3) 2 1

Y
(p)
2,2 , Y

(p)
6,2 , (p = 0, 2) 2 2

Y
(p)
2,4 , (p = 0, 2) 2 4

Y
(p)
4,1 , (p = 0, 1, 2, 3) 4 1

Y
(p)
4,2 , (p = 0, 2) 4 2

Y
(p)
4,4 , (p = 0) 4 4

tion, Y
(0)
0,0 , is grouped as (0, 0). Its value is computed using Eq. (1.7)

and is placed at the first position, S(0, 0), of the 8× 8 SMRT ma-
trix. Unique MRT coefficients with k1 being zero is grouped into
(0, 1), (0, 2), (0, 3) having column-sequencies 20, 21, 22 respectively.

Sequencies of Y
(p)
0,1 are (0,1) and the coefficients for various p’s are

sequentially arranged in the first row of SMRT matrix, starting
from S(0,1). The sequencies of Y

(p)
0,2 , Y

(p)
0,4 are respectively (0,2) &

(0,4) and are arranged sequentially in the first row, in continuation

to Y
(p)
0,1 , in the order of sequency. Similarly Y

(p)
1,0 , Y

(p)
2,0 , Y

(p)
4,0 , whose

k2 = 0 are placed in the first column of SMRT, in the increasing
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order of p.

The row and column sequencies, (c1, c2), of Y
(p)
k1,1

, k1 = 1, 3, 5, 7 are
(1,1). The group index (i, j) of these coefficients is (1, 1) and are
placed in the second row of SMRT matrix, starting from S(1, 1),
in the increasing order of k1 with the coefficients for different p’s
placed along respective column.

The (c1, c2) of Y
(p)
k1,2

, k1 = 1, 3 are (1,2) and they are grouped as
(i, j) = (1, 2). These coefficients are placed sequentially in the
increasing order of k1, starting from S(1, 5), with the coefficients

for different p’s arranged column-wise. Similarly, sequencies of Y
(p)
1,4

are (1,4) and are placed from S(1, 7) to S(4, 7) and grouped into
(i, j) = (1, 3).

Corresponding to groups (i, j) for j > i and sequency (c1, c2), there
exist a group (j, i) with sequencies (c2, c1). These group (j, i) co-
efficients for j > i are named as related coefficients of (i, j). They
are placed as the lower triangular matrix with symmetry about the
diagonal formed by groups (i, i).

The related coefficients of Y
(p)
1,2 & Y

(p)
3,2 , ie. Y

(p)
2,1 & Y

(p)
6,1 respectively,

are grouped as (2,1) and that of Y
(p)
1,4 , ie. Y

(p)
4,1 , as group (3,1) and

are given in Table 3.2. They are placed in S(5,1), S(6,1) and S(7,1)
with the coefficients for different p’s arranged in the respective rows
so as to get the coefficients arranged in the form of a square matrix.
Similarly, all other coefficients are grouped and placed, with the in-
dices (k1, k2, p) of each SMRT coefficient arranged in the respective
cell as in Table 3.3. The group of cells with boldface boundaries
represent different (i, j) groups and there are 16 groups for N = 8.
Thus SMRT matrix corresponding to N = 8 can be considered as
a matrix of 4 × 4 groups. Fig. 3.3 shows the VR of the SMRT
coefficients with the coefficients arranged in the respective position
for N = 8.

Thus, SMRT can be considered as an arrangement of unique MRT
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Table 3.2: Groups of unique MRT coefficients and the related coeffi-
cients
Unique MRT coefficients group (i, j) related coefficients group (i, j)

Y
(p)
0,0 (0,0) - -

Y
(p)
0,1 ,Y

(p)
0,2 ,Y

(p)
0,4 (0,0) - -

Y
(p)
1,0 ,Y

(p)
2,0 ,Y

(p)
4,0 (0,0) - -

Y
(p)
1,1 , Y

(p)
3,1 , Y

(p)
5,1 , Y

(p)
7,1 (1,1) - -

Y
(p)
1,2 , Y

(p)
3,2 (1,2) Y

(p)
2,1 , Y

(p)
6,1 (2,1)

Y
(p)
1,4 (1,3) Y

(p)
4,1 (3,1)

Y
(p)
2,2 , Y

(p)
6,2 (2,2) - -

Y
(p)
2,4 (2,3) Y

(p)
4,2 (3,2)

Y
(p)
4,4 (4,4) - -

Table 3.3: Placement of SMRT coefficients for N=8

0,0,0 0,1,0 0,1,1 0,1,2 0,1,3 0,2,0 0,2,2 0,4,0

1,0,0 1,1,0 3,1,0 5,1,0 7,1,0 1,2,0 3,2,0 1,4,0
1,0,1 1,1,1 3,1,1 5,1,1 7,1,1 1,2,1 3,2,1 1,4,1
1,0,2 1,1,2 3,1,2 5,1,2 7,1,2 1,2,2 3,2,2 1,4,2
1,0,3 1,1,3 3,1,3 5,1,3 7,1,3 1,2,3 3,2,3 1,4,3

2,0,0 2,1,0 2,1,1 2,1,2 2,1,3 2,2,0 6,2,0 2,4,0
2,0,2 6,1,0 6,1,1 6,1,2 6,1,3 2,2,2 6,2,2 2,4,2

4,0,0 4,1,0 4,1,1 4,1,2 4,1,3 4,2,0 4,2,2 4,4,0

coefficients according to row-wise and column-wise sequencies with
lower sequencies placed at the upper left corner and highest se-
quencies at the bottom right corner. In otherwords, SMRT can be
considered as an ordered arrangement of sequency packets formed
of coefficients with same row and column sequencies.

Similarly placement procedure for N = 8 is extended to any N, a
power of 2. Placement of 256 SMRT coefficients forN = 16 is shown
in Table 3.4. Unique MRT coefficients with either k1 and/or k2
being zero are grouped into (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (2, 0),
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Fig. 3.3: Visual representation of SMRT for N=8

(3, 0). There are 31 coefficients in these groups and their sequencies
are 0, 20, 21, 22, 23 in one direction and 0 in the other direction. The
remaining 225 coefficients are grouped along rows and columns into
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4 groups each. All coefficients having c1 = 1 and c2 = 1, 2, 4, 8 fall
under groups with indices i = 1 and j = 1, 2, 3, 4 respectively.
Similarly, coefficients with c1 = 2 & c2 = 2, 4, 8 are grouped under
indices i = 2 & j = 2, 3, 4 respectively and so on. In general, total
number of groups of unique MRT coefficients organized based on
sequencies in the SMRT placement can be obtained as (1 + log2N)2.

Table 3.4: Placement of SMRT coefficients for N=16
0,0,0 0,1,0 0,1,1 0,1,2 0,1,3 0,1,4 0,1,5 0,1,6 0,1,7 0,2,0 0,2,2 0,2,4 0,2,6 0,4,0 0,4,4 0,8,0

1,0,0 1,1,0 3,1,0 5,1,0 7,1,0 9,1,0 11,1,0 13,1,0 15,1,0 1,2,0 3,2,0 5,2,0 7,2,0 1,4,0 3,4,0 1,8,0
1,0,1 1,1,1 3,1,1 5,1,1 7,1,1 9,1,1 11,1,1 13,1,1 15,1,1 1,2,1 3,2,1 5,2,1 7,2,1 1,4,1 3,4,1 1,8,1
1,0,2 1,1,2 3,1,2 5,1,2 7,1,2 9,1,2 11,1,2 13,1,2 15,1,2 1,2,2 3,2,2 5,2,2 7,2,2 1,4,2 3,4,2 1,8,2
1,0,3 1,1,3 3,1,3 5,1,3 7,1,3 9,1,3 11,1,3 13,1,3 15,1,3 1,2,3 3,2,3 5,2,3 7,2,3 1,4,3 3,4,3 1,8,3
1,0,4 1,1,4 3,1,4 5,1,4 7,1,4 9,1,4 11,1,4 13,1,4 15,1,4 1,2,4 3,2,4 5,2,4 7,2,4 1,4,4 3,4,4 1,8,4
1,0,5 1,1,5 3,1,5 5,1,5 7,1,5 9,1,5 11,1,5 13,1,5 15,1,5 1,2,5 3,2,5 5,2,5 7,2,5 1,4,5 3,4,5 1,8,5
1,0,6 1,1,6 3,1,6 5,1,6 7,1,6 9,1,6 11,1,6 13,1,6 15,1,6 1,2,6 3,2,6 5,2,6 7,2,6 1,4,6 3,4,6 1,8,6
1,0,7 1,1,7 3,1,7 5,1,7 7,1,7 9,1,7 11,1,7 13,1,7 15,1,7 1,2,7 3,2,7 5,2,7 7,2,7 1,4,7 3,4,7 1,8,7

2,0,0 2,1,0 2,1,1 2,1,2 2,1,3 2,1,4 2,1,5 2,1,6 2,1,7 2,2,0 6,2,0 10,2,0 14,2,0 2,4,0 6,4,0 2,8,0
2,0,2 6,1,0 6,1,1 6,1,2 6,1,3 6,1,4 6,1,5 6,1,6 6,1,7 2,2,2 6,2,2 10,2,2 14,2,2 2,4,2 6,4,2 2,8,2
2,0,4 10,1,0 10,1,1 10,1,2 10,1,3 10,1,4 10,1,5 10,1,6 10,1,7 2,2,4 6,2,4 10,2,4 14,2,4 2,4,4 6,4,4 2,8,4
2,0,6 14,1,0 14,1,1 14,1,2 14,1,3 14,1,4 14,1,5 14,1,6 14,1,7 2,2,6 6,2,6 10,2,6 14,2,6 2,4,6 6,4,6 2,8,6

4,0,0 4,1,0 4,1,1 4,1,2 4,1,3 4,1,4 4,1,5 4,1,6 4,1,7 4,2,0 4,2,2 4,2,4 4,2,6 4,4,0 12,4,0 4,8,0
4,0,4 12,1,0 12,1,1 12,1,2 12,1,3 12,1,4 12,1,5 12,1,6 12,1,7 12,2,0 12,2,2 12,2,4 12,2,6 4,4,4 12,4,4 4,8,4

8,0,0 8,1,0 8,1,1 8,1,2 8,1,3 8,1,4 8,1,5 8,1,6 8,1,7 8,2,0 8,2,2 8,2,4 8,2,6 8,4,4 8,4,4 8,8,4

Analysis of the placement for different values of N reveals that
the coefficients under the different groups can be organized in the
following manner. The coefficients that come under the group
(i, j) = (1, 1) are the coefficients having frequency indices k1 =
1, 3, 5, ..., N − 1 and k2 = 1. The frequency indices for group
(i, j) = (1, 2) are k1 = 1, 3, 5, ..., N

2
− 1 and k2 = 2 and that for

group (i, j) = (1, 3), are k1 = 1, 3, 5, ..., N
4
− 1 and k2 = 4 etc.

Computation of the related coefficients, row & column sequencies
interchanged, can be implemented with the other set of coefficients.
The frequency indices of the related coefficients can be obtained as
(k1/2

(j−1), k2.2
(j−1)) . The related coefficients in each group are

arranged in the matrix row-wise for increasing values of p.

The implementation of SMRT is illustrated with an example for
N = 8 derived through MRT and is compared with UMRT also.
Data matrix is given in (3.1) and the MRT matrices Y

(p)
k1,k2

, p =
0, 1, 2, 3 are given by (3.2), (3.3), (3.4), (3.5) respectively. UMRT
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and SMRT coefficients are given in (3.6) and (3.7) respectively.

X =



28 26 22 23 15 15 15 18
26 25 24 17 15 13 16 24
28 25 17 14 17 16 26 30
26 19 16 24 22 26 35 32
22 20 28 24 29 42 51 51
24 30 22 19 39 51 56 54
26 19 04 24 46 49 48 38
24 15 05 36 52 51 44 28


(3.1)

Y
(0)
k1,k2

=



1766 −31 10 −31 −30 −31 10 −31
−105 −72 43 38 5 42 25 72
2 −17 −58 47 −6 −17 −30 47
−105 38 25 −72 5 72 43 42
−54 25 −10 25 6 25 −10 25
−105 42 43 72 5 −72 25 38
2 47 −30 −17 −6 47 −58 −17
−105 72 25 42 5 38 43 −72


(3.2)

Y
(1)
k1,k2

=



0 −84 0 −94 0 84 0 94
−135 41 29 39 15 −29 3 53
0 52 0 −26 0 −52 0 26
−55 21 −19 145 3 −41 −41 3
0 20 0 −10 0 −20 0 10
135 29 −29 −53 −15 −41 −3 −39
0 −32 0 42 0 32 0 −42
55 41 19 −3 −3 −21 41 −145


(3.3)
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Y
(2)
k1,k2

=



0 −153 −14 153 0 −153 14 153
−81 110 −5 0 9 12 −31 2
0 57 −54 −17 −4 57 −22 −17
81 0 31 −110 −9 −2 5 −12
0 15 −6 −15 0 15 6 −15
−81 12 −5 2 9 110 −31 0
0 17 22 −57 4 17 54 −57
81 −2 31 −12 −9 0 5 −110


(3.4)

Y
(3)
k1,k2

=



0 −94 0 −84 0 94 0 84
−55 145 −41 21 3 3 −19 −41
0 42 0 −32 0 −42 0 32
−135 39 3 41 15 53 29 −29
0 −10 0 20 0 10 0 −20
55 −3 41 41 −3 −145 19 −21
0 −26 0 52 0 26 0 −52
135 −53 −3 29 −15 −39 −29 −41


(3.5)

U =



1766 −31 10 −84 −30 −153 −14 −94
−105 −72 43 21 5 12 −19 −53
2 −17 −58 −32 −6 57 22 −26
−135 38 25 41 15 −2 29 −3
−54 25 −10 20 6 15 −6 −10
−81 42 −5 41 9 110 3 39
0 47 −30 52 −4 17 −54 42
−55 72 31 29 3 0 −41 145


(3.6)
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S =



1766 −31 −84 −153 −94 10 −14 −30
−105 −72 38 42 72 43 25 5
−135 41 21 29 41 29 −19 15
−81 110 0 12 −2 −5 31 9
−55 145 39 −3 −53 −41 3 3
2 −17 52 57 42 −58 −30 −6
0 47 −32 17 −26 −54 22 −4
−54 25 20 15 −10 −10 −6 6


(3.7)

Every transform should have a mapping function to map the data
onto the transform coefficients. They are known as basis functions
and should be linearly independent. The VR of the unique MRT
coefficients organized as SMRT can be utilized to derive the basis
function so as to convert the SMRT into a stand-alone transform.

3.2.3 Basis Images

Any data can be expressed as a linear combination of basis func-
tions. DCT basis functions are cosine functions that take real values
between -1 & 1 and hence DCT computation involves real multi-
plications and additions. The pictorial representation of the basis
functions are called basis images. The basis images corresponding
to DCT are shown in Appendix A.1. Basis images of SMRT can be
easily obtained from the visual representation of the unique MRT
coefficients organized based on sequency as explained in section
3.2.1. Basis functions of the SMRT will be in the form of rectan-
gular functions of +1, -1 or 0 and hence will give integer-to-integer
transform that involves additions only.

Set of 64 basis images corresponding to the 2-D SMRT, for N = 8,
are shown in Fig. 3.4, where black, grayish white and mid-gray
boxes correspond to +1, -1 and 0 respectively. These basis images
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Fig. 3.4: 2-D SMRT basis images for N=8.

exhibit a progressive increase of their sequency, along horizontal,
vertical and diagonal directions. SMRT coefficients can be obtained
by projecting the data onto the basis images. Thus any image can
be decomposed into weighted sum of basis images, where the SMRT
coefficients are the weights.

S(0, 0) is the only coefficient with zero sequency in both directions
and is called “DC SMRT coefficient”. It is the sum of all data ele-
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ments and holds most of the energy. The remaining (N2−1) coeffi-
cients, named as ”AC SMRT coefficients“, are derived by combining
the data elements based on the respective basis image.

An algorithm to compute and place the SMRT coefficients in an
N×N matrix, based on the analysis performed using the VR of the
SMRT coefficients, can be developed by grouping the coefficients
according to sequency.

3.2.4 Forward SMRT Algorithm

Let X be the N×N data matrix and S be the corresponding SMRT
matrix. The SMRT coefficients are computed based on the MRT
coefficients, Y

(p)
k1,k2

, in Eq. 1.7

1. Computation of divisors of M

v = log2(M)

for i = 0 to v

d(i) = 2i

end

2. Computation of DC SMRT coefficient, S(0, 0)

S(0, 0) = Y
(0)
0,0

3. Computation and placement of first row and column of coef-
ficients

a = 1
for i = 0 to v

j = d(i)

for p = 0 to M − 1 in steps of j
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S(0, a) = Y
(p)
0,j

S(a, 0) = Y
(p)
j,0

a = a+ 1

end
end

4. Computation and placement of other coefficients

a=1
for i = 0 to v

b = i, r = a, c = a.

for j = 0 to v − i

s1 = 2.d(i), s2 = d(i).

s3 =
N
d(j)

, s4 = d(j)

for k1 = s2 to s3 in steps of s1

k2 = d(i+ j)

for p = 0 to M − 1 in steps of s2

S(r, c) = Y
(p)
k1,k2

if (i 6= b) (%Computation of related coefficients )

S(c, r) = Y
(p)

k1.s4,
k2
s4

end

r = r + 1

end

r = r − M
s2
, c = c+ 1

end
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b = b+ 1

end for i = 0 to v

a = a+ M
s2

end

3.2.5 Inverse SMRT Algorithm

The data elements can be retrieved from the N2 SMRT coefficients.
Original MRT representation involves a set of redundant coefficients
with exactly same or sign-reversed values and corresponding same
or complement visual representations. A redundancy factor asso-
ciated with each unique MRT coefficient is defined as the number
of times it repeats as mentioned above. Thus associated with ev-
ery SMRT matrix there will be a redundancy matrix. Hence all
SMRT coefficients are to be multiplied by the redundancy factor
while calculating inverse SMRT.

1. Computation of divisors of M

v = log2(M)

for i = 0 to v

d(i) = 2(i)

d′(i) = M
d(i)

end

2. Contributions of S(0, 0)

for n1 = 0 to N − 1

for n2 = 0 to N − 1

x(n1, n2) = S(0, 0)
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end

end

3. Contributions due to first row and column

for n1 = 0 to N − 1

for n2 = 0 to N − 1

a = 1

for i = 0 to v

j = d(i)

z = ((n2.j))N

for p = 0 to M − 1 in steps of j

if z = p

x(n1, n2) = x(n1, n2) + d′(i).S(1, a)

x(n2, n1) = x(n2, n1) + d′(i).S(a, 1)

elseif z = p+M

x(n1, n2) = x(n1, n2)− d′(i).S(1, a)

x(n2, n1) = x(n2, n1)− d′(i).S(a, 1)

end

a = a+ 1

end

end

end

end
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4. Contributions of other coefficients
for n1 = 0 to N − 1

for n2 = 0 to N − 1

a=1

for i = 0 to v

b = i, r = a, c = a.

for j = 0 to v − i

s1 = 2.d(i), s2 = d(i)

s3 =
N

dm(j)
, s4 = dm(j)

for k1 = s2 to s3 in steps of s1

k2 = dm(i+ j)

z = ((n1.k1 + n2.k2))N

for p = 0 to M − 1 in steps of s2

if z = p

x(n1, n2) = x(n1, n2) + d′(i).S(r, c)

elseif z = p+M

x(n1, n2) = x(n1, n2)− d′(i).S(r, c)

end

if (i 6= b)

z = ((n1.k1.s4 + n2.k2/s4))N

if z = p

x(n1, n2) = x(n1, n2) + d′(i).S(c, r)

elseif z = p+M
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x(n1, n2) = x(n1, n2)− d′(i).S(c, r)

end

end

r = r + 1

end

r = r − M
s2
, c = c+ 1

end

b = b+ 1

end

a = a+ M
s2

end

end

end
x = x

N2

3.2.6 Implementation of Algorithm

The forward and inverse SMRT algorithms are coded with the help
of C Programming and MEX file integration (Appendix D). The
better performance of MEX files over MATLAB is accomplished
by the usage of pointers, dynamically assigned during program run
and cleared after program execution. Another main advantage of
MEX file is the easy integration to MATLAB. All the required MEX
files, integrated into a tool-box, are included to MATLAB working
directory automatically when MATLAB is launched [157].

An attempt is also made to code the algorithm using Python and
Cython languages in linux platform. Cython language is a superset
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of the Python language that additionally supports calling C func-
tions and declaring C types on variables and class attributes. The
Cython files are integrated into a tool-box which can be included
to Python working directory [158].

Computation time of SMRT and ISMRT algorithms, written in
MATLAB, Python, Cython and with MEX file integration to MAT-
LAB, are tabulated in Tables 3.5 & 3.6 respectively using an Intel
i7 processor (Quad core), 8 GB RAM and 64 bit OS. The results
show that the computation time increases drastically as the data
size exceeds 64 × 64. Computation time for SMRT and ISMRT is
less with Mex files. Computation time can be further reduced by
hardware implementation of the algorithms.

Table 3.5: Comparison of execution time for 2-D SMRT using various
methods

Data size Computation time in seconds
MATLAB Python Cython Mex

2× 2 0.005291 0.000106 0.0000177 0.000968
4× 4 0.006338 0.001050 0.000026 0.000983
8× 8 0.006607 0.013900 0.000079 0.000980
16× 16 0.009639 0.212000 0.000625 0.001204
32× 32 0.044499 3.260000 0.007980 0.005248
64× 64 0.577565 51.90000 0.114000 0.064761
128× 128 8.910743 - 0.680000 1.081716
256× 256 140.7894 - 27.60000 16.27126

3.3 Properties

A transformation of the signal is a change of its independent pa-
rameter. Thus the properties existing in the transform domain will
be entirely different from that in the data domain. Hence it is
important to analyze the properties existing in the new transform
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Table 3.6: Comparison of execution time for 2-D ISMRT using various
methods

Data size Computation time in seconds
MATLAB Python Cython Mex

2× 2 0.010902 0.000185 0.000019 0.000993
4× 4 0.012793 0.002240 0.000071 0.000982
8× 8 0.013090 0.026300 0.000548 0.000997
16× 16 0.016844 0.333000 0.004830 0.001231
32× 32 0.059485 0.530000 0.045800 0.004569
64× 64 0.669377 65.73000 0.494000 0.059040
128× 128 9.790258 - 2.530000 0.822007
256× 256 - - 82.20000 12.97599

domain representation and a few properties of SMRT are explored
here under. The properties will help in sequency domain analysis
of signals and systems for various signal processing applications.

3.3.1 General Properties

Let the SMRT of an N × N data matrix, x(n1, n2), 0 ≤ n1, n2 ≤
N − 1, be S(s1, s2), 0 ≤ s1, s2 ≤ N − 1. A few properties that hold
true for SMRT are presented below.

3.3.1.a Effect of Addition with a Constant

Basis images of AC SMRT coefficients in Fig. 3.4 show that same
number of data elements are involved in addition and subtraction
of each coefficient. Hence, addition of a constant, ’c’ , with all data
elements does not change the values of AC SMRT coefficients. DC
SMRT coefficient is the sum of all data elements and addition of ’c’
with all data elements increases the value of DC SMRT coefficient
by cN2.
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3.3.1.b Linearity

Let x1(n1, n2) and x2(n1, n2) be two data matrices of size N × N ,
such that

x1(n1, n2) SMRT←−→ S1(s1, s2) (3.8a)

and

x2(n1, n2) SMRT←−→ S2(s1, s2) (3.8b)

then for any constants a and b

ax1(n1, n2) + bx2(n1, n2) SMRT←−→ aS1(s1, s2) + bS2(s1, s2). (3.8c)

This linearity property indicates that SMRT satisfies superposition
principle and allows the analysis of multicomponent signals. Lin-
earity of different sized matrices also holds true when the smaller
matrix is zero padded to have the same size as the larger matrix.

3.3.1.c Orthogonality

Basis images have to be orthogonal if the inner product of any basis
with another basis should produce a zero value, whereas inner prod-
uct of any basis with itself should yield a constant value. SMRT
basis images hold this, confirming that they are orthogonal to each
other.

〈Ac1,c2,i1,i2 , Ac′1,c
′
2,i

′
1,i

′
2
〉 =

{
k, c1 = c′1 & c2 = c′2 & i1 = i′1 & i2 = i′2
0, otherwise

(3.9)

where k is some constant.
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3.3.1.d Redundancy Factor

MRT representation as given in Sec. 1.3.8 introduces redundancy
and some of the coefficients are either exactly same or sign reversed.
But SMRT representation is carrying unique elements present in
MRT leaving the redundant components. This causes loss of a por-
tion of the information from the data. This loss can be avoided
by incorporating a redundancy factor associated with each unique
coefficient. Thus a matrix of redundancy factor is to be computed
along with the SMRT matrix to have complete information about
the data. Redundancy of each MRT coefficient Y

(p)
k1,k2

can be ob-

tained as M
dm

, where dm = gcd(k1, k2,M) as given in Sec. 1.3.8.

Redundancy matrix of SMRT for N=8 is

R(s1, s2) =



1 4 4 4 4 2 2 1
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4
2 4 4 4 4 2 2 2
2 4 4 4 4 2 2 2
1 4 4 4 4 2 2 1


(3.10)

3.3.1.e Energy Conservation (Parseval’s Theorem)

Energy has to be conserved when the data is transformed into an-
other domain. Here, the redundancy factor has to be taken into
account while considering energy compaction. The Parseval’s rela-
tion, applied to SMRT, is given below.

N−1∑
n1=0

N−1∑
n2=0

|x(n1, n2)|2 =
1

N2

N−1∑
s1=0

N−1∑
s2=0

R(s1, s2) |S(s1, s2)|2 (3.11)
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3.3.1.f Energy Compaction

Energy compaction of a transform is its ability to redistribute sig-
nal energy into small number of transform coefficients. This implies
that many transform coefficients will contain very little energy since
total energy is preserved. Energy compaction property can be char-
acterized by the fraction of the total number of transform coeffi-
cients that carry a certain percentage of signal energy. For a given
percentage of energy, lower this fraction, better is the compaction
property of the transform.

Examples of two highly correlated artificial images (square, chess)
of size 64 × 64 are shown in Fig. 3.5. Position and value of DC

(a) (b)

Fig. 3.5: Artificial images (a)square (b)chess

coefficient of both DCT, normalized UMRT and normalized SMRT
are same. Absolute values of the normalized AC coefficient plots of
DCT, UMRT and SMRT are shown in Fig. 3.6. DCT packs most of
the signal energy into lower frequency coefficients and SMRT packs
signal energy to very few coefficients. SMRT of square concentrates
100 % and DCT packs 97.36 % of its energy into the first 33 × 33
AC coefficients (27%). SMRT coefficients of chess concentrates full
AC energy to 8 × 8 (1.6%) coefficients starting from (50,50) and
DCT only packs 32.21 % energy to the first 8 × 8 AC coefficients
starting from (1,1).

Thus, SMRT exhibits excellent energy compaction for highly cor-
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related images. For uncorrelated images, large valued transform
coefficients are spread out, whereas for correlated images, high val-
ued transform coefficients are packed. In this way, many coefficients
can be discarded through quantization prior to encoding.

(a) DCT

improved versions (b) UMRT (c) SMRT

(d) DCT (e) UMRT (f) SMRT

Fig. 3.6: Surface plots of absolute value of normalized transform coef-
ficients (a), b), (c) square, (d), (e), (f) chess
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3.3.2 Statistical Properties

In image processing, it is common to use statistical descriptors for
finding the pixel distributions. In the transform domain, image
parameters like mean, standard deviation, variance, minimum and
maximum pixel values are not directly available. If these values can
be computed directly in the transform/compressed domain, inverse
transform/decompression can be eliminated in many applications.

Mean and variance play important roles in wide range of image
processing applications. They provide strong indications of how
bright, uniform or regular a region is.

3.3.2.a Mean

Average brightness of an image is defined as the mean of the im-
age. DC SMRT coefficient holds most of the image energy and the
mean/average of an image can be found from S(0, 0) as

Mean (µs) =
S(0, 0)

N2
(3.12)

3.3.2.b Standard Deviation and Variance

Standard deviation (SD) is a measure of dispersion from the mean
and shows how the pixel values fluctuate around the mean. Vari-
ance represents the power of this fluctuation. Standard Deviation
can be obtained as the mean of root of sum of squares of all AC
SMRT coefficients considering redundancy.

SD (σ) =

√∑N−1
s1=0

∑N−1
s2=0 [S(s1, s2).R(s1, s2)]

2 − S2(0, 0)

N2 − 1
(3.13)
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Variance (σ2) =

∑N−1
s1=0

∑N−1
s2=0 [S(s1, s2).R(s1, s2)]

2 − S2(0, 0)

(N2 − 1)2

(3.14)

3.3.2.c Coefficient-of-Variation

Coefficient-of-variation (CV) is a well-known measure of relative
precision which is invariant to scale changes, but is not invariant to
location changes. It is defined as

CV =
σ

µs

.100% (3.15)

It is dimensionless and quantifies the degree of variability relative
to mean.

3.3.2.d Histogram Span

Histogram span is the dynamic range of the histogram. When the
histogram is symmetrical and bell shaped, 95.45 % and 99.73 % of
histogram population lies within ± 2σ and ± 3σ respectively. So
span or range of an image can be approximately represented as

Span ≈ 4σ (3.16)

Minimum pixel value ≈ Mean− Span

2
(3.17)

Maximum pixel value ≈ Mean +
Span

2
(3.18)

3.3.2.e Shape and Span of Histogram from Block SMRT

When block processing is used (usually is the case for image com-
pression) in the transform domain, the mean of each block can
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be computed directly from DC SMRT coefficient. Histogram con-
structed from the block mean values would give an approximation
of the image histogram. However, this preserves the shape and span
of the original histogram. The histogram of 512 × 512 lena image
and histogram built from DC SMRT coefficients of the 8× 8 blocks
are shown in Fig. 3.7 which justifies the above statement.

(a) (b)

Fig. 3.7: Histogram (a)Original image (b)Built from block DC SMRT
coefficients

3.3.3 Pattern based Properties

3.3.3.a Pattern Generation

Basis images of each SMRT coefficient are the visual representation
of the patterns in which the data elements are combined. New vi-
sual patterns can be derived from the basis images of coefficients
from suitable combinations. Group patterns of the basic DFT coef-
ficients [33] can be obtained by combining the basis images, Y

(p)
k1,k2

,
for all p. The diagonal patterns thus obtained, for N = 8, are
shown in Fig. 3.8. These basis images are highly directional and
the pixels in a specified orientation can be found using selected
coefficients. Dominant orientation in a data matrix can be easily
found by sensibly selecting the coefficients.
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(a) (b) (c) (d) (e)

Fig. 3.8: Group diagonal patterns of SMRT coefficients for N = 8

(a)Y
(p)
1,1 (b)Y

(p)
3,1 (c)Y

(p)
1,2 (d)Y

(p)
2,1 (e)Y

(p)
2,2

Fig. 3.9 shows diagonal group patterns by combining p′s of the
basic DFT coefficients for N = 16. These patterns clearly show the
convenience in finding the directional patterns in images.

Fig. 3.9: Group diagonal patterns of SMRT for N=16 (a)Y
(p)
1,1 (b)Y

(p)
3,1

(c)Y
(p)
5,1 (d)Y

(p)
7,1 (e)Y

(p)
1,2 (f)Y

(p)
3,2 (g)Y

(p)
1,4 (h)Y

(p)
2,1 (i)Y

(p)
6,1 (j)Y

(p)
4,1 (k)Y

(p)
2,2

(l)Y
(p)
6,2 (m)Y

(p)
4,2 (n)Y

(p)
2,4 (o)Y

(p)
4,4

These group patterns can be combined again to derive new patterns.
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Figs. 3.10 & 3.11 show the patterns thus obtained by combining two
and three group patterns respectively. Thus deriving new patterns
by combining coefficients helps in extracting texture patterns and
features from images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 3.10: Combined group patterns of two Y
(p)
k1,k2

for N = 16 (a) Y
(p)
1,1

&Y
(p)
10,2 (b) Y

(p)
1,1 &Y

(p)
14,2 (c) Y

(p)
2,2 &Y

(p)
12,4 (d) Y

(p)
12,4 &Y

(p)
13,1 (e) Y

(p)
12,4 &Y

(p)
15,1

(f) Y
(p)
4,4 &Y

(p)
10,2 (g) Y

(p)
4,4 &Y

(p)
6,2 (h) Y

(p)
7,1 &Y

(p)
6,2 (i) Y

(p)
4,4 &Y

(p)
15,1 (j) Y

(p)
2,2

&Y
(p)
14,2 (k) Y

(p)
6,2 &Y

(p)
10,2 (l) Y

(p)
2,4 &Y

(p)
12,4 (m) Y

(p)
3,1 &Y

(p)
6,2 (n) Y

(p)
4,4 &Y

(p)
12,4

(o) Y
(p)
2,1 &Y

(p)
14,2
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3.11: Combined group patterns of three Y
(p)
k1,k2

for N = 16 (a)

Y
(p)
1,1 , Y

(p)
2,2 & Y

(p)
4,4 (b) Y

(p)
1,1 , Y

(p)
5,1 & Y

(p)
9,1 (c) Y

(p)
1,1 , Y

(p)
12,4, & Y

(p)
14,2 (d)Y

(p)
3,1 ,

Y
(p)
12,4 & Y

(p)
14,2 (e) Y

(p)
1,2 , Y

(p)
2,1 & Y

(p)
15,1 (f) Y

(p)
2,4 , Y

(p)
4,2 & Y

(p)
4,4 (g) Y

(p)
4,1 , Y

(p)
4,2

& Y
(p)
4,4 (h) Y

(p)
1,1 , Y

(p)
4,1 , & Y

(p)
10,2 (i) Y

(p)
1,2 , Y

(p)
2,1 & Y

(p)
14,2 (j) Y

(p)
4,4 , Y

(p)
6,2 & Y

(p)
7,1

3.3.3.b Template Matching

Template matching, in spatial domain, is done from the product of
image and shifted versions of target image. This helps to locate the
regions identical to the target.

In SMRT domain, the magnitude of the coefficients shows the pres-
ence of templates similar to the basis images and thus helps to
identify and locate specified patterns within images directly.

3.4 Applications

SMRT is a general purpose tool that can be applied to a variety
of applications. It has significance in signal analysis due to its
sequency ordering and its simple implementation in terms of integer
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additions for transformation. The coefficients give a direct measure
of the variations in the signal. Some potential applications of SMRT
are presented in this section.

Texture can be defined from an image processing view point as
the spatial distribution of intensity variations in an image. The
different patterns present in the VR of SMRT make it suitable
for texture analysis. MRT based texture features were used for
identification and classification of objects [66], [159].

UMRT has been used for optimized Quad-tree partitioning of im-
ages and an adaptive block size transform coder for image com-
pression [68]. The purpose of the algorithm is to take advantage
of large uniform regions that can be coded as a single large unit
instead of smaller units and fine details of the image can be coded
using smaller units. This method is capable of partitioning im-
ages according to the statistics of the pixel values, which leads to
a much better image segmentation, consequently to higher image
compression ratios with lower image degradation.

3.4.1 Text Compression

Compression serves to save both storage space and transmission
time. Text compression provides an attractive option to store large
amounts of text efficiently. Documents can be scanned, compressed
and stored for later use. Compression is usually done in the trans-
form domain followed by quantization and entropy coding.

A transform, best suited for image compression, decorrelates the
image coefficients and transforms it into a sparse matrix with most
of its large valued elements concentrated into a small region. More
compression can be achieved by discarding irrelevant coefficients.
Then the resultant coefficients are entropy coded to achieve further
compression.
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Here, the potential of SMRT in text compression is explored. Text,
being binary data, takes two values 0 and 1 and hence better scope
for sparse SMRT matrix. Simulation is done in text documents of
different fonts, file extensions and sizes. Five documents, doc1 to
doc5, the first three of size 256 × 256 and the other two of size
512 × 512 are taken here for documentation. Documents chosen
are of different fonts and file extensions. The analysis is done for
lossless compression and hence the transform coefficients are not
quantized.

First, the image is partitioned into 8 × 8 non-overlapping blocks
and SMRT is applied on these blocks and are entropy coded. In
the decompression stage, the sequence is decoded and block-wise
inverse transform is performed.

Number of zeros and number of symbols of DCT, WT and SMRT
for lossless compression are computed and tabulated in Table 3.7.
It is found that amount of sparsity is more pronounced and hence
less number of symbols for SMRT based computation. This makes
SMRT more suitable for text compression.

Table 3.8 gives a comparison of compression ratios and bpp of
SMRT based lossless text compression using Huffman and arith-
metic coding schemes. It is found that arithmetic coding gives
better compression compared to Huffman coding.

Table 3.7: Comparison of sparsity and number of symbols of DCT and
SMRT for lossless compression

File name No. of zero values No.of symbols
DCT WT SMRT DCT WT SMRT

doc1 24583 8941 36508 14112 3421 63
doc2 29651 9218 39797 13499 3501 70
doc3 28702 9496 39998 12361 2673 78
doc4 144511 44044 177182 30316 5861 75
doc5 152475 44886 184113 27825 6730 78
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Table 3.8: Comparison of CR and bpp of SMRT for different coding
schemes for lossless compression

File name Huffman coding Arithmetic coding
CR bpp CR bpp

doc1 3.43 2.33 3.46 2.31
doc2 3.62 2.21 3.69 2.17
doc3 3.68 2.21 3.71 2.16
doc4 3.99 2.01 4.19 1.91
doc5 4.12 1.94 4.41 1.81

Now through this SMRT placement the MRT computation has been
modified by eliminating the redundant coefficients and organized
in a structured manner based on the variation in sequency. Thus
the computation of SMRT at present is a placement technique to
arrange unique MRT coefficients based on MRT computation.

3.5 Direct Computation of SMRT for

N a Power of 2

The computation of SMRT coefficients in Sec. 3.2.4 is through
MRT. Development of SMRT as an independent transform demands
a corresponding transform kernel.

3.5.1 Relation Between Independent Parame-
ters of MRT and SMRT Representations

SMRT is developed through MRT by the identification and arrange-
ment of unique MRT coefficients in the order of sequency and it is
found that a group of coefficients are with the same sequency and
can be considered as a sequency packet. Analysis of VR, corre-
sponding to different values of N , shows that size of the sequency
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packet depends on the values of N , c1 and c2. Number of rows or
columns of sequency packet can be obtained as M

c1
or M

c2
, except for

c1 = c2 = 0. When c1 and/or c2 is zero, the size of the sequency
packet in that direction is 1. For all other values of c1 and c2, the
size of sequency packet will be M

c1
× M

c2
.

Analogous to frequency indices k1, k2 in MRT, sequencies c1, c2 rule
SMRT. Also the role of phase index p in MRT can be replaced with
the row-column indices of the coefficients in a sequency packet.
These packets can be classified into two according to the way the
phase terms associated with a particular frequency of MRT repre-
sentation are arranged. ie c2 = 0 and c1 ≤ c2 (class 1) or c1 = 0
and c1 > c2 (class 2). Sequency packets with c1 = c2, c1 < c2 and
c1 > c2 are placed in the increasing order of sequency along diago-
nal, upper triangular and lower triangular part of the SMRT matrix
respectively. Within any sequency packet of class 1, the coefficients
with same (k1, k2) and different p’s are arranged along column while
those of different k1 and same k2 & p are placed, in the increasing
order, in different rows. For class 2 sequency packet, the coefficients
with same (k1, k2) and different p’s are arranged along rows while
those of different k1 and same k2 & p are placed, in the increasing
order, in different columns.

Thus, each sequency packet in SMRT matrix can be represented
as Sc1,c2 and each SMRT coefficient within the packet can be rep-
resented as Sc1,c2(i1, i2), where (i1, i2) represents row and column
indices of the coefficients within the packet with sequency (c1, c2).

A relation between the independent parameters k1, k2, p of the MRT
coefficients and c1, c2, i1, i2 of SMRT coefficients can be obtained by
properly analysing them. Table 3.9 shows the MRT parameters and
the corresponding SMRT parameters for sequency packet with se-
quency (1, 2), when N = 8. Similarly, the parameters for all the
sequency packets are tabulated and observed that there exists a
relationship. Identical relations are observed between these param-
eters for higher values of N . Table 3.10 shows the index relation
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between MRT and SMRT.

Table 3.9: MRT and SMRT parameters for SMRT coefficients within
the sequency packet (1, 2), when N=8

MRT parameters SMRT parameters
k1 k2 p c1 c2 i1 i2
1 2 0 1 2 0 0
1 2 1 1 2 1 0
1 2 2 1 2 2 0
1 2 3 1 2 3 0
3 2 0 1 2 0 1
3 2 1 1 2 1 1
3 2 2 1 2 2 1
3 2 3 1 2 3 1

Table 3.10: Relationship between MRT and SMRT parameters

c1 ≤ c2 c1 > c2
c2 = 0 c1 = 0

k1 c1(1 + 2.i2) c1(1 + 2.i1)
k2 c2 c2
p c1i1 c2i2

Generally, SMRT coefficients Sc1,c2(i1, i2); c1, c2 = 0, 20, 21, 22, ...,M ;
i1 = 0, 1, 2, ..., M

c1
− 1 and i2 = 0, 1, 2, ..., M

c2
− 1 for any 2-D data,

x(n1, n2), 0 ≤ n1, n2 ≤ N − 1, can be represented in terms of a
kernel, Ac1,c2,i1,i2(n1, n2), as

Sc1,c2(i1, i2) = 〈X,Ac1,c2,i1,i2〉 =
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)Ac1,c2,i1,i2(n1, n2)

(3.19)

where for class 1 sequency packet,
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Ac1,c2,i1,i2(n1, n2) =


+1, if ((n1c1(1 + 2i2) + n2c2))N − c2i1 = 0

−1, if ((n1c1(1 + 2i2) + n2c2))N − c2i1 = M

0, otherwise

(3.20)

and for class 2 sequency packet,

Ac1,c2,i1,i2(n1, n2) =


+1, if ((n1c1(1 + 2i1) + n2c2))N − c2i2 = 0

−1, if ((n1c1(1 + 2i1) + n2c2))N − c2i2 = M

0, otherwise

(3.21)
Eqs. 3.20 and 3.21 differ only by the interchange of i1 and i2 ac-
cording to the column wise or row wise arrangement of phase terms
within a packet.

〈X,Ac1,c2,i1,i2〉 denotes the inner product of the two N × N ma-
trices X and Ac1,c2,i1,i2 . The SMRT coefficient corresponding to
c1, c2, i1, i2 is simply the inner product of the data matrix with the
corresponding basis image. Eq. 3.19 expresses SMRT coefficients,
Sc1,c2(i1, i2), as a linear combination of N2 matrices, Ac1,c2,i1,i2 in
accordance with data matrix. All basis images of SMRT can be
obtained using Eqs. 3.20 & 3.21 by appropriately selecting c1, c2, i1
and i2. Thus Eq. 3.19 maps an N ×N data x(n1, n2), 0 ≤ n1, n2 ≤
N − 1 into a matrix of SMRT coefficients Sc1,c2(i1, i2), c1, c2 =
0, 20, 21, 22, ...,M ; i1 = 0, 1, 2, ..., M

c1
− 1 and i2 = 0, 1, 2, ..., M

c2
− 1.

Thus SMRT has become an independent transform rather than a
placement algorithm.

3.5.2 Forward SMRT Algorithm

An algorithm to compute and place the SMRT coefficients based on
the kernel is presented below. Let X be the N×N data matrix and
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S be the corresponding SMRT matrix. The kernel matrix Ac1,c2,i1,i2

can be computed using Eqs. 3.20 and 3.21.

1. Initialization

v = log2(M)

2. Computation of DC SMRT coefficient, S(0, 0)

S(0, 0) = 〈X,A0,0,0,0〉

3. Computation and placement of first row and column

a = 1
for i = 0 to v

c2 = 2i

for j = 0 to M
c2
− 1

S(0, a) = 〈X,A0,c2,0,i2〉

S(a, 0) = 〈X,Ac2,0,i2,0〉

a = a+ 1

end
end

4. Computation and placement of other coefficients

a = 1
for i = 0 to v

c1 = 2i, i1s = a, i2s = a.

for j = 0 to log(M
c1
)

c2 = c1.2
j

for i2 = 0 to M
c2
− 1
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for i1 = 0 to M
c1
− 1

S(i1s, i2s) = 〈X,Ac1,c2,i1,i2〉

if (c1 < c2) (% Computation of related coefficients )

S(i2s, i1s) = 〈X,Ac2,c1,i2,i1〉

end

i1s = i1s + 1

end

i1s = i1s − M
c1
, i2s = i2s + 1

end Mapping

end

a = a+ M
c1

end

3.5.3 Inverse SMRT Algorithm

Inverse SMRT algorithm based on the kernel is presented below.
Let S be the SMRT matrix and X be the corresponding data ma-
trix. Redundancy factors can be found from the sequencies. For
class 1 sequency packets, R(c1, c2) = M

c2
and for class 2 sequency

packets, R(c1, c2) =
M
c1
.

1. Initialization

v = log2(M)

2. Contributions of DC SMRT coefficient, S(0, 0)
for n1 = 0 to N − 1

for n2 = 0 to N − 1
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x(n1, n2) = S(0, 0)

end

end

3. Contributions due to first row and column

a = 1
for i = 0 to v

c2 = 2i

for j = 0 to M
c2
− 1

X = X + A0,c2,0,i2 ∗ S(0, a) ∗ M
c2

X = X + Ac2,0,i2,0 ∗ S(a, 0) ∗ M
c2

a = a+ 1

end
end

4. Contributions due to other coefficients

a = 1
for i = 0 to v

c1 = 2i, i1s = a, i2s = a.

for j = 0 to log(M
c1
)

c2 = c1.2
j

for i2 = 0 to M
c2
− 1

for i1 = 0 to M
c1
− 1

X = X + Ac1,c2,i1,i2 ∗ S(i1s, i2s) ∗ M
c1

if (c1 < c2)
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X = X + Ac2,c1,i2,i1 ∗ S(i2s, i1s) ∗ M
c2

end

i1s = i1s + 1

end

i1s = i1s − M
c1
, i2s = i2s + 1

end

end

a = a+ M
c1

end

x = x
N2

3.6 Conclusion

Sequency ordered placement of unique MRT coefficients in the form
an N ×N matrix is proposed. The important highlight is that be-
ing an integer-to-integer transform, computations require only ad-
ditions. SMRT basis functions and placement are discussed. Cer-
tain properties under general, statistical and pattern based cate-
gories are explored and good results are obtained. SMRT, with its
unique sequency ordered basis images, finds applications in many
image processing applications. Based on the placement derived for
the unique MRT coefficients, SMRT computation is developed as a
stand-alone transform.
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Chapter 4
Image Quality Assessment
Metrics

4.1 Introduction

Evaluation of images, after processing, is an important step to de-
termine how well the images are being processed. Literature shows
that most of the commonly used Image Quality Assessment (IQA)
metrics cannot adequately describe the visual quality of the en-
hanced image and there is no universal measure, that specifies both
objective and subjective validity of the enhancement for all types
of images.

Many metrics are available for the quantitative evaluation of im-
ages after processing in the spatial domain. PSNR, SNR, CNR,
WSNR, VSNR, NQM, UQI, IFC, SSIM, MSSIM, FSIM, RFSIM,
VIF, VIFP, MAE and AMBE are some of the commonly used FR
metrics in the literature. EME, EMEE, AME, AMEE, SDME are
some of the commonly used BR metrics. Statistical features like en-
tropy, contrast, correlation, homogeneity, energy, mean, standard
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deviation etc. can also be used for quality assessment along with
other metrics. A study of the existing metrics will be helpful to
find a suitable metric for image enhancement.

This chapter is a study about the existing FR & BR IQA metrics for
changes in brightness, contrast & sharpness considered separately
and a combination of all the three parameters. Analysis is done
for general as well as medical images and exposes the importance
of image statistical features in quantitative evaluation of image en-
hancement. A FR IQA metric, entitled Image Enhancement Metric
(IEM), is proposed.

Enhancement techniques described in this work are mostly SMRT
based and hence a metric that can directly measure the image qual-
ity in the SMRT domain will be of much use. SMRT based FR and
BR metrics, IEMSFR, IEMSBR, are also proposed.

4.2 Development of Image Enhancement

Metrics

Spatial domain and transform domain metrics, suitable to assess
the image quality, are important depending on whether the en-
hancement is carried out in the spatial or transform domain. Also,
a metric which is capable to measure both contrast and sharpness
can effectively measure the image quality after enhancement.

4.2.1 Spatial Domain

Changes in sharpness and contrast reflect intensity difference be-
tween a pixel and its neighbours. Therefore, it is a straightforward
idea to compare the absolute value of intensity difference between

94



Development of N × N SMRT for N a power of 2 and its Applications in Image Enhancement

every pixel and its neighbours corresponding to the reference and
enhanced images.

Proposed spatial domain FR IQA metric, IEM, can approximate
the contrast and sharpness of an image by dividing the image into
non-overlapping blocks. The absolute difference between the center
pixel and its 8-neighbours for all local windows corresponding to the
reference and enhanced image can give an indication of the change
in contrast and sharpness. Window size of 3 × 3 is enough as the
metric uses only eight neighbours.

IEM is defined as the ratio of sum of absolute values of the difference
of each pixel from its 8-neighbours of all non-overlapping blocks of
the enhanced image to the reference image and is mathematically
expressed as

IEM8n =

∑b1
l=1

∑b2
m=1

∑8
n=1

∣∣I l,me,c − I l,me,n
∣∣∑b1

l=1

∑b2
m=1

∑8
n=1

∣∣∣I l,mr,c − I l,mr,n

∣∣∣ (4.1)

where the image is divided into b1b2 blocks of size 3 × 3 and I l,me,c ,
I l,mr,c are the intensities of the centre pixel in (l,m)th block of the

enhanced and reference images respectively. I l,me/r,n, n = 1, 2, ..., 8
indicate the 8 neighbours of the centre pixel.

When the reference and enhanced images are identical, IEM=1.
IEM > 1 indicates improvement in contrast and sharpness of the
image whereas there is deterioration otherwise. Higher the value of
IEM, better the improvement in image contrast and sharpness.

The metric can also be defined from the difference of each pixel
from its 4-neighbours to reduce the computational overhead.

IEM4n =

∑b1
l=1

∑b2
m=1

∑4
n=1

∣∣I l,me,c − I l,me,n
∣∣∑b1

l=1

∑b2
m=1

∑4
n=1

∣∣∣I l,mr,c − I l,mr,n

∣∣∣ (4.2)
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It can be defined alternatively to understand the prominence of ver-
tical or horizontal edges in an image from the horizontal neighbours
or vertical neighbours alone as shown below.

IEMv =

∑b1
l=1

∑b2
m=1

∣∣∣I l,me,c − I l,me,ls

∣∣∣+ ∣∣I l,me,c − I l,me,rs
∣∣∑b1

l=1

∑b2
m=1

∣∣∣I l,mr,c − I l,mr,ls

∣∣∣+ ∣∣∣I l,mr,c − I l,mr,rs

∣∣∣ (4.3)

IEMh =

∑b1
l=1

∑b2
m=1

∣∣∣I l,me,c − I l,me,t

∣∣∣+ ∣∣∣I l,me,c − I l,me,b

∣∣∣∑b1
l=1

∑b2
m=1

∣∣∣I l,mr,c − I l,mr,t

∣∣∣+ ∣∣∣I l,mr,c − I l,mr,b

∣∣∣ (4.4)

where I l,me,ls , I
l,m
e,rs, I

l,m
e,t and I l,me,b are the intensity of the pixels in the

left, right, top and bottom of the centre pixel in (l,m)th block of
the enhanced image.

The metric is later modified to accommodate small variations in
pixel values. The modified form of Eq. 4.2 is expressed mathemat-
ically as

IEM =
1

b1.b2

b1∑
l=1

b2∑
m=1

20.ln

∑4
n=1

∣∣I l,me,c − I l,me,n
∣∣∑4

n=1

∣∣∣I l,mr,c − I l,mr,n

∣∣∣ (4.5)

When the reference and modified images are the same, this measure
takes the value as 0 whereas +ve or -ve when there is improvement
in contrast and sharpness or deterioration respectively.

4.2.2 SMRT Domain

Spatial domain metrics are disadvantageous for transform based
image enhancement techniques due to the added burden of the in-
verse transform. Hence, it is essential to derive a metric in the
same transform domain to assess the quality of the enhanced image.
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Thus, a new IQA metric based on SMRT is proposed in this section
to assess the quality of SMRT based enhancement techniques.

The basis functions associated with the SMRT coefficients include
different combinations of +1 and -1. So the different combinations
of the SMRT coefficients can vary the contrast and sharpness of im-
ages in the desired manner. The changes in contrast and sharpness
of an image in the spatial domain can reflect in a similar manner in
SMRT coefficients also. This enables the development of an SMRT
based IQA metric.

The analysis of various combinations of SMRT coefficients from
different sequency packets shows that the diagonal sequency pack-
ets are representative of the changes in contrast and sharpness.
Computational complexity is directly related to number of SMRT
coefficients involved in the metric computation. Considering these
facts and from the analysis of various combinations of the coeffi-
cients of the diagonal sequency packets, the diagonal elements of
the AC SMRT coefficients are found to be a better choice for the
formation of metric in the SMRT domain.

The proposed Blind-Reference SMRT metric, IEMSBR, is defined
as the square root of the sum of squares of all diagonal AC SMRT
coefficients with respect to size. The Full-Reference SMRT metric,
IEMSFR is defined as the ratio of the IEMSBR of the enhanced
image to the reference image.

IEMSBR =
100

N2

√√√√N−1∑
i=1

S2(i, i) (4.6)

IEMSFR =

√∑N−1
i=1 S2

e (i, i)∑N−1
i=1 S2

r (i, i)
(4.7)

where Se and Sr correspond to the SMRT matrix of the enhanced
and reference images respectively.
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For block level enhancement techniques, the evaluation method
based on Eqs. 4.6 and 4.7 are not suitable for block level enhance-
ment technique since they consider SMRT as a whole. So modified
metrics based on diagonal AC SMRT coefficients of all the blocks
of size B ×B are proposed as given below.

IEMSBR =
1

N2

√√√√ b1∑
l=1

b2∑
l=1

(B−1∑
i=1

S2(i, i)

)
(4.8)

IEMSFR =

√√√√ b1∑
l=1

b2∑
l=1

(∑B−1
i=1 S2

e (i, i)∑B−1
i=1 S2

r (i, i)

)
(4.9)

4.3 Methodology for Analysis of Assess-

ment Metrics

This study focuses on the usefulness of existing metric and the
metrics proposed in sections 4.2.1 & 4.2.2 for various enhancement
features such as brightness, contrast and sharpness. The image
data chosen to categorize the existing and proposed IQA metrics
should carry adequate diversity in contrast, sharpness and spread
of histograms etc. Hence eight images each from the general and
medical categories are selected. These include standard images like
lena, barbara, cameraman, pelicans, peppers, boat, aeroplane, gold-
hill and eight medical images of lung, brain, prostate, breast and
bone as shown in Figs. 4.1 and 4.2.

Primary objectives of the analysis are :

1. Explore the importance of the proposed metrics, IEM, IEMSBR

and IEMSFR, in brightness, contrast and sharpness measure-
ments.
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Fig. 4.1: General images considered for analysis

Fig. 4.2: Medical images considered for analysis

2. Performance comparison of the proposed metrics with exist-
ing IQA metrics, for image enhancement.

3. Suitability analysis of metrics for quantifying enhancement of
both general and medical images.

4. Assessment of statistical parameters for image enhancement.
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Variations in image brightness, contrast and sharpness are derived
through modification of the images in Figs. 4.1 & 4.2 and a data
set of five images each are formed for all 16 images. Brightness is
obtained from the linear shift of the histograms with no effect on
other two parameters. The image histogram is linearly stretched to
the required level for the adjustment of contrast alone. Averaging
filters are applied repeatedly to modify sharpness of the images.
Five sets each of brightness, contrast and sharpness adjusted images
of lena, as an example, with their respective histograms are shown
in Figs. 4.3, 4.4 & 4.5 respectively.

In Fig. 4.3 the brightness is increased by shifting the image his-
togram gradually without changing contrast and sharpness The
contrast is varied by compressing the image histogram to its centre
without changing brightness and sharpness in Fig. 4.4. The image
is smoothened successively by averaging filter as in Fig.4.5. How-
ever, contrast and brightness values seem to change when averaging
filters are used and hence cannot be made constant. All the three
parameters are varied simultaneously and the corresponding images
with their histograms are shown in Fig. 4.6.

Image Quality 1 (IQ1) stands for the poorest quality image (ie.
dark, low contrast, blurred) while IQ5 signifies the best quality
image (ie. bright, high contrast, sharp) with respect to brightness,
contrast and sharpness. Since optimal enhanced image is not known
a priori for image enhancement, most degraded/poor image of the
data set, IQ1, is considered as the reference image for the use of
FR metrics. IQ2, IQ3, IQ4 and IQ5 are progressively enhanced
images. The five images are considered separately for BR metrics
and statistical features.

SMRT based BR and FR metrics are computed from the SMRT of
the images (IQ1 to IQ5) through the application of Eqs. 4.6 and
4.7.
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Fig. 4.3: lena images of varying brightness and their histograms
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Fig. 4.4: lena images of varying contrast and their histograms
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Fig. 4.5: lena images of varying sharpness and their histograms
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Fig. 4.6: lena images of varying combinations of brightness, contrast
& sharpness and their histograms
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4.4 Simulation Results

The usefulness of the proposed metrics can be analyzed for mea-
surements of brightness, contrast, sharpness & their combination.
Existing IQA metrics, as mentioned in section 1.5, along with the
proposed metrics, in sections 4.2.1 & 4.2.2, are considered for anal-
ysis.

MeTriX MuX package of the Cornell Visual Communication Lab
[160] is used to compute PSNR, SNR, WSNR, VSNR, NQM, UQI,
IFC, SSIM, MSSIM, VIF, VIFP metrics. FSIM and RFSIM metrics
are computed using the on-line code available [161], [162].

Changes in the values of IQA metrics for variations in brightness,
contrast, sharpness and their combination are tested. A high value
is expected for all FR and BR metrics except MAE & AMBE where
these error values should be as small as possible for better similar-
ity between images. Statistical feature values such as correlation
and homogeneity should decrease as the contrast and sharpness in-
creases. Homogeneity measures the pixel similarity and correlation
measure how adjacent pixels are correlated. The metric values are
tabulated for all 16 images and their variations with different pa-
rameters are noted. The values in respect of brightness variations
for the BR metrics & statistical features, obtained for lena image,
are listed in Table 4.1 and that for FR metric in Table 4.2. The
corresponding contrast metrics values are listed in Tables 4.3 & 4.4,
sharpness metrics values in Tables 4.5 & 4.6 and that for a com-
bination of all the three parameters are shown in Tables 4.7 & 4.8
respectively.
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Table 4.1: BR metric and statistical feature values of lena image for
brightness variations

Metrics IQ1 IQ2 IQ3 IQ4 IQ5

B
R

m
et
ri
cs

EME 6.20 1.26 0.73 0.51 0.39
EMEE 0.94 0.07 0.04 0.03 0.02
AME 50.36 76.32 86.82 93.62 98.66
AMEE 0.20 0.10 0.07 0.05 0.04
SDME 24.29 20.03 11.15 5.46 0
IEMSBR 3.60 3.60 3.60 3.60 3.60

S
ta
ti
st
ic
al

fe
at
u
re
s Entropy 5.30 5.30 5.30 5.30 5.30

Contrast 0.031 0.042 0.046 0.052 0.054
Correlation 0.904 0.882 0.899 0.865 0.893
Homogeneity 0.985 0.979 0.977 0.974 0.973
Energy 0.65 0.60 0.50 0.61 0.45
Mean 22.54 72.54 122.54 172.54 222.54
SD 10.88 10.88 10.88 10.88 10.88

Table 4.2: FR metric values of lena image for brightness variations

Metrics IQ1,IQ2 IQ1,IQ3 IQ1,IQ4 IQ1,IQ5

PSNR(dB) 14.15 8.13 4.61 2.11
SNR(dB) -6.01 -12.03 -15.55 -18.05
CNR ∞ ∞ ∞ ∞
WSNR(dB) -5.84 -11.87 -15.39 -17.89
VSNR(dB) -1.34 -2.88 -3.32 -3.35
NQM 11.84 6.80 4.52 3.00
UQI 0.53 0.34 0.25 0.20
IFC 66.97 66.95 66.94 66.93
SSIM 0.53 0.34 0.25 0.20
MSSIM 0.92 0.87 0.83 0.80
FSIM 0.99 0.98 0.98 0.98
RFSIM 1 1 1 1
VIF 1 1 1 1
VIFP 1 1 1 1
MAE 50 100 150 200
AMBE 50 100 150 200
IEM 0 0 0 0
IEMSFR 1 1 1 1
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Table 4.3: BR metric and statistical feature values of lena image for
contrast variations

Metrics IQ1 IQ2 IQ3 IQ4 IQ5

B
R

m
et
ri
cs

EME 0.74 1.36 2.06 2.90 3.98
EMEE 0.04 0.08 0.13 0.21 0.35
AME 87.11 76.17 68.45 62.45 57.31
AMEE 0.07 0.10 0.13 0.16 0.18
SDME 11.03 13.72 14.30 15.63 16.60
IEMSBR 3.94 6.95 9.96 12.99 15.98

S
ta
ti
st
ic
al

fe
at
u
re
s Entropy 5.43 6.21 6.69 7.07 7.45

Contrast 0.04 0.11 0.12 0.20 0.23
Correlation 0.91 0.90 0.93 0.94 0.95
Homogeneity 0.98 0.95 0.94 0.91 0.91
Energy 0.49 0.32 0.23 0.16 0.13
Mean 130.80 130.80 130.80 130.80 130.80
SD 11.76 20.77 29.80 38.83 47.85

Table 4.4: FR metric values of lena image for contrast variations

Metrics IQ1,IQ2 IQ1,IQ3 IQ1,IQ4 IQ1,IQ5

PSNR(dB) 28.86 22.85 19.33 16.83
SNR(dB) 23.10 17.08 13.56 11.06
CNR 14.29 7.06 4.64 3.44
WSNR(dB) 23.47 17.45 13.93 11.43
VSNR(dB) 05.40 -0.62 -4.06 -6.47
NQM 23.69 17.67 14.15 11.65
UQI 0.83 0.66 0.53 0.44
IFC 9.44 9.45 9.74 10.17
SSIM 0.96 0.89 0.81 0.73
MSSIM 0.93 0.81 0.70 0.62
FSIM 0.96 0.88 0.81 0.74
RFSIM 0.50 0.17 0.07 0.03
VIF 1.55 2.01 2.40 2.74
VIFP 1.42 1.72 1.95 2.15
MAE 7.50 14.99 22.48 29.97
AMBE 1.68 3.37 5.06 6.75
IEM 10.80 17.76 22.92 29.90
IEMSFR 3.12 6.41 10.89 16.50
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Table 4.5: BR metric and statistical feature values of lena image for
sharpness variations

Metrics IQ1 IQ2 IQ3 IQ4 IQ5

B
R

m
et
ri
cs

EME 1.88 2.06 2.25 2.63 3.98
EMEE 0.124 0.142 0.161 0.201 0.351
AME 73.53 73.38 72.39 69.79 57.31
AMEE 0.11 0.12 0.13 0.14 0.18
SDME 12.74 13.10 13.60 14.39 16.60
IEMSBR 13.39 13.66 14.03 14.50 15.98

S
ta
ti
st
ic
al

fe
at
u
re
s Entropy 7.39 7.40 7.41 7.42 7.45

Contrast 0.09 0.10 0.11 0.13 0.23
Correlation 0.98 0.98 0.97 0.97 0.95
Homogeneity 0.96 0.95 0.95 0.94 0.91
Energy 0.16 0.16 0.15 0.15 0.13
Mean 130.80 130.80 130.80 130.80 130.80
SD 45.78 46.14 46.58 46.97 47.85

Table 4.6: FR metric values of lena image for sharpness variations

Metrics IQ1,IQ2 IQ1,IQ3 IQ1,IQ4 IQ1,IQ5

PSNR(dB) 35.48 35.59 30.55 26.63
SNR(dB) 29.74 29.84 24.81 20.88
CNR(dB) 28.81 29.22 16.37 10.45
WSNR(dB) 31.44 33.71 27.84 24.77
VSNR(dB) 25.42 26.49 20.02 16.31
NQM 23.59 26.59 20.62 17.49
UQI 0.91 0.88 0.78 0.56
IFC 4.42 4.32 2.71 1.93
SSIM 0.98 0.96 0.92 0.80
MSSIM 0.99 0.99 0.97 0.94
FSIM 0.98 0.98 0.95 0.92
RFSIM 0.73 0.78 0.59 0.47
VIF 0.72 0.78 0.58 0.48
VIFP 0.74 0.76 0.60 0.45
MAE 2.29 2.22 3.97 6.54
AMBE 0.12 0.26 0.38 0.69
IEM 1.12 2.95 5.92 19.86
IEMSFR 1.04 1.10 1.17 1.42
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Table 4.7: BR metric and statistical feature values of lena image for
brightness, contrast and sharpness variations

Metrics IQ1 IQ2 IQ3 IQ4 IQ5

B
R

m
et
ri
cs

EME 2.10 2.24 2.47 2.97 6.24
EMEE 0.15 0.16 0.18 0.25 1.02
AME 56.00 62.13 65.41 67.65 51.46
AMEE 0.118 0.123 0.129 0.140 0.199
SDME 17.22 17.33 16.82 16.28 18.52
IEMSBR 5.8 8.4 11.1 14.2 18.5

S
ta
ti
st
ic
al

fe
at
u
re
s Entropy 6.13 6.65 7.04 7.35 7.45

Contrast 0.032 0.046 0.069 0.100 0.288
Correlation 0.962 0.972 0.976 0.976 0.954
Homogeneity 0.984 0.977 0.956 0.950 0.889
Energy 0.396 0.269 0.195 0.157 0.105
Mean 42.28 60.19 78.21 96.37 114.82
SD 19.19 27.51 36.06 45.02 55.46

Table 4.8: FR metric values of lena for brightness, contrast and sharp-
ness variations

Metrics IQ1,IQ2 IQ1,IQ3 IQ1,IQ4 IQ1,IQ5

PSNR(dB) 22.21 16.14 12.55 9.88
SNR(dB) 7.41 1.35 -2.24 -4.91
CNR 7.18 4.59 3.67 3.05
WSNR(dB) 7.59 1.52 -2.06 -4.66
VSNR(dB) 7.30 -1.76 -7.86 -12.52
NQM 7.65 1.51 -2.13 -4.82
UQI 0.78 0.58 0.39 0.16
IFC 6.10 5.27 4.28 3.27
SSIM 0.93 0.79 0.64 0.42
MSSIM 0.95 0.86 0.74 0.60
FSIM 0.97 0.91 0.82 0.72
RFSIM 0.69 0.34 0.14 0.05
VIF 1.26 1.46 1.52 1.42
VIFP 1.21 1.23 1.09 0.71
MAE 17.91 35.94 54.10 72.69
AMBE 17.91 35.93 54.09 72.54
IEM 4.82 9.12 13.71 29.52
IEMSFR 2.10 3.72 6.03 10.31
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4.5 Analysis of Assessment Metrics

A comparison of changes in the values of the IQA metrics and
statistical features for variations in brightness, contrast, sharpness
and a combination of the three corresponding to the 16 images
are shown in Table 4.9. The symbols used in the table have the
following meaning.

• D : Decreases.

• I : Increases.

• C : Constant.

• NP : Variation not in Proper order.

• ∗ : For majority of images, the mentioned variation is true
but for a few images there is deviation from the mentioned
variation.

Following observations are made based on Table 4.9.

1. Brightness :

(a) Values of PSNR, SNR, WSNR, VSNR, NQM, UQI, IFC,
SSIM, MSSIM, FSIM, EME, EMEE, AMEE and SDME
decrease with increase in image brightness for medical
as well as general images.

(b) Values are constant for CNR, RFSIM, VIF, VIFP, IEM,
IEMSFR, IEMSBR, entropy and SD.

(c) MAE, AMBE, AME and mean give increasing values
with increase in image brightness.

(d) The values of statistical features such as contrast, corre-
lation and homogeneity have no fixed variation pattern
for all types of images.
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Table 4.9: Comparison of assessment metrics and statistical features
Metrics Brightness Sharpness Contrast Combination

General Medical General Medical General Medical General Medical

PSNR D D D * D * D D D D
SNR D D D * D * D D D D
CNR ∞ ∞ D * D * D D D D
WSNR D D D * D * D D D D
VSNR D D D * D * D D D D
NQM D D D * D * D D D D
UQI D D D D D D D D
IFC D * D D D D * D D D
SSIM D D D D D D D D
MSSIM D D D D * D D D D
FSIM D D D D * D D D D
RFSIM C C D * D * D D D D
VIF C C D * D * I I NP NP
VIFP C C D * D * I I NP NP
MAE I I I * I * I I I I
AMBE I I I I * I I I I
IEM C C I I I I I I
IEMSFR C C I I I I I I

EME D D I I * I I * I NP
EMEE D D I I * I I I NP
AME I I D * D * D D * NP NP
AMEE D D I I * I I * NP NP
SDME D D I I * I * I * NP NP
IEMSBR C C I I I I I I

Entropy C C I * NP I I NP NP
Contrast NP NP I I I NP NP I
Correlation NP NP D D I * NP NP NP
Homogeneity NP NP D D D NP D D
Mean I I NP NP C C I I
SD C C NP NP I I I I

(e) Objective scores obtained for AME and mean are highly
consistent with increase in brightness for general as well
as medical images. Hence these metrics can be used for
measuring the brightness improvement for all types of
images. A plot of the above metrics for brightness vari-
ations in the case of general images is shown in Fig.4.7

2. Contrast :

(a) Values of PSNR, SNR, CNR, WSNR, VSNR, NQM,
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Fig. 4.7: Plot of useful parameters for increasing variations of bright-
ness

UQI, SSIM, MSSIM, FSIM and RFSIM decrease with
increase in image contrast for all medical as well as gen-
eral images under study.

(b) VIF, VIFP, MAE, AMBE, IEM, IEMSFR, IEMSBR, EMEE,
entropy and SD give increasing values with increase in
image contrast for all images. EME, AMEE, SDME val-
ues increase for most of the images.

(c) Statistical parameters like contrast and correlation val-
ues increase whereas homogeneity decreases with image
contrast for general images. There is no fixed variation
pattern for medical images.

(d) Objective scores obtained for VIF, VIFP, IEM, IEMSFR,
EMEE, IEMSBR, entropy and SD are highly consistent
with subjective measures for natural as well as medical
images. Hence these metrics can be used for measuring
the contrast improvement for all types of images. A plot
of the above metrics for contrast variations is shown in
Fig.4.8
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Fig. 4.8: Plot of useful parameters for increasing variations of contrast

3. Sharpness :

(a) Scores obtained for PSNR, SNR, CNR, WSNR, VSNR,
NQM, UQI, IFC, SSIM, MSSIM, FSIM, RFSIM, VIF,
VIFP, AME, correlation and homogeneity generally de-
crease with increase in image sharpness.
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(b) Values of IEM, IEMSFR, IEMSBR and statistical con-
trast feature increase strictly with increase in image sharp-
ness.

(c) Use of averaging filters affects contrast and brightness of
images and hence there are variations for mean and SD.

(d) Objective scores obtained for IEM, IEMSFR, IEMSBR

and the statistical contrast, correlation and homogeneity
features are highly consistent with subjective measures
for medical and general images. A plot of the above
metrics with sharpness variations is shown in Fig.4.9.

4. Combined Brightness, Contrast and Sharpness :

(a) Values of PSNR, SNR, CNR, WSNR, VSNR, NQM,
UQI, IFC, SSIM, MSSIM, FSIM, RFSIM and homogene-
ity decrease with increase in image quality for medical
as well as general images.

(b) MAE, AMBE, IEM, IEMSFR, IEMSBR, mean and SD
give increasing values with increase in image quality.

(c) There is no fixed variation pattern for VIF, VIFP, EME,
EMEE, AME, AMEE, SDME and the statistical features
such as entropy, contrast and correlation.

(d) Objective scores obtained for IEM, IEMSFR, IEMSBR,
mean, homogeneity and SD are highly consistent with
subjective measures for natural as well as medical im-
ages. Hence these metrics can be used to measure a com-
bination of brightness, contrast and sharpness improve-
ments for all types of images. A plot of the above metrics
for variations in the parameters is shown in Fig.4.10
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Fig. 4.9: Plot of useful parameters for increasing sharpness variations
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Fig. 4.10: Plot of useful parameters for increasing variations of bright-
ness, sharpness and contrast
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4.6 Identification of Useful Assessment

Metrics

Useful variations in quantitative metrics for brightness, contrast,
sharpness and their combination are considered for general and
medical images separately and the metrics variations are tabulated
in Table 4.10. The list of useful metrics for all types of images un-
der study is given in Table 4.11 and the following observations are
drawn from the table.

• AME can be used to measure brightness variations only.

• VIF, VIFP, EMEE and entropy can be used to measure con-
trast variations only.

• Statistical parameters like contrast and correlation can be
used to measure sharpness only.

• Mean gives an indication of the brightness variations.

• SD gives a measure of the histogram spread and hence con-
trast.

• IEM, IEMSFR, IEMSBR along with homogeneity, mean & SD
can be used for enhancement which is a combination of bright-
ness, contrast and sharpness improvements.

Metrics which are capable to assess variations such as contrast and
sharpness of general as well as medical images is the proposed met-
rics, IEM, IEMSFR and IEMSBR. Mean gives a measure of the
brightness whereas SD accords a measure of contrast. So, in spatial
domain image enhancement applications, IEM along with mean and
SD can be used for contrast and sharpness measurements. Metrics
such as IEMSFR and IEMSBR, along with mean and SD (Mean and
SD can be measured from SMRT coefficients as given in Eqs. 3.12
and 3.13) can be used for enhancement applications in the SMRT
domain.
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Table 4.10: Usefulness of assessment metrics and statistical features
for image enhancement

Metrics Brightness Sharpness Contrast Combination
General Medical General Medical General Medical General Medical

VIF Constant Constant - - Yes Yes - -
VIFP Constant Constant - - Yes Yes - -
IEM Constant Constant Yes Yes Yes Yes Yes Yes
IEMSFR Constant Constant Yes Yes Yes Yes Yes Yes

EMEE - - Yes - Yes Yes Yes -
AME Yes Yes - - - -
SDME - - Yes - - - - -
IEMSBR Constant Constant Yes Yes Yes Yes Yes Yes

Entropy Constant Constant - - Yes Yes - -
Contrast - - Yes Yes Yes - - Yes
Correlation - - Yes Yes - - - -
Homogeneity - - Yes Yes Yes - Yes Yes
Mean Yes Yes - - Constant Constant Yes Yes
SD Constant Constant - - Yes Yes Yes Yes

Table 4.11: Usefulness of assessment metrics and statistical features
for all types of images

Metrics Brightness Sharpness Contrast Combination

VIF - - Yes -
VIFP - - Yes -
IEM - Yes Yes Yes
IEMSFR - Yes Yes Yes

EMEE - - Yes -
AME Yes - - -
IEMSBR - Yes Yes Yes

Entropy - - Yes -
Contrast - Yes - -
Correlation - Yes - -
Homogeneity - Yes - Yes
Mean Yes - - Yes
SD - - Yes Yes

4.7 Validation

Validation of the useful metrics listed in Table 4.11 is an impor-
tant step towards successful development of practical IQA metrics.
Categorical Subjective Image Quality (CSIQ)[163] database of the
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Computational Perception and Image Quality Lab is used for the
validation of the above study for general images and to find the
usefulness of the proposed metrics. It consists of 30 general im-
ages, each at four levels of contrast and five levels of sharpness
variations. The images are natural images from animal, landscape,
people, plants and urban categories. They are subjectively rated
based on a linear displacement of the images across four calibrated
LCD monitors placed side by side with equal viewing distance to
the observer. Validation of brightness and combined changes in
brightness, contrast and sharpness are done by generating 5 levels
of the 30 original images from the CSIQ database.

Validation of medical images is done by deriving 5 brightness, con-
trast, sharpness and their combinations from 30 medical images of
abdomen, brain, teeth, prostate, bone and breast. Total number of
images used for testing and validation are shown in Table 4.12

Table 4.12: Number of images used for analysis

Variations Testing(8) validation (30)

Brightness 5x8 5x30
General Contrast 5x8 4x30

Sharpness 5x8 5x30
All three 5x8 5x30

Brightness 5x8 5x30
Medical Contrast 5x8 5x30

Sharpness 5x8 5x30
All three 5x8 5x30

Total 320 1170

All metrics listed in Table 4.11 are used for validation and the
results are shown in Table 4.13. On comparison, the validation
results obtained are in excellent agreement with test results.
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Table 4.13: Validation results of useful metrics and statistical features

Metrics brightness Sharpness Contrast Combination

VIF True - True -
VIFP True - True -
IEM True True True True
IEMSFR True True True True

EMEE - - True -
AME True - - -
IEMSBR True True True True

Entropy True - True -
Contrast - True - -
Correlation - True - -
Homogeneity - True - True
Mean True True True True
SD True True True True

4.8 Conclusion

Image Enhancement Metric (IEM) in the spatial domain and SMRT
based FR and BR metrics, IEMSFR & IEMSBR, are proposed.
Study of 18 FR IQA (including the proposed metrics), 6 BR IQA
(including the proposed metric) and 7 statistical feature metrics
is performed for image enhancement applications. It has been ob-
served that measures such as mean and AME can be used to assess
the brightness alone and VIF, VIFP, EMEE, SD and entropy to
judge contrast alone. The proposed IQA metrics can be used to
evaluate improvements in contrast, sharpness and their combina-
tion for general and medical images. A validation is also done to
substantiate the findings obtained from the analysis. All the above
proposed metrics are computationally simple and can be used for
all types of images.
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Chapter 5
SMRT based Global Image
Enhancement Techniques

5.1 Introduction

The important goal of image enhancement is to have the processed
image more suitable than the original image for required task or
purpose. It can be done in two ways - global enhancement and block
level enhancement. Global enhancement method utilizes the entire
image for intensity transformation and visual quality of low con-
trast image can be improved globally. In block level enhancement
methods, image is divided into blocks and intensity transformation
is applied on every block.

Most of the image enhancement techniques are performed in the
spatial domain. Converting an image into transform domain offers
additional capabilities that are very powerful, but requires some
new way to interpret data.

The competence of SMRT in linear and nonlinear global image en-
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hancement is investigated in this chapter. Visual appearance of
an image can be significantly enhanced by brightness improvement
and contrast stretching. Here the image brightness and contrast
are improved by modifying DC and AC SMRT coefficients sepa-
rately. Both techniques are compared with image enhancement
using Histogram Equalization (HE), one of the well known global
image enhancement techniques in spatial domain. The scope of
SMRT in sharpness enhancement is also examined. Similar en-
hancement methods applied to wavelet transform coefficients are
also verified.

The effectiveness of the above methods are quantitatively assessed
using the existing metrics such as VIFP, SDME, EMEE and pro-
posed metrics IEM, IEMSFR and IEMSBR.

5.2 Linear Enhancement Technique

Uniform scaling is the simplest linear contrast stretching method
and this technique is applied in Linear Enhancement Technique
(LET). The pixel values in the original and the modified images
follow a linear relationship and distribute the pixel values linearly
between the extremes of histogram range. Monochrome images
of size N × N contain N2 pixels, described by gray level intensi-
ties, whereas colour images of the same size contain 3 arrays of N2

pixel level intensities corresponding to three components of colour
scheme. So, gray-scale images and colour images are considered
separately while discussing image enhancement techniques.

5.2.1 Gray-scale Images

The section deals with linear enhancement technique for gray-scale
images based on SMRT discussed in chapter 3. The improvements
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in brightness and contrast are investigated by applying scaling fac-
tors cdc and cac on DC & AC SMRT coefficients respectively.

The brightness and contrast adjusted SMRT matrix can be ex-
pressed as

S̃(i, j) =

{
cdc.S(i, j), if i = j = 0

cac.S(i, j), otherwise

Experimental studies show that if cdc>1, the histogram shifts in
the increasing direction of intensity levels (right) and if it is less
than one, the histogram shifts in the decreasing direction of inten-
sity levels (left) without changing its shape and span. Hence, the
brightness of the image can be increased as shown in Fig. 5.1, by
scaling S(0,0), without any change in the contrast.

Experimental studies also show that the SD and contrast of an im-
age can be changed by scaling AC SMRT coefficients while preserv-
ing the image mean. The histogram gets stretched or compressed
when the scaling factor cac is greater or less than one and accord-
ingly modifying the image contrast. Fig. 5.2 shows changes in con-
trast of the image and the corresponding histograms for different
values of cac.

The histogram stretches and extends to both ends when cac is made
higher and higher. The histogram gets split and depart to the two
ends when this value is increased further. Finally it becomes a
black and white image with values ’0’ and ’255’.

The image mean or centre of the image histogram can be brought
to the centre of histogram range (2(n−1) is the centre of histogram
range for n bit image representation) by scaling S(0, 0) for maxi-
mum enhancement. Then, contrast can be maximized by scaling
AC SMRT coefficients.
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Fig. 5.1: Images and their histograms (a)&(b) Original (c)&(d) cdc=2,
cac=1 (e)&(f) cdc=3, cac=1

5.2.1.a Brightness variations: DC SMRT coefficient

Scaling of DC SMRT coefficient, to improve brightness, can be done
in two ways. In the first method, the scaling is done so as to bring
the image mean to the centre of histogram range. The centre of
image histogram is shifted to the centre of histogram range in the
second method.

Modification of Image Mean Average value or mean, µs, of
an image can be found from DC SMRT coefficient using Eq. 3.12.
When cdc is changed regularly, regular shifts in image mean is ob-
served without any change in SD. The lower(rl) and upper(rh) val-
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Fig. 5.2: Images and their histograms (a)&(b) Original (c)&(d) cdc=1,
cac=2 (e)&(f) cdc=1, cac=3

ues of the image histogram also change in a linear manner. A plot
of scaling factor versus µs, rl and rh values for lena image is shown
in Fig. 5.3. The histogram span, rh − rl, is same for various cdc
values.

The shift in histogram to bring the image mean to the centre of
histogram range (2(n−1)) can be found from

rshift = 2(n−1) − µs =
S̃(0, 0)− S(0, 0)

N2
(5.1)

Thus DC scaling factor,

cdc =
rshift ∗N2

S(0, 0)
+ 1 (5.2)
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Fig. 5.3: Plot of mean, rl and rh of lena image for changes in cdc

Shift of Image Histogram Centre The centre of image his-
togram, rc, can be found from rl and rh values of the image his-
togram as given below.

rc = (rl + rh)/2 (5.3)

The histogram shift to change the image histogram centre to 2(n−1)

is

rshift = 2(n−1) − rc (5.4)

and cdc can be found from equation(5.2).

So by scaling S(0, 0) alone, the image mean and hence brightness
can be varied with no change in SD.
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5.2.1.b Contrast variations: AC SMRT Coefficients

Image histogram can be stretched suitably by scaling AC SMRT
coefficients. Fig. 5.4 shows a linear relationship between the scal-
ing factor cac and the parameters SD, rl and rh for lena image.
Histogram spread, rh − rl, also increases in a linear manner with
increase in cac. A scaling factor which stretches the histogram to
its ends gives the maximum contrast.

Fig. 5.4: Plot of SD, rl and rh of lena image for changes in cac

The shift in maximum pixel value, rhshift, for 0.1 increase in scaling
factor is calculated. The AC scaling factor is determined as

cac =
2n − (rh + rshift)

10 ∗ rhshift
+ 1 (5.5)
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5.2.1.c Sharpness Variations

Image edges play an important role in improving visual quality.
Sharpening techniques enhance the edges by improving borders and
details. Transform based sharpness enhancement methods gener-
ally modify high frequency components.

The effect of scaling a selected set of SMRT coefficients is illustrated
using examples. Fig. 5.5 shows the original and reconstructed im-
ages with all the diagonal blocks, except DC SMRT coefficient,
scaled by 1.5. Here, quarter of image is seen to superimpose with
the four quadrants. This effect is clearly visible in cameraman im-
age.

Fig. 5.6 demonstrates the effect of scaling sequency packets on the
diagonal of the SMRT matrix with a scaling factor 1.5. Here, as
the scaling is restricted only to high sequency components, the im-
ages seem to appear sharp without distortion in the homogeneous
regions. Best results are obtained when the SMRT coefficients with
c1, c2 ≥ 16 are scaled. The SMRT coefficients with c1, c2 ≥ 16 are
scaled using different scaling factors 1.5, 2, 2.5 and the original &
reconstructed images of lena image are shown in Fig. 5.7. Distor-
tion increases as the scaling factor is increased.

The above analysis shows that scaling the high sequency SMRT co-
efficients may not sharpen images. In SMRT, basis functions take
values +1, -1 or 0, indicating that the pixel at the respective po-
sition is completely added, subtracted or not considered at all. So
selective scaling of high sequency coefficients results in sharpness
of edges and at the same time distortions can be seen at the homo-
geneous regions with artifacts more prominent as scaling factor is
increased.
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Fig. 5.5: (a)Original images (b)Reconstucted images by scaling uni-
formly all diagonal blocks having same row column sequency by a factor
1.5

5.2.2 Extension to Colour Images

The scope of the enhancement technique discussed in section 5.2.1
is investigated for colour images. Colour image can be enhanced
either in the RGB space or it can be done in the perceptual colour
spaces. Many colour spaces are defined and some of them are HSV,
YCbCr, YUV, YIQ etc.

When humans see a colour, they interpret it by its luminance and
chrominance components. However the RGB colour space does not
correspond well to how humans interpret colours in such a way.
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Fig. 5.6: (a)Original lena image, reconstructed image by scaling uni-
formly (b) c1, c2 ≥ 4 (c)c1, c2 ≥ 8 (d) c1, c2 ≥ 16 by a factor 1.5

Fig. 5.7: (a)Original lena image (b) Reconstructed image by scaling
uniformly c1, c2 ≥ 16 by a factor (b) 1.5 (c) 2 (d) 2.5

Hence the processing of colour image requires a different colour
space or colour model that intuitively describes human interpreta-
tion of colours. YCbCr colour space decouples the intensity compo-
nent from the colour carrying chrominance component in a colour
image. So YCbCr colour space, widely used in colour image pro-
cessing, is chosen in this study.

The procedure for colour image enhancement is explained below.
The RGB pixel values of an image are converted to YCbCr values
first. The enhancement method used for gray-scale images is ap-
plied only to the luminance component (Y) while keeping Cb and Cr
the same. This will retain the computational requirement of colour
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image enhancement similar to that of gray-scale images. Inverse
SMRT of the modified luminance component is found. Enhanced
image in the YCbCr space is converted back to RGB space.

5.2.3 Results and Analysis

LET is applied to low contrast images or low contrast sub-images
of general, mammogram, text and fingerprint images. The method
scales DC and AC SMRT coefficients separately. Scaling of DC
SMRT coefficient and uniform scaling of AC SMRT coefficients
are performed to change the brightness and contrast of the im-
ages respectively and the variations in contrast and brightness are
observed.

Histogram Equalization (HE), one of the fundamental techniques
for global image processing, distributes gray levels uniformly over
the dynamic range of gray levels. It produces an output image with
a flattened histogram having uniform distribution and is used here
for comparing the contrast improvement of the LET. The effect of
scaling the image Wavelet Transform coefficients is also investigated
to compare the significance of the proposed method.

5.2.3.a General Images

General images, possessing different histogram shapes, span etc.
are selected for analysis. The proposed method is tested on several
low contrast images holding different contrast levels. Three general
images, woman, lena, moon and their enhanced images using HE,
LET with respective histograms are shown in Figs. 5.8, 5.9 and
5.10. The woman is a low contrast, dark image whereas lena and
moon are medium brightness images with medium contrast and low
contrast respectively. cdc and cac values, necessary for increasing
the contrast levels, utilizing the maximum histogram range, are
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specified in the respective figures. The cdc value indicates a shift in
histogram and cac value indicates the amount of contrast stretching.
In all cases, linear stretching of the histogram to both ends utilizing
the entire histogram range is observed.

Fig. 5.8: Images and their histograms (a)&(b)Original(woman), En-
hanced using (c)&(d)HE (e)&(f)LET (cdc=2.66 and cac=4.15)

Fig. 5.11 shows the original baboon, barbara, goldhill, peppers images
with the respective images of HE and LET based image enhance-
ment techniques.
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Fig. 5.9: Images and their histograms (a) & (b)Original(lena), En-
hanced using (c)&(d)HE (e)&(f)LET (cdc=1.16 and cac=1.38)

5.2.3.b Mammogram Images

Generally, for high contrast medical images, there is no further
scope for enhancement by contrast stretching. But there may be
certain objects of interest that are hidden as low contrast sub-
images. In such cases, the global enhancement method can be used
to view images locally.

Mammograms are usually not well defined and inspection of hid-
den objects are important in the early detection of breast cancer.
The local regions under suspect is normally low in contrast. En-
hancement of such low contrast image areas would help radiologists
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Fig. 5.10: Images and their histograms (a) & (b)Original(moon), En-
hanced using (c)&(d)HE (e)&(f)LET (cdc=1.18 and cac=2.01)

in interpreting data correctly and results in proper diagnosis. A
mammogram image, mdb002, from Mini-MIAS digital mammog-
raphy database [164] and a low contrast sub-image are shown in
Fig. 5.12. The bright sub-image is enhanced using HE and LET.
The enhanced images with their respective histograms are shown
in Fig. 5.13. Comparison of the original and modified images us-
ing LET shows an increase in contrast, resulting in enhancement of
calcification areas of mammogram sub-image.

More images from MIAS database are used to find the enhancement
of low contrast areas. Sub-images containing calcifications, benign
and malignant masses are identified and the proposed method is

134



Development of N × N SMRT for N a power of 2 and its Applications in Image Enhancement

Fig. 5.11: (a)Original images, Enhanced using (b)HE (c)LET

Fig. 5.12: Mammogram (mdb002 ) image and a low contrast sub-image
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Fig. 5.13: Mammogram images and their histograms (a)Original, en-
hanced using (c)HE (e)LET (cdc=0.60 and cac=8.34)

applied to these images. The original images, Histogram Equalized
images and the enhanced images using LET are shown in Figs. 5.14,
5.15, 5.16, for calcification, benign and malignant masses respec-
tively. It is observed that in all cases, the contrast of the foreground
as well as background areas have improved resulting in overall en-
hancement.

5.2.3.c Comparison of Quantitative Measures

Subjective and objective evaluations of the existing and proposed
method are useful to determine how efficient the proposed method
is for enhancement. The HE and LET methods are compared us-
ing quantitative metrics. The improvement in contrast and visual
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Fig. 5.14: Low contrast calcification areas of mammograms (a)Original
images(mdb009, 170, 204, 227 ) Enhanced images using (b) HE (c) LET

quality of images can be verified using existing IQA metrics such
as VIFP, EMEE, SDME and the proposed metrics such as IEM,
IEMSFR, IEMSBR. Table 5.1 shows the existing metric values of
HE and LET for general and mammogram images. Since SDME
and EME are blind reference metrics, they are computed for origi-
nal image also.

Table 5.1 shows that mean of Histogram Equalized image is con-
stant at 128. Mean value falls above/below according to image his-
togram statistics for LET, since the value of cdc is selected to shift
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Fig. 5.15: Low contrast areas of mammograms containing benign tu-
mours (a)Original images(mdb005, 010, 019, 132 ) Enhanced images us-
ing (b) HE (c) LET

the centre of image histogram to the centre of histogram range. SD
of HE is also constant at 75 whereas for LET, its value is less than
HE. For all images, VIFP and SDME values show that enhance-
ment of LET is better compared to HE. For majority of the images,
EMEE values are better for HE.

The values of IEM also show that LET is superior to HE as seen in
Table 5.2. The SMRT metrics, IEMSFR and IEMSBR can be used
to compare methods that use SMRT as the transform. However,
comparison of the IEMSBR metric of original and the enhanced
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Fig. 5.16: Low contrast areas of mammograms containing malignant
tumours (a)Original images(mdb023, 058, 134, 202 ) Enhanced images
using (b) HE (c) LET

using LET shows that the values are better for the enhanced image.

5.2.3.d Wavelet Transform Scaling

Analysis similar to that in SMRT is performed by scaling theWavelet
Transform coefficients of images and found that there is blocking
artifacts. Two level WT decomposition is done and different scaling
factors are applied to approximation and detail coefficients. Scaling
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Table 5.1: Comparison of Mean, SD, VIFP, EMEE, SDME of various
images for HE and LET
Images Mean SD VIFP EMEE SDME

Image HE LET Image HE LET HE LET Image HE LET Image HE LET
baboon 131.9 127.4 132.9 25.4 74.8 58.8 0.82 1.37 0.35 7.17 5.38 77.82 52.11 79.87
barbara 115.1 127.7 125.1 28.7 74.9 59.6 0.84 1.30 0.36 4.89 31.11 77.16 56.50 109.39
goldhill 110.0 127.8 116.0 31.3 74.9 55.5 0.85 1.25 0.33 0.33 1.15 77.86 55.52 100.56
peppers 112.1 127.6 123.0 33.8 74.8 61.6 0.82 1.24 0.45 4.51 6.47 76.71 58.59 118.36
mdb009 154.3 127.5 120.8 7.9 75.1 33.8 0.53 2.38 0.04 2.75 0.33 97.63 57.49 139.50
mdb170 173.8 127.3 133.8 20.8 74.9 52.8 0.64 1.71 0.05 0.79 1.49 96.52 68.43 162.11
mdb204 160.0 127.7 109.5 10.3 74.9 27.8 0.45 1.84 0.04 2.31 0.19 96.81 61.82 157.52
mdb227 174.9 127.7 121.4 11.1 74.8 38.3 0.57 2.05 0.04 1.69 0.37 99.25 62.29 143.81
mdb005 140.0 127.3 131.0 16.6 74.7 54.7 0.55 1.91 0.05 0.83 0.34 97.31 63.70 138.28
mdb010 169.4 127.4 125.4 12.4 74.9 48.1 0.58 2.12 0.04 1.59 0.44 100.24 61.77 132.78
mdb019 172.9 127.6 127.9 14.3 74.9 58.9 0.75 2.25 0.04 0.97 1.18 100.14 66.29 142.21
mdb132 151.1 127.7 111.6 16.2 74.9 45.2 0.44 1.78 0.05 4.30 0.24 97.37 58.48 145.22
mdb023 164.1 127.4 141.6 15.2 74.9 52.9 0.45 2.18 0.04 1.03 0.34 100.61 57.28 142.88
mdb058 173.7 127.9 125.2 13.7 74.8 59.0 0.69 2.18 0.04 1.69 0.96 98.98 63.94 139.04
mdb134 162.9 127.6 120.4 19.5 74.9 61.3 0.59 1.92 0.04 1.47 0.27 98.09 63.88 153.99
mdb202 156.2 127.6 138.2 29.9 74.7 65.4 0.67 1.54 0.05 0.34 0.30 97.06 66.67 155.47
Average 151.4 127.6 125.2 19.2 74.9 52.1 0.64 1.81 0.13 2.29 3.16 93.10 60.92 135.06

Table 5.2: Comparison of IEM, IEMSFR, IEMSBR of various images
for HE and LET

Images IEM IEMSFR IEMSBR

HE LET LET Image LET
baboon 16.46 19.89 0.19 33.40 77.40
barbara 14.49 17.74 0.23 44.55 92.70
goldhill 11.29 17.74 0.32 28.55 50.59
peppers 11.84 15.86 0.30 47.62 86.83
mdb009 28.84 42.69 0.06 9.68 41.22
mdb170 18.24 25.43 0.16 21.04 53.31
mdb204 19.83 39.06 0.14 11.87 32.22
mdb227 24.54 35.88 0.08 16.02 55.21
mdb005 23.33 28.71 0.09 16.78 55.21
mdb010 27.01 33.93 0.07 11.82 45.94
mdb019 27.85 30.63 0.06 13.06 53.76
mdb132 20.38 36.63 0.13 12.42 34.54
mdb023 23.97 35.02 0.08 11.97 41.63
mdb058 29.11 33.07 0.05 12.50 53.96
mdb134 22.80 28.97 0.10 17.80 56.01
mdb202 15.08 18.24 0.21 21.36 46.77
Average 20.94 28.72 0.14 20.65 54.83
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the approximation coefficients shifts the mean value of the image
histogram whereas scaling the detail coefficients stretches contrast.
Fig. 5.17 shows a few images and the modified images using uniform
scaling of SMRT and Wavelet Transform coefficients.

Fig. 5.17: (a) Original images lena, Moon, mdb009, mdb005, mdb023,
Enhanced images using scaling of (b) SMRT (c) WT coefficients

The VIFP, EMEE, SDME and IEM metric values of the WT based
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enhancement method are shown in Table 5.3. These values are com-
pared with the corresponding values obtained for LET. All metrics
except EMEE give better values for LET. The results show that
EMEE cannot be considered as a measure of the image visual qual-
ity.

Table 5.3: Comparison of Mean, SD, VIFP, EMEE, SDME, IEM values
for WT and SMRT scaling methods
Images Mean SD VIFP EMEE SDME IEM

WT SMRT WT SMRT WT SMRT WT SMRT WT SMRT WT SMRT
lena 89.9 104.4 46.00 57.3 0.62 1.12 6.59 3.07 74.74 99.91 7.63 11.75
moon 139.9 126.6 18.18 24.8 1.03 1.54 0.60 0.64 114.50 161.81 13.60 45.18
mdb009 146.5 120.8 22.19 33.8 0.43 2.38 0.61 0.33 94.28 139.50 32.27 42.69
mdb005 133.0 131.0 26.13 54.7 0.32 1.91 0.66 0.34 91.45 138.28 20.54 28.71
mdb0023 155.9 141.6 25.52 52.9 0.39 2.18 0.62 0.34 93.15 142.88 34.88 35.02

5.2.3.e Fingerprints and Text Images

Extracting minutiae from fingerprint images is one of the most im-
portant steps in automatic fingerprint identification and classifica-
tion. Most of the minutiae extraction methods are based on image
binarization while others extract the minutiae directly from gray-
scale images. The possibility of ridge contrast enhancement through
the elimination of noises between ridges is explored by applying
LET based on binarization of fingerprint images.

Image brightness is modified by shifting mean of the image to the
centre of histogram range by scaling DC SMRT coefficient as ex-
plained in Section 5.2.1. When the AC SMRT coefficients are scaled
using very high value scaling factor cac, the image gets binarized
and as a consequence noise will also be eliminated.

Fig. 5.18 shows the effect of changing the scaling factors cdc and
cac original fingerprint image, the stages of enhancement with the
respective histogram for various scaling constants, cdc and cac. This
binarization can be used as a preprocessing step for fingerprint pro-
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cessing. Fig. 5.19(a) shows few fingerprint images and their bina-
rization using (b) thresholding and (c) LET.

Fig. 5.18: Original and reconstructed fingerprint images and his-
tograms (a) original (b) cdc = 0.86, cac = 1 (c) cdc = 0.86, cac = 2
(d) cdc = 0.86, cac = 3 (e) cdc = 0.86, cac = 7 (f) cdc = 0.86, cac = 1000

Similar degradations are encountered in conversion of printed doc-
uments into electronic form. Besides text, scanned copies of numer-
ous collection of mechanical and architectural drawings, property
documents etc. often contain similar foreground and background
degradations. Generally a cleaned background is derived by the ap-
plication of thresholding, but often results in thinned and broken
characters. But the application of the above technique enables to
maintain stroke width of the characters, while removing background
noise. Scanned, spoiled and tarnished text can thus be enhanced
using the above technique. Fig. 5.20 shows an original spoiled doc-
ument with the corresponding binirazed form from the application
of simple thresholding and LET respectively.
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Fig. 5.19: (a) Original fingerprint images, binarization using
(b)Thresholding method (c) LET

5.2.3.f Application on Colour Images

The above method is applied on colour image considering both
YCbCr space and RGB spaces. In the first representation, the
method is applied to Y component alone whereas all the compo-
nents of RGB space are applied with the method and the results are
presented in Fig. 5.21. It shows that YCbCr representation applied
with LET gives better quality image at lesser computational cost.
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Fig. 5.20: (a) Original scanned document, binarization using (b)
thresholding method (c) LET

Fig. 5.21: Colour image enhancement using LET (a) Original image
(b) RGB space (c) Y component of YCbCr space

Conclusion

A simple, linear, automatic, brightness and contrast enhancement
method is presented. The image can be brightened or darkened by a
simple scaling of DC SMRT coefficient. Dynamic range and thereby

145



Development of N × N SMRT for N a power of 2 and its Applications in Image Enhancement

contrast can be changed by properly scaling AC SMRT coefficients.
Performance of the method is measured and compared with classical
HE technique and WT scaling method. All metrics, except EMEE,
show good performance for LET compared to others. Simulation
results show that the resultant enhanced images using the proposed
automatic linear enhancement method is better in contrast and
brightness for monochrome and colour images. The proposed LET
is also applied to fingerprint images & scanned documents that
produce a binary image at a high value of cac with the benefit of
noise removal. This method can give good performance for low
contrast images quantitatively and qualitatively.

5.3 Nonlinear Enhancement Technique

Human Visual System (HVS) includes some nonlinear effects and
hence nonlinear image processing techniques [165] have emerged as
intensive topics for research. Therefore, to comply with the nonlin-
ear characteristics of the HVS, nonlinear methods may be suitable.
Scaling image data logarithmically is an example of nonlinear con-
trast stretch, in spatial domain.

Hence, a nonlinear Enhancement Technique (NLET) is proposed by
which the SMRT coefficients are modified using nonlinear mapping
techniques so as to include nonlinear feature of HVS in the image
enhancement process.

5.3.1 Nonlinear Mapping Functions

Generally, nonlinear mapping functions are used in the spatial do-
main to modify pixel values nonlinearly. Similarly, nonlinear map-
ping functions can be used in the transform domain to nonlinearly
modify the coefficients. Some of the nonlinear mapping functions
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in the literature are alpha-rooting [39], Twicing function [39],[107],
function proposed by Lee [109], Programmable-S-function [108] etc.
The mathematical expressions and the respective plots are given in
Appendix B.

Analysis of different mapping functions, used for image processing
applications, reveals that enhancement is possible with nonlinear
functions that expands the low valued transform coefficients. Con-
siderable distortion is observed when the lower valued coefficients
are compressed. Considering the above facts, two hyperbolic func-
tions capable of expanding lower valued coefficients and compress-
ing higher valued coefficients equally are proposed and presented
here. They are inverse hyperbolic sine and hyperbolic tan func-
tions, defined as

T (u, v) =
sinh−1(S(u, v))

sinh−1(1)
(5.6)

T (u, v) =
tanh(S(u, v))

tanh(1)
(5.7)

The values in the denominator of Eqs.5.6 & 5.7 are used for normal-
ization of the functions. These functions can be applied recursively
using the following equations for further expansion and compres-
sion.

Tk(u, v) =
sinh−1(Tk−1(u, v))

sinh−1(1)
(5.8)

Tk(u, v) =
tanh(Tk−1(u, v))

tanh(1)
(5.9)

where T0(u, v)=S(u, v) and T1(u, v) = T (u, v).

Plots of these functions are shown in Fig. 5.22 and Fig. 5.23 for
various values of k. The significance of these functions compared to
the nonlinear functions referred above are that the rate of expansion
and compression are approximately equal and amplification at the
origin is very small.
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Fig. 5.22: A plot of sinh−1 function

NLET Algorithm

Image enhancement technique proposed in [39] was based on nonlin-
ear functions applied in the compressed domain on DC coefficients
of block level DCT to enhance brightness of the image. In this work,
nonlinear functions are used to scale transform coefficients nonlin-
early for global image enhancement. SMRT based enhancement will
be computationally efficient due to the inherent simplicity in the
number of computations compared to other transforms. The NLET
operates in the SMRT domain and uses separate scaling factors for
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Fig. 5.23: A plot of tanh function

DC and AC coefficients.

First, the image is transformed into SMRT domain. DC coefficient
is suitably scaled to adjust mean value to the centre of histogram
range and hence brightness of the image is improved. The AC
SMRT coefficients are normalized to the range [0,1] and modified
using nonlinear mapping functions discussed in section 5.3.1.

Reasons for choosing alpha-rooting, twicing function, function pro-
posed by Lee and programmable-S-functions are that they were
used earlier in image processing applications and there is no single
method by which every image can be enhanced. Hyperbolic tan
and inverse hyperbolic sine functions, having symmetry at the rate
of variation for low and high valued coefficients, are also employed
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here for nonlinear mapping of SMRT coefficients. The objective is
to observe the performance of the proposed algorithm with different
choices of these mapping functions.

5.3.2 NLET Algorithm

1. Computed SMRT, S, of the input image x(n1, n2), 0 ≤ n1, n2 ≤
N − 1.

2. DC SMRT coefficient is made zero retaining a copy of it as
dc = S(0, 0)

3. S is normalized.

• s = Max(|S(s1, s2)|, 0 ≤ s1, s2 ≤ N − 1

• S+ and S− are obtained as

S+(s1, s2) =

{
S(s1, s2), S(s1, s2) ≥ 0

0, otherwise
(5.10)

and

S−(s1, s2) =

{
|S(s1, s2)|, S(s1, s2) < 0

0, otherwise
(5.11)

• S+
n = S+/s and S−

n = S−/s

4. S+
n and S−

n are modified as T+
n and T−

n using the existing
mapping functions and the proposed hyperbolic functions.

5. Denormalized SMRT coefficients as
T+ = T+

n s and T− = T−
n s.

6. SMRT is modified as T = T+ − T−

7. DC SMRT coefficient is modified as in Eq. (5.2),

T (0, 0) =
rshiftN

2

dc
+ 1, where rshift = 128− dc

N2
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8. Inverse SMRT is computed.

5.3.3 Results and Analysis

Experimental results of the proposed image enhancement algorithm
using different mapping functions, described in section 5.3.1, are
presented for general images & low contrast mammogram sub-
images discussed in sections 5.2.3 & 5.2.3 and compared with the
results of HE. Nonlinear stretching of the histogram is observed
when the parameters of the mapping functions are varied. These
parameters have been chosen empirically for maximum contrast and
varied until histogram utilizes the full dynamic range.

General Images

General images possessing different histogram shapes, span etc. are
used for analysis using different mapping functions. As an example,
lena image and its enhanced versions using alpha-rooting, twicing
function, function proposed by Lee, Programmable-S-function, hy-
perbolic tan, inverse hyperbolic sine mapping functions respectively
are shown in the first row in Fig. 5.24 and a zoomed portion of these
images in the same order in the second row. The figure shows that
contrast is improved in all cases. However, artifacts can be seen in
Fig. 5.24(b) and over-enhancement in figs. 5.24(c) and (e). Good
results are achieved for enhancement using function proposed by
Lee, inverse hyperbolic sine and hyperbolic tan functions as shown
in Figs. 5.24(d), 5.24(f) and 5.24(g) respectively.

Mammogram Images

Low contrast areas of mammogram images are considered for anal-
ysis. Fig. 5.25 shows a mammogram image, mdb028, and a portion
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Fig. 5.24: Original lena image and its enhanced versions using mapping
functions in the order, below the zoomed portion of the images in the
same order

of it containing the benign mass. Fig. 5.26 (a)&(b) shows the orig-
inal mdb028 sub-image, (c)&(d) Histogram Equalized version, the
enhanced versions using different mapping functions with (e)&(f)
alpha-rooting, (g)&(h) twicing function, (i)&(j) Programmable- S-
function, (k)&(l) function proposed by Lee, (m) &(n)Hyperbolic
tan, (o)&(p) Inverse hyperbolic sine mapping functions and the
corresponding histograms are shown. Similarly, Fig. 5.27 shows the
original and enhanced images corresponding to low contrast mam-
mogram (mdb005) sub-image.

Fig. 5.25: Mammogram (mdb028) image and its low contrast sub-image

The NLET is applied to calcification, benign and malignant areas
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Fig. 5.26: Original and enhanced mdb028 images and their histograms

Fig. 5.27: Original and enhanced mdb005 images and their histograms
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of mammograms from MIAS database and the original & enhanced
images using various mapping techniques are shown in Figs. 5.28,
5.29 and 5.30 respectively.

Fig. 5.28: Original mammogram sub-images (mdb009,mdb170,
mdb204, mdb227) containing calcifications in the first column and en-
hanced images using NLET with different mapping functions in remain-
ing columns

Analysis of the above results shows that NLET processing gives bet-
ter distinction between background and calcification areas are more
prominent in mammogram sub-images containing calcification.

Quantitative Analysis

The IQA metrics and general & mammogram images, as mentioned
in section 5.2.3 are considered for analysis. The metric values are
tabulated for the 16 images considered with six mapping functions.
Since it is difficult to show the metric values corresponding to all
images in 16 tables, one image each from different categories is con-
sidered here for convenience. Tables 5.4, 5.5, 5.6 and 5.7 list met-
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Fig. 5.29: Original mammogram sub-images (mdb005,mdb010,
mdb019, mdb132) containing benign masses in the first column and
enhanced images using NLET with different mapping functions in re-
maining columns

Fig. 5.30: Original mammogram sub-images (mdb023, mdb058,
mdb134, mdb202) containing malignant masses in the first column and
enhanced images using NLET with different mapping functions in re-
maining columns
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ric values corresponding to lena (general), mdb204 (calcification),
mdb132 (benign) and mdb023 (malignant) respectively.

Table 5.4: Comparison of Mean, SD, VIFP, EMEE, SDME of lena
image for various mapping functions
Mapping functions Mean SD VIFP EMEE SDME IEM IEMSFR IEMSBR

Alpha-rooting 104.4 56.2 0.68 5.45 65.03 11.41 0.535 78.63
Twicing function 104.4 77.8 0.86 7.25 55.94 10.96 0.271 110.44
Function proposed by Lee 104.4 55.8 0.70 6.68 66.37 9.19 0.511 80.45
Programmable-S-function 104.4 76.3 0.70 9.50 56.83 12.42 0.269 110.99
Inverse hyperbolic sine 104.4 57.4 0.89 4.33 66.50 7.46 0.488 82.32
Hyperbolic tan 104.4 66.4 0.80 7.42 62.86 10.50 0.356 96.43

Table 5.5: Comparison of Mean, SD, VIFP, EMEE, SDME of mdb 204
image for various mapping functions
Mapping functions Mean SD VIFP EMEE SDME IEM IEMSFR IEMSBR

Alpha-rooting 109.5 32.7 0.56 0.63 67.78 38.07 0.085 40.67
Twicing function 109.5 56.8 1.09 1.38 64.86 39.55 0.026 73.03
Function proposed by Lee 109.5 40.1 0.58 0.94 66.94 39.56 0.054 51.25
Programmable-S-function 109.5 44.3 0.91 0.73 69.80 36.07 0.042 58.05
Inverse hyperbolic sine 109.5 47.0 0.80 0.90 66.33 38.66 0.037 61.72
Hyperbolic tan 109.5 44.4 0.86 0.72 69.03 36.80 0.041 58.49

Table 5.6: Comparison of Mean, SD, VIFP, EMEE, SDME of scaling
mdb 132 image for various mapping functions
Mapping functions Mean SD VIFP EMEE SDME IEM IEMSFR IEMSBR

Alpha-rooting 111.6 35.3 0.48 0.77 67.26 37.91 0.094 40.443
Twicing function 111.6 44.8 1.15 0.37 75.64 26.83 0.082 43.404
Function proposed by Lee 111.6 33.5 0.53 0.65 70.48 34.42 0.086 42.314
Programmable-S-function 111.6 40.5 0.76 0.54 73.94 30.83 0.066 48.309
Inverse hyperbolic sine 111.6 40.0 0.73 0.55 72.45 31.82 0.067 47.988
Hyperbolic tan 111.6 40.6 0.73 0.57 72.82 31.77 0.065 48.809

Table 5.7: Comparison of Mean, SD, VIFP, EMEE, SDME of mdb 023
image for various mapping functions
Mapping functions Mean SD VIFP EMEE SDME IEM IEMSFR IEMSBR

Alpha-rooting 141.6 23.7 0.49 0.26 79.74 31.32 0.168 29.183
Twicing function 141.6 31.3 0.84 0.28 81.72 26.44 0.097 38.370
Function proposed by Lee 141.6 32.5 0.75 0.29 80.32 29.81 0.082 41.929
Programmable-S-function 141.6 39.8 1.07 0.26 80.60 27.05 0.076 43.436
Inverse hyperbolic sine 141.6 42.0 0.96 0.43 79.52 29.76 0.059 49.247
Hyperbolic tan 141.6 38.9 1.03 0.30 81.54 26.96 0.075 43.784
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Table 5.4 shows that the EMEE, IEM and IEMSBR values of Twic-
ing function and Programmable-S-functions give high values and
according to Fig. 5.24 the modified images are over-enhanced in-
dicating that these metrics give a measure of contrast. VIFP and
SDME values are highest for inverse hyperbolic sine and Fig. 5.24
indicates that they give a measure of visual quality.

On comparison of the metric values for various images using dif-
ferent mapping functions, no mapping function can be judged as
superior to other mapping functions. A metric value superior for
one image using a particular mapping function may show inferior
values for another image. Hence average of the metric values of the
16 images are calculated for finding a suitable mapping function for
enhancement. Table. 5.8 shows the average of the metric values of
the 16 images considered and they are plotted in Fig. 5.31. The
plots also show that no mapping function can be identified suitable
for all images.

Table 5.8: Comparison of average values of metrics for various mapping
functions
Mapping functions VIFP EMEE SDME IEM IEMSFR IEMSBR

Alpha-rooting 0.486 1.289 68.81 37.40 0.140 49.91
Twicing function 1.066 1.213 74.58 28.68 0.106 60.73
Function proposed by Lee 0.578 1.233 72.69 33.27 0.137 52.55
Programmable-S-function 0.838 1.327 74.35 30.26 0.093 61.65
Inverse hyperbolic sine 0.821 0.977 74.56 30.09 0.121 58.45
Hyperbolic tan 0.769 1.304 72.72 32.48 0.089 65.04

The normalized metric values of the average of all images for the
mapping functions considered are shown in Table 5.9 and plotted
in Fig. 5.32. The comparison plots are formed to find the best
mapping function applicable to different images. A comparison of
metric values for all images, using different mapping functions, is
done and a better mapping function that suits most of the images
under consideration for most of the metrics is the twicing function.
So for comparison, mapping with twicing function is considered for
remaining part of this work for analysis.
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Fig. 5.31: (a) Plots of average values of VIFP, EMEE, IEMSFR (b)
Plots of average values of SDME, IEM, IEMSBR

Table 5.9: Comparison of normalized average values of metrics in per-
centage for various mapping functions
Images VIFP EMEE SDME IEM IEMSFR IEMSBR

Alpha-rooting 46 97 92 100 100 77
Twicing function 100 91 100 77 76 93
Function proposed by Lee 54 93 97 89 98 81
Programmable-S-function 79 100 100 81 66 95
Inverse hyperbolic sine 77 74 100 80 86 90
Hyperbolic tan 72 98 98 87 64 100

Enhanced general images using twicing function is shown in Fig. 5.33.

Application to Colour Images

The proposed algorithm is applied to the luminance component
of the YCbCr space of colour images. The enhanced lena image
using inverse hyperbolic sine and hyperbolic tan functions along
with original images are shown in Fig. 5.34.
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Fig. 5.32: Plots of normalized average values of VIFP, EMEE, SDME,
IEM, IEMSFR, IEMSBR

5.4 Conclusion

The chapter presents a simple, global, transform based approach to
enhance low contrast images through linear and nonlinear modifica-
tion of AC SMRT coefficients. In both cases, DC SMRT coefficient
value is scaled to bring the mean of image histogram to the centre of
histogram range. In the linear method, AC SMRT coefficients are
scaled uniformly to improve the contrast to optimum levels. The
scaling factors are selected automatically to utilize the full dynamic
range of the histogram. In nonlinear method, the transform coeffi-
cients are modified using nonlinear mapping techniques. Nonlinear
scaling of AC SMRT coefficients is done using nonlinear mapping
functions. Simple hyperbolic mapping functions with symmetry are
also proposed to expand / compress coefficients at low / high values
respectively. Both techniques are compared with image enhance-
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Fig. 5.33: (a)Original images, enhanced versions using (b)LET (c)
NLET using twicing function

ment using HE in terms of quantitative assessment metrics.

The proposed LET and NLET methods are applied to general and
mammogram images. Simulation results show that the resultant
enhanced images using the proposed methods are better in contrast
and brightness. These methods can give good performance for low
contrast images quantitatively and qualitatively. The LET method,
applied to fingerprint images and scanned documents, produces a
thresholded binary image when the cac is made much higher. The
calcification areas of mammogram images are enhanced better by
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Fig. 5.34: Original lena colour image(a) and enhanced images using
NLET (b) inverse hyperbolic sine (c) hyperbolic tan functions

NLET method. Though, the six nonlinear functions considered
perform almost in a similar manner for different types of images
examined, twicing function seems to be better than other functions.

LET and NLET are applied to colour images also by modifying the
Y component of YCbCr representation. Results of enhancement
reveals that LET is more suitable in terms of quality and compu-
tational simplicity.
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Chapter 6
SMRT based Block Level Fuzzy
Enhancement Techniques

6.1 Introduction

Global enhancement techniques are based on modification of inten-
sity values of all the pixels in the image. This may cause over-
enhancement of bright and dark areas of the image. On the other
hand, image can be divided into non-overlapping image blocks and
application of enhancement techniques on these blocks can reduce
problems associated with global enhancement techniques. Block
level enhancement techniques usually introduce blocking artifacts
and need to be minimized.

Fuzzy techniques offer flexible framework for the development of
image enhancement algorithms. They are nonlinear, knowledge-
based and robust. The potential of fuzzy set theory with respect
to image enhancement is not yet investigated in comparison with
other established methods. Recently, fuzzy theory has been used
to develop new techniques for contrast improvement. A higher con-
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trast can be achieved by darkening the gray levels in the lower gray
level and brightening the ones in the upper gray level in a nonlinear
manner. Fuzzy techniques in spatial domain offer different tools of
fuzzy set theory to adjust the image contrast, namely Fuzziness
minimization, Equalization using fuzzy expected value, Histogram
hyperbolization, α-enhancement, rule based approach, fuzzy rela-
tions etc. An examination of fuzzy methods in transform domain
may be investigated to develop better enhancement techniques.

Two well-known contrast enhancement techniques are employed in
the current chapter to modify SMRT coefficients- Fuzziness mini-
mization based on intensification operator and the fuzzy rule based
contrast enhancement method.

6.2 Intensification Operator based En-

hancement using SMRT

Fuzzy set theory has been applied to develop new methods for image
enhancement to maximize the dynamic range by reducing image
fuzziness. This processing usually implies the use of a nonlinear
function. A possible mathematical form of such a function is the
intensification operator (Appendix B).

Intensification operator (INT) is used to reduce the fuzziness of the
image that results in an increase of image contrast. INT operator
is used usually in the spatial domain and the idea can be extended
to transform domain applications.

6.2.1 Intensification Operator in Spatial Domain

Fuzzy image enhancement in spatial domain is based on gray level
mapping from a gray plane into a fuzzy plane using a membership
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transformation. Gray levels of the image can be assigned a mem-
bership value depending on the gray level intensity of each pixel.
An INT operator applied on this fuzzy set will increase/decrease
the membership values above/below the set threshold value. De-
fuzzification of the modified membership values produces enhanced
image.

Mathematical formulation of fuzzy intensification based image en-
hancement adopted in this work is summarized below. A digital
image with gray level values, r in the range [0,255], is assigned a
membership value in accordance with a piecewise linear member-
ship function B(r) between rmin & rmax and used to describe the
linguistic concept of ”brightness of gray levels” is shown in Fig 6.1.
If the pixel gray level has a membership value less than 0.5, it is
more likely to be dark than bright, else bright than dark.

Fig. 6.1: Piecewise linear membership function

B(r) is expressed mathematically as

B(r) =


0, 0 ≤ r ≤ rmin

a.r + b, rmin < r < rmax

1, rmax ≤ r ≤ 255

(6.1)
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The slope and intercept, represented by a and b respectively, are
calculated as

a =
1

(rmax − rmin)
(6.2)

b = 1− a.rmax (6.3)

A simple way to achieve contrast enhancement by reducing the
fuzziness of the set is to apply fuzzy INT operator, as defined in
Eq. 1.12, on the membership function of the fuzzy set. A flexible
INT operator can be defined as in Eq. 6.4, where B(r) represents
the membership value of the pixel r and B(rt) represents the flexible
threshold.

INT(B(r)) =

{
B2(r)
B(rt)

, 0 ≤ B(r) ≤ B(rt)

1− (1−B(r))2

1−B(rt)
, B(rt) < B(r) ≤ 1

(6.4)

This operation reduces the fuzziness by increasing/decreasing the
value of B(r) that is above/below the threshold value, B(rt). Fuzzi-
ness can be reduced further by increasing the power of B(r) as

INT(B(r)) =

{
Bp(r)

B(p−1)(rt)
, 0 ≤ B(r) ≤ B(rt)

1− (1−B(r))p

(1−B(p−1)(rt))
, B(rt) < B(r) ≤ 1

(6.5)

Result of the INT operator for the piecewise linear function B(r)
would be the modified membership function B′(r) = INT(B(r)) as
shown in Fig. 6.2 for various values of p. Fuzziness decreases with
increase in value of p.

6.2.2 Intensification Operator in SMRTDomain

Basic gray level transformation using fuzzy INT operator, Eq. 6.4,
can be reformulated to suit the transform domain. Within the
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Fig. 6.2: Fuzzy Intensification operator plot for different p

maximum and minimum limits, fuzzification in the spatial domain
is completely described by B(r) = a.r + b. Hence Eq. (6.4) can be
modified by combining the fuzzification and intensification opera-
tions together to yield

B′(r) =

{
(a.r+b)2

B(rt)
, rmin ≤ a.r + b ≤ B(rt)

1− (1−a.r−b)2

1−B(rt))
, B(rt) < a.r + b ≤ rmax

(6.6)

Defuzzification operation is also combined with Eq. 6.6 and the
resulting gray level values, r′ can be obtained from B′(r) = a.r′+ b
as

r′ =
B′(r)− b

a
(6.7)

r′ =

{
b

B(rt)
[a
b
.r2 + 2.r + b−B(rt)

a
] , rmin−b

a
≤ r ≤ B(rt)−b

a
b−1

B(rt)−1
[ a
b−1

.r2 + 2.r + b−B(rt)
a

] , B(rt)−b
a

< r ≤ rmax−b
a

(6.8)

For transform domain applications, Eq. 6.8 can be used for modifi-
cation of transform coefficients by reducing the fuzziness.
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In the transform domain, an approximate image histogram can be
constructed from the block mean values given by DC SMRT coef-
ficients, SB(0, 0) as explained in section 3.3.2. Hence Eq. (6.2) &
(6.3) can be modified in terms of block DC SMRT coefficients as

a =
1

(sBmax − sBmin)
& b = 1− a.sBmax, (6.9)

where sBmin = min{S
B(0,0)
N2 }, sBmax = max{S

B(0,0)
N2 }. The threshold

value, st =
B(rt)−b

a
, is fixed as sBmax < st < sBmin.

6.2.3 Fuzzy Image Enhancement in SMRT Do-
main

SMRT based fuzzy image enhancement technique, using the INT
operator (FIOS) in Eq. (6.8), can be described by the following
equations. Let SB and SB

sq be the SMRT matrices corresponding
to 8× 8 block of pixel values and squared pixel values respectively.
The modified transform coefficients of the enhanced image are

SB
mod(i, j) = k1.[k2.S

B
sq(i, j) + k3.S

B(i, j)], for i, j = 0, 1, 2, ..., 7
(6.10)

SB
mod(0, 0) = SB

mod(0, 0) + k1.k4 (6.11)

where k3 = 2, k4 =
b−B(rt)

a

• Case(i) if SB(0,0)
N2 < st, then k1 =

b
B(rt)

& k2 =
a
b

• Case(ii) if SB(0,0)
N2 ≥ st, then k1 =

b−1
B(rt)−1

& k2 =
a

b−1

Here, comparison of block mean values is done with the threshold
(st) and can be made adaptive, depending on image characteristics.
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FIOS Algorithm

The different steps to perform FIOS are

• Image is divided into non-overlapping blocks of size 8×8 and
the corresponding SMRT matrices, SB and SB

sq are obtained.

• Approximate image histogram is constructed from the block
mean values (section 3.3.2).

• sBmin & sBmax of the histogram are used to find the parameters
a & b using Eq. (6.9).

• st ∈ (sBmin, s
B
max) is chosen based on the image characteristics.

• For each block,

– k1, k2, k3, k4 are computed from the values of SB(0,0)
N2 &

st.

– SMRT coefficients are modified using Eqs.(6.10) and (6.11).

– Inverse SMRT is computed.

6.3 Rule based Enhancement using SMRT

The fuzzy rule based approach is a powerful and universal method
for many image processing tasks. A fuzzy rule based model operates
on an if → then principle, where if corresponds to fuzzy inputs and
then corresponds to some fuzzy consequences.
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6.3.1 Fuzzy Rule based Technique in Spatial Do-
main

Fuzzy image enhancement is basically a question of whether a pixel
should become brighter or darker than it already is. In fuzzy the-
ory, gray level intensity (r) of an image can be described by three
linguistic terms Dark, Gray and Bright, represented by trapezoidal
and triangular membership functions as shown in Fig. 6.3(a). The
corresponding linguistic output variables (ro) are Black, Midgray
and White. When Takagi-Sugeno fuzzy rule based system is used,
outputs can be represented as fuzzy singletons denoted by rbo for
black, rgo for mid gray and rwo for white as shown in Fig. 6.3(b).

Fig. 6.3: Membership functions for fuzzy rule based contrast enhance-
ment

The important steps for fuzzy rule based enhancement are:

• Initialization of the parameters.

• Fuzzification of gray levels.

• Inference procedure to evaluate appropriate rules
(For example, if r & ro denote input and output variables,

– Rule 1: If r is dark then ro = rbo is black
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– Rule 2: If r is gray then ro = rgo is midgray

– Rule 3: If r is bright then ro = rwo is white)

• Defuzzification of the output using three singletons, rbo, rgo
& rwo as shown in Fig. 6.3(b) (eg. rbo = rmin, r

g
o = rmean,

rwo = rmax).

r′ =
µdark(r).r

b
o + µgray(r).r

g
o + µbright(r).r

w
o

µdark(r) + µgray(r) + µbright(r)
(6.12)

Trapezoidal function, f : r[0, 255] → [0, 1], is selected to represent
the input fuzzy set membership functions generally and is shown in
Fig. 6.4. The dynamic range of r for 8-bit image representation is
[0,255].

Fig. 6.4: Trapezoidal function for representing the input membership
functions

The function f can be represented mathematically as

f(t1, t2, t3, t4, r) =



0, if 0 ≤ r < t1
r−t1
t2−t1

, if t1 ≤ r < t2

1, if t2 ≤ r < t3
t4−r
t4−t3

, if t3 ≤ r < t4

0, if t4 ≤ r ≤ 255

(6.13)
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Hence, the input membership function, µ, for dark, gray and bright,
as shown in Fig. 6.3(a), can be expressed mathematically in terms
of f as

µdark(r) = f(0, 0, T1, T2, r)

µgray(r) = f(T1, T2, T2, T3, r)

µbright(r) = f(T2, T3, 255, 255, r)

(6.14)

The modified gray level values (r′) corresponding to gray level val-
ues (r) can be obtained from Eq. 6.12 where µdark(r) + µgray(r) +
µbright(r) = 1.

6.3.2 Fuzzy Rule based Technique in SMRTDo-
main

Improvements in brightness and contrast can be achieved by sep-
arately modifying the block level DC and AC SMRT coefficients
respectively. Two constants, necessary for multiplication and addi-
tion (vzm and vza, z ∈ {dark, gray, bright}), can be found from the
parameters t1, t2, t3, t4 and average brightness of each block (µB

s 2).
Average brightness of each block can be found from DC SMRT

coefficient (SB(0, 0)) as µB
s = SB(0,0)

N2 .

vzm = f ′(t1, t2, t3, t4, µ
B
s ) & vza = f”(t1, t2, t3, t4, µ

B
s ) can be expressed

as

f ′ =



0, 0 ≤ µB
s < t1

1
t2−t1

, t1 ≤ µB
s < t2

1, t2 ≤ µB
s < t3

−1
t4−t3

, t3 ≤ µB
s < t4

0, t4 ≤ µB
s ≤ 255

(6.15)
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f” =



0, 0 ≤ µB
s < t1

−t1
t2−t1

, t1 ≤ µB
s < t2

1, t2 ≤ µB
s < t3

t4
t4−t3

, t3 ≤ µB
s < t4

0, t4 ≤ µB
s ≤ 255

(6.16)

vdarkm = f ′(0, 0, T1, T2, µ
B
s )

vgraym = f ′(T1, T2, T2, T3, µ
B
s )

vbrightm = f ′(T2, T3, 255, 255, µ
B
s )

(6.17)

vdarka = f”(0, 0, T1, T2, µ
B
s )

vgraya = f”(T1, T2, T2, T3, µ
B
s ))

vbrighta = f”(T2, T3, 255, 255, µ
B
s )

(6.18)

The value of µB
s in each block falls in any of the 5 ranges given in

Eqs. 6.15 & 6.16. Comparison with DC SMRT coefficient alone is
performed for each of the 8× 8 image blocks. Thus for each block,
SMRT coefficients are to be multiplied with vzm and DC SMRT
coefficient is to be added with vza, where z ∈ {dark, gray, bright}.

Let M z, z ∈ {dark, gray, bright} be the matrices of modified mem-
bership values of the 8 × 8 block of the SMRT coefficients, SB.
These values can be computed as

M z = vzm.S
B

M z(0, 0) = M z(0, 0) + vza
(6.19)

The fuzzy rule based contrast enhancement method in spatial do-
main, as given in Eq. 6.12, reformulated in the SMRT domain can
be described by

Smod = Mdark.rbo +M gray.rgo +M bright.rwo (6.20)

where Smod is the modified SMRT blocks.
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FRBS Algorithm

• Image is divided into non-overlapping blocks of size 8×8 and
the corresponding SMRT matrices, SB are obtained.

• Approximate image histogram is constructed from the block
mean values (section 3.3.2).

• rmin, rmean & rmax of the histogram are found and the values
are assigned to rbo, r

g
o & rwo .

• For each block,

– Average brightness µB
s is computed from SB.

– vzm, v
z
a, z ∈ {dark, gray, bright} are found using Eqs. 6.17

& 6.18.

– Membership matrices, M z, z ∈ {dark, gray, bright} are
found using Eq. 6.19.

– SMRT coefficients are modified using Eq. 6.20.

– Inverse SMRT is computed.

6.4 Results and Analysis

General and mammogram images are used to investigate the ef-
fectiveness of the fuzzy techniques for image enhancement. The
fuzzy intensification operator based algorithm (FIOS) and fuzzy
rule based technique (FRBS) implemented in SMRT domain for
image enhancement are applied to images that are low in contrast.
Fuzzy INT operator based image enhancement in the spatial do-
main (FIOP) [166], is used to compare the effectiveness of the pro-
posed method.
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The FIOS algorithm, explained in section 6.2.3, is applied by vary-
ing threshold, st, and the corresponding image histograms are ob-
served. The membership values below/above the threshold are
changed to a lower/higher value. Hence, a compression of member-
ship values appears to the left of the threshold and an expansion to
the right. Most of the membership values change to a higher value
when st is small and the image appears to be bright. On applica-
tion of the correct threshold, the image appears to be enhanced with
edges more pronounced. The effect of changing threshold values on
baboon and mammogram (mdb028) images are shown in Figs. 6.5
and 6.6 along with the respective histograms. Simulation results
show that the image mean can give better enhancement and hence
threshold value is fixed as the image mean.

Fig. 6.5: Images and their histograms (a) Original baboon image (b)
to (f) Enhanced images using FIOS for thresholds B(st) = 0.4, 0.5, 0.6,
0.7, 0.8

FRBS method is also applied to the images and the original and
enhanced images with their corresponding histograms are shown
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Fig. 6.6: Mammogram(mdb028 ) images and their histograms (a) Orig-
inal image (b) to (f)Enhanced images using FIOS for different thresholds
B(st) = 0.4, 0.5, 0.6, 0.7, 0.8

in Fig. 6.7. The histograms show an improvement in contrast and
brightness for all images.

The FIOP, FIOS & FRBS methods are applied to general and
mammogram images used in sections 5.2.3 & 5.3.3. The enhanced
general images using the three methods are shown in Fig. 6.8. En-
hanced images of calcification, benign and malignant areas of mam-
mograms taken from MIAS database are shown in Figs. 6.9, 6.10
and 6.11 respectively. Subjective evaluation of the results shows
that there is enhancement using both methods, but better enhance-
ment for FRBS method.

Tables 6.1 and 6.2 show the metric values obtained for the general
and mammogram images for the existing and proposed metrics re-
spectively. The images considered have mean values ranging from
110 to 175 and SD ranging from 8 to 34 indicating dark to bright
images and low contrast to medium contrast images respectively.
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Fig. 6.7: Images (barbara, peppers, mdb028, mdb119) and their his-
tograms (a) Original (b) Enhanced for FRBS method

Average of statistical parameters such as mean and SD values of
the 16 images shows that FRBS method keeps the brightness level
to mid histogram range and SD to the maximum for most of the
images. VIFP and SDME of all images show good values for FRBS
method. EMEE of all images except peppers shows good values for
FRBS method. Table 6.2 shows that all the proposed metric values
give good results for FRBS for most of the images. The average
values of all metrics, taken on 16 images, show good results for
FRBS method.

Fig. 6.12 shows a plot of the normalized average values of the met-
rics in percentage. This plot also shows that average values of the
metrics considered give good metric values for FRBS method.
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Fig. 6.8: (a) Original images, Enhanced images using (b) FIOP, (c)
FIOS, (d) FRBS methods

Table 6.1: Comparison of Mean, SD, VIFP, EMEE, SDME of various
images for FIOP, FIOS and FRBS
Images Mean SD VIFP EMEE SDME

Image FIOP FIOS FRBS Image FIOP FIOS FRBS FIOP FIOS FRBS Image FIOP FIOS FRBS Image FIOP FIOS FRBS
baboon 131.9 130.5 136.3 132.7 25.4 43.1 49.9 43.5 1.06 1.02 1.11 0.35 0.981 1.08 1.58 77.8 69.4 67.8 80.3
barbara 115.1 114.6 121.9 127.4 28.7 47.9 57.3 50.9 1.02 0.94 1.22 0.36 1.073 1.19 1.73 77.2 77.1 74.6 102.5
house 110.0 110.1 118.6 123.7 31.3 50.5 69.8 55.3 1.09 1.01 1.11 0.33 0.864 0.99 1.76 77.9 73.8 72.0 85.3
peppers 112.1 111.1 122.0 126.4 33.8 55.6 67.8 54.1 0.97 0.87 1.12 0.45 1.529 1.73 1.64 76.7 78.4 76.6 108.7
mdb009 154.3 152.5 153.9 117.2 7.9 14.9 16.1 32.0 1.55 1.63 1.72 0.04 0.088 0.09 0.47 97.6 104.9 104.1 131.5
mdb170 173.8 168.4 175.7 131.6 20.8 36.8 40.2 37.3 1.36 1.44 1.45 0.05 0.089 0.10 0.13 96.5 108.6 107.6 124.0
mdb204 160.0 158.7 160.0 115.0 10.3 18.4 21.5 37.5 1.45 1.50 1.52 0.04 0.080 0.09 0.49 96.8 108.4 107.4 136.5
mdb227 174.9 171.9 174.9 127.0 11.1 20.6 22.2 30.1 1.47 1.56 1.82 0.04 0.082 0.09 0.26 99.3 107.2 106.8 132.0
mdb005 140.0 139.0 141.4 130.3 16.6 29.7 33.1 41.7 1.42 1.51 1.65 0.05 0.106 0.11 0.23 97.3 102.9 101.1 131.6
mdb010 169.4 168.2 169.6 127.1 12.4 22.5 25.2 41.8 1.46 1.56 1.99 0.04 0.084 0.09 0.31 100.2 105.3 104.2 126.3
mdb019 172.9 171.3 173.4 129.1 14.3 26.2 28.6 52.0 1.46 1.59 2.12 0.04 0.074 0.08 0.43 100.1 108.6 107.6 134.9
mdb132 151.1 153.1 152.2 116.8 16.2 27.3 35.2 39.7 1.36 1.50 1.57 0.05 0.093 0.10 0.43 97.4 105.3 103.2 129.3
mdb023 164.1 161.6 165.1 136.8 15.2 26.5 28.7 36.7 1.54 1.64 1.66 0.04 0.078 0.08 0.16 100.6 106.9 106.2 132.7
mdb058 173.7 171.2 174.0 125.5 13.7 25.3 27.4 53.6 1.44 1.55 2.06 0.04 0.084 0.09 0.55 99.0 107.0 106.1 125.6
mdb134 162.9 164.9 164.6 118.4 19.5 33.3 40.5 61.2 1.35 1.55 1.75 0.04 0.075 0.08 0.48 98.1 109.8 107.1 133.2
mdb202 156.2 152.8 161.6 137.0 29.9 48.9 58.0 53.2 1.27 1.33 1.34 0.05 0.099 0.11 0.13 97.1 106.9 104.3 147.9
Average 151.4 150.0 154.1 126.4 19.2 33.0 38.8 45.0 1.33 1.39 1.58 0.13 0.340 0.38 0.67 93.1 98.8 97.3 122.6
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Fig. 6.9: (a) Original mammogram sub-images containing calcifica-
tions, Enhanced images using (b) FIOP, (c) FIOS, (d) FRBS methods

Conclusion

A flexible fuzzy INT operator based image enhancement based on
SMRT (FIOS) is proposed first. The algorithm hence derived is
tested on both general and mammogram images. The results are
compared with that of the fuzzy INT operator based enhancement
technique in the spatial domain (FIOP). All metric values are good
for FIOS compared to FIOP. The FIOS algorithm requires SMRT
of both image blocks and image pixel squared blocks and the com-
putational complexity is thus increased. So, this puts a limit to the
FIOS algorithm.
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Fig. 6.10: (a) Original mammogram sub-images containing benign
masses, Enhanced images using (b) FIOP, (c) FIOS, (d) FRBS methods

The usefulness of the fuzzy rule based algorithm is investigated.
Fuzzy rule based algorithm overcomes the drawback of FIOS as it
requires the SMRT of the image blocks only. Subjective evaluation
of the enhanced images shows that there is better enhancement
for FRBS compared to FIOP and FIOS. Comparison of the IQA
metric values for the different methods also substantiates this. A
comparison of the methods considered for global and block level
image enhancement will be useful in finding a method suitable for
all images.
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Fig. 6.11: (a) Original mammogram sub-images containing malignant
masses, Enhanced images using (b) FIOP, (c) FIOS, (d) FRBS methods

6.5 Comparison of Global and Block Level

Enhancement Methods

The results of the global (LET, NLET) and block level (FIOS,
FRBS) methods of image enhancement are compared quantitatively
using the metrics VIFP, EMEE, SDME and IEM. It is not reason-
able to compare the SMRT based metrics for global and block level
methods, as their approaches are different. Hence, these metrics
are not considered for the analysis in this section. The values of
these metrics for 16 images and the average values of the metrics
for different methods are tabulated in Table 6.3 for comparison.
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Table 6.2: Comparison of IEM, IEMSFR, IEMSBR of various images
for FIOP, FIOS and FRBS

Images IEM IEMSFR IEMSBR

FIOP FIOS FRBS FIOS FRBS Image FIOS FRBS
baboon 10.29 13.51 10.61 32.48 27.88 13.62 26.61 22.96
barbara 9.47 12.83 11.43 32.44 22.13 12.35 24.36 22.00
house 9.44 11.40 12.05 32.50 41.20 10.06 18.83 19.97
peppers 8.23 12.03 9.27 32.16 27.10 14.54 29.97 23.28
mdb009 12.79 13.84 24.93 32.13 69.01 2.98 6.28 11.67
mdb170 10.73 11.58 12.16 32.32 29.90 3.32 6.84 6.15
mdb204 12.52 13.65 26.27 32.20 72.16 3.29 7.06 11.92
mdb227 12.26 13.73 19.83 32.06 43.15 2.94 5.98 7.89
mdb005 11.64 13.65 18.06 32.37 39.84 2.96 6.00 7.36
mdb010 11.91 13.71 24.47 32.08 54.38 2.76 5.50 9.38
mdb019 11.44 13.67 25.67 32.09 58.01 2.49 4.94 9.01
mdb132 11.63 13.15 23.10 32.24 54.78 2.94 6.16 9.13
mdb023 12.16 13.67 18.58 32.14 45.63 2.45 4.89 6.93
mdb058 11.57 13.70 27.20 32.12 62.65 3.24 6.51 12.79
mdb134 10.35 13.36 24.18 32.20 55.37 2.52 5.06 8.71
mdb202 9.28 11.60 11.61 32.64 29.86 2.97 5.93 5.43
Average 10.98 13.07 18.71 32.26 45.82 5.34 10.68 12.16

Fig. 6.12: Normalised plots of average values of the metrics for FIOP,
FIOS and FRBS methods

VIFP and SDME values show that LET is superior to other meth-
ods. Average values on 16 images also show that LET is superior.
FRBS shows good metric values among block level techniques.

A plot of the normalized mean values in percentage is shown in
Fig. 6.13. This plot also substantiates that LET and FRBS can be
considered as better methods for global and block level enhance-
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Table 6.3: Comparison of spatial domain metrics IEM, VIFP, EMEE,
SDME of various images for LET, NLET, FIOS and FRBS methods
Images VIFP EMEE SDME IEM

LET NLET FIOS FRBS LET NLET FIOS FRBS LET NLET FIOS FRBS LET NLET FIOS FRBS
baboon 1.37 1.08 1.02 1.11 5.38 3.28 1.08 1.58 79.87 64.90 67.82 80.28 16.46 13.52 13.51 10.61
barbara 1.30 1.01 0.94 1.22 31.11 2.31 1.19 1.73 109.39 69.86 74.64 102.47 14.49 13.71 12.83 11.43
house 1.25 1.06 1.01 1.11 1.15 1.75 0.99 1.76 100.56 68.04 72.02 85.25 11.29 13.55 11.40 12.05
peppers 1.24 0.57 0.87 1.12 6.47 3.24 1.73 1.64 118.36 70.49 76.62 108.65 11.84 14.98 12.03 9.27
mdb009 2.28 0.69 1.63 1.72 0.33 1.04 0.09 0.47 139.50 63.73 104.12 131.52 42.69 44.00 13.84 24.93
mdb170 1.71 0.95 1.44 1.45 1.49 0.26 0.10 0.13 162.11 83.11 107.61 124.00 25.43 21.28 11.58 12.16
mdb204 1.84 0.86 1.50 1.52 0.19 0.72 0.09 0.49 157.52 69.03 107.38 136.45 39.06 36.80 13.65 26.27
mdb227 2.05 0.93 1.56 1.82 0.37 0.45 0.09 0.26 143.81 75.01 106.77 132.02 35.88 31.57 13.73 19.83
mdb005 1.91 0.73 1.51 1.65 0.34 0.73 0.11 0.23 138.28 75.77 101.14 131.61 28.71 31.91 13.65 18.06
mdb010 2.12 0.80 1.56 1.99 0.44 0.97 0.09 0.31 132.78 70.05 104.22 126.31 33.93 31.77 13.71 24.47
mdb019 2.25 0.79 1.59 2.12 1.18 0.69 0.08 0.43 142.21 71.27 107.61 134.90 30.63 26.96 13.67 25.67
mdb132 1.78 0.73 1.50 1.57 0.24 0.57 0.10 0.43 145.22 72.82 103.17 129.27 36.63 31.77 13.15 23.10
mdb023 2.18 1.03 1.64 1.66 0.34 0.30 0.08 0.16 142.88 81.54 106.15 132.72 35.02 26.96 13.67 18.58
mdb058 2.18 0.75 1.55 2.06 0.96 0.84 0.09 0.55 139.04 69.86 106.10 125.61 33.07 37.14 13.70 27.20
mdb134 1.92 0.52 1.55 1.75 0.27 0.76 0.08 0.48 153.99 70.58 107.13 133.21 28.97 37.17 13.36 24.18
mdb202 1.54 0.74 1.33 1.34 0.30 0.28 0.11 0.13 155.47 81.87 104.26 147.89 18.24 21.89 11.60 11.61
Average 2.02 0.83 1.39 1.58 0.79/3.16 1.14 0.38 0.67 148.91 72.37 97.30 122.64 32.82 27.19 13.07 18.71

ment respectively. But comparison of the SMRT based metrics for
global and block level methods separately also shows that LET and
FRBS are better methods.

Fig. 6.13: Normalised plots of average values of the metrics for LET,
NLET, FIOS and FRBS methods

A method that incorporates the goodness of linear and nonlinear
techniques, ie. LET and FRBS, can be a better solution for image
enhancement techniques.

183



Development of N × N SMRT for N a power of 2 and its Applications in Image Enhancement

6.6 Global Fuzzy Rule based Linear En-

hancement in SMRT Domain

A fuzzy rule based modification on the whole image followed by
LET integrates the goodness of both the methods. An investiga-
tion is carried out in this direction and the following algorithm is
developed.

GFLS Algorithm

The different steps for GFLS method:

• SMRT of the whole image is found

• FRBS is applied to the SMRT of the whole image

• Automatic linear scaling method, LET, is applied

• ISMRT of the whole image is found

The new method is applied to general and mammogram images and
the results obtained are displayed. Fig. 6.14 shows general images
and the corresponding enhanced images. Enhanced images of cal-
cification, benign and malignant portions of mammogram images
are shown in Fig. 6.15.

The quantitative metric values obtained for the 16 images are shown
in Table 6.4. The average values of the metrics for 16 images calcu-
lated for the new method and compared with LET, NLET, FIOS
and FRBS methods are given in Table 6.5. The normalized plot
of average values of metric values obtained for the five proposed
methods is shown in Fig. 6.16.
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Fig. 6.14: (a)Original images (b) Enhanced images using GFLS method

Subjective Analysis

Subjective ratings of the enhanced images (HE, LET, NLET, FIOP,
FIOS, FRBS, GLFS) are carried out using MOS. The general and
mammogram images used for the MOS analysis are shown in Figs. 6.17
& 6.18. The judgments from 10 observers are taken using an image
quality scale from 1 to 5 where 1 is bad, 2 poor, 3 fair, 4 good, 5
excellent and the mean of the opinion score is calculated. The MOS
values obtained for the seven methods are given in Table 6.6 and
the highest two values are highlighted for comparison. The table
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Fig. 6.15: Enhanced images using GFLS method, Row 1- Calcification
sub-images, Row 2- Benign areas, Row 3 -Malignant areas

Table 6.4: Mean, SD, VIFP, EMEE, SDME, IEM, IEMSFR, IEMSBR

values of various images for GFLS method
Images Mean SD VIFP EMEE SDME IEM IEMSFR IEMSBR

baboon 137.80 56.43 1.35 27.71 76.49 15.80 4.95 74.30
barbara 122.71 60.71 1.31 5.83 109.17 14.86 4.49 94.38
house 103.86 60.27 1.29 2.74 95.37 12.85 3.71 54.99
peppers 119.86 63.09 1.25 80.20 115.77 12.23 3.49 88.96
mdb009 86.62 42.27 2.61 1.182 127.99 33.02 28.46 51.62
mdb170 139.74 50.20 1.67 0.514 164.94 17.28 5.81 50.70
mdb204 21.68 44.53 2.26 1.670 165.53 19.83 18.86 51.55
mdb227 111.02 41.22 2.11 0.577 139.96 26.07 13.78 59.48
mdb005 136.10 52.49 1.88 1.367 138.49 22.59 9.95 52.96
mdb010 118.91 50.54 2.17 0.518 129.63 27.87 16.64 48.22
mdb019 127.56 59.10 2.25 8.631 142.34 27.93 17.04 53.90
mdb132 65.10 59.77 2.00 2.279 125.17 25.53 13.53 45.67
mdb023 149.85 49.12 2.11 0.230 145.57 22.65 10.42 38.63
mdb058 117.60 62.43 2.23 4.958 135.75 30.17 20.85 57.10
mdb134 107.53 67.16 2.00 0.732 148.13 24.59 11.87 61.33
mdb202 142.37 63.11 1.52 0.539 157.39 14.60 4.46 45.12
Average 115.38 51.56 2.07 1.95 149.01 23.26 15.55 57.67

shows that LET and GFLS methods give the best Mean Opinion
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Table 6.5: Comparison of spatial domain metrics VIFP, SDME and
IEM of various images for LET, NLET, FIOS, FRBS and GFLS methods
Images VIFP SDME IEM

LET NLET FIOS FRBS GFLS LET NLET FIOS FRBS GFLS LET NLET FIOS FRBS GFLS
baboon 1.37 1.08 1.02 1.11 1.35 79.87 64.90 67.82 80.28 76.49 16.46 13.52 13.51 10.61 15.80
barbara 1.30 1.01 0.94 1.22 1.31 109.39 69.86 74.64 102.47 109.17 14.49 13.71 12.83 11.43 14.86
house 1.25 1.06 1.01 1.11 1.29 100.56 68.04 72.02 85.25 95.37 11.29 13.55 11.40 12.05 12.85
peppers 1.24 0.57 0.87 1.12 1.25 118.36 70.49 76.62 108.65 115.77 11.84 14.98 12.03 9.27 12.23
mdb009 2.28 0.69 1.63 1.72 2.61 139.50 63.73 104.12 131.52 127.99 42.69 44.00 13.84 24.93 33.02
mdb170 1.71 0.95 1.44 1.45 1.67 162.11 83.11 107.61 124.00 164.94 25.43 21.28 11.58 12.16 17.28
mdb204 1.84 0.86 1.50 1.52 2.26 157.52 69.03 107.38 136.45 165.53 39.06 36.80 13.65 26.27 19.83
mdb227 2.05 0.93 1.56 1.82 2.11 143.81 75.01 106.77 132.02 139.96 35.88 31.57 13.73 19.83 26.07
mdb005 1.91 0.73 1.51 1.65 1.88 138.28 75.77 101.14 131.61 138.49 28.71 31.91 13.65 18.06 22.59
mdb010 2.12 0.80 1.56 1.99 2.17 132.78 70.05 104.22 126.31 129.63 33.93 31.77 13.71 24.47 27.87
mdb019 2.25 0.79 1.59 2.12 2.25 142.21 71.27 107.61 134.90 142.34 30.63 26.96 13.67 25.67 27.93
mdb132 1.78 0.73 1.50 1.57 2.00 145.22 72.82 103.17 129.27 125.17 36.63 31.77 13.15 23.10 25.53
mdb023 2.18 1.03 1.64 1.66 2.11 142.88 81.54 106.15 132.72 145.57 35.02 26.96 13.67 18.58 22.65
mdb058 2.18 0.75 1.55 2.06 2.23 139.04 69.86 106.10 125.61 135.75 33.07 37.14 13.70 27.20 30.17
mdb134 1.92 0.52 1.55 1.75 2.00 153.99 70.58 107.13 133.21 148.13 28.97 37.17 13.36 24.18 24.59
mdb202 1.54 0.74 1.33 1.34 1.52 155.47 81.87 104.26 147.89 157.39 18.24 21.89 11.60 11.61 14.60
Average 2.02 0.83 1.39 1.58 2.07 148.91 72.37 97.30 122.64 149.01 32.82 27.19 13.07 18.71 23.26

Fig. 6.16: Normalised plots of average values of the metrics for FIOP,
FIOS, FRBS and GFLS methods

Scores compared to other methods.

6.7 Conclusion

Block level fuzzy enhancement techniques in the SMRT domain are
proposed in the current chapter. Flexible fuzzy INT operator based
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Fig. 6.17: (a)Original images and enhanced images using (b)HE
(c)LET (d)NLET (e)FIOP (f)FIOS (g)FRBS (h)GFLS methods

and fuzzy rule based image enhancement algorithms are proposed.
The algorithm hence derived is tested on both general and mam-
mogram images. The results are compared with that of the fuzzy
INT operator based enhancement technique in the spatial domain
(FIOP). Majority of the metric values are good for FRBS compared
to the other two methods.
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Fig. 6.18: (a)Original images and enhanced images using (b)HE
(c)LET (d)NLET (e)FIOP (f)FIOS (g)FRBS (h)GFLS methods

A comparison of global and block level enhancement methods are
done to find the best enhancement methods proposed. LET and
FRBS excel among the global and block level methods respectively.
A global method of enhancement is considered where the image
is transformed using Fuzzy rule based algorithm followed by lin-
ear scaling technique. Promising quantitative results are obtained
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Table 6.6: MOS for various image enhancement techniques
Images Mean Opinion Score (MOS)

HE LET NLET FIOP FIOS FRBS GFLS
baboon 2.7 4.2 3.7 3.1 4.1 3.7 4.3
barbara 3.0 4.1 3.6 2.9 3.4 3.9 4.1
house 3.2 4.3 3.8 2.9 3.0 4.0 4.3
peppers 1.4 4.2 3.9 4.0 4.2 4.2 4.6
mdb009 1.4 3.4 4.4 2.7 2.8 3.3 4.4
mdb170 2.4 4.2 4.1 3.0 3.2 3.5 4.0
mdb204 1.7 3.8 4.4 3.0 3.4 4.0 4.5
mdb227 2.8 4.4 4.4 2.7 2.9 4.0 4.4
mdb005 2.3 4.2 3.9 3.2 3.8 3.8 4.3
mdb010 2.0 4.5 3.9 2.8 3.0 3.8 4.5
mdb019 2.3 4.5 3.0 3.2 3.2 3.6 4.4
mdb132 1.4 4.5 4.2 3.4 3.5 4.0 4.7
mdb023 1.7 4.4 2.9 3.0 3.2 4.2 4.5
mdb058 2.4 4.5 2.6 2.7 2.9 4.4 4.6
mdb134 1.8 4.5 3.8 2.7 2.8 4.1 4.5
mdb202 2.7 4.3 3.7 3.5 3.5 4.1 4.2

for the GFLS method. Subjective evaluation also points to the
fact that Global fuzzy rule based linear image enhancement in
the SMRT domain performs best enhancement among the meth-
ods developed. Quantitative and qualitative analysis of the various
approaches developed for image enhancement show that the per-
formance values of LET is very close to that of GFLS method.
Considering the computational simplicity of LET compared with
GFLS, LET is an equally competent enhancement technique.
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Chapter 7
Conclusion

The chapter presents the summary of investigations carried out
and the conclusions drawn therein. Important contributions of this
work and future scope are also discussed.

7.1 Summary and Conclusion

The essence of the research work is incorporated in chapters 3 to 6
for which the work is introduced through chapter 1 and the status
of the related works in the literature are discussed in chapter 2. De-
velopment of a stand-alone, sequency ordered transform, SMRT, is
presented in chapter 3. Analysis of existing and proposed metrics
for image enhancement is discussed in chapter 4. Chapters 5 & 6
explain different linear and nonlinear techniques of image enhance-
ment using global and block level methods respectively. Hybrid
technique of image enhancement is also presented in chapter 6.
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7.1.1 Development of SMRT

The former researchers of the research team modified the 2-D DFT
computation and derived a new transform MRT that involves only
real additions rather than complex multiplications. But MRT is
a highly redundant transform with a size of N3

2
coefficients for an

N×N data. Subsequently, it is modified as UMRT by removing the
redundant coefficients and arranging in the form of an N ×N ma-
trix. The arrangement of UMRT matrix poses problem in various
applications due to scattered arrangement of connected coefficients.
So, a new sequency ordered arrangement of the unique MRT coeffi-
cients, named SMRT, is proposed in the present work. SMRT place-
ment, basis functions, forward and inverse algorithms are discussed.
Some of its properties such as linearity, orthogonality, energy com-
paction, energy conservation etc. are outlined. The computation
of statistical parameters from SMRT coefficients, its use in pattern
analysis and template matching, are discussed. SMRT, with its
unique sequency ordered basis images, finds applications in many
human vision and computer vision image processing applications.
The scope of SMRT in lossless text compression is also investigated
and compared with DCT & WT. Finally, SMRT is developed as a
stand-alone transform.

7.1.2 Development and Analysis of Image Qual-
ity Metrics

Even though there are numerous IQA metrics present in the litera-
ture, no specific comparative evaluation was noticed in identifying
a suitable metric to assess enhanced images. Thus an investigation
of the various IQA metrics available in the literature to identify
the best suited one is performed. Subsequently Image Enhance-
ment Metric (IEM) in the spatial domain and SMRT based FR
& BR metrics (IEMSFR & IEMSBR) are proposed. Study of 18
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FR IQA (including the proposed metrics), 6 BR IQA (including
the proposed metric) and 7 statistical feature metrics is conducted
for image enhancement applications. Useful metrics for evaluating
improvements in brightness, contrast, sharpness and their combi-
nation suitable for general and medical images are identified. It has
been observed that measures such as AME & mean can be used to
assess the brightness alone; VIF, VIFP, EMEE & SD for finding
contrast alone; statistical measures such as contrast, correlation &
homogeneity to assess sharpness alone and homogeneity, mean &
SD to assess a combination of brightness, contrast and sharpness.
The proposed IQA metrics are found to be useful for measuring the
above mentioned parameters except brightness. A validation is also
done to substantiate the findings obtained from the analysis. All
the above proposed metrics are computationally simple and can be
used for all types of images to quantify enhancement.

7.1.3 Global Image Enhancement Techniques

Brightness of an image can be modified very easily by properly
scaling the single DC SMRT coefficient alone. Linear and nonlin-
ear approaches are developed for scaling AC SMRT coefficients to
improve contrast. In the linear method, AC SMRT coefficients are
scaled uniformly to improve the contrast to optimum levels. The
scaling factors are selected automatically to utilize the full dynamic
range of the histogram. In the nonlinear method, AC SMRT coef-
ficients are modified using six nonlinear mapping techniques that
includes two simple hyperbolic mapping functions that are proposed
with symmetry in modifying coefficients at low and high values.

The proposed methods are applied to general & mammogram im-
ages and the enhanced images are assessed quantitatively. Existing
and proposed quantitative measures such as VIFP, SDME, EMEE,
IEM, SMRTFR, SMRTBR are used to quantify the effectiveness of
the developed methods. Both techniques are compared with HE.
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LET enhances all types of images well. NLET seems to be more
appropriate to enhance calcifications in mammograms.

The LET method, applied to fingerprint images and scanned docu-
ments, produces a binary image when the cac is made much higher.
Both methods are applied to luminance component of YCbCr image
space keeping Cb and Cr unchanged for colour image enhancement.

7.1.4 Block Level Image Enhancement Techniques

Fuzzy intensification operator based and fuzzy rule based image
enhancement techniques in the SMRT domain are proposed. The
algorithm hence derived is tested on both general and medical im-
ages. The results are compared with that of the fuzzy INT operator
based enhancement technique in the spatial domain. IQA metrics
are used to quantitatively assess the enhanced image quality. Ex-
perimental results show that the FRBS algorithm works well quan-
titatively and qualitatively in both general and medical images.

A comparison of global and block level enhancement methods is
done to find the best of the four methods proposed. LET and
FRBS excel among the global and block level methods respectively.
A combination of these two methods cannot be recommended when
computational complexity is considered, since global and block level
methods require the inverse transform to be applied after the first
step. So global method of enhancement is considered for fuzzy rule
based and a combination of fuzzy rule based followed by LET is
applied in the global scenario. Promising results are obtained for
the new method.
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7.2 Research Contributions

1. Development of a sequency ordered, orthogonal, integer-to-
integer transform, called SMRT for N × N data, N a power
of 2.

2. Identification of scope of SMRT for lossless text compression.

3. Development and analysis of IQA metrics in spatial domain
and SMRT domain.

4. Development of global enhancement algorithms in the SMRT
domain

(a) Scaling of DC SMRT coefficient to improve brightness.

(b) Uniform scaling or nonlinear mapping of AC SMRT co-
efficients to improve contrast.

5. Development of a linear and global enhancement technique
in SMRT domain for enhancing fingerprint and scanned text
documents.

6. Development of fuzzy techniques for block level enhancement
in the SMRT domain

(a) Fuzzy intensification operator based enhancement.

(b) Fuzzy rule based enhancement

7. Development of global enhancement technique using fuzzy
rule based and uniform scaling of SMRT coefficients.

7.3 Scope for Future Work

Few possible areas and suggestions for future study are presented.
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1. The importance of SMRT for sequency domain representation
of 1-D and 2-D signals and systems can be explored.

2. SMRT is developed for N × N data, for N a power of 2.
In practical applications, SMRT for rectangular data matrix
M ×N for any M, N is often required and an attempt can be
made in this direction.

3. Section 3.3 describes few properties of SMRT. Further prop-
erties of SMRT can be investigated.

4. Each SMRT coefficient value is computed based on N2 com-
parisons. A direct basis image generation will reduce the com-
putation time further.

5. Comparison of time-sequency localization of SMRT with time-
frequency localization of Wavelet Transform can be explored.

6. Extraction of directional features of SMRT in evaluating the
structural information can be explored and compared with
other directional transforms that have emerged recently.

7. Group patterns and combined group patterns can be used for
direction analysis and can be used for extracting features for
fingerprint identification systems.

8. The scope of SMRT for edge enhancement, denoising, image
filtering etc. can be examined.

9. The usefulness of SMRT based enhancement techniques to
compressed images can be verified.
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A.1 DCT Basis Functions

Fig. A.1: Basis functions of DCT for N=8
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A.2 WHT Basis Functions

Fig. A.2: Basis functions of Walsh-Hadamard Transform for N=8
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Appendix B
Mapping Functions

B.1 Alpha-rooting

In alpha-rooting, DFT coefficients of the image are raised to a power
α while the phase part remains unchanged.

T (u, v) = |S(u, v)|αejargS(u,v), 0 ≤ u, v ≤ N − 1 (B.1)

S(u, v), T (u, v) are the DFT coefficients of the original and modified
image and these values are normalized to a maximum value of unity.
The function plot for various values of α is shown in Fig. B.1.

B.2 Twicing Function

Twicing function can be expressed as

|T (u, v)| = |S(u, v)|(2− |S(u, v)|) (B.2)

Recursively used Twicing functions can be expressed as

ie.|Tk(u, v)| = |Tk−1(u, v)|(2− |Tk−1(u, v)|) (B.3)
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where T0(u, v)=S(u, v) and T1(u, v) = T (u, v).

The mapping function has been modified by Amore et. al. in [107]
as

|Tk(u, v)| = |Tk−1(u, v)|(2− β|Tk−1(u, v)|) (B.4)

where β value is in the range [0,1]. A plot of the recursive twicing
function for different k values is presented in Fig. B.2.

Fig. B.1: Plot of alpha-
rooting function for 0.1 <
α < 1.

Fig. B.2: Plot of twicing func-
tion

B.3 Programmable-S-Function

Functional form of programmable S-function can be expressed as

T (u, v) =

{
n(1− (1− S(u,v)

m
)p1), if 0 ≤ S ≤ m

n+ (1− n)(S(u,v)−m
1−m

)p2, if m ≤ S ≤ 1
(B.5)

where 0 ≤ m ≤ n ≤ 1 and p1, p2 > 0. By varying the values of p1,
p2, m and n, slope and threshold points can be adjusted properly.

Fig. B.3 and Fig. B.4 show the programmable S-function for various
values of parameters.
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Fig. B.3: Plot of
programmable-S-function
for p1 = p2 = 2

Fig. B.4: Plot of
programmable-S-function
for p1 = p2 = 5

B.4 Function proposed by Lee

A single variable function, proposed by Lee is given by

T (u, v) =
1 + S(u, v)

1
γ − (1− S(u, v))

1
γ

2
(B.6)

A plot of this mapping function for various γ is shown in Fig. B.5

Fig. B.5: Plot of function proposed by Lee for various values of γ
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B.5 Intensification Operator
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Fig. B.6: Plot of intensification operator in spatial domain
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Appendix C
Image Quality Assessment
Metrics

C.1 Full-Reference Metrics

Peak Signal-to-Noise Ratio (PSNR) & Mean-Squared Error (MSE)
are expressed mathematically as

MSE(r, e) =
1

MN

M−1∑
i=0

N−1∑
j=0

(r(i, j)− e(i, j))2 (C.1)

PSNR(r, e) = 10log10

(
(L− 1)2

MSE(r, e)

)
dB (C.2)

where r and e denote the reference and enhanced images respec-
tively, MN is the size of the image and L is the dynamic range of
pixel values (256 for 8-bit gray-scale images).

Other frequently used metrics are Mean Absolute Error (MAE),
Signal-to-Noise Ratio (SNR), Absolute Mean Brightness Error (AMBE),
Contrast-to-Noise Ratio (CNR) are defined as
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MAE(r, e) =
1

MN

M−1∑
i=0

N−1∑
j=0

|n(i, j)| (C.3)

SNR(r, e) =

∑M−1
i=0

∑N−1
j=0 r(i, j)2∑M−1

i=0

∑N−1
j=0 n(i, j)2

(C.4)

AMBE is the deviation of the mean intensity of the enhanced image
from the mean intensity of the original image.

AMBE(r, e) = |µr − µe| (C.5)

CNR(r, e) =
µr − µn

σn

(C.6)

where
n(i, j) = r(i, j)− e(i, j)

µr =
1

MN

M−1∑
i=0

N−1∑
j=0

r(i, j)

µn =
1

MN

M−1∑
i=0

N−1∑
j=0

(n(i, j))

σ2
n =

1

MN − 1

M−1∑
i=0

N−1∑
j=0

(n(i, j)− µn)
2

Universal Quality Index (UQI) is expressed as

UQI(r, e) =
4µrµeσre

(µ2
r + µ2

e)(σ
2
r + σ2

e)
(C.7)

where

σre =
1

MN − 1

M−1∑
i=0

N−1∑
j=0

(r(i, j)− µr)(e(i, j)− µe)
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.

SSIM and Mean SSIM (MSSIM) index are defined as

SSIM(r, e) =
(2µrµe + C1)(2σre + C2)

(µ2
r + µ2

e + C1)(σ2
r + σ2

e + C2)
(C.8)

MSSIM(r, e) =
1

K

K∑
i=1

SSIM(ri, ei) (C.9)

where C1 = ((L − 1)k1)
2, C2 = ((L − 1)k2)

2, k1, k2 � 1 and K is
the number of local windows in the image.

C.2 Blind-Reference Metrics

EME, EMEE, AME, AMEE are defined as

EME(e) =
1

k1k2

k1∑
m=1

k2∑
l=1

20ln

(
I l,mmax

I l,mmin

)
(C.10)

EMEE(e) =
1

k1k2

k1∑
m=1

k2∑
l=1

α

(
I l,mmax

I l,mmin

)α

ln

(
I l,mmax

I l,mmin

)
(C.11)

where the image is divided into k1k2 blocks, α is a constant, I l,mmax

and I l,mmin are the maximum and minimum values of the pixels in
each block of the enhanced image.

AME(e) = − 1

k1k2

k1∑
m=1

k2∑
l=1

20ln (X) (C.12)

AMEE(e) = − 1

k1k2

k1∑
m=1

k2∑
l=1

α (X)α ln (X) (C.13)
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where X =
Il,mmax−Il,mmin

Il,mmax+Il,mmin

. All these metrics divide an image into k1k2

blocks and calculate the average value of the measured results of
all blocks in the entire image.

SDME(e) = − 1

k1k2

k1∑
m=1

k2∑
l=1

20ln

∣∣∣∣∣I l,mmax − 2I l,mcen + I l,mmin

I l,mmax + 2I l,mcen + I l,mmin

∣∣∣∣∣ (C.14)

where I l,mcen refers to the centre pixel value of each block.

C.3 Statistical Feature Metrics

Entropy = −
∑
i

∑
j

P (i, j)logP (i, j) (C.15)

Contrast =
∑
i

∑
j

(i− j)2P (i, j) (C.16)

Homogeneity =
∑
i

∑
j

P (i, j)

1 + |i− j|
(C.17)

Energy =
∑
i

∑
j

P (i, j)2 (C.18)

Correlation =
∑
i

∑
j

(i− µi)(j − µj)

σiσj

P (i, j) (C.19)

where i and j are two different gray levels of the image and P is
the number of the co-appearance of gray levels i and j.
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Appendix D
Mex Compilation of SMRT

Algorithms for SMRT and ISMRT can be coded in MATLAB for
signal processing applications. They are coded in MATLAB using
well known C language and integrated to MATLAB via MEX file
compilation. MATLAB toolbox has been developed for SMRT and
its inverse.

D.1 Mex Compilation

C is one of the most popular languages in coding. It is powerful,
flexible, portable and elegantly structured language. Another im-
portant reason for selecting C is that the platform of MATLAB
software is written in C. It also provides means to integrate func-
tions written in C to MATLAB library. Hence the functions written
can be optimized to the maximum extent possible by using C.

Register variables are used to improve the speed in C. They are a
special case of variables. Unlike normal variables, stored in the main
memory of the computer, these are stored in the registers of CPU.
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The registers can be stored and accessed quickly. Normally the
compiler decides which all variables are stored in the register, but
in C language the programmer can suggest to store some variables
in the registers.

Other improvisation techniques were not required for the C pro-
grams since the computation algorithm of transforms does not con-
tain any complex arithmetic operations or equations other than
simple additions and comparisons.

The programs written in C cannot be used directly in MATLAB.
Proper interfacing is required to integrate it back to MATLAB by
using MEX files. MEX files are MATLAB Executable files. They
are dynamically-linked subroutines that the MATLAB interpreter
loads and executes. MEX files have a definite structure, different
from ordinary C program, and must be compiled to form the actual
executable files. MEX-file can be called using the name of the
file, without the file extension. It contains only one function or
subroutine with the name same as the MEX-file name.

A difficulty associated with the MEX file compilation is the de-
bugging of MEX files. MATLAB does not have any provision to
debug the MEX files, making it difficult for error correction via
MATLAB. Any error occurring while creating a MEX file needs to
be corrected by trial and error method. In addition, there is no C
compiler present in the versions of MATLAB released after 2009.
So creating MEX files will require external compiler for versions
after 2009.

D.2 MATLAB Toolbox

One of the prime advantages of using MEX files is that they can
be invoked in a manner similar to the inbuilt MATLAB functions,
provided they are already included in MATLAB working directory.
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Here comes the role of MATLAB toolbox. Toolbox is basically a
collection of user-written functions designed for a specific purpose.
Creation of toolbox is a simple task if all the program files are
ready. All the program files for implementation of the transform
are initially put together in a single folder. A file named startup.m
has to be added in the default working directory of MATLAB. It
has the path of the folder in which the files are saved. The tool
box is integrated automatically when MATLAB is launched from
startup.m. The computation time for SMRT and its inverse are
reduced considerably with the help of C Programming and MEX file
integration. The better performance of MEX files over MATLAB is
accomplished by the usage of pointers, dynamically assigned during
program run and cleared after program execution.
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