A Study of Some Centrality Measures in Graphs

Ph.D Thesis submitted to

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

in partial fulfillment of the requirements
for the award of the degree of
DOCTOR OF PHILOSOPHY
under the Faculty of Technology by

RAM KUMAR R (Reg.No.3517)
 Under the guidance of Dr.B KANNAN

Department of Computer Applications
Cochin University of Science and Technology
Kochi - 682 022, Kerala, India
June 2014

A Study of Some Centrality Measures in Graphs

Ph.D. thesis

Author:

Ram Kumar R
Department of Computer Applications
Cochin University of Science and Technology
Kochi - 682 022, Kerala, India
Email: ram.k.mail@gmail.com

Research Advisor:

Dr. B. Kannan
Associate Professor
Department of Computer Applications
Cochin University of Science and Technology
Kochi - 682 022, Kerala, India.
Email: mullayilkannan@gmail.com

Department of Computer Applications
Cochin University of Science and Technology
Kochi - 682 022, Kerala, India.

June 2014

Dr. B. Kannan
Associate Professor \& Head
Department of Computer Applications
Cochin University of Science and Technology
Kochi - 682 022, Kerala, India.

June 12, 2014

Certificate

Certified that the work presented in this thesis entitled "A Study of Some Centrality Measures in Graphs "is based on the authentic record of research carried out by Shri. Ram Kumar R under my guidance in the Department of Computer Applications, Cochin University of Science and Technology, Kochi-682 022 and has not been included in any other thesis submitted for the award of any degree.

[^0]
Declaration

I hereby declare that the work presented in this thesis entitled "A Study of Some Centrality Measures in Graphs "is based on the original research work carried out by me under the supervision and guidance of Dr. B. Kannan, Associate Professor, Department of Computer Applications, Cochin University of Science and Technology, Kochi - 682 022, Kerala, India and has not been included in any other thesis submitted previously for the award of any degree.

Ram Kumar R

Kochi- 682022
June 12, 2014

Dr. B. Kannan
Associate Professor \& Head
Department of Computer applications
Cochin University of Science and Technology
Cochin 682 022, India.

June 12, 2014

Certificate

Certified that the work presented in this thesis entitled "A Study of Some Centrality Measures in Graphs "submitted to Cochin University of Science and Technology by Sri. Ram Kumar R for the award of degree of Doctor of Philosophy under the faculty of technology, contains all the relevant corrections and modifications suggested by the audience during the presynopsis seminar and recommended by the Doctoral Committee.

Dr. B. Kannan
(Supervising Guide)

[^1]
Acknowledgments

At the very outset, I would like to place on record my deep sense of gratitude to Dr.B.Kannan, Head, Department of Computer Applications, Cochin University of Science and Technology, my teacher and guide for his sustained support, valuable guidance and affectionate care at every stage of this study. His clarifications, rectifications and observations inspired me to complete the work within the limited time.

I am obliged to Dr.K.V.Pramod, Associate Professor and former Head of the department for providing the necessary facilities all along the work. But for his encouragement and backing it would not have been possible for me to complete the study in its present shape and form.

I am extremely grateful to Dr.A.Sreekumar who, with his tremendous mathematical acumen, solved many of the problems that surfaced during the course of this work. He was the one to whom I looked whenever I was in an impasse. I would like to thank Dr.M.Jathavedan (Emeritus Professor) and Ms. Malathy S (Assistant professor) of Department of Computer Applications for their encouragement and valuable comments.

I shall be failing in my duty if I don't express my sincere thanks to Dr.Manoj Changat, Head, Department of Futures Studies, University of Kerala who spared his valuable time in the discussions of various problems that arose during the course of this research. I am also thankful to him for the pain he took in reading this thesis and giving invaluable suggestions.

My gratitude to Dr.G.N.Prasanth, Assistant Professor, Department of Mathematics, Government College, Chittur is beyond words. The constant discussions that I had with him and his expertise with LA $_{E} X$ have contributed a lot in putting this thesis in the current form.

I express my sincere thanks to Prof. Sandi Klavzar and Prof. Iztok Peterin for the fruitful discussions I had with them and the valuable suggestions they provided.

I am deeply indebted to Dr. A. Vijayakumar, Department of Mathematics, Cochin University of Science and Technology for his critical observations and fruitful suggestions.

At this juncture I remember Mr.Tibin Thomas, Research scholar, who helped me in solving some combinatorial problems that came up during this study.

The three years of full time research had been a joyful learning experience; thanks to my fellow researchers Bino Sebastian, Binu V.P, Jasir M P, Jomy John, Remya A. R., prof.Santhosh Kumar.M.B, Simily Joseph, Sindhumol S and Sunil Kumar R.

I acknowledge with deep sense of gratitude my obligation to the librarian and the staff of the department.

I am extremely thankful to the University Grants Commission for granting me the fellowship and to management and principal of my college for permitting me to proceed on leave and take up the assignment.

The instigation and the motivation provided by my father,
Dr.R. Ramachandran Nair, is the sole reason why I plunged into this venture. But for the encouragement and support of my father and mother I could never have completed my assignment.

My thanks are also due to my in-laws who, keeping aside their personal inconveniences, took care of my family while I was busy with my work. My wife Dr.Ambili.K and my daughter Kamala are the ones who suffered the most due to my indulgence in this research. I take this opportunity to deeply acknowledge the understanding and co-operation that they exhibited.

Finally I pay my respect and regard to God almighty, the ultimate source of inspiration and guidance in my life.

Ram kumar R

Conferences and Publications

Conferences

- On the median number of a graph-UGC Sponsored National seminar on Recent trends in Distances in Graphs held at Ayya Nadar Janaki Ammal college Sivakasi,12-13 march 2012
- Connected Fair sets in Graphs-Indo-Slovenia Conference on Graph Theory and Applications Organised by Department of Futures Studies, University of Kerala, Graph Theory Research Group, University of Maribor and Institute of Mathematics, Physics and Mechanics, Ljubljana, February 22-24,2013.
- Pacifying Edges of a Graph- UGC Sponsored National seminar on Emerging trends in Applied Mathematics held at Mar Ivanios College, Thiruvananthapuram, 5-7 September 2013.

Publications

- Median Sets and Median Number of a Graph- ISRN Discrete Mathematics, Volume 2012- Hindawi Publishing Corporation.

Contents

1 Introduction 1
1.1 Background of the problem 1
1.2 Preliminaries 3
1.3 Synopsis 8
2 Review of literature 11
2.1 Center 11
2.1.1 Self-centered graphs 13
2.1.2 Some generalizations of center 14
2.2 Median 14
2.2.1 p-median 16
2.2.2 Median of a set 16
2.2.3 Median of a profile 16
2.3 Antimedian and Anticenters 17
2.4 Distance related extremal graphs 18
3 Center Sets and Center Number 21
3.1 Introduction 21
3.2 Center Critical graphs 21
3.3 Center Sets of Some Graph Classes 23
3.3.1 Center sets of Block graphs 24
3.3.2 Center Sets of Complete bipartite graphs 25
3.3.3 Center sets of $K_{n}-e$ 27
3.3.4 Center sets of Wheel graph 28
3.3.5 Center sets of Odd cycles 31
3.3.6 Center sets of Symmetric Even graphs 34
3.4 Enumerating Center Sets 39
3.4.1 Center number of Even and Odd cycles 40
3.5 Conclusion 50
4 Pacifying and Shrinking edges 51
4.1 Introduction 51
4.2 Pacifying edges of some classes of graphs 53
4.2.1 Pacifying edges of a path 53
4.2.2 Pacifying edges of Odd Cycles 63
4.2.3 Pacifying edges of Symmetric Even graphs 67
4.3 Shrinking Edges 69
4.4 Conclusion 72
5 Median Sets and Median Number 73
5.1 Introduction 73
5.2 Median number of some classes of graphs 74
5.2.1 Median number of Complete graphs 74
5.2.2 Median number of $K_{n}-e$ 74
5.2.3 Median number of Block graphs 76
5.2.4 Median number of Hypercubes 78
5.2.5 Median number of Wheel graphs 78
5.2.6 Median number of Complete Bipartite graphs 82
5.2.7 Median number of Cartesian Products 86
5.2.8 Median sets of Symmetric Even Graphs 90
5.3 Conclusion 92
6 Fair Sets 93
6.1 Introduction 93
6.2 Graphs with connected fair sets 94
6.3 Fair sets of some classes of graphs 98
6.3.1 Fair sets of Complete graphs 98
6.3.2 Fair sets of $K_{n}-e$ 99
6.3.3 Fair sets of Complete Bipartite graphs 100
6.3.4 Fair sets of wheel graphs 101
6.3.5 Fair sets of Paths 105
6.3.6 Fair sets of Odd cycles 109
6.3.7 Fair sets of Symmetric Even graphs 113
6.4 Fair sets and Cartesian product of graphs 116
6.5 Conclusion 117
7 Antimedian and weakly Antimedian graphs 119
7.1 Introduction 119
7.2 Some Antimedian graphs 120
7.3 Weakly Antimedian Graphs 137
7.4 Conclusion 150
8 Conclusion and future works 151

List of Figures

1.1 A block graph and its skeleton graph 6
1.2 7
$3.1 \quad K_{5,4}$ 26
$3.2 \quad K_{6}-e, e=u v$ 28
$3.3 \quad W_{9}$ 29
$3.4 \quad W_{5}$ 31
$3.5 \quad C_{7}$ 34
3.6 $\quad C_{12}$, a symmetric even graph 39
3.7 43
3.8 47
4.1 Graph having vertices with and without pacifying edges 52
4.2 Path P_{17} 61
4.3 Odd Cycle $C_{2 n+1}$ 64
$5.1 \quad K_{2,5}$ 85
6.1 94
6.2 A Chordal graph with disconnected fair sets 97
6.3 108
$6.4 \quad P_{8}$ 109
6.5 Odd cycle $C_{2 n+1}$ 110
7.1 A Thin Even Belt 120
$7.2 \quad x-P$ path meeting P at a pair of adjacent vertices. 121
$7.3 \quad H_{1}$ 130
$7.4 \quad H_{2}$ 130
$7.5 \quad H_{3}$ 131
7.6 Weakly Antimedian graph that is not antimedian 137
$7.7 \quad G, H$ and $G \square H$ 139
$7.8 G$ and $G . w$ 140
$7.9 H_{4}$ 148

List of Tables

4.1 Pacifying edges of vertices where $d(w, b)<3 d(w, a)$ 62
4.2 Pacifying edges of vertices where $d(w, b) \geqslant 3 d(w, a)$ 62
4.3 Shrinking edges of path P_{m} 71
6.1 94

Chapter 1

Introduction

1.1 Background of the problem

There has been a steady increase in the research relating to the study of graphs as they are the mathematical models of various real-world complex networks like the world-wide web, social networks, email networks, biological networks etc. One of the most important aspects of such networks that researchers have been trying to study is centrality, which measures the degree of influence or importance of an individual with in the network under consideration

Centrality is in fact one of the fundamental notions in graph theory which has established its close connection with various other areas like Social networks, Flow networks, Facility location problems etc. Even though a plethora of centrality measures have been introduced from time to time, according to the changing demands, the term is not well defined and we can only give some common qualities that a centrality measure is expected to have. Nodes with high centrality scores are often more likely to be very powerful, indispensable, influential, easy propagators of information, significant in maintaining the cohesion of the group and are easily susceptible to anything that disseminate in the network.

Nodes with low centrality are considered to be peripheral. They have very little significance in any kind of group activity and thus contributes very less in maintaining the cohesion of the group. While the above said are their disadvantages they are not without advantages. They are comparatively insulated from the spread of anything undesirable say, contagious
diseases in the case of human networks, viruses in the case of computer networks etc and are usually subjected to lesser traffic flow.

Sabidussi [108] gave a set of conditions that a measure should possess in order to qualify to become a centrality measure. One of these was that adding an edge to the node should increase its centrality and another was that adding an edge anywhere in the network should not decrease the centrality of any node. These are not generally acceptable as many of the centrality measures do not possess these qualities. That is, Sabidussi's condition are insufficient to define centrality. Freeman in [43] categorised the class of all centrality measures in to three-degree, betweenness and closeness. Degree centrality of a node is the number of nodes to which a particular node is directly attached and it gives the extend of exposure of a node to attract anything that is spreading in the network. The closeness centrality gives an account of how close a node is to all the other nodes in the network and it measures the cost involved in spreading an information from a node to other nodes of the network. Betweenness centrality gives the frequency with which a particular node appears in the shortest path between other pairs of nodes. It reflects the capability of a node in controlling the flow of information between other pair of nodes. For more on the various centrality measures, see [20].

Facility location problems, where the purpose is to identify the locations for setting up a facility like hospital, fire station, library, ware house, depot etc for a given a set of customers, from the time of its inception, has been heavily relying on the concept of centrality. The locations chosen should be optimal and the criteria for optimality depends on the nature of the problem, but it is accepted that it depends on the distances between the various locations. When we are looking to place an emergency facility like fire station or hospital, the location is chosen in such a way that the maximum response time between the site of facility and the emergency is kept to a minimum. This is called the effectiveness oriented model.

When the facility is something like a shopping mall, where the objective is to minimise the total transportation cost from the facility point to all its customers, the location is chosen in such a way that sum of the distances to be covered is a minimum. This is usually referred to as efficiency oriented model. There is a third approach known as equity oriented model where the location for a facility is to be chosen such that it is more or less equally fair to all the customers. Issue of equity is relevant in setting public sector facilities where the distribution of travel distances among the recipients of the service is also of importance. That is, the inverse of measures of dispersion like range, mean deviation etc are used as the centrality measure in such models. In practice, we calculate the inequity measures and the location having the least inequity measures are considered to be the central points.

1.2 Preliminaries

This section introduces various graph theoretic terms that are being used in the coming chapters. The description of certain terms that are frequently used through out this thesis are given as definitions. A graph G consists of a finite nonempty set $V=V(G)$ of vertices to together with a set, $E=E(G)$, of unordered pairs of distinct vertices. A pair $e=\{u, v\}$ of vertices u and v of G is called an edge of G having end vertices u and v. We write $e=u v$ and say that u and v are adjacent vertices; vertex u and edge e are incident with each other, as are e and v. If two edges e_{1} and e_{2} are incident with a common vertex then they are adjacent edges. A graph H is a subgraph of G, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. If G_{1} is a subgraph of G then G is a supergraph of G. For any set S of vertices of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with vertex set S. If v is a vertex of a graph G then $G-v$ is the subgraph of G consisting of all vertices of G except v and all edges not incident with v. The removal
of a set of vertices S, which is the removal of single vertices in succession, results in $G-S$. If u and v are nonadjacent vertices of G then $G+u v$ is the graph obtained by addition of the edge $u v$ to G. A walk of a graph is an alternating sequence of vertices and edges $v_{0} e_{1} v_{1} e_{2} \ldots v_{n-1} e_{n} v_{n}$ beginning and ending with vertices, in which each edge is incident with two vertices immediately preceding and succeeding it. The integer n is the length of the walk. This walk is referred to as a $v_{0}-v_{n}$ walk. Here v_{0} and v_{n} are called the origin and terminus respectively and v_{1}, \ldots, v_{n-1} its internal vertices. If the origin and terminus are identical the walk is called a closed walk. When all the edges of a walk are distinct then it is called a trail and further if all vertices are also distinct then it is called a path. A path on n vertices shall be denoted by P_{n}. A closed trail whose origin and internal vertices are all distinct is called a cycle. A cycle of length n, denoted by C_{n}, is called an n-cycle; an n-cycle is odd or even according as n is odd or even. A graph G is connected if there exists a path between any pair of vertices of G. An acyclic graph is one that contains no cycle. A tree is a connected acyclic graph. A graph in which each pair of distinct vertices are adjacent is called a complete graph and is denoted by K_{n} if it contain n vertices. A subset S of V is called a clique if every pair of vertices of S are adjacent. A graph is bipartite if its vertex set can be partitioned into two subsets V_{1} and V_{2} such that each edge has one end in V_{1} and the other end in V_{2}. $\left(V_{1}, V_{2}\right)$ is called a bipartition of G. A complete bipartite graph, $K_{m, n}$, has a bipartition $\left(V_{1}, V_{2}\right)$ where $\left|V_{1}\right|=m,\left|V_{2}\right|=n$ and each vertex of V_{1} is adjacent to every vertex of V_{2}. The complement G^{c} of a graph G is the graph with vertex set V, two vertices being adjacent in G^{c} if and only if they are not adjacent in G.

Definition 1. For two vertices u and v of G, distance between u and v denoted by $d_{G}(u, v)$, is the number of edges in a shortest $u-v$ path.

Definition 2. The eccentricity $e_{G}(u)$ of a vertex u is $\max _{v \in V(G)} d_{G}(u, v)$.

When G is obvious, we write $d(u, v)$ and $e(u)$ for $d_{G}(u, v)$ and $e_{G}(u)$ respectively.

Definition 3. A vertex v is an eccentric vertex of u if $e(u)=d(u, v)$. A vertex v is an eccentric vertex of G if there exists a vertex u such that $e(u)=d(u, v)$.

The set of all vertices which are at a distance i from the vertex u is denoted by $N_{i}(u)$. The set of all vertices adjacent to x in a graph G, denoted by $N(x)$, is the neighbourhood of the vertex x. For an $S \subseteq V$, neighborhood of S denoted by $N(S)=\bigcup_{u \in S} N(u)$.
Definition 4. The diameter of the graph G, $\operatorname{diam}(G)$, is $\max _{u \in V(G)} e(u)$. The radius of G, denoted by $\operatorname{rad}(G)$, is $\min _{u \in V(G)} e(u)$. Two vertices u and v are said to be diametrical if $d(u, v)=\operatorname{diam}(G)$.

Definition 5. The interval $I(u, v)$ between vertices u and v of G consists of all vertices which lie in some shortest path between u and v. The number of intervals of a graph is denoted by $\operatorname{in}(G)$.

Definition 6. A vertex u of a graph G is called a universal vertex if u is adjacent to all other vertices of G.

Definition 7. A vertex v of a graph G is called a cut-vertex if $G-v$ is no longer connected. Any maximal induced subgraph of G which does not contain a cut-vertex is called a block of G.

Definition 8. [15] A finite sequence of vertices $\pi=\left(v_{1}, \ldots, v_{k}\right) \in V^{k}$ is called a profile. For the profile $\pi=\left(v_{1}, \ldots v_{k}\right)$ and $x \in V(G)$, the remoteness $D_{G}(x, \pi)$ is $\sum_{1 \leqslant i \leqslant n} d\left(x, v_{i}\right)$. When the underlying graph is obvious we use $D(x, \pi)$ instead of $D_{G}(x, \pi)$ and further if the vertex is also obvious we use $D(\pi)$ instead of $D(x, \pi)$.

The Hypercube Q_{n} is the graph with vertex set $\{0,1\}^{n}$, two vertices
being adjacent if they differ exactly in one co-ordinate. A subcube of the hypercube Q_{n} is an induced subgraph of Q_{n}, isomorphic to Q_{m} for some $m \leqslant n$.

The graph on n vertices formed by joining all the vertices of a $(n-1)$-cycle to a vertex is a wheel graph and is denoted by W_{n}.
A graph G is a block graph if every block of G is complete. A graph G is chordal if every cycle of length greater than three has a chord; namely an edge connecting two non consecutive vertices of the cycle. Trees, k-trees, interval graphs, block graphs are all examples of chordal graphs.

Definition 9. [71] Let G be a graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and let $\left\{B_{1}, \ldots, B_{r}\right\}$ be the blocks of G. Then the Skeleton S_{G} of G is a graph with $V\left(S_{G}\right)=\left\{v_{1}, \ldots, v_{n}, B_{1}, \ldots, B_{r}\right\}$ and $E\left(S_{G}\right)=\left\{\left(v_{i}, B_{j}\right) \mid v_{i} \in V\left(B_{j}\right)\right\}$.

Figure 1.1: A block graph and its skeleton graph

Definition 10. A graph is a unique eccentric vertex graph(written $U E V$ graph) if every vertex has a unique eccentric vertex. The unique eccentric vertex of the vertex u is denoted by \bar{u}.

Definition 11. A graph G is self centered if all the vertices of G have the same eccentricity.

Definition 12. [54] A graph G is called even if for each vertex u of G there is a unique eccentric vertex \bar{u}, such that $d(u, \bar{u})=\operatorname{diam}(G)$. In other words even graphs are self centered, $U E V$ graphs.

Definition 13. [54] An even graph G is called balanced if $\operatorname{deg}(u)=\operatorname{deg}(\bar{u})$ for each $u \in V$, harmonic if $\bar{u} \bar{v} \in E$ whenever $u v \in E$ and symmetric if $d(u, v)+d(u, \bar{v})=\operatorname{diam}(G)$ for all $u, v \in V$.

Gobel and Veldman in [54] proved that every harmonic even graph is balanced and every symmetric even graph is harmonic. They also gave examples of harmonic graphs that are not symmetric and balanced graphs that are not harmonic.

Figure 1.2

Definition 14. The Cartesian product $G \square H$ of two graphs G and H has vertex set, $V(G) \times V(H)$, two vertices (u, v) and (x, y) being adjacent if either $u=x$ and $v y \in E(H)$ or $u x \in E(G)$ and $v=y$. For more on graph products see [57].

Given integers i and j, we introduce the following notations

$$
\begin{aligned}
i \oplus_{n} j & =i+j \text { if } i+j \leqslant n . \\
& =i+j-n \text { if } i+j>n
\end{aligned}
$$

$$
\begin{aligned}
i \ominus_{n} j & =i-j \text { if } i-j \geqslant 1 \\
& =i-j+n \text { if } i-j \leqslant 0
\end{aligned}
$$

1.3 Synopsis

In this thesis graph theoretic studies on various centrality measures are being conducted. The rest of the thesis is organised as follows.
Chapter 2 is devoted to the literature survey on various centrality measures.
In Chapter 3 we identify the S-center of different classes of graphs such as trees, complete graphs, block graphs, wheel graphs, complete bipartite graphs, odd cycles and symmetric even graphs. We give some results regarding centers of dominating boundary sets of symmetric even graphs. Center Number of a graph is introduced as the number of distinct center sets of a graph. Center number of the above classes of graphs are found out. We introduce a new class of graphs called Center Critical Graphs and characterise them.

Eccentricity measures how far is a vertex from the furthest in the graph. In some cases it is desirable to reduce the eccentricity of a vertex by introducing additional edges to the graph. One special case of this problem is when addition of only a single edge is permissible. In chapter 4 we introduce the concepts Pacifying Edges and Shrinking Edges in a graph and the same are identified for paths, odd cycles an symmetric even graphs.
Chapter 5 discusses the median sets of various classes of graphs and enumerate them.
Chapter 6 focuses on equity based centrality, introduces the concept of Partiality, Fair Center and Fair Sets of graphs and fair sets of some specific classes of graphs are identified.
Chapter 7 is devoted to the study of Antimedian graphs and a generalisation of it called weakly antimedian graphs. Antimedian block graphs and
weakly antimedian trees are characterised and new classes of antimedian and weakly antimedian graphs are introduced.
Finally, chapter 8 concludes the thesis by summarizing the results of the previous chapters and gives some problems for further study.

Chapter 2

Review of literature

In this chapter we make a detailed survey on the various graph theoretic centrality measures like center, median, antimedian etc. The survey is conducted on a structural rather than algorithmic point of view.

2.1 Center

The center of a graph consists of those vertices with minimum eccentricity, where eccentricity of a vertex is the maximum distance of the vertex among the set of all vertices. The problem of finding the center of a graph has been studied by many authors since the nineteenth century beginning with the classical result due to Jordan [70] that the center of a tree consists of a single vertex or a pair of adjacent vertices. The graph center problem is interesting from both a structural and an algorithmic point of view. Harary and Norman in [59] proved that the center of a connected graph lies with in a block of the graph. Kopylov and Timofeev in [80] stated without proof that given a graph G there exists a graph H such that center of H, $C(H) \cong G$.Buckley et al. in [24] demonstrated that for $n \geqslant 2$ and a graph G there exists a graph H such that vertex and edge connectivity of H equal to n, chromatic number of $G, \chi(G)=\chi(H)+n$ and $C(G) \cong C(H)$. A planar graph which can be drawn such that all vertices are on the outer face is called an outerplanar graph. A graph is maximal outerplanar if it is outerplanar and adding an edge makes it non-outerplanar. A.Proskurowski [103, 104] showed that only a finite number of graphs can be centers of maximal outerplanar graphs and generalized this result for the class of 2trees which contains maximal outerplanar graphs. A graph is chordal if every cycle of length greater than 3 contains a chord. Laskar and Shier in
[83] proved that for a connected chordal graph the center always induces a connected subgraph. Soltan and Chepoi in [112] proved that the center of a connected chordal graph has diameter at most 3. Truszczyski [116] proved that the center $C(G)$ of a unicycle graph containing the cycle C is either K_{1} or K_{2} or $C(G) \subseteq C$. Chepoi in [29] characterised the centers of chordal graphs. It was shown by Nieminen in [90] that the center vertices of a chordal graph constitutes a convex vertex set. Chang [28] showed that the center of a connected chordal graph is distance invariant, biconnected and of diameter no more than 5 . He proved that for any connected chordal graph with $\operatorname{diam}(G)=2 \operatorname{rad}(G)$, center of $G, C(G)$, is a clique and for any connected chordal graph with $\operatorname{diam}(G)=2 \operatorname{rad}(G)-1, \operatorname{diam}(C(G)) \leqslant 3$. He also gave a a necessary and sufficient condition for a biconnected chordal graph of diameter 2 and radius 1 to be the center of some chordal graph and further conjectured that $\operatorname{diam}(C(G)) \leqslant 2$ for any connected chordal graph with $\operatorname{diam}(G)=2 \operatorname{rad}(G)-2$. Vijayakumar et al. in [98] disproved this conjecture. Chepoi in [30] gave a linear time algorithm for finding the center of a chordal graph. If G is a nontrivial graph then its line graph $L(G)$ is the graph whose nodes are the edges of G and two nodes in $L(G)$ are adjacent if and only if the corresponding edges are adjacent in G. It was proved by Knor et al. [79] that given a graph G there exists a graph H such that G is the center of H and the Line graph of G is the center of Line graph of H. The i-iterated line graph of $G, L^{i}(G)$, is given by $L^{0}(G)=G$ and $L^{i}(G)=L\left(L^{i-1}(G)\right.$ for $i \geqslant 1$. For a graph G such that $L^{2}(G)$ is not empty, Knor et al. [78] constructed a supergraph H such that $C\left(L^{i}(H)\right)=L^{i}(G)$ for all $i, 0 \leqslant i \leqslant 2$. Buckley et al. [23] defined a graph G as an L-graph if all its diametrical paths contain a central vertex. They proved that $C(G \square H)=C(G) \times C(H)$, where $G \square H$ is the Cartesian product of the graphs G and H. They further proved that if either $C(G)$ is a bridge or $C(G)=\{x\}$ where x does not lie in a cycle then G is an L-graph. An L-graph is an L_{1}-graph if all its diametrical paths contain
all its central vertices, it is called an L_{3}-graph if G is an L-graph and no diametrical path of G contains all central vertices of G and it is called an L_{2} graph if it is neither L_{1} nor L_{3}. Gliviak and Kys [52] gave upper and lower bounds for the number of elements in the center of all L-graphs, that is, L_{1}-graphs, L_{2}-graphs and L_{3}-graphs. Gliviak et al. [51] showed that the central subgraph of any two-radially maximal graph contains an edge and that those of them that have a star as the central subgraph are sequential joins of complete graphs. If G is a simply connected set of lattice points with graph structure defined by 4 -neighbour adjacency, Khuller et al. in [73] showed that the center of G is either a 2×2 square block, a diagonal staircase, or a (dotted) diagonal line with no gaps. Pramanik [102] proved that for every non-trivial connected graph H there exists a graph G such that H is the center of G and the inserted graph of H is the center of the inserted graph of G.

2.1.1 Self-centered graphs

Buckley in [21] determined the extremal sizes of a connected self-centered graph having p vertices and radius r. Akiyama and Ando [1] characterized graphs G for which both G and G^{c} are self-centered with diameter 2. Akiyama et al. in [2] characterised self-centered graphs with p vertices, radius 2 and minimum size. Laskar and Shier [83] showed that a connected self-centered chordal graph has radius $\leqslant 3$. Nandakumar and Parthasarathy [97] proved that a unique eccentric vertex graph is self-centered if and only if each vertex is eccentric. Das and Rao in [39] sowed that there are no selfcentered chordal graphs with radius $=3$ and characterised all self-centered chordal graphs. Buckley in [22] showed that a self complementary graph with diameter d is self-centered if and only if $d=2$. Klavzar et al.[75] introduced Almost Self-Centered graphs as the graphs in which all but two are central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. They also showed
that any graph can be embedded into an Almost self-centered graph graph of prescribed radius. Balakrishnan et al. in [7] characterised almost self centered median and chordal graphs.

2.1.2 Some generalizations of center

Slater in [109] generalized the concept of center of a graph to center of an arbitrary subset, say S, of the vertex set of the graph and called it S center. He proved that the S-center of a tree consists of a single vertex or a pair of adjacent vertices. Chang in [120] studied the S-center of distance hereditary graphs and proved that the S-center of a distance hereditary graph is either a connected graph of diameter 3 or a cograph. He also proved that for a bipartite distance hereditary graph the S-center is either a connected graph of diameter $\leqslant 3$ or an independent set. The Steiner distance of a set S of vertices in a connected graph G is the minimum size among all connected subgraphs of G containing S. For $n \geqslant 2$, the n-eccentricity $e_{n}(v)$ of a vertex v of a graph G is the maximum Steiner distance among all sets of n vertices of G that contains v. The n-center of $G, C_{n}(G)$, is the subgraph induced by those vertices of G having minimum n-eccentricity. Oellerman [95] showed that every graph is the n-center of some graph. It was also shown that the n-center of a tree is a tree and characterized those trees that are n-centers of trees. In [94] he described an algorithm for finding $C_{n}(T)$ of a tree. Another generalisation of the center problem, called the p-center problem, was studied algorithmically by many authors $[31,42,55,58,72,86,101,121]$.

2.2 Median

The Median $M(G)$ of a graph G consists of those vertices that minimises the sum of the distances to all vertices of the graph. The first known result is by Jordan [70] who proved that the median of a tree consists of
a single vertex or a pair of adjacent vertices. If v is a vertex of the tree T, the maximal number of vertices of a branch of T from v is called the weight at v. The vertex of T with the minimal weight is called the Centroid of T. Zelinka [122] proved that the median of a tree coincides with its centroid. Slater [110] showed that for every graph H there exists a graph G whose median is H, and that the median of a $2-$ tree is isomorphic to K_{1}, K_{2} or K_{3}. Hendry [65] proved that for every two graphs G and H, there exists a connected graph F such that $C(F) \cong G$ and $M(F) \cong$ H, where $C(F)$ and $M(F)$ are disjoint. Holbert [66] went a step further proving that for every two graphs G and H and positive integer k, there exists a connected graph F such that $C(F) \cong G$ and $M(F) \cong H$ and $d(C(H), M(H))=k$. That is, even though both center and median are "centers" of a graph they can be arbitrarily far. On the other hand, they can also be arbitrarily close. Novotny and Tian [93] proved that for any three graphs G, H and K, where K is isomorphic to an induced subgraph of both G and H, there exists a connected graph F such that $C(F) \cong G$, $M(F) \cong H$ and $C(H) \cap M(H) \cong K$. The periphery $P(G)$ is the subgraph induced by those vertices of G having maximum eccentricity. Winters in [118] proved that for any graph G, there exists a connected graph H such that $M(H) \cong F$ and $d_{H}(u, v) \leqslant 2$ for all $u, v \in V(H)$. Given graphs G and H and an integer m, he gave a necessary and sufficient condition for G and H to be the median and periphery, respectively, of some connected graph such that the distance between the median and periphery is m. Necessary and sufficient conditions were also given for two graphs to be the median and periphery and to intersect in any common induced subgraph. Dankelmann and Sabidussi in [38] showed that given any connected graph H, there exists a connected graph G whose median is an isometric subgraph which is isomorphic to H. Soltan[111] showed that the median of a ptolemaic graph is connected and Niemenen in [90] established that the median of a ptolemaic graph is complete.

2.2.1 p-median

The concept of median has been generalised to p-median, where p is any positive integer. This is a set of p vertices that minimises the sum of the distances of each vertex to its nearest vertex in the p-vertex set. The p median problem has been mostly approached algorithmically and Hakimi in [56] gave a method for solving the p-median problem and since then the problem has been approached algorithmically by many authors [3, 4, 25, $45,55,61,67,68,72,81,85,99,106,114]$.

2.2.2 Median of a set

A generalization of the median problem is to find the median of a subset of the vertex set. In this case a median is a vertex that minimizes the sum of the distances to all the elements of the subset. If S is any subset of V then the median of S was called as S-centroid by Slater [109]. He proved that S-centroid of a tree is a path and that if S contains odd number of elements then S-centroid contains a unique vertex.

2.2.3 Median of a profile

Another generalization was to find the median set of a profile, a sequence of vertices. In this case a median is vertex that minimizes the sum of the distances to all the elements of the profile, taking into consideration repetition of vertices in the profile, see [55]. The set of all medians of a profile is called the median set of the profile. If u and v are vertices of a graph G, then $I(u, v)$ consists of vertices of the shortest paths between u and v. A graph G is called a Median graph if for every triple of vertices $\{u, v, w\}$ of $G, I(u, v) \cap I(v, w) \cap I(u, w)$ contains a unique vertex. Bandelt and Barthelemy [13] proved that the median set of any profile of odd length in a median graph consists of a unique vertex and that the median set of any profile of even length is an interval. Mulder in [89] designed the

Majority Strategy for finding the median of any profile in a tree. Bandelt and Chepoi [14] conducted further studies on the median sets of profiles of a graph and they characterised the class of graphs with connected median sets. Medians of profiles with bounded diameter has been studied in [9] and it has been proved that medians of such a profile can be obtained locally, either in a properly bounded isometric subgraph or in an induced subgraph that contains the profile. A subgraph H of a (connected) graph G is an isometric subgraph if $d_{H}(u, v)=d_{G}(u, v)$ holds for any vertices $u, v \in H$. Let G be an isometric subgraph of some hypercube (such graphs are also called partial cubes). The smallest integer d such that G is an isometric subgraph of Q_{d} is called the isometric dimension of G and denoted $\operatorname{idim}(G)$. Balakrishnan et al. in [6] designed an algorithm that computes the median of a profile in a median graph in $O(n \operatorname{idim}(G))$ time. Balakrishnan et al. in [11] considered another method called plurality strategy for finding the median set of a profile of a graph. They have showed that plurality, Hill climbing and steepest Ascent Hill Climbing [107] produces the median set of a profile if and only if the induced subgraph of the median set is connected. The concept of profiles has been generalised to signed profiles [12] where each vertex is assigned a positive or negative sign. This has significance in location theory where a particular facility may be preferred by some of the clients and may be rejected by some others. It is proved that hypercubes are the only graphs in which majority Strategy, starting from any initial vertex, produces the median set for any signed profile on the graph.

2.3 Antimedian and Anticenters

The main objectives in a facility location theory are usually the minimisation of the sum of the distances, minimisation of the maximum distance etc and they have been discussed earlier. But when we have to place a facility that is obnoxious or undesirable such as nuclear reactors or garbage dump
sites we go for maximisation instead of minimisation. This has recently gained much importance due to rapid industrialisation and urbanisation. The graph induced by the set of vertices that maximises the sum of the distance to all other vertices of the graph is called the antimedian of a graph and the graph induced by the set of vertices with maximum eccentricity is called its anticenter.
Church and Garfinkel [32] studied the one-facility maximum median (maxian) problem, providing an O (mnlogn) algorithm where m is the number of edges and n is the number of vertices. Minieka[88] proposed methods for finding the anticenter and antimedian of a graph. Antimedian and anticenter problems were later studied algorithmically by many authors [16, 33, 34, 35, 36, 37, 113, 115].
Bielak and Syslo [19] proved that every graph is the antimedian of some graph. Vijayakumar and S.B.Rao [105] showed that if G_{1} and G_{2} are any two cographs, then there is a cograph that is both Eulerian and Hamiltonian having G_{1} as its median and G_{2} as its antimedian. Balakrishnan et al. [5] proved that for an arbitrary graph G and $S \subseteq V(G)$ it can be decided in polynomial time whether S is the antimedian set of some profile. They further proved that if G and H are connected graphs with connected antimedian sets then $G \square H$ has connected antimedian sets. Balakrishnan et al. in [8] showed that given graphs G and J and an integer $r \geqslant 2$, there exists a graph H such that G and J are the median and the antimedian of H and $d_{H}(G, J)=r$.

2.4 Distance related extremal graphs

Extremal graph theory focuses on the study of graphs that are extremal with respect to any particular property under consideration. Graphs having extremal properties with respect to distance based graph parameters like radius and diameter have been extensively studied.

Graphs having extremal properties with respect to distance parameters like radius and diameter have been studied extensively. Ore in [96] defined a graph to be diameter maximal if the addition of any edge to the graph decreases the diameter of the graph and gave a characterisation of such graphs. Caccetta and Smyth [27] gave a general form of diameter maximal graphs with edge connectivity k, diameter d, number of vertices n and having the maximum number of edges.
A graph G is diameter minimal if the deletion of any edge increases the diameter of G. This class of graphs were studied by many authors $[26,41$, $47,53,62,63,64,100,119]$.
A graph G is called radius minimal if radius of $G-e$ is greater than radius of G for every edge of G. Gliviak[46] proved that a graph is radius minimal if and only if it is a tree.
Any graph G such that radius of $G+e \leqslant$ radius of G for every $e \in G^{c}$ is called a radially maximal graph . Vizing in [117] found an upper bound on the number of edges in radially maximal graphs and a lower bound was found by Nishanov [92]. Nishanov in [91] studied some properties of radially maximal graphs with radius $r \geqslant 3$ and diameter $2 r-2$. Harary and Thomassen [60] characterized radially maximal graphs with radius two and showed that there exists infinitely many radially maximal graphs with radius three. Gliviak [50] proved that any graph can be an induced subgraph of a regular radially maximal graph with a prescribed radius $r \geqslant 3$. A graph G is two-radially maximal if G is noncomplete and for each pair (u, v) of its nodes such that $d(u, v)=2$ we have $r(G+u v)<r(G)$. Gliviak et al. in [51] proved that the central subgraph of any two-radially maximal graph contains an edge and showed that those of them that have a star as the central subgraph are sequential joins of complete graphs. Gliviak [48] gave an overview of results for radially maximal, minimal, critical and stable graphs. Knor [76] characterized unicyclic, non-selfcentric, radiallymaximal graphs on the minimum number of vertices. He further proved
that the number of such graphs is $\frac{1}{48} r^{3}+O\left(r^{2}\right)$. In [49] it was conjectured that if G is a non-selfcentric radially-maximal graph with radius $r \geqslant 3$ on the minimum number of vertices then G is planar, has exactly $3 r-1$ vertices, the maximum degree of G is 3 and the minimum degree of G is 1 . Knor [77] with the help of exhaustive computer search proved this result for $r=4$ and 5 . Directed radially maximal graphs were studied in [44] and [49].

Chapter 3

Center Sets and Center Number

3.1 Introduction

Slater in [109] generalized the concept of center of a graph to center of an arbitrary subset of the vertex set of the graph. For any subset S of V in the graph $G=(V, E)$, the S-eccentricity, $e_{G, S}(v)$ (in short $e_{S}(v)$) of a vertex v in G is $\max _{x \in S}(d(v, x))$. The S-center of G is $C_{S}(G)=\left\{v \in V \mid e_{S}(v) \leqslant\right.$ $\left.e_{S}(x) \forall x \in V\right\}$. For a graph G, an $A \subseteq V$ is defined to be a Center set if there exists an $S \subseteq V$ such that $C_{S}(G)=A$. In this chapter we identify the center sets of some familiar classes of graphs such as block graphs, complete bipartite graphs, wheel graphs, odd cycles, symmetric even graphs etc and enumerate the number of distinct center sets of these classes of graphs. But before that we introduce a class of graphs called center critical graphs and characterise them.
It shall be interesting to find the a vertex set of minimum cardinality whose center is the same as the center of the whole graph. Searching on this line we stumbled up on a class of graphs where the center of none of the proper subset of the vertex set is the same as the center of the graph and they are defined as center critical graphs.

3.2 Center Critical graphs

Definition 3.2.1. A graph G is said to be center critical if for all proper subsets S of V, we have $C_{S}(G) \neq C(G)$.

(a) A center critical graph

(b) C_{5}, not center critical

$$
\begin{gathered}
C_{\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}}(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
=C(G)
\end{gathered}
$$

Now, we shall give characterisation of center critical graphs. For that we require the following theorem from [97]

Theorem 3.2.2. A UEV graph G is self-centered if and only if each vertex of G is an eccentric vertex.

Theorem 3.2.3. A graph G is center critical if and only if G is both self-centered and a $U E V$ graph.

Proof. Let G be a center critical graph having vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. First we shall prove that for every $v_{i} \in V$ there exists a $v_{j} \in V$ such that v_{i} is the unique eccentric vertex of v_{j}. Assume the contrary. Let there exist a vertex, say v_{k}, such that v_{k} is not an eccentric vertex of any vertex. Let $S=V \backslash\left\{v_{k}\right\}$. Then for every vertex v_{i} of $G, e_{S}\left(v_{i}\right)=e\left(v_{i}\right)$ since the eccentric vertices of v_{i} are in S. Since the eccentricities of none of the vertices change, $C_{S}(G)=C(G)$ contradicting our assumption that G is center critical. Hence every vertex of G is an eccentric vertex.
Let v_{k} be such that when ever v_{k} is an eccentric vertex of v_{ℓ} then there exists a vertex v_{k}^{\prime} such that v_{k}^{\prime} is also an eccentric vertex of v_{ℓ}. Again take $S=V \backslash\left\{v_{k}\right\}$. Since every vertex v_{ℓ} that has v_{k} as an eccentric vertex
has another eccentric vertex, we have $e_{S}\left(v_{k}\right)=e\left(v_{k}\right)$. As above we get that $C_{S}(G)=C(G)$, a contradiction. That is, we have proved that each vertex $v_{i}, 1 \leqslant i \leqslant n$ is a unique eccentric vertex of a vertex, say v_{i}^{\prime}, where $v_{i}^{\prime}=v_{j}$ for some $j, 1 \leqslant j \leqslant n$. Since $\left\{v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right\}=V$ and each v_{i}^{\prime} has a unique eccentric vertex each vertex of G has a unique eccentric vertex. Now, it is also obvious that every vertex is an eccentric vertex. Therefore by Theorem 3.2.2, G is self-centered. Conversely assume that G is both self-centered and unique eccentric vertex graph, and let $\operatorname{rad}(G)=r$. Then, again by Theorem 3.2.2, every vertex of G is an eccentric vertex. Therefore for every $x \in V$ there exists a $y \in V$ such that $x=\bar{y}$. Let $S \subseteq V$ and $x \in V \backslash S$. Then $e(y)=r$ and since $\bar{y}=x \in V \backslash S, e_{S}(y)<r$. Let $z \in S$. Then $e_{S}(\bar{z})=r$. Hence $C_{S}(G) \neq V$ which shows that G is center critical.

Remark 3.2.1. C_{5} is a graph that is self centered but not center critical, as it is not a UEV graph. In fact all odd cycles are self centered but not UEV and hence are not center critical.

3.3 Center Sets of Some Graph Classes

Prior to identifying the center sets of various classes of graphs we recall the following lemma by Harary et al. in [59].

Lemma 3.3.1 (Lemma 1 of [59]). The center of a connected graph G is contained in a block of G.

We generalize this lemma to any S-center of a graph and the proof is almost similar to the proof given there.

Theorem 3.3.1. Any S-center of a connected graph G is contained in a block of G.

Proof. For an $S \subseteq V$, assume that $C_{S}(G)$ lies in more than one block of G. Then G contains a vertex v such that $G-v$ contains at least two components, say, G_{1} and G_{2}, each of which contains a vertex belonging to $C_{S}(G)$. Let u be the vertex of S such that $d(u, v)=e_{S}(v)$ and P be the shortest $u-v$ path. Then P does not intersect at least one of G_{1} and G_{2}, say G_{1}. Let w be the vertex of G_{1} such that $w \in C_{S}(G)$. Then v belong to the shortest $w-u$ path and hence

$$
e_{S}(w) \geqslant d(w, u)=d(w, v)+d(u, v) \geqslant 1+e_{S}(v)
$$

contradicting the fact that $w \in C_{S}(G)$. Thus for any $S \subseteq V, C_{S}(G)$ lies in a single block of G.

3.3.1 Center sets of Block graphs

Proposition 3.3.2. Let G be a block graph with vertex set V and blocks B_{1}, \ldots, B_{r}. For $1 \leqslant i \leqslant r$, let $V\left(B_{i}\right)=V_{i}$. The center sets of G are singleton sets $\{v\}, v \in V(G)$ and V_{i} for $1 \leqslant i \leqslant r$.

Proof. If $S=\{v\}$, then $e_{S}(v)=0 \leqslant e_{S}(x)$ for all $x \in V$. Therefore $C_{\{v\}}(G)=\{v\}$. Hence $\{v\}$, where $v \in V$ are all center sets.

Let S be a proper subset of $V_{i}, 1 \leqslant i \leqslant r$ containing at least two elements. Hence $e_{S}(x)=1$ for every $x \in V_{i}$ and $e_{S}(x)>1$ for all $x \in V-V_{i}$. So $C_{S}(G)=V_{i}$. Therefore each $V_{i}, 1 \leqslant i \leqslant r$ is a center set.

Consider $S \subseteq V(G)$ containing at least 2 elements from 2 different blocks, and let x be a cut vertex of G with $e_{S}(x)=k$. Also assume that $d(x, v)=k$ where $v \in S$. Let $P: x=x_{0} x_{1} \ldots x_{r} x_{r+1} \ldots x_{k}=v$ be the shortest $x-v$ path. See that $e_{S}\left(x_{1}\right)=k-1$. Since the eccentricities will never decrease to zero, we can find two vertices in P (may be identical) say x_{r}, and x_{r+1} so that $e_{S}\left(x_{r}\right)=e_{S}\left(x_{r+1}\right)=k-r$. Then for every vertex y in the block containing x_{r} and $x_{r+1}, e_{S}(y)=k-r$ and as we move away
from this block the S-eccentricity increases. Hence the S-center of G is the block containing x_{r} and x_{r+1}.

Now let $e_{S}\left(x_{r}\right)=k-r$ and $e_{S}\left(x_{r+1}\right)=k-r+1$. Then for every y other than x_{r} in the block containing x_{r} and $x_{r+1}, e_{S}(y)=k-r+1$ and as we move away from this block the S-eccentricity increases. Therefore S-center of G is x_{r}. Hence the center sets of block graphs are $\{v\}, v \in V(G)$ and $V_{i}, 1 \leqslant i \leqslant r$.

As a consequence of Proposition 3.3.2, we have the following corollaries. Corollary 3.3.4, is a theorem of Slater in [109].

Corollary 3.3.3. The center sets of the complete graph K_{n} with vertex set V are $\{u\}, u \in V$ and the whole set V.

Corollary 3.3.4 (Theorem 4 of [109]). The center sets of a tree $T=(V, E)$ are $\{u\}, u \in V$, and $\{u, v\}, u v \in E$.

Corollary 3.3.5. The induced subgraphs of all center sets of a block graph are connected.

Now we shall find the center sets of some simple classes of graphs such as complete bipartite graphs, $K_{n}-e$, Wheel graphs, etc. First we identify the center sets of bipartite graphs $K_{m, n}, m, n>1$. When m or n is $1, K_{m, n}$ is a tree whose center sets have already been identified.

3.3.2 Center Sets of Complete bipartite graphs

Proposition 3.3.6. Let $K_{m, n}$ be a complete bipartite graph with bipartition (X, Y) where $|X|=m>1$ and $|Y|=n>1$. Then the center sets of $K_{m, n}$ are

1. $V=X \cup Y$
2. X
3. Y
4. $\{v\}, v \in V$
5. $\{x, y\}, x \in X, y \in Y$

Proof. First we shall show that each of the sets described in the theorem are center sets. Let $A \subseteq V\left(K_{m, n}\right)$ and let $A_{1}=A \cap X$, and let $A_{2}=A \cap Y$

1. If $\left|A_{1}\right|>1$ and $\left|A_{2}\right|>1, C_{A}\left(K_{m, n}\right)=V$.
2. If $A_{1}=\emptyset$ with $\left|A_{2}\right|>1$ then $C_{A}\left(K_{m, n}\right)=X$.
3. If $A_{2}=\emptyset$ with $\left|A_{1}\right|>1$ then $C_{A}\left(K_{m, n}\right)=Y$.
4. If $\left|A_{1}\right|=1$ and $\left|A_{2}\right|>1$ then $C_{A}\left(K_{m, n}\right)=\{x\}$ where $A_{1}=\{x\}$
5. If $\left|A_{2}\right|=1$ and $\left|A_{1}\right|>1$ then $C_{A}\left(K_{m, n}\right)=\{x\}$ where $A_{2}=\{x\}$
6. If $\left|A_{1}\right|=\left|A_{2}\right|=1$ then $C_{A}\left(K_{m, n}\right)=\{x, y\}$ where $A_{1}=\{x\}$ and $A_{2}=\{y\}$

Thus $C_{A}\left(K_{m, n}\right)$ is one of the sets given in the theorem and the result follows.

Illustration 3.3.1. Here we give the center sets of $K_{5,4}$ with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. The center sets are

Figure 3.1: $K_{5,4}$

1. $\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
2. $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
3. $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$
4. $\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}\right\},\left\{u_{4}\right\},\left\{u_{5}\right\}$
5. $\left\{v_{1}, u_{1}\right\},\left\{v_{2}, u_{1}\right\},\left\{v_{3}, u_{1}\right\},\left\{v_{4}, u_{1}\right\},\left\{u_{2}, v_{1}\right\},\left\{u_{2}, v_{2}\right\},\left\{u_{2}, v_{3}\right\},\left\{u_{2}, v_{4}\right\}$, $\left\{u_{3}, v_{1}\right\},\left\{u_{3}, v_{2}\right\},\left\{u_{3}, v_{3}\right\},\left\{u_{3}, v_{4}\right\},\left\{u_{4}, v_{1}\right\},\left\{u_{4}, v_{2}\right\},\left\{u_{4}, v_{3}\right\},\left\{u_{4}, v_{4}\right\}$, $\left\{u_{5}, v_{1}\right\},\left\{u_{5}, v_{2}\right\},\left\{u_{5}, v_{3}\right\},\left\{u_{5}, v_{4}\right\}$

3.3.3 Center sets of $K_{n}-e$

Next we shall find the center sets of another class of graphs, $K_{n}-e$. When $n=2, K_{n}-e$ is a pair of isolated vertices and when $n=3, K_{n}-e$ is path and center sets of this has been identified in Corollary 3.3.4. The following theorem identifies the center sets of $K_{n}-e$ for $n \geqslant 4$

Proposition 3.3.7. For the graph $K_{n}-e(=x y), n \geqslant 4$, the center sets are

1. $\{v\}, v \in V$
2. $V \backslash\{x\}$
3. $V \backslash\{y\}$
4. $V \backslash\{x, y\}$
5. V

Proof. As in Proposition 3.3.6, initially we prove that all the sets described in the theorem are center sets.

1. For each $v \in V, C_{\{v\}}\left(K_{n}-e\right)=\{v\}$.
2. Let $A \subseteq V$ be such that $|A|>1, y \in A$ and $x \notin A$, then $C_{A}\left(K_{n}-e\right)=$ $V \backslash\{x\}$.
3. For $A \subseteq V$ such that $|A|>1, x \in A$ and $y \notin A, C_{A}\left(K_{n}-e\right)=V \backslash\{y\}$.
4. Let $A \subseteq V$ be such that $x, y \in A$. Then $C_{A}\left(K_{n}-e\right)=V \backslash\{x, y\}$.
5. For $A \subseteq V$ be such that $|A|>1, x, y \notin A C_{A}\left(K_{n}-e\right)=V$.

Now we have found the centers of all types of subsets of V and therefore above mentioned sets are precisely the center sets of $K_{n}-e$.

Illustration 3.3.2. Consider $K_{6}-e$ with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and $e=v_{1} v_{2}$. Then the center sets are

1. $\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{6}\right\}$
2. $\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$
3. $\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$
4. $\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$
5. $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$

Figure 3.2: $K_{6}-e, e=u v$

3.3.4 Center sets of Wheel graph

Now we shall identify the center sets of wheel graphs. The wheel graph W_{4} is K_{4} and their center sets have already been identified. First we prove the case for $n \geqslant 6$. The center sets of W_{5}, the only remaining case, will be given in the remark after the Proposition 3.3.8.

Proposition 3.3.8. Let $W_{n}, n \geqslant 6$, be wheel graph on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ where v_{n} is the universal vertex. Then the center sets of W_{n} are

1. $\left\{v_{i}\right\}, 1 \leqslant i \leqslant n$
2. $\left\{v_{i}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$
3. $\left\{v_{i}, v_{j}, v_{n}\right\}$, where $v_{i} v_{j} \in E\left(C_{n-1}\right)$
4. $\left\{v_{i}, v_{j}, v_{k}, v_{n}\right\}$ where $v_{i} v_{j}, v_{j} v_{k} \in E\left(C_{n-1}\right)$

Proof. First we shall prove that each of the sets described above are center sets.

1. For $1 \leqslant i \leqslant n, C_{\left\{v_{i}\right\}}(G)=\left\{v_{i}\right\}$.
2. Let $S=\left\{v_{i \ominus_{n-1} 1}, v_{i}, v_{i \oplus_{n-1} 1}\right\}$. $e_{S}\left(v_{i}\right)=e_{S}\left(v_{n}\right)=1$ and $e_{S}(v)=2$ for all other $v \in V$ and therefore $C_{S}(G)=\left\{v_{i}, v_{n}\right\}$.
3. For $S=\left\{v_{i}, v_{i \oplus_{n-1} 1}, v_{n}\right\}, C_{S}(G)=S=\left\{v_{i}, v_{i \oplus_{n-1} 1}, v_{n}\right\}$.
4. For $S=\left\{v_{i}, v_{n}\right\}, C_{S}(G)=\left\{v_{i \ominus_{n-1} 1}, v_{i}, v_{i \oplus_{n-1} 1}, v_{n}\right\}$.

For all $S \subseteq V$ such that $S \neq\left\{v_{n}\right\}, e_{S}\left(v_{n}\right)=1$ and hence for all $S \subseteq V$ such that $S \neq\left\{v_{i}\right\}, 1 \leqslant i \leqslant n-1, v_{n} \in C_{S}(G)$. Now, let A be such that A contain v_{i} and v_{j} such that $d_{C_{n-1}}\left(v_{i}, v_{j}\right)>2$. Let $S \subseteq V$ be such that $C_{S}(G)=A$ then obviously $S \neq\left\{v_{i}\right\}, 1 \leqslant i \leqslant n$. We have $v_{n} \in C_{S}(G)$ with $e_{S}\left(v_{n}\right)=1$ Therefore v_{i} and v_{j} belong to $C_{S}(G)$ implies there exist a vertex v_{k} in $V\left(C_{n-1}\right)$ such that $d\left(v_{i}, v_{k}\right)=d\left(v_{j}, v_{k}\right)=1$ which is impossible by the choice of v_{i} and v_{j}. Hence v_{i} and v_{j} of $V\left(C_{n-1}\right)$ belong to a center set implies $d_{C_{n-1}}\left(v_{i}, v_{j}\right) \leqslant 2$. Also $v_{i}, v_{i \oplus_{n-1} 2}$ belong to $C_{S}(G)$ implies $v_{i \oplus_{n-1} 1}$ belong to $C_{S}(G)$. Hence the center sets are precisely those described in the theorem.

Figure 3.3: W_{9}

Illustration 3.3.3. Consider the wheel W_{9} with vertex set
$\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ and having v_{9} as the universal vertex. The center sets are

1. $\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{6}\right\},\left\{v_{7}\right\},\left\{v_{8}\right\},\left\{v_{9}\right\}$
2. $\left\{v_{1}, v_{9}\right\},\left\{v_{2}, v_{9}\right\},\left\{v_{3}, v_{9}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{9}\right\},\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{9}\right\}$, $\left\{v_{8}, v_{9}\right\}$
3. $\left\{v_{1}, v_{2}, v_{9}\right\},\left\{v_{2}, v_{3}, v_{9}\right\},\left\{v_{3}, v_{4}, v_{9}\right\},\left\{v_{4}, v_{5}, v_{9}\right\},\left\{v_{5}, v_{6}, v_{9}\right\}$, $\left\{v_{6}, v_{7}, v_{9}\right\},\left\{v_{7}, v_{8}, v_{9}\right\},\left\{v_{8}, v_{1}, v_{9}\right\}$
4. $\left\{v_{1}, v_{2}, v_{3}, v_{9}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{9}\right\},\left\{v_{3}, v_{4}, v_{5}, v_{9}\right\},\left\{v_{4}, v_{5}, v_{6}, v_{9}\right\}$, $\left\{v_{5}, v_{6}, v_{7}, v_{9}\right\},\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\},\left\{v_{7}, v_{8}, v_{1}, v_{9}\right\},\left\{v_{8}, v_{1}, v_{2}, v_{9}\right\}$

Remark 3.3.1. Let $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ be the vertex set of W_{5} with v_{5} as the universal vertex. All sets of the types given in the Proposition 3.3.8 are center sets in the same manner. Since the outer cycle is of length 4 , $C_{\left\{v_{1}, v_{3}\right\}}\left(W_{5}\right)=\left\{v_{2}, v_{4}, v_{5}\right\}$ and $C_{\left\{v_{2}, v_{4}\right\}}\left(W_{5}\right)=\left\{v_{1}, v_{3}, v_{5}\right\}$. By the arguments similar to that given in the proof of Proposition 3.3.8, the center sets of W_{5} are precisely,

1. $\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\}$
2. $\left\{v_{1}, v_{5}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}$
3. $\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{5}\right\},\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{4}, v_{1}, v_{5}\right\}$
4. $\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{3}, v_{4}, v_{1}, v_{5}\right\},\left\{v_{4}, v_{1}, v_{2}, v_{5}\right\}$
5. $\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{2}, v_{4}, v_{5}\right\}$

Remark 3.3.2. The subgraph induced by any center set of a wheel graph is connected. In fact, the subgraphs induced by all center sets of any graph with a universal vertex are connected.

Figure 3.4: W_{5}

3.3.5 Center sets of Odd cycles

Theorem 3.3.9. Let $C_{2 n+1}, n \geqslant 2$ be an odd cycle with vertex set $V=\left\{v_{1}, \ldots, v_{2 n+1}\right\}$. An $A \subseteq V$ is a center set of $C_{2 n+1}$ if and only if either $A=V$ or A does not contain a pair of alternate vertices.

Proof. If $A=V$ then it is a center set namely, of itself. So assume $A \neq V$. Let $A \subset V$ be such that it contains three consecutive vertices say, v_{1}, v_{2}, v_{3}. Assume there exists an $S \subset V$ with $A=C_{S}(G)$. Let d be the S-eccentricity of a vertex of A. Then there exists a vertex v_{i} in S such that $d\left(v_{1}, v_{i}\right)=d$. $d\left(v_{2}, v_{i}\right)=d$ implies v_{1} and v_{2} are the eccentric vertices of v_{i} which means $d=n$ or $A=V$. Hence $d\left(v_{2}, v_{i}\right) \neq d . d\left(v_{2}, v_{i}\right)=d+1$ implies $e_{S}\left(v_{2}\right) \geqslant d+1$. Hence $d\left(v_{2}, v_{i}\right)=d-1$. Then there exists a vertex v_{j} such that $d\left(v_{2}, v_{j}\right)=d$ and $d\left(v_{1}, v_{j}\right)=d-1$. Then as explained above $d\left(v_{3}, v_{j}\right)$ cannot be d and therefore $d\left(v_{3}, v_{j}\right)=d+1$. This means that $e_{S}\left(v_{2}\right) \neq e_{S}\left(v_{3}\right)$. Hence any three consecutive vertices cannot be in a center set. Now, assume that $A \subset V$ is such that it contains a pair of alternate vertices and does not contain the middle vertex, say, contains v_{1} and v_{3} and does not contain v_{2}. Assume $A=C_{S}(G)$. Let $e_{S}\left(v_{1}\right)=e_{S}\left(v_{3}\right)=d$. Then $e_{S}\left(v_{2}\right)=d+1$. Let v_{i} be a vertex in S such that $d\left(v_{2}, v_{i}\right)=d+1$. Obviously $d\left(v_{1}, v_{i}\right)=d\left(v_{3}, v_{i}\right)=$ d and this implies v_{i} is the eccentric vertex of v_{2} or $d\left(v_{2}, v_{i}\right)=n$. But since
$C_{2 n+1}$ is an odd cycle either $d\left(v_{1}, v_{i}\right)=n$ or $d\left(v_{3}, v_{i}\right)=n$, a contradiction. Hence if A is a center set then it cannot contain a pair of alternate vertices. Conversely assume that A is such that it does not contain any pair of alternate vertices of the cycle. Now take S to be the set of all vertices of $C_{2 n+1}$ which are eccentric vertices of vertices of A^{c} and which are not eccentric vertices of any of the vertices of A. It is obvious by the choice of A that such vertices do exist. Since an eccentric vertex of at least one of the two neighbours of each vertex of A belong to S and none of the eccentric vertices of any vertex of A belong to S, for each vertex x of A, $e_{S}(x)=n-1$. Since at least one of the eccentric vertices of each vertex of A^{c} belong to S, for each vertex y of $A^{c}, e_{S}(y)=n$. Thus $A=C_{S}(G)$. Hence the theorem.

Corollary 3.3.10. For the odd cycle $C_{2 n+1}, n \geqslant 2$, if A is a center set then either $|A| \leqslant n$ or $A=V$.

Proof. Let $C_{2 n+1}=\left(v_{1}, v_{2}, \ldots, v_{2 n+1}, v_{1}\right)$.
Case 1- n is odd.
Subcase 1.1: Only one among v_{1}, v_{2} and v_{3} is in A.
Let $A_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, A_{2}=\left\{v_{4}, v_{6}\right\}, \ldots, A_{n-1}=\left\{v_{2 n-2}, v_{2 n}\right\}, A_{n}=$ $\left\{v_{2 n-1}, v_{2 n+1}\right\}$. A contains at most one vertex from each A_{i}. Therefore $|A| \leqslant n$.
Subcase- 1.2: Exactly two vertices among v_{1}, v_{2} and v_{3} are in A.
With out loss of generality we can assume that they are v_{1} and v_{2}. Then $v_{3}, v_{4}, v_{2 n}$ and $v_{2 n+1}$ are not in A. Let $A_{1}=\left\{v_{5}, v_{7}\right\}, A_{2}=\left\{v_{6}, v_{8}\right\}$, $A_{3}=\left\{v_{9}, v_{11}\right\}, \ldots, A_{n-3}=\left\{v_{2 n-4}, v_{2 n-2}\right\}, A_{n-2}=\left\{v_{2 n-1}\right\} . A$ contains at most one vertex from each A_{i}. Hence $|A| \leqslant n-2+2=n$.
Case 2: n is even.
Subcase 2.1: Only one of v_{1}, v_{2} and v_{4} is in A.
Let $A_{1}=\left\{v_{1}, v_{2}, v_{4}\right\}, A_{2}=\left\{v_{3}, v_{5}\right\}, A_{3}=\left\{v_{6}, v_{8}\right\}, A_{4}=\left\{v_{7}, v_{9}\right\} \ldots$,
$A_{n-1}=\left\{v_{2 n-2}, v_{2 n}\right\}, A_{n}=\left\{v_{2 n-1}, v_{2 n+1}\right\} . A$ contains at most one vertex from each A_{i}. Therefore $|A| \leqslant n$.
Subcase 2.2: v_{1} and v_{2} are in A.
Then $v_{3}, v_{4}, v_{2 n}$ and $v_{2 n+1}$ are not in A. Let $A_{1}=\left\{v_{5}, v_{7}\right\}, A_{2}=\left\{v_{6}, v_{8}\right\}$, $A_{3}=\left\{v_{9}, v_{11}\right\}, \ldots, A_{n-3}=\left\{v_{2 n-3}, v_{2 n-1}\right\}, A_{n-2}=\left\{v_{2 n-2}\right\}$. A contains at most one vertex from each A_{i}. Hence $|A| \leqslant n-2+2=n$.
Subcase 2.3: v_{1} and v_{4} are in A. Then v_{2}, v_{3}, v_{6} and $v_{2 n}$ are not in A. Let $A_{1}=\left\{v_{5}, v_{7}\right\}, A_{2}=\left\{v_{8}, v_{10}\right\}, A_{3}=\left\{v_{9}, v_{11}\right\}, \ldots, A_{n-3}=\left\{v_{2 n-3}, v_{2 n-1}\right\}$, $A_{n-2}=\left\{v_{2 n+1}\right\} . A$ contains at most one vertex from each A_{i}. Hence $|A| \leqslant n-2+2=n$.
Thus in all the cases $|A| \leqslant n$.
Corollary 3.3.11. For any $m \leqslant n$, there exists an $S \subseteq V\left(C_{2 n+1}\right)$ such that $\left|C_{S}\left(C_{2 n+1}\right)\right|=m$.

Proof. Let $C_{2 n+1}=\left(v_{1}, v_{2}, \ldots, v_{2 n+1}, v_{1}\right)$.
Given an $m \leqslant n$, we shall prove the existance of a subset of $V\left(C_{2 n+1}\right)$ of size m which does not contain any pair of alternate vertices. Take $2 n+1-m$ circularly arranged 0 's. Number these 0 's $1,2, \ldots, 2 n+1-m$. If m is even put two 1's each between the first and the second 0 's, third and the fourth 0 's etc up to $(m-1)^{t h}$ and the $m^{t h} 0$'s. If m is odd put two 1 's each between the first and the second 0's, third and the fourth 0's etc., up to $(m-2)^{t h}$ and the $(m-1)^{t h} 0$'s and one 1 between $m^{t h}$ and $(m+1)^{t h} 0$'s. In both these cases we get a circular arrangement of 0's and 1's that has m 1's and does not contain a pattern of the type 101 or 111. Starting at an arbitrary point represent these bits by $v_{1}, v_{2}, \ldots, v_{2 n+1}$ and form the vertex set corresponding to the $1^{\prime} s$. This is a center set have m vertices.

Figure 3.5: C_{7}

Illustration 3.3.4. Consider the odd cycle C_{7}.
Here $A=\left\{v_{1}, v_{4}, v_{5}\right\}$ is a center set, since it contains no pair of alternate vertices. $A^{c}=\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}$. The set of eccentric vertices of A^{c} which are not eccentric to any of the vertices of A is $\left\{v_{3}, v_{6}\right\}$.
$e_{\left\{v_{3}, v_{6}\right\}}\left(v_{1}\right)=2, e_{\left\{v_{3}, v_{6}\right\}}\left(v_{2}\right)=3, e_{\left\{v_{3}, v_{6}\right\}}\left(v_{3}\right)=3, e_{\left\{v_{3}, v_{6}\right\}}\left(v_{4}\right)=2, e_{\left\{v_{3}, v_{6}\right\}}\left(v_{5}\right)=$ $2, e_{\left\{v_{3}, v_{6}\right\}}\left(v_{6}\right)=3, e_{\left\{v_{3}, v_{6}\right\}\left(v_{7}\right)}=3$. Thus
$C_{\left\{v_{3}, v_{6}\right\}}\left(C_{7}\right)=\left\{v_{1}, v_{4}, v_{5}\right\} .\left\{v_{1}, v_{4}, v_{5}, v_{6}\right\}$ is not a center set since it contains (v_{4}, v_{6}) and (v_{1}, v_{6}), pairs of alternate vertices.

3.3.6 Center sets of Symmetric Even graphs

The following theorem gives the center sets of some familiar classes of graphs such as even cycles, hypercubes etc. Here we recall the following definition.

Definition 15. For an $S \subseteq V$, a vertex $x \in S$ is called an interior vertex if $N(x) \subseteq S$. An $S \subseteq V$ is called a boundary set of G if does not contain any interior vertices.

Theorem 3.3.12. Let G be a symmetric even graph. $A n A \subseteq V$ is a
center set if and only if either $A=V$ or A is a boundary set of G.
Proof. Since symmetric even graphs are self-centered $C_{V}(G)=V$. So assume $A \subset V$. Let A be such that $A=C_{S}(G)$ for an $S \subset V$ and let $x \in A$. Suppose $e_{S}(x)=k$ with $d(x, y)=k$ where $y \in S$. If $k=\operatorname{diam}(G)$ then $A=V$. So assume $k<\operatorname{diam}(G)$. Then since G is a symmetric even graph there exists a vertex z adjacent to x such that $d(y, z)=k+1$. Therefore $e_{S}(z) \geqslant k+1$ or $z \notin C_{S}(G)$. Hence if A is a center set such that $A \subset V$, then there exists an x in A such that $\{x\} \cup N(x) \cap S^{c} \neq \emptyset$.

Conversely, suppose that $A \subset V$ satisfies the condition given in the theorem. We need to find out an $S \subseteq V$ such that $A=C_{S}(G)$. Since G is symmetric even it is self-centered and unique eccentric vertex. Let $\overline{A^{c}}$ denote the set of eccentric vertices of A^{c}. Let $x \in A$. Then there exists a x^{\prime} adjacent to x such that $x^{\prime} \in A^{c}$. Then $\overline{x^{\prime}} \in \overline{A^{c}}$. Since $d\left(x^{\prime}, \overline{x^{\prime}}\right)=\operatorname{diam}(G)$ and x and x^{\prime} are adjacent $d\left(x, \overline{x^{\prime}}\right)=\operatorname{diam}(G)-1$. Also since G is unique eccentric vertex there does not exist an z in $\overline{A^{c}}$ such that $d(x, z)=\operatorname{diam}(G)$. Therefore, $e_{\overline{A^{c}}}(x)=\operatorname{diam}(G)-1$ and for every $y \in A^{c}, e_{\overline{A^{c}}}(y)=\operatorname{diam}(G)$. Since G is self-centered for every $x \in A, e_{\overline{A^{c}}}(x)=\operatorname{diam}(G)-1$ and for every $y \in A^{c}, e_{\overline{A^{c}}}\left(x^{\prime}\right)=\operatorname{diam}(G)$. Therefore $C_{\overline{A^{c}}}(G)=A$. Hence the theorem.

Corollary 3.3.13. For the even cycle $C_{2 n}$, if A is a center set then either $|A| \leqslant\left\lfloor\frac{4 n}{3}\right\rfloor$ or $A=V$.

Proof. Suppose A is a center set such that $|A|<2 n$. To prove $|A| \leqslant\left\lfloor\frac{4 n}{3}\right\rfloor$. Since A is a center set A cannot contain three consecutive vertices of the cycle. Let each vertex belonging to A be represented by 1 and each vertex not belonging to A be represented by 0 . Thus we get a circular arrangement of 0's and 1's such that two successive 0's contains at most two 1's between them. From this we can conclude that m 0's can accommodate at most $2 m$ 1's between them. If $A^{\prime} \neq V$ is a center set of maximum cardinality
then the binary representation of A^{\prime} will have exactly $\left\lceil\frac{2 n}{3}\right\rceil$ zeros and hence $2 n-\left\lceil\frac{2 n}{3}\right\rceil 1$'s. In other words $\left|A^{\prime}\right|=2 n-\left\lceil\frac{2 n}{3}\right\rceil=\left\lfloor\frac{4 n}{3}\right\rfloor$. Since A^{\prime} is a center set of maximum cardinality, we have $|A| \leqslant\left\lfloor\frac{4 n}{3}\right\rfloor$. Hence the corollary.

Next we have another corollary similar to the Corollary 3.3.11.
Corollary 3.3.14. For any $m \leqslant\left\lfloor\frac{4 n}{3}\right\rfloor$, there exists an $S \subseteq V\left(C_{2 n}\right)$ such that $\left|C_{S}\left(C_{2 n}\right)\right|=m$.

Proof. Similar to the proof of Corollary 3.3.11
Now, we recall the following definitions.
Definition 16. An $S \subseteq V$ is a dominating set in G if every vertex in $V \backslash S$ is adjacent to a vertex in S.

Next, we shall prove a result regarding the centers of dominating sets of symmetric even graphs. But for that we require the following propositions from [54].

Proposition 3.3.15. Every harmonic even graph is balanced.
Proposition 3.3.16. Every Symmetric even graph is harmonic.
Combining the above two propositions we get the following proposition.
Proposition 3.3.17. Every Symmetric even graph is balanced.
Theorem 3.3.18. Let G be a symmetric even graph and let $S \subseteq V$. Then $C_{S}(G)=\overline{S^{c}}$ if and only if S is a dominating set.

Proof. Assume $C_{S}(G)=\overline{S^{c}}$. Suppose $S \cup N(S) \neq V$. Then there exists an $x \in V$ such that $x \notin S$ and $x \notin N(S)$. That is x and all its neighbours belong to S^{c}. Let x_{1}, \ldots, x_{k} be the neighbours of x. By proposition 3.3.17, $\operatorname{deg}(u)=\operatorname{deg}(\bar{u})$. Let $y_{1}, y_{2}, \ldots, y_{k}$ be the neighbours of \bar{x}. We have $d\left(x_{i}, \bar{x}\right)=\operatorname{diam}(G)-1$ for $1 \leqslant i \leqslant k$. Since G is symmetric even there
exists a vertex adjacent to \bar{x}, say y_{i}, such that $d\left(x_{i}, y_{i}\right)=\operatorname{diam}(G)$ for $1 \leqslant i \leqslant k$. Hence \bar{x} and all its neighbours belong to $\overline{S^{c}}$. This contradicts the condition for $\overline{S^{c}}$ to be a center set.
Conversely suppose $S \cup N(S)=V$. Let $x \in \overline{S^{c}}$. Then $\bar{x} \in S^{c}$. Since $S \cup N(S)=V, \bar{x} \in N(S)$. Therefore there exists an $z \in S$ such that z is adjacent to \bar{x}. Then $d(x, z)=\operatorname{diam}(G)-1 . d\left(x, z^{\prime}\right)=\operatorname{diam}(G)$ for some $z^{\prime} \in S$ implies both $y \in S^{c}$ and $z^{\prime} \in S$ are the eccentric vertices of x a contradiction to the fact that the graph is unique eccentric vertex. Hence $e_{S}(x)=\operatorname{diam}(G)-1$. Now let $x \notin \overline{S^{c}}$. Then since every vertex is an eccentric vertex, $x \in \bar{S}$ and therefore there exists a w in S such that $d(x, w)=\operatorname{diam}(G)$. Thus $C_{S}(G)=\overline{S^{c}}$.

For a graph G, let $\mathcal{D} \mathcal{B}(G)$ denote the class of dominating boundary sets, that is, dominating sets which are also boundary sets. We have the following theorem on the centers of sets which belong to such a class of sets in a symmetric even graph.

Theorem 3.3.19. Let G be a symmetric even graph. Let $S \subseteq V$ be such that $S \in \mathcal{D B}(G)$. Then $C_{S}(G)=S^{\prime}$ if and only if $C_{S^{\prime}}(G)=S$.

Proof. Suppose $C_{S}(G)=S^{\prime}$. Since $S \cup N(S)=V, C_{S}(G)=\overline{S^{c}}$. That is $S^{\prime}=\overline{S^{c}}$. For every $x \in S^{c}, e_{\overline{S^{c}}}(x)=\operatorname{diam}(G)$. Since G is unique eccentric vertex graph and S is a boundary set, for every $x \in S, e_{\overline{S^{c}}}(x)=\operatorname{diam}(G)-$ 1. Hence $C_{S^{\prime}}(G)=C_{\overline{S^{c}}}(G)=S$. Conversely assume $C_{S^{\prime}}(G)=S$. To prove $C_{S}(G)=S^{\prime}$. Since $C_{S}(G)=\overline{S^{c}}$ we need only prove that $S^{\prime}=\overline{S^{c}}$. Let $x \in S^{\prime}$. If $x \in \bar{S}$ then $x=\bar{y}$ where $y \in S$. Then we have $d(x, y)=\operatorname{diam}(G)$. Since S is the S^{\prime}-center of G this implies $C_{S}^{\prime}(G)=V$. But this contradicts the fact that S is a boundary set. Hence $x \in \overline{S^{c}}$ or $S^{\prime} \subseteq \overline{S^{c}}$. Now to prove that $\overline{S^{c}} \subseteq S^{\prime}$. On the contrary assume that there exists an $x \in \overline{S^{c}}$ such that $x \notin S^{\prime}$. Let $x=\bar{y}$ where $y \in S^{c}$. Since the eccentric vertex of y, x, does not belong to $S^{\prime}, e_{S^{\prime}}(y) \leqslant \operatorname{diam} G-1$. If $z \in S^{\prime}$ then $z \in \overline{S^{c}}$. Let
$z=\bar{w}$ where $w \in S^{c}$. Since $S \cup N(S)=V$ there exists a w^{\prime} adjacent to w such that w^{\prime} belong to S. We have $e_{S^{\prime}}\left(w^{\prime}\right)=\operatorname{diam} G-1$. This implies $y \in S$, contradicting the choice of y. Therefore $S^{\prime}=\overline{S^{c}}$.

Theorem 3.3.20. Let G be a symmetric even graph. Then
i) $S \in \mathcal{D B}(G)$ if and only if $C_{S}(G) \in \mathcal{D B}(G)$.
ii) For $S_{1}, S_{2} \in \mathcal{D B}(G), C_{S_{1}}(G)=S_{2}$ if and only if $C_{S_{2}}(G)=S_{1}$.

Proof. i) Suppose $S \subseteq V$ is such that $S \in \mathcal{D B}(G)$ and let $S^{\prime}=C_{S}(G)$. Since S^{\prime} is a center set of a symmetric even graph if and only if it is a boundary set, to prove that $S^{\prime} \in \mathcal{D} \mathcal{B}(G)$ we need only prove that $S^{\prime} \cup N\left(S^{\prime}\right)=V$. Since $S \cup N(S)=V, S^{\prime}=\overline{S^{c}}$. Let $x \notin S^{\prime}$. Therefore $x \in \bar{S}$ since the graph is symmetric even. Let $x=\bar{y}$ where $y \in S$. Since S is a boundary set there exists a vertex y^{\prime} adjacent to y such that $y^{\prime} \in S^{c}$. We have $d\left(x, y^{\prime}\right)=\operatorname{diam}(G)-1$. Since G is symmetric even there exists a vertex x^{\prime} adjacent to x such that $d\left(x^{\prime}, y^{\prime}\right)=\operatorname{diam}(G)$. That is $x^{\prime} \in \overline{S^{c}}$ or $x^{\prime} \in S^{\prime}$. In other words $x \in N\left(S^{\prime}\right)$. Hence $S^{\prime} \cup N\left(S^{\prime}\right)=V$. Conversely suppose $S^{\prime} \subseteq V$ is such that $S^{\prime} \in \mathcal{D B}(G)$ and $C_{S}(G)=S^{\prime}$ for an $S^{\prime} \subseteq V$. To prove $S \in \mathcal{D B}(G)$. By the previous theorem $C_{S}(G)=S^{\prime}$ implies $C_{S^{\prime}}(G)=S$. Now $S^{\prime} \subseteq V$ is such that $S^{\prime} \in \mathcal{D B}$ and $C_{S^{\prime}}(G)=S$ and hence as proved earlier we can prove that $S \cup N(S)=V$ or $S \in \mathcal{D B}(G)$.
ii) This part is obvious from Theorem 3.3.19.

Illustration 3.3.5. Let G be the 12 -cycle with vertex set $\left\{v_{1}, \ldots, v_{12}\right\}$.

Figure 3.6: C_{12}, a symmetric even graph

Take the vertex set $S=\left\{v_{1}, v_{3}, v_{5}, v_{8}, v_{11}\right\}$. This is a dominating boundary set. We have that $C_{S}(G)=\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{8}, v_{10}, v_{12}\right\}=\overline{S^{c}}$ and this is again a dominating boundary set It can also be verified that $C_{\overline{S^{c}}}(G)=S$. Consider $A=\left\{v_{1}, v_{3}, v_{4}, v_{7}\right\}$.
$A^{c}=\left\{v_{2}, v_{5}, v_{6}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}\right\} . \overline{A^{c}}=\left\{v_{8}, v_{11}, v_{12}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$.
$e_{\overline{A^{c}}}\left(v_{1}\right)=5 e_{\overline{A^{c}}}\left(v_{2}\right)=6, e_{\overline{A^{c}}}\left(v_{3}\right)=5, e_{\overline{A^{c}}}\left(v_{4}\right)=5, e_{\overline{A^{c}}}\left(v_{5}\right)=6$,
$e_{\overline{A^{c}}}\left(v_{6}\right)=6, e_{\overline{A^{c}}}\left(v_{7}\right)=5, e_{\overline{A^{c}}}\left(v_{8}\right)=6, e_{\overline{A^{c}}}\left(v_{9}\right)=6, e_{\overline{A^{c}}}\left(v_{10}\right)=6$,
$e_{\overline{A^{c}}}\left(v_{11}\right)=6, e_{\overline{A^{c}}}\left(v_{11}\right)=6$. Hence $C_{\overline{A^{c}}}\left(C_{12}\right)=A$.

3.4 Enumerating Center Sets

In designing and modelling networks it is important to have more center sets to locate facilities. Therefore the number of center sets is a good indication to the structural well-behaviour of the graph. In this section we enumerate the center sets of various classes of graphs. We first give the following definition.

Definition 3.4.1. The number of distinct center sets of a graph G is defined as the Center number of G and is denoted by $\operatorname{cn}(G)$.

The following lemma gives the center numbers of some familiar classes of graphs. The proof of the lemma follows from the Corollary 3.3.3, Theo-
rem 3.3.6, Corollary 3.3.4, Theorem 3.3.7 and Proposition 3.3.8 respectively, so we omit the proofs.

Lemma 3.4.1. Let G be a graph on n vertices then,

1. $c n(G)=n+1$ when $G=K_{n}$ the complete graph on n vertices.
2. $c n(G)=n+3$ when $G=K_{p, q}$ the complete bipartite graph with $p, q>1$.
3. $c n(G)=2 n-1$ when G is a tree.
4. $c n(G)=n+4$ when $G=K_{n}-e, e \in E, n \geqslant 4$.
5. If G is the wheel graph W_{n} then

$$
\begin{aligned}
c n\left(W_{n}\right) & =4 n-3 \text { if } n \geqslant 6 \\
& =4 n-1 \text { if } n=5
\end{aligned}
$$

3.4.1 Center number of Even and Odd cycles

We now find the center number of odd and even cycles. For that we introduce the following terms. Suppose we have n linearly arranged objects. Let $L(n, k)$ denote the number of ways of choosing k objects from these n objects so that no three consecutive objects are simultaneously chosen. Let $L_{1}(n, k)$ denote the number ways to choose k objects from these n objects so that no two objects from alternate positions are simultaneously chosen and let $L_{2}(n, k)$ denote the number of ways to choose k objects from these n objects so that no two objects from consecutive positions are simultaneously chosen.
Consider n circularly arranged objects where $n \geqslant 4$. Let $R(n, k)$ denote the number of ways to choose k objects from these n objects so that three
objects from three consecutive positions are not chosen and $R_{1}(n, k)$ denote the number ways to choose k objects from these n objects so that no two objects from alternate positions are simultaneously chosen. Here we assume $n \geqslant 4$ since we are interested only in cycles of length greater than 3.

Lemma 3.4.2. $L(n, k)=\binom{n}{k}\binom{n-k+1}{0}-\binom{n-3}{k-3}\binom{n-k+1}{1}+\binom{n-6}{k-6}\binom{n-k+1}{2}-$ $\binom{n-9}{k-9}\binom{n-k+1}{3}+\cdots$.

Proof. A particular choice of k objects from n objects can be represented by a binary string of size n where a 1 at the $i^{\text {th }}$ position indicates that the $i^{\text {th }}$ object is chosen and a 0 at the $j^{\text {th }}$ position indicates that the $j^{\text {th }}$ object is not chosen. So the number of choices of the required type is actually the number of binary strings of size n having k 1's and not containing three consecutive 1's. Let x_{0} denote the number of 1 's before the first 0 , for $1 \leqslant i \leqslant n-k-1$, let x_{i} denote the number of 1 's between the $i^{\text {th }} 0$ and the $(i+1)^{t h} 0$ and let x_{n-k} denote the number of 1 's after the $(n-k)^{t h} 0$. Therefore the total number of 1's in a binary string is $x_{0}+x_{1}+\cdots+x_{n-k}$. For a binary string of our choice, $0 \leqslant x_{i} \leqslant 2$. Hence $L_{1}(n, k)$ is the number of different solutions of the equation

$$
\begin{equation*}
x_{0}+x_{1}+\cdots+x_{n-k}=k, 0 \leqslant x_{i} \leqslant 2 \tag{3.1}
\end{equation*}
$$

Now consider the product

$$
\begin{equation*}
\underbrace{\left(1+t+t^{2}\right) \times \cdots \times\left(1+t+t^{2}\right)}_{(n-k+1) \text { times }} \tag{3.2}
\end{equation*}
$$

In the expansion of this product, taking $t^{y_{0}}$ from the first term, $t^{y_{1}}$ from the second term, $\ldots, t^{y_{n-k}}$ from the $n-k+1^{t h}$ term we get $t^{y_{0}+y_{1}+\ldots+t_{n-k}}$.

Therefore any solution of the equation

$$
\begin{equation*}
y_{0}+y_{1}+\ldots+y_{n-k}=k, 0 \leqslant y_{i} \leqslant 2 \tag{3.3}
\end{equation*}
$$

gives us the term y^{k} in the expansion. In other words the number of solutions of equation 3.3 is the coefficient of t^{k} in expression 3.2. Since the Equations 3.1 and 3.3 are same, we get that $L(n, k)$ is the coefficient of t^{k} in $\left(1+t+t^{2}\right)^{n-k+1}$.

$$
\begin{aligned}
\left(1+t+t^{2}\right)^{n-k+1}= & \left(\frac{1-t^{3}}{1-t}\right)^{n-k+1} \\
= & \left(1-t^{3}\right)^{n-k+1}(1-t)^{-(n-k+1)} \\
= & \left(1-\binom{n-k+1}{1} t^{3}+\binom{n-k+1}{2} t^{6}+\cdots\right) \\
& \quad \times\left(1+\binom{n-k+1}{1} t+\binom{n-k+1}{2} t^{2}+\cdots+\binom{n}{k} t^{k}+\cdots\right)
\end{aligned}
$$

Therefore $L(n, k)=\binom{n}{k}\binom{n-k+1}{0}-\binom{n-3}{k-3}\binom{n-k+1}{1}+\binom{n-6}{k-6}\binom{n-k+1}{2}-$ $\binom{n-9}{k-9}\binom{n-k+1}{3}+\cdots$.
The series on the right hand side is finite as all the terms after a finite number of terms shall be zero.

Lemma 3.4.3. $R(n, k)=L(n-1, k)+2 L(n-4, k-2)+L(n-3, k-1)$, $n \geqslant 4, k \geqslant 2$.

Proof. Let the n circularly arranged objects be v_{1}, \ldots, v_{n}. The set of all objects such that no 3 objects from 3 consecutive positions are chosen can be divided in to the following types.
Type 1 The object v_{n} is chosen and the objects v_{n-1} and v_{1} are not chosen. Then the total number of choices is $L(n-3, k-1)$. (See Figure 3.7)
Type 2 The objects v_{n} and v_{n-1} are chosen and v_{1} is not chosen. v_{n} and v_{n-1} are chosen implies v_{n-2} is not chosen. In this case the number of

Figure 3.7
choices is $L(n-4, k-2)$.
The objects v_{n} and v_{1} are chosen and v_{n-1} is not chosen. Again as in the previous case the total number of choices is $L(n-4, k-2)$.

The object v_{n} is not chosen. Here the total number of choices is $L(n-1, k)$. Therefore $R(n, k)=L(n-1, k)+2 L(n-4, k-2)+L(n-3, k-1)$.

It is obvious that

$$
\begin{aligned}
R(n, k) & =1 \text { when } k=0 \\
& =n \text { when } k=1
\end{aligned}
$$

Now we have determined $R(n, k)$ for all $n \geqslant 4$ and $k \geqslant 0$.

Theorem 3.4.2. The center number of the even cycle $C_{2 n}$ is $1+\sum_{k=1}^{\left\lfloor\frac{4 n}{3}\right\rfloor} R(2 n, k)$.

Proof. By the Corollary 3.3.13, the maximum cardinality among the center sets other than V is $\left\lfloor\frac{4 n}{3}\right\rfloor$ and by the Theorem $3.3 .12, R(2 n, k)$ gives the number of center sets of size k where $k \leqslant\left\lfloor\frac{4 n}{3}\right\rfloor$. Also V is a center set.

Hence $c n\left(C_{2 n}\right)=1+\sum_{k=1}^{\left\lfloor\frac{4 n}{3}\right\rfloor} R(2 n, k)$.

Illustration 3.4.1. Consider the even cycle C_{12}. Here $n=6$. Then

$$
\begin{equation*}
c n\left(C_{12}\right)=1+\sum_{k=1}^{8} R(12, k) \tag{3.4}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
R(12,1)=12 . \tag{3.5}
\end{equation*}
$$

$$
\begin{aligned}
& R(12,2)=L(11,2)+2 L(8,0)+L(9,1) \\
& L(11,2)=\binom{11}{2}=55, L(8,0)=1 \text { and } L(9,1)=9 . \text { Hence, }
\end{aligned}
$$

$$
\begin{equation*}
R(12,2)=55+2+9=66 \tag{3.6}
\end{equation*}
$$

$$
\begin{align*}
& R(12,3)=L(11,3)+2 L(8,1)+L(9,2) \\
& L(11,3)=\binom{11}{3}\binom{9}{0}-\binom{8}{0}\binom{9}{1}=165-9=156 \\
& L(8,1)=8 \text { and } L(9,2)=\binom{9}{2}=36 . \text { Hence, } \\
& \qquad R(12,3)=156+16+36=208 \tag{3.7}
\end{align*}
$$

$$
\begin{align*}
& R(12,4)=L(11,4)+2 L(8,2)+L(9,3) \\
& L(11,3)=\binom{11}{4}\binom{8}{0}-\binom{8}{1}\binom{8}{1}=330-64=266 \\
& L(8,2)=\binom{8}{2}=28 \\
& L(9,3)=\binom{9}{3}\binom{7}{0}-\binom{6}{0}\binom{7}{1}=84-7=77 . \text { Hence, } \\
& \qquad R(12,4)=266+56+77=399 \tag{3.8}
\end{align*}
$$

$$
\begin{aligned}
& R(12,5)=L(11,5)+2 L(8,3)+L(9,4) \\
& L(11,5)=\binom{11}{5}\binom{7}{0}-\binom{8}{2}\binom{7}{1}=462-196=266 \\
& L(8,3)=\binom{8}{3}\binom{6}{0}-\binom{5}{0}\binom{6}{1}=56-6=50
\end{aligned}
$$

$$
\begin{array}{r}
L(9,4)=\binom{9}{4}\binom{6}{0}-\binom{6}{1}\binom{6}{1}=126-36=90 . \text { Hence, } \\
R(12,5)=266+100+90=456 \tag{3.9}
\end{array}
$$

$$
\begin{align*}
& R(12,6)=L(11,6)+2 L(8,4)+L(9,5) \\
& L(11,6)=\binom{11}{6}\binom{6}{0}-\binom{8}{3}\binom{6}{1}+\binom{5}{0}\binom{6}{2}=462-336+15=141 \\
& L(8,4)=\binom{8}{4}\binom{5}{0}-\binom{5}{1}\binom{5}{1}=70-25=45 \\
& L(9,5)=\binom{9}{5}\binom{5}{0}-\binom{6}{2}\binom{5}{1}=126-75=51 . \text { Hence } \\
& \qquad R(12,6)=141+90+51=282 \tag{3.10}
\end{align*}
$$

$$
\begin{align*}
& R(12,7)=L(11,7)+2 L(8,5)+L(9,6) \\
& L(11,7)=\binom{11}{7}\binom{5}{0}-\binom{8}{4}\binom{5}{1}+\binom{5}{1}\binom{5}{2}=330-350+50=30 \\
& L(8,5)=\binom{8}{5}\binom{4}{0}-\binom{5}{2}\binom{4}{1}=56-40=16 \\
& L(9,6)=\binom{9}{6}\binom{4}{0}-\binom{6}{3}\binom{4}{1}+\binom{3}{0}\binom{4}{2}=84-80+6=10 . \text { Hence, } \\
& \qquad R(12,7)=30+32+10=72 \tag{3.11}
\end{align*}
$$

$$
\begin{align*}
& R(12,8)=L(11,8)+2 L(8,6)+L(9,7) \\
& L(11,8)=\binom{11}{8}\binom{4}{0}-\binom{8}{5}\binom{4}{1}+\binom{5}{2}\binom{4}{2}=165-224+60=1 \\
& L(8,6)=\binom{8}{6}\binom{3}{0}-\binom{5}{3}\binom{3}{1}+\binom{2}{0}\binom{3}{2}=28-30+3=1 \\
& L(9,7)=\binom{9}{7}\binom{3}{0}-\binom{6}{4}\binom{3}{1}+\binom{3}{1}\binom{3}{2}=36-45+9=0 . \text { Hence, } \\
& R(12,8)=1+2+0=3 \tag{3.12}
\end{align*}
$$

Using equations 3.5 to 3.12 in 3.4 we get
$c n\left(C_{12}\right)=1+12+66+208+399+456+282+72+3=1499$
Before proving the center number of odd cycles, we prove the following lemmata. We first find $L_{2}(n, k)$ for given values of n and k.

Lemma 3.4.4. $\quad L_{2}(n, k)=\binom{n-k+1}{k}$.

Proof. As in Lemma 3.4.2, we give a binary representation for a particular choice of k objects that conforms to the conditions specified in the definition of $L_{2}(n, k)$. For each 1 in this binary representation we count the total number of 0 's preceding this 1 . So if we have k 1's then we get k numbers from $\{0,1, \ldots, n-k\}$ and all these are distinct since there should be at least one 0 between any two successive 1 's. Thus corresponding to each choice of k objects of the desired type we get a unique set of k distinct numbers from $\{0,1, \ldots, n-k\}$. Conversely each choice of k distinct numbers from $\{0,1, \ldots, n-k\}$ gives us a unique choice of k objects from n linearly arranged objects satisfying the specified condition. Thus we get a one-toone correspondence between the k-element subsets of $\{0,1, \ldots, n-k\}$ and the choices of k objects as specified in the definition of $L_{2}(n, k)$. Hence $L_{2}(n, k)=\binom{n-k+1}{k}$.

Lemma 3.4.5. $L_{1}(n, k)=\sum_{\ell=0}^{k} L_{2}\left(\left\lfloor\frac{n}{2}\right\rfloor, \ell\right) L_{2}\left(\left\lceil\frac{n}{2}\right\rceil, k-\ell\right)$.
Proof. Consider n linearly arranged objects. Choosing k objects from these n objects such that no two objects are from alternate positions can be done as follows. First choose ℓ objects from $\left\lceil\frac{n}{2}\right\rceil$ objects in the odd positions such that no two objects are consecutive among these $\left\lceil\frac{n}{2}\right\rceil$ objects. This can be done in $L_{2}\left(\left\lceil\frac{n}{2}\right\rceil, \ell\right)$ ways. Now choose $k-\ell$ objects from the remaining $\left\lfloor\frac{n}{2}\right\rfloor$ objects in the even positions, such that no two objects are consecutive among these $\left\lfloor\frac{n}{2}\right\rfloor$ objects. This can be done $L_{2}\left(\left\lfloor\frac{n}{2}\right\rfloor, k-\ell\right)$ ways. Hence $L_{1}(n, k)=\sum_{\ell=0}^{k} L_{2}\left(\left\lceil\frac{n}{2}\right\rceil, \ell\right) L_{2}\left(\left\lfloor\frac{n}{2}\right\rfloor, k-\ell\right)$.

Lemma 3.4.6. $L_{1}(n, k)=\sum_{\ell=0}^{k}\binom{\left\lfloor\frac{n}{2}\right\rfloor-\ell+1}{\ell}\binom{\left(\frac{n}{2}\right\rceil-(k-\ell)+1}{k-\ell}$.
Proof. The proof follows from Lemma 3.4.5 and Lemma 3.4.4.

Lemma 3.4.7. $R_{1}(n, k)=L_{1}(n-2, k)+2 L_{1}(n-5, k-1)+3 L_{1}(n-6, k-2)$, $n \geqslant 6, k \geqslant 2$.

Proof. Let the n circularly arranged objects be v_{1}, \ldots, v_{n}. The set of all choices of k objects such that no two objects occupy alternate positions can be divided in to various types.

Type I: Both v_{n} and v_{n-1} are not chosen. In this case the total number of choices is $L_{1}(n-2, k)$ (See Figure 3.8).

Figure 3.8

Type II: v_{n} is selected and v_{n-1} is not selected. v_{n} is selected implies v_{n-2} and v_{2} are not selected. The number of choices where v_{1} is selected is $L_{1}(n-6, k-2)$ and the number of choices where v_{1} is not selected is $L_{1}(n-5, k-1)$. Hence the total number of such choices is $L_{1}(n-6, k-2)+L_{1}(n-5, k-1)$.

Type III: v_{n} is not selected and v_{n-1} is selected. As in the previous case the total number of such choices is $L_{1}(n-6, k-2)+L_{1}(n-5, k-1)$.

Type IV: Both v_{n} and v_{n-1} are selected. v_{n} and v_{n-1} are selected implies v_{1}, v_{2}, v_{n-2} and v_{n-3} are not selected. Therefore the number of choices of this type is $L_{1}(n-6, k-2)$.

Hence, $R_{1}(n, k)=L_{1}(n-2, k)+2 L_{1}(n-5, k-1)+3 L_{1}(n-6, k-2)$.

Now it is easy to see that

$$
\begin{aligned}
R_{1}(n, k) & =1, \text { when } k=0 \\
& =n, \text { when } k=1 \text { or } k=2 \text { and } n=4 \text { or } 5 \\
& =0, \text { when } k \geqslant 3, n=4 \text { or } 5
\end{aligned}
$$

Thus we have determined $R_{1}(n, k)$ for all $n \geqslant 4$ and $k \geqslant 0$.
Now with the help of Theorem 3.3.9 and Corollary 3.3.10, we have the center number of the odd cycle $C_{2 n+1}, n \geqslant 2$.

Theorem 3.4.3. The center number of the odd cycle $C_{2 n+1}, n \geqslant 2$, is $1+\sum_{k=1}^{n} R_{1}(2 n+1, k)$.

Illustration 3.4.2. We shall find out the center number of the odd cycle C_{11}. We have that

$$
\begin{equation*}
c n\left(C_{11}\right)=1+\sum_{k=1}^{5} R_{1}(11, k) \tag{3.14}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
R_{1}(11,1)=11 \tag{3.15}
\end{equation*}
$$

From equation 3.13 we have that

$$
R_{1}(11,2)=L_{1}(9,2)+2 L_{1}(6,1)+3 L_{1}(5,0)
$$

$$
\begin{aligned}
L_{1}(9,2) & =\sum_{\ell=0}^{2}\binom{4-\ell+1}{\ell}\binom{5-(2-\ell)+1}{2-\ell} \\
& =\binom{5}{0}\binom{4}{2}+\binom{4}{1}\binom{5}{1}+\binom{3}{2}\binom{5}{0}=6+20+3=29
\end{aligned}
$$

$L_{1}(6,1)=6$ and $L_{1}(5,0)=1$. Therefore,

$$
\begin{equation*}
R_{1}(11,2)=29+12+3=44 \tag{3.16}
\end{equation*}
$$

$$
\begin{aligned}
& R_{1}(11,3)=L_{1}(9,3)+2 L_{1}(6,2)+3 L_{1}(5,1) \\
& L_{1}(9,3)=\binom{5}{0}\binom{3}{3}+\binom{4}{1}\binom{4}{2}+\binom{3}{2}\binom{5}{1}=1+24+15=40 \\
& L_{1}(6,2)=\binom{4}{0}\binom{2}{2}+\binom{3}{1}+\binom{2}{1}\binom{4}{0}=1+9+1=11 \\
& L_{1}(5,1)=5 . \text { Therefore, }
\end{aligned}
$$

$$
\begin{equation*}
R_{1}(11,3)=40+2 \times 11+3 \times 5=77 \tag{3.17}
\end{equation*}
$$

$R_{1}(11,4)=L_{1}(9,4)+2 L_{1}(6,3)+3 L_{1}(5,2)$
$L_{1}(9,4)=\binom{4}{1}\binom{3}{3}+\binom{3}{2}\binom{4}{2}=4+18=22$
$L_{1}(6,3)=\binom{3}{1}\binom{2}{2}+\binom{2}{2}\binom{3}{1}=3+3=6$
$L_{1}(5,2)=\binom{3}{0}\binom{2}{2}+\binom{2}{1}\binom{3}{1}=1+6=7$. Therefore,

$$
\begin{equation*}
R_{1}(11,4)=22+2 \times 6+3 \times 7=55 \tag{3.18}
\end{equation*}
$$

$R_{1}(11,5)=L_{1}(9,5)+2 L_{1}(6,4)+3 L_{1}(5,3)$
$L_{1}(9,5)=\binom{3}{2}\binom{3}{3}=3$
$L_{1}(6,4)=\binom{2}{2}\binom{2}{2}=1$
$L_{1}(5,3)=\binom{2}{1}\binom{2}{2}=2$. Therefore,

$$
\begin{equation*}
R_{1}(11,5)=3+2 \times 1+3 \times 2=11 \tag{3.19}
\end{equation*}
$$

Using equations 3.15 to 3.19 in 3.14 we get
$c n\left(C_{11}\right)=1+11+44+77+55+11=199$

3.5 Conclusion

In this chapter the generalisation of the center of a graph to the center of arbitrary vertex sets have been explored particularly with reference to some special classes of graphs like $K_{n}, K_{m, n}, K_{n}-e$, odd cycles and a more general class of graphs called symmetric even graphs. In the process of identification of center sets of odd cycles and symmetric even graphs we have devised methods for finding a set whose center is a prescribed set. The duality property of dominating boundary sets of symmetric even graphs with respect to the center function has been also brought to light. For any graph there may exist subsets of the vertex set whose center is the same as the center of the graph and therefore we can look for such sets with minimum cardinality. Searching on this line we came across a class of graphs where none of the proper subsets of the vertex sets has center equal to the center of the graph. We called them the center critical graphs and characterised them as self centred, unique eccentric vertex graphs. Finally we have enumerated the number of distinct center sets of some of the graphs mentioned above.

Chapter 4

Pacifying and Shrinking edges

4.1 Introduction

Extremal graph theory mostly deals with studying the classes of graphs that are minimal or maximal with respect to certain conditions. Most of the literature on distance related extremal graph theory is concerned with identifying the class of graphs that are radially maximal, radially minimal, diameter minimal, diameter maximal etc[see section 2.4]. The eccentricity of a vertex can be decreased by adding edges and it shall be interesting to identify such edges particularly in networking problems where, by adding a minimum number of edges we may be able to reduce the distances of an actor from other actors in the network remarkably and thus can increase its significance in the network. This is useful for the actor as well as the whole network as it increases the cohesion of the network at a minimal cost. In this chapter we take a particular case of this problem where we add a single edge. Given that we are allowed to add a single edge, we identify the edge(s) that when added to a graph reduces the eccentricity of a vertex the most. We also identify the edge(s) that reduces the radius of the graph the most. Such edges are being introduced as pacifying and shrinking edges respectively.

Definition 4.1.1. For a vertex $w \in G$, an edge $u v \notin E(G)$ is defined to be a pacifying edge of w if $e_{G+u v}(w) \leqslant e_{G+x y}(w)$ for all $x y \in E\left(G^{c}\right)$.

It is not necessary that every vertex of a graph has pacifying edges. One trivial example is the complete graph where every vertex has eccentricity one. There are other non trivial examples. Take the complete bipartite graph $K_{m, n}$ where $m, n>2$. Each vertex of this graph has eccentricity
two. Since $m, n>2$ by adding an edge between any single pair of nonadjacent vertices the eccentricity of none of the vertices reduces. In other words no vertex of $K_{m, n}$ has a pacifying edge. C_{5} is another example of a graph in which no vertex has a pacifying edge.
The following is an example of a graph in which some vertices have pacifying edges while some others do not have any pacifying edge.

Figure 4.1: Graph having vertices with and without pacifying edges

Here, $x w, u y$ and $z v$ are the pacifying edges of x, y and z respectively as they reduce the eccentricity of these vertices from 2 to 1 . But, the vertices u, v and w do not have any pacifying edge.

Observations

The following are some simple observations that can be made on the pacifying edges of the vertices of a graph with more than two vertices.

1. Every vertex having a unique eccentric vertex has a pacifying edge.
2. Every vertex whose eccentricity is greater than 2 and whose eccentric vertices are all mutually adjacent has a pacifying edge.
3. A vertex of a graph of diameter 2 has a pacifying edge if and only if its degree is $|V|-2$.
4. C_{5} is a graph in which no vertex has a pacifying edge. In fact, it is later shown later that in all other cycles every vertex has at least one pacifying edge.

4.2 Pacifying edges of some classes of graphs

4.2.1 Pacifying edges of a path

In the following theorem we identify the pacifying edges of the vertices of a path.

Theorem 4.2.1. Consider the path P_{n} with end vertices a and b and let $w \in V\left(P_{n}\right)$. Assume that $d(w, a) \leqslant d(w, b)$.

1. If $d(w, a)=d(w, b)$ then w has no pacifying edges.
2. Let $d(w, b)<2 d(w, a)$ with $d(w, b)=d(w, a)+t, 0<t<d(w, a)$. Then the pacifying edges of w are given by the following
i. Edges $w_{1} w_{2}$'s such that $w_{1} \in w-b$ path, $w_{2} \in w_{1}-b$ path, $d\left(w_{1}, w\right)=$ m where $0 \leqslant m \leqslant d(w, a)-\frac{t+1}{2}$ and
$t+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant d\left(w_{1}, b\right)$ when $0 \leqslant m<d(w, a)-t$,
$t+1 \leqslant d\left(w_{1}, w_{2}\right)<2(d(w, a)-m)$ when
$d(w, a)-t \leqslant m \leqslant d(w, a)-\frac{t+1}{2}$
ii. Edges $w_{1} w_{2}$'s such that $w_{1} \in w-a$ path, $w_{2} \in w_{1}-b$ path, $d\left(w_{1}, w\right)=$ m where

$$
\begin{aligned}
& 0 \leqslant m \leqslant d(w, a)-\frac{t+1}{2} \text { and } t+2 m+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant d\left(w_{1}, b\right) \\
& \text { when } 0 \leqslant m<d(w, a)-t \\
& t+2 m+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 d(w, a) \text { when } \\
& d(w, a)-t \leqslant m \leqslant d(w, a)-\frac{t+1}{2}
\end{aligned}
$$

3. When $2 d(w, a) \leqslant d(w, b)<3 d(w, a)$ with $d(w, b)=d(w, a)+t$, $d(w, a) \leqslant t<2 d(w, a)$, the pacifying edges of w are given by the following
i. Edges $w_{1} w_{2}$'s such that $w_{1} \in w-b$ path, $w_{2} \in w_{1}-b$ path, $d\left(w_{1}, w\right)=$ m where $0 \leqslant m \leqslant d(w, a)-\frac{t+1}{2}$ and
$t+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2(d(w, a)-m)$
ii. Edges $w_{1} w_{2}$ such that $w_{1} \in w$-a path, $w_{2} \in w_{1}-b$ path, $d\left(w_{1}, w\right)=$ m where $0 \leqslant m \leqslant d(w, a)-\frac{t+1}{2}$ and $t+2 m+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 d(w, a)$
4. When $d(w, b) \geqslant 3 d(w, a)$,
i. If $d(w, b)=3 n$ for some integer n, then the pacifying edges are
a. $w_{1} w_{2}$ where $w_{1}=w$ and $2 n \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$.
b. $w_{1} w_{2}$ where w_{1} is the vertex adjacent to w on w-b path and $d\left(w_{1}, w_{2}\right)=2 n$
c. $w_{1} w_{2}$ where w_{1} is the vertex adjacent to w on w-a path and $d\left(w_{1}, w_{2}\right)=2 n+2$
ii. If $d(w, b)=3 n+1$ for some integer n then the pacifying edges are $w_{1} w_{2}$ where $w_{1}=w, w_{2} \in w-b$ path and
$2 n+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$.
iii. If $d(w, b)=3 n+2$ for some integer n then the only pacifying edge is $w_{1} w_{2}$ where $w_{1}=w, w_{2} \in w-b$ path and $d\left(w_{1}, w_{2}\right)=2 n+2$

Proof. In a path with end vertices a and b every vertex has either a or b as its eccentric vertex. By adding a single edge we can reduce the distance of a vertex to at most one of a and b. That is by adding a single edge eccentricity of a vertex can be at most reduced to the smaller of its distances to a and b. Let $d(w, a)=y$.
Case 1: $d(w, a)=d(w, b)$.
By the above statements w has no pacifying edges.
Case 2: $d(w, b)<2 d(w, a)$.
That is $d(w, b)=y+t$ where $0<t<y$. Consider the graph $G+(w, b)$. Let w^{\prime} be the eccentric vertex of w in the unique cycle of the graph
$G+(w, b) . d_{G+(w, b)}(w, a)=y$ and $d_{G+(w, b)}\left(w, w^{\prime}\right)<y$ and $d_{G+(w, b)}(w, b)=$ 1. Therefore $e_{G+(w, b)}(w)=y$. Hence by the observations that we made at the beginning of the proof (w, b) is a pacifying edge of the vertex w.
i. Now take a vertex w_{1} in the $w-b$ path at a distance $m(\geqslant 0)$ from w. Join it to vertex w_{2} at a distance ℓ from w_{1} in the $w_{1}-b$ path. Let w_{1}^{\prime} be the eccentric vertex of w_{1} in the unique cycle of $G+w_{1} w_{2}$. Assume $\ell<t+1$. Then $t+1-\ell>0$ or $y+t+1-\ell-m+m-y>0$. That is $(y+t+\ell-m)+m+1>y$. But $(y+t+\ell-m)+m+1$ is $d_{G+w_{1} w_{2}}(w, b)$. Therefore the $e_{G+w_{1} w_{2}}(w)>y$. In other words, $w_{1} w_{2}$ is not a pacifying edge. That is if $w_{1} w_{2}$ is a pacifying edge of $w, d\left(w_{1}, w_{2}\right)=\ell \geqslant t+1$. If $\ell>2(y-m)$ then $d\left(w_{1}, w_{1}^{\prime}\right)>y-m$ and therefore $d\left(w, w_{1}^{\prime}\right)>y$. Hence $\ell \leqslant 2(y-m)$. That is $t+1 \leqslant \ell \leqslant 2(y-m)$.
Also $m>y-\frac{t+1}{2} \Leftrightarrow 2(y-m)<t+1$. Therefore $0 \leqslant m \leqslant y-\frac{t+1}{2}$.
Now $m \leqslant y-t$ if and only if $2(y-m) \geqslant y+t-m$. That is $m \leqslant y-t$ if and only if $2(y-m) \geqslant d\left(w_{1}, b\right)$. In this case $t+1 \leqslant \ell \leqslant d\left(w_{1}, b\right)$. When $m>y-t, t+1 \leqslant \ell \leqslant 2(y-m)$. $d\left(w_{1}, b\right)<t+1 \Longleftrightarrow y+t-m<t+1 \Longleftrightarrow m>y-1$. Therefore when $m<y-t, d\left(w_{1}, b\right) \geqslant t+1$.
Conversely, let w_{1} and w_{2} be such that $d\left(w_{1}, w\right)=m<y-t$ and $t+1 \leqslant$ $d\left(w_{1}, w_{2}\right) \leqslant d\left(w_{1}, b\right)$. Since $d\left(w_{1}, w_{2}\right) \geqslant t+1, t-d\left(w_{1}, w_{2}\right)+1 \leqslant 0$ or $y+t-d\left(w_{1}, w_{2}\right)+1 \leqslant y$. That is $y+t-d\left(w_{1}, w_{2}\right)-m+m+1 \leqslant y$. In other words $d_{G+w_{1} w_{2}}(w, b) \leqslant y$. Since $m \leqslant y-t, d\left(w_{1}, b\right) \leqslant 2(y-m)$ and therefore $d\left(w_{1}, w_{2}\right) \leqslant 2(y-m)$. Hence $d\left(w, w_{1}^{\prime}\right) \leqslant y$ where w_{1}^{\prime} is the eccentric vertex of w_{1} in the unique cycle of $G+w_{1} w_{2}$. That is $e_{G+w_{1} w_{2}}=y$. That is, the edge $w_{1} w_{2}$ is a pacifying edge of w.
Now assume that $y-\frac{t+1}{2} \geqslant d\left(w_{1}, w\right)=m>y-t$ and $t+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2(y-m)$. Since $y-\frac{t+1}{2} \geqslant d\left(w_{1}, w\right)=m$ we have that $t+1 \leqslant 2(y-m)$. We have already proved that when $d\left(w_{1}, w_{2}\right) \geqslant t+1$, $d(w, b) \leqslant y$. Since $d\left(w_{1}, w_{2}\right) \leqslant 2(y-m), d\left(w, w_{1}^{\prime}\right) \leqslant y$. That is
$e_{G+w_{1} w_{2}}(w)=y$. Hence $w_{1} w_{2}$ is a pacifying edge of w.
ii. Take w_{1} at a distance m from w in the $w-a$ path and let w_{2} be at a distance ℓ from w_{1} in the $w_{1}-b$ path. Let $\ell<t+2 m+1$. Then $t-\ell+2 m+1>0$ or $y+t-\ell+m+m+1>y$. This gives, $y+t-(\ell-$ $m)+m+1>y$. That is $d_{G+w_{1} w_{2}}(w, b)>y$. Therefore $w_{1} w_{2}$ is not a pacifying edge of w. In other words for a pacifying edge $w_{1} w_{2}$ of w, $d\left(w_{1}, w_{2}\right)=\ell \geqslant t+2 m+1 . \ell>2 y \Longrightarrow d\left(w, w^{\prime}\right)>y$ where w^{\prime} is the eccentric vertex of w in the unique cycle of $G+w_{1} w_{2}$. Hence $\ell \leqslant 2 y$. Therefore $t+2 m+1 \leqslant \ell \leqslant 2 y$.
$2 y<t+2 m+1 \Leftrightarrow m>y-\frac{t+1}{2}$. Hence $m \leqslant y-\frac{t+1}{2}$. When $m \leqslant y-t, m+y+t \leqslant 2 y$. That is $d\left(w_{1}, b\right) \leqslant 2 y$. Therefore when $0<m \leqslant y-t, t+2 m+1 \leqslant \ell \leqslant d\left(w_{1}, b\right)$ and when $y-\frac{t+1}{2} \geqslant m>y-t$, $t+2 m+1 \leqslant \ell \leqslant 2 y$. Here $d\left(w_{1}, b\right)<t+2 m+1 \Longrightarrow m+y+$ $t<t+2 m+1 \Longrightarrow y<m+1$ or $m>y-1$. Therefore when $m \leqslant y-t, d\left(w_{1}, b\right) \geqslant t+2 m+1$.
Now we shall prove that if w_{1} and w_{2} are such that $w_{1} \in w-a$ path, $d\left(w_{1}, w\right)=m, 0<m \leqslant y-t$ and $t+2 m+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant d\left(w_{1}, b\right)$ then $w_{1} w_{2}$ is pacifying edge of w. $d\left(w_{1}, w_{2}\right) \geqslant t+2 m+1$ then $y+t-$ $d\left(w_{1}, w_{2}\right)+m+m+1 \leqslant y$ or $d_{G+w_{1} w_{2}}(w, b) \leqslant y$. Also $d\left(w_{1}, w_{2}\right) \leqslant d\left(w_{1}, b\right) \leqslant 2 y \quad \Longrightarrow \quad d_{G+w_{1} w_{2}}\left(w, w^{\prime}\right) \leqslant y$ where w^{\prime} is the eccentric vertex of w in the unique cycle of $G+w_{1} w_{2}$. Hence $e_{G+w_{1} w_{2}}(w)=y$. or $w_{1} w_{2}$ is a pacifying edge of w. Let w_{1} and w_{2} be such that $w_{1} \in w-a$ path, $d\left(w_{1}, w\right)=m, y-\frac{t+1}{2} \geqslant m \geqslant y-t$ and $t+2 m+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 y$. It can be easily seen that $w_{1} w_{2}$ is pacifying edge of w.

Thus for $w \in V\left(P_{n}\right)$ such that $d(w, b)<2 d(w, a)$ the pacifying edges are precisely those given above.
Case 3: $2 d(w, a) \leqslant d(w, b)<3 d(w, a)$.
i. Let w_{1} be a vertex in the w-b path at a distance $m(\geqslant 0)$ from w and
w_{2} be at a distance ℓ from w_{1} in the $w_{1}-b$ path. It can be seen as above that if $d\left(w_{1}, w_{2}\right)<t+1$ or $>2(y-m)$ then $w_{1} w_{2}$ cannot be a pacifying edge of w. That is for an edge $w_{1} w_{2}$ to be pacifying edge $t+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 y$. As in previous case, when $m>y-\frac{t+1}{2}$, $2(y-m)<t+1$. Hence m should be such that $0 \leqslant m \leqslant y-\frac{t+1}{2}$. Conversely if w_{1} and w_{2} are such that w_{1} is in the $w-b$ path, $d\left(w, w_{1}\right)=$ $m, 0 \leqslant m \leqslant y-\frac{t+1}{2}$ and $t+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2(y-m)$ then it can be shown as in the previous case that $w_{1} w_{2}$ is a pacifying edge.
ii. w_{1} is in the $a-w$ path w_{2} is in the $w_{1}-b$ path, $d\left(w_{1}, w_{2}\right)=\ell$ and $d\left(w_{1}, w\right)=m$. It can be easily proved that $w_{1} w_{2}$ is a pacifying edge if and only if $0<m \leqslant y-\frac{t+1}{2}$ and $t+2 m+1 \leqslant \ell \leqslant 2 y$.

The above two cases precisely give the pacifying edges of w when $2 d(w, a) \leqslant d(w, b)<3 d(w, a)$.

Case 4: $d(w, b) \geqslant 3 d(w, a)$.
We have the following subcases.
Subcase 4.1: $d(w, b)=3 n$.
By adding an edge between a pair of vertices at a distance less than $2 n$ the eccentricity of w can be reduced at most to $n+2$. Now, if we join a pair of vertices at a distance greater than $2 n+2$, since the resulting cycle has radius at least $n+2$, the eccentricity of w is at least $n+2$. Also if we join w to v where $d(w, v)=2 n$ then $d_{G+(w, v)}\left(w, w^{\prime}\right)=n, d_{G+(w, v)}(w, b)=n+1$ and $d_{G+(w, v)}(w, a) \leqslant n$. Hence $e_{G+(v, w)}(w)=n+1$. If we join a pair of vertices at a distance $2 n+1$ or $2 n+2$ the resulting cycle has radius $n+1$ and therefore eccentricity of w is at least $n+1$. Let $w_{1}(\neq w)$ and w_{2} be pair of vertices at a distance $2 n$ such that w_{1} belong to $w-b$ path and w_{2} belong to $w_{1}-b$ path. Then $d_{G+w_{1} w_{2}}\left(w_{1}, w_{1}^{\prime}\right)=n$ where w_{1}^{\prime} is the eccentric vertex of w_{1} in the unique cycle of $G+w_{1} w_{2}$ and therefore $d_{G+w_{1} w_{2}}\left(w, w_{1}^{\prime}\right) \geqslant n+1$. Hence $e_{G+w_{1} w_{2}}(w) \geqslant n+1$.

Let $w_{1}(\neq w)$ and w_{2} be pair of vertices at a distance $2 n$ such that w_{1} belong to $w-a$ path and w_{2} belong to $w_{1}-b$ path. Then $d_{G+w_{1} w_{2}}(w, b) \geqslant n+3$ and therefore $e_{G+w_{1} w_{2}}(w) \geqslant n+3$. From these observations we can conclude that by adding a single edge the eccentricity of w can be reduced at most to $n+1$.
Let w_{1} and w_{2} be pair of vertices such that w_{1} belongs to $w-b$ path, w_{2} belongs to $w_{1}-b$ path and $d\left(w_{1}, w\right)=m$. Join w_{1} and w_{2}. $d_{G+w_{1} w_{2}}(w, b)=$ $3 n-\left(d\left(w_{1}, w_{2}\right)-1\right)=3 n+1-d\left(w_{1}, w_{2}\right)$. If $w_{1} w_{2}$ has to be pacifying edge of w then $d_{G+w_{1} w_{2}} \leqslant n+1$. That is, $3 n+1-d\left(w_{1}, w_{2}\right) \leqslant n+1$ or $d\left(w_{1}, w_{2}\right) \geqslant 2 n . d\left(w_{1}, w_{2}\right)>2((n+1)-m) \quad \Longrightarrow \quad d\left(w, w_{1}^{\prime}\right)>n+1$. Therefore, if $\left(w_{1}, w_{1}^{\prime}\right)$ is to be a pacifying edge of w then $d\left(w_{1}, w_{2}\right) \leqslant 2((n+1)-m)$. Hence we have, $2 n \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2((n+1)-m)$. This is possible only when $m=0$ or 1 .
When $m=0,2 n \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$ and when $m=1$,
$2 n \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n$. In fact it is easy to verify that when $m=0$ and $2 n \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$ or $m=1$ and $d\left(w_{1}, w_{2}\right)=2 n, e_{G+w_{1} w_{2}}(w)$ is $n+1$.
Let w_{1} and w_{2} be such that w_{1} belongs to $w-a$ path, w_{2} belongs to w_{1-} b path and $d\left(w_{1}, w\right)=m(>0) . d\left(w_{1}, w_{2}\right)>2(n+1)$ implies that the cycle formed by joining w_{1} and w_{2} has radius greater than $n+1$. That is, $d_{G+w_{1} w_{2}}\left(w, w^{\prime}\right)>n+1$ where w^{\prime} is the eccentric vertex of w in the unique cycle of $G+w_{1} w_{2}$. In other words $e_{G+w_{1} w_{2}}(w)>n+1$. Hence if $w_{1} w_{2}$ has to be pacifying edge of w then $d\left(w_{1}, w_{2}\right) \leqslant 2(n+1)$.
$2 n+2 m>d\left(w_{1}, w_{2}\right) \Longrightarrow 3 n-\left(d\left(w_{1}, w_{2}\right)-m\right)+1+m>n+1$.
That is, $d_{G+w_{1} w_{2}}(w, b)>n+1$ or $e_{G+w_{1} w_{2}}(w)>n+1$. Hence $d\left(w_{1}, w_{2}\right) \geqslant 2 n+2 m$. Thus we get $2 n+2 m \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$. This is possible only when $m=1$ and we get $d\left(w_{1}, w_{2}\right)=2 n+2$. When $d\left(w_{1}, w_{2}\right)=$ $2 n+2$ and $m=1$, we have $d_{G+w_{1} w_{2}}(w, b)=n+1$ and $d_{G+w_{1} w_{2}}\left(w, w^{\prime}\right)=n+1$ where w^{\prime} is the eccentric vertex of w in the unique cycle of $G+w_{1} w_{2}$. That
is, $e_{G+w_{1} w_{2}}(w)=n+1$ or $w_{1} w_{2}$ is a pacifying edge of w.
Thus the pacifying edges of w are precisely the following.
a. $w_{1} w_{2}$ where $w_{1}=w, w_{2}$ belong to $w-b$ path and $d\left(w_{2}, w\right)=2 n$.
b. $w_{1} w_{2}$ where $w_{1}=w, w_{2}$ belong to $w-b$ path and $d\left(w_{2}, w\right)=2 n+1$.
c. $w_{1} w_{2}$ where $w_{1}=w, w_{2}$ belong to $w-b$ path and $d\left(w_{2}, w\right)=2 n+2$.
d. $w_{1} w_{2}$ where w_{1} belong to $w-b$ path, w_{2} belong to $w_{1}-b$ path, $d\left(w_{1}, w\right)=1$ and $d\left(w_{2}, w\right)=2 n+1$.
e. $w_{1} w_{2}$ where w_{1} belong to $w-a$ path, w_{2} belong to $w-b$ path, $d\left(w_{1}, w\right)=1$ and $d\left(w_{2}, w\right)=2 n+1$.

Subcase 4.2: $d(w, b)=3 n+1$.
Since $d(w, b) \geqslant 3 d(w, a)$ we have $n \geqslant d(w, a)$. Joining w to a vertex v in the w - b path such that $d(w, v)=2 n+1$ reduces the eccentricity of w to $n+1$. If we join two vertices at a distance less than $2 n+1$ then the eccentricity of w reduces at most to $n+2$. If we join two vertices at a distance greater than $2 n+2$ then the resulting cycle has radius at least $n+2$ and therefore there exists at least one vertex whose distance from w is at least $n+2$. Therefore a pacifying edge should be between two vertices at distance $2 n+1$ or $2 n+2$. In both these cases we get cycles having radii $n+1$ and therefore eccentricity of w in the resulting graph is at least $n+1$. Thus, the pacifying edges of w are precisely those edges that reduces its eccentricity to $n+1$.
Let w_{1} and w_{2} be such that $d\left(w_{1}, w\right)=m(\geqslant 0), w_{1}$ belongs to the $w-b$ path and w_{2} belongs to the $w_{1}-b$ path. For $w_{1} w_{2}$ to be a pacifying edge of $w, d_{G+w_{1} w_{2}}\left(w, w_{1}^{\prime},\right) \leqslant n+1$ where w_{1}^{\prime} is the eccentric vertex of w_{1} in the unique cycle of $G+w_{1} w_{2}$. That is, the radius of the cycle should be less than or equal to $n+1-m$. Hence $d\left(w_{1} w_{2}\right) \leqslant 2(n+1-m)$. Similarly, $d_{G+w_{1} w_{2}}(w, b)$ should be less than or equal to $n+1$. Hence $3 n+1-d\left(w_{1}, w_{2}\right)-m+m+1 \leqslant n+1$ or $d\left(w_{1}, w_{2}\right) \geqslant 2 n+1$. Thus, we get $2 n+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2(n+1-m)$. But this is possible only when $m=0$
and in this case $2 n+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$. It can be easily verified that when $m=0$ and $d\left(w_{1}, w_{2}\right)=2 n+1$ or $2 n+2, e_{G+w_{1} w_{2}}(w)=n+1$.
Let w_{1} and w_{2} be such that $d\left(w_{1}, w\right)=m(>0), w_{1}$ belongs to the $w-a$ path and w_{2} belongs to the $w_{1}-b$ path. For $w_{1} w_{2}$ to be pacifying edge of w, $d_{G+w_{1} w_{2}}\left(w, w^{\prime}\right)$ should be less than or equal to $n+1$ where w^{\prime} is the eccentric vertex of w in the unique cycle of $G+w_{1} w_{2}$. That is, $d\left(w_{1}, w_{2}\right) \leqslant 2(n+1)$. Also, $d_{G+w_{1} w_{2}}(w, b) \leqslant n+1$ gives $3 n+1-\left(d\left(w_{1}, w_{2}\right)-m\right)+1+m \leqslant n+1$ or $d\left(w_{1}, w_{2}\right) \geqslant 2 n+2 m+1$. Thus we get $2 n+2 m+1 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$. This is not possible for any positive values of m. Hence the pacifying edges of w are $w_{1} w_{2}$ where $w_{1}=w$ and $d\left(w_{1}, w_{2}\right)=2 n+1$ or $2 n+2$.
Subcase 4.3: $d(w, b)=3 n+2$.
Joining w to a vertex v in the $w-b$ path such that $d(w, v)=2 n+2$ reduces the eccentricity of w to $n+1$. If we join two vertices at a distance less than $2 n+2$ then the eccentricity of w reduces at most to $n+2$. If we join two vertices at a distance greater than $2 n+2$ then the resulting cycle has radius at least $n+2$ and therefore there exists at least one vertex whose distance from w is at least $n+2$. Hence a pacifying edge should be between two vertices at distance $2 n+2$. In this case we get a cycle having radius $n+1$ and therefore eccentricity of w in the resulting graph is at least $n+1$. Thus, the pacifying edges of w are precisely those edges that reduces its eccentricity to $n+1$.
Let w_{1} and w_{2} be such that $d\left(w_{1}, w\right)=m(\geqslant 0), w_{1}$ belongs to the $w-b$ path and w_{2} belongs to the $w_{1}-b$ path. For $w_{1} w_{2}$ to be a pacifying edge of $w, d_{G+w_{1} w_{2}}\left(w, w_{1}^{\prime},\right) \leqslant n+1$ where w_{1}^{\prime} is the eccentric vertex of w_{1} in the unique cycle of $G+w_{1} w_{2}$. That is the radius of the cycle should be less than or equal to $n+1-m$. Hence $d\left(w_{1}, w_{2}\right) \leqslant 2(n+1-m)$. Similarly, $d_{G+w_{1} w_{2}}(w, b)$ should be less than or equal to $n+1$. That is $3 n+2-d\left(w_{1}, w_{2}\right)-m+m+1 \leqslant n+1$ or $d\left(w_{1}, w_{2}\right) \geqslant 2 n+2$. Thus we get $2 n+2 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2(n+1-m)$. But this is possible only when $m=0$
and in this case $d\left(w_{1}, w_{2}\right)=2 n+2$. It can be easily verified that when $m=0$ and $d\left(w_{1}, w_{2}\right)=2 n+2, e_{G+w_{1} w_{2}}(w)=n+1$.
Let w_{1} and w_{2} be such that $d\left(w_{1}, w\right)=m(>0), w_{1}$ belongs to the $w-a$ path and w_{2} belongs to the $w_{1}-b$ path. For $w_{1} w_{2}$ to be pacifying edge of w, $d_{G+w_{1} w_{2}}\left(w, w^{\prime}\right)$ should be less than or equal to $n+1$ where w^{\prime} is the eccentric vertex of w in the unique cycle of $G+w_{1} w_{2}$. That is, $d\left(w_{1}, w_{2}\right) \leqslant 2(n+1)$. Also, $d_{G+w_{1} w_{2}}(w, b) \leqslant n+1$ gives $3 n+2-\left(d\left(w_{1}, w_{2}\right)-m\right)+1+m \leqslant n+1$ or $d\left(w_{1}, w_{2}\right) \geqslant 2 n+2 m+2$. Thus we get $2 n+2 m+2 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 2 n+2$. This is not possible for any positive values of m. Hence the pacifying edge of w is $w_{1} w_{2}$ where $w_{1}=w$ and $d\left(w_{1}, w_{2}\right)=2 n+2$. Thus we have listed the pacifying edges of all the different types of vertices of a path.

As an illustration of the above theorem 4.2.1, consider the following example.

Example 4.2.1. Consider the path $P_{17}=v_{1} v_{2} \ldots v_{17}$.

Figure 4.2: Path P_{17}

The following tables give the pacifying edges and the reduced eccentricities of certain vertices of this path.

Table 4.1: Pacifying edges of vertices where $d(w, b)<3 d(w, a)$

Table 4.2: Pacifying edges of vertices where $d(w, b) \geqslant 3 d(w, a)$

	$\begin{aligned} & \overparen{0} \\ & \frac{3}{0} \end{aligned}$	-	n	m	$d\left(w_{1}, w_{2}\right)$	pacifying edges	$e_{P_{17}}$	$e_{P_{17}+w_{1} w_{2}}$
v_{5}	4	12	4		$w_{1} \in w-b$		12	5
				0	$8 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 10$	$v_{5} v_{13}, v_{5} v_{14}$, $v_{5} v_{15}$		
				1	$d\left(w_{1}, w_{2}\right)=8$	$v_{6} v_{14}$		
					$w_{1} \in w-a$			
				1	$d\left(w_{1}, w_{2}\right)=10$	$v_{4} v_{14}$		
v_{4}	3	13	4	0	$9 \leqslant d\left(w_{1}, w_{2}\right) \leqslant 10$	$v_{4} v_{13}, v_{4} v_{14}$	13	5
v_{3}	2	14	4	0	$d\left(w_{1}, w_{2}\right)=10$	$v_{3} v_{13}$	14	5

4.2.2 Pacifying edges of Odd Cycles

Theorem 4.2.2. Let G be the odd cycle $C_{2 n+1}(n>2)$ with vertex set $\left\{v_{1}, \ldots, v_{2 n+1}\right\}$.

1. If n is even the pacifying edges of a vertex v_{i} are
(a) $v_{i} v_{i \oplus_{2 n+1} n}$
(d) $v_{i} v_{i \oplus_{2 n+1}(n-1)}$
(g) $v_{i \oplus_{2 n+1} 1} v_{i \oplus_{2 n+1} n}$
(b) $v_{i} v_{i \oplus_{2 n+1}(n+1)}$
(e) $v_{i \oplus_{2 n+1} 1} v_{i \oplus_{2 n+1}(n+1)(h)} v_{i \ominus_{2 n+1}} v_{i \oplus_{2 n+1}(n+1)}$
(c) $v_{i} v_{i \oplus_{2 n+1}(n+2)}$
(f) $v_{i \ominus_{2 n+1} 1} v_{i \oplus_{2 n+1} n}$
2. If n is odd the pacifying edges v_{i} are $v_{i} v_{i \oplus_{2 n+1} n}$ and $v_{i} v_{i \oplus_{2 n+1}(n+1)}$.

Proof. 1. Suppose n is even. Add the edge $v_{i} v_{i \oplus_{2 n+1} n}$. Then we get two cycles, say C_{1}^{\prime} and C_{2}^{\prime}, both containing v_{i} and having $n+2$ and $n+1$ edges respectively. $n+2$ is even and v_{i} has eccentricity $\frac{n}{2}+1$ in C_{1}^{\prime} and consequently $e_{G+v_{i} v_{i \oplus_{2 n+1} n}}=\frac{n}{2}+1$. Similarly by adding the edge $v_{i} v_{i \oplus_{2 n+1}(n+1)}$ the eccentricity of v_{i} reduces to $\frac{n}{2}+1$. Adding the edge $v_{i} v_{i \oplus_{2 n+1}(n+2)}$ we get cycles C_{1}^{\prime} and C_{2}^{\prime} where C_{1}^{\prime} has $n+3$ edges, C_{2}^{\prime} has n edges and both contain the vertex $v_{i} . C_{1}^{\prime}$ has radius $\frac{n}{2}+1$ and C_{2}^{\prime} has radius $\frac{n}{2}$. Therefore v_{i} has eccentricity $\frac{n}{2}+1$ in the new graph. Similarly adding the edge $v_{i} v_{i \oplus{ }_{2 n+1}(n-1)}$ reduces the eccentricity of v_{i} to $\frac{n}{2}+1$. Adding an edge between v_{i} and a vertex other than $v_{i \oplus_{2 n+1} n}$, $v_{i \oplus 2 n+1(n+1)}, v_{i \oplus_{2 n+1}(n+2)}, v_{i \oplus 2 n+1(n-1)}$ we get two cycles C_{1}^{\prime} and C_{2}^{\prime}, both containing v_{i}, and one of them having radius greater than $\frac{n}{2}+1$. Therefore eccentricity of v_{i} in such a graph is greater than $\frac{n}{2}+1$. Now we add an edge between v_{j} and v_{k} such that $j, k \neq i$. Let C_{1}^{\prime} and C_{2}^{\prime} be the resulting two cycles. Take two cases.

Figure 4.3: Odd Cycle $C_{2 n+1}$

Case 1: $v_{i} \in C_{1}^{\prime}$ where $\left|E\left(C_{1}^{\prime}\right)\right|<\left|E\left(C_{2}^{\prime}\right)\right|$. That is, C_{2}^{\prime} has at least $n+2$ edges or radius of C_{2}^{\prime} is at least $\frac{n}{2}+1$. Assume $d\left(v_{i}, v_{j}\right) \leqslant$ $d\left(v_{i}, v_{k}\right)$. Let $\overline{v_{j}}$ be the eccentric vertex of v_{j} in C_{2}^{\prime}. That is $d\left(v_{j}, \bar{v}_{j}\right) \geqslant$ $\frac{n}{2}+1$. Therefore $d\left(v_{k}, \bar{v}_{j}\right) \geqslant \frac{n}{2}$. Since $n>2, \frac{n}{2}>1$.

$$
\begin{aligned}
d\left(v_{i}, \overline{v_{j}}\right) & =\min \left\{d\left(v_{i}, v_{j}\right)+d\left(v_{j}, \overline{v_{j}}\right), d\left(v_{i}, v_{k}\right)+d\left(v_{k}, \overline{v_{j}}\right)\right\} \\
& \geqslant \min \left\{d\left(v_{i}, v_{j}\right)+\frac{n}{2}+1, d\left(v_{i}, v_{k}\right)+\frac{n}{2}\right\}
\end{aligned}
$$

$d\left(v_{i}, \bar{v}_{j}\right)=\frac{n}{2}+1$ only when $d\left(v_{i}, v_{k}\right)=d\left(v_{i}, v_{j}\right)=1$ and this implies $n=2$. Since $n>2$ we have $d\left(v_{i}, \overline{v_{j}}\right)>\frac{n}{2}+1$. Hence $v_{j} v_{k}$ is not a pacifying edge of v_{i}.
Case 2: $v_{i} \in V\left(C_{2}^{\prime}\right)$ where $E\left(C_{2}^{\prime}\right)>E\left(C_{1}^{\prime}\right)$. Here we shall consider two sub cases.

Subcase 2.1: $\left|E\left(C_{2}^{\prime}\right)\right|=n+2$ and $\left|E\left(C_{1}^{\prime}\right)\right|=n+1$.
Assume $d\left(v_{i}, v_{j}\right) \leqslant d\left(v_{i}, v_{k}\right)$. Let $\overline{v_{j}}$ be the vertex that is eccentric to both v_{j} and v_{k} in C_{1}^{\prime}. Then $d\left(v_{i}, \bar{v}_{j}\right)=d\left(v_{i}, v_{j}\right)+\frac{n}{2}$. But $d\left(v_{i}, \bar{v}_{j}\right)=$ $\frac{n}{2}+1$ when v_{i} is adjacent to v_{j}. In this case we have that the eccentricity of v_{i} is $\frac{n}{2}+1$. In other words, for the vertex v_{i}, the edge $v_{j} v_{k}$ such that v_{j} is adjacent to v_{i} and $d_{C_{2 n+1}}\left(v_{j}, v_{k}\right)=d_{C_{2 n+1}}\left(v_{i}, v_{k}\right)=n$ is a pacifying edge of v_{i}. Consequently, the edges $v_{i \oplus{ }_{2 n+1} 1} v_{i \oplus{ }_{2 n+1}(n+1)}$ and $v_{i \ominus_{2 n+1} 1} v_{i \oplus_{2 n+1} n}$ are pacifying edges of the vertex v_{i}.

Subcase 2.2: $\left|E\left(C_{2}^{\prime}\right)\right|=n+3$ and $\left|E\left(C_{1}^{\prime}\right)\right|=n$.
Let $\overline{v_{j}}$ be the vertex eccentric to v_{j} in C_{1}^{\prime}. Then
$d\left(v_{i}, \bar{v}_{j}\right)=$
$\left\{\begin{array}{l}d\left(v_{i}, v_{j}\right)+\frac{n}{2} \text { if } d\left(v_{i}, v_{j}\right)<d\left(v_{i}, v_{k}\right) \\ d\left(v_{i}, v_{k}\right)+d\left(v_{j}, \bar{v}_{j}\right)-1=d\left(v_{i}, v_{j}\right)+\frac{n}{2}-1 \text { if } d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{k}\right)\end{array}\right.$
$d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{k}\right)=2$ implies $n=2$. But we have $n>2$. Hence
$d\left(v_{i}, v_{j}\right)=d\left(v_{i}, v_{k}\right)$ implies both are greater than 2 or
$d\left(v_{i}, \overline{v_{j}}\right) \geqslant \frac{n}{2}+2$. This gives, $v_{j} v_{k}$ is not a pacifying edge. Hence we assume that $d\left(v_{i}, v_{j}\right)<d\left(v_{i}, v_{k}\right)$. Then $d\left(v_{i}, \bar{v}_{j}\right)=d\left(v_{i}, v_{j}\right)+\frac{n}{2}$.
Thus $d\left(v_{i}, \overline{v_{j}}\right)=\frac{n}{2}+1$ if and if only if v_{i} is adjacent to v_{j}. In other words, for the vertex v_{i}, the edge $v_{j} v_{k}$ such that v_{j} is adjacent to v_{i}, $d_{C_{2 n+1}}\left(v_{j}, v_{k}\right)=n-1$ and $d\left(v_{i}, v_{k}\right)=n$ is a pacifying edge of v_{i}.
Consequently, the edges $v_{i \oplus_{2 n+1} 1} v_{i \oplus_{2 n+1} n}$ and $v_{i \ominus_{2 n+1} 1} v_{i \oplus_{2 n+1}(n+1)}$ are pacifying edges of the vertex v_{i}.

Subcase 2.3: $\left|E\left(C_{2}^{\prime}\right)\right|>n+3$.
In this case $e_{C_{2}^{\prime}}\left(v_{i}\right) \geqslant \frac{n}{2}+2$ or $e_{C_{2 n+1}}\left(v_{i}\right) \geqslant \frac{n}{2}+2$.
Thus we get that the pacifying edges of v_{i} are precisely
(a) $v_{i} v_{i \oplus_{2 n+1} n}$
(e) $v_{i \oplus_{2 n+1} 1} v_{i \oplus_{2 n+1}(n+1)}$
(b) $v_{i} v_{i \oplus_{2 n+1}(n+1)}$
(f) $v_{i \ominus_{2 n+1}} v_{i \oplus_{2 n+1} n}$
(c) $v_{i} v_{i \oplus_{2 n+1}(n+2)}$
(g) $v_{i \oplus_{2 n+1} 1} v_{i \oplus_{2 n+1} n}$
(d) $v_{i} v_{i \oplus_{2 n+1}(n-1)}$
(h) $v_{i \ominus_{2 n+1}} v_{i \oplus_{2 n+1}(n+1)}$

Assume n is odd. Joining v_{i} to $v_{i \oplus_{2 n+1} n}$ we get two cycles C_{1}^{\prime} and C_{2}^{\prime} having $n+1$ and $n+2$ edges respectively. Then C_{1}^{\prime} and C_{2}^{\prime} have radii $\frac{n+1}{2}$. Therefore the eccentricity of v_{i} in both C_{1}^{\prime} and C_{2}^{\prime} is $\frac{n+1}{2}$
or eccentricity of v_{i} in the $G+v_{i} v_{i \not \oplus_{2 n+1} n}$ is $\frac{n+1}{2}$. Similarly by adding the edge $v_{i} v_{i \oplus_{2 n+1}(n+1)}$ the eccentricity of v_{i} reduces to $\frac{n+1}{2}$. Now, let v_{i} be joined to any vertex other than $v_{i \oplus_{2 n+1} n}$ and $v_{i \oplus_{2 n+1}(n+1)}$. Then one of the cycles formed contains at least $n+3$ edges. That is, the radius of that cycle is $\frac{n+3}{2}$ or eccentricity of v_{i} in the new graph is at least $\frac{n+3}{2}$. Hence any such edge cannot be a pacifying edge of v_{i}. Suppose we join v_{j} and v_{k} where $j, k \neq i$. Let C_{1}^{\prime} and C_{2}^{\prime} be the two cycles formed where $\left|E\left(C_{1}^{\prime}\right)\right| \leqslant\left|E\left(C_{2}^{\prime}\right)\right|$. Here we shall consider two cases.
Case 1: Suppose $v_{i} \in V\left(C_{1}^{\prime}\right)$. Take the following subcases.
Subcase 1.1: $\left|E\left(C_{1}^{\prime}\right)\right|=n+1$ and $\left|E\left(C_{2}^{\prime}\right)\right|=n+2$.
Then C_{1}^{\prime} is an even cycle. Let $d\left(v_{i}, v_{j}\right)<d\left(v_{i}, v_{k}\right)$. Let $\overline{v_{j}}$ be the eccentric vertex of v_{j} in C_{2}^{\prime}.
$d\left(v_{i}, \bar{v}_{j}\right)=d\left(v_{i}, v_{j}\right)+d\left(v_{j}, \bar{v}_{j}\right)=d\left(v_{i}, v_{j}\right)+\frac{n+1}{2}>\frac{n+1}{2}$. Hence
$e_{G+v_{j} v_{k}}<\frac{n+1}{2}$. That is, $v_{j} v_{k}$ is not a pacifying edge.
Subcase 1.2: If $\left|E\left(C_{2}^{\prime}\right)\right| \geqslant n+3$ then the radius of $C_{2}^{\prime} \geqslant \frac{n+1}{2}+1$. Then $d\left(v_{i}, \overline{v_{j}}\right) \geqslant \frac{n+1}{2}+1$ where $\overline{v_{j}}$ is the eccentric vertex of v_{j} in C_{2}^{\prime}. That is, the eccentricity of v_{i} in $G+v_{j} v_{k}$ is at least $\frac{n+1}{2}+1$ or $v_{j} v_{k}$ is not a pacifying edge.

Case 2: Suppose $v_{i} \in V\left(C_{2}^{\prime}\right)$. We have that $\left|E\left(C_{2}^{\prime}\right)\right| \geqslant n+2$. Again we consider two sub cases.

Subcase 2.1: $\left|E\left(C_{2}^{\prime}\right)\right|=n+2$. Let $\overline{v_{j}}$ be the eccentric vertex of v_{j} in C_{1}^{\prime}.
$d\left(v_{i}, \overline{v_{j}}\right)=\left\{\begin{array}{l}d\left(v_{i}, v_{j}\right)+d\left(v_{j}, \overline{v_{j}}\right) \text { if } d\left(v_{i}, v_{k}\right)>d\left(v_{i}, v_{j}\right) \\ d\left(v_{i}, v_{j}\right)+d\left(v_{j}, \overline{v_{j}}\right)-1 \text { if } d\left(v_{i}, v_{k}\right)=d\left(v_{i}, v_{j}\right)\end{array}\right.$
$d\left(v_{i}, v_{k}\right)=d\left(v_{i}, v_{j}\right) \Longrightarrow d\left(v_{i}, \bar{v}_{j}\right)=d\left(v_{i}, v_{j}\right)+\frac{n+1}{2}-1$.
$d\left(v_{i}, v_{k}\right)=d\left(v_{i}, v_{j}\right)=1 \Longrightarrow$ our cycle is C_{3} which is not the case.

Hence $d\left(v_{i}, v_{j}\right)>1$ or $d\left(v_{i}, \bar{v}_{j}\right)<\frac{n+1}{2}$. So $v_{j} v_{k}$ cannot be a pacifying edge of v_{i}.
If $d\left(v_{i}, v_{k}\right)>d\left(v_{i}, v_{j}\right)$ then

$$
\begin{aligned}
d\left(v_{i}, \bar{v}_{j}\right) & =d\left(v_{i}, v_{j}\right)+d\left(v_{j}, \bar{v}_{j}\right) \\
& =d\left(v_{i}, v_{j}\right)+\frac{n+1}{2} \\
& >\frac{n+1}{2}
\end{aligned}
$$

Hence $e_{G+v_{j} v_{k}}\left(v_{i}\right)>\frac{n+1}{2}$. That is, $v_{j} v_{k}$ is not a pacifying edge.
Subcase 2.2: $\left|E\left(C_{2}^{\prime}\right)\right| \geqslant n+3$. This implies $d\left(v_{i}, \overline{v_{i}}\right) \geqslant \frac{n+3}{2}$ where \bar{v}_{i} is the eccentric vertex of v_{i} in C_{2}^{\prime}.
In other words $v_{i} v_{i \oplus 2 n+1 n}$ and $v_{i} v_{i \oplus 2 n+1}(n+1)$ are the only pacifying edges of v_{i}.

4.2.3 Pacifying edges of Symmetric Even graphs

Next we shall identify the pacifying edges of vertices of a symmetric even graph. Let G be a symmetric even graph. From the definition it is clear that if diameter of G is d, then for every $u, w \in G, d(u, \bar{u})=d(u, w)+d(w, \bar{u})=$ d. That is $d(u, w)=m$ implies $d(\bar{u}, w)=d-m$. Since $d(w, \bar{w})=d$ we have $d(\bar{u}, \bar{w})=d-(d-m)=m$.
Now we shall find the pacifying edges of vertices of a symmetric even graph.
Theorem 4.2.3. Let G be a Symmetric Even graph having diameter d. Then

1. If d is even then the only pacifying edge of a vertex v is $v \bar{v}$.
2. If d is odd the pacifying edges of v are
(a) All edges vy such that y is either \bar{v} or a vertex adjacent to \bar{v}.
(b) All edges $x \bar{v}$ such that x is either v or a vertex adjacent to v.

Proof. Let v_{1} and v_{2} be vertices such that $d\left(v_{1}, v\right)=r_{1}, d\left(v_{2}, \bar{v}\right)=r_{2}$ and $d\left(v_{1}, v\right) \leqslant d\left(v_{2}, v\right)$. Now consider the graph $G+v_{1} v_{2}$. If $d\left(v_{1}, v\right)=d\left(v_{2}, v\right)$, then $d_{G+v_{1} v_{2}}(v, \bar{v})=d$ and hence the eccentricity of v does not decrease. So we can assume that $d\left(v_{1}, v\right)<d\left(v_{2}, v\right)$. Let u be a vertex belonging to a shortest $v-v_{2}$ path. If $d(u, v)=m$, then, since G is symmetric even, $d(\bar{u}, \bar{v})=m$. Therefore $d\left(v_{2}, \bar{u}\right) \leqslant r_{2}+m . d\left(v_{2}, \bar{u}\right)=r_{2}+m-\ell$ implies $d(u, \bar{u})=d-r_{2}-m+r_{2}+m-\ell=d-\ell$, a contradiction to fact that G is self-centered. Hence $d\left(v_{2}, \bar{u}\right)=r_{2}+m$. That is, the length of the shortest path from v to \bar{u} in $G+v_{1} v_{2}$ passing through the edge $v_{1} v_{2}$ is $r_{1}+1+r_{2}+m$. Thus $d_{G+v_{1} v_{2}}(v, \bar{u})=\min \left\{d-m, r_{1}+1+r_{2}+m\right\}$.
Let w be a vertex in the shortest $v-v_{2}$ path such that $d(w, v)=k($ ie $d(\bar{w}, \bar{v})=k)$ and $r_{1}+1+r_{2}+k=d-k$ or $d-k-1$ according to the parity of $r_{1}+r_{2}+1$ and d. For any vertex x such that $d(\bar{v}, x)<k$, we have that $d_{G+v_{1} v_{2}}(v, x)<r_{1}+r_{2}+1+k$ and for any vertex x such that $d(\bar{v}, x)>k$ we have $d_{G+v_{1} v_{2}}(v, x)<d-k$. That is \bar{w} is an eccentric vertex of v in $G+v_{1} v_{2}$. Hence the eccentricity of v is $d_{G+v_{1} v_{2}}(\bar{w}, v)$. Now we shall consider two cases.

1. Assume d is even. When $r_{1}+r_{2}$ is odd $r_{1}+r_{2}+1$ is even and hence $r_{1}+r_{2}+1+k=d-k$ or $k=\frac{d}{2}-\frac{r_{1}+r_{2}+1}{2}$ and therefore $e_{G+v_{1} v_{2}}(v)=r_{1}+r_{2}+1+k=\frac{d}{2}+\frac{r_{1}+r_{2}+1}{2}$.
When $r_{1}+r_{2}$ is even $r_{1}+r_{2}+1$ is odd and hence $r_{1}+r_{2}+1+k=d-k-1$ or $k=\frac{d}{2}-\frac{r_{1}+r_{2}+2}{2}$ and therefore $e_{G+v_{1} v_{2}}(v)=r_{1}+r_{2}+1+d=$ $r_{1}+r_{2}+1+\frac{d}{2}-\frac{r_{1}+r_{2}+2}{2}=\frac{d}{2}+\frac{r_{1}+r_{2}}{2}$.
Thus $e_{G+v_{j} v_{k}}(v)=\frac{d}{2}+\left\lceil\frac{r_{1}+r_{2}}{2}\right\rceil$. This is a minimum when $r_{1}=r_{2}=0$. That is, the only pacifying edge is $v \bar{v}$.
2. Assume d is odd. When $r_{1}+r_{2}$ is odd, $r_{1}+r_{2}+1$ is even and hence
$r_{1}+r_{2}+1+k=n-k-1$ or $x=\frac{d-1}{2}-\frac{r_{1}+r_{2}+1}{2}$ and therefore $e_{G+v_{1} v_{2}}\left(v_{i}\right)=r_{1}+r_{2}+1+d=\frac{d-1}{2}+\frac{r_{1}+r_{2}+1}{2}$. When $r_{1}+r_{2}$ is even $r_{1}+r_{2}+1$ is odd and hence $r_{1}+r_{2}+1+k=n-k$ or $x=\frac{d-1}{2}-\frac{r_{1}+r_{2}}{2}$ and therefore $e_{G+v_{1} v_{2}}(v)=r_{1}+r_{2}+1+k=\frac{d-1}{2}+\frac{r_{1}+r_{2}+2}{2}$.
Thus $e_{G+v_{1} v_{2}}(v)=\frac{d-1}{2}+\left\lfloor\frac{r_{1}+r_{2}+2}{2}\right\rfloor$. This is a minimum when $r_{1}=$ $r_{2}=0$ or $r_{1}=1, r_{2}=0$ or $r_{1}=0, r_{2}=1$. Consequently, the pacifying edges are
(a) All edges $v y$ such that y is either \bar{v} or a vertex adjacent to \bar{v}.
(b) All edges $x \bar{v}$ such that x is either v or a vertex adjacent to v.

Remark 4.2.1. The theorems 4.2 .2 and 4.2 .3 prove that every vertex of a cycle $C_{n}(n>5)$ has at least one pacifying edge.

4.3 Shrinking Edges

In this section we consider the problem of identifying the edge(s) when added to a graph decreases its radius the most. This helps in having centers which are more effective than the previous centers. We call such edges the shrinking edges and shrinking edges of paths, odd cycles and symmetric even graphs are identified.

Definition 4.3.1. For a graph G, an edge $u v \in E\left(G^{c}\right)$ is called a Shrinking $E d g e$ if $\operatorname{rad}(G+u v) \leqslant \operatorname{rad}(G+x y)$ for every $x y \in E\left(G^{c}\right)$.

We shall identify the shrinking edges of certain classes of graphs.
Corollary 4.3.2. (to Theorem 4.2.1) Let P_{m} be a path vertex set $\left\{v_{1}, \ldots, v_{m}\right\}$. Then

1. if $m=4 n+1$ for some integer n then the shrinking edges of P_{m} are the pacifying edges of $v_{n-1}, v_{n}, v_{n+1}, v_{n+2}, v_{3 n}, v_{3 n+1}, v_{3 n+2}$ and $v_{3 n+3}$.
2. if $m=4 n+2$, the shrinking edges of P_{m} are the pacifying edges of $v_{n}, v_{n+1}, v_{n+2}, v_{3 n+1}, v_{3 n+2}$ and $v_{3 n+3}$.
3. if $m=4 n+3$, the shrinking edges of P_{m} are the pacifying edges of $v_{n+1}, v_{n+2}, v_{3 n+2}$ and $v_{3 n+3}$.
4. if $m=4 n+4$, the shrinking edges of P_{m} are the pacifying edges of v_{n+2} and $v_{3 n+3}$.

Proof. Let $m=4 n+1$. Consider an edge $u v$ in P_{m}^{c}. If $u v$ is a pacifying edge of any of the vertices mentioned in the theorem, then by the theorem 4.2.1 the eccentricity of this vertex in $P_{m}+u v$ is $n+1$ and the eccentricity of all other vertices is $>n+1$. Therefore $\operatorname{rad}\left(P_{m}+u v\right)=n+1$. Also if $u v$ is not a pacifying edge of any vertices of P_{m} then the eccentricity of all vertices of $P_{m}+u v>n+1$. Therefore $\operatorname{rad}\left(P_{m}+u v\right)>n+1$. Therefore, shrinking edges are precisely the pacifying edges of $v_{n-1}, v_{n}, v_{n+1}, v_{n+2}, v_{3 n}, v_{3 n+1}, v_{3 n+2}$ and $v_{3 n+3}$. All other cases can be proved in exactly the same way.

The table 4.3 gives the shrinking edges of P_{m} when $m=4 n+1,4 n+$ $2,4 n+3$ and $4 n+4$. In each of theses cases the radius is reduced to $n+1$.

The following corollary identify the shrinking edges of an odd cycle.
Corollary 4.3.3. (to Theorem 4.2.2) Consider the cycle $C_{2 n+1}$ having vertex set $\left\{v_{1}, \ldots, v_{2 n+1}\right\}$. An edge $v_{i} v_{j}$ in $C_{2 n+1}^{c}$ is a shrinking edge if and only if it is the pacifying edge of some vertex v_{i}.

Proof. Let n be even. If $v_{i} v_{j}$, an edge of $C_{2 n+1}^{c}$, is a pacifying edge of a vertex v_{k} then $e_{G+v_{i} v_{j}}\left(v_{k}\right)=\frac{n}{2}+1$ and also for all $v_{\ell} \neq v_{k}$, we have $e_{G+v_{i} v_{j}}\left(v_{\ell}\right) \geqslant \frac{n}{2}+1$. Therefore $\operatorname{rad}\left(G+v_{i} v_{j}\right)=\frac{n}{2}+1$. By adding a single edge(any of the pacifying edges) the eccentricity of every vertex can be reduced exactly to $\frac{n}{2}+1$. Therefore an edge is a shrinking edge if and only if it is a pacifying edge of some vertex. Similarly the case when n is odd. Here instead of $\frac{n}{2}+1$ we have $\frac{n+1}{2}$.

Table 4.3: Shrinking edges of path P_{m}

m	shrinking Edges	$C\left(P_{m}+u v\right)$
$4 n+1$	$v_{n-2} v_{3 n}$	$v_{3 n}$
	$v_{n-1} v_{3 n-1}$	$v_{3 n}$
	$v_{n-1} v_{3 n}$	$v_{3 n}$
	$v_{n-1} v_{3 n+1}$	$v_{n-1}, v_{3 n}, v_{3 n+1}$
	$v_{n} v_{3 n-1}$	$v_{3 n}$
	$v_{n} v_{3 n}$	$v_{3 n}, v_{3 n+1}$
	$v_{n} v_{3 n+1}$	$v_{n}, v_{3 n}, v_{3 n+1}$
	$v_{n} v_{3 n+2}$	$v_{n}, v_{n+1}, v_{3 n+1}, v_{3 n+2}$
	$v_{n+1} v_{3 n}$	$v_{3 n}$
	$v_{n+1} v_{3 n+1}$	$v_{n+1}, v_{3 n+1}$
	$v_{n+1} v_{3 n+2}$	$v_{n+1}, v_{n+2}, v_{3 n+2}$
	$v_{n+1} v_{3 n+3}$	$v_{n+1}, v_{n+2}, v_{3 n+3}$
	$v_{n+2} v_{3 n+1}$	v_{n+2}
	$v_{n+2} v_{3 n+2}$	v_{n+1}, v_{n+2}
	$v_{n+2} v_{3 n+3}$	v_{n+2}
	$v_{n+2} v_{3 n+4}$	v_{n+2}
	$v_{n+3} v_{3 n+2}$	v_{n+2}
	$v_{n+3} v_{3 n+3}$	v_{n+2}
$4 n+2$	$v_{n-1} v_{3 n+1}$	$v_{3 n+1}$
	$v_{n} v_{3 n}$	$v_{3 n+1}$
	$v_{n} v_{3 n+1}$	$v_{3 n+1}$
	$v_{n} v_{3 n+2}$	$v_{n}, v_{3 n+1}, v_{3 n+2}$
	$v_{n+1} v_{3 n+1}$	$v_{3 n+1}$
	$v_{n+1} v_{3 n+2}$	$v_{n+1}, v_{3 n+2}$
	$v_{n+1} v_{3 n+3}$	$v_{n+1}, v_{n+2}, v_{3 n+3}$
	$v_{n+2} v_{3 n+2}$	v_{n+2}
	$v_{n+2} v_{3 n+3}$	v_{n+2}
	$v_{n+2} v_{3 n+4}$	v_{n+2}
	$v_{n+3} v_{3 n+3}$	v_{n+2}
$4 n+3$	$v_{n} v_{3 n+2}$	$v_{3 n+2}$
	$v_{n+1} v_{3 n+2}$	$v_{3 n+2}$
	$v_{n+1} v_{3 n+3}$	$v_{n+1}, v_{3 n+3}$
	$v_{n+2} v_{3 n+3}$	v_{n+2}
	$v_{n+2} v_{3 n+4}$	v_{n+2}
$4 n+4$	$v_{n+1} v_{3 n+3}$	$v_{3 n+3}$
	$v_{n+2} v_{3 n+4}$	v_{n+2}

Finally, we give the shrinking edges of symmetric even graphs

Corollary 4.3.4. (to Theorem 4.2.3) Consider the symmetric even graph G. An edge $u v$ in G^{c} is a shrinking edge if and only if it is the pacifying edge of some vertex v.

4.4 Conclusion

In this chapter we introduced the concept of pacifying edges and shrinking edges of the vertices of a graph and the same has been identified for paths, odd cycles and symmetric even graphs. It is established that the pacifying edges of the vertices of a path depends on the ratio of the distance of the vertex to the end vertices. A far as the odd cycles and symmetric even graphs are considered, the pacifying edges of any vertex depends on the parity of the radius of the graph. Shrinking edges of the path depends on the remainder that we get on dividing the length of the path by four. Any edge that is a pacifying edge of some vertex of the odd cycle or symmetric even graph is shown to be a shrinking edge of the graph.

Chapter 5

Median Sets and Median Number

5.1 Introduction

In this chapter we study another centrality measure called median. In fact, the generalisation of the median of a graph to median of arbitrary profiles of a graph is being considered. Given a graph it is possible to have infinitely many profiles, but the number of distinct medians of these profiles is finite and in many cases it much less than the maximum possible number of $2^{n}-1$. We make an enumeration of the number of distinct medians of all profiles of a graph.
For the profile $\pi=\left(v_{1}, \ldots, v_{k}\right)$ and $x \in V$, the set of all vertices x for which $D(x, \pi)$ is minimum is the Median of π in G and is denoted by $M_{G}(\pi)$. When the underlying graph is obvious we write $M(\pi)$ instead of $M_{G}(\pi)$. A set S such that $S=M(\pi)$ for some profile π is called a Median set of G.The number of distinct Median sets in G is called Median number of graph G and is denoted by $m n(G)$. Here we identify and enumerate the median sets of various classes of graphs. But before that we have a small result connecting the median number and the interval number of a graph.

Proposition 5.1.1. For any graph $G=(V, E)$ on n vertices, $i n(G) \leqslant$ $m n(G) \leqslant 2^{n}-1$.

Proof. The upper bound is obvious as it is the number of nonempty subsets of the vertex set. For every $v \in V, v$ is a median set of the profile (v).

For every $u, v \in V$ the set $I(u, v)$ is the median set of the profile (u, v). Therefore $i n(G) \leqslant m n(G) \leqslant 2^{n}-1$.

5.2 Median number of some classes of graphs

5.2.1 Median number of Complete graphs

Proposition 5.2.1. $m n\left(K_{n}\right)=2^{n}-1$, where K_{n} is the complete graph on n vertices.

Proof. In K_{n}, each nonempty subset of the vertex set is a median set, namely, of the profile formed by taking all the elements of the set exactly once. Therefore the number of distinct median sets is the number of nonempty subsets of V which is $2^{n}-1$.

5.2.2 Median number of $K_{n}-e$

Proposition 5.2.2. If $e=u v$ is an edge of $K_{n}, n \geqslant 3$, then the class of median sets of $K_{n}-e$ consists of V together with all subsets of V which do not simultaneously contain u and v.

Proof. Let $e=(u, v) \in E$. For every vertex set S such that $\{u, v\} \nsubseteq S$, there exist a profile which has S as its Median set, namely the profile formed by taking the vertices of S exactly once. Let π be a profile which does not simultaneously contain u and v. Then $M(\pi)$ is a subset of the set of vertices corresponding to the profile π and hence does not contain u and v. Now, let π be a profile which contain both u and v. Then if u or v is repeated more than the other in the profile then $D(u, \pi) \neq D(v, \pi)$ and so they cannot appear together in the $M(\pi)$. Assume that π contain both u and v where both are repeated the same number of times. Let the profile be $(x_{1}, \ldots, x_{k}, \underbrace{u, \ldots, u}_{m \text { times }} \underbrace{v, \ldots, v}_{m \text { times }}), m \geqslant 1$. For $x_{i}, 1 \leqslant i \leqslant k$,
$D\left(x_{i}, \pi\right) \leqslant k-1+2 m$. Also, $D(u, \pi)=k+2 m$ and $D(v, \pi)=k+2 m$. Therefore $M(\pi)$ does not contain both u and v. Now the profile (u, v) has V as its Median set. Hence V is the only Median set which contain both u and v. Therefore the class of all Median sets of the graph consists of V and all subsets of V which do not simultaneously contain u and v.

Corollary 5.2.3. $m n\left(K_{n}-e\right)=3 \times 2^{n-2}$.
Proof. If $e=u v$, by the above proposition, the median number of $K_{n}-e$ is one more than the number subsets of V which do not simultaneously contain u and v.

$$
\begin{aligned}
m n\left(K_{n}-e\right) & =\binom{n}{1}+\binom{n}{2}-\binom{n-2}{0}+\binom{n}{3}-\binom{n-2}{1}+\ldots+\binom{n}{n-1}-\binom{n-2}{n-3}+\binom{n}{n} \\
& =2^{n}-1-\left(2^{n-2}-1\right) \\
& =2^{n}-2^{n-2} \\
& =3 \times 2^{n-2}
\end{aligned}
$$

Illustration 5.2.1. Consider the graph $K_{6}-e$ given in figure 3.2. Here $e=v_{1} v_{2}$. All the subsets of V except the following are center sets.

1. $\left\{v_{1}, v_{2}\right\}$
2. $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{6}\right\}$
3. $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$, $\left\{v_{1}, v_{2}, v_{4}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$
4. $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}\right\}$, $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$

Proposition 5.2.4. [13] Let $G=(V, E)$ be a Median graph. For any profile π in G the Median Set is an interval $I(u, v)$ in G.

5.2.3 Median number of Block graphs

First, we shall evaluate the median number of trees.
Proposition 5.2.5. The Median number of a tree T on n vertices is $n+\binom{n}{2}$.

Proof. Since T is a median graph, by the above proposition all Median sets are intervals. As observed in the proof of proposition 5.1.1 all intervals are Median sets. Therefore, class of Median sets of T is precisely the class of intervals of T which is the class of all paths in T. Hence the Median number is the number of distinct paths in T which is $n+\binom{n}{2}$.

Now we shall identify the median sets of block graphs which are in fact generalisations of both complete graphs and trees.

Lemma 5.2.1. The median sets of a block graph are either intervals or cliques.

Proof. Let $G=(V, E)$ be a block graph and let S_{G} denote its skeleton graph which is a tree. Let $\pi=\left(v_{1}, \ldots v_{k}\right)$ be a profile in G. Consider the same profile π in S_{G} and let $M_{S_{G}}(\pi)$ be the median of π in S_{G}.
First assume that there exists a vertex v of G in S_{G} such that $v \in M_{S_{G}}(\pi)$. Then $D_{S_{G}}(v, \pi) \leqslant D_{S_{G}}(x, \pi)$ for every $x \in V\left(S_{G}\right)$. For each $u \in V$, $d_{S_{G}}\left(u, v_{i}\right)=2 d_{G}\left(u, v_{i}\right)$ and therefore $D_{S_{G}}(u, \pi)=2 D_{G}(u, \pi)$. Hence $D_{G}(v, \pi) \leqslant D_{G}(u, \pi)$ for every $u \in V(G)$. Hence,

$$
\begin{equation*}
v \in M_{S_{G}}(\pi) \quad \Longrightarrow \quad v \in M_{G}(\pi) \tag{5.1}
\end{equation*}
$$

Conversely if $v \in M_{G}(\pi)$ then

$$
\begin{equation*}
D_{G}(v, \pi) \leqslant D_{G}(x, \pi) \tag{5.2}
\end{equation*}
$$

for every $x \in V(G)$.

Consider π as a profile in the tree S_{G}. Since S_{G} is a tree, $M_{S_{G}}(\pi)$ is a path. If $u_{1}, \ldots u_{k}$ are the vertices of G in this path in the order of occurrence, then by 5.1 and $5.2, u_{1}, \ldots, u_{k}$ form the median of π in G. There exists a block containing u_{1} and u_{2}, say S_{1}, a block containing u_{2} and u_{3}, S_{2}, \ldots, a block containing u_{k-1} and u_{k}, S_{k-1}. Hence $u_{1} \ldots u_{k}$ is an interval in G.
Now assume that π is a profile of G such that, $M_{S_{G}}(\pi)$ does not contain any vertex of G. Then $M_{S_{G}}(\pi)=\{S\}$ where S corresponds to a block of G. Let $u_{1}, u_{2} \ldots u_{r}$ be the vertices adjacent to S in S_{G}. That is, $u_{1}, u_{2} \ldots u_{r}$ are the vertices belonging to a block(corresponding to S) in G. Since S is the only median of $\pi, D_{S_{G}}\left(u_{i}, \pi\right) \geqslant D_{S_{G}}(x, \pi)$ for $1 \leqslant i \leqslant r$. This implies that as we move from S to any of its adjacent vertices in $S_{G}, D_{S_{G}}(\pi)$ increases and hence as we move further $D_{S_{G}}(\pi)$ further increases. In other words minimum of $D_{G}(\pi)$ is a subset of $\left\{u_{1}, \ldots, u_{r}\right\}$. or the median of π in G is a clique. Hence the median sets of a block graph are either intervals or cliques.

Theorem 5.2.6. The median number of a block graph is the number of intervals + number of cliques of size greater than 2 .

Proof. Let G be a block graph. If G is complete then, since singleton sets and pairs of adjacent vertices are the intervals the theorem is obvious. So assume G is not complete. Consider the interval $I(u, v)$ where u and v are non adjacent. Then if $\pi=\{u, v\}, M(\pi)=I(u, v)$. Also any clique is a median set, namely, of itself. Hence the sets of intervals(this includes cliques of size 1 and 2) together with cliques of size greater than 2 forms the set of median sets of a block graph. In other words $m n(G)=$ number of intervals + number of cliques of size greater than 2.

5.2.4 Median number of Hypercubes

Initially, we quote the following theorem.
Proposition 5.2.7. (Imrich et al.,[69]) Let Q_{r} be a hypercube. Then, for any pair of vertices $u, v \in Q_{r}$ the subgraph induced by the interval $I(u, v)$ is a hypercube of dimension $d(u, v)$.

Theorem 5.2.8. For the Hypercube $Q_{r}, m n\left(Q_{r}\right)=3^{r}$
Proof. Since Q_{r} is a Median graph, by Propositions 5.2.4 and 5.2.7 every Median set of Q_{r} is a subcube. Also in any graph $G, I(u, v)$ is the median set of the profile (u, v), where $u, v \in V(G)$. Thus in a hypercube every subcube is a Median set. Therefore, the Median sets of Q_{r} are precisely the induced subcubes. So the Median number of Q_{r} is the number of subcubes of Q_{r}. Every vertex of Q_{r} contain r co-ordinates where each co-ordinate is either 0 or 1 . Keeping k co-ordinates fixed and varying 0 and 1 over the other $r-k$ positions we get a subcube of dimension $r-k$. By varying 0 's and 1 's over these k positions we get 2^{k} such subcubes. The k positions to be fixed can be chosen in $\binom{r}{k}$ ways. So, the total number of subcubes of dimension $r-k$ is $2^{k} \times\binom{ r}{k}$. Therefore the total number of subcubes of Q_{r} is $\sum_{0 \leqslant k \leqslant r}\binom{r}{k} \times 2^{k}=3^{r}$.

5.2.5 Median number of Wheel graphs

Theorem 5.2.9. Let $W_{n}, n \geqslant 7$ be the wheel graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}\right\}$ and having v_{n} as the universal vertex. The median sets of W_{n} are
(1) $\left\{v_{i}\right\}, 1 \leqslant i \leqslant n$
(2) $\left\{v_{i}, v_{i \oplus_{(n-1)}}\right\}, 1 \leqslant i \leqslant n-1$
(3) $\left\{v_{i}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$
(4) $\left\{v_{i}, v_{n}, v_{i \oplus_{(n-1)} 1}\right\}, 1 \leqslant i \leqslant n-1$
(5) $\left\{v_{i}, v_{j}, v_{n}\right\} 1 \leqslant i, j \leqslant n-1, d_{C_{n-1}}\left(v_{i}, v_{j}\right) \geqslant 3$
(6) $\left\{v_{i}, v_{i \oplus_{(n-1)} 1}, v_{i \oplus_{(n-1)}}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$.

Proof. Let C_{n-1} be the cycle $v_{1}, v_{2}, \ldots, v_{n-1}, v_{1}$. Each singleton set $\left\{v_{i}\right\}$, $1 \leqslant i \leqslant n-1$, is a Median set. The sets $\left\{v_{i}, v_{j}\right\}$, where v_{i} and v_{j} are adjacent are also Median sets. The profile $\left(v_{i}, v_{i \oplus(n-1)}, v_{n}\right), 1 \leqslant i \leqslant n-1$, has $\left\{v_{i}, v_{i \oplus_{(n-1)} 1}, v_{n}\right\}$ as Median set. The set $\left\{v_{i}, v_{i \oplus_{(n-1)} 1}, v_{i \oplus_{n-1} 2}, v_{n}\right\}$ is the Median set of the profile $\left(v_{i}, v_{i \oplus_{(n-1)} 2}\right)$. Let $\pi=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ be a profile of W_{n} which contain the universal vertex v_{n}. Then since π contain the vertex $v_{n}, D\left(v_{n}, \pi\right) \leqslant k-1$. If some $v_{i}, 1 \leqslant i \leqslant n-1$, belong to $M(\pi)$ then $D\left(v_{i}, \pi\right) \leqslant k-1$ and this implies $x_{j}=v_{i}$ at least for some j. Also, the number of x_{j} 's with $d\left(v_{i}, x_{j}\right)=2$ is less than the number of repetitions of v_{i} in π. Let v_{k} be such that $d\left(v_{k}, v_{i}\right)=2$. Then v_{k} belong to $M(\pi)$ implies number of repetitions of v_{k} is greater than the number of repetitions of v_{i} in the profile π. But these two statements are contradictory. Thus for a profile which contain the universal vertex the Median set cannot contain two vertices which are at distance 2. Hence the only possible Median sets for such a profile are
i) sets of type $\left\{v_{i}, v_{i \oplus(n-1)} 1\right\}$
ii) sets of type $\left\{v_{i}, v_{n}\right\}$
iii) sets of type $\left\{v_{i}, v_{i \oplus(n-1)}, v_{n}\right\}$.

Now, let $\pi=\left(x_{1}, \ldots, x_{k}\right)$ be a profile which does not contain v_{n}. Then $D\left(v_{n}, \pi\right)=k$. If some $v_{i}, 1 \leqslant i \leqslant n-1$ belong to $M(\pi)$, then $D\left(v_{i}, \pi\right) \leqslant k$. Let v_{j} be such that $v_{j} \in M(\pi)$ and $d\left(v_{i}, v_{j}\right)=2$. Then $D\left(v_{j}, \pi\right) \leqslant k$. since $D\left(v_{i}, \pi\right) \leqslant k$,
number of zeroes in $\left\{d\left(v_{i}, x_{1}\right), \ldots, d\left(v_{i}, x_{k}\right)\right\} \geqslant$ number of twos in $\left\{d\left(v_{i}, x_{1}\right)\right.$, $\ldots, d\left(v_{i}, x_{k}\right\}$. Similarly, number of zeroes in $\left\{d\left(v_{j}, x_{1}\right), \ldots, d\left(v_{j}, x_{k}\right\} \geqslant\right.$
number of twos in $\left\{d\left(v_{j}, x_{1}\right), \ldots, d\left(v_{j}, x_{k}\right\}\right.$.
Thus, number of repetitions of v_{i} in $\pi=$ number of repetitions of v_{j} in π. Now, let $d_{C_{n-1}}\left(v_{i}, v_{j}\right)=2$. Without loss of generality, we may assume that $j=i \oplus_{(n-1)} 2$. If some vertex other than $v_{i}, v_{i \oplus_{(n-1)} 1}, v_{i \oplus_{(n-1)} 2}$ belong to π then $D\left(v_{i}, \pi\right)=D\left(v_{j}, \pi\right)>D\left(v_{n}, \pi\right)$. If $v_{i \oplus_{(n-1)} 1} \in \pi$ then $D\left(v_{i \oplus_{(n-1)} 1}, \pi\right)<$ $D\left(v_{i}, \pi\right)$. Therefore π can only be $\left(v_{i}, \ldots, v_{i}, v_{j}, \ldots, v_{j}\right)$ where v_{i} and v_{j} are repeated the same number of times. Since $j=i \oplus_{(n-1)} 2$, we have $D\left(v_{i}, \pi\right)=D\left(v_{j}, \pi\right)=D\left(v_{n}, \pi\right)=D\left(v_{i \oplus_{(n-1)} 1}, \pi\right)$ and for all other $x \in V$, $D(x, \pi)>k$. Hence
$M(\pi)=\left\{v_{i}, v_{i \oplus_{(n-1)} 1}, v_{i \oplus(n-1)} 2, v_{n}\right\}$. If $d_{C_{n-1}}\left(v_{i}, v_{j}\right) \neq 2$ then some vertex other than v_{i} and v_{j} belong to π will contradict the fact that v_{i} and v_{j} belong to $M(\pi)$. Therefore, in this case also $\pi=\left(v_{i}, \ldots, v_{i}, v_{j}, \ldots, v_{j}\right)$ where v_{i} and v_{j} are repeated the same number of times. Here $D\left(v_{i}, \pi\right)=k$, $D\left(v_{j}, \pi\right)=k, D\left(v_{n}, \pi\right)=k$ and for all other $x \in V, D(x, \pi)>k$. In other words $M(\pi)=\left\{v_{i}, v_{j}, v_{n}\right\}$.
Hence the only Median sets are
(1) $\left\{v_{i}\right\}, 1 \leqslant i \leqslant n$
(2) $\left\{v_{i}, v_{i \oplus(n-1)}\right\}, 1 \leqslant i \leqslant n-1$
(3) $\left\{v_{i}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$
(4) $\left\{v_{i}, v_{n}, v_{i \oplus(n-1)}\right\}, 1 \leqslant i \leqslant n-1$
(5) $\left\{v_{i}, v_{j}, v_{n}\right\} 1 \leqslant i, j \leqslant n-1, d_{C_{n-1}}\left(v_{i}, v_{j}\right) \geqslant 3$
(6) $\left\{v_{i}, v_{i \oplus_{(n-1)} 1}, v_{i \oplus_{(n-1)} 2}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$.

Remark 5.2.1. When $n=6$ all the above mentioned sets except in item 5 are median sets. The sets mentioned in item 5 are not present in W_{6}

Corollary 5.2.10. For the wheel graph $W_{n}, n \geqslant 6, \operatorname{mn}\left(W_{n}\right)=\frac{n^{2}+3 n-2}{2}$
Proof. By Theorem 5.2.9, for $n \geqslant 6$,
$m n\left(W_{n}\right)=n+n-1+n-1+n-1+\frac{(n-1)(n-6)}{2}+n-1=\frac{n^{2}+3 n-2}{2}$.
When $n=6, \frac{(n-1)(n-6)}{2}=0$. Thus by Remark 5.2 .1 we have $m n\left(W_{n}\right)=$ $\frac{n^{2}+3 n-2}{2}$ for $n \geqslant 6$.

Illustration 5.2.2. We shall list the median sets and thus find the median number of W_{9} (See figure 3.3).

1. $\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\},\left\{v_{6}\right\},\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}$
2. $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}\right\}\left\{v_{6}, v_{7}\right\},\left\{v_{7}, v_{8}\right\}$, $\left\{v_{8}, v_{1}\right\}$
3. $\left\{v_{1}, v_{9}\right\},\left\{v_{2}, v_{9}\right\},\left\{v_{3}, v_{9}\right\},\left\{v_{4}, v_{9}\right\},\left\{v_{5}, v_{9}\right\}\left\{v_{6}, v_{9}\right\},\left\{v_{7}, v_{9}\right\}$, $\left\{v_{8}, v_{9}\right\}$
4. $\left\{v_{1}, v_{2}, v_{9}\right\},\left\{v_{2}, v_{3}, v_{9}\right\},\left\{v_{3}, v_{4}, v_{9}\right\},\left\{v_{4}, v_{5}, v_{9}\right\}$, $\left\{v_{5}, v_{6}, v_{9}\right\}\left\{v_{6}, v_{7}, v_{9}\right\},\left\{v_{7}, v_{8}, v_{9}\right\},\left\{v_{8}, v_{1}, v_{9}\right\}$
5. $\left\{v_{1}, v_{4}, v_{9}\right\},\left\{v_{1}, v_{5}, v_{9}\right\},\left\{v_{1}, v_{6}, v_{9}\right\},\left\{v_{2}, v_{5}, v_{9}\right\},\left\{v_{2}, v_{6}, v_{9}\right\}$, $\left\{v_{2}, v_{7}, v_{9}\right\},\left\{v_{3}, v_{6}, v_{9}\right\},\left\{v_{3}, v_{7}, v_{9}\right\},\left\{v_{3}, v_{8}, v_{9}\right\},\left\{v_{4}, v_{7}, v_{9}\right\}$, $\left\{v_{4}, v_{8}, v_{9}\right\},\left\{v_{5}, v_{8}, v_{9}\right\}$
6. $\left\{v_{1}, v_{2}, v_{3}, v_{9}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{9}\right\},\left\{v_{3}, v_{4}, v_{5}, v_{9}\right\},\left\{v_{4}, v_{5}, v_{6}, v_{9}\right\}$, $\left\{v_{5}, v_{6}, v_{7}, v_{9}\right\}\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\},\left\{v_{7}, v_{8}, v_{1}, v_{9}\right\},\left\{v_{8}, v_{1}, v_{2}, v_{9}\right\}$

Thus the median number of W_{9} is $9+8+8+8+12+8=53$. From the formulae for median number of wheel graphs we have $m n\left(W_{n}\right)=\frac{9 \times 9+3 \times 9-2}{2}=53$

Now we shall identify the median sets and hence compute the median number of W_{5} having vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ where v_{5} is the universal vertex. Each singleton set, pair of adjacent vertices and triple of vertices that induces a clique are median sets, namely of itself. As we proved in the theorem it can be shown that a profile containing the vertex v_{5} cannot contain two vertices at distance 2 .

Now assume that π is profile that does not contain v_{5} and $M(\pi)$ contains v_{1} and v_{3}. Then assume that v_{i} is repeated n_{i} times in the profile for $1 \leqslant i \leqslant 4$.

Then $D\left(v_{1}, \pi\right)=n_{2}+2 n_{3}+n_{4}, D\left(v_{2}, \pi\right)=n_{1}+n_{3}+2 n_{4}, D\left(v_{3}, \pi\right)=$ $2 n_{1}+n_{2}+n_{4}$ and $D\left(v_{4}, \pi\right)=n_{1}+2 n_{2}+n_{3}$. Since v_{1} and v_{3} belong to $M(\pi)$ we have that $n_{1}=n_{3}$ and $n_{2}=n_{4}$. This gives $D\left(v_{i}, \pi\right)=2 n_{1}+2 n_{2}$ for $i \leqslant i \leqslant 5$. Hence $M(\pi)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. That is, this is the only median set that contain two vertices at distance 2 . Thus the only median sets of W_{5} are

1. $\left\{v_{i}\right\}, 1 \leqslant i \leqslant 5$
2. $\left\{v_{i}, v_{j}\right\}$ where v_{i} and v_{j} are adjacent.
3. $\left\{v_{i}, v_{j}, v_{k}\right\}$ where v_{i}, v_{j} and v_{k} induces a clique.
4. $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$

Hence the median number of W_{5} is 18 .(See figure 3.4)

5.2.6 Median number of Complete Bipartite graphs

Theorem 5.2.11. For the complete bipartite graph $K_{m, n}, m \leqslant n, m>2$, all nonempty subsets of $V\left(K_{m, n}\right)$ are median sets.

Proof. Let (X, Y) be a bipartition of $K_{m, n}$ with $|X|=m$ and $|Y|=n$. Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. Let A be a k-element subset of X with $k \leqslant m$. Without loss of generality we may assume that $A=\left\{x_{1}, \ldots, x_{k}\right\}$.
If $k<n$, take $\pi=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)$. For each $x_{i}, 1 \leqslant i \leqslant k$, $D\left(x_{i}, \pi\right)=2(k-1)+n$. For each $x_{i}, k+1 \leqslant i \leqslant m, D\left(x_{i}, \pi\right)=2 k+n$. For each $y_{i}, 1 \leqslant i \leqslant n, D\left(y_{i}, \pi\right)=2(n-1)+k$. Therefore, $A=\left\{x_{1}, \ldots, x_{k}\right\}=$ $M(\pi)$.
If $k=n$, then $\pi=\left(y_{1}, \ldots, y_{n}\right)$ has Median set $A=\left\{x_{1}, \ldots, x_{k}\right\}$. Therefore, every subset of X is a Median set.
Now, let $B \subseteq Y$ with $B=\left\{y_{1}, \ldots, y_{k}\right\}$.

If $k<n$ then as in the previous case $\pi=\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right)$ has Median set B.
Now, let $k \geqslant m$ and let π be the profile $\left(x_{1}, \ldots x_{1}, \ldots, x_{m}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right)$, where each x_{i} is repeated the same number of times,(say) r.
For each $y_{i}, 1 \leqslant i \leqslant k, D\left(y_{i}, \pi\right)=2(k-1)+m r$, for each $y_{i}, k+1 \leqslant i \leqslant q$, $D\left(y_{i}, \pi\right)=2 k+m r$, and for each $x_{i}, 1 \leqslant i \leqslant n, D\left(x_{i}, \pi\right)=2 r(m-1)+k$. Moreover, $2(k-1)+m r<2 r(m-1)+k \Leftrightarrow k-2<(m-2) r \Leftrightarrow r>\frac{k-2}{m-2}$ $(m>2)$. That is, if each x_{i} is repeated r times where $r>\frac{k-2}{m-2}$ then $M(\pi)=B$.
Now, let $C=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{r}\right\}, 1 \leqslant k \leqslant m, 1 \leqslant r \leqslant n$.
Take $\pi=\left(x_{1}, \ldots, x_{1}, \ldots, x_{k}, \ldots, x_{k}, y_{1}, \ldots, y_{1}, \ldots, y_{r}, \ldots, y_{r}\right)$ where each x_{i} is repeated s_{x} times and y_{i} is repeated s_{y} times.
For each $x_{i}, 1 \leqslant i \leqslant k, D\left(x_{i}, \pi\right)=2(k-1) s_{x}+r s_{y}$, for each $y_{i}, 1 \leqslant i \leqslant r$, $D\left(y_{i}, \pi\right)=2(r-1) s_{y}+k s_{x}$, for each $x_{i}, k+1 \leqslant i \leqslant p, D\left(x_{i}, \pi\right)=2 k s_{x}+r s_{y}$ and for each $y_{i}, r+1 \leqslant i \leqslant q, D\left(y_{i}, \pi\right)=2 r s_{y}+k s_{x}$. Any $x_{i}, k+1 \leqslant i \leqslant p$ or $y_{i}, r+1 \leqslant i \leqslant q$ cannot be in $M(\pi)$.
Now, $2(k-1) s_{x}+r s_{y}=2(r-1) s_{y}+k s_{x} \Leftrightarrow(k-2) s_{x}=(r-2) s_{y}$. Hence for any s_{x} and s_{y} such that $(k-2) s_{x}=(r-2) s_{y}$, the profile $\left(x_{1}, \ldots x_{1}, \ldots, x_{k}, \ldots, x_{k}, y_{1}, \ldots, y_{1}, \ldots, y_{r}, \ldots, y_{r}\right)$, where each x_{i} is repeated s_{x} times and y_{i} is repeated s_{y} times, has C as its Median. Therefore, every nonempty subset of $X \cup Y$ is a Median set.

The following corollary is an immediate conclusion of the theorem.

Corollary 5.2.12.

$$
m n\left(K_{m, n}\right)=\left\{\begin{array}{l}
2^{m+n}-1 \text { when } m \leqslant n, m>2 \\
9 \text { when } m=n=2 \\
\frac{n^{2}+7 n+8}{2} \text { when } m=2, n>2
\end{array}\right.
$$

Proof. When $m<2$ and $m \leqslant n$ from the theorem we have that all nonempty subsets are median sets. That is, $m n\left(K_{m, n}\right)=2^{m+n}-1$ If $m=n=2$ then we get C_{4}, a median graph and the median sets of such graphs have been identified as intervals and therefore its median number is $9 .$.
So we assume that $m=2$ and $m<n$. Let $\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right)$ be the bipartition. It is clear that $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$ are median sets. The profile $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ has $\left\{x_{1}, x_{2}\right\}$ as the median set. Thus all subsets of $\left\{x_{1}, x_{2}\right\}$ are median sets. Let π be a profile and let k_{1} be the number of repetitions of y_{1} in π, k_{2} be the number of repetitions of y_{2} in π, \ldots, k_{n} be the number of repetitions of y_{n} in π, ℓ_{1} be the number of repetitions of x_{1} in π and ℓ_{2} be the number of repetitions of x_{2} in π
$D\left(y_{1}, \pi\right)=\ell_{1}+\ell_{2}+2\left(k_{2}+k_{3}+\cdots+k_{n}\right)$
$D\left(x_{1}, \pi\right)=2 \ell_{2}+\left(k_{1}+\cdots+k_{n}\right)$ and $D\left(x_{2}, \pi\right)=2 \ell_{1}+\left(k_{1}+\cdots+k_{n}\right)$ Let $y_{1} \in M(\pi)$. Then,
$\ell_{1}+\ell_{2}+2\left(k_{2}+k_{3}+\cdots+k_{n}\right) \leqslant \min \left\{2 \ell_{2}+\left(k_{1}+\cdots+k_{n}\right), 2 \ell_{1}+\left(k_{1}+\cdots+k_{n}\right)\right\}$.
Here shall take some cases
Case-1: $\ell_{1}<\ell_{2}$. Then we have $\ell_{1}+\ell_{2}+2\left(k_{2}+k_{3}+\cdots+k_{n}\right) \leqslant 2 \ell_{1}+\left(k_{1}+\right.$ $\left.\cdots+k_{n}\right)$ and $\ell_{1}+\ell_{2}>2 \ell_{1}$. Therefore, $2\left(k_{2}+k_{3}+\cdots+k_{n}\right)<k_{1}+\cdots+k_{n}$ or $k_{1}>k_{2}+k_{3}+\cdots+k_{n}$. Hence $k_{1}+k_{3}+\cdots+k_{n}>k_{2}+k_{3} \cdots+k_{n}$. Hence $y_{2} \notin M(\pi)$. Thus, in this case no other y_{i} is in $M(\pi)$. If $k_{2}+\cdots+k_{n}=\ell_{1}$ and $k_{1}=\ell_{2}$ then we get that $M(\pi)=\left\{x_{2}, y_{1}\right\}$. This in facts gives that $\left\{x_{i}, y_{j}\right\} i=1,2,1 \leqslant j \leqslant n$ are all median sets.
Case-2: Assume $\ell_{1}=\ell_{2}=\ell . \quad D\left(x_{1}, \pi\right)=2 \ell+\left(k_{1}+\cdots+k_{n}\right)$ and $D\left(x_{2}, \pi\right)=2 \ell+\left(k_{1}+\cdots+k_{n}\right)$ and $D\left(y_{1}, \pi\right)=2 \ell+2\left(k_{2}+k_{3}+\cdots+k_{n}\right)$ and therefore
$2 \ell+2\left(k_{2}+k_{3}+\cdots+k_{n}\right) \leqslant 2 \ell+\left(k_{1}+\cdots+k_{n}\right)$. That is,
$k_{2}+k_{3}+\cdots+k_{n} \leqslant k_{1}$.
Subcase 2.1: $k_{2}+k_{3}+\cdots+k_{n}=k_{1}$. Further let $k_{i}=k_{1}$ for some i say
2. Then $M(\pi)=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. That is, $\left\{x_{1}, x_{2}, y_{i}, y_{j}\right\} 1 \leqslant i, j, \leqslant n$ are all median sets. If $k_{i} \neq k_{1}$ for any i then $M(\pi)=\left\{x_{1}, x_{2}, y_{1}\right\}$. That is, $\left\{x_{1}, x_{2}, y_{2}\right\}$ is a median set. Hence $\left\{x_{1}, x_{2}, y_{i}\right\}, 1 \leqslant i, j, \leqslant n$ are all median sets.
Subcase 2.2: $k_{2}+k_{3}+\cdots+k_{n}<k_{1}$. In this case $M(\pi)=\left\{y_{1}\right\}$. Therefore $\left\{y_{i}\right\}, 1 \leqslant i \leqslant n$ are all median sets.

Thus the median sets of $K_{m, n}, m=2, n>2$ are

1. $\left\{x_{i}\right\}, i=1,2$
2. $\left\{x_{1}, x_{2}\right\}$
3. $\left\{x_{i}, y_{j}\right\} i=1,2,1 \leqslant j \leqslant n$
4. $\left\{y_{i}\right\}, 1 \leqslant i \leqslant n$
5. $\left\{x_{1}, x_{2}, y_{i}\right\}, 1 \leqslant i, j, \leqslant n$
6. $\left\{x_{1}, x_{2}, y_{i}, y_{j}\right\}, 1 \leqslant i, j, \leqslant n$
7. $\left\{x_{1}, x_{2}, y_{1}, y_{2}, \ldots, y_{n}\right\}$

Hence the median number of $K_{2, n}$ where $n \geqslant 3$ is given by $2+1+2 n+n+$ $n+\frac{n(n-1)}{2}+1=\frac{n^{2}+7 n+8}{2}$

Figure 5.1: $K_{2,5}$

Illustration 5.2.3. Here we shall list the median sets of different types in $K_{2,5}$.

1. $M\left(x_{1}\right)=\left\{x_{1}\right\}$
2. $M\left(\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)\right)=\left\{x_{1}, x_{2}\right\}$
3. Let $\pi=\left(x_{1}, x_{1}, x_{2}, y_{1}, y_{2}, y_{2}\right)$. Then $D\left(x_{1}, \pi\right)=5, D\left(x_{2}, \pi\right)=7$,
$D\left(y_{1}, \pi\right)=7, D\left(y_{2}, \pi\right)=5, D\left(y_{3}, \pi\right)=9, D\left(y_{4}, \pi\right)=9$, $D\left(y_{5}, \pi\right)=9$. Hence $M(\pi)=\left\{x_{1}, y_{2}\right\}$.
4. $M\left(\left(y_{1}\right)\right)=\left\{y_{1}\right\}$
5. Let $\pi=\left(x_{1}, x_{2}, y_{1}, y_{1}, y_{2}, y_{3}\right), D\left(x_{1}, \pi\right)=6, D\left(x_{2}, \pi\right)=6$
$D\left(y_{1}, \pi\right)=6 D\left(y_{2}, \pi\right)=8, D\left(y_{3}, \pi\right)=8, D\left(y_{4}, \pi\right)=10$, $D\left(y_{5}, \pi\right)=10$. Hence $M\left(\left(x_{1}, x_{2}, y_{1}, y_{1}, y_{2}, y_{3}\right)\right)=\left\{x_{1}, x_{2}, y_{1}\right\}$.
6. $\pi=\left\{x_{1}, x_{2}, y_{1}, y_{1}, y_{2}, y_{2}\right\} D\left(x_{1}, \pi\right)=6, D\left(x_{2}, \pi\right)=6$,
$D\left(y_{1}, \pi\right)=6, D\left(y_{2}, \pi\right)=6, D\left(y_{3}, \pi\right)=10, D\left(y_{4}, \pi\right)=10$,
$D\left(y_{5}, \pi\right)=10$. Hence $M\left(\left(x_{1}, x_{2}, y_{1}, y_{1}, y_{2}, y_{3}\right)\right)=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$

5.2.7 Median number of Cartesian Products

Definition 5.2.13. Let π_{1} and π_{2} be profiles in graphs G_{1} and G_{2} respectively with $\pi_{1}=\left(u_{1}, \ldots, u_{m}\right)$ and $\pi_{2}=\left(v_{1}, \ldots, v_{n}\right)$ then we define $\pi_{1} \times \pi_{2}$ by $\pi_{1} \times \pi_{2}=\left(\left(u_{i}, v_{j}\right) \mid 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\right)$.
$\pi_{1} \times \pi_{2}$ is in fact a profile of $G_{1} \square G_{2}$.
If $V\left(G_{1}\right)=\left\{u_{1}, \ldots, u_{m}\right\}, V\left(G_{2}\right)=\left\{v_{1}, \ldots, v_{n}\right\}, \pi_{1}=\left(u_{1}, u_{1}, u_{2}\right)$ and $\pi_{2}=\left(v_{1}, v_{2}, v_{2}\right)$ then $\pi_{1} \times \pi_{2}$ is
$\left(\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{1}, v_{2}\right),\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{2}, v_{2}\right)\right)$
Lemma 5.2.2. Let π_{1} and π_{2} be profiles in the graphs G_{1} and G_{2} respectively. If $M_{G_{1}}\left(\pi_{1}\right)=M_{1}$ and $M_{G_{2}}\left(\pi_{2}\right)=M_{2}$, then $M_{G_{1} \square G_{2}}\left(\pi_{1} \times \pi_{2}\right)=$ $M_{1} \times M_{2}$.

Proof. Let $\pi_{1}=\left(u_{1}, u_{2}, \ldots, u_{m}\right), \pi_{2}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $M=M\left(\pi_{1} \times \pi_{2}\right)$.
$\pi_{1} \times \pi_{2}=\left(\left(u_{1}, v_{1}\right), \ldots,\left(u_{1}, v_{n}\right), \ldots,\left(u_{m}, v_{1}\right), \ldots,\left(u_{m}, v_{n}\right)\right)$. If
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in V\left(G_{1} \square G_{2}\right)$, then
$d_{G_{1} \square G_{2}}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d_{G_{1}}\left(x_{1}, y_{1}\right)+d_{G_{2}}\left(x_{2}, y_{2}\right)$, see $[9]$.

For an $(x, y) \in V\left(G_{1} \square G_{2}\right)$,
$D\left((x, y), \pi_{1} \times \pi_{2}\right)=n \sum_{1 \leqslant i \leqslant m} d\left(x, u_{i}\right)+m \sum_{1 \leqslant i \leqslant n} d\left(y, v_{i}\right)$.
Let $(a, b) \in M_{1} \times M_{2}$ ie $a \in M_{1}$ and $b \in M_{2}$. Then,

$$
\begin{array}{r}
\sum_{1 \leqslant i \leqslant m} d\left(a, u_{i}\right) \leqslant \sum_{1 \leqslant i \leqslant m} d\left(x, u_{i}\right), \forall x \in V\left(G_{1}\right) \\
\sum_{1 \leqslant i \leqslant n} d\left(b, v_{i}\right) \leqslant \sum_{1 \leqslant i \leqslant n} d\left(y, v_{i}\right), \forall y \in V\left(G_{2}\right)
\end{array}
$$

Therefore,
$n \sum_{1 \leqslant i \leqslant m} d\left(a, u_{i}\right)+m \sum_{21 \leqslant i \leqslant n} d\left(b, v_{i}\right) \leqslant n \sum_{1 \leqslant i \leqslant m} d\left(x, u_{i}\right)+m \sum_{1 \leqslant i \leqslant n} d\left(y, v_{i}\right)$, $\forall(x, y) \in V\left(G_{1} \square G_{2}\right)$

Hence, $D\left((a, b), \pi_{1} \times \pi_{2}\right) \leqslant D\left((x, y), \pi_{1} \times \pi_{2}\right), \forall(x, y) \in V\left(G_{1} \square G_{2}\right)$
Thus, $(a, b) \in M_{1} \times M_{2} \Rightarrow(a, b) \in M$ or $M_{1} \times M_{2} \subseteq M$
Now, let $(a, b) \in M$

$$
\begin{array}{r}
D\left((a, b), \pi_{1} \times \pi_{2}\right)=n \sum_{1 \leqslant i \leqslant m} d\left(a, u_{i}\right)+m \sum_{1 \leqslant i \leqslant n} d\left(b, v_{i}\right) \\
\leqslant n \sum_{1 \leqslant i \leqslant m} d\left(x, u_{i}\right)+m \sum_{1 \leqslant i \leqslant n} d\left(y, v_{i}\right), \\
\forall(x, y) \in V\left(G_{1} \times G_{2}\right)
\end{array}
$$

If for some $x^{\prime} \in V\left(G_{1}\right), \sum_{1 \leqslant i \leqslant m} d\left(x^{\prime}, u_{i}\right)<\sum_{1 \leqslant i \leqslant m} d\left(a, u_{i}\right)$, then

$$
n \sum_{1 \leqslant i \leqslant m} d\left(x^{\prime}, u_{i}\right)+m \sum_{1 \leqslant i \leqslant n} d\left(b, v_{i}\right)<n \sum_{1 \leqslant i \leqslant m} d\left(a, u_{i}\right)+m \sum_{1 \leqslant i \leqslant n} d\left(b, v_{i}\right)
$$

This contradicts $(a, b) \in M=M\left(\pi_{1} \times \pi_{2}\right)$.
Therefore $\sum_{1 \leqslant i \leqslant m} d\left(a, u_{i}\right) \leqslant \sum_{1 \leqslant i \leqslant m} d\left(x, u_{i}\right), \forall x \in V\left(G_{1}\right)$ and

$$
\sum_{1 \leqslant i \leqslant m} d\left(b, v_{i}\right) \leqslant \sum_{1 \leqslant i \leqslant m} d\left(y, u_{i}\right), \forall y \in V\left(G_{2}\right)
$$

Hence, $a \in M_{1}$ and $b \in M_{2}$ or $(a, b) \in M_{1} \times M_{2}$. That is, $M=M_{1} \times M_{2}$.

Theorem 5.2.14. Consider the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. An $M \subseteq V\left(G_{1} \square G_{2}\right)$ is a median set if and only if $M=M_{1} \times M_{2}$ where M_{1} and M_{2} are median sets of G_{1} and G_{2} respectively.

Proof. By the above lemma the product of Median sets of G_{1} and G_{2} is again a Median set of $G_{1} \square G_{2}$. Now, let M be a median set of $G_{1} \square G_{2}$, with $M=M(\pi)$ where $\pi=\left(\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)\right)$. Let $\pi_{1}=\left(u_{1}, \ldots, u_{k}\right)$, $\pi_{2}=\left(v_{1}, \ldots, v_{k}\right), M_{1}=M\left(\pi_{1}\right)$ and $M_{2}=M\left(\pi_{2}\right)$. Let $(a, b) \in M$.
We have

$$
\begin{gathered}
\sum_{1 \leqslant i \leqslant k} d\left(a, u_{i}\right)+\sum_{1 \leqslant i \leqslant k} d\left(b, v_{i}\right) \leqslant \sum_{1 \leqslant i \leqslant k} d\left(x, u_{i}\right)+\sum_{1 \leqslant i \leqslant k} d\left(y, v_{i}\right), \forall x \in V\left(G_{1}\right), \\
\forall y \in V\left(G_{2}\right) .
\end{gathered}
$$

$$
\begin{array}{r}
\therefore k \sum_{1 \leqslant i \leqslant k} d\left(a, u_{i}\right)+k \sum_{1 \leqslant i \leqslant m} d\left(b, v_{i}\right) \leqslant k \sum_{1 \leqslant i \leqslant k} d\left(x, u_{i}\right)+k \sum_{1 \leqslant i \leqslant m} d\left(y, v_{i}\right), \\
\forall(x, y) \in V\left(G_{1} \square G_{2}\right)
\end{array}
$$

In other words, $D\left((a, b), \pi_{1} \times \pi_{2}\right) \leqslant D\left((x, y), \pi_{1} \times \pi_{2}\right), \forall(x, y) \in V\left(G_{1} \square G_{2}\right)$. $\therefore(a, b) \in M\left(\pi_{1} \times \pi_{2}\right)$ or $M \subseteq M\left(\pi_{1} \times \pi_{2}\right)$.
Let $(a, b) \in M\left(\pi_{1} \times \pi_{2}\right)$. Then $D\left((a, b), \pi_{1} \times \pi_{2}\right) \leqslant D\left((x, y), \pi_{1} \times \pi_{2}\right)$, $\forall x \in V\left(G_{1}\right), \forall y \in V\left(G_{2}\right)$. That is

$$
\begin{array}{r}
k \sum_{1 \leqslant i \leqslant k} d\left(a, u_{i}\right)+k \sum_{1 \leqslant i \leqslant k} d\left(b, v_{i}\right) \leqslant k \sum_{1 \leqslant i \leqslant k} d\left(x, u_{i}\right)+k \sum_{1 \leqslant i \leqslant k} d\left(y, v_{i}\right), \\
\forall x \in V\left(G_{1}\right), \forall y \in V\left(G_{2}\right) . \\
\sum_{1 \leqslant i \leqslant k} d\left(a, u_{i}\right)+\sum_{1 \leqslant i \leqslant k} d\left(b, v_{i}\right) \leqslant \sum_{1 \leqslant i \leqslant k} d\left(x, u_{i}\right)+\sum_{1 \leqslant i \leqslant k} d\left(y, v_{i}\right), \\
\forall x \in V\left(G_{1}\right), \forall y \in V\left(G_{2}\right) .
\end{array}
$$

$\therefore \sum_{1 \leqslant i \leqslant k} d\left((a, b),\left(u_{i}, v_{i}\right)\right) \leqslant \sum_{1 \leqslant i \leqslant k} d\left((x, y),\left(u_{i}, v_{i}\right)\right), \forall(x, y) \in V\left(G_{1} \square G_{2}\right)$.
Therefore, $(a, b) \in M$ which implies $M\left(\pi_{1} \times \pi_{2}\right) \subseteq M$ or $M=M\left(\pi_{1} \times \pi_{2}\right)=$ $M\left(\pi_{1}\right) \times M\left(\pi_{2}\right)$. Thus, the class of all median sets of $G_{1} \square G_{2}$ is the same as the class of all Cartesian products of median sets of G_{1} and G_{2}.

Corollary 5.2.15. $m n\left(G_{1} \square G_{2}\right)=m n\left(G_{1}\right) \times m n\left(G_{2}\right)$

We can generalise the above result to the product of any (finite)number of graphs.

Corollary 5.2.16. If G_{1}, \ldots, G_{K} are k graphs, then $m n\left(G_{1} \square \ldots \square G_{k}\right)=m n\left(G_{1}\right) \times \ldots \times m n\left(G_{k}\right)$

The above corollary can be used to find the Median number of various classes of graphs.

Corollary 5.2.17. For the hypercube $Q_{r}, m n\left(Q_{r}\right)=3^{r}$.
Proof. Since $Q_{r}=\underbrace{K_{2} \square \ldots \square K_{2}}_{r \text { times }}$,

$$
\begin{aligned}
m n\left(Q_{r}\right) & =\underbrace{m n\left(K_{2}\right) \times \ldots \times m n\left(K_{2}\right)}_{r \text { times }} \\
& =\underbrace{3 \times \ldots \times 3}_{r \text { times }} \\
& =3^{r}
\end{aligned}
$$

Corollary 5.2.18. If G is the Grid graph $\left.P_{r} \square P_{s}, m n(G)=\binom{r}{2}+r\right) \times$ $\left(\binom{s}{2}+s\right)$.

Corollary 5.2.19. If G is the Hamming graph $K_{p_{1}} \square K_{p_{2}} \square \ldots \square K_{p_{r}}$, $m n(G)=\left(2^{p_{1}}-1\right) \times\left(2^{p_{2}}-1\right) \times \ldots \times\left(2^{p_{r}}-1\right)$.

5.2.8 Median sets of Symmetric Even Graphs

Lemma 5.2.3. The only median sets of a symmetric even graph G which contains a vertex and its eccentric vertex is $V(G)$.

Proof. Let a and b be two eccentric vertices of the cycle G which belong to $M(\pi)$ where $\pi=\left(x_{1}, \ldots, x_{k}\right)$ is profile in G. Let $D(a, \pi)=D(b, \pi)=s$.

Then

$$
\begin{aligned}
D(a, \pi)+D(b, \pi) & =d\left(a, x_{1}\right)+\ldots+d\left(a, x_{k}\right)+d\left(b, x_{1}\right)+\ldots+d\left(b, x_{k}\right) \\
& =d\left(a, x_{1}\right)+d\left(b, x_{1}\right)+\ldots+d\left(a, x_{k}\right)+d\left(b, x_{k}\right) \\
& =\underbrace{d(a, b)+\ldots+d(a, b)}_{k \text { times }} \\
& =k r
\end{aligned}
$$

Hence $2 s=k r$ Now, suppose $M(\pi) \neq V$. Then there exists an $x \in V$ such that $D(x, \pi)>s$. That is, $d\left(x, v_{1}\right)+\ldots+d\left(x, v_{k}\right)>s$. Let y be the eccentric vertex of $x . d\left(y, v_{1}\right)+\ldots+d\left(y, v_{k}\right) \geqslant s$. Therefore, $d\left(x, v_{1}\right)+\ldots+d\left(x, v_{k}\right)+$ $d\left(y, v_{1}\right)+\ldots+d\left(y, v_{k}\right)>2 s$. That is, $d(x, y)+\ldots+d(x, y)(k$ times $)>2 s$ or $k r>2 s$, a contradiction. Therefore, any set distinct from V which is a Median set cannot contain two eccentric vertices. Also, $M((a, b))=V$, since a and b are diametrical and $I(a, b)=V$. Hence the only median set of G which contain a vertex and and its eccentric vertex is, V.

Corollary 5.2.20. For a symmetric even graph G with $|V(G)|=2 r$, $m n(G) \leqslant 3^{r}$.

Proof. Let V be the vertex set of G with $V=\left\{v_{1}, \ldots, v_{2 r}\right\}$. Let $A=$ $\{S: S \subseteq V$ and S does not contain any pair of eccentric vertices $\}$. By the above lemma the set of all Median sets is a subset of $A \cup\{V\}$. Hence $m n\left(C_{2 r}\right) \leqslant|A|+1$. Let $B_{i}=\left\{v_{i}, v_{i+r}\right\}, 1 \leqslant i \leqslant r$. Now A consists of all subsets of V which does not simultaneously contain both the elements from the same $B_{i}, 1 \leqslant i \leqslant r$. The number ways of choosing a k-element subset of V so that it belongs to A is the product of the number of ways of choosing $k B_{i}$'s from the $r B_{i}$'s and the number of ways of choosing one element from each of these chosen B_{i} 's. That is, $\binom{r}{k} \times 2^{k}$. Therefore $|A|=\sum_{k=1}^{r}\binom{r}{k} \times 2^{k}$. Hence $m n(G) \leqslant\left(\sum_{1 \leqslant k \leqslant r}\binom{r}{k} \times 2^{k}\right)+1=\sum_{0 \leqslant k \leqslant r}\binom{r}{k} \times 2^{k}=3^{r}$.

5.3 Conclusion

We have identified and enumerated the median sets of different classes of graphs. In the course of proving theorem 5.2.14 it was shown that median set of any profile in a Cartesian product graph is the product of the median sets of its projections. For symmetric even graphs, we proved that any $S \subseteq V$ such that S does not contain a pair of eccentric vertices is a median set. As far as the hypercubes are concerned all such sets are not median sets. In fact the median sets are precisely the subcubes. For the hypercube Q_{r} the median number is 3^{r} and this is much less than the bound, $3^{2^{r-1}}$, provided by the above corollary. In the case of even cycles, another class of symmetric even graphs, all the sets mentioned above were seen to be median sets with the help of computer programs. That is the median number of even cycles are seen to achieve this bound. We could not find a mathematical proof of this and hence we propose the following conjecture.

Conjecture 1. Given the cycle $C_{2 r}$ having $2 r$ vertices, an $S \subseteq V\left(C_{2 r}\right)$ is a median set if and only if either $S=V\left(C_{2 r}\right)$ or S does not contain a pair of eccentric vertices and therefore $m n\left(C_{2 r}\right)=3^{r}$.

Chapter 6

Fair Sets

6.1 Introduction

The measures of centrality that we have discussed, center and median correspond to the effectiveness oriented model and the efficiency oriented model of the facility location problems. A third approach is the equity oriented model where equitable locations are chosen, that is locations which are more or less equally fair to all the customers. Issue of equity is relevant in locating public sector facilities where distribution of travel distances among the recipients of the service is also of importance. Most of the equity based study of location theory concentrate either on comparisons of different measures of equity [84] or on giving algorithms for finding the equitable locations [17, 18, 74, 82, 87]. Also in many optimization problems, we have a set of optimal vertices. If we want to choose among these, one of the important criteria can be equity or fairness. In this chapter we define a measure called partiality and various classes of graphs are studied in respect of this measure of centrality.

Definition 6.1.1. For an $x \in V$ and $S \subseteq V, \min (x, S)$ denotes the minimum of the distances between x and vertices of S and $\max (x, S)$ denotes the maximum of the distances between x and vertices of S. The partiality of x with respect to set S in G, denoted by $f(x, S)=\max (x, S)-\min (x, S)$. For a given vertex set S, the set $\{v \in V: f(v, s) \leqslant f(x, S) \forall x \in V\}$ is defined as the fair center of S and is denoted by $F C(S)$. Any $S^{\prime} \subseteq V$ such that $S^{\prime}=F C(S)$ for some $S \subseteq V,|S|>1$, is called a fair set of G.

Example 6.1.1. Consider the following graph and the vertex set $S=$ $\left\{v_{1}, v_{3}, v_{5}, v_{6}\right\}$.

Figure 6.1
The table below shows the distances of all the vertices of the graph to vertices v_{1}, v_{3}, v_{5} and v_{6} and the last row shows the difference between the maximum and the minimum of each column.

Table 6.1

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
v_{1}	0	1	2	3	3	3
v_{3}	2	1	0	1	1	1
v_{5}	3	2	1	2	1	2
v_{6}	3	2	1	2	2	0
$f(v, S)$	3	1	2	2	2	3

Here $f(v, S)$ is minimum for v_{2} and hence $F C(S)=\left\{v_{2}\right\}$

6.2 Graphs with connected fair sets

In this section we characterize those chordal graphs for which the subgraph induced by fair sets are connected.

Theorem 6.2.1. For any tree T, the subgraph induced by any fair set is connected.

Proof. Let A be a fair set with $A=F C(S)$ where $S=\left\{v_{1}, \ldots, v_{k}\right\}$. Let $u, v \in A$. Assume that v_{1}, \ldots, v_{k} are such that $d\left(u, v_{1}\right) \leqslant \cdots \leqslant d\left(u, v_{k}\right)$. Let P be the path $u u_{1} \ldots u_{m} v$. At each stage as we move from u to v through the path P, let d_{1}, \ldots, d_{k} denote the distance between the corresponding vertex of the path and v_{1}, \ldots, v_{k} respectively. At $u, f(u, S)=d_{k}-d_{1}$. Since in any tree, the distances of two adjacent vertices from a given vertex differ by one, we have $f\left(u_{1}, S\right)$ is either $f(u, S)$ or $f(u, S)+1$ or $f(u, S)+2$. To prove $f\left(u_{1}, S\right)=f(u, S)$, we consider the following cases.

Case 1: $f\left(u_{1}, S\right)=f(u, S)+2$.
We first consider $f\left(u_{1}, S\right)=f(u, S)+2$. This is possible only when d_{k} increases by one and d_{1} decreases by one as we move from u to u_{1}. Therefore, as we traverse from u to v through P, and the graph is a tree, d_{k} always increase by 1 , so that the partiality cannot decrease. Hence $f(v, S)>f(u, S)$ which is a contradiction to the assumption that $u, v \in A$.

Case 2: $f\left(u_{1}, S\right)=f(u, S)+1$.
Subcase 2.1: As we move from u to u_{1}, d_{k} increases by one and the role of v_{1} is taken by some other vertex say v_{2}. Then similar to the Case 1, we can see that $f(v, S)>f(u, S)$, and a contradiction is obtained.

Subcase 2.2: The role of v_{k} is taken by another vertex, (say) v_{k-1}, so that the maximum distance remains the same(here d_{k-1}) and d_{1} decreases by one. Now as we move from u_{1} to u_{2}, since there was an increase in $d\left(u_{1}, v_{k-1}\right)$ as compared to $d\left(u, v_{k-1}\right)$ the maximum distance keeps on increasing so that the partiality becomes non decreasing. Hence the $f(v, S)>f(u, S)$, a contradiction to our assumption that $u, v \in A$.

From the contradictions of Cases 1 and 2, we obtain $f(u, S)=f\left(u_{1}, S\right)$. So that $u_{1} \in A$ and in a similar fashion we can show that $V(P) \subseteq A$. Since u and v are arbitrary vertices of A, we can see that A is connected. Hence,
we have the theorem.
Next we prove that the above result can be extended to block graphs.
Corollary 6.2.2. In a block graph, the subgraph induced by any fair set is connected.

Proof. Let $G=(V, E)$ be a block graph. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Let $B_{1}, B_{2}, \ldots, B_{r}$ be the blocks of G. For any block graph G, its skeleton S_{G} is a tree [71]. (See figure 1.1). Also if $d_{G}\left(v_{i}, v_{j}\right)=d$ then $d_{S_{G}}\left(v_{i}, v_{j}\right)=2 d$. If $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is a subset of $V(G)$, then for any vertex v_{i}, partiality $f_{G}\left(v_{i}, S\right)=\frac{1}{2} f_{S_{G}}\left(v_{i}, S\right)$. Hence if $v_{l} \in F C(S)$ with $f_{G}\left(v_{l}, S\right)=p$, then $f_{S_{G}}\left(v_{l}, S\right)=2 p$. Also for every $v_{i} \neq v_{l}, f_{S_{G}}\left(v_{i}, S\right) \geqslant$ $2 p$. Now, let v_{m} be another vertex in G such that $f_{G}\left(v_{m}, S\right)=p$. Then $f_{S_{G}}\left(v_{l}, S\right)=2 p, f_{G}\left(v_{m}, S\right)=2 p$ and $f_{S_{G}}\left(v_{i}, S\right) \geqslant 2 p$ for every $i=1, \ldots, n$. Since S_{G} is connected there exists one path connecting v_{l} and v_{m} in S_{G}, say $v_{l} B_{l} v_{l+1} B_{l+1} \ldots B_{m-1} v_{m}$. Since we know that in a tree as we move along a path once partiality increases it cannot decrease $f_{S_{G}}\left(v_{i}, S\right) \leqslant 2 p, i=$ $l+1, \ldots, m-1$. But since partiality always greater than or equal to $2 p$, $f_{S_{G}}\left(v_{i}, S\right)=2 p, i=l, l+1, \ldots, m-1, m$. Therefore $f_{G}\left(v_{i}, S\right)=p, i=$ $l, l+1, \ldots, m-1, m$. Since v_{l} and v_{l+1} are adjacent to B_{l} they belong to same block in G. Therefore v_{l} and v_{l+1} are adjacent in G. Similarly v_{l+1} and v_{l+2} are adjacent in G. Hence we get a path $v_{l}, v_{l+1}, \ldots, v_{m-1} v_{m}$ in G connecting v_{l} and v_{m} all of whose partiality is p, the minimum. Therefore induced subgraph of any fair set is connected.

The following theorem gives us an insight in to the structure of a chordal graph and this is being used to characterise chordal graphs with connected fair sets.

Theorem 6.2.3. [40] A graph G is chordal if and only if it can be constructed recursively by pasting along complete subgraphs, starting from
complete graphs.
Theorem 6.2.4. Let G be a chordal graph. Then G is a block graph if and only if the induced subgraph of any fair set of G is connected.

Proof. Suppose G is a block graph. Then by Corollary 6.2.2, for any $S \subseteq V$ the induced subgraph of $F C(S)$ is connected. Conversely assume that the subgraphs induced by all fair sets of G are connected and assume that G is not a block graph. Since G is chordal, there exist two chordal graphs G_{1} and G_{2} such that G can be got by pasting G_{1} and G_{2} along a complete subgraph say, H, where $|V(H)|>1$. Then there exists two vertices u and v such that $u \in V\left(G_{1}\right) \backslash V(H), v \in V\left(G_{2}\right) \backslash V(H)$ and u and v are adjacent to all vertices of H. Consider the vertex set $V(H)$. Since u and v are adjacent to all vertices of $H, f(u, V(H))=f(v, V(H))=1-1=0$. For all $x \in V(H), f(x, V(H))=1$. Hence $F C(V(H))$ contains the vertices u and v and any path from u to v pass through the vertices of H which have partiality one. In other words the subgraph induced by the fair center of $V(H)$ is not connected, a contradiction. Therefore the subgraphs induced by all fair sets of G are connected implies G is a block graph.

As an illustration of Theorem 6.2.4, we have the following example.

Figure 6.2: A Chordal graph with disconnected fair sets

For $V(H)=\left\{v_{3}, v_{4}, v_{5}\right\}$, we have $A=F C(V(H))=\left\{v_{2}, v_{6}\right\}$, the induced subgraph of A is not connected.

6.3 Fair sets of some classes of graphs

In this section, we find the fair sets of some class of graphs, namely Complete graphs, $K_{n}-e, K_{m, n}$, the wheel graphs W_{n}, odd cycles and, symmetric even graphs. Before that we have the following lemma.

Lemma 6.3.1. For any graph $G=(V, E)$ all the fair sets A of G are of cardinality either $|V|$ or less than $|V|-1$.

Proof. Let A be fair set of G and assume that $A \neq|V|$. To prove $|A|<$ $|V|-1$. If possible let $|A|=|V|-1$. Let $A=F C(S)$ where $S \subseteq V$. Let y be the vertex which is not in A. For each $x \in A$ let $f(x, S)=k$. Also we have $f(y, S)>k$.
If $y \in S$ then we have $\min (y, S)=0$. So we must have $\max (y, S)>k$. Therefore there exists an z in S such that $d(y, z)>k$ and this implies that $z \notin A$, a contradiction to the fact that $|A|=|V|-1$. Hence for each x in $S, f(x, S)=k$.
Next let $y \notin S$. Let $\min (y, S)=r$ and $\max (y, S)=k+r+s$ where $r, s>0$. Since $\min (y, S)=r$ there exists a vertex w adjacent to y such that $\min (w, S)=r-1$. Since $f(w, S)=k$ we have $\max (w, S)=k+$ $r-1=k+r+s-(s+1)=\max (y, S)-(s+1)$. Since $s \geqslant 1$, we have $|\max (y, S)-\max (w, S)| \geqslant 2$, a contradiction.

6.3.1 Fair sets of Complete graphs

Now we identify the fair sets of complete graphs.
Proposition 6.3.1. For the complete graph on n vertices K_{n}, any $A \subseteq V$ such that $|A| \neq n-1$, is a fair set.

Proof. Let $S \subseteq V$ with $|S|>1$. Then for every $x \in S, f(x, S)=1-0=1$ and for every $y \notin S, f(y, S)=1-1=0$. Therefore $F C(S)=S^{c}$. Also if
$|S|=1$ then $F C(S)=V$. Hence all $A \subseteq V$ such that $|A| \neq n-1$ is a fair set.

6.3.2 Fair sets of $K_{n}-e$

The following proposition gives the fair sets of $K_{n}-e$
Proposition 6.3.2. Let G be the graph $K_{n}-e$ with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and let e be the edge $v_{1} v_{2}$. Then $A \subseteq V$ is a fair set if and only if $|A| \neq n-1$ and either $\left\{v_{1}, v_{2}\right\} \subseteq A$ or $\left\{v_{1}, v_{2}\right\} \subseteq A^{c}$.

Proof. Let $\left\{v_{1}, v_{2}\right\} \subseteq A$ with $|A|<n-1$. Then $\left|A^{c}\right| \geqslant 2$. For each $x \in A$, $f\left(x, A^{c}\right)=1-1=0$. For each $x \in A^{c}, f\left(x, A^{c}\right)=1-0=1$. Therefore $F C\left(A^{c}\right)=A$. Now, let $\left\{v_{1}, v_{2}\right\} \subseteq A^{c}$. For each $x \in A, f\left(x, A^{c}\right)=1-1=0$. $f\left(v_{1}, A^{c}\right)=2-0=2, f\left(v_{2}, A^{c}\right)=2-0=2$ and for every other x in A^{c}, $f\left(x, A^{c}\right)=1-0=1$. Hence $F C\left(A^{c}\right)=A$.
Conversely, Let A be a fair set. We first prove that $|A| \neq n-1$. If $|A|=n-1$ then $\left|A^{c}\right|=1$ so we have $F C\left(A^{c}\right)=V$. If B is any set such that $F C(B)=A$ then $|B|>1$. If $\left\{v_{1}, v_{2}\right\} \subseteq B$, then $F C(B)=B^{c} \neq A$. If $v_{1} \in B \cap A$ and $v_{2} \notin B$ then $F C(B)=B^{c} \backslash\left\{v_{2}\right\} \neq A$. If $\left\{v_{1}, v_{2}\right\} \subseteq B^{c}$, then again $F C(B)=B^{c} \neq A$. Hence $|A| \neq n-1$.
Now let us assume that there is a set B with $F C(B)=A$. Suppose neither $\left\{v_{1}, v_{2}\right\} \subseteq A$ nor $\left\{v_{1}, v_{2}\right\} \subseteq A^{c}$. Without loss of generality, we assume $v_{1} \in A$ and $v_{2} \notin A$. If $\left\{v_{1}, v_{2}\right\} \subseteq B$, then $F C(B)=B^{c} \neq A$. If $v_{1} \in$ $B \cap A$ and $v_{2} \notin B$ then $F C(B)=B^{c} \backslash\left\{v_{2}\right\} \neq A$. If $\left\{v_{1}, v_{2}\right\} \subseteq B^{c}$, then again $F C(B)=B^{c} \neq A$. From these we arrive at a contradiction to our assumption that $F C(B)=A$. Hence either $\left\{v_{1}, v_{2}\right\} \subseteq A$ or $\left\{v_{1}, v_{2}\right\} \subseteq$ A^{c}.

Illustration 6.3.1. Consider $K_{6}-e$ given in figure 3.2. The fair sets of this graph are given bellow. First five are the fair sets that contain $\left\{v_{1}, v_{2}\right\}$ and the next four are the fair sets that exclude v_{1} and v_{2}.

1. $\left\{v_{1}, v_{2}\right\}$
2. $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{6}\right\}$
3. $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$, $\left\{v_{1}, v_{2}, v_{4}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$
4. $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}\right\}$, $\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$
5. $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$
6. $\left\{v_{3}\right\},\left\{v_{4},\right\},\left\{v_{5}\right\},\left\{v_{6}\right\}$
7. $\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{6}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}$
8. $\left\{v_{3}, v_{4}, v_{5}\right\},\left\{v_{3}, v_{4}, v_{6}\right\},\left\{v_{4}, v_{5}, v_{6}\right\},\left\{v_{3}, v_{5}, v_{6}\right\}$
9. $\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$

6.3.3 Fair sets of Complete Bipartite graphs

The following proposition identifies the fair sets of complete bipartite graph $G=K_{m, n}$.
Proposition 6.3.3. Let G be a complete bipartite graph $K_{m, n}$ with bipartition (X, Y) where $|X|=m$ and $|Y|=n$. Let $A=A_{1} \cup A_{2}$ where $A_{1} \subseteq X$ and $A_{2} \subseteq Y$. Then A is a fair set if and only if $\left|A_{1}\right| \neq m-1$ and $\left|A_{2}\right| \neq n-1$.

Proof. We prove the proposition case by case.
Case 1: $\left|A_{1}\right|<m-1$ and $\left|A_{2}\right|<n-1$.
Then $A^{c}=\left(X-A_{1}\right) \cup\left(Y-A_{2}\right)$. For, each $x \in A^{c}, f\left(x, A^{c}\right)=2-0=2$ and for each $x \in A f\left(x, A^{c}\right)=2-1=1$. So, $F C\left(A^{c}\right)=A$.
Case 2: $A=X \cup Y$.
We can see that $F C(A)=A$.
Case 3: $\left|A_{1}\right|=m$ and $\left|A_{2}\right|<n-1$.
Then as in the Case 1, we have $F C\left(A^{c}\right)=A$.
Case 4: $\left|A_{1}\right|=m-1$ and $\left|A_{2}\right|=n-1$.
Here $\left|A^{c}\right|=2$ let it be $\left\{x_{m}, y_{n}\right\}$ where $x_{m} \in X$ and $y_{n} \in Y$. For each
$x \in A_{1}, f\left(x, A^{c}\right)=2-1=1$, for each $x \in A_{2}, f\left(x, A^{c}\right)=2-1=1$. $f\left(x_{m}, A^{c}\right)=f\left(y_{n}, A^{c}\right)=1-0=1$. So $F C\left(A^{c}\right)=X \cup Y$.
Case 5: $\left|A_{1}\right|=m-1$ and $\left|A_{2}\right|<n-1$.
Let $A_{1}=X \backslash\left\{x_{1}\right\}$. For each $x \in A_{1}, f\left(x, A^{c}\right)=2-1=1$, for each $x \in A_{2}$, $f\left(x, A^{c}\right)=2-1=1 . f\left(x_{1}, A^{c}\right)=1-0=1$ and for each $x \in Y \backslash A_{2}$, $f\left(x, A^{c}\right)=2-0=2$. So $F C\left(A^{c}\right)=A_{1} \cup A_{2} \cup\left\{x_{1}\right\}=X \cup A_{2}$.
Case 6: $\left|A_{1}\right|=m-1$ and $\left|A_{2}\right|=n$.
Then, we $F C\left(A^{c}\right)=X \cup Y$.
We can easily see that the cases 1 to 6 , determine the fair centers of all types of subsets of V. Hence the proposition.

As a simple illustration of Proposition 6.3.3, we have an example which discuss the Case 1 of the proposition.

Illustration 6.3.2. Consider the graph $K_{5,4}$ in figure 3.1 , with partitions $X=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $Y=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By choosing $A_{1}=\left\{u_{1}, u_{2}, u_{3}\right\}, A_{2}=\left\{v_{1}, v_{2}\right\}, A^{c}=\left\{u_{4}, u_{5}, v_{3}, v_{4}\right\}$, we can see that $F C\left(A^{c}\right)=A$.

6.3.4 Fair sets of wheel graphs

Now we consider the case when the graph is a wheel W_{n}. We first prove the case when $n>6$.

Theorem 6.3.4. Let $W_{n},(n \geqslant 6)$ be the wheel graph with vertex set $\left\{v_{1}, \ldots, v_{n-1}, v_{n}\right\}$, where v_{n} is the universal vertex. Let C_{n-1} be the cycle induced by $\left\{v_{1}, \ldots, v_{n-1}\right\}$. Then the fair sets of W_{n} are

1. $\left\{v_{i}\right\}, 1 \leqslant i \leqslant n$,
2. $\left\{v_{i}, v_{j}\right\}$ such that $v_{i}, v_{j} \in V\left(C_{n-1}\right), d_{C_{n-1}}\left(v_{i}, v_{j}\right)=2$,
3. $V\left(W_{n}\right)$,
4. All sets of the form $A_{1} \cup\left\{v_{n}\right\}$ where $A_{1} \subset V\left(C_{n-1}\right)$ and $G\left[A_{1}\right]$ is not an induced path of length greater than $n-6$.

Proof. We prove the theorem first for $n>6$. We use the notation v_{i+k} (or $\left.v_{i-k}\right)$ for $v_{i+k-(n-1)}\left(\right.$ or $\left.v_{i-k+(n-1)}\right)$ when $i+k>n-1$ (or $\left.i-k<1\right)$. First, we prove that the four types of sets described in the theorem are indeed fair sets.

1. Let $S=\left\{v_{i \ominus_{n-1} 1}, v_{n}, v_{i \oplus_{n-1} 1}\right\}, 1 \leqslant i \leqslant n-1 . f\left(v_{i}, S\right)=0$ and for all u other than v_{i} we have $f(u, S)>0$ so that $F C(S)=\left\{v_{i}\right\}$. For $S=V$, $f\left(v_{n}, S\right)=1$ and for all u other than v_{n} we have $f(u, S)=2$, so in this case we can see that $F C(S)=\left\{v_{n}\right\}$. Hence $\left\{v_{i}\right\}, 1 \leqslant i \leqslant n$ are all fair sets.
2. Let $S=\left\{v_{n}, v_{i}\right\}, 1 \leqslant i \leqslant n-1$. $f\left(v_{i \ominus_{n-1} 1}, S\right)=f\left(v_{i \oplus_{n-1} 1}, S\right)=0$ and for all other $u, f(u, S)>0$. Hence $F C(S)=\left\{v_{i \ominus_{n-1} 1}, v_{i \oplus_{n-1} 1}\right\}$. In other words any $\left\{v_{i}, v_{j}\right\}$ such that $v_{i}, v_{j} \in V\left(C_{n-1}\right), d_{C_{n-1}}\left(v_{i}, v_{j}\right)=2$ is a fair set.
3. Let $S=\left\{v_{i}, v_{i \oplus_{n-1} 1}, v_{n}\right\}$. $f\left(v_{i}, S\right)=f\left(v_{i \oplus_{n-1} 1}, S\right)=f\left(v_{n}, S\right)=1-0=$ 1. For all other $u, f(u, S)=2-1=1$. Hence $F C(S)=V$.
4. Now let $S \subseteq V$ be such that $v_{n} \in S$ and S contains at least one pair of vertices v_{i} and v_{j} such that $d_{C_{n-1}}\left(v_{i}, v_{j}\right)>2$. Then for every $u \in S$ such that $u \neq v_{n}, f(u, S)=2-0=2, f\left(v_{n}, S\right)=1-0=1$ and for every $v \notin S, f(v, S)=2-1=1$. Hence $F C(S)=S^{c} \cup\left\{v_{n}\right\}$. This gives us that for any $A \subseteq V$ such that $v_{n} \in A$ and $V\left(C_{n-1}\right) \backslash A$ is none of the following subsets of $V\left(C_{n-1}\right)$ is a fair set.
(a) $\left\{v_{i}\right\}, 1 \leqslant i \leqslant n-1$.
(b) $\left\{v_{i}, v_{i \oplus_{n-1} 1}\right\}, 1 \leqslant i \leqslant n-1$.
(c) $\left\{v_{i}, v_{i \oplus_{n-1} 2}\right\}, 1 \leqslant i \leqslant n-1$.
(d) $\left\{v_{i}, v_{i \oplus_{n-1} 1}, v_{i \oplus_{n-1} 2}\right\}, 1 \leqslant i \leqslant n-1$

The set $A_{1} \cup\left\{v_{n}\right\}$ where A_{1} is the complement in $V\left(C_{n-1}\right)$ of a set mentioned in 4 c above, is the fair center of $\left\{v_{i}, v_{i+1}, v_{i+2}, v_{n}\right\}$.

Therefore the only sets containing $\left\{v_{n}\right\}$ which have not been identified as fair sets are sets of the type $A_{1} \cup\left\{v_{n}\right\}$ where A_{1} is a path of length greater than $n-6$. Now let $A=A_{1} \cup\left\{v_{n}\right\}$ where $A_{1} \subseteq V\left(C_{n-1}\right)$ forms a path of length greater than $n-6$. Assume there exists an $S \subseteq V$ such that $F C(S)=A$. If $S \subseteq V\left(C_{n-1}\right)$ then $f\left(v_{n}, S\right)=0$ and it is impossible to have $f(u, S)=0$ for every $u \in A_{1}$. Hence S cannot be a subset of $V\left(C_{n-1}\right)$ or $v_{n} \in S$. If S contains a v_{i} and v_{j} of C_{n-1} so that $d_{C_{n-1}}\left(v_{i}, v_{j}\right)>2$ then $F C(S)=V\left(C_{n-1}\right) \backslash S \cup\left\{v_{n}\right\}$. So $F C(S)=A$ implies $V\left(C_{n-1}\right) \backslash S=$ A_{1}. We have that v_{i} and v_{j}, two vertices such that $d_{C_{n-1}}\left(v_{i}, v_{j}\right)>2$, does not belong to $V\left(C_{n-1}\right) \backslash S$. By the choice of A_{1} such two vertices cannot be simultaneously absent from A_{1}. Hence $V\left(C_{n-1}\right) \backslash S \neq A_{1}$, a contradiction. So assume S does not contain two vertices v_{i} and v_{j} such that $d_{C_{n-1}}\left(v_{i}, v_{j}\right)>2$. Hence S should be any one of the following:
a) $\left\{v_{i}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$.
b) $\left\{v_{i}, v_{i \oplus_{n-1} 1}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$.
c) $\left\{v_{i}, v_{i \oplus_{n-1} 2}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$.
d) $\left\{v_{i}, v_{i \oplus_{n-1} 1}, v_{i \oplus_{n-1} 2}, v_{n}\right\}, 1 \leqslant i \leqslant n-1$

But we have already found out the fair centers of all these sets and none of them have A as its fair center. Hence an $A=A_{1} \cup\left\{v_{n}\right\}$ where $A_{1} \subseteq V\left(C_{n-1}\right)$
forms a path of length greater than $n-6$ is not a fair set. Now we have the following observations
A. For an $S \subset V\left(C_{n-1}\right), v_{n} \in F C(S)$
B. If S contains v_{i} and v_{j} of C_{n-1} where $d_{C_{n-1}}\left(v_{i}, v_{j}\right)>2$ then $v_{n} \in F C(S)$
C. Any $A=A_{1} \cup\left\{v_{n}\right\}$ is fair set if and only if A_{1} is not a path of length greater than $n-6$ in $V\left(C_{n-1}\right)$.
D. For any $S \subseteq V$ such that $v_{n} \in S$ and $v_{i}, v_{j} \in S \Longrightarrow d_{C_{n-1}}\left(v_{i}, v_{j}\right) \leqslant 2$, fair centers are sets of any of the following forms.
i) $\left\{v_{i}\right\}$
ii) $\left\{v_{i}, v_{i \oplus_{n-1} 2}\right\}$
iii) $V\left(W_{n}\right)$
iv) $\left\{v_{1}, \ldots v_{i}, v_{i \oplus_{n-1} 2}, \ldots, v_{n-1}, v_{n}\right\}$, a set of type described in C.

Hence the only fair sets of W_{n} are those described in C and D above.
When $\mathrm{n}=6$ all sets described in item 4 of the theorem are same as those described in item 1. The rest of the proof is same as above. Hence the theorem.

Illustration 6.3.3. Consider W_{9} given in Figure 3.3. Here $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{9}\right\}$ is not a fair set as the graph induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ is a path of length 4 and $n-6=3$. Similarly $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{9}\right\},\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{9}\right\}$ etc are also not fair sets. We are not listing the whole fair sets as the list is too long.

When $n=4$, we can see that $W_{4}=K_{4}$, so we prove the case when the graph is a wheel W_{n} for $n=5$, where we get a proposition, which is entirely different from Theorem 6.3.4.

Proposition 6.3.5. If G is W_{5} with $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, where v_{5} is adjacent to all other vertices and $v_{1} v_{2} v_{3} v_{4} v_{1}$ is the outer cycle, then the only fair sets of G are $\left\{v_{5}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\},\left\{v_{1}, v_{3}, v_{5}\right\},\left\{v_{2}, v_{4}, v_{5}\right\}$ and V.

Proof. Given a non empty vertex set S, let $d_{1}, d_{2}, \ldots d_{k}$ be the distances of the vertex v_{1} from the vertices of S where $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{k}$. Then the distances of v_{3} from vertices of S are $2-d_{k}, 2-d_{k-1}, \ldots, 2-d_{1}$ where $2-d_{k} \leqslant 2-d_{k-1} \leqslant, \ldots, \leqslant 2-d_{1}$.
Hence $f\left(v_{3}, S\right)=d_{k}-d_{1}=2-d_{1}-\left(2-d_{k}\right)=f\left(v_{1}, S\right)$. Hence if A is any fair set, $v_{1} \in A$ implies $v_{3} \in A$. Similarly $v_{2} \in A$ implies $v_{4} \in A$.
Now $f\left(v_{i}, V\right)=2$ for $1 \leqslant i \leqslant 4$ and $f\left(v_{5}, V\right)=1$. Hence $F C(V)=\left\{v_{5}\right\}$. Similarly we can observe that $F C\left(\left\{v_{5}, v_{4}\right\}\right)=\left\{v_{1}, v_{3}\right\}$,
$F C\left(\left\{v_{5}, v_{3}\right\}\right)=\left\{v_{2}, v_{4}\right\}, F C\left(\left\{v_{1}, v_{3}\right\}\right)=\left\{v_{2}, v_{4}, v_{5}\right\}$,
$F C\left(\left\{v_{2}, v_{4}\right\}\right)=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $F C\left(\left\{v_{1}, v_{2}, v_{5}\right\}\right)=V$. Hence the fair sets of W_{5} are precisely those described in the theorem.

6.3.5 Fair sets of Paths

Lemma 6.3.2. Let P_{n} be path $v_{1} v_{2} \ldots v_{n}$. Let $S=\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$, where $1 \leqslant i_{1}<i_{2}<\ldots<i_{k} \leqslant n$. Then $F C(S) \subset F C\left(S^{\prime}\right)$ where

$$
S^{\prime}= \begin{cases}\left\{v_{i_{1}}, v_{\frac{i_{1}+i_{k}}{2}}, v_{i_{k}}\right\} & \text { if } \frac{i_{1}+i_{k}}{2} \text { is an integer. } \\ \left\{v_{i_{1}}, v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}, v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, v_{i_{k}}\right\} & \text { if } \frac{i_{1}+i_{k}}{2} \text { is not an integer. }\end{cases}
$$

Proof. From theorem 6.2.1 the induced subgraph of any fair set in a path is connected and is therefore an interval. Suppose $\frac{i_{1}+i_{k}}{2}$ is not an integer. Let $d\left(v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}, v_{i_{k}}\right)=d\left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, v_{i_{1}}\right)=d$. Then $f\left(v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}, S^{\prime}\right)=d$. As we move towards v_{1} partiality remains to be d up to $v_{\left\lceil\frac{i_{1}+\left\lfloor\frac{\left.i_{1}+i_{k}\right\rfloor}{2}\right\rceil}{2}\right\rceil}^{2}$. After this partiality increases. Similarly $f\left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, S^{\prime}\right)=d$. As we move towards
v_{n} partiality remains to be d up to $v_{\left\lfloor\frac{i_{k}+\left\lceil\frac{i_{1}+i_{k}}{2}\right.}{2}\right\rfloor}$ and after wards partiality increases. Therefore

$$
\begin{equation*}
F C\left(S^{\prime}\right)=\left\{v_{\left[\frac{i_{1}+\left\lfloor\frac{i_{1}+i_{k}}{2}\right.}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{i_{k}+\left\lceil\left[\frac{i_{1}+i_{k}}{2}\right.\right.}{2}\right\rfloor}\right\} \tag{6.1}
\end{equation*}
$$

$\max (x, S)$ is minimum for $x=v_{\left[\frac{i_{1}+i_{k}}{2}\right\rfloor}$ and $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}$ and $\max (x, S)$ increases by one as we move from these two vertices towards v_{1} and v_{n} respectively. Also difference between $\min (x, S)$ of two consecutive vertices can be at most one. Therefore at least one of $v_{\left[\frac{i_{1}+i_{k}}{2}\right\rfloor}$ and $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}$ belong to $F C\left(S^{\prime}\right)$. Let $\left\lfloor\frac{i_{k}-i_{1}}{2}\right\rfloor=a$. Hence $\max \left(v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}, S\right)=\max \left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, S\right)=a$. Now we shall take three cases.

Case 1:Both $v_{\left[\frac{i_{1}+i_{k}}{2}\right\rfloor}$ and $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}$ belong to S. Let i_{m} be the largest integer such that $i_{1} \leqslant i_{m} \leqslant\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil, v_{i_{m}} \in S$ and let i_{l} be the smallest integer such that $\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil \leqslant i_{l} \leqslant i_{k}, v_{i_{l}} \in S$. Then in this case $F C(S)=\left\{v_{\left\lceil\frac{i_{m}+\left\lfloor\frac{i_{i}+i_{k}}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{i_{l}+\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}{2}\right\rfloor}\right\} \subset F C\left(S^{\prime}\right)$.
Case 2: One of $v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}^{2}$ and $v_{\left[\frac{i_{1}+i_{k}}{2}\right\rceil}^{2}$ is present in S and the other is absent. Without loss of generality we may assume that $v_{\left[\frac{i_{1}+i_{k}}{2}\right\rfloor} \in S$ and $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil} \notin S$.
$f\left(v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}, S\right)=a$ and $f\left(v_{\Gamma \frac{i_{1}+i_{k}}{2}}, S^{\prime}\right)=a-1$. As we move away from $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}^{2}$ towards v_{n} partiality remains the same up to $v_{\left\lfloor\frac{i_{l}+\left\lfloor\frac{i_{1}+i_{k}}{2}\right.}{2}\right\rfloor}$ and from there onwards partiality increases. Therefore
$F C(S)=\left\{v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{i_{1}+\left\lfloor\frac{i_{1}+i_{k}}{2}\right.}{2}\right\rfloor}\right\} \subset F C\left(S^{\prime}\right)$.
Case 3:Both $v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}$ and $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}^{2}$ does not belong to S.
Assume $\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor-i_{m} \leqslant i_{l}-\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil$. Let $\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor-i_{m}=b$ and $i_{l}-\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil=c$.
Then $f\left(v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}^{S)^{\prime}}, S\right)=a-b . f\left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, S\right)=a-(b+1)$ if $b<c$ and $f\left(v_{\left\lceil\frac{\left.i_{1}+i_{k}\right\rceil}{2}\right.}, S\right)^{2}=a-b$ if $b=c$. That is,
$f\left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right.}^{2}, S\right) \leqslant f\left(v_{\left[\frac{i_{1}+i_{k}}{2}\right]}, S\right)$.If $f\left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, S\right)=a-(b+1)$ as we move
from $v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}$ towards v_{n} partiality remains to be $a-(b+1)$ up to $v_{\left\lfloor\frac{i_{m}+i_{l}}{2}\right\rfloor}$. If $b=c f^{2}\left(v_{\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor}, S\right)=f\left(v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, S\right)=a-b$. Hence in both the cases $F C(S)=\left\{v_{\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{i_{l}+i_{m}}{2}\right\rfloor}\right\}^{2}$. In other words $F C(S) \subset F C\left(S^{\prime}\right)$. When $\frac{i_{1}+i_{k}}{2}$ is an integer $\left\lfloor\frac{i_{1}+i_{k}}{2}\right\rfloor=\left\lceil\frac{i_{1}+i_{k}}{2}\right\rceil$ and the proof is similar.

Corollary 6.3.6. Let S^{\prime} be as in the Lemma 6.3 .2 and t be an integer.

$$
\text { Length of } F C\left(S^{\prime}\right)= \begin{cases}2 t & \text { if } d\left(v_{i_{1}}, v_{i_{k}}\right)=4 t \text { or } 4 t+2 \\ 2 t+1 & \text { if } d\left(v_{i_{1}}, v_{i_{k}}\right)=4 t+1 \text { or } 4 t+3\end{cases}
$$

Proof. We shall assume that $v_{i_{1}}=v_{1}$.
Case 1: $d\left(v_{i_{1}}, v_{i_{k}}\right)=4 t$. So $i_{k}=4 t+1$ and
$F C\left(S^{\prime}\right)=\left\{v_{\left\lceil\frac{1+\left\lfloor\frac{1+4 t+1}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{4 t+1+\left\lceil\frac{1+4 t+1}{2}\right\rceil}{2}\right\rfloor}\right\}=\left\{v_{t+1}, \ldots, v_{3 t+1}\right\}$, a path of length $2 t$.
Case 2: $d\left(v_{i_{1}}, v_{i_{k}}\right)=4 t+1$. Then $i_{k}=4 t+2$ and hence,
$F C\left(S^{\prime}\right)=\left\{v_{\left\lceil\frac{1+\left\lfloor\frac{1+4 t+2}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{4 t+2+\left\lceil\frac{1+4 t+2}{2}\right\rceil}{2}\right\rfloor}\right\}=\left\{v_{t+1}, \ldots, v_{3 t+2}\right\}$, a path of length $2 t+1$.
Case 3: $d\left(v_{i_{1}}, v_{i_{k}}\right)=4 t+2 \Rightarrow i_{k}=4 t+3$ so that
$F C\left(S^{\prime}\right)=\left\{v_{\left\lceil\frac{1+\left\lfloor\frac{1+4 t+3}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{4 t+3+\left\lceil\frac{1+4 t+3}{2}\right\rceil}{2}\right\rfloor}\right\}=\left\{v_{t+2}, \ldots, v_{3 t+2}\right\}$, a path of length $2 t$.
Case 4: $d\left(v_{i_{1}}, v_{i_{k}}\right)=4 t+3$. Then $i_{k}=4 t+4$ and thus
$F C\left(S^{\prime}\right)=\left\{v_{\left\lceil\frac{1+\left\lfloor\frac{1+4 t+4}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{4 t+4+\left\lceil\frac{1+4 t+4}{2}\right\rceil}{2}\right\rfloor}\right\}=\left\{v_{t+2}, \ldots, v_{3 t+3}\right\}$, a path of length $2 t+1$.

Corollary 6.3.7. Let S^{\prime} be as defined in the Lemma 6.3 .2 with length of $F C\left(S^{\prime}\right)$ equal to d. If $S^{\prime \prime} \subseteq V$ with $\operatorname{diam}\left(S^{\prime \prime}\right) \leqslant \operatorname{diam}\left(S^{\prime}\right)$ then the length of $F C\left(S^{\prime \prime}\right)$ is atmost $d+1$.

Theorem 6.3.8. Let P be the path $v_{1} v_{2} \ldots v_{n} . A=\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ is a fair set if and only if either
(i) $i=1$ and $j=n$ or
(ii) $\left\lfloor\frac{j-i}{2}\right\rfloor \leqslant \min \{i-1, n-j\}$

Proof. If $A=\left\{v_{1}, \ldots, v_{n}\right\}$ then it is a fair set because $F C\left(\left\{v_{1}, v_{2}\right\}\right)=A$. Now assume that $A \neq\left\{v_{1}, \ldots, v_{n}\right\}$. Suppose $j-i$ is odd and let $j-i=$ $2 a+1$.

$$
j-i \text { is odd }
$$

$j-i$ is even
Figure 6.3

Without loss of generality we may assume that $i-1 \leqslant n-j$. Suppose $i-1 \geqslant a$. Let S be the set $\left\{v_{i-a}, v_{i+a}, v_{i+a+1}, v_{i+3 a+1}\right\}$. Since $a \leqslant i-1 \leqslant n-j, v_{i-a}, v_{i+3 a+1} \in V(P)$. As in the proof of lemma 6.3.2 we get that $F C(S)=\left\{v_{\left\lceil\frac{i-a+\left\lfloor\frac{i-a+i+3 a+1}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{i+3 a+1+\left\lceil\frac{i-a+i+3 a+1}{2}\right\rceil}{2}\right\rfloor}\right\}=$ $\left\{v_{i}, \ldots, v_{i+2 a+1}\right\}=\left\{v_{i}, \ldots, v_{j}\right\}$. Hence A is a fair set. Now Suppose
$i-1<a$. Let $S=\left\{v_{1}, v_{i+a}, v_{i+a+1}, v_{2 i+2 a}\right\}$. Then, $F C(S)=\left\{v_{\left\lceil\frac{1+\left\lfloor\frac{2 i+2 a+1}{2}\right\rfloor}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{2 i+2 a+\left\lceil\left\lceil\frac{2 i+2 a+1}{2}\right\rceil\right.}{2}\right\rfloor}\right\}=\left\{v_{\left\lceil\frac{i+a+1}{2}\right\rceil}, \ldots, v_{\left\lfloor\frac{3 i+3 a+1}{2}\right\rfloor}\right\}$. Since $i-1<a, v_{\left\lceil\frac{i+a+1}{2}\right\rceil}$ lies towards the right of v_{i} and $v_{\left\lfloor\frac{3 i+3 a+1}{2}\right\rfloor}$ towards left of $v_{i+2 a+1}$. Hence $F C(S) \subseteq A$ and length of $F C(S) \leqslant$ length of $A-2$. By lemma 6.3.2 any set with end vertices v_{1} and $v_{2 i+2 a}$ cannot have A as the fair center. From Corollary 6.3.7 it follows that any set with diameter less than that of S cannot have A as its fair center. If S is any set with end vertices v_{p} and v_{q} from equation 1 it is clear that if $p=1$ and $q>2 i+2 a$ or $p>1$ and $q>2 i+2 a$ then $F C(S) \neq A$. In other words A is not a fair set. Similarly we can prove the case when $j-i$ is even. Hence the theorem.

Illustration 6.3.4. Consider the path P_{8} with vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$.

Figure 6.4: P_{8}

Here $\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ are all fair sets, but $\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ is not a fair set since $i-1=1$, and $\left\lfloor\frac{j-i}{2}\right\rfloor=\frac{6-2}{2}=2>1$. Similarly $\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ is also not a fair set.

6.3.6 Fair sets of Odd cycles

In the next theorem we find out the fair sets of odd cycles
Theorem 6.3.9. Let the graph $G=C_{2 n+1}$ be an odd cycle with vertex set $V=\left\{v_{1}, \ldots, v_{2 n+1}\right\} . A \subseteq V$ is a fair set if and only if for every pair
of consecutive vertices in A, the vertex which is eccentric to both theses vertices is also in A.

Figure 6.5: Odd cycle $C_{2 n+1}$

Proof. Let v_{1} and v_{2} be a pair of adjacent vertices and let v_{n+2} be the vertex which is eccentric to both v_{1} and v_{2}. Let $v_{1}, v_{2} \in A \subseteq V$ where $A=F C(S)$ for some $S \subseteq V$. Let $\min \left(v_{1}, S\right)=d_{\text {min }}$ and $\max \left(v_{1}, S\right)=d_{\text {max }}$. Since $v_{1}, v_{2} \in A, f\left(v_{1}, S\right)=f\left(v_{2}, S\right)$. We shall consider here two different cases. Case 1: $\min \left(v_{2}, S\right)=d_{\text {min }}+1$ and $\max \left(v_{2}, S\right)=d_{\max }+1$. Then there exists a vertex $v \in S$ such that $d\left(v_{1}, v\right)=d_{\max }$ and $d\left(v_{2}, v\right)=d_{\max }+1$. Then $d\left(v_{m+2}, v\right)=m-d_{\max }$. If there exists a vertex $v^{\prime} \in S$ such that $d\left(v_{m+2}, v^{\prime}\right)<m-d_{\max }$ then $d\left(v^{\prime}, v_{1}\right)>d_{\max }$, a contradiction. Hence $\min \left(v_{n+2}, S\right)=d\left(v_{n+2}, v\right)$. Similarly there exists a vertex u such that $d\left(u, v_{1}\right)=d_{\text {min }}$ and $d\left(u, v_{2}\right)=d_{\min }+1 . \max \left(v_{n+2}, S\right)=d\left(v_{n+2}, u\right)=$ $m-d_{\min }$. Therefore $f\left(v_{n+2}, S\right)=m-d_{\min }-\left(m-d_{\max }\right)=d_{\max }-d_{\min }=$ $f\left(v_{1}, S\right)=f\left(v_{2}, S\right)$. That is $v_{n+2} \in A$.

Case 2: $\min \left(v_{2}, S\right)=d_{\min }$ and $\max \left(v_{2}, S\right)=d_{\max }$. Let u and u^{\prime} be such that $\min \left(v_{1}, S\right)=d\left(v_{1}, u\right)$ and $\min \left(v_{2}, S\right)=d\left(v_{2}, u^{\prime}\right) . \max \left(v_{n+2}, S\right)=$ $m-d\left(v_{1}, u\right)=m-\min \left(v_{1}, S\right)=m-d_{\min }$. Let v and v^{\prime} be such that $\max \left(v_{1}, S\right)=d\left(v_{1}, v\right)$ and $\max \left(v_{2}, S\right)=d\left(v_{2}, v^{\prime}\right)$. If $v=v^{\prime}$ then $v=$ v_{n+2}. In this case $\min \left(v_{n+2}, S\right)=0$. Therefore $f\left(v_{n+2}, S\right)=n-d_{\min }=$
$\max \left(v_{1}, S\right)-\min \left(v_{1}, S\right)=f\left(v_{1}, S\right)$. If $v \neq v^{\prime}, d\left(v_{2}, v\right)=d\left(v_{1}, v^{\prime}\right)=$ $d_{\max }-1$. Hence $\min \left(v_{n+2}, S\right)=d\left(v_{n+2}, v\right)=d\left(v_{n+2}, v^{\prime}\right)=m-\left(d_{\max }-1\right)=$ $n-d_{\max }+1$. Therefore $f\left(v_{n+2}, S\right)=n-d_{\min }-\left(n-d_{\max }+1\right)=$ $d_{\max }-d_{\text {min }}-1<f\left(v_{1}, S\right)=f\left(v_{2}, S\right)$. This contradicts the fact that $v_{1}, v_{2} \in F C(S)$ and so we rule out this possibility. Hence in all the possible cases $v_{1}, v_{2} \in A \Rightarrow v_{n+2} \in A$.

Conversely, assume that $A \subseteq V$ is such that for every pair of consecutive vertices v_{i}, v_{i+1} in A, v_{n+i+1} belong to A. Let $v_{1}, \ldots v_{k}, k>1$, be consecutive vertices belonging to A. Then $v_{n+2}, v_{n+3}, \ldots, v_{n+k}$ belong to A. Without loss of generality we may assume that
i) A does not contain any consecutive set of vertices other than the above two.
ii) v_{n+1} does not belong to A.

Now, construct the set S as follows
step I) If $k=3 r$ or $3 r+1$ for some integer r then set
$S=\left\{v_{2}, v_{5}, \ldots, v_{3 r-1}\right\}$. If $k=3 r+2$ then then set $S=$ $\left\{v_{3}, v_{6}, \ldots, v_{3 r}\right\}$.
step II) Add to S the vertices $v_{i}, n+2 \leqslant i \leqslant n+k$ of A, which are not an eccentric vertex of any of the vertices in S.
step $I I I)$ Add A^{c} to S.
Let $x \in V \backslash A$. Then $x \in S$ and therefore $\min (x, S)=0$. Let y and z be the eccentric vertices of x in G. Take note that $y z$ is an edge. If $\{y, z\} \subseteq S^{c}$, then we have $\{y, z\} \subseteq A$. Since x is an eccentric vertex of y and z, we have $x \in A$, which is not true. Hence either y or z belongs to S, and we have $\max (x, S)=n$, so that $f(x, S)=n$.

Let $x \in A$ be such that both the neighbours of x do not belong to A. Then $x \notin S$ and neighbours of x belong to S and $\min (x, S)=1$.

Let x_{1} and x_{2} be the eccentric vertices of x. Then $x_{1}, x_{2} \notin S$ implies either $x_{1}, x_{2} \in\left\{v_{1}, \ldots, v_{k}\right\}$ or $x_{1}, x_{2} \in\left\{v_{n+2}, \ldots, v_{n+k}\right\}$. In the former case $x \in\left\{v_{n+1}, \ldots, v_{n+k}\right\}$ and in the latter case $x \in\left\{v_{1}, \ldots, v_{k}\right\}$ and this is not possible by the choice of x. Hence either x_{1} or x_{2} belong to S. Hence $\max (x, S)=n$. Therefore $f(x, S)=n-1$. By the way of choice of vertices $v_{i}, 1 \leqslant i \leqslant k$, in S either $\min \left(v_{i}, S\right)=1$ and $\max \left(v_{i}, S\right)=n$ or $\min \left(v_{i}, S\right)=0$ and $\max \left(v_{i}, S\right)=n-1$. Hence $f\left(v_{i}, S\right)=n-1$ for $1 \leqslant i \leqslant k$. For $n+2 \leqslant i \leqslant n+k, v_{i} \notin S$ implies eccentric of v_{i} belong to S. Therefore in this case $\min \left(v_{i}, S\right)=1$ and $\max \left(v_{i}, S\right)=n$ or $f\left(v_{i}, S\right)=n-1$. Now, for $n+2 \leqslant i \leqslant n+k, v_{i} \in S$ implies $\min \left(v_{i}, S\right)=0$. Now an eccentric vertex of $v_{i}, m+2 \leqslant i \leqslant n+k$, belong to S implies $v_{i} \notin S$. Hence for $v_{i} \in S$ eccentric vertices of $v_{i} \notin S$. Also there are no three consecutive vertices among v_{i} 's, $1 \leqslant i \leqslant k$, absent from S. Hence $\max \left(v_{i}, S\right)=n-1$ for $n+2 \leqslant i \leqslant n+k$. Also the two eccentric vertices of v_{n+k+1}, v_{k} and v_{k+1} does not belong to S. Hence if $v_{n+k+1} \in S, f\left(v_{n+k+1}, S\right)=n-1$. Therefore for each $v_{i} \in A, f\left(v_{i}, S\right)=n-1$ and for each $v_{i} \notin A, f\left(v_{i}, S\right)=n$. Hence $F C(S)=A$ or A is a fair set.

We have an immediate corollary for Theorem 6.3.9 and the proof follows from the proof of Theorem 6.3.9.

Corollary 6.3.10. If $A \subset V\left(C_{2 n+1}\right)$ contains no two adjacent vertices then A is a fair set of $C_{2 n+1}$.

Corollary 6.3.11. The only connected fair sets of an odd cycle $C_{2 n+1}$ are singleton (vertex) sets and the whole vertex set V.

Proof. By the Theorem 6.3.9, $\left\{v_{i}\right\}, 1 \leqslant i \leqslant 2 n+1$ and V are fair sets. Now let $A \subseteq V$ be a connected fair set of $C_{2 n+1}$ which contains more than one element. Let $v_{i}, v_{j} \in A$. Then there exists a path connecting v_{i} and v_{j} in A without loss of generality we may assume that it is $v_{i}, v_{i+1}, \ldots v_{j}$.
$v_{i}, v_{i+1} \in A$ implies $v_{n+i+1} \in A$. Therefore a path connecting v_{i} and v_{n+i+1} lies in A. Since this path contains $n+2$ consecutive vertices by the theorem we can conclude that A should also contain the other $n-1$ vertices or $A=V$.

Illustration 6.3.5. Consider the odd cycle $C_{15}=v_{1} v_{2}, \ldots v_{15} v_{1}$. Let $A=$ $\left\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{9}, v_{10}, v_{13}\right\} . v_{1}$ and v_{2} are a pair of consecutive vertices and the vertex eccentric to both v_{1} and v_{2}, v_{9}, also belong to A. Similarly, $\left(v_{2}, v_{3}\right)$ and $\left(v_{5}, v_{6}\right)$ are pairs of adjacent vertices and the vertices eccentric to these pairs namely, v_{10} and v_{13} also belong to A. Hence as per the theorem, A is a fair set. According to the construction given in the theorem we have
$S=\left\{v_{2}, v_{4}, v_{7}, v_{8}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}\right\} . e_{S}\left(v_{1}\right)=6, e_{S}\left(v_{2}\right)=6$,
$e_{S}\left(v_{3}\right)=6, e_{S}\left(v_{4}\right)=7, e_{S}\left(v_{5}\right)=6, e_{S}\left(v_{6}\right)=6, e_{S}\left(v_{7}\right)=7, e_{S}\left(v_{8}\right)=7$,
$e_{S}\left(v_{9}\right)=6, e_{S}\left(v_{10}\right)=6, e_{S}\left(v_{11}\right)=7, e_{S}\left(v_{12}\right)=7, e_{S}\left(v_{13}\right)=6, e_{S}\left(v_{14}\right)=7$, $e_{S}\left(v_{15}\right)=7$. Therefore $C_{S}\left(C_{15}\right)=A$.

6.3.7 Fair sets of Symmetric Even graphs

Proposition 6.3.12 (Proposition 4 of [54]). Let u and v be vertices of a symmetric even graph G of diameter d. If $v \in N_{i}(u)$ and $\bar{v} \in N_{j}(u)$, then $i+j=d$.

The following theorem characterises the fair sets of symmetric even graphs.

Theorem 6.3.13. Let G be a symmetric even graph. $A n A \subseteq V$ is a fair set if and only if for every vertex $x \in A, \bar{x} \in A$.

Proof. Let $\operatorname{diam}(G)=d$. Assume $A \subseteq V$ is a fair set with $F C(S)=A$ where $S=\left\{v_{1}, \ldots, v_{k}\right\}$ and and let $x \in A$. Let $d\left(x, v_{i}\right)=d_{i}, 1 \leqslant i \leqslant k$. Without loss of generality we may assume that $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{k}$. Then
$f(x, S)=d_{k}-d_{1}$. By proposition 6.3.12, $d\left(x, v_{i}\right)=d_{i} \Rightarrow d\left(\bar{x}, v_{i}\right)=d-d_{i}$. Therefore $f(\bar{x}, S)=d-d_{1}-\left(d-d_{k}\right)=d_{k}-d_{1}$. Hence $x \in A \Rightarrow \bar{x} \in A$.
Conversely, assume that $A \subseteq V$ is such that $x \in A \Rightarrow \bar{x} \in A$. To prove $A=F C(S)$ for some $S \subseteq V$. Let $A=\left\{x_{1}, \ldots, x_{m}, \overline{x_{1}}, \ldots, \overline{x_{m}}\right\}$. Let $S=V \backslash\left\{x_{1}, \ldots, x_{m}\right\}$. Suppose for every $x_{i}, 1 \leqslant i \leqslant m$ some neighbour of x_{i} is in S. Then $f\left(x_{i}, S\right)=d\left(x_{i}, \bar{x}_{i}\right)-1=d-1$ (Here the minimum distance is 1 since $x_{i} \notin S$ and some neighbour of x_{i} is in S). For each $\overline{x_{i}}, 1 \leqslant i \leqslant m, f\left(\bar{x}_{i}, S\right)=d-1-0=d-1$ (Here the maximum distance is $d-1$ since $x_{i} \notin S$ and some neighbour of x_{i} is in S. The minimum distance is 0 , since $\overline{x_{i}} \in S$). Now, for a y different from $x_{i}, \overline{x_{i}}, 1 \leqslant i \leqslant m$, $\min (y, S)=0$ since $y \in S$ and $\max (y, S)=d$ since $\bar{y} \in S$. Therefore $f(y, S)=d-0=d$. In other words $F C(S)=A$. Now, assume that there exists an x_{j}, say x_{1}, such that neither x_{1} nor any of the vertices adjacent to x_{1} are in S. That is the vertices adjacent to x_{1} are among $x_{2}, x_{3}, \ldots, x_{m}$. Let x_{i} be a vertex adjacent to x_{1}. Then $\min \left(x_{1}, S\right)>1$ and $\max \left(x_{1}, S\right)=d$. Therefore $f\left(x_{1}, S\right)=\max \left(x_{1}, S\right)-\min \left(x_{1}, S\right) \leqslant d-2$. Let x_{k} be a vertex such that a neighbour of x_{k} is in S. Then $\min \left(x_{k}, S\right)=1$ and $\max \left(x_{k}, S\right)=d$ and therefore $f\left(x_{k}, S\right)=d-1$. Therefore $F C(S) \neq A$. Let $S_{1}=\left\{x_{1}\right\} \cup S \backslash\left\{\overline{x_{1}}\right\}$. Now, $\min \left(x_{1}, S_{1}\right)=0$ since $x_{1} \in S_{1}$ and $\max \left(x_{1}, S_{1}\right)=d-1$ since \bar{x}_{i} is adjacent to $\overline{x_{1}}$ and bar $x_{i} \in S_{1}$. Hence $f\left(x_{1}, S_{1}\right)=d-1$. Also, $\min \left(\overline{x_{1}}, S_{1}\right)=1$ since $\overline{x_{i}} \in S_{1}$ and $\max \left(\overline{x_{1}}, S_{1}\right)=d$ since $x_{1} \in S_{1}$. Hence $f\left(\overline{x_{1}}, S_{1}\right)=d-1$. For a $y \in V$ such that $y \neq x_{j}, \overline{x_{j}}$, $1 \leqslant j \leqslant m$ we have that $\min \left(y, S_{1}\right)=0$ and $\max \left(y, S_{1}\right)=d(y, \bar{y})=d$ and therefore $f\left(y, S_{1}\right)=d$. If for every $y \in V$ either $y \in S_{1}$ or some neighbour of v is in S_{1} then as above it can be shown that $F C\left(S_{1}\right)=A$. Otherwise, let x_{2} be a vertex such that neither x_{2} nor any of the vertices adjacent to x_{2} are in S_{1}. It is clear that $x_{2} \neq x_{i}, \overline{x_{1}}$. Let $S_{2}=\left\{x_{2}\right\} \cup S_{1} \backslash\left\{\overline{x_{2}}\right\}$. Then $\min \left(x_{1}, S_{2}\right)=0, \max \left(x_{1}, S_{2}\right)=d\left(x_{1}, \overline{x_{i}}\right)=d-1$ and therefore $f\left(x_{1}, S_{1}\right)=$ $d-1 . \min \left(\overline{x_{1}}, S_{2}\right)=d\left(\overline{x_{1}}, \overline{x_{i}}\right)=1, \max \left(\overline{x_{1}}, S_{2}\right)=d\left(x_{1}, \overline{x_{1}}\right)=d$ and
therefore $f\left(\overline{x_{1}}, S_{2}\right)=d-1$. we have $\min \left(x_{2}, S_{2}\right)=0$. The vertices adjacent to x_{2} are among $\overline{x_{1}}, x_{3}, \ldots, x_{m}$ and their eccentric vertices $x_{1}, \overline{x_{3}}, \ldots, \overline{x_{m}}$ are in S_{2}. Hence $\max \left(x_{2}, S_{2}\right)=d-1$. Thus $f\left(x_{2}, S_{2}\right)=d-1 . \min \left(\overline{x_{2}}, S_{2}\right)=1$ since $\overline{x_{2}}$ is adjacent to the vertices that are eccentric to the vertices adjacent to x_{2} and $\max \left(\overline{x_{2}}, S_{2}\right)=d\left(\overline{x_{2}}, x_{2}\right)=d$. Hence $f\left(\overline{x_{2}}, S_{2}\right)=d-1$. If S_{2} is such that for every $y \in V$ either $y \in S_{1}$ or some neighbour of v is in S_{1} then $F C\left(S_{2}\right)=A$. Else, we continue the above process and it should be noted that the partiality of the vertices that are added and deleted at each stage is adjusted to $d-1$, the partiality of all the vertices that have been added and deleted in the previous stages are maintained to be $d-1$ and the partiality of all vertices different from x_{j} and $\overline{x_{j}}$ are equal to d. At most in m stages, we shall get an S^{\prime} such that $f\left(x_{j}, S^{\prime}\right)=f\left(\bar{x}_{j}, S^{\prime}\right)=d-1$ for $1 \leqslant j \leqslant m$ and $f\left(y, S^{\prime}\right)=d$ for $y \neq x_{j}, \overline{x_{j}}$. That is, $F C\left(S^{\prime}\right)=A$ and that proves the theorem.

Corollary 6.3.14. The only connected fair set of an even cycle $C_{2 n}$ is the whole vertex set V.

Proof. Let A be a connected fair set of $C_{2 n}$. Let $u \in A$. Then by the above theorem $\bar{u} \in A$. Since A is connected at least one of the paths connecting u and \bar{u} should be in A. Again by the theorem the eccentric vertices of the vertices of this path should also be in A. Hence $A=V$.

Illustration 6.3.6. Consider the even cycle $C_{16}=v_{1} v_{2} \ldots v_{15} v_{1}$ a symmetric even graph. We shall a find a vertex set whose center is
$A=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}\right\}$.
Let $S=\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}\right\}$. Since neither v_{2} nor any of the vertices adjacent to v_{2} belong to S set $S_{1}=\left\{v_{2}\right\} \cup S \backslash v_{10}$. Again, neither v_{4} nor any of the vertices adjacent to v_{4} are in S_{1}. Set, $S_{2}=\left\{v_{4}\right\} \cup S_{1} \backslash v_{12}$. Now for every $v \in V$ either v or a neighbour of v is in S_{2}. we have $F C\left(S_{2}\right)=A$.

6.4 Fair sets and Cartesian product of graphs

Next we have an expression for the fair center of product sets in the Cartesian product of two graphs

Theorem 6.4.1. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Let $S_{1} \subseteq V_{1}$ and $S_{2} \subseteq V_{2}$. Then $F C\left(S_{1} \times S_{2}\right)=F C\left(S_{1}\right) \times F C\left(S_{2}\right)$ where $F C\left(S_{1} \times S_{2}\right)$ is the fair center of $S_{1} \times S_{2}$ in the graph $G_{1} \square G_{2}, F C\left(S_{1}\right)$ is the fair center of S_{1} in the graph G_{1} and $F C\left(S_{2}\right)$ is the fair center of S_{2} in the graph G_{2}.

Proof. Let $(x, y) \in V_{1} \times V_{2}, S_{1}=\left\{u_{11}, u_{12}, \ldots, u_{1 l}\right\}$ and
$S_{2}=\left\{u_{21}, \ldots, u_{2 m}\right\}$ where u_{11} is the vertex nearest to x and $u_{1 l}$ is the vertex farthest from x and u_{21} is the vertex nearest to y and $u_{2 m}$ is the vertex farthest from y. For $\left(u_{1 i}, u_{2 j}\right) \in S_{1} \times S_{2}$

$$
\begin{aligned}
d\left((x, y),\left(u_{11}, u_{21}\right)\right) & =d\left(x, u_{11}\right)+d\left(y, u_{21}\right) \\
& \leqslant d\left(x, u_{1 i}\right)+d\left(y, u_{2 j}\right)\left(=d\left((x, y),\left(u_{1 i}, u_{2 j}\right)\right)\right) \\
& \leqslant d\left(x, u_{1 l}\right)+d\left(y, u_{2 m}\right) \\
& =d\left((x, y),\left(u_{1 l}, u_{2 m}\right)\right)
\end{aligned}
$$

That is, if u_{11} is the vertex nearest to x in $S_{1} \subseteq V_{1}, u_{21}$ is the vertex nearest to y in $S_{2} \subseteq V_{2}, u_{1 l}$ is the vertex farthest from x in $S_{1} \subseteq V_{1}$ and $u_{2 m}$ is the vertex farthest from y in $S_{2} \subseteq V_{2}$ then $\left(u_{11}, u_{21}\right)$ is the vertex nearest to (x, y) in $S_{1} \times S_{2}$ and $\left(u_{1, l}, u_{2, m}\right)$ is the vertex farthest from (x, y) in $S_{1} \times S_{2}$

$$
\begin{aligned}
f_{G_{1} \square G_{2}}\left((x, y), S_{1} \times S_{2}\right) & =d\left((x, y),\left(u_{1 l}, u_{2 m}\right)\right)-d\left((x, y),\left(u_{11}, u_{21}\right)\right) \\
& =d\left(x, u_{1 l}\right)+d\left(y, u_{2 m}\right)-d\left(x, u_{11}\right)-d\left(y, u_{21}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d\left(x, u_{1 l}\right)-d\left(x, u_{11}+d\left(y, u_{2 m}-d\left(y, u_{21}\right)\right.\right. \\
& =f_{G_{1}}\left(x, S_{1}\right)+f_{G_{2}}\left(x, S_{2}\right)
\end{aligned}
$$

Now, let $u_{1} \in F C\left(S_{1}\right)$ where $S_{1} \subseteq V_{1}$ and let $u_{2} \in F C\left(S_{2}\right)$ where $S_{2} \subseteq V_{2}$. That is $f_{G_{1}}\left(u_{1}, S_{1}\right) \leqslant f_{G_{1}}\left(x, S_{1}\right), \forall x \in V_{1}$ and $f_{G_{2}}\left(u_{2}, S_{2}\right) \leqslant f_{G_{2}}\left(y, S_{2}\right)$, $\forall y \in V_{2}$. Therefore $f_{G_{1}}\left(u_{1}, S_{1}\right)+f_{G_{2}}\left(u_{2}, S_{2}\right) \leqslant f_{G_{2}}\left(x, S_{1}\right)+f_{G_{2}}\left(y, S_{2}\right)$. So, $f_{G_{1} \square G_{2}}\left(\left(u_{1}, u_{2}\right), S_{1} \times S_{2}\right) \leqslant f_{G_{1} \square G_{2}}\left((x, y), S_{1} \times S_{2}\right), \forall(x, y) \in V_{1} \times V_{2}$. Hence $\left(u_{1}, u_{2}\right) \in F C\left(S_{1} \times S_{2}\right)$ in $G_{1} \square G_{2}$.
Conversely, assume that ($\left.u_{1}, u_{2}\right) \in F C\left(S_{1} \times S_{2}\right)$ in $G_{1} \square G_{2}$ where $S_{1} \subseteq V_{1}$ and $S_{2} \subseteq V_{2}$. That is, $f_{G_{1} \square G_{2}}\left(\left(u_{1}, u_{2}\right), S_{1} \times S_{2}\right) \leqslant f_{G_{1} \square G_{2}}\left((x, y), S_{1} \times S_{2}\right)$, where $S_{1} \subseteq V_{1}$ and $S_{2} \subseteq V_{2}, \forall x \in V_{1}, y \in V_{2}$. Therefore, $f_{G_{1}}\left(u_{1}, S_{1}\right)+$ $f_{G_{2}}\left(u_{2}, S_{2}\right) \leqslant f_{G_{1}}\left(x, S_{1}\right)+f_{G_{2}}\left(y, S_{2}\right), \forall x \in V_{1}$ and $y \in V_{2}$ or $f_{G_{1}}\left(u_{1}, S_{1}\right)+$ $f G_{2}\left(u_{2}, S_{2}\right) \leqslant f_{G_{1}}\left(x, S_{1}\right)+f_{G_{2}}\left(u_{2}, S_{2}\right), \forall x \in V_{1}$. That is, $f_{G_{1}}\left(u_{1}, S_{1}\right) \leqslant$ $f_{G_{1}}\left(x, S_{1}\right), \forall x \in V_{1}$. Hence, $u_{1} \in F C\left(S_{1}\right)$ in G_{1}. Similarly $u_{2} \in F C\left(S_{2}\right)$ in G_{2}. Thus, $F C\left(S_{1} \times S_{2}\right)=F C\left(S_{1}\right) \times F C\left(S_{2}\right)$.

Corollary 6.4.2. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs. Then the subgraph induced by $F C\left(S_{1} \times S_{2}\right)$, where $S_{1} \subseteq V_{1}$ and $S_{2} \subseteq V_{2}$ is connected in $G_{1} \square G_{2}$ if and only if the subgraph induced by $F C\left(S_{1}\right)$ is connected in G_{1} and the subgraph induced by $F C\left(S_{2}\right)$ is connected in G_{2}.

6.5 Conclusion

In this chapter we have initiated a structure based graph theoretical study on equity oriented centers which has been called fair centers. The difference between the maximum and minimum of distances from a given vertex to set of vertices has been chosen as the criteria for its fairness with respect to that set and hence repetition of vertices does not make any difference. Thus the concept of profile of vertices does not have any significance in this criteria of fairness. But we can consider a lot of other criteria for fairness
like the sum of the deviations or mean deviation and in this case sets can be generalised to profiles. Fair centers of various classes of graphs have been determined. While identifying the fair sets of odd cycles and symmetric even graphs, methods for finding the set which has a given set as the fair set have been devised. It has been proved that all fair sets of a tree are connected and the result has been generalised for block graphs. Moreover block graphs have been characterised as the class of chordal graphs with connected fair sets. In the thousands of graphs that have been examined using computer programs, block graphs were the only graphs where the subgraphs induced by all fair sets were connected. So we put forward the following conjecture.

Conjecture 2. A graph G is a block graph if and only if the induced subgraph of all of its fair sets are connected.

Chapter 7

Antimedian and weakly Antimedian graphs

7.1 Introduction

The graphs in which every three vertex profile have a unique median is called a median graph. This has significance in minimisation problems. Maximisation problems have also gained importance owing to the growing need for locating undesirable facilities and the maximisation analogue of median graphs has been defined by Kannan et al. in [10]. Antimedian graphs were introduced by them as the graphs in which for every triple of vertices there exists a unique vertex x that maximizes the sum of the distances from x to the vertices of the triple.
For the profile $\pi=\left(v_{1}, \ldots v_{k}\right)$ and $x \in V$, the set of all vertices x for which $D(x, \pi)$ is maximum is the Antimedian of π in G and is denoted by AM (π). A graph G is called an Antimedian Graph if every triple of G has a unique antimedian. Let $v_{1}, v_{2}, \cdots v_{n}$ be the vertex set of the path on n vertices $P=P_{n}$ and let $G_{i}, 2 \leqslant i \leqslant n-1$ be the rooted graphs with roots y_{i} respectively. Let G be the graph obtained from the disjoint union of P and the graphs G_{i}, such that for $i=2, \cdots, n-1, y_{i}$ is identified with v_{i}. Then G is a belt, with support P and ears G_{i} s. A belt is even, if the support is an even path. If, in addition, the depth of G_{i} is at most $\left\lfloor\frac{i-2}{3}\right\rfloor$ for $i \leqslant \frac{n}{2}$ and at most $\left\lfloor\frac{n-i-1}{3}\right\rfloor$ for $i>\frac{n}{2}$, then it is called a thin even belt.

Figure 7.1: A Thin Even Belt
In a graph G, let $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be two edges. Then $d\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)$ is defined to be $\min \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, v_{2}\right), d\left(v_{1}, u_{2}\right), d\left(v_{1}, v_{2}\right)\right\}$.
Here we identify antimedian block graphs, define weakly antimedian graphs, identify weakly antimedian trees and construct a new class of antimedian and weakly antimedian graphs.

7.2 Some Antimedian graphs

Lemma 7.2.1. Let G be an antimedian block graph. Then G contains exactly two diametrical vertices a and b. If P is the shortest (a, b) path then G is a belt with P as support, $d(a, b)$ is odd and for any triple of vertices either a or b is its antimedian.

Proof. Let a and b be a pair of diametrical vertices. Suppose $d(a, b)$ is even. Let y be the middle vertex of P. Since no vertex can be farther away from y than a and b, a and b are the antimedians of the profile (y, y, y), contradicting the fact that G is antimedian. Therefore $d(a, b)$ is odd.
Now assume that G is not a belt with P as support. Then there exist a vertex x in G such that the shortest $(x-P)$ paths meet P at two adjacent vertices z and z^{\prime}. Suppose it meet P at a pair of non adjacent vertices. Then we shall get a cycle involving vertices of more than one block a contradiction
to the fact that G is a block graph. Hence all the vertices at which the shortest x - P paths meet P are mutually adjacent or belong to a single block. Also, since P is a shortest $a-b$ path it cannot contain more than two vertices from a single block. Hence the shortest $x-P$ path meets P at at most 2 vertices and if it meets at two points they should be adjacent.

Figure 7.2: x - P path meeting P at a pair of adjacent vertices.

Let $u v$ be the edge of P such that $d(a, u)=d(b, v)$. Assume that $d\left(z z^{\prime}, u v\right) \leqslant d\left(w w^{\prime}, u v\right)$ for every edge $w w^{\prime}$ such that $d\left(x^{\prime}, P\right)=d\left(x^{\prime}, w\right)=$ $d\left(x^{\prime}, w^{\prime}\right)$ for some vertex x^{\prime} in G. Also assume that $d(z, a) \geqslant d\left(z^{\prime}, b\right)$. Let w_{1} be such that $d\left(w_{1}, u\right)=d(z, v)$.
Now, consider the three vertex profile $\left(w_{1}, u, z\right)$. If $D\left(a,\left(w_{1}, u, z\right)\right)=k$ then $D\left(b,\left(w_{1}, u, z\right)\right)=k+1, D\left(a,\left(w_{1}, u, z^{\prime}\right)\right)=k+1$ and $D\left(b,\left(w_{1}, u, z^{\prime}\right)\right)=k$. If $z^{\prime \prime}$ lies on $x-z$ and $x-z^{\prime}$ paths such that $z^{\prime \prime}$ is adjacent to both z and z^{\prime} then $D\left(b,\left(w_{1}, u, z^{\prime \prime}\right)\right)=k+1$ and $D\left(a,\left(w_{1}, u, z^{\prime \prime}\right)\right)=k+1$.
Now we shall prove that for $\left(w_{1}, u, z\right)$ and $\left(w_{1}, u, z^{\prime}\right)$ either a or b is its antimedian. Assume that $c \in V(G)$ is the antimedian of $\left(w_{1}, u, z\right)$. Let the shortest ($c-P$) path meet P at c^{\prime}. Then c^{\prime} cannot be on the $a-w_{1}$ part or $b-z$ part of P since b is the only vertex diametrical to a and vice versa. Let c^{\prime} lie on (z, u) part of P. Vertex c is an antimedian of $\left(w_{1}, u, z\right)$ implies c is an antimedian of (a, u, b). Let π be the profile (a, u, b). Assume that $d(c, a)$ is odd and $d(c, b)$ is even.

$$
\begin{aligned}
d(c, \pi)-d(b, \pi) & =d(c, a)+d(c, u)+d(c, b)-(d(b, a)+d(b, u)+d(b, b)) \\
& =d(c, a)-d(b, a)+d(c, u)-d(b, u)+d(c, b)
\end{aligned}
$$

This being the sum of three even numbers is even. Let w_{1}^{\prime} be the vertex adjacent to b on P and π^{\prime} be the profile got by replacing b in π by w_{1}^{\prime}. Then $D\left(c, \pi^{\prime}\right)-D\left(b, \pi^{\prime}\right)=D(c, \pi)-D(b, \pi)-2$. Repeat this process and if the profile at the $i^{\text {th }}$ stage is $\pi^{(i)}$ then $D\left(c, \pi^{(i)}\right)-D\left(b, \pi^{(i)}\right)=$ $D\left(c, \pi^{(i-1)}\right)-D\left(b, \pi^{(i-1)}\right)-2$. In this process no other pendant vertex y can be the antimedian of any $\pi^{(i)}$ since the sum of the distances to y will start to increase only when all vertices of the profile falls in the $a-y$ path and in this case $D\left(b, \pi^{(i)}\right)>D\left(y, \pi^{(i-1)}\right)$ since b is the eccentric vertex of a. Finally we get a profile $\pi^{(k)}$ in which $D\left(c, \pi^{(k)}\right)=D\left(b, \pi^{(k)}\right)$, that is $\pi^{(k)}$ has two antimedians c and b, a contradiction
Now, let c^{\prime} lie on the $\left(u, w_{1}\right)$ part of P. As in the previous case we can take the profile $\pi=(a, u, b)$ and continue the same process. Let $a, u_{1}, u_{2}, \ldots u_{j}, u$ be the $a-u$ part of P. If the profile $\pi(k)=(a, u, u)$ is such that $D\left(c, \pi^{(k)}>D\left(b, \pi^{(k)}\right)\right.$ then take $\pi^{(k+1)}=\left(a, u_{i}, u\right), \pi^{(k+2)}=$ $\left(a, u_{j}, u_{j}\right), \pi^{(k+3)}=\left(a, u_{j+1}, u_{j}\right)$ etc. Here also $D\left(c, \pi^{(i)}\right)-D\left(b, \pi^{(i)}\right)=$ $D\left(c, \pi^{(i-1)}\right)-D\left(b, \pi^{(i-1)}\right)-2$ and no other pendant vertex y can be the antimedian of any $\pi^{(i)}$. As in the previous case we get a profile $\pi^{(k)}$ such that $D\left(c, \pi^{(k)}\right)=D\left(b, \pi^{(k)}\right)$, that is $\pi^{(k)}$ has two antimedians c and b, a contradiction Therefore (w_{1}, u, z) has either a or b as its antimedian.
By a similar argument we can prove that (w_{1}, u, z^{\prime}) has antimedian a or b. Therefore $\left(w_{1}, u, z^{\prime \prime}\right)$) has also antimedian a or b. But since $D\left(a,\left(w_{1}, u, z\right)\right)=$ k and $D\left(b,\left(w_{1}, u, z^{\prime}\right)\right)=k$ we have $D\left(a,\left(w_{1}, u, z^{\prime \prime}\right)\right)=k+1$ and $D\left(b,\left(w_{1}, u, z^{\prime \prime}\right)\right)=k+1$. That is, $\left.\left(w_{1}, u, z^{\prime \prime}\right)\right)$ has two antimedians a and
b, a contradiction. Hence $z=z^{\prime}$. In other words G is a belt with P as its support.
Let x be an arbitrary vertex different from a and b. Let x^{\prime} be a vertex such that $x^{\prime} \in P$ and $d(x, P)=d\left(x, x^{\prime}\right)$. Let $d\left(x^{\prime} a\right)<d\left(x^{\prime} b\right)$. Suppose $d\left(x, x^{\prime}\right)>d\left(a, x^{\prime}\right)$. Then $d(x, b)>d(a, b)$ which implies a and b are not diametrical. If $d\left(x, x^{\prime}\right)=d\left(a, x^{\prime}\right)$ then (b, b, b) has two antimedians. Hence $d\left(x, x^{\prime}\right)<d\left(a, x^{\prime}\right)$. Now it is clear that for every $x, y \in V$ such that at least one of x and y is different from a and $b, d(x, y)<d(a, b)$. That is a and b are the only diametrical vertices. Now, let $\pi=(u, v, w)$ be a triple of G. Suppose $z \neq a, b$ is the antimedian of π. Now clearly z should belong to an end block of G. If z belong to the block B and $B \neq K_{2}$ then there exists a non cut vertex z^{\prime} in B. Let V_{B} denote the set of all non cut vertices of B. Hence $z, z^{\prime} \in V_{B}$. Now we shall consider different cases .
Case 1: Let all of u, v and $w \notin V_{B}$. Then $D(z, \pi)=D\left(z^{\prime}, \pi\right)$ contradicting G is antimedian.
Case 2: $u, v \notin V_{B}, w \in V_{B} . \quad D(z, \pi)=d(z, u)+d(z, v)+d(z, w)=$ $d(z, u)+d(z, v)+1$. Replace w by w^{\prime} where w^{\prime} is the cutvertex belonging to $B . D\left(z, \pi^{\prime}\right)=d(z, u)+d(z, v)+1 . D\left(w, \pi^{\prime}\right)=d(w, u)+d(w, v)+1=$ $d(z, u)+d(z, v)+1$. For every x in $V \backslash V_{B}, D\left(x, \pi^{\prime}\right)<d(z, u)+d(z, v)+1$. Then, π^{\prime} has two antimedians z and w, a contradiction.
Case 3: $u \notin V_{B}, v, w \in V_{B}$.
Subcase 3.1: $v=w=z . ~ D(z, \pi)=0+0+d(z, u) . ~ D\left(z^{\prime}, \pi\right)=d(z, u)+2$. This contradicts the fact that z is antimedian.
Subcase 3.2: $v=z, w \neq z . \quad D(z, \pi)=d(z, u)+1, D(w, \pi)=1+d(z, u)$ contradicting G is antimedian.
Subcase 3.3: $v, w \neq z$
$D(z, \pi)=d(z, u)+2, D(w, \pi)=d(z, u)+1$. For any other vertex x, $d(x, \pi)<d(z, u)+2$. Replace w by w^{\prime} where w^{\prime} is the cutvertex be-
longing to $B . D\left(z, \pi^{\prime}\right)=d(z, u)+2, d\left(w, \pi^{\prime}\right)=d(z, u)+2$ and for all x, $d(x, \pi) \leqslant d(z, u)+2$. Therefore π^{\prime} has two antimedians a contradiction.
Case 4: $u, v, w \in V_{B}$. Let w^{\prime} be the cutvertex of B. Then $D\left(w^{\prime}, \pi\right) \geqslant$ $D(z, \pi)$ contradicting that z is the unique antimedian of π. Hence $B=K_{2}$ and z should be a leaf.
Now in the way we proved that $\left(w_{1}, u, z\right)$ has a as its antmedian we prove that for any three vertex profile π either a or b is its antimedian.

Now we shall give the necessary and sufficient condition for a block graph to be antimedian. Before that we quote two theorems from [10].

Theorem 7.2.1. Let G be a thin even belt. Then G is antimedian.
Theorem 7.2.2. Let T be a tree. Then T is an antimedian graph if and only if it is an thin even belt.

Theorem 7.2.3. Let G be a block graph. Then G is an antimedian graph if and only if it is a thin even belt .

Proof. By Theorem 7.2.1 we know that thin even belts are antimedian. It remains to prove that among block graphs thin even belts are the only antimedian graphs. Let G be an arbitrary antimedian block graph. By Lemma 7.2.1, G has exactly two diametrical vertices u and v and let P : $u=v_{1} v_{2} \ldots v_{r}=v$ be the $u-v$ path in G. Let $G_{i}, 1 \leqslant i \leqslant r$, be the maximal subgraph of G that contains v_{i} and no other vertex of P. We have that G is an even belt with P as support G_{i} 's as the ears. Let d_{i} be the depth of $G_{i}, 1 \leqslant i \leqslant r$. Suppose that for some $i \leqslant \frac{n}{2}$ the condition $d_{i} \leqslant \frac{(i-2)}{3}$ is not fulfilled. Hence $3 d_{i}>i-2$ and let w be a vertex from T_{i} with $3 d\left(w, v_{i}\right)>i-2$ or $3 d\left(w, v_{i}\right) \geqslant i-1$. Consider the triple $\pi=(u, v, v)$. Clearly $D(v, \pi)<D(u, \pi)=2(r-1)$. However $D(w, \pi)=3 d_{i}+i-1+$ $2(r-i) \geqslant 2 r-2$. We have a contradiction with Lemma 7.2.2 since w is
also an antimedian vertex. By symmetry we have an analogue proof for $i>\frac{r}{2}$.

Theorem 7.2.4. Let H be a symmetric even graph of diameter ℓ and let u and v be a pair of diametric vertices of H. Let G be the graph obtained by adjoining to H paths of length m and n at u and v respectively. Then G is Antimedian if and only if

1. diameter of G is odd
2. $m+n>\ell$
3. $\frac{m}{3}+3 n>\ell$ and $\frac{n}{3}+3 m>\ell$

Proof. First we shall assume that $\operatorname{diam}(G)$ is odd, $m+n>\ell, \frac{m}{3}+3 n>\ell$ and $\frac{n}{3}+3 m>\ell$. Let a and b be the diametrical vertices of G with $d(a, u)=m$ and $d(b, v)=n$. Let π be the profile $\left(u_{1}, u_{2}, u_{3}\right)$. We shall prove that G is antimedian by showing that π has a unique antimedian. Here we shall take different cases.
Case 1: Each of u_{1}, u_{2} and u_{3} either belong to $a-u$ path or $b-v$ path. Then since $d(a, b)$ is odd and a path of odd length is antimedian π has a unique antimedian.
Case 2: u_{1}, u_{2} belong to $a-u$ path and u_{3} belong to H. Let x be vertex in
H at distance k from v. Then $d\left(x, u_{1}\right)=d\left(v, u_{1}\right)-k, d\left(x, u_{2}\right)=d\left(v, u_{2}\right)-$ k and $d\left(x, u_{3}\right) \leqslant d\left(v, u_{3}\right)+k$. Hence $D(x, \pi)<D(v, \pi)$ for every $x \neq v$ in H. As we move from v to $b, D(\pi)$ increases by three at each step. As we move from u to $u_{2}, D(\pi)$ decreases by one at each step and as we move from from u_{2} to $u_{1}, D(\pi)$ increases by one at each step and as we mover further $D(\pi)$ increases by three at each step. Therefore we can conclude that $D(\pi)$ attains the maximum at a or b. But since $d(a, b)$ is odd, $D(a, \pi) \neq D(b, \pi)$. Hence π has a unique antimedian.
Case 3: u_{1} belong to $a-u$ path, u_{2} belong to H and u_{3} belong to $b-v$ path. We shall first prove that the antimedian of π is either a or b. If at all a vertex other than a and b is the antimedian of π, then it should be a vertex belonging to H. If that particular vertex is the antimedian of π then it should be the antimedian of $\left(a, u_{2}, b\right)$. Hence without loss of generality we may assume that $\pi=\left(a, u_{2}, b\right)$. Let u_{2}^{\prime} be the eccentric vertex of u_{2} in H. Let $d\left(u, u_{2}^{\prime}\right)=d$ so that $d\left(v, u_{2}^{\prime}\right)=\ell-d$. Then $D\left(u_{2}^{\prime}, \pi\right)=$ $\ell+d+m+\ell-d+n=2 \ell+m+n$. Let w be a vertex different from u_{2}^{\prime} in H. Then $D(w, \pi)=d(w, u)+m+d\left(w, u_{2}^{\prime}\right)+d(w, v)+n<2 \ell+m+n, D(a, \pi)=$ $0+m+\ell-d+m+\ell+n=2 m+2 \ell-d+n$, and $D(b, \pi)=0+n+d+m+\ell+n=$ $m+2 n+\ell+d . D(a, \pi) \leqslant D\left(u_{2}^{\prime}, \pi\right)$ and $D(b, \pi) \leqslant D\left(u_{2}^{\prime}, \pi\right)$ implies

$$
\begin{array}{r}
2 m+2 \ell-d+n \leqslant 2 \ell+m+n \\
m+2 n+\ell+d \leqslant 2 \ell+m+n \tag{7.2}
\end{array}
$$

Adding inequalities 7.1 and 7.2 we get $3 m+3 n+3 \ell \leqslant 4 \ell+2 m+2 n$ or $m+n \leqslant$ ℓ, a contradiction. Hence antimedian of π is either a or b. But since $d(a, b)$ is odd antimedian of π is unique.
Case 4: u_{1} belong to $a-u$ path, $u_{2}, u_{3} \in H$. Assume that a vertex different from a and b is the antimedian of π. So it should be a vertex of H. Hence in π we may replace u_{1} by a. Consider the profile $\pi^{\prime}=\left(u, u_{2}, u_{3}\right)$. If w is the median of π^{\prime} and if the w^{\prime} is the eccentric vertex of w in H then,
antimedian of π^{\prime} in H is w^{\prime}. Therefore among the vertices of $H, D(\pi)$ is maximum for w^{\prime} or Antimedian of π is w^{\prime}. Since w^{\prime} is the eccentric vertex of w, replacing u_{2} and u_{3} by w in π increases $D\left(w^{\prime}, \pi\right)$ by $d\left(u_{2}, w\right)+d\left(u_{3}, w\right)$ and therefore antimedian of (a, w, w) is also w^{\prime}. Therefore without loss of generality we may assume that $\pi=(a, w, w)$. Let $d(u, w)=d$.
$D(u, \pi)=m+2 d, D(a, \pi)=m+d+m+d=2 m+2 d, D\left(w^{\prime}, \pi\right)=$ $\ell+\ell+\ell-d+m=3 \ell-d+m=m+2 d+3(\ell-d)$ and $D(b, \pi)=$ $\ell-d+n+\ell-d+n+n+\ell+m=m+2 d+3 n+3(\ell-d)-d . D(a, \pi) \leqslant D(w, \pi)$ and $D(b, \pi) \leqslant D(w, \pi)$ give

$$
\begin{array}{r}
m \leqslant 3(\ell-d) \text { or } \frac{m}{3} \leqslant \ell-d \\
3 n+3(\ell-d)-d \leqslant 3 \ell-3 d \text { or } 3 n \leqslant d \tag{7.4}
\end{array}
$$

Adding these two inequalities we get $\frac{m}{3}+3 n \leqslant \ell$, a contradiction. Hence $\pi=\left(u_{1}, u_{2}, u_{3}\right)$ has antimedian a or b.

$$
\begin{aligned}
D(a, \pi) & =d\left(a, u_{1}\right)+d\left(a, u_{2}\right)+d\left(a, u_{3}\right) \\
D(b, \pi) & =d\left(b, u_{1}\right)+d\left(b, u_{2}\right)+d\left(b, u_{3}\right) \\
& =3(m+n+\ell)-\left(d\left(a, u_{1}\right)+d\left(a, u_{2}\right)+d\left(a, u_{3}\right)\right) \\
D(a, \pi)=D(b, \pi) & \Longrightarrow 2\left(d\left(a, u_{1}\right)+d\left(a, u_{2}\right)+d\left(a, u_{3}\right)\right)=3(m+n+\ell)
\end{aligned}
$$

Therefore $3(m+n+\ell)$ is even or $m+n+\ell$ is even contradicting the fact that $d(a, b)$ is odd. In other words π has a unique antimedian.
Case 5: u_{1}, u_{2} and u_{3} belong to H. As in the previous cases initially we prove that a or b is the antimedian of π. Assume the contrary. Then the antimedian should be the antimedian vertex of π in H. Antimedian of π in H is the eccentric vertex of median of π in H. Let w be the median of π and let w^{\prime} be the eccentric vertex of w in H. Therefore antimedian of π
is w^{\prime}.
Let $d\left(u_{1}, w\right)=d_{1}, d\left(u_{2}, w\right)=d_{2}$ and $d\left(u_{3}, w\right)=d_{3}$.
Then $d\left(u_{1}, w^{\prime}\right)=\ell-d_{1}, d\left(u_{2}, w^{\prime}\right)=\ell-d_{2}$ and $d\left(u_{3}, w^{\prime}\right)=\ell-d_{3}$.
Therefore $D\left(w^{\prime}, \pi\right)=3 \ell-\left(d_{1}+d_{2}+d_{3}\right)$.
Let $d\left(u, u_{1}\right)=e_{1}, d\left(u, u_{2}\right)=e_{2}$ and $d\left(u, u_{3}\right)=e_{3}$
Then $d\left(v, u_{1}\right)=\ell-e_{1}, d\left(v, u_{2}\right)=\ell-e_{2}$ and $d\left(v, u_{3}\right)=\ell-e_{3}$.
Therefore $d\left(a, u_{1}\right)=m+e_{1}, d\left(a, u_{2}\right)=m+e_{2}, d\left(a, u_{3}\right)=m+e_{3}, d\left(b, u_{1}\right)=$ $n+\ell-e_{1}, d\left(b, u_{2}\right)=\ell-e_{2}$ and $d\left(b, u_{3}\right)=\ell-e_{3}+n$.
Hence $D(a, \pi)=3 m+\left(e_{1}+e_{2}+e_{3}\right)$ and $D(b, \pi)=3 n+3 \ell-\left(e_{1}+e_{2}+e_{3}\right)$ $D\left(w^{\prime}, \pi\right) \geqslant D(a, \pi)$ and $D\left(w^{\prime}, \pi\right) \geqslant D(b, \pi)$ gives

$$
\begin{align*}
& 3 \ell-\left(d_{1}+d_{2}+d_{3}\right) \geqslant 3 m+\left(e_{1}+e_{2}+e_{3}\right) \tag{7.5}\\
& 3 \ell-\left(d_{1}+d_{2}+d_{3}\right) \geqslant 3 n+3 l-\left(e_{1}+e_{2}+e_{3}\right) \tag{7.6}
\end{align*}
$$

Adding these inequalities we get

$$
6 \ell-2\left(d_{1}+d_{2}+d_{3}\right) \geqslant 3(m+n)+3 \ell
$$

Therefore $3 \ell \geqslant 3(m+n)+2\left(d_{1}+d_{2}+d_{3}\right)$ or $\ell-\frac{2}{3}\left(d_{1}+d_{2}+d_{3}\right) \geqslant m+n$, a contradiction to the fact that $m+n>\ell$. Therefore antimedian of π is either a or b. Now, assume that $D(a, \pi)=D(b, \pi)$. Then

$$
\begin{aligned}
3 m+e_{1}+e_{2}+e_{3} & =3 n+\ell-e_{1}+\ell-e_{2}+\ell-e_{3} . \\
\text { That is, } 2\left(e_{1}+e_{2}+e_{3}\right) & =3 n+3 \ell-3 m
\end{aligned}
$$

Therefore $3(n+\ell-m)$ is even or $n+\ell-m$ is even. This implies $n+\ell+m$ is even contradicting the fact that $d(a, b)$ is odd. Hence π has a unique antimedian.
Thus we have proved that for every three vertex profile π, antimedian of π is unique. In other words, G is an antimedian graph.

Conversely, assume that G is an antimedian graph. We shall prove the following

1. Diameter of G is odd

Let diameter of G be even and let x be the vertex of G such that $d(x, a)=d(x, b)$. Then the profile (x, x, x) has two antimedians namely, a and b, a contradiction. Hence diameter of G is odd.
2. $m+n>\ell$

On the contrary, assume that $m+n=\ell-p$ where $p \geqslant 0$. Let u^{\prime} be a vertex of H such that $d\left(u^{\prime}, u\right)=n+p$. Since $m+n+p=\ell$, $n+p \leqslant \ell$ and hence such a u^{\prime} exists in H. Let v^{\prime} be the eccentric vertex of u^{\prime} in H. For each $x \in V(H), d(x, a)+d(x, b)=d(a, b)$ and $d\left(x, u^{\prime}\right)<d\left(v^{\prime}, u^{\prime}\right)$ for every $x \neq v^{\prime}$ in H. Therefore $D(x, \pi)<$ $D\left(v^{\prime}, \pi\right)$ for every $x \neq v^{\prime}$ in $V(H)$. Also for every vertex y which is either in $a-u$ path or $b-v$ path, $D(y, \pi)<\max (D(a, \pi), D(b, \pi))$. Now, $D(a, \pi)=d(a, b)+m+n+p, D(b, \pi)=d(a, b)+n+\ell-n-p=d(a, b)+$ $\ell-p=d(a, b)+m+n$ and $D\left(v^{\prime}, \pi\right)=d(a, b)+\ell=d(a, b)+m+n+p$. Hence π has two antimedians a and v^{\prime}, a contradiction. Therefore $m+n>\ell$.
3. $\frac{m}{3}+3 n>\ell$ and $\frac{n}{3}+3 m>\ell$

Assume that $\frac{m}{3}+3 n \leqslant \ell$. Let $u^{\prime} \in V(H)$ be such that $d\left(u^{\prime}, u\right)=r$ and $d\left(u^{\prime}, v\right)=s$ where $r=3 n . \frac{m}{3}+3 n \leqslant \ell=r+s=3 n+s$. Therefore $\frac{m}{3} \leqslant s$. Now consider the profile $\pi=\left(a, u^{\prime}, u^{\prime}\right)$. Let v^{\prime} be the eccentric vertex of u^{\prime} in H. Then $D\left(v^{\prime}, \pi\right)=\ell+\ell+s+m$. Now, let $x \in V(H)$ be such that $d\left(x, v^{\prime}\right)=k$. Then $d\left(x, u^{\prime}\right)=\ell-k$ and $d(x, a) \leqslant d\left(v^{\prime}, a\right)+k$. Therefore $D(x, \pi)<D\left(v^{\prime}, \pi\right)$ for all $x \neq v^{\prime}$ in H. Also it is obvious that for any vertex y in the $a-u$ path or $b-v$ path, $D(y, \pi)<\max (D(a, \pi), D(b, \pi))$.
$D(a, \pi)=0+m+r+m+r=2 m+2 r, D(b, \pi)=m+n+\ell+n+$

$$
\begin{aligned}
& s+n+s=m+3 n+2 s+\ell=m+r+s+s+\ell=m+2 \ell+s \text { and } \\
& D\left(v^{\prime}, \pi\right)=2 \ell+s+m \text {. Since } m \leqslant 3 s, 2 m+2 r \leqslant 2 \ell+s+m \text {. Hence } \pi \\
& \text { has two antimedians, } v^{\prime} \text { and } b \text {, a contradiction. Therefore } \frac{m}{3}+3 n>\ell \\
& \text { and similarly we can prove that } \frac{n}{3}+3 m>\ell .
\end{aligned}
$$

None of the conditions in the above theorem is redundant. Consider the following graphs.

Figure 7.3: H_{1}
H_{1} has $m=2, n=2$ and $\ell=5$. Diameter is odd(9), $\frac{m}{3}+3 n=\frac{n}{3}+3 m=$ $6.66>\ell=5$ but $m+n=4<5=\ell$ and hence is not antimedian.

Figure 7.4: H_{2}
H_{2} has $m=1, n=5$ and $\ell=5$. Diameter is odd(11), $m+n=6>5=\ell$, $\frac{m}{3}+3 n=15.33>\ell$ but $\frac{n}{3}+3 m=4.66<\ell$ and hence is not antimedian.

Figure 7.5: H_{3}
H_{3} has $m=3, n=3$ and $\ell=4 . m+n>\ell, \frac{m}{3}+3 n>\ell$ and $\frac{n}{3}+3 m>\ell$, but diameter is even(10) and hence is not antimedian.

Theorem 7.2.5. Let H be a symmetric even graph of diameter ℓ and let G be a graph obtained by joining a path P of length m to H. Then G is antimedian if and only if
(1) diameter of G is odd
(2) $m>3 \ell$ or $m=3 \ell-1$

Proof. Let the path P be joined to H at the vertex u and let b be eccentric vertex of u in H. Let a be the unique pendant vertex of G. That is, a
and b are the diametrical vertices of G. If $\mathrm{d}(\mathrm{a}, \mathrm{b})$ is even then let u^{\prime} be the vertex of G such that $\mathrm{d}\left(\mathrm{u}^{\prime}, \mathrm{a}\right)=\mathrm{d}\left(\mathrm{u}^{\prime}, \mathrm{b}\right)$. Then $\pi=\left(a, u^{\prime}, b\right)$ has antimedians a and b. Therefore we assume that $d(a, b)$ is odd.
Case 1: $m<\ell$.
Let u_{1} be a vertex at a distance m from b in H and let u_{1}^{\prime} be the eccentric vertex of u_{1} in H. Consider the profile $\pi=\left(a, u_{1}, b\right)$.

$$
\begin{aligned}
D(a, \pi) & =0+d\left(a, u_{1}\right)+d(a, b) \\
& =m+\ell-m+\ell+m \\
& =2 \ell+m . \\
D\left(u_{1}^{\prime}, \pi\right)= & d\left(u_{1}^{\prime}, a\right)+d\left(u_{1}^{\prime}, u_{1}\right)+d\left(u_{1}^{\prime}, b\right) \\
= & d(a, b)+d\left(u_{1}^{\prime}, u_{1}\right) \\
= & \ell+m+\ell \\
= & 2 \ell+m
\end{aligned}
$$

Let $x \in V(H)$. Then

$$
\begin{aligned}
D(x, \pi) & =d(x, a)+d(x, b)+d\left(x, u_{1}\right) \\
& =d(a, b)+d\left(x, u_{1}\right) \\
& =\ell+m+d_{x} \text { where } d_{x} \leqslant \ell \text { and } d_{x}=\ell \text { only when } x=u_{1}^{\prime} .
\end{aligned}
$$

Therefore $D(x, \pi) \leqslant D\left(u_{1}^{\prime}, \pi\right)$ for all $x \in V(H)$. Also, it is obvious that for any vertex x in the path $\mathrm{P}, D(x, \pi) \leqslant \max (D(a, \pi), D(b, \pi)$. Thus for any $x \in V(G), D(x, \pi) \leqslant D(a, \pi)=D\left(u_{1}^{\prime}, \pi\right)$ or π has two antimedians, namely, a and u_{1}^{\prime}. Hence $m<\ell$ is not true.
Case 2: $\ell \leqslant m \leqslant 2 \ell$.
Let $m=\ell+t$. Here we consider two subcases.
Subcase 2.1: t is even.
Let u_{1} be a vertex such that $d\left(u_{1}, b\right)=\frac{t}{2}$ and let u_{1}^{\prime} be the eccentric vertex of u_{1} in H. Let $\pi=\left(a, u_{1}, u\right)$.

```
\(D(a, \pi)=0+m+m+\ell-\frac{t}{2}=2 m+\ell-\frac{t}{2}\)
\(D(b, \pi)=\ell+m+\ell+\frac{t}{2}=m-t+m+\ell+\frac{t}{2}=2 m+\ell-\frac{t}{2}\)
```

For any $x \in H$ such that $d(x, b)=k, d(x, u)=d(b, u)-k$,
$d(x, a)=d(b, a)-k$ and $d\left(x, u_{1}\right) \leqslant d\left(b, u_{1}\right)-k$. Hence $D(x, \pi) \leqslant D(b, \pi)$.
Therefore π has two antimedians a and b.
Subcase 2.2: t is odd.
Let u_{1} and u_{2} be vertices of H such that $d\left(u_{1}, b\right)=\frac{t+1}{2} u_{2}$ belong to u u_{1} path and is adjacent to u. Let $\pi=\left(a, u_{1}, u_{2}\right) . d(b, a)=d\left(u_{2}^{\prime}, a\right)+1$, $d\left(b, u_{2}\right)=d\left(u_{2}^{\prime}, u_{2}\right)-1$ and $d\left(b, u_{1}\right)=d\left(u_{2}^{\prime}, u_{1}\right)-1$. Hence $D(b, \pi)=$ $D\left(u_{2}^{\prime}, \pi\right)-1$. Therefore $D(x, \pi) \leqslant D\left(u_{2}^{\prime}, \pi\right)$ for every $x \in V(H)$. In other words $D(x, \pi) \leqslant D\left(u_{2}^{\prime}, \pi\right)$ for every $x \in V(G)$.

$$
\begin{aligned}
D(a, \pi) & =0+m+1+m+\ell-\frac{t+1}{2} \\
& =2 m+1+\ell-\frac{t+1}{2} \\
& =2 m+\ell+\frac{1-t}{2} \\
D\left(u_{2}^{\prime}, \pi\right) & =\ell-1+m+\frac{t+1}{2}+1+\ell \\
& =\ell+m+\frac{t+1}{2}+m-t \\
& =2 m+\ell+\frac{1-t}{2}
\end{aligned}
$$

Therefore π has two antimedians, a and u_{2}^{\prime}, a contradiction. That is, $\ell \leqslant m \leqslant 2 \ell$ is not true.
Case 3: $2 \ell \leqslant m \leqslant 3 \ell, m \neq 3 \ell-1$
Let $m=3 \ell-t, t>1$. Take two subcases
Subcase 3.1: t is even.
Let u_{1} be such that $d\left(u_{1}, b\right)=\ell-\frac{t}{2}$. Let $\pi=\left(a, u_{1}, u\right)$. Let u_{1} be such
that $d\left(u_{1}, b\right)=\ell-\frac{t}{2}$. Consider the profile $\pi=\left(a, u_{1}, u\right)$.

$$
\begin{aligned}
D(a, \pi)= & 0+m+\frac{t}{2}+m=2 m+\frac{t}{2} \\
D(b, \pi) & =m+\ell+\ell+\ell-\frac{t}{2} \\
& =m+3 \ell-\frac{t}{2} \\
& =m+m+t-\frac{t}{2} \\
& =2 m+\frac{t}{2}
\end{aligned}
$$

Therefore $D(a, \pi)=D(b, \pi)$ As in case $2 D(x, \pi) \leqslant D(a, \pi)=D(b, \pi)$ for every $x \in V(G)$. Hence π has two antimedians a and b, a contradiction.
Subcase 3.2: t is odd.
Let u_{1} be such that $d\left(u_{1}, b\right)=\ell-\frac{t-1}{2}$ and let u_{2} be such that u_{2} is adjacent to u and u_{2} lies on the shortest u - u_{1} path. Let $\pi=\left(a, u_{1}, u_{2}\right)$. Then

$$
\begin{aligned}
D(a, \pi) & =0+m+\frac{t-1}{2}+m+1 \\
& =2 m+1+\frac{t-1}{2} \\
& =2 m+\frac{t+1}{2} \\
D\left(u_{2}^{\prime}, \pi\right) & =\ell-1+m+\ell+\ell-\frac{t-1}{2}+1 \\
& =3 \ell+m-\frac{t-1}{2} \\
& =m+t+m-\frac{t-1}{2} \\
& =2 m+\frac{t+1}{2}
\end{aligned}
$$

Also it can be seen that $D(x, \pi) \leqslant D\left(u_{2}^{\prime}, \pi\right)$ for every $x \in V(G)$. Hence π has two antimedians a and u_{2}^{\prime}, a contradiction.
Case 4: $m=3 \ell-1$ or $m>3 \ell$
Let $\pi=\left(u_{1}, u_{2}, u_{3}\right)$. Here we shall consider some subcases.
Subcase 4.1: u_{1}, u_{2} and u_{3} belong to $a-u$ path.
Since $d(a, b)$ is odd, π has a unique antimedian.
Subcase 4.2: $u_{1}, u_{2} \in a-u$ path and $u_{3} \in H$.
Let $x \in H$ be such that $x \neq b$ and $d(x, b)=k$. Then $d\left(x, u_{1}\right)=d\left(b, u_{1}\right)-k$, $d\left(x, u_{2}\right)=d\left(b, u_{2}\right)-k$ and $d\left(x, u_{3}\right)<d\left(b, u_{3}\right)+k$. Therefore $D(x, \pi)<$ $D(b, \pi)$. Similarly for every $y \in(a, u)$ path such that $y \neq a, D(y, \pi)<$ $D(a, \pi)$. Hence antimedian of π is a or b. Since $d(a, b)$ is even $D(a, \pi) \neq$ $D(b, \pi)$. Therefore π has a unique antimedian.
Subcase 4.3: $u_{1} \in a-u$ path and $u_{2}, u_{3} \in H$.
First we shall prove that antimedian of π is a or b. If there exists a vertex different from a and b which is an antimedian of π then it should be a vertex of H. Hence we can assume that $\pi=\left(a, u_{2}, u_{3}\right)$. Consider the profile $\left(u, u_{2}, u_{3}\right)$. Then its antimedian in H is the eccentric vertex of its median in H. Let x be the median and let y be the antimedian. Therefore Antimedian of π in G is also y. This implies the antimedian of (a, x, x) is also y. Hence without loss of generality we may assume that $\pi=(a, x, x)$. Let $d(u, x)=d$.

$$
\begin{aligned}
& D(y, \pi)=\ell+\ell+\ell-d+m=3 \ell-d+m \\
& D(a, \pi)=m+d+m+d+0=2 m+2 d
\end{aligned}
$$

$D(a, \pi) \leqslant D(y, \pi) \Longrightarrow m \leqslant 3 \ell-3 d$. If $d \geqslant 1$ we get $m \leqslant 3 \ell-3$, a contradiction. So the only possibility is $d=0$ and this implies $y=b$. We shall prove that $D(a, \pi) \neq D(b, \pi)$. On the contrary assume that $D(a, \pi)=$ $D(b, \pi)$.
Let $d\left(u, u_{2}\right)=d_{2}$ and $d\left(u, u_{3}\right)=d_{3}$ so that $d\left(b, u_{2}\right)=\ell-d_{2}$ and $d\left(b, u_{3}\right)=$
$\ell-d_{3}$. Therefore,

$$
\begin{aligned}
D(a, \pi) & =d(a, a)+d\left(a, u_{2}\right)+d\left(a, u_{3}\right) \\
& =0+m+d_{2}+m+d_{3} \\
& =2 m+d_{2}+d_{3} \\
D(b, \pi) & =d(b, a)+d\left(b, u_{2}\right)+d\left(b, u_{3}\right) \\
& =m+\ell+\ell-d_{2}+\ell-d_{3} \\
& =m+3 \ell-d_{2}-d_{3}
\end{aligned}
$$

Therefore $D(a, \pi)=D(b, \pi)$ implies $2 m+d_{2}+d_{3}=m+3 \ell-d_{2}-d_{3}$ or $2\left(d_{2}+d_{3}\right)=3 \ell-m$. In other words $3 \ell-m$ is even. This means that 3ℓ and m are of the same parity or ℓ and m are of the same parity. Hence we get that $\ell+m$ is even, a contradiction to the fact $d(a, b)$ is odd. That is π has either a or b as its antimedian and $D(a, \pi) \neq D(b, \pi)$.
Subcase 4.4: u_{1}, u_{2} and u_{3} belong to H.
Here also we first prove that antimedian of π is either a or b. If a vertex other than a or b is an antimedian of π, then it should be a vertex of H, infact, the eccentric vertex of a median of $\left(u_{1}, u_{2}, u_{3}\right)$. Let x be the median of $\left(u_{1}, u_{2}, u_{3}\right)$ and y be its antimedian. Let $d\left(u, u_{1}\right)=d_{1}, d\left(u, u_{2}\right)=$ $d_{2}, d\left(u, u_{3}\right)=d_{3}, d\left(x, u_{1}\right)=e_{1}, d\left(x, u_{2}\right)=e_{2}$ and $d\left(x, u_{3}\right)=e_{3}$. Then $d\left(y, u_{1}\right)=\ell-e_{1}, d\left(y, u_{2}\right)=\ell-e_{2}$ and $d\left(y, u_{3}\right)=\ell-e_{3}$ and therefore $D(y, \pi)=3 \ell-\left(e_{1}+e_{2}+e_{3}\right)$. Also, we have $d\left(a, u_{1}\right)=m+d_{1}, d\left(a, u_{2}\right)=$ $m+d_{2}$ and $d\left(a, u_{3}\right)=m+d_{3}$. Hence $D(a, \pi)=3 m+d_{1}+d_{2}+d_{3}$. $D(a, \pi) \leqslant D(y, \pi)$
$\Longrightarrow 3 m+d_{1}+d_{2}+d_{3} \leqslant 3 \ell-\left(e_{1}+e_{2}+e_{3}\right)$
$\Longrightarrow 3 m \leqslant 3 \ell-\left(e_{1}+e_{2}+e_{3}+d_{1}+d_{2}+d_{3}\right)$
$\Longrightarrow m \leqslant \ell-\frac{1}{3}\left(e_{1}+e_{2}+e_{3}+d_{1}+d_{2}+d_{3}\right)$, a contradiction to the fact that
$m=3 \ell-1$ or $m>3 \ell$. Hence $D(a, \pi)>D(y, \pi)$ or a is the antimedian of π.
From these different cases we can conclude that G is antimedian if and only if $d(a, b)$ is even and either $m=3 \ell-1$ or $m>3 \ell$.

7.3 Weakly Antimedian Graphs

Balakrishnan et al. concluded [10] by suggesting a study on the class of graphs in which any triple of distinct vertices has a unique antimedian. It is this class of graphs that we consider in this section.

Definition 7.3.1. A Graph G is said to be Weakly Antimedian if any triple of distinct vertices has a unique antimedian.

An immediate conclusion is that every antimedian graph is weakly antimedian. The following is an example of a graph that is weakly antimedian, but not antimedian.

Figure 7.6: Weakly Antimedian graph that is not antimedian

Here each of the distinct triple has a unique antimedian and therefore is weakly antimedian. But consider the profile $(w, w, w) . u, v, x$ are all its antimedian vertices. Hence it is not an antimedian graph.

Proposition 7.3.2. The path P_{n} is weakly antimedian if and only if n is even.

Proof. Since $P_{2 n}$ is antimedian, it is weakly antimedian. Also $P_{2 n+1}$ is not weakly antimedian. For, let $P_{2 n}=\left\{x_{1}, x_{2}, \cdots x_{n-1}, x_{n}, x_{n+1}, \cdots x_{2 n-1}\right\}$. Consider the triple $\pi=\left(x_{n-1}, x_{n}, x_{n+1}\right) . d\left(x_{1}, x_{n-1}\right)=n-2, d\left(x_{1}, x_{n}\right)=$ $n-1, d\left(x_{1}, x_{n+1}\right)=n, d\left(x_{2 n-1}, x_{n-1}\right)=n, d\left(x_{2 n-1}, x_{n}\right)=n-1$ and $d\left(x_{2 n-1}, x_{n+1}\right)=n-2$. Therefore $D\left(x_{1}, \pi\right)=D\left(x_{2 n-1}, \pi\right)=3 n-3$
Also for all $x_{i}, i \neq 1,2 n+1, D\left(x_{i}, \pi\right)<3 n-3$. Hence, the triple π has two antimedians or $P_{2 n+1}$ is not weakly antimedian.

Proposition 7.3.3. C_{n} is weakly antimedian if and only if $n=4$
Proof. C_{4} is weakly antimedian since it is antimedian, see [10]. Let C_{n} be an odd cycle with vertex set $\left\{x_{1}, x_{2}, \cdots, x_{2 r-1}\right\}$. Now consider the triple of vertices $\pi=\left(x_{1}, x_{2}, x_{2 r-1}\right) . d\left(x_{1}, x_{r}\right)=r-1, d\left(x_{2}, x_{r}\right)=r-2$ and $d\left(x_{2 r-1}, x_{r}\right)=r-1$. Therefore $D\left(x_{r}, \pi\right)=3 r-4$. Similarly $D\left(x_{r}-1, \pi\right)=$ $3 r-4$. It is obvious that for all other vertices the sum of the distances is less than $3 r-4$. Now let C_{n} be an even cycle with vertex set $\left\{x_{1}, x_{2}, \cdots, x_{2 r}\right\}$, $r>2$. Let $\pi=\left(x_{1}, x_{3}, x_{r+2}\right) . d\left(x_{1}, x_{r+1}\right)=r, d\left(x_{3}, x_{r+1}\right)=r-2$ and $d\left(x_{r+2}, x_{r+1}\right)=1$. Therefore $D\left(x_{r+1}, \pi\right)=2 r-1$. Similarly $D\left(x_{r+3}, \pi\right)=$ $2 r-1$. Also, for all other vertices sum of the distances is less than $2 r-1$. Hence $D(x, \pi)$ is maximum for x_{r+1} and x_{r+3}. Therefore C_{n} is not weakly antimedian when $n \neq 4$.

Proposition 7.3.4. If the Cartesian product of two graphs G and H is weakly antimedian, then both G and H are weakly antimedian.

Proof. Suppose $G \square H$ is weakly antimedian and G is not weakly antimedian. Then there exists a triple of distinct vertices, say $\left(g_{1}, g_{2}, g_{3}\right)$ which has two antimedians. Let a_{1} and a_{2} be the antimedians of the triple. Consider the vertex h of H. Let (h, h, h) have b as an antimedian. Then the triple $\left(\left(g_{1}, h\right),\left(g_{2}, h\right),\left(g_{3}, h\right)\right)$ of three distinct vertices of $G \square H$ has two antimedians $\left(a_{1}, b\right)$ and $\left(a_{2}, b\right)$, a contradiction.

The converse of the above theorem is not true. Figure 7.7 gives two graphs G and H and the corresponding $G \square H$.

Figure 7.7: G, H and $G \square H$

Consider the triple $\pi=((w, a),(w, b),(w, c)), D((u, d), \pi)=9$, $D((v, d), \pi)=9$, and $D((x, d), \pi)=9$. For all other vertices it is less than 9. Therefore, the above product graph is not Weakly antimedian even though both G and H are Weakly Antimedian.
Note: Let G be a graph and $u \in V(G)$. Then the multiplication of G with respect to u is the graph obtained from G by replacing u by two adjacent vertices u^{\prime} and $u "$ and joining them by an edge with all the neighbors of u. Contrary to the case of Antimedian graphs, multiplication of a Weakly antimedian graph with respect to a non antimedian vertex need not give a Weakly antimedian graph. The following serves as an example

Figure 7.8: G and $G . w$

Here a is a non antimedian vertex. The multiplication of G with respect to a is
The triple ($a^{\prime}, a^{\prime \prime}, d$) does not have a unique antimedian.

Lemma 7.3.1. Let T be a weakly antimedian tree. Then T contains exactly 2 diametrical vertices a and b. Moreover $d(a, b)$ is odd and any triple of vertices have either a or b as its antimedian.

Proof. Let a and b be arbitrary diametrical vertices in T and let P be an $a-b$ path in T. Suppose that $d(a, b)$ is even. Then, let y be the middle vertex of P. Let x be the vertex adjacent to y in the $a-y$ path and let z be the vertex adjacent to y in the $b-y$ path. Let $d(a, b)=2 k, d(a, y)=k$ and $d(b, y)=k$. Consider the profile $\pi=(x, y, z)$. Then $D(a, \pi)=k+1+k+k-1=3 k$ and $D(b, \pi)=3 k$. Let u be a vertex such that $u \neq b$ and $z \in(u, y)$ path. Let $d(u, y)=l$. Then $d(u, z)=l-1$ and $d(u, x)=l+1$ and therefore $D(u, \pi)=3 l . D(u, \pi)>D(b, \pi)$ implies $3 l>3 k$ which implies $k>l$. We have $d(a, y)=k$ and $d(y, u)=l$. Therefore $d(a, u)=k+l>2 k$ which contradicts that a and b are diametrical vertices. Therefore if u is a vertex such that $z \neq b$ and $z \in(u, y)$ path then u cannot be the antimedian of $\pi=(x, y, z)$. Similarly if u is a vertex such that $u \neq a$ and $x \in(u, y)$ path, then u cannot be the antimedian of $\pi=(x, y, z)$. Now let u be a
vertex such that neither x nor z belong to (u, y) path. Let $d(u, y)=r$ then $d(u, x)=r+1$ and $d(u, z)=r+1$ and hence $D(u, \pi)=3 r+2$. Hence $3 r+2>3 k$ or $3 r>3 k-2$ or $r>k-\frac{2}{3}$ or $r \geqslant k$. $r>k$ implies $d(a, u)>2 k$, a contradiction to the fact that b is a diametric vertex of a. Assume $r=k$. Then consider the profile $\left(a, a_{1}, a_{2}\right)$ where a_{1} and a_{2} are the vertices immediately succeeding a in the path P. Now let a vertex v be such that neither a nor a_{2} belong to $\left(v, a_{1}\right)$ path. Then since a is a diametrical vertex of b, v should be adjacent to a_{1}. Then $D\left(v,\left(a, a_{1}, a_{2}\right)\right)=5$ and if v has to be an antimedian of $\left(a, a_{1}, a_{2}\right), T$ should be a star graph where a, a_{2} and v are pendant vertices and a_{1} is not a pendant vertex. If T does not contain any vertex different from these four then the profile (a, v, a_{2}) has three antimedians, a, v and a_{2}. This contradicts the fact that T is weakly antimedian. If T has a vertex different from v, say v^{\prime}, then the profile $\left(a, a_{1}, a_{2}\right)$ has more than one antimedians say v and v^{\prime}. Hence we can conclude that if v is the antimedian of $\left(a, a_{1}, a_{2}\right)$ then v should be such that a_{1} and a_{2} lies in the $a-v$ path. But for every such $v, D\left(v,\left(a, a_{1}, a_{2}\right)\right) \leqslant$ $D\left(b,\left(a, a_{1}, a_{2}\right)\right)$. Now, $D\left(b,\left(a, a_{1}, a_{2}\right)\right)=k+k-1+k-2=3 k-3$ and since $r=k, D\left(u,\left(a, a_{1}, a_{2}\right)\right)=3 k-3$. That is, the profile $\left(a, a_{1}, a_{2}\right)$ has more than one antimedian, u and b, a contradiction. Therefore $r<k$ or $D(u, \pi) \leqslant k-1+k+k=3 k-1$. In other words u cannot be the antimedian of $\pi=(x, y, z)$. Hence π has two antimedians a and b, a contradiction. Therefore $d(a, b)$ is odd.
Let x be an arbitrary vertex different from a and b. Let x^{\prime} be a vertex such that $x^{\prime} \in P$ and $d(x, P)=d\left(x, x^{\prime}\right)$. Let $d\left(x^{\prime} a\right)<d\left(x^{\prime} b\right)$. Suppose $d\left(x, x^{\prime}\right)>d\left(a, x^{\prime}\right)$. Then $d(x, b)>d(a, b)$, which implies a and b are not diametrical. If $d\left(x, x^{\prime}\right)=d\left(a, x^{\prime}\right)$ then $\left(b, b_{1}, b_{2}\right)$, where b_{1} and b_{2} are the vertices immediately preceding b in the path, has two antimedians. Hence $d\left(x, x^{\prime}\right)<d\left(a, x^{\prime}\right)$. Now it is clear that for every $x, y \in V$ such that at least one of x and y is different from a and $b, d(x, y)<d(a, b)$. That is a and b
are the only diametrical vertices.
Now to prove that for any profile of distinct vertices either a or b is its antimedian. On the contrary assume that $z \notin\{a, b\}$ is the antimedian of $\pi=(u, v, w)$. Then z should be a leaf. If $\operatorname{deg} z \geqslant 2$ then z has a neighbour x such that $d(x, \pi)>d(z, \pi)$ which is not possible. so z is a leaf of T. Let z^{\prime} be the first vertex of the $z-a$ path that is on P.
Suppose $u \notin P$ and let u^{\prime} be the first vertex on the $u-a$ path that is on P. Since $D(a, \pi)<D(z, \pi)$ and since $D(a, \pi)$ is reduced at least as much as $D(z, \pi)$ when we change u to u^{\prime} we find that $D\left(a,\left(u^{\prime}, v, w\right)\right)<$ $D\left(z,\left(u^{\prime}, v, w\right)\right)$. So a is also not the antimedian of $\left(u^{\prime}, v, w\right)$. Analogously b is also not the antimedian of $\left(u^{\prime}, v, w\right)$. Therefore if $u^{\prime}, v^{\prime}, w^{\prime}$ are the vertices on the $u-a, v-a, w-a$ paths then if neither a nor b is the antimedian of (u, v, w) then neither a nor b is the antimedian of $\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$. Equivalently if for a given profile $\pi=(u, v, w)$, the profile $\pi^{\prime}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ has either a or b as its antimedian then $\pi=(u, v, w)$ also has either a or b as its antimedian. So without loss of generality we may assume that $\pi=(u, v, w)$ where u, v, w belong to the path P.

Now, assume that the antimedian of π is z, a vertex different from a and b and let z meet the path P at the vertex at z^{\prime}. If u, v and w belong to $a-z^{\prime}\left(b-z^{\prime}\right)$ path then $D\left(z^{\prime}, \pi\right) \leqslant D(b, \pi)\left(D\left(z^{\prime}, \pi\right) \leqslant D(a, \pi)\right)$ and therefore z^{\prime} cannot be the antimedian of π. So assume that u belong to $z^{\prime}-a$ path and w belong to $z^{\prime}-b$ path. If z^{\prime} is the antimedian of π then it is the antimedian of (a, u, b). Therefore we assume that $\pi=(a, u, b)$. Now we shall take two different cases.
Case 1: v belong to $a-z^{\prime}$ path. As in Lemma 7.2 .1 we can see that $D\left(z^{\prime}, \pi\right)-$ $D(b, \pi)$ is even and we follow the same procedure followed in Lemma 7.2.1. That is, Let w_{1} be the vertex adjacent to b on P and π^{\prime} be the profile got by replacing b in π by w_{1}. Then $D\left(z, \pi^{\prime}\right)-D\left(b, \pi^{\prime}\right)=D(z, \pi)-D(b, \pi)-2$. Repeat this process and if the profile at the $i^{t h}$ stage is $\pi^{(i)}$ then $D\left(z, \pi^{(i)}\right)-$
$D\left(b, \pi^{(i)}\right)=D\left(z, \pi^{(i-1)}\right)-D\left(b, \pi^{(i-1)}\right)-2$. As explained there, in this process no other pendant vertex y can be the antimedian of any $\pi^{(i)}$. Finally we get a profile of distinct vertices, $\pi^{(k)}$, in which $D\left(z, \pi^{(k)}\right)=D\left(b, \pi^{(k)}\right)$. That is $\pi^{(k)}$ has two antimedians z and b, a contradiction.
Case 2: v belong to $b-z^{\prime}$ path. Here also we follow the same procedure to get $\pi^{(i)}$'s as described in the Case 2 of Lemma 7.2.1. If $\pi^{(k)}=\left(a, w_{\ell}, w_{k}\right)$ is such that $w_{k} \neq w_{\ell}$ and $D\left(b, \pi^{(k)}\right)=D\left(z, \pi^{(k)}\right)$ then we have a profile of distinct vertices having more than one antimedian. Next, assume that $D\left(z, \pi^{(k)}\right)=D\left(b, \pi^{(k)}\right)$ where $\pi^{(k)}=\left(a, w_{k}, w_{k}\right)$. Then consider the profile $\pi^{(k+1)}=\left(a, w_{k-1}, w_{k+1}\right)$ where w_{k-1} and w_{k+1} are the vertices adjacent to w_{k} in the path P. Then $D\left(z, \pi^{(k+1)}\right)=D\left(z, \pi^{(k)}\right)$ and $D\left(b, \pi^{(k)}\right)=$ $D\left(b, \pi^{(k+1)}\right)$. If at all a vertex different from z and b has to become the antimedian for $\pi^{(k+1)}$ it should be a vertex z_{1} such that w_{k} lies both in $z_{1}-w_{k-1}$ path and $z_{1}-w_{k+1}$ path. Let $D\left(b, \pi^{(k)}\right)=D\left(z, \pi^{(k)}\right)=d$. Since $d\left(z_{1}, a\right)<d(b, a)$ and $d\left(z_{1}, w_{k}\right)<d\left(b, w_{k}\right)$ we get that $D\left(z_{1}, \pi^{(k)}\right) \leqslant d-$ 3. Therefore $D\left(z_{1}, \pi^{(k+1)}\right) \leqslant d-1$. But $D\left(b, \pi^{(k+1)}\right)=D\left(z, \pi^{(k+1)}\right)=$ d. Therefore we get a profile of distinct vertices namely $\pi^{(k+1)}$ with two antimedians. Thus for any profile of vertices of P has either a or b as its antimedian. In other words, any profile of distinct vertices of T has either a or b as its antimedian.

Theorem 7.3.5. Let T be a tree.Then T is weakly antimedian if and only if it is a thin even belt.

Proof. Thin even belts being antimedian are weakly antimedian Now to prove the converse. Let T be an arbitrary weakly antimedian tree. By the above lemma T has exactly two diametrical vertices, say a and b, and let $P: a=v_{1} v_{2}, \ldots v_{r}=b$ be the $u-v$ path in T. Let $T_{i}, 1 \leqslant i \leqslant r$ be the maximal subtree of T that contains v_{i} and no other vertex of P. We can consider T_{i} as a rooted tree with root v_{i}. Moreover we can consider T as a
belt where P is its support and T_{i} are its ears. We know that T is an even belt. Let d_{i} be the depth of $T_{i}, 1 \leqslant i \leqslant r$. Suppose that for some $i \leqslant n / 2$ the condition $d_{i} \leqslant\lfloor(i-2) / 3\rfloor$ is not fulfilled. That is, $d_{i}>\lfloor(i-2) / 3\rfloor$. Therefore $3 d_{i}>i-2$. Let w be a vertex from T_{i} with $3 d\left(w, v_{i}\right) \geqslant i-1$. Now consider the triple $\pi=\left(v_{1}, v_{r-1}, v_{r}\right)$. Then $D\left(v_{1}, \pi\right)=2 r-3, D\left(v_{r}, \pi\right)=r$ and $D(w, \pi) \geqslant 3\lfloor(i-2) / 3\rfloor+i-1+r-i+r-1-i$.
Therefore
When $i=3 k$ for some integer $k, D(w, \pi) \geqslant 3 k+2 r-i-2=2 r-2$
When $i=3 k+1, D(w, \pi) \geqslant 3 k+i-1+r-i+r-1-i=2 r-3$
When $i=3 k+2, D(w, \pi) \geqslant 3(k+1)+i-1+r-i+r-1-i=2 r-1$
That is,

$$
\begin{aligned}
& D(w, \pi) \geqslant 2 r-2 \text { when } i \equiv 0(\bmod 3) \\
& D(w, \pi) \geqslant 2 r-3 \text { when } i \equiv 1(\bmod 3) \\
& D(w, \pi) \geqslant 2 r-1 \text { when } i \equiv 2(\bmod 3)
\end{aligned}
$$

This is a contradiction to the above lemma that for any triple of vertices in a weakly antimedian tree v_{1} or v_{r} is their antimedian. Hence the theorem.

Theorem 7.3.6. Let G be as given in Theorem 7.2.4. Then G is weakly antimedian if and only if

1. diameter of G is odd
2. $m+n>\ell$
3. $\frac{m}{3}+3 n>\ell-\frac{2}{3}$ and $\frac{n}{3}+3 m>\ell-\frac{2}{3}$

Proof. Assume that $\operatorname{diam}(G)$ is odd, $m+n>\ell, \frac{m}{3}+3 n>\ell-\frac{2}{3}$ and $\frac{n}{3}+3 m>\ell-\frac{2}{3}$. Let a and b be the diametrical vertices of G with $d(a, u)=m$ and $d(a, v)=n$. Let π be the profile $\left(u_{1}, u_{2}, u_{3}\right)$ where u_{1}, u_{2} and u_{3} are
all distinct. We shall prove that G is weakly antimedian by showing that π has a unique antimedian. Here we shall take different cases.
Case 1: Each of u_{1}, u_{2} and u_{3} either belong to $a-u$ path or $b-v$ path. Then since $d(a, b)$ is odd and a path of odd length is weakly antimedian π has a unique antimedian.
Case 2: u_{1}, u_{2} belong to $a-u$ path and u_{3} belong to H.
As proved in Case 1 of Theorem 7.2.4 we can show that π has a unique antimedian which is either a or b.
Case 3: u_{1} belong to $a-u$ path, u_{2} belong to H and u_{3} belong to $b-v$ path. The proof is the same as the proof of Case 3 of Theorem 7.2.4.
Case 4: $u_{1} \in a-u$ path and $u_{2}, u_{3} \in H$.
Initially we prove that the antimedian of π is either a or b. So we assume that a vertex different from a and b is the antimedian of π. Hence we can replace u_{1} by a in π. That is $\pi=\left(a, u_{2}, u_{3}\right)$ and the antimedian of π is the eccentric vertex of the median of π in H. Let x be the median of π in H and let y be the eccentric vertex of x in H. That is, antimedian of π is y. By arguments similar to what we used in case 4 of Theorem 7.2 .4 we can assume that $\pi=\left(a, x, x^{\prime}\right)$ where x^{\prime} is the vertex adjacent to x in the $u_{3}-x$ path. Let $d(u, x)=d$ and $d\left(u, x^{\prime}\right)=d^{\prime}$.

$$
\begin{aligned}
D(a, \pi) & =0+d(a, x)+d\left(a, x^{\prime}\right) \\
& =m+d+m+d^{\prime} \\
& =\left(m+d+d^{\prime}\right)+m
\end{aligned}
$$

$$
\begin{aligned}
D(b, \pi) & =d(b, a)+d(b, x)+d\left(b, x^{\prime}\right) \\
& =m+n+\ell+n+\ell-d+n+\ell-d^{\prime} \\
& =m+3 n+3 \ell-\left(d+d^{\prime}\right) \\
& =\left(m+d+d^{\prime}\right)+3 \ell-2\left(d+d^{\prime}\right)+3 n \\
D(y, \pi) & =d(y, a)+d(y, x)+d\left(y, x^{\prime}\right) \\
& =d(y, u)+d(u, a)+d(y, x)+d\left(y, x^{\prime}\right) \\
& =d(y, x)-d(x, u)+d(a, u)+d(y, x)+d\left(y, x^{\prime}\right) \\
& =\ell-d+m+\ell+\ell-1 \\
& =\left(m+d+d^{\prime}\right)+3 \ell-2 d-d^{\prime}-1
\end{aligned}
$$

$D(a, \pi) \leqslant D(y, \pi) \Longrightarrow m \leqslant 3 \ell-2 d-d^{\prime}-1$ or $\frac{m}{3} \leqslant \ell-\frac{2 d+d^{\prime}+1}{3}$
$D(b, \pi) \leqslant D(y, \pi) \Longrightarrow 3 \ell-2\left(d+d^{\prime}\right)+3 n \leqslant 3 \ell-2 d-d^{\prime}-1$ or $3 n \leqslant d^{\prime}-1$
Adding these inequalities we get $\frac{m}{3}+3 n \leqslant \ell+\frac{2 d^{\prime}-2 d-4}{3}$. Since $d^{\prime} \leqslant d+1$, we get,$\frac{m}{3}+3 n \leqslant \ell-\frac{2}{3}$, contradiction. Hence π has antimedian a or b. As in case 4 of Theorem 7.2 .4 we can show that $D(a, \pi)=D(b, \pi)$ implies $d(a, b)$ is even. Hence π has a unique antimedian.
Case 5: u_{1}, u_{2} and u_{3} belong to H
As proved in case 5 of Theorem 7.2 .4 we can prove that π has a unique antimedian which is either a or b. Now we shall prove the converse. That is, assuming that G is weakly antimedian, we shall prove that diameter of G is odd, $m+n>\ell, \frac{m}{3}+3 n>\ell-\frac{2}{3}$ and $\frac{n}{3}+3 m>\ell-\frac{2}{3}$.
Let diameter of G be even. If a and b are the pendant vertices of G, let u^{\prime} be the vertex such that $d\left(u^{\prime} a\right)=d\left(u^{\prime}, b\right)$. Consider the profile $\pi=\left(a, u^{\prime}, b\right)$. π has two antimedians a and b, a contradiction.
it is proved that $m+n>\ell$ as in Theorem7.2.4.
Now to prove that $\frac{m}{3}+3 n>\ell-\frac{2}{3}$. On the contrary assume that $\frac{m}{3}+3 n \leqslant$ $\ell-\frac{2}{3}$. Let u_{1} and u_{2} be vertices such that u_{1} lies on the shortest u - u_{2} path, $d\left(u_{1}, u\right)=r_{1}, d\left(u_{2}, u\right)=r_{1}+1, d\left(u_{1}, v\right)=k_{1}$ and $d\left(u_{2}, v\right)=k_{1}-1$. Assume
$r_{1}=3 n$.

$$
\begin{aligned}
\frac{m}{3}+3 n \leqslant \ell-\frac{2}{3} & \Longrightarrow \frac{m}{3}+3 n \leqslant r_{1}+k_{1}-\frac{2}{3} \\
& \Longrightarrow \frac{m}{3} \leqslant k_{1}-\frac{2}{3} \\
& \Longrightarrow m \leqslant 3 k_{1}-2
\end{aligned}
$$

$$
\begin{aligned}
D(a, \pi) & =m+r_{1}+m+r_{1}+1=2 m+r_{1}+r_{1}+1=2 m+2 r_{1}+1 \\
& =m+2 r_{1}+m+1 \\
D(b, \pi) & =m+n+\ell+n+k_{1}+n+k_{1}-1=m+3 n+r_{1}+k_{1}+2 k_{1}-1 \\
& =m+2 r_{1}+3 k_{1}-1 \\
D\left(u_{1}^{\prime}, \pi\right) & =2 \ell+k_{1}-1+m=m+2 r_{1}+2 k_{1}+k_{1}-1=m+2 r_{1}+3 k_{1}-1
\end{aligned}
$$

Therefore $D(b, \pi)=D\left(u_{1}^{\prime}, \pi\right)$. Since u_{1} is a median of $\left(u, u_{1}, u_{2}\right), u_{1}^{\prime}$ is an antimedian of $\left(u, u_{1}, u_{2}\right)$ in H and hence $D(z, \pi) \leqslant D\left(u_{1}^{\prime}, \pi\right)$ for every $z \in V(H)$. Since $m \leqslant 3 k_{1}-2$, we have $m+1 \leqslant 3 k_{1}-1$. Therefore $D(a, \pi) \leqslant D(b, \pi)=D\left(u_{1}^{\prime}, \pi\right)$. Thus π has two antimedians u_{1}^{\prime} and π, a contradiction. Hence $\frac{m}{3}+3 n>\ell-\frac{2}{3}$. Similarly we can prove that $\frac{n}{3}+3 m>\ell-\frac{2}{3}$.

As in Theorem 7.2.4 none of the three conditions are redundant.
H_{1} is a graph where $\frac{m}{3}+3 n=\frac{n}{3}+3 m>\ell-\frac{2}{3}$ but $m+n<\ell$ and hence is not weakly antimedian.
H_{3} has $m+n>\ell \frac{m}{3}+3 n>\ell-\frac{2}{3}, \frac{n}{3}+3 m>\ell-\frac{2}{3}$, but diameter is even(10) and hence is not weakly antimedian.
Now consider the following graph

Figure 7.9: H_{4}

Here $m=1, \ell=6$ and $n=6 . \quad m+n>\ell$, diameter is odd and $\frac{m}{3}+3 n>\ell-\frac{2}{3}$, but, $\frac{n}{3}+3 m=2+3=5<\ell-\frac{2}{3}=5.33$. Hence H_{4} is not weakly antimedian.

Theorem 7.3.7. Let G be as defined in Theorem 7.2.5. Then G is weakly antimedian if and only if
(1) diameter of G is odd.
(2) $m>3 \ell$ or $m=3 \ell-1$ or $m=3 \ell-3$.

Proof. Let the path P be joined to H at the vertex u and let b be eccentric vertex of u in H. Let a be the unique pendant vertex of G. That is, a and b are the diametrical vertices of G. If $d(a, b)$ is even, then the graph is obviously not weakly antimedian. Hence we assume that $d(a, b)$ is odd. We shall prove the theorem in various cases.
Case 1: $m<3 \ell-3$
The profiles given in Case 1, Case 2 and Case 3 of Theorem 3 are profiles of distinct vertices which has more than one antimedians. Thus in this case G is not weakly antimedian.
Case 2: $m=3 \ell-3$
Let $\pi=\left(u_{1}, u_{2}, u_{3}\right)$. When u_{1}, u_{2} and u_{3} are such that $u_{1}, u_{2}, u_{3} \in(a, u)$
path or $u_{1}, u_{2} \in a-u$ path and $u_{3} \in V(H)$ or $u_{1}, u_{2}, u_{3} \in V(H)$, we can prove that π has a unique antimedian in exactly the same way as we proved Subcases 4.1, 4.2 and 4.4 of Theorem 7.2.5. So we shall assume that $u_{1} \in$ (a, u) path and $u_{2}, u_{3} \in V(H)$. First we shall prove that π has antimedian a or b. If a vertex different from a and b is the antimedian of π then it should be a vertex of H, in fact, the eccentric vertex of median of $\left(u_{1}, u_{2}, u_{3}\right)$ in H. Let x be the antimedian of $\left(u_{1}, u_{2}, u_{3}\right)$ and let y be the eccentric vertex of x. That is, y is an antimedian of π.
Let $d(x, u)=d, d\left(x, u_{1}\right)=d_{1}, d\left(x, u_{2}\right)=d_{2}, d\left(u, u_{2}\right)=e_{2}$ and $d\left(u, u_{3}\right)=e_{3}$. Then,

$$
\begin{align*}
& D(a, \pi)=0+m+e_{2}+m+e_{3}=2 m+e_{2}+e_{3} \\
& D(b, \pi)=\ell-e_{2}+\ell-e_{3}+\ell+m=3 \ell+m-\left(e_{2}+e_{3}\right) \\
& D(y, \pi)=\ell-d_{2}+\ell-d_{3}++\ell-d+m=3 \ell+m-\left(d_{2}+d_{3}+d\right) \\
& D(a, \pi) \leqslant D(y, \pi) \Longrightarrow 2 m+e_{2}+e_{3} \leqslant 3 \ell+m-\left(d_{2}+d_{3}+d\right) \tag{7.7}\\
& D(b, \pi) \leqslant D(y, \pi) \Longrightarrow 3 \ell+m-\left(e_{2}+e_{3}\right) \leqslant 3 \ell+m-\left(d_{2}+d_{3}+d\right) \tag{7.8}
\end{align*}
$$

Adding inequalities 7.7 and 7.8 we get

$$
m \leqslant 3 \ell-2\left(d_{2}+d_{3}+d\right)
$$

$d_{2}=d_{3}=d=0$ implies $u_{2}=u_{3}=u$ and this is not possible since we are considering profiles of distinct vertices. Hence at least one of d_{2} and d_{3} should be non zero. Let it be d_{2}. Now $d \neq 0$ implies $m \leqslant 3 \ell-4$, a contradiction. Hence $d=0$ and this means $y=b$. Hence antimedian of π is either a or b. $D(a, \pi)=D(b, \pi)$ implies $d(a, b)$ is even. Hence π has a unique antimedian.

Case 3: $m=3 \ell-2$.
In this case $d(a, b)=\ell+3 \ell-2=4 \ell-2$, an even number. Therefore G is not weakly antimedian.
Case 4: $m=3 \ell$
In this case $d(a, b)=\ell+3 \ell=4 \ell$ again an even number. Hence G is not weakly antimedian.
Case 5: $m>3 \ell$ or $m=3 \ell-1$.
When $m>3 \ell$ or $m=3 \ell-1, G$ is antimedian and hence weakly antimedian.
Hence the theorem.
Remark 7.3.1. Theorems 7.2.4, 7.2.5, 7.3 .6 and 7.3 .7 give us examples of graphs that are weakly antimedianbut not antimedian.

1. Let G be a graph described in theorem 7.2 .4 and 7.3 .6 with $n=1, \ell \geqslant$ 5 and $m=3 \ell-10$. Then $\frac{m}{3}+3 n=\ell-\frac{1}{3}$. That is $\ell-\frac{2}{3}<\frac{m}{3}+3 n<\ell$. Hence G is weakly antimedian but not antimedian.
2. Let G be a graph described in theorem 7.2.5 and 7.3.7. If $m=3 \ell-3$ then G is weakly antimedian but not antimedian.

7.4 Conclusion

Balakrishnan et.al in [10] characterised thin even belts as the antimedian trees. In this paper we have extended this result to block graphs. We have proved that a block graph is antimedian if and only if it is a thin even belt. We have given a generalisation of antimedian graphs called weakly antimedian graphs and proved that as far as cycles and trees are considered both are the same. We constructed a new class of graphs by attaching paths to a pair of eccentric vertices of a symmetric even graph and found necessary and sufficient conditions for such graphs to be antimedian and weakly antimedian. This also gave us examples of weakly antimedian graphs that are not antimedian.

Chapter 8

Conclusion and future works

This thesis has been devoted to the study of three different measures of centrality-center, median and fair center- and a class of graphs called antimedian graphs. We have found out these three centers of profiles of various classes of graphs like $K_{n}, K_{m, n}, K_{n}-e$, trees, cycles and a more general class of graphs called symmetric even graphs that includes hypercubes, even cycles, cocktail party graphs, crown graphs etc. While finding the center and fair center of a profile the repetition of vertices in the profile does not make any impact and so in these two cases we have taken sets of vertices instead of profiles. Two new graph parameters called the center number and median number, the number of distinct center sets and median sets of a graph, have been introduced and they have been evaluated for some of the above mentioned graphs. Two new concepts called pacifying edges and shrinking edges have been introduced and they have been identified for paths and symmetric even graphs. These concepts have very high significance in social networking where we can identify the persons to which a particular person should make a link so that his significance in the network increases to a maximum. We have put forward two conjectures, one in chapter 5 regarding the median number of even cycles and the other in chapter 6 pertaining to the characterisation of graphs with connected fair sets. In chapter 3 we proved that for a symmetric even graph the whole vertex set is the only median set which contains a vertex and its eccentric vertex while in chapter 7 it was proved that a vertex and its eccentric vertex appear together in a fair set. We have restricted our study to some particular graph classes and one can look for studying these centrality measures for more classes of graphs. It shall also be interesting to study the relationship among these centrality measures at least for some specific graph classes.

Another area of prospective study is related to multi criteria optimisation, that is, identifying the median which is most central, center of the graph which is most fair and so on.

Bibliography

[1] J. Akiyama and K. Ando, Equi-eccentric graphs with equi-eccentric complements, TRU Math 17 (1981), 113-115.
[2] J. Akiyama, K Ando, and D. Avis, Miscellaneous properties of equieccentric graphs, Convexity and Graph Theory (Jerusalem, 1981), North-Holland Math. Stud 87 (1984), 13-23.
[3] P. Avella, M. Boccia, S. Salerno, and I. Vasilyev, An aggregation heuristic for large scale p-median problem, Computers \& Operations Research 39 (2012), no. 7, 1625-1632.
[4] P. Avella, A. Sassano, and I. Vasil'ev, Computational study of largescale P-median problems, Mathematical Programming 109 (2007), no. 1, 89-114.
[5] K Balakrishnan, B. Brešar, M Changat, S Klavzar, M Kovše, and A.R. Subhamathi, On the generalized obnoxious center problem: antimedian subsets, preprint (2008), 1-6.
[6] K Balakrishnan, B. Brešar, M. Changat, S. Klavžar, M. Kovše, and A.R. Subhamathi, Computing median and antimedian sets in median graphs, Algorithmica 57 (2010), no. 2, 207-216.
[7] K. Balakrishnan, B. Bresar, M. Changat, S. Klavzar, I. Peterin, and A.R. Subhamathi, Almost self-centered median and chordal graphs, Taiwanese Journal of Mathematics 16 (2012), no. 5, pp-1911.
[8] K. Balakrishnan, B. Brešar, M. Kovše, M. Changat, A.R. Subhamathi, and S. Klavžar, Simultaneous embeddings of graphs as median and antimedian subgraphs, Networks 56 (2010), no. 2, 90-94.
[9] K Balakrishnan, M. Changat, and S. Klavžar, The median function on graphs with bounded profiles, Discrete Applied Mathematics 156 (2008), no. 15, 2882-2889.
[10] K. Balakrishnan, M. Changat, S. Klavzar, J. Mathews, I. Peterin, G.N. Prasanth, and S. Spacapan, Antimedian graphs, Australasian Journal of Combinatorics 41 (2008), 159.
[11] K. Balakrishnan, M. Changat, and H.M. Mulder, The plurality strategy on graphs, Australasian Journal of Combinatorics 46 (2010), 191202.
[12] K. Balakrishnan, M. Changat, H.M. Mulder, A.R. Subhamathi, et al., Consensus strategies for signed profiles on graphs, Ars Mathematica Contemporanea 6 (2012), 127-14.
[13] H.J. Bandelt and J.P. Barthélémy, Medians in median graphs, Discrete Applied Mathematics 8 (1984), no. 2, 131-142.
[14] H.J. Bandelt and V.D. Chepoi, Graphs with connected medians, SIAM Journal on Discrete Mathematics 15 (2002), no. 2, 268-282.
[15] J.P. Barthelemy and B. Monjardet, The median procedure in cluster analysis and social choice theory, Mathematical social sciences 1 (1981), no. 3, 235-267.
[16] P. Belotti, M. Labbé, F. Maffioli, and M.M. Ndiaye, A branch-andcut method for the obnoxious P-median problem, 4OR 5 (2007), no. 4, 299-314.
[17] O. Berman, Mean-variance location problems, Transportation Science 24 (1990), no. 4, 287-293.
[18] O. Berman and E.H. Kaplan, Equity maximizing facility location schemes, Transportation Science 24 (1990), no. 2, 137-144.
[19] H. Bielak and M.M. Syslo, Peripheral vertices in graphs, Studia Sci. Math. Hungar 18 (1983), 269-275.
[20] S.P. Borgatti and M.G. Everett, A graph-theoretic perspective on centrality, Social networks 28 (2006), no. 4, 466-484.
[21] F. Buckley, Self-centered graphs with a given radius, Proc. 10th SE Conf. Combinatorics, Graph Theory and Computing. Boca Raton, 1979, pp. 211-215.
[22] _, Self-centered graphs, Annals of the New York Academy of Sciences 576 (1989), no. 1, 71-78.
[23] F. Buckley and M. Lewinter, Graphs with all diametral paths through distant central nodes, Mathematical and computer modelling 17 (1993), no. 11, 35-41.
[24] F. Buckley, Z. Miller, and P.J. Slater, On graphs containing a given graph as center, Journal of Graph Theory 5 (1981), no. 4, 427-434.
[25] R.E. Burkard and J. Krarup, A linear algorithm for the pos/negweighted 1-median problem on a cactus, Computing 60 (1998), no. 3, 193-215.
[26] L. Caccetta and R. Häggkvist, On diameter critical graphs, Discrete Mathematics 28 (1979), no. 3, 223-229.
[27] L Caccetta and WF Smyth, Diameter-critical graphs with a minimum number of edges, Congr. Numer 61 (1988), 143-153.
[28] G.J. Chang, Centers of chordal graphs, Graphs and combinatorics 7 (1991), no. 4, 305-313.
[29] V.D. Chepoi, Centers of triangulated graphs, Mathematical Notes 43 (1988), no. 1, 82-86.
[30] V.D. Chepoi and F. Dragan, A linear-time algorithm for finding a central vertex of a chordal graph, Springer, 1994.
[31] N. Christofides and P. Viola, The optimum location of multi-centres on a graph, Operational Research Quarterly (1971), 145-154.
[32] R.L. Church and R.S. Garfinkel, Locating an obnoxious facility on a network, Transportation Science 12 (1978), no. 2, 107-118.
[33] M Colebrook, J Gutiérrez, S Alonso, J Sicilia, et al., A new algorithm for the undesirable 1-center problem on networks, Journal of the Operational Research Society 53 (2002), no. 12, 1357-1366.
[34] M. Colebrook, J. Gutiérrez, and J. Sicilia, A new bound and an o (mn) algorithm for the undesirable 1-median problem (maxian) on networks, Computers \& operations research 32 (2005), no. 2, 309325.
[35] M. Colebrook and J. Sicilia, An o(mn) algorithm for the anti-centdian problem, Applied mathematics and computation 183 (2006), no. 1, 350-364.
[36] _, Undesirable facility location problems on multicriteria networks, Computers \& operations research 34 (2007), no. 5, 1491-1514.
[37] , Hazardous facility location models on networks, Handbook of OR/MS Models in Hazardous Materials Transportation, Springer, 2013, pp. 155-186.
[38] P. Dankelmann and G. Sabidussi, Embedding graphs as isometric medians, Discrete Applied Mathematics 156 (2008), no. 12, 2420-2422.
[39] P. Das and B. Rao, Center graphs of chordal graphs, Proc. of the Seminar on Combin. \& Appli.in honour of Prof.S.S.Shrikhande, on his 65 th birthday, ISI, Calcutta, 1982, pp. 81-94.
[40] R. Diestel, Graph theory, Graduate texts in mathematics 173 (2005), 3.
[41] G. Fan, On diameter 2-critical graphs, Discrete mathematics 67 (1987), no. 3, 235-240.
[42] G.N. Frederickson and D.B. Johnson, Finding $k^{\text {th }}$ paths and P-centers by generating and searching good data structures, Journal of Algorithms 4 (1983), no. 1, 61-80.
[43] L.C. Freeman, Centrality in social networks conceptual clarification, Social networks 1 (1979), no. 3, 215-239.
[44] G Sh Fridman, On oriented radially critical graphs, Doklady Akad. Nauk SSSR, vol. 212, 1973, pp. 565-568.
[45] B. Gavish and S. Sridhar, Computing the 2-median on tree networks in o ($n \lg n$) time, Networks 26 (1995), no. 4, 305-317.
[46] F. Gliviak, On radially critical graphs, Recent Advances in Graph TheoryProc. Symp. Prague, 1974, pp. 207-221.
[47] On certain edge-critical graphs of a given diameter, Matematickỳ časopis 25 (1975), no. 3, 249-263.
[48] \qquad , On radially extremal graphs and digraphs, a survey, Mathematica Bohemica 125 (2000), no. 2, 215-225.
[49] F. Gliviak and M. Knor, On radially extremal digraphs, Mathematica Bohemica 120 (1995), no. 1, 41-55.
[50] F. Gliviak, M. Knor, and L. Šoltés, On radially maximal graphs, Australasian Journal of Combinatorics 9 (1994), 275-284.
[51] _, Two-radially maximal graphs with special centers, Mathematica Slovaca 45 (1995), no. 3, 227-233.
[52] F. Gliviak and P. Kyš, Graphs related to diameter and center, Acta Math. Univ. Comenianae 66 (1997), no. 1, 21-32.
[53] F. Glivjak, On certain classes of graphs of diameter two without superfluous edges, Acta Fac. Rer. Nat. Univ. Comenianae, Math 21 (1968), 39-48.
[54] F. Göbel and H.J. Veldman, Even graphs, Journal of graph theory 10 (1986), no. 2, 225-239.
[55] A.J. Goldman, Optimal center location in simple networks, Transportation science 5 (1971), no. 2, 212-221.
[56] S.L. Hakimi, Optimum distribution of switching centers in a communication network and some related graph theoretic problems, Operations Research 13 (1965), no. 3, 462-475.
[57] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs, CRC press, 2011.
[58] G.Y. Handler, Minimax location of a facility in an undirected tree graph, Transportation Science 7 (1973), no. 3, 287-293.
[59] F. Harary and R.Z. Norman, The dissimilarity characteristic of husimi trees, The Annals of Mathematics 58 (1953), no. 1, 134-141.
[60] F. Harary and C. Thomassen, Anticritical graphs, Math. Proc. Cambridge Philos. Soc 79 (1976), 11-18.
[61] J. Hatzl, Median problems on wheels and cactus graphs, Computing 80 (2007), no. 4, 377-393.
[62] T.W. Haynes and M.A. Henning, A characterization of diameter-2-critical graphs with no antihole of length four, Central European Journal of Mathematics 10 (2012), no. 3, 1125-1132.
[63] T.W. Haynes, M.A. Henning, L.C Van Der Merwe, and A. Yeo, On a conjecture of murty and simon on diameter 2-critical graphs, Discrete Mathematics 311 (2011), no. 17, 1918-1924.
[64] T.W. Haynes, M.A. Henning, L.C. van der Merwe, and A. Yeo, Progress on the murty-simon conjecture on diameter-2 critical graphs: a survey, Journal of Combinatorial Optimization (2013), 117.
[65] G.R.T. Hendry, On graphs with prescribed median i, Journal of graph theory 9 (1985), no. 4, 477-481.
[66] K.S. Holbert, A note on graphs with distant center and median, Recent Sudies in Graph Theory (1989), 155-158.
[67] M. Hribar and M.S. Daskin, A dynamic programming heuristic for the P-median problem, European Journal of Operational Research 101 (1997), no. 3, 499-508.
[68] L. Hua et al., Application of mathematical methods to wheat harvesting, Chinese Math 2 (1962), 77-91.
[69] W. Imrich, S. Klavžar, and B. Gorenec, Product graphs: Structure and recognition, Wiley New York, 2000.
[70] C. Jordan, Sur les assemblages de lignes., Journal für die reine und angewandte Mathematik 70 (1869), 185-190.
[71] L. Kang and Y. Cheng, The p-maxian problem on block graphs, Journal of combinatorial optimization 20 (2010), no. 2, 131-141.
[72] O. Kariv and S.L. Hakimi, An algorithmic approach to network location problems. i: The P-centers, SIAM Journal on Applied Mathematics $\mathbf{3 7}$ (1979), no. 3, 513-538.
[73] S. Khuller, A. Rosenfeld, and A. Wu, Centers of sets of pixels, Discrete applied mathematics 103 (2000), no. 1, 297-306.
[74] R.K. Kincaid and O.Z. Maimon, Locating a point of minimum variance on triangular graphs, Transportation science 23 (1989), no. 3, 216-219.
[75] S. Klavžar, K.P. Narayankar, and H.B. Walikar, Almost self-centered graphs, Acta Mathematica Sinica, English Series 27 (2011), no. 12, 2343-2350.
[76] M. Knor, Unicyclic radially-maximal graphs on the minimum number of vertices, Australasian Journal of Combinatorics 45 (2009), 97-107.
[77] _, Minimal non-selfcentric radially-maximal graphs of radii 4 and 5, Journal of Combinatorial Mathematics and Combinatorial Computing 73 (2010), 237.
[78] M Knor et al., Centers in iterated line graphs, Acta Math. Univ. Comenianae 61 (1992), no. 2, 237-241.
[79] M. Knor, L. Niepel, and L. Šoltés, Centers in line graphs, Mathematica Slovaca 43 (1993), no. 1, 11-20.
[80] G.N. Kopylov and E.A. Timofeev, Centers and radii of graphs, Uspekhi Matematicheskikh Nauk 32 (1977), no. 6, 226-226.
[81] Y. Lan and Y. Wang, An optimal algorithm for solving the 1-median problem on weighted 4 -cactus graphs, European Journal of Operational Research 122 (2000), no. 3, 602-610.
[82] M.C. LÃopez-de-los Mozos and J.A. Mesa, The 2-variance location problem in a tree network, stud, Locational Anal 11 (1997), 73-87.
[83] R. Laskar and D. Shier, On powers and centers of chordal graphs, Discrete Applied Mathematics 6 (1983), no. 2, 139-147.
[84] M.T. Marsh and D.A. Schilling, Equity measurement in facility location analysis: A review and framework, European Journal of Operational Research 74 (1994), no. 1, 1-17.
[85] D.W. Matula and R. Kolde, Efficient multi-median location in acyclic networks, ORSA/TIMS Bullettin (1976), no. 2, 105-117.
[86] N. Megiddo and A. Tamir, New results on the complexity of p-centre problems, SIAM Journal on Computing 12 (1983), no. 4, 751-758.
[87] J.A. Mesa, J. Puerto, and A. Tamir, Improved algorithms for several network location problems with equality measures, Discrete applied mathematics 130 (2003), no. 3, 437-448.
[88] E. Minieka, Anticenters and antimedians of a network, Networks 13 (1983), no. 3, 359-364.
[89] H.M. Mulder, The majority strategy on graphs, Discrete Applied Mathematics 80 (1997), 97-105.
[90] J. Nieminen, The center and the distance center of a ptolemaic graph, Operations research letters 7 (1988), no. 2, 91-94.
[91] Y. Nishanov, On radially critical graphs with the maximum diameter, Trudy Samarkand. Gos. Univ 235 (1972), 138-147.
[92] \qquad , A lower bound on the number of edges in radially critical graphs, Trudy Samarkand. Gos. Univ 256 (1975), 77-80.
[93] K. Novotny and S. Tian, On graphs with intersecting center and median, Advances in Graph Theory (1991), 297-300.
[94] O.R. Oellermann, On steiner centers and steiner medians of graphs, Networks 34 (1999), no. 4, 258-263.
[95] O.R. Oellermann and S. Tian, Steiner centers in graphs, Journal of graph theory 14 (1990), no. 5, 585-597.
[96] O. Ore, Diameters in graphs, Journal of Combinatorial Theory 5 (1968), no. 1, 75-81.
[97] K.R. Parthasarathy and R. Nandakumar, Unique eccentric point graphs, Discrete Mathematics 46 (1983), no. 1, 69-74.
[98] K.S. Parvathy, A. Remadevi, and A. Vijayakumar, About a conjecture on the centers of chordal graphs, Graphs and Combinatorics 10 (1994), no. 2, 269-270.
[99] N.D. Pizzolato, A heuristic for large-size P-median location problems with application to school location, Annals of operations research 50 (1994), no. 1, 473-485.
[100] J. Plesnik, Critical graphs of given diameter, Acta Fac. Rer. Nat. Univ. Comenianae, Math 30 (1975), 71-93.
[101] J. Plesník, A heuristic for the P-center problems in graphs, Discrete Applied Mathematics 17 (1987), no. 3, 263-268.
[102] L.K. Pramanik, Centers in inserted graphs, Filomat 21 (2007), no. 2, 21-30.
[103] A. Proskurowski, Centers of maximal outerplanar graphs, Journal of Graph Theory 4 (1980), no. 1, 75-79.
[104] A. Proskurowski, Centers of 2-trees, Ann. Discrete Math. v9 (2011), $1-5$.
[105] S. B. Rao and A. Vijayakumar, On the median and the antimedian of a cograph, Int. J. Pure Appl. Math. 46 (2008), 703710.
[106] M.G.C. Resende and R.F. Werneck, A hybrid heuristic for the Pmedian problem, Journal of heuristics 10 (2004), no. 1, 59-88.
[107] S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards, Artificial intelligence: a modern approach, vol. 74, Prentice hall Englewood Cliffs, 1995.
[108] G. Sabidussi, The centrality index of a graph, Psychometrika 31 (1966), no. 4, 581-603.
[109] P.J. Slater, Centers to centroids in graphs, Journal of graph theory 2 (1978), no. 3, 209-222.
[110] P.J. Slater, Medians of arbitrary graphs, Journal of Graph Theory 4 (1980), no. 4, 389-392.
[111] V.P. Soltan, d-convexity in graphs, Doklady Akademii Nauk SSSR 272 (1983), no. 3, 535-537.
[112] V.P. Soltan and V.D. Chepoi, d-convex sets in triangulated graphs, Mat. Issled. (1984), 105-124.
[113] A. Tamir, Obnoxious facility location on graphs, SIAM Journal on Discrete Mathematics 4 (1991), no. 4, 550-567.
[114] \qquad , An o(pn $\left.{ }^{2}\right)$ algorithm for the p-median and related problems on tree graphs, Operations Research Letters 19 (1996), no. 2, 59-64.
[115] S.S. Ting, A linear-time algorithm for maxisum facility location on tree networks, Transportation science 18 (1984), no. 1, 76-84.
[116] M. Truszczyński, Centers and centroids of unicyclic graphs, Mathematica Slovaca 35 (1985), no. 3, 223-228.
[117] V.G. Vizing, The number of edges in a graph of given radius, Dokl. Akad. Nauk, vol. 173, 1967, pp. 1245-1246.
[118] S.J. Winters, Connected graphs with prescribed median and periphery, Discrete Mathematics 159 (1996), no. 1, 223-236.
[119] J. Xu, A proof of a conjecture of simon and murty, J. Math. Res. Exposition, vol. 4, 1984, pp. 85-86.
[120] H.G. Yeh and G.J. Chang, Centers and medians of distancehereditary graphs, Discrete Mathematics 265 (2003), no. 1-3, 297310.
[121] W.C.K. Yen, The connected P-center problem on block graphs with forbidden vertices, Theoretical Computer Science 426 (2012), 13-24.
[122] B. Zelinka, Medians and peripherians of trees, Archivum Mathematicum 4 (1968), no. 2, 87-95.

Index

$L_{1}(n, k), 40$
$L_{2}(n, k), 40$
$R(n, k)), 40$
$R_{1}(n, k), 41$
$\oplus_{n}, 7$
antimedian
graph, 119
of a profile, 119
block graph, 6
boundary set, 34
cartesian product, 7
center, 11, 13
tree, 11
center critical, 21
center number, 39
chordal graph, 6
clique, 4
cycle, 4
$\operatorname{diam}(G), 5$
dominating set, 36
eccentric vertex, 5
even graph, 7
balanced, 7
harmonic, 7
symmetric, 7
fair center, 93
fair set, 93
interior vertex, 34
median number, 73
median set, 73
neighbourhood, 5
pacifying edge, 51
partiality, 93
path, 4
profile, 5
product of, 86
$\operatorname{rad}(G), 5$
self centered graph, 6
shrinking edge, 69
skeleton graph, 6
subgraph, 3
supergraph, 3
UEV graph, 6
walk, 4
weakly antimedian, 137

[^0]: B. Kannan
 (Supervising Guide)

[^1]: Phone : +914842576253 Fax : +914842577602 Email: mullayilkannan@gmail.com

