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Chapter 1

Preliminaries

1.1 Introduction

The history of queues starts from the pre-historic time. Recall the queue

for the Noha’s Ark. Even in nature the seasons are in queue for its turn.

In all the cases where the demand for service is more than the facility

available the result is a queue. A well organized queueing system is the

requirement of any society to deliver the service in an efficient and effective

manner. Both the service providing facility(server) and the people coming

for service(customer) don’t like queues. To provide delightful service to

the customer using the limited resources at an optimal cost a scientific

study became inevitable. This leads to the emergence and development

of queueing theory.

The mathematical study of the queueing system is generally called as

Queueing Theory. The history of queuing theory goes back to more than a

1



2 Chapter 1. Preliminaries

century. The mathematical analysis of the queuing systems starts with the

works by A.K. Erlang and T.O.Engest in the beginning of 1900s. Though

lot of works were going on after Erlang published his first paper in 1909,

with the introduction of Metric Analytic Method by Neuts, the study of

queueing system gained a new momentum.

With the staggering growth in the fields of networking and communi-

cation technology, study of queueing system become very important. The

queueing theoretic analysis is very important for the effective and eco-

nomic use of the resources for rendering service. The scientific analysis

of queueing system helps us to study the characteristics of the queuing

system such as waiting time, service cost, optimum service rate, etc.

Some important elementary aspects of queueing theory which are required

for the understanding of the thesis are discussed here.

1.2 Foundation

Stochastic processes

In many situations probability models are more realistic than deterministic

models. Several phenomena occurring in physics are studied as random

phenomena changing with time and space. Stochastic processes originated

from the needs of physicists.

Let X(t) be a random variable where t is a parameter assuming values

from the set T . Then the collection of random variables {X(t), t ∈ T} is

called a stochastic process. We denote the state of the process at time t

by X(t) and the collection of all possible values X(t) can assume, is called
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state space.

Example: Consider the case of throwing a unbiased die. Let X(n) be the

outcome of nth throw, n ≥ 1. Then {X(n), n ≥ 1} is a stochastic process

with state space{1, 2, . . . , 6}.

Markov chain

Consider a Stochastic process {Xn, n ∈ T}, then Xn = i implies that the

process is in state i at time t. A Stochastic process {Xn, n ∈ T} is called

a Markov chain if

Pr {Xn = in|Xn−1 = in−1, . . . , X0 = i0} = Pr {Xn = in|Xn−1 = in−1}.

Transition probability matrix

pij = Pr {Xn = j|Xn−1 = i} is called the transition probability from state

i to state j. The matrix P = (pij), where i, j are elements of the state

space, is called the one-step transition probability matrix of the Markov

chain.

Transient and recurrent states

A subset of the state space of a Markov chain is said to be closed if no

state outside that subset can be reached from any state within it. If the

chain has no proper closed subset other than the state space itself, it is

called an irreducible chain. A state i is recurrent if and only if, starting

from state i, the probability of returning to state i after some finite time
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is certain. A non-recurrent state is said to be transient. For a recurrent

state if the mean recurrence time is finite, it is called positive recurrent.

The greatest common divisor of the recurrence times of a state is called

its period. If the period is one, the state is said to be aperiodic. A posi-

tive recurrent aperiodic state of a Markov chain is said to be Ergodic. A

Markov chain is ergodic if all its states are ergodic.

Theorem:If a Markov chain is irreducible and positive recurrent, there

exists a unique solution to the linear system πP = π,πe = 1 where π is

the stationary probability vector. If the chain is aperiodic, the probabili-

ties Pr(xn = i) will converge to πi as n→ ∞.

Counting process

A Stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t)

represents the total number of events that have occurred upto time t.

Poisson process

A counting process {N(t), t ≥ 0} is said to be a Poisson process having

rate λ, λ ≥ 0, if

1. N(0) = 0.

2. The process has independent increments.

3. For s, t ≥ 0, P {N(t+ s)−N(s) = n} = e−λt(λt)n

n!
, n = 0, 1, . . ..

λ is called the rate of the process and E[N(t)] = λt.
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Phase Type distribution

Consider a Markov chain on the states {1, 2, 3 . . . ,m,m+ 1} with the in-

finitesimal generator Q =

[
T T 0

0 0

]

where the m ×m matrix T satisfies Tii < 0 for 1 ≤ i ≤ m, and Tij ≥ 0;

for i 6= j. Also Te+ T 0 = 0. Let initial probability vector of this process

be (α, αm+1) with αe+αm+1 = 1. Also assume that the states 1, 2, . . . ,m

are transient so that absorption into the state m + 1 is certain. A prob-

ability distribution F (.) on [0;∞) is said be a phase type distribution

(PH-distribution) of order m with representation (α, T ) if and only if it

is the distribution of the time until absorption of a finite Markov process.

• If F (.) is a phase type distribution, then F (x) = 1−e(Tx)e, for x ≥ 0.

• For a PH distribution F (.) with representation (α, T ), The distri-

bution F (.) has a jump at x = 0 of magnitude αm+1.

• The corresponding probability density function f(.) is given by f(x) =

αe(Tx)T 0, x ≥ 0.

• The Laplace-Stieltjes transform f̂(s) of F (.) is given by

f̂(s) = αm+1 +α(sI − T )−1T 0, for Re(s) ≥ 0.

• The ith raw moment µ′
i ≥ 0 is given by µ′

i = (−1)ii!αT−1e, i =

1, 2, 3, . . .
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Erlang distribution

In PH Distribution if the transition starts only from first phase, absorp-

tion is possible only from the mth phase, one step forward transition is the

only possible transition, the transition rate is µ and α = (1, 0, . . . , 0),

T =




−µ µ

−µ µ

−µ



then the corresponding distribution is called

an Erlang distribution.

Exponential distribution

In PH Distribution if

m = 1, T = [−µ], T 0 = [µ], and α = 1

then the distribution is called exponential distribution. The density func-

tion of Exponential distribution is given by f(x) = µe−µx, x ≥ 0.

Little’s Formula

One of the most powerful formulae in queueing theory is developed by

John D.C.Little. If L is the expected number of customers in the system,

W is the mean waiting time in the system and λ is the arrival rate then

L = λW,Lq = λWq,
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where Wq is the mean waiting time in the queue and Lq is the expected

number of customers in the queue.

Quasi birth-death process

Consider a Markov Chain with state space S =
⋃

n≥0

= {(n, i) : 1 ≤ i ≤ m}.

Here the first component n is called level of the Chain and the second com-

ponent i is called a phase of the nth level. The Markov Chain is called a

Quasi-birth-death (QBD) process if the one step transitions from a state

is restricted within the same level or to the two adjacent levels. If the

transition rates are level independent, the resulting QBD process is called

level independent quasi-birth-death process (LIQBD), else it is called level

dependent quasi-birth-death process (LDQBD). Arranging the elements of

S in lexicographic order, the infinitesimal generator of a LIQBD process

has the block tridiagonal matrix form in which three diagonal blocks re-

peat after some initial levels. We write such a matrix, with modification

depending on boundary states, as Q =




B1 A0

B2 A1 A0

A2 A1 A0

. . . . . . . . .




where the sub matrices A0, A1, A2 are square and have the same dimen-

sion; matrix B1 is also square and need not have the same size as A1.

Also, B1e+ A0e = B2e+ A1e+ A0e = (A0 + A1 + A2)e = 0.
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Matrix Analytic method

The introduction of Matrix analytic method is a land mark in the history

of queueing theory. Matrix analytic method was introduced by M.F. Neuts

in late 1970’s. It is a tool to construct and analyze a wide class of stochas-

tic models using a matrix formalism to develop algorithmically tractable

solution. When queueing theory found its applications in several new

areas, the usual methods like method of generating functions, methods

using transforms etc. failed to provide much tractability in the analysis of

many models especially when the distribution of inter-arrival time or ser-

vice time is not exponential. The introduction of Matrix analytic methods

provided a smooth way to analyze much complicated Stochastic models in

an algorithmic way and to numerically explore the problems more deeply.

For further details regarding matrix analytic method one may refer books

by Marcel. F Neuts[39], Latouche and Ramaswami [29] and Breuer and

Baum [4].

Theorem:The matrix Q defined above is positive recurrent if and only if

the minimal non-negative solution R to the matrix-quadratic equation

R2A2 +RA1 + A0 = 0 (1.1)

has all its eigenvalues inside the unit disk and the finite system of equations

x0(B1 +RB2) = 0

x0(I −R)−1e = 1

has a unique positive solution x0. If the matrix A = A0 + A1 + A2 is

irreducible, then sp(R) < 1 if and only if ΠA2e > ΠA0e

where Π is the stationary probability vector of A.
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Computation of R matrix

The stationary probability vector x = (x0,x1, . . .) of Q is given by xi =

x0R
i, i > 1.

Once R, the rate matrix, is obtained, the vector x can be computed. Using

logarithmic reduction algorithm we can compute R. In some cases we can

have analytic form for the elements of R

Part of this thesis is developed based on the above discussions. For

basic reference the following books are used. Karlin and Taylor [17, 18],

Medhi [37, 38], Gross and Harris [13], Neuts [?], Ross [43], Breuer and

Baum [4], Bellman [2], Latouche and Ramaswami [29], Pakes [40] and

Takagi [46].

1.3 Motivation

All of us are familiar with queues. A queue is formed when there are

more people in demand of service than the number of servers. At times

interruption occurs to service process. Interruption means a break in the

service process. Interruption can be due to server breakdown, compli-

cations created by the customer to own service, arrival of high priority

customers, server taking prescheduled vacation, etc. In all walks of life we

face interruption. In a journey through road we may come across interrup-

tion due to traffic block, break down of vehicle etc. At a billing counter

we may find interruption due to some problems of the billing machine.

In some cases interruption due to more than one factor may occur to the

same service process. We label these factors as environmental factors. Dif-
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ferent environmental factors may be the cause of interruption at various

occasions. As an example, consider the case of Radio-communication. In

this, signals are sent in the form of electromagnetic waves produced in the

space. As the electromagnetic waves travel through space the following

factors affects the radio communication.

Atmospheric condition, the nature of the objects on earth surface between

the transmitting and receiving centers, distance of transmission, density of

signals from other stations, power of transmitter and capacity of receiver,

method of transmission, nature of antenna, frequency of carrier wave and

methods of detection. In this case there are mainly nine environmental

factors causing interruption. Interruption due to some factors are tempo-

rary. So we ignore such interruptions. Interruption due to some factors are

identified only at a later stage. The method of rectification of interruption

depends on the nature of environmental factor causing interruption.

As another example, consider the case of a patient admitted to hospi-

tal for emergency operation. Interruption can occur due to unavailability

of operation theatre, lack of fitness of the patient, rare blood group of

the patient, in the case of organ transplantation unavailability of match-

ing organ, frequently changing physical condition of the patient, patient’s

response to medicines, etc. In the case of organ transplantation, the re-

sponse of the body to the organ cannot be predetermined. Sometimes

the body will accept the organ or reject it. We will get the response only

at a later stage. Then only the surgeon can take necessary steps to save

the life of the patient. In the case of intake of medicine the response of

the body can be judged only at a later stage. If the particular medicine

is not receptive for the particular patient, correction has to be done in

the treatment. There are different factors interrupting the treatment and

correction of interruption caused by each factor is different. The time du-
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ration for correction may vary from case to case.

As another example we consider the case of usage of internet. While

browsing the net the possible interruptions are power failure, congestion

in network, connectivity problem, software or hardware issues of the PC,

etc. The interruption due to some of these factors are detectible only at

a later stage. In some cases correction can be done. But interruption due

to the same factors may occur again. Sometimes the impatient customer

give up the effort due to the repeated interruption.

The above mentioned examples are related to interruption in service pro-

cess. Another important aspect is the interruption in vacation. When

ever the queue becomes empty the server goes for vacation. During vaca-

tion the server can go for maintenance, can provide services in some other

queueing system. This is for the effective utilization of free time of server

and to reduce the waiting time of the customers in other queues. Depend-

ing on the environment the server can opt for either normal vacation or

working vacation. During normal vacation, based on the environment the

server can pick up different options.

Consider a super market. If there is no customer in the billing counter,

the sales girl can utilize the time for tallying the account, can record the

price list of new arrivals in the computer, can arrange the new stock in the

shelf, can clean the shop, can go to take food, can take the list of items

finished, etc. Depending on the requirement she selects the vacation job.

When customers arrive to the queue she returns from vacation interrupt-

ing it.

In a net cafe if there is no customer waiting the operator can use the system

for data entry, software updation, rearrangement, etc. If more customers

arrive the operator stops his job and provides the PC for browsing de-

pending on the cost effectiveness.These are some of the real life situations
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which motivated us to focus on queues with interruption in random envi-

ronment.

The works reported in the literature discuss about interruptions, either

server induced or customer induced, rather than the cause of interruption.

In this thesis we introduce the concept of environment dependent service

interruption and vacation interruption.

The models in this thesis are the results of inspiration drawn from the

following works.

• Queues with environment dependent interruption: White and Christie.

[48], Awi Federgruen and Linda Green. [1], Bhaskar Sengupta. [3],

Dudin. A.N., Varghese Jacob, and Krishnamoorthy.[7], A Krish-

namoorthy. A., Pramod. P.K, and Deepak. T.G.[22], Krishnamoor-

thy. A., Pramod. P.K, and Chakravarthy.[24], Krishnamoorthy. A,

Pramod.P.K, Chakravarthy.S.R. [27]

• Queues with environment dependent vacation: O.C. Ibe, Olubukola

A. Isijola.[14], O C. Ibe, Olubukola A. Isijola. [15], Y. Levy, U.

Yechiali. [30], Fuhrmann.S, R.Cooper [10], Doshi.B.T. [5], [6], Shan-

thikumar.J.G. [42], Takagi.H. [46], Servi.L.D, S.G. Finn. [41], D.A.

Wu, H. Takagi. [50], N. Tian, G. Zhang. [46], D.A. Wu, H. Tak-

agi. [50], Li.J, N.Tian. [36], Li.W, X.Xu, N.Tian. [32], Kim.J.D,

D.W.Choi, K.C. Chae[20], Li.J, N.Tian, Z.Ma[33], Li.J, N.Tian[34],

Li.J, N. Tian, Z. Zhang, H. Luh. [35], Ke.Jau-Chuan, Chia-Huang

Wu, Z.G.Zhang. [19], Zhang, Z. Hou. [51], Sreenivasan.C, A. Kr-

ishnamoorthy. [44], Sreenivasan.C, S. R. Chakravarthy, A. Krish-

namoorthy. [45], Li.J, N.Tian. [31].
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1.4 Summary of the thesis

This thesis entitled “Queues with interruption in random/Markovian envi-

ronment” contains eight chapters including the present introductory chap-

ter. The main tools used for the development of the thesis are Matrix

analytic method, method of induction, method of generating function and

supplementary variable technique. Distributions like Exponential distri-

bution, Erlang distribution, PH distribution are considered. A brief dis-

cussion about these preliminaries are included in the first chapter. Chap-

ters 2-5 deal with queues with environment dependent interruption and

chapters 6-8 deal with queues with environment dependent vacation.

Chapter 2 is devoted to a queueing system with service interruption

in which service gets interrupted due to different environmental factors.

Even though any number of interruptions can occur during the service of

a customer, the maximum number of interruptions is restricted to a finite

number K and if the number of interruptions exceeds the maximum, the

customer leaves the system without completing service. The difference

between the model under discussion and those considered earlier in liter-

ature is that the customer / server is unaware of the interruption until

a random amount of time elapses from the moment interruption strikes.

At the moment the interruption occurs, a random clock and a superclock

start ticking. The interruption is identified only when the random clock

is realized. The superclock measures the total interruption time during

the service of a customer. On realization of superclock the customer goes

out of the system without completing service. The kind of service to be

started after the interruption depends on the environmental factor that

caused the interruption. Here we first analyze the service process to find

the response time and to compute the stability condition. The optimal
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values of K for a suitable cost function is investigated. Numerical in-

vestigation indicates the cost function as convex/increasing/decreasing in

K

In chapter 3 a queueing system similar to one discussed in chap-

ter 2 is analyzed. The main difference is that in this model the inter-

ruption causing environmental factors forms a Markov chain with ini-

tial probability vector pi, i = 1, 2, . . . , n and transition probability matrix

P = (pij), i, j = 1, 2, . . . , n. The condition for stability of the system

is obtained. Steady state probability vector and important performance

measures are calculated with the help of Matrix analytic method. A com-

parison between the two models, Queue with interruption in random envi-

ronment and Queue with interruption in Markovian environment, is car-

ried out.

In chapter 4 we consider a single server queueing system in which

arrival occurs according to a Poisson Process. On arrival if the customer

finds the server busy, he joins the tail of the queue otherwise he gets ser-

vice immediately. The service is Erlang distributed. During service there

is a possibility for interruption in service due to different factors. Here

we assume that there are n+1 environmental factors causing interruption

to the service. These factors are numbered 1 to n + 1 depending on the

ascending order of severity of interruption caused by them. The interrup-

tion occurs according to a Poisson Process. When the interruption due to

ith factor occurs the rate of service changes. On the onset of interruption

an exponentially distributed random clock and a PH distributed inter-

ruption clock are started. Only forward phase change is allowed for the

interruption clock. When the interruption occurs due to any one of the

first n factors it is ignored in the beginning and service is continued with
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interruption. When the interruption clock realizes the service is stopped

and the server is repaired immediately. After repair the service to the

customer in service is resumed if the interruption clock is realized before

the random clock otherwise the service has to be restarted. There is a

possibility for customer completing service with interruption. In that case

the server goes for repair after the service completion. If the interruption

is due to (n + 1)th factor the customer goes out of the system and the

server is replaced immediately. Once the interruption starts getting at-

tended both the clocks are reset to zero position.

As the duration of ignored interruption increases the severity of inter-

ruption also increases. After some duration, the cause of interruption

changes from ith factor to jth factor, where j ≥ i and ith factor is the one

causing initial interruption. Then the service rate also changes. Again

if the interruption remains unattended for sometime, the cause of inter-

ruption changes from jth factor to kth factor, where k ≥ j. The server

is replaced on being interrupted by the (n + 1)th factor. The customer

in service is also lost when the interruption is due to (n + 1)th factor.

The n + 1 environmental factors are the states of a Markov chain with

initial probability vector pi, i = 1, 2, . . . , n+ 1 and transition probability

matrix P = (pij), i, j = 1, 2, . . . , n + 1. Stability of the system is verified.

Using Matrix analytic method Steady state probability vector and im-

portant performance measures are obtained. The important performance

measures are numerically explored.

In chapter 5 we analyze two queueing models. In the first model

we consider a single server queueing system with arrival following Poisson

process. The service time is Erlang distributed. At times there is a possi-
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bility for interruption in service process. It occurs according to a Poisson

process. The duration of interruption is exponentially distributed. The

service continues ignoring the interruption. During interrupted service

there is a scope for self correction of interruption. Self correction occurs

according to a Poisson process. On the onset of interruption an interrup-

tion clock is started which is Erlang distributed. If the interruption clock

is realized before service completion the server goes for repair and after

repair the service is resumed. Repair time is exponentially distributed. If

service is completed before the realization of interruption clock the next

customer in the head of the queue enters for service.

In the second model the arrival process and the service process are

same as in the first model. During service interruption occurs according

to a Poisson process. There are n environmental factors causing interrup-

tion. Interruption due to ith environmental factor occurs with probability

pi. If the interruption is due to first m factors it is ignored and service

continues. But the service will be at lower rate. The duration up to which

the server works without breakdown is assessed with the help of an in-

terruption clock. This clock starts ticking with the initiation of the first

interruption to the service of a customer. The duration of the clock is

exponentially distributed. During that period there is a possibility for self

correction of interruption. This self correction duration is exponentially

distributed. If self correction occurs the service rate changes. On realiza-

tion of the interruption clock the server goes for repair. The repair time is

exponentially distributed. After repair the interrupted service is resumed.

If the service of a customer is completed while server in interruption the

next customer in the head of the queue enters for service at the interrupted

server. If the interruption is due to the remaining n−m factors the server
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directly goes for repair. Taking into account the severity of interruption

caused by these n−m factors, protection for remaining service is provided

at the epoch of resumption of service after repair. The stability of both

systems are analyzed. Steady state probability vector is calculated using

matrix analytic method. Important performance measures are numerically

substantiated.

Chapter 6 analyzes a single server multiple vacation queueing sys-

tem. There are mainly two types of vacation: the server goes for type I

vacation after a non-empty busy period of serving at least one customer.

On returning from type I vacation if the server finds the system empty, it

goes for a type II vacation. In type I vacation, depending on the environ-

ment, there are n distinct kinds of vacations. Interruption can occur to

all types of vacations. The interruption to vacation is controlled by the

length of the queue. We calculate the long run system probabilities, mean

and variance of the number of customers in the system. Using Little’s

formula waiting time is also calculated and numerically illustrated. An

optimization problem is discussed with numerical illustration.

Chapter 7 is devoted to a single server queueing system with work-

ing vacation in which arrival occurs according to a Poisson process. The

service time is exponentially distributed. On completion of a service if

the server finds the system empty he goes for a working vacation. There

are n types of working vacations. Depending on the environment, after

a busy period, the server goes for ith type of vacation with probability

pi, 1 ≤ i ≤ n. The duration of vacations are exponentially distributed

with different parameters. During vacation if customers arrive, the server

provides service at a lower rate . On completion of service during vacation,

if there is no customer left in the system the server continues its vacation.
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Otherwise the vacation is interrupted, i.e. the server returns to normal

service without completing the vacation and starts service in the normal

rate. On completion of vacation if the server finds the system empty, he

remains in the corresponding vacations. We demonstrate stochastic de-

composition of the queue length and waiting time processes using method

of induction and Little’s formula.

In chapter 8 we carry out the study an M/G/1 queue with multiple

vacation and vacation interruption. Both normal vacation (type I) and

working vacation (type II) are considered. The exhaustive service disci-

pline is assumed in this. At the end of a busy period, depending on the

environment, the server either opts for normal vacation or working va-

cation. On completion of type I vacation if the server finds the system

empty he goes for type II vacation. On completion of type II vacation

if the server finds the system empty he goes for another type II vacation

and so on. On completion of service in type II vacation, if the server finds

one or more customers in queue he returns to normal service, interrupt-

ing the vacation. An arriving customer, during type I vacation, joins the

queue with probability q or leaves the system with probability 1 − q and

during type II vacation all the arriving customers join the queue. Us-

ing supplementary variable technique we derive the distributions for the

queue length and service status under steady state condition. Laplace-

Stieltjes transform of the stationary waiting time is also developed. Some

numerical illustrations are also given.



Chapter 2

Queues with interruption in

Random Environment

Introduction

Queues with interruption was first studied by White and Christie [48] in

the context of a two priority system with preemption. In some queueing

systems, the service process is subject to interruptions due to (i) (unsched-

uled) breakdowns of the server(s), (ii) scheduled off-periods, or (iii) arrival

of customers of a higher priority class. In such systems, the distribution

of service time in interruption free system is replaced by distribution of

completion time which is the time a customer spends in the system after

leaving the queue.

Some results of this chapter are included in the following paper.
A.Krishnamoorthy, Jaya.S, B.Lakshmy. : Queue with interruption in random environ-
ment, Annals of Operations Research, Springer (Accepted for publication).
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Several researchers have discussed queues with service interruption due

to server taking vacation and (or) due to arrival of priority customers. A

recent survey paper by Krishnamoorthy et al [24] gives a detailed descrip-

tion of research on queueing models with service interruptions induced by

server breakdown and also those with customer induced service break; in

the latter case the server starts service for the next customer if any avail-

able. In server induced interruption such as break down, no service takes

place when such failures occur.

In another paper Krishnamoorthy et.al [27] discuss phase type dis-

tributed interruption, Markovian arrival process and phase type service

time distribution. Here the maximum number of interruptions for a cus-

tomer is fixed. An interrupted service is either resumed from where it got

interrupted or repeated from the beginning, based on the realization of a

threshold clock that starts ticking at the epoch of onset of an interrup-

tion. A super clock is started at the epoch of the first interruption to a

customer’s service. If the super clock expires before fixing an interruption

no further interruption is allowed to occur. The interruption occurs ac-

cording to a Poisson process and the interruption duration, threshold and

super clocks follow mutually independent phase type distributions.

The important features of the model discussed in this chapter, which

are not discussed in all the above cited papers, are (i) there are a finite

number of n factors causing interruption and the service after interruption

is not necessarily the continuation of the previous service, but a new ser-

vice depending on the environmental factor causing interruption, (ii)the

customer/server is not aware of the interruption for some time, and during

that period, service provided is not effective, (iii) interruption can occur

due to any of the n environmental factors, but when the service is inter-
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rupted no further interruption is allowed until the rectification of current

interruption, (iv) only a finite number of interruptions are allowed, and

(v) a customer in service is going out of the system without completing

service, based on the realization of the super clock or the number of in-

terruptions that strikes the customer in service exceeding the permitted

maximum number.

As a real life example for customer induced interruption we consider

the case of a patient undergoing medical treatment. During the course of

treatment the patient will have certain restrictions on the diet. The food

items that are taboos can be considered as the environmental factors.

Consumption of any of such food item causes interruption to the medica-

tion. If the patient consumes any of the restricted food item the result of

the treatment may not be as desired. The realization of the violation of

restriction is identified only at a later stage (in earlier reported research

works (see paper [22]) it is instantaneous identification). Then corrective

actions are taken and the treatment can be continued or sometimes may be

modified. If the total time from the moment of consumption of restricted

food item till the starting of a new treatment after the interruption, ex-

ceeds a certain amount of time the treatment may become ineffective and

the patient has to stop taking the treatment. At the same time, repeated

use of restricted food item also affects the result of the treatment. So the

number of possible interruptions is restricted to a fixed quantity. If the

number of interruptions exceeds that upper bound then also the treatment

is ineffective. In the model under discussion the server is assumed to be

affected by interruption of the kind described in the example.

As another example we consider the online blend headers used in re-

fineries for making different grades of petrol and diesel. Various streams
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arrive at the blend header from different processing units. The streams

are expected to have a set of properties. Based on the expected properties

of different streams and the flow rates we expect a set of properties for

the blend header output. There is an online analyser in the blend header

which will continuously monitor the properties of the blend header out-

put. Sometimes the quality of the streams may vary due to variation in the

conditions of the processing units. Here the factors causing variation to

the conditions of the processing units are considered as environmental fac-

tors. Due to different reasons the analyser may not identify the variations.

Then the values shown by the analyser may not be correct, but depending

on that values the blend header go on working. Only while validating

the blend header readings by cross checking in the laboratory at preset

intervals, the interruption is identified. If there is a mismatch in the value

shown by the analyzer and lab result, the next step is the identification of

the factor which caused the error and depending on that corrective actions

are taken to get the output with desired properties. This can happen any

number of times. If the total time for blending and correction exceeds a

particular time limit the properties of the blended batch will be totally

different from the target and the final product will be offspec. There are

other real life examples occurring in medical, engineering, communication,

and educational fields.

2.1 Model description

The queueing system that we consider is such that arrivals occur according

to a Poisson process with parameter λ. The service time is exponentially

distributed with parameter µ. During service, interruption occurs accord-
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ing to a Poisson process with parameter β. There are n environmental

factors causing interruption. The interruption due to the ith factor occurs

with probability δi. For a certain duration of time the server is unaware of

the interruption. At the start of the interruption, a random clock which is

exponentially distributed with parameter ηi, starts ticking when the inter-

ruption is caused by the ith environmental factor. The random clock mea-

sures the time elapsed from the epoch of occurrence of interruption until

the identification of interruption. The realization of the random clock in-

dicates the identification of interruption. The fixing time is exponentially

distributed with parameter αi, if the i
th factor is the cause of interrup-

tion. On fixing, a new service starts which is exponentially distributed

with parameter µi, provided the ith factor caused the interruption.

The super clock, which is exponentially distributed with parameter γi,

started at the beginning of the first interruption that strikes the customer

in service, will freeze when the new service starts after interruption and

it will again start functioning from the position where it stopped, when

another interruption occurs to the same customer. Sometimes the super

clock may be realized before the random clock. The number of interrup-

tions during the service of a customer is limited to K. On realization of

the super clock or when the number of interruptions exceeds K, whichever

occurs first to the customer in service, he goes out of the system without

completing the service. Finally when the customer leaves the system the

superclock is reset to the zero position. A diagrammatic representation of

the model is given in Figure 2.1.
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Figure 2.1: Model description

2.2 Analysis of service process with inter-

ruptions (Response time)

The service process {X(t), t ≥ 0} where X(t)= (S(t), I1(t), I2(t), I3(t), I4(t))

is a Markov Chain with 3nK+1 transient states given by {0}∪{(1,m, i, j, l)/m =

1, 2, . . . , K; i = 0, 1; j = 0, 1; l = 1, . . . , n} ∪ {(2,m, l)/m = 1, 2, . . . , K; l =

1, 2.....n} and one absorbing state denoted by {∗}. The absorbing state

represents the customer moving out of the system either after service com-

pletion or without completing service. Here S(t) denotes the status of the

server at time t:
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S(t) =





0, if the service going on and has not

undergone any interruption so far

1, if the service is interrupted

2, if service is continuing after interruption ;

I1(t) denotes the number of interruptions occurred until time t to the cur-

rent customer in service. I1(t) varies from 0 to K;

I2(t) represents the status of the random clock:

I2(t) =

{
0, if the random clock is realized

1, otherwise;

I3(t) corresponds to the status of the super clock:

I3(t) =

{
0, if the superclock is freezed

1, otherwise;

If the server is interrupted at time t, I4(t) corresponds to the environmental

factors that caused the current interruption to the service. In this model

we consider n environmental factors. Thus I4(t) has values varying from

1 to n. The state space of the process is X(t)= {0} ∪ {(1,m, i, j, l)/m =

1, 2, . . . , K; i = 0, 1; j = 0, 1; l = 1, . . . , n} ∪ {(2,m, l)/m = 1, 2, . . . , K; l =

1, 2.....n} ∪ {∗}, where {∗} is the absorbing state. The infinitesimal gen-

erator of the process is given by

Q̄ =

[
T T 0

0 0

]

where T =



B′

0 B′
1 0

0 B′
2 B′

3

0 B′
4 B′

5




(3nK+1)×(3nK+1)

.
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Let γ =




γ1

γ2
...

γn



, µ̄ =




µ1

µ2

...

µn



, δ =

[
δ1, δ2, . . . δn

]
.

Then B′
0 = [−(µ+ β)] where B′

0 is a matrix of order one.

B′
1 =

[
βδ 0

]
(1×2nK)

, B′
2 = IK ⊗ U0.

U0(i, j) =





−(ηi + γi) for i = j = 1, 2, ....n

−(αi−n + γi−n) for i = j = n+ 1, ....2n

ηi for j = i+ n, i = 1, 2, ....n

0 otherwise.

i, j = 1, 2, . . . 2n

B′
3 = IK ⊗ U2, where U2 =

[
0

U1

]

(2n×n)

, and U1 =diag(α1, α2, . . . , αn);

B′
4 =

[
0 IK−1 ⊗ U3

0 0

]

(nK×2nK)

with U3 =
[
(e⊗ βδ) 0

]
(n×2n)

.

B′
5 = IK ⊗ U4 and U4(i, j) =

{
−(µi + β) for i = j

0 otherwise.
i, j = 1, 2, . . . , n

T 0 =



B03

B13

B23




(3nK+1)×1

with

B03 =
[
µ
]
, B13 =




γ
...

γ




(2nK×1)

, B23 =




µ̄
...

µ̄

µ̄+ e⊗ β




(nK×1)

.

The initial probability vector is ζ = (1, 0, . . .) which means that at first

the interruption starts. Here the service process with interruption follows

PH Distribution. So using the property that residual service time in a

phase type distributed service process is also phase type we see that
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• The expected time for service completion/customer leaving the sys-

tem without completing service due to realization of super clock or

attaining maximum K is E(ST ) = ζ(−T )−1e, and hence the ex-

pected service rate is µs = 1/E(ST ).

• Probability for service completion without any interruption is

ζ(−B′
0)

−1B03.

2.2.1 Expected number of interruptions

To calculate the expected number of interruptions during the service of a

customer, we consider the Markov Chain {Y (t), t ≥ 0} where Y (t) =

(I1(t), S(t), I2(t), I3(t), I4(t)) with state space {0} ∪ {(m, 1, i, j, l)/m =

0, 1, 2, . . . , K; i = 0, 1; j = 0, 1; l = 1, . . . , n}∪{(m, 2, l)/m = 0, 1, 2, . . . , K;

l = 1, 2.....n} ∪ {∇} where {∇} is the absorbing state which represents the

customer moving out from the system either after service completion or

without completing service. Here S(t) and Ij(t), j = 1, 2, 3, 4 are as de-

fined in section 2.2. The infinitesimal generator of {Y (t), t ≥ 0} is given

by

Q̂ =

[
∆ ∆0

0 0

]
where ∆ =




B00 B01

A10 A11

A10 A11

. . . . . .
. . . . . .

A10




,

B00 = [−(µ+ β)] , B01 =
[
βδ 0

]
(1×3n)

,
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A10 =

[
L1 L2

0 L3

]

3n×3n

, A11 =

[
0 0

L4 0

]

3n×3n

,

with

L1 =





−(ηi + γi), for i = j = 1, 2, ...n

ηi, for j = i+ n, i = 1, 2, ...n

−(α(i−n) + γ(i−n)), for i = j = n+ 1, ...2n

0, otherwise;

i, j = 1, 2, . . . , 2n

L2 =

{
αj, for i = j + n;

0, otherwise;
i, j = 1, 2, . . . , n

L3 =

{
−(β + µi), for i = j

0, otherwise;
i, j = 1, 2, . . . , n

L4 =

{
βδj, for i, j = 1, 2, ...n

0, otherwise;
i, j = 1, 2, . . . , 2n

and

∆0 =




C ′
0

A′
2

A′
2

.

.

B′
2




where C ′
0 = [µ] A′

2 =

[
L5

L6

]

3n×1

, B′
2 =

[
L5

L7

]

3n×1

,

where L5 =

[
γ

γ

]

2n×1

L6 =
[
µ
]
n×1

, L7 =
[
µ+ β

]
n×1

.

The initial probability vector ζ =
(

1 0 0 . .
)
.

From the above matrices we get the following system characteristics:

• Probability for absorption after r(r ≤ K) interruption is given by
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ar =





(B00)
−1C ′

0, for r = 0,

(B−1
00 B01)(A

−1
10 A11)

(r−1)(A−1
10 B

′
2), for r = K,

(B−1
00 B01)(A

−1
10 A11)

(r−1)(A−1
10 A

′
2), otherwise.

• Expected number of interruptions E(I) for a customer =
∑K

r=1 rar

• Probability for service completion after exactly r(1 ≤ r ≤ K) inter-

ruptions

cr = ζ(−B−1
00 B01)(−A

−1
10 A11)

(r−1)(−A−1
10 A

′
3) where A

′
3 =




0

0

µ̄


.

• Expected number of interruptions E(IS) before service completion

for a single service=
∑K

r=1 rcr.

• Probability for service completion without any interruption

P (s) = ζ(−B00)
−1C ′

0.

• Probability for the customer leaving the system due to the realiza-

tion of super clock during the rth interruption,

yr = ζ(−B−1
00 B01)(−A

−1
10 A11)

(r−1)(−A−1
10 A

′

4), r = 1, 2, . . . , K,

and A
′

4 =

[
L5

0

]
.

• Expected number of interruptions E(I) before the realization of super

clock =
∑K

r=1 ryr.

Having computed the measures indicated above, we describe the queueing

model and the condition for it to be stable.
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2.3 The queueing model

Consider the queueing model Z = {Z(t), t ≥ 0}, where Z(t) = (N(t), S(t),

I1(t), I2(t), I3(t), I4(t)) where N(t) is the number of customers in the sys-

tem. Here S(t) and Ij(t), j = 1, 2, 3, 4 are as defined in section 3. Z is a

continuous time Markov chain with state space {0}∪ {(h,m, 1, i, j, l)/h =

1, 2, . . . ,∞;m = 0, 1, 2, . . . , K; i = 0, 1; j = 0, 1; l = 1, . . . , n}∪

{(h,m, 2, l)/h = 1, 2, . . . ,∞;m = 0, 1, 2, . . . , K; l = 1, 2.....n}. Its in-

finitesimal generator Q is given by

Q =




B0 B1

B2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .




whereB0 = [−λ], B1 =
[
λ 0 · · ·

]
1×3nK

,

B2 = T 0; A0 = λI3nK+1; A1 = T − λI3nK+1; A2 = T 0ζ.

Lemma:The system Z is stable when λ < µs, where µs is defined in

sec.2.2.

Proof :When the right drift rate (arrival of a customer) is less than the

rate of drift to the left ( departure of the customer from the system), the

system is stable.

Stationary distribution

The stationary distribution, under the condition of stability, λ < µs, has

Matrix Geometric solution. Let χ=(x0,x1,x2, ...) be the steady state prob-

ability vector of the Markov chain {Z(t), t ≥ 0}. Each xi, i > 0 are vectors

with 3nK+1 elements. We assume that x2 = x1R, and xi = x1R
i−1, i ≥ 2,
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where R is the minimal non- negative solution to the matrix quadratic

equation

R2A2 +RA1 + A0=0.

From χQ=0 we get

x0B0 + x1B2 = 0.

x0B1 + x1(A1 +RA2) = 0.

Solving the above two equations we get x0 and x1 subject to the normal-

izing condition x0e+ x1(I −R)−1e=1.

2.4 Performance measures

After calculating the steady state probability vector we now concentrate

on some important performance measures of the system.

2.4.1 Expected waiting time

Computation of expected waiting time of a particular customer who joins

the queue as the rth customer, is done by considering the Markov Chain

X ′= {(M(t), S(t), I1(t), I2(t), I3(t), I4(t)), t ≥ 0} where M(t) is the rank

of the tagged customer.The tagged customers rank will decrease to 1 as

the customers ahead of him leave the system. The rank of the customer

is not affected by the arrival of customers following the tagged customer.

Here S(t) and Ij(t), j = 1, 2, 3, 4 are as defined in section 2.2. X ′ is a

Markov chain with state space {(h, 0)/h = m, . . . , 1}∪{(h, 1, s, i, j, l)/h =

m, . . . , 1; s = 1, 2, . . . , K; i = 0, 1; j = 0, 1; l = 1, . . . , n} ∪ {(h, 2, s, l)/h =
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m, . . . , 1; s = 1, 2, . . . , K; l = 1, 2.....n} ∪ {Φ} where {Φ} is the absorbing

state. The infinitesimal generator matrix Q̃ is given by

Q̃ =

[
W W 0

0 0

]
where

W=




T T 0ζ

T T 0ζ
. . . . . .

T T 0ζ

T




and W 0 =




0
...
...

0

T 0




.

The expected waiting time of the tagged customer, according to the po-

sition of the customer being served at the time of arrival of the tagged

customer, is a column vector which is obtained from the formula

Er
W = −T−1(I − (T 0ζT−1)(r−1))(I − T 0ζT−1)−1e.

Hence the expected waiting time of a customer in the queue is

E(W ) =
∞∑

r=1

xrE
r
W .

2.4.2 Other important performance characteristics

• Expected number of customers completing service without interrup-

tion E(NI) =
∞∑

i=1

ixi,0.

• Probability that there are i (i ≥ 0) customers in the system, Pi=xie.

• Expected number of customers in the system, E(S)=
∞∑

i=1

iPi.

• Fraction of time the server in the interrupted state,
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FT (I) =
∞∑

i=1

xi,1e.

• Fraction of time the server is busy,

FT (B) =
∞∑

i=1

xi,0 +
∞∑

i=1

xi,2e+
∞∑

i=1

K∑

r=1

xi,1,r,1e.

• Fraction of time the server in the unidentified interrupted state,

FT (NI) =
∞∑

i=1

K∑

i1=1

xi,1,i1,1e.

• Fraction of time the server in fixing state,

FT (FS) =
∞∑

i=1

K∑

i1=1

xi,1,i1,0e.

• Fraction of time the super clock is freezed,

FT (SF ) =
∞∑

i1=1

xi,2e.

• Fraction of time the super clock is on,

FT (ON) =
∞∑

i=1

K∑

i1=1

xi,1,i1e.

• Rate of customer leaving the system, due to realization of superclock,

after rth interruption due to jth environmental factor =γj

∞∑

i=1

1∑

l=0

xi,1,r,l,0,j
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2.5 Cost function and Numerical illustra-

tions

The purpose of this section is to determine the optimal value of K through

numerical experiments. To this end we construct a cost function as a

function involving K. The following costs are considered.

• C1- service cost.

• C2 - Holding cost of the service interrupted customer.

• C3 - Cost of lost service i.e. the service cost during the unidentified

interrupted state.

• C4 - Holding cost of the customer in the queue.

Therefore the total expected cost, EC = C1∗(expected service rate) + C2∗

(fraction of time the customer in the interrupted state) + C3∗ (fraction of

time the customer in the unidentified interrupted state) + C4∗( Expected

number of customers in the queue).

Effect of number of interruption on Expected cost

Due to the complexity of the cost function we are unable to compute the

optimal K explicitly. By fixing the values of the parameters:

λ = 3, µ = 8, n = 5, α1 = 7, α2 = 7, α3 = 6, α4 = 6, α5 = 5, δ1 = 0.1, δ2 =

0.2, δ3 = 0.2, δ4 = 0.3, δ5 = 0.2, γ1 = 2, γ2 = 2, γ3 = 2, γ4 = 2, γ5 = 2, η1 =

6, η2 = 5, η3 = 5, η4 = 4, η5 = 4, µ1 = 5, µ2 = 6, µ3 = 5, µ4 = 6, µ5 = 7,
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C1 = $100, C2 = $300, C3 = $20, C4 = $20.

The values for Expected cost corresponding to the variation in K and β

are represented graphically (See Figure 2.2). By taking γ1 = γ2 = γ3 =

0 2 4 6 8
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Figure 2.2: Effect of change in K and β on (EC)

γ4 = γ5 = γ, β = 3 and all other values as above,the expected cost is as in

the Figure 2.3. From Figure 2.2 and Figure 2.3 it is clear that as the value

of K and β increases the expected cost increases. But as the realization

rate of super clock increases the expected cost decreases.
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Figure 2.3: Effect of change in K and γ on (EC)
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Effect of change in number of interruptions on E(S)

Table 2.1: Effect of change in K on E(S)
K E(S)
1 1.0243
2 1.1877
3 1.2188
4 1.2240
5 1.2249
6 1.2250

As the value of K increases, expected number of customers in the

system E(S) increases which is on expected lines (see Table 2.1).

2.5.1 Effect of change in µ on various performance

measures

Take λ =3, n=5, K=5, β = 3. As the value of µ increases, expected

Table 2.2: Effect of change in µ on E(NI) ,E(S)and P(s)
µ E(NI) E(S) P(s)
4 3.9897 8.7787 0.5714
5 1.7007 3.9433 0.6250
6 1.0810 2.6057 0.6667
7 0.7928 1.9690 0.7000
8 0.6261 1.5925 0.7273
9 0.5175 1.3419 0.7500
10 0.4410 1.1621 0.7692

number of customers with no interruption E(NI) and expected number of



2.6. Analysis of service process when the service time and the super
clock follow Erlang Distribution 37

customers in the system E(S) decrease but probability P (s) for service

completion without any interruption increases (see Table 2.2).

Effect of change in λ on E(NI) and E(S)

Assuming µ=8, n=5, k=5, β = 3 and all other values as above we get the

following values for E(NI) and E(S). As the value of λ increases, expected

Table 2.3: Effect of change in λ on E(NI) and E(S)
λ E(NI) E(S)
1 0.1047 0.2502
2 0.2722 0.6952
3 0.6261 1.5925
4 1.6788 4.0123

number E(NI) of customers with no interruption and expected number

E(S) of customers in the system increase (see Table 2.3).

So far we concentrated on the study of the CTMC with underlying dis-

tributions exponential. However this distribution does not fit into several

contexts, for example the service time.

2.6 Analysis of service process when the ser-

vice time and the super clock follow Er-

lang Distribution

Here we consider a special case of the main system we analyzed above.

Assume that the service time and super clock are Erlang distributed. The
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initial service is Erlang distributed with shape and scale parameters µ and

a respectively and the services after interruption fixation are Erlang dis-

tributed with parameter µi and bi if the i
th factor is the cause of interrup-

tion. The super clock is Erlang distributed with shape and scale parame-

ters γ and c respectively. On identification of random clock the fixing time

starts. All other assumptions are as in the previous model. The service

process X = {X(t), t ≥ 0} where X(t) = (S(t), I1(t), I2(t), S1(t), I3(t)),

is a continuous time Markov chain. Here S(t) denotes the status of the

server at time t:

S(t) =





0, if the service going on at t has not

undergone any interruption so far

1, if the server is in the unidentified interrupted state

2, if the server is in the fixing state

3, if the service at t has undergone interruption ;

I1(t) denotes the environmental factor causing interruption. It varies from

1 to n. I2(t) denotes the number of interruptions occurred until time t to

the current customer in service. I2(t) varies from 0 to K. S1(t) denotes

the phase of service process. It varies from 1 to a if the service is without

interruption and varies from 1 to bi for the service after the completion

of an interruption caused by the ith factor. I3(t) denotes phase of super

clock which varies from 1 to c. The state space of the Markov chain is E =

{(0,m)/m = 1, . . . , a} ∪ {(1, l, j,m, r)/j = 1, 2, . . . , K; l = 1, . . . , n;m =

1, . . . , a, or 1, . . . , bl; r = 1, . . . , c}∪{(2, l, j, r)/j = 1, 2, . . . , K; l = 1, . . . , n; r =

1, . . . , c} ∪ {(3, l, j,m, r)/j = 1, 2, . . . , K; l = 1, . . . , n;m = 1, . . . , bl; r =

1, . . . , c}∪ {one absorbing state}. The infinitesimal generator is A =[
Ω Ω0

0 0

]

with initial probability vector ζ=(1, 0, . . . , 0), where
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Ω =




H00 H01 0 0

0 H11 H12 0

0 0 H22 H23

0 H31 0 H33



and Ω0 =




H0(0)

H0(1)

H0(2)

H0(3)




H00(i, j) =





−µ− β if i = j; i, j = 1, 2 . . . , a

µ, j = i+ 1; i = 1, 2 . . . , a− 1

0, otherwise;

H01 =
[
R1 R2 · · · Rn

]

where each Rl is a matrix of order a× (ac+
n∑

l=1

(K − 1)blc) and

Rl(i, j) =

{
βδl, if j = (i− 1)c+ 1; ;

0, otherwise;
and l = 1, . . . , n.

H11 =




A1 0 · · · 0

0 A2
. . . 0

...
. . . . . . . . .

0 0 · · · An




Here each Al is a square matrix of order(ac+
∑n

l=1(K − 1)blc) and

Al =




−γ − ηl γ 0 · · · 0

0 −γ − ηl γ
. . .

...
...

. . . . . . . . . 0
... 0

. . . −γ − ηl γ

0 0 · · · 0 −γ − ηl




,with l = 1, 2, . . . , n

and H12 =




B1 0 · · · 0

0 B2
. . . 0

...
. . . . . . . . .

0 0 · · · Bn



with;
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Bl =




B1
l 0 · · · 0

0 B2
l

. . . 0
...

. . . . . . . . .

0 0 · · · BK
l




ac+
∑n

l=1(K−1)blc×Kc

where B1
l = [e⊗ ηlIc](ac×c) in which e is of dimension a× 1;

and Br
l = [e⊗ ηlIc](blc×c) with e of dimension bl × 1; r = 2, . . . , K;Ic is an

identity matrix of order c.

Further H22 =




C1 0 · · · 0

0 C2
. . . 0

...
. . . . . . . . .

0 0 · · · Cn



where

Cj =




−γ − αj γ 0 · · · 0

0 −γ − αj γ
. . .

...
...

. . . . . . . . . 0
... 0

. . . −γ − αj γ

0 0 · · · 0 −γ − αj




(Kc×Kc)

;

for j = 1, . . . , n;

H23 =




D1 0 · · · 0

0 D2
. . . 0

...
. . . . . . . . .

0 0 · · · Dn




where each Dl =




D1
l 0 · · · 0

0 D2
l

. . . 0
...

. . . . . . . . .

0 0 · · · DK
l




Kc×Kblc

where each Dr
l is of di-

mension c× blc and l = 1, . . . , n; r = 1, . . . , K
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Dr
l (i, j) =

{
αl, if j = i; & i = 1, 2 . . . c; j = 1, . . . , blc

0, otherwise;

H31 =
[
I1 I2 · · · · · · In

]
, where

Ij = en ⊗ Sj and Sj =




0 Uj 0 · · · 0
...

. . . Uj
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . Uj

0 · · · · · · · · · 0




Kbjc×(ac+(K−1)bjc)

Uj = [diag(βδj)]bjc and j = 1, . . . , n.

The sub matrix H33 is given by H33 =




E1 0 · · · 0

0 E2
. . . 0

...
. . . . . . . . .

0 0 · · · En



; here

Ej =




−µj − β µj · · · · · · 0

0 −µj − β µj
. . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . 0
... 0

. . . −µj − β µj

0 0 · · · 0 −µj − β




,

for j = 1, . . . , n

H0(0) =




0
...

0

µ




a×1

; H1(0) =




H1

H2

...

Hn



where
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Hj(i, 1) =





γ, for i = rc; r = 1, 2.., a+ (K − 1)bj;

i = 1, .., ac+ (K − 1)bjc

0, otherwise,
for j = 1, . . . , n.

H2(0) = H
′
en.

here H
′
(i, 1) =

{
γ, for i = rc; r = 1, 2 . . . , K; i = 1, . . . , Kc;

0, otherwise.

H3(0) =




Ĥ1

Ĥ2

...

Ĥn



where Ĥj =




Ĥj1

Ĥj2

...

ĤjK




for j = 1, . . . , n;

and Ĥjl(i, 1) =

{
µj, for i = (bj − 1)c+ 1, . . . , bjc;

0, otherwise.
where i varies from 1 to bjc and l = 1, . . . , K − 1.

ĤjK(i, 1) =

{
µj + β, for i = (bj − 1)c+ 1, . . . , bjc;

β, otherwise.
where i varies from 1 to bjc

2.6.1 performance measures

We arrive at the following performance measures of the system:

• The expected time for service completion/customer leaving the sys-

tem without completing service due to realization of super clock or

attaining maximum K is E(ST ) = ζ(−Ω)−1e.

• The expected departure rate is µs = 1/E(ST )

• Probability for service completion without any interruption is
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ζ(−H00)
−1H0(0).

2.6.2 Numerical Results

Table 2.4: Number of interruptions & Expected cost(EC)
K β=2 3 4 5
1 658.2127 662.2811 665.5660 668.0791
2 687.8693 694.9911 700.3799 704.4870
3 693.9890 702.3967 708.6655 713.3887
4 697.0032 705.5458 711.8078 716.4700
5 697.0478 705.6397 711.9537 716.6656
6 697.1248 705.7776 712.1441 716.8970

Table 2.5: Effect of change in µ on E(NI) and E(S)
µ E(NI) E(s)
2 0.4556 1.4341
3 0.4380 1.3862
4 0.4188 1.3331
5 0.3993 1.2788
6 0.3804 1.2252
7 0.3622 1.1733

With the following input values for parameters,

λ = 2, µ = 2, n = 3, γ = 2, a = 3, b = 3, c = 3, α1 = 7, α2 = 7, α3 = 6, δ1 =

0.3, δ2 = 0.4, δ3 = 0.3, η1 = 6, η2 = 5, η3 = 5, µ1 = 5, µ2 = 6, µ3 = 5, C1 =

$100, C2 = $300, C3 = $20, C4 = $20, and cost function constructed in

section 2.5, for distinct values of K and β we get the following values for

Expected cost.

From the numerical results exhibited in Table 2.4, as the value of K

and β increase the expected cost also increases. Table 2.5 depicts the effect



44 Chapter 2. Queues with interruption in Random Environment

of µ on E(NI) and E(s). Notice that E(NI) and E(s) steadily decrease with

increasing value of µ. These are on expected lines.



Chapter 3

Queues with interruption in

Markovian Environment

Introduction

In chapter 2 we discussed a queueing model with service interruption

in which interruption is caused by different environmental factors which

are not inter-related. In some cases the environmental factors are inter-

related. i.e.The interruption caused by some factors can influence some

other factors to cause interruption in future to the same customer in ser-

vice. As a real life example consider the case of a patient undergoing med-

ical treatment. During the course of the treatment medicines consumed

for a particular illness can affect some other systems of the body which

may be identified at a later stage. On identification corrective actions are

taken. But due to the effect of medicines consumed, interruptions can

45
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again occur during the same treatment at a later stage and it may affect

the treatment success. Such a model is considered in this chapter. All the

assumptions on the model in this chapter are same as that in chapter 2 ex-

cept the additional condition that the interruption causing environmental

factors are the states of a Markov chain.

3.1 Model description

The queueing system that we consider is such that arrivals occur ac-

cording to a Poisson process with parameter λ. The service time is

exponentially distributed with parameter µ. During service, interrup-

tion occurs according to a Poisson process with parameter β. There

are n environmental factors causing interruption. The interruption caus-

ing environmental factors are the states of a Markov chain with initial

probability vector pi; i = 1, 2, . . . , n and transition probability matrix

P = (pij); i, j = 1, 2, . . . , n

For a certain duration of time the server is unaware of the interruption.

At the onset of the interruption, a random clock which is exponentially dis-

tributed with parameter ηi, starts ticking when the interruption is caused

by the ith environmental factor. The random clock measures the time

elapsed from the epoch of occurrence of interruption until the identifica-

tion of interruption. The realization of the random clock indicates the

identification of interruption. The fixing time is exponentially distributed

with parameter αi, if the i
th factor is the cause of interruption. On fixing

the interruption, a new service starts which is exponentially distributed

with parameter µi, provided the ith factor caused the interruption.
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The super clock, which is Erlang distributed with shape and scale

parameters γ and a respectively, starts at the beginning of the first inter-

ruption that strikes the customer in service. It will freeze when the new

service starts after interruption and again starts ticking from the position

where it stopped, when another interruption occurs to the same customer

in service. Sometimes the super clock may be realized before the random

clock. The number of interruptions during the service of a customer is

limited to K. On realization of the super clock or when the number of

interruptions exceeds K, whichever occurs first to the customer in ser-

vice, he goes out of the system without completing the service. When the

current customer leaves the system the clock is reset to zero position.

3.2 Analysis of service process with inter-

ruptions (Response time)

The service process {X(t), t ≥ 0} where X(t)= (S(t), I1(t), I2(t), I3(t), I4(t))

is a Markov Chain with 3naK+1 transient states and one absorbing state.

The absorbing state represents the customer moving out of the system,

either after service completion or without completing service. Here S(t)

denotes the status of the server at time t:

S(t) =





0, if the service is going on and

has not undergone any interruption so far,

1, if the service is interrupted,

2, if service is in interruption fixing state ,

3, if service is continuing after interruption ;

I1(t) denotes the number of interruptions occurred until time t to the cur-

rent customer in service. I1(t) varies from 0 to K;
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I2(t) corresponds to the environmental factor that caused the current in-

terruption to the service. In this model we consider n environmental

factors. Thus I2(t) has values varying from 1 to n.

I3(t) represents the status of the random clock:

I3(t) =

{
0, if the random clock is realized

1, otherwise;

I4(t) corresponds to the phase of the super clock. I4(t) varies from 1 to

a. The states of the process is {0} ∪ {(1,m, i, j, l)/m = 1, 2, . . . , K; i =

1, . . . , n; j = 1; l = 1, . . . , a}∪{(2,m, i, j, l)/m = 1, 2, . . . , K; i = 1, . . . , n; j =

0; l = 1, . . . , a} ∪ {(3,m, i, j, l)/m = 1, 2, . . . , K; i = 1, . . . , n; j = 0; l =

1, . . . , a} ∪ {∗}, where {∗} is the absorbing state. The infinitesimal gen-

erator of the process is given by

Q̄ =

[
T T 0

0 0

]
where T =




C0 C1 0 0

0 C2 C3 0

0 0 C4 C5

0 C6 0 C7



(3naK+1)

.

Let µ̄ =




µ1

µ2

...

µn



, p = (p1, p2, . . . , pn) then C0 = [−(µ+ β)];

C1 =
[
βp⊗ e′

a(1) 0
]
(1×naK)

; C2 = IK ⊗G0;

G0 =





−γ − ηr, if i = j; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a;

γ, if j = i+ 1; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a− 1;

0, otherwise;

C3 = IK ⊗G1, where

G1 =

{
ηr, if i = j; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a;

0, otherwise;
C4 = IK ⊗G2 where
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G2 =





−γ − αr, if i = j; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a;

γ, if j = i+ 1; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a− 1;

0, otherwise;

C5 = IK ⊗G3 where

G3 =

{
αr, if i = J ; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a;

0, otherwise;

C6 =

[
0 IK−1 ⊗G4

0 0

]

where G4 = βP⊗ Ia, P = (pij);for i, j = 1, . . . , n.

C7 = IK ⊗G5 and

G5 =

{
−µr − β, if i = J ; i, j = (r − 1)a+ l; r = 1, . . . , n; l = 1, . . . , a

0, otherwise;

. T 0 =




C03

C13

C23

C33




(3nK+1)×1

with C03 =
[
µ
]
; C13 =

[
enK ⊗ γea(a)

]
.

C23 = C13, C33 =

[
eK−1 ⊗ (µ̄⊗ ea)

µ̄⊗ ea + eanβ

]

(naK×1)

where e is a column vector with all its entries equal to 1 and of appropriate

order.

In matrix T , Tii < 0, 1 ≤ i ≤ 3nak + 1 and Tij ≥ 0 for i 6= j. Also

Te+ T 0 = 0. The initial probability vector is ζ = (1, 0, . . .) which means

that at first the service starts. Here the service process with interruption

follows PH distribution. So using the property that residual service time

in a phase type distributed service process is also phase type we see that

• Probability for service completion without any interruption is,

P (s) = ζ(−C0)
−1C03.
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• Probability for customer leaving the system due to realization of su-

per clock,

PRS = ζ[(−C0)
−1C1][(−C2)

−1C13]+ζ[(−C0)
−1C1][(−C2)

−1C3][(−C4)
−1C23].

• Probability for customer leaving the system due to occurrence of

maximum number of interruption,

PMI = ζ[(−C0)
−1C1][(−C2)

−1C3][(−C4)
−1C5][(−C6)

−1C
′

33]

where C
′

33 =




0

0

0

eanβ




(naK×1)

.

Lemma: The expected time for service completion/customer leaving the

system without completing service due to realization of super clock or

attaining maximum interruption K is E(ST ) = ζ(-T)−1e, and hence the

expected service rate is µs = 1/E(ST ).

3.2.1 Expected number of interruptions

The expected number of interruption during the service of a customer can

be calculated by considering the Markov chain {Y (t), t ≥ 0} where Y (t) =

(I1(t), S(t), I2(t), I3(t), I4(t)) with state space {0}∪{(m, 1, i, j, l)|m = 1, 2,

. . . , K; i = 1, . . . , n; j = 1; l = 1, . . . , a, } ∪ {(m, 2, i, j, l)|m = 1, 2, . . . , K; i =

1, . . . , n; j = 0; l = 1, . . . , a, } ∪ {(m, 3, i, j, l)|m = 1, 2, . . . , K; i = 1, . . . , n;

j = 0; l = 1, . . . , a, } ∪ {Ω} , where {Ω} is the absorbing state. The in-

finitesimal generator of the process is given by QI =

[
U U0

0 0

]
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where U =




D0 D1

D2 D3

D2 D3

. . . . . .
. . . . . .

D2



(3naK+1)

. U0 =




D
′

0

D
′

1

D
′

1

.

.

D
′

2




.

where D0 = C0, D1 =
[
βp⊗ e′

a(1) 0
]
(1×na)

D2 =



G0 G1 0

0 G2 G3

0 0 G5




(3na)

, D3 =




0 0 0

0 0 0

G4 0 0




(3na)

D
′

0 = C03, D
′

1 =




en ⊗ γea(a)

en ⊗ γea(a)

µ̄⊗ ea


, D

′

2 =




en ⊗ γea(a)

en ⊗ γea(a)

µ̄⊗ ea + eanβ


. The initial

probability vector ζ =
(

1 0 0 . .
)
.

From the above matrices we get the following system characteristics:

• Probability for absorption after r(r ≤ K) interruption is given by

(Nr) =





(−D0)
−1D

′

0, for r = 0,

(−D−1
0 D1)(−D

−1
2 D3)

(r−1)(−D−1
2 D

′

2), for r = K,

(−D−1
0 D1)(−D

−1
2 D3)

(r−1)(−D−1
2 D

′

1), otherwise.

• Expected number of interruptions E(I) for a customer =
∑K

r=1 rNr.

• Probability for service completion after r(1 ≤ r ≤ K) interruptions,

Mr = ζ(−D−1
0 D1)(−D

−1
2 D3)

(r−1)(−D−1
10 D

′

3) whereD
′

3 =




0

0

µ̄⊗ ea


.
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• Expected number of interruptions E(IS) before service completion

for a single service=
∑K

r=1 rMr.

• Probability for service completion without any interruption

P (s) = ζ(−D0)
−1D

′

0.

Having computed the measures indicated above, we describe the queueing

model and the condition for it to be stable.

3.3 The queueing model

Consider the queueing model Z = {Z(t), t ≥ 0}, where

Z(t) = (N(t), S(t), I1(t), I2(t), I3(t), I4(t)) where N(t) is the number of

customers in the system. Here S(t) and Ij(t), j = 1, 2, 3, 4 are as defined

in section 3.2. Z is a continuous time Markov chain with state space

{0} ∪ {(q,m, 1, i, j, l)|q = 1, 2 . . . ;m = 1, 2, . . . , K; i = 1, . . . , n; j = 1; l =

1, . . . , a, } ∪ {(q,m, 2, i, j, l)|q = 1, 2 . . . ;m = 1, 2, . . . , K; i = 1, . . . , n; j =

0; l = 1, . . . , a, }∪{(q,m, 3, i, j, l)|q = 1, 2 . . . ;m = 1, 2, . . . , K; i = 1, . . . , n;

j = 0; l = 1, . . . , a, } . Its infinitesimal generator Q is given by

Q =




B0 B1

B2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .




where B0 = [−λ], B1 =
[
λ 0

]
, B2 = T 0, A0 = λI, A1 = T − λI,

A2 =
[
T 0 0

]
(3nak+1)

Theorem: The system Z is stable when λ < µs.
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Proof: A queueing system is stable when arrival rate is less than service

rate. Here the arrival rate is λ and effective service rate is µs. So the

condition for stability of this queueing system is λ < µs .

3.3.1 Stationary distribution

The stationary distribution, under the condition of stability, λ < µs of

the model, has Matrix Geometric solution. Let χ=(x0,x1,x2, ...) be the

steady state probability vector of the Markov chain {Z(t), t ≥ 0}. Each

xi, i > 0 are vectors with 3naK +1 elements. We assume that x2 = x1.R,

and xi = x1.R
i−1, i ≥ 2,

where R is the minimal non- negative solution to the matrix quadratic

equation

R2A2 +RA1 + A0=0.

From χQ=0 we get

x0B0 + x1B2=0.

x0B1 + x1(A1 +RA2)=0.

Solving the above two equations we get x0 and x1 subject to the normal-

izing condition x0e+ x1(I −R)−1e=1.

3.4 Performance measures

In this section we list a number of key system performance measurebs to

bring out the qualitative aspects of the model under study. The measures

are listed below along with their formulae for computation.
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3.4.1 Expected waiting time

The expected waiting time of a particular customer who joins the queue

as the mth customer, can be computed by considering the Markov Chain

Z= {(M(t), S(t), I1(t), I2(t), I3(t), I4(t)), t ≥ 0} where M(t) is the rank of

the tagged customer. The tagged customers rank will decrease to 1 as the

customers ahead of him leave the system. The rank of the customer is not

affected by the arrival of customers following the tagged customer. Here

S(t) and Ij(t), j = 1, 2, 3, 4 are as defined section 3.2. Z is a Markov chain

with state space {(m, 0)|m = r, . . . , 1} ∪ {(m, 1, s, i, j, l)|m = r, . . . , 1; s =

1, 2, . . . , K; i = 1, . . . , n; j = 1; l = 1, . . . , a}∪{(m, 2, s, i, j, l)|m = r, . . . , 1; s =

1, 2, . . . , K; i = 1, . . . , n; j = 0; l = 1, . . . , a}∪{(m, 1, s, i, j, l)|m = r, . . . , 1; s =

1, 2, . . . , K; i = 1, . . . , n; j = 0; l = 1, . . . , a} ∪ {Φ}, where {Φ} is the ab-

sorbing state. The infinitesimal generator matrix Q2 is given by Q2 =[
W W 0

0 0

]
where

W=




T T 0ζ

T T 0ζ
. . . . . .

T T 0ζ

T




and W 0 =




0
...
...

0

T 0




.

The expected waiting time of the tagged customer, according to the po-

sition of the customer being served at the time of arrival of the tagged

customer, is a column vector which is obtained from the formula

Er
W = −T−1(I − (T 0ζT−1)(r−1))(I − T 0ζT−1)−1e.

Hence the expected waiting time of a customer waiting in the queue is

E(W ) =
∑∞

r=1 xrE
r
W .
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3.4.2 Other important performance characteristics

• Expected number of customers completing service without interrup-

tion E(NI)=
∞∑

i=1

ixi,0.

• Probability that there are i (i ≥ 0) customers in the system, Pi=xie.

• Expected number of customers in the system, E(s)=
∞∑

i=1

iPi.

• Fraction of time the server in the interrupted state,

FT(I)=
∞∑

i=1

( xi,1e+ xi,2e).

• Fraction of time the server is busy, FT(B)=
∞∑

i=1

( xi,0e + xi,1e +

xi,3e).

• Fraction of time the server in the unidentified interrupted state,

FT(NI)=
∞∑

i=1

xi,1e.

• Fraction of time the server in fixing state, FT(FS)=
∞∑

i=1

xi,2e.

• Fraction of time the super clock is freezed, FT(SF)=
∞∑

i1=1

xi,3e.

• Fraction of time the super clock is on, =
∞∑

i=1

(xi,1e+ xi,2e).
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3.5 Numerical illustrations

The performance of the system depending on the change in various pa-

rameters are numerically illustrated below. Assume λ = 3, µ = 6, n =

3, a = 3; β = 0.5; γ = 0.5, α1 = 4, α2 = 3, α3 = 3,, η1 = 4, η2 = 4, η3 = 3,,

µ1 = 3, µ2 = 2, µ3 = 2, p = (0.3, 0.4, 0.3) and the transition probability

matrix P =




0.1 0.3 0.6

0.4 0.1 0.5

0.5 0.4 0.1




Effect of K on various performance measures

Table 3.1: Effect of change in K on E(s)&E(W )
K E(s) E(W )
1 0.6792 0.0585
2 0.7175 0.0645
3 0.7238 0.0655
4 0.7248 0.0657
5 0.7250 0.0657
6 0.7250 0.0657
7 0.7250 0.0657

As the value of K increases expected number of customers in the

systemE(s) and expected waiting timeE(W ) increase (see Table 3.1).

Effect of β on various performance measures

By considering µ = 8 and K = 5 we have the following values. As
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Table 3.2: Effect of change in β on various performance measures
β P (s) µs FT (B) FT (I) E(s) E(I) E(W )
0.2 0.9756 0.0727 0.3713 0.0054 0.4445 0.0191 0.0321
0.4 0.9524 0.0739 0.3677 0.0106 0.5175 0.0304 0.042
0.6 0.9302 0.0751 0.3643 0.0155 0.5934 0.0376 0.0538
0.8 0.9091 0.0763 0.3611 0.0202 0.6712 0.0425 0.0653
1 0.8889 0.0774 0.3580 0.0247 0.7453 0.0465 0.0772

the value of β increases probability for service completion with inter-

ruption P (s), fraction of time the server is busy FT (B) decreases, but

effective service rate µs, fraction of time the server getting interrupted

FT (I),expected number of customers in the system E(s), expected num-

ber of interruptionsE(I) and expected waiting time E(W ) begins to in-

crease which are on expected lines (Refer Table 3.2).

Effect of µ on various performance measures

By considering β = .5 and K = 5 we have the following values. From Ta-

Table 3.3: Effect of change in µ on various performance measures
µ P (s) µs FT (B) FT (I) E(s) E(I) E(W )
6 0.9231 0.0864 0.4786 0.0171 0.7250 0.0450 0.0657
7 0.9333 0.0800 0.4148 0.0148 0.6290 0.0390 0.0557
8 0.9412 0.0745 0.3660 0.0131 0.5551 0.0344 0.0482
9 0.9474 0.0697 0.3275 0.0117 0.4967 0.0308 0.0423
10 0.9524 0.0655 0.2963 0.0106 0.4494 0.0278 0.0376
11 0.9565 0.0617 0.2705 0.0097 0.4103 0.0254 0.0338
12 0.9600 0.0584 0.2489 0.0089 0.3775 0.0234 0.0306

ble 3.3 as the value of µ increases probability for service completion with
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interruption P (s)increases but fraction of time the server is busy FT (B),

effective service rate µs, fraction of time the server getting interrupted

FT (I),expected number of customers in the system E(s), expected num-

ber of interruptionsE(I) and expected waiting time E(W ) increases which

are on expected line

Effect of γ on various performance measures

By considering β = .5, µ = 8 and K = 5 we have the following values.

Inference from Table 3.4 is that the realization rate of the super clock in-

Table 3.4: Effect of change in γ on various performance measures
γ FT (B) FT (I) E(s) E(I) E(W )
0.2 0.0132 0.5572 0.3661 0.0343 0.0485
0.4 0.0131 0.5561 0.3661 0.0344 0.0483
0.6 0.0130 0.5538 0.3660 0.0344 0.0480
0.8 0.0129 0.5507 0.3658 0.0345 0.0475
1 0.0127 0.5468 0.3656 0.0347 0.0469
1.2 0.0125 0.5423 0.3655 0.0350 0.0462
1.4 0.0123 0.5376 0.3653 0.0352 0.045

creases expected number of customers in the system and expected waiting

time decrease. This is due to customers leaving the system when super

clock realizes. Expected number of interruptions increases as γ increases.

Effect of λ on various performance measures

By considering µ = 14 and K = 5 we have the following values. As the

value of λ increases fraction of time the server is busy FT (B), fraction of
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Table 3.5: Effect of change in λ on various performance measures
λ FT (B) FT (I) E(s) E(W )
1 0.0830 0.0030 0.1258 0.0205
2 0.1659 0.0059 0.2517 0.0270
3 0.2489 0.0089 0.3775 0.0306
4 0.3319 0.0119 0.5032 0.0329
5 0.4148 0.0148 0.6272 0.0345
6 0.4974 0.0183 0.7336 0.0357
7 0.5689 0.0480 0.7287 0.0359

time the server getting interrupted FT (I),expected number of customers

in the system E(s), expected number of interruptionsE(I) and expected

waiting time E(W ) increase (see Table 3.5).
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Chapter 4

Queue with partially ignored

interruption in Markovian

environment

Introduction

In chapter 2 and 3 we considered queueing models with delayed identifica-

tion of interruption in random environment and Markovian environment.

In this chapter we consider a queueing model in which the interruption

is identified on the instant it strikes. But the interruption is ignored for

sometime so that the service of the current customer may be completed

without break. Depending on the environmental factor causing interrup-

tion, some times the interruption has to be attended immediately. i.e.

some interruptions will not allow the server to continue service due to

61
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major damage. As a real life example we consider the case of a computer

providing service. Customers are waiting in queue with jobs to be done

by the computer. During the operation of the computer there can be soft-

ware problem, hardware problem, power failure, virus problem, etc. The

computer may complete its job even if there are such problems. On some

occasions if it continues working with interruption there is a possibility

for increase in the severity of damage. In that case the computer may

become irreparable or repairing may become a time consuming and costly

process. In such situations the replacement of the computer is the only

possible solution for the smooth functioning of the system.

4.1 Model description

Consider a single server queueing system in which arrival occurs according

to a Poisson Process with parameter λ. On arrival if the customer finds the

server busy, he joins the tail of the queue otherwise he gets service imme-

diately. The service is Erlang distributed with shape and scale parameters

µ and a respectively. During service there is a possibility for interruption

in service due to different factors. Here we assume that there are n + 1

environmental factors causing interruption to the service. These factors

are numbered 1 to n + 1 depending on the ascending order of severity of

interruption caused by them. The interruption occurs according to a Pois-

son Process with parameter β. When the interruption due to ith factor

occurs the rate of service changes from µ to µi. On the onset of interrup-

tion one random clock which is exponentially distributed with parameter

α and one interruption clock which is PH distributed with representation

(δ, U) of order m are started. Only forward phase change is allowed for
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the interruption clock, i.e. Uij = 0 for i > j. When the interruption oc-

curs due to any one of the first n factors, it is not attended immediately.

It is ignored in the beginning and service is continued with interruption.

When the interruption clock realizes the service is stopped and the server

is taken for repair. The repair time is exponentially distributed with pa-

rameter η. After repair the service to the interrupted customer is resumed

if the interruption clock is realized before the random clock; else the ser-

vice is restarted. There is a possibility for customer completing service

with interruption. In that case the server goes for repair after the service

completion. If the interruption is due to (n+1)th factor the customer goes

out of the system and the server is replaced immediately. Once the inter-

ruption starts getting attended both the clocks are reset to zero position.

As the duration of ignored interruption increases the severity of interrup-

tion also increases. After some duration, the cause of interruption changes

from ith factor to jth factor, where j ≥ i and ith factor is the one caus-

ing initial interruption. Then the service rate also changes from µi to

µj. Again if the interruption remains unattended for some more time, the

cause of interruption changes from jth factor to kth factor, where k ≥ j.

The server is replaced on being interrupted by the (n + 1)th factor. The

customer in service is also lost when the interruption is due to (n + 1)th

factor.

The n + 1 environmental factors are the states of a Markov chain with

initial probability vector pi, i = 1, 2, . . . , n+ 1 and transition probability

matrix P = (pij), i, j = 1, 2, . . . , n + 1. Graphical representation of the

model is given in Figure 4.1.
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Figure 4.1: model description

4.2 Analysis of service process with inter-

ruption

The service process {Y (t), t ≥ 0} where Y (t) = (S(t), I1(t), I2(t), I3(t), I4(t))

is a Markov chain with (2 +mn)a + 1 transient states given by {(0, j) ∪

(1, i, j, l, 1) ∪ (2, j, 1) ∪ (2, 0)} with i = 1, 2, . . . , n; j = 1, 2, . . . , a; l =

1, 2, . . . ,m; and one absorbing state denoted by ∗. The absorbing state

represents the customer moving out from the system either after service

completion or due to interruption caused by (n+ 1)th environmental fac-

tor. S(t) denotes the status of the server at time t:
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S(t)





0, if the ongoing service is without interruption.

1, if the ongoing service is with interruption.

2, if server is under repair;

I1(t) corresponds to the environmental factor that caused the current in-

terruption to the service. In this model we consider n + 1 environmental

factors;

I2(t) denotes the phase of service. It varies from 1 to a;

I3(t) denotes the phase of interruption clock. It varies from 1 to m;

I4(t) denotes the phase of random clock. It takes the value 0 if clock is

realized and 1 if it is functioning;

The infinitesimal generator of the process is given by Q =

[
W W 0

0 0

]

with initial probability vector ϑ = (1,0,0)

where W =



D0 D1 0

0 D2 D3

D4 0 D5


 and W 0 =



D01

D11

0




Let δ = (δ1, δ2, . . . , δm)

then D0(i, j) =





−µ− β, if i = j;

µ, if i = j − 1

0, otherwise;

i, j = 1, . . . , a;

D1 = β[p′ ⊗ (Ia ⊗ δ)]1×mna with p′ = (p1, p2, . . . , pn);

D2 = Ina ⊗ U − µ⊗ Ima + P̂ ⊗ Iam − αImna + J ;

where P̂ =




P11 P12 · · · P1n

P22 · · · P2n

. . .

Pnn



. µ =




µ1

µ2

µn



.

and J is a square matrix of order mna
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J(i, j) =





µr, for j = i+m, i = (r − 1)am+ 1, . . . , (ra− 1)m;

r = 1, . . . , n

0, otherwise;

D3 = In ⊗ A; with A =
[
A1 A2

]
, where A1 = Ia ⊗ U0, A2 = αema

D4 is a matrix of order ((a+ 1)× a) with

D4(i, j) =

{
η, for i = j = 1 & j = i+ 1

0, otherwise;
D5 = −ηIa+1

D01 is a column vector, D01(i, 1) =

{
βpn+1 for i = 1, 2, . . . , a− 1

µ+ βpn+1 for i = a;

D11 = [K + P ⊗ ema]mna×1; where P =




P1n+1

P2n+1

Pnn+1



.

K is an (mna× 1) matrix and

K(i, 1) =

{
µr, for i = (ra− 1)m+ 1, . . . , ram; r = 1, . . . , n

0, otherwise;

• Expected time for service completion, E(ST ) = ϑ(−W )−1e. Hence

expected service rate µs =
1

E(ST )

• Rate of replacement of server due to the interruption caused by

(n+ 1)th factor,

Rreplacement = ϑ(−W )−1W 0′ where W 0′ =



eaβpn+1

P ⊗ ema

0



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4.2.1 Expected number of interruptions during the

service of a customer

For calculating the expected number of interruptions during the service of

a customer we consider the Markov chain
{
Ŷ (t), t ≥ 0

}
where Ŷ (t) =

(M(t), S(t), I1(t), I2(t), I3(t), I4(t)) whereM(t) is the number of interrup-

tions occurred until time t. S(t), I1(t), I2(t), I3(t) and I4(t) are as defined

above. The state space of Ŷ (t) is {(r, 0, j) ∪ (r, 1, i, j, l, 1) ∪ (r, 2, j, 1) ∪

(r, 2, 0)} with r = 0, 1, 2, . . . ,∞; i = 1, 2, . . . , n; j = 1, 2, . . . , a; l = 1, 2, . . . ,m;

and one absorbing state ∇. ∇ represents the customer moving out from

the system either after service completion or due to interruption caused

by (n+ 1)th environmental factor. The infinitesimal generator matrix as-

sociated with Ŷ (t) is Q̂ =

[
Y Y 0

0 0

]

where Y =




B̂0 B̂1

Â1 Â0

Â1 Â0

. . . . . .
. . . . . .




and Y 0 =




B̂2

Â2

Â2

...

...




.

Here B̂0 = D0; B̂1 = D1; B̂2 = D01;

Â1 =



D2 D3 0

0 D5 D4

0 0 D0


; Â0 =




0 0 0

0 0 0

D1 0 0


; Â2 =



D11

0

D01


.

Let ar be the probability for absorption after r interruptions, then

a0 = ϑ((−B̂−1
0 B̂2).

ar = ϑ(−B̂−1
0 B̂1)((Â

−1
1 Â0))

r−1(−Â−1
1 Â2), r= 1, 2, . . .

Expected number of interruptions before absorption,
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E(NI) =
∑∞

r=1 rar = ϑ(−B̂−1
0 B̂1)(I − (Â−1

1 Â0))
−2(−Â−1

1 Â2)

4.3 The queueing model

Let N(t) be the number of customers in the system. Then X = {X(t), t ≥

0}, where X(t) = (N(t), S(t), I1(t), I2(t), I3(t), I4(t)), is a CTMC with

state space {r, 0, j)∪(r, 1, i, j, l, 1)∪(r, 2, j, 1)∪(r, 2, 0)} with r = 1, 2, . . . , ; i =

1, 2, . . . , n; j = 1, 2, . . . , a; l = 1, 2, . . . ,m. S(t), I1(t), I2(t), I3(t) and I4(t)

are as defined in section 4.2. The infinitesimal generator matrix associated

with the model Q̂ =




B0 B1

B2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .




where B0 = [−λ];

B1 =
[
λ 0 0

]

B2 = W 0.

A0 = [λI]; A1 = W − λI; A2 = [W 0 0] is a square matrix.

Theorem: The queueing system is stable when λ < µs.

Proof: Let π denote the steady-state probability vector of the generator

A0 + A1 + A2. That is, π(A0 + A1 + A2) = 0; πe = 1: The LIQBD de-

scription of the model indicates that the queueing system is stable if and

only if πA0e < πA2e That is, the rate of drift to the left has to be higher

than that to the right. Right drift rate means the arrival rate λ and left

drift rate is the effective service rate µs. Hence the queueing system is

stable when λ < µs.



4.4. Performance measures 69

4.3.1 Stationary distribution

Let χ=(x0,x1,x2, ...) be the steady state probability vector of the Markov

chain {X(t), t ≥ 0}. Each xi, i > 0 are vectors with (nm + 1)a elements.

We assume that x2 = x1.R, and xi = x1.R
i−1, i ≥ 2, where R is the mini-

mal non-negative solution to the matrix quadratic equation

R2A2 +RA1 + A0=0.

From χQ=0 we get

x0B0 + x1B2=0.

x0B1 + x1(A1 +RA2)=0.

Solving the above two equations we get x0 and x1 subject to the normal-

izing condition x0e+ x1(I −R)−1e=1.

4.4 Performance measures

After calculating the steady state probability vector we now calculate some

important performance measures of the system to bring out the qualitative

aspects of the model under study. These are listed below along with their

formula for computation.

4.4.1 Expected waiting time

The expected waiting time of the customer who joins as the rth cus-

tomer (r > 0) in the queue can be obtained from the Markov chain

X ′(t) = (M ′(t), S(t), I1(t), I2(t), I3(t), I4(t)) where M ′(t) is the rank of

the tagged customer.



70
Chapter 4. Queue with partially ignored interruption in Markovian

environment

S(t), I1(t), I2(t), I3(t) and I4(t) are as defined in section 4.2. The waiting

time distribution of the tagged customer follows phase type distribution

with representation (θ, S) and is given by

S =




W W 0ϑ

W W 0ϑ

· · · · · ·

W



, S0 =




0

0

0

W 0



.

The expected waiting time of the tagged customer is a column vector

given by

Er
w = −W−1(I −W 0ϑW−1)(r−1)(I −W 0W−1)−1e.

Depending on the state of the server at the time of joining of the rth

customer we get different values for expected waiting time of the tagged

customer.

So the expected waiting time of a customer who waits in the queue is

E(W ) =
∞∑

r=1

XrE
r
w.

4.4.2 Important Performance measures

• Mean number of customers in the system, E(s) =
∞∑

i=1

ixie.

• Mean number of customers in the queue, E(q) =
∞∑

i=1

(i− 1)xie.
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• Probability that there is no customer in the system, Pidle = x0.

• Probability that the system is under interruption, P (I) =
∞∑

i=1

xi1e.

• Probability that the system is under repair, P (r) =
∞∑

i=1

xi2e.

• Effective interruption rate, Rint = β
∞∑

i=1

xi0e.

• Effective repair rate, RRep = η

∞∑

i=1

xi1e.

• Effective rate of repetition of service, Rrpt = α
∞∑

i=1

xi1e.

• Rate at which service completion with interruption occurs before the

random clock is realized is
∞∑

i=1

n∑

j=1

m∑

r=1

xi1jarµj.

• Probability of a customer completing service without any interrup-

tion, P (s)=P(Service time < exponentially distributed random vari-

able with parameter β)= µa

(µ+β)a+1 .

• Probability that at least one interruption in service is 1− µa

(µ+β)a+1 .

• probability that the interruption is attended before the random clock

is realized,Pia =P(interruption random variable < random clock

variable)= δ(αIm − U)−1U0.

• Probability for restart of service is 1− δ(αIm − U)−1U0.
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4.5 Cost function

To compute the expected cost, we construct a cost function depending on

certain important performance measures.The total cost for running the

system E(C)=µ.a∗C0+Rreplacement∗C1+E(q)∗C2+Rrpt∗C3+C4∗RRep,

where

• C0−Unit time Cost of service;

• C1−Unit time Cost for replacing the server;

• C2− Holding cost per customer in the queue;

• C3−Unit time Cost for restarting the service;

• C4−Unit time Cost for repairing the server

4.6 Numerical examples

The performance of the queueing system is numerically illustrated in this

section.

Let n = m = a = 3, λ = 1, C0 = $100, C1 = $15000, C2 = $10, C3 = $200,

C4 = $2000, µ = 5, µ1 = 3, µ2 = 2, µ3 = 2, p′ = (0.2, 0.2, 0.2), pn+1 = 0.4,

δ = (0.3, 0.3, 0.4),

P =




0.1 0.3 0.5 0.1

0 0.5 0.3 0.2

0 0 0.6 0.4

0 0 0 0



; U =




−30 15 5

0 −20 10

0 0 −10


,U0 =




10

10

10



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By taking β = 2, η = 4 the numerical values of various performance

measures are calculated here.

Effect of the rate of realization of random clock on

various performance measures

Table 4.1: Effect of α on various performance measures
α E(s) Rreplacement µS Pidle Pia

1 2.2246 1.0493 1.5736 0.2849 0.1609
2 2.2422 1.0458 1.5630 0.2851 0.8333
3 2.2472 1.0428 1.5546 0.2862 0.7692
4 2.2447 1.0401 1.5478 0.2876 0.7143
5 2.2379 1.0378 1.5423 0.2892 0.6667
6 2.2288 1.0356 1.5376 0.2909 0.6250

From Table 4.1 as the rate of realization of random clock increases

expected service rate decreases. When random clock realizes the server

goes for repair and after the repair of server the service of the customer

in service restarts. This time lag reduces the service rate. Here the re-

placement rate decreases. This is because when random clock realizes the

service is stopped and repair begins. So the progress in interruption is

stopped. This reduces the chance of replacement of server. But the rate

of restart of service increases. This is due to restart of service after every

realization of random clock.



74
Chapter 4. Queue with partially ignored interruption in Markovian

environment

Table 4.2: Effect of α and β on E(C)
α E(C) β E(C)
1 17262 1 1685
2 17210 2 17120
3 17165 3 17328
4 17124 4 17495
5 17089 5 17635
6 17057 6 17777

Effect of rate of realization of random clock and rate

of interruption on E(C)

From Table 4.2 as rate of realization of random clock increases expected

cost is also increases. when rate of interruption increases expected cost

also increases which are on expected lines.

Effect of rate of interruption on various performance

measures

By taking µ = 5, α = 4, η = 5 the numerical values of various performance

measures are calculated here. From Table 4.3 as occurrence of interruption

increases expected number of customers in the system, rate of replacement

of server increases and effective service rate decreases. This happens due

to delay in service caused by repair of server or the reduced service rate of

interrupted server. Increase in the occurrence of interruption reduces the

probability for service completion without interruption. By taking α = 1,

β = 1 the numerical values of various performance measures are calculated

here.
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Table 4.3: Effect of β on various performance measures
β E(s) Rreplacement µS Pidle P (s)
1 1.4802 1.0226 1.6311 0.3651 0.3517
2 1.8160 1.0401 1.6182 0.3295 0.1609
3 2.2718 1.0537 1.6183 0.2894 0.0863
4 2.9943 1.0643 1.6259 0.2407 0.0514
5 4.4084 1.0727 1.6378 0.1786 0.0331
6 8.5368 1.0794 1.6521 0.0993 0.0225

Effect of repair rate on various performance measures

Table 4.4: Effect of η on various performance measures
η E(s) µS Pidle E(C)
2 32.8330 1.1848 0.0244 17104
3 5.9106 1.2793 0.1195 16769
4 3.9102 1.3324 0.1686 16749
5 3.2094 1.3664 0.1974 16742
6 2.8571 1.3901 0.2162 16738
7 2.6461 1.4075 0.2294 16736
8 2.5060 1.4208 0.2391 16735

Inference from Table 4.4 is that as the repair rate increases expected

number of customers in the system and expected service rate decreases.

But probability for idleness increases. The increased repair rate reduces

the waiting time of customers due to which the queue length reduces.

When queue length reduces the probability of idleness increases. the repair

rate increases the expected cost decreases. This is due to the decrease in

waiting time of customer in the queue.
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Rate of interruption clock realization & efficiency of

system

Table 4.5: rate of interruption clock realization & efficiency of
system

rate of interruption clock realization efficiency of system
0.0480 1.6307
0.0653 1.6058
0.0674 1.6031
0.0778 1.5894
0.0799 1.5863
0.0813 1.5848
0.1000 1.5630
0.1408 1.5195
0.1519 1.5081

From table 4.5 as the rate of realization of interruption clock increases

rate of repair increases which causes reduction in the efficiency of the

system.



Chapter 5

Queue with ignored

interruption in random

environment and self

correction.

Introduction

In the previous chapter we discussed queueing models with interruption in

Markovian environment with partially ignored interruption. In this chap-

ter we analyze two queueing models. In the first model we consider a single

server queueing system with arrival following Poisson process and service

time Erlang distributed. At times there is a possibility for interruption in

service process. Interruption occurs according to a Poisson process and

77
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and self correction.

each interruption duration is exponentially distributed. Assume the inter-

ruption does not affect the customer in service. Further at a time at most

one interruption affects any service. The service continues ignoring the in-

terruption. During interrupted service there is a scope for self correction

of interruption. Self correction occurs according to Poisson process. On

the onset of interruption an interruption clock is started which is Erlang

distributed. If the interruption clock is realized before service completion

the server goes for repair and after repair the service is resumed. Repair

time is exponentially distributed. If service is completed before the real-

ization of interruption clock the next customer in the head of the queue

enters for service.

In the second model the arrival process and the service process are as

in the first model. During service interruption may occur. Interruption to

service occurs according to a Poisson process. There are n environmental

factors causing interruption. Interruption due to ith environmental factor

occurs with probability pi. If the interruption is due to first m factors

it is ignored and service continues. But the service will be at lower rate.

The duration up to which the server works without breakdown is assessed

with the help of an interruption clock. This clock starts ticking with

the initiation of the first interruption to the service of a customer. The

duration of the clock is exponentially distributed. During that period

there is a possibility for self correction of interruption. This self correction

duration is exponentially distributed. If self correction occurs the service

rate changes. On realization of the interruption clock the server goes for

repair. The repair time is exponentially distributed. After repair the

interrupted service is resumed. If the service of a customer is completed

with interruption the next customer in the head of the queue enter for
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service in the interrupted server. If the interruption is due to the remaining

n − m factors the server directly goes for repair. Taking into account

the severity of interruption caused by these n−m factors, protection for

remaining service is provided at the epoch of resumption of service after

repair. The stability of both the systems are analyzed. Steady state

probability vector is calculated using matrix analytic method. Important

performance measures are numerically substantiated.

5.1 Model Description (Model I)

Consider a single server queueing system in which arrival occurs accord-

ing to a Poisson process with parameter λ. The service time is Erlang

distributed with shape and scale parameters µ and a, respectively. Dur-

ing service there is a possibility for occurrence of interruption to service.

The duration of interruption is exponentially distributed with parameter

β. The service is continued without attending the interruption. A clock

called interruption clock, is started on the onset of interruption. The in-

terruption clock is Erlang distributed with shape and scale parameters δ

and b respectively. Sometimes the interruption gets self corrected. The

self correction occurs according to a Poisson process with parameter γ. If

the customer in service completes service with interruption the next cus-

tomer in the head of the queue enters for service. If the interruption clock

realizes before completion of service of the customer, the server goes for

repair and after repair the service to the interrupted customer is resumed.

The repair time is exponentially distributed with parameter η. The model

is pictorially represented in FIgure 5.1.
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Figure 5.1: Model Description

5.2 Analysis of the model

The Markov process associated with the queueing model, X = {X(t), t ≥

0} is a continuous time Markov Chain, whereX(t) = (N(t), S(t), I1(t), I2(t)).

Here at time t:

N(t) - Number of customers in the system;

I1(t) - Phase of interruption clock. It varies from 1 to b;

I2(t) - Phase of service. It varies from 1 to a;

S(t) - Status of server;

S(t) =





0, if a service is going on without interruption;

1, if service is going on with interruption;

2, if server is under repair.

The state space associated withX is {0}∪{n, 0, j}∪{n, 1, i, j}∪{n, 2, j};n =

1, 2, . . . ; i = 1, . . . , b; j = 1, . . . , a.The infinitesimal generator matrix, Q as-
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sociated with the queueing model is Q =




B0 B1

B2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . .




.

where B0 = [−λ], B1 =
[
λ 0

]
1×a(2+b)

.

B2 is a column matrix of order (2 + b)a× 1.

B2(i, 1) =

{
µ, for i = ra, r = 1, 2, . . . b+ 1;

0, otherwise;

A2, A1 and A0 are square matrices of order a(b+ 2).

A0 = λIa(b+2).

A2(i, j) =

{
µ, for i = ra, j = (r − 1)a+ 1, r = 1, 2, . . . b+ 1;

0, otherwise;

A1 =



C0 C1 0

C2 C3 C4

C5 0 C6


 where

C0(i, j) =





−µ− λ− β, for i = j = 1, . . . , a;

µ, for j = i+ 1, i = 1, . . . , a− 1;

0, otherwise;

i, j = 1, . . . , a

C1(i, j) =

{
β, for i = j; i = 1, . . . , a;

0, otherwise;
j = 1, . . . , ab

C2 = eb ⊗ γIa.

C3 is a square matrix of order ab.

C3(i, j) =





ω, if i = j;

δ, for j = i+ a; i = 1, . . . , (b− 1)a;

µ, for i = (r − 1)a+ l; j = i+ 1, r = 1, . . . , b, l = 1, . . . , a− 1;

µ, for i = ra; j = (r − 1)a+ 1, r = 1, . . . , b;
where ω = −µ− λ− β − δ.
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C4 =

[
0

δIa

]

ab×ab

;

C5 = ηIa, C6 = (−η − λ)Ia.

5.2.1 Steady-state analysis

Let π denote the steady-state probability vector of the generator A0 +

A1 +A2. That is, π(A0 +A1 +A2) = 0; πe = 1: The LIQBD description

of the model indicates that the queueing system is stable if and only if

πA0e < πA2e The vector, π, cannot be obtained explicitly in terms of

the Here πA0e = λ , πA2e = (

(b+1)a∑

i=a

πi)µ

and the condition for stability is λ < (

(b+1)a∑

i=a

πi)µ,

where

(b+1)a∑

i=a

πi =
1

a



1−

1[
η

β
(1 + γ

δ
)b + η

δ

b−1∑

r=1

(1 +
γ

δ
)b−r + (1 +

η

δ
)

]



.

5.2.2 Stationary distribution

Let χ=(x0,x1,x2, ...) be the steady state probability vector of the Markov

chain {X(t), t ≥ 0}. Each xi = (xi0,xi1,xi2), i > 0. xi0 is a vector with

a elements, xi1 is a vector with ab elements and xi2 is a vector with a

elements. We assume that x2 = x1.R, and xi = x1.R
i−1, i ≥ 2, where R is

the minimal non-negative solution to the matrix quadratic equation
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R2A2 +RA1 + A0=0.

From χQ=0 we get

x0B0 + x1B2=0.

x0B1 + x1(A1 +RA2)=0.

Solving the above two equations we get x0 and x1 subject to the normal-

izing condition x0e+ x1(I −R)−1e=1.

5.3 Performance measures

In this section we list a number of key system performance measures to

bring out the qualitative aspects of the model under study. These are

listed below along with their formula for computation.

5.3.1 Expected Service Rate

Let Y = {Y (t), t ≥ 0}, where Y (t) = (S(t), I1(t), I2(t)) is a continuous

time Markov chain representing the service process with interruption with

a(b + 2) transient states and one absorbing state. The state space cor-

responding to Y is {0, j} ∪ {1, i, j} ∪ {2, j} ∪ ∗ where ∗ is the absorbing

state, i = 1, 2 . . . , b; j = 1, 2, . . . , a. The infinitesimal generator associated

with the service process Q =

[
S S0

0 0

]
where

S =



C0 + λ C1 0

C2 C3 + λ C4

C5 0 C6 + λ




The important results obtained from the analysis of the service process
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are

• The time until absorption E(S) = −ϑS−1e where ϑ = (1, 0, . . . , 0).

• The time spent in each of the a(b+ 2) phases is given by ϑS−1.

• The expected service rate µs =
1

E(S)
.

5.3.2 Expected waiting time

The waiting time of the particular customer who joined as the mth cus-

tomer in the queue is the time until absorption of the Markov Chain

W = {W (t), t ≥ 0} where W (t) =
(
N(t), S(t), I1(t), I2(t)

)
. N(t) is the

rank of the tagged customer and all other random variables are as de-

fined in section 5.2. The state space corresponding to W is {r, 0, j} ∪

{r, 1, i, j} ∪ {r, 2, j} ∪Ω where Ω is the absorbing state, i = 1, 2 . . . , b; j =

1, 2, . . . , a; r = m,m − 1, . . . , 1. The infinitesimal generator associated

with the waiting time is Q′ =

[
W W

0

0 0

]

The waiting time of a tagged customer follows a phase type representation

(σ,W ) where W =




S S0ϑ

S S0ϑ

S S0ϑ
. . . . . .

. . .




and W
0
=




0
...

S0




σ is the initial probability vector which indicates that the chain is starting

from level r.

• The expected waiting time of the rth customer is
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Er
w = −S−1(I − (S0ϑS−1)(r−1))(I − S0ϑS−1)−1e.

• The expected waiting time of general customer is Ew =
∞∑

r=1

xrE
r
w.

5.3.3 Expected number of interruptions during the

service of a single customer

For calculating the expected number of interruptions we consider the

Markov chain Z = {Z(t), t ≥ 0} where Z(t) =
(
N̂(t), S(t), I1(t), I2(t)

)
.

N̂(t) is the number of interruptions occurred until time t and all other ran-

dom variables are as defined in section 5.2. The state space corresponding

to Z is (0, 0, j)∪ (r, 1, i, j)∪ (r, 2, j)∪ (r, 0, j)∪∇ where ∇ represents the

absorbing state, i = 1, 2 . . . , b; j = 1, 2, . . . , a; r = 1, 2, . . .. The infinitesi-

mal generator associated with the Markov chain is Q̃ =

[
U U0

0 0

]

where U =




B0 B1

A1 A0

A1 A0

. . . . . .
. . . . . .




and U0 =




A2

B2

...

...

B2




B0 is a matrix of dimension a.

B0(i, j) =





−µ− β, for i = j = 1, . . . , a;

µ, for j = i+ 1, i = 1, . . . , a− 1;

0 otherwise;

.
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B1 =
[
βIa 0

]
a×a(b+2)

, A2 =




0
...

µ




a×1

,

B2(i, 1) =

{
µ, for i = ra, i = a(b+ 2), r = 1, . . . , b;

0 otherwise;
.

A1 and A0 are of dimension a(b+ 2)

A1(i, j) =





−µ− γ − δ, for i = j = 1, . . . , ab

−η, for j = i = 1 + ab, . . . , ab+ a

−µ− β, for j = i = ab+ a+ 1, . . . , a(b+ 2)

δ, for j = i+ 1, i = 1, . . . , ab; j = a+ 1, . . . , a(b+ 1)

µ, for j = i+ 1, i = (r − 1)a+ l, l = 1, . . . , a− 1

0 otherwise;

A0(i, j) =

{
β, for i = a+ ab+ j, j = 1, . . . , a;

0 otherwise.

Z(t) follows a phase type distribution with representation(ϑ, U) where ϑ

is the initial probability vector.

Let yj be the probability that there are exactly j interruptions during the

service of acustomer. Then

yj =

{
ϑ(B

−1

0 A2), for j = 0;

ϑ(B
−1

0 B1)(A
−1

1 A0)
j−1(A

−1

1 B2) otherwise.

5.3.4 Other important performance measures

• Probability that the system is idle PIdle = x0.

• Probability that there are i customers in the system PI = xie
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• Expected number of customers in the system E(C) =
∞∑

i=1

ixie.

• Probability for self correction of interruption before interruption

clock realization Pselfcorrection =
b−1∑

n=0

γδn

(γ + δ)n+1
.

• Probability for service completion without any interruption

P (s) =
[

µa

(µ+β)a

]
.

• Probability that the system is working with interruption

PInt =
∞∑

i=1

xi1e

• Effective self correction rate Eselfcorr = η

∞∑

i=1

xi1e

• Probability that the server is under repair Prep =
∞∑

i=1

xi2e

• Effective interruption rate,EInt = β
∞∑

i=1

xi0e

• Effective repair rate,Erep = η

∞∑

i=1

xi1e

5.4 Numerical illustrations

The results obtained in the previous sections are numerically illustrated

in this section. Assume arbitrary values for parameters µ = 5, γ = .2,

δ = 3, η = 5 and β = 3.
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Effect of λ on various performance measures

Table 5.1: Effect of λ on various performance measures
λ E(C) PIdle Eselfcorr

.5 0.2275 0.8056 0.0150
1 0.4761 0.6540 0.0277
1.5 0.7441 0.5388 0.0380
2 1.0280 0.4519 0.0460
2.5 1.3243 0.3860 0.0523
3 1.6299 0.3353 0.0572
3.5 1.9424 0.2956 0.0611
4 2.2600 0.2639 0.0643

From Table 5.1 as the value of λ increases expected number of cus-

tomers in the system E(C) and expected self correction rate begins to

increase but probability for idleness decreases which are on expected lines.

Effect of µ on various performance measures

Taking λ = 2 and all other values as above we get the following values

for different performance measures on the variation in µ As service rate µ

Table 5.2: Effect of µ on various performance measures
µ E(S) E(C) PIdle P (s)
3 .5670 1.2243 0.4125 0.1250
4 0.4935 1.1237 0.4310 0.1866
5 0.4341 1.0280 0.4519 0.2441
6 0.3861 0.9394 0.4743 0.2963
7 0.3467 0.8588 0.4974 0.3430
8 0.3141 0.7862 0.5206 0.3847
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increases expected service time E(S) and expected number of customers

in the system decreases E(C), but probability for idleness and probability

for service completion without any interruption increases(refer Table 5.2).

Effect of η on various performance measures

Assuming µ = 4 we get the following values for different performance

measures corresponding to the variation in η

As the repair rate increases expected service time E(S) and expected

Table 5.3: Effect of η on various performance measures
η E(S) E(C) PIdle EInt

1 0.5397 1.5271 0.3986 0.2839
2 0.5108 1.2491 0.4180 0.5943
3 0.5012 1.1754 0.4251 0.9054
4 0.4964 1.1423 0.4287 1.2166
5 0.4935 1.1237 0.4310 1.5278
6 0.4916 1.1118 0.4325 1.8391

number of customers in the system E(C) decrease, but probability for

idleness and effective interruption rate increase which are on expected

lines (Table 5.3).

Effect of δ on various performance measures

From Table 5.4, as the realization rate of interruption clock increases ex-

pected service time E(S), expected number of customers in the system

E(C) and effective interruption rate EInt increase, but probability for
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Table 5.4: Effect of δ on various performance measures
δ E(s) E(C) PIdle Eselfcorr EInt

1 0.5000 1.1187 0.4265 0.1331 0.6033
2 0.5125 1.2216 0.4134 0.1291 0.6088
3 0.5328 1.3637 0.3955 0.1237 0.6162
4 0.5577 1.5246 0.3761 0.1178 0.6242
5 0.5850 1.6946 0.3569 0.1119 0.6322

idleness and effective self correction rate Eselfcorr decrease which are on

expected lines. When interruption clock realization rate increases rate of

repair increases which causes the increase in effective service time of a cus-

tomer. This leads to the increase in number of customers in the system.

As a result the probability for idleness decreases.

5.5 Model description (Model II)

We consider a single server queueing model in which customers arrive

according to a Poisson process with rate λ. Service time is Erlang dis-

tributed with shape and scale parameters µ and a respectively. During

service there is a chance for interruption. There are n environmental fac-

tors causing interruption to service. These n factors are numbered 1 to

n depending on the ascending order of severity of interruption caused by

these factors. Interruption to service occurs according to Poisson process

with parameter β. Interruption due to ith environmental factor occurs

with probability pi. If the interruption is due to first m(m < n) fac-

tors it is ignored and service is continued. But the service is at a lower

rate µi, i = 1, 2, . . . ,m. This interruption clock is started simultaneously

with the occurrence of interruption. It is exponentially distributed with
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Figure 5.2: Model description

parameter δi, i = 1, 2 = . . . ,m. During interrupted service period there

is a possibility for self correction of interruption. This self correction is

exponentially distributed with parameter γi, i = 1, 2, . . . ,m. If self cor-

rection occurs the service rate changes from µi to µ. On realization of

the interruption clock the server goes for repair. The repair time is expo-

nentially distributed with parameter ηi, i = 1, 2, . . . ,m. After repair the

interrupted service is resumed. If the service of a customer is completed

with interruption the next customer in the head of the queue enter for

service with the server in interruption.

If the interruption is due to the remaining n − m factors the server

directly goes for repair. Taking into account the severity of interruption

caused by these n−m factors, protection for remaining service is provided

at the epoch of resumption of service after repair.
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5.6 Mathematical description

The queueing model described above can be mathematically formulated as

a Markov chain. Let X = {X(t), t ≥ 0} = {(N(t), S(t), I1(t), I2(t)), t ≥ 0}

where N(t) is the number of customers in the system, S(t) is the status

of the server, I1(t) is the environmental factor causing interruption and

I2(t) is the phase of service:

S(t) =





0, when a service facing so far no interruption ;

1, if interrupted service going on;

2, if server under repair;

3, if protected service is going on.
The state space of the process is

{(r, 0, i) ∪ (r, 1, j, i) ∪ (r, 2, k, i) ∪ (r, 3, i); r = 1, . . . ,∞; i = 1, . . . , a; j =

1, . . . ,m; k = 1, . . . , n; k = 1, . . . , n}∪∇ where ∇ represents the absorbing

state. Absorbing state means the customer moving out from the system

after service completion. The infinitesimal generator matrix of the process

is given by

Q =




B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . .




where B0 = [−λ], B1 =
[
λ 0

]

B2 is a column matrix of order (2 +m+ n)a× 1 and

B2(i, 1) =





µ, for i = a,&i = (2 +m+ n)a;

µj, for i = a(r + 1); r = 1, 2, . . . ,m;

0, otherwise.
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A0 = λI(2+m+n)a A1 =




C0 C1 C2 0

C3 C4 C5 0

C6 0 C7 C8

0 0 0 C9



(2+m+n)a×(2+m+n)a

C0 is a matrix of order a,

C0(i, j) =





−λ− β − µ, for i = j;

µ, for j = i+ 1; i = 1, . . . , a− 1

0, otherwise.

C1 = (βp′ ⊗ Ia)a×am, C2 =
[
0 βp′′ ⊗ Ia

]
a×am

where p = (p′, p′′) with

p′ = (p1, . . . , pm) and p
′′ = (pm+1, . . . , pn).

Let γ =




γ1

γ2

γm



then C3 = γ ⊗ Ia and C4 is a matrix of order ma,

C4(i, j) =





θr, for i = j; i = (r − 1)a+ l; r = 1, . . . ,m; l = 1, . . . , a;

µr, for i+ 1 = j, i = (r − 1)a+ l; r = 1, . . . ,m; l = 1, . . . , a− 1;

0, otherwise.
where θr = −λ− µr − γr − δr.

C5 is a matrix of order ma× na,

C5(i, j) =

{
δt, for i = j; i = (t− 1)a+ k, t = 1, . . . ,m; k = 1, . . . , a

0, otherwise;

Let η =

[
η′

η′′

]
with η′ = (η1, η2, . . . , ηm)

T and η′′ = (ηm+1, . . . , ηn)
T

then C6 =

[
η′ ⊗ Ia

0

]

(na×a)

.

C7 is a matrix of order na,
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C7 =

{
−λ− ηr, for i = j; i = (r − 1)a+ k, r = 1, . . . , n; k = 1, . . . , a

0, otherwise.

C8 =

[
0

η′′ ⊗ Ia

]

(na×a)

. C9 is a matrix of order a,

C9 =





−λ− µ, for i = j; i = (r − 1)a+ k, k = 1, . . . , a;

µ, for j = i+ 1; i = (r − 1)a+ k, k = 1, . . . , a− 1;

0, otherwise.

A2(i, j) =





µ, for i = a; j = 1; and i = (m+ n+ 2)aj = 1, ;

µr, for i = (r + 1)a; j = ra+ 1, r = 1, . . . ,m;

0, otherwise.

5.7 Analysis of service process

The service time follows PH distribution with representation (α, S) where

α = (1, 0, . . . , 0)1×(m+n+2)a and S =




C ′
0 C1 C2 0

C3 C ′
4 C5 0

C6 0 C ′
7 C8

0 0 0 C ′
9



.

C ′
0 = C0 + λI, C ′

4 = C4 + λI, C ′
7 = C7 + λI and C ′

9 = C9 + λI. The

absorbing state is represented by S0 = B2 which is a column matrix.

• The response time of the service process, E(S) = −αS−1e.

• Hence the expected service rate µs =
1

E(S)
.

• Theorem:The queueing system is stable when λ < µs.
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5.7.1 Stationary distribution

The stationary distribution, under the condition of stability, λ < µs of the

model, has Matrix Geometric solution. Let χ=(x0,x1,x2, ...) be the steady

state probability vector of the Markov chain {Z(t), t ≥ 0}. Each xi, i > 0

are vectors with (2 +m+ n)a elements. We assume that x2 = x1.R, and

xi = x1.R
i−1, i ≥ 2, where R is the minimal non- negative solution to the

matrix quadratic equation

R2A2 +RA1 + A0=0.

From χQ=0 we get

x0B0 + x1B2 = 0.

x0B1 + x1(A1 +RA2) = 0.

Solving the above two equations we get x0 and x1 subject to the normal-

izing condition x0e+ x1(I −R)−1e=1.

Expected number of interruptions during the service

of any customer

Let N ′(t) be the number of interruptions due to first m environmental

factors during the service of a particular customer at time t. S(t) be the

status of the server at time t.

S(t) =





0, when service is going on ;

1, if interrupted service going on;

2, if server under repair

I1(t) is the environmental factor causing interruption and I2(t) is the phase

of service. Then {(N ′(t), S(t), I1(t), I2(t)), t ≥ 0} is a Markov chain with

state space {(r, 0, i) ∪ (r, 1, j, i) ∪ (r, 2, j, i); r = 1, 2, . . . ; i = 1, . . . , a; j = 1,
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. . . ,m}∪∗ where ∗ represents the absorbing state. The infinitesimal gener-

ator matrix of the process is given by Q̂ =




0 0 0

U ′
2 U ′

1 U ′
0

U2 0 U1 U0

U2 0 0 U1 U0

. . . . . . . . .
. . . . . .




where U ′
2 is a column matrix of order a× 1. U ′

2 =




0

0
...

µ



,

U ′
1 =





−β
m∑

r=1

pr − µ, for i = j; i, j = 1, . . . , a

µ, for j = i+ 1; i = 1, . . . , a− 1

0, otherwise.

U ′
0 = (βp′ ⊗ Ia)a×am.

U2 is a column matrix of order (1 + 2m)a× 1 and

U2(i, 1) =





µj, for i = ar; r = 1, 2, . . . ,m;

µ, for i = a(2m+ 1);

0, otherwise.

U1 =



D0 D1 D2

0 D3 D4

0 0 D5




(1+2m)a×(1+2m)a

D0(i, j) =





ϑr, for i = j; i = ra+ l; r = 0, . . . ,m− 1; l = 1, . . . , a;

µr, for i+ 1 = j, i = ra+ l; r = 0, . . . ,m− 1;

l = 1, . . . , a− 1;

0, otherwise.

where

ϑr = −µr − γr − δr.



5.8. Performance measures 97

D1(i, j) =

{
γt, for i = j; i = (t− 1)a+ k, t = 1, . . . ,m; k = 1, . . . , a

0, otherwise.
D2 = δ ⊗ Ia and

D3(i, j) =

{
−ηr, for i = j; i = (r − 1)a+ k, r = 1, . . . ,m; k = 1, . . . , a

0, otherwise.

D4(i, j) =

{
ηr, for i = a+ma+ (r − 1)a+ j; r = 1, . . . ,m; &j = 1, . . . , a;

0, otherwise.

D5(i, j) =





−β − µ, for i = j;

µ, for j = i+ 1;

0, otherwise.

U0 =




0 0 0

0 0 0

D6 0 0




(1+2m)a×(1+2m)a

. D6 = (βp′ ⊗ Ia)a×am

Let Zk be the probability that there are exactly k interruptions during the

service of a customer due to first m environmental factors.

Then Zk =

{
α(−U ′

1)
−1U ′

2, for k = 0

α[(−U ′
1)

−1U ′
0](−U1)

−1U0]
k−1(−U1)

−1U2, for k = 1, 2, 3, . . . .
So the expected number of interruptions due to first m environmental fac-

tors during single service E(I) =
∑∞

k=0 kZk.

5.8 Performance measures

After finding the steady state probability vector we find the important

performance measures of the system. The important measures are as

follows.
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and self correction.

5.8.1 Expected waiting time

We consider the customer who joined as the mth in the queue. During

the time of arrival of ,th customer one customer in the system may be in

service or the server may be in repair and other customers are waiting in

the queue. So the waiting time of the tagged customer is the time un-

til absorption of the Markov chain W = {(M(t), S(t), I1(t), I2(t)), t ≥ 0}

where M(t) is the rank of the tagged customer, S(t), I1(t) and I2(t) are

as defined in earlier sections. The waiting time of the tagged customer

follows phase type distribution with representation (ω, T ) where

T =




S S0α

S S0α

S S0α

S S0α
. . . . . . . . .

. . . . . .




ω is the initial probability vec-

tor.

Depending on the state of the server at the time of joining, the expected

waiting time of the tagged customer, Em
W = −S−1(I− (S0αS−1)(r−1))(I−

S0αS−1)−1e.

The expected waiting time of any customer who waits in the queue,

E(W ) =
∞∑

m=1

xmE
m
W

5.8.2 Other important performance measures

• Probability that the system is idle, P (I) = x0.
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• Probability that the system is working without interruption,

P (WI) =
∞∑

i=1

(xi0e+ xi3e)

.

• Probability that the system is under repair P (R) =
∞∑

i=1

xi2e.

• Probability that the system is under protection P (p) =
∞∑

i=1

xi3e.

• Expected number of customers in the system, E(C) =
∞∑

i=1

ixie.

• Effective interruption rate,Eint = β

∞∑

i=1

xi1e.

• Effective rate of self correction,Eselfcorr =
∞∑

i=1

m∑

j=1

δjxi1je.

• Effective rate of protection,Eprotection =
∞∑

i=1

n∑

j=m+1

ηjxi2je.

5.9 Numerical Illustrations

In this section assuming arbitrary values for the parameters, subject to sta-

bility, we obtained the numerical values for important performance mea-

sures. Let n = 4,m = 2, µ = 7, µ1 = 5, µ2 = 4; η1 = 4, η2 = 3, η3 = 2, η4 =

1, β = .5; γ1 = 1, γ2 = 2; δ1 = 1, δ2 = .5; p1 = p2 = p3 = p4 = 0.25.

The conclusion drawn are purely based on the values of input parameters.
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and self correction.

Effect of λ on various performance measures

Table 5.5: Effect of λ on various performance measures
λ E(C) P (I)
1 0.9230 0.5012
1.5 1.9157 0.3134
2 3.5376 0.1910
2.5 6.1867 0.1166
3 10.5083 0.0716
3.5 17.1259 0.0443
4 24.7322 0.0276

As the arrival rate λ increases the expected number of customers in

the system E(C) increase, but probability for idleness of the server P (I)

decrease which are on expected lines (refer Table 5.5).

Effect of µ on various performance measures

Assuming λ = 2 and varying µ we get the following values for different

performance measures.

As the initial service rate µ increases the expected service time E(s),

the expected number of customers in the system E(C), probability for

repair P (R), expected rate of interruption Eint and expected rate of self

correction Eselfcorr decrease but probability for idleness of the server P (I)

increase which are on expected lines. µ increases means number of ser-

vice completion in unit time increases. So rate of self correction, rate of

interruption and probability for repair in unit time reduces (see Table 5.6).
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Table 5.6: Effect of µ on various performance measures
µ E(S) E(C) P (I) P (R) Eint Eselfcorr

3 2.2897 29.2040 0.0175 0.1422 0.3322 0.0983
4 1.7508 15.5352 0.0471 0.1437 0.3364 0.0978
5 1.4180 8.0176 0.0891 0.1398 0.3281 0.0938
6 1.1917 5.0105 0.1384 0.1338 0.3147 0.0885
7 1.0279 3.5376 0.1910 0.1267 0.2986 0.0827
8 0.9037 2.6963 0.2437 0.1192 0.2814 0.0769
9 0.8063 2.16207 0.2946 0.1117 0.2641 0.0713

Effect of β on various performance measures

Table 5.7: Effect of β on various performance measures
β E(S) E(C) P (I) P (R) Eint Eselfcorr

.5 1.4180 8.0176 0.0891 0.1398 0.3281 0.0938
1 1.5863 11.0407 0.0688 0.2230 0.5230 0.1502
2 1.8247 16.4010 0.0476 0.31577 0.7394 0.2140
3 1.9818 20.3997 0.0373 0.3648 0.8539 0.2484
4 2.0906 23.1333 0.0314 0.3946 0.9231 0.2695
5 2.1691 24.9636 0.0277 0.4141 0.9685 0.2834

From Table 5.7 we note that as the interruption rate β increases effec-

tive service time E(S), the expected number of customers in the system

E(S), probability for repair P (R), expected rate of interruption Eint and

expected rate of self correction Eselfcorr increases but probability for idle-

ness of the server P (I) decrease which are on expected lines.
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and self correction.

Effect of γ on various performance measures

Assuming γ1 = γ2 = γ and varying over its value we get the following

table for different performance measures. As the interruption clock real-

Table 5.8: Effect of γ on various performance measures
γ E(S) E(C) P (I) P (R) Eint Eselfcorr Eprotection

0.5 1.4069 7.7491 0.0915 0.1303 0.3254 0.1184 0.1627
1 1.4136 7.9371 0.0898 0.1367 0.3283 0.1030 0.1642
1.5 1.4192 8.0705 0.0887 0.1413 0.3302 0.0919 0.165
2 1.4240 8.1718 0.0878 0.1448 0.3315 0.0832 0.1657
2.5 1.4282 8.2523 0.0871 0.1475 0.3324 0.0763 0.1662
3 1.4318 8.3184 0.0865 0.1498 0.3331 0.0705 0.1665
3.5 1.4349 8.3739 0.0860 0.1517 0.33367 0.0656 0.1668

ization rate γ increases effective service time E(S), the expected number

of customers in the system E(C), probability for repair P (R), expected

rate of interruption Eint increase but probability for idleness of the server

P (I) and expected rate of self correction Eselfcorr decrease which are on

expected lines. Rate of protection decrease with increase in γ. As the

realization rate of interruption clock increase the server immediately goes

for repair reducing the chance for self correction (see Table 5.8).



Chapter 6

An M/M/1 queue with

multiple vacation, vacation

interruption and vacation

controlled by random

environment

introduction

In the previous chapters we discussed queues with environment depen-

dent interruption. In this chapter we consider a queueing model with

environment depended vacation and interruption of vacation. In vacation

queueing system the server is unavailable for a random duration of time

103
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interruption and vacation controlled by random environment

at a stretch. Vacation is the absence of server from the service center.

There are different types of vacations like vacation taken at the end of a

busy period, vacation taken when the number of customers in the system

is less than a predetermined number, working vacation, vacation taken

after a long duration of service even if customers are present in the queue,

etc. The vacation of server can be considered as interruption to service if

the vacation is taken while customers are present in the queue or when an

arriving customer finds the absence of server.

In contrast in working vacation server stays at service station and also pro-

vides service, may be at a reduced pace, if customers are available. The

vacation queueing system is very useful as we can utilize the idle time for

maintenance of server without affecting the customers. During working

vacation risk of loosing customers and the dissatisfaction of customers are

less, the utilization of server for other works is not possible. The vacation

queueing models have wide range of application in the field of communi-

cation networks and computer systems.

The idea of server vacation was first introduced by Levy and Yechiali [30].

The main survey papers on vacation model are Doshi [6] and Zhang [51].

The books of Takagi [46] and Tian [47] provide great insight into the idea

of vacation. In multiple vacation queueing system, on returning from a

vacation , if the server finds no customer in the system, it goes for another

vacation. The idea of multiple vacation provides more flexibility for opti-

mal utilization of available free time.

The concept of vacation interruption was introduced and developed by Li

and Tian [33] [36]. Zhang and Hou [51] studied an M/G/1 queue with

multiple working vacation and vacation interruption. Ibe and Isijola [14]

discuss two types of vacations: Type I vacation is taken after a non zero

busy period of serving at least one customer and type II vacation is taken
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after a zero busy period, on completing type I vacation. The distribution

of both vacations are different. The authors extend the idea in paper [15]

by introducing two new concepts, partial vacation interruption and total

vacation interruption. In partial vacation interruption only type II vaca-

tion is interrupted. The interruption occurs when the number of customers

in the system reaches a threshold value K. In total vacation interruption,

type I and type II vacations are interrupted when the number of customers

in the system reaches the threshold values K1 and K2 respectively, where

K1 ≥ K2.

In this chapter we consider a queueing system with two types of vacations.

The server goes for a vacation of type I after a non-zero busy period. There

are n kinds of type I vacation depending on the environment. These type

I vacations are numbered 1 to n based on the descending order of du-

ration of vacation in the distributed stochastic sense. After a non-zero

busy period the server goes for a vacation of ith kind with probability

pi, 1 ≤ i ≤ n. The server goes for type II vacation after a zero busy pe-

riod, provided there is no customer in the system. The type II vacation is

numbered as the (n+1)th kind of vacation. All the vacations can be inter-

rupted depending on the threshold value Ki, 1 ≤ i ≤ n + 1 as described:

If the number of customers in the system reaches Ki, 1 ≤ i ≤ n, while the

server is in the ith kind of vacation, that vacation is interrupted. When

the number of customers in the system reaches Kn+1, type two vacation

gets interrupted. The main assumption is that Kn+1 < Kn < ... < K1.

As a real life example we consider the case of a physician attending pa-

tients. After attending all patients in the queue the he goes for a vacation.

During vacation he can perform different jobs. He can visit the inpatients,

go to take food, go for reading etc. Depending on the importance of the

jobs piling up during vacation the queue length for interrupting a vaca-
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tion is fixed. When the queue length reaches the respective thresholds

that kind of vacation is interrupted.

6.1 Model Description

We consider a single server queueing system in which arrival occurs accord-

ing to a Poisson process with parameter λ. The service time is exponen-

tially distributed with parameter µ. There are two type of vacations in this

model. The type I vacation is taken at the end of a non-zero busy period.

There are n different kinds of type I vacation based on n environmental

factors. These n kinds of vacation are numbered 1 to n based on the de-

scending order of duration of vacation. On returning from type I vacation,

if the server finds the queue empty, it goes for type II vacation. The type

II vacation is numbered as the (n+1)th kind of vacation. The ith vacation

duration is exponentially distributed with parameter γi, 1 ≤ i ≤ n + 1.

At the end of a non-zero busy period, depending on the environment,

the server opts for a vacation of ith kind with probability pi, 1 ≤ i ≤ n.

When the number of customers in the system exceeds Kn+1 during the

n+ 1th kind of vacation, the server returns from vacation and starts serv-

ing customers. The ith type of vacation is interrupted when the number

of customers in the queue reaches Ki, where K1 > K2 > . . . > Kn+1. The

pictorial representation of the model is shown in Figure 6.1, 6.1, 6.1, 6.1.
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Figure 6.1: Model description

Figure 6.2: Model description

6.2 Analysis of the model

We define the state of the system as (n, k), when there are n customers in

the system and k is the status of the server:

k =





0 when service is going on ;

i If the server is on the ith kind of type I vacation;

i=1,2,. . . ,n;

n+ 1 If the server is on the n+ 1th kind of vacation(type II);
Let Pi,k denote the steady state probability that the system contains i
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Figure 6.3: Model description

Figure 6.4: Model description

customers when the server is in the kth state. First consider the case of

n = 2.

From the global balance in the above figures we have the following equa-

tions,

(λ+ γ1)P0,1 = µp1P1,0, (6.1)

(λ+ γ2)P0,2 = µp2P1,0, (6.2)

λP03 = γ1P0,1 + γ2P0,2, (6.3)

(λ+ γ3)Pk,3 = λPk−1,3, 1 ≤ k < K3, (6.4)

(λ+ γ2)Pk,2 = λPk−1,2, 1 ≤ k < K2, (6.5)

(λ+ γ1)Pk,1 = λPk−1,1, 1 ≤ k < K1. (6.6)
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From the local balance we have the following equations,

λ(Pk,0 + Pk,1 + Pk,2 + Pk,3) = µPk+1,0, 1 ≤ k < K3, (6.7)

λ(Pk,0 + Pk,1 + Pk,2) = µPk+1,0, K3 ≤ k < K2, (6.8)

λ(Pk,0 + Pk,1) = µPk+1,0, K2 ≤ k < K1, (6.9)

λ(Pk,0) = µPk+1,0, k ≥ K1. (6.10)

From (6.1) ⇒ P0,1 = β1P10.

From (6.2) ⇒ P0,2 = β2P10.

From (6.3) ⇒ P0,3 = β3P10.

In the above β1 =
µp1
λ+γ1

, β2 =
µp2
λ+γ2

and β3 = (γ1
λ

µp1
λ+γ1

+ γ2
λ

µp2
λ+γ2

).

(6.4) ⇒ Pk,3 = αk
3β3P10, for 1 ≤ k ≤ K3 − 1.

(6.5) ⇒ Pk,2 = αk
2β2P10, for 1 ≤ k ≤ K2 − 1.

(6.6) ⇒ Pk,1 = αk
1β1P10, for 1 ≤ k ≤ K1 − 1.

(6.7) ⇒ Pk,0 =

[
ρk−1 +

3∑

i=1

ραiβi

[
ρk−1 − αk−1

i

ρ− αi

]]
P10, for 2 ≤ k ≤ K3.

From(6.8)

Pk,0 =

[
ρk−1 +

2∑

i=1

ραiβi

[
ρk−1 − αk−1

i

ρ− αi

]
+ ρk−K3+1α3β3

[
ρK3−1 − αK3−1

3

ρ− α3

]]
P10,

for K3 + 1 ≤ k ≤ K2.

From (6.9)

Pk,0 =

[
ρk−1 + ρα1β1

[
ρk−1−αk−1

1

ρ−α1

]
+

3∑

i=2

ρk−Ki+1αiβi
ρKi−1 − αKi−1

i

ρ− αi

]
P10,

for K2 + 1 ≤ k ≤ K1.

From(6.10)

Pk,0 = [ρk−1 +
3∑

i=1

ρk−Kiαiβi
ρKi−1 − αKi−1

i

ρ− αi

]P10, for k ≥ K1 + 1.

Since the total probability equals one,
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∞∑

k=1

Pk,0 +

K1−1∑

k=0

Pk,1 +

K2−1∑

k=0

Pk,2 +

K3−1∑

k=0

Pk,3 = 1

⇒ [A1 + A2 + A3 + A4]P10 = 1,

P10 =
1

[A1+A2+A3+A4]
. where A1 =

1
1−ρ

, A2 =
∑3

i=1

[
ρ2αiβi

1−ρ

] [
ρKi−1−α

Ki−1
i

ρ−αi

]
,

A3 =
∑3

i=1

[
αiβiρ

ρ−αi

] [
αi−α

Ki
i

1−αi
− ρ−ρKi

1−ρ

]
, A4 =

∑3
i=1

∑Ki

k=1 α
k−1
i βi.

Also the expected number of customers in the system,

E(N) =
∞∑

k=1

kPk,0 +

K1−1∑

k=0

kPk,1 +

K2−1∑

k=0

kPk,2 +

K3−1∑

k=0

kPk,0 =

[B1 + B2 + B3 + B4]P10 where B1 =
1

(1−ρ)2
,

B2 =
3∑

i=1

αiβiρ

(αi − ρ)

[
Kiα

Ki+1
i − (Ki + 1)αKi

i − α2
i + 2αi

(1− αi)2

]
−

3∑

i=1

αiβiρ

(αi − ρ)

[
Kiρ

Ki+1 − (Ki + 1)ρKi − ρ2 + 2ρ

(1− ρ)2

]
,

B3 =
3∑

i=1

αiβi
(αi − ρ)

[
αKi−1
i − ρKi−1

] [ (Kiρ
2)

(1− ρ)
+

ρ2

(1− ρ)2

]
,

B4 =
3∑

i=1

βi

[
(Ki − 1)αKi+1

i −Kiα
Ki

i + αi

(1− αi)2

]
.

Now consider the case of n = 3.

Then we have [C1 + C2 + C3 + C4]P10 = 1,

where C1 =
1

1−ρ
, C2 =

∑4
i=1

[
ρ2αiβi

1−ρ

] [
ρKi−1−α

Ki−1
i

ρ−αi

]
,

C3 =
∑4

i=1

[
αiβiρ

ρ−αi

] [
αi−α

Ki
i

1−αi
− ρ−ρKi

1−ρ

]
, C4 =

∑4
i=1

∑Ki

k=1 α
k−1
i βi.

P10 =
1

[C1+C2+C3+C4]

Also the expected number of customers in the system,

E(N) = [D1 +D2 +D3 +D4]P10 where D1 =
1

(1−ρ)2
,
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D2 =
4∑

i=1

αiβiρ

(αi − ρ)

[
Kiα

Ki+1
i − (Ki + 1)αKi

i − α2
i + 2αi

(1− αi)2

]
−

4∑

i=1

αiβiρ

(αi − ρ)

[
Kiρ

Ki+1 − (Ki + 1)ρKi − ρ2 + 2ρ

(1− ρ)2

]
,

D3 =
4∑

i=1

αiβi
(αi − ρ)

[
αKi−1
i − ρKi−1

] [ (Kiρ
2)

(1− ρ)
+

ρ2

(1− ρ)2

]
and

D4 =
4∑

i=1

βi

[
(Ki − 1)αKi+1

i −Kiα
Ki

i + αi

(1− αi)2

]
.

So depending on the environmental factor, for n kinds of type I vaca-

tion,
Kn+1∑

k=1

Pk,0 +
n+1∑

i=2

Ki−1∑

k=Ki+1

Pk,0 +
∞∑

k=K1+1

Pk,0 +
n+1∑

i=1

Ki−1∑

k=0

Pk,i = 1.

⇒ [S1 + S2 + S3 + S4]P10 = 1.

P10 =
1

[S1+S2+S3+S4]
where S1 =

1
1−ρ

, S2 =
∑n+1

i=1

[
ρ2αiβi

1−ρ

] [
ρKi−1−α

Ki−1
i

ρ−αi

]
,

S3 =
∑n+1

i=1

[
αiβiρ

ρ−αi

] [
αi−α

Ki
i

1−αi
− ρ−ρKi

1−ρ

]
, S4 =

∑n+1
i=1

∑Ki

k=1 α
k−1
i βi.

Expected number of customers in the system,

E(N) =

Kn+1∑

k=1

kPk,0 +
n+1∑

i=2

Ki−1∑

k=Ki+1

kPk,0 +
∞∑

k=K1+1

kPk,0 +
n+1∑

i=1

Ki−1∑

k=0

kPk,i.

= [I1 + I2 + I3 + I4]P10.

I1 =
1

(1−ρ)2
,

I2 =
n+1∑

i=1

αiβiρ

(αi − ρ)

[
Kiα

Ki+1
i − (Ki + 1)αKi

i − α2
i + 2αi

(1− αi)2

]
−

n+1∑

i=1

αiβiρ

(αi − ρ)

[
Kiρ

Ki+1 − (Ki + 1)ρKi − ρ2 + 2ρ

(1− ρ)2

]
,

I3 =
n+1∑

i=1

αiβi
(αi − ρ)

[
αKi−1
i − ρKi−1

] [ (Kiρ
2)

(1− ρ)
+

ρ2

(1− ρ)2

]
,
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I4 =
n+1∑

i=1

βi

[
(Ki − 1)αKi+1

i −Kiα
Ki

i + αi

(1− αi)2

]
.

Using Little’s Law E(N) = λE(W ), expected waiting time in the system,

E(W ) = E(N)
λ

.

Variance of the number of customers in the system,

V (N) = E(N2)− (E(N))2.

E(N2) =
∑Kn+1

k=1 k2Pk,0+
n+1∑

i=2

Ki−1∑

k=Ki+1

k2Pk,0+
∞∑

k=K1+1

k2Pk,0+
n+1∑

i=1

Ki−1∑

k=0

k2Pk,i

= [R1 +R2 +R3 +R4]P10, where R1 =
(1+ρ)
(1−ρ)3

;

R2 =
∑n+1

i=1
αiβiρ

(αi−ρ)

[
K2

i α
Ki+2
i −(2K2

i +2Ki−1)α
Ki+1
i +(Ki+1)2α

Ki
i −α3

i+3α2
i−4α

(αi−1)3

−
K2

i ρ
Ki+2−(2K2

i +2Ki−1)ρKi+1+(Ki+1)2ρKi−ρ3+3ρ2−4ρ

(ρ−1)3

]
,

R3 =
∑n+1

i=1

[
αiβiρ

2

(1−ρ)

] [
α
Ki−1
i −ρKi−1

αi−ρ

] [
K2

i +
2Ki

(1−ρ)
+ 1+ρ

(1−ρ)2

]
,

R4 =
∑n+1

i=1 βi

[
(K2

i −2Ki+1)α
Ki+2
i −(2K2

i −2Ki−1)α
Ki+1
i +(Ki)

2α
Ki
i −α2

i−αi

(αi−1)3

]
.

6.3 Optimization problem

For the effective utilization of the model discussed, optimization of the

threshold values (K ′
is) is inevitable. So an optimization problem is dis-

cussed in this section and Numerical illustrations are provided.

• C0 be the unit time revenue obtained from providing service.

• Ci, 1 ≤ i ≤ n + 1, be the unit time revenue obtained from ith kind

of vacation.

• C be the holding cost per unit time per customer.
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• C
′

i be the fixed cost for switching the service from ith kind of vacation

to normal service.

So the expected total profit TP = T1 + T2 − C − Ĉ where T1 is the total

revenue from service, T2 is the revenue from vacation, C is the holding

cost of waiting customers and Ĉ is the total switching cost. Here

T1 =
1

µ−λ
C0, C = C.E(N).

T2 =
∑n

i=1 piCi

[(
λ

λ+γi

)Ki
Ki

λ
+
∑Ki−1

r=0
λr

(λ+γi)r+1

]
+

∑n

i=1
piγiCn+1

λ+γi

[(
λ

λ+γn+1

)Kn+1
Kn+1

λ
+
∑∞

s=1
s

γn+1

(γn+1)s

(λ+γn+1)s+1

]
.

Ĉ =
∑n

i=1 piC
′

i

[(
λ

λ+γi

)Ki
1
Ki

+
∑Ki−1

r=1
λrγi

(λ+γi)r+1

]
(µ− λ)+

∑n

i=1 piC
′

i
γi

(λ+γi)

[(
λ

λ+γn+1

)Kn+1
1

Kn+1
+

(
1−

(
λ

λ+γn+1

)Kn+1
)]

(µ− λ).

6.4 Numerical Illustrations

In order to bring out the qualitative nature of the model under study, we

present a few representative examples.

The effect of various values of ρ, K1, K2, and K3 on

E(N)

As an example we consider the case when γ1 = 0.1, γ2 = 0.2, γ3 = 0.3,

p1 = 0.6, p2 = 0.4. Then the effect of various values of traffic intensity

(ρ), K1, K2, and K3 on the expected number of customers in the system

and expected waiting time are plotted below (fig 6.5-fig 6.7). From Fig
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Figure 6.5: Effect of various values of K1 and ρ on E(N) when K2 =
10, K3 = 5

6.5, Fig 6.6 and Fig 6.7 we note that as ρ and K1 increase the expected

number of customers in the system also increases. Increase in ρ means

either arrival rate increases or service rate decreases. When arrival rate

increases the number of customers in the system also increases. When

service rate decreases then also the number of customers in the system

increases due to slow service. When K1 increases it is trivially seen that

the number of customers in the system will increase as the customers

should wait for the return of the server from vacation until the threshold

value K1 is reached.
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Figure 6.6: Effect of various values of K2 and ρ on E(N) when K1 =
25, K3 = 8

Then the effect of various values of ρ, K1, K2, and K3

on E(N)

From Fig 6.8, Fig 6.9 and Fig 6.10 it is clear that as ρ increases expected

waiting time also increases. From Fig 6.8 it is clear that for small values of

ρ the value of K1 does not make much difference in the expected waiting

time. As K1 increases the expected waiting time also increases. This is

due to the delay of the server return from vacation due to the increased

threshold value K1. From Fig 6.10, we see that for small values of ρ, as

K3 increases waiting time also increases but as the value of ρ increases,

the waiting time is greater for smaller values of K3. As the duration of

vacations decrease, expected waiting time increases with increase in the

value of K3.
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Figure 6.7: Effect of various values of K3 and ρ on E(N) when K1 =
25, K2 = 10

The effect of various values of ρ, K1, K2, and K3 on EP

By assuming C0 = $250, C1 = $250, C2 = $100, C3 = $50, C = $25 and

C
′

1 = C
′

2 = C
′

3 = $100 the effect of various values of traffic intensity(ρ),

K1, K2, and K3 on expected profit EP are plotted below (Fig 6.11 - Fig

6.13).

From Fig 6.11, Fig 6.12 and Fig 6.13 it is clear that as ρ increases

the expected profit decreases, reaches a minimum value and then begins

to increase. As ρ increases either arrival rate increases or service rate

decreases. Increase in arrival rate causes frequent interruption of vacation

and switching on/off of service which is very expensive and it reduces the

profit. Also the increase in arrival rate or the decrease in service rate

reduces the chance of occurrence of vacation. This reduces the loss due to

switching off of service.



6.4. Numerical Illustrations 117

0.1 0.2 0.3 0.4 0.5 0.6
8

8.5

9

9.5

10

10.5

ρ

W

 

 
K

1
=15

K
1
=20

K
1
=25

Figure 6.8: Effect of various values of K1 and ρ onW when K2 = 10, K3 =
5

Effect of various values of λ, µ and threshold values

on EP

For small values of λ expected profit shows convexity (Fig6.14). As λ

increases the expected profit decreases(Fig6.15).
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Figure 6.9: Effect of various values of K2 and ρ onW when K1 = 25, K3 =
8
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Figure 6.10: Effect of various values ofK3 and ρ onW whenK2 = 10, K1 =
25
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Figure 6.11: Effect of various values of K1 and ρ on expected profit when
K2 = 10, K3 = 5

0.1 0.2 0.3 0.4 0.5 0.6
2000

2500

3000

3500

4000

4500

ρ

E
P

 

 
K

2
=8

K
2
=15

K
2
=20

Figure 6.12: Effect of various values of K2 and ρ on expected profit when
K1 = 25, K3 = 8
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Figure 6.13: Effect of various values of K3 and ρ on expected profit when
K2 = 10, K1 = 25
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Figure 6.14: Effect of threshold values and traffic intensity on expected
profit
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Figure 6.15: Effect of threshold values and traffic intensity on expected
profit
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Chapter 7

Stochastic decomposition of

the M/M/1 queue with

environment dependent

working vacation

Introduction

If a queue is empty the server remains idle. policy we may think of a

vacation with server working during that time in slow mode, if customers

are available. The idle time of the server can be utilized for some other

work. Instead of a complete vacation If the customers in the queue is less,

the functioning of the server in a slow rate will reduce the operating cost,

energy consumption and the start up cost. These advantages are pointing

123
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towards working vacation. Working vacation is an extension of regular

vacation. In working vacation, instead of completely stopping the service,

the server provides service at a slow rate. Working vacation reduces the

chance of reneging of the customers compared to normal vacation. In this

era of high demand for commodities and services which are available in

a short spell, the concept of working vacation is very useful. This may

be the main reason of the extensive research work going on in working

vacation queueing models.

In this chapter we consider a single server queueing system with working

vacation. On completion of a service if the server finds the system empty,

he goes for a working vacation. There are n types of working vacations.

Depending on the environment, after a busy period, the server goes for

ith type of vacation with probability pi, 1 ≤ i ≤ n. During vacation if

customers arrive, the server provides service at a lower rate . On comple-

tion of service during vacation, if there is no customer in the system the

server continues to be on vacation. Otherwise the vacation is interrupted,

i.e. the server returns to normal service without completing the vacation

and starts service in the normal rate. On completion of vacation if the

server finds the system empty, he remains in the corresponding vacation.

We demonstrate stochastic decomposition of the queue length and waiting

time processes using method of induction and Little’s formula.

7.1 Model description

Consider a single server queueing system with working vacation in which

arrival occurs according to a Poisson process with parameter λ. The ser-

vice time is exponentially distributed with parameter µ. On completion
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Figure 7.1: Model description

of a service if the server finds the system empty he goes for a working

vacation. There are n types of working vacations. Depending on the en-

vironment, after a busy period, the server goes for ith type of vacation

with probability pi, 1 ≤ i ≤ n. The duration of ith type of vacation is ex-

ponentially distributed with parameter γi, 1 ≤ i ≤ n. During vacation if

customers arrive, the server provides service at a lower rate µi, while in i
th

type of vacation, 1 ≤ i ≤ n. On completion of service during vacation, if

there is no customer in the system the server continues to stay on vacation.

Otherwise the vacation is interrupted, i.e. the server returns to normal

service without completing the vacation and starts service in the normal

rate µ. On completion of vacation if the server finds the system empty,

he remains in the corresponding vacations. Figure 7.1 is a diagrammatic

representation of the model.
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7.2 Mathematical description

We establish the stochastic decomposition of the state space by induction

on the number of environmental factors.

Case.1 First we consider the case of n = 2.

Let N(t) be the number of customers in the system and S(t) be the status

of the server at time t:

S(t) =





0, if the server is serving in normal mode;

1, if server is in the type I working vacation;

2, if server is in the type II working vacation;

Then X = {X(t), t ≥ 0} where X(t) = (N(t), S(t)) is a continuous time

Markov chain with state space {0, 1} ∪ {0, 2} ∪ {(j, k), j = 1, 2, . . . ; k =

0, 1, 2}. The infinitesimal generator associated with the Markov chain is

Q1 =




B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .




where −B0 = A0 = λI,

B1 =

[
0 λ 0

0 0 λ

]
, B2 =



µp1 µp2

µ1 0

0 µ2


 , A2 =




µ 0 0

µ1 0 0

µ2 0 0


,

A1 =




−λ− µ 0 0

θ1 −λ− µ1 − θ1 0

θ2 0 −λ− µ2 − θ2



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Stability analysis

We have A = A0 + A1 + A2 =




0 0 0

θ1 + µ1 −µ1 − θ1 0

θ2 + µ2 0 −µ2 − θ2




Then A is the infinitesimal generator of a Markov chain with state space

{0, 1, 2} which represents the status of the server. Let y = (y0, y1, y2) be

the invariant probability vector of A. Then yA = 0 and ye = 1. The left

drift rate of the original Markov chain is yA2e and that for right drift is

yA0e. Left drift indicates a service completion and right drift represents

arrival of customer. Thus the system is stable if and only if yA0e < yA2e.

Here yA0e = λ and yA2e = µ.

Hence we have

Theorem:The system is stable if and only if λ < µ.

7.2.1 Steady State Analysis

For the analysis of the model it is necessary to solve for the minimal

non-negative solution R1 of the matrix quadratic equation

R2
1A2 +R1A1 + A0 = 0. (7.1)

Since the Matrices A2, A1, A0 are lower triangular R1 is also lower trian-

gular. Solving (7.1) we obtain R1 as R1 =



r0 0 0

r1 r1 0

r2 0 r2


 where r0 = ρ,

r1 =
ρ(λ+θ1)

(λ+µ1+θ1)
, r1 =

λ
(λ+µ1+θ1)

, r2 =
ρ(λ+θ2)

(λ+µ2+θ2)
and r2 =

λ
(λ+µ2+θ2)

.

Let x = (x0,x1,x2, . . . , ) be the steady state probability vector associated
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with the Markov processX. Here x0 = (x01, x02) and xi = (xi0, xi1, xi2), i =

1, 2, . . . ,∞. Assume that xi = x1R
i−1
1 , i = 2, 3, . . ., then x can be obtained

by solving xQ = 0 using the boundary condition

x0e+ x1(I −R1)
−1e = 1. (7.2)

From xQ = 0 we get

x0B0 + x1B2 = 0. (7.3)

x0B1 + x1(A1 +R1A2) = 0. (7.4)

From (7.3) and (7.4) we will get

µp1x10 + µ1x11 = (λ)x01. (7.5)

µp2x10 + µ2x12 = (λ)x02. (7.6)

µx10 = (λ+ θ1)x11 + (λ+ θ2)x12. (7.7)

λx01 = (λ+ µ1 + θ1)x11. (7.8)

λx02 = (λ+ µ2 + θ2)x12. (7.9)

Assume x01 = k1 and x02 = k2, then from (7.8) and (7.9), x11 = r1k1,

x12 = r2k2. Substituting the values of x11 and x01 in (7.5) we will get

x10 =
k1r1
p1
. Also

k2 =
µp2r1

p1(λ− µ2r2)
k1

To find the value of k1 we use the normalizing condition

x0e+ x1(I −R1)
−1e = 1.
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Let r
′

0 = 1−r0, r
′

1 = 1−r1, r
′

2 = 1−r2; then (I−R1)
−1 =




1/r
′

0 0 0

−r1/r
′

0r
′

1 1/r
′

1 0

−r2/r
′

0r
′

2 0 1/r
′

2




Using (7.2)

k1

[
1 +

r1
p1r

′

0

+
r1

r
′

1

−
r1r1

r
′

0r
′

1

]
+ k2

[
1 +

r2

r
′

2

−
r2r2

r
′

0r
′

2

]
= 1. (7.10)

Substituting k2 in (7.10)

k1

[
1 +

r1
p1r

′

0

+
r1

r
′

1

−
r1r1

r
′

0r
′

1

+
µp2r1

p1(λ− µ2r2)

[
1 +

r2

r
′

2

−
r2r2

r
′

0r
′

2

]]
= 1. (7.11)

From (7.11) k1 =
1

[

1+
r1

p1r
′

0

+
r1

r
′

1

−
r1r1

r
′

0r
′

1

+
µp2r1

p1(λ−µ2r2)

[

1+
r2

r
′

2

−
r2r2

r
′

0r
′

2

]] .

Now Rk−1
1 =




r
(k−1)
0 0 0

r1
(rk−1

0 −rk−1
1 )

(r0−r1)
r
(k−1)
1 0

r2
(rk−1

0 −rk−1
2 )

(r0−r2)
0 r

(k−1)
2


 and

xke = x10r
k−1
0 + x11

[
r
(k−1)
1 + r1

(rk−1
0 −rk−1

1 )

(r0−r1)

]
+ x12

[
r
(k−1)
2 + r2

(rk−1
0 −rk−1

2 )

(r0−r2)

]

for k > 1.

Let Qv(z) be the PGF associated with the number of customers in the

system. Then Qv(z) =
∑∞

n=0 xnez
n

= x01+x02+
x10z
1−r0z

+ x11z
1−r1z

+ x12z
1−r2z

+x11r1z
r0−r1

[
1

1−r0z
− 1

1−r1z

]
+x12r2z

r0−r2

[
1

1−r0z
− 1

1−r2z

]

= 1−r0
1−r0z

[
x01

(1−r0z)
(1−r0)

+ x02
(1−r0z)
(1−r0)

+ x10z
1−r0

+ x11z
1−r1z

(1−r0z)
(1−r0)

+ x12z
1−r2z

(1−r0z)
(1−r0)

+

x11r1z
r0−r1

(1−r0z)
(1−r0)

[
1

1−r0z
− 1

1−r1z

]
+ x12r2z

r0−r2

(1−r0z)
(1−r0)

[
1

1−r0z
− 1

1−r2z

]]
.

Q
′

v(z) =
r0

1−r0z

[
x01

(1−r0z)
(1−r0)

+ x02
(1−r0z)
(1−r0)

+ x10z
1−r0

x11z
1−r1z

(1−r0z)
(1−r0)

+ x12z
1−r2z

(1−r0z)
(1−r0)

+

x11r1z
r0−r1

(1−r0z)
(1−r0)

[
1

1−r0z
− 1

1−r1z

]
+ x12r2z

r0−r2

(1−r0z)
(1−r0)

[
1

1−r0z
− 1

1−r2z

]]
+
(

1−r0
1−r0z

)(
1

1−r0

)

[
−r0x01 − r0x02 + x10 +

x11r1
(r0−r1)

+ x12r2
(r0−r2)

+ x11

(
r0−r1−r1
r0−r1

)(
1−2r0z+r0r1z

2

(1−r1z)2

)
+



130
Chapter 7. Stochastic decomposition of the M/M/1 queue with

environment dependent working vacation

x12

(
r0−r2−r2
r0−r2

)(
1−2r0z+r0r2z

2

(1−r2z)2

)]

Expected queue length E(L) = Q
′

v(1) =
r0

1−r0
+
(

1
1−r0

)
[−r0x01 − r0x02 + x10

+ x11r1
(r0−r1)

+ x12r2
(r0−r2)

+ x11

(
r0−r1−r1
r0−r1

)(
1−2r0+r0r1

(1−r1)2

)
+ x12

(
r0−r2−r2
r0−r2

)(
1−2r0+r0r2

(1−r2)2

)]

= r0
1−r0

+
(

1
1−r0

) [
−r0k1 − r0k2 +

k1r1
p1

+ r1k1r1
(1−r1)(r0−r1)

+ k2r2r2
(r0−r2)

+ k1r1

(
r0−r1−r1
r0−r1

)

(
1−2r0+r0r1

(1−r1)2

)
+ k2r2

(
r0−r2−r2
r0−r2

)(
1−2r0+r0r2

(1−r2)2

)]

= r0
1−r0

+
(

k1
1−r0

) [
−r0 +

r1
p1

+ r1r1
(1−r1)(r0−r1)

+ r1

(
r0−r1−r1
r0−r1

)(
1−2r0+r0r1

(1−r1)2

)]
+

(
k2

1−r0

)

[
−r0 +

r2r2
(r0−r2)

+ r2

(
r0−r2−r2
r1−r2

)(
1−2r0+r1r2

(1−r2)2

)]

Case.2

Now consider the case of n = 3. Then S(t) has four states.

S(t) =





0, if the server is serving in normal mode;

1, if server is in the type I working vacation;

2, if server is in the type II working vacation;

3, if server is in the type III working vacation;

The state space of X is {(0, k)|k = 1, 2, 3} ∪ {(j, k), j = 1, 2, . . . ; k =

0, 1, 2, 3}. The infinitesimal generator associated with the Markov chain

is Q2 =




B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .



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where−B0 = A0 = λI3, B1 =




0 λ 0 0

0 0 λ 0

0 0 0 λ


,B2 =




µp1 µp2 µp3

µ1 0 0

0 µ2 0

0 0 µ3



,

A2 =




µ 0 0 0

µ1 0 0 0

µ2 0 0 0

µ3 0 0 0



,

A1 =




−λ− µ 0 0 0

θ1 −λ− µ1 − θ1 0 0

θ2 0 −λ− µ2 − θ2 0

θ3 0 0 −λ− µ3 − θ3



.

A = A0 + A1 + A2 =




0 0 0 0

θ1 + µ1 −µ1 − θ1 0 0

θ2 + µ2 0 −µ2 − θ2 0

θ3 + µ3 0 0 −µ3 − θ3




We get λ < µ as the condition for stability.

R2 =




r0 0 0 0

r1 r1 0 0

r2 0 r2 0

r3 0 0 r3




where r0 = ρ, r1 = ρ(λ+θ1)
(λ+µ1+θ1)

, r1 = λ
(λ+µ1+θ1)

,

r2 =
ρ(λ+θ2)

(λ+µ2+θ2)
, r2 =

λ
(λ+µ2+θ2)

, r3 =
ρ(λ+θ3)

(λ+µ3+θ3)
and r3 =

λ
(λ+µ3+θ3)

Let x = (x0,x1,x2, . . . , ) be the steady state probability vector associ-

ated with the Markov process X. Here x0 = (x01, x02, x03) and xi =

(xi0, xi1, xi2, xi3), i = 1, 2, . . .. Then assuming x01 = k1 x02 = k2 and

x03 = k3, we get x11 = r1k1, x12 = r2k2 x13 = r3k3. x10 = k1r1
p1
. Also

k2 =
µp2r1

p1(λ−µ2r2)
k1, k3 =

µp3r1
p1(λ−µ3r3)

k1.

Let r
′

0 = 1− r0, r
′

1 = 1− r1, r
′

2 = 1− r2, r
′

3 = 1− r3 then
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(I −R2)
−1 =




1/r
′

0 0 0 0

−r1/r
′

1r
′

0 1/r
′

1 0 0

−r2/r
′

2r
′

0 0 1/r
′

2 0

−r3/r
′

3r
′

0 0 0 1/r
′

3




Using the normalizing condition x0e+ x1(I −R2)
−1e = 1, we get

k1 =
1









1+
r1

r
′

1

−
r1r1

r
′

0r
′

1

+
r1

p1r
′

0

+

3∑

j=2

µpjr1
p1(λ− µjrj)

(
1 +

rj

r
′

j

−
rjrj

r
′

0r
′

j

)







Now Rk−1
2 =




r
(k−1)
1 0 0 0

r2
(rk−1

1 −rk−1
3 )

(r1−r3)
r
(k−1)
3 0 0

r4
(rk−1

1 −rk−1
5 )

(r1−r5)
0 r

(k−1)
5 0

r6
(rk−1

1 −rk−1
7 )

(r1−r7)
0 0 r

(k−1)
7




and

xke = x10r
k−1
1 +x11

[
r
(k−1)
3 + r2

(rk−1
1 −rk−1

3 )

(r1−r3)

]
+x12

[
r
(k−1)
5 + r4

(rk−1
1 −rk−1

5 )

(r1−r5)

]
+

x13

[
r
(k−1)
7 + r6

(rk−1
1 −rk−1

7 )

(r1−r7)

]
for k > 1.

Qv(z) =
∑∞

n=0 xnez
n

= x01 + x02 + x03 +
x10z
1−r1z

+ x11z
1−r3z

+ x12z
1−r5z

+ x13z
1−r7z

+ x11r2z
r1−r3

[
1

1−r1z
− 1

1−r3z

]
+

x12r4z
r1−r5

[
1

1−r1z
− 1

1−r5z

]
+ x13r6z

r1−r7

[
1

1−r1z
− 1

1−r7z

]

Expected queue length E(L) = Q
′

v(1)

= r1
1−r1

+
(

k1
1−r1

) [
−r1 +

r2
p1

+ r2r3
(1−r3)(r1−r3)

+ r3

(
r1−r2−r3
r1−r3

)(
1−2r1+r1r3

(1−r3)2

)]
+

(
k2

1−r1

) [
−r1 +

r5r4
(r1−r5)

+ r5

(
r1−r4−r5
r1−r5

)(
1−2r1+r1r5

(1−r5)2

)]
+
(

k3
1−r1

) [
−r1 +

r7r6
(r1−r7)

+

r7

(
r1−r6−r7
r1−r7

)(
1−2r1+r1r7

(1−r7)2

)]

Case.3

Now we consider the case where there are n ≥ 4 distinct type of vacations.
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Then

S(t) has n+ 1 distinct values.

S(t) =

{
0, if the server is serving in normal mode;

i, if server is in the ith type working vacation, 1 ≤ i ≤ n;

The state space ofX is {(0, k)/k = 1, 2, . . . , n}∪{(j, k)/j = 0, 1, 2, . . . ; k =

1, 2, . . . , n} The infinitesimal generator associated with the Markov chain

is

Qn =




B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .




where B1 =




0 λ

λ

λ

λ




n×(n+1)

,

B2 =




µp1 µp2 . . . µpn

µ1

µ2

µn




(n+1)×n

A2 =




µ

µ1

...

µn




(n+1)×(n+1)

,

and−B0 = A0 = λIn

A1 =




−λ− µ

θ1 −λ− µ1 − θ1

θ2 −λ− µ2 − θ2
...

. . .
...

. . .

θn −λ− µn − θn




As in the earlier sections
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A0 + A1 + A2 =




−λ− µ

θ1 + µ1 −µ1 − θ1

θ2 + µ2 −µ2 − θ2
...

. . .
...

. . .

θn + µn −µn − θn




Let y = (y0, y1, y2, . . . , yn) be the invariant probability vector of A satisfy-

ing yA = 0 and ye = 1. The system is stable if and only if yA0e < yA2e.

Here yA0e = λ and yA2e = µ.

Theorem:The system is stable if and only if λ < µ

Rn =




r0

r1 r1

r2 0 r2
...

. . . . . .
...

. . . . . .

rn 0 rn




where r0 = ρ, ri =
ρ(λ+θi)

(λ+µi+θi)
,

ri =
λ

(λ+µi+θi)
.

Let x = (x0,x1,x2, . . . , ) be the steady state probability vector associ-

ated with the Markov chain X. Here x0 = (x01, x02, . . . , x0n) and xi =

(xi0, xi1, xi2, . . . , xin), i = 1, 2, . . .. Then assuming x0j = kj, 1 ≤ i ≤ n, we

get x1j = rjkj, x10 =
k1r1
p1
.

Also kj =
µpjr1

p1(λ−µjrj)
k1. Let r

′

i = 1− ri, 1 ≤ i ≤ n, r
′

0 = 1− r0,

ℓi = 1/r
′

i, 0 ≤ i ≤ n, χi = −ri/(r
′

ir
′

0), 1 ≤ i ≤ n then,
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(I −Rn)
−1 =




ℓ0

χ1 ℓ2

χ2 ℓ2

χn ℓn




k1 =
1









1+
r1

r
′

1

−
r1r1

r
′

0r
′

1

+
r1

p1r
′

0

+

n∑

j=2

µpjr1
p1(λ− µjrj)

(
1 +

rj

r
′

j

−
rjrj

r
′

0r
′

j

)







Now Rk−1
n =




r
(k−1)
0

r1
(rk−1

0 −rk−1
1 )

(r0−r1)
r
(k−1)
1

r2
(rk−1

0 −rk−1
2 )

(r0−r2)
0 r

(k−1)
2

...
. . .

...
. . .

rn
(rk−1

0 −rk−1
n )

(r0−rn)
r(k−1)
n




and

xke = x10r
k−1
0 +

n∑

i=1

x1i

[
r
(k−1)
i + ri

(rk−1
0 − rk−1

i )

(r0 − ri)

]
for k > 1.

Then Qv(z) =
∑∞

n=0 xnz
n

=
n∑

j=1

x0j +
x10z

1− r0z
+

n∑

j=1

x1jz

1− rjz
+

n∑

j=1

x1jrjz

r0 − rj

[
1

1− r0z
−

1

1− rjz

]

Expected queue length E(L) = Q
′

v(1)

= r0
1−r0

+
n∑

j=1

(
kj

1− r0

)[
−r0 +

rj
p1

+
rjrj

(1− rj)(r0 − rj)
+

rj

(
r0−rj−rj
r0−rj

)(
1−2r0+r0rj

(1−rj)2

)]
.

The above discussions lead to

Theorem(Stochastic decomposition): The expected queue length

E(L) can be decomposed into the sum of the expectations of n + 1 in-

dependent random variables as: E(L) = E(L) +
n∑

i=1

E(LVi
) where E(L)
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is the queue length of classical M/M/1 queue and
n∑

i=1

E(LVi
) is the addi-

tional queue length due to n types of vacations.

7.2.2 Stationary waiting time

Using Little’s formula the expected waiting time E(W ) = E(L)
λ

.

E(W ) = (
1

µ− λ
+

1

λ

n∑

i=1

E(LVi
)) (7.12)

From (7.12) it is clear that the expected waiting time can be decomposed

into the sum of n + 1 independent random variables: E(W ) = E(W ) +
n∑

i=1

E(WVi
). where E(W ) is the expected waiting time of a customer in

the M/M/1 queue and
n∑

i=1

E(LWi
) is the additional waiting time due to

n types of vacations.



Chapter 8

On an M/G/1 queue with

vacation in random

environment

Introduction

In chapters 6 and 7 the service time and vacation time are assumed to

follow exponential distribution. In this chapter we consider a single server

queueing system with general service time distribution. Normal vacation

and working vacation are also considered where both the vacations follow

general distribution. The important features of the model discussed in

this chapter are

Some results of this chapter are included in the following Manuscript.
A.Krishnamoorthy, Jaya.S, B.Lakshmy. : On an M/G/1 queue with vacation in ran-
dom environment, (Communicated).

137
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• The server goes for vacation only when the queue becomes empty.

i.e. the exhaustive service discipline has been applied.

• Both normal vacation(type I vacation) and multiple working vaca-

tion (type II vacation) are considered.

• During normal vacation, if a customer arrives, service is not provided

until completion of vacation whereas while in working vacation ser-

vice is provided at a slower rate.

• At the end of a busy period, depending on the environment, the

server opts for normal vacation or working vacation.

• On completion of type I vacation, if the server finds the system

empty he goes for type II vacation.

• On completion of type II vacation if the server finds the system

empty he goes for another type II vacation.

• On completion of service in type II vacation, if the server finds one

or more customers in queue he returns to normal service interrupting

the vacation.

• A customer arriving during type I vacation, joins the queue with

probability q or leaves the system with probability 1− q.

• A customer arriving during type II vacation, joins the queue with

probability 1.
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8.1 Model description

Consider an M/G/1 queue with Poisson arrival of rate λ. Vacation to

server starts whenever the system turns empty at a service completion

epoch. There are two types of vacations. Depending on the environment

the server goes either for type I vacation with probability p1 or for type

II vacation with probability p2 such that p1 + p2 = 1. During type I

vacation the arriving customer joins the queue with probability q or leaves

the system with probability 1 − q. On completion of type I vacation if

the server finds the system empty, he goes for type II vacation. Type II

vacation is a working vacation in which a customer on arrival is served

at a lower rate if the server is idle during vacation. On completion of

type II vacation if the server finds the system empty it again goes for type

II vacation. On completion of service in working vacation if the server

finds one or more customers in the system it shifts to normal service,

interrupting the vacation. Otherwise the server continues the vacation. If

the vacation is completed before service completion the service is restarted

at normal rate.

The duration of vacations and services follow mutually independent

general distributions. The distribution functions that we bring in here

and the corresponding density functions are as defined below: Further

Table 8.1:
Operation Distribution function PDF LST Mean

Normal service S(t) s(t) S∗(s) 1/µ
Vacation service Sv(t) sv(t) S∗

v(s) 1/µv

type I vacation V1(t) v1(t) V ∗
1 (s) 1/γ1

type II vacation V2(t) v2(t) V ∗
2 (s) 1/γ2
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Figure 8.1: Model description

define: N(t) - Number of customers in the system;

C(t) - Status of server;

S ′(t) - Elapsed service time of the customer in normal service mode at

time t;

S
′

v(t) - Elapsed service time in working vacation;

V
′

1 (t) - Elapsed vacation time duration of type I vacation;

V
′

2 (t) - Elapsed vacation time duration of type II vacation.

C(t) =





0, if server is busy with normal service;

1, if the server is in type I vacation;

2, if the server is in type II vacation;

Now let Pn,0(x, t)dx =

P {N(t) = n,C(t) = 0, x ≤ S ′(t) < x+ dx},

for t ≥ 0, x ≥ 0, n ≥ 1

Pn,1(x, t)dx = P {N(t) = n,C(t) = 1, x ≤ V ′
1(t) < x+ dx},

for t ≥ 0, x ≥ 0, n ≥ 0, Pn,2(x, y, t)dxdy = P {N(t) = n,C(t) = 2, x ≤ V ′
2(t) < x+ dx,

y ≤ S ′
v(t) < y + dy}, for t ≥ 0, x > 0, y ≥ 0, n ≥ 0

Let µ(x), µv(x), γ1(x), and γ2(x) be the conditional completion rates of
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normal service, vacation service, type I vacation and type II vacation re-

spectively. Then µ(x)dx = dS(x)
1−S(x)

, µv(x)dx = dSv(x)
1−Sv(x)

, γ1(x)dx = dV1(x)
1−V1(x)

, γ2(x)dx =
dV2(x)
1−V2(x)

.

Pn,0(x) = limt→∞ Pn,0(x, t), Pn,1(x) = limt→∞ Pn,1(x, t),

Pn,2(x, y) = limt→∞ Pn,2(x, y, t)

Figure.8.1 provides a pictorial representation of the system evolution.

Define ak =
∫∞

0
(λx)k

k!
e−λxdS(x), bk =

∫∞

0
(qλx)k

k!
e−qλxdV1(x),

ck =
∫∞

0

∫ x

0
(λx)k

k!
e−λxdV2(y)dSv(y) and dk =

∫∞

0

∫ y

0
(λy)k

k!
e−λydSv(y)dV2(x)

where ak, bk, ck and dk are the probability for k arrivals during normal

service, type I vacation, type II vacation and vacation service respectively.

The corresponding probability generating functions are

A(z) = S∗(λ(1− z)), B(z) = V ∗
1 (qλ(1− z)),

C(z) =
∫∞

0
e−λ(1−z)xSv(x)dV2(x) and D(z) =

∫∞

0
e−λ(1−z)yV2(x)dSv(y).

8.2 Stability of the system

Theorem :The inequality ρ = λ
µ
< 1 is necessary and sufficient condition

for the system to be stable.

Proof: Let tn be the departure time of nth customer from the system af-

ter service completion or at the end of a vacation. Xn be the number of

customers in the system just after the nth departure, or just at the end of

a vacation.

Xn+1 =

{
Xn − 1 +Mn+1, for Xn ≥ 1

Mn, for Xn = 0
where Mn+1 is the number of arrivals during the service of a customer

or during vacation. The arrivals are independent. Then {Xn, n ≥ 1} is a

Markov chain with state space Z+∪{0}. This Markov chain is irreducible
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and aperiodic. Now we have to prove the positive recurrence. For that we

use Foster’s Criterion.

Foster’s Criterion (see Pakes [40]): An irreducible and aperiodic Markov

chain is positive recurrent if there exists a non negative function f(i)

i ∈ Z+ ∪ {0} and ǫ > 0 such that the mean drift ψ(i) = E[f(Xn + 1) −

f(Xn)/Xn = i] is finite for all i ∈ Z+ ∪ {0} and ψ(i) ≤ −ǫ ∀i except for a

finite number. Here let us consider f(s) = s, s ∈ Z+ ∪ {0}

Then the mean drift when i > 0 is given by

ψ(i) = E[f(Xn + 1)− f(Xn)/Xn = i] =
∑∞

j=0(i+ j − 1− i)aj

=
∞∑

j=0

(j − 1)aj = (ρ− 1).

When i = 0, ψ(i) = p1ρ1 + p2(ρ2 + ρ′) where ρ = λ
µ
, ρ1 =

qλ

γ1
, ρ2 =

λ
γ2
, ρ′ =

λ
µb
.

Obviously ψ(i) ≤ −ǫ, except for i = 0, which is the sufficient condition

for ergodicity. The necessary condition follows from Kaplan’s condition

which states that ψ(i) < ∞ ∀i ∈ Z+ ∪ {0} and there exists j ∈ Z+ ∪ {0}

such that ψ(i) ≥ 0 for i ≥ j.

8.3 Steady state distribution

In the long run when the system stabilizes, let we get the following system

of equations satisfied by the probabilities of the system state.

dPn,0(x)

dx
= −(µ(x) + λ)Pn,0(x) + λPn−1,0(x)(1− δ1n), n ≥ 1. (8.1)
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dPn,1(x)

dx
= −(γ1(x) + qλ)Pn,1(x) + qλPn−1,1(x), n ≥ 1. (8.2)

∂Pn,2(x, y)

∂x
= −(γ2(x)+λ)Pn,2(x, y)+λPn−1,2(x, y)(1−δ1n), n ≥ 1. (8.3)

∂Pn,2(x, y)

∂y
= −(µv(y)+λ)Pn,2(x, y)+λPn−1,2(x, y)(1−δ1n), n ≥ 1. (8.4)

The steady state boundary conditions at x = 0 and y = 0 are

Pn,0(0) =

∫ ∞

0

Pn,1(x)γ1(x)dx+

∫ ∞

0

Pn+1,0(x)µ(x)dx

+

∫ ∞

0

Pn+1,2(x, y)µv(y)dy +

∫ ∞

0

Pn,2(x, y)γ2(x)dx, n ≥ 1. (8.5)

P0,1(0) = p1

∫ ∞

0

P10(x)µ(x)dx. (8.6)

P0,2(0) = p2

∫ ∞

0

P1,0(x)µ(x)dx+

∫ ∞

0

P0,1(x)γ1(x)dx. (8.7)

P1,2(x, 0) = λP0,2(x) (8.8)

To solve the system of equations (8.1)− (8.4) , define the following prob-

ability generating functions (for |z| < 1):

P0(x, z) =
∑∞

n=1 Pn,0(x)z
n, P1(x, z) =

∑∞

n=0 Pn,1(x)z
n, P2(x, y, z) =

∑∞

n=1 Pn,2(x, y)z
n

Multiplying equations (8.1)− (8.4) byzn and summing over n we get

∂P0(x, z)

∂x
= −[λ(1− z) + µ(x)]P0(x, z) (8.9)

∂P1(x, z)

∂x
= −[qλ(1− z) + γ1(x)]P1(x, z) (8.10)

∂P2(x, y, z)

∂x
= −[λ(1− z) + γ2(x)]P2(x, y, z) (8.11)
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∂P2(x, y, z)

∂y
= −[λ(1− z) + µv(y)]P2(x, y, z). (8.12)

Solving (8.9) and (8.10) we get

P0(x, z) = P0(0, z)(1− S(x))e−λ(1−z)x. (8.13)

P1(x, z) = P1(0, z)(1− V1(x))e
−qλ(1−z)x = P0,1(0)(1− V1(x))e

−qλ(1−z)x.

(8.14)

Solving (8.11) and (8.12) we obtain

P2(x, y, z) = P0,2(0)(1− V2(x))(1− Sv(y))e
−λ(1−z)(x+y). (8.15)

Now

Pn,0(x) =
n∑

i=1

Pi,0(0)
(λx)n−ie−λx

(n− i)!
[1− S(x)]. (8.16)

Pn,1(x) = P0,1(0)
(qλx)ne−qλx

n!
[1− V1(x)]. (8.17)

Pn,2(x, y) = P0,2(0)
(λy)n−1e−λy

(n− 1)!
[1− Sv(y)][1− V2(x)]. (8.18)

Solving (8.6) and (8.7) using (8.16) we get

P0,1(0) = p1P1,0(0)S
∗(λ) (8.19)

P0,2(0) = [p2 + p1V
∗
1 (λ)]P1,0(0)S

∗(λ) (8.20)

Using the boundary condition we can write P∆ = P

where P = (P0,1(0), P0,2(0), P1,0(0), P2,0(0), . . .) and
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∆ =




0 b0 b1 b2 b3 · · ·

0 c0 + d0 c1 + d1 c2 + d2 c3 + d3 · · ·

p1a0 p2a0 a1 a2 a3 · · ·

a0 a1 a2
. . .

a0 a1
. . .

a0
. . .
. . .




.

It is clear that the matrix ∆ is irreducible. It is stochastic since
∑∞

k=0 bk =

B(1) = 1,
∑∞

k=0 ck + dk = C(1) +D(1) = 1 and
∑∞

k=1 ak + (p1 + p2)a0 =

A(1) = 1.

Now we have to prove that ∆ is positive recurrent when ρ < 1. ∆ is

positive recurrent when
∑∞

k=1 kak < 1, and this condition is satisfied when

ρ < 1.

From the matrix ∆,

P0,1(0) = P1,0(0)p1a0. (8.21)

P0,2(0) = P0,1(0)b0 + P0,2(0)(c0 + d0) + P1,0(0)p2a0. (8.22)

Pj,0(0) = P0,1(0)bj + P0,2(0)(cj + dj) +

j∑

i=0

Pi+1,0(0)aj−i. (8.23)

From (8.23),

P0(0, z) = z
[P0,1(0)(B(z)− 1) + P0,2(0)(C(z) +D(z)− 1)]

z − A(z)
. (8.24)
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From (8.13),

P0(z) = P0(0, z)
1− S∗(λ(1− z))

(λ(1− z))
. (8.25)

From (8.14),

P1(z) = p1P1,0(0)S
∗(λ)

1− V ∗
1 (qλ(1− z))

(qλ(1− z))
. (8.26)

From (8.15),

P2(z) = [p2 + p1V
∗
1 (λ)]P1,0(0)S

∗(λ)Ω(z), (8.27)

where Ω(z) =
∫∞

0

∫ x

0
(1− V2(x))(1− SV (y))e

−λ(1−z)(x+y)dxdy.

Let, P (z) = P0(z) + P1(z) + P2(z) be the PGF of the stationary queue

size distribution irrespective of the server’s state.

Then,

P (z) = P0(0, z)
1−S∗(λ(1−z))

(λ(1−z))
+ p1P1,0(0)S

∗(λ)
1−V ∗

1 (qλ(1−z))

(qλ(1−z))
+

[p2 + p1V
∗
1 (λ)]P1,0(0)S

∗(λ)Ω(z). Using the condition P(1)=1, we get

P1,0(0) =
[(

p1ρ1+(p2+p1V
∗

1 (qλ))(ρ2+ρ3)

µ−λ
+ p1

γ1
+ (p2 + p1V

∗
1 (qλ))Ω(1)

)
S∗(λ)

]−1

The expected queue length E(L) = P ′(z)|z = 1

= 1
2
(2P

′

0(0, 1)S
∗′(0) + λP0(0, 1)S

∗′′(0)− P
′′

0 (0, 1)S
∗′(0))+

q

2
λP0,1(0)V

∗′′

1 (0) + P0,2(0)Ω
′(1)

8.4 Waiting time Analysis

To find the waiting time of a customer who joins for service at time t, we

have to consider different possibilities depending on the status of server

at that time . The server may be in general busy period, vacation I or in



8.4. Waiting time Analysis 147

vacation II. Let W (t) be the waiting time of a customer who arrives at

time t and W ∗(s) be the corresponding LST.

Case1. The customer arrives to the system when the number of customers

is 0 and the server is in vacation. It may be either in vacation I or vacation

II. If it is in vacation II the customer starts getting service immediately

and the waiting time is zero. Let W ∗
0,2(s) be the corresponding LST. Then

W ∗
0,2(s) = 1.

If the server is on vacation I, the customer has to wait till the completion

of vacation. Let x be the elapsed vacation time until the arrival of the

customer and W ∗
01(s) be the LST of the waiting time of the customer who

arrives when the system is empty and the server in vacation I. Then

W ∗
0,1(s) =

∫ ∞

0

e−stdV1(x+ t)

1− V1(x)
.

Case 2. The waiting time of the customer who arrives to the system

when there are n customers in the system and the server is providing

normal service to customer is the sum of the remaining service time of the

customer in service and the service time of the remaining n−1 customers.

Let x be the elapsed service time of the customer in service and W ∗
n,0(s)

be the LST of the waiting time of the customer who arrives to the system

when there are n customers and the server is busy. Then

W ∗
n,0(s) = S∗(n−1)(s)

∫ ∞

0

e−stdS(x+ t)

1− S(x)
.

Case 3. The waiting time of the customer who arrives to the system when

there are n customers in the system and the server is is in vacation I is the
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sum of the remaining vacation time and the service time of the remaining

n customers. Let x be the elapsed vacation time and W ∗
n,1(s) be the LST

of the waiting time of the customer who arrives to the system when there

are n customers and the server is in vacation I. Then

W ∗
n,1(s) = S∗(n)(s)

∫ ∞

0

e−stdV1(x+ t)

1− V1(x)
.

Case 4. The waiting time of the customer who arrives to the system

when there are n customers in the system and the server is in vacation

II is the sum of the remaining vacation time and the service time of the

remaining n customers, if the vacation completes before the service given

while in vacation. If the service is completed before vacation completion

then the waiting time is the sum of the remaining vacation service time

and the service time of the remaining n − 1 customers. Let x be the

elapsed vacation time, y be the elapsed vacation service time and W ∗
n,2(s)

be the LST of the waiting time when vacation is completed before service

and W ∗′

n,2(s) be the LST of the waiting time of the customer when service

is completed before vacation of the customer who arrives to the system

when there are n customers and the server is on vacation II. Then

W ∗
n,2(s) = S∗(n)(s)

∫ ∞

0

e−stdV2(x+ t)

1− V2(x)
.

W ∗′

n,2(s) = S∗(n−1)(s)

∫ ∞

0

e−stdSv(y + t)

1− Sv(y)
.

W ∗(s) = p1

∫ ∞

0

P0,1(x)dx

∫ ∞

0

e−stdV1(x+ t)

1− V1(x)
+ p2

∫ ∞

0

P0,2(x, 0)dx

+
∞∑

n=1

S∗(n−1)(s)

∫ ∞

0

Pn,0(x)dx

∫ ∞

0

e−stdS(x+ t)

1− S(x)
+
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+p1

∞∑

n=1

S∗(n)(s)

∫ ∞

0

Pn,1(x)dx

∫ ∞

0

e−stdV1(x+ t)

1− V1(x)

+p2

∞∑

n=1

S∗(n)(s)

∫ ∞

0

∫ x

0

Pn,2(x, y)dxdy

∫ ∞

0

e−stdV2(x+ t)

1− V2(x)

+p2
∑∞

n=1 S
∗(n−1)(s)

∫∞

0

∫ y

0
Pn,2(x, y)dxdy

∫∞

0
e−st dSv(y+t)

1−Sv(y)
.

8.5 Numerical results

In this section we provide some numerical examples for this model. As-

sume normal service time is exponentially distributed with parameter µ,

vacation service time is exponentially distributed with parameter µv, du-

ration of type I vacation is exponentially distributed with parameter γ1

and that of type II vacation is exponentially distributed with parameter

γ2.

The conclusion drawn below are purely based on input parameters.

The variation in queue length due to the variation in

vacation service rate and arrival rate

Let µ = 5, γ1 = 0.4, γ2 = 0.3, p1 = 0.7, p2 = 0.3 q = 0.5. Fig 8.2 and Fig

8.3 represent the variation in queue length due to the variation in vacation

service rate and arrival rate when p1 = 0.7, p2 = 0.3 and p1 = 0.3, p2 = 0.7,

respectively. As the value of vacation service rate increases the expected

queue length decreases and as the arrival rate increases the queue length
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also increases which are on expected lines. From Figure 8.2 we not that

when the probability of opting for type I vacation decreases the expected

queue length decreases.
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Figure 8.2: The variation in queue length due to the variation in vacation
service rate and arrival rate p1 = 0.7, p2 = 0.3

The variation in queue length due to the variation in

vacation service rate and duration of vacation

Let λ = 4, γ2 = 0.05, p1 = 0.3, p2 = 0.7. Fig 8.4 and Fig 8.5 represent

the variation in queue length due to the variation in vacation service rate

and vacation duration when q = 0.5 and q = 0.2 respectively. As the

duration of vacation decreases the queue length decreases. This is due to

the early return of server from vacation. When the server returns early

from vacation the customer starts getting service earlier and the length of

the queue reduces. When the probability of a customer joining the queue
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Figure 8.3: Expected queue length E(L) against vacation service rate µv

during vacation I reduces the queue length also decreases which are on

expected lines.
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Figure 8.4: Expected queue length E(L) against vacation service rate µv,
q = 0.5
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Figure 8.5: Expected queue length E(L) against vacation service rate µv,
q = 0.2



Conclusion

Concluding remarks and suggestions for fur-
ther study

In this thesis we have introduced and studied the notion of environment

dependent server interruption and server vacation in queueing systems.

Both random environment and Markovian environment are considered.

Queueing systems with customer and server induced interruption have

been extensively discussed in literature. In all cases the interruption is

induced by some factors. These factors are called environmental factors.

Sometimes these factors are interrelated. In this work we study different

queueing models with environment dependent interruption and vacation.

In the second chapter we analyzed a queueing model with interruption

due to a finite number of environmental factors in which the interruption

remains unidentified until a random amount of time elapses. The interrup-

tion is controlled by two clocks. In chapter 3 all the assumptions are same

as in the second chapter except the interruption is inducing environmental

factors are the states of a Markovian chain. In chapter 4 we have studied

a queueing model with partially ignored interruption in Markovian envi-

ronment. We introduced two clocks in the model to determine whether

to resume or restart the service. Then we proceeded to a queueing model

with totally ignored interruption (Chapter 5). We introduced the notion

of self correction in this chapter.

Chapter 6 - chapter 8 discuss queueing models with environment de-

pendent vacation. In chapter 6 we considered a queueing model with n+1

types of environment dependent vacations. The vacations are taken at the

end of a nonzero busy period. We derived a formula to calculate the ex-

pected queue length and expected waiting time. In the 7th chapter we



obtained stochastic decomposition of expected queue length and expected

waiting time of an M/M/1 queue with environment dependent working

vacation. In the last chapter (chapter 8) we considered an M/G/1 queue

with two types of vacation - normal vacation and working vacation. The

type of vacation the server selects after service, is based on the environ-

ment. Since the models are not analytically tractable, a large number of

numerical illustrations were given in each chapter to illustrate the working

of the systems.

Extensions of the work reported in the thesis to the case of arbitrary

distribution especially those in chapters 2-7 is being taken up. As a first

step we replace exponential distribution by phase type distribution for

service and vacation and go for Markovian arrival process.
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