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Chapter 1

Introduction

1.1 Introduction

“As far as laws of mathematics refer to reality they are not certain, and

as far as they are certain they do not refer to reality.” Albert Einestien

Fuzziness or Vagueness is a common phenomena in almost all situations

in real life. Until Lotfi A. Zadeh [33] introduced the concept of fuzzy sets,

Mathematics was purely based on set theory. In 1965, Zadeh through a

seminal paper introduced a new theory called Fuzzy set theory claiming

that many of the uncertainty problems could be solved through this new

approach. He suggested a new concept called ‘fuzzy sets’ which are sets

whose boundaries are not precise. While sets can be expressed using two

valued logic with membership value 0 or 1, fuzzy set can take any value

1
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in the interval [0, 1] as the degree of membership.

Fuzzy sets can be used to express gradual transition from membership

to non membership and vice versa. It gives a meaningful representation of

vague concepts expressed in natural languages. This is done by assigning

to each element in the universal set a value representing its grade of mem-

bership in the fuzzy set. This grade corresponds to the degree to which

that element is compatible with the concept represented by the fuzzy set.

This element belong to the set to a greater or lesser degree as indicated by

a larger or smaller membership grade. Then we can consider the concept

of a crisp set as a particular case of the more general concept of a fuzzy

set in which only two membership values 0 and 1 are allowed.

Fuzzy set theory has greater applications compared to set theory and so

many researchers started to reconsider the various concepts and theorems

in Mathematics and its applications in the broader frame work of fuzzy

settings. Since the basics of Mathematics is set theory, all Mathematics

can be rewritten based on fuzzy set theory.

Human thinking and reasoning frequently involve fuzzy information

and we can give satisfactory answers. But our systems are unable to an-

swer many questions. The reason is most systems are designed based upon

classical set theory and two valued logic which is unable to cope with un-

reliable and incomplete informations and give expert opinions. Fuzzy sets

have been able to provide solution to many real world problems. Zadeh

formulated the fuzzy set theory in terms of standard operations such as

complement, union, and intersection. Fuzzy set theory is applied in many

scientific areas which includes linguistics, robotics, computer science, ar-

tificial intelligence, medical diagnosis and social sciences. George J. Klir
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and Bo Youn [9] and Zimmermann H.J [35] give basics for fuzzy set theory

and its applications.

Since the introduction of fuzzy sets as a method for representing un-

certainty, this idea has been applied to a wide range of scientific areas.

One such area is Fuzzy automata and language theory. Fuzzy automata

firstly introduced by W. G. Wee [32] and Lee and Zadeh introduced the

concept of fuzzy languages [19]. There is an important reason to study

fuzzy automata. Several states are fuzzy by nature as well as several lan-

guages. For example, wellness of a patient is a fuzzy state. The language

on an alphabet {a, b} which contains a large number of a′s is an example

of a fuzzy language. The basic idea in the formation of fuzzy automata

is that unlike classical case, a fuzzy automaton can switch from one state

to another to a certain degree. In the case of fuzzy state automata we

consider fuzzy subsets of the state set as the the fuzzy states. Analogous

to different definition of classical automata there are several definitions of

fuzzy automata. Fuzzy automata are the machines accepting fuzzy regular

languages and used to define complex systems.

Semigroups are important in many areas of applied mathematics. The

theory of finite semigroups has been of particular importance in theoret-

ical computer science since 1950’s because of the natural link between

finite semigroups and finite automata. Correspond to every finite au-

tomata there exist a finite semigroup called transition semigroup of that

automata. The word ’automata’ comes from a greek word which means

’self acting’. In algebra, an action of a semigroup on a set is a rule which

associate to each element of the semigroup a transformation of the set in

such a way that the product of two elements of the semigroup is associ-

ated with the composite of the two corresponding transformations, which
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means that the elements of the semigroup are acting as transformations

of the set. In computer science, semigroup actions are closely related to

automata - the set models the state of automaton, the elements of semi-

group are input symbols and the action models the transformations of

that state in response to inputs. A set X on which S acts is known as

an S-Set. A semigroup with identity is called a monoid. We always con-

sider semigroups with identity. It is also common to work with right acts

rather than left acts. Since every right S-act can be interpreted as a left

act over the opposite monoid, which has the same element as S but the

multiplication is defined by reversing the order, s ∗ r = r ∗ s. So the two

notions are essentially equivalent.

An S-Set can be considered as a set with a structure. The additional

structure on the set is the operation(action) of the semigroup on the set.

An S-morphism from one S-Set X to another S-Set X ′ is a map F :

X −→ X ′ satisfying F (φ(s, x)) = φ(s, F (x))∀s ∈ S, x ∈ X. The set of

all such S-homomorphisms is commonly written as Hom(X,X ′). Thus

from the categorical point of view, the set of all S-Sets together with the

S-morphisms form a category S-SET and many results were proved by

P. G. Romeo on the category of S − SET and Functors [26]. Goguen

J. A [10] [11] defined a category SET (V ) whose elements are functions

µ : X −→ V where X is any set and V is any partially orderd set, a

morphism from µ −→ ν is a function f : X −→ Y satisfying µ(x) 6 ν(f(x)

for all x ∈ X. With V = [0, 1], this gives the category of fuzzy sets on

a set X say SET [0, 1] or F − SET . C. L Walker [31] studied further on

SET [0, 1] and Sergey A. Solovyov [27] [28] studied more on the properties

of SET (L). They proved that SET [0, 1] and SET (L) are both complete

and cocomplete.
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Any semigroup action δ : S × X −→ X defines a transformation

semigroup S ′ = {δs : s ∈ S} where δs(x) = (s, x) and every transformation

semigroup can be turned into a semigroup action by defining δ : S×X −→
X by δ(s, x) = sx. Transformation semigroups are of essential importance

for the structure theory of finite state machines in automata theory. The

elements of X acts as states and the semigroup elements acts as input

symbols. δ : X×S −→ X is the next state function or transition function.

An automaton is supposed to run on some given sequence of inputs

in discrete time steps. At each time step, an automaton gets one input

that is picked from a set of symbols or letters which is called alphabet.

The set of all finite sequences of letters is called the set of words. An

automaton contains a finite set of states. At each time step when the

automaton reads a symbol, it jumps or transits to a next state that is

decided by the transition function. The automaton reads the symbols of

the input word one after another and transit from one state to another

according to the transition function until the word is read completely. The

automaton starts from an initial state and once the input word has been

read completely, it stops at a state called final state. There is a subset

of the state set of the automaton called accepting state. If the final state

is an accepting state then the automaton accepts the word. Otherwise

the word is rejected. The set of all words accepted by an automaton is

called the language recognized by that automaton. Thus an automaton

is a mathematical object that takes a word as input and decides either to

accept it or reject it.

An automaton has got two structures, one is the input structure and

the other is the output structure. Output structure is more useful in

practical purposes and it depends on the transition structure. But the
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input structure is independent of the output structure. So it is possible

to study the input structure separately. Algebraic automata theory deals

with the study of the transition structure or input structure of automata.

Many results of semigroup theory is used in algebraic automata theory.

One can refer [5], [13] for main results on semigroup theory.

Kleene’s theorem [16] is considered to be the starting point of the au-

tomata theory. It says that the class of all languages recognized by a

finite automata(recognizable languages) coincides with the rational lan-

guages, where the rational operations are union, product and star opera-

tion. Automata over infinite words are introduced by Buchi in early 1960s.

Hopcroft J. E and Ullman J. D [12], Eilenberg [7] Lallement [17], Peter

Linz [22], Dexter C. Kozen [6] are good references for Automata and Lan-

guage theory. A. C. Fleck [8] studied homomorphisms and isomorphisms

on automata and Chin-Hong Park [21] studied more on automata homo-

morphisms and power automata. The definition of syntactic monoid (a

monoid canonically attached to each language) first appeared in a paper

by Rabin and Scott [25] where the notion is credited to Myhill [20]. It was

shown that a language is recognizable if and only if the syntactic monoid

is finite.

The notion of variety is introduced by Birkoff [4] for infinite monoids.

A Birkoff’s variety of monoids is a class of monoids closed under taking

submonoids, quotient monoids and direct products. He proved that va-

rieties can be defined by a set of identities. For example, the identity

x ∗ y = y ∗ x characterizes the variety of commutative monoids. The col-

lection of finite monoids does not form a variety since it is not closed under

direct products. Elienberg defined a pseudovariety as a class of monoids

closed under taking submonoids, quotient monoids and finite direct prod-
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ucts. Elienberg’s variety theorem states that the variety of finite monoids

are in one to one correspondence with varieties of languages. This va-

riety theorem has been extended in various directions by J. E Pin and

many others [23], [24]. Inverse automata were first discussed by J. B.

Stephen[29]. He proved that the transition monoid of an inverse automa-

ton is an inverse monoid. Injective automata or reversible automata first

appeared in Christopher Reutenaur’s paper. He proved that a language

is accepted by an injective automata if and only if the syntactic monoid

of that language has commuting idempotents.

Like all other real life problems, impreciseness may occur in the case

of machines also. Sometimes the state may not be clear-cut, or the tran-

sition from one state to the other may not be complete. There comes the

importance of fuzzy automata theory.

Algebraic fuzzy automata theory deals with the study of the transition

structure associated with a fuzzy automaton. As in the case of classi-

cal automata, corresponds to every fuzzy automaton there exists a finite

monoid of fuzzy transition matrices and correspond to every finite monoid

we can construct a fuzzy automaton. This one-one correspondence allow

us to study the structure of a fuzzy automaton through the study of the

structure of the associated transition monoid.

It is proved that every monoid is the syntactic monoid of some fuzzy

language while this is not true in the case of crisp languages[17]. Eilenberg-

type variety theorem is proved for fuzzy languages by Tatjana Petkovic

[30] and it says that there is a one to one correspondence between the

variety of finite monoids, variety of languages and the variety of fuzzy

languages. Mordeson J. N, Malik D. S independently and together with
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Nair P. S, Sen M. K proved many results on algebraic fuzzy automata

theory and languages. These and many other references are available in

[14].

In this thesis we concentrate on the following.

1. Extending semigroup action on sets to fuzzy framework.

2. Define regular and inverse fuzzy automata and corresponding fuzzy

languages and study their algebraic properties.

3. Determine the automorphism group of an inverse fuzzy automaton.

4. Define min-weighted and max-weighted power automata and study

the properties of their transition monoids.

1.2 Preliminaries

Definition 1.2.1. Let X be a nonempty set. A fuzzy subset of X is

characterized by a function µ : X −→ [0, 1].

The set {x ∈ X : µ(x) > 0} is called the support of µ.

The set of all fuzzy subsets of X is denoted by F (X) or IX .

Definition 1.2.2. If µ and ν are two fuzzy subsets of X,then µ ∨ ν
is a fuzzy subset of X defined by

µ ∨ ν(x) = max{µ(x), ν(x)}
µ ∧ ν(x) = min{µ(x), ν(x)}
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µ̄(x) = 1− µ(x) for all x ∈ X.

For {µα : α ∈ A}, (
∨
α∈A

µ)(x) = sup
α∈A

µα(x)

and

(
∧
α∈A

µα)(x) = inf
α∈A

µα(x) for all x ∈ X

Definition 1.2.3 (Zadeh’s Extension Principle). Let f : X −→ Y be

a map where X and Y are two sets. Let µ be a fuzzy subset of X. Then

f can be extended to a map f̃ : IX −→ IY by the extension principle

f̃(µ)(y) =

{ ∨
µ(x) where x ∈ f−1(y) if f−1(y) 6= φ

0 otherwise ∀ y ∈ Y

and if ν is a fuzzy subset of Y , then f̃−1(ν)(x) = ν(f(x)) ∀ x ∈ X.

f̃(µ) is called image of µ under f and f̃−1(ν) is called the pre-image of ν

under f .

Definition 1.2.4. Let X and Y be two sets and let f : X −→ Y be

a map. Let µ be a fuzzy subset of X and ν a fuzzy subset of Y . A map

f̃ : µ −→ ν is said to be a fuzzy morphism if µ(x) 6 ν ◦ f(x) ∀ x ∈ X.

Definition 1.2.5. A semigroup is a set equipped with an associative

binary operation. A monoid is a semigroup with an identity element.

Definition 1.2.6. Let S be a semigroup with identity e. A set X is

called an S − Set if there exists a mapping φ : S ×X −→ X such that

1. For all s1, s2 ∈ S and x ∈ X, φ(s1s2, x) = φ(s1, φ(s2, x)).

2. φ(e, x) = x.

The mapping φ : S × X −→ X is called the action of S on X and the



10 Chapter 1. Introduction

S-Set X is denoted by (X,φ).

Definition 1.2.7. Let X and Y be two S-sets. A mapping f :

X −→ Y is called an S-morphism from X −→ Y if f(φ(s, x)) = φ(s, f(x))

∀s ∈ S, x ∈ X. The collection of all S − Sets together with S-morphisms

is a category say S − SET .

Definition 1.2.8. A finite state automaton is a five tuple

M = (Q,X, δ, F, s) where Q is finite set whose elements are called states,

X is a finite set of input symbols called alphabet, δ is a function from

Q × X −→ Q called transition function. The output function is g :

Q × X −→ [0, 1] and F = {q ∈ Q, g(q, x) = 1}. The elements of F are

called accepting states. s ∈ Q is the initial state.

We can also represent a finite state automaton as M = (Q,X,E, F, s)

where E is a subset of Q × X × Q and F and s are as above. Let X∗

be the free monoid generated by X where the semigroup operation is

concatenation and Λ denote the identity element. The elements of X∗ are

sequences of finite length of elements of X, called words or strings. Then

δ : Q × X −→ Q can be extended to a function δ : Q × X∗ −→ Q such

that δ(q,Λ) = q and δ(q, xa) = δ(δ(q, x), a)∀x ∈ X∗, a ∈ X.

A language L over X is a subset of X∗. A string x is accepted by M if

δ(s, x) ∈ F and rejected if δ(s, x) /∈ F . A language L said to be recognized

by an automaton M if L is the set of all strings accepted by M . A language

is recognizable if there exists a finite automata recognizing that language.

A semigroup S recognizes a language L if there exist a subset P of S and

a semigroup morphism φ : X∗ −→ S such that L = φ−1(P ).
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Definition 1.2.9. A deterministic automaton is said to be an inverse

automaton if ∀x ∈ X̃∗, (q, x, p) ∈ E =⇒ (p, x−1, q) ∈ E and (p, x, q) ∈ E
and (p′, x, q) ∈ E =⇒ p = p′ where X̃∗ is the free semigroup generated by

X ∪X−1[29].

1.3 Basics concepts and theorems in fuzzy

automata and fuzzy languages

A fuzzy language over an alphabet X is a fuzzy subset of X∗. To each

fuzzy language λ over X we associate a congruence Pλ called syntactic

congruence as follows. For u, v ∈ X∗ uPλv if and only if λ(xuy) = λ(xvy)

for all x, y ∈ X∗. The quotient monoid Syn(λ) = X∗/Pλ is called the

syntactic monoid of λ [14].

Theorem 1.3.1 (Myhill Nerode theorem). A fuzzy language λ is

regular if and only if Pλ has finite index [30].

For fuzzy languages λ, λ1, λ2 over an alphabet X, complement, union

and intersection are defined respectively by

λ(u) = 1− λ(u), λ1 ∨ λ2(u) = λ1(u) ∨ λ2(u), λ1 ∧ λ2(u) = λ1(u) ∧ λ2(u).

Left and right quotients are defined respectively by

λ−1
1 λ2(u) =

∨
v∈X∗

λ2(vu) ∧ λ1(v) and λ2λ
−1
1 (u) =

∨
v∈X∗

λ2(uv) ∧ λ1(v).
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Let c ∈ [0, 1] be arbitrary. Then the fuzzy language cλ defined by

cλ(u) = c.λ(u) is called multiplication by constant c. Let X1 and X2

be two finite alphabets. φ : X∗1 −→ X∗2 be a homomorphism and ψ a

fuzzy language in X∗2 . Then the inverse image of ψ under φ is a fuzzy

language φ−1ψ(u) = ψ(φ(u)). For a fuzzy language λ, a c-cut we mean

λc = {u ∈ X∗|λ(u) > c}.

Theorem 1.3.2. A fuzzy language λ is regular if and only if Im(λ)

is finite and λc is regular for every c ∈ [0, 1] [14].

Definition 1.3.1. A family F = F (X) of regular fuzzy languages

is a variety of fuzzy languages in X∗ if it is closed under unions, intersec-

tions, complements, multiplication by constants, quotients, inverse homo-

morphic images and cuts.

For a variety of fuzzy languages F , let F s be the family of finite monoids

defined by

F s = {Syn(λ)|λ ∈ F (X), for some X}.

For a variety of finite monoids S , let S f (X) be the family of fuzzy

languages defined by

S f (X) = {λ, a fuzzy language over X such that Syn(λ) ∈ S }.

Theorem 1.3.3 (Elienberg’s variety theorem). The mapping F −→
F s and S −→ S f are mutually inverse lattice isomorphism between the

lattices of all varieties of fuzzy languages and all varieties of finite monoids.

Definition 1.3.2. A fuzzy automaton can also be represented as a

five tuple (Q,X, {Tu|u ∈ X}, i, τ) where {Tu|u ∈ X} is the set of fuzzy
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transition matrices, i = {i1, i2, .....in}, ik ∈ [0, 1], τ = {j1, j2, .....jn}T , jk ∈
[0, 1] for k = 1, 2, 3, ..., n. µ can be extended to the set Q×X∗ ×Q by

µ(q,Λ, p)=

{
1 q = p

0 q 6= p

µ(q, u, p)=
∨
qi∈Q
{µ(q, x1, q1) ∧ µ(q1, x2, q2) ∧ . . . ∧ µ(qk−1, xk, p)|x1 . . . xk=u} .

The fuzzy language recognized by this fuzzy automaton is

fM(u) =
∨
q∈Q

∨
p∈Q i(q) ∧ µ(q, u, p) ∧ τ(p) which can also written as

fM(u) = i ◦ Tu ◦ τ , where the composition is the max-min composition

of fuzzy matrices. The minimal fuzzy recognizer M(λ) can be constructed

in a way similar to the construction of minimal recognizer for a crisp lan-

guage. The set of states will be {λ.u|u ∈ X∗} where λ.u is a fuzzy subset

of X∗ defined by λ.u(w) = λ(uw) for w ∈ X∗ and δ(λ.u, x) = λ.(ux)

Definition 1.3.3. A deterministic fuzzy automaton is fuzzy automa-

ton M = (Q,X, µ, i, τ) such that there exist a unique s ∈ Q with i(s) > 0

and there exist a unique q ∈ Q such that µ(s, x, q) > 0 for all x ∈ X∗.

For each fuzzy automaton we can construct a deterministic fuzzy au-

tomaton such that the language recognized by them are same [14].

For a fuzzy automaton A = (Q,X, µ, i, τ) define a congruence θA on

X∗ by uθAv ⇐⇒ µ(q, u, p) = µ(q, v, p) ∀ p, q ∈ Q. Then the transition

monoid T (A) of A is isomorphic to X∗/θA. Let M = (Q,X, µ, i, τ) be

a fuzzy automaton. We say the triple (Q,X, µ) is the fuzzy finite state

machine associated with M or a fuzzy automaton without outputs.

For p, q ∈ Q, p is called an immediate successor of q if there exists
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a ∈ X such that µ(q, a, p) > 0. p is called a successor of q if there

exist an x ∈ X∗ such that µ(q, x, p) > 0. Let S(q) denote the set of all

successors of q. Let T ⊆ Q. The set of all successors of T denoted by

S(T ) = ∪{S(q) : q ∈ T}.

N = (T,X, ν) where T ⊆ Q, ν is a fuzzy subset of T × X × T is

called a submachine of M if µ|T×X×T = ν and S(T ) ⊆ T . N is said to be

separated if S(Q− T ) ∩ T = φ.

Definition 1.3.4. A fuzzy automaton M is said to be connected

if it has no proper sub machines. M is strongly connected if for every

p, q ∈ Q, p ∈ S(q). M is commutative if µ(p, ab, q) = µ(p, ba, q) ∀ a, b ∈
X∗, p, q ∈ Q.

Definition 1.3.5. LetM1 = (Q1, X1, µ1, i1, τ1) andM2 = (Q2, X2, µ2,

i2, τ2) be two fuzzy automata such that Q1 ∩Q2 = φ, recognizing λ1 and

λ2 respectively. The direct product of M1 and M2 is defined as

M1 ×M2 = (Q1 ×Q2, X1 ×X2, µ1 × µ2, i1 × i2, τ1 × τ2) where

µ1×µ2((p1, p2), (x1, x2), (q1, q2)) = µ1(p1, x1, q1)∧µ2(p2, x2, q2) ∀(x1, x2) ∈
X1 ×X2, (p1, p2), (q1, q2) ∈ Q1 ×Q2.

i1 × i2 and τ1 × τ2 are fuzzy subsets of Q1 ×Q2 defined by

i1 × i2(p1, p2) = i1(p1) ∧ i2(p2), τ1 × τ2(q1, q2) = τ1(q1) ∧ τ2(q2).

For M1 = (Q1, X, µ1, i1, τ1) and M2 = (Q2, X, µ2, i2, τ2) the restricted di-

rect product M1×̇M2 = (Q1 ×Q2, X, µ1×̇µ2, i1 × i2, τ1 × τ2) where

µ1 × µ2((p1, p2), x, (q1, q2)) = µ1(p1, x, q1) ∧ µ2(p2, x, q2) ∀x ∈ X, (p1, p2),

(q1, q2) ∈ Q1 × Q2. and i1 × i2 and τ1 × τ2 are fuzzy subsets of Q1 × Q2

defined by i1× i2(p1, p2) = i1(p1)∧ i2(p2), τ1× τ2(q1, q2) = τ1(q1)∧ τ2(q2).

The language recognized by M1×̇M2 is λ1 ∧ λ2 [14].

Definition 1.3.6. Let M1 = (Q1, X, µ1),M2 = (Q2, X, µ2) be fuzzy
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finite state machines such that Q1 ∩ Q2 = φ. Their join is defined as

M1 ∨M2 = (Q1 ∪Q2, X, µ1 ∨ µ2, i1 ∨ i2, τ1 ∨ τ2) where

µ1 ∨ µ2(p, x, q) =


µ1(p, x, q) if p, q ∈ Q1

µ2(p, x, q) if p, q ∈ Q2

0 otherwise

i1 ∨ i2(p) =

{
i1(p) if p ∈ Q1

i2(p) if p ∈ Q2

and

τ1 ∨ τ2(q) =

{
τ1(q) if q ∈ Q1

τ2(q) if q ∈ Q2

1.4 Fuzzy matrices and some basic opera-

tions

Fuzzy matrices are matrices with entries from the unit interval [0, 1]. We

can represent a fuzzy automaton with transition matrices which are fuzzy

matrices, and their composition is max−min operations on fuzzy matri-

ces. There are some other elementary operations on the set of all fuzzy

matrices.

Definition 1.4.1. If A = [aij], B = [bij] are two fuzzy matrices

with same number of rows and columns then max(A,B) = [cij] where

cij = max{aij, bij}. Similarly min(A,B) = [cij] where cij = min{aij, bij}.

Definition 1.4.2. Let A and B be two matrices which are compatible

as in the case of product, ie, number of columns of A is equal to the number

of rows of B. Then max − min(A,B) = [cij] where cij =
∨
k

aik ∧ bkj.
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Similarly min−max(A,B) = [cij], cij =
∧
k

aik ∨ bkj.

The collection of all square fuzzy matrices of order n with max−min
operations is a monoid whose identity element is the unit matrix of order n.

1.5 Summary of the Thesis

This thesis comprises five chapters including the introductory chapter.

This includes a brief introduction and basic definitions of fuzzy set theory

and its applications, semigroup action on sets, finite semigroup theory, its

application in automata theory along with references which are used in

this thesis.

In the second chapter we defined an S-fuzzy subset of X with the ex-

tension of the notion of semigroup action of S on X to semigroup action

of S on to a fuzzy subset of X using Zadeh’s maximal extension princi-

pal and proved some results based on this. We also defined an S-fuzzy

morphism between two S-fuzzy subsets of X and they together form a

category S−FSETX . Some general properties and special objects in this

category are studied and finally proved that S−SET and S−FSET are

categorically equivalent. Further we tried to generalize this concept to the

action of a fuzzy semigroup on fuzzy subsets. As an application, using

the above idea, we convert a finite state automaton to a finite fuzzy state

automaton. A classical automata determine whether a word is accepted

by the automaton where as a finite fuzzy state automaton determine the

degree of acceptance of the word by the automaton.
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In the third chapter we define regular and inverse fuzzy automata,

its construction, and prove that the corresponding transition monoids are

regular and inverse monoids respectively. The languages accepted by an

inverse fuzzy automata is an inverse fuzzy language and we give a char-

acterization of an inverse fuzzy language. We study some of its algebraic

properties and prove that the collection IFL on an alphabet does not form

a variety since it is not closed under inverse homomorphic images. We

also prove some results based on the fact that a semigroup is inverse if

and only if idempotents commute and every L -class or R-class contains

a unique idempotent.

Fourth chapter includes a study of the structure of the automorphism

group of a deterministic faithful inverse fuzzy automaton and prove that

it is equal to a subgroup of the inverse monoid of all one-one partial fuzzy

transformations on the state set.

In the fifth chapter we define min-weighted and max-weighted power

automata, study some of its algebraic properties and prove that a fuzzy

automaton and the fuzzy power automata associated with it have the same

transition monoids.

The thesis ends with a conclusion of the work done and the scope of

further study.





Chapter 2

Category of S-Fuzzy subsets

2.1 Introduction

Categories and functors were first introduced by Samuel Eilenberg and

Saunders Mac Lane in 1945. Later by 1970s this concept is more developed

and found application in many different areas of Mathematics. Many

Mathematical results were proved in a much simpler way using categorical

concepts. From 1980, Category theory occupies a central position in the

field of theoretical computer science, theoretical physics and many other

fields where Mathematics is applied. It is a powerful language which allows

us to view various classes of objects with structures and their structure

preserving relation in a more general frame work.

Some results of this chapter are included in the following paper.
Pamy Sebastian, T. P. Johnson. : Semigroup Action on Fuzzy subsets and the Cat-
egory of S-Fuzzy subsets. International Review of Fuzzy Mathematics (2012), Vol.7,
No.1, 27-34.
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Many categorical properties of G − Sets and S − Sets were studied

by various researchers [34] [26]. In this chapter we extend the notion

of S − Sets to fuzzy framework where objects are S-fuzzy subsets of an

S − Set X and morphisms are S-fuzzy morphisms between them. We

study some categorical properties of the Category S −FSETX and prove

that it is complete and cocomplete. Considering the Category S − SET
and S − FSET , we define a covariant functor between them and prove

that these two categories are equivalent. Finally we give an application of

this result in fuzzy automata theory.

2.2 Semigroup action on fuzzy subsets

Definition 2.2.1. Let X be an S-set where S is a semigroup with

identity e and the action of S on X is defined by the function φ : S×X −→
X. A fuzzy subset µ of X is said to be an S-fuzzy subset of X if

µ(φ(s, x)) > µ(x) ∀ x ∈ X. The semigroup action of S on X can be

extended to IX as

for x ∈ X, φ(s, µ)(x) =


∨
y

µ(y) where y ∈ X : φ(s, y) = x}

0 if no such y exists

It is trivial that φ(e, µ) = µ.

φ(s1, φ(s2, µ))(x) =


∨
y

{φ(s2, µ)(y), y ∈ X,φ(s1, y) = x}

0 if no such y exists

=


∨
y

{
∨
z

µ(z) :z∈X :φ(s2, z)=y}, y∈X :φ(s1, y)=x}

0 if no such y exists
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=


∨
z

{µ(z) : z ∈ X,φ(s1, φ(s2, z)) = x}

0 if no such y exists

=


∨
z

{µ(z), z ∈ X : φ(s1s2, z) = x}

0 if no such y exists

= φ(s1s2, µ)(x)

This implies that φ(s1, φ(s2, µ)) = φ(s1s2, µ).

µ is said to be an S-Fuzzy subset under this action.

Let A ⊆ S.

Define φ(A, µ) =
⋃
s∈A

φ(s, µ).

Then
φ(A, µ)(x) = (

⋃
s∈A

φ(s, µ))(x)

=
∨
s∈A
{φ(s, µ)(x)}

Property 1. If µ and ν are S-fuzzy subsets of an S − Set X, then

1. If µ ⊆ ν then φ(s, µ) ⊆ φ(s, ν).

2. φ(s, (µ ∪ ν)) = φ(s, µ) ∪ φ(s, ν).

3. φ(s, (µ ∩ ν)) ⊆ φ(s, µ) ∩ φ(s, ν).

4. φ(s, φ(A, µ)) = φ(sA, µ).

5. φ(A, φ(B, µ)) = φ(AB, µ).

Proof. Since µ ⊆ ν, µ(x) 6 ν(x) ∀x ∈ X.



22 Chapter 2. Category of S-Fuzzy subsets

φ(s, µ)(x) =


∨
y

{µ(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

6


∨
y

{ν(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

= φ(s, ν(x)) ∀x ∈ X

So φ(s, µ) ⊆ φ(s, ν).

To prove (2),

φ(s, µ ∪ ν)(x)

=


∨
y

{µ ∪ ν(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

=


∨
y

{µ(y) ∨ ν(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

=


∨
y

{µ(y), y ∈ X : φ(s, y) = x} ∨
∨
y

{ν(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

= φ(s, µ)(x) ∨ φ(s, ν)(x)

= (φ(s, µ) ∪ φ(s, ν))(x)
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So φ(s, µ ∪ ν) = φ(s, µ) ∪ φ(s, ν).

Now to prove (3),

φ(s, µ ∩ ν)(x) =


∨
y

{µ ∩ ν(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

=


∨
y

{µ(y) ∧ ν(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

6


∨
y

{µ(y), y∈X :φ(s, y)=x}∧
∨
y

{ν(y), y∈X :φ(s, y)=x}

0 if no such y exists

= φ(s, µ)(x) ∧ φ(s, ν)(x)

= φ(s, µ) ∩ φ(s, µ)(x)

So φ(s, µ ∩ ν) ⊆ φ(s, µ) ∩ φ(s, ν).

To get (4),

φ(s, φ(A, µ))(x) =


∨
y

{φ(A, µ)(y), y ∈ X : φ(s, y) = x}

0 if no such y exists

=


∨
y

∨
u∈A
{φ(u, µ)(y), y ∈ X : φ(s, y) = x}

0 if no such y exists
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=
∨
u∈A

φ(s, φ(u, µ))(x)

=
∨
u∈A

φ(su, µ)(x)

=
⋃
u∈A

φ(su, µ)(x)

= φ(sA, µ)(x).

Now (5) follows from

φ(A, φ(B, µ)) =
⋃
x∈A

φ(x, φ(B, µ))

=
⋃
x∈A

φ(xB, µ)

= φ(AB, µ)

Definition 2.2.2. Let X be an S −Set and f be an S-morphism on

X, let µ and ν be S-fuzzy subsets of X. A fuzzy morphism f̃ : µ −→ ν is

said to be an S-fuzzy morphism if f̃(φ(s, µ)) = φ(s, f̃(µ)) ∀s ∈ S.

The collection of all S-fuzzy subsets of X together with S-fuzzy mor-

phisms between them is a category say S−FSETX . Let S−FSETX and

S−FSETY be two categories of S-fuzzy subsets of X and Y respectively

where X, Y ∈ S − SET
Let f : X → Y be an S-morphism, then f can be extended to S-fuzzy

morphism f̃ : S − FSETX → S − FSETY by
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f̃(µ)(y) =


∨
x

µ(x) where x ∈ f−1(y) if f−1(y) 6= φ

0 otherwise

The category S − FSET can be defined as follows.

The objects of S−FSET are the classes S−FSETX where X ∈ S−SET
and morphisms are f̃ : S − FSETX → S − FSETY defined as above.

2.3 General properties and special objects

in S − FSETX

In the category S − FSETX , we consider µ : X → [0, 1] as an addi-

tional structure on the S-set X and the S-fuzzy morphisms are maps f̃ ∈
Hom(IX , IX) satisfying f(φ(s, µ)) = φ(s, f(µ)) and µ(x) 6 ν ◦f(x) ∀ x ∈
X, s ∈ S. If f ∈ Hom(X,X) is a bijection then f̃ is also a bijection.

So S − FSETX can be considered as a set with structures whose objects

are (X,µ) and morphisms are S-fuzzy morphisms. The composition is the

ordinary composition of functions. The initial object in S−FSETX is the

empty set with empty map to [0,1] and final objects are singleton S-fuzzy

subsets which are fuzzy subsets on X such that for every {x}, µ(y) = 1

at y = x and 0 for all y 6= x.

Products in S − FSETX

Let X and Y be two S − Sets. Then the product X × Y is defined as an

S − Set with the semigroup action on X × Y is defined as φ(s, (x, y)) =

(φ(s, x), φ(s, y)) together with the projection morphisms p1 : X × Y → X
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and p2 : X × Y → Y . Here p1 and p2 are S-morphisms since

p1(φ(s, (x, y))) = p1(φ(s, x), φ(s, y)) = φ(s, x) = φ(s, p1(x, y)) and

p2(φ(s, (x, y))) = p2(φ(s, x), φ(s, y)) = φ(s, y) = φ(s, p2(x, y)).

In particular the product X ×X is an S − Set.

Let µ and ν be S-fuzzy subset of X. The product µ×ν can be defined

as a fuzzy subset θ of X × X defined as θ(x, y) = µ(x) ∧ ν(y) together

with p̃1 : IX×X → IX and p̃2 : IX×X → IX defined by

p̃1(θ)(a) =
∨

(x,y)

{θ(x, y) : p1(x, y) = a}

=
∨

(x,y)

{µ(x) ∧ ν(y) : p1(x, y) = a}

=
∨
y

(µ(a) ∧ ν(y))

= µ(a) ∧
∨
y

ν(y) for every a ∈ X

Similarly,

p̃2(θ)(b) = (
∨
x∈X

µ(x)) ∧ ν(b).

Since θ(φ(s, (x, y))) = θ(φ(s, x), φ(s, y)) = µ(φ(s, x))∧ν(φ(s, y)) > µ(x)∧
ν(y) = θ(x, y), θ is an S-fuzzy subset of X ×X where the action of S on

θ is defined as

φ(s, θ)(a, b) =


∨

(x,y)

{θ(x, y) : φ(s, (x, y)) = (a, b)}

0 if no such (x, y) exists
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=


∨

(x,y)

{µ(x) ∧ ν(y) : φ(s, x) = a, φ(s, y) = b}

0 if no such (x, y) exists

=


∨
x

{µ(x), x ∈ X : φ(s, x) = a} ∧
∨
y

{ν(y), y ∈ X : φ(s, y) = b}

0 if no such (x, y) exists

= φ(s, µ)(a) ∧ φ(s, ν)(b)

=⇒ φ(s, (µ× ν))(a, b) = φ(s, µ)(a) ∧ φ(s, ν)(b)

Also p̃1 and p̃2 are S-fuzzy morphisms, for,

θ(x, y) = µ(x) ∧ ν(y) 6 µ(x) = µ ◦ p1(x, y) ∀(x, y) ∈ X ×X
=⇒ p̃1 is a fuzzy morphism.

p̃1(φ(s, θ))(a) =
∨

(x,y)

{φ(s, θ)(x, y) : p1(x, y) = a}

=
∨
y

φ(s, θ)(a, y)

=
∨
y

∨
(u,v)

{θ(u, v) : φ(s, (u, v)) = (a, y), p1(u, v) = a}

=
∨
y

∨
(u,v)

(µ(u) ∧ ν(v) : φ(s, u)=a, φ(s, v)=y, p1(u, v)=a}

=
∨
y

∨
(u,v)

{µ(u) ∧ ν(v) : p1(u, v) = a, φ(s, v) = y}

= φ(s, p̃1(θ))(a)
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=⇒ p̃1 is an S-fuzzy morphism.

Similarly p̃2 is also an S-fuzzy morphism.

The universality of the product will be followed by the universal mapping

property(UMP) of the product in the category SET .

Thus (θ, p̃1, p̃2) is the product of µ and ν.

Example 2.3.1. Let X = {x0, x1, x2} and S be the subsemigroup

{e, δ} of the full transformation semigroup on X where δ(x0) = x1, δ(x1) =

x1, δ(x2) = x2. Then S can be considered to be acting on X and the

action φ of S on X is φ(δ, x0) = x1, φ(δ, x1) = x1, φ(δ, x2) = x2 and

φ(e, x) = x ∀x ∈ X.

Let µ and ν be fuzzy subsets on X defined by

µ(x) =

{
0.5 when x = x0

0.7 when x = x1, x2

and

ν(x) =


0.4 when x = x0

0.7 when x = x1

0.8 when x = x2

.

Then µ and ν are S-fuzzy subsets of X since µ(φ(s, x)) > µ(x) and

ν(φ(s, x) > ν(x) for all s ∈ S.

Now θ is the fuzzy subset of X ×Xdefined by

θ(xi, xj) = 0.4 when i = 0, j = 0

= 0.5 when i = 0, j = 1

= 0.7 when i = 0, j = 2

= 0.4 when i = 1, j = 0

= 0.7 when i = 1, j = 1

= 0.7 when i = 1, j = 2

= 0.4 when i = 2, j = 0

= 0.7 when i = 2, j = 1
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= 0.7 when i = 2, j = 2

θ is an S-fuzzy subset since it can be verified that

θ(φ(s, (xi, xj)) > θ(xi, xj) ∀xi, xj ∈ X and p̃1 and p̃2 are S-fuzzy mor-

phisms since θ(xi, xj) = µ(xi) ∧ ν(xj) 6 µ(xi) = µ ◦ p1(xi, xj) and

θ(xi, xj) = µ(xi) ∧ ν(xj) 6 ν(xj) = ν ◦ p2(xi, xj) ∀xi, xj ∈ X. Also

p̃kφ(s, θ)(xi) = φ(s, p̃k(θ)(xi) for all k = 1, 2, i = 0, 1, 2.

Equalizers in S − FSETX

Let X be an S-set. Let µ and ν be S-fuzzy subsets of X. Let f̃1, f̃2 :

IX → IX be S-fuzzy morphisms from µ to ν. Then f1 and f2 are S-

morphisms from X −→ X. Let K = {x ∈ X : f1(x) = f2(x)}. Let

iK : K → X be the inclusion.

Define θ : X → [0, 1] as θ(x) =

{
µ(x) ∀ x ∈ K

0 otherwise.

Then θ is an S-fuzzy subset of X for,

θ(φ(s, x) = µ(φ(s, x)

> µ(x) since µ is an S-fuzzy subset

= θ(x) if x ∈ K

For x /∈ K, θ(x) = 0 and it is trivial.

Let ĩ : IX −→ IX be the extension of iK to IX .

ie,

ĩ(µ)(x) =

{ ∨
µ(y) : y ∈ X, iK(y) = x}

0 if no such y exists
Then

ĩ(φ(s, µ))(x) =


∨
y

{φ(s, µ)(y) : iK(y) = x, if x ∈ K}

0 otherwise
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=


∨
z

∨
y

{µ(z) : φ(s, z) = y, iK(y) = x, if x ∈ K}

0 otherwise

=


∨
z

{i(µ)(z) : iKφ(s, z) = x, if x ∈ K}

0 otherwise

= φ(s, ĩ(µ))(x) for all µ ∈ IX , x ∈ X

⇒ ĩ(φ(s, µ)) = φ(s, ĩ(µ)) for all µ ∈ IX .

Since θ is the restriction of µ to K, θ(x) = µ ◦ iK(x) ∀ x ∈ X. Thus ĩ

is an S-fuzzy morphism. The pair (̃i, θ) defined above satisfies universal

mapping property by the universal mapping property in SET .

Example 2.3.2. Let µ and ν as in the example 2.3.1 and let f̃1, f̃2 :

µ −→ ν be two S-fuzzy morphisms,

ie, f1, f2 are two S-morphisms from X −→ X such that µ(x) 6 ν ◦ f1(x),

f̃1(φ(s, µ)(x) = φ(s, f̃1(µ)(x) and f̃2(φ(s, µ)(x) = φ(s, f̃2(µ)(x) for all s ∈
S, x ∈ X.

Take f1, f2 : X −→ X as f1(x0) = x2, f1(x1) = x1, f1(x2) = x2

and f2(x0) = x1, f2(x1) = x1, f2(x2) = x1. Then f̃1 and f̃2 are S-fuzzy

morphisms since f1 and f2 are S-morphisms and

f̃1φ(s, µ)(xi) = φ(s, f̃1(µ))(xi) ∀xi ∈ X and s ∈ S and K = {x1}.

Define θ on X as θ(x) =


0 when x = x0

0.7 when x = x1

0 when x = x2

ik(x1) = x1 is the inclusion map.
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ĩ(θ)(xi) =


0 when x = x0

0.7 when x = x1

0 when x = x2.

Thus (θ, ĩ) as defined above is the equalizer of f̃1, f̃2.

Theorem 2.3.1. The Category S − FSETX is complete.

Proof. A category is complete if and only if it has got products and

equalizers. Since we have proved that S − FSETX has products and

equalizers it is complete.

Coproducts in S − FSETX

Let X1 and X2 be two S-Sets. Then X1 + X2 = X1 × {1} ∪X2 × {2} is

an S-Set under the action φ(s, (a, b)) = (φ(s, a), b). The coproduct is the

direct sum X1 +X2 together with the inclusions in1 and in2. Let µ1 and

µ2 be two S-fuzzy subsets of X.

Consider the coproduct X + X = X1 ∪X2 where X1 = X × {1} and

X2 = X × {2} and define µ on X + X as µ(xi, i) = µi(xi) ∀xi, i ∈ {1, 2}.
Let in1 : X1 −→ X + X and in2 : X2 −→ X + X be the inclusion maps.

Consider the extension ˜in1 : IX1 −→ IX1∪X2 defined by

˜in1(µ1)(x, 1) = µ1(x), ˜in1(µ1)(x, 2) = 0 and

˜in2(µ2)(x, 2) = µ2(x), ˜in2(µ2)(x, 1) = 0.

We can easily prove that, as in the case of products, µ is an S-fuzzy subset

of X + X and ˜in1, ˜in2 are the injection S-fuzzy morphisms which satisfy

UMP. Thus (µ, ˜in1, ˜in2) is the coproduct of µ1 and µ2.
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Example 2.3.3. In example 2.3.1,

X1 ∪X2 = {(x0, 1), (x1, 1), (x2, 1), (x0, 2), (x1, 2), (x2, 2)}.
Define the fuzzy subset θ on X1 ∪X2 as

θ(xi, j) = 0.5 if i=0, j=1

= 0.7 if i=1, j=1

= 0.7 if i=2, j=1

= 0.4 if i=0, j=2

= 0.7 if i=1, j=2

= 0.7 if i=2, j=2.

And θ(φ(s, (xi, j))) > θ(xi, j) for all xi ∈ X, s ∈ S, j = 1, 2.

So θ is an S-fuzzy subset of X1 ∪X2.

ĩn1(µ)(x, j) = 0.5 if x = x0, j=1

= 0.7 if x = x1, j=1

= 0.7 if x = x2, j=1

= 0 for all x ∈ X; j=2

and

ĩn2(ν)(x, j)= 0 for all x ∈ X; j=1

= 0.4 if x = x0 ,j=2

= 0.7 if x = x1 ,j=2

= 0.8 if x = x2 ,j=2.

ĩn1 and ĩn2 are S-fuzzy morphisms since it can be verified that

θ◦in1(x) > µ(x) and ĩn1(φ(s, µ))(x) = φ(s, ĩn1(µ))(x) for all x ∈ X, s ∈ S.

Similarly, θ ◦ in2(x) > ν(x) and ĩn2(φ(s, ν))(x) = φ(s, ĩn2(ν))(x) for all

x ∈ X, s ∈ S.

Thus (θ, ĩn1, ĩn2) is the coproduct of µ and ν.
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Coequalizer in S − FSETX

Let X be an S − SET . Let µ and ν be two S-fuzzy subset of X. Let

f, g : µ → ν be S-fuzzy morphisms. For x ∈ X, (f(x), g(x)) is a relation

R on X. Consider the smallest equivalence relation R̃ on X containing R.

Let Z = X/R̃ = {[y]; y ∈ X}
Define θ on Z by θ[y] =

∨
{ν(y) : y ∈ [y]}. The canonical onto map

h : X −→ X/R̃ where h(y) = [y] is an S-morphism since h(φ(s, y)) =

[φ(s, y)] = φ(s, [y]) = φ(s, h(y)).

Consider the extension h̃ : IX −→ IX/R̃ by

h̃(ν)[y] =
∨
{ν(x) : h(x) = [y]} = θ(y).

Then θ is an S-fuzzy subset of Z.

Now h̃ is a fuzzy morphism since θ ◦ h(y) = θ[y] =
∨
{ν(x) : x ∈ [y]} >

ν(y) ∀ y ∈ X.
Also h̃(φ(s, µ))[y] =

∨
x

{φ(s, µ)(x) : h(x) = [y]}

=
∨
x

∨
z

{µ(z) : φ(s, z) = x, h(x) = [y]}

=
∨
x

∨
z

{µ(z) : h(φ(s, z)) = [y]}

=
∨
x

∨
z

{µ(z) : φ(s, h(z)) = [y]}

=
∨
x

{h̃(µ)(x) : φ(s, x) = [y]}

= φ(s, h̃(µ))[y] .

So h̃ is an S-fuzzy morphism.

Thus (h̃,θ) is the coequalizer of f and g satisfying UMP.
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Example 2.3.4. In the example 2.3.2.

R = {(x1, x1), (x2, x1)}.
R̃ = {(x1, x1), (x2, x1), (x1, x2), (x2, x2)}.
Z = X/R̃ = {[x0], [x1]} where [x0] = {x0}, [x1] = {x1, x2}

Define θ on Z by θ[x] =

{
0.4 if x = x0

0.8 if x = x1

.

Then θ is an S-fuzzy subset of Z since θ(φ(s, [x]) > θ[x] for all x ∈ X and

s ∈ S.

Also h̃ is an S-fuzzy morphism since h is an S-morphism such that

ν(x) 6 θ ◦ h(x) and h̃(φ(s, ν))[x] = φ(s, h̃(ν))[x] for all x ∈ X, s ∈ S.

Thus (h̃, θ) is the coequalizer of f1 and f2.

Theorem 2.3.2. The category S − FSETX is cocomplete.

Proof. A category is cocomplete if and only if it has got coproducts

and coequalizers. So the category S − FSETX is cocomplete.

Definition 2.3.1. We define a relation on S−FSETX by µ ∼S ν iff

ν = φ(s, µ) for some s ∈ S.

Theorem 2.3.3. The above defined relation is a quasi order relation.

Proof. Since e ∈ S, and φ(e, µ) = µ, µ ∼S µ Let µ ∼S ν and ν ∼S δ
then ν = φ(s1, µ) and δ = φ(s2, ν) for some s1, s2 ∈ S.
Then φ(s2s1, µ) = φ(s2, φ(s1, µ)) = φ(s2, ν) = δ

⇒ µ ∼S δ Thus ∼S is a quasi order relation.
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Theorem 2.3.4. The fuzzy subset [µ] defined by

[µ](x) =
∨
{ν(x), ν ∼S µ} for x ∈ X is an S-fuzzy subset of X under the

action φ(s, [µ]) = [φ(s, µ)] where s ∈ S and S − FSETX/ ∼S is an S-Set.

Proof. [µ](φ(s, x)) =
∨
{ν(φ(s, x)) : ν ∼S µ}

>
∨
{ν(x) : ν ∼S µ}

= [µ](x)

ie, [µ] is an S-fuzzy subset of X.

Define φ : S × S − FSETX/ ∼S→ S − FSETX/ ∼S by

φ(s, [µ]) = [φ(s, µ)] for every µ ∈ S − FSETX

Then (1). φ(e, [µ]) = [φ(e, µ)] = [µ].

(2). φ(s1s2, [µ]) = [φ(s1s2, µ)]

= [φ(s1, φ(s2, µ)]

= φ(s1, [φ(s2, µ)])

⇒ S − FSETX/ ∼S is an S-Set.

Theorem 2.3.5. The functor F : S − SET −→ S − FSET defined

by F (X) = S − FSETX ∀X ∈ S − SET and for f : X −→ Y, F (f) = f̃

is a covariant functor.

Proof. It is obvious that F (1X) = 1F (X).
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f̃ ◦ g̃(µ)(y) =


∨
x

g̃(µ)(x) where x ∈ f−1(y), if f−1(y) 6= φ

0 otherwise

=


∨
x

∨
z

(µ)(z) where z ∈ g−1(x), x ∈ f−1(y), if g−1f−1(y) 6= φ

0 otherwise

=


∨
z

µ(z) where z ∈ g−1f−1(y), if g−1f−1(y) 6= φ

0 otherwise

=


∨
z

µ(z) where z ∈ (f ◦ g)−1(y), if (f ◦ g)−1(y) 6= φ

0 otherwise

= ˜(f ◦ g)µ(y)

=⇒ f̃ ◦ g̃ = ˜(f ◦ g)

=⇒ F (f ◦ g) = F (f) ◦ F (g)

=⇒ F is a covariant functor.

Theorem 2.3.6. The functor F : S − SET −→ S − FSET defined

above is full, faithful and surjective on objects. ie, S−SET and S−FSET
are equivalent categories.

Proof. Since every f̃ : S − FSETX −→ S − FSET Y is an extension

of some f : X −→ Y , the mapping φ : Mor(X, Y ) −→ Mor(F (X), F (Y )

defined by φ(f) = F (f) = f̃ is a surjection.

So the functor F is full.

Let f1 and f2 be two S-morphisms from X to Y such that f1 6= f2. Then

there exists an x0 ∈ X such that f1(x0) 6= f2(x0).
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Take the fuzzy subset µ of X as µ(x) =

 0 ∀x ∈ X, x 6= x0

1 for x = x0.

f̃1(µ)(f1(x0)) =
∨
{µ(x) : f1(x) = f1(x0)} = µ(x0) = 1.

But

f̃2(µ)(f1(x0)) =
∨
{µ(x) : f2(x) = f1(x0)} = 0

=⇒ f̃1 6= f̃2

=⇒ the map f −→ F (f) is injective.

So F is faithful.

The objects in S−FSET are classes S−FSETX . Corresponding to each

object S − FSETX , there exists an underlying set X ∈ Obj S − SET

such that F (X) = S − FSETX . So F is surjective on objects. F is an

equivalence functor between S − SET and S − FSET .

2.4 Fuzzy semigroup action on fuzzy sub-

sets

We know that a fuzzy subset λ of a semigroup S is said to be a fuzzy

subsemigroup of S if λ(xy) > λ(x) ∧ λ(y) for all x, y ∈ S[15].

Definition 2.4.1. Let φ : S×X −→ X be the action of S on X. Let

µ be a fuzzy subset of X such that µ(φ(s, x)) > µ(x) ∀ x ∈ X. ie, µ is an

S-Fuzzy subset of X. Let λ be a fuzzy subsemigroup of S. We define the

action of λ on µ as

φ(λ, µ)(x) =


∨
y

∨
s

{µ(y) ∧ λ(s) : φ(s, y) = x, if φ−1(x) 6= φ}

0 otherwise
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We say µ is a λ-fuzzy subset of X.

Theorem 2.4.1. Let X be an S-Set and f be an S-morphism on X.

µ be an S-fuzzy subset of X and λ a fuzzy subsemigroup of S. Then f̃(µ)

is a λ-fuzzy subset of X where f̃ is the maximal extension of f .

Proof. f̃(µ)(φ(s, x)) =

{ ∨
{µ(y) : f(y) = φ(s, x)} if f−1(φ(s, x)) 6= φ

0 otherwise

=

{ ∨
{µ(f−1(φ(s, x))) if f−1(φ(s, x)) 6= φ}

0 otherwise

=

{ ∨
{f(µ)(φ(s, x)) : f−1(φ(s, x)) 6= φ}

0 otherwise

>

{ ∨
{f(µ)(x) : f−1(φ(s, x)) 6= φ}

0 otherwise

= f̃(µ)(x)

Thus f̃(µ) is an S-Fuzzy subset of X.

And the action of λ on f̃(µ) is

φ(λ, f̃(µ))(x))=


∨
y

∨
s

{f̃(µ)(y) ∧ λ(s) : φ(s, y) = x} if φ−1(x) 6= φ

0 otherwise

=


∨
y

∨
s

{(
∨
z

µ(z)) ∧ λ(s) : f(z) = y, φ(s, y) = x} if φ−1(x) 6= φ

0 otherwise

If f is an S-morphism from an S-set X onto itself then f̃ : µ −→ ν is a

λ-fuzzy morphism if µ(x) 6 ν◦f(x) and f̃(φ(λ, µ)) = φ(λ, f̃(µ)) ∀ S-fuzzy

subset µ of X. The collection of all λ-fuzzy subsets of X together with the
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λ-fuzzy morphisms is a category λ−FSETX . As in the case of S−FSET ,

we can prove that the collection of all λ−FSETX , X ∈ S−SET for each

λ is a category say λ− FSET which is equivalent to S − SET .

2.5 Application in fuzzy automata theory

Since we have proved that S − SET and S − FSET are equivalent cate-

gories and the main application of semigroup action on sets is in automata

theory, we can construct a fuzzy state automaton corresponding to a finite

automaton. While an automaton accepts or reject a given word, a fuzzy

state automaton accepts a word with a degree of acceptance.

Definition 2.5.1. Let M = (Q,X, δ, q0, F ) be a finite state automa-

ton where Q is the set of states, X is an alphabet, δ is the action of X on

Q, q0 is the initial state, F the set of final states. A max-extended finite

fuzzy state machine is a quintuple M = (Q,X, δ̂, µ0, F ). δ̂ is the action of

X on IQ defined by δ̂(µk, a)(qi) =

{ ∨
µk(q) : δ(q, a) = qi,

0 if no such q exists
∀ a ∈ X.

µ0 is a fuzzy subset of Q called the initial fuzzy state. As usual X∗ be the

free semigroup of all words of elements of X of finite length.

Extend δ̂ to X∗ as δ̂∗ : IQ ×X∗ −→ IQ as δ̂∗(µ,Λ)(q) = µ(q)

and δ̂∗(µ, xa)(q) = δ̂(δ̂∗(µ, x), a)(q) for all µ ∈ IQ, q ∈ Q, x ∈ X∗, a ∈ X.

Lemma 2.5.1. Let M = (Q,X, δ̂∗, µ) be maximally extended fuzzy

state machine. Then δ̂∗(µ, xy)(q) = δ̂∗(δ̂∗(µ, x), y)(q) ∀ q ∈ Q, x, y ∈ X∗.

Proof. We prove this by induction on length of y.

Let y be the empty string, q ∈ Q



40 Chapter 2. Category of S-Fuzzy subsets

δ̂∗(µ, xy)(q) = δ̂∗(µ, xΛ)(q) = δ̂∗(µ, x)(q)

Let the result is true for all words of length n− 1

Let y be a word of length n. We can write y = ua where u ∈ X∗ is of

length n− 1 and a ∈ X.

δ̂∗(µ, xy)(q) = δ̂∗(µ, xua)(q)

= δ̂(δ̂∗(µ, xu), a)(q)

= δ̂(δ̂∗(δ̂∗(µ, x), u), a)(q)

= δ̂∗(δ̂∗(µ, x), ua)(q)

= δ̂∗(δ̂∗(µ, x), y)(q) ∀q ∈ Q, x, y ∈ X∗.

2.6 Extending finite state automata to fi-

nite fuzzy state automata

Consider a finite automaton M = (Q,X, δ, s, F ). Extend δ to δ̂ : IQ ×

X −→ IQ defined as δ̂(µi, a)(qj) =


∨
k

{µi(qk) : δ(qk, a) = qj}

0 if no such a exists.

Let µ0 be an initial fuzzy state. The degree of acceptance of a word by

this fuzzy state automaton is given by

D(u) =


∨
q∈F

δ̂(µ0, u)(q) ∀u ∈ L

0 for all u /∈ L.
where L is the language accepted by the finite automaton and D(L) =∧
u∈L

D(u).
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Example 2.6.1. Let M = (Q,X, δ, s, F ) where Q = {q0, q1}, X =

{a, b}, s = q0, F = q1 with the state transition function δ given as below

δ(q0, a, q1), δ(q0, b, q1), δ(q1, a, q0), δ(q1, b, q1) Let µ0 be a fuzzy subset of Q

defined by

µ0(q) =

{
0.2 when q = q0

0.4 when q = q1

Then

δ̂(µ0, a)(q) =

{
0.4 when q = q0

0.2 when q = q1

say =µ1

δ̂(µ0, b)(q) =

{
0 when q = q0

0.4 when q = q1

say =µ2

δ̂(µ1, a)(q) =

{
0.2 when q = q0

0.4 when q = q1

say = µ0

δ̂(µ1, b)(q) =

{
0 when q = q0

0.4 when q = q1

say = µ2
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δ̂(µ2, a)(q) =

{
0.4 when q = q0

0 when q = q1

say = µ3

δ̂(µ2, b)(q) =

{
0 when q = q0

0.4 when q = q1

say = µ2

δ̂(µ3, a)(q) =

{
0 when q = q0

0.4 when q = q1

say = µ2

δ̂(µ3, b)(q) =

{
0 when q = q0

0.4 when q = q1

say = µ2

The fuzzy states are µ0, µ1, µ2, µ3 as defined above and the transition

function is δ̂(µ0, a, µ1), δ̂(µ0, b, µ2), δ̂(µ1, a, µ0), δ̂(µ1, b, µ2), δ̂(µ2, a, µ3),

δ̂(µ2, b, µ2), δ̂(µ3, a, µ2), δ̂(µ3, b, µ2).

The language accepted by this fuzzy state automaton is (aa)∗ab∗+b(aa)∗b∗+

ab∗(aa)∗ and the degree of acceptance D(L) = 0.2.

Example 2.6.2. Let µ0 is a fuzzy subset of Q defined by
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µ0(q) =

{
1 when q = q0

0 otherwise

ie, µ0 = 1q0 .

Then

δ̂(µ0, a)(q) =

{
0 when q = q0

1 when q = q1

and

δ̂(µ0, b)(q) =

{
0 when q = q0

1 whenq = q1

ie, δ̂(µ0, a) = 1q1 and δ̂(µ0, b) = 1q1

and

δ̂(µ1, a) = 1q0 and δ̂(µ1, b) = 1q1 which is the fuzzy state automaton asso-

ciated with the crisp finite state automaton and the degree of acceptance

of the language (aa)∗ab∗ + b(aa)∗b∗ + ab∗(aa)∗ is 1.





Chapter 3

Regular and Inverse Fuzzy

Automata

3.1 Introduction

Algebraic approach to fuzzy automata theory mostly depends on the finite

monoid theory because of the one-one correspondence between a fuzzy fi-

nite state automaton and its transition monoid. Eilenberg type variety

theorem for fuzzy languages says that there is a one-one correspondence

between variety of finite monoids and the variety of regular fuzzy lan-

guages. We know that the collection of finite inverse monoids does not

form a variety since subalgebra of an inverse monoid need not be an in-

Some results of this chapter are included in the following paper.
Pamy Sebastian, T. P. Johnson. : Inverse Fuzzy Automata and Inverse Fuzzy Lan-
guages, Annals of Fuzzy Mathematics and Informatics(2013),Vol.6,No.2,447-453.

45
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verse monoid. But they generate a variety called InV . InV consists of all

finite monoids with commuting idempotents[2]. In this chapter we define

an inverse fuzzy automaton such that its transition monoid is an inverse

monoid and study some of its algebraic properties. We define an inverse

fuzzy language, give a characterization for inverse fuzzy languages and

prove some results. Also we prove some properties of inverse fuzzy lan-

guages based on the fact that the syntactic monoid is an inverse monoid.

3.2 Preliminaries

Definition 3.2.1. A semigroup S is called regular if for every element

a in S there exist a b in S such that a = aba. A semigroup S is said to be

an inverse semigroup if for every a in S there exists a unique b in S such

that aba = a and bab = b. We call b the inverse of a and denote by a−1.

If S has an identity then S is said to be an inverse monoid.

For any element a of an inverse monoid, aa−1 is an idempotent and

idempotents of an inverse monoid commute. The collection of all finite

inverse monoids generate a variety InV which is the collection of all semi-

groups with commuting idempotents. This is the smallest variety con-

taining finite inverse monoids [2]. An analogues to Cayley’s theorem for

groups, Preston and Wagner proved that an inverse monoid S is isomorphic

to a subinverse monoid of the monoid of all one-one partial transforma-

tions on S. A regular semigroup can be characterized by the property that

for every x in S the L -class (R-class) containing x contains an idempo-

tent and inverse semigroups can be characterized by the properties, (a) S
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is regular and idempotents in S commute,(b) every L -class and R-class

contains an idempotent.

3.3 Regular and inverse fuzzy automata

Let X be a nonempty finite set. Let X∗ be the free monoid generated by

X. Then X∗ is regular if for every x ∈ X∗ there exist a y ∈ X∗ such that

x = xyx and X∗ is inverse if ∀ x ∈ X∗, there exist a unique y ∈ X∗ such

that x = xyx, y = yxy.

Definition 3.3.1. Let M = (Q,X, µ) be a fuzzy automaton. M is

said to be regular if for every x ∈ X∗ there exist a y ∈ X∗ such that

µ(p, x, q) = µ(p, xyx, q) for all p, q ∈ Q. M = (Q,X, µ) is said to be an

inverse fuzzy automaton if ∀ x ∈ X∗, there exist a unique y ∈ X∗ such

that µ(q, xyx, p) = µ(q, x, p), µ(q, yxy, p) = µ(q, y, p) ∀p, q ∈ Q.

In the case of a deterministic inverse fuzzy automaton this can be re-

defined as ∀x ∈ X∗, there exist a unique y such that µ(q, x, p) = µ(p, y, q)

and µ(p, x, q) = µ(r, x, q) =⇒ p = r ∀p, q, r ∈ Q. A deterministic fuzzy

automaton can be represented by the transition matrices with each row

contains atmost one nonzero entry (partial fuzzy transformations) and

a deterministic inverse fuzzy automaton can be represented by transi-

tion matrices with each row and column contains atmost one nonzero

entry (one-one partial fuzzy transformations). For an inverse fuzzy au-

tomaton we take X̃∗ to assure the existence of such a y. ie, ∀ x ∈ X̃∗,

µ(q, xx−1x, p) = µ(q, x, p) and µ(q, x−1xx−1, p) = µ(q, x−1, p) ∀ p, q ∈ Q.

Definition 3.3.2. A fuzzy language λ on an alphabet X is said to
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be an inverse fuzzy language if the minimal fuzzy automaton recognizing

that language is an inverse fuzzy automaton.

Example 3.3.1. Let M=(Q, X̃, µ, i, τ), where Q = {q0, q1, q2}, X̃ =

{a, b}, i = [1 0 0], τ = [0 0 1]T and µ : Q × X × Q −→ [0, 1] as defined

below

µ(q0, a, q1) = 0.7, µ(q1, a, q2) = 0.4, mu(q2, a, q0) = 0.3, µ(q1, b, q0) = 0.8,

µ(q0, b, q2) = 0.6, µ(q2, b, q1) = 0.5 and = 0 for all other elements of

Q × X̃ × Q. This is a deterministic regular fuzzy automaton for which

Taba = Ta. But this is not an inverse fuzzy automaton since b is not unique

and Tbab 6= Tb

Example 3.3.2. Let M=(Q, X̃, µ, i, τ), where Q = {q0, q1, q2}, X̃ =

{a, b}, i = [1 0 0], τ = [0 0 1]T and µ : Q × X̃ × Q −→ [0, 1] as defined

below

µ(q0, a, q1) = 0.7, µ(q1, a, q2) = 0.4, µ(q2, a, q0) = 0.3, µ(q1, b, q0) = 0.7,

µ(q0, b, q2) = 0.3, µ(q2, b, q1) = 0.4 and = 0 for all other elements of

Q×X ×Q.
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Then Ta =

 0 0.7 0

0 0 0.4

0.3 0 0

 Tb =

 0 0 0.3

0.7 0 0

0 0.4 0


Then, the transition semigroup T (M) is the semigroup generated by {Ta, Tb}
in which Taba = Ta, Tbab = Tb.

Thus

T (M) = {Ta, Ta2 , Ta3 , Ta4 , Ta5 , Tb, Tb2 , Tab, Tba, Tab2 , Tb2a, Ta2b, Tba2 , Ta2b2 ,

Tb2a2 , Tab2a}. Here Ta3 , Tab, Tba, Tb2a2 , Ta2b2 , Tab2a are the idempotents.

LTa = {Ta, Tba}
LTb = {Tb, Tab}
LTa2

= {Ta2 , Tba2 , Tb2a2}
LTb2

= {Tb2 , Tab2 , Ta2b2}
LTa2b

= {Ta2b, Tb2a, Tab2a}
LTa3

= {Ta3 , Ta4 , Ta5}.
Since every L class contains a unique idempotent, T (M) is an inverse

semigroup.

The fuzzy language accepted by this fuzzy automaton is

λ(x) =


0.4 when x = ((aabb)∗ + (ab)∗)aa

0.3 when x = b((ab)∗ + (ba)∗) + (bbb)∗(aa+ b+ bba)

0 for all other x ∈ X∗
which is an inverse fuzzy language.

Example 3.3.3. Let Q = {q0, q1, q2}, X = {a, b}. Take X̃∗ as the free

inverse monoid generated by X. Consider a deterministic fuzzy automaton

M = (Q, X̃, µ) over X̃ = X ∪X−1 where µ is a fuzzy subset of Q× X̃×Q
with finite image C such that for every p ∈ Q, there exist atmost one q ∈ Q
such that µ(q, a, p) > 0 and µ(q, a, p) = µ(p, a−1, q) ∀ p, q ∈ Q, a ∈ X.

Then M is a deterministic fuzzy automaton which is inverse. Here X̃∗

acts on Q as one-one partial fuzzy transformations. The transition monoid



50 Chapter 3. Regular and Inverse Fuzzy Automata

is a subinverse monoid of the inverse monoid of all one-one partial fuzzy

transformations on Q.

Theorem 3.3.1. A fuzzy automaton A = (Q, X̃, µ, i, τ) is inverse

(regular) if and only if X̃∗/θA is an inverse (regular) monoid.

Proof. Suppose A is an inverse fuzzy automaton

ie, for each x ∈ X̃∗ there exist a unique x−1 ∈ X̃∗ such that ∀ p, q ∈ Q,
µ(q, xx−1x, p) = µ(q, x, p) and µ(q, x−1xx−1, p) = µ(q, x−1, p)

⇐⇒ xx−1x θAx and x−1xx−1 θAx
−1

⇐⇒ [xx−1x] = [x] and [x−1xx−1] = [x−1].

Then, [x][x−1][x] = [x] and [x−1][x][x−1] = [x−1]

⇐⇒ X̃∗/θA is an inverse monoid.

As a particular case it is true that A is regular if and only if X̃∗/θA is

regular.

3.4 Construction of regular and inverse fuzzy

automata

Since every nondeterministic fuzzy automaton can be converted into a

deterministic fuzzy automaton we give the construction of a deterministic

inverse fuzzy automaton. There is a one to one correspondence between

finite inverse (regular) monoids and inverse (regular) fuzzy automata on

the set of generators. To construct a deterministic inverse fuzzy automaton



3.4. Construction of regular and inverse fuzzy automata 51

on n states Q = {q1, q2, . . . , qn}, take C = {c1, c2, . . . , ck}, k 6 n, ci ∈
[0, 1]. Consider the collection of all matrices with entries in C and such

that there exists atmost one non-zero entry in each row and column. This

collection represent the set of all one-one partial fuzzy transformations on

Q with image in C, which is a monoid under the max −min operation,

denoted by FICQ . FICQ is finite since Q and C are finite. For every A ∈
FICQ , there exists a unique inverse B ∈ FICQ such that ABA = A and

BAB = B. Here B will be the transpose of A. To construct an inverse

fuzzy automaton on a finite alphabet m, take m matrices from FICQ such

that transpose of each matrices is included in the collection. Construct

an automaton with these matrices as the transition matrices of the m

alphabets. The automaton will be an inverse fuzzy automaton with the

transition monoid as the monoid generated by the chosen fuzzy matrices.

For a deterministic regular fuzzy automaton, we take a fuzzy matrix A =

[aij] ∈ FICQ andB = [bij] is another fuzzy matrix in FICQ such that bij > aji

for all aji 6= 0 and = 0 for aji = 0. Then ABA = A but B is not unique

and BAB need not be equal to B.

Example 3.4.1. Let c0, c1, c2, c4 ∈ [0, 1] Q = {q0, q1, q2}, X = {a, b}

Ta =

 0 c0 0

0 0 0

0 0 c1

 Ta−1 =


0 0 0

c0 0 0

0 0 c1


Tb =

 c2 0 0

0 0 c3

0 c4 0

 Tb−1 =

 c2 0 0

0 0 c4

0 c3 0


Then M = (Q, X̃, {Ta, a ∈ X̃}) is an inverse fuzzy automaton.



52 Chapter 3. Regular and Inverse Fuzzy Automata

3.5 Inverse fuzzy languages

We have proved that the transition monoid of an inverse fuzzy automaton

is an inverse monoid. If a fuzzy language is recognized by an inverse fuzzy

automaton, the corresponding transition monoid should recognize that

fuzzy language. So if λ is an inverse fuzzy language on X̃, there exist an

inverse monoid I and a fuzzy subset δ of I and a homomorphism φ from

X̃∗ to I such that φ−1(δ) = λ. ie, φ−1(δ)(u) = λ(u) ∀ u ∈ X̃∗.

Theorem 3.5.1. (Characterization of an inverse fuzzy language)

A fuzzy language λ on X̃ is inverse if and only if for every x ∈ X̃∗

λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) = λ(ux−1v) for every u, v ∈ X̃∗.

Proof. Let λ is a regular fuzzy language on X̃. The transition monoid

of the minimal automaton M(λ) is the syntactic monoid of λ. Let Pλ be

the main congruence on X̃∗ defined by xPλy if and only λ(uxv) = λ(uyv)

for all u, v ∈ X̃∗. The transition monoid of the quotient fuzzy automa-

ton is isomorphic to the syntactic monoid of the fuzzy language λ. Thus

X̃∗/Pλ is isomorphic to X̃∗/θM . Suppose λ is an inverse fuzzy language.

Then the minimal fuzzy automaton M(λ) recognizing λ is an inverse fuzzy

automaton. ie, X̃∗/θM is an inverse monoid. Then for each x ∈ X̃∗ there

exist a unique x−1 ∈ X̃∗ such that ∀ p, q ∈ Q,
µ(q, xx−1x, p) = µ(q, x, p) and µ(q, x−1xx−1, p) = µ(q, x−1, p)

=⇒ [xx−1x]θM = [x]θM and [x−1xx−1]θM = [x−1]θM

=⇒ [xx−1x]Pλ = [x]Pλ and [x−1xx−1]Pλ = [x−1]Pλ

=⇒ xx−1xPλx and x−1xx−1Pλx
−1

=⇒ λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) = λ(ux−1v) ∀u, v ∈ X∗.
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Conversly, suppose for every x ∈ X̃∗, λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) =

λ(ux−1v) for every u, v ∈ X̃∗.
=⇒ xx−1xPλx and x−1xx−1Pλx

−1

=⇒ [xx−1x]Pλ = [x]Pλ and [x−1xx−1]Pλ = [x−1]Pλ

=⇒ [xx−1x]θM = [x]θM and [x−1xx−1]θM = [x−1]θM

=⇒ X̃∗/θM is an inverse monoid . ie, the minimal fuzzy automaton rec-

ognizing λ is an inverse automaton and thus λ is an inverse fuzzy lan-

guage.

Lemma 3.5.1. The set of all inverse fuzzy languages on an alphabet

X̃ is closed under intersection.

Proof. Let λ1 and λ2 be two inverse fuzzy languages in X̃∗.

Then there exist two inverse fuzzy automata M1 = (Q1, X̃, µ1, i1, τ1) and

M2 = (Q2, X̃, µ2, i2, τ2) recognizing λ1 and λ2 respectively. Then the re-

stricted direct product M1×̇M2 is an inverse fuzzy automaton since

µ1×̇µ2((q1, q2), x, (p1, p2)) = µ1(q1, x, p1) ∧ µ2(q2, x, p2) ∀x ∈ X̃∗ and M1

and M2 are inverse fuzzy automata. The language recognized by M1×̇M2

is λ1 ∧ λ2 [14].

So λ1 ∧ λ2 is an inverse fuzzy language.

Lemma 3.5.2. LetM1 = (Q1, X̃, µ1, i1, τ1) andM2 = (Q2, X̃, µ2, i2, τ2)

be two inverse fuzzy automata with Q1 ∩Q2 = φ and recognizing the in-

verse fuzzy languages λ1 and λ2 respectively. Then their join M1 ∨M2 is

an inverse fuzzy automaton recognizing λ1 ∨ λ2.

Proof. We have
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λ1(x) =
∨

p,q∈Q1

i1(p) ∧ µ1(p, x, q) ∧ τ1(q) and

λ2(x) =
∨

p,q∈Q2

i2(p) ∧ µ2(p, x, q) ∧ τ2(q).

Now the fuzzy language recognized by M1 ∨M2 is

λ(x) =
∨

p,q∈Q1∪Q2

(i1 ∨ i2)(p) ∧ (µ1 ∨ µ2)(p, x, q) ∧ (τ1 ∨ τ2)(q)

=
∨

p,q∈Q1

i1(p) ∧ µ1(p, x, q) ∧ τ1(q) ∨
∨

p,q∈Q2

i2(p) ∧ µ2(p, x, q) ∧ τ2(q)∨∨
p∈Q1,q∈Q2

i1(p) ∧ 0 ∧ τ2(q)

=
∨

p,q∈Q1

i1(p) ∧ µ1(p, x, q) ∧ τ1(q) ∨
∨

p,q∈Q2

i2(p) ∧ µ2(p, x, q) ∧ τ2(q)

=λ1(x) ∨ λ2(x)

=(λ1 ∨ λ2)(x) for allx ∈ X̃∗.

Also we have ∀ x ∈ X̃∗, µ1 ∨ µ2(p, x, q) =


µ1(p, x, q) if p, q ∈ Q1

µ2(p, x, q) if p, q ∈ Q2

0 otherwise.

So if M1 and M2 are two inverse fuzzy automata then their join M1 ∨M2

is an inverse fuzzy automaton.

Theorem 3.5.2. The class of all inverse fuzzy languages in X̃∗ is

closed under finite boolean operations.

Proof. Let λ is an inverse fuzzy language.

Then by the characterization of inverse fuzzy language for every x ∈ X̃∗

there exist x−1 ∈ X̃∗ such that λ(uxx−1xv) = λ(uxv) and

λ(ux−1xx−1v) = λ(ux−1v) ∀u, v ∈ X̃∗.
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Then λc(uxx−1xv) = 1 − λ(uxx−1xv) = 1 − λ(uxv) = λc(uxv) and

λc(ux−1xx−1v) = 1− λ(ux−1xx−1v) = 1− λ(ux−1v) = λc(ux−1v).

Thus λc is an inverse fuzzy language.

Closure properties of union and intersection of inverse fuzzy languages

follows by Lemma 3.5.1 and Lemma 3.5.2.

3.6 Homomorphic image of inverse fuzzy au-

tomata

Definition 3.6.1. LetM1 = (Q1, X1, µ1, i1, τ1) andM2 = (Q2, X2, µ2,

i2, τ2) be two fuzzy automata. A pair (α, β) of mappings α : Q1 −→ Q2

and β : X1 −→ X2 is called a homomorphism written as (α, β) : M1 −→
M2, if µ1(q, x, p) 6 µ2(α(q), β(x), α(p)) ∀p, q ∈ Q1 and ∀x ∈ X1. The

pair (α, β) is called a strong homomorphism if µ2(α(q), β(x), α(p)) =∨
{µ1(q, x, t : t ∈ Q1, α(t) = α(p)} ∀q, p ∈ Q1 and ∀x ∈ X1. β can be

extended to β∗ : X∗1 −→ X∗2 by β∗(Λ) = Λ and β∗(ua) = β∗(u)β∗(a) ∀u ∈
X∗1 , a ∈ X1 and β∗(uv) = β∗(u)β∗(v) ∀u, v ∈ X∗ [14]. If α, β are one-one

and onto then (α, β) is called an isomorphism.

Theorem 3.6.1. Let M1,M2 be two fuzzy automata . Let (α, β) :

M1 −→ M2 be strong homomorphism. Then α is one-one if and only if

µ1(q, x, p) = µ2(α(q), β∗(x), α(p)) ∀q, p ∈ Q and x ∈ X∗1 [14].

Theorem 3.6.2. If M1 = (Q1, X̃1, µ1) and M2 = (Q2, X̃2, µ2) be two

fuzzy automata. Let (α, β) : M1 −→M2 be a strong homomorphism from
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M1 −→M2 and if M1 is inverse then (α, β)(M1) is also inverse.

Proof. Since (α, β) is a strong homomorphism from M1 −→M2

µ2(α(q), β(x), α(p)) =
∨
{µ1(q, x, t) : t∈Q,α(t)=α(p)} ∀p, q∈ Q1, x∈X̃1.

Since M1 is inverse, for every x ∈ X̃1
∗

there exist a unique y ∈ X̃1
∗

such

that µ1(q, xyx, p) = µ1(q, x, p) and µ1(q, yxy, p) = µ1(q, y, p) for every

p, q ∈ Q.

µ2(α(q), β∗(x)β∗(y)β∗(x), α(p)) = µ2(α(q), β∗(xyx), α(p))

=
∨
{µ1(q, xyx, t) : t ∈ Q,α(t) = α(p)}

=
∨
{µ1(q, x, t) : t ∈ Q,α(t) = α(p)}

= µ2(α(q), β∗(x), α(p)

And,

µ2(α(q), β∗(y)β∗(x)β∗(y), α(p)) = µ2(α(q), β∗(yxy), α(p))

=
∨
{µ1(q, yxy, t) : t ∈ Q,α(t) = α(p)}

=
∨
{µ1(q, y, t) : t ∈ Q,α(t) = α(p)}

= µ2(α(q), β∗(y), α(p))

Thus the image of M1 under (α, β) is an inverse fuzzy automata.

If λ is a fuzzy language recognized by M1, then its image β∗(λ) defined as

β∗(λ)(u) =

{ ∨
{λ(w) : β∗(w) = u if β∗

−1
(u) 6= φ}

0 otherwise
for every u ∈ X̃2

∗

Let x ∈ X̃2
∗
.

Then β∗(λ)(uxv) =

{ ∨
{λ(w) : β∗(w) = uxv if β∗

−1
(uxv) 6= φ}

0 otherwise.

Then there exists u′, x′, v′ ∈ X̃1
∗

such that β∗(u′x′v′) = uxv.

Since x′ ∈ X̃1
∗
, there exists a unique inverse y′ ∈ X̃1

∗
such that

λ(u′x′v′) = λ(u′x′y′x′v′) and λ(u′y′v′) = λ(u′y′x′y′v′) ∀u′, v′ ∈ X̃1
∗
.



3.6. Homomorphic image of inverse fuzzy automata 57

So β∗(λ)(uxv) =

{ ∨
{λ(u′x′v′) : β∗(u′x′v′) = uxv if β∗

−1
(uxv) 6= φ}

0 otherwise

=

{ ∨
{λ(u′x′y′x′v′) : β∗(u′x′y′x′v′) = uxyxv if β∗

−1
(uxyxv) 6= φ}

0 otherwise

=β∗(λ)(uxyxv)

Similarly we can prove that β∗(λ)(uyxyv) = β∗(λ)(uyv).

This says that β∗(λ) is an inverse fuzzy language.

Theorem 3.6.3. If M1 = (Q1, X̃1, µ1) and M2 = (Q2, X̃2, µ2) be two

fuzzy automata. Let (α, β) : M1 −→M2 be a strong homomorphism from

M1 −→ M2 with α, β are one-one and onto and if M2 is inverse. Then

(α, β)−1(M2) is also inverse.

Proof. Suppose (α, β) be a strong homomorphism with α, being one

one onto. Then (α, β) : M1 −→M2 has the property

µ2(α(q), β∗(x), α(p)) = µ1(q, x, p) ∀x ∈ X̃1
∗
[14].

Let M2 be an inverse fuzzy automata.

Then for every x ∈ X̃2
∗

there exists a unique y ∈ X̃2
∗

such that

µ2(q, xyx, p) = µ2(q, x, p) and µ2(q, yxy, p) = µ2(q, y, p) ∀q, p ∈ Q2.

ie, µ1(α−1(q), β∗
−1

(xyx), α−1(p)) = µ1(α−1(q), β∗
−1

(x), α−1(p)) and

µ1(α−1(q), β∗
−1

(yxy), α−1(p)) = µ1(α−1(q), β∗
−1

(y), α−1(p))

⇒ µ1(α−1(q), β∗
−1

(x)β∗
−1

(y)β∗
−1

(x), α−1(p)) = µ1(α−1(q), β∗
−1

(x), α−1(p))

and

µ1(α−1(q), β∗
−1

(y)β∗
−1

(x)β∗−1(y), α−1(p)) = µ1(α−1(q), β∗
−1

(y), α−1(p)).

⇒ (α, β)−1(M2) is inverse.
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If λ is a fuzzy language recognized by M2, then its inverse image β∗−1(λ)

defined as β∗−1(λ)(u) = λ(β∗(u)) ∀u ∈ X̃1
∗
.

Let u, x, v ∈ X̃1
∗
. Then since β∗ is an isomorphism, β∗(y) is the inverse

of β∗(x) where y is the inverse of x. Then,

β∗
−1

(λ)(uxv) = λ(β∗(uxv))

= λ(β∗(u)β∗(x)β∗(v))

= λ(β∗(u)β∗(x)β∗(y)β∗(x)β∗(v)

= λ(β∗(uxyxv)

= β∗
−1
λ(uxyxv)

And

β∗
−1

(λ)(uyv) = λ(β∗(uyv))

= λ(β∗(u)β∗(y)β∗(v))

= λ(β∗(u)β∗(y)β∗(x)β∗(y)β∗(v)

= λ(β∗(uyxyv)

= β∗
−1
λ(uyxyv)

.

So β∗
−1

(λ) is an inverse fuzzy language.
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3.7 Cartesian product of two inverse fuzzy

automata

Definition 3.7.1. Let M1 = (Q1, X1, µ1),M2 = (Q2, X2, µ2) be fuzzy

finite state machines such that Q1 ∩Q2 = φ and X1 ∩X2 = φ. Then their

direct sum is defined as M1 ⊕M2 = (Q1 ∪Q2, X1 ∪X2, µ1 ⊕ µ2) where

µ1 ⊕ µ2(p, a, q) =



µ1(p, a, q) if p, q ∈ Q1, a ∈ X1

µ2(p, a, q) if p, q ∈ Q2, a ∈ X2

1
if either (p, a) ∈ Q1 ×X1, q ∈ Q2

or (p, a) ∈ Q2 ×X2, q ∈ Q1

0 otherwise
and

the cartesian product is defined as M1.M2 = (Q1 × Q2, X1 ∪ X2, µ1.µ2)

where

µ1.µ2((p1, p2), a, (q1, q2)) =


µ1(p1, a, q1) if a ∈ X1 and p2 = q2

µ2(p2, a, q2) if a ∈ X2 and p1 = q1

0 otherwise

[14]

Theorem 3.7.1. LetM1 = (Q1, X̃1, µ1, i1, τ1),M2 = (Q2, X̃2, µ2, i2, τ2)

be two fuzzy automata. If M1 and M2 are inverse fuzzy automata then

their Cartesian product M1.M2 is an inverse fuzzy automaton

Proof. We have two theorems (see [14])

(1). If M1 = (Q1, X1, µ1),M2 = (Q2, X2, µ2) be two fuzzy finite state ma-

chines such that X1 ∩X2 = φ. Then for every w ∈ (X1 ∪X2)∗, there exist

u ∈ X1
∗, v ∈ X2

∗ such that

(µ1.µ2)((p1, p2), w, (q1, q2)) = (µ1.µ2)((p1, p2), uv, (q1, q2)).
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w∗ = uv is called the standard form of w.

(2). For every u ∈ X∗1 , v ∈ X∗2 ,

(µ1.µ2)((p1, p2), uv, (q1, q2)) = µ(p1, u, q1) ∧ µ2(p2, v, q2)

= (µ1.µ2)((p1, p2), vu, (q1, q2)) for every (p1, p2), (q1, q2) ∈ Q1 ×Q2.

First suppose M1 and M2 are two inverse fuzzy automata.

Let w ∈ ˜(X1 ∪X2)
∗
.

We know that ˜(X1 ∪X2)
∗

is the free semigroup on (X1∪X2)∪(X1∪X2)−1

in which w = ww−1w and w−1 = w−1ww−1 for all w ∈ X1 ∪X2.

If w = Λ then the proof is trivial.

Suppose w 6= Λ.

Case 1. Let w ∈ (X1 ∪X2)∗.

By the above theorem there exist u ∈ X1
∗, v ∈ X2

∗ such that

(µ1.µ2)((p1, p2), w, (q1, q2)) = (µ1.µ2)((p1, p2), uv, (q1, q2))

= µ1(p1, u, q1)∧µ2(p2, v, q2) for every (p1, p2), (q1, q2) ∈ Q1×Q2. Since

M1 and M2 are inverse fuzzy automata, there exist unique symmetric in-

verses u−1 ∈ X−1
1
∗

and v−1 ∈ X−1
2
∗

such that

µ1(p1, u, q1) = µ1(p1, uu
−1u, q1) and µ2(p2, v, q2) = µ2(p2, vv

−1v, q2) for ev-

ery p1, q1 ∈ Q1, p2, q2 ∈ Q2.

Let w−1 = v−1u−1. Then clearly w−1 ∈ (X1 ∪X2)−1∗ and

(µ1.µ2)((p1, p2), w, (q1, q2))

= µ(p1, u, q1) ∧ µ2(p2, v, q2)

= µ1(p1, uu
−1u, q1) ∧ µ2(p2, vv

−1v, q2)

= (µ1.µ2)(p1, p2), uu−1uvv−1v, (q1, q2)

=
∨

(r1,r2)∈Q1×Q2

(µ1.µ2)(p1, p2), u, (r1, r2)∧(µ1.µ2)((r1, r2), u−1uvv−1v, (q1, q2))
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=
∨

(r1,r2)∈Q1×Q2

(µ1.µ2)(p1, p2), u, (r1, r2)∧(µ1.µ2)((r1, r2), vv−1vu−1u, (q1, q2))

= (µ1.µ2)((p1, p2), uvv−1vu−1u, (q1, q2))

=
∨

(r1,r2)∈Q1×Q2

(µ1.µ2)((p1, p2), uvv−1, (r1, r2)∧(µ1.µ2)((r1, r2), vu−1u, (q1, q2))

=
∨

(r1,r2)∈Q1×Q2

(µ1.µ2)(p1, p2), uvv−1, (r1, r2)∧(µ1.µ2)((r1, r2), u−1uv, (q1, q2))

= (µ1.µ2)((p1, p2), uvv−1u−1uv, (q1, q2))

= (µ1.µ2)((p1, p2), ww−1w, (q1, q2)) for every (p1, p2), (q1, q2) ∈ Q1 ×Q2.

Similarly we can prove that

(µ1.µ2)((p1, p2), w−1, (q1, q2)) = (µ1.µ2)((p1, p2), w−1ww−1, (q1, q2)).

Case 2. For w ∈ (X1 ∪X2)−1∗ the result follows as in the above case since

(X1 ∪X2)−1∗ = (X−1
1 ∪X−1

2 )
∗
.

Case 3. Let w ∈ ((X1 ∪X2) ∪ (X1 ∪X2)−1)∗. Then by the theorem there

exist u ∈ (X1∪X2)∗, v ∈ (X1 ∪X2)−1∗ such that (µ1.µ2)((p1, p2), w, (q1, q2)) =

(µ1.µ2)((p1, p2), uv, (q1, q2)) and using case 1 and case 2 we get

u1 ∈ X∗1 , u2 ∈ X∗2 , v1 ∈ X−1
1
∗
, v2 ∈ X−1

2
∗

such that

(µ1.µ2)((p1, p2), w, (q1, q2))

= (µ1.µ2)((p1, p2), u1u2v1v2, (q1, q2))

=
∨

(r1,r2)∈Q1×Q2

(µ1.µ2)((p1, p2), u1u2, (r1r2) ∧ (µ1.µ2)((r1, r2), v1v2, (q1, q2))

=
∨

(r1,r2)∈Q1×Q2

(µ1(p1, u1, r1)∧µ2(p2, u2, r2))∧ (µ1(r1, v1, q1)∧µ2(r2, v2, q2))

=
∨

(r1,r2)∈Q1×Q2

(µ1(p1, u1u
−1
1 u1, r1) ∧ µ2(p2, u2u

−1
2 u2, r2))

∧ (µ1(r1, v1v
−1
1 v1, q1) ∧ µ2(r2, v2v

−1
2 v2, q2)

=
∨

(r1,r2∈Q1×Q2

(µ1.µ2)((p1, p2), u1u
−1
1 u1u2u

−1
2 u2, (r1, r2))∧µ1.µ2((r1, r2), v1v

−1
1
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v1v2v
−1
2 v2, (q1, q2))

=
∨

(r1,r2∈Q1×Q2

(µ1.µ2)((p1, p2), u1u2u
−1
2 u−1

1 u1u2, (r1r2) ∧ (r1, r2), v1v2

v−1
2 v−1

1 v1v2, (q1, q2))

=
∨

(r1,r2∈Q1×Q2

(µ1.µ2)((p1, p2), uu−1u, (r1, r2)∧µ1.µ2((r1, r2), vv−1v, (q1, q2))

= (µ1.µ2)((p1, p2), uu−1uvv−1v, (q1, q2)

= (µ1.µ2)((p1, p2), uvv−1u−1uv, (q1, q2))

= (µ1.µ2)((p1, p2), ww−1w, (q1, q2)) for all (p1, p2), (q1, q2) ∈ Q1 ×Q2.

Similarly we can prove that

(µ1.µ2)((p1, p2), w−1ww−1, (q1, q2)) = (µ1.µ2)((p1, p2), w−1, (q1, q2).

Thus the Cartesian product M1.M2 is an inverse fuzzy automaton.

Theorem 3.7.2. LetM1 = (Q1, X̃1, µ1, i1, τ1),M2 = (Q2, X̃2, µ2, i2, τ2)

be two fuzzy automata. If their Cartesian product M1.M2 is an inverse

fuzzy automaton then M1 and M2 are inverse fuzzy automata

Proof. Suppose that M1.M2 is an inverse fuzzy automaton. Then for

every w ∈ ( ˜X1 ∪X2)∗ there exist a unique w−1 ∈ ( ˜X1 ∪X2)∗ such that

µ1.µ2((p1, p2), ww−1w, (q1, q2)) = µ1.µ2((p1, p2), w, (q1, q2)) and

µ1.µ2((p1, p2), w−1ww−1, (q1, q2)) = µ1.µ2((p1, p2), w−1, (q1, q2)) for every

(p1, p2), (q1, q2) ∈ Q1 ×Q2.

Let p, q ∈ Q1 and x ∈ X∗1 .

Now, µ1(p, x, q) = µ1.µ2((p, p′), x, (q, q′)) for some p′ = q′ ∈ Q2 and since

there exist a unique x−1 ∈ ˜X1 ∪X2
∗

such that

µ1.µ2((p, p′), x, (q, q′) = µ1.µ2((p, p′), xx−1x, (q, q′)) = µ1(p, xx−1x, q),

we get µ1(p, x, q) = µ1(p, xx−1x, q).
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Clearly x−1 ∈ X̃1
∗
. Also we can prove µ1(p, x−1, q) = µ1(p, x−1xx−1, q).

So M1 is an inverse fuzzy automaton.

Similarly we can prove that M2 is an inverse fuzzy automaton.

3.8 Properties of inverse fuzzy languages

A fuzzy language on an alphabet X̃ is inverse if and only if for every

x ∈ X̃∗, λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) = λ(ux−1v) for every

u, v ∈ X̃∗(Theorem 3.5.1). Let us denote the family of all inverse fuzzy

languages on an alphabet X̃ as IFL.

Lemma 3.8.1. IFL is closed under quotients.

Proof. Let λ1, λ2 ∈ IFL. Let x, u, v ∈ X̃∗.
Then λ1(uxx−1xv) = λ1(uxv) and λ1(ux−1xx−1v) = λ1(ux−1v). Then,

(λ−1
2 λ1)(uxx−1xv) =

∨
v1∈X̃∗

{λ1(v1uxx
−1xv) ∧ λ2(v1)}

=
∨

v1∈X̃∗
{λ1(v1u)xx−1xv ∧ λ2(v1)}

=
∨

v1∈X̃∗
{λ1(v1uxv) ∧ λ2(v1)}

= λ−1
2 λ1(uxv)

and
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(λ−1
2 λ1)(ux−1xx−1v) =

∨
v1∈X̃∗

{λ1(v1ux
−1xx−1v) ∧ λ2(v1)}

=
∨

v1∈X̃∗
{λ1(v1u)x−1xx−1v ∧ λ2(v1)}

=
∨

v1∈X̃∗
{λ1(v1ux

−1v) ∧ λ2(v1)}

= λ−1
1 λ2(ux−1v).

Similarly we can prove that

λ1λ
−1
2 (uxx−1xv) = λ1λ

−1
2 (uxv) and λ1λ

−1
2 (ux−1xx−1v) = λ1λ

−1
2 (ux−1v).

Thus λ−1
1 λ2 and λ2λ

−1
1 ∈ IFL.

Lemma 3.8.2. IFL is closed under multiplication by constants.

Proof. Let λ be an inverse fuzzy language on X̃ and let x ∈ X̃∗.
Then λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) = λ(ux−1v) ∀u, v ∈ X̃∗.
Let c ∈ [0, 1]. Then

(cλ)(uxx−1xv) = c.λ(uxx−1xv) = c.λ(uxv) = (cλ)(uxv) and

(cλ)(ux−1xx−1v) = c.λ(ux−1xx−1v) = c.λ(ux−1v) = (cλ)(ux−1v).

Thus cλ ∈ IFL.

Theorem 3.8.1. If λ is an inverse fuzzy language on X̃, then ∀c ∈
[0, 1], λc is an inverse language on X̃.

Proof. Let M = (Q, X̃, µ, i, τ) be an inverse fuzzy automaton recog-

nizing λ. Then for every x ∈ X̃∗, µ(p, x, q) = µ(p, xx−1x, q) ∀p, q ∈ Q.

Let c ∈ λc and let uxv ∈ λc. Then λ(uxv) > c.
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λ(uxx−1xv) =
∨

p,q∈Q
i(p) ∧ µ(p, uxx−1xv, q) ∧ τ(q)

=
∨

p,q∈Q
i(p) ∧ (

∨
r,r′∈Q

µ(p, u, r) ∧ µ(r, xx−1x, r′) ∧ µ(r′, v, q)) ∧ τ(q)

=
∨

p,q∈Q
i(p) ∧ (

∨
r,r′∈Q

µ(p, u, r) ∧ µ(r, x, r′) ∧ µ(r′, v, q)) ∧ τ(q)

=
∨

p,q∈Q
i(p) ∧ µ(p, uxv, q) ∧ τ(q)

= λ(uxv)

Thus λ(uxv) > c iff λ(uxx−1xv) > c.

ie, uxv ∈ λc iff uxx−1xv ∈ λc.

Similarly, we can prove that ux−1v ∈ λc iff ux−1xx−1v ∈ λc.

Theorem 3.8.2. IFL is not closed under inverse homomorphic im-

ages.

Proof. Let X̃1 = {a, b}, X̃2 = {c, d}.
Let β : X̃1 −→ X̃2 defined as β(a) = β(b) = c.

Then β can be extended to a homomorphism β∗ : X̃1
∗ −→ X̃2

∗
.

Let λ be an inverse fuzzy language on X̃2.

Then λ(u′cv′) = λ(u′cdcv′) ∀ u′, v′ ∈ X̃2
∗
.

Suppose β∗
−1
λ is an inverse fuzzy language.

Then β∗
−1
λ(uav) = β∗−1(uabav) for all u, v ∈ X̃1

∗
.

ie, λ(β∗(uav) = λ(β∗(uabav).

which implies λ(β∗(u)cβ∗(v)) = λ(β∗(u)cccβ∗(v) and this says the inverse

is not unique which is a contradiction. So β∗−1λ is not an inverse fuzzy

language.
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Theorem 3.8.3. IFL is not a variety of fuzzy languages.

Proof. A collection of fuzzy languages is a variety if it is closed under

finite boolean operations, homomorphic and inverse homomorphic images,

quotients, multiplication by constants.

An inverse fuzzy language is defined as a regular fuzzy language with its

syntactic monoid is an inverse monoid. A characterization for an inverse

monoid by Wagner is that a monoid is an inverse monoid iff it is regular

and any two idempotents commute each other. It is also proved that

a monoid is regular iff every L -class (R-class) contains an idempotent.

Thus a fuzzy language is an inverse fuzzy language then idempotents in

the syntactic monoid commute each other and every L -class (R-class)

contains an idempotent. This property is used to prove some results on

inverse fuzzy languages.

Proposition 1. Let λ be an inverse fuzzy language on X̃. Let [e]

be an idempotent in M(λ) then µ(p, xe, q) 6 µ(p, x, q) and µ(p, ex, q) 6

µ(p, x, q) for all p, q ∈ Q, x ∈ X̃∗.

Proof. Since λ is an inverse fuzzy language every element of M(λ)

acts as one-one partial fuzzy transformations on Q and idempotents in

M(λ) can be considered as fuzzy matrices with nonzero entries only in the

diagonal and so Te acts as a subidentity on Q.

Thus µ(p, e, q) 6= 0 if p = q and = 0 if p 6= q.
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Now,

µ(p, xe, q) =
∨
q′∈Q

µ(p, x, q′) ∧ µ(q′, e, q)

= µ(p, x, q) ∧ µ(q, e, q)

6 µ(p, x, q).

Similarly, µ(p, ex, q) 6 µ(p, x, q).

Proposition 2. If λ is an inverse fuzzy language then for every

x, u,∈ X̃∗ there exists an n ∈ N such that λ(xun) 6 λ(x).

Proof. Since λ is regular M(λ) is finite and for u ∈ X̃∗, [u] ∈M(λ) and

since M(λ) is finite there exist an n ∈ N such that [u]n is an idempotent.

And [u]n = [un]. By the above proposition µ(p, xun, q) 6 µ(p, x, q).

Let i, τ be the initial and final fuzzy state in the minimal automaton

recognizing λ

λ(xun) =
∨

p,q∈Q
i(p) ∧ µ(p, xun, q) ∧ τ(q)

6
∨

p,q∈Q
i(p) ∧ µ(p, x, q) ∧ τ(q)

= λ(x)

Theorem 3.8.4. A regular fuzzy language λ is an inverse fuzzy

language, then,

(1) Idempotents of M(λ) commute

(2) ∀x, u, y ∈ X̃∗, there exist an n ∈ N such that λ(xuny) 6 λ(xy).

Proof. Let λ be an inverse fuzzy language.
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Then (1) is obvious since M(λ) is an inverse monoid and idempotents in

an inverse monoid commute.

To prove (2), let x, u, y ∈ X̃∗. Then [x], [u], [y] ∈M(λ).

Since M(λ) is a finite inverse monoid, there exist an n ∈ N such that [u]n

is an idempotent in M(λ).

λ(xuny) =
∨

p,q∈Q
i(p) ∧ µ(p, xuny, q) ∧ τ(q)

=
∨

p,q∈Q
i(p) ∧ (

∨
q′∈Q

µ(p, xun, q′) ∧ µ(q′, y, q)) ∧ τ(q)

6
∨

p,q∈Q
i(p) ∧ (

∨
q′∈Q

µ(p, x, q′) ∧ µ(q′, y, q)) ∧ τ(q)

=
∨

p,q∈Q
i(p) ∧ µ(p, xy, q) ∧ τ(q)

= λ(xy).

Let λ be a regular fuzzy language of X̃∗. Let π : X̃∗ −→M(λ) be the

syntactic morphism . Let λ+ = {x ∈ X̃∗ : λ(x) > 0} be the support of λ.

Let π(λ+) be the syntactic image of λ.

Theorem 3.8.5. For every regular fuzzy language the following con-

ditions are equivalent :

(1) ∀x, u, y ∈ X̃∗, there exist an n ∈ N such that λ(xy) > λ(xuny).

(2) ∀[x], [y] ∈M(λ), and for every idempotent [e] ∈M(λ),

[xey] ∈ π(λ+) implies [xy] ∈ π(λ+).

Proof. Suppose (1) is satisfied. Let [x], [e], [y] ∈ M(λ) such that

[xey] ∈ π(λ+). Since π is onto, there exist x, u, y ∈ X̃∗ such that

π(x) = [x], π(y) = [y], π(u) = [e].

By (a), there exist an n ∈ N such that λ(xy) > λ(xuny).
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π(xuny) = π(x)π(un)π(y) = [x][e]n[y] = [x][e][y] ∈ π(λ+) by assumption.

So xuny ∈ λ+ and since λ(xy) > λ(xuny), xy ∈ λ+.

So [x][y] = [xy] ∈ π(λ+).

Conversely, suppose that for every [x], [y] ∈M(λ) and for every idem-

potent [e] ∈M(λ), [xey] ∈ π(λ+) =⇒ [xy] ∈ π(λ+)

When λ(xuny) = 0 for all n ∈ N , the result is clear.

Suppose x, u, y ∈ X̃∗ such that λ(xuny) > 0 for all n ∈ N .

ie, xuny ∈ λ+. Then [x], [y], [u] ∈ M(λ) and since M(λ) is finite there

exist a k ∈ N such that [u]k is an idempotent say [e].

Now, [xey] = [x][e][y] = π(x)π(uk)π(y) = π(xuky) ∈ π(λ+).

So [xy] ∈ π(λ+) by the assumption. ie, π(xy) ∈ π(λ+) and this implies

xy ∈ λ+. ie, λ(xy) > 0 which says that there exist a k ∈ N such that

λ(xy) > λ(xuky).

Thus we have proved the theorem,

Theorem 3.8.6. A regular fuzzy language λ is an inverse fuzzy

language, then,

(1) Idempotents of M(λ) commute

(2) For every [x], [y] ∈M(λ), and for every idempotent [e] ∈M(λ),

[xey] ∈ π(λ+) implies [xy] ∈ π(λ+).

Proof. From theorems3.8.4 and 3.8.5 we get 3.8.6.

Theorem 3.8.7. Let λ is an inverse fuzzy language. Then

(1) idempotents of M(λ) commute.
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(2) For every x, y ∈ X̃∗, there exist an idempotent [e] ∈M(λ) such that

[xey] ∈ π(λ+) if and only if [xy] ∈ π(λ+).

Proof. Since the syntactic monoid of an inverse fuzzy language is an

inverse monoid, (1) is obvious.

For (2), let x ∈ X̃∗. Since M(λ) is an inverse monoid, L[x] contains a

unique idempotent say [e] which is a right identity for elements of L[x].

Then Tx ◦ Te = Tx. Let (Q, X̃, µ, i, τ) be the minimal fuzzy automata

recognizing λ. Suppose y ∈ X̃∗ such that [xey] ∈ π(λ+).

Now, λ(xey) = i ◦ Tx ◦ Te ◦ Ty ◦ τ

= i ◦ Tx ◦ Ty ◦ τ

= λ(xy).

So λ(xey) > 0⇐⇒ λ(xy) > 0

ie, [xey] ∈ π(λ+) if and only if [xy] ∈ π(λ+).

Theorem 3.8.8. Let M = (Q, X̃, µ) be a fuzzy automaton. Then for

every x, y ∈ X̃∗ and m,n ∈ N with [x]m, [y]n are idempotents in X̃∗/θM ,

µ(p, xmyn, q) = µ(p, ynxm, q) for every p, q ∈ Q if and only X̃∗/θM has

commuting idempotents.

Proof. Since X̃∗/θM is a finite semigroup, for every [x] in X̃∗/θM there

exists an n ∈ N such that [x]n is an idempotent. Let [x]m, [y]n be two

idempotents in X̃∗/θM . Now µ(p, xmyn, q) = µ(p, ynxm, q) for every p, q ∈
Q iff [xmyn] = [ynxm] iff [xm][yn] = [yn][xm] iff [x]m[y]n = [y]n[x]m iff

X̃∗/θM has commuting idempotents.
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Theorem 3.8.9. If λ is a fuzzy language. Then for every x, y ∈
X̃∗ and m,n ∈ N such that [x]m, [y]n are idempotents, λ(uxmynv) =

λ(uynxmv) ∀ u, v ∈ X̃∗, if and only if the syntactic monoid of λ has

commuting idempotents.

Proof. Since for every x, y ∈ X̃∗ and m,n ∈ N such that [x]m, [y]n are

idempotents, λ(uxmynv) = λ(uynxmv),

xmynPλy
nxm iff [x]mPλ [y]npλ = [y]npλ [x]mPλ iff syntactic monoid of λ has com-

muting idempotents.

Thus we have proved the theorem.

Theorem 3.8.10. If λ is an inverse fuzzy language, then,

(1) for every x, y ∈ X̃∗ there exist m,n ∈ N such that

λ(uxmynv) = λ(uynxmv) ∀ u, v ∈ X̃∗.

(2) ∀x, u, y ∈ X̃∗, there exist an n ∈ N such that λ(xuny) 6 λ(xy).

By Eilegnberg-type variety theorem, the collection of all fuzzy lan-

guages such that for every x, y ∈ X̃∗ and m,n ∈ N such that [x]m, [y]n

are idempotents, λ(uxmynv) = λ(uynxmv) ∀ u, v ∈ X̃∗, form a variety of

fuzzy languages and the associated psuedovariety is the variety generated

by finite inverse monoids.





Chapter 4

Automorphism Group of an

Inverse Fuzzy Automaton

4.1 Introduction

The transition semigroup of a fuzzy finite state automaton is a subsemi-

group of the semigroup of all partial fuzzy transformations on Q. Park

C. H studied automata homomorphisms in [21]. For a deterministic faith-

ful inverse fuzzy automaton the transition monoid is a submonoid of the

monoid FIQ of all one one partial fuzzy transformations on Q and this

fuzzy transformations can be represented as fuzzy matrices with atmost

one non zero entry in each row and column. Since every group is isomor-

Some results of this chapter are included in the following paper.
Pamy Sebastian, T. P. Johnson. : Automorphism Group of an Inverse Fuzzy Au-
tomata. Annals of Pure and Applied Mathematics, Vol.2, No.1 (2012), 67-73
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phic to a subgroup of the permutation group, we can find a subgroup of

the permutation group which is isomophic to the automorphism group of

an inverse fuzzy automaton. In this chapter we find the automorphism

groups AUTX(M) and AutX(M) of an inverse fuzzy automaton.

4.2 Preliminaries

Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be fuzzy finite state ma-

chines. A pair (α, β) of mappings α : Q1 −→ Q2 and β : X1 −→ X2 is

called a homomorphism, written as (α, β) : M1 −→M2 if

µ1(q, x, p) 6 µ2(α(q), β(x), α(p)) ∀ q, p ∈ Q and ∀x ∈ X1.

(α, β) is called a strong homomorphism if

µ2(α(q), β(x), α(p)) =
∨
{µ1(q, x, t)|t ∈ Q1, α(t) = α(p)}

∀p, q ∈ Q1 and ∀x ∈ X1. A homomorphism is said to be an isomorphism

if α and β are both one-one and onto. If X1 = X2 and β is the identity

map, then we write α : M1 −→M2 is a homomorphism.

If (α, β) is a strong homomorphism with α one-one, then

µ2(α(q), β(x), α(p)) = µ1(q, x, p) ∀q, p ∈ Q1 and ∀x ∈ X1 [14].

Let M = (Q,X, µ) be fuzzy finite state machine. Consider the set of all

strong homomorphisms (α, β) : M −→ M denoted by ENDX(M) and

the set of all strong isomorphisms from M −→M by AUTX(M).

ENDX(M) form a monoid under the operation (α1, β1) ◦ (α2, β2) = (α1 ◦
α2, β1 ◦ β2) and AUTX(M) form a group where the inverse of (α, β) is
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(α−1, β−1). Composition is associative and identity is the pair of iden-

tity maps on Q and X. If β is the identity map on X, then we denote

ENDX(M) as EndX(M) and AUTX(M) as AutX(M). Then EndX(M)

is a submonoid of ENDX(M) and AutX(M) is a subgroup of AUTX(M).

Definition 4.2.1. A fuzzy automaton M = (Q,X, µ) is said to be

faithful if for a, b ∈ X, µ(q, a, p) = µ(q, b, p) ∀ p, q ∈ Q =⇒ a = b [14].

4.3 Category F − AUT

Considering the collection of all fuzzy finite state automata as a category

F − AUT with objects are fuzzy automata over finite set of states and

morphisms are strong homomorphisms between them. Corresponds to

every fuzzy automata M = (Q,X, µ) we get a finite monoid X∗/θM and

every finite monoid is the syntactic monoid of some fuzzy language [30].

Lemma 4.3.1. If (α, β) ∈ AUTX(M) then for any u, v ∈ X∗,
uθMv ⇐⇒ β(u)θMβ(v).

Proof. uθMv ⇐⇒ µ(q, u, p) = µ(q, v, p), ∀q, p ∈ Q

⇐⇒ µ(α(q), β(u), α(p)) = µ(α(q), β(v), α(p)), ∀α(q), α(p) ∈ Q

⇐⇒ µ(q, β(u), p) = µ(q, β(v), p), ∀q, p ∈ Q, since α is one-one

⇐⇒ β(u)θMβ(v).
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Let M1 and M2 be two fuzzy automata and let (α, β) be a mor-

phism between them. Let X∗1/θM1 and X∗2/θM2 be the corresponding

transition monoids. Let fβ : X∗1/θM1 to X∗2/θM2 defined by fβ[u]M1 =

[β(u)]M2 , ∀u ∈ X∗1 .

Theorem 4.3.1. Let M1 = (Q1, X1, µ1) and M2 = (Q2, X2, µ2) be

two objects in the category F − AUT and let (α1, β1), (α2, β2) be strong

morphisms from M1 onto M2. Then fβ is a semigroup morphisms and

fβ1β2 = fβ1fβ2 . Thus the maps fβ1 and fβ2 ∈ HOM(X∗1/θM1 , X
∗
2/θM2).

Proof. fβ1 and fβ2 are well defined for, let [u] = [v].

Then µ1(q, u, p) = µ1(q, v, p) ∀ q, p ∈ Q1

=⇒
∨
{µ1(q, u, t)|t ∈ Q1, α(t) = α(p)}

=
∨
{µ1(q, v, t)|t ∈ Q1, α(t) = α(p)} ∀ q, p ∈ Q1

=⇒ µ2(α(q), β(u), α(p)) = µ2(α(q), β(v), α(p)) ∀ α(q), α(p) ∈ Q2

=⇒ [β(u)]M2 = [β(v)]M2

=⇒ fβ[u]M1 = fβ[v]M1 .

So fβ is well defined.

Let [u], [v] ∈ X1
∗/θM1 , where u, v ∈ X∗.

Then fβ([u][v])M1 = fβ[uv]M1 = [β(uv)]M2 = [β(u)β(v)]M2

= [β(u)]M2 [β(v)]M2 = fβ[u]M1fβ[v]M1.

So fβ is a semigroup morphism and

fβ1β2 [u]M1 = [β1β2(u)]M2 = fβ1 [β2(u)]M1 = fβ1fβ2 [u]M1 .

We can define a covariant functor F between the category of fuzzy
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automata and the category of finite semigroups as F (M) = X∗/θM and

F (α, β) = fβ for (α, β) ∈ HOM(M1,M2). The set of all inverse fuzzy

automata form a full subcategory of F − AUT and F as defined above

is a covariant functor from this category to the category of finite inverse

monoids which is a subcategory of finite monoids.

Theorem 4.3.2. Let M = (Q,X, µ) be a faithful fuzzy automata.

Let X∗/θM be the transition monoid. Consider AUT (X∗/θM) of all au-

tomorphisms on X∗/θM . Let h : AUTX(M) −→ AUT (X∗/θM) be a

map defined by h(α, β) = fβ. Then h is a group homomorphism and

Ker h = AutX(M).

Proof. Ker h = {(α, β) ∈ AUTX(M) : h(α, β) = fβ}
where fβ[u] = [u] for all u ∈ X∗.

[β(u)] = [u]⇐⇒ β(u)θMu

⇐⇒ µ(p, β(u), q) = µ(p, u, q) ∀ p, q ∈ Q, u ∈ X

⇐⇒ β(u) = u ∀u ∈ X

⇐⇒ β is the identity map on X.

Thus Ker h = AutX(M).

Corollary 1. By homomorphism theorem for groups

AUTX(M)/AutX(M) is isomorphic to a subgroup of AUT (X∗/θM).
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4.4 Automorphism group of a deterministic

faithful inverse fuzzy automaton

Consider the set of all one-one partial fuzzy transformations on Q denoted

as FIQ. For each ν ∈ FIQ there exist a unique inverse ν−1 ∈ FIQ such

that ν−1(p, q) = ν(q, p),∀q ∈ Dom(ν), p ∈ Q. We can consider FIQ as

a collection of fuzzy matrices of cardinality |Q| with atmost one nonzero

entry in each row and column. This in an inverse monoid under the

max-min operation of fuzzy matrices. For every matrix A in FIQ, there

exist another matrix B in FIQ such that ABA = A. Here B is the

transpose of the fuzzy matrix corresponding to ν. The transition monoid

X̃∗/θM of an inverse fuzzy automaton M is a subinverse monoid of FIQ.

Consider N(X̃∗/θM) = {ν ∈ FIQ : ν ◦ X̃∗/θM ◦ ν−1 = X̃∗/θM} and

C(X̃∗/θM) = {ν ∈ FIQ : ν ◦ Ta ◦ ν−1 = Ta ∀ Ta ∈ X̃∗/θM} where the

composition is the max−min composition of fuzzy matrices.

Lemma 4.4.1. Let M = (Q,X, µ) be a faithful inverse fuzzy au-

tomaton and ν ∈ N(X̃∗/θM). Then for any Ta ∈ X̃∗/θM there exist a

unique Tb ∈ X̃∗/θM such that ν ◦ Tb ◦ ν−1 = Ta.

Proof. Since ν ∈ N(X̃∗/θM) =⇒ ν ◦ (X̃∗/θM) ◦ ν−1 = X̃∗/θM , for

Ta ∈ X̃∗/θM there exist a Tb ∈ X̃∗/θM such that ν ◦ Tb ◦ ν−1 = Ta.

To prove the uniqueness suppose there exist another Tc ∈ X̃∗/θM such

that ν ◦ Tc ◦ ν−1 = Ta.

Then ν ◦ Tb ◦ ν−1 = ν ◦ Tc ◦ ν−1

=⇒ ν ◦ Tb ◦ ν−1(q, p) = ν ◦ Tc ◦ ν−1(q, p) ∀ q, p ∈ Q.
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=⇒
∨
q′∈Q

∨
q′′∈Q

(ν(q, q′) ∧ µ(q′, b, q′′) ∧ ν−1(q′′, p))

=
∨
q′∈Q

∨
q′′∈Q

(ν(q, q′) ∧ (µ(q′, c, q′′) ∧ ν−1(q′′, p)).

Since ν and µ has got atmost one nonzero entry in each row and column,

ν(q, q′) ∧ µ(q′, b, q′′) ∧ ν−1(q′′, p) = ν(q, q′) ∧ µ(q′, c, q′′) ∧ ν−1(q′′, p) 6=
0, for some q′, q′′ ∈ Q and 0 for all other states in Q.

ν(q, q′) ∧ µ(q′, b, q′′) ∧ ν−1(q′′, p) = ν(q, q′) ∧ µ(q′, c, q′′) ∧ ν−1(q′′, p) for all

q′, q′′ ∈ Q and so µ(q, b, p) = µ(q, c, p) for all q, p ∈ Q.
Thus µ(q, b, p) = µ(q, c, p) ∀ q, p ∈ Q.
=⇒ b = c, since M is faithfull.

Let N∗(X̃∗/θM) = {ν ∈ N(X̃∗/θM) : ν has excatly one 1 in each row

and column } and C∗(X̃∗/θM) = {γ ∈ C(X̃∗/θM) : γ has exactly one

1 in each row and column }.

Theorem 4.4.1. Let M = (Q,X, µ) be a faithful inverse fuzzy

automaton, then AutX(M) = C∗(X̃∗/θM).

Proof. Let (α, β) ∈ AutX(M). Then β is the identity map on X and

α is a one-one mapping from Q onto Q satisfying

µ(α(p), a, α(q)) = µ(p, a, q) ∀ p, q ∈ Q, a ∈ X.

ie, Ta(α(p), α(q)) = Ta(p, q) ∀ p, q ∈ Q, a ∈ X.

Now α ◦ Ta ◦ α−1(p, q) =
∨
q′∈Q

∨
q′′∈Q

α(p, q′) ∧ Ta(q′, q′′) ∧ α−1(q′′, q)

=
∨
q′∈Q

∨
q′′∈Q

α(p, q′) ∧ Ta(q′, q′′) ∧ α−1(q′′, q)

= α(p, q′) ∧ Ta(q′, q′′) ∧ α(q, q′′)

= Ta(α(p), α(q))
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= Ta(p, q) since α(p, q) = α(q, q′′) = 1

=⇒ α ◦ Ta ◦ α−1 = Ta. Since α is a one-one mapping from Q onto Q, it is

a permutation.

=⇒ α ∈ C∗(X̃∗/θM).

Conversely, let α ∈ C∗(X̃∗/θM).

Then α ◦ Ta ◦ α−1 = Ta ∀ Ta ∈ X̃∗/θM .

=⇒ α ◦ Ta ◦ α−1(p, q) = Ta(p, q) ∀ Ta ∈ X̃∗/θM , p, q ∈ Q

=⇒
∨
q′∈Q

∨
q′′∈Q

α(p, q′) ∧ Ta(q′, q′′) ∧ α−1(q′′, q) = Ta(p, q)

=⇒ α(p, q′) ∧ Ta(q′, q′′) ∧ α(q, q′′) = Ta(p, q) for some q′, q′′ ∈ Q

=⇒ Ta(α(p), α(q)) = Ta(p, q) with α(p) = q′ and α(q) = q′′

=⇒ µ(α(p), a, α(q)) = µ(p, a, q) ∀ p, q ∈ Q and also α is one-one and onto.

Thus α ∈ AutX(M).

Theorem 4.4.2. Let M = (Q,X, µ) be a faithful inverse fuzzy

automaton, then AUTX(M) = N∗(X̃∗/θM).

Proof. Let (α, β) ∈ AUTX(M).

Then µ(α(p), β(a), α(q)) = µ(p, a, q) ∀ p, q ∈ Q.

Equivalently, Tβ(a)(α(p), α(q)) = Ta(p, q) ∀ p, q ∈ Q.

Let Ta ∈ X̃∗/θM .

α ◦ Ta ◦ α−1(p, q) =
∨
q′∈Q

∨
q′′∈Q

α(p, q′) ∧ Ta(q′, q′′) ∧ α−1(q′′, q)

= α(p, q′) ∧ Ta(q′, q′′) ∧ α−1(q′′, q) for some q′, q′′ ∈ Q
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= α(p, q′) ∧ Ta(q′, q′′) ∧ α(q, q′′) for some q′, q′′ ∈ Q

= Ta(q
′, q′′)

( since α is a one-one mapping from Q onto Q,α(p, q′) = α(q, q′′) = 1)

= Tβ(a)(p, q) ∀ p, q ∈ Q.

=⇒ α ◦ X̃∗/θM ◦ α−1 = X̃∗/θM

=⇒ α ∈ N∗(X̃∗/θM).

Conversely, let α ∈ N∗(X̃∗/θM) . Then by lemma 4.4.1 ∀ Ta ∈ X̃∗/θM
there exist a unique Tb ∈ X̃∗/θM such that α ◦ Tb ◦ α−1 = Ta.

Define β : X −→ X as β(a) = b. Then β is a well defined bijection.

For,let β(t) = β(u) = c. Then α◦Tc◦α−1 = Tt and α◦Tc◦α−1 = Tu and so

Tt = Tu =⇒ Tt(p, q) = Tu(p, q) for every p, q ∈ Q =⇒ µ(p, t, q) = µ(p, u, q)

for every p, q ∈ Q =⇒ t = u, since M is faithful.

β is onto since for any b ∈ X,Tb ∈ X̃∗/θM and by lemma there exist a

unique Ta ∈ X̃∗/θM such that α ◦ Tb ◦ α−1 = Ta.

ie, there exist an a ∈ X such that β(a) = b.

Now, (α, β) is a homomorphism for,

let p, q ∈ Q, a ∈ X.
µ(α(p), β(a), α(q)) = µ(α(p), b, α(q)) with α ◦ Tb ◦ α−1 = Ta.

ie, Tβ(a)(α(p), α(q)) = Tb(α(p), α(q)) with α ◦ Tb ◦ α−1(p, q) = Ta(p, q)

=⇒
∨
q′∈Q

∨
q′′∈Q

α(p, q′) ∧ Tb(q′, q′′) ∧ α−1(q′′, q) = Ta(p, q)

=⇒ α(p, q′) ∧ Tb(q′, q′′) ∧ α(q, q′′) = Ta(p, q)

=⇒ Tb(α(p), α(q) = Ta(p, q).

=⇒ Tβ(a)(α(p), α(q)) = Ta(p, q)

=⇒ µ(α(p), β(a), α(q)) = mu(p, a, q) ∀ p, q ∈ Q.
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=⇒ (α, β) is an isomorphism.

Thus we have proved that (α, β) ∈ AUTX(M).

Theorem 4.4.3. C∗(X̃∗/θM) is a normal subgroup of N∗(X̃∗/θM)

or equivalently AutX(M) is a normal subgroup of AUTX(M).

Proof. Let α ∈ N∗(X̃∗/θM) and ν ∈ C∗(X̃∗/θM) and let Ta ∈ X̃∗/θM .

Since α ∈ N∗(X̃∗/θM), by lemma 4.4.1 there exist a unique Tb ∈ X̃∗/θM
such that α ◦ Tb ◦ α−1 = Ta and since ν ∈ C∗(X̃∗/θM), ν ◦ Tb ◦ ν−1 = Tb.

Then α ◦ ν ◦ α−1 ◦ Ta ◦ (α ◦ ν ◦ α−1)−1

= α ◦ ν ◦ α−1 ◦ Ta ◦ α ◦ ν−1 ◦ α−1

= α ◦ ν ◦ Tb ◦ ν−1 ◦ α−1

= α ◦ Tb ◦ α−1

= Ta

=⇒ α ◦ ν ◦ α−1 ∈ C∗(X̃∗/θM).

Thus C∗(X̃∗/θM) is a normal subgroup of N∗(X̃∗/θM).

Corollary 2. By the theorem 4.4.3 and corollary (1),

N∗(X̃∗/θM)/C∗(X̃∗/θM) is isomorphic to a subgroup of AUT (X̃∗/θM).

Example 4.4.1. In example 3.3.2, the AUTX(M) and AutX(M) are

trivial subgroups of AUT (X̃∗/θM).

Consider another example of an inverse fuzzy automata whereQ = {q0, q1, q2},
X = {a, b} with transition matrices are
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Ta =

 0.3 0 0

0 0 0.6

0 0.4 0

 and Tb =

 0.3 0 0

0 0 0.4

0 0.6 0

 .

The transition monoid is {TΛ, Ta, Ta2 , Ta3 , Tb, Tab, Tba}.

AUTX(M) ∼=


 1 0 0

0 1 0

0 0 1

 ,
 1 0 0

0 0 1

0 1 0


.

and

AutX(M) ∼=


 1 0 0

0 1 0

0 0 1


.

Thus AUTX(M) = {(α1, β1), (α2, β2)} where (α1, β1) is the identity mor-

phism. (α2, β2) is the morphism α1 : Q −→ Q, β1 : X −→ X defined by

α(q0) = q0, α(q1) = q2, α(q2) = q1, β(a) = b, β(b) = a.

This is an automorphism on M since

µ(α(q0), β(a), α(q0)) = 0.3 = µ(q0, a, q0)

µ(α(q0), β(b), α(q0)) = 0.3 = µ(q0, b, q0)

µ(α(q1), β(a), α(q2)) = 0.6 = µ(q1, a, q2)

µ(α(q1), β(b), α(q2)) = 0.4 = µ(q1, b, q2)

and

µ(α(qi), β(a), α(qj)) = 0 = µ(qi, a, qj)

µ(α(qi), β(b), α(qj)) = 0 = µ(qi, b, qj) for all other i, j.





Chapter 5

Fuzzy Power Automata

5.1 Introduction

Corresponding to every fuzzy automaton M , we define min-weighted and

max-weighted power automata P(M)∧ and P(M)∨ such that the state set

is the power set P(Q) of the state set Q of M and study some algebraic

properties of it. The membership value of the transition function between

two states of P(Q) is the minimum(maximum) of the membership val-

ues of the transition function between the elements of the state set if the

image is the set of all elements with non zero membership value of the

transition function from the domain and zero otherwise. If M is a deter-

ministic connected inverse fuzzy automaton then the transition monoid

is isomorphic to a subinverse monoid of the inverse monoid of all fuzzy

matrices with each row and column containing excatly one non zero entry.

If the fuzzy automata is commutative then the transition monoid will also

85
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be commutative. In this chapter we prove that the fuzzy automaton and

its min-weighted and max-weighted power automata have the same tran-

sition monoids and so if the fuzzy automaton is inverse and commutative,

then the corresponding fuzzy power automaton has a transition monoid

which is inverse and commutative.

5.2 Preliminaries

Definition 5.2.1. Let M1 = (Q1, X1, µ1),M2 = (Q2, X2, µ2) be fuzzy

finite state machines such that Q1 ∩Q2 = φ and X1 ∩X2 = φ . Then the

direct sum is defined as M1 ⊕M2 = (Q1 ∪Q2, X1 ∪X2, µ1 ⊕ µ2) where

µ1 ⊕ µ2(p, a, q) =



µ(p, a, q) if p, q ∈ Q1, a ∈ X1

µ2(p, a, q) if p, q ∈ Q2, a ∈ X2

1
if either (p, a) ∈ Q1 ×X1, q ∈ Q2

or (p, a) ∈ Q2 ×X2, q ∈ Q1

0 otherwise.

and

the cartesian composition is defined as M1.M2 = (Q1×Q2, X1∪X2, µ1.µ2)

where

(µ1.µ2)((p1, p2), a, (q1, q2)) =


µ1(p1, a, q1) if a ∈ X1 and p2 = q2

µ2(p2, a, q2) if a ∈ X2 and p1 = q1

0 otherwise.

[14]
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5.3 Min-weighted power automata

Definition 5.3.1. Let M = (Q,X, µ) be a fuzzy automaton. Let

P(Q) be the power set of Q. Define µ∧ : P(Q)×X × P(Q) −→ [0, 1] as

µ∧(A, a,B) =


∧
q∈A

∧
p∈B

µ(q, a, p) if B = {p : µ(q, a, p) > 0}

0 otherwise

for allA 6= φ,B 6= φ,A,B ∈ P(Q),

µ∧(φ, a, φ) = 1 and µ∧(A, a,B) = 0 if A = φ or B = φ, for all a ∈ X.

Then P∧(M) = (P(Q), X, µ∧) is called the min-weighted power automa-

ton. We can extend µ∧ to P(Q)×X∗ × P(Q) as

µ∧(A, xa,B) =
∨

C∈P(Q)

µ∧(A, x, C) ∧ µ∧(C, a,B) where A,B,C ∈ P(Q).

M can be embedded in P∧(M) with the isomorphism p −→ {p}.

Theorem 5.3.1. Every mapping (α, β) of a fuzzy automaton A =

(Q1, X1, µ1) into a fuzzy automaton B = (Q2, X2, µ2) can be extended to

a mapping from P∧(A) into P∧(B) such that (α, β) is an isomorphism if

and only if the extended map is an isomorphism.

Proof. Consider the extension α̂ of α : Q1 −→ Q2 to P(Q1) −→ P(Q2)

such that for A ∈ P(Q) define α̂(A) = {α(q), q ∈ A)}.
If (α, β) is a homomorphism, then (α̂, β) is a homomorphism, since

for a ∈ X1, µ1
∧(A, a,B) =


∧
q∈A

∧
p∈B

µ1(q, a, p) if B = {p : µ1(q, a, p) > 0}

0 otherwise.
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6


∧
q∈A

∧
p∈B

µ2(α(q), β(a), α(p)) if B = {p : µ1(q, a, p) > 0}

0 otherwise

= µ2
∧(α̂(A), β(a), α̂(B)

=⇒ (α̂, β) is a homomorphism.

Suppose (α, β) is one-one. Then (α̂, β) is one-one for,

let α̂(A) = α̂(B) for A,B ∈ P(Q).

Then {α(q) : q ∈ A} = {α(q) : q ∈ B}. For q ∈ A, α(q) ∈ α̂(A) =

α̂(B) =⇒ α(q) = α(q′) for some q′ ∈ B. Since α is one-one q = q′ =⇒
q′ ∈ B. So A ⊆ B. Similarly we can prove that B ⊆ A. Hence A = B.

Thus α̂ is one-one and so (α̂, β) is one-one. Similarly α̂ is onto since α is

onto. Converse is clear since α is the restriction of α̂ to Q.

5.4 Max-weighted power automaton

As in the case of min-weighted power automaton, we can define max-

weighted power automaton for a fuzzy automaton M = (Q,X, µ).

For A,B ∈ P(Q) define µ∨(A, a,B) as follows.

µ∨(A, a,B) =


∨
q∈A

∨
p∈B

µ(q, a, p) if B = {p : µ(q, a, p) > 0}

0 otherwise.

for all A 6= φ,B 6= φ in P(Q),

µ∨(φ, a, φ) = 1 and µ∨(A, a,B) = 0 if A = φ or B = φ, for all a ∈ X.

Then P∨(M) = (P(Q), X, µ∨) is called the max-weighted power automa-

ton. We can extend µ∨ to P(Q)×X∗ × P(Q) as
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µ∨(A, xa,B) =
∨

C∈P(Q)

µ∨(A, x, C) ∧ µ∨(C, a,B)

where A,B,C ∈ P(Q). M can be embedded in P∨(M) with the isomor-

phism p −→ {p}.

5.5 Some algebraic properties of fuzzy power

automata

Theorem 5.5.1. If M1 and M2 are fuzzy automata, then

P∧(M1 ⊕M2) ∼= P∧(M1).P∧(M2).

Proof. P∧(M1

⊕
M2) = (P(Q1 ∪Q2), X1 ∪X2, (µ1 ⊕ µ2)∧) and

P∧(M1).P∧(M2) = (P(Q1)× P(Q2), X1 ∪X2, µ
∧
1 .µ
∧
2 ).

Define a mapping α : P(Q1)×P(Q2) −→ P(Q1 ∪Q2) as α(A,B) = A∪B
where A ∈ P(Q1) and B ∈ P(Q2) and β is the identity map on X1 ∪X2.

We claim that (α, β) is an isomorphism from P∧(M1).P∧(M2)−→P∧(M1⊕M2).

We have (α, β) is a isomorphism iff α and β are one-one onto and

µ1
∧.µ2

∧((A1, B1), a, (A2, B2)) 6 (µ1 ⊕ µ2)∧(α(A1, B1), a, α(A2, B2))

∀ (A1, B1), (A2, B2) ∈ P(Q1)× P(Q2).

Clearly α and β are one-one onto.

Let (A1, B1), (A2, B2) ∈ P(Q1)× P(Q2) and a ∈ X1 ∪X2.

Then α(A1, B1) = A1 ∪B1 and α(A2, B2) = A2 ∪B2

µ1 ⊕ µ2
∧(α(A1, B1), a, α(A2, B2)) = µ1 ⊕ µ2

∧(A1 ∪B1, a, A2 ∪B2)

=


∧

q∈A1∪B1

∧
p∈A2∪B2

µ1 ⊕ µ2(q, a, p) if A2 ∪B2 = {p : µ1 ⊕ µ2(q, a, p) > 0}

0 otherwise
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=



∧
q∈A1

∧
p∈A2

µ1(q, a, p) if a ∈ X1, A2 = {p : µ1(q, a, p) > 0}∧
q∈B1

∧
p∈B2

µ2(q, a, p) if a ∈ X2, B2 = {p : µ2(q, a, p) > 0}

1
if either q ∈ A1, a ∈ X1, p ∈ B2

or q ∈ B1, a ∈ X2, p ∈ A2

0 otherwise.

(5.1)

Now,

µ1
∧.µ2

∧(A1, B1), a, (A2, B2)

=


∧

(p1,q1)∈(A1,B1)

∧
(p2,q2)∈(A2,B2)

µ1.µ2(p1, q1), a, (p2, q2)

if(A2, B2) = {(p2, q2) : µ1µ2((p1, q1), a, (p2, q2)) > 0}

0 otherwise

=


∧

p1∈A1

∧
p2∈A2

µ1(p1, a, p2) if a ∈ X1, A2 = {p2 : µ1(p1, a, p2) > 0}∧
q1∈B1

∧
q2∈B2

µ2(q1, a, q2) if a ∈ X2, B2 = {q2 : µ2(q1, a, q2) > 0}

0 otherwise

(5.2)

From equations (5.1) and (5.2), we get

µ1.µ2
∧((A1, B1), a, (A2, B2)) 6 µ1 ⊕ µ2

∧(α(A1, B1), β(a), α(A2, B2))

∀(A1, A2), (A2, B2) ∈ P(Q1)× P(Q2), a ∈ X1.

Thus (α, β) is an isomorphism from P∧(M1 ⊕M2)−→P∧(M1).P∧(M2).

Theorem 5.5.2. A fuzzy automaton M and its min-weighed power

automaton P∧(M) have the same transition monoids.
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Proof. The transition monoid of the fuzzy automaton is X∗/µM where

µM is the congruence defined on X∗ by

aµMb if and only if µ(q, a, p) = µ(q, b, p) ∀ q, p ∈ Q.

µP∧(M) is defined on X∗ by

aµP∧(M)b if and only if µ∧(A, a,B) = µ∧(A, b,B) ∀ A,B ∈ P(Q) and the

transition monoid of P∧(M) is X∗/µP∧(M).

Let [a]µM ∈ X∗/µM and [a]µP∧(M)
∈ X∗/µP∧(M).

First suppose a ∈ X and let b ∈ [a]µM .

Then µ(q, a, p) = µ(q, b, p) ∀ q, p ∈ Q.

Let A,B 6= φ ∈ P(Q) (for A or B or both equal to φ then it is clear that

µ∧(A, a,B) = µ∧(A, b,B)).

µ∧(A, a,B) =


∧
q∈A

∧
p∈B

µ(q, a, p) if B = {p : µ(q, a, p) > 0}

0 otherwise

=


∧
q∈A

∧
p∈B

µ(q, b, p) if B = {p : µ(q, b, p) > 0}

0 otherwise

=µ∧(A, b,B)

=⇒ b ∈ [a]µ∧P(M)
.

Thus [a]µM ⊆ [a]µ∧P(M)
.

Now let a = a1a2 where a1, a2 ∈ X.

µ∧(A, a,B) =
∨

C∈P(Q)

µ∧(A, a1, C) ∧ µ∧(C, a2, B).

If b ∈ [a]µM , b ∈ [a1a2]µM = [a1]µM [a2]µM . Then there exist b1, b2 ∈ X such

that b = b1b2 and [b1] ∈ [a1]µM , [b2] ∈ [a2]µM .

This implies µ(p, a1, q) = µ(p, b1, q) and µ(p, a2, q) = µ(p, b2, q) for all

p, q ∈ Q.

µ∧(A, a,B) =
∨

C∈P(Q)

µ∧(A, a1, C) ∧ µ∧(C, a2, B)
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=
∨

C∈P(Q)

µ∧(A, b1, C) ∧ µ∧(C, b2, B)

= µ∧(A, b1b2, B)

= µ∧(A, b,B)

Thus b ∈ [a]µP∧(M)
and so [a]µM ⊆ [a]µP∧(M)

Conversely, suppose b ∈ [a]µ∧(P(M) Then

µ∧(A, a,B) = µ∧(A, b,B) ∀ A,B ∈ P(Q). Take A = {p} and B = {q}.
Then µ({p}, a, {q}) = µ({p}, b, {q}) ∀ p, q ∈ Q.
=⇒ b ∈ [a]µM .

Thus [a]µP∧(M)
⊆ [a]µM .

=⇒ [a]µP∧(M)
= [a]µM .

Illustration 5.5.1. For the inverse fuzzy automata in example 3.3.2,

the transition semigroup is the semigroup generated by Ta and Tb where

Ta = Taba and Tb = Tbab.

P(Q) has elements, say φ, A1 = {q0}, A2 = {q1}, A3 = {q2}, A4 =

{q0, q1}, A5 = {q1, q2}, A6 = {q0, q2}, A7 = {q0, q1, q2}.

Now, µ̄(φ, a, φ) = µ̄(φ, b, φ) = 1, µ̄(φ, a, Ai) = µ̄(Ai, a, φ) = µ̄(φ, b, Ai) =

µ̄(Ai, b, φ) = 0 for i = 1, 2, . . . , 7. The other values of µ̄(Ai, a, Aj) and

µ̄(Ai, b, Aj) can be calculated by the formula
∧
q∈Ai

∧
p∈Aj

µ(q, a, p) if Aj = {p : µ(q, a, p) > 0}

0 otherwise

The transition monoid of the min-weighted power automaton

P∧(M) = (P(Q), X, µ∧) is the semigroup generated by
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Ta =



1 0 0 0 0 0 0 0

0 0 0.7 0 0 0 0 0

0 0 0 0.4 0 0 0 0

0 0.3 0 0 0 0 0 0

0 0 0 0 0 0.4 0 0

0 0 0 0 0 0 0.3 0

0 0 0 0 0.3 0 0 0

0 0 0 0 0 0 0 0.3


and

Tb =



1 0 0 0 0 0 0 0

0 0 0 0.3 0 0 0 0

0 0.7 0 0 0 0 0 0

0 0 0.4 0 0 0 0 0

0 0 0 0 0 0 0.3 0

0 0 0 0 0.4 0 0 0

0 0 0 0 0 0.3 0 0

0 0 0 0 0 0 0 0.3


It is easy to verify that Taba = Ta and Tbab = Tb.

Also,

T (P∧(M)) is {Ta, Ta2 , Ta3 , Ta4 , Ta5 , Tb, Tb2 , Tab, Tba, Tab2 , Tb2a, Ta2b, Tba2 , Ta2b2 ,

Tb2a2 , Tab2a} which is same as T (M)

Theorem 5.5.3. A fuzzy automaton M and its max-weighed power

automaton P∨(M) have the same transition monoids.

Proof is similar to the min-weighted power automata. In the same

example 3.3.2, the transition semigroup of the max-weighted power au-
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tomaton is the semigroup generated by

Ta =



1 0 0 0 0 0 0 0

0 0 0.7 0 0 0 0 0

0 0 0 0.4 0 0 0 0

0 0.3 0 0 0 0 0 0

0 0 0 0 0 0.7 0 0

0 0 0 0 0 0 0.4 0

0 0 0 0 0.7 0 0 0

0 0 0 0 0 0 0 0.7


and

Tb =



1 0 0 0 0 0 0 0

0 0 0 0.3 0 0 0 0

0 0.7 0 0 0 0 0 0

0 0 0.4 0 0 0 0 0

0 0 0 0 0 0 0.7 0

0 0 0 0 0.7 0 0 0

0 0 0 0 0 0.4 0 0

0 0 0 0 0 0 0 0.7


Here also the transition semigroup is

{Ta, Ta2 , Ta3 , Ta4 , Ta5 , Tb, Tb2 , Tab, Tba, Tab2 , Tb2a, Ta2b, Tba2 , Ta2b2 , Tb2a2 , Tab2a}.

Theorem 5.5.4. If M is a commutative fuzzy automaton then the

min-weighted (max-weighted) power automaton is commutative.

Proof. Let M = (Q,X, µ, i, τ) be a commutative fuzzy automaton.
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Then µ(p, xy, q) = µ(p, yx, q) for all x, y ∈ X∗, p, q ∈ Q.

Then [xy]µM = [yx]µM for all x, y ∈ X∗.
By Theorem 5.5.2, we get [xy]µ∧P (M) = [yx]µ∧P (M).

So µ∧(A, xy,B) = µ∧(A, yx,B). Similarly, we get

µ∨(A, xy,B) = µ∨(A, yx,B)

Theorem 5.5.5. If M = (Q,X, µ) is a commutative inverse fuzzy

automaton then the min-weighted (max-weighted) power automaton is

also a commutative inverse fuzzy automaton.

Proof. From theorems 4.4.3, 5.5.3 and 5.5.4,

P∧(M)(P∨(M)) is a commutative inverse fuzzy automaton.

Definition 5.5.1. For a fuzzy automatonM and for everyH ∈ P(Q),

define H∨T (M) = {[x] ∈ T (M), µ∨(H, x,H) > 0} and H∧T (M) = {[x] ∈
T (M), µ∧(H, x,H) > 0}.

Theorem 5.5.6. H∨T (M)(H
∧
T (M)) is a subsemigroup of T (M).

Proof. Let [x], [y] ∈ H∨T (M).

Then µ∨(H, x,H) > 0, µ∨(H, y,H) > 0.

We have

µ∨(H, xy,H) =
∨

C∈P(Q)

µ∨(H, x, C) ∧ µ∨(C, y,H)

> µ∨(H, x,H) ∧ µ∨(H, y,H)

> 0

.
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Which implies [xy] ∈ H∨T (M).

Theorem 5.5.7. If M is an inverse fuzzy automaton, then

H∨T (M)(H
∧
T (M)) is a subinverse semigroup of T (M).

Proof. We have proved that H∨T (M) is a subsemigroup of T (M).

Let [x] ∈ H∨T (M). ie, µ∨(H, x,H) > 0.

Since the transition semigroup of a fuzzy automaton and its max-weighted

power automaton are isomorphic, transition semigroup of P∨(M) is an

inverse semigroup. µ∨(H, x,H) is a diogonal element in the transition

matrix Tx of P∨(M) and Tx−1 is the transpose of Tx. So µ∨(H, x−1, H) =

µ∨(H, x,H) > 0.

Thus [x]−1 ∈ H∨T (M) and so H∨T (M) is an inverse semigroup.

Similarly we can prove that H∧T (M) is also an inverse semigroup.

Example 5.5.1. In example 3.3.2, H∨T (M) = {Ta3 , Tab,

Tba, Tb2a2 , Ta2b2 , Tab2a} and this is a subinverse semigroup of T (M) which

is the set of all idempotents in T (M).
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Concluding remarks and suggestions for fur-
ther study

In this work we extended the notion of semigroup action on sets to

semigroup action on fuzzy subsets and studied some categorical properties

of S − FSET . More studies can be carried out in this direction. We also

introduced the concept of inverse fuzzy automata and studied the algebraic

properties associated with its transition matrices. Further we studied the

algebraic properties of the family of inverse fuzzy languages and proved

that the collection of all inverse fuzzy languages does not form a variety.

We defined a family of fuzzy languages which form a variety such that the

associated pseudovariety is the set of all finite monoids with commuting

idempotents. We can study more on this fuzzy language. Further studies

can be carried out for the topological properties of inverse fuzzy languages

and for many other fuzzy languages.
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