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ABSTRACT 

 

The thesis explores the area of still image compression. The image compression 

techniques can be broadly classified into lossless and lossy compression. The 

most common lossy compression techniques are based on Transform coding, 

Vector Quantization and Fractals. Transform coding is the simplest of the above 

and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real 

Transform (MRT) is an evolving integer transform, based on real additions alone. 

The present research work aims at developing new image compression techniques 

based on MRT.  

 

Most of the transform coding techniques employ fixed block size image 

segmentation, usually 8×8. Hence, a fixed block size transform coding is 

implemented using MRT and the merits and demerits are analyzed for both 8×8 

and 4×4 blocks. The N
2
 unique MRT coefficients, for each block, are computed 

using templates.  Considering the merits and demerits of fixed block size 

transform coding techniques, a hybrid form of these techniques is implemented to 

improve the performance of compression.  The performance of the hybrid coder is 

found to be better compared to the fixed block size coders. Thus, if the block size 

is made adaptive, the performance can be further improved. In adaptive block size 

coding, the block size may vary from the size of the image to 2×2. Hence, the 

computation of MRT using templates is impractical due to memory requirements.  

So, an adaptive transform coder based on Unique MRT (UMRT), a compact form 

of MRT, is implemented to get better performance in terms of PSNR and HVS.  

 



Abstract 

 

 
 

The suitability of MRT in vector quantization of images is then experimented. 

The UMRT based Classified Vector Quantization (CVQ) is implemented 

subsequently.  The edges in the images are identified and classified by employing 

a UMRT based criteria.   

 

Based on the above experiments, a new technique named “MRT based Adaptive 

Transform Coder with Classified Vector Quantization (MATC-CVQ)”is 

developed. Its performance is evaluated and compared against existing 

techniques.  A comparison with standard JPEG & the well-known Shapiro’s 

Embedded Zero-tree Wavelet (EZW) is done and found that the proposed 

technique gives better performance for majority of images. 
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1.1 Image 

 

The Oxford dictionary defines the word image as the optical appearance of 

something produced in a mirror or through a lens.  Image may be formed by other 

types of radiant energy and devices.  However, optical images are most common 

and most important.  Amount of light energy received at a point of a scene by an 

observer or by an image sensor varies with direction and distance of that point.  

This energy is recorded at corresponding points on a plane to form an image.  

Hence, the brightness and color recorded in an image may be represented as a 

function of several variables.  The simplest kind of intensity image that can be 

thought of is a black and white image.   

 

Digital Image 

 

A digital image is a numeric representation of a two-dimensional image. Digital 

images have a finite set of digital values, represented by picture 

elements or pixels. They contain a fixed number of rows and columns of pixels. 

Pixels are the smallest individual element in an image, holding quantized values 

that represent the brightness of a given color at any specific point. Typically, the 

pixels are stored in computer memory as a two-dimensional array of small 

integers. These values are often stored in memory or transmitted.   

 

Capturing Digital Image 

 

In an ideal system, a simple pin hole camera would be used to produce an image 

since any object in the viewed environment is always perfectly in focus.  

http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Pixel
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Unfortunately the intensity of the light available in a real system makes it 

impossible to use a pin hole camera. Real systems are forced to use a lens to focus 

the light from objects onto the image plane of the camera. When using a lens, the 

depth of field where the image sharply focuses is limited. The depth of field can 

be improved by using a stronger and smaller lens but this tends towards the 

limited image intensity. Sampling of the image is the most important feature, from 

the point of view of image compression. There are other effects caused by using 

lenses in cameras such as spherical and chromatic aberration but these do not 

affect the performance of image compressors.  

 

Charge Coupled Device (CCD) cells are generally used to convert the image 

produced in the camera to an electrical signal. The final stage of the sampling is to 

convert the analogue charge in each CCD cell to a digital value. This is done by 

using a „flash‟ analogue to digital converter (ADC) and the intensity of the signal 

is usually split into 2
8 
levels (sometimes 2

12 
for high precision work).  

 

Although all these stages are necessary to form the final digital image, they are 

nearly always ignored, and the digital images produced are assumed to be lossless. 

But the effects of the camera and digitizer should always be appreciated so that 

there are no major problems caused, when applying the algorithms to real 

systems. The result of sampling and quantization is a matrix of real numbers.  An 

M×N digital image can be expressed as 

 

[
               

   
                   

]  
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Each element of this matrix array represents a pixel or pel [58], as shown in 

Figure 1.1. 

 

Figure 1.1: An alternate view of image data 

 

The digital images can be classified into three categories, Black & White, Gray 

Scale and Color images, depending on the number of colors that each pixel in the 

image can represent.  

 

Black & White (Binary) image  

 

Black & White image uses single bit only to represent each pixel. Since a bit can 

only exist in two states, on or off, every pixel in a binary image must be one of 

two colors, usually black or white. This inability to represent intermediate shades 

of gray is what limits their usefulness in dealing with photographic images. 

 

Gray Scale Image 

 

A gray scale image is made up of pixels, each of which holds a single number 

corresponding to the gray level of the image at a particular location. These gray 

levels span the full range from black to white in a series of very fine steps, 
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normally 256 different grays. Since the eye can barely distinguish about 200 

different gray levels, this is enough to give the illusion of a step less tonal scale. 

 

Color Image 

 

A color image is made up of pixels, each of which holds three numbers 

corresponding to the red, green, and blue levels of the image at a particular 

location. Red, green, and blue, sometimes referred to as RGB, are the primary 

colors for mixing light. Any color can be created by mixing the correct amounts 

of red, green, and blue light. Assuming 256 levels for each primary color, any 

color pixel can be stored in three bytes (24 bits) of memory. This corresponds to 

roughly 16.7 million different possible colors. Note that for images of the same 

size, a gray scale version uses three times less memory than a color version. 

 

A binary image is represented by an M×N logical matrix where pixel values are 1 

(true) or 0 (false). Hence, M×N bits are to be stored. A gray scale image of 

M pixels height and N width is represented as a matrix of size M×N. Element 

values denote the pixel gray scale intensities in the range 0 to 255, with black and 

white represented by 0 and 255 respectively. Hence, the memory requirement to 

store the gray scale image is M×N×8 bits.  A true color (RGB) image is 

represented as a three-dimensional M×N×3 matrix. Each pixel has red, green, blue 

components along the third dimension with values in the range 0 to 255. So, the 

storage requirement of the color image is M×N×24.  As the resolution increases, 

the storage requirement also increases. 

 

Image data requires considerable storage capacity and transmission bandwidth.  
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Despite rapid progress in mass-storage density, processor speeds, and digital 

communication system performance, the demand for data storage capacity and 

data transmission bandwidth continues to outstrip the capabilities of available 

technologies. The recent growth of data intensive multimedia-based web 

applications have not only sustained the need for more efficient ways to encode 

signals and images but have made compression of such signals central to storage 

and communication technology. The analysis of redundancies present in the 

images is to be explored to attain compression. 

 

1.2 Redundancy in Image 

 

A common characteristic of most images is that the neighboring pixels are 

correlated and therefore contain redundant information. The foremost task is to 

find less correlated representation of the image. Two fundamental components of 

compression are redundancy and irrelevancy reduction. Redundancy reduction 

aims at removing duplication from the signal source (image/video). Irrelevancy 

reduction omits parts of the signal that will not be noticed by the signal receiver, 

usually the Human Visual System (HVS). In general, three types of redundancy 

can be identified: Coding Redundancy, Spatial Redundancy & Temporal 

Redundancy. 

 

Coding Redundancy 

 

A code is a system of symbols (letters, numbers, bits, etc.) used to represent a 

body of information or set of events. Each piece of information or event is 

assigned a sequence of code symbols, called a code word. The number of symbols  
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in each code word is its length. The 8-bit codes used to represent the intensities in 

most of the images contain more bits than needed. The length of overall symbols 

can be reduced by using smaller number of bits to represent more frequent 

symbols while larger number of bits for less frequent symbols.  Thereby coding 

redundancy can be reduced. 

 

Spatial Redundancy  

 

Spatial Redundancy is directly related to the inter-pixel correlations within an 

image.  The pixels of most images are correlated spatially and hence, information 

is unnecessarily replicated in the representations of the correlated pixels.  The 

value of any pixel can be reasonably predicted from the value of its neighbors.  

The information carried by individual pixel is relatively small.  Much of the visual 

contribution from a pixel to an image is redundant.  It can be predicted on the 

basis of the value of its neighbors [58]. 

 

Temporal Redundancy 

 

Video data may be represented as a series of still image frames. The sequence of 

frames contains spatial and temporal redundancy. Video compression algorithms 

attempt to eliminate it or code in a smaller size. Similarities between images can 

be encoded by storing only the differences between frames, or by using perceptual 

features of human vision system.  

 

For example, small differences in color are more difficult to perceive than changes 

in brightness.  

 

https://en.wikipedia.org/wiki/Redundancy_(information_theory)
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Irrelevant Information 

 

Most images contain information that is ignored by the human visual system and 

extraneous to the intended use of the image. It is irrelevant in the sense that it is 

not used. Image compression research aims at reducing the image data by 

eliminating all the irrelevant information, thereby reducing the number of bits 

needed to represent the images.  

 

1.3 Image Compression 

 

The term image compression refers to the process of reducing the amount of data 

required to represent a given image to store or transmit it in an efficient form.  

Ideally, an image compression technique removes redundant and/or irrelevant 

information, and efficiently encodes what remains. Most image compression 

techniques use a reversible transform to de-correlate the image data by exploiting 

the redundancies present in the image data. The transform can be applied either 

directly to the whole image or can be applied to smaller segments of the image.  

The techniques that use transforms to de-correlate image data prior to 

compression are usually referred to as transform coding. 

 

In transform coding, the original image is usually segmented and transformed into 

another domain, where the transform coefficients are highly de-correlated. This 

de-correlation concentrates the important image information into a more compact 

form. The compressor then removes the redundancy in the transform coefficients 

and stores it into a compressed file or data stream. The decompression is the 

reverse process to generate the recovered image. The recovered image may have  

http://en.wikipedia.org/wiki/Data_transmission
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lost some information, due to the compression, and may have an error or 

distortion compared to the original image. A typical image compression system is 

shown in Figure 1.2. Some compression methods do not have the transform stage 

but in those cases the transform can be considered to have no effect. 

 

The transform, used in the encoder, is rarely applied to the whole image. It usually 

deals with small regions or image blocks independently. This has the advantage of 

exploiting local similarities within the image but also leads to a „blocking artifact‟ 

effect. The blocks do not have to be a fixed size or shape, but they are usually 

non-overlapping. Applying an overlapping blocked system duplicates data already 

contained in other image blocks, and hence can be wasteful. 

 

Figure 1.2: A transform based image compression system. 

 

Image segmentation 

 

Image segmentation is the process of dividing the image into different sized and 

shaped regions. If the transform is applied to fixed-size blocks in the image, it 

would not be very effective. So, the regions are shaped to maximize the 

effectiveness of the transform used. In general this means that small regions are 
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used to approximate areas of high detail, e.g. the hair in Figure 1.3, while larger 

regions are used for flatter (less detailed) areas, e.g. the plain background in 

Figure 1.3. 

 

Since the functions which describe a surface are usually defined for a square 

block, the simplest form of hierarchical image partition is a quad-tree structure. A 

Quad-Tree structure works by splitting square blocks into 4 equally sized sub-

blocks, the blocks that are split and the depth of split is governed by the method 

used, not the quad-tree structure. This produces an effective method to segment 

the image, as shown in Figure 1.3, while a small amount of data is required to 

describe the quad-tree (approximately 1 - 5% of the total compression). 

 

 

Figure 1.3:  The Lena image and its Quad-Tree based segmented form. 

 

The partition of the image can be more complex [89], such as using N sided 

shapes to describe the image, but as the complexity of the partition increases, so 

does the overhead to store the segmented structure. The more complex the 

partition is, the better the approximation fits to the image, but as a result there are  
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less bits available to approximate the image. This is a common compromise 

reached in image compression and leads to a large variety of image segmentation 

based coders. 

 

In general, segmentation coders cannot reach the image quality produced by other 

image compressors at similar compressions; however the research in these areas 

has not been fully explored.  

 

Transform 

 

The transform is the defining part of an image compression system. The image 

transform should de-correlate the image, so that the image data is in a more 

compact form in the new transform domain. 

 

Transforms usually come in pairs of forward and inverse transforms. If both the 

forward and inverse transforms are applied without compression, then the 

transform is either perfectly reconstructing (lossless), or the image information is 

quantized and lost after the transform stage (lossy). A lossless transform does not 

further complicate an image compressor since it makes no decisions about which 

parts of the image data are useful. However a lossy transform can often produce 

more compression or allow the transform algorithm to run faster, both of which 

may be beneficial. 

 

The transform can either be orthogonal, orthonormal or non-orthogonal. It is 

common to use orthogonal/orthonormal transforms in image compression; 

because they are efficient and the transform coefficients are highly de-correlated. 
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The „Discrete Cosine Transform (DCT)‟ and the „Wavelet Transform‟ are 

examples of orthonormal. 

 

Compression 

 

Once the image has been transformed, it is necessary to compress the de-

correlated data. Compression is achieved by a combination of two methods: 

Quantization and entropy coding. 

 

Quantization is the process of reducing the accuracy of the transformed 

coefficients, sometimes completely truncating the coefficients. This is often used 

before entropy coding to improve the compression. Quantization makes the coder 

inherently lossy. Through lossless compression or entropy coding, the 

decompressed data is converted into an efficient data set that takes up the 

minimum size possible. This is achieved using variable length coders such as the 

Huffman [5] or Arithmetic [101] coders. 

 

The compression of images is usually measured in two ways: Compression ratio 

(The size of the original image is compared to the size of the compressed image) 

and Bits Per Pixel -bpp (the number of bits necessary to describe one pixel of the 

image, generally an average over the whole image). 

 

For gray scale images, the relation between compression ratio and bpp is  
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                                                       (1.2) 

 

Generally bpp is used to measure compression. The ultimate aim of any image 

compressor is to produce the maximum compression with minimum distortion. 

Although this is a relatively simple statement, it is a difficult task.  

 

Distortion Measure 

 

The distortion or error caused in the recovered image, by the image compression 

process, can be measured in several ways. The distortion measures commonly 

used may be classified into two broad groups, subjective and objective. 

 

This is an area called psycho-visual image analysis, and is an area of research with 

immense scope. Unfortunately little progress has been made into an automated 

method for calculating a psycho-visual distortion measure. The subjective error 

measure is performed as follows.  Original image and the reconstructed image are 

shown to a large group of examiners.  Each examiner assigns grade to the 

reconstructed image with respect to the original image.  These grades may be 

drawn from a subjective scale divided as, say, excellent, good, reasonable, poor 

and unacceptable.  Finally, based on grades assigned by all the examiners, an 

overall grade is assigned to the reconstructed image.  This grade gives an idea of 

the subjective error.  

 

The standard objective distortion measures are Mean Square Error (MSE), Peak 

Signal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR). None of the main 

methods for measuring image objective distortion takes into account how good 



Introduction to Still Image Compression 

 

Page 14 

 

the recovered image looks to the human visual system. These distortions are 

calculated as in Equations (1.3) to (1.5) respectively.  

    
 

 
∑                                           (1.3) 

 

             [
   

   |      | 
]                       (1.4) 

 

            [
∑                     

∑           
]                (1.5) 

where N is the number of pixels in the image, xi, jis the pixel intensity of 

original image at i, j and x i, jis the pixel intensity of compressed image at i, j . 

 

1.4. Classification of Image Compression Techniques 

 

The image compression techniques can be broadly classified into two: lossless 

and lossy compression techniques. Lossless and lossy compressions are terms that 

describe whether or not all original data can be recovered when the image is 

decompressed. 

 

1.4.1.  Lossless vs. Lossy compression 

 

Every single bit of data that was originally in the image remains after the image is 

decompressed using lossless techniques. All the information is completely 

restored. This is generally the technique for medical image compression, where 

losing image data could pose problems.  
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On the other hand, lossy compression reduces the data in an image by 

permanently eliminating certain information, especially irrelevant information. 

When the image is decompressed, only a part of the original information is 

restored, although the user may not notice it. Lossy compression is generally 

employed for applications where a certain amount of information loss will not 

affect further use. The JPEG image file, commonly used for photographs and 

other complex still images on the Web, is an image that has lossy compression. 

The lossy compression techniques generally permit a trade-off between 

compression ratio and image quality. 

 

The reconstructed image is numerically identical to the original image in lossless 

compression schemes. However lossless compression can only achieve a modest 

amount of compression. An image reconstructed following lossy compression 

contains degradation compared to the original due to the removal of irrelevant 

information. However, lossy schemes are capable of achieving much higher 

compression. But no visible loss is perceived (visually lossless) under normal 

viewing conditions. 

 

1.4.2. Lossless Compression Techniques  

 

Lossless methods yield lower compression ratios but preserve every pixel in the 

original image. Here, the main factor behind the reduction in size of the image is 

the removal of coding redundancy. Coding redundancy removal is based on the 

idea that in an image some colors are frequently used and others occasionally. 

Presence of repeated colors causes a certain amount of redundancy and can be 

eliminated by assigning short codes to the frequently used colors and longer codes  

http://searchsoa.techtarget.com/definition/JPEG
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to the infrequent ones. These methods are very common & simple and used in 

many of today‟s graphics file formats, including GIF, PCX, and BMP. Most of the 

graphical images contain redundancies in the form of adjacent pixels of identical 

values.  

 

Run Length Coding  

 

Run length coding is a very simple method for compression of sequential data. It 

takes advantage of the fact that, in many data streams, consecutive single tokens 

are often identical. Run length encoding checks the stream for this fact and inserts 

a special token each time a chain of more than two equal input tokens are found. 

This special input advises the decoder to insert the following token „n‟ times into 

its output stream.  

 

Huffman Coding  

 

The most popular technique for removing coding redundancy is Huffman coding. 

When coding the symbols of an information source individually, Huffman coding 

yields the smallest possible number of code symbols per source symbol. The first 

step in this approach is to create a series of source reductions by ordering the 

probabilities of the symbols under consideration and combining the lowest 

probability symbols into a single symbol that replaces them in the next source 

reduction. This process is repeated until a reduced source with two symbols is 

reached.  The second step in Huffman‟s procedure is to code each reduced source, 

starting with the smallest source and working back to the original source.  The 

minimal length binary code for a two-symbol source is the symbols 0 & 1 [58]. 
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Arithmetic Coding 

 

One-to-one correspondence between source symbols and code words does not 

exist in Arithmetic coding. Instead, an entire sequence of source symbols (or 

message) is assigned a single arithmetic code word. The code word itself defines 

an interval of real numbers between 0 and 1. As the number of symbols in the 

message increases, the interval used to represent it becomes smaller and the 

number of information units (say, bits) required to represent the interval becomes 

larger. Each symbol of the message reduces the size of the interval in accordance 

with its probability of occurrence. It achieves the bound established by the 

noiseless coding because the technique does not require translating each source 

symbol into an integral number of code symbols [58]. 

 

Area Coding  

 

Area coding is an enhanced form of the run length coding, reflecting the two 

dimensional character of images. This is a significant advancement over other 

lossless methods. The image can be considered as a two dimensional object.  For 

coding an image, it does not make too much sense to interpret it as a sequential 

stream, as it is in fact an array of sequences. Therefore, as the two dimensions are 

independent and of same importance, it is obvious that a two dimensional coding 

scheme will be advantageous. The algorithms for area coding try to find 

rectangular regions with the same characteristics. These regions are coded in a 

descriptive form as an element with two points and a certain structure. The whole 

input image has to be described in this form to allow lossless decoding.  
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The possible performance of this coding method is limited mostly by the very 

high complexity of the task of finding largest areas with the same characteristics. 

Practical implementations use recursive algorithms for reducing the whole area to 

equal sized sub-rectangles until a rectangle does fulfill the criteria defined as 

having the same characteristic for every pixel. This type of coding can be highly 

effective but it bears the problem of a nonlinear method, which cannot be 

implemented in hardware. Therefore, the performance in terms of compression 

time is not competitive, although the compression ratio is competitive [58].  

 

1.4.3 Lossy Compression Techniques  

 

Lossy methods deliver higher compression ratios, but sacrifice the ability to 

reproduce the original, decompressed pixel for pixel. JPEG is the best known 

lossy compression standard and widely used to compress still images. It is 

considerably more complicated than run length coding, but it produces 

correspondingly higher compression ratios – even for images containing little or 

no redundancy. Except where every piece of information of a scan is critical – for 

example, scientific data – a scan must only provide enough information to meet 

the needs of the reproduction process and the viewer. The idea behind JPEG 

compression is to segregate the information in an image by level of importance, 

and then discard the less important information to reduce the overall quantity of 

data that must be stored. It does so by transforming a matrix of pixel values into a 

matrix of amplitude values corresponding to precise frequencies in the image. The 

eye doesn‟t perceive all the subtle color shifts in a typical bitmapped image, so 

some of the detail can be discarded without affecting the overall information 

content.  
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Typical lossy image coder 

 

A typical lossy image compression system consists of three closely connected 

components namely (a) Source Encoder (b) Quantizer, and (c) Entropy Encoder. 

Compression is accomplished by applying a linear transform to de-correlate the 

image data, quantize the resulting transform coefficients, and entropy code the 

quantized values. 

  

Source Encoder  

 

Over the years, a variety of linear transforms have been developed which include 

Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete 

Wavelet Transform (DWT) and many more, each with its own advantages and 

disadvantages. One of the reversible transforms can be used as the source encoder 

based on its merits & demerits and the requirements of the application. 

 

Quantizer 

 

A quantizer simply reduces the number of bits required to store the transformed 

coefficients by reducing the precision. Quantization is a many-to-one mapping. 

Hence, it is a lossy & irreversible process and is the main source of compression 

in an almost all encoders. Either Scalar Quantization (SQ) or Vector Quantization 

(VQ) can be performed (applied) on transformed coefficients.  Both uniform and 

non-uniform quantizers can be applied depending on the application and problem 

at hand. 
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Entropy Encoder 

 

An entropy encoder further compresses the quantized values in a lossless manner 

to give better overall compression. It uses a model to accurately determine the 

probabilities for each quantized value and produces an appropriate code based on 

these probabilities so that the resultant output code stream will be smaller than the 

input stream. The most commonly used entropy encoders are the Huffman 

encoder and the Arithmetic encoder. But, simple Run-Length Encoding (RLE) has 

proven very effective for applications that require fast execution. 

 

1.5 Transform Coding 

 

A general transform coding scheme involves subdividing an n×n image into 

smaller N×N blocks and performing a unitary transform on each sub-image. A 

unitary transform is a reversible linear transform whose kernel describes a set of 

complete, orthonormal discrete basis functions. The goal of the transform is to de-

correlate the original signal, and there by the signal energy being redistributed 

among a small set of transform coefficients. In this way, many coefficients may 

be discarded after quantization and prior to encoding. 

 

Transform coding is implemented in four stages:  

• Image subdivision  

• Sub-image transformation  

• Coefficient quantization  

• Entropy encoding.  
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Logical modeling for a transform coding scheme is done in two steps: a 

segmentation step and a transformation step. The segmentation step involves 

subdivision of the image in bi-dimensional vectors, possibly of different sizes. 

The transformation step involves application of the chosen transform (e.g. KLT, 

DCT, Hadamard). Quantization can be performed in several ways. Most classical 

approaches use zonal coding or threshold coding. Zonal coding consists of scalar 

quantization of the coefficients belonging to a predefined area (with a fixed bit 

allocation). Threshold coding involves the choice of the coefficients in each block 

characterized by an absolute value exceeding a predefined threshold. Another 

possibility, that leads to higher compression factors, is to apply a vector 

quantization scheme to the transformed coefficients.  

 

The entropy coding produces the output bit stream. In most cases a classical 

Huffman coding or Arithmetic coding can be used successfully.  

 

The JPEG and MPEG standards are examples of standards based on transform 

coding.  

 

1.5.1 Transforms used in Transform coding 

 

A linear transformation matrix [W], that maps the data array X to produce a 

diagonal covariance matrix for the transformed variable Y, where 

X=[x1,x2,x3,….xN]
T
 is a vector having N pixel or data points. Then, 

Y = [W]
T
X                                             (1.6)                                

Each column vector wi of [W] is a basis of new vector space. So alternatively each 

element yi of Y is calculated as 
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                                               yi=wi
T
X                                                    (1.7)                                

The inverse transform is calculated as        

                                                           X=[W]Y                                                   (1.8) 

 

Karhunen-Loeve transform  

 

The Karhunen-Loeve transform [15] was originally introduced as a series 

expansion for continuous random processes by Karhunen and Loeve.  Hotelling 

first studied what was called a method of principal components, which is the 

discrete equivalent of the KL series expansion for random sequences. 

Consequently, the KL transform is also called the Hotelling transform or the 

method of principal components. For a real M×N image, the basis vectors of the 

KL transform are given by the orthonormalized eigenvectors of its autocorrelation 

matrix.  

 

The Karhunen-Loeve transformation has the general form 

 

                          ∑ ∑                 

   

   

   

   

                                                       

 

for which the kernel A(j,k;u,v) satisfies the equation 
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where         
      denotes the covariance function of the image array and 

       is a constant for fixed      .  The set of functions defined by the kernel 



Introduction to Still Image Compression 

 

Page 23 

 

are the Eigen functions of the covariance function and        represents the 

eigenvalues of the covariance function. It is usually not possible to express the 

kernel in explicit form. 

 

Discrete Cosine transform 

 

The discrete cosine transform (DCT) [13] expresses a finite sequence of data 

points in terms of a sum of cosine functions oscillating at different frequencies. 

DCTs are important to numerous applications in science and engineering, 

from lossy compression of audio (e.g. MP3) and images (e.g. JPEG) (where small 

high-frequency components can be discarded), to spectral methods for the 

numerical solution of partial differential equations. In particular, the DCT is 

a Fourier-related transform similar to the Discrete Fourier transform (DFT), but 

using only real numbers. DCTs are equivalent to DFTs of roughly twice the 

length, operating on real data with even symmetry. 

 

The forward and inverse Cosine transform is defined as 
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                   where C(0) = (2)
-1/2  

 and  C(w) = 1 for w = 1,2,…,N-1 

 

https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/MP3
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Spectral_method
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Even_and_odd_functions
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Discrete Sine transform 

 

The discrete sine transform (DST) [68] is a Fourier-related transform similar to 

the discrete Fourier transform (DFT), but using a purely real matrix. It is 

equivalent to the imaginary parts of a DFT of roughly twice the length, operating 

on real data with odd symmetry. 

 

The two dimensional Sine transform pair is defined as 
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Discrete Walsh-Hadamard transform 

 

The Walsh–Hadamard transform [58] (also known as the Hadamard 

transform,  Walsh transform, or Walsh–Fourier transform) is an example of a 

generalized class of Fourier transforms. It performs an orthogonal, symmetric, 

involutional, linear operation on 2
m 

real numbers (or complex numbers, although 

the Hadamard matrices themselves are purely real). The Hadamard transform can 

be regarded as being built out of size-2 discrete Fourier transforms (DFTs), and is 

in fact equivalent to a multidimensional DFT of size 2×2×…×2×2. It decomposes 

an arbitrary input vector into a superposition of Walsh functions. 

http://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Even_and_odd_functions
http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Walsh_function
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The forward and inverse transform kernels, g(x,y,u,v) and h(x,y,u,v), of Walsh-

Hadamard transform is as follows. 

                       
 

 
    ∑ ⌊                     ⌋

   
                     

 

where N=2
m
.  The summation in the exponent of this expression is performed in 

modulo 2 arithmetic and bk(z) is the k
th

 bit (from right to left) in the binary 

representation of z. The Pi(u) are computed using  

p0(u) = bm-1(u) 

p1(u) = bm-1(u) + bm-2(u) 

                                        p2(u) = bm-2(u) + bm-3(u)                                (1.16)  

  

pm-1(u) = b1(u) + b0(u) 

where the sums are performed in modulo 2 arithmetic. 

 

Discrete Wavelet transform 

 

Wavelets are functions defined over a finite interval and having an average value 

of zero. The basic idea of the wavelet transform [92] is to represent any arbitrary 

function (t) as a superposition of a set of such wavelets or basis functions. The 

discrete wavelet transform of function f(x,y) of size M×N can be expressed as 
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where    is an arbitrary starting scale and           coefficients define an 

approximation of        at scale   .  The   
         coefficients add 

horizontal, vertical and diagonal details for scales for     . 

 

            and       
       are the scaled and translated basis functions as 

follows. 
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Given    and   
 ,        is obtained by the inverse discrete wavelet transform 
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Mapped Real Transform 

 

A transform named Mapped Real Transform, originally M-dimensional Real 

Transform (MRT), was proposed by R. C. Roy et al. [135], represents 2-D signals 

in terms of real additions alone rather than using complex multiplications. This 

transform maps the data matrix into M matrices using real additions alone.  

 

Let the N×N data matrix be X and the corresponding MRT be       
   

 , then       
   

   

can be expressed as  
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The matrices       
   

  for p = 0,1…M-1 are the MRT matrices. 

 

The above transformation can be expressed in matrix form as given below 

[X] A
 [Y]   where 

[Y]= [[Y
(0)

], [Y
(1)

],…,[Y
(M-1)

]] 

A  [[A
(0)

], [A
(1)

],…,[A
(M-1)

]] 

 

[Y
(p)

] = [A
(p)

]   [X]  where   represents Kronecker Product 

 

 

where     [      
   

][ ]  is the sum of the products of corresponding elements of the  

two matrices and  each  [      
   

]  is an N×N matrix with elements   
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 Inverse MRT (IMRT) 

The inverse MRT relation is as follows 
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1.6 Image Compression Algorithms 

 

Most common image compression algorithms are explained below. 

 

1.6.1  JPEG : DCT-Based Image Coding Standard 

 

The Discrete Cosine Transform (DCT) [13] is one of the best transforms used in 

image compression. It is effectively the real part of the Fourier transform, offset 

and sampled at twice the rate so that it is calculated over the center of the pixels. 

The general form of 2-D DCT  is shown in Equations (1.11) and (1.12): 
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Figure 1.4: Diagram of the 5 DCT basis functions or primitives. 

The DCT basis functions, shown in Figure 1.4, are very similar to the basis 

functions found by Principal Component Analysis (PCA) [90], [67].  

 

JPEG is designed for compressing full-color or gray scale images of natural, real-

world scenes. To exploit this method, an image is first partitioned into non 

overlapped 8×8 blocks. A discrete Cosine transform (DCT) [52] & [48] is applied 

to each block to convert the gray levels of pixels in the spatial domain into 

coefficients in the frequency domain. The coefficients are normalized by different 

scales according to the quantization table provided by the JPEG standard 

conducted by some psycho visual evidence. The quantized coefficients are 

rearranged in a zigzag scan order to be further compressed by an efficient lossless 

coding strategy such as Run length coding, Arithmetic coding, or Huffman 

coding. The decoding is simply the inverse process of encoding. So, the JPEG 

compression takes about the same time for both encoding and decoding. The 

encoding/ decoding algorithms provided by an independent JPEG group [52] are 

available for testing real world images. The information loss occurs only in the 

process of coefficient quantization. The JPEG standard defines a standard 8×8 

quantization table [52], for all images which may not be appropriate. To achieve 

better decoding quality for various images with the same compression, by using 

the DCT approach, an adaptive quantization table may be used instead of using 

the standard quantization table. 
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1.6.2  Image Compression Using Wavelet Transform 

 

Over the past several years, the wavelet transform has gained widespread 

acceptance in signal processing in general and in image compression research in  

particular. In many applications wavelet-based schemes outperform other coding 

schemes like the one based on DCT. Since there is no need to block the input 

image and its basis functions have variable length, wavelet coding schemes at 

higher compressions avoid blocking artifacts. Wavelet-based coding [112] is more 

robust under transmission and decoding errors, and also facilitates progressive 

transmission of images. In addition, they are better matched to the HVS 

characteristics.  

Wavelet filters basically have two possible constraints: 

 Regularity: The sum of a regular wavelet‟s filter coefficients must be √  , 

as shown in Equation (1.28). 

 

                                                ∑      √                                              (1.28) 

where hi is the i
th

  filter coefficient, 

 Orthonormality (or perfect reconstruction): The inner product of 2 wavelet 

filters is 1 or 0, depending on the filter as shown below 

  

                                  ∑                                                          (1.29) 

where      {
              
              

                                (1.30) 

In image compression, the wavelet filters are first applied to the image in the 

horizontal direction and then in the vertical direction to produce images as in 

Figure 1.5. 
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Figure 1.5: Wavelet filtering. 

The four bands formed are referred as low-low (LL), low-high(LH), high-low 

(HL) and High-High (HH). The LL band still has image-like information and so it 

is possible to apply the set of wavelet filters, in the same way as applied to the 

original image. This process of dividing the image into sub-bands can be 

continued as far as desired, but for image compression, it is usually only 

continued to 4 or 5 levels. A typical final image is shown in Figure 1.6. 

 

 

Figure 1.6: Third stage of wavelet filtering. 

 

The actual information content of the sub-bands can be visualized by showing 

their average signal power, as shown in Figure 1.7. It shows that the wavelet 

transform is ideal for image compression, giving a high de-correlation, while also 

being orthogonal. 
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Figure 1.7: Power distribution produced by a wavelet transform. 

 

1.6.3  Vector Quantization 

 

A vector quantizer is composed of two operations. The first is the encoder, and the 

second is the decoder. The encoder takes an input vector and outputs the index of 

the codeword that offers the lowest distortion. The lowest distortion is found by 

evaluating the Euclidean distance between the input vector and each codeword in 

the codebook. Once the closest codeword is found, the index of that codeword is 

sent through a channel When the decoder receives the index of the codeword, it 

replaces the index with the associated codeword. 

 

The fundamental idea of VQ [50] for image compression is to establish a 

codebook consisting of code vectors such that each code vector can represent a 

group of image blocks of size m×m, (m = 4 is always used). An image or a set of 

images is first partitioned into m×m non overlapping blocks which are represented 

as m 2-tuple vectors, called training vectors. The goal of codebook design is to 

establish a few representative vectors. The encoding procedure is to look for a 

closest code vector in the codebook for each 4×4 block of an image to be encoded. 

An example of vector quantization for a binary image is shown in Figure 1.8. 
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Figure 1.8: Demonstration of simple vector quantization. 

 

In Figure 1.8 it was possible to manually quantize the vectors because of the 

simplistic situation, but with real images the number of vectors is huge. It is 

clearly not easy to find suitable vectors for a specific image.  

 

1.6.4  Fractal Compression 

 

The fractal compression works by exploiting self-similarity within the image. 

There are usually certain features within the image that are repeated at different 

resolutions. The fractal transform copies these features from a higher resolution 

onto features at a lower resolution, enhancing the image. Before this can be 

achieved, there needs to be some level of image approximation and this is 

produced by using a simple function to describe image blocks (as with the 

segmentation methods). It can be seen from Figure 1.9 that a larger parent block, 

with relative coarse features, can be shrunk onto the smaller child block 

improving the initial approximation. 

                                       ∑                                   
   
                (1.31) 

where     is the fractal coefficient and       is the parent shrunk block. 
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Figure 1.9: Fractal transform (without rotation considered). 

 

There has been a lot of research in the area of fractals, since the method was 

proposed by Barnsley and Jacquin [37] and there has been substantial 

improvement by Monro [79], [80] & [88], Jacquin [75] and Oien [49]. 

 

1.7 Comparison of Compression techniques 

 

There are certain advantages and disadvantages for various image compression 

techniques as shown in the Table 1.1.  

 

Table 1.1: Merits and demerits of various compression techniques 

Technique Advantages Disadvantages 

Wavelet 
High Compression Ratio, 

State-of-the-Art 

Coefficient Quantization, 

Bit Allocation. 

JPEG Previous Standard 
Coefficient Quantization, 

Bit Allocation, Blocking artifact. 

VQ Simpler Decoder 
Time Consuming, 

Codebook generation is tedious. 

Fractal 
Good mathematical encoding 

frame 
Slow Encoding. 
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1.8  Motivation 

 

The benefits of image compression include less required storage space and faster 

transmission of images. Today the image compression is being put to work in 

industries such as fax transmission, satellite remote sensing, and high definition 

television, to name but a few. 

 

In certain industries, the archiving of large number of images is required. A good 

example is the health industry, where the constant scanning and/or storage of 

medical images and documents take place. Image compression offers many 

benefits here, as information can be stored without placing large loads on system 

servers. Depending on the type of compression applied, images can be 

compressed to save storage space, or to send to multiple physicians for 

examination. And conveniently, these images can be decompressed when they are 

ready to be viewed, retaining the original high quality and details that medical 

imagery demands. 

 

In the security industry, image compression can greatly increase the efficiency of 

recording, processing and storage. For example, in a video networking or closed-

circuit television application, several images at different frame rates may be 

required. Time is also a consideration, as different areas may need to be recorded 

for various lengths of time.  

 

Regardless of industry, image compression has virtually endless benefits wherever 

improved storage, viewing and transmission of images are required. Even though 

many image compression techniques are available today, it is sure that the 

industries are in the search of better compression techniques. 
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In literature, several transforms have been employed for the compression of 

images, of which Discrete Cosine Transform (DCT) and Discrete Wavelet 

Transform (DWT) are popular. However, the DCT based compression scheme 

poses problems of slow decay rate of DCT coefficients and introduction of 

blocking artifacts and the DWT is not experimented with block based transform 

coding.  

 

MRT [135] is an alternate representation of a signal which is derived from 

Discrete Fourier Transform (DFT).  The computation of MRT coefficients 

involves only real additions, which is a good feature that can be exploited to 

reduce the computational overheads in real time applications involving image 

compression. Also, since MRT coefficients are formed from simple additions and 

subtractions of input data, each unique MRT coefficient signifies a particular 

manner in which input data are combined. Thus, the Unique MRT coefficients of 

image data are strength-indicators of different patterns in the image data. The 

MRT thus becomes a suitable tool for image analysis to determine the existence 

of well-defined patterns in images.  

 

Hence, this work aimed at finding the suitability of the Mapped Real Transform 

(MRT) in image compression applications. 

 

1.9  Organization of Thesis 

 

The thesis is organized in six chapters. 

 

Chapter 1 introduces various topics relevant to the research work on image 

compression.  Basic concepts about digital images, capturing digital images and  
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terminologies in digital image compression techniques, like image partition, 

transform, distortion measure etc. are discussed briefly.   The basic concept 

behind the image compression techniques and their classification are also 

mentioned.  Various image compression algorithms based on DCT, Wavelet, 

Vector Quantization and Fractals are illustrated and their merits and demerits are 

noted.  An introduction to Mapped Real Transform (MRT) is also presented. The 

chapter ends by discussing the motivation and organization of the thesis.   

A review of the past work in the field of digital image compression is presented in 

chapter 2.  The past work in transform coding, Vector quantization and Fractal 

image compression are reviewed. Various transforms used in image compression, 

such as KLT, DCT, DST, DWHT, DWT, FrDT and DrDT are reviewed 

subsequently. A review on the developments in MRT is also presented. Chapter 

concludes by discussing the merits and demerits of various transforms used in 

image compression. 

Chapter 3 focuses on the application of MRT in fixed block size transform coding.  

8×8 and 4×4 MRT based transform coding methods are presented.  A comparison 

between the two and also with DCT based method is incorporated. They are 

applied to both gray scale & color images and the performance is analyzed.  

Chapter 4 concentrates on the development of MRT based variable block size 

transform coding techniques.  The need for variable block size transform coders is 

discussed. A hybrid form of 8×8 & 4×4 MRT based transform coding technique is 

presented and its performance is evaluated and compared against fixed block size 

transform coders.  A compact form of MRT, called Unique MRT (UMRT) is 

explained subsequently.  An adaptive block size transform coding system is 
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implemented using UMRT based Quad-Tree partitioning of images and its 

performance is studied.  The performance of the adaptive block size transform 

coding system and the hybrid form of 8×8 & 4×4 MRT based transform coding 

are compared and the results are analyzed. A comparison with the DWT based 

approach is also presented. 

The development of a new compression technique “MRT based Adaptive 

Transform Coder with Classified Vector Quantization (MATC-CVQ)” is 

described in chapter 5. Initially, the Vector Quantization in MRT domain, using 

isometric transformations and Scaling, is implemented and its results are analyzed 

for merits and demerits. UMRT based criterion for identification and 

classification of edges present in image blocks are then discussed. A classified 

vector quantization scheme is implemented using these features.  Finally the new 

technique, “MRT based Adaptive Transform Coder with Classified Vector 

Quantization (MATC-CVQ)”, is implemented by integrating all these techniques 

with adaptive block size transform coding and its performance is compared 

against existing techniques. 

 

Summary and conclusions of the research work are narrated in chapter 6.  Scope 

for future work in this area is also examined in the chapter.  
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2.1 Brief History 

 

Morse code, invented in 1838 for use in telegraphy, is an early example of data 

compression based on using shorter codewords for letters such as "e" and "t" that 

are more common in English. Modern work on data compression began in late 

1940s with the development of information theory. In 1949 Claude 

Shannon and Robert Fano devised a systematic way to assign codewords based on 

probabilities of blocks. An optimal method for doing this was then found 

by David Huffman in 1951. Early implementations were typically done in 

hardware, with specific choices of codewords being made as compromises 

between compression and error correction. In the mid-1970s, the idea emerged of 

dynamically updating codewords for Huffman encoding, based on the actual data 

encountered. In late 1970s, with online storage of text files becoming common, 

software compression programs began to be developed, almost all based on 

adaptive Huffman coding. Abraham Lempel and Jacob Ziv suggested the basic 

idea of pointer-based encoding in 1977. Following the work by Terry Welch in 

the mid-1980s, the so-called LZW algorithm rapidly became the method of choice 

for most general-purpose compression systems. It was used in programs such as 

PKZIP, as well as in hardware devices such as modems. Digital images became 

more common in the late 1980s and standards for compressing them emerged. In 

the early 1990s, lossy compression methods also began to be widely used. Current 

image compression standards include: FAX CCITT 3 (run-length encoding, with 

codewords determined by Huffman coding from a definite distribution of run 

lengths), GIF (LZW), JPEG (lossy discrete cosine transform, then Huffman or 

arithmetic coding), BMP (run-length encoding, etc.), JPEG 2000 (lossy discrete 

wavelet transform). Typical compression ratios currently achieved for text are  

 

http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Shannon%2C%20Claude%20E.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Fano%2C%20Robert%20M.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Huffman%2C%20David%20A.
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Lempel%2C%20Abraham
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Ziv%2C%20Jacob
http://www.wolframscience.com/nksonline/index/names/search.cgi?SearchIndex=Welch%2C%20Terry%20A.
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around 3:1, for line diagrams and text images around 3:1, and for photographic 

images around 2:1 lossless, and 20:1 lossy.  

 

2.2 Transforms and Transform Coding 

 

It is very true that images, often used in a variety of computer and other scientific 

& engineering applications, are difficult to store and transmit due to their sizes. 

One possible solution to overcome this problem is to use an efficient digital image 

compression technique. An image is usually viewed as a matrix and the 

processing are performed on that matrix. Almost all the digital image compression 

systems use various mathematical transforms for compression. The compression 

performance is closely related to the performance of these transforms, in terms of 

energy compaction and spatial frequency isolation, by exploiting inter-pixel 

redundancies present in the image data. 

 

Most images have some degree of correlation between neighbouring pixels. 

Correlation is closely related to inter-pixel redundancy. It requires a reversible 

transform to remove the inter-pixel redundancy by de-correlating the image in a 

more compact manner [31] & [90]. Thus any image having the correlated pixels 

can be compressed using transform coding methods where the transform 

coefficients are highly de-correlated. An image transform can achieve a 

compression if the numbers of non-zero transform coefficients are smaller on 

average than the original pixels or data points. By the quantisation of the 

transform coefficients, lossy compression can be achieved [67]. An image 

transform aiming for compression should follow two properties: (a) inter-pixel 

redundancy reduction; and (b) isolation of spatial frequency. 
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In digital images the spatial frequencies are important as the low-frequency 

components correspond to important image features and the high-frequency ones 

to image details. High frequencies are a less important part of the images and can 

be quantised more heavily than low frequency coefficients to achieve low-bit 

rates. Also, the image transforms should be fast and simple, giving a choice for 

linear transformations [2], [8], [47], [67], [91] & [120].  

 

The optimum transform coder which minimizes the mean square distortion of the 

reproduced data for a given bit rate is the KLT [2]. Other transforms investigated 

for image or picture compression include DCT, piecewise Fourier Transform, 

slant transform, linear transform with block quantization and Hadamard transform 

[6], [9], [10], [12] & [14]. Though the energy compaction efficiency of the KLT is 

very suitable for compression, it is not used in real applications due to its 

computational complexity [9], [17] & [19] 

 

Transform coding has been the standard in image compression (e.g., JPEG [52], 

[72]), where the DCT is used because of its nice de-correlation and energy 

compaction properties [48].  

 

In [2] H. Hotelling, developed a method of principal components for removing the 

correlation from discrete random variable.  

 

Karhunen and Loeve, in [3], developed a continuous version of Hotelling’s 

transform in 1960’s.  

 

In [15], N. Ahmed and K. R. Rao explains the Karhunen-Loeve transform (KLT)  
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as a linearly reversible, orthogonal transformation which accomplishes the 

removal of redundancy by de-correlating the data block elements and is defined 

by Eigen values of covariance matrix.  

 

N. S. Jayant and P. Noll explained in [27] that the KLT minimizes the geometric 

mean of the variance of transform coefficients thus providing largest coding gain.  

 

From [3] & [30], it is understood that KLT is also known as Hotelling Transform 

or PCA (principal component analysis). The covariance matrix of an arbitrary data 

block is real and symmetric, so the real Eigen values and corresponding Eigen 

vectors can be found easily.  

 

K. R. Rao and P. C. Yip stated, in [130], that the orthonormal Eigen vectors are 

found by using Gram-Schmidt orthonormal process.  

 

From [121] & [134], it is understood that the basis vectors of KLT are calculated 

from the original image pixels and are therefore data-dependent. In practical 

applications these vectors should also be included in the compressed bit streams, 

making this transform less ideal for practical applications of image compression. 

 

N. Ahmed et al., in [13], explained Discrete Cosine transform (DCT) and found 

that it is very important for data compression.  

 

Through [48], K. R. Rao and P. Yip described the algorithms, advantages and 

applications of DCT.  
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K. R. Rao and P. Yip stated that DCT is a discrete time version of Fourier-cosine 

series and can be computed with fast-Fourier-transform-like algorithms. They 

found that DCT is one of the best transforms to be used in image compression. 

Unlike DFT, DCT is real valued and provides a better approximation of signals 

with fewer transform coefficients 

 

 From [13] and [48], it is understood that the DCT has as good energy compaction 

as KLT. Also, the advantage of DCT over KLT is that the former uses a fixed 

basis which is independent of data or signal. Also, DCT is a block-based 

transform so performance and complexity is compromised with the block size. 

 

In [52], G. K. Wallace explained JPEG standard and the JPEG algorithm. It is 

designed for compressing full-color or gray scale images of natural, real-world 

scenes. To exploit this method, an image is first partitioned into non overlapped 

8×8 blocks.  

 

The encoding/ decoding algorithms provided in [52] are available for testing real 

world images. G. K. Wallace gave a standard 8×8 quantization table also in it.  

 

In [72], W. B. Pennebaker and J. L. Mitchell explained the basic components of 

the JPEG standard, the DCT transform, scalar quantization, zig-zag scan, and 

Huffman coding. 

 

The DCT basis functions are very similar to the basis functions found by Principal 

Component Analysis (PCA). In [67] & [90] PCA is explained.  
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The DCT has been used as the standard for still image compression in the form of 

JPEG [44] for about 20 years.  

 

In [54], A. Hung and T. Meng proposed an improvement in the JPEG algorithm 

by designing Optimal quantizer step sizes for transform coders. 

 

S. Wu and A. Gersho in [74] reported Rate-constrained picture adaptive 

quantization for JPEG baseline coders.  

 

The baseline JPEG coding results are far from the best that JPEG offers. In [54] 

and [74] an optimal quantization matrix (Q- matrix) design is explained for 

obtaining much better performance with JPEG. 

 

In [87], K. Ramchandran and M. Vetterli suggested optimal fast thresholding for 

obtaining much better performance with JPEG. 

 

M. Crouse and K. Ramchandran proposed an improvement by joint optimization 

of thresholding and quantizer in [110]. 

 

Since the input image needs to be “blocked” in JPEG, correlation across the block 

boundaries is not eliminated. This causes noticeable and annoying “blocking 

artifacts” particularly at low bit rates.   

 

In [69], H. S. Malavar, proposed Lapped Orthogonal Transforms (LOT) based 

attempts to solve the problem of “blocking artifacts” by using smoothly 

overlapping blocks. Although blocking effects are reduced in LOT compressed 
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images, increased computational complexity of such algorithms do not justify 

wide replacement of DCT by LOT. 

[68] states that the Discrete Sine transform (DST) is a complementary transform 

of DCT. DCT is an approximation of KLT for large correlation coefficients 

whereas DST performs close to optimum KLT in terms of energy compaction for 

small correlation coefficients. DST is used as low-rate image & audio coding and 

in compression applications. 

The Discrete Wlash-Hadamard transform (DWHT) is the simplest transform 

implemented for any application and is a rearrangement of discrete Hadamard 

transform matrix.  

From [134], it is clear that the amount of energy compaction efficiency of DWHT 

is poorer than that of DCT or KLT, so it does not have a potential to use for data 

compression. 

H. Samet, in [26], explained the Quad-Tree and Related Data Structures. 

In [35], J. Vaisey and A. Gersho, reported a variable block-size image coding 

concept. 

P. Strobach, in [41], reported image coding based on Quad-Tree structured 

recursive least-squares approximation. 

In [64], J. Vaisey and A. Gersho, also put forward image compression with 

variable block size segmentation.. 
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E. Shusterman and M. Feder developed improved Quad-Tree decomposition 

algorithms for image compression in [82].  

G. J. Sullivan and R. L. Baker, in [85], suggested efficient quadtree coding of 

images and video. 

In [102], S. H. Yang and S. S. Yang introduced a new classified vector 

quantization for image coding with quadtree segmentation. 

A. A. Kassim et al., in [152], reported hierarchical segmentation based image 

coding using hybrid quad-binary trees.  

Recent years have witnessed explosive growth in research activities involving 

wavelet image coding.  

In [16], A. Croiser et al. stated that Wavelet transforms are based on sub-sampling 

high and low pass filters (Quadature Mirror Filters (QMF)). These filters are 

matched in such a way that they split the data into high and low pass bands 

without losing any information. 

S. G. Mallat, in [42], reported a theory of multiresolution signal decomposition 

and the wavelet representation and stated that the wavelet transform does not 

require blocking of signal or data points before transformation, resulting in 

removal of blocking artifacts even at very low bit rates. Also, wavelet-based sub-

band coding is robust under decoding error and has a good compatibility with 

human visual system.  
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M. Antonini et al. explained Image coding using wavelet transform in [59]. 

In [92], Y. T. Chan gives the basics of Wavelets and states that all the linear 

orthogonal transformations, i.e. KLT, DST and DCT, are blocked transformations 

which remove the correlation among the pixels or data points inside the block. 

These transforms do not take care of correlation across the block boundaries. He 

reported that Wavelets are functions defined over a finite interval and having an 

average value of zero. The basic idea of the wavelet transform is to represent any 

arbitrary function (t) as a superposition of a set of such wavelets or basis 

functions. These basis functions or baby wavelets are obtained from a single 

prototype wavelet called the mother wavelet, by dilations or contractions (scaling) 

and translations (shifts).  

Over the past several years, the wavelet transform has gained widespread 

acceptance in signal processing in general and in image compression research in 

particular.  It is more robust under transmission & decoding errors, and also 

facilitates progressive transmission of images. In many applications wavelet-

based schemes outperform other coding schemes like the one based on DCT. 

Since there is no need to block the input image and its basis functions have 

variable length, wavelet coding schemes even at higher compression ratios avoid 

blocking artifacts. In addition, they are better matched to the HVS characteristics.  

Wavelet filters have been designed for a wide range of applications and many 

different sets of filters have been proposed for different applications.  

In [39] & [60], I. Daubechies   and  in [61], A. Cohen suggested that in the case of 
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image compression, a common choice is constituted by the family of Daubechies 

orthonormal filters or the bi-orthogonal filters, which have the advantage of linear 

phase. 

DeVore et al., in [51] & [63], suggested effective methods to compress the 

wavelet transform coefficients. Originally the wavelet sub-bands were linearly 

quantized in some way to produce compression and this led to Vector 

Quantization being used to quantize the sub-bands [99].  

In [70], J. Forment and S. Mallat reported second generation compact image 

coding with Wavelets.  They introduced a compact image coding algorithm that 

separates the edge from the texture information. It allowed adapting the coding 

precision to the properties of the human visual perception. 

From [94], [104] & [138], it is understood that there are several ways to 

decompose a signal into various sub-bands using the wavelet transform, such as 

octave, adaptive and packet decompositions. The octave decomposition is the 

most used decomposition technique, which non-uniformly splits the bands, 

rendering the lower frequency part narrower and narrower while leaving out any 

further decomposition of higher frequency coefficients.  

In [77], J. M. Shapiro reported an embedded image coding using zero-trees of 

wavelet coefficients (EZW). The reported EZW algorithm was based on four key 

concepts: (1) a discrete wavelet transform or hierarchical sub band decomposition, 

(2) prediction of the absence of significant information across scales by exploiting 

the self-similarity inherent in images, (3) entropy-coded successive-approximation 
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quantization, and (4) universal lossless data compression which is achieved via 

adaptive arithmetic coding. 

A. Said and W. A. Pearlman proposed, in [105], a new fast and efficient image 

coding based on set partitioning in hierarchical tree (SPIHT), which provides even 

better performance than EZW. The image coding results were either comparable 

to or surpass previous results obtained through much more sophisticated and 

computationally complex methods. In addition, the coding and decoding 

procedures were extremely fast. 

M. J. Tsai et.al. reported a stack-run image coding, in [106]. This works by raster 

scanning within sub-bands, and therefore involves much lower addressing 

complexity than other algorithms such as zero-tree coding that require the creation 

and maintenance of lists of dependencies across different decomposition levels. 

Despite its simplicity, the proposed algorithm was competitive with the best 

enhancements of zero-tree coding. In addition, it performs comparably with 

adaptive sub-band splitting approaches that involve much higher implementation 

complexity 

In [109], Z. Xiong et al. suggested a DCT-based Embedded Image Coding 

technique.  If the SPIHT quantizer is used to quantize the DCT coefficients, a 

DCT-based embedded image coder will get generated. It observes that an 8×8 

DCT image representation can be thought of as a 64 –sub-band decomposition, 

and that each 8×8 DCT block can be treated as a depth-three tree of coefficients. 

Here, an 8×8 DCT block is treated as a depth-three tree of coefficients. 
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M. Crouse and K. Ramchandran stated, in [110], that for the standard 512×512 

Lena image at a moderate bit rate, the optimal JPEG coder gives even better peak 

signal-to- noise ratio (PSNR) than the original EZW coder proposed by Shapiro in 

[77].  

 

R. de Queiroz et al., in [111], suggested a Wavelet-Based JPEG-Like Image 

coding technique. When the wavelet transform is coupled with the baseline JPEG 

quantizer, the resulting coder becomes the one described in [111], where only the 

DCT in baseline JPEG is replaced by a three-level wavelet transform. The wavelet 

coefficients are rearranged into wavelet blocks and scanned into vectors before 

scalar quantization and Huffman coding. The Author reported a gain of about 1 

dB for Lena with the wavelet-based JPEG-like coder over the baseline JPEG. 

Here, the three-level wavelet transform coefficients are rearranged into blocks and 

scanned into vectors before scalar quantization and Huffman coding. 

 

 R. Buccigrossi and E. P. Simoncelli, proposed, in [112], an embedded predictive 

wavelet image coder (EPWIC), which is a more powerful coder that uses a within-

subband and inter-subband conditional statistical model for natural images. 

Specifically, it estimates the amplitude of wavelet coefficients based on the 

amplitudes of neighboring coefficients within the subband, and the amplitudes of 

coefficients in nearby spatial locations in other subbands. 

 

Z. Xiong et al., in [113], introduced space-frequency quantization for wavelet 

image coding. It concentrated on how spatial quantization modes and standard 

scalar quantization can be applied in a jointly optimal fashion in an image coder.  
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In [115], M. Boliek et al. proposed next generation image compression and 

manipulations using Compression with reversible embedded wavelets (CREW). 

 

R. C. Colderbank et al., in [122], stated that invertible wavelet transforms that 

map integers to integers have important applications in lossless coding. They 

presented two approaches to build integer to integer wavelet transforms. The first 

approach was to adapt the precoder, which is used in information transmission. 

They combined it with expansion factors for the high and low pass band in 

subband filtering. The second approach is built upon the idea of factoring wavelet 

transforms into so called lifting steps. That allowed the construction of an integer 

version of every wavelet transform. Finally, they used these approaches in a 

lossless image coder 

 

In [124], Z. Xiong et al. has done a comparative study of DCT- and wavelet-based 

coding for still images. Based on comparison of performances, it can be illustrated 

that the main factors in image coding are the quantizer and entropy coder rather 

than the difference between the wavelet transform and the DCT.  

 

A new image compression algorithm is proposed, in [125], by D. Taubman, based 

on independent embedded block coding with optimized truncation of the 

embedded bit-streams (EBCOT). The algorithm exhibits state-of-the-art 

compression performance while producing a bit-stream with a rich set of features, 

including resolution and SNR scalability together with a “random access” 

property. The algorithm had modest complexity and was suitable for applications 

involving remote browsing of large compressed images. 
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G. H. Golub and C. Reinsels stated, in [7], that singular-value decomposition-

based transformation has an optimal energy-compaction property, making it the 

most appropriate for compression in spite of computation complexity.  

 

C. S. McGoldrick, et al., in [95], found that in the case of singular-value 

decomposition (SVD), the singular values are image-dependent and must 

therefore be coded with the associated singular vectors as side information. 

McGoldrick et al. calculated singular values as well as singular vectors and the 

latter were coded by variable-rate vector quantizer. The optimal energy 

compaction property was exploited and utilized by McGoldrick et al.  

 

JPEG image coder based on DCT was superior to SVD-based method. Yang and 

Lu in [96] also used SVD in conjunction with vector quantization giving a 

superior method by reducing the computational complexity to that of DCT based 

method. However, with the invention of fast DCT algorithm by W. Chen et al. in 

[20], the technique proposed in [96] was not a preferred technique.  

 

Waldemar and Ramstad in [116] & [117] proposed hybrid KLT-SVD image 

compression using transform adaptation technique exploiting the local variation of 

images. This hybrid method was better than KLT based methods in terms of 

energy compaction but could not be sustained due to a large number of vectors to 

be coded.  

 

S. O. Aase et al., in [123], gave a critique on SVD-based image compression and 

pointed out the major drawback of using lossless SVD transform for image 
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compression. According to them, the singular vectors along with the singular 

values are stored for lossless reconstruction, which requires more space for image. 

 

In 2000, J. Chen [127] used rank approximation method for SVD-based lossy 

image compression. In rank approximation for SVD-based image compression an 

image of size N×N was transformed by SVD to obtain matrices UN×N, SN×N and 

VN×N, where S is a diagonal N×N matrix whose number of non-zero diagonal 

elements determines the rank “k” of the original matrix where k ≤ N . In this 

method a smaller rank is used to approximate the original image. The total storage 

space required to restore the original approximated image is 2Nk + k, where k≤N. 

So, by rank approximation method there is a restriction on reconstructed image 

quality for compressed image.  

 

B. Arnold and A. McInnes in [128] reported block-based adaptive rank 

approximation method similar to most of the popular image compression 

methods, to exploit the uneven complexity and correlation of image.  

 

The work reported by B. Arnold and A. McInnes was based on singular-value 

distribution of different sub-blocks in which higher ranks were used for complex 

sub-bands. Also, for the same storage space, smaller block sizes of sub-blocks 

produced better results. Arnold and McInnes further reduced rank of the blocks by 

rank-one update, in which the respective mean was subtracted from all the 

elements of the blocks and then SVD and adaptive rank approximation was used.  

 

Dapena and Ahalt, in [132], and Wongsawat et al., in [137], reported hybrid DCT-

SVD and modified hybrid DCT-SVD image coding algorithms in 2002 and 2004  
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respectively. Both methods were based on an adaptive selection of block 

transforms to be used on the basis of complexity and correlation of different 

blocks. For high correlation, SVD was used while for the rest, DCT was used.  

 

In 2003, a hybrid DWT-SVD-based image coding, which is also a block-based 

method, was reported by H. Ochoa and K. R. Rao [133] & [144], who used a 

criterion of threshold standard deviation for all blocks of Y component to 

determine whether DWT or SVD has to be used for any particular block. If 

standard deviation is high, rank-one update is used for that block, otherwise DWT 

method is used.  

 

In [140] and [141], H. Ochoa and K. R. Rao further extended this method for 

color image compression also.  

 

In 2007, Ranade et al., in [148], proposed a modified SVD image compression 

based on SSVD (shuffled SVD). In this work the block-based shuffling operator 

was used to get sub-blocks. The performance of SSVD was shown to be better 

than SVD in terms of space for the same quality but involved more complex 

operations. Also, the performance was not even near to DCT-based coding 

systems.  

 

As per [1], N. Wiener introduced a concept of fractional transforms in 1929.  

 

Subsequently, in [22], V. Namias introduced the fractional Fourier transform 

(FrFT) in 1980.  
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L. B. Almeida, in [84], explored the time-frequency localization property and 

provided a possible application of FrFT in image compression.  

 

In the case of fractional transform, one extra free parameter is also there besides 

time and frequency.  

 

In [126], Gerek and Erden proposed a discrete fractional cosine transform in 2000 

by taking the advantage of the relation between DCT and DFT, which was similar 

to the method of finding DFrFT by Ozaktas et al. in [107].  

 

K. Singh, through [139], explored the possible application of DFrCT and DFrFT 

in image compression. The compression performance of fractional transforms 

depends on the value of free parameter. However, any direct relation between free 

parameter and compression performance has not been reported. Hence, it is 

impractical to optimize the free parameter, which results in a recursive and a very 

slow process for image compression.  

 

All the transforms, as discussed above, are 2-D transforms implemented by using 

1-D separable architectures and are not suitable to preserve the image features 

with arbitrary orientation that is neither vertical nor horizontal [86]. In these cases, 

they result in large-magnitude high-frequency coefficients. At low bit rates, the 

quantization noise from these coefficients is clearly visible, in particular causing 

annoying Gibbs artifacts at image edges with arbitrary directions.  

 

Some work on wavelet and sub-band transform to incorporate directional 

information into transforms has been reported.  
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The lifting structure developed by W. Sweldens in [86] provides a good way to 

incorporate directional information into the wavelet transform.   

 

[86], [136] & [146] describes various techniques to incorporate directional 

information in to transforms based on lifting. 

 

Zeng and Fu [143] are the first authors to propose how to incorporate directional 

information into DCT. Their directional DCT is motivated by SA-DCT (shape-

adaptive DCT).  

 

Hao et al. in [147] proposed a lifting-based directional DCT-like transform for 

image coding and used it for image compression. The main problem with 

directional transforms is the selection of optimum direction. 

 

In [119], R. Gopikakumari modified the computation of N×N DFT in terms of 

2×2 DFT so as to minimize complex multiplications and presented a visual 

representation.  A parallel distributed architecture, based on the neural network 

concept, was developed involving real additions only in the first three layers and 

complex multiplication in the fourth layer.  

 

In the DFT computation, the data will be real values whereas DFT coefficients 

will be complex. In [119], 2-D DFT representation was modified in terms of real 

additions, which originally requires N/2 complex multiplication in the 

computation of each of the N
2
 DFT coefficients.  

 

Rajesh Cherian Roy et al. in [135] & [149] developed a new transform called, M-
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Dimensional Real Transform (MRT) based on the modified DFT computations 

reported in [119] by eliminating the complex multiplications in it.  

 

However, as per [149], the complex multiplications can be avoided if the signal is 

represented in terms of the signal components which would otherwise be 

multiplied with the exponential term in the DFT representation developed in 

[119].  

 

Hence in [135] & [149], a new transform, M-Dimensional Real Transform (MRT) 

was developed to represent 2-D signals in terms of real additions alone rather than 

using complex multiplications.   

 

Bhadran V, in [150], reported a visual representation of MRT coefficients in terms 

of 2×2 data and modified the hardware implementation reported in [119] to make 

it more efficient. Also, developed an algorithm to compute the unique MRT 

coefficients and place in UMRT matrix. 

 

K. Meenakshy, in [153], reported an application of MRT in the development and 

implementation of a CAD system to predict the fragmentation of renal stones 

based on texture analysis of CT Images. Also, M-dimensional real transform is 

renamed as Mapped Real Transform. 

 

Preetha Basu et al., in [154], modified the UMRT algorithm reported in [150] for 

N, a power of 2. 
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2.3 Fractal Compression 

 

There has been a lot of research in the area of fractals, since the method was 

proposed by Barnsley and Jacquin in [37] and there has been substantial 

improvement by Oien [49], Jacquin [75] and Monro in [57], [79], [80] & [88]. 

 

As per [66], Fractal image coding was introduced in late 1980s and early 1990s.  

 

In [76], M.F. Barnsley and L.P. Hurd reported that initially it is used for encoding/ 

decoding images in Encarta/Encyclopedia. 

 

As per [65] & [76], the most attractive property of fractal encoding is the 

resolution-independent decoding. One can enlarge an image by decoding an 

encoded image of smaller size so that the compression ratio may increase 

exponentially.  

 

In [83], Y. Fisher reported that fractal coding is based on the Collage theorem and 

the fixed point theorem for a local iterated function system consisting of a set of 

contraction affine transformations.  

 

Y. Fisher suggested two serious problems also that can occur in fractal encoding 

are the computational demands and the existence problem of best range-domain 

matches.  

 

The fractal encoding can be used with image segmentation methods to improve 

the underlying approximating function, and this has the advantage of being able to 
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use the fractal at different resolutions where necessary. Although fractal methods 

have had a reasonable commercial success in the form of Iterated System’s 

products, there is no comparison of how effective they are compared to plain 

image segmentation.  

2.4 Vector Quantization 

The most important work in VQ Compression is to design a versatile codebook. In 

[21], Y. Linde, et al. explained a codebook generation algorithm. 

N. M. Nasrabadi and R.A. King gave a good review of VQ, in [40]. 

In [50], A. Gersho, and R.M. Gray explained the fundamental idea of VQ for 

image compression. Its basic idea is to establish a codebook consisting of code 

vectors such that each code vector can represent a group of images.  

In [118], Y. W. Chen’s comparison indicates that a codebook developed based on 

LBG [21] algorithm generally has higher PSNR values over some other schemes 

despite its slow off-line training.  

It is clearly not easy to find suitable vectors for a specific image, but this problem 

can be solved by Lloyd [24] and Max [4] quantization. Lloyd-Max quantization 

allows an optimal set of vectors to be found for any set of test images. This gives 

a library of blocks that are easy to fit to the desired image. The method for finding  

the best library and how to apply this library has been developed in several works 

[40], [46], [50] & [55]. 
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In [99], P.C. Cosman proved that the Vector quantization can be applied directly 

to an image, but more favourable results can be obtained by applying it to a 

transformed image and wavelets have been shown to be effective. Although 

vector quantization could be confused as part of a wavelet transform, it stands 

alone as an image compression method. 

 

2.5 Conclusion 

 

On the basis of the above review, it can be concluded that any image transform 

applied for image compression should have minimum entropy, maximum coding 

gain, minimum quantization error, minimum truncation error, and moderate block 

size. Although the KLT shows highest energy compaction, it is a very complex 

transform and usually takes unfeasible time delay during the transformation. DCT 

shows as good performance as KLT though the advantage of DCT over KLT is 

that the former employs fixed basis which is independent of data or signal. Also, 

DCT is a block-based transform so performance and complexity is compromised 

with the block size.  

 

Disadvantage of DCT is its blocking effect for low bit rate applications. DST is 

also a block-based transform and can be used only for the image or data which 

have very small correlation. DWHT is very simple to implement but has a very 

poor performance in terms of energy compaction efficiency. The compaction 

efficiency of DWT is not very good compared to that of DCT but it can provide a 

satisfactory performance for the entire range of bit rates.  
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The blocking effect as shown in DCT is removed in the case of DWT as it is a 

global transform and not the block-based transform. The compression 

performance of fractional transforms depends on the value of free parameter and it 

is impractical to optimize the free parameter due to a recursive and very slow 

process, which is not favorable for compression. Directional discrete transforms 

are used at low bit rates when the quantization noise from the transform 

coefficients is clearly visible, in particular causing Gibbs artifacts at the image 

edges with arbitrary directions. The optimization of direction makes it unsuitable 

for compression. SVD transform has an optimum energy compaction property but 

needs the requirement of more storage space for lossless compression and has a 

high level of complexity if it is used globally.  

 

MRT [135] seems to be computationally simple. From the literature, it is evident 

that the unique coefficients of MRT are very powerful and contains all of the 

information in the input data. With its strong properties, MRT can become a good 

transform for image analysis and compression.  Researchers had not put much 

effort in developing image compression techniques based on MRT. This work 

explores the effectiveness of MRT based image compression techniques.   
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3      

MRT based Fixed Block size Transform 

Coding 
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3.1  Transform Coding 

Transform coding techniques use a reversible, linear mathematical transform to 

map the pixel values onto a set of coefficients, which are then quantized and 

encoded. The key factor behind the success of transform-based coding schemes is 

due to the fact that many of the resulting coefficients, for most natural images, 

have small magnitudes and can be quantized (or discarded altogether) without 

causing significant distortion in the decoded image. Different mathematical 

transforms, such as Discrete Fourier (DFT), Walsh-Hadamard (WHT), and 

Karhunen-Loeve (KLT), have been considered for the task. For compression 

purposes, the higher the capability of compressing information in fewer 

coefficients, the better the transform; for that reason, the Discrete Cosine 

Transform (DCT) had become the most widely used in transform coding 

techniques. 

 
Figure 3.1: A Transform Coding System, (a) Encoder and (b) Decoder 

 

A typical transform coding system is shown in Figure 3.1. Transform coding 

algorithms usually start by partitioning the original image into sub-images or  
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blocks of small size, usually 8×8. The transform coefficients are computed for 

each block, effectively converting the original 8×8 array of pixel values into an 

array of coefficients within which certain coefficients usually contain most of the 

information needed to quantize and encode (and eventually perform the reverse 

process at the decoder’s side) the image with little perceptual distortion. The 

resulting coefficients are then quantized and the output of the quantizer is used by 

a (combination of) symbol encoding technique(s) to produce an output bit stream 

representing the encoded image. The reverse process takes place at the decoder’s 

side, with the obvious difference that the ‘de-quantization’ stage will only 

generate an approximated version of the original coefficient values; in other 

words, whatever loss was introduced by the quantization process in the encoder 

stage is not reversible. 

 

3.1.1 Transform Selection 

 

Transform coding systems based on a variety of discrete transforms have been 

studied extensively in section 1.5.  The choice of a particular transform in a given 

application depends on the amount of reconstruction error that can be tolerated 

and the computational resources available.  Compression is achieved during the 

quantization of the transformed coefficients and not during the transformation 

step.   

 

Consider an image  (     ) of size N×N, whose forward discrete transform, 

 (     ) can be expressed in terms of the general relation 

                        (     )  ∑ ∑  (     ) (           )                      (   )
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for    0 ≤ k1, k2 ≤  N-1. 

 

Given  (     ),  (     )  can similarly be obtained using the general inverse 

transform relation 

 

                     (     )  ∑ ∑  (     ) (           )

   

    

   

    

                   (   ) 

for  0 ≤ n1, n2 ≤  N-1. 

 

In these equations, g(n1,n2,k1,k2) and h(n1,n2,k1,k2) are called forward and 

inverse transformation kernels or basis functions or basis images.  Y(k1,k2), for 

0≤k1,k2≤N-1 are called transform coefficients. The forward and inverse transform 

kernels determine the type of transform that is computed and the overall 

computational complexity & reconstruction error of the transform coding system 

in which they are employed. 

 

3.1.2 Sub-image size selection  

 

The sub-image size is a significant factor affecting transform coding error and 

computational complexity.  In most applications, images are subdivided so that 

the correlation (redundancy) between adjacent sub-images is reduced to some 

acceptable level. Usually the sub-image size, ‘N’, is an integer power of 2.  The 

latter condition simplifies the computation of the sub-image transforms.  In 

general, both the level of compression and computational complexity increase as 
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the sub-image size increases.  The most popular sub-image sizes are 4×4, 8×8, 

and 16×16. 

3.1.3 Bit Allocation 

The reconstruction error associated with the transform coding is a function of the 

number and relative importance of the transform coefficients that are discarded as 

well as the precision that is used to represent the retained coefficients.  In most of 

the transform coding systems, the retained coefficients are selected on the basis of 

maximum variance, zonal coding, or on the basis of maximum magnitude, called 

threshold coding.   

Zonal coding is based on the information theory concept of viewing information 

as uncertainty.  Therefore the transform coefficients of maximum variance carry 

the most image information and should be retained in the coding process.  Zonal 

coding is usually implemented by using a fixed mask for all sub-images.  

Threshold coding, however, is inherently adaptive in the sense that the location of 

the transform coefficients retained for each sub-image vary from one sub-image to 

another.  In fact, threshold coding is the adaptive transform coding approach most 

often used in practice because of its computational simplicity.   

There are three basic ways to threshold a transformed sub-image.  

 A single global threshold applied to all the sub-images

 A different threshold used for each sub-image; or

 The threshold is varied as a function of the location of each coefficient

within the sub-image.
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Bit allocation is the overall process of truncating, quantizing and coding the 

coefficients of a transformed sub-image.   

3.2 Transform coding using 8×8 MRT 

3.2.1 Unique MRT Coefficients 

As explained in [135], the raw MRT of a signal has a considerable amount of 

redundancy. For a two-dimensional signal of size N×N, the total number of MRT 

coefficients is N
3
/2 , from N/2 MRT matrices of size N×N. However, of these

N
3
/2 coefficients, only N

2
 coefficients are unique. Hence, in order to save memory

space and to make it simpler, it is necessary to eliminate the redundancy in the 

MRT matrices and retain only the unique coefficients so that a compact MRT 

representation is obtained.  

MRT coefficients are unique for certain values of k1 and k2: for k2 = 0 and all 

powers of 2 up to and including N/2 and all or certain values for k1 from among 

0,1,2,3,…,N- 1 depending on the value of p. Thus it is sufficient to compute the 

MRT coefficients for these specific values of k1, k2 and p. The values of k1, k2 

and p which yield unique MRT coefficients for an image block of size 8×8 are 

shown in Figure 3.2. 

Figure 3.2: Indices k1 k2 p of unique coefficients in 8×8 MRT matrix. 
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 In Figure 3.2, ’000’ means that the MRT coefficient at that position is formed 

from values of k1 = 0, k2 = 0, p = 0, and similarly for the other entries. [149]. 

3.2.1.1 Significance of Unique MRT coefficients 

Since MRT coefficients are formed from simple addition and subtraction of image 

data, each unique MRT coefficient signifies a particular manner of combination of 

image data and thus a unique pattern in the image domain. Thus, the N
2
 Unique

MRT coefficients of an N×N image block are in fact strength-indicators of N
2

different patterns in the image block. The MRT thus becomes a suitable tool for 

image analysis to determine the existence of N
2
 well defined patterns in an image.

Figure 3.3 shows the pattern associated with the MRT coefficient for      
( )

. The 

’+’ sign indicates that the image data at that position is an addend in the formation 

of this MRT coefficient, and ’-’ denotes a subtrahend. ’0’ indicates positions of 

image data that do not contribute to the MRT coefficient. In image blocks with 

strong vertical structure, this MRT coefficient will have a significant value.  

The N
2
 patterns can be considered to be the basis images of the MRT. An

important consideration here is that the number of image data elements which 

contribute to MRT coefficient formation is not equal for all MRT coefficients. 

This number can range from N
2 

downward to binary fractions of N
2
. This factor

may be used to perform the normalization of the MRT coefficient obtained from 

simple additions and subtractions of the image data. If this division is not 

performed in the forward transform, then it needs to be done while performing the 

inverse MRT [149]. 
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Figure 3.3: Template for the computation of MRT coefficient 
( )

3.2.2 Encoding 

The overall encoding process is explained in Figure 3.4. The major steps in the 

process are explained below 

Figure 3.4: Block diagram of 8×8 MRT based transform coder. 

 Partition the image into sub-images

As explained in section 3.1.2, size of the sub-image is a significant factor.   Since 

the most popular sub-image size is 8×8, the proposed method also adopts 8×8 as 

the size of the sub-image.  So, the image to be compressed is first partitioned into 

8×8 non-overlapping sub-images.   
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 Application of MRT to each sub-image

After the image to be compressed is partitioned into 8×8 non-overlapping blocks, 

8×8 MRT is applied to each block using Equation (1.22).   

For calculating 8×8 MRT, N should be replaced with 8 in the Equations (1.22), 

(1.23) and (1.24).  Application of 8×8 MRT to a sub-image generates 4 × 8×8 

MRT coefficients.   

 Identification of the unique  MRT coefficients

The MRT maps an 8×8 sub-image into 256 coefficients, of which only 64 are 

unique [135]. All the remaining coefficients are just repetitions or sign changed 

versions of the unique coefficients. The 64 unique MRT coefficients are selected, 

ignoring the remaining, as per indices given in Figure 3.2. The exact reproduction 

of the sub-image is possible using these unique MRT coefficients.   

 Implementation of Threshold Coding

The MRT based Image compression utilizes the 64 unique MRT coefficients to 

represent each 8×8 sub-image, for encoding. Certain coefficients even among 

these unique coefficients are irrelevant (section 1.2) for reproducing the original 

sub-image with some acceptable error. This irrelevancy can easily be removed 

either by zonal coding or by threshold coding.  The proposed method utilizes 

threshold coding, because it is inherently adaptive in the sense that the location of 

the transform coefficients retained from each sub-image varies from one sub-

image to another.  The underlying concept is that, for any sub-image, the 

transform coefficients of largest magnitude make the most significant contribution 

to the quality of the reconstructed sub-image.   
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The proposed algorithm uses single global threshold, as it is the computationally 

simplest method and the level of compression varies from image to image 

depending on the number of coefficients that exceed the global threshold.  This 

gives flexibility to the proposed algorithm as the compression levels can be varied 

by varying the threshold appropriately.  Value of the threshold can be chosen 

according to the required compression level and visual quality of reconstructed 

image.  

 Grouping the retained coefficients and their respective positions

The MRT coefficients that overcome the threshold in each block and their 

respective positions in the MRT matrices are stored in two linear arrays.  After the 

above process is applied to all the sub-images, the coefficient array contains all 

the retained MRT coefficients corresponding to all the sub-images and position 

array contains the positions of all the retained MRT coefficients.  Subsequently, 

these two linear arrays are subjected to entropy coding.  

 Symbol Encoding

Arithmetic coding and Huffman coding are the two major symbol encoding 

techniques currently in use. Either of the coding techniques can be used with the 

proposed algorithm, as both are producing almost the same results. 

Figure 3.5 shows the compression process in detail. 

3.2.3 Decoding 

The Decoding process is shown in Figure 3.6. The encoded bit stream received at 

the receiver is decoded and the coefficient array & the position array are  
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separated.  The coefficient array contains all the retained MRT coefficients and 

the position array contains the positions of all the retained MRT coefficients in the 

MRT matrices. The MRT matrices are formed for each sub-image by placing the 

unique MRT coefficients from the coefficient array with reference to the positions 

in the position array. The sub-image is reconstructed by applying the inverse 

MRT (IMRT) to the MRT matrices. Finally the output sub-image is placed in the 

corresponding position in the image. This process is repeated for all the sub-

images. 

Figure 3.5: Illustration of coding an 8×8 sub-image 
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Figure 3.6: Decompression block diagram 

3.2.4 Results and Analysis 

The transform coding technique developed using 8×8 MRT is simulated on 

MATLAB platform over intel(R) core TM(2) CPU T5600 1.83GHz processor, 

3GB RAM based system. The compression technique developed above is 

simulated using Lena (256×256) image for different values of threshold, from 100 

to 400 in steps of 50, and the results are tabulated in Table 3.1.   

Table 3.1:  Bpp and PSNR obtained for 8×8 MRT based transform coder for Lena (256×256) 

image for various threshold values 

Threshold 
% of compression bpp 

PSNR(dB) 

100 79.5393 1.6369 30.2151 

150 86.6009 1.0719 27.8763 

200 89.9725 0.8022 26.2880 

250 92.3851 0.6092 25.1379 

300 93.6525 0.5078 24.3103 

350 94.7740 0.4181 23.5874 

400 95.4840 0.3613 22.9757 
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For each threshold value, bpp, percentage of compression and PSNR are 

computed using Equations (1.1), (1.2) & (1.4) respectively.  Figure 3.7 shows the 

original and reconstructed Lena images for different values of threshold.  

Figure 3.7: Lena (256×256) (a) original and  (b) – (d) reconstructed after compressed using 

8×8 MRT based transform coder with thresholds 100, 150 & 200 

Figure 3.8: Threshold versus bpp for Lena (256×256) 
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      Figure 3.9: Threshold versus PSNR for Lena (256×256) 

The compression and PSNR achieved through the proposed coding technique for 

different values of threshold are graphically represented in Figure 3.8 and 3.9 

respectively.  As the threshold increases, both compression and PSNR decrease 

exponentially. Hence, the required PSNR and bpp can be achieved through proper 

selection of the value for threshold. The relation between bpp and PSNR is shown 

in Figure 3.10. 

Figure 3.10: bpp versus PSNR for image Lena (256×256) 
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The algorithm is applied to other standard gray scale images for a fixed threshold 

value of 150 and the results obtained are shown in Table 3.2.  The table shows 

that other standard gray scale images are also being compressed with similar 

results as that of Lena image. From the analysis it is clear that all types of general 

gray scale images can be compressed using this method. The selection of 

threshold is an important factor for obtaining an optimum compression with 

required quality of reconstructed image. 

Table 3.2:  Performance of 8×8 MRT based transform coder for various images for a fixed 

threshold value 

Image Threshold bpp PSNR Time(s) 

Lena 150 1.07 27.88 3.0181 

Cameraman 150 0.91 28.91 2.9815 

Ic 150 0.78 30.14 2.9847 

Eight 150 0.52 30.90 3.3771 

Rice 150 0.90 29.16 2.9943 

Bacteria 150 0.73 30.23 1.4585 

Tyre 150 0.90 28.90 2.1646 

The last column in Table 3.2 shows the time taken by the proposed algorithm for 

compressing various images.  The time is bit high because of the fact that the 

algorithm computes all 256 MRT coefficients corresponding to each 8×8 block in 

the input image, even though only 64 are unique. This is a computational 

overhead. 
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Templates of unique MRT coefficients, shown in Figure.3.11, are used to directly 

compute the unique MRT coefficients from the image data itself, so as to reduce 

the computational overhead.  It is sufficient to add/subtract/don’t care the pixel 

values of the sub-image corresponding to 1/-1/0 in the template, to compute the 64 

unique MRT coefficients of an 8×8 sub-image. The template based MRT 

computation also eliminates the requirement of computing the parameter ‘z’ in 

Equation (1.22). 

Figure 3.11: Templates for computing unique coefficients of 8×8 MRT 
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Table 3.3 shows the time taken by the proposed technique when the MRT 

computation is done through the direct method and template method. The 

template method is much faster than the direct method. 

Table 3.3: Time taken by the direct MRT and template based MRT methods to compress 

various images 

Image 

Time(s) 

(Direct) 

Time(s) 

(Template) 

Lena 3.0181 0.3922 

Cameraman 2.9815 0.3901 

Ic 2.9847 0.3987 

Eight 3.3771 0.4461 

Rice 2.9943 0.3961 

Bacteria 1.4585 0.1896 

Tyre 2.1646 0.2846 

3.2.4.1 Comparison between DCT and MRT based image compression 

techniques 

Presently DCT is the most common tool for block based transform coding 

techniques.  Hence, a comparison is made between the proposed technique and 

DCT based transform coding.  The results of the DCT based transform coding is 

obtained by developing an algorithm as in [58], as follows.  Initially, the image to 

be compressed is partitioned into 8×8 non overlapping sub-images.  Then for each 

sub-image, 128 is subtracted from all its elements and 8×8 DCT is applied to the 
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resulting sub-images.  The DCT coefficients are quantized using a specially 

designed fixed matrix called Z [58]. Then the first 4×4 [Virtual Block Size (VBS) 

=4] coefficients of each DCT matrix is stored in a linear array.  The linear array is 

entropy coded after the above process is applied to all the sub-images.  

The comparison between DCT and MRT based image compression techniques, 

presented in Table 3.4 shows that the MRT based image compression technique 

gives better PSNR for nearly equal or less bpp over baseline DCT based approach 

for some of the images. The values given in brackets, along with the name of 

images in column 1 of Table 3.4, is the threshold used for MRT based technique 

to get a compression equivalent to that of DCT based method. MRT based 

approach has the advantage over DCT based approach in compromising between 

quality and percentage of compression by varying threshold. The MRT based 

image compression technique, proposed here takes almost the same computation 

time compared to DCT based approach.  

Table 3.4:  A comparison of 8×8 MRT and DCT based transform coders 

Image 

(Threshold) 

bpp 
% of 

Compression 

Compression 

Time (s) 
PSNR (dB) 

DCT MRT DCT MRT DCT MRT DCT MRT 

Lena (195) 0.84 0.82 89.46 89.74 0.38 0.39 27.81 26.40 

Cameraman (200) 0.73 0.70 90.87 91.22 0.37 0.39 26.61 27.34 

Ic (180) 0.71 0.70 91.09 91.27 0.38 0.39 27.05 29.41 

Tire (170) 0.83 0.82 89.64 89.78 0.28 0.28 31.77 28.33 

Eight (150) 0.53 0.52 93.39 93.46 0.43 0.44 30.87 30.90 

Enamel (265) 0.78 0.77 90.25 90.39 0.59 0.59 27.31 25.00 

Cell (125) 0.46 0.45 94.29 94.42 0.16 0.17 37.74 33.41 

Bacteria (170) 0.69 0.68 91.39 91.50 0.17 0.19 31.28 29.72 

Rice (170) 0.82 0.82 89.79 89.76 0.37 0.39 37.57 28.50 

Nodules (140) 0.65 0.65 91.82 91.90 0.72 0.77 36.67 30.95 
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3.2.4.2 Application in images with higher resolution 

The above mentioned results are obtained when the proposed method is applied to 

images with resolution 256×256 or less.  The proposed technique can be applied 

to images with higher resolutions (ie, images with resolutions 512×512 or more).  

The performance of the proposed technique when applied to the Lena (512×512) 

image for different values of threshold is shown in Table 3.5.  Figure 3.12 shows 

the original Lena (512×512) image and a set of reconstructed images of Lena for 

values of threshold from 100 to 400 with step of 50. At higher compression ratios, 

threshold 350 or more, blocking artifacts are visible.   

Table 3.5:  Performance of  8×8 MRT based transform coder for Lena (512×512) image for 

various threshold values 

Threshold 

% of 

compression 
bpp PSNR(dB) 

100 90.3112 0.7751 32.2258 

150 93.5428 0.5166 30.4469 

200 94.9712 0.4023 29.1633 

250 96.0501 0.3160 28.1436 

300 96.7055 0.2636 27.2951 

350 97.2016 0.2239 26.6725 

400 97.5261 0.1979 26.1467 

The output of the proposed technique for various 512×512 images for a fixed 

threshold of 150 is shown in Table 3.6.  Figures 3.13 to 3.21 show the original and 

reconstructed version of various gray scale images for a fixed threshold of 150. 



MRT based Fixed Block size Transform coding

Page 82 

Figure 3.12: Lena (512×512) (a) original and (b) – (h) reconstructed after compressed using 

8×8 MRT based transform coder with threshold varied from 100 to 400 in a step of 50 

Table 3.6:  Performance of  8×8 MRT based transform coder for various 512×512 images for 

a fixed threshold 

Image(512x512) Threshold bpp PSNR Time(s) 

Lena 150 0.52 30.45 1.5688 

Baboon 150 1.32 25.87 1.6343 

Barbara 150 0.75 28.58 1.5921 

Goldhill 150 0.50 29.09 1.5679 

peppers 150 0.53 30.17 1.5502 

Couple 150 0.63 30.11 1.5821 

Elaine 150 0.40 29.40 1.5713 

Boat 150 0.63 28.89 1.5600 

Cameraman 150 0.49 31.13 1.5593 

Bridge and Stream 150 1.01 26.29 1.5672 
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Figure 3.13: Baboon (512×512) (a) original and (b) reconstructed after compressed using 8×8 

MRT based transform coder (threshold 150, bpp 1.32, PSNR 25.87) 

Figure 3.14: Barbara (512×512) (a) original and (b) reconstructed after compressed using 

8×8 MRT based transform coder (threshold 150, bpp 0.75, PSNR 28.58) 
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Figure 3.15: Boat (512×512) (a) original and (b) reconstructed after compressed using 8×8 

MRT based transform coder (threshold 150, bpp 0.63, PSNR 28.89) 

Figure 3.16: Bridge and stream (512×512) (a) original and (b) reconstructed after 

compressed using 8×8 MRT based transform coder (threshold 150, bpp 1.01, PSNR 26.29) 
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Figure 3.17: Couple (512×512) (a) original and (b) reconstructed after compressed using 8×8 

MRT based transform coder (threshold 150, bpp 0.63 , PSNR 30.11) 

Figure 3.18: Elaine (512×512) (a) original and (b) reconstructed after compressed using 8×8 

MRT based transform coder (threshold 150, bpp 0.40 , PSNR 29.40) 
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Figure 3.19: Goldhill (512×512) (a) original and (b) reconstructed after compressed using 

8×8 MRT based transform coder (threshold 150, bpp 0.50, PSNR 29.09) 

Figure 3.20: Peppers (512×512) (a) original and (b) reconstructed after compressed using 

8×8 MRT based transform coder (threshold 150, bpp 0.53, PSNR 30.17) 



MRT based Fixed Block size Transform coding 

Page 87 

Figure 3.21: Cameraman (512×512) (a) original and (b) reconstructed after compressed 

using 8×8 MRT based transform coder (threshold 150, bpp 0.49, PSNR 31.13) 

3.2.5 Application in Color images 

Since the number of bits required to represent color is typically three to four times 

greater than that employed in the representation of gray levels, data compression 

plays an important role in the storage and transmission of color images.  RGB 

model is preferred in this work because of its simplicity.  Images represented in 

the RGB color model consist of three component images, one for each color. As a 

result, each color plane can be compressed separately just like a single gray level 

image.   

The Table 3.7 shows the results of compression for certain color images using the 

proposed algorithm with the value of threshold as 150.   Figure 3.22 shows the 

original and decompressed versions of various color images like, Lena, Baboon, 

Crown and Peppers. 
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Table 3.7:  Performance of  8×8 MRT based transform coder for color images 

Image bpp PSNR 

Lena 1.43 30.62 

Crown 1.00 33.70 

Baboon 3.87 25.93 

Peppers 1.52 30.24 

3.3 Transform coder based on 4×4 MRT 

The 8×8 MRT based coding technique, discussed in section 3.2, introduces 

blocking artifacts in the reconstructed image for higher compression ratios (i.e., 

for lower bpp).  This will be a major problem when bpp is below 0.4.  Also, the 

Table 3.4 shows that the performance of the 8×8 MRT based coder is lower than 

that of DCT based approach for certain images. These problems can be solved by 

choosing a smaller size for the sub-images. So the sub-image size is chosen as 

4×4. 

The technique used in 4×4 MRT based transform coder is the same as that used in 

8×8 MRT based transform coder.   



MRT based Fixed Block size Transform coding 

Page 89 



MRT based Fixed Block size Transform coding

Page 90 

Figure 3.22: (a) – (d) Original Color images and (e) – (h) their reconstructed versions after 

compressed using 8×8 MRT based transform coder 
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3.3.1 Unique Coefficients in 4×4 MRT matrices 

It is quite evident from the MRT matrices that a majority of its coefficients are 

redundant.  The MRT of a 4×4 image data contains 32 coefficients of which only 

16 are unique (
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1,3Y  and 
)1(

1,2Y ). The templates for computing these unique coefficients of 

4×4 MRT are shown in Figure 3.23.  

Figure 3.23: Templates for the computation of the 16 unique coefficients of 4×4 MRT 
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It is sufficient to add/subtract/don’t care the pixel values of the sub-image 

corresponding to 1/-1/0 in the template, to compute the 16 unique MRT 

coefficients of a 4×4 sub-image. 

3.3.2 Encoding 

The image is partitioned into 4×4 sub-images. The 16 unique MRT coefficients 

corresponding to each sub-image are computed, using the templates discussed in 

section 3.3.1, and placed in a 4×4 matrix. Irrelevancy reduction is performed on 

these unique MRT coefficients by the application of a fixed threshold. The 

threshold should be selected according to the required compression level and 

visual quality of the reconstructed image.  Typically, the value of the threshold 

can be varied from 50 to 400 as per the requirement of the application in which 

this compression scheme is used.    Two linear arrays are formed, for the image, 

from the value and position of the unique MRT coefficients that overcome the 

threshold.  The resulting two arrays are then encoded separately using simple 

Arithmetic encoding. The proposed coder is shown in Figure 3.24.   

Figure 3.24: The 4×4 MRT based transform coding scheme. 
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3.3.3 Decoding 

In the decoding process, both the linear arrays (coefficient and position) are 

decoded using Arithmetic decoding.  The MRT matrices are formed, for each sub-

image, by placing the unique coefficients from the coefficient array with reference 

to the positions in the position array and deriving the redundant coefficients using 

the relations,  
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2,2Y =0. The output sub-images are derived through inverse MRT. 

3.3.4 Results and Analysis 

The transform coder discussed above is simulated and the results for the ‘Lena’ 

(512×512) image under different values of threshold are shown in Table 3.8. The 

selection of threshold is very crucial for getting a pre-determined compression 

ratio.  Figure 3.25(a) shows the original ‘Lena’ image and Figures 3.25(b) to (i) 

show the reconstructed images corresponding to the threshold values 50, 100, 150, 

…, 400 respectively.  

The transform coder is simulated for various images of size 512×512 for a fixed 

threshold of 150 and the quality of the corresponding reconstructed image is 

represented in terms of bpp & PSNR as given in Table 3.9.   
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Table 3.8: Performance of 4×4 MRT based transform coder for Lena image for various 

threshold values 

Threshold 
bpp 

PSNR 

50 0.91 33.25 

100 0.58 31.18 

150 0.44 29.61 

200 0.38 28.63 

250 0.34 28.00 

300 0.32 27.62 

350 0.31 27.35 

400 0.30 27.15 

Table 3.9:  Performance of  4×4 MRT based transform coder for various images  for a fixed 

threshold 

Image(512x512) Threshold bpp PSNR Time(s) 

Lena 150 0.44 29.61 1.4418 

Baboon 150 0.76 24.28 1.4832 

Barbara 150 0.61 27.03 1.4547 

Goldhill 150 0.43 28.60 1.4401 

peppers 150 0.46 29.98 1.4459 

Couple 150 0.51 29.16 1.4635 

Elaine 150 0.39 29.63 1.4592 

Cameraman 150 0.45 30.76 1.4395 

Boat 150 0.50 28.29 1.4402 

Bridge and Stream 150 0.63 25.21 1.4434 
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As it is observed from the reconstructed images of Lena, the blocking artifacts 

present in the 8×8 MRT based technique are reduced to a large extent.   

Figure 3.25: Lena (512×512) (a) original and (b) – (i) reconstructed after compressed using 

4×4 MRT based transform coder with bpp 0.91, 0.58, 0.44, 0.38, 0.34, 0.32, 0.31 and 0.30 

respectively 

3.3.5 Application in Color images 

The change in block size of the transform coder from 8×8 to 4×4 is applied on 

color images to analyze the effect.  The simulation results of the proposed 
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algorithm on various color images are tabulated in Table 3.10. Figure 3.26 shows 

the original and decompressed versions of various color images, using the 

proposed algorithm, for a fixed threshold of 150. 

Table 3.10: Performance of  4×4 MRT based transform coder for color images 

Image bpp PSNR 

Lena 1.41 30.87 

Crown 1.06 33.82 

Baboon 3.92 25.96 

Peppers 1.47 30.31 

The analysis of the simulation results shows that this algorithm can be used to 

compress all types of gray scale and color images.  The value of threshold 

determines the compromise between bpp and PSNR.   

A comparison between the proposed coder and the DCT based technique for a 

given bpp is shown in Table 3.11. On analysis of the table, it is clear that the 

proposed 4×4 MRT based technique performs equal to or better than the DCT 

based technique for 6 out of 13 images.   

A comparison between proposed coding scheme using 4×4 MRT and 8×8 MRT is 

shown in Table 3.12.  From the table it is quite evident that the proposed 4×4 

MRT gives better performances for almost all images.   
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Figure 3.26: (a) – (d) Original Color images and (e) – (h) their reconstructed versions after 

compressed using 4×4 MRT based transform coder 
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Table 3.11:  Comparison between 8×8 DCT and 4×4 MRT based methods 

Image (Threshold) bpp PSNR (DCT) PSNR (MRT) 

Barbara (120) 0.74 25.58 28.00 

Baboon (130) 0.93 23.99 25.00 

Couple (90) 0.70 27.89 31.31 

Enamel (135) 0.78 27.31 29.56 

Boat (85) 0.76 30.10 30.48 

Bridge and stream (105) 0.95 26.79 26.79 

Goldhill (70) 0.75 31.42 31.22 

Lena (83) 0.65 34.00 31.95 

Peppers (75) 0.67 32.28 32.23 

Cameraman (80) 0.63 35.75 33.21 

Elaine (60) 0.66 32.76 31.45 

Alumgrns (75) 0.50 40.99 36.44 

Satelite_image (105) 0.96 27.76 27.52 

Table 3.12: Comparison between 8×8 MRT and 4×4 MRT based methods 

Image 

PSNR(dB) 

0.3 bpp 0.5 bpp 0.75 bpp 

8×8 4×4 8×8 4×4 8×8 4×4 

Lena 27.68 27.05 30.18 30.27 32.03 32.72 

Baboon 21.42 21.13 22.53 22.71 23.60 24.25 

Peppers 27.43 26.52 29.86 30.41 31.55 32.71 

Goldhill 27.25 26.68 29.04 29.16 30.34 31.22 

Couple 26.47 25.87 28.82 29.16 30.86 31.70 

Cameraman 28.55 26.79 31.20 31.47 33.35 34.25 

Boat 25.94 25.19 27.88 28.29 29.48 30.39 

Elaine 28.46 28.37 29.93 30.60 31.15 31.57 
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Figure 3.27 shows the variation of PSNR with respect to bpp for the two block 

sizes corresponding to Lena image. A careful observation of the Table 3.12 

reveals that, for all the images, at higher bit rates, 4×4 MRT based technique gives 

better performances and at lower bit rates 8×8 MRT based technique gives better 

performances.  This is because, at lower bit rates, the threshold will be high. As a 

result, only the DC coefficient needs to be retained for each sub-image.  In the 

case of 8×8 MRT based technique only one DC coefficient is present in an 8×8 

sub-image whereas in 4×4 MRT based approach four DC coefficients will be 

involved for a sub-image of size 8×8 and are to be retained.  Hence, the 8×8 MRT 

based technique performs better than 4×4 MRT based approach at lower bpp. 

Also for images having lesser gray scale variations, the 8×8 MRT based technique 

performs better than 4×4 MRT based technique. 

Figure 3.27:  Performance comparison of 4×4 and 8×8 MRT based coders for Lena image 

A hybrid transform coder, utilizing a combination of 4×4 and 8×8 sub-images, 

can improve the performance of MRT based transform coding technique by 

incorporating the good features of both techniques discussed above. The next 

chapter deals with the implementation of such a coder.  
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4     
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4.1 Need for Variable block size Transform Coders 

Majority of natural images can be segmented into regions of high and low detail. 

Since high detail regions are intrinsically less compressible than regions of low 

detail, it is very attractive to implement a variable block size image coding 

scheme that varies the size of the sub-image according to the local detail. 

Traditional coding schemes, such as transform coding and Vector Quantization, 

break an image into sub-images prior to the actual encoding. Hence, if the block-

size is too small, it is difficult to take advantage of the fact that large areas of the 

image may consist of low detail. And if the block-size chosen is very high, the 

large non-uniform areas of the image may not be segmented into smaller uniform 

areas. The block-size in transform coding is usually large enough to meet the 

above mentioned barriers. However, when the block size is kept constant, as is the 

case with most of the transform coding schemes, it is impossible to do an 

adequate job of isolating the high detail regions. The solution to this problem is to 

segment an image into blocks of varying sizes. Large blocks are used in large 

regions of low detail, and small blocks when the detail gets high. 

Transform-based image coding algorithms have been the object of intense 

research during the last three decades. Eventually they have been selected as the 

main mechanism of data compression in the definition of digital image and video 

coding standards. A transform-based image coding method involves subdividing 

the original image into smaller N×N blocks of pixels and applying a unitary 

transform, such as DCT, on each of these blocks. In general, once the value of N 

has been selected for a particular algorithm, it remains fixed. In JPEG, for 

instance, the value of N is 8, and thus the input image is divided exclusively into 

blocks of 8×8 pixels.  
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The fact that image statistics may be inhomogeneous and vary from area to area is 

not taken into consideration in fixed block size image coding scheme. Some areas 

of an image may have only smooth changes and contain no high contrast edge. In 

such areas, higher compression can be obtained by using a larger block size. 

However, in areas where high activities and contrast edges are present, a 

transform of a smaller block size should be used to obtain better visual quality. 

Therefore, in order to yield a better tradeoff between the bit rate and the quality of 

decoded image, a transform coding system should vary the block size so as to 

truly adapt to the internal statistics of the image in different areas.  

4.2  Hybrid Coder using 4×4 and 8×8 MRT 

Transform coding based on 8×8 MRT alone and 4×4 MRT alone are discussed in 

chapter 3.  The results reveal that at higher bit rates, 4×4 MRT based technique 

gives better performances and at lower bit rates 8×8 MRT based technique gives 

better performances.   For exploiting the advantages of both the coders discussed 

in chapter 3, the use of a technique which combines 4×4 and 8×8 MRT is 

proposed. 

4.2.1 The Concept 

The homogeneous portions of the image should be segmented into 8×8 sub-

images and the inhomogeneous portions should be partitioned into 4×4 sub-

images. Hence, there should be a criterion for deciding whether a portion of the 

image is homogeneous or not.  Several measures can be taken, like, standard 

deviation, mean difference etc., as this criterion. The difference between the 
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maximum pixel value and the minimum pixel value within the area under 

consideration is a simple and effective criterion for the decision making.   

4.2.2  Implementation 

The compression process starts by tiling (segmenting) the image into non-

overlapping 8×8 sub-images.  The difference between the maximum pixel value 

and minimum pixel value within each sub-image is computed.  If the difference is 

less than the segmentation threshold ts, the current sub-image is considered to be 

of uniform nature and it should be transform coded without any further 

segmentation as in section 3.2.2. If the difference is greater than or equal to the 

threshold ts, the given 8×8 sub-image is considered to be of non-uniform nature 

and it should further be segmented into four 4×4 sub-images. These four 4×4 sub-

images are individually transform coded as in section 3.3.2.  The above process is 

repeated for all the 8×8 sub-images in the image and the resulting coefficient and 

position vectors are coded in binary using Arithmetic encoding. 

The unique coefficients of the MRT are directly computed from the image data 

itself by using templates shown in Figure 3.11 and 3.23.  The proposed coder is 

shown as a flowchart in Figure.4.1.   

4.2.3  Simulation Results 

A computer simulation of the flowchart shown in Figure 4.1 is carried out using 

MATLAB to study the performances and efficiency of the proposed hybrid 

transform coding system. The simulation is carried out for gray scale images and 

color images.  The input images have resolution of 8 bits per pixel and the image 
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size is 512×512. From various trial & error experiments based on section 4.2.2 

proved that the segmentation threshold ts can be chosen as 25.  The compression 

threshold tc is selected as 150 (as in sections 3.2 & 3.3) for both block sizes 8×8 & 

4×4. The quantized coefficients are entropy coded using Arithmetic coding. Table 

4.1 shows the simulation results for various gray scale images.  

Figure 4.1: Flow chart of Hybrid Coder using 4×4 and 8×8 MRT 
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Table 4.1: Performance of Hybrid Coder using 4×4 and 8×8 MRT 

Image Threshold (tc) bpp PSNR (dB) 

Lena 150 0.3923 29.5766 

Baboon 150 0.7584 24.2795 

Barbara 150 0.5681 26.9981 

Goldhill 150 0.4162 28.5866 

Peppers 150 0.4179 29.9555 

Couple 150 0.4928 29.1391 

Elaine 150 0.3737 29.6106 

Enamel 150 0.6489 28.8857 

Cameraman 150 0.3868 30.8105 

Boat 150 0.4812 28.2918 

Bridge and Stream 150 0.6264 25.2091 

4.2.4 Performance Comparison 

Performance of the proposed hybrid coder is compared with that of the fixed 

block size transform coders, discussed in chapter 3, and is shown in Table 4.2.  It 

can be seen from Table 4.2 that the proposed MRT based hybrid block size 

transform coding system using 8×8 and 4×4 MRT produces better performance at 

lower and higher bit rates for almost all images.  Figure 4.2 shows the Original 

Lena image and its compressed (at bpp of 0.3) versions using the proposed 

variable block sized coder and fixed block sized coders.  The proposed coder 
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gives a PSNR of 27.98dB while the fixed block size coders using 8×8 MRT and 

4×4 MRT give PSNR of 27.68dB and 27.05dB respectively. The performance 

comparison is plotted in Figure 4.3. 

Figure 4.2: (a) Original Lena (512×512) image (b) – (d) reconstructed versions after 

compressed at 0.30 bpp using hybrid coder, 8×8 MRT based transform coder and 4×4 MRT 

based transform coder respectively. 
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Table 4.2: Comparison of the hybrid coder with fixed block size transform coders 

Image 

PSNR(dB) 

0.3 bpp 0.5 bpp 0.75 bpp 

8×8 4×4 Hybrid 8×8 4×4 Hybrid 8×8 4×4 Hybrid 

Lena 27.68 27.05 27.98 30.18 30.27 30.83 32.03 32.72 32.99 

Baboon 21.42 21.13 21.13 22.53 22.71 22.71 23.60 24.25 24.25 

Peppers 27.43 26.52 27.48 29.86 30.41 30.95 31.55 32.71 32.86 

Goldhill 27.25 26.68 26.98 29.04 29.16 29.28 30.34 31.13 31.20 

Couple 26.47 25.87 25.94 28.82 29.16 29.21 30.86 31.70 31.80 

Cameraman 28.55 26.79 28.63 31.20 31.47 32.56 33.35 34.25 34.69 

Boat 25.94 25.19 25.49 27.88 28.29 28.45 29.48 30.39 30.52 

Elaine 28.46 28.37 28.50 29.93 30.60 30.65 31.15 31.57 31.57 

Figure 4.3:  Performance comparison of MRT based fixed block size and hybrid techniques 

for Lena image 
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4.2.5 Application in Color Images 

The proposed hybrid algorithm is applied on various color images and the results 

are tabulated in Table 4.3. Figure 4.4 shows the original and decompressed 

versions of various color images using the proposed algorithm for a compression 

threshold (tc  ) of 150 for hybrid coder and for 8×8  & 4×4 coders, threshold is 

varied to obtain the same bpp as in hybrid coder.  

Table 4.3: Performance of hybrid coder in color images 

Image bpp 
PSNR 

Hybrid 8×8 4×4 

Lena 1.34 30.83 30.52 30.83 

Crown 1.12 33.84 33.75 33.85 

Baboon 3.94 25.98 25.96 25.98 

Peppers 1.49 30.33 30.22 30.33 

4.3 MRT based Adaptive block size Transform Coder (MATC) 

Recently, variable block-size (VBS) image coding techniques have received 

increasing attention due to their superior adaptability to local image 

characteristics. Conventional block-based image compression approaches, such as 

JPEG & Vector Quantization (VQ), simply partition image into fixed-size blocks 

and seek for spatial-domain and/or frequency-domain redundancy in the blocks. 

Despite the optimality achieved within each block, fixed block size techniques 

lack the ability to reduce the bit-rate, as VBS does, to encode low-detailed regions 

on the images using large blocks.  

Segmenting images into blocks of variable sizes in the VBS techniques is usually 
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accomplished by using the well-known Quad-Tree (QT) decomposition. 

Researchers have applied it with several block-based coding schemes. QT 

decomposition is favourable for its tree structure representation, which allows 

efficient bit storage for encoding the tree structure, and straightforward binary 

decision on split nodes.  

The unique MRT coefficients are computed using templates, for encoding the sub-

images, in hybrid coding technique discussed in section 4.2.  The fixed block size 

transform coding techniques and the hybrid technique discussed earlier needs the 

template representation for block sizes 4×4, 8×8 or both.  Whereas in variable 

block size coding technique, block sizes vary in powers of 2 from size of the 

image to the smallest block size 2×2.  There will be N
2
 templates of size N×N for 

any block size N×N, which demands large memory to store and takes more 

retrieval time. So, the existing template method is not suitable for adaptive block 

size transform coding techniques.  Hence, an alternative method, Unique Mapped 

Real Transform (UMRT) [154], is adopted for computation of unique MRT 

coefficients. 

4.3.1 Unique Mapped Real Transform (UMRT) 

Both MRT and MRT based Image coding are discussed in previous chapters. The 

MRT representation shows a specific pattern of redundant elements in the MRT 

matrices. A compact unique MRT (UMRT) representation, a single matrix of size 

N×N, is derived by eliminating the computation of the redundant elements present 

in the MRT representation [154]. Different algorithms are proposed for computing 

and placing the N
2
 UMRT coefficients in an N×N matrix [150] & [154].  
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Figure 4.4: (a) – (d) Original Color images and (e) – (h) their reconstructed versions after 

compressed using hybrid transform coder 
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4.3.2 UMRT Based Criterion to segment images 

As discussed in the previous section, the UMRT is a compact form of MRT.  

Since UMRT coefficients are computed from simple addition and subtraction of 

selected image data, each UMRT coefficient signifies a particular manner of 

combination of image data under consideration. Consequently, each UMRT 

coefficient signifies a unique pattern in the image domain. Thus, the N
2
 UMRT 

coefficients of an N×N image block are, in fact, strength-indicators of N
2
 different 

patterns in the image block. These N
2
 patterns can be considered to be the basis 

vectors of the UMRT.  The UMRT thus becomes a suitable tool for image 

analysis to determine the existence of N
2
 well defined patterns in an image. Figure 

4.5 shows the patterns associated with the computation certain UMRT coefficients 

for an 8×8 image data. The symbol ’1’ indicates that the image data at that 

position is an addend in the formation of that particular UMRT coefficient, and   

’-1’ denotes a subtrahend. ’0’ indicates positions of image data that do not 

contribute to that UMRT coefficient. From the patterns of UMRT coefficients, as 

shown in Figure 4.5, it can be observed that the 64 UMRT coefficients signify 64 

different patterns in the image block. Thus, by examining the strength of these 

UMRT coefficients, the homogeneity of the image block can be identified.  

Thus the magnitude of the UMRT coefficients, other than the DC coefficient, can 

be used as measure of the homogeneity of the image block under consideration.  If 

the magnitude of any of the UMRT coefficients, other than the DC coefficient, of 

a particular N×N image block is higher than a threshold value ts, then the image 

block contains edge or inhomogeneous area and is to be partitioned into four 

N/2×N/2 blocks.  This process is shown in Figure 4.6. Experiments proved that 

100 is a good value for the segmentation threshold ts.   
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Figure 4.5: Examples of templates for the computation UMRT Coefficients 

 

4.3.3 Quad-Tree segmentation of images 

 

A Quad-Tree is a data structure that can be used to efficiently address regions of 

different size in an image. This technique can thus be applied to problems where 

the segmentation of images has to be done in regions that are of homogeneous in 

some property. Other methods of image segmentation such as Region Growing do 

better jobs of isolating regions of constant pixel statistics; however, in these 

techniques the shape of the regions is determined solely by the image being 

examined and this implies that an excessive number of bits are needed to describe 

the shape and location of each region. This large amount of overhead is 

unacceptable in applications where it is necessary to code an image efficiently and 

there are not enough bits left over to encode detailed regions with good fidelity. 

With structures such as Quad-Trees, a small overhead rate is achieved by 
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decomposing the image into sub-images whose size, shape and location are 

predetermined. 

 

 

Figure 4.6: Flowchart for the Quad-Tree segmentation of images using UMRT 
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The Quad-Tree is a tree structure in which each node, unless it is a leaf, generates 

four children. Each node corresponds to a sub-image of the image that is 

determined, both in size and location, by its position in the tree. Each child 

represents a quarter area of its parent. When using this structure to segment an 

image, start at some initial node level, and travel through the tree. At each node a 

test is performed to see if the sub-image represented by the node is homogeneous 

in the property of interest. If the test is positive then the node becomes a leaf, 

otherwise the children of the node are generated and examined in turn.  

 

A Quad-Tree is said to be a K-level Quad-Tree if the lowest level allowed is K-1. 

An example of a K-level Quad-Tree structure is shown in Figure.4.7. It can be 

represented by assigning 0 to non-leaf nodes and 1 to leaf nodes. Each node in a 

Quad-Tree represents a block. If the block can be split into four quadrants, then 

the node will generate four children nodes. Otherwise the node becomes a leaf. 

Quad-Tree partitioned Lena images using the proposed UMRT based criterion for 

selected values of threshold ts are shown in Figure 4.8 and number of blocks in 

each category for various values of ts is shown in Table 4.4. 

Table 4.4: No. of blocks of each size in Lena image for various values of ts  

Segmentation 

Threshold (ts) 

No. of Blocks 

2×2 4×4 8×8 16×16 32×32 64×64 

100 10384 5392 1555 136 0 0 

150 5712 4628 1634 221 4 0 

200 3040 4256 1514 280 13 0 

300 988 3177 1472 338 26 0 

400 304 2112 1437 388 35 0 
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Figure 4.7: K level Quad-Tree 

 

4.3.4 MRT based Adaptive block size Transform Coding Technique 

(MATC) 

 

Transform coding has been proven to be a promising technique to achieve image 

data compression. As real images often have inhomogeneous statistics over 

different areas, adaptation has to be integrated into a transform coding system for 

the greatest benefit. Usually, there are several parameters in a transform coding 

system which can be made adaptive to an image. Quantization step size, bit 

allocation, transform kernel, and the block size used to partition an image can be 

made adaptive. Here, a variable block size adaptive transform coding system 

based on Quad-Tree partitioning is proposed.  
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Figure 4.8: Quad-Tree Partitioned Lena image for different values of ts  (a) ts = 100             

(b) ts = 150 (c) ts = 200 and (d) ts = 300. 
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The proposed MATC coding scheme is shown in Figure 4.9.  In the proposed 

coder, initially, the block size is taken as the size of the image, N×N, itself and the 

minimum block size is taken as 2×2.  All homogenous areas in the image are 

partitioned into larger blocks and inhomogeneous areas are partitioned into 

smaller blocks by applying the UMRT based criterion described in section 4.3.2.   

This process continues until the image is partitioned into homogeneous blocks or 

the minimum block size is reached. In other words, the maximum and minimum 

size of partitioned blocks may vary between N×N and 2×2, in powers of 2. 

Ideally, if the criterion can make appropriate decision at boundary where there is a 

change in the image statistics, the divided blocks should have only uniform 

change within it.  

 

Each partitioned block is then transformed by UMRT of corresponding size. The 

UMRT coefficients, other than the DC coefficients, are subject to the threshold tc 

to eliminate irrelevant information. The coefficients overcoming the threshold and 

their corresponding positions in the UMRT matrices are stored in two separate 

linear arrays. Then entropy coding is applied to these two linear arrays to obtain 

the compressed data.  

 

The Decoding process of MATC is very simple.  The received bit stream is 

entropy decoded using Arithmetic decoding and the coefficient array and position 

array are separated.  The size and position of each sub-image is obtained from the 

Quad-Tree data structure. The coefficients corresponds to each sub-image are 

placed in a matrix, from the coefficient array according to the positions in the 

position array. The output sub-image is produced by taking the Inverse UMRT 

(IUMRT) of the coefficient matrix.  
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Figure 4.9: Flow chart of MATC technique 
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To reconstruct the original image, the decoding algorithm has to know the block 

size used to encode different part of an image. For that, the hierarchical data 

structure, Quad-Tree, is used. In the variable block size transform coding system 

described, the number of levels in the Quad-Tree depends on the size of the image 

N×N, and the homogeneity of the image.  

4.3.5 Simulation Results 

A computer simulation is carried out to find the performance of the proposed 

coder. The input image has resolution of 8 bits per pixel and the image size is 

512×512. The largest & smallest block sizes allowed are the size of the image 

itself and 2×2 respectively. The segmentation threshold ts is chosen as 100 as in 

section 4.3.2. The quantized coefficients are entropy coded using Arithmetic 

encoding. Table 4.5 shows the simulation results for various gray scale images.  

Table 4.5: Performance of MATC 

Image (512×512) bpp PSNR(dB) 

Lena 0.31 30.27 

Baboon 0.85 24.84 

Barbara 0.61 27.08 

Goldhill 0.42 28.96 

Peppers 0.32 30.49 

Couple 0.51 29.25 

Elaine 0.31 29.93 

Cameraman 0.30 31.03 

Boat 0.49 28.75 

Bridge and Stream 0.75 25.88 
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Figure 4.10 to 4.12 show original and reconstructed versions of Lena, Baboon and 

Cameraman images. 

Figure 4.10: Lena (a) Original and (b) reconstructed after compressed using MATC coder 

(bpp =0.31, PSNR =30.27) 

Figure 4.11: Baboon (a) Original and (b) reconstructed after compressed using MATC coder 

(bpp =0.85, PSNR = 24.84) 
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Figure 4.12: Cameraman  (a) Original and (b) reconstructed after compressed using MATC 

coder (bpp =0.30, PSNR = 31.03). 

4.3.6 Performance comparison 

Table 4.6 shows a comparison between the performances of the proposed adaptive 

block size coder using UMRT and fixed block size coders using 8×8 MRT and 

4×4 MRT.  It is evident that the proposed method gives better performances at all 

bit rates. At lower bit rate (0.3 bpp), the PSNR values of the reconstructed images 

using the proposed coder are almost 2dB more than that of the fixed block size 

methods. 

The Table.4.7 shows a comparison of the proposed coder with the DCT and DWT 

(Discrete Wavelet Transform) based transform coding schemes [131]. The table 

shows that the proposed coder also produces almost the same PSNR for a 

compression ratio of 10:1. Here the advantage of the proposed coder is that the 

UMRT can be computed using real additions only, compared to additions and 

multiplications required for DCT and DWT. 
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Table 4.6: Comparison of MATC with fixed block size transform coders 

Image 

PSNR(dB) 

0.3 bpp 0.5 bpp 0.75 bpp 

8×8 4×4 MATC 8×8 4×4 MATC 8×8 4×4 MATC 

Lena 27.68 27.05 30.27 30.18 30.27 31.01 32.03 32.72 33.08 

Peppers 27.43 26.52 30.49 29.86 30.41 31.88 31.55 32.71 33.40 

Goldhill 27.25 26.68 27.42 29.04 29.16 29.73 30.34 31.13 31.20 

Couple 26.47 25.87 25.94 28.82 29.16 29.25 30.86 31.70 31.90 

Cameraman 28.55 26.79 31.03 31.20 31.47 32.45 33.35 34.25 34.85 

Boat 25.94 25.19 25.79 27.88 28.29 28.76 29.48 30.39 30.55 

Elaine 28.46 28.37 29.93 29.93 30.60 30.71 31.15 31.57 31.60 

Table 4.7: Comparison of MATC with DCT and DWT (Embeddd Zerotree Wavelet ) based 

coders  

Image Compression 

Ratio 

PSNR(dB) 

DCT (Baseline) DWT (EZW) MRT (MATC) 

Lena 10:1 32.90 32.51 33.24 

Peppers 10:1 34.30 34.43 33.82 

Baboon 10:1 25.30 24.91 24.84 

4.3.7 Application in Color Images 

The proposed algorithm is applied on various color images (RGB model) and the 

results are shown in Table 4.8. 

Table 4.8: Performance of MATC in color images 

Image bpp PSNR 

Lena 1.45 32.94 

Crown 0.89 33.97 

Baboon 3.80 26.03 

Peppers 1.49 31.64 
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Figure 4.13 shows the original and decompressed versions of various color images 

using the proposed MATC algorithm. 
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Figure 4.13: (a) – (d) Original Color images and (e) – (h) their reconstructed versions after 

compressed using MATC coder 
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5.1 Introduction 

Vector Quantization (VQ) is an efficient and simple approach for data 

compression. Since it is simple and easy to implement, VQ has been widely used 

in different applications, such as pattern recognition, image compression, speech 

recognition, face detection and so on. For the purpose of image compression, the 

operations of VQ include dividing an image into, mostly non-overlapping, vectors 

(or blocks) and each vector is mapped to the codewords of a codebook to find its 

reproduction vector.  The basic VQ system is shown in Figure 5.1.   

Figure 5.1: Standard Vector Quantization scheme 

VQ provides many attractive features in applications where high compression 

ratios are desired. In these applications, the performance objective is good 

subjective visual quality rather than an accurate match between the original and 

coded images. One unique feature of VQ is that high compression ratios are  
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possible with relatively small block sizes, unlike other compression techniques 

such as transform coding. Use of smaller block sizes in block coding has been 

known to lead to better subjective quality. A second feature of VQ is that the 

decoder is very simple to implement, making VQ attractive for single-encoder, 

multiple- decoder applications such as videotext and archiving.  

There are three major procedures in VQ, namely codebook generation, encoding 

procedure and decoding procedure. In the codebook generation process, various 

images are divided into several k-dimension training vectors. The representative 

codebook is generated from these training vectors by the clustering techniques 

shown in Figure 5.2. 

. 

Figure 5.2: Codewords in 2-D space. 
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In the encoding procedure, an original image is divided into several k-dimension 

vectors and each vector is encoded by the index of codeword by a table look-up 

method. The encoded results are called an index table. During the decoding 

procedure, the receiver uses the same codebook to translate the index back to its 

corresponding codeword for reconstructing the image. In order to limit the scope 

of investigation, only still gray scale images are used. However, VQ can easily be 

extended to compression of colour images and image sequences 

One of the key points of VQ is to generate a good codebook such that the 

distortion between the original image and the reconstructed image is the 

minimum.  Moreover, since the codebook generation procedure is a time 

consuming process, how to reduce the computation time is another important 

issue for the VQ codebook generation. The most commonly used method in VQ is 

the Generalized Lloyd Algorithm (GLA) which is also called Linde-Buzo-Gary 

(LBG) algorithm. 

5.2 Vector Quantization in MRT Domain Using Isometric 

Transformations and Scaling 

5.2.1 Isometric transformations 

A transformation is a process which changes the position, and possibly the size 

and orientation, of a shape. There are four types of transformations: reflection, 

rotation, translation and enlargement. Translation or Slide moves a shape by 

sliding it up, down, sideways or diagonally, without turning it or making it bigger 

/ smaller. Reflection or Flip about a line produces a mirror image in which 
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corresponding points on the original shape and the mirror image are always at the 

same distance from the mirror line. Rotation turns a shape through a clockwise or 

anti-clockwise angle about a fixed point known as the Centre of Rotation. All 

lines in the shape rotate through the same angle. Rotation, just like reflection, 

changes the orientation and position of the shape, but everything else stays the 

same. Enlargement or Dilation is a transformation that changes the size of the 

object. 

Some of these transformations on an image give a new image, whose dimensions 

are different from that of the original image. Others produce an image whose 

dimensions are the same as those of the object. In other words the object and the 

image are invariant. Transformations which leave the dimensions of the object 

and its image unchanged are called isometric transformations. Examples of 

isometrics are reflection, rotation and translation. Transformations which do alter 

the dimension of the object when they act on them are called non-isometric 

transformation.  Example is the enlargement. Figure 5.3 shows the original and 

seven isometric transformations of Lena image. 

Figure 5.3: 8 isometric transformations of Lena image 
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5.2.2 Isometric transformations in MRT domain 

 

The above mentioned isometric transformations are usually implemented in 

spatial domain.  Since the proposed Vector Quantization is implemented in 

MRT/UMRT domain, the isometric transformations also need to be implemented 

in the same domain in order to avoid unnecessary computational overheads. 

 

If         
   

 , 0 ≤ k1, k2 ≤ N-1 and 0 ≤ p ≤ N/2 -1, is the MRT coefficients of the 

input data matrix        , 0 ≤ n1, n2 ≤ N-1, Then the following relations can be 

used to obtain the isometric transformations of        in the MRT domain 

 

 Reflection about Main Diagonal line 

 

                                        
   

        
    

                                            

 

90
0
 Rotation  

 

                                      
   

     
               

                                                   

 

where     {
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Reflection about Mid Horizontal line 
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where       {
   

 

 
           

           
               (5.5) 

 

Reflection about Mid Vertical line 

 

                                  
   

    
                

                                      

 

where     {
   

 

 
           

           
                (5.7) 

 

180
0
 Rotation  

 

The MRT matrices of the 180
0
 rotated version of        can be obtained by 

applying the relation for 90
0
 rotation twice. 

 

270
0
 Rotation  

 

The MRT matrices of the 270
0
 rotated version of        can be obtained by 

applying the relations for reflection about mid vertical line followed by reflection 

about main diagonal line. 

 

Reflection about Off Diagonal line 

 

The MRT matrices of the off diagonal reflected version of        can be obtained 

by applying the relations for 180
0
 rotation followed by reflection about main 

diagonal line. 
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5.2.3 Codebook generation in MRT domain 

The objective of this codebook generation is to generate a universal codebook. 

The codebook generation process in the proposed VQ technique is different from 

the traditional codebook generation techniques like LBG algorithm.  Here, instead 

of saving the codewords, the UMRT coefficients of the codewords are saved.   

Initially, a wide range of images are selected as training set. Here, the images 

from brodatz album, shown in Figure 5.4, are selected as training set. The first 

codeword in the codebook is the UMRT coefficients of a uniform 4×4 image 

block.  Each image in the training set is taken in a sequential manner and 

segmented into 4×4 blocks.  UMRT of each 4×4 block is computed and compared 

against all the codewords already in the codebook.  The comparison is done using 

Euclidean distance measure in terms of UMRT coefficients.   While comparing, 

each block in the training image is compared against all the eight isometric 

transformations of the already available codewords using the relations discussed 

in the section 5.2.2.  If any of the blocks in the training set is identical to any of 

the codeword or any of its isometric transformations, then that block will not be 

added to the codebook.  Also while comparing, the DC coefficient in the UMRT 

of the training block and codeword will not be considered because of the fact that, 

if all the corresponding UMRT coefficients, except the DC coefficient, of two 

blocks are identical, then that two blocks will be brightness shifted versions of 

each other.  So, that training block is not necessary for the codebook. In such a 

manner all the images in the training set are compared and a universal codebook is 

generated as shown in Figure 5.5. 
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Figure 5.4: Images of Brodatz album used for Codebook Generation 
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Figure 5.5: Generated Codebook 

5.2.4 Encoding and decoding process 

A vector quantization scheme is composed of two operations, encoding and 

decoding.  The encoder takes an input vector and outputs the index of the 

codeword that offers the least distortion.  The least distortion is found by 

evaluating the Euclidean distance between the input vector and each codeword in 

the codebook.  Once the closest codeword is found, the index of that codeword is 

sent through a channel (the channel could be computer storage, communications 

channel, and so on).  When the decoder receives the index of the codeword, it 

replaces the index with the associated codeword.  Figure 5.1 shows the block 

diagram of the operation of the encoder and decoder.  
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The encoding procedure of the proposed scheme is shown in Figure 5.6.  Before 

the encoding starts, the codebook is expanded by including the seven isometric 

transformations of all the   codewords in the codebook.  The image to be 

compressed is then partitioned in to 4×4 blocks and the expanded codebook is 

searched for best match for each 4×4 block in the image.  For each image block, 

the index of the most suitable codeword, the isometric transformation used to 

obtain such a best match and the scaling factor for brightness adjustment are 

identified and stored.   After the above process is applied to all the blocks in the 

image, the stored data are entropy coded and the output bit stream is either stored 

in memory or sent to the receiver. 

Figure 5.6: Encoding process of MRT based VQ

At the receiver, the reverse process occurs, as shown in Figure 5.7.  The same 

codebook, which is used in the transmitter, is available at the receiver.  The 

compressed bit stream is decoded using the entropy decoder and for each image 

block, the index in the codebook, isometric transform used and the scaling factor 

are identified and the blocks are reconstructed using the decoded information. 
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5.2.5 Results of Compression 

The codebook is generated by selecting the images from Brodatz album as the 

training set. The objective of the proposed coder is to develop a universal 

codebook, such that any natural images can be compressed using the developed 

codebook. 

Figure 5.7: Decoding Process of MRT based VQ

The proposed VQ scheme is simulated and standard natural images are 

compressed using the generated universal codebook. Table 5.1 shows the results 

of compressing various images like Lena, Cameraman, Baboon, Barbara, 

Goldhill etc. using the generated codebook shown in Figure 5.5.   Figure 5.8 

shows the original and vector quantized version of these images with a codebook 

of size 256.  Moderate compression and reconstructed image quality are obtained 

through the proposed scheme. The quality of the reconstructed images can be 

improved by expanding the codebook by increasing the training set. 

The main disadvantage of this method is the time taken for the codebook 

generation.  The codebook shown in Figure 5.5 is generated from ten images of 
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the brodatz album, shown in Figure 5.4.  It took almost two hours for the 

codebook generation algorithm to settle down to the above mentioned codebook.  

Also, as the number of codewords increases, the time for encoding process 

increases drastically.   Time taken by the proposed VQ scheme for compressing 

various standard gray scale images is shown in Table 5.1. The time is very high 

and as a result, such algorithms cannot be used in real time applications.  This is 

the major drawback of vector quantization. 

Table 5.1: Performance of MRT based VQ 

Image bpp PSNR (dB) 
Compression 

Time (s) 

Lena 0.3246 27.75 221 

Baboon 0.3999 22.21 223 

Barbara 0.3754 24.54 220 

Goldhill 0.3138 26.89 201 

Peppers 0.3251 27.84 205 

Couple 0.3328 26.14 211 

Elaine 0.3412 28.03 216 

Cameraman 0.3477 28.32 208 

Boat 0.3392 26.69 204 

Bridge and Stream 0.3264 22.20 212 
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(a)  (f) 

(b)  (g) 

(c)  (h) 
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(d)  (i) 

(e)                                                                              (j) 

Figure 5.8: (a) – (e) Original images & (f) – (j) their Vector quantized versions 

5.3 MRT based Adaptive Transform coder with Classified Vector 

Quantization (MATC-CVQ) 

Vector quantization is a promising technique in many areas of digital signal 

processing, such as image coding, pattern recognition, speech analysis etc.  One 

major problem for real-time application of vector quantization is its high 
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computational complexity during encoding process. The computational 

complexity is O(kNM) for an exhaustive search VQ, with codebook size N, vector 

dimension k and M input vectors. This is too large for real-time image coding. 

Many constrained VQ techniques have been designed using sub-optimal 

codebooks, sacrificing accuracy, to reduce complexity. Another major problem in 

vector quantization is the edge degradation. Edges constitute significant portion of 

the information content in an image, and their degradation is visually very 

annoying. The Classified Vector Quantization (CVQ) [34], can be used to reduce 

both edge degradation and coding complexity. 

Also, in most natural images, majority portions are of uniform nature and a 

minority area is of discontinuities (edge area). Vector quantization of such images 

is a waste of time.  These uniform areas in images can easily be coded using 

transform coding techniques. Vector quantization is better for those edge areas.  

So, a combination of these two techniques will serve better for most of the natural 

images. 

Hence, a new MRT based Adaptive block-size Transform Coder with Classified 

Vector Quantization (MATC-CVQ) scheme is developed for image compression. 

Quad-Tree segmentation is employed to generate blocks of variable size 

according to their uniformity. Uniform areas in images are coded using transform 

coding, while edge areas are coded by an edge-classified VQ to avoid edge 

degradation. In this new algorithm, initially the image to be compressed is subject 

to an edge identification procedure using UMRT and then the identified edge 

blocks are vector quantized using a UMRT based Classified Vector Quantization 

(UCVQ) algorithm. Both the segmentation and edge classification are determined 

by the strength of the UMRT coefficients.  
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5.3.1 Classified Vector Quantization (CVQ) of images 

Initial studies of image coding with VQ have revealed several key problems. The 

major problems are edge degradation and high computation time. When 

conventional distortion measures such as the mean squared error (MSE) are 

employed, the edges are severely degraded. Edges constitute significant portion of 

the information content of an image, and their degradation is visually very 

annoying. The complexity of VQ grows exponentially with the codebook size and 

the code vector size. The edge degradation and coding complexity can be reduced 

through CVQ. 

The crucial feature of edge perception is that it must appear essentially as sharp, 

continuous, and well defined in the coded image as in the original. In short, edge 

integrity must be preserved. The CVQ enables to preserve perceptual features 

while employing distortion measures such as MSE. The general structure of a 

CVQ coder is shown in Figure 5.9.  CVQ is best understood in terms of a 

composite source model for images, where the image source is viewed as a bank 

of vector sub-sources. At each instance, a switch selects one of the sub-codebooks 

whose output becomes the output of the coder. The sub-codebook selection is 

based on a specified measure. Each sub-codebook contains blocks of a single 

perceptual class, viz. blocks with an edge at a particular orientation and location. 

In order to preserve the perceptual feature associated with each class, blocks 

belonging to one class are to be coded with code vectors belonging to the 

corresponding sub-codebook. A classifier is employed to identify the most suited 

sub-codebook. A distortion measure is then used to pick the best code vector from 

the sub-codebook for that class. The task of the distortion measure is simply that  
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of matching the intensity levels as desired for that particular class, and also 

perhaps to perform some “fine tuning” in the edge-matching process necessitated 

by the restriction on the number of edge classes. 

 

The main hurdles involved in the design of the CVQ technique are the 

identification of edges present in an image and the classification of these edges. 

Here, a UMRT based criterion is proposed for both edge identification and edge 

classification. 

 

 

Figure 5.9: Block diagram of Classified Vector Quantization scheme 

 

 

5.3.1.1 UMRT based Edge identification 

 

Edge is the most important feature of an image. It contains much of the 

information in an image. Therefore, edge identification has a significant influence 

on the performance of image compression techniques. Edges are created by 
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occlusions, shadows, highlights, roofs, etc. They have very different local 

intensity profiles. Edges within an image correspond to intensity discontinuities 

that result from different surface reflectance of objects, various illumination 

conditions, or varying distance and orientations of objects from a viewer. 

Therefore, the analysis based on edge can provide theoretic gist for image 

restoration, enhancement and reconstruction. Significant intensity changes in an 

image normally occur at different spatial resolutions or scales. Here, a new 

UMRT based edge detection technique is proposed.  

Since UMRT coefficients are computed from addition and subtraction of selected 

image data, each UMRT coefficient signifies a particular manner of combination 

of image data under consideration. Consequently, each UMRT coefficient 

signifies the presence of a unique pattern in the image domain. Thus, the N
2
 

UMRT coefficients of an N×N image block are, in fact, strength-indicators of N
2
 

different patterns in the image block. The UMRT thus becomes a suitable tool for 

image analysis to determine the existence of N
2
 well defined patterns in an image. 

Thus, by examining the strength of these UMRT coefficients, the presence and 

location of the edges in the image blocks can be identified. The edges present in 

images can be plotted using the following algorithm 

 

Step 1: Partition the image using UMRT based Quad-Tree segmentation criteria 

Step 2: Replace all the higher sized (higher than 2×2) sub-images and uniform  

2×2 sub-images with black sub-images of same size. 

Step 3: Replace all non-uniform 2×2 sub-images with the appropriate sub-images  

shown in Figure 5.10 by examining the magnitude & sign of their UMRT 

coefficients 
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The Figure 5.11 shows the identified edge locations of various standard gray scale 

images using UMRT based edge identification. 

 

Figure 5.10: Types of 2×2 image blocks and their respective UMRT coefficients 
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Figure 5.11:  (a) – (d) Original images and (e) – (h) their detected edges 
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The edge blocks identified by the UMRT based edge identification criterion, from 

the Lena image, is shown in Figure 5.12. These edge blocks can be coded using 

classified vector quantization and other uniform blocks can be coded using 

adaptive block size transform coder to get better reconstructed images, avoiding 

edge degradation. 

 

5.3.1.2 UMRT based Classification of Edge Blocks 

 

Different types of edges that can be present in a 2×2 image block are shown in 

Figure 5.10. There are fourteen types of edges that are possible to occur in 2×2 

image blocks. The UMRT is an efficient tool to classify image blocks into these 

categories. The sign of certain UMRT coefficients along with the position of zeros 

determine the class of the image block.  The 14 classes of 2×2 edge blocks and the 

respective UMRT coefficients are shown in Figure 5.10. By identifying the sign 

and magnitude of the UMRT coefficients, the edges can be classified. 

 

 

Figure 5.12:  (a) Original Lena image and (b) Edge blocks of Lena image 
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5.3.1.3 CVQ Codebook generation 

 

Even though there are fourteen different types of edges that can appear in a 2×2 

image block, as in Figure 5.10, only four types of codebooks needs to be 

generated.  The remaining 10 types of codebooks can be obtained from the rotated 

version of the above mentioned four types. The four basic classes of the 

codebooks generated are shown in Figures 5.13 to 5.16. 

 

The total number of code vectors   ∑   
 
   , where M is the total number of 

types and Ni is the size of the corresponding codebook.  The index of the closest 

code vector is transmitted to the decoder. The decoder simply retrieves the 

corresponding code vector from its codebooks, hence, generating the output 

 

 

 

Figure 5.13: Codebook of Class 1 
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Figure 5.14: Codebook of Class 2 

 

 

Figure 5.15: Codebook of Class 3 
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Figure 5.16: Codebook of Class 4 

 

5.3.2 Encoding & Decoding Process of MATC-CVQ 

 

The proposed coding scheme is shown in Figure 5.17. Here, initially, the block 

size is taken as the size of the image, N×N, and the minimum block size is taken 

as 2×2.  All homogenous regions in the image are segmented into larger blocks 

and non-homogenous regions are segmented into smaller blocks by applying the 

UMRT based Quad-Tree partitioning scheme described in section 4.3.2.   This 

process continues until the image is partitioned into homogeneous blocks or the 

minimum block size is reached. In other words, the maximum and minimum size 

of partitioned blocks can vary between N×N and 2×2 respectively.  

 

Ideally, if the criterion can make appropriate decision at boundary where there is a 

change in the image statistics, the partitioned higher sized (larger than 2×2) blocks 
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will be homogeneous in nature. These higher sized blocks are transform coded as 

explained in the section 4.3.4, because only a small amount of data are required to 

represent them.  The 2×2 image blocks, obtained after the Quad-Tree 

decomposition process, are of different types. They may be either uniform blocks 

or edge blocks.  The homogeneous 2×2 blocks are transform coded, just like other 

higher sized blocks. The non-homogeneous 2×2 blocks should fall in any one of 

the 14 categories shown in Figure 5.10.  These 14 categories of edges, broadly 

grouped as 4 different classes, can be identified using the sign and magnitude of 

their UMRT coefficients.    Each type has its own pre-generated codebooks and 

are used to vector quantize the inhomogeneous 2×2 blocks. A special symbol is 

added to the Quad-Tree data structure to identify the vector quantized 2×2 blocks. 

 

The Decoding process of MATC-CVQ is as follows.  The received bit stream is 

entropy decoded using Arithmetic decoding and the coefficient array & position 

array are separated.  The size and position of each sub-image is obtained from the 

Quad-Tree data structure. All the higher sized (higher than 2×2) sub-images are 

formed as explained in section 4.3.4.  The special symbol added to the Quad-Tree 

data structure during the coding process is used to distinguish transform coded 

and vector quantized 2×2 blocks and these 2×2 blocks are decoded according to 

the way in which they are encoded.  

 

5.3.3 Simulation Results 

 

A computer simulation is carried out to analyze the performance of the proposed 

MATC-CVQ technique. The input image has resolution of 8 bits per pixel and the 

image size is 512×512.  
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Figure 5.17: Flow chart of MATC-CVQ 
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The largest block size allowed is the size of the image itself (512×512) and the 

smallest is 2×2. The segmentation threshold ts is experimentally selected as 100. 

The quantized coefficients are Arithmetic coded. Table 5.2 shows the simulation 

results for various gray scale images. It can be seen that the proposed system 

produces lesser bits per pixel with better reconstructed image quality for most of 

the images. Figure 5.18 – 5.20 show original and reconstructed versions of Lena, 

Baboon and Cameraman images.  

By analyzing the reconstructed images, it is quite evident that they possess high 

subjective fidelity. 

Table 5.2: Performance of MATC-CVQ 

Image bpp PSNR(dB) 

Lena 0.33 32.89 

Baboon 1.22 27.18 

Barbara 0.71 30.13 

Goldhill 0.47 30.34 

Peppers 0.57 31.91 

Couple 0.50 30.59 

Elaine 0.35 30.51 

Cameraman 0.40 33.25 

Boat 0.51 29.71 

Bridge and Stream 0.77 26.37 
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Figure 5.18: Lena (a) Original and (b) reconstructed after compressed using MATC-CVQ 

coder (bpp =0.33, PSNR =32.89 ) 

Figure 5.19:  Baboon (a) Original and (b) reconstructed after compressed using MATC-CVQ 

coder (bpp =1.22, PSNR = 27.18) 
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Figure 5.20:  Cameraman  (a) Original and (b) reconstructed after compressed using 

MATC-CVQ coder (bpp =0.430, PSNR = 33.25). 

5.3.4 Performance comparison 

A comparison between the performances of the proposed MATC-CVQ coder and 

the coders explained in the previous chapters is shown in Table 5.3, Table 5.4 and 

Table 5.5 for bit rates 0.3, 0.5 and 0.75 respectively.  It is evident that the 

proposed method gives better performance at all bit rates. At lower bit rate (0.3 

bpp), the PSNR values of the reconstructed images using the proposed coder are 

2dB more than that of the MATC coder presented in section 4.3.4. Also SSIM 

(Structural Similarity) metric is measured to analyze the subjective visual quality 

of the reconstructed images.  
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Table 5.3: Comparison of MRT based compression techniques for 0.3 bpp 

Image 
8×8 4×4 

Hybrid of 8×8 

& 4×4 
MATC MATC -CVQ 

PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM 

Lena 27.68 0.92 27.05 0.914 27.98 0.922 30.27 0.940 32.84 0.96 

Peppers 27.43 0.915 26.52 0.910 27.48 0.915 30.49 0.937 31.08 0.940 

Goldhill 27.25 0.913 26.68 0.911 26.98 0.912 27.42 0.915 29.21 0.932 

Couple 26.47 0.904 25.87 0.900 25.94 0.901 25.94 0.910 28.32 0.917 

Cameraman 28.55 0.92 26.79 0.893 28.63 0.920 31.03 0.937 32.60 0.946 

Boat 25.94 0.898 25.19 0.896 25.49 0.897 25.79 0.90 27.11 0.923 

Elaine 28.46 0.910 28.37 0.91 28.50 0.91 29.93 0.918 30.42 0.921 

Table 5.4:  Comparison of MRT based compression techniques for 0.5 bpp 

Image 
8×8 4×4 

Hybrid of 8×8 

& 4×4 
MATC MATC -CVQ 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Lena 30.18 0.933 30.27 0.936 30.83 0.94 31.01 0.948 33.60 0.967 

Peppers 29.86 0.928 30.41 0.933 30.95 0.938 31.88 0.943 32.41 0.951 

Goldhill 29.04 0.921 29.16 0.922 29.28 0.924 29.73 0.929 30.54 0.942 

Couple 28.82 0.912 29.16 0.914 29.21 0.915 29.25 0.918 30.59 0.929 

Cameraman 31.20 0.929 31.47 0.932 32.56 0.941 32.45 0.943 33.72 0.961 

Boat 27.88 0.919 28.29 0.923 28.45 0.925 28.76 0.928 29.70 0.937 

Elaine 29.93 0.921 30.60 0.924 30.65 0.924 30.71 0.925 31.48 0.935 
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Table 5.5:   Comparison of MRT based compression techniques for 0.75 bpp 

Image 
8×8 4×4 

Hybrid of 

8×8 & 4×4 
MATC MATC -CVQ 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Lena 32.03 0.945 32.72 0.951 32.99 0.953 33.08 0.958 34.42 0.971 

Peppers 31.55 0.936 32.71 0.952 32.86 0.953 33.40 0.960 34.17 0.967 

Goldhill 30.34 0.933 31.13 0.941 31.20 0.942 31.20 0.942 32.56 0.953 

Couple 30.86 0.926 31.70 0.935 31.80 0.936 31.90 0.939 32.63 0.946 

Cameraman 33.35 0.947 34.25 0.961 34.69 0.962 34.85 0.965 35.97 0.975 

Boat 29.48 0.931 30.39 0.937 30.52 0.937 30.55 0.940 31.27 0.948 

Elaine 31.15 0.929 31.57 0.932 31.57 0.932 31.60 0.935 32.48 0.947 

A comparison of the proposed MATC-CVQ coder with the DCT and DWT based 

transform coding schemes [131] is shown in Table.5.6 & Figure 5.21. The table 

shows that the proposed coder produces better PSNR for a compression ratio of 

10:1. Here the advantage of the proposed coder is that the UMRT can be 

computed using real additions only, compared to additions and multiplications 

required for DCT and DWT. 

Table 5. 6: Comparison between DCT, DWT and MRT based techniques 

Image Compression 

Ratio 

PSNR(dB) 

DCT 

(Baseline) 

DWT 

(Baseline EZW) 

MRT 

(MATC-CVQ) 

Lena 10:1 32.90 32.51 34.44 

Peppers 10:1 34.30 34.43 34.42 

Baboon 10:1 25.30 24.91 24.92 

Zebra 10:1 23.71 23.58 23.30 
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Figure 5.21: Comparison of DCT, DWT and MRT based techniques 

 

5.3.5 Application in Color Images 

 

The results of applying the proposed MATC-CVQ algorithm on various color 

images (RGB model) are shown in Table 5.7. Figure 5.22 shows the original and 

decompressed versions of various color images using the MATC-CVQ algorithm 

 

Table 5.7: Performance of MATC-CVQ in color images 

Image bpp PSNR 

Lena 1.44 31.43 

Crown 0.88 33.93 

Baboon 3.96 26.01 

Peppers 1.48 31.14 
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Figure 5.22:  (a) – (d) Original Color images and (e) – (h) their reconstructed versions after 

compressed using MATC - CVQ coder 
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6.1 Summary of the work  

 

This chapter presents the summary of the investigations carried out and comments 

on the results obtained therein.  The essence of the research work is incorporated 

in chapters 3 to 5.  The application of MRT in fixed block size transform coding is 

explained in chapter 3.  Both 8×8 MRT based transform coder and 4×4 MRT 

based transform coder are developed and the simulation results are analyzed. The 

implementation of variable block size transform coders using MRT is discussed in 

chapter 4.  Chapter 5 describes the implementation of Vector Quantization in 

MRT domain and the design of a new “MRT based Adaptive Transform Coder 

with Classified Vector Quantization (MATC-CVQ)”. 

 

6.1.1 MRT based Fixed Block size Transform Coding 

 

MRT based fixed block size transform coders are implemented using both 8×8 

MRT and 4×4 MRT.  Their results are analyzed and found that the 8×8 MRT 

based technique gives better performances at lower bits per pixel and 4×4 MRT 

based technique gives better performances at higher bits per pixels.  The template 

based computation of unique MRT coefficients is introduced to reduce the time 

taken for the coding process.  The time difference between the normal MRT 

computation and template based MRT computation are analyzed and found that 

the template based MRT computation works much faster than the normal MRT 

computation.  

 

 

 



Summary, Conclusion and Future Work 

Page 165 

6.1.2 Variable Block size Transform coders using MRT 

A hybrid transform coder based on 8×8 MRT and 4×4 MRT is designed to 

combine the good features of both, and its results are analyzed.  This hybrid 

approach outperforms the fixed block size methods both at lower and higher bits 

per pixel.  UMRT is a new algorithm for the computation of the unique MRT 

coefficients. The significance of the UMRT coefficients is analyzed and its use in 

the segmentation of images is studied.  A criterion, based on UMRT coefficients, 

is introduced to perform the Quad-Tree segmentation of images. MRT based 

Adaptive Transform Coder (MATC), employing Quad–Tree segmentation of 

images using UMRT coefficients, is designed and simulated. Its performance is 

evaluated and compared against fixed block size transform coders and existing 

techniques. 

6.1.3 MRT based Adaptive Transform coder with Classified Vector 

Quantization (MATC-CVQ) 

A Classified Vector Quantization scheme based on UMRT is designed.  The 

identification of edge blocks in the image and classification of those edge blocks 

are done using UMRT coefficients.  The strength of the UMRT coefficients is 

used to distinguish between edge blocks and smooth blocks.  These edge blocks 

are then classified into different categories, according to the orientation of edges, 

by identifying the position of zeros and sign of certain UMRT coefficients.  A 

codebook is generated for each category of edges using UMRT based 

classification methods. 



Summary, Conclusion and Future Work 

 

Page 166 

 

Applying the CVQ for all the blocks in the images is a waste of time.  So, the 

MRT based Adaptive Transform coder with Classified Vector Quantization 

(MATC-CVQ) is introduced. The CVQ is needed for only the edge blocks.  The 

remaining smooth blocks in the image are transform coded using MRT based 

Adaptive Transform Coder (MATC).  The results of the MRT based Adaptive 

Transform coder with Classified Vector Quantization (MATC-CVQ) is obtained 

and analyzed. The results are compared against all the methods already discussed 

in this work and existing techniques like DCT and DWT based techniques. 

 

6.2 Conclusion 

 

A variety of image compression techniques based on MRT are implemented.  

These methods include: 

1) 8×8 MRT based Transform Coder 

2) 4×4 MRT based Transform Coder 

3) Hybrid Transform Coder based on 8×8 MRT and 4×4 MRT 

4) MRT based Adaptive block size Transform Coder (MATC) 

5) Vector Quantization based on MRT 

6) MRT based Adaptive block size Transform Coder with Classified Vector 

Quantization (MATC-CVQ) 

 

The 8×8 MRT based Transform Coder has the merit of reasonable PSNR at lower 

bits per pixel.  But it lacked in terms of subjective visual quality as the blocking 

artifacts were visible at lower bits per pixel.  The 4×4 MRT based Transform 

Coder is introduced to reduce the blocking artifacts at lower bits per pixels.  It 

reduced the blocking artifacts at the expense of increased bpp.   
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A hybrid coder based on 8×8 MRT based coder and 4×4 MRT based coder is 

designed and its performance analyzed to combine the good features of both.  The 

hybrid coder outperformed the fixed block sized coders both at lower and higher 

bits per pixel.  The study extended to the design of an MRT based Adaptive block 

size Transform Coder (MATC).  UMRT based Quad-Tree segmentation is 

incorporated in the design of the MATC. This method utilizes block sizes from 

the size of the image itself to 2×2.  It produced better results in terms of bpp, 

PSNR and subjective visual quality. In this method, the problem of blocking 

artifacts is reduced to a large extent. A comparison of this technique with the 

existing techniques like DCT and DWT based techniques is performed.  The 

comparison proved that the MATC is as good as many existing techniques. 

 

A Vector Quantization Scheme based on MRT and isometric transformations is 

designed subsequently.  For this, a universal codebook is generated.  This scheme 

produced lower bpp at the expense of increased coding time.  The time taken for 

codebook generation is also high.  MRT based Adaptive block size Transform 

Coder with Classified Vector Quantization (MATC-CVQ) is introduced to 

overcome such a computational overhead.  This technique combines the good 

features of MRT based Adaptive block size Transform Coder (MATC) and 

Classified Vector Quantization (CVQ).  It is implemented and the performance is 

compared against all the methods already discussed in this work and existing 

techniques.  The performance of MATC-CVQ technique is better, compared to 

existing techniques, for certain images.   
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6.3 Suggestions for future work 

 

 The thesis presents the development of image compression techniques 

based on MRT.  Recently, in literature, a sequency based MRT 

computation algorithm (SMRT) is introduced. The pattern in which each 

coefficient is placed in the SMRT matrix is a promising feature.  The 

effect of this SMRT in compressing images can be studied as an extension 

of this thesis work.   

 A quantization matrix, just like the one used in the JPEG compression, can 

be developed by analyzing the significance of each SMRT coefficient for 

the reconstruction of the original data.   

 A compression technique that doesn’t involve the segmentation of images, 

like wavelet based, can also be developed as an extension of this work.   

 In MATC-CVQ, intelligence and faster codebook search techniques can be 

incorporated to find the best suited codeword by using Fuzzy logic, 

Genetic Algorithm or Neural network. 
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