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a b s t r a c t

When variables in time series context are non-negative, such as for volatility, survival
time or wave heights, a multiplicative autoregressive model of the type Xt = Xα

t−1Vt ,
0 ≤ α < 1, t = 1, 2, . . . may give the preferred dependent structure. In this paper,
we study the properties of such models and propose methods for parameter estimation.
Explicit solutions of the model are obtained in the case of gamma marginal distribution.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Linear Autoregressive (AR) models have played a significant role in modeling the dependency structure in the study of
Gaussian and non-Gaussian time series. When the time series of interest is a sequence of non-negative random variables
such as volatility, survival time or wave heights, the product form of the models is preferable compared to their linear
counterparts. Another context where modeling of non-negative random variables plays a major role is in the study of
financial time series, where one has to model the evolution of conditional variances. As an alternative one can adopt some
of the AR(1) models for non-negative r.v.’s such as Exponential, Gamma, etc. available in the context of non-Gaussian time
series (cf: Gaver and Lewis, 1980). When we restrict the variables to be non-negative, the innovation distribution in most
of the linear AR(1) models has singular components and that leads to complications while dealing with inference problems.
In fact this is one of the drawbacks of the additive models that motivated Engle (2002) to introduce Multiplicative Error
Models (MEMs) to analyze the sequence of non-negative r.v.’s. In this paper, we study a class of models defined by

Xt = Xα
t−1Vt , 0 ≤ α < 1, t = 1, 2, . . . (1.1)

where {Vt} is a sequence of independent and identically distributed (i.i.d.) non-negative r.v.’s. We assume that the r.v.’s X0
and V1 are independent. Themodel (1.1) initially introduced byMckenzie (1982) is referred to as the Product Autoregressive
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model of order 1 (PAR(1)). For an explicit analysis of the model it is important to know the stationary marginal distribution
of {Xt}. This in turn requires us to identify the distribution of {Vt} for a specified marginal distribution of {Xt}, a problem
common in the study of non-Gaussian time series models. In fact Mckenzie (1982) developed the model (1.1) to generate
a sequence {Xt} of gamma r.v.’s through the properties of linear gamma AR(1) (GAR(1)) model of Gaver and Lewis (1980).
However, the form of the distribution of Vt was not known explicitly. Mckenzie’s interest was to establish a characterizing
property of the gamma sequence, namely, {Xt} and {log Xt} have the same autocorrelation structure.

The model (1.1) may be viewed as a special case of the MEM of Engle (2002) in which the innovations {Vt} are assumed
to be i.i.d. non-negative r.v.’s with unit mean. In MEM, a specific form of the innovation distribution is assumed for the
analysis, and no attention is given to the stationary marginal distribution of {Xt}. However, in the context of financial time
series, to develop stochastic volatility (SV) models or stochastic conditional duration (SCD)models, it is important to specify
the marginal distributions. In view of this, we propose the model defined by (1.1) to generate sequences of volatilities
(non-negative r.v.’s) having specified marginal distributions. The literature on financial time series models with latent
structures assumes that the volatilities in SV models and the conditional means in SCD models are generated by (1.1) with
log-normal marginal distributions (cf. Taylor, 1994, Bauwens and Veredas, 2004). For detailed survey on these models, one
may refer Pacurar (2008) or Tsay (2005). In this paper, we are proposing the gamma distribution as an alternative to the
log-normal distribution to model the volatilities in the SV and SCD setup.

Moreover, the stationary gamma Markov sequences have their own role in modeling point processes and dam models,
(cf. Gaver and Lewis (1980)). In particular, Balakrishna and Lawrance (in press) discussed the PAR(1) models with gamma
marginal distribution by approximating the innovation densities and fitted this model to the sea wave height data collected
fromBay of Bengal. The approximationwas done by comparing the first twomoments of the r.v.’s on both sides in (1.1). In the
present work, we obtain an explicit form of the innovation random variable Vt which provides gammamarginal distribution
for {Xt}. It is interesting to note that the innovation r.v., for the gamma PAR(1) model is absolutely continuous unlike in the
case of linear GAR(1) model, where the innovation has a singular component. Hence the product form of the gamma AR can
be more useful to study real life applications.

Rest of the paper is organized as follows. In Section 2,we study some of the useful properties of the sequence generated by
the model (1.1). Explicit form of the innovation distribution for the gamma PAR(1) model is obtained in Section 3. A method
of simulating the gamma PAR(1) sequence is described in Section 4. Problem of parameter estimation by the method of
conditional least squares is discussed in Section 5. Some concluding remarks are given in Section 6.

2. Properties of PAR(1) models

For the detailed analysis of model (1.1), one needs to study the distributional aspects of the variables involved in it. As
pointed out byMckenzie (1982), it is hard to obtain explicit distribution of Vt for a specified stationarymarginal distribution
of {Xt}. We derive the form of the innovation distribution for Xt using method of transforms. The log-transform of (1.1)
leads to

log Xt = α log Xt−1 + log Vt , 0 ≤ α < 1, (2.1)

which is an AR(1) model in log Xt . In terms of the moment generating function (mgf), we may express (2.1) as

φlog V (s) = φlog X (s)/φlog X (αs), (2.2)

where φU(s) = E (exp (sU)) is the mgf of U . Thus the model (1.1) defines a stationary sequence {Xt} if the right hand side
of (2.2) is a proper mgf for every α ∈ (0, 1). This happens if log Xt is a self-decomposable r.v. In fact the mgf of log Xt may
be expressed as the Mellin Transform (MT),MX (s) of Xt , defined byMX (s) = E(X s

t ), s ≥ 0, whenever the expectation exists.
Thuswe can use theMellin transform to identify the innovation distribution for PAR(1)models. Now Eq. (2.2) can bewritten
in terms of MT as

MV (s) = MX (s)/MX (αs). (2.3)

If Vt admits a density function fV (·), then the one step transition pdf of {Xt} can be expressed as

f (xt |xt−1) =
1

xα
t−1

fV (xt/xα
t−1). (2.4)

Assuming the finiteness of second moments of the stationary marginal distribution, the autocorrelation function (acf) of
PAR(1) sequence {Xt} is given by (cf; Mckenzie, 1982):

ρX (j) = Corr(Xt , Xt−j) =

E(Xt)

E(Xαj

+1
t−j ) − E(Xαj

t−j)E(Xt−j)


E(Xαj
t−j)Var(Xt)

. (2.5)
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The acf of the squared sequence is also important when we analyze the non-linear time series models. For the PAR(1)
model, such acf is given by

ρX2(j) = Corr(X2
t , X2

t−j) =

E(X2
t )


E(X2αj

+2
t−j ) − E(X2αj

t−j )E(X2
t−j)


E(X2αj

t−j )Var(X
2
t )

(2.6)

whenever E(X4
t ) < ∞.

The above acfs depend only on the moments of stationary marginal distribution.

Result 2.1. Let {Xt , t = 0, 1, 2, . . .} be a stationary sequence of non-negative r.v.s defined by (1.1) with X0 independent of
V1. Assume that X0 follows the stationary distribution of the sequence. Then {Xt , t = 0, 1, 2, . . .} is strictly stationary and
ergodic.

Proof. The stationary property follows from Mckenzie (1982) when 0 ≤ α < 1.
The result is proved once we establish that all the invariant events of Ft = σ {Xt , t ≥ 1}, the minimal sigma field

generated by {Xt , t ≥ 1} have probability 0 or 1. It is also known that for a stationary sequence, every invariant event is a
tail event (cf. Breiman, 1968, pp 119). Thus to prove the ergodicity of {Xt , t ≥ 1} it is enough to show that all its tail events
are trivial.

Repeatedly using (1.1) we can write Xt = Xαt

1 · Vt · V α
t−1 · V α2

t−2, . . . , V
αt−1

2 , t = 2, 3, . . . and hence it follows that
σ {X1, X2, . . . , Xt} ⊂ σ {X1, V2, . . . , Vt} = Mt for t = 1, 2, . . ., where Mt is the sigma field induces by a set of independent
r.v.’sX1, V2, V3, . . .. This implies that all tail events of {Xt , t ≥ 1} are contained in the tail sigma field ofX1, V2, V3, . . . . The tail
events of the latter sigma field are all trivial by Kolmogorov’s 0–1 law. This in turn implies that the tail events of {Xt , t ≥ 1}
are also trivial. Thus the result is established. �

3. Innovation distribution of the gamma PAR(1) model

Suppose that Xt has a gamma distribution (Gamma(θ, λ)) with pdf

f (x) = e−λxλθxθ−1/Γ (θ), x ≥ 0, λ > 0, θ > 0 (3.1)

and the Mellin transform

MX (s) = λ−sΓ (s + θ)/Γ (θ).

If we want {Xt} defined by (1.1) to be a stationary sequence with Gamma(θ, λ) marginal distribution, then the MT of Vt
becomes

MV (s) = λ−(1−α)sΓ (s + θ)/Γ (αs + θ). (3.2)

It is not straightforward to find the distribution of Vt by inverting this MT. Mckenzie (1982) has obtained the distribution
of Vt for an Exponential PAR(1) model (θ = 1, λ = 1 in the above discussion), and shown that it is distributed as S−α , where
S is a positive stable random variable with Laplace transform φS(s) = exp(−sα). The resulting pdf of the innovation for an
exponential PAR(1) model is given by

gE(x; α) =
1
π

∞
k=1

Γ (kα)

Γ (k)
sin(kπα) · (−x)k−1, x > 0. (3.3)

Let us denote the r.v. corresponding to the pdf (3.3) by VE , where E stands for unit exponential r.v. In the following result,
we obtain an explicit form of the innovation distribution for the gamma PAR(1) models.

Result 3.1. If the PAR(1) sequence defined by the model (1.1) has a stationary gamma marginal distribution with pdf (3.1)
then the distribution of its innovation r.v. Vt is specified by

Vt = λ−(1−α)
[B(α, θ)]αVθ , (3.4)

where B(α, θ) and Vθ are mutually independent i.i.d. r.v.’s with B(α, θ) being beta(αθ, (1 − α)θ) having pdf:

fB(x) =
Γ (θ)

Γ (αθ)Γ ((1 − α)θ)
xαθ−1(1 − x)(1−α)θ−1, 0 ≤ x ≤ 1 (3.5)

and the pdf of Vθ is given by

g(x; α, θ) =
Γ (αθ + 1)
Γ (θ + 1)

xθgE(x; α), x > 0, (3.6)

where gE(·) is the density function (3.3).
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Proof. Weprove this result usingMellin transforms. TheMellin transformof the innovation r.v. corresponding to the gamma
PAR(1) model is given by (3.2). Here we show that the Mellin transform of Vt = λ−(1−α)

· BαVθ is same as (3.2). Consider

MV (s) = λ−(1−α)E(V s
t ) = λ−(1−α)E(Bαs) · E(V s

θ )

= λ−(1−α)
·

Γ (θ)Γ (α(s + θ))

Γ (αθ) · Γ (αs + θ)
·

Γ (αθ + 1) · Γ (s + θ + 1)
Γ (θ + 1) · Γ ((s + θ)α + 1)

.

On simplification, the right hand side reduces to that of (3.2). Hence the result is established. �

The density function of Vt for the above Mellin transform may be expressed as

fV (v) =
vθ

Γ ((1 − α)θ)

 1

0
u−2(1 − u1/α)(1−α)θ−1gE(v/u; α)du. (3.7)

The transition density function of Xt , at xt given Xt−1 = xt−1, is given by (cf: (2.4))

f (xt |xt−1) = (λxt−1)
−(θ+1)α(λxt)θ ·

λ

Γ ((1 − α)θ)

 1

0

(1 − u1/α)(1−α)θ−1

u2
gE(λ1−αxt/uxα

t−1; α)du. (3.8)

We can get aWeibull PAR(1) sequence by taking a power transformation of the variables in an Exponential PAR(1)model.
The properties of suchmodels are discussed in Balakrishna and Lawrance (in press). For the above gamma PAR(1) model the
acfs of {Xt} and {X2

t } obtained via (2.5) and (2.6) are respectively given by

ρX (j) = αj, j = 0, 1, 2, . . . and ρX2(j) =
1 + 2θ + 2αj

2θ + 3
αj, j = 0, 1, 2, . . . .

Both acfs decay geometrically when j increases. Note that the acf of {Xt} is free from the parameters θ of the stationary
distribution while that of {X2

t } depends on its shape parameter. It is clear from the above expressions that as θ increases the
acf of {X2

t } approaches that of {Xt}.

Remark 3.1. In general, the innovation pdf does not have a closed form expression. However, for α = 1/2 we can get a
closed form for the pdf of Vθ and is expressed as

g

x;

1
2
, θ


=

λ(θ+1)/2xθe−λx2/2

2θ
√

(θ + 1)/2
, x > 0

0, otherwise.
(3.9)

This is the pdf of
√
Y where Y is a gamma


θ+1
2 , λ

4


r.v. Hence when α = 1/2, the distribution of the innovation Vt is

given by that of
√
beta(θ/2, θ/2)

√
Y .

Remark 3.2. We have also identified the innovation distributions for the PAR(1) models when the stationary marginal
distributions of the sequences are Uniform, Pareto, Power function, Weibull, etc. Further, problem of parameter estimation
also studied. However, the detailed analysis of gamma PAR(1) model is discussed in this paper.

4. Simulation of the gamma PAR(1) model

Simulation of a sequence from a gamma PAR(1) model requires the simulation from the innovation r.v. Vt described in
Result 3.1. This can be done by drawing independent samples from B, Vθ and then using (3.4). Note that the pdf of Vθ is the
weighted version of the innovation pdf (3.3) of an exponential PAR(1) model with a weight functionw(x) = xθ . So we adopt
Mckenzie’s method to simulate VE , the innovation r.v. corresponding to an exponential PAR(1) model and then obtain the
sample from Vθ by accept–reject method (cf: Ripley, 1987). The simulation algorithm is described below:

Step 1: Specify the values for the parametersα, λ, θ and generate a randomsample of large size from (3.3) using the formula:
VE = E1−α sinU · (sin(αU))−α

· (sin((1− α)U))−(1−α) proposed by Mckenzie (1982), where U is a uniform r.v. over
(0, π) and E is a unit exponential r.v. independent of U . Let {VE(i), i = 1, 2, . . . ,N} denote the resulting sample and
let wi = (VE(i))θ , i = 1, 2, . . . ,N be the weights.

Step 2: LetM = max(wi) + 1 and define pi = wi/M, i = 1, 2, . . . ,N .
Step 3: For t = 1, 2, . . . draw a random number Rt from U(0,1). If Rt < pt then accept the tth observation as Vθ (t) = VE(t),

otherwise reject it.
Step 4: Continue Step 3 until we get a sample of required size.
Step 5: Generate an independent sample from B(α, θ) with pdf (3.5) and then obtain a sample from the gamma innovation

Vt using the formula (3.4).
Step 6: Finally obtain the gamma PAR(1) sequence using (1.1).
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Fig. 1. Histogram of the simulated sample of size 10000 from a gamma PAR(1) sequence for α = 0.85, θ = 2, λ = 1. The line on the histogram is the
theoretical density curve of the corresponding gamma distribution. The second graph is the autocorrelation function of the simulated sequence.

The first plot in the following Fig. 1 is a histogramof the realization generated fromagammaPAR(1)model super-imposed
by the gamma pdf with corresponding parameters shows good agreement between the simulated and theoretical pdfs. The
second plot is the acf of the simulated series which is geometrically decreasing, a characterizing property of gamma PAR(1)
sequence.

Remark 4.1. The simulation procedure described in Steps (1)–(4) leads to lot of rejections and hence we need to generate
a large number of observations from VE to get a sample of reasonable size from Vθ . For example, when (θ = 1, α = 0.4)
the rejection was 85% and when (θ = 2, α = 0.4) it was 95%. For larger values of α the rejection rate is relatively low. If
(θ = 1, α = 0.95) and (θ = 2, α = 0.95) the rejection rates were 57% and 63%, respectively.

In the next section, we study the problem of estimation by the method of conditional least squares.

5. Parameter estimation by conditional least squares

The complex structure of the innovation r.v.makes it difficult to obtain the likelihood based estimation of the parameters.
So we employ the method of Conditional Least Squares proposed by Klimko and Nelson (1978) to estimate the parameters
of the gamma PAR(1) model. Let {Xt} be a stationary Markov sequence. The CLS estimator of the parameter is obtained by
minimizing

Qn(µ) =

n
t=1

[Xt − g(µ; Xt−1)]2 (5.1)

with respect to the parameter vector µ = (µ1, µ2, . . . , µp)
′, where

g(µ; Xt−1) = E(Xt |Xt−1). (5.2)

The CLS estimates are obtained by solving the least squares equations:

∂Qn(µ)

∂µi
= 0, i = 1, 2, . . . , p. (5.3)

Klimko and Nelson (1978) proved under certain regularity conditions that the CLS estimators are consistent and
asymptotically normal (CAN) as stated in the flowing lemma.

Lemma 5.1. Let {Xt} be a stationary and ergodic Markov sequence with finite third order moments. Under the regularity
conditions of Klimko and Nelson (1978), the CLS estimator µ̂ of µ is CAN. That is, as n → ∞

√
n(µ̂ − µ)

L
−→ Np(0, V−1WV−1),

where V and W are pxp matrices, whose (i, j)th elements are respectively given by

Vij = E


∂g(µ; Xt−1)

∂µi
·
∂g(µ; Xt−1)

∂µj


, i, j = 1, 2, . . . , p
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and

Wij = E

u2
t (µ)

∂g(µ; Xt−1)

∂µi
·
∂g(µ; Xt−1)

∂µj


, i, j = 1, 2, . . . , p and ut = Xt − g(µ; Xt−1).

We now show that {Xt} defined by (1.1) satisfies these regularity conditions. Result 2.1 shows that the sequence {Xt} is
stationary and ergodic. Other regularity conditions will follow if we assume that the third order moments of the marginal
distribution are finite. Now we obtain the CLS estimators for the gamma PAR(1) model described in the earlier sections.
We assume the scale parameter λ = 1 in order to avoid the identifiability problem and let µ = (α, θ)′. The conditional
expectation in this case is g(µ; Xt−1) =

Γ (1+θ)

Γ (α+θ)
Xα
t−1 and the corresponding least squares equations lead to the following

relations:

n
t=1

XtXα
t−1 =

Γ (1 + θ)

Γ (α + θ)

n
t=1

X2α
t−1 (5.4)

and

n
t=1

XtXα
t−1

n
t=1

XtXα
t−1 ln(Xt−1)

=

n
t=1

X2α
t−1

n
t=1

X2α
t−1 ln(Xt−1)

. (5.5)

Solving these equations we can get the LSE estimates of µ = (α, θ)′.
Since all moments of the gamma distribution are finite the Klimko–Nelson regularity conditions are satisfied for the

gamma PAR(1) sequence. Hence the CLS estimator µ̂ = (α̂, θ̂ )′ is CAN for µ = (α, θ)′. The asymptotic dispersion matrix of
µ̂ is given by V−1WV−1, where V =


v11 v12
v21 v22


v11 =

Γ 2(1 + θ)

Γ 4(α + θ)Γ (θ)


0.25Γ 2(α + θ)Γ ′′

α (2α + θ) + Γ (2α + θ)

Γ ′

α(α + θ)
2

− Γ (α + θ) · Γ ′

α(α + θ) · Γ ′

α(2α + θ)


v12 =

Γ (1 + θ)

Γ 4(α + θ)Γ (θ)


Γ (α + θ)Γ ′

θ (1 + θ) − Γ (1 + θ)Γ ′

θ (α + θ)


×

Γ (α + θ) · Γ ′

θ (2α + θ) − Γ (2α + θ) · Γ ′

α(α + θ)


= v21

v22 =
Γ (2α + θ)

Γ 4(α + θ) · Γ (θ)


Γ (α + θ) · Γ ′

θ (1 + θ) − Γ (1 + θ) · Γ ′

θ (α + θ)
2

and

W =
σ 2
V

Γ (θ)
·


w11 w12
w21 w22


where

σ 2
V =

Γ (2 + θ)

Γ (2α + θ)
−


Γ (1 + θ)

Γ (α + θ)

2

, is the variance of the innovation r.v.,

w11 =
Γ 2(1 + θ)

Γ 4(α + θ)


(1/16)Γ 2(α + θ)Γ ′′

α (4α + θ) + Γ (4α + θ)

Γ ′

α(α + θ)
2

− (1/2)Γ (α + θ) · Γ ′

α(α + θ) · Γ ′

α(4α + θ)


w12 =

Γ (1 + θ)

Γ 4(α + θ)


Γ (α + θ)Γ ′

θ (1 + θ) − Γ (1 + θ)Γ ′

θ (α + θ)


×

(1/4) · Γ (α + θ) · Γ ′

α(4α + θ) − Γ (4α + θ) · Γ ′

α(α + θ)


= w21

w22 =
Γ (4α + θ)

Γ 4(α + θ)


Γ (α + θ) · Γ ′

θ (1 + θ) − Γ (1 + θ) · Γ ′

θ (α + θ)
2

.

In the above expressions, we have used the following notations:

Γ (x) =


∞

0
e−uux−1du, Γ ′

y (x + y) =
∂

∂y
Γ (x + y) and Γ ′′

y (x + y) =
∂2

∂y2
Γ (x + y).

In Table 1, we summarize the simulation results on parameter estimation.
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Table 1
Simulated CLSE for gamma PAR(1) model.

Parameters n = 100 n = 500 n = 1000
θ α θ̂ α̂ θ̂ α̂ θ̂ α̂

0.5

0.4 0.5008 0.3501 0.5132 0.3930 0.50656 0.3968
(0.1657) (0.1072) (0.0741) (0.0665) (0.0471) (0.0499)

0.6 0.4794 0.5252 0.4771 0.5733 0.4940 0.5923
(0.2463) (0.1269) (0.1087) (0.0782) (0.0816) (0.0601)

0.8 0.5631 0.6919 0.4775 0.7598 0.5077 0.7792
(0.6336) (0.1120) (0.1861) (0.0652) (0.1481) (0.0509)

0.9 0.51036 0.7709 0.4965 0.8641 0.5009 0.8674
(0.5252) (0.1025) (0.2817) (0.0499) (0.2475) (0.0390)

0.95 0.5362 0.7994 0.4771 0.9163 0.4616 0.9267
(0.7811) (0.1210) (0.3376) (0.0345) (0.295) (0.0262)

1.0

0.4 0.9717 0.3656 0.9967 0.3952 1.0066 0.3948
(0.1770) (0.0959) (0.0778) (0.0462) (0.0574) (0.0363)

0.6 1.0144 0.5509 0.9955 0.6088 0.9983 0.5925
(0.2499) (0.1131) (0.1189) (0.0601) (0.0719) (0.0440)

0.8 1.0077 0.7232 0.9800 0.7712 0.9557 0.7948
(0.4445) (0.0748) (0.2144) (0.0556) (0.1521) (0.0439)

0.9 1.082 0.8143 1.0078 0.8701 0.9958 0.8890
(0.8095) (0.0709) (0.2667) (0.0398) (0.2106) (0.0299)

0.95 0.9477 0.8675 1.0429 0.9243 0.9977 0.9387
(0.9036) (0.0626) (0.5098) (0.0287) (0.3134) (0.0227)

2.0

0.4 1.9971 0.3824 2.0051 0.3924 2.0236 0.3959
(0.2314) (0.0949) (0.1069) (0.0438) (0.0754) (0.0326)

0.6 2.0405 0.5523 1.9976 0.5862 2.0036 0.5972
(0.3473) (0.0938) (0.1364) (0.0523) (0.1062) (0.0356)

0.8 2.1461 0.7308 1.9587 0.7825 2.0097 0.7905
(0.5349) (0.0792) (0.2381) (0.0458) (0.1534) (0.0355)

0.9 2.2278 0.8380 2.0317 0.8802 2.0095 0.8931
(0.8939) (0.0658) (0.3067) (0.0349) (0.2535) (0.0236)

0.95 1.9856 0.8703 1.9504 0.9292 1.9771 0.9405
(1.0655) (0.0611) (0.4545) (0.0271) (0.3564) (0.0183)

Some remarks on the table are required at this stage. We generated a sample of size n for specified value of the
parameters α, θ using the accept–reject method described in Section 4 for n = 100, 500, 1000 and obtained CLSE by solving
Eqs. (5.4)–(5.5). For different parametric combinations of θ = 0.5, 1.0, 2.0 and α = 0.4, 0.6, 0.8, 0.9, 0.95 we repeated
the estimation 100 times and the mean values are presented in the Table along with the standard error in the parenthesis.
Note that the estimates are better for smaller values of α and they tend to the corresponding parameter values as the sample
size increases.

Remark 5.1. Maximum likelihood estimates (MLEs) of themodel parameters are preferredwheneverwehave amanageable
likelihood function. Billingsley (1961) established that the MLE of the parameter vector of a stationary Markov sequence is
Consistent and Asymptotically Normal (CAN) under a set of regularity conditions on the one-step transition density function.
Obtaining the MLEs for the gamma PAR(1) model is difficult due to the complex structure of the transition density given by
(3.8) and we will try to solve this problem in our future research.

6. Concluding remarks

In this paper, we studied the properties of product autoregressive models in view of their applications in financial
time series to model stochastic volatilities and stochastic conditional durations. Apart from exploring their probabilistic
properties, we also illustrate the existence of explicit solution for gamma PAR(1)model. Method of conditional least squares
is proposed to obtain consistent and asymptotically normal estimates of the parameters. Detailed studies on maximum
likelihood estimation and themodeling of stochastic volatility using the productmodelswill be discussed in the forthcoming
papers.
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