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ABSTRACT

Super Resolution problem is an inverse problem and refers to the process
of producing a High resolution (HR) image, making use of one or more Low
Resolution (LR) observations. It includes up sampling the image, thereby,
increasing the maximum spatial frequency and removing degradations that arise
during the image capture namely aliasing and blurring.

The work presented in this thesis is based on learning based single image
super-resolution. In learning based super-resolution algorithms, a training set
or database of available HR images are used to construct the HR image of an
image captured using a LR camera. In the training set, images are stored as
patches or coefficients of feature representations like wavelet transform, DCT, etc.
Single frame image super-resolution can be used in applications where database
of HR images are available. The advantage of this method is that by skilfully
creating a database of suitable training images, one can improve the quality of the
super-resolved image.

A new super resolution method based on wavelet transform is developed and
it is better than conventional wavelet transform based methods and standard
interpolation methods. Super-resolution techniques based on skewed anisotropic
transform called directionlet transform are developed to convert a low resolution
image which is of small size into a high resolution image of large size.
Super-resolution algorithm not only increases the size, but also reduces the
degradations occurred during the process of capturing image. This method
outperforms the standard interpolation methods and the wavelet methods, both
visually and in terms of SNR values. Artifacts like aliasing and ringing effects are
also eliminated in this method. The super-resolution methods are implemented
using, both critically sampled and over sampled directionlets. The conventional
directionlet transform is computationally complex. Hence lifting scheme is used
for implementation of directionlets. The new single image super-resolution method
based on lifting scheme reduces computational complexity and thereby reduces
computation time. The quality of the super resolved image depends on the type of
wavelet basis used. A study is conducted to find the effect of different wavelets on
the single image super-resolution method. Finally this new method implemented
on grey images is extended to colour images and noisy images.
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Chapter 1

Introduction

This chapter gives a brief introduction to the topic of research work undertaken. The

chapter presents basic concepts of images, resolution, super resolution etc. It also

explains why super resolution methods are needed in different image processing

applications. Finally, objective of the presented work and a brief layout of the

thesis are given.
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1.1 Introduction
From time immemorial, human beings have always been interested in recording

events. The history of transformation of these records ranges from primitive cave

paintings to latest digital images and videos. Ibn al-Haytham had developed

the earliest imaging system as a crude pinhole projection, over thousand of

years ago[67]. The next eight hundred years witnessed development of imaging

systems into increasingly sophisticated instruments. During the period 1826-27

the first permanent photograph was developed by Joseph Nicephore and the first

color photograph was made by James Clerk Maxwell in 1861 [4],[101]. Highly

sophisticated imaging systems such as thermal imaging and magnetic resonance

imaging have been developed to capture and process visual information in entirely

new domains later.

Images are of two types : analog and digital. Analog images are the type of

images that human beings look at. They include things such as photographs,

paintings, TV images, and all medical images recorded on film. An analog image

contains various levels of brightness and colors. They are continuous in values.

When considering the case of technique and style, there is no difference between

digital photography and film/analog photography. The only difference is that

traditional film is replaced by a charged coupled device (CCD), which contains

tiny grids containing millions of photosensitive elements. One can think of an

image as a function, f(x,y). The function, f(x,y) gives the intensity at position (x,y)

(spatial values) and is proportional to the brightness or gray value of the image at

that point.

In digital technology, (a) Spatial and gray scale values have been made discrete.

(b) Intensities are measured across a regularly spaced grid in x and y directions

and each intensity data is represented by a finite number of bits. For example, the

intensity values can be sampled to 8 bits (256 values) per point for black and white

and 3x8 bits per point for color images. Examples of digital images include digital
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photos, image sequences used for video broadcasting and playback, multi-sensor

data like satellite images in the visible, infrared and microwave bands, medical

images like ultra-sound, Gamma-ray images, X-ray images and radio-band images

like MRI etc, astronomical images, electron microscope images used to study

material structure etc.

The main difference between an analog and a digital image is the nature of the

signal actually used to produce the image. The visible spectrum of human eye is

limited to wavelengths between 400 to 700 nanometers, whereas digital images can

extend this limit outside the visible spectrum, which includes microwave, infrared,

ultraviolet, or even X-ray regions of the spectrum. In this way, digital images

extend the capabilities of human vision. For example, ultrasound imaging produces

images based on response (echoes) to sound frequencies, and a MRI scan creates a

digital image based on the responses of molecules to magnetic fields.

The main advantage or applications of digital image over the analog counterpart

is that it can be stored in computer memory and subsequently used for a variety

of applications and can be modified by computer programs. Human vision is

analog. It blends image elements smoothly. For example, during sunset, human

eye captures images of the red horizon which merges with the deep blue of the

darkening sky. One can see objects that are large as well as details that are quite

small and differentiate subtle variations in light value, hue and saturation. When

a real world is captured and stored in a computer, this continuous range of detail,

intensities, and colors are converted to discrete signal values which are of limited

range. The human eye, can distinguish a very large number of subtly different

shades of red. But in a digital image there might be only a few hundred, or at most

a few thousand, distinguishable shades of red.

An image consists of local image features that can be used to model a complete

image. There are three main image features: Smooth regions, Edges, and Textures.

Smooth regions comprise the largest portion of most images. The simplest model
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for this region is to assign a random variable with low variances to model the

intensity level locally. Edges represent the abrupt transitions between smooth

regions and constitute the smallest region of most images. While they consist of

smallest area in an image, they have the most information in an image. A simple

model for edges is to assign a random variable with high variance to the gray level

value. Textures have a noise-like appearance. But they are distinct from noise as

there is a pattern within them and they have self-similarity [49].

1.2 Image Processing
Digital image processing is the processing of information for which the input

signal is an image; using standard tools of signal processing techniques. Here the

output is not necessarily an image. In image processing, the input image is treated

as a 2-dimensional signal. The basic elements of image processing system are

(1) image acquisition module such as camera, scanner (2) processing and storage

module (3) display module: monitor, printer. Image acquisition model is shown in

Figure1.1.

The digital imaging system is not perfect due to hardware limitations, and the

acquiring of images is affected with various kinds of degradations. One such

degradation is motion blur, which is very common in videos, is due to the finite

aperture time. The finite sensor size can cause sensor blur; the image pixel is

generated by integration over the sensor area instead of impulse sampling. The

limited sensor density leads to aliasing effects, limiting the spatial resolution of the

captured image. These signals may be contaminated by atmospheric turbulence

before reaching the imaging system. Thus captured images are further affected by

the sensor noise and color filtering noise. Finally, the frame captured by imaging

system are blurred, decimated, and noisy versions of the underlying true scene.

The captured images are called Low Resolution (LR) images. These degradations

need to be modeled fully or partially when low resolution image is analyzed.
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Figure 1.1: Image acquisition with a digital camera

Digital image processing has several applications in surveillance, satellite

imaging, plate reading, criminal identification, target identification, diagnostics,

etc. It is more advantageous when images used in these applications contain more

detailed information, ie, these applications need High Resolution (HR) images. The

HR images not only give the viewer a pleasing appearance but also offer additional

information that is important for the analysis in many applications. Many image

recognition and segmentation algorithms, do not work well with blurred or noisy

images. Acquisition environment condition, resolution of image sensors employed,

etc are some of the factors that affect the quality of digital image.

1.3 Image Resolution
The quality of conversion from the analog to the digital, determines image

resolution. This conversion consists of two steps: sampling and quantization. The

process of digitizing the spatial co-ordinates (x,y) is called sampling. Quantization
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is the process of digitizing the amplitude values. The resultant image will get better

as sampling frequency and quantization level increases. Image resolution is defined

as the smallest measurable detail of visual representation. In optics the resolution

of a device is determined by measuring the modulation transfer function (MTF)

which measures the response of the system to different spatial frequencies [14].

There are two types of digital image resolution - spatial resolution and color or

intensity (depth) resolution. Spatial resolution depends on sampling frequency and

depth resolution on quantization levels. Analog images are continuous in detail

(spatial resolution) and in color (depth resolution), while digital images inherently

have limited spatial and color information.

1.3.1 Spatial resolution
Spatial resolution is the rate at which an image is sampled during scanning.

Sampling is the principal factor determining the spatial resolution of an image.

Basically, spatial resolution is the smallest discernible detail in an image [76]. An

image is composed of various number of picture elements called pixels. Pixels

can be considered as of samples of a continuous image which are arranged in a

2D rectilinear array. Spatial resolution refers to pixel spacing in an image. Higher

spatial resolution allows more sharp details and subtle color transitions in an image

[16]. If an image having high levels of details is not represented by a spatially

dense set of pixels, the image is said to suffer from aliasing artifacts giving rise

to blocky effects [16]. The more the number of pixels in an image, the higher is

its resolution and the more pleasing the image appears. Figure 1.2 provides an

example of the same image at different pixel resolutions. While going from left

to right, the number of pixels increases from 1×1 to 100×100. Here it is clear

that the right most image which contains more pixels have more image details.

Spatial resolution is usually determined by the number of sensors used to digitize

the image.
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Figure 1.2: An illustration of how the same image appears at different pixel
resolutions

1.3.2 Depth Resolution
The other resolution in digital imagery is color resolution or color depth

resolution. This refers to the amount of information, the number of digital bits

used to store each image pixel. Depth resolution is also defined as the gray level or

color range of an individual pixel. It also refers to the smallest discernible change

in gray or color level. Due to hardware considerations, the number of grey levels

is usually an integer power of 2. One or more bits can define the color intensity

of a pixel. The most common number is 8 bits. A single bit can represent a pixel

value of black (0) or white (1). Two bits combined can represent a pixel value of

black (00), dark gray (01), light gray (10), and white (11). Similarly, three bits

can represent eight levels of intensity. Eight bits, or 1 byte, provide 256 levels

of intensity. The number of bits used to hold each pixel value defines the depth

resolution of a digital image.

The depth resolution required for various digital images depends on the content

of the images and the application. The text on a printed page can be represented

with a depth resolution of 1 bit, or with pixels of either black or white. Television

images contain only about 7 bits of depth resolution, or 128 levels of intensity.

Computer displays typically present up to 256 levels of intensity each for the red,

green, and blue primary colors. Therefore, most displayed color images usually

have a depth of 24 bits; 8 for the red component, 8 for the green, and 8 for the

blue information. High end, full color images, such as those for film or detailed

satellite imagery, often require 10 bits or even 12 bits for each color component.
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This means that a total of up to 36 bits may be needed for each image pixel. One

important point about spatial and depth resolutions is that they are not independent

of one another. In other words, an image that has low spatial resolution and high

depth resolution could, in its final output form, look similar in quality to the one

that has high spatial resolution but low depth resolution.

1.3.3 Physical Limits of Resolution
The imaging sensors or the image acquisition device limits the image spatial

resolution. Spatial resolution is important for the diagnostic quality for a cardiac

CT examination because it directly translates to accurate, clear images—giving

the physician the data to help correctly establish the extent of coronary artery

disease (CAD). A modern image sensor is typically a Charge Coupled Device

(CCD) or a complementary metal-oxide-semiconductor (CMOS) active-pixel

sensor. These sensors are typically arranged in a two dimensional array to capture

two-dimensional image signals. With higher density of the sensors, higher spatial

resolution possible for the imaging system. An imaging system with inadequate

detectors will generate low-resolution images with blocky effects, due to the

aliasing from low spatial sampling frequency. Aliasing is the jagged edges that

appear in digital images. Aliasing occurs when the frequency at which the image

sampled is lower than the maximum sampling frequency. If the image is sampled

below Nyquist rate, frequencies fold over on one another causing these undesirable

effects. The intuitive solution is to change the sampling rate of the hardware, but

in many cases this sampling rate is fixed [70].

As the sensor size decreases, the amount of light incident on each sensor also

decreases, causing the so-called shot noise. Therefore, there exists a limit for pixel

size reduction. The optimally limited pixel size is estimated at about 40µm2 for

a 0.35µm CMOS process. The present-day imaging technology has attained this

level. To enhance the spatial resolution, if the chip size is increased, it leads to

an increase in capacitance. This approach is not considered effective, since large

capacitance makes it difficult to speed up a charge transfer rate. Also, the hardware
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cost of a sensor increases with the increase of sensor density or corresponding

image pixel density. The spatial resolution of an image that can be captured is

restricted by the hardware limitation of sensor technology. While the image sensors

limit the spatial resolution of the image, the image details (high-frequency bands)

are also limited by the optics, due to lens blurs (associated with the sensor point

spread function (PSF)), lens aberration effects, aperture diffractions, and optical

blurring due to motion. Constructing imaging chips and optical components to

capture very high-resolution images is prohibitively expensive and is not practical

in most real applications. Besides the cost, the resolution of a surveillance camera

is also limited in the camera speed and hardware storage. In some other scenarios

such as satellite imaging, it is difficult to use high resolution sensors due to physical

constraints. One solution to this problem is to accept the image degradations, and

use signal processing techniques to post-process the captured images.

Therefore, some image processing methods are needed to construct a high

resolution (HR) image from one or more available LR images. LR images

are typically under-sampled and blurred versions of the original scene. Super

resolution problem is an inverse problem and refers to the process of producing a

high resolution image , making use of one or more LR observations. It includes

up sampling the image, thereby, increasing the maximum spatial frequency and

removing degradations that arise during the image capture namely aliasing and

blurring.

1.4 Super resolution
Super-Resolution (SR) is considered as a technique to increase the resolution

of an image or a sequence of images beyond the resolving power of the imaging

system. Pixel count (i.e; the number of pixels in an image) is not an appropriate

measure of image resolution and simply increasing the pixel count does not improve

the resolution. There has always been a demand for detail in imaging. Super

resolved image reconstruction has proved to be effective in many areas including

medical imaging, satellite imaging, video applications, image enlarging in web
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pages and restoration of old historic photographs, tracking, license plate recognition

system, etc. Techniques such as bilinear and bicubic interpolation only consider

low resolution image information. So they only increase the pixel count without

actually adding the details, and the resulting image from these techniques is often

blurry and contains artifacts. These techniques perform well in smoother regions

of the images and tend to blur edges and other sharp details in the images.

Super-Resolution (SR) techniques are used to construct high resolution (HR)

images from several observed low resolution (LR) images or from a single low

resolution image, by increasing the high-frequency components and removing

the degradations caused by the imaging process of the low-resolution camera. In

other words, image super resolution is the process by which additional higher

frequency information is incorporated to enhance a low resolution image thereby

producing a high resolution image. Along with the original information inherent

within the low-resolution image, this additional information may come in several

forms: a group of several shifted versions of the low resolution image, a collection

of optimally estimated filters selected for specific image content, or as in the case

presented in this thesis, a relationship using a training set that contains low and

high resolution image pairs.

Super resolution techniques not only increase the size of the input low resolution

image but they also reduce the degradations present in the LR image to obtain

its high resolution image. Work presented in this thesis super resolves input low

resolution images to two and four times their size (with magnification factors 2

and 4).

In general, there are two types of super resolution techniques – reconstruction

based and learning based.

1.4.1 Reconstruction based Super resolution
The basic idea behind reconstruction based Super Resolution (SR) is to combine

the non redundant information contained in multiple low-resolution frames to
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generate a high-resolution image. The camera captures several low resolution

images, which are actually down sampled form of the original scene with sub pixel

shifts between each other. The sub pixel shifts are formed from the motion between

the camera and scene, for example movements of objects, or due to controlled

motion like that of the satellite imaging system that orbits round the earth with

predefined speed and path. Super resolution reconstruction reverses this process by

aligning the low resolution observations to sub pixel accuracy and combining

them into a HR image grid (interpolation), thereby overcoming the imaging

limitation of the camera. The non redundant information contained in the these low

resolution images is due to the sub pixel shifts between them. One disadvantage of

reconstruction based super resolution is that effective reconstruction is possible

only if there exists sub pixel motion between low resolution images.

The problem of merging or fusing information from a number of low

resolution images into a single high-resolution image is referred to as multi-frame

super-resolution. Figure 1.3 shows the basic idea of multi- frame reconstruction

based super resolution.

Figure 1.3: Multi-frame super-resolution

A typical multi frame super-resolution involves three sub-tasks: registration,

fusion and deblurring. First, the LR images are registered against a common

reference to a sub pixel accuracy. An intermediate image at a higher resolution is

then constructed from the scattered input samples. The HR fusion image is finally

deblurred to amplify the frequency spectrum beyond the Nyquist frequency of the

imaging sensor. These process are shown in Figure 1.4.
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Figure 1.4: Image registration, image fusion, image deblurring

1.4.2 Learning based Super resolution
Recent super-resolution algorithms, based on machine learning take advantage of

learning and training images to preserve spatial-frequency and recover information

of details such as edges and textures. In learning based super-resolution algorithms,

a training set or database of available HR images are used to construct the HR

image of an image captured using a LR camera. In the training set, images are

stored as patches or coefficients of feature representations like wavelet transform,

DCT, etc. Unlike the reconstruction-based method which requires multiple LR

input images, here only one input image (single frame image super-resolution) is

required. Single frame image super-resolution can be used in applications where

database of HR images are available. These methods are classified under the

motion free super-resolution scheme. Figure 1.5 shows schematic diagram of

learning based super-resolution.

From the viewpoint of learning based super-resolution, there is loss of

information in low resolution images and the task of super-resolution is to retrieve

the missing information correctly from training samples and patterns. Some of

the research work based on machine learning addresses the single image super

resolution problem. The seminal work in this area is done by William T. Freeman’s

group in the Artificial Intelligence Lab at Massachusetts Institute Technology.

Generally speaking, the main concept of single image super-resolution relies on a

carefully selected training set of high-resolution images. The normalized training

images are down sampled and divided into low resolution patches, each one forming
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Figure 1.5: Learning based super-resolution

a training pair with the corresponding high resolution patch. Such super-resolution

algorithms try to learn the connection between the patches from LR input images

and the ones from training set, and try to reconstruct the high-resolution counterpart

using the high resolution training patches. Different learning based single image

super-resolution approaches share similar concepts as mentioned above, but vary in

their ways of choosing effective features, designing mechanisms to find appropriate

matching patterns, and so on. Freeman et al presented the method which first

generates the high resolution estimate with traditional interpolation, and then finds

the missing high frequency information from training images and finally combine

the estimate with high frequency information to obtain the target HR image.

It is clear that example based (learning based) super-resolution is an image

interpolation algorithm which uses a database of training images to create plausible

high frequency details in zoomed images. Though this method is fairly simple, its

performance heavily depends on the images in the database. In particular, when

the characteristics of a target image to be magnified are different from the training
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images, the quality of the super resolved image degrades. The performance is

improved by transforming selected images which are downloaded from Internet

photo sharing sites, to match their characteristics with those of the target image

before adding them to the database. The advantage of this method is that by

skillfully creating a database of suitable training images, one can improve the

quality of the super-resolved image. On the other hand, the shortcoming of this

method is the possibility of failure unless images being similar to the target image

are available on the internet. This problem should be solved as the number of

uploaded images increases everyday.

Super resolution is a computationally intensive inverse problem typically

involving tens of thousands unknowns. For example, super resolving a sequence

of 32× 32 pixel LR image by a factor of 4 in each spatial dimension involves

128×128 unknown pixel values in the HR image.

1.5 Objective of the present Work
Super-resolution is a restoration technique which can be used to increase the

resolution of a low resolution image. Super-resolution method not only increases

the resolution of an image, but also removes degradations and artifacts present in

the low resolution image. However, most methods used to produce super-resolution

are found to have some defects. The major defect noticed in these methods is

that they fail to remove artifacts like aliasing, noise etc. They also require high

computation time and computation complexity. The aims of the work presented in

this thesis are:

1. To develop a learning based super-resolution method which can produce high

quality images with high spatial frequency and less artifacts like blurring,

noise and aliasing.

2. To develop a method that requires less computation time.

3. To reduce the computational complexity of the super-resolution method.
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In brief the aim of this work is to optimise a super resolution method in terms of

quality, time and computational complexity.

1.6 Organisation of the thesis
The main problem addressed in this thesis is learning based single image

super-resolution method.

The second chapter is an overview of the previous literature work in this field .

The main body of the Ph.D thesis is presented in five chapters from Chapter 3

to Chapter 7. In the third chapter, three single image super-resolution methods

are discussed. First method is a study of the work done by William T.Freemann

[108]. Second and third methods are based on wavelets. Here the third method is

obtained by modifying the second method[15] by patch based approach.

The fourth chapter explains a new single image super-resolution method based

on skewed anisotropic transform called directionlets. This method outperforms

the standard interpolation methods and the wavelet methods, both visually and in

terms of SNR values. The super-resolution methods are implemented using, both

critically sampled and over sampled directionlets.

The conventional directionlet transform is computationally complex. Hence

lifting algorithms are used for implementation of directionlets. The fifth chapter

describes single image super-resolution method based on lifting based directionlets.

This chapter also describes a study of different wavelets on this single image

super-resolution method.

The sixth chapter extends the new single image super-resolution method to color

images. Two methods are presented here. In the first method images in RGB

format is converted to YCbCr format and the super-resolution method is applied

to the luminance (Y) component. The other two color components Cb, Cr are
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interpolated using standard methods. In the second method three color components

r,g,b are super resolved separately to obtain the high resolution color image.

All the above chapters describe single image super-resolution method on

noise free images. Seventh chapter explains the effect of the single image

super-resolution method on noisy images.

The chapter 8 presents conclusions of the thesis and future work directions.



Chapter 2

Literature Review

The work in super resolution area is progressing very rapidly with the introduction

of many signal processing techniques such as Wavelet transform, different learning

methods etc. Like all fields and particularly emerging ones, it has a plethora of

different motivations. This chapter gives a detailed account of the previous work

done in reconstruction and learning based super resolution area.
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2.1 Super-resolution : An overview
As explained in the previous chapter, there are two types of super resolution

techniques- reconstruction based and learning based. In reconstruction based

techniques, high resolution image is recovered from several low resolution

observations of the input.Impressive amount of work has been reported in this field.

Frequency domain approach proposed by Tsai in "Multiframe image restoration

and registration" [100] is the first work in super resolution. They considered

the super resolution problem described above subject to the assumption that the

low resolution frames have neither been corrupted by noise nor degraded by a

blurring phenomenon. In the paper " High-resolution image recovery from image-

plane arrays, using convex projections" [96], Stark et al considers the problem

of reconstructing remotely obtained images from image-plane detector arrays.

Although the individual detectors may be larger than the blur spot of the imaging

optics, high-resolution reconstructions can be obtained by scanning or rotating

the image with respect to the detector. As an alternative to matrix inversion or

least-squares estimation, the method of convex projections is proposed. It is also

shown that readily obtained prior knowledge can be used to obtain good-quality

imagery with reduced data.

Kim et al [45] in their paper, propose a recursive algorithm for restoration

of super resolution images from noisy and blurred observations. They use

the aliasing relationship between the under sampled frames and the reference

image, to develop a weighted recursive least-squares theory based algorithm in

the wave number domain. This algorithm is efficient because interpolation and

noise removal are performed recursively and in addition, it is highly suitable

for implementation through the massively parallel computational architectures

currently available. Accurate knowledge of the relative scene locations sensed

by each pixel in the observed images is necessary for super resolution. This

information is available in image regions where local deformation can be described

by some parametric function. Such functions can describe, for example, perspective

transformation. Authors assumed that local motion can be described by translations
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and rotations only, but the approach is applicable also for other image motion

models. In 1990 Irani et al , propose a method in the paper [62] which is similar

to back-projection used in tomography. In tomography, images are reconstructed

from their projections in many directions. In the super resolution case, each

low resolution pixel is a “projection” of a region in the scene whose size is

determined by the imaging blur. Accurate knowledge of the relative scene locations

sensed by each pixel in the observed images is necessary for super resolution.

This information is available in image regions where local deformation can be

described by some parametric function. Such functions can describe, for example,

perspective transformation. Like[45], here also it is assumed that local motion

can be described by translations and rotations only, but the approach is applicable

also for other image motion models. Here it is shown that when the algorithm is

applied to a single image without increasing the sampling rate, super resolution

reduces to deblurring. In 1993, Kim et al present an approach in the article

[44] to obtain high resolution image reconstruction from low-resolution, blurred,

and noisy multiple-input frames. Here a recursive least squares approach with

iterative regularization is developed in the discrete Fourier transform (DFT) domain.

When the input frames are processed recursively, the reconstruction does not

converge in general due to the measurement noise and ill-conditioned nature of

the deblurring. Through the iterative update of the regularization function and the

proper choice of the regularization parameter, good high-resolution reconstructions

of low-resolution, blurred, and noisy input frames are obtained. The reconstruction

is done independently for each DFT element. It is shown by Bose et al, in their

paper[68] how the total least squares recursive algorithm for the real data FIR

(finite impulse response) adaptive filtering problem can be applied to reconstruct a

high-resolution filtered image from undersampled, noisy multiframes, when the

interframe displacements are not accurately known. This is done in the wave

number domain after transforming the complex data problem to an equivalent real

data problem. The procedure developed also applies when the multiframes are

degraded by linear shift-invariant blurs.



20 Literature review

Richard R. Schultz introduces a method in the article titled "A bayesian

approach to image expansion for improved definition" [79] for nonlinear image

expansion which preserves the discontinuities of the original image, producing

an expanded image with improved definition. The Maximum A Posteriori

(MAP) estimation techniques that are proposed for noise-free and noisy images

result in the optimization of convex functionals. Another approach toward the

super-resolution restoration problem is presented by the same author in the

paper "Extraction of high-resolution frames from video sequences" [78]. Their

approach uses MAP estimator, with the Huber-Markov Random Field (HMRF)

prior. The blur of the measured images is assumed to be simple averaging, and

the measurements additive noise is assumed to be independent and identically

distributed Gaussian vector. This choice of prior causes the entire problem to be non

quadratic, thus complicating the resulting minimization problem. The maximum

a posteriori (MAP) estimation techniques that are proposed for noise-free and

noisy images result in the optimization of convex functionals.This paper addressed

how to utilize both the spatial and temporal information present in a short image

sequence to create a single high-resolution video frame. A novel observation

model based on motion compensated subsampling was proposed for a video

sequence. Since the reconstruction problem is ill-posed, Bayesian restoration with

a discontinuity-preserving prior image model is used to extract a high-resolution

video still given a short low-resolution sequence. Tekalp et al [5] propose i) a

complete model of video acquisition with an arbitrary input sampling lattice and a

nonzero aperture time, and ii) an algorithm based on this model using the theory of

projections onto convex sets to reconstruct SR still images or video from an LR time

sequence of images. Michael Elad et al in 1997, propose a unified methodology in

the paper[20] toward the more complicated problem of super resolution restoration

using the tools maximum likelihood (ML) estimator, the maximum a posteriori

probability (MAP) estimator, and the set theoretic approach using projection onto

convex sets (POCS). In this super resolution restoration problem, an improved

resolution image is restored from several geometrically warped, blurred, noisy and

down sampled measured images. For this the super resolution restoration problem
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is modeled and analyzed from the ML, the MAP, and POCS points of view, yielding

a generalization of the known super resolution restoration methods. It assumes

explicit knowledge of the linear space and time variant blur, the (additive Gaussian)

noise, the different measured resolutions, and the (smooth) motion characteristics.

It is also shown that super resolution can be achieved even without motion. The

same authors presents a new method in the paper "Super resolution restoration of

an image sequence: Adaptive filtering approach" [58] based on adaptive filtering

theory for super resolution restoration of continuous image sequences. They modify

the previous work as approximations of the Kalman filter and then carry out a

thorough analysis of their performance in paper[57]. For each algorithm, they

calculated a bound on its deviation from the Kalman filter performance. They also

show that the propagated information matrix within the R-SD algorithm remains

sparse in time, thus ensuring the applicability of this algorithm. This analysis

includes two parts. The first part corresponds to the convergence properties of the

proposed algorithms and the second part relates to the computational complexity

of the R-SD algorithm. In the year itself the same authors propose a methodology

which suggests least squares (LS) estimators which adapt in time, based on adaptive

filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation

enables the treatment of linear space and time variant blurring and arbitrary motion,

both of them assumed known. The above mentioned algorithms are adequate for

tasks such as satellite fusion of several images and in combining several sources to

improve targets detection and identification, or generating an improved still picture

in VCR’s. However, when applied to a typical video scene, the production of one

super resolution output image cannot be regarded as a restoration of the scene. The

required output should be a sequence of super resolution images with the same

length as the source sequence and the same geometric behavior.

The paper "A regularized multichannel restoration approach for globally

optimal high resolution video sequence" [63] introduces an iterative regularized

approach to obtain a high resolution video sequence. A multiple input smoothing

convex functional is defined and used to obtain a globally optimal high resolution

video sequence. A mathematical model of multiple inputs is described by using the
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point spread function between the original and bilinearly interpolated images in

the spatial domain, and motion estimation between frames in the temporal domain.

Properties of the proposed smoothing convex functional are analyzed. An iterative

algorithm is utilized for obtaining a solution. The regularization parameter is

updated at each iteration step from the partially restored video sequence

In paper "An iterative weighted regularized algorithm for improving the

resolution of video sequences" [55] authors introduce an iterative regularized

approach to increase the resolution of a video sequence. A multiple input smoothing

convex functional is defined and used to obtain a globally optimal high resolution

video sequence. A mathematical model of multiple inputs is described by using the

point spread function between the original and bilinearly interpolated images in

the spatial domain, and motion estimation between frames in the temporal domain.

An iterative algorithm is utilized for obtaining the solution. The regularization

parameter is updated at each iteration step from the partially restored video

sequence.

In 1997, Hardie et al [84] propose a maximum a posteriori (MAP) framework

for jointly estimating image registration parameters and the high-resolution

image. Several previous approaches had relied on knowing the registration

parameters a priori or have utilized registration techniques not specifically designed

to treat severely aliased images. In the proposed method, the registration

parameters are iteratively updated along with the high-resolution image in a cyclic

coordinate-descent optimization procedure. Therefore,in the above paper authors

seek to minimize a MAP cost function with respect to the high-resolution image

and the registration parameters simultaneously using a cyclic coordinate-descent

optimization procedure. In this iterative technique, the registration parameter

estimates are updated using the current best estimate of the high-resolution

image. Ming-Chao et al [53] introduces two algorithms for enhancing image

resolution from an image sequence. The “image-based” approach presumes that

the images were taken under the same illumination conditions and uses the intensity

information provided by the image sequence to construct the high-resolution

image. This ideal, however, is almost always not true when the illumination varies.
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The “edge-based” approach, based on edge models and a local blur estimate,

circumvents these difficulties.

A discrete cosine transform (DCT)-based method is proposed by Kang et al

in the paper[87]. They reduce memory requirements and computational costs by

using DCT instead of DFT. They also apply multichannel adaptive regularization

parameters to overcome ill-posedness such as underdetermined cases or insufficient

motion information cases.

The approach, the authors propose in the paper titled "Efficient super-resolution

via image warping" [54] uses the integrating resampler for warping. The method

is a direct computation, which is fundamentally different from the iterative

back-projection approaches proposed in previous work. This paper shows that

image-warping techniques may have a strong impact on the quality of image

resolution enhancement. By coupling the degradation model of the imaging system

directly into the integrating resampler, the warping characteristics of real sensors

can be approximated effectively, which also significantly improve the quality of

super-resolution images.

Nhat Nguyen et al [71] propose efficient block circulant pre conditioners for

solving the regularized super resolution problem. In the paper "An efficient

wavelet based algorithm for image superresolution" [65], the same author presents

a new and efficient wavelet based algorithm for image superresolution. The

algorithm is a combination of interpolation and restoration processes. This

method exploits the interlaced sampling structure in the low resolution data.

In the paper, [8] Peleg et al introduces two novelties. First, a framework for

super resolution algorithms is presented, which enables the development of very

efficient algorithms. Second, a method for applying super resolution to panoramic

mosaics is presented. Another robust approach for super resolution is presented

in the paper "Robust super-resolution" [7], which is essentially valuable in the

presence of outliers. Such outliers may be due to motion errors, inaccurate blur
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models, noise, moving objects, motion blur etc. This robustness is needed since

super-resolution methods are very sensitive to such errors. A robust median

estimator is combined in an iterative process to achieve a super resolution algorithm.

This process can increase resolution even in regions with outliers, where other

super resolution methods actually degrade the image. Nguyen et al [66] propose

an efficient block circulant preconditioners for solving the Tikhonov regularized

superresolution problem by the conjugate gradient method. They also extend

their work to underdetermined systems with the derivation of the generalized

cross-validation method for automatic calculation of regularization parameters.

Here, they present efficient circulant block preconditioners that take advantage

of the inherent structures in the superresolution system matrix to accelerate CG.

They adopt the generalized cross-validation (GCV) method, which is often used

to calculate regularization parameters for Tikhonov-regularized overdetermined

least squares problems without accurate knowledge of the variance of noise, to our

underdetermined problem.

Elad et al [60] address the problem of recovering a super-resolved image from

a set of warped, blurred and decimated versions there of. The main contribution of

this paper corresponds to the fusion stage, where the measurements are merged

into a higher resolution image. It is shown that through a very simple non

iterative algorithm, this fusion is achieved, while preserving the optimality in

the Maximum-Likelihood sense. In their next paper [91], they prove that additive

Gaussian distribution is not a proper model for super-resolution noise. Specifically,

they show that Lp norm minimization results in a pixel wise weighted mean

algorithm which requires the least possible amount of computation time and

memory and produces a maximum likelihood solution. They also justify the use

of a robust prior information term based on bilateral filter idea.With the objective

of improving the performance of the signal processing algorithms in the presence

of the ubiquitous perturbation errors of displacements around the ideal subpixel

locations (because of imperfections in fabrication), in addition to noisy observation,

the errors-invariables or the total least-squares method is used in paper "Constrained

total least squares computations for high- resolution image reconstruction with
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multisensors" [61]. A regularized constrained total least-squares (RCTLS) solution

to the problem is given, which requires the minimization of a nonconvex and

nonlinear cost functional. Simulations indicate that the choice of the regularization

parameter influences significantly the quality of the solution. The L-curve method

is used to select the theoretically optimum value of the regularization parameter

instead of the unsound but expedient trial-and-error approach. Keren et al, in

their paper [113] suggest a new approach which exploits the correlation between

neighboring information in the “steerable wavelet” representation. The advantage

of working in the wavelet domain is that the smoothness assumption is applied in

the appropriate scale and in the appropriate orientation. The demosaic results using

this approach provides a faithful interpolation of missing samples while preserving

edges and textures in the resulting image. In the paper[118], Peleg et al present a

new way to combine the information from different non-registered sensors. Given

a set of images of possibly different sensors viewing the same scene, the resolution

of one image is improved by using the other images. In color RGB sensors, for

example, the red channel is enhanced using the green and blue channels. Similarly

the green channels are enhanced using the red and blue channels. The result of

combining the enhanced resolution channels is a higher resolution color image.

In 2003, Chan et al analyze the super resolution problem from the wavelet point

of view [77]. By expressing the true image as a function in L(R2), the authors derive

iterative algorithms which recover the function completely in the L sense from the

given low-resolution functions. These algorithms decompose the function obtained

from the previous iteration into different frequency components in the wavelet

transform domain and add them into the new iterate to improve the approximation.

Wavelet (packet) thresholding methods are applied to denoise the function obtained

in the previous step before adding it into the new iterate. In paper titled "Variational

approaches to super-resolution with contrast enhancement and anisotropic diffusion

" [30], Kim et al present super-resolution methods that enhance image contrast and

perform anisotropic diffusion simultaneously. Since the super-resolution problem

is solved by encouraging Mach-band profiles while incorporating anisotropic

diffusion, this technique not only reconstructs a high-resolution image from several
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overlapping noisy low-resolution images, but also enhances edges and image

contrast while suppressing image noise during the restoration process.

Elad et al [92] propose a fast and robust hybrid method of super-resolution

and demosaicing, based on a maximum a posteriori (MAP) estimation technique

by minimizing a multi-term cost function. The L1 norm is used for measuring

the difference between the projected estimate of the high-resolution image and

each low-resolution image, removing outliers in the data and errors due to possibly

inaccurate motion estimation. Bilateral regularization is used for regularizing the

luminance component, resulting in sharp edges and forcing interpolation along the

edges and not across them. Simultaneously, Tikhonov regularization is used to

smooth the chrominance component. Finally, an additional regularization term is

used to force similar edge orientation in different color channels.

In the paper "Fast and robust multiframe super resolution" [22], the authors

review some of these methods and addresses their shortcomings. They propose an

alternate approach using L1 norm minimization and robust regularization based on

a bilateral prior to deal with different data and noise models.This paper reviews

some of these methods and addresses their shortcomings. The authors propose an

alternate approach using L1 norm minimization and robust regularization based on

a bilateral prior to deal with different data and noise models.

The work presented in the paper titled "Direct super-resolution and registration

using raw cfa images" [27] aims at producing a high-resolution color image directly

from raw color mosaic images obtained by a single CCD equipped with a color

filter array. This method is based on a generalized formulation of superresolution

that simultaneously performs both resolution enhancement and demosaicing.

In the paper, [52] Bose et al investigate the effect of the threshold level on

reconstructed image quality in second-generation wavelet super-resolution. The

choice of optimal threshold involves a tradeoff between noise filtering and blurring

introduced by thresholding. This can then be formulated as an optimization

problem whose solution is obtained by minimizing a cost function. The approaches

adopted and their analysis to solve the formulated optimization problem are crucial,
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The image acquisition scheme is important in the modeling of the degradation

process. The need for model accuracy is undeniable in the attainment of SR along

with the design of the algorithm whose robust implementation will produce the

desired quality in the presence of model parameter uncertainty.

Using a stochastic framework, Woods et al propose two algorithms for the

problem of obtaining a single high-resolution image from multiple noisy, blurred,

and undersampled images in the paper[64]. The first is based on a Bayesian

formulation that is implemented via the expectation maximization algorithm. The

second is based on a maximum a posteriori formulation. In their formulations, the

registration, noise, and image statistics are treated as unknown parameters. These

unknown parameters and the high-resolution image are estimated jointly based on

the available observations.

In paper, [25] Nathan et al propose a maximum a posteriori (MAP) framework

for the super resolution problem, i.e. reconstructing high-resolution images from

shifted, rotated, low-resolution degraded observations. The main contributions of

this work are two; first, the use of a new locally adaptive edge preserving prior

for the super resolution problem. Second, an efficient two-step reconstruction

methodology that includes first an initial registration using only the low resolution

degraded observations. This is followed by a fast iterative algorithm implemented

in the discrete fourier transform domain in which the restoration, interpolation and

the registration subtasks of this problem are preformed simultaneously.

In the paper "Super resolution blind reconstruction of low resolution images

using wavelets based fusion", [50] authors propose a super resolution blind

reconstruction technique for linearly degraded images. In this technique the

algorithm is divided into three parts - an image registration, wavelets based fusion

and an image restoration. For this, three low resolution images are considered

which may sub pixels shifted, rotated, blurred or noisy. The sub pixel shifted

images are registered using affine transformation model. A wavelet based fusion is

performed and the noise is removed using soft thresholding.
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Multiframe super resolution (SR) reconstruction aims to produce a

high-resolution (HR) image using a set of low-resolution (LR) images. In the

process of reconstruction, fuzzy registration usually plays a critical role. It mainly

focuses on the correlation between pixels of the candidate and the reference images

to reconstruct each pixel by averaging all its neighboring pixels. Therefore, the

fuzzy-registration-based SR performs well and has been widely applied in practice.

However, if some objects appear or disappear among LR images or different angle

rotations exist among them, the correlation between corresponding pixels becomes

weak. Thus, it will be difficult to use LR images effectively in the process of SR

reconstruction. Moreover, if the LR images are noised, the reconstruction quality

will be affected seriously. To address or at least reduce these problems, Xinbo Gao

et al presents a novel SR method based on the Zernike moment, to make the most

of possible details in each LR image for high-quality SR reconstruction in paper

[112].

In paper[24], Gao et al propose a sparse neighbor selection (SpNS)

scheme for SR reconstruction. They first predetermine a larger number of

neighbors as potential candidates and develop an extended Robust- SL0 algorithm

to simultaneously find the neighbors and solve the reconstruction weights.

Recognizing that the k-NN for reconstruction should have similar local geometric

structures based on clustering, they employ a local statistical feature, namely

Histograms of oriented gradients (Hog) of low-resolution (LR) image patches, to

perform such clustering. By conveying local structural information of Hog in the

synthesis stage, the k-NN of each LR input patch are adaptively chosen from their

associated subset, which significantly improves the speed of synthesizing the HR

image while preserving the quality of reconstruction.

In the paper [43], Zhang et al propose a simple preconditioning method for

accelerating the solution of edge-preserving image super-resolution (SR) problems

in which a linear shift-invariant point spread function is employed. Their technique

involves reordering the high-resolution (HR) pixels in a similar manner to what is

done in preconditioning methods for quadratic SR formulations. However, due to

the edge preserving requirements, the Hessian matrix of the cost function varies
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during the minimization process. They develop an efficient update scheme for the

preconditioner in order to cope with this situation. Unlike some other acceleration

strategies that round the displacement values between the low-resolution (LR)

images on the HR grid, the proposed method does not sacrifice the optimality of

the observation model. In addition, they describe a technique for preconditioning

SR problems involving rational magnification factors.

Accurate image registration plays a preponderant role in image super-resolution

methods and in the related literature landmark based registration methods have

gained increasing acceptance in this framework. However, their solution relies

on point correspondences and on least squares estimation of the registration

parameters necessitating further improvement. In paper[104], Vrigkas et al

propose a maximum a posteriori scheme for image super resolution is presented

where the image registration part is accomplished in two steps. At first, the low

resolution images are registered by establishing correspondences between robust

SIFT features. In the second step, the estimation of the registration parameters is

fine-tuned along with the estimation of the high resolution image, in an iterative

procedure, using the maximization of the mutual information criterion. In 2012,

Pelletier et al propose a simple preconditioning method for accelerating the

solution of edge-preserving image super-resolution (SR) problems in which a

linear shift-invariant point spread function is employed [69]. Their technique

involves reordering the high-resolution (HR) pixels in a similar manner to what is

done in preconditioning methods for quadratic SR formulations. However, due to

the edge preserving requirements, the Hessian matrix of the cost function varies

during the minimization process. They develop an efficient update scheme for the

preconditioner in order to cope with this situation. Unlike some other acceleration

strategies that round the displacement values between the low-resolution (LR)

images on the HR grid, the proposed method does not sacrifice the optimality of

the observation model. In addition, they describe a technique for preconditioning

SR problems involving rational magnification factors.
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Reconstruction based super resolution can be used when more than one low

resolution images are available. In some situations, only one low resolution image

is available. In that case, a database with available high resolution images are

used to super resolve the input low resolution image. But in learning based

super resolution algorithms, a training set of available high resolution images are

used to obtain the high resolution of an image captured using a low resolution

camera. In the training set, images are stored as patches or coefficients of feature

representations like wavelet transform, DCT ,etc. Unlike the reconstruction based

method which requires multiple low resolution input images, here only one input

image (single frame image super resolution) is required. Single frame image

super resolution can be used in applications where database of high resolution

images are available. These methods are classified under the motion free super

resolution scheme. Because the richness of real-world images is difficult to capture

analytically, for the past several years. They have been exploring a learning-based

approach for enlarging images. In a training set, the algorithm learns the fine

details that correspond to different image regions seen at a low-resolution and then

uses those learned relationships to predict fine details in other images. In the first

part of the paper [11], the authors derive a sequence of analytical results which

show that the reconstruction constraints provide less and less useful information

as the magnification factor increases. They also validate these results empirically

and show that for large enough magnification factors any smoothness prior leads to

overly smooth results with very little high-frequency content (however many low

resolution input images are used.) In the second part of this paper, they propose a

super-resolution algorithm that uses a different kind of constraint, in addition to

the reconstruction constraints. The algorithm attempts to recognize local features

in the low resolution images and then enhances their resolution in an appropriate

manner.

The paper [2] describes a new framework for processing images by example,

called “image analogies.” The framework involves two stages: a design phase, in

which a pair of images, with one image purported to be a “filtered” version of

the other, is presented as “training data”; and an application phase, in which the
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learned filter is applied to some new target image in order to create an “analogous”

filtered result. Image analogies are based on a simple multi-scale auto regression,

inspired primarily by recent results in texture synthesis. By choosing different

types of source image pairs as input, the framework supports a wide variety

of “image filter” effects, including traditional image filters, such as blurring or

embossing; improved texture synthesis, in which some textures are synthesized

with higher quality than by previous approaches; super-resolution, in which a

higher-resolution image is inferred from a low-resolution source; texture transfer,

in which images are “texturized” with some arbitrary source texture; artistic filters,

in which various drawing and painting styles are synthesized based on scanned

real-world examples; and texture-by-numbers, in which realistic scenes, composed

of a variety of textures, are created using a simple painting interface.

In paper [108], Freeman et al propose an example based super resolution

method in which he had developed a Bayesian propagation algorithm using Markov

Network.

The paper titled "Is super-resolution with optical flow feasible" [107] is an

attempt at understanding the influence of image alignment and warping errors on

super-resolution. Requirements on the consistency of optical flow across multiple

images are studied and it is shown that errors resulting from traditional flow

algorithms may render super-resolution infeasible.

Pickup et al present a domain-specific image prior based upon sampled images

in the paper[72]. The paper "Learning based super-resolution imaging: Use

of zoom as a cue" [42] propose a technique for super-resolution imaging of

a scene from observations at different camera zooms. Given a sequence of

images with different zoom factors of a static scene, they obtain a picture of

the entire scene at a resolution corresponding to the most zoomed observation.

The high-resolution image is modeled through appropriate parameterization, and

the parameters are learned from the most zoomed observation. Assuming a

homogeneity of the high-resolution field, the learned model is used as a prior

while super-resolving the scene. They suggest the use of either a Markov random

field (MRF) or an simultaneous autoregressive (SAR) model to parameterize the
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field based on the computation one can afford. In this paper[15], Jiji et al propose

a single frame, learning-based super-resolution restoration technique by using

the wavelet domain to define a constraint on the solution. Wavelet coefficients at

finer scales of the unknown high-resolution image are learned from a set of high

resolution training images and the learned image in the wavelet domain is used for

further regularization while super resolving the picture. They use an appropriate

smoothness prior with discontinuity preservation in addition to the wavelet based

constraint to estimate the super-resolved image. The smoothness term ensures

the spatial correlation among the pixels, whereas the learning term chooses the

best edges from the training set. Because this amounts to extrapolating the high

frequency components, the proposed method does not suffer from over smoothing

effects

In the paper[17], the same authors propose an eigen image based super

resolution reconstruction technique. In paper titled "Patch based blind image

super resolution" [74], Qiang et al presented, a novel method for learning based

image super resolution (SR) is presented. The basic idea is to bridge the gap

between a set of low resolution (LR) images and the corresponding high resolution

(HR) image using both the SR reconstruction constraint and a patch based image

synthesis constraint in a general probabilistic framework. In this framework, the

estimation of the LR image formation parameters is straightforward. The whole

framework is implemented via an annealed Gibbs sampling method.

In the paper "Non-parametric image super-resolution using multiple images"

[28], the authors present a novel learning based framework for performing

super-resolution using multiple images. They model the image as an undirected

graphical model over image patches in which the compatibility functions are

represented as non-parametric kernel densities which are learnt from training data.

The observed images are translation rectified and stitched together onto a high

resolution grid and the inference problem reduces to estimating unknown pixels in

the grid.

In 2006, Todd et al [99] propose to use even stronger prior information by

extending MRF-based super-resolution to use adaptive observation and transition



Super-resolution : An overview 33

functions, that is, to make these functions region-dependent. They adapt the

modeling for each image patch so as to improve the resolution.

In paper [17], Jiji et al propose a learning-based, single-image super-resolution

reconstruction technique using the contourlet transform, which is capable

of capturing the smoothness along the contours, making use of directional

decompositions. The contourlet coefficients at finer scales of the unknown

high-resolution image are learned locally from a set of high-resolution training

images, the inverse contourlet transform of which recovers the super-resolved

image. In effect, they learn the high-resolution representation of an oriented edge

primitive from the training data.

The paper titled "Learning-based nonparametric image super-resolution"

present a novel learning-based framework for zooming and recognizing images

of digits obtained from vehicle registration plates, which have been blurred

using an unknown kernel[89]. They model the image as an undirected graphical

model over image patches in which the compatibility functions are represented

as nonparametric kernel densities. The crucial feature of this work is an

iterative loop that alternates between super-resolution and restoration stages. A

machine-learning-based framework has been used for restoration which also

models spatial zooming. Image segmentation is done by a column-variance

estimation-based “dissection” algorithm. Initially, the compatibility functions

are learned by nonparametric kernel density estimation, using random samples

from the training data.

In the paper[51], Pickup et al attempt to shed some light on this problem when

the SR algorithms are designed for general natural images (GNIs). They first define

an expected risk for the SR algorithms that is based on the root mean squared error

between the super resolved images and the ground truth images. Then utilizing

the statistics of GNIs, they derive a closed form estimate of the lower bound of the

expected risk. The lower bound can be computed by sampling real images. By

computing the curve of the lower bound with respect to the magnification factor,

they can estimate the limits of learning-based SR algorithms, at which the lower

bound of expected risk exceeds a relatively large threshold. The paper propose an
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alternative super-resolution method based on image fusion (called super-fusion

hereafter). Image fusion has been proven to be effective in many applications.

Extending image fusion to super-resolve images, they show that super-fusion is a

faster alternative that imposes less requirements and is more stable than traditional

super-resolution methods

In the paper[33], Isabelle presents comparisons of two learning-based

super-resolution algorithms as well as standard interpolation methods. To allow

quality assessment of results, a comparison of a variety of image quality measures

is also performed.

In the paper "Single frame image super-resolution: should we process locally

or globally?" [17], the authors study the usefulness of different local and global,

learning-based, single-frame image super-resolution reconstruction techniques in

handling three specific tasks, namely, de-blurring, de-noising and alias removal.

They start with the global, iterative Papoulis–Gerchberg method for super-resolving

a scene. Next they describe a PCA-based global method which faithfully

reproduces a super-resolved image from a blurred and noisy low resolution input.

They also study several multi resolution processing schemes for super-resolution

where the best edges are learned locally from an image database. They show

that the PCA-based global method is efficient in handling blur and noise in the

data. The local methods are adept in capturing the edges properly. However,

both local and global approaches cannot properly handle the aliasing present in

the low resolution observation. Hence they propose an alias removal technique

by designing an alias-free upsampling scheme. In the paper[80] Freeman et al

introduce a method to remove the effects of camera shake from seriously blurred

images. The method assumes a uniform camera blur over the image and negligible

in-plane camera rotation. In order to estimate the blur from the camera shake, the

user must specify an image region without saturation effects.

In 2006,Ju Liu et al [38] propose a logarithmic-wavelet transform (Log-WT)

based method to combine super-resolution and shadow removing into a single

operation. First intrinsic, illumination invariant features of the image are extracted

by exploiting logarithmic-wavelet transform. Then an initial estimation of high
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resolution image is obtained based on the assumption that small patches in low

resolution space and patches in high resolution space share the similar local

manifold structure. Finally the target high resolution image is reconstructed by

applying the reconstruction constraints in pixel domain. The paper[85] "Learning

the kernel matrix for super resolution" proposes the application of learned kernels

in support vector regression to super resolution in the discrete cosine transform

(DCT) domain. Though previous works involve kernel learning, their problem

formulation is examined to reformulate the semi-definite programming problem of

finding the optimal kernel matrix. For the particular application to superresolution,

downsampling properties derived in the DCT domain are exploited to add structure

to the learning algorithm. The advantage of the proposed method over other

learning-based super resolution algorithms include specificity with regard to image

content, structured consideration of energy compaction, and the added degrees of

freedom that regression has over classification-based algorithms. Convolutional

networks have achieved a great deal of success in high-level vision problems such

as object recognition. In the paper [34], Jain et al show that they can also be used as

a general method for low-level image processing. As an example of their approach,

convolutional networks are trained using gradient learning to solve the problem

of restoring noisy or degraded images. For training data, they have used electron

microscopic images of neural circuitry with ground truth restorations provided by

human experts. On this data set, Markov random field (MRF), conditional random

field (CRF), and anisotropic diffusion algorithms perform about the same as simple

thresholding, but superior performance is obtained with a convolutional network

containing over 34,000 adjustable parameters. When restored by this convolutional

network, the images are clean enough to be used for segmentation, whereas the

other approaches fail in this respect.

The paper [9], Ayan et al present a learning-based method to super-resolve face

images using a kernel principal component analysis-based prior model. A prior

probability is formulated based on the energy lying outside the span of principal

components identified in a higher-dimensional feature space. This is used to

regularize the reconstruction of the high-resolution image.
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The paper [12] addresses the problem of super-resolving a single image and

recovering the characteristics of the sensor using a learning-based approach. In

particular, the point spread function (PSF) of the camera is sought by minimizing

the mean Euclidean distance function between patches from the input frame and

from degraded versions of high resolution training images. Once an estimate of

the PSF is obtained, a supervised learning algorithm can then be used as is. The

paper [59] reviews an emerging powerful family of regularization techniques that

is drawing attention in recent years—the example-based approach. The authors

describe how examples can and have been used effectively for regularization

of inverse problems, reviewing the main contributions along these lines in the

literature, and organizing this information into major trends and directions. A

description of the state-of-the-art in this field, along with supporting simulation

results on the image scale-up problem are given.

In the paper titled "Psf recovery from examples for blind super-resolution"[23],

the authors propose a new learning based approach for super-resolving an image

captured at low spatial resolution. Given the low spatial resolution test image and a

training set consisting of low and high spatial resolution images, all captured using

the same camera, they obtain super-resolution for the test image. They propose a

new wavelet based learning technique that learns the high frequency details for the

test image from the training set and thus obtain an initial high resolution estimate.

Since super-resolution is an ill-posed problem they solve it using regularization

framework. They model the low resolution image as the aliased and noisy version

of the corresponding high resolution image and estimate the aliasing matrix using

the test image and the initial high resolution (HR) estimate.

In the paper[106], Zhang et al address the problem of producing super- resolved

image from a single low-resolution input. Unlike most previous work, the camera’s

point spread function (PSF) is not assumed to be known in advance and the single

image super-resolution problem is formulated as a blind deconvolution problem

under a MAP framework which can be optimized effectively in an iterative manner.

In the paper, [117] Xiong et al propose a single-image super-resolution scheme for

enlarging low quality thumbnail images widely distributed on the Web, which are
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often generated by down sampling plus compression. To obtain visually pleasurable

high-resolution versions for this kind of low-resolution images, they first adopt a

PDE-based image regularization technique to alleviate the compression noise in the

distorted thumbnails, and then use learning-based pair matching to further enhance

the high-frequency details in the upsampled images. In the paper, [111] Xiaofeng

et al develop a scale-invariant representation of images from the bottom up, using a

piecewise linear approximation of contours and constrained Delaunay triangulation

to complete gaps. They model curvilinear grouping on top of this graphical/

geometric structure using a conditional random field to capture the statistics of

continuity and different junction types. The paper titled "Example-based learning

for single- image super-resolution" [48] proposes a regression-based method for

single-image super-resolution. Kernel ridge regression (KRR) is used to estimate

the high-frequency details of the underlying high-resolution image. A sparse

solution of KRR is found by combining the ideas of kernel matching pursuit

and gradient descent, which allows time-complexity to be kept to a moderate

level. The paper[36]titled "Image super resolution as sparse representation of

raw image patches" addresses the problem of generating a super resolution (SR)

image from a single low-resolution input image. They approach this problem from

the perspective of compressed sensing. The low-resolution image is viewed as

down sampled version of a high-resolution image, whose patches are assumed

to have a sparse representation with respect to an over-complete dictionary of

prototype signal atoms. The principle of compressed sensing ensures that under

mild conditions, the sparse representation can be correctly recovered from the

down sampled signal. They demonstrate the effectiveness of sparsity as a prior

for regularizing the otherwise ill-posed super-resolution problem. In the paper

"Image super-resolution using gradient profile prior" [39], authors propose an

image super-resolution approach using a novel generic image prior gradient profile

prior, which is a parametric prior describing the shape and the sharpness of the

image gradients. Using the gradient profile prior learned from a large number of

natural images, they can provide a constraint on image gradients when one estimate

a hi-resolution image from a low-resolution image.
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In paper [36] Jianchao et al addresses the problem of generating a

super-resolution (SR) image from a single low-resolution input image. They

approach this problem from the perspective of compressed sensing. The

low-resolution image is viewed as downsampled version of a high-resolution

image, whose patches are assumed to have a sparse representation with respect to an

over-complete dictionary of prototype signal-atoms. The principle of compressed

sensing ensures that under mild conditions, the sparse representation can be

correctly recovered from the downsampled signal.

In paper [18] "Super-Resolution from a Single Image", Daniel Glasner et al

propose a unified framework for combining classical multi image super resolution

and example based super-resolution. They further show how this combined

approach can be applied to obtain super resolution from as little as a single image.

This approach is based on the observation that patches in a natural image tend to

redundantly recur many times inside the image, both within the same scale, as well

as across different scales.

In paper [47], Kim et al proposes a framework for single-image super-resolution.

The underlying idea is to learn a map from input low-resolution images to target

high-resolution images based on example pairs of input and output images. Kernel

ridge regression (KRR) is adopted for this purpose. To reduce the time complexity

of training and testing for KRR, a sparse solution is found by combining the ideas

of kernel matching pursuit and gradient descent. As a regularized solution, KRR

leads to a better generalization than simply storing the examples as it has been

done in existing example-based algorithms and results in much less noisy images.

However, this may introduce blurring and ringing artifacts around major edges

as sharp changes are penalized severely. A prior model of a generic image class

which takes into account the discontinuity property of images is adopted to resolve

this problem

In 2010 [37] Jianchao et al present a new approach to single-image super

resolution, based upon sparse signal representation. Research on image statistics
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suggests that image patches can be well-represented as a sparse linear combination

of elements from an appropriately chosen over-complete dictionary. Inspired by this

observation, they seek a sparse representation for each patch of the low-resolution

input, and then use the coefficients of this representation to generate the high

resolution output. Theoretical results from compressed sensing suggest that under

mild conditions, the sparse representation can be correctly recovered from the

down sampled signals. By jointly training two dictionaries for the low and high

resolution image patches,they can enforce the similarity of sparse representations

between the low resolution and high resolution image patch pair with respect to

their own dictionaries. Therefore, the sparse representation of a low-resolution

image patch can be applied with the high-resolution image patch dictionary to

generate a high-resolution image patch. The learned dictionary pair is a more

compact representation of the patch pairs, compared to previous approaches, which

simply sample a large amount of image patch pairs , reducing the computational

cost substantially. The effectiveness of such a sparsity prior is demonstrated for

both general image super-resolution (SR) and the special case of face hallucination.

In both cases, this algorithm generates high-resolution images that are competitive

or even superior in quality to images produced by other similar SR methods. In

paper [114] Tang et al propose a method to improve the power of the nearest

neighbor based algorithms in single-image based super-resolution, a local learning

method is proposed in this paper. Similar to the nearest neighbor-based algorithms,

a local training set is generated according to the similarity between the training

samples and a given test sample. For super-resolving the given test sample, a

local regression function is learned on the local training set. The generalization

of nearest neighbor-based algorithms can be enhanced by the process of local

regression. Based on such an idea, they propose a novel local-learning-based

algorithm, where kernel ridge regression algorithm is used in local regression for

its well generalization. Some experimental results verify the effectiveness and

efficiency of the local learning algorithm in single-image based super-resolution.

In paper [116], Zheng et al present a new approach to generate a high-resolution

(HR) remote sensing image from a single low-resolution (LR) input while
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denoising simultaneously, based on sparse signal representation. Recent research

on patch-based sparse representation suggests that the high resolution patch has the

same sparse representation as the corresponding low resolution patch. Inspired by

this observation, they jointly train two dictionaries for the low resolution and the

high resolution image patches and enforce the similarity of sparse representations

between them. Thus using Batch Orthogonal Matching Pursuit (Batch-OMP), they

seek a sparse representation for each patch of the low-resolution input which can

be applied with the high resolution dictionary to generate a high resolution patch.

The neighbor-embedding (NE) algorithm for single image super resolution

(SR) reconstruction assumes that the feature spaces of low-resolution (LR) and

high-resolution (HR) patches are locally isometric. However, this is not true for SR

because of one-to-many mappings between LR and HR patches. To overcome or

at least to reduce the problem for NE-based SR reconstruction, they apply a joint

learning technique to train two projection matrices simultaneously and to map the

original LR and HR feature spaces onto a unified feature subspace. Subsequently,

the k nearest neighbor selection of the input LR image patches is conducted in the

unified feature subspace to estimate the reconstruction weights. To handle a large

number of samples, joint learning locally exploits a coupled constraint by linking

the LR-HR counterparts together with the K-nearest grouping patch pairs. In

order to refine further the initial SR estimate, they impose a global reconstruction

constraint on the SR outcome based on the maximum a posteriori framework

in the paper "Joint Learning for Single-Image Super-Resolution via a Coupled

Constraint" [112] .

In paper [115], Yu Hu et al develop a new face hallucination framework termed

from local pixel structure to global image super-resolution (LPS-GIS). Based on the

assumption that two similar face images should have similar local pixel structures.

The new framework first uses the input low-resolution (LR) face image to search

a face database for similar example high-resolution (HR) faces in order to learn

the local pixel structures for the target HR face. It then uses the input LR face and

the learned pixel structures as priors to estimate the target HR face. They present

a three-step implementation procedure for the framework. Step 1 searches the
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database, for example the faces that are the most similar to the input, and then

warps the example images to the input using optical flow. Step 2 uses the warped

HR version of the example faces to learn the local pixel structures for the target

HR face. An effective method for learning local pixel structures from an individual

face, and an adaptive procedure for fusing the local pixel structures of different

example faces to reduce the influence of warping errors, have been developed. Step

3 estimates the target HR face by solving a constrained optimisation problem by

means of an iterative procedure. Neighbor embedding algorithm has been widely

used in example-based super-resolution reconstruction from a single frame, which

makes the assumption that neighbor patches embedded are contained in a single

manifold. However, it is not always true for complicated texture structure. In

paper[43], Xinbo Gao et al believe that textures may be contained in multiple

manifolds, corresponding to classes. Under this assumption, they present a novel

example-based image super-resolution reconstruction algorithm with clustering and

supervised neighbor embedding (CSNE). First, a class predictor for low-resolution

(LR) patches is learnt by an unsupervised Gaussian mixture model. Then by

utilizing class label information of each patch, a supervised neighbor embedding

is used to estimate high-resolution (HR) patches corresponding to LR patches. In

paper [97], Subrahmanyam et al propose a method based on dictionary training,

feature extraction from the trained data base images and regularization. They have

used singular values as prior for regularizing the ill-posed nature of the single

image superresolution problem. Method of Optimal Directions algorithm (MOD)

has been used in the proposed algorithm for obtaining high resolution and low

resolution dictionaries from training image patches. Using the two dictionaries the

given low resolution input image is super-resolved.

Image super-resolution reconstruction has drawn a lot of attentions lately. But

almost all existing SR algorithms do not consider the noisy image SR problem. In

paper [21], Fang et al propose a novel super-resolution algorithm for noisy images

based on sparse mixing estimators. Firstly, sparse mixing estimators are introduced

to achieve a directional and sparse representation of noisy low resolution (LR)
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image. Then, they employ the median filter to define thresholds using the local

characters of the sparse representation. After the noise is removed by shrinkage

thresholds, the adaptive interpolations are adopted to achieve high resolution (HR)

image.

The search for efficient image denoising methods is still a valid challenge at

the crossing of functional analysis and statistics. In spite of the sophistication of

the recently proposed methods, most algorithms have not yet attained a desirable

level of applicability. All show an outstanding performance when the image model

corresponds to the algorithm assumptions but fail in general and create artifacts or

remove image fine structures. The main focus of the paper "Self-similarity-based

image denoising" [6] is, first, to define a general mathematical and experimental

methodology to compare and classify classical image denoising algorithms and,

second, to describe the nonlocal means (NL-means) algorithm introduced in 2005

and its more recent extensions. The mathematical analysis is based on the analysis

of the "method noise," defined as the difference between a digital image and its

denoised version. NL-means, which uses image self-similarities, is proven to be

asymptotically optimal under a generic statistical image model.

Various methods for super resolving low resolution images have been presented

here. Though they handled super position problem in different context, they are not

so successful in reducing aliasing effect, ringing effect etc. Since most of the them

use learning methods like Markove method, SVM, they are computationally more

complex. So a method which handles defects like aliasing and also which is less

complex is desirable. The directionlet based super resolution method presented in

this thesis handles all these problems efficiently.



Chapter 3

Single image super-resolution:
Freemann’s Example based single
image super resolution method
and Wavelet methods

Levels of details within an image varies from location to location. Some
locations contain significant details, where it requires finer resolution for analysis
and there are other locations, where a coarser resolution representation suffices. A
multi-resolution representation of an image gives complete idea about the extent
of the details existing at different locations from which one can choose their
requirements of desired details. Wavelet transforms is one of the popular, but not
the only approach for multi resolution image analysis. Basic theory of wavelet
transform is initially presented. A new block wavelet method to super resolve low
resolution images to high resolution images is developed and its performance is
compared with the available wavelet transform method which super resolves the
image as a whole. The quality of super resolved image using the block method is
better than the other method.
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3.1 Introduction
As already stated there are two types of super-resolution methods :

Reconstruction based and Learning based. Reconstruction based methods super

resolve a low resolution image using a number of low resolution images. In

satellite communication multiple views of a scene are available and in that situation,

reconstruction based super resolution is applicable. But in some cases only a single

view of a scene is available and hence other methods are needed for super-resolving

the low resolution image. Different types of high resolution images are available

today through various means like Internet. One can use these high resolution

images to super resolve an entirely different low resolution image. This type of

super- resolution methods are called learning based super resolution methods.

Learning based single image super-resolution consists of creating a sharpened

version or high resolution image of bigger size from a low resolution image of lower

size, using a database created beforehand, called the training set. The basic idea

behind learning based super-resolution is to use some reference images (available

high resolution images) with the aim of sharpening a low resolution image. These

training set reference images are sharp images, containing low, mid and high

frequency data components. Some signal processing techniques can be used to

decompose these high resolution images into different frequency compositions.

These frequency features are stored in the training set. Learning based super

resolution means estimation of high resolution image using this training set, when

its low resolution image is given. The assumption used is that low resolution image

always contains low and mid frequency components and lacks high frequency

contents. To obtain high resolution components of a low resolution image, different

frequency bands must be known. In the learning based approach the low resolution

image itself can be used to obtain the low and mid frequency band and the missing

high frequency bands are learned from the training set. Learning based super

resolution is considered as the estimation of high frequency bands when low

frequency components are given.
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In this chapter, three learning based methods are presented. The first one, which

was developed by William T.Freeman [108], is considered as one of the initial

works in the field of learning based super resolution. Here a study of this method is

conducted to analyze the effect of training set on super resolved images. It uses a

training set which contains high and mid frequencies of sharp images. These high

and mid frequency details are obtained using Laplacian pyramid decomposition

and cubic spline interpolation. The basic idea of this algorithm is that interpolation

of a low resolution image using standard methods like cubic spline interpolation

only increases its size and the resulting image still lacks high resolution frequency

part. If the missing high resolution part is obtained somehow, adding it to the

interpolated low resolution image gives an image having high resolution. Learning

methods can be used to obtain the missing high frequency details. The training set

which contains high and mid frequency information of different images is used

to learn the correlation between the mid frequency information and those in the

database. The high frequency corresponding to the best related mid frequency

band is used as the missing high frequency band of input (given) low resolution

image. In Freemann’s algorithm, Laplacian image decomposition method is used

to decompose an image into different frequency bands. A number of other signal

processing techniques like DWT, DCT etc are also available for decomposition of

an image.

Another method was proposed by Jiji et al [15], where he used discrete wavelet

transform to decompose images into different frequency bands at different spatial

resolutions. Here the available high resolution images are decomposed into

different frequency bands using wavelet transform, and the wavelet coefficients

of those bands are stored as the training set or database. Wavelet coefficients at

finer scales of the given low resolution image are learnt from this training set.

Here the low resolution image substitutes the coarser level. The inverse wavelet

transform of the learned coefficients together with the low resolution image (coarser

level coefficients) gives the high resolution version of low resolution image. The

disadvantage of this method is that it needs different training sets for low resolution
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images of different size. This is because wavelet transform of whole image is taken

and parent child relationship is used to learn wavelet coefficient at finer scales.

This wavelet method is modified to develop a new method which divides high

resolution training set images and their corresponding low resolution images into

small patches or blocks and wavelet transform coefficients of these blocks are

stored as training set. Hence new method needs only one training set to super

resolve low resolution images of different sizes.

3.2 Low resolution model
Digital camera creates an image using a CCD. CCD consists a grid of many tiny

light-sensitive cells, or sensors, arranged to divide the total picture area into rows

and columns of a huge number of very tiny sub areas. For example, a 3 mega pixel

camera CCD has a grid of 2048×1536 sensors (3 million of them). Each sensor

samples the color of one of those tiny areas, creating an image of size 2048×1536

pixels.

As explained in chapter 1, the captured image suffers from different degradations.

The degradations are optical distortion, blurring, noise, aliasing etc. The

degradations occurred in capturing of digital image need to be modeled fully

or partially in different SR techniques. The captured image is a degraded version

of the original scene and is called low resolution image. Figure 3.1 shows a typical

observation model relating the original scene (high resolution) with low resolution

image. A low resolution image can be considered as a noisy, down sampled version

of the high resolution image which has been blurred and shifted.

Single frame super-resolution algorithms attempt to estimate high resolution

image from single low resolution observation. This is considered as an inverse

problem. Solving such an inverse problem requires the devising of a forward

model that represents the low resolution image formation process. The first step to

comprehensively analyze the super resolution image problem is to formulate an
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Figure 3.1: Image acquisition system

observation model that relates the original image (HR) to the observed LR image.

Usually super resolution problem can be modeled using equation 3.1, given by;

Y = DBZ +n (3.1)

The low resolution pixel intensity is the average of high resolution intensities

over a neighborhood of q2 pixels, (q is the magnification factor) [15]. Y represents

the lexicographically ordered vector of size M2× 1, which is formed from the

observed low resolution image of size M×M. Similarly Z is the lexicographically

ordered vector of the high resolution image to be super resolved. For an integer

decimation factor of q, the decimation matrix D consists of q2 non-zero elements

along each row at appropriate locations. Here n is the independent and identically

distributed (i.i.d.) noise vector with zero mean and variance σ . It has same size

as Y. Here the problem is to estimate Z, the HR image, given Y, the LR image.

B is blurred matrix, here it is considered as an identity matrix. Generally, the

decimation matrix D, used to obtain the aliased pixel intensities from the high
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resolution image is given as;

D =

11..1 0

11..1

0 11..1

 (3.2)

For example, with decimation factor q = 2 and with lexicographically ordered Z

of size, say 16×1, the D matrix of size 4×16 can be written as

D =


1100110000000000

0011001100000000

0000000011001100

0000000000110011

 (3.3)

Thus equation 3.1 indicates that the low resolution pixel intensity is obtained by

averaging the intensities of q2 pixels corresponding to the same scene in the high

resolution image and adding noise.

Low resolution images are modeled using the equation 3.1 for different methods

presented in this thesis.

3.3 Background
3.3.1 Multi Resolution Analysis

From a mathematical viewpoint, images are two dimensional arrays of intensity

values with locally varying statistics that result from different combination of abrupt

features like edges and contrasting homogeneous region. When an image is viewed,

connected regions of similar texture and gray level that combine to form objects

are visible. Objects with small size and low contrast are needed to be examined at

high resolution but coarse view is essential when they are large in size and have

high contrast. It will be advantageous to study images at several resolutions, if both

small and large objects (low or high contrast objects) are present simultaneously

[76]. This is the fundamental motivation for multi resolution processing. A multi
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resolution decomposition enables to have a scale-invariant interpretation of the

image. The scale of an image varies with the distance between the scene and the

optical center of the camera. When the image scale is modified, the interpretation

of the scene should not change. A multi resolution representation can be partially

scale-invariant. A multi resolution representation provides a simple hierarchical

framework for interpreting the image information. At different resolutions, the

details of an image generally characterize different physical structures of the scene.

At a coarse resolution, these details correspond to the larger structures which

provide the image “context”. It is therefore natural to first analyze the image

details at a coarse resolution and then gradually increase the resolution. Such a

coarse-to-fine strategy is useful for computer vision algorithms.

Laplacian pyramid decomposition
Burt and Crowley [13] have introduced pyramidal implementation for computing

the signal details at different resolutions. Image pyramid is a powerful and simple

structure for representing images at more than one resolution. It is a collection

of decreasing resolution images arranged in a shape of a pyramid. In order to

simplify the computations, Burt has chosen a resolution step q equal to 2. The

details at each resolution 2 are calculated by filtering the original image with the

difference of two low-pass filters and by sub sampling the resulting image by a

factor 2. This operation is performed over a finite range of resolutions. In this

implementation, the difference of low-pass filters gives an approximation of the

Laplacian of the Gaussian. The details at different resolutions are regrouped into a

pyramid structure called the Laplacian pyramid.

The Laplacian pyramid data structures, as studied by Burt and Crowley, suffer

from the difficulty that data at separate levels are correlated. There is no clear

model whether a similarity between the image details at different resolutions is due

to a property of the image itself or to the intrinsic redundancy of the representation.

Furthermore, the Laplacian multi resolution representation does not introduce

any spatial orientation selectivity into the decomposition process. This spatial
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homogeneity can be inconvenient for pattern recognition problems such as texture

discrimination.

3.3.2 Background : Multi Resolution Analysis using wavelets
Wavelets are mathematical functions that cut up data into different frequency

components, and then study each component with a resolution matched to its

scale. It was introduced by Morlet to overcome the short comings of Fourier

transform, which is not a convenient tool for decomposition for image analysis.

For many applications a function has to be analyzed in both time and frequency.

Though Fourier transform has been considered as the backbone of transform based

image processing, wavelet transform is more efficient for applications like image

compression, image transmission etc. Fourier transform has sinusoids as basis

function. Difference between fourier transform and wavelet transform is that

fourier only gives frequency information, smearing time. Using fourier transform

it is impossible to tell when a particular event takes place. Wavelet transform can

capture both the frequency and time properties of a signal in a single representation.

This allows more specific filtering to be done.

For WT, small waves called wavelets of varying frequency and limited duration

is used as basis functions. Wavelet analysis is a version of windowing technique,

but with a varying window size. It allows the use of longer windows when more

precise low frequency information is required, and shorter windows where high

frequency information is needed.

Continuous Wavelet Transform
Mathematically, the wavelet, is a function of zero average, having the energy

concentrated in time[32].∫
∞

−∞

Ψ(t)d(t) = 0 (3.4)

The WT of a signal represents the signal as a linear combination of scaled and

shifted versions of wavelets and scaling functions. Continuous Wavelet Transform
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(CWT) is defined as the sum over all time of the signal multiplied by scaled, shifted

version of the wavelet function. Equation 3.5 gives CWT of signal x(t). In the

CWT a function Ψ, which in practice looks like a little wave called mother wavelet,

is used to create a family of wavelets Ψ((t−b)/a) where a and b are real numbers.

Here a is called scale factor and b is called translation factor. The term 1/
√

a

is used as the energy normalisation factor across the different scales. The time

shifted and time-scaled wavelet Ψ((t−b)/a)is sometimes called a baby wavelet.

Figure3.2 shows wavelets at different scales. From figure it is clear that scaling a

wavelet means stretching (compressing) it. When a>1 the signal gets dilated and

a<1 it gets compressed. Figure 3.3 shows translation.

C(a,b) = 1/
√

a
∫

Ψ((t−b)/a)∗ x(t)∗dt (3.5)

This transformation in theory is infinitely redundant, but it can be useful in

recognizing certain characteristics of a signal.

Figure 3.2: wavelets at different scales
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Figure 3.3: Translation

DWT
The CWT maps a signal of one independent variable ’t’ into a function of two

independent variables a and b. The highly redundant nature of this transform

makes it inefficient from a computational point of view. CWT provides a redundant

representation of the signal, in the sense that the entire support of C(a,b) need not

be used to recover x(t). One way to eliminate the problem of redundancy is to

sample the CWT on a 2-D dyadic grid. That is, use wavelets only of the form

Ψ(2 jt− k) with k and j being whole numbers. The resulting WT is called Discrete

Wavelet Transdorm (DWT). DWT of image signals produces a non-redundant

image representation, which provides better spatial and spectral localization of

image formation, compared with other multi scale representations such as Gaussian

and Laplacian pyramid. The following relation gives non redundant wavelet

representation, DWT.

C(1/2 j,k/2 j) = 2 j/2
∫

∞

∞

x(t)Ψ(2 jt− k)dt (3.6)

This is called analysis formula. To simplify, the doubly indexed set of wavelet

2 j/2Ψ(2 jt− k) is represented as Ψ j,k and equation 3.6 becomes

DWT (analysis) : C j,k =
∫

∞

∞

x(t)Ψ j,k(t)dt (3.7)
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The recovery of the signal through the synthesis formula is called the Inverse

Discrete Wavelet Transdorm (IDWT).

IDWT (synthesis) : x(t) = ∑
j
∑
k

c j,kΨ j,k (3.8)

Multi resolution Analysis of Wavelets
Concept of multi resolution analysis was introduced by Mallat in their papers

[94] and [95]. This concept is used to construct orthogonal bases of wavelets.

Multiresolution view can be interpreted as a successive approximation procedure. A

signal’s approximation at resolution 2− j is defined as an orthogonal projection on a

space Vj ⊂ L2(R). The space Vj groups all possible approximations at the resolution

2− j. The orthogonal projection of x on Vj is the function x j that minimizes distance

‖x− x j‖. The details of a signal at resolution 2− j are the difference between the

approximations at the resolutions 2− j+1 and 2 j [32].

Multi resolution approximation
A multi resolution analysis consists of a sequence of successive approximation

spaces Vj, j ∈ Z and satisfy following properties

x(t) ∈Vj⇐⇒ x(t−2 jk) ∈Vj (3.9)

Vj+1 ⊂Vj (3.10)

The subspace spanned by the scaling functions at lower scales is contained within

the subspace spanned by those at higher scales and is given by the following nested

relationship,

...V2 ⊂V1 ⊂V0 ⊂V−1 ⊂V−2... (3.11)

This subspace relationship is shown in Figure 3.4

For a given multi resolution approximation Vj, j∈Z , there exists a unique function

Φ(t), called a scaling function, such that Φ j,k(t) is an orthonormal basis of Vj. The

orthogonal projection on Vj can be computed by decomposing the signal x(t) in the
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Figure 3.4: Subspace relationship of scaling functions

scaling orthonormal basis [32].

x(t) = ∑
k

αkΦk(t) (3.12)

where k is an integer index of summation, k ∈ Z, the α(k)s are the real valued

expansion coefficients and Φk(t) represents expansion set.

The Detail Signal
The difference of information between the approximation of a signal x(t) at

scales 2 j−1 and 2 j is called the detail signal at scale 2 j. It is shown in the previous

paragraph that the approximations of a signal at scales 2 j−1 and 2 j are, respectively

equal to its orthogonal projection on Vj−1 and Vj. It can be easily proved that the

detail signal at the scale 2 j is given by the orthogonal projection of the original

signal on the orthogonal complement of V j in Vj−1, denoted here by Wj. If Wj is
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Figure 3.5: Relation between scaling and wavelet functions

the orthogonal complement, then Wj is orthogonal to Vj ; and

Vj =Vj−1
⊕

Wj−1 (3.13)

By iterating equation 3.15

Vj =Wj+1⊕Wj+2⊕Wj+3 + ...... (3.14)

There exists a function Ψ(t), called an orthogonal wavelet, such that,

Ψ j,k(t) = 1/
√

2 jΨ
t−2 jk

2 j (3.15)

for any scale 2 j, Ψ j,k is an orthonormal basis of Wj and Ψ j,k is an orthonormal

basis of L2(R), for all scales. The relation between scaling and wavelet function

spaces is shown in Figure3.5

If a function x(t) belongs to the subspace V0 but not V1. In that case, the scaling

functions V1 of make an approximation of x(t) and the wavelet functions W1 provide

the details. In this sense, the scaling functions analyze x(t) into its low-pass filtered
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form and the wavelet functions analyze x(t) into its high-pass filtered form.

Any function x(t) can be expressed as a series summation of scaling functions

and wavelet functions as

x(t) = ∑a j−1,kΦ j−1,k(t)+Σ
∞
j= j−1Σkb j,kψ j,k(t) (3.16)

where, a and b are the corresponding expansion coefficients.

Filter banks and DWT
Multiresolution analysis allows to decompose a signal into approximations and

details. Both approximation and detail coefficients can be obtained by filtering

and sub-sampling of the original signal. Filter bank is the building block of

discrete-time wavelet transform. When the WT is applied to a signal in the time

domain, the result is a two dimensional, time scale domain analysis of the signal.

For 1-D signals, two-channel filter bank is shown in Figure 3.6. Filters of different

cut off frequencies are used to analyze data here. The data is passed through a

series of low pass filter and high pass filter (G0 and H0respectively) to separate

high and low frequency contents. Each filtered output is down sampled by a factor

2. It is done by removing alternate samples. The results obtained are low pass and

high pass signals each containing half as much sample as the input signal. This

process halves the resolution and the scale is unchanged. The subsequent down

sampling by a factor 2 changes the scale or resolution. In the synthesis part, the

outputs d1[n] and a1[n] are up sampled by a factor of 2 (upsampling is done by

adding zeros in alternate rows and columns) and are passed through two filters G1

and H1. The outputs obtained are combined to construct the original data. It is

called the one level decomposition using wavelet transform.

Multi level decmposition is possible with wavelets. Computation of DWT

through the one level decomposition can be iterated to obtain further analysis of the

approximation coefficients a1[n]. Figure3.7 shows 3 level wavelet decomposition

tree. Here the signal is denoted by the sequence x[n], where n is an integer. At
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Figure 3.6: Two channel filter bank

each level, the high pass filter produces detail information, d[n], while the low pass

filter associated with scaling function produces coarse approximations, a[n]. The

Figure 3.7: 3 level analysis filter bank

signal a[n] obtained by low pass filtering and sub sampling resembles the original

signal very much. It can be considered as representation of original signal at low

resolution. The low frequency information is considered as a new signal and filter

bank can be applied to the new signal.This process can be repeated a number of

times. After some iterations very low frequency signal with detail information

for different resolution levels are obtained. Figure3.8 shows the reconstruction of

the original signal from the wavelet coefficients. Basically, the reconstruction is



58 Single Image Super-resolution Methods

the reverse process of decomposition. The approximation and detail coefficients

at every level are upsampled by two, passed through the low pass and high pass

synthesis filters and then added. This process is continued through the same

number of levels as in the decomposition process to obtain the original signal. The

filtering and decimation process is continued until the desired level is reached. The

maximum number of levels depends on the length of the signal. The DWT of the

original signal is then obtained by concatenating all the coefficients, a[n] and d[n],

starting from the last level of decomposition.

Figure 3.8: 3 level synthesis filter bank

At each decomposition level, the half band filters produce signals spanning only

half the frequency band. This doubles the frequency resolution as the uncertainty

in frequency is reduced by half. In accordance with Nyquist’s rule if the original

signal has a highest frequency of ′ω ′, which requires a sampling frequency of

2ω radians, then it now has a highest frequency of ω/2 radians. It can now be

sampled at a frequency of ω radians thus discarding half the samples with no loss

of information. This decimation by 2 halves the time resolution as the entire signal

is now represented by only half the number of samples. Thus, while the half band

low pass filtering removes half of the frequencies and thus halves the resolution,

the decimation by 2 doubles the scale. Figure3.9 shows the splitting the signal

spectrum with an iterated filter bank.



Background 59

Figure 3.9: Splitting the signal spectrum with an iterated filter bank.

In most Wavelet Transform applications, it is required that the original signal

be synthesized from the wavelet coefficients. To achieve perfect reconstruction

the analysis and synthesis filters have to satisfy certain conditions. Let G0(z) and

G1(z) be the low pass analysis and synthesis filters, respectively and H0(z) and

H1(z) the high pass analysis and synthesis filters respectively. Then the filters have

to satisfy the following two conditions as given by;

G0(−z)G1(z)+H0(z)H1(z) = 0 (3.17)

G0(z)G1(z)+H0(z)H1(z) = 2z−d (3.18)

The first condition implies that the reconstruction is aliasing-free and the second

condition implies that the amplitude distortion has amplitude of one. It can be

observed that the perfect reconstruction condition does not change if the analysis

and synthesis filters are changed.
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2-D Wavelet Transform
The concepts of one-dimensional DWT and its implementation through filter

bank can be easily extended to two-dimensional signals for digital images. For two

dimensional signals like images, separable WT can be used. Separable WT means

a 1-D filter bank is applied to the rows of the image and the same transform is

applied to the columns of each channel of the result. Separable wavelet transform

needs only one dimensional wavelet transform. Therefore, 3 high pass channels

corresponding to vertical V (LH), horizontal H (HL), and diagonal D (HH), and

one approximation image A (LL) are obtained. The above procedure is repeated

on the low pass channel to obtain different levels. 2D analysis and synthesis filter

bank is shown in figure 3.10 and figure 3.11.

Figure 3.10: 2D WT analysis filter bank

Figure 3.12 shows frequency decomposition of 1-level and 3-level transform.

Figure 3.13 shows an image undergone into 3-level decomposition.
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Figure 3.11: 2D WT synthsis filter bank

Figure 3.12: Frequency decomposition of (a) 1-level 2D WT (b) 3-level 2D WT
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Figure 3.13: WT in 3 level
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Classification of wavelets
Wavelets can be classified into two classes: (a) orthogonal and (b) biorthogonal.

Based on the application, either of them can be used.

Orthogonal wavelet filter banks
The coefficients of orthogonal filters are real numbers. The filters are of the

same length and are not symmetric. The low pass filter, G0 and the high pass filter,

H0 are related to each other. Also, for perfect reconstruction, the synthesis filters

are identical to the analysis filters except for a time reversal. Orthogonal filters

offer a high number of vanishing moments.

Bi-orthogonal wavelet filter banks
In the case of the biorthogonal wavelet filters, the low pass and the high pass

filters do not have the same length. The low pass filter is always symmetric, while

the high pass filter could be either symmetric or anti-symmetric. The coefficients

of the filters are either real numbers or integers. For perfect reconstruction,

biorthogonal filter bank has all odd length or all even length filters. The two

analysis filters can be symmetric with odd length or one symmetric and the other

antisymmetric with even length. Also, the two sets of analysis and synthesis filters

must be dual.

Wavelet families
There are a number of basis functions that can be used as the mother wavelet

for Wavelet Transformation. Since the mother wavelet produces all wavelet

functions used in the transformation through translation and scaling, it determines

the characteristics of the resulting Wavelet Transform. Therefore, the details of

the particular application should be taken into account and the appropriate mother

wavelet should be chosen in order to use the Wavelet Transform effectively.

Figure 3.14 illustrates some of the commonly used wavelet functions. Haar

wavelet is one of the oldest and simplest wavelet. Therefore, any discussion of

wavelets starts with the Haar wavelet. Daubechies wavelets are the most popular



64 Single Image Super-resolution Methods

Figure 3.14: Wavelet families (a) Haar (b) Daubechies4 (c) Coiflet1 (d) Symlet2
(e) Meyer (f) Morlet (g) Mexican Hat

.

wavelets. They represent the foundations of wavelet signal processing and are used

in numerous applications. These are also called Maxflat wavelets as their frequency

responses have maximum flatness at frequencies 0 and π . The Haar, Daubechies,

Symlets and Coiflets are compactly supported orthogonal wavelets. These wavelets

along with Meyer wavelets are capable of perfect reconstruction. The Meyer,

Morlet and Mexican Hat wavelets are symmetric in shape. The wavelets are

chosen based on their shape and their ability to analyze the signal in a particular

application.

3.4 Study of Freemann’s Onepass algorithm
A learning-based approach which is also called single frame image super

resolution is used here for obtaining high quality enlarged images. The algorithm

learns the correspondence of different image regions of an input low-resolution

image with those in the training set and then uses those learned relationships to

predict the fine details of input LR region using the selected HR details from
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Figure 3.15: a) Low resolution image (b)Cubic spline interpolated low resolution
image (c)The original image (d)Midband (e)High frequency band

the training set. Patch based approach is used here. All training set images and

input low resolution images are undergone preprocessing for generalization of the

different training set images.

SR problem is to estimate the original image Figure 3.15(c) from the low

resolution image(a). The low resolution image (a) is the blurred subsampled

version of Figure 3.15(c). Figure 3.15(a) is interpolated back up to the original

sampling rate to form (b). The missing high frequency detail, (c) minus (b), is

the high frequency to be estimated,(e). Two pre processing steps are taken for
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efficiency: the low frequencies of (b) are removed to form the input mid band and

high frequency bands are contrast normalized by the local contrast of the input

band, yielding (d) and (e).

Freemann’s one pass algorithm to super resolve a low resolution image involves

three steps : 1.Pre-processing 2. Training set generation 3. Learning. These steps

are explained below.

Preprocessing

Figure 3.16: Preprocessing steps and formation of mid and high frequency bands

All the high resolution training set images and the input low resolution image

have to be pre-processed before they have undergone frequency decomposition.

To increase the efficiency of the training set, two pre-processing steps are

done. The first step is based on the assumption that images can be represented

using a bandpass image representation, such as the Laplacian pyramid image

decomposition, where they can be divided into different frequency bands. Let H be

the high spatial frequency pixel values, and M be the values of the next-highest

spatial frequency band, which will also be called the mid-frequency band, and L be
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the pixel values of all lower spatial frequencies in the image. The highest resolution

frequency band is conditionally independent of the lowest frequency band, L,

but only depends on second highest resolution frequency band(mid frequency

band). Based on this assumption, to predict the highest frequency band, only the

mid-frequency band, M is needed. This greatly reduces the variability of data

stored in the training set.

The next pre-processing step is based on the assumption that the relationship

between the high and mid frequency bands are independent of the image contrast.

Contrast normalization does not affect the learning process. This saves replication

of the training set for all possible values of image contrast. So the high and mid

frequency bands are contrast normalized. The resulting high pass filtered and

contrast normalized band pairs are used for training. The contrast normalization

step is undone when the high-resolution image is reconstructed.

The above mentioned steps are shown in Figure 3.16. In this figure a high

resolution image is blurred and subsampled to obtain a low resolution image. The

LR image is cubic spline interpolated back to the original resolution. Though this

interpolated image has the same size as that of the original high resolution image,

it lacks high frequency details. It contains only low and mid frequencies. It is

high pass filtered to obtain the mid frequency band. Also, the difference between

original HR image and the interpolated image gives high frequency details of the

HR image (high frequency band). Both high and mid frequency bands are contrast

normalized. They form the elements of training set.

Training Set generation
After the pre-processing steps, high frequency band of high resolution image and

mid frequency band of its corresponding low resolution image are obtained. The

mid frequency band and high frequency band of training set images are then divided

into small patches and are stored as the training set. The patch size can not be too

large and can not be too small. The local image patch would not give sufficient

information for analyzing the underlying scene variable when the patch size is too
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small. But, if the patch size is small it can be easily stored in the database. On the

other hand, a large patch size would solve the above problem by disambiguating the

underlying scene variables, but it would take prohibitive amount of time to learn the

relationship between local image and scene patches. Also the memory requirement

increases exponentially as the size of image patches increases. As a compromise,

patch size must have enough dimension to give some useful information about

the underlying scene, and must be small enough to allow quick learning of the

relationship between low resolution and high resolution patches. The vector for a

patch pair in the training set is obtained by the concatenation of the mid frequency

patch and the region in the corresponding high frequency band which overlaps

with the neighboring left and top patches. It is not required that the high frequency

and mid frequency patches are of same size but they must be center aligned. That

means they must have same pixel as center. High resolution patches are taken with

one pixel overlap to preserve the spatial continuity or neighborhood effect.

Learning Using Single pass algorithm
The single-pass algorithm predicts the missing high band of a cubic spline

interpolated input low resolution image, sequentially. The given input image, once

preprocessed is broken into patches. Then it is scanned in a raster scan order

predicting at every step the high resolution patch as shown in Figure 3.17.

A block diagram representation of one pass algorithm is shown Figure 3.18. To

obtain the input search vector, mid frequency patch corresponding to the input low

resolution image is lexicographically arranged and concatenated with the overlap

pixels from previously determined neighboring top and left high resolution patches.

The search vector is contrast normalised as shown in figure and is used to find the

best match from the training set. From the training set mid frequency patches with

the same variance as the input mid frequency patch are to be selected. Matches

are searched using L2 norm. Finding the absolute best match considering all the

training set vectors would be a tiresome process due to the high dimension of the

search space of training set. Hence a binary tree-based approach is used to find the

approximate nearest neighbor.
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Figure 3.17: High frequency band patch overlap

The tree is built by recursively splitting the training set in the direction of higher

variance. At each step, the set of tiles is divided into half based on variance, to

maintain a balanced tree. Using this tree, a set of mid frequency vectors with same

variance as the input mid frequency patch vector is chosen. Then by checking

the overlap pixels using the L2 norm the mid frequency patch most similar to the

input patch is selected. The high frequency patch corresponding to the selected

mid frequency patch can be used as the missing high frequency patch of the

input low resolution patch. That is, the missing frequency patches are selected

based on the local mid frequency details and previously determined adjacent high

frequency patches. When a match is found, the contrast normalization is undone

on the high frequency patch. This is repeated for all mid frequency patches. The

reconstructed high frequency band is added to the up sampled input image to obtain

high resolution image.
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Figure 3.18: Block diagram representation of Freemann’s method

3.4.1 Implementation of Freemann’s method
Details of images used for training and learning

Images having different sizes like 256x256, 512x512, 230x333 etc represented

by 256 grey levels are downloaded from the Internet. They are of Tiff format. All

the works presented in this thesis including this chapter uses a magnification factor

of 2 and 4. Images of size NxN is super resolved to an image of size 2Nx2N and

4N*4N.

Implementation of the method
The implementation of this method is done to study the effect of the images

used in the training set on super resolved image and to compare Freeman’s super
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resolved image to super resolved images by other methods presented later portion

of this thesis.

Input images used
For the purpose of evaluation of efficiency of any algorithm, one has to compare

the reconstructed image with its actual original image. Hence in this study, low

resolution images are generated from the available high resolution images. The

input low resolution images of size N x N are obtained by blurring and subsampling

the high resolution images of size 2Nx2N.

Training set generation
The low resolution (LR) images of the high resolution (HR) images are obtained

by convolving them with a blurring (low pass) filter with coefficients [0.25 0.5 0.25]

and then sub sampling (removing pixels alternatively) the resulting blurred image.

The resulting image is then up sampled by cubic spline interpolation method to

obtain the same size as the original high resolution image. To separate the mid

frequency band from the cubic spline interpolated image, the lowest frequency

band is removed, by applying a high pass filter with coefficients [-1/9 -1/9 -1/9;-1/9

+8/9 -1/9; -1/9 -1/9 -1/9]. The difference between original high resolution image

and cubic spline interpolated low resolution image is the high frequency content

present in the sharp image. After these preprocessing steps, two bands are obtained

- mid frequency band and high frequency band. Spatially corresponding M×M

mid frequency and N×N high frequency patches are taken from mid and high

frequency bands respectively. M=7 and N=5 were used for implementation. Patch

pairs are both contrast normalized by energy of the mid frequency patch. As

explained earlier, they are center aligned, so that the image patch centered at pixels

(i, j)covered all pixels (i±3, j±3) of mid frequency band and the corresponding

high frequency patch covered all pixels (i±2, j ±2). The search vector for a patch

pair is created by concatenating the mid-frequency patch of size 7× 7 and the

one pixel width overlap region from the neighboring high-frequency patches as

mentioned in previous section. The overlapping region is adjusted by the weighting

factor α . α is a controlling parameter which balances the matching between the
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mid resolution patch data and the predicted overlapped pixels and helps to find

a high-resolution patch that is compatible with its neighbors. This weighting

factor compensates for the different relative areas of the mid-frequency patches

and overlapped high-frequency pixels as a function of M and N[108]. The value of

α is determined by the equation,

α = 0.1∗ M2

2N−1
(3.19)

Learning Of High Frequency patches
The input LR image is interpolated and high pass filtered to get the mid frequency

band. The mid frequency band is divided into patches of size 7×7, in raster scan

order, and contrast normalised. Each patch is compared with mid frequency

patches in the training set to get the best match (as mentioned in section 3.4.3).

The corresponding high frequency patch of size 5× 5 is selected, and contrast

normalisation is undone by the energy of the corresponding mid frequency patch.

Care is taken to see that the center of high frequency patch coincides with that

of the mid frequency patch. This is repeated for all the patches in the input mid

frequency band, where consecutive mid frequency patches overlap by . The learned

high frequency band is added to the upsampled input LR image (which contains

both low and mid frequency bands) to obtain high quality super resolved images.

It is compared with original image to study the performance of the algorithm.

3.4.2 Results and discussion
One of The training set image used for this work is shown Figure 3.19. It is of

size 644x800 and in tiff format.

Figures 3.20(a) and (c) show high resolution images of size 480x640 and

256x256 respectively and their corresponding low resolution images of size

240x320 and 128x128 respectively are created as mentioned in section 3.3.3.

Figure 3.21 and Figure 3.22 show reconstructed images using Freeman’s method.

Figure3.21(b) and Figure 3.22(b) show original high resolution images, Figures

3.21(c) and 3.22(c)show cubic spline interpolated images, Figures 3.21(d) and
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Figure 3.19: Training set image

3.22(d)show learned high frequency bands and Figure3.21(e) and Figure 3.22(e)

show super resolved images. The original images are shown here to compare the

super resolved images. When the learned high frequency band is added to the

cubic spline interpolated image, the final SR images become better, but still there

are artifacts as can be seen in the region of hair of ’Lena’ in 3.22(e).
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(a) (b)

(c) (d)

Figure 3.20: (a),(c)Original images(b),(d)Their low resolution images
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(a)

(b) (c)

(d) (e)

Figure 3.21: (a)Low resolution image (b)Original image(c)Cubic spline
interpolated image(d)Learned high frequency content(e)super resolved image
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(a)

(b) (c)

(d) (e)

Figure 3.22: (a) Low resolution image (b)Original image(c)cubic spline
interpolated image(d)learned high frequency content(e)super resolved image



Study of Freemann’s method:Onepass algorithm 77

Effect of training set on Super-resolved image
To study the effect of various types of images used to create the training set

images, in the quality of super resolved images, training set images are grouped

into three groups group1, group2 and group3. They are used to evaluate the super

resolution quality as mentioned below. These groups contain images with low,

medium, high information content respectively. A few of images in the 3 groups

are shown in Figure 3.23. Signal to noise ratio (SNR) values are used as an initial

check on performance of algorithm. Signal to Noise Ratio (SNR) is calculated

using the equation;

SNR = ∑
i, j

zi, j
2

∑i, j [z(i, j)− z′(i, j)]2
(3.20)

where z(i, j) and z′(i, j) are the (i, j)th the pixel intensity of the original image and

reconstructed image respectively.

Table 3.1: SNR values obtained with training set containing different images

Input Images) SNR(dB) obtained with training set images containing
low1 low2 mid1 mid2 high1 high2

low1 infinity 32.2698 33.2365 33.3307 37.0712 34.0803
low2 29.2651 infinity 30.4137 30.4419 33.2799 31.0253
mid1 30.5833 29.5835 infinity 30.6933 34.1935 32.0169
mid2 28.5607 28.5149 30.3485 infinity 33.6794 31.5954
high1 32.6133 31.4813 33.9488 34.357 infinity 35.1812
high2 26.0506 28.9804 26.7547 28.8065 29.9141 infinity

Table 3.1 shows the SNR values obtained when different training sets are used.

Row 1 shows the effect of super resolving the image low1 of group 1. SNR

obtained is 32.2698dB when low2 is used as the training set image. Using images

with higher information content from group2 and group3 from the training set, it is

seen that the SNR is increased to 33.3307dB to 37.0712dB for input image low1.

The quality of images is independent of the class of the training set images. The
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same effect is noticed when group 2 and 3 images are super resolved. Thus quality

of super resolved image increases as with the quality of images in the training set.

(a) low1 (b) low2 (c) low3

(d) med1 (e) med2 (f) med3

(g) high1 (h) high2 (i) high3

Figure 3.23: Training set images-(a),(b),(c)low information content
images(d),(e),(f)medium information content images(g),(h),(i) high information
content images

From Table3.1, it is clear that the quality of the super resolved image depends on

the training set. The training set with content rich group 3 images (high1 and high2)

has more effect than the images from other two groups. It is obvious that group1
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low information images (low1 and low2) produce low SNR values compared to

that of other group images. As the information content of training set images

increases the SNR values and the quality of super resolved images increases. The

image high1 from group3 of the training set gave the best result for all the other

images, compared with other training set images. So one can use carefully selected

high information content image instead of using a number of low information

content images. The size of training set can be reduced by selecting appropriate

high information content image as training set image. For the method proposed in

the fourth chapter carefully selected single image is used for training set formation.

It is also clear that quality of super resolved image is independent of class of

images used in the training set. This means that the training set images need not be

of same class of input low resolution image.

3.5 Wavelet methods
Wavelets are very good tools for multi resolution analysis. They enable analysis

of data at multiple levels of resolution or scale. This means that the view of

image at different “scales” or “resolutions” is obtained using wavelet transform. A

rough approximation of the signal might look stationary, while at a detailed level

discontinuities become apparent [26], [41].

This section describes two wavelet transform based methods. The first method

was proposed by Jiji et al [15] and it is also based on the assumption that images can

be decomposed into low and high frequency bands. Here decomposition process is

done using wavelet transform. The super resolution is considered as a problem of

obtaining high resolution image, if the low band is given. For that one has to first

estimate the high frequency bands, so that using inverse wavelet transform of these

bands gives the original signal.

To super resolve a LR image using wavelet transform, the different frequency

bands (LL, LH, HL, HH) corresponding to high resolution image need to be known.
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The input LR image itself is considered as approximation or low frequency band

(LL) of the unknown HR image. For obtaining high frequency bands (LH, HL,

HH), a training set which contains wavelet coefficients of available HR images

is used here. Three-level wavelet decomposition of the high resolution images

are taken and are used as the training set. Two level decomposition of input

low resolution image is taken. The absolute difference between first and second

level wavelet transform coefficients in the LR image and second and third level

coefficients for each of training set images is taken. For comparing the coefficients,

parent child relationship is used here. If a match is found, corresponding first

level coefficients of high resolution image are taken as the first level coefficients of

unknown high resolution image. The HR image is obtained by taking the inverse

wavelet transform of the approximation and learned wavelet coefficients. In order

to obtain a spatial coherence during the HR reconstruction, a smoothness constraint

is needed. The wavelet method without smoothing is implemented here.

It is found that the above explained wavelet-based method has some

disadvantages. One problem is that it needs regularization to bring spatial

coherence. Another problem is that it is highly resolution dependent. Since

it follows parent child relationship, using one training set low resolution image

of fixed size can be super resolved. To super resolve an image of different size,

another training set is needed. This problem is solved by modifying the first method

using block based approach. But this method also fails to eliminate aliasing effects.

3.6 Single image super resolution using Wavelet
Transform

Two methods are considered in the following section to super resolve a LR

image using wavelet transform.
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3.6.1 Jiji et al’s Single Frame Image Super resolution Using Learnt
Wavelets: Wavelet method-1

Methodology
Here super resolution method [15] is implemented.(Regularization step to

smoothen the resultant image is not implemented here)

Wavelets can be used in super resolution problem, since super resolution involves

processing of data at different resolutions. Here the concept used is that any image

can be decomposed using wavelet transform into low frequency band LL and

high frequency bands LH, HL, HH using discrete wavelet transform. Now the

problem is to generate the original HR image, given the low frequency band LL

(LR image). To generate the original image, the high frequency bands have to be

found out and inverse wavelet transform of these bands (LH, HL, HH) and the

known low frequency band (LL) is to be taken to obtain the original high resolution

image. Then the actual problem is finding out the missing high frequency bands.

In learning based super resolution method, these missing bands are learned from a

training set.

Training set generation
The training set contains three level wavelet coefficients of different high

resolution images. Here parent child relation(zero tree concept) is used to find out

the missing high frequency details.

Contrast normalised high resolution images are subjected to 3 level

decomposition using wavelet transform. The decomposition coefficients are used

as the training set. The concept of parent child relation is that in a multi resolution

system, every coefficient at a scale can be related to a set of coefficients at the

coarser scale having similar orientation [29]. The parent-child relationship shows

that a 4 x 4 pixel area in the first level decomposition of a high resolution image

has a related set of elements of size 2 x 2 pixel area in the next level and a

single corresponding element in the third level as shown in Figure 3.24. If the
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magnification factor is two, then each training set image must have size 2M x 2M,

for a low resolution image of the size M x M. Here a training set images of size

256 x 256 are used to super resolve images of size 128 x 128.

Figure 3.24: Parent child relation

Learning Wavelet coefficients
The input low resolution image has undergone two level decomposition. The

low resolution image is formed using the equation 3.1. Figure 3.25 shows how the

missing high resolution coefficients in blocks VII, VIII, IX are learnt from a set of

N training images. The second (IV, V, VI) and third (I, II, III) level coefficients

of training set images and the two level coefficients of the test input image are

compared. As shown in Figure 3.25, for each coefficient in I, II, III sub bands

and the corresponding 2x2 blocks in the sub bands IV to VI of the test image, a

block of 4x4 wavelet coefficients in each of the high frequency sub bands VII,

VIII, IX can be learned from the training set using zero tree concept. The absolute

difference between the wavelet coefficients in the low resolution input image and

the corresponding coefficients in each of the high resolution training set images
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are taken to select the best matching image, using Minimum Absolute Difference

(MAD) criteria. The high frequency coefficients of this related training set image

gives the missing wavelet coefficients of the input test image. The lowest sub band

’0’corresponding to LL, the low resolution portion is not used in the process since

they have different brightness averages. The process is repeated for each coefficient

in the sub bands in I, II, III to obtain the coefficients in the VII, VIII,IX sub bands

of low resolution image. The inverse wavelet transform of these learned bands

together with low resolution image as approximation or LL gives the original high

resolution image.

The wavelet based method can be summarized as follows:

1. The training set high resolution images of size 2M x 2M and input

low resolution image of size MxM undergo three level and two level

decomposition respectively using DWT.

2. Absolute difference between Ist and IInd level wavelet coefficients of low

resolution image and the corresponding coefficients of each of the training

set images is taken.

3. 4x4 third level coefficients of selected training set image with Minimum

absolute difference(MAD) is used as the first level 4x4 high resolution

wavelet coefficients of the unknown high resolution image.

4. This process is repeated for every coefficient in band I of low resolution

image.

5. The inverse discrete wavelet transform of learned high frequency wavelet

coefficients of bands VII, VIII, IX and the low resolution image

itself(approximation or low frequency band) gives the high resolution image.

.
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Figure 3.25: Learning of wavelet coefficients

Implementation
A number of different high resolution images downloaded from Internet is

used here as training set images. Training images of size 256×256 and 256 grey

levels are used here. LR image is obtained from HR image by averaging every non

overlapping 2x2 pixels (here magnification factor q=2) in raster scan order (using

the equation 3.1). Using this training set one can super resolve low resolution

images of size 128x128 to obtain the SR image of size 256x256.
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3.6.2 Single image super resolution using learned wavelets-Block
wavelet method

Methodology
The method explained above needs different training set for super resolving

low resolution images of different sizes. For example, to super resolve an image

of size 128× 128 into 256× 256, one needs training set images of size 256×
256. But, training set images of size 128× 128 are needed to super resolve

low resolution images of size 64× 64, the 256× 256 images can not be used.

Another problem is that due to spurious learning, super resolved images have

artifacts. So smoothness constraint is needed to solve this problem, which increases

computational complexity of the method. Hence wavelet method I is modified

using patch based approach to obtain block wavelet method. In this new method,

single training set with suitably selected high resolution images is used to super

resolve different sized input low resolution images.

In the block wavelet method, which is a novel approach, instead of applying

wavelet transform to the full image, high resolution images and their low resolution

images are divided into small overlapping blocks. Both high and low resolution

patches are contrast normalized using energy of the input low resolution patch and

1-level wavelet transform is applied to these patches. The wavelet coefficients of

these patches are stored in the training set. The LR image to be super resolved is

also divided into patches and wavelet coefficients of these patches are compared

with those of the patches in the training set. The training set patch with minimum

absolute difference is found out and the wavelet coefficients of its HR patch are

used as the HR coefficients of the input LR patch. Here also, the LR patch is

considered as the approximation. Contrast normalization is undone at the end of

the entire reconstruction process. The process is repeated for all the patches in the

LR image in raster scan order to obtain the unknown HR image.

Implementation
HR images of size 256× 256 and 256 grey levels are used for training. LR

images are obtained from the corresponding HR images as mentioned earlier, for



86 Single Image Super-resolution Methods

the purpose of evaluation. The high resolution images and their corresponding

low resolution images are divided into small overlapping patches of size 8× 8

and 4× 4 respectively. One level wavelet transform is applied on these patches

and coefficients corresponding to the high frequency bands H, V and D of high

and low resolution patches are stored as the training set. The input low resolution

image is divided into small overlapping patches of size 4×4 and one level wavelet

transform is applied to each patch. To find the missing high frequency bands of

its unknown high resolution patch, wavelet coefficients of low resolution patch

is compared with the corresponding coefficients of low resolution patches in the

training set, by taking the absolute difference. The low resolution patch with

minimum absolute difference is selected and it’s corresponding HR high frequency

coefficients are used as the missing HR coefficients. This is repeated for all the

patches. The low resolution patch was used as the approximation. The inverse

transform of the approximation and learned coefficients corresponding to H, V, D

gives the unknown HR patch.

Implementation of Sapan et al method "Single image super resolution in
spatial and wavelet domain"

In this method [86] single image super resolution algorithm is proposed which

uses both spatial and wavelet domain. For up sampling and down sampling of an

image in spatial domain, respectively bicubic smoother and bicubic sharper method

of Adobe Photoshop cs5 is used. For removing blur and get smoother result back

projection method is used. Wavelet based denoising method is also used to remove

noise from image.

3.6.3 Results and Discussion
Figures 3.26(a), (b) show low resolution images which are obtained from original

high resolution images of butterfly and Lena shown in Figures3.26(c) and (d).
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(a) (b)

(c) (d)

Figure 3.26: (a),(b)Low resolution images(c),(d)Original images

Table 3.2: SNR values with different methods

Method SNR in DB
Barbara Butterfly Tiger

Freeman method 13.3849 22.3943 19.9744
Wavelet method 1 8.7688 3.1185 3.6367
Sapan et al’s wavelet based method 16.1121 20.9643 19.1132
block Wavelet method 17.4133 24.8016 24.1414

SNR values of different methods are shown in table 3.2. From table it is clear

that block wavelet method is better than other super resolution methods. For the

image Barbara SNR with new block wavelet method is 17.4133dB, while it is low

for other methods.
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The results are shown in Figure 3.27. Here Figure 3.27(a)low resolution image

(b)original image. Figures3.27(c), (d), (e) and (f) are super resolved images using

Freeman method, wavelet method 1, super resolved image using Sapan et al wavelet

based super resolution method [86], block wavelet method.

(a) (b) (c)

(d) (e) (f)

Figure 3.27: (a)low resolution image (b)Original image (c)Freeman method
(d)Wavelet method 1 (e)Sapan’s wavelet method (f)Block wavelet method

Another result is shown in Figure 3.28. Here Figure 3.28(a)is the low resolution

image, (b)original image. Figures3.28(c), (d), (e) and (f) are super resolved images

using Freeman method, wavelet method 1, Super resolved image using Sapan et

al wavelet based super resolution method, block wavelet method. It is clear that
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the block wavelet method removes artifacts much better compared with the super

resolved images. There is no need of regularization step. There is no constraint

about the size of training set images and SR images of any size can be super

resolved using this method.

(a) (b) (c)

(d) (e) (f)

Figure 3.28: (a)Low resolution image (b)Original image (c)Freeman
method(d)wavelet method 1(e) Sapan’s wavelet method (f)block wavelet method

3.7 Conclusion
This chapter explains three single image super resolution methods : Freemann’s

single image super resolution method and two single image super resolution

methods using wavelet transform. The first method uses Laplacian pyramid
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decomposition and cubic spline interpolation to prepare the training set and one

pass algorithm for learning process. From the results it is clear that quality of

resultant images depends on training set images used. Images with high information

content can produce better result than less information image. One single high

information content image can give good results. So instead of using a group of

less information content images, carefully selected information rich single image

is sufficient.

The other methods are based on wavelet transform and block wavelet method

is a modified form of wavelet method 1. In the first wavelet method coefficients

of finer scales are learned from a training set, which contains wavelet coefficients

of different high resolution images. The learning process is done according to

parent child relationship. This method produces artefacts in the super resolved

images. This method needs different training sets for different sized low resolution

images. The block wavelet method over comes this limitation by using patch based

approach. Some artefacts are removed in this method. Sapan et al method, a single

image super resolution algorithm is implemented here and it is based on both

spatial and wavelet domain and take the advantages of both. All these methods fail

to remove aliasing. A better solution can be obtained with directionally adaptive

super resolution method using multiple direction wavelet transform. Next chapter

describes a new directionally adaptive method using directionlets.



Chapter 4

Single Image Super resolution
using Directionlets

In this chapter a novel directionally adaptive single image super-resolution

method based on a multiple-directional wavelet transform, called directionlet

transform is, presented. The directionlet transform, a new lattice-based perfect

reconstruction transform retains the separable filtering and simple filter design

from the standard two-dimensional discrete wavelet transform [102]. The new

algorithm using directionlet transform efficiently captures directional features and

extract edge information along different directions, from high resolution images.

This directional information is stored in a training set and is used to super-resolve

a low resolution image which is entirely different from training set images. This

new algorithm outperforms the state-of-the-art methods in terms of both numeric

and visual quality of the super-resolved image. This work is called directionally

adaptive single image super-resolution because patch wise approach is used here

and prominent edge directions of each patch are determined first and transform is

taken along these selected directions. Since directional variations change locally

in images, transform directions also vary from patch to patch. That is transform

directions get updated according to each patch.
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4.1 Introduction
The previous chapter discussed three single image super-resolution methods -

Freemann’s learning based single image super-resolution method and two wavelet

transform based approaches. The idea used in these methods is that a high

resolution image can be decomposed into different frequency bands (using multi

resolution methods like pyramid decomposition and wavelet transform). The

low resolution image to be super-resolved contains only low and mid frequency

bands. The missing high frequency information is learned from a training set

which contains mid and high frequency bands of high resolution images. When

compared to standard interpolation methods they give better results. But still

there exists certain artifacts like ringing effect in edges, aliasing etc. So a new

method is introduced here which uses skewed anisotropic wavelet transform called

Directionlet transform.

4.2 Directionlet Transform:An Overview
It is already proved that the standard wavelet transform is an efficient tool for

analyzing one dimensional signal. But two dimensional signals like images contain

multiple direction oriented and elongated edges and wavelet transform fails to

provide an efficient representation of such signals. This is due to the isotropic

property of Wavelet transform. Wavelet transform is isotropic in the sense that equal

number of filtering and sub-sampling operations are applied along both horizontal

and vertical directions at each scale. Since directional features in synthetic and

natural images involve more than two standard directions, multi-directionality

and Directional Vanishing Moment (DVM) play an important role in pursuing

sparse representations. Isotropic transform can not properly capture the anisotropic

discontinuities present in the two dimensional signals like images. This is because

the directions of the transforms and discontinuities in images are not matched and

the transforms fail to provide a compact representation of two-dimensional signals.



Directionlet Transform 93

Figure 4.1: Filtering scheme for the AWT (2,1), where one step of iteration is
shown

As different from wavelet transform, the directionlet transform is anisotropic.

The difference between isotropic and anisotropic wavelet transform is that in

the anisotropic wavelet transform, the number of transforms applied along the

horizontal and vertical directions is unequal, that is, there are n1 horizontal and

n2 vertical transforms at a scale, where n1 is not necessarily equal to n2. The

iteration process is continued in the lower sub-band, as in the standard wavelet

transform to obtain multi level transform. Anisotropic transform is represented as

AWT(n1,n2). The DWT can be represented as a special form of the anisotropic

wavelet transform, with n1 = n2 = 1. The standard DWT is simply given by

AWT(1,1) and it decomposes a signal into four bands A, H, V and D. The ratio

n = n1 / n2 is known as anisotropic ratio and it determines elongation of the basis

functions of the AWT(n1, n2). When n1 = 2, n2 = 1, the AWT(2,1) produces eight

bands AL, AH, HL, HH, VL, VH, DL and DH as in Figure 4.1. To obtain the
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next level decomposition the process are repeated in the low sub band AL. Figure

4.2(a) and Figure 4.2(b) shows 3 level frequency decomposition of 2D DWT and

AWT. This figure shows that a simple image with one discontinuity along a smooth

curve is represented by the two types of basis functions: isotropic and anisotropic.

The support of these basis functions is shown schematically as black rectangles,

(a) isotropic basis functions generate a large number of significant coefficients

around the discontinuity, (b)anisotropic basis functions trace the discontinuity

line and produce just a few significant coefficients. The skewed AWT can follow

discontinuity efficiently with fewer significant coefficients as compared to wavelet

as shown in Figure 4.2(c) and Figure 4.2(d) [10].

Figure 4.2: Frequency decomposition of (a)3-level 2-D DWT (b)3-level AWT
(c)Isotropic basis function (d) Multi-directional and anisotropic basis function
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The directionlets are Skewed Anisotropic Wavelet Transform (S-AWT). That

means, scaling and filtering operations are along a selected pair of directions,

not necessarily horizontal and vertical. The operations of standard wavelet

transform like 1D filtering and sub-sampling are retained here and can provide

anisotropic perfect reconstruction. This property makes the main difference

between directionlets and some other directional filter banks, like Gabor filters.

Other directional transforms (like curvelets, contourlets and bandlets) require

over-sampling, and have higher complexity than the standard 2D-DWT. They need

non-separable convolution and filter design which includes computationally more

complex operations. The standard WT uses only horizontal and vertical directions

and the high pass filters in this transform have vanishing moments only along these

standard directions. The directionlet transform construction based on partitioning

of the discrete space using integer lattices, where the 1-D filtering is performed

along co-lines across the coset of lattice. The corresponding anisotropic basis

functions are called directionlets. Lattice based approach forms a new transform

construction method to include separable (1-D) filtering and sub sampling across

multiple directions, not necessarily on horizontal and vertical.

4.2.1 Problem of directional interaction
As already stated directionlet transform or the skewed anisotropic wavelet

transform is obtained by applying transform in two random directions, not

necessarily along horizontal and vertical directions. For this, the transform can be

taken on two random digital lines. Applying transform in two random directions

causes a problem called directional interaction. A Digital line L(m, c) is obtained

by discrete approximation of continuous line having slope m and intercept c and

can be represented using equation 4.1[105]. Figure 4.3 represents two digital lines

L(1/2,0), L(1/2,3) with slope 1/2 and different intercepts ’0’ and ’3’.

y = mx+ c (4.1)

To apply a discrete transform in the discrete space in a certain direction, the

pixels are to be defined in that chosen direction itself. The condition for critical
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Figure 4.3: Two digital lines L(1/2,0),L(1/2,3)

sampling of the transform, is that every pixel belongs to one and only one digital

line L(m,n). Another condition is that after taking 1-D transform along first

direction, the remaining pixels must be aligned in second direction. A set of

digital lines, with slope m, partitions the discrete space. The problem of directional

interaction can be explained using an example.

In Figure 4.4, transform is applied in two random directions with slope -1/2

and 2/3. 1-D WT is applied along the digital lines L(-1/2, n). The result is that

high pass filtering vanishes the digital line with the slope -1/2. The coefficients

along this direction are annihilated in the high pass sub band. The coefficients

along the second direction with the slope 2/3 are retained after filtering. However,

after sub sampling, unlike in the case of the standard directions, the coefficients

along the second direction are not aligned, that is, they cannot be clustered in the

digital lines with the slope 2/3. This is against condition of critical sampling, that

after sub sampling pixels should be aligned along the second transform direction.

Therefore, the following 1-DWT applied along the digital lines with the slope 2/3

does not annihilate the coefficients along the second direction and, hence, it yields a

non-sparse representation. This phenomenon is called directional interaction[102].
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Figure 4.4: Directional interaction

It is clear that the transform along random digital lines is efficient when applied

in over sampled schemes but it fails to provide a systematic sub sampling method

when critical sampling is carried out. Hence the concept of digital lines is not

sufficient to provide a systematic rule for sub sampling in the case of critical

sampling. To overcome the problem of directional interaction and to propose an

organized iterated subsampling method, the concept of integer lattices is proposed

by Velisavljevic et al [102].

4.2.2 Lattice based Transform
Lattice

To avoid directional interaction, lattice based sub sampling method can be used.

A full rank integer lattice A can be considered as a collection of points obtained

by taking linear combinations of two linearly independent vectors or digital lines

where both the components of the vectors and the coefficients are integers. A

lattice can be considered as sublattice of the ordinary cubic integer lattice. The
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lattice A can be represented by a generator matrix MA given by;

MA =

[
v1

v2

]
=

[
a1 a2

b1 b2

]
(4.2)

where a1, a2, b1 and b2 are integers. The slopes of individual vectors (digital

lines) which constitute the lattice are obtained from these integers. They are slope

m1 = a2/a1and slope m2 = b2/b1. An example is shown in Figure 4.5. Its generator

matrix M1 is given by

M1 =

[
2 1

0 1

]
(4.3)

Figure 4.5: Lattice with generator matrix M1

It is shown in lattice theory [35] that, given an integer lattice A with a generator

matrix having determinant det(MA), the lattice can be partitioned into det(MA)

cosets. Each coset is determined by shift vectors sk, where k = 0,1, ...,detMA−1.
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Shift vector determines how much the coset is shifted from origin. Each coset is a

shifted version of lattice A. A co-line is defined as intersection of each coset and

digital line. Therefore, the lattice A with the corresponding generator matrix MA,

partitions each digital line into co-lines.

For example, consider lattice A with generator matrix M1 shown in Figure 4.5.

The lattice A is divided into 2 cosets (detM1 = 2). The black dots form the first

coset with shift vector s0 = (0,0), shaded dots form the second coset with shift

vector s1 = (1,1).

Figure 4.6: The intersections between the 3 cosets of the lattice A given by the
generator matrix MA.

Another example is shown in Figure4.6. Here generator matrix is given by the

equation;

MA =

[
2 1

−1 1

]
(4.4)



100 Single Image Super resolution using Directionlets

Since det(MA) = 3, there are 3 cosets. The 3 different shades of circles show 3

set of co-lines CL[0,0](1/2,n), CL[0,1](1/2,n), CL[1,1](1/2,n) with digital line with

slope=1/2.

Lattice based Transform

Figure 4.7: Subsampled version

To obtain lattice based transform, a 1-D wavelet transform is applied along

co-lines with the first slope m1 for all cosets of the lattice. Subsampling along that

direction is done independently in each coset and the set of points obtained after

the first subsampling consists of a lattice with generator matrix;

M8
A =

[
2v1

v2

]
(4.5)

Discarding each second sample along each transform co-line secures a valid

subsampling in the sense that perfect reconstruction condition is satisfied. The

process is continued in a similar way along the second slope m2 and the final
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generator matrix is simply given by;

M88
A =

[
2v1

2v2

]
(4.6)

The direction along the first vector d1 (with the slope m1 = a2/a1) is called the

transform direction. Similarly, the direction along the second vector d2 (with slope

m2=b2/b1) is called the alignment direction. The sub sampled corresponding lattice

is clearly a sublattice of the initial one containing a quarter of the samples[103].

Subsampled version of the lattice with generator matrix M1 is given in Figure 4.7.

Another example of the lattice-based sub-sampling is shown in Figure4.8 for the

direction 450 and −450. Here the lattice is divided into two cosets and transform

is applied on each coset separately along 450.

Figure 4.8: Lattice partitions the cubic lattice into cosets along 45° and –45°, then
the sub-sampling are applied separately in two cosets

Figure4.9(b) shows the resultant lattice after applying lattice based filtering and

subsampling along co-lines with slope 1
2 in each coset separately. It is clear that
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the lattice-based filtering and sub sampling does not create directional interaction.

Since the filtering and sub sampling are applied in each coset separately, the

pixels retained after the subsampling are clustered in co-lines along the alignment

direction (−2
3 ). This property is crucial to avoid directional interaction.

Figure 4.9: No directional interaction

For constructing the Directionlets, the discrete space containing the image is

partitioned into integer lattices, where the 1D filtering is performed along co-lines

across the lattice. For a lattice A, the skewed transforms are applied along co-lines

in the transform and alignment directions of the lattice A. The basis functions of

the S-AWT are called directionlets, since they are anisotropic and have a specific

direction.

4.2.3 Directionlet transform along (00, 450)
Directionlet transform filtering and subsampling are done along different pair

of directions. The pair of directions used in this work are (00, 450), (00, −450),



Directionlet Transform 103

(900, 450), (900, −450), (00, 900). The speciality of these pair of directions is that

they produce only one coset. As the number of coset increases computational

complexity also increases. Implementation of directionlet transform in (00, 450)

is explained below. First the transform is applied along 00 or horizontal direction

and down sampling (removing column of pixels in 450). Then the co-lines along

450 directions are selected and transform is applied on these. It is clear that after

the transform along 00 directions, the remaining pixels are aligned along 450.

Transform is applied along 450 and then resulting pixels are aligned along 00.

Figure 4.10 shows a lattice formed with vectors in pair of directions (00, 450).

Figure4.11, 4.12, 4.13 show lattices after filtering and subsampling in 00, 450, 00

directions respectively. For example Figure4.11(a) shows the lattice after applying

directional transform along 00 direction. Here the black dots are the ones which

are to be removed in subsampling process. Figure4.11(b)shows the lattice after

subsampling along 00 direction.

Figure 4.10: Lattice in (0,45) direction)
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(a) (b)

Figure 4.11: (a) Lattice obtained after filtering and subsampling in 0 direction (b)
Lattice obtained after removing subsampled pixels (black dots) in (a)

(a) (b)

Figure 4.12: (a) Lattice obtained after filtering and subsampling in (0,45) directions
(b) Lattice obtained after removing subsampled pixels (black dots) in (a)

(a) (b)

Figure 4.13: (a) Lattice obtained after filtering and subsampling in (0,45,0)
directions respectively (b) Lattice obtained after removing subsampled pixels
(black dots) in (a)



Directionlet Methods 105

4.3 Single image super resolution using Directionlet
Transform

The new method presented in this chapter also uses a training set which contains

different frequency features of available high resolution images. These features

are used to obtain the high resolution version of an image captured using a low

resolution camera. The idea used here is to learn the HR representation mapping

of an LR edge from the training dataset during up sampling. Directionlet transform

is used here to decompose images into different frequency bands. In the training

set, information about patches or small blocks of high resolution images and their

corresponding low resolution images are stored in terms of the coefficients of

directionlet transform. Two methods are presented here. The first method uses

critically sampled (subsampling followed by filtering ) directionlets. The second

method uses over sampled directionlets.

4.3.1 Single image super resolution method using critically sampled
directionlets

Critically sampled directionlet transform involves filtering followed by sub

sampling. Critically sampled directionlets are used to extract directional features

present in high resolution and their corresponding low resolution images. This

information is stored in the training set. Using this training set low resolution

images is super resolved to obtain their high resolution images.

Training set generation
To generate a training set, a collection of high resolution images and their

low resolution (LR) images are used. LR images are formed by averaging the

intensities of non overlapping block of size 2×2 pixels from HR image, (where 2

is the decimation factor) using the equation 3.1. Directional information other than

the standard (horizontal and vertical) directions can be extracted using directionlet

transform. In the case of images, the directional information varies over space.

Thus, directionality can be considered as a local feature, defined in a small

neighborhood. Therefore, to extract directional variations of an image it has
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to be analysed locally. For this, the HR and LR images are subdivided into patches

of size 8×8 and 4×4, respectively in raster scan order. To avoid a blocking effect

in the transform caused by the small patches, overlapping blocks are used. ie; extra

pixels from neighboring patches are added on four sides to avoid errors in borders.

The super resolution algorithm also operates under the assumption that the

predictive relationship between low and high resolution images is independent

of local image contrast. Because of this, patch pairs of high and low resolution

images are contrast normalized by the energy of the low-resolution patch. This

energy is the average absolute value of the LR patch given by:

energy = 0.01+Σ

√
yk

2 (4.7)

where k is the value of the pixel number in the LR patch. The constant 0.01 is

added to prevent division by zero.

Determination of best pair of direction for a patch
To apply the directionlet transform, optimum pair of direction must be selected.

The best pair of directions for each patch is to be chosen from five sets of directions

D = (00,450), (00,−450), (900,450), (900,−450), (00,900). The assigned best pair

of transform directions of each patch form a directional map of that LR image and

its corresponding HR image. Figures 4.14 (b) and (d) show directional map for the

Figures 4.14 (a) and (c). The directional map gives best suitable pair of directions

for each patch in the low resolution image.

To find the best pair of directions, the directionlet transform is applied in each

patch along these five set of directions. The best pair of directions dn is chosen for

each patch indexed by n using equation 4.8

dn = argmin∑
n, j
|Wn,i|2 (4.8)

where the directionlet coefficients Wn,i are produced by applying directionlets to

the nth patch along the pair of directions dn. Using directional map determined
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Figure 4.14: (a) The original image Lena.(b) The corresponding directional map.(c)
The original image Baboon.(d)The corresponding directional map.

by the set D minimizes the energy in the high-pass sub-bands and provides the

best matching between transform and locally dominant directions across the image

patches.

Directionlet transform is then applied in each patch of the LR and HR image

along the selected best pair of directions dn using the db4 basis functions. In the

training set, the coefficients of six sub-bands HL, HH, VL, VH, DL, and DH of LR

and HR image patches are stored in lexicographical order. The patch coefficients

are grouped and stored according to the patch direction, so that the searching time

can be considerably reduced. There are five groups of coefficients corresponding
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to the 5 pair of directions.

Prediction (learning) of HR image for a LR image
The given LR image is divided into overlapping patches of size 4×4 best pair

of direction is selected as in the case of training set images. Along these directions

Directionlet transform coefficients are found out. Each patch is energy normalized

using the equation 4.7. To predict the high resolution image, the high resolution

patches corresponding to each input low resolution patch must be found out. For

this eight frequency bands – AL, AH, HL, HH, VL, VH, DL and DH corresponding

to each high resolution patch must be known. The LR input image itself is used

to obtain the low frequency band (AL and AH). For this the low resolution patch

is upsampled by padding zeros in between the pixels to obtain the size 2M×2M,

where M×M is the size of low resolution patch. Directionlet transform is applied

to it and the resulting AL and AH are used as AL and AH of unknown high

resolution patch. Remaining frequency bands HL, HH, VL, VH, DL and DH are to

be learned from the training set. The inverse directionlet transform of the learned

six bands and AL and AH together gives the high resolution patch. Finally the

predicted high resolution patch is denormalised using the energy of the LR input

patch. The high resolution image is obtained by repeating these processes in the

remaining low resolution patches.

It may be noted that like the wavelet method 2 image of any size can M×N can

be super resolved to 2M× 2N, using the LR and HR patches coefficients in the

training set.

Learning directionlet coefficients
As explained above, the given contrast normalised LR image to be super

resolved is subdivided into patches of size 4×4 with suitable overlap of all sides.

For db4 wavelet the overlap is three, 10×10 overlapping blocks are used. Each

patch is divided into eight directional subbands using directionlet transform. Here

also, the best direction pair for each patch is found out as in the case of training

set images. The directionlet coefficients of the six bands- HL, HH, VL, VH, DL,
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and DH corresponding to the finest level are learned from the training set. Here,

the minimum absolute difference (MAD) criterion is used to select the matching

directionlet coefficients. The absolute difference between directionlet coefficients

of the 6 bands HL, HH, VL, VH, DL, DH of the input low resolution patch

and those corresponding coefficients of the several low resolution patches in the

training set is taken. The LR patch in the training set with minimum absolute

difference is selected. The high frequency bands – HL, HH, VL, VH, DL, DH of its

corresponding HR patch is taken as the missing high frequency bands of input patch.

These learned high frequency bands and the LR input patch as approximation (AL

and AH) are used to reconstruct the HR equivalent of the LR input patch. By taking

the inverse directionlet transform, the high resolution patch is obtained. In effect,

best matching 8×8 patch is obtained with the training data for a given 4×4 patch

in the LR input image. Next the contrast normalisation of the patch is undone by

multiplying the patch with energy of the LR patch. This is repeated for the entire

input patches to obtain full HR image. LR image of any size can be super resolved

with this training set, with a magnification factor of 2. The proposed method is

effective in the case of aliased images also.

The new directionlet method can be summarized as follows

1. The LR image of HR image is obtained by averaging every 2× 2 block

pixels in HR image.

2. The low and high resolution images are partitioned into small blocks of size

4×4 and 8×8 (with suitable overlapping with four neighboring patches)

respectively and patches are contrast normalised by energy of LR patch.

3. Suitable pair of directions for each LR patch is found out and Directionlet

transform coefficients of that patch and its HR patch, along the selected pair

of directions, are saved as the training set in five groups according to five

pairs of directions.

4. The given LR input image is also partitioned into small blocks and
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directionlet transform is applied to it, along its selected pair of directions.

5. Directionlet coefficients of this input patch are compared with those of the

LR patches in the training set, using minimum absolute difference criterion.

6. LR patch with minimum absolute difference is selected and coefficients of

the corresponding high frequency bands are used as the missing bands for

the unknown HR patch.

7. Take the inverse directionlet transform to obtain the HR patch and undo the

contrast normalisation.

8. Repeat the above process for the remaining input patches.

.

Implementation and results
Experiments are performed for various types of grey images, using a training set

which contained good quality images having various levels of information content.

The important thing is that training set is not specific to the class of objects to

be super resolved. Some of the training set images are shown in Figure 4.15 and

they are of size 256×256. The LR image to be super resolved was obtained by

downsampling an available HR image using the averaging using equation 3.1. For

finding the directionlet transform db4 wavelet basis is used. The low resolution

images are super resolved to double size. That is the magnification factor is 2.

Implementation
Using only the same (its own original) HR image in the training set

To study the comparative performance of the various super resolution methods,

first the same original HR image of the input LR image alone is used in the training

set. The low and high resolution images are divided into overlapping patches of

size 8×8 and 4×4. The number of overlapping pixels is determined by the type

of wavelets used. From experiments it is observed that the optimum size for high

resolution patch is 20× 20, when db4 is used. It is true for all wavelets with 8
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(a) (b)

(c) (d)

Figure 4.15: Training set images

filter coefficients for example ’bior 3.3’. For LR image, patch size is 10×10. The

extra number of pixels, ’P’ to be added on each side of the 8×8 patch depends on

wavelet type and is determined by the equation4.9.

P = L−2 (4.9)

where L is length of wavelet coefficients. For db4 ’P’ is six, since number of

wavelet coefficients are eight and patch size is 20× 20. For db5 which has 10

wavelet coefficients, P is 8 and patch size is 24×24. The directionlet transform of
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the contrast normalised patches are taken and are stored in the training set.

To super resolve a low resolution image, it is divided into over lapping patches

of size 4× 4. The number of overlapping pixels is ’3’ for db4 wavelet basis.

Directionlet transform of each patch is taken and is compared with corresponding

low resolution patches in the training set. The patch with minimum absolute

difference is selected and high frequency bands of it’s high resolution patch is

used as the missing high frequency bands of unknown high resolution patch. The

approximation (AL and AH) are obtained from the LR image patch itself.

The directionlet method has been compared with results obtained with the cubic

spline interpolation method, the two wavelet transform-based methods mentioned

in previous chapter. In wavelet method1, training set is formed with high resolution

image of size 256×256. Using this training set, only low resolution images of size

128×128 can be super resolved. Hence, for comparison, in the new directionlet

method also, low resolution images of size 128×128 are considered initially. They

are super resolved to the size of 256x256. Figures 4.16 show a few of the high

resolution images and their corresponding low resolution images used for super

resolution experiments.

Signal to Noise Ratios (SNR) are calculated using equation4.10.

SNR = ∑
i, j

Zi, j
2

∑i, j [Z(i, j)−Z′(i, j)]2
(4.10)

where z(i, j) and z′(i, j) is the (i, j) the pixel intensity of original image and

reconstructed image respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.16: (a), (c), (e),(g),(i),(k) Original images (256x256)(b), (d),
(f),(h),(j),(l)Low resolution images 128x128

SNR obtained for the different methods are shown in Table4.1. It may be

noted that SNR for directionlet method is more than the other methods by 10

to 15 dB. The SNR values of cubic spline interpolated image and block based
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Table 4.1: SNR values with the same original image alone in the training set

Method SNR in dB
Barbara Butterfly Tiger Boat

Cubic spline 15.5907 21.1581 20.6350 23.2912
Wavelet method 1 14.7646 10.2796 10.8505 11.9395
block Wavelet method 29.5342 34.0212 33.6059 36.7257
Directionlet method 33.1621 37.3297 34.7294 40.1452

wavelet method are 15.5907dB and 29.5342dB while it is 33.1621dB when using

directionlet transform for the image Barbara. Thus from the SNR values it is clear

that directionlet method outperforms wavelet methods and cubic spline method.

Figure 4.17 shows the results obtained using the low resolution image in Figure

4.16(b) of the image Barbara. Figures 4.17(b), (c), (d) and (e) are the images super

resolved using cubic spline method, wavelet method 1, block wavelet method and

the new directionlet method respectively. The training set contains only its own

original HR image as shown in Figure 4.16(a). Figure 4.17 (f), (g), (h), (i), (j)

show the zoomed marked area in Figure 4.17(a) with respect to Figure 4.17(b),

(c), (d), (e). It can be noted that cross lines have appeared on the scarf as well

as the region below the knee in images (b), (c), and (d). These cross lines are

completely eliminated in the Figure 4.17(e) in the scarf region which is obtained

by new directionlet method. This can be visualised clearly in the corresponding

zoomed figure 4.17(j).

The results of the experiments done on another image are shown in Figure

4.18. The low resolution image is that of the butterfly shown in Figure 4.16(d).

Figures 4.18(b), (c), (d), (e) show the results obtained using standard cubic

spline interpolation, wavelet methods and newly developed directionlet method

respectively. Figures 4.18(f), (g), (h), (i), (j) are the zoomed portions of the

marked portion 1 in Figure4.18 (a) with respect to Figures4.18(a), (b), (c), (d), (e).

The ringing effects on the sharp dark edges are visible in Figures4.18(g), (h), (i)

whereas, it is eliminated in Figures4.18(j). Figures4.18(k),(l) , (m), (n), (o) are the
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zoomed portions corresponds to the lower right portion of the wings of the

butterfly (marked 2) in Figures4.18(a). The artifacts in the region in figure4.18(o)

using new directionlet method are less.

Thus from the quantitative measurement using SNR values and visual subjective

quality of the resultant images, it is clear that directionlets are far better than the

wavelets and standard super resolution methods.

Implementation using entirely different images in the training set
To validate the performance of the directionlet method, the super resolution

experiments are done using entirely different HR training set images. That is, the

training set does not contain the HR image of the input LR image as in the above

case.

To compare with existing super resolution methods, Yang et al sparse super

resolution method [36] is implemented . In this method low-resolution image is

viewed as down sampled version of a high-resolution image, whose patches are

assumed to have a sparse representation. The principle of compressed sensing

ensures that under mild conditions, the sparse representation can be correctly

recovered from the downsampled signal.

Here the new block wavelet method and the directionlet method are compared

with wavelet method 1, wavelet method proposed by Sapan et al [86], patch based

methods of Freeman [108] and sparse method by Yang et al[36].

The SNR values are calculated for different methods and are shown in table 4.2.

For the image Barbara, the SNR value of directionlet method is 20.3447dB which

is much higher compared to other methods. SNR values of wavelet method 1 are

low compared with other methods. For butterfly image, sparse method by Yang

gives SNR value of 30.4005dB while with directionlet method SNR is 26.7953dB.

But from the corresponding images in figure 4.20, it can be seen that there are

artifacts present on the edges of the wings in the sparse method, while they are
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almost eliminated in the new directionlet method. Since images with less artifacts

are preferable in many applications, the new method is better than sparse method.

One main observation from the results obtained from the new method is that this

method is more effective for images with more edges.

Table 4.2: SNR values with entirely different HR images in the training set

Method SNR in DB
Barbara Butterfly Tiger bricks

Wavelet method 1 8.7688 3.1185 3.6367 3.2598
Sapan et al’s wavelet based method 16.1121 20.9643 19.1132 14.3642
Yang et al’s sparse method 16.9676 30.4005 26.5871 19.2689
Freeman method 13.3849 22.3943 19.9744 15.4277
Block wavelet method 17.4133 24.8016 24.1414 18.3143
Directionlet method 20.3447 26.7953 27.1543 19.5354

Figure 4.19(b), (c), (d) are HR images of low resolution image in Figure 4.16(b)

obtained by Sapan et al wavelet based super resolution method , Yang et al sparse

super resolution method and block wavelet method. In these images, there are

cross lines in the stripes of the scarf which makes them aliased. Figure 4.19(e)

shows the super resolved image obtained using the new directionlet method. It is

seen that aliasing is reduced considerably here since there are less cross lines and

directions of stripes are almost same as original image.

Figure 4.20 (b), (c), (d) are HR images obtained by Sapan et al wavelet method,

sparse method and new directionlet methods. The zoomed portions of upper edge

of wings shown in Figures 4.20 (f), (g), (h) show that the ringing effect is reduced

in the new method.
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More results are shown below. The Figures 4.21(a), (b), (c), (d), (e), (f) are

original image, super resolved images using wavelet method 1, wavelet based

Sapan et al super resolution method , Yang et al sparse method , block wavelet

method and directionlet method. The low resolution image is shown in Figure

4.16(f). The Figure 4.21(g), (h), (i), (j),(k),(l) are the zoomed portions of marked

area in (a), (b), (c), (d), (e) and (f) respectively. There exist ringing effects on the

black poles of boat in Figure 4.21(g), (h), (i), (j), (k) but these ringing effects are

not present in Figure 4.21(l).

The Figures 4.22(a), (b), (c), (d), (e),(f) are original image, wavelet method 1,

wavelet based Sapan et al method, super resolved image using yang et al method,

block wavelet method, new directionlet method respectively. The low resolution

image is shown in Figure 4.16(j). The Figures 4.22(g), (h), (i), (j),(k),(l) are the

zoomed portions of (a), (b), (c), (d), (e) and (f) respectively. The ringing effects

on the mustache of tiger in Figures 4.22(g), (h), (i),(j),(k) can be clearly seen but

these ringing effects are not present in Figure4.22(l). It is more sharper than those

with other methods.

The Figures 4.23(a), (b), (c), (d), (e), (f) are original image, wavelet method1,

super resolved using wavelet based Sapan et al method, super resolved image using

Yang et al method, block wavelet method and new directionlet method respectively.

The low resolution image is shown in Figure 4.16(h). The Figure4.23 (g), (h),

(i), (j), (k), (l) are the zoomed portions of (a), (b), (c), (d),(e) and (f) respectively.

There exist artifacts on the edges of each block in Figures 4.23(g), (h), (i), (j), (k)

but these artifacts are very much reduced in Figure4.23(l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.21: (a)original image(b) super resolved image using wavelet
method1(c)super resolved sapan et al’s wavelet method(d)super resolved using
yang et al’s sparse method (e)block wavelet method (f) super resolved using
directionlets (g), (h), (i), (j),(k),(l) zoomed portion of the marked area of (a), (b),
(c),(d), (e), (f)respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.22: a)original image(b) super resolved image using wavelet method
1(c)super resolved sapan et al’s wavelet method(d)super resolved using yang et
al’s sparse method (e)block wavelet method (f) super resolved using directionlets
(g), (h), (i), (j),(k),(l) zoomed portion of the marked area of (a), (b), (c),(d), (e),
(f)respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.23: a)original image(b) super resolved image using wavelet method
1(c)super resolved sapan et al’s wavelet method(d)super resolved using yang et
al’s sparse method (e)block wavelet method (f) super resolved using directionlets
(g), (h), (i), (j),(k),(l) zoomed portion of the marked area of (a), (b), (c),(d), (e),
(f)respectively
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.24: (a)original image(b) super resolved image using wavelet method
1(c)super resolved sapan et al’s wavelet method(d)super resolved using yang et
al’s sparse method (e)block wavelet method (f) super resolved using directionlets
(g), (h), (i), (j),(k),(l) zoomed portion of the marked area of (a), (b), (c),(d), (e),
(f)respectively
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The Figures 4.24 (a), (b), (c), (d), (e), (f) are original image, wavelet method1,

Sapan et al wavelet based method, using Yang et al method, block wavelet method

and new directionlet method respectively. The low resolution image is shown in

Figure 4.16(h). The Figure4.24 (g),(h), (i), (j), (k) and (l) are the zoomed portions

of (a), (b), (c), (d), (e) and (f) respectively. There exist artifacts on the edge of

cap in Figures 4.24(b),(c), (d), (e) but these artifacts are very much reduced in

Figure4.24(f).

The visual quality of the super resolved images can be improved by adding

more suitable images in the training set. It may be noted that the maximum quality

obtained for a low resolution image, with the new directionlet based method, is

with its own high resolution image in the training set. The more the images used

to build training set is similar to the original image, the more will be the quality

of the super resolved image. From SNR values and visual quality, it is clear that

the new directionally adaptive algorithm using directionlets are more efficient than

other traditional methods.

4.3.2 Single image super resolution method using over sampled
directionlets

Over sampled directionlet method
The previous section described single image super resolution using critically

sampled directionlets. In this section the above mentioned method is implemented

with over sampled directionlets. Over sampled directionlets means there is no

subsampling after filtering process. AL and AH are obtained from the low

resolution image as in the way as the case of above Directionlet method.

Over sampled plus cubic spline interpolation method
The above mentioned method is modified using cubic spline interpolation. Here

the cubic spline interpolated low resolution image is used to obtain low frequency

bands AL and AH.

Implementation of both methods
Training set is formed with oversampled directionlets.
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SNR values with critically sampled directionlet method, over sampled

directionlet method, over sampled directionlet and cubic spline interpolation

method are given in Table 4.3. SNR values show that critically sampled directionlet

method and over sampled directionlet method give almost same result but the over

sampled method needs more memory and computations. So critically sampled

directionlet method is superior compared with other two methods.

Table 4.3: Comparison of SNR values with different methods

method SNR in dB
Barbara Butterfly Tiger

Critically sampled Directionlet method 22.9467 26.8020 25.1543
Oversampled Directionlet method 22.5626 26.9598 25.253
Modified oversampled directionlet method
with cubic spline interpolation 15.824 21.082 20.6603

Figures 4.25 (b), (c), (d), (e) show original image, super resolved image using

critically sampled directionlet method, super resolved image using over sampled

Directionlet method and super resloved image using modified over sampled

directionlet method with cubic spline interpolation respectively. It is seen that

there is not much difference between images obtained using critically sampled

directionlet method and over sampled directionlet method. It is due to the fact that

AL and AH are obtained in the same way as in the case of directionlet method. The

image with third directionlet method is not much sharper than other two methods

and its SNR value is low compared with other methods.

Figures 4.26 (a), (b), (c), (d), (e) show low resolution image, original image,

super resolved image using Directionlet method , super resolved image using over

sampled directionlet method, super resolved image using modified oversampled

Directionlet method with cubic spline interpolation respectively.

From SNR values and visual quality, it is clear that critically sampled directionlet

method is better than other over sampled methods. Since the oversampled methods
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(a) (b)

(c) (d) (e)

Figure 4.25: (a)low resolution image (b)original image (c) super resolved using
critically sampled directionlet method(d) super resolved using directionlet method
with over sampled directionlet (e)modified over sampled directionlet method with
cubic spline interpolation

need more computations and time compared to the critically sampled method, they

are not considered for comparison in the coming chapters.
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(a) (b)

(c) (d) (e)

Figure 4.26: (a)low resolution image (b) original image (c)super resolved using
critically sampled directionlet method(d) super resolved using over sampled
directionlet method(e)super resolved using modified oversampled directionlet
method with cubic spline interpolation
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4.3.3 Super resolution of LR images to 4 times its orginal size
(magnification factor 4)

The LR image of size MxM is super resolved to an image of size 4Mx4M using

the new directionlet method and block wavelet method.

The zooming factor 4 is obtained by iterating the critically sampled directionlet

method two times, with output image of first iteration as the input low resolution

image of the second iteration. The low resolution input image to the first stage

is obtained using equation 3.1 as mentioned in section 3.2. SNR values obtained

for the different methods for zooming factor 2 and 4 are shown in table 4.4. From

section 4.3 it is seen that Yang et al’s method gives the best result among the other

existing SR methods. So the directionlet method is compared with Yang’s method

and block wavelet method only.

Table 4.4: SNR values for grey images with zooming factor 2 and 4

Method SNR in DB
for zooming factor 2 for zooming factor 4
Barbara Bush Barbara bush

Yang et al’s sparse method 17.0718 12.6237 15.6918 0.6
Block wavelet method 18.5995 12.7631 17.4133 0.8083
Directionlet method 22.8995 12.8233 19.7996 1.9528

From table 4.4 SNR values obtained for the image Barbara for zooming factor

2 and 4 are 22.8995dB and 19.7996 for directionlet method,18.5995dB and

17.4133dB for block wavelet method, 17.0718dB and 15.6918dB for Yang’s

method respectively. So is the case with the image ’bush’. From SNR values

it is clear that directionlet method gives better result.

In Figure 4.27 (a)low resolution image(64x64) (b)original image(128x128)

(c)original image(256x256)(d),(e),(f) 2 times SR images (128x128 ) using Yang

et al method, block wavelet method and directionlet method(g), (h), (i) 4 times

SR images (256x256) using Yang et al method, block wavelet method and new
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directionlet method. Cross lines can be noticed on the scarf for the yang et al and

block wavelet method while those are almost removed in the directionlet method.

Figures 4.28 show the corresponding results obtained for the image ’bush’ for

the different methods. Blocking effect along the edges of the leaves are noticed

in Yang et al and block wavelet method. Triangular protrusions along the leaf are

missing in directionlet method and but it is sharper than the images by the other 2

methods.

In Figures 4.29 and 4.30, LR images of size 128x128 are obtained using equation

3.1, from the original image of size 256x256 and they are super resolved by a of

2 and 4 using Yang’s method and directionlet method. For image butterfly the

ringing effect on the edges can be seen in both cases in Yang method, while it is

much less in directionlet method. So also is the effect on the moustache of the

tiger in figure 4.30. SNR computation has not been done as original image of size

512x512 is not available.
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(a)

(b) (c) (d) (e)

(f) (g) (h)

(i)

Figure 4.27: (a)low resolution image(64x64) (b)original image(128x128)(f)original
image(256x256) (c),(d),(e)2 times SR images (128x128 ) using Yang et al method,
block wavelet method and directionlet method (g),(h),(i) 4 times SR images
(256x256) using Yang et al method,block wavelet method and new directionlet
method
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(a)

(b) (c) (d) (e)

(f) (g) (h)

(i)

Figure 4.28: (a)low resolution image(64x64) (b)original image(128x128)(f)original
image(256x256)(c),(d),(e)2 times SR images (128x128 ) using Yang et al method,
block wavelet method and directionlet method(g),(h),(i) 4 times SR images
(256x256) using Yang et al method,block wavelet method and new directionlet
method
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4.4 Conclusion
In this chapter a novel single image super resolution method based on

directionlet method is presented. The method is compared with Freeman method,

wavelet 1 method, Sapan’s method, Yang et al method and Block wavelet method.

It is seen that directionlet method is better than the other methods. Super resolution

for a factor of 4 is also implemented and results show that directionlet method is

the best.



Chapter 5

Single Image Super Resolution
Using Directionlets based on
Lifting scheme

The last chapter explains a new method for single image super resolution using

directionlet transform. Directionlet transform, also called skewed anisotropic

wavelet transform ( AWT(n1,n2)) can effectively capture anisotropic discontinuities

present in an image unlike the isotropic wavelet transform. The advantage

of the directionlet transform is that it retains the property of separability and

one dimensional convolution simplicity of wavelet. Since convolution based

directionlets are used, the new method presented in the last chapter needs more

computations and hence more computation time. Lifting based wavelet transform is

an alternative for conventional wave let transform which needs less computations,

less time, and less memory. The lifting method is extended to the directionlet

transform in this chapter and is used to super-resolve an LR image.
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5.1 Introduction
The new single image super resolution using directionlet transform presented

in this thesis produces high resolution images which are good both in terms of

visual quality and SNR values. But like wavelet transform, the directionlet uses

convolution operation and it is a computationally very intensive process, and hence

faster implementation schemes are required. The Lifting based implementation

of directionlet transform meets this requirement. Lifting scheme reduces the time

required for this process by a factor of two or more with out any loss in quality. The

lifting scheme is a simple and flexible tool for constructing pairs of forward and

inverse wavelet transforms that can be adjusted to acquire various desired features

while retaining the basic property to perfectly reconstruct the initial signal.

5.2 Background
5.2.1 Lifting scheme for wavelet transform

The lifting scheme for wavelet transform is explained in this section. This is

extended to directionlet transform in section 5.2.4. The wavelet transform of a

signal is a multi-resolution representation of a signal, which at each resolution

level gives a highly uncorrelated representation. Discrete Wavelet Transform can

be implemented using convolution, and several DWT architectures with filter

convolution have been proposed. Filter banks are the fundamental tool to create

discrete wavelet transforms. They are formed by the analysis and synthesis low and

high pass filters and the intermediate stages composed by down and up sampling.

However, such an implementation suffers many disadvantages. Due to convolution

operation extra memory is needed to store the conventional DWT output. It takes

more time to do the all operations. Conventional wavelet transform is called first

generation wavelets.

Lifting scheme is a new approach to construct the so called second generation

wavelets,that is wavelets which are not necessarily translations and dilations of one

function[46]. This method was developed by Wim Sweldons in 1997 as a method

to implement Discrete Wavelet Transform which overcomes above mentioned
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disadvantages of first generation wavelet transform [31], [109]. Lifting enables

constructing wavelets in spatial domain. DWT can be decomposed into a finite

sequence of simple filtering steps, which are called lifting steps.

DWT can be viewed as prediction-error decomposition [82]. Using the wavelet

transform a signal s j with 2 j samples can be transformed into a coarser signal part

s j−1 and a detail signal part d j−1. The scaling coefficients at a given scale j are

predictors for the data at the next higher resolution or scale (j-1). The wavelet

coefficients are simply the “prediction errors” between the scaling coefficients and

the higher resolution data. This interpretation has led to lifting scheme. It involves

a polyphase decomposition or split of the original signal followed by Predict (P)

and Update (U) steps.

Figure 5.1: Lifting steps

The lifting based 1-D transform can be implemented as follows: There are three

steps: split, predict and update which constitutes lifting stage as shown in Figures

5.1 and 5.2. The lifting steps are given below [83], [81] :

1. Split : The signal is split into two disjoint set of samples even indexed

samples and odd indexed samples. Each set contains half samples of original



142 Super resolution based on lifting scheme

Figure 5.2: Lifting steps

signal. The process of splitting is called the lazy wavelet transform.

s j,2l = s2l (5.1)

s j,2l+1 = s2l+1 (5.2)

2. Predict(Dual lifting): The even and odd subsets are interspersed. If the signal

has a local correlation structure, the even and odd subsets will be highly

correlated with each other. In other words, given one of the two sets, it

should be possible to predict the other one with reasonable accuracy. In this

prediction step, which is also called dual lifting, the odd indexed samples

s j,2l+1 are predicted using the neighboring even indexed samples s j,2l and the

prediction error. The difference between the odd sample and its prediction

(detail or wavelet coefficients) replaces the original odd sample values, thus

providing in-place calculations and are called detail (wavelet) coefficients.

d j−1,l = s j,2l+1(n)−P(s j,2l) (5.3)

3. Update : In the second lifting step, known as primal lifting (U), the even

samples are replaced with smoothed values using the update operator U on

previously computed details. The U operator is designed to maintain the
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correct running average of the original sequence, in order to avoid aliasing.

s j−1,l = s j,2l +U(d j−1,l) (5.4)

4. Normalize: The outputs from the lifting steps are weighted by ke and ko.

These values serve to normalize the energy of the underlying scaling and

wavelet functions, respectively.

Iteration of the lifting stage, creates the complete set of DWT scaling and

wavelet coefficients s and d. The output from the s channel after primal lifting

steps provides a low pass sub band, whereas the output from d channel, after dual

lifting steps provides a high pass sub band.

The lifting steps are easily inverted, even if P and U are nonlinear, space-varying,

or non-invertible. The four steps in inverse lifting steps are: (i) Undo Normalize

(ii) Undo Update (iii) Undo Predict (iv) Merge. The steps of inverse filtering is

shown in Figures 5.3 and 5.4 [81].

Figure 5.3: Inverse lifting steps

1. Undo split: The even samples are obtained by subtracting update information

s j,2l = s j−1,l−U(d j−1,l) (5.5)
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Figure 5.4: Inverse lifting steps

2. Undo Predict: The odd samples are obtained by adding the prediction

information.

s j,2l+1 = d j−1,l +P(s j−1,l). (5.6)

3. Merge(Inverse lazy wavelet): The even and odd samples are merged together

to recover the original signal.

The inverse transform is found by reversing the order of the operations and flipping

the signs.

Advantages of lifting scheme
Advantages of lifting based wavelet transform over conventional wavelet

transform are as follows:

1. Lifting reduces the computational complexity of DWT involved with the

convolution implementation.

2. The lifting scheme allows a fully in-place calculation of the wavelet

transform. The extra memory required to store the results of the convolution

can also be reduced by in place computation of the wavelet coefficient with

the lifting scheme.
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3. The inverse wavelet transform can be obtained by undoing the operations

of the forward transform. In practise, this is done by changing each ’+’

operation into a ’-’ operation and vice versa. It has the same computational

complexity as the forward transform.

4. Transforms signals with an arbitrary length (need not be of power of 2, that

is 2n).

5. All wavelet filters can be implemented using the lifting scheme.

6. Conventional wavelet transform convert floating point numbers to floating

point numbers. Lifting scheme can be converted into a transform that maps

integers to integers. At the same time it retains the perfect reconstruction

property.

.

5.2.2 Wavelet transform in polyphase form

Figure 5.5: Filterbank representation of wavelet transform

Wavelet transform can be represented using multirate filter bank. Filter bank

representation of DWT is shown in Figure5.5 [81].

The forward transform uses two analysis filters h̃ and g̃ followed by subsampling,

while the inverse transform first upsamples and then uses two synthesis filters h
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and g. The conditions for perfect reconstruction are given by equation 5.7.

h(z)h̃(z−1)+g(z)g̃(z−1) = 2

h(z)h̃(−z−1)+g(z)g̃(−z−1) = 0 (5.7)

Each filter can be represented using polyphase representation. A filter h(z) can

be represented by

h(z) =
∞

∑
k=−∞

h(k)z−k (5.8)

Using polyphase representation, discrete time filter can be represented by the

equation 5.9, where he and ho are even and odd coefficients [73].

h(z) = he(z2)+ z−1ho(z2) (5.9)

he[z] = ∑h2kz−k (5.10)

ho[z] = ∑h2k+1z−k (5.11)

The polyphase decomposition can be used to implement filter bank in efficient

manner. The wavelet transform is represented by schematically in Figure 5.6. P(z)

is called polyphase matrix for synthesis and is represented by;

P(z) =

[
he(z) ge(z)

ho(z) go(z)

]
(5.12)



Background 147

Figure 5.6: Polyphase representation of wavelet transform

In polyphase representation involves splitting the sequence into odd or even

and then apply the poly phase matrix. In inverse transform polyphase matrix is

followed by merging odd and even samples. The perfect reconstruction property is

given by;

P(z)P̃(z−1)t = I (5.13)

where P̃(z) is called polyphase matrix (dual poly phase matrix) for analysis bank.

Another concept used here is that filtering a signal with He(z2) and then down

sampling by two is equivalent to down sampling the signal by two and then applying

He(z). The problem of finding an FIR wavelet transform thus amounts to finding a

matrix P(z) with determinant 1. If matrix P(z) is known, P̃(z) and the other four

filters for the wavelet transform can be found out using following equations.

he(z) = go(z−1) (5.14)

ho(z) =−ge(z−1) (5.15)

ge(z) = ho(z−1) (5.16)

go(z) =−he(z−1) (5.17)
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5.2.3 Polyphase representation of lifting method

Figure 5.7: Lifting based forward wavelet transform

The polyphase representation provides an effective way of representing lifting

method. As already explained, lifting consists of three steps: split, predict, and

update. The odd/even split is another form of polyphase domain. For a given

complementary filter pair (h, g), the polyphase matrix in equation 5.12 can be

factored using Laurent polynomials si(z) , ti(z) and non zero constant K. Euclidian

algorithm can be used to factor poly phase matrix. The equation 5.18 shows the

factorisation of P(z).

P(z) =
m

∏
1

[
1 si(z)

0 1

]
∗

[
1 0

ti(z) 1

]
∗

[
K 0

1 1/K

]
(5.18)

The dual polyphase matrix is given by

P̃(z) =
m

∏
1

[
1 0

−si(z−1) 1

]
∗

[
1 0

−ti(z−1) 1

]
∗

[
1/K 0

1 K

]
(5.19)

Figure 5.8: Inverse wavelet transform using lifting
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The polynomial si(z) represents primary lifting steps and ti(z) represents dual

lifting steps. Figure5.7 shows forward wavelet transform using lifting and it

includes lazy wavelet, alternating lifting and dual lifting steps and then scaling.

Figure 5.8 shows inverse wavelet transform using lifting and it includes scaling,

alternate dual lifting and lifting steps and finally inverse lazy transform.

5.2.4 Lifting scheme for directionlet transform
DWT is a special case of directionlet transform. So the lifting method applied

to DWT can be extended to directionlet transform also. Lifting based directionlet

also offers above mentioned advantages over conventional directionlet transform.

Directionlet is based on lattice based filtering and subsampling. The lifting

framework can be used to obtain the lattice based transform[40]. To apply a

separable 2-D DWT on a 2-D signal like image using the lifting implementation,

1-D DWT with lifting implementation in the vertical and horizontal dimensions

can be cascaded. To implement directionlet transform, lifting based wavelet

transform is applied along selected pair of directions. I-D transform with directional

prediction is performed by choosing the pixels from which a prediction (or update)

is formed . These pixels are chosen along a direction which is not necessarily the

horizontal or vertical direction. The lifting steps are as follows:

1. Split step : Split the pixels of lattice A located along the transform direction

d1, x(n) into two disjoint subsets: the odd and even polyphase samples xo(n)

and xe(n). Although any disjoint split is possible, the original data set x(n)

into xe(n) = x(2n) and xo(n) = x(2n+1).

2. Prediction step: The wavelet coefficients or detail signal d(n) is generated as

error in predicting xo(n) from xe(n) using prediction operator P, by keeping

even samples changeless. The difference between the prediction value of

xo(n) and the real value of xo(n) is defined as the high-frequency component

or detail signal.

d(n) = xo(n)−P(xe(n)) (5.20)
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3. Update step:This detail coefficients are used to update even samples xe(n), to

obtain the approximate signal which creates the low-frequency component.

xe(n) and d(n) are combined to obtain scaling coefficients c(n) which is a

coarse approximation to the original signal x(n). This is done by applying

an update operator U to the wavelet coefficients d(n) and adding the result to

xe(n) :

c(n) = xe(n)+U(d(n)) (5.21)

By performing the above processing along all co-lines in all cosets in both

directions, the multi resolution lifting directionlet decomposition is obtained.

5.3 Single Image Super Resolution using directionlets
based on lifting scheme

Directionlet transform based on lifting method is implemented and is used to

super resolve a low resolution image to high resolution image. db4 wavelet is used

for implementation.

5.3.1 Implementation
Implementation of db4 wavelets

Wavelet coefficients for db4 are shown in table5.1. The lifting coefficients

are different for different wavelets. These coefficients are obtained from wavelet

coefficients. Table5.2 shows the db4 coefficients used in the lifting scheme.

Euclid algorithm can be used to find DWT with a finite number of lifting steps

starting from polyphase transform [31]. db4 wavelet transform can be expressed

into lifting steps as follows,

1. db4 wavelet is an orthogonal base. Inverse transform uses two synthesis
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Table 5.1: Wavelet coefficients of db4

Decomposition low pass filter,h Decomposition high pass filter,g
h0 -0.0106 g7 -0.2304
h1 0.0329 g6 0.7148
h2 0.0308 g5 0.6309
h3 -0.1870 g4 -0.0280
h4 -0.0280 g3 -0.1870
h5 0.6309 g2 0.0308
h6 0.7148 g1 0.0329
h7 0.2304 g0 -0.0106

filters h and g. Under the perfect reconstruction condition,

h(z) = h(0)+h1z−1 +h2z−2 +h3z−3 +h4z−4 +h5z−5 +h6z−7 +h7z−8

(5.22)

g(z) = h7z6 +h6z5 +h5z4 +h4z3 +h3z2 +h2z1 +h1z+h06z−1

(5.23)

Polyphase representation of synthesis filters is given by equations 5.24 and

5.25.

h(z) = he(z2)+ z−1hoz2 (5.24)

g(z) = ge(z2)+ z−1goz2 (5.25)

he contains the even coefficients, and ho contains the odd coefficients.

2. Using polyphase representation of db4 synthesis filters h and g, synthesis

polyphase matrix P(z) is obtained. Synthesis polyphase matrix is given by

equation 5.26

P(z) =

[
he(z) ge(z)

ho(z) go(z)

]
(5.26)
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he(z) = h0 +h2z−1 +h4z−2 +h6z−3 (5.27)

ho(z) = h1 +h3z−1 +h5z−2 +h7z−3 (5.28)

ge(z) = h7z3 +h5z2 +h3z+h1 (5.29)

go(z) =−h6z3−h4z2−h2z1−h0 (5.30)

Polyphase representation of wavelet transforms is shown in Figure5.6 .

3. Using Euclidean algorithm for Laurent polynomial, synthesis polyphase

matrix P(z) can be factored into lifting steps.

P(z) =

[
1 0

−α 1

]
∗

[
1 (β z−1 +β ′)

0 1

]
∗

[
1 0

(γz−1 + γ ′) 1

]
[

1 (ηz−1 +η ′)

0 1

]
∗

[
1 0

1 1

]

∗

[
1 −1

0 1

]
∗

[
1 −(λ3z3 +λ2z2 +λ1z+λ0)

0 1

]
∗

[
−K−1 0

0 K

]
(5.31)

The coefficients α , β etc in above equation can be obtained from Matlab 7.0

by the command function ‘liftwave()’, and are listed in table 5.2.

4. Obtain analysis polyphase matrix P̃(z−1)T .

P̃(z−1)T = P(Z−1)T (5.32)

The analysis polyphase matrix is factored as follows
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P̃(z−1)T =

[
−k−1

1 0

0 K1

]
∗

[
1 0

−(λ3z−3 +λ2z−2 +λ1z−1 +λ0 1

]
[

1 0

(−1 1

]
∗

[
1 1

0 1

]
∗

[
1 0

(ηz+η ′) 1

]
∗

[
1 0

−(γz+ γ ′) 1

]
[

1 0

(β z+β ′) 1

]
∗

[
−K−1 0

0 K

]
(5.33)

This corresponds to the following implementation for the forward transform:

s(l)1 = x(2l +1)+αx(2l) (5.34)

d(l)1 =−β s1
l+1 +β sl

l + x2l+1 (5.35)

s(l)2 = s1
l − γd1

l+1− γ
1d1

l (5.36)

d(l)2 =−ηs2
l+1−η

1s2
l +d1

l (5.37)

s(l)3 = s(l)2 +d(l)2 (5.38)

d(l)3 =−s(l)3 +d(l)2 (5.39)

d(l)4 =−λ3s3
l−3−λ2s3

l−2−λ1sl−1 + s(l)3 +d3
l (5.40)

s(l) =−k−1
l s(l)3 (5.41)

d(l) =−k1d(l)4 (5.42)

where sl and dl are smoothed values and details respectively.

5. Derive the inverse transform from the forward by running the scheme

backward [110].
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Table 5.2: Coefficients in lifting steps

k1 1.362166720130752
λ0 -1
λ1 0.469083478901698
λ2 0.14003923772683
λ3 0.024791238156143
η 2.131816712755221
γ1 0.117648086798478
γ 0.018808352726244

β 1 0.300142258748545
β 1.117123605160594
α 0.322275887997141

Figure 5.9: Training set image
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Implementation of directiolet transform
Here the directionlet transform is implemented by applying lifting based 1-D

wavelet transform along selected pair of directions. Here also lattice structure based

filtering and subsampling are used. The same set of directions used in conventional

directionlet method are used here.

Development of training set
The training set is obtained from high resolution images downloaded from

Internet. One of the training set is shown in Figure5.9. This image is selected as

training set image because it contains information in five pair of directions. It is of

size 333x500 and in tiff format.

5.3.2 Results and discussion

Table 5.3: SNR values for different images with traditional directionlet method
and lifting based directionlet method

Method SNR in dB
Barbara Butterfly Tiger

directionlet method 20.3445 26.7953 25.1543
lifting based directionlet method 20.3513 26.8020 25.2685

Table 5.4: Time taken to generate training set with high resolution images of
different size with traditional directionlet method and lifting based directionlet
method

Input images time in seconds
name size Directionlet method Lifting based directionlet method

image 1 256x256 625.551540 294.186
image2 500x233 1698.824 855.525

SNR values obtained for different standard images using conventional

directionlet transform and lifting scheme based are shown in table 5.3. The time

taken for training set formation and learning process is shown in tables 5.4 and 5.5
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respectively. The SNR value obtained for super resolving image1 of size 256x256

to the size of 512x512 with conventional directionlet method is 20.3445dB while

with lifting scheme based method it is 20.3513dB. SNR values show that both

methods give almost same SNR values.

From the table 5.4, it can be seen that the time taken to build a training set with

an image of size 500×333 using lifting scheme method is 855.525 seconds while

it takes 1698.824 seconds using conventional directionlet method. It is 294.186

seconds with new lifting based method while with conventional directionlet method

it is 625.551540 seconds for making a training set with an image of size 256×256.

It is clear from the table 5.5 that time taken to super resolve an image of

size 256×256 to the size of 512x512, using conventional directionlet method is

1841.033seconds while that with lifting based directionlet it is 973.135 seconds.

While the average time to convert an image of size 128× 128 to an image of

size 256×256 the traditional directionlet method needs 1142.806 seconds, lifting

method requires only 288.523seconds.

Table 5.5: Time taken to super resolve low resolution images of different size with
traditional directionlet method and lifting based directionlet method

Input images time in seconds
name size Directionlet method lifting based directionlet method

image 1 500x233 3684.766759 2017.318
image2 128x128 1142.806190 288.523488
image3 256x256 1841.033 973.135

Figures 5.10, 5.11, 5.12, show super resolved images using conventional

directionlet transform and lifting based directionlet transform. Figure 5.10 (a) is

the low resolution image of size 256x256 (b) is the original image of size 512x512

(it is shown here for comparison), (c) super resolved image of size 512x512 using

lifting method, (d) super resolved image using conventional directionlet method.
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(a) (b)

(c) (d)

Figure 5.10: (a)low resolution image (b)original image(c)super resolved
image using lifting based directionlet transform(d)super resolved image using
conventional directionlet transform

Figure 5.11 (a) is the low resolution image of size 288x360 (b) is the original

image of size 576x720 (it is shown here for comparison), (c) super resolved image
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of size 576x360 using lifting method,(d) super resolved image using conventional

directionlet method. From them, it is clear that both methods give almost same

result.

(a) (b)

(c) (d)

Figure 5.11: (a)low resolution image (b)original image(c)super resolved
image using lifting based directionlet transform(d)super resolved image using
conventional directionlet transform

Figure 5.12 (a) is the low resolution image of size 173x230 (b) is the original

image of size 346x460 (it is shown here for comparison), (c) super resolved image
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of size 346x460 using lifting method, (d) super resolved image using conventional

directionlet method. From them, it is clear that both methods give almost same

result. It is also obvious that using new directionlet method low resolution image

of any size can be super resolved.

(a) (b)

(c) (d)

Figure 5.12: (a)low resolution image (b)original image(c)super resolved
image using lifting based directionlet transform(d)super resolved image using
conventional directionlet transform
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5.4 Study of the effect of different wavelets in directionlet
transform

The effectiveness of the directionlet transform in super resolution methods

depends on the choice of the basis function or mother wavelet. This section

proposes, a study of the different wavelet bases for a directionally adaptive, learning

based, single image super resolution method using Directionlets. There are many

available types of wavelet families, such as Daubechies, Meyer, Gaussian, Mexican

Hat, Morlet and many more. Four types of wavelet families were examined: Haar

Wavelet (HW), Daubechies Wavelet(db), Biorthogonal Wavelet(BW) and Symlet

wavelet. Implementation using lifting scheme are done with the different wavelets.

Patch size depends on length of wavelet coefficients.

The experiments are done on natural images of size 128x128 with wavelet basis

har, db4 ,db5, bior1.3, bior3.3, bior4.4 and sym4 etc. SNR values with different

wavelets are shown in table 5.6. SNR values and visual quality of resultant images

show that rbior1.5 gave the best results followed by rbior1.3, bior 3.3, db5, db4

etc. SNR obtained for super resolved image boat with rbior1.5 is 29.488dB, while

with bior3.3 is 28.8175dB. Figures 5.13(a), (b),(c),(d) and (e) shows main results

obtained with wavelets db5, db4, b33, rb1.3, rb1.5, give good results. This figure

also shows that rbior1.5 gives good visual effect compared with other wavelets.

But rbior1.5 has 10 coefficients and this necessitates that the block size of the

high resolution patch should be 24×24 and the computation time is more compared

with wavelets like db4, bior3.3. The time taken to super resolve an image of size

256×256 with wavelet rbior1.5 is 1800seconds and while it is 750seconds with

bior3.3 or db4.
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Table 5.6: Comparison of SNR of different images super resolved with different
wavelets

method SNR in dB
Boat Butterfly Tiger

db1 23.6123 22.7688 21.3765
db3 21.2480 20.5271 19.470
db4 26.9486 25.5178 24.051
db5 26.9486 24.1837 22.8421

bior1.3 27.4063 21.7692 19.9327
bior2.2 21.8980 21.61294 20.224
bior2.4 24.2918 24.1294 21.224
bior3.3 28.8175 26.802 25.2686
bior4.4 23.2918 22.8601 22.0323
sim3 20.9307 20.024 18.6481
sim4 25.5432 24.1286 23.0283

rbior1.3 29.488 26.1995 24.732
rbior1.5 29.8164 27.9769 25.2685

coif1 28.0486 21.9551 20.2354
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(a) (b) (c)

(d) (e)

Figure 5.13: Super resolved images using (a) db5, (b)db4, (c)b3.3 (d)rb1.3 (e)rb1.5
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(a) (b) (c)

(d) (e)

Figure 5.14: Super resolved images using (a) db5, (b)db4, (c)bior3.3 (d)rb1.3
(e)rb1.5
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5.5 conclusion
In this chapter a new method for super resolving a low resolution image

using learning based approach is presented. This is done using directionlet

transform. Instead of the conventional filter bank implementation scheme, this

chapter proposes a computationally less intensive method, namely lifting based

directionlet transform. As a result, tremendous reduction in computation has been

achieved. Lifting scheme is faster than the Filter Bank scheme; especially when

the filter has more taps. The capability and time saving achieved by combining

directionlet transform and lifting scheme will be very useful in real time super

resolution problems. db4 wavelet has been chosen for the simulation. Effects of

other wavelets on this super resolution method is also studied.



Chapter 6

Single image super resolution in
color images

Single image super resolution for grey level image is extended to color images

in this chapter. Two color image super resolution methods are implemented. In

the first method color image in RGB format is converted to YCbCr format. The

luminance component Y alone is super resolved and other two components are

interpolated using standard methods. At the end the YCbCr format is converted

back to RGB format. In the second method the three color components R, G, B are

super resolved separately to obtain super resolved color image. It is found that the

second method needs more computation time compared with the first method.
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6.1 Introduction
The previous chapters presented single image super resolution methods in grey

images. In this chapter the method is extended to color images.

6.2 Overview
6.2.1 Color Fundamentals

The colors that human beings observe in an object are determined by the nature

of the light reflected from the object. The visible light is composed of frequencies

that ranges from 400 to 700 nanometers in the electromagnetic spectrum. A body

that reflects light that is balanced in all visible wavelengths appears white to the

observer. However a body that favors reflectance in a limited range of the visible

spectrum exhibits some shades of color. For example, green objects reflect light

with wavelengths primarily in the 500 to 570 nm range, while absorbing most of

the energy at other wavelengths [76]. There are two ways to characterize the color

of an object: color of the pigments ( the color of the light that is reflected) or the

color of the light that is absorbed. (the complementary of the pigment color)[98].

Three basic quantities are needed to describe the quality of a chromatic light

source: radiance, luminance, and brightness. Radiance is the total amount of energy

that flows from the light source, and is usually measured in watts. Luminance,

measured in lumens, gives a measure of the amount of energy an observer perceives

from a light source [76].

Cones are sensors in the eye responsible for color vision. Due to the absorption

characteristics of the human eye, colors are seen as variable combinations of the

so called primary colors red, green, and blue. These primary colors are added to

produce the secondary colors of light-magenta (red plus blue), cyan (green plus

blue), and yellow (red plus green). Mixing the three primaries or secondary with

its opposite primary color, in the right intensities produces white light.
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The characteristics generally used to distinguish one color from another are

brightness, hue, and saturation. As already explained brightness embodies the

chromatic notion of intensity. Hue is an attribute associated with the dominant

wavelength in a mixture of light waves. It represents the dominant color as

perceived by an observer. Saturation refers to the relative purity or the amount of

white light mixed with hue. The pure spectrum colors are fully saturated.

6.2.2 Color Model
A color model is a specification of a coordinate system within which each

color is represented by a single point. Several popular color formats are used for

image and video processing. A color model is an abstract mathematical system

for representing color and has 3 dimensional abstractions for three primary colors

along three dimensions. They can represent only limited number of colors and

hence often can’t represent all colors in the visible spectrum.

Gamut or Color Space
The range of colors that are covered by a color model is called Gamut or color

space. Color models can be classified as either additive or subtractive.

Additive color describes the situation where color is created by mixing or adding

the visible light emitted from differently colored light sources. Additive color uses

transmitted light to display color. Human perception is additive since black is the

absence of light and white the presence of all wavelengths of light. Subtractive

colors are in contrast to additive colors. In this type color system light is removed

from various part of the visible spectrum to create colors.

Figure 6.1 shows additive and subtractive models. The most common examples

for additive light are computer monitors and televisions. Subtractive color is used

in paints and pigments and color filters. The additive reproduction process usually

uses red, green and blue light to produce the other colors. Combining one of

these additive primary colors with another in equal amounts produces the additive

secondary colors cyan, magenta, and yellow. The different color models are
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Figure 6.1: (a)Additive models(b)Subtractive models

• RGB Color Format

• CMY Color Format

• CMY(K) Color Format

• HSB Color Format

• YUV Color Format

• YIQ Color Format

• YCbCr Color Format

RGB Color Format
In the RGB model which is also called additive model, each color is represented

as a combination of primary colors red, green, and blue. Figure 6.2 shows RGB

color system. The primary colors can be added to produce the secondary colors

of light - magenta (red plus blue), cyan (green plus blue), and yellow (red plus

green). The combination of red, green, and blue at full intensities makes white.

The importance of the RGB color model is that it relates very closely to the way

that the human eye perceives color. This model is a basic color model for computer

graphics because color displays use red, green, and blue to create the desired color.

The number of bits used to represent each pixel in RGB space is called pixel depth.
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Figure 6.2: The RGB color system

A RGB color cube can be used to display smooth transitions between these colors.

To generate any color within the RGB color cube, all three RGB components need

to be of equal pixel depth and display resolution. This model is based on a Cartesian

coordinate system. Schematic of RGB color cube is shown in Figure 6.3. Here

RGB values are at three corners; cyan, magenta, and yellow are at three corners;

black is at the origin; and white is at the corner farthest from the origin. The gray

scale extends from black to white along the line joining these two points. Different

colors are points on or inside the cube, and are defined by vectors extending from

the origin [76]. Each color is in the range [0,1].

In RGB model, images consist of three component images, one for each primary

color. Any modification of the image requires modification of all the three planes.

If 8 bits are needed to represent each primary color image, then 24 pixels are

needed to represent a RGB color pixel. The total number of colors in a 24 bit RGB

image is 28.

CMY Color Format
Cyan, Magenta, and yellow are the secondary colors of light. When a surface

coated with cyan pigment is illuminated with white light, no red light is reflected

from the surface. That is Cyan subtracts (absorbs) red light from reflected white
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light, which itself is composed of equal amounts of red, green, and blue light. The

CMY color space is subtractive.

Figure 6.3: RGB color cube

Usually most devices like color printers and copiers convert RGB to CMY

internally. Converting from RGB to CMY is done using the equation 6.1.C

M

Y

=

1

1

1

−
R

G

B

 (6.1)

Here normalised color values are used. Equation 6.1 demonstrates that light

reflected from a surface coated with pure cyan does not contain red (C=1-R), pure

magenta does not contain green, yellow does not contain blue.

CMYK Color Format
In actual practice, mixing maximal amounts of cyan, magenta and yellow

pigments creates a color that is not really black (dark muddy instead). So in

order to produce true black a fourth color black is added giving rise to the CMYK

color model.
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Figure 6.4: HSB

HSB Format
Color models like RGB, CMY consider a color image as being composed of

three primary images that combine to form single image. They are not suited for

describing colors for practical human interpretation. HSB color model decomposes

color according to perception rather than according to how it is physically sensed.

A point within the HSB gamut is defined by Hue (the chromaticity or pure color),

Saturation (the vividness or dullness of the color), Brightness(the intensity of the

color).

According to this model, any color is represented by 3 numbers as in Figure6.4.

The first number is the hue, and its value ranges from 0 to 360 degrees. Each

degree represent a distinct color. First there is the red color (0 or 360 degrees,)

and then there are all other colors (for example yellow at 120 degrees, green at

180 degrees and blue at 240 degrees), up to the violet color. All the VIBGYOR

colors are represented here. The second number is the saturation. It represents the

amount of color or, more exactly, its percentage. It is the purity of the color and is

the amount of pure color mixed with white color. Its value ranges from 0 to 100,

where 0 represents no color, while 100 represents the full color. Finally, the third

number is the brightness. One can enhance the color brightness adding the white

color, and can reduce it by adding the black color. In this case 0 represents the

white color and 100 represents the black color. The more this value tends to 0, the

brighter the color is. The more this value tends to 100 the darker the color is. The

RGB values have been normalised to the range [0,1]. Given an RGB color format,
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H component of each RGB pixel is obtained by

H = θ ; i f B≤ G

= 360−θ ; i f B > G

where,θ = cos−1{ 1/2[(R−G)+(R−B)]

[(R−G)2 +(R−B)(G−B)]
1
2
}

The Saturation component is given by

S = 1− 3
(R+G+B)

[min(R,G,B)] (6.2)

The intensity is given by

I =
1
3
(R+G+B) (6.3)

This is used by NTSC, PAL, and SECAM television standards. Like HSB, YIQ

separates color into luminance Y and color channels(I and Q). Y is the luminance

or gray scale component, I is the in phase component (amount of red-green) and Q

is the quadrature (amount of blue-yellow). The YIQ color space is a rotation and

distortion of RGB such that the Y axis lies along the RGB gray scale, the I axis is

oriented roughly to red-green and the Q axis to blue-yellow. Converting RGB to

YIQ is done by the equation6.4.Y

I

Q

=

0.299 0.587 0.114

0.596 −0.274 −0.321

0.211 0.523 −0.312

−
R

G

B

 (6.4)

YUV Color Model
The YUV color model is the basic color model used in analogue color TV

broadcasting. Initially YUV is the recoding of RGB for transmission efficiency

(minimizing bandwidth) and for downward compatibility with black and white

television. The YUV color space is derived from the RGB space. It comprises

the luminance (Y) and two color difference U, V components. The luminance
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can be computed as a weighted sum of red, green and blue components; the color

difference, or chrominance, components are formed by subtracting luminance from

blue and from red.

YCbCr Color Model

Figure 6.5: A color image and its Y, Cb and Cr components.

YCbCr color space used for component digital video is a scaled and offset version

of the YUV color space. Y is the luminance component and Cb and Cr are the blue

difference and red-difference chroma components. Figure 6.5 shows a color image

and its Y, Cb and Cr components. It can be noted that the Y image is essentially

a grey scale copy of the original image. The principal advantage of the YCbCr

model in image processing is decoupling of luminance and color information. The

importance of this decoupling is that the luminance component of an image can

be processed without affecting its color component. For example, the histogram

equalization of the color image in the YCbCr format may be performed simply by

applying histogram equalization to its Y component. There are many combinations
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of YCbCr values from nominal ranges that result in invalid RGB values, because

the possible RGB colors occupy only part of the YCbCr space limited by these

ranges.

Conversion from RGB to YCbCr using equation6.5 Y

Cb

Cr

=

 16

128

128

+

 65.481 128.553 24.966

−37.797 −74.203 112.000

112 −93.786 −18.214

×
R

G

B

 (6.5)

6.3 Single image super resolution using directionlets for
color images

There are different ways to extend the gray image super-resolution algorithm for

processing color images in RGB format. The typical solution involves applying

monochromatic SR algorithms to each of the color channels independently, while

using the color information to improve the accuracy of motion estimation [90]. This

process can result in better performance than super-resolving only the luminance

components, both in terms of SNR values and in visual plausibility. But it is at

the expense of three times larger run-time complexity. Humans are more sensitive

to the brightness information(luminance) than color information(chrominance

components). Another approach is transforming the problem to a different

color space, where chrominance layers are separated from luminance, and super

resolution method is applied only to the luminance channel. The chrominance

or color channels, are then upsampled using interpolation methods (eg. bilinear,

bicubic) and the final RGB is computed by recombining the new SR luminance

image with the interpolated chrominance. Processing the luminance information

does not reduce the quality of resultant image, but this method reduces the

computation time[88].

Above mentioned two methods are implemented here. The simplest way is the

second method which super resolves only the luminance component of a given
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color image.

6.3.1 Color image Super resolution with super resolution on
luminance component only

Methodology
In this method the RGB color image is converted into YCbCr model and the

super-resolution is performed only on the Y component. The main advantage of the

YCbCr model in image processing is that the luminance and the color information

are independent. Thus, the luminance component can be processed without

affecting the color contents. The details information in a digital image is mainly

present in the image luminance component. There fore, one can take advantage

of the high sensibility of the human visual system to the brightness variation

than to the chrominance variation. Consequently, more computational resources

can be allocated to enlarge the brightness values while color components can be

enlarged using a simpler approach. The final result is then obtained by combining

the super-resolved Y component with the interpolated Cb and Cr components.

As mentioned earlier, this scheme has the important advantages of enabling the

gray level model being applied directly to color images, resulting in the run-time

complexity to be the same as that of gray level case. Finally, the YCbCr model is

converted to the RGB model to generate the synthetic image.

Implementation
High resolution color images are obtained from the Internet and are used to

form training set. The images are obtained from Canon digital Gallery [1]. One

of the training set image is shown in Figure6.6. It is of size 333x500 and in tiff

format. Some of high and corresponding low resolution images are shown in

Figure 6.7. The low resolution images are obtained by subsampling the each R, G,

B components of their high resolution images separately.

In this method the RGB formatted images are converted into YCbCr format. The

luminance component Y alone is super-resolved using the new directionlet method.

For this the training set is formed using the luminance components of high and low
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Figure 6.6: Training set color image

resolution color images. The low and high resolution luminance components are

divided into patches and directionlet transform is applied on these patches. These

coefficients form the training set. The missing high resolution Y component is

learned from this training set. The other two components Cb and Cr are upsampled

using cubic spline interpolation. The super resolved Y component and cubic spline

interpolated Cb, Cr components are converted back to RGB format to obtain the

high resolution image.
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(a) (b)

(c) (d)

Figure 6.7: (a),(c)Original images of girl1 and girl2(b),(d)Low resolution images,
contd.......



178 Single image super resolution in color images

(e) (f)

(g) (h)

Figure 6.7: (e),(g) Original images of tiger and queen (f),(h)Low resolution images

Results
For color images, results obtained using new directionlet method is compared

with Yang et al sparse method [36] and Shan et al method [75]. The paper[75],

is based on an image formation process that models how a coarselevel image is

produced from its clear finer-resolution version.

SNR values are calculated and shown in table 6.1 for new directionlet method,

Yang et al and Shan et al super resolution methods. Table shows that the super

resolved image girl1 using directionlet method has SNR of 43.5548dB while super

resolved images using Yang et al method and Shan et al method have SNR of
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Table 6.1: SNR values of Super resolved Color images

method SNR in DB
girl1 girl2 tiger queen

super resolved using Shan et al method 39.2839 32.1571 23.7560 25.5211
super resolved using Yang et al method 39.3904 33.8038 26.6926 27.6746
Directionlet method 43.5548 37.3297 29.2922 31.5619

39.3904dB and 39.2839dB only. Same is the case with the images of girl2, tiger

and queen.

Figure 6.8 (a), (c), (e), (g) show original image, super resolved images of low

resolution image Figure6.7(b) of girl1 using existing methods ( Yang et al method

and Shan et al method) and new directionlet method. Here the low resolution image

of size 166×250 is super resolved to an image of size 332×500. Figures 6.8(b),

(d), (f), (h) represent the zoomed portions of forehead of girl in Figure (a), (c), (e),

(g) respectively. It is clear that the image obtained by directionlet super-resolution

method, consists of sharper details than the images from other methods. Blocking

effect is present in hair strands of image using existing methods but it is almost

removed in the new method.

Figure 6.9 shows another color image of girl2 in which new super resolution

method is applied. The low resolution image is of size 215× 251 and is shown

in Figure 6.7(d). Figure 6.9 (b), (d), (f), (h) show zoomed portions of original

image(a), super resolved using Yang et al method (c), Shan et al method (e) and

super resolved method using directionlet (g) respectively. The artifacts in the hair

band present in super resolved image using existing method is almost removed in

directionlet based super resolution method. Also the eyebrows and hair strands

are sharper and close to original in the directionlet method. Table 6.1 shows that

the directionlet based super resolved image has SNR of 37.3295dB while super

resolved images with Yang et al method and Shan et al method have SNR value

33.8038dB and 32.1571 respectively.
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The third low resolution image used is shown in 6.7(f). It is of size 200×150.

Figures 6.10(a), (c), (e), (g) show original image, super resolved image using Yang

et al method, super resolved using Shan et al method and directionlet based super

resolved image (400×300). Figures 6.10(b), (d), (f), (h) show zoomed portions of

(a), (c), (e), (g) respectively. The ringing effects present in the mustache of tiger in

the super resolved images using Yang et al method and Shan et al method is almost

removed in directionlet based method.

In Figures 6.11(a), (c), (e), (g) show original image, super resolved image using

Yang et al sparse method, Shan et al method and new super resolved image of low

resolution image in Figure 6.7(h). Low resolution image is of size 196x292 and it

is super resolved to the size of 392x584. The block effect in the marked area of

super resolved images using Yang et al method and Shan et al method is almost

removed in the new super resolved image.

6.3.2 Super resolution on R, G, B components
Methodology

To form the training set, each high and low resolution color component is

divided into patches and directionlet transform is applied on these patches. Thus

there are three groups of directionlet coefficients corresponding to three color

components. The training set contains three groups of directionlet coefficients.

Each group contains directionlet coefficients of low and high resolution color

component patches. In MATLAB, the format of input color image is in RGB.

The high resolution color components R, G, B are learned from the training set

individually.

To super resolve an input low resolution color image, it’s three high resolution

components corresponding to different colors are learned separately from the

training set. Each color component is super resolved separately.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.12: (a)Original image(c)image super resolved by super resolving
luminance components only(e)image super resolved by super resolving R, G,
B components (b),(d),(f)zoomed portion of the face of (a),(c),(e)respectively



190 Single image super resolution in color images

Implementation
The same high resolution images which are used in the first method are used

as the training set images. The low resolution image of girl1 is super resolved to

its double size.

Results and discussions
Figure 6.12(a), (c), (e) show the original image, the SR image by super

resolving luminance the components only and SR image by super resolving all the

three color components separately and (b), (d), (f) are the zoomed portions of (a),

(c), (e) respectively. The super resolved image in Figure 6.12(e) has almost same

subjective quality compared to the image in Figure 6.12(c) , which is obtained by

super resolving the luminance component only. Also SNR of Figure 6.12(e) is

43.9447dB while that of Figure 6.12(c) is 43.5548dB. But the time taken for the

second method is very large (three times) compared with the first method.

6.4 Super resolution of LR color images to 4 times its
orginal size (magnification factor 4)

The LR color image of size MxM is super resolved to an image of size 4Mx4M

using new directionlet method. It is compared with the super resolved image

obtained using Yang et al’s sparse method.

As in the case of grey images, the zooming factor 4 is obtained by iterating the

critically sampled directionlet method two times with output image of first iteration

as the input low resolution image of the second iteration. SNR values obtained for

different methods are shown in table 6.2.

From table 6.2, SNR values obtained for the image Lena for zooming factor

2 and 4 are 22.5731dB and 13.8592dB for directionlet method, 22.0944dB and

13.8316dB for Yang’s method respectively. So is the case with image bush. From

SNR values, it is clear that directionlet method gives better result.
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Table 6.2: SNR values for color images with zooming factor 2 and 4

Method SNR in DB
for zooming factor 2 for zooming factor 4

Lena Bush Lena bush
Yang et al’s sparse method 22.0944 9.6565 13.8316 6.4616

Directionlet method 22.5731 10.6168 13.8592 6.7398

(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.13: (a)low resolution image(64x64) (b)original image(128x128)
(e)original image(256x256) (c),(d)2 times SR images (128x128) using Yang et al
method and directionlet method(f),(g) 4 times SR images (256x256) using Yang et
al method and new directionlet method respectively.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6.14: (a)low resolution image(64x64)(b)original image(128x128)(e)original
image(256x256) (c),(d)2 times SR images (128x128) using Yang et al method and
directionlet method (f),(g) 4 times SR images (256x256) using Yang et al method
and new directionlet method respectively.

Figures6.13(a)low resolution image(64x64)(b)original image

(128x128)(e)original image(256x256) (c), (d) 2 times SR images (128x128) using

Yang et al method and directionlet method(f), (g) 4 times SR images (256x256)

using Yang et al method and new directionlet method. Blocking effect along the

edges of the leaves are noticed in Yang et al method. Triangular protrusions along

the leaf are missing in directionlet method and but it is sharper than the image by

the other method.
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Figures 6.14(a) low resolution image(64x64) (b)original image(128x128)

(e)original image(256x256) (c),(d)2 times SR images (128x128) using Yang et al

method and directionlet method(f),(g) 4 times SR images (256x256) using Yang et

al method and new directionlet method. Here ringing effect present in the edge of

hat of Yang et al method is less in new directionlet method.

6.5 conclusion
In this chapter directionlet based super resolution method is extended to color

images. Two super resolution methods are implemented here. In the first method,

RGB format is converted to YCbCr format and super resolution method is applied to

the luminance component, Y alone. In the second method each R, G, B components

are super resolved separately. The two methods (YCbCr method) give almost same

result both in numerical and visual quality, but the second method needs more time

compared with first method. They are compared with the Yang’s method which

is proved to be the best among existing methods. It is seen that directionlet based

super resolved method outperforms the existing super resolution methods, in the

case of color images also.





Chapter 7

Single Image Super-Resolution
using directionlets on Noisy
images

As in the case of color images, the single image super resolution method using

directionlets can be extended to noisy low resolution images also. Since the

learning based method involves mapping between the low resolution image and

the training set, pre-processing using bilateral filter is done here. Advantage is

that the same training set which has been used in grey image super-resolution can

be used here. The new super resolution method is found to be effective for all types

noises used.
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7.1 Introduction
The super-resolution methods described in the previous chapters considered

low resolution images free of noise. But this is not the actual case. An image

is often corrupted by noise in its acquisition, recording and transmission. The

performance of sensors is affected by a variety of factors, such as environmental

conditions during image acquisition and by the quality of the sensing elements

themselves. For instance, while acquiring images with a CCD camera, light

levels and sensor temperatures are major factors affecting the amount of noise

in the resulting image. Images are corrupted during transmission principally due

to interference in the channel used for transmission. For example, an image

transmitted using a wireless network might be corrupted as a result of lightening

or other atmospheric disturbances [76]. These random distortions make it difficult

to perform the required picture processing.

With the exception of spatially periodic noise, noise is independent of spatial

coordinates and is uncorrelated with respect to the image itself. That is, there is no

correlation between pixel values and values of noise components. Image denoising

methods are used to remove the additive noise while retaining as much as possible

the important signal features.

The effects of directionlet-based single image super resolution method on

noisy images is presented here. The training set contains directionlet transform

coefficients of high resolution images and their low resolution images. The idea

used is that the noisy input low resolution image is decomposed into different

frequency bands using directionlet transform. These coefficients are compared

with the corresponding training set coefficients to select the most similar ones. The

higher bands of high resolution images are learned from the training set. The low

bands are obtained from the low resolution noisy image. The inverse directionlet

transform of all these bands gives the super resolved image of the noisy image.
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7.2 Overview: Noises
Unlike analog signals which are more prone to noises, discreteness nature of

digital signals offers some built-in tolerance to noise . The three most common

types of random noise likely to be encountered in images are: Gaussian noise, Salt

and Pepper noise, and Speckle noise.

Gaussian noise
Because of its mathematical traceability in both the spatial and frequency

domains, Gaussian noise models are used frequently in practice. In fact, this

traceability is so convenient that it often results in Gaussian models being used in

situations where they are marginally applicable at best. The Probability Distribution

Function (PDF) of a Gaussian random variable z, is given by

P(z) =
1√

2Πσ
e
−z−µ2

2σ2 (7.1)

where z represents gray level, µ is the mean or average value of z, and σ is its

standard deviation. The standard deviation squared, σ2, is called the variance of z.

Salt and Pepper Noise(Impulse noise)
The PDF of impulse noise is given by equation

P(z) = Pa; f or,z = a

= Pb; f or,z = b

= 0;otherwise (7.2)

If b>a, gray level b will appear as a light dot in the image and level a will appear

like a dark dot. Impulse noise will resemble salt and pepper granules randomly

distributed over the image. For this reason bipolar noise is also called Salt and

Pepper noise .

“Spike” or impulse noise that drives the intensity values of random pixels to

either their maximum or minimum values. It is simple to handle. They occur when
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pixel’s intensities are either driven to minimum or maximum values. An effective

noise reduction method for this type of noise involves the usage of a median filter,

morphological filter or harmonic mean filter [3]. Salt and pepper noise creeps into

images in situations where quick transients, such as faulty switching, take place.

Speckle Noise
It is a form of multiplicative noise in which the intensity values of the pixels in

the image are multiplied by random values.

Figure 7.1 shows images with these noises.

(a) original (b) Gaussian

(c) salt and pepper (d) speckle

Figure 7.1: Images with different noises

7.3 Denoising Methods
Many denoising methods have been developed over the years. Multi resolution

analysis has been proven to be an important tool for eliminating noise in signals.

Using multi resolution analysis, it is possible to distinguish between noise and
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image information better at one resolution level than another. The problem of

image de-noising can be summarized as follows. Let A(i,j) be the noise-free image

and B(i,j) the image corrupted with independent Gaussian noise Z(i,j), then

B(i, j) = A(i, j)+Z(i, j) (7.3)

The problem is to estimate the desired signal as accurately as possible according to

some criteria. There exist many denoising algorithms which uses averaging filter,

median filter etc. Among many denoising methods, wavelet thresholding is one of

the most popular approaches.

7.3.1 Wavelet Methods
In wavelet thresholding, a signal is decomposed into its approximation

(low-frequency) and detail (high-frequency) sub-bands. Since most of the image

information is concentrated in a few large coefficients, the detail sub-bands are

processed with hard or soft thresholding operations. In the wavelet domain, if an

orthogonal wavelet transform is used, the problem can be formulated as

Y (i, j) =W (i, j)+N(i, j) (7.4)

where Y(i,j) is noisy wavelet coefficient, W(i,j) is true coefficient and N(i,j) noise

[93]. De-noising of natural images corrupted by Gaussian noise using wavelet

techniques is very effective because of its ability to capture the energy of a signal

in few energy transform values. The wavelet transform yields a large number of

small coefficients and a small number of large coefficients. Simple de-noising

algorithms that use the wavelet transform consist of three steps.

1. Calculate the wavelet transform of the noisy signal.

2. Modify the noisy wavelet transform coefficients according to some rule.

Coefficients that are supposed to be affected by noise are replaced by zero

or by another suitable value, and also the other coefficients may be modified.

This process is called thresholding.
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3. Compute the inverse transform using the modified coefficients to obtain the

noise free image.

.

7.3.2 Bilateral filter
The bilateral filter takes a weighted sum of pixels in a local neighborhood; the

weights depend on both the spatial distance and the intensity distance. In this

way, edges are preserved well while noise is averaged out. The bilateral filter is a

nonlinear filter that does spatial averaging without smoothing edges; it has shown

to be an effective image denoising technique [106], [56].

7.4 Single image super resolution in noisy images
Single image super resolution method described in previous chapters can easily

be extended to noisy images. The noisy low resolution image is super resolved to a

noiseless high resolution image. The method explained here is based on the paper

[19] and single image super resolution method using directionlet transform.

Figure 7.2: Block diagram of noisy image super resolution using directionlet
transform

To get the noise free high resolution image of an input noisy low resolution

image, it’s high resolution frequency bands are learned from a training set. The

training set contains directionlet coefficients of patches of noise free high resolution

images and their low resolution images. To obtain the low frequency bands, up

sample the low resolution noisy image patches and apply the directionlet transform

on it. The bands AL and AH obtained by this process are used as the AL and AH
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of the high resolution image. The Figure 7.2 shows block diagram of noisy image

super resolution using directionlet transform.

Implementation and Discussions
Implementation

The same training set used in the earlier implementations with grey level

images is used here. The training set contains directionlet transform coefficients

corresponding to noiseless low resolution patches and high resolution patches.

Experiments are conducted with different types of noises. Three types of noises

are used : Gaussian, Speckle, Salt and Pepper. The low resolution noisy images

are obtained by adding noises in low resolution images. A magnification factor of

q=2 is used.

Discussions
The results are shown in Figure7.3. Different types of noises with standard

deviation 0.1 are added to the low resolution image to simulate different noisy

images. The noisy input image itself is used for obtaining AL and AH components

and matching during the learning process. Here the new method is compared

with Sapan et al method because this method uses wavelet denoising method.

Figures7.3(a), (d), (g) are low resolution images with noises Gaussian, Speckle

and Salt and Pepper (with standard deviation σ=0.1). Figures7.3(b), (e), (h) are

super resolved images using Sapan et al method and Figures7.3(c), (f), (i) are super

resolved images of Figures7.3 (a),(d),(g) using new directionlet method, without

using any preprocessing for noise removal. From results it is observed that smooth

regions of super resolved image is still noisy and when compared with the existing

method, quality of super resolved image is not good.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.3: (a),(d),(g)Low resolution images with gaussian,speckle and salt and
pepper noises σ=0.1 (b),(e), (h)Super resolved images using Sapan et al method(c),
(f), (i)super resolved images of (a), (d), (g) respectively.

7.5 Single image super resolution in noisy images using
Bilateral filter

Since super resolution involves mapping between input image patches and

training set patches, the noisy input image is preprocessed before the process of

super resolution. The above mentioned method is modified by applying a bilateral

filter on low resolution input image. It’s block diagram is shown in Figure7.4. The
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input noisy image is pre processed using bilateral filter. The preprocessed noisy

image is divided into patches and the Directionlet transform is applied on input

noisy image patches and the high frequency bands HL, HH, VL, VH, DL, DH

are learned from the training set. The low frequency bands are obtained from the

input image. The inverse directionlet transform gives the almost noise free high

resolution image.

Figure 7.4: Block diagram of noisy image super resolution using directionlet
transform with Bilateral filter for preprocessing

Implementation and Discussions
The experiments are done on images with Gaussian noise, Speckle noise and

Salt and Pepper noise of different values of standard deviation(variance). The same

training set used with grey images is used here.

7.5.1 Single image super resolution on images with Gaussian noise
Table 7.1 shows the SNR values obtained for super resolving different low

resolution images with Gaussian noise of standard deviation σ=0.1, 0.2, 0.3. From

the table it is clear that the new directionlet method gives better result than Sapan

et al wavelet method. For example SNR value for Butterfly is 23.92dB while it is

only 19.55dB for Sapan et al method. It is also clear that as noise increases the

quality of super resolved image decreases.

Figure7.5, Figure7.6 show the results obtained with Gaussian noise. The results

are compared with super resolved images using Sapan et al method. In the new

super resolution method the missing high frequency bands are learned from the

training set which are entirely free of noise. The low frequencies are obtained from
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Table 7.1: SNR values for different low resolution images with Gaussian noise

images SNR in dB
Methods σ=0.1 σ = 0.2 σ=0.3

Butterfly using Sapan et al method 19.55 19.5761 19.5683
Directionlet Method 23.9251 22.549 21.031

Barbara using Sapan et al method 14.5125 14.4897 14.4897
Directionlet Method 19.401 17.9563 16.76

the directionlet transform of interpolated version of low resolution image. Thus

the noise present in the low resolution image is almost removed by the averaging

process of low pass filters in low frequency bands.

Figures7.5(a), (d),(g) show low resolution images of ’Barbara’ with Gaussian

noise of standard deviation σ=0.1, 0.2, 0.3. Figures7.5(b), (e), (h) show super

resolved images using Sapan et al method and Figures7.5(c), (f), (i) show super

resolved images using new directionlet method.

Figures7.6(a), (d),(g) show low resolution images of ’butterfly’ with Gaussian

noise σ=0.1, 0.2, 0.3. Figures7.6(b), (e), (h) show super resolved images using

Sapan et al method and Figures7.6(c), (f), (i) show super resolved images using

new method. It is clear that directionlet super resolved images are better than the

images super resolved with existing wavelet transform based method.



Single image super resolution in noisy images using Bilateral filter 205

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5: (a),(d),(g)Low resolution images with Gaussian noise (σ=0.1, 0.2,
0.3)(b),(e),(h)super resolved images using Sapan et al wavelet method (c),(f),(i)
super resolved images using directionlet method
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7.5.2 Single image super resolution on images with Speckle noise
Table7.2 shows the SNR values obtained for super resolving different low

resolution images with Speckle noise of standard deviation σ=0.1, 0.2, 0.3. The

SNR value of Butterfly for σ=0.1 is 24.59dB for new directionlet method while it

is 20.4610dB for existing Sapan et al method.

Table 7.2: SNR values for different low resolution images with speckle noise

Images SNR in dB
Methods σ=0.1 σ = 0.2 σ=0.3

Butterfly using Sapan et al method 20.4610 20.05 19.6978
Directionlet Method 24.59 24.0533 23.46

barbara using Sapan et al method 14.8994 14.6246 14.4224
Directionlet Method 20.31 19.75 19.37

Figures7.7(a), (d), (g) show low resolution images of ’barbara’ with Speckle

noise σ=0.1, 0.2, 0.3. Figures7.7(b), (e), (h) show images with Sapan et al method

and Figures7.7(c), (f), (i) show super resolved images with new directionlet method.

Figures7.8(a), (d), (g) show low resolution images of butterfly with Speckle

noise σ=0.1, 0.2, 0.3. Figures7.8(b), (e), (h) show images with Sapan et al method

and Figures7.8(c), (f), (i) show super resolved images with new directionlet method.

It is clear that super resolved images using new method are better than images using

existing super resolution method. The directionlet method is better for removing

speckle noise also.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.7: (a),(d),(g)Low resolution images with Speckle noise (σ=0.1, 0.2,
0.3)(b),(e),(h)super resolved images using Sapan et al wavelet method (c),(f),(i)
super resolved images using directionlet method
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7.5.3 Single image super resolution on images with Salt and Pepper
noise

Table 7.3 shows the SNR values obtained for super resolving different low

resolution images with Salt and Pepper noise of standard deviation σ=0.1, 0.2, 0.3.

The SNR values for Butterfly is 24.39dB while it is 20.3163dB for Sapan et al

method for σ=0.1.

Table 7.3: SNR values for different low resolution images with Salt and Pepper
noise

Images SNR in DB
Methods σ=0.1 σ = 0.2 σ=0.3

Butterfly using Sapan et al method 20.3163 19.7292 19.17
Directionlet Method 24.39 23.66 22.92

barbara using Sapan et al method 14.8965 14.654 14.43
Directionlet Method 20.03 19.51 18.82

Figures7.9(a), (d), (g) show low resolution images of ’Barbara’ with Salt and

Pepper noise σ=0.1, 0.2, 0.3. Figures7.9(b), (e), (h) show images with Sapan et al

method and Figures7.9(c), (f), (i) show super resolved images with new directionlet

method. It is clear that directionlet based super resolved image is better than images

using Sapan et al super resolution method.

Figures7.10(a), (d), (g) show low resolution images of ’butterfly’ with Salt and

Pepper noise σ=0.1, 0.2, 0.3 etc. Figures7.10(b), (e), (h) show images with Sapan

et al method and Figures7.10(c), (f), (i) show super resolved images with new

method. It is clear that directionlet based super resolved image is better than

images using Sapan et al super resolution method.



Single image super resolution in noisy images using Bilateral filter 213

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: (a),(d),(g)Low resolution images with Salt and Pepper noise (σ=0.1,
0.2, 0.3)(b),(e),(h)super resolved images using Sapan et al wavelet method (c),(f),(i)
super resolved images using directionlet method
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7.6 Conclusion
The single image super resolution method with directionlet transform is

extended to noisy images. The low resolution noisy images are filtered using

bilateral filter before undergoing super resolution process. The same training set

used with grey image super resolution is used here. Experiments are conducted

on different images with different types of noises like Gaussian, Speckle, Salt and

Pepper with different variances. Results are compared with the existing wavelet

transform method and it is observed that the new directionlet method is able to

remove noise contents to a greater extent.



Chapter 8

Conclusion

A brief summary of the research work conducted and the important conclusions

thereon are highlighted in this chapter. The scope for further work in this field as

an extension of the present study has also been discussed.
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8.1 Thesis summary and Conclusions
In this thesis, problem of single image super resolution method is addressed.

Resolution beyond the limit of image capturing device is achieved by using

directionlet transform to extract high frequency features from the high resolution

images in the training set. The presented method is different from other

conventional super resolution methods in the way that it is adaptive to local

directional variations present in images.

Different methods presented in this thesis are summarized here. Initially a

learning based super resolution method using learned wavelets is presented. It

is obtained by modifying the method proposed by Jiji et al using patch based

approach. Advantage of the new patch based wavelet method is that low resolution

images of any size can be super resolved using a single training set. Artifacts are

also reduced in the super resolved images using this wavelet method. But this

method including traditional methods fail to remove artifacts like ringing effects

and aliasing.

Next, a novel learning based super resolution method using directionlet transform

is introduced. Advantage of this method is that for each patch, direction of

transform is selected according to the information present in it. This method

out performs the standard interpolation and wavelet methods. Artifacts like

aliasing and ringing effect are also reduced by this method. This new method

needs more computations and hence need more computation time. To speed up

this process lifting based directionlet transform is used instead of conventional

convolution based directionlet transform and this lifting based method is faster

than the convolution based directionlet method.

A study is done to analyze the effect of different wavelets on the directionlet

based super resolution method. Results show that though the wavelet basis

’rbior1.5’ gives better super resolved image compared to other wavelets, it takes

three or four times more time compared to ’db4’ or ’bior3.3’
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The new single image super resolution method using directionlet transform is

extended to color and noisy image also. It is found that the new method based on

directionlet is effective in the case of colour and noisy images.

Thus a new directionally adaptive single image super resolution method is

developed to super resolve grey ,colour and noisy images. It super resolves images

to their double size. It can be also used for super resolving to 4 times the size of

the original image.

8.2 Suggestions for Future Work
These methods are computationally too expensive for real time applications.

One should think of ways to speed up these algorithms. Training set needs large

amount of memory and compression techniques can be used to reduce the size

of memory. Here low resolution images which are free from blurring are used.

The new super resolution method presented here can easily be extended to blurred

observations also. Here five sets of directions are selected. By extending to

more directions the quality of super resolved image can be increased further.

Magnification factor two and four are used in the presented work. This can be

extended to higher values.
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