
International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

1

A Compiler Integrated Assistance for Optimum Data Allocation in

Banked Memory Embedded Processors

Mariamma Chacko
1
 and K. Poulose Jacob

2

1
Department of Ship Technology,

 2
Department of Computer Science,

Cochin University of Science and Technology, Cochin, India

mariamma.cusat@gmail.com, kpj@cusat.ac.in

Abstract

Bank switching in embedded processors having partitioned memory architecture results in

code size as well as run time overhead. An algorithm and its application to assist the

compiler in eliminating the redundant bank switching codes introduced and deciding the

optimum data allocation to banked memory is presented in this work. A relation matrix

formed for the memory bank state transition corresponding to each bank selection instruction

is used for the detection of redundant codes. Data allocation to memory is done by

considering all possible permutation of memory banks and combination of data. The compiler

output corresponding to each data mapping scheme is subjected to a static machine code

analysis which identifies the one with minimum number of bank switching codes. Even though

the method is compiler independent, the algorithm utilizes certain architectural features of

the target processor. A prototype based on PIC 16F87X microcontrollers is described. This

method scales well into larger number of memory blocks and other architectures so that high

performance compilers can integrate this technique for efficient code generation. The

technique is illustrated with an example.

Keywords: Banked Memory; Optimization; Data Allocation; Compilers; Embedded

Systems

1. Introduction

Embedded systems are usually designed for a single or a specified set of tasks.

Being specific the system design as well as its hardware/software development can be

highly optimized. It is common to select a microprocessor/microcontroller based on its

performance and to rely on the compiler to deliver this performance. This is particularly

true of high-performance RISC devices. Optimization is an important task when

developing resource intensive applications. Embedded software must meet conflicting

requirements such as high reliability, operation on resource-constrained platform and

rapid development. Due to strict timing constraints owing to real time concerns, the

code optimization problem is more complex than for general purpose systems. An

efficient compiler can provide compact code, without having to learn the intricacies of

the device architecture. This makes these devices more accessible to engineers with

limited programming experience who are increasingly using MCUs in their product

designs [1], [2].

The integration of processor cores and memory in the same chip effects a reduction

in the chip count, leading to cost effective solutions. Typical examples of optional

memory modules integrated with the processor on the same chip are: Instruction Cache,

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

2

Data Cache, and on-chip SRAM. Efficient utilization of on-chip memory space is

extremely important in modern embedded system applications based on microprocessor

cores. Memory banking and memory paging are common techniques, which increase

the size of data and code memory without extending the address bus. Many MCUs have

banked memories that cannot be addressed simultaneously. For example, Freescale

68HC11 8-bit microcontrollers [3] allow multiple 64KB memory banks to be accessed

by their 16-bit address registers with only one bank being active at a time. Other

examples include Intel 8051 processor family, MOS technology 6502 series

microcontrollers and most of the PIC microcontrollers [4]. Switching between the

memory banks requires at least one bank selection instruction which induce extra

overhead in code size and execution time. The code size is a major factor rather than

speed for the programs running in embedded systems, since smaller code size often

means less consumption of ROM as well as energy, and hence minimizing the number

of bank selection instructions is an important research topic.

The related literature for minimal placement of bank switching instructions is motivated by

objectives, such as less runtime, low power, small code size, or a combination of these

parameters. Scholz et.al. in [5] assume the variables have already been assigned to memory

banks and presents a novel optimization technique that minimizes the overhead of bank

switching through cost effective placement of bank selection instruction. They formulate the

placement of bank selection instructions as a discrete optimization problem that is mapped to

a partitioned Boolean quadratic programming (PBQP) problem. Allocating variables to

shared memory is useful to eliminate bank selection instructions. Mengting et al. in [6]

presents a dynamic programming algorithm to generate the optimal assignment of variables in

the shared memory to minimize bank selection instructions. Li et al. [7] prove that it is NP-

Hard to insert the minimum number of bank selection instructions if all the variables are pre-

assigned to memory banks. So they introduce a 2-approximation algorithm using a rounding

method. They consider the case when there are some nodes that do not access any memory

bank and design a dynamic programming method to compute the optimal insertion strategy

when the Control Flow Graph (CFG) is a tree. An algorithm is presented in [8] devoted to

reduce the number of page selection instructions with careful allocation of functions into

pages.

The work presented in [9] aims to utilize variable partitioning techniques to minimize the

size and time overhead introduced by bank switching. Current practice typically leaves it to

the programmer to partition the data among different memory banks. Whether programming

is done in assembly language or in a high-level language, the programmer has to provide data

manually by using assembler directives or compiler pragmatics. Compiler methods are

preferable to programmer directives as they do not require programmer effort; are portable

across different systems; and are likely to make better decisions, especially for large, complex

programs [10]. Most of the current variable partitioning techniques aim at achieving the

maximum instruction level parallelism for processors equipped with dual data memory banks

accessible in parallel [11],[12],13]. But these techniques will not benefit the bank switching

optimization because no parallel bank accessing is allowed in this architecture. The problem

of partitioning data into scratch pad SRAM and cache with the objective of maximizing

performance has been addressed in [14]. A compiler method for automatically allocating

program data among the heterogeneous memory units in embedded processors without caches

resulting in reduced runtime is presented in [10]. Allocation techniques to statically allocate

data to the scratchpad for energy saving were introduced in [15] and [16] whereas [17]

presented a dynamic approach. These techniques are all based on the frequency of data

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

3

accesses and make no attempt to reduce the code size. All the previous works mentioned

above are analyzing the source programs for optimum data partitioning.

It is characteristic for embedded system programmers to inter-leave fragments of assembly

code in high level language, to enable direct access to the device's hardware. Performing

static analysis on the high level representation of the source code requires transforming the

embedded assembly code to the high level representation. Static analysis on machine code

rather than source code eliminates the requirement of knowledge of the semantics of high

level language/assembly language and it is independent of the compiler so that, developers

are free to change compilers or compiler versions [18]. Current compilers provide limited

support to generate bank switching code optimally.

The work presented here is targeted towards the optimum allocation of data variables

to on-chip memory banks that cannot be accessed simultaneously. A compiler strategy

that can automatically determine the optimum data partition among the memory banks

is presented. An algorithm is developed and utilized to detect the redundant memory

bank switching instructions in the resulting machine codes from a compiler for different

data allocation schemes of the application program. Then it selects the program with

minimum bank switching instructions as the optimum solution. A static analysis of

machine codes which is in Intel hex file format is used to give the feedback to the

compiler to decide the optimum allocation. To the best of the authors‟ knowledge only

[9] presents a data partition technique aimed at minimal placement of bank selection

instruction resulting in code as well as runtime saving. Our non profile-guided compiler

method is static and is independent of the compiler but implementation of algorithm

depends on certain architectural features of the target processor. The basics of the

algorithm developed, enhancements made to the algorithm in order to suppress the false

warnings and the results of the case study using Microchip‟s PIC16F877 [19]

microcontroller are presented.

2. Motivation and Approach

For any memory space, larger the memory is, the larger the address bus needs to be.

Previous efforts on partitioned memory are to enable memory access in parallel thereby

increasing memory bandwidth and thus improving program performance. Such partitioned

memory banks are found in processors like Motorola‟s DSP 56000, Intel 8086, i80186 etc

onwards. One way of avoiding large address buses is to divide the memory into a number of

smaller blocks – called banks/pages –each identical in size in most of the cases so that a

smaller address bus can be used [20]. Smaller address buses result in smaller chip die sizes,

higher clock frequencies and less power consumption. It can access all banks in an identical

way, with just one of the banks being identified at any one time called the active memory

bank (AMB) [5] as the target of the address specified. The contents of memory temporarily

bank-switched out of the processors address space are inaccessible to the processor. Many

popular manufactures of microcontrollers adopt this technique. Certain modern

microcontrollers use bank switching to manage read-write memory, non-volatile memory,

input-output devices and system management registers. Most of the PIC microcontrollers

adopt a banked structure for their data as well as program memory of which a case study on

PIC16F87X series of microcontrollers has been made in this work.

A bank-sensitive program statement requires that the appropriate bank is to be made active

prior to its execution. Otherwise, the program semantics are violated. This introduces an

additional burden on the programmer; there is always a possibility for redundant bank

switching instructions Thus, if data in one bank must be copied to another bank, bank

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

4

selection instructions are always necessary. Obviously, placing all the variables accessed by a

function in the same memory bank will reduce the number of bank selection instructions and

the total required cycles for the application. However, conventional compilers have no way of

knowing which functions call which variables and are therefore unable to optimize their

memory assignment. Nor do these compilers have any way of knowing whether or not a

particular memory bank will be selected at any point in the code. As a result, these compilers

automatically generate bank selection instructions for every memory access, whether or not

that bank is already selected, unnecessarily bloating the code – often to such an extent that it

will not fit in device memory. Compiler vendors have addressed this issue by providing bank

qualifiers - extensions to the C-code. This allows the compiler to see the exact bank an object

resides in and reduces the number of bank selection instructions for more compact code.

However, trying to track all the memory addresses across multiple code modules and ensuring

all pointers to have the appropriate qualifiers is a time consuming and tedious process. This

requires substantial expertise as well as run the risk of introducing programming errors [2].

Analysis of a high level program cannot easily determine the current bank state. But with a

static analysis of the machine code, the state transitions at each bank switching instruction can

be easily determined. This work presents an algorithm developed, to detect the redundant

bank switching codes in the machine code generated by the compiler. So the compilers can

insert bank selection instructions for every memory access in the conventional way and the

output file in the Intel Hex file format is tested with the algorithm developed to detect all the

redundant bank switching code. So the compiler is deprived of any complicated analysis

needed during compilation to minimize the bank switching code as done by some advanced

compilers like HI-TECH OCG (Omniscient Code Generation) [2]. Now appropriate

allocation of data variables to the available memory banks can again increase the redundant

bank switching codes detected by the algorithm developed, resulting in minimum number of

such codes in a given application program.

3. Detection of Redundant Bank Switching Codes

The goal of our optimization is to eliminate the redundant bank selection instructions in a

program while ensuring that the banked memory is accessed correctly. The detection of

redundant bank switching code is done with the help of a relation matrix derived from the

architectural features of the target processor like number of memory banks and instruction set

(memory bank switching codes). Though the implementation depends on the target processor

the formation of the relation matrix can be generalized as explained below. The feasibility of

the approach has been verified on systems based on PIC16F87X series of microcontrollers.

PIC 16F84A have just two banks [20] and the address of either bank is the 7-bit RAM

address. The active bank is selected by bit 5 in the Status register. The programmer must

ensure that the bank bit in the Status register is correctly set before making any access to

memory. The data memory in PIC16F87X devices is partitioned into four banks of 128 Bytes

each, which contain the general purpose registers and the Special Function Registers (SFR).

For selecting a particular bank, bits RP1;bit six of status register (status<6>) and RP0

(status<5>) are to be configured appropriately. The data memory space in PIC18F series

devices is divided into as many as 16 banks that contain 256 bytes each [21]. The Bank Select

Register, BSR<BSR3:BSR0> holds the four bit bank; the instruction itself includes the 8

Least Significant Bits, which can be thought of as an offset from the bank‟s lower boundary.

The BSR can be loaded directly by using the movlb instruction.

In general, the address space is partitioned into memory banks and the CPU can access one

bank at a time, which is called the active memory bank (AMB), using bank selection bits or

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

5

bank selection instruction. For implementing this code optimization through static analysis of

machine code, the memory bank that was active just before the execution of a bank switching

instruction is named Previously Activated Memory Bank (PAMB). A bank

switching/selection instruction is said to be redundant when the execution of such an

instruction switches the memory bank to an Active Memory Bank (AMB) that does not

alter the PAMB.

Based on the study on the various PIC families of microcontrollers following

generalizations are made for the partitioned data memory architecture. If P is the number of

memory banks, so that 2r = P, then the number of bits that decides the bank selection in the

bank selection register will be r. The number of machine codes controlling the bank selection

will be P if the bank register is loaded with a mov instruction. For each PAMB state there will

be one bank selection instruction, which is redundant. If bitset and bitclear instructions on the

BSR are used for bank switching there will be 2r number of machine codes for this operation

and for each PAMB state there will be r number of bank switching instructions, which are

redundant.

3.1 Relation Matrix Formulation

The family of Microchip PICmicro MCUs constitutes a RISC-based Harvard architecture

with instruction size of 14 bits and an 8-bit wide data bus [4]. The data memory banks in

these embedded controllers contain the General purpose Registers and Special Function

Registers. For proper functioning of the device, proper configuring of these registers is

essential. Since these registers are spread across different banks they are to be accessed

through the bank switching instructions, which limits the data partitioning optimization for

hardware dependent code.

Instead of having a single bank selection instruction, the PIC16F87X architecture provides

only bit access to the bank selection register, which is the status register. The assembly

instructions that clear or set the bits RP0 and RP1of the status register are bcf status, RP0; bcf

status, RP1; bsf status, RP0; and bsf status, RP1 and are represented by the symbols a, b, c

and d respectively. The hex codes corresponding to these instructions are 1283h, 1303h,

1683h and 1703h respectively. The four data memory banks are named B0, B1, B2 and B3.

On a power on reset, the default bank that is active is bank‟0‟ represented as B0. Depending

on the PAMB state, the AMB state occurs with each bank switching instruction.

The Active Memory Bank is a discrete function [22] of Previously Activated Memory

Bank (PAMB) and bank switching instruction. Let the finite sets

 B = {B0, B1, B2, B3} represents the symbols of PAMB states and

 I = {a, b, c, d} represents the symbols of bank switching instructions respectively.

 ∂ is a mapping of B×I →B which denotes the next-state function.

Then ∆, a (2r×2r) relation matrix, can be obtained by first constructing a table whose

columns are preceded by a column consisting of successive elements of B and whose rows

are headed by a row consisting of the successive elements of I as shown in Table 1. The

relation matrix ∆ is obtained as

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

6

Figure 1. State Transition Diagram Showing the Bank Switching Scheme

Elements of ∆ represent the AMB for each mapping of B×I→B. A state transition diagram

representing the data memory bank switching with the execution of each bank switching

instruction to the corresponding AMB is shown in Figure 1. The nodes represent the PAMB

states. The occurrence of a loop on each state in the state transition diagram corresponds to an

unnecessary bank switching or a redundant bank switching instruction, which can be

identified and eliminated by incorporating the necessary algorithm. Eliminating such

instructions from a machine code sequence results in a code optimized for space and speed

metric.

Table 1. Relation Matrix Formation with PAMB and Bank Switching Instructions

For the target processor considered, most of the time the compiler/macros/user places two

instructions to select the required data memory bank. They are

(bcf status, RP0  bsf status, RP0)  (bcf status, RP1  bsf status, RP1).

i.e. (a  c)  (b  d)

To select bank B3 (i.e. status<RP1:RP0> = b„11‟), the two probable instructions are bsf

status, RP0 (c) and bsf status, RP1 (d). With a PAMB state B2 (i.e. status<RP1:RP0> =

b„10‟), only instruction c is needed and instruction d is redundant since;

∂ (B2, c) = B3 which is evident from the matrix ∆ as well as the state transition diagram. This

redundancy corresponds to a loop in the state transition diagram which the algorithm

identifies and that instruction is eliminated. Even though the order of the instructions is

reversed, the algorithm identifies the first instruction as redundant since the state transition is

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

7

to B2 itself. The other situation is selecting a bank which is already the active bank. For

selecting the bank say B1, the two probable instructions are bsf status, RP0 (c) and bcf status

RP1 (b). With a PAMB state B1;

∂ (B1, c) = B1 and ∂ (B1, b) = B1

The algorithm identifies both the bank selecting instructions which are redundant as

evident from the matrix ∆ as well as the state transition diagram and can be removed. The

relation matrix is independent of the application program, but it depends on the architectural

features of the target processor. If P is the number of memory banks, so that 2r = P, then the

number of rows of the relation matrix will be P. If the bank switching is done with a data

transfer instruction then the number of columns of the relation matrix also will be P and in

case the bank switching is done with individual bit set/reset instructions the number of

columns will be 2r.

3.2 Realization

For the implementation of the code optimization the machine code is read from the Intel

hex file and stored in an array. Intel hex file format is widely used in microprocessors and

microcontrollers as de-facto standard for representation of code for programming into

microelectronic devices. Checking of redundant bank switching instructions should follow the

sequence of instructions executed by the processor which correspond to a path in the program

graph. In order to get the correct sequencing of instructions, the program (machine code) is

partitioned into blocks of instructions by disconnecting from every merge node (a node in the

program graph with more than one incoming arc) all of its incoming arcs [23]. Hence the

program graph is partitioned into a collection of disconnected subgraphs where each subgraph

corresponds to a set of instructions or subprogram. Since each subgraph is a tree, they have

only one entry point (root node) and there is a unique path, and hence a unique sequence of

instructions, from entry point to each of the exit points. Now the CFG can be constructed

where each subgraph of the program graph is represented as a single node and the arcs

represent valid control flow between subgraphs [24], [25].

From the CFG the set of elementary paths in a subprogram are identified as follows.

Let N represent the total number of CFG nodes.

Each subprogram (subgraph) can be represented as an acyclic digraph G = ‹Vi,Ei, ei,Vif, Pi›,

where,

(i) = 1 to N

Vi = {vi1, vi2, …..,vik} represents the nodes in the ith subgraph.

Ei = {x  x  (Vi×Vi)} represents control flow edges between the nodes in the subprogram.

ei, is the initial node (merge node) of the ith subgraph .

Vif = {x  x  Vi  x is a leaf node}.

 Vif  = M, represents the number of paths in the ith subgraph. One of the leaf nodes vif is

given an Exit ID such that there exists an arc (vif, ei+1) in the program graph. If L represents

the number of machine codes (nodes) in the jth path of the ith subgraph, then (j) = 1 to M

Pi = {x  x = {xj1, xj2,… xj(L-1), xjL}  xj1 = ei  xjL  Vif  (q) = 1 to L (xjq,xj(q+1) 

(Vi×Vi)}, represents the set of elementary paths in the ith subprogram. The CFG can be

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

8

represented as a digraph G = <V,E> where V = {v1,v2,……, vN} represents the set of

subprograms and E = { x  x  (V×V)}.

The flow chart given in Figure 2 explains the algorithm to detect the redundant bank

switching codes. Since the bank B0 is the default active bank on reset, B0 is assigned at start

to the PAMB of each path of the 1st CFG node. For each memory bank Switching Code

(MBSWC) in a valid path the AMB state is obtained from the matrix ∆. A redundant

MBSWC is located when AMB = PAMB. The AMB associated with the vif, which is given

an Exit ID is assigned to the Exit Active Memory Bank (EAMB) which becomes the starting

PAMB of each path of the next CFG node. For the analysis of a subprogram a linear scan is

sufficient. Analysis of a subprogram takes care of the redundancy of the memory bank

switching instructions associated with the intraprocedural routines in an application program.

Figure 2. Flowchart Explains the Identification and Pruning of Redundant
MBSWC in the Machine Code Sequence of a Program

Completion of the analysis of the last CFG node enables the processing of the merge

nodes. The initial node of a subprogram is a merge node where there is more than one

incoming arc. So the first MBSWC in each path of a subprogram cannot be eliminated just

by observing it to be redundant from the EAMB state of its previous subprogram. Hence the

AMB associated with each of the incoming arc at the merge node are to be considered. Each

of these incoming arcs corresponds to a source node which is nothing but a leaf node, and

hence an active memory bank is associated with it. Hence the active memory bank at the

entry node of a subprogram need not be unique. A typical case is that of a function call from

different call sites. A call site corresponds to a node which contains an instruction

implementing a function call. All the call sites need not have the same AMB state. A loop in a

program is another case. Therefore, for all the CFG nodes, even though the first (pair of) bank

switching instruction in any path is found to be redundant, they are not reported till the

interprocedural analysis is over and the redundancy is confirmed. This is the first step done

towards the suppression of false warnings. Hence the AMB associated with the first

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

9

instruction in a subprogram is taken as the union of AMBs of its incoming arcs. During

processing of the merge nodes, if it is found that all the incoming arcs of a CFG node (arcs to

a merge node) are having the same active memory bank associated with them, then the

redundancy marked for the first (pair of) bank selection instruction in that node or in any path

of that subprogram is considered to be redundant and can be eliminated. When it is not so a

decision is made by considering the AMB combinations of the incoming edges as follows.

If B0 and B2 only then the instruction bcf status,RP0 is redundant

If B0 and B1 only then the instruction bcf status,RP1 is redundant

If B1 and B3 only then the instruction bsf status,RP0 is redundant

If B2 and B3 only then the instruction bsf status,RP1 is redundant

Hence the algorithm takes care of the redundant data memory bank selection instructions

associated with all the loops and interprocedural routines of the application program.

As a second step towards suppression of the false warnings, the algorithm considers all the

transparent nodes which do not contain any bank switching instructions. If the active memory

bank associated with the incoming arcs of a transparent node are not equal then the leaf nodes

of this CFG node are assigned with the combination of incoming edges‟ AMBs. Again within

a CFG node if any of the paths is without a bank switching instruction its leaf node is treated

similarly. When the initially detected redundant codes are pruned the AMBs associated with

all the incoming edges to the entry node are taken care of.

3.3 Tool Evaluation

The code analyzer developed for the detection of redundant bank switching instructions in

an application program is realized in software using Visual Basic. The tool is evaluated using

programs typically run on microcontrollers. For programs developed in assembler the

necessary pair of MBSW instructions were inserted prior to all bank sensitive instructions and

tested. Figure 3 shows the CFG of a sample program used for the analysis which has got six

nodes „n1’ through „n6’. Each bank sensitive instruction in the program is preceded by an

appropriate pair of MBSWC. Each node in a program graph is assigned with an address and

its associated machine code. The hex values of the addresses corresponding to the pair of

MBSWC are shown encircled and the resulting active memory banks such as B0, B1 etc. are

also shown. B0 results with the instructions a  b, B1 results with the instructions c  b, B2

results with the instructions a  d and B3 results with the instructions c  d. The AMB

associated with the incoming arcs of „n1’ through „n6’ are also shown. With the MC_CODE

ANALYZER v1.02 only the inraprocedural analysis has been done. Here the analysis of each

CFG node considers the EAMB associated with the exit node of its predecessor only. Results

of the analysis for the sample program above with MC_CODE ANALYZER v1.02 are given

in Figure 4 which shows the redundant bank switching codes along with their address

locations identified by the tool with the intraprocedural analysis. The source node address, the

machine code at this address location and the destination node address of the program graph

are also displayed in the screenshot. The addresses of these redundant codes are single starred

or double starred in the Figure 3, the later being the first (pair of) MBSWC in the CFG node.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

10

Figure 3. CFG of the Sample Program for the Analysis

Figure 4. Screen Shot of the Developed MC_CODE ANALYZER v1.02 for the
Sample Program

With the MC_CODE ANALYZER v3.00 the inraprocedural, interprocedural and

transparent node analysis has been conducted. The first (pair of) redundant bank switching

code/codes in any of the subprogram (the nodes which are marked **), already identified with

the MC_CODE ANALYZER v1.02 are pruned with this analysis to avoid any false warnings.

Here the first/first pair of bank switching code/codes of each CFG node which were found

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

11

redundant by the previous analysis are reported to the programmer only if they are found

redundant with the interprocedural analysis too.

Screenshot explaining the results of this analysis for the same sample program with the

MC_CODE ANALYZER v3.00 are given in Figure 5. The machine codes at addresses 8h,

23h, 2Dh, 2Eh, 29h and 12h are pruned as follows. The redundancy reported in the first

analysis for the code at location 23h is eliminated in the second analysis since „n2‟is a

transparent node and therefore the leaf nodes of this subgraph are assigned with the

combination of incoming edges‟ AMBs. Then the incoming edges of node „n3‟ can have

active memory banks either B1 or B2. With a PAMB of B1, the instruction „c‟ is redundant

since ∂ (B1, c) = B1, but with a PAMB of B2, the instruction „c‟ is not redundant as evident

from the state diagram; hence the code at location 23h is eliminated from the result. Similarly

for the node „n4‟, codes at 2Dh and 2Eh are reported redundant in the first analysis since

EAMB of the exit node of „n3‟ is B3. But with the second analysis only code at location 2Eh

is reported and 2Dh is eliminated since the incoming edges AMB combination is B3 and B2

only. With a PAMB of B3 or B2 the instruction „c‟ is not redundant, but the instruction„d‟ is

redundant since ∂ (B3, d) = B3 and ∂ (B2, d) = B2. For the node „n5‟, since the incoming

edges are having the same AMB B3, code at location 29h is reported in both the analysis

which is clear from the relation matrix. For the machine codes at addresses 8h and 12h there

is no change since node „n1‟ is having only one incoming edge and for „n6‟ the AMB

associated with the incoming edges are the same. The codes which are found redundant in

the first analysis but eliminated later lead to the suppression of false warnings.

Figure 5.Screen Shot of the Developed MC_CODE ANALYZER v3.00 for the
Sample Program

Results of the analysis done on machine codes generated with different compilers as well

as assembler are given in Table 2. HI-TECH Software is a world-class provider of

development tools for embedded systems and is the number one third party vendor of

compilers for Microchip Technology Inc. For a program module „delay_time_rout‟

downloaded from [26] and compiled using HI-TECH C PRO, the algorithm detected six

redundant codes. Sample programs available with HI-TECH C PRO compiler are tested and

the results are given as sl. no. 2 to 6. These programs are compiled with the optimization

enabled; hence the results prove that the tool developed is superior to the compiler. Serial

numbers 7 to 12 gives the results of the analysis on programs available with PROTEUS VSM

design tool. The results of the analysis for an ADC program compiled using HI-TECH C

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

12

PRO, mikroC and also the same program developed in assembler are also included (sl. No. 13

to 15) to test the independence of the tool developed on the compiler. Serial number 12 is a

program compiled with PICBASIC. For a traffic signaling program developed in assembler

with each bank sensitive instruction preceded by a pair of necessary bank switching

instructions, the algorithm detected all the redundant bank switching codes and this is

presented as sl. no.16 of the table. The tool developed counts the total number of bank

switching codes originally present in the program as well as the number of redundant bank

switching codes. Using the simulation log in PROTEUS VSM the number of program words

in each program is also found. Hence the percentage saving in code size is computed and

presented in the table. A corresponding saving in run time can also be computed. Including

the profile data can give the execution frequency of each node so that the better

approximation of the runtime saving can be computed which will be conducted as a future

work.

Table 2. Results of the Analysis

Sl.

No.

Program Code

 size

MBSWC

present

Redudnt.

MBSWC

detected.

Saving in

code size

%

1 delay_time_rout 223 6 6 2.7

2 Lcd_demo 176 12 10 5.7

3 Timer_demo 49 3 0 0

4 Intr_demo 44 2 0 0

5 Pic_demo 700 16 14 2

6 Bootloader 225 19 1 0.44

7 ADC 63 7 1 1.6

8 Doorbell 643 2 0 0

9 PICCLOCK 292 2 0 0

10 RS232LCD 102 5 1 0.98

11 GEPE456 1403 10 2 0.14

12 GLCD_T~1 1044 16 0 0

13 HiTecC_ADC 84 18 8 9.5

14 mikroC_ADC 56 10 2 3.6

15 ASM_ADC 81 9 1 1.2

16 Traffic_signalling 48 16 7 14.6

4. Optimization Technique

This work considers a compiler strategy of allocating z number of data variables in an

application program to P number of data memory banks in the target processor, with the

objective to deliver the machine code with minimum number of bank switching codes. Since

the number of bank switching codes cannot be expressed as a linear function of the data

variable, an ILP solver is not applied in our approach.

4.1 Variable Partitioning

For a banked memory with P banks each of equal size, z number of data variables can be

assigned to the available banks in Pz possible ways provided z ≤ bank size. If the banks are of

unequal size the case reduces to the same, provided z ≤ smallest size of the banks. When z >

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

13

bank size the data mapping can be considered as the problem of finding all possible z × P

integer matrices [27] A with aij  {0,1}, that satisfies the given constraints on its rows and

columns. The cardinality of the set of such data mapping matrices depends on these

constraints. The first constraint is that, every data variable is considered as a single unit and is

allocated to only one memory bank:

(i): 1 ≤ i ≤ z :

Second constraint is that the sum of the sizes of all variables allocated to a particular

memory bank Bj must not exceed the size of that memory bank m(Bj):

(j): 1 ≤ j ≤ P :

Third constraint is that z must not exceed the sum of sizes of all banks:

The polynomial-time solvability of this case has been proved [28]. Indeed, more

constraints may decrease the runtime by decreasing the space of feasible solutions. For

example six variables can be allocated to two memory banks in 26 (64) ways provided each

bank size ≥ 6. But with the constraint of bank size=3, the feasible number of data mapping

matrices (cardinality of the set of matrices) reduce to 20.

The set of data mapping matrices can be obtained with a depth first search algorithm.

Adding one more row and column to an z × P matrix subject to the following constraints

gives the matrices.

(j) = 1 to P

a (z+1),j = m(Bj)

(i): 1 ≤ i ≤ z

a i,(P +1) = 1

So without any HLL directives the compiler can try all possible combination of data

variable allocation. Prior to all bank sensitive instructions the compiler can insert as many

bank switching instructions as needed. The resulting machine codes are tested with the

algorithm developed to detect the redundant bank switching codes. The program that results

in the maximum number of redundant bank switching code corresponds to the minimum

number of bank switching codes in the program and can be selected as the optimum data

allocation scheme for a given application.

4.2 Optimum Memory Bank Allocation

The compiler designers and MCU manufacturers suggest certain tips for speed

optimization. In processors using banked memory architecture, the bank switching

instructions can be reduced by properly selecting the order in which the variables are

initialized at the start up of a program. They also suggest using variables in same bank in

arithmetic expressions, to avoid bank switching. A careful assignment of program variables to

registers is the most important optimization of a compiler for RISC.

For a given application program, the data variables can be allocated to the available

memory banks by considering all possible permutation of memory banks and combination of

data as represented by the set of data mapping matrices explained in section 4.1. In each of

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

14

these programs corresponding to the various data allocation schemes, the compiler puts the

necessary MBSWC prior to all bank sensitive instructions without applying any algorithm for

the minimal placement of bank switching codes. This results in a unique Intel hex file output

corresponding to each of these programs. These files become the input to the machine code

analyzer developed which detects the number of redundant bank switching instructions

present. The more the reported number of redundant codes, optimum the memory bank

assignment. So the number of eliminated code is compared each time and the most efficient

code is selected.

We now discuss an example to illustrate how the approach described above works in

practice. For the target processor under study there are four memory banks. So z number of

data variables can be assigned to the 4 memory banks in 4z ways when z ≤ bank size. For

testing this tool for optimum data allocation a traffic signaling program having three data

variables is considered. The three data variables are named S, T and U and are assigned to the

four banks in 43 (64) ways resulting in 64 programs each with a unique data allocation

scheme. In these programs the three data variables S, T and U can be placed in the four

memory banks available, first by placing the entire three in one bank, second by placing the

three data in any of the two banks and third in any of the three banks out of the four available.

Considering the permutation of memory banks and the combination of data in each of the

above cases , programs one to four are with all the three data allocated to any one of the banks

so that there are 4P1= 4 ways of data allocation; programs five to forty are selecting any of the

two banks at a time, so that for the three variables there are 3C2×4P2= 36 ways of allocating

the data and programs forty one to sixty four are selecting any of the three banks for the three

variables in 3C3×4P3 = 24 ways. For the target processor since the special function registers

are implemented in data memory bank, accessing these registers must ensure the proper bank

switching. TRISB and PORTB are the SFRs used in the program considered. Each bank

sensitive instruction in the program is made preceded by a pair of necessary bank switching

instructions. There are eight number of bank sensitive instructions so that the number of bank

switching instructions altogether in the program is sixteen.

Figure 6 shows the number of redundant bank switching instructions reported in the 64

data allocation schemes of the program considered. The first four cases are with all the three

variables S, T and U in one bank. Programs five to forty are with the data variables S, T and

U assigned to any of the two memory banks. Similarly programs forty one to sixty four are

with data assigned to any of the three banks out of the available four. The worst case reported

is when S, in B3, T, in B0 and U also in B3 (sl.no.19 in bar graph) where out of the sixteen

bank switching instructions only two are redundant. The optimum data assignment is with S,

T and U assigned to B0 (sl.no.1 in bar graph) where fourteen out of the sixteen are redundant.

The total number of bank switching instruction depends also on the use of special function

registers in a program which are implemented in these memory banks. Data allocation

schemes 5, 6, 34 and 36 in the bar graph give the indication that there is a tendency for

optimum data assignment even though all the data are not in the same bank. Distributing the

data allocation to two banks in these cases is more efficient than allocating all the data to B2

or B3.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

15

Figure 6. The number of redundant bank switching instructions reported in the
64 data allocation schemes of the program

From the results the conclusion obtained is that a compiler can insert the required bank

switching instructions prior to any bank sensitive instruction without any complicated

analysis on the source code. The compiler can attempt all possible data allocation schemes for

a given application program. Using this tool it can determine all the bank switching code to

be eliminated along with the optimum data allocation to the available banks. When the

reported redundant codes are eliminated, the program runs successfully.

5. Conclusion

As processor architectures advance, new instructions and enhancements appear. To take

advantage of these features, compiler technology must necessarily advance. This paper

describes an algorithm to detect the redundant bank switching codes in a program introduced

by the compiler/user for partitioned memory architectures with the help of a static machine

code analysis. It also proposes the optimum memory bank allocation to the variables in a

program by the compiler that results in minimum number of bank switching codes. The

algorithm detects the redundant memory bank switching instructions inserted by the compiler

for each data allocation scheme of the program and helps to identify the program with

minimum bank switching codes. With this knowledge the compiler can eliminate all the

redundant codes in the optimum program resulting in reduced code size as well as increased

execution speed. The compiler introduced redundancy can be identified since the proposed

approach is realized through the static analysis of machine code. Since the input file is Intel

hex file, the method is independent of the compiler but realization of the technique depends

on certain architectural parameters of the target processor.

The technique presented in this work achieves optimization of bank switching instructions

without much computational burden by analyzing the machine code with a comparatively

simple algorithm. A static analysis of machine code can provide information which can

hardly be discovered by traditional simulation or test techniques. In contrast to dynamic

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

16

techniques, static techniques can explore abstractions of all possible program behaviors, and

thus are not limited by the quality of test cases in order to be effective. With a well defined

CFG constructed from the machine codes this algorithm fits well into large problem sizes as

well. Redundant data memory bank selection instructions in the intraprocedural sequence,

loops and interprocedural routines in the application program can be eliminated. The relation

matrix assists the code analyzer in identifying the active memory bank associated with each

code in the instruction stream. The suppression of false warning is done by considering the

transparent nodes which is a node without any bank switching instructions and also by

considering the union of the active memory bank associated with the incoming edges of a

CFG node for interprocedural analysis. The example illustrated in this paper proves the

feasibility of the approach.

This technique can be used for a processor core based system to select the number of data

memory banks and the size of each bank resulting in the optimized design instead of using a

single scratchpad RAM.

The execution frequency of an instruction is not considered since it is not a dynamic

analysis, nor the run time optimizing attempted. It is very hard to furnish a general solution

that handles all the problems associated with the control flow analysis of machine code, but

with more information and some architecture specific heuristics the problems become

manageable. Instruction reordering without affecting the program within the basic blocks can

further improve the bank selection optimization.

References

[1] J. Labrosse et al., Embedded Software: Know It All, Elsevier Inc. (2008)

[2] P. Riachi, “HI-TECH OCG Compiler Support for Microchip‟s PIC10/12/16”, Embedded Systems

Conference, San Jose, California (2008) April 15.

[3] Freescale. http://www.freescale.com.

[4] PICmicro mid-range MCU family reference manual, Microchip Technology Inc. (1997)

[5] B. Scholz, B. Burgstaller, and J. Xue. “Minimal placement of bank selection instructions for partitioned

memory architectures”, ACM Transactions on Embedded Computing Systems (TECS), (2008) February 7(2),

pp. 1-32.

[6] Y. Mengting, W. Guoqing, and Y. Chao, “Optimizing Bank Selection Instructions by Using Shared

Memory”, the International Conference on Embedded Software Systems (ICESS), pp. 447-45 (2008)

[7] M. Li, C. J. Xue, T. Liu and Y. Zhao, “Analysis and Approximation for Bank Selection Instruction

Minimization on Partitioned Memory Architecture”, ACM SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems (LCTES'10), Stockholm, Sweden, (2010) April 13-15 pp. 1-8.

[8] Q. Li, Y. He, Y. Chen, W. Wu and W. Xu, “A Heuristic Algorithm for Optimizing Page Selection

Instructions”, proceedings of the IEEE 2nd International Conference on Software Technology and

Engineering(ICSTE), (2010) pp. v2-143 to v2-148.

[9] L. Tiantian, M. Li, and C. J. Xue, “Joint Variable Partitioning and Bank Selection Instruction Optimization on

Embedded Systems with Multiple Memory Banks”, Proceedings of the Asia and South Pacific Design

Automation Conference (ASP-DAC 2010), (2010) pp. 113-118.

[10] O. Avissar and R. Barua. “An Optimal Memory Allocation Scheme for Scratch-Pad-Based Embedded

Systems”, ACM Transactions on Embedded Computing Systems, (2002) November Vol.1(1), pp. 6–26.

[11] J. Cho, Y. Paek, and D. Whalley, “Fast Memory Bank Assignment for Fixed-Point Digital Signal Processors”,

ACM Transactions on Design Automation of Electronic Systems (2004) Vol.9(1), pp.52-74.

[12] M. A. R. Saghir, P. Chow, and C. G. Lee, “Exploiting DualData-Memory Banks in Digital Signal

Processors”, In Proceedings of the SIGPLAN‟96 International Conference on Architectural Support for

Programming Languages and Operating Systems (1996) pp. 234-243.

[13] Q. Zhuge, B. Xiao, and E. H. M. Sha “Exploring Variable Partitioning for Dual Data-memory Bank

Processors”, In Proceedings of the 34th International Symposium on Microarchitecture (2001) pp. 42–55.

[14] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of Scratch-pad memory in embedded processor

applications”, In European Design and Test Conference, (1997) March.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

17

[15] S. Steinke, L.Wehmeyer, B.-S. Lee, and P. Marwedel, “Assigning Program and Data Objects to Scratchpad

for Energy Reduction”, Design, Automation and Test in Europe (DATE), (2002) pp. 409–417.

[16] L. Wehmeyer, U. Helmig and P. Marwedel, “Compiler-optimized usage of partitioned memories”, In

Proceedings of the 3rd workshop on Memory performance issues: in conjunction with the 31st international

symposium on computer architecture, Munich, Germany, (2004) June 20, pp. 114-120,

DOI=10.1145/1054943.1054959.

[17] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh, “Dynamic

Management of Scratch-Pad Memory Space”, In Proceedings of the 2001 ACM Design Automation

Conference(DAC), (2001) June.

[18] O. Goloubeva, M.S. Rebaudengo, M.S. Reorda and , M. Violante, “Improved software-based processor

control-flow errors detection technique”, in proceedings of the Reliability and Maintainability Symposium,

(2005) January, pp. 583–589.

[19] Data sheet, PIC16F87X, Microchip Technology Inc.., (1999). Available: http://www.microchip.com.

[20] T. Wilmshurst, Designing Embedded Systems with PIC Microcontrollers-Principles and applications,

Newnes, Elsevier, London, UK (2007)

[21] Data Sheet, PIC18F2455/2550/4455/4550, Microchip Technology Inc. (2004)

[22] J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science,

McGraw-Hill, Singapore (1987)

[23] T. Sridhar and S.M. Thatte. “Concurrent checking of program flow in VLSI processors”, In Proceedings of

the 12th Int. Test Conf. (1982) November, pp. 191-199.

[24] A.V. Aho and J.D. Ullman. Principles of Compiler Design, Addison-Wesley/Narosa, New Delhi, India (1985)

[25] M. A. Schuette and J. P. Shen. “Processor control flow monitoring using signature instruction streams”, IEEE

Trans.on Computers (1987) March, vol. C-36, No 3, pp. 264-275.

[26] http://www.microchip.com.

[27] Ryser, H. J. "Combinatorial Properties of Matrices of Zeros and Ones." Canad. J. Math., (1957) Vol.9, pp.

371-377.

[28] S. E. Wright, “Integer matrices with constraints on leading partial row and column sums”, Elsevier journal of

Discrete Applied Mathematics (2010) Vol. 158, pp. 1838-1847, doi:10.1016/j.dam.2010.06.010.

Authors

Ms. Mariamma Chacko was born in 1961 at Changanacherry, India.

She received her Bachelor‟s Degree in Electrical Engineering from

University of Kerala in 1985, Master‟s Degree in Electronics from

Cochin University of Science and Technology in 1987.

She has been working as Reader in the Department of Ship

Technology at Cochin University of Science and Technology since 1990.

From 1987 to 1990 she was associated with the Department of

Electronics, Cochin University of Science and Technology, as a research

Associate. Her research interests include validation and optimization of

embedded software

Dr. K. Poulose Jacob was born in 1955 at Cochin, India. He received

his Batchelor‟s Degree in Electrical Engineering from University of

Kerala in 1976, Masters Degree in Electronics from University of Cochin

in 1981 and Ph D in Computer Engineering from Cochin University of

Science and Technology in 1991.

Dr. K. Poulose Jacob, Professor of Computer Science at Cochin

University of Science and Technology since 1994, is currently Director

of the School of Computer Science Studies.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

18

A National Merit Scholar all through, Dr. K.Poulose Jacob joined the

Cochin University as a member of the faculty in 1983. He has presented

research papers in several International Conferences in Europe, USA, UK

and other countries. Dr. K.Poulose Jacob is a member of the ACM

(Association for Computing Machinery) and a Life Member of the

Computer Society of India.

He has more than 60 research publications to his credit. His research

interests are in Information Systems Engineering, Intelligent

Architectures and Networks.

