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Abstract 
 

Bank switching in embedded processors having partitioned memory architecture results in 

code size as well as run time overhead. An algorithm and its application to assist the 

compiler in eliminating the redundant bank switching codes introduced and deciding the 

optimum data allocation to banked memory is presented in this work. A relation matrix 

formed for the memory bank state transition corresponding to each bank selection instruction 

is used for the detection of redundant codes. Data allocation to memory is done by 

considering all possible permutation of memory banks and combination of data. The compiler 

output corresponding to each data mapping scheme is subjected to a static machine code 

analysis which identifies the one with minimum number of bank switching codes. Even though 

the method is compiler independent, the algorithm utilizes certain architectural features of 

the target processor. A prototype based on PIC 16F87X microcontrollers is described. This 

method scales well into larger number of memory blocks and other architectures so that high 

performance compilers can integrate this technique for efficient code generation. The 

technique is illustrated with an example.   
 

Keywords: Banked Memory; Optimization; Data Allocation; Compilers; Embedded 

Systems 
 

1. Introduction 
 

Embedded systems are usually designed for a single or a specified set of tasks.  

Being specific the system design as well as its hardware/software development can be 

highly optimized. It is common to select a microprocessor/microcontroller based on its 

performance and to rely on the compiler to deliver this performance. This is particularly 

true of high-performance RISC devices. Optimization is an important task when 

developing resource intensive applications. Embedded software must meet conflicting 

requirements such as high reliability, operation on resource-constrained platform and 

rapid development. Due to strict timing constraints owing to real time concerns, the 

code optimization problem is more complex than for general purpose systems. An 

efficient compiler can provide compact code, without having to learn the intricacies of 

the device architecture. This makes these devices more accessible to engineers with 

limited programming experience who are increasingly using MCUs in their product 

designs [1], [2]. 

The integration of processor cores and memory in the same chip effects a reduction 

in the chip count, leading to cost effective solutions. Typical examples of optional 

memory modules integrated with the processor on the same chip are: Instruction Cache, 
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Data Cache, and on-chip SRAM.  Efficient utilization of on-chip memory space is 

extremely important in modern embedded system applications based on microprocessor 

cores.  Memory banking and memory paging are common techniques, which increase 

the size of data and code memory without extending the address bus. Many MCUs have 

banked memories that cannot be addressed simultaneously. For example, Freescale 

68HC11 8-bit microcontrollers [3] allow multiple 64KB memory banks to be accessed 

by their 16-bit address registers with only one bank being active at a time. Other 

examples include Intel 8051 processor family, MOS technology 6502 series 

microcontrollers and most of the PIC microcontrollers [4]. Switching between the 

memory banks requires at least one bank selection instruction which induce extra 

overhead in code size and execution time. The code size is a major factor rather than 

speed for the programs running in embedded systems, since smaller code size often 

means less consumption of ROM as well as energy, and hence minimizing the number 

of bank selection instructions is an important research topic.  

The related literature for minimal placement of bank switching instructions is motivated by 

objectives, such as less runtime, low power, small code size, or a combination of these 

parameters.  Scholz et.al. in [5] assume the variables have already been assigned to memory 

banks and presents a novel optimization technique that minimizes the overhead of bank 

switching through cost effective placement of bank selection instruction. They formulate the 

placement of bank selection instructions as a discrete optimization problem that is mapped to 

a partitioned Boolean quadratic programming (PBQP) problem. Allocating variables to 

shared memory is useful to eliminate bank selection instructions. Mengting et al. in [6] 

presents a dynamic programming algorithm to generate the optimal assignment of variables in 

the shared memory to minimize bank selection instructions.  Li et al. [7] prove that it is NP-

Hard to insert the minimum number of bank selection instructions if all the variables are pre-

assigned to memory banks. So they introduce a 2-approximation algorithm using a rounding 

method.  They consider the case when there are some nodes that do not access any memory 

bank and design a dynamic programming method to compute the optimal insertion strategy 

when the Control Flow Graph (CFG) is a tree. An algorithm is presented in [8] devoted to 

reduce the number of page selection instructions with careful allocation of functions into 

pages. 

The work presented in [9] aims to utilize variable partitioning techniques to minimize the 

size and time overhead introduced by bank switching. Current practice typically leaves it to 

the programmer to partition the data among different memory banks. Whether programming 

is done in assembly language or in a high-level language, the programmer has to provide data 

manually by using assembler directives or compiler pragmatics. Compiler methods are 

preferable to programmer directives as they do not require programmer effort; are portable 

across different systems; and are likely to make better decisions, especially for large, complex 

programs [10]. Most of the current variable partitioning techniques aim at achieving the 

maximum instruction level parallelism for processors equipped with dual data memory banks 

accessible in parallel [11],[12],13]. But these techniques will not benefit the bank switching 

optimization because no parallel bank accessing is allowed in this architecture.  The problem 

of partitioning data into scratch pad SRAM and cache with the objective of maximizing 

performance has been addressed in [14].  A compiler method for automatically allocating 

program data among the heterogeneous memory units in embedded processors without caches 

resulting in reduced runtime is presented in [10]. Allocation techniques to statically allocate 

data to the scratchpad for energy saving were introduced in [15] and [16] whereas [17] 

presented a dynamic approach. These techniques are all based on the frequency of data 
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accesses and make no attempt to reduce the code size. All the previous works mentioned 

above are analyzing the source programs for optimum data partitioning.   

It is characteristic for embedded system programmers to inter-leave fragments of assembly 

code in high level language, to enable direct access to the device's hardware. Performing 

static analysis on the high level representation of the source code requires transforming the 

embedded assembly code to the high level representation. Static analysis on machine code 

rather than source code eliminates the requirement of knowledge of the semantics of high 

level language/assembly language and it is independent of the compiler so that, developers 

are free to change compilers or compiler versions [18]. Current compilers provide limited 

support to generate bank switching code optimally.  

The work presented here is targeted towards the optimum allocation of data variables 

to on-chip memory banks that cannot be accessed simultaneously. A compiler strategy 

that can automatically determine the optimum data partition among the memory banks 

is presented. An algorithm is developed and utilized to detect the redundant memory 

bank switching instructions in the resulting machine codes from a compiler for different 

data allocation schemes of the application program. Then it selects the program with 

minimum bank switching instructions as the optimum solution. A static analysis of 

machine codes which is in Intel hex file format is used to give the feedback to the 

compiler to decide the optimum allocation. To the best of the authors‟ knowledge only 

[9] presents a data partition technique aimed at minimal placement of bank selection 

instruction resulting in code as well as runtime saving. Our non profile-guided compiler 

method is static and is independent of the compiler but implementation of algorithm 

depends on certain architectural features of the target processor. The basics of the 

algorithm developed, enhancements made to the algorithm in order to suppress the false 

warnings and the results of the case study using Microchip‟s PIC16F877 [19]  

microcontroller are presented.  
 

2. Motivation and Approach 
 

For any memory space, larger the memory is, the larger the address bus needs to be. 

Previous efforts on partitioned memory are to enable memory access in parallel thereby 

increasing memory bandwidth and thus improving program performance. Such partitioned 

memory banks are found in processors like Motorola‟s DSP 56000, Intel 8086, i80186 etc 

onwards. One way of avoiding large address buses is to divide the memory into a number of 

smaller blocks – called banks/pages –each identical in size in most of the cases so that a 

smaller address bus can be used [20]. Smaller address buses result in smaller chip die sizes, 

higher clock frequencies and less power consumption. It can access all banks in an identical 

way, with just one of the banks being identified at any one time called the active memory 

bank (AMB) [5] as the target of the address specified. The contents of memory temporarily 

bank-switched out of the processors address space are inaccessible to the processor. Many 

popular manufactures of microcontrollers adopt this technique. Certain modern 

microcontrollers use bank switching to manage read-write memory, non-volatile memory, 

input-output devices and system management registers. Most of the PIC microcontrollers 

adopt a banked structure for their data as well as program memory of which a case study on 

PIC16F87X series of microcontrollers has been made in this work. 

A bank-sensitive program statement requires that the appropriate bank is to be made active 

prior to its execution. Otherwise, the program semantics are violated. This introduces an 

additional burden on the programmer; there is always a possibility for redundant bank 

switching instructions Thus, if data in one bank must be copied to another bank, bank 
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selection instructions are always necessary. Obviously, placing all the variables accessed by a 

function in the same memory bank will reduce the number of bank selection instructions and 

the total required cycles for the application. However, conventional compilers have no way of 

knowing which functions call which variables and are therefore unable to optimize their 

memory assignment. Nor do these compilers have any way of knowing whether or not a 

particular memory bank will be selected at any point in the code. As a result, these compilers 

automatically generate bank selection instructions for every memory access, whether or not 

that bank is already selected, unnecessarily bloating the code – often to such an extent that it 

will not fit in device memory. Compiler vendors have addressed this issue by providing bank 

qualifiers - extensions to the C-code. This allows the compiler to see the exact bank an object 

resides in and reduces the number of bank selection instructions for more compact code. 

However, trying to track all the memory addresses across multiple code modules and ensuring 

all pointers to have the appropriate qualifiers is a time consuming and tedious process. This 

requires substantial expertise as well as run the risk of introducing programming errors [2]. 

Analysis of a high level program cannot easily determine the current bank state. But with a 

static analysis of the machine code, the state transitions at each bank switching instruction can 

be easily determined. This work presents an algorithm developed, to detect the redundant 

bank switching codes in the machine code generated by the compiler. So the compilers can 

insert bank selection instructions for every memory access in the conventional way and the 

output file in the Intel Hex file format is tested with the algorithm developed to detect all the 

redundant bank switching code. So the compiler is deprived of any complicated analysis 

needed during compilation to minimize the bank switching code as done by some advanced 

compilers like HI-TECH OCG (Omniscient Code Generation) [2]. Now appropriate 

allocation of data variables to the available memory banks can again increase the redundant 

bank switching codes detected by the algorithm developed, resulting in minimum number of 

such codes in a given application program. 
 

3. Detection of Redundant Bank Switching Codes 
 

The goal of our optimization is to eliminate the redundant bank selection instructions in a 

program while ensuring that the banked memory is accessed correctly. The detection of 

redundant bank switching code is done with the help of a relation matrix derived from the 

architectural features of the target processor like number of memory banks and instruction set 

(memory bank switching codes). Though the implementation depends on the target processor 

the formation of the relation matrix can be generalized as explained below. The feasibility of 

the approach has been verified on systems based on PIC16F87X series of microcontrollers.  

PIC 16F84A have just two banks [20] and the address of either bank is the 7-bit RAM 

address. The active bank is selected by bit 5 in the Status register. The programmer must 

ensure that the bank bit in the Status register is correctly set before making any access to 

memory. The data memory in PIC16F87X devices is partitioned into four banks of 128 Bytes 

each, which contain the general purpose registers and the Special Function Registers (SFR). 

For selecting a particular bank, bits RP1;bit six of status register (status<6>) and RP0 

(status<5>) are to be configured appropriately. The data memory space in PIC18F series 

devices is divided into as many as 16 banks that contain 256 bytes each [21]. The Bank Select 

Register, BSR<BSR3:BSR0> holds the four bit bank; the instruction itself includes the 8 

Least Significant Bits, which can be thought of as an offset from the bank‟s lower boundary. 

The BSR can be loaded directly by using the movlb instruction.   

In general, the address space is partitioned into memory banks and the CPU can access one 

bank at a time, which is called the active memory bank (AMB), using bank selection bits or 
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bank selection instruction. For implementing this code optimization through static analysis of 

machine code, the memory bank that was active just before the execution of a bank switching 

instruction is named Previously Activated Memory Bank (PAMB). A bank 

switching/selection instruction is said to be redundant when the execution of such an 

instruction switches the memory bank to an Active Memory Bank (AMB) that does not 

alter the PAMB. 

Based on the study on the various PIC families of microcontrollers following 

generalizations are made for the partitioned data memory architecture. If P is the number of 

memory banks, so that 2r = P, then the number of bits that decides the bank selection in the 

bank selection register will be r. The number of machine codes controlling the bank selection 

will be P if the bank register is loaded with a mov instruction. For each PAMB state there will 

be one bank selection instruction, which is redundant. If bitset and bitclear instructions on the 

BSR are used for bank switching there will be 2r number of machine codes for this operation 

and for each PAMB state there will be r number of bank switching instructions, which are 

redundant. 

 

3.1 Relation Matrix Formulation 

 

The family of Microchip PICmicro MCUs constitutes a RISC-based Harvard architecture 

with instruction size of 14 bits and an 8-bit wide data bus [4]. The data memory banks in 

these embedded controllers contain the General purpose Registers and Special Function 

Registers. For proper functioning of the device, proper configuring of these registers is 

essential. Since these registers are spread across different banks they are to be accessed 

through the bank switching instructions, which limits the data partitioning optimization for 

hardware dependent code. 

Instead of having a single bank selection instruction, the PIC16F87X architecture provides 

only bit access to the bank selection register, which is the status register. The assembly 

instructions that clear or set the bits RP0 and RP1of the status register are bcf status, RP0; bcf 

status, RP1; bsf status, RP0; and bsf status, RP1 and are represented by the symbols a, b, c 

and d respectively.  The hex codes corresponding to these instructions are 1283h, 1303h, 

1683h and 1703h respectively. The four data memory banks are named B0, B1, B2 and B3. 

On a power on reset, the default bank that is active is bank‟0‟ represented as B0. Depending 

on the PAMB state, the AMB state occurs with each bank switching instruction. 

The Active Memory Bank is a discrete function [22] of Previously Activated Memory 

Bank (PAMB) and bank switching instruction. Let the finite sets 

  B = {B0, B1, B2, B3} represents the symbols of PAMB states and 

  I = {a, b, c, d} represents the symbols of bank switching instructions respectively.  

  ∂ is a mapping of B×I →B which denotes the next-state function.   

Then ∆, a (2r×2r) relation matrix, can be obtained by first constructing a table whose 

columns are preceded by a column consisting of successive elements of B and whose rows 

are headed by a row consisting of the successive elements of I as shown in Table 1. The 

relation matrix ∆ is obtained as 
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Figure 1. State Transition Diagram Showing the Bank Switching Scheme 

 

Elements of ∆ represent the AMB for each mapping of B×I→B. A state transition diagram 

representing the data memory bank switching with the execution of each bank switching 

instruction to the corresponding AMB is shown in Figure 1. The nodes represent the PAMB 

states. The occurrence of a loop on each state in the state transition diagram corresponds to an 

unnecessary bank switching or a redundant bank switching instruction, which can be 

identified and eliminated by incorporating the necessary algorithm. Eliminating such 

instructions from a machine code sequence results in a code optimized for space and speed 

metric. 

 

Table 1. Relation Matrix Formation with PAMB and Bank Switching Instructions 

 
 

For the target processor considered, most of the time the compiler/macros/user places two 

instructions to select the required data memory bank. They are  

(bcf status, RP0  bsf status, RP0)  (bcf status, RP1  bsf status, RP1).  

i.e. (a  c)  (b   d) 

To select bank B3 (i.e. status<RP1:RP0> = b„11‟), the two probable instructions are bsf 

status, RP0 (c) and bsf status, RP1 (d). With a PAMB state B2 (i.e. status<RP1:RP0> = 

b„10‟), only instruction c is needed and instruction d is redundant since; 

∂ (B2, c) = B3 which is evident from the matrix ∆ as well as the state transition diagram. This 

redundancy corresponds to a loop in the state transition diagram which the algorithm 

identifies and that instruction is eliminated. Even though the order of the instructions is 

reversed, the algorithm identifies the first instruction as redundant since the state transition is 
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to B2 itself. The other situation is selecting a bank which is already the active bank. For 

selecting the bank say B1, the two probable instructions are bsf status, RP0 (c) and bcf status 

RP1 (b). With a PAMB state B1; 

∂ (B1, c) = B1 and ∂ (B1, b) = B1 

The algorithm identifies both the bank selecting instructions which are redundant as 

evident from the matrix ∆ as well as the state transition diagram and can be removed. The 

relation matrix is independent of the application program, but it depends on the architectural 

features of the target processor. If P is the number of memory banks, so that 2r = P, then the 

number of rows of the relation matrix will be P. If the bank switching is done with a data 

transfer instruction then the number of columns of the relation matrix also will be P and in 

case the bank switching is done with individual bit set/reset instructions the number of 

columns will be 2r.  
 

3.2 Realization  
 

For the implementation of the code optimization the machine code is read from the Intel 

hex file and stored in an array.  Intel hex file format is widely used in microprocessors and 

microcontrollers as de-facto standard for representation of code for programming into 

microelectronic devices. Checking of redundant bank switching instructions should follow the 

sequence of instructions executed by the processor which correspond to a path in the program 

graph. In order to get the correct sequencing of instructions, the program (machine code) is 

partitioned into blocks of instructions by disconnecting from every merge node (a node in the 

program graph with more than one incoming arc) all of its incoming arcs [23]. Hence the 

program graph is partitioned into a collection of disconnected subgraphs where each subgraph 

corresponds to a set of instructions or subprogram. Since each subgraph is a tree, they have 

only one entry point (root node) and there is a unique path, and hence a unique sequence of 

instructions, from entry point to each of the exit points. Now the CFG can be constructed 

where each subgraph of the program graph is represented as a single node and the arcs 

represent valid control flow between subgraphs [24], [25]. 

From the CFG the set of elementary paths in a subprogram are identified as follows.  

Let N represent the total number of CFG nodes. 

Each subprogram (subgraph) can be represented as an acyclic digraph G = ‹Vi,Ei, ei,Vif, Pi›, 

where, 

(i) = 1 to N 

Vi = {vi1, vi2, …..,vik} represents the nodes in the ith subgraph.  

Ei = {x  x  (Vi×Vi)} represents control flow edges between the nodes in the subprogram. 

ei, is the initial node (merge node) of the ith subgraph .  

Vif = {x  x  Vi  x is a leaf node}. 

 Vif  = M, represents the number of paths in the ith subgraph.  One of the leaf nodes vif is 

given an Exit ID such that there exists an arc (vif, ei+1) in the program graph. If L represents 

the number of machine codes (nodes) in the jth path of the ith subgraph, then (j) = 1 to M 

Pi  = {x   x = {xj1, xj2,… xj(L-1), xjL}  xj1 = ei    xjL  Vif  (q) = 1 to L (xjq,xj(q+1)  

(Vi×Vi)}, represents the set of elementary paths in the ith subprogram. The CFG can be 
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represented as a digraph G = <V,E> where V = {v1,v2,……, vN} represents the set of 

subprograms and E = { x  x  (V×V)}. 

The flow chart given in Figure 2 explains the algorithm to detect the redundant bank 

switching codes. Since the bank B0 is the default active bank on reset, B0 is assigned at start 

to the PAMB of each path of the 1st CFG node. For each memory bank Switching Code 

(MBSWC) in a valid path the AMB state is obtained from the matrix ∆. A redundant 

MBSWC is located when AMB = PAMB. The AMB associated with the vif, which is given 

an Exit ID is assigned to the Exit Active Memory Bank (EAMB) which becomes the starting 

PAMB of each path of the next CFG node. For the analysis of a subprogram a linear scan is 

sufficient. Analysis of a subprogram takes care of the redundancy of the memory bank 

switching instructions associated with the intraprocedural routines in an application program. 

 

 

Figure 2. Flowchart Explains the Identification and Pruning of Redundant 
MBSWC in the Machine Code Sequence of a Program 

 

Completion of the analysis of the last CFG node enables the processing of the merge 

nodes.  The initial node of a subprogram is a merge node where there is more than one 

incoming arc.  So the first MBSWC in each path of a subprogram cannot be eliminated just 

by observing it to be redundant from the EAMB state of its previous subprogram. Hence the 

AMB associated with each of the incoming arc at the merge node are to be considered. Each 

of these incoming arcs corresponds to a source node which is nothing but a leaf node, and 

hence an active memory bank is associated with it. Hence the active memory bank at the 

entry node of a subprogram need not be unique. A typical case is that of a function call from 

different call sites. A call site corresponds to a node which contains an instruction 

implementing a function call. All the call sites need not have the same AMB state. A loop in a 

program is another case. Therefore, for all the CFG nodes, even though the first (pair of) bank 

switching instruction in any path is found to be redundant, they are not reported till the 

interprocedural analysis is over and the redundancy is confirmed.  This is the first step done 

towards the suppression of false warnings. Hence the AMB associated with the first 
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instruction in a subprogram is taken as the union of AMBs of its incoming arcs. During 

processing of the merge nodes, if it is found that all the incoming arcs of a CFG node (arcs to 

a merge node) are having the same active memory bank associated with them, then the 

redundancy marked for the first (pair of) bank selection instruction in that node or in any path 

of that subprogram is considered to be redundant and can be eliminated. When it is not so a 

decision is made by considering the AMB combinations of the incoming edges as follows. 

If B0 and B2 only then the instruction  bcf status,RP0 is redundant 

If B0 and B1 only then the instruction  bcf status,RP1 is redundant 

If B1 and B3 only then the instruction  bsf status,RP0 is redundant 

If B2 and B3 only then the instruction  bsf status,RP1 is redundant 

Hence the algorithm takes care of the redundant data memory bank selection instructions 

associated with all the loops and interprocedural routines of the application program. 

As a second step towards suppression of the false warnings, the algorithm considers all the 

transparent nodes which do not contain any bank switching instructions. If the active memory 

bank associated with the incoming arcs of a transparent node are not equal then the leaf nodes 

of this CFG node are assigned with the combination of incoming edges‟ AMBs. Again within 

a CFG node if any of the paths is without a bank switching instruction its leaf node is treated 

similarly. When the initially detected redundant codes are pruned the AMBs associated with 

all the incoming edges to the entry node are taken care of.  

 

3.3 Tool Evaluation 

 

The code analyzer developed for the detection of redundant bank switching instructions in 

an application program is realized in software using Visual Basic. The tool is evaluated using 

programs typically run on microcontrollers. For programs developed in assembler the 

necessary pair of MBSW instructions were inserted prior to all bank sensitive instructions and 

tested. Figure 3 shows the CFG of a sample program used for the analysis which has got six 

nodes „n1’ through „n6’. Each bank sensitive instruction in the program is preceded by an 

appropriate pair of MBSWC. Each node in a program graph is assigned with an address and 

its associated machine code. The hex values of the addresses corresponding to the pair of 

MBSWC are shown encircled and the resulting active memory banks such as B0, B1 etc. are 

also shown. B0 results with the instructions a  b, B1 results with the instructions c  b, B2 

results with the instructions a  d and B3 results with the instructions c  d. The AMB 

associated with the incoming arcs of „n1’ through „n6’ are also shown. With the MC_CODE 

ANALYZER v1.02 only the inraprocedural analysis has been done. Here the analysis of each 

CFG node considers the EAMB associated with the exit node of its predecessor only. Results 

of the analysis for the sample program above with MC_CODE ANALYZER v1.02 are given 

in Figure 4 which shows the redundant bank switching codes along with their address 

locations identified by the tool with the intraprocedural analysis. The source node address, the 

machine code at this address location and the destination node address of the program graph 

are also displayed in the screenshot. The addresses of these redundant codes are single starred 

or double starred in the Figure 3, the later being the first (pair of) MBSWC in the CFG node.  
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Figure 3. CFG of the Sample Program for the Analysis 
 

 

Figure 4. Screen Shot of the Developed MC_CODE ANALYZER v1.02 for the 
Sample Program 

 

With the MC_CODE ANALYZER v3.00 the inraprocedural, interprocedural and 

transparent node analysis has been conducted. The first (pair of) redundant bank switching 

code/codes in any of the subprogram (the nodes which are marked **), already identified with 

the MC_CODE ANALYZER v1.02 are pruned with this analysis to avoid any false warnings. 

Here the first/first pair of bank switching code/codes of each CFG node which were found 
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redundant by the previous analysis are reported to the programmer only if they are found 

redundant with the interprocedural analysis too.  

Screenshot explaining the results of this analysis for the same sample program with the 

MC_CODE ANALYZER v3.00 are given in Figure 5. The machine codes at addresses 8h, 

23h, 2Dh, 2Eh, 29h and 12h are pruned as follows. The redundancy reported in the first 

analysis for the code at location 23h is eliminated in the second analysis since „n2‟is a 

transparent node and therefore the leaf nodes of this subgraph are assigned with the 

combination of incoming edges‟ AMBs. Then the incoming edges of node „n3‟ can have 

active memory banks either B1 or B2. With a PAMB of B1, the instruction „c‟ is redundant 

since ∂ (B1, c) = B1, but with a PAMB of B2, the instruction „c‟ is not redundant as evident 

from the state diagram; hence the code at location 23h is eliminated from the result. Similarly 

for the node „n4‟, codes at 2Dh and 2Eh are reported redundant in the first analysis since 

EAMB of the exit node of „n3‟ is B3. But with the second analysis only code at location 2Eh 

is reported and 2Dh is eliminated since the incoming edges AMB combination is B3 and B2 

only. With a PAMB of B3 or B2 the instruction „c‟ is not redundant, but the instruction„d‟ is 

redundant since ∂ (B3, d) = B3 and ∂ (B2, d) = B2. For the node „n5‟, since the incoming 

edges are having the same AMB B3, code at location 29h is reported in both the analysis 

which is clear from the relation matrix. For the machine codes at addresses 8h and 12h there 

is no change since node „n1‟ is having only one incoming edge and for „n6‟ the AMB 

associated with the incoming edges are the same.  The codes which are found redundant in 

the first analysis but eliminated later lead to the suppression of false warnings. 

 

 

Figure 5.Screen Shot of the Developed MC_CODE ANALYZER v3.00 for the 
Sample Program 

 

Results of the analysis done on machine codes generated with different compilers as well 

as assembler are given in Table 2.  HI-TECH Software is a world-class provider of 

development tools for embedded systems and is the number one third party vendor of 

compilers for Microchip Technology Inc. For a program module „delay_time_rout‟ 

downloaded from [26] and compiled using HI-TECH C PRO, the algorithm detected six 

redundant codes. Sample programs available with HI-TECH C PRO compiler are tested and 

the results are given as sl. no. 2 to 6. These programs are compiled with the optimization 

enabled; hence the results prove that the tool developed is superior to the compiler. Serial 

numbers 7 to 12 gives the results of the analysis on programs available with PROTEUS VSM 

design tool. The results of the analysis for an ADC program compiled using HI-TECH C 
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PRO, mikroC and also the same program developed in assembler are also included (sl. No. 13 

to 15) to test the independence of the tool developed on the compiler. Serial number 12 is a 

program compiled with PICBASIC.  For a traffic signaling program developed in assembler 

with each bank sensitive instruction preceded by a pair of necessary bank switching 

instructions, the algorithm detected all the redundant bank switching codes and this is 

presented as sl. no.16 of the table. The tool developed counts the total number of bank 

switching codes originally present in the program as well as the number of redundant bank 

switching codes. Using the simulation log in PROTEUS VSM the number of program words 

in each program is also found. Hence the percentage saving in code size is computed and 

presented in the table. A corresponding saving in run time can also be computed. Including 

the profile data can give the execution frequency of each node so that the better 

approximation of the runtime saving can be computed which will be conducted as a future 

work.  

 

Table 2. Results of the Analysis 
 

Sl. 

No. 

Program Code 

 size 

MBSWC 

present 

Redudnt.  

MBSWC 

detected. 

Saving  in 

code  size 

% 

1 delay_time_rout 223 6 6 2.7 

2 Lcd_demo 176 12 10 5.7 

3 Timer_demo 49 3 0 0 

4 Intr_demo 44 2 0 0 

5 Pic_demo 700 16 14 2 

6 Bootloader 225 19 1 0.44 

7 ADC 63 7 1 1.6 

8 Doorbell 643 2 0 0 

9 PICCLOCK 292 2 0 0 

10 RS232LCD 102 5 1 0.98 

11 GEPE456 1403 10 2 0.14 

12 GLCD_T~1 1044 16 0 0 

13 HiTecC_ADC 84 18 8 9.5 

14 mikroC_ADC 56 10 2 3.6 

15 ASM_ADC 81 9 1 1.2 

16 Traffic_signalling 48 16 7 14.6 
 

4. Optimization Technique 
 

This work considers a compiler strategy of allocating z number of data variables in an 

application program to P number of data memory banks in the target processor, with the 

objective to deliver the machine code with minimum number of bank switching codes. Since 

the number of bank switching codes cannot be expressed as a linear function of the data 

variable, an ILP solver is not applied in our approach.  
 

4.1 Variable Partitioning 
 

For a banked memory with P banks each of equal size, z number of data variables can be 

assigned to the available banks in Pz possible ways provided z ≤ bank size. If the banks are of 

unequal size the case reduces to the same, provided z ≤ smallest size of the banks. When z > 
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bank size the data mapping can be considered as the problem of finding all possible z × P 

integer matrices [27] A with aij  {0,1}, that satisfies the given constraints on its rows and 

columns. The cardinality of the set of such data mapping matrices depends on these 

constraints. The first constraint is that, every data variable is considered as a single unit and is 

allocated to only one memory bank:  

(i): 1 ≤  i ≤  z :   

Second constraint is that the sum of the sizes of all variables allocated to a particular 

memory bank Bj must not exceed the size of that memory bank m(Bj):  

(j): 1 ≤  j ≤  P :    

Third constraint is that z must not exceed the sum of sizes of all banks: 

  

The polynomial-time solvability of this case has been proved [28].   Indeed, more 

constraints may decrease the runtime by decreasing the space of feasible solutions. For 

example six variables can be allocated to two memory banks in 26 (64) ways provided each 

bank size ≥ 6. But with the constraint of bank size=3, the feasible number of data mapping 

matrices (cardinality of the set of matrices) reduce to 20. 

The set of data mapping matrices can be obtained with a depth first search algorithm. 

Adding one more row and column to an z × P matrix subject to the following constraints 

gives the matrices. 

(j) = 1 to P 

a (z+1),j = m(Bj) 

(i): 1 ≤  i ≤  z 

a i,( P +1) = 1 

So without any HLL directives the compiler can try all possible combination of data 

variable allocation. Prior to all bank sensitive instructions the compiler can insert as many 

bank switching instructions as needed. The resulting machine codes are tested with the 

algorithm developed to detect the redundant bank switching codes. The program that results 

in the maximum number of redundant bank switching code corresponds to the minimum 

number of bank switching codes in the program and can be selected as the optimum data 

allocation scheme for a given application.  

 

4.2 Optimum Memory Bank Allocation 
 

The compiler designers and MCU manufacturers suggest certain tips for speed 

optimization. In processors using banked memory architecture, the bank switching 

instructions can be reduced by properly selecting the order in which the variables are 

initialized at the start up of a program. They also suggest using variables in same bank in 

arithmetic expressions, to avoid bank switching. A careful assignment of program variables to 

registers is the most important optimization of a compiler for RISC.  

For a given application program, the data variables can be allocated to the available 

memory banks by considering all possible permutation of memory banks and combination of 

data as represented by the set of data mapping matrices explained in section 4.1. In each of 
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these programs corresponding to the various data allocation schemes, the compiler puts the 

necessary MBSWC prior to all bank sensitive instructions without applying any algorithm for 

the minimal placement of bank switching codes. This results in a unique Intel hex file output 

corresponding to each of these programs. These files become the input to the machine code 

analyzer developed which detects the number of redundant bank switching instructions 

present.  The more the reported number of redundant codes, optimum the memory bank 

assignment. So the number of eliminated code is compared each time and the most efficient 

code is selected.  

We now discuss an example to illustrate how the approach described above works in 

practice. For the target processor under study there are four memory banks. So z number of 

data variables can be assigned to the 4 memory banks in 4z ways when z ≤ bank size. For 

testing this tool for optimum data allocation a traffic signaling program having three data 

variables is considered. The three data variables are named S, T and U and are assigned to the 

four banks in 43 (64) ways resulting in 64 programs each with a unique data allocation 

scheme. In these programs the three data variables S, T and U can be placed in the four 

memory banks available, first by placing the entire three in one bank, second by placing the 

three data in any of the two banks and third in any of the three banks out of the four available. 

Considering the permutation of memory banks and the combination of data in each of the 

above cases , programs one to four are with all the three data allocated to any one of the banks 

so that there are 4P1= 4 ways of data allocation; programs five to forty are selecting any of the 

two banks at a time, so that for the three variables there are 3C2×4P2= 36 ways of allocating 

the data and programs forty one to sixty four are selecting any of the three banks for the three 

variables in 3C3×4P3 = 24 ways. For the target processor since the special function registers 

are implemented in data memory bank, accessing these registers must ensure the proper bank 

switching. TRISB and PORTB are the SFRs used in the program considered. Each bank 

sensitive instruction in the program is made preceded by a pair of necessary bank switching 

instructions. There are eight number of bank sensitive instructions so that the number of bank 

switching instructions altogether in the program is sixteen.  

Figure 6 shows the number of redundant bank switching instructions reported in the 64 

data allocation schemes of the program considered. The first four cases are with all the three 

variables S, T and U in one bank. Programs five to forty are with the data variables S, T and 

U assigned to any of the two memory banks. Similarly programs forty one to sixty four are 

with data assigned to any of the three banks out of the available four. The worst case reported 

is when S, in B3, T, in B0 and U also in B3 (sl.no.19 in bar graph) where out of the sixteen 

bank switching instructions only two are redundant. The optimum data assignment is with S, 

T and U assigned to B0 (sl.no.1 in bar graph) where fourteen out of the sixteen are redundant. 

The total number of bank switching instruction depends also on the use of special function 

registers in a program which are implemented in these memory banks. Data allocation 

schemes 5, 6, 34 and 36 in the bar graph give the indication that there is a tendency for 

optimum data assignment even though all the data are not in the same bank. Distributing the 

data allocation to two banks in these cases is more efficient than allocating all the data to B2 

or B3. 
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Figure 6. The number of redundant bank switching instructions reported in the 
64 data allocation schemes of the program 

 

From the results the conclusion obtained is that a compiler can insert the required bank 

switching instructions prior to any bank sensitive instruction without any complicated 

analysis on the source code. The compiler can attempt all possible data allocation schemes for 

a given application program. Using this tool it can determine all the bank switching code to 

be eliminated along with the optimum data allocation to the available banks. When the 

reported redundant codes are eliminated, the program runs successfully. 
 

5. Conclusion 
 

As processor architectures advance, new instructions and enhancements appear. To take 

advantage of these features, compiler technology must necessarily advance. This paper 

describes an algorithm to detect the redundant bank switching codes in a program introduced 

by the compiler/user for partitioned memory architectures with the help of a static machine 

code analysis. It also proposes the optimum memory bank allocation to the variables in a 

program by the compiler that results in minimum number of bank switching codes. The 

algorithm detects the redundant memory bank switching instructions inserted by the compiler 

for each data allocation scheme of the program and helps to identify the program with 

minimum bank switching codes. With this knowledge the compiler can eliminate all the 

redundant codes in the optimum program resulting in reduced code size as well as increased 

execution speed. The compiler introduced redundancy can be identified since the proposed 

approach is realized through the static analysis of machine code. Since the input file is Intel 

hex file, the method is independent of the compiler but realization of the technique depends 

on certain architectural parameters of the target processor.  

The technique presented in this work achieves optimization of bank switching instructions 

without much computational burden by analyzing the machine code with a comparatively 

simple algorithm. A static analysis of machine code can provide information which can 

hardly be discovered by traditional simulation or test techniques. In contrast to dynamic 
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techniques, static techniques can explore abstractions of all possible program behaviors, and 

thus are not limited by the quality of test cases in order to be effective. With a well defined 

CFG constructed from the machine codes this algorithm fits well into large problem sizes as 

well. Redundant data memory bank selection instructions in the intraprocedural sequence, 

loops and interprocedural routines in the application program can be eliminated. The relation 

matrix assists the code analyzer in identifying the active memory bank associated with each 

code in the instruction stream. The suppression of false warning is done by considering the 

transparent nodes which is a node without any bank switching instructions and also by 

considering the union of the active memory bank associated with the incoming edges of a 

CFG node for interprocedural analysis. The example illustrated in this paper proves the 

feasibility of the approach. 

This technique can be used for a processor core based system to select the number of data 

memory banks and the size of each bank resulting in the optimized design instead of using a 

single scratchpad RAM. 

The execution frequency of an instruction is not considered since it is not a dynamic 

analysis, nor the run time optimizing attempted. It is very hard to furnish a general solution 

that handles all the problems associated with the control flow analysis of machine code, but 

with more information and some architecture specific heuristics the problems become 

manageable. Instruction reordering without affecting the program within the basic blocks can 

further improve the bank selection optimization. 
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